--- library_name: transformers license: apache-2.0 datasets: - sanjeev-bhandari01/nepali-summarization-dataset base_model: - facebook/mbart-large-cc25 --- # Nepali Article Title Generator This is a fine-tuned MBart model for generating titles (summaries) for Nepali articles. The model was fine-tuned on a Nepali summarization dataset and is designed to generate concise and relevant titles for given Nepali text. ## Model Details - **Model Type**: MBart (Multilingual BART) - **Fine-Tuned For**: Nepali Article Title Generation - **Languages**: Nepali (`ne_NP`) - **Model Size**: Large - **Training Dataset**: Nepali Summarization Dataset (first 50,000 samples) - **Fine-Tuning Framework**: Hugging Face Transformers - **Fine-Tuning Epochs**: 3 - **Max Input Length**: 512 tokens - **Max Target Length**: 128 tokens ## How to Use You can use this model to generate titles for Nepali articles. Below is an example of how to load and use the model. ### Installation First, install the required libraries: ```bash pip install torch transformers ``` ```bash import torch from transformers import MBartTokenizer, MBartForConditionalGeneration # Load the fine-tuned model MODEL_PATH = "Dragneel/nepali-article-title-generator" model = MBartForConditionalGeneration.from_pretrained(MODEL_PATH) tokenizer = MBartTokenizer.from_pretrained(MODEL_PATH) # Set the source and target language tokenizer.src_lang = "ne_NP" tokenizer.tgt_lang = "ne_NP" # Define the input text input_text = """ नेपालको पर्यटन उद्योगमा कोरोनाको प्रभावले गर्दा ठूलो मन्दी आएको छ। विश्वभर यात्रा प्रतिबन्ध लागू भएपछि नेपाल आउने पर्यटकको संख्या न्यून भएको छ। यसले गर्दा होटल, यातायात र अन्य पर्यटन सम्बन्धी व्यवसायमा ठूलो असर परेको छ। सरकारले पर्यटन उद्योगलाई बचाउन विभिन्न उपायहरू ल्याएको छ, तर अहिलेसम्म कुनै ठूलो सुधार देखिएको छैन। """ # Tokenize the input inputs = tokenizer( input_text, return_tensors="pt", max_length=512, truncation=True, padding="max_length" ) # Generate summary model.eval() # Set the model to evaluation mode with torch.no_grad(): output_ids = model.generate( inputs["input_ids"], max_length=128, # Set the maximum length of the generated text num_beams=4, # Beam search for better quality early_stopping=True ) # Decode the generated text summary = tokenizer.decode(output_ids[0], skip_special_tokens=True) print("Generated Title:", summary) ```