diff --git "a/ParakeetEncoder_v2.mlmodelc/model.mil" "b/ParakeetEncoder_v2.mlmodelc/model.mil" new file mode 100644--- /dev/null +++ "b/ParakeetEncoder_v2.mlmodelc/model.mil" @@ -0,0 +1,3400 @@ +program(1.0) +[buildInfo = dict, tensor>({{"coremlc-component-MIL", "3405.2.1"}, {"coremlc-version", "3404.23.1"}})] +{ + func main(tensor audio_signal, tensor length) { + tensor var_25 = const()[name = tensor("op_25"), val = tensor(-1)]; + tensor x_1_perm_0 = const()[name = tensor("x_1_perm_0"), val = tensor([0, 2, 1])]; + tensor audio_signal_to_fp16_dtype_0 = const()[name = tensor("audio_signal_to_fp16_dtype_0"), val = tensor("fp16")]; + tensor cast_0_to_fp16_dtype_0 = const()[name = tensor("cast_0_to_fp16_dtype_0"), val = tensor("fp16")]; + tensor var_82_promoted_to_fp16 = const()[name = tensor("op_82_promoted_to_fp16"), val = tensor(-0x1p+0)]; + tensor length_to_fp16 = cast(dtype = cast_0_to_fp16_dtype_0, x = length)[name = tensor("cast_2")]; + tensor var_83_cast_fp16 = add(x = length_to_fp16, y = var_82_promoted_to_fp16)[name = tensor("op_83_cast_fp16")]; + tensor _inversed_85_y_0_to_fp16 = const()[name = tensor("_inversed_85_y_0_to_fp16"), val = tensor(0x1p-1)]; + tensor _inversed_85_cast_fp16 = mul(x = var_83_cast_fp16, y = _inversed_85_y_0_to_fp16)[name = tensor("_inversed_85_cast_fp16")]; + tensor var_86_to_fp16 = const()[name = tensor("op_86_to_fp16"), val = tensor(0x1p+0)]; + tensor lengths_1_cast_fp16 = add(x = _inversed_85_cast_fp16, y = var_86_to_fp16)[name = tensor("lengths_1_cast_fp16")]; + tensor lengths_3_cast_fp16 = floor(x = lengths_1_cast_fp16)[name = tensor("lengths_3_cast_fp16")]; + tensor var_90_promoted_to_fp16 = const()[name = tensor("op_90_promoted_to_fp16"), val = tensor(-0x1p+0)]; + tensor var_91_cast_fp16 = add(x = lengths_3_cast_fp16, y = var_90_promoted_to_fp16)[name = tensor("op_91_cast_fp16")]; + tensor _inversed_93_y_0_to_fp16 = const()[name = tensor("_inversed_93_y_0_to_fp16"), val = tensor(0x1p-1)]; + tensor _inversed_93_cast_fp16 = mul(x = var_91_cast_fp16, y = _inversed_93_y_0_to_fp16)[name = tensor("_inversed_93_cast_fp16")]; + tensor var_94_to_fp16 = const()[name = tensor("op_94_to_fp16"), val = tensor(0x1p+0)]; + tensor lengths_7_cast_fp16 = add(x = _inversed_93_cast_fp16, y = var_94_to_fp16)[name = tensor("lengths_7_cast_fp16")]; + tensor lengths_9_cast_fp16 = floor(x = lengths_7_cast_fp16)[name = tensor("lengths_9_cast_fp16")]; + tensor var_98_promoted_to_fp16 = const()[name = tensor("op_98_promoted_to_fp16"), val = tensor(-0x1p+0)]; + tensor var_99_cast_fp16 = add(x = lengths_9_cast_fp16, y = var_98_promoted_to_fp16)[name = tensor("op_99_cast_fp16")]; + tensor _inversed_101_y_0_to_fp16 = const()[name = tensor("_inversed_101_y_0_to_fp16"), val = tensor(0x1p-1)]; + tensor _inversed_101_cast_fp16 = mul(x = var_99_cast_fp16, y = _inversed_101_y_0_to_fp16)[name = tensor("_inversed_101_cast_fp16")]; + tensor var_102_to_fp16 = const()[name = tensor("op_102_to_fp16"), val = tensor(0x1p+0)]; + tensor lengths_13_cast_fp16 = add(x = _inversed_101_cast_fp16, y = var_102_to_fp16)[name = tensor("lengths_13_cast_fp16")]; + tensor lengths_cast_fp16 = floor(x = lengths_13_cast_fp16)[name = tensor("lengths_cast_fp16")]; + tensor input_1_axes_0 = const()[name = tensor("input_1_axes_0"), val = tensor([1])]; + tensor audio_signal_to_fp16 = cast(dtype = audio_signal_to_fp16_dtype_0, x = audio_signal)[name = tensor("cast_1")]; + tensor x_1_cast_fp16 = transpose(perm = x_1_perm_0, x = audio_signal_to_fp16)[name = tensor("transpose_314")]; + tensor input_1_cast_fp16 = expand_dims(axes = input_1_axes_0, x = x_1_cast_fp16)[name = tensor("input_1_cast_fp16")]; + tensor input_3_pad_type_0 = const()[name = tensor("input_3_pad_type_0"), val = tensor("custom")]; + tensor input_3_pad_0 = const()[name = tensor("input_3_pad_0"), val = tensor([1, 1, 1, 1])]; + tensor input_3_strides_0 = const()[name = tensor("input_3_strides_0"), val = tensor([2, 2])]; + tensor input_3_dilations_0 = const()[name = tensor("input_3_dilations_0"), val = tensor([1, 1])]; + tensor input_3_groups_0 = const()[name = tensor("input_3_groups_0"), val = tensor(1)]; + tensor model_pre_encode_conv_0_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_pre_encode_conv_0_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(64))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(2752))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(2432)))]; + tensor model_pre_encode_conv_0_bias_to_fp16 = const()[name = tensor("model_pre_encode_conv_0_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(3328)))]; + tensor input_3_cast_fp16 = conv(bias = model_pre_encode_conv_0_bias_to_fp16, dilations = input_3_dilations_0, groups = input_3_groups_0, pad = input_3_pad_0, pad_type = input_3_pad_type_0, strides = input_3_strides_0, weight = model_pre_encode_conv_0_weight_to_fp16_quantized, x = input_1_cast_fp16)[name = tensor("input_3_cast_fp16")]; + tensor input_5_cast_fp16 = relu(x = input_3_cast_fp16)[name = tensor("input_5_cast_fp16")]; + tensor input_7_pad_type_0 = const()[name = tensor("input_7_pad_type_0"), val = tensor("custom")]; + tensor input_7_pad_0 = const()[name = tensor("input_7_pad_0"), val = tensor([1, 1, 1, 1])]; + tensor input_7_strides_0 = const()[name = tensor("input_7_strides_0"), val = tensor([2, 2])]; + tensor input_7_groups_0 = const()[name = tensor("input_7_groups_0"), val = tensor(256)]; + tensor input_7_dilations_0 = const()[name = tensor("input_7_dilations_0"), val = tensor([1, 1])]; + tensor model_pre_encode_conv_2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_pre_encode_conv_2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(3904))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(6272))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(2432)))]; + tensor model_pre_encode_conv_2_bias_to_fp16 = const()[name = tensor("model_pre_encode_conv_2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(6848)))]; + tensor input_7_cast_fp16 = conv(bias = model_pre_encode_conv_2_bias_to_fp16, dilations = input_7_dilations_0, groups = input_7_groups_0, pad = input_7_pad_0, pad_type = input_7_pad_type_0, strides = input_7_strides_0, weight = model_pre_encode_conv_2_weight_to_fp16_quantized, x = input_5_cast_fp16)[name = tensor("input_7_cast_fp16")]; + tensor input_9_pad_type_0 = const()[name = tensor("input_9_pad_type_0"), val = tensor("valid")]; + tensor input_9_strides_0 = const()[name = tensor("input_9_strides_0"), val = tensor([1, 1])]; + tensor input_9_pad_0 = const()[name = tensor("input_9_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor input_9_dilations_0 = const()[name = tensor("input_9_dilations_0"), val = tensor([1, 1])]; + tensor input_9_groups_0 = const()[name = tensor("input_9_groups_0"), val = tensor(1)]; + tensor model_pre_encode_conv_3_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_pre_encode_conv_3_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(7424))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(73024))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(2432)))]; + tensor model_pre_encode_conv_3_bias_to_fp16 = const()[name = tensor("model_pre_encode_conv_3_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(73600)))]; + tensor input_9_cast_fp16 = conv(bias = model_pre_encode_conv_3_bias_to_fp16, dilations = input_9_dilations_0, groups = input_9_groups_0, pad = input_9_pad_0, pad_type = input_9_pad_type_0, strides = input_9_strides_0, weight = model_pre_encode_conv_3_weight_to_fp16_quantized, x = input_7_cast_fp16)[name = tensor("input_9_cast_fp16")]; + tensor input_11_cast_fp16 = relu(x = input_9_cast_fp16)[name = tensor("input_11_cast_fp16")]; + tensor input_13_pad_type_0 = const()[name = tensor("input_13_pad_type_0"), val = tensor("custom")]; + tensor input_13_pad_0 = const()[name = tensor("input_13_pad_0"), val = tensor([1, 1, 1, 1])]; + tensor input_13_strides_0 = const()[name = tensor("input_13_strides_0"), val = tensor([2, 2])]; + tensor input_13_groups_0 = const()[name = tensor("input_13_groups_0"), val = tensor(256)]; + tensor input_13_dilations_0 = const()[name = tensor("input_13_dilations_0"), val = tensor([1, 1])]; + tensor model_pre_encode_conv_5_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_pre_encode_conv_5_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(74176))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(76544))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(2432)))]; + tensor model_pre_encode_conv_5_bias_to_fp16 = const()[name = tensor("model_pre_encode_conv_5_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(77120)))]; + tensor input_13_cast_fp16 = conv(bias = model_pre_encode_conv_5_bias_to_fp16, dilations = input_13_dilations_0, groups = input_13_groups_0, pad = input_13_pad_0, pad_type = input_13_pad_type_0, strides = input_13_strides_0, weight = model_pre_encode_conv_5_weight_to_fp16_quantized, x = input_11_cast_fp16)[name = tensor("input_13_cast_fp16")]; + tensor input_15_pad_type_0 = const()[name = tensor("input_15_pad_type_0"), val = tensor("valid")]; + tensor input_15_strides_0 = const()[name = tensor("input_15_strides_0"), val = tensor([1, 1])]; + tensor input_15_pad_0 = const()[name = tensor("input_15_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor input_15_dilations_0 = const()[name = tensor("input_15_dilations_0"), val = tensor([1, 1])]; + tensor input_15_groups_0 = const()[name = tensor("input_15_groups_0"), val = tensor(1)]; + tensor model_pre_encode_conv_6_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_pre_encode_conv_6_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(77696))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(143296))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(2432)))]; + tensor model_pre_encode_conv_6_bias_to_fp16 = const()[name = tensor("model_pre_encode_conv_6_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(143872)))]; + tensor input_15_cast_fp16 = conv(bias = model_pre_encode_conv_6_bias_to_fp16, dilations = input_15_dilations_0, groups = input_15_groups_0, pad = input_15_pad_0, pad_type = input_15_pad_type_0, strides = input_15_strides_0, weight = model_pre_encode_conv_6_weight_to_fp16_quantized, x = input_13_cast_fp16)[name = tensor("input_15_cast_fp16")]; + tensor x_3_cast_fp16 = relu(x = input_15_cast_fp16)[name = tensor("x_3_cast_fp16")]; + tensor var_152_perm_0 = const()[name = tensor("op_152_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_153 = const()[name = tensor("op_153"), val = tensor([1, 126, -1])]; + tensor var_152_cast_fp16 = transpose(perm = var_152_perm_0, x = x_3_cast_fp16)[name = tensor("transpose_313")]; + tensor input_17_cast_fp16 = reshape(shape = var_153, x = var_152_cast_fp16)[name = tensor("input_17_cast_fp16")]; + tensor model_pre_encode_out_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_pre_encode_out_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(144448))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4339904))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor model_pre_encode_out_bias_to_fp16 = const()[name = tensor("model_pre_encode_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4342016)))]; + tensor linear_0_cast_fp16 = linear(bias = model_pre_encode_out_bias_to_fp16, weight = model_pre_encode_out_weight_to_fp16_quantized, x = input_17_cast_fp16)[name = tensor("linear_0_cast_fp16")]; + tensor cast_11_dtype_0 = const()[name = tensor("cast_11_dtype_0"), val = tensor("int32")]; + tensor expand_dims_0 = const()[name = tensor("expand_dims_0"), val = tensor([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125]])]; + tensor var_191_axes_0 = const()[name = tensor("op_191_axes_0"), val = tensor([-1])]; + tensor encoder_output_length = cast(dtype = cast_11_dtype_0, x = lengths_cast_fp16)[name = tensor("cast_0")]; + tensor var_191 = expand_dims(axes = var_191_axes_0, x = encoder_output_length)[name = tensor("op_191")]; + tensor pad_mask_1 = less(x = expand_dims_0, y = var_191)[name = tensor("pad_mask_1")]; + tensor var_193_axes_0 = const()[name = tensor("op_193_axes_0"), val = tensor([1])]; + tensor var_193 = expand_dims(axes = var_193_axes_0, x = pad_mask_1)[name = tensor("op_193")]; + tensor var_194 = const()[name = tensor("op_194"), val = tensor([1, 126, 1])]; + tensor pad_mask_for_att_mask_1 = tile(reps = var_194, x = var_193)[name = tensor("pad_mask_for_att_mask_1")]; + tensor var_196_perm_0 = const()[name = tensor("op_196_perm_0"), val = tensor([0, 2, 1])]; + tensor var_196 = transpose(perm = var_196_perm_0, x = pad_mask_for_att_mask_1)[name = tensor("transpose_312")]; + tensor pad_mask_for_att_mask = logical_and(x = pad_mask_for_att_mask_1, y = var_196)[name = tensor("pad_mask_for_att_mask")]; + tensor const_7 = const()[name = tensor("const_7"), val = tensor([[[true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true]]])]; + tensor att_mask = logical_and(x = pad_mask_for_att_mask, y = const_7)[name = tensor("att_mask")]; + tensor mask_1 = logical_not(x = att_mask)[name = tensor("mask_1")]; + tensor pad_mask = logical_not(x = pad_mask_1)[name = tensor("pad_mask")]; + tensor input_21_axes_0 = const()[name = tensor("input_21_axes_0"), val = tensor([-1])]; + tensor model_layers_0_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_0_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4344128)))]; + tensor model_layers_0_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_0_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4346240)))]; + tensor var_4_to_fp16 = const()[name = tensor("op_4_to_fp16"), val = tensor(0x1.5p-17)]; + tensor input_21_cast_fp16 = layer_norm(axes = input_21_axes_0, beta = model_layers_0_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_0_norm_feed_forward1_weight_to_fp16, x = linear_0_cast_fp16)[name = tensor("input_21_cast_fp16")]; + tensor model_layers_0_feed_forward1_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_0_feed_forward1_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4348352))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8546880))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_1_bias_0_to_fp16 = const()[name = tensor("linear_1_bias_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8555136)))]; + tensor linear_1_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_0_feed_forward1_linear1_weight_to_fp16_quantized, x = input_21_cast_fp16)[name = tensor("linear_1_cast_fp16")]; + tensor input_25_cast_fp16 = silu(x = linear_1_cast_fp16)[name = tensor("input_25_cast_fp16")]; + tensor model_layers_0_feed_forward1_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_0_feed_forward1_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8563392))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(12757760))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_2_bias_0_to_fp16 = const()[name = tensor("linear_2_bias_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(12759872)))]; + tensor linear_2_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_0_feed_forward1_linear2_weight_to_fp16_quantized, x = input_25_cast_fp16)[name = tensor("linear_2_cast_fp16")]; + tensor var_227_to_fp16 = const()[name = tensor("op_227_to_fp16"), val = tensor(0x1p-1)]; + tensor var_228_cast_fp16 = mul(x = linear_2_cast_fp16, y = var_227_to_fp16)[name = tensor("op_228_cast_fp16")]; + tensor input_31_cast_fp16 = add(x = linear_0_cast_fp16, y = var_228_cast_fp16)[name = tensor("input_31_cast_fp16")]; + tensor query_1_axes_0 = const()[name = tensor("query_1_axes_0"), val = tensor([-1])]; + tensor model_layers_0_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_0_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(12761984)))]; + tensor model_layers_0_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_0_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(12764096)))]; + tensor query_1_cast_fp16 = layer_norm(axes = query_1_axes_0, beta = model_layers_0_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_0_norm_self_att_weight_to_fp16, x = input_31_cast_fp16)[name = tensor("query_1_cast_fp16")]; + tensor model_layers_0_self_attn_linear_q_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_0_self_attn_linear_q_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(12766208))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(13814848))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_3_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_0_self_attn_linear_q_weight_to_fp16_quantized, x = query_1_cast_fp16)[name = tensor("linear_3_cast_fp16")]; + tensor var_244 = const()[name = tensor("op_244"), val = tensor([1, -1, 8, 128])]; + tensor q_1_cast_fp16 = reshape(shape = var_244, x = linear_3_cast_fp16)[name = tensor("q_1_cast_fp16")]; + tensor model_layers_0_self_attn_linear_k_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_0_self_attn_linear_k_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(13816960))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(14865600))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_4_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_0_self_attn_linear_k_weight_to_fp16_quantized, x = query_1_cast_fp16)[name = tensor("linear_4_cast_fp16")]; + tensor var_248 = const()[name = tensor("op_248"), val = tensor([1, -1, 8, 128])]; + tensor k_1_cast_fp16 = reshape(shape = var_248, x = linear_4_cast_fp16)[name = tensor("k_1_cast_fp16")]; + tensor model_layers_0_self_attn_linear_v_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_0_self_attn_linear_v_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(14867712))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(15916352))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_5_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_0_self_attn_linear_v_weight_to_fp16_quantized, x = query_1_cast_fp16)[name = tensor("linear_5_cast_fp16")]; + tensor var_252 = const()[name = tensor("op_252"), val = tensor([1, -1, 8, 128])]; + tensor v_1_cast_fp16 = reshape(shape = var_252, x = linear_5_cast_fp16)[name = tensor("v_1_cast_fp16")]; + tensor value_1_perm_0 = const()[name = tensor("value_1_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor model_layers_0_self_attn_pos_bias_u_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_0_self_attn_pos_bias_u_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(15918464))), scale = tensor([0x1.554p-8, 0x1.17cp-7, 0x1.e6p-8, 0x1.c8cp-8, 0x1.e28p-9, 0x1.fe8p-8, 0x1.2f8p-8, 0x1.3bp-7]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_264_cast_fp16 = add(x = q_1_cast_fp16, y = model_layers_0_self_attn_pos_bias_u_to_fp16_quantized)[name = tensor("op_264_cast_fp16")]; + tensor model_layers_0_self_attn_pos_bias_v_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_0_self_attn_pos_bias_v_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(15919552))), scale = tensor([0x1.ea8p-11, 0x1.7ep-9, 0x1.8e4p-10, 0x1.4e4p-9, 0x1.9e4p-12, 0x1.d6p-10, 0x1.0bcp-10, 0x1.bc4p-10]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_266_cast_fp16 = add(x = q_1_cast_fp16, y = model_layers_0_self_attn_pos_bias_v_to_fp16_quantized)[name = tensor("op_266_cast_fp16")]; + tensor q_with_bias_v_1_perm_0 = const()[name = tensor("q_with_bias_v_1_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor x_7_transpose_x_0 = const()[name = tensor("x_7_transpose_x_0"), val = tensor(false)]; + tensor x_7_transpose_y_0 = const()[name = tensor("x_7_transpose_y_0"), val = tensor(false)]; + tensor op_268_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(3), name = tensor("op_268_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(15920640))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(16178048))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(16177728)))]; + tensor q_with_bias_v_1_cast_fp16 = transpose(perm = q_with_bias_v_1_perm_0, x = var_266_cast_fp16)[name = tensor("transpose_311")]; + tensor x_7_cast_fp16 = matmul(transpose_x = x_7_transpose_x_0, transpose_y = x_7_transpose_y_0, x = q_with_bias_v_1_cast_fp16, y = op_268_to_fp16_quantized)[name = tensor("x_7_cast_fp16")]; + tensor x_9_pad_0 = const()[name = tensor("x_9_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_9_mode_0 = const()[name = tensor("x_9_mode_0"), val = tensor("constant")]; + tensor const_14_to_fp16 = const()[name = tensor("const_14_to_fp16"), val = tensor(0x0p+0)]; + tensor x_9_cast_fp16 = pad(constant_val = const_14_to_fp16, mode = x_9_mode_0, pad = x_9_pad_0, x = x_7_cast_fp16)[name = tensor("x_9_cast_fp16")]; + tensor var_276 = const()[name = tensor("op_276"), val = tensor([1, 8, -1, 126])]; + tensor x_11_cast_fp16 = reshape(shape = var_276, x = x_9_cast_fp16)[name = tensor("x_11_cast_fp16")]; + tensor var_280_begin_0 = const()[name = tensor("op_280_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_280_end_0 = const()[name = tensor("op_280_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_280_end_mask_0 = const()[name = tensor("op_280_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_280_cast_fp16 = slice_by_index(begin = var_280_begin_0, end = var_280_end_0, end_mask = var_280_end_mask_0, x = x_11_cast_fp16)[name = tensor("op_280_cast_fp16")]; + tensor var_281 = const()[name = tensor("op_281"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_1_cast_fp16 = reshape(shape = var_281, x = var_280_cast_fp16)[name = tensor("matrix_bd_1_cast_fp16")]; + tensor matrix_ac_1_transpose_x_0 = const()[name = tensor("matrix_ac_1_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_1_transpose_y_0 = const()[name = tensor("matrix_ac_1_transpose_y_0"), val = tensor(false)]; + tensor transpose_96_perm_0 = const()[name = tensor("transpose_96_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_97_perm_0 = const()[name = tensor("transpose_97_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_97 = transpose(perm = transpose_97_perm_0, x = k_1_cast_fp16)[name = tensor("transpose_309")]; + tensor transpose_96 = transpose(perm = transpose_96_perm_0, x = var_264_cast_fp16)[name = tensor("transpose_310")]; + tensor matrix_ac_1_cast_fp16 = matmul(transpose_x = matrix_ac_1_transpose_x_0, transpose_y = matrix_ac_1_transpose_y_0, x = transpose_96, y = transpose_97)[name = tensor("matrix_ac_1_cast_fp16")]; + tensor matrix_bd_3_begin_0 = const()[name = tensor("matrix_bd_3_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_3_end_0 = const()[name = tensor("matrix_bd_3_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_3_end_mask_0 = const()[name = tensor("matrix_bd_3_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_3_cast_fp16 = slice_by_index(begin = matrix_bd_3_begin_0, end = matrix_bd_3_end_0, end_mask = matrix_bd_3_end_mask_0, x = matrix_bd_1_cast_fp16)[name = tensor("matrix_bd_3_cast_fp16")]; + tensor var_290_cast_fp16 = add(x = matrix_ac_1_cast_fp16, y = matrix_bd_3_cast_fp16)[name = tensor("op_290_cast_fp16")]; + tensor _inversed_scores_1_y_0_to_fp16 = const()[name = tensor("_inversed_scores_1_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_1_cast_fp16 = mul(x = var_290_cast_fp16, y = _inversed_scores_1_y_0_to_fp16)[name = tensor("_inversed_scores_1_cast_fp16")]; + tensor mask_3_axes_0 = const()[name = tensor("mask_3_axes_0"), val = tensor([1])]; + tensor mask_3 = expand_dims(axes = mask_3_axes_0, x = mask_1)[name = tensor("mask_3")]; + tensor var_7_to_fp16 = const()[name = tensor("op_7_to_fp16"), val = tensor(-0x1.388p+13)]; + tensor scores_3_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_1_cast_fp16, cond = mask_3)[name = tensor("scores_3_cast_fp16")]; + tensor var_296_cast_fp16 = softmax(axis = var_25, x = scores_3_cast_fp16)[name = tensor("op_296_cast_fp16")]; + tensor var_6_to_fp16 = const()[name = tensor("op_6_to_fp16"), val = tensor(0x0p+0)]; + tensor input_33_cast_fp16 = select(a = var_6_to_fp16, b = var_296_cast_fp16, cond = mask_3)[name = tensor("input_33_cast_fp16")]; + tensor x_13_transpose_x_0 = const()[name = tensor("x_13_transpose_x_0"), val = tensor(false)]; + tensor x_13_transpose_y_0 = const()[name = tensor("x_13_transpose_y_0"), val = tensor(false)]; + tensor value_1_cast_fp16 = transpose(perm = value_1_perm_0, x = v_1_cast_fp16)[name = tensor("transpose_308")]; + tensor x_13_cast_fp16 = matmul(transpose_x = x_13_transpose_x_0, transpose_y = x_13_transpose_y_0, x = input_33_cast_fp16, y = value_1_cast_fp16)[name = tensor("x_13_cast_fp16")]; + tensor var_300_perm_0 = const()[name = tensor("op_300_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_301 = const()[name = tensor("op_301"), val = tensor([1, -1, 1024])]; + tensor var_300_cast_fp16 = transpose(perm = var_300_perm_0, x = x_13_cast_fp16)[name = tensor("transpose_307")]; + tensor input_35_cast_fp16 = reshape(shape = var_301, x = var_300_cast_fp16)[name = tensor("input_35_cast_fp16")]; + tensor model_layers_0_self_attn_linear_out_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_0_self_attn_linear_out_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(16178624))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(17227264))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_7_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_0_self_attn_linear_out_weight_to_fp16_quantized, x = input_35_cast_fp16)[name = tensor("linear_7_cast_fp16")]; + tensor input_39_cast_fp16 = add(x = input_31_cast_fp16, y = linear_7_cast_fp16)[name = tensor("input_39_cast_fp16")]; + tensor x_17_axes_0 = const()[name = tensor("x_17_axes_0"), val = tensor([-1])]; + tensor model_layers_0_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_0_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(17229376)))]; + tensor model_layers_0_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_0_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(17231488)))]; + tensor x_17_cast_fp16 = layer_norm(axes = x_17_axes_0, beta = model_layers_0_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_0_norm_conv_weight_to_fp16, x = input_39_cast_fp16)[name = tensor("x_17_cast_fp16")]; + tensor input_41_perm_0 = const()[name = tensor("input_41_perm_0"), val = tensor([0, 2, 1])]; + tensor input_43_pad_type_0 = const()[name = tensor("input_43_pad_type_0"), val = tensor("valid")]; + tensor input_43_strides_0 = const()[name = tensor("input_43_strides_0"), val = tensor([1])]; + tensor input_43_pad_0 = const()[name = tensor("input_43_pad_0"), val = tensor([0, 0])]; + tensor input_43_dilations_0 = const()[name = tensor("input_43_dilations_0"), val = tensor([1])]; + tensor input_43_groups_0 = const()[name = tensor("input_43_groups_0"), val = tensor(1)]; + tensor model_layers_0_conv_pointwise_conv1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_0_conv_pointwise_conv1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(17233600))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(19332928))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(19330816)))]; + tensor input_41_cast_fp16 = transpose(perm = input_41_perm_0, x = x_17_cast_fp16)[name = tensor("transpose_306")]; + tensor input_43_cast_fp16 = conv(dilations = input_43_dilations_0, groups = input_43_groups_0, pad = input_43_pad_0, pad_type = input_43_pad_type_0, strides = input_43_strides_0, weight = model_layers_0_conv_pointwise_conv1_weight_to_fp16_quantized, x = input_41_cast_fp16)[name = tensor("input_43_cast_fp16")]; + tensor x_19_split_num_splits_0 = const()[name = tensor("x_19_split_num_splits_0"), val = tensor(2)]; + tensor x_19_split_axis_0 = const()[name = tensor("x_19_split_axis_0"), val = tensor(1)]; + tensor x_19_split_cast_fp16_0, tensor x_19_split_cast_fp16_1 = split(axis = x_19_split_axis_0, num_splits = x_19_split_num_splits_0, x = input_43_cast_fp16)[name = tensor("x_19_split_cast_fp16")]; + tensor x_19_split_1_sigmoid_cast_fp16 = sigmoid(x = x_19_split_cast_fp16_1)[name = tensor("x_19_split_1_sigmoid_cast_fp16")]; + tensor x_19_cast_fp16 = mul(x = x_19_split_cast_fp16_0, y = x_19_split_1_sigmoid_cast_fp16)[name = tensor("x_19_cast_fp16")]; + tensor var_323_axes_0 = const()[name = tensor("op_323_axes_0"), val = tensor([1])]; + tensor var_323 = expand_dims(axes = var_323_axes_0, x = pad_mask)[name = tensor("op_323")]; + tensor input_45_cast_fp16 = select(a = var_6_to_fp16, b = x_19_cast_fp16, cond = var_323)[name = tensor("input_45_cast_fp16")]; + tensor input_47_pad_0 = const()[name = tensor("input_47_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_47_mode_0 = const()[name = tensor("input_47_mode_0"), val = tensor("constant")]; + tensor const_17_to_fp16 = const()[name = tensor("const_17_to_fp16"), val = tensor(0x0p+0)]; + tensor input_47_cast_fp16 = pad(constant_val = const_17_to_fp16, mode = input_47_mode_0, pad = input_47_pad_0, x = input_45_cast_fp16)[name = tensor("input_47_cast_fp16")]; + tensor input_49_pad_type_0 = const()[name = tensor("input_49_pad_type_0"), val = tensor("valid")]; + tensor input_49_groups_0 = const()[name = tensor("input_49_groups_0"), val = tensor(1024)]; + tensor input_49_strides_0 = const()[name = tensor("input_49_strides_0"), val = tensor([1])]; + tensor input_49_pad_0 = const()[name = tensor("input_49_pad_0"), val = tensor([0, 0])]; + tensor input_49_dilations_0 = const()[name = tensor("input_49_dilations_0"), val = tensor([1])]; + tensor const_248_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("const_248_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(19337088))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(19346368))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor const_249_to_fp16 = const()[name = tensor("const_249_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(19348480)))]; + tensor input_51_cast_fp16 = conv(bias = const_249_to_fp16, dilations = input_49_dilations_0, groups = input_49_groups_0, pad = input_49_pad_0, pad_type = input_49_pad_type_0, strides = input_49_strides_0, weight = const_248_to_fp16_quantized, x = input_47_cast_fp16)[name = tensor("input_51_cast_fp16")]; + tensor input_53_cast_fp16 = silu(x = input_51_cast_fp16)[name = tensor("input_53_cast_fp16")]; + tensor x_21_pad_type_0 = const()[name = tensor("x_21_pad_type_0"), val = tensor("valid")]; + tensor x_21_strides_0 = const()[name = tensor("x_21_strides_0"), val = tensor([1])]; + tensor x_21_pad_0 = const()[name = tensor("x_21_pad_0"), val = tensor([0, 0])]; + tensor x_21_dilations_0 = const()[name = tensor("x_21_dilations_0"), val = tensor([1])]; + tensor x_21_groups_0 = const()[name = tensor("x_21_groups_0"), val = tensor(1)]; + tensor model_layers_0_conv_pointwise_conv2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_0_conv_pointwise_conv2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(19350592))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(20399232))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor x_21_cast_fp16 = conv(dilations = x_21_dilations_0, groups = x_21_groups_0, pad = x_21_pad_0, pad_type = x_21_pad_type_0, strides = x_21_strides_0, weight = model_layers_0_conv_pointwise_conv2_weight_to_fp16_quantized, x = input_53_cast_fp16)[name = tensor("x_21_cast_fp16")]; + tensor input_55_perm_0 = const()[name = tensor("input_55_perm_0"), val = tensor([0, 2, 1])]; + tensor input_55_cast_fp16 = transpose(perm = input_55_perm_0, x = x_21_cast_fp16)[name = tensor("transpose_305")]; + tensor input_57_cast_fp16 = add(x = input_39_cast_fp16, y = input_55_cast_fp16)[name = tensor("input_57_cast_fp16")]; + tensor input_59_axes_0 = const()[name = tensor("input_59_axes_0"), val = tensor([-1])]; + tensor model_layers_0_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_0_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(20401344)))]; + tensor model_layers_0_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_0_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(20403456)))]; + tensor input_59_cast_fp16 = layer_norm(axes = input_59_axes_0, beta = model_layers_0_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_0_norm_feed_forward2_weight_to_fp16, x = input_57_cast_fp16)[name = tensor("input_59_cast_fp16")]; + tensor model_layers_0_feed_forward2_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_0_feed_forward2_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(20405568))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(24599936))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_8_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_0_feed_forward2_linear1_weight_to_fp16_quantized, x = input_59_cast_fp16)[name = tensor("linear_8_cast_fp16")]; + tensor input_63_cast_fp16 = silu(x = linear_8_cast_fp16)[name = tensor("input_63_cast_fp16")]; + tensor model_layers_0_feed_forward2_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_0_feed_forward2_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(24608192))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(28802560))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_9_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_0_feed_forward2_linear2_weight_to_fp16_quantized, x = input_63_cast_fp16)[name = tensor("linear_9_cast_fp16")]; + tensor var_361_to_fp16 = const()[name = tensor("op_361_to_fp16"), val = tensor(0x1p-1)]; + tensor var_362_cast_fp16 = mul(x = linear_9_cast_fp16, y = var_361_to_fp16)[name = tensor("op_362_cast_fp16")]; + tensor input_69_cast_fp16 = add(x = input_57_cast_fp16, y = var_362_cast_fp16)[name = tensor("input_69_cast_fp16")]; + tensor input_71_axes_0 = const()[name = tensor("input_71_axes_0"), val = tensor([-1])]; + tensor model_layers_0_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_0_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(28804672)))]; + tensor model_layers_0_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_0_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(28806784)))]; + tensor input_71_cast_fp16 = layer_norm(axes = input_71_axes_0, beta = model_layers_0_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_0_norm_out_weight_to_fp16, x = input_69_cast_fp16)[name = tensor("input_71_cast_fp16")]; + tensor input_73_axes_0 = const()[name = tensor("input_73_axes_0"), val = tensor([-1])]; + tensor model_layers_1_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_1_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(28808896)))]; + tensor model_layers_1_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_1_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(28811008)))]; + tensor input_73_cast_fp16 = layer_norm(axes = input_73_axes_0, beta = model_layers_1_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_1_norm_feed_forward1_weight_to_fp16, x = input_71_cast_fp16)[name = tensor("input_73_cast_fp16")]; + tensor model_layers_1_feed_forward1_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_1_feed_forward1_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(28813120))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(33007488))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_10_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_1_feed_forward1_linear1_weight_to_fp16_quantized, x = input_73_cast_fp16)[name = tensor("linear_10_cast_fp16")]; + tensor input_77_cast_fp16 = silu(x = linear_10_cast_fp16)[name = tensor("input_77_cast_fp16")]; + tensor model_layers_1_feed_forward1_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_1_feed_forward1_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(33015744))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(37210112))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_11_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_1_feed_forward1_linear2_weight_to_fp16_quantized, x = input_77_cast_fp16)[name = tensor("linear_11_cast_fp16")]; + tensor var_390_to_fp16 = const()[name = tensor("op_390_to_fp16"), val = tensor(0x1p-1)]; + tensor var_391_cast_fp16 = mul(x = linear_11_cast_fp16, y = var_390_to_fp16)[name = tensor("op_391_cast_fp16")]; + tensor input_83_cast_fp16 = add(x = input_71_cast_fp16, y = var_391_cast_fp16)[name = tensor("input_83_cast_fp16")]; + tensor query_3_axes_0 = const()[name = tensor("query_3_axes_0"), val = tensor([-1])]; + tensor model_layers_1_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_1_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(37212224)))]; + tensor model_layers_1_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_1_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(37214336)))]; + tensor query_3_cast_fp16 = layer_norm(axes = query_3_axes_0, beta = model_layers_1_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_1_norm_self_att_weight_to_fp16, x = input_83_cast_fp16)[name = tensor("query_3_cast_fp16")]; + tensor model_layers_1_self_attn_linear_q_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_1_self_attn_linear_q_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(37216448))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(38265088))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_12_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_1_self_attn_linear_q_weight_to_fp16_quantized, x = query_3_cast_fp16)[name = tensor("linear_12_cast_fp16")]; + tensor var_407 = const()[name = tensor("op_407"), val = tensor([1, -1, 8, 128])]; + tensor q_7_cast_fp16 = reshape(shape = var_407, x = linear_12_cast_fp16)[name = tensor("q_7_cast_fp16")]; + tensor model_layers_1_self_attn_linear_k_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_1_self_attn_linear_k_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(38267200))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(39315840))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_13_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_1_self_attn_linear_k_weight_to_fp16_quantized, x = query_3_cast_fp16)[name = tensor("linear_13_cast_fp16")]; + tensor var_411 = const()[name = tensor("op_411"), val = tensor([1, -1, 8, 128])]; + tensor k_5_cast_fp16 = reshape(shape = var_411, x = linear_13_cast_fp16)[name = tensor("k_5_cast_fp16")]; + tensor model_layers_1_self_attn_linear_v_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_1_self_attn_linear_v_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(39317952))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(40366592))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_14_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_1_self_attn_linear_v_weight_to_fp16_quantized, x = query_3_cast_fp16)[name = tensor("linear_14_cast_fp16")]; + tensor var_415 = const()[name = tensor("op_415"), val = tensor([1, -1, 8, 128])]; + tensor v_3_cast_fp16 = reshape(shape = var_415, x = linear_14_cast_fp16)[name = tensor("v_3_cast_fp16")]; + tensor value_3_perm_0 = const()[name = tensor("value_3_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor model_layers_1_self_attn_pos_bias_u_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_1_self_attn_pos_bias_u_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(40368704))), scale = tensor([0x1.0acp-7, 0x1.2f4p-7, 0x1.71p-7, 0x1.654p-8, 0x1.a2cp-7, 0x1.548p-8, 0x1.2ccp-7, 0x1.43p-7]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_427_cast_fp16 = add(x = q_7_cast_fp16, y = model_layers_1_self_attn_pos_bias_u_to_fp16_quantized)[name = tensor("op_427_cast_fp16")]; + tensor model_layers_1_self_attn_pos_bias_v_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_1_self_attn_pos_bias_v_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(40369792))), scale = tensor([0x1.188p-7, 0x1.ca4p-9, 0x1.dap-9, 0x1.25p-9, 0x1.e54p-9, 0x1.124p-9, 0x1.0e8p-8, 0x1.b08p-9]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_429_cast_fp16 = add(x = q_7_cast_fp16, y = model_layers_1_self_attn_pos_bias_v_to_fp16_quantized)[name = tensor("op_429_cast_fp16")]; + tensor q_with_bias_v_3_perm_0 = const()[name = tensor("q_with_bias_v_3_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor x_29_transpose_x_0 = const()[name = tensor("x_29_transpose_x_0"), val = tensor(false)]; + tensor x_29_transpose_y_0 = const()[name = tensor("x_29_transpose_y_0"), val = tensor(false)]; + tensor op_431_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(3), name = tensor("op_431_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(40370880))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(40627968))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(16177728)))]; + tensor q_with_bias_v_3_cast_fp16 = transpose(perm = q_with_bias_v_3_perm_0, x = var_429_cast_fp16)[name = tensor("transpose_304")]; + tensor x_29_cast_fp16 = matmul(transpose_x = x_29_transpose_x_0, transpose_y = x_29_transpose_y_0, x = q_with_bias_v_3_cast_fp16, y = op_431_to_fp16_quantized)[name = tensor("x_29_cast_fp16")]; + tensor x_31_pad_0 = const()[name = tensor("x_31_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_31_mode_0 = const()[name = tensor("x_31_mode_0"), val = tensor("constant")]; + tensor const_24_to_fp16 = const()[name = tensor("const_24_to_fp16"), val = tensor(0x0p+0)]; + tensor x_31_cast_fp16 = pad(constant_val = const_24_to_fp16, mode = x_31_mode_0, pad = x_31_pad_0, x = x_29_cast_fp16)[name = tensor("x_31_cast_fp16")]; + tensor var_439 = const()[name = tensor("op_439"), val = tensor([1, 8, -1, 126])]; + tensor x_33_cast_fp16 = reshape(shape = var_439, x = x_31_cast_fp16)[name = tensor("x_33_cast_fp16")]; + tensor var_443_begin_0 = const()[name = tensor("op_443_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_443_end_0 = const()[name = tensor("op_443_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_443_end_mask_0 = const()[name = tensor("op_443_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_443_cast_fp16 = slice_by_index(begin = var_443_begin_0, end = var_443_end_0, end_mask = var_443_end_mask_0, x = x_33_cast_fp16)[name = tensor("op_443_cast_fp16")]; + tensor var_444 = const()[name = tensor("op_444"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_5_cast_fp16 = reshape(shape = var_444, x = var_443_cast_fp16)[name = tensor("matrix_bd_5_cast_fp16")]; + tensor matrix_ac_3_transpose_x_0 = const()[name = tensor("matrix_ac_3_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_3_transpose_y_0 = const()[name = tensor("matrix_ac_3_transpose_y_0"), val = tensor(false)]; + tensor transpose_98_perm_0 = const()[name = tensor("transpose_98_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_99_perm_0 = const()[name = tensor("transpose_99_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_99 = transpose(perm = transpose_99_perm_0, x = k_5_cast_fp16)[name = tensor("transpose_302")]; + tensor transpose_98 = transpose(perm = transpose_98_perm_0, x = var_427_cast_fp16)[name = tensor("transpose_303")]; + tensor matrix_ac_3_cast_fp16 = matmul(transpose_x = matrix_ac_3_transpose_x_0, transpose_y = matrix_ac_3_transpose_y_0, x = transpose_98, y = transpose_99)[name = tensor("matrix_ac_3_cast_fp16")]; + tensor matrix_bd_7_begin_0 = const()[name = tensor("matrix_bd_7_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_7_end_0 = const()[name = tensor("matrix_bd_7_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_7_end_mask_0 = const()[name = tensor("matrix_bd_7_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_7_cast_fp16 = slice_by_index(begin = matrix_bd_7_begin_0, end = matrix_bd_7_end_0, end_mask = matrix_bd_7_end_mask_0, x = matrix_bd_5_cast_fp16)[name = tensor("matrix_bd_7_cast_fp16")]; + tensor var_453_cast_fp16 = add(x = matrix_ac_3_cast_fp16, y = matrix_bd_7_cast_fp16)[name = tensor("op_453_cast_fp16")]; + tensor _inversed_scores_5_y_0_to_fp16 = const()[name = tensor("_inversed_scores_5_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_5_cast_fp16 = mul(x = var_453_cast_fp16, y = _inversed_scores_5_y_0_to_fp16)[name = tensor("_inversed_scores_5_cast_fp16")]; + tensor scores_7_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_5_cast_fp16, cond = mask_3)[name = tensor("scores_7_cast_fp16")]; + tensor var_459_cast_fp16 = softmax(axis = var_25, x = scores_7_cast_fp16)[name = tensor("op_459_cast_fp16")]; + tensor input_85_cast_fp16 = select(a = var_6_to_fp16, b = var_459_cast_fp16, cond = mask_3)[name = tensor("input_85_cast_fp16")]; + tensor x_35_transpose_x_0 = const()[name = tensor("x_35_transpose_x_0"), val = tensor(false)]; + tensor x_35_transpose_y_0 = const()[name = tensor("x_35_transpose_y_0"), val = tensor(false)]; + tensor value_3_cast_fp16 = transpose(perm = value_3_perm_0, x = v_3_cast_fp16)[name = tensor("transpose_301")]; + tensor x_35_cast_fp16 = matmul(transpose_x = x_35_transpose_x_0, transpose_y = x_35_transpose_y_0, x = input_85_cast_fp16, y = value_3_cast_fp16)[name = tensor("x_35_cast_fp16")]; + tensor var_463_perm_0 = const()[name = tensor("op_463_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_464 = const()[name = tensor("op_464"), val = tensor([1, -1, 1024])]; + tensor var_463_cast_fp16 = transpose(perm = var_463_perm_0, x = x_35_cast_fp16)[name = tensor("transpose_300")]; + tensor input_87_cast_fp16 = reshape(shape = var_464, x = var_463_cast_fp16)[name = tensor("input_87_cast_fp16")]; + tensor model_layers_1_self_attn_linear_out_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_1_self_attn_linear_out_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(40628544))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(41677184))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_16_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_1_self_attn_linear_out_weight_to_fp16_quantized, x = input_87_cast_fp16)[name = tensor("linear_16_cast_fp16")]; + tensor input_91_cast_fp16 = add(x = input_83_cast_fp16, y = linear_16_cast_fp16)[name = tensor("input_91_cast_fp16")]; + tensor x_39_axes_0 = const()[name = tensor("x_39_axes_0"), val = tensor([-1])]; + tensor model_layers_1_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_1_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(41679296)))]; + tensor model_layers_1_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_1_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(41681408)))]; + tensor x_39_cast_fp16 = layer_norm(axes = x_39_axes_0, beta = model_layers_1_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_1_norm_conv_weight_to_fp16, x = input_91_cast_fp16)[name = tensor("x_39_cast_fp16")]; + tensor input_93_perm_0 = const()[name = tensor("input_93_perm_0"), val = tensor([0, 2, 1])]; + tensor input_95_pad_type_0 = const()[name = tensor("input_95_pad_type_0"), val = tensor("valid")]; + tensor input_95_strides_0 = const()[name = tensor("input_95_strides_0"), val = tensor([1])]; + tensor input_95_pad_0 = const()[name = tensor("input_95_pad_0"), val = tensor([0, 0])]; + tensor input_95_dilations_0 = const()[name = tensor("input_95_dilations_0"), val = tensor([1])]; + tensor input_95_groups_0 = const()[name = tensor("input_95_groups_0"), val = tensor(1)]; + tensor model_layers_1_conv_pointwise_conv1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_1_conv_pointwise_conv1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(41683520))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(43780736))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(19330816)))]; + tensor input_93_cast_fp16 = transpose(perm = input_93_perm_0, x = x_39_cast_fp16)[name = tensor("transpose_299")]; + tensor input_95_cast_fp16 = conv(dilations = input_95_dilations_0, groups = input_95_groups_0, pad = input_95_pad_0, pad_type = input_95_pad_type_0, strides = input_95_strides_0, weight = model_layers_1_conv_pointwise_conv1_weight_to_fp16_quantized, x = input_93_cast_fp16)[name = tensor("input_95_cast_fp16")]; + tensor x_41_split_num_splits_0 = const()[name = tensor("x_41_split_num_splits_0"), val = tensor(2)]; + tensor x_41_split_axis_0 = const()[name = tensor("x_41_split_axis_0"), val = tensor(1)]; + tensor x_41_split_cast_fp16_0, tensor x_41_split_cast_fp16_1 = split(axis = x_41_split_axis_0, num_splits = x_41_split_num_splits_0, x = input_95_cast_fp16)[name = tensor("x_41_split_cast_fp16")]; + tensor x_41_split_1_sigmoid_cast_fp16 = sigmoid(x = x_41_split_cast_fp16_1)[name = tensor("x_41_split_1_sigmoid_cast_fp16")]; + tensor x_41_cast_fp16 = mul(x = x_41_split_cast_fp16_0, y = x_41_split_1_sigmoid_cast_fp16)[name = tensor("x_41_cast_fp16")]; + tensor input_97_cast_fp16 = select(a = var_6_to_fp16, b = x_41_cast_fp16, cond = var_323)[name = tensor("input_97_cast_fp16")]; + tensor input_99_pad_0 = const()[name = tensor("input_99_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_99_mode_0 = const()[name = tensor("input_99_mode_0"), val = tensor("constant")]; + tensor const_27_to_fp16 = const()[name = tensor("const_27_to_fp16"), val = tensor(0x0p+0)]; + tensor input_99_cast_fp16 = pad(constant_val = const_27_to_fp16, mode = input_99_mode_0, pad = input_99_pad_0, x = input_97_cast_fp16)[name = tensor("input_99_cast_fp16")]; + tensor input_101_pad_type_0 = const()[name = tensor("input_101_pad_type_0"), val = tensor("valid")]; + tensor input_101_groups_0 = const()[name = tensor("input_101_groups_0"), val = tensor(1024)]; + tensor input_101_strides_0 = const()[name = tensor("input_101_strides_0"), val = tensor([1])]; + tensor input_101_pad_0 = const()[name = tensor("input_101_pad_0"), val = tensor([0, 0])]; + tensor input_101_dilations_0 = const()[name = tensor("input_101_dilations_0"), val = tensor([1])]; + tensor const_250_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("const_250_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(43784896))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(43794176))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor const_251_to_fp16 = const()[name = tensor("const_251_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(43796288)))]; + tensor input_103_cast_fp16 = conv(bias = const_251_to_fp16, dilations = input_101_dilations_0, groups = input_101_groups_0, pad = input_101_pad_0, pad_type = input_101_pad_type_0, strides = input_101_strides_0, weight = const_250_to_fp16_quantized, x = input_99_cast_fp16)[name = tensor("input_103_cast_fp16")]; + tensor input_105_cast_fp16 = silu(x = input_103_cast_fp16)[name = tensor("input_105_cast_fp16")]; + tensor x_43_pad_type_0 = const()[name = tensor("x_43_pad_type_0"), val = tensor("valid")]; + tensor x_43_strides_0 = const()[name = tensor("x_43_strides_0"), val = tensor([1])]; + tensor x_43_pad_0 = const()[name = tensor("x_43_pad_0"), val = tensor([0, 0])]; + tensor x_43_dilations_0 = const()[name = tensor("x_43_dilations_0"), val = tensor([1])]; + tensor x_43_groups_0 = const()[name = tensor("x_43_groups_0"), val = tensor(1)]; + tensor model_layers_1_conv_pointwise_conv2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_1_conv_pointwise_conv2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(43798400))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(44847040))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor x_43_cast_fp16 = conv(dilations = x_43_dilations_0, groups = x_43_groups_0, pad = x_43_pad_0, pad_type = x_43_pad_type_0, strides = x_43_strides_0, weight = model_layers_1_conv_pointwise_conv2_weight_to_fp16_quantized, x = input_105_cast_fp16)[name = tensor("x_43_cast_fp16")]; + tensor input_107_perm_0 = const()[name = tensor("input_107_perm_0"), val = tensor([0, 2, 1])]; + tensor input_107_cast_fp16 = transpose(perm = input_107_perm_0, x = x_43_cast_fp16)[name = tensor("transpose_298")]; + tensor input_109_cast_fp16 = add(x = input_91_cast_fp16, y = input_107_cast_fp16)[name = tensor("input_109_cast_fp16")]; + tensor input_111_axes_0 = const()[name = tensor("input_111_axes_0"), val = tensor([-1])]; + tensor model_layers_1_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_1_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(44849152)))]; + tensor model_layers_1_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_1_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(44851264)))]; + tensor input_111_cast_fp16 = layer_norm(axes = input_111_axes_0, beta = model_layers_1_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_1_norm_feed_forward2_weight_to_fp16, x = input_109_cast_fp16)[name = tensor("input_111_cast_fp16")]; + tensor model_layers_1_feed_forward2_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_1_feed_forward2_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(44853376))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(49047744))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_17_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_1_feed_forward2_linear1_weight_to_fp16_quantized, x = input_111_cast_fp16)[name = tensor("linear_17_cast_fp16")]; + tensor input_115_cast_fp16 = silu(x = linear_17_cast_fp16)[name = tensor("input_115_cast_fp16")]; + tensor model_layers_1_feed_forward2_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_1_feed_forward2_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(49056000))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(53250368))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_18_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_1_feed_forward2_linear2_weight_to_fp16_quantized, x = input_115_cast_fp16)[name = tensor("linear_18_cast_fp16")]; + tensor var_524_to_fp16 = const()[name = tensor("op_524_to_fp16"), val = tensor(0x1p-1)]; + tensor var_525_cast_fp16 = mul(x = linear_18_cast_fp16, y = var_524_to_fp16)[name = tensor("op_525_cast_fp16")]; + tensor input_121_cast_fp16 = add(x = input_109_cast_fp16, y = var_525_cast_fp16)[name = tensor("input_121_cast_fp16")]; + tensor input_123_axes_0 = const()[name = tensor("input_123_axes_0"), val = tensor([-1])]; + tensor model_layers_1_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_1_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(53252480)))]; + tensor model_layers_1_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_1_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(53254592)))]; + tensor input_123_cast_fp16 = layer_norm(axes = input_123_axes_0, beta = model_layers_1_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_1_norm_out_weight_to_fp16, x = input_121_cast_fp16)[name = tensor("input_123_cast_fp16")]; + tensor input_125_axes_0 = const()[name = tensor("input_125_axes_0"), val = tensor([-1])]; + tensor model_layers_2_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_2_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(53256704)))]; + tensor model_layers_2_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_2_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(53258816)))]; + tensor input_125_cast_fp16 = layer_norm(axes = input_125_axes_0, beta = model_layers_2_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_2_norm_feed_forward1_weight_to_fp16, x = input_123_cast_fp16)[name = tensor("input_125_cast_fp16")]; + tensor model_layers_2_feed_forward1_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_2_feed_forward1_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(53260928))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(57455296))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_19_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_2_feed_forward1_linear1_weight_to_fp16_quantized, x = input_125_cast_fp16)[name = tensor("linear_19_cast_fp16")]; + tensor input_129_cast_fp16 = silu(x = linear_19_cast_fp16)[name = tensor("input_129_cast_fp16")]; + tensor model_layers_2_feed_forward1_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_2_feed_forward1_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(57463552))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(61657920))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_20_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_2_feed_forward1_linear2_weight_to_fp16_quantized, x = input_129_cast_fp16)[name = tensor("linear_20_cast_fp16")]; + tensor var_553_to_fp16 = const()[name = tensor("op_553_to_fp16"), val = tensor(0x1p-1)]; + tensor var_554_cast_fp16 = mul(x = linear_20_cast_fp16, y = var_553_to_fp16)[name = tensor("op_554_cast_fp16")]; + tensor input_135_cast_fp16 = add(x = input_123_cast_fp16, y = var_554_cast_fp16)[name = tensor("input_135_cast_fp16")]; + tensor query_5_axes_0 = const()[name = tensor("query_5_axes_0"), val = tensor([-1])]; + tensor model_layers_2_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_2_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(61660032)))]; + tensor model_layers_2_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_2_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(61662144)))]; + tensor query_5_cast_fp16 = layer_norm(axes = query_5_axes_0, beta = model_layers_2_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_2_norm_self_att_weight_to_fp16, x = input_135_cast_fp16)[name = tensor("query_5_cast_fp16")]; + tensor model_layers_2_self_attn_linear_q_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_2_self_attn_linear_q_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(61664256))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(62712896))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_21_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_2_self_attn_linear_q_weight_to_fp16_quantized, x = query_5_cast_fp16)[name = tensor("linear_21_cast_fp16")]; + tensor var_570 = const()[name = tensor("op_570"), val = tensor([1, -1, 8, 128])]; + tensor q_13_cast_fp16 = reshape(shape = var_570, x = linear_21_cast_fp16)[name = tensor("q_13_cast_fp16")]; + tensor model_layers_2_self_attn_linear_k_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_2_self_attn_linear_k_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(62715008))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(63763648))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_22_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_2_self_attn_linear_k_weight_to_fp16_quantized, x = query_5_cast_fp16)[name = tensor("linear_22_cast_fp16")]; + tensor var_574 = const()[name = tensor("op_574"), val = tensor([1, -1, 8, 128])]; + tensor k_9_cast_fp16 = reshape(shape = var_574, x = linear_22_cast_fp16)[name = tensor("k_9_cast_fp16")]; + tensor model_layers_2_self_attn_linear_v_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_2_self_attn_linear_v_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(63765760))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(64814400))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_23_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_2_self_attn_linear_v_weight_to_fp16_quantized, x = query_5_cast_fp16)[name = tensor("linear_23_cast_fp16")]; + tensor var_578 = const()[name = tensor("op_578"), val = tensor([1, -1, 8, 128])]; + tensor v_5_cast_fp16 = reshape(shape = var_578, x = linear_23_cast_fp16)[name = tensor("v_5_cast_fp16")]; + tensor value_5_perm_0 = const()[name = tensor("value_5_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor model_layers_2_self_attn_pos_bias_u_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_2_self_attn_pos_bias_u_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(64816512))), scale = tensor([0x1.9f4p-7, 0x1.0e8p-7, 0x1.8e8p-8, 0x1.2dp-7, 0x1.524p-7, 0x1.a0cp-7, 0x1.57cp-8, 0x1.c18p-7]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_590_cast_fp16 = add(x = q_13_cast_fp16, y = model_layers_2_self_attn_pos_bias_u_to_fp16_quantized)[name = tensor("op_590_cast_fp16")]; + tensor model_layers_2_self_attn_pos_bias_v_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_2_self_attn_pos_bias_v_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(64817600))), scale = tensor([0x1.a14p-10, 0x1.8c8p-10, 0x1.054p-8, 0x1.0b4p-8, 0x1.a9p-9, 0x1.a9p-8, 0x1.b1cp-9, 0x1.e38p-9]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_592_cast_fp16 = add(x = q_13_cast_fp16, y = model_layers_2_self_attn_pos_bias_v_to_fp16_quantized)[name = tensor("op_592_cast_fp16")]; + tensor q_with_bias_v_5_perm_0 = const()[name = tensor("q_with_bias_v_5_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor x_51_transpose_x_0 = const()[name = tensor("x_51_transpose_x_0"), val = tensor(false)]; + tensor x_51_transpose_y_0 = const()[name = tensor("x_51_transpose_y_0"), val = tensor(false)]; + tensor op_594_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(3), name = tensor("op_594_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(64818688))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(65075776))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(16177728)))]; + tensor q_with_bias_v_5_cast_fp16 = transpose(perm = q_with_bias_v_5_perm_0, x = var_592_cast_fp16)[name = tensor("transpose_297")]; + tensor x_51_cast_fp16 = matmul(transpose_x = x_51_transpose_x_0, transpose_y = x_51_transpose_y_0, x = q_with_bias_v_5_cast_fp16, y = op_594_to_fp16_quantized)[name = tensor("x_51_cast_fp16")]; + tensor x_53_pad_0 = const()[name = tensor("x_53_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_53_mode_0 = const()[name = tensor("x_53_mode_0"), val = tensor("constant")]; + tensor const_34_to_fp16 = const()[name = tensor("const_34_to_fp16"), val = tensor(0x0p+0)]; + tensor x_53_cast_fp16 = pad(constant_val = const_34_to_fp16, mode = x_53_mode_0, pad = x_53_pad_0, x = x_51_cast_fp16)[name = tensor("x_53_cast_fp16")]; + tensor var_602 = const()[name = tensor("op_602"), val = tensor([1, 8, -1, 126])]; + tensor x_55_cast_fp16 = reshape(shape = var_602, x = x_53_cast_fp16)[name = tensor("x_55_cast_fp16")]; + tensor var_606_begin_0 = const()[name = tensor("op_606_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_606_end_0 = const()[name = tensor("op_606_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_606_end_mask_0 = const()[name = tensor("op_606_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_606_cast_fp16 = slice_by_index(begin = var_606_begin_0, end = var_606_end_0, end_mask = var_606_end_mask_0, x = x_55_cast_fp16)[name = tensor("op_606_cast_fp16")]; + tensor var_607 = const()[name = tensor("op_607"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_9_cast_fp16 = reshape(shape = var_607, x = var_606_cast_fp16)[name = tensor("matrix_bd_9_cast_fp16")]; + tensor matrix_ac_5_transpose_x_0 = const()[name = tensor("matrix_ac_5_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_5_transpose_y_0 = const()[name = tensor("matrix_ac_5_transpose_y_0"), val = tensor(false)]; + tensor transpose_100_perm_0 = const()[name = tensor("transpose_100_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_101_perm_0 = const()[name = tensor("transpose_101_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_101 = transpose(perm = transpose_101_perm_0, x = k_9_cast_fp16)[name = tensor("transpose_295")]; + tensor transpose_100 = transpose(perm = transpose_100_perm_0, x = var_590_cast_fp16)[name = tensor("transpose_296")]; + tensor matrix_ac_5_cast_fp16 = matmul(transpose_x = matrix_ac_5_transpose_x_0, transpose_y = matrix_ac_5_transpose_y_0, x = transpose_100, y = transpose_101)[name = tensor("matrix_ac_5_cast_fp16")]; + tensor matrix_bd_11_begin_0 = const()[name = tensor("matrix_bd_11_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_11_end_0 = const()[name = tensor("matrix_bd_11_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_11_end_mask_0 = const()[name = tensor("matrix_bd_11_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_11_cast_fp16 = slice_by_index(begin = matrix_bd_11_begin_0, end = matrix_bd_11_end_0, end_mask = matrix_bd_11_end_mask_0, x = matrix_bd_9_cast_fp16)[name = tensor("matrix_bd_11_cast_fp16")]; + tensor var_616_cast_fp16 = add(x = matrix_ac_5_cast_fp16, y = matrix_bd_11_cast_fp16)[name = tensor("op_616_cast_fp16")]; + tensor _inversed_scores_9_y_0_to_fp16 = const()[name = tensor("_inversed_scores_9_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_9_cast_fp16 = mul(x = var_616_cast_fp16, y = _inversed_scores_9_y_0_to_fp16)[name = tensor("_inversed_scores_9_cast_fp16")]; + tensor scores_11_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_9_cast_fp16, cond = mask_3)[name = tensor("scores_11_cast_fp16")]; + tensor var_622_cast_fp16 = softmax(axis = var_25, x = scores_11_cast_fp16)[name = tensor("op_622_cast_fp16")]; + tensor input_137_cast_fp16 = select(a = var_6_to_fp16, b = var_622_cast_fp16, cond = mask_3)[name = tensor("input_137_cast_fp16")]; + tensor x_57_transpose_x_0 = const()[name = tensor("x_57_transpose_x_0"), val = tensor(false)]; + tensor x_57_transpose_y_0 = const()[name = tensor("x_57_transpose_y_0"), val = tensor(false)]; + tensor value_5_cast_fp16 = transpose(perm = value_5_perm_0, x = v_5_cast_fp16)[name = tensor("transpose_294")]; + tensor x_57_cast_fp16 = matmul(transpose_x = x_57_transpose_x_0, transpose_y = x_57_transpose_y_0, x = input_137_cast_fp16, y = value_5_cast_fp16)[name = tensor("x_57_cast_fp16")]; + tensor var_626_perm_0 = const()[name = tensor("op_626_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_627 = const()[name = tensor("op_627"), val = tensor([1, -1, 1024])]; + tensor var_626_cast_fp16 = transpose(perm = var_626_perm_0, x = x_57_cast_fp16)[name = tensor("transpose_293")]; + tensor input_139_cast_fp16 = reshape(shape = var_627, x = var_626_cast_fp16)[name = tensor("input_139_cast_fp16")]; + tensor model_layers_2_self_attn_linear_out_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_2_self_attn_linear_out_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(65076352))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(66124992))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_25_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_2_self_attn_linear_out_weight_to_fp16_quantized, x = input_139_cast_fp16)[name = tensor("linear_25_cast_fp16")]; + tensor input_143_cast_fp16 = add(x = input_135_cast_fp16, y = linear_25_cast_fp16)[name = tensor("input_143_cast_fp16")]; + tensor x_61_axes_0 = const()[name = tensor("x_61_axes_0"), val = tensor([-1])]; + tensor model_layers_2_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_2_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(66127104)))]; + tensor model_layers_2_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_2_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(66129216)))]; + tensor x_61_cast_fp16 = layer_norm(axes = x_61_axes_0, beta = model_layers_2_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_2_norm_conv_weight_to_fp16, x = input_143_cast_fp16)[name = tensor("x_61_cast_fp16")]; + tensor input_145_perm_0 = const()[name = tensor("input_145_perm_0"), val = tensor([0, 2, 1])]; + tensor input_147_pad_type_0 = const()[name = tensor("input_147_pad_type_0"), val = tensor("valid")]; + tensor input_147_strides_0 = const()[name = tensor("input_147_strides_0"), val = tensor([1])]; + tensor input_147_pad_0 = const()[name = tensor("input_147_pad_0"), val = tensor([0, 0])]; + tensor input_147_dilations_0 = const()[name = tensor("input_147_dilations_0"), val = tensor([1])]; + tensor input_147_groups_0 = const()[name = tensor("input_147_groups_0"), val = tensor(1)]; + tensor model_layers_2_conv_pointwise_conv1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_2_conv_pointwise_conv1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(66131328))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(68228544))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(19330816)))]; + tensor input_145_cast_fp16 = transpose(perm = input_145_perm_0, x = x_61_cast_fp16)[name = tensor("transpose_292")]; + tensor input_147_cast_fp16 = conv(dilations = input_147_dilations_0, groups = input_147_groups_0, pad = input_147_pad_0, pad_type = input_147_pad_type_0, strides = input_147_strides_0, weight = model_layers_2_conv_pointwise_conv1_weight_to_fp16_quantized, x = input_145_cast_fp16)[name = tensor("input_147_cast_fp16")]; + tensor x_63_split_num_splits_0 = const()[name = tensor("x_63_split_num_splits_0"), val = tensor(2)]; + tensor x_63_split_axis_0 = const()[name = tensor("x_63_split_axis_0"), val = tensor(1)]; + tensor x_63_split_cast_fp16_0, tensor x_63_split_cast_fp16_1 = split(axis = x_63_split_axis_0, num_splits = x_63_split_num_splits_0, x = input_147_cast_fp16)[name = tensor("x_63_split_cast_fp16")]; + tensor x_63_split_1_sigmoid_cast_fp16 = sigmoid(x = x_63_split_cast_fp16_1)[name = tensor("x_63_split_1_sigmoid_cast_fp16")]; + tensor x_63_cast_fp16 = mul(x = x_63_split_cast_fp16_0, y = x_63_split_1_sigmoid_cast_fp16)[name = tensor("x_63_cast_fp16")]; + tensor input_149_cast_fp16 = select(a = var_6_to_fp16, b = x_63_cast_fp16, cond = var_323)[name = tensor("input_149_cast_fp16")]; + tensor input_151_pad_0 = const()[name = tensor("input_151_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_151_mode_0 = const()[name = tensor("input_151_mode_0"), val = tensor("constant")]; + tensor const_37_to_fp16 = const()[name = tensor("const_37_to_fp16"), val = tensor(0x0p+0)]; + tensor input_151_cast_fp16 = pad(constant_val = const_37_to_fp16, mode = input_151_mode_0, pad = input_151_pad_0, x = input_149_cast_fp16)[name = tensor("input_151_cast_fp16")]; + tensor input_153_pad_type_0 = const()[name = tensor("input_153_pad_type_0"), val = tensor("valid")]; + tensor input_153_groups_0 = const()[name = tensor("input_153_groups_0"), val = tensor(1024)]; + tensor input_153_strides_0 = const()[name = tensor("input_153_strides_0"), val = tensor([1])]; + tensor input_153_pad_0 = const()[name = tensor("input_153_pad_0"), val = tensor([0, 0])]; + tensor input_153_dilations_0 = const()[name = tensor("input_153_dilations_0"), val = tensor([1])]; + tensor const_252_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("const_252_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(68232704))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(68241984))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor const_253_to_fp16 = const()[name = tensor("const_253_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(68244096)))]; + tensor input_155_cast_fp16 = conv(bias = const_253_to_fp16, dilations = input_153_dilations_0, groups = input_153_groups_0, pad = input_153_pad_0, pad_type = input_153_pad_type_0, strides = input_153_strides_0, weight = const_252_to_fp16_quantized, x = input_151_cast_fp16)[name = tensor("input_155_cast_fp16")]; + tensor input_157_cast_fp16 = silu(x = input_155_cast_fp16)[name = tensor("input_157_cast_fp16")]; + tensor x_65_pad_type_0 = const()[name = tensor("x_65_pad_type_0"), val = tensor("valid")]; + tensor x_65_strides_0 = const()[name = tensor("x_65_strides_0"), val = tensor([1])]; + tensor x_65_pad_0 = const()[name = tensor("x_65_pad_0"), val = tensor([0, 0])]; + tensor x_65_dilations_0 = const()[name = tensor("x_65_dilations_0"), val = tensor([1])]; + tensor x_65_groups_0 = const()[name = tensor("x_65_groups_0"), val = tensor(1)]; + tensor model_layers_2_conv_pointwise_conv2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_2_conv_pointwise_conv2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(68246208))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(69294848))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor x_65_cast_fp16 = conv(dilations = x_65_dilations_0, groups = x_65_groups_0, pad = x_65_pad_0, pad_type = x_65_pad_type_0, strides = x_65_strides_0, weight = model_layers_2_conv_pointwise_conv2_weight_to_fp16_quantized, x = input_157_cast_fp16)[name = tensor("x_65_cast_fp16")]; + tensor input_159_perm_0 = const()[name = tensor("input_159_perm_0"), val = tensor([0, 2, 1])]; + tensor input_159_cast_fp16 = transpose(perm = input_159_perm_0, x = x_65_cast_fp16)[name = tensor("transpose_291")]; + tensor input_161_cast_fp16 = add(x = input_143_cast_fp16, y = input_159_cast_fp16)[name = tensor("input_161_cast_fp16")]; + tensor input_163_axes_0 = const()[name = tensor("input_163_axes_0"), val = tensor([-1])]; + tensor model_layers_2_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_2_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(69296960)))]; + tensor model_layers_2_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_2_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(69299072)))]; + tensor input_163_cast_fp16 = layer_norm(axes = input_163_axes_0, beta = model_layers_2_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_2_norm_feed_forward2_weight_to_fp16, x = input_161_cast_fp16)[name = tensor("input_163_cast_fp16")]; + tensor model_layers_2_feed_forward2_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_2_feed_forward2_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(69301184))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(73495552))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_26_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_2_feed_forward2_linear1_weight_to_fp16_quantized, x = input_163_cast_fp16)[name = tensor("linear_26_cast_fp16")]; + tensor input_167_cast_fp16 = silu(x = linear_26_cast_fp16)[name = tensor("input_167_cast_fp16")]; + tensor model_layers_2_feed_forward2_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_2_feed_forward2_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(73503808))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(77698176))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_27_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_2_feed_forward2_linear2_weight_to_fp16_quantized, x = input_167_cast_fp16)[name = tensor("linear_27_cast_fp16")]; + tensor var_687_to_fp16 = const()[name = tensor("op_687_to_fp16"), val = tensor(0x1p-1)]; + tensor var_688_cast_fp16 = mul(x = linear_27_cast_fp16, y = var_687_to_fp16)[name = tensor("op_688_cast_fp16")]; + tensor input_173_cast_fp16 = add(x = input_161_cast_fp16, y = var_688_cast_fp16)[name = tensor("input_173_cast_fp16")]; + tensor input_175_axes_0 = const()[name = tensor("input_175_axes_0"), val = tensor([-1])]; + tensor model_layers_2_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_2_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(77700288)))]; + tensor model_layers_2_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_2_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(77702400)))]; + tensor input_175_cast_fp16 = layer_norm(axes = input_175_axes_0, beta = model_layers_2_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_2_norm_out_weight_to_fp16, x = input_173_cast_fp16)[name = tensor("input_175_cast_fp16")]; + tensor input_177_axes_0 = const()[name = tensor("input_177_axes_0"), val = tensor([-1])]; + tensor model_layers_3_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_3_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(77704512)))]; + tensor model_layers_3_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_3_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(77706624)))]; + tensor input_177_cast_fp16 = layer_norm(axes = input_177_axes_0, beta = model_layers_3_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_3_norm_feed_forward1_weight_to_fp16, x = input_175_cast_fp16)[name = tensor("input_177_cast_fp16")]; + tensor model_layers_3_feed_forward1_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_3_feed_forward1_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(77708736))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(81903104))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_28_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_3_feed_forward1_linear1_weight_to_fp16_quantized, x = input_177_cast_fp16)[name = tensor("linear_28_cast_fp16")]; + tensor input_181_cast_fp16 = silu(x = linear_28_cast_fp16)[name = tensor("input_181_cast_fp16")]; + tensor model_layers_3_feed_forward1_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_3_feed_forward1_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(81911360))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(86105728))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_29_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_3_feed_forward1_linear2_weight_to_fp16_quantized, x = input_181_cast_fp16)[name = tensor("linear_29_cast_fp16")]; + tensor var_716_to_fp16 = const()[name = tensor("op_716_to_fp16"), val = tensor(0x1p-1)]; + tensor var_717_cast_fp16 = mul(x = linear_29_cast_fp16, y = var_716_to_fp16)[name = tensor("op_717_cast_fp16")]; + tensor input_187_cast_fp16 = add(x = input_175_cast_fp16, y = var_717_cast_fp16)[name = tensor("input_187_cast_fp16")]; + tensor query_7_axes_0 = const()[name = tensor("query_7_axes_0"), val = tensor([-1])]; + tensor model_layers_3_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_3_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(86107840)))]; + tensor model_layers_3_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_3_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(86109952)))]; + tensor query_7_cast_fp16 = layer_norm(axes = query_7_axes_0, beta = model_layers_3_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_3_norm_self_att_weight_to_fp16, x = input_187_cast_fp16)[name = tensor("query_7_cast_fp16")]; + tensor model_layers_3_self_attn_linear_q_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_3_self_attn_linear_q_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(86112064))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(87160704))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_30_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_3_self_attn_linear_q_weight_to_fp16_quantized, x = query_7_cast_fp16)[name = tensor("linear_30_cast_fp16")]; + tensor var_733 = const()[name = tensor("op_733"), val = tensor([1, -1, 8, 128])]; + tensor q_19_cast_fp16 = reshape(shape = var_733, x = linear_30_cast_fp16)[name = tensor("q_19_cast_fp16")]; + tensor model_layers_3_self_attn_linear_k_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_3_self_attn_linear_k_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(87162816))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(88211456))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_31_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_3_self_attn_linear_k_weight_to_fp16_quantized, x = query_7_cast_fp16)[name = tensor("linear_31_cast_fp16")]; + tensor var_737 = const()[name = tensor("op_737"), val = tensor([1, -1, 8, 128])]; + tensor k_13_cast_fp16 = reshape(shape = var_737, x = linear_31_cast_fp16)[name = tensor("k_13_cast_fp16")]; + tensor model_layers_3_self_attn_linear_v_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_3_self_attn_linear_v_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(88213568))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(89262208))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_32_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_3_self_attn_linear_v_weight_to_fp16_quantized, x = query_7_cast_fp16)[name = tensor("linear_32_cast_fp16")]; + tensor var_741 = const()[name = tensor("op_741"), val = tensor([1, -1, 8, 128])]; + tensor v_7_cast_fp16 = reshape(shape = var_741, x = linear_32_cast_fp16)[name = tensor("v_7_cast_fp16")]; + tensor value_7_perm_0 = const()[name = tensor("value_7_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor model_layers_3_self_attn_pos_bias_u_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_3_self_attn_pos_bias_u_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(89264320))), scale = tensor([0x1.25cp-7, 0x1.224p-7, 0x1.1bcp-7, 0x1.408p-8, 0x1.aa4p-8, 0x1.e88p-8, 0x1.e74p-8, 0x1.92p-7]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_753_cast_fp16 = add(x = q_19_cast_fp16, y = model_layers_3_self_attn_pos_bias_u_to_fp16_quantized)[name = tensor("op_753_cast_fp16")]; + tensor model_layers_3_self_attn_pos_bias_v_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_3_self_attn_pos_bias_v_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(89265408))), scale = tensor([0x1.348p-8, 0x1.08cp-9, 0x1.41cp-8, 0x1.73cp-8, 0x1.9b4p-8, 0x1.dc4p-9, 0x1.114p-8, 0x1.1a4p-8]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_755_cast_fp16 = add(x = q_19_cast_fp16, y = model_layers_3_self_attn_pos_bias_v_to_fp16_quantized)[name = tensor("op_755_cast_fp16")]; + tensor q_with_bias_v_7_perm_0 = const()[name = tensor("q_with_bias_v_7_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor x_73_transpose_x_0 = const()[name = tensor("x_73_transpose_x_0"), val = tensor(false)]; + tensor x_73_transpose_y_0 = const()[name = tensor("x_73_transpose_y_0"), val = tensor(false)]; + tensor op_757_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(3), name = tensor("op_757_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(89266496))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(89523584))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(16177728)))]; + tensor q_with_bias_v_7_cast_fp16 = transpose(perm = q_with_bias_v_7_perm_0, x = var_755_cast_fp16)[name = tensor("transpose_290")]; + tensor x_73_cast_fp16 = matmul(transpose_x = x_73_transpose_x_0, transpose_y = x_73_transpose_y_0, x = q_with_bias_v_7_cast_fp16, y = op_757_to_fp16_quantized)[name = tensor("x_73_cast_fp16")]; + tensor x_75_pad_0 = const()[name = tensor("x_75_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_75_mode_0 = const()[name = tensor("x_75_mode_0"), val = tensor("constant")]; + tensor const_44_to_fp16 = const()[name = tensor("const_44_to_fp16"), val = tensor(0x0p+0)]; + tensor x_75_cast_fp16 = pad(constant_val = const_44_to_fp16, mode = x_75_mode_0, pad = x_75_pad_0, x = x_73_cast_fp16)[name = tensor("x_75_cast_fp16")]; + tensor var_765 = const()[name = tensor("op_765"), val = tensor([1, 8, -1, 126])]; + tensor x_77_cast_fp16 = reshape(shape = var_765, x = x_75_cast_fp16)[name = tensor("x_77_cast_fp16")]; + tensor var_769_begin_0 = const()[name = tensor("op_769_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_769_end_0 = const()[name = tensor("op_769_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_769_end_mask_0 = const()[name = tensor("op_769_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_769_cast_fp16 = slice_by_index(begin = var_769_begin_0, end = var_769_end_0, end_mask = var_769_end_mask_0, x = x_77_cast_fp16)[name = tensor("op_769_cast_fp16")]; + tensor var_770 = const()[name = tensor("op_770"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_13_cast_fp16 = reshape(shape = var_770, x = var_769_cast_fp16)[name = tensor("matrix_bd_13_cast_fp16")]; + tensor matrix_ac_7_transpose_x_0 = const()[name = tensor("matrix_ac_7_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_7_transpose_y_0 = const()[name = tensor("matrix_ac_7_transpose_y_0"), val = tensor(false)]; + tensor transpose_102_perm_0 = const()[name = tensor("transpose_102_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_103_perm_0 = const()[name = tensor("transpose_103_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_103 = transpose(perm = transpose_103_perm_0, x = k_13_cast_fp16)[name = tensor("transpose_288")]; + tensor transpose_102 = transpose(perm = transpose_102_perm_0, x = var_753_cast_fp16)[name = tensor("transpose_289")]; + tensor matrix_ac_7_cast_fp16 = matmul(transpose_x = matrix_ac_7_transpose_x_0, transpose_y = matrix_ac_7_transpose_y_0, x = transpose_102, y = transpose_103)[name = tensor("matrix_ac_7_cast_fp16")]; + tensor matrix_bd_15_begin_0 = const()[name = tensor("matrix_bd_15_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_15_end_0 = const()[name = tensor("matrix_bd_15_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_15_end_mask_0 = const()[name = tensor("matrix_bd_15_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_15_cast_fp16 = slice_by_index(begin = matrix_bd_15_begin_0, end = matrix_bd_15_end_0, end_mask = matrix_bd_15_end_mask_0, x = matrix_bd_13_cast_fp16)[name = tensor("matrix_bd_15_cast_fp16")]; + tensor var_779_cast_fp16 = add(x = matrix_ac_7_cast_fp16, y = matrix_bd_15_cast_fp16)[name = tensor("op_779_cast_fp16")]; + tensor _inversed_scores_13_y_0_to_fp16 = const()[name = tensor("_inversed_scores_13_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_13_cast_fp16 = mul(x = var_779_cast_fp16, y = _inversed_scores_13_y_0_to_fp16)[name = tensor("_inversed_scores_13_cast_fp16")]; + tensor scores_15_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_13_cast_fp16, cond = mask_3)[name = tensor("scores_15_cast_fp16")]; + tensor var_785_cast_fp16 = softmax(axis = var_25, x = scores_15_cast_fp16)[name = tensor("op_785_cast_fp16")]; + tensor input_189_cast_fp16 = select(a = var_6_to_fp16, b = var_785_cast_fp16, cond = mask_3)[name = tensor("input_189_cast_fp16")]; + tensor x_79_transpose_x_0 = const()[name = tensor("x_79_transpose_x_0"), val = tensor(false)]; + tensor x_79_transpose_y_0 = const()[name = tensor("x_79_transpose_y_0"), val = tensor(false)]; + tensor value_7_cast_fp16 = transpose(perm = value_7_perm_0, x = v_7_cast_fp16)[name = tensor("transpose_287")]; + tensor x_79_cast_fp16 = matmul(transpose_x = x_79_transpose_x_0, transpose_y = x_79_transpose_y_0, x = input_189_cast_fp16, y = value_7_cast_fp16)[name = tensor("x_79_cast_fp16")]; + tensor var_789_perm_0 = const()[name = tensor("op_789_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_790 = const()[name = tensor("op_790"), val = tensor([1, -1, 1024])]; + tensor var_789_cast_fp16 = transpose(perm = var_789_perm_0, x = x_79_cast_fp16)[name = tensor("transpose_286")]; + tensor input_191_cast_fp16 = reshape(shape = var_790, x = var_789_cast_fp16)[name = tensor("input_191_cast_fp16")]; + tensor model_layers_3_self_attn_linear_out_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_3_self_attn_linear_out_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(89524160))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(90572800))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_34_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_3_self_attn_linear_out_weight_to_fp16_quantized, x = input_191_cast_fp16)[name = tensor("linear_34_cast_fp16")]; + tensor input_195_cast_fp16 = add(x = input_187_cast_fp16, y = linear_34_cast_fp16)[name = tensor("input_195_cast_fp16")]; + tensor x_83_axes_0 = const()[name = tensor("x_83_axes_0"), val = tensor([-1])]; + tensor model_layers_3_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_3_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(90574912)))]; + tensor model_layers_3_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_3_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(90577024)))]; + tensor x_83_cast_fp16 = layer_norm(axes = x_83_axes_0, beta = model_layers_3_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_3_norm_conv_weight_to_fp16, x = input_195_cast_fp16)[name = tensor("x_83_cast_fp16")]; + tensor input_197_perm_0 = const()[name = tensor("input_197_perm_0"), val = tensor([0, 2, 1])]; + tensor input_199_pad_type_0 = const()[name = tensor("input_199_pad_type_0"), val = tensor("valid")]; + tensor input_199_strides_0 = const()[name = tensor("input_199_strides_0"), val = tensor([1])]; + tensor input_199_pad_0 = const()[name = tensor("input_199_pad_0"), val = tensor([0, 0])]; + tensor input_199_dilations_0 = const()[name = tensor("input_199_dilations_0"), val = tensor([1])]; + tensor input_199_groups_0 = const()[name = tensor("input_199_groups_0"), val = tensor(1)]; + tensor model_layers_3_conv_pointwise_conv1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_3_conv_pointwise_conv1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(90579136))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(92676352))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(19330816)))]; + tensor input_197_cast_fp16 = transpose(perm = input_197_perm_0, x = x_83_cast_fp16)[name = tensor("transpose_285")]; + tensor input_199_cast_fp16 = conv(dilations = input_199_dilations_0, groups = input_199_groups_0, pad = input_199_pad_0, pad_type = input_199_pad_type_0, strides = input_199_strides_0, weight = model_layers_3_conv_pointwise_conv1_weight_to_fp16_quantized, x = input_197_cast_fp16)[name = tensor("input_199_cast_fp16")]; + tensor x_85_split_num_splits_0 = const()[name = tensor("x_85_split_num_splits_0"), val = tensor(2)]; + tensor x_85_split_axis_0 = const()[name = tensor("x_85_split_axis_0"), val = tensor(1)]; + tensor x_85_split_cast_fp16_0, tensor x_85_split_cast_fp16_1 = split(axis = x_85_split_axis_0, num_splits = x_85_split_num_splits_0, x = input_199_cast_fp16)[name = tensor("x_85_split_cast_fp16")]; + tensor x_85_split_1_sigmoid_cast_fp16 = sigmoid(x = x_85_split_cast_fp16_1)[name = tensor("x_85_split_1_sigmoid_cast_fp16")]; + tensor x_85_cast_fp16 = mul(x = x_85_split_cast_fp16_0, y = x_85_split_1_sigmoid_cast_fp16)[name = tensor("x_85_cast_fp16")]; + tensor input_201_cast_fp16 = select(a = var_6_to_fp16, b = x_85_cast_fp16, cond = var_323)[name = tensor("input_201_cast_fp16")]; + tensor input_203_pad_0 = const()[name = tensor("input_203_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_203_mode_0 = const()[name = tensor("input_203_mode_0"), val = tensor("constant")]; + tensor const_47_to_fp16 = const()[name = tensor("const_47_to_fp16"), val = tensor(0x0p+0)]; + tensor input_203_cast_fp16 = pad(constant_val = const_47_to_fp16, mode = input_203_mode_0, pad = input_203_pad_0, x = input_201_cast_fp16)[name = tensor("input_203_cast_fp16")]; + tensor input_205_pad_type_0 = const()[name = tensor("input_205_pad_type_0"), val = tensor("valid")]; + tensor input_205_groups_0 = const()[name = tensor("input_205_groups_0"), val = tensor(1024)]; + tensor input_205_strides_0 = const()[name = tensor("input_205_strides_0"), val = tensor([1])]; + tensor input_205_pad_0 = const()[name = tensor("input_205_pad_0"), val = tensor([0, 0])]; + tensor input_205_dilations_0 = const()[name = tensor("input_205_dilations_0"), val = tensor([1])]; + tensor const_254_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("const_254_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(92680512))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(92689792))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor const_255_to_fp16 = const()[name = tensor("const_255_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(92691904)))]; + tensor input_207_cast_fp16 = conv(bias = const_255_to_fp16, dilations = input_205_dilations_0, groups = input_205_groups_0, pad = input_205_pad_0, pad_type = input_205_pad_type_0, strides = input_205_strides_0, weight = const_254_to_fp16_quantized, x = input_203_cast_fp16)[name = tensor("input_207_cast_fp16")]; + tensor input_209_cast_fp16 = silu(x = input_207_cast_fp16)[name = tensor("input_209_cast_fp16")]; + tensor x_87_pad_type_0 = const()[name = tensor("x_87_pad_type_0"), val = tensor("valid")]; + tensor x_87_strides_0 = const()[name = tensor("x_87_strides_0"), val = tensor([1])]; + tensor x_87_pad_0 = const()[name = tensor("x_87_pad_0"), val = tensor([0, 0])]; + tensor x_87_dilations_0 = const()[name = tensor("x_87_dilations_0"), val = tensor([1])]; + tensor x_87_groups_0 = const()[name = tensor("x_87_groups_0"), val = tensor(1)]; + tensor model_layers_3_conv_pointwise_conv2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_3_conv_pointwise_conv2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(92694016))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(93742656))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor x_87_cast_fp16 = conv(dilations = x_87_dilations_0, groups = x_87_groups_0, pad = x_87_pad_0, pad_type = x_87_pad_type_0, strides = x_87_strides_0, weight = model_layers_3_conv_pointwise_conv2_weight_to_fp16_quantized, x = input_209_cast_fp16)[name = tensor("x_87_cast_fp16")]; + tensor input_211_perm_0 = const()[name = tensor("input_211_perm_0"), val = tensor([0, 2, 1])]; + tensor input_211_cast_fp16 = transpose(perm = input_211_perm_0, x = x_87_cast_fp16)[name = tensor("transpose_284")]; + tensor input_213_cast_fp16 = add(x = input_195_cast_fp16, y = input_211_cast_fp16)[name = tensor("input_213_cast_fp16")]; + tensor input_215_axes_0 = const()[name = tensor("input_215_axes_0"), val = tensor([-1])]; + tensor model_layers_3_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_3_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(93744768)))]; + tensor model_layers_3_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_3_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(93746880)))]; + tensor input_215_cast_fp16 = layer_norm(axes = input_215_axes_0, beta = model_layers_3_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_3_norm_feed_forward2_weight_to_fp16, x = input_213_cast_fp16)[name = tensor("input_215_cast_fp16")]; + tensor model_layers_3_feed_forward2_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_3_feed_forward2_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(93748992))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(97943360))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_35_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_3_feed_forward2_linear1_weight_to_fp16_quantized, x = input_215_cast_fp16)[name = tensor("linear_35_cast_fp16")]; + tensor input_219_cast_fp16 = silu(x = linear_35_cast_fp16)[name = tensor("input_219_cast_fp16")]; + tensor model_layers_3_feed_forward2_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_3_feed_forward2_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(97951616))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(102145984))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_36_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_3_feed_forward2_linear2_weight_to_fp16_quantized, x = input_219_cast_fp16)[name = tensor("linear_36_cast_fp16")]; + tensor var_850_to_fp16 = const()[name = tensor("op_850_to_fp16"), val = tensor(0x1p-1)]; + tensor var_851_cast_fp16 = mul(x = linear_36_cast_fp16, y = var_850_to_fp16)[name = tensor("op_851_cast_fp16")]; + tensor input_225_cast_fp16 = add(x = input_213_cast_fp16, y = var_851_cast_fp16)[name = tensor("input_225_cast_fp16")]; + tensor input_227_axes_0 = const()[name = tensor("input_227_axes_0"), val = tensor([-1])]; + tensor model_layers_3_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_3_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(102148096)))]; + tensor model_layers_3_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_3_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(102150208)))]; + tensor input_227_cast_fp16 = layer_norm(axes = input_227_axes_0, beta = model_layers_3_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_3_norm_out_weight_to_fp16, x = input_225_cast_fp16)[name = tensor("input_227_cast_fp16")]; + tensor input_229_axes_0 = const()[name = tensor("input_229_axes_0"), val = tensor([-1])]; + tensor model_layers_4_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_4_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(102152320)))]; + tensor model_layers_4_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_4_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(102154432)))]; + tensor input_229_cast_fp16 = layer_norm(axes = input_229_axes_0, beta = model_layers_4_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_4_norm_feed_forward1_weight_to_fp16, x = input_227_cast_fp16)[name = tensor("input_229_cast_fp16")]; + tensor model_layers_4_feed_forward1_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_4_feed_forward1_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(102156544))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(106350912))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_37_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_4_feed_forward1_linear1_weight_to_fp16_quantized, x = input_229_cast_fp16)[name = tensor("linear_37_cast_fp16")]; + tensor input_233_cast_fp16 = silu(x = linear_37_cast_fp16)[name = tensor("input_233_cast_fp16")]; + tensor model_layers_4_feed_forward1_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_4_feed_forward1_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(106359168))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(110553536))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_38_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_4_feed_forward1_linear2_weight_to_fp16_quantized, x = input_233_cast_fp16)[name = tensor("linear_38_cast_fp16")]; + tensor var_879_to_fp16 = const()[name = tensor("op_879_to_fp16"), val = tensor(0x1p-1)]; + tensor var_880_cast_fp16 = mul(x = linear_38_cast_fp16, y = var_879_to_fp16)[name = tensor("op_880_cast_fp16")]; + tensor input_239_cast_fp16 = add(x = input_227_cast_fp16, y = var_880_cast_fp16)[name = tensor("input_239_cast_fp16")]; + tensor query_9_axes_0 = const()[name = tensor("query_9_axes_0"), val = tensor([-1])]; + tensor model_layers_4_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_4_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(110555648)))]; + tensor model_layers_4_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_4_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(110557760)))]; + tensor query_9_cast_fp16 = layer_norm(axes = query_9_axes_0, beta = model_layers_4_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_4_norm_self_att_weight_to_fp16, x = input_239_cast_fp16)[name = tensor("query_9_cast_fp16")]; + tensor model_layers_4_self_attn_linear_q_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_4_self_attn_linear_q_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(110559872))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(111608512))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_39_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_4_self_attn_linear_q_weight_to_fp16_quantized, x = query_9_cast_fp16)[name = tensor("linear_39_cast_fp16")]; + tensor var_896 = const()[name = tensor("op_896"), val = tensor([1, -1, 8, 128])]; + tensor q_25_cast_fp16 = reshape(shape = var_896, x = linear_39_cast_fp16)[name = tensor("q_25_cast_fp16")]; + tensor model_layers_4_self_attn_linear_k_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_4_self_attn_linear_k_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(111610624))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(112659264))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_40_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_4_self_attn_linear_k_weight_to_fp16_quantized, x = query_9_cast_fp16)[name = tensor("linear_40_cast_fp16")]; + tensor var_900 = const()[name = tensor("op_900"), val = tensor([1, -1, 8, 128])]; + tensor k_17_cast_fp16 = reshape(shape = var_900, x = linear_40_cast_fp16)[name = tensor("k_17_cast_fp16")]; + tensor model_layers_4_self_attn_linear_v_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_4_self_attn_linear_v_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(112661376))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(113710016))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_41_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_4_self_attn_linear_v_weight_to_fp16_quantized, x = query_9_cast_fp16)[name = tensor("linear_41_cast_fp16")]; + tensor var_904 = const()[name = tensor("op_904"), val = tensor([1, -1, 8, 128])]; + tensor v_9_cast_fp16 = reshape(shape = var_904, x = linear_41_cast_fp16)[name = tensor("v_9_cast_fp16")]; + tensor value_9_perm_0 = const()[name = tensor("value_9_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor model_layers_4_self_attn_pos_bias_u_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_4_self_attn_pos_bias_u_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(113712128))), scale = tensor([0x1.024p-7, 0x1.1e4p-7, 0x1.a9p-8, 0x1.308p-7, 0x1.fcp-7, 0x1.3a4p-7, 0x1.0ap-7, 0x1.414p-7]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_916_cast_fp16 = add(x = q_25_cast_fp16, y = model_layers_4_self_attn_pos_bias_u_to_fp16_quantized)[name = tensor("op_916_cast_fp16")]; + tensor model_layers_4_self_attn_pos_bias_v_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_4_self_attn_pos_bias_v_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(113713216))), scale = tensor([0x1.29p-8, 0x1.1ccp-9, 0x1.e2cp-8, 0x1.17cp-8, 0x1.134p-10, 0x1.b28p-9, 0x1.44p-8, 0x1.29cp-9]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_918_cast_fp16 = add(x = q_25_cast_fp16, y = model_layers_4_self_attn_pos_bias_v_to_fp16_quantized)[name = tensor("op_918_cast_fp16")]; + tensor q_with_bias_v_9_perm_0 = const()[name = tensor("q_with_bias_v_9_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor x_95_transpose_x_0 = const()[name = tensor("x_95_transpose_x_0"), val = tensor(false)]; + tensor x_95_transpose_y_0 = const()[name = tensor("x_95_transpose_y_0"), val = tensor(false)]; + tensor op_920_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(3), name = tensor("op_920_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(113714304))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(113971392))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(16177728)))]; + tensor q_with_bias_v_9_cast_fp16 = transpose(perm = q_with_bias_v_9_perm_0, x = var_918_cast_fp16)[name = tensor("transpose_283")]; + tensor x_95_cast_fp16 = matmul(transpose_x = x_95_transpose_x_0, transpose_y = x_95_transpose_y_0, x = q_with_bias_v_9_cast_fp16, y = op_920_to_fp16_quantized)[name = tensor("x_95_cast_fp16")]; + tensor x_97_pad_0 = const()[name = tensor("x_97_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_97_mode_0 = const()[name = tensor("x_97_mode_0"), val = tensor("constant")]; + tensor const_54_to_fp16 = const()[name = tensor("const_54_to_fp16"), val = tensor(0x0p+0)]; + tensor x_97_cast_fp16 = pad(constant_val = const_54_to_fp16, mode = x_97_mode_0, pad = x_97_pad_0, x = x_95_cast_fp16)[name = tensor("x_97_cast_fp16")]; + tensor var_928 = const()[name = tensor("op_928"), val = tensor([1, 8, -1, 126])]; + tensor x_99_cast_fp16 = reshape(shape = var_928, x = x_97_cast_fp16)[name = tensor("x_99_cast_fp16")]; + tensor var_932_begin_0 = const()[name = tensor("op_932_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_932_end_0 = const()[name = tensor("op_932_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_932_end_mask_0 = const()[name = tensor("op_932_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_932_cast_fp16 = slice_by_index(begin = var_932_begin_0, end = var_932_end_0, end_mask = var_932_end_mask_0, x = x_99_cast_fp16)[name = tensor("op_932_cast_fp16")]; + tensor var_933 = const()[name = tensor("op_933"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_17_cast_fp16 = reshape(shape = var_933, x = var_932_cast_fp16)[name = tensor("matrix_bd_17_cast_fp16")]; + tensor matrix_ac_9_transpose_x_0 = const()[name = tensor("matrix_ac_9_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_9_transpose_y_0 = const()[name = tensor("matrix_ac_9_transpose_y_0"), val = tensor(false)]; + tensor transpose_104_perm_0 = const()[name = tensor("transpose_104_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_105_perm_0 = const()[name = tensor("transpose_105_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_105 = transpose(perm = transpose_105_perm_0, x = k_17_cast_fp16)[name = tensor("transpose_281")]; + tensor transpose_104 = transpose(perm = transpose_104_perm_0, x = var_916_cast_fp16)[name = tensor("transpose_282")]; + tensor matrix_ac_9_cast_fp16 = matmul(transpose_x = matrix_ac_9_transpose_x_0, transpose_y = matrix_ac_9_transpose_y_0, x = transpose_104, y = transpose_105)[name = tensor("matrix_ac_9_cast_fp16")]; + tensor matrix_bd_19_begin_0 = const()[name = tensor("matrix_bd_19_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_19_end_0 = const()[name = tensor("matrix_bd_19_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_19_end_mask_0 = const()[name = tensor("matrix_bd_19_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_19_cast_fp16 = slice_by_index(begin = matrix_bd_19_begin_0, end = matrix_bd_19_end_0, end_mask = matrix_bd_19_end_mask_0, x = matrix_bd_17_cast_fp16)[name = tensor("matrix_bd_19_cast_fp16")]; + tensor var_942_cast_fp16 = add(x = matrix_ac_9_cast_fp16, y = matrix_bd_19_cast_fp16)[name = tensor("op_942_cast_fp16")]; + tensor _inversed_scores_17_y_0_to_fp16 = const()[name = tensor("_inversed_scores_17_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_17_cast_fp16 = mul(x = var_942_cast_fp16, y = _inversed_scores_17_y_0_to_fp16)[name = tensor("_inversed_scores_17_cast_fp16")]; + tensor scores_19_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_17_cast_fp16, cond = mask_3)[name = tensor("scores_19_cast_fp16")]; + tensor var_948_cast_fp16 = softmax(axis = var_25, x = scores_19_cast_fp16)[name = tensor("op_948_cast_fp16")]; + tensor input_241_cast_fp16 = select(a = var_6_to_fp16, b = var_948_cast_fp16, cond = mask_3)[name = tensor("input_241_cast_fp16")]; + tensor x_101_transpose_x_0 = const()[name = tensor("x_101_transpose_x_0"), val = tensor(false)]; + tensor x_101_transpose_y_0 = const()[name = tensor("x_101_transpose_y_0"), val = tensor(false)]; + tensor value_9_cast_fp16 = transpose(perm = value_9_perm_0, x = v_9_cast_fp16)[name = tensor("transpose_280")]; + tensor x_101_cast_fp16 = matmul(transpose_x = x_101_transpose_x_0, transpose_y = x_101_transpose_y_0, x = input_241_cast_fp16, y = value_9_cast_fp16)[name = tensor("x_101_cast_fp16")]; + tensor var_952_perm_0 = const()[name = tensor("op_952_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_953 = const()[name = tensor("op_953"), val = tensor([1, -1, 1024])]; + tensor var_952_cast_fp16 = transpose(perm = var_952_perm_0, x = x_101_cast_fp16)[name = tensor("transpose_279")]; + tensor input_243_cast_fp16 = reshape(shape = var_953, x = var_952_cast_fp16)[name = tensor("input_243_cast_fp16")]; + tensor model_layers_4_self_attn_linear_out_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_4_self_attn_linear_out_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(113971968))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(115020608))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_43_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_4_self_attn_linear_out_weight_to_fp16_quantized, x = input_243_cast_fp16)[name = tensor("linear_43_cast_fp16")]; + tensor input_247_cast_fp16 = add(x = input_239_cast_fp16, y = linear_43_cast_fp16)[name = tensor("input_247_cast_fp16")]; + tensor x_105_axes_0 = const()[name = tensor("x_105_axes_0"), val = tensor([-1])]; + tensor model_layers_4_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_4_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(115022720)))]; + tensor model_layers_4_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_4_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(115024832)))]; + tensor x_105_cast_fp16 = layer_norm(axes = x_105_axes_0, beta = model_layers_4_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_4_norm_conv_weight_to_fp16, x = input_247_cast_fp16)[name = tensor("x_105_cast_fp16")]; + tensor input_249_perm_0 = const()[name = tensor("input_249_perm_0"), val = tensor([0, 2, 1])]; + tensor input_251_pad_type_0 = const()[name = tensor("input_251_pad_type_0"), val = tensor("valid")]; + tensor input_251_strides_0 = const()[name = tensor("input_251_strides_0"), val = tensor([1])]; + tensor input_251_pad_0 = const()[name = tensor("input_251_pad_0"), val = tensor([0, 0])]; + tensor input_251_dilations_0 = const()[name = tensor("input_251_dilations_0"), val = tensor([1])]; + tensor input_251_groups_0 = const()[name = tensor("input_251_groups_0"), val = tensor(1)]; + tensor model_layers_4_conv_pointwise_conv1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_4_conv_pointwise_conv1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(115026944))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(117124160))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(19330816)))]; + tensor input_249_cast_fp16 = transpose(perm = input_249_perm_0, x = x_105_cast_fp16)[name = tensor("transpose_278")]; + tensor input_251_cast_fp16 = conv(dilations = input_251_dilations_0, groups = input_251_groups_0, pad = input_251_pad_0, pad_type = input_251_pad_type_0, strides = input_251_strides_0, weight = model_layers_4_conv_pointwise_conv1_weight_to_fp16_quantized, x = input_249_cast_fp16)[name = tensor("input_251_cast_fp16")]; + tensor x_107_split_num_splits_0 = const()[name = tensor("x_107_split_num_splits_0"), val = tensor(2)]; + tensor x_107_split_axis_0 = const()[name = tensor("x_107_split_axis_0"), val = tensor(1)]; + tensor x_107_split_cast_fp16_0, tensor x_107_split_cast_fp16_1 = split(axis = x_107_split_axis_0, num_splits = x_107_split_num_splits_0, x = input_251_cast_fp16)[name = tensor("x_107_split_cast_fp16")]; + tensor x_107_split_1_sigmoid_cast_fp16 = sigmoid(x = x_107_split_cast_fp16_1)[name = tensor("x_107_split_1_sigmoid_cast_fp16")]; + tensor x_107_cast_fp16 = mul(x = x_107_split_cast_fp16_0, y = x_107_split_1_sigmoid_cast_fp16)[name = tensor("x_107_cast_fp16")]; + tensor input_253_cast_fp16 = select(a = var_6_to_fp16, b = x_107_cast_fp16, cond = var_323)[name = tensor("input_253_cast_fp16")]; + tensor input_255_pad_0 = const()[name = tensor("input_255_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_255_mode_0 = const()[name = tensor("input_255_mode_0"), val = tensor("constant")]; + tensor const_57_to_fp16 = const()[name = tensor("const_57_to_fp16"), val = tensor(0x0p+0)]; + tensor input_255_cast_fp16 = pad(constant_val = const_57_to_fp16, mode = input_255_mode_0, pad = input_255_pad_0, x = input_253_cast_fp16)[name = tensor("input_255_cast_fp16")]; + tensor input_257_pad_type_0 = const()[name = tensor("input_257_pad_type_0"), val = tensor("valid")]; + tensor input_257_groups_0 = const()[name = tensor("input_257_groups_0"), val = tensor(1024)]; + tensor input_257_strides_0 = const()[name = tensor("input_257_strides_0"), val = tensor([1])]; + tensor input_257_pad_0 = const()[name = tensor("input_257_pad_0"), val = tensor([0, 0])]; + tensor input_257_dilations_0 = const()[name = tensor("input_257_dilations_0"), val = tensor([1])]; + tensor const_256_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("const_256_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(117128320))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(117137600))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor const_257_to_fp16 = const()[name = tensor("const_257_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(117139712)))]; + tensor input_259_cast_fp16 = conv(bias = const_257_to_fp16, dilations = input_257_dilations_0, groups = input_257_groups_0, pad = input_257_pad_0, pad_type = input_257_pad_type_0, strides = input_257_strides_0, weight = const_256_to_fp16_quantized, x = input_255_cast_fp16)[name = tensor("input_259_cast_fp16")]; + tensor input_261_cast_fp16 = silu(x = input_259_cast_fp16)[name = tensor("input_261_cast_fp16")]; + tensor x_109_pad_type_0 = const()[name = tensor("x_109_pad_type_0"), val = tensor("valid")]; + tensor x_109_strides_0 = const()[name = tensor("x_109_strides_0"), val = tensor([1])]; + tensor x_109_pad_0 = const()[name = tensor("x_109_pad_0"), val = tensor([0, 0])]; + tensor x_109_dilations_0 = const()[name = tensor("x_109_dilations_0"), val = tensor([1])]; + tensor x_109_groups_0 = const()[name = tensor("x_109_groups_0"), val = tensor(1)]; + tensor model_layers_4_conv_pointwise_conv2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_4_conv_pointwise_conv2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(117141824))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(118190464))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor x_109_cast_fp16 = conv(dilations = x_109_dilations_0, groups = x_109_groups_0, pad = x_109_pad_0, pad_type = x_109_pad_type_0, strides = x_109_strides_0, weight = model_layers_4_conv_pointwise_conv2_weight_to_fp16_quantized, x = input_261_cast_fp16)[name = tensor("x_109_cast_fp16")]; + tensor input_263_perm_0 = const()[name = tensor("input_263_perm_0"), val = tensor([0, 2, 1])]; + tensor input_263_cast_fp16 = transpose(perm = input_263_perm_0, x = x_109_cast_fp16)[name = tensor("transpose_277")]; + tensor input_265_cast_fp16 = add(x = input_247_cast_fp16, y = input_263_cast_fp16)[name = tensor("input_265_cast_fp16")]; + tensor input_267_axes_0 = const()[name = tensor("input_267_axes_0"), val = tensor([-1])]; + tensor model_layers_4_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_4_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(118192576)))]; + tensor model_layers_4_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_4_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(118194688)))]; + tensor input_267_cast_fp16 = layer_norm(axes = input_267_axes_0, beta = model_layers_4_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_4_norm_feed_forward2_weight_to_fp16, x = input_265_cast_fp16)[name = tensor("input_267_cast_fp16")]; + tensor model_layers_4_feed_forward2_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_4_feed_forward2_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(118196800))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(122391168))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_44_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_4_feed_forward2_linear1_weight_to_fp16_quantized, x = input_267_cast_fp16)[name = tensor("linear_44_cast_fp16")]; + tensor input_271_cast_fp16 = silu(x = linear_44_cast_fp16)[name = tensor("input_271_cast_fp16")]; + tensor model_layers_4_feed_forward2_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_4_feed_forward2_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(122399424))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(126593792))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_45_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_4_feed_forward2_linear2_weight_to_fp16_quantized, x = input_271_cast_fp16)[name = tensor("linear_45_cast_fp16")]; + tensor var_1013_to_fp16 = const()[name = tensor("op_1013_to_fp16"), val = tensor(0x1p-1)]; + tensor var_1014_cast_fp16 = mul(x = linear_45_cast_fp16, y = var_1013_to_fp16)[name = tensor("op_1014_cast_fp16")]; + tensor input_277_cast_fp16 = add(x = input_265_cast_fp16, y = var_1014_cast_fp16)[name = tensor("input_277_cast_fp16")]; + tensor input_279_axes_0 = const()[name = tensor("input_279_axes_0"), val = tensor([-1])]; + tensor model_layers_4_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_4_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(126595904)))]; + tensor model_layers_4_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_4_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(126598016)))]; + tensor input_279_cast_fp16 = layer_norm(axes = input_279_axes_0, beta = model_layers_4_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_4_norm_out_weight_to_fp16, x = input_277_cast_fp16)[name = tensor("input_279_cast_fp16")]; + tensor input_281_axes_0 = const()[name = tensor("input_281_axes_0"), val = tensor([-1])]; + tensor model_layers_5_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_5_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(126600128)))]; + tensor model_layers_5_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_5_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(126602240)))]; + tensor input_281_cast_fp16 = layer_norm(axes = input_281_axes_0, beta = model_layers_5_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_5_norm_feed_forward1_weight_to_fp16, x = input_279_cast_fp16)[name = tensor("input_281_cast_fp16")]; + tensor model_layers_5_feed_forward1_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_5_feed_forward1_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(126604352))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(130798720))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_46_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_5_feed_forward1_linear1_weight_to_fp16_quantized, x = input_281_cast_fp16)[name = tensor("linear_46_cast_fp16")]; + tensor input_285_cast_fp16 = silu(x = linear_46_cast_fp16)[name = tensor("input_285_cast_fp16")]; + tensor model_layers_5_feed_forward1_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_5_feed_forward1_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(130806976))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(135001344))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_47_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_5_feed_forward1_linear2_weight_to_fp16_quantized, x = input_285_cast_fp16)[name = tensor("linear_47_cast_fp16")]; + tensor var_1042_to_fp16 = const()[name = tensor("op_1042_to_fp16"), val = tensor(0x1p-1)]; + tensor var_1043_cast_fp16 = mul(x = linear_47_cast_fp16, y = var_1042_to_fp16)[name = tensor("op_1043_cast_fp16")]; + tensor input_291_cast_fp16 = add(x = input_279_cast_fp16, y = var_1043_cast_fp16)[name = tensor("input_291_cast_fp16")]; + tensor query_11_axes_0 = const()[name = tensor("query_11_axes_0"), val = tensor([-1])]; + tensor model_layers_5_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_5_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(135003456)))]; + tensor model_layers_5_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_5_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(135005568)))]; + tensor query_11_cast_fp16 = layer_norm(axes = query_11_axes_0, beta = model_layers_5_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_5_norm_self_att_weight_to_fp16, x = input_291_cast_fp16)[name = tensor("query_11_cast_fp16")]; + tensor model_layers_5_self_attn_linear_q_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_5_self_attn_linear_q_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(135007680))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136056320))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_48_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_5_self_attn_linear_q_weight_to_fp16_quantized, x = query_11_cast_fp16)[name = tensor("linear_48_cast_fp16")]; + tensor var_1059 = const()[name = tensor("op_1059"), val = tensor([1, -1, 8, 128])]; + tensor q_31_cast_fp16 = reshape(shape = var_1059, x = linear_48_cast_fp16)[name = tensor("q_31_cast_fp16")]; + tensor model_layers_5_self_attn_linear_k_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_5_self_attn_linear_k_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136058432))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(137107072))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_49_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_5_self_attn_linear_k_weight_to_fp16_quantized, x = query_11_cast_fp16)[name = tensor("linear_49_cast_fp16")]; + tensor var_1063 = const()[name = tensor("op_1063"), val = tensor([1, -1, 8, 128])]; + tensor k_21_cast_fp16 = reshape(shape = var_1063, x = linear_49_cast_fp16)[name = tensor("k_21_cast_fp16")]; + tensor model_layers_5_self_attn_linear_v_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_5_self_attn_linear_v_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(137109184))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(138157824))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_50_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_5_self_attn_linear_v_weight_to_fp16_quantized, x = query_11_cast_fp16)[name = tensor("linear_50_cast_fp16")]; + tensor var_1067 = const()[name = tensor("op_1067"), val = tensor([1, -1, 8, 128])]; + tensor v_11_cast_fp16 = reshape(shape = var_1067, x = linear_50_cast_fp16)[name = tensor("v_11_cast_fp16")]; + tensor value_11_perm_0 = const()[name = tensor("value_11_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor model_layers_5_self_attn_pos_bias_u_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_5_self_attn_pos_bias_u_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(138159936))), scale = tensor([0x1.1e8p-7, 0x1.b5p-8, 0x1.538p-7, 0x1.63cp-7, 0x1.018p-7, 0x1.54cp-7, 0x1.6a8p-7, 0x1.c04p-8]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_1079_cast_fp16 = add(x = q_31_cast_fp16, y = model_layers_5_self_attn_pos_bias_u_to_fp16_quantized)[name = tensor("op_1079_cast_fp16")]; + tensor model_layers_5_self_attn_pos_bias_v_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_5_self_attn_pos_bias_v_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(138161024))), scale = tensor([0x1.fb8p-9, 0x1.31cp-8, 0x1.07cp-8, 0x1.2bp-9, 0x1.0ap-7, 0x1.ff8p-9, 0x1.908p-8, 0x1.5d4p-9]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_1081_cast_fp16 = add(x = q_31_cast_fp16, y = model_layers_5_self_attn_pos_bias_v_to_fp16_quantized)[name = tensor("op_1081_cast_fp16")]; + tensor q_with_bias_v_11_perm_0 = const()[name = tensor("q_with_bias_v_11_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor x_117_transpose_x_0 = const()[name = tensor("x_117_transpose_x_0"), val = tensor(false)]; + tensor x_117_transpose_y_0 = const()[name = tensor("x_117_transpose_y_0"), val = tensor(false)]; + tensor op_1083_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(3), name = tensor("op_1083_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(138162112))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(138419200))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(16177728)))]; + tensor q_with_bias_v_11_cast_fp16 = transpose(perm = q_with_bias_v_11_perm_0, x = var_1081_cast_fp16)[name = tensor("transpose_276")]; + tensor x_117_cast_fp16 = matmul(transpose_x = x_117_transpose_x_0, transpose_y = x_117_transpose_y_0, x = q_with_bias_v_11_cast_fp16, y = op_1083_to_fp16_quantized)[name = tensor("x_117_cast_fp16")]; + tensor x_119_pad_0 = const()[name = tensor("x_119_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_119_mode_0 = const()[name = tensor("x_119_mode_0"), val = tensor("constant")]; + tensor const_64_to_fp16 = const()[name = tensor("const_64_to_fp16"), val = tensor(0x0p+0)]; + tensor x_119_cast_fp16 = pad(constant_val = const_64_to_fp16, mode = x_119_mode_0, pad = x_119_pad_0, x = x_117_cast_fp16)[name = tensor("x_119_cast_fp16")]; + tensor var_1091 = const()[name = tensor("op_1091"), val = tensor([1, 8, -1, 126])]; + tensor x_121_cast_fp16 = reshape(shape = var_1091, x = x_119_cast_fp16)[name = tensor("x_121_cast_fp16")]; + tensor var_1095_begin_0 = const()[name = tensor("op_1095_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_1095_end_0 = const()[name = tensor("op_1095_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_1095_end_mask_0 = const()[name = tensor("op_1095_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_1095_cast_fp16 = slice_by_index(begin = var_1095_begin_0, end = var_1095_end_0, end_mask = var_1095_end_mask_0, x = x_121_cast_fp16)[name = tensor("op_1095_cast_fp16")]; + tensor var_1096 = const()[name = tensor("op_1096"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_21_cast_fp16 = reshape(shape = var_1096, x = var_1095_cast_fp16)[name = tensor("matrix_bd_21_cast_fp16")]; + tensor matrix_ac_11_transpose_x_0 = const()[name = tensor("matrix_ac_11_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_11_transpose_y_0 = const()[name = tensor("matrix_ac_11_transpose_y_0"), val = tensor(false)]; + tensor transpose_106_perm_0 = const()[name = tensor("transpose_106_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_107_perm_0 = const()[name = tensor("transpose_107_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_107 = transpose(perm = transpose_107_perm_0, x = k_21_cast_fp16)[name = tensor("transpose_274")]; + tensor transpose_106 = transpose(perm = transpose_106_perm_0, x = var_1079_cast_fp16)[name = tensor("transpose_275")]; + tensor matrix_ac_11_cast_fp16 = matmul(transpose_x = matrix_ac_11_transpose_x_0, transpose_y = matrix_ac_11_transpose_y_0, x = transpose_106, y = transpose_107)[name = tensor("matrix_ac_11_cast_fp16")]; + tensor matrix_bd_23_begin_0 = const()[name = tensor("matrix_bd_23_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_23_end_0 = const()[name = tensor("matrix_bd_23_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_23_end_mask_0 = const()[name = tensor("matrix_bd_23_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_23_cast_fp16 = slice_by_index(begin = matrix_bd_23_begin_0, end = matrix_bd_23_end_0, end_mask = matrix_bd_23_end_mask_0, x = matrix_bd_21_cast_fp16)[name = tensor("matrix_bd_23_cast_fp16")]; + tensor var_1105_cast_fp16 = add(x = matrix_ac_11_cast_fp16, y = matrix_bd_23_cast_fp16)[name = tensor("op_1105_cast_fp16")]; + tensor _inversed_scores_21_y_0_to_fp16 = const()[name = tensor("_inversed_scores_21_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_21_cast_fp16 = mul(x = var_1105_cast_fp16, y = _inversed_scores_21_y_0_to_fp16)[name = tensor("_inversed_scores_21_cast_fp16")]; + tensor scores_23_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_21_cast_fp16, cond = mask_3)[name = tensor("scores_23_cast_fp16")]; + tensor var_1111_cast_fp16 = softmax(axis = var_25, x = scores_23_cast_fp16)[name = tensor("op_1111_cast_fp16")]; + tensor input_293_cast_fp16 = select(a = var_6_to_fp16, b = var_1111_cast_fp16, cond = mask_3)[name = tensor("input_293_cast_fp16")]; + tensor x_123_transpose_x_0 = const()[name = tensor("x_123_transpose_x_0"), val = tensor(false)]; + tensor x_123_transpose_y_0 = const()[name = tensor("x_123_transpose_y_0"), val = tensor(false)]; + tensor value_11_cast_fp16 = transpose(perm = value_11_perm_0, x = v_11_cast_fp16)[name = tensor("transpose_273")]; + tensor x_123_cast_fp16 = matmul(transpose_x = x_123_transpose_x_0, transpose_y = x_123_transpose_y_0, x = input_293_cast_fp16, y = value_11_cast_fp16)[name = tensor("x_123_cast_fp16")]; + tensor var_1115_perm_0 = const()[name = tensor("op_1115_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_1116 = const()[name = tensor("op_1116"), val = tensor([1, -1, 1024])]; + tensor var_1115_cast_fp16 = transpose(perm = var_1115_perm_0, x = x_123_cast_fp16)[name = tensor("transpose_272")]; + tensor input_295_cast_fp16 = reshape(shape = var_1116, x = var_1115_cast_fp16)[name = tensor("input_295_cast_fp16")]; + tensor model_layers_5_self_attn_linear_out_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_5_self_attn_linear_out_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(138419776))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(139468416))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_52_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_5_self_attn_linear_out_weight_to_fp16_quantized, x = input_295_cast_fp16)[name = tensor("linear_52_cast_fp16")]; + tensor input_299_cast_fp16 = add(x = input_291_cast_fp16, y = linear_52_cast_fp16)[name = tensor("input_299_cast_fp16")]; + tensor x_127_axes_0 = const()[name = tensor("x_127_axes_0"), val = tensor([-1])]; + tensor model_layers_5_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_5_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(139470528)))]; + tensor model_layers_5_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_5_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(139472640)))]; + tensor x_127_cast_fp16 = layer_norm(axes = x_127_axes_0, beta = model_layers_5_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_5_norm_conv_weight_to_fp16, x = input_299_cast_fp16)[name = tensor("x_127_cast_fp16")]; + tensor input_301_perm_0 = const()[name = tensor("input_301_perm_0"), val = tensor([0, 2, 1])]; + tensor input_303_pad_type_0 = const()[name = tensor("input_303_pad_type_0"), val = tensor("valid")]; + tensor input_303_strides_0 = const()[name = tensor("input_303_strides_0"), val = tensor([1])]; + tensor input_303_pad_0 = const()[name = tensor("input_303_pad_0"), val = tensor([0, 0])]; + tensor input_303_dilations_0 = const()[name = tensor("input_303_dilations_0"), val = tensor([1])]; + tensor input_303_groups_0 = const()[name = tensor("input_303_groups_0"), val = tensor(1)]; + tensor model_layers_5_conv_pointwise_conv1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_5_conv_pointwise_conv1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(139474752))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(141571968))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(19330816)))]; + tensor input_301_cast_fp16 = transpose(perm = input_301_perm_0, x = x_127_cast_fp16)[name = tensor("transpose_271")]; + tensor input_303_cast_fp16 = conv(dilations = input_303_dilations_0, groups = input_303_groups_0, pad = input_303_pad_0, pad_type = input_303_pad_type_0, strides = input_303_strides_0, weight = model_layers_5_conv_pointwise_conv1_weight_to_fp16_quantized, x = input_301_cast_fp16)[name = tensor("input_303_cast_fp16")]; + tensor x_129_split_num_splits_0 = const()[name = tensor("x_129_split_num_splits_0"), val = tensor(2)]; + tensor x_129_split_axis_0 = const()[name = tensor("x_129_split_axis_0"), val = tensor(1)]; + tensor x_129_split_cast_fp16_0, tensor x_129_split_cast_fp16_1 = split(axis = x_129_split_axis_0, num_splits = x_129_split_num_splits_0, x = input_303_cast_fp16)[name = tensor("x_129_split_cast_fp16")]; + tensor x_129_split_1_sigmoid_cast_fp16 = sigmoid(x = x_129_split_cast_fp16_1)[name = tensor("x_129_split_1_sigmoid_cast_fp16")]; + tensor x_129_cast_fp16 = mul(x = x_129_split_cast_fp16_0, y = x_129_split_1_sigmoid_cast_fp16)[name = tensor("x_129_cast_fp16")]; + tensor input_305_cast_fp16 = select(a = var_6_to_fp16, b = x_129_cast_fp16, cond = var_323)[name = tensor("input_305_cast_fp16")]; + tensor input_307_pad_0 = const()[name = tensor("input_307_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_307_mode_0 = const()[name = tensor("input_307_mode_0"), val = tensor("constant")]; + tensor const_67_to_fp16 = const()[name = tensor("const_67_to_fp16"), val = tensor(0x0p+0)]; + tensor input_307_cast_fp16 = pad(constant_val = const_67_to_fp16, mode = input_307_mode_0, pad = input_307_pad_0, x = input_305_cast_fp16)[name = tensor("input_307_cast_fp16")]; + tensor input_309_pad_type_0 = const()[name = tensor("input_309_pad_type_0"), val = tensor("valid")]; + tensor input_309_groups_0 = const()[name = tensor("input_309_groups_0"), val = tensor(1024)]; + tensor input_309_strides_0 = const()[name = tensor("input_309_strides_0"), val = tensor([1])]; + tensor input_309_pad_0 = const()[name = tensor("input_309_pad_0"), val = tensor([0, 0])]; + tensor input_309_dilations_0 = const()[name = tensor("input_309_dilations_0"), val = tensor([1])]; + tensor const_258_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("const_258_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(141576128))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(141585408))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor const_259_to_fp16 = const()[name = tensor("const_259_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(141587520)))]; + tensor input_311_cast_fp16 = conv(bias = const_259_to_fp16, dilations = input_309_dilations_0, groups = input_309_groups_0, pad = input_309_pad_0, pad_type = input_309_pad_type_0, strides = input_309_strides_0, weight = const_258_to_fp16_quantized, x = input_307_cast_fp16)[name = tensor("input_311_cast_fp16")]; + tensor input_313_cast_fp16 = silu(x = input_311_cast_fp16)[name = tensor("input_313_cast_fp16")]; + tensor x_131_pad_type_0 = const()[name = tensor("x_131_pad_type_0"), val = tensor("valid")]; + tensor x_131_strides_0 = const()[name = tensor("x_131_strides_0"), val = tensor([1])]; + tensor x_131_pad_0 = const()[name = tensor("x_131_pad_0"), val = tensor([0, 0])]; + tensor x_131_dilations_0 = const()[name = tensor("x_131_dilations_0"), val = tensor([1])]; + tensor x_131_groups_0 = const()[name = tensor("x_131_groups_0"), val = tensor(1)]; + tensor model_layers_5_conv_pointwise_conv2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_5_conv_pointwise_conv2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(141589632))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(142638272))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor x_131_cast_fp16 = conv(dilations = x_131_dilations_0, groups = x_131_groups_0, pad = x_131_pad_0, pad_type = x_131_pad_type_0, strides = x_131_strides_0, weight = model_layers_5_conv_pointwise_conv2_weight_to_fp16_quantized, x = input_313_cast_fp16)[name = tensor("x_131_cast_fp16")]; + tensor input_315_perm_0 = const()[name = tensor("input_315_perm_0"), val = tensor([0, 2, 1])]; + tensor input_315_cast_fp16 = transpose(perm = input_315_perm_0, x = x_131_cast_fp16)[name = tensor("transpose_270")]; + tensor input_317_cast_fp16 = add(x = input_299_cast_fp16, y = input_315_cast_fp16)[name = tensor("input_317_cast_fp16")]; + tensor input_319_axes_0 = const()[name = tensor("input_319_axes_0"), val = tensor([-1])]; + tensor model_layers_5_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_5_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(142640384)))]; + tensor model_layers_5_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_5_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(142642496)))]; + tensor input_319_cast_fp16 = layer_norm(axes = input_319_axes_0, beta = model_layers_5_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_5_norm_feed_forward2_weight_to_fp16, x = input_317_cast_fp16)[name = tensor("input_319_cast_fp16")]; + tensor model_layers_5_feed_forward2_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_5_feed_forward2_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(142644608))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(146838976))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_53_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_5_feed_forward2_linear1_weight_to_fp16_quantized, x = input_319_cast_fp16)[name = tensor("linear_53_cast_fp16")]; + tensor input_323_cast_fp16 = silu(x = linear_53_cast_fp16)[name = tensor("input_323_cast_fp16")]; + tensor model_layers_5_feed_forward2_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_5_feed_forward2_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(146847232))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(151041600))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_54_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_5_feed_forward2_linear2_weight_to_fp16_quantized, x = input_323_cast_fp16)[name = tensor("linear_54_cast_fp16")]; + tensor var_1176_to_fp16 = const()[name = tensor("op_1176_to_fp16"), val = tensor(0x1p-1)]; + tensor var_1177_cast_fp16 = mul(x = linear_54_cast_fp16, y = var_1176_to_fp16)[name = tensor("op_1177_cast_fp16")]; + tensor input_329_cast_fp16 = add(x = input_317_cast_fp16, y = var_1177_cast_fp16)[name = tensor("input_329_cast_fp16")]; + tensor input_331_axes_0 = const()[name = tensor("input_331_axes_0"), val = tensor([-1])]; + tensor model_layers_5_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_5_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(151043712)))]; + tensor model_layers_5_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_5_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(151045824)))]; + tensor input_331_cast_fp16 = layer_norm(axes = input_331_axes_0, beta = model_layers_5_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_5_norm_out_weight_to_fp16, x = input_329_cast_fp16)[name = tensor("input_331_cast_fp16")]; + tensor input_333_axes_0 = const()[name = tensor("input_333_axes_0"), val = tensor([-1])]; + tensor model_layers_6_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_6_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(151047936)))]; + tensor model_layers_6_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_6_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(151050048)))]; + tensor input_333_cast_fp16 = layer_norm(axes = input_333_axes_0, beta = model_layers_6_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_6_norm_feed_forward1_weight_to_fp16, x = input_331_cast_fp16)[name = tensor("input_333_cast_fp16")]; + tensor model_layers_6_feed_forward1_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_6_feed_forward1_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(151052160))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(155246528))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_55_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_6_feed_forward1_linear1_weight_to_fp16_quantized, x = input_333_cast_fp16)[name = tensor("linear_55_cast_fp16")]; + tensor input_337_cast_fp16 = silu(x = linear_55_cast_fp16)[name = tensor("input_337_cast_fp16")]; + tensor model_layers_6_feed_forward1_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_6_feed_forward1_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(155254784))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(159449152))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_56_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_6_feed_forward1_linear2_weight_to_fp16_quantized, x = input_337_cast_fp16)[name = tensor("linear_56_cast_fp16")]; + tensor var_1205_to_fp16 = const()[name = tensor("op_1205_to_fp16"), val = tensor(0x1p-1)]; + tensor var_1206_cast_fp16 = mul(x = linear_56_cast_fp16, y = var_1205_to_fp16)[name = tensor("op_1206_cast_fp16")]; + tensor input_343_cast_fp16 = add(x = input_331_cast_fp16, y = var_1206_cast_fp16)[name = tensor("input_343_cast_fp16")]; + tensor query_13_axes_0 = const()[name = tensor("query_13_axes_0"), val = tensor([-1])]; + tensor model_layers_6_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_6_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(159451264)))]; + tensor model_layers_6_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_6_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(159453376)))]; + tensor query_13_cast_fp16 = layer_norm(axes = query_13_axes_0, beta = model_layers_6_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_6_norm_self_att_weight_to_fp16, x = input_343_cast_fp16)[name = tensor("query_13_cast_fp16")]; + tensor model_layers_6_self_attn_linear_q_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_6_self_attn_linear_q_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(159455488))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(160504128))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_57_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_6_self_attn_linear_q_weight_to_fp16_quantized, x = query_13_cast_fp16)[name = tensor("linear_57_cast_fp16")]; + tensor var_1222 = const()[name = tensor("op_1222"), val = tensor([1, -1, 8, 128])]; + tensor q_37_cast_fp16 = reshape(shape = var_1222, x = linear_57_cast_fp16)[name = tensor("q_37_cast_fp16")]; + tensor model_layers_6_self_attn_linear_k_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_6_self_attn_linear_k_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(160506240))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(161554880))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_58_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_6_self_attn_linear_k_weight_to_fp16_quantized, x = query_13_cast_fp16)[name = tensor("linear_58_cast_fp16")]; + tensor var_1226 = const()[name = tensor("op_1226"), val = tensor([1, -1, 8, 128])]; + tensor k_25_cast_fp16 = reshape(shape = var_1226, x = linear_58_cast_fp16)[name = tensor("k_25_cast_fp16")]; + tensor model_layers_6_self_attn_linear_v_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_6_self_attn_linear_v_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(161556992))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(162605632))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_59_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_6_self_attn_linear_v_weight_to_fp16_quantized, x = query_13_cast_fp16)[name = tensor("linear_59_cast_fp16")]; + tensor var_1230 = const()[name = tensor("op_1230"), val = tensor([1, -1, 8, 128])]; + tensor v_13_cast_fp16 = reshape(shape = var_1230, x = linear_59_cast_fp16)[name = tensor("v_13_cast_fp16")]; + tensor value_13_perm_0 = const()[name = tensor("value_13_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor model_layers_6_self_attn_pos_bias_u_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_6_self_attn_pos_bias_u_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(162607744))), scale = tensor([0x1.d6cp-9, 0x1.438p-7, 0x1.d1p-9, 0x1.c28p-8, 0x1.038p-7, 0x1.164p-7, 0x1.ca8p-8, 0x1.7d8p-7]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_1242_cast_fp16 = add(x = q_37_cast_fp16, y = model_layers_6_self_attn_pos_bias_u_to_fp16_quantized)[name = tensor("op_1242_cast_fp16")]; + tensor model_layers_6_self_attn_pos_bias_v_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_6_self_attn_pos_bias_v_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(162608832))), scale = tensor([0x1.194p-9, 0x1.6b4p-8, 0x1.71p-8, 0x1.a84p-10, 0x1.8bp-8, 0x1.dd8p-9, 0x1.1f8p-7, 0x1.68cp-9]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_1244_cast_fp16 = add(x = q_37_cast_fp16, y = model_layers_6_self_attn_pos_bias_v_to_fp16_quantized)[name = tensor("op_1244_cast_fp16")]; + tensor q_with_bias_v_13_perm_0 = const()[name = tensor("q_with_bias_v_13_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor x_139_transpose_x_0 = const()[name = tensor("x_139_transpose_x_0"), val = tensor(false)]; + tensor x_139_transpose_y_0 = const()[name = tensor("x_139_transpose_y_0"), val = tensor(false)]; + tensor op_1246_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(3), name = tensor("op_1246_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(162609920))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(162867008))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(16177728)))]; + tensor q_with_bias_v_13_cast_fp16 = transpose(perm = q_with_bias_v_13_perm_0, x = var_1244_cast_fp16)[name = tensor("transpose_269")]; + tensor x_139_cast_fp16 = matmul(transpose_x = x_139_transpose_x_0, transpose_y = x_139_transpose_y_0, x = q_with_bias_v_13_cast_fp16, y = op_1246_to_fp16_quantized)[name = tensor("x_139_cast_fp16")]; + tensor x_141_pad_0 = const()[name = tensor("x_141_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_141_mode_0 = const()[name = tensor("x_141_mode_0"), val = tensor("constant")]; + tensor const_74_to_fp16 = const()[name = tensor("const_74_to_fp16"), val = tensor(0x0p+0)]; + tensor x_141_cast_fp16 = pad(constant_val = const_74_to_fp16, mode = x_141_mode_0, pad = x_141_pad_0, x = x_139_cast_fp16)[name = tensor("x_141_cast_fp16")]; + tensor var_1254 = const()[name = tensor("op_1254"), val = tensor([1, 8, -1, 126])]; + tensor x_143_cast_fp16 = reshape(shape = var_1254, x = x_141_cast_fp16)[name = tensor("x_143_cast_fp16")]; + tensor var_1258_begin_0 = const()[name = tensor("op_1258_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_1258_end_0 = const()[name = tensor("op_1258_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_1258_end_mask_0 = const()[name = tensor("op_1258_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_1258_cast_fp16 = slice_by_index(begin = var_1258_begin_0, end = var_1258_end_0, end_mask = var_1258_end_mask_0, x = x_143_cast_fp16)[name = tensor("op_1258_cast_fp16")]; + tensor var_1259 = const()[name = tensor("op_1259"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_25_cast_fp16 = reshape(shape = var_1259, x = var_1258_cast_fp16)[name = tensor("matrix_bd_25_cast_fp16")]; + tensor matrix_ac_13_transpose_x_0 = const()[name = tensor("matrix_ac_13_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_13_transpose_y_0 = const()[name = tensor("matrix_ac_13_transpose_y_0"), val = tensor(false)]; + tensor transpose_108_perm_0 = const()[name = tensor("transpose_108_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_109_perm_0 = const()[name = tensor("transpose_109_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_109 = transpose(perm = transpose_109_perm_0, x = k_25_cast_fp16)[name = tensor("transpose_267")]; + tensor transpose_108 = transpose(perm = transpose_108_perm_0, x = var_1242_cast_fp16)[name = tensor("transpose_268")]; + tensor matrix_ac_13_cast_fp16 = matmul(transpose_x = matrix_ac_13_transpose_x_0, transpose_y = matrix_ac_13_transpose_y_0, x = transpose_108, y = transpose_109)[name = tensor("matrix_ac_13_cast_fp16")]; + tensor matrix_bd_27_begin_0 = const()[name = tensor("matrix_bd_27_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_27_end_0 = const()[name = tensor("matrix_bd_27_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_27_end_mask_0 = const()[name = tensor("matrix_bd_27_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_27_cast_fp16 = slice_by_index(begin = matrix_bd_27_begin_0, end = matrix_bd_27_end_0, end_mask = matrix_bd_27_end_mask_0, x = matrix_bd_25_cast_fp16)[name = tensor("matrix_bd_27_cast_fp16")]; + tensor var_1268_cast_fp16 = add(x = matrix_ac_13_cast_fp16, y = matrix_bd_27_cast_fp16)[name = tensor("op_1268_cast_fp16")]; + tensor _inversed_scores_25_y_0_to_fp16 = const()[name = tensor("_inversed_scores_25_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_25_cast_fp16 = mul(x = var_1268_cast_fp16, y = _inversed_scores_25_y_0_to_fp16)[name = tensor("_inversed_scores_25_cast_fp16")]; + tensor scores_27_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_25_cast_fp16, cond = mask_3)[name = tensor("scores_27_cast_fp16")]; + tensor var_1274_cast_fp16 = softmax(axis = var_25, x = scores_27_cast_fp16)[name = tensor("op_1274_cast_fp16")]; + tensor input_345_cast_fp16 = select(a = var_6_to_fp16, b = var_1274_cast_fp16, cond = mask_3)[name = tensor("input_345_cast_fp16")]; + tensor x_145_transpose_x_0 = const()[name = tensor("x_145_transpose_x_0"), val = tensor(false)]; + tensor x_145_transpose_y_0 = const()[name = tensor("x_145_transpose_y_0"), val = tensor(false)]; + tensor value_13_cast_fp16 = transpose(perm = value_13_perm_0, x = v_13_cast_fp16)[name = tensor("transpose_266")]; + tensor x_145_cast_fp16 = matmul(transpose_x = x_145_transpose_x_0, transpose_y = x_145_transpose_y_0, x = input_345_cast_fp16, y = value_13_cast_fp16)[name = tensor("x_145_cast_fp16")]; + tensor var_1278_perm_0 = const()[name = tensor("op_1278_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_1279 = const()[name = tensor("op_1279"), val = tensor([1, -1, 1024])]; + tensor var_1278_cast_fp16 = transpose(perm = var_1278_perm_0, x = x_145_cast_fp16)[name = tensor("transpose_265")]; + tensor input_347_cast_fp16 = reshape(shape = var_1279, x = var_1278_cast_fp16)[name = tensor("input_347_cast_fp16")]; + tensor model_layers_6_self_attn_linear_out_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_6_self_attn_linear_out_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(162867584))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(163916224))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_61_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_6_self_attn_linear_out_weight_to_fp16_quantized, x = input_347_cast_fp16)[name = tensor("linear_61_cast_fp16")]; + tensor input_351_cast_fp16 = add(x = input_343_cast_fp16, y = linear_61_cast_fp16)[name = tensor("input_351_cast_fp16")]; + tensor x_149_axes_0 = const()[name = tensor("x_149_axes_0"), val = tensor([-1])]; + tensor model_layers_6_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_6_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(163918336)))]; + tensor model_layers_6_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_6_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(163920448)))]; + tensor x_149_cast_fp16 = layer_norm(axes = x_149_axes_0, beta = model_layers_6_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_6_norm_conv_weight_to_fp16, x = input_351_cast_fp16)[name = tensor("x_149_cast_fp16")]; + tensor input_353_perm_0 = const()[name = tensor("input_353_perm_0"), val = tensor([0, 2, 1])]; + tensor input_355_pad_type_0 = const()[name = tensor("input_355_pad_type_0"), val = tensor("valid")]; + tensor input_355_strides_0 = const()[name = tensor("input_355_strides_0"), val = tensor([1])]; + tensor input_355_pad_0 = const()[name = tensor("input_355_pad_0"), val = tensor([0, 0])]; + tensor input_355_dilations_0 = const()[name = tensor("input_355_dilations_0"), val = tensor([1])]; + tensor input_355_groups_0 = const()[name = tensor("input_355_groups_0"), val = tensor(1)]; + tensor model_layers_6_conv_pointwise_conv1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_6_conv_pointwise_conv1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(163922560))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(166019776))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(19330816)))]; + tensor input_353_cast_fp16 = transpose(perm = input_353_perm_0, x = x_149_cast_fp16)[name = tensor("transpose_264")]; + tensor input_355_cast_fp16 = conv(dilations = input_355_dilations_0, groups = input_355_groups_0, pad = input_355_pad_0, pad_type = input_355_pad_type_0, strides = input_355_strides_0, weight = model_layers_6_conv_pointwise_conv1_weight_to_fp16_quantized, x = input_353_cast_fp16)[name = tensor("input_355_cast_fp16")]; + tensor x_151_split_num_splits_0 = const()[name = tensor("x_151_split_num_splits_0"), val = tensor(2)]; + tensor x_151_split_axis_0 = const()[name = tensor("x_151_split_axis_0"), val = tensor(1)]; + tensor x_151_split_cast_fp16_0, tensor x_151_split_cast_fp16_1 = split(axis = x_151_split_axis_0, num_splits = x_151_split_num_splits_0, x = input_355_cast_fp16)[name = tensor("x_151_split_cast_fp16")]; + tensor x_151_split_1_sigmoid_cast_fp16 = sigmoid(x = x_151_split_cast_fp16_1)[name = tensor("x_151_split_1_sigmoid_cast_fp16")]; + tensor x_151_cast_fp16 = mul(x = x_151_split_cast_fp16_0, y = x_151_split_1_sigmoid_cast_fp16)[name = tensor("x_151_cast_fp16")]; + tensor input_357_cast_fp16 = select(a = var_6_to_fp16, b = x_151_cast_fp16, cond = var_323)[name = tensor("input_357_cast_fp16")]; + tensor input_359_pad_0 = const()[name = tensor("input_359_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_359_mode_0 = const()[name = tensor("input_359_mode_0"), val = tensor("constant")]; + tensor const_77_to_fp16 = const()[name = tensor("const_77_to_fp16"), val = tensor(0x0p+0)]; + tensor input_359_cast_fp16 = pad(constant_val = const_77_to_fp16, mode = input_359_mode_0, pad = input_359_pad_0, x = input_357_cast_fp16)[name = tensor("input_359_cast_fp16")]; + tensor input_361_pad_type_0 = const()[name = tensor("input_361_pad_type_0"), val = tensor("valid")]; + tensor input_361_groups_0 = const()[name = tensor("input_361_groups_0"), val = tensor(1024)]; + tensor input_361_strides_0 = const()[name = tensor("input_361_strides_0"), val = tensor([1])]; + tensor input_361_pad_0 = const()[name = tensor("input_361_pad_0"), val = tensor([0, 0])]; + tensor input_361_dilations_0 = const()[name = tensor("input_361_dilations_0"), val = tensor([1])]; + tensor const_260_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("const_260_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(166023936))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(166033216))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor const_261_to_fp16 = const()[name = tensor("const_261_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(166035328)))]; + tensor input_363_cast_fp16 = conv(bias = const_261_to_fp16, dilations = input_361_dilations_0, groups = input_361_groups_0, pad = input_361_pad_0, pad_type = input_361_pad_type_0, strides = input_361_strides_0, weight = const_260_to_fp16_quantized, x = input_359_cast_fp16)[name = tensor("input_363_cast_fp16")]; + tensor input_365_cast_fp16 = silu(x = input_363_cast_fp16)[name = tensor("input_365_cast_fp16")]; + tensor x_153_pad_type_0 = const()[name = tensor("x_153_pad_type_0"), val = tensor("valid")]; + tensor x_153_strides_0 = const()[name = tensor("x_153_strides_0"), val = tensor([1])]; + tensor x_153_pad_0 = const()[name = tensor("x_153_pad_0"), val = tensor([0, 0])]; + tensor x_153_dilations_0 = const()[name = tensor("x_153_dilations_0"), val = tensor([1])]; + tensor x_153_groups_0 = const()[name = tensor("x_153_groups_0"), val = tensor(1)]; + tensor model_layers_6_conv_pointwise_conv2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_6_conv_pointwise_conv2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(166037440))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(167086080))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor x_153_cast_fp16 = conv(dilations = x_153_dilations_0, groups = x_153_groups_0, pad = x_153_pad_0, pad_type = x_153_pad_type_0, strides = x_153_strides_0, weight = model_layers_6_conv_pointwise_conv2_weight_to_fp16_quantized, x = input_365_cast_fp16)[name = tensor("x_153_cast_fp16")]; + tensor input_367_perm_0 = const()[name = tensor("input_367_perm_0"), val = tensor([0, 2, 1])]; + tensor input_367_cast_fp16 = transpose(perm = input_367_perm_0, x = x_153_cast_fp16)[name = tensor("transpose_263")]; + tensor input_369_cast_fp16 = add(x = input_351_cast_fp16, y = input_367_cast_fp16)[name = tensor("input_369_cast_fp16")]; + tensor input_371_axes_0 = const()[name = tensor("input_371_axes_0"), val = tensor([-1])]; + tensor model_layers_6_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_6_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(167088192)))]; + tensor model_layers_6_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_6_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(167090304)))]; + tensor input_371_cast_fp16 = layer_norm(axes = input_371_axes_0, beta = model_layers_6_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_6_norm_feed_forward2_weight_to_fp16, x = input_369_cast_fp16)[name = tensor("input_371_cast_fp16")]; + tensor model_layers_6_feed_forward2_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_6_feed_forward2_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(167092416))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(171286784))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_62_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_6_feed_forward2_linear1_weight_to_fp16_quantized, x = input_371_cast_fp16)[name = tensor("linear_62_cast_fp16")]; + tensor input_375_cast_fp16 = silu(x = linear_62_cast_fp16)[name = tensor("input_375_cast_fp16")]; + tensor model_layers_6_feed_forward2_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_6_feed_forward2_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(171295040))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(175489408))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_63_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_6_feed_forward2_linear2_weight_to_fp16_quantized, x = input_375_cast_fp16)[name = tensor("linear_63_cast_fp16")]; + tensor var_1339_to_fp16 = const()[name = tensor("op_1339_to_fp16"), val = tensor(0x1p-1)]; + tensor var_1340_cast_fp16 = mul(x = linear_63_cast_fp16, y = var_1339_to_fp16)[name = tensor("op_1340_cast_fp16")]; + tensor input_381_cast_fp16 = add(x = input_369_cast_fp16, y = var_1340_cast_fp16)[name = tensor("input_381_cast_fp16")]; + tensor input_383_axes_0 = const()[name = tensor("input_383_axes_0"), val = tensor([-1])]; + tensor model_layers_6_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_6_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(175491520)))]; + tensor model_layers_6_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_6_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(175493632)))]; + tensor input_383_cast_fp16 = layer_norm(axes = input_383_axes_0, beta = model_layers_6_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_6_norm_out_weight_to_fp16, x = input_381_cast_fp16)[name = tensor("input_383_cast_fp16")]; + tensor input_385_axes_0 = const()[name = tensor("input_385_axes_0"), val = tensor([-1])]; + tensor model_layers_7_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_7_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(175495744)))]; + tensor model_layers_7_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_7_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(175497856)))]; + tensor input_385_cast_fp16 = layer_norm(axes = input_385_axes_0, beta = model_layers_7_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_7_norm_feed_forward1_weight_to_fp16, x = input_383_cast_fp16)[name = tensor("input_385_cast_fp16")]; + tensor model_layers_7_feed_forward1_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_7_feed_forward1_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(175499968))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(179694336))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_64_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_7_feed_forward1_linear1_weight_to_fp16_quantized, x = input_385_cast_fp16)[name = tensor("linear_64_cast_fp16")]; + tensor input_389_cast_fp16 = silu(x = linear_64_cast_fp16)[name = tensor("input_389_cast_fp16")]; + tensor model_layers_7_feed_forward1_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_7_feed_forward1_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(179702592))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(183896960))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_65_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_7_feed_forward1_linear2_weight_to_fp16_quantized, x = input_389_cast_fp16)[name = tensor("linear_65_cast_fp16")]; + tensor var_1368_to_fp16 = const()[name = tensor("op_1368_to_fp16"), val = tensor(0x1p-1)]; + tensor var_1369_cast_fp16 = mul(x = linear_65_cast_fp16, y = var_1368_to_fp16)[name = tensor("op_1369_cast_fp16")]; + tensor input_395_cast_fp16 = add(x = input_383_cast_fp16, y = var_1369_cast_fp16)[name = tensor("input_395_cast_fp16")]; + tensor query_15_axes_0 = const()[name = tensor("query_15_axes_0"), val = tensor([-1])]; + tensor model_layers_7_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_7_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(183899072)))]; + tensor model_layers_7_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_7_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(183901184)))]; + tensor query_15_cast_fp16 = layer_norm(axes = query_15_axes_0, beta = model_layers_7_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_7_norm_self_att_weight_to_fp16, x = input_395_cast_fp16)[name = tensor("query_15_cast_fp16")]; + tensor model_layers_7_self_attn_linear_q_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_7_self_attn_linear_q_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(183903296))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(184951936))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_66_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_7_self_attn_linear_q_weight_to_fp16_quantized, x = query_15_cast_fp16)[name = tensor("linear_66_cast_fp16")]; + tensor var_1385 = const()[name = tensor("op_1385"), val = tensor([1, -1, 8, 128])]; + tensor q_43_cast_fp16 = reshape(shape = var_1385, x = linear_66_cast_fp16)[name = tensor("q_43_cast_fp16")]; + tensor model_layers_7_self_attn_linear_k_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_7_self_attn_linear_k_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(184954048))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(186002688))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_67_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_7_self_attn_linear_k_weight_to_fp16_quantized, x = query_15_cast_fp16)[name = tensor("linear_67_cast_fp16")]; + tensor var_1389 = const()[name = tensor("op_1389"), val = tensor([1, -1, 8, 128])]; + tensor k_29_cast_fp16 = reshape(shape = var_1389, x = linear_67_cast_fp16)[name = tensor("k_29_cast_fp16")]; + tensor model_layers_7_self_attn_linear_v_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_7_self_attn_linear_v_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(186004800))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(187053440))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_68_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_7_self_attn_linear_v_weight_to_fp16_quantized, x = query_15_cast_fp16)[name = tensor("linear_68_cast_fp16")]; + tensor var_1393 = const()[name = tensor("op_1393"), val = tensor([1, -1, 8, 128])]; + tensor v_15_cast_fp16 = reshape(shape = var_1393, x = linear_68_cast_fp16)[name = tensor("v_15_cast_fp16")]; + tensor value_15_perm_0 = const()[name = tensor("value_15_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor model_layers_7_self_attn_pos_bias_u_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_7_self_attn_pos_bias_u_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(187055552))), scale = tensor([0x1.b78p-8, 0x1.ep-8, 0x1.268p-8, 0x1.15p-7, 0x1.914p-8, 0x1.ae8p-8, 0x1.f4cp-8, 0x1.168p-7]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_1405_cast_fp16 = add(x = q_43_cast_fp16, y = model_layers_7_self_attn_pos_bias_u_to_fp16_quantized)[name = tensor("op_1405_cast_fp16")]; + tensor model_layers_7_self_attn_pos_bias_v_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_7_self_attn_pos_bias_v_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(187056640))), scale = tensor([0x1.888p-9, 0x1.e28p-11, 0x1.398p-8, 0x1.de8p-9, 0x1.5ecp-8, 0x1.c8p-8, 0x1.f2p-9, 0x1.e58p-9]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_1407_cast_fp16 = add(x = q_43_cast_fp16, y = model_layers_7_self_attn_pos_bias_v_to_fp16_quantized)[name = tensor("op_1407_cast_fp16")]; + tensor q_with_bias_v_15_perm_0 = const()[name = tensor("q_with_bias_v_15_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor x_161_transpose_x_0 = const()[name = tensor("x_161_transpose_x_0"), val = tensor(false)]; + tensor x_161_transpose_y_0 = const()[name = tensor("x_161_transpose_y_0"), val = tensor(false)]; + tensor op_1409_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(3), name = tensor("op_1409_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(187057728))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(187314816))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(16177728)))]; + tensor q_with_bias_v_15_cast_fp16 = transpose(perm = q_with_bias_v_15_perm_0, x = var_1407_cast_fp16)[name = tensor("transpose_262")]; + tensor x_161_cast_fp16 = matmul(transpose_x = x_161_transpose_x_0, transpose_y = x_161_transpose_y_0, x = q_with_bias_v_15_cast_fp16, y = op_1409_to_fp16_quantized)[name = tensor("x_161_cast_fp16")]; + tensor x_163_pad_0 = const()[name = tensor("x_163_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_163_mode_0 = const()[name = tensor("x_163_mode_0"), val = tensor("constant")]; + tensor const_84_to_fp16 = const()[name = tensor("const_84_to_fp16"), val = tensor(0x0p+0)]; + tensor x_163_cast_fp16 = pad(constant_val = const_84_to_fp16, mode = x_163_mode_0, pad = x_163_pad_0, x = x_161_cast_fp16)[name = tensor("x_163_cast_fp16")]; + tensor var_1417 = const()[name = tensor("op_1417"), val = tensor([1, 8, -1, 126])]; + tensor x_165_cast_fp16 = reshape(shape = var_1417, x = x_163_cast_fp16)[name = tensor("x_165_cast_fp16")]; + tensor var_1421_begin_0 = const()[name = tensor("op_1421_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_1421_end_0 = const()[name = tensor("op_1421_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_1421_end_mask_0 = const()[name = tensor("op_1421_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_1421_cast_fp16 = slice_by_index(begin = var_1421_begin_0, end = var_1421_end_0, end_mask = var_1421_end_mask_0, x = x_165_cast_fp16)[name = tensor("op_1421_cast_fp16")]; + tensor var_1422 = const()[name = tensor("op_1422"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_29_cast_fp16 = reshape(shape = var_1422, x = var_1421_cast_fp16)[name = tensor("matrix_bd_29_cast_fp16")]; + tensor matrix_ac_15_transpose_x_0 = const()[name = tensor("matrix_ac_15_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_15_transpose_y_0 = const()[name = tensor("matrix_ac_15_transpose_y_0"), val = tensor(false)]; + tensor transpose_110_perm_0 = const()[name = tensor("transpose_110_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_111_perm_0 = const()[name = tensor("transpose_111_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_111 = transpose(perm = transpose_111_perm_0, x = k_29_cast_fp16)[name = tensor("transpose_260")]; + tensor transpose_110 = transpose(perm = transpose_110_perm_0, x = var_1405_cast_fp16)[name = tensor("transpose_261")]; + tensor matrix_ac_15_cast_fp16 = matmul(transpose_x = matrix_ac_15_transpose_x_0, transpose_y = matrix_ac_15_transpose_y_0, x = transpose_110, y = transpose_111)[name = tensor("matrix_ac_15_cast_fp16")]; + tensor matrix_bd_31_begin_0 = const()[name = tensor("matrix_bd_31_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_31_end_0 = const()[name = tensor("matrix_bd_31_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_31_end_mask_0 = const()[name = tensor("matrix_bd_31_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_31_cast_fp16 = slice_by_index(begin = matrix_bd_31_begin_0, end = matrix_bd_31_end_0, end_mask = matrix_bd_31_end_mask_0, x = matrix_bd_29_cast_fp16)[name = tensor("matrix_bd_31_cast_fp16")]; + tensor var_1431_cast_fp16 = add(x = matrix_ac_15_cast_fp16, y = matrix_bd_31_cast_fp16)[name = tensor("op_1431_cast_fp16")]; + tensor _inversed_scores_29_y_0_to_fp16 = const()[name = tensor("_inversed_scores_29_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_29_cast_fp16 = mul(x = var_1431_cast_fp16, y = _inversed_scores_29_y_0_to_fp16)[name = tensor("_inversed_scores_29_cast_fp16")]; + tensor scores_31_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_29_cast_fp16, cond = mask_3)[name = tensor("scores_31_cast_fp16")]; + tensor var_1437_cast_fp16 = softmax(axis = var_25, x = scores_31_cast_fp16)[name = tensor("op_1437_cast_fp16")]; + tensor input_397_cast_fp16 = select(a = var_6_to_fp16, b = var_1437_cast_fp16, cond = mask_3)[name = tensor("input_397_cast_fp16")]; + tensor x_167_transpose_x_0 = const()[name = tensor("x_167_transpose_x_0"), val = tensor(false)]; + tensor x_167_transpose_y_0 = const()[name = tensor("x_167_transpose_y_0"), val = tensor(false)]; + tensor value_15_cast_fp16 = transpose(perm = value_15_perm_0, x = v_15_cast_fp16)[name = tensor("transpose_259")]; + tensor x_167_cast_fp16 = matmul(transpose_x = x_167_transpose_x_0, transpose_y = x_167_transpose_y_0, x = input_397_cast_fp16, y = value_15_cast_fp16)[name = tensor("x_167_cast_fp16")]; + tensor var_1441_perm_0 = const()[name = tensor("op_1441_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_1442 = const()[name = tensor("op_1442"), val = tensor([1, -1, 1024])]; + tensor var_1441_cast_fp16 = transpose(perm = var_1441_perm_0, x = x_167_cast_fp16)[name = tensor("transpose_258")]; + tensor input_399_cast_fp16 = reshape(shape = var_1442, x = var_1441_cast_fp16)[name = tensor("input_399_cast_fp16")]; + tensor model_layers_7_self_attn_linear_out_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_7_self_attn_linear_out_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(187315392))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(188364032))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_70_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_7_self_attn_linear_out_weight_to_fp16_quantized, x = input_399_cast_fp16)[name = tensor("linear_70_cast_fp16")]; + tensor input_403_cast_fp16 = add(x = input_395_cast_fp16, y = linear_70_cast_fp16)[name = tensor("input_403_cast_fp16")]; + tensor x_171_axes_0 = const()[name = tensor("x_171_axes_0"), val = tensor([-1])]; + tensor model_layers_7_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_7_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(188366144)))]; + tensor model_layers_7_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_7_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(188368256)))]; + tensor x_171_cast_fp16 = layer_norm(axes = x_171_axes_0, beta = model_layers_7_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_7_norm_conv_weight_to_fp16, x = input_403_cast_fp16)[name = tensor("x_171_cast_fp16")]; + tensor input_405_perm_0 = const()[name = tensor("input_405_perm_0"), val = tensor([0, 2, 1])]; + tensor input_407_pad_type_0 = const()[name = tensor("input_407_pad_type_0"), val = tensor("valid")]; + tensor input_407_strides_0 = const()[name = tensor("input_407_strides_0"), val = tensor([1])]; + tensor input_407_pad_0 = const()[name = tensor("input_407_pad_0"), val = tensor([0, 0])]; + tensor input_407_dilations_0 = const()[name = tensor("input_407_dilations_0"), val = tensor([1])]; + tensor input_407_groups_0 = const()[name = tensor("input_407_groups_0"), val = tensor(1)]; + tensor model_layers_7_conv_pointwise_conv1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_7_conv_pointwise_conv1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(188370368))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(190467584))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(19330816)))]; + tensor input_405_cast_fp16 = transpose(perm = input_405_perm_0, x = x_171_cast_fp16)[name = tensor("transpose_257")]; + tensor input_407_cast_fp16 = conv(dilations = input_407_dilations_0, groups = input_407_groups_0, pad = input_407_pad_0, pad_type = input_407_pad_type_0, strides = input_407_strides_0, weight = model_layers_7_conv_pointwise_conv1_weight_to_fp16_quantized, x = input_405_cast_fp16)[name = tensor("input_407_cast_fp16")]; + tensor x_173_split_num_splits_0 = const()[name = tensor("x_173_split_num_splits_0"), val = tensor(2)]; + tensor x_173_split_axis_0 = const()[name = tensor("x_173_split_axis_0"), val = tensor(1)]; + tensor x_173_split_cast_fp16_0, tensor x_173_split_cast_fp16_1 = split(axis = x_173_split_axis_0, num_splits = x_173_split_num_splits_0, x = input_407_cast_fp16)[name = tensor("x_173_split_cast_fp16")]; + tensor x_173_split_1_sigmoid_cast_fp16 = sigmoid(x = x_173_split_cast_fp16_1)[name = tensor("x_173_split_1_sigmoid_cast_fp16")]; + tensor x_173_cast_fp16 = mul(x = x_173_split_cast_fp16_0, y = x_173_split_1_sigmoid_cast_fp16)[name = tensor("x_173_cast_fp16")]; + tensor input_409_cast_fp16 = select(a = var_6_to_fp16, b = x_173_cast_fp16, cond = var_323)[name = tensor("input_409_cast_fp16")]; + tensor input_411_pad_0 = const()[name = tensor("input_411_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_411_mode_0 = const()[name = tensor("input_411_mode_0"), val = tensor("constant")]; + tensor const_87_to_fp16 = const()[name = tensor("const_87_to_fp16"), val = tensor(0x0p+0)]; + tensor input_411_cast_fp16 = pad(constant_val = const_87_to_fp16, mode = input_411_mode_0, pad = input_411_pad_0, x = input_409_cast_fp16)[name = tensor("input_411_cast_fp16")]; + tensor input_413_pad_type_0 = const()[name = tensor("input_413_pad_type_0"), val = tensor("valid")]; + tensor input_413_groups_0 = const()[name = tensor("input_413_groups_0"), val = tensor(1024)]; + tensor input_413_strides_0 = const()[name = tensor("input_413_strides_0"), val = tensor([1])]; + tensor input_413_pad_0 = const()[name = tensor("input_413_pad_0"), val = tensor([0, 0])]; + tensor input_413_dilations_0 = const()[name = tensor("input_413_dilations_0"), val = tensor([1])]; + tensor const_262_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("const_262_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(190471744))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(190481024))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor const_263_to_fp16 = const()[name = tensor("const_263_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(190483136)))]; + tensor input_415_cast_fp16 = conv(bias = const_263_to_fp16, dilations = input_413_dilations_0, groups = input_413_groups_0, pad = input_413_pad_0, pad_type = input_413_pad_type_0, strides = input_413_strides_0, weight = const_262_to_fp16_quantized, x = input_411_cast_fp16)[name = tensor("input_415_cast_fp16")]; + tensor input_417_cast_fp16 = silu(x = input_415_cast_fp16)[name = tensor("input_417_cast_fp16")]; + tensor x_175_pad_type_0 = const()[name = tensor("x_175_pad_type_0"), val = tensor("valid")]; + tensor x_175_strides_0 = const()[name = tensor("x_175_strides_0"), val = tensor([1])]; + tensor x_175_pad_0 = const()[name = tensor("x_175_pad_0"), val = tensor([0, 0])]; + tensor x_175_dilations_0 = const()[name = tensor("x_175_dilations_0"), val = tensor([1])]; + tensor x_175_groups_0 = const()[name = tensor("x_175_groups_0"), val = tensor(1)]; + tensor model_layers_7_conv_pointwise_conv2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_7_conv_pointwise_conv2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(190485248))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(191533888))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor x_175_cast_fp16 = conv(dilations = x_175_dilations_0, groups = x_175_groups_0, pad = x_175_pad_0, pad_type = x_175_pad_type_0, strides = x_175_strides_0, weight = model_layers_7_conv_pointwise_conv2_weight_to_fp16_quantized, x = input_417_cast_fp16)[name = tensor("x_175_cast_fp16")]; + tensor input_419_perm_0 = const()[name = tensor("input_419_perm_0"), val = tensor([0, 2, 1])]; + tensor input_419_cast_fp16 = transpose(perm = input_419_perm_0, x = x_175_cast_fp16)[name = tensor("transpose_256")]; + tensor input_421_cast_fp16 = add(x = input_403_cast_fp16, y = input_419_cast_fp16)[name = tensor("input_421_cast_fp16")]; + tensor input_423_axes_0 = const()[name = tensor("input_423_axes_0"), val = tensor([-1])]; + tensor model_layers_7_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_7_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(191536000)))]; + tensor model_layers_7_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_7_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(191538112)))]; + tensor input_423_cast_fp16 = layer_norm(axes = input_423_axes_0, beta = model_layers_7_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_7_norm_feed_forward2_weight_to_fp16, x = input_421_cast_fp16)[name = tensor("input_423_cast_fp16")]; + tensor model_layers_7_feed_forward2_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_7_feed_forward2_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(191540224))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(195734592))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_71_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_7_feed_forward2_linear1_weight_to_fp16_quantized, x = input_423_cast_fp16)[name = tensor("linear_71_cast_fp16")]; + tensor input_427_cast_fp16 = silu(x = linear_71_cast_fp16)[name = tensor("input_427_cast_fp16")]; + tensor model_layers_7_feed_forward2_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_7_feed_forward2_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(195742848))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(199937216))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_72_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_7_feed_forward2_linear2_weight_to_fp16_quantized, x = input_427_cast_fp16)[name = tensor("linear_72_cast_fp16")]; + tensor var_1502_to_fp16 = const()[name = tensor("op_1502_to_fp16"), val = tensor(0x1p-1)]; + tensor var_1503_cast_fp16 = mul(x = linear_72_cast_fp16, y = var_1502_to_fp16)[name = tensor("op_1503_cast_fp16")]; + tensor input_433_cast_fp16 = add(x = input_421_cast_fp16, y = var_1503_cast_fp16)[name = tensor("input_433_cast_fp16")]; + tensor input_435_axes_0 = const()[name = tensor("input_435_axes_0"), val = tensor([-1])]; + tensor model_layers_7_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_7_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(199939328)))]; + tensor model_layers_7_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_7_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(199941440)))]; + tensor input_435_cast_fp16 = layer_norm(axes = input_435_axes_0, beta = model_layers_7_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_7_norm_out_weight_to_fp16, x = input_433_cast_fp16)[name = tensor("input_435_cast_fp16")]; + tensor input_437_axes_0 = const()[name = tensor("input_437_axes_0"), val = tensor([-1])]; + tensor model_layers_8_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_8_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(199943552)))]; + tensor model_layers_8_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_8_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(199945664)))]; + tensor input_437_cast_fp16 = layer_norm(axes = input_437_axes_0, beta = model_layers_8_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_8_norm_feed_forward1_weight_to_fp16, x = input_435_cast_fp16)[name = tensor("input_437_cast_fp16")]; + tensor model_layers_8_feed_forward1_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_8_feed_forward1_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(199947776))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(204142144))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_73_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_8_feed_forward1_linear1_weight_to_fp16_quantized, x = input_437_cast_fp16)[name = tensor("linear_73_cast_fp16")]; + tensor input_441_cast_fp16 = silu(x = linear_73_cast_fp16)[name = tensor("input_441_cast_fp16")]; + tensor model_layers_8_feed_forward1_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_8_feed_forward1_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(204150400))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(208344768))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_74_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_8_feed_forward1_linear2_weight_to_fp16_quantized, x = input_441_cast_fp16)[name = tensor("linear_74_cast_fp16")]; + tensor var_1531_to_fp16 = const()[name = tensor("op_1531_to_fp16"), val = tensor(0x1p-1)]; + tensor var_1532_cast_fp16 = mul(x = linear_74_cast_fp16, y = var_1531_to_fp16)[name = tensor("op_1532_cast_fp16")]; + tensor input_447_cast_fp16 = add(x = input_435_cast_fp16, y = var_1532_cast_fp16)[name = tensor("input_447_cast_fp16")]; + tensor query_17_axes_0 = const()[name = tensor("query_17_axes_0"), val = tensor([-1])]; + tensor model_layers_8_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_8_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(208346880)))]; + tensor model_layers_8_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_8_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(208348992)))]; + tensor query_17_cast_fp16 = layer_norm(axes = query_17_axes_0, beta = model_layers_8_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_8_norm_self_att_weight_to_fp16, x = input_447_cast_fp16)[name = tensor("query_17_cast_fp16")]; + tensor model_layers_8_self_attn_linear_q_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_8_self_attn_linear_q_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(208351104))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(209399744))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_75_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_8_self_attn_linear_q_weight_to_fp16_quantized, x = query_17_cast_fp16)[name = tensor("linear_75_cast_fp16")]; + tensor var_1548 = const()[name = tensor("op_1548"), val = tensor([1, -1, 8, 128])]; + tensor q_49_cast_fp16 = reshape(shape = var_1548, x = linear_75_cast_fp16)[name = tensor("q_49_cast_fp16")]; + tensor model_layers_8_self_attn_linear_k_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_8_self_attn_linear_k_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(209401856))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(210450496))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_76_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_8_self_attn_linear_k_weight_to_fp16_quantized, x = query_17_cast_fp16)[name = tensor("linear_76_cast_fp16")]; + tensor var_1552 = const()[name = tensor("op_1552"), val = tensor([1, -1, 8, 128])]; + tensor k_33_cast_fp16 = reshape(shape = var_1552, x = linear_76_cast_fp16)[name = tensor("k_33_cast_fp16")]; + tensor model_layers_8_self_attn_linear_v_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_8_self_attn_linear_v_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(210452608))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(211501248))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_77_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_8_self_attn_linear_v_weight_to_fp16_quantized, x = query_17_cast_fp16)[name = tensor("linear_77_cast_fp16")]; + tensor var_1556 = const()[name = tensor("op_1556"), val = tensor([1, -1, 8, 128])]; + tensor v_17_cast_fp16 = reshape(shape = var_1556, x = linear_77_cast_fp16)[name = tensor("v_17_cast_fp16")]; + tensor value_17_perm_0 = const()[name = tensor("value_17_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor model_layers_8_self_attn_pos_bias_u_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_8_self_attn_pos_bias_u_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(211503360))), scale = tensor([0x1.cc4p-8, 0x1.a6p-8, 0x1.9bp-8, 0x1.ae8p-7, 0x1.1dcp-8, 0x1.478p-7, 0x1.1fp-7, 0x1.c94p-8]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_1568_cast_fp16 = add(x = q_49_cast_fp16, y = model_layers_8_self_attn_pos_bias_u_to_fp16_quantized)[name = tensor("op_1568_cast_fp16")]; + tensor model_layers_8_self_attn_pos_bias_v_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_8_self_attn_pos_bias_v_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(211504448))), scale = tensor([0x1.928p-8, 0x1.e34p-9, 0x1.f14p-9, 0x1.3acp-9, 0x1.dfcp-8, 0x1.cap-10, 0x1.9c4p-8, 0x1.f88p-8]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_1570_cast_fp16 = add(x = q_49_cast_fp16, y = model_layers_8_self_attn_pos_bias_v_to_fp16_quantized)[name = tensor("op_1570_cast_fp16")]; + tensor q_with_bias_v_17_perm_0 = const()[name = tensor("q_with_bias_v_17_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor x_183_transpose_x_0 = const()[name = tensor("x_183_transpose_x_0"), val = tensor(false)]; + tensor x_183_transpose_y_0 = const()[name = tensor("x_183_transpose_y_0"), val = tensor(false)]; + tensor op_1572_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(3), name = tensor("op_1572_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(211505536))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(211762624))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(16177728)))]; + tensor q_with_bias_v_17_cast_fp16 = transpose(perm = q_with_bias_v_17_perm_0, x = var_1570_cast_fp16)[name = tensor("transpose_255")]; + tensor x_183_cast_fp16 = matmul(transpose_x = x_183_transpose_x_0, transpose_y = x_183_transpose_y_0, x = q_with_bias_v_17_cast_fp16, y = op_1572_to_fp16_quantized)[name = tensor("x_183_cast_fp16")]; + tensor x_185_pad_0 = const()[name = tensor("x_185_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_185_mode_0 = const()[name = tensor("x_185_mode_0"), val = tensor("constant")]; + tensor const_94_to_fp16 = const()[name = tensor("const_94_to_fp16"), val = tensor(0x0p+0)]; + tensor x_185_cast_fp16 = pad(constant_val = const_94_to_fp16, mode = x_185_mode_0, pad = x_185_pad_0, x = x_183_cast_fp16)[name = tensor("x_185_cast_fp16")]; + tensor var_1580 = const()[name = tensor("op_1580"), val = tensor([1, 8, -1, 126])]; + tensor x_187_cast_fp16 = reshape(shape = var_1580, x = x_185_cast_fp16)[name = tensor("x_187_cast_fp16")]; + tensor var_1584_begin_0 = const()[name = tensor("op_1584_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_1584_end_0 = const()[name = tensor("op_1584_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_1584_end_mask_0 = const()[name = tensor("op_1584_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_1584_cast_fp16 = slice_by_index(begin = var_1584_begin_0, end = var_1584_end_0, end_mask = var_1584_end_mask_0, x = x_187_cast_fp16)[name = tensor("op_1584_cast_fp16")]; + tensor var_1585 = const()[name = tensor("op_1585"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_33_cast_fp16 = reshape(shape = var_1585, x = var_1584_cast_fp16)[name = tensor("matrix_bd_33_cast_fp16")]; + tensor matrix_ac_17_transpose_x_0 = const()[name = tensor("matrix_ac_17_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_17_transpose_y_0 = const()[name = tensor("matrix_ac_17_transpose_y_0"), val = tensor(false)]; + tensor transpose_112_perm_0 = const()[name = tensor("transpose_112_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_113_perm_0 = const()[name = tensor("transpose_113_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_113 = transpose(perm = transpose_113_perm_0, x = k_33_cast_fp16)[name = tensor("transpose_253")]; + tensor transpose_112 = transpose(perm = transpose_112_perm_0, x = var_1568_cast_fp16)[name = tensor("transpose_254")]; + tensor matrix_ac_17_cast_fp16 = matmul(transpose_x = matrix_ac_17_transpose_x_0, transpose_y = matrix_ac_17_transpose_y_0, x = transpose_112, y = transpose_113)[name = tensor("matrix_ac_17_cast_fp16")]; + tensor matrix_bd_35_begin_0 = const()[name = tensor("matrix_bd_35_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_35_end_0 = const()[name = tensor("matrix_bd_35_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_35_end_mask_0 = const()[name = tensor("matrix_bd_35_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_35_cast_fp16 = slice_by_index(begin = matrix_bd_35_begin_0, end = matrix_bd_35_end_0, end_mask = matrix_bd_35_end_mask_0, x = matrix_bd_33_cast_fp16)[name = tensor("matrix_bd_35_cast_fp16")]; + tensor var_1594_cast_fp16 = add(x = matrix_ac_17_cast_fp16, y = matrix_bd_35_cast_fp16)[name = tensor("op_1594_cast_fp16")]; + tensor _inversed_scores_33_y_0_to_fp16 = const()[name = tensor("_inversed_scores_33_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_33_cast_fp16 = mul(x = var_1594_cast_fp16, y = _inversed_scores_33_y_0_to_fp16)[name = tensor("_inversed_scores_33_cast_fp16")]; + tensor scores_35_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_33_cast_fp16, cond = mask_3)[name = tensor("scores_35_cast_fp16")]; + tensor var_1600_cast_fp16 = softmax(axis = var_25, x = scores_35_cast_fp16)[name = tensor("op_1600_cast_fp16")]; + tensor input_449_cast_fp16 = select(a = var_6_to_fp16, b = var_1600_cast_fp16, cond = mask_3)[name = tensor("input_449_cast_fp16")]; + tensor x_189_transpose_x_0 = const()[name = tensor("x_189_transpose_x_0"), val = tensor(false)]; + tensor x_189_transpose_y_0 = const()[name = tensor("x_189_transpose_y_0"), val = tensor(false)]; + tensor value_17_cast_fp16 = transpose(perm = value_17_perm_0, x = v_17_cast_fp16)[name = tensor("transpose_252")]; + tensor x_189_cast_fp16 = matmul(transpose_x = x_189_transpose_x_0, transpose_y = x_189_transpose_y_0, x = input_449_cast_fp16, y = value_17_cast_fp16)[name = tensor("x_189_cast_fp16")]; + tensor var_1604_perm_0 = const()[name = tensor("op_1604_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_1605 = const()[name = tensor("op_1605"), val = tensor([1, -1, 1024])]; + tensor var_1604_cast_fp16 = transpose(perm = var_1604_perm_0, x = x_189_cast_fp16)[name = tensor("transpose_251")]; + tensor input_451_cast_fp16 = reshape(shape = var_1605, x = var_1604_cast_fp16)[name = tensor("input_451_cast_fp16")]; + tensor model_layers_8_self_attn_linear_out_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_8_self_attn_linear_out_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(211763200))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(212811840))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_79_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_8_self_attn_linear_out_weight_to_fp16_quantized, x = input_451_cast_fp16)[name = tensor("linear_79_cast_fp16")]; + tensor input_455_cast_fp16 = add(x = input_447_cast_fp16, y = linear_79_cast_fp16)[name = tensor("input_455_cast_fp16")]; + tensor x_193_axes_0 = const()[name = tensor("x_193_axes_0"), val = tensor([-1])]; + tensor model_layers_8_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_8_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(212813952)))]; + tensor model_layers_8_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_8_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(212816064)))]; + tensor x_193_cast_fp16 = layer_norm(axes = x_193_axes_0, beta = model_layers_8_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_8_norm_conv_weight_to_fp16, x = input_455_cast_fp16)[name = tensor("x_193_cast_fp16")]; + tensor input_457_perm_0 = const()[name = tensor("input_457_perm_0"), val = tensor([0, 2, 1])]; + tensor input_459_pad_type_0 = const()[name = tensor("input_459_pad_type_0"), val = tensor("valid")]; + tensor input_459_strides_0 = const()[name = tensor("input_459_strides_0"), val = tensor([1])]; + tensor input_459_pad_0 = const()[name = tensor("input_459_pad_0"), val = tensor([0, 0])]; + tensor input_459_dilations_0 = const()[name = tensor("input_459_dilations_0"), val = tensor([1])]; + tensor input_459_groups_0 = const()[name = tensor("input_459_groups_0"), val = tensor(1)]; + tensor model_layers_8_conv_pointwise_conv1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_8_conv_pointwise_conv1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(212818176))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(214915392))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(19330816)))]; + tensor input_457_cast_fp16 = transpose(perm = input_457_perm_0, x = x_193_cast_fp16)[name = tensor("transpose_250")]; + tensor input_459_cast_fp16 = conv(dilations = input_459_dilations_0, groups = input_459_groups_0, pad = input_459_pad_0, pad_type = input_459_pad_type_0, strides = input_459_strides_0, weight = model_layers_8_conv_pointwise_conv1_weight_to_fp16_quantized, x = input_457_cast_fp16)[name = tensor("input_459_cast_fp16")]; + tensor x_195_split_num_splits_0 = const()[name = tensor("x_195_split_num_splits_0"), val = tensor(2)]; + tensor x_195_split_axis_0 = const()[name = tensor("x_195_split_axis_0"), val = tensor(1)]; + tensor x_195_split_cast_fp16_0, tensor x_195_split_cast_fp16_1 = split(axis = x_195_split_axis_0, num_splits = x_195_split_num_splits_0, x = input_459_cast_fp16)[name = tensor("x_195_split_cast_fp16")]; + tensor x_195_split_1_sigmoid_cast_fp16 = sigmoid(x = x_195_split_cast_fp16_1)[name = tensor("x_195_split_1_sigmoid_cast_fp16")]; + tensor x_195_cast_fp16 = mul(x = x_195_split_cast_fp16_0, y = x_195_split_1_sigmoid_cast_fp16)[name = tensor("x_195_cast_fp16")]; + tensor input_461_cast_fp16 = select(a = var_6_to_fp16, b = x_195_cast_fp16, cond = var_323)[name = tensor("input_461_cast_fp16")]; + tensor input_463_pad_0 = const()[name = tensor("input_463_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_463_mode_0 = const()[name = tensor("input_463_mode_0"), val = tensor("constant")]; + tensor const_97_to_fp16 = const()[name = tensor("const_97_to_fp16"), val = tensor(0x0p+0)]; + tensor input_463_cast_fp16 = pad(constant_val = const_97_to_fp16, mode = input_463_mode_0, pad = input_463_pad_0, x = input_461_cast_fp16)[name = tensor("input_463_cast_fp16")]; + tensor input_465_pad_type_0 = const()[name = tensor("input_465_pad_type_0"), val = tensor("valid")]; + tensor input_465_groups_0 = const()[name = tensor("input_465_groups_0"), val = tensor(1024)]; + tensor input_465_strides_0 = const()[name = tensor("input_465_strides_0"), val = tensor([1])]; + tensor input_465_pad_0 = const()[name = tensor("input_465_pad_0"), val = tensor([0, 0])]; + tensor input_465_dilations_0 = const()[name = tensor("input_465_dilations_0"), val = tensor([1])]; + tensor const_264_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("const_264_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(214919552))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(214928832))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor const_265_to_fp16 = const()[name = tensor("const_265_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(214930944)))]; + tensor input_467_cast_fp16 = conv(bias = const_265_to_fp16, dilations = input_465_dilations_0, groups = input_465_groups_0, pad = input_465_pad_0, pad_type = input_465_pad_type_0, strides = input_465_strides_0, weight = const_264_to_fp16_quantized, x = input_463_cast_fp16)[name = tensor("input_467_cast_fp16")]; + tensor input_469_cast_fp16 = silu(x = input_467_cast_fp16)[name = tensor("input_469_cast_fp16")]; + tensor x_197_pad_type_0 = const()[name = tensor("x_197_pad_type_0"), val = tensor("valid")]; + tensor x_197_strides_0 = const()[name = tensor("x_197_strides_0"), val = tensor([1])]; + tensor x_197_pad_0 = const()[name = tensor("x_197_pad_0"), val = tensor([0, 0])]; + tensor x_197_dilations_0 = const()[name = tensor("x_197_dilations_0"), val = tensor([1])]; + tensor x_197_groups_0 = const()[name = tensor("x_197_groups_0"), val = tensor(1)]; + tensor model_layers_8_conv_pointwise_conv2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_8_conv_pointwise_conv2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(214933056))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(215981696))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor x_197_cast_fp16 = conv(dilations = x_197_dilations_0, groups = x_197_groups_0, pad = x_197_pad_0, pad_type = x_197_pad_type_0, strides = x_197_strides_0, weight = model_layers_8_conv_pointwise_conv2_weight_to_fp16_quantized, x = input_469_cast_fp16)[name = tensor("x_197_cast_fp16")]; + tensor input_471_perm_0 = const()[name = tensor("input_471_perm_0"), val = tensor([0, 2, 1])]; + tensor input_471_cast_fp16 = transpose(perm = input_471_perm_0, x = x_197_cast_fp16)[name = tensor("transpose_249")]; + tensor input_473_cast_fp16 = add(x = input_455_cast_fp16, y = input_471_cast_fp16)[name = tensor("input_473_cast_fp16")]; + tensor input_475_axes_0 = const()[name = tensor("input_475_axes_0"), val = tensor([-1])]; + tensor model_layers_8_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_8_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(215983808)))]; + tensor model_layers_8_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_8_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(215985920)))]; + tensor input_475_cast_fp16 = layer_norm(axes = input_475_axes_0, beta = model_layers_8_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_8_norm_feed_forward2_weight_to_fp16, x = input_473_cast_fp16)[name = tensor("input_475_cast_fp16")]; + tensor model_layers_8_feed_forward2_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_8_feed_forward2_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(215988032))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(220182400))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_80_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_8_feed_forward2_linear1_weight_to_fp16_quantized, x = input_475_cast_fp16)[name = tensor("linear_80_cast_fp16")]; + tensor input_479_cast_fp16 = silu(x = linear_80_cast_fp16)[name = tensor("input_479_cast_fp16")]; + tensor model_layers_8_feed_forward2_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_8_feed_forward2_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(220190656))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(224385024))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_81_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_8_feed_forward2_linear2_weight_to_fp16_quantized, x = input_479_cast_fp16)[name = tensor("linear_81_cast_fp16")]; + tensor var_1665_to_fp16 = const()[name = tensor("op_1665_to_fp16"), val = tensor(0x1p-1)]; + tensor var_1666_cast_fp16 = mul(x = linear_81_cast_fp16, y = var_1665_to_fp16)[name = tensor("op_1666_cast_fp16")]; + tensor input_485_cast_fp16 = add(x = input_473_cast_fp16, y = var_1666_cast_fp16)[name = tensor("input_485_cast_fp16")]; + tensor input_487_axes_0 = const()[name = tensor("input_487_axes_0"), val = tensor([-1])]; + tensor model_layers_8_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_8_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(224387136)))]; + tensor model_layers_8_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_8_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(224389248)))]; + tensor input_487_cast_fp16 = layer_norm(axes = input_487_axes_0, beta = model_layers_8_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_8_norm_out_weight_to_fp16, x = input_485_cast_fp16)[name = tensor("input_487_cast_fp16")]; + tensor input_489_axes_0 = const()[name = tensor("input_489_axes_0"), val = tensor([-1])]; + tensor model_layers_9_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_9_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(224391360)))]; + tensor model_layers_9_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_9_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(224393472)))]; + tensor input_489_cast_fp16 = layer_norm(axes = input_489_axes_0, beta = model_layers_9_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_9_norm_feed_forward1_weight_to_fp16, x = input_487_cast_fp16)[name = tensor("input_489_cast_fp16")]; + tensor model_layers_9_feed_forward1_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_9_feed_forward1_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(224395584))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(228589952))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_82_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_9_feed_forward1_linear1_weight_to_fp16_quantized, x = input_489_cast_fp16)[name = tensor("linear_82_cast_fp16")]; + tensor input_493_cast_fp16 = silu(x = linear_82_cast_fp16)[name = tensor("input_493_cast_fp16")]; + tensor model_layers_9_feed_forward1_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_9_feed_forward1_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(228598208))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(232792576))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_83_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_9_feed_forward1_linear2_weight_to_fp16_quantized, x = input_493_cast_fp16)[name = tensor("linear_83_cast_fp16")]; + tensor var_1694_to_fp16 = const()[name = tensor("op_1694_to_fp16"), val = tensor(0x1p-1)]; + tensor var_1695_cast_fp16 = mul(x = linear_83_cast_fp16, y = var_1694_to_fp16)[name = tensor("op_1695_cast_fp16")]; + tensor input_499_cast_fp16 = add(x = input_487_cast_fp16, y = var_1695_cast_fp16)[name = tensor("input_499_cast_fp16")]; + tensor query_19_axes_0 = const()[name = tensor("query_19_axes_0"), val = tensor([-1])]; + tensor model_layers_9_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_9_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(232794688)))]; + tensor model_layers_9_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_9_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(232796800)))]; + tensor query_19_cast_fp16 = layer_norm(axes = query_19_axes_0, beta = model_layers_9_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_9_norm_self_att_weight_to_fp16, x = input_499_cast_fp16)[name = tensor("query_19_cast_fp16")]; + tensor model_layers_9_self_attn_linear_q_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_9_self_attn_linear_q_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(232798912))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(233847552))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_84_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_9_self_attn_linear_q_weight_to_fp16_quantized, x = query_19_cast_fp16)[name = tensor("linear_84_cast_fp16")]; + tensor var_1711 = const()[name = tensor("op_1711"), val = tensor([1, -1, 8, 128])]; + tensor q_55_cast_fp16 = reshape(shape = var_1711, x = linear_84_cast_fp16)[name = tensor("q_55_cast_fp16")]; + tensor model_layers_9_self_attn_linear_k_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_9_self_attn_linear_k_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(233849664))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(234898304))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_85_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_9_self_attn_linear_k_weight_to_fp16_quantized, x = query_19_cast_fp16)[name = tensor("linear_85_cast_fp16")]; + tensor var_1715 = const()[name = tensor("op_1715"), val = tensor([1, -1, 8, 128])]; + tensor k_37_cast_fp16 = reshape(shape = var_1715, x = linear_85_cast_fp16)[name = tensor("k_37_cast_fp16")]; + tensor model_layers_9_self_attn_linear_v_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_9_self_attn_linear_v_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(234900416))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(235949056))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_86_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_9_self_attn_linear_v_weight_to_fp16_quantized, x = query_19_cast_fp16)[name = tensor("linear_86_cast_fp16")]; + tensor var_1719 = const()[name = tensor("op_1719"), val = tensor([1, -1, 8, 128])]; + tensor v_19_cast_fp16 = reshape(shape = var_1719, x = linear_86_cast_fp16)[name = tensor("v_19_cast_fp16")]; + tensor value_19_perm_0 = const()[name = tensor("value_19_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor model_layers_9_self_attn_pos_bias_u_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_9_self_attn_pos_bias_u_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(235951168))), scale = tensor([0x1.1d4p-7, 0x1.4c8p-8, 0x1.cap-8, 0x1.db8p-7, 0x1.d7cp-8, 0x1.1ep-7, 0x1.d98p-8, 0x1.1dp-7]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_1731_cast_fp16 = add(x = q_55_cast_fp16, y = model_layers_9_self_attn_pos_bias_u_to_fp16_quantized)[name = tensor("op_1731_cast_fp16")]; + tensor model_layers_9_self_attn_pos_bias_v_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_9_self_attn_pos_bias_v_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(235952256))), scale = tensor([0x1.324p-8, 0x1.9ap-7, 0x1.eecp-8, 0x1.d4p-9, 0x1.4b4p-9, 0x1.17cp-7, 0x1.0bcp-7, 0x1.46cp-8]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_1733_cast_fp16 = add(x = q_55_cast_fp16, y = model_layers_9_self_attn_pos_bias_v_to_fp16_quantized)[name = tensor("op_1733_cast_fp16")]; + tensor q_with_bias_v_19_perm_0 = const()[name = tensor("q_with_bias_v_19_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor x_205_transpose_x_0 = const()[name = tensor("x_205_transpose_x_0"), val = tensor(false)]; + tensor x_205_transpose_y_0 = const()[name = tensor("x_205_transpose_y_0"), val = tensor(false)]; + tensor op_1735_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(3), name = tensor("op_1735_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(235953344))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(236210432))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(16177728)))]; + tensor q_with_bias_v_19_cast_fp16 = transpose(perm = q_with_bias_v_19_perm_0, x = var_1733_cast_fp16)[name = tensor("transpose_248")]; + tensor x_205_cast_fp16 = matmul(transpose_x = x_205_transpose_x_0, transpose_y = x_205_transpose_y_0, x = q_with_bias_v_19_cast_fp16, y = op_1735_to_fp16_quantized)[name = tensor("x_205_cast_fp16")]; + tensor x_207_pad_0 = const()[name = tensor("x_207_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_207_mode_0 = const()[name = tensor("x_207_mode_0"), val = tensor("constant")]; + tensor const_104_to_fp16 = const()[name = tensor("const_104_to_fp16"), val = tensor(0x0p+0)]; + tensor x_207_cast_fp16 = pad(constant_val = const_104_to_fp16, mode = x_207_mode_0, pad = x_207_pad_0, x = x_205_cast_fp16)[name = tensor("x_207_cast_fp16")]; + tensor var_1743 = const()[name = tensor("op_1743"), val = tensor([1, 8, -1, 126])]; + tensor x_209_cast_fp16 = reshape(shape = var_1743, x = x_207_cast_fp16)[name = tensor("x_209_cast_fp16")]; + tensor var_1747_begin_0 = const()[name = tensor("op_1747_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_1747_end_0 = const()[name = tensor("op_1747_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_1747_end_mask_0 = const()[name = tensor("op_1747_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_1747_cast_fp16 = slice_by_index(begin = var_1747_begin_0, end = var_1747_end_0, end_mask = var_1747_end_mask_0, x = x_209_cast_fp16)[name = tensor("op_1747_cast_fp16")]; + tensor var_1748 = const()[name = tensor("op_1748"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_37_cast_fp16 = reshape(shape = var_1748, x = var_1747_cast_fp16)[name = tensor("matrix_bd_37_cast_fp16")]; + tensor matrix_ac_19_transpose_x_0 = const()[name = tensor("matrix_ac_19_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_19_transpose_y_0 = const()[name = tensor("matrix_ac_19_transpose_y_0"), val = tensor(false)]; + tensor transpose_114_perm_0 = const()[name = tensor("transpose_114_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_115_perm_0 = const()[name = tensor("transpose_115_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_115 = transpose(perm = transpose_115_perm_0, x = k_37_cast_fp16)[name = tensor("transpose_246")]; + tensor transpose_114 = transpose(perm = transpose_114_perm_0, x = var_1731_cast_fp16)[name = tensor("transpose_247")]; + tensor matrix_ac_19_cast_fp16 = matmul(transpose_x = matrix_ac_19_transpose_x_0, transpose_y = matrix_ac_19_transpose_y_0, x = transpose_114, y = transpose_115)[name = tensor("matrix_ac_19_cast_fp16")]; + tensor matrix_bd_39_begin_0 = const()[name = tensor("matrix_bd_39_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_39_end_0 = const()[name = tensor("matrix_bd_39_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_39_end_mask_0 = const()[name = tensor("matrix_bd_39_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_39_cast_fp16 = slice_by_index(begin = matrix_bd_39_begin_0, end = matrix_bd_39_end_0, end_mask = matrix_bd_39_end_mask_0, x = matrix_bd_37_cast_fp16)[name = tensor("matrix_bd_39_cast_fp16")]; + tensor var_1757_cast_fp16 = add(x = matrix_ac_19_cast_fp16, y = matrix_bd_39_cast_fp16)[name = tensor("op_1757_cast_fp16")]; + tensor _inversed_scores_37_y_0_to_fp16 = const()[name = tensor("_inversed_scores_37_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_37_cast_fp16 = mul(x = var_1757_cast_fp16, y = _inversed_scores_37_y_0_to_fp16)[name = tensor("_inversed_scores_37_cast_fp16")]; + tensor scores_39_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_37_cast_fp16, cond = mask_3)[name = tensor("scores_39_cast_fp16")]; + tensor var_1763_cast_fp16 = softmax(axis = var_25, x = scores_39_cast_fp16)[name = tensor("op_1763_cast_fp16")]; + tensor input_501_cast_fp16 = select(a = var_6_to_fp16, b = var_1763_cast_fp16, cond = mask_3)[name = tensor("input_501_cast_fp16")]; + tensor x_211_transpose_x_0 = const()[name = tensor("x_211_transpose_x_0"), val = tensor(false)]; + tensor x_211_transpose_y_0 = const()[name = tensor("x_211_transpose_y_0"), val = tensor(false)]; + tensor value_19_cast_fp16 = transpose(perm = value_19_perm_0, x = v_19_cast_fp16)[name = tensor("transpose_245")]; + tensor x_211_cast_fp16 = matmul(transpose_x = x_211_transpose_x_0, transpose_y = x_211_transpose_y_0, x = input_501_cast_fp16, y = value_19_cast_fp16)[name = tensor("x_211_cast_fp16")]; + tensor var_1767_perm_0 = const()[name = tensor("op_1767_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_1768 = const()[name = tensor("op_1768"), val = tensor([1, -1, 1024])]; + tensor var_1767_cast_fp16 = transpose(perm = var_1767_perm_0, x = x_211_cast_fp16)[name = tensor("transpose_244")]; + tensor input_503_cast_fp16 = reshape(shape = var_1768, x = var_1767_cast_fp16)[name = tensor("input_503_cast_fp16")]; + tensor model_layers_9_self_attn_linear_out_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_9_self_attn_linear_out_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(236211008))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(237259648))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_88_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_9_self_attn_linear_out_weight_to_fp16_quantized, x = input_503_cast_fp16)[name = tensor("linear_88_cast_fp16")]; + tensor input_507_cast_fp16 = add(x = input_499_cast_fp16, y = linear_88_cast_fp16)[name = tensor("input_507_cast_fp16")]; + tensor x_215_axes_0 = const()[name = tensor("x_215_axes_0"), val = tensor([-1])]; + tensor model_layers_9_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_9_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(237261760)))]; + tensor model_layers_9_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_9_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(237263872)))]; + tensor x_215_cast_fp16 = layer_norm(axes = x_215_axes_0, beta = model_layers_9_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_9_norm_conv_weight_to_fp16, x = input_507_cast_fp16)[name = tensor("x_215_cast_fp16")]; + tensor input_509_perm_0 = const()[name = tensor("input_509_perm_0"), val = tensor([0, 2, 1])]; + tensor input_511_pad_type_0 = const()[name = tensor("input_511_pad_type_0"), val = tensor("valid")]; + tensor input_511_strides_0 = const()[name = tensor("input_511_strides_0"), val = tensor([1])]; + tensor input_511_pad_0 = const()[name = tensor("input_511_pad_0"), val = tensor([0, 0])]; + tensor input_511_dilations_0 = const()[name = tensor("input_511_dilations_0"), val = tensor([1])]; + tensor input_511_groups_0 = const()[name = tensor("input_511_groups_0"), val = tensor(1)]; + tensor model_layers_9_conv_pointwise_conv1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_9_conv_pointwise_conv1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(237265984))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(239363200))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(19330816)))]; + tensor input_509_cast_fp16 = transpose(perm = input_509_perm_0, x = x_215_cast_fp16)[name = tensor("transpose_243")]; + tensor input_511_cast_fp16 = conv(dilations = input_511_dilations_0, groups = input_511_groups_0, pad = input_511_pad_0, pad_type = input_511_pad_type_0, strides = input_511_strides_0, weight = model_layers_9_conv_pointwise_conv1_weight_to_fp16_quantized, x = input_509_cast_fp16)[name = tensor("input_511_cast_fp16")]; + tensor x_217_split_num_splits_0 = const()[name = tensor("x_217_split_num_splits_0"), val = tensor(2)]; + tensor x_217_split_axis_0 = const()[name = tensor("x_217_split_axis_0"), val = tensor(1)]; + tensor x_217_split_cast_fp16_0, tensor x_217_split_cast_fp16_1 = split(axis = x_217_split_axis_0, num_splits = x_217_split_num_splits_0, x = input_511_cast_fp16)[name = tensor("x_217_split_cast_fp16")]; + tensor x_217_split_1_sigmoid_cast_fp16 = sigmoid(x = x_217_split_cast_fp16_1)[name = tensor("x_217_split_1_sigmoid_cast_fp16")]; + tensor x_217_cast_fp16 = mul(x = x_217_split_cast_fp16_0, y = x_217_split_1_sigmoid_cast_fp16)[name = tensor("x_217_cast_fp16")]; + tensor input_513_cast_fp16 = select(a = var_6_to_fp16, b = x_217_cast_fp16, cond = var_323)[name = tensor("input_513_cast_fp16")]; + tensor input_515_pad_0 = const()[name = tensor("input_515_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_515_mode_0 = const()[name = tensor("input_515_mode_0"), val = tensor("constant")]; + tensor const_107_to_fp16 = const()[name = tensor("const_107_to_fp16"), val = tensor(0x0p+0)]; + tensor input_515_cast_fp16 = pad(constant_val = const_107_to_fp16, mode = input_515_mode_0, pad = input_515_pad_0, x = input_513_cast_fp16)[name = tensor("input_515_cast_fp16")]; + tensor input_517_pad_type_0 = const()[name = tensor("input_517_pad_type_0"), val = tensor("valid")]; + tensor input_517_groups_0 = const()[name = tensor("input_517_groups_0"), val = tensor(1024)]; + tensor input_517_strides_0 = const()[name = tensor("input_517_strides_0"), val = tensor([1])]; + tensor input_517_pad_0 = const()[name = tensor("input_517_pad_0"), val = tensor([0, 0])]; + tensor input_517_dilations_0 = const()[name = tensor("input_517_dilations_0"), val = tensor([1])]; + tensor const_266_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("const_266_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(239367360))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(239376640))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor const_267_to_fp16 = const()[name = tensor("const_267_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(239378752)))]; + tensor input_519_cast_fp16 = conv(bias = const_267_to_fp16, dilations = input_517_dilations_0, groups = input_517_groups_0, pad = input_517_pad_0, pad_type = input_517_pad_type_0, strides = input_517_strides_0, weight = const_266_to_fp16_quantized, x = input_515_cast_fp16)[name = tensor("input_519_cast_fp16")]; + tensor input_521_cast_fp16 = silu(x = input_519_cast_fp16)[name = tensor("input_521_cast_fp16")]; + tensor x_219_pad_type_0 = const()[name = tensor("x_219_pad_type_0"), val = tensor("valid")]; + tensor x_219_strides_0 = const()[name = tensor("x_219_strides_0"), val = tensor([1])]; + tensor x_219_pad_0 = const()[name = tensor("x_219_pad_0"), val = tensor([0, 0])]; + tensor x_219_dilations_0 = const()[name = tensor("x_219_dilations_0"), val = tensor([1])]; + tensor x_219_groups_0 = const()[name = tensor("x_219_groups_0"), val = tensor(1)]; + tensor model_layers_9_conv_pointwise_conv2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_9_conv_pointwise_conv2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(239380864))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(240429504))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor x_219_cast_fp16 = conv(dilations = x_219_dilations_0, groups = x_219_groups_0, pad = x_219_pad_0, pad_type = x_219_pad_type_0, strides = x_219_strides_0, weight = model_layers_9_conv_pointwise_conv2_weight_to_fp16_quantized, x = input_521_cast_fp16)[name = tensor("x_219_cast_fp16")]; + tensor input_523_perm_0 = const()[name = tensor("input_523_perm_0"), val = tensor([0, 2, 1])]; + tensor input_523_cast_fp16 = transpose(perm = input_523_perm_0, x = x_219_cast_fp16)[name = tensor("transpose_242")]; + tensor input_525_cast_fp16 = add(x = input_507_cast_fp16, y = input_523_cast_fp16)[name = tensor("input_525_cast_fp16")]; + tensor input_527_axes_0 = const()[name = tensor("input_527_axes_0"), val = tensor([-1])]; + tensor model_layers_9_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_9_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(240431616)))]; + tensor model_layers_9_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_9_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(240433728)))]; + tensor input_527_cast_fp16 = layer_norm(axes = input_527_axes_0, beta = model_layers_9_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_9_norm_feed_forward2_weight_to_fp16, x = input_525_cast_fp16)[name = tensor("input_527_cast_fp16")]; + tensor model_layers_9_feed_forward2_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_9_feed_forward2_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(240435840))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(244630208))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_89_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_9_feed_forward2_linear1_weight_to_fp16_quantized, x = input_527_cast_fp16)[name = tensor("linear_89_cast_fp16")]; + tensor input_531_cast_fp16 = silu(x = linear_89_cast_fp16)[name = tensor("input_531_cast_fp16")]; + tensor model_layers_9_feed_forward2_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_9_feed_forward2_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(244638464))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(248832832))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_90_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_9_feed_forward2_linear2_weight_to_fp16_quantized, x = input_531_cast_fp16)[name = tensor("linear_90_cast_fp16")]; + tensor var_1828_to_fp16 = const()[name = tensor("op_1828_to_fp16"), val = tensor(0x1p-1)]; + tensor var_1829_cast_fp16 = mul(x = linear_90_cast_fp16, y = var_1828_to_fp16)[name = tensor("op_1829_cast_fp16")]; + tensor input_537_cast_fp16 = add(x = input_525_cast_fp16, y = var_1829_cast_fp16)[name = tensor("input_537_cast_fp16")]; + tensor input_539_axes_0 = const()[name = tensor("input_539_axes_0"), val = tensor([-1])]; + tensor model_layers_9_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_9_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(248834944)))]; + tensor model_layers_9_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_9_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(248837056)))]; + tensor input_539_cast_fp16 = layer_norm(axes = input_539_axes_0, beta = model_layers_9_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_9_norm_out_weight_to_fp16, x = input_537_cast_fp16)[name = tensor("input_539_cast_fp16")]; + tensor input_541_axes_0 = const()[name = tensor("input_541_axes_0"), val = tensor([-1])]; + tensor model_layers_10_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_10_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(248839168)))]; + tensor model_layers_10_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_10_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(248841280)))]; + tensor input_541_cast_fp16 = layer_norm(axes = input_541_axes_0, beta = model_layers_10_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_10_norm_feed_forward1_weight_to_fp16, x = input_539_cast_fp16)[name = tensor("input_541_cast_fp16")]; + tensor model_layers_10_feed_forward1_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_10_feed_forward1_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(248843392))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(253037760))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_91_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_10_feed_forward1_linear1_weight_to_fp16_quantized, x = input_541_cast_fp16)[name = tensor("linear_91_cast_fp16")]; + tensor input_545_cast_fp16 = silu(x = linear_91_cast_fp16)[name = tensor("input_545_cast_fp16")]; + tensor model_layers_10_feed_forward1_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_10_feed_forward1_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(253046016))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(257240384))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_92_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_10_feed_forward1_linear2_weight_to_fp16_quantized, x = input_545_cast_fp16)[name = tensor("linear_92_cast_fp16")]; + tensor var_1857_to_fp16 = const()[name = tensor("op_1857_to_fp16"), val = tensor(0x1p-1)]; + tensor var_1858_cast_fp16 = mul(x = linear_92_cast_fp16, y = var_1857_to_fp16)[name = tensor("op_1858_cast_fp16")]; + tensor input_551_cast_fp16 = add(x = input_539_cast_fp16, y = var_1858_cast_fp16)[name = tensor("input_551_cast_fp16")]; + tensor query_21_axes_0 = const()[name = tensor("query_21_axes_0"), val = tensor([-1])]; + tensor model_layers_10_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_10_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(257242496)))]; + tensor model_layers_10_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_10_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(257244608)))]; + tensor query_21_cast_fp16 = layer_norm(axes = query_21_axes_0, beta = model_layers_10_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_10_norm_self_att_weight_to_fp16, x = input_551_cast_fp16)[name = tensor("query_21_cast_fp16")]; + tensor model_layers_10_self_attn_linear_q_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_10_self_attn_linear_q_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(257246720))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(258295360))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_93_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_10_self_attn_linear_q_weight_to_fp16_quantized, x = query_21_cast_fp16)[name = tensor("linear_93_cast_fp16")]; + tensor var_1874 = const()[name = tensor("op_1874"), val = tensor([1, -1, 8, 128])]; + tensor q_61_cast_fp16 = reshape(shape = var_1874, x = linear_93_cast_fp16)[name = tensor("q_61_cast_fp16")]; + tensor model_layers_10_self_attn_linear_k_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_10_self_attn_linear_k_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(258297472))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(259346112))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_94_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_10_self_attn_linear_k_weight_to_fp16_quantized, x = query_21_cast_fp16)[name = tensor("linear_94_cast_fp16")]; + tensor var_1878 = const()[name = tensor("op_1878"), val = tensor([1, -1, 8, 128])]; + tensor k_41_cast_fp16 = reshape(shape = var_1878, x = linear_94_cast_fp16)[name = tensor("k_41_cast_fp16")]; + tensor model_layers_10_self_attn_linear_v_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_10_self_attn_linear_v_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(259348224))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(260396864))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_95_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_10_self_attn_linear_v_weight_to_fp16_quantized, x = query_21_cast_fp16)[name = tensor("linear_95_cast_fp16")]; + tensor var_1882 = const()[name = tensor("op_1882"), val = tensor([1, -1, 8, 128])]; + tensor v_21_cast_fp16 = reshape(shape = var_1882, x = linear_95_cast_fp16)[name = tensor("v_21_cast_fp16")]; + tensor value_21_perm_0 = const()[name = tensor("value_21_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor model_layers_10_self_attn_pos_bias_u_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_10_self_attn_pos_bias_u_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(260398976))), scale = tensor([0x1.b8p-8, 0x1.0f4p-7, 0x1.6fcp-7, 0x1.1a8p-8, 0x1.c58p-8, 0x1.268p-7, 0x1.fbp-8, 0x1.b58p-8]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_1894_cast_fp16 = add(x = q_61_cast_fp16, y = model_layers_10_self_attn_pos_bias_u_to_fp16_quantized)[name = tensor("op_1894_cast_fp16")]; + tensor model_layers_10_self_attn_pos_bias_v_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_10_self_attn_pos_bias_v_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(260400064))), scale = tensor([0x1.5e8p-7, 0x1.cd4p-8, 0x1.2bcp-9, 0x1.af8p-9, 0x1.69p-9, 0x1.164p-8, 0x1.42p-7, 0x1.d4p-8]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_1896_cast_fp16 = add(x = q_61_cast_fp16, y = model_layers_10_self_attn_pos_bias_v_to_fp16_quantized)[name = tensor("op_1896_cast_fp16")]; + tensor q_with_bias_v_21_perm_0 = const()[name = tensor("q_with_bias_v_21_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor x_227_transpose_x_0 = const()[name = tensor("x_227_transpose_x_0"), val = tensor(false)]; + tensor x_227_transpose_y_0 = const()[name = tensor("x_227_transpose_y_0"), val = tensor(false)]; + tensor op_1898_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(3), name = tensor("op_1898_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(260401152))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(260658240))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(16177728)))]; + tensor q_with_bias_v_21_cast_fp16 = transpose(perm = q_with_bias_v_21_perm_0, x = var_1896_cast_fp16)[name = tensor("transpose_241")]; + tensor x_227_cast_fp16 = matmul(transpose_x = x_227_transpose_x_0, transpose_y = x_227_transpose_y_0, x = q_with_bias_v_21_cast_fp16, y = op_1898_to_fp16_quantized)[name = tensor("x_227_cast_fp16")]; + tensor x_229_pad_0 = const()[name = tensor("x_229_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_229_mode_0 = const()[name = tensor("x_229_mode_0"), val = tensor("constant")]; + tensor const_114_to_fp16 = const()[name = tensor("const_114_to_fp16"), val = tensor(0x0p+0)]; + tensor x_229_cast_fp16 = pad(constant_val = const_114_to_fp16, mode = x_229_mode_0, pad = x_229_pad_0, x = x_227_cast_fp16)[name = tensor("x_229_cast_fp16")]; + tensor var_1906 = const()[name = tensor("op_1906"), val = tensor([1, 8, -1, 126])]; + tensor x_231_cast_fp16 = reshape(shape = var_1906, x = x_229_cast_fp16)[name = tensor("x_231_cast_fp16")]; + tensor var_1910_begin_0 = const()[name = tensor("op_1910_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_1910_end_0 = const()[name = tensor("op_1910_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_1910_end_mask_0 = const()[name = tensor("op_1910_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_1910_cast_fp16 = slice_by_index(begin = var_1910_begin_0, end = var_1910_end_0, end_mask = var_1910_end_mask_0, x = x_231_cast_fp16)[name = tensor("op_1910_cast_fp16")]; + tensor var_1911 = const()[name = tensor("op_1911"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_41_cast_fp16 = reshape(shape = var_1911, x = var_1910_cast_fp16)[name = tensor("matrix_bd_41_cast_fp16")]; + tensor matrix_ac_21_transpose_x_0 = const()[name = tensor("matrix_ac_21_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_21_transpose_y_0 = const()[name = tensor("matrix_ac_21_transpose_y_0"), val = tensor(false)]; + tensor transpose_116_perm_0 = const()[name = tensor("transpose_116_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_117_perm_0 = const()[name = tensor("transpose_117_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_117 = transpose(perm = transpose_117_perm_0, x = k_41_cast_fp16)[name = tensor("transpose_239")]; + tensor transpose_116 = transpose(perm = transpose_116_perm_0, x = var_1894_cast_fp16)[name = tensor("transpose_240")]; + tensor matrix_ac_21_cast_fp16 = matmul(transpose_x = matrix_ac_21_transpose_x_0, transpose_y = matrix_ac_21_transpose_y_0, x = transpose_116, y = transpose_117)[name = tensor("matrix_ac_21_cast_fp16")]; + tensor matrix_bd_43_begin_0 = const()[name = tensor("matrix_bd_43_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_43_end_0 = const()[name = tensor("matrix_bd_43_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_43_end_mask_0 = const()[name = tensor("matrix_bd_43_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_43_cast_fp16 = slice_by_index(begin = matrix_bd_43_begin_0, end = matrix_bd_43_end_0, end_mask = matrix_bd_43_end_mask_0, x = matrix_bd_41_cast_fp16)[name = tensor("matrix_bd_43_cast_fp16")]; + tensor var_1920_cast_fp16 = add(x = matrix_ac_21_cast_fp16, y = matrix_bd_43_cast_fp16)[name = tensor("op_1920_cast_fp16")]; + tensor _inversed_scores_41_y_0_to_fp16 = const()[name = tensor("_inversed_scores_41_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_41_cast_fp16 = mul(x = var_1920_cast_fp16, y = _inversed_scores_41_y_0_to_fp16)[name = tensor("_inversed_scores_41_cast_fp16")]; + tensor scores_43_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_41_cast_fp16, cond = mask_3)[name = tensor("scores_43_cast_fp16")]; + tensor var_1926_cast_fp16 = softmax(axis = var_25, x = scores_43_cast_fp16)[name = tensor("op_1926_cast_fp16")]; + tensor input_553_cast_fp16 = select(a = var_6_to_fp16, b = var_1926_cast_fp16, cond = mask_3)[name = tensor("input_553_cast_fp16")]; + tensor x_233_transpose_x_0 = const()[name = tensor("x_233_transpose_x_0"), val = tensor(false)]; + tensor x_233_transpose_y_0 = const()[name = tensor("x_233_transpose_y_0"), val = tensor(false)]; + tensor value_21_cast_fp16 = transpose(perm = value_21_perm_0, x = v_21_cast_fp16)[name = tensor("transpose_238")]; + tensor x_233_cast_fp16 = matmul(transpose_x = x_233_transpose_x_0, transpose_y = x_233_transpose_y_0, x = input_553_cast_fp16, y = value_21_cast_fp16)[name = tensor("x_233_cast_fp16")]; + tensor var_1930_perm_0 = const()[name = tensor("op_1930_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_1931 = const()[name = tensor("op_1931"), val = tensor([1, -1, 1024])]; + tensor var_1930_cast_fp16 = transpose(perm = var_1930_perm_0, x = x_233_cast_fp16)[name = tensor("transpose_237")]; + tensor input_555_cast_fp16 = reshape(shape = var_1931, x = var_1930_cast_fp16)[name = tensor("input_555_cast_fp16")]; + tensor model_layers_10_self_attn_linear_out_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_10_self_attn_linear_out_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(260658816))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(261707456))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_97_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_10_self_attn_linear_out_weight_to_fp16_quantized, x = input_555_cast_fp16)[name = tensor("linear_97_cast_fp16")]; + tensor input_559_cast_fp16 = add(x = input_551_cast_fp16, y = linear_97_cast_fp16)[name = tensor("input_559_cast_fp16")]; + tensor x_237_axes_0 = const()[name = tensor("x_237_axes_0"), val = tensor([-1])]; + tensor model_layers_10_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_10_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(261709568)))]; + tensor model_layers_10_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_10_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(261711680)))]; + tensor x_237_cast_fp16 = layer_norm(axes = x_237_axes_0, beta = model_layers_10_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_10_norm_conv_weight_to_fp16, x = input_559_cast_fp16)[name = tensor("x_237_cast_fp16")]; + tensor input_561_perm_0 = const()[name = tensor("input_561_perm_0"), val = tensor([0, 2, 1])]; + tensor input_563_pad_type_0 = const()[name = tensor("input_563_pad_type_0"), val = tensor("valid")]; + tensor input_563_strides_0 = const()[name = tensor("input_563_strides_0"), val = tensor([1])]; + tensor input_563_pad_0 = const()[name = tensor("input_563_pad_0"), val = tensor([0, 0])]; + tensor input_563_dilations_0 = const()[name = tensor("input_563_dilations_0"), val = tensor([1])]; + tensor input_563_groups_0 = const()[name = tensor("input_563_groups_0"), val = tensor(1)]; + tensor model_layers_10_conv_pointwise_conv1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_10_conv_pointwise_conv1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(261713792))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(263811008))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(19330816)))]; + tensor input_561_cast_fp16 = transpose(perm = input_561_perm_0, x = x_237_cast_fp16)[name = tensor("transpose_236")]; + tensor input_563_cast_fp16 = conv(dilations = input_563_dilations_0, groups = input_563_groups_0, pad = input_563_pad_0, pad_type = input_563_pad_type_0, strides = input_563_strides_0, weight = model_layers_10_conv_pointwise_conv1_weight_to_fp16_quantized, x = input_561_cast_fp16)[name = tensor("input_563_cast_fp16")]; + tensor x_239_split_num_splits_0 = const()[name = tensor("x_239_split_num_splits_0"), val = tensor(2)]; + tensor x_239_split_axis_0 = const()[name = tensor("x_239_split_axis_0"), val = tensor(1)]; + tensor x_239_split_cast_fp16_0, tensor x_239_split_cast_fp16_1 = split(axis = x_239_split_axis_0, num_splits = x_239_split_num_splits_0, x = input_563_cast_fp16)[name = tensor("x_239_split_cast_fp16")]; + tensor x_239_split_1_sigmoid_cast_fp16 = sigmoid(x = x_239_split_cast_fp16_1)[name = tensor("x_239_split_1_sigmoid_cast_fp16")]; + tensor x_239_cast_fp16 = mul(x = x_239_split_cast_fp16_0, y = x_239_split_1_sigmoid_cast_fp16)[name = tensor("x_239_cast_fp16")]; + tensor input_565_cast_fp16 = select(a = var_6_to_fp16, b = x_239_cast_fp16, cond = var_323)[name = tensor("input_565_cast_fp16")]; + tensor input_567_pad_0 = const()[name = tensor("input_567_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_567_mode_0 = const()[name = tensor("input_567_mode_0"), val = tensor("constant")]; + tensor const_117_to_fp16 = const()[name = tensor("const_117_to_fp16"), val = tensor(0x0p+0)]; + tensor input_567_cast_fp16 = pad(constant_val = const_117_to_fp16, mode = input_567_mode_0, pad = input_567_pad_0, x = input_565_cast_fp16)[name = tensor("input_567_cast_fp16")]; + tensor input_569_pad_type_0 = const()[name = tensor("input_569_pad_type_0"), val = tensor("valid")]; + tensor input_569_groups_0 = const()[name = tensor("input_569_groups_0"), val = tensor(1024)]; + tensor input_569_strides_0 = const()[name = tensor("input_569_strides_0"), val = tensor([1])]; + tensor input_569_pad_0 = const()[name = tensor("input_569_pad_0"), val = tensor([0, 0])]; + tensor input_569_dilations_0 = const()[name = tensor("input_569_dilations_0"), val = tensor([1])]; + tensor const_268_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("const_268_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(263815168))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(263824448))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor const_269_to_fp16 = const()[name = tensor("const_269_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(263826560)))]; + tensor input_571_cast_fp16 = conv(bias = const_269_to_fp16, dilations = input_569_dilations_0, groups = input_569_groups_0, pad = input_569_pad_0, pad_type = input_569_pad_type_0, strides = input_569_strides_0, weight = const_268_to_fp16_quantized, x = input_567_cast_fp16)[name = tensor("input_571_cast_fp16")]; + tensor input_573_cast_fp16 = silu(x = input_571_cast_fp16)[name = tensor("input_573_cast_fp16")]; + tensor x_241_pad_type_0 = const()[name = tensor("x_241_pad_type_0"), val = tensor("valid")]; + tensor x_241_strides_0 = const()[name = tensor("x_241_strides_0"), val = tensor([1])]; + tensor x_241_pad_0 = const()[name = tensor("x_241_pad_0"), val = tensor([0, 0])]; + tensor x_241_dilations_0 = const()[name = tensor("x_241_dilations_0"), val = tensor([1])]; + tensor x_241_groups_0 = const()[name = tensor("x_241_groups_0"), val = tensor(1)]; + tensor model_layers_10_conv_pointwise_conv2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_10_conv_pointwise_conv2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(263828672))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(264877312))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor x_241_cast_fp16 = conv(dilations = x_241_dilations_0, groups = x_241_groups_0, pad = x_241_pad_0, pad_type = x_241_pad_type_0, strides = x_241_strides_0, weight = model_layers_10_conv_pointwise_conv2_weight_to_fp16_quantized, x = input_573_cast_fp16)[name = tensor("x_241_cast_fp16")]; + tensor input_575_perm_0 = const()[name = tensor("input_575_perm_0"), val = tensor([0, 2, 1])]; + tensor input_575_cast_fp16 = transpose(perm = input_575_perm_0, x = x_241_cast_fp16)[name = tensor("transpose_235")]; + tensor input_577_cast_fp16 = add(x = input_559_cast_fp16, y = input_575_cast_fp16)[name = tensor("input_577_cast_fp16")]; + tensor input_579_axes_0 = const()[name = tensor("input_579_axes_0"), val = tensor([-1])]; + tensor model_layers_10_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_10_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(264879424)))]; + tensor model_layers_10_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_10_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(264881536)))]; + tensor input_579_cast_fp16 = layer_norm(axes = input_579_axes_0, beta = model_layers_10_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_10_norm_feed_forward2_weight_to_fp16, x = input_577_cast_fp16)[name = tensor("input_579_cast_fp16")]; + tensor model_layers_10_feed_forward2_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_10_feed_forward2_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(264883648))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(269078016))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_98_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_10_feed_forward2_linear1_weight_to_fp16_quantized, x = input_579_cast_fp16)[name = tensor("linear_98_cast_fp16")]; + tensor input_583_cast_fp16 = silu(x = linear_98_cast_fp16)[name = tensor("input_583_cast_fp16")]; + tensor model_layers_10_feed_forward2_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_10_feed_forward2_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(269086272))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(273280640))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_99_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_10_feed_forward2_linear2_weight_to_fp16_quantized, x = input_583_cast_fp16)[name = tensor("linear_99_cast_fp16")]; + tensor var_1991_to_fp16 = const()[name = tensor("op_1991_to_fp16"), val = tensor(0x1p-1)]; + tensor var_1992_cast_fp16 = mul(x = linear_99_cast_fp16, y = var_1991_to_fp16)[name = tensor("op_1992_cast_fp16")]; + tensor input_589_cast_fp16 = add(x = input_577_cast_fp16, y = var_1992_cast_fp16)[name = tensor("input_589_cast_fp16")]; + tensor input_591_axes_0 = const()[name = tensor("input_591_axes_0"), val = tensor([-1])]; + tensor model_layers_10_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_10_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(273282752)))]; + tensor model_layers_10_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_10_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(273284864)))]; + tensor input_591_cast_fp16 = layer_norm(axes = input_591_axes_0, beta = model_layers_10_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_10_norm_out_weight_to_fp16, x = input_589_cast_fp16)[name = tensor("input_591_cast_fp16")]; + tensor input_593_axes_0 = const()[name = tensor("input_593_axes_0"), val = tensor([-1])]; + tensor model_layers_11_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_11_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(273286976)))]; + tensor model_layers_11_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_11_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(273289088)))]; + tensor input_593_cast_fp16 = layer_norm(axes = input_593_axes_0, beta = model_layers_11_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_11_norm_feed_forward1_weight_to_fp16, x = input_591_cast_fp16)[name = tensor("input_593_cast_fp16")]; + tensor model_layers_11_feed_forward1_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_11_feed_forward1_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(273291200))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(277485568))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_100_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_11_feed_forward1_linear1_weight_to_fp16_quantized, x = input_593_cast_fp16)[name = tensor("linear_100_cast_fp16")]; + tensor input_597_cast_fp16 = silu(x = linear_100_cast_fp16)[name = tensor("input_597_cast_fp16")]; + tensor model_layers_11_feed_forward1_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_11_feed_forward1_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(277493824))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(281688192))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_101_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_11_feed_forward1_linear2_weight_to_fp16_quantized, x = input_597_cast_fp16)[name = tensor("linear_101_cast_fp16")]; + tensor var_2020_to_fp16 = const()[name = tensor("op_2020_to_fp16"), val = tensor(0x1p-1)]; + tensor var_2021_cast_fp16 = mul(x = linear_101_cast_fp16, y = var_2020_to_fp16)[name = tensor("op_2021_cast_fp16")]; + tensor input_603_cast_fp16 = add(x = input_591_cast_fp16, y = var_2021_cast_fp16)[name = tensor("input_603_cast_fp16")]; + tensor query_23_axes_0 = const()[name = tensor("query_23_axes_0"), val = tensor([-1])]; + tensor model_layers_11_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_11_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(281690304)))]; + tensor model_layers_11_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_11_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(281692416)))]; + tensor query_23_cast_fp16 = layer_norm(axes = query_23_axes_0, beta = model_layers_11_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_11_norm_self_att_weight_to_fp16, x = input_603_cast_fp16)[name = tensor("query_23_cast_fp16")]; + tensor model_layers_11_self_attn_linear_q_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_11_self_attn_linear_q_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(281694528))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(282743168))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_102_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_11_self_attn_linear_q_weight_to_fp16_quantized, x = query_23_cast_fp16)[name = tensor("linear_102_cast_fp16")]; + tensor var_2037 = const()[name = tensor("op_2037"), val = tensor([1, -1, 8, 128])]; + tensor q_67_cast_fp16 = reshape(shape = var_2037, x = linear_102_cast_fp16)[name = tensor("q_67_cast_fp16")]; + tensor model_layers_11_self_attn_linear_k_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_11_self_attn_linear_k_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(282745280))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(283793920))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_103_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_11_self_attn_linear_k_weight_to_fp16_quantized, x = query_23_cast_fp16)[name = tensor("linear_103_cast_fp16")]; + tensor var_2041 = const()[name = tensor("op_2041"), val = tensor([1, -1, 8, 128])]; + tensor k_45_cast_fp16 = reshape(shape = var_2041, x = linear_103_cast_fp16)[name = tensor("k_45_cast_fp16")]; + tensor model_layers_11_self_attn_linear_v_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_11_self_attn_linear_v_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(283796032))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(284844672))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_104_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_11_self_attn_linear_v_weight_to_fp16_quantized, x = query_23_cast_fp16)[name = tensor("linear_104_cast_fp16")]; + tensor var_2045 = const()[name = tensor("op_2045"), val = tensor([1, -1, 8, 128])]; + tensor v_23_cast_fp16 = reshape(shape = var_2045, x = linear_104_cast_fp16)[name = tensor("v_23_cast_fp16")]; + tensor value_23_perm_0 = const()[name = tensor("value_23_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor model_layers_11_self_attn_pos_bias_u_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_11_self_attn_pos_bias_u_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(284846784))), scale = tensor([0x1.dd4p-8, 0x1.b6p-8, 0x1.e8p-8, 0x1.dap-8, 0x1.1a4p-7, 0x1.02cp-7, 0x1.f08p-8, 0x1.f24p-8]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_2057_cast_fp16 = add(x = q_67_cast_fp16, y = model_layers_11_self_attn_pos_bias_u_to_fp16_quantized)[name = tensor("op_2057_cast_fp16")]; + tensor model_layers_11_self_attn_pos_bias_v_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_11_self_attn_pos_bias_v_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(284847872))), scale = tensor([0x1.9f4p-8, 0x1.34cp-7, 0x1.fecp-9, 0x1.f3cp-8, 0x1.864p-8, 0x1.57p-8, 0x1.22cp-7, 0x1.248p-7]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_2059_cast_fp16 = add(x = q_67_cast_fp16, y = model_layers_11_self_attn_pos_bias_v_to_fp16_quantized)[name = tensor("op_2059_cast_fp16")]; + tensor q_with_bias_v_23_perm_0 = const()[name = tensor("q_with_bias_v_23_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor x_249_transpose_x_0 = const()[name = tensor("x_249_transpose_x_0"), val = tensor(false)]; + tensor x_249_transpose_y_0 = const()[name = tensor("x_249_transpose_y_0"), val = tensor(false)]; + tensor op_2061_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(3), name = tensor("op_2061_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(284848960))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(285106048))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(16177728)))]; + tensor q_with_bias_v_23_cast_fp16 = transpose(perm = q_with_bias_v_23_perm_0, x = var_2059_cast_fp16)[name = tensor("transpose_234")]; + tensor x_249_cast_fp16 = matmul(transpose_x = x_249_transpose_x_0, transpose_y = x_249_transpose_y_0, x = q_with_bias_v_23_cast_fp16, y = op_2061_to_fp16_quantized)[name = tensor("x_249_cast_fp16")]; + tensor x_251_pad_0 = const()[name = tensor("x_251_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_251_mode_0 = const()[name = tensor("x_251_mode_0"), val = tensor("constant")]; + tensor const_124_to_fp16 = const()[name = tensor("const_124_to_fp16"), val = tensor(0x0p+0)]; + tensor x_251_cast_fp16 = pad(constant_val = const_124_to_fp16, mode = x_251_mode_0, pad = x_251_pad_0, x = x_249_cast_fp16)[name = tensor("x_251_cast_fp16")]; + tensor var_2069 = const()[name = tensor("op_2069"), val = tensor([1, 8, -1, 126])]; + tensor x_253_cast_fp16 = reshape(shape = var_2069, x = x_251_cast_fp16)[name = tensor("x_253_cast_fp16")]; + tensor var_2073_begin_0 = const()[name = tensor("op_2073_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_2073_end_0 = const()[name = tensor("op_2073_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_2073_end_mask_0 = const()[name = tensor("op_2073_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_2073_cast_fp16 = slice_by_index(begin = var_2073_begin_0, end = var_2073_end_0, end_mask = var_2073_end_mask_0, x = x_253_cast_fp16)[name = tensor("op_2073_cast_fp16")]; + tensor var_2074 = const()[name = tensor("op_2074"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_45_cast_fp16 = reshape(shape = var_2074, x = var_2073_cast_fp16)[name = tensor("matrix_bd_45_cast_fp16")]; + tensor matrix_ac_23_transpose_x_0 = const()[name = tensor("matrix_ac_23_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_23_transpose_y_0 = const()[name = tensor("matrix_ac_23_transpose_y_0"), val = tensor(false)]; + tensor transpose_118_perm_0 = const()[name = tensor("transpose_118_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_119_perm_0 = const()[name = tensor("transpose_119_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_119 = transpose(perm = transpose_119_perm_0, x = k_45_cast_fp16)[name = tensor("transpose_232")]; + tensor transpose_118 = transpose(perm = transpose_118_perm_0, x = var_2057_cast_fp16)[name = tensor("transpose_233")]; + tensor matrix_ac_23_cast_fp16 = matmul(transpose_x = matrix_ac_23_transpose_x_0, transpose_y = matrix_ac_23_transpose_y_0, x = transpose_118, y = transpose_119)[name = tensor("matrix_ac_23_cast_fp16")]; + tensor matrix_bd_47_begin_0 = const()[name = tensor("matrix_bd_47_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_47_end_0 = const()[name = tensor("matrix_bd_47_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_47_end_mask_0 = const()[name = tensor("matrix_bd_47_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_47_cast_fp16 = slice_by_index(begin = matrix_bd_47_begin_0, end = matrix_bd_47_end_0, end_mask = matrix_bd_47_end_mask_0, x = matrix_bd_45_cast_fp16)[name = tensor("matrix_bd_47_cast_fp16")]; + tensor var_2083_cast_fp16 = add(x = matrix_ac_23_cast_fp16, y = matrix_bd_47_cast_fp16)[name = tensor("op_2083_cast_fp16")]; + tensor _inversed_scores_45_y_0_to_fp16 = const()[name = tensor("_inversed_scores_45_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_45_cast_fp16 = mul(x = var_2083_cast_fp16, y = _inversed_scores_45_y_0_to_fp16)[name = tensor("_inversed_scores_45_cast_fp16")]; + tensor scores_47_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_45_cast_fp16, cond = mask_3)[name = tensor("scores_47_cast_fp16")]; + tensor var_2089_cast_fp16 = softmax(axis = var_25, x = scores_47_cast_fp16)[name = tensor("op_2089_cast_fp16")]; + tensor input_605_cast_fp16 = select(a = var_6_to_fp16, b = var_2089_cast_fp16, cond = mask_3)[name = tensor("input_605_cast_fp16")]; + tensor x_255_transpose_x_0 = const()[name = tensor("x_255_transpose_x_0"), val = tensor(false)]; + tensor x_255_transpose_y_0 = const()[name = tensor("x_255_transpose_y_0"), val = tensor(false)]; + tensor value_23_cast_fp16 = transpose(perm = value_23_perm_0, x = v_23_cast_fp16)[name = tensor("transpose_231")]; + tensor x_255_cast_fp16 = matmul(transpose_x = x_255_transpose_x_0, transpose_y = x_255_transpose_y_0, x = input_605_cast_fp16, y = value_23_cast_fp16)[name = tensor("x_255_cast_fp16")]; + tensor var_2093_perm_0 = const()[name = tensor("op_2093_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_2094 = const()[name = tensor("op_2094"), val = tensor([1, -1, 1024])]; + tensor var_2093_cast_fp16 = transpose(perm = var_2093_perm_0, x = x_255_cast_fp16)[name = tensor("transpose_230")]; + tensor input_607_cast_fp16 = reshape(shape = var_2094, x = var_2093_cast_fp16)[name = tensor("input_607_cast_fp16")]; + tensor model_layers_11_self_attn_linear_out_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_11_self_attn_linear_out_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(285106624))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(286155264))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_106_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_11_self_attn_linear_out_weight_to_fp16_quantized, x = input_607_cast_fp16)[name = tensor("linear_106_cast_fp16")]; + tensor input_611_cast_fp16 = add(x = input_603_cast_fp16, y = linear_106_cast_fp16)[name = tensor("input_611_cast_fp16")]; + tensor x_259_axes_0 = const()[name = tensor("x_259_axes_0"), val = tensor([-1])]; + tensor model_layers_11_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_11_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(286157376)))]; + tensor model_layers_11_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_11_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(286159488)))]; + tensor x_259_cast_fp16 = layer_norm(axes = x_259_axes_0, beta = model_layers_11_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_11_norm_conv_weight_to_fp16, x = input_611_cast_fp16)[name = tensor("x_259_cast_fp16")]; + tensor input_613_perm_0 = const()[name = tensor("input_613_perm_0"), val = tensor([0, 2, 1])]; + tensor input_615_pad_type_0 = const()[name = tensor("input_615_pad_type_0"), val = tensor("valid")]; + tensor input_615_strides_0 = const()[name = tensor("input_615_strides_0"), val = tensor([1])]; + tensor input_615_pad_0 = const()[name = tensor("input_615_pad_0"), val = tensor([0, 0])]; + tensor input_615_dilations_0 = const()[name = tensor("input_615_dilations_0"), val = tensor([1])]; + tensor input_615_groups_0 = const()[name = tensor("input_615_groups_0"), val = tensor(1)]; + tensor model_layers_11_conv_pointwise_conv1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_11_conv_pointwise_conv1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(286161600))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(288258816))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(19330816)))]; + tensor input_613_cast_fp16 = transpose(perm = input_613_perm_0, x = x_259_cast_fp16)[name = tensor("transpose_229")]; + tensor input_615_cast_fp16 = conv(dilations = input_615_dilations_0, groups = input_615_groups_0, pad = input_615_pad_0, pad_type = input_615_pad_type_0, strides = input_615_strides_0, weight = model_layers_11_conv_pointwise_conv1_weight_to_fp16_quantized, x = input_613_cast_fp16)[name = tensor("input_615_cast_fp16")]; + tensor x_261_split_num_splits_0 = const()[name = tensor("x_261_split_num_splits_0"), val = tensor(2)]; + tensor x_261_split_axis_0 = const()[name = tensor("x_261_split_axis_0"), val = tensor(1)]; + tensor x_261_split_cast_fp16_0, tensor x_261_split_cast_fp16_1 = split(axis = x_261_split_axis_0, num_splits = x_261_split_num_splits_0, x = input_615_cast_fp16)[name = tensor("x_261_split_cast_fp16")]; + tensor x_261_split_1_sigmoid_cast_fp16 = sigmoid(x = x_261_split_cast_fp16_1)[name = tensor("x_261_split_1_sigmoid_cast_fp16")]; + tensor x_261_cast_fp16 = mul(x = x_261_split_cast_fp16_0, y = x_261_split_1_sigmoid_cast_fp16)[name = tensor("x_261_cast_fp16")]; + tensor input_617_cast_fp16 = select(a = var_6_to_fp16, b = x_261_cast_fp16, cond = var_323)[name = tensor("input_617_cast_fp16")]; + tensor input_619_pad_0 = const()[name = tensor("input_619_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_619_mode_0 = const()[name = tensor("input_619_mode_0"), val = tensor("constant")]; + tensor const_127_to_fp16 = const()[name = tensor("const_127_to_fp16"), val = tensor(0x0p+0)]; + tensor input_619_cast_fp16 = pad(constant_val = const_127_to_fp16, mode = input_619_mode_0, pad = input_619_pad_0, x = input_617_cast_fp16)[name = tensor("input_619_cast_fp16")]; + tensor input_621_pad_type_0 = const()[name = tensor("input_621_pad_type_0"), val = tensor("valid")]; + tensor input_621_groups_0 = const()[name = tensor("input_621_groups_0"), val = tensor(1024)]; + tensor input_621_strides_0 = const()[name = tensor("input_621_strides_0"), val = tensor([1])]; + tensor input_621_pad_0 = const()[name = tensor("input_621_pad_0"), val = tensor([0, 0])]; + tensor input_621_dilations_0 = const()[name = tensor("input_621_dilations_0"), val = tensor([1])]; + tensor const_270_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("const_270_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(288262976))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(288272256))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor const_271_to_fp16 = const()[name = tensor("const_271_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(288274368)))]; + tensor input_623_cast_fp16 = conv(bias = const_271_to_fp16, dilations = input_621_dilations_0, groups = input_621_groups_0, pad = input_621_pad_0, pad_type = input_621_pad_type_0, strides = input_621_strides_0, weight = const_270_to_fp16_quantized, x = input_619_cast_fp16)[name = tensor("input_623_cast_fp16")]; + tensor input_625_cast_fp16 = silu(x = input_623_cast_fp16)[name = tensor("input_625_cast_fp16")]; + tensor x_263_pad_type_0 = const()[name = tensor("x_263_pad_type_0"), val = tensor("valid")]; + tensor x_263_strides_0 = const()[name = tensor("x_263_strides_0"), val = tensor([1])]; + tensor x_263_pad_0 = const()[name = tensor("x_263_pad_0"), val = tensor([0, 0])]; + tensor x_263_dilations_0 = const()[name = tensor("x_263_dilations_0"), val = tensor([1])]; + tensor x_263_groups_0 = const()[name = tensor("x_263_groups_0"), val = tensor(1)]; + tensor model_layers_11_conv_pointwise_conv2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_11_conv_pointwise_conv2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(288276480))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(289325120))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor x_263_cast_fp16 = conv(dilations = x_263_dilations_0, groups = x_263_groups_0, pad = x_263_pad_0, pad_type = x_263_pad_type_0, strides = x_263_strides_0, weight = model_layers_11_conv_pointwise_conv2_weight_to_fp16_quantized, x = input_625_cast_fp16)[name = tensor("x_263_cast_fp16")]; + tensor input_627_perm_0 = const()[name = tensor("input_627_perm_0"), val = tensor([0, 2, 1])]; + tensor input_627_cast_fp16 = transpose(perm = input_627_perm_0, x = x_263_cast_fp16)[name = tensor("transpose_228")]; + tensor input_629_cast_fp16 = add(x = input_611_cast_fp16, y = input_627_cast_fp16)[name = tensor("input_629_cast_fp16")]; + tensor input_631_axes_0 = const()[name = tensor("input_631_axes_0"), val = tensor([-1])]; + tensor model_layers_11_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_11_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(289327232)))]; + tensor model_layers_11_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_11_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(289329344)))]; + tensor input_631_cast_fp16 = layer_norm(axes = input_631_axes_0, beta = model_layers_11_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_11_norm_feed_forward2_weight_to_fp16, x = input_629_cast_fp16)[name = tensor("input_631_cast_fp16")]; + tensor model_layers_11_feed_forward2_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_11_feed_forward2_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(289331456))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(293525824))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_107_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_11_feed_forward2_linear1_weight_to_fp16_quantized, x = input_631_cast_fp16)[name = tensor("linear_107_cast_fp16")]; + tensor input_635_cast_fp16 = silu(x = linear_107_cast_fp16)[name = tensor("input_635_cast_fp16")]; + tensor model_layers_11_feed_forward2_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_11_feed_forward2_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(293534080))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(297728448))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_108_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_11_feed_forward2_linear2_weight_to_fp16_quantized, x = input_635_cast_fp16)[name = tensor("linear_108_cast_fp16")]; + tensor var_2154_to_fp16 = const()[name = tensor("op_2154_to_fp16"), val = tensor(0x1p-1)]; + tensor var_2155_cast_fp16 = mul(x = linear_108_cast_fp16, y = var_2154_to_fp16)[name = tensor("op_2155_cast_fp16")]; + tensor input_641_cast_fp16 = add(x = input_629_cast_fp16, y = var_2155_cast_fp16)[name = tensor("input_641_cast_fp16")]; + tensor input_643_axes_0 = const()[name = tensor("input_643_axes_0"), val = tensor([-1])]; + tensor model_layers_11_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_11_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(297730560)))]; + tensor model_layers_11_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_11_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(297732672)))]; + tensor input_643_cast_fp16 = layer_norm(axes = input_643_axes_0, beta = model_layers_11_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_11_norm_out_weight_to_fp16, x = input_641_cast_fp16)[name = tensor("input_643_cast_fp16")]; + tensor input_645_axes_0 = const()[name = tensor("input_645_axes_0"), val = tensor([-1])]; + tensor model_layers_12_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_12_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(297734784)))]; + tensor model_layers_12_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_12_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(297736896)))]; + tensor input_645_cast_fp16 = layer_norm(axes = input_645_axes_0, beta = model_layers_12_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_12_norm_feed_forward1_weight_to_fp16, x = input_643_cast_fp16)[name = tensor("input_645_cast_fp16")]; + tensor model_layers_12_feed_forward1_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_12_feed_forward1_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(297739008))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(301933376))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_109_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_12_feed_forward1_linear1_weight_to_fp16_quantized, x = input_645_cast_fp16)[name = tensor("linear_109_cast_fp16")]; + tensor input_649_cast_fp16 = silu(x = linear_109_cast_fp16)[name = tensor("input_649_cast_fp16")]; + tensor model_layers_12_feed_forward1_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_12_feed_forward1_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(301941632))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(306136000))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_110_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_12_feed_forward1_linear2_weight_to_fp16_quantized, x = input_649_cast_fp16)[name = tensor("linear_110_cast_fp16")]; + tensor var_2183_to_fp16 = const()[name = tensor("op_2183_to_fp16"), val = tensor(0x1p-1)]; + tensor var_2184_cast_fp16 = mul(x = linear_110_cast_fp16, y = var_2183_to_fp16)[name = tensor("op_2184_cast_fp16")]; + tensor input_655_cast_fp16 = add(x = input_643_cast_fp16, y = var_2184_cast_fp16)[name = tensor("input_655_cast_fp16")]; + tensor query_25_axes_0 = const()[name = tensor("query_25_axes_0"), val = tensor([-1])]; + tensor model_layers_12_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_12_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(306138112)))]; + tensor model_layers_12_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_12_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(306140224)))]; + tensor query_25_cast_fp16 = layer_norm(axes = query_25_axes_0, beta = model_layers_12_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_12_norm_self_att_weight_to_fp16, x = input_655_cast_fp16)[name = tensor("query_25_cast_fp16")]; + tensor model_layers_12_self_attn_linear_q_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_12_self_attn_linear_q_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(306142336))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(307190976))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_111_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_12_self_attn_linear_q_weight_to_fp16_quantized, x = query_25_cast_fp16)[name = tensor("linear_111_cast_fp16")]; + tensor var_2200 = const()[name = tensor("op_2200"), val = tensor([1, -1, 8, 128])]; + tensor q_73_cast_fp16 = reshape(shape = var_2200, x = linear_111_cast_fp16)[name = tensor("q_73_cast_fp16")]; + tensor model_layers_12_self_attn_linear_k_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_12_self_attn_linear_k_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(307193088))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(308241728))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_112_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_12_self_attn_linear_k_weight_to_fp16_quantized, x = query_25_cast_fp16)[name = tensor("linear_112_cast_fp16")]; + tensor var_2204 = const()[name = tensor("op_2204"), val = tensor([1, -1, 8, 128])]; + tensor k_49_cast_fp16 = reshape(shape = var_2204, x = linear_112_cast_fp16)[name = tensor("k_49_cast_fp16")]; + tensor model_layers_12_self_attn_linear_v_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_12_self_attn_linear_v_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(308243840))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(309292480))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_113_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_12_self_attn_linear_v_weight_to_fp16_quantized, x = query_25_cast_fp16)[name = tensor("linear_113_cast_fp16")]; + tensor var_2208 = const()[name = tensor("op_2208"), val = tensor([1, -1, 8, 128])]; + tensor v_25_cast_fp16 = reshape(shape = var_2208, x = linear_113_cast_fp16)[name = tensor("v_25_cast_fp16")]; + tensor value_25_perm_0 = const()[name = tensor("value_25_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor model_layers_12_self_attn_pos_bias_u_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_12_self_attn_pos_bias_u_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(309294592))), scale = tensor([0x1.194p-7, 0x1.f04p-8, 0x1.d6cp-8, 0x1.0e8p-7, 0x1.fb8p-8, 0x1.fdcp-8, 0x1.308p-7, 0x1.5ap-7]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_2220_cast_fp16 = add(x = q_73_cast_fp16, y = model_layers_12_self_attn_pos_bias_u_to_fp16_quantized)[name = tensor("op_2220_cast_fp16")]; + tensor model_layers_12_self_attn_pos_bias_v_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_12_self_attn_pos_bias_v_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(309295680))), scale = tensor([0x1.20cp-8, 0x1.48p-7, 0x1.654p-8, 0x1.77cp-8, 0x1.cb4p-8, 0x1.ef4p-8, 0x1.1c4p-7, 0x1.a9cp-8]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_2222_cast_fp16 = add(x = q_73_cast_fp16, y = model_layers_12_self_attn_pos_bias_v_to_fp16_quantized)[name = tensor("op_2222_cast_fp16")]; + tensor q_with_bias_v_25_perm_0 = const()[name = tensor("q_with_bias_v_25_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor x_271_transpose_x_0 = const()[name = tensor("x_271_transpose_x_0"), val = tensor(false)]; + tensor x_271_transpose_y_0 = const()[name = tensor("x_271_transpose_y_0"), val = tensor(false)]; + tensor op_2224_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(3), name = tensor("op_2224_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(309296768))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(309553856))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(16177728)))]; + tensor q_with_bias_v_25_cast_fp16 = transpose(perm = q_with_bias_v_25_perm_0, x = var_2222_cast_fp16)[name = tensor("transpose_227")]; + tensor x_271_cast_fp16 = matmul(transpose_x = x_271_transpose_x_0, transpose_y = x_271_transpose_y_0, x = q_with_bias_v_25_cast_fp16, y = op_2224_to_fp16_quantized)[name = tensor("x_271_cast_fp16")]; + tensor x_273_pad_0 = const()[name = tensor("x_273_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_273_mode_0 = const()[name = tensor("x_273_mode_0"), val = tensor("constant")]; + tensor const_134_to_fp16 = const()[name = tensor("const_134_to_fp16"), val = tensor(0x0p+0)]; + tensor x_273_cast_fp16 = pad(constant_val = const_134_to_fp16, mode = x_273_mode_0, pad = x_273_pad_0, x = x_271_cast_fp16)[name = tensor("x_273_cast_fp16")]; + tensor var_2232 = const()[name = tensor("op_2232"), val = tensor([1, 8, -1, 126])]; + tensor x_275_cast_fp16 = reshape(shape = var_2232, x = x_273_cast_fp16)[name = tensor("x_275_cast_fp16")]; + tensor var_2236_begin_0 = const()[name = tensor("op_2236_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_2236_end_0 = const()[name = tensor("op_2236_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_2236_end_mask_0 = const()[name = tensor("op_2236_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_2236_cast_fp16 = slice_by_index(begin = var_2236_begin_0, end = var_2236_end_0, end_mask = var_2236_end_mask_0, x = x_275_cast_fp16)[name = tensor("op_2236_cast_fp16")]; + tensor var_2237 = const()[name = tensor("op_2237"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_49_cast_fp16 = reshape(shape = var_2237, x = var_2236_cast_fp16)[name = tensor("matrix_bd_49_cast_fp16")]; + tensor matrix_ac_25_transpose_x_0 = const()[name = tensor("matrix_ac_25_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_25_transpose_y_0 = const()[name = tensor("matrix_ac_25_transpose_y_0"), val = tensor(false)]; + tensor transpose_120_perm_0 = const()[name = tensor("transpose_120_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_121_perm_0 = const()[name = tensor("transpose_121_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_121 = transpose(perm = transpose_121_perm_0, x = k_49_cast_fp16)[name = tensor("transpose_225")]; + tensor transpose_120 = transpose(perm = transpose_120_perm_0, x = var_2220_cast_fp16)[name = tensor("transpose_226")]; + tensor matrix_ac_25_cast_fp16 = matmul(transpose_x = matrix_ac_25_transpose_x_0, transpose_y = matrix_ac_25_transpose_y_0, x = transpose_120, y = transpose_121)[name = tensor("matrix_ac_25_cast_fp16")]; + tensor matrix_bd_51_begin_0 = const()[name = tensor("matrix_bd_51_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_51_end_0 = const()[name = tensor("matrix_bd_51_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_51_end_mask_0 = const()[name = tensor("matrix_bd_51_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_51_cast_fp16 = slice_by_index(begin = matrix_bd_51_begin_0, end = matrix_bd_51_end_0, end_mask = matrix_bd_51_end_mask_0, x = matrix_bd_49_cast_fp16)[name = tensor("matrix_bd_51_cast_fp16")]; + tensor var_2246_cast_fp16 = add(x = matrix_ac_25_cast_fp16, y = matrix_bd_51_cast_fp16)[name = tensor("op_2246_cast_fp16")]; + tensor _inversed_scores_49_y_0_to_fp16 = const()[name = tensor("_inversed_scores_49_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_49_cast_fp16 = mul(x = var_2246_cast_fp16, y = _inversed_scores_49_y_0_to_fp16)[name = tensor("_inversed_scores_49_cast_fp16")]; + tensor scores_51_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_49_cast_fp16, cond = mask_3)[name = tensor("scores_51_cast_fp16")]; + tensor var_2252_cast_fp16 = softmax(axis = var_25, x = scores_51_cast_fp16)[name = tensor("op_2252_cast_fp16")]; + tensor input_657_cast_fp16 = select(a = var_6_to_fp16, b = var_2252_cast_fp16, cond = mask_3)[name = tensor("input_657_cast_fp16")]; + tensor x_277_transpose_x_0 = const()[name = tensor("x_277_transpose_x_0"), val = tensor(false)]; + tensor x_277_transpose_y_0 = const()[name = tensor("x_277_transpose_y_0"), val = tensor(false)]; + tensor value_25_cast_fp16 = transpose(perm = value_25_perm_0, x = v_25_cast_fp16)[name = tensor("transpose_224")]; + tensor x_277_cast_fp16 = matmul(transpose_x = x_277_transpose_x_0, transpose_y = x_277_transpose_y_0, x = input_657_cast_fp16, y = value_25_cast_fp16)[name = tensor("x_277_cast_fp16")]; + tensor var_2256_perm_0 = const()[name = tensor("op_2256_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_2257 = const()[name = tensor("op_2257"), val = tensor([1, -1, 1024])]; + tensor var_2256_cast_fp16 = transpose(perm = var_2256_perm_0, x = x_277_cast_fp16)[name = tensor("transpose_223")]; + tensor input_659_cast_fp16 = reshape(shape = var_2257, x = var_2256_cast_fp16)[name = tensor("input_659_cast_fp16")]; + tensor model_layers_12_self_attn_linear_out_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_12_self_attn_linear_out_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(309554432))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(310603072))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_115_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_12_self_attn_linear_out_weight_to_fp16_quantized, x = input_659_cast_fp16)[name = tensor("linear_115_cast_fp16")]; + tensor input_663_cast_fp16 = add(x = input_655_cast_fp16, y = linear_115_cast_fp16)[name = tensor("input_663_cast_fp16")]; + tensor x_281_axes_0 = const()[name = tensor("x_281_axes_0"), val = tensor([-1])]; + tensor model_layers_12_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_12_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(310605184)))]; + tensor model_layers_12_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_12_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(310607296)))]; + tensor x_281_cast_fp16 = layer_norm(axes = x_281_axes_0, beta = model_layers_12_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_12_norm_conv_weight_to_fp16, x = input_663_cast_fp16)[name = tensor("x_281_cast_fp16")]; + tensor input_665_perm_0 = const()[name = tensor("input_665_perm_0"), val = tensor([0, 2, 1])]; + tensor input_667_pad_type_0 = const()[name = tensor("input_667_pad_type_0"), val = tensor("valid")]; + tensor input_667_strides_0 = const()[name = tensor("input_667_strides_0"), val = tensor([1])]; + tensor input_667_pad_0 = const()[name = tensor("input_667_pad_0"), val = tensor([0, 0])]; + tensor input_667_dilations_0 = const()[name = tensor("input_667_dilations_0"), val = tensor([1])]; + tensor input_667_groups_0 = const()[name = tensor("input_667_groups_0"), val = tensor(1)]; + tensor model_layers_12_conv_pointwise_conv1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_12_conv_pointwise_conv1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(310609408))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(312706624))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(19330816)))]; + tensor input_665_cast_fp16 = transpose(perm = input_665_perm_0, x = x_281_cast_fp16)[name = tensor("transpose_222")]; + tensor input_667_cast_fp16 = conv(dilations = input_667_dilations_0, groups = input_667_groups_0, pad = input_667_pad_0, pad_type = input_667_pad_type_0, strides = input_667_strides_0, weight = model_layers_12_conv_pointwise_conv1_weight_to_fp16_quantized, x = input_665_cast_fp16)[name = tensor("input_667_cast_fp16")]; + tensor x_283_split_num_splits_0 = const()[name = tensor("x_283_split_num_splits_0"), val = tensor(2)]; + tensor x_283_split_axis_0 = const()[name = tensor("x_283_split_axis_0"), val = tensor(1)]; + tensor x_283_split_cast_fp16_0, tensor x_283_split_cast_fp16_1 = split(axis = x_283_split_axis_0, num_splits = x_283_split_num_splits_0, x = input_667_cast_fp16)[name = tensor("x_283_split_cast_fp16")]; + tensor x_283_split_1_sigmoid_cast_fp16 = sigmoid(x = x_283_split_cast_fp16_1)[name = tensor("x_283_split_1_sigmoid_cast_fp16")]; + tensor x_283_cast_fp16 = mul(x = x_283_split_cast_fp16_0, y = x_283_split_1_sigmoid_cast_fp16)[name = tensor("x_283_cast_fp16")]; + tensor input_669_cast_fp16 = select(a = var_6_to_fp16, b = x_283_cast_fp16, cond = var_323)[name = tensor("input_669_cast_fp16")]; + tensor input_671_pad_0 = const()[name = tensor("input_671_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_671_mode_0 = const()[name = tensor("input_671_mode_0"), val = tensor("constant")]; + tensor const_137_to_fp16 = const()[name = tensor("const_137_to_fp16"), val = tensor(0x0p+0)]; + tensor input_671_cast_fp16 = pad(constant_val = const_137_to_fp16, mode = input_671_mode_0, pad = input_671_pad_0, x = input_669_cast_fp16)[name = tensor("input_671_cast_fp16")]; + tensor input_673_pad_type_0 = const()[name = tensor("input_673_pad_type_0"), val = tensor("valid")]; + tensor input_673_groups_0 = const()[name = tensor("input_673_groups_0"), val = tensor(1024)]; + tensor input_673_strides_0 = const()[name = tensor("input_673_strides_0"), val = tensor([1])]; + tensor input_673_pad_0 = const()[name = tensor("input_673_pad_0"), val = tensor([0, 0])]; + tensor input_673_dilations_0 = const()[name = tensor("input_673_dilations_0"), val = tensor([1])]; + tensor const_272_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("const_272_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(312710784))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(312720064))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor const_273_to_fp16 = const()[name = tensor("const_273_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(312722176)))]; + tensor input_675_cast_fp16 = conv(bias = const_273_to_fp16, dilations = input_673_dilations_0, groups = input_673_groups_0, pad = input_673_pad_0, pad_type = input_673_pad_type_0, strides = input_673_strides_0, weight = const_272_to_fp16_quantized, x = input_671_cast_fp16)[name = tensor("input_675_cast_fp16")]; + tensor input_677_cast_fp16 = silu(x = input_675_cast_fp16)[name = tensor("input_677_cast_fp16")]; + tensor x_285_pad_type_0 = const()[name = tensor("x_285_pad_type_0"), val = tensor("valid")]; + tensor x_285_strides_0 = const()[name = tensor("x_285_strides_0"), val = tensor([1])]; + tensor x_285_pad_0 = const()[name = tensor("x_285_pad_0"), val = tensor([0, 0])]; + tensor x_285_dilations_0 = const()[name = tensor("x_285_dilations_0"), val = tensor([1])]; + tensor x_285_groups_0 = const()[name = tensor("x_285_groups_0"), val = tensor(1)]; + tensor model_layers_12_conv_pointwise_conv2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_12_conv_pointwise_conv2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(312724288))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(313772928))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor x_285_cast_fp16 = conv(dilations = x_285_dilations_0, groups = x_285_groups_0, pad = x_285_pad_0, pad_type = x_285_pad_type_0, strides = x_285_strides_0, weight = model_layers_12_conv_pointwise_conv2_weight_to_fp16_quantized, x = input_677_cast_fp16)[name = tensor("x_285_cast_fp16")]; + tensor input_679_perm_0 = const()[name = tensor("input_679_perm_0"), val = tensor([0, 2, 1])]; + tensor input_679_cast_fp16 = transpose(perm = input_679_perm_0, x = x_285_cast_fp16)[name = tensor("transpose_221")]; + tensor input_681_cast_fp16 = add(x = input_663_cast_fp16, y = input_679_cast_fp16)[name = tensor("input_681_cast_fp16")]; + tensor input_683_axes_0 = const()[name = tensor("input_683_axes_0"), val = tensor([-1])]; + tensor model_layers_12_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_12_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(313775040)))]; + tensor model_layers_12_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_12_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(313777152)))]; + tensor input_683_cast_fp16 = layer_norm(axes = input_683_axes_0, beta = model_layers_12_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_12_norm_feed_forward2_weight_to_fp16, x = input_681_cast_fp16)[name = tensor("input_683_cast_fp16")]; + tensor model_layers_12_feed_forward2_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_12_feed_forward2_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(313779264))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(317973632))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_116_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_12_feed_forward2_linear1_weight_to_fp16_quantized, x = input_683_cast_fp16)[name = tensor("linear_116_cast_fp16")]; + tensor input_687_cast_fp16 = silu(x = linear_116_cast_fp16)[name = tensor("input_687_cast_fp16")]; + tensor model_layers_12_feed_forward2_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_12_feed_forward2_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(317981888))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(322176256))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_117_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_12_feed_forward2_linear2_weight_to_fp16_quantized, x = input_687_cast_fp16)[name = tensor("linear_117_cast_fp16")]; + tensor var_2317_to_fp16 = const()[name = tensor("op_2317_to_fp16"), val = tensor(0x1p-1)]; + tensor var_2318_cast_fp16 = mul(x = linear_117_cast_fp16, y = var_2317_to_fp16)[name = tensor("op_2318_cast_fp16")]; + tensor input_693_cast_fp16 = add(x = input_681_cast_fp16, y = var_2318_cast_fp16)[name = tensor("input_693_cast_fp16")]; + tensor input_695_axes_0 = const()[name = tensor("input_695_axes_0"), val = tensor([-1])]; + tensor model_layers_12_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_12_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(322178368)))]; + tensor model_layers_12_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_12_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(322180480)))]; + tensor input_695_cast_fp16 = layer_norm(axes = input_695_axes_0, beta = model_layers_12_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_12_norm_out_weight_to_fp16, x = input_693_cast_fp16)[name = tensor("input_695_cast_fp16")]; + tensor input_697_axes_0 = const()[name = tensor("input_697_axes_0"), val = tensor([-1])]; + tensor model_layers_13_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_13_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(322182592)))]; + tensor model_layers_13_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_13_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(322184704)))]; + tensor input_697_cast_fp16 = layer_norm(axes = input_697_axes_0, beta = model_layers_13_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_13_norm_feed_forward1_weight_to_fp16, x = input_695_cast_fp16)[name = tensor("input_697_cast_fp16")]; + tensor model_layers_13_feed_forward1_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_13_feed_forward1_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(322186816))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(326381184))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_118_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_13_feed_forward1_linear1_weight_to_fp16_quantized, x = input_697_cast_fp16)[name = tensor("linear_118_cast_fp16")]; + tensor input_701_cast_fp16 = silu(x = linear_118_cast_fp16)[name = tensor("input_701_cast_fp16")]; + tensor model_layers_13_feed_forward1_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_13_feed_forward1_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(326389440))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(330583808))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_119_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_13_feed_forward1_linear2_weight_to_fp16_quantized, x = input_701_cast_fp16)[name = tensor("linear_119_cast_fp16")]; + tensor var_2346_to_fp16 = const()[name = tensor("op_2346_to_fp16"), val = tensor(0x1p-1)]; + tensor var_2347_cast_fp16 = mul(x = linear_119_cast_fp16, y = var_2346_to_fp16)[name = tensor("op_2347_cast_fp16")]; + tensor input_707_cast_fp16 = add(x = input_695_cast_fp16, y = var_2347_cast_fp16)[name = tensor("input_707_cast_fp16")]; + tensor query_27_axes_0 = const()[name = tensor("query_27_axes_0"), val = tensor([-1])]; + tensor model_layers_13_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_13_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(330585920)))]; + tensor model_layers_13_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_13_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(330588032)))]; + tensor query_27_cast_fp16 = layer_norm(axes = query_27_axes_0, beta = model_layers_13_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_13_norm_self_att_weight_to_fp16, x = input_707_cast_fp16)[name = tensor("query_27_cast_fp16")]; + tensor model_layers_13_self_attn_linear_q_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_13_self_attn_linear_q_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(330590144))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(331638784))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_120_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_13_self_attn_linear_q_weight_to_fp16_quantized, x = query_27_cast_fp16)[name = tensor("linear_120_cast_fp16")]; + tensor var_2363 = const()[name = tensor("op_2363"), val = tensor([1, -1, 8, 128])]; + tensor q_79_cast_fp16 = reshape(shape = var_2363, x = linear_120_cast_fp16)[name = tensor("q_79_cast_fp16")]; + tensor model_layers_13_self_attn_linear_k_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_13_self_attn_linear_k_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(331640896))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(332689536))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_121_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_13_self_attn_linear_k_weight_to_fp16_quantized, x = query_27_cast_fp16)[name = tensor("linear_121_cast_fp16")]; + tensor var_2367 = const()[name = tensor("op_2367"), val = tensor([1, -1, 8, 128])]; + tensor k_53_cast_fp16 = reshape(shape = var_2367, x = linear_121_cast_fp16)[name = tensor("k_53_cast_fp16")]; + tensor model_layers_13_self_attn_linear_v_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_13_self_attn_linear_v_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(332691648))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(333740288))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_122_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_13_self_attn_linear_v_weight_to_fp16_quantized, x = query_27_cast_fp16)[name = tensor("linear_122_cast_fp16")]; + tensor var_2371 = const()[name = tensor("op_2371"), val = tensor([1, -1, 8, 128])]; + tensor v_27_cast_fp16 = reshape(shape = var_2371, x = linear_122_cast_fp16)[name = tensor("v_27_cast_fp16")]; + tensor value_27_perm_0 = const()[name = tensor("value_27_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor model_layers_13_self_attn_pos_bias_u_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_13_self_attn_pos_bias_u_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(333742400))), scale = tensor([0x1.a54p-7, 0x1.38p-7, 0x1.a78p-8, 0x1.9b4p-7, 0x1.bd8p-7, 0x1.644p-7, 0x1.cc4p-8, 0x1.374p-7]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_2383_cast_fp16 = add(x = q_79_cast_fp16, y = model_layers_13_self_attn_pos_bias_u_to_fp16_quantized)[name = tensor("op_2383_cast_fp16")]; + tensor model_layers_13_self_attn_pos_bias_v_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_13_self_attn_pos_bias_v_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(333743488))), scale = tensor([0x1.1a8p-7, 0x1.4c4p-8, 0x1.914p-8, 0x1.02cp-8, 0x1.f9p-8, 0x1.38cp-7, 0x1.e3cp-9, 0x1.bdp-8]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_2385_cast_fp16 = add(x = q_79_cast_fp16, y = model_layers_13_self_attn_pos_bias_v_to_fp16_quantized)[name = tensor("op_2385_cast_fp16")]; + tensor q_with_bias_v_27_perm_0 = const()[name = tensor("q_with_bias_v_27_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor x_293_transpose_x_0 = const()[name = tensor("x_293_transpose_x_0"), val = tensor(false)]; + tensor x_293_transpose_y_0 = const()[name = tensor("x_293_transpose_y_0"), val = tensor(false)]; + tensor op_2387_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(3), name = tensor("op_2387_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(333744576))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(334001664))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(16177728)))]; + tensor q_with_bias_v_27_cast_fp16 = transpose(perm = q_with_bias_v_27_perm_0, x = var_2385_cast_fp16)[name = tensor("transpose_220")]; + tensor x_293_cast_fp16 = matmul(transpose_x = x_293_transpose_x_0, transpose_y = x_293_transpose_y_0, x = q_with_bias_v_27_cast_fp16, y = op_2387_to_fp16_quantized)[name = tensor("x_293_cast_fp16")]; + tensor x_295_pad_0 = const()[name = tensor("x_295_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_295_mode_0 = const()[name = tensor("x_295_mode_0"), val = tensor("constant")]; + tensor const_144_to_fp16 = const()[name = tensor("const_144_to_fp16"), val = tensor(0x0p+0)]; + tensor x_295_cast_fp16 = pad(constant_val = const_144_to_fp16, mode = x_295_mode_0, pad = x_295_pad_0, x = x_293_cast_fp16)[name = tensor("x_295_cast_fp16")]; + tensor var_2395 = const()[name = tensor("op_2395"), val = tensor([1, 8, -1, 126])]; + tensor x_297_cast_fp16 = reshape(shape = var_2395, x = x_295_cast_fp16)[name = tensor("x_297_cast_fp16")]; + tensor var_2399_begin_0 = const()[name = tensor("op_2399_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_2399_end_0 = const()[name = tensor("op_2399_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_2399_end_mask_0 = const()[name = tensor("op_2399_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_2399_cast_fp16 = slice_by_index(begin = var_2399_begin_0, end = var_2399_end_0, end_mask = var_2399_end_mask_0, x = x_297_cast_fp16)[name = tensor("op_2399_cast_fp16")]; + tensor var_2400 = const()[name = tensor("op_2400"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_53_cast_fp16 = reshape(shape = var_2400, x = var_2399_cast_fp16)[name = tensor("matrix_bd_53_cast_fp16")]; + tensor matrix_ac_27_transpose_x_0 = const()[name = tensor("matrix_ac_27_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_27_transpose_y_0 = const()[name = tensor("matrix_ac_27_transpose_y_0"), val = tensor(false)]; + tensor transpose_122_perm_0 = const()[name = tensor("transpose_122_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_123_perm_0 = const()[name = tensor("transpose_123_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_123 = transpose(perm = transpose_123_perm_0, x = k_53_cast_fp16)[name = tensor("transpose_218")]; + tensor transpose_122 = transpose(perm = transpose_122_perm_0, x = var_2383_cast_fp16)[name = tensor("transpose_219")]; + tensor matrix_ac_27_cast_fp16 = matmul(transpose_x = matrix_ac_27_transpose_x_0, transpose_y = matrix_ac_27_transpose_y_0, x = transpose_122, y = transpose_123)[name = tensor("matrix_ac_27_cast_fp16")]; + tensor matrix_bd_55_begin_0 = const()[name = tensor("matrix_bd_55_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_55_end_0 = const()[name = tensor("matrix_bd_55_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_55_end_mask_0 = const()[name = tensor("matrix_bd_55_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_55_cast_fp16 = slice_by_index(begin = matrix_bd_55_begin_0, end = matrix_bd_55_end_0, end_mask = matrix_bd_55_end_mask_0, x = matrix_bd_53_cast_fp16)[name = tensor("matrix_bd_55_cast_fp16")]; + tensor var_2409_cast_fp16 = add(x = matrix_ac_27_cast_fp16, y = matrix_bd_55_cast_fp16)[name = tensor("op_2409_cast_fp16")]; + tensor _inversed_scores_53_y_0_to_fp16 = const()[name = tensor("_inversed_scores_53_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_53_cast_fp16 = mul(x = var_2409_cast_fp16, y = _inversed_scores_53_y_0_to_fp16)[name = tensor("_inversed_scores_53_cast_fp16")]; + tensor scores_55_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_53_cast_fp16, cond = mask_3)[name = tensor("scores_55_cast_fp16")]; + tensor var_2415_cast_fp16 = softmax(axis = var_25, x = scores_55_cast_fp16)[name = tensor("op_2415_cast_fp16")]; + tensor input_709_cast_fp16 = select(a = var_6_to_fp16, b = var_2415_cast_fp16, cond = mask_3)[name = tensor("input_709_cast_fp16")]; + tensor x_299_transpose_x_0 = const()[name = tensor("x_299_transpose_x_0"), val = tensor(false)]; + tensor x_299_transpose_y_0 = const()[name = tensor("x_299_transpose_y_0"), val = tensor(false)]; + tensor value_27_cast_fp16 = transpose(perm = value_27_perm_0, x = v_27_cast_fp16)[name = tensor("transpose_217")]; + tensor x_299_cast_fp16 = matmul(transpose_x = x_299_transpose_x_0, transpose_y = x_299_transpose_y_0, x = input_709_cast_fp16, y = value_27_cast_fp16)[name = tensor("x_299_cast_fp16")]; + tensor var_2419_perm_0 = const()[name = tensor("op_2419_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_2420 = const()[name = tensor("op_2420"), val = tensor([1, -1, 1024])]; + tensor var_2419_cast_fp16 = transpose(perm = var_2419_perm_0, x = x_299_cast_fp16)[name = tensor("transpose_216")]; + tensor input_711_cast_fp16 = reshape(shape = var_2420, x = var_2419_cast_fp16)[name = tensor("input_711_cast_fp16")]; + tensor model_layers_13_self_attn_linear_out_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_13_self_attn_linear_out_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(334002240))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(335050880))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_124_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_13_self_attn_linear_out_weight_to_fp16_quantized, x = input_711_cast_fp16)[name = tensor("linear_124_cast_fp16")]; + tensor input_715_cast_fp16 = add(x = input_707_cast_fp16, y = linear_124_cast_fp16)[name = tensor("input_715_cast_fp16")]; + tensor x_303_axes_0 = const()[name = tensor("x_303_axes_0"), val = tensor([-1])]; + tensor model_layers_13_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_13_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(335052992)))]; + tensor model_layers_13_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_13_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(335055104)))]; + tensor x_303_cast_fp16 = layer_norm(axes = x_303_axes_0, beta = model_layers_13_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_13_norm_conv_weight_to_fp16, x = input_715_cast_fp16)[name = tensor("x_303_cast_fp16")]; + tensor input_717_perm_0 = const()[name = tensor("input_717_perm_0"), val = tensor([0, 2, 1])]; + tensor input_719_pad_type_0 = const()[name = tensor("input_719_pad_type_0"), val = tensor("valid")]; + tensor input_719_strides_0 = const()[name = tensor("input_719_strides_0"), val = tensor([1])]; + tensor input_719_pad_0 = const()[name = tensor("input_719_pad_0"), val = tensor([0, 0])]; + tensor input_719_dilations_0 = const()[name = tensor("input_719_dilations_0"), val = tensor([1])]; + tensor input_719_groups_0 = const()[name = tensor("input_719_groups_0"), val = tensor(1)]; + tensor model_layers_13_conv_pointwise_conv1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_13_conv_pointwise_conv1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(335057216))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(337154432))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(19330816)))]; + tensor input_717_cast_fp16 = transpose(perm = input_717_perm_0, x = x_303_cast_fp16)[name = tensor("transpose_215")]; + tensor input_719_cast_fp16 = conv(dilations = input_719_dilations_0, groups = input_719_groups_0, pad = input_719_pad_0, pad_type = input_719_pad_type_0, strides = input_719_strides_0, weight = model_layers_13_conv_pointwise_conv1_weight_to_fp16_quantized, x = input_717_cast_fp16)[name = tensor("input_719_cast_fp16")]; + tensor x_305_split_num_splits_0 = const()[name = tensor("x_305_split_num_splits_0"), val = tensor(2)]; + tensor x_305_split_axis_0 = const()[name = tensor("x_305_split_axis_0"), val = tensor(1)]; + tensor x_305_split_cast_fp16_0, tensor x_305_split_cast_fp16_1 = split(axis = x_305_split_axis_0, num_splits = x_305_split_num_splits_0, x = input_719_cast_fp16)[name = tensor("x_305_split_cast_fp16")]; + tensor x_305_split_1_sigmoid_cast_fp16 = sigmoid(x = x_305_split_cast_fp16_1)[name = tensor("x_305_split_1_sigmoid_cast_fp16")]; + tensor x_305_cast_fp16 = mul(x = x_305_split_cast_fp16_0, y = x_305_split_1_sigmoid_cast_fp16)[name = tensor("x_305_cast_fp16")]; + tensor input_721_cast_fp16 = select(a = var_6_to_fp16, b = x_305_cast_fp16, cond = var_323)[name = tensor("input_721_cast_fp16")]; + tensor input_723_pad_0 = const()[name = tensor("input_723_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_723_mode_0 = const()[name = tensor("input_723_mode_0"), val = tensor("constant")]; + tensor const_147_to_fp16 = const()[name = tensor("const_147_to_fp16"), val = tensor(0x0p+0)]; + tensor input_723_cast_fp16 = pad(constant_val = const_147_to_fp16, mode = input_723_mode_0, pad = input_723_pad_0, x = input_721_cast_fp16)[name = tensor("input_723_cast_fp16")]; + tensor input_725_pad_type_0 = const()[name = tensor("input_725_pad_type_0"), val = tensor("valid")]; + tensor input_725_groups_0 = const()[name = tensor("input_725_groups_0"), val = tensor(1024)]; + tensor input_725_strides_0 = const()[name = tensor("input_725_strides_0"), val = tensor([1])]; + tensor input_725_pad_0 = const()[name = tensor("input_725_pad_0"), val = tensor([0, 0])]; + tensor input_725_dilations_0 = const()[name = tensor("input_725_dilations_0"), val = tensor([1])]; + tensor const_274_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("const_274_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(337158592))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(337167872))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor const_275_to_fp16 = const()[name = tensor("const_275_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(337169984)))]; + tensor input_727_cast_fp16 = conv(bias = const_275_to_fp16, dilations = input_725_dilations_0, groups = input_725_groups_0, pad = input_725_pad_0, pad_type = input_725_pad_type_0, strides = input_725_strides_0, weight = const_274_to_fp16_quantized, x = input_723_cast_fp16)[name = tensor("input_727_cast_fp16")]; + tensor input_729_cast_fp16 = silu(x = input_727_cast_fp16)[name = tensor("input_729_cast_fp16")]; + tensor x_307_pad_type_0 = const()[name = tensor("x_307_pad_type_0"), val = tensor("valid")]; + tensor x_307_strides_0 = const()[name = tensor("x_307_strides_0"), val = tensor([1])]; + tensor x_307_pad_0 = const()[name = tensor("x_307_pad_0"), val = tensor([0, 0])]; + tensor x_307_dilations_0 = const()[name = tensor("x_307_dilations_0"), val = tensor([1])]; + tensor x_307_groups_0 = const()[name = tensor("x_307_groups_0"), val = tensor(1)]; + tensor model_layers_13_conv_pointwise_conv2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_13_conv_pointwise_conv2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(337172096))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(338220736))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor x_307_cast_fp16 = conv(dilations = x_307_dilations_0, groups = x_307_groups_0, pad = x_307_pad_0, pad_type = x_307_pad_type_0, strides = x_307_strides_0, weight = model_layers_13_conv_pointwise_conv2_weight_to_fp16_quantized, x = input_729_cast_fp16)[name = tensor("x_307_cast_fp16")]; + tensor input_731_perm_0 = const()[name = tensor("input_731_perm_0"), val = tensor([0, 2, 1])]; + tensor input_731_cast_fp16 = transpose(perm = input_731_perm_0, x = x_307_cast_fp16)[name = tensor("transpose_214")]; + tensor input_733_cast_fp16 = add(x = input_715_cast_fp16, y = input_731_cast_fp16)[name = tensor("input_733_cast_fp16")]; + tensor input_735_axes_0 = const()[name = tensor("input_735_axes_0"), val = tensor([-1])]; + tensor model_layers_13_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_13_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(338222848)))]; + tensor model_layers_13_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_13_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(338224960)))]; + tensor input_735_cast_fp16 = layer_norm(axes = input_735_axes_0, beta = model_layers_13_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_13_norm_feed_forward2_weight_to_fp16, x = input_733_cast_fp16)[name = tensor("input_735_cast_fp16")]; + tensor model_layers_13_feed_forward2_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_13_feed_forward2_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(338227072))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(342421440))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_125_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_13_feed_forward2_linear1_weight_to_fp16_quantized, x = input_735_cast_fp16)[name = tensor("linear_125_cast_fp16")]; + tensor input_739_cast_fp16 = silu(x = linear_125_cast_fp16)[name = tensor("input_739_cast_fp16")]; + tensor model_layers_13_feed_forward2_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_13_feed_forward2_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(342429696))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(346624064))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_126_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_13_feed_forward2_linear2_weight_to_fp16_quantized, x = input_739_cast_fp16)[name = tensor("linear_126_cast_fp16")]; + tensor var_2480_to_fp16 = const()[name = tensor("op_2480_to_fp16"), val = tensor(0x1p-1)]; + tensor var_2481_cast_fp16 = mul(x = linear_126_cast_fp16, y = var_2480_to_fp16)[name = tensor("op_2481_cast_fp16")]; + tensor input_745_cast_fp16 = add(x = input_733_cast_fp16, y = var_2481_cast_fp16)[name = tensor("input_745_cast_fp16")]; + tensor input_747_axes_0 = const()[name = tensor("input_747_axes_0"), val = tensor([-1])]; + tensor model_layers_13_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_13_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(346626176)))]; + tensor model_layers_13_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_13_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(346628288)))]; + tensor input_747_cast_fp16 = layer_norm(axes = input_747_axes_0, beta = model_layers_13_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_13_norm_out_weight_to_fp16, x = input_745_cast_fp16)[name = tensor("input_747_cast_fp16")]; + tensor input_749_axes_0 = const()[name = tensor("input_749_axes_0"), val = tensor([-1])]; + tensor model_layers_14_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_14_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(346630400)))]; + tensor model_layers_14_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_14_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(346632512)))]; + tensor input_749_cast_fp16 = layer_norm(axes = input_749_axes_0, beta = model_layers_14_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_14_norm_feed_forward1_weight_to_fp16, x = input_747_cast_fp16)[name = tensor("input_749_cast_fp16")]; + tensor model_layers_14_feed_forward1_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_14_feed_forward1_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(346634624))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(350828992))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_127_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_14_feed_forward1_linear1_weight_to_fp16_quantized, x = input_749_cast_fp16)[name = tensor("linear_127_cast_fp16")]; + tensor input_753_cast_fp16 = silu(x = linear_127_cast_fp16)[name = tensor("input_753_cast_fp16")]; + tensor model_layers_14_feed_forward1_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_14_feed_forward1_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(350837248))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(355031616))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_128_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_14_feed_forward1_linear2_weight_to_fp16_quantized, x = input_753_cast_fp16)[name = tensor("linear_128_cast_fp16")]; + tensor var_2509_to_fp16 = const()[name = tensor("op_2509_to_fp16"), val = tensor(0x1p-1)]; + tensor var_2510_cast_fp16 = mul(x = linear_128_cast_fp16, y = var_2509_to_fp16)[name = tensor("op_2510_cast_fp16")]; + tensor input_759_cast_fp16 = add(x = input_747_cast_fp16, y = var_2510_cast_fp16)[name = tensor("input_759_cast_fp16")]; + tensor query_29_axes_0 = const()[name = tensor("query_29_axes_0"), val = tensor([-1])]; + tensor model_layers_14_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_14_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(355033728)))]; + tensor model_layers_14_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_14_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(355035840)))]; + tensor query_29_cast_fp16 = layer_norm(axes = query_29_axes_0, beta = model_layers_14_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_14_norm_self_att_weight_to_fp16, x = input_759_cast_fp16)[name = tensor("query_29_cast_fp16")]; + tensor model_layers_14_self_attn_linear_q_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_14_self_attn_linear_q_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(355037952))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(356086592))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_129_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_14_self_attn_linear_q_weight_to_fp16_quantized, x = query_29_cast_fp16)[name = tensor("linear_129_cast_fp16")]; + tensor var_2526 = const()[name = tensor("op_2526"), val = tensor([1, -1, 8, 128])]; + tensor q_85_cast_fp16 = reshape(shape = var_2526, x = linear_129_cast_fp16)[name = tensor("q_85_cast_fp16")]; + tensor model_layers_14_self_attn_linear_k_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_14_self_attn_linear_k_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(356088704))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(357137344))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_130_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_14_self_attn_linear_k_weight_to_fp16_quantized, x = query_29_cast_fp16)[name = tensor("linear_130_cast_fp16")]; + tensor var_2530 = const()[name = tensor("op_2530"), val = tensor([1, -1, 8, 128])]; + tensor k_57_cast_fp16 = reshape(shape = var_2530, x = linear_130_cast_fp16)[name = tensor("k_57_cast_fp16")]; + tensor model_layers_14_self_attn_linear_v_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_14_self_attn_linear_v_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(357139456))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(358188096))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_131_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_14_self_attn_linear_v_weight_to_fp16_quantized, x = query_29_cast_fp16)[name = tensor("linear_131_cast_fp16")]; + tensor var_2534 = const()[name = tensor("op_2534"), val = tensor([1, -1, 8, 128])]; + tensor v_29_cast_fp16 = reshape(shape = var_2534, x = linear_131_cast_fp16)[name = tensor("v_29_cast_fp16")]; + tensor value_29_perm_0 = const()[name = tensor("value_29_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor model_layers_14_self_attn_pos_bias_u_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_14_self_attn_pos_bias_u_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(358190208))), scale = tensor([0x1.048p-7, 0x1.0ccp-7, 0x1.8f8p-7, 0x1.67p-7, 0x1.014p-7, 0x1.5cp-7, 0x1.0ecp-7, 0x1.57cp-7]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_2546_cast_fp16 = add(x = q_85_cast_fp16, y = model_layers_14_self_attn_pos_bias_u_to_fp16_quantized)[name = tensor("op_2546_cast_fp16")]; + tensor model_layers_14_self_attn_pos_bias_v_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_14_self_attn_pos_bias_v_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(358191296))), scale = tensor([0x1.b98p-8, 0x1.088p-9, 0x1.184p-8, 0x1.44p-7, 0x1.384p-7, 0x1.a44p-8, 0x1.c48p-8, 0x1.bf4p-8]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_2548_cast_fp16 = add(x = q_85_cast_fp16, y = model_layers_14_self_attn_pos_bias_v_to_fp16_quantized)[name = tensor("op_2548_cast_fp16")]; + tensor q_with_bias_v_29_perm_0 = const()[name = tensor("q_with_bias_v_29_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor x_315_transpose_x_0 = const()[name = tensor("x_315_transpose_x_0"), val = tensor(false)]; + tensor x_315_transpose_y_0 = const()[name = tensor("x_315_transpose_y_0"), val = tensor(false)]; + tensor op_2550_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(3), name = tensor("op_2550_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(358192384))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(358449472))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(16177728)))]; + tensor q_with_bias_v_29_cast_fp16 = transpose(perm = q_with_bias_v_29_perm_0, x = var_2548_cast_fp16)[name = tensor("transpose_213")]; + tensor x_315_cast_fp16 = matmul(transpose_x = x_315_transpose_x_0, transpose_y = x_315_transpose_y_0, x = q_with_bias_v_29_cast_fp16, y = op_2550_to_fp16_quantized)[name = tensor("x_315_cast_fp16")]; + tensor x_317_pad_0 = const()[name = tensor("x_317_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_317_mode_0 = const()[name = tensor("x_317_mode_0"), val = tensor("constant")]; + tensor const_154_to_fp16 = const()[name = tensor("const_154_to_fp16"), val = tensor(0x0p+0)]; + tensor x_317_cast_fp16 = pad(constant_val = const_154_to_fp16, mode = x_317_mode_0, pad = x_317_pad_0, x = x_315_cast_fp16)[name = tensor("x_317_cast_fp16")]; + tensor var_2558 = const()[name = tensor("op_2558"), val = tensor([1, 8, -1, 126])]; + tensor x_319_cast_fp16 = reshape(shape = var_2558, x = x_317_cast_fp16)[name = tensor("x_319_cast_fp16")]; + tensor var_2562_begin_0 = const()[name = tensor("op_2562_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_2562_end_0 = const()[name = tensor("op_2562_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_2562_end_mask_0 = const()[name = tensor("op_2562_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_2562_cast_fp16 = slice_by_index(begin = var_2562_begin_0, end = var_2562_end_0, end_mask = var_2562_end_mask_0, x = x_319_cast_fp16)[name = tensor("op_2562_cast_fp16")]; + tensor var_2563 = const()[name = tensor("op_2563"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_57_cast_fp16 = reshape(shape = var_2563, x = var_2562_cast_fp16)[name = tensor("matrix_bd_57_cast_fp16")]; + tensor matrix_ac_29_transpose_x_0 = const()[name = tensor("matrix_ac_29_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_29_transpose_y_0 = const()[name = tensor("matrix_ac_29_transpose_y_0"), val = tensor(false)]; + tensor transpose_124_perm_0 = const()[name = tensor("transpose_124_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_125_perm_0 = const()[name = tensor("transpose_125_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_125 = transpose(perm = transpose_125_perm_0, x = k_57_cast_fp16)[name = tensor("transpose_211")]; + tensor transpose_124 = transpose(perm = transpose_124_perm_0, x = var_2546_cast_fp16)[name = tensor("transpose_212")]; + tensor matrix_ac_29_cast_fp16 = matmul(transpose_x = matrix_ac_29_transpose_x_0, transpose_y = matrix_ac_29_transpose_y_0, x = transpose_124, y = transpose_125)[name = tensor("matrix_ac_29_cast_fp16")]; + tensor matrix_bd_59_begin_0 = const()[name = tensor("matrix_bd_59_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_59_end_0 = const()[name = tensor("matrix_bd_59_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_59_end_mask_0 = const()[name = tensor("matrix_bd_59_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_59_cast_fp16 = slice_by_index(begin = matrix_bd_59_begin_0, end = matrix_bd_59_end_0, end_mask = matrix_bd_59_end_mask_0, x = matrix_bd_57_cast_fp16)[name = tensor("matrix_bd_59_cast_fp16")]; + tensor var_2572_cast_fp16 = add(x = matrix_ac_29_cast_fp16, y = matrix_bd_59_cast_fp16)[name = tensor("op_2572_cast_fp16")]; + tensor _inversed_scores_57_y_0_to_fp16 = const()[name = tensor("_inversed_scores_57_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_57_cast_fp16 = mul(x = var_2572_cast_fp16, y = _inversed_scores_57_y_0_to_fp16)[name = tensor("_inversed_scores_57_cast_fp16")]; + tensor scores_59_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_57_cast_fp16, cond = mask_3)[name = tensor("scores_59_cast_fp16")]; + tensor var_2578_cast_fp16 = softmax(axis = var_25, x = scores_59_cast_fp16)[name = tensor("op_2578_cast_fp16")]; + tensor input_761_cast_fp16 = select(a = var_6_to_fp16, b = var_2578_cast_fp16, cond = mask_3)[name = tensor("input_761_cast_fp16")]; + tensor x_321_transpose_x_0 = const()[name = tensor("x_321_transpose_x_0"), val = tensor(false)]; + tensor x_321_transpose_y_0 = const()[name = tensor("x_321_transpose_y_0"), val = tensor(false)]; + tensor value_29_cast_fp16 = transpose(perm = value_29_perm_0, x = v_29_cast_fp16)[name = tensor("transpose_210")]; + tensor x_321_cast_fp16 = matmul(transpose_x = x_321_transpose_x_0, transpose_y = x_321_transpose_y_0, x = input_761_cast_fp16, y = value_29_cast_fp16)[name = tensor("x_321_cast_fp16")]; + tensor var_2582_perm_0 = const()[name = tensor("op_2582_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_2583 = const()[name = tensor("op_2583"), val = tensor([1, -1, 1024])]; + tensor var_2582_cast_fp16 = transpose(perm = var_2582_perm_0, x = x_321_cast_fp16)[name = tensor("transpose_209")]; + tensor input_763_cast_fp16 = reshape(shape = var_2583, x = var_2582_cast_fp16)[name = tensor("input_763_cast_fp16")]; + tensor model_layers_14_self_attn_linear_out_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_14_self_attn_linear_out_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(358450048))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(359498688))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_133_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_14_self_attn_linear_out_weight_to_fp16_quantized, x = input_763_cast_fp16)[name = tensor("linear_133_cast_fp16")]; + tensor input_767_cast_fp16 = add(x = input_759_cast_fp16, y = linear_133_cast_fp16)[name = tensor("input_767_cast_fp16")]; + tensor x_325_axes_0 = const()[name = tensor("x_325_axes_0"), val = tensor([-1])]; + tensor model_layers_14_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_14_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(359500800)))]; + tensor model_layers_14_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_14_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(359502912)))]; + tensor x_325_cast_fp16 = layer_norm(axes = x_325_axes_0, beta = model_layers_14_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_14_norm_conv_weight_to_fp16, x = input_767_cast_fp16)[name = tensor("x_325_cast_fp16")]; + tensor input_769_perm_0 = const()[name = tensor("input_769_perm_0"), val = tensor([0, 2, 1])]; + tensor input_771_pad_type_0 = const()[name = tensor("input_771_pad_type_0"), val = tensor("valid")]; + tensor input_771_strides_0 = const()[name = tensor("input_771_strides_0"), val = tensor([1])]; + tensor input_771_pad_0 = const()[name = tensor("input_771_pad_0"), val = tensor([0, 0])]; + tensor input_771_dilations_0 = const()[name = tensor("input_771_dilations_0"), val = tensor([1])]; + tensor input_771_groups_0 = const()[name = tensor("input_771_groups_0"), val = tensor(1)]; + tensor model_layers_14_conv_pointwise_conv1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_14_conv_pointwise_conv1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(359505024))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(361602240))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(19330816)))]; + tensor input_769_cast_fp16 = transpose(perm = input_769_perm_0, x = x_325_cast_fp16)[name = tensor("transpose_208")]; + tensor input_771_cast_fp16 = conv(dilations = input_771_dilations_0, groups = input_771_groups_0, pad = input_771_pad_0, pad_type = input_771_pad_type_0, strides = input_771_strides_0, weight = model_layers_14_conv_pointwise_conv1_weight_to_fp16_quantized, x = input_769_cast_fp16)[name = tensor("input_771_cast_fp16")]; + tensor x_327_split_num_splits_0 = const()[name = tensor("x_327_split_num_splits_0"), val = tensor(2)]; + tensor x_327_split_axis_0 = const()[name = tensor("x_327_split_axis_0"), val = tensor(1)]; + tensor x_327_split_cast_fp16_0, tensor x_327_split_cast_fp16_1 = split(axis = x_327_split_axis_0, num_splits = x_327_split_num_splits_0, x = input_771_cast_fp16)[name = tensor("x_327_split_cast_fp16")]; + tensor x_327_split_1_sigmoid_cast_fp16 = sigmoid(x = x_327_split_cast_fp16_1)[name = tensor("x_327_split_1_sigmoid_cast_fp16")]; + tensor x_327_cast_fp16 = mul(x = x_327_split_cast_fp16_0, y = x_327_split_1_sigmoid_cast_fp16)[name = tensor("x_327_cast_fp16")]; + tensor input_773_cast_fp16 = select(a = var_6_to_fp16, b = x_327_cast_fp16, cond = var_323)[name = tensor("input_773_cast_fp16")]; + tensor input_775_pad_0 = const()[name = tensor("input_775_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_775_mode_0 = const()[name = tensor("input_775_mode_0"), val = tensor("constant")]; + tensor const_157_to_fp16 = const()[name = tensor("const_157_to_fp16"), val = tensor(0x0p+0)]; + tensor input_775_cast_fp16 = pad(constant_val = const_157_to_fp16, mode = input_775_mode_0, pad = input_775_pad_0, x = input_773_cast_fp16)[name = tensor("input_775_cast_fp16")]; + tensor input_777_pad_type_0 = const()[name = tensor("input_777_pad_type_0"), val = tensor("valid")]; + tensor input_777_groups_0 = const()[name = tensor("input_777_groups_0"), val = tensor(1024)]; + tensor input_777_strides_0 = const()[name = tensor("input_777_strides_0"), val = tensor([1])]; + tensor input_777_pad_0 = const()[name = tensor("input_777_pad_0"), val = tensor([0, 0])]; + tensor input_777_dilations_0 = const()[name = tensor("input_777_dilations_0"), val = tensor([1])]; + tensor const_276_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("const_276_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(361606400))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(361615680))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor const_277_to_fp16 = const()[name = tensor("const_277_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(361617792)))]; + tensor input_779_cast_fp16 = conv(bias = const_277_to_fp16, dilations = input_777_dilations_0, groups = input_777_groups_0, pad = input_777_pad_0, pad_type = input_777_pad_type_0, strides = input_777_strides_0, weight = const_276_to_fp16_quantized, x = input_775_cast_fp16)[name = tensor("input_779_cast_fp16")]; + tensor input_781_cast_fp16 = silu(x = input_779_cast_fp16)[name = tensor("input_781_cast_fp16")]; + tensor x_329_pad_type_0 = const()[name = tensor("x_329_pad_type_0"), val = tensor("valid")]; + tensor x_329_strides_0 = const()[name = tensor("x_329_strides_0"), val = tensor([1])]; + tensor x_329_pad_0 = const()[name = tensor("x_329_pad_0"), val = tensor([0, 0])]; + tensor x_329_dilations_0 = const()[name = tensor("x_329_dilations_0"), val = tensor([1])]; + tensor x_329_groups_0 = const()[name = tensor("x_329_groups_0"), val = tensor(1)]; + tensor model_layers_14_conv_pointwise_conv2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_14_conv_pointwise_conv2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(361619904))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(362668544))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor x_329_cast_fp16 = conv(dilations = x_329_dilations_0, groups = x_329_groups_0, pad = x_329_pad_0, pad_type = x_329_pad_type_0, strides = x_329_strides_0, weight = model_layers_14_conv_pointwise_conv2_weight_to_fp16_quantized, x = input_781_cast_fp16)[name = tensor("x_329_cast_fp16")]; + tensor input_783_perm_0 = const()[name = tensor("input_783_perm_0"), val = tensor([0, 2, 1])]; + tensor input_783_cast_fp16 = transpose(perm = input_783_perm_0, x = x_329_cast_fp16)[name = tensor("transpose_207")]; + tensor input_785_cast_fp16 = add(x = input_767_cast_fp16, y = input_783_cast_fp16)[name = tensor("input_785_cast_fp16")]; + tensor input_787_axes_0 = const()[name = tensor("input_787_axes_0"), val = tensor([-1])]; + tensor model_layers_14_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_14_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(362670656)))]; + tensor model_layers_14_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_14_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(362672768)))]; + tensor input_787_cast_fp16 = layer_norm(axes = input_787_axes_0, beta = model_layers_14_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_14_norm_feed_forward2_weight_to_fp16, x = input_785_cast_fp16)[name = tensor("input_787_cast_fp16")]; + tensor model_layers_14_feed_forward2_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_14_feed_forward2_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(362674880))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(366869248))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_134_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_14_feed_forward2_linear1_weight_to_fp16_quantized, x = input_787_cast_fp16)[name = tensor("linear_134_cast_fp16")]; + tensor input_791_cast_fp16 = silu(x = linear_134_cast_fp16)[name = tensor("input_791_cast_fp16")]; + tensor model_layers_14_feed_forward2_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_14_feed_forward2_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(366877504))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(371071872))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_135_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_14_feed_forward2_linear2_weight_to_fp16_quantized, x = input_791_cast_fp16)[name = tensor("linear_135_cast_fp16")]; + tensor var_2643_to_fp16 = const()[name = tensor("op_2643_to_fp16"), val = tensor(0x1p-1)]; + tensor var_2644_cast_fp16 = mul(x = linear_135_cast_fp16, y = var_2643_to_fp16)[name = tensor("op_2644_cast_fp16")]; + tensor input_797_cast_fp16 = add(x = input_785_cast_fp16, y = var_2644_cast_fp16)[name = tensor("input_797_cast_fp16")]; + tensor input_799_axes_0 = const()[name = tensor("input_799_axes_0"), val = tensor([-1])]; + tensor model_layers_14_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_14_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(371073984)))]; + tensor model_layers_14_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_14_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(371076096)))]; + tensor input_799_cast_fp16 = layer_norm(axes = input_799_axes_0, beta = model_layers_14_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_14_norm_out_weight_to_fp16, x = input_797_cast_fp16)[name = tensor("input_799_cast_fp16")]; + tensor input_801_axes_0 = const()[name = tensor("input_801_axes_0"), val = tensor([-1])]; + tensor model_layers_15_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_15_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(371078208)))]; + tensor model_layers_15_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_15_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(371080320)))]; + tensor input_801_cast_fp16 = layer_norm(axes = input_801_axes_0, beta = model_layers_15_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_15_norm_feed_forward1_weight_to_fp16, x = input_799_cast_fp16)[name = tensor("input_801_cast_fp16")]; + tensor model_layers_15_feed_forward1_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_15_feed_forward1_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(371082432))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(375276800))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_136_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_15_feed_forward1_linear1_weight_to_fp16_quantized, x = input_801_cast_fp16)[name = tensor("linear_136_cast_fp16")]; + tensor input_805_cast_fp16 = silu(x = linear_136_cast_fp16)[name = tensor("input_805_cast_fp16")]; + tensor model_layers_15_feed_forward1_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_15_feed_forward1_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(375285056))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(379479424))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_137_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_15_feed_forward1_linear2_weight_to_fp16_quantized, x = input_805_cast_fp16)[name = tensor("linear_137_cast_fp16")]; + tensor var_2672_to_fp16 = const()[name = tensor("op_2672_to_fp16"), val = tensor(0x1p-1)]; + tensor var_2673_cast_fp16 = mul(x = linear_137_cast_fp16, y = var_2672_to_fp16)[name = tensor("op_2673_cast_fp16")]; + tensor input_811_cast_fp16 = add(x = input_799_cast_fp16, y = var_2673_cast_fp16)[name = tensor("input_811_cast_fp16")]; + tensor query_31_axes_0 = const()[name = tensor("query_31_axes_0"), val = tensor([-1])]; + tensor model_layers_15_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_15_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(379481536)))]; + tensor model_layers_15_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_15_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(379483648)))]; + tensor query_31_cast_fp16 = layer_norm(axes = query_31_axes_0, beta = model_layers_15_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_15_norm_self_att_weight_to_fp16, x = input_811_cast_fp16)[name = tensor("query_31_cast_fp16")]; + tensor model_layers_15_self_attn_linear_q_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_15_self_attn_linear_q_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(379485760))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(380534400))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_138_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_15_self_attn_linear_q_weight_to_fp16_quantized, x = query_31_cast_fp16)[name = tensor("linear_138_cast_fp16")]; + tensor var_2689 = const()[name = tensor("op_2689"), val = tensor([1, -1, 8, 128])]; + tensor q_91_cast_fp16 = reshape(shape = var_2689, x = linear_138_cast_fp16)[name = tensor("q_91_cast_fp16")]; + tensor model_layers_15_self_attn_linear_k_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_15_self_attn_linear_k_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(380536512))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(381585152))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_139_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_15_self_attn_linear_k_weight_to_fp16_quantized, x = query_31_cast_fp16)[name = tensor("linear_139_cast_fp16")]; + tensor var_2693 = const()[name = tensor("op_2693"), val = tensor([1, -1, 8, 128])]; + tensor k_61_cast_fp16 = reshape(shape = var_2693, x = linear_139_cast_fp16)[name = tensor("k_61_cast_fp16")]; + tensor model_layers_15_self_attn_linear_v_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_15_self_attn_linear_v_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(381587264))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(382635904))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_140_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_15_self_attn_linear_v_weight_to_fp16_quantized, x = query_31_cast_fp16)[name = tensor("linear_140_cast_fp16")]; + tensor var_2697 = const()[name = tensor("op_2697"), val = tensor([1, -1, 8, 128])]; + tensor v_31_cast_fp16 = reshape(shape = var_2697, x = linear_140_cast_fp16)[name = tensor("v_31_cast_fp16")]; + tensor value_31_perm_0 = const()[name = tensor("value_31_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor model_layers_15_self_attn_pos_bias_u_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_15_self_attn_pos_bias_u_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(382638016))), scale = tensor([0x1.c94p-8, 0x1.894p-8, 0x1.b6p-8, 0x1.bb8p-8, 0x1.85p-8, 0x1.068p-7, 0x1.02cp-7, 0x1.c2p-8]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_2709_cast_fp16 = add(x = q_91_cast_fp16, y = model_layers_15_self_attn_pos_bias_u_to_fp16_quantized)[name = tensor("op_2709_cast_fp16")]; + tensor model_layers_15_self_attn_pos_bias_v_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_15_self_attn_pos_bias_v_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(382639104))), scale = tensor([0x1.1f8p-9, 0x1.cfp-8, 0x1.f3p-8, 0x1.2f4p-7, 0x1.a6cp-8, 0x1.104p-9, 0x1.234p-8, 0x1.09cp-7]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_2711_cast_fp16 = add(x = q_91_cast_fp16, y = model_layers_15_self_attn_pos_bias_v_to_fp16_quantized)[name = tensor("op_2711_cast_fp16")]; + tensor q_with_bias_v_31_perm_0 = const()[name = tensor("q_with_bias_v_31_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor x_337_transpose_x_0 = const()[name = tensor("x_337_transpose_x_0"), val = tensor(false)]; + tensor x_337_transpose_y_0 = const()[name = tensor("x_337_transpose_y_0"), val = tensor(false)]; + tensor op_2713_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(3), name = tensor("op_2713_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(382640192))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(382897280))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(16177728)))]; + tensor q_with_bias_v_31_cast_fp16 = transpose(perm = q_with_bias_v_31_perm_0, x = var_2711_cast_fp16)[name = tensor("transpose_206")]; + tensor x_337_cast_fp16 = matmul(transpose_x = x_337_transpose_x_0, transpose_y = x_337_transpose_y_0, x = q_with_bias_v_31_cast_fp16, y = op_2713_to_fp16_quantized)[name = tensor("x_337_cast_fp16")]; + tensor x_339_pad_0 = const()[name = tensor("x_339_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_339_mode_0 = const()[name = tensor("x_339_mode_0"), val = tensor("constant")]; + tensor const_164_to_fp16 = const()[name = tensor("const_164_to_fp16"), val = tensor(0x0p+0)]; + tensor x_339_cast_fp16 = pad(constant_val = const_164_to_fp16, mode = x_339_mode_0, pad = x_339_pad_0, x = x_337_cast_fp16)[name = tensor("x_339_cast_fp16")]; + tensor var_2721 = const()[name = tensor("op_2721"), val = tensor([1, 8, -1, 126])]; + tensor x_341_cast_fp16 = reshape(shape = var_2721, x = x_339_cast_fp16)[name = tensor("x_341_cast_fp16")]; + tensor var_2725_begin_0 = const()[name = tensor("op_2725_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_2725_end_0 = const()[name = tensor("op_2725_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_2725_end_mask_0 = const()[name = tensor("op_2725_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_2725_cast_fp16 = slice_by_index(begin = var_2725_begin_0, end = var_2725_end_0, end_mask = var_2725_end_mask_0, x = x_341_cast_fp16)[name = tensor("op_2725_cast_fp16")]; + tensor var_2726 = const()[name = tensor("op_2726"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_61_cast_fp16 = reshape(shape = var_2726, x = var_2725_cast_fp16)[name = tensor("matrix_bd_61_cast_fp16")]; + tensor matrix_ac_31_transpose_x_0 = const()[name = tensor("matrix_ac_31_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_31_transpose_y_0 = const()[name = tensor("matrix_ac_31_transpose_y_0"), val = tensor(false)]; + tensor transpose_126_perm_0 = const()[name = tensor("transpose_126_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_127_perm_0 = const()[name = tensor("transpose_127_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_127 = transpose(perm = transpose_127_perm_0, x = k_61_cast_fp16)[name = tensor("transpose_204")]; + tensor transpose_126 = transpose(perm = transpose_126_perm_0, x = var_2709_cast_fp16)[name = tensor("transpose_205")]; + tensor matrix_ac_31_cast_fp16 = matmul(transpose_x = matrix_ac_31_transpose_x_0, transpose_y = matrix_ac_31_transpose_y_0, x = transpose_126, y = transpose_127)[name = tensor("matrix_ac_31_cast_fp16")]; + tensor matrix_bd_63_begin_0 = const()[name = tensor("matrix_bd_63_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_63_end_0 = const()[name = tensor("matrix_bd_63_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_63_end_mask_0 = const()[name = tensor("matrix_bd_63_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_63_cast_fp16 = slice_by_index(begin = matrix_bd_63_begin_0, end = matrix_bd_63_end_0, end_mask = matrix_bd_63_end_mask_0, x = matrix_bd_61_cast_fp16)[name = tensor("matrix_bd_63_cast_fp16")]; + tensor var_2735_cast_fp16 = add(x = matrix_ac_31_cast_fp16, y = matrix_bd_63_cast_fp16)[name = tensor("op_2735_cast_fp16")]; + tensor _inversed_scores_61_y_0_to_fp16 = const()[name = tensor("_inversed_scores_61_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_61_cast_fp16 = mul(x = var_2735_cast_fp16, y = _inversed_scores_61_y_0_to_fp16)[name = tensor("_inversed_scores_61_cast_fp16")]; + tensor scores_63_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_61_cast_fp16, cond = mask_3)[name = tensor("scores_63_cast_fp16")]; + tensor var_2741_cast_fp16 = softmax(axis = var_25, x = scores_63_cast_fp16)[name = tensor("op_2741_cast_fp16")]; + tensor input_813_cast_fp16 = select(a = var_6_to_fp16, b = var_2741_cast_fp16, cond = mask_3)[name = tensor("input_813_cast_fp16")]; + tensor x_343_transpose_x_0 = const()[name = tensor("x_343_transpose_x_0"), val = tensor(false)]; + tensor x_343_transpose_y_0 = const()[name = tensor("x_343_transpose_y_0"), val = tensor(false)]; + tensor value_31_cast_fp16 = transpose(perm = value_31_perm_0, x = v_31_cast_fp16)[name = tensor("transpose_203")]; + tensor x_343_cast_fp16 = matmul(transpose_x = x_343_transpose_x_0, transpose_y = x_343_transpose_y_0, x = input_813_cast_fp16, y = value_31_cast_fp16)[name = tensor("x_343_cast_fp16")]; + tensor var_2745_perm_0 = const()[name = tensor("op_2745_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_2746 = const()[name = tensor("op_2746"), val = tensor([1, -1, 1024])]; + tensor var_2745_cast_fp16 = transpose(perm = var_2745_perm_0, x = x_343_cast_fp16)[name = tensor("transpose_202")]; + tensor input_815_cast_fp16 = reshape(shape = var_2746, x = var_2745_cast_fp16)[name = tensor("input_815_cast_fp16")]; + tensor model_layers_15_self_attn_linear_out_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_15_self_attn_linear_out_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(382897856))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(383946496))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_142_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_15_self_attn_linear_out_weight_to_fp16_quantized, x = input_815_cast_fp16)[name = tensor("linear_142_cast_fp16")]; + tensor input_819_cast_fp16 = add(x = input_811_cast_fp16, y = linear_142_cast_fp16)[name = tensor("input_819_cast_fp16")]; + tensor x_347_axes_0 = const()[name = tensor("x_347_axes_0"), val = tensor([-1])]; + tensor model_layers_15_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_15_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(383948608)))]; + tensor model_layers_15_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_15_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(383950720)))]; + tensor x_347_cast_fp16 = layer_norm(axes = x_347_axes_0, beta = model_layers_15_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_15_norm_conv_weight_to_fp16, x = input_819_cast_fp16)[name = tensor("x_347_cast_fp16")]; + tensor input_821_perm_0 = const()[name = tensor("input_821_perm_0"), val = tensor([0, 2, 1])]; + tensor input_823_pad_type_0 = const()[name = tensor("input_823_pad_type_0"), val = tensor("valid")]; + tensor input_823_strides_0 = const()[name = tensor("input_823_strides_0"), val = tensor([1])]; + tensor input_823_pad_0 = const()[name = tensor("input_823_pad_0"), val = tensor([0, 0])]; + tensor input_823_dilations_0 = const()[name = tensor("input_823_dilations_0"), val = tensor([1])]; + tensor input_823_groups_0 = const()[name = tensor("input_823_groups_0"), val = tensor(1)]; + tensor model_layers_15_conv_pointwise_conv1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_15_conv_pointwise_conv1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(383952832))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(386050048))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(19330816)))]; + tensor input_821_cast_fp16 = transpose(perm = input_821_perm_0, x = x_347_cast_fp16)[name = tensor("transpose_201")]; + tensor input_823_cast_fp16 = conv(dilations = input_823_dilations_0, groups = input_823_groups_0, pad = input_823_pad_0, pad_type = input_823_pad_type_0, strides = input_823_strides_0, weight = model_layers_15_conv_pointwise_conv1_weight_to_fp16_quantized, x = input_821_cast_fp16)[name = tensor("input_823_cast_fp16")]; + tensor x_349_split_num_splits_0 = const()[name = tensor("x_349_split_num_splits_0"), val = tensor(2)]; + tensor x_349_split_axis_0 = const()[name = tensor("x_349_split_axis_0"), val = tensor(1)]; + tensor x_349_split_cast_fp16_0, tensor x_349_split_cast_fp16_1 = split(axis = x_349_split_axis_0, num_splits = x_349_split_num_splits_0, x = input_823_cast_fp16)[name = tensor("x_349_split_cast_fp16")]; + tensor x_349_split_1_sigmoid_cast_fp16 = sigmoid(x = x_349_split_cast_fp16_1)[name = tensor("x_349_split_1_sigmoid_cast_fp16")]; + tensor x_349_cast_fp16 = mul(x = x_349_split_cast_fp16_0, y = x_349_split_1_sigmoid_cast_fp16)[name = tensor("x_349_cast_fp16")]; + tensor input_825_cast_fp16 = select(a = var_6_to_fp16, b = x_349_cast_fp16, cond = var_323)[name = tensor("input_825_cast_fp16")]; + tensor input_827_pad_0 = const()[name = tensor("input_827_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_827_mode_0 = const()[name = tensor("input_827_mode_0"), val = tensor("constant")]; + tensor const_167_to_fp16 = const()[name = tensor("const_167_to_fp16"), val = tensor(0x0p+0)]; + tensor input_827_cast_fp16 = pad(constant_val = const_167_to_fp16, mode = input_827_mode_0, pad = input_827_pad_0, x = input_825_cast_fp16)[name = tensor("input_827_cast_fp16")]; + tensor input_829_pad_type_0 = const()[name = tensor("input_829_pad_type_0"), val = tensor("valid")]; + tensor input_829_groups_0 = const()[name = tensor("input_829_groups_0"), val = tensor(1024)]; + tensor input_829_strides_0 = const()[name = tensor("input_829_strides_0"), val = tensor([1])]; + tensor input_829_pad_0 = const()[name = tensor("input_829_pad_0"), val = tensor([0, 0])]; + tensor input_829_dilations_0 = const()[name = tensor("input_829_dilations_0"), val = tensor([1])]; + tensor const_278_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("const_278_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(386054208))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(386063488))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor const_279_to_fp16 = const()[name = tensor("const_279_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(386065600)))]; + tensor input_831_cast_fp16 = conv(bias = const_279_to_fp16, dilations = input_829_dilations_0, groups = input_829_groups_0, pad = input_829_pad_0, pad_type = input_829_pad_type_0, strides = input_829_strides_0, weight = const_278_to_fp16_quantized, x = input_827_cast_fp16)[name = tensor("input_831_cast_fp16")]; + tensor input_833_cast_fp16 = silu(x = input_831_cast_fp16)[name = tensor("input_833_cast_fp16")]; + tensor x_351_pad_type_0 = const()[name = tensor("x_351_pad_type_0"), val = tensor("valid")]; + tensor x_351_strides_0 = const()[name = tensor("x_351_strides_0"), val = tensor([1])]; + tensor x_351_pad_0 = const()[name = tensor("x_351_pad_0"), val = tensor([0, 0])]; + tensor x_351_dilations_0 = const()[name = tensor("x_351_dilations_0"), val = tensor([1])]; + tensor x_351_groups_0 = const()[name = tensor("x_351_groups_0"), val = tensor(1)]; + tensor model_layers_15_conv_pointwise_conv2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_15_conv_pointwise_conv2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(386067712))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(387116352))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor x_351_cast_fp16 = conv(dilations = x_351_dilations_0, groups = x_351_groups_0, pad = x_351_pad_0, pad_type = x_351_pad_type_0, strides = x_351_strides_0, weight = model_layers_15_conv_pointwise_conv2_weight_to_fp16_quantized, x = input_833_cast_fp16)[name = tensor("x_351_cast_fp16")]; + tensor input_835_perm_0 = const()[name = tensor("input_835_perm_0"), val = tensor([0, 2, 1])]; + tensor input_835_cast_fp16 = transpose(perm = input_835_perm_0, x = x_351_cast_fp16)[name = tensor("transpose_200")]; + tensor input_837_cast_fp16 = add(x = input_819_cast_fp16, y = input_835_cast_fp16)[name = tensor("input_837_cast_fp16")]; + tensor input_839_axes_0 = const()[name = tensor("input_839_axes_0"), val = tensor([-1])]; + tensor model_layers_15_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_15_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(387118464)))]; + tensor model_layers_15_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_15_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(387120576)))]; + tensor input_839_cast_fp16 = layer_norm(axes = input_839_axes_0, beta = model_layers_15_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_15_norm_feed_forward2_weight_to_fp16, x = input_837_cast_fp16)[name = tensor("input_839_cast_fp16")]; + tensor model_layers_15_feed_forward2_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_15_feed_forward2_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(387122688))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(391317056))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_143_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_15_feed_forward2_linear1_weight_to_fp16_quantized, x = input_839_cast_fp16)[name = tensor("linear_143_cast_fp16")]; + tensor input_843_cast_fp16 = silu(x = linear_143_cast_fp16)[name = tensor("input_843_cast_fp16")]; + tensor model_layers_15_feed_forward2_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_15_feed_forward2_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(391325312))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(395519680))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_144_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_15_feed_forward2_linear2_weight_to_fp16_quantized, x = input_843_cast_fp16)[name = tensor("linear_144_cast_fp16")]; + tensor var_2806_to_fp16 = const()[name = tensor("op_2806_to_fp16"), val = tensor(0x1p-1)]; + tensor var_2807_cast_fp16 = mul(x = linear_144_cast_fp16, y = var_2806_to_fp16)[name = tensor("op_2807_cast_fp16")]; + tensor input_849_cast_fp16 = add(x = input_837_cast_fp16, y = var_2807_cast_fp16)[name = tensor("input_849_cast_fp16")]; + tensor input_851_axes_0 = const()[name = tensor("input_851_axes_0"), val = tensor([-1])]; + tensor model_layers_15_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_15_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(395521792)))]; + tensor model_layers_15_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_15_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(395523904)))]; + tensor input_851_cast_fp16 = layer_norm(axes = input_851_axes_0, beta = model_layers_15_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_15_norm_out_weight_to_fp16, x = input_849_cast_fp16)[name = tensor("input_851_cast_fp16")]; + tensor input_853_axes_0 = const()[name = tensor("input_853_axes_0"), val = tensor([-1])]; + tensor model_layers_16_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_16_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(395526016)))]; + tensor model_layers_16_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_16_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(395528128)))]; + tensor input_853_cast_fp16 = layer_norm(axes = input_853_axes_0, beta = model_layers_16_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_16_norm_feed_forward1_weight_to_fp16, x = input_851_cast_fp16)[name = tensor("input_853_cast_fp16")]; + tensor model_layers_16_feed_forward1_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_16_feed_forward1_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(395530240))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(399724608))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_145_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_16_feed_forward1_linear1_weight_to_fp16_quantized, x = input_853_cast_fp16)[name = tensor("linear_145_cast_fp16")]; + tensor input_857_cast_fp16 = silu(x = linear_145_cast_fp16)[name = tensor("input_857_cast_fp16")]; + tensor model_layers_16_feed_forward1_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_16_feed_forward1_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(399732864))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(403927232))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_146_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_16_feed_forward1_linear2_weight_to_fp16_quantized, x = input_857_cast_fp16)[name = tensor("linear_146_cast_fp16")]; + tensor var_2835_to_fp16 = const()[name = tensor("op_2835_to_fp16"), val = tensor(0x1p-1)]; + tensor var_2836_cast_fp16 = mul(x = linear_146_cast_fp16, y = var_2835_to_fp16)[name = tensor("op_2836_cast_fp16")]; + tensor input_863_cast_fp16 = add(x = input_851_cast_fp16, y = var_2836_cast_fp16)[name = tensor("input_863_cast_fp16")]; + tensor query_33_axes_0 = const()[name = tensor("query_33_axes_0"), val = tensor([-1])]; + tensor model_layers_16_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_16_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(403929344)))]; + tensor model_layers_16_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_16_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(403931456)))]; + tensor query_33_cast_fp16 = layer_norm(axes = query_33_axes_0, beta = model_layers_16_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_16_norm_self_att_weight_to_fp16, x = input_863_cast_fp16)[name = tensor("query_33_cast_fp16")]; + tensor model_layers_16_self_attn_linear_q_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_16_self_attn_linear_q_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(403933568))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(404982208))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_147_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_16_self_attn_linear_q_weight_to_fp16_quantized, x = query_33_cast_fp16)[name = tensor("linear_147_cast_fp16")]; + tensor var_2852 = const()[name = tensor("op_2852"), val = tensor([1, -1, 8, 128])]; + tensor q_97_cast_fp16 = reshape(shape = var_2852, x = linear_147_cast_fp16)[name = tensor("q_97_cast_fp16")]; + tensor model_layers_16_self_attn_linear_k_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_16_self_attn_linear_k_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(404984320))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(406032960))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_148_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_16_self_attn_linear_k_weight_to_fp16_quantized, x = query_33_cast_fp16)[name = tensor("linear_148_cast_fp16")]; + tensor var_2856 = const()[name = tensor("op_2856"), val = tensor([1, -1, 8, 128])]; + tensor k_65_cast_fp16 = reshape(shape = var_2856, x = linear_148_cast_fp16)[name = tensor("k_65_cast_fp16")]; + tensor model_layers_16_self_attn_linear_v_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_16_self_attn_linear_v_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(406035072))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(407083712))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_149_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_16_self_attn_linear_v_weight_to_fp16_quantized, x = query_33_cast_fp16)[name = tensor("linear_149_cast_fp16")]; + tensor var_2860 = const()[name = tensor("op_2860"), val = tensor([1, -1, 8, 128])]; + tensor v_33_cast_fp16 = reshape(shape = var_2860, x = linear_149_cast_fp16)[name = tensor("v_33_cast_fp16")]; + tensor value_33_perm_0 = const()[name = tensor("value_33_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor model_layers_16_self_attn_pos_bias_u_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_16_self_attn_pos_bias_u_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(407085824))), scale = tensor([0x1.a14p-8, 0x1.64cp-7, 0x1.3b8p-8, 0x1.a18p-8, 0x1.5ap-7, 0x1.384p-7, 0x1.61cp-8, 0x1.4b4p-7]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_2872_cast_fp16 = add(x = q_97_cast_fp16, y = model_layers_16_self_attn_pos_bias_u_to_fp16_quantized)[name = tensor("op_2872_cast_fp16")]; + tensor model_layers_16_self_attn_pos_bias_v_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_16_self_attn_pos_bias_v_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(407086912))), scale = tensor([0x1.3d4p-8, 0x1.b7p-9, 0x1.2p-8, 0x1.2b4p-7, 0x1.f84p-8, 0x1.18p-7, 0x1.82p-8, 0x1.2f8p-7]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_2874_cast_fp16 = add(x = q_97_cast_fp16, y = model_layers_16_self_attn_pos_bias_v_to_fp16_quantized)[name = tensor("op_2874_cast_fp16")]; + tensor q_with_bias_v_33_perm_0 = const()[name = tensor("q_with_bias_v_33_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor x_359_transpose_x_0 = const()[name = tensor("x_359_transpose_x_0"), val = tensor(false)]; + tensor x_359_transpose_y_0 = const()[name = tensor("x_359_transpose_y_0"), val = tensor(false)]; + tensor op_2876_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(3), name = tensor("op_2876_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(407088000))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(407345088))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(16177728)))]; + tensor q_with_bias_v_33_cast_fp16 = transpose(perm = q_with_bias_v_33_perm_0, x = var_2874_cast_fp16)[name = tensor("transpose_199")]; + tensor x_359_cast_fp16 = matmul(transpose_x = x_359_transpose_x_0, transpose_y = x_359_transpose_y_0, x = q_with_bias_v_33_cast_fp16, y = op_2876_to_fp16_quantized)[name = tensor("x_359_cast_fp16")]; + tensor x_361_pad_0 = const()[name = tensor("x_361_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_361_mode_0 = const()[name = tensor("x_361_mode_0"), val = tensor("constant")]; + tensor const_174_to_fp16 = const()[name = tensor("const_174_to_fp16"), val = tensor(0x0p+0)]; + tensor x_361_cast_fp16 = pad(constant_val = const_174_to_fp16, mode = x_361_mode_0, pad = x_361_pad_0, x = x_359_cast_fp16)[name = tensor("x_361_cast_fp16")]; + tensor var_2884 = const()[name = tensor("op_2884"), val = tensor([1, 8, -1, 126])]; + tensor x_363_cast_fp16 = reshape(shape = var_2884, x = x_361_cast_fp16)[name = tensor("x_363_cast_fp16")]; + tensor var_2888_begin_0 = const()[name = tensor("op_2888_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_2888_end_0 = const()[name = tensor("op_2888_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_2888_end_mask_0 = const()[name = tensor("op_2888_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_2888_cast_fp16 = slice_by_index(begin = var_2888_begin_0, end = var_2888_end_0, end_mask = var_2888_end_mask_0, x = x_363_cast_fp16)[name = tensor("op_2888_cast_fp16")]; + tensor var_2889 = const()[name = tensor("op_2889"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_65_cast_fp16 = reshape(shape = var_2889, x = var_2888_cast_fp16)[name = tensor("matrix_bd_65_cast_fp16")]; + tensor matrix_ac_33_transpose_x_0 = const()[name = tensor("matrix_ac_33_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_33_transpose_y_0 = const()[name = tensor("matrix_ac_33_transpose_y_0"), val = tensor(false)]; + tensor transpose_128_perm_0 = const()[name = tensor("transpose_128_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_129_perm_0 = const()[name = tensor("transpose_129_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_129 = transpose(perm = transpose_129_perm_0, x = k_65_cast_fp16)[name = tensor("transpose_197")]; + tensor transpose_128 = transpose(perm = transpose_128_perm_0, x = var_2872_cast_fp16)[name = tensor("transpose_198")]; + tensor matrix_ac_33_cast_fp16 = matmul(transpose_x = matrix_ac_33_transpose_x_0, transpose_y = matrix_ac_33_transpose_y_0, x = transpose_128, y = transpose_129)[name = tensor("matrix_ac_33_cast_fp16")]; + tensor matrix_bd_67_begin_0 = const()[name = tensor("matrix_bd_67_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_67_end_0 = const()[name = tensor("matrix_bd_67_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_67_end_mask_0 = const()[name = tensor("matrix_bd_67_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_67_cast_fp16 = slice_by_index(begin = matrix_bd_67_begin_0, end = matrix_bd_67_end_0, end_mask = matrix_bd_67_end_mask_0, x = matrix_bd_65_cast_fp16)[name = tensor("matrix_bd_67_cast_fp16")]; + tensor var_2898_cast_fp16 = add(x = matrix_ac_33_cast_fp16, y = matrix_bd_67_cast_fp16)[name = tensor("op_2898_cast_fp16")]; + tensor _inversed_scores_65_y_0_to_fp16 = const()[name = tensor("_inversed_scores_65_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_65_cast_fp16 = mul(x = var_2898_cast_fp16, y = _inversed_scores_65_y_0_to_fp16)[name = tensor("_inversed_scores_65_cast_fp16")]; + tensor scores_67_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_65_cast_fp16, cond = mask_3)[name = tensor("scores_67_cast_fp16")]; + tensor var_2904_cast_fp16 = softmax(axis = var_25, x = scores_67_cast_fp16)[name = tensor("op_2904_cast_fp16")]; + tensor input_865_cast_fp16 = select(a = var_6_to_fp16, b = var_2904_cast_fp16, cond = mask_3)[name = tensor("input_865_cast_fp16")]; + tensor x_365_transpose_x_0 = const()[name = tensor("x_365_transpose_x_0"), val = tensor(false)]; + tensor x_365_transpose_y_0 = const()[name = tensor("x_365_transpose_y_0"), val = tensor(false)]; + tensor value_33_cast_fp16 = transpose(perm = value_33_perm_0, x = v_33_cast_fp16)[name = tensor("transpose_196")]; + tensor x_365_cast_fp16 = matmul(transpose_x = x_365_transpose_x_0, transpose_y = x_365_transpose_y_0, x = input_865_cast_fp16, y = value_33_cast_fp16)[name = tensor("x_365_cast_fp16")]; + tensor var_2908_perm_0 = const()[name = tensor("op_2908_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_2909 = const()[name = tensor("op_2909"), val = tensor([1, -1, 1024])]; + tensor var_2908_cast_fp16 = transpose(perm = var_2908_perm_0, x = x_365_cast_fp16)[name = tensor("transpose_195")]; + tensor input_867_cast_fp16 = reshape(shape = var_2909, x = var_2908_cast_fp16)[name = tensor("input_867_cast_fp16")]; + tensor model_layers_16_self_attn_linear_out_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_16_self_attn_linear_out_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(407345664))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(408394304))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_151_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_16_self_attn_linear_out_weight_to_fp16_quantized, x = input_867_cast_fp16)[name = tensor("linear_151_cast_fp16")]; + tensor input_871_cast_fp16 = add(x = input_863_cast_fp16, y = linear_151_cast_fp16)[name = tensor("input_871_cast_fp16")]; + tensor x_369_axes_0 = const()[name = tensor("x_369_axes_0"), val = tensor([-1])]; + tensor model_layers_16_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_16_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(408396416)))]; + tensor model_layers_16_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_16_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(408398528)))]; + tensor x_369_cast_fp16 = layer_norm(axes = x_369_axes_0, beta = model_layers_16_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_16_norm_conv_weight_to_fp16, x = input_871_cast_fp16)[name = tensor("x_369_cast_fp16")]; + tensor input_873_perm_0 = const()[name = tensor("input_873_perm_0"), val = tensor([0, 2, 1])]; + tensor input_875_pad_type_0 = const()[name = tensor("input_875_pad_type_0"), val = tensor("valid")]; + tensor input_875_strides_0 = const()[name = tensor("input_875_strides_0"), val = tensor([1])]; + tensor input_875_pad_0 = const()[name = tensor("input_875_pad_0"), val = tensor([0, 0])]; + tensor input_875_dilations_0 = const()[name = tensor("input_875_dilations_0"), val = tensor([1])]; + tensor input_875_groups_0 = const()[name = tensor("input_875_groups_0"), val = tensor(1)]; + tensor model_layers_16_conv_pointwise_conv1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_16_conv_pointwise_conv1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(408400640))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(410497856))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(19330816)))]; + tensor input_873_cast_fp16 = transpose(perm = input_873_perm_0, x = x_369_cast_fp16)[name = tensor("transpose_194")]; + tensor input_875_cast_fp16 = conv(dilations = input_875_dilations_0, groups = input_875_groups_0, pad = input_875_pad_0, pad_type = input_875_pad_type_0, strides = input_875_strides_0, weight = model_layers_16_conv_pointwise_conv1_weight_to_fp16_quantized, x = input_873_cast_fp16)[name = tensor("input_875_cast_fp16")]; + tensor x_371_split_num_splits_0 = const()[name = tensor("x_371_split_num_splits_0"), val = tensor(2)]; + tensor x_371_split_axis_0 = const()[name = tensor("x_371_split_axis_0"), val = tensor(1)]; + tensor x_371_split_cast_fp16_0, tensor x_371_split_cast_fp16_1 = split(axis = x_371_split_axis_0, num_splits = x_371_split_num_splits_0, x = input_875_cast_fp16)[name = tensor("x_371_split_cast_fp16")]; + tensor x_371_split_1_sigmoid_cast_fp16 = sigmoid(x = x_371_split_cast_fp16_1)[name = tensor("x_371_split_1_sigmoid_cast_fp16")]; + tensor x_371_cast_fp16 = mul(x = x_371_split_cast_fp16_0, y = x_371_split_1_sigmoid_cast_fp16)[name = tensor("x_371_cast_fp16")]; + tensor input_877_cast_fp16 = select(a = var_6_to_fp16, b = x_371_cast_fp16, cond = var_323)[name = tensor("input_877_cast_fp16")]; + tensor input_879_pad_0 = const()[name = tensor("input_879_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_879_mode_0 = const()[name = tensor("input_879_mode_0"), val = tensor("constant")]; + tensor const_177_to_fp16 = const()[name = tensor("const_177_to_fp16"), val = tensor(0x0p+0)]; + tensor input_879_cast_fp16 = pad(constant_val = const_177_to_fp16, mode = input_879_mode_0, pad = input_879_pad_0, x = input_877_cast_fp16)[name = tensor("input_879_cast_fp16")]; + tensor input_881_pad_type_0 = const()[name = tensor("input_881_pad_type_0"), val = tensor("valid")]; + tensor input_881_groups_0 = const()[name = tensor("input_881_groups_0"), val = tensor(1024)]; + tensor input_881_strides_0 = const()[name = tensor("input_881_strides_0"), val = tensor([1])]; + tensor input_881_pad_0 = const()[name = tensor("input_881_pad_0"), val = tensor([0, 0])]; + tensor input_881_dilations_0 = const()[name = tensor("input_881_dilations_0"), val = tensor([1])]; + tensor const_280_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("const_280_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(410502016))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(410511296))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor const_281_to_fp16 = const()[name = tensor("const_281_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(410513408)))]; + tensor input_883_cast_fp16 = conv(bias = const_281_to_fp16, dilations = input_881_dilations_0, groups = input_881_groups_0, pad = input_881_pad_0, pad_type = input_881_pad_type_0, strides = input_881_strides_0, weight = const_280_to_fp16_quantized, x = input_879_cast_fp16)[name = tensor("input_883_cast_fp16")]; + tensor input_885_cast_fp16 = silu(x = input_883_cast_fp16)[name = tensor("input_885_cast_fp16")]; + tensor x_373_pad_type_0 = const()[name = tensor("x_373_pad_type_0"), val = tensor("valid")]; + tensor x_373_strides_0 = const()[name = tensor("x_373_strides_0"), val = tensor([1])]; + tensor x_373_pad_0 = const()[name = tensor("x_373_pad_0"), val = tensor([0, 0])]; + tensor x_373_dilations_0 = const()[name = tensor("x_373_dilations_0"), val = tensor([1])]; + tensor x_373_groups_0 = const()[name = tensor("x_373_groups_0"), val = tensor(1)]; + tensor model_layers_16_conv_pointwise_conv2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_16_conv_pointwise_conv2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(410515520))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(411564160))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor x_373_cast_fp16 = conv(dilations = x_373_dilations_0, groups = x_373_groups_0, pad = x_373_pad_0, pad_type = x_373_pad_type_0, strides = x_373_strides_0, weight = model_layers_16_conv_pointwise_conv2_weight_to_fp16_quantized, x = input_885_cast_fp16)[name = tensor("x_373_cast_fp16")]; + tensor input_887_perm_0 = const()[name = tensor("input_887_perm_0"), val = tensor([0, 2, 1])]; + tensor input_887_cast_fp16 = transpose(perm = input_887_perm_0, x = x_373_cast_fp16)[name = tensor("transpose_193")]; + tensor input_889_cast_fp16 = add(x = input_871_cast_fp16, y = input_887_cast_fp16)[name = tensor("input_889_cast_fp16")]; + tensor input_891_axes_0 = const()[name = tensor("input_891_axes_0"), val = tensor([-1])]; + tensor model_layers_16_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_16_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(411566272)))]; + tensor model_layers_16_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_16_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(411568384)))]; + tensor input_891_cast_fp16 = layer_norm(axes = input_891_axes_0, beta = model_layers_16_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_16_norm_feed_forward2_weight_to_fp16, x = input_889_cast_fp16)[name = tensor("input_891_cast_fp16")]; + tensor model_layers_16_feed_forward2_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_16_feed_forward2_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(411570496))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(415764864))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_152_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_16_feed_forward2_linear1_weight_to_fp16_quantized, x = input_891_cast_fp16)[name = tensor("linear_152_cast_fp16")]; + tensor input_895_cast_fp16 = silu(x = linear_152_cast_fp16)[name = tensor("input_895_cast_fp16")]; + tensor model_layers_16_feed_forward2_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_16_feed_forward2_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(415773120))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(419967488))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_153_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_16_feed_forward2_linear2_weight_to_fp16_quantized, x = input_895_cast_fp16)[name = tensor("linear_153_cast_fp16")]; + tensor var_2969_to_fp16 = const()[name = tensor("op_2969_to_fp16"), val = tensor(0x1p-1)]; + tensor var_2970_cast_fp16 = mul(x = linear_153_cast_fp16, y = var_2969_to_fp16)[name = tensor("op_2970_cast_fp16")]; + tensor input_901_cast_fp16 = add(x = input_889_cast_fp16, y = var_2970_cast_fp16)[name = tensor("input_901_cast_fp16")]; + tensor input_903_axes_0 = const()[name = tensor("input_903_axes_0"), val = tensor([-1])]; + tensor model_layers_16_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_16_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(419969600)))]; + tensor model_layers_16_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_16_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(419971712)))]; + tensor input_903_cast_fp16 = layer_norm(axes = input_903_axes_0, beta = model_layers_16_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_16_norm_out_weight_to_fp16, x = input_901_cast_fp16)[name = tensor("input_903_cast_fp16")]; + tensor input_905_axes_0 = const()[name = tensor("input_905_axes_0"), val = tensor([-1])]; + tensor model_layers_17_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_17_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(419973824)))]; + tensor model_layers_17_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_17_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(419975936)))]; + tensor input_905_cast_fp16 = layer_norm(axes = input_905_axes_0, beta = model_layers_17_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_17_norm_feed_forward1_weight_to_fp16, x = input_903_cast_fp16)[name = tensor("input_905_cast_fp16")]; + tensor model_layers_17_feed_forward1_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_17_feed_forward1_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(419978048))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(424172416))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_154_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_17_feed_forward1_linear1_weight_to_fp16_quantized, x = input_905_cast_fp16)[name = tensor("linear_154_cast_fp16")]; + tensor input_909_cast_fp16 = silu(x = linear_154_cast_fp16)[name = tensor("input_909_cast_fp16")]; + tensor model_layers_17_feed_forward1_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_17_feed_forward1_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(424180672))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(428375040))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_155_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_17_feed_forward1_linear2_weight_to_fp16_quantized, x = input_909_cast_fp16)[name = tensor("linear_155_cast_fp16")]; + tensor var_2998_to_fp16 = const()[name = tensor("op_2998_to_fp16"), val = tensor(0x1p-1)]; + tensor var_2999_cast_fp16 = mul(x = linear_155_cast_fp16, y = var_2998_to_fp16)[name = tensor("op_2999_cast_fp16")]; + tensor input_915_cast_fp16 = add(x = input_903_cast_fp16, y = var_2999_cast_fp16)[name = tensor("input_915_cast_fp16")]; + tensor query_35_axes_0 = const()[name = tensor("query_35_axes_0"), val = tensor([-1])]; + tensor model_layers_17_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_17_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(428377152)))]; + tensor model_layers_17_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_17_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(428379264)))]; + tensor query_35_cast_fp16 = layer_norm(axes = query_35_axes_0, beta = model_layers_17_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_17_norm_self_att_weight_to_fp16, x = input_915_cast_fp16)[name = tensor("query_35_cast_fp16")]; + tensor model_layers_17_self_attn_linear_q_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_17_self_attn_linear_q_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(428381376))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(429430016))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_156_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_17_self_attn_linear_q_weight_to_fp16_quantized, x = query_35_cast_fp16)[name = tensor("linear_156_cast_fp16")]; + tensor var_3015 = const()[name = tensor("op_3015"), val = tensor([1, -1, 8, 128])]; + tensor q_103_cast_fp16 = reshape(shape = var_3015, x = linear_156_cast_fp16)[name = tensor("q_103_cast_fp16")]; + tensor model_layers_17_self_attn_linear_k_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_17_self_attn_linear_k_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(429432128))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(430480768))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_157_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_17_self_attn_linear_k_weight_to_fp16_quantized, x = query_35_cast_fp16)[name = tensor("linear_157_cast_fp16")]; + tensor var_3019 = const()[name = tensor("op_3019"), val = tensor([1, -1, 8, 128])]; + tensor k_69_cast_fp16 = reshape(shape = var_3019, x = linear_157_cast_fp16)[name = tensor("k_69_cast_fp16")]; + tensor model_layers_17_self_attn_linear_v_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_17_self_attn_linear_v_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(430482880))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(431531520))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_158_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_17_self_attn_linear_v_weight_to_fp16_quantized, x = query_35_cast_fp16)[name = tensor("linear_158_cast_fp16")]; + tensor var_3023 = const()[name = tensor("op_3023"), val = tensor([1, -1, 8, 128])]; + tensor v_35_cast_fp16 = reshape(shape = var_3023, x = linear_158_cast_fp16)[name = tensor("v_35_cast_fp16")]; + tensor value_35_perm_0 = const()[name = tensor("value_35_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor model_layers_17_self_attn_pos_bias_u_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_17_self_attn_pos_bias_u_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(431533632))), scale = tensor([0x1.ee4p-8, 0x1.d1cp-9, 0x1.9e4p-9, 0x1.7cp-8, 0x1.58p-8, 0x1.a4cp-7, 0x1.4e4p-8, 0x1.754p-8]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_3035_cast_fp16 = add(x = q_103_cast_fp16, y = model_layers_17_self_attn_pos_bias_u_to_fp16_quantized)[name = tensor("op_3035_cast_fp16")]; + tensor model_layers_17_self_attn_pos_bias_v_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_17_self_attn_pos_bias_v_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(431534720))), scale = tensor([0x1.d74p-8, 0x1.e74p-8, 0x1.3ecp-8, 0x1.0a8p-7, 0x1.fd8p-8, 0x1.aa8p-9, 0x1.0f4p-8, 0x1.d9p-8]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_3037_cast_fp16 = add(x = q_103_cast_fp16, y = model_layers_17_self_attn_pos_bias_v_to_fp16_quantized)[name = tensor("op_3037_cast_fp16")]; + tensor q_with_bias_v_35_perm_0 = const()[name = tensor("q_with_bias_v_35_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor x_381_transpose_x_0 = const()[name = tensor("x_381_transpose_x_0"), val = tensor(false)]; + tensor x_381_transpose_y_0 = const()[name = tensor("x_381_transpose_y_0"), val = tensor(false)]; + tensor op_3039_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(3), name = tensor("op_3039_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(431535808))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(431792896))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(16177728)))]; + tensor q_with_bias_v_35_cast_fp16 = transpose(perm = q_with_bias_v_35_perm_0, x = var_3037_cast_fp16)[name = tensor("transpose_192")]; + tensor x_381_cast_fp16 = matmul(transpose_x = x_381_transpose_x_0, transpose_y = x_381_transpose_y_0, x = q_with_bias_v_35_cast_fp16, y = op_3039_to_fp16_quantized)[name = tensor("x_381_cast_fp16")]; + tensor x_383_pad_0 = const()[name = tensor("x_383_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_383_mode_0 = const()[name = tensor("x_383_mode_0"), val = tensor("constant")]; + tensor const_184_to_fp16 = const()[name = tensor("const_184_to_fp16"), val = tensor(0x0p+0)]; + tensor x_383_cast_fp16 = pad(constant_val = const_184_to_fp16, mode = x_383_mode_0, pad = x_383_pad_0, x = x_381_cast_fp16)[name = tensor("x_383_cast_fp16")]; + tensor var_3047 = const()[name = tensor("op_3047"), val = tensor([1, 8, -1, 126])]; + tensor x_385_cast_fp16 = reshape(shape = var_3047, x = x_383_cast_fp16)[name = tensor("x_385_cast_fp16")]; + tensor var_3051_begin_0 = const()[name = tensor("op_3051_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_3051_end_0 = const()[name = tensor("op_3051_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_3051_end_mask_0 = const()[name = tensor("op_3051_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_3051_cast_fp16 = slice_by_index(begin = var_3051_begin_0, end = var_3051_end_0, end_mask = var_3051_end_mask_0, x = x_385_cast_fp16)[name = tensor("op_3051_cast_fp16")]; + tensor var_3052 = const()[name = tensor("op_3052"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_69_cast_fp16 = reshape(shape = var_3052, x = var_3051_cast_fp16)[name = tensor("matrix_bd_69_cast_fp16")]; + tensor matrix_ac_35_transpose_x_0 = const()[name = tensor("matrix_ac_35_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_35_transpose_y_0 = const()[name = tensor("matrix_ac_35_transpose_y_0"), val = tensor(false)]; + tensor transpose_130_perm_0 = const()[name = tensor("transpose_130_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_131_perm_0 = const()[name = tensor("transpose_131_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_131 = transpose(perm = transpose_131_perm_0, x = k_69_cast_fp16)[name = tensor("transpose_190")]; + tensor transpose_130 = transpose(perm = transpose_130_perm_0, x = var_3035_cast_fp16)[name = tensor("transpose_191")]; + tensor matrix_ac_35_cast_fp16 = matmul(transpose_x = matrix_ac_35_transpose_x_0, transpose_y = matrix_ac_35_transpose_y_0, x = transpose_130, y = transpose_131)[name = tensor("matrix_ac_35_cast_fp16")]; + tensor matrix_bd_71_begin_0 = const()[name = tensor("matrix_bd_71_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_71_end_0 = const()[name = tensor("matrix_bd_71_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_71_end_mask_0 = const()[name = tensor("matrix_bd_71_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_71_cast_fp16 = slice_by_index(begin = matrix_bd_71_begin_0, end = matrix_bd_71_end_0, end_mask = matrix_bd_71_end_mask_0, x = matrix_bd_69_cast_fp16)[name = tensor("matrix_bd_71_cast_fp16")]; + tensor var_3061_cast_fp16 = add(x = matrix_ac_35_cast_fp16, y = matrix_bd_71_cast_fp16)[name = tensor("op_3061_cast_fp16")]; + tensor _inversed_scores_69_y_0_to_fp16 = const()[name = tensor("_inversed_scores_69_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_69_cast_fp16 = mul(x = var_3061_cast_fp16, y = _inversed_scores_69_y_0_to_fp16)[name = tensor("_inversed_scores_69_cast_fp16")]; + tensor scores_71_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_69_cast_fp16, cond = mask_3)[name = tensor("scores_71_cast_fp16")]; + tensor var_3067_cast_fp16 = softmax(axis = var_25, x = scores_71_cast_fp16)[name = tensor("op_3067_cast_fp16")]; + tensor input_917_cast_fp16 = select(a = var_6_to_fp16, b = var_3067_cast_fp16, cond = mask_3)[name = tensor("input_917_cast_fp16")]; + tensor x_387_transpose_x_0 = const()[name = tensor("x_387_transpose_x_0"), val = tensor(false)]; + tensor x_387_transpose_y_0 = const()[name = tensor("x_387_transpose_y_0"), val = tensor(false)]; + tensor value_35_cast_fp16 = transpose(perm = value_35_perm_0, x = v_35_cast_fp16)[name = tensor("transpose_189")]; + tensor x_387_cast_fp16 = matmul(transpose_x = x_387_transpose_x_0, transpose_y = x_387_transpose_y_0, x = input_917_cast_fp16, y = value_35_cast_fp16)[name = tensor("x_387_cast_fp16")]; + tensor var_3071_perm_0 = const()[name = tensor("op_3071_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_3072 = const()[name = tensor("op_3072"), val = tensor([1, -1, 1024])]; + tensor var_3071_cast_fp16 = transpose(perm = var_3071_perm_0, x = x_387_cast_fp16)[name = tensor("transpose_188")]; + tensor input_919_cast_fp16 = reshape(shape = var_3072, x = var_3071_cast_fp16)[name = tensor("input_919_cast_fp16")]; + tensor model_layers_17_self_attn_linear_out_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_17_self_attn_linear_out_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(431793472))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(432842112))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_160_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_17_self_attn_linear_out_weight_to_fp16_quantized, x = input_919_cast_fp16)[name = tensor("linear_160_cast_fp16")]; + tensor input_923_cast_fp16 = add(x = input_915_cast_fp16, y = linear_160_cast_fp16)[name = tensor("input_923_cast_fp16")]; + tensor x_391_axes_0 = const()[name = tensor("x_391_axes_0"), val = tensor([-1])]; + tensor model_layers_17_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_17_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(432844224)))]; + tensor model_layers_17_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_17_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(432846336)))]; + tensor x_391_cast_fp16 = layer_norm(axes = x_391_axes_0, beta = model_layers_17_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_17_norm_conv_weight_to_fp16, x = input_923_cast_fp16)[name = tensor("x_391_cast_fp16")]; + tensor input_925_perm_0 = const()[name = tensor("input_925_perm_0"), val = tensor([0, 2, 1])]; + tensor input_927_pad_type_0 = const()[name = tensor("input_927_pad_type_0"), val = tensor("valid")]; + tensor input_927_strides_0 = const()[name = tensor("input_927_strides_0"), val = tensor([1])]; + tensor input_927_pad_0 = const()[name = tensor("input_927_pad_0"), val = tensor([0, 0])]; + tensor input_927_dilations_0 = const()[name = tensor("input_927_dilations_0"), val = tensor([1])]; + tensor input_927_groups_0 = const()[name = tensor("input_927_groups_0"), val = tensor(1)]; + tensor model_layers_17_conv_pointwise_conv1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_17_conv_pointwise_conv1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(432848448))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(434945664))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(19330816)))]; + tensor input_925_cast_fp16 = transpose(perm = input_925_perm_0, x = x_391_cast_fp16)[name = tensor("transpose_187")]; + tensor input_927_cast_fp16 = conv(dilations = input_927_dilations_0, groups = input_927_groups_0, pad = input_927_pad_0, pad_type = input_927_pad_type_0, strides = input_927_strides_0, weight = model_layers_17_conv_pointwise_conv1_weight_to_fp16_quantized, x = input_925_cast_fp16)[name = tensor("input_927_cast_fp16")]; + tensor x_393_split_num_splits_0 = const()[name = tensor("x_393_split_num_splits_0"), val = tensor(2)]; + tensor x_393_split_axis_0 = const()[name = tensor("x_393_split_axis_0"), val = tensor(1)]; + tensor x_393_split_cast_fp16_0, tensor x_393_split_cast_fp16_1 = split(axis = x_393_split_axis_0, num_splits = x_393_split_num_splits_0, x = input_927_cast_fp16)[name = tensor("x_393_split_cast_fp16")]; + tensor x_393_split_1_sigmoid_cast_fp16 = sigmoid(x = x_393_split_cast_fp16_1)[name = tensor("x_393_split_1_sigmoid_cast_fp16")]; + tensor x_393_cast_fp16 = mul(x = x_393_split_cast_fp16_0, y = x_393_split_1_sigmoid_cast_fp16)[name = tensor("x_393_cast_fp16")]; + tensor input_929_cast_fp16 = select(a = var_6_to_fp16, b = x_393_cast_fp16, cond = var_323)[name = tensor("input_929_cast_fp16")]; + tensor input_931_pad_0 = const()[name = tensor("input_931_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_931_mode_0 = const()[name = tensor("input_931_mode_0"), val = tensor("constant")]; + tensor const_187_to_fp16 = const()[name = tensor("const_187_to_fp16"), val = tensor(0x0p+0)]; + tensor input_931_cast_fp16 = pad(constant_val = const_187_to_fp16, mode = input_931_mode_0, pad = input_931_pad_0, x = input_929_cast_fp16)[name = tensor("input_931_cast_fp16")]; + tensor input_933_pad_type_0 = const()[name = tensor("input_933_pad_type_0"), val = tensor("valid")]; + tensor input_933_groups_0 = const()[name = tensor("input_933_groups_0"), val = tensor(1024)]; + tensor input_933_strides_0 = const()[name = tensor("input_933_strides_0"), val = tensor([1])]; + tensor input_933_pad_0 = const()[name = tensor("input_933_pad_0"), val = tensor([0, 0])]; + tensor input_933_dilations_0 = const()[name = tensor("input_933_dilations_0"), val = tensor([1])]; + tensor const_282_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("const_282_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(434949824))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(434959104))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor const_283_to_fp16 = const()[name = tensor("const_283_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(434961216)))]; + tensor input_935_cast_fp16 = conv(bias = const_283_to_fp16, dilations = input_933_dilations_0, groups = input_933_groups_0, pad = input_933_pad_0, pad_type = input_933_pad_type_0, strides = input_933_strides_0, weight = const_282_to_fp16_quantized, x = input_931_cast_fp16)[name = tensor("input_935_cast_fp16")]; + tensor input_937_cast_fp16 = silu(x = input_935_cast_fp16)[name = tensor("input_937_cast_fp16")]; + tensor x_395_pad_type_0 = const()[name = tensor("x_395_pad_type_0"), val = tensor("valid")]; + tensor x_395_strides_0 = const()[name = tensor("x_395_strides_0"), val = tensor([1])]; + tensor x_395_pad_0 = const()[name = tensor("x_395_pad_0"), val = tensor([0, 0])]; + tensor x_395_dilations_0 = const()[name = tensor("x_395_dilations_0"), val = tensor([1])]; + tensor x_395_groups_0 = const()[name = tensor("x_395_groups_0"), val = tensor(1)]; + tensor model_layers_17_conv_pointwise_conv2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_17_conv_pointwise_conv2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(434963328))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(436011968))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor x_395_cast_fp16 = conv(dilations = x_395_dilations_0, groups = x_395_groups_0, pad = x_395_pad_0, pad_type = x_395_pad_type_0, strides = x_395_strides_0, weight = model_layers_17_conv_pointwise_conv2_weight_to_fp16_quantized, x = input_937_cast_fp16)[name = tensor("x_395_cast_fp16")]; + tensor input_939_perm_0 = const()[name = tensor("input_939_perm_0"), val = tensor([0, 2, 1])]; + tensor input_939_cast_fp16 = transpose(perm = input_939_perm_0, x = x_395_cast_fp16)[name = tensor("transpose_186")]; + tensor input_941_cast_fp16 = add(x = input_923_cast_fp16, y = input_939_cast_fp16)[name = tensor("input_941_cast_fp16")]; + tensor input_943_axes_0 = const()[name = tensor("input_943_axes_0"), val = tensor([-1])]; + tensor model_layers_17_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_17_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(436014080)))]; + tensor model_layers_17_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_17_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(436016192)))]; + tensor input_943_cast_fp16 = layer_norm(axes = input_943_axes_0, beta = model_layers_17_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_17_norm_feed_forward2_weight_to_fp16, x = input_941_cast_fp16)[name = tensor("input_943_cast_fp16")]; + tensor model_layers_17_feed_forward2_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_17_feed_forward2_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(436018304))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(440212672))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_161_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_17_feed_forward2_linear1_weight_to_fp16_quantized, x = input_943_cast_fp16)[name = tensor("linear_161_cast_fp16")]; + tensor input_947_cast_fp16 = silu(x = linear_161_cast_fp16)[name = tensor("input_947_cast_fp16")]; + tensor model_layers_17_feed_forward2_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_17_feed_forward2_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(440220928))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(444415296))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_162_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_17_feed_forward2_linear2_weight_to_fp16_quantized, x = input_947_cast_fp16)[name = tensor("linear_162_cast_fp16")]; + tensor var_3132_to_fp16 = const()[name = tensor("op_3132_to_fp16"), val = tensor(0x1p-1)]; + tensor var_3133_cast_fp16 = mul(x = linear_162_cast_fp16, y = var_3132_to_fp16)[name = tensor("op_3133_cast_fp16")]; + tensor input_953_cast_fp16 = add(x = input_941_cast_fp16, y = var_3133_cast_fp16)[name = tensor("input_953_cast_fp16")]; + tensor input_955_axes_0 = const()[name = tensor("input_955_axes_0"), val = tensor([-1])]; + tensor model_layers_17_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_17_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(444417408)))]; + tensor model_layers_17_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_17_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(444419520)))]; + tensor input_955_cast_fp16 = layer_norm(axes = input_955_axes_0, beta = model_layers_17_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_17_norm_out_weight_to_fp16, x = input_953_cast_fp16)[name = tensor("input_955_cast_fp16")]; + tensor input_957_axes_0 = const()[name = tensor("input_957_axes_0"), val = tensor([-1])]; + tensor model_layers_18_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_18_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(444421632)))]; + tensor model_layers_18_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_18_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(444423744)))]; + tensor input_957_cast_fp16 = layer_norm(axes = input_957_axes_0, beta = model_layers_18_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_18_norm_feed_forward1_weight_to_fp16, x = input_955_cast_fp16)[name = tensor("input_957_cast_fp16")]; + tensor model_layers_18_feed_forward1_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_18_feed_forward1_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(444425856))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(448620224))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_163_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_18_feed_forward1_linear1_weight_to_fp16_quantized, x = input_957_cast_fp16)[name = tensor("linear_163_cast_fp16")]; + tensor input_961_cast_fp16 = silu(x = linear_163_cast_fp16)[name = tensor("input_961_cast_fp16")]; + tensor model_layers_18_feed_forward1_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_18_feed_forward1_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(448628480))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(452822848))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_164_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_18_feed_forward1_linear2_weight_to_fp16_quantized, x = input_961_cast_fp16)[name = tensor("linear_164_cast_fp16")]; + tensor var_3161_to_fp16 = const()[name = tensor("op_3161_to_fp16"), val = tensor(0x1p-1)]; + tensor var_3162_cast_fp16 = mul(x = linear_164_cast_fp16, y = var_3161_to_fp16)[name = tensor("op_3162_cast_fp16")]; + tensor input_967_cast_fp16 = add(x = input_955_cast_fp16, y = var_3162_cast_fp16)[name = tensor("input_967_cast_fp16")]; + tensor query_37_axes_0 = const()[name = tensor("query_37_axes_0"), val = tensor([-1])]; + tensor model_layers_18_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_18_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(452824960)))]; + tensor model_layers_18_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_18_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(452827072)))]; + tensor query_37_cast_fp16 = layer_norm(axes = query_37_axes_0, beta = model_layers_18_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_18_norm_self_att_weight_to_fp16, x = input_967_cast_fp16)[name = tensor("query_37_cast_fp16")]; + tensor model_layers_18_self_attn_linear_q_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_18_self_attn_linear_q_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(452829184))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(453877824))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_165_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_18_self_attn_linear_q_weight_to_fp16_quantized, x = query_37_cast_fp16)[name = tensor("linear_165_cast_fp16")]; + tensor var_3178 = const()[name = tensor("op_3178"), val = tensor([1, -1, 8, 128])]; + tensor q_109_cast_fp16 = reshape(shape = var_3178, x = linear_165_cast_fp16)[name = tensor("q_109_cast_fp16")]; + tensor model_layers_18_self_attn_linear_k_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_18_self_attn_linear_k_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(453879936))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(454928576))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_166_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_18_self_attn_linear_k_weight_to_fp16_quantized, x = query_37_cast_fp16)[name = tensor("linear_166_cast_fp16")]; + tensor var_3182 = const()[name = tensor("op_3182"), val = tensor([1, -1, 8, 128])]; + tensor k_73_cast_fp16 = reshape(shape = var_3182, x = linear_166_cast_fp16)[name = tensor("k_73_cast_fp16")]; + tensor model_layers_18_self_attn_linear_v_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_18_self_attn_linear_v_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(454930688))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(455979328))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_167_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_18_self_attn_linear_v_weight_to_fp16_quantized, x = query_37_cast_fp16)[name = tensor("linear_167_cast_fp16")]; + tensor var_3186 = const()[name = tensor("op_3186"), val = tensor([1, -1, 8, 128])]; + tensor v_37_cast_fp16 = reshape(shape = var_3186, x = linear_167_cast_fp16)[name = tensor("v_37_cast_fp16")]; + tensor value_37_perm_0 = const()[name = tensor("value_37_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor model_layers_18_self_attn_pos_bias_u_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_18_self_attn_pos_bias_u_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(455981440))), scale = tensor([0x1.7acp-8, 0x1.248p-8, 0x1.498p-8, 0x1.248p-7, 0x1.8cp-8, 0x1.8e4p-8, 0x1.17p-8, 0x1.9b4p-8]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_3198_cast_fp16 = add(x = q_109_cast_fp16, y = model_layers_18_self_attn_pos_bias_u_to_fp16_quantized)[name = tensor("op_3198_cast_fp16")]; + tensor model_layers_18_self_attn_pos_bias_v_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_18_self_attn_pos_bias_v_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(455982528))), scale = tensor([0x1.75p-9, 0x1.05cp-8, 0x1.3f8p-8, 0x1.a6p-8, 0x1.294p-8, 0x1.3fp-7, 0x1.168p-8, 0x1.ed8p-9]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_3200_cast_fp16 = add(x = q_109_cast_fp16, y = model_layers_18_self_attn_pos_bias_v_to_fp16_quantized)[name = tensor("op_3200_cast_fp16")]; + tensor q_with_bias_v_37_perm_0 = const()[name = tensor("q_with_bias_v_37_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor x_403_transpose_x_0 = const()[name = tensor("x_403_transpose_x_0"), val = tensor(false)]; + tensor x_403_transpose_y_0 = const()[name = tensor("x_403_transpose_y_0"), val = tensor(false)]; + tensor op_3202_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(3), name = tensor("op_3202_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(455983616))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(456240704))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(16177728)))]; + tensor q_with_bias_v_37_cast_fp16 = transpose(perm = q_with_bias_v_37_perm_0, x = var_3200_cast_fp16)[name = tensor("transpose_185")]; + tensor x_403_cast_fp16 = matmul(transpose_x = x_403_transpose_x_0, transpose_y = x_403_transpose_y_0, x = q_with_bias_v_37_cast_fp16, y = op_3202_to_fp16_quantized)[name = tensor("x_403_cast_fp16")]; + tensor x_405_pad_0 = const()[name = tensor("x_405_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_405_mode_0 = const()[name = tensor("x_405_mode_0"), val = tensor("constant")]; + tensor const_194_to_fp16 = const()[name = tensor("const_194_to_fp16"), val = tensor(0x0p+0)]; + tensor x_405_cast_fp16 = pad(constant_val = const_194_to_fp16, mode = x_405_mode_0, pad = x_405_pad_0, x = x_403_cast_fp16)[name = tensor("x_405_cast_fp16")]; + tensor var_3210 = const()[name = tensor("op_3210"), val = tensor([1, 8, -1, 126])]; + tensor x_407_cast_fp16 = reshape(shape = var_3210, x = x_405_cast_fp16)[name = tensor("x_407_cast_fp16")]; + tensor var_3214_begin_0 = const()[name = tensor("op_3214_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_3214_end_0 = const()[name = tensor("op_3214_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_3214_end_mask_0 = const()[name = tensor("op_3214_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_3214_cast_fp16 = slice_by_index(begin = var_3214_begin_0, end = var_3214_end_0, end_mask = var_3214_end_mask_0, x = x_407_cast_fp16)[name = tensor("op_3214_cast_fp16")]; + tensor var_3215 = const()[name = tensor("op_3215"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_73_cast_fp16 = reshape(shape = var_3215, x = var_3214_cast_fp16)[name = tensor("matrix_bd_73_cast_fp16")]; + tensor matrix_ac_37_transpose_x_0 = const()[name = tensor("matrix_ac_37_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_37_transpose_y_0 = const()[name = tensor("matrix_ac_37_transpose_y_0"), val = tensor(false)]; + tensor transpose_132_perm_0 = const()[name = tensor("transpose_132_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_133_perm_0 = const()[name = tensor("transpose_133_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_133 = transpose(perm = transpose_133_perm_0, x = k_73_cast_fp16)[name = tensor("transpose_183")]; + tensor transpose_132 = transpose(perm = transpose_132_perm_0, x = var_3198_cast_fp16)[name = tensor("transpose_184")]; + tensor matrix_ac_37_cast_fp16 = matmul(transpose_x = matrix_ac_37_transpose_x_0, transpose_y = matrix_ac_37_transpose_y_0, x = transpose_132, y = transpose_133)[name = tensor("matrix_ac_37_cast_fp16")]; + tensor matrix_bd_75_begin_0 = const()[name = tensor("matrix_bd_75_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_75_end_0 = const()[name = tensor("matrix_bd_75_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_75_end_mask_0 = const()[name = tensor("matrix_bd_75_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_75_cast_fp16 = slice_by_index(begin = matrix_bd_75_begin_0, end = matrix_bd_75_end_0, end_mask = matrix_bd_75_end_mask_0, x = matrix_bd_73_cast_fp16)[name = tensor("matrix_bd_75_cast_fp16")]; + tensor var_3224_cast_fp16 = add(x = matrix_ac_37_cast_fp16, y = matrix_bd_75_cast_fp16)[name = tensor("op_3224_cast_fp16")]; + tensor _inversed_scores_73_y_0_to_fp16 = const()[name = tensor("_inversed_scores_73_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_73_cast_fp16 = mul(x = var_3224_cast_fp16, y = _inversed_scores_73_y_0_to_fp16)[name = tensor("_inversed_scores_73_cast_fp16")]; + tensor scores_75_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_73_cast_fp16, cond = mask_3)[name = tensor("scores_75_cast_fp16")]; + tensor var_3230_cast_fp16 = softmax(axis = var_25, x = scores_75_cast_fp16)[name = tensor("op_3230_cast_fp16")]; + tensor input_969_cast_fp16 = select(a = var_6_to_fp16, b = var_3230_cast_fp16, cond = mask_3)[name = tensor("input_969_cast_fp16")]; + tensor x_409_transpose_x_0 = const()[name = tensor("x_409_transpose_x_0"), val = tensor(false)]; + tensor x_409_transpose_y_0 = const()[name = tensor("x_409_transpose_y_0"), val = tensor(false)]; + tensor value_37_cast_fp16 = transpose(perm = value_37_perm_0, x = v_37_cast_fp16)[name = tensor("transpose_182")]; + tensor x_409_cast_fp16 = matmul(transpose_x = x_409_transpose_x_0, transpose_y = x_409_transpose_y_0, x = input_969_cast_fp16, y = value_37_cast_fp16)[name = tensor("x_409_cast_fp16")]; + tensor var_3234_perm_0 = const()[name = tensor("op_3234_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_3235 = const()[name = tensor("op_3235"), val = tensor([1, -1, 1024])]; + tensor var_3234_cast_fp16 = transpose(perm = var_3234_perm_0, x = x_409_cast_fp16)[name = tensor("transpose_181")]; + tensor input_971_cast_fp16 = reshape(shape = var_3235, x = var_3234_cast_fp16)[name = tensor("input_971_cast_fp16")]; + tensor model_layers_18_self_attn_linear_out_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_18_self_attn_linear_out_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(456241280))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(457289920))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_169_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_18_self_attn_linear_out_weight_to_fp16_quantized, x = input_971_cast_fp16)[name = tensor("linear_169_cast_fp16")]; + tensor input_975_cast_fp16 = add(x = input_967_cast_fp16, y = linear_169_cast_fp16)[name = tensor("input_975_cast_fp16")]; + tensor x_413_axes_0 = const()[name = tensor("x_413_axes_0"), val = tensor([-1])]; + tensor model_layers_18_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_18_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(457292032)))]; + tensor model_layers_18_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_18_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(457294144)))]; + tensor x_413_cast_fp16 = layer_norm(axes = x_413_axes_0, beta = model_layers_18_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_18_norm_conv_weight_to_fp16, x = input_975_cast_fp16)[name = tensor("x_413_cast_fp16")]; + tensor input_977_perm_0 = const()[name = tensor("input_977_perm_0"), val = tensor([0, 2, 1])]; + tensor input_979_pad_type_0 = const()[name = tensor("input_979_pad_type_0"), val = tensor("valid")]; + tensor input_979_strides_0 = const()[name = tensor("input_979_strides_0"), val = tensor([1])]; + tensor input_979_pad_0 = const()[name = tensor("input_979_pad_0"), val = tensor([0, 0])]; + tensor input_979_dilations_0 = const()[name = tensor("input_979_dilations_0"), val = tensor([1])]; + tensor input_979_groups_0 = const()[name = tensor("input_979_groups_0"), val = tensor(1)]; + tensor model_layers_18_conv_pointwise_conv1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_18_conv_pointwise_conv1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(457296256))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(459393472))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(19330816)))]; + tensor input_977_cast_fp16 = transpose(perm = input_977_perm_0, x = x_413_cast_fp16)[name = tensor("transpose_180")]; + tensor input_979_cast_fp16 = conv(dilations = input_979_dilations_0, groups = input_979_groups_0, pad = input_979_pad_0, pad_type = input_979_pad_type_0, strides = input_979_strides_0, weight = model_layers_18_conv_pointwise_conv1_weight_to_fp16_quantized, x = input_977_cast_fp16)[name = tensor("input_979_cast_fp16")]; + tensor x_415_split_num_splits_0 = const()[name = tensor("x_415_split_num_splits_0"), val = tensor(2)]; + tensor x_415_split_axis_0 = const()[name = tensor("x_415_split_axis_0"), val = tensor(1)]; + tensor x_415_split_cast_fp16_0, tensor x_415_split_cast_fp16_1 = split(axis = x_415_split_axis_0, num_splits = x_415_split_num_splits_0, x = input_979_cast_fp16)[name = tensor("x_415_split_cast_fp16")]; + tensor x_415_split_1_sigmoid_cast_fp16 = sigmoid(x = x_415_split_cast_fp16_1)[name = tensor("x_415_split_1_sigmoid_cast_fp16")]; + tensor x_415_cast_fp16 = mul(x = x_415_split_cast_fp16_0, y = x_415_split_1_sigmoid_cast_fp16)[name = tensor("x_415_cast_fp16")]; + tensor input_981_cast_fp16 = select(a = var_6_to_fp16, b = x_415_cast_fp16, cond = var_323)[name = tensor("input_981_cast_fp16")]; + tensor input_983_pad_0 = const()[name = tensor("input_983_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_983_mode_0 = const()[name = tensor("input_983_mode_0"), val = tensor("constant")]; + tensor const_197_to_fp16 = const()[name = tensor("const_197_to_fp16"), val = tensor(0x0p+0)]; + tensor input_983_cast_fp16 = pad(constant_val = const_197_to_fp16, mode = input_983_mode_0, pad = input_983_pad_0, x = input_981_cast_fp16)[name = tensor("input_983_cast_fp16")]; + tensor input_985_pad_type_0 = const()[name = tensor("input_985_pad_type_0"), val = tensor("valid")]; + tensor input_985_groups_0 = const()[name = tensor("input_985_groups_0"), val = tensor(1024)]; + tensor input_985_strides_0 = const()[name = tensor("input_985_strides_0"), val = tensor([1])]; + tensor input_985_pad_0 = const()[name = tensor("input_985_pad_0"), val = tensor([0, 0])]; + tensor input_985_dilations_0 = const()[name = tensor("input_985_dilations_0"), val = tensor([1])]; + tensor const_284_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("const_284_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(459397632))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(459406912))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor const_285_to_fp16 = const()[name = tensor("const_285_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(459409024)))]; + tensor input_987_cast_fp16 = conv(bias = const_285_to_fp16, dilations = input_985_dilations_0, groups = input_985_groups_0, pad = input_985_pad_0, pad_type = input_985_pad_type_0, strides = input_985_strides_0, weight = const_284_to_fp16_quantized, x = input_983_cast_fp16)[name = tensor("input_987_cast_fp16")]; + tensor input_989_cast_fp16 = silu(x = input_987_cast_fp16)[name = tensor("input_989_cast_fp16")]; + tensor x_417_pad_type_0 = const()[name = tensor("x_417_pad_type_0"), val = tensor("valid")]; + tensor x_417_strides_0 = const()[name = tensor("x_417_strides_0"), val = tensor([1])]; + tensor x_417_pad_0 = const()[name = tensor("x_417_pad_0"), val = tensor([0, 0])]; + tensor x_417_dilations_0 = const()[name = tensor("x_417_dilations_0"), val = tensor([1])]; + tensor x_417_groups_0 = const()[name = tensor("x_417_groups_0"), val = tensor(1)]; + tensor model_layers_18_conv_pointwise_conv2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_18_conv_pointwise_conv2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(459411136))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(460459776))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor x_417_cast_fp16 = conv(dilations = x_417_dilations_0, groups = x_417_groups_0, pad = x_417_pad_0, pad_type = x_417_pad_type_0, strides = x_417_strides_0, weight = model_layers_18_conv_pointwise_conv2_weight_to_fp16_quantized, x = input_989_cast_fp16)[name = tensor("x_417_cast_fp16")]; + tensor input_991_perm_0 = const()[name = tensor("input_991_perm_0"), val = tensor([0, 2, 1])]; + tensor input_991_cast_fp16 = transpose(perm = input_991_perm_0, x = x_417_cast_fp16)[name = tensor("transpose_179")]; + tensor input_993_cast_fp16 = add(x = input_975_cast_fp16, y = input_991_cast_fp16)[name = tensor("input_993_cast_fp16")]; + tensor input_995_axes_0 = const()[name = tensor("input_995_axes_0"), val = tensor([-1])]; + tensor model_layers_18_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_18_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(460461888)))]; + tensor model_layers_18_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_18_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(460464000)))]; + tensor input_995_cast_fp16 = layer_norm(axes = input_995_axes_0, beta = model_layers_18_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_18_norm_feed_forward2_weight_to_fp16, x = input_993_cast_fp16)[name = tensor("input_995_cast_fp16")]; + tensor model_layers_18_feed_forward2_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_18_feed_forward2_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(460466112))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(464660480))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_170_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_18_feed_forward2_linear1_weight_to_fp16_quantized, x = input_995_cast_fp16)[name = tensor("linear_170_cast_fp16")]; + tensor input_999_cast_fp16 = silu(x = linear_170_cast_fp16)[name = tensor("input_999_cast_fp16")]; + tensor model_layers_18_feed_forward2_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_18_feed_forward2_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(464668736))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(468863104))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_171_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_18_feed_forward2_linear2_weight_to_fp16_quantized, x = input_999_cast_fp16)[name = tensor("linear_171_cast_fp16")]; + tensor var_3295_to_fp16 = const()[name = tensor("op_3295_to_fp16"), val = tensor(0x1p-1)]; + tensor var_3296_cast_fp16 = mul(x = linear_171_cast_fp16, y = var_3295_to_fp16)[name = tensor("op_3296_cast_fp16")]; + tensor input_1005_cast_fp16 = add(x = input_993_cast_fp16, y = var_3296_cast_fp16)[name = tensor("input_1005_cast_fp16")]; + tensor input_1007_axes_0 = const()[name = tensor("input_1007_axes_0"), val = tensor([-1])]; + tensor model_layers_18_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_18_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(468865216)))]; + tensor model_layers_18_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_18_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(468867328)))]; + tensor input_1007_cast_fp16 = layer_norm(axes = input_1007_axes_0, beta = model_layers_18_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_18_norm_out_weight_to_fp16, x = input_1005_cast_fp16)[name = tensor("input_1007_cast_fp16")]; + tensor input_1009_axes_0 = const()[name = tensor("input_1009_axes_0"), val = tensor([-1])]; + tensor model_layers_19_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_19_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(468869440)))]; + tensor model_layers_19_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_19_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(468871552)))]; + tensor input_1009_cast_fp16 = layer_norm(axes = input_1009_axes_0, beta = model_layers_19_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_19_norm_feed_forward1_weight_to_fp16, x = input_1007_cast_fp16)[name = tensor("input_1009_cast_fp16")]; + tensor model_layers_19_feed_forward1_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_19_feed_forward1_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(468873664))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(473068032))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_172_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_19_feed_forward1_linear1_weight_to_fp16_quantized, x = input_1009_cast_fp16)[name = tensor("linear_172_cast_fp16")]; + tensor input_1013_cast_fp16 = silu(x = linear_172_cast_fp16)[name = tensor("input_1013_cast_fp16")]; + tensor model_layers_19_feed_forward1_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_19_feed_forward1_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(473076288))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(477270656))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_173_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_19_feed_forward1_linear2_weight_to_fp16_quantized, x = input_1013_cast_fp16)[name = tensor("linear_173_cast_fp16")]; + tensor var_3324_to_fp16 = const()[name = tensor("op_3324_to_fp16"), val = tensor(0x1p-1)]; + tensor var_3325_cast_fp16 = mul(x = linear_173_cast_fp16, y = var_3324_to_fp16)[name = tensor("op_3325_cast_fp16")]; + tensor input_1019_cast_fp16 = add(x = input_1007_cast_fp16, y = var_3325_cast_fp16)[name = tensor("input_1019_cast_fp16")]; + tensor query_39_axes_0 = const()[name = tensor("query_39_axes_0"), val = tensor([-1])]; + tensor model_layers_19_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_19_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(477272768)))]; + tensor model_layers_19_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_19_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(477274880)))]; + tensor query_39_cast_fp16 = layer_norm(axes = query_39_axes_0, beta = model_layers_19_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_19_norm_self_att_weight_to_fp16, x = input_1019_cast_fp16)[name = tensor("query_39_cast_fp16")]; + tensor model_layers_19_self_attn_linear_q_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_19_self_attn_linear_q_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(477276992))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(478325632))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_174_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_19_self_attn_linear_q_weight_to_fp16_quantized, x = query_39_cast_fp16)[name = tensor("linear_174_cast_fp16")]; + tensor var_3341 = const()[name = tensor("op_3341"), val = tensor([1, -1, 8, 128])]; + tensor q_115_cast_fp16 = reshape(shape = var_3341, x = linear_174_cast_fp16)[name = tensor("q_115_cast_fp16")]; + tensor model_layers_19_self_attn_linear_k_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_19_self_attn_linear_k_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(478327744))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(479376384))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_175_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_19_self_attn_linear_k_weight_to_fp16_quantized, x = query_39_cast_fp16)[name = tensor("linear_175_cast_fp16")]; + tensor var_3345 = const()[name = tensor("op_3345"), val = tensor([1, -1, 8, 128])]; + tensor k_77_cast_fp16 = reshape(shape = var_3345, x = linear_175_cast_fp16)[name = tensor("k_77_cast_fp16")]; + tensor model_layers_19_self_attn_linear_v_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_19_self_attn_linear_v_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(479378496))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(480427136))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_176_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_19_self_attn_linear_v_weight_to_fp16_quantized, x = query_39_cast_fp16)[name = tensor("linear_176_cast_fp16")]; + tensor var_3349 = const()[name = tensor("op_3349"), val = tensor([1, -1, 8, 128])]; + tensor v_39_cast_fp16 = reshape(shape = var_3349, x = linear_176_cast_fp16)[name = tensor("v_39_cast_fp16")]; + tensor value_39_perm_0 = const()[name = tensor("value_39_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor model_layers_19_self_attn_pos_bias_u_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_19_self_attn_pos_bias_u_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(480429248))), scale = tensor([0x1.ddp-8, 0x1.a74p-8, 0x1.7ccp-8, 0x1.92p-8, 0x1.568p-8, 0x1.aap-8, 0x1.35p-7, 0x1.274p-7]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_3361_cast_fp16 = add(x = q_115_cast_fp16, y = model_layers_19_self_attn_pos_bias_u_to_fp16_quantized)[name = tensor("op_3361_cast_fp16")]; + tensor model_layers_19_self_attn_pos_bias_v_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_19_self_attn_pos_bias_v_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(480430336))), scale = tensor([0x1.3c4p-8, 0x1.554p-8, 0x1.0c4p-8, 0x1.dbcp-8, 0x1.2cp-8, 0x1.d88p-8, 0x1.b44p-8, 0x1.81cp-9]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_3363_cast_fp16 = add(x = q_115_cast_fp16, y = model_layers_19_self_attn_pos_bias_v_to_fp16_quantized)[name = tensor("op_3363_cast_fp16")]; + tensor q_with_bias_v_39_perm_0 = const()[name = tensor("q_with_bias_v_39_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor x_425_transpose_x_0 = const()[name = tensor("x_425_transpose_x_0"), val = tensor(false)]; + tensor x_425_transpose_y_0 = const()[name = tensor("x_425_transpose_y_0"), val = tensor(false)]; + tensor op_3365_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(3), name = tensor("op_3365_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(480431424))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(480688512))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(16177728)))]; + tensor q_with_bias_v_39_cast_fp16 = transpose(perm = q_with_bias_v_39_perm_0, x = var_3363_cast_fp16)[name = tensor("transpose_178")]; + tensor x_425_cast_fp16 = matmul(transpose_x = x_425_transpose_x_0, transpose_y = x_425_transpose_y_0, x = q_with_bias_v_39_cast_fp16, y = op_3365_to_fp16_quantized)[name = tensor("x_425_cast_fp16")]; + tensor x_427_pad_0 = const()[name = tensor("x_427_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_427_mode_0 = const()[name = tensor("x_427_mode_0"), val = tensor("constant")]; + tensor const_204_to_fp16 = const()[name = tensor("const_204_to_fp16"), val = tensor(0x0p+0)]; + tensor x_427_cast_fp16 = pad(constant_val = const_204_to_fp16, mode = x_427_mode_0, pad = x_427_pad_0, x = x_425_cast_fp16)[name = tensor("x_427_cast_fp16")]; + tensor var_3373 = const()[name = tensor("op_3373"), val = tensor([1, 8, -1, 126])]; + tensor x_429_cast_fp16 = reshape(shape = var_3373, x = x_427_cast_fp16)[name = tensor("x_429_cast_fp16")]; + tensor var_3377_begin_0 = const()[name = tensor("op_3377_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_3377_end_0 = const()[name = tensor("op_3377_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_3377_end_mask_0 = const()[name = tensor("op_3377_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_3377_cast_fp16 = slice_by_index(begin = var_3377_begin_0, end = var_3377_end_0, end_mask = var_3377_end_mask_0, x = x_429_cast_fp16)[name = tensor("op_3377_cast_fp16")]; + tensor var_3378 = const()[name = tensor("op_3378"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_77_cast_fp16 = reshape(shape = var_3378, x = var_3377_cast_fp16)[name = tensor("matrix_bd_77_cast_fp16")]; + tensor matrix_ac_39_transpose_x_0 = const()[name = tensor("matrix_ac_39_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_39_transpose_y_0 = const()[name = tensor("matrix_ac_39_transpose_y_0"), val = tensor(false)]; + tensor transpose_134_perm_0 = const()[name = tensor("transpose_134_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_135_perm_0 = const()[name = tensor("transpose_135_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_135 = transpose(perm = transpose_135_perm_0, x = k_77_cast_fp16)[name = tensor("transpose_176")]; + tensor transpose_134 = transpose(perm = transpose_134_perm_0, x = var_3361_cast_fp16)[name = tensor("transpose_177")]; + tensor matrix_ac_39_cast_fp16 = matmul(transpose_x = matrix_ac_39_transpose_x_0, transpose_y = matrix_ac_39_transpose_y_0, x = transpose_134, y = transpose_135)[name = tensor("matrix_ac_39_cast_fp16")]; + tensor matrix_bd_79_begin_0 = const()[name = tensor("matrix_bd_79_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_79_end_0 = const()[name = tensor("matrix_bd_79_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_79_end_mask_0 = const()[name = tensor("matrix_bd_79_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_79_cast_fp16 = slice_by_index(begin = matrix_bd_79_begin_0, end = matrix_bd_79_end_0, end_mask = matrix_bd_79_end_mask_0, x = matrix_bd_77_cast_fp16)[name = tensor("matrix_bd_79_cast_fp16")]; + tensor var_3387_cast_fp16 = add(x = matrix_ac_39_cast_fp16, y = matrix_bd_79_cast_fp16)[name = tensor("op_3387_cast_fp16")]; + tensor _inversed_scores_77_y_0_to_fp16 = const()[name = tensor("_inversed_scores_77_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_77_cast_fp16 = mul(x = var_3387_cast_fp16, y = _inversed_scores_77_y_0_to_fp16)[name = tensor("_inversed_scores_77_cast_fp16")]; + tensor scores_79_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_77_cast_fp16, cond = mask_3)[name = tensor("scores_79_cast_fp16")]; + tensor var_3393_cast_fp16 = softmax(axis = var_25, x = scores_79_cast_fp16)[name = tensor("op_3393_cast_fp16")]; + tensor input_1021_cast_fp16 = select(a = var_6_to_fp16, b = var_3393_cast_fp16, cond = mask_3)[name = tensor("input_1021_cast_fp16")]; + tensor x_431_transpose_x_0 = const()[name = tensor("x_431_transpose_x_0"), val = tensor(false)]; + tensor x_431_transpose_y_0 = const()[name = tensor("x_431_transpose_y_0"), val = tensor(false)]; + tensor value_39_cast_fp16 = transpose(perm = value_39_perm_0, x = v_39_cast_fp16)[name = tensor("transpose_175")]; + tensor x_431_cast_fp16 = matmul(transpose_x = x_431_transpose_x_0, transpose_y = x_431_transpose_y_0, x = input_1021_cast_fp16, y = value_39_cast_fp16)[name = tensor("x_431_cast_fp16")]; + tensor var_3397_perm_0 = const()[name = tensor("op_3397_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_3398 = const()[name = tensor("op_3398"), val = tensor([1, -1, 1024])]; + tensor var_3397_cast_fp16 = transpose(perm = var_3397_perm_0, x = x_431_cast_fp16)[name = tensor("transpose_174")]; + tensor input_1023_cast_fp16 = reshape(shape = var_3398, x = var_3397_cast_fp16)[name = tensor("input_1023_cast_fp16")]; + tensor model_layers_19_self_attn_linear_out_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_19_self_attn_linear_out_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(480689088))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(481737728))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_178_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_19_self_attn_linear_out_weight_to_fp16_quantized, x = input_1023_cast_fp16)[name = tensor("linear_178_cast_fp16")]; + tensor input_1027_cast_fp16 = add(x = input_1019_cast_fp16, y = linear_178_cast_fp16)[name = tensor("input_1027_cast_fp16")]; + tensor x_435_axes_0 = const()[name = tensor("x_435_axes_0"), val = tensor([-1])]; + tensor model_layers_19_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_19_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(481739840)))]; + tensor model_layers_19_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_19_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(481741952)))]; + tensor x_435_cast_fp16 = layer_norm(axes = x_435_axes_0, beta = model_layers_19_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_19_norm_conv_weight_to_fp16, x = input_1027_cast_fp16)[name = tensor("x_435_cast_fp16")]; + tensor input_1029_perm_0 = const()[name = tensor("input_1029_perm_0"), val = tensor([0, 2, 1])]; + tensor input_1031_pad_type_0 = const()[name = tensor("input_1031_pad_type_0"), val = tensor("valid")]; + tensor input_1031_strides_0 = const()[name = tensor("input_1031_strides_0"), val = tensor([1])]; + tensor input_1031_pad_0 = const()[name = tensor("input_1031_pad_0"), val = tensor([0, 0])]; + tensor input_1031_dilations_0 = const()[name = tensor("input_1031_dilations_0"), val = tensor([1])]; + tensor input_1031_groups_0 = const()[name = tensor("input_1031_groups_0"), val = tensor(1)]; + tensor model_layers_19_conv_pointwise_conv1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_19_conv_pointwise_conv1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(481744064))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(483841280))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(19330816)))]; + tensor input_1029_cast_fp16 = transpose(perm = input_1029_perm_0, x = x_435_cast_fp16)[name = tensor("transpose_173")]; + tensor input_1031_cast_fp16 = conv(dilations = input_1031_dilations_0, groups = input_1031_groups_0, pad = input_1031_pad_0, pad_type = input_1031_pad_type_0, strides = input_1031_strides_0, weight = model_layers_19_conv_pointwise_conv1_weight_to_fp16_quantized, x = input_1029_cast_fp16)[name = tensor("input_1031_cast_fp16")]; + tensor x_437_split_num_splits_0 = const()[name = tensor("x_437_split_num_splits_0"), val = tensor(2)]; + tensor x_437_split_axis_0 = const()[name = tensor("x_437_split_axis_0"), val = tensor(1)]; + tensor x_437_split_cast_fp16_0, tensor x_437_split_cast_fp16_1 = split(axis = x_437_split_axis_0, num_splits = x_437_split_num_splits_0, x = input_1031_cast_fp16)[name = tensor("x_437_split_cast_fp16")]; + tensor x_437_split_1_sigmoid_cast_fp16 = sigmoid(x = x_437_split_cast_fp16_1)[name = tensor("x_437_split_1_sigmoid_cast_fp16")]; + tensor x_437_cast_fp16 = mul(x = x_437_split_cast_fp16_0, y = x_437_split_1_sigmoid_cast_fp16)[name = tensor("x_437_cast_fp16")]; + tensor input_1033_cast_fp16 = select(a = var_6_to_fp16, b = x_437_cast_fp16, cond = var_323)[name = tensor("input_1033_cast_fp16")]; + tensor input_1035_pad_0 = const()[name = tensor("input_1035_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_1035_mode_0 = const()[name = tensor("input_1035_mode_0"), val = tensor("constant")]; + tensor const_207_to_fp16 = const()[name = tensor("const_207_to_fp16"), val = tensor(0x0p+0)]; + tensor input_1035_cast_fp16 = pad(constant_val = const_207_to_fp16, mode = input_1035_mode_0, pad = input_1035_pad_0, x = input_1033_cast_fp16)[name = tensor("input_1035_cast_fp16")]; + tensor input_1037_pad_type_0 = const()[name = tensor("input_1037_pad_type_0"), val = tensor("valid")]; + tensor input_1037_groups_0 = const()[name = tensor("input_1037_groups_0"), val = tensor(1024)]; + tensor input_1037_strides_0 = const()[name = tensor("input_1037_strides_0"), val = tensor([1])]; + tensor input_1037_pad_0 = const()[name = tensor("input_1037_pad_0"), val = tensor([0, 0])]; + tensor input_1037_dilations_0 = const()[name = tensor("input_1037_dilations_0"), val = tensor([1])]; + tensor const_286_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("const_286_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(483845440))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(483854720))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor const_287_to_fp16 = const()[name = tensor("const_287_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(483856832)))]; + tensor input_1039_cast_fp16 = conv(bias = const_287_to_fp16, dilations = input_1037_dilations_0, groups = input_1037_groups_0, pad = input_1037_pad_0, pad_type = input_1037_pad_type_0, strides = input_1037_strides_0, weight = const_286_to_fp16_quantized, x = input_1035_cast_fp16)[name = tensor("input_1039_cast_fp16")]; + tensor input_1041_cast_fp16 = silu(x = input_1039_cast_fp16)[name = tensor("input_1041_cast_fp16")]; + tensor x_439_pad_type_0 = const()[name = tensor("x_439_pad_type_0"), val = tensor("valid")]; + tensor x_439_strides_0 = const()[name = tensor("x_439_strides_0"), val = tensor([1])]; + tensor x_439_pad_0 = const()[name = tensor("x_439_pad_0"), val = tensor([0, 0])]; + tensor x_439_dilations_0 = const()[name = tensor("x_439_dilations_0"), val = tensor([1])]; + tensor x_439_groups_0 = const()[name = tensor("x_439_groups_0"), val = tensor(1)]; + tensor model_layers_19_conv_pointwise_conv2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_19_conv_pointwise_conv2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(483858944))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(484907584))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor x_439_cast_fp16 = conv(dilations = x_439_dilations_0, groups = x_439_groups_0, pad = x_439_pad_0, pad_type = x_439_pad_type_0, strides = x_439_strides_0, weight = model_layers_19_conv_pointwise_conv2_weight_to_fp16_quantized, x = input_1041_cast_fp16)[name = tensor("x_439_cast_fp16")]; + tensor input_1043_perm_0 = const()[name = tensor("input_1043_perm_0"), val = tensor([0, 2, 1])]; + tensor input_1043_cast_fp16 = transpose(perm = input_1043_perm_0, x = x_439_cast_fp16)[name = tensor("transpose_172")]; + tensor input_1045_cast_fp16 = add(x = input_1027_cast_fp16, y = input_1043_cast_fp16)[name = tensor("input_1045_cast_fp16")]; + tensor input_1047_axes_0 = const()[name = tensor("input_1047_axes_0"), val = tensor([-1])]; + tensor model_layers_19_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_19_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(484909696)))]; + tensor model_layers_19_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_19_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(484911808)))]; + tensor input_1047_cast_fp16 = layer_norm(axes = input_1047_axes_0, beta = model_layers_19_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_19_norm_feed_forward2_weight_to_fp16, x = input_1045_cast_fp16)[name = tensor("input_1047_cast_fp16")]; + tensor model_layers_19_feed_forward2_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_19_feed_forward2_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(484913920))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(489108288))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_179_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_19_feed_forward2_linear1_weight_to_fp16_quantized, x = input_1047_cast_fp16)[name = tensor("linear_179_cast_fp16")]; + tensor input_1051_cast_fp16 = silu(x = linear_179_cast_fp16)[name = tensor("input_1051_cast_fp16")]; + tensor model_layers_19_feed_forward2_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_19_feed_forward2_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(489116544))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(493310912))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_180_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_19_feed_forward2_linear2_weight_to_fp16_quantized, x = input_1051_cast_fp16)[name = tensor("linear_180_cast_fp16")]; + tensor var_3458_to_fp16 = const()[name = tensor("op_3458_to_fp16"), val = tensor(0x1p-1)]; + tensor var_3459_cast_fp16 = mul(x = linear_180_cast_fp16, y = var_3458_to_fp16)[name = tensor("op_3459_cast_fp16")]; + tensor input_1057_cast_fp16 = add(x = input_1045_cast_fp16, y = var_3459_cast_fp16)[name = tensor("input_1057_cast_fp16")]; + tensor input_1059_axes_0 = const()[name = tensor("input_1059_axes_0"), val = tensor([-1])]; + tensor model_layers_19_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_19_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(493313024)))]; + tensor model_layers_19_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_19_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(493315136)))]; + tensor input_1059_cast_fp16 = layer_norm(axes = input_1059_axes_0, beta = model_layers_19_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_19_norm_out_weight_to_fp16, x = input_1057_cast_fp16)[name = tensor("input_1059_cast_fp16")]; + tensor input_1061_axes_0 = const()[name = tensor("input_1061_axes_0"), val = tensor([-1])]; + tensor model_layers_20_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_20_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(493317248)))]; + tensor model_layers_20_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_20_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(493319360)))]; + tensor input_1061_cast_fp16 = layer_norm(axes = input_1061_axes_0, beta = model_layers_20_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_20_norm_feed_forward1_weight_to_fp16, x = input_1059_cast_fp16)[name = tensor("input_1061_cast_fp16")]; + tensor model_layers_20_feed_forward1_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_20_feed_forward1_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(493321472))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(497515840))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_181_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_20_feed_forward1_linear1_weight_to_fp16_quantized, x = input_1061_cast_fp16)[name = tensor("linear_181_cast_fp16")]; + tensor input_1065_cast_fp16 = silu(x = linear_181_cast_fp16)[name = tensor("input_1065_cast_fp16")]; + tensor model_layers_20_feed_forward1_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_20_feed_forward1_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(497524096))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(501718464))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_182_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_20_feed_forward1_linear2_weight_to_fp16_quantized, x = input_1065_cast_fp16)[name = tensor("linear_182_cast_fp16")]; + tensor var_3487_to_fp16 = const()[name = tensor("op_3487_to_fp16"), val = tensor(0x1p-1)]; + tensor var_3488_cast_fp16 = mul(x = linear_182_cast_fp16, y = var_3487_to_fp16)[name = tensor("op_3488_cast_fp16")]; + tensor input_1071_cast_fp16 = add(x = input_1059_cast_fp16, y = var_3488_cast_fp16)[name = tensor("input_1071_cast_fp16")]; + tensor query_41_axes_0 = const()[name = tensor("query_41_axes_0"), val = tensor([-1])]; + tensor model_layers_20_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_20_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(501720576)))]; + tensor model_layers_20_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_20_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(501722688)))]; + tensor query_41_cast_fp16 = layer_norm(axes = query_41_axes_0, beta = model_layers_20_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_20_norm_self_att_weight_to_fp16, x = input_1071_cast_fp16)[name = tensor("query_41_cast_fp16")]; + tensor model_layers_20_self_attn_linear_q_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_20_self_attn_linear_q_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(501724800))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(502773440))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_183_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_20_self_attn_linear_q_weight_to_fp16_quantized, x = query_41_cast_fp16)[name = tensor("linear_183_cast_fp16")]; + tensor var_3504 = const()[name = tensor("op_3504"), val = tensor([1, -1, 8, 128])]; + tensor q_121_cast_fp16 = reshape(shape = var_3504, x = linear_183_cast_fp16)[name = tensor("q_121_cast_fp16")]; + tensor model_layers_20_self_attn_linear_k_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_20_self_attn_linear_k_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(502775552))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(503824192))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_184_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_20_self_attn_linear_k_weight_to_fp16_quantized, x = query_41_cast_fp16)[name = tensor("linear_184_cast_fp16")]; + tensor var_3508 = const()[name = tensor("op_3508"), val = tensor([1, -1, 8, 128])]; + tensor k_81_cast_fp16 = reshape(shape = var_3508, x = linear_184_cast_fp16)[name = tensor("k_81_cast_fp16")]; + tensor model_layers_20_self_attn_linear_v_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_20_self_attn_linear_v_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(503826304))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(504874944))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_185_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_20_self_attn_linear_v_weight_to_fp16_quantized, x = query_41_cast_fp16)[name = tensor("linear_185_cast_fp16")]; + tensor var_3512 = const()[name = tensor("op_3512"), val = tensor([1, -1, 8, 128])]; + tensor v_41_cast_fp16 = reshape(shape = var_3512, x = linear_185_cast_fp16)[name = tensor("v_41_cast_fp16")]; + tensor value_41_perm_0 = const()[name = tensor("value_41_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor model_layers_20_self_attn_pos_bias_u_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_20_self_attn_pos_bias_u_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(504877056))), scale = tensor([0x1.43p-8, 0x1.448p-7, 0x1.2ecp-8, 0x1.3ecp-8, 0x1.e38p-8, 0x1.36p-7, 0x1.03p-8, 0x1.514p-8]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_3524_cast_fp16 = add(x = q_121_cast_fp16, y = model_layers_20_self_attn_pos_bias_u_to_fp16_quantized)[name = tensor("op_3524_cast_fp16")]; + tensor model_layers_20_self_attn_pos_bias_v_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_20_self_attn_pos_bias_v_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(504878144))), scale = tensor([0x1.18cp-8, 0x1.0b8p-8, 0x1.aa4p-8, 0x1.714p-9, 0x1.074p-9, 0x1.0fp-7, 0x1.d9p-8, 0x1.3ccp-9]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_3526_cast_fp16 = add(x = q_121_cast_fp16, y = model_layers_20_self_attn_pos_bias_v_to_fp16_quantized)[name = tensor("op_3526_cast_fp16")]; + tensor q_with_bias_v_41_perm_0 = const()[name = tensor("q_with_bias_v_41_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor x_447_transpose_x_0 = const()[name = tensor("x_447_transpose_x_0"), val = tensor(false)]; + tensor x_447_transpose_y_0 = const()[name = tensor("x_447_transpose_y_0"), val = tensor(false)]; + tensor op_3528_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(3), name = tensor("op_3528_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(504879232))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(505136320))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(16177728)))]; + tensor q_with_bias_v_41_cast_fp16 = transpose(perm = q_with_bias_v_41_perm_0, x = var_3526_cast_fp16)[name = tensor("transpose_171")]; + tensor x_447_cast_fp16 = matmul(transpose_x = x_447_transpose_x_0, transpose_y = x_447_transpose_y_0, x = q_with_bias_v_41_cast_fp16, y = op_3528_to_fp16_quantized)[name = tensor("x_447_cast_fp16")]; + tensor x_449_pad_0 = const()[name = tensor("x_449_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_449_mode_0 = const()[name = tensor("x_449_mode_0"), val = tensor("constant")]; + tensor const_214_to_fp16 = const()[name = tensor("const_214_to_fp16"), val = tensor(0x0p+0)]; + tensor x_449_cast_fp16 = pad(constant_val = const_214_to_fp16, mode = x_449_mode_0, pad = x_449_pad_0, x = x_447_cast_fp16)[name = tensor("x_449_cast_fp16")]; + tensor var_3536 = const()[name = tensor("op_3536"), val = tensor([1, 8, -1, 126])]; + tensor x_451_cast_fp16 = reshape(shape = var_3536, x = x_449_cast_fp16)[name = tensor("x_451_cast_fp16")]; + tensor var_3540_begin_0 = const()[name = tensor("op_3540_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_3540_end_0 = const()[name = tensor("op_3540_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_3540_end_mask_0 = const()[name = tensor("op_3540_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_3540_cast_fp16 = slice_by_index(begin = var_3540_begin_0, end = var_3540_end_0, end_mask = var_3540_end_mask_0, x = x_451_cast_fp16)[name = tensor("op_3540_cast_fp16")]; + tensor var_3541 = const()[name = tensor("op_3541"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_81_cast_fp16 = reshape(shape = var_3541, x = var_3540_cast_fp16)[name = tensor("matrix_bd_81_cast_fp16")]; + tensor matrix_ac_41_transpose_x_0 = const()[name = tensor("matrix_ac_41_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_41_transpose_y_0 = const()[name = tensor("matrix_ac_41_transpose_y_0"), val = tensor(false)]; + tensor transpose_136_perm_0 = const()[name = tensor("transpose_136_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_137_perm_0 = const()[name = tensor("transpose_137_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_137 = transpose(perm = transpose_137_perm_0, x = k_81_cast_fp16)[name = tensor("transpose_169")]; + tensor transpose_136 = transpose(perm = transpose_136_perm_0, x = var_3524_cast_fp16)[name = tensor("transpose_170")]; + tensor matrix_ac_41_cast_fp16 = matmul(transpose_x = matrix_ac_41_transpose_x_0, transpose_y = matrix_ac_41_transpose_y_0, x = transpose_136, y = transpose_137)[name = tensor("matrix_ac_41_cast_fp16")]; + tensor matrix_bd_83_begin_0 = const()[name = tensor("matrix_bd_83_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_83_end_0 = const()[name = tensor("matrix_bd_83_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_83_end_mask_0 = const()[name = tensor("matrix_bd_83_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_83_cast_fp16 = slice_by_index(begin = matrix_bd_83_begin_0, end = matrix_bd_83_end_0, end_mask = matrix_bd_83_end_mask_0, x = matrix_bd_81_cast_fp16)[name = tensor("matrix_bd_83_cast_fp16")]; + tensor var_3550_cast_fp16 = add(x = matrix_ac_41_cast_fp16, y = matrix_bd_83_cast_fp16)[name = tensor("op_3550_cast_fp16")]; + tensor _inversed_scores_81_y_0_to_fp16 = const()[name = tensor("_inversed_scores_81_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_81_cast_fp16 = mul(x = var_3550_cast_fp16, y = _inversed_scores_81_y_0_to_fp16)[name = tensor("_inversed_scores_81_cast_fp16")]; + tensor scores_83_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_81_cast_fp16, cond = mask_3)[name = tensor("scores_83_cast_fp16")]; + tensor var_3556_cast_fp16 = softmax(axis = var_25, x = scores_83_cast_fp16)[name = tensor("op_3556_cast_fp16")]; + tensor input_1073_cast_fp16 = select(a = var_6_to_fp16, b = var_3556_cast_fp16, cond = mask_3)[name = tensor("input_1073_cast_fp16")]; + tensor x_453_transpose_x_0 = const()[name = tensor("x_453_transpose_x_0"), val = tensor(false)]; + tensor x_453_transpose_y_0 = const()[name = tensor("x_453_transpose_y_0"), val = tensor(false)]; + tensor value_41_cast_fp16 = transpose(perm = value_41_perm_0, x = v_41_cast_fp16)[name = tensor("transpose_168")]; + tensor x_453_cast_fp16 = matmul(transpose_x = x_453_transpose_x_0, transpose_y = x_453_transpose_y_0, x = input_1073_cast_fp16, y = value_41_cast_fp16)[name = tensor("x_453_cast_fp16")]; + tensor var_3560_perm_0 = const()[name = tensor("op_3560_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_3561 = const()[name = tensor("op_3561"), val = tensor([1, -1, 1024])]; + tensor var_3560_cast_fp16 = transpose(perm = var_3560_perm_0, x = x_453_cast_fp16)[name = tensor("transpose_167")]; + tensor input_1075_cast_fp16 = reshape(shape = var_3561, x = var_3560_cast_fp16)[name = tensor("input_1075_cast_fp16")]; + tensor model_layers_20_self_attn_linear_out_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_20_self_attn_linear_out_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(505136896))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(506185536))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_187_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_20_self_attn_linear_out_weight_to_fp16_quantized, x = input_1075_cast_fp16)[name = tensor("linear_187_cast_fp16")]; + tensor input_1079_cast_fp16 = add(x = input_1071_cast_fp16, y = linear_187_cast_fp16)[name = tensor("input_1079_cast_fp16")]; + tensor x_457_axes_0 = const()[name = tensor("x_457_axes_0"), val = tensor([-1])]; + tensor model_layers_20_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_20_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(506187648)))]; + tensor model_layers_20_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_20_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(506189760)))]; + tensor x_457_cast_fp16 = layer_norm(axes = x_457_axes_0, beta = model_layers_20_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_20_norm_conv_weight_to_fp16, x = input_1079_cast_fp16)[name = tensor("x_457_cast_fp16")]; + tensor input_1081_perm_0 = const()[name = tensor("input_1081_perm_0"), val = tensor([0, 2, 1])]; + tensor input_1083_pad_type_0 = const()[name = tensor("input_1083_pad_type_0"), val = tensor("valid")]; + tensor input_1083_strides_0 = const()[name = tensor("input_1083_strides_0"), val = tensor([1])]; + tensor input_1083_pad_0 = const()[name = tensor("input_1083_pad_0"), val = tensor([0, 0])]; + tensor input_1083_dilations_0 = const()[name = tensor("input_1083_dilations_0"), val = tensor([1])]; + tensor input_1083_groups_0 = const()[name = tensor("input_1083_groups_0"), val = tensor(1)]; + tensor model_layers_20_conv_pointwise_conv1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_20_conv_pointwise_conv1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(506191872))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(508289088))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(19330816)))]; + tensor input_1081_cast_fp16 = transpose(perm = input_1081_perm_0, x = x_457_cast_fp16)[name = tensor("transpose_166")]; + tensor input_1083_cast_fp16 = conv(dilations = input_1083_dilations_0, groups = input_1083_groups_0, pad = input_1083_pad_0, pad_type = input_1083_pad_type_0, strides = input_1083_strides_0, weight = model_layers_20_conv_pointwise_conv1_weight_to_fp16_quantized, x = input_1081_cast_fp16)[name = tensor("input_1083_cast_fp16")]; + tensor x_459_split_num_splits_0 = const()[name = tensor("x_459_split_num_splits_0"), val = tensor(2)]; + tensor x_459_split_axis_0 = const()[name = tensor("x_459_split_axis_0"), val = tensor(1)]; + tensor x_459_split_cast_fp16_0, tensor x_459_split_cast_fp16_1 = split(axis = x_459_split_axis_0, num_splits = x_459_split_num_splits_0, x = input_1083_cast_fp16)[name = tensor("x_459_split_cast_fp16")]; + tensor x_459_split_1_sigmoid_cast_fp16 = sigmoid(x = x_459_split_cast_fp16_1)[name = tensor("x_459_split_1_sigmoid_cast_fp16")]; + tensor x_459_cast_fp16 = mul(x = x_459_split_cast_fp16_0, y = x_459_split_1_sigmoid_cast_fp16)[name = tensor("x_459_cast_fp16")]; + tensor input_1085_cast_fp16 = select(a = var_6_to_fp16, b = x_459_cast_fp16, cond = var_323)[name = tensor("input_1085_cast_fp16")]; + tensor input_1087_pad_0 = const()[name = tensor("input_1087_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_1087_mode_0 = const()[name = tensor("input_1087_mode_0"), val = tensor("constant")]; + tensor const_217_to_fp16 = const()[name = tensor("const_217_to_fp16"), val = tensor(0x0p+0)]; + tensor input_1087_cast_fp16 = pad(constant_val = const_217_to_fp16, mode = input_1087_mode_0, pad = input_1087_pad_0, x = input_1085_cast_fp16)[name = tensor("input_1087_cast_fp16")]; + tensor input_1089_pad_type_0 = const()[name = tensor("input_1089_pad_type_0"), val = tensor("valid")]; + tensor input_1089_groups_0 = const()[name = tensor("input_1089_groups_0"), val = tensor(1024)]; + tensor input_1089_strides_0 = const()[name = tensor("input_1089_strides_0"), val = tensor([1])]; + tensor input_1089_pad_0 = const()[name = tensor("input_1089_pad_0"), val = tensor([0, 0])]; + tensor input_1089_dilations_0 = const()[name = tensor("input_1089_dilations_0"), val = tensor([1])]; + tensor const_288_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("const_288_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(508293248))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(508302528))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor const_289_to_fp16 = const()[name = tensor("const_289_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(508304640)))]; + tensor input_1091_cast_fp16 = conv(bias = const_289_to_fp16, dilations = input_1089_dilations_0, groups = input_1089_groups_0, pad = input_1089_pad_0, pad_type = input_1089_pad_type_0, strides = input_1089_strides_0, weight = const_288_to_fp16_quantized, x = input_1087_cast_fp16)[name = tensor("input_1091_cast_fp16")]; + tensor input_1093_cast_fp16 = silu(x = input_1091_cast_fp16)[name = tensor("input_1093_cast_fp16")]; + tensor x_461_pad_type_0 = const()[name = tensor("x_461_pad_type_0"), val = tensor("valid")]; + tensor x_461_strides_0 = const()[name = tensor("x_461_strides_0"), val = tensor([1])]; + tensor x_461_pad_0 = const()[name = tensor("x_461_pad_0"), val = tensor([0, 0])]; + tensor x_461_dilations_0 = const()[name = tensor("x_461_dilations_0"), val = tensor([1])]; + tensor x_461_groups_0 = const()[name = tensor("x_461_groups_0"), val = tensor(1)]; + tensor model_layers_20_conv_pointwise_conv2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_20_conv_pointwise_conv2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(508306752))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(509355392))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor x_461_cast_fp16 = conv(dilations = x_461_dilations_0, groups = x_461_groups_0, pad = x_461_pad_0, pad_type = x_461_pad_type_0, strides = x_461_strides_0, weight = model_layers_20_conv_pointwise_conv2_weight_to_fp16_quantized, x = input_1093_cast_fp16)[name = tensor("x_461_cast_fp16")]; + tensor input_1095_perm_0 = const()[name = tensor("input_1095_perm_0"), val = tensor([0, 2, 1])]; + tensor input_1095_cast_fp16 = transpose(perm = input_1095_perm_0, x = x_461_cast_fp16)[name = tensor("transpose_165")]; + tensor input_1097_cast_fp16 = add(x = input_1079_cast_fp16, y = input_1095_cast_fp16)[name = tensor("input_1097_cast_fp16")]; + tensor input_1099_axes_0 = const()[name = tensor("input_1099_axes_0"), val = tensor([-1])]; + tensor model_layers_20_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_20_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(509357504)))]; + tensor model_layers_20_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_20_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(509359616)))]; + tensor input_1099_cast_fp16 = layer_norm(axes = input_1099_axes_0, beta = model_layers_20_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_20_norm_feed_forward2_weight_to_fp16, x = input_1097_cast_fp16)[name = tensor("input_1099_cast_fp16")]; + tensor model_layers_20_feed_forward2_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_20_feed_forward2_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(509361728))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(513556096))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_188_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_20_feed_forward2_linear1_weight_to_fp16_quantized, x = input_1099_cast_fp16)[name = tensor("linear_188_cast_fp16")]; + tensor input_1103_cast_fp16 = silu(x = linear_188_cast_fp16)[name = tensor("input_1103_cast_fp16")]; + tensor model_layers_20_feed_forward2_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_20_feed_forward2_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(513564352))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(517758720))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_189_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_20_feed_forward2_linear2_weight_to_fp16_quantized, x = input_1103_cast_fp16)[name = tensor("linear_189_cast_fp16")]; + tensor var_3621_to_fp16 = const()[name = tensor("op_3621_to_fp16"), val = tensor(0x1p-1)]; + tensor var_3622_cast_fp16 = mul(x = linear_189_cast_fp16, y = var_3621_to_fp16)[name = tensor("op_3622_cast_fp16")]; + tensor input_1109_cast_fp16 = add(x = input_1097_cast_fp16, y = var_3622_cast_fp16)[name = tensor("input_1109_cast_fp16")]; + tensor input_1111_axes_0 = const()[name = tensor("input_1111_axes_0"), val = tensor([-1])]; + tensor model_layers_20_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_20_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(517760832)))]; + tensor model_layers_20_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_20_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(517762944)))]; + tensor input_1111_cast_fp16 = layer_norm(axes = input_1111_axes_0, beta = model_layers_20_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_20_norm_out_weight_to_fp16, x = input_1109_cast_fp16)[name = tensor("input_1111_cast_fp16")]; + tensor input_1113_axes_0 = const()[name = tensor("input_1113_axes_0"), val = tensor([-1])]; + tensor model_layers_21_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_21_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(517765056)))]; + tensor model_layers_21_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_21_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(517767168)))]; + tensor input_1113_cast_fp16 = layer_norm(axes = input_1113_axes_0, beta = model_layers_21_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_21_norm_feed_forward1_weight_to_fp16, x = input_1111_cast_fp16)[name = tensor("input_1113_cast_fp16")]; + tensor model_layers_21_feed_forward1_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_21_feed_forward1_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(517769280))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(521963648))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_190_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_21_feed_forward1_linear1_weight_to_fp16_quantized, x = input_1113_cast_fp16)[name = tensor("linear_190_cast_fp16")]; + tensor input_1117_cast_fp16 = silu(x = linear_190_cast_fp16)[name = tensor("input_1117_cast_fp16")]; + tensor model_layers_21_feed_forward1_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_21_feed_forward1_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(521971904))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(526166272))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_191_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_21_feed_forward1_linear2_weight_to_fp16_quantized, x = input_1117_cast_fp16)[name = tensor("linear_191_cast_fp16")]; + tensor var_3650_to_fp16 = const()[name = tensor("op_3650_to_fp16"), val = tensor(0x1p-1)]; + tensor var_3651_cast_fp16 = mul(x = linear_191_cast_fp16, y = var_3650_to_fp16)[name = tensor("op_3651_cast_fp16")]; + tensor input_1123_cast_fp16 = add(x = input_1111_cast_fp16, y = var_3651_cast_fp16)[name = tensor("input_1123_cast_fp16")]; + tensor query_43_axes_0 = const()[name = tensor("query_43_axes_0"), val = tensor([-1])]; + tensor model_layers_21_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_21_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(526168384)))]; + tensor model_layers_21_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_21_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(526170496)))]; + tensor query_43_cast_fp16 = layer_norm(axes = query_43_axes_0, beta = model_layers_21_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_21_norm_self_att_weight_to_fp16, x = input_1123_cast_fp16)[name = tensor("query_43_cast_fp16")]; + tensor model_layers_21_self_attn_linear_q_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_21_self_attn_linear_q_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(526172608))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(527221248))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_192_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_21_self_attn_linear_q_weight_to_fp16_quantized, x = query_43_cast_fp16)[name = tensor("linear_192_cast_fp16")]; + tensor var_3667 = const()[name = tensor("op_3667"), val = tensor([1, -1, 8, 128])]; + tensor q_127_cast_fp16 = reshape(shape = var_3667, x = linear_192_cast_fp16)[name = tensor("q_127_cast_fp16")]; + tensor model_layers_21_self_attn_linear_k_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_21_self_attn_linear_k_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(527223360))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(528272000))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_193_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_21_self_attn_linear_k_weight_to_fp16_quantized, x = query_43_cast_fp16)[name = tensor("linear_193_cast_fp16")]; + tensor var_3671 = const()[name = tensor("op_3671"), val = tensor([1, -1, 8, 128])]; + tensor k_85_cast_fp16 = reshape(shape = var_3671, x = linear_193_cast_fp16)[name = tensor("k_85_cast_fp16")]; + tensor model_layers_21_self_attn_linear_v_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_21_self_attn_linear_v_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(528274112))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(529322752))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_194_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_21_self_attn_linear_v_weight_to_fp16_quantized, x = query_43_cast_fp16)[name = tensor("linear_194_cast_fp16")]; + tensor var_3675 = const()[name = tensor("op_3675"), val = tensor([1, -1, 8, 128])]; + tensor v_43_cast_fp16 = reshape(shape = var_3675, x = linear_194_cast_fp16)[name = tensor("v_43_cast_fp16")]; + tensor value_43_perm_0 = const()[name = tensor("value_43_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor model_layers_21_self_attn_pos_bias_u_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_21_self_attn_pos_bias_u_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(529324864))), scale = tensor([0x1.0c4p-8, 0x1.41cp-8, 0x1.08p-8, 0x1.83p-8, 0x1.4cp-8, 0x1.af8p-8, 0x1.44p-8, 0x1.298p-8]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_3687_cast_fp16 = add(x = q_127_cast_fp16, y = model_layers_21_self_attn_pos_bias_u_to_fp16_quantized)[name = tensor("op_3687_cast_fp16")]; + tensor model_layers_21_self_attn_pos_bias_v_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_21_self_attn_pos_bias_v_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(529325952))), scale = tensor([0x1.6cp-8, 0x1.414p-9, 0x1.b3p-8, 0x1.c7p-8, 0x1.0ccp-8, 0x1.1cp-8, 0x1.a18p-8, 0x1.8ep-9]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_3689_cast_fp16 = add(x = q_127_cast_fp16, y = model_layers_21_self_attn_pos_bias_v_to_fp16_quantized)[name = tensor("op_3689_cast_fp16")]; + tensor q_with_bias_v_43_perm_0 = const()[name = tensor("q_with_bias_v_43_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor x_469_transpose_x_0 = const()[name = tensor("x_469_transpose_x_0"), val = tensor(false)]; + tensor x_469_transpose_y_0 = const()[name = tensor("x_469_transpose_y_0"), val = tensor(false)]; + tensor op_3691_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(3), name = tensor("op_3691_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(529327040))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(529584128))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(16177728)))]; + tensor q_with_bias_v_43_cast_fp16 = transpose(perm = q_with_bias_v_43_perm_0, x = var_3689_cast_fp16)[name = tensor("transpose_164")]; + tensor x_469_cast_fp16 = matmul(transpose_x = x_469_transpose_x_0, transpose_y = x_469_transpose_y_0, x = q_with_bias_v_43_cast_fp16, y = op_3691_to_fp16_quantized)[name = tensor("x_469_cast_fp16")]; + tensor x_471_pad_0 = const()[name = tensor("x_471_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_471_mode_0 = const()[name = tensor("x_471_mode_0"), val = tensor("constant")]; + tensor const_224_to_fp16 = const()[name = tensor("const_224_to_fp16"), val = tensor(0x0p+0)]; + tensor x_471_cast_fp16 = pad(constant_val = const_224_to_fp16, mode = x_471_mode_0, pad = x_471_pad_0, x = x_469_cast_fp16)[name = tensor("x_471_cast_fp16")]; + tensor var_3699 = const()[name = tensor("op_3699"), val = tensor([1, 8, -1, 126])]; + tensor x_473_cast_fp16 = reshape(shape = var_3699, x = x_471_cast_fp16)[name = tensor("x_473_cast_fp16")]; + tensor var_3703_begin_0 = const()[name = tensor("op_3703_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_3703_end_0 = const()[name = tensor("op_3703_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_3703_end_mask_0 = const()[name = tensor("op_3703_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_3703_cast_fp16 = slice_by_index(begin = var_3703_begin_0, end = var_3703_end_0, end_mask = var_3703_end_mask_0, x = x_473_cast_fp16)[name = tensor("op_3703_cast_fp16")]; + tensor var_3704 = const()[name = tensor("op_3704"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_85_cast_fp16 = reshape(shape = var_3704, x = var_3703_cast_fp16)[name = tensor("matrix_bd_85_cast_fp16")]; + tensor matrix_ac_43_transpose_x_0 = const()[name = tensor("matrix_ac_43_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_43_transpose_y_0 = const()[name = tensor("matrix_ac_43_transpose_y_0"), val = tensor(false)]; + tensor transpose_138_perm_0 = const()[name = tensor("transpose_138_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_139_perm_0 = const()[name = tensor("transpose_139_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_139 = transpose(perm = transpose_139_perm_0, x = k_85_cast_fp16)[name = tensor("transpose_162")]; + tensor transpose_138 = transpose(perm = transpose_138_perm_0, x = var_3687_cast_fp16)[name = tensor("transpose_163")]; + tensor matrix_ac_43_cast_fp16 = matmul(transpose_x = matrix_ac_43_transpose_x_0, transpose_y = matrix_ac_43_transpose_y_0, x = transpose_138, y = transpose_139)[name = tensor("matrix_ac_43_cast_fp16")]; + tensor matrix_bd_87_begin_0 = const()[name = tensor("matrix_bd_87_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_87_end_0 = const()[name = tensor("matrix_bd_87_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_87_end_mask_0 = const()[name = tensor("matrix_bd_87_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_87_cast_fp16 = slice_by_index(begin = matrix_bd_87_begin_0, end = matrix_bd_87_end_0, end_mask = matrix_bd_87_end_mask_0, x = matrix_bd_85_cast_fp16)[name = tensor("matrix_bd_87_cast_fp16")]; + tensor var_3713_cast_fp16 = add(x = matrix_ac_43_cast_fp16, y = matrix_bd_87_cast_fp16)[name = tensor("op_3713_cast_fp16")]; + tensor _inversed_scores_85_y_0_to_fp16 = const()[name = tensor("_inversed_scores_85_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_85_cast_fp16 = mul(x = var_3713_cast_fp16, y = _inversed_scores_85_y_0_to_fp16)[name = tensor("_inversed_scores_85_cast_fp16")]; + tensor scores_87_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_85_cast_fp16, cond = mask_3)[name = tensor("scores_87_cast_fp16")]; + tensor var_3719_cast_fp16 = softmax(axis = var_25, x = scores_87_cast_fp16)[name = tensor("op_3719_cast_fp16")]; + tensor input_1125_cast_fp16 = select(a = var_6_to_fp16, b = var_3719_cast_fp16, cond = mask_3)[name = tensor("input_1125_cast_fp16")]; + tensor x_475_transpose_x_0 = const()[name = tensor("x_475_transpose_x_0"), val = tensor(false)]; + tensor x_475_transpose_y_0 = const()[name = tensor("x_475_transpose_y_0"), val = tensor(false)]; + tensor value_43_cast_fp16 = transpose(perm = value_43_perm_0, x = v_43_cast_fp16)[name = tensor("transpose_161")]; + tensor x_475_cast_fp16 = matmul(transpose_x = x_475_transpose_x_0, transpose_y = x_475_transpose_y_0, x = input_1125_cast_fp16, y = value_43_cast_fp16)[name = tensor("x_475_cast_fp16")]; + tensor var_3723_perm_0 = const()[name = tensor("op_3723_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_3724 = const()[name = tensor("op_3724"), val = tensor([1, -1, 1024])]; + tensor var_3723_cast_fp16 = transpose(perm = var_3723_perm_0, x = x_475_cast_fp16)[name = tensor("transpose_160")]; + tensor input_1127_cast_fp16 = reshape(shape = var_3724, x = var_3723_cast_fp16)[name = tensor("input_1127_cast_fp16")]; + tensor model_layers_21_self_attn_linear_out_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_21_self_attn_linear_out_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(529584704))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(530633344))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_196_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_21_self_attn_linear_out_weight_to_fp16_quantized, x = input_1127_cast_fp16)[name = tensor("linear_196_cast_fp16")]; + tensor input_1131_cast_fp16 = add(x = input_1123_cast_fp16, y = linear_196_cast_fp16)[name = tensor("input_1131_cast_fp16")]; + tensor x_479_axes_0 = const()[name = tensor("x_479_axes_0"), val = tensor([-1])]; + tensor model_layers_21_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_21_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(530635456)))]; + tensor model_layers_21_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_21_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(530637568)))]; + tensor x_479_cast_fp16 = layer_norm(axes = x_479_axes_0, beta = model_layers_21_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_21_norm_conv_weight_to_fp16, x = input_1131_cast_fp16)[name = tensor("x_479_cast_fp16")]; + tensor input_1133_perm_0 = const()[name = tensor("input_1133_perm_0"), val = tensor([0, 2, 1])]; + tensor input_1135_pad_type_0 = const()[name = tensor("input_1135_pad_type_0"), val = tensor("valid")]; + tensor input_1135_strides_0 = const()[name = tensor("input_1135_strides_0"), val = tensor([1])]; + tensor input_1135_pad_0 = const()[name = tensor("input_1135_pad_0"), val = tensor([0, 0])]; + tensor input_1135_dilations_0 = const()[name = tensor("input_1135_dilations_0"), val = tensor([1])]; + tensor input_1135_groups_0 = const()[name = tensor("input_1135_groups_0"), val = tensor(1)]; + tensor model_layers_21_conv_pointwise_conv1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_21_conv_pointwise_conv1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(530639680))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(532736896))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(19330816)))]; + tensor input_1133_cast_fp16 = transpose(perm = input_1133_perm_0, x = x_479_cast_fp16)[name = tensor("transpose_159")]; + tensor input_1135_cast_fp16 = conv(dilations = input_1135_dilations_0, groups = input_1135_groups_0, pad = input_1135_pad_0, pad_type = input_1135_pad_type_0, strides = input_1135_strides_0, weight = model_layers_21_conv_pointwise_conv1_weight_to_fp16_quantized, x = input_1133_cast_fp16)[name = tensor("input_1135_cast_fp16")]; + tensor x_481_split_num_splits_0 = const()[name = tensor("x_481_split_num_splits_0"), val = tensor(2)]; + tensor x_481_split_axis_0 = const()[name = tensor("x_481_split_axis_0"), val = tensor(1)]; + tensor x_481_split_cast_fp16_0, tensor x_481_split_cast_fp16_1 = split(axis = x_481_split_axis_0, num_splits = x_481_split_num_splits_0, x = input_1135_cast_fp16)[name = tensor("x_481_split_cast_fp16")]; + tensor x_481_split_1_sigmoid_cast_fp16 = sigmoid(x = x_481_split_cast_fp16_1)[name = tensor("x_481_split_1_sigmoid_cast_fp16")]; + tensor x_481_cast_fp16 = mul(x = x_481_split_cast_fp16_0, y = x_481_split_1_sigmoid_cast_fp16)[name = tensor("x_481_cast_fp16")]; + tensor input_1137_cast_fp16 = select(a = var_6_to_fp16, b = x_481_cast_fp16, cond = var_323)[name = tensor("input_1137_cast_fp16")]; + tensor input_1139_pad_0 = const()[name = tensor("input_1139_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_1139_mode_0 = const()[name = tensor("input_1139_mode_0"), val = tensor("constant")]; + tensor const_227_to_fp16 = const()[name = tensor("const_227_to_fp16"), val = tensor(0x0p+0)]; + tensor input_1139_cast_fp16 = pad(constant_val = const_227_to_fp16, mode = input_1139_mode_0, pad = input_1139_pad_0, x = input_1137_cast_fp16)[name = tensor("input_1139_cast_fp16")]; + tensor input_1141_pad_type_0 = const()[name = tensor("input_1141_pad_type_0"), val = tensor("valid")]; + tensor input_1141_groups_0 = const()[name = tensor("input_1141_groups_0"), val = tensor(1024)]; + tensor input_1141_strides_0 = const()[name = tensor("input_1141_strides_0"), val = tensor([1])]; + tensor input_1141_pad_0 = const()[name = tensor("input_1141_pad_0"), val = tensor([0, 0])]; + tensor input_1141_dilations_0 = const()[name = tensor("input_1141_dilations_0"), val = tensor([1])]; + tensor const_290_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("const_290_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(532741056))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(532750336))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor const_291_to_fp16 = const()[name = tensor("const_291_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(532752448)))]; + tensor input_1143_cast_fp16 = conv(bias = const_291_to_fp16, dilations = input_1141_dilations_0, groups = input_1141_groups_0, pad = input_1141_pad_0, pad_type = input_1141_pad_type_0, strides = input_1141_strides_0, weight = const_290_to_fp16_quantized, x = input_1139_cast_fp16)[name = tensor("input_1143_cast_fp16")]; + tensor input_1145_cast_fp16 = silu(x = input_1143_cast_fp16)[name = tensor("input_1145_cast_fp16")]; + tensor x_483_pad_type_0 = const()[name = tensor("x_483_pad_type_0"), val = tensor("valid")]; + tensor x_483_strides_0 = const()[name = tensor("x_483_strides_0"), val = tensor([1])]; + tensor x_483_pad_0 = const()[name = tensor("x_483_pad_0"), val = tensor([0, 0])]; + tensor x_483_dilations_0 = const()[name = tensor("x_483_dilations_0"), val = tensor([1])]; + tensor x_483_groups_0 = const()[name = tensor("x_483_groups_0"), val = tensor(1)]; + tensor model_layers_21_conv_pointwise_conv2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_21_conv_pointwise_conv2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(532754560))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(533803200))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor x_483_cast_fp16 = conv(dilations = x_483_dilations_0, groups = x_483_groups_0, pad = x_483_pad_0, pad_type = x_483_pad_type_0, strides = x_483_strides_0, weight = model_layers_21_conv_pointwise_conv2_weight_to_fp16_quantized, x = input_1145_cast_fp16)[name = tensor("x_483_cast_fp16")]; + tensor input_1147_perm_0 = const()[name = tensor("input_1147_perm_0"), val = tensor([0, 2, 1])]; + tensor input_1147_cast_fp16 = transpose(perm = input_1147_perm_0, x = x_483_cast_fp16)[name = tensor("transpose_158")]; + tensor input_1149_cast_fp16 = add(x = input_1131_cast_fp16, y = input_1147_cast_fp16)[name = tensor("input_1149_cast_fp16")]; + tensor input_1151_axes_0 = const()[name = tensor("input_1151_axes_0"), val = tensor([-1])]; + tensor model_layers_21_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_21_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(533805312)))]; + tensor model_layers_21_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_21_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(533807424)))]; + tensor input_1151_cast_fp16 = layer_norm(axes = input_1151_axes_0, beta = model_layers_21_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_21_norm_feed_forward2_weight_to_fp16, x = input_1149_cast_fp16)[name = tensor("input_1151_cast_fp16")]; + tensor model_layers_21_feed_forward2_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_21_feed_forward2_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(533809536))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(538003904))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_197_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_21_feed_forward2_linear1_weight_to_fp16_quantized, x = input_1151_cast_fp16)[name = tensor("linear_197_cast_fp16")]; + tensor input_1155_cast_fp16 = silu(x = linear_197_cast_fp16)[name = tensor("input_1155_cast_fp16")]; + tensor model_layers_21_feed_forward2_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_21_feed_forward2_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(538012160))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(542206528))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_198_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_21_feed_forward2_linear2_weight_to_fp16_quantized, x = input_1155_cast_fp16)[name = tensor("linear_198_cast_fp16")]; + tensor var_3784_to_fp16 = const()[name = tensor("op_3784_to_fp16"), val = tensor(0x1p-1)]; + tensor var_3785_cast_fp16 = mul(x = linear_198_cast_fp16, y = var_3784_to_fp16)[name = tensor("op_3785_cast_fp16")]; + tensor input_1161_cast_fp16 = add(x = input_1149_cast_fp16, y = var_3785_cast_fp16)[name = tensor("input_1161_cast_fp16")]; + tensor input_1163_axes_0 = const()[name = tensor("input_1163_axes_0"), val = tensor([-1])]; + tensor model_layers_21_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_21_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(542208640)))]; + tensor model_layers_21_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_21_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(542210752)))]; + tensor input_1163_cast_fp16 = layer_norm(axes = input_1163_axes_0, beta = model_layers_21_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_21_norm_out_weight_to_fp16, x = input_1161_cast_fp16)[name = tensor("input_1163_cast_fp16")]; + tensor input_1165_axes_0 = const()[name = tensor("input_1165_axes_0"), val = tensor([-1])]; + tensor model_layers_22_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_22_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(542212864)))]; + tensor model_layers_22_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_22_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(542214976)))]; + tensor input_1165_cast_fp16 = layer_norm(axes = input_1165_axes_0, beta = model_layers_22_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_22_norm_feed_forward1_weight_to_fp16, x = input_1163_cast_fp16)[name = tensor("input_1165_cast_fp16")]; + tensor model_layers_22_feed_forward1_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_22_feed_forward1_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(542217088))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(546411456))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_199_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_22_feed_forward1_linear1_weight_to_fp16_quantized, x = input_1165_cast_fp16)[name = tensor("linear_199_cast_fp16")]; + tensor input_1169_cast_fp16 = silu(x = linear_199_cast_fp16)[name = tensor("input_1169_cast_fp16")]; + tensor model_layers_22_feed_forward1_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_22_feed_forward1_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(546419712))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(550614080))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_200_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_22_feed_forward1_linear2_weight_to_fp16_quantized, x = input_1169_cast_fp16)[name = tensor("linear_200_cast_fp16")]; + tensor var_3813_to_fp16 = const()[name = tensor("op_3813_to_fp16"), val = tensor(0x1p-1)]; + tensor var_3814_cast_fp16 = mul(x = linear_200_cast_fp16, y = var_3813_to_fp16)[name = tensor("op_3814_cast_fp16")]; + tensor input_1175_cast_fp16 = add(x = input_1163_cast_fp16, y = var_3814_cast_fp16)[name = tensor("input_1175_cast_fp16")]; + tensor query_45_axes_0 = const()[name = tensor("query_45_axes_0"), val = tensor([-1])]; + tensor model_layers_22_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_22_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(550616192)))]; + tensor model_layers_22_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_22_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(550618304)))]; + tensor query_45_cast_fp16 = layer_norm(axes = query_45_axes_0, beta = model_layers_22_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_22_norm_self_att_weight_to_fp16, x = input_1175_cast_fp16)[name = tensor("query_45_cast_fp16")]; + tensor model_layers_22_self_attn_linear_q_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_22_self_attn_linear_q_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(550620416))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(551669056))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_201_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_22_self_attn_linear_q_weight_to_fp16_quantized, x = query_45_cast_fp16)[name = tensor("linear_201_cast_fp16")]; + tensor var_3830 = const()[name = tensor("op_3830"), val = tensor([1, -1, 8, 128])]; + tensor q_133_cast_fp16 = reshape(shape = var_3830, x = linear_201_cast_fp16)[name = tensor("q_133_cast_fp16")]; + tensor model_layers_22_self_attn_linear_k_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_22_self_attn_linear_k_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(551671168))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(552719808))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_202_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_22_self_attn_linear_k_weight_to_fp16_quantized, x = query_45_cast_fp16)[name = tensor("linear_202_cast_fp16")]; + tensor var_3834 = const()[name = tensor("op_3834"), val = tensor([1, -1, 8, 128])]; + tensor k_89_cast_fp16 = reshape(shape = var_3834, x = linear_202_cast_fp16)[name = tensor("k_89_cast_fp16")]; + tensor model_layers_22_self_attn_linear_v_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_22_self_attn_linear_v_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(552721920))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(553770560))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_203_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_22_self_attn_linear_v_weight_to_fp16_quantized, x = query_45_cast_fp16)[name = tensor("linear_203_cast_fp16")]; + tensor var_3838 = const()[name = tensor("op_3838"), val = tensor([1, -1, 8, 128])]; + tensor v_45_cast_fp16 = reshape(shape = var_3838, x = linear_203_cast_fp16)[name = tensor("v_45_cast_fp16")]; + tensor value_45_perm_0 = const()[name = tensor("value_45_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor model_layers_22_self_attn_pos_bias_u_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_22_self_attn_pos_bias_u_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(553772672))), scale = tensor([0x1.a6cp-9, 0x1.dbp-9, 0x1.018p-7, 0x1.474p-8, 0x1.3ccp-7, 0x1.8p-8, 0x1.4ep-8, 0x1.17p-7]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_3850_cast_fp16 = add(x = q_133_cast_fp16, y = model_layers_22_self_attn_pos_bias_u_to_fp16_quantized)[name = tensor("op_3850_cast_fp16")]; + tensor model_layers_22_self_attn_pos_bias_v_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_22_self_attn_pos_bias_v_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(553773760))), scale = tensor([0x1.dap-8, 0x1.798p-8, 0x1.fd8p-10, 0x1.1ep-8, 0x1.484p-8, 0x1.b3p-8, 0x1.a4p-8, 0x1.9bp-9]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_3852_cast_fp16 = add(x = q_133_cast_fp16, y = model_layers_22_self_attn_pos_bias_v_to_fp16_quantized)[name = tensor("op_3852_cast_fp16")]; + tensor q_with_bias_v_45_perm_0 = const()[name = tensor("q_with_bias_v_45_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor x_491_transpose_x_0 = const()[name = tensor("x_491_transpose_x_0"), val = tensor(false)]; + tensor x_491_transpose_y_0 = const()[name = tensor("x_491_transpose_y_0"), val = tensor(false)]; + tensor op_3854_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(3), name = tensor("op_3854_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(553774848))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(554031936))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(16177728)))]; + tensor q_with_bias_v_45_cast_fp16 = transpose(perm = q_with_bias_v_45_perm_0, x = var_3852_cast_fp16)[name = tensor("transpose_157")]; + tensor x_491_cast_fp16 = matmul(transpose_x = x_491_transpose_x_0, transpose_y = x_491_transpose_y_0, x = q_with_bias_v_45_cast_fp16, y = op_3854_to_fp16_quantized)[name = tensor("x_491_cast_fp16")]; + tensor x_493_pad_0 = const()[name = tensor("x_493_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_493_mode_0 = const()[name = tensor("x_493_mode_0"), val = tensor("constant")]; + tensor const_234_to_fp16 = const()[name = tensor("const_234_to_fp16"), val = tensor(0x0p+0)]; + tensor x_493_cast_fp16 = pad(constant_val = const_234_to_fp16, mode = x_493_mode_0, pad = x_493_pad_0, x = x_491_cast_fp16)[name = tensor("x_493_cast_fp16")]; + tensor var_3862 = const()[name = tensor("op_3862"), val = tensor([1, 8, -1, 126])]; + tensor x_495_cast_fp16 = reshape(shape = var_3862, x = x_493_cast_fp16)[name = tensor("x_495_cast_fp16")]; + tensor var_3866_begin_0 = const()[name = tensor("op_3866_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_3866_end_0 = const()[name = tensor("op_3866_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_3866_end_mask_0 = const()[name = tensor("op_3866_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_3866_cast_fp16 = slice_by_index(begin = var_3866_begin_0, end = var_3866_end_0, end_mask = var_3866_end_mask_0, x = x_495_cast_fp16)[name = tensor("op_3866_cast_fp16")]; + tensor var_3867 = const()[name = tensor("op_3867"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_89_cast_fp16 = reshape(shape = var_3867, x = var_3866_cast_fp16)[name = tensor("matrix_bd_89_cast_fp16")]; + tensor matrix_ac_45_transpose_x_0 = const()[name = tensor("matrix_ac_45_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_45_transpose_y_0 = const()[name = tensor("matrix_ac_45_transpose_y_0"), val = tensor(false)]; + tensor transpose_140_perm_0 = const()[name = tensor("transpose_140_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_141_perm_0 = const()[name = tensor("transpose_141_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_141 = transpose(perm = transpose_141_perm_0, x = k_89_cast_fp16)[name = tensor("transpose_155")]; + tensor transpose_140 = transpose(perm = transpose_140_perm_0, x = var_3850_cast_fp16)[name = tensor("transpose_156")]; + tensor matrix_ac_45_cast_fp16 = matmul(transpose_x = matrix_ac_45_transpose_x_0, transpose_y = matrix_ac_45_transpose_y_0, x = transpose_140, y = transpose_141)[name = tensor("matrix_ac_45_cast_fp16")]; + tensor matrix_bd_91_begin_0 = const()[name = tensor("matrix_bd_91_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_91_end_0 = const()[name = tensor("matrix_bd_91_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_91_end_mask_0 = const()[name = tensor("matrix_bd_91_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_91_cast_fp16 = slice_by_index(begin = matrix_bd_91_begin_0, end = matrix_bd_91_end_0, end_mask = matrix_bd_91_end_mask_0, x = matrix_bd_89_cast_fp16)[name = tensor("matrix_bd_91_cast_fp16")]; + tensor var_3876_cast_fp16 = add(x = matrix_ac_45_cast_fp16, y = matrix_bd_91_cast_fp16)[name = tensor("op_3876_cast_fp16")]; + tensor _inversed_scores_89_y_0_to_fp16 = const()[name = tensor("_inversed_scores_89_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_89_cast_fp16 = mul(x = var_3876_cast_fp16, y = _inversed_scores_89_y_0_to_fp16)[name = tensor("_inversed_scores_89_cast_fp16")]; + tensor scores_91_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_89_cast_fp16, cond = mask_3)[name = tensor("scores_91_cast_fp16")]; + tensor var_3882_cast_fp16 = softmax(axis = var_25, x = scores_91_cast_fp16)[name = tensor("op_3882_cast_fp16")]; + tensor input_1177_cast_fp16 = select(a = var_6_to_fp16, b = var_3882_cast_fp16, cond = mask_3)[name = tensor("input_1177_cast_fp16")]; + tensor x_497_transpose_x_0 = const()[name = tensor("x_497_transpose_x_0"), val = tensor(false)]; + tensor x_497_transpose_y_0 = const()[name = tensor("x_497_transpose_y_0"), val = tensor(false)]; + tensor value_45_cast_fp16 = transpose(perm = value_45_perm_0, x = v_45_cast_fp16)[name = tensor("transpose_154")]; + tensor x_497_cast_fp16 = matmul(transpose_x = x_497_transpose_x_0, transpose_y = x_497_transpose_y_0, x = input_1177_cast_fp16, y = value_45_cast_fp16)[name = tensor("x_497_cast_fp16")]; + tensor var_3886_perm_0 = const()[name = tensor("op_3886_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_3887 = const()[name = tensor("op_3887"), val = tensor([1, -1, 1024])]; + tensor var_3886_cast_fp16 = transpose(perm = var_3886_perm_0, x = x_497_cast_fp16)[name = tensor("transpose_153")]; + tensor input_1179_cast_fp16 = reshape(shape = var_3887, x = var_3886_cast_fp16)[name = tensor("input_1179_cast_fp16")]; + tensor model_layers_22_self_attn_linear_out_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_22_self_attn_linear_out_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(554032512))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(555081152))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_205_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_22_self_attn_linear_out_weight_to_fp16_quantized, x = input_1179_cast_fp16)[name = tensor("linear_205_cast_fp16")]; + tensor input_1183_cast_fp16 = add(x = input_1175_cast_fp16, y = linear_205_cast_fp16)[name = tensor("input_1183_cast_fp16")]; + tensor x_501_axes_0 = const()[name = tensor("x_501_axes_0"), val = tensor([-1])]; + tensor model_layers_22_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_22_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(555083264)))]; + tensor model_layers_22_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_22_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(555085376)))]; + tensor x_501_cast_fp16 = layer_norm(axes = x_501_axes_0, beta = model_layers_22_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_22_norm_conv_weight_to_fp16, x = input_1183_cast_fp16)[name = tensor("x_501_cast_fp16")]; + tensor input_1185_perm_0 = const()[name = tensor("input_1185_perm_0"), val = tensor([0, 2, 1])]; + tensor input_1187_pad_type_0 = const()[name = tensor("input_1187_pad_type_0"), val = tensor("valid")]; + tensor input_1187_strides_0 = const()[name = tensor("input_1187_strides_0"), val = tensor([1])]; + tensor input_1187_pad_0 = const()[name = tensor("input_1187_pad_0"), val = tensor([0, 0])]; + tensor input_1187_dilations_0 = const()[name = tensor("input_1187_dilations_0"), val = tensor([1])]; + tensor input_1187_groups_0 = const()[name = tensor("input_1187_groups_0"), val = tensor(1)]; + tensor model_layers_22_conv_pointwise_conv1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_22_conv_pointwise_conv1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(555087488))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(557184704))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(19330816)))]; + tensor input_1185_cast_fp16 = transpose(perm = input_1185_perm_0, x = x_501_cast_fp16)[name = tensor("transpose_152")]; + tensor input_1187_cast_fp16 = conv(dilations = input_1187_dilations_0, groups = input_1187_groups_0, pad = input_1187_pad_0, pad_type = input_1187_pad_type_0, strides = input_1187_strides_0, weight = model_layers_22_conv_pointwise_conv1_weight_to_fp16_quantized, x = input_1185_cast_fp16)[name = tensor("input_1187_cast_fp16")]; + tensor x_503_split_num_splits_0 = const()[name = tensor("x_503_split_num_splits_0"), val = tensor(2)]; + tensor x_503_split_axis_0 = const()[name = tensor("x_503_split_axis_0"), val = tensor(1)]; + tensor x_503_split_cast_fp16_0, tensor x_503_split_cast_fp16_1 = split(axis = x_503_split_axis_0, num_splits = x_503_split_num_splits_0, x = input_1187_cast_fp16)[name = tensor("x_503_split_cast_fp16")]; + tensor x_503_split_1_sigmoid_cast_fp16 = sigmoid(x = x_503_split_cast_fp16_1)[name = tensor("x_503_split_1_sigmoid_cast_fp16")]; + tensor x_503_cast_fp16 = mul(x = x_503_split_cast_fp16_0, y = x_503_split_1_sigmoid_cast_fp16)[name = tensor("x_503_cast_fp16")]; + tensor input_1189_cast_fp16 = select(a = var_6_to_fp16, b = x_503_cast_fp16, cond = var_323)[name = tensor("input_1189_cast_fp16")]; + tensor input_1191_pad_0 = const()[name = tensor("input_1191_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_1191_mode_0 = const()[name = tensor("input_1191_mode_0"), val = tensor("constant")]; + tensor const_237_to_fp16 = const()[name = tensor("const_237_to_fp16"), val = tensor(0x0p+0)]; + tensor input_1191_cast_fp16 = pad(constant_val = const_237_to_fp16, mode = input_1191_mode_0, pad = input_1191_pad_0, x = input_1189_cast_fp16)[name = tensor("input_1191_cast_fp16")]; + tensor input_1193_pad_type_0 = const()[name = tensor("input_1193_pad_type_0"), val = tensor("valid")]; + tensor input_1193_groups_0 = const()[name = tensor("input_1193_groups_0"), val = tensor(1024)]; + tensor input_1193_strides_0 = const()[name = tensor("input_1193_strides_0"), val = tensor([1])]; + tensor input_1193_pad_0 = const()[name = tensor("input_1193_pad_0"), val = tensor([0, 0])]; + tensor input_1193_dilations_0 = const()[name = tensor("input_1193_dilations_0"), val = tensor([1])]; + tensor const_292_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("const_292_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(557188864))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(557198144))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor const_293_to_fp16 = const()[name = tensor("const_293_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(557200256)))]; + tensor input_1195_cast_fp16 = conv(bias = const_293_to_fp16, dilations = input_1193_dilations_0, groups = input_1193_groups_0, pad = input_1193_pad_0, pad_type = input_1193_pad_type_0, strides = input_1193_strides_0, weight = const_292_to_fp16_quantized, x = input_1191_cast_fp16)[name = tensor("input_1195_cast_fp16")]; + tensor input_1197_cast_fp16 = silu(x = input_1195_cast_fp16)[name = tensor("input_1197_cast_fp16")]; + tensor x_505_pad_type_0 = const()[name = tensor("x_505_pad_type_0"), val = tensor("valid")]; + tensor x_505_strides_0 = const()[name = tensor("x_505_strides_0"), val = tensor([1])]; + tensor x_505_pad_0 = const()[name = tensor("x_505_pad_0"), val = tensor([0, 0])]; + tensor x_505_dilations_0 = const()[name = tensor("x_505_dilations_0"), val = tensor([1])]; + tensor x_505_groups_0 = const()[name = tensor("x_505_groups_0"), val = tensor(1)]; + tensor model_layers_22_conv_pointwise_conv2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_22_conv_pointwise_conv2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(557202368))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(558251008))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor x_505_cast_fp16 = conv(dilations = x_505_dilations_0, groups = x_505_groups_0, pad = x_505_pad_0, pad_type = x_505_pad_type_0, strides = x_505_strides_0, weight = model_layers_22_conv_pointwise_conv2_weight_to_fp16_quantized, x = input_1197_cast_fp16)[name = tensor("x_505_cast_fp16")]; + tensor input_1199_perm_0 = const()[name = tensor("input_1199_perm_0"), val = tensor([0, 2, 1])]; + tensor input_1199_cast_fp16 = transpose(perm = input_1199_perm_0, x = x_505_cast_fp16)[name = tensor("transpose_151")]; + tensor input_1201_cast_fp16 = add(x = input_1183_cast_fp16, y = input_1199_cast_fp16)[name = tensor("input_1201_cast_fp16")]; + tensor input_1203_axes_0 = const()[name = tensor("input_1203_axes_0"), val = tensor([-1])]; + tensor model_layers_22_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_22_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(558253120)))]; + tensor model_layers_22_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_22_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(558255232)))]; + tensor input_1203_cast_fp16 = layer_norm(axes = input_1203_axes_0, beta = model_layers_22_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_22_norm_feed_forward2_weight_to_fp16, x = input_1201_cast_fp16)[name = tensor("input_1203_cast_fp16")]; + tensor model_layers_22_feed_forward2_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_22_feed_forward2_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(558257344))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(562451712))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_206_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_22_feed_forward2_linear1_weight_to_fp16_quantized, x = input_1203_cast_fp16)[name = tensor("linear_206_cast_fp16")]; + tensor input_1207_cast_fp16 = silu(x = linear_206_cast_fp16)[name = tensor("input_1207_cast_fp16")]; + tensor model_layers_22_feed_forward2_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_22_feed_forward2_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(562459968))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(566654336))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_207_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_22_feed_forward2_linear2_weight_to_fp16_quantized, x = input_1207_cast_fp16)[name = tensor("linear_207_cast_fp16")]; + tensor var_3947_to_fp16 = const()[name = tensor("op_3947_to_fp16"), val = tensor(0x1p-1)]; + tensor var_3948_cast_fp16 = mul(x = linear_207_cast_fp16, y = var_3947_to_fp16)[name = tensor("op_3948_cast_fp16")]; + tensor input_1213_cast_fp16 = add(x = input_1201_cast_fp16, y = var_3948_cast_fp16)[name = tensor("input_1213_cast_fp16")]; + tensor input_1215_axes_0 = const()[name = tensor("input_1215_axes_0"), val = tensor([-1])]; + tensor model_layers_22_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_22_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(566656448)))]; + tensor model_layers_22_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_22_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(566658560)))]; + tensor input_1215_cast_fp16 = layer_norm(axes = input_1215_axes_0, beta = model_layers_22_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_22_norm_out_weight_to_fp16, x = input_1213_cast_fp16)[name = tensor("input_1215_cast_fp16")]; + tensor input_1217_axes_0 = const()[name = tensor("input_1217_axes_0"), val = tensor([-1])]; + tensor model_layers_23_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_23_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(566660672)))]; + tensor model_layers_23_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_23_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(566662784)))]; + tensor input_1217_cast_fp16 = layer_norm(axes = input_1217_axes_0, beta = model_layers_23_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_23_norm_feed_forward1_weight_to_fp16, x = input_1215_cast_fp16)[name = tensor("input_1217_cast_fp16")]; + tensor model_layers_23_feed_forward1_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_23_feed_forward1_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(566664896))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(570859264))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_208_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_23_feed_forward1_linear1_weight_to_fp16_quantized, x = input_1217_cast_fp16)[name = tensor("linear_208_cast_fp16")]; + tensor input_1221_cast_fp16 = silu(x = linear_208_cast_fp16)[name = tensor("input_1221_cast_fp16")]; + tensor model_layers_23_feed_forward1_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_23_feed_forward1_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(570867520))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(575061888))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_209_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_23_feed_forward1_linear2_weight_to_fp16_quantized, x = input_1221_cast_fp16)[name = tensor("linear_209_cast_fp16")]; + tensor var_3976_to_fp16 = const()[name = tensor("op_3976_to_fp16"), val = tensor(0x1p-1)]; + tensor var_3977_cast_fp16 = mul(x = linear_209_cast_fp16, y = var_3976_to_fp16)[name = tensor("op_3977_cast_fp16")]; + tensor input_1227_cast_fp16 = add(x = input_1215_cast_fp16, y = var_3977_cast_fp16)[name = tensor("input_1227_cast_fp16")]; + tensor query_axes_0 = const()[name = tensor("query_axes_0"), val = tensor([-1])]; + tensor model_layers_23_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_23_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(575064000)))]; + tensor model_layers_23_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_23_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(575066112)))]; + tensor query_cast_fp16 = layer_norm(axes = query_axes_0, beta = model_layers_23_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_23_norm_self_att_weight_to_fp16, x = input_1227_cast_fp16)[name = tensor("query_cast_fp16")]; + tensor model_layers_23_self_attn_linear_q_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_23_self_attn_linear_q_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(575068224))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(576116864))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_210_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_23_self_attn_linear_q_weight_to_fp16_quantized, x = query_cast_fp16)[name = tensor("linear_210_cast_fp16")]; + tensor var_3993 = const()[name = tensor("op_3993"), val = tensor([1, -1, 8, 128])]; + tensor q_139_cast_fp16 = reshape(shape = var_3993, x = linear_210_cast_fp16)[name = tensor("q_139_cast_fp16")]; + tensor model_layers_23_self_attn_linear_k_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_23_self_attn_linear_k_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(576118976))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(577167616))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_211_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_23_self_attn_linear_k_weight_to_fp16_quantized, x = query_cast_fp16)[name = tensor("linear_211_cast_fp16")]; + tensor var_3997 = const()[name = tensor("op_3997"), val = tensor([1, -1, 8, 128])]; + tensor k_93_cast_fp16 = reshape(shape = var_3997, x = linear_211_cast_fp16)[name = tensor("k_93_cast_fp16")]; + tensor model_layers_23_self_attn_linear_v_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_23_self_attn_linear_v_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(577169728))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(578218368))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_212_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_23_self_attn_linear_v_weight_to_fp16_quantized, x = query_cast_fp16)[name = tensor("linear_212_cast_fp16")]; + tensor var_4001 = const()[name = tensor("op_4001"), val = tensor([1, -1, 8, 128])]; + tensor v_cast_fp16 = reshape(shape = var_4001, x = linear_212_cast_fp16)[name = tensor("v_cast_fp16")]; + tensor value_perm_0 = const()[name = tensor("value_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor model_layers_23_self_attn_pos_bias_u_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_23_self_attn_pos_bias_u_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(578220480))), scale = tensor([0x1.8fp-8, 0x1.12p-8, 0x1.494p-8, 0x1.98p-8, 0x1.2e4p-8, 0x1.21p-8, 0x1.9acp-9, 0x1.b88p-8]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_4013_cast_fp16 = add(x = q_139_cast_fp16, y = model_layers_23_self_attn_pos_bias_u_to_fp16_quantized)[name = tensor("op_4013_cast_fp16")]; + tensor model_layers_23_self_attn_pos_bias_v_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_23_self_attn_pos_bias_v_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(578221568))), scale = tensor([0x1.d18p-9, 0x1.90cp-9, 0x1.548p-8, 0x1.e84p-9, 0x1.6dcp-8, 0x1.1dcp-8, 0x1.41p-8, 0x1.95p-8]), zero_point = tensor([0, 0, 0, 0, 0, 0, 0, 0])]; + tensor var_4015_cast_fp16 = add(x = q_139_cast_fp16, y = model_layers_23_self_attn_pos_bias_v_to_fp16_quantized)[name = tensor("op_4015_cast_fp16")]; + tensor q_with_bias_v_perm_0 = const()[name = tensor("q_with_bias_v_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor x_513_transpose_x_0 = const()[name = tensor("x_513_transpose_x_0"), val = tensor(false)]; + tensor x_513_transpose_y_0 = const()[name = tensor("x_513_transpose_y_0"), val = tensor(false)]; + tensor op_4017_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(3), name = tensor("op_4017_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(578222656))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(578479744))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(16177728)))]; + tensor q_with_bias_v_cast_fp16 = transpose(perm = q_with_bias_v_perm_0, x = var_4015_cast_fp16)[name = tensor("transpose_150")]; + tensor x_513_cast_fp16 = matmul(transpose_x = x_513_transpose_x_0, transpose_y = x_513_transpose_y_0, x = q_with_bias_v_cast_fp16, y = op_4017_to_fp16_quantized)[name = tensor("x_513_cast_fp16")]; + tensor x_515_pad_0 = const()[name = tensor("x_515_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_515_mode_0 = const()[name = tensor("x_515_mode_0"), val = tensor("constant")]; + tensor const_244_to_fp16 = const()[name = tensor("const_244_to_fp16"), val = tensor(0x0p+0)]; + tensor x_515_cast_fp16 = pad(constant_val = const_244_to_fp16, mode = x_515_mode_0, pad = x_515_pad_0, x = x_513_cast_fp16)[name = tensor("x_515_cast_fp16")]; + tensor var_4025 = const()[name = tensor("op_4025"), val = tensor([1, 8, -1, 126])]; + tensor x_517_cast_fp16 = reshape(shape = var_4025, x = x_515_cast_fp16)[name = tensor("x_517_cast_fp16")]; + tensor var_4029_begin_0 = const()[name = tensor("op_4029_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_4029_end_0 = const()[name = tensor("op_4029_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_4029_end_mask_0 = const()[name = tensor("op_4029_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_4029_cast_fp16 = slice_by_index(begin = var_4029_begin_0, end = var_4029_end_0, end_mask = var_4029_end_mask_0, x = x_517_cast_fp16)[name = tensor("op_4029_cast_fp16")]; + tensor var_4030 = const()[name = tensor("op_4030"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_93_cast_fp16 = reshape(shape = var_4030, x = var_4029_cast_fp16)[name = tensor("matrix_bd_93_cast_fp16")]; + tensor matrix_ac_transpose_x_0 = const()[name = tensor("matrix_ac_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_transpose_y_0 = const()[name = tensor("matrix_ac_transpose_y_0"), val = tensor(false)]; + tensor transpose_142_perm_0 = const()[name = tensor("transpose_142_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_143_perm_0 = const()[name = tensor("transpose_143_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_143 = transpose(perm = transpose_143_perm_0, x = k_93_cast_fp16)[name = tensor("transpose_148")]; + tensor transpose_142 = transpose(perm = transpose_142_perm_0, x = var_4013_cast_fp16)[name = tensor("transpose_149")]; + tensor matrix_ac_cast_fp16 = matmul(transpose_x = matrix_ac_transpose_x_0, transpose_y = matrix_ac_transpose_y_0, x = transpose_142, y = transpose_143)[name = tensor("matrix_ac_cast_fp16")]; + tensor matrix_bd_begin_0 = const()[name = tensor("matrix_bd_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_end_0 = const()[name = tensor("matrix_bd_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_end_mask_0 = const()[name = tensor("matrix_bd_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_cast_fp16 = slice_by_index(begin = matrix_bd_begin_0, end = matrix_bd_end_0, end_mask = matrix_bd_end_mask_0, x = matrix_bd_93_cast_fp16)[name = tensor("matrix_bd_cast_fp16")]; + tensor var_4039_cast_fp16 = add(x = matrix_ac_cast_fp16, y = matrix_bd_cast_fp16)[name = tensor("op_4039_cast_fp16")]; + tensor _inversed_scores_93_y_0_to_fp16 = const()[name = tensor("_inversed_scores_93_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_93_cast_fp16 = mul(x = var_4039_cast_fp16, y = _inversed_scores_93_y_0_to_fp16)[name = tensor("_inversed_scores_93_cast_fp16")]; + tensor scores_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_93_cast_fp16, cond = mask_3)[name = tensor("scores_cast_fp16")]; + tensor var_4045_cast_fp16 = softmax(axis = var_25, x = scores_cast_fp16)[name = tensor("op_4045_cast_fp16")]; + tensor input_1229_cast_fp16 = select(a = var_6_to_fp16, b = var_4045_cast_fp16, cond = mask_3)[name = tensor("input_1229_cast_fp16")]; + tensor x_519_transpose_x_0 = const()[name = tensor("x_519_transpose_x_0"), val = tensor(false)]; + tensor x_519_transpose_y_0 = const()[name = tensor("x_519_transpose_y_0"), val = tensor(false)]; + tensor value_cast_fp16 = transpose(perm = value_perm_0, x = v_cast_fp16)[name = tensor("transpose_147")]; + tensor x_519_cast_fp16 = matmul(transpose_x = x_519_transpose_x_0, transpose_y = x_519_transpose_y_0, x = input_1229_cast_fp16, y = value_cast_fp16)[name = tensor("x_519_cast_fp16")]; + tensor var_4049_perm_0 = const()[name = tensor("op_4049_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_4050 = const()[name = tensor("op_4050"), val = tensor([1, -1, 1024])]; + tensor var_4049_cast_fp16 = transpose(perm = var_4049_perm_0, x = x_519_cast_fp16)[name = tensor("transpose_146")]; + tensor input_1231_cast_fp16 = reshape(shape = var_4050, x = var_4049_cast_fp16)[name = tensor("input_1231_cast_fp16")]; + tensor model_layers_23_self_attn_linear_out_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_23_self_attn_linear_out_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(578480320))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(579528960))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_214_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_23_self_attn_linear_out_weight_to_fp16_quantized, x = input_1231_cast_fp16)[name = tensor("linear_214_cast_fp16")]; + tensor input_1235_cast_fp16 = add(x = input_1227_cast_fp16, y = linear_214_cast_fp16)[name = tensor("input_1235_cast_fp16")]; + tensor x_523_axes_0 = const()[name = tensor("x_523_axes_0"), val = tensor([-1])]; + tensor model_layers_23_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_23_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(579531072)))]; + tensor model_layers_23_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_23_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(579533184)))]; + tensor x_523_cast_fp16 = layer_norm(axes = x_523_axes_0, beta = model_layers_23_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_23_norm_conv_weight_to_fp16, x = input_1235_cast_fp16)[name = tensor("x_523_cast_fp16")]; + tensor input_1237_perm_0 = const()[name = tensor("input_1237_perm_0"), val = tensor([0, 2, 1])]; + tensor input_1239_pad_type_0 = const()[name = tensor("input_1239_pad_type_0"), val = tensor("valid")]; + tensor input_1239_strides_0 = const()[name = tensor("input_1239_strides_0"), val = tensor([1])]; + tensor input_1239_pad_0 = const()[name = tensor("input_1239_pad_0"), val = tensor([0, 0])]; + tensor input_1239_dilations_0 = const()[name = tensor("input_1239_dilations_0"), val = tensor([1])]; + tensor input_1239_groups_0 = const()[name = tensor("input_1239_groups_0"), val = tensor(1)]; + tensor model_layers_23_conv_pointwise_conv1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_23_conv_pointwise_conv1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(579535296))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(581632512))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(19330816)))]; + tensor input_1237_cast_fp16 = transpose(perm = input_1237_perm_0, x = x_523_cast_fp16)[name = tensor("transpose_145")]; + tensor input_1239_cast_fp16 = conv(dilations = input_1239_dilations_0, groups = input_1239_groups_0, pad = input_1239_pad_0, pad_type = input_1239_pad_type_0, strides = input_1239_strides_0, weight = model_layers_23_conv_pointwise_conv1_weight_to_fp16_quantized, x = input_1237_cast_fp16)[name = tensor("input_1239_cast_fp16")]; + tensor x_525_split_num_splits_0 = const()[name = tensor("x_525_split_num_splits_0"), val = tensor(2)]; + tensor x_525_split_axis_0 = const()[name = tensor("x_525_split_axis_0"), val = tensor(1)]; + tensor x_525_split_cast_fp16_0, tensor x_525_split_cast_fp16_1 = split(axis = x_525_split_axis_0, num_splits = x_525_split_num_splits_0, x = input_1239_cast_fp16)[name = tensor("x_525_split_cast_fp16")]; + tensor x_525_split_1_sigmoid_cast_fp16 = sigmoid(x = x_525_split_cast_fp16_1)[name = tensor("x_525_split_1_sigmoid_cast_fp16")]; + tensor x_525_cast_fp16 = mul(x = x_525_split_cast_fp16_0, y = x_525_split_1_sigmoid_cast_fp16)[name = tensor("x_525_cast_fp16")]; + tensor input_1241_cast_fp16 = select(a = var_6_to_fp16, b = x_525_cast_fp16, cond = var_323)[name = tensor("input_1241_cast_fp16")]; + tensor input_1243_pad_0 = const()[name = tensor("input_1243_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_1243_mode_0 = const()[name = tensor("input_1243_mode_0"), val = tensor("constant")]; + tensor const_247_to_fp16 = const()[name = tensor("const_247_to_fp16"), val = tensor(0x0p+0)]; + tensor input_1243_cast_fp16 = pad(constant_val = const_247_to_fp16, mode = input_1243_mode_0, pad = input_1243_pad_0, x = input_1241_cast_fp16)[name = tensor("input_1243_cast_fp16")]; + tensor input_1245_pad_type_0 = const()[name = tensor("input_1245_pad_type_0"), val = tensor("valid")]; + tensor input_1245_groups_0 = const()[name = tensor("input_1245_groups_0"), val = tensor(1024)]; + tensor input_1245_strides_0 = const()[name = tensor("input_1245_strides_0"), val = tensor([1])]; + tensor input_1245_pad_0 = const()[name = tensor("input_1245_pad_0"), val = tensor([0, 0])]; + tensor input_1245_dilations_0 = const()[name = tensor("input_1245_dilations_0"), val = tensor([1])]; + tensor const_294_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("const_294_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(581636672))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(581645952))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor const_295_to_fp16 = const()[name = tensor("const_295_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(581648064)))]; + tensor input_1247_cast_fp16 = conv(bias = const_295_to_fp16, dilations = input_1245_dilations_0, groups = input_1245_groups_0, pad = input_1245_pad_0, pad_type = input_1245_pad_type_0, strides = input_1245_strides_0, weight = const_294_to_fp16_quantized, x = input_1243_cast_fp16)[name = tensor("input_1247_cast_fp16")]; + tensor input_1249_cast_fp16 = silu(x = input_1247_cast_fp16)[name = tensor("input_1249_cast_fp16")]; + tensor x_527_pad_type_0 = const()[name = tensor("x_527_pad_type_0"), val = tensor("valid")]; + tensor x_527_strides_0 = const()[name = tensor("x_527_strides_0"), val = tensor([1])]; + tensor x_527_pad_0 = const()[name = tensor("x_527_pad_0"), val = tensor([0, 0])]; + tensor x_527_dilations_0 = const()[name = tensor("x_527_dilations_0"), val = tensor([1])]; + tensor x_527_groups_0 = const()[name = tensor("x_527_groups_0"), val = tensor(1)]; + tensor model_layers_23_conv_pointwise_conv2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_23_conv_pointwise_conv2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(581650176))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(582698816))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor x_527_cast_fp16 = conv(dilations = x_527_dilations_0, groups = x_527_groups_0, pad = x_527_pad_0, pad_type = x_527_pad_type_0, strides = x_527_strides_0, weight = model_layers_23_conv_pointwise_conv2_weight_to_fp16_quantized, x = input_1249_cast_fp16)[name = tensor("x_527_cast_fp16")]; + tensor input_1251_perm_0 = const()[name = tensor("input_1251_perm_0"), val = tensor([0, 2, 1])]; + tensor input_1251_cast_fp16 = transpose(perm = input_1251_perm_0, x = x_527_cast_fp16)[name = tensor("transpose_144")]; + tensor input_1253_cast_fp16 = add(x = input_1235_cast_fp16, y = input_1251_cast_fp16)[name = tensor("input_1253_cast_fp16")]; + tensor input_1255_axes_0 = const()[name = tensor("input_1255_axes_0"), val = tensor([-1])]; + tensor model_layers_23_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_23_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(582700928)))]; + tensor model_layers_23_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_23_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(582703040)))]; + tensor input_1255_cast_fp16 = layer_norm(axes = input_1255_axes_0, beta = model_layers_23_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_23_norm_feed_forward2_weight_to_fp16, x = input_1253_cast_fp16)[name = tensor("input_1255_cast_fp16")]; + tensor model_layers_23_feed_forward2_linear1_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_23_feed_forward2_linear1_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(582705152))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(586899520))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8542720)))]; + tensor linear_215_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_23_feed_forward2_linear1_weight_to_fp16_quantized, x = input_1255_cast_fp16)[name = tensor("linear_215_cast_fp16")]; + tensor input_1259_cast_fp16 = silu(x = linear_215_cast_fp16)[name = tensor("input_1259_cast_fp16")]; + tensor model_layers_23_feed_forward2_linear2_weight_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor(0), name = tensor("model_layers_23_feed_forward2_linear2_weight_to_fp16_quantized"), quantized_data = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(586907776))), scale = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(591102144))), zero_point = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4338816)))]; + tensor linear_216_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_23_feed_forward2_linear2_weight_to_fp16_quantized, x = input_1259_cast_fp16)[name = tensor("linear_216_cast_fp16")]; + tensor var_4110_to_fp16 = const()[name = tensor("op_4110_to_fp16"), val = tensor(0x1p-1)]; + tensor var_4111_cast_fp16 = mul(x = linear_216_cast_fp16, y = var_4110_to_fp16)[name = tensor("op_4111_cast_fp16")]; + tensor input_cast_fp16 = add(x = input_1253_cast_fp16, y = var_4111_cast_fp16)[name = tensor("input_cast_fp16")]; + tensor audio_signal_axes_0 = const()[name = tensor("audio_signal_axes_0"), val = tensor([-1])]; + tensor model_layers_23_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_23_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(591104256)))]; + tensor model_layers_23_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_23_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(591106368)))]; + tensor encoder_output = layer_norm(axes = audio_signal_axes_0, beta = model_layers_23_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_23_norm_out_weight_to_fp16, x = input_cast_fp16)[name = tensor("audio_signal_cast_fp16")]; + } -> (encoder_output, encoder_output_length); +} \ No newline at end of file