BLGS commited on
Commit
11f22aa
·
verified ·
1 Parent(s): 5023bf5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +111 -3
README.md CHANGED
@@ -1,3 +1,111 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ pipeline_tag: text-generation
6
+ ---
7
+ ## Introduction
8
+
9
+ SmallThinker is a family of **on-device native** Mixture-of-Experts (MoE) language models specially designed for local deployment,
10
+ co-developed by the **IPADS** and **School of AI at Shanghai Jiao Tong University** and **Zenergize AI**.
11
+ Designed from the ground up for resource-constrained environments,
12
+ SmallThinker brings powerful, private, and low-latency AI directly to your personal devices,
13
+ without relying on the cloud.
14
+
15
+ ## Performance
16
+ | Model | MMLU | GPQA-diamond | MATH-500 | IFEVAL | LIVEBENCH | HUMANEVAL | Average |
17
+ |------------------------------|-------|--------------|----------|--------|-----------|-----------|---------|
18
+ | **SmallThinker-21BA3B-Instruct** | 84.43 | <u>55.05</u> | 82.4 | **85.77** | **60.3** | <u>89.63</u> | **76.26** |
19
+ | Gemma3-12b-it | 78.52 | 34.85 | 82.4 | 74.68 | 44.5 | 82.93 | 66.31 |
20
+ | Qwen3-14B | <u>84.82</u> | 50 | **84.6** | <u>85.21</u>| <u>59.5</u> | 88.41 | <u>75.42</u> |
21
+ | Qwen3-30BA3B | **85.1** | 44.4 | <u>84.4</u> | 84.29 | 58.8 | **90.24** | 74.54 |
22
+ | Qwen3-8B | 81.79 | 38.89 | 81.6 | 83.92 | 49.5 | 85.9 | 70.26 |
23
+ | Phi-4-14B | 84.58 | **55.45** | 80.2 | 63.22 | 42.4 | 87.2 | 68.84 |
24
+
25
+ For the MMLU evaluation, we use a 0-shot CoT setting.
26
+
27
+ All models are evaluated in non-thinking mode.
28
+
29
+ ## Speed
30
+ | Model | Memory(GiB) | i9 14900 | 1+13 8ge4 | rk3588 (16G) | Raspberry PI 5 |
31
+ |--------------------------------------|---------------------|----------|-----------|--------------|----------------|
32
+ | SmallThinker 21B+sparse | 11.47 | 30.19 | 23.03 | 10.84 | 6.61 |
33
+ | SmallThinker 21B+sparse+limited memory | limit 8G | 20.30 | 15.50 | 8.56 | - |
34
+ | Qwen3 30B A3B | 16.20 | 33.52 | 20.18 | 9.07 | - |
35
+ | Qwen3 30B A3B+limited memory | limit 8G | 10.11 | 0.18 | 6.32 | - |
36
+ | Gemma 3n E2B | 1G, theoretically | 36.88 | 27.06 | 12.50 | 6.66 |
37
+ | Gemma 3n E4B | 2G, theoretically | 21.93 | 16.58 | 7.37 | 4.01 |
38
+
39
+ Note: i9 14900, 1+13 8ge4 use 4 threads, others use the number of threads that can achieve the maximum speed. All models here have been quantized to q4_0.
40
+ You can deploy SmallThinker with offloading support using [PowerInfer](https://github.com/SJTU-IPADS/PowerInfer/tree/main/smallthinker)
41
+
42
+ ## Model Card
43
+
44
+ <div align="center">
45
+
46
+ | **Architecture** | Mixture-of-Experts (MoE) |
47
+ |:---:|:---:|
48
+ | **Total Parameters** | 21B |
49
+ | **Activated Parameters** | 3B |
50
+ | **Number of Layers** | 52 |
51
+ | **Attention Hidden Dimension** | 2560 |
52
+ | **MoE Hidden Dimension** (per Expert) | 768 |
53
+ | **Number of Attention Heads** | 28 |
54
+ | **Number of KV Heads** | 4 |
55
+ | **Number of Experts** | 64 |
56
+ | **Selected Experts per Token** | 6 |
57
+ | **Vocabulary Size** | 151,936 |
58
+ | **Context Length** | 16K |
59
+ | **Attention Mechanism** | GQA |
60
+ | **Activation Function** | ReGLU |
61
+ </div>
62
+
63
+ ## How to Run
64
+
65
+ ### Transformers
66
+
67
+ The latest version of `transformers` is recommended or `transformers>=4.53.3` is required.
68
+ The following contains a code snippet illustrating how to use the model generate content based on given inputs.
69
+
70
+ ```python
71
+ from transformers import AutoModelForCausalLM, AutoTokenizer
72
+ import torch
73
+
74
+ path = "PowerInfer/SmallThinker-21BA3B-Instruct"
75
+ device = "cuda"
76
+
77
+ tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
78
+ model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16, device_map=device, trust_remote_code=True)
79
+
80
+ messages = [
81
+ {"role": "user", "content": "Give me a short introduction to large language model."},
82
+ ]
83
+ model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True).to(device)
84
+
85
+ model_outputs = model.generate(
86
+ model_inputs,
87
+ do_sample=True,
88
+ max_new_tokens=1024
89
+ )
90
+
91
+ output_token_ids = [
92
+ model_outputs[i][len(model_inputs[i]):] for i in range(len(model_inputs))
93
+ ]
94
+
95
+ responses = tokenizer.batch_decode(output_token_ids, skip_special_tokens=True)[0]
96
+ print(responses)
97
+
98
+ ```
99
+
100
+ ### ModelScope
101
+
102
+ `ModelScope` adopts Python API similar to (though not entirely identical to) `Transformers`. For basic usage, simply modify the first line of the above code as follows:
103
+
104
+ ```python
105
+ from modelscope import AutoModelForCausalLM, AutoTokenizer
106
+ ```
107
+
108
+ ## Statement
109
+ - Due to the constraints of its model size and the limitations of its training data, its responses may contain factual inaccuracies, biases, or outdated information.
110
+ - Users bear full responsibility for independently evaluating and verifying the accuracy and appropriateness of all generated content.
111
+ - SmallThinker does not possess genuine comprehension or consciousness and cannot express personal opinions or value judgments.