File size: 7,013 Bytes
e9aa1c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
from dataclasses import dataclass

import torch
import torch.nn as nn
import torch.nn.functional as F
from timm import create_model
from transformers import (
    AutoConfig,
    AutoModel,
    AutoTokenizer,
    PretrainedConfig,
    PreTrainedModel,
)
from transformers.utils import ModelOutput

from .location_encoder import LocationEncoder


class CLOSPConfig(PretrainedConfig):
    """
    Configuration class for CLOSPModel.

    This class stores the configuration of a CLOSPModel, which is used to instantiate the model
    according to the specified parameters.
    """

    model_type = "closp"

    def __init__(
        self,
        # Vision model parameters
        vision_model_key: str = "vit-s",
        s1_embedding_dim: int = 384,
        s2_embedding_dim: int = 384,
        s1_head_dim: int = 0,
        s2_head_dim: int = 0,
        # Text model parameters
        text_model_name_or_path: str = "distilbert-base-uncased",
        # Location encoder parameters (optional)
        use_location_encoder: bool = True,
        location_embedding_dim: int = 512,
        # General model parameters
        projection_dim: int = 768,
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.vision_model_key = vision_model_key
        self.s1_embedding_dim = s1_embedding_dim
        self.s2_embedding_dim = s2_embedding_dim
        self.text_model_name_or_path = text_model_name_or_path
        self.use_location_encoder = use_location_encoder
        self.location_embedding_dim = location_embedding_dim
        self.projection_dim = projection_dim
        self.s1_head_dim = s1_head_dim
        self.s2_head_dim = s2_head_dim


# --- Structured Model Output ---
@dataclass
class CLOSPOutput(ModelOutput):
    """
    Base class for CLOSP model's outputs.
    """

    loss: torch.FloatTensor = None
    logits_per_image: torch.FloatTensor = None
    logits_per_text: torch.FloatTensor = None
    logits_per_loc_img: torch.FloatTensor = None
    logits_per_img_loc: torch.FloatTensor = None
    image_embeds: torch.FloatTensor = None
    text_embeds: torch.FloatTensor = None
    location_embeds: torch.FloatTensor = None


class CLOSPModel(PreTrainedModel):
    config_class = CLOSPConfig

    def __init__(self, config: CLOSPConfig):
        super().__init__(config)
        # --- Vision Encoders ---
        self.s1_encoder = create_model(
            config.vision_model_key,
            in_chans=2,
            num_classes=config.s1_head_dim,
            pretrained=False,
        )
        self.s2_encoder = create_model(
            config.vision_model_key,
            in_chans=13,
            num_classes=config.s2_head_dim,
            pretrained=False,
        )
        self.s1_projection = nn.Linear(config.s1_embedding_dim, config.projection_dim)
        self.s2_projection = nn.Linear(config.s2_embedding_dim, config.projection_dim)

        # --- Text Encoder ---
        self.text_model = AutoModel.from_config(
            AutoConfig.from_pretrained(config.text_model_name_or_path)
        )
        self.tokenizer = AutoTokenizer.from_pretrained(config.text_model_name_or_path)

        # --- Location Encoder ---
        if config.use_location_encoder:
            self.location_encoder = LocationEncoder(512, 2, 256, 10)
            self.location_projection = nn.Linear(
                config.location_embedding_dim, config.projection_dim
            )

    def tokenize_text(self, text: str):
        """Tokenizes input text using the model's tokenizer."""
        return self.tokenizer(
            text,
            padding="max_length",
            truncation=True,
            max_length=self.tokenizer.model_max_length,
            return_tensors="pt",
        )

    def get_image_features(self, image: torch.Tensor) -> torch.Tensor:
        """Encodes an image tensor into features."""
        image = image.float()
        if image.shape[1] == 2:  # Sentinel-1
            image_features = self.s1_projection(self.s1_encoder(image))
        else:  # Sentinel-2
            image_features = self.s2_projection(self.s2_encoder(image))

        return F.normalize(image_features, p=2, dim=-1)

    def get_text_features(
        self, input_ids: torch.Tensor, attention_mask: torch.Tensor
    ) -> torch.Tensor:
        """Encodes text tokens into features."""
        text_outputs = self.text_model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            output_hidden_states=True,
        )
        text_features = text_outputs.last_hidden_state[:, 0, :]
        return F.normalize(text_features, p=2, dim=-1)

    def get_location_features(self, coords: torch.Tensor) -> torch.Tensor:
        """Encodes coordinates into features."""
        if not self.config.use_location_encoder:
            raise ValueError(
                "Location encoder is not enabled for this model. Set `use_location_encoder=True` in config."
            )
        location_features = self.location_encoder(coords)
        location_features = self.location_projection(location_features)
        return F.normalize(location_features, p=2, dim=-1)

    def forward(
        self,
        image: torch.Tensor,
        input_ids: torch.Tensor,
        attention_mask: torch.Tensor,
        coords: torch.Tensor = None,
        return_loss: bool = False,
    ) -> CLOSPOutput:
        image_embeds = self.get_image_features(image)
        text_embeds = self.get_text_features(input_ids, attention_mask)

        # Cosine similarity as logits
        logits_per_image = image_embeds @ text_embeds.T
        logits_per_text = logits_per_image.T

        # --- Optional Location Logic ---
        location_embeds = None
        logits_per_loc_img = None
        logits_per_img_loc = None

        if self.config.use_location_encoder:
            if coords is None:
                raise ValueError(
                    "Coordinates must be provided when use_location_encoder is True."
                )
            location_embeds = self.get_location_features(coords)
            logits_per_loc_img = location_embeds @ image_embeds.T
            logits_per_img_loc = image_embeds @ location_embeds.T

        # --- Optional Loss Calculation ---
        loss = None
        if return_loss:
            outputs = [
                logits_per_image,
                logits_per_text,
                logits_per_loc_img,
                logits_per_img_loc,
            ]
            ground_truth = torch.arange(len(input_ids)).to(self.device)
            loss = [F.cross_entropy(o, ground_truth) for o in outputs if o is not None]
            loss = sum(loss) / len(loss)

        return CLOSPOutput(
            loss=loss,
            logits_per_image=logits_per_image,
            logits_per_text=logits_per_text,
            logits_per_loc_img=logits_per_loc_img,
            logits_per_img_loc=logits_per_img_loc,
            image_embeds=image_embeds,
            text_embeds=text_embeds,
            location_embeds=location_embeds,
        )