|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Inference-only DeepseekV2/DeepseekV3 model.""" |
|
import typing |
|
from collections.abc import Callable, Iterable |
|
from typing import Any, Optional, Union |
|
|
|
import torch |
|
from torch import nn |
|
from transformers import PretrainedConfig |
|
|
|
from vllm.attention import Attention |
|
from vllm.compilation.decorators import support_torch_compile |
|
from vllm.config import (CacheConfig, ModelConfig, VllmConfig, |
|
get_current_vllm_config) |
|
from vllm.distributed import (get_ep_group, get_pp_group, |
|
get_tensor_model_parallel_world_size) |
|
from vllm.model_executor.layers.activation import SiluAndMul |
|
from vllm.model_executor.layers.fused_moe import FusedMoE |
|
from vllm.model_executor.layers.layernorm import RMSNorm |
|
from vllm.model_executor.layers.linear import (ColumnParallelLinear, |
|
MergedColumnParallelLinear, |
|
ReplicatedLinear, |
|
RowParallelLinear) |
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor |
|
from vllm.model_executor.layers.quantization import QuantizationConfig |
|
from vllm.model_executor.layers.rotary_embedding import get_rope |
|
from vllm.model_executor.layers.vocab_parallel_embedding import ( |
|
ParallelLMHead, VocabParallelEmbedding) |
|
from vllm.model_executor.model_loader.weight_utils import ( |
|
default_weight_loader, maybe_remap_kv_scale_name) |
|
from vllm.model_executor.sampling_metadata import SamplingMetadata |
|
from vllm.sequence import IntermediateTensors |
|
|
|
from .interfaces import MixtureOfExperts, SupportsPP |
|
from .utils import (PPMissingLayer, is_pp_missing_parameter, |
|
make_empty_intermediate_tensors_factory, make_layers, |
|
maybe_prefix) |
|
|
|
|
|
class DeepseekV2MLP(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
intermediate_size: int, |
|
hidden_act: str, |
|
quant_config: Optional[QuantizationConfig] = None, |
|
reduce_results: bool = True, |
|
prefix: str = "", |
|
) -> None: |
|
super().__init__() |
|
self.gate_up_proj = MergedColumnParallelLinear( |
|
hidden_size, [intermediate_size] * 2, |
|
bias=False, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.gate_up_proj") |
|
self.down_proj = RowParallelLinear(intermediate_size, |
|
hidden_size, |
|
bias=False, |
|
quant_config=quant_config, |
|
reduce_results=reduce_results, |
|
prefix=f"{prefix}.down_proj") |
|
if hidden_act != "silu": |
|
raise ValueError(f"Unsupported activation: {hidden_act}. " |
|
"Only silu is supported for now.") |
|
self.act_fn = SiluAndMul() |
|
|
|
def forward(self, x): |
|
gate_up, _ = self.gate_up_proj(x) |
|
x = self.act_fn(gate_up) |
|
x, _ = self.down_proj(x) |
|
return x |
|
|
|
|
|
class DeepseekV2MoE(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
config: PretrainedConfig, |
|
quant_config: Optional[QuantizationConfig] = None, |
|
prefix: str = "", |
|
enable_eplb: bool = False, |
|
): |
|
super().__init__() |
|
self.tp_size = get_tensor_model_parallel_world_size() |
|
self.routed_scaling_factor = config.routed_scaling_factor |
|
|
|
self.ep_group = get_ep_group().device_group |
|
self.ep_rank = self.ep_group.rank() |
|
self.ep_size = self.ep_group.size() |
|
self.n_routed_experts: int = config.n_routed_experts |
|
self.n_shared_experts: int = config.n_shared_experts |
|
|
|
if config.hidden_act != "silu": |
|
raise ValueError(f"Unsupported activation: {config.hidden_act}. " |
|
"Only silu is supported for now.") |
|
|
|
self.gate = ReplicatedLinear(config.hidden_size, |
|
config.n_routed_experts, |
|
bias=False, |
|
quant_config=None, |
|
prefix=f"{prefix}.gate") |
|
if config.topk_method == "noaux_tc": |
|
self.gate.e_score_correction_bias = nn.Parameter( |
|
torch.empty(config.n_routed_experts, dtype=torch.float32)) |
|
else: |
|
self.gate.e_score_correction_bias = None |
|
|
|
|
|
vllm_config = get_current_vllm_config() |
|
parallel_config = vllm_config.parallel_config |
|
self.enable_eplb = enable_eplb |
|
|
|
self.n_redundant_experts = parallel_config.num_redundant_experts |
|
self.n_logical_experts = self.n_routed_experts |
|
self.n_physical_experts = (self.n_logical_experts + |
|
self.n_redundant_experts) |
|
self.n_local_physical_experts = self.n_physical_experts // self.ep_size |
|
|
|
self.physical_expert_start = (self.ep_rank * |
|
self.n_local_physical_experts) |
|
self.physical_expert_end = (self.physical_expert_start + |
|
self.n_local_physical_experts) |
|
|
|
self.experts = FusedMoE( |
|
num_experts=config.n_routed_experts, |
|
top_k=config.num_experts_per_tok, |
|
hidden_size=config.hidden_size, |
|
intermediate_size=config.moe_intermediate_size, |
|
reduce_results=False, |
|
renormalize=config.norm_topk_prob, |
|
quant_config=quant_config, |
|
use_grouped_topk=True, |
|
num_expert_group=config.n_group, |
|
topk_group=config.topk_group, |
|
prefix=f"{prefix}.experts", |
|
scoring_func=config.scoring_func, |
|
e_score_correction_bias=self.gate.e_score_correction_bias, |
|
enable_eplb=self.enable_eplb, |
|
num_redundant_experts=self.n_redundant_experts) |
|
|
|
if config.n_shared_experts is not None: |
|
intermediate_size = (config.moe_intermediate_size * |
|
config.n_shared_experts) |
|
self.shared_experts = DeepseekV2MLP( |
|
hidden_size=config.hidden_size, |
|
intermediate_size=intermediate_size, |
|
hidden_act=config.hidden_act, |
|
quant_config=quant_config, |
|
reduce_results=self.experts.must_reduce_shared_expert_outputs( |
|
), |
|
prefix=f"{prefix}.shared_experts", |
|
) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
num_tokens, hidden_dim = hidden_states.shape |
|
hidden_states = hidden_states.view(-1, hidden_dim) |
|
if self.n_shared_experts is not None: |
|
shared_output = self.shared_experts(hidden_states) |
|
|
|
router_logits, _ = self.gate(hidden_states) |
|
|
|
if hidden_states.dtype != torch.float16: |
|
final_hidden_states = self.experts( |
|
hidden_states=hidden_states, |
|
router_logits=router_logits) * self.routed_scaling_factor |
|
else: |
|
|
|
|
|
final_hidden_states = self.experts(hidden_states=hidden_states, |
|
router_logits=router_logits) |
|
if shared_output is not None: |
|
if hidden_states.dtype != torch.float16: |
|
final_hidden_states = final_hidden_states + shared_output |
|
else: |
|
|
|
|
|
final_hidden_states = final_hidden_states + shared_output \ |
|
* (1. / self.routed_scaling_factor) |
|
|
|
if self.tp_size > 1: |
|
final_hidden_states = ( |
|
self.experts.maybe_all_reduce_tensor_model_parallel( |
|
final_hidden_states)) |
|
|
|
return final_hidden_states.view(num_tokens, hidden_dim) |
|
|
|
|
|
def yarn_get_mscale(scale: float = 1, mscale: float = 1) -> float: |
|
import math |
|
if scale <= 1: |
|
return 1.0 |
|
return 0.1 * mscale * math.log(scale) + 1.0 |
|
|
|
|
|
class DeepseekV2Attention(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
config: PretrainedConfig, |
|
hidden_size: int, |
|
num_heads: int, |
|
qk_nope_head_dim: int, |
|
qk_rope_head_dim: int, |
|
v_head_dim: int, |
|
q_lora_rank: int, |
|
kv_lora_rank: int, |
|
rope_theta: float = 10000, |
|
rope_scaling: Optional[dict[str, Any]] = None, |
|
max_position_embeddings: int = 8192, |
|
cache_config: Optional[CacheConfig] = None, |
|
quant_config: Optional[QuantizationConfig] = None, |
|
prefix: str = "", |
|
) -> None: |
|
super().__init__() |
|
self.hidden_size = hidden_size |
|
self.qk_nope_head_dim = qk_nope_head_dim |
|
self.qk_rope_head_dim = qk_rope_head_dim |
|
self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim |
|
self.v_head_dim = v_head_dim |
|
self.q_lora_rank = q_lora_rank |
|
self.kv_lora_rank = kv_lora_rank |
|
self.num_heads = num_heads |
|
tp_size = get_tensor_model_parallel_world_size() |
|
assert num_heads % tp_size == 0 |
|
self.num_local_heads = num_heads // tp_size |
|
self.scaling = self.qk_head_dim ** -0.5 |
|
self.rope_theta = rope_theta |
|
self.max_position_embeddings = max_position_embeddings |
|
|
|
if self.q_lora_rank is not None: |
|
self.q_a_proj = ReplicatedLinear(self.hidden_size, |
|
self.q_lora_rank, |
|
bias=False, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.q_a_proj") |
|
self.q_a_layernorm = RMSNorm(self.q_lora_rank, |
|
eps=config.rms_norm_eps) |
|
self.q_b_proj = ColumnParallelLinear(q_lora_rank, |
|
self.num_heads * |
|
self.qk_head_dim, |
|
bias=False, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.q_b_proj") |
|
else: |
|
self.q_proj = ColumnParallelLinear(self.hidden_size, |
|
self.num_heads * |
|
self.qk_head_dim, |
|
bias=False, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.q_proj") |
|
|
|
self.kv_a_proj_with_mqa = ReplicatedLinear( |
|
self.hidden_size, |
|
self.kv_lora_rank + self.qk_rope_head_dim, |
|
bias=False, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.kv_a_proj_with_mqa") |
|
self.kv_a_layernorm = RMSNorm(self.kv_lora_rank, |
|
eps=config.rms_norm_eps) |
|
self.kv_b_proj = ColumnParallelLinear( |
|
self.kv_lora_rank, |
|
self.num_heads * (self.qk_nope_head_dim + self.v_head_dim), |
|
bias=False, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.kv_b_proj") |
|
|
|
self.o_proj = RowParallelLinear(self.num_heads * self.v_head_dim, |
|
self.hidden_size, |
|
bias=False, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.o_proj") |
|
if rope_scaling: |
|
rope_scaling["rope_type"] = 'deepseek_yarn' |
|
|
|
self.rotary_emb = get_rope(qk_rope_head_dim, |
|
rotary_dim=qk_rope_head_dim, |
|
max_position=max_position_embeddings, |
|
base=rope_theta, |
|
rope_scaling=rope_scaling, |
|
is_neox_style=False) |
|
|
|
if rope_scaling: |
|
mscale_all_dim = rope_scaling.get("mscale_all_dim", False) |
|
scaling_factor = rope_scaling["factor"] |
|
mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim)) |
|
self.scaling = self.scaling * mscale * mscale |
|
|
|
self.attn = Attention(self.num_local_heads, |
|
self.qk_head_dim, |
|
self.scaling, |
|
num_kv_heads=self.num_local_heads, |
|
cache_config=cache_config, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.attn") |
|
|
|
def forward( |
|
self, |
|
positions: torch.Tensor, |
|
hidden_states: torch.Tensor, |
|
) -> torch.Tensor: |
|
if self.q_lora_rank is not None: |
|
q = self.q_a_proj(hidden_states)[0] |
|
q = self.q_a_layernorm(q) |
|
q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, |
|
self.qk_head_dim) |
|
else: |
|
q = self.q_proj(hidden_states)[0].view(-1, self.num_local_heads, |
|
self.qk_head_dim) |
|
q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], |
|
dim=-1) |
|
latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0] |
|
kv_a, _ = latent_cache.split( |
|
[self.kv_lora_rank, self.qk_rope_head_dim], dim=-1) |
|
latent_cache = latent_cache.unsqueeze(1) |
|
kv_a = self.kv_a_layernorm(kv_a.contiguous()) |
|
kv = self.kv_b_proj(kv_a)[0] |
|
kv = kv.view(-1, self.num_local_heads, |
|
self.qk_nope_head_dim + self.v_head_dim) |
|
k_nope, v = kv.split([self.qk_nope_head_dim, self.v_head_dim], dim=-1) |
|
k_pe = latent_cache[:, :, self.kv_lora_rank:] |
|
|
|
q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe) |
|
|
|
q[..., self.qk_nope_head_dim:] = q_pe |
|
k = torch.empty_like(q) |
|
k[..., :self.qk_nope_head_dim] = k_nope |
|
k[..., self.qk_nope_head_dim:] = k_pe |
|
|
|
v = torch.nn.functional.pad( |
|
v, [0, self.qk_head_dim - self.v_head_dim], |
|
value=0).view(-1, self.num_local_heads * self.qk_head_dim) |
|
attn_output = self.attn(q, k, v) |
|
attn_output = attn_output.view( |
|
-1, self.num_local_heads, |
|
self.qk_head_dim)[..., :self.v_head_dim].reshape( |
|
-1, self.num_local_heads * self.v_head_dim) |
|
output, _ = self.o_proj(attn_output) |
|
return output |
|
|
|
|
|
class DeepseekV2MLAAttention(nn.Module): |
|
""" |
|
Main reference: DeepseekV2 paper, and FlashInfer Implementation |
|
(https://arxiv.org/abs/2405.04434 and https://github.com/flashinfer-ai/flashinfer/pull/551). |
|
|
|
For more info see MLACommonImpl in: vllm/attention/backends/mla/utils.py |
|
""" |
|
|
|
def __init__( |
|
self, |
|
config: PretrainedConfig, |
|
hidden_size: int, |
|
num_heads: int, |
|
qk_nope_head_dim: int, |
|
qk_rope_head_dim: int, |
|
v_head_dim: int, |
|
q_lora_rank: Optional[int], |
|
kv_lora_rank: int, |
|
rope_theta: float = 10000, |
|
rope_scaling: Optional[dict[str, Any]] = None, |
|
max_position_embeddings: int = 8192, |
|
cache_config: Optional[CacheConfig] = None, |
|
quant_config: Optional[QuantizationConfig] = None, |
|
prefix: str = "", |
|
) -> None: |
|
super().__init__() |
|
self.hidden_size = hidden_size |
|
self.qk_nope_head_dim = qk_nope_head_dim |
|
self.qk_rope_head_dim = qk_rope_head_dim |
|
self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim |
|
self.v_head_dim = v_head_dim |
|
|
|
self.q_lora_rank = q_lora_rank |
|
self.kv_lora_rank = kv_lora_rank |
|
|
|
self.num_heads = num_heads |
|
tp_size = get_tensor_model_parallel_world_size() |
|
assert num_heads % tp_size == 0 |
|
self.num_local_heads = num_heads // tp_size |
|
|
|
self.scaling = self.qk_head_dim ** -0.5 |
|
self.rope_theta = rope_theta |
|
self.max_position_embeddings = max_position_embeddings |
|
|
|
if self.q_lora_rank is not None: |
|
self.q_a_proj = ReplicatedLinear(self.hidden_size, |
|
self.q_lora_rank, |
|
bias=False, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.q_a_proj") |
|
self.q_a_layernorm = RMSNorm(self.q_lora_rank, |
|
eps=config.rms_norm_eps) |
|
self.q_b_proj = ColumnParallelLinear(q_lora_rank, |
|
self.num_heads * |
|
self.qk_head_dim, |
|
bias=False, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.q_b_proj") |
|
else: |
|
self.q_proj = ColumnParallelLinear(self.hidden_size, |
|
self.num_heads * |
|
self.qk_head_dim, |
|
bias=False, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.q_proj") |
|
|
|
self.kv_a_proj_with_mqa = ReplicatedLinear( |
|
self.hidden_size, |
|
self.kv_lora_rank + self.qk_rope_head_dim, |
|
bias=False, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.kv_a_proj_with_mqa") |
|
self.kv_a_layernorm = RMSNorm(self.kv_lora_rank, |
|
eps=config.rms_norm_eps) |
|
self.kv_b_proj = ColumnParallelLinear( |
|
self.kv_lora_rank, |
|
self.num_heads * (self.qk_nope_head_dim + self.v_head_dim), |
|
bias=False, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.kv_b_proj") |
|
self.o_proj = RowParallelLinear(self.num_heads * self.v_head_dim, |
|
self.hidden_size, |
|
bias=False, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.o_proj") |
|
|
|
if rope_scaling: |
|
rope_scaling["rope_type"] = 'deepseek_yarn' |
|
self.rotary_emb = get_rope(qk_rope_head_dim, |
|
rotary_dim=qk_rope_head_dim, |
|
max_position=max_position_embeddings, |
|
base=rope_theta, |
|
rope_scaling=rope_scaling, |
|
is_neox_style=False) |
|
if rope_scaling: |
|
mscale_all_dim = rope_scaling.get("mscale_all_dim", False) |
|
scaling_factor = rope_scaling["factor"] |
|
mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim)) |
|
self.scaling = self.scaling * mscale * mscale |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.mla_attn = Attention( |
|
num_heads=self.num_local_heads, |
|
head_size=self.kv_lora_rank + self.qk_rope_head_dim, |
|
scale=self.scaling, |
|
num_kv_heads=1, |
|
cache_config=cache_config, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.attn", |
|
use_mla=True, |
|
|
|
q_lora_rank=self.q_lora_rank, |
|
kv_lora_rank=self.kv_lora_rank, |
|
qk_nope_head_dim=self.qk_nope_head_dim, |
|
qk_rope_head_dim=self.qk_rope_head_dim, |
|
qk_head_dim=self.qk_head_dim, |
|
v_head_dim=self.v_head_dim, |
|
kv_b_proj=self.kv_b_proj, |
|
) |
|
|
|
self.prefix = prefix |
|
self.debug_layer_idx = int(self.prefix.split(".")[-2]) |
|
|
|
def forward( |
|
self, |
|
positions: torch.Tensor, |
|
hidden_states: torch.Tensor, |
|
) -> torch.Tensor: |
|
if self.q_lora_rank is not None: |
|
q_c = self.q_a_proj(hidden_states)[0] |
|
q_c = self.q_a_layernorm(q_c) |
|
q = self.q_b_proj(q_c)[0] |
|
else: |
|
q = self.q_proj(hidden_states)[0] |
|
kv_c, k_pe = self.kv_a_proj_with_mqa(hidden_states)[0].split( |
|
[self.kv_lora_rank, self.qk_rope_head_dim], dim=-1) |
|
kv_c_normed = self.kv_a_layernorm(kv_c.contiguous()) |
|
|
|
q = q.view(-1, self.num_local_heads, self.qk_head_dim) |
|
|
|
k_pe = k_pe.unsqueeze(1) |
|
|
|
q[..., self.qk_nope_head_dim:], k_pe = self.rotary_emb( |
|
positions, q[..., self.qk_nope_head_dim:], k_pe) |
|
|
|
attn_out = self.mla_attn( |
|
q, |
|
kv_c_normed, |
|
k_pe, |
|
output_shape=(hidden_states.shape[0], |
|
self.num_local_heads * self.v_head_dim)) |
|
return self.o_proj(attn_out)[0] |
|
|
|
|
|
class DeepseekV2DecoderLayer(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
config: PretrainedConfig, |
|
prefix: str, |
|
model_config: ModelConfig, |
|
cache_config: Optional[CacheConfig] = None, |
|
quant_config: Optional[QuantizationConfig] = None, |
|
enable_eplb: bool = False, |
|
) -> None: |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
rope_theta = getattr(config, "rope_theta", 10000) |
|
rope_scaling = getattr(config, "rope_scaling", None) |
|
max_position_embeddings = getattr(config, "max_position_embeddings", |
|
8192) |
|
|
|
|
|
layer_idx = int(prefix.split(sep='.')[-1]) |
|
self.layer_idx = layer_idx |
|
if model_config.use_mla: |
|
attn_cls = DeepseekV2MLAAttention |
|
else: |
|
attn_cls = DeepseekV2Attention |
|
self.self_attn = attn_cls( |
|
config=config, |
|
hidden_size=self.hidden_size, |
|
num_heads=config.num_attention_heads, |
|
qk_nope_head_dim=config.qk_nope_head_dim, |
|
qk_rope_head_dim=config.qk_rope_head_dim, |
|
v_head_dim=config.v_head_dim, |
|
q_lora_rank=config.q_lora_rank |
|
if hasattr(config, "q_lora_rank") else None, |
|
kv_lora_rank=config.kv_lora_rank, |
|
rope_theta=rope_theta, |
|
rope_scaling=rope_scaling, |
|
max_position_embeddings=max_position_embeddings, |
|
cache_config=cache_config, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.self_attn", |
|
) |
|
|
|
if (config.n_routed_experts is not None |
|
and layer_idx >= config.first_k_dense_replace |
|
and layer_idx % config.moe_layer_freq == 0): |
|
self.mlp = DeepseekV2MoE( |
|
config=config, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.mlp", |
|
enable_eplb=enable_eplb, |
|
) |
|
else: |
|
self.mlp = DeepseekV2MLP( |
|
hidden_size=config.hidden_size, |
|
intermediate_size=config.intermediate_size, |
|
hidden_act=config.hidden_act, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.mlp", |
|
) |
|
self.input_layernorm = RMSNorm(config.hidden_size, |
|
eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = RMSNorm(config.hidden_size, |
|
eps=config.rms_norm_eps) |
|
self.routed_scaling_factor = config.routed_scaling_factor |
|
|
|
def forward( |
|
self, |
|
positions: torch.Tensor, |
|
hidden_states: torch.Tensor, |
|
residual: Optional[torch.Tensor], |
|
) -> torch.Tensor: |
|
|
|
if residual is None: |
|
residual = hidden_states |
|
hidden_states = self.input_layernorm(hidden_states) |
|
else: |
|
hidden_states, residual = self.input_layernorm( |
|
hidden_states, residual) |
|
hidden_states = self.self_attn( |
|
positions=positions, |
|
hidden_states=hidden_states, |
|
) |
|
|
|
if hidden_states.dtype == torch.float16: |
|
|
|
|
|
|
|
hidden_states *= 1. / self.routed_scaling_factor |
|
if self.layer_idx == 0: |
|
|
|
|
|
residual *= 1. / self.routed_scaling_factor |
|
|
|
|
|
hidden_states, residual = self.post_attention_layernorm( |
|
hidden_states, residual) |
|
hidden_states = self.mlp(hidden_states) |
|
|
|
if isinstance(self.mlp, |
|
DeepseekV2MLP) and hidden_states.dtype == torch.float16: |
|
|
|
|
|
|
|
|
|
|
|
hidden_states *= 1. / self.routed_scaling_factor |
|
|
|
return hidden_states, residual |
|
|
|
|
|
@support_torch_compile |
|
class DeepseekV2Model(nn.Module): |
|
fall_back_to_pt_during_load = False |
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): |
|
super().__init__() |
|
|
|
config = vllm_config.model_config.hf_config |
|
model_config = vllm_config.model_config |
|
cache_config = vllm_config.cache_config |
|
quant_config = vllm_config.quant_config |
|
enable_eplb = vllm_config.parallel_config.enable_eplb |
|
self.config = config |
|
|
|
self.vocab_size = config.vocab_size |
|
|
|
if get_pp_group().is_first_rank: |
|
self.embed_tokens = VocabParallelEmbedding( |
|
config.vocab_size, |
|
config.hidden_size, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.embed_tokens") |
|
else: |
|
self.embed_tokens = PPMissingLayer() |
|
|
|
self.start_layer, self.end_layer, self.layers = make_layers( |
|
config.num_hidden_layers, |
|
lambda prefix: DeepseekV2DecoderLayer( |
|
config, |
|
prefix, |
|
model_config=model_config, |
|
cache_config=cache_config, |
|
quant_config=quant_config, |
|
enable_eplb=enable_eplb, |
|
), |
|
prefix=f"{prefix}.layers") |
|
|
|
if get_pp_group().is_last_rank: |
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
else: |
|
self.norm = PPMissingLayer() |
|
self.make_empty_intermediate_tensors = ( |
|
make_empty_intermediate_tensors_factory( |
|
["hidden_states", "residual"], config.hidden_size)) |
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: |
|
return self.embed_tokens(input_ids) |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.Tensor, |
|
positions: torch.Tensor, |
|
intermediate_tensors: Optional[IntermediateTensors], |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
) -> Union[torch.Tensor, IntermediateTensors]: |
|
if get_pp_group().is_first_rank: |
|
if inputs_embeds is not None: |
|
hidden_states = inputs_embeds |
|
else: |
|
hidden_states = self.get_input_embeddings(input_ids) |
|
residual = None |
|
else: |
|
assert intermediate_tensors is not None |
|
hidden_states = intermediate_tensors["hidden_states"] |
|
residual = intermediate_tensors["residual"] |
|
|
|
for layer in self.layers[self.start_layer:self.end_layer]: |
|
hidden_states, residual = layer(positions, hidden_states, residual) |
|
|
|
if not get_pp_group().is_last_rank: |
|
return IntermediateTensors({ |
|
"hidden_states": hidden_states, |
|
"residual": residual |
|
}) |
|
|
|
hidden_states, _ = self.norm(hidden_states, residual) |
|
return hidden_states |
|
|
|
|
|
class DeepseekV2ForCausalLM(nn.Module, SupportsPP, MixtureOfExperts): |
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): |
|
super().__init__() |
|
config = vllm_config.model_config.hf_config |
|
quant_config = vllm_config.quant_config |
|
self.config = config |
|
self.quant_config = quant_config |
|
self.model = DeepseekV2Model(vllm_config=vllm_config, |
|
prefix=maybe_prefix(prefix, "model")) |
|
if get_pp_group().is_last_rank: |
|
self.lm_head = ParallelLMHead(config.vocab_size, |
|
config.hidden_size, |
|
quant_config=quant_config) |
|
else: |
|
self.lm_head = PPMissingLayer() |
|
self.logits_processor = LogitsProcessor(config.vocab_size) |
|
self.make_empty_intermediate_tensors = ( |
|
self.model.make_empty_intermediate_tensors) |
|
self.expert_weights = [] |
|
|
|
|
|
self.num_moe_layers = (config.num_hidden_layers - |
|
config.first_k_dense_replace) |
|
self.num_expert_groups = config.n_group |
|
|
|
self.moe_layers: list[FusedMoE] = [] |
|
for layer in self.model.layers: |
|
assert isinstance(layer, DeepseekV2DecoderLayer) |
|
if isinstance(layer.mlp, DeepseekV2MoE): |
|
self.moe_layers.append(layer.mlp.experts) |
|
|
|
|
|
example_moe = typing.cast( |
|
DeepseekV2MoE, self.model.layers[config.num_hidden_layers - 1].mlp) |
|
self.num_logical_experts = example_moe.n_logical_experts |
|
self.num_physical_experts = example_moe.n_physical_experts |
|
self.num_local_physical_experts = example_moe.n_local_physical_experts |
|
self.num_routed_experts = example_moe.n_routed_experts |
|
self.num_shared_experts = example_moe.n_shared_experts |
|
self.num_redundant_experts = example_moe.n_redundant_experts |
|
|
|
def set_eplb_state( |
|
self, |
|
expert_load_view: torch.Tensor, |
|
logical_to_physical_map: torch.Tensor, |
|
logical_replica_count: torch.Tensor, |
|
) -> None: |
|
for layer_idx, layer in enumerate(self.moe_layers): |
|
|
|
self.expert_weights.append(layer.get_expert_weights()) |
|
layer.set_eplb_state( |
|
moe_layer_idx=layer_idx, |
|
expert_load_view=expert_load_view, |
|
logical_to_physical_map=logical_to_physical_map, |
|
logical_replica_count=logical_replica_count, |
|
) |
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: |
|
return self.model.get_input_embeddings(input_ids) |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.Tensor, |
|
positions: torch.Tensor, |
|
intermediate_tensors: Optional[IntermediateTensors] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
) -> Union[torch.Tensor, IntermediateTensors]: |
|
hidden_states = self.model(input_ids, positions, intermediate_tensors, |
|
inputs_embeds) |
|
return hidden_states |
|
|
|
def compute_logits( |
|
self, |
|
hidden_states: torch.Tensor, |
|
sampling_metadata: SamplingMetadata, |
|
) -> Optional[torch.Tensor]: |
|
logits = self.logits_processor(self.lm_head, hidden_states, |
|
sampling_metadata) |
|
return logits |
|
|
|
def make_empty_intermediate_tensors( |
|
self, batch_size: int, dtype: torch.dtype, |
|
device: torch.device) -> IntermediateTensors: |
|
return IntermediateTensors({ |
|
"hidden_states": |
|
torch.zeros((batch_size, self.config.hidden_size), |
|
dtype=dtype, |
|
device=device), |
|
"residual": |
|
torch.zeros((batch_size, self.config.hidden_size), |
|
dtype=dtype, |
|
device=device), |
|
}) |
|
|
|
def load_weights(self, weights: Iterable[tuple[str, |
|
torch.Tensor]]) -> set[str]: |
|
stacked_params_mapping = [ |
|
|
|
("gate_up_proj", "gate_proj", 0), |
|
("gate_up_proj", "up_proj", 1), |
|
] |
|
|
|
|
|
|
|
expert_params_mapping = FusedMoE.make_expert_params_mapping( |
|
ckpt_gate_proj_name="gate_proj", |
|
ckpt_down_proj_name="down_proj", |
|
ckpt_up_proj_name="up_proj", |
|
num_experts=self.config.n_routed_experts, |
|
num_redundant_experts=self.num_redundant_experts) |
|
|
|
params_dict = dict(self.named_parameters()) |
|
loaded_params: set[str] = set() |
|
for name, loaded_weight in weights: |
|
if "rotary_emb.inv_freq" in name: |
|
continue |
|
|
|
spec_layer = get_spec_layer_idx_from_weight_name(self.config, name) |
|
if spec_layer is not None: |
|
continue |
|
|
|
for (param_name, weight_name, shard_id) in stacked_params_mapping: |
|
|
|
if weight_name not in name: |
|
continue |
|
|
|
|
|
|
|
|
|
|
|
|
|
if (("mlp.experts." in name) and name not in params_dict): |
|
continue |
|
name = name.replace(weight_name, param_name) |
|
|
|
if name.endswith(".bias") and name not in params_dict: |
|
continue |
|
|
|
if is_pp_missing_parameter(name, self): |
|
continue |
|
|
|
param = params_dict[name] |
|
weight_loader = param.weight_loader |
|
weight_loader(param, loaded_weight, shard_id) |
|
break |
|
else: |
|
is_expert_weight = False |
|
for mapping in expert_params_mapping: |
|
param_name, weight_name, expert_id, shard_id = mapping |
|
if weight_name not in name: |
|
continue |
|
|
|
|
|
|
|
is_expert_weight = True |
|
|
|
|
|
|
|
name_mapped = name.replace(weight_name, param_name) |
|
|
|
if is_pp_missing_parameter(name_mapped, self): |
|
continue |
|
|
|
param = params_dict[name_mapped] |
|
|
|
|
|
|
|
weight_loader = typing.cast(Callable[..., bool], |
|
param.weight_loader) |
|
success = weight_loader(param, |
|
loaded_weight, |
|
name_mapped, |
|
shard_id=shard_id, |
|
expert_id=expert_id, |
|
return_success=True) |
|
if success: |
|
name = name_mapped |
|
break |
|
else: |
|
if is_expert_weight: |
|
|
|
|
|
|
|
continue |
|
|
|
|
|
if name.endswith(".bias") and name not in params_dict: |
|
continue |
|
|
|
|
|
name = maybe_remap_kv_scale_name(name, params_dict) |
|
if name is None: |
|
continue |
|
|
|
if is_pp_missing_parameter(name, self): |
|
continue |
|
|
|
param = params_dict[name] |
|
weight_loader = getattr(param, "weight_loader", |
|
default_weight_loader) |
|
weight_loader(param, loaded_weight) |
|
loaded_params.add(name) |
|
|
|
return loaded_params |
|
|
|
|
|
class DeepseekV3ForCausalLM(DeepseekV2ForCausalLM): |
|
pass |
|
|
|
|
|
def get_spec_layer_idx_from_weight_name(config: PretrainedConfig, |
|
weight_name: str) -> Optional[int]: |
|
if hasattr(config, |
|
"num_nextn_predict_layers") and (config.num_nextn_predict_layers |
|
> 0): |
|
layer_idx = config.num_hidden_layers |
|
for i in range(config.num_nextn_predict_layers): |
|
if weight_name.startswith(f"model.layers.{layer_idx + i}."): |
|
return layer_idx + i |
|
return None |