douwh nielsr HF Staff commited on
Commit
b61b38f
Β·
verified Β·
1 Parent(s): ec0cc57

Update model card with Mono-InternVL-1.5 paper details and expanded information (#2)

Browse files

- Update model card with Mono-InternVL-1.5 paper details and expanded information (a76dfd546961393e59fb9d5be08dbe5ced869ee1)


Co-authored-by: Niels Rogge <nielsr@users.noreply.huggingface.co>

Files changed (1) hide show
  1. README.md +399 -18
README.md CHANGED
@@ -1,38 +1,419 @@
1
  ---
2
- license: mit
3
- pipeline_tag: image-text-to-text
4
- library_name: transformers
5
  base_model:
6
- - internlm/internlm2-chat-1_8b
7
- base_model_relation: merge
8
  language:
9
- - multilingual
 
 
 
10
  tags:
11
- - internvl
12
- - vision
13
- - ocr
14
- - custom_code
15
- - moe
 
16
  ---
17
 
18
  # Mono-InternVL-2B-S1-2
19
 
20
- This repository contains the Mono-InternVL-2B model after **S1.1 concept learning** and **S1.2 semantic learning**.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
- Please refer to our [**paper**](https://huggingface.co/papers/2410.08202), [**project page**](https://internvl.github.io/blog/2024-10-10-Mono-InternVL/) and [**GitHub repository**](https://github.com/OpenGVLab/mono-internvl) for introduction and usage.
23
 
 
 
24
 
 
25
 
26
- ## Citation
 
 
 
 
27
 
28
- If you find this project useful in your research, please consider citing:
 
 
 
29
 
30
- ```BibTeX
31
- @article{luo2024mono,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  title={Mono-InternVL: Pushing the Boundaries of Monolithic Multimodal Large Language Models with Endogenous Visual Pre-training},
33
  author={Luo, Gen and Yang, Xue and Dou, Wenhan and Wang, Zhaokai and Liu, Jiawen and Dai, Jifeng and Qiao, Yu and Zhu, Xizhou},
34
  journal={arXiv preprint arXiv:2410.08202},
35
  year={2024}
36
  }
37
- ```
38
 
 
 
 
 
 
 
 
 
1
  ---
 
 
 
2
  base_model:
3
+ - internlm/internlm2-chat-1_8b
 
4
  language:
5
+ - multilingual
6
+ library_name: transformers
7
+ license: mit
8
+ pipeline_tag: image-text-to-text
9
  tags:
10
+ - internvl
11
+ - vision
12
+ - ocr
13
+ - custom_code
14
+ - moe
15
+ base_model_relation: merge
16
  ---
17
 
18
  # Mono-InternVL-2B-S1-2
19
 
20
+ This repository contains the Mono-InternVL-2B model, specifically the checkpoint after **S1.1 concept learning** and **S1.2 semantic learning**. This model is part of the work detailed in the paper [Mono-InternVL-1.5: Towards Cheaper and Faster Monolithic Multimodal Large Language Models](https://huggingface.co/papers/2507.12566).
21
+
22
+ For more detailed information, please refer to our [**project page**](https://internvl.github.io/blog/2024-10-10-Mono-InternVL/) and [**GitHub repository**](https://github.com/OpenGVLab/mono-internvl).
23
+
24
+ ## πŸ“° News
25
+ - **2025.7**: We introduce [**Mono-InternVL-1.5**](https://arxiv.org/abs/2507.12566), a cheaper and faster monolithic MLLM with visual attention experts, improved training strategy (EViP++) and fused cuda kernel for multimodal MoE.
26
+ - **2025.3**: We release the SFT code on LLaVA-v1.5-mix665k dataset. We also release the [258M synthetic data](https://huggingface.co/datasets/OpenGVLab/Mono-InternVL-2B-Synthetic-Data) used in S1.2 to boost future research.
27
+ - **2025.2**: πŸŽ‰πŸŽ‰ Mono-InternVL is accepted by **CVPR 2025**. Also check out our [**SynerGen-VL**](https://huggingface.co/papers/2412.09604) (CVPR 2025) that extends the monolithic structure to unified image generation and multimodal understanding, which will be open-sourced soon.
28
+ - **2024.11**: Mono-InternVL is supported by [lmdeploy](https://github.com/InternLM/lmdeploy/pull/2727).
29
+ - **2024.11**: Mono-InternVL is supported by [vllm](https://github.com/vllm-project/vllm/pull/9528).
30
+
31
+ ## ⭐️ Introduction
32
+
33
+ We release Mono-InternVL, a **monolithic** multimodal large language model (MLLM) that integrates visual encoding and textual decoding into a single LLM. In Mono-InternVL, a set of visual experts is embedded into the pre-trained LLM via a **mixture-of-experts (MoE) mechanism**. By freezing the LLM, Mono-InternVL ensures that visual capabilities are optimized without compromising the pre-trained language knowledge. Based on this structure, an innovative **Endogenous Visual Pretraining (EViP)** is introduced to realize coarse-to-fine visual learning.
34
+
35
+ Mono-InternVL achieves superior performance compared to state-of-the-art MLLM Mini-InternVL-2B-1.5 and significantly outperforms other monolithic MLLMs, as shown in the radar chart above. Meanwhile, it achieves better deployment efficiency, with first token latency reduced by up to 67%.
36
+
37
+ For more details, please refer to our [paper (V1)](https://arxiv.org/abs/2410.08202) and [paper (V1.5)](https://arxiv.org/abs/2507.12566).
38
+
39
+ ## πŸ“Š Performance
40
+ | Benchmark | Chameleon-7B | EVE-7B (HD) | Emu3 | Mini-InternVL-2B-1-5 | Mono-InternVL-2B |
41
+ | :--------------------------: | :----------: | :---------: | :--------: | :------------------: | :--------------: |
42
+ | Type | Monolithic | Monolithic | Monolithic | Modular | Monolithic |
43
+ | #Activated Params | 7B | 7B | 8B | 2.2B | 1.8B |
44
+ | | | | | | |
45
+ | MMVet | 8.3 | 25.7 | 37.2 | 39.3 | 40.1 |
46
+ | MMMU<sub>val</sub> | 25.4 | 32.6 | 31.6 | 34.6 | 33.7 |
47
+ | MME<sub>sum</sub> | 170 | 1628 | β€” | 1902 | 1875 |
48
+ | MMBench-EN<sub>test</sub> | 31.1 | 52.3 | 58.5 | 70.9 | 65.5 |
49
+ | MathVista<sub>testmini</sub> | 22.3 | 34.2 | β€” | 41.1 | 45.7 |
50
+ | SEED-Image | 30.6 | 64.6 | 68.2 | 69.8 | 67.4 |
51
+ | OCRBench | 7 | 398 | 687 | 654 | 767 |
52
+ | Hallusion-Bench | 17.1 | 26.4 | β€” | 37.5 | 34.8 |
53
+ | CCBench<sub>dev</sub> | 3.5 | 16.3 | β€” | 63.5 | 66.3 |
54
+ | Avg<sub>multimodal</sub> | 16.1 | 38.9 | β€” | 54.4 | 55.2 |
55
+ | | | | | | |
56
+ | TextVQA<sub>val</sub> | 4.8 | 56.8 | 64.7 | 70.5 | 72.6 |
57
+ | SQA-I<sub>test</sub> | 47.2 | 64.9 | 89.2 | 84.9 | 93.6 |
58
+ | GQA<sub>test</sub> | β€” | 62.6 | 60.3 | 61.6 | 59.5 |
59
+ | DocVQA<sub>test</sub> | 1.5 | 53.0 | 76.3 | 85.0 | 80.0 |
60
+ | AI2D<sub>test</sub> | 46.0 | 61.0 | 70.0 | 69.8 | 68.6 |
61
+ | ChartQA<sub>test</sub> | 2.9 | 59.1 | 68.6 | 74.8 | 73.7 |
62
+ | InfoVQA<sub>test</sub> | 5.0 | 25.0 | 43.8 | 55.4 | 43.0 |
63
+ | Avg<sub>VQA</sub> | 17.9 | 54.6 | 67.6 | 71.7 | 70.1 |
64
+
65
+ > * Sources of the results include the original papers, our evaluation with [VLMEvalKit](https://github.com/open-compass/VLMEvalKit), and [OpenCompass](https://rank.opencompass.org.cn/leaderboard-multimodal/?m=REALTIME).
66
+ > * Average scores are computed by normalizing each metric to a range between 0 and 100.
67
+ > * Please note that evaluating the same model using different testing toolkits can result in slight differences, which is normal. Updates to code versions and variations in environment and hardware can also cause minor discrepancies in results.
68
+
69
+
70
+ ## πŸš€ Inference
71
+
72
+ We provide an example code to run Mono-InternVL-2B inference using `transformers`.
73
+
74
+ > Please use transformers==4.37.2 to ensure the model works normally.
75
+
76
+ <details>
77
+ <summary>Inference with Transformers (click to expand)</summary>
78
+
79
+ ```python
80
+ import numpy as np
81
+ import torch
82
+ import torchvision.transforms as T
83
+ from decord import VideoReader, cpu
84
+ from PIL import Image
85
+ from torchvision.transforms.functional import InterpolationMode
86
+ from transformers import AutoModel, AutoTokenizer
87
+
88
+ IMAGENET_MEAN = (0.485, 0.456, 0.406)
89
+ IMAGENET_STD = (0.229, 0.224, 0.225)
90
+
91
+ def build_transform(input_size):
92
+ MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
93
+ transform = T.Compose([
94
+ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
95
+ T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
96
+ T.ToTensor(),
97
+ T.Normalize(mean=MEAN, std=STD)
98
+ ])
99
+ return transform
100
+
101
+ def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
102
+ best_ratio_diff = float('inf')
103
+ best_ratio = (1, 1)
104
+ area = width * height
105
+ for ratio in target_ratios:
106
+ target_aspect_ratio = ratio[0] / ratio[1]
107
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
108
+ if ratio_diff < best_ratio_diff:
109
+ best_ratio_diff = ratio_diff
110
+ best_ratio = ratio
111
+ elif ratio_diff == best_ratio_diff:
112
+ if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
113
+ best_ratio = ratio
114
+ return best_ratio
115
+
116
+ def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
117
+ orig_width, orig_height = image.size
118
+ aspect_ratio = orig_width / orig_height
119
+
120
+ # calculate the existing image aspect ratio
121
+ target_ratios = set(
122
+ (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
123
+ i * j <= max_num and i * j >= min_num)
124
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
125
+
126
+ # find the closest aspect ratio to the target
127
+ target_aspect_ratio = find_closest_aspect_ratio(
128
+ aspect_ratio, target_ratios, orig_width, orig_height, image_size)
129
+
130
+ # calculate the target width and height
131
+ target_width = image_size * target_aspect_ratio[0]
132
+ target_height = image_size * target_aspect_ratio[1]
133
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
134
+
135
+ # resize the image
136
+ resized_img = image.resize((target_width, target_height))
137
+ processed_images = []
138
+ for i in range(blocks):
139
+ box = (
140
+ (i % (target_width // image_size)) * image_size,
141
+ (i // (target_width // image_size)) * image_size,
142
+ ((i % (target_width // image_size)) + 1) * image_size,
143
+ ((i // (target_width // image_size)) + 1) * image_size
144
+ )
145
+ # split the image
146
+ split_img = resized_img.crop(box)
147
+ processed_images.append(split_img)
148
+ assert len(processed_images) == blocks
149
+ if use_thumbnail and len(processed_images) != 1:
150
+ thumbnail_img = image.resize((image_size, image_size))
151
+ processed_images.append(thumbnail_img)
152
+ return processed_images
153
+
154
+ def load_image(image_file, input_size=448, max_num=12):
155
+ image = Image.open(image_file).convert('RGB')
156
+ transform = build_transform(input_size=input_size)
157
+ images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
158
+ pixel_values = [transform(image) for image in images]
159
+ pixel_values = torch.stack(pixel_values)
160
+ return pixel_values
161
+
162
+
163
+ path = 'OpenGVLab/Mono-InternVL-2B'
164
+ model = AutoModel.from_pretrained(
165
+ path,
166
+ torch_dtype=torch.bfloat16,
167
+ low_cpu_mem_usage=True,
168
+ trust_remote_code=True).eval().cuda()
169
+ tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
170
+
171
+ # set the max number of tiles in `max_num`
172
+ pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
173
+ generation_config = dict(max_new_tokens=1024, do_sample=True)
174
+
175
+ # pure-text conversation
176
+ question = 'Hello, who are you?'
177
+ response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
178
+ print(f'User: {question}
179
+ Assistant: {response}')
180
+
181
+ question = 'Can you tell me a story?'
182
+ response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
183
+ print(f'User: {question}
184
+ Assistant: {response}')
185
+
186
+ # single-image single-round conversation
187
+ question = '<image>
188
+ Please describe the image shortly.'
189
+ response = model.chat(tokenizer, pixel_values, question, generation_config)
190
+ print(f'User: {question}
191
+ Assistant: {response}')
192
+
193
+ # single-image multi-round conversation
194
+ question = '<image>
195
+ Please describe the image in detail.'
196
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
197
+ print(f'User: {question}
198
+ Assistant: {response}')
199
+
200
+ question = 'Please write a poem according to the image.'
201
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
202
+ print(f'User: {question}
203
+ Assistant: {response}')
204
+ ```
205
+
206
+ </details>
207
+
208
+
209
+ <details>
210
+ <summary>Inference with LMDeploy</summary>
211
+
212
+ Please install lmdeploy>=0.6.3 for Mono-InternVL support.
213
+
214
+ ```python
215
+ from lmdeploy import pipeline
216
+ from lmdeploy.vl import load_image
217
+
218
+ image = load_image('./examples/image1.jpg')
219
+ pipe = pipeline('OpenGVLab/Mono-InternVL-2B')
220
+ response = pipe(('Please describe the image shortly.', image))
221
+ print(response.text)
222
+ ```
223
+ </details>
224
+
225
+ ## πŸ”₯ Supervised Finetuning
226
 
227
+ Currently we provide the supervised finetuning (S2 instruction tuning) code on the LLaVA-v1.5-mix665k dataset. For details on the dataset, please refer to [LLaVA-v1.5](https://github.com/haotian-liu/LLaVA).
228
 
229
+ <details>
230
+ <summary>Installation</summary>
231
 
232
+ - Clone this repository:
233
 
234
+ ```bash
235
+ git clone https://github.com/OpenGVLab/Mono-InternVL.git
236
+ ```
237
+
238
+ - Create a conda virtual environment and activate it:
239
 
240
+ ```bash
241
+ conda create -n monointernvl python=3.9 -y
242
+ conda activate monointernvl
243
+ ```
244
 
245
+ - Install dependencies using `requirements.txt`:
246
+
247
+ ```bash
248
+ pip install -r requirements.txt
249
+ ```
250
+
251
+ - Additional: Install `flash-attn==2.5.6`:
252
+
253
+ ```bash
254
+ pip install flash-attn==2.5.6 --no-build-isolation
255
+ ```
256
+
257
+ Alternatively you can compile from source:
258
+
259
+ ```bash
260
+ git clone https://github.com/Dao-AILab/flash-attention.git
261
+ cd flash-attention
262
+ git checkout v2.5.6
263
+ python setup.py install
264
+ ```
265
+ </details>
266
+
267
+ <details>
268
+ <summary>Dataset Preparation</summary>
269
+
270
+ #### LLaVA-v1.5-mix665k Dataset
271
+
272
+ 1. Download the instruction tuning data:
273
+ ```sh
274
+ mkdir playground
275
+ wget https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/resolve/main/llava_v1_5_mix665k.json -P playground/
276
+ ```
277
+
278
+ 2. Download image datasets:
279
+
280
+ - COCO: [train2017](http://images.cocodataset.org/zips/train2017.zip)
281
+ - GQA: [images](https://downloads.cs.stanford.edu/nlp/data/gqa/images.zip)
282
+ - OCR-VQA: [download script](https://drive.google.com/drive/folders/1_GYPY5UkUy7HIcR0zq3ZCFgeZN7BAfm_?usp=sharing)
283
+ - TextVQA: [train_val_images](https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip)
284
+ - VisualGenome: [part1](https://cs.stanford.edu/people/rak248/VG_100K_2/images.zip), [part2](https://cs.stanford.edu/people/rak248/VG_100K_2/images2.zip)
285
+
286
+ 3. Organize data as follows:
287
+
288
+ ```none
289
+ playground/
290
+ β”œβ”€β”€ data/
291
+ β”‚ β”œβ”€β”€ coco/train2017/
292
+ β”‚ β”œβ”€β”€ gqa/images/
293
+ β”‚ β”œβ”€β”€ ocr_vqa/images/
294
+ β”‚ β”œβ”€β”€ textvqa/train_images/
295
+ β”‚ └── vg/
296
+ β”‚ β”œβ”€β”€ VG_100K/
297
+ β”‚ └── VG_100K_2/
298
+ └── llava_v1_5_mix665k.json
299
+ ```
300
+
301
+ #### Custom Dataset
302
+
303
+ For custom dataset, format your data in to a JSONL file, where each entry is a dictionary organized in the following format (similar to `llava_v1_5_mix665k.json`):
304
+
305
+ ```python
306
+ {
307
+ "id": "000000120375",
308
+ "image": "coco/train2017/000000120375.jpg",
309
+ "conversations": [
310
+ {
311
+ "from": "human",
312
+ "value": "<image>
313
+ What type of vehicle is driving down the street in the image?"
314
+ },
315
+ {
316
+ "from": "gpt",
317
+ "value": "A red sports utility vehicle (SUV) is driving down the street in the image."
318
+ },
319
+ {
320
+ "from": "human",
321
+ "value": "Is the street crowded with people?"
322
+ },
323
+ {
324
+ "from": "gpt",
325
+ "value": "Yes, the street is filled with a considerable number of people, which indicates that the area is busy."
326
+ }
327
+ # (more turns ...)
328
+ ]
329
+ }
330
+ ```
331
+
332
+ Then modify the metadata file `shell/data_llava_finetune.json`:
333
+
334
+ ```python
335
+ {
336
+ "name of your dataset": {
337
+ "root": "playground/data/", # combination of "root" and "image" in the JSONL gives the complete image path
338
+ "annotation": "path to your JSONL",
339
+ "data_augment": false,
340
+ "repeat_time": 1,
341
+ "length": 12345 # change to the actual number of samples in your dataset
342
+ }
343
+ }
344
+ ```
345
+
346
+ </details>
347
+
348
+ <details>
349
+ <summary>Model Preparation</summary>
350
+
351
+ We provide pretrained models of different stages (S1.1 concept learning, S1.2 semantic learning, S1.3 alignment learning).
352
+ Choose from the following models and download the weights to `workdirs/` folder.
353
+
354
+
355
+ | model name | download | size |
356
+ | ----------------------- | ---------------------------------------------------------------------- |:------:|
357
+ | Mono-InternVL-2B-S1-1 | πŸ€— [HF link](https://huggingface.co/OpenGVLab/Mono-InternVL-2B-S1-1) | 6.2 GB |
358
+ | Mono-InternVL-2B-S1-2 | πŸ€— [HF link](https://huggingface.co/OpenGVLab/Mono-InternVL-2B-S1-2) | 6.2 GB |
359
+ | Mono-InternVL-2B-S1-3 | πŸ€— [HF link](https://huggingface.co/OpenGVLab/Mono-InternVL-2B-S1-3) | 6.2 GB |
360
+
361
+
362
+ ```sh
363
+ mkdir workdirs
364
+ cd workdirs/
365
+ # pip install -U huggingface_hub
366
+ huggingface-cli download --resume-download --local-dir-use-symlinks False OpenGVLab/Mono-InternVL-2B-S1-1 --local-dir Mono-InternVL-2B-S1-1
367
+ ```
368
+
369
+ The directory structure is:
370
+
371
+ ```sh
372
+ workdirs/
373
+ β”œβ”€β”€ Mono-InternVL-2B-S1-1/
374
+ β”œβ”€β”€ Mono-InternVL-2B-S1-2/
375
+ └── Mono-InternVL-2B-S1-3/
376
+ ```
377
+ </details>
378
+
379
+ <details>
380
+ <summary>Training</summary>
381
+
382
+ Finetuning takes around 12 hours on 8x A100 (80G) GPUs.
383
+
384
+ #### Single Node Multi-GPU
385
+ ```sh
386
+ MODEL="./workdirs/Mono-InternVL-2B-S1-3" OUTPUT_DIR="./workdirs/mono_internvl_llava_sft" sh shell/mono_internvl_finetune_llava_torchrun.sh
387
+ ```
388
+
389
+ #### Slurm Cluster
390
+ ```sh
391
+ PARTITION="your partition" MODEL="./workdirs/Mono-InternVL-2B-S1-3" OUTPUT_DIR="./workdirs/mono_internvl_llava_sft" sh shell/mono_internvl_finetune_llava_slurm.sh
392
+ ```
393
+
394
+ </details>
395
+
396
+
397
+ ## 🎫 License
398
+
399
+ This project is released under the [MIT License](LICENSE).
400
+
401
+ ## πŸ–ŠοΈ Citation
402
+
403
+ If you find this work helpful in your research, please consider giving this repo a star ⭐ and citing our paper:
404
+
405
+ ```bibtex
406
+ @article{mono_internvl_v1,
407
  title={Mono-InternVL: Pushing the Boundaries of Monolithic Multimodal Large Language Models with Endogenous Visual Pre-training},
408
  author={Luo, Gen and Yang, Xue and Dou, Wenhan and Wang, Zhaokai and Liu, Jiawen and Dai, Jifeng and Qiao, Yu and Zhu, Xizhou},
409
  journal={arXiv preprint arXiv:2410.08202},
410
  year={2024}
411
  }
 
412
 
413
+ @article{mono_internvl_v1.5,
414
+ title={Mono-InternVL-1.5: Towards Cheaper and Faster Monolithic Multimodal Large Language Models},
415
+ author={Luo, Gen and Dou, Wenhan and Li, Wenhao and Wang, Zhaokai and Yang, Xue and Tian, Changyao and Li, Hao and Wang, Weiyun and Wang, Wenhai and Zhu, Xizhou and Qiao, Yu and Dai, Jifeng},
416
+ journal={arXiv preprint arXiv:2507.12566},
417
+ year={2025}
418
+ }
419
+ ```