Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,80 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
4 |
---
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
-
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
- **
|
21 |
-
- **
|
22 |
-
- **
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
###
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
datasets:
|
5 |
+
- sanjeev-bhandari01/nepali-summarization-dataset
|
6 |
+
base_model:
|
7 |
+
- facebook/mbart-large-cc25
|
8 |
---
|
9 |
+
# Nepali Article Title Generator
|
10 |
|
11 |
+
This is a fine-tuned MBart model for generating titles (summaries) for Nepali articles. The model was fine-tuned on a Nepali summarization dataset and is designed to generate concise and relevant titles for given Nepali text.
|
|
|
|
|
|
|
|
|
12 |
|
13 |
## Model Details
|
14 |
|
15 |
+
- **Model Type**: MBart (Multilingual BART)
|
16 |
+
- **Fine-Tuned For**: Nepali Article Title Generation
|
17 |
+
- **Languages**: Nepali (`ne_NP`)
|
18 |
+
- **Model Size**: Large
|
19 |
+
- **Training Dataset**: Nepali Summarization Dataset (first 50,000 samples)
|
20 |
+
- **Fine-Tuning Framework**: Hugging Face Transformers
|
21 |
+
- **Fine-Tuning Epochs**: 3
|
22 |
+
- **Max Input Length**: 512 tokens
|
23 |
+
- **Max Target Length**: 128 tokens
|
24 |
+
|
25 |
+
## How to Use
|
26 |
+
|
27 |
+
You can use this model to generate titles for Nepali articles. Below is an example of how to load and use the model.
|
28 |
+
|
29 |
+
### Installation
|
30 |
+
|
31 |
+
First, install the required libraries:
|
32 |
+
|
33 |
+
```bash
|
34 |
+
pip install torch transformers
|
35 |
+
```
|
36 |
+
|
37 |
+
```bash
|
38 |
+
import torch
|
39 |
+
from transformers import MBartTokenizer, MBartForConditionalGeneration
|
40 |
+
|
41 |
+
# Load the fine-tuned model
|
42 |
+
MODEL_PATH = "Dragneel/nepali-article-title-generator"
|
43 |
+
model = MBartForConditionalGeneration.from_pretrained(MODEL_PATH)
|
44 |
+
tokenizer = MBartTokenizer.from_pretrained(MODEL_PATH)
|
45 |
+
|
46 |
+
# Set the source and target language
|
47 |
+
tokenizer.src_lang = "ne_NP"
|
48 |
+
tokenizer.tgt_lang = "ne_NP"
|
49 |
+
|
50 |
+
# Define the input text
|
51 |
+
input_text = """
|
52 |
+
नेपालको पर्यटन उद्योगमा कोरोनाको प्रभावले गर्दा ठूलो मन्दी आएको छ।
|
53 |
+
विश्वभर यात्रा प्रतिबन्ध लागू भएपछि नेपाल आउने पर्यटकको संख्या न्यून भएको छ।
|
54 |
+
यसले गर्दा होटल, यातायात र अन्य पर्यटन सम्बन्धी व्यवसायमा ठूलो असर परेको छ।
|
55 |
+
सरकारले पर्यटन उद्योगलाई बचाउन विभिन्न उपायहरू ल्याएको छ, तर अहिलेसम्म कुनै ठूलो सुधार देखिएको छैन।
|
56 |
+
"""
|
57 |
+
|
58 |
+
# Tokenize the input
|
59 |
+
inputs = tokenizer(
|
60 |
+
input_text,
|
61 |
+
return_tensors="pt",
|
62 |
+
max_length=512,
|
63 |
+
truncation=True,
|
64 |
+
padding="max_length"
|
65 |
+
)
|
66 |
+
|
67 |
+
# Generate summary
|
68 |
+
model.eval() # Set the model to evaluation mode
|
69 |
+
with torch.no_grad():
|
70 |
+
output_ids = model.generate(
|
71 |
+
inputs["input_ids"],
|
72 |
+
max_length=128, # Set the maximum length of the generated text
|
73 |
+
num_beams=4, # Beam search for better quality
|
74 |
+
early_stopping=True
|
75 |
+
)
|
76 |
+
|
77 |
+
# Decode the generated text
|
78 |
+
summary = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
79 |
+
print("Generated Title:", summary)
|
80 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|