--- library_name: transformers base_model: allenai/scibert_scivocab_uncased tags: - generated_from_trainer metrics: - f1 model-index: - name: MatSciBERT-domain-classifier results: [] --- # MatSciBERT-domain-classifier This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3556 - F1: 0.9027 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 57 | 1.2446 | 0.8089 | | 1.8516 | 2.0 | 114 | 0.6696 | 0.8354 | | 1.8516 | 3.0 | 171 | 0.4096 | 0.8948 | | 0.4239 | 4.0 | 228 | 0.3121 | 0.9040 | | 0.4239 | 5.0 | 285 | 0.3556 | 0.9027 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 3.1.0 - Tokenizers 0.21.1