bweng commited on
Commit
0cedc4b
·
verified ·
1 Parent(s): 7c9c1a8

Upload 4 files

Browse files
TokenDurationPrediction.mlmodelc/analytics/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d844856c854d42e6a58215dae5f75f82ea4da7cb7dbefb60db082a56c3a223dc
3
+ size 243
TokenDurationPrediction.mlmodelc/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03bd0964aae75139a64e2d25090b2c25c4aabe234bc5f63ae23d5e4d616d25d3
3
+ size 424
TokenDurationPrediction.mlmodelc/metadata.json ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "shortDescription" : "Token and duration prediction for TDT decoder",
4
+ "metadataOutputVersion" : "3.0",
5
+ "outputSchema" : [
6
+ {
7
+ "hasShapeFlexibility" : "0",
8
+ "isOptional" : "0",
9
+ "dataType" : "Int32",
10
+ "formattedType" : "MultiArray (Int32 1)",
11
+ "shortDescription" : "",
12
+ "shape" : "[1]",
13
+ "name" : "var_17",
14
+ "type" : "MultiArray"
15
+ },
16
+ {
17
+ "hasShapeFlexibility" : "0",
18
+ "isOptional" : "0",
19
+ "dataType" : "Float16",
20
+ "formattedType" : "MultiArray (Float16 1)",
21
+ "shortDescription" : "",
22
+ "shape" : "[1]",
23
+ "name" : "reduce_max_0",
24
+ "type" : "MultiArray"
25
+ },
26
+ {
27
+ "hasShapeFlexibility" : "0",
28
+ "isOptional" : "0",
29
+ "dataType" : "Int32",
30
+ "formattedType" : "MultiArray (Int32 1)",
31
+ "shortDescription" : "",
32
+ "shape" : "[1]",
33
+ "name" : "var_24",
34
+ "type" : "MultiArray"
35
+ }
36
+ ],
37
+ "version" : "1.0",
38
+ "modelParameters" : [
39
+
40
+ ],
41
+ "author" : "FluidAudio",
42
+ "specificationVersion" : 7,
43
+ "mlProgramOperationTypeHistogram" : {
44
+ "SliceByIndex" : 2,
45
+ "Ios16.reduceArgmax" : 2,
46
+ "Ios16.reshape" : 1,
47
+ "Ios16.reduceMax" : 1
48
+ },
49
+ "computePrecision" : "Mixed (Float16, Int32)",
50
+ "stateSchema" : [
51
+
52
+ ],
53
+ "isUpdatable" : "0",
54
+ "availability" : {
55
+ "macOS" : "13.0",
56
+ "tvOS" : "16.0",
57
+ "visionOS" : "1.0",
58
+ "watchOS" : "9.0",
59
+ "iOS" : "16.0",
60
+ "macCatalyst" : "16.0"
61
+ },
62
+ "modelType" : {
63
+ "name" : "MLModelType_mlProgram"
64
+ },
65
+ "inputSchema" : [
66
+ {
67
+ "hasShapeFlexibility" : "0",
68
+ "isOptional" : "0",
69
+ "dataType" : "Float16",
70
+ "formattedType" : "MultiArray (Float16 1 × 1 × 1 × 1030)",
71
+ "shortDescription" : "",
72
+ "shape" : "[1, 1, 1, 1030]",
73
+ "name" : "logits",
74
+ "type" : "MultiArray"
75
+ }
76
+ ],
77
+ "userDefinedMetadata" : {
78
+ "com.github.apple.coremltools.source_dialect" : "TorchScript",
79
+ "com.github.apple.coremltools.source" : "torch==2.5.0",
80
+ "com.github.apple.coremltools.version" : "8.3.0"
81
+ },
82
+ "generatedClassName" : "TokenDurationPrediction",
83
+ "method" : "predict"
84
+ }
85
+ ]
TokenDurationPrediction.mlmodelc/model.mil ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ program(1.0)
2
+ [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3405.2.1"}, {"coremlc-version", "3404.23.1"}, {"coremltools-component-torch", "2.5.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.3.0"}})]
3
+ {
4
+ func main<ios16>(tensor<fp16, [1, 1, 1, 1030]> logits) {
5
+ tensor<int32, [1]> var_3 = const()[name = tensor<string, []>("op_3"), val = tensor<int32, [1]>([-1])];
6
+ tensor<fp16, [1030]> flattened_cast_fp16 = reshape(shape = var_3, x = logits)[name = tensor<string, []>("flattened_cast_fp16")];
7
+ tensor<int32, [1]> token_logits_begin_0 = const()[name = tensor<string, []>("token_logits_begin_0"), val = tensor<int32, [1]>([0])];
8
+ tensor<int32, [1]> token_logits_end_0 = const()[name = tensor<string, []>("token_logits_end_0"), val = tensor<int32, [1]>([1025])];
9
+ tensor<bool, [1]> token_logits_end_mask_0 = const()[name = tensor<string, []>("token_logits_end_mask_0"), val = tensor<bool, [1]>([false])];
10
+ tensor<fp16, [1025]> token_logits_cast_fp16 = slice_by_index(begin = token_logits_begin_0, end = token_logits_end_0, end_mask = token_logits_end_mask_0, x = flattened_cast_fp16)[name = tensor<string, []>("token_logits_cast_fp16")];
11
+ tensor<int32, [1]> duration_logits_begin_0 = const()[name = tensor<string, []>("duration_logits_begin_0"), val = tensor<int32, [1]>([1025])];
12
+ tensor<int32, [1]> duration_logits_end_0 = const()[name = tensor<string, []>("duration_logits_end_0"), val = tensor<int32, [1]>([1])];
13
+ tensor<bool, [1]> duration_logits_end_mask_0 = const()[name = tensor<string, []>("duration_logits_end_mask_0"), val = tensor<bool, [1]>([true])];
14
+ tensor<fp16, [5]> duration_logits_cast_fp16 = slice_by_index(begin = duration_logits_begin_0, end = duration_logits_end_0, end_mask = duration_logits_end_mask_0, x = flattened_cast_fp16)[name = tensor<string, []>("duration_logits_cast_fp16")];
15
+ tensor<int32, []> var_17_axis_0 = const()[name = tensor<string, []>("op_17_axis_0"), val = tensor<int32, []>(0)];
16
+ tensor<bool, []> var_17_keep_dims_0 = const()[name = tensor<string, []>("op_17_keep_dims_0"), val = tensor<bool, []>(true)];
17
+ tensor<int32, [1]> var_17 = reduce_argmax(axis = var_17_axis_0, keep_dims = var_17_keep_dims_0, x = token_logits_cast_fp16)[name = tensor<string, []>("op_17_cast_fp16")];
18
+ tensor<int32, [1]> reduce_max_0_axes_0 = const()[name = tensor<string, []>("reduce_max_0_axes_0"), val = tensor<int32, [1]>([0])];
19
+ tensor<bool, []> reduce_max_0_keep_dims_0 = const()[name = tensor<string, []>("reduce_max_0_keep_dims_0"), val = tensor<bool, []>(true)];
20
+ tensor<fp16, [1]> reduce_max_0 = reduce_max(axes = reduce_max_0_axes_0, keep_dims = reduce_max_0_keep_dims_0, x = token_logits_cast_fp16)[name = tensor<string, []>("reduce_max_0_cast_fp16")];
21
+ tensor<int32, []> var_24_axis_0 = const()[name = tensor<string, []>("op_24_axis_0"), val = tensor<int32, []>(0)];
22
+ tensor<bool, []> var_24_keep_dims_0 = const()[name = tensor<string, []>("op_24_keep_dims_0"), val = tensor<bool, []>(true)];
23
+ tensor<int32, [1]> var_24 = reduce_argmax(axis = var_24_axis_0, keep_dims = var_24_keep_dims_0, x = duration_logits_cast_fp16)[name = tensor<string, []>("op_24_cast_fp16")];
24
+ } -> (var_17, reduce_max_0, var_24);
25
+ }