File size: 12,340 Bytes
0547a12
 
7804fff
 
 
 
 
 
 
 
 
 
9707749
 
0547a12
 
 
7804fff
0547a12
 
7804fff
0547a12
 
7804fff
0547a12
7804fff
44077b3
 
 
 
 
0547a12
7804fff
0547a12
7804fff
0547a12
7804fff
0547a12
5835396
 
d37c9b9
0ff8759
7804fff
 
 
107d923
 
0547a12
c07119c
0547a12
7804fff
 
 
 
 
0547a12
7804fff
 
0547a12
7804fff
 
 
 
 
 
 
 
 
0547a12
c07119c
0547a12
01580ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0547a12
 
52a727b
7804fff
f5c1855
 
035e4ab
7804fff
035e4ab
52a727b
7804fff
 
 
f5c1855
 
 
 
 
 
 
 
 
 
7804fff
f5c1855
 
 
 
7804fff
731db12
 
 
7804fff
035e4ab
7804fff
f5c1855
7804fff
 
 
 
f5c1855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7804fff
 
 
 
 
f5c1855
 
 
 
 
 
 
 
 
7804fff
 
035e4ab
7804fff
035e4ab
d5bc3db
7804fff
 
f5c1855
 
 
 
 
 
b6b408d
f5c1855
7804fff
b6b408d
 
035e4ab
7804fff
 
 
f5c1855
 
 
 
 
 
b6b408d
f5c1855
7804fff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e09a45
27b5dbe
7804fff
c07119c
 
7804fff
5ba230f
c07119c
 
 
27b5dbe
 
 
 
7804fff
 
f164213
 
 
 
 
 
d78a42f
f164213
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
---
library_name: transformers
license: apache-2.0
language:
- en
- fr
- es
- it
- pt
- zh
- ar
- ru
tags:
- transformers.js
---


# SmolLM3


![image/png](https://cdn-uploads.huggingface.co/production/uploads/61c141342aac764ce1654e43/zy0dqTCCt5IHmuzwoqtJ9.png)


##  Table of Contents

1. [Model Summary](#model-summary)
2. [How to use](#how-to-use)
3. [Evaluation](#evaluation)
4. [Training](#training)
5. [Limitations](#limitations)
6. [License](#license)

## Model Summary

SmolLM3 is a 3B parameter language model designed to push the boundaries of small models. It supports 6 languages, advanced reasoning and long context. SmolLM3 is a fully open model that offers strong performance at the 3B–4B scale.

![image/png](https://cdn-uploads.huggingface.co/production/uploads/61c141342aac764ce1654e43/Zcm_016pWeyFr_uIkT7Ki.png)

**SmolLM3-3B-Base** is the base model after pretraining, you can find the instruct model at [SmolLM3-3B](https://huggingface.co/HuggingFaceTB/SmolLM3-3B).

The model is a decoder-only transformer using GQA and NoPE, it was pretrained on 11.2T tokens with a staged curriculum of web, code, math and reasoning data. Post-training included midtraining on 140B reasoning tokens followed by supervised fine-tuning and alignment via Anchored Preference Optimization (APO).

### Key features
- Instruct model optimized for **hybrid reasoning**
- **Fully open model**: open weights + full training details including public data mixture and training configs
- **Long context:** Trained on 64k context and suppots up to **128k tokens** using YARN extrapolation
- **Multilingual**: 6 natively supported (English, French, Spanish, German, Italian, and Portuguese)

For more details refer to our blog post: https://hf.co/blog/smollm3

### How to use
The modeling code for SmolLM3 is available in transformers `v4.53.0`, so make sure to upgrade your transformers version. You can also load the model with the latest `vllm` which uses transformers as a backend.
```bash
pip install -U transformers
```

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

checkpoint = "HuggingFaceTB/SmolLM3-3B"
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
# for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")`
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
inputs = tokenizer.encode("Gravity is", return_tensors="pt").to(device)
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```

For local inference, you can use `llama.cpp`, `ONNX`, `MLX` and `MLC`. You can find quantized checkpoints in this collection (https://huggingface.co/collections/HuggingFaceTB/smollm3-686d33c1fdffe8e635317e23).

### Long context processing

The current `config.json` is set for context length up to 65,536 tokens. To handle longer inputs (128k or 256k), we utilize YaRN you can change the `max_position_embeddings` and rope_scaling` to:
```
{
  ...,
  "rope_scaling": {
    "factor": 2.0, #2x65536=131 072 
    "original_max_position_embeddings": 65536,
    "type": "yarn"
  }
}
```


## Evaluation

In this section, we report the evaluation results of SmolLM3 model. All evaluations are zero-shot unless stated otherwise, and we use [lighteval](https://github.com/huggingface/lighteval) to run them.

We highlight the best score in bold and underline the second-best score.

### Base Pre-Trained Model

#### English benchmarks
Note: All evaluations are zero-shot unless stated otherwise. For Ruler 64k evaluation, we apply YaRN to the Qwen models with 32k context to extrapolate the context length.

| Category | Metric | SmolLM3-3B | Qwen2.5-3B | Llama3-3.2B | Qwen3-1.7B-Base | Qwen3-4B-Base |
|---------|--------|---------------------|------------|--------------|------------------|---------------|
| Reasoning & Commonsense| HellaSwag | **76.15** | 74.19 |<u>75.52</u> | 60.52 | 74.37 |
| | ARC-CF (Average) | **65.61** | 59.81 | 58.58 | 55.88 | <u>62.11</u> |
| | Winogrande | 58.88 | **61.41** | 58.72 | 57.06 | <u>59.59</u> |
| | CommonsenseQA | <u>55.28</u> | 49.14 | **60.60** | 48.98 | 52.99 |
| Knowledge & Understanding | MMLU-CF (Average) | <u>44.13</u> | 42.93 | 41.32 | 39.11 | **47.65** | 
| | MMLU Pro CF | <u>19.61</u> | 16.66 | 16.42 | 18.04 | **24.92** |
| | MMLU Pro MCF | <u>32.70</u> | 31.32 | 25.07 | 30.39 | **41.07** |
| | PIQA | **78.89** | 78.35 | <u>78.51</u> | 75.35 | 77.58 |
| | OpenBookQA | 40.60 | 40.20 | <u>42.00</u> | 36.40 | **42.40** |
| | BoolQ | **78.99** | 73.61 | <u>75.33</u> | 74.46 | 74.28 | 
| **Math & Code** |  |  |  |  |  |  | 
| Coding & math | HumanEval+ | 30.48 | 34.14| 25.00 | <u>43.29</u>| **54.87** |
| | MBPP+ | 52.91 | 52.11 | 38.88| <u>59.25</u> | **63.75** | 
| | MATH (4-shot) | <u>46.10</u> | 40.10 | 7.44 | 41.64 | **51.20** |
| | GSM8k (5-shot) | 67.63 | <u>70.13</u> | 25.92 | 65.88 | **74.14** | 
| **Long context** |  |  |  |  |  |  | 
| | Ruler 32k | 76.35 | 75.93 | <u>77.58</u> | 70.63 | **83.98** | 
| | Ruler 64k | <u>67.85</u> | 64.90 | **72.93** | 57.18 | 60.29 | 
| | Ruler 128k | 61.03 | <u>62.23</u> | **71.30** | 43.03 | 47.23 | 

#### Multilingual benchmarks



| Category | Metric | SmolLM3 3B Base | Qwen2.5-3B | Llama3.2 3B | Qwen3 1.7B Base | Qwen3 4B Base |
|---------|--------|---------------------|------------|--------------|------------------|---------------|
| Main supported languages |  |  |  |  |  |  |  |
| French| MLMM Hellaswag | **63.94** | 57.47 | 57.66 | 51.26 | <u>61.00</u> |
| | Belebele | 51.00 | <u>51.55</u> | 49.22 |49.44| **55.00** |
| | Global MMLU (CF) | <u>38.37</u> | 34.22  | 33.71 | 34.94  |**41.80** |
| | Flores-200 (5-shot) | 62.85| 61.38| <u>62.89<u/u> | 58.68 | **65.76** |
| Spanish| MLMM Hellaswag | **65.85** | 58.25 | 59.39 | 52.40 | <u>61.85</u> |
| | Belebele | 47.00 | <u>48.88</u> | 47.00 | 47.56 | **50.33** |
| | Global MMLU (CF) | <u>38.51</u> | 35.84  | 35.60 | 34.79  |**41.22** |
| | Flores-200 (5-shot) | <u>48.25</u>| 50.00| 44.45 | 46.93 | **50.16** |
| German| MLMM Hellaswag | **59.56** | 49.99|  53.19|46.10| <u>56.43</u>|
| | Belebele | <u>48.44</u> | 47.88 | 46.22 | 48.00 | **53.44**|
| | Global MMLU (CF) | <u>35.10</u> | 33.19  | 32.60 | 32.73  |**38.70** |
| | Flores-200 (5-shot) | **56.60**| 50.63| <u>54.95</u> | 52.58 | 50.48 |
| Italian| MLMM Hellaswag | **62.49** | 53.21 | 54.96 | 48.72 | <u>58.76</u> |
| | Belebele | <u>46.44</u> | 44.77 | 43.88 | 44.00 | **48.78** | 44.88 |
| | Global MMLU (CF) | <u>36.99</u> | 33.91  | 32.79 | 35.37  |**39.26** |
| | Flores-200 (5-shot) | <u>52.65<u/>| **54.87**| 48.83 | 48.37 | 49.11 |
| Portuguese| MLMM Hellaswag | **63.22** | 57.38 | 56.84 | 50.73 | <u>59.89</u> |
| | Belebele | 47.67 | **49.22** | 45.00 | 44.00 | 50.00 | <u>49.00</U> |
| | Global MMLU (CF) | <u>36.88</u> | 34.72  | 33.05 | 35.26  |**40.66** |
| | Flores-200 (5-shot) | <u>60.93</u> |57.68| 54.28 | 56.58 | **63.43** |

The model has also been trained on Arabic (standard), Chinese and Russian data, but has seen fewer tokens in these languages compared to the 6 above. We report the performance on these langages for information.
| Category | Metric | SmolLM3 3B Base | Qwen2.5-3B | Llama3.2 3B | Qwen3 1.7B Base | Qwen3 4B Base |
|---------|--------|---------------------|------------|--------------|------------------|---------------|
| Other supported languages |  |  |  |  |  |  |  |
| Arabic| Belebele | 40.22 | 44.22 | <u>45.33</u> | 42.33 | **51.78** |
| | Global MMLU (CF) | 28.57 | 28.81 | 27.67 | <u>29.37</u> | **31.85** |
| | Flores-200 (5-shot) | <u>40.22</u> | 39.44 | **44.43** | 35.82 | 39.76 |
| Chinese| Belebele | 43.78 | 44.56 | <u>49.56</u> | 48.78 | **53.22** |
| | Global MMLU (CF) | 36.16 | 33.79 | <u>39.57</u> | 38.56 | **44.55** |
| | Flores-200 (5-shot) | 29.17 | **33.21** | 31.89 | 25.70 | <u>32.50</u> |
| Russian| Belebele | <u>47.44</u> | 45.89 | <u>47.44</u> | 45.22 | **51.44** |
| | Global MMLU (CF) | <u>36.51</u> | 32.47 | 34.52 | 34.83 | **38.80** |
| | Flores-200 (5-shot) | 47.13 | 48.74 | 50.74 | <u>54.70</u> | **60.53** |


### Instruction Model

#### No Extended Thinking
Evaluation results of non reasoning models and reasoning models in no thinking mode. We highlight the best and second-best scores in bold.
| Category | Metric | SmoLLM3-3B | Qwen2.5-3B | Llama3.1-3B | Qwen3-1.7B | Qwen3-4B |
|---------|--------|------------|------------|-------------|------------|----------|
| High school math competition | AIME 2025 | <u>9.3</u> | 2.9 | 0.3 | 8.0 | **17.1** |
| Math problem-solving | GSM-Plus | 72.8 | <u>74.1</u> | 59.2 | 68.3 | **82.1** |
| Competitive programming | LiveCodeBench v4 | <u>15.2</u> | 10.5 | 3.4 | 15.0 | **24.9** |
| Graduate-level reasoning | GPQA Diamond | <u>35.7</u> | 32.2 | 29.4 | 31.8 | **44.4** |
| Instruction following | IFEval | **76.7** | 65.6 | 71.6 | <u>74.0</u> | 68.9 |
| Alignment | MixEval Hard | 26.9 | <u>27.6</u> | 24.9 | 24.3 | **31.6** |
| Tool Calling | BFCL| <u>92.3</u> | - | <u>92.3</u> * | 89.5  | **95.0** |
| Multilingual Q&A | Global MMLU | <u>53.5</u> | 50.54 | 46.8 | 49.5 | **65.1** |

(*): this is a tool calling finetune

#### Extended Thinking
Evaluation results in reasoning mode for SmolLM3 and Qwen3 models: 
| Category | Metric | SmoLLM3-3B | Qwen3-1.7B | Qwen3-4B |
|---------|--------|------------|------------|----------|
| High school math competition | AIME 2025 | <u>36.7</u> | 30.7 | **58.8** |
| Math problem-solving | GSM-Plus | <u>83.4</u> | 79.4 | **88.2** |
| Competitive programming | LiveCodeBench v4 | 30.0 | <u>34.4</u> | **52.9** |
| Graduate-level reasoning | GPQA Diamond | <u>41.7</u> | 39.9 | **55.3** |
| Instruction following | IFEval | 71.2 | <u>74.2</u> | **85.4** |
| Alignment | MixEval Hard | 30.8 | <u>33.9</u> | **38.0** |
| Tool Calling | BFCL | <u>88.8</u> | <u>88.8</u> | **95.5** |
| Multilingual Q&A | Global MMLU | <u>64.1</u> | 62.3 | **73.3** |

## Training

### Model

- **Architecture:** Transformer decoder
- **Pretraining tokens:** 11T
- **Precision:** bfloat16

### Software & hardware

- **GPUs:** 384 H100
- **Training Framework:** [nanotron](https://github.com/huggingface/nanotron/tree/main)
- **Data processing framework:** [datatrove](https://github.com/huggingface/datatrove)
- **Evaluation framework:** [lighteval](https://github.com/huggingface/lighteval)
- **Post-training Framework:** [TRL](https://github.com/huggingface/trl)

### Open resources
Here is an infographic with all the training details. 
- The datasets used for pretraining can be found in this [collection](https://huggingface.co/collections/HuggingFaceTB/smollm3-pretraining-datasets-685a7353fdc01aecde51b1d9) and those used in mid-training and post-training will be released in the following weeks
- The training and evaluation configs and code can be found in the [huggingface/smollm](https://github.com/huggingface/smollm) repository.
- The training intermediate checkpoints are available at [HuggingFaceTB/SmolLM3-3B-checkpoints](https://huggingface.co/HuggingFaceTB/SmolLM3-3B-checkpoints)

![image/png](https://cdn-uploads.huggingface.co/production/uploads/651e96991b97c9f33d26bde6/1umKwihvgLPlj5_0xJ42j.png)

## Limitations

SmolLM3 can produce text on a variety of topics, but the generated content may not always be factually accurate, logically consistent, or free from biases present in the training data. These models should be used as assistive tools rather than definitive sources of information. Users should always verify important information and critically evaluate any generated content.


## License
[Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)

## Citation
```bash
@misc{bakouch2025smollm3,
  title={{SmolLM3: smol, multilingual, long-context reasoner}},
  author={Bakouch, Elie and Ben Allal, Loubna and Lozhkov, Anton and Tazi, Nouamane and Tunstall, Lewis and Patiño, Carlos Miguel and Beeching, Edward and Roucher, Aymeric and Reedi, Aksel Joonas and Gallouédec, Quentin and Rasul, Kashif and Habib, Nathan and Fourrier, Clémentine and Kydlicek, Hynek and Penedo, Guilherme and Larcher, Hugo and Morlon, Mathieu and Srivastav, Vaibhav and Lochner, Joshua and Nguyen, Xuan-Son and Raffel, Colin and von Werra, Leandro and Wolf, Thomas},
  year={2025},
  howpublished={\url{https://huggingface.co/blog/smollm3}}
}
```