Create inference_transcript_ner.py
Browse files- inference_transcript_ner.py +119 -0
inference_transcript_ner.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import pandas as pd
|
3 |
+
from tqdm.auto import tqdm
|
4 |
+
from transformers import pipeline
|
5 |
+
from transformers import AutoTokenizer
|
6 |
+
|
7 |
+
model_checkpoint = "Pclanglais/French-TV-transcript-NER"
|
8 |
+
token_classifier = pipeline(
|
9 |
+
"token-classification", model=model_checkpoint, aggregation_strategy="simple"
|
10 |
+
)
|
11 |
+
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
13 |
+
|
14 |
+
def split_text(text, max_tokens=500):
|
15 |
+
# Split the text by newline characters
|
16 |
+
parts = text.split("\n")
|
17 |
+
chunks = []
|
18 |
+
current_chunk = ""
|
19 |
+
|
20 |
+
for part in parts:
|
21 |
+
# Add part to current chunk
|
22 |
+
if current_chunk:
|
23 |
+
temp_chunk = current_chunk + "\n" + part
|
24 |
+
else:
|
25 |
+
temp_chunk = part
|
26 |
+
|
27 |
+
# Tokenize the temporary chunk
|
28 |
+
num_tokens = len(tokenizer.tokenize(temp_chunk))
|
29 |
+
|
30 |
+
if num_tokens <= max_tokens:
|
31 |
+
current_chunk = temp_chunk
|
32 |
+
else:
|
33 |
+
if current_chunk:
|
34 |
+
chunks.append(current_chunk)
|
35 |
+
current_chunk = part
|
36 |
+
|
37 |
+
if current_chunk:
|
38 |
+
chunks.append(current_chunk)
|
39 |
+
|
40 |
+
# If no newlines were found and still exceeding max_tokens, split further
|
41 |
+
if len(chunks) == 1 and len(tokenizer.tokenize(chunks[0])) > max_tokens:
|
42 |
+
long_text = chunks[0]
|
43 |
+
chunks = []
|
44 |
+
while len(tokenizer.tokenize(long_text)) > max_tokens:
|
45 |
+
split_point = len(long_text) // 2
|
46 |
+
while split_point < len(long_text) and not re.match(r'\s', long_text[split_point]):
|
47 |
+
split_point += 1
|
48 |
+
# Ensure split_point does not go out of range
|
49 |
+
if split_point >= len(long_text):
|
50 |
+
split_point = len(long_text) - 1
|
51 |
+
chunks.append(long_text[:split_point].strip())
|
52 |
+
long_text = long_text[split_point:].strip()
|
53 |
+
if long_text:
|
54 |
+
chunks.append(long_text)
|
55 |
+
|
56 |
+
return chunks
|
57 |
+
|
58 |
+
|
59 |
+
complete_data = pd.read_parquet("../ocr/ocr_corrected_yacast.parquet")
|
60 |
+
|
61 |
+
print(complete_data)
|
62 |
+
|
63 |
+
classified_list = []
|
64 |
+
|
65 |
+
list_prompt = []
|
66 |
+
list_page = []
|
67 |
+
list_file = []
|
68 |
+
list_id = []
|
69 |
+
text_id = 1
|
70 |
+
for index, row in complete_data.iterrows():
|
71 |
+
prompt, current_file = str(row["corrected_text"]), row["identifier"]
|
72 |
+
prompt = re.sub("\n", " ¶ ", prompt)
|
73 |
+
|
74 |
+
# Tokenize the prompt and check if it exceeds 500 tokens
|
75 |
+
num_tokens = len(tokenizer.tokenize(prompt))
|
76 |
+
|
77 |
+
if num_tokens > 500:
|
78 |
+
# Split the prompt into chunks
|
79 |
+
chunks = split_text(prompt, max_tokens=500)
|
80 |
+
for chunk in chunks:
|
81 |
+
list_file.append(current_file)
|
82 |
+
list_prompt.append(chunk)
|
83 |
+
list_id.append(text_id)
|
84 |
+
else:
|
85 |
+
list_file.append(current_file)
|
86 |
+
list_prompt.append(prompt)
|
87 |
+
list_id.append(text_id)
|
88 |
+
|
89 |
+
text_id = text_id + 1
|
90 |
+
|
91 |
+
full_classification = []
|
92 |
+
batch_size = 4
|
93 |
+
for out in tqdm(token_classifier(list_prompt, batch_size=batch_size), total=len(list_prompt)/batch_size):
|
94 |
+
full_classification.append(out)
|
95 |
+
|
96 |
+
id_row = 0
|
97 |
+
for classification in full_classification:
|
98 |
+
try:
|
99 |
+
df = pd.DataFrame(classification)
|
100 |
+
|
101 |
+
df["identifier"] = list_file[id_row]
|
102 |
+
df["text_id"] = list_id[id_row]
|
103 |
+
|
104 |
+
df['word'] = df['word'].replace(' ¶ ', ' \n ', regex=True)
|
105 |
+
|
106 |
+
print(df)
|
107 |
+
|
108 |
+
classified_list.append(df)
|
109 |
+
|
110 |
+
except:
|
111 |
+
pass
|
112 |
+
id_row = id_row + 1
|
113 |
+
|
114 |
+
classified_list = pd.concat(classified_list)
|
115 |
+
|
116 |
+
# Display the DataFrame
|
117 |
+
print(classified_list)
|
118 |
+
|
119 |
+
classified_list.to_csv("result_transcripts.tsv", sep = "\t")
|