Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,111 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
pipeline_tag: text-generation
|
6 |
+
---
|
7 |
+
## Introduction
|
8 |
+
|
9 |
+
SmallThinker is a family of **on-device native** Mixture-of-Experts (MoE) language models specially designed for local deployment,
|
10 |
+
co-developed by the **IPADS** and **School of AI at Shanghai Jiao Tong University** and **Zenergize AI**.
|
11 |
+
Designed from the ground up for resource-constrained environments,
|
12 |
+
SmallThinker brings powerful, private, and low-latency AI directly to your personal devices,
|
13 |
+
without relying on the cloud.
|
14 |
+
|
15 |
+
## Performance
|
16 |
+
| Model | MMLU | GPQA-diamond | MATH-500 | IFEVAL | LIVEBENCH | HUMANEVAL | Average |
|
17 |
+
|------------------------------|-------|--------------|----------|--------|-----------|-----------|---------|
|
18 |
+
| **SmallThinker-21BA3B-Instruct** | 84.43 | <u>55.05</u> | 82.4 | **85.77** | **60.3** | <u>89.63</u> | **76.26** |
|
19 |
+
| Gemma3-12b-it | 78.52 | 34.85 | 82.4 | 74.68 | 44.5 | 82.93 | 66.31 |
|
20 |
+
| Qwen3-14B | <u>84.82</u> | 50 | **84.6** | <u>85.21</u>| <u>59.5</u> | 88.41 | <u>75.42</u> |
|
21 |
+
| Qwen3-30BA3B | **85.1** | 44.4 | <u>84.4</u> | 84.29 | 58.8 | **90.24** | 74.54 |
|
22 |
+
| Qwen3-8B | 81.79 | 38.89 | 81.6 | 83.92 | 49.5 | 85.9 | 70.26 |
|
23 |
+
| Phi-4-14B | 84.58 | **55.45** | 80.2 | 63.22 | 42.4 | 87.2 | 68.84 |
|
24 |
+
|
25 |
+
For the MMLU evaluation, we use a 0-shot CoT setting.
|
26 |
+
|
27 |
+
All models are evaluated in non-thinking mode.
|
28 |
+
|
29 |
+
## Speed
|
30 |
+
| Model | Memory(GiB) | i9 14900 | 1+13 8ge4 | rk3588 (16G) | Raspberry PI 5 |
|
31 |
+
|--------------------------------------|---------------------|----------|-----------|--------------|----------------|
|
32 |
+
| SmallThinker 21B+sparse | 11.47 | 30.19 | 23.03 | 10.84 | 6.61 |
|
33 |
+
| SmallThinker 21B+sparse+limited memory | limit 8G | 20.30 | 15.50 | 8.56 | - |
|
34 |
+
| Qwen3 30B A3B | 16.20 | 33.52 | 20.18 | 9.07 | - |
|
35 |
+
| Qwen3 30B A3B+limited memory | limit 8G | 10.11 | 0.18 | 6.32 | - |
|
36 |
+
| Gemma 3n E2B | 1G, theoretically | 36.88 | 27.06 | 12.50 | 6.66 |
|
37 |
+
| Gemma 3n E4B | 2G, theoretically | 21.93 | 16.58 | 7.37 | 4.01 |
|
38 |
+
|
39 |
+
Note: i9 14900, 1+13 8ge4 use 4 threads, others use the number of threads that can achieve the maximum speed. All models here have been quantized to q4_0.
|
40 |
+
You can deploy SmallThinker with offloading support using [PowerInfer](https://github.com/SJTU-IPADS/PowerInfer/tree/main/smallthinker)
|
41 |
+
|
42 |
+
## Model Card
|
43 |
+
|
44 |
+
<div align="center">
|
45 |
+
|
46 |
+
| **Architecture** | Mixture-of-Experts (MoE) |
|
47 |
+
|:---:|:---:|
|
48 |
+
| **Total Parameters** | 21B |
|
49 |
+
| **Activated Parameters** | 3B |
|
50 |
+
| **Number of Layers** | 52 |
|
51 |
+
| **Attention Hidden Dimension** | 2560 |
|
52 |
+
| **MoE Hidden Dimension** (per Expert) | 768 |
|
53 |
+
| **Number of Attention Heads** | 28 |
|
54 |
+
| **Number of KV Heads** | 4 |
|
55 |
+
| **Number of Experts** | 64 |
|
56 |
+
| **Selected Experts per Token** | 6 |
|
57 |
+
| **Vocabulary Size** | 151,936 |
|
58 |
+
| **Context Length** | 16K |
|
59 |
+
| **Attention Mechanism** | GQA |
|
60 |
+
| **Activation Function** | ReGLU |
|
61 |
+
</div>
|
62 |
+
|
63 |
+
## How to Run
|
64 |
+
|
65 |
+
### Transformers
|
66 |
+
|
67 |
+
The latest version of `transformers` is recommended or `transformers>=4.53.3` is required.
|
68 |
+
The following contains a code snippet illustrating how to use the model generate content based on given inputs.
|
69 |
+
|
70 |
+
```python
|
71 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
72 |
+
import torch
|
73 |
+
|
74 |
+
path = "PowerInfer/SmallThinker-21BA3B-Instruct"
|
75 |
+
device = "cuda"
|
76 |
+
|
77 |
+
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
|
78 |
+
model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16, device_map=device, trust_remote_code=True)
|
79 |
+
|
80 |
+
messages = [
|
81 |
+
{"role": "user", "content": "Give me a short introduction to large language model."},
|
82 |
+
]
|
83 |
+
model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True).to(device)
|
84 |
+
|
85 |
+
model_outputs = model.generate(
|
86 |
+
model_inputs,
|
87 |
+
do_sample=True,
|
88 |
+
max_new_tokens=1024
|
89 |
+
)
|
90 |
+
|
91 |
+
output_token_ids = [
|
92 |
+
model_outputs[i][len(model_inputs[i]):] for i in range(len(model_inputs))
|
93 |
+
]
|
94 |
+
|
95 |
+
responses = tokenizer.batch_decode(output_token_ids, skip_special_tokens=True)[0]
|
96 |
+
print(responses)
|
97 |
+
|
98 |
+
```
|
99 |
+
|
100 |
+
### ModelScope
|
101 |
+
|
102 |
+
`ModelScope` adopts Python API similar to (though not entirely identical to) `Transformers`. For basic usage, simply modify the first line of the above code as follows:
|
103 |
+
|
104 |
+
```python
|
105 |
+
from modelscope import AutoModelForCausalLM, AutoTokenizer
|
106 |
+
```
|
107 |
+
|
108 |
+
## Statement
|
109 |
+
- Due to the constraints of its model size and the limitations of its training data, its responses may contain factual inaccuracies, biases, or outdated information.
|
110 |
+
- Users bear full responsibility for independently evaluating and verifying the accuracy and appropriateness of all generated content.
|
111 |
+
- SmallThinker does not possess genuine comprehension or consciousness and cannot express personal opinions or value judgments.
|