---
model_id: Toto-Open-Base-1.0
tags:
- time-series-forecasting
- foundation models
- pretrained models
- time series foundation models
- time series
- time-series
- transformers
- forecasting
- safetensors
- observability
paper:
- - Link to Paper
datasets:
- Salesforce/GiftEvalPretrain
- autogluon/chronos_datasets
leaderboards:
- GiftEval (if results are public)#TODO(Anna) check how to do that
- BOOM (if results are public)#TODO(Anna) check how to do that
license: apache-2.0
pipeline_tag: time-series-forecasting
---
# Toto-Open-Base-1.0
Toto (Time Series Optimized Transformer for [Observability](https://www.datadoghq.com/knowledge-center/observability/)) is a **state-of-the-art** time-series foundation model designed for multi-variate time series forecasting, emphasizing observability metrics. Toto efficiently handles high-dimensional, sparse, and non-stationary data commonly encountered in observability scenarios.
The average rank of Toto compared to the runner-up models on both the GIFT-Eval and BOOM benchmarks (as of May 19, 2025).
---
## β¨ Key Features
- **Zero-Shot Forecasting**: Perform forecasting without fine-tuning on your specific time series.
- **High-Dimension Multi-Variate Support**: Efficiently process multiple variables using Proportional Factorized Space-Time Attention.
- **Decoder-Only Transformer Architecture**: Support for variable prediction horizons and context lengths.
- **Probabilistic Predictions**: Generate both point forecasts and uncertainty estimates using a Student-T mixture model.
- **Extensive Pretraining on Large-Scale Data**: Trained on over 2 trillion time series data points, the largest pretraining dataset for any open-weights time series foundation model to date.
- **Tailored for Observability Metrics with State-of-the-Art Performance** on [GIFT-Eval](https://huggingface.co/spaces/Salesforce/GIFT-Eval) and [BOOM](https://huggingface.co/datasets/Datadog/BOOM).
Overview of Toto-Open-Base-1.0 architecture.
---
## π Training Data Summary
- **Observability Metrics:** ~1 trillion points from Datadog internal systems (no customer data)
- **Public Datasets:**
- [GIFT-Eval Pretrain](https://huggingface.co/datasets/Salesforce/GiftEvalPretrain)
- [Chronos datasets](https://huggingface.co/datasets/autogluon/chronos_datasets)
- **Synthetic Data:** ~1/3 of training data
---
## β‘ Quick Start: Model Inference
Inference code is available on [GitHub](https://github.com/DataDog/toto).
### Installation
```bash
pip install toto-ts
```
For optimal speed and reduced memory usage, you should also install [xFormers](https://github.com/facebookresearch/xformers) and [flash-attention](https://github.com/Dao-AILab/flash-attention)
### π Inference Example
Here's how to quickly generate forecasts using Toto:
β οΈ In our study, we take the **median** across 256 samples to produce a point forecast. This tutorial previously used the **mean** but has now been updated.
```python
import torch
from toto.data.util.dataset import MaskedTimeseries
from toto.inference.forecaster import TotoForecaster
from toto.model.toto import Toto
DEVICE = 'cuda'
# Load pre-trained Toto model
toto = Toto.from_pretrained('Datadog/Toto-Open-Base-1.0').to(DEVICE)
# Optional: compile model for enhanced speed
toto.compile()
forecaster = TotoForecaster(toto.model)
# Example input series (7 variables, 4096 timesteps)
input_series = torch.randn(7, 4096).to(DEVICE)
timestamp_seconds = torch.zeros(7, 4096).to(DEVICE)
time_interval_seconds = torch.full((7,), 60*15).to(DEVICE)
inputs = MaskedTimeseries(
series=input_series,
padding_mask=torch.full_like(input_series, True, dtype=torch.bool),
id_mask=torch.zeros_like(input_series),
timestamp_seconds=timestamp_seconds,
time_interval_seconds=time_interval_seconds,
)
# Generate forecasts for next 336 timesteps
forecast = forecaster.forecast(
inputs,
prediction_length=336,
num_samples=256,
samples_per_batch=256,
)
# Access results
median_prediction = forecast.median
prediction_samples = forecast.samples
lower_quantile = forecast.quantile(0.1)
upper_quantile = forecast.quantile(0.9)
```
For detailed inference instructions, refer to the [inference tutorial notebook](https://github.com/DataDog/toto/blob/main/toto/notebooks/inference_tutorial.ipynb).
---
### πΎ Available Checkpoints
| Checkpoint | Parameters | Config | Size | Notes |
|------------|------------|--------|------|-------|
| [Toto-Open-Base-1.0](https://huggingface.co/Datadog/Toto-Open-Base-1.0/blob/main/model.safetensors) | 151M | [Config](https://huggingface.co/Datadog/Toto-Open-Base-1.0/blob/main/config.json) | 605 MB | Initial release with SOTA performance |
## π Additional Resources
- **[Research Paper](https://arxiv.org/abs/2505.14766)**
- **[GitHub Repository](https://github.com/DataDog/toto.git)**
- **[Blog Post](https://www.datadoghq.com/blog/ai/toto-boom-unleashed/)**
- **[BOOM Dataset](https://huggingface.co/datasets/Datadog/BOOM)**
---
## π Citation
If you use Toto in your research or applications, please cite us using the following:
```bibtex
@misc{cohen2025timedifferentobservabilityperspective,
title={This Time is Different: An Observability Perspective on Time Series Foundation Models},
author={Ben Cohen and Emaad Khwaja and Youssef Doubli and Salahidine Lemaachi and Chris Lettieri and Charles Masson and Hugo Miccinilli and Elise RamΓ© and Qiqi Ren and Afshin Rostamizadeh and Jean Ogier du Terrail and Anna-Monica Toon and Kan Wang and Stephan Xie and Zongzhe Xu and Viktoriya Zhukova and David Asker and Ameet Talwalkar and Othmane Abou-Amal},
year={2025},
eprint={2505.14766},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2505.14766},
}
```