MaziyarPanahi commited on
Commit
0f160e2
Β·
verified Β·
1 Parent(s): 126c115

feat: Upload fine-tuned medical NER model OpenMed-ZeroShot-NER-Oncology-Base-220M

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ openmed_vs_sota_grouped_bars.png filter=lfs diff=lfs merge=lfs -text
37
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ widget:
3
+ - text: "Mutations in KRAS gene drive oncogenic transformation."
4
+ - text: "The tumor suppressor p53 pathway was disrupted."
5
+ - text: "EGFR amplification promotes cancer cell proliferation."
6
+ - text: "Loss of function of the PTEN gene is common in many cancers."
7
+ - text: "The PI3K/AKT/mTOR pathway is a critical regulator of cell growth."
8
+ tags:
9
+ - token-classification
10
+ - entity recognition
11
+ - named-entity-recognition
12
+ - zero-shot
13
+ - zero-shot-ner
14
+ - zero shot
15
+ - biomedical-nlp
16
+ - gliner
17
+ - cancer-genetics
18
+ - oncology
19
+ - gene-regulation
20
+ - cancer-research
21
+ - amino_acid
22
+ - anatomical_system
23
+ - cancer
24
+ - cell
25
+ - cellular_component
26
+ - developing_anatomical_structure
27
+ - gene_or_gene_product
28
+ - immaterial_anatomical_entity
29
+ - multi-tissue_structure
30
+ - organ
31
+ - organism
32
+ - organism_subdivision
33
+ - organism_substance
34
+ - pathological_formation
35
+ - simple_chemical
36
+ - tissue
37
+ language:
38
+ - en
39
+ license: apache-2.0
40
+ ---
41
+
42
+ # 🧬 [OpenMed-ZeroShot-NER-Oncology-Base-220M](https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Oncology-Base-220M)
43
+
44
+ **Specialized model for Cancer Genetics - Cancer-related genetic entities**
45
+
46
+ [![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
47
+ [![Python](https://img.shields.io/badge/Python-3.11%2B-blue)]()
48
+ [![GliNER](https://img.shields.io/badge/πŸ€—-GliNER-yellow)]()
49
+ [![OpenMed](https://img.shields.io/badge/πŸ₯-OpenMed-green)](https://huggingface.co/OpenMed)
50
+
51
+ ## πŸ“‹ Model Overview
52
+
53
+ Oncology-focused model for **cancer genetics**, capturing genes, variants, and cellular processes in tumor biology contexts.Useful for **cancer pathway curation**, **driver gene analysis**, and **precision oncology literature mining**.
54
+
55
+ OpenMed ZeroShot NER is an advanced, domain-adapted Named Entity Recognition (NER) model designed specifically for medical, biomedical, and clinical text mining. Leveraging state-of-the-art zero-shot learning, this model empowers researchers, clinicians, and data scientists to extract expert-level biomedical entitiesβ€”such as diseases, chemicals, genes, species, and clinical findingsβ€”directly from unstructured text, without the need for task-specific retraining.
56
+
57
+ Built on the robust GLiNER architecture and fine-tuned on curated biomedical corpora, OpenMed ZeroShot NER delivers high-precision entity recognition for critical healthcare and life sciences applications. Its zero-shot capability means you can flexibly define and extract any entity type relevant to your workflow, from standard biomedical categories to custom clinical concepts, supporting rapid adaptation to new research domains and regulatory requirements.
58
+
59
+ Whether you are working on clinical NLP, biomedical research, electronic health record (EHR) de-identification, or large-scale literature mining, OpenMed ZeroShot NER provides a production-ready, open-source solution that combines expert-level accuracy with unmatched flexibility. Join the OpenMed community to accelerate your medical text analytics with cutting-edge, zero-shot NER technology.
60
+
61
+ ### 🎯 Key Features
62
+ - **Zero-Shot Capability**: Can recognize any entity type without specific training
63
+ - **High Precision**: Optimized for biomedical entity recognition
64
+ - **Domain-Specific**: Fine-tuned on curated BIONLP2013_CG dataset
65
+ - **Production-Ready**: Validated on clinical benchmarks
66
+ - **Easy Integration**: Compatible with Hugging Face Transformers ecosystem
67
+ - **Flexible Entity Recognition**: Add custom entity types without retraining
68
+
69
+ ### 🏷️ Supported Entity Types
70
+
71
+ This zero-shot model can identify and classify biomedical entities, including but not limited to these entity types. **You can also add custom entity types without retraining the model**:
72
+
73
+ - `Amino_acid`
74
+ - `Anatomical_system`
75
+ - `Cancer`
76
+ - `Cell`
77
+ - `Cellular_component`
78
+
79
+ <details>
80
+ <summary>See 11 more entity types...</summary>
81
+
82
+ - `Developing_anatomical_structure`
83
+ - `Gene_or_gene_product`
84
+ - `Immaterial_anatomical_entity`
85
+ - `Multi-tissue_structure`
86
+ - `Organ`
87
+ - `Organism`
88
+ - `Organism_subdivision`
89
+ - `Organism_substance`
90
+ - `Pathological_formation`
91
+ - `Simple_chemical`
92
+ - `Tissue`
93
+ </details>
94
+
95
+ **πŸ’‘ Zero-Shot Flexibility**: As a GliNER-based model, you can specify any entity types you want to detect, even if they weren't part of the original training. Simply provide the entity labels when using the model, and it will adapt to recognize them.
96
+
97
+ ## πŸ“Š Dataset
98
+
99
+ BioNLP 2013 CG corpus targets cancer genetics entities for oncology research and cancer genomics.
100
+
101
+ The BioNLP 2013 CG (Cancer Genetics) corpus is a specialized dataset focusing on cancer genetics entities and gene regulation in oncology research. This corpus contains annotations for genes, proteins, and molecular processes specifically related to cancer biology and tumor genetics. Developed for the BioNLP Shared Task 2013, it supports the development of text mining systems for cancer research, oncological studies, and precision medicine applications. The dataset is particularly valuable for identifying cancer-related biomarkers, tumor suppressor genes, oncogenes, and therapeutic targets mentioned in cancer research literature. It serves as a benchmark for evaluating NER systems used in cancer genomics, personalized medicine, and oncology informatics.
102
+
103
+
104
+ ## πŸ“Š Performance Metrics
105
+
106
+ ### Current Model Performance
107
+
108
+ - **Finetuned F1 vs. Base Model (on test dataset excluded from training)**: `0.82`
109
+ - **F1 Improvement vs Base Model**: `53.4%`
110
+
111
+ ### πŸ† Top F1 Improvements on BIONLP2013_CG Dataset
112
+
113
+ | Rank | Model | Base F1 | Finetuned F1 | Ξ”F1 | Ξ”F1 % |
114
+ |------|-------|--------:|------------:|----:|------:|
115
+ | πŸ₯‡ 1 | [OpenMed-ZeroShot-NER-Oncology-Large-459M](https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Oncology-Large-459M) | 0.5534 | 0.8990 | 0.3456 | 62.5% |
116
+ | πŸ₯ˆ 2 | [OpenMed-ZeroShot-NER-Oncology-Medium-209M](https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Oncology-Medium-209M) | 0.4885 | 0.8765 | 0.3880 | 79.4% |
117
+ | πŸ₯‰ 3 | [OpenMed-ZeroShot-NER-Oncology-XLarge-770M](https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Oncology-XLarge-770M) | 0.5953 | 0.8750 | 0.2797 | 47.0% |
118
+ | 4 | [OpenMed-ZeroShot-NER-Oncology-Base-220M](https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Oncology-Base-220M) | 0.5324 | 0.8167 | 0.2842 | 53.4% |
119
+ | 5 | [OpenMed-ZeroShot-NER-Oncology-Multi-209M](https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Oncology-Multi-209M) | 0.4343 | 0.7498 | 0.3154 | 72.6% |
120
+
121
+
122
+ *Rankings are sorted by finetuned F1 and show Ξ”F1% over base model. Test dataset is excluded from training.*
123
+
124
+ ![OpenMed ZeroShot Clinical & Biomedical NER vs. Original GLiNER models](https://huggingface.co/spaces/OpenMed/README/resolve/main/openmed-zero-shot-clinical-ner-finetuned.png)
125
+
126
+ *Figure: OpenMed ZeroShot Clinical & Biomedical NER vs. Original GLiNER models.*
127
+
128
+ ## πŸš€ Quick Start
129
+
130
+ ### Installation
131
+
132
+ ```bash
133
+ pip install gliner==0.2.21
134
+ ```
135
+
136
+ ### Usage
137
+
138
+ ```python
139
+ from transformers import pipeline
140
+
141
+ # Load the model and tokenizer
142
+ # Model: https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Oncology-Base-220M
143
+ model_name = "OpenMed/OpenMed-ZeroShot-NER-Oncology-Base-220M"
144
+
145
+ from gliner import GLiNER
146
+ model = GLiNER.from_pretrained("OpenMed-ZeroShot-NER-Oncology-Base-220M")
147
+
148
+ # Example usage with default entity types
149
+ text = "Mutations in KRAS gene drive oncogenic transformation."
150
+
151
+ labels = ['Amino_acid', 'Anatomical_system', 'Cancer', 'Cell', 'Cellular_component', 'Developing_anatomical_structure', 'Gene_or_gene_product', 'Immaterial_anatomical_entity', 'Multi-tissue_structure', 'Organ', 'Organism', 'Organism_subdivision', 'Organism_substance', 'Pathological_formation', 'Simple_chemical', 'Tissue']
152
+ entities = model.predict_entities(text, labels, flat_ner=True, threshold=0.5)
153
+ for entity in entities:
154
+ print(entity)
155
+ ```
156
+
157
+ ### Zero-Shot Usage with Custom Entity Types
158
+ πŸ’‘ **Tip:** If you want to extract entities that are not present in the original training set (i.e., use custom or rare entity types), you may get better results by lowering the `threshold` parameter in `model.predict_entities`. For example, try `threshold=0.3` or even lower, depending on your use case:
159
+
160
+ ```python
161
+ # You can specify custom entity types for zero-shot recognition - for instance:
162
+ custom_entities = ["MISC", "Amino_acid", "PERSON", "LOCATION", "MEDICATION", "PROCEDURE"]
163
+
164
+ entities = model.predict_entities(text, custom_entities, flat_ner=True, threshold=0.1)
165
+ for entity in entities:
166
+ print(entity)
167
+ ```
168
+
169
+ > Lowering the threshold makes the model more permissive and can help it recognize new or less common entity types, but may also increase false positives. Adjust as needed for your application.
170
+
171
+ ## πŸ“š Dataset Information
172
+
173
+ - **Dataset**: BIONLP2013_CG
174
+ - **Description**: Cancer Genetics - Cancer-related genetic entities
175
+
176
+ ### Training Details
177
+ - **Base Model**: gliner-x-base
178
+ - **Training Framework**: Hugging Face Transformers
179
+ - **Optimization**: AdamW optimizer with learning rate scheduling
180
+ - **Validation**: Cross-validation on held-out test set
181
+
182
+ ## πŸ’‘ Use Cases
183
+
184
+ This model is particularly useful for:
185
+ - **Clinical Text Mining**: Extracting entities from medical records
186
+ - **Biomedical Research**: Processing scientific literature
187
+ - **Drug Discovery**: Identifying chemical compounds and drugs
188
+ - **Healthcare Analytics**: Analyzing patient data and outcomes
189
+ - **Academic Research**: Supporting biomedical NLP research
190
+ - **Custom Entity Recognition**: Zero-shot detection of domain-specific entities
191
+
192
+ ## πŸ”¬ Model Architecture
193
+
194
+ - **Task**: Zero-Shot Classification (Named Entity Recognition)
195
+ - **Labels**: Dataset-specific entity types
196
+ - **Input**: Biomedical text
197
+ - **Output**: Named entity predictions
198
+
199
+ ## πŸ“œ License
200
+
201
+ Licensed under the Apache License 2.0. See [LICENSE](https://www.apache.org/licenses/LICENSE-2.0) for details.
202
+
203
+ ## 🀝 Contributing
204
+
205
+ I welcome contributions of all kinds! Whether you have ideas, feature requests, or want to join my mission to advance open-source Healthcare AI, I'd love to hear from you.
206
+
207
+ Follow [OpenMed Org](https://huggingface.co/OpenMed) on Hugging Face πŸ€— and click "Watch" to stay updated on my latest releases and developments.
208
+
209
+ ## Citation
210
+
211
+ If you use this model in your research or applications, please cite the following paper:
212
+
213
+ ```latex
214
+ @misc{panahi2025openmedneropensourcedomainadapted,
215
+ title={OpenMed NER: Open-Source, Domain-Adapted State-of-the-Art Transformers for Biomedical NER Across 12 Public Datasets},
216
+ author={Maziyar Panahi},
217
+ year={2025},
218
+ eprint={2508.01630},
219
+ archivePrefix={arXiv},
220
+ primaryClass={cs.CL},
221
+ url={https://arxiv.org/abs/2508.01630},
222
+ }
223
+ ```
224
+
225
+ Proper citation helps support and acknowledge my work. Thank you!
226
+
added_tokens.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "<<ENT>>": 250100,
3
+ "<<SEP>>": 250101
4
+ }
gliner_config.json ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "class_token_index": 250100,
3
+ "dropout": 0.3,
4
+ "embed_ent_token": true,
5
+ "encoder_config": {
6
+ "_name_or_path": "google/mt5-base",
7
+ "add_cross_attention": false,
8
+ "architectures": [
9
+ "MT5ForConditionalGeneration"
10
+ ],
11
+ "bad_words_ids": null,
12
+ "begin_suppress_tokens": null,
13
+ "bos_token_id": null,
14
+ "chunk_size_feed_forward": 0,
15
+ "classifier_dropout": 0.0,
16
+ "cross_attention_hidden_size": null,
17
+ "d_ff": 2048,
18
+ "d_kv": 64,
19
+ "d_model": 768,
20
+ "decoder_start_token_id": 0,
21
+ "dense_act_fn": "gelu_new",
22
+ "diversity_penalty": 0.0,
23
+ "do_sample": false,
24
+ "dropout_rate": 0.1,
25
+ "early_stopping": false,
26
+ "encoder_no_repeat_ngram_size": 0,
27
+ "eos_token_id": 1,
28
+ "exponential_decay_length_penalty": null,
29
+ "feed_forward_proj": "gated-gelu",
30
+ "finetuning_task": null,
31
+ "forced_bos_token_id": null,
32
+ "forced_eos_token_id": null,
33
+ "id2label": {
34
+ "0": "LABEL_0",
35
+ "1": "LABEL_1"
36
+ },
37
+ "initializer_factor": 1.0,
38
+ "is_decoder": false,
39
+ "is_encoder_decoder": true,
40
+ "is_gated_act": true,
41
+ "label2id": {
42
+ "LABEL_0": 0,
43
+ "LABEL_1": 1
44
+ },
45
+ "layer_norm_epsilon": 1e-06,
46
+ "length_penalty": 1.0,
47
+ "max_length": 20,
48
+ "min_length": 0,
49
+ "model_type": "mt5",
50
+ "no_repeat_ngram_size": 0,
51
+ "num_beam_groups": 1,
52
+ "num_beams": 1,
53
+ "num_decoder_layers": 12,
54
+ "num_heads": 12,
55
+ "num_layers": 12,
56
+ "num_return_sequences": 1,
57
+ "output_attentions": false,
58
+ "output_hidden_states": false,
59
+ "output_past": true,
60
+ "output_scores": false,
61
+ "pad_token_id": 0,
62
+ "prefix": null,
63
+ "problem_type": null,
64
+ "pruned_heads": {},
65
+ "relative_attention_max_distance": 128,
66
+ "relative_attention_num_buckets": 32,
67
+ "remove_invalid_values": false,
68
+ "repetition_penalty": 1.0,
69
+ "return_dict": true,
70
+ "return_dict_in_generate": false,
71
+ "sep_token_id": null,
72
+ "suppress_tokens": null,
73
+ "task_specific_params": null,
74
+ "temperature": 1.0,
75
+ "tf_legacy_loss": false,
76
+ "tie_encoder_decoder": false,
77
+ "tie_word_embeddings": false,
78
+ "tokenizer_class": "T5Tokenizer",
79
+ "top_k": 50,
80
+ "top_p": 1.0,
81
+ "torch_dtype": null,
82
+ "torchscript": false,
83
+ "typical_p": 1.0,
84
+ "use_bfloat16": false,
85
+ "use_cache": true,
86
+ "vocab_size": 250102
87
+ },
88
+ "ent_token": "<<ENT>>",
89
+ "eval_every": 10000,
90
+ "fine_tune": true,
91
+ "freeze_token_rep": false,
92
+ "fuse_layers": false,
93
+ "has_rnn": true,
94
+ "hidden_size": 768,
95
+ "label_smoothing": 0,
96
+ "labels_encoder": null,
97
+ "labels_encoder_config": null,
98
+ "log_dir": "models/",
99
+ "loss_alpha": 0.75,
100
+ "loss_gamma": 0,
101
+ "loss_reduction": "sum",
102
+ "lr_encoder": "1e-5",
103
+ "lr_others": "3e-5",
104
+ "max_grad_norm": 10.0,
105
+ "max_len": 1024,
106
+ "max_neg_type_ratio": 1,
107
+ "max_types": 30,
108
+ "max_width": 12,
109
+ "model_name": "google/mt5-base",
110
+ "model_type": "gliner",
111
+ "name": "span level gliner",
112
+ "num_post_fusion_layers": 1,
113
+ "num_steps": 80000,
114
+ "post_fusion_schema": "",
115
+ "prev_path": null,
116
+ "random_drop": true,
117
+ "root_dir": "gliner_logs",
118
+ "save_total_limit": 3,
119
+ "scheduler_type": "cosine",
120
+ "sep_token": "<<SEP>>",
121
+ "shuffle_types": true,
122
+ "size_sup": -1,
123
+ "span_mode": "markerV0",
124
+ "subtoken_pooling": "first",
125
+ "train_batch_size": 8,
126
+ "train_data": "data/multilingual_data.json",
127
+ "transformers_version": "4.43.4",
128
+ "val_data_dir": "none",
129
+ "vocab_size": 250102,
130
+ "warmup_ratio": 0.05,
131
+ "weight_decay_encoder": 0.1,
132
+ "weight_decay_other": 0.01,
133
+ "words_splitter_type": "universal"
134
+ }
openmed_vs_sota_grouped_bars.png ADDED

Git LFS Details

  • SHA256: 626b37d9b20c44e26c92a8b5bf774107393ae0ad0b482d8e7cb3dc31d960f611
  • Pointer size: 131 Bytes
  • Size of remote file: 497 kB
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54c9159f647e50e3f969a6b4f27fe58b8bc72bc7f93d81d6419234bf1801f330
3
+ size 1207355594
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "eos_token": {
3
+ "content": "</s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "pad_token": {
10
+ "content": "<pad>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
spiece.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef78f86560d809067d12bac6c09f19a462cb3af3f54d2b8acbba26e1433125d6
3
+ size 4309802
test_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "eval_loss": 744.2429809570312,
3
+ "seqeval_accuracy": 0.945583688803663,
4
+ "seqeval_f1": 0.8166919356003176,
5
+ "seqeval_precision": 0.8105474347950702,
6
+ "seqeval_recall": 0.8229303069983995
7
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c23b87e1609c72116a5aea222f983df99723cb2afa554d9d137f289840c3097b
3
+ size 16335205
tokenizer_config.json ADDED
@@ -0,0 +1,855 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<pad>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "</s>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "<unk>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "250000": {
28
+ "content": "▁<extra_id_99>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": false
34
+ },
35
+ "250001": {
36
+ "content": "▁<extra_id_98>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": false
42
+ },
43
+ "250002": {
44
+ "content": "▁<extra_id_97>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": false
50
+ },
51
+ "250003": {
52
+ "content": "▁<extra_id_96>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": false
58
+ },
59
+ "250004": {
60
+ "content": "▁<extra_id_95>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": false
66
+ },
67
+ "250005": {
68
+ "content": "▁<extra_id_94>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": false
74
+ },
75
+ "250006": {
76
+ "content": "▁<extra_id_93>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": false
82
+ },
83
+ "250007": {
84
+ "content": "▁<extra_id_92>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": false
90
+ },
91
+ "250008": {
92
+ "content": "▁<extra_id_91>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": false
98
+ },
99
+ "250009": {
100
+ "content": "▁<extra_id_90>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": false
106
+ },
107
+ "250010": {
108
+ "content": "▁<extra_id_89>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": false
114
+ },
115
+ "250011": {
116
+ "content": "▁<extra_id_88>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": false
122
+ },
123
+ "250012": {
124
+ "content": "▁<extra_id_87>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": false
130
+ },
131
+ "250013": {
132
+ "content": "▁<extra_id_86>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": false
138
+ },
139
+ "250014": {
140
+ "content": "▁<extra_id_85>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": false
146
+ },
147
+ "250015": {
148
+ "content": "▁<extra_id_84>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": false
154
+ },
155
+ "250016": {
156
+ "content": "▁<extra_id_83>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": false
162
+ },
163
+ "250017": {
164
+ "content": "▁<extra_id_82>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": false
170
+ },
171
+ "250018": {
172
+ "content": "▁<extra_id_81>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": false
178
+ },
179
+ "250019": {
180
+ "content": "▁<extra_id_80>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": false
186
+ },
187
+ "250020": {
188
+ "content": "▁<extra_id_79>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": false
194
+ },
195
+ "250021": {
196
+ "content": "▁<extra_id_78>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": false
202
+ },
203
+ "250022": {
204
+ "content": "▁<extra_id_77>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": false
210
+ },
211
+ "250023": {
212
+ "content": "▁<extra_id_76>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": false
218
+ },
219
+ "250024": {
220
+ "content": "▁<extra_id_75>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": false
226
+ },
227
+ "250025": {
228
+ "content": "▁<extra_id_74>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": false
234
+ },
235
+ "250026": {
236
+ "content": "▁<extra_id_73>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": false
242
+ },
243
+ "250027": {
244
+ "content": "▁<extra_id_72>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": false
250
+ },
251
+ "250028": {
252
+ "content": "▁<extra_id_71>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": false
258
+ },
259
+ "250029": {
260
+ "content": "▁<extra_id_70>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": false
266
+ },
267
+ "250030": {
268
+ "content": "▁<extra_id_69>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": false
274
+ },
275
+ "250031": {
276
+ "content": "▁<extra_id_68>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": false
282
+ },
283
+ "250032": {
284
+ "content": "▁<extra_id_67>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": false
290
+ },
291
+ "250033": {
292
+ "content": "▁<extra_id_66>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": false
298
+ },
299
+ "250034": {
300
+ "content": "▁<extra_id_65>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": false
306
+ },
307
+ "250035": {
308
+ "content": "▁<extra_id_64>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": false
314
+ },
315
+ "250036": {
316
+ "content": "▁<extra_id_63>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": false
322
+ },
323
+ "250037": {
324
+ "content": "▁<extra_id_62>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": false
330
+ },
331
+ "250038": {
332
+ "content": "▁<extra_id_61>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": false
338
+ },
339
+ "250039": {
340
+ "content": "▁<extra_id_60>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": false
346
+ },
347
+ "250040": {
348
+ "content": "▁<extra_id_59>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": false
354
+ },
355
+ "250041": {
356
+ "content": "▁<extra_id_58>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": false
362
+ },
363
+ "250042": {
364
+ "content": "▁<extra_id_57>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": false
370
+ },
371
+ "250043": {
372
+ "content": "▁<extra_id_56>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": false
378
+ },
379
+ "250044": {
380
+ "content": "▁<extra_id_55>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": false
386
+ },
387
+ "250045": {
388
+ "content": "▁<extra_id_54>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": false
394
+ },
395
+ "250046": {
396
+ "content": "▁<extra_id_53>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": false
402
+ },
403
+ "250047": {
404
+ "content": "▁<extra_id_52>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": false
410
+ },
411
+ "250048": {
412
+ "content": "▁<extra_id_51>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": false
418
+ },
419
+ "250049": {
420
+ "content": "▁<extra_id_50>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": false
426
+ },
427
+ "250050": {
428
+ "content": "▁<extra_id_49>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": false
434
+ },
435
+ "250051": {
436
+ "content": "▁<extra_id_48>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": false
442
+ },
443
+ "250052": {
444
+ "content": "▁<extra_id_47>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": false
450
+ },
451
+ "250053": {
452
+ "content": "▁<extra_id_46>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": false
458
+ },
459
+ "250054": {
460
+ "content": "▁<extra_id_45>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": false
466
+ },
467
+ "250055": {
468
+ "content": "▁<extra_id_44>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": false
474
+ },
475
+ "250056": {
476
+ "content": "▁<extra_id_43>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": false
482
+ },
483
+ "250057": {
484
+ "content": "▁<extra_id_42>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": false
490
+ },
491
+ "250058": {
492
+ "content": "▁<extra_id_41>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": false
498
+ },
499
+ "250059": {
500
+ "content": "▁<extra_id_40>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": false
506
+ },
507
+ "250060": {
508
+ "content": "▁<extra_id_39>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": false
514
+ },
515
+ "250061": {
516
+ "content": "▁<extra_id_38>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": false
522
+ },
523
+ "250062": {
524
+ "content": "▁<extra_id_37>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": false
530
+ },
531
+ "250063": {
532
+ "content": "▁<extra_id_36>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": false
538
+ },
539
+ "250064": {
540
+ "content": "▁<extra_id_35>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": false
546
+ },
547
+ "250065": {
548
+ "content": "▁<extra_id_34>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": false
554
+ },
555
+ "250066": {
556
+ "content": "▁<extra_id_33>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": false
562
+ },
563
+ "250067": {
564
+ "content": "▁<extra_id_32>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": false
570
+ },
571
+ "250068": {
572
+ "content": "▁<extra_id_31>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": false
578
+ },
579
+ "250069": {
580
+ "content": "▁<extra_id_30>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": false
586
+ },
587
+ "250070": {
588
+ "content": "▁<extra_id_29>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": false
594
+ },
595
+ "250071": {
596
+ "content": "▁<extra_id_28>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": false
602
+ },
603
+ "250072": {
604
+ "content": "▁<extra_id_27>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": false
610
+ },
611
+ "250073": {
612
+ "content": "▁<extra_id_26>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": false
618
+ },
619
+ "250074": {
620
+ "content": "▁<extra_id_25>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": false
626
+ },
627
+ "250075": {
628
+ "content": "▁<extra_id_24>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": false
634
+ },
635
+ "250076": {
636
+ "content": "▁<extra_id_23>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": false
642
+ },
643
+ "250077": {
644
+ "content": "▁<extra_id_22>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": false
650
+ },
651
+ "250078": {
652
+ "content": "▁<extra_id_21>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": false
658
+ },
659
+ "250079": {
660
+ "content": "▁<extra_id_20>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": false
666
+ },
667
+ "250080": {
668
+ "content": "▁<extra_id_19>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": false
674
+ },
675
+ "250081": {
676
+ "content": "▁<extra_id_18>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": false
682
+ },
683
+ "250082": {
684
+ "content": "▁<extra_id_17>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": false
690
+ },
691
+ "250083": {
692
+ "content": "▁<extra_id_16>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": false
698
+ },
699
+ "250084": {
700
+ "content": "▁<extra_id_15>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": false
706
+ },
707
+ "250085": {
708
+ "content": "▁<extra_id_14>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": false
714
+ },
715
+ "250086": {
716
+ "content": "▁<extra_id_13>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": false
722
+ },
723
+ "250087": {
724
+ "content": "▁<extra_id_12>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": false
730
+ },
731
+ "250088": {
732
+ "content": "▁<extra_id_11>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": false
738
+ },
739
+ "250089": {
740
+ "content": "▁<extra_id_10>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": false
746
+ },
747
+ "250090": {
748
+ "content": "▁<extra_id_9>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": false
754
+ },
755
+ "250091": {
756
+ "content": "▁<extra_id_8>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": false
762
+ },
763
+ "250092": {
764
+ "content": "▁<extra_id_7>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": false
770
+ },
771
+ "250093": {
772
+ "content": "▁<extra_id_6>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": false
778
+ },
779
+ "250094": {
780
+ "content": "▁<extra_id_5>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": false
786
+ },
787
+ "250095": {
788
+ "content": "▁<extra_id_4>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": false
794
+ },
795
+ "250096": {
796
+ "content": "▁<extra_id_3>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": false
802
+ },
803
+ "250097": {
804
+ "content": "▁<extra_id_2>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": false
810
+ },
811
+ "250098": {
812
+ "content": "▁<extra_id_1>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": false
818
+ },
819
+ "250099": {
820
+ "content": "▁<extra_id_0>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": false
826
+ },
827
+ "250100": {
828
+ "content": "<<ENT>>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "250101": {
836
+ "content": "<<SEP>>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ }
843
+ },
844
+ "additional_special_tokens": [],
845
+ "clean_up_tokenization_spaces": false,
846
+ "eos_token": "</s>",
847
+ "extra_ids": 0,
848
+ "extra_special_tokens": {},
849
+ "legacy": true,
850
+ "model_max_length": 1000000000000000019884624838656,
851
+ "pad_token": "<pad>",
852
+ "sp_model_kwargs": {},
853
+ "tokenizer_class": "T5Tokenizer",
854
+ "unk_token": "<unk>"
855
+ }