""" analytic expressions of spherical harmonics generated with sympy file Marc Russwurm generated 2023-07-26 run python spherical_harmonics_generate_ylms.py > spherical_harmonics_ylm.py to generate the source code """ import torch from torch import cos, sin def get_SH(m, l): fname = f"Yl{l}_m{m}".replace("-", "_minus_") return globals()[fname] def SH(m, l, phi, theta): Ylm = get_SH(m, l) return Ylm(theta, phi) # @torch.jit.script def Yl0_m0(theta, phi): return 0.886226925452758 # @torch.jit.script def Yl1_m_minus_1(theta, phi): return 0.48860251190292 * (1.0 - cos(theta) ** 2) ** 0.5 * sin(phi) # @torch.jit.script def Yl1_m0(theta, phi): return 1.53499006191973 * cos(theta) # @torch.jit.script def Yl1_m1(theta, phi): return 0.48860251190292 * (1.0 - cos(theta) ** 2) ** 0.5 * cos(phi) # @torch.jit.script def Yl2_m_minus_2(theta, phi): return 0.18209140509868 * (3.0 - 3.0 * cos(theta) ** 2) * sin(2 * phi) # @torch.jit.script def Yl2_m_minus_1(theta, phi): return 1.09254843059208 * (1.0 - cos(theta) ** 2) ** 0.5 * sin(phi) * cos(theta) # @torch.jit.script def Yl2_m0(theta, phi): return 2.97249547320451 * cos(theta) ** 2 - 0.990831824401503 # @torch.jit.script def Yl2_m1(theta, phi): return 1.09254843059208 * (1.0 - cos(theta) ** 2) ** 0.5 * cos(phi) * cos(theta) # @torch.jit.script def Yl2_m2(theta, phi): return 0.18209140509868 * (3.0 - 3.0 * cos(theta) ** 2) * cos(2 * phi) # @torch.jit.script def Yl3_m_minus_3(theta, phi): return 0.590043589926644 * (1.0 - cos(theta) ** 2) ** 1.5 * sin(3 * phi) # @torch.jit.script def Yl3_m_minus_2(theta, phi): return 1.44530572132028 * (1.0 - cos(theta) ** 2) * sin(2 * phi) * cos(theta) # @torch.jit.script def Yl3_m_minus_1(theta, phi): return ( 0.304697199642977 * (1.0 - cos(theta) ** 2) ** 0.5 * (7.5 * cos(theta) ** 2 - 1.5) * sin(phi) ) # @torch.jit.script def Yl3_m0(theta, phi): return 5.86184012479344 * cos(theta) ** 3 - 3.51710407487606 * cos(theta) # @torch.jit.script def Yl3_m1(theta, phi): return ( 0.304697199642977 * (1.0 - cos(theta) ** 2) ** 0.5 * (7.5 * cos(theta) ** 2 - 1.5) * cos(phi) ) # @torch.jit.script def Yl3_m2(theta, phi): return 1.44530572132028 * (1.0 - cos(theta) ** 2) * cos(2 * phi) * cos(theta) # @torch.jit.script def Yl3_m3(theta, phi): return 0.590043589926644 * (1.0 - cos(theta) ** 2) ** 1.5 * cos(3 * phi) # @torch.jit.script def Yl4_m_minus_4(theta, phi): return 0.625835735449176 * (1.0 - cos(theta) ** 2) ** 2 * sin(4 * phi) # @torch.jit.script def Yl4_m_minus_3(theta, phi): return 1.77013076977993 * (1.0 - cos(theta) ** 2) ** 1.5 * sin(3 * phi) * cos(theta) # @torch.jit.script def Yl4_m_minus_2(theta, phi): return ( 0.063078313050504 * (1.0 - cos(theta) ** 2) * (52.5 * cos(theta) ** 2 - 7.5) * sin(2 * phi) ) # @torch.jit.script def Yl4_m_minus_1(theta, phi): return ( 0.267618617422916 * (1.0 - cos(theta) ** 2) ** 0.5 * (17.5 * cos(theta) ** 3 - 7.5 * cos(theta)) * sin(phi) ) # @torch.jit.script def Yl4_m0(theta, phi): return ( 11.6317283965674 * cos(theta) ** 4 - 9.97005291134353 * cos(theta) ** 2 + 0.997005291134353 ) # @torch.jit.script def Yl4_m1(theta, phi): return ( 0.267618617422916 * (1.0 - cos(theta) ** 2) ** 0.5 * (17.5 * cos(theta) ** 3 - 7.5 * cos(theta)) * cos(phi) ) # @torch.jit.script def Yl4_m2(theta, phi): return ( 0.063078313050504 * (1.0 - cos(theta) ** 2) * (52.5 * cos(theta) ** 2 - 7.5) * cos(2 * phi) ) # @torch.jit.script def Yl4_m3(theta, phi): return 1.77013076977993 * (1.0 - cos(theta) ** 2) ** 1.5 * cos(3 * phi) * cos(theta) # @torch.jit.script def Yl4_m4(theta, phi): return 0.625835735449176 * (1.0 - cos(theta) ** 2) ** 2 * cos(4 * phi) # @torch.jit.script def Yl5_m_minus_5(theta, phi): return 0.65638205684017 * (1.0 - cos(theta) ** 2) ** 2.5 * sin(5 * phi) # @torch.jit.script def Yl5_m_minus_4(theta, phi): return 2.07566231488104 * (1.0 - cos(theta) ** 2) ** 2 * sin(4 * phi) * cos(theta) # @torch.jit.script def Yl5_m_minus_3(theta, phi): return ( 0.00931882475114763 * (1.0 - cos(theta) ** 2) ** 1.5 * (472.5 * cos(theta) ** 2 - 52.5) * sin(3 * phi) ) # @torch.jit.script def Yl5_m_minus_2(theta, phi): return ( 0.0456527312854602 * (1.0 - cos(theta) ** 2) * (157.5 * cos(theta) ** 3 - 52.5 * cos(theta)) * sin(2 * phi) ) # @torch.jit.script def Yl5_m_minus_1(theta, phi): return ( 0.241571547304372 * (1.0 - cos(theta) ** 2) ** 0.5 * (39.375 * cos(theta) ** 4 - 26.25 * cos(theta) ** 2 + 1.875) * sin(phi) ) # @torch.jit.script def Yl5_m0(theta, phi): return ( 23.1468472528419 * cos(theta) ** 5 - 25.7187191698243 * cos(theta) ** 3 + 5.51115410781949 * cos(theta) ) # @torch.jit.script def Yl5_m1(theta, phi): return ( 0.241571547304372 * (1.0 - cos(theta) ** 2) ** 0.5 * (39.375 * cos(theta) ** 4 - 26.25 * cos(theta) ** 2 + 1.875) * cos(phi) ) # @torch.jit.script def Yl5_m2(theta, phi): return ( 0.0456527312854602 * (1.0 - cos(theta) ** 2) * (157.5 * cos(theta) ** 3 - 52.5 * cos(theta)) * cos(2 * phi) ) # @torch.jit.script def Yl5_m3(theta, phi): return ( 0.00931882475114763 * (1.0 - cos(theta) ** 2) ** 1.5 * (472.5 * cos(theta) ** 2 - 52.5) * cos(3 * phi) ) # @torch.jit.script def Yl5_m4(theta, phi): return 2.07566231488104 * (1.0 - cos(theta) ** 2) ** 2 * cos(4 * phi) * cos(theta) # @torch.jit.script def Yl5_m5(theta, phi): return 0.65638205684017 * (1.0 - cos(theta) ** 2) ** 2.5 * cos(5 * phi) # @torch.jit.script def Yl6_m_minus_6(theta, phi): return 0.683184105191914 * (1.0 - cos(theta) ** 2) ** 3 * sin(6 * phi) # @torch.jit.script def Yl6_m_minus_5(theta, phi): return 2.36661916223175 * (1.0 - cos(theta) ** 2) ** 2.5 * sin(5 * phi) * cos(theta) # @torch.jit.script def Yl6_m_minus_4(theta, phi): return ( 0.0010678622237645 * (1.0 - cos(theta) ** 2) ** 2 * (5197.5 * cos(theta) ** 2 - 472.5) * sin(4 * phi) ) # @torch.jit.script def Yl6_m_minus_3(theta, phi): return ( 0.00584892228263444 * (1.0 - cos(theta) ** 2) ** 1.5 * (1732.5 * cos(theta) ** 3 - 472.5 * cos(theta)) * sin(3 * phi) ) # @torch.jit.script def Yl6_m_minus_2(theta, phi): return ( 0.0350935336958066 * (1.0 - cos(theta) ** 2) * (433.125 * cos(theta) ** 4 - 236.25 * cos(theta) ** 2 + 13.125) * sin(2 * phi) ) # @torch.jit.script def Yl6_m_minus_1(theta, phi): return ( 0.221950995245231 * (1.0 - cos(theta) ** 2) ** 0.5 * (86.625 * cos(theta) ** 5 - 78.75 * cos(theta) ** 3 + 13.125 * cos(theta)) * sin(phi) ) # @torch.jit.script def Yl6_m0(theta, phi): return ( 46.1326724717039 * cos(theta) ** 6 - 62.9081897341417 * cos(theta) ** 4 + 20.9693965780472 * cos(theta) ** 2 - 0.998542694192725 ) # @torch.jit.script def Yl6_m1(theta, phi): return ( 0.221950995245231 * (1.0 - cos(theta) ** 2) ** 0.5 * (86.625 * cos(theta) ** 5 - 78.75 * cos(theta) ** 3 + 13.125 * cos(theta)) * cos(phi) ) # @torch.jit.script def Yl6_m2(theta, phi): return ( 0.0350935336958066 * (1.0 - cos(theta) ** 2) * (433.125 * cos(theta) ** 4 - 236.25 * cos(theta) ** 2 + 13.125) * cos(2 * phi) ) # @torch.jit.script def Yl6_m3(theta, phi): return ( 0.00584892228263444 * (1.0 - cos(theta) ** 2) ** 1.5 * (1732.5 * cos(theta) ** 3 - 472.5 * cos(theta)) * cos(3 * phi) ) # @torch.jit.script def Yl6_m4(theta, phi): return ( 0.0010678622237645 * (1.0 - cos(theta) ** 2) ** 2 * (5197.5 * cos(theta) ** 2 - 472.5) * cos(4 * phi) ) # @torch.jit.script def Yl6_m5(theta, phi): return 2.36661916223175 * (1.0 - cos(theta) ** 2) ** 2.5 * cos(5 * phi) * cos(theta) # @torch.jit.script def Yl6_m6(theta, phi): return 0.683184105191914 * (1.0 - cos(theta) ** 2) ** 3 * cos(6 * phi) # @torch.jit.script def Yl7_m_minus_7(theta, phi): return 0.707162732524596 * (1.0 - cos(theta) ** 2) ** 3.5 * sin(7 * phi) # @torch.jit.script def Yl7_m_minus_6(theta, phi): return 2.6459606618019 * (1.0 - cos(theta) ** 2) ** 3 * sin(6 * phi) * cos(theta) # @torch.jit.script def Yl7_m_minus_5(theta, phi): return ( 9.98394571852353e-5 * (1.0 - cos(theta) ** 2) ** 2.5 * (67567.5 * cos(theta) ** 2 - 5197.5) * sin(5 * phi) ) # @torch.jit.script def Yl7_m_minus_4(theta, phi): return ( 0.000599036743111412 * (1.0 - cos(theta) ** 2) ** 2 * (22522.5 * cos(theta) ** 3 - 5197.5 * cos(theta)) * sin(4 * phi) ) # @torch.jit.script def Yl7_m_minus_3(theta, phi): return ( 0.00397356022507413 * (1.0 - cos(theta) ** 2) ** 1.5 * (5630.625 * cos(theta) ** 4 - 2598.75 * cos(theta) ** 2 + 118.125) * sin(3 * phi) ) # @torch.jit.script def Yl7_m_minus_2(theta, phi): return ( 0.0280973138060306 * (1.0 - cos(theta) ** 2) * (1126.125 * cos(theta) ** 5 - 866.25 * cos(theta) ** 3 + 118.125 * cos(theta)) * sin(2 * phi) ) # @torch.jit.script def Yl7_m_minus_1(theta, phi): return ( 0.206472245902897 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 187.6875 * cos(theta) ** 6 - 216.5625 * cos(theta) ** 4 + 59.0625 * cos(theta) ** 2 - 2.1875 ) * sin(phi) ) # @torch.jit.script def Yl7_m0(theta, phi): return ( 92.0296731793493 * cos(theta) ** 7 - 148.663318212795 * cos(theta) ** 5 + 67.5742355512704 * cos(theta) ** 3 - 7.5082483945856 * cos(theta) ) # @torch.jit.script def Yl7_m1(theta, phi): return ( 0.206472245902897 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 187.6875 * cos(theta) ** 6 - 216.5625 * cos(theta) ** 4 + 59.0625 * cos(theta) ** 2 - 2.1875 ) * cos(phi) ) # @torch.jit.script def Yl7_m2(theta, phi): return ( 0.0280973138060306 * (1.0 - cos(theta) ** 2) * (1126.125 * cos(theta) ** 5 - 866.25 * cos(theta) ** 3 + 118.125 * cos(theta)) * cos(2 * phi) ) # @torch.jit.script def Yl7_m3(theta, phi): return ( 0.00397356022507413 * (1.0 - cos(theta) ** 2) ** 1.5 * (5630.625 * cos(theta) ** 4 - 2598.75 * cos(theta) ** 2 + 118.125) * cos(3 * phi) ) # @torch.jit.script def Yl7_m4(theta, phi): return ( 0.000599036743111412 * (1.0 - cos(theta) ** 2) ** 2 * (22522.5 * cos(theta) ** 3 - 5197.5 * cos(theta)) * cos(4 * phi) ) # @torch.jit.script def Yl7_m5(theta, phi): return ( 9.98394571852353e-5 * (1.0 - cos(theta) ** 2) ** 2.5 * (67567.5 * cos(theta) ** 2 - 5197.5) * cos(5 * phi) ) # @torch.jit.script def Yl7_m6(theta, phi): return 2.6459606618019 * (1.0 - cos(theta) ** 2) ** 3 * cos(6 * phi) * cos(theta) # @torch.jit.script def Yl7_m7(theta, phi): return 0.707162732524596 * (1.0 - cos(theta) ** 2) ** 3.5 * cos(7 * phi) # @torch.jit.script def Yl8_m_minus_8(theta, phi): return 0.72892666017483 * (1.0 - cos(theta) ** 2) ** 4 * sin(8 * phi) # @torch.jit.script def Yl8_m_minus_7(theta, phi): return 2.91570664069932 * (1.0 - cos(theta) ** 2) ** 3.5 * sin(7 * phi) * cos(theta) # @torch.jit.script def Yl8_m_minus_6(theta, phi): return ( 7.87853281621404e-6 * (1.0 - cos(theta) ** 2) ** 3 * (1013512.5 * cos(theta) ** 2 - 67567.5) * sin(6 * phi) ) # @torch.jit.script def Yl8_m_minus_5(theta, phi): return ( 5.10587282657803e-5 * (1.0 - cos(theta) ** 2) ** 2.5 * (337837.5 * cos(theta) ** 3 - 67567.5 * cos(theta)) * sin(5 * phi) ) # @torch.jit.script def Yl8_m_minus_4(theta, phi): return ( 0.000368189725644507 * (1.0 - cos(theta) ** 2) ** 2 * (84459.375 * cos(theta) ** 4 - 33783.75 * cos(theta) ** 2 + 1299.375) * sin(4 * phi) ) # @torch.jit.script def Yl8_m_minus_3(theta, phi): return ( 0.0028519853513317 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 16891.875 * cos(theta) ** 5 - 11261.25 * cos(theta) ** 3 + 1299.375 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl8_m_minus_2(theta, phi): return ( 0.0231696385236779 * (1.0 - cos(theta) ** 2) * ( 2815.3125 * cos(theta) ** 6 - 2815.3125 * cos(theta) ** 4 + 649.6875 * cos(theta) ** 2 - 19.6875 ) * sin(2 * phi) ) # @torch.jit.script def Yl8_m_minus_1(theta, phi): return ( 0.193851103820053 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 402.1875 * cos(theta) ** 7 - 563.0625 * cos(theta) ** 5 + 216.5625 * cos(theta) ** 3 - 19.6875 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl8_m0(theta, phi): return ( 183.699503695146 * cos(theta) ** 8 - 342.905740230939 * cos(theta) ** 6 + 197.830234748619 * cos(theta) ** 4 - 35.9691335906579 * cos(theta) ** 2 + 0.999142599740499 ) # @torch.jit.script def Yl8_m1(theta, phi): return ( 0.193851103820053 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 402.1875 * cos(theta) ** 7 - 563.0625 * cos(theta) ** 5 + 216.5625 * cos(theta) ** 3 - 19.6875 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl8_m2(theta, phi): return ( 0.0231696385236779 * (1.0 - cos(theta) ** 2) * ( 2815.3125 * cos(theta) ** 6 - 2815.3125 * cos(theta) ** 4 + 649.6875 * cos(theta) ** 2 - 19.6875 ) * cos(2 * phi) ) # @torch.jit.script def Yl8_m3(theta, phi): return ( 0.0028519853513317 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 16891.875 * cos(theta) ** 5 - 11261.25 * cos(theta) ** 3 + 1299.375 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl8_m4(theta, phi): return ( 0.000368189725644507 * (1.0 - cos(theta) ** 2) ** 2 * (84459.375 * cos(theta) ** 4 - 33783.75 * cos(theta) ** 2 + 1299.375) * cos(4 * phi) ) # @torch.jit.script def Yl8_m5(theta, phi): return ( 5.10587282657803e-5 * (1.0 - cos(theta) ** 2) ** 2.5 * (337837.5 * cos(theta) ** 3 - 67567.5 * cos(theta)) * cos(5 * phi) ) # @torch.jit.script def Yl8_m6(theta, phi): return ( 7.87853281621404e-6 * (1.0 - cos(theta) ** 2) ** 3 * (1013512.5 * cos(theta) ** 2 - 67567.5) * cos(6 * phi) ) # @torch.jit.script def Yl8_m7(theta, phi): return 2.91570664069932 * (1.0 - cos(theta) ** 2) ** 3.5 * cos(7 * phi) * cos(theta) # @torch.jit.script def Yl8_m8(theta, phi): return 0.72892666017483 * (1.0 - cos(theta) ** 2) ** 4 * cos(8 * phi) # @torch.jit.script def Yl9_m_minus_9(theta, phi): return 0.748900951853188 * (1.0 - cos(theta) ** 2) ** 4.5 * sin(9 * phi) # @torch.jit.script def Yl9_m_minus_8(theta, phi): return 3.1773176489547 * (1.0 - cos(theta) ** 2) ** 4 * sin(8 * phi) * cos(theta) # @torch.jit.script def Yl9_m_minus_7(theta, phi): return ( 5.37640612566745e-7 * (1.0 - cos(theta) ** 2) ** 3.5 * (17229712.5 * cos(theta) ** 2 - 1013512.5) * sin(7 * phi) ) # @torch.jit.script def Yl9_m_minus_6(theta, phi): return ( 3.72488342871223e-6 * (1.0 - cos(theta) ** 2) ** 3 * (5743237.5 * cos(theta) ** 3 - 1013512.5 * cos(theta)) * sin(6 * phi) ) # @torch.jit.script def Yl9_m_minus_5(theta, phi): return ( 2.88528229719329e-5 * (1.0 - cos(theta) ** 2) ** 2.5 * (1435809.375 * cos(theta) ** 4 - 506756.25 * cos(theta) ** 2 + 16891.875) * sin(5 * phi) ) # @torch.jit.script def Yl9_m_minus_4(theta, phi): return ( 0.000241400036332803 * (1.0 - cos(theta) ** 2) ** 2 * ( 287161.875 * cos(theta) ** 5 - 168918.75 * cos(theta) ** 3 + 16891.875 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl9_m_minus_3(theta, phi): return ( 0.00213198739401417 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 47860.3125 * cos(theta) ** 6 - 42229.6875 * cos(theta) ** 4 + 8445.9375 * cos(theta) ** 2 - 216.5625 ) * sin(3 * phi) ) # @torch.jit.script def Yl9_m_minus_2(theta, phi): return ( 0.0195399872275232 * (1.0 - cos(theta) ** 2) * ( 6837.1875 * cos(theta) ** 7 - 8445.9375 * cos(theta) ** 5 + 2815.3125 * cos(theta) ** 3 - 216.5625 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl9_m_minus_1(theta, phi): return ( 0.183301328077446 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 854.6484375 * cos(theta) ** 8 - 1407.65625 * cos(theta) ** 6 + 703.828125 * cos(theta) ** 4 - 108.28125 * cos(theta) ** 2 + 2.4609375 ) * sin(phi) ) # @torch.jit.script def Yl9_m0(theta, phi): return ( 366.831595457261 * cos(theta) ** 9 - 776.819849203611 * cos(theta) ** 7 + 543.773894442528 * cos(theta) ** 5 - 139.429203703212 * cos(theta) ** 3 + 9.50653661612811 * cos(theta) ) # @torch.jit.script def Yl9_m1(theta, phi): return ( 0.183301328077446 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 854.6484375 * cos(theta) ** 8 - 1407.65625 * cos(theta) ** 6 + 703.828125 * cos(theta) ** 4 - 108.28125 * cos(theta) ** 2 + 2.4609375 ) * cos(phi) ) # @torch.jit.script def Yl9_m2(theta, phi): return ( 0.0195399872275232 * (1.0 - cos(theta) ** 2) * ( 6837.1875 * cos(theta) ** 7 - 8445.9375 * cos(theta) ** 5 + 2815.3125 * cos(theta) ** 3 - 216.5625 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl9_m3(theta, phi): return ( 0.00213198739401417 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 47860.3125 * cos(theta) ** 6 - 42229.6875 * cos(theta) ** 4 + 8445.9375 * cos(theta) ** 2 - 216.5625 ) * cos(3 * phi) ) # @torch.jit.script def Yl9_m4(theta, phi): return ( 0.000241400036332803 * (1.0 - cos(theta) ** 2) ** 2 * ( 287161.875 * cos(theta) ** 5 - 168918.75 * cos(theta) ** 3 + 16891.875 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl9_m5(theta, phi): return ( 2.88528229719329e-5 * (1.0 - cos(theta) ** 2) ** 2.5 * (1435809.375 * cos(theta) ** 4 - 506756.25 * cos(theta) ** 2 + 16891.875) * cos(5 * phi) ) # @torch.jit.script def Yl9_m6(theta, phi): return ( 3.72488342871223e-6 * (1.0 - cos(theta) ** 2) ** 3 * (5743237.5 * cos(theta) ** 3 - 1013512.5 * cos(theta)) * cos(6 * phi) ) # @torch.jit.script def Yl9_m7(theta, phi): return ( 5.37640612566745e-7 * (1.0 - cos(theta) ** 2) ** 3.5 * (17229712.5 * cos(theta) ** 2 - 1013512.5) * cos(7 * phi) ) # @torch.jit.script def Yl9_m8(theta, phi): return 3.1773176489547 * (1.0 - cos(theta) ** 2) ** 4 * cos(8 * phi) * cos(theta) # @torch.jit.script def Yl9_m9(theta, phi): return 0.748900951853188 * (1.0 - cos(theta) ** 2) ** 4.5 * cos(9 * phi) # @torch.jit.script def Yl10_m_minus_10(theta, phi): return 0.76739511822199 * (1.0 - cos(theta) ** 2) ** 5 * sin(10 * phi) # @torch.jit.script def Yl10_m_minus_9(theta, phi): return 3.43189529989171 * (1.0 - cos(theta) ** 2) ** 4.5 * sin(9 * phi) * cos(theta) # @torch.jit.script def Yl10_m_minus_8(theta, phi): return ( 3.23120268385452e-8 * (1.0 - cos(theta) ** 2) ** 4 * (327364537.5 * cos(theta) ** 2 - 17229712.5) * sin(8 * phi) ) # @torch.jit.script def Yl10_m_minus_7(theta, phi): return ( 2.37443934928654e-7 * (1.0 - cos(theta) ** 2) ** 3.5 * (109121512.5 * cos(theta) ** 3 - 17229712.5 * cos(theta)) * sin(7 * phi) ) # @torch.jit.script def Yl10_m_minus_6(theta, phi): return ( 1.95801284774625e-6 * (1.0 - cos(theta) ** 2) ** 3 * (27280378.125 * cos(theta) ** 4 - 8614856.25 * cos(theta) ** 2 + 253378.125) * sin(6 * phi) ) # @torch.jit.script def Yl10_m_minus_5(theta, phi): return ( 1.75129993135143e-5 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 5456075.625 * cos(theta) ** 5 - 2871618.75 * cos(theta) ** 3 + 253378.125 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl10_m_minus_4(theta, phi): return ( 0.000166142899475011 * (1.0 - cos(theta) ** 2) ** 2 * ( 909345.9375 * cos(theta) ** 6 - 717904.6875 * cos(theta) ** 4 + 126689.0625 * cos(theta) ** 2 - 2815.3125 ) * sin(4 * phi) ) # @torch.jit.script def Yl10_m_minus_3(theta, phi): return ( 0.00164473079210685 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 129906.5625 * cos(theta) ** 7 - 143580.9375 * cos(theta) ** 5 + 42229.6875 * cos(theta) ** 3 - 2815.3125 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl10_m_minus_2(theta, phi): return ( 0.0167730288071195 * (1.0 - cos(theta) ** 2) * ( 16238.3203125 * cos(theta) ** 8 - 23930.15625 * cos(theta) ** 6 + 10557.421875 * cos(theta) ** 4 - 1407.65625 * cos(theta) ** 2 + 27.0703125 ) * sin(2 * phi) ) # @torch.jit.script def Yl10_m_minus_1(theta, phi): return ( 0.174310428544485 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 1804.2578125 * cos(theta) ** 9 - 3418.59375 * cos(theta) ** 7 + 2111.484375 * cos(theta) ** 5 - 469.21875 * cos(theta) ** 3 + 27.0703125 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl10_m0(theta, phi): return ( 732.745538033921 * cos(theta) ** 10 - 1735.44995850139 * cos(theta) ** 8 + 1429.19408347173 * cos(theta) ** 6 - 476.398027823912 * cos(theta) ** 4 + 54.9690032104513 * cos(theta) ** 2 - 0.999436422008206 ) # @torch.jit.script def Yl10_m1(theta, phi): return ( 0.174310428544485 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 1804.2578125 * cos(theta) ** 9 - 3418.59375 * cos(theta) ** 7 + 2111.484375 * cos(theta) ** 5 - 469.21875 * cos(theta) ** 3 + 27.0703125 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl10_m2(theta, phi): return ( 0.0167730288071195 * (1.0 - cos(theta) ** 2) * ( 16238.3203125 * cos(theta) ** 8 - 23930.15625 * cos(theta) ** 6 + 10557.421875 * cos(theta) ** 4 - 1407.65625 * cos(theta) ** 2 + 27.0703125 ) * cos(2 * phi) ) # @torch.jit.script def Yl10_m3(theta, phi): return ( 0.00164473079210685 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 129906.5625 * cos(theta) ** 7 - 143580.9375 * cos(theta) ** 5 + 42229.6875 * cos(theta) ** 3 - 2815.3125 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl10_m4(theta, phi): return ( 0.000166142899475011 * (1.0 - cos(theta) ** 2) ** 2 * ( 909345.9375 * cos(theta) ** 6 - 717904.6875 * cos(theta) ** 4 + 126689.0625 * cos(theta) ** 2 - 2815.3125 ) * cos(4 * phi) ) # @torch.jit.script def Yl10_m5(theta, phi): return ( 1.75129993135143e-5 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 5456075.625 * cos(theta) ** 5 - 2871618.75 * cos(theta) ** 3 + 253378.125 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl10_m6(theta, phi): return ( 1.95801284774625e-6 * (1.0 - cos(theta) ** 2) ** 3 * (27280378.125 * cos(theta) ** 4 - 8614856.25 * cos(theta) ** 2 + 253378.125) * cos(6 * phi) ) # @torch.jit.script def Yl10_m7(theta, phi): return ( 2.37443934928654e-7 * (1.0 - cos(theta) ** 2) ** 3.5 * (109121512.5 * cos(theta) ** 3 - 17229712.5 * cos(theta)) * cos(7 * phi) ) # @torch.jit.script def Yl10_m8(theta, phi): return ( 3.23120268385452e-8 * (1.0 - cos(theta) ** 2) ** 4 * (327364537.5 * cos(theta) ** 2 - 17229712.5) * cos(8 * phi) ) # @torch.jit.script def Yl10_m9(theta, phi): return 3.43189529989171 * (1.0 - cos(theta) ** 2) ** 4.5 * cos(9 * phi) * cos(theta) # @torch.jit.script def Yl10_m10(theta, phi): return 0.76739511822199 * (1.0 - cos(theta) ** 2) ** 5 * cos(10 * phi) # @torch.jit.script def Yl11_m_minus_11(theta, phi): return 0.784642105787197 * (1.0 - cos(theta) ** 2) ** 5.5 * sin(11 * phi) # @torch.jit.script def Yl11_m_minus_10(theta, phi): return 3.68029769880531 * (1.0 - cos(theta) ** 2) ** 5 * sin(10 * phi) * cos(theta) # @torch.jit.script def Yl11_m_minus_9(theta, phi): return ( 1.73470916587426e-9 * (1.0 - cos(theta) ** 2) ** 4.5 * (6874655287.5 * cos(theta) ** 2 - 327364537.5) * sin(9 * phi) ) # @torch.jit.script def Yl11_m_minus_8(theta, phi): return ( 1.34369994198887e-8 * (1.0 - cos(theta) ** 2) ** 4 * (2291551762.5 * cos(theta) ** 3 - 327364537.5 * cos(theta)) * sin(8 * phi) ) # @torch.jit.script def Yl11_m_minus_7(theta, phi): return ( 1.17141045151419e-7 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 572887940.625 * cos(theta) ** 4 - 163682268.75 * cos(theta) ** 2 + 4307428.125 ) * sin(7 * phi) ) # @torch.jit.script def Yl11_m_minus_6(theta, phi): return ( 1.11129753051333e-6 * (1.0 - cos(theta) ** 2) ** 3 * ( 114577588.125 * cos(theta) ** 5 - 54560756.25 * cos(theta) ** 3 + 4307428.125 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl11_m_minus_5(theta, phi): return ( 1.12235548974089e-5 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 19096264.6875 * cos(theta) ** 6 - 13640189.0625 * cos(theta) ** 4 + 2153714.0625 * cos(theta) ** 2 - 42229.6875 ) * sin(5 * phi) ) # @torch.jit.script def Yl11_m_minus_4(theta, phi): return ( 0.0001187789403385 * (1.0 - cos(theta) ** 2) ** 2 * ( 2728037.8125 * cos(theta) ** 7 - 2728037.8125 * cos(theta) ** 5 + 717904.6875 * cos(theta) ** 3 - 42229.6875 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl11_m_minus_3(theta, phi): return ( 0.00130115809959914 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 341004.7265625 * cos(theta) ** 8 - 454672.96875 * cos(theta) ** 6 + 179476.171875 * cos(theta) ** 4 - 21114.84375 * cos(theta) ** 2 + 351.9140625 ) * sin(3 * phi) ) # @torch.jit.script def Yl11_m_minus_2(theta, phi): return ( 0.0146054634441776 * (1.0 - cos(theta) ** 2) * ( 37889.4140625 * cos(theta) ** 9 - 64953.28125 * cos(theta) ** 7 + 35895.234375 * cos(theta) ** 5 - 7038.28125 * cos(theta) ** 3 + 351.9140625 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl11_m_minus_1(theta, phi): return ( 0.166527904912351 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 3788.94140625 * cos(theta) ** 10 - 8119.16015625 * cos(theta) ** 8 + 5982.5390625 * cos(theta) ** 6 - 1759.5703125 * cos(theta) ** 4 + 175.95703125 * cos(theta) ** 2 - 2.70703125 ) * sin(phi) ) # @torch.jit.script def Yl11_m0(theta, phi): return ( 1463.97635620462 * cos(theta) ** 11 - 3834.22379005971 * cos(theta) ** 9 + 3632.4225379513 * cos(theta) ** 7 - 1495.70339797995 * cos(theta) ** 5 + 249.283899663325 * cos(theta) ** 3 - 11.5054107536919 * cos(theta) ) # @torch.jit.script def Yl11_m1(theta, phi): return ( 0.166527904912351 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 3788.94140625 * cos(theta) ** 10 - 8119.16015625 * cos(theta) ** 8 + 5982.5390625 * cos(theta) ** 6 - 1759.5703125 * cos(theta) ** 4 + 175.95703125 * cos(theta) ** 2 - 2.70703125 ) * cos(phi) ) # @torch.jit.script def Yl11_m2(theta, phi): return ( 0.0146054634441776 * (1.0 - cos(theta) ** 2) * ( 37889.4140625 * cos(theta) ** 9 - 64953.28125 * cos(theta) ** 7 + 35895.234375 * cos(theta) ** 5 - 7038.28125 * cos(theta) ** 3 + 351.9140625 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl11_m3(theta, phi): return ( 0.00130115809959914 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 341004.7265625 * cos(theta) ** 8 - 454672.96875 * cos(theta) ** 6 + 179476.171875 * cos(theta) ** 4 - 21114.84375 * cos(theta) ** 2 + 351.9140625 ) * cos(3 * phi) ) # @torch.jit.script def Yl11_m4(theta, phi): return ( 0.0001187789403385 * (1.0 - cos(theta) ** 2) ** 2 * ( 2728037.8125 * cos(theta) ** 7 - 2728037.8125 * cos(theta) ** 5 + 717904.6875 * cos(theta) ** 3 - 42229.6875 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl11_m5(theta, phi): return ( 1.12235548974089e-5 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 19096264.6875 * cos(theta) ** 6 - 13640189.0625 * cos(theta) ** 4 + 2153714.0625 * cos(theta) ** 2 - 42229.6875 ) * cos(5 * phi) ) # @torch.jit.script def Yl11_m6(theta, phi): return ( 1.11129753051333e-6 * (1.0 - cos(theta) ** 2) ** 3 * ( 114577588.125 * cos(theta) ** 5 - 54560756.25 * cos(theta) ** 3 + 4307428.125 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl11_m7(theta, phi): return ( 1.17141045151419e-7 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 572887940.625 * cos(theta) ** 4 - 163682268.75 * cos(theta) ** 2 + 4307428.125 ) * cos(7 * phi) ) # @torch.jit.script def Yl11_m8(theta, phi): return ( 1.34369994198887e-8 * (1.0 - cos(theta) ** 2) ** 4 * (2291551762.5 * cos(theta) ** 3 - 327364537.5 * cos(theta)) * cos(8 * phi) ) # @torch.jit.script def Yl11_m9(theta, phi): return ( 1.73470916587426e-9 * (1.0 - cos(theta) ** 2) ** 4.5 * (6874655287.5 * cos(theta) ** 2 - 327364537.5) * cos(9 * phi) ) # @torch.jit.script def Yl11_m10(theta, phi): return 3.68029769880531 * (1.0 - cos(theta) ** 2) ** 5 * cos(10 * phi) * cos(theta) # @torch.jit.script def Yl11_m11(theta, phi): return 0.784642105787197 * (1.0 - cos(theta) ** 2) ** 5.5 * cos(11 * phi) # @torch.jit.script def Yl12_m_minus_12(theta, phi): return 0.800821995783972 * (1.0 - cos(theta) ** 2) ** 6 * sin(12 * phi) # @torch.jit.script def Yl12_m_minus_11(theta, phi): return ( 3.92321052893598 * (1.0 - cos(theta) ** 2) ** 5.5 * sin(11 * phi) * cos(theta) ) # @torch.jit.script def Yl12_m_minus_10(theta, phi): return ( 8.4141794839602e-11 * (1.0 - cos(theta) ** 2) ** 5 * (158117071612.5 * cos(theta) ** 2 - 6874655287.5) * sin(10 * phi) ) # @torch.jit.script def Yl12_m_minus_9(theta, phi): return ( 6.83571172711927e-10 * (1.0 - cos(theta) ** 2) ** 4.5 * (52705690537.5 * cos(theta) ** 3 - 6874655287.5 * cos(theta)) * sin(9 * phi) ) # @torch.jit.script def Yl12_m_minus_8(theta, phi): return ( 6.26503328368427e-9 * (1.0 - cos(theta) ** 2) ** 4 * ( 13176422634.375 * cos(theta) ** 4 - 3437327643.75 * cos(theta) ** 2 + 81841134.375 ) * sin(8 * phi) ) # @torch.jit.script def Yl12_m_minus_7(theta, phi): return ( 6.26503328368427e-8 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 2635284526.875 * cos(theta) ** 5 - 1145775881.25 * cos(theta) ** 3 + 81841134.375 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl12_m_minus_6(theta, phi): return ( 6.68922506214776e-7 * (1.0 - cos(theta) ** 2) ** 3 * ( 439214087.8125 * cos(theta) ** 6 - 286443970.3125 * cos(theta) ** 4 + 40920567.1875 * cos(theta) ** 2 - 717904.6875 ) * sin(6 * phi) ) # @torch.jit.script def Yl12_m_minus_5(theta, phi): return ( 7.50863650967357e-6 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 62744869.6875 * cos(theta) ** 7 - 57288794.0625 * cos(theta) ** 5 + 13640189.0625 * cos(theta) ** 3 - 717904.6875 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl12_m_minus_4(theta, phi): return ( 8.75649965675714e-5 * (1.0 - cos(theta) ** 2) ** 2 * ( 7843108.7109375 * cos(theta) ** 8 - 9548132.34375 * cos(theta) ** 6 + 3410047.265625 * cos(theta) ** 4 - 358952.34375 * cos(theta) ** 2 + 5278.7109375 ) * sin(4 * phi) ) # @torch.jit.script def Yl12_m_minus_3(theta, phi): return ( 0.00105077995881086 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 871456.5234375 * cos(theta) ** 9 - 1364018.90625 * cos(theta) ** 7 + 682009.453125 * cos(theta) ** 5 - 119650.78125 * cos(theta) ** 3 + 5278.7109375 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl12_m_minus_2(theta, phi): return ( 0.0128693736551466 * (1.0 - cos(theta) ** 2) * ( 87145.65234375 * cos(theta) ** 10 - 170502.36328125 * cos(theta) ** 8 + 113668.2421875 * cos(theta) ** 6 - 29912.6953125 * cos(theta) ** 4 + 2639.35546875 * cos(theta) ** 2 - 35.19140625 ) * sin(2 * phi) ) # @torch.jit.script def Yl12_m_minus_1(theta, phi): return ( 0.159704727088682 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 7922.33203125 * cos(theta) ** 11 - 18944.70703125 * cos(theta) ** 9 + 16238.3203125 * cos(theta) ** 7 - 5982.5390625 * cos(theta) ** 5 + 879.78515625 * cos(theta) ** 3 - 35.19140625 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl12_m0(theta, phi): return ( 2925.40998269608 * cos(theta) ** 12 - 8394.65473295397 * cos(theta) ** 10 + 8994.27292816496 * cos(theta) ** 8 - 4418.23933313367 * cos(theta) ** 6 + 974.611617603015 * cos(theta) ** 4 - 77.9689294082412 * cos(theta) ** 2 + 0.999601659080015 ) # @torch.jit.script def Yl12_m1(theta, phi): return ( 0.159704727088682 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 7922.33203125 * cos(theta) ** 11 - 18944.70703125 * cos(theta) ** 9 + 16238.3203125 * cos(theta) ** 7 - 5982.5390625 * cos(theta) ** 5 + 879.78515625 * cos(theta) ** 3 - 35.19140625 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl12_m2(theta, phi): return ( 0.0128693736551466 * (1.0 - cos(theta) ** 2) * ( 87145.65234375 * cos(theta) ** 10 - 170502.36328125 * cos(theta) ** 8 + 113668.2421875 * cos(theta) ** 6 - 29912.6953125 * cos(theta) ** 4 + 2639.35546875 * cos(theta) ** 2 - 35.19140625 ) * cos(2 * phi) ) # @torch.jit.script def Yl12_m3(theta, phi): return ( 0.00105077995881086 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 871456.5234375 * cos(theta) ** 9 - 1364018.90625 * cos(theta) ** 7 + 682009.453125 * cos(theta) ** 5 - 119650.78125 * cos(theta) ** 3 + 5278.7109375 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl12_m4(theta, phi): return ( 8.75649965675714e-5 * (1.0 - cos(theta) ** 2) ** 2 * ( 7843108.7109375 * cos(theta) ** 8 - 9548132.34375 * cos(theta) ** 6 + 3410047.265625 * cos(theta) ** 4 - 358952.34375 * cos(theta) ** 2 + 5278.7109375 ) * cos(4 * phi) ) # @torch.jit.script def Yl12_m5(theta, phi): return ( 7.50863650967357e-6 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 62744869.6875 * cos(theta) ** 7 - 57288794.0625 * cos(theta) ** 5 + 13640189.0625 * cos(theta) ** 3 - 717904.6875 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl12_m6(theta, phi): return ( 6.68922506214776e-7 * (1.0 - cos(theta) ** 2) ** 3 * ( 439214087.8125 * cos(theta) ** 6 - 286443970.3125 * cos(theta) ** 4 + 40920567.1875 * cos(theta) ** 2 - 717904.6875 ) * cos(6 * phi) ) # @torch.jit.script def Yl12_m7(theta, phi): return ( 6.26503328368427e-8 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 2635284526.875 * cos(theta) ** 5 - 1145775881.25 * cos(theta) ** 3 + 81841134.375 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl12_m8(theta, phi): return ( 6.26503328368427e-9 * (1.0 - cos(theta) ** 2) ** 4 * ( 13176422634.375 * cos(theta) ** 4 - 3437327643.75 * cos(theta) ** 2 + 81841134.375 ) * cos(8 * phi) ) # @torch.jit.script def Yl12_m9(theta, phi): return ( 6.83571172711927e-10 * (1.0 - cos(theta) ** 2) ** 4.5 * (52705690537.5 * cos(theta) ** 3 - 6874655287.5 * cos(theta)) * cos(9 * phi) ) # @torch.jit.script def Yl12_m10(theta, phi): return ( 8.4141794839602e-11 * (1.0 - cos(theta) ** 2) ** 5 * (158117071612.5 * cos(theta) ** 2 - 6874655287.5) * cos(10 * phi) ) # @torch.jit.script def Yl12_m11(theta, phi): return ( 3.92321052893598 * (1.0 - cos(theta) ** 2) ** 5.5 * cos(11 * phi) * cos(theta) ) # @torch.jit.script def Yl12_m12(theta, phi): return 0.800821995783972 * (1.0 - cos(theta) ** 2) ** 6 * cos(12 * phi) # @torch.jit.script def Yl13_m_minus_13(theta, phi): return 0.816077118837628 * (1.0 - cos(theta) ** 2) ** 6.5 * sin(13 * phi) # @torch.jit.script def Yl13_m_minus_12(theta, phi): return 4.16119315354964 * (1.0 - cos(theta) ** 2) ** 6 * sin(12 * phi) * cos(theta) # @torch.jit.script def Yl13_m_minus_11(theta, phi): return ( 3.72180924766049e-12 * (1.0 - cos(theta) ** 2) ** 5.5 * (3952926790312.5 * cos(theta) ** 2 - 158117071612.5) * sin(11 * phi) ) # @torch.jit.script def Yl13_m_minus_10(theta, phi): return ( 3.15805986876424e-11 * (1.0 - cos(theta) ** 2) ** 5 * (1317642263437.5 * cos(theta) ** 3 - 158117071612.5 * cos(theta)) * sin(10 * phi) ) # @torch.jit.script def Yl13_m_minus_9(theta, phi): return ( 3.02910461422567e-10 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 329410565859.375 * cos(theta) ** 4 - 79058535806.25 * cos(theta) ** 2 + 1718663821.875 ) * sin(9 * phi) ) # @torch.jit.script def Yl13_m_minus_8(theta, phi): return ( 3.17695172143292e-9 * (1.0 - cos(theta) ** 2) ** 4 * ( 65882113171.875 * cos(theta) ** 5 - 26352845268.75 * cos(theta) ** 3 + 1718663821.875 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl13_m_minus_7(theta, phi): return ( 3.5661194627771e-8 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 10980352195.3125 * cos(theta) ** 6 - 6588211317.1875 * cos(theta) ** 4 + 859331910.9375 * cos(theta) ** 2 - 13640189.0625 ) * sin(7 * phi) ) # @torch.jit.script def Yl13_m_minus_6(theta, phi): return ( 4.21948945157073e-7 * (1.0 - cos(theta) ** 2) ** 3 * ( 1568621742.1875 * cos(theta) ** 7 - 1317642263.4375 * cos(theta) ** 5 + 286443970.3125 * cos(theta) ** 3 - 13640189.0625 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl13_m_minus_5(theta, phi): return ( 5.2021359721285e-6 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 196077717.773438 * cos(theta) ** 8 - 219607043.90625 * cos(theta) ** 6 + 71610992.578125 * cos(theta) ** 4 - 6820094.53125 * cos(theta) ** 2 + 89738.0859375 ) * sin(5 * phi) ) # @torch.jit.script def Yl13_m_minus_4(theta, phi): return ( 6.62123812058377e-5 * (1.0 - cos(theta) ** 2) ** 2 * ( 21786413.0859375 * cos(theta) ** 9 - 31372434.84375 * cos(theta) ** 7 + 14322198.515625 * cos(theta) ** 5 - 2273364.84375 * cos(theta) ** 3 + 89738.0859375 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl13_m_minus_3(theta, phi): return ( 0.000863303829622583 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 2178641.30859375 * cos(theta) ** 10 - 3921554.35546875 * cos(theta) ** 8 + 2387033.0859375 * cos(theta) ** 6 - 568341.2109375 * cos(theta) ** 4 + 44869.04296875 * cos(theta) ** 2 - 527.87109375 ) * sin(3 * phi) ) # @torch.jit.script def Yl13_m_minus_2(theta, phi): return ( 0.0114530195317401 * (1.0 - cos(theta) ** 2) * ( 198058.30078125 * cos(theta) ** 11 - 435728.26171875 * cos(theta) ** 9 + 341004.7265625 * cos(theta) ** 7 - 113668.2421875 * cos(theta) ** 5 + 14956.34765625 * cos(theta) ** 3 - 527.87109375 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl13_m_minus_1(theta, phi): return ( 0.153658381323621 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 16504.8583984375 * cos(theta) ** 12 - 43572.826171875 * cos(theta) ** 10 + 42625.5908203125 * cos(theta) ** 8 - 18944.70703125 * cos(theta) ** 6 + 3739.0869140625 * cos(theta) ** 4 - 263.935546875 * cos(theta) ** 2 + 2.9326171875 ) * sin(phi) ) # @torch.jit.script def Yl13_m0(theta, phi): return ( 5846.49083422938 * cos(theta) ** 13 - 18241.0514027957 * cos(theta) ** 11 + 21809.9527642122 * cos(theta) ** 9 - 12462.8301509784 * cos(theta) ** 7 + 3443.67675224404 * cos(theta) ** 5 - 405.138441440475 * cos(theta) ** 3 + 13.5046147146825 * cos(theta) ) # @torch.jit.script def Yl13_m1(theta, phi): return ( 0.153658381323621 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 16504.8583984375 * cos(theta) ** 12 - 43572.826171875 * cos(theta) ** 10 + 42625.5908203125 * cos(theta) ** 8 - 18944.70703125 * cos(theta) ** 6 + 3739.0869140625 * cos(theta) ** 4 - 263.935546875 * cos(theta) ** 2 + 2.9326171875 ) * cos(phi) ) # @torch.jit.script def Yl13_m2(theta, phi): return ( 0.0114530195317401 * (1.0 - cos(theta) ** 2) * ( 198058.30078125 * cos(theta) ** 11 - 435728.26171875 * cos(theta) ** 9 + 341004.7265625 * cos(theta) ** 7 - 113668.2421875 * cos(theta) ** 5 + 14956.34765625 * cos(theta) ** 3 - 527.87109375 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl13_m3(theta, phi): return ( 0.000863303829622583 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 2178641.30859375 * cos(theta) ** 10 - 3921554.35546875 * cos(theta) ** 8 + 2387033.0859375 * cos(theta) ** 6 - 568341.2109375 * cos(theta) ** 4 + 44869.04296875 * cos(theta) ** 2 - 527.87109375 ) * cos(3 * phi) ) # @torch.jit.script def Yl13_m4(theta, phi): return ( 6.62123812058377e-5 * (1.0 - cos(theta) ** 2) ** 2 * ( 21786413.0859375 * cos(theta) ** 9 - 31372434.84375 * cos(theta) ** 7 + 14322198.515625 * cos(theta) ** 5 - 2273364.84375 * cos(theta) ** 3 + 89738.0859375 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl13_m5(theta, phi): return ( 5.2021359721285e-6 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 196077717.773438 * cos(theta) ** 8 - 219607043.90625 * cos(theta) ** 6 + 71610992.578125 * cos(theta) ** 4 - 6820094.53125 * cos(theta) ** 2 + 89738.0859375 ) * cos(5 * phi) ) # @torch.jit.script def Yl13_m6(theta, phi): return ( 4.21948945157073e-7 * (1.0 - cos(theta) ** 2) ** 3 * ( 1568621742.1875 * cos(theta) ** 7 - 1317642263.4375 * cos(theta) ** 5 + 286443970.3125 * cos(theta) ** 3 - 13640189.0625 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl13_m7(theta, phi): return ( 3.5661194627771e-8 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 10980352195.3125 * cos(theta) ** 6 - 6588211317.1875 * cos(theta) ** 4 + 859331910.9375 * cos(theta) ** 2 - 13640189.0625 ) * cos(7 * phi) ) # @torch.jit.script def Yl13_m8(theta, phi): return ( 3.17695172143292e-9 * (1.0 - cos(theta) ** 2) ** 4 * ( 65882113171.875 * cos(theta) ** 5 - 26352845268.75 * cos(theta) ** 3 + 1718663821.875 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl13_m9(theta, phi): return ( 3.02910461422567e-10 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 329410565859.375 * cos(theta) ** 4 - 79058535806.25 * cos(theta) ** 2 + 1718663821.875 ) * cos(9 * phi) ) # @torch.jit.script def Yl13_m10(theta, phi): return ( 3.15805986876424e-11 * (1.0 - cos(theta) ** 2) ** 5 * (1317642263437.5 * cos(theta) ** 3 - 158117071612.5 * cos(theta)) * cos(10 * phi) ) # @torch.jit.script def Yl13_m11(theta, phi): return ( 3.72180924766049e-12 * (1.0 - cos(theta) ** 2) ** 5.5 * (3952926790312.5 * cos(theta) ** 2 - 158117071612.5) * cos(11 * phi) ) # @torch.jit.script def Yl13_m12(theta, phi): return 4.16119315354964 * (1.0 - cos(theta) ** 2) ** 6 * cos(12 * phi) * cos(theta) # @torch.jit.script def Yl13_m13(theta, phi): return 0.816077118837628 * (1.0 - cos(theta) ** 2) ** 6.5 * cos(13 * phi) # @torch.jit.script def Yl14_m_minus_14(theta, phi): return 0.830522083064524 * (1.0 - cos(theta) ** 2) ** 7 * sin(14 * phi) # @torch.jit.script def Yl14_m_minus_13(theta, phi): return ( 4.39470978027212 * (1.0 - cos(theta) ** 2) ** 6.5 * sin(13 * phi) * cos(theta) ) # @torch.jit.script def Yl14_m_minus_12(theta, phi): return ( 1.51291507116349e-13 * (1.0 - cos(theta) ** 2) ** 6 * (106729023338438.0 * cos(theta) ** 2 - 3952926790312.5) * sin(12 * phi) ) # @torch.jit.script def Yl14_m_minus_11(theta, phi): return ( 1.33617041195793e-12 * (1.0 - cos(theta) ** 2) ** 5.5 * (35576341112812.5 * cos(theta) ** 3 - 3952926790312.5 * cos(theta)) * sin(11 * phi) ) # @torch.jit.script def Yl14_m_minus_10(theta, phi): return ( 1.33617041195793e-11 * (1.0 - cos(theta) ** 2) ** 5 * ( 8894085278203.13 * cos(theta) ** 4 - 1976463395156.25 * cos(theta) ** 2 + 39529267903.125 ) * sin(10 * phi) ) # @torch.jit.script def Yl14_m_minus_9(theta, phi): return ( 1.46370135060066e-10 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1778817055640.63 * cos(theta) ** 5 - 658821131718.75 * cos(theta) ** 3 + 39529267903.125 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl14_m_minus_8(theta, phi): return ( 1.71945976061531e-9 * (1.0 - cos(theta) ** 2) ** 4 * ( 296469509273.438 * cos(theta) ** 6 - 164705282929.688 * cos(theta) ** 4 + 19764633951.5625 * cos(theta) ** 2 - 286443970.3125 ) * sin(8 * phi) ) # @torch.jit.script def Yl14_m_minus_7(theta, phi): return ( 2.13379344766496e-8 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 42352787039.0625 * cos(theta) ** 7 - 32941056585.9375 * cos(theta) ** 5 + 6588211317.1875 * cos(theta) ** 3 - 286443970.3125 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl14_m_minus_6(theta, phi): return ( 2.76571240765567e-7 * (1.0 - cos(theta) ** 2) ** 3 * ( 5294098379.88281 * cos(theta) ** 8 - 5490176097.65625 * cos(theta) ** 6 + 1647052829.29688 * cos(theta) ** 4 - 143221985.15625 * cos(theta) ** 2 + 1705023.6328125 ) * sin(6 * phi) ) # @torch.jit.script def Yl14_m_minus_5(theta, phi): return ( 3.71059256983961e-6 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 588233153.320313 * cos(theta) ** 9 - 784310871.09375 * cos(theta) ** 7 + 329410565.859375 * cos(theta) ** 5 - 47740661.71875 * cos(theta) ** 3 + 1705023.6328125 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl14_m_minus_4(theta, phi): return ( 5.11469888818129e-5 * (1.0 - cos(theta) ** 2) ** 2 * ( 58823315.3320313 * cos(theta) ** 10 - 98038858.8867188 * cos(theta) ** 8 + 54901760.9765625 * cos(theta) ** 6 - 11935165.4296875 * cos(theta) ** 4 + 852511.81640625 * cos(theta) ** 2 - 8973.80859375 ) * sin(4 * phi) ) # @torch.jit.script def Yl14_m_minus_3(theta, phi): return ( 0.000719701928156307 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 5347574.12109375 * cos(theta) ** 11 - 10893206.5429688 * cos(theta) ** 9 + 7843108.7109375 * cos(theta) ** 7 - 2387033.0859375 * cos(theta) ** 5 + 284170.60546875 * cos(theta) ** 3 - 8973.80859375 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl14_m_minus_2(theta, phi): return ( 0.0102793996196251 * (1.0 - cos(theta) ** 2) * ( 445631.176757813 * cos(theta) ** 12 - 1089320.65429688 * cos(theta) ** 10 + 980388.588867188 * cos(theta) ** 8 - 397838.84765625 * cos(theta) ** 6 + 71042.6513671875 * cos(theta) ** 4 - 4486.904296875 * cos(theta) ** 2 + 43.9892578125 ) * sin(2 * phi) ) # @torch.jit.script def Yl14_m_minus_1(theta, phi): return ( 0.148251609638173 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 34279.3212890625 * cos(theta) ** 13 - 99029.150390625 * cos(theta) ** 11 + 108932.065429688 * cos(theta) ** 9 - 56834.12109375 * cos(theta) ** 7 + 14208.5302734375 * cos(theta) ** 5 - 1495.634765625 * cos(theta) ** 3 + 43.9892578125 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl14_m0(theta, phi): return ( 11685.5220302715 * cos(theta) ** 14 - 39384.5372131372 * cos(theta) ** 12 + 51987.5891213411 * cos(theta) ** 10 - 33904.9494269616 * cos(theta) ** 8 + 11301.6498089872 * cos(theta) ** 6 - 1784.47102247166 * cos(theta) ** 4 + 104.968883674804 * cos(theta) ** 2 - 0.99970365404575 ) # @torch.jit.script def Yl14_m1(theta, phi): return ( 0.148251609638173 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 34279.3212890625 * cos(theta) ** 13 - 99029.150390625 * cos(theta) ** 11 + 108932.065429688 * cos(theta) ** 9 - 56834.12109375 * cos(theta) ** 7 + 14208.5302734375 * cos(theta) ** 5 - 1495.634765625 * cos(theta) ** 3 + 43.9892578125 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl14_m2(theta, phi): return ( 0.0102793996196251 * (1.0 - cos(theta) ** 2) * ( 445631.176757813 * cos(theta) ** 12 - 1089320.65429688 * cos(theta) ** 10 + 980388.588867188 * cos(theta) ** 8 - 397838.84765625 * cos(theta) ** 6 + 71042.6513671875 * cos(theta) ** 4 - 4486.904296875 * cos(theta) ** 2 + 43.9892578125 ) * cos(2 * phi) ) # @torch.jit.script def Yl14_m3(theta, phi): return ( 0.000719701928156307 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 5347574.12109375 * cos(theta) ** 11 - 10893206.5429688 * cos(theta) ** 9 + 7843108.7109375 * cos(theta) ** 7 - 2387033.0859375 * cos(theta) ** 5 + 284170.60546875 * cos(theta) ** 3 - 8973.80859375 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl14_m4(theta, phi): return ( 5.11469888818129e-5 * (1.0 - cos(theta) ** 2) ** 2 * ( 58823315.3320313 * cos(theta) ** 10 - 98038858.8867188 * cos(theta) ** 8 + 54901760.9765625 * cos(theta) ** 6 - 11935165.4296875 * cos(theta) ** 4 + 852511.81640625 * cos(theta) ** 2 - 8973.80859375 ) * cos(4 * phi) ) # @torch.jit.script def Yl14_m5(theta, phi): return ( 3.71059256983961e-6 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 588233153.320313 * cos(theta) ** 9 - 784310871.09375 * cos(theta) ** 7 + 329410565.859375 * cos(theta) ** 5 - 47740661.71875 * cos(theta) ** 3 + 1705023.6328125 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl14_m6(theta, phi): return ( 2.76571240765567e-7 * (1.0 - cos(theta) ** 2) ** 3 * ( 5294098379.88281 * cos(theta) ** 8 - 5490176097.65625 * cos(theta) ** 6 + 1647052829.29688 * cos(theta) ** 4 - 143221985.15625 * cos(theta) ** 2 + 1705023.6328125 ) * cos(6 * phi) ) # @torch.jit.script def Yl14_m7(theta, phi): return ( 2.13379344766496e-8 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 42352787039.0625 * cos(theta) ** 7 - 32941056585.9375 * cos(theta) ** 5 + 6588211317.1875 * cos(theta) ** 3 - 286443970.3125 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl14_m8(theta, phi): return ( 1.71945976061531e-9 * (1.0 - cos(theta) ** 2) ** 4 * ( 296469509273.438 * cos(theta) ** 6 - 164705282929.688 * cos(theta) ** 4 + 19764633951.5625 * cos(theta) ** 2 - 286443970.3125 ) * cos(8 * phi) ) # @torch.jit.script def Yl14_m9(theta, phi): return ( 1.46370135060066e-10 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1778817055640.63 * cos(theta) ** 5 - 658821131718.75 * cos(theta) ** 3 + 39529267903.125 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl14_m10(theta, phi): return ( 1.33617041195793e-11 * (1.0 - cos(theta) ** 2) ** 5 * ( 8894085278203.13 * cos(theta) ** 4 - 1976463395156.25 * cos(theta) ** 2 + 39529267903.125 ) * cos(10 * phi) ) # @torch.jit.script def Yl14_m11(theta, phi): return ( 1.33617041195793e-12 * (1.0 - cos(theta) ** 2) ** 5.5 * (35576341112812.5 * cos(theta) ** 3 - 3952926790312.5 * cos(theta)) * cos(11 * phi) ) # @torch.jit.script def Yl14_m12(theta, phi): return ( 1.51291507116349e-13 * (1.0 - cos(theta) ** 2) ** 6 * (106729023338438.0 * cos(theta) ** 2 - 3952926790312.5) * cos(12 * phi) ) # @torch.jit.script def Yl14_m13(theta, phi): return ( 4.39470978027212 * (1.0 - cos(theta) ** 2) ** 6.5 * cos(13 * phi) * cos(theta) ) # @torch.jit.script def Yl14_m14(theta, phi): return 0.830522083064524 * (1.0 - cos(theta) ** 2) ** 7 * cos(14 * phi) # @torch.jit.script def Yl15_m_minus_15(theta, phi): return 0.844250650857373 * (1.0 - cos(theta) ** 2) ** 7.5 * sin(15 * phi) # @torch.jit.script def Yl15_m_minus_14(theta, phi): return 4.62415125663001 * (1.0 - cos(theta) ** 2) ** 7 * sin(14 * phi) * cos(theta) # @torch.jit.script def Yl15_m_minus_13(theta, phi): return ( 5.68899431025918e-15 * (1.0 - cos(theta) ** 2) ** 6.5 * (3.09514167681469e15 * cos(theta) ** 2 - 106729023338438.0) * sin(13 * phi) ) # @torch.jit.script def Yl15_m_minus_12(theta, phi): return ( 5.21404941098716e-14 * (1.0 - cos(theta) ** 2) ** 6 * (1.03171389227156e15 * cos(theta) ** 3 - 106729023338438.0 * cos(theta)) * sin(12 * phi) ) # @torch.jit.script def Yl15_m_minus_11(theta, phi): return ( 5.4185990958026e-13 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 257928473067891.0 * cos(theta) ** 4 - 53364511669218.8 * cos(theta) ** 2 + 988231697578.125 ) * sin(11 * phi) ) # @torch.jit.script def Yl15_m_minus_10(theta, phi): return ( 6.17815352749854e-12 * (1.0 - cos(theta) ** 2) ** 5 * ( 51585694613578.1 * cos(theta) ** 5 - 17788170556406.3 * cos(theta) ** 3 + 988231697578.125 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl15_m_minus_9(theta, phi): return ( 7.56666184747369e-11 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 8597615768929.69 * cos(theta) ** 6 - 4447042639101.56 * cos(theta) ** 4 + 494115848789.063 * cos(theta) ** 2 - 6588211317.1875 ) * sin(9 * phi) ) # @torch.jit.script def Yl15_m_minus_8(theta, phi): return ( 9.80751467720255e-10 * (1.0 - cos(theta) ** 2) ** 4 * ( 1228230824132.81 * cos(theta) ** 7 - 889408527820.313 * cos(theta) ** 5 + 164705282929.688 * cos(theta) ** 3 - 6588211317.1875 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl15_m_minus_7(theta, phi): return ( 1.33035601710264e-8 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 153528853016.602 * cos(theta) ** 8 - 148234754636.719 * cos(theta) ** 6 + 41176320732.4219 * cos(theta) ** 4 - 3294105658.59375 * cos(theta) ** 2 + 35805496.2890625 ) * sin(7 * phi) ) # @torch.jit.script def Yl15_m_minus_6(theta, phi): return ( 1.87197684863824e-7 * (1.0 - cos(theta) ** 2) ** 3 * ( 17058761446.2891 * cos(theta) ** 9 - 21176393519.5313 * cos(theta) ** 7 + 8235264146.48438 * cos(theta) ** 5 - 1098035219.53125 * cos(theta) ** 3 + 35805496.2890625 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl15_m_minus_5(theta, phi): return ( 2.71275217737612e-6 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1705876144.62891 * cos(theta) ** 10 - 2647049189.94141 * cos(theta) ** 8 + 1372544024.41406 * cos(theta) ** 6 - 274508804.882813 * cos(theta) ** 4 + 17902748.1445313 * cos(theta) ** 2 - 170502.36328125 ) * sin(5 * phi) ) # @torch.jit.script def Yl15_m_minus_4(theta, phi): return ( 4.02366171874445e-5 * (1.0 - cos(theta) ** 2) ** 2 * ( 155079649.511719 * cos(theta) ** 11 - 294116576.660156 * cos(theta) ** 9 + 196077717.773438 * cos(theta) ** 7 - 54901760.9765625 * cos(theta) ** 5 + 5967582.71484375 * cos(theta) ** 3 - 170502.36328125 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl15_m_minus_3(theta, phi): return ( 0.000607559596001151 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 12923304.1259766 * cos(theta) ** 12 - 29411657.6660156 * cos(theta) ** 10 + 24509714.7216797 * cos(theta) ** 8 - 9150293.49609375 * cos(theta) ** 6 + 1491895.67871094 * cos(theta) ** 4 - 85251.181640625 * cos(theta) ** 2 + 747.8173828125 ) * sin(3 * phi) ) # @torch.jit.script def Yl15_m_minus_2(theta, phi): return ( 0.00929387470704126 * (1.0 - cos(theta) ** 2) * ( 994100.317382813 * cos(theta) ** 13 - 2673787.06054688 * cos(theta) ** 11 + 2723301.63574219 * cos(theta) ** 9 - 1307184.78515625 * cos(theta) ** 7 + 298379.135742188 * cos(theta) ** 5 - 28417.060546875 * cos(theta) ** 3 + 747.8173828125 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl15_m_minus_1(theta, phi): return ( 0.143378915753688 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 71007.1655273438 * cos(theta) ** 14 - 222815.588378906 * cos(theta) ** 12 + 272330.163574219 * cos(theta) ** 10 - 163398.098144531 * cos(theta) ** 8 + 49729.8559570313 * cos(theta) ** 6 - 7104.26513671875 * cos(theta) ** 4 + 373.90869140625 * cos(theta) ** 2 - 3.14208984375 ) * sin(phi) ) # @torch.jit.script def Yl15_m0(theta, phi): return ( 23358.0565385283 * cos(theta) ** 15 - 84572.2736739818 * cos(theta) ** 13 + 122159.950862418 * cos(theta) ** 11 - 89583.9639657733 * cos(theta) ** 9 + 35054.5945953026 * cos(theta) ** 7 - 7010.91891906052 * cos(theta) ** 5 + 614.992887636888 * cos(theta) ** 3 - 15.5040223774005 * cos(theta) ) # @torch.jit.script def Yl15_m1(theta, phi): return ( 0.143378915753688 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 71007.1655273438 * cos(theta) ** 14 - 222815.588378906 * cos(theta) ** 12 + 272330.163574219 * cos(theta) ** 10 - 163398.098144531 * cos(theta) ** 8 + 49729.8559570313 * cos(theta) ** 6 - 7104.26513671875 * cos(theta) ** 4 + 373.90869140625 * cos(theta) ** 2 - 3.14208984375 ) * cos(phi) ) # @torch.jit.script def Yl15_m2(theta, phi): return ( 0.00929387470704126 * (1.0 - cos(theta) ** 2) * ( 994100.317382813 * cos(theta) ** 13 - 2673787.06054688 * cos(theta) ** 11 + 2723301.63574219 * cos(theta) ** 9 - 1307184.78515625 * cos(theta) ** 7 + 298379.135742188 * cos(theta) ** 5 - 28417.060546875 * cos(theta) ** 3 + 747.8173828125 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl15_m3(theta, phi): return ( 0.000607559596001151 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 12923304.1259766 * cos(theta) ** 12 - 29411657.6660156 * cos(theta) ** 10 + 24509714.7216797 * cos(theta) ** 8 - 9150293.49609375 * cos(theta) ** 6 + 1491895.67871094 * cos(theta) ** 4 - 85251.181640625 * cos(theta) ** 2 + 747.8173828125 ) * cos(3 * phi) ) # @torch.jit.script def Yl15_m4(theta, phi): return ( 4.02366171874445e-5 * (1.0 - cos(theta) ** 2) ** 2 * ( 155079649.511719 * cos(theta) ** 11 - 294116576.660156 * cos(theta) ** 9 + 196077717.773438 * cos(theta) ** 7 - 54901760.9765625 * cos(theta) ** 5 + 5967582.71484375 * cos(theta) ** 3 - 170502.36328125 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl15_m5(theta, phi): return ( 2.71275217737612e-6 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1705876144.62891 * cos(theta) ** 10 - 2647049189.94141 * cos(theta) ** 8 + 1372544024.41406 * cos(theta) ** 6 - 274508804.882813 * cos(theta) ** 4 + 17902748.1445313 * cos(theta) ** 2 - 170502.36328125 ) * cos(5 * phi) ) # @torch.jit.script def Yl15_m6(theta, phi): return ( 1.87197684863824e-7 * (1.0 - cos(theta) ** 2) ** 3 * ( 17058761446.2891 * cos(theta) ** 9 - 21176393519.5313 * cos(theta) ** 7 + 8235264146.48438 * cos(theta) ** 5 - 1098035219.53125 * cos(theta) ** 3 + 35805496.2890625 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl15_m7(theta, phi): return ( 1.33035601710264e-8 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 153528853016.602 * cos(theta) ** 8 - 148234754636.719 * cos(theta) ** 6 + 41176320732.4219 * cos(theta) ** 4 - 3294105658.59375 * cos(theta) ** 2 + 35805496.2890625 ) * cos(7 * phi) ) # @torch.jit.script def Yl15_m8(theta, phi): return ( 9.80751467720255e-10 * (1.0 - cos(theta) ** 2) ** 4 * ( 1228230824132.81 * cos(theta) ** 7 - 889408527820.313 * cos(theta) ** 5 + 164705282929.688 * cos(theta) ** 3 - 6588211317.1875 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl15_m9(theta, phi): return ( 7.56666184747369e-11 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 8597615768929.69 * cos(theta) ** 6 - 4447042639101.56 * cos(theta) ** 4 + 494115848789.063 * cos(theta) ** 2 - 6588211317.1875 ) * cos(9 * phi) ) # @torch.jit.script def Yl15_m10(theta, phi): return ( 6.17815352749854e-12 * (1.0 - cos(theta) ** 2) ** 5 * ( 51585694613578.1 * cos(theta) ** 5 - 17788170556406.3 * cos(theta) ** 3 + 988231697578.125 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl15_m11(theta, phi): return ( 5.4185990958026e-13 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 257928473067891.0 * cos(theta) ** 4 - 53364511669218.8 * cos(theta) ** 2 + 988231697578.125 ) * cos(11 * phi) ) # @torch.jit.script def Yl15_m12(theta, phi): return ( 5.21404941098716e-14 * (1.0 - cos(theta) ** 2) ** 6 * (1.03171389227156e15 * cos(theta) ** 3 - 106729023338438.0 * cos(theta)) * cos(12 * phi) ) # @torch.jit.script def Yl15_m13(theta, phi): return ( 5.68899431025918e-15 * (1.0 - cos(theta) ** 2) ** 6.5 * (3.09514167681469e15 * cos(theta) ** 2 - 106729023338438.0) * cos(13 * phi) ) # @torch.jit.script def Yl15_m14(theta, phi): return 4.62415125663001 * (1.0 - cos(theta) ** 2) ** 7 * cos(14 * phi) * cos(theta) # @torch.jit.script def Yl15_m15(theta, phi): return 0.844250650857373 * (1.0 - cos(theta) ** 2) ** 7.5 * cos(15 * phi) # @torch.jit.script def Yl16_m_minus_16(theta, phi): return 0.857340588838025 * (1.0 - cos(theta) ** 2) ** 8 * sin(16 * phi) # @torch.jit.script def Yl16_m_minus_15(theta, phi): return ( 4.84985075323068 * (1.0 - cos(theta) ** 2) ** 7.5 * sin(15 * phi) * cos(theta) ) # @torch.jit.script def Yl16_m_minus_14(theta, phi): return ( 1.98999505000411e-16 * (1.0 - cos(theta) ** 2) ** 7 * (9.59493919812553e16 * cos(theta) ** 2 - 3.09514167681469e15) * sin(14 * phi) ) # @torch.jit.script def Yl16_m_minus_13(theta, phi): return ( 1.8878750671421e-15 * (1.0 - cos(theta) ** 2) ** 6.5 * (3.19831306604184e16 * cos(theta) ** 3 - 3.09514167681469e15 * cos(theta)) * sin(13 * phi) ) # @torch.jit.script def Yl16_m_minus_12(theta, phi): return ( 2.03330367436807e-14 * (1.0 - cos(theta) ** 2) ** 6 * ( 7.99578266510461e15 * cos(theta) ** 4 - 1.54757083840734e15 * cos(theta) ** 2 + 26682255834609.4 ) * sin(12 * phi) ) # @torch.jit.script def Yl16_m_minus_11(theta, phi): return ( 2.40583735216622e-13 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.59915653302092e15 * cos(theta) ** 5 - 515856946135781.0 * cos(theta) ** 3 + 26682255834609.4 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl16_m_minus_10(theta, phi): return ( 3.06213103106751e-12 * (1.0 - cos(theta) ** 2) ** 5 * ( 266526088836820.0 * cos(theta) ** 6 - 128964236533945.0 * cos(theta) ** 4 + 13341127917304.7 * cos(theta) ** 2 - 164705282929.688 ) * sin(10 * phi) ) # @torch.jit.script def Yl16_m_minus_9(theta, phi): return ( 4.1310406124361e-11 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 38075155548117.2 * cos(theta) ** 7 - 25792847306789.1 * cos(theta) ** 5 + 4447042639101.56 * cos(theta) ** 3 - 164705282929.688 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl16_m_minus_8(theta, phi): return ( 5.84217366082119e-10 * (1.0 - cos(theta) ** 2) ** 4 * ( 4759394443514.65 * cos(theta) ** 8 - 4298807884464.84 * cos(theta) ** 6 + 1111760659775.39 * cos(theta) ** 4 - 82352641464.8438 * cos(theta) ** 2 + 823526414.648438 ) * sin(8 * phi) ) # @torch.jit.script def Yl16_m_minus_7(theta, phi): return ( 8.58620667464373e-9 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 528821604834.961 * cos(theta) ** 9 - 614115412066.406 * cos(theta) ** 7 + 222352131955.078 * cos(theta) ** 5 - 27450880488.2813 * cos(theta) ** 3 + 823526414.648438 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl16_m_minus_6(theta, phi): return ( 1.30216271501415e-7 * (1.0 - cos(theta) ** 2) ** 3 * ( 52882160483.4961 * cos(theta) ** 10 - 76764426508.3008 * cos(theta) ** 8 + 37058688659.1797 * cos(theta) ** 6 - 6862720122.07031 * cos(theta) ** 4 + 411763207.324219 * cos(theta) ** 2 - 3580549.62890625 ) * sin(6 * phi) ) # @torch.jit.script def Yl16_m_minus_5(theta, phi): return ( 2.02568978918854e-6 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 4807469134.86328 * cos(theta) ** 11 - 8529380723.14453 * cos(theta) ** 9 + 5294098379.88281 * cos(theta) ** 7 - 1372544024.41406 * cos(theta) ** 5 + 137254402.441406 * cos(theta) ** 3 - 3580549.62890625 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl16_m_minus_4(theta, phi): return ( 3.21568284933344e-5 * (1.0 - cos(theta) ** 2) ** 2 * ( 400622427.905273 * cos(theta) ** 12 - 852938072.314453 * cos(theta) ** 10 + 661762297.485352 * cos(theta) ** 8 - 228757337.402344 * cos(theta) ** 6 + 34313600.6103516 * cos(theta) ** 4 - 1790274.81445313 * cos(theta) ** 2 + 14208.5302734375 ) * sin(4 * phi) ) # @torch.jit.script def Yl16_m_minus_3(theta, phi): return ( 0.000518513279362185 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 30817109.8388672 * cos(theta) ** 13 - 77539824.7558594 * cos(theta) ** 11 + 73529144.1650391 * cos(theta) ** 9 - 32679619.6289063 * cos(theta) ** 7 + 6862720.12207031 * cos(theta) ** 5 - 596758.271484375 * cos(theta) ** 3 + 14208.5302734375 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl16_m_minus_2(theta, phi): return ( 0.00845669566395355 * (1.0 - cos(theta) ** 2) * ( 2201222.13134766 * cos(theta) ** 14 - 6461652.06298828 * cos(theta) ** 12 + 7352914.41650391 * cos(theta) ** 10 - 4084952.45361328 * cos(theta) ** 8 + 1143786.68701172 * cos(theta) ** 6 - 149189.567871094 * cos(theta) ** 4 + 7104.26513671875 * cos(theta) ** 2 - 53.41552734375 ) * sin(2 * phi) ) # @torch.jit.script def Yl16_m_minus_1(theta, phi): return ( 0.138957689313105 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 146748.142089844 * cos(theta) ** 15 - 497050.158691406 * cos(theta) ** 13 + 668446.765136719 * cos(theta) ** 11 - 453883.605957031 * cos(theta) ** 9 + 163398.098144531 * cos(theta) ** 7 - 29837.9135742188 * cos(theta) ** 5 + 2368.08837890625 * cos(theta) ** 3 - 53.41552734375 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl16_m0(theta, phi): return ( 46693.2969032527 * cos(theta) ** 16 - 180748.246077107 * cos(theta) ** 14 + 283587.76539684 * cos(theta) ** 12 - 231071.512545574 * cos(theta) ** 10 + 103982.180645508 * cos(theta) ** 8 - 25317.4005049933 * cos(theta) ** 6 + 3013.97625059444 * cos(theta) ** 4 - 135.968853410275 * cos(theta) ** 2 + 0.999770980957908 ) # @torch.jit.script def Yl16_m1(theta, phi): return ( 0.138957689313105 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 146748.142089844 * cos(theta) ** 15 - 497050.158691406 * cos(theta) ** 13 + 668446.765136719 * cos(theta) ** 11 - 453883.605957031 * cos(theta) ** 9 + 163398.098144531 * cos(theta) ** 7 - 29837.9135742188 * cos(theta) ** 5 + 2368.08837890625 * cos(theta) ** 3 - 53.41552734375 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl16_m2(theta, phi): return ( 0.00845669566395355 * (1.0 - cos(theta) ** 2) * ( 2201222.13134766 * cos(theta) ** 14 - 6461652.06298828 * cos(theta) ** 12 + 7352914.41650391 * cos(theta) ** 10 - 4084952.45361328 * cos(theta) ** 8 + 1143786.68701172 * cos(theta) ** 6 - 149189.567871094 * cos(theta) ** 4 + 7104.26513671875 * cos(theta) ** 2 - 53.41552734375 ) * cos(2 * phi) ) # @torch.jit.script def Yl16_m3(theta, phi): return ( 0.000518513279362185 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 30817109.8388672 * cos(theta) ** 13 - 77539824.7558594 * cos(theta) ** 11 + 73529144.1650391 * cos(theta) ** 9 - 32679619.6289063 * cos(theta) ** 7 + 6862720.12207031 * cos(theta) ** 5 - 596758.271484375 * cos(theta) ** 3 + 14208.5302734375 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl16_m4(theta, phi): return ( 3.21568284933344e-5 * (1.0 - cos(theta) ** 2) ** 2 * ( 400622427.905273 * cos(theta) ** 12 - 852938072.314453 * cos(theta) ** 10 + 661762297.485352 * cos(theta) ** 8 - 228757337.402344 * cos(theta) ** 6 + 34313600.6103516 * cos(theta) ** 4 - 1790274.81445313 * cos(theta) ** 2 + 14208.5302734375 ) * cos(4 * phi) ) # @torch.jit.script def Yl16_m5(theta, phi): return ( 2.02568978918854e-6 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 4807469134.86328 * cos(theta) ** 11 - 8529380723.14453 * cos(theta) ** 9 + 5294098379.88281 * cos(theta) ** 7 - 1372544024.41406 * cos(theta) ** 5 + 137254402.441406 * cos(theta) ** 3 - 3580549.62890625 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl16_m6(theta, phi): return ( 1.30216271501415e-7 * (1.0 - cos(theta) ** 2) ** 3 * ( 52882160483.4961 * cos(theta) ** 10 - 76764426508.3008 * cos(theta) ** 8 + 37058688659.1797 * cos(theta) ** 6 - 6862720122.07031 * cos(theta) ** 4 + 411763207.324219 * cos(theta) ** 2 - 3580549.62890625 ) * cos(6 * phi) ) # @torch.jit.script def Yl16_m7(theta, phi): return ( 8.58620667464373e-9 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 528821604834.961 * cos(theta) ** 9 - 614115412066.406 * cos(theta) ** 7 + 222352131955.078 * cos(theta) ** 5 - 27450880488.2813 * cos(theta) ** 3 + 823526414.648438 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl16_m8(theta, phi): return ( 5.84217366082119e-10 * (1.0 - cos(theta) ** 2) ** 4 * ( 4759394443514.65 * cos(theta) ** 8 - 4298807884464.84 * cos(theta) ** 6 + 1111760659775.39 * cos(theta) ** 4 - 82352641464.8438 * cos(theta) ** 2 + 823526414.648438 ) * cos(8 * phi) ) # @torch.jit.script def Yl16_m9(theta, phi): return ( 4.1310406124361e-11 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 38075155548117.2 * cos(theta) ** 7 - 25792847306789.1 * cos(theta) ** 5 + 4447042639101.56 * cos(theta) ** 3 - 164705282929.688 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl16_m10(theta, phi): return ( 3.06213103106751e-12 * (1.0 - cos(theta) ** 2) ** 5 * ( 266526088836820.0 * cos(theta) ** 6 - 128964236533945.0 * cos(theta) ** 4 + 13341127917304.7 * cos(theta) ** 2 - 164705282929.688 ) * cos(10 * phi) ) # @torch.jit.script def Yl16_m11(theta, phi): return ( 2.40583735216622e-13 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.59915653302092e15 * cos(theta) ** 5 - 515856946135781.0 * cos(theta) ** 3 + 26682255834609.4 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl16_m12(theta, phi): return ( 2.03330367436807e-14 * (1.0 - cos(theta) ** 2) ** 6 * ( 7.99578266510461e15 * cos(theta) ** 4 - 1.54757083840734e15 * cos(theta) ** 2 + 26682255834609.4 ) * cos(12 * phi) ) # @torch.jit.script def Yl16_m13(theta, phi): return ( 1.8878750671421e-15 * (1.0 - cos(theta) ** 2) ** 6.5 * (3.19831306604184e16 * cos(theta) ** 3 - 3.09514167681469e15 * cos(theta)) * cos(13 * phi) ) # @torch.jit.script def Yl16_m14(theta, phi): return ( 1.98999505000411e-16 * (1.0 - cos(theta) ** 2) ** 7 * (9.59493919812553e16 * cos(theta) ** 2 - 3.09514167681469e15) * cos(14 * phi) ) # @torch.jit.script def Yl16_m15(theta, phi): return ( 4.84985075323068 * (1.0 - cos(theta) ** 2) ** 7.5 * cos(15 * phi) * cos(theta) ) # @torch.jit.script def Yl16_m16(theta, phi): return 0.857340588838025 * (1.0 - cos(theta) ** 2) ** 8 * cos(16 * phi) # @torch.jit.script def Yl17_m_minus_17(theta, phi): return 0.869857171920628 * (1.0 - cos(theta) ** 2) ** 8.5 * sin(17 * phi) # @torch.jit.script def Yl17_m_minus_16(theta, phi): return 5.07209532485536 * (1.0 - cos(theta) ** 2) ** 8 * sin(16 * phi) * cos(theta) # @torch.jit.script def Yl17_m_minus_15(theta, phi): return ( 6.50688621401289e-18 * (1.0 - cos(theta) ** 2) ** 7.5 * (3.16632993538143e18 * cos(theta) ** 2 - 9.59493919812553e16) * sin(15 * phi) ) # @torch.jit.script def Yl17_m_minus_14(theta, phi): return ( 6.37542041547274e-17 * (1.0 - cos(theta) ** 2) ** 7 * (1.05544331179381e18 * cos(theta) ** 3 - 9.59493919812553e16 * cos(theta)) * sin(14 * phi) ) # @torch.jit.script def Yl17_m_minus_13(theta, phi): return ( 7.09936771746562e-16 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 2.63860827948452e17 * cos(theta) ** 4 - 4.79746959906277e16 * cos(theta) ** 2 + 773785419203672.0 ) * sin(13 * phi) ) # @torch.jit.script def Yl17_m_minus_12(theta, phi): return ( 8.69491420208903e-15 * (1.0 - cos(theta) ** 2) ** 6 * ( 5.27721655896904e16 * cos(theta) ** 5 - 1.59915653302092e16 * cos(theta) ** 3 + 773785419203672.0 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl17_m_minus_11(theta, phi): return ( 1.14693795555008e-13 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 8.79536093161507e15 * cos(theta) ** 6 - 3.9978913325523e15 * cos(theta) ** 4 + 386892709601836.0 * cos(theta) ** 2 - 4447042639101.56 ) * sin(11 * phi) ) # @torch.jit.script def Yl17_m_minus_10(theta, phi): return ( 1.60571313777011e-12 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.25648013308787e15 * cos(theta) ** 7 - 799578266510461.0 * cos(theta) ** 5 + 128964236533945.0 * cos(theta) ** 3 - 4447042639101.56 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl17_m_minus_9(theta, phi): return ( 2.35990671649205e-11 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 157060016635983.0 * cos(theta) ** 8 - 133263044418410.0 * cos(theta) ** 6 + 32241059133486.3 * cos(theta) ** 4 - 2223521319550.78 * cos(theta) ** 2 + 20588160366.2109 ) * sin(9 * phi) ) # @torch.jit.script def Yl17_m_minus_8(theta, phi): return ( 3.60996311929549e-10 * (1.0 - cos(theta) ** 2) ** 4 * ( 17451112959553.7 * cos(theta) ** 9 - 19037577774058.6 * cos(theta) ** 7 + 6448211826697.27 * cos(theta) ** 5 - 741173773183.594 * cos(theta) ** 3 + 20588160366.2109 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl17_m_minus_7(theta, phi): return ( 5.70785286308994e-9 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1745111295955.37 * cos(theta) ** 10 - 2379697221757.32 * cos(theta) ** 8 + 1074701971116.21 * cos(theta) ** 6 - 185293443295.898 * cos(theta) ** 4 + 10294080183.1055 * cos(theta) ** 2 - 82352641.4648438 ) * sin(7 * phi) ) # @torch.jit.script def Yl17_m_minus_6(theta, phi): return ( 9.2741631735508e-8 * (1.0 - cos(theta) ** 2) ** 3 * ( 158646481450.488 * cos(theta) ** 11 - 264410802417.48 * cos(theta) ** 9 + 153528853016.602 * cos(theta) ** 7 - 37058688659.1797 * cos(theta) ** 5 + 3431360061.03516 * cos(theta) ** 3 - 82352641.4648438 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl17_m_minus_5(theta, phi): return ( 1.54073970252026e-6 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 13220540120.874 * cos(theta) ** 12 - 26441080241.748 * cos(theta) ** 10 + 19191106627.0752 * cos(theta) ** 8 - 6176448109.86328 * cos(theta) ** 6 + 857840015.258789 * cos(theta) ** 4 - 41176320.7324219 * cos(theta) ** 2 + 298379.135742188 ) * sin(5 * phi) ) # @torch.jit.script def Yl17_m_minus_4(theta, phi): return ( 2.6056272673653e-5 * (1.0 - cos(theta) ** 2) ** 2 * ( 1016964624.68262 * cos(theta) ** 13 - 2403734567.43164 * cos(theta) ** 11 + 2132345180.78613 * cos(theta) ** 9 - 882349729.980469 * cos(theta) ** 7 + 171568003.051758 * cos(theta) ** 5 - 13725440.2441406 * cos(theta) ** 3 + 298379.135742188 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl17_m_minus_3(theta, phi): return ( 0.000446772008544923 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 72640330.3344727 * cos(theta) ** 14 - 200311213.952637 * cos(theta) ** 12 + 213234518.078613 * cos(theta) ** 10 - 110293716.247559 * cos(theta) ** 8 + 28594667.175293 * cos(theta) ** 6 - 3431360.06103516 * cos(theta) ** 4 + 149189.567871094 * cos(theta) ** 2 - 1014.89501953125 ) * sin(3 * phi) ) # @torch.jit.script def Yl17_m_minus_2(theta, phi): return ( 0.00773831818199403 * (1.0 - cos(theta) ** 2) * ( 4842688.68896484 * cos(theta) ** 15 - 15408554.9194336 * cos(theta) ** 13 + 19384956.1889648 * cos(theta) ** 11 - 12254857.3608398 * cos(theta) ** 9 + 4084952.45361328 * cos(theta) ** 7 - 686272.012207031 * cos(theta) ** 5 + 49729.8559570313 * cos(theta) ** 3 - 1014.89501953125 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl17_m_minus_1(theta, phi): return ( 0.134922187793101 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 302668.043060303 * cos(theta) ** 16 - 1100611.06567383 * cos(theta) ** 14 + 1615413.01574707 * cos(theta) ** 12 - 1225485.73608398 * cos(theta) ** 10 + 510619.05670166 * cos(theta) ** 8 - 114378.668701172 * cos(theta) ** 6 + 12432.4639892578 * cos(theta) ** 4 - 507.447509765625 * cos(theta) ** 2 + 3.33847045898438 ) * sin(phi) ) # @torch.jit.script def Yl17_m0(theta, phi): return ( 93346.192942055 * cos(theta) ** 17 - 384699.461821802 * cos(theta) ** 15 + 651507.15308531 * cos(theta) ** 13 - 584109.86138683 * cos(theta) ** 11 + 297463.355335886 * cos(theta) ** 9 - 85669.4463367351 * cos(theta) ** 7 + 13036.6548773292 * cos(theta) ** 5 - 886.847270566616 * cos(theta) ** 3 + 17.5035645506569 * cos(theta) ) # @torch.jit.script def Yl17_m1(theta, phi): return ( 0.134922187793101 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 302668.043060303 * cos(theta) ** 16 - 1100611.06567383 * cos(theta) ** 14 + 1615413.01574707 * cos(theta) ** 12 - 1225485.73608398 * cos(theta) ** 10 + 510619.05670166 * cos(theta) ** 8 - 114378.668701172 * cos(theta) ** 6 + 12432.4639892578 * cos(theta) ** 4 - 507.447509765625 * cos(theta) ** 2 + 3.33847045898438 ) * cos(phi) ) # @torch.jit.script def Yl17_m2(theta, phi): return ( 0.00773831818199403 * (1.0 - cos(theta) ** 2) * ( 4842688.68896484 * cos(theta) ** 15 - 15408554.9194336 * cos(theta) ** 13 + 19384956.1889648 * cos(theta) ** 11 - 12254857.3608398 * cos(theta) ** 9 + 4084952.45361328 * cos(theta) ** 7 - 686272.012207031 * cos(theta) ** 5 + 49729.8559570313 * cos(theta) ** 3 - 1014.89501953125 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl17_m3(theta, phi): return ( 0.000446772008544923 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 72640330.3344727 * cos(theta) ** 14 - 200311213.952637 * cos(theta) ** 12 + 213234518.078613 * cos(theta) ** 10 - 110293716.247559 * cos(theta) ** 8 + 28594667.175293 * cos(theta) ** 6 - 3431360.06103516 * cos(theta) ** 4 + 149189.567871094 * cos(theta) ** 2 - 1014.89501953125 ) * cos(3 * phi) ) # @torch.jit.script def Yl17_m4(theta, phi): return ( 2.6056272673653e-5 * (1.0 - cos(theta) ** 2) ** 2 * ( 1016964624.68262 * cos(theta) ** 13 - 2403734567.43164 * cos(theta) ** 11 + 2132345180.78613 * cos(theta) ** 9 - 882349729.980469 * cos(theta) ** 7 + 171568003.051758 * cos(theta) ** 5 - 13725440.2441406 * cos(theta) ** 3 + 298379.135742188 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl17_m5(theta, phi): return ( 1.54073970252026e-6 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 13220540120.874 * cos(theta) ** 12 - 26441080241.748 * cos(theta) ** 10 + 19191106627.0752 * cos(theta) ** 8 - 6176448109.86328 * cos(theta) ** 6 + 857840015.258789 * cos(theta) ** 4 - 41176320.7324219 * cos(theta) ** 2 + 298379.135742188 ) * cos(5 * phi) ) # @torch.jit.script def Yl17_m6(theta, phi): return ( 9.2741631735508e-8 * (1.0 - cos(theta) ** 2) ** 3 * ( 158646481450.488 * cos(theta) ** 11 - 264410802417.48 * cos(theta) ** 9 + 153528853016.602 * cos(theta) ** 7 - 37058688659.1797 * cos(theta) ** 5 + 3431360061.03516 * cos(theta) ** 3 - 82352641.4648438 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl17_m7(theta, phi): return ( 5.70785286308994e-9 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1745111295955.37 * cos(theta) ** 10 - 2379697221757.32 * cos(theta) ** 8 + 1074701971116.21 * cos(theta) ** 6 - 185293443295.898 * cos(theta) ** 4 + 10294080183.1055 * cos(theta) ** 2 - 82352641.4648438 ) * cos(7 * phi) ) # @torch.jit.script def Yl17_m8(theta, phi): return ( 3.60996311929549e-10 * (1.0 - cos(theta) ** 2) ** 4 * ( 17451112959553.7 * cos(theta) ** 9 - 19037577774058.6 * cos(theta) ** 7 + 6448211826697.27 * cos(theta) ** 5 - 741173773183.594 * cos(theta) ** 3 + 20588160366.2109 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl17_m9(theta, phi): return ( 2.35990671649205e-11 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 157060016635983.0 * cos(theta) ** 8 - 133263044418410.0 * cos(theta) ** 6 + 32241059133486.3 * cos(theta) ** 4 - 2223521319550.78 * cos(theta) ** 2 + 20588160366.2109 ) * cos(9 * phi) ) # @torch.jit.script def Yl17_m10(theta, phi): return ( 1.60571313777011e-12 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.25648013308787e15 * cos(theta) ** 7 - 799578266510461.0 * cos(theta) ** 5 + 128964236533945.0 * cos(theta) ** 3 - 4447042639101.56 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl17_m11(theta, phi): return ( 1.14693795555008e-13 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 8.79536093161507e15 * cos(theta) ** 6 - 3.9978913325523e15 * cos(theta) ** 4 + 386892709601836.0 * cos(theta) ** 2 - 4447042639101.56 ) * cos(11 * phi) ) # @torch.jit.script def Yl17_m12(theta, phi): return ( 8.69491420208903e-15 * (1.0 - cos(theta) ** 2) ** 6 * ( 5.27721655896904e16 * cos(theta) ** 5 - 1.59915653302092e16 * cos(theta) ** 3 + 773785419203672.0 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl17_m13(theta, phi): return ( 7.09936771746562e-16 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 2.63860827948452e17 * cos(theta) ** 4 - 4.79746959906277e16 * cos(theta) ** 2 + 773785419203672.0 ) * cos(13 * phi) ) # @torch.jit.script def Yl17_m14(theta, phi): return ( 6.37542041547274e-17 * (1.0 - cos(theta) ** 2) ** 7 * (1.05544331179381e18 * cos(theta) ** 3 - 9.59493919812553e16 * cos(theta)) * cos(14 * phi) ) # @torch.jit.script def Yl17_m15(theta, phi): return ( 6.50688621401289e-18 * (1.0 - cos(theta) ** 2) ** 7.5 * (3.16632993538143e18 * cos(theta) ** 2 - 9.59493919812553e16) * cos(15 * phi) ) # @torch.jit.script def Yl17_m16(theta, phi): return 5.07209532485536 * (1.0 - cos(theta) ** 2) ** 8 * cos(16 * phi) * cos(theta) # @torch.jit.script def Yl17_m17(theta, phi): return 0.869857171920628 * (1.0 - cos(theta) ** 2) ** 8.5 * cos(17 * phi) # @torch.jit.script def Yl18_m_minus_18(theta, phi): return 0.881855768678329 * (1.0 - cos(theta) ** 2) ** 9 * sin(18 * phi) # @torch.jit.script def Yl18_m_minus_17(theta, phi): return ( 5.29113461206997 * (1.0 - cos(theta) ** 2) ** 8.5 * sin(17 * phi) * cos(theta) ) # @torch.jit.script def Yl18_m_minus_16(theta, phi): return ( 1.99730147939357e-19 * (1.0 - cos(theta) ** 2) ** 8 * (1.1082154773835e20 * cos(theta) ** 2 - 3.16632993538143e18) * sin(16 * phi) ) # @torch.jit.script def Yl18_m_minus_15(theta, phi): return ( 2.01717561545333e-18 * (1.0 - cos(theta) ** 2) ** 7.5 * (3.69405159127833e19 * cos(theta) ** 3 - 3.16632993538143e18 * cos(theta)) * sin(15 * phi) ) # @torch.jit.script def Yl18_m_minus_14(theta, phi): return ( 2.31755833840811e-17 * (1.0 - cos(theta) ** 2) ** 7 * ( 9.23512897819582e18 * cos(theta) ** 4 - 1.58316496769071e18 * cos(theta) ** 2 + 2.39873479953138e16 ) * sin(14 * phi) ) # @torch.jit.script def Yl18_m_minus_13(theta, phi): return ( 2.93150518387396e-16 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.84702579563916e18 * cos(theta) ** 5 - 5.27721655896904e17 * cos(theta) ** 3 + 2.39873479953138e16 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl18_m_minus_12(theta, phi): return ( 3.9980400343329e-15 * (1.0 - cos(theta) ** 2) ** 6 * ( 3.07837632606527e17 * cos(theta) ** 6 - 1.31930413974226e17 * cos(theta) ** 4 + 1.19936739976569e16 * cos(theta) ** 2 - 128964236533945.0 ) * sin(12 * phi) ) # @torch.jit.script def Yl18_m_minus_11(theta, phi): return ( 5.79371043838662e-14 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 4.39768046580754e16 * cos(theta) ** 7 - 2.63860827948452e16 * cos(theta) ** 5 + 3.9978913325523e15 * cos(theta) ** 3 - 128964236533945.0 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl18_m_minus_10(theta, phi): return ( 8.82471682796557e-13 * (1.0 - cos(theta) ** 2) ** 5 * ( 5.49710058225942e15 * cos(theta) ** 8 - 4.39768046580754e15 * cos(theta) ** 6 + 999472833138076.0 * cos(theta) ** 4 - 64482118266972.7 * cos(theta) ** 2 + 555880329887.695 ) * sin(10 * phi) ) # @torch.jit.script def Yl18_m_minus_9(theta, phi): return ( 1.40088036704182e-11 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 610788953584380.0 * cos(theta) ** 9 - 628240066543934.0 * cos(theta) ** 7 + 199894566627615.0 * cos(theta) ** 5 - 21494039422324.2 * cos(theta) ** 3 + 555880329887.695 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl18_m_minus_8(theta, phi): return ( 2.30188133218476e-10 * (1.0 - cos(theta) ** 2) ** 4 * ( 61078895358438.0 * cos(theta) ** 10 - 78530008317991.7 * cos(theta) ** 8 + 33315761104602.5 * cos(theta) ** 6 - 5373509855581.05 * cos(theta) ** 4 + 277940164943.848 * cos(theta) ** 2 - 2058816036.62109 ) * sin(8 * phi) ) # @torch.jit.script def Yl18_m_minus_7(theta, phi): return ( 3.8928345622358e-9 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 5552626850767.09 * cos(theta) ** 11 - 8725556479776.86 * cos(theta) ** 9 + 4759394443514.65 * cos(theta) ** 7 - 1074701971116.21 * cos(theta) ** 5 + 92646721647.9492 * cos(theta) ** 3 - 2058816036.62109 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl18_m_minus_6(theta, phi): return ( 6.74258724725256e-8 * (1.0 - cos(theta) ** 2) ** 3 * ( 462718904230.591 * cos(theta) ** 12 - 872555647977.686 * cos(theta) ** 10 + 594924305439.331 * cos(theta) ** 8 - 179116995186.035 * cos(theta) ** 6 + 23161680411.9873 * cos(theta) ** 4 - 1029408018.31055 * cos(theta) ** 2 + 6862720.12207031 ) * sin(6 * phi) ) # @torch.jit.script def Yl18_m_minus_5(theta, phi): return ( 1.19097836376173e-6 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 35593761863.8916 * cos(theta) ** 13 - 79323240725.2441 * cos(theta) ** 11 + 66102700604.3701 * cos(theta) ** 9 - 25588142169.4336 * cos(theta) ** 7 + 4632336082.39746 * cos(theta) ** 5 - 343136006.103516 * cos(theta) ** 3 + 6862720.12207031 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl18_m_minus_4(theta, phi): return ( 2.13713426594923e-5 * (1.0 - cos(theta) ** 2) ** 2 * ( 2542411561.70654 * cos(theta) ** 14 - 6610270060.43701 * cos(theta) ** 12 + 6610270060.43701 * cos(theta) ** 10 - 3198517771.1792 * cos(theta) ** 8 + 772056013.73291 * cos(theta) ** 6 - 85784001.5258789 * cos(theta) ** 4 + 3431360.06103516 * cos(theta) ** 2 - 21312.7954101563 ) * sin(4 * phi) ) # @torch.jit.script def Yl18_m_minus_3(theta, phi): return ( 0.000388229719023305 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 169494104.11377 * cos(theta) ** 15 - 508482312.341309 * cos(theta) ** 13 + 600933641.85791 * cos(theta) ** 11 - 355390863.464355 * cos(theta) ** 9 + 110293716.247559 * cos(theta) ** 7 - 17156800.3051758 * cos(theta) ** 5 + 1143786.68701172 * cos(theta) ** 3 - 21312.7954101563 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl18_m_minus_2(theta, phi): return ( 0.00711636829782292 * (1.0 - cos(theta) ** 2) * ( 10593381.5071106 * cos(theta) ** 16 - 36320165.1672363 * cos(theta) ** 14 + 50077803.4881592 * cos(theta) ** 12 - 35539086.3464355 * cos(theta) ** 10 + 13786714.5309448 * cos(theta) ** 8 - 2859466.7175293 * cos(theta) ** 6 + 285946.67175293 * cos(theta) ** 4 - 10656.3977050781 * cos(theta) ** 2 + 63.4309387207031 ) * sin(2 * phi) ) # @torch.jit.script def Yl18_m_minus_1(theta, phi): return ( 0.131219347792496 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 623140.088653564 * cos(theta) ** 17 - 2421344.34448242 * cos(theta) ** 15 + 3852138.7298584 * cos(theta) ** 13 - 3230826.03149414 * cos(theta) ** 11 + 1531857.17010498 * cos(theta) ** 9 - 408495.245361328 * cos(theta) ** 7 + 57189.3343505859 * cos(theta) ** 5 - 3552.13256835938 * cos(theta) ** 3 + 63.4309387207031 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl18_m0(theta, phi): return ( 186620.345601326 * cos(theta) ** 18 - 815797.51077151 * cos(theta) ** 16 + 1483268.20140275 * cos(theta) ** 14 - 1451369.96051236 * cos(theta) ** 12 + 825779.460291517 * cos(theta) ** 10 - 275259.820097172 * cos(theta) ** 8 + 51381.8330848055 * cos(theta) ** 6 - 4787.12730603778 * cos(theta) ** 4 + 170.968832358492 * cos(theta) ** 2 - 0.999817733090598 ) # @torch.jit.script def Yl18_m1(theta, phi): return ( 0.131219347792496 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 623140.088653564 * cos(theta) ** 17 - 2421344.34448242 * cos(theta) ** 15 + 3852138.7298584 * cos(theta) ** 13 - 3230826.03149414 * cos(theta) ** 11 + 1531857.17010498 * cos(theta) ** 9 - 408495.245361328 * cos(theta) ** 7 + 57189.3343505859 * cos(theta) ** 5 - 3552.13256835938 * cos(theta) ** 3 + 63.4309387207031 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl18_m2(theta, phi): return ( 0.00711636829782292 * (1.0 - cos(theta) ** 2) * ( 10593381.5071106 * cos(theta) ** 16 - 36320165.1672363 * cos(theta) ** 14 + 50077803.4881592 * cos(theta) ** 12 - 35539086.3464355 * cos(theta) ** 10 + 13786714.5309448 * cos(theta) ** 8 - 2859466.7175293 * cos(theta) ** 6 + 285946.67175293 * cos(theta) ** 4 - 10656.3977050781 * cos(theta) ** 2 + 63.4309387207031 ) * cos(2 * phi) ) # @torch.jit.script def Yl18_m3(theta, phi): return ( 0.000388229719023305 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 169494104.11377 * cos(theta) ** 15 - 508482312.341309 * cos(theta) ** 13 + 600933641.85791 * cos(theta) ** 11 - 355390863.464355 * cos(theta) ** 9 + 110293716.247559 * cos(theta) ** 7 - 17156800.3051758 * cos(theta) ** 5 + 1143786.68701172 * cos(theta) ** 3 - 21312.7954101563 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl18_m4(theta, phi): return ( 2.13713426594923e-5 * (1.0 - cos(theta) ** 2) ** 2 * ( 2542411561.70654 * cos(theta) ** 14 - 6610270060.43701 * cos(theta) ** 12 + 6610270060.43701 * cos(theta) ** 10 - 3198517771.1792 * cos(theta) ** 8 + 772056013.73291 * cos(theta) ** 6 - 85784001.5258789 * cos(theta) ** 4 + 3431360.06103516 * cos(theta) ** 2 - 21312.7954101563 ) * cos(4 * phi) ) # @torch.jit.script def Yl18_m5(theta, phi): return ( 1.19097836376173e-6 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 35593761863.8916 * cos(theta) ** 13 - 79323240725.2441 * cos(theta) ** 11 + 66102700604.3701 * cos(theta) ** 9 - 25588142169.4336 * cos(theta) ** 7 + 4632336082.39746 * cos(theta) ** 5 - 343136006.103516 * cos(theta) ** 3 + 6862720.12207031 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl18_m6(theta, phi): return ( 6.74258724725256e-8 * (1.0 - cos(theta) ** 2) ** 3 * ( 462718904230.591 * cos(theta) ** 12 - 872555647977.686 * cos(theta) ** 10 + 594924305439.331 * cos(theta) ** 8 - 179116995186.035 * cos(theta) ** 6 + 23161680411.9873 * cos(theta) ** 4 - 1029408018.31055 * cos(theta) ** 2 + 6862720.12207031 ) * cos(6 * phi) ) # @torch.jit.script def Yl18_m7(theta, phi): return ( 3.8928345622358e-9 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 5552626850767.09 * cos(theta) ** 11 - 8725556479776.86 * cos(theta) ** 9 + 4759394443514.65 * cos(theta) ** 7 - 1074701971116.21 * cos(theta) ** 5 + 92646721647.9492 * cos(theta) ** 3 - 2058816036.62109 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl18_m8(theta, phi): return ( 2.30188133218476e-10 * (1.0 - cos(theta) ** 2) ** 4 * ( 61078895358438.0 * cos(theta) ** 10 - 78530008317991.7 * cos(theta) ** 8 + 33315761104602.5 * cos(theta) ** 6 - 5373509855581.05 * cos(theta) ** 4 + 277940164943.848 * cos(theta) ** 2 - 2058816036.62109 ) * cos(8 * phi) ) # @torch.jit.script def Yl18_m9(theta, phi): return ( 1.40088036704182e-11 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 610788953584380.0 * cos(theta) ** 9 - 628240066543934.0 * cos(theta) ** 7 + 199894566627615.0 * cos(theta) ** 5 - 21494039422324.2 * cos(theta) ** 3 + 555880329887.695 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl18_m10(theta, phi): return ( 8.82471682796557e-13 * (1.0 - cos(theta) ** 2) ** 5 * ( 5.49710058225942e15 * cos(theta) ** 8 - 4.39768046580754e15 * cos(theta) ** 6 + 999472833138076.0 * cos(theta) ** 4 - 64482118266972.7 * cos(theta) ** 2 + 555880329887.695 ) * cos(10 * phi) ) # @torch.jit.script def Yl18_m11(theta, phi): return ( 5.79371043838662e-14 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 4.39768046580754e16 * cos(theta) ** 7 - 2.63860827948452e16 * cos(theta) ** 5 + 3.9978913325523e15 * cos(theta) ** 3 - 128964236533945.0 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl18_m12(theta, phi): return ( 3.9980400343329e-15 * (1.0 - cos(theta) ** 2) ** 6 * ( 3.07837632606527e17 * cos(theta) ** 6 - 1.31930413974226e17 * cos(theta) ** 4 + 1.19936739976569e16 * cos(theta) ** 2 - 128964236533945.0 ) * cos(12 * phi) ) # @torch.jit.script def Yl18_m13(theta, phi): return ( 2.93150518387396e-16 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.84702579563916e18 * cos(theta) ** 5 - 5.27721655896904e17 * cos(theta) ** 3 + 2.39873479953138e16 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl18_m14(theta, phi): return ( 2.31755833840811e-17 * (1.0 - cos(theta) ** 2) ** 7 * ( 9.23512897819582e18 * cos(theta) ** 4 - 1.58316496769071e18 * cos(theta) ** 2 + 2.39873479953138e16 ) * cos(14 * phi) ) # @torch.jit.script def Yl18_m15(theta, phi): return ( 2.01717561545333e-18 * (1.0 - cos(theta) ** 2) ** 7.5 * (3.69405159127833e19 * cos(theta) ** 3 - 3.16632993538143e18 * cos(theta)) * cos(15 * phi) ) # @torch.jit.script def Yl18_m16(theta, phi): return ( 1.99730147939357e-19 * (1.0 - cos(theta) ** 2) ** 8 * (1.1082154773835e20 * cos(theta) ** 2 - 3.16632993538143e18) * cos(16 * phi) ) # @torch.jit.script def Yl18_m17(theta, phi): return ( 5.29113461206997 * (1.0 - cos(theta) ** 2) ** 8.5 * cos(17 * phi) * cos(theta) ) # @torch.jit.script def Yl18_m18(theta, phi): return 0.881855768678329 * (1.0 - cos(theta) ** 2) ** 9 * cos(18 * phi) # @torch.jit.script def Yl19_m_minus_19(theta, phi): return 0.893383784349949 * (1.0 - cos(theta) ** 2) ** 9.5 * sin(19 * phi) # @torch.jit.script def Yl19_m_minus_18(theta, phi): return 5.50718751027224 * (1.0 - cos(theta) ** 2) ** 9 * sin(18 * phi) * cos(theta) # @torch.jit.script def Yl19_m_minus_17(theta, phi): return ( 5.77683273022057e-21 * (1.0 - cos(theta) ** 2) ** 8.5 * (4.10039726631895e21 * cos(theta) ** 2 - 1.1082154773835e20) * sin(17 * phi) ) # @torch.jit.script def Yl19_m_minus_16(theta, phi): return ( 6.00346067734132e-20 * (1.0 - cos(theta) ** 2) ** 8 * (1.36679908877298e21 * cos(theta) ** 3 - 1.1082154773835e20 * cos(theta)) * sin(16 * phi) ) # @torch.jit.script def Yl19_m_minus_15(theta, phi): return ( 7.1033904683705e-19 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 3.41699772193245e20 * cos(theta) ** 4 - 5.54107738691749e19 * cos(theta) ** 2 + 7.91582483845356e17 ) * sin(15 * phi) ) # @torch.jit.script def Yl19_m_minus_14(theta, phi): return ( 9.26168804529891e-18 * (1.0 - cos(theta) ** 2) ** 7 * ( 6.83399544386491e19 * cos(theta) ** 5 - 1.84702579563916e19 * cos(theta) ** 3 + 7.91582483845356e17 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl19_m_minus_13(theta, phi): return ( 1.30323502710715e-16 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.13899924064415e19 * cos(theta) ** 6 - 4.61756448909791e18 * cos(theta) ** 4 + 3.95791241922678e17 * cos(theta) ** 2 - 3.9978913325523e15 ) * sin(13 * phi) ) # @torch.jit.script def Yl19_m_minus_12(theta, phi): return ( 1.9505035863512e-15 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.62714177234879e18 * cos(theta) ** 7 - 9.23512897819582e17 * cos(theta) ** 5 + 1.31930413974226e17 * cos(theta) ** 3 - 3.9978913325523e15 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl19_m_minus_11(theta, phi): return ( 3.07165611944352e-14 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 2.03392721543598e17 * cos(theta) ** 8 - 1.53918816303264e17 * cos(theta) ** 6 + 3.29826034935565e16 * cos(theta) ** 4 - 1.99894566627615e15 * cos(theta) ** 2 + 16120529566743.2 ) * sin(11 * phi) ) # @torch.jit.script def Yl19_m_minus_10(theta, phi): return ( 5.047246036554e-13 * (1.0 - cos(theta) ** 2) ** 5 * ( 2.25991912826221e16 * cos(theta) ** 9 - 2.19884023290377e16 * cos(theta) ** 7 + 6.5965206987113e15 * cos(theta) ** 5 - 666315222092051.0 * cos(theta) ** 3 + 16120529566743.2 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl19_m_minus_9(theta, phi): return ( 8.59515028403688e-12 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 2.25991912826221e15 * cos(theta) ** 10 - 2.74855029112971e15 * cos(theta) ** 8 + 1.09942011645188e15 * cos(theta) ** 6 - 166578805523013.0 * cos(theta) ** 4 + 8060264783371.58 * cos(theta) ** 2 - 55588032988.7695 ) * sin(9 * phi) ) # @torch.jit.script def Yl19_m_minus_8(theta, phi): return ( 1.50844275293414e-10 * (1.0 - cos(theta) ** 2) ** 4 * ( 205447193478382.0 * cos(theta) ** 11 - 305394476792190.0 * cos(theta) ** 9 + 157060016635983.0 * cos(theta) ** 7 - 33315761104602.5 * cos(theta) ** 5 + 2686754927790.53 * cos(theta) ** 3 - 55588032988.7695 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl19_m_minus_7(theta, phi): return ( 2.71519695528145e-9 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 17120599456531.9 * cos(theta) ** 12 - 30539447679219.0 * cos(theta) ** 10 + 19632502079497.9 * cos(theta) ** 8 - 5552626850767.09 * cos(theta) ** 6 + 671688731947.632 * cos(theta) ** 4 - 27794016494.3848 * cos(theta) ** 2 + 171568003.051758 ) * sin(7 * phi) ) # @torch.jit.script def Yl19_m_minus_6(theta, phi): return ( 4.99182886627511e-8 * (1.0 - cos(theta) ** 2) ** 3 * ( 1316969188963.99 * cos(theta) ** 13 - 2776313425383.54 * cos(theta) ** 11 + 2181389119944.21 * cos(theta) ** 9 - 793232407252.441 * cos(theta) ** 7 + 134337746389.526 * cos(theta) ** 5 - 9264672164.79492 * cos(theta) ** 3 + 171568003.051758 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl19_m_minus_5(theta, phi): return ( 9.33885667550482e-7 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 94069227783.1421 * cos(theta) ** 14 - 231359452115.295 * cos(theta) ** 12 + 218138911994.421 * cos(theta) ** 10 - 99154050906.5552 * cos(theta) ** 8 + 22389624398.2544 * cos(theta) ** 6 - 2316168041.19873 * cos(theta) ** 4 + 85784001.5258789 * cos(theta) ** 2 - 490194.294433594 ) * sin(5 * phi) ) # @torch.jit.script def Yl19_m_minus_4(theta, phi): return ( 1.77192347018779e-5 * (1.0 - cos(theta) ** 2) ** 2 * ( 6271281852.20947 * cos(theta) ** 15 - 17796880931.9458 * cos(theta) ** 13 + 19830810181.311 * cos(theta) ** 11 - 11017116767.395 * cos(theta) ** 9 + 3198517771.1792 * cos(theta) ** 7 - 463233608.239746 * cos(theta) ** 5 + 28594667.175293 * cos(theta) ** 3 - 490194.294433594 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl19_m_minus_3(theta, phi): return ( 0.000339913857408971 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 391955115.763092 * cos(theta) ** 16 - 1271205780.85327 * cos(theta) ** 14 + 1652567515.10925 * cos(theta) ** 12 - 1101711676.7395 * cos(theta) ** 10 + 399814721.3974 * cos(theta) ** 8 - 77205601.373291 * cos(theta) ** 6 + 7148666.79382324 * cos(theta) ** 4 - 245097.147216797 * cos(theta) ** 2 + 1332.04971313477 ) * sin(3 * phi) ) # @torch.jit.script def Yl19_m_minus_2(theta, phi): return ( 0.00657362114755131 * (1.0 - cos(theta) ** 2) * ( 23056183.2801819 * cos(theta) ** 17 - 84747052.0568848 * cos(theta) ** 15 + 127120578.085327 * cos(theta) ** 13 - 100155606.976318 * cos(theta) ** 11 + 44423857.9330444 * cos(theta) ** 9 - 11029371.6247559 * cos(theta) ** 7 + 1429733.35876465 * cos(theta) ** 5 - 81699.0490722656 * cos(theta) ** 3 + 1332.04971313477 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl19_m_minus_1(theta, phi): return ( 0.127805802320551 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 1280899.07112122 * cos(theta) ** 18 - 5296690.7535553 * cos(theta) ** 16 + 9080041.29180908 * cos(theta) ** 14 - 8346300.58135986 * cos(theta) ** 12 + 4442385.79330444 * cos(theta) ** 10 - 1378671.45309448 * cos(theta) ** 8 + 238288.893127441 * cos(theta) ** 6 - 20424.7622680664 * cos(theta) ** 4 + 666.024856567383 * cos(theta) ** 2 - 3.52394104003906 ) * sin(phi) ) # @torch.jit.script def Yl19_m0(theta, phi): return ( 373111.430353337 * cos(theta) ** 19 - 1724379.85379515 * cos(theta) ** 17 + 3350223.71594487 * cos(theta) ** 15 - 3553267.57751728 * cos(theta) ** 13 + 2235119.92779313 * cos(theta) ** 11 - 847804.110542221 * cos(theta) ** 9 + 188400.913453827 * cos(theta) ** 7 - 22608.1096144592 * cos(theta) ** 5 + 1228.70160948148 * cos(theta) ** 3 - 19.5032001504997 * cos(theta) ) # @torch.jit.script def Yl19_m1(theta, phi): return ( 0.127805802320551 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 1280899.07112122 * cos(theta) ** 18 - 5296690.7535553 * cos(theta) ** 16 + 9080041.29180908 * cos(theta) ** 14 - 8346300.58135986 * cos(theta) ** 12 + 4442385.79330444 * cos(theta) ** 10 - 1378671.45309448 * cos(theta) ** 8 + 238288.893127441 * cos(theta) ** 6 - 20424.7622680664 * cos(theta) ** 4 + 666.024856567383 * cos(theta) ** 2 - 3.52394104003906 ) * cos(phi) ) # @torch.jit.script def Yl19_m2(theta, phi): return ( 0.00657362114755131 * (1.0 - cos(theta) ** 2) * ( 23056183.2801819 * cos(theta) ** 17 - 84747052.0568848 * cos(theta) ** 15 + 127120578.085327 * cos(theta) ** 13 - 100155606.976318 * cos(theta) ** 11 + 44423857.9330444 * cos(theta) ** 9 - 11029371.6247559 * cos(theta) ** 7 + 1429733.35876465 * cos(theta) ** 5 - 81699.0490722656 * cos(theta) ** 3 + 1332.04971313477 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl19_m3(theta, phi): return ( 0.000339913857408971 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 391955115.763092 * cos(theta) ** 16 - 1271205780.85327 * cos(theta) ** 14 + 1652567515.10925 * cos(theta) ** 12 - 1101711676.7395 * cos(theta) ** 10 + 399814721.3974 * cos(theta) ** 8 - 77205601.373291 * cos(theta) ** 6 + 7148666.79382324 * cos(theta) ** 4 - 245097.147216797 * cos(theta) ** 2 + 1332.04971313477 ) * cos(3 * phi) ) # @torch.jit.script def Yl19_m4(theta, phi): return ( 1.77192347018779e-5 * (1.0 - cos(theta) ** 2) ** 2 * ( 6271281852.20947 * cos(theta) ** 15 - 17796880931.9458 * cos(theta) ** 13 + 19830810181.311 * cos(theta) ** 11 - 11017116767.395 * cos(theta) ** 9 + 3198517771.1792 * cos(theta) ** 7 - 463233608.239746 * cos(theta) ** 5 + 28594667.175293 * cos(theta) ** 3 - 490194.294433594 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl19_m5(theta, phi): return ( 9.33885667550482e-7 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 94069227783.1421 * cos(theta) ** 14 - 231359452115.295 * cos(theta) ** 12 + 218138911994.421 * cos(theta) ** 10 - 99154050906.5552 * cos(theta) ** 8 + 22389624398.2544 * cos(theta) ** 6 - 2316168041.19873 * cos(theta) ** 4 + 85784001.5258789 * cos(theta) ** 2 - 490194.294433594 ) * cos(5 * phi) ) # @torch.jit.script def Yl19_m6(theta, phi): return ( 4.99182886627511e-8 * (1.0 - cos(theta) ** 2) ** 3 * ( 1316969188963.99 * cos(theta) ** 13 - 2776313425383.54 * cos(theta) ** 11 + 2181389119944.21 * cos(theta) ** 9 - 793232407252.441 * cos(theta) ** 7 + 134337746389.526 * cos(theta) ** 5 - 9264672164.79492 * cos(theta) ** 3 + 171568003.051758 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl19_m7(theta, phi): return ( 2.71519695528145e-9 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 17120599456531.9 * cos(theta) ** 12 - 30539447679219.0 * cos(theta) ** 10 + 19632502079497.9 * cos(theta) ** 8 - 5552626850767.09 * cos(theta) ** 6 + 671688731947.632 * cos(theta) ** 4 - 27794016494.3848 * cos(theta) ** 2 + 171568003.051758 ) * cos(7 * phi) ) # @torch.jit.script def Yl19_m8(theta, phi): return ( 1.50844275293414e-10 * (1.0 - cos(theta) ** 2) ** 4 * ( 205447193478382.0 * cos(theta) ** 11 - 305394476792190.0 * cos(theta) ** 9 + 157060016635983.0 * cos(theta) ** 7 - 33315761104602.5 * cos(theta) ** 5 + 2686754927790.53 * cos(theta) ** 3 - 55588032988.7695 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl19_m9(theta, phi): return ( 8.59515028403688e-12 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 2.25991912826221e15 * cos(theta) ** 10 - 2.74855029112971e15 * cos(theta) ** 8 + 1.09942011645188e15 * cos(theta) ** 6 - 166578805523013.0 * cos(theta) ** 4 + 8060264783371.58 * cos(theta) ** 2 - 55588032988.7695 ) * cos(9 * phi) ) # @torch.jit.script def Yl19_m10(theta, phi): return ( 5.047246036554e-13 * (1.0 - cos(theta) ** 2) ** 5 * ( 2.25991912826221e16 * cos(theta) ** 9 - 2.19884023290377e16 * cos(theta) ** 7 + 6.5965206987113e15 * cos(theta) ** 5 - 666315222092051.0 * cos(theta) ** 3 + 16120529566743.2 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl19_m11(theta, phi): return ( 3.07165611944352e-14 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 2.03392721543598e17 * cos(theta) ** 8 - 1.53918816303264e17 * cos(theta) ** 6 + 3.29826034935565e16 * cos(theta) ** 4 - 1.99894566627615e15 * cos(theta) ** 2 + 16120529566743.2 ) * cos(11 * phi) ) # @torch.jit.script def Yl19_m12(theta, phi): return ( 1.9505035863512e-15 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.62714177234879e18 * cos(theta) ** 7 - 9.23512897819582e17 * cos(theta) ** 5 + 1.31930413974226e17 * cos(theta) ** 3 - 3.9978913325523e15 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl19_m13(theta, phi): return ( 1.30323502710715e-16 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.13899924064415e19 * cos(theta) ** 6 - 4.61756448909791e18 * cos(theta) ** 4 + 3.95791241922678e17 * cos(theta) ** 2 - 3.9978913325523e15 ) * cos(13 * phi) ) # @torch.jit.script def Yl19_m14(theta, phi): return ( 9.26168804529891e-18 * (1.0 - cos(theta) ** 2) ** 7 * ( 6.83399544386491e19 * cos(theta) ** 5 - 1.84702579563916e19 * cos(theta) ** 3 + 7.91582483845356e17 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl19_m15(theta, phi): return ( 7.1033904683705e-19 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 3.41699772193245e20 * cos(theta) ** 4 - 5.54107738691749e19 * cos(theta) ** 2 + 7.91582483845356e17 ) * cos(15 * phi) ) # @torch.jit.script def Yl19_m16(theta, phi): return ( 6.00346067734132e-20 * (1.0 - cos(theta) ** 2) ** 8 * (1.36679908877298e21 * cos(theta) ** 3 - 1.1082154773835e20 * cos(theta)) * cos(16 * phi) ) # @torch.jit.script def Yl19_m17(theta, phi): return ( 5.77683273022057e-21 * (1.0 - cos(theta) ** 2) ** 8.5 * (4.10039726631895e21 * cos(theta) ** 2 - 1.1082154773835e20) * cos(17 * phi) ) # @torch.jit.script def Yl19_m18(theta, phi): return 5.50718751027224 * (1.0 - cos(theta) ** 2) ** 9 * cos(18 * phi) * cos(theta) # @torch.jit.script def Yl19_m19(theta, phi): return 0.893383784349949 * (1.0 - cos(theta) ** 2) ** 9.5 * cos(19 * phi) # @torch.jit.script def Yl20_m_minus_20(theta, phi): return 0.904482145093491 * (1.0 - cos(theta) ** 2) ** 10 * sin(20 * phi) # @torch.jit.script def Yl20_m_minus_19(theta, phi): return ( 5.72044736290064 * (1.0 - cos(theta) ** 2) ** 9.5 * sin(19 * phi) * cos(theta) ) # @torch.jit.script def Yl20_m_minus_18(theta, phi): return ( 1.57963503371958e-22 * (1.0 - cos(theta) ** 2) ** 9 * (1.59915493386439e23 * cos(theta) ** 2 - 4.10039726631895e21) * sin(18 * phi) ) # @torch.jit.script def Yl20_m_minus_17(theta, phi): return ( 1.68658868646741e-21 * (1.0 - cos(theta) ** 2) ** 8.5 * (5.33051644621463e22 * cos(theta) ** 3 - 4.10039726631895e21 * cos(theta)) * sin(17 * phi) ) # @torch.jit.script def Yl20_m_minus_16(theta, phi): return ( 2.05182369321377e-20 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.33262911155366e22 * cos(theta) ** 4 - 2.05019863315947e21 * cos(theta) ** 2 + 2.77053869345875e19 ) * sin(16 * phi) ) # @torch.jit.script def Yl20_m_minus_15(theta, phi): return ( 2.7528103535224e-19 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 2.66525822310731e21 * cos(theta) ** 5 - 6.83399544386491e20 * cos(theta) ** 3 + 2.77053869345875e19 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl20_m_minus_14(theta, phi): return ( 3.9892011943704e-18 * (1.0 - cos(theta) ** 2) ** 7 * ( 4.44209703851219e20 * cos(theta) ** 6 - 1.70849886096623e20 * cos(theta) ** 4 + 1.38526934672937e19 * cos(theta) ** 2 - 1.31930413974226e17 ) * sin(14 * phi) ) # @torch.jit.script def Yl20_m_minus_13(theta, phi): return ( 6.15423986229134e-17 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 6.34585291216027e19 * cos(theta) ** 7 - 3.41699772193245e19 * cos(theta) ** 5 + 4.61756448909791e18 * cos(theta) ** 3 - 1.31930413974226e17 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl20_m_minus_12(theta, phi): return ( 9.99945619851927e-16 * (1.0 - cos(theta) ** 2) ** 6 * ( 7.93231614020034e18 * cos(theta) ** 8 - 5.69499620322076e18 * cos(theta) ** 6 + 1.15439112227448e18 * cos(theta) ** 4 - 6.5965206987113e16 * cos(theta) ** 2 + 499736416569038.0 ) * sin(12 * phi) ) # @torch.jit.script def Yl20_m_minus_11(theta, phi): return ( 1.6969639886762e-14 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 8.8136846002226e17 * cos(theta) ** 9 - 8.13570886174394e17 * cos(theta) ** 7 + 2.30878224454896e17 * cos(theta) ** 5 - 2.19884023290377e16 * cos(theta) ** 3 + 499736416569038.0 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl20_m_minus_10(theta, phi): return ( 2.98781341694522e-13 * (1.0 - cos(theta) ** 2) ** 5 * ( 8.8136846002226e16 * cos(theta) ** 10 - 1.01696360771799e17 * cos(theta) ** 8 + 3.84797040758159e16 * cos(theta) ** 6 - 5.49710058225942e15 * cos(theta) ** 4 + 249868208284519.0 * cos(theta) ** 2 - 1612052956674.32 ) * sin(10 * phi) ) # @torch.jit.script def Yl20_m_minus_9(theta, phi): return ( 5.42763260987486e-12 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 8.01244054565691e15 * cos(theta) ** 11 - 1.1299595641311e16 * cos(theta) ** 9 + 5.49710058225942e15 * cos(theta) ** 7 - 1.09942011645188e15 * cos(theta) ** 5 + 83289402761506.3 * cos(theta) ** 3 - 1612052956674.32 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl20_m_minus_8(theta, phi): return ( 1.01251173426417e-10 * (1.0 - cos(theta) ** 2) ** 4 * ( 667703378804743.0 * cos(theta) ** 12 - 1.1299595641311e15 * cos(theta) ** 10 + 687137572782427.0 * cos(theta) ** 8 - 183236686075314.0 * cos(theta) ** 6 + 20822350690376.6 * cos(theta) ** 4 - 806026478337.158 * cos(theta) ** 2 + 4632336082.39746 ) * sin(8 * phi) ) # @torch.jit.script def Yl20_m_minus_7(theta, phi): return ( 1.9317492704185e-9 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 51361798369595.6 * cos(theta) ** 13 - 102723596739191.0 * cos(theta) ** 11 + 76348619198047.5 * cos(theta) ** 9 - 26176669439330.6 * cos(theta) ** 7 + 4164470138075.32 * cos(theta) ** 5 - 268675492779.053 * cos(theta) ** 3 + 4632336082.39746 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl20_m_minus_6(theta, phi): return ( 3.75574983477626e-8 * (1.0 - cos(theta) ** 2) ** 3 * ( 3668699883542.54 * cos(theta) ** 14 - 8560299728265.93 * cos(theta) ** 12 + 7634861919804.75 * cos(theta) ** 10 - 3272083679916.32 * cos(theta) ** 8 + 694078356345.886 * cos(theta) ** 6 - 67168873194.7632 * cos(theta) ** 4 + 2316168041.19873 * cos(theta) ** 2 - 12254857.3608398 ) * sin(6 * phi) ) # @torch.jit.script def Yl20_m_minus_5(theta, phi): return ( 7.417011635662e-7 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 244579992236.169 * cos(theta) ** 15 - 658484594481.995 * cos(theta) ** 13 + 694078356345.886 * cos(theta) ** 11 - 363564853324.036 * cos(theta) ** 9 + 99154050906.5552 * cos(theta) ** 7 - 13433774638.9526 * cos(theta) ** 5 + 772056013.73291 * cos(theta) ** 3 - 12254857.3608398 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl20_m_minus_4(theta, phi): return ( 1.4834023271324e-5 * (1.0 - cos(theta) ** 2) ** 2 * ( 15286249514.7606 * cos(theta) ** 16 - 47034613891.571 * cos(theta) ** 14 + 57839863028.8239 * cos(theta) ** 12 - 36356485332.4036 * cos(theta) ** 10 + 12394256363.3194 * cos(theta) ** 8 - 2238962439.82544 * cos(theta) ** 6 + 193014003.433228 * cos(theta) ** 4 - 6127428.68041992 * cos(theta) ** 2 + 30637.1434020996 ) * sin(4 * phi) ) # @torch.jit.script def Yl20_m_minus_3(theta, phi): return ( 0.000299632582569029 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 899191147.927094 * cos(theta) ** 17 - 3135640926.10474 * cos(theta) ** 15 + 4449220232.98645 * cos(theta) ** 13 - 3305135030.21851 * cos(theta) ** 11 + 1377139595.92438 * cos(theta) ** 9 - 319851777.11792 * cos(theta) ** 7 + 38602800.6866455 * cos(theta) ** 5 - 2042476.22680664 * cos(theta) ** 3 + 30637.1434020996 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl20_m_minus_2(theta, phi): return ( 0.00609662114603756 * (1.0 - cos(theta) ** 2) * ( 49955063.7737274 * cos(theta) ** 18 - 195977557.881546 * cos(theta) ** 16 + 317801445.213318 * cos(theta) ** 14 - 275427919.184875 * cos(theta) ** 12 + 137713959.592438 * cos(theta) ** 10 - 39981472.13974 * cos(theta) ** 8 + 6433800.11444092 * cos(theta) ** 6 - 510619.05670166 * cos(theta) ** 4 + 15318.5717010498 * cos(theta) ** 2 - 74.0027618408203 ) * sin(2 * phi) ) # @torch.jit.script def Yl20_m_minus_1(theta, phi): return ( 0.12464571379913 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 2629213.88282776 * cos(theta) ** 19 - 11528091.6400909 * cos(theta) ** 17 + 21186763.0142212 * cos(theta) ** 15 - 21186763.0142212 * cos(theta) ** 13 + 12519450.8720398 * cos(theta) ** 11 - 4442385.79330444 * cos(theta) ** 9 + 919114.302062988 * cos(theta) ** 7 - 102123.811340332 * cos(theta) ** 5 + 5106.1905670166 * cos(theta) ** 3 - 74.0027618408203 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl20_m0(theta, phi): return ( 745989.629614649 * cos(theta) ** 20 - 3634308.4519688 * cos(theta) ** 18 + 7514178.28582739 * cos(theta) ** 16 - 8587632.32665987 * cos(theta) ** 14 + 5920261.67974279 * cos(theta) ** 12 - 2520885.61847112 * cos(theta) ** 10 + 651953.177190808 * cos(theta) ** 8 - 96585.6558801197 * cos(theta) ** 6 + 7243.92419100898 * cos(theta) ** 4 - 209.968817130695 * cos(theta) ** 2 + 0.999851510146167 ) # @torch.jit.script def Yl20_m1(theta, phi): return ( 0.12464571379913 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 2629213.88282776 * cos(theta) ** 19 - 11528091.6400909 * cos(theta) ** 17 + 21186763.0142212 * cos(theta) ** 15 - 21186763.0142212 * cos(theta) ** 13 + 12519450.8720398 * cos(theta) ** 11 - 4442385.79330444 * cos(theta) ** 9 + 919114.302062988 * cos(theta) ** 7 - 102123.811340332 * cos(theta) ** 5 + 5106.1905670166 * cos(theta) ** 3 - 74.0027618408203 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl20_m2(theta, phi): return ( 0.00609662114603756 * (1.0 - cos(theta) ** 2) * ( 49955063.7737274 * cos(theta) ** 18 - 195977557.881546 * cos(theta) ** 16 + 317801445.213318 * cos(theta) ** 14 - 275427919.184875 * cos(theta) ** 12 + 137713959.592438 * cos(theta) ** 10 - 39981472.13974 * cos(theta) ** 8 + 6433800.11444092 * cos(theta) ** 6 - 510619.05670166 * cos(theta) ** 4 + 15318.5717010498 * cos(theta) ** 2 - 74.0027618408203 ) * cos(2 * phi) ) # @torch.jit.script def Yl20_m3(theta, phi): return ( 0.000299632582569029 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 899191147.927094 * cos(theta) ** 17 - 3135640926.10474 * cos(theta) ** 15 + 4449220232.98645 * cos(theta) ** 13 - 3305135030.21851 * cos(theta) ** 11 + 1377139595.92438 * cos(theta) ** 9 - 319851777.11792 * cos(theta) ** 7 + 38602800.6866455 * cos(theta) ** 5 - 2042476.22680664 * cos(theta) ** 3 + 30637.1434020996 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl20_m4(theta, phi): return ( 1.4834023271324e-5 * (1.0 - cos(theta) ** 2) ** 2 * ( 15286249514.7606 * cos(theta) ** 16 - 47034613891.571 * cos(theta) ** 14 + 57839863028.8239 * cos(theta) ** 12 - 36356485332.4036 * cos(theta) ** 10 + 12394256363.3194 * cos(theta) ** 8 - 2238962439.82544 * cos(theta) ** 6 + 193014003.433228 * cos(theta) ** 4 - 6127428.68041992 * cos(theta) ** 2 + 30637.1434020996 ) * cos(4 * phi) ) # @torch.jit.script def Yl20_m5(theta, phi): return ( 7.417011635662e-7 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 244579992236.169 * cos(theta) ** 15 - 658484594481.995 * cos(theta) ** 13 + 694078356345.886 * cos(theta) ** 11 - 363564853324.036 * cos(theta) ** 9 + 99154050906.5552 * cos(theta) ** 7 - 13433774638.9526 * cos(theta) ** 5 + 772056013.73291 * cos(theta) ** 3 - 12254857.3608398 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl20_m6(theta, phi): return ( 3.75574983477626e-8 * (1.0 - cos(theta) ** 2) ** 3 * ( 3668699883542.54 * cos(theta) ** 14 - 8560299728265.93 * cos(theta) ** 12 + 7634861919804.75 * cos(theta) ** 10 - 3272083679916.32 * cos(theta) ** 8 + 694078356345.886 * cos(theta) ** 6 - 67168873194.7632 * cos(theta) ** 4 + 2316168041.19873 * cos(theta) ** 2 - 12254857.3608398 ) * cos(6 * phi) ) # @torch.jit.script def Yl20_m7(theta, phi): return ( 1.9317492704185e-9 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 51361798369595.6 * cos(theta) ** 13 - 102723596739191.0 * cos(theta) ** 11 + 76348619198047.5 * cos(theta) ** 9 - 26176669439330.6 * cos(theta) ** 7 + 4164470138075.32 * cos(theta) ** 5 - 268675492779.053 * cos(theta) ** 3 + 4632336082.39746 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl20_m8(theta, phi): return ( 1.01251173426417e-10 * (1.0 - cos(theta) ** 2) ** 4 * ( 667703378804743.0 * cos(theta) ** 12 - 1.1299595641311e15 * cos(theta) ** 10 + 687137572782427.0 * cos(theta) ** 8 - 183236686075314.0 * cos(theta) ** 6 + 20822350690376.6 * cos(theta) ** 4 - 806026478337.158 * cos(theta) ** 2 + 4632336082.39746 ) * cos(8 * phi) ) # @torch.jit.script def Yl20_m9(theta, phi): return ( 5.42763260987486e-12 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 8.01244054565691e15 * cos(theta) ** 11 - 1.1299595641311e16 * cos(theta) ** 9 + 5.49710058225942e15 * cos(theta) ** 7 - 1.09942011645188e15 * cos(theta) ** 5 + 83289402761506.3 * cos(theta) ** 3 - 1612052956674.32 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl20_m10(theta, phi): return ( 2.98781341694522e-13 * (1.0 - cos(theta) ** 2) ** 5 * ( 8.8136846002226e16 * cos(theta) ** 10 - 1.01696360771799e17 * cos(theta) ** 8 + 3.84797040758159e16 * cos(theta) ** 6 - 5.49710058225942e15 * cos(theta) ** 4 + 249868208284519.0 * cos(theta) ** 2 - 1612052956674.32 ) * cos(10 * phi) ) # @torch.jit.script def Yl20_m11(theta, phi): return ( 1.6969639886762e-14 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 8.8136846002226e17 * cos(theta) ** 9 - 8.13570886174394e17 * cos(theta) ** 7 + 2.30878224454896e17 * cos(theta) ** 5 - 2.19884023290377e16 * cos(theta) ** 3 + 499736416569038.0 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl20_m12(theta, phi): return ( 9.99945619851927e-16 * (1.0 - cos(theta) ** 2) ** 6 * ( 7.93231614020034e18 * cos(theta) ** 8 - 5.69499620322076e18 * cos(theta) ** 6 + 1.15439112227448e18 * cos(theta) ** 4 - 6.5965206987113e16 * cos(theta) ** 2 + 499736416569038.0 ) * cos(12 * phi) ) # @torch.jit.script def Yl20_m13(theta, phi): return ( 6.15423986229134e-17 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 6.34585291216027e19 * cos(theta) ** 7 - 3.41699772193245e19 * cos(theta) ** 5 + 4.61756448909791e18 * cos(theta) ** 3 - 1.31930413974226e17 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl20_m14(theta, phi): return ( 3.9892011943704e-18 * (1.0 - cos(theta) ** 2) ** 7 * ( 4.44209703851219e20 * cos(theta) ** 6 - 1.70849886096623e20 * cos(theta) ** 4 + 1.38526934672937e19 * cos(theta) ** 2 - 1.31930413974226e17 ) * cos(14 * phi) ) # @torch.jit.script def Yl20_m15(theta, phi): return ( 2.7528103535224e-19 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 2.66525822310731e21 * cos(theta) ** 5 - 6.83399544386491e20 * cos(theta) ** 3 + 2.77053869345875e19 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl20_m16(theta, phi): return ( 2.05182369321377e-20 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.33262911155366e22 * cos(theta) ** 4 - 2.05019863315947e21 * cos(theta) ** 2 + 2.77053869345875e19 ) * cos(16 * phi) ) # @torch.jit.script def Yl20_m17(theta, phi): return ( 1.68658868646741e-21 * (1.0 - cos(theta) ** 2) ** 8.5 * (5.33051644621463e22 * cos(theta) ** 3 - 4.10039726631895e21 * cos(theta)) * cos(17 * phi) ) # @torch.jit.script def Yl20_m18(theta, phi): return ( 1.57963503371958e-22 * (1.0 - cos(theta) ** 2) ** 9 * (1.59915493386439e23 * cos(theta) ** 2 - 4.10039726631895e21) * cos(18 * phi) ) # @torch.jit.script def Yl20_m19(theta, phi): return ( 5.72044736290064 * (1.0 - cos(theta) ** 2) ** 9.5 * cos(19 * phi) * cos(theta) ) # @torch.jit.script def Yl20_m20(theta, phi): return 0.904482145093491 * (1.0 - cos(theta) ** 2) ** 10 * cos(20 * phi) # @torch.jit.script def Yl21_m_minus_21(theta, phi): return 0.915186448400331 * (1.0 - cos(theta) ** 2) ** 10.5 * sin(21 * phi) # @torch.jit.script def Yl21_m_minus_20(theta, phi): return 5.93108606277937 * (1.0 - cos(theta) ** 2) ** 10 * sin(20 * phi) * cos(theta) # @torch.jit.script def Yl21_m_minus_19(theta, phi): return ( 4.09578128625229e-24 * (1.0 - cos(theta) ** 2) ** 9.5 * (6.55653522884399e24 * cos(theta) ** 2 - 1.59915493386439e23) * sin(19 * phi) ) # @torch.jit.script def Yl21_m_minus_18(theta, phi): return ( 4.48670360217581e-23 * (1.0 - cos(theta) ** 2) ** 9 * (2.185511742948e24 * cos(theta) ** 3 - 1.59915493386439e23 * cos(theta)) * sin(18 * phi) ) # @torch.jit.script def Yl21_m_minus_17(theta, phi): return ( 5.60389100299896e-22 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 5.46377935737e23 * cos(theta) ** 4 - 7.99577466932194e22 * cos(theta) ** 2 + 1.02509931657974e21 ) * sin(17 * phi) ) # @torch.jit.script def Yl21_m_minus_16(theta, phi): return ( 7.72443067867375e-21 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.092755871474e23 * cos(theta) ** 5 - 2.66525822310731e22 * cos(theta) ** 3 + 1.02509931657974e21 * cos(theta) ) * sin(16 * phi) ) # @torch.jit.script def Yl21_m_minus_15(theta, phi): return ( 1.15091424992218e-19 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.82125978579e22 * cos(theta) ** 6 - 6.66314555776829e21 * cos(theta) ** 4 + 5.12549658289868e20 * cos(theta) ** 2 - 4.61756448909791e18 ) * sin(15 * phi) ) # @torch.jit.script def Yl21_m_minus_14(theta, phi): return ( 1.82701973139271e-18 * (1.0 - cos(theta) ** 2) ** 7 * ( 2.60179969398571e21 * cos(theta) ** 7 - 1.33262911155366e21 * cos(theta) ** 5 + 1.70849886096623e20 * cos(theta) ** 3 - 4.61756448909791e18 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl21_m_minus_13(theta, phi): return ( 3.05718875389061e-17 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 3.25224961748214e20 * cos(theta) ** 8 - 2.2210485192561e20 * cos(theta) ** 6 + 4.27124715241557e19 * cos(theta) ** 4 - 2.30878224454896e18 * cos(theta) ** 2 + 1.64913017467783e16 ) * sin(13 * phi) ) # @torch.jit.script def Yl21_m_minus_12(theta, phi): return ( 5.34789616721945e-16 * (1.0 - cos(theta) ** 2) ** 6 * ( 3.61361068609127e19 * cos(theta) ** 9 - 3.17292645608014e19 * cos(theta) ** 7 + 8.54249430483114e18 * cos(theta) ** 5 - 7.69594081516319e17 * cos(theta) ** 3 + 1.64913017467783e16 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl21_m_minus_11(theta, phi): return ( 9.71493583461516e-15 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 3.61361068609127e18 * cos(theta) ** 10 - 3.96615807010017e18 * cos(theta) ** 8 + 1.42374905080519e18 * cos(theta) ** 6 - 1.9239852037908e17 * cos(theta) ** 4 + 8.24565087338913e15 * cos(theta) ** 2 - 49973641656903.8 ) * sin(11 * phi) ) # @torch.jit.script def Yl21_m_minus_10(theta, phi): return ( 1.82268352577409e-13 * (1.0 - cos(theta) ** 2) ** 5 * ( 3.28510062371933e17 * cos(theta) ** 11 - 4.4068423001113e17 * cos(theta) ** 9 + 2.03392721543598e17 * cos(theta) ** 7 - 3.84797040758159e16 * cos(theta) ** 5 + 2.74855029112971e15 * cos(theta) ** 3 - 49973641656903.8 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl21_m_minus_9(theta, phi): return ( 3.51546467407613e-12 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 2.73758385309944e16 * cos(theta) ** 12 - 4.4068423001113e16 * cos(theta) ** 10 + 2.54240901929498e16 * cos(theta) ** 8 - 6.41328401263599e15 * cos(theta) ** 6 + 687137572782427.0 * cos(theta) ** 4 - 24986820828451.9 * cos(theta) ** 2 + 134337746389.526 ) * sin(9 * phi) ) # @torch.jit.script def Yl21_m_minus_8(theta, phi): return ( 6.94248646460625e-11 * (1.0 - cos(theta) ** 2) ** 4 * ( 2.10583373315342e15 * cos(theta) ** 13 - 4.00622027282846e15 * cos(theta) ** 11 + 2.82489891032776e15 * cos(theta) ** 9 - 916183430376570.0 * cos(theta) ** 7 + 137427514556485.0 * cos(theta) ** 5 - 8328940276150.63 * cos(theta) ** 3 + 134337746389.526 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl21_m_minus_7(theta, phi): return ( 1.39887226130065e-9 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 150416695225244.0 * cos(theta) ** 14 - 333851689402371.0 * cos(theta) ** 12 + 282489891032776.0 * cos(theta) ** 10 - 114522928797071.0 * cos(theta) ** 8 + 22904585759414.2 * cos(theta) ** 6 - 2082235069037.66 * cos(theta) ** 4 + 67168873194.7632 * cos(theta) ** 2 - 330881148.742676 ) * sin(7 * phi) ) # @torch.jit.script def Yl21_m_minus_6(theta, phi): return ( 2.86683503788286e-8 * (1.0 - cos(theta) ** 2) ** 3 * ( 10027779681682.9 * cos(theta) ** 15 - 25680899184797.8 * cos(theta) ** 13 + 25680899184797.8 * cos(theta) ** 11 - 12724769866341.2 * cos(theta) ** 9 + 3272083679916.32 * cos(theta) ** 7 - 416447013807.532 * cos(theta) ** 5 + 22389624398.2544 * cos(theta) ** 3 - 330881148.742676 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl21_m_minus_5(theta, phi): return ( 5.95860473103812e-7 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 626736230105.184 * cos(theta) ** 16 - 1834349941771.27 * cos(theta) ** 14 + 2140074932066.48 * cos(theta) ** 12 - 1272476986634.12 * cos(theta) ** 10 + 409010459989.54 * cos(theta) ** 8 - 69407835634.5886 * cos(theta) ** 6 + 5597406099.5636 * cos(theta) ** 4 - 165440574.371338 * cos(theta) ** 2 + 765928.58505249 ) * sin(5 * phi) ) # @torch.jit.script def Yl21_m_minus_4(theta, phi): return ( 1.25272490558029e-5 * (1.0 - cos(theta) ** 2) ** 2 * ( 36866837065.0108 * cos(theta) ** 17 - 122289996118.085 * cos(theta) ** 15 + 164621148620.499 * cos(theta) ** 13 - 115679726057.648 * cos(theta) ** 11 + 45445606665.5045 * cos(theta) ** 9 - 9915405090.65552 * cos(theta) ** 7 + 1119481219.91272 * cos(theta) ** 5 - 55146858.1237793 * cos(theta) ** 3 + 765928.58505249 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl21_m_minus_3(theta, phi): return ( 0.00026574308270913 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 2048157614.72282 * cos(theta) ** 18 - 7643124757.38029 * cos(theta) ** 16 + 11758653472.8928 * cos(theta) ** 14 - 9639977171.47064 * cos(theta) ** 12 + 4544560666.55045 * cos(theta) ** 10 - 1239425636.33194 * cos(theta) ** 8 + 186580203.318787 * cos(theta) ** 6 - 13786714.5309448 * cos(theta) ** 4 + 382964.292526245 * cos(theta) ** 2 - 1702.06352233887 ) * sin(3 * phi) ) # @torch.jit.script def Yl21_m_minus_2(theta, phi): return ( 0.00567471937804281 * (1.0 - cos(theta) ** 2) * ( 107797769.195938 * cos(theta) ** 19 - 449595573.963547 * cos(theta) ** 17 + 783910231.526184 * cos(theta) ** 15 - 741536705.497742 * cos(theta) ** 13 + 413141878.777313 * cos(theta) ** 11 - 137713959.592438 * cos(theta) ** 9 + 26654314.7598267 * cos(theta) ** 7 - 2757342.90618896 * cos(theta) ** 5 + 127654.764175415 * cos(theta) ** 3 - 1702.06352233887 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl21_m_minus_1(theta, phi): return ( 0.121709171425106 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 5389888.45979691 * cos(theta) ** 20 - 24977531.8868637 * cos(theta) ** 18 + 48994389.4703865 * cos(theta) ** 16 - 52966907.535553 * cos(theta) ** 14 + 34428489.8981094 * cos(theta) ** 12 - 13771395.9592438 * cos(theta) ** 10 + 3331789.34497833 * cos(theta) ** 8 - 459557.151031494 * cos(theta) ** 6 + 31913.6910438538 * cos(theta) ** 4 - 851.031761169434 * cos(theta) ** 2 + 3.70013809204102 ) * sin(phi) ) # @torch.jit.script def Yl21_m0(theta, phi): return ( 1491556.30266255 * cos(theta) ** 21 - 7639678.62339354 * cos(theta) ** 19 + 16748526.2128243 * cos(theta) ** 17 - 20520716.8012982 * cos(theta) ** 15 + 15390537.6009737 * cos(theta) ** 13 - 7275526.86591483 * cos(theta) ** 11 + 2151365.47110385 * cos(theta) ** 9 - 381522.940688367 * cos(theta) ** 7 + 37092.5081224801 * cos(theta) ** 5 - 1648.55591655467 * cos(theta) ** 3 + 21.5029032594088 * cos(theta) ) # @torch.jit.script def Yl21_m1(theta, phi): return ( 0.121709171425106 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 5389888.45979691 * cos(theta) ** 20 - 24977531.8868637 * cos(theta) ** 18 + 48994389.4703865 * cos(theta) ** 16 - 52966907.535553 * cos(theta) ** 14 + 34428489.8981094 * cos(theta) ** 12 - 13771395.9592438 * cos(theta) ** 10 + 3331789.34497833 * cos(theta) ** 8 - 459557.151031494 * cos(theta) ** 6 + 31913.6910438538 * cos(theta) ** 4 - 851.031761169434 * cos(theta) ** 2 + 3.70013809204102 ) * cos(phi) ) # @torch.jit.script def Yl21_m2(theta, phi): return ( 0.00567471937804281 * (1.0 - cos(theta) ** 2) * ( 107797769.195938 * cos(theta) ** 19 - 449595573.963547 * cos(theta) ** 17 + 783910231.526184 * cos(theta) ** 15 - 741536705.497742 * cos(theta) ** 13 + 413141878.777313 * cos(theta) ** 11 - 137713959.592438 * cos(theta) ** 9 + 26654314.7598267 * cos(theta) ** 7 - 2757342.90618896 * cos(theta) ** 5 + 127654.764175415 * cos(theta) ** 3 - 1702.06352233887 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl21_m3(theta, phi): return ( 0.00026574308270913 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 2048157614.72282 * cos(theta) ** 18 - 7643124757.38029 * cos(theta) ** 16 + 11758653472.8928 * cos(theta) ** 14 - 9639977171.47064 * cos(theta) ** 12 + 4544560666.55045 * cos(theta) ** 10 - 1239425636.33194 * cos(theta) ** 8 + 186580203.318787 * cos(theta) ** 6 - 13786714.5309448 * cos(theta) ** 4 + 382964.292526245 * cos(theta) ** 2 - 1702.06352233887 ) * cos(3 * phi) ) # @torch.jit.script def Yl21_m4(theta, phi): return ( 1.25272490558029e-5 * (1.0 - cos(theta) ** 2) ** 2 * ( 36866837065.0108 * cos(theta) ** 17 - 122289996118.085 * cos(theta) ** 15 + 164621148620.499 * cos(theta) ** 13 - 115679726057.648 * cos(theta) ** 11 + 45445606665.5045 * cos(theta) ** 9 - 9915405090.65552 * cos(theta) ** 7 + 1119481219.91272 * cos(theta) ** 5 - 55146858.1237793 * cos(theta) ** 3 + 765928.58505249 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl21_m5(theta, phi): return ( 5.95860473103812e-7 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 626736230105.184 * cos(theta) ** 16 - 1834349941771.27 * cos(theta) ** 14 + 2140074932066.48 * cos(theta) ** 12 - 1272476986634.12 * cos(theta) ** 10 + 409010459989.54 * cos(theta) ** 8 - 69407835634.5886 * cos(theta) ** 6 + 5597406099.5636 * cos(theta) ** 4 - 165440574.371338 * cos(theta) ** 2 + 765928.58505249 ) * cos(5 * phi) ) # @torch.jit.script def Yl21_m6(theta, phi): return ( 2.86683503788286e-8 * (1.0 - cos(theta) ** 2) ** 3 * ( 10027779681682.9 * cos(theta) ** 15 - 25680899184797.8 * cos(theta) ** 13 + 25680899184797.8 * cos(theta) ** 11 - 12724769866341.2 * cos(theta) ** 9 + 3272083679916.32 * cos(theta) ** 7 - 416447013807.532 * cos(theta) ** 5 + 22389624398.2544 * cos(theta) ** 3 - 330881148.742676 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl21_m7(theta, phi): return ( 1.39887226130065e-9 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 150416695225244.0 * cos(theta) ** 14 - 333851689402371.0 * cos(theta) ** 12 + 282489891032776.0 * cos(theta) ** 10 - 114522928797071.0 * cos(theta) ** 8 + 22904585759414.2 * cos(theta) ** 6 - 2082235069037.66 * cos(theta) ** 4 + 67168873194.7632 * cos(theta) ** 2 - 330881148.742676 ) * cos(7 * phi) ) # @torch.jit.script def Yl21_m8(theta, phi): return ( 6.94248646460625e-11 * (1.0 - cos(theta) ** 2) ** 4 * ( 2.10583373315342e15 * cos(theta) ** 13 - 4.00622027282846e15 * cos(theta) ** 11 + 2.82489891032776e15 * cos(theta) ** 9 - 916183430376570.0 * cos(theta) ** 7 + 137427514556485.0 * cos(theta) ** 5 - 8328940276150.63 * cos(theta) ** 3 + 134337746389.526 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl21_m9(theta, phi): return ( 3.51546467407613e-12 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 2.73758385309944e16 * cos(theta) ** 12 - 4.4068423001113e16 * cos(theta) ** 10 + 2.54240901929498e16 * cos(theta) ** 8 - 6.41328401263599e15 * cos(theta) ** 6 + 687137572782427.0 * cos(theta) ** 4 - 24986820828451.9 * cos(theta) ** 2 + 134337746389.526 ) * cos(9 * phi) ) # @torch.jit.script def Yl21_m10(theta, phi): return ( 1.82268352577409e-13 * (1.0 - cos(theta) ** 2) ** 5 * ( 3.28510062371933e17 * cos(theta) ** 11 - 4.4068423001113e17 * cos(theta) ** 9 + 2.03392721543598e17 * cos(theta) ** 7 - 3.84797040758159e16 * cos(theta) ** 5 + 2.74855029112971e15 * cos(theta) ** 3 - 49973641656903.8 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl21_m11(theta, phi): return ( 9.71493583461516e-15 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 3.61361068609127e18 * cos(theta) ** 10 - 3.96615807010017e18 * cos(theta) ** 8 + 1.42374905080519e18 * cos(theta) ** 6 - 1.9239852037908e17 * cos(theta) ** 4 + 8.24565087338913e15 * cos(theta) ** 2 - 49973641656903.8 ) * cos(11 * phi) ) # @torch.jit.script def Yl21_m12(theta, phi): return ( 5.34789616721945e-16 * (1.0 - cos(theta) ** 2) ** 6 * ( 3.61361068609127e19 * cos(theta) ** 9 - 3.17292645608014e19 * cos(theta) ** 7 + 8.54249430483114e18 * cos(theta) ** 5 - 7.69594081516319e17 * cos(theta) ** 3 + 1.64913017467783e16 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl21_m13(theta, phi): return ( 3.05718875389061e-17 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 3.25224961748214e20 * cos(theta) ** 8 - 2.2210485192561e20 * cos(theta) ** 6 + 4.27124715241557e19 * cos(theta) ** 4 - 2.30878224454896e18 * cos(theta) ** 2 + 1.64913017467783e16 ) * cos(13 * phi) ) # @torch.jit.script def Yl21_m14(theta, phi): return ( 1.82701973139271e-18 * (1.0 - cos(theta) ** 2) ** 7 * ( 2.60179969398571e21 * cos(theta) ** 7 - 1.33262911155366e21 * cos(theta) ** 5 + 1.70849886096623e20 * cos(theta) ** 3 - 4.61756448909791e18 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl21_m15(theta, phi): return ( 1.15091424992218e-19 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.82125978579e22 * cos(theta) ** 6 - 6.66314555776829e21 * cos(theta) ** 4 + 5.12549658289868e20 * cos(theta) ** 2 - 4.61756448909791e18 ) * cos(15 * phi) ) # @torch.jit.script def Yl21_m16(theta, phi): return ( 7.72443067867375e-21 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.092755871474e23 * cos(theta) ** 5 - 2.66525822310731e22 * cos(theta) ** 3 + 1.02509931657974e21 * cos(theta) ) * cos(16 * phi) ) # @torch.jit.script def Yl21_m17(theta, phi): return ( 5.60389100299896e-22 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 5.46377935737e23 * cos(theta) ** 4 - 7.99577466932194e22 * cos(theta) ** 2 + 1.02509931657974e21 ) * cos(17 * phi) ) # @torch.jit.script def Yl21_m18(theta, phi): return ( 4.48670360217581e-23 * (1.0 - cos(theta) ** 2) ** 9 * (2.185511742948e24 * cos(theta) ** 3 - 1.59915493386439e23 * cos(theta)) * cos(18 * phi) ) # @torch.jit.script def Yl21_m19(theta, phi): return ( 4.09578128625229e-24 * (1.0 - cos(theta) ** 2) ** 9.5 * (6.55653522884399e24 * cos(theta) ** 2 - 1.59915493386439e23) * cos(19 * phi) ) # @torch.jit.script def Yl21_m20(theta, phi): return 5.93108606277937 * (1.0 - cos(theta) ** 2) ** 10 * cos(20 * phi) * cos(theta) # @torch.jit.script def Yl21_m21(theta, phi): return 0.915186448400331 * (1.0 - cos(theta) ** 2) ** 10.5 * cos(21 * phi) # @torch.jit.script def Yl22_m_minus_22(theta, phi): return 0.925527866459589 * (1.0 - cos(theta) ** 2) ** 11 * sin(22 * phi) # @torch.jit.script def Yl22_m_minus_21(theta, phi): return ( 6.13925733212923 * (1.0 - cos(theta) ** 2) ** 10.5 * sin(21 * phi) * cos(theta) ) # @torch.jit.script def Yl22_m_minus_20(theta, phi): return ( 1.00969966670912e-25 * (1.0 - cos(theta) ** 2) ** 10 * (2.81931014840292e26 * cos(theta) ** 2 - 6.55653522884399e24) * sin(20 * phi) ) # @torch.jit.script def Yl22_m_minus_19(theta, phi): return ( 1.13338506490961e-24 * (1.0 - cos(theta) ** 2) ** 9.5 * (9.39770049467639e25 * cos(theta) ** 3 - 6.55653522884399e24 * cos(theta)) * sin(19 * phi) ) # @torch.jit.script def Yl22_m_minus_18(theta, phi): return ( 1.45144107589342e-23 * (1.0 - cos(theta) ** 2) ** 9 * ( 2.3494251236691e25 * cos(theta) ** 4 - 3.278267614422e24 * cos(theta) ** 2 + 3.99788733466097e22 ) * sin(18 * phi) ) # @torch.jit.script def Yl22_m_minus_17(theta, phi): return ( 2.05264765451388e-22 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 4.6988502473382e24 * cos(theta) ** 5 - 1.092755871474e24 * cos(theta) ** 3 + 3.99788733466097e22 * cos(theta) ) * sin(17 * phi) ) # @torch.jit.script def Yl22_m_minus_16(theta, phi): return ( 3.13994713346901e-21 * (1.0 - cos(theta) ** 2) ** 8 * ( 7.83141707889699e23 * cos(theta) ** 6 - 2.731889678685e23 * cos(theta) ** 4 + 1.99894366733049e22 * cos(theta) ** 2 - 1.70849886096623e20 ) * sin(16 * phi) ) # @torch.jit.script def Yl22_m_minus_15(theta, phi): return ( 5.12109879641152e-20 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.11877386841386e23 * cos(theta) ** 7 - 5.46377935737e22 * cos(theta) ** 5 + 6.66314555776829e21 * cos(theta) ** 3 - 1.70849886096623e20 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl22_m_minus_14(theta, phi): return ( 8.81067151427848e-19 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.39846733551732e22 * cos(theta) ** 8 - 9.10629892894999e21 * cos(theta) ** 6 + 1.66578638944207e21 * cos(theta) ** 4 - 8.54249430483114e19 * cos(theta) ** 2 + 5.77195561137239e17 ) * sin(14 * phi) ) # @torch.jit.script def Yl22_m_minus_13(theta, phi): return ( 1.58592087257013e-17 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.55385259501924e21 * cos(theta) ** 9 - 1.30089984699286e21 * cos(theta) ** 7 + 3.33157277888414e20 * cos(theta) ** 5 - 2.84749810161038e19 * cos(theta) ** 3 + 5.77195561137239e17 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl22_m_minus_12(theta, phi): return ( 2.9669862738455e-16 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.55385259501924e20 * cos(theta) ** 10 - 1.62612480874107e20 * cos(theta) ** 8 + 5.55262129814024e19 * cos(theta) ** 6 - 7.11874525402595e18 * cos(theta) ** 4 + 2.8859778056862e17 * cos(theta) ** 2 - 1.64913017467783e15 ) * sin(12 * phi) ) # @torch.jit.script def Yl22_m_minus_11(theta, phi): return ( 5.73787837392547e-15 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.41259326819931e19 * cos(theta) ** 11 - 1.80680534304563e19 * cos(theta) ** 9 + 7.93231614020034e18 * cos(theta) ** 7 - 1.42374905080519e18 * cos(theta) ** 5 + 9.61992601895398e16 * cos(theta) ** 3 - 1.64913017467783e15 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl22_m_minus_10(theta, phi): return ( 1.14182337954032e-13 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.17716105683276e18 * cos(theta) ** 12 - 1.80680534304563e18 * cos(theta) ** 10 + 9.91539517525043e17 * cos(theta) ** 8 - 2.37291508467532e17 * cos(theta) ** 6 + 2.4049815047385e16 * cos(theta) ** 4 - 824565087338913.0 * cos(theta) ** 2 + 4164470138075.32 ) * sin(10 * phi) ) # @torch.jit.script def Yl22_m_minus_9(theta, phi): return ( 2.32887187734102e-12 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 9.0550850525597e16 * cos(theta) ** 13 - 1.64255031185967e17 * cos(theta) ** 11 + 1.10171057502783e17 * cos(theta) ** 9 - 3.38987869239331e16 * cos(theta) ** 7 + 4.80996300947699e15 * cos(theta) ** 5 - 274855029112971.0 * cos(theta) ** 3 + 4164470138075.32 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl22_m_minus_8(theta, phi): return ( 4.85166115051776e-11 * (1.0 - cos(theta) ** 2) ** 4 * ( 6.4679178946855e15 * cos(theta) ** 14 - 1.36879192654972e16 * cos(theta) ** 12 + 1.10171057502783e16 * cos(theta) ** 10 - 4.23734836549164e15 * cos(theta) ** 8 + 801660501579499.0 * cos(theta) ** 6 - 68713757278242.7 * cos(theta) ** 4 + 2082235069037.66 * cos(theta) ** 2 - 9595553313.5376 ) * sin(8 * phi) ) # @torch.jit.script def Yl22_m_minus_7(theta, phi): return ( 1.02919274986513e-9 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 431194526312367.0 * cos(theta) ** 15 - 1.05291686657671e15 * cos(theta) ** 13 + 1.00155506820711e15 * cos(theta) ** 11 - 470816485054626.0 * cos(theta) ** 9 + 114522928797071.0 * cos(theta) ** 7 - 13742751455648.5 * cos(theta) ** 5 + 694078356345.886 * cos(theta) ** 3 - 9595553313.5376 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl22_m_minus_6(theta, phi): return ( 2.21694903053267e-8 * (1.0 - cos(theta) ** 2) ** 3 * ( 26949657894522.9 * cos(theta) ** 16 - 75208347612622.1 * cos(theta) ** 14 + 83462922350592.8 * cos(theta) ** 12 - 47081648505462.6 * cos(theta) ** 10 + 14315366099633.9 * cos(theta) ** 8 - 2290458575941.42 * cos(theta) ** 6 + 173519589086.472 * cos(theta) ** 4 - 4797776656.7688 * cos(theta) ** 2 + 20680071.7964172 ) * sin(6 * phi) ) # @torch.jit.script def Yl22_m_minus_5(theta, phi): return ( 4.83681174938034e-7 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1585273993795.47 * cos(theta) ** 17 - 5013889840841.47 * cos(theta) ** 15 + 6420224796199.45 * cos(theta) ** 13 - 4280149864132.96 * cos(theta) ** 11 + 1590596233292.66 * cos(theta) ** 9 - 327208367991.632 * cos(theta) ** 7 + 34703917817.2943 * cos(theta) ** 5 - 1599258885.5896 * cos(theta) ** 3 + 20680071.7964172 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl22_m_minus_4(theta, phi): return ( 1.06629486910923e-5 * (1.0 - cos(theta) ** 2) ** 2 * ( 88070777433.0814 * cos(theta) ** 18 - 313368115052.592 * cos(theta) ** 16 + 458587485442.818 * cos(theta) ** 14 - 356679155344.414 * cos(theta) ** 12 + 159059623329.266 * cos(theta) ** 10 - 40901045998.954 * cos(theta) ** 8 + 5783986302.88239 * cos(theta) ** 6 - 399814721.3974 * cos(theta) ** 4 + 10340035.8982086 * cos(theta) ** 2 - 42551.5880584717 ) * sin(4 * phi) ) # @torch.jit.script def Yl22_m_minus_3(theta, phi): return ( 0.000236995878752564 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 4635304075.42534 * cos(theta) ** 19 - 18433418532.5054 * cos(theta) ** 17 + 30572499029.5212 * cos(theta) ** 15 - 27436858103.4164 * cos(theta) ** 13 + 14459965757.206 * cos(theta) ** 11 - 4544560666.55045 * cos(theta) ** 9 + 826283757.554626 * cos(theta) ** 7 - 79962944.27948 * cos(theta) ** 5 + 3446678.63273621 * cos(theta) ** 3 - 42551.5880584717 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl22_m_minus_2(theta, phi): return ( 0.00529938895278031 * (1.0 - cos(theta) ** 2) * ( 231765203.771267 * cos(theta) ** 20 - 1024078807.36141 * cos(theta) ** 18 + 1910781189.34507 * cos(theta) ** 16 - 1959775578.81546 * cos(theta) ** 14 + 1204997146.43383 * cos(theta) ** 12 - 454456066.655045 * cos(theta) ** 10 + 103285469.694328 * cos(theta) ** 8 - 13327157.3799133 * cos(theta) ** 6 + 861669.658184052 * cos(theta) ** 4 - 21275.7940292358 * cos(theta) ** 2 + 85.1031761169434 ) * sin(2 * phi) ) # @torch.jit.script def Yl22_m_minus_1(theta, phi): return ( 0.118970986923352 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 11036438.2748222 * cos(theta) ** 21 - 53898884.5979691 * cos(theta) ** 19 + 112398893.490887 * cos(theta) ** 17 - 130651705.254364 * cos(theta) ** 15 + 92692088.1872177 * cos(theta) ** 13 - 41314187.8777313 * cos(theta) ** 11 + 11476163.2993698 * cos(theta) ** 9 - 1903879.6257019 * cos(theta) ** 7 + 172333.93163681 * cos(theta) ** 5 - 7091.93134307861 * cos(theta) ** 3 + 85.1031761169434 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl22_m0(theta, phi): return ( 2982342.07383728 * cos(theta) ** 22 - 16021419.0478235 * cos(theta) ** 20 + 37122800.2327618 * cos(theta) ** 18 - 48545200.3043808 * cos(theta) ** 16 + 39360973.2197682 * cos(theta) ** 14 - 20467706.0742795 * cos(theta) ** 12 + 6822568.6914265 * cos(theta) ** 10 - 1414818.3922313 * cos(theta) ** 8 + 170753.943889985 * cos(theta) ** 6 - 10540.3669067892 * cos(theta) ** 4 + 252.96880576294 * cos(theta) ** 2 - 0.999876702620317 ) # @torch.jit.script def Yl22_m1(theta, phi): return ( 0.118970986923352 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 11036438.2748222 * cos(theta) ** 21 - 53898884.5979691 * cos(theta) ** 19 + 112398893.490887 * cos(theta) ** 17 - 130651705.254364 * cos(theta) ** 15 + 92692088.1872177 * cos(theta) ** 13 - 41314187.8777313 * cos(theta) ** 11 + 11476163.2993698 * cos(theta) ** 9 - 1903879.6257019 * cos(theta) ** 7 + 172333.93163681 * cos(theta) ** 5 - 7091.93134307861 * cos(theta) ** 3 + 85.1031761169434 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl22_m2(theta, phi): return ( 0.00529938895278031 * (1.0 - cos(theta) ** 2) * ( 231765203.771267 * cos(theta) ** 20 - 1024078807.36141 * cos(theta) ** 18 + 1910781189.34507 * cos(theta) ** 16 - 1959775578.81546 * cos(theta) ** 14 + 1204997146.43383 * cos(theta) ** 12 - 454456066.655045 * cos(theta) ** 10 + 103285469.694328 * cos(theta) ** 8 - 13327157.3799133 * cos(theta) ** 6 + 861669.658184052 * cos(theta) ** 4 - 21275.7940292358 * cos(theta) ** 2 + 85.1031761169434 ) * cos(2 * phi) ) # @torch.jit.script def Yl22_m3(theta, phi): return ( 0.000236995878752564 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 4635304075.42534 * cos(theta) ** 19 - 18433418532.5054 * cos(theta) ** 17 + 30572499029.5212 * cos(theta) ** 15 - 27436858103.4164 * cos(theta) ** 13 + 14459965757.206 * cos(theta) ** 11 - 4544560666.55045 * cos(theta) ** 9 + 826283757.554626 * cos(theta) ** 7 - 79962944.27948 * cos(theta) ** 5 + 3446678.63273621 * cos(theta) ** 3 - 42551.5880584717 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl22_m4(theta, phi): return ( 1.06629486910923e-5 * (1.0 - cos(theta) ** 2) ** 2 * ( 88070777433.0814 * cos(theta) ** 18 - 313368115052.592 * cos(theta) ** 16 + 458587485442.818 * cos(theta) ** 14 - 356679155344.414 * cos(theta) ** 12 + 159059623329.266 * cos(theta) ** 10 - 40901045998.954 * cos(theta) ** 8 + 5783986302.88239 * cos(theta) ** 6 - 399814721.3974 * cos(theta) ** 4 + 10340035.8982086 * cos(theta) ** 2 - 42551.5880584717 ) * cos(4 * phi) ) # @torch.jit.script def Yl22_m5(theta, phi): return ( 4.83681174938034e-7 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1585273993795.47 * cos(theta) ** 17 - 5013889840841.47 * cos(theta) ** 15 + 6420224796199.45 * cos(theta) ** 13 - 4280149864132.96 * cos(theta) ** 11 + 1590596233292.66 * cos(theta) ** 9 - 327208367991.632 * cos(theta) ** 7 + 34703917817.2943 * cos(theta) ** 5 - 1599258885.5896 * cos(theta) ** 3 + 20680071.7964172 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl22_m6(theta, phi): return ( 2.21694903053267e-8 * (1.0 - cos(theta) ** 2) ** 3 * ( 26949657894522.9 * cos(theta) ** 16 - 75208347612622.1 * cos(theta) ** 14 + 83462922350592.8 * cos(theta) ** 12 - 47081648505462.6 * cos(theta) ** 10 + 14315366099633.9 * cos(theta) ** 8 - 2290458575941.42 * cos(theta) ** 6 + 173519589086.472 * cos(theta) ** 4 - 4797776656.7688 * cos(theta) ** 2 + 20680071.7964172 ) * cos(6 * phi) ) # @torch.jit.script def Yl22_m7(theta, phi): return ( 1.02919274986513e-9 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 431194526312367.0 * cos(theta) ** 15 - 1.05291686657671e15 * cos(theta) ** 13 + 1.00155506820711e15 * cos(theta) ** 11 - 470816485054626.0 * cos(theta) ** 9 + 114522928797071.0 * cos(theta) ** 7 - 13742751455648.5 * cos(theta) ** 5 + 694078356345.886 * cos(theta) ** 3 - 9595553313.5376 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl22_m8(theta, phi): return ( 4.85166115051776e-11 * (1.0 - cos(theta) ** 2) ** 4 * ( 6.4679178946855e15 * cos(theta) ** 14 - 1.36879192654972e16 * cos(theta) ** 12 + 1.10171057502783e16 * cos(theta) ** 10 - 4.23734836549164e15 * cos(theta) ** 8 + 801660501579499.0 * cos(theta) ** 6 - 68713757278242.7 * cos(theta) ** 4 + 2082235069037.66 * cos(theta) ** 2 - 9595553313.5376 ) * cos(8 * phi) ) # @torch.jit.script def Yl22_m9(theta, phi): return ( 2.32887187734102e-12 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 9.0550850525597e16 * cos(theta) ** 13 - 1.64255031185967e17 * cos(theta) ** 11 + 1.10171057502783e17 * cos(theta) ** 9 - 3.38987869239331e16 * cos(theta) ** 7 + 4.80996300947699e15 * cos(theta) ** 5 - 274855029112971.0 * cos(theta) ** 3 + 4164470138075.32 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl22_m10(theta, phi): return ( 1.14182337954032e-13 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.17716105683276e18 * cos(theta) ** 12 - 1.80680534304563e18 * cos(theta) ** 10 + 9.91539517525043e17 * cos(theta) ** 8 - 2.37291508467532e17 * cos(theta) ** 6 + 2.4049815047385e16 * cos(theta) ** 4 - 824565087338913.0 * cos(theta) ** 2 + 4164470138075.32 ) * cos(10 * phi) ) # @torch.jit.script def Yl22_m11(theta, phi): return ( 5.73787837392547e-15 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.41259326819931e19 * cos(theta) ** 11 - 1.80680534304563e19 * cos(theta) ** 9 + 7.93231614020034e18 * cos(theta) ** 7 - 1.42374905080519e18 * cos(theta) ** 5 + 9.61992601895398e16 * cos(theta) ** 3 - 1.64913017467783e15 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl22_m12(theta, phi): return ( 2.9669862738455e-16 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.55385259501924e20 * cos(theta) ** 10 - 1.62612480874107e20 * cos(theta) ** 8 + 5.55262129814024e19 * cos(theta) ** 6 - 7.11874525402595e18 * cos(theta) ** 4 + 2.8859778056862e17 * cos(theta) ** 2 - 1.64913017467783e15 ) * cos(12 * phi) ) # @torch.jit.script def Yl22_m13(theta, phi): return ( 1.58592087257013e-17 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.55385259501924e21 * cos(theta) ** 9 - 1.30089984699286e21 * cos(theta) ** 7 + 3.33157277888414e20 * cos(theta) ** 5 - 2.84749810161038e19 * cos(theta) ** 3 + 5.77195561137239e17 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl22_m14(theta, phi): return ( 8.81067151427848e-19 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.39846733551732e22 * cos(theta) ** 8 - 9.10629892894999e21 * cos(theta) ** 6 + 1.66578638944207e21 * cos(theta) ** 4 - 8.54249430483114e19 * cos(theta) ** 2 + 5.77195561137239e17 ) * cos(14 * phi) ) # @torch.jit.script def Yl22_m15(theta, phi): return ( 5.12109879641152e-20 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.11877386841386e23 * cos(theta) ** 7 - 5.46377935737e22 * cos(theta) ** 5 + 6.66314555776829e21 * cos(theta) ** 3 - 1.70849886096623e20 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl22_m16(theta, phi): return ( 3.13994713346901e-21 * (1.0 - cos(theta) ** 2) ** 8 * ( 7.83141707889699e23 * cos(theta) ** 6 - 2.731889678685e23 * cos(theta) ** 4 + 1.99894366733049e22 * cos(theta) ** 2 - 1.70849886096623e20 ) * cos(16 * phi) ) # @torch.jit.script def Yl22_m17(theta, phi): return ( 2.05264765451388e-22 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 4.6988502473382e24 * cos(theta) ** 5 - 1.092755871474e24 * cos(theta) ** 3 + 3.99788733466097e22 * cos(theta) ) * cos(17 * phi) ) # @torch.jit.script def Yl22_m18(theta, phi): return ( 1.45144107589342e-23 * (1.0 - cos(theta) ** 2) ** 9 * ( 2.3494251236691e25 * cos(theta) ** 4 - 3.278267614422e24 * cos(theta) ** 2 + 3.99788733466097e22 ) * cos(18 * phi) ) # @torch.jit.script def Yl22_m19(theta, phi): return ( 1.13338506490961e-24 * (1.0 - cos(theta) ** 2) ** 9.5 * (9.39770049467639e25 * cos(theta) ** 3 - 6.55653522884399e24 * cos(theta)) * cos(19 * phi) ) # @torch.jit.script def Yl22_m20(theta, phi): return ( 1.00969966670912e-25 * (1.0 - cos(theta) ** 2) ** 10 * (2.81931014840292e26 * cos(theta) ** 2 - 6.55653522884399e24) * cos(20 * phi) ) # @torch.jit.script def Yl22_m21(theta, phi): return ( 6.13925733212923 * (1.0 - cos(theta) ** 2) ** 10.5 * cos(21 * phi) * cos(theta) ) # @torch.jit.script def Yl22_m22(theta, phi): return 0.925527866459589 * (1.0 - cos(theta) ** 2) ** 11 * cos(22 * phi) # @torch.jit.script def Yl23_m_minus_23(theta, phi): return 0.935533863919911 * (1.0 - cos(theta) ** 2) ** 11.5 * sin(23 * phi) # @torch.jit.script def Yl23_m_minus_22(theta, phi): return 6.34509937549305 * (1.0 - cos(theta) ** 2) ** 11 * sin(22 * phi) * cos(theta) # @torch.jit.script def Yl23_m_minus_21(theta, phi): return ( 2.37232572869364e-27 * (1.0 - cos(theta) ** 2) ** 10.5 * (1.26868956678131e28 * cos(theta) ** 2 - 2.81931014840292e26) * sin(21 * phi) ) # @torch.jit.script def Yl23_m_minus_20(theta, phi): return ( 2.72559475329492e-26 * (1.0 - cos(theta) ** 2) ** 10 * (4.22896522260438e27 * cos(theta) ** 3 - 2.81931014840292e26 * cos(theta)) * sin(20 * phi) ) # @torch.jit.script def Yl23_m_minus_19(theta, phi): return ( 3.5745840073783e-25 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.05724130565109e27 * cos(theta) ** 4 - 1.40965507420146e26 * cos(theta) ** 2 + 1.639133807211e24 ) * sin(19 * phi) ) # @torch.jit.script def Yl23_m_minus_18(theta, phi): return ( 5.18006435618226e-24 * (1.0 - cos(theta) ** 2) ** 9 * ( 2.11448261130219e26 * cos(theta) ** 5 - 4.6988502473382e25 * cos(theta) ** 3 + 1.639133807211e24 * cos(theta) ) * sin(18 * phi) ) # @torch.jit.script def Yl23_m_minus_17(theta, phi): return ( 8.12461347795126e-23 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 3.52413768550365e25 * cos(theta) ** 6 - 1.17471256183455e25 * cos(theta) ** 4 + 8.19566903605499e23 * cos(theta) ** 2 - 6.66314555776829e21 ) * sin(17 * phi) ) # @torch.jit.script def Yl23_m_minus_16(theta, phi): return ( 1.35950786560836e-21 * (1.0 - cos(theta) ** 2) ** 8 * ( 5.03448240786235e24 * cos(theta) ** 7 - 2.3494251236691e24 * cos(theta) ** 5 + 2.731889678685e23 * cos(theta) ** 3 - 6.66314555776829e21 * cos(theta) ) * sin(16 * phi) ) # @torch.jit.script def Yl23_m_minus_15(theta, phi): return ( 2.40136967298897e-20 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 6.29310300982794e23 * cos(theta) ** 8 - 3.9157085394485e23 * cos(theta) ** 6 + 6.82972419671249e22 * cos(theta) ** 4 - 3.33157277888414e21 * cos(theta) ** 2 + 2.13562357620778e19 ) * sin(15 * phi) ) # @torch.jit.script def Yl23_m_minus_14(theta, phi): return ( 4.44091105154346e-19 * (1.0 - cos(theta) ** 2) ** 7 * ( 6.9923366775866e22 * cos(theta) ** 9 - 5.59386934206928e22 * cos(theta) ** 7 + 1.3659448393425e22 * cos(theta) ** 5 - 1.11052425962805e21 * cos(theta) ** 3 + 2.13562357620778e19 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl23_m_minus_13(theta, phi): return ( 8.54226296601593e-18 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 6.9923366775866e21 * cos(theta) ** 10 - 6.9923366775866e21 * cos(theta) ** 8 + 2.2765747322375e21 * cos(theta) ** 6 - 2.77631064907012e20 * cos(theta) ** 4 + 1.06781178810389e19 * cos(theta) ** 2 - 5.77195561137239e16 ) * sin(13 * phi) ) # @torch.jit.script def Yl23_m_minus_12(theta, phi): return ( 1.6998888671294e-16 * (1.0 - cos(theta) ** 2) ** 6 * ( 6.35666970689691e20 * cos(theta) ** 11 - 7.76926297509622e20 * cos(theta) ** 9 + 3.25224961748214e20 * cos(theta) ** 7 - 5.55262129814024e19 * cos(theta) ** 5 + 3.55937262701297e18 * cos(theta) ** 3 - 5.77195561137239e16 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl23_m_minus_11(theta, phi): return ( 3.48373550581555e-15 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 5.29722475574742e19 * cos(theta) ** 12 - 7.76926297509622e19 * cos(theta) ** 10 + 4.06531202185268e19 * cos(theta) ** 8 - 9.25436883023373e18 * cos(theta) ** 6 + 8.89843156753243e17 * cos(theta) ** 4 - 2.88597780568619e16 * cos(theta) ** 2 + 137427514556485.0 ) * sin(11 * phi) ) # @torch.jit.script def Yl23_m_minus_10(theta, phi): return ( 7.32413447372461e-14 * (1.0 - cos(theta) ** 2) ** 5 * ( 4.07478827365187e18 * cos(theta) ** 13 - 7.06296634099657e18 * cos(theta) ** 11 + 4.51701335761408e18 * cos(theta) ** 9 - 1.32205269003339e18 * cos(theta) ** 7 + 1.77968631350649e17 * cos(theta) ** 5 - 9.61992601895398e15 * cos(theta) ** 3 + 137427514556485.0 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl23_m_minus_9(theta, phi): return ( 1.57426303248889e-12 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 2.91056305260848e17 * cos(theta) ** 14 - 5.88580528416381e17 * cos(theta) ** 12 + 4.51701335761408e17 * cos(theta) ** 10 - 1.65256586254174e17 * cos(theta) ** 8 + 2.96614385584414e16 * cos(theta) ** 6 - 2.4049815047385e15 * cos(theta) ** 4 + 68713757278242.7 * cos(theta) ** 2 - 297462152719.666 ) * sin(9 * phi) ) # @torch.jit.script def Yl23_m_minus_8(theta, phi): return ( 3.4490374973626e-11 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.94037536840565e16 * cos(theta) ** 15 - 4.52754252627985e16 * cos(theta) ** 13 + 4.10637577964917e16 * cos(theta) ** 11 - 1.83618429171304e16 * cos(theta) ** 9 + 4.23734836549164e15 * cos(theta) ** 7 - 480996300947699.0 * cos(theta) ** 5 + 22904585759414.2 * cos(theta) ** 3 - 297462152719.666 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl23_m_minus_7(theta, phi): return ( 7.68137122555198e-10 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.21273460525353e15 * cos(theta) ** 16 - 3.23395894734275e15 * cos(theta) ** 14 + 3.42197981637431e15 * cos(theta) ** 12 - 1.83618429171304e15 * cos(theta) ** 10 + 529668545686454.0 * cos(theta) ** 8 - 80166050157949.9 * cos(theta) ** 6 + 5726146439853.56 * cos(theta) ** 4 - 148731076359.833 * cos(theta) ** 2 + 599722082.0961 ) * sin(7 * phi) ) # @torch.jit.script def Yl23_m_minus_6(theta, phi): return ( 1.73469785817059e-8 * (1.0 - cos(theta) ** 2) ** 3 * ( 71337329720796.0 * cos(theta) ** 17 - 215597263156183.0 * cos(theta) ** 15 + 263229216644177.0 * cos(theta) ** 13 - 166925844701186.0 * cos(theta) ** 11 + 58852060631828.3 * cos(theta) ** 9 - 11452292879707.1 * cos(theta) ** 7 + 1145229287970.71 * cos(theta) ** 5 - 49577025453.2776 * cos(theta) ** 3 + 599722082.0961 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl23_m_minus_5(theta, phi): return ( 3.96331958851659e-7 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 3963184984488.66 * cos(theta) ** 18 - 13474828947261.5 * cos(theta) ** 16 + 18802086903155.5 * cos(theta) ** 14 - 13910487058432.1 * cos(theta) ** 12 + 5885206063182.83 * cos(theta) ** 10 - 1431536609963.39 * cos(theta) ** 8 + 190871547995.119 * cos(theta) ** 6 - 12394256363.3194 * cos(theta) ** 4 + 299861041.04805 * cos(theta) ** 2 - 1148892.87757874 ) * sin(5 * phi) ) # @torch.jit.script def Yl23_m_minus_4(theta, phi): return ( 9.1414462474505e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 208588683394.14 * cos(theta) ** 19 - 792636996897.733 * cos(theta) ** 17 + 1253472460210.37 * cos(theta) ** 15 - 1070037466033.24 * cos(theta) ** 13 + 535018733016.621 * cos(theta) ** 11 - 159059623329.266 * cos(theta) ** 9 + 27267363999.3027 * cos(theta) ** 7 - 2478851272.66388 * cos(theta) ** 5 + 99953680.34935 * cos(theta) ** 3 - 1148892.87757874 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl23_m_minus_3(theta, phi): return ( 0.000212428014459756 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 10429434169.707 * cos(theta) ** 20 - 44035388716.5407 * cos(theta) ** 18 + 78342028763.148 * cos(theta) ** 16 - 76431247573.8029 * cos(theta) ** 14 + 44584894418.0517 * cos(theta) ** 12 - 15905962332.9266 * cos(theta) ** 10 + 3408420499.91283 * cos(theta) ** 8 - 413141878.777313 * cos(theta) ** 6 + 24988420.0873375 * cos(theta) ** 4 - 574446.438789368 * cos(theta) ** 2 + 2127.57940292358 ) * sin(3 * phi) ) # @torch.jit.script def Yl23_m_minus_2(theta, phi): return ( 0.00496372955394567 * (1.0 - cos(theta) ** 2) * ( 496639722.367001 * cos(theta) ** 21 - 2317652037.71267 * cos(theta) ** 19 + 4608354633.12635 * cos(theta) ** 17 - 5095416504.9202 * cos(theta) ** 15 + 3429607262.92706 * cos(theta) ** 13 - 1445996575.7206 * cos(theta) ** 11 + 378713388.879204 * cos(theta) ** 9 - 59020268.396759 * cos(theta) ** 7 + 4997684.0174675 * cos(theta) ** 5 - 191482.146263123 * cos(theta) ** 3 + 2127.57940292358 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl23_m_minus_1(theta, phi): return ( 0.116409776636641 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 22574532.8348637 * cos(theta) ** 22 - 115882601.885633 * cos(theta) ** 20 + 256019701.840353 * cos(theta) ** 18 - 318463531.557512 * cos(theta) ** 16 + 244971947.351933 * cos(theta) ** 14 - 120499714.643383 * cos(theta) ** 12 + 37871338.8879204 * cos(theta) ** 10 - 7377533.54959488 * cos(theta) ** 8 + 832947.336244583 * cos(theta) ** 6 - 47870.5365657806 * cos(theta) ** 4 + 1063.78970146179 * cos(theta) ** 2 - 3.86832618713379 ) * sin(phi) ) # @torch.jit.script def Yl23_m0(theta, phi): return ( 5963274.55669477 * cos(theta) ** 23 - 33526854.7298617 * cos(theta) ** 21 + 81867901.084546 * cos(theta) ** 19 - 113816350.288271 * cos(theta) ** 17 + 99224510.5077237 * cos(theta) ** 15 - 56316614.0719513 * cos(theta) ** 13 + 20917599.5124391 * cos(theta) ** 11 - 4980380.83629501 * cos(theta) ** 9 + 722958.508494437 * cos(theta) ** 7 - 58169.0753961042 * cos(theta) ** 5 + 2154.41019985571 * cos(theta) ** 3 - 23.5026567256986 * cos(theta) ) # @torch.jit.script def Yl23_m1(theta, phi): return ( 0.116409776636641 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 22574532.8348637 * cos(theta) ** 22 - 115882601.885633 * cos(theta) ** 20 + 256019701.840353 * cos(theta) ** 18 - 318463531.557512 * cos(theta) ** 16 + 244971947.351933 * cos(theta) ** 14 - 120499714.643383 * cos(theta) ** 12 + 37871338.8879204 * cos(theta) ** 10 - 7377533.54959488 * cos(theta) ** 8 + 832947.336244583 * cos(theta) ** 6 - 47870.5365657806 * cos(theta) ** 4 + 1063.78970146179 * cos(theta) ** 2 - 3.86832618713379 ) * cos(phi) ) # @torch.jit.script def Yl23_m2(theta, phi): return ( 0.00496372955394567 * (1.0 - cos(theta) ** 2) * ( 496639722.367001 * cos(theta) ** 21 - 2317652037.71267 * cos(theta) ** 19 + 4608354633.12635 * cos(theta) ** 17 - 5095416504.9202 * cos(theta) ** 15 + 3429607262.92706 * cos(theta) ** 13 - 1445996575.7206 * cos(theta) ** 11 + 378713388.879204 * cos(theta) ** 9 - 59020268.396759 * cos(theta) ** 7 + 4997684.0174675 * cos(theta) ** 5 - 191482.146263123 * cos(theta) ** 3 + 2127.57940292358 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl23_m3(theta, phi): return ( 0.000212428014459756 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 10429434169.707 * cos(theta) ** 20 - 44035388716.5407 * cos(theta) ** 18 + 78342028763.148 * cos(theta) ** 16 - 76431247573.8029 * cos(theta) ** 14 + 44584894418.0517 * cos(theta) ** 12 - 15905962332.9266 * cos(theta) ** 10 + 3408420499.91283 * cos(theta) ** 8 - 413141878.777313 * cos(theta) ** 6 + 24988420.0873375 * cos(theta) ** 4 - 574446.438789368 * cos(theta) ** 2 + 2127.57940292358 ) * cos(3 * phi) ) # @torch.jit.script def Yl23_m4(theta, phi): return ( 9.1414462474505e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 208588683394.14 * cos(theta) ** 19 - 792636996897.733 * cos(theta) ** 17 + 1253472460210.37 * cos(theta) ** 15 - 1070037466033.24 * cos(theta) ** 13 + 535018733016.621 * cos(theta) ** 11 - 159059623329.266 * cos(theta) ** 9 + 27267363999.3027 * cos(theta) ** 7 - 2478851272.66388 * cos(theta) ** 5 + 99953680.34935 * cos(theta) ** 3 - 1148892.87757874 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl23_m5(theta, phi): return ( 3.96331958851659e-7 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 3963184984488.66 * cos(theta) ** 18 - 13474828947261.5 * cos(theta) ** 16 + 18802086903155.5 * cos(theta) ** 14 - 13910487058432.1 * cos(theta) ** 12 + 5885206063182.83 * cos(theta) ** 10 - 1431536609963.39 * cos(theta) ** 8 + 190871547995.119 * cos(theta) ** 6 - 12394256363.3194 * cos(theta) ** 4 + 299861041.04805 * cos(theta) ** 2 - 1148892.87757874 ) * cos(5 * phi) ) # @torch.jit.script def Yl23_m6(theta, phi): return ( 1.73469785817059e-8 * (1.0 - cos(theta) ** 2) ** 3 * ( 71337329720796.0 * cos(theta) ** 17 - 215597263156183.0 * cos(theta) ** 15 + 263229216644177.0 * cos(theta) ** 13 - 166925844701186.0 * cos(theta) ** 11 + 58852060631828.3 * cos(theta) ** 9 - 11452292879707.1 * cos(theta) ** 7 + 1145229287970.71 * cos(theta) ** 5 - 49577025453.2776 * cos(theta) ** 3 + 599722082.0961 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl23_m7(theta, phi): return ( 7.68137122555198e-10 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.21273460525353e15 * cos(theta) ** 16 - 3.23395894734275e15 * cos(theta) ** 14 + 3.42197981637431e15 * cos(theta) ** 12 - 1.83618429171304e15 * cos(theta) ** 10 + 529668545686454.0 * cos(theta) ** 8 - 80166050157949.9 * cos(theta) ** 6 + 5726146439853.56 * cos(theta) ** 4 - 148731076359.833 * cos(theta) ** 2 + 599722082.0961 ) * cos(7 * phi) ) # @torch.jit.script def Yl23_m8(theta, phi): return ( 3.4490374973626e-11 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.94037536840565e16 * cos(theta) ** 15 - 4.52754252627985e16 * cos(theta) ** 13 + 4.10637577964917e16 * cos(theta) ** 11 - 1.83618429171304e16 * cos(theta) ** 9 + 4.23734836549164e15 * cos(theta) ** 7 - 480996300947699.0 * cos(theta) ** 5 + 22904585759414.2 * cos(theta) ** 3 - 297462152719.666 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl23_m9(theta, phi): return ( 1.57426303248889e-12 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 2.91056305260848e17 * cos(theta) ** 14 - 5.88580528416381e17 * cos(theta) ** 12 + 4.51701335761408e17 * cos(theta) ** 10 - 1.65256586254174e17 * cos(theta) ** 8 + 2.96614385584414e16 * cos(theta) ** 6 - 2.4049815047385e15 * cos(theta) ** 4 + 68713757278242.7 * cos(theta) ** 2 - 297462152719.666 ) * cos(9 * phi) ) # @torch.jit.script def Yl23_m10(theta, phi): return ( 7.32413447372461e-14 * (1.0 - cos(theta) ** 2) ** 5 * ( 4.07478827365187e18 * cos(theta) ** 13 - 7.06296634099657e18 * cos(theta) ** 11 + 4.51701335761408e18 * cos(theta) ** 9 - 1.32205269003339e18 * cos(theta) ** 7 + 1.77968631350649e17 * cos(theta) ** 5 - 9.61992601895398e15 * cos(theta) ** 3 + 137427514556485.0 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl23_m11(theta, phi): return ( 3.48373550581555e-15 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 5.29722475574742e19 * cos(theta) ** 12 - 7.76926297509622e19 * cos(theta) ** 10 + 4.06531202185268e19 * cos(theta) ** 8 - 9.25436883023373e18 * cos(theta) ** 6 + 8.89843156753243e17 * cos(theta) ** 4 - 2.88597780568619e16 * cos(theta) ** 2 + 137427514556485.0 ) * cos(11 * phi) ) # @torch.jit.script def Yl23_m12(theta, phi): return ( 1.6998888671294e-16 * (1.0 - cos(theta) ** 2) ** 6 * ( 6.35666970689691e20 * cos(theta) ** 11 - 7.76926297509622e20 * cos(theta) ** 9 + 3.25224961748214e20 * cos(theta) ** 7 - 5.55262129814024e19 * cos(theta) ** 5 + 3.55937262701297e18 * cos(theta) ** 3 - 5.77195561137239e16 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl23_m13(theta, phi): return ( 8.54226296601593e-18 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 6.9923366775866e21 * cos(theta) ** 10 - 6.9923366775866e21 * cos(theta) ** 8 + 2.2765747322375e21 * cos(theta) ** 6 - 2.77631064907012e20 * cos(theta) ** 4 + 1.06781178810389e19 * cos(theta) ** 2 - 5.77195561137239e16 ) * cos(13 * phi) ) # @torch.jit.script def Yl23_m14(theta, phi): return ( 4.44091105154346e-19 * (1.0 - cos(theta) ** 2) ** 7 * ( 6.9923366775866e22 * cos(theta) ** 9 - 5.59386934206928e22 * cos(theta) ** 7 + 1.3659448393425e22 * cos(theta) ** 5 - 1.11052425962805e21 * cos(theta) ** 3 + 2.13562357620778e19 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl23_m15(theta, phi): return ( 2.40136967298897e-20 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 6.29310300982794e23 * cos(theta) ** 8 - 3.9157085394485e23 * cos(theta) ** 6 + 6.82972419671249e22 * cos(theta) ** 4 - 3.33157277888414e21 * cos(theta) ** 2 + 2.13562357620778e19 ) * cos(15 * phi) ) # @torch.jit.script def Yl23_m16(theta, phi): return ( 1.35950786560836e-21 * (1.0 - cos(theta) ** 2) ** 8 * ( 5.03448240786235e24 * cos(theta) ** 7 - 2.3494251236691e24 * cos(theta) ** 5 + 2.731889678685e23 * cos(theta) ** 3 - 6.66314555776829e21 * cos(theta) ) * cos(16 * phi) ) # @torch.jit.script def Yl23_m17(theta, phi): return ( 8.12461347795126e-23 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 3.52413768550365e25 * cos(theta) ** 6 - 1.17471256183455e25 * cos(theta) ** 4 + 8.19566903605499e23 * cos(theta) ** 2 - 6.66314555776829e21 ) * cos(17 * phi) ) # @torch.jit.script def Yl23_m18(theta, phi): return ( 5.18006435618226e-24 * (1.0 - cos(theta) ** 2) ** 9 * ( 2.11448261130219e26 * cos(theta) ** 5 - 4.6988502473382e25 * cos(theta) ** 3 + 1.639133807211e24 * cos(theta) ) * cos(18 * phi) ) # @torch.jit.script def Yl23_m19(theta, phi): return ( 3.5745840073783e-25 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.05724130565109e27 * cos(theta) ** 4 - 1.40965507420146e26 * cos(theta) ** 2 + 1.639133807211e24 ) * cos(19 * phi) ) # @torch.jit.script def Yl23_m20(theta, phi): return ( 2.72559475329492e-26 * (1.0 - cos(theta) ** 2) ** 10 * (4.22896522260438e27 * cos(theta) ** 3 - 2.81931014840292e26 * cos(theta)) * cos(20 * phi) ) # @torch.jit.script def Yl23_m21(theta, phi): return ( 2.37232572869364e-27 * (1.0 - cos(theta) ** 2) ** 10.5 * (1.26868956678131e28 * cos(theta) ** 2 - 2.81931014840292e26) * cos(21 * phi) ) # @torch.jit.script def Yl23_m22(theta, phi): return 6.34509937549305 * (1.0 - cos(theta) ** 2) ** 11 * cos(22 * phi) * cos(theta) # @torch.jit.script def Yl23_m23(theta, phi): return 0.935533863919911 * (1.0 - cos(theta) ** 2) ** 11.5 * cos(23 * phi) # @torch.jit.script def Yl24_m_minus_24(theta, phi): return 0.9452287742978 * (1.0 - cos(theta) ** 2) ** 12 * sin(24 * phi) # @torch.jit.script def Yl24_m_minus_23(theta, phi): return ( 6.54873704743938 * (1.0 - cos(theta) ** 2) ** 11.5 * sin(23 * phi) * cos(theta) ) # @torch.jit.script def Yl24_m_minus_22(theta, phi): return ( 5.3240025801011e-29 * (1.0 - cos(theta) ** 2) ** 11 * (5.96284096387217e29 * cos(theta) ** 2 - 1.26868956678131e28) * sin(22 * phi) ) # @torch.jit.script def Yl24_m_minus_21(theta, phi): return ( 6.25428691320073e-28 * (1.0 - cos(theta) ** 2) ** 10.5 * (1.98761365462406e29 * cos(theta) ** 3 - 1.26868956678131e28 * cos(theta)) * sin(21 * phi) ) # @torch.jit.script def Yl24_m_minus_20(theta, phi): return ( 8.39100641322249e-27 * (1.0 - cos(theta) ** 2) ** 10 * ( 4.96903413656014e28 * cos(theta) ** 4 - 6.34344783390656e27 * cos(theta) ** 2 + 7.04827537100729e25 ) * sin(20 * phi) ) # @torch.jit.script def Yl24_m_minus_19(theta, phi): return ( 1.24458738133901e-25 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 9.93806827312028e27 * cos(theta) ** 5 - 2.11448261130219e27 * cos(theta) ** 3 + 7.04827537100729e25 * cos(theta) ) * sin(19 * phi) ) # @torch.jit.script def Yl24_m_minus_18(theta, phi): return ( 1.99910334761708e-24 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.65634471218671e27 * cos(theta) ** 6 - 5.28620652825547e26 * cos(theta) ** 4 + 3.52413768550365e25 * cos(theta) ** 2 - 2.731889678685e23 ) * sin(18 * phi) ) # @torch.jit.script def Yl24_m_minus_17(theta, phi): return ( 3.42774820132609e-23 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 2.36620673169531e26 * cos(theta) ** 7 - 1.05724130565109e26 * cos(theta) ** 5 + 1.17471256183455e25 * cos(theta) ** 3 - 2.731889678685e23 * cos(theta) ) * sin(17 * phi) ) # @torch.jit.script def Yl24_m_minus_16(theta, phi): return ( 6.2079160239131e-22 * (1.0 - cos(theta) ** 2) ** 8 * ( 2.95775841461913e25 * cos(theta) ** 8 - 1.76206884275182e25 * cos(theta) ** 6 + 2.93678140458637e24 * cos(theta) ** 4 - 1.3659448393425e23 * cos(theta) ** 2 + 8.32893194721036e20 ) * sin(16 * phi) ) # @torch.jit.script def Yl24_m_minus_15(theta, phi): return ( 1.1778692495173e-20 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 3.2863982384657e24 * cos(theta) ** 9 - 2.51724120393118e24 * cos(theta) ** 7 + 5.87356280917274e23 * cos(theta) ** 5 - 4.553149464475e22 * cos(theta) ** 3 + 8.32893194721036e20 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl24_m_minus_14(theta, phi): return ( 2.32610538861376e-19 * (1.0 - cos(theta) ** 2) ** 7 * ( 3.2863982384657e23 * cos(theta) ** 10 - 3.14655150491397e23 * cos(theta) ** 8 + 9.78927134862124e22 * cos(theta) ** 6 - 1.13828736611875e22 * cos(theta) ** 4 + 4.16446597360518e20 * cos(theta) ** 2 - 2.13562357620778e18 ) * sin(14 * phi) ) # @torch.jit.script def Yl24_m_minus_13(theta, phi): return ( 4.75573370217054e-18 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 2.98763476224155e22 * cos(theta) ** 11 - 3.4961683387933e22 * cos(theta) ** 9 + 1.39846733551732e22 * cos(theta) ** 7 - 2.2765747322375e21 * cos(theta) ** 5 + 1.38815532453506e20 * cos(theta) ** 3 - 2.13562357620778e18 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl24_m_minus_12(theta, phi): return ( 1.00209527253683e-16 * (1.0 - cos(theta) ** 2) ** 6 * ( 2.48969563520129e21 * cos(theta) ** 12 - 3.4961683387933e21 * cos(theta) ** 10 + 1.74808416939665e21 * cos(theta) ** 8 - 3.79429122039583e20 * cos(theta) ** 6 + 3.47038831133765e19 * cos(theta) ** 4 - 1.06781178810389e18 * cos(theta) ** 2 + 4.80996300947699e15 ) * sin(12 * phi) ) # @torch.jit.script def Yl24_m_minus_11(theta, phi): return ( 2.16786353281895e-15 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.91515048861638e20 * cos(theta) ** 13 - 3.17833485344846e20 * cos(theta) ** 11 + 1.94231574377406e20 * cos(theta) ** 9 - 5.4204160291369e19 * cos(theta) ** 7 + 6.9407766226753e18 * cos(theta) ** 5 - 3.55937262701297e17 * cos(theta) ** 3 + 4.80996300947699e15 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl24_m_minus_10(theta, phi): return ( 4.79877049408895e-14 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.36796463472598e19 * cos(theta) ** 14 - 2.64861237787371e19 * cos(theta) ** 12 + 1.94231574377406e19 * cos(theta) ** 10 - 6.77552003642113e18 * cos(theta) ** 8 + 1.15679610377922e18 * cos(theta) ** 6 - 8.89843156753244e16 * cos(theta) ** 4 + 2.4049815047385e15 * cos(theta) ** 2 - 9816251039748.96 ) * sin(10 * phi) ) # @torch.jit.script def Yl24_m_minus_9(theta, phi): return ( 1.08371495837322e-12 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 9.11976423150656e17 * cos(theta) ** 15 - 2.03739413682593e18 * cos(theta) ** 13 + 1.76574158524914e18 * cos(theta) ** 11 - 7.52835559602347e17 * cos(theta) ** 9 + 1.65256586254174e17 * cos(theta) ** 7 - 1.77968631350649e16 * cos(theta) ** 5 + 801660501579499.0 * cos(theta) ** 3 - 9816251039748.96 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl24_m_minus_8(theta, phi): return ( 2.49018738774613e-11 * (1.0 - cos(theta) ** 2) ** 4 * ( 5.6998526446916e16 * cos(theta) ** 16 - 1.45528152630424e17 * cos(theta) ** 14 + 1.47145132104095e17 * cos(theta) ** 12 - 7.52835559602347e16 * cos(theta) ** 10 + 2.06570732817717e16 * cos(theta) ** 8 - 2.96614385584415e15 * cos(theta) ** 6 + 200415125394875.0 * cos(theta) ** 4 - 4908125519874.48 * cos(theta) ** 2 + 18591384544.9791 ) * sin(8 * phi) ) # @torch.jit.script def Yl24_m_minus_7(theta, phi): return ( 5.80806514683927e-10 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 3.35285449687741e15 * cos(theta) ** 17 - 9.70187684202825e15 * cos(theta) ** 15 + 1.13188563156996e16 * cos(theta) ** 13 - 6.84395963274861e15 * cos(theta) ** 11 + 2.2952303646413e15 * cos(theta) ** 9 - 423734836549164.0 * cos(theta) ** 7 + 40083025078974.9 * cos(theta) ** 5 - 1636041839958.16 * cos(theta) ** 3 + 18591384544.9791 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl24_m_minus_6(theta, phi): return ( 1.37198252096958e-8 * (1.0 - cos(theta) ** 2) ** 3 * ( 186269694270967.0 * cos(theta) ** 18 - 606367302626766.0 * cos(theta) ** 16 + 808489736835688.0 * cos(theta) ** 14 - 570329969395718.0 * cos(theta) ** 12 + 229523036464130.0 * cos(theta) ** 10 - 52966854568645.4 * cos(theta) ** 8 + 6680504179829.16 * cos(theta) ** 6 - 409010459989.54 * cos(theta) ** 4 + 9295692272.48955 * cos(theta) ** 2 - 33317893.4497833 ) * sin(6 * phi) ) # @torch.jit.script def Yl24_m_minus_5(theta, phi): return ( 3.27556337379121e-7 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 9803668119524.59 * cos(theta) ** 19 - 35668664860398.0 * cos(theta) ** 17 + 53899315789045.8 * cos(theta) ** 15 - 43871536107362.9 * cos(theta) ** 13 + 20865730587648.2 * cos(theta) ** 11 - 5885206063182.83 * cos(theta) ** 9 + 954357739975.594 * cos(theta) ** 7 - 81802091997.908 * cos(theta) ** 5 + 3098564090.82985 * cos(theta) ** 3 - 33317893.4497833 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl24_m_minus_4(theta, phi): return ( 7.88860123286696e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 490183405976.23 * cos(theta) ** 20 - 1981592492244.33 * cos(theta) ** 18 + 3368707236815.36 * cos(theta) ** 16 - 3133681150525.92 * cos(theta) ** 14 + 1738810882304.02 * cos(theta) ** 12 - 588520606318.283 * cos(theta) ** 10 + 119294717496.949 * cos(theta) ** 8 - 13633681999.6513 * cos(theta) ** 6 + 774641022.707462 * cos(theta) ** 4 - 16658946.7248917 * cos(theta) ** 2 + 57444.6438789368 ) * sin(4 * phi) ) # @torch.jit.script def Yl24_m_minus_3(theta, phi): return ( 0.000191288413903665 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 23342066951.249 * cos(theta) ** 21 - 104294341697.07 * cos(theta) ** 19 + 198159249224.433 * cos(theta) ** 17 - 208912076701.728 * cos(theta) ** 15 + 133754683254.155 * cos(theta) ** 13 - 53501873301.6621 * cos(theta) ** 11 + 13254968610.7721 * cos(theta) ** 9 - 1947668857.09305 * cos(theta) ** 7 + 154928204.541492 * cos(theta) ** 5 - 5552982.24163055 * cos(theta) ** 3 + 57444.6438789368 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl24_m_minus_2(theta, phi): return ( 0.00466210326274582 * (1.0 - cos(theta) ** 2) * ( 1061003043.23859 * cos(theta) ** 22 - 5214717084.85351 * cos(theta) ** 20 + 11008847179.1352 * cos(theta) ** 18 - 13057004793.858 * cos(theta) ** 16 + 9553905946.72537 * cos(theta) ** 14 - 4458489441.80517 * cos(theta) ** 12 + 1325496861.07721 * cos(theta) ** 10 - 243458607.136631 * cos(theta) ** 8 + 25821367.4235821 * cos(theta) ** 6 - 1388245.56040764 * cos(theta) ** 4 + 28722.3219394684 * cos(theta) ** 2 - 96.7081546783447 ) * sin(2 * phi) ) # @torch.jit.script def Yl24_m_minus_1(theta, phi): return ( 0.114007252777348 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 46130567.0973301 * cos(theta) ** 23 - 248319861.1835 * cos(theta) ** 21 + 579413009.428167 * cos(theta) ** 19 - 768059105.521059 * cos(theta) ** 17 + 636927063.115025 * cos(theta) ** 15 - 342960726.292706 * cos(theta) ** 13 + 120499714.643383 * cos(theta) ** 11 - 27050956.3485146 * cos(theta) ** 9 + 3688766.77479744 * cos(theta) ** 7 - 277649.112081528 * cos(theta) ** 5 + 9574.10731315613 * cos(theta) ** 3 - 96.7081546783447 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl24_m0(theta, phi): return ( 11923960.6056839 * cos(theta) ** 24 - 70021555.8972075 * cos(theta) ** 22 + 179721993.469499 * cos(theta) ** 20 - 264706812.086859 * cos(theta) ** 18 + 246952086.885911 * cos(theta) ** 16 - 151970515.006715 * cos(theta) ** 14 + 62294220.115365 * cos(theta) ** 12 - 16781300.1127106 * cos(theta) ** 10 + 2860448.88284839 * cos(theta) ** 8 - 287070.138780484 * cos(theta) ** 6 + 14848.455454163 * cos(theta) ** 4 - 299.968797053797 * cos(theta) ** 2 + 0.999895990179324 ) # @torch.jit.script def Yl24_m1(theta, phi): return ( 0.114007252777348 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 46130567.0973301 * cos(theta) ** 23 - 248319861.1835 * cos(theta) ** 21 + 579413009.428167 * cos(theta) ** 19 - 768059105.521059 * cos(theta) ** 17 + 636927063.115025 * cos(theta) ** 15 - 342960726.292706 * cos(theta) ** 13 + 120499714.643383 * cos(theta) ** 11 - 27050956.3485146 * cos(theta) ** 9 + 3688766.77479744 * cos(theta) ** 7 - 277649.112081528 * cos(theta) ** 5 + 9574.10731315613 * cos(theta) ** 3 - 96.7081546783447 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl24_m2(theta, phi): return ( 0.00466210326274582 * (1.0 - cos(theta) ** 2) * ( 1061003043.23859 * cos(theta) ** 22 - 5214717084.85351 * cos(theta) ** 20 + 11008847179.1352 * cos(theta) ** 18 - 13057004793.858 * cos(theta) ** 16 + 9553905946.72537 * cos(theta) ** 14 - 4458489441.80517 * cos(theta) ** 12 + 1325496861.07721 * cos(theta) ** 10 - 243458607.136631 * cos(theta) ** 8 + 25821367.4235821 * cos(theta) ** 6 - 1388245.56040764 * cos(theta) ** 4 + 28722.3219394684 * cos(theta) ** 2 - 96.7081546783447 ) * cos(2 * phi) ) # @torch.jit.script def Yl24_m3(theta, phi): return ( 0.000191288413903665 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 23342066951.249 * cos(theta) ** 21 - 104294341697.07 * cos(theta) ** 19 + 198159249224.433 * cos(theta) ** 17 - 208912076701.728 * cos(theta) ** 15 + 133754683254.155 * cos(theta) ** 13 - 53501873301.6621 * cos(theta) ** 11 + 13254968610.7721 * cos(theta) ** 9 - 1947668857.09305 * cos(theta) ** 7 + 154928204.541492 * cos(theta) ** 5 - 5552982.24163055 * cos(theta) ** 3 + 57444.6438789368 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl24_m4(theta, phi): return ( 7.88860123286696e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 490183405976.23 * cos(theta) ** 20 - 1981592492244.33 * cos(theta) ** 18 + 3368707236815.36 * cos(theta) ** 16 - 3133681150525.92 * cos(theta) ** 14 + 1738810882304.02 * cos(theta) ** 12 - 588520606318.283 * cos(theta) ** 10 + 119294717496.949 * cos(theta) ** 8 - 13633681999.6513 * cos(theta) ** 6 + 774641022.707462 * cos(theta) ** 4 - 16658946.7248917 * cos(theta) ** 2 + 57444.6438789368 ) * cos(4 * phi) ) # @torch.jit.script def Yl24_m5(theta, phi): return ( 3.27556337379121e-7 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 9803668119524.59 * cos(theta) ** 19 - 35668664860398.0 * cos(theta) ** 17 + 53899315789045.8 * cos(theta) ** 15 - 43871536107362.9 * cos(theta) ** 13 + 20865730587648.2 * cos(theta) ** 11 - 5885206063182.83 * cos(theta) ** 9 + 954357739975.594 * cos(theta) ** 7 - 81802091997.908 * cos(theta) ** 5 + 3098564090.82985 * cos(theta) ** 3 - 33317893.4497833 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl24_m6(theta, phi): return ( 1.37198252096958e-8 * (1.0 - cos(theta) ** 2) ** 3 * ( 186269694270967.0 * cos(theta) ** 18 - 606367302626766.0 * cos(theta) ** 16 + 808489736835688.0 * cos(theta) ** 14 - 570329969395718.0 * cos(theta) ** 12 + 229523036464130.0 * cos(theta) ** 10 - 52966854568645.4 * cos(theta) ** 8 + 6680504179829.16 * cos(theta) ** 6 - 409010459989.54 * cos(theta) ** 4 + 9295692272.48955 * cos(theta) ** 2 - 33317893.4497833 ) * cos(6 * phi) ) # @torch.jit.script def Yl24_m7(theta, phi): return ( 5.80806514683927e-10 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 3.35285449687741e15 * cos(theta) ** 17 - 9.70187684202825e15 * cos(theta) ** 15 + 1.13188563156996e16 * cos(theta) ** 13 - 6.84395963274861e15 * cos(theta) ** 11 + 2.2952303646413e15 * cos(theta) ** 9 - 423734836549164.0 * cos(theta) ** 7 + 40083025078974.9 * cos(theta) ** 5 - 1636041839958.16 * cos(theta) ** 3 + 18591384544.9791 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl24_m8(theta, phi): return ( 2.49018738774613e-11 * (1.0 - cos(theta) ** 2) ** 4 * ( 5.6998526446916e16 * cos(theta) ** 16 - 1.45528152630424e17 * cos(theta) ** 14 + 1.47145132104095e17 * cos(theta) ** 12 - 7.52835559602347e16 * cos(theta) ** 10 + 2.06570732817717e16 * cos(theta) ** 8 - 2.96614385584415e15 * cos(theta) ** 6 + 200415125394875.0 * cos(theta) ** 4 - 4908125519874.48 * cos(theta) ** 2 + 18591384544.9791 ) * cos(8 * phi) ) # @torch.jit.script def Yl24_m9(theta, phi): return ( 1.08371495837322e-12 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 9.11976423150656e17 * cos(theta) ** 15 - 2.03739413682593e18 * cos(theta) ** 13 + 1.76574158524914e18 * cos(theta) ** 11 - 7.52835559602347e17 * cos(theta) ** 9 + 1.65256586254174e17 * cos(theta) ** 7 - 1.77968631350649e16 * cos(theta) ** 5 + 801660501579499.0 * cos(theta) ** 3 - 9816251039748.96 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl24_m10(theta, phi): return ( 4.79877049408895e-14 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.36796463472598e19 * cos(theta) ** 14 - 2.64861237787371e19 * cos(theta) ** 12 + 1.94231574377406e19 * cos(theta) ** 10 - 6.77552003642113e18 * cos(theta) ** 8 + 1.15679610377922e18 * cos(theta) ** 6 - 8.89843156753244e16 * cos(theta) ** 4 + 2.4049815047385e15 * cos(theta) ** 2 - 9816251039748.96 ) * cos(10 * phi) ) # @torch.jit.script def Yl24_m11(theta, phi): return ( 2.16786353281895e-15 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.91515048861638e20 * cos(theta) ** 13 - 3.17833485344846e20 * cos(theta) ** 11 + 1.94231574377406e20 * cos(theta) ** 9 - 5.4204160291369e19 * cos(theta) ** 7 + 6.9407766226753e18 * cos(theta) ** 5 - 3.55937262701297e17 * cos(theta) ** 3 + 4.80996300947699e15 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl24_m12(theta, phi): return ( 1.00209527253683e-16 * (1.0 - cos(theta) ** 2) ** 6 * ( 2.48969563520129e21 * cos(theta) ** 12 - 3.4961683387933e21 * cos(theta) ** 10 + 1.74808416939665e21 * cos(theta) ** 8 - 3.79429122039583e20 * cos(theta) ** 6 + 3.47038831133765e19 * cos(theta) ** 4 - 1.06781178810389e18 * cos(theta) ** 2 + 4.80996300947699e15 ) * cos(12 * phi) ) # @torch.jit.script def Yl24_m13(theta, phi): return ( 4.75573370217054e-18 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 2.98763476224155e22 * cos(theta) ** 11 - 3.4961683387933e22 * cos(theta) ** 9 + 1.39846733551732e22 * cos(theta) ** 7 - 2.2765747322375e21 * cos(theta) ** 5 + 1.38815532453506e20 * cos(theta) ** 3 - 2.13562357620778e18 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl24_m14(theta, phi): return ( 2.32610538861376e-19 * (1.0 - cos(theta) ** 2) ** 7 * ( 3.2863982384657e23 * cos(theta) ** 10 - 3.14655150491397e23 * cos(theta) ** 8 + 9.78927134862124e22 * cos(theta) ** 6 - 1.13828736611875e22 * cos(theta) ** 4 + 4.16446597360518e20 * cos(theta) ** 2 - 2.13562357620778e18 ) * cos(14 * phi) ) # @torch.jit.script def Yl24_m15(theta, phi): return ( 1.1778692495173e-20 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 3.2863982384657e24 * cos(theta) ** 9 - 2.51724120393118e24 * cos(theta) ** 7 + 5.87356280917274e23 * cos(theta) ** 5 - 4.553149464475e22 * cos(theta) ** 3 + 8.32893194721036e20 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl24_m16(theta, phi): return ( 6.2079160239131e-22 * (1.0 - cos(theta) ** 2) ** 8 * ( 2.95775841461913e25 * cos(theta) ** 8 - 1.76206884275182e25 * cos(theta) ** 6 + 2.93678140458637e24 * cos(theta) ** 4 - 1.3659448393425e23 * cos(theta) ** 2 + 8.32893194721036e20 ) * cos(16 * phi) ) # @torch.jit.script def Yl24_m17(theta, phi): return ( 3.42774820132609e-23 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 2.36620673169531e26 * cos(theta) ** 7 - 1.05724130565109e26 * cos(theta) ** 5 + 1.17471256183455e25 * cos(theta) ** 3 - 2.731889678685e23 * cos(theta) ) * cos(17 * phi) ) # @torch.jit.script def Yl24_m18(theta, phi): return ( 1.99910334761708e-24 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.65634471218671e27 * cos(theta) ** 6 - 5.28620652825547e26 * cos(theta) ** 4 + 3.52413768550365e25 * cos(theta) ** 2 - 2.731889678685e23 ) * cos(18 * phi) ) # @torch.jit.script def Yl24_m19(theta, phi): return ( 1.24458738133901e-25 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 9.93806827312028e27 * cos(theta) ** 5 - 2.11448261130219e27 * cos(theta) ** 3 + 7.04827537100729e25 * cos(theta) ) * cos(19 * phi) ) # @torch.jit.script def Yl24_m20(theta, phi): return ( 8.39100641322249e-27 * (1.0 - cos(theta) ** 2) ** 10 * ( 4.96903413656014e28 * cos(theta) ** 4 - 6.34344783390656e27 * cos(theta) ** 2 + 7.04827537100729e25 ) * cos(20 * phi) ) # @torch.jit.script def Yl24_m21(theta, phi): return ( 6.25428691320073e-28 * (1.0 - cos(theta) ** 2) ** 10.5 * (1.98761365462406e29 * cos(theta) ** 3 - 1.26868956678131e28 * cos(theta)) * cos(21 * phi) ) # @torch.jit.script def Yl24_m22(theta, phi): return ( 5.3240025801011e-29 * (1.0 - cos(theta) ** 2) ** 11 * (5.96284096387217e29 * cos(theta) ** 2 - 1.26868956678131e28) * cos(22 * phi) ) # @torch.jit.script def Yl24_m23(theta, phi): return ( 6.54873704743938 * (1.0 - cos(theta) ** 2) ** 11.5 * cos(23 * phi) * cos(theta) ) # @torch.jit.script def Yl24_m24(theta, phi): return 0.9452287742978 * (1.0 - cos(theta) ** 2) ** 12 * cos(24 * phi) # @torch.jit.script def Yl25_m_minus_25(theta, phi): return 0.954634267390256 * (1.0 - cos(theta) ** 2) ** 12.5 * sin(25 * phi) # @torch.jit.script def Yl25_m_minus_24(theta, phi): return 6.75028364024702 * (1.0 - cos(theta) ** 2) ** 12 * sin(24 * phi) * cos(theta) # @torch.jit.script def Yl25_m_minus_23(theta, phi): return ( 1.14355157834306e-30 * (1.0 - cos(theta) ** 2) ** 11.5 * (2.92179207229736e31 * cos(theta) ** 2 - 5.96284096387217e29) * sin(23 * phi) ) # @torch.jit.script def Yl25_m_minus_22(theta, phi): return ( 1.37226189401167e-29 * (1.0 - cos(theta) ** 2) ** 11 * (9.73930690765788e30 * cos(theta) ** 3 - 5.96284096387217e29 * cos(theta)) * sin(22 * phi) ) # @torch.jit.script def Yl25_m_minus_21(theta, phi): return ( 1.88155071332724e-28 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 2.43482672691447e30 * cos(theta) ** 4 - 2.98142048193609e29 * cos(theta) ** 2 + 3.17172391695328e27 ) * sin(21 * phi) ) # @torch.jit.script def Yl25_m_minus_20(theta, phi): return ( 2.85351294016536e-27 * (1.0 - cos(theta) ** 2) ** 10 * ( 4.86965345382894e29 * cos(theta) ** 5 - 9.93806827312028e28 * cos(theta) ** 3 + 3.17172391695328e27 * cos(theta) ) * sin(20 * phi) ) # @torch.jit.script def Yl25_m_minus_19(theta, phi): return ( 4.68880021638437e-26 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 8.1160890897149e28 * cos(theta) ** 6 - 2.48451706828007e28 * cos(theta) ** 4 + 1.58586195847664e27 * cos(theta) ** 2 - 1.17471256183455e25 ) * sin(19 * phi) ) # @torch.jit.script def Yl25_m_minus_18(theta, phi): return ( 8.22881098367386e-25 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.1594412985307e28 * cos(theta) ** 7 - 4.96903413656014e27 * cos(theta) ** 5 + 5.28620652825547e26 * cos(theta) ** 3 - 1.17471256183455e25 * cos(theta) ) * sin(18 * phi) ) # @torch.jit.script def Yl25_m_minus_17(theta, phi): return ( 1.52621707468272e-23 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.44930162316337e27 * cos(theta) ** 8 - 8.28172356093357e26 * cos(theta) ** 6 + 1.32155163206387e26 * cos(theta) ** 4 - 5.87356280917274e24 * cos(theta) ** 2 + 3.41486209835625e22 ) * sin(17 * phi) ) # @torch.jit.script def Yl25_m_minus_16(theta, phi): return ( 2.96730513315039e-22 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.61033513684819e26 * cos(theta) ** 9 - 1.18310336584765e26 * cos(theta) ** 7 + 2.64310326412774e25 * cos(theta) ** 5 - 1.95785426972425e24 * cos(theta) ** 3 + 3.41486209835625e22 * cos(theta) ) * sin(16 * phi) ) # @torch.jit.script def Yl25_m_minus_15(theta, phi): return ( 6.00833495972093e-21 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.61033513684819e25 * cos(theta) ** 10 - 1.47887920730957e25 * cos(theta) ** 8 + 4.40517210687956e24 * cos(theta) ** 6 - 4.89463567431062e23 * cos(theta) ** 4 + 1.70743104917812e22 * cos(theta) ** 2 - 8.32893194721036e19 ) * sin(15 * phi) ) # @torch.jit.script def Yl25_m_minus_14(theta, phi): return ( 1.26031897370507e-19 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.46394103349836e24 * cos(theta) ** 11 - 1.64319911923285e24 * cos(theta) ** 9 + 6.29310300982794e23 * cos(theta) ** 7 - 9.78927134862124e22 * cos(theta) ** 5 + 5.69143683059375e21 * cos(theta) ** 3 - 8.32893194721036e19 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl25_m_minus_13(theta, phi): return ( 2.72648680988027e-18 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.21995086124863e23 * cos(theta) ** 12 - 1.64319911923285e23 * cos(theta) ** 10 + 7.86637876228493e22 * cos(theta) ** 8 - 1.63154522477021e22 * cos(theta) ** 6 + 1.42285920764844e21 * cos(theta) ** 4 - 4.16446597360518e19 * cos(theta) ** 2 + 1.77968631350649e17 ) * sin(13 * phi) ) # @torch.jit.script def Yl25_m_minus_12(theta, phi): return ( 6.05991978517773e-17 * (1.0 - cos(theta) ** 2) ** 6 * ( 9.38423739422025e21 * cos(theta) ** 13 - 1.49381738112077e22 * cos(theta) ** 11 + 8.74042084698325e21 * cos(theta) ** 9 - 2.33077889252887e21 * cos(theta) ** 7 + 2.84571841529687e20 * cos(theta) ** 5 - 1.38815532453506e19 * cos(theta) ** 3 + 1.77968631350649e17 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl25_m_minus_11(theta, phi): return ( 1.37921431263761e-15 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 6.70302671015732e20 * cos(theta) ** 14 - 1.24484781760064e21 * cos(theta) ** 12 + 8.74042084698325e20 * cos(theta) ** 10 - 2.91347361566108e20 * cos(theta) ** 8 + 4.74286402549479e19 * cos(theta) ** 6 - 3.47038831133765e18 * cos(theta) ** 4 + 8.89843156753244e16 * cos(theta) ** 2 - 343568786391214.0 ) * sin(11 * phi) ) # @torch.jit.script def Yl25_m_minus_10(theta, phi): return ( 3.20500443821783e-14 * (1.0 - cos(theta) ** 2) ** 5 * ( 4.46868447343821e19 * cos(theta) ** 15 - 9.57575244308188e19 * cos(theta) ** 13 + 7.94583713362114e19 * cos(theta) ** 11 - 3.23719290629009e19 * cos(theta) ** 9 + 6.77552003642113e18 * cos(theta) ** 7 - 6.9407766226753e17 * cos(theta) ** 5 + 2.96614385584414e16 * cos(theta) ** 3 - 343568786391214.0 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl25_m_minus_9(theta, phi): return ( 7.58442478467402e-13 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 2.79292779589888e18 * cos(theta) ** 16 - 6.83982317362992e18 * cos(theta) ** 14 + 6.62153094468428e18 * cos(theta) ** 12 - 3.23719290629009e18 * cos(theta) ** 10 + 8.46940004552641e17 * cos(theta) ** 8 - 1.15679610377922e17 * cos(theta) ** 6 + 7.41535963961036e15 * cos(theta) ** 4 - 171784393195607.0 * cos(theta) ** 2 + 613515689984.31 ) * sin(9 * phi) ) # @torch.jit.script def Yl25_m_minus_8(theta, phi): return ( 1.82341938685839e-11 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.64289870346993e17 * cos(theta) ** 17 - 4.55988211575328e17 * cos(theta) ** 15 + 5.09348534206483e17 * cos(theta) ** 13 - 2.9429026420819e17 * cos(theta) ** 11 + 9.41044449502934e16 * cos(theta) ** 9 - 1.65256586254174e16 * cos(theta) ** 7 + 1.48307192792207e15 * cos(theta) ** 5 - 57261464398535.6 * cos(theta) ** 3 + 613515689984.31 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl25_m_minus_7(theta, phi): return ( 4.44405873797859e-10 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 9.12721501927739e15 * cos(theta) ** 18 - 2.8499263223458e16 * cos(theta) ** 16 + 3.63820381576059e16 * cos(theta) ** 14 - 2.45241886840159e16 * cos(theta) ** 12 + 9.41044449502934e15 * cos(theta) ** 10 - 2.06570732817717e15 * cos(theta) ** 8 + 247178654653679.0 * cos(theta) ** 6 - 14315366099633.9 * cos(theta) ** 4 + 306757844992.155 * cos(theta) ** 2 - 1032854696.94328 ) * sin(7 * phi) ) # @torch.jit.script def Yl25_m_minus_6(theta, phi): return ( 1.09580071657648e-8 * (1.0 - cos(theta) ** 2) ** 3 * ( 480379737856705.0 * cos(theta) ** 19 - 1.67642724843871e15 * cos(theta) ** 17 + 2.42546921050706e15 * cos(theta) ** 15 - 1.8864760526166e15 * cos(theta) ** 13 + 855494954093576.0 * cos(theta) ** 11 - 229523036464130.0 * cos(theta) ** 9 + 35311236379097.0 * cos(theta) ** 7 - 2863073219926.78 * cos(theta) ** 5 + 102252614997.385 * cos(theta) ** 3 - 1032854696.94328 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl25_m_minus_5(theta, phi): return ( 2.72852178015624e-7 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 24018986892835.3 * cos(theta) ** 20 - 93134847135483.6 * cos(theta) ** 18 + 151591825656691.0 * cos(theta) ** 16 - 134748289472615.0 * cos(theta) ** 14 + 71291246174464.7 * cos(theta) ** 12 - 22952303646413.0 * cos(theta) ** 10 + 4413904547387.12 * cos(theta) ** 8 - 477178869987.797 * cos(theta) ** 6 + 25563153749.3463 * cos(theta) ** 4 - 516427348.471642 * cos(theta) ** 2 + 1665894.67248917 ) * sin(5 * phi) ) # @torch.jit.script def Yl25_m_minus_4(theta, phi): return ( 6.84853531495298e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 1143761280611.2 * cos(theta) ** 21 - 4901834059762.3 * cos(theta) ** 19 + 8917166215099.5 * cos(theta) ** 17 - 8983219298174.31 * cos(theta) ** 15 + 5483942013420.36 * cos(theta) ** 13 - 2086573058764.82 * cos(theta) ** 11 + 490433838598.569 * cos(theta) ** 9 - 68168409998.2567 * cos(theta) ** 7 + 5112630749.86925 * cos(theta) ** 5 - 172142449.490547 * cos(theta) ** 3 + 1665894.67248917 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl25_m_minus_3(theta, phi): return ( 0.000172984837897952 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 51989149118.691 * cos(theta) ** 22 - 245091702988.115 * cos(theta) ** 20 + 495398123061.083 * cos(theta) ** 18 - 561451206135.894 * cos(theta) ** 16 + 391710143815.74 * cos(theta) ** 14 - 173881088230.402 * cos(theta) ** 12 + 49043383859.8569 * cos(theta) ** 10 - 8521051249.78209 * cos(theta) ** 8 + 852105124.978209 * cos(theta) ** 6 - 43035612.3726368 * cos(theta) ** 4 + 832947.336244583 * cos(theta) ** 2 - 2611.12017631531 ) * sin(3 * phi) ) # @torch.jit.script def Yl25_m_minus_2(theta, phi): return ( 0.00438986305798052 * (1.0 - cos(theta) ** 2) * ( 2260397787.76917 * cos(theta) ** 23 - 11671033475.6245 * cos(theta) ** 21 + 26073585424.2675 * cos(theta) ** 19 - 33026541537.4055 * cos(theta) ** 17 + 26114009587.716 * cos(theta) ** 15 - 13375468325.4155 * cos(theta) ** 13 + 4458489441.80517 * cos(theta) ** 11 - 946783472.198009 * cos(theta) ** 9 + 121729303.568316 * cos(theta) ** 7 - 8607122.47452736 * cos(theta) ** 5 + 277649.112081528 * cos(theta) ** 3 - 2611.12017631531 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl25_m_minus_1(theta, phi): return ( 0.11174766972402 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 94183241.1570489 * cos(theta) ** 24 - 530501521.619296 * cos(theta) ** 22 + 1303679271.21338 * cos(theta) ** 20 - 1834807863.1892 * cos(theta) ** 18 + 1632125599.23225 * cos(theta) ** 16 - 955390594.672537 * cos(theta) ** 14 + 371540786.817098 * cos(theta) ** 12 - 94678347.2198009 * cos(theta) ** 10 + 15216162.9460394 * cos(theta) ** 8 - 1434520.41242123 * cos(theta) ** 6 + 69412.2780203819 * cos(theta) ** 4 - 1305.56008815765 * cos(theta) ** 2 + 4.02950644493103 ) * sin(phi) ) # @torch.jit.script def Yl25_m0(theta, phi): return ( 23843151.1500716 * cos(theta) ** 25 - 145978476.42901 * cos(theta) ** 23 + 392899516.346165 * cos(theta) ** 21 - 611177025.427368 * cos(theta) ** 19 + 607623670.628372 * cos(theta) ** 17 - 403106435.148578 * cos(theta) ** 15 + 180881092.694875 * cos(theta) ** 13 - 54473842.5876457 * cos(theta) ** 11 + 10700219.0797161 * cos(theta) ** 9 - 1296996.2520868 * cos(theta) ** 7 + 87861.0364316867 * cos(theta) ** 5 - 2754.26446494316 * cos(theta) ** 3 + 25.5024487494737 * cos(theta) ) # @torch.jit.script def Yl25_m1(theta, phi): return ( 0.11174766972402 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 94183241.1570489 * cos(theta) ** 24 - 530501521.619296 * cos(theta) ** 22 + 1303679271.21338 * cos(theta) ** 20 - 1834807863.1892 * cos(theta) ** 18 + 1632125599.23225 * cos(theta) ** 16 - 955390594.672537 * cos(theta) ** 14 + 371540786.817098 * cos(theta) ** 12 - 94678347.2198009 * cos(theta) ** 10 + 15216162.9460394 * cos(theta) ** 8 - 1434520.41242123 * cos(theta) ** 6 + 69412.2780203819 * cos(theta) ** 4 - 1305.56008815765 * cos(theta) ** 2 + 4.02950644493103 ) * cos(phi) ) # @torch.jit.script def Yl25_m2(theta, phi): return ( 0.00438986305798052 * (1.0 - cos(theta) ** 2) * ( 2260397787.76917 * cos(theta) ** 23 - 11671033475.6245 * cos(theta) ** 21 + 26073585424.2675 * cos(theta) ** 19 - 33026541537.4055 * cos(theta) ** 17 + 26114009587.716 * cos(theta) ** 15 - 13375468325.4155 * cos(theta) ** 13 + 4458489441.80517 * cos(theta) ** 11 - 946783472.198009 * cos(theta) ** 9 + 121729303.568316 * cos(theta) ** 7 - 8607122.47452736 * cos(theta) ** 5 + 277649.112081528 * cos(theta) ** 3 - 2611.12017631531 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl25_m3(theta, phi): return ( 0.000172984837897952 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 51989149118.691 * cos(theta) ** 22 - 245091702988.115 * cos(theta) ** 20 + 495398123061.083 * cos(theta) ** 18 - 561451206135.894 * cos(theta) ** 16 + 391710143815.74 * cos(theta) ** 14 - 173881088230.402 * cos(theta) ** 12 + 49043383859.8569 * cos(theta) ** 10 - 8521051249.78209 * cos(theta) ** 8 + 852105124.978209 * cos(theta) ** 6 - 43035612.3726368 * cos(theta) ** 4 + 832947.336244583 * cos(theta) ** 2 - 2611.12017631531 ) * cos(3 * phi) ) # @torch.jit.script def Yl25_m4(theta, phi): return ( 6.84853531495298e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 1143761280611.2 * cos(theta) ** 21 - 4901834059762.3 * cos(theta) ** 19 + 8917166215099.5 * cos(theta) ** 17 - 8983219298174.31 * cos(theta) ** 15 + 5483942013420.36 * cos(theta) ** 13 - 2086573058764.82 * cos(theta) ** 11 + 490433838598.569 * cos(theta) ** 9 - 68168409998.2567 * cos(theta) ** 7 + 5112630749.86925 * cos(theta) ** 5 - 172142449.490547 * cos(theta) ** 3 + 1665894.67248917 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl25_m5(theta, phi): return ( 2.72852178015624e-7 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 24018986892835.3 * cos(theta) ** 20 - 93134847135483.6 * cos(theta) ** 18 + 151591825656691.0 * cos(theta) ** 16 - 134748289472615.0 * cos(theta) ** 14 + 71291246174464.7 * cos(theta) ** 12 - 22952303646413.0 * cos(theta) ** 10 + 4413904547387.12 * cos(theta) ** 8 - 477178869987.797 * cos(theta) ** 6 + 25563153749.3463 * cos(theta) ** 4 - 516427348.471642 * cos(theta) ** 2 + 1665894.67248917 ) * cos(5 * phi) ) # @torch.jit.script def Yl25_m6(theta, phi): return ( 1.09580071657648e-8 * (1.0 - cos(theta) ** 2) ** 3 * ( 480379737856705.0 * cos(theta) ** 19 - 1.67642724843871e15 * cos(theta) ** 17 + 2.42546921050706e15 * cos(theta) ** 15 - 1.8864760526166e15 * cos(theta) ** 13 + 855494954093576.0 * cos(theta) ** 11 - 229523036464130.0 * cos(theta) ** 9 + 35311236379097.0 * cos(theta) ** 7 - 2863073219926.78 * cos(theta) ** 5 + 102252614997.385 * cos(theta) ** 3 - 1032854696.94328 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl25_m7(theta, phi): return ( 4.44405873797859e-10 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 9.12721501927739e15 * cos(theta) ** 18 - 2.8499263223458e16 * cos(theta) ** 16 + 3.63820381576059e16 * cos(theta) ** 14 - 2.45241886840159e16 * cos(theta) ** 12 + 9.41044449502934e15 * cos(theta) ** 10 - 2.06570732817717e15 * cos(theta) ** 8 + 247178654653679.0 * cos(theta) ** 6 - 14315366099633.9 * cos(theta) ** 4 + 306757844992.155 * cos(theta) ** 2 - 1032854696.94328 ) * cos(7 * phi) ) # @torch.jit.script def Yl25_m8(theta, phi): return ( 1.82341938685839e-11 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.64289870346993e17 * cos(theta) ** 17 - 4.55988211575328e17 * cos(theta) ** 15 + 5.09348534206483e17 * cos(theta) ** 13 - 2.9429026420819e17 * cos(theta) ** 11 + 9.41044449502934e16 * cos(theta) ** 9 - 1.65256586254174e16 * cos(theta) ** 7 + 1.48307192792207e15 * cos(theta) ** 5 - 57261464398535.6 * cos(theta) ** 3 + 613515689984.31 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl25_m9(theta, phi): return ( 7.58442478467402e-13 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 2.79292779589888e18 * cos(theta) ** 16 - 6.83982317362992e18 * cos(theta) ** 14 + 6.62153094468428e18 * cos(theta) ** 12 - 3.23719290629009e18 * cos(theta) ** 10 + 8.46940004552641e17 * cos(theta) ** 8 - 1.15679610377922e17 * cos(theta) ** 6 + 7.41535963961036e15 * cos(theta) ** 4 - 171784393195607.0 * cos(theta) ** 2 + 613515689984.31 ) * cos(9 * phi) ) # @torch.jit.script def Yl25_m10(theta, phi): return ( 3.20500443821783e-14 * (1.0 - cos(theta) ** 2) ** 5 * ( 4.46868447343821e19 * cos(theta) ** 15 - 9.57575244308188e19 * cos(theta) ** 13 + 7.94583713362114e19 * cos(theta) ** 11 - 3.23719290629009e19 * cos(theta) ** 9 + 6.77552003642113e18 * cos(theta) ** 7 - 6.9407766226753e17 * cos(theta) ** 5 + 2.96614385584414e16 * cos(theta) ** 3 - 343568786391214.0 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl25_m11(theta, phi): return ( 1.37921431263761e-15 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 6.70302671015732e20 * cos(theta) ** 14 - 1.24484781760064e21 * cos(theta) ** 12 + 8.74042084698325e20 * cos(theta) ** 10 - 2.91347361566108e20 * cos(theta) ** 8 + 4.74286402549479e19 * cos(theta) ** 6 - 3.47038831133765e18 * cos(theta) ** 4 + 8.89843156753244e16 * cos(theta) ** 2 - 343568786391214.0 ) * cos(11 * phi) ) # @torch.jit.script def Yl25_m12(theta, phi): return ( 6.05991978517773e-17 * (1.0 - cos(theta) ** 2) ** 6 * ( 9.38423739422025e21 * cos(theta) ** 13 - 1.49381738112077e22 * cos(theta) ** 11 + 8.74042084698325e21 * cos(theta) ** 9 - 2.33077889252887e21 * cos(theta) ** 7 + 2.84571841529687e20 * cos(theta) ** 5 - 1.38815532453506e19 * cos(theta) ** 3 + 1.77968631350649e17 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl25_m13(theta, phi): return ( 2.72648680988027e-18 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.21995086124863e23 * cos(theta) ** 12 - 1.64319911923285e23 * cos(theta) ** 10 + 7.86637876228493e22 * cos(theta) ** 8 - 1.63154522477021e22 * cos(theta) ** 6 + 1.42285920764844e21 * cos(theta) ** 4 - 4.16446597360518e19 * cos(theta) ** 2 + 1.77968631350649e17 ) * cos(13 * phi) ) # @torch.jit.script def Yl25_m14(theta, phi): return ( 1.26031897370507e-19 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.46394103349836e24 * cos(theta) ** 11 - 1.64319911923285e24 * cos(theta) ** 9 + 6.29310300982794e23 * cos(theta) ** 7 - 9.78927134862124e22 * cos(theta) ** 5 + 5.69143683059375e21 * cos(theta) ** 3 - 8.32893194721036e19 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl25_m15(theta, phi): return ( 6.00833495972093e-21 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.61033513684819e25 * cos(theta) ** 10 - 1.47887920730957e25 * cos(theta) ** 8 + 4.40517210687956e24 * cos(theta) ** 6 - 4.89463567431062e23 * cos(theta) ** 4 + 1.70743104917812e22 * cos(theta) ** 2 - 8.32893194721036e19 ) * cos(15 * phi) ) # @torch.jit.script def Yl25_m16(theta, phi): return ( 2.96730513315039e-22 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.61033513684819e26 * cos(theta) ** 9 - 1.18310336584765e26 * cos(theta) ** 7 + 2.64310326412774e25 * cos(theta) ** 5 - 1.95785426972425e24 * cos(theta) ** 3 + 3.41486209835625e22 * cos(theta) ) * cos(16 * phi) ) # @torch.jit.script def Yl25_m17(theta, phi): return ( 1.52621707468272e-23 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.44930162316337e27 * cos(theta) ** 8 - 8.28172356093357e26 * cos(theta) ** 6 + 1.32155163206387e26 * cos(theta) ** 4 - 5.87356280917274e24 * cos(theta) ** 2 + 3.41486209835625e22 ) * cos(17 * phi) ) # @torch.jit.script def Yl25_m18(theta, phi): return ( 8.22881098367386e-25 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.1594412985307e28 * cos(theta) ** 7 - 4.96903413656014e27 * cos(theta) ** 5 + 5.28620652825547e26 * cos(theta) ** 3 - 1.17471256183455e25 * cos(theta) ) * cos(18 * phi) ) # @torch.jit.script def Yl25_m19(theta, phi): return ( 4.68880021638437e-26 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 8.1160890897149e28 * cos(theta) ** 6 - 2.48451706828007e28 * cos(theta) ** 4 + 1.58586195847664e27 * cos(theta) ** 2 - 1.17471256183455e25 ) * cos(19 * phi) ) # @torch.jit.script def Yl25_m20(theta, phi): return ( 2.85351294016536e-27 * (1.0 - cos(theta) ** 2) ** 10 * ( 4.86965345382894e29 * cos(theta) ** 5 - 9.93806827312028e28 * cos(theta) ** 3 + 3.17172391695328e27 * cos(theta) ) * cos(20 * phi) ) # @torch.jit.script def Yl25_m21(theta, phi): return ( 1.88155071332724e-28 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 2.43482672691447e30 * cos(theta) ** 4 - 2.98142048193609e29 * cos(theta) ** 2 + 3.17172391695328e27 ) * cos(21 * phi) ) # @torch.jit.script def Yl25_m22(theta, phi): return ( 1.37226189401167e-29 * (1.0 - cos(theta) ** 2) ** 11 * (9.73930690765788e30 * cos(theta) ** 3 - 5.96284096387217e29 * cos(theta)) * cos(22 * phi) ) # @torch.jit.script def Yl25_m23(theta, phi): return ( 1.14355157834306e-30 * (1.0 - cos(theta) ** 2) ** 11.5 * (2.92179207229736e31 * cos(theta) ** 2 - 5.96284096387217e29) * cos(23 * phi) ) # @torch.jit.script def Yl25_m24(theta, phi): return 6.75028364024702 * (1.0 - cos(theta) ** 2) ** 12 * cos(24 * phi) * cos(theta) # @torch.jit.script def Yl25_m25(theta, phi): return 0.954634267390256 * (1.0 - cos(theta) ** 2) ** 12.5 * cos(25 * phi) # @torch.jit.script def Yl26_m_minus_26(theta, phi): return 0.963769731686801 * (1.0 - cos(theta) ** 2) ** 13 * sin(26 * phi) # @torch.jit.script def Yl26_m_minus_25(theta, phi): return ( 6.94984237067387 * (1.0 - cos(theta) ** 2) ** 12.5 * sin(25 * phi) * cos(theta) ) # @torch.jit.script def Yl26_m_minus_24(theta, phi): return ( 2.35518790424645e-32 * (1.0 - cos(theta) ** 2) ** 12 * (1.49011395687166e33 * cos(theta) ** 2 - 2.92179207229736e31) * sin(24 * phi) ) # @torch.jit.script def Yl26_m_minus_23(theta, phi): return ( 2.88450430688934e-31 * (1.0 - cos(theta) ** 2) ** 11.5 * (4.96704652290552e32 * cos(theta) ** 3 - 2.92179207229736e31 * cos(theta)) * sin(23 * phi) ) # @torch.jit.script def Yl26_m_minus_22(theta, phi): return ( 4.03830602964508e-30 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.24176163072638e32 * cos(theta) ** 4 - 1.46089603614868e31 * cos(theta) ** 2 + 1.49071024096804e29 ) * sin(22 * phi) ) # @torch.jit.script def Yl26_m_minus_21(theta, phi): return ( 6.25611679988175e-29 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 2.48352326145276e31 * cos(theta) ** 5 - 4.86965345382894e30 * cos(theta) ** 3 + 1.49071024096804e29 * cos(theta) ) * sin(21 * phi) ) # @torch.jit.script def Yl26_m_minus_20(theta, phi): return ( 1.0505806618571e-27 * (1.0 - cos(theta) ** 2) ** 10 * ( 4.1392054357546e30 * cos(theta) ** 6 - 1.21741336345723e30 * cos(theta) ** 4 + 7.45355120484021e28 * cos(theta) ** 2 - 5.28620652825547e26 ) * sin(20 * phi) ) # @torch.jit.script def Yl26_m_minus_19(theta, phi): return ( 1.88519959716718e-26 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 5.91315062250657e29 * cos(theta) ** 7 - 2.43482672691447e29 * cos(theta) ** 5 + 2.48451706828007e28 * cos(theta) ** 3 - 5.28620652825547e26 * cos(theta) ) * sin(19 * phi) ) # @torch.jit.script def Yl26_m_minus_18(theta, phi): return ( 3.57691474264813e-25 * (1.0 - cos(theta) ** 2) ** 9 * ( 7.39143827813321e28 * cos(theta) ** 8 - 4.05804454485745e28 * cos(theta) ** 6 + 6.21129267070018e27 * cos(theta) ** 4 - 2.64310326412774e26 * cos(theta) ** 2 + 1.46839070229319e24 ) * sin(18 * phi) ) # @torch.jit.script def Yl26_m_minus_17(theta, phi): return ( 7.11797046507269e-24 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 8.21270919792579e27 * cos(theta) ** 9 - 5.7972064926535e27 * cos(theta) ** 7 + 1.24225853414004e27 * cos(theta) ** 5 - 8.81034421375912e25 * cos(theta) ** 3 + 1.46839070229319e24 * cos(theta) ) * sin(17 * phi) ) # @torch.jit.script def Yl26_m_minus_16(theta, phi): return ( 1.47601377103699e-22 * (1.0 - cos(theta) ** 2) ** 8 * ( 8.21270919792579e26 * cos(theta) ** 10 - 7.24650811581687e26 * cos(theta) ** 8 + 2.07043089023339e26 * cos(theta) ** 6 - 2.20258605343978e25 * cos(theta) ** 4 + 7.34195351146593e23 * cos(theta) ** 2 - 3.41486209835625e21 ) * sin(16 * phi) ) # @torch.jit.script def Yl26_m_minus_15(theta, phi): return ( 3.17257134412823e-21 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 7.46609927084163e25 * cos(theta) ** 11 - 8.05167568424097e25 * cos(theta) ** 9 + 2.95775841461913e25 * cos(theta) ** 7 - 4.40517210687956e24 * cos(theta) ** 5 + 2.44731783715531e23 * cos(theta) ** 3 - 3.41486209835625e21 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl26_m_minus_14(theta, phi): return ( 7.03710366224851e-20 * (1.0 - cos(theta) ** 2) ** 7 * ( 6.22174939236802e24 * cos(theta) ** 12 - 8.05167568424097e24 * cos(theta) ** 10 + 3.69719801827392e24 * cos(theta) ** 8 - 7.34195351146593e23 * cos(theta) ** 6 + 6.11829459288828e22 * cos(theta) ** 4 - 1.70743104917812e21 * cos(theta) ** 2 + 6.9407766226753e18 ) * sin(14 * phi) ) # @torch.jit.script def Yl26_m_minus_13(theta, phi): return ( 1.60470653191418e-18 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 4.78596107105233e23 * cos(theta) ** 13 - 7.31970516749179e23 * cos(theta) ** 11 + 4.10799779808213e23 * cos(theta) ** 9 - 1.04885050163799e23 * cos(theta) ** 7 + 1.22365891857766e22 * cos(theta) ** 5 - 5.69143683059374e20 * cos(theta) ** 3 + 6.9407766226753e18 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl26_m_minus_12(theta, phi): return ( 3.74966044762475e-17 * (1.0 - cos(theta) ** 2) ** 6 * ( 3.41854362218023e22 * cos(theta) ** 14 - 6.09975430624316e22 * cos(theta) ** 12 + 4.10799779808213e22 * cos(theta) ** 10 - 1.31106312704749e22 * cos(theta) ** 8 + 2.03943153096276e21 * cos(theta) ** 6 - 1.42285920764844e20 * cos(theta) ** 4 + 3.47038831133765e18 * cos(theta) ** 2 - 1.27120450964749e16 ) * sin(12 * phi) ) # @torch.jit.script def Yl26_m_minus_11(theta, phi): return ( 8.95219161955017e-16 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 2.27902908145349e21 * cos(theta) ** 15 - 4.69211869711012e21 * cos(theta) ** 13 + 3.73454345280193e21 * cos(theta) ** 11 - 1.45673680783054e21 * cos(theta) ** 9 + 2.91347361566108e20 * cos(theta) ** 7 - 2.84571841529687e19 * cos(theta) ** 5 + 1.15679610377922e18 * cos(theta) ** 3 - 1.27120450964749e16 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl26_m_minus_10(theta, phi): return ( 2.17816222989798e-14 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.42439317590843e20 * cos(theta) ** 16 - 3.35151335507866e20 * cos(theta) ** 14 + 3.11211954400161e20 * cos(theta) ** 12 - 1.45673680783054e20 * cos(theta) ** 10 + 3.64184201957635e19 * cos(theta) ** 8 - 4.74286402549479e18 * cos(theta) ** 6 + 2.89199025944804e17 * cos(theta) ** 4 - 6.35602254823745e15 * cos(theta) ** 2 + 21473049149450.9 ) * sin(10 * phi) ) # @torch.jit.script def Yl26_m_minus_9(theta, phi): return ( 5.38847576616016e-13 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 8.37878338769665e18 * cos(theta) ** 17 - 2.23434223671911e19 * cos(theta) ** 15 + 2.39393811077047e19 * cos(theta) ** 13 - 1.32430618893686e19 * cos(theta) ** 11 + 4.04649113286262e18 * cos(theta) ** 9 - 6.77552003642113e17 * cos(theta) ** 7 + 5.78398051889608e16 * cos(theta) ** 5 - 2.11867418274582e15 * cos(theta) ** 3 + 21473049149450.9 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl26_m_minus_8(theta, phi): return ( 1.35249668324814e-11 * (1.0 - cos(theta) ** 2) ** 4 * ( 4.65487965983147e17 * cos(theta) ** 18 - 1.39646389794944e18 * cos(theta) ** 16 + 1.70995579340748e18 * cos(theta) ** 14 - 1.10358849078071e18 * cos(theta) ** 12 + 4.04649113286262e17 * cos(theta) ** 10 - 8.46940004552641e16 * cos(theta) ** 8 + 9.63996753149347e15 * cos(theta) ** 6 - 529668545686454.0 * cos(theta) ** 4 + 10736524574725.4 * cos(theta) ** 2 - 34084204999.1283 ) * sin(8 * phi) ) # @torch.jit.script def Yl26_m_minus_7(theta, phi): return ( 3.43757725980871e-10 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 2.4499366630692e16 * cos(theta) ** 19 - 8.21449351734965e16 * cos(theta) ** 17 + 1.13997052893832e17 * cos(theta) ** 15 - 8.48914223677472e16 * cos(theta) ** 13 + 3.67862830260238e16 * cos(theta) ** 11 - 9.41044449502934e15 * cos(theta) ** 9 + 1.37713821878478e15 * cos(theta) ** 7 - 105933709137291.0 * cos(theta) ** 5 + 3578841524908.48 * cos(theta) ** 3 - 34084204999.1283 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl26_m_minus_6(theta, phi): return ( 8.83129588187465e-9 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.2249683315346e15 * cos(theta) ** 20 - 4.5636075096387e15 * cos(theta) ** 18 + 7.1248158058645e15 * cos(theta) ** 16 - 6.06367302626766e15 * cos(theta) ** 14 + 3.06552358550198e15 * cos(theta) ** 12 - 941044449502934.0 * cos(theta) ** 10 + 172142277348098.0 * cos(theta) ** 8 - 17655618189548.5 * cos(theta) ** 6 + 894710381227.119 * cos(theta) ** 4 - 17042102499.5642 * cos(theta) ** 2 + 51642734.8471642 ) * sin(6 * phi) ) # @torch.jit.script def Yl26_m_minus_5(theta, phi): return ( 2.28933354565387e-7 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 58331825311171.3 * cos(theta) ** 21 - 240189868928353.0 * cos(theta) ** 19 + 419106812109676.0 * cos(theta) ** 17 - 404244868417844.0 * cos(theta) ** 15 + 235809506577076.0 * cos(theta) ** 13 - 85549495409357.6 * cos(theta) ** 11 + 19126919705344.2 * cos(theta) ** 9 - 2522231169935.5 * cos(theta) ** 7 + 178942076245.424 * cos(theta) ** 5 - 5680700833.18806 * cos(theta) ** 3 + 51642734.8471642 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl26_m_minus_4(theta, phi): return ( 5.97862425042808e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 2651446605053.24 * cos(theta) ** 22 - 12009493446417.6 * cos(theta) ** 20 + 23283711783870.9 * cos(theta) ** 18 - 25265304276115.2 * cos(theta) ** 16 + 16843536184076.8 * cos(theta) ** 14 - 7129124617446.47 * cos(theta) ** 12 + 1912691970534.42 * cos(theta) ** 10 - 315278896241.937 * cos(theta) ** 8 + 29823679374.2373 * cos(theta) ** 6 - 1420175208.29701 * cos(theta) ** 4 + 25821367.4235821 * cos(theta) ** 2 - 75722.4851131439 ) * sin(4 * phi) ) # @torch.jit.script def Yl26_m_minus_3(theta, phi): return ( 0.000157045611432433 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 115280287176.228 * cos(theta) ** 23 - 571880640305.601 * cos(theta) ** 21 + 1225458514940.57 * cos(theta) ** 19 - 1486194369183.25 * cos(theta) ** 17 + 1122902412271.79 * cos(theta) ** 15 - 548394201342.036 * cos(theta) ** 13 + 173881088230.402 * cos(theta) ** 11 - 35030988471.3264 * cos(theta) ** 9 + 4260525624.89104 * cos(theta) ** 7 - 284035041.659403 * cos(theta) ** 5 + 8607122.47452736 * cos(theta) ** 3 - 75722.4851131439 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl26_m_minus_2(theta, phi): return ( 0.00414314778312938 * (1.0 - cos(theta) ** 2) * ( 4803345299.0095 * cos(theta) ** 24 - 25994574559.3455 * cos(theta) ** 22 + 61272925747.0287 * cos(theta) ** 20 - 82566353843.5138 * cos(theta) ** 18 + 70181400766.9868 * cos(theta) ** 16 - 39171014381.574 * cos(theta) ** 14 + 14490090685.8668 * cos(theta) ** 12 - 3503098847.13264 * cos(theta) ** 10 + 532565703.11138 * cos(theta) ** 8 - 47339173.6099005 * cos(theta) ** 6 + 2151780.61863184 * cos(theta) ** 4 - 37861.242556572 * cos(theta) ** 2 + 108.796674013138 ) * sin(2 * phi) ) # @torch.jit.script def Yl26_m_minus_1(theta, phi): return ( 0.109617386791489 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 192133811.96038 * cos(theta) ** 25 - 1130198893.88459 * cos(theta) ** 23 + 2917758368.90613 * cos(theta) ** 21 - 4345597570.71126 * cos(theta) ** 19 + 4128317692.17569 * cos(theta) ** 17 - 2611400958.7716 * cos(theta) ** 15 + 1114622360.45129 * cos(theta) ** 13 - 318463531.557512 * cos(theta) ** 11 + 59173967.0123756 * cos(theta) ** 9 - 6762739.08712864 * cos(theta) ** 7 + 430356.123726368 * cos(theta) ** 5 - 12620.414185524 * cos(theta) ** 3 + 108.796674013138 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl26_m0(theta, phi): return ( 47677483.75133 * cos(theta) ** 26 - 303827102.336907 * cos(theta) ** 24 + 855676329.030472 * cos(theta) ** 22 - 1401852709.26269 * cos(theta) ** 20 + 1479733415.33284 * cos(theta) ** 18 - 1053019593.23686 * cos(theta) ** 16 + 513668094.261881 * cos(theta) ** 14 - 171222698.087294 * cos(theta) ** 12 + 38178034.0329777 * cos(theta) ** 10 - 5454004.86185395 * cos(theta) ** 8 + 462764.048884578 * cos(theta) ** 6 - 20356.1898336325 * cos(theta) ** 4 + 350.968790235042 * cos(theta) ** 2 - 0.999911083290719 ) # @torch.jit.script def Yl26_m1(theta, phi): return ( 0.109617386791489 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 192133811.96038 * cos(theta) ** 25 - 1130198893.88459 * cos(theta) ** 23 + 2917758368.90613 * cos(theta) ** 21 - 4345597570.71126 * cos(theta) ** 19 + 4128317692.17569 * cos(theta) ** 17 - 2611400958.7716 * cos(theta) ** 15 + 1114622360.45129 * cos(theta) ** 13 - 318463531.557512 * cos(theta) ** 11 + 59173967.0123756 * cos(theta) ** 9 - 6762739.08712864 * cos(theta) ** 7 + 430356.123726368 * cos(theta) ** 5 - 12620.414185524 * cos(theta) ** 3 + 108.796674013138 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl26_m2(theta, phi): return ( 0.00414314778312938 * (1.0 - cos(theta) ** 2) * ( 4803345299.0095 * cos(theta) ** 24 - 25994574559.3455 * cos(theta) ** 22 + 61272925747.0287 * cos(theta) ** 20 - 82566353843.5138 * cos(theta) ** 18 + 70181400766.9868 * cos(theta) ** 16 - 39171014381.574 * cos(theta) ** 14 + 14490090685.8668 * cos(theta) ** 12 - 3503098847.13264 * cos(theta) ** 10 + 532565703.11138 * cos(theta) ** 8 - 47339173.6099005 * cos(theta) ** 6 + 2151780.61863184 * cos(theta) ** 4 - 37861.242556572 * cos(theta) ** 2 + 108.796674013138 ) * cos(2 * phi) ) # @torch.jit.script def Yl26_m3(theta, phi): return ( 0.000157045611432433 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 115280287176.228 * cos(theta) ** 23 - 571880640305.601 * cos(theta) ** 21 + 1225458514940.57 * cos(theta) ** 19 - 1486194369183.25 * cos(theta) ** 17 + 1122902412271.79 * cos(theta) ** 15 - 548394201342.036 * cos(theta) ** 13 + 173881088230.402 * cos(theta) ** 11 - 35030988471.3264 * cos(theta) ** 9 + 4260525624.89104 * cos(theta) ** 7 - 284035041.659403 * cos(theta) ** 5 + 8607122.47452736 * cos(theta) ** 3 - 75722.4851131439 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl26_m4(theta, phi): return ( 5.97862425042808e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 2651446605053.24 * cos(theta) ** 22 - 12009493446417.6 * cos(theta) ** 20 + 23283711783870.9 * cos(theta) ** 18 - 25265304276115.2 * cos(theta) ** 16 + 16843536184076.8 * cos(theta) ** 14 - 7129124617446.47 * cos(theta) ** 12 + 1912691970534.42 * cos(theta) ** 10 - 315278896241.937 * cos(theta) ** 8 + 29823679374.2373 * cos(theta) ** 6 - 1420175208.29701 * cos(theta) ** 4 + 25821367.4235821 * cos(theta) ** 2 - 75722.4851131439 ) * cos(4 * phi) ) # @torch.jit.script def Yl26_m5(theta, phi): return ( 2.28933354565387e-7 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 58331825311171.3 * cos(theta) ** 21 - 240189868928353.0 * cos(theta) ** 19 + 419106812109676.0 * cos(theta) ** 17 - 404244868417844.0 * cos(theta) ** 15 + 235809506577076.0 * cos(theta) ** 13 - 85549495409357.6 * cos(theta) ** 11 + 19126919705344.2 * cos(theta) ** 9 - 2522231169935.5 * cos(theta) ** 7 + 178942076245.424 * cos(theta) ** 5 - 5680700833.18806 * cos(theta) ** 3 + 51642734.8471642 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl26_m6(theta, phi): return ( 8.83129588187465e-9 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.2249683315346e15 * cos(theta) ** 20 - 4.5636075096387e15 * cos(theta) ** 18 + 7.1248158058645e15 * cos(theta) ** 16 - 6.06367302626766e15 * cos(theta) ** 14 + 3.06552358550198e15 * cos(theta) ** 12 - 941044449502934.0 * cos(theta) ** 10 + 172142277348098.0 * cos(theta) ** 8 - 17655618189548.5 * cos(theta) ** 6 + 894710381227.119 * cos(theta) ** 4 - 17042102499.5642 * cos(theta) ** 2 + 51642734.8471642 ) * cos(6 * phi) ) # @torch.jit.script def Yl26_m7(theta, phi): return ( 3.43757725980871e-10 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 2.4499366630692e16 * cos(theta) ** 19 - 8.21449351734965e16 * cos(theta) ** 17 + 1.13997052893832e17 * cos(theta) ** 15 - 8.48914223677472e16 * cos(theta) ** 13 + 3.67862830260238e16 * cos(theta) ** 11 - 9.41044449502934e15 * cos(theta) ** 9 + 1.37713821878478e15 * cos(theta) ** 7 - 105933709137291.0 * cos(theta) ** 5 + 3578841524908.48 * cos(theta) ** 3 - 34084204999.1283 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl26_m8(theta, phi): return ( 1.35249668324814e-11 * (1.0 - cos(theta) ** 2) ** 4 * ( 4.65487965983147e17 * cos(theta) ** 18 - 1.39646389794944e18 * cos(theta) ** 16 + 1.70995579340748e18 * cos(theta) ** 14 - 1.10358849078071e18 * cos(theta) ** 12 + 4.04649113286262e17 * cos(theta) ** 10 - 8.46940004552641e16 * cos(theta) ** 8 + 9.63996753149347e15 * cos(theta) ** 6 - 529668545686454.0 * cos(theta) ** 4 + 10736524574725.4 * cos(theta) ** 2 - 34084204999.1283 ) * cos(8 * phi) ) # @torch.jit.script def Yl26_m9(theta, phi): return ( 5.38847576616016e-13 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 8.37878338769665e18 * cos(theta) ** 17 - 2.23434223671911e19 * cos(theta) ** 15 + 2.39393811077047e19 * cos(theta) ** 13 - 1.32430618893686e19 * cos(theta) ** 11 + 4.04649113286262e18 * cos(theta) ** 9 - 6.77552003642113e17 * cos(theta) ** 7 + 5.78398051889608e16 * cos(theta) ** 5 - 2.11867418274582e15 * cos(theta) ** 3 + 21473049149450.9 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl26_m10(theta, phi): return ( 2.17816222989798e-14 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.42439317590843e20 * cos(theta) ** 16 - 3.35151335507866e20 * cos(theta) ** 14 + 3.11211954400161e20 * cos(theta) ** 12 - 1.45673680783054e20 * cos(theta) ** 10 + 3.64184201957635e19 * cos(theta) ** 8 - 4.74286402549479e18 * cos(theta) ** 6 + 2.89199025944804e17 * cos(theta) ** 4 - 6.35602254823745e15 * cos(theta) ** 2 + 21473049149450.9 ) * cos(10 * phi) ) # @torch.jit.script def Yl26_m11(theta, phi): return ( 8.95219161955017e-16 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 2.27902908145349e21 * cos(theta) ** 15 - 4.69211869711012e21 * cos(theta) ** 13 + 3.73454345280193e21 * cos(theta) ** 11 - 1.45673680783054e21 * cos(theta) ** 9 + 2.91347361566108e20 * cos(theta) ** 7 - 2.84571841529687e19 * cos(theta) ** 5 + 1.15679610377922e18 * cos(theta) ** 3 - 1.27120450964749e16 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl26_m12(theta, phi): return ( 3.74966044762475e-17 * (1.0 - cos(theta) ** 2) ** 6 * ( 3.41854362218023e22 * cos(theta) ** 14 - 6.09975430624316e22 * cos(theta) ** 12 + 4.10799779808213e22 * cos(theta) ** 10 - 1.31106312704749e22 * cos(theta) ** 8 + 2.03943153096276e21 * cos(theta) ** 6 - 1.42285920764844e20 * cos(theta) ** 4 + 3.47038831133765e18 * cos(theta) ** 2 - 1.27120450964749e16 ) * cos(12 * phi) ) # @torch.jit.script def Yl26_m13(theta, phi): return ( 1.60470653191418e-18 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 4.78596107105233e23 * cos(theta) ** 13 - 7.31970516749179e23 * cos(theta) ** 11 + 4.10799779808213e23 * cos(theta) ** 9 - 1.04885050163799e23 * cos(theta) ** 7 + 1.22365891857766e22 * cos(theta) ** 5 - 5.69143683059374e20 * cos(theta) ** 3 + 6.9407766226753e18 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl26_m14(theta, phi): return ( 7.03710366224851e-20 * (1.0 - cos(theta) ** 2) ** 7 * ( 6.22174939236802e24 * cos(theta) ** 12 - 8.05167568424097e24 * cos(theta) ** 10 + 3.69719801827392e24 * cos(theta) ** 8 - 7.34195351146593e23 * cos(theta) ** 6 + 6.11829459288828e22 * cos(theta) ** 4 - 1.70743104917812e21 * cos(theta) ** 2 + 6.9407766226753e18 ) * cos(14 * phi) ) # @torch.jit.script def Yl26_m15(theta, phi): return ( 3.17257134412823e-21 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 7.46609927084163e25 * cos(theta) ** 11 - 8.05167568424097e25 * cos(theta) ** 9 + 2.95775841461913e25 * cos(theta) ** 7 - 4.40517210687956e24 * cos(theta) ** 5 + 2.44731783715531e23 * cos(theta) ** 3 - 3.41486209835625e21 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl26_m16(theta, phi): return ( 1.47601377103699e-22 * (1.0 - cos(theta) ** 2) ** 8 * ( 8.21270919792579e26 * cos(theta) ** 10 - 7.24650811581687e26 * cos(theta) ** 8 + 2.07043089023339e26 * cos(theta) ** 6 - 2.20258605343978e25 * cos(theta) ** 4 + 7.34195351146593e23 * cos(theta) ** 2 - 3.41486209835625e21 ) * cos(16 * phi) ) # @torch.jit.script def Yl26_m17(theta, phi): return ( 7.11797046507269e-24 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 8.21270919792579e27 * cos(theta) ** 9 - 5.7972064926535e27 * cos(theta) ** 7 + 1.24225853414004e27 * cos(theta) ** 5 - 8.81034421375912e25 * cos(theta) ** 3 + 1.46839070229319e24 * cos(theta) ) * cos(17 * phi) ) # @torch.jit.script def Yl26_m18(theta, phi): return ( 3.57691474264813e-25 * (1.0 - cos(theta) ** 2) ** 9 * ( 7.39143827813321e28 * cos(theta) ** 8 - 4.05804454485745e28 * cos(theta) ** 6 + 6.21129267070018e27 * cos(theta) ** 4 - 2.64310326412774e26 * cos(theta) ** 2 + 1.46839070229319e24 ) * cos(18 * phi) ) # @torch.jit.script def Yl26_m19(theta, phi): return ( 1.88519959716718e-26 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 5.91315062250657e29 * cos(theta) ** 7 - 2.43482672691447e29 * cos(theta) ** 5 + 2.48451706828007e28 * cos(theta) ** 3 - 5.28620652825547e26 * cos(theta) ) * cos(19 * phi) ) # @torch.jit.script def Yl26_m20(theta, phi): return ( 1.0505806618571e-27 * (1.0 - cos(theta) ** 2) ** 10 * ( 4.1392054357546e30 * cos(theta) ** 6 - 1.21741336345723e30 * cos(theta) ** 4 + 7.45355120484021e28 * cos(theta) ** 2 - 5.28620652825547e26 ) * cos(20 * phi) ) # @torch.jit.script def Yl26_m21(theta, phi): return ( 6.25611679988175e-29 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 2.48352326145276e31 * cos(theta) ** 5 - 4.86965345382894e30 * cos(theta) ** 3 + 1.49071024096804e29 * cos(theta) ) * cos(21 * phi) ) # @torch.jit.script def Yl26_m22(theta, phi): return ( 4.03830602964508e-30 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.24176163072638e32 * cos(theta) ** 4 - 1.46089603614868e31 * cos(theta) ** 2 + 1.49071024096804e29 ) * cos(22 * phi) ) # @torch.jit.script def Yl26_m23(theta, phi): return ( 2.88450430688934e-31 * (1.0 - cos(theta) ** 2) ** 11.5 * (4.96704652290552e32 * cos(theta) ** 3 - 2.92179207229736e31 * cos(theta)) * cos(23 * phi) ) # @torch.jit.script def Yl26_m24(theta, phi): return ( 2.35518790424645e-32 * (1.0 - cos(theta) ** 2) ** 12 * (1.49011395687166e33 * cos(theta) ** 2 - 2.92179207229736e31) * cos(24 * phi) ) # @torch.jit.script def Yl26_m25(theta, phi): return ( 6.94984237067387 * (1.0 - cos(theta) ** 2) ** 12.5 * cos(25 * phi) * cos(theta) ) # @torch.jit.script def Yl26_m26(theta, phi): return 0.963769731686801 * (1.0 - cos(theta) ** 2) ** 13 * cos(26 * phi) # @torch.jit.script def Yl27_m_minus_27(theta, phi): return 0.97265258980333 * (1.0 - cos(theta) ** 2) ** 13.5 * sin(27 * phi) # @torch.jit.script def Yl27_m_minus_26(theta, phi): return 7.14750762604425 * (1.0 - cos(theta) ** 2) ** 13 * sin(26 * phi) * cos(theta) # @torch.jit.script def Yl27_m_minus_25(theta, phi): return ( 4.65888737989014e-34 * (1.0 - cos(theta) ** 2) ** 12.5 * (7.89760397141977e34 * cos(theta) ** 2 - 1.49011395687166e33) * sin(25 * phi) ) # @torch.jit.script def Yl27_m_minus_24(theta, phi): return ( 5.81894847243549e-33 * (1.0 - cos(theta) ** 2) ** 12 * (2.63253465713992e34 * cos(theta) ** 3 - 1.49011395687166e33 * cos(theta)) * sin(24 * phi) ) # @torch.jit.script def Yl27_m_minus_23(theta, phi): return ( 8.31112080905536e-32 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 6.58133664284981e33 * cos(theta) ** 4 - 7.45056978435828e32 * cos(theta) ** 2 + 7.30448018074341e30 ) * sin(23 * phi) ) # @torch.jit.script def Yl27_m_minus_22(theta, phi): return ( 1.31410358327182e-30 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.31626732856996e33 * cos(theta) ** 5 - 2.48352326145276e32 * cos(theta) ** 3 + 7.30448018074341e30 * cos(theta) ) * sin(22 * phi) ) # @torch.jit.script def Yl27_m_minus_21(theta, phi): return ( 2.25321827372525e-29 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 2.19377888094994e32 * cos(theta) ** 6 - 6.2088081536319e31 * cos(theta) ** 4 + 3.6522400903717e30 * cos(theta) ** 2 - 2.48451706828007e28 ) * sin(21 * phi) ) # @torch.jit.script def Yl27_m_minus_20(theta, phi): return ( 4.13021731864148e-28 * (1.0 - cos(theta) ** 2) ** 10 * ( 3.13396982992848e31 * cos(theta) ** 7 - 1.24176163072638e31 * cos(theta) ** 5 + 1.21741336345723e30 * cos(theta) ** 3 - 2.48451706828007e28 * cos(theta) ) * sin(20 * phi) ) # @torch.jit.script def Yl27_m_minus_19(theta, phi): return ( 8.00878852093215e-27 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 3.9174622874106e30 * cos(theta) ** 8 - 2.0696027178773e30 * cos(theta) ** 6 + 3.04353340864309e29 * cos(theta) ** 4 - 1.24225853414004e28 * cos(theta) ** 2 + 6.60775816031934e25 ) * sin(19 * phi) ) # @torch.jit.script def Yl27_m_minus_18(theta, phi): return ( 1.62954739542083e-25 * (1.0 - cos(theta) ** 2) ** 9 * ( 4.35273587490067e29 * cos(theta) ** 9 - 2.95657531125328e29 * cos(theta) ** 7 + 6.08706681728617e28 * cos(theta) ** 5 - 4.14086178046679e27 * cos(theta) ** 3 + 6.60775816031934e25 * cos(theta) ) * sin(18 * phi) ) # @torch.jit.script def Yl27_m_minus_17(theta, phi): return ( 3.45679204070083e-24 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 4.35273587490067e28 * cos(theta) ** 10 - 3.69571913906661e28 * cos(theta) ** 8 + 1.01451113621436e28 * cos(theta) ** 6 - 1.0352154451167e27 * cos(theta) ** 4 + 3.30387908015967e25 * cos(theta) ** 2 - 1.46839070229319e23 ) * sin(17 * phi) ) # @torch.jit.script def Yl27_m_minus_16(theta, phi): return ( 7.60494248954183e-23 * (1.0 - cos(theta) ** 2) ** 8 * ( 3.95703261354606e27 * cos(theta) ** 11 - 4.1063545989629e27 * cos(theta) ** 9 + 1.44930162316337e27 * cos(theta) ** 7 - 2.07043089023339e26 * cos(theta) ** 5 + 1.10129302671989e25 * cos(theta) ** 3 - 1.46839070229319e23 * cos(theta) ) * sin(16 * phi) ) # @torch.jit.script def Yl27_m_minus_15(theta, phi): return ( 1.72751085492761e-21 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 3.29752717795505e26 * cos(theta) ** 12 - 4.1063545989629e26 * cos(theta) ** 10 + 1.81162702895422e26 * cos(theta) ** 8 - 3.45071815038899e25 * cos(theta) ** 6 + 2.75323256679972e24 * cos(theta) ** 4 - 7.34195351146593e22 * cos(theta) ** 2 + 2.84571841529687e20 ) * sin(15 * phi) ) # @torch.jit.script def Yl27_m_minus_14(theta, phi): return ( 4.03661292375851e-20 * (1.0 - cos(theta) ** 2) ** 7 * ( 2.53655936765773e25 * cos(theta) ** 13 - 3.73304963542081e25 * cos(theta) ** 11 + 2.01291892106024e25 * cos(theta) ** 9 - 4.92959735769855e24 * cos(theta) ** 7 + 5.50646513359945e23 * cos(theta) ** 5 - 2.44731783715531e22 * cos(theta) ** 3 + 2.84571841529687e20 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl27_m_minus_13(theta, phi): return ( 9.67103717108456e-19 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.81182811975552e24 * cos(theta) ** 14 - 3.11087469618401e24 * cos(theta) ** 12 + 2.01291892106024e24 * cos(theta) ** 10 - 6.16199669712319e23 * cos(theta) ** 8 + 9.17744188933241e22 * cos(theta) ** 6 - 6.11829459288828e21 * cos(theta) ** 4 + 1.42285920764844e20 * cos(theta) ** 2 - 4.95769758762521e17 ) * sin(13 * phi) ) # @torch.jit.script def Yl27_m_minus_12(theta, phi): return ( 2.36891063526465e-17 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.20788541317035e23 * cos(theta) ** 15 - 2.39298053552616e23 * cos(theta) ** 13 + 1.82992629187295e23 * cos(theta) ** 11 - 6.84666299680355e22 * cos(theta) ** 9 + 1.31106312704749e22 * cos(theta) ** 7 - 1.22365891857766e21 * cos(theta) ** 5 + 4.74286402549479e19 * cos(theta) ** 3 - 4.95769758762521e17 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl27_m_minus_11(theta, phi): return ( 5.91753687024496e-16 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 7.54928383231468e21 * cos(theta) ** 16 - 1.70927181109012e22 * cos(theta) ** 14 + 1.52493857656079e22 * cos(theta) ** 12 - 6.84666299680355e21 * cos(theta) ** 10 + 1.63882890880936e21 * cos(theta) ** 8 - 2.03943153096276e20 * cos(theta) ** 6 + 1.1857160063737e19 * cos(theta) ** 4 - 2.47884879381261e17 * cos(theta) ** 2 + 794502818529682.0 ) * sin(11 * phi) ) # @torch.jit.script def Yl27_m_minus_10(theta, phi): return ( 1.50403253709877e-14 * (1.0 - cos(theta) ** 2) ** 5 * ( 4.44075519547922e20 * cos(theta) ** 17 - 1.13951454072674e21 * cos(theta) ** 15 + 1.17302967427753e21 * cos(theta) ** 13 - 6.22423908800322e20 * cos(theta) ** 11 + 1.82092100978818e20 * cos(theta) ** 9 - 2.91347361566108e19 * cos(theta) ** 7 + 2.37143201274739e18 * cos(theta) ** 5 - 8.26282931270869e16 * cos(theta) ** 3 + 794502818529682.0 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl27_m_minus_9(theta, phi): return ( 3.8814531289017e-13 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 2.46708621971068e19 * cos(theta) ** 18 - 7.12196587954215e19 * cos(theta) ** 16 + 8.37878338769665e19 * cos(theta) ** 14 - 5.18686590666935e19 * cos(theta) ** 12 + 1.82092100978818e19 * cos(theta) ** 10 - 3.64184201957635e18 * cos(theta) ** 8 + 3.95238668791232e17 * cos(theta) ** 6 - 2.06570732817717e16 * cos(theta) ** 4 + 397251409264841.0 * cos(theta) ** 2 - 1192947174969.49 ) * sin(9 * phi) ) # @torch.jit.script def Yl27_m_minus_8(theta, phi): return ( 1.01513171657834e-11 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.29846643142667e18 * cos(theta) ** 19 - 4.18939169384832e18 * cos(theta) ** 17 + 5.58585559179777e18 * cos(theta) ** 15 - 3.98989685128412e18 * cos(theta) ** 13 + 1.65538273617107e18 * cos(theta) ** 11 - 4.04649113286262e17 * cos(theta) ** 9 + 5.6462666970176e16 * cos(theta) ** 7 - 4.13141465635434e15 * cos(theta) ** 5 + 132417136421614.0 * cos(theta) ** 3 - 1192947174969.49 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl27_m_minus_7(theta, phi): return ( 2.68578607004038e-10 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 6.49233215713337e16 * cos(theta) ** 20 - 2.32743982991574e17 * cos(theta) ** 18 + 3.4911597448736e17 * cos(theta) ** 16 - 2.8499263223458e17 * cos(theta) ** 14 + 1.37948561347589e17 * cos(theta) ** 12 - 4.04649113286262e16 * cos(theta) ** 10 + 7.05783337127201e15 * cos(theta) ** 8 - 688569109392391.0 * cos(theta) ** 6 + 33104284105403.4 * cos(theta) ** 4 - 596473587484.746 * cos(theta) ** 2 + 1704210249.95642 ) * sin(7 * phi) ) # @torch.jit.script def Yl27_m_minus_6(theta, phi): return ( 7.17662944926961e-9 * (1.0 - cos(theta) ** 2) ** 3 * ( 3.09158674149208e15 * cos(theta) ** 21 - 1.2249683315346e16 * cos(theta) ** 19 + 2.05362337933741e16 * cos(theta) ** 17 - 1.89995088156387e16 * cos(theta) ** 15 + 1.06114277959684e16 * cos(theta) ** 13 - 3.67862830260238e15 * cos(theta) ** 11 + 784203707919112.0 * cos(theta) ** 9 - 98367015627484.4 * cos(theta) ** 7 + 6620856821080.68 * cos(theta) ** 5 - 198824529161.582 * cos(theta) ** 3 + 1704210249.95642 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl27_m_minus_5(theta, phi): return ( 1.93369882461158e-7 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 140526670067822.0 * cos(theta) ** 22 - 612484165767299.0 * cos(theta) ** 20 + 1.14090187740967e15 * cos(theta) ** 18 - 1.18746930097742e15 * cos(theta) ** 16 + 757959128283457.0 * cos(theta) ** 14 - 306552358550198.0 * cos(theta) ** 12 + 78420370791911.2 * cos(theta) ** 10 - 12295876953435.5 * cos(theta) ** 8 + 1103476136846.78 * cos(theta) ** 6 - 49706132290.3955 * cos(theta) ** 4 + 852105124.978209 * cos(theta) ** 2 - 2347397.03850746 ) * sin(5 * phi) ) # @torch.jit.script def Yl27_m_minus_4(theta, phi): return ( 5.24599340659887e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 6109855220340.08 * cos(theta) ** 23 - 29165912655585.7 * cos(theta) ** 21 + 60047467232088.1 * cos(theta) ** 19 - 69851135351612.7 * cos(theta) ** 17 + 50530608552230.5 * cos(theta) ** 15 - 23580950657707.6 * cos(theta) ** 13 + 7129124617446.47 * cos(theta) ** 11 - 1366208550381.73 * cos(theta) ** 9 + 157639448120.969 * cos(theta) ** 7 - 9941226458.0791 * cos(theta) ** 5 + 284035041.659403 * cos(theta) ** 3 - 2347397.03850746 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl27_m_minus_3(theta, phi): return ( 0.00014309162252077 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 254577300847.503 * cos(theta) ** 24 - 1325723302526.62 * cos(theta) ** 22 + 3002373361604.41 * cos(theta) ** 20 - 3880618630645.15 * cos(theta) ** 18 + 3158163034514.4 * cos(theta) ** 16 - 1684353618407.68 * cos(theta) ** 14 + 594093718120.539 * cos(theta) ** 12 - 136620855038.173 * cos(theta) ** 10 + 19704931015.1211 * cos(theta) ** 8 - 1656871076.34652 * cos(theta) ** 6 + 71008760.4148507 * cos(theta) ** 4 - 1173698.51925373 * cos(theta) ** 2 + 3155.103546381 ) * sin(3 * phi) ) # @torch.jit.script def Yl27_m_minus_2(theta, phi): return ( 0.00391872547223201 * (1.0 - cos(theta) ** 2) * ( 10183092033.9001 * cos(theta) ** 25 - 57640143588.114 * cos(theta) ** 23 + 142970160076.4 * cos(theta) ** 21 - 204243085823.429 * cos(theta) ** 19 + 185774296147.906 * cos(theta) ** 17 - 112290241227.179 * cos(theta) ** 15 + 45699516778.503 * cos(theta) ** 13 - 12420077730.743 * cos(theta) ** 11 + 2189436779.4579 * cos(theta) ** 9 - 236695868.049502 * cos(theta) ** 7 + 14201752.0829701 * cos(theta) ** 5 - 391232.839751244 * cos(theta) ** 3 + 3155.103546381 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl27_m_minus_1(theta, phi): return ( 0.107604519572121 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 391657385.919236 * cos(theta) ** 26 - 2401672649.50475 * cos(theta) ** 24 + 6498643639.83638 * cos(theta) ** 22 - 10212154291.1714 * cos(theta) ** 20 + 10320794230.4392 * cos(theta) ** 18 - 7018140076.69868 * cos(theta) ** 16 + 3264251198.4645 * cos(theta) ** 14 - 1035006477.56191 * cos(theta) ** 12 + 218943677.94579 * cos(theta) ** 10 - 29586983.5061878 * cos(theta) ** 8 + 2366958.68049502 * cos(theta) ** 6 - 97808.2099378109 * cos(theta) ** 4 + 1577.5517731905 * cos(theta) ** 2 - 4.18448746204376 ) * sin(phi) ) # @torch.jit.script def Yl27_m0(theta, phi): return ( 95338615.7975749 * cos(theta) ** 27 - 631393474.432996 * cos(theta) ** 25 + 1857039630.68528 * cos(theta) ** 23 - 3196129432.40392 * cos(theta) ** 21 + 3570144578.74906 * cos(theta) ** 19 - 2713309879.84929 * cos(theta) ** 17 + 1430271874.64924 * cos(theta) ** 15 - 523270198.042403 * cos(theta) ** 13 + 130817549.510601 * cos(theta) ** 11 - 21606502.1714206 * cos(theta) ** 9 + 2222383.08048897 * cos(theta) ** 7 - 128567.616226635 * cos(theta) ** 5 + 3456.11871576975 * cos(theta) ** 3 - 27.5022709477699 * cos(theta) ) # @torch.jit.script def Yl27_m1(theta, phi): return ( 0.107604519572121 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 391657385.919236 * cos(theta) ** 26 - 2401672649.50475 * cos(theta) ** 24 + 6498643639.83638 * cos(theta) ** 22 - 10212154291.1714 * cos(theta) ** 20 + 10320794230.4392 * cos(theta) ** 18 - 7018140076.69868 * cos(theta) ** 16 + 3264251198.4645 * cos(theta) ** 14 - 1035006477.56191 * cos(theta) ** 12 + 218943677.94579 * cos(theta) ** 10 - 29586983.5061878 * cos(theta) ** 8 + 2366958.68049502 * cos(theta) ** 6 - 97808.2099378109 * cos(theta) ** 4 + 1577.5517731905 * cos(theta) ** 2 - 4.18448746204376 ) * cos(phi) ) # @torch.jit.script def Yl27_m2(theta, phi): return ( 0.00391872547223201 * (1.0 - cos(theta) ** 2) * ( 10183092033.9001 * cos(theta) ** 25 - 57640143588.114 * cos(theta) ** 23 + 142970160076.4 * cos(theta) ** 21 - 204243085823.429 * cos(theta) ** 19 + 185774296147.906 * cos(theta) ** 17 - 112290241227.179 * cos(theta) ** 15 + 45699516778.503 * cos(theta) ** 13 - 12420077730.743 * cos(theta) ** 11 + 2189436779.4579 * cos(theta) ** 9 - 236695868.049502 * cos(theta) ** 7 + 14201752.0829701 * cos(theta) ** 5 - 391232.839751244 * cos(theta) ** 3 + 3155.103546381 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl27_m3(theta, phi): return ( 0.00014309162252077 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 254577300847.503 * cos(theta) ** 24 - 1325723302526.62 * cos(theta) ** 22 + 3002373361604.41 * cos(theta) ** 20 - 3880618630645.15 * cos(theta) ** 18 + 3158163034514.4 * cos(theta) ** 16 - 1684353618407.68 * cos(theta) ** 14 + 594093718120.539 * cos(theta) ** 12 - 136620855038.173 * cos(theta) ** 10 + 19704931015.1211 * cos(theta) ** 8 - 1656871076.34652 * cos(theta) ** 6 + 71008760.4148507 * cos(theta) ** 4 - 1173698.51925373 * cos(theta) ** 2 + 3155.103546381 ) * cos(3 * phi) ) # @torch.jit.script def Yl27_m4(theta, phi): return ( 5.24599340659887e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 6109855220340.08 * cos(theta) ** 23 - 29165912655585.7 * cos(theta) ** 21 + 60047467232088.1 * cos(theta) ** 19 - 69851135351612.7 * cos(theta) ** 17 + 50530608552230.5 * cos(theta) ** 15 - 23580950657707.6 * cos(theta) ** 13 + 7129124617446.47 * cos(theta) ** 11 - 1366208550381.73 * cos(theta) ** 9 + 157639448120.969 * cos(theta) ** 7 - 9941226458.0791 * cos(theta) ** 5 + 284035041.659403 * cos(theta) ** 3 - 2347397.03850746 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl27_m5(theta, phi): return ( 1.93369882461158e-7 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 140526670067822.0 * cos(theta) ** 22 - 612484165767299.0 * cos(theta) ** 20 + 1.14090187740967e15 * cos(theta) ** 18 - 1.18746930097742e15 * cos(theta) ** 16 + 757959128283457.0 * cos(theta) ** 14 - 306552358550198.0 * cos(theta) ** 12 + 78420370791911.2 * cos(theta) ** 10 - 12295876953435.5 * cos(theta) ** 8 + 1103476136846.78 * cos(theta) ** 6 - 49706132290.3955 * cos(theta) ** 4 + 852105124.978209 * cos(theta) ** 2 - 2347397.03850746 ) * cos(5 * phi) ) # @torch.jit.script def Yl27_m6(theta, phi): return ( 7.17662944926961e-9 * (1.0 - cos(theta) ** 2) ** 3 * ( 3.09158674149208e15 * cos(theta) ** 21 - 1.2249683315346e16 * cos(theta) ** 19 + 2.05362337933741e16 * cos(theta) ** 17 - 1.89995088156387e16 * cos(theta) ** 15 + 1.06114277959684e16 * cos(theta) ** 13 - 3.67862830260238e15 * cos(theta) ** 11 + 784203707919112.0 * cos(theta) ** 9 - 98367015627484.4 * cos(theta) ** 7 + 6620856821080.68 * cos(theta) ** 5 - 198824529161.582 * cos(theta) ** 3 + 1704210249.95642 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl27_m7(theta, phi): return ( 2.68578607004038e-10 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 6.49233215713337e16 * cos(theta) ** 20 - 2.32743982991574e17 * cos(theta) ** 18 + 3.4911597448736e17 * cos(theta) ** 16 - 2.8499263223458e17 * cos(theta) ** 14 + 1.37948561347589e17 * cos(theta) ** 12 - 4.04649113286262e16 * cos(theta) ** 10 + 7.05783337127201e15 * cos(theta) ** 8 - 688569109392391.0 * cos(theta) ** 6 + 33104284105403.4 * cos(theta) ** 4 - 596473587484.746 * cos(theta) ** 2 + 1704210249.95642 ) * cos(7 * phi) ) # @torch.jit.script def Yl27_m8(theta, phi): return ( 1.01513171657834e-11 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.29846643142667e18 * cos(theta) ** 19 - 4.18939169384832e18 * cos(theta) ** 17 + 5.58585559179777e18 * cos(theta) ** 15 - 3.98989685128412e18 * cos(theta) ** 13 + 1.65538273617107e18 * cos(theta) ** 11 - 4.04649113286262e17 * cos(theta) ** 9 + 5.6462666970176e16 * cos(theta) ** 7 - 4.13141465635434e15 * cos(theta) ** 5 + 132417136421614.0 * cos(theta) ** 3 - 1192947174969.49 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl27_m9(theta, phi): return ( 3.8814531289017e-13 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 2.46708621971068e19 * cos(theta) ** 18 - 7.12196587954215e19 * cos(theta) ** 16 + 8.37878338769665e19 * cos(theta) ** 14 - 5.18686590666935e19 * cos(theta) ** 12 + 1.82092100978818e19 * cos(theta) ** 10 - 3.64184201957635e18 * cos(theta) ** 8 + 3.95238668791232e17 * cos(theta) ** 6 - 2.06570732817717e16 * cos(theta) ** 4 + 397251409264841.0 * cos(theta) ** 2 - 1192947174969.49 ) * cos(9 * phi) ) # @torch.jit.script def Yl27_m10(theta, phi): return ( 1.50403253709877e-14 * (1.0 - cos(theta) ** 2) ** 5 * ( 4.44075519547922e20 * cos(theta) ** 17 - 1.13951454072674e21 * cos(theta) ** 15 + 1.17302967427753e21 * cos(theta) ** 13 - 6.22423908800322e20 * cos(theta) ** 11 + 1.82092100978818e20 * cos(theta) ** 9 - 2.91347361566108e19 * cos(theta) ** 7 + 2.37143201274739e18 * cos(theta) ** 5 - 8.26282931270869e16 * cos(theta) ** 3 + 794502818529682.0 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl27_m11(theta, phi): return ( 5.91753687024496e-16 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 7.54928383231468e21 * cos(theta) ** 16 - 1.70927181109012e22 * cos(theta) ** 14 + 1.52493857656079e22 * cos(theta) ** 12 - 6.84666299680355e21 * cos(theta) ** 10 + 1.63882890880936e21 * cos(theta) ** 8 - 2.03943153096276e20 * cos(theta) ** 6 + 1.1857160063737e19 * cos(theta) ** 4 - 2.47884879381261e17 * cos(theta) ** 2 + 794502818529682.0 ) * cos(11 * phi) ) # @torch.jit.script def Yl27_m12(theta, phi): return ( 2.36891063526465e-17 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.20788541317035e23 * cos(theta) ** 15 - 2.39298053552616e23 * cos(theta) ** 13 + 1.82992629187295e23 * cos(theta) ** 11 - 6.84666299680355e22 * cos(theta) ** 9 + 1.31106312704749e22 * cos(theta) ** 7 - 1.22365891857766e21 * cos(theta) ** 5 + 4.74286402549479e19 * cos(theta) ** 3 - 4.95769758762521e17 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl27_m13(theta, phi): return ( 9.67103717108456e-19 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.81182811975552e24 * cos(theta) ** 14 - 3.11087469618401e24 * cos(theta) ** 12 + 2.01291892106024e24 * cos(theta) ** 10 - 6.16199669712319e23 * cos(theta) ** 8 + 9.17744188933241e22 * cos(theta) ** 6 - 6.11829459288828e21 * cos(theta) ** 4 + 1.42285920764844e20 * cos(theta) ** 2 - 4.95769758762521e17 ) * cos(13 * phi) ) # @torch.jit.script def Yl27_m14(theta, phi): return ( 4.03661292375851e-20 * (1.0 - cos(theta) ** 2) ** 7 * ( 2.53655936765773e25 * cos(theta) ** 13 - 3.73304963542081e25 * cos(theta) ** 11 + 2.01291892106024e25 * cos(theta) ** 9 - 4.92959735769855e24 * cos(theta) ** 7 + 5.50646513359945e23 * cos(theta) ** 5 - 2.44731783715531e22 * cos(theta) ** 3 + 2.84571841529687e20 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl27_m15(theta, phi): return ( 1.72751085492761e-21 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 3.29752717795505e26 * cos(theta) ** 12 - 4.1063545989629e26 * cos(theta) ** 10 + 1.81162702895422e26 * cos(theta) ** 8 - 3.45071815038899e25 * cos(theta) ** 6 + 2.75323256679972e24 * cos(theta) ** 4 - 7.34195351146593e22 * cos(theta) ** 2 + 2.84571841529687e20 ) * cos(15 * phi) ) # @torch.jit.script def Yl27_m16(theta, phi): return ( 7.60494248954183e-23 * (1.0 - cos(theta) ** 2) ** 8 * ( 3.95703261354606e27 * cos(theta) ** 11 - 4.1063545989629e27 * cos(theta) ** 9 + 1.44930162316337e27 * cos(theta) ** 7 - 2.07043089023339e26 * cos(theta) ** 5 + 1.10129302671989e25 * cos(theta) ** 3 - 1.46839070229319e23 * cos(theta) ) * cos(16 * phi) ) # @torch.jit.script def Yl27_m17(theta, phi): return ( 3.45679204070083e-24 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 4.35273587490067e28 * cos(theta) ** 10 - 3.69571913906661e28 * cos(theta) ** 8 + 1.01451113621436e28 * cos(theta) ** 6 - 1.0352154451167e27 * cos(theta) ** 4 + 3.30387908015967e25 * cos(theta) ** 2 - 1.46839070229319e23 ) * cos(17 * phi) ) # @torch.jit.script def Yl27_m18(theta, phi): return ( 1.62954739542083e-25 * (1.0 - cos(theta) ** 2) ** 9 * ( 4.35273587490067e29 * cos(theta) ** 9 - 2.95657531125328e29 * cos(theta) ** 7 + 6.08706681728617e28 * cos(theta) ** 5 - 4.14086178046679e27 * cos(theta) ** 3 + 6.60775816031934e25 * cos(theta) ) * cos(18 * phi) ) # @torch.jit.script def Yl27_m19(theta, phi): return ( 8.00878852093215e-27 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 3.9174622874106e30 * cos(theta) ** 8 - 2.0696027178773e30 * cos(theta) ** 6 + 3.04353340864309e29 * cos(theta) ** 4 - 1.24225853414004e28 * cos(theta) ** 2 + 6.60775816031934e25 ) * cos(19 * phi) ) # @torch.jit.script def Yl27_m20(theta, phi): return ( 4.13021731864148e-28 * (1.0 - cos(theta) ** 2) ** 10 * ( 3.13396982992848e31 * cos(theta) ** 7 - 1.24176163072638e31 * cos(theta) ** 5 + 1.21741336345723e30 * cos(theta) ** 3 - 2.48451706828007e28 * cos(theta) ) * cos(20 * phi) ) # @torch.jit.script def Yl27_m21(theta, phi): return ( 2.25321827372525e-29 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 2.19377888094994e32 * cos(theta) ** 6 - 6.2088081536319e31 * cos(theta) ** 4 + 3.6522400903717e30 * cos(theta) ** 2 - 2.48451706828007e28 ) * cos(21 * phi) ) # @torch.jit.script def Yl27_m22(theta, phi): return ( 1.31410358327182e-30 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.31626732856996e33 * cos(theta) ** 5 - 2.48352326145276e32 * cos(theta) ** 3 + 7.30448018074341e30 * cos(theta) ) * cos(22 * phi) ) # @torch.jit.script def Yl27_m23(theta, phi): return ( 8.31112080905536e-32 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 6.58133664284981e33 * cos(theta) ** 4 - 7.45056978435828e32 * cos(theta) ** 2 + 7.30448018074341e30 ) * cos(23 * phi) ) # @torch.jit.script def Yl27_m24(theta, phi): return ( 5.81894847243549e-33 * (1.0 - cos(theta) ** 2) ** 12 * (2.63253465713992e34 * cos(theta) ** 3 - 1.49011395687166e33 * cos(theta)) * cos(24 * phi) ) # @torch.jit.script def Yl27_m25(theta, phi): return ( 4.65888737989014e-34 * (1.0 - cos(theta) ** 2) ** 12.5 * (7.89760397141977e34 * cos(theta) ** 2 - 1.49011395687166e33) * cos(25 * phi) ) # @torch.jit.script def Yl27_m26(theta, phi): return 7.14750762604425 * (1.0 - cos(theta) ** 2) ** 13 * cos(26 * phi) * cos(theta) # @torch.jit.script def Yl27_m27(theta, phi): return 0.97265258980333 * (1.0 - cos(theta) ** 2) ** 13.5 * cos(27 * phi) # @torch.jit.script def Yl28_m_minus_28(theta, phi): return 0.981298560633835 * (1.0 - cos(theta) ** 2) ** 14 * sin(28 * phi) # @torch.jit.script def Yl28_m_minus_27(theta, phi): return ( 7.34336601605245 * (1.0 - cos(theta) ** 2) ** 13.5 * sin(27 * phi) * cos(theta) ) # @torch.jit.script def Yl28_m_minus_26(theta, phi): return ( 8.86550503264189e-36 * (1.0 - cos(theta) ** 2) ** 13 * (4.34368218428088e36 * cos(theta) ** 2 - 7.89760397141977e34) * sin(26 * phi) ) # @torch.jit.script def Yl28_m_minus_25(theta, phi): return ( 1.12839457090042e-34 * (1.0 - cos(theta) ** 2) ** 12.5 * (1.44789406142696e36 * cos(theta) ** 3 - 7.89760397141977e34 * cos(theta)) * sin(25 * phi) ) # @torch.jit.script def Yl28_m_minus_24(theta, phi): return ( 1.64296729492452e-33 * (1.0 - cos(theta) ** 2) ** 12 * ( 3.6197351535674e35 * cos(theta) ** 4 - 3.94880198570989e34 * cos(theta) ** 2 + 3.72528489217914e32 ) * sin(24 * phi) ) # @torch.jit.script def Yl28_m_minus_23(theta, phi): return ( 2.64920516074126e-32 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 7.23947030713479e34 * cos(theta) ** 5 - 1.31626732856996e34 * cos(theta) ** 3 + 3.72528489217914e32 * cos(theta) ) * sin(23 * phi) ) # @torch.jit.script def Yl28_m_minus_22(theta, phi): return ( 4.63421635555746e-31 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.20657838452247e34 * cos(theta) ** 6 - 3.29066832142491e33 * cos(theta) ** 4 + 1.86264244608957e32 * cos(theta) ** 2 - 1.21741336345723e30 ) * sin(22 * phi) ) # @torch.jit.script def Yl28_m_minus_21(theta, phi): return ( 8.66982492934009e-30 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.72368340646067e33 * cos(theta) ** 7 - 6.58133664284981e32 * cos(theta) ** 5 + 6.2088081536319e31 * cos(theta) ** 3 - 1.21741336345723e30 * cos(theta) ) * sin(21 * phi) ) # @torch.jit.script def Yl28_m_minus_20(theta, phi): return ( 1.71653775978624e-28 * (1.0 - cos(theta) ** 2) ** 10 * ( 2.15460425807583e32 * cos(theta) ** 8 - 1.09688944047497e32 * cos(theta) ** 6 + 1.55220203840797e31 * cos(theta) ** 4 - 6.08706681728617e29 * cos(theta) ** 2 + 3.10564633535009e27 ) * sin(20 * phi) ) # @torch.jit.script def Yl28_m_minus_19(theta, phi): return ( 3.56775673567227e-27 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 2.39400473119537e31 * cos(theta) ** 9 - 1.56698491496424e31 * cos(theta) ** 7 + 3.10440407681595e30 * cos(theta) ** 5 - 2.02902227242872e29 * cos(theta) ** 3 + 3.10564633535009e27 * cos(theta) ) * sin(19 * phi) ) # @torch.jit.script def Yl28_m_minus_18(theta, phi): return ( 7.73471228858538e-26 * (1.0 - cos(theta) ** 2) ** 9 * ( 2.39400473119537e30 * cos(theta) ** 10 - 1.9587311437053e30 * cos(theta) ** 8 + 5.17400679469325e29 * cos(theta) ** 6 - 5.07255568107181e28 * cos(theta) ** 4 + 1.55282316767504e27 * cos(theta) ** 2 - 6.60775816031934e24 ) * sin(18 * phi) ) # @torch.jit.script def Yl28_m_minus_17(theta, phi): return ( 1.7398805056302e-24 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 2.17636793745033e29 * cos(theta) ** 11 - 2.17636793745033e29 * cos(theta) ** 9 + 7.39143827813321e28 * cos(theta) ** 7 - 1.01451113621436e28 * cos(theta) ** 5 + 5.17607722558348e26 * cos(theta) ** 3 - 6.60775816031934e24 * cos(theta) ) * sin(17 * phi) ) # @torch.jit.script def Yl28_m_minus_16(theta, phi): return ( 4.04311693361802e-23 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.81363994787528e28 * cos(theta) ** 12 - 2.17636793745033e28 * cos(theta) ** 10 + 9.23929784766651e27 * cos(theta) ** 8 - 1.6908518936906e27 * cos(theta) ** 6 + 1.29401930639587e26 * cos(theta) ** 4 - 3.30387908015967e24 * cos(theta) ** 2 + 1.22365891857766e22 ) * sin(16 * phi) ) # @torch.jit.script def Yl28_m_minus_15(theta, phi): return ( 9.66972930141058e-22 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.39510765221175e27 * cos(theta) ** 13 - 1.97851630677303e27 * cos(theta) ** 11 + 1.02658864974072e27 * cos(theta) ** 9 - 2.41550270527229e26 * cos(theta) ** 7 + 2.58803861279174e25 * cos(theta) ** 5 - 1.10129302671989e24 * cos(theta) ** 3 + 1.22365891857766e22 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl28_m_minus_14(theta, phi): return ( 2.3725346401488e-20 * (1.0 - cos(theta) ** 2) ** 7 * ( 9.96505465865538e25 * cos(theta) ** 14 - 1.64876358897753e26 * cos(theta) ** 12 + 1.02658864974072e26 * cos(theta) ** 10 - 3.01937838159036e25 * cos(theta) ** 8 + 4.31339768798623e24 * cos(theta) ** 6 - 2.75323256679972e23 * cos(theta) ** 4 + 6.11829459288828e21 * cos(theta) ** 2 - 2.03265601092634e19 ) * sin(14 * phi) ) # @torch.jit.script def Yl28_m_minus_13(theta, phi): return ( 5.95501468493973e-19 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 6.64336977243692e24 * cos(theta) ** 15 - 1.26827968382887e25 * cos(theta) ** 13 + 9.33262408855204e24 * cos(theta) ** 11 - 3.35486486843374e24 * cos(theta) ** 9 + 6.16199669712319e23 * cos(theta) ** 7 - 5.50646513359945e22 * cos(theta) ** 5 + 2.03943153096276e21 * cos(theta) ** 3 - 2.03265601092634e19 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl28_m_minus_12(theta, phi): return ( 1.52522795453625e-17 * (1.0 - cos(theta) ** 2) ** 6 * ( 4.15210610777307e23 * cos(theta) ** 16 - 9.05914059877762e23 * cos(theta) ** 14 + 7.77718674046003e23 * cos(theta) ** 12 - 3.35486486843374e23 * cos(theta) ** 10 + 7.70249587140399e22 * cos(theta) ** 8 - 9.17744188933241e21 * cos(theta) ** 6 + 5.0985788274069e20 * cos(theta) ** 4 - 1.01632800546317e19 * cos(theta) ** 2 + 3.09856099226576e16 ) * sin(12 * phi) ) # @torch.jit.script def Yl28_m_minus_11(theta, phi): return ( 3.977307899878e-16 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 2.44241535751357e22 * cos(theta) ** 17 - 6.03942706585174e22 * cos(theta) ** 15 + 5.98245133881541e22 * cos(theta) ** 13 - 3.04987715312158e22 * cos(theta) ** 11 + 8.55832874600443e21 * cos(theta) ** 9 - 1.31106312704749e21 * cos(theta) ** 7 + 1.01971576548138e20 * cos(theta) ** 5 - 3.38776001821056e18 * cos(theta) ** 3 + 3.09856099226576e16 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl28_m_minus_10(theta, phi): return ( 1.05379896790437e-14 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.35689742084087e21 * cos(theta) ** 18 - 3.77464191615734e21 * cos(theta) ** 16 + 4.27317952772529e21 * cos(theta) ** 14 - 2.54156429426798e21 * cos(theta) ** 12 + 8.55832874600443e20 * cos(theta) ** 10 - 1.63882890880936e20 * cos(theta) ** 8 + 1.6995262758023e19 * cos(theta) ** 6 - 8.46940004552641e17 * cos(theta) ** 4 + 1.54928049613288e16 * cos(theta) ** 2 - 44139045473871.2 ) * sin(10 * phi) ) # @torch.jit.script def Yl28_m_minus_9(theta, phi): return ( 2.83156390560776e-13 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 7.1415653728467e19 * cos(theta) ** 19 - 2.22037759773961e20 * cos(theta) ** 17 + 2.84878635181686e20 * cos(theta) ** 15 - 1.95504945712922e20 * cos(theta) ** 13 + 7.78029886000403e19 * cos(theta) ** 11 - 1.82092100978818e19 * cos(theta) ** 9 + 2.42789467971757e18 * cos(theta) ** 7 - 1.69388000910528e17 * cos(theta) ** 5 + 5.16426832044293e15 * cos(theta) ** 3 - 44139045473871.2 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl28_m_minus_8(theta, phi): return ( 7.70268659114473e-12 * (1.0 - cos(theta) ** 2) ** 4 * ( 3.57078268642335e18 * cos(theta) ** 20 - 1.23354310985534e19 * cos(theta) ** 18 + 1.78049146988554e19 * cos(theta) ** 16 - 1.39646389794944e19 * cos(theta) ** 14 + 6.48358238333669e18 * cos(theta) ** 12 - 1.82092100978818e18 * cos(theta) ** 10 + 3.03486834964696e17 * cos(theta) ** 8 - 2.8231333485088e16 * cos(theta) ** 6 + 1.29106708011073e15 * cos(theta) ** 4 - 22069522736935.6 * cos(theta) ** 2 + 59647358748.4746 ) * sin(8 * phi) ) # @torch.jit.script def Yl28_m_minus_7(theta, phi): return ( 2.11788866150653e-10 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.70037270782064e17 * cos(theta) ** 21 - 6.49233215713337e17 * cos(theta) ** 19 + 1.04734792346208e18 * cos(theta) ** 17 - 9.30975931966294e17 * cos(theta) ** 15 + 4.98737106410515e17 * cos(theta) ** 13 - 1.65538273617107e17 * cos(theta) ** 11 + 3.37207594405218e16 * cos(theta) ** 9 - 4.03304764072686e15 * cos(theta) ** 7 + 258213416022147.0 * cos(theta) ** 5 - 7356507578978.53 * cos(theta) ** 3 + 59647358748.4746 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl28_m_minus_6(theta, phi): return ( 5.8769025298657e-9 * (1.0 - cos(theta) ** 2) ** 3 * ( 7.7289668537302e15 * cos(theta) ** 22 - 3.24616607856668e16 * cos(theta) ** 20 + 5.81859957478934e16 * cos(theta) ** 18 - 5.81859957478934e16 * cos(theta) ** 16 + 3.56240790293225e16 * cos(theta) ** 14 - 1.37948561347589e16 * cos(theta) ** 12 + 3.37207594405218e15 * cos(theta) ** 10 - 504130955090858.0 * cos(theta) ** 8 + 43035569337024.4 * cos(theta) ** 6 - 1839126894744.63 * cos(theta) ** 4 + 29823679374.2373 * cos(theta) ** 2 - 77464102.2707462 ) * sin(6 * phi) ) # @torch.jit.script def Yl28_m_minus_5(theta, phi): return ( 1.64343247431143e-7 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 336042037118704.0 * cos(theta) ** 23 - 1.54579337074604e15 * cos(theta) ** 21 + 3.06242082883649e15 * cos(theta) ** 19 - 3.42270563222902e15 * cos(theta) ** 17 + 2.37493860195483e15 * cos(theta) ** 15 - 1.06114277959684e15 * cos(theta) ** 13 + 306552358550198.0 * cos(theta) ** 11 - 56014550565650.8 * cos(theta) ** 9 + 6147938476717.77 * cos(theta) ** 7 - 367825378948.927 * cos(theta) ** 5 + 9941226458.0791 * cos(theta) ** 3 - 77464102.2707462 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl28_m_minus_4(theta, phi): return ( 4.62502894662956e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 14001751546612.7 * cos(theta) ** 24 - 70263335033910.9 * cos(theta) ** 22 + 153121041441825.0 * cos(theta) ** 20 - 190150312901612.0 * cos(theta) ** 18 + 148433662622177.0 * cos(theta) ** 16 - 75795912828345.7 * cos(theta) ** 14 + 25546029879183.2 * cos(theta) ** 12 - 5601455056565.08 * cos(theta) ** 10 + 768492309589.722 * cos(theta) ** 8 - 61304229824.8211 * cos(theta) ** 6 + 2485306614.51977 * cos(theta) ** 4 - 38732051.1353731 * cos(theta) ** 2 + 97808.2099378109 ) * sin(4 * phi) ) # @torch.jit.script def Yl28_m_minus_3(theta, phi): return ( 0.000130815573253833 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 560070061864.507 * cos(theta) ** 25 - 3054927610170.04 * cos(theta) ** 23 + 7291478163896.42 * cos(theta) ** 21 - 10007911205348.0 * cos(theta) ** 19 + 8731391918951.59 * cos(theta) ** 17 - 5053060855223.05 * cos(theta) ** 15 + 1965079221475.63 * cos(theta) ** 13 - 509223186960.462 * cos(theta) ** 11 + 85388034398.858 * cos(theta) ** 9 - 8757747117.83159 * cos(theta) ** 7 + 497061322.903955 * cos(theta) ** 5 - 12910683.711791 * cos(theta) ** 3 + 97808.2099378109 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl28_m_minus_2(theta, phi): return ( 0.00371387232545999 * (1.0 - cos(theta) ** 2) * ( 21541156225.558 * cos(theta) ** 26 - 127288650423.752 * cos(theta) ** 24 + 331430825631.655 * cos(theta) ** 22 - 500395560267.401 * cos(theta) ** 20 + 485077328830.644 * cos(theta) ** 18 - 315816303451.44 * cos(theta) ** 16 + 140362801533.974 * cos(theta) ** 14 - 42435265580.0385 * cos(theta) ** 12 + 8538803439.8858 * cos(theta) ** 10 - 1094718389.72895 * cos(theta) ** 8 + 82843553.8173258 * cos(theta) ** 6 - 3227670.92794776 * cos(theta) ** 4 + 48904.1049689054 * cos(theta) ** 2 - 121.350136399269 ) * sin(2 * phi) ) # @torch.jit.script def Yl28_m_minus_1(theta, phi): return ( 0.105698659387677 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 797820600.946591 * cos(theta) ** 27 - 5091546016.95007 * cos(theta) ** 25 + 14410035897.0285 * cos(theta) ** 23 - 23828360012.7334 * cos(theta) ** 21 + 25530385727.9286 * cos(theta) ** 19 - 18577429614.7906 * cos(theta) ** 17 + 9357520102.2649 * cos(theta) ** 15 - 3264251198.4645 * cos(theta) ** 13 + 776254858.171436 * cos(theta) ** 11 - 121635376.63655 * cos(theta) ** 9 + 11834793.4024751 * cos(theta) ** 7 - 645534.185589552 * cos(theta) ** 5 + 16301.3683229685 * cos(theta) ** 3 - 121.350136399269 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl28_m0(theta, phi): return ( 190646827.826863 * cos(theta) ** 28 - 1310263653.06463 * cos(theta) ** 26 + 4017317804.20758 * cos(theta) ** 24 - 7246926235.04112 * cos(theta) ** 22 + 8541020205.58418 * cos(theta) ** 20 - 6905505698.13189 * cos(theta) ** 18 + 3913119895.60807 * cos(theta) ** 16 - 1560047798.91352 * cos(theta) ** 14 + 432818139.332713 * cos(theta) ** 12 - 81384607.3958948 * cos(theta) ** 10 + 9898127.92652775 * cos(theta) ** 8 - 719863.849202018 * cos(theta) ** 6 + 27267.570045531 * cos(theta) ** 4 - 405.968784796988 * cos(theta) ** 2 + 0.999923115263516 ) # @torch.jit.script def Yl28_m1(theta, phi): return ( 0.105698659387677 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 797820600.946591 * cos(theta) ** 27 - 5091546016.95007 * cos(theta) ** 25 + 14410035897.0285 * cos(theta) ** 23 - 23828360012.7334 * cos(theta) ** 21 + 25530385727.9286 * cos(theta) ** 19 - 18577429614.7906 * cos(theta) ** 17 + 9357520102.2649 * cos(theta) ** 15 - 3264251198.4645 * cos(theta) ** 13 + 776254858.171436 * cos(theta) ** 11 - 121635376.63655 * cos(theta) ** 9 + 11834793.4024751 * cos(theta) ** 7 - 645534.185589552 * cos(theta) ** 5 + 16301.3683229685 * cos(theta) ** 3 - 121.350136399269 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl28_m2(theta, phi): return ( 0.00371387232545999 * (1.0 - cos(theta) ** 2) * ( 21541156225.558 * cos(theta) ** 26 - 127288650423.752 * cos(theta) ** 24 + 331430825631.655 * cos(theta) ** 22 - 500395560267.401 * cos(theta) ** 20 + 485077328830.644 * cos(theta) ** 18 - 315816303451.44 * cos(theta) ** 16 + 140362801533.974 * cos(theta) ** 14 - 42435265580.0385 * cos(theta) ** 12 + 8538803439.8858 * cos(theta) ** 10 - 1094718389.72895 * cos(theta) ** 8 + 82843553.8173258 * cos(theta) ** 6 - 3227670.92794776 * cos(theta) ** 4 + 48904.1049689054 * cos(theta) ** 2 - 121.350136399269 ) * cos(2 * phi) ) # @torch.jit.script def Yl28_m3(theta, phi): return ( 0.000130815573253833 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 560070061864.507 * cos(theta) ** 25 - 3054927610170.04 * cos(theta) ** 23 + 7291478163896.42 * cos(theta) ** 21 - 10007911205348.0 * cos(theta) ** 19 + 8731391918951.59 * cos(theta) ** 17 - 5053060855223.05 * cos(theta) ** 15 + 1965079221475.63 * cos(theta) ** 13 - 509223186960.462 * cos(theta) ** 11 + 85388034398.858 * cos(theta) ** 9 - 8757747117.83159 * cos(theta) ** 7 + 497061322.903955 * cos(theta) ** 5 - 12910683.711791 * cos(theta) ** 3 + 97808.2099378109 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl28_m4(theta, phi): return ( 4.62502894662956e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 14001751546612.7 * cos(theta) ** 24 - 70263335033910.9 * cos(theta) ** 22 + 153121041441825.0 * cos(theta) ** 20 - 190150312901612.0 * cos(theta) ** 18 + 148433662622177.0 * cos(theta) ** 16 - 75795912828345.7 * cos(theta) ** 14 + 25546029879183.2 * cos(theta) ** 12 - 5601455056565.08 * cos(theta) ** 10 + 768492309589.722 * cos(theta) ** 8 - 61304229824.8211 * cos(theta) ** 6 + 2485306614.51977 * cos(theta) ** 4 - 38732051.1353731 * cos(theta) ** 2 + 97808.2099378109 ) * cos(4 * phi) ) # @torch.jit.script def Yl28_m5(theta, phi): return ( 1.64343247431143e-7 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 336042037118704.0 * cos(theta) ** 23 - 1.54579337074604e15 * cos(theta) ** 21 + 3.06242082883649e15 * cos(theta) ** 19 - 3.42270563222902e15 * cos(theta) ** 17 + 2.37493860195483e15 * cos(theta) ** 15 - 1.06114277959684e15 * cos(theta) ** 13 + 306552358550198.0 * cos(theta) ** 11 - 56014550565650.8 * cos(theta) ** 9 + 6147938476717.77 * cos(theta) ** 7 - 367825378948.927 * cos(theta) ** 5 + 9941226458.0791 * cos(theta) ** 3 - 77464102.2707462 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl28_m6(theta, phi): return ( 5.8769025298657e-9 * (1.0 - cos(theta) ** 2) ** 3 * ( 7.7289668537302e15 * cos(theta) ** 22 - 3.24616607856668e16 * cos(theta) ** 20 + 5.81859957478934e16 * cos(theta) ** 18 - 5.81859957478934e16 * cos(theta) ** 16 + 3.56240790293225e16 * cos(theta) ** 14 - 1.37948561347589e16 * cos(theta) ** 12 + 3.37207594405218e15 * cos(theta) ** 10 - 504130955090858.0 * cos(theta) ** 8 + 43035569337024.4 * cos(theta) ** 6 - 1839126894744.63 * cos(theta) ** 4 + 29823679374.2373 * cos(theta) ** 2 - 77464102.2707462 ) * cos(6 * phi) ) # @torch.jit.script def Yl28_m7(theta, phi): return ( 2.11788866150653e-10 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.70037270782064e17 * cos(theta) ** 21 - 6.49233215713337e17 * cos(theta) ** 19 + 1.04734792346208e18 * cos(theta) ** 17 - 9.30975931966294e17 * cos(theta) ** 15 + 4.98737106410515e17 * cos(theta) ** 13 - 1.65538273617107e17 * cos(theta) ** 11 + 3.37207594405218e16 * cos(theta) ** 9 - 4.03304764072686e15 * cos(theta) ** 7 + 258213416022147.0 * cos(theta) ** 5 - 7356507578978.53 * cos(theta) ** 3 + 59647358748.4746 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl28_m8(theta, phi): return ( 7.70268659114473e-12 * (1.0 - cos(theta) ** 2) ** 4 * ( 3.57078268642335e18 * cos(theta) ** 20 - 1.23354310985534e19 * cos(theta) ** 18 + 1.78049146988554e19 * cos(theta) ** 16 - 1.39646389794944e19 * cos(theta) ** 14 + 6.48358238333669e18 * cos(theta) ** 12 - 1.82092100978818e18 * cos(theta) ** 10 + 3.03486834964696e17 * cos(theta) ** 8 - 2.8231333485088e16 * cos(theta) ** 6 + 1.29106708011073e15 * cos(theta) ** 4 - 22069522736935.6 * cos(theta) ** 2 + 59647358748.4746 ) * cos(8 * phi) ) # @torch.jit.script def Yl28_m9(theta, phi): return ( 2.83156390560776e-13 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 7.1415653728467e19 * cos(theta) ** 19 - 2.22037759773961e20 * cos(theta) ** 17 + 2.84878635181686e20 * cos(theta) ** 15 - 1.95504945712922e20 * cos(theta) ** 13 + 7.78029886000403e19 * cos(theta) ** 11 - 1.82092100978818e19 * cos(theta) ** 9 + 2.42789467971757e18 * cos(theta) ** 7 - 1.69388000910528e17 * cos(theta) ** 5 + 5.16426832044293e15 * cos(theta) ** 3 - 44139045473871.2 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl28_m10(theta, phi): return ( 1.05379896790437e-14 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.35689742084087e21 * cos(theta) ** 18 - 3.77464191615734e21 * cos(theta) ** 16 + 4.27317952772529e21 * cos(theta) ** 14 - 2.54156429426798e21 * cos(theta) ** 12 + 8.55832874600443e20 * cos(theta) ** 10 - 1.63882890880936e20 * cos(theta) ** 8 + 1.6995262758023e19 * cos(theta) ** 6 - 8.46940004552641e17 * cos(theta) ** 4 + 1.54928049613288e16 * cos(theta) ** 2 - 44139045473871.2 ) * cos(10 * phi) ) # @torch.jit.script def Yl28_m11(theta, phi): return ( 3.977307899878e-16 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 2.44241535751357e22 * cos(theta) ** 17 - 6.03942706585174e22 * cos(theta) ** 15 + 5.98245133881541e22 * cos(theta) ** 13 - 3.04987715312158e22 * cos(theta) ** 11 + 8.55832874600443e21 * cos(theta) ** 9 - 1.31106312704749e21 * cos(theta) ** 7 + 1.01971576548138e20 * cos(theta) ** 5 - 3.38776001821056e18 * cos(theta) ** 3 + 3.09856099226576e16 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl28_m12(theta, phi): return ( 1.52522795453625e-17 * (1.0 - cos(theta) ** 2) ** 6 * ( 4.15210610777307e23 * cos(theta) ** 16 - 9.05914059877762e23 * cos(theta) ** 14 + 7.77718674046003e23 * cos(theta) ** 12 - 3.35486486843374e23 * cos(theta) ** 10 + 7.70249587140399e22 * cos(theta) ** 8 - 9.17744188933241e21 * cos(theta) ** 6 + 5.0985788274069e20 * cos(theta) ** 4 - 1.01632800546317e19 * cos(theta) ** 2 + 3.09856099226576e16 ) * cos(12 * phi) ) # @torch.jit.script def Yl28_m13(theta, phi): return ( 5.95501468493973e-19 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 6.64336977243692e24 * cos(theta) ** 15 - 1.26827968382887e25 * cos(theta) ** 13 + 9.33262408855204e24 * cos(theta) ** 11 - 3.35486486843374e24 * cos(theta) ** 9 + 6.16199669712319e23 * cos(theta) ** 7 - 5.50646513359945e22 * cos(theta) ** 5 + 2.03943153096276e21 * cos(theta) ** 3 - 2.03265601092634e19 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl28_m14(theta, phi): return ( 2.3725346401488e-20 * (1.0 - cos(theta) ** 2) ** 7 * ( 9.96505465865538e25 * cos(theta) ** 14 - 1.64876358897753e26 * cos(theta) ** 12 + 1.02658864974072e26 * cos(theta) ** 10 - 3.01937838159036e25 * cos(theta) ** 8 + 4.31339768798623e24 * cos(theta) ** 6 - 2.75323256679972e23 * cos(theta) ** 4 + 6.11829459288828e21 * cos(theta) ** 2 - 2.03265601092634e19 ) * cos(14 * phi) ) # @torch.jit.script def Yl28_m15(theta, phi): return ( 9.66972930141058e-22 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.39510765221175e27 * cos(theta) ** 13 - 1.97851630677303e27 * cos(theta) ** 11 + 1.02658864974072e27 * cos(theta) ** 9 - 2.41550270527229e26 * cos(theta) ** 7 + 2.58803861279174e25 * cos(theta) ** 5 - 1.10129302671989e24 * cos(theta) ** 3 + 1.22365891857766e22 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl28_m16(theta, phi): return ( 4.04311693361802e-23 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.81363994787528e28 * cos(theta) ** 12 - 2.17636793745033e28 * cos(theta) ** 10 + 9.23929784766651e27 * cos(theta) ** 8 - 1.6908518936906e27 * cos(theta) ** 6 + 1.29401930639587e26 * cos(theta) ** 4 - 3.30387908015967e24 * cos(theta) ** 2 + 1.22365891857766e22 ) * cos(16 * phi) ) # @torch.jit.script def Yl28_m17(theta, phi): return ( 1.7398805056302e-24 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 2.17636793745033e29 * cos(theta) ** 11 - 2.17636793745033e29 * cos(theta) ** 9 + 7.39143827813321e28 * cos(theta) ** 7 - 1.01451113621436e28 * cos(theta) ** 5 + 5.17607722558348e26 * cos(theta) ** 3 - 6.60775816031934e24 * cos(theta) ) * cos(17 * phi) ) # @torch.jit.script def Yl28_m18(theta, phi): return ( 7.73471228858538e-26 * (1.0 - cos(theta) ** 2) ** 9 * ( 2.39400473119537e30 * cos(theta) ** 10 - 1.9587311437053e30 * cos(theta) ** 8 + 5.17400679469325e29 * cos(theta) ** 6 - 5.07255568107181e28 * cos(theta) ** 4 + 1.55282316767504e27 * cos(theta) ** 2 - 6.60775816031934e24 ) * cos(18 * phi) ) # @torch.jit.script def Yl28_m19(theta, phi): return ( 3.56775673567227e-27 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 2.39400473119537e31 * cos(theta) ** 9 - 1.56698491496424e31 * cos(theta) ** 7 + 3.10440407681595e30 * cos(theta) ** 5 - 2.02902227242872e29 * cos(theta) ** 3 + 3.10564633535009e27 * cos(theta) ) * cos(19 * phi) ) # @torch.jit.script def Yl28_m20(theta, phi): return ( 1.71653775978624e-28 * (1.0 - cos(theta) ** 2) ** 10 * ( 2.15460425807583e32 * cos(theta) ** 8 - 1.09688944047497e32 * cos(theta) ** 6 + 1.55220203840797e31 * cos(theta) ** 4 - 6.08706681728617e29 * cos(theta) ** 2 + 3.10564633535009e27 ) * cos(20 * phi) ) # @torch.jit.script def Yl28_m21(theta, phi): return ( 8.66982492934009e-30 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.72368340646067e33 * cos(theta) ** 7 - 6.58133664284981e32 * cos(theta) ** 5 + 6.2088081536319e31 * cos(theta) ** 3 - 1.21741336345723e30 * cos(theta) ) * cos(21 * phi) ) # @torch.jit.script def Yl28_m22(theta, phi): return ( 4.63421635555746e-31 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.20657838452247e34 * cos(theta) ** 6 - 3.29066832142491e33 * cos(theta) ** 4 + 1.86264244608957e32 * cos(theta) ** 2 - 1.21741336345723e30 ) * cos(22 * phi) ) # @torch.jit.script def Yl28_m23(theta, phi): return ( 2.64920516074126e-32 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 7.23947030713479e34 * cos(theta) ** 5 - 1.31626732856996e34 * cos(theta) ** 3 + 3.72528489217914e32 * cos(theta) ) * cos(23 * phi) ) # @torch.jit.script def Yl28_m24(theta, phi): return ( 1.64296729492452e-33 * (1.0 - cos(theta) ** 2) ** 12 * ( 3.6197351535674e35 * cos(theta) ** 4 - 3.94880198570989e34 * cos(theta) ** 2 + 3.72528489217914e32 ) * cos(24 * phi) ) # @torch.jit.script def Yl28_m25(theta, phi): return ( 1.12839457090042e-34 * (1.0 - cos(theta) ** 2) ** 12.5 * (1.44789406142696e36 * cos(theta) ** 3 - 7.89760397141977e34 * cos(theta)) * cos(25 * phi) ) # @torch.jit.script def Yl28_m26(theta, phi): return ( 8.86550503264189e-36 * (1.0 - cos(theta) ** 2) ** 13 * (4.34368218428088e36 * cos(theta) ** 2 - 7.89760397141977e34) * cos(26 * phi) ) # @torch.jit.script def Yl28_m27(theta, phi): return ( 7.34336601605245 * (1.0 - cos(theta) ** 2) ** 13.5 * cos(27 * phi) * cos(theta) ) # @torch.jit.script def Yl28_m28(theta, phi): return 0.981298560633835 * (1.0 - cos(theta) ** 2) ** 14 * cos(28 * phi) # @torch.jit.script def Yl29_m_minus_29(theta, phi): return 0.989721878741179 * (1.0 - cos(theta) ** 2) ** 14.5 * sin(29 * phi) # @torch.jit.script def Yl29_m_minus_28(theta, phi): return 7.53749726640217 * (1.0 - cos(theta) ** 2) ** 14 * sin(28 * phi) * cos(theta) # @torch.jit.script def Yl29_m_minus_27(theta, phi): return ( 1.62523699825355e-37 * (1.0 - cos(theta) ** 2) ** 13.5 * (2.4758988450401e38 * cos(theta) ** 2 - 4.34368218428088e36) * sin(27 * phi) ) # @torch.jit.script def Yl29_m_minus_26(theta, phi): return ( 2.106547911828e-36 * (1.0 - cos(theta) ** 2) ** 13 * (8.25299615013366e37 * cos(theta) ** 3 - 4.34368218428088e36 * cos(theta)) * sin(26 * phi) ) # @torch.jit.script def Yl29_m_minus_25(theta, phi): return ( 3.12451548733867e-35 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 2.06324903753342e37 * cos(theta) ** 4 - 2.17184109214044e36 * cos(theta) ** 2 + 1.97440099285494e34 ) * sin(25 * phi) ) # @torch.jit.script def Yl29_m_minus_24(theta, phi): return ( 5.13410284106891e-34 * (1.0 - cos(theta) ** 2) ** 12 * ( 4.12649807506683e36 * cos(theta) ** 5 - 7.23947030713479e35 * cos(theta) ** 3 + 1.97440099285494e34 * cos(theta) ) * sin(24 * phi) ) # @torch.jit.script def Yl29_m_minus_23(theta, phi): return ( 9.15541687226183e-33 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 6.87749679177805e35 * cos(theta) ** 6 - 1.8098675767837e35 * cos(theta) ** 4 + 9.87200496427472e33 * cos(theta) ** 2 - 6.2088081536319e31 ) * sin(23 * phi) ) # @torch.jit.script def Yl29_m_minus_22(theta, phi): return ( 1.74674221195294e-31 * (1.0 - cos(theta) ** 2) ** 11 * ( 9.82499541682579e34 * cos(theta) ** 7 - 3.6197351535674e34 * cos(theta) ** 5 + 3.29066832142491e33 * cos(theta) ** 3 - 6.2088081536319e31 * cos(theta) ) * sin(22 * phi) ) # @torch.jit.script def Yl29_m_minus_21(theta, phi): return ( 3.52824631913283e-30 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.22812442710322e34 * cos(theta) ** 8 - 6.03289192261233e33 * cos(theta) ** 6 + 8.22667080356226e32 * cos(theta) ** 4 - 3.10440407681595e31 * cos(theta) ** 2 + 1.52176670432154e29 ) * sin(21 * phi) ) # @torch.jit.script def Yl29_m_minus_20(theta, phi): return ( 7.48454069386591e-29 * (1.0 - cos(theta) ** 2) ** 10 * ( 1.36458269678136e33 * cos(theta) ** 9 - 8.61841703230333e32 * cos(theta) ** 7 + 1.64533416071245e32 * cos(theta) ** 5 - 1.03480135893865e31 * cos(theta) ** 3 + 1.52176670432154e29 * cos(theta) ) * sin(20 * phi) ) # @torch.jit.script def Yl29_m_minus_19(theta, phi): return ( 1.65677370829833e-27 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.36458269678136e32 * cos(theta) ** 10 - 1.07730212903792e32 * cos(theta) ** 8 + 2.74222360118742e31 * cos(theta) ** 6 - 2.58700339734662e30 * cos(theta) ** 4 + 7.60883352160772e28 * cos(theta) ** 2 - 3.10564633535009e26 ) * sin(19 * phi) ) # @torch.jit.script def Yl29_m_minus_18(theta, phi): return ( 3.80697614338276e-26 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.24052972434669e31 * cos(theta) ** 11 - 1.19700236559768e31 * cos(theta) ** 9 + 3.9174622874106e30 * cos(theta) ** 7 - 5.17400679469325e29 * cos(theta) ** 5 + 2.53627784053591e28 * cos(theta) ** 3 - 3.10564633535009e26 * cos(theta) ) * sin(18 * phi) ) # @torch.jit.script def Yl29_m_minus_17(theta, phi): return ( 9.04106740874383e-25 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.03377477028891e30 * cos(theta) ** 12 - 1.19700236559768e30 * cos(theta) ** 10 + 4.89682785926325e29 * cos(theta) ** 8 - 8.62334465782208e28 * cos(theta) ** 6 + 6.34069460133976e27 * cos(theta) ** 4 - 1.55282316767504e26 * cos(theta) ** 2 + 5.50646513359945e23 ) * sin(17 * phi) ) # @torch.jit.script def Yl29_m_minus_16(theta, phi): return ( 2.21090610686865e-23 * (1.0 - cos(theta) ** 2) ** 8 * ( 7.95211361760699e28 * cos(theta) ** 13 - 1.08818396872517e29 * cos(theta) ** 11 + 5.44091984362584e28 * cos(theta) ** 9 - 1.23190637968887e28 * cos(theta) ** 7 + 1.26813892026795e27 * cos(theta) ** 5 - 5.17607722558348e25 * cos(theta) ** 3 + 5.50646513359945e23 * cos(theta) ) * sin(16 * phi) ) # @torch.jit.script def Yl29_m_minus_15(theta, phi): return ( 5.54933028611123e-22 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 5.68008115543357e27 * cos(theta) ** 14 - 9.06819973937639e27 * cos(theta) ** 12 + 5.44091984362584e27 * cos(theta) ** 10 - 1.53988297461109e27 * cos(theta) ** 8 + 2.11356486711325e26 * cos(theta) ** 6 - 1.29401930639587e25 * cos(theta) ** 4 + 2.75323256679972e23 * cos(theta) ** 2 - 8.74042084698325e20 ) * sin(15 * phi) ) # @torch.jit.script def Yl29_m_minus_14(theta, phi): return ( 1.42564876361858e-20 * (1.0 - cos(theta) ** 2) ** 7 * ( 3.78672077028904e26 * cos(theta) ** 15 - 6.97553826105876e26 * cos(theta) ** 13 + 4.94629076693258e26 * cos(theta) ** 11 - 1.71098108290121e26 * cos(theta) ** 9 + 3.01937838159036e25 * cos(theta) ** 7 - 2.58803861279174e24 * cos(theta) ** 5 + 9.17744188933241e22 * cos(theta) ** 3 - 8.74042084698325e20 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl29_m_minus_13(theta, phi): return ( 3.7394416498704e-19 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 2.36670048143065e25 * cos(theta) ** 16 - 4.98252732932769e25 * cos(theta) ** 14 + 4.12190897244381e25 * cos(theta) ** 12 - 1.71098108290121e25 * cos(theta) ** 10 + 3.77422297698796e24 * cos(theta) ** 8 - 4.31339768798623e23 * cos(theta) ** 6 + 2.2943604723331e22 * cos(theta) ** 4 - 4.37021042349163e20 * cos(theta) ** 2 + 1.27041000682896e18 ) * sin(13 * phi) ) # @torch.jit.script def Yl29_m_minus_12(theta, phi): return ( 9.99207917847372e-18 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.39217675378274e24 * cos(theta) ** 17 - 3.32168488621846e24 * cos(theta) ** 15 + 3.17069920957217e24 * cos(theta) ** 13 - 1.55543734809201e24 * cos(theta) ** 11 + 4.19358108554217e23 * cos(theta) ** 9 - 6.16199669712319e22 * cos(theta) ** 7 + 4.58872094466621e21 * cos(theta) ** 5 - 1.45673680783054e20 * cos(theta) ** 3 + 1.27041000682896e18 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl29_m_minus_11(theta, phi): return ( 2.7144637587553e-16 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 7.73431529879298e22 * cos(theta) ** 18 - 2.07605305388654e23 * cos(theta) ** 16 + 2.2647851496944e23 * cos(theta) ** 14 - 1.29619779007667e23 * cos(theta) ** 12 + 4.19358108554217e22 * cos(theta) ** 10 - 7.70249587140399e21 * cos(theta) ** 8 + 7.64786824111034e20 * cos(theta) ** 6 - 3.64184201957635e19 * cos(theta) ** 4 + 6.35205003414481e17 * cos(theta) ** 2 - 1.72142277348098e15 ) * sin(11 * phi) ) # @torch.jit.script def Yl29_m_minus_10(theta, phi): return ( 7.48326015729302e-15 * (1.0 - cos(theta) ** 2) ** 5 * ( 4.07069226252262e21 * cos(theta) ** 19 - 1.22120767875679e22 * cos(theta) ** 17 + 1.50985676646294e22 * cos(theta) ** 15 - 9.97075223135901e21 * cos(theta) ** 13 + 3.81234644140198e21 * cos(theta) ** 11 - 8.55832874600443e20 * cos(theta) ** 9 + 1.09255260587291e20 * cos(theta) ** 7 - 7.28368403915271e18 * cos(theta) ** 5 + 2.1173500113816e17 * cos(theta) ** 3 - 1.72142277348098e15 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl29_m_minus_9(theta, phi): return ( 2.08996082292824e-13 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 2.03534613126131e20 * cos(theta) ** 20 - 6.78448710420437e20 * cos(theta) ** 18 + 9.43660479039335e20 * cos(theta) ** 16 - 7.12196587954215e20 * cos(theta) ** 14 + 3.17695536783498e20 * cos(theta) ** 12 - 8.55832874600443e19 * cos(theta) ** 10 + 1.36569075734113e19 * cos(theta) ** 8 - 1.21394733985879e18 * cos(theta) ** 6 + 5.293375028454e16 * cos(theta) ** 4 - 860711386740489.0 * cos(theta) ** 2 + 2206952273693.56 ) * sin(9 * phi) ) # @torch.jit.script def Yl29_m_minus_8(theta, phi): return ( 5.90390812988918e-12 * (1.0 - cos(theta) ** 2) ** 4 * ( 9.69212443457767e18 * cos(theta) ** 21 - 3.57078268642335e19 * cos(theta) ** 19 + 5.55094399434903e19 * cos(theta) ** 17 - 4.7479772530281e19 * cos(theta) ** 15 + 2.44381182141152e19 * cos(theta) ** 13 - 7.78029886000403e18 * cos(theta) ** 11 + 1.51743417482348e18 * cos(theta) ** 9 - 1.73421048551255e17 * cos(theta) ** 7 + 1.0586750056908e16 * cos(theta) ** 5 - 286903795580163.0 * cos(theta) ** 3 + 2206952273693.56 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl29_m_minus_7(theta, phi): return ( 1.68442544512435e-10 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 4.40551110662621e17 * cos(theta) ** 22 - 1.78539134321168e18 * cos(theta) ** 20 + 3.08385777463835e18 * cos(theta) ** 18 - 2.96748578314256e18 * cos(theta) ** 16 + 1.7455798724368e18 * cos(theta) ** 14 - 6.48358238333669e17 * cos(theta) ** 12 + 1.51743417482348e17 * cos(theta) ** 10 - 2.16776310689069e16 * cos(theta) ** 8 + 1.764458342818e15 * cos(theta) ** 6 - 71725948895040.7 * cos(theta) ** 4 + 1103476136846.78 * cos(theta) ** 2 - 2711243579.47612 ) * sin(7 * phi) ) # @torch.jit.script def Yl29_m_minus_6(theta, phi): return ( 4.84693238903845e-9 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.91543961157661e16 * cos(theta) ** 23 - 8.50186353910322e16 * cos(theta) ** 21 + 1.62308303928334e17 * cos(theta) ** 19 - 1.7455798724368e17 * cos(theta) ** 17 + 1.16371991495787e17 * cos(theta) ** 15 - 4.98737106410515e16 * cos(theta) ** 13 + 1.37948561347589e16 * cos(theta) ** 11 - 2.40862567432299e15 * cos(theta) ** 9 + 252065477545429.0 * cos(theta) ** 7 - 14345189779008.1 * cos(theta) ** 5 + 367825378948.927 * cos(theta) ** 3 - 2711243579.47612 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl29_m_minus_5(theta, phi): return ( 1.40477446625728e-7 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 798099838156923.0 * cos(theta) ** 24 - 3.8644834268651e15 * cos(theta) ** 22 + 8.11541519641671e15 * cos(theta) ** 20 - 9.69766595798223e15 * cos(theta) ** 18 + 7.27324946848667e15 * cos(theta) ** 16 - 3.56240790293225e15 * cos(theta) ** 14 + 1.14957134456324e15 * cos(theta) ** 12 - 240862567432299.0 * cos(theta) ** 10 + 31508184693178.6 * cos(theta) ** 8 - 2390864963168.02 * cos(theta) ** 6 + 91956344737.2317 * cos(theta) ** 4 - 1355621789.73806 * cos(theta) ** 2 + 3227670.92794776 ) * sin(5 * phi) ) # @torch.jit.script def Yl29_m_minus_4(theta, phi): return ( 4.0955861679266e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 31923993526276.9 * cos(theta) ** 25 - 168021018559352.0 * cos(theta) ** 23 + 386448342686510.0 * cos(theta) ** 21 - 510403471472749.0 * cos(theta) ** 19 + 427838204028628.0 * cos(theta) ** 17 - 237493860195483.0 * cos(theta) ** 15 + 88428564966403.3 * cos(theta) ** 13 - 21896597039299.9 * cos(theta) ** 11 + 3500909410353.18 * cos(theta) ** 9 - 341552137595.432 * cos(theta) ** 7 + 18391268947.4463 * cos(theta) ** 5 - 451873929.912686 * cos(theta) ** 3 + 3227670.92794776 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl29_m_minus_3(theta, phi): return ( 0.000119966423463177 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 1227845904856.8 * cos(theta) ** 26 - 7000875773306.34 * cos(theta) ** 24 + 17565833758477.7 * cos(theta) ** 22 - 25520173573637.5 * cos(theta) ** 20 + 23768789112701.5 * cos(theta) ** 18 - 14843366262217.7 * cos(theta) ** 16 + 6316326069028.81 * cos(theta) ** 14 - 1824716419941.66 * cos(theta) ** 12 + 350090941035.318 * cos(theta) ** 10 - 42694017199.429 * cos(theta) ** 8 + 3065211491.24106 * cos(theta) ** 6 - 112968482.478172 * cos(theta) ** 4 + 1613835.46397388 * cos(theta) ** 2 - 3761.85422837734 ) * sin(3 * phi) ) # @torch.jit.script def Yl29_m_minus_2(theta, phi): return ( 0.00352627828501722 * (1.0 - cos(theta) ** 2) * ( 45475774253.9557 * cos(theta) ** 27 - 280035030932.254 * cos(theta) ** 25 + 763731902542.51 * cos(theta) ** 23 - 1215246360649.4 * cos(theta) ** 21 + 1250988900668.5 * cos(theta) ** 19 - 873139191895.159 * cos(theta) ** 17 + 421088404601.921 * cos(theta) ** 15 - 140362801533.974 * cos(theta) ** 13 + 31826449185.0289 * cos(theta) ** 11 - 4743779688.82544 * cos(theta) ** 9 + 437887355.891579 * cos(theta) ** 7 - 22593696.4956343 * cos(theta) ** 5 + 537945.15465796 * cos(theta) ** 3 - 3761.85422837734 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl29_m_minus_1(theta, phi): return ( 0.103890645660027 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 1624134794.78413 * cos(theta) ** 28 - 10770578112.779 * cos(theta) ** 26 + 31822162605.9379 * cos(theta) ** 24 - 55238470938.6092 * cos(theta) ** 22 + 62549445033.4251 * cos(theta) ** 20 - 48507732883.0644 * cos(theta) ** 18 + 26318025287.62 * cos(theta) ** 16 - 10025914395.2838 * cos(theta) ** 14 + 2652204098.75241 * cos(theta) ** 12 - 474377968.882544 * cos(theta) ** 10 + 54735919.4864474 * cos(theta) ** 8 - 3765616.08260572 * cos(theta) ** 6 + 134486.28866449 * cos(theta) ** 4 - 1880.92711418867 * cos(theta) ** 2 + 4.33393344283104 ) * sin(phi) ) # @torch.jit.script def Yl29_m0(theta, phi): return ( 381236978.781522 * cos(theta) ** 29 - 2715477427.81224 * cos(theta) ** 27 + 8664841610.56452 * cos(theta) ** 25 - 16348757755.7821 * cos(theta) ** 23 + 20275665255.9455 * cos(theta) ** 21 - 17379141647.9533 * cos(theta) ** 19 + 10538415680.1419 * cos(theta) ** 17 - 4549919150.79141 * cos(theta) ** 15 + 1388783461.72412 * cos(theta) ** 13 - 293563983.779083 * cos(theta) ** 11 + 41400048.994486 * cos(theta) ** 9 - 3661920.79558107 * cos(theta) ** 7 + 183096.039779054 * cos(theta) ** 5 - 4267.9729552227 * cos(theta) ** 3 + 29.5021172020002 * cos(theta) ) # @torch.jit.script def Yl29_m1(theta, phi): return ( 0.103890645660027 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 1624134794.78413 * cos(theta) ** 28 - 10770578112.779 * cos(theta) ** 26 + 31822162605.9379 * cos(theta) ** 24 - 55238470938.6092 * cos(theta) ** 22 + 62549445033.4251 * cos(theta) ** 20 - 48507732883.0644 * cos(theta) ** 18 + 26318025287.62 * cos(theta) ** 16 - 10025914395.2838 * cos(theta) ** 14 + 2652204098.75241 * cos(theta) ** 12 - 474377968.882544 * cos(theta) ** 10 + 54735919.4864474 * cos(theta) ** 8 - 3765616.08260572 * cos(theta) ** 6 + 134486.28866449 * cos(theta) ** 4 - 1880.92711418867 * cos(theta) ** 2 + 4.33393344283104 ) * cos(phi) ) # @torch.jit.script def Yl29_m2(theta, phi): return ( 0.00352627828501722 * (1.0 - cos(theta) ** 2) * ( 45475774253.9557 * cos(theta) ** 27 - 280035030932.254 * cos(theta) ** 25 + 763731902542.51 * cos(theta) ** 23 - 1215246360649.4 * cos(theta) ** 21 + 1250988900668.5 * cos(theta) ** 19 - 873139191895.159 * cos(theta) ** 17 + 421088404601.921 * cos(theta) ** 15 - 140362801533.974 * cos(theta) ** 13 + 31826449185.0289 * cos(theta) ** 11 - 4743779688.82544 * cos(theta) ** 9 + 437887355.891579 * cos(theta) ** 7 - 22593696.4956343 * cos(theta) ** 5 + 537945.15465796 * cos(theta) ** 3 - 3761.85422837734 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl29_m3(theta, phi): return ( 0.000119966423463177 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 1227845904856.8 * cos(theta) ** 26 - 7000875773306.34 * cos(theta) ** 24 + 17565833758477.7 * cos(theta) ** 22 - 25520173573637.5 * cos(theta) ** 20 + 23768789112701.5 * cos(theta) ** 18 - 14843366262217.7 * cos(theta) ** 16 + 6316326069028.81 * cos(theta) ** 14 - 1824716419941.66 * cos(theta) ** 12 + 350090941035.318 * cos(theta) ** 10 - 42694017199.429 * cos(theta) ** 8 + 3065211491.24106 * cos(theta) ** 6 - 112968482.478172 * cos(theta) ** 4 + 1613835.46397388 * cos(theta) ** 2 - 3761.85422837734 ) * cos(3 * phi) ) # @torch.jit.script def Yl29_m4(theta, phi): return ( 4.0955861679266e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 31923993526276.9 * cos(theta) ** 25 - 168021018559352.0 * cos(theta) ** 23 + 386448342686510.0 * cos(theta) ** 21 - 510403471472749.0 * cos(theta) ** 19 + 427838204028628.0 * cos(theta) ** 17 - 237493860195483.0 * cos(theta) ** 15 + 88428564966403.3 * cos(theta) ** 13 - 21896597039299.9 * cos(theta) ** 11 + 3500909410353.18 * cos(theta) ** 9 - 341552137595.432 * cos(theta) ** 7 + 18391268947.4463 * cos(theta) ** 5 - 451873929.912686 * cos(theta) ** 3 + 3227670.92794776 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl29_m5(theta, phi): return ( 1.40477446625728e-7 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 798099838156923.0 * cos(theta) ** 24 - 3.8644834268651e15 * cos(theta) ** 22 + 8.11541519641671e15 * cos(theta) ** 20 - 9.69766595798223e15 * cos(theta) ** 18 + 7.27324946848667e15 * cos(theta) ** 16 - 3.56240790293225e15 * cos(theta) ** 14 + 1.14957134456324e15 * cos(theta) ** 12 - 240862567432299.0 * cos(theta) ** 10 + 31508184693178.6 * cos(theta) ** 8 - 2390864963168.02 * cos(theta) ** 6 + 91956344737.2317 * cos(theta) ** 4 - 1355621789.73806 * cos(theta) ** 2 + 3227670.92794776 ) * cos(5 * phi) ) # @torch.jit.script def Yl29_m6(theta, phi): return ( 4.84693238903845e-9 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.91543961157661e16 * cos(theta) ** 23 - 8.50186353910322e16 * cos(theta) ** 21 + 1.62308303928334e17 * cos(theta) ** 19 - 1.7455798724368e17 * cos(theta) ** 17 + 1.16371991495787e17 * cos(theta) ** 15 - 4.98737106410515e16 * cos(theta) ** 13 + 1.37948561347589e16 * cos(theta) ** 11 - 2.40862567432299e15 * cos(theta) ** 9 + 252065477545429.0 * cos(theta) ** 7 - 14345189779008.1 * cos(theta) ** 5 + 367825378948.927 * cos(theta) ** 3 - 2711243579.47612 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl29_m7(theta, phi): return ( 1.68442544512435e-10 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 4.40551110662621e17 * cos(theta) ** 22 - 1.78539134321168e18 * cos(theta) ** 20 + 3.08385777463835e18 * cos(theta) ** 18 - 2.96748578314256e18 * cos(theta) ** 16 + 1.7455798724368e18 * cos(theta) ** 14 - 6.48358238333669e17 * cos(theta) ** 12 + 1.51743417482348e17 * cos(theta) ** 10 - 2.16776310689069e16 * cos(theta) ** 8 + 1.764458342818e15 * cos(theta) ** 6 - 71725948895040.7 * cos(theta) ** 4 + 1103476136846.78 * cos(theta) ** 2 - 2711243579.47612 ) * cos(7 * phi) ) # @torch.jit.script def Yl29_m8(theta, phi): return ( 5.90390812988918e-12 * (1.0 - cos(theta) ** 2) ** 4 * ( 9.69212443457767e18 * cos(theta) ** 21 - 3.57078268642335e19 * cos(theta) ** 19 + 5.55094399434903e19 * cos(theta) ** 17 - 4.7479772530281e19 * cos(theta) ** 15 + 2.44381182141152e19 * cos(theta) ** 13 - 7.78029886000403e18 * cos(theta) ** 11 + 1.51743417482348e18 * cos(theta) ** 9 - 1.73421048551255e17 * cos(theta) ** 7 + 1.0586750056908e16 * cos(theta) ** 5 - 286903795580163.0 * cos(theta) ** 3 + 2206952273693.56 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl29_m9(theta, phi): return ( 2.08996082292824e-13 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 2.03534613126131e20 * cos(theta) ** 20 - 6.78448710420437e20 * cos(theta) ** 18 + 9.43660479039335e20 * cos(theta) ** 16 - 7.12196587954215e20 * cos(theta) ** 14 + 3.17695536783498e20 * cos(theta) ** 12 - 8.55832874600443e19 * cos(theta) ** 10 + 1.36569075734113e19 * cos(theta) ** 8 - 1.21394733985879e18 * cos(theta) ** 6 + 5.293375028454e16 * cos(theta) ** 4 - 860711386740489.0 * cos(theta) ** 2 + 2206952273693.56 ) * cos(9 * phi) ) # @torch.jit.script def Yl29_m10(theta, phi): return ( 7.48326015729302e-15 * (1.0 - cos(theta) ** 2) ** 5 * ( 4.07069226252262e21 * cos(theta) ** 19 - 1.22120767875679e22 * cos(theta) ** 17 + 1.50985676646294e22 * cos(theta) ** 15 - 9.97075223135901e21 * cos(theta) ** 13 + 3.81234644140198e21 * cos(theta) ** 11 - 8.55832874600443e20 * cos(theta) ** 9 + 1.09255260587291e20 * cos(theta) ** 7 - 7.28368403915271e18 * cos(theta) ** 5 + 2.1173500113816e17 * cos(theta) ** 3 - 1.72142277348098e15 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl29_m11(theta, phi): return ( 2.7144637587553e-16 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 7.73431529879298e22 * cos(theta) ** 18 - 2.07605305388654e23 * cos(theta) ** 16 + 2.2647851496944e23 * cos(theta) ** 14 - 1.29619779007667e23 * cos(theta) ** 12 + 4.19358108554217e22 * cos(theta) ** 10 - 7.70249587140399e21 * cos(theta) ** 8 + 7.64786824111034e20 * cos(theta) ** 6 - 3.64184201957635e19 * cos(theta) ** 4 + 6.35205003414481e17 * cos(theta) ** 2 - 1.72142277348098e15 ) * cos(11 * phi) ) # @torch.jit.script def Yl29_m12(theta, phi): return ( 9.99207917847372e-18 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.39217675378274e24 * cos(theta) ** 17 - 3.32168488621846e24 * cos(theta) ** 15 + 3.17069920957217e24 * cos(theta) ** 13 - 1.55543734809201e24 * cos(theta) ** 11 + 4.19358108554217e23 * cos(theta) ** 9 - 6.16199669712319e22 * cos(theta) ** 7 + 4.58872094466621e21 * cos(theta) ** 5 - 1.45673680783054e20 * cos(theta) ** 3 + 1.27041000682896e18 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl29_m13(theta, phi): return ( 3.7394416498704e-19 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 2.36670048143065e25 * cos(theta) ** 16 - 4.98252732932769e25 * cos(theta) ** 14 + 4.12190897244381e25 * cos(theta) ** 12 - 1.71098108290121e25 * cos(theta) ** 10 + 3.77422297698796e24 * cos(theta) ** 8 - 4.31339768798623e23 * cos(theta) ** 6 + 2.2943604723331e22 * cos(theta) ** 4 - 4.37021042349163e20 * cos(theta) ** 2 + 1.27041000682896e18 ) * cos(13 * phi) ) # @torch.jit.script def Yl29_m14(theta, phi): return ( 1.42564876361858e-20 * (1.0 - cos(theta) ** 2) ** 7 * ( 3.78672077028904e26 * cos(theta) ** 15 - 6.97553826105876e26 * cos(theta) ** 13 + 4.94629076693258e26 * cos(theta) ** 11 - 1.71098108290121e26 * cos(theta) ** 9 + 3.01937838159036e25 * cos(theta) ** 7 - 2.58803861279174e24 * cos(theta) ** 5 + 9.17744188933241e22 * cos(theta) ** 3 - 8.74042084698325e20 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl29_m15(theta, phi): return ( 5.54933028611123e-22 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 5.68008115543357e27 * cos(theta) ** 14 - 9.06819973937639e27 * cos(theta) ** 12 + 5.44091984362584e27 * cos(theta) ** 10 - 1.53988297461109e27 * cos(theta) ** 8 + 2.11356486711325e26 * cos(theta) ** 6 - 1.29401930639587e25 * cos(theta) ** 4 + 2.75323256679972e23 * cos(theta) ** 2 - 8.74042084698325e20 ) * cos(15 * phi) ) # @torch.jit.script def Yl29_m16(theta, phi): return ( 2.21090610686865e-23 * (1.0 - cos(theta) ** 2) ** 8 * ( 7.95211361760699e28 * cos(theta) ** 13 - 1.08818396872517e29 * cos(theta) ** 11 + 5.44091984362584e28 * cos(theta) ** 9 - 1.23190637968887e28 * cos(theta) ** 7 + 1.26813892026795e27 * cos(theta) ** 5 - 5.17607722558348e25 * cos(theta) ** 3 + 5.50646513359945e23 * cos(theta) ) * cos(16 * phi) ) # @torch.jit.script def Yl29_m17(theta, phi): return ( 9.04106740874383e-25 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.03377477028891e30 * cos(theta) ** 12 - 1.19700236559768e30 * cos(theta) ** 10 + 4.89682785926325e29 * cos(theta) ** 8 - 8.62334465782208e28 * cos(theta) ** 6 + 6.34069460133976e27 * cos(theta) ** 4 - 1.55282316767504e26 * cos(theta) ** 2 + 5.50646513359945e23 ) * cos(17 * phi) ) # @torch.jit.script def Yl29_m18(theta, phi): return ( 3.80697614338276e-26 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.24052972434669e31 * cos(theta) ** 11 - 1.19700236559768e31 * cos(theta) ** 9 + 3.9174622874106e30 * cos(theta) ** 7 - 5.17400679469325e29 * cos(theta) ** 5 + 2.53627784053591e28 * cos(theta) ** 3 - 3.10564633535009e26 * cos(theta) ) * cos(18 * phi) ) # @torch.jit.script def Yl29_m19(theta, phi): return ( 1.65677370829833e-27 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.36458269678136e32 * cos(theta) ** 10 - 1.07730212903792e32 * cos(theta) ** 8 + 2.74222360118742e31 * cos(theta) ** 6 - 2.58700339734662e30 * cos(theta) ** 4 + 7.60883352160772e28 * cos(theta) ** 2 - 3.10564633535009e26 ) * cos(19 * phi) ) # @torch.jit.script def Yl29_m20(theta, phi): return ( 7.48454069386591e-29 * (1.0 - cos(theta) ** 2) ** 10 * ( 1.36458269678136e33 * cos(theta) ** 9 - 8.61841703230333e32 * cos(theta) ** 7 + 1.64533416071245e32 * cos(theta) ** 5 - 1.03480135893865e31 * cos(theta) ** 3 + 1.52176670432154e29 * cos(theta) ) * cos(20 * phi) ) # @torch.jit.script def Yl29_m21(theta, phi): return ( 3.52824631913283e-30 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.22812442710322e34 * cos(theta) ** 8 - 6.03289192261233e33 * cos(theta) ** 6 + 8.22667080356226e32 * cos(theta) ** 4 - 3.10440407681595e31 * cos(theta) ** 2 + 1.52176670432154e29 ) * cos(21 * phi) ) # @torch.jit.script def Yl29_m22(theta, phi): return ( 1.74674221195294e-31 * (1.0 - cos(theta) ** 2) ** 11 * ( 9.82499541682579e34 * cos(theta) ** 7 - 3.6197351535674e34 * cos(theta) ** 5 + 3.29066832142491e33 * cos(theta) ** 3 - 6.2088081536319e31 * cos(theta) ) * cos(22 * phi) ) # @torch.jit.script def Yl29_m23(theta, phi): return ( 9.15541687226183e-33 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 6.87749679177805e35 * cos(theta) ** 6 - 1.8098675767837e35 * cos(theta) ** 4 + 9.87200496427472e33 * cos(theta) ** 2 - 6.2088081536319e31 ) * cos(23 * phi) ) # @torch.jit.script def Yl29_m24(theta, phi): return ( 5.13410284106891e-34 * (1.0 - cos(theta) ** 2) ** 12 * ( 4.12649807506683e36 * cos(theta) ** 5 - 7.23947030713479e35 * cos(theta) ** 3 + 1.97440099285494e34 * cos(theta) ) * cos(24 * phi) ) # @torch.jit.script def Yl29_m25(theta, phi): return ( 3.12451548733867e-35 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 2.06324903753342e37 * cos(theta) ** 4 - 2.17184109214044e36 * cos(theta) ** 2 + 1.97440099285494e34 ) * cos(25 * phi) ) # @torch.jit.script def Yl29_m26(theta, phi): return ( 2.106547911828e-36 * (1.0 - cos(theta) ** 2) ** 13 * (8.25299615013366e37 * cos(theta) ** 3 - 4.34368218428088e36 * cos(theta)) * cos(26 * phi) ) # @torch.jit.script def Yl29_m27(theta, phi): return ( 1.62523699825355e-37 * (1.0 - cos(theta) ** 2) ** 13.5 * (2.4758988450401e38 * cos(theta) ** 2 - 4.34368218428088e36) * cos(27 * phi) ) # @torch.jit.script def Yl29_m28(theta, phi): return 7.53749726640217 * (1.0 - cos(theta) ** 2) ** 14 * cos(28 * phi) * cos(theta) # @torch.jit.script def Yl29_m29(theta, phi): return 0.989721878741179 * (1.0 - cos(theta) ** 2) ** 14.5 * cos(29 * phi) # @torch.jit.script def Yl30_m_minus_30(theta, phi): return 0.997935479150139 * (1.0 - cos(theta) ** 2) ** 15 * sin(30 * phi) # @torch.jit.script def Yl30_m_minus_29(theta, phi): return ( 7.72997498267602 * (1.0 - cos(theta) ** 2) ** 14.5 * sin(29 * phi) * cos(theta) ) # @torch.jit.script def Yl30_m_minus_28(theta, phi): return ( 2.87411530575892e-39 * (1.0 - cos(theta) ** 2) ** 14 * (1.46078031857366e40 * cos(theta) ** 2 - 2.4758988450401e38) * sin(28 * phi) ) # @torch.jit.script def Yl30_m_minus_27(theta, phi): return ( 3.79121847114987e-38 * (1.0 - cos(theta) ** 2) ** 13.5 * (4.86926772857886e39 * cos(theta) ** 3 - 2.4758988450401e38 * cos(theta)) * sin(27 * phi) ) # @torch.jit.script def Yl30_m_minus_26(theta, phi): return ( 5.72461435302436e-37 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.21731693214472e39 * cos(theta) ** 4 - 1.23794942252005e38 * cos(theta) ** 2 + 1.08592054607022e36 ) * sin(26 * phi) ) # @torch.jit.script def Yl30_m_minus_25(theta, phi): return ( 9.57911199299742e-36 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 2.43463386428943e38 * cos(theta) ** 5 - 4.12649807506683e37 * cos(theta) ** 3 + 1.08592054607022e36 * cos(theta) ) * sin(25 * phi) ) # @torch.jit.script def Yl30_m_minus_24(theta, phi): return ( 1.74013210905229e-34 * (1.0 - cos(theta) ** 2) ** 12 * ( 4.05772310714905e37 * cos(theta) ** 6 - 1.03162451876671e37 * cos(theta) ** 4 + 5.42960273035109e35 * cos(theta) ** 2 - 3.29066832142491e33 ) * sin(24 * phi) ) # @torch.jit.script def Yl30_m_minus_23(theta, phi): return ( 3.38320349392245e-33 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 5.79674729592722e36 * cos(theta) ** 7 - 2.06324903753342e36 * cos(theta) ** 5 + 1.8098675767837e35 * cos(theta) ** 3 - 3.29066832142491e33 * cos(theta) ) * sin(23 * phi) ) # @torch.jit.script def Yl30_m_minus_22(theta, phi): return ( 6.96644237302409e-32 * (1.0 - cos(theta) ** 2) ** 11 * ( 7.24593411990902e35 * cos(theta) ** 8 - 3.43874839588903e35 * cos(theta) ** 6 + 4.52466894195925e34 * cos(theta) ** 4 - 1.64533416071245e33 * cos(theta) ** 2 + 7.76101019203987e30 ) * sin(22 * phi) ) # @torch.jit.script def Yl30_m_minus_21(theta, phi): return ( 1.5070719110102e-30 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 8.05103791101002e34 * cos(theta) ** 9 - 4.9124977084129e34 * cos(theta) ** 7 + 9.04933788391849e33 * cos(theta) ** 5 - 5.48444720237484e32 * cos(theta) ** 3 + 7.76101019203987e30 * cos(theta) ) * sin(21 * phi) ) # @torch.jit.script def Yl30_m_minus_20(theta, phi): return ( 3.40344756082348e-29 * (1.0 - cos(theta) ** 2) ** 10 * ( 8.05103791101002e33 * cos(theta) ** 10 - 6.14062213551612e33 * cos(theta) ** 8 + 1.50822298065308e33 * cos(theta) ** 6 - 1.37111180059371e32 * cos(theta) ** 4 + 3.88050509601994e30 * cos(theta) ** 2 - 1.52176670432154e28 ) * sin(20 * phi) ) # @torch.jit.script def Yl30_m_minus_19(theta, phi): return ( 7.98179203850954e-28 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 7.31912537364547e32 * cos(theta) ** 11 - 6.8229134839068e32 * cos(theta) ** 9 + 2.15460425807583e32 * cos(theta) ** 7 - 2.74222360118742e31 * cos(theta) ** 5 + 1.29350169867331e30 * cos(theta) ** 3 - 1.52176670432154e28 * cos(theta) ) * sin(19 * phi) ) # @torch.jit.script def Yl30_m_minus_18(theta, phi): return ( 1.93548170846062e-26 * (1.0 - cos(theta) ** 2) ** 9 * ( 6.09927114470456e31 * cos(theta) ** 12 - 6.8229134839068e31 * cos(theta) ** 10 + 2.69325532259479e31 * cos(theta) ** 8 - 4.5703726686457e30 * cos(theta) ** 6 + 3.23375424668328e29 * cos(theta) ** 4 - 7.60883352160772e27 * cos(theta) ** 2 + 2.58803861279174e25 ) * sin(18 * phi) ) # @torch.jit.script def Yl30_m_minus_17(theta, phi): return ( 4.83483175810931e-25 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 4.69174703438813e30 * cos(theta) ** 13 - 6.20264862173345e30 * cos(theta) ** 11 + 2.99250591399421e30 * cos(theta) ** 9 - 6.529103812351e29 * cos(theta) ** 7 + 6.46750849336656e28 * cos(theta) ** 5 - 2.53627784053591e27 * cos(theta) ** 3 + 2.58803861279174e25 * cos(theta) ) * sin(17 * phi) ) # @torch.jit.script def Yl30_m_minus_16(theta, phi): return ( 1.24020738463486e-23 * (1.0 - cos(theta) ** 2) ** 8 * ( 3.3512478817058e29 * cos(theta) ** 14 - 5.16887385144454e29 * cos(theta) ** 12 + 2.99250591399421e29 * cos(theta) ** 10 - 8.16137976543875e28 * cos(theta) ** 8 + 1.07791808222776e28 * cos(theta) ** 6 - 6.34069460133976e26 * cos(theta) ** 4 + 1.29401930639587e25 * cos(theta) ** 2 - 3.93318938114246e22 ) * sin(16 * phi) ) # @torch.jit.script def Yl30_m_minus_15(theta, phi): return ( 3.25775828793813e-22 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 2.23416525447054e28 * cos(theta) ** 15 - 3.9760568088035e28 * cos(theta) ** 13 + 2.72045992181292e28 * cos(theta) ** 11 - 9.06819973937639e27 * cos(theta) ** 9 + 1.53988297461109e27 * cos(theta) ** 7 - 1.26813892026795e26 * cos(theta) ** 5 + 4.31339768798623e24 * cos(theta) ** 3 - 3.93318938114246e22 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl30_m_minus_14(theta, phi): return ( 8.74148278331158e-21 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.39635328404408e27 * cos(theta) ** 16 - 2.84004057771678e27 * cos(theta) ** 14 + 2.2670499348441e27 * cos(theta) ** 12 - 9.06819973937639e26 * cos(theta) ** 10 + 1.92485371826386e26 * cos(theta) ** 8 - 2.11356486711326e25 * cos(theta) ** 6 + 1.07834942199656e24 * cos(theta) ** 4 - 1.96659469057123e22 * cos(theta) ** 2 + 5.46276302936453e19 ) * sin(14 * phi) ) # @torch.jit.script def Yl30_m_minus_13(theta, phi): return ( 2.39075958422627e-19 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 8.21384284731815e25 * cos(theta) ** 17 - 1.89336038514452e26 * cos(theta) ** 15 + 1.74388456526469e26 * cos(theta) ** 13 - 8.24381794488763e25 * cos(theta) ** 11 + 2.13872635362651e25 * cos(theta) ** 9 - 3.01937838159036e24 * cos(theta) ** 7 + 2.15669884399312e23 * cos(theta) ** 5 - 6.55531563523744e21 * cos(theta) ** 3 + 5.46276302936453e19 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl30_m_minus_12(theta, phi): return ( 6.65129768956931e-18 * (1.0 - cos(theta) ** 2) ** 6 * ( 4.56324602628786e24 * cos(theta) ** 18 - 1.18335024071533e25 * cos(theta) ** 16 + 1.24563183233192e25 * cos(theta) ** 14 - 6.86984828740636e24 * cos(theta) ** 12 + 2.13872635362651e24 * cos(theta) ** 10 - 3.77422297698795e23 * cos(theta) ** 8 + 3.59449807332186e22 * cos(theta) ** 6 - 1.63882890880936e21 * cos(theta) ** 4 + 2.73138151468227e19 * cos(theta) ** 2 - 7.05783337127201e16 ) * sin(12 * phi) ) # @torch.jit.script def Yl30_m_minus_11(theta, phi): return ( 1.87891801956087e-16 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 2.40170843488835e23 * cos(theta) ** 19 - 6.96088376891368e23 * cos(theta) ** 17 + 8.30421221554615e23 * cos(theta) ** 15 - 5.28449868262028e23 * cos(theta) ** 13 + 1.94429668511501e23 * cos(theta) ** 11 - 4.19358108554217e22 * cos(theta) ** 9 + 5.13499724760266e21 * cos(theta) ** 7 - 3.27765781761872e20 * cos(theta) ** 5 + 9.10460504894089e18 * cos(theta) ** 3 - 7.05783337127201e16 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl30_m_minus_10(theta, phi): return ( 5.38040239932763e-15 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.20085421744417e22 * cos(theta) ** 20 - 3.86715764939649e22 * cos(theta) ** 18 + 5.19013263471634e22 * cos(theta) ** 16 - 3.77464191615734e22 * cos(theta) ** 14 + 1.62024723759584e22 * cos(theta) ** 12 - 4.19358108554217e21 * cos(theta) ** 10 + 6.41874655950332e20 * cos(theta) ** 8 - 5.46276302936453e19 * cos(theta) ** 6 + 2.27615126223522e18 * cos(theta) ** 4 - 3.528916685636e16 * cos(theta) ** 2 + 86071138674048.8 ) * sin(10 * phi) ) # @torch.jit.script def Yl30_m_minus_9(theta, phi): return ( 1.55938876429517e-13 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 5.71835341640083e20 * cos(theta) ** 21 - 2.03534613126131e21 * cos(theta) ** 19 + 3.05301919689197e21 * cos(theta) ** 17 - 2.51642794410489e21 * cos(theta) ** 15 + 1.24634402891988e21 * cos(theta) ** 13 - 3.81234644140197e20 * cos(theta) ** 11 + 7.13194062167036e19 * cos(theta) ** 9 - 7.80394718480647e18 * cos(theta) ** 7 + 4.55230252447044e17 * cos(theta) ** 5 - 1.17630556187867e16 * cos(theta) ** 3 + 86071138674048.8 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl30_m_minus_8(theta, phi): return ( 4.56770496751288e-12 * (1.0 - cos(theta) ** 2) ** 4 * ( 2.59925155290947e19 * cos(theta) ** 22 - 1.01767306563066e20 * cos(theta) ** 20 + 1.69612177605109e20 * cos(theta) ** 18 - 1.57276746506556e20 * cos(theta) ** 16 + 8.90245734942769e19 * cos(theta) ** 14 - 3.17695536783498e19 * cos(theta) ** 12 + 7.13194062167036e18 * cos(theta) ** 10 - 9.75493398100809e17 * cos(theta) ** 8 + 7.58717087411741e16 * cos(theta) ** 6 - 2.94076390469667e15 * cos(theta) ** 4 + 43035569337024.4 * cos(theta) ** 2 - 100316012440.616 ) * sin(8 * phi) ) # @torch.jit.script def Yl30_m_minus_7(theta, phi): return ( 1.3503730468945e-10 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.1301093708302e18 * cos(theta) ** 23 - 4.84606221728884e18 * cos(theta) ** 21 + 8.92695671605838e18 * cos(theta) ** 19 - 9.25157332391505e18 * cos(theta) ** 17 + 5.93497156628513e18 * cos(theta) ** 15 - 2.44381182141152e18 * cos(theta) ** 13 + 6.48358238333669e17 * cos(theta) ** 11 - 1.08388155344534e17 * cos(theta) ** 9 + 1.08388155344534e16 * cos(theta) ** 7 - 588152780939334.0 * cos(theta) ** 5 + 14345189779008.1 * cos(theta) ** 3 - 100316012440.616 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl30_m_minus_6(theta, phi): return ( 4.02402104966148e-9 * (1.0 - cos(theta) ** 2) ** 3 * ( 4.70878904512584e16 * cos(theta) ** 24 - 2.20275555331311e17 * cos(theta) ** 22 + 4.46347835802919e17 * cos(theta) ** 20 - 5.13976295773058e17 * cos(theta) ** 18 + 3.7093572289282e17 * cos(theta) ** 16 - 1.7455798724368e17 * cos(theta) ** 14 + 5.40298531944724e16 * cos(theta) ** 12 - 1.08388155344534e16 * cos(theta) ** 10 + 1.35485194180668e15 * cos(theta) ** 8 - 98025463489889.0 * cos(theta) ** 6 + 3586297444752.04 * cos(theta) ** 4 - 50158006220.3082 * cos(theta) ** 2 + 112968482.478172 ) * sin(6 * phi) ) # @torch.jit.script def Yl30_m_minus_5(theta, phi): return ( 1.20720631489845e-7 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.88351561805034e15 * cos(theta) ** 25 - 9.57719805788307e15 * cos(theta) ** 23 + 2.1254658847758e16 * cos(theta) ** 21 - 2.70513839880557e16 * cos(theta) ** 19 + 2.181974840546e16 * cos(theta) ** 17 - 1.16371991495787e16 * cos(theta) ** 15 + 4.15614255342096e15 * cos(theta) ** 13 - 985346866768494.0 * cos(theta) ** 11 + 150539104645187.0 * cos(theta) ** 9 - 14003637641412.7 * cos(theta) ** 7 + 717259488950.407 * cos(theta) ** 5 - 16719335406.7694 * cos(theta) ** 3 + 112968482.478172 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl30_m_minus_4(theta, phi): return ( 3.64168346911826e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 72442908386551.5 * cos(theta) ** 26 - 399049919078461.0 * cos(theta) ** 24 + 966120856716275.0 * cos(theta) ** 22 - 1.35256919940279e15 * cos(theta) ** 20 + 1.21220824474778e15 * cos(theta) ** 18 - 727324946848667.0 * cos(theta) ** 16 + 296867325244354.0 * cos(theta) ** 14 - 82112238897374.5 * cos(theta) ** 12 + 15053910464518.7 * cos(theta) ** 10 - 1750454705176.59 * cos(theta) ** 8 + 119543248158.401 * cos(theta) ** 6 - 4179833851.69235 * cos(theta) ** 4 + 56484241.2390858 * cos(theta) ** 2 - 124141.189536452 ) * sin(4 * phi) ) # @torch.jit.script def Yl30_m_minus_3(theta, phi): return ( 0.000110337600540934 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 2683070680983.39 * cos(theta) ** 27 - 15961996763138.5 * cos(theta) ** 25 + 42005254639838.0 * cos(theta) ** 23 - 64408057114418.3 * cos(theta) ** 21 + 63800433934093.6 * cos(theta) ** 19 - 42783820402862.8 * cos(theta) ** 17 + 19791155016290.3 * cos(theta) ** 15 - 6316326069028.81 * cos(theta) ** 13 + 1368537314956.24 * cos(theta) ** 11 - 194494967241.843 * cos(theta) ** 9 + 17077606879.7716 * cos(theta) ** 7 - 835966770.33847 * cos(theta) ** 5 + 18828080.4130286 * cos(theta) ** 3 - 124141.189536452 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl30_m_minus_2(theta, phi): return ( 0.00335397268176902 * (1.0 - cos(theta) ** 2) * ( 95823952892.2638 * cos(theta) ** 28 - 613922952428.402 * cos(theta) ** 26 + 1750218943326.59 * cos(theta) ** 24 - 2927638959746.29 * cos(theta) ** 22 + 3190021696704.68 * cos(theta) ** 20 - 2376878911270.15 * cos(theta) ** 18 + 1236947188518.14 * cos(theta) ** 16 - 451166147787.772 * cos(theta) ** 14 + 114044776246.354 * cos(theta) ** 12 - 19449496724.1843 * cos(theta) ** 10 + 2134700859.97145 * cos(theta) ** 8 - 139327795.056412 * cos(theta) ** 6 + 4707020.10325715 * cos(theta) ** 4 - 62070.5947682261 * cos(theta) ** 2 + 134.351936727762 ) * sin(2 * phi) ) # @torch.jit.script def Yl30_m_minus_1(theta, phi): return ( 0.102172379790475 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 3304274237.66427 * cos(theta) ** 29 - 22737887126.9779 * cos(theta) ** 27 + 70008757733.0634 * cos(theta) ** 25 - 127288650423.752 * cos(theta) ** 23 + 151905795081.175 * cos(theta) ** 21 - 125098890066.85 * cos(theta) ** 19 + 72761599324.5966 * cos(theta) ** 17 - 30077743185.8515 * cos(theta) ** 15 + 8772675095.87335 * cos(theta) ** 13 - 1768136065.83494 * cos(theta) ** 11 + 237188984.441272 * cos(theta) ** 9 - 19903970.7223445 * cos(theta) ** 7 + 941404.02065143 * cos(theta) ** 5 - 20690.1982560754 * cos(theta) ** 3 + 134.351936727762 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl30_m0(theta, phi): return ( 762368051.047141 * cos(theta) ** 30 - 5620849189.92384 * cos(theta) ** 28 + 18637552577.1159 * cos(theta) ** 26 - 36710330833.7131 * cos(theta) ** 24 + 47792694858.985 * cos(theta) ** 22 - 43294558872.257 * cos(theta) ** 20 + 27979476822.2069 * cos(theta) ** 18 - 13011732382.3637 * cos(theta) ** 16 + 4337244127.45456 * cos(theta) ** 14 - 1019868774.15598 * cos(theta) ** 12 + 164173997.790963 * cos(theta) ** 10 - 17221048.7193318 * cos(theta) ** 8 + 1086012.0813993 * cos(theta) ** 6 - 35802.5960900869 * cos(theta) ** 4 + 464.968780390739 * cos(theta) ** 2 - 0.999932861055352 ) # @torch.jit.script def Yl30_m1(theta, phi): return ( 0.102172379790475 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 3304274237.66427 * cos(theta) ** 29 - 22737887126.9779 * cos(theta) ** 27 + 70008757733.0634 * cos(theta) ** 25 - 127288650423.752 * cos(theta) ** 23 + 151905795081.175 * cos(theta) ** 21 - 125098890066.85 * cos(theta) ** 19 + 72761599324.5966 * cos(theta) ** 17 - 30077743185.8515 * cos(theta) ** 15 + 8772675095.87335 * cos(theta) ** 13 - 1768136065.83494 * cos(theta) ** 11 + 237188984.441272 * cos(theta) ** 9 - 19903970.7223445 * cos(theta) ** 7 + 941404.02065143 * cos(theta) ** 5 - 20690.1982560754 * cos(theta) ** 3 + 134.351936727762 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl30_m2(theta, phi): return ( 0.00335397268176902 * (1.0 - cos(theta) ** 2) * ( 95823952892.2638 * cos(theta) ** 28 - 613922952428.402 * cos(theta) ** 26 + 1750218943326.59 * cos(theta) ** 24 - 2927638959746.29 * cos(theta) ** 22 + 3190021696704.68 * cos(theta) ** 20 - 2376878911270.15 * cos(theta) ** 18 + 1236947188518.14 * cos(theta) ** 16 - 451166147787.772 * cos(theta) ** 14 + 114044776246.354 * cos(theta) ** 12 - 19449496724.1843 * cos(theta) ** 10 + 2134700859.97145 * cos(theta) ** 8 - 139327795.056412 * cos(theta) ** 6 + 4707020.10325715 * cos(theta) ** 4 - 62070.5947682261 * cos(theta) ** 2 + 134.351936727762 ) * cos(2 * phi) ) # @torch.jit.script def Yl30_m3(theta, phi): return ( 0.000110337600540934 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 2683070680983.39 * cos(theta) ** 27 - 15961996763138.5 * cos(theta) ** 25 + 42005254639838.0 * cos(theta) ** 23 - 64408057114418.3 * cos(theta) ** 21 + 63800433934093.6 * cos(theta) ** 19 - 42783820402862.8 * cos(theta) ** 17 + 19791155016290.3 * cos(theta) ** 15 - 6316326069028.81 * cos(theta) ** 13 + 1368537314956.24 * cos(theta) ** 11 - 194494967241.843 * cos(theta) ** 9 + 17077606879.7716 * cos(theta) ** 7 - 835966770.33847 * cos(theta) ** 5 + 18828080.4130286 * cos(theta) ** 3 - 124141.189536452 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl30_m4(theta, phi): return ( 3.64168346911826e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 72442908386551.5 * cos(theta) ** 26 - 399049919078461.0 * cos(theta) ** 24 + 966120856716275.0 * cos(theta) ** 22 - 1.35256919940279e15 * cos(theta) ** 20 + 1.21220824474778e15 * cos(theta) ** 18 - 727324946848667.0 * cos(theta) ** 16 + 296867325244354.0 * cos(theta) ** 14 - 82112238897374.5 * cos(theta) ** 12 + 15053910464518.7 * cos(theta) ** 10 - 1750454705176.59 * cos(theta) ** 8 + 119543248158.401 * cos(theta) ** 6 - 4179833851.69235 * cos(theta) ** 4 + 56484241.2390858 * cos(theta) ** 2 - 124141.189536452 ) * cos(4 * phi) ) # @torch.jit.script def Yl30_m5(theta, phi): return ( 1.20720631489845e-7 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.88351561805034e15 * cos(theta) ** 25 - 9.57719805788307e15 * cos(theta) ** 23 + 2.1254658847758e16 * cos(theta) ** 21 - 2.70513839880557e16 * cos(theta) ** 19 + 2.181974840546e16 * cos(theta) ** 17 - 1.16371991495787e16 * cos(theta) ** 15 + 4.15614255342096e15 * cos(theta) ** 13 - 985346866768494.0 * cos(theta) ** 11 + 150539104645187.0 * cos(theta) ** 9 - 14003637641412.7 * cos(theta) ** 7 + 717259488950.407 * cos(theta) ** 5 - 16719335406.7694 * cos(theta) ** 3 + 112968482.478172 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl30_m6(theta, phi): return ( 4.02402104966148e-9 * (1.0 - cos(theta) ** 2) ** 3 * ( 4.70878904512584e16 * cos(theta) ** 24 - 2.20275555331311e17 * cos(theta) ** 22 + 4.46347835802919e17 * cos(theta) ** 20 - 5.13976295773058e17 * cos(theta) ** 18 + 3.7093572289282e17 * cos(theta) ** 16 - 1.7455798724368e17 * cos(theta) ** 14 + 5.40298531944724e16 * cos(theta) ** 12 - 1.08388155344534e16 * cos(theta) ** 10 + 1.35485194180668e15 * cos(theta) ** 8 - 98025463489889.0 * cos(theta) ** 6 + 3586297444752.04 * cos(theta) ** 4 - 50158006220.3082 * cos(theta) ** 2 + 112968482.478172 ) * cos(6 * phi) ) # @torch.jit.script def Yl30_m7(theta, phi): return ( 1.3503730468945e-10 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.1301093708302e18 * cos(theta) ** 23 - 4.84606221728884e18 * cos(theta) ** 21 + 8.92695671605838e18 * cos(theta) ** 19 - 9.25157332391505e18 * cos(theta) ** 17 + 5.93497156628513e18 * cos(theta) ** 15 - 2.44381182141152e18 * cos(theta) ** 13 + 6.48358238333669e17 * cos(theta) ** 11 - 1.08388155344534e17 * cos(theta) ** 9 + 1.08388155344534e16 * cos(theta) ** 7 - 588152780939334.0 * cos(theta) ** 5 + 14345189779008.1 * cos(theta) ** 3 - 100316012440.616 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl30_m8(theta, phi): return ( 4.56770496751288e-12 * (1.0 - cos(theta) ** 2) ** 4 * ( 2.59925155290947e19 * cos(theta) ** 22 - 1.01767306563066e20 * cos(theta) ** 20 + 1.69612177605109e20 * cos(theta) ** 18 - 1.57276746506556e20 * cos(theta) ** 16 + 8.90245734942769e19 * cos(theta) ** 14 - 3.17695536783498e19 * cos(theta) ** 12 + 7.13194062167036e18 * cos(theta) ** 10 - 9.75493398100809e17 * cos(theta) ** 8 + 7.58717087411741e16 * cos(theta) ** 6 - 2.94076390469667e15 * cos(theta) ** 4 + 43035569337024.4 * cos(theta) ** 2 - 100316012440.616 ) * cos(8 * phi) ) # @torch.jit.script def Yl30_m9(theta, phi): return ( 1.55938876429517e-13 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 5.71835341640083e20 * cos(theta) ** 21 - 2.03534613126131e21 * cos(theta) ** 19 + 3.05301919689197e21 * cos(theta) ** 17 - 2.51642794410489e21 * cos(theta) ** 15 + 1.24634402891988e21 * cos(theta) ** 13 - 3.81234644140197e20 * cos(theta) ** 11 + 7.13194062167036e19 * cos(theta) ** 9 - 7.80394718480647e18 * cos(theta) ** 7 + 4.55230252447044e17 * cos(theta) ** 5 - 1.17630556187867e16 * cos(theta) ** 3 + 86071138674048.8 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl30_m10(theta, phi): return ( 5.38040239932763e-15 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.20085421744417e22 * cos(theta) ** 20 - 3.86715764939649e22 * cos(theta) ** 18 + 5.19013263471634e22 * cos(theta) ** 16 - 3.77464191615734e22 * cos(theta) ** 14 + 1.62024723759584e22 * cos(theta) ** 12 - 4.19358108554217e21 * cos(theta) ** 10 + 6.41874655950332e20 * cos(theta) ** 8 - 5.46276302936453e19 * cos(theta) ** 6 + 2.27615126223522e18 * cos(theta) ** 4 - 3.528916685636e16 * cos(theta) ** 2 + 86071138674048.8 ) * cos(10 * phi) ) # @torch.jit.script def Yl30_m11(theta, phi): return ( 1.87891801956087e-16 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 2.40170843488835e23 * cos(theta) ** 19 - 6.96088376891368e23 * cos(theta) ** 17 + 8.30421221554615e23 * cos(theta) ** 15 - 5.28449868262028e23 * cos(theta) ** 13 + 1.94429668511501e23 * cos(theta) ** 11 - 4.19358108554217e22 * cos(theta) ** 9 + 5.13499724760266e21 * cos(theta) ** 7 - 3.27765781761872e20 * cos(theta) ** 5 + 9.10460504894089e18 * cos(theta) ** 3 - 7.05783337127201e16 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl30_m12(theta, phi): return ( 6.65129768956931e-18 * (1.0 - cos(theta) ** 2) ** 6 * ( 4.56324602628786e24 * cos(theta) ** 18 - 1.18335024071533e25 * cos(theta) ** 16 + 1.24563183233192e25 * cos(theta) ** 14 - 6.86984828740636e24 * cos(theta) ** 12 + 2.13872635362651e24 * cos(theta) ** 10 - 3.77422297698795e23 * cos(theta) ** 8 + 3.59449807332186e22 * cos(theta) ** 6 - 1.63882890880936e21 * cos(theta) ** 4 + 2.73138151468227e19 * cos(theta) ** 2 - 7.05783337127201e16 ) * cos(12 * phi) ) # @torch.jit.script def Yl30_m13(theta, phi): return ( 2.39075958422627e-19 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 8.21384284731815e25 * cos(theta) ** 17 - 1.89336038514452e26 * cos(theta) ** 15 + 1.74388456526469e26 * cos(theta) ** 13 - 8.24381794488763e25 * cos(theta) ** 11 + 2.13872635362651e25 * cos(theta) ** 9 - 3.01937838159036e24 * cos(theta) ** 7 + 2.15669884399312e23 * cos(theta) ** 5 - 6.55531563523744e21 * cos(theta) ** 3 + 5.46276302936453e19 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl30_m14(theta, phi): return ( 8.74148278331158e-21 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.39635328404408e27 * cos(theta) ** 16 - 2.84004057771678e27 * cos(theta) ** 14 + 2.2670499348441e27 * cos(theta) ** 12 - 9.06819973937639e26 * cos(theta) ** 10 + 1.92485371826386e26 * cos(theta) ** 8 - 2.11356486711326e25 * cos(theta) ** 6 + 1.07834942199656e24 * cos(theta) ** 4 - 1.96659469057123e22 * cos(theta) ** 2 + 5.46276302936453e19 ) * cos(14 * phi) ) # @torch.jit.script def Yl30_m15(theta, phi): return ( 3.25775828793813e-22 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 2.23416525447054e28 * cos(theta) ** 15 - 3.9760568088035e28 * cos(theta) ** 13 + 2.72045992181292e28 * cos(theta) ** 11 - 9.06819973937639e27 * cos(theta) ** 9 + 1.53988297461109e27 * cos(theta) ** 7 - 1.26813892026795e26 * cos(theta) ** 5 + 4.31339768798623e24 * cos(theta) ** 3 - 3.93318938114246e22 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl30_m16(theta, phi): return ( 1.24020738463486e-23 * (1.0 - cos(theta) ** 2) ** 8 * ( 3.3512478817058e29 * cos(theta) ** 14 - 5.16887385144454e29 * cos(theta) ** 12 + 2.99250591399421e29 * cos(theta) ** 10 - 8.16137976543875e28 * cos(theta) ** 8 + 1.07791808222776e28 * cos(theta) ** 6 - 6.34069460133976e26 * cos(theta) ** 4 + 1.29401930639587e25 * cos(theta) ** 2 - 3.93318938114246e22 ) * cos(16 * phi) ) # @torch.jit.script def Yl30_m17(theta, phi): return ( 4.83483175810931e-25 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 4.69174703438813e30 * cos(theta) ** 13 - 6.20264862173345e30 * cos(theta) ** 11 + 2.99250591399421e30 * cos(theta) ** 9 - 6.529103812351e29 * cos(theta) ** 7 + 6.46750849336656e28 * cos(theta) ** 5 - 2.53627784053591e27 * cos(theta) ** 3 + 2.58803861279174e25 * cos(theta) ) * cos(17 * phi) ) # @torch.jit.script def Yl30_m18(theta, phi): return ( 1.93548170846062e-26 * (1.0 - cos(theta) ** 2) ** 9 * ( 6.09927114470456e31 * cos(theta) ** 12 - 6.8229134839068e31 * cos(theta) ** 10 + 2.69325532259479e31 * cos(theta) ** 8 - 4.5703726686457e30 * cos(theta) ** 6 + 3.23375424668328e29 * cos(theta) ** 4 - 7.60883352160772e27 * cos(theta) ** 2 + 2.58803861279174e25 ) * cos(18 * phi) ) # @torch.jit.script def Yl30_m19(theta, phi): return ( 7.98179203850954e-28 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 7.31912537364547e32 * cos(theta) ** 11 - 6.8229134839068e32 * cos(theta) ** 9 + 2.15460425807583e32 * cos(theta) ** 7 - 2.74222360118742e31 * cos(theta) ** 5 + 1.29350169867331e30 * cos(theta) ** 3 - 1.52176670432154e28 * cos(theta) ) * cos(19 * phi) ) # @torch.jit.script def Yl30_m20(theta, phi): return ( 3.40344756082348e-29 * (1.0 - cos(theta) ** 2) ** 10 * ( 8.05103791101002e33 * cos(theta) ** 10 - 6.14062213551612e33 * cos(theta) ** 8 + 1.50822298065308e33 * cos(theta) ** 6 - 1.37111180059371e32 * cos(theta) ** 4 + 3.88050509601994e30 * cos(theta) ** 2 - 1.52176670432154e28 ) * cos(20 * phi) ) # @torch.jit.script def Yl30_m21(theta, phi): return ( 1.5070719110102e-30 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 8.05103791101002e34 * cos(theta) ** 9 - 4.9124977084129e34 * cos(theta) ** 7 + 9.04933788391849e33 * cos(theta) ** 5 - 5.48444720237484e32 * cos(theta) ** 3 + 7.76101019203987e30 * cos(theta) ) * cos(21 * phi) ) # @torch.jit.script def Yl30_m22(theta, phi): return ( 6.96644237302409e-32 * (1.0 - cos(theta) ** 2) ** 11 * ( 7.24593411990902e35 * cos(theta) ** 8 - 3.43874839588903e35 * cos(theta) ** 6 + 4.52466894195925e34 * cos(theta) ** 4 - 1.64533416071245e33 * cos(theta) ** 2 + 7.76101019203987e30 ) * cos(22 * phi) ) # @torch.jit.script def Yl30_m23(theta, phi): return ( 3.38320349392245e-33 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 5.79674729592722e36 * cos(theta) ** 7 - 2.06324903753342e36 * cos(theta) ** 5 + 1.8098675767837e35 * cos(theta) ** 3 - 3.29066832142491e33 * cos(theta) ) * cos(23 * phi) ) # @torch.jit.script def Yl30_m24(theta, phi): return ( 1.74013210905229e-34 * (1.0 - cos(theta) ** 2) ** 12 * ( 4.05772310714905e37 * cos(theta) ** 6 - 1.03162451876671e37 * cos(theta) ** 4 + 5.42960273035109e35 * cos(theta) ** 2 - 3.29066832142491e33 ) * cos(24 * phi) ) # @torch.jit.script def Yl30_m25(theta, phi): return ( 9.57911199299742e-36 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 2.43463386428943e38 * cos(theta) ** 5 - 4.12649807506683e37 * cos(theta) ** 3 + 1.08592054607022e36 * cos(theta) ) * cos(25 * phi) ) # @torch.jit.script def Yl30_m26(theta, phi): return ( 5.72461435302436e-37 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.21731693214472e39 * cos(theta) ** 4 - 1.23794942252005e38 * cos(theta) ** 2 + 1.08592054607022e36 ) * cos(26 * phi) ) # @torch.jit.script def Yl30_m27(theta, phi): return ( 3.79121847114987e-38 * (1.0 - cos(theta) ** 2) ** 13.5 * (4.86926772857886e39 * cos(theta) ** 3 - 2.4758988450401e38 * cos(theta)) * cos(27 * phi) ) # @torch.jit.script def Yl30_m28(theta, phi): return ( 2.87411530575892e-39 * (1.0 - cos(theta) ** 2) ** 14 * (1.46078031857366e40 * cos(theta) ** 2 - 2.4758988450401e38) * cos(28 * phi) ) # @torch.jit.script def Yl30_m29(theta, phi): return ( 7.72997498267602 * (1.0 - cos(theta) ** 2) ** 14.5 * cos(29 * phi) * cos(theta) ) # @torch.jit.script def Yl30_m30(theta, phi): return 0.997935479150139 * (1.0 - cos(theta) ** 2) ** 15 * cos(30 * phi) # @torch.jit.script def Yl31_m_minus_31(theta, phi): return 1.00595115393533 * (1.0 - cos(theta) ** 2) ** 15.5 * sin(31 * phi) # @torch.jit.script def Yl31_m_minus_30(theta, phi): return 7.92086730695805 * (1.0 - cos(theta) ** 2) ** 15 * sin(30 * phi) * cos(theta) # @torch.jit.script def Yl31_m_minus_29(theta, phi): return ( 4.90916821524168e-41 * (1.0 - cos(theta) ** 2) ** 14.5 * (8.91075994329932e41 * cos(theta) ** 2 - 1.46078031857366e40) * sin(29 * phi) ) # @torch.jit.script def Yl31_m_minus_28(theta, phi): return ( 6.58634030535703e-40 * (1.0 - cos(theta) ** 2) ** 14 * (2.97025331443311e41 * cos(theta) ** 3 - 1.46078031857366e40 * cos(theta)) * sin(28 * phi) ) # @torch.jit.script def Yl31_m_minus_27(theta, phi): return ( 1.01181279661018e-38 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 7.42563328608276e40 * cos(theta) ** 4 - 7.30390159286829e39 * cos(theta) ** 2 + 6.18974711260025e37 ) * sin(27 * phi) ) # @torch.jit.script def Yl31_m_minus_26(theta, phi): return ( 1.72305510434632e-37 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.48512665721655e40 * cos(theta) ** 5 - 2.43463386428943e39 * cos(theta) ** 3 + 6.18974711260025e37 * cos(theta) ) * sin(26 * phi) ) # @torch.jit.script def Yl31_m_minus_25(theta, phi): return ( 3.18648750393588e-36 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 2.47521109536092e39 * cos(theta) ** 6 - 6.08658466072358e38 * cos(theta) ** 4 + 3.09487355630012e37 * cos(theta) ** 2 - 1.8098675767837e35 ) * sin(25 * phi) ) # @torch.jit.script def Yl31_m_minus_24(theta, phi): return ( 6.30892338215793e-35 * (1.0 - cos(theta) ** 2) ** 12 * ( 3.5360158505156e38 * cos(theta) ** 7 - 1.21731693214472e38 * cos(theta) ** 5 + 1.03162451876671e37 * cos(theta) ** 3 - 1.8098675767837e35 * cos(theta) ) * sin(24 * phi) ) # @torch.jit.script def Yl31_m_minus_23(theta, phi): return ( 1.32337093312696e-33 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 4.4200198131445e37 * cos(theta) ** 8 - 2.02886155357453e37 * cos(theta) ** 6 + 2.57906129691677e36 * cos(theta) ** 4 - 9.04933788391849e34 * cos(theta) ** 2 + 4.11333540178113e32 ) * sin(23 * phi) ) # @torch.jit.script def Yl31_m_minus_22(theta, phi): return ( 2.9174251739327e-32 * (1.0 - cos(theta) ** 2) ** 11 * ( 4.91113312571611e36 * cos(theta) ** 9 - 2.89837364796361e36 * cos(theta) ** 7 + 5.15812259383354e35 * cos(theta) ** 5 - 3.01644596130616e34 * cos(theta) ** 3 + 4.11333540178113e32 * cos(theta) ) * sin(22 * phi) ) # @torch.jit.script def Yl31_m_minus_21(theta, phi): return ( 6.7164171342413e-31 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 4.91113312571611e35 * cos(theta) ** 10 - 3.62296705995451e35 * cos(theta) ** 8 + 8.59687098972257e34 * cos(theta) ** 6 - 7.54111490326541e33 * cos(theta) ** 4 + 2.05666770089057e32 * cos(theta) ** 2 - 7.76101019203987e29 ) * sin(21 * phi) ) # @torch.jit.script def Yl31_m_minus_20(theta, phi): return ( 1.60633334701383e-29 * (1.0 - cos(theta) ** 2) ** 10 * ( 4.46466647792374e34 * cos(theta) ** 11 - 4.02551895550501e34 * cos(theta) ** 9 + 1.22812442710322e34 * cos(theta) ** 7 - 1.50822298065308e33 * cos(theta) ** 5 + 6.85555900296855e31 * cos(theta) ** 3 - 7.76101019203987e29 * cos(theta) ) * sin(20 * phi) ) # @torch.jit.script def Yl31_m_minus_19(theta, phi): return ( 3.97384923581397e-28 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 3.72055539826978e33 * cos(theta) ** 12 - 4.02551895550501e33 * cos(theta) ** 10 + 1.53515553387903e33 * cos(theta) ** 8 - 2.51370496775514e32 * cos(theta) ** 6 + 1.71388975074214e31 * cos(theta) ** 4 - 3.88050509601994e29 * cos(theta) ** 2 + 1.26813892026795e27 ) * sin(19 * phi) ) # @torch.jit.script def Yl31_m_minus_18(theta, phi): return ( 1.01313673987456e-26 * (1.0 - cos(theta) ** 2) ** 9 * ( 2.86196569097676e32 * cos(theta) ** 13 - 3.65956268682274e32 * cos(theta) ** 11 + 1.7057283709767e32 * cos(theta) ** 9 - 3.59100709679305e31 * cos(theta) ** 7 + 3.42777950148428e30 * cos(theta) ** 5 - 1.29350169867331e29 * cos(theta) ** 3 + 1.26813892026795e27 * cos(theta) ) * sin(18 * phi) ) # @torch.jit.script def Yl31_m_minus_17(theta, phi): return ( 2.6535673965946e-25 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 2.04426120784054e31 * cos(theta) ** 14 - 3.04963557235228e31 * cos(theta) ** 12 + 1.7057283709767e31 * cos(theta) ** 10 - 4.48875887099132e30 * cos(theta) ** 8 + 5.71296583580713e29 * cos(theta) ** 6 - 3.23375424668328e28 * cos(theta) ** 4 + 6.34069460133976e26 * cos(theta) ** 2 - 1.84859900913696e24 ) * sin(17 * phi) ) # @torch.jit.script def Yl31_m_minus_16(theta, phi): return ( 7.12026849799521e-24 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.36284080522703e30 * cos(theta) ** 15 - 2.34587351719406e30 * cos(theta) ** 13 + 1.55066215543336e30 * cos(theta) ** 11 - 4.98750985665702e29 * cos(theta) ** 9 + 8.16137976543875e28 * cos(theta) ** 7 - 6.46750849336656e27 * cos(theta) ** 5 + 2.11356486711325e26 * cos(theta) ** 3 - 1.84859900913696e24 * cos(theta) ) * sin(16 * phi) ) # @torch.jit.script def Yl31_m_minus_15(theta, phi): return ( 1.95256405937486e-22 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 8.51775503266892e28 * cos(theta) ** 16 - 1.6756239408529e29 * cos(theta) ** 14 + 1.29221846286114e29 * cos(theta) ** 12 - 4.98750985665702e28 * cos(theta) ** 10 + 1.02017247067984e28 * cos(theta) ** 8 - 1.07791808222776e27 * cos(theta) ** 6 + 5.28391216778314e25 * cos(theta) ** 4 - 9.24299504568479e23 * cos(theta) ** 2 + 2.45824336321404e21 ) * sin(15 * phi) ) # @torch.jit.script def Yl31_m_minus_14(theta, phi): return ( 5.46020147014982e-21 * (1.0 - cos(theta) ** 2) ** 7 * ( 5.01044413686407e27 * cos(theta) ** 17 - 1.11708262723527e28 * cos(theta) ** 15 + 9.94014202200874e27 * cos(theta) ** 13 - 4.5340998696882e27 * cos(theta) ** 11 + 1.13352496742205e27 * cos(theta) ** 9 - 1.53988297461109e26 * cos(theta) ** 7 + 1.05678243355663e25 * cos(theta) ** 5 - 3.0809983485616e23 * cos(theta) ** 3 + 2.45824336321404e21 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl31_m_minus_13(theta, phi): return ( 1.5540005816166e-19 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 2.78358007603559e26 * cos(theta) ** 18 - 6.98176642022042e26 * cos(theta) ** 16 + 7.10010144429196e26 * cos(theta) ** 14 - 3.7784165580735e26 * cos(theta) ** 12 + 1.13352496742205e26 * cos(theta) ** 10 - 1.92485371826386e25 * cos(theta) ** 8 + 1.76130405592771e24 * cos(theta) ** 6 - 7.70249587140399e22 * cos(theta) ** 4 + 1.22912168160702e21 * cos(theta) ** 2 - 3.03486834964696e18 ) * sin(13 * phi) ) # @torch.jit.script def Yl31_m_minus_12(theta, phi): return ( 4.49318515889086e-18 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.46504214528189e25 * cos(theta) ** 19 - 4.10692142365907e25 * cos(theta) ** 17 + 4.7334009628613e25 * cos(theta) ** 15 - 2.90647427544115e25 * cos(theta) ** 13 + 1.03047724311095e25 * cos(theta) ** 11 - 2.13872635362651e24 * cos(theta) ** 9 + 2.5161486513253e23 * cos(theta) ** 7 - 1.5404991742808e22 * cos(theta) ** 5 + 4.0970722720234e20 * cos(theta) ** 3 - 3.03486834964696e18 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl31_m_minus_11(theta, phi): return ( 1.31766054315921e-16 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 7.32521072640946e23 * cos(theta) ** 20 - 2.28162301314393e24 * cos(theta) ** 18 + 2.95837560178832e24 * cos(theta) ** 16 - 2.07605305388654e24 * cos(theta) ** 14 + 8.58731035925795e23 * cos(theta) ** 12 - 2.13872635362651e23 * cos(theta) ** 10 + 3.14518581415663e22 * cos(theta) ** 8 - 2.56749862380133e21 * cos(theta) ** 6 + 1.02426806800585e20 * cos(theta) ** 4 - 1.51743417482348e18 * cos(theta) ** 2 + 3.528916685636e15 ) * sin(11 * phi) ) # @torch.jit.script def Yl31_m_minus_10(theta, phi): return ( 3.91325216255328e-15 * (1.0 - cos(theta) ** 2) ** 5 * ( 3.4881955840045e22 * cos(theta) ** 21 - 1.20085421744417e23 * cos(theta) ** 19 + 1.74022094222842e23 * cos(theta) ** 17 - 1.38403536925769e23 * cos(theta) ** 15 + 6.60562335327535e22 * cos(theta) ** 13 - 1.94429668511501e22 * cos(theta) ** 11 + 3.49465090461848e21 * cos(theta) ** 9 - 3.66785517685904e20 * cos(theta) ** 7 + 2.0485361360117e19 * cos(theta) ** 5 - 5.05811391607827e17 * cos(theta) ** 3 + 3.528916685636e15 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl31_m_minus_9(theta, phi): return ( 1.17527934228125e-13 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1.58554344727477e21 * cos(theta) ** 22 - 6.00427108722087e21 * cos(theta) ** 20 + 9.66789412349123e21 * cos(theta) ** 18 - 8.65022105786057e21 * cos(theta) ** 16 + 4.71830239519667e21 * cos(theta) ** 14 - 1.62024723759584e21 * cos(theta) ** 12 + 3.49465090461848e20 * cos(theta) ** 10 - 4.5848189710738e19 * cos(theta) ** 8 + 3.41422689335283e18 * cos(theta) ** 6 - 1.26452847901957e17 * cos(theta) ** 4 + 1.764458342818e15 * cos(theta) ** 2 - 3912324485184.04 ) * sin(9 * phi) ) # @torch.jit.script def Yl31_m_minus_8(theta, phi): return ( 3.56479874579423e-12 * (1.0 - cos(theta) ** 2) ** 4 * ( 6.89366716206424e19 * cos(theta) ** 23 - 2.85917670820041e20 * cos(theta) ** 21 + 5.08836532815328e20 * cos(theta) ** 19 - 5.08836532815328e20 * cos(theta) ** 17 + 3.14553493013112e20 * cos(theta) ** 15 - 1.24634402891988e20 * cos(theta) ** 13 + 3.17695536783498e19 * cos(theta) ** 11 - 5.09424330119312e18 * cos(theta) ** 9 + 4.87746699050405e17 * cos(theta) ** 7 - 2.52905695803914e16 * cos(theta) ** 5 + 588152780939334.0 * cos(theta) ** 3 - 3912324485184.04 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl31_m_minus_7(theta, phi): return ( 1.09061870201015e-10 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 2.87236131752677e18 * cos(theta) ** 24 - 1.29962577645473e19 * cos(theta) ** 22 + 2.54418266407664e19 * cos(theta) ** 20 - 2.82686962675182e19 * cos(theta) ** 18 + 1.96595933133195e19 * cos(theta) ** 16 - 8.90245734942769e18 * cos(theta) ** 14 + 2.64746280652915e18 * cos(theta) ** 12 - 5.09424330119312e17 * cos(theta) ** 10 + 6.09683373813006e16 * cos(theta) ** 8 - 4.21509493006523e15 * cos(theta) ** 6 + 147038195234833.0 * cos(theta) ** 4 - 1956162242592.02 * cos(theta) ** 2 + 4179833851.69235 ) * sin(7 * phi) ) # @torch.jit.script def Yl31_m_minus_6(theta, phi): return ( 3.36151259928562e-9 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.14894452701071e17 * cos(theta) ** 25 - 5.65054685415101e17 * cos(theta) ** 23 + 1.21151555432221e18 * cos(theta) ** 21 - 1.48782611934306e18 * cos(theta) ** 19 + 1.15644666548938e18 * cos(theta) ** 17 - 5.93497156628513e17 * cos(theta) ** 15 + 2.03650985117627e17 * cos(theta) ** 13 - 4.63113027381192e16 * cos(theta) ** 11 + 6.7742597090334e15 * cos(theta) ** 9 - 602156418580747.0 * cos(theta) ** 7 + 29407639046966.7 * cos(theta) ** 5 - 652054080864.006 * cos(theta) ** 3 + 4179833851.69235 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl31_m_minus_5(theta, phi): return ( 1.04261094425773e-7 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 4.41901741157964e15 * cos(theta) ** 26 - 2.35439452256292e16 * cos(theta) ** 24 + 5.50688888328277e16 * cos(theta) ** 22 - 7.43913059671532e16 * cos(theta) ** 20 + 6.42470369716323e16 * cos(theta) ** 18 - 3.7093572289282e16 * cos(theta) ** 16 + 1.45464989369733e16 * cos(theta) ** 14 - 3.8592752281766e15 * cos(theta) ** 12 + 677425970903340.0 * cos(theta) ** 10 - 75269552322593.3 * cos(theta) ** 8 + 4901273174494.45 * cos(theta) ** 6 - 163013520216.002 * cos(theta) ** 4 + 2089916925.84617 * cos(theta) ** 2 - 4344941.63377583 ) * sin(5 * phi) ) # @torch.jit.script def Yl31_m_minus_4(theta, phi): return ( 3.25053923036716e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 163667311539987.0 * cos(theta) ** 27 - 941757809025169.0 * cos(theta) ** 25 + 2.39429951447077e15 * cos(theta) ** 23 - 3.54244314129301e15 * cos(theta) ** 21 + 3.38142299850696e15 * cos(theta) ** 19 - 2.181974840546e15 * cos(theta) ** 17 + 969766595798223.0 * cos(theta) ** 15 - 296867325244354.0 * cos(theta) ** 13 + 61584179173030.9 * cos(theta) ** 11 - 8363283591399.26 * cos(theta) ** 9 + 700181882070.635 * cos(theta) ** 7 - 32602704043.2003 * cos(theta) ** 5 + 696638975.282058 * cos(theta) ** 3 - 4344941.63377583 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl31_m_minus_3(theta, phi): return ( 0.000101757973556832 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 5845261126428.09 * cos(theta) ** 28 - 36221454193275.7 * cos(theta) ** 26 + 99762479769615.3 * cos(theta) ** 24 - 161020142786046.0 * cos(theta) ** 22 + 169071149925348.0 * cos(theta) ** 20 - 121220824474778.0 * cos(theta) ** 18 + 60610412237388.9 * cos(theta) ** 16 - 21204808946025.3 * cos(theta) ** 14 + 5132014931085.91 * cos(theta) ** 12 - 836328359139.926 * cos(theta) ** 10 + 87522735258.8294 * cos(theta) ** 8 - 5433784007.20005 * cos(theta) ** 6 + 174159743.820515 * cos(theta) ** 4 - 2172470.81688792 * cos(theta) ** 2 + 4433.61391201615 ) * sin(3 * phi) ) # @torch.jit.script def Yl31_m_minus_2(theta, phi): return ( 0.00319526518302305 * (1.0 - cos(theta) ** 2) * ( 201560728497.52 * cos(theta) ** 29 - 1341535340491.69 * cos(theta) ** 27 + 3990499190784.61 * cos(theta) ** 25 - 7000875773306.34 * cos(theta) ** 23 + 8051007139302.29 * cos(theta) ** 21 - 6380043393409.36 * cos(theta) ** 19 + 3565318366905.23 * cos(theta) ** 17 - 1413653929735.02 * cos(theta) ** 15 + 394770379314.301 * cos(theta) ** 13 - 76029850830.9023 * cos(theta) ** 11 + 9724748362.09216 * cos(theta) ** 9 - 776254858.171436 * cos(theta) ** 7 + 34831948.7641029 * cos(theta) ** 5 - 724156.938962638 * cos(theta) ** 3 + 4433.61391201615 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl31_m_minus_1(theta, phi): return ( 0.100536671886138 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 6718690949.91735 * cos(theta) ** 30 - 47911976446.1319 * cos(theta) ** 28 + 153480738107.101 * cos(theta) ** 26 - 291703157221.098 * cos(theta) ** 24 + 365954869968.286 * cos(theta) ** 22 - 319002169670.468 * cos(theta) ** 20 + 198073242605.846 * cos(theta) ** 18 - 88353370608.4387 * cos(theta) ** 16 + 28197884236.7358 * cos(theta) ** 14 - 6335820902.57519 * cos(theta) ** 12 + 972474836.209216 * cos(theta) ** 10 - 97031857.2714295 * cos(theta) ** 8 + 5805324.79401715 * cos(theta) ** 6 - 181039.23474066 * cos(theta) ** 4 + 2216.80695600808 * cos(theta) ** 2 - 4.47839789092541 ) * sin(phi) ) # @torch.jit.script def Yl31_m0(theta, phi): return ( 1524537762.43789 * cos(theta) ** 31 - 11621476385.797 * cos(theta) ** 29 + 39985757734.1829 * cos(theta) ** 27 - 82076029033.3228 * cos(theta) ** 25 + 111921857772.713 * cos(theta) ** 23 - 106853698175.458 * cos(theta) ** 21 + 73330969336.0986 * cos(theta) ** 19 - 36558588211.2912 * cos(theta) ** 17 + 13223319140.2542 * cos(theta) ** 15 - 3428267925.2511 * cos(theta) ** 13 + 621871856.208339 * cos(theta) ** 11 - 75838031.2449194 * cos(theta) ** 9 + 5833694.71114765 * cos(theta) ** 7 - 254693.532087527 * cos(theta) ** 5 + 5197.82718545974 * cos(theta) ** 3 - 31.5019829421802 * cos(theta) ) # @torch.jit.script def Yl31_m1(theta, phi): return ( 0.100536671886138 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 6718690949.91735 * cos(theta) ** 30 - 47911976446.1319 * cos(theta) ** 28 + 153480738107.101 * cos(theta) ** 26 - 291703157221.098 * cos(theta) ** 24 + 365954869968.286 * cos(theta) ** 22 - 319002169670.468 * cos(theta) ** 20 + 198073242605.846 * cos(theta) ** 18 - 88353370608.4387 * cos(theta) ** 16 + 28197884236.7358 * cos(theta) ** 14 - 6335820902.57519 * cos(theta) ** 12 + 972474836.209216 * cos(theta) ** 10 - 97031857.2714295 * cos(theta) ** 8 + 5805324.79401715 * cos(theta) ** 6 - 181039.23474066 * cos(theta) ** 4 + 2216.80695600808 * cos(theta) ** 2 - 4.47839789092541 ) * cos(phi) ) # @torch.jit.script def Yl31_m2(theta, phi): return ( 0.00319526518302305 * (1.0 - cos(theta) ** 2) * ( 201560728497.52 * cos(theta) ** 29 - 1341535340491.69 * cos(theta) ** 27 + 3990499190784.61 * cos(theta) ** 25 - 7000875773306.34 * cos(theta) ** 23 + 8051007139302.29 * cos(theta) ** 21 - 6380043393409.36 * cos(theta) ** 19 + 3565318366905.23 * cos(theta) ** 17 - 1413653929735.02 * cos(theta) ** 15 + 394770379314.301 * cos(theta) ** 13 - 76029850830.9023 * cos(theta) ** 11 + 9724748362.09216 * cos(theta) ** 9 - 776254858.171436 * cos(theta) ** 7 + 34831948.7641029 * cos(theta) ** 5 - 724156.938962638 * cos(theta) ** 3 + 4433.61391201615 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl31_m3(theta, phi): return ( 0.000101757973556832 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 5845261126428.09 * cos(theta) ** 28 - 36221454193275.7 * cos(theta) ** 26 + 99762479769615.3 * cos(theta) ** 24 - 161020142786046.0 * cos(theta) ** 22 + 169071149925348.0 * cos(theta) ** 20 - 121220824474778.0 * cos(theta) ** 18 + 60610412237388.9 * cos(theta) ** 16 - 21204808946025.3 * cos(theta) ** 14 + 5132014931085.91 * cos(theta) ** 12 - 836328359139.926 * cos(theta) ** 10 + 87522735258.8294 * cos(theta) ** 8 - 5433784007.20005 * cos(theta) ** 6 + 174159743.820515 * cos(theta) ** 4 - 2172470.81688792 * cos(theta) ** 2 + 4433.61391201615 ) * cos(3 * phi) ) # @torch.jit.script def Yl31_m4(theta, phi): return ( 3.25053923036716e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 163667311539987.0 * cos(theta) ** 27 - 941757809025169.0 * cos(theta) ** 25 + 2.39429951447077e15 * cos(theta) ** 23 - 3.54244314129301e15 * cos(theta) ** 21 + 3.38142299850696e15 * cos(theta) ** 19 - 2.181974840546e15 * cos(theta) ** 17 + 969766595798223.0 * cos(theta) ** 15 - 296867325244354.0 * cos(theta) ** 13 + 61584179173030.9 * cos(theta) ** 11 - 8363283591399.26 * cos(theta) ** 9 + 700181882070.635 * cos(theta) ** 7 - 32602704043.2003 * cos(theta) ** 5 + 696638975.282058 * cos(theta) ** 3 - 4344941.63377583 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl31_m5(theta, phi): return ( 1.04261094425773e-7 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 4.41901741157964e15 * cos(theta) ** 26 - 2.35439452256292e16 * cos(theta) ** 24 + 5.50688888328277e16 * cos(theta) ** 22 - 7.43913059671532e16 * cos(theta) ** 20 + 6.42470369716323e16 * cos(theta) ** 18 - 3.7093572289282e16 * cos(theta) ** 16 + 1.45464989369733e16 * cos(theta) ** 14 - 3.8592752281766e15 * cos(theta) ** 12 + 677425970903340.0 * cos(theta) ** 10 - 75269552322593.3 * cos(theta) ** 8 + 4901273174494.45 * cos(theta) ** 6 - 163013520216.002 * cos(theta) ** 4 + 2089916925.84617 * cos(theta) ** 2 - 4344941.63377583 ) * cos(5 * phi) ) # @torch.jit.script def Yl31_m6(theta, phi): return ( 3.36151259928562e-9 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.14894452701071e17 * cos(theta) ** 25 - 5.65054685415101e17 * cos(theta) ** 23 + 1.21151555432221e18 * cos(theta) ** 21 - 1.48782611934306e18 * cos(theta) ** 19 + 1.15644666548938e18 * cos(theta) ** 17 - 5.93497156628513e17 * cos(theta) ** 15 + 2.03650985117627e17 * cos(theta) ** 13 - 4.63113027381192e16 * cos(theta) ** 11 + 6.7742597090334e15 * cos(theta) ** 9 - 602156418580747.0 * cos(theta) ** 7 + 29407639046966.7 * cos(theta) ** 5 - 652054080864.006 * cos(theta) ** 3 + 4179833851.69235 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl31_m7(theta, phi): return ( 1.09061870201015e-10 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 2.87236131752677e18 * cos(theta) ** 24 - 1.29962577645473e19 * cos(theta) ** 22 + 2.54418266407664e19 * cos(theta) ** 20 - 2.82686962675182e19 * cos(theta) ** 18 + 1.96595933133195e19 * cos(theta) ** 16 - 8.90245734942769e18 * cos(theta) ** 14 + 2.64746280652915e18 * cos(theta) ** 12 - 5.09424330119312e17 * cos(theta) ** 10 + 6.09683373813006e16 * cos(theta) ** 8 - 4.21509493006523e15 * cos(theta) ** 6 + 147038195234833.0 * cos(theta) ** 4 - 1956162242592.02 * cos(theta) ** 2 + 4179833851.69235 ) * cos(7 * phi) ) # @torch.jit.script def Yl31_m8(theta, phi): return ( 3.56479874579423e-12 * (1.0 - cos(theta) ** 2) ** 4 * ( 6.89366716206424e19 * cos(theta) ** 23 - 2.85917670820041e20 * cos(theta) ** 21 + 5.08836532815328e20 * cos(theta) ** 19 - 5.08836532815328e20 * cos(theta) ** 17 + 3.14553493013112e20 * cos(theta) ** 15 - 1.24634402891988e20 * cos(theta) ** 13 + 3.17695536783498e19 * cos(theta) ** 11 - 5.09424330119312e18 * cos(theta) ** 9 + 4.87746699050405e17 * cos(theta) ** 7 - 2.52905695803914e16 * cos(theta) ** 5 + 588152780939334.0 * cos(theta) ** 3 - 3912324485184.04 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl31_m9(theta, phi): return ( 1.17527934228125e-13 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1.58554344727477e21 * cos(theta) ** 22 - 6.00427108722087e21 * cos(theta) ** 20 + 9.66789412349123e21 * cos(theta) ** 18 - 8.65022105786057e21 * cos(theta) ** 16 + 4.71830239519667e21 * cos(theta) ** 14 - 1.62024723759584e21 * cos(theta) ** 12 + 3.49465090461848e20 * cos(theta) ** 10 - 4.5848189710738e19 * cos(theta) ** 8 + 3.41422689335283e18 * cos(theta) ** 6 - 1.26452847901957e17 * cos(theta) ** 4 + 1.764458342818e15 * cos(theta) ** 2 - 3912324485184.04 ) * cos(9 * phi) ) # @torch.jit.script def Yl31_m10(theta, phi): return ( 3.91325216255328e-15 * (1.0 - cos(theta) ** 2) ** 5 * ( 3.4881955840045e22 * cos(theta) ** 21 - 1.20085421744417e23 * cos(theta) ** 19 + 1.74022094222842e23 * cos(theta) ** 17 - 1.38403536925769e23 * cos(theta) ** 15 + 6.60562335327535e22 * cos(theta) ** 13 - 1.94429668511501e22 * cos(theta) ** 11 + 3.49465090461848e21 * cos(theta) ** 9 - 3.66785517685904e20 * cos(theta) ** 7 + 2.0485361360117e19 * cos(theta) ** 5 - 5.05811391607827e17 * cos(theta) ** 3 + 3.528916685636e15 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl31_m11(theta, phi): return ( 1.31766054315921e-16 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 7.32521072640946e23 * cos(theta) ** 20 - 2.28162301314393e24 * cos(theta) ** 18 + 2.95837560178832e24 * cos(theta) ** 16 - 2.07605305388654e24 * cos(theta) ** 14 + 8.58731035925795e23 * cos(theta) ** 12 - 2.13872635362651e23 * cos(theta) ** 10 + 3.14518581415663e22 * cos(theta) ** 8 - 2.56749862380133e21 * cos(theta) ** 6 + 1.02426806800585e20 * cos(theta) ** 4 - 1.51743417482348e18 * cos(theta) ** 2 + 3.528916685636e15 ) * cos(11 * phi) ) # @torch.jit.script def Yl31_m12(theta, phi): return ( 4.49318515889086e-18 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.46504214528189e25 * cos(theta) ** 19 - 4.10692142365907e25 * cos(theta) ** 17 + 4.7334009628613e25 * cos(theta) ** 15 - 2.90647427544115e25 * cos(theta) ** 13 + 1.03047724311095e25 * cos(theta) ** 11 - 2.13872635362651e24 * cos(theta) ** 9 + 2.5161486513253e23 * cos(theta) ** 7 - 1.5404991742808e22 * cos(theta) ** 5 + 4.0970722720234e20 * cos(theta) ** 3 - 3.03486834964696e18 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl31_m13(theta, phi): return ( 1.5540005816166e-19 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 2.78358007603559e26 * cos(theta) ** 18 - 6.98176642022042e26 * cos(theta) ** 16 + 7.10010144429196e26 * cos(theta) ** 14 - 3.7784165580735e26 * cos(theta) ** 12 + 1.13352496742205e26 * cos(theta) ** 10 - 1.92485371826386e25 * cos(theta) ** 8 + 1.76130405592771e24 * cos(theta) ** 6 - 7.70249587140399e22 * cos(theta) ** 4 + 1.22912168160702e21 * cos(theta) ** 2 - 3.03486834964696e18 ) * cos(13 * phi) ) # @torch.jit.script def Yl31_m14(theta, phi): return ( 5.46020147014982e-21 * (1.0 - cos(theta) ** 2) ** 7 * ( 5.01044413686407e27 * cos(theta) ** 17 - 1.11708262723527e28 * cos(theta) ** 15 + 9.94014202200874e27 * cos(theta) ** 13 - 4.5340998696882e27 * cos(theta) ** 11 + 1.13352496742205e27 * cos(theta) ** 9 - 1.53988297461109e26 * cos(theta) ** 7 + 1.05678243355663e25 * cos(theta) ** 5 - 3.0809983485616e23 * cos(theta) ** 3 + 2.45824336321404e21 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl31_m15(theta, phi): return ( 1.95256405937486e-22 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 8.51775503266892e28 * cos(theta) ** 16 - 1.6756239408529e29 * cos(theta) ** 14 + 1.29221846286114e29 * cos(theta) ** 12 - 4.98750985665702e28 * cos(theta) ** 10 + 1.02017247067984e28 * cos(theta) ** 8 - 1.07791808222776e27 * cos(theta) ** 6 + 5.28391216778314e25 * cos(theta) ** 4 - 9.24299504568479e23 * cos(theta) ** 2 + 2.45824336321404e21 ) * cos(15 * phi) ) # @torch.jit.script def Yl31_m16(theta, phi): return ( 7.12026849799521e-24 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.36284080522703e30 * cos(theta) ** 15 - 2.34587351719406e30 * cos(theta) ** 13 + 1.55066215543336e30 * cos(theta) ** 11 - 4.98750985665702e29 * cos(theta) ** 9 + 8.16137976543875e28 * cos(theta) ** 7 - 6.46750849336656e27 * cos(theta) ** 5 + 2.11356486711325e26 * cos(theta) ** 3 - 1.84859900913696e24 * cos(theta) ) * cos(16 * phi) ) # @torch.jit.script def Yl31_m17(theta, phi): return ( 2.6535673965946e-25 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 2.04426120784054e31 * cos(theta) ** 14 - 3.04963557235228e31 * cos(theta) ** 12 + 1.7057283709767e31 * cos(theta) ** 10 - 4.48875887099132e30 * cos(theta) ** 8 + 5.71296583580713e29 * cos(theta) ** 6 - 3.23375424668328e28 * cos(theta) ** 4 + 6.34069460133976e26 * cos(theta) ** 2 - 1.84859900913696e24 ) * cos(17 * phi) ) # @torch.jit.script def Yl31_m18(theta, phi): return ( 1.01313673987456e-26 * (1.0 - cos(theta) ** 2) ** 9 * ( 2.86196569097676e32 * cos(theta) ** 13 - 3.65956268682274e32 * cos(theta) ** 11 + 1.7057283709767e32 * cos(theta) ** 9 - 3.59100709679305e31 * cos(theta) ** 7 + 3.42777950148428e30 * cos(theta) ** 5 - 1.29350169867331e29 * cos(theta) ** 3 + 1.26813892026795e27 * cos(theta) ) * cos(18 * phi) ) # @torch.jit.script def Yl31_m19(theta, phi): return ( 3.97384923581397e-28 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 3.72055539826978e33 * cos(theta) ** 12 - 4.02551895550501e33 * cos(theta) ** 10 + 1.53515553387903e33 * cos(theta) ** 8 - 2.51370496775514e32 * cos(theta) ** 6 + 1.71388975074214e31 * cos(theta) ** 4 - 3.88050509601994e29 * cos(theta) ** 2 + 1.26813892026795e27 ) * cos(19 * phi) ) # @torch.jit.script def Yl31_m20(theta, phi): return ( 1.60633334701383e-29 * (1.0 - cos(theta) ** 2) ** 10 * ( 4.46466647792374e34 * cos(theta) ** 11 - 4.02551895550501e34 * cos(theta) ** 9 + 1.22812442710322e34 * cos(theta) ** 7 - 1.50822298065308e33 * cos(theta) ** 5 + 6.85555900296855e31 * cos(theta) ** 3 - 7.76101019203987e29 * cos(theta) ) * cos(20 * phi) ) # @torch.jit.script def Yl31_m21(theta, phi): return ( 6.7164171342413e-31 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 4.91113312571611e35 * cos(theta) ** 10 - 3.62296705995451e35 * cos(theta) ** 8 + 8.59687098972257e34 * cos(theta) ** 6 - 7.54111490326541e33 * cos(theta) ** 4 + 2.05666770089057e32 * cos(theta) ** 2 - 7.76101019203987e29 ) * cos(21 * phi) ) # @torch.jit.script def Yl31_m22(theta, phi): return ( 2.9174251739327e-32 * (1.0 - cos(theta) ** 2) ** 11 * ( 4.91113312571611e36 * cos(theta) ** 9 - 2.89837364796361e36 * cos(theta) ** 7 + 5.15812259383354e35 * cos(theta) ** 5 - 3.01644596130616e34 * cos(theta) ** 3 + 4.11333540178113e32 * cos(theta) ) * cos(22 * phi) ) # @torch.jit.script def Yl31_m23(theta, phi): return ( 1.32337093312696e-33 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 4.4200198131445e37 * cos(theta) ** 8 - 2.02886155357453e37 * cos(theta) ** 6 + 2.57906129691677e36 * cos(theta) ** 4 - 9.04933788391849e34 * cos(theta) ** 2 + 4.11333540178113e32 ) * cos(23 * phi) ) # @torch.jit.script def Yl31_m24(theta, phi): return ( 6.30892338215793e-35 * (1.0 - cos(theta) ** 2) ** 12 * ( 3.5360158505156e38 * cos(theta) ** 7 - 1.21731693214472e38 * cos(theta) ** 5 + 1.03162451876671e37 * cos(theta) ** 3 - 1.8098675767837e35 * cos(theta) ) * cos(24 * phi) ) # @torch.jit.script def Yl31_m25(theta, phi): return ( 3.18648750393588e-36 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 2.47521109536092e39 * cos(theta) ** 6 - 6.08658466072358e38 * cos(theta) ** 4 + 3.09487355630012e37 * cos(theta) ** 2 - 1.8098675767837e35 ) * cos(25 * phi) ) # @torch.jit.script def Yl31_m26(theta, phi): return ( 1.72305510434632e-37 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.48512665721655e40 * cos(theta) ** 5 - 2.43463386428943e39 * cos(theta) ** 3 + 6.18974711260025e37 * cos(theta) ) * cos(26 * phi) ) # @torch.jit.script def Yl31_m27(theta, phi): return ( 1.01181279661018e-38 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 7.42563328608276e40 * cos(theta) ** 4 - 7.30390159286829e39 * cos(theta) ** 2 + 6.18974711260025e37 ) * cos(27 * phi) ) # @torch.jit.script def Yl31_m28(theta, phi): return ( 6.58634030535703e-40 * (1.0 - cos(theta) ** 2) ** 14 * (2.97025331443311e41 * cos(theta) ** 3 - 1.46078031857366e40 * cos(theta)) * cos(28 * phi) ) # @torch.jit.script def Yl31_m29(theta, phi): return ( 4.90916821524168e-41 * (1.0 - cos(theta) ** 2) ** 14.5 * (8.91075994329932e41 * cos(theta) ** 2 - 1.46078031857366e40) * cos(29 * phi) ) # @torch.jit.script def Yl31_m30(theta, phi): return 7.92086730695805 * (1.0 - cos(theta) ** 2) ** 15 * cos(30 * phi) * cos(theta) # @torch.jit.script def Yl31_m31(theta, phi): return 1.00595115393533 * (1.0 - cos(theta) ** 2) ** 15.5 * cos(31 * phi) # @torch.jit.script def Yl32_m_minus_32(theta, phi): return 1.01377968565312 * (1.0 - cos(theta) ** 2) ** 16 * sin(32 * phi) # @torch.jit.script def Yl32_m_minus_31(theta, phi): return ( 8.11023748522498 * (1.0 - cos(theta) ** 2) ** 15.5 * sin(31 * phi) * cos(theta) ) # @torch.jit.script def Yl32_m_minus_30(theta, phi): return ( 8.10836994187712e-43 * (1.0 - cos(theta) ** 2) ** 15 * (5.61377876427857e43 * cos(theta) ** 2 - 8.91075994329932e41) * sin(30 * phi) ) # @torch.jit.script def Yl32_m_minus_29(theta, phi): return ( 1.10583422533699e-41 * (1.0 - cos(theta) ** 2) ** 14.5 * (1.87125958809286e43 * cos(theta) ** 3 - 8.91075994329932e41 * cos(theta)) * sin(29 * phi) ) # @torch.jit.script def Yl32_m_minus_28(theta, phi): return ( 1.72736828000894e-40 * (1.0 - cos(theta) ** 2) ** 14 * ( 4.67814897023214e42 * cos(theta) ** 4 - 4.45537997164966e41 * cos(theta) ** 2 + 3.65195079643415e39 ) * sin(28 * phi) ) # @torch.jit.script def Yl32_m_minus_27(theta, phi): return ( 2.99188962435835e-39 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 9.35629794046428e41 * cos(theta) ** 5 - 1.48512665721655e41 * cos(theta) ** 3 + 3.65195079643415e39 * cos(theta) ) * sin(27 * phi) ) # @torch.jit.script def Yl32_m_minus_26(theta, phi): return ( 5.62920673595975e-38 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.55938299007738e41 * cos(theta) ** 6 - 3.71281664304138e40 * cos(theta) ** 4 + 1.82597539821707e39 * cos(theta) ** 2 - 1.03162451876671e37 ) * sin(26 * phi) ) # @torch.jit.script def Yl32_m_minus_25(theta, phi): return ( 1.13425372828688e-36 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 2.22768998582483e40 * cos(theta) ** 7 - 7.42563328608276e39 * cos(theta) ** 5 + 6.08658466072358e38 * cos(theta) ** 3 - 1.03162451876671e37 * cos(theta) ) * sin(25 * phi) ) # @torch.jit.script def Yl32_m_minus_24(theta, phi): return ( 2.42210316291546e-35 * (1.0 - cos(theta) ** 2) ** 12 * ( 2.78461248228104e39 * cos(theta) ** 8 - 1.23760554768046e39 * cos(theta) ** 6 + 1.52164616518089e38 * cos(theta) ** 4 - 5.15812259383354e36 * cos(theta) ** 2 + 2.26233447097962e34 ) * sin(24 * phi) ) # @torch.jit.script def Yl32_m_minus_23(theta, phi): return ( 5.43760811463069e-34 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 3.09401386920115e38 * cos(theta) ** 9 - 1.7680079252578e38 * cos(theta) ** 7 + 3.04329233036179e37 * cos(theta) ** 5 - 1.71937419794451e36 * cos(theta) ** 3 + 2.26233447097962e34 * cos(theta) ) * sin(23 * phi) ) # @torch.jit.script def Yl32_m_minus_22(theta, phi): return ( 1.27523213983038e-32 * (1.0 - cos(theta) ** 2) ** 11 * ( 3.09401386920115e37 * cos(theta) ** 10 - 2.21000990657225e37 * cos(theta) ** 8 + 5.07215388393631e36 * cos(theta) ** 6 - 4.29843549486128e35 * cos(theta) ** 4 + 1.13116723548981e34 * cos(theta) ** 2 - 4.11333540178113e31 ) * sin(22 * phi) ) # @torch.jit.script def Yl32_m_minus_21(theta, phi): return ( 3.10801046364243e-31 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 2.81273988109196e36 * cos(theta) ** 11 - 2.45556656285806e36 * cos(theta) ** 9 + 7.24593411990902e35 * cos(theta) ** 7 - 8.59687098972257e34 * cos(theta) ** 5 + 3.7705574516327e33 * cos(theta) ** 3 - 4.11333540178113e31 * cos(theta) ) * sin(21 * phi) ) # @torch.jit.script def Yl32_m_minus_20(theta, phi): return ( 7.83810415265227e-30 * (1.0 - cos(theta) ** 2) ** 10 * ( 2.34394990090996e35 * cos(theta) ** 12 - 2.45556656285806e35 * cos(theta) ** 10 + 9.05741764988628e34 * cos(theta) ** 8 - 1.43281183162043e34 * cos(theta) ** 6 + 9.42639362908176e32 * cos(theta) ** 4 - 2.05666770089057e31 * cos(theta) ** 2 + 6.46750849336656e28 ) * sin(20 * phi) ) # @torch.jit.script def Yl32_m_minus_19(theta, phi): return ( 2.03790707968959e-28 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.80303838531536e34 * cos(theta) ** 13 - 2.23233323896187e34 * cos(theta) ** 11 + 1.00637973887625e34 * cos(theta) ** 9 - 2.04687404517204e33 * cos(theta) ** 7 + 1.88527872581635e32 * cos(theta) ** 5 - 6.85555900296855e30 * cos(theta) ** 3 + 6.46750849336656e28 * cos(theta) ) * sin(19 * phi) ) # @torch.jit.script def Yl32_m_minus_18(theta, phi): return ( 5.44544635409307e-27 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.28788456093954e33 * cos(theta) ** 14 - 1.86027769913489e33 * cos(theta) ** 12 + 1.00637973887625e33 * cos(theta) ** 10 - 2.55859255646505e32 * cos(theta) ** 8 + 3.14213120969392e31 * cos(theta) ** 6 - 1.71388975074214e30 * cos(theta) ** 4 + 3.23375424668328e28 * cos(theta) ** 2 - 9.05813514477109e25 ) * sin(18 * phi) ) # @torch.jit.script def Yl32_m_minus_17(theta, phi): return ( 1.49129690191052e-25 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 8.58589707293027e31 * cos(theta) ** 15 - 1.43098284548838e32 * cos(theta) ** 13 + 9.14890671705684e31 * cos(theta) ** 11 - 2.8428806182945e31 * cos(theta) ** 9 + 4.48875887099132e30 * cos(theta) ** 7 - 3.42777950148428e29 * cos(theta) ** 5 + 1.07791808222776e28 * cos(theta) ** 3 - 9.05813514477109e25 * cos(theta) ) * sin(17 * phi) ) # @torch.jit.script def Yl32_m_minus_16(theta, phi): return ( 4.17563132534946e-24 * (1.0 - cos(theta) ** 2) ** 8 * ( 5.36618567058142e30 * cos(theta) ** 16 - 1.02213060392027e31 * cos(theta) ** 14 + 7.6240889308807e30 * cos(theta) ** 12 - 2.8428806182945e30 * cos(theta) ** 10 + 5.61094858873914e29 * cos(theta) ** 8 - 5.71296583580713e28 * cos(theta) ** 6 + 2.6947952055694e27 * cos(theta) ** 4 - 4.52906757238555e25 * cos(theta) ** 2 + 1.1553743807106e23 ) * sin(16 * phi) ) # @torch.jit.script def Yl32_m_minus_15(theta, phi): return ( 1.19279889015859e-22 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 3.15657980622436e29 * cos(theta) ** 17 - 6.81420402613513e29 * cos(theta) ** 15 + 5.86468379298516e29 * cos(theta) ** 13 - 2.58443692572227e29 * cos(theta) ** 11 + 6.23438732082127e28 * cos(theta) ** 9 - 8.16137976543875e27 * cos(theta) ** 7 + 5.3895904111388e26 * cos(theta) ** 5 - 1.50968919079518e25 * cos(theta) ** 3 + 1.1553743807106e23 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl32_m_minus_14(theta, phi): return ( 3.4693842922622e-21 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.75365544790242e28 * cos(theta) ** 18 - 4.25887751633446e28 * cos(theta) ** 16 + 4.18905985213225e28 * cos(theta) ** 14 - 2.15369743810189e28 * cos(theta) ** 12 + 6.23438732082127e27 * cos(theta) ** 10 - 1.02017247067984e27 * cos(theta) ** 8 + 8.98265068523133e25 * cos(theta) ** 6 - 3.77422297698796e24 * cos(theta) ** 4 + 5.77687190355299e22 * cos(theta) ** 2 - 1.36569075734113e20 ) * sin(14 * phi) ) # @torch.jit.script def Yl32_m_minus_13(theta, phi): return ( 1.02567111293552e-19 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 9.22976551527592e26 * cos(theta) ** 19 - 2.50522206843203e27 * cos(theta) ** 17 + 2.79270656808817e27 * cos(theta) ** 15 - 1.65669033700146e27 * cos(theta) ** 13 + 5.66762483711025e26 * cos(theta) ** 11 - 1.13352496742205e26 * cos(theta) ** 9 + 1.2832358121759e25 * cos(theta) ** 7 - 7.54844595397591e23 * cos(theta) ** 5 + 1.925623967851e22 * cos(theta) ** 3 - 1.36569075734113e20 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl32_m_minus_12(theta, phi): return ( 3.07701333880655e-18 * (1.0 - cos(theta) ** 2) ** 6 * ( 4.61488275763796e25 * cos(theta) ** 20 - 1.3917900380178e26 * cos(theta) ** 18 + 1.74544160505511e26 * cos(theta) ** 16 - 1.18335024071533e26 * cos(theta) ** 14 + 4.72302069759187e25 * cos(theta) ** 12 - 1.13352496742205e25 * cos(theta) ** 10 + 1.60404476521988e24 * cos(theta) ** 8 - 1.25807432566265e23 * cos(theta) ** 6 + 4.81405991962749e21 * cos(theta) ** 4 - 6.82845378670567e19 * cos(theta) ** 2 + 1.51743417482348e17 ) * sin(12 * phi) ) # @torch.jit.script def Yl32_m_minus_11(theta, phi): return ( 9.35331077456894e-17 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 2.19756321792284e24 * cos(theta) ** 21 - 7.32521072640946e24 * cos(theta) ** 19 + 1.02673035591477e25 * cos(theta) ** 17 - 7.88900160476884e24 * cos(theta) ** 15 + 3.63309284430144e24 * cos(theta) ** 13 - 1.03047724311095e24 * cos(theta) ** 11 + 1.78227196135542e23 * cos(theta) ** 9 - 1.79724903666093e22 * cos(theta) ** 7 + 9.62811983925499e20 * cos(theta) ** 5 - 2.27615126223522e19 * cos(theta) ** 3 + 1.51743417482348e17 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl32_m_minus_10(theta, phi): return ( 2.87680836403125e-15 * (1.0 - cos(theta) ** 2) ** 5 * ( 9.98892371783108e22 * cos(theta) ** 22 - 3.66260536320473e23 * cos(theta) ** 20 + 5.70405753285982e23 * cos(theta) ** 18 - 4.93062600298053e23 * cos(theta) ** 16 + 2.59506631735817e23 * cos(theta) ** 14 - 8.58731035925795e22 * cos(theta) ** 12 + 1.78227196135542e22 * cos(theta) ** 10 - 2.24656129582616e21 * cos(theta) ** 8 + 1.60468663987583e20 * cos(theta) ** 6 - 5.69037815558805e18 * cos(theta) ** 4 + 7.58717087411741e16 * cos(theta) ** 2 - 160405303892546.0 ) * sin(10 * phi) ) # @torch.jit.script def Yl32_m_minus_9(theta, phi): return ( 8.9412758972117e-14 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 4.34301031210047e21 * cos(theta) ** 23 - 1.74409779200225e22 * cos(theta) ** 21 + 3.00213554361043e22 * cos(theta) ** 19 - 2.90036823704737e22 * cos(theta) ** 17 + 1.73004421157211e22 * cos(theta) ** 15 - 6.60562335327535e21 * cos(theta) ** 13 + 1.62024723759584e21 * cos(theta) ** 11 - 2.49617921758463e20 * cos(theta) ** 9 + 2.2924094855369e19 * cos(theta) ** 7 - 1.13807563111761e18 * cos(theta) ** 5 + 2.52905695803914e16 * cos(theta) ** 3 - 160405303892546.0 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl32_m_minus_8(theta, phi): return ( 2.80476865419125e-12 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.80958763004186e20 * cos(theta) ** 24 - 7.92771723637387e20 * cos(theta) ** 22 + 1.50106777180522e21 * cos(theta) ** 20 - 1.61131568724854e21 * cos(theta) ** 18 + 1.08127763223257e21 * cos(theta) ** 16 - 4.71830239519668e20 * cos(theta) ** 14 + 1.35020603132987e20 * cos(theta) ** 12 - 2.49617921758463e19 * cos(theta) ** 10 + 2.86551185692113e18 * cos(theta) ** 8 - 1.89679271852935e17 * cos(theta) ** 6 + 6.32264239509784e15 * cos(theta) ** 4 - 80202651946272.8 * cos(theta) ** 2 + 163013520216.002 ) * sin(8 * phi) ) # @torch.jit.script def Yl32_m_minus_7(theta, phi): return ( 8.86945725708952e-11 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 7.23835052016745e18 * cos(theta) ** 25 - 3.44683358103212e19 * cos(theta) ** 23 + 7.14794177050103e19 * cos(theta) ** 21 - 8.48060888025546e19 * cos(theta) ** 19 + 6.3604566601916e19 * cos(theta) ** 17 - 3.14553493013112e19 * cos(theta) ** 15 + 1.0386200240999e19 * cos(theta) ** 13 - 2.26925383416784e18 * cos(theta) ** 11 + 3.1839020632457e17 * cos(theta) ** 9 - 2.70970388361336e16 * cos(theta) ** 7 + 1.26452847901957e15 * cos(theta) ** 5 - 26734217315424.3 * cos(theta) ** 3 + 163013520216.002 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl32_m_minus_6(theta, phi): return ( 2.8243337947883e-9 * (1.0 - cos(theta) ** 2) ** 3 * ( 2.78398096929517e17 * cos(theta) ** 26 - 1.43618065876338e18 * cos(theta) ** 24 + 3.24906444113683e18 * cos(theta) ** 22 - 4.24030444012773e18 * cos(theta) ** 20 + 3.53358703343978e18 * cos(theta) ** 18 - 1.96595933133195e18 * cos(theta) ** 16 + 7.41871445785641e17 * cos(theta) ** 14 - 1.89104486180654e17 * cos(theta) ** 12 + 3.1839020632457e16 * cos(theta) ** 10 - 3.3871298545167e15 * cos(theta) ** 8 + 210754746503261.0 * cos(theta) ** 6 - 6683554328856.07 * cos(theta) ** 4 + 81506760108.0008 * cos(theta) ** 2 - 160762840.449706 ) * sin(6 * phi) ) # @torch.jit.script def Yl32_m_minus_5(theta, phi): return ( 9.04668988104336e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.03110406270192e16 * cos(theta) ** 27 - 5.74472263505353e16 * cos(theta) ** 25 + 1.41263671353775e17 * cos(theta) ** 23 - 2.01919259053701e17 * cos(theta) ** 21 + 1.85978264917883e17 * cos(theta) ** 19 - 1.15644666548938e17 * cos(theta) ** 17 + 4.94580963857094e16 * cos(theta) ** 15 - 1.45464989369733e16 * cos(theta) ** 13 + 2.89445642113245e15 * cos(theta) ** 11 - 376347761612967.0 * cos(theta) ** 9 + 30107820929037.3 * cos(theta) ** 7 - 1336710865771.21 * cos(theta) ** 5 + 27168920036.0003 * cos(theta) ** 3 - 160762840.449706 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl32_m_minus_4(theta, phi): return ( 2.91185389957512e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 368251450964970.0 * cos(theta) ** 28 - 2.20950870578982e15 * cos(theta) ** 26 + 5.88598630640731e15 * cos(theta) ** 24 - 9.17814813880461e15 * cos(theta) ** 22 + 9.29891324589415e15 * cos(theta) ** 20 - 6.42470369716323e15 * cos(theta) ** 18 + 3.09113102410684e15 * cos(theta) ** 16 - 1.03903563835524e15 * cos(theta) ** 14 + 241204701761038.0 * cos(theta) ** 12 - 37634776161296.7 * cos(theta) ** 10 + 3763477616129.67 * cos(theta) ** 8 - 222785144295.202 * cos(theta) ** 6 + 6792230009.00007 * cos(theta) ** 4 - 80381420.2248529 * cos(theta) ** 2 + 155176.486920565 ) * sin(4 * phi) ) # @torch.jit.script def Yl32_m_minus_3(theta, phi): return ( 9.40848788610558e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 12698325895343.8 * cos(theta) ** 29 - 81833655769993.3 * cos(theta) ** 27 + 235439452256292.0 * cos(theta) ** 25 - 399049919078461.0 * cos(theta) ** 23 + 442805392661626.0 * cos(theta) ** 21 - 338142299850696.0 * cos(theta) ** 19 + 181831236712167.0 * cos(theta) ** 17 - 69269042557015.9 * cos(theta) ** 15 + 18554207827772.1 * cos(theta) ** 13 - 3421343287390.6 * cos(theta) ** 11 + 418164179569.963 * cos(theta) ** 9 - 31826449185.0289 * cos(theta) ** 7 + 1358446001.80001 * cos(theta) ** 5 - 26793806.7416176 * cos(theta) ** 3 + 155176.486920565 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl32_m_minus_2(theta, phi): return ( 0.00304869851769809 * (1.0 - cos(theta) ** 2) * ( 423277529844.793 * cos(theta) ** 30 - 2922630563214.05 * cos(theta) ** 28 + 9055363548318.93 * cos(theta) ** 26 - 16627079961602.6 * cos(theta) ** 24 + 20127517848255.7 * cos(theta) ** 22 - 16907114992534.8 * cos(theta) ** 20 + 10101735372898.2 * cos(theta) ** 18 - 4329315159813.5 * cos(theta) ** 16 + 1325300559126.58 * cos(theta) ** 14 - 285111940615.884 * cos(theta) ** 12 + 41816417956.9963 * cos(theta) ** 10 - 3978306148.12861 * cos(theta) ** 8 + 226407666.966669 * cos(theta) ** 6 - 6698451.6854044 * cos(theta) ** 4 + 77588.2434602827 * cos(theta) ** 2 - 147.787130400538 ) * sin(2 * phi) ) # @torch.jit.script def Yl32_m_minus_1(theta, phi): return ( 0.0989771136930781 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 13654113865.9611 * cos(theta) ** 31 - 100780364248.76 * cos(theta) ** 29 + 335383835122.923 * cos(theta) ** 27 - 665083198464.102 * cos(theta) ** 25 + 875109471663.293 * cos(theta) ** 23 - 805100713930.229 * cos(theta) ** 21 + 531670282784.114 * cos(theta) ** 19 - 254665597636.088 * cos(theta) ** 17 + 88353370608.4387 * cos(theta) ** 15 - 21931687739.6834 * cos(theta) ** 13 + 3801492541.54512 * cos(theta) ** 11 - 442034016.458735 * cos(theta) ** 9 + 32343952.4238098 * cos(theta) ** 7 - 1339690.33708088 * cos(theta) ** 5 + 25862.7478200942 * cos(theta) ** 3 - 147.787130400538 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl32_m0(theta, phi): return ( 3048703300.55346 * cos(theta) ** 32 - 24002489477.3733 * cos(theta) ** 30 + 85582646907.0276 * cos(theta) ** 28 - 182769720513.313 * cos(theta) ** 26 + 260527013889.591 * cos(theta) ** 24 - 261474384849.19 * cos(theta) ** 22 + 189938939937.619 * cos(theta) ** 20 - 101087951227.304 * cos(theta) ** 18 + 39455246269.8407 * cos(theta) ** 16 - 11192977665.203 * cos(theta) ** 14 + 2263468816.74106 * cos(theta) ** 12 - 315832858.149915 * cos(theta) ** 10 + 28887151.6600532 * cos(theta) ** 8 - 1595345.65380964 * cos(theta) ** 6 + 46197.2679674607 * cos(theta) ** 4 - 527.96877677098 * cos(theta) ** 2 + 0.999940865096552 ) # @torch.jit.script def Yl32_m1(theta, phi): return ( 0.0989771136930781 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 13654113865.9611 * cos(theta) ** 31 - 100780364248.76 * cos(theta) ** 29 + 335383835122.923 * cos(theta) ** 27 - 665083198464.102 * cos(theta) ** 25 + 875109471663.293 * cos(theta) ** 23 - 805100713930.229 * cos(theta) ** 21 + 531670282784.114 * cos(theta) ** 19 - 254665597636.088 * cos(theta) ** 17 + 88353370608.4387 * cos(theta) ** 15 - 21931687739.6834 * cos(theta) ** 13 + 3801492541.54512 * cos(theta) ** 11 - 442034016.458735 * cos(theta) ** 9 + 32343952.4238098 * cos(theta) ** 7 - 1339690.33708088 * cos(theta) ** 5 + 25862.7478200942 * cos(theta) ** 3 - 147.787130400538 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl32_m2(theta, phi): return ( 0.00304869851769809 * (1.0 - cos(theta) ** 2) * ( 423277529844.793 * cos(theta) ** 30 - 2922630563214.05 * cos(theta) ** 28 + 9055363548318.93 * cos(theta) ** 26 - 16627079961602.6 * cos(theta) ** 24 + 20127517848255.7 * cos(theta) ** 22 - 16907114992534.8 * cos(theta) ** 20 + 10101735372898.2 * cos(theta) ** 18 - 4329315159813.5 * cos(theta) ** 16 + 1325300559126.58 * cos(theta) ** 14 - 285111940615.884 * cos(theta) ** 12 + 41816417956.9963 * cos(theta) ** 10 - 3978306148.12861 * cos(theta) ** 8 + 226407666.966669 * cos(theta) ** 6 - 6698451.6854044 * cos(theta) ** 4 + 77588.2434602827 * cos(theta) ** 2 - 147.787130400538 ) * cos(2 * phi) ) # @torch.jit.script def Yl32_m3(theta, phi): return ( 9.40848788610558e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 12698325895343.8 * cos(theta) ** 29 - 81833655769993.3 * cos(theta) ** 27 + 235439452256292.0 * cos(theta) ** 25 - 399049919078461.0 * cos(theta) ** 23 + 442805392661626.0 * cos(theta) ** 21 - 338142299850696.0 * cos(theta) ** 19 + 181831236712167.0 * cos(theta) ** 17 - 69269042557015.9 * cos(theta) ** 15 + 18554207827772.1 * cos(theta) ** 13 - 3421343287390.6 * cos(theta) ** 11 + 418164179569.963 * cos(theta) ** 9 - 31826449185.0289 * cos(theta) ** 7 + 1358446001.80001 * cos(theta) ** 5 - 26793806.7416176 * cos(theta) ** 3 + 155176.486920565 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl32_m4(theta, phi): return ( 2.91185389957512e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 368251450964970.0 * cos(theta) ** 28 - 2.20950870578982e15 * cos(theta) ** 26 + 5.88598630640731e15 * cos(theta) ** 24 - 9.17814813880461e15 * cos(theta) ** 22 + 9.29891324589415e15 * cos(theta) ** 20 - 6.42470369716323e15 * cos(theta) ** 18 + 3.09113102410684e15 * cos(theta) ** 16 - 1.03903563835524e15 * cos(theta) ** 14 + 241204701761038.0 * cos(theta) ** 12 - 37634776161296.7 * cos(theta) ** 10 + 3763477616129.67 * cos(theta) ** 8 - 222785144295.202 * cos(theta) ** 6 + 6792230009.00007 * cos(theta) ** 4 - 80381420.2248529 * cos(theta) ** 2 + 155176.486920565 ) * cos(4 * phi) ) # @torch.jit.script def Yl32_m5(theta, phi): return ( 9.04668988104336e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.03110406270192e16 * cos(theta) ** 27 - 5.74472263505353e16 * cos(theta) ** 25 + 1.41263671353775e17 * cos(theta) ** 23 - 2.01919259053701e17 * cos(theta) ** 21 + 1.85978264917883e17 * cos(theta) ** 19 - 1.15644666548938e17 * cos(theta) ** 17 + 4.94580963857094e16 * cos(theta) ** 15 - 1.45464989369733e16 * cos(theta) ** 13 + 2.89445642113245e15 * cos(theta) ** 11 - 376347761612967.0 * cos(theta) ** 9 + 30107820929037.3 * cos(theta) ** 7 - 1336710865771.21 * cos(theta) ** 5 + 27168920036.0003 * cos(theta) ** 3 - 160762840.449706 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl32_m6(theta, phi): return ( 2.8243337947883e-9 * (1.0 - cos(theta) ** 2) ** 3 * ( 2.78398096929517e17 * cos(theta) ** 26 - 1.43618065876338e18 * cos(theta) ** 24 + 3.24906444113683e18 * cos(theta) ** 22 - 4.24030444012773e18 * cos(theta) ** 20 + 3.53358703343978e18 * cos(theta) ** 18 - 1.96595933133195e18 * cos(theta) ** 16 + 7.41871445785641e17 * cos(theta) ** 14 - 1.89104486180654e17 * cos(theta) ** 12 + 3.1839020632457e16 * cos(theta) ** 10 - 3.3871298545167e15 * cos(theta) ** 8 + 210754746503261.0 * cos(theta) ** 6 - 6683554328856.07 * cos(theta) ** 4 + 81506760108.0008 * cos(theta) ** 2 - 160762840.449706 ) * cos(6 * phi) ) # @torch.jit.script def Yl32_m7(theta, phi): return ( 8.86945725708952e-11 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 7.23835052016745e18 * cos(theta) ** 25 - 3.44683358103212e19 * cos(theta) ** 23 + 7.14794177050103e19 * cos(theta) ** 21 - 8.48060888025546e19 * cos(theta) ** 19 + 6.3604566601916e19 * cos(theta) ** 17 - 3.14553493013112e19 * cos(theta) ** 15 + 1.0386200240999e19 * cos(theta) ** 13 - 2.26925383416784e18 * cos(theta) ** 11 + 3.1839020632457e17 * cos(theta) ** 9 - 2.70970388361336e16 * cos(theta) ** 7 + 1.26452847901957e15 * cos(theta) ** 5 - 26734217315424.3 * cos(theta) ** 3 + 163013520216.002 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl32_m8(theta, phi): return ( 2.80476865419125e-12 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.80958763004186e20 * cos(theta) ** 24 - 7.92771723637387e20 * cos(theta) ** 22 + 1.50106777180522e21 * cos(theta) ** 20 - 1.61131568724854e21 * cos(theta) ** 18 + 1.08127763223257e21 * cos(theta) ** 16 - 4.71830239519668e20 * cos(theta) ** 14 + 1.35020603132987e20 * cos(theta) ** 12 - 2.49617921758463e19 * cos(theta) ** 10 + 2.86551185692113e18 * cos(theta) ** 8 - 1.89679271852935e17 * cos(theta) ** 6 + 6.32264239509784e15 * cos(theta) ** 4 - 80202651946272.8 * cos(theta) ** 2 + 163013520216.002 ) * cos(8 * phi) ) # @torch.jit.script def Yl32_m9(theta, phi): return ( 8.9412758972117e-14 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 4.34301031210047e21 * cos(theta) ** 23 - 1.74409779200225e22 * cos(theta) ** 21 + 3.00213554361043e22 * cos(theta) ** 19 - 2.90036823704737e22 * cos(theta) ** 17 + 1.73004421157211e22 * cos(theta) ** 15 - 6.60562335327535e21 * cos(theta) ** 13 + 1.62024723759584e21 * cos(theta) ** 11 - 2.49617921758463e20 * cos(theta) ** 9 + 2.2924094855369e19 * cos(theta) ** 7 - 1.13807563111761e18 * cos(theta) ** 5 + 2.52905695803914e16 * cos(theta) ** 3 - 160405303892546.0 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl32_m10(theta, phi): return ( 2.87680836403125e-15 * (1.0 - cos(theta) ** 2) ** 5 * ( 9.98892371783108e22 * cos(theta) ** 22 - 3.66260536320473e23 * cos(theta) ** 20 + 5.70405753285982e23 * cos(theta) ** 18 - 4.93062600298053e23 * cos(theta) ** 16 + 2.59506631735817e23 * cos(theta) ** 14 - 8.58731035925795e22 * cos(theta) ** 12 + 1.78227196135542e22 * cos(theta) ** 10 - 2.24656129582616e21 * cos(theta) ** 8 + 1.60468663987583e20 * cos(theta) ** 6 - 5.69037815558805e18 * cos(theta) ** 4 + 7.58717087411741e16 * cos(theta) ** 2 - 160405303892546.0 ) * cos(10 * phi) ) # @torch.jit.script def Yl32_m11(theta, phi): return ( 9.35331077456894e-17 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 2.19756321792284e24 * cos(theta) ** 21 - 7.32521072640946e24 * cos(theta) ** 19 + 1.02673035591477e25 * cos(theta) ** 17 - 7.88900160476884e24 * cos(theta) ** 15 + 3.63309284430144e24 * cos(theta) ** 13 - 1.03047724311095e24 * cos(theta) ** 11 + 1.78227196135542e23 * cos(theta) ** 9 - 1.79724903666093e22 * cos(theta) ** 7 + 9.62811983925499e20 * cos(theta) ** 5 - 2.27615126223522e19 * cos(theta) ** 3 + 1.51743417482348e17 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl32_m12(theta, phi): return ( 3.07701333880655e-18 * (1.0 - cos(theta) ** 2) ** 6 * ( 4.61488275763796e25 * cos(theta) ** 20 - 1.3917900380178e26 * cos(theta) ** 18 + 1.74544160505511e26 * cos(theta) ** 16 - 1.18335024071533e26 * cos(theta) ** 14 + 4.72302069759187e25 * cos(theta) ** 12 - 1.13352496742205e25 * cos(theta) ** 10 + 1.60404476521988e24 * cos(theta) ** 8 - 1.25807432566265e23 * cos(theta) ** 6 + 4.81405991962749e21 * cos(theta) ** 4 - 6.82845378670567e19 * cos(theta) ** 2 + 1.51743417482348e17 ) * cos(12 * phi) ) # @torch.jit.script def Yl32_m13(theta, phi): return ( 1.02567111293552e-19 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 9.22976551527592e26 * cos(theta) ** 19 - 2.50522206843203e27 * cos(theta) ** 17 + 2.79270656808817e27 * cos(theta) ** 15 - 1.65669033700146e27 * cos(theta) ** 13 + 5.66762483711025e26 * cos(theta) ** 11 - 1.13352496742205e26 * cos(theta) ** 9 + 1.2832358121759e25 * cos(theta) ** 7 - 7.54844595397591e23 * cos(theta) ** 5 + 1.925623967851e22 * cos(theta) ** 3 - 1.36569075734113e20 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl32_m14(theta, phi): return ( 3.4693842922622e-21 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.75365544790242e28 * cos(theta) ** 18 - 4.25887751633446e28 * cos(theta) ** 16 + 4.18905985213225e28 * cos(theta) ** 14 - 2.15369743810189e28 * cos(theta) ** 12 + 6.23438732082127e27 * cos(theta) ** 10 - 1.02017247067984e27 * cos(theta) ** 8 + 8.98265068523133e25 * cos(theta) ** 6 - 3.77422297698796e24 * cos(theta) ** 4 + 5.77687190355299e22 * cos(theta) ** 2 - 1.36569075734113e20 ) * cos(14 * phi) ) # @torch.jit.script def Yl32_m15(theta, phi): return ( 1.19279889015859e-22 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 3.15657980622436e29 * cos(theta) ** 17 - 6.81420402613513e29 * cos(theta) ** 15 + 5.86468379298516e29 * cos(theta) ** 13 - 2.58443692572227e29 * cos(theta) ** 11 + 6.23438732082127e28 * cos(theta) ** 9 - 8.16137976543875e27 * cos(theta) ** 7 + 5.3895904111388e26 * cos(theta) ** 5 - 1.50968919079518e25 * cos(theta) ** 3 + 1.1553743807106e23 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl32_m16(theta, phi): return ( 4.17563132534946e-24 * (1.0 - cos(theta) ** 2) ** 8 * ( 5.36618567058142e30 * cos(theta) ** 16 - 1.02213060392027e31 * cos(theta) ** 14 + 7.6240889308807e30 * cos(theta) ** 12 - 2.8428806182945e30 * cos(theta) ** 10 + 5.61094858873914e29 * cos(theta) ** 8 - 5.71296583580713e28 * cos(theta) ** 6 + 2.6947952055694e27 * cos(theta) ** 4 - 4.52906757238555e25 * cos(theta) ** 2 + 1.1553743807106e23 ) * cos(16 * phi) ) # @torch.jit.script def Yl32_m17(theta, phi): return ( 1.49129690191052e-25 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 8.58589707293027e31 * cos(theta) ** 15 - 1.43098284548838e32 * cos(theta) ** 13 + 9.14890671705684e31 * cos(theta) ** 11 - 2.8428806182945e31 * cos(theta) ** 9 + 4.48875887099132e30 * cos(theta) ** 7 - 3.42777950148428e29 * cos(theta) ** 5 + 1.07791808222776e28 * cos(theta) ** 3 - 9.05813514477109e25 * cos(theta) ) * cos(17 * phi) ) # @torch.jit.script def Yl32_m18(theta, phi): return ( 5.44544635409307e-27 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.28788456093954e33 * cos(theta) ** 14 - 1.86027769913489e33 * cos(theta) ** 12 + 1.00637973887625e33 * cos(theta) ** 10 - 2.55859255646505e32 * cos(theta) ** 8 + 3.14213120969392e31 * cos(theta) ** 6 - 1.71388975074214e30 * cos(theta) ** 4 + 3.23375424668328e28 * cos(theta) ** 2 - 9.05813514477109e25 ) * cos(18 * phi) ) # @torch.jit.script def Yl32_m19(theta, phi): return ( 2.03790707968959e-28 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.80303838531536e34 * cos(theta) ** 13 - 2.23233323896187e34 * cos(theta) ** 11 + 1.00637973887625e34 * cos(theta) ** 9 - 2.04687404517204e33 * cos(theta) ** 7 + 1.88527872581635e32 * cos(theta) ** 5 - 6.85555900296855e30 * cos(theta) ** 3 + 6.46750849336656e28 * cos(theta) ) * cos(19 * phi) ) # @torch.jit.script def Yl32_m20(theta, phi): return ( 7.83810415265227e-30 * (1.0 - cos(theta) ** 2) ** 10 * ( 2.34394990090996e35 * cos(theta) ** 12 - 2.45556656285806e35 * cos(theta) ** 10 + 9.05741764988628e34 * cos(theta) ** 8 - 1.43281183162043e34 * cos(theta) ** 6 + 9.42639362908176e32 * cos(theta) ** 4 - 2.05666770089057e31 * cos(theta) ** 2 + 6.46750849336656e28 ) * cos(20 * phi) ) # @torch.jit.script def Yl32_m21(theta, phi): return ( 3.10801046364243e-31 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 2.81273988109196e36 * cos(theta) ** 11 - 2.45556656285806e36 * cos(theta) ** 9 + 7.24593411990902e35 * cos(theta) ** 7 - 8.59687098972257e34 * cos(theta) ** 5 + 3.7705574516327e33 * cos(theta) ** 3 - 4.11333540178113e31 * cos(theta) ) * cos(21 * phi) ) # @torch.jit.script def Yl32_m22(theta, phi): return ( 1.27523213983038e-32 * (1.0 - cos(theta) ** 2) ** 11 * ( 3.09401386920115e37 * cos(theta) ** 10 - 2.21000990657225e37 * cos(theta) ** 8 + 5.07215388393631e36 * cos(theta) ** 6 - 4.29843549486128e35 * cos(theta) ** 4 + 1.13116723548981e34 * cos(theta) ** 2 - 4.11333540178113e31 ) * cos(22 * phi) ) # @torch.jit.script def Yl32_m23(theta, phi): return ( 5.43760811463069e-34 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 3.09401386920115e38 * cos(theta) ** 9 - 1.7680079252578e38 * cos(theta) ** 7 + 3.04329233036179e37 * cos(theta) ** 5 - 1.71937419794451e36 * cos(theta) ** 3 + 2.26233447097962e34 * cos(theta) ) * cos(23 * phi) ) # @torch.jit.script def Yl32_m24(theta, phi): return ( 2.42210316291546e-35 * (1.0 - cos(theta) ** 2) ** 12 * ( 2.78461248228104e39 * cos(theta) ** 8 - 1.23760554768046e39 * cos(theta) ** 6 + 1.52164616518089e38 * cos(theta) ** 4 - 5.15812259383354e36 * cos(theta) ** 2 + 2.26233447097962e34 ) * cos(24 * phi) ) # @torch.jit.script def Yl32_m25(theta, phi): return ( 1.13425372828688e-36 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 2.22768998582483e40 * cos(theta) ** 7 - 7.42563328608276e39 * cos(theta) ** 5 + 6.08658466072358e38 * cos(theta) ** 3 - 1.03162451876671e37 * cos(theta) ) * cos(25 * phi) ) # @torch.jit.script def Yl32_m26(theta, phi): return ( 5.62920673595975e-38 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.55938299007738e41 * cos(theta) ** 6 - 3.71281664304138e40 * cos(theta) ** 4 + 1.82597539821707e39 * cos(theta) ** 2 - 1.03162451876671e37 ) * cos(26 * phi) ) # @torch.jit.script def Yl32_m27(theta, phi): return ( 2.99188962435835e-39 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 9.35629794046428e41 * cos(theta) ** 5 - 1.48512665721655e41 * cos(theta) ** 3 + 3.65195079643415e39 * cos(theta) ) * cos(27 * phi) ) # @torch.jit.script def Yl32_m28(theta, phi): return ( 1.72736828000894e-40 * (1.0 - cos(theta) ** 2) ** 14 * ( 4.67814897023214e42 * cos(theta) ** 4 - 4.45537997164966e41 * cos(theta) ** 2 + 3.65195079643415e39 ) * cos(28 * phi) ) # @torch.jit.script def Yl32_m29(theta, phi): return ( 1.10583422533699e-41 * (1.0 - cos(theta) ** 2) ** 14.5 * (1.87125958809286e43 * cos(theta) ** 3 - 8.91075994329932e41 * cos(theta)) * cos(29 * phi) ) # @torch.jit.script def Yl32_m30(theta, phi): return ( 8.10836994187712e-43 * (1.0 - cos(theta) ** 2) ** 15 * (5.61377876427857e43 * cos(theta) ** 2 - 8.91075994329932e41) * cos(30 * phi) ) # @torch.jit.script def Yl32_m31(theta, phi): return ( 8.11023748522498 * (1.0 - cos(theta) ** 2) ** 15.5 * cos(31 * phi) * cos(theta) ) # @torch.jit.script def Yl32_m32(theta, phi): return 1.01377968565312 * (1.0 - cos(theta) ** 2) ** 16 * cos(32 * phi) # @torch.jit.script def Yl33_m_minus_33(theta, phi): return 1.02143096163768 * (1.0 - cos(theta) ** 2) ** 16.5 * sin(33 * phi) # @torch.jit.script def Yl33_m_minus_32(theta, phi): return 8.29814436002877 * (1.0 - cos(theta) ** 2) ** 16 * sin(32 * phi) * cos(theta) # @torch.jit.script def Yl33_m_minus_31(theta, phi): return ( 1.29644475885681e-44 * (1.0 - cos(theta) ** 2) ** 15.5 * (3.64895619678107e45 * cos(theta) ** 2 - 5.61377876427857e43) * sin(31 * phi) ) # @torch.jit.script def Yl33_m_minus_30(theta, phi): return ( 1.7964065532371e-43 * (1.0 - cos(theta) ** 2) ** 15 * (1.21631873226036e45 * cos(theta) ** 3 - 5.61377876427857e43 * cos(theta)) * sin(30 * phi) ) # @torch.jit.script def Yl33_m_minus_29(theta, phi): return ( 2.85170699605925e-42 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 3.04079683065089e44 * cos(theta) ** 4 - 2.80688938213928e43 * cos(theta) ** 2 + 2.22768998582483e41 ) * sin(29 * phi) ) # @torch.jit.script def Yl33_m_minus_28(theta, phi): return ( 5.02094828227271e-41 * (1.0 - cos(theta) ** 2) ** 14 * ( 6.08159366130178e43 * cos(theta) ** 5 - 9.35629794046428e42 * cos(theta) ** 3 + 2.22768998582483e41 * cos(theta) ) * sin(28 * phi) ) # @torch.jit.script def Yl33_m_minus_27(theta, phi): return ( 9.60563965860272e-40 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.0135989435503e43 * cos(theta) ** 6 - 2.33907448511607e42 * cos(theta) ** 4 + 1.11384499291241e41 * cos(theta) ** 2 - 6.08658466072358e38 ) * sin(27 * phi) ) # @torch.jit.script def Yl33_m_minus_26(theta, phi): return ( 1.96857033314502e-38 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.44799849078614e42 * cos(theta) ** 7 - 4.67814897023214e41 * cos(theta) ** 5 + 3.71281664304138e40 * cos(theta) ** 3 - 6.08658466072358e38 * cos(theta) ) * sin(26 * phi) ) # @torch.jit.script def Yl33_m_minus_25(theta, phi): return ( 4.27682948208865e-37 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 1.80999811348267e41 * cos(theta) ** 8 - 7.7969149503869e40 * cos(theta) ** 6 + 9.28204160760346e39 * cos(theta) ** 4 - 3.04329233036179e38 * cos(theta) ** 2 + 1.28953064845838e36 ) * sin(25 * phi) ) # @torch.jit.script def Yl33_m_minus_24(theta, phi): return ( 9.77140888441698e-36 * (1.0 - cos(theta) ** 2) ** 12 * ( 2.01110901498075e40 * cos(theta) ** 9 - 1.11384499291241e40 * cos(theta) ** 7 + 1.85640832152069e39 * cos(theta) ** 5 - 1.01443077678726e38 * cos(theta) ** 3 + 1.28953064845838e36 * cos(theta) ) * sin(24 * phi) ) # @torch.jit.script def Yl33_m_minus_23(theta, phi): return ( 2.33289189642992e-34 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 2.01110901498075e39 * cos(theta) ** 10 - 1.39230624114052e39 * cos(theta) ** 8 + 3.09401386920115e38 * cos(theta) ** 6 - 2.53607694196816e37 * cos(theta) ** 4 + 6.44765324229192e35 * cos(theta) ** 2 - 2.26233447097962e33 ) * sin(23 * phi) ) # @torch.jit.script def Yl33_m_minus_22(theta, phi): return ( 5.79008541721441e-33 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.82828092270977e38 * cos(theta) ** 11 - 1.54700693460058e38 * cos(theta) ** 9 + 4.4200198131445e37 * cos(theta) ** 7 - 5.07215388393631e36 * cos(theta) ** 5 + 2.14921774743064e35 * cos(theta) ** 3 - 2.26233447097962e33 * cos(theta) ) * sin(22 * phi) ) # @torch.jit.script def Yl33_m_minus_21(theta, phi): return ( 1.48749987668913e-31 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.52356743559148e37 * cos(theta) ** 12 - 1.54700693460058e37 * cos(theta) ** 10 + 5.52502476643063e36 * cos(theta) ** 8 - 8.45358980656052e35 * cos(theta) ** 6 + 5.3730443685766e34 * cos(theta) ** 4 - 1.13116723548981e33 * cos(theta) ** 2 + 3.42777950148428e30 ) * sin(21 * phi) ) # @torch.jit.script def Yl33_m_minus_20(theta, phi): return ( 3.94117295988316e-30 * (1.0 - cos(theta) ** 2) ** 10 * ( 1.17197495045498e36 * cos(theta) ** 13 - 1.40636994054598e36 * cos(theta) ** 11 + 6.13891640714514e35 * cos(theta) ** 9 - 1.2076556866515e35 * cos(theta) ** 7 + 1.07460887371532e34 * cos(theta) ** 5 - 3.7705574516327e32 * cos(theta) ** 3 + 3.42777950148428e30 * cos(theta) ) * sin(20 * phi) ) # @torch.jit.script def Yl33_m_minus_19(theta, phi): return ( 1.0735627820667e-28 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 8.37124964610701e34 * cos(theta) ** 14 - 1.17197495045498e35 * cos(theta) ** 12 + 6.13891640714514e34 * cos(theta) ** 10 - 1.50956960831438e34 * cos(theta) ** 8 + 1.79101478952553e33 * cos(theta) ** 6 - 9.42639362908176e31 * cos(theta) ** 4 + 1.71388975074214e30 * cos(theta) ** 2 - 4.61964892383326e27 ) * sin(19 * phi) ) # @torch.jit.script def Yl33_m_minus_18(theta, phi): return ( 2.99829767816716e-27 * (1.0 - cos(theta) ** 2) ** 9 * ( 5.58083309740467e33 * cos(theta) ** 15 - 9.01519192657678e33 * cos(theta) ** 13 + 5.58083309740467e33 * cos(theta) ** 11 - 1.67729956479375e33 * cos(theta) ** 9 + 2.55859255646505e32 * cos(theta) ** 7 - 1.88527872581635e31 * cos(theta) ** 5 + 5.71296583580713e29 * cos(theta) ** 3 - 4.61964892383326e27 * cos(theta) ) * sin(18 * phi) ) # @torch.jit.script def Yl33_m_minus_17(theta, phi): return ( 8.56485131043879e-26 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 3.48802068587792e32 * cos(theta) ** 16 - 6.4394228046977e32 * cos(theta) ** 14 + 4.65069424783723e32 * cos(theta) ** 12 - 1.67729956479375e32 * cos(theta) ** 10 + 3.19824069558131e31 * cos(theta) ** 8 - 3.14213120969392e30 * cos(theta) ** 6 + 1.42824145895178e29 * cos(theta) ** 4 - 2.30982446191663e27 * cos(theta) ** 2 + 5.66133446548193e24 ) * sin(17 * phi) ) # @torch.jit.script def Yl33_m_minus_16(theta, phi): return ( 2.49706179888357e-24 * (1.0 - cos(theta) ** 2) ** 8 * ( 2.05177687404584e31 * cos(theta) ** 17 - 4.29294853646513e31 * cos(theta) ** 15 + 3.57745711372095e31 * cos(theta) ** 13 - 1.52481778617614e31 * cos(theta) ** 11 + 3.55360077286812e30 * cos(theta) ** 9 - 4.48875887099131e29 * cos(theta) ** 7 + 2.85648291790356e28 * cos(theta) ** 5 - 7.69941487305543e26 * cos(theta) ** 3 + 5.66133446548193e24 * cos(theta) ) * sin(16 * phi) ) # @torch.jit.script def Yl33_m_minus_15(theta, phi): return ( 7.41589519033628e-23 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.13987604113658e30 * cos(theta) ** 18 - 2.68309283529071e30 * cos(theta) ** 16 + 2.55532650980068e30 * cos(theta) ** 14 - 1.27068148848012e30 * cos(theta) ** 12 + 3.55360077286812e29 * cos(theta) ** 10 - 5.61094858873914e28 * cos(theta) ** 8 + 4.76080486317261e27 * cos(theta) ** 6 - 1.92485371826386e26 * cos(theta) ** 4 + 2.83066723274097e24 * cos(theta) ** 2 - 6.41874655950333e21 ) * sin(15 * phi) ) # @torch.jit.script def Yl33_m_minus_14(theta, phi): return ( 2.23955123505438e-21 * (1.0 - cos(theta) ** 2) ** 7 * ( 5.99934758492935e28 * cos(theta) ** 19 - 1.57828990311218e29 * cos(theta) ** 17 + 1.70355100653378e29 * cos(theta) ** 15 - 9.77447298830859e28 * cos(theta) ** 13 + 3.23054615715284e28 * cos(theta) ** 11 - 6.23438732082127e27 * cos(theta) ** 9 + 6.80114980453229e26 * cos(theta) ** 7 - 3.84970743652771e25 * cos(theta) ** 5 + 9.43555744246989e23 * cos(theta) ** 3 - 6.41874655950333e21 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl33_m_minus_13(theta, phi): return ( 6.86633406583717e-20 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 2.99967379246467e27 * cos(theta) ** 20 - 8.76827723951212e27 * cos(theta) ** 18 + 1.06471937908361e28 * cos(theta) ** 16 - 6.98176642022042e27 * cos(theta) ** 14 + 2.69212179762737e27 * cos(theta) ** 12 - 6.23438732082127e26 * cos(theta) ** 10 + 8.50143725566537e25 * cos(theta) ** 8 - 6.41617906087952e24 * cos(theta) ** 6 + 2.35888936061747e23 * cos(theta) ** 4 - 3.20937327975166e21 * cos(theta) ** 2 + 6.82845378670567e18 ) * sin(13 * phi) ) # @torch.jit.script def Yl33_m_minus_12(theta, phi): return ( 2.13409374265872e-18 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.42841609164984e26 * cos(theta) ** 21 - 4.61488275763796e26 * cos(theta) ** 19 + 6.26305517108009e26 * cos(theta) ** 17 - 4.65451094681362e26 * cos(theta) ** 15 + 2.07086292125182e26 * cos(theta) ** 13 - 5.66762483711025e25 * cos(theta) ** 11 + 9.44604139518374e24 * cos(theta) ** 9 - 9.16597008697075e23 * cos(theta) ** 7 + 4.71777872123494e22 * cos(theta) ** 5 - 1.06979109325055e21 * cos(theta) ** 3 + 6.82845378670567e18 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl33_m_minus_11(theta, phi): return ( 6.71476920037506e-17 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 6.4928004165902e24 * cos(theta) ** 22 - 2.30744137881898e25 * cos(theta) ** 20 + 3.47947509504449e25 * cos(theta) ** 18 - 2.90906934175851e25 * cos(theta) ** 16 + 1.47918780089416e25 * cos(theta) ** 14 - 4.72302069759187e24 * cos(theta) ** 12 + 9.44604139518374e23 * cos(theta) ** 10 - 1.14574626087134e23 * cos(theta) ** 8 + 7.86296453539157e21 * cos(theta) ** 6 - 2.67447773312639e20 * cos(theta) ** 4 + 3.41422689335283e18 * cos(theta) ** 2 - 6.89742806737946e15 ) * sin(11 * phi) ) # @torch.jit.script def Yl33_m_minus_10(theta, phi): return ( 2.13609884881944e-15 * (1.0 - cos(theta) ** 2) ** 5 * ( 2.8229567028653e23 * cos(theta) ** 23 - 1.09878160896142e24 * cos(theta) ** 21 + 1.83130268160236e24 * cos(theta) ** 19 - 1.71121725985795e24 * cos(theta) ** 17 + 9.86125200596105e23 * cos(theta) ** 15 - 3.63309284430144e23 * cos(theta) ** 13 + 8.58731035925795e22 * cos(theta) ** 11 - 1.27305140096816e22 * cos(theta) ** 9 + 1.12328064791308e21 * cos(theta) ** 7 - 5.34895546625277e19 * cos(theta) ** 5 + 1.13807563111761e18 * cos(theta) ** 3 - 6.89742806737946e15 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl33_m_minus_9(theta, phi): return ( 6.86216560370661e-14 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1.17623195952721e22 * cos(theta) ** 24 - 4.99446185891554e22 * cos(theta) ** 22 + 9.15651340801182e22 * cos(theta) ** 20 - 9.50676255476637e22 * cos(theta) ** 18 + 6.16328250372566e22 * cos(theta) ** 16 - 2.59506631735817e22 * cos(theta) ** 14 + 7.15609196604829e21 * cos(theta) ** 12 - 1.27305140096816e21 * cos(theta) ** 10 + 1.40410080989135e20 * cos(theta) ** 8 - 8.91492577708795e18 * cos(theta) ** 6 + 2.84518907779403e17 * cos(theta) ** 4 - 3.44871403368973e15 * cos(theta) ** 2 + 6683554328856.07 ) * sin(9 * phi) ) # @torch.jit.script def Yl33_m_minus_8(theta, phi): return ( 2.2235957953578e-12 * (1.0 - cos(theta) ** 2) ** 4 * ( 4.70492783810884e20 * cos(theta) ** 25 - 2.17150515605023e21 * cos(theta) ** 23 + 4.36024448000563e21 * cos(theta) ** 21 - 5.00355923935072e21 * cos(theta) ** 19 + 3.62546029630921e21 * cos(theta) ** 17 - 1.73004421157211e21 * cos(theta) ** 15 + 5.50468612772945e20 * cos(theta) ** 13 - 1.1573194554256e20 * cos(theta) ** 11 + 1.56011201099039e19 * cos(theta) ** 9 - 1.27356082529828e18 * cos(theta) ** 7 + 5.69037815558805e16 * cos(theta) ** 5 - 1.14957134456324e15 * cos(theta) ** 3 + 6683554328856.07 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl33_m_minus_7(theta, phi): return ( 7.25996365443219e-11 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.80958763004186e19 * cos(theta) ** 26 - 9.04793815020931e19 * cos(theta) ** 24 + 1.98192930909347e20 * cos(theta) ** 22 - 2.50177961967536e20 * cos(theta) ** 20 + 2.01414460906067e20 * cos(theta) ** 18 - 1.08127763223257e20 * cos(theta) ** 16 + 3.9319186626639e19 * cos(theta) ** 14 - 9.64432879521333e18 * cos(theta) ** 12 + 1.56011201099039e18 * cos(theta) ** 10 - 1.59195103162285e17 * cos(theta) ** 8 + 9.48396359264676e15 * cos(theta) ** 6 - 287392836140811.0 * cos(theta) ** 4 + 3341777164428.03 * cos(theta) ** 2 - 6269750777.53852 ) * sin(7 * phi) ) # @torch.jit.script def Yl33_m_minus_6(theta, phi): return ( 2.38586751612009e-9 * (1.0 - cos(theta) ** 2) ** 3 * ( 6.70217640756245e17 * cos(theta) ** 27 - 3.61917526008372e18 * cos(theta) ** 25 + 8.6170839525803e18 * cos(theta) ** 23 - 1.19132362841684e19 * cos(theta) ** 21 + 1.06007611003193e19 * cos(theta) ** 19 - 6.3604566601916e18 * cos(theta) ** 17 + 2.6212791084426e18 * cos(theta) ** 15 - 7.41871445785641e17 * cos(theta) ** 13 + 1.4182836463549e17 * cos(theta) ** 11 - 1.76883447958094e16 * cos(theta) ** 9 + 1.35485194180668e15 * cos(theta) ** 7 - 57478567228162.2 * cos(theta) ** 5 + 1113925721476.01 * cos(theta) ** 3 - 6269750777.53852 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl33_m_minus_5(theta, phi): return ( 7.8842001969058e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 2.3936344312723e16 * cos(theta) ** 28 - 1.39199048464759e17 * cos(theta) ** 26 + 3.59045164690846e17 * cos(theta) ** 24 - 5.41510740189472e17 * cos(theta) ** 22 + 5.30038055015966e17 * cos(theta) ** 20 - 3.53358703343978e17 * cos(theta) ** 18 + 1.63829944277662e17 * cos(theta) ** 16 - 5.29908175561172e16 * cos(theta) ** 14 + 1.18190303862908e16 * cos(theta) ** 12 - 1.76883447958094e15 * cos(theta) ** 10 + 169356492725835.0 * cos(theta) ** 8 - 9579761204693.69 * cos(theta) ** 6 + 278481430369.003 * cos(theta) ** 4 - 3134875388.76926 * cos(theta) ** 2 + 5741530.01606092 ) * sin(5 * phi) ) # @torch.jit.script def Yl33_m_minus_4(theta, phi): return ( 2.61726947876729e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 825391183197346.0 * cos(theta) ** 29 - 5.15552031350958e15 * cos(theta) ** 27 + 1.43618065876338e16 * cos(theta) ** 25 - 2.35439452256292e16 * cos(theta) ** 23 + 2.52399073817127e16 * cos(theta) ** 21 - 1.85978264917883e16 * cos(theta) ** 19 + 9.63705554574484e15 * cos(theta) ** 17 - 3.53272117040781e15 * cos(theta) ** 15 + 909156183560834.0 * cos(theta) ** 13 - 160803134507358.0 * cos(theta) ** 11 + 18817388080648.3 * cos(theta) ** 9 - 1368537314956.24 * cos(theta) ** 7 + 55696286073.8005 * cos(theta) ** 5 - 1044958462.92309 * cos(theta) ** 3 + 5741530.01606092 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl33_m_minus_3(theta, phi): return ( 8.71986838901848e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 27513039439911.5 * cos(theta) ** 30 - 184125725482485.0 * cos(theta) ** 28 + 552377176447455.0 * cos(theta) ** 26 - 980997717734551.0 * cos(theta) ** 24 + 1.14726851735058e15 * cos(theta) ** 22 - 929891324589415.0 * cos(theta) ** 20 + 535391974763602.0 * cos(theta) ** 18 - 220795073150488.0 * cos(theta) ** 16 + 64939727397202.4 * cos(theta) ** 14 - 13400261208946.5 * cos(theta) ** 12 + 1881738808064.83 * cos(theta) ** 10 - 171067164369.53 * cos(theta) ** 8 + 9282714345.63342 * cos(theta) ** 6 - 261239615.730772 * cos(theta) ** 4 + 2870765.00803046 * cos(theta) ** 2 - 5172.54956401885 ) * sin(3 * phi) ) # @torch.jit.script def Yl33_m_minus_2(theta, phi): return ( 0.00291301034789671 * (1.0 - cos(theta) ** 2) * ( 887517401287.469 * cos(theta) ** 31 - 6349162947671.89 * cos(theta) ** 29 + 20458413942498.3 * cos(theta) ** 27 - 39239908709382.0 * cos(theta) ** 25 + 49881239884807.7 * cos(theta) ** 23 - 44280539266162.6 * cos(theta) ** 21 + 28178524987558.0 * cos(theta) ** 19 - 12987945479440.5 * cos(theta) ** 17 + 4329315159813.5 * cos(theta) ** 15 - 1030789323765.12 * cos(theta) ** 13 + 171067164369.53 * cos(theta) ** 11 - 19007462707.7256 * cos(theta) ** 9 + 1326102049.3762 * cos(theta) ** 7 - 52247923.1461544 * cos(theta) ** 5 + 956921.669343486 * cos(theta) ** 3 - 5172.54956401885 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl33_m_minus_1(theta, phi): return ( 0.0974879725986118 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 27734918790.2334 * cos(theta) ** 32 - 211638764922.396 * cos(theta) ** 30 + 730657640803.512 * cos(theta) ** 28 - 1509227258053.16 * cos(theta) ** 26 + 2078384995200.32 * cos(theta) ** 24 - 2012751784825.57 * cos(theta) ** 22 + 1408926249377.9 * cos(theta) ** 20 - 721552526635.583 * cos(theta) ** 18 + 270582197488.344 * cos(theta) ** 16 - 73627808840.3656 * cos(theta) ** 14 + 14255597030.7942 * cos(theta) ** 12 - 1900746270.77256 * cos(theta) ** 10 + 165762756.172025 * cos(theta) ** 8 - 8707987.19102573 * cos(theta) ** 6 + 239230.417335872 * cos(theta) ** 4 - 2586.27478200942 * cos(theta) ** 2 + 4.61834782501683 ) * sin(phi) ) # @torch.jit.script def Yl33_m0(theta, phi): return ( 6096706674.96088 * cos(theta) ** 33 - 49524017298.1438 * cos(theta) ** 31 + 182767206695.531 * cos(theta) ** 29 - 405483529608.663 * cos(theta) ** 27 + 603070842765.427 * cos(theta) ** 25 - 634811413437.292 * cos(theta) ** 23 + 486688750301.924 * cos(theta) ** 21 - 275484198284.108 * cos(theta) ** 19 + 115460288986.722 * cos(theta) ** 17 - 35606801138.7622 * cos(theta) ** 15 + 7954710892.7022 * cos(theta) ** 13 - 1253469595.21368 * cos(theta) ** 11 + 133606255.303784 * cos(theta) ** 9 - 9024062.27192536 * cos(theta) ** 7 + 347079.318150975 * cos(theta) ** 5 - 6253.68140812568 * cos(theta) ** 3 + 33.5018646863876 * cos(theta) ) # @torch.jit.script def Yl33_m1(theta, phi): return ( 0.0974879725986118 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 27734918790.2334 * cos(theta) ** 32 - 211638764922.396 * cos(theta) ** 30 + 730657640803.512 * cos(theta) ** 28 - 1509227258053.16 * cos(theta) ** 26 + 2078384995200.32 * cos(theta) ** 24 - 2012751784825.57 * cos(theta) ** 22 + 1408926249377.9 * cos(theta) ** 20 - 721552526635.583 * cos(theta) ** 18 + 270582197488.344 * cos(theta) ** 16 - 73627808840.3656 * cos(theta) ** 14 + 14255597030.7942 * cos(theta) ** 12 - 1900746270.77256 * cos(theta) ** 10 + 165762756.172025 * cos(theta) ** 8 - 8707987.19102573 * cos(theta) ** 6 + 239230.417335872 * cos(theta) ** 4 - 2586.27478200942 * cos(theta) ** 2 + 4.61834782501683 ) * cos(phi) ) # @torch.jit.script def Yl33_m2(theta, phi): return ( 0.00291301034789671 * (1.0 - cos(theta) ** 2) * ( 887517401287.469 * cos(theta) ** 31 - 6349162947671.89 * cos(theta) ** 29 + 20458413942498.3 * cos(theta) ** 27 - 39239908709382.0 * cos(theta) ** 25 + 49881239884807.7 * cos(theta) ** 23 - 44280539266162.6 * cos(theta) ** 21 + 28178524987558.0 * cos(theta) ** 19 - 12987945479440.5 * cos(theta) ** 17 + 4329315159813.5 * cos(theta) ** 15 - 1030789323765.12 * cos(theta) ** 13 + 171067164369.53 * cos(theta) ** 11 - 19007462707.7256 * cos(theta) ** 9 + 1326102049.3762 * cos(theta) ** 7 - 52247923.1461544 * cos(theta) ** 5 + 956921.669343486 * cos(theta) ** 3 - 5172.54956401885 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl33_m3(theta, phi): return ( 8.71986838901848e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 27513039439911.5 * cos(theta) ** 30 - 184125725482485.0 * cos(theta) ** 28 + 552377176447455.0 * cos(theta) ** 26 - 980997717734551.0 * cos(theta) ** 24 + 1.14726851735058e15 * cos(theta) ** 22 - 929891324589415.0 * cos(theta) ** 20 + 535391974763602.0 * cos(theta) ** 18 - 220795073150488.0 * cos(theta) ** 16 + 64939727397202.4 * cos(theta) ** 14 - 13400261208946.5 * cos(theta) ** 12 + 1881738808064.83 * cos(theta) ** 10 - 171067164369.53 * cos(theta) ** 8 + 9282714345.63342 * cos(theta) ** 6 - 261239615.730772 * cos(theta) ** 4 + 2870765.00803046 * cos(theta) ** 2 - 5172.54956401885 ) * cos(3 * phi) ) # @torch.jit.script def Yl33_m4(theta, phi): return ( 2.61726947876729e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 825391183197346.0 * cos(theta) ** 29 - 5.15552031350958e15 * cos(theta) ** 27 + 1.43618065876338e16 * cos(theta) ** 25 - 2.35439452256292e16 * cos(theta) ** 23 + 2.52399073817127e16 * cos(theta) ** 21 - 1.85978264917883e16 * cos(theta) ** 19 + 9.63705554574484e15 * cos(theta) ** 17 - 3.53272117040781e15 * cos(theta) ** 15 + 909156183560834.0 * cos(theta) ** 13 - 160803134507358.0 * cos(theta) ** 11 + 18817388080648.3 * cos(theta) ** 9 - 1368537314956.24 * cos(theta) ** 7 + 55696286073.8005 * cos(theta) ** 5 - 1044958462.92309 * cos(theta) ** 3 + 5741530.01606092 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl33_m5(theta, phi): return ( 7.8842001969058e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 2.3936344312723e16 * cos(theta) ** 28 - 1.39199048464759e17 * cos(theta) ** 26 + 3.59045164690846e17 * cos(theta) ** 24 - 5.41510740189472e17 * cos(theta) ** 22 + 5.30038055015966e17 * cos(theta) ** 20 - 3.53358703343978e17 * cos(theta) ** 18 + 1.63829944277662e17 * cos(theta) ** 16 - 5.29908175561172e16 * cos(theta) ** 14 + 1.18190303862908e16 * cos(theta) ** 12 - 1.76883447958094e15 * cos(theta) ** 10 + 169356492725835.0 * cos(theta) ** 8 - 9579761204693.69 * cos(theta) ** 6 + 278481430369.003 * cos(theta) ** 4 - 3134875388.76926 * cos(theta) ** 2 + 5741530.01606092 ) * cos(5 * phi) ) # @torch.jit.script def Yl33_m6(theta, phi): return ( 2.38586751612009e-9 * (1.0 - cos(theta) ** 2) ** 3 * ( 6.70217640756245e17 * cos(theta) ** 27 - 3.61917526008372e18 * cos(theta) ** 25 + 8.6170839525803e18 * cos(theta) ** 23 - 1.19132362841684e19 * cos(theta) ** 21 + 1.06007611003193e19 * cos(theta) ** 19 - 6.3604566601916e18 * cos(theta) ** 17 + 2.6212791084426e18 * cos(theta) ** 15 - 7.41871445785641e17 * cos(theta) ** 13 + 1.4182836463549e17 * cos(theta) ** 11 - 1.76883447958094e16 * cos(theta) ** 9 + 1.35485194180668e15 * cos(theta) ** 7 - 57478567228162.2 * cos(theta) ** 5 + 1113925721476.01 * cos(theta) ** 3 - 6269750777.53852 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl33_m7(theta, phi): return ( 7.25996365443219e-11 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.80958763004186e19 * cos(theta) ** 26 - 9.04793815020931e19 * cos(theta) ** 24 + 1.98192930909347e20 * cos(theta) ** 22 - 2.50177961967536e20 * cos(theta) ** 20 + 2.01414460906067e20 * cos(theta) ** 18 - 1.08127763223257e20 * cos(theta) ** 16 + 3.9319186626639e19 * cos(theta) ** 14 - 9.64432879521333e18 * cos(theta) ** 12 + 1.56011201099039e18 * cos(theta) ** 10 - 1.59195103162285e17 * cos(theta) ** 8 + 9.48396359264676e15 * cos(theta) ** 6 - 287392836140811.0 * cos(theta) ** 4 + 3341777164428.03 * cos(theta) ** 2 - 6269750777.53852 ) * cos(7 * phi) ) # @torch.jit.script def Yl33_m8(theta, phi): return ( 2.2235957953578e-12 * (1.0 - cos(theta) ** 2) ** 4 * ( 4.70492783810884e20 * cos(theta) ** 25 - 2.17150515605023e21 * cos(theta) ** 23 + 4.36024448000563e21 * cos(theta) ** 21 - 5.00355923935072e21 * cos(theta) ** 19 + 3.62546029630921e21 * cos(theta) ** 17 - 1.73004421157211e21 * cos(theta) ** 15 + 5.50468612772945e20 * cos(theta) ** 13 - 1.1573194554256e20 * cos(theta) ** 11 + 1.56011201099039e19 * cos(theta) ** 9 - 1.27356082529828e18 * cos(theta) ** 7 + 5.69037815558805e16 * cos(theta) ** 5 - 1.14957134456324e15 * cos(theta) ** 3 + 6683554328856.07 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl33_m9(theta, phi): return ( 6.86216560370661e-14 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1.17623195952721e22 * cos(theta) ** 24 - 4.99446185891554e22 * cos(theta) ** 22 + 9.15651340801182e22 * cos(theta) ** 20 - 9.50676255476637e22 * cos(theta) ** 18 + 6.16328250372566e22 * cos(theta) ** 16 - 2.59506631735817e22 * cos(theta) ** 14 + 7.15609196604829e21 * cos(theta) ** 12 - 1.27305140096816e21 * cos(theta) ** 10 + 1.40410080989135e20 * cos(theta) ** 8 - 8.91492577708795e18 * cos(theta) ** 6 + 2.84518907779403e17 * cos(theta) ** 4 - 3.44871403368973e15 * cos(theta) ** 2 + 6683554328856.07 ) * cos(9 * phi) ) # @torch.jit.script def Yl33_m10(theta, phi): return ( 2.13609884881944e-15 * (1.0 - cos(theta) ** 2) ** 5 * ( 2.8229567028653e23 * cos(theta) ** 23 - 1.09878160896142e24 * cos(theta) ** 21 + 1.83130268160236e24 * cos(theta) ** 19 - 1.71121725985795e24 * cos(theta) ** 17 + 9.86125200596105e23 * cos(theta) ** 15 - 3.63309284430144e23 * cos(theta) ** 13 + 8.58731035925795e22 * cos(theta) ** 11 - 1.27305140096816e22 * cos(theta) ** 9 + 1.12328064791308e21 * cos(theta) ** 7 - 5.34895546625277e19 * cos(theta) ** 5 + 1.13807563111761e18 * cos(theta) ** 3 - 6.89742806737946e15 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl33_m11(theta, phi): return ( 6.71476920037506e-17 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 6.4928004165902e24 * cos(theta) ** 22 - 2.30744137881898e25 * cos(theta) ** 20 + 3.47947509504449e25 * cos(theta) ** 18 - 2.90906934175851e25 * cos(theta) ** 16 + 1.47918780089416e25 * cos(theta) ** 14 - 4.72302069759187e24 * cos(theta) ** 12 + 9.44604139518374e23 * cos(theta) ** 10 - 1.14574626087134e23 * cos(theta) ** 8 + 7.86296453539157e21 * cos(theta) ** 6 - 2.67447773312639e20 * cos(theta) ** 4 + 3.41422689335283e18 * cos(theta) ** 2 - 6.89742806737946e15 ) * cos(11 * phi) ) # @torch.jit.script def Yl33_m12(theta, phi): return ( 2.13409374265872e-18 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.42841609164984e26 * cos(theta) ** 21 - 4.61488275763796e26 * cos(theta) ** 19 + 6.26305517108009e26 * cos(theta) ** 17 - 4.65451094681362e26 * cos(theta) ** 15 + 2.07086292125182e26 * cos(theta) ** 13 - 5.66762483711025e25 * cos(theta) ** 11 + 9.44604139518374e24 * cos(theta) ** 9 - 9.16597008697075e23 * cos(theta) ** 7 + 4.71777872123494e22 * cos(theta) ** 5 - 1.06979109325055e21 * cos(theta) ** 3 + 6.82845378670567e18 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl33_m13(theta, phi): return ( 6.86633406583717e-20 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 2.99967379246467e27 * cos(theta) ** 20 - 8.76827723951212e27 * cos(theta) ** 18 + 1.06471937908361e28 * cos(theta) ** 16 - 6.98176642022042e27 * cos(theta) ** 14 + 2.69212179762737e27 * cos(theta) ** 12 - 6.23438732082127e26 * cos(theta) ** 10 + 8.50143725566537e25 * cos(theta) ** 8 - 6.41617906087952e24 * cos(theta) ** 6 + 2.35888936061747e23 * cos(theta) ** 4 - 3.20937327975166e21 * cos(theta) ** 2 + 6.82845378670567e18 ) * cos(13 * phi) ) # @torch.jit.script def Yl33_m14(theta, phi): return ( 2.23955123505438e-21 * (1.0 - cos(theta) ** 2) ** 7 * ( 5.99934758492935e28 * cos(theta) ** 19 - 1.57828990311218e29 * cos(theta) ** 17 + 1.70355100653378e29 * cos(theta) ** 15 - 9.77447298830859e28 * cos(theta) ** 13 + 3.23054615715284e28 * cos(theta) ** 11 - 6.23438732082127e27 * cos(theta) ** 9 + 6.80114980453229e26 * cos(theta) ** 7 - 3.84970743652771e25 * cos(theta) ** 5 + 9.43555744246989e23 * cos(theta) ** 3 - 6.41874655950333e21 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl33_m15(theta, phi): return ( 7.41589519033628e-23 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.13987604113658e30 * cos(theta) ** 18 - 2.68309283529071e30 * cos(theta) ** 16 + 2.55532650980068e30 * cos(theta) ** 14 - 1.27068148848012e30 * cos(theta) ** 12 + 3.55360077286812e29 * cos(theta) ** 10 - 5.61094858873914e28 * cos(theta) ** 8 + 4.76080486317261e27 * cos(theta) ** 6 - 1.92485371826386e26 * cos(theta) ** 4 + 2.83066723274097e24 * cos(theta) ** 2 - 6.41874655950333e21 ) * cos(15 * phi) ) # @torch.jit.script def Yl33_m16(theta, phi): return ( 2.49706179888357e-24 * (1.0 - cos(theta) ** 2) ** 8 * ( 2.05177687404584e31 * cos(theta) ** 17 - 4.29294853646513e31 * cos(theta) ** 15 + 3.57745711372095e31 * cos(theta) ** 13 - 1.52481778617614e31 * cos(theta) ** 11 + 3.55360077286812e30 * cos(theta) ** 9 - 4.48875887099131e29 * cos(theta) ** 7 + 2.85648291790356e28 * cos(theta) ** 5 - 7.69941487305543e26 * cos(theta) ** 3 + 5.66133446548193e24 * cos(theta) ) * cos(16 * phi) ) # @torch.jit.script def Yl33_m17(theta, phi): return ( 8.56485131043879e-26 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 3.48802068587792e32 * cos(theta) ** 16 - 6.4394228046977e32 * cos(theta) ** 14 + 4.65069424783723e32 * cos(theta) ** 12 - 1.67729956479375e32 * cos(theta) ** 10 + 3.19824069558131e31 * cos(theta) ** 8 - 3.14213120969392e30 * cos(theta) ** 6 + 1.42824145895178e29 * cos(theta) ** 4 - 2.30982446191663e27 * cos(theta) ** 2 + 5.66133446548193e24 ) * cos(17 * phi) ) # @torch.jit.script def Yl33_m18(theta, phi): return ( 2.99829767816716e-27 * (1.0 - cos(theta) ** 2) ** 9 * ( 5.58083309740467e33 * cos(theta) ** 15 - 9.01519192657678e33 * cos(theta) ** 13 + 5.58083309740467e33 * cos(theta) ** 11 - 1.67729956479375e33 * cos(theta) ** 9 + 2.55859255646505e32 * cos(theta) ** 7 - 1.88527872581635e31 * cos(theta) ** 5 + 5.71296583580713e29 * cos(theta) ** 3 - 4.61964892383326e27 * cos(theta) ) * cos(18 * phi) ) # @torch.jit.script def Yl33_m19(theta, phi): return ( 1.0735627820667e-28 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 8.37124964610701e34 * cos(theta) ** 14 - 1.17197495045498e35 * cos(theta) ** 12 + 6.13891640714514e34 * cos(theta) ** 10 - 1.50956960831438e34 * cos(theta) ** 8 + 1.79101478952553e33 * cos(theta) ** 6 - 9.42639362908176e31 * cos(theta) ** 4 + 1.71388975074214e30 * cos(theta) ** 2 - 4.61964892383326e27 ) * cos(19 * phi) ) # @torch.jit.script def Yl33_m20(theta, phi): return ( 3.94117295988316e-30 * (1.0 - cos(theta) ** 2) ** 10 * ( 1.17197495045498e36 * cos(theta) ** 13 - 1.40636994054598e36 * cos(theta) ** 11 + 6.13891640714514e35 * cos(theta) ** 9 - 1.2076556866515e35 * cos(theta) ** 7 + 1.07460887371532e34 * cos(theta) ** 5 - 3.7705574516327e32 * cos(theta) ** 3 + 3.42777950148428e30 * cos(theta) ) * cos(20 * phi) ) # @torch.jit.script def Yl33_m21(theta, phi): return ( 1.48749987668913e-31 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.52356743559148e37 * cos(theta) ** 12 - 1.54700693460058e37 * cos(theta) ** 10 + 5.52502476643063e36 * cos(theta) ** 8 - 8.45358980656052e35 * cos(theta) ** 6 + 5.3730443685766e34 * cos(theta) ** 4 - 1.13116723548981e33 * cos(theta) ** 2 + 3.42777950148428e30 ) * cos(21 * phi) ) # @torch.jit.script def Yl33_m22(theta, phi): return ( 5.79008541721441e-33 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.82828092270977e38 * cos(theta) ** 11 - 1.54700693460058e38 * cos(theta) ** 9 + 4.4200198131445e37 * cos(theta) ** 7 - 5.07215388393631e36 * cos(theta) ** 5 + 2.14921774743064e35 * cos(theta) ** 3 - 2.26233447097962e33 * cos(theta) ) * cos(22 * phi) ) # @torch.jit.script def Yl33_m23(theta, phi): return ( 2.33289189642992e-34 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 2.01110901498075e39 * cos(theta) ** 10 - 1.39230624114052e39 * cos(theta) ** 8 + 3.09401386920115e38 * cos(theta) ** 6 - 2.53607694196816e37 * cos(theta) ** 4 + 6.44765324229192e35 * cos(theta) ** 2 - 2.26233447097962e33 ) * cos(23 * phi) ) # @torch.jit.script def Yl33_m24(theta, phi): return ( 9.77140888441698e-36 * (1.0 - cos(theta) ** 2) ** 12 * ( 2.01110901498075e40 * cos(theta) ** 9 - 1.11384499291241e40 * cos(theta) ** 7 + 1.85640832152069e39 * cos(theta) ** 5 - 1.01443077678726e38 * cos(theta) ** 3 + 1.28953064845838e36 * cos(theta) ) * cos(24 * phi) ) # @torch.jit.script def Yl33_m25(theta, phi): return ( 4.27682948208865e-37 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 1.80999811348267e41 * cos(theta) ** 8 - 7.7969149503869e40 * cos(theta) ** 6 + 9.28204160760346e39 * cos(theta) ** 4 - 3.04329233036179e38 * cos(theta) ** 2 + 1.28953064845838e36 ) * cos(25 * phi) ) # @torch.jit.script def Yl33_m26(theta, phi): return ( 1.96857033314502e-38 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.44799849078614e42 * cos(theta) ** 7 - 4.67814897023214e41 * cos(theta) ** 5 + 3.71281664304138e40 * cos(theta) ** 3 - 6.08658466072358e38 * cos(theta) ) * cos(26 * phi) ) # @torch.jit.script def Yl33_m27(theta, phi): return ( 9.60563965860272e-40 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.0135989435503e43 * cos(theta) ** 6 - 2.33907448511607e42 * cos(theta) ** 4 + 1.11384499291241e41 * cos(theta) ** 2 - 6.08658466072358e38 ) * cos(27 * phi) ) # @torch.jit.script def Yl33_m28(theta, phi): return ( 5.02094828227271e-41 * (1.0 - cos(theta) ** 2) ** 14 * ( 6.08159366130178e43 * cos(theta) ** 5 - 9.35629794046428e42 * cos(theta) ** 3 + 2.22768998582483e41 * cos(theta) ) * cos(28 * phi) ) # @torch.jit.script def Yl33_m29(theta, phi): return ( 2.85170699605925e-42 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 3.04079683065089e44 * cos(theta) ** 4 - 2.80688938213928e43 * cos(theta) ** 2 + 2.22768998582483e41 ) * cos(29 * phi) ) # @torch.jit.script def Yl33_m30(theta, phi): return ( 1.7964065532371e-43 * (1.0 - cos(theta) ** 2) ** 15 * (1.21631873226036e45 * cos(theta) ** 3 - 5.61377876427857e43 * cos(theta)) * cos(30 * phi) ) # @torch.jit.script def Yl33_m31(theta, phi): return ( 1.29644475885681e-44 * (1.0 - cos(theta) ** 2) ** 15.5 * (3.64895619678107e45 * cos(theta) ** 2 - 5.61377876427857e43) * cos(31 * phi) ) # @torch.jit.script def Yl33_m32(theta, phi): return 8.29814436002877 * (1.0 - cos(theta) ** 2) ** 16 * cos(32 * phi) * cos(theta) # @torch.jit.script def Yl33_m33(theta, phi): return 1.02143096163768 * (1.0 - cos(theta) ** 2) ** 16.5 * cos(33 * phi) # @torch.jit.script def Yl34_m_minus_34(theta, phi): return 1.0289140723859 * (1.0 - cos(theta) ** 2) ** 17 * sin(34 * phi) # @torch.jit.script def Yl34_m_minus_33(theta, phi): return ( 8.48464280026292 * (1.0 - cos(theta) ** 2) ** 16.5 * sin(33 * phi) * cos(theta) ) # @torch.jit.script def Yl34_m_minus_32(theta, phi): return ( 2.0086881349656e-46 * (1.0 - cos(theta) ** 2) ** 16 * (2.44480065184332e47 * cos(theta) ** 2 - 3.64895619678107e45) * sin(32 * phi) ) # @torch.jit.script def Yl34_m_minus_31(theta, phi): return ( 2.8264747454439e-45 * (1.0 - cos(theta) ** 2) ** 15.5 * (8.14933550614439e46 * cos(theta) ** 3 - 3.64895619678107e45 * cos(theta)) * sin(31 * phi) ) # @torch.jit.script def Yl34_m_minus_30(theta, phi): return ( 4.55755358336505e-44 * (1.0 - cos(theta) ** 2) ** 15 * ( 2.0373338765361e46 * cos(theta) ** 4 - 1.82447809839054e45 * cos(theta) ** 2 + 1.40344469106964e43 ) * sin(30 * phi) ) # @torch.jit.script def Yl34_m_minus_29(theta, phi): return ( 8.15279969880161e-43 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 4.0746677530722e45 * cos(theta) ** 5 - 6.08159366130178e44 * cos(theta) ** 3 + 1.40344469106964e43 * cos(theta) ) * sin(29 * phi) ) # @torch.jit.script def Yl34_m_minus_28(theta, phi): return ( 1.58508542441973e-41 * (1.0 - cos(theta) ** 2) ** 14 * ( 6.79111292178699e44 * cos(theta) ** 6 - 1.52039841532545e44 * cos(theta) ** 4 + 7.01722345534821e42 * cos(theta) ** 2 - 3.71281664304138e40 ) * sin(28 * phi) ) # @torch.jit.script def Yl34_m_minus_27(theta, phi): return ( 3.30215562682199e-40 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 9.70158988826713e43 * cos(theta) ** 7 - 3.04079683065089e43 * cos(theta) ** 5 + 2.33907448511607e42 * cos(theta) ** 3 - 3.71281664304138e40 * cos(theta) ) * sin(27 * phi) ) # @torch.jit.script def Yl34_m_minus_26(theta, phi): return ( 7.29470020663704e-39 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.21269873603339e43 * cos(theta) ** 8 - 5.06799471775149e42 * cos(theta) ** 6 + 5.84768621279018e41 * cos(theta) ** 4 - 1.85640832152069e40 * cos(theta) ** 2 + 7.60823082590447e37 ) * sin(26 * phi) ) # @torch.jit.script def Yl34_m_minus_25(theta, phi): return ( 1.69513514495286e-37 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 1.3474430400371e42 * cos(theta) ** 9 - 7.23999245393069e41 * cos(theta) ** 7 + 1.16953724255804e41 * cos(theta) ** 5 - 6.1880277384023e39 * cos(theta) ** 3 + 7.60823082590447e37 * cos(theta) ) * sin(25 * phi) ) # @torch.jit.script def Yl34_m_minus_24(theta, phi): return ( 4.11746896065541e-36 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.3474430400371e41 * cos(theta) ** 10 - 9.04999056741337e40 * cos(theta) ** 8 + 1.94922873759673e40 * cos(theta) ** 6 - 1.54700693460058e39 * cos(theta) ** 4 + 3.80411541295224e37 * cos(theta) ** 2 - 1.28953064845838e35 ) * sin(24 * phi) ) # @torch.jit.script def Yl34_m_minus_23(theta, phi): return ( 1.04001756281185e-34 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.22494821821555e40 * cos(theta) ** 11 - 1.00555450749037e40 * cos(theta) ** 9 + 2.78461248228104e39 * cos(theta) ** 7 - 3.09401386920115e38 * cos(theta) ** 5 + 1.26803847098408e37 * cos(theta) ** 3 - 1.28953064845838e35 * cos(theta) ) * sin(23 * phi) ) # @torch.jit.script def Yl34_m_minus_22(theta, phi): return ( 2.71999887348259e-33 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.02079018184629e39 * cos(theta) ** 12 - 1.00555450749037e39 * cos(theta) ** 10 + 3.4807656028513e38 * cos(theta) ** 8 - 5.15668978200192e37 * cos(theta) ** 6 + 3.1700961774602e36 * cos(theta) ** 4 - 6.44765324229192e34 * cos(theta) ** 2 + 1.88527872581635e32 ) * sin(22 * phi) ) # @torch.jit.script def Yl34_m_minus_21(theta, phi): return ( 7.33895819488808e-32 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 7.85223216804838e37 * cos(theta) ** 13 - 9.14140461354886e37 * cos(theta) ** 11 + 3.86751733650144e37 * cos(theta) ** 9 - 7.36669968857417e36 * cos(theta) ** 7 + 6.34019235492039e35 * cos(theta) ** 5 - 2.14921774743064e34 * cos(theta) ** 3 + 1.88527872581635e32 * cos(theta) ) * sin(21 * phi) ) # @torch.jit.script def Yl34_m_minus_20(theta, phi): return ( 2.03647825147882e-30 * (1.0 - cos(theta) ** 2) ** 10 * ( 5.6087372628917e36 * cos(theta) ** 14 - 7.61783717795738e36 * cos(theta) ** 12 + 3.86751733650144e36 * cos(theta) ** 10 - 9.20837461071771e35 * cos(theta) ** 8 + 1.05669872582007e35 * cos(theta) ** 6 - 5.3730443685766e33 * cos(theta) ** 4 + 9.42639362908176e31 * cos(theta) ** 2 - 2.44841392963163e29 ) * sin(20 * phi) ) # @torch.jit.script def Yl34_m_minus_19(theta, phi): return ( 5.79591871206322e-29 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 3.73915817526113e35 * cos(theta) ** 15 - 5.85987475227491e35 * cos(theta) ** 13 + 3.51592485136495e35 * cos(theta) ** 11 - 1.02315273452419e35 * cos(theta) ** 9 + 1.50956960831438e34 * cos(theta) ** 7 - 1.07460887371532e33 * cos(theta) ** 5 + 3.14213120969392e31 * cos(theta) ** 3 - 2.44841392963163e29 * cos(theta) ) * sin(19 * phi) ) # @torch.jit.script def Yl34_m_minus_18(theta, phi): return ( 1.6877970053263e-27 * (1.0 - cos(theta) ** 2) ** 9 * ( 2.33697385953821e34 * cos(theta) ** 16 - 4.18562482305351e34 * cos(theta) ** 14 + 2.92993737613745e34 * cos(theta) ** 12 - 1.02315273452419e34 * cos(theta) ** 10 + 1.88696201039297e33 * cos(theta) ** 8 - 1.79101478952553e32 * cos(theta) ** 6 + 7.8553280242348e30 * cos(theta) ** 4 - 1.22420696481581e29 * cos(theta) ** 2 + 2.88728057739579e26 ) * sin(18 * phi) ) # @torch.jit.script def Yl34_m_minus_17(theta, phi): return ( 5.01818126253981e-26 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.37469050561071e33 * cos(theta) ** 17 - 2.79041654870234e33 * cos(theta) ** 15 + 2.2537979816442e33 * cos(theta) ** 13 - 9.30138849567446e32 * cos(theta) ** 11 + 2.09662445599219e32 * cos(theta) ** 9 - 2.55859255646505e31 * cos(theta) ** 7 + 1.57106560484696e30 * cos(theta) ** 5 - 4.08068988271938e28 * cos(theta) ** 3 + 2.88728057739579e26 * cos(theta) ) * sin(17 * phi) ) # @torch.jit.script def Yl34_m_minus_16(theta, phi): return ( 1.52043439327851e-24 * (1.0 - cos(theta) ** 2) ** 8 * ( 7.63716947561506e31 * cos(theta) ** 18 - 1.74401034293896e32 * cos(theta) ** 16 + 1.60985570117443e32 * cos(theta) ** 14 - 7.75115707972871e31 * cos(theta) ** 12 + 2.09662445599219e31 * cos(theta) ** 10 - 3.19824069558131e30 * cos(theta) ** 8 + 2.61844267474493e29 * cos(theta) ** 6 - 1.02017247067984e28 * cos(theta) ** 4 + 1.44364028869789e26 * cos(theta) ** 2 - 3.14518581415663e23 ) * sin(16 * phi) ) # @torch.jit.script def Yl34_m_minus_15(theta, phi): return ( 4.68629353226083e-23 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 4.01956288190266e30 * cos(theta) ** 19 - 1.02588843702292e31 * cos(theta) ** 17 + 1.07323713411628e31 * cos(theta) ** 15 - 5.96242852286824e30 * cos(theta) ** 13 + 1.90602223272018e30 * cos(theta) ** 11 - 3.55360077286812e29 * cos(theta) ** 9 + 3.74063239249276e28 * cos(theta) ** 7 - 2.04034494135969e27 * cos(theta) ** 5 + 4.81213429565964e25 * cos(theta) ** 3 - 3.14518581415663e23 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl34_m_minus_14(theta, phi): return ( 1.46704192609139e-21 * (1.0 - cos(theta) ** 2) ** 7 * ( 2.00978144095133e29 * cos(theta) ** 20 - 5.69938020568288e29 * cos(theta) ** 18 + 6.70773208822677e29 * cos(theta) ** 16 - 4.25887751633446e29 * cos(theta) ** 14 + 1.58835186060015e29 * cos(theta) ** 12 - 3.55360077286812e28 * cos(theta) ** 10 + 4.67579049061595e27 * cos(theta) ** 8 - 3.40057490226615e26 * cos(theta) ** 6 + 1.20303357391491e25 * cos(theta) ** 4 - 1.57259290707831e23 * cos(theta) ** 2 + 3.20937327975166e20 ) * sin(14 * phi) ) # @torch.jit.script def Yl34_m_minus_13(theta, phi): return ( 4.65771371921163e-20 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 9.57038781405396e27 * cos(theta) ** 21 - 2.99967379246467e28 * cos(theta) ** 19 + 3.94572475778045e28 * cos(theta) ** 17 - 2.83925167755631e28 * cos(theta) ** 15 + 1.22180912353857e28 * cos(theta) ** 13 - 3.23054615715284e27 * cos(theta) ** 11 + 5.19532276735106e26 * cos(theta) ** 9 - 4.8579641460945e25 * cos(theta) ** 7 + 2.40606714782982e24 * cos(theta) ** 5 - 5.24197635692772e22 * cos(theta) ** 3 + 3.20937327975166e20 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl34_m_minus_12(theta, phi): return ( 1.49772838629695e-18 * (1.0 - cos(theta) ** 2) ** 6 * ( 4.35017627911543e26 * cos(theta) ** 22 - 1.49983689623234e27 * cos(theta) ** 20 + 2.19206930987803e27 * cos(theta) ** 18 - 1.77453229847269e27 * cos(theta) ** 16 + 8.72720802527553e26 * cos(theta) ** 14 - 2.69212179762737e26 * cos(theta) ** 12 + 5.19532276735106e25 * cos(theta) ** 10 - 6.07245518261812e24 * cos(theta) ** 8 + 4.0101119130497e23 * cos(theta) ** 6 - 1.31049408923193e22 * cos(theta) ** 4 + 1.60468663987583e20 * cos(theta) ** 2 - 3.10384263032076e17 ) * sin(12 * phi) ) # @torch.jit.script def Yl34_m_minus_11(theta, phi): return ( 4.87164793230034e-17 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.89138099091975e25 * cos(theta) ** 23 - 7.14208045824922e25 * cos(theta) ** 21 + 1.15372068940949e26 * cos(theta) ** 19 - 1.04384252851335e26 * cos(theta) ** 17 + 5.81813868351702e25 * cos(theta) ** 15 - 2.07086292125182e25 * cos(theta) ** 13 + 4.72302069759187e24 * cos(theta) ** 11 - 6.74717242513125e23 * cos(theta) ** 9 + 5.72873130435672e22 * cos(theta) ** 7 - 2.62098817846386e21 * cos(theta) ** 5 + 5.34895546625277e19 * cos(theta) ** 3 - 3.10384263032076e17 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl34_m_minus_10(theta, phi): return ( 1.60098687884658e-15 * (1.0 - cos(theta) ** 2) ** 5 * ( 7.88075412883231e23 * cos(theta) ** 24 - 3.2464002082951e24 * cos(theta) ** 22 + 5.76860344704745e24 * cos(theta) ** 20 - 5.79912515840749e24 * cos(theta) ** 18 + 3.63633667719814e24 * cos(theta) ** 16 - 1.47918780089416e24 * cos(theta) ** 14 + 3.93585058132656e23 * cos(theta) ** 12 - 6.74717242513125e22 * cos(theta) ** 10 + 7.1609141304459e21 * cos(theta) ** 8 - 4.3683136307731e20 * cos(theta) ** 6 + 1.33723886656319e19 * cos(theta) ** 4 - 1.55192131516038e17 * cos(theta) ** 2 + 287392836140811.0 ) * sin(10 * phi) ) # @torch.jit.script def Yl34_m_minus_9(theta, phi): return ( 5.30987277141628e-14 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 3.15230165153292e22 * cos(theta) ** 25 - 1.41147835143265e23 * cos(theta) ** 23 + 2.74695402240355e23 * cos(theta) ** 21 - 3.05217113600394e23 * cos(theta) ** 19 + 2.13902157482243e23 * cos(theta) ** 17 - 9.86125200596105e22 * cos(theta) ** 15 + 3.0275773702512e22 * cos(theta) ** 13 - 6.13379311375568e21 * cos(theta) ** 11 + 7.956571256051e20 * cos(theta) ** 9 - 6.24044804396157e19 * cos(theta) ** 7 + 2.67447773312639e18 * cos(theta) ** 5 - 5.17307105053459e16 * cos(theta) ** 3 + 287392836140811.0 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl34_m_minus_8(theta, phi): return ( 1.77543598061902e-12 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.21242371212805e21 * cos(theta) ** 26 - 5.88115979763605e21 * cos(theta) ** 24 + 1.24861546472888e22 * cos(theta) ** 22 - 1.52608556800197e22 * cos(theta) ** 20 + 1.1883453193458e22 * cos(theta) ** 18 - 6.16328250372566e21 * cos(theta) ** 16 + 2.16255526446514e21 * cos(theta) ** 14 - 5.11149426146306e20 * cos(theta) ** 12 + 7.956571256051e19 * cos(theta) ** 10 - 7.80056005495196e18 * cos(theta) ** 8 + 4.45746288854398e17 * cos(theta) ** 6 - 1.29326776263365e16 * cos(theta) ** 4 + 143696418070405.0 * cos(theta) ** 2 - 257059781879.079 ) * sin(8 * phi) ) # @torch.jit.script def Yl34_m_minus_7(theta, phi): return ( 5.97876583646464e-11 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 4.49045819306684e19 * cos(theta) ** 27 - 2.35246391905442e20 * cos(theta) ** 25 + 5.42876289012559e20 * cos(theta) ** 23 - 7.26707413334272e20 * cos(theta) ** 21 + 6.2544490491884e20 * cos(theta) ** 19 - 3.62546029630921e20 * cos(theta) ** 17 + 1.44170350964343e20 * cos(theta) ** 15 - 3.9319186626639e19 * cos(theta) ** 13 + 7.23324659641e18 * cos(theta) ** 11 - 8.66728894994662e17 * cos(theta) ** 9 + 6.36780412649139e16 * cos(theta) ** 7 - 2.5865355252673e15 * cos(theta) ** 5 + 47898806023468.5 * cos(theta) ** 3 - 257059781879.079 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl34_m_minus_6(theta, phi): return ( 2.0257343306691e-9 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.60373506895244e18 * cos(theta) ** 28 - 9.04793815020931e18 * cos(theta) ** 26 + 2.26198453755233e19 * cos(theta) ** 24 - 3.30321551515578e19 * cos(theta) ** 22 + 3.1272245245942e19 * cos(theta) ** 20 - 2.01414460906067e19 * cos(theta) ** 18 + 9.01064693527143e18 * cos(theta) ** 16 - 2.80851333047421e18 * cos(theta) ** 14 + 6.02770549700833e17 * cos(theta) ** 12 - 8.66728894994662e16 * cos(theta) ** 10 + 7.95975515811424e15 * cos(theta) ** 8 - 431089254211216.0 * cos(theta) ** 6 + 11974701505867.1 * cos(theta) ** 4 - 128529890939.54 * cos(theta) ** 2 + 223919670.626376 ) * sin(6 * phi) ) # @torch.jit.script def Yl34_m_minus_5(theta, phi): return ( 6.89940251833707e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 5.53012092742222e16 * cos(theta) ** 29 - 3.35108820378123e17 * cos(theta) ** 27 + 9.04793815020931e17 * cos(theta) ** 25 - 1.43618065876338e18 * cos(theta) ** 23 + 1.48915453552105e18 * cos(theta) ** 21 - 1.06007611003193e18 * cos(theta) ** 19 + 5.30038055015966e17 * cos(theta) ** 17 - 1.87234222031614e17 * cos(theta) ** 15 + 4.63669653616025e16 * cos(theta) ** 13 - 7.87935359086056e15 * cos(theta) ** 11 + 884417239790471.0 * cos(theta) ** 9 - 61584179173030.9 * cos(theta) ** 7 + 2394940301173.42 * cos(theta) ** 5 - 42843296979.8466 * cos(theta) ** 3 + 223919670.626376 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl34_m_minus_4(theta, phi): return ( 2.35995875978251e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 1.84337364247407e15 * cos(theta) ** 30 - 1.19681721563615e16 * cos(theta) ** 28 + 3.47997621161897e16 * cos(theta) ** 26 - 5.98408607818076e16 * cos(theta) ** 24 + 6.7688842523684e16 * cos(theta) ** 22 - 5.30038055015966e16 * cos(theta) ** 20 + 2.94465586119981e16 * cos(theta) ** 18 - 1.17021388769759e16 * cos(theta) ** 16 + 3.31192609725732e15 * cos(theta) ** 14 - 656612799238380.0 * cos(theta) ** 12 + 88441723979047.1 * cos(theta) ** 10 - 7698022396628.86 * cos(theta) ** 8 + 399156716862.237 * cos(theta) ** 6 - 10710824244.9616 * cos(theta) ** 4 + 111959835.313188 * cos(theta) ** 2 - 191384.333868697 ) * sin(4 * phi) ) # @torch.jit.script def Yl34_m_minus_3(theta, phi): return ( 8.09985154172335e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 59463665886260.4 * cos(theta) ** 31 - 412695591598673.0 * cos(theta) ** 29 + 1.28888007837739e15 * cos(theta) ** 27 - 2.3936344312723e15 * cos(theta) ** 25 + 2.94299315320365e15 * cos(theta) ** 23 - 2.52399073817127e15 * cos(theta) ** 21 + 1.54981887431569e15 * cos(theta) ** 19 - 688361110410346.0 * cos(theta) ** 17 + 220795073150488.0 * cos(theta) ** 15 - 50508676864490.8 * cos(theta) ** 13 + 8040156725367.92 * cos(theta) ** 11 - 855335821847.651 * cos(theta) ** 9 + 57022388123.1768 * cos(theta) ** 7 - 2142164848.99233 * cos(theta) ** 5 + 37319945.104396 * cos(theta) ** 3 - 191384.333868697 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl34_m_minus_2(theta, phi): return ( 0.00278710230306644 * (1.0 - cos(theta) ** 2) * ( 1858239558945.64 * cos(theta) ** 32 - 13756519719955.8 * cos(theta) ** 30 + 46031431370621.2 * cos(theta) ** 28 - 92062862741242.5 * cos(theta) ** 26 + 122624714716819.0 * cos(theta) ** 24 - 114726851735058.0 * cos(theta) ** 22 + 77490943715784.6 * cos(theta) ** 20 - 38242283911685.9 * cos(theta) ** 18 + 13799692071905.5 * cos(theta) ** 16 - 3607762633177.91 * cos(theta) ** 14 + 670013060447.327 * cos(theta) ** 12 - 85533582184.7651 * cos(theta) ** 10 + 7127798515.39709 * cos(theta) ** 8 - 357027474.832055 * cos(theta) ** 6 + 9329986.27609899 * cos(theta) ** 4 - 95692.1669343486 * cos(theta) ** 2 + 161.642173875589 ) * sin(2 * phi) ) # @torch.jit.script def Yl34_m_minus_1(theta, phi): return ( 0.0960641026936534 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 56310289665.0193 * cos(theta) ** 33 - 443758700643.735 * cos(theta) ** 31 + 1587290736917.97 * cos(theta) ** 29 - 3409735657083.05 * cos(theta) ** 27 + 4904988588672.75 * cos(theta) ** 25 - 4988123988480.77 * cos(theta) ** 23 + 3690044938846.88 * cos(theta) ** 21 - 2012751784825.57 * cos(theta) ** 19 + 811746592465.031 * cos(theta) ** 17 - 240517508878.528 * cos(theta) ** 15 + 51539466188.2559 * cos(theta) ** 13 - 7775780198.61501 * cos(theta) ** 11 + 791977612.821899 * cos(theta) ** 9 - 51003924.9760078 * cos(theta) ** 7 + 1865997.2552198 * cos(theta) ** 5 - 31897.3889781162 * cos(theta) ** 3 + 161.642173875589 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl34_m0(theta, phi): return ( 12192094786.7008 * cos(theta) ** 34 - 102086047393.122 * cos(theta) ** 32 + 389497534669.142 * cos(theta) ** 30 - 896462579794.057 * cos(theta) ** 28 + 1388782193287.51 * cos(theta) ** 26 - 1530014280740.48 * cos(theta) ** 24 + 1234748366913.37 * cos(theta) ** 22 - 740849020148.023 * cos(theta) ** 20 + 331984230726.708 * cos(theta) ** 18 - 110661410242.236 * cos(theta) ** 16 + 27100753528.7109 * cos(theta) ** 14 - 4770151975.0729 * cos(theta) ** 12 + 583018574.731132 * cos(theta) ** 10 - 46933516.7493756 * cos(theta) ** 8 + 2289439.84143296 * cos(theta) ** 6 - 58703.5856777681 * cos(theta) ** 4 + 594.968773761163 * cos(theta) ** 2 - 0.999947518926325 ) # @torch.jit.script def Yl34_m1(theta, phi): return ( 0.0960641026936534 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 56310289665.0193 * cos(theta) ** 33 - 443758700643.735 * cos(theta) ** 31 + 1587290736917.97 * cos(theta) ** 29 - 3409735657083.05 * cos(theta) ** 27 + 4904988588672.75 * cos(theta) ** 25 - 4988123988480.77 * cos(theta) ** 23 + 3690044938846.88 * cos(theta) ** 21 - 2012751784825.57 * cos(theta) ** 19 + 811746592465.031 * cos(theta) ** 17 - 240517508878.528 * cos(theta) ** 15 + 51539466188.2559 * cos(theta) ** 13 - 7775780198.61501 * cos(theta) ** 11 + 791977612.821899 * cos(theta) ** 9 - 51003924.9760078 * cos(theta) ** 7 + 1865997.2552198 * cos(theta) ** 5 - 31897.3889781162 * cos(theta) ** 3 + 161.642173875589 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl34_m2(theta, phi): return ( 0.00278710230306644 * (1.0 - cos(theta) ** 2) * ( 1858239558945.64 * cos(theta) ** 32 - 13756519719955.8 * cos(theta) ** 30 + 46031431370621.2 * cos(theta) ** 28 - 92062862741242.5 * cos(theta) ** 26 + 122624714716819.0 * cos(theta) ** 24 - 114726851735058.0 * cos(theta) ** 22 + 77490943715784.6 * cos(theta) ** 20 - 38242283911685.9 * cos(theta) ** 18 + 13799692071905.5 * cos(theta) ** 16 - 3607762633177.91 * cos(theta) ** 14 + 670013060447.327 * cos(theta) ** 12 - 85533582184.7651 * cos(theta) ** 10 + 7127798515.39709 * cos(theta) ** 8 - 357027474.832055 * cos(theta) ** 6 + 9329986.27609899 * cos(theta) ** 4 - 95692.1669343486 * cos(theta) ** 2 + 161.642173875589 ) * cos(2 * phi) ) # @torch.jit.script def Yl34_m3(theta, phi): return ( 8.09985154172335e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 59463665886260.4 * cos(theta) ** 31 - 412695591598673.0 * cos(theta) ** 29 + 1.28888007837739e15 * cos(theta) ** 27 - 2.3936344312723e15 * cos(theta) ** 25 + 2.94299315320365e15 * cos(theta) ** 23 - 2.52399073817127e15 * cos(theta) ** 21 + 1.54981887431569e15 * cos(theta) ** 19 - 688361110410346.0 * cos(theta) ** 17 + 220795073150488.0 * cos(theta) ** 15 - 50508676864490.8 * cos(theta) ** 13 + 8040156725367.92 * cos(theta) ** 11 - 855335821847.651 * cos(theta) ** 9 + 57022388123.1768 * cos(theta) ** 7 - 2142164848.99233 * cos(theta) ** 5 + 37319945.104396 * cos(theta) ** 3 - 191384.333868697 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl34_m4(theta, phi): return ( 2.35995875978251e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 1.84337364247407e15 * cos(theta) ** 30 - 1.19681721563615e16 * cos(theta) ** 28 + 3.47997621161897e16 * cos(theta) ** 26 - 5.98408607818076e16 * cos(theta) ** 24 + 6.7688842523684e16 * cos(theta) ** 22 - 5.30038055015966e16 * cos(theta) ** 20 + 2.94465586119981e16 * cos(theta) ** 18 - 1.17021388769759e16 * cos(theta) ** 16 + 3.31192609725732e15 * cos(theta) ** 14 - 656612799238380.0 * cos(theta) ** 12 + 88441723979047.1 * cos(theta) ** 10 - 7698022396628.86 * cos(theta) ** 8 + 399156716862.237 * cos(theta) ** 6 - 10710824244.9616 * cos(theta) ** 4 + 111959835.313188 * cos(theta) ** 2 - 191384.333868697 ) * cos(4 * phi) ) # @torch.jit.script def Yl34_m5(theta, phi): return ( 6.89940251833707e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 5.53012092742222e16 * cos(theta) ** 29 - 3.35108820378123e17 * cos(theta) ** 27 + 9.04793815020931e17 * cos(theta) ** 25 - 1.43618065876338e18 * cos(theta) ** 23 + 1.48915453552105e18 * cos(theta) ** 21 - 1.06007611003193e18 * cos(theta) ** 19 + 5.30038055015966e17 * cos(theta) ** 17 - 1.87234222031614e17 * cos(theta) ** 15 + 4.63669653616025e16 * cos(theta) ** 13 - 7.87935359086056e15 * cos(theta) ** 11 + 884417239790471.0 * cos(theta) ** 9 - 61584179173030.9 * cos(theta) ** 7 + 2394940301173.42 * cos(theta) ** 5 - 42843296979.8466 * cos(theta) ** 3 + 223919670.626376 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl34_m6(theta, phi): return ( 2.0257343306691e-9 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.60373506895244e18 * cos(theta) ** 28 - 9.04793815020931e18 * cos(theta) ** 26 + 2.26198453755233e19 * cos(theta) ** 24 - 3.30321551515578e19 * cos(theta) ** 22 + 3.1272245245942e19 * cos(theta) ** 20 - 2.01414460906067e19 * cos(theta) ** 18 + 9.01064693527143e18 * cos(theta) ** 16 - 2.80851333047421e18 * cos(theta) ** 14 + 6.02770549700833e17 * cos(theta) ** 12 - 8.66728894994662e16 * cos(theta) ** 10 + 7.95975515811424e15 * cos(theta) ** 8 - 431089254211216.0 * cos(theta) ** 6 + 11974701505867.1 * cos(theta) ** 4 - 128529890939.54 * cos(theta) ** 2 + 223919670.626376 ) * cos(6 * phi) ) # @torch.jit.script def Yl34_m7(theta, phi): return ( 5.97876583646464e-11 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 4.49045819306684e19 * cos(theta) ** 27 - 2.35246391905442e20 * cos(theta) ** 25 + 5.42876289012559e20 * cos(theta) ** 23 - 7.26707413334272e20 * cos(theta) ** 21 + 6.2544490491884e20 * cos(theta) ** 19 - 3.62546029630921e20 * cos(theta) ** 17 + 1.44170350964343e20 * cos(theta) ** 15 - 3.9319186626639e19 * cos(theta) ** 13 + 7.23324659641e18 * cos(theta) ** 11 - 8.66728894994662e17 * cos(theta) ** 9 + 6.36780412649139e16 * cos(theta) ** 7 - 2.5865355252673e15 * cos(theta) ** 5 + 47898806023468.5 * cos(theta) ** 3 - 257059781879.079 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl34_m8(theta, phi): return ( 1.77543598061902e-12 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.21242371212805e21 * cos(theta) ** 26 - 5.88115979763605e21 * cos(theta) ** 24 + 1.24861546472888e22 * cos(theta) ** 22 - 1.52608556800197e22 * cos(theta) ** 20 + 1.1883453193458e22 * cos(theta) ** 18 - 6.16328250372566e21 * cos(theta) ** 16 + 2.16255526446514e21 * cos(theta) ** 14 - 5.11149426146306e20 * cos(theta) ** 12 + 7.956571256051e19 * cos(theta) ** 10 - 7.80056005495196e18 * cos(theta) ** 8 + 4.45746288854398e17 * cos(theta) ** 6 - 1.29326776263365e16 * cos(theta) ** 4 + 143696418070405.0 * cos(theta) ** 2 - 257059781879.079 ) * cos(8 * phi) ) # @torch.jit.script def Yl34_m9(theta, phi): return ( 5.30987277141628e-14 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 3.15230165153292e22 * cos(theta) ** 25 - 1.41147835143265e23 * cos(theta) ** 23 + 2.74695402240355e23 * cos(theta) ** 21 - 3.05217113600394e23 * cos(theta) ** 19 + 2.13902157482243e23 * cos(theta) ** 17 - 9.86125200596105e22 * cos(theta) ** 15 + 3.0275773702512e22 * cos(theta) ** 13 - 6.13379311375568e21 * cos(theta) ** 11 + 7.956571256051e20 * cos(theta) ** 9 - 6.24044804396157e19 * cos(theta) ** 7 + 2.67447773312639e18 * cos(theta) ** 5 - 5.17307105053459e16 * cos(theta) ** 3 + 287392836140811.0 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl34_m10(theta, phi): return ( 1.60098687884658e-15 * (1.0 - cos(theta) ** 2) ** 5 * ( 7.88075412883231e23 * cos(theta) ** 24 - 3.2464002082951e24 * cos(theta) ** 22 + 5.76860344704745e24 * cos(theta) ** 20 - 5.79912515840749e24 * cos(theta) ** 18 + 3.63633667719814e24 * cos(theta) ** 16 - 1.47918780089416e24 * cos(theta) ** 14 + 3.93585058132656e23 * cos(theta) ** 12 - 6.74717242513125e22 * cos(theta) ** 10 + 7.1609141304459e21 * cos(theta) ** 8 - 4.3683136307731e20 * cos(theta) ** 6 + 1.33723886656319e19 * cos(theta) ** 4 - 1.55192131516038e17 * cos(theta) ** 2 + 287392836140811.0 ) * cos(10 * phi) ) # @torch.jit.script def Yl34_m11(theta, phi): return ( 4.87164793230034e-17 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.89138099091975e25 * cos(theta) ** 23 - 7.14208045824922e25 * cos(theta) ** 21 + 1.15372068940949e26 * cos(theta) ** 19 - 1.04384252851335e26 * cos(theta) ** 17 + 5.81813868351702e25 * cos(theta) ** 15 - 2.07086292125182e25 * cos(theta) ** 13 + 4.72302069759187e24 * cos(theta) ** 11 - 6.74717242513125e23 * cos(theta) ** 9 + 5.72873130435672e22 * cos(theta) ** 7 - 2.62098817846386e21 * cos(theta) ** 5 + 5.34895546625277e19 * cos(theta) ** 3 - 3.10384263032076e17 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl34_m12(theta, phi): return ( 1.49772838629695e-18 * (1.0 - cos(theta) ** 2) ** 6 * ( 4.35017627911543e26 * cos(theta) ** 22 - 1.49983689623234e27 * cos(theta) ** 20 + 2.19206930987803e27 * cos(theta) ** 18 - 1.77453229847269e27 * cos(theta) ** 16 + 8.72720802527553e26 * cos(theta) ** 14 - 2.69212179762737e26 * cos(theta) ** 12 + 5.19532276735106e25 * cos(theta) ** 10 - 6.07245518261812e24 * cos(theta) ** 8 + 4.0101119130497e23 * cos(theta) ** 6 - 1.31049408923193e22 * cos(theta) ** 4 + 1.60468663987583e20 * cos(theta) ** 2 - 3.10384263032076e17 ) * cos(12 * phi) ) # @torch.jit.script def Yl34_m13(theta, phi): return ( 4.65771371921163e-20 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 9.57038781405396e27 * cos(theta) ** 21 - 2.99967379246467e28 * cos(theta) ** 19 + 3.94572475778045e28 * cos(theta) ** 17 - 2.83925167755631e28 * cos(theta) ** 15 + 1.22180912353857e28 * cos(theta) ** 13 - 3.23054615715284e27 * cos(theta) ** 11 + 5.19532276735106e26 * cos(theta) ** 9 - 4.8579641460945e25 * cos(theta) ** 7 + 2.40606714782982e24 * cos(theta) ** 5 - 5.24197635692772e22 * cos(theta) ** 3 + 3.20937327975166e20 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl34_m14(theta, phi): return ( 1.46704192609139e-21 * (1.0 - cos(theta) ** 2) ** 7 * ( 2.00978144095133e29 * cos(theta) ** 20 - 5.69938020568288e29 * cos(theta) ** 18 + 6.70773208822677e29 * cos(theta) ** 16 - 4.25887751633446e29 * cos(theta) ** 14 + 1.58835186060015e29 * cos(theta) ** 12 - 3.55360077286812e28 * cos(theta) ** 10 + 4.67579049061595e27 * cos(theta) ** 8 - 3.40057490226615e26 * cos(theta) ** 6 + 1.20303357391491e25 * cos(theta) ** 4 - 1.57259290707831e23 * cos(theta) ** 2 + 3.20937327975166e20 ) * cos(14 * phi) ) # @torch.jit.script def Yl34_m15(theta, phi): return ( 4.68629353226083e-23 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 4.01956288190266e30 * cos(theta) ** 19 - 1.02588843702292e31 * cos(theta) ** 17 + 1.07323713411628e31 * cos(theta) ** 15 - 5.96242852286824e30 * cos(theta) ** 13 + 1.90602223272018e30 * cos(theta) ** 11 - 3.55360077286812e29 * cos(theta) ** 9 + 3.74063239249276e28 * cos(theta) ** 7 - 2.04034494135969e27 * cos(theta) ** 5 + 4.81213429565964e25 * cos(theta) ** 3 - 3.14518581415663e23 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl34_m16(theta, phi): return ( 1.52043439327851e-24 * (1.0 - cos(theta) ** 2) ** 8 * ( 7.63716947561506e31 * cos(theta) ** 18 - 1.74401034293896e32 * cos(theta) ** 16 + 1.60985570117443e32 * cos(theta) ** 14 - 7.75115707972871e31 * cos(theta) ** 12 + 2.09662445599219e31 * cos(theta) ** 10 - 3.19824069558131e30 * cos(theta) ** 8 + 2.61844267474493e29 * cos(theta) ** 6 - 1.02017247067984e28 * cos(theta) ** 4 + 1.44364028869789e26 * cos(theta) ** 2 - 3.14518581415663e23 ) * cos(16 * phi) ) # @torch.jit.script def Yl34_m17(theta, phi): return ( 5.01818126253981e-26 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.37469050561071e33 * cos(theta) ** 17 - 2.79041654870234e33 * cos(theta) ** 15 + 2.2537979816442e33 * cos(theta) ** 13 - 9.30138849567446e32 * cos(theta) ** 11 + 2.09662445599219e32 * cos(theta) ** 9 - 2.55859255646505e31 * cos(theta) ** 7 + 1.57106560484696e30 * cos(theta) ** 5 - 4.08068988271938e28 * cos(theta) ** 3 + 2.88728057739579e26 * cos(theta) ) * cos(17 * phi) ) # @torch.jit.script def Yl34_m18(theta, phi): return ( 1.6877970053263e-27 * (1.0 - cos(theta) ** 2) ** 9 * ( 2.33697385953821e34 * cos(theta) ** 16 - 4.18562482305351e34 * cos(theta) ** 14 + 2.92993737613745e34 * cos(theta) ** 12 - 1.02315273452419e34 * cos(theta) ** 10 + 1.88696201039297e33 * cos(theta) ** 8 - 1.79101478952553e32 * cos(theta) ** 6 + 7.8553280242348e30 * cos(theta) ** 4 - 1.22420696481581e29 * cos(theta) ** 2 + 2.88728057739579e26 ) * cos(18 * phi) ) # @torch.jit.script def Yl34_m19(theta, phi): return ( 5.79591871206322e-29 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 3.73915817526113e35 * cos(theta) ** 15 - 5.85987475227491e35 * cos(theta) ** 13 + 3.51592485136495e35 * cos(theta) ** 11 - 1.02315273452419e35 * cos(theta) ** 9 + 1.50956960831438e34 * cos(theta) ** 7 - 1.07460887371532e33 * cos(theta) ** 5 + 3.14213120969392e31 * cos(theta) ** 3 - 2.44841392963163e29 * cos(theta) ) * cos(19 * phi) ) # @torch.jit.script def Yl34_m20(theta, phi): return ( 2.03647825147882e-30 * (1.0 - cos(theta) ** 2) ** 10 * ( 5.6087372628917e36 * cos(theta) ** 14 - 7.61783717795738e36 * cos(theta) ** 12 + 3.86751733650144e36 * cos(theta) ** 10 - 9.20837461071771e35 * cos(theta) ** 8 + 1.05669872582007e35 * cos(theta) ** 6 - 5.3730443685766e33 * cos(theta) ** 4 + 9.42639362908176e31 * cos(theta) ** 2 - 2.44841392963163e29 ) * cos(20 * phi) ) # @torch.jit.script def Yl34_m21(theta, phi): return ( 7.33895819488808e-32 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 7.85223216804838e37 * cos(theta) ** 13 - 9.14140461354886e37 * cos(theta) ** 11 + 3.86751733650144e37 * cos(theta) ** 9 - 7.36669968857417e36 * cos(theta) ** 7 + 6.34019235492039e35 * cos(theta) ** 5 - 2.14921774743064e34 * cos(theta) ** 3 + 1.88527872581635e32 * cos(theta) ) * cos(21 * phi) ) # @torch.jit.script def Yl34_m22(theta, phi): return ( 2.71999887348259e-33 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.02079018184629e39 * cos(theta) ** 12 - 1.00555450749037e39 * cos(theta) ** 10 + 3.4807656028513e38 * cos(theta) ** 8 - 5.15668978200192e37 * cos(theta) ** 6 + 3.1700961774602e36 * cos(theta) ** 4 - 6.44765324229192e34 * cos(theta) ** 2 + 1.88527872581635e32 ) * cos(22 * phi) ) # @torch.jit.script def Yl34_m23(theta, phi): return ( 1.04001756281185e-34 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.22494821821555e40 * cos(theta) ** 11 - 1.00555450749037e40 * cos(theta) ** 9 + 2.78461248228104e39 * cos(theta) ** 7 - 3.09401386920115e38 * cos(theta) ** 5 + 1.26803847098408e37 * cos(theta) ** 3 - 1.28953064845838e35 * cos(theta) ) * cos(23 * phi) ) # @torch.jit.script def Yl34_m24(theta, phi): return ( 4.11746896065541e-36 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.3474430400371e41 * cos(theta) ** 10 - 9.04999056741337e40 * cos(theta) ** 8 + 1.94922873759673e40 * cos(theta) ** 6 - 1.54700693460058e39 * cos(theta) ** 4 + 3.80411541295224e37 * cos(theta) ** 2 - 1.28953064845838e35 ) * cos(24 * phi) ) # @torch.jit.script def Yl34_m25(theta, phi): return ( 1.69513514495286e-37 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 1.3474430400371e42 * cos(theta) ** 9 - 7.23999245393069e41 * cos(theta) ** 7 + 1.16953724255804e41 * cos(theta) ** 5 - 6.1880277384023e39 * cos(theta) ** 3 + 7.60823082590447e37 * cos(theta) ) * cos(25 * phi) ) # @torch.jit.script def Yl34_m26(theta, phi): return ( 7.29470020663704e-39 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.21269873603339e43 * cos(theta) ** 8 - 5.06799471775149e42 * cos(theta) ** 6 + 5.84768621279018e41 * cos(theta) ** 4 - 1.85640832152069e40 * cos(theta) ** 2 + 7.60823082590447e37 ) * cos(26 * phi) ) # @torch.jit.script def Yl34_m27(theta, phi): return ( 3.30215562682199e-40 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 9.70158988826713e43 * cos(theta) ** 7 - 3.04079683065089e43 * cos(theta) ** 5 + 2.33907448511607e42 * cos(theta) ** 3 - 3.71281664304138e40 * cos(theta) ) * cos(27 * phi) ) # @torch.jit.script def Yl34_m28(theta, phi): return ( 1.58508542441973e-41 * (1.0 - cos(theta) ** 2) ** 14 * ( 6.79111292178699e44 * cos(theta) ** 6 - 1.52039841532545e44 * cos(theta) ** 4 + 7.01722345534821e42 * cos(theta) ** 2 - 3.71281664304138e40 ) * cos(28 * phi) ) # @torch.jit.script def Yl34_m29(theta, phi): return ( 8.15279969880161e-43 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 4.0746677530722e45 * cos(theta) ** 5 - 6.08159366130178e44 * cos(theta) ** 3 + 1.40344469106964e43 * cos(theta) ) * cos(29 * phi) ) # @torch.jit.script def Yl34_m30(theta, phi): return ( 4.55755358336505e-44 * (1.0 - cos(theta) ** 2) ** 15 * ( 2.0373338765361e46 * cos(theta) ** 4 - 1.82447809839054e45 * cos(theta) ** 2 + 1.40344469106964e43 ) * cos(30 * phi) ) # @torch.jit.script def Yl34_m31(theta, phi): return ( 2.8264747454439e-45 * (1.0 - cos(theta) ** 2) ** 15.5 * (8.14933550614439e46 * cos(theta) ** 3 - 3.64895619678107e45 * cos(theta)) * cos(31 * phi) ) # @torch.jit.script def Yl34_m32(theta, phi): return ( 2.0086881349656e-46 * (1.0 - cos(theta) ** 2) ** 16 * (2.44480065184332e47 * cos(theta) ** 2 - 3.64895619678107e45) * cos(32 * phi) ) # @torch.jit.script def Yl34_m33(theta, phi): return ( 8.48464280026292 * (1.0 - cos(theta) ** 2) ** 16.5 * cos(33 * phi) * cos(theta) ) # @torch.jit.script def Yl34_m34(theta, phi): return 1.0289140723859 * (1.0 - cos(theta) ** 2) ** 17 * cos(34 * phi) # @torch.jit.script def Yl35_m_minus_35(theta, phi): return 1.03623739663619 * (1.0 - cos(theta) ** 2) ** 17.5 * sin(35 * phi) # @torch.jit.script def Yl35_m_minus_34(theta, phi): return 8.66978407765238 * (1.0 - cos(theta) ** 2) ** 17 * sin(34 * phi) * cos(theta) # @torch.jit.script def Yl35_m_minus_33(theta, phi): return ( 3.01873705359384e-48 * (1.0 - cos(theta) ** 2) ** 16.5 * (1.68691244977189e49 * cos(theta) ** 2 - 2.44480065184332e47) * sin(33 * phi) ) # @torch.jit.script def Yl35_m_minus_32(theta, phi): return ( 4.31161892256615e-47 * (1.0 - cos(theta) ** 2) ** 16 * (5.62304149923963e48 * cos(theta) ** 3 - 2.44480065184332e47 * cos(theta)) * sin(32 * phi) ) # @torch.jit.script def Yl35_m_minus_31(theta, phi): return ( 7.05842437981691e-46 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 1.40576037480991e48 * cos(theta) ** 4 - 1.22240032592166e47 * cos(theta) ** 2 + 9.12239049195268e44 ) * sin(31 * phi) ) # @torch.jit.script def Yl35_m_minus_30(theta, phi): return ( 1.28222646437538e-44 * (1.0 - cos(theta) ** 2) ** 15 * ( 2.81152074961981e47 * cos(theta) ** 5 - 4.0746677530722e46 * cos(theta) ** 3 + 9.12239049195268e44 * cos(theta) ) * sin(30 * phi) ) # @torch.jit.script def Yl35_m_minus_29(theta, phi): return ( 2.53219437507943e-43 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 4.68586791603302e46 * cos(theta) ** 6 - 1.01866693826805e46 * cos(theta) ** 4 + 4.56119524597634e44 * cos(theta) ** 2 - 2.33907448511607e42 ) * sin(29 * phi) ) # @torch.jit.script def Yl35_m_minus_28(theta, phi): return ( 5.35964527018943e-42 * (1.0 - cos(theta) ** 2) ** 14 * ( 6.69409702290432e45 * cos(theta) ** 7 - 2.0373338765361e45 * cos(theta) ** 5 + 1.52039841532545e44 * cos(theta) ** 3 - 2.33907448511607e42 * cos(theta) ) * sin(28 * phi) ) # @torch.jit.script def Yl35_m_minus_27(theta, phi): return ( 1.20323737894154e-40 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 8.3676212786304e44 * cos(theta) ** 8 - 3.3955564608935e44 * cos(theta) ** 6 + 3.80099603831361e43 * cos(theta) ** 4 - 1.16953724255804e42 * cos(theta) ** 2 + 4.64102080380173e39 ) * sin(27 * phi) ) # @torch.jit.script def Yl35_m_minus_26(theta, phi): return ( 2.8422901788273e-39 * (1.0 - cos(theta) ** 2) ** 13 * ( 9.297356976256e43 * cos(theta) ** 9 - 4.85079494413357e43 * cos(theta) ** 7 + 7.60199207662723e42 * cos(theta) ** 5 - 3.89845747519345e41 * cos(theta) ** 3 + 4.64102080380173e39 * cos(theta) ) * sin(26 * phi) ) # @torch.jit.script def Yl35_m_minus_25(theta, phi): return ( 7.01993889645875e-38 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 9.297356976256e42 * cos(theta) ** 10 - 6.06349368016696e42 * cos(theta) ** 8 + 1.26699867943787e42 * cos(theta) ** 6 - 9.74614368798363e40 * cos(theta) ** 4 + 2.32051040190086e39 * cos(theta) ** 2 - 7.60823082590447e36 ) * sin(25 * phi) ) # @torch.jit.script def Yl35_m_minus_24(theta, phi): return ( 1.80345495626061e-36 * (1.0 - cos(theta) ** 2) ** 12 * ( 8.45214270568727e41 * cos(theta) ** 11 - 6.73721520018551e41 * cos(theta) ** 9 + 1.80999811348267e41 * cos(theta) ** 7 - 1.94922873759673e40 * cos(theta) ** 5 + 7.73503467300288e38 * cos(theta) ** 3 - 7.60823082590447e36 * cos(theta) ) * sin(24 * phi) ) # @torch.jit.script def Yl35_m_minus_23(theta, phi): return ( 4.79868153112577e-35 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 7.04345225473939e40 * cos(theta) ** 12 - 6.73721520018551e40 * cos(theta) ** 10 + 2.26249764185334e40 * cos(theta) ** 8 - 3.24871456266121e39 * cos(theta) ** 6 + 1.93375866825072e38 * cos(theta) ** 4 - 3.80411541295224e36 * cos(theta) ** 2 + 1.07460887371532e34 ) * sin(23 * phi) ) # @torch.jit.script def Yl35_m_minus_22(theta, phi): return ( 1.31767286173862e-33 * (1.0 - cos(theta) ** 2) ** 11 * ( 5.41804019595338e39 * cos(theta) ** 13 - 6.12474109107773e39 * cos(theta) ** 11 + 2.51388626872594e39 * cos(theta) ** 9 - 4.64102080380173e38 * cos(theta) ** 7 + 3.86751733650144e37 * cos(theta) ** 5 - 1.26803847098408e36 * cos(theta) ** 3 + 1.07460887371532e34 * cos(theta) ) * sin(22 * phi) ) # @torch.jit.script def Yl35_m_minus_21(theta, phi): return ( 3.72228007128537e-32 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 3.87002871139527e38 * cos(theta) ** 14 - 5.10395090923145e38 * cos(theta) ** 12 + 2.51388626872594e38 * cos(theta) ** 10 - 5.80127600475216e37 * cos(theta) ** 8 + 6.4458622275024e36 * cos(theta) ** 6 - 3.1700961774602e35 * cos(theta) ** 4 + 5.3730443685766e33 * cos(theta) ** 2 - 1.34662766129739e31 ) * sin(21 * phi) ) # @torch.jit.script def Yl35_m_minus_20(theta, phi): return ( 1.07881925735658e-30 * (1.0 - cos(theta) ** 2) ** 10 * ( 2.58001914093018e37 * cos(theta) ** 15 - 3.92611608402419e37 * cos(theta) ** 13 + 2.28535115338721e37 * cos(theta) ** 11 - 6.4458622275024e36 * cos(theta) ** 9 + 9.20837461071771e35 * cos(theta) ** 7 - 6.34019235492039e34 * cos(theta) ** 5 + 1.79101478952553e33 * cos(theta) ** 3 - 1.34662766129739e31 * cos(theta) ) * sin(20 * phi) ) # @torch.jit.script def Yl35_m_minus_19(theta, phi): return ( 3.20029509770303e-29 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.61251196308136e36 * cos(theta) ** 16 - 2.80436863144585e36 * cos(theta) ** 14 + 1.90445929448935e36 * cos(theta) ** 12 - 6.4458622275024e35 * cos(theta) ** 10 + 1.15104682633971e35 * cos(theta) ** 8 - 1.05669872582007e34 * cos(theta) ** 6 + 4.47753697381384e32 * cos(theta) ** 4 - 6.73313830648697e30 * cos(theta) ** 2 + 1.53025870601977e28 ) * sin(19 * phi) ) # @torch.jit.script def Yl35_m_minus_18(theta, phi): return ( 9.6964188430403e-28 * (1.0 - cos(theta) ** 2) ** 9 * ( 9.4853644887139e34 * cos(theta) ** 17 - 1.86957908763057e35 * cos(theta) ** 15 + 1.46496868806873e35 * cos(theta) ** 13 - 5.85987475227491e34 * cos(theta) ** 11 + 1.27894091815524e34 * cos(theta) ** 9 - 1.50956960831438e33 * cos(theta) ** 7 + 8.95507394762767e31 * cos(theta) ** 5 - 2.24437943549566e30 * cos(theta) ** 3 + 1.53025870601977e28 * cos(theta) ) * sin(18 * phi) ) # @torch.jit.script def Yl35_m_minus_17(theta, phi): return ( 2.9949222630012e-26 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 5.26964693817439e33 * cos(theta) ** 18 - 1.1684869297691e34 * cos(theta) ** 16 + 1.04640620576338e34 * cos(theta) ** 14 - 4.88322896022909e33 * cos(theta) ** 12 + 1.27894091815524e33 * cos(theta) ** 10 - 1.88696201039297e32 * cos(theta) ** 8 + 1.49251232460461e31 * cos(theta) ** 6 - 5.61094858873914e29 * cos(theta) ** 4 + 7.65129353009883e27 * cos(theta) ** 2 - 1.60404476521988e25 ) * sin(17 * phi) ) # @torch.jit.script def Yl35_m_minus_16(theta, phi): return ( 9.41377960708832e-25 * (1.0 - cos(theta) ** 2) ** 8 * ( 2.77349838851284e32 * cos(theta) ** 19 - 6.87345252805355e32 * cos(theta) ** 17 + 6.97604137175584e32 * cos(theta) ** 15 - 3.75632996940699e32 * cos(theta) ** 13 + 1.16267356195931e32 * cos(theta) ** 11 - 2.09662445599219e31 * cos(theta) ** 9 + 2.13216046372087e30 * cos(theta) ** 7 - 1.12218971774783e29 * cos(theta) ** 5 + 2.55043117669961e27 * cos(theta) ** 3 - 1.60404476521988e25 * cos(theta) ) * sin(16 * phi) ) # @torch.jit.script def Yl35_m_minus_15(theta, phi): return ( 3.00652010504917e-23 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.38674919425642e31 * cos(theta) ** 20 - 3.81858473780753e31 * cos(theta) ** 18 + 4.3600258573474e31 * cos(theta) ** 16 - 2.68309283529071e31 * cos(theta) ** 14 + 9.68894634966089e30 * cos(theta) ** 12 - 2.09662445599219e30 * cos(theta) ** 10 + 2.66520057965109e29 * cos(theta) ** 8 - 1.87031619624638e28 * cos(theta) ** 6 + 6.37607794174903e26 * cos(theta) ** 4 - 8.02022382609941e24 * cos(theta) ** 2 + 1.57259290707831e22 ) * sin(15 * phi) ) # @torch.jit.script def Yl35_m_minus_14(theta, phi): return ( 9.74223860268681e-22 * (1.0 - cos(theta) ** 2) ** 7 * ( 6.60356759169723e29 * cos(theta) ** 21 - 2.00978144095133e30 * cos(theta) ** 19 + 2.5647210925573e30 * cos(theta) ** 17 - 1.78872855686047e30 * cos(theta) ** 15 + 7.4530356535853e29 * cos(theta) ** 13 - 1.90602223272018e29 * cos(theta) ** 11 + 2.9613339773901e28 * cos(theta) ** 9 - 2.67188028035197e27 * cos(theta) ** 7 + 1.27521558834981e26 * cos(theta) ** 5 - 2.67340794203313e24 * cos(theta) ** 3 + 1.57259290707831e22 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl35_m_minus_13(theta, phi): return ( 3.19866046346017e-20 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 3.00162163258965e28 * cos(theta) ** 22 - 1.00489072047567e29 * cos(theta) ** 20 + 1.42484505142072e29 * cos(theta) ** 18 - 1.1179553480378e29 * cos(theta) ** 16 + 5.32359689541807e28 * cos(theta) ** 14 - 1.58835186060015e28 * cos(theta) ** 12 + 2.9613339773901e27 * cos(theta) ** 10 - 3.33985035043997e26 * cos(theta) ** 8 + 2.12535931391634e25 * cos(theta) ** 6 - 6.68351985508284e23 * cos(theta) ** 4 + 7.86296453539157e21 * cos(theta) ** 2 - 1.45880603625076e19 ) * sin(13 * phi) ) # @torch.jit.script def Yl35_m_minus_12(theta, phi): return ( 1.06280277340603e-18 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.30505288373463e27 * cos(theta) ** 23 - 4.78519390702698e27 * cos(theta) ** 21 + 7.49918448116168e27 * cos(theta) ** 19 - 6.57620792963409e27 * cos(theta) ** 17 + 3.54906459694538e27 * cos(theta) ** 15 - 1.22180912353857e27 * cos(theta) ** 13 + 2.69212179762737e26 * cos(theta) ** 11 - 3.71094483382218e25 * cos(theta) ** 9 + 3.03622759130906e24 * cos(theta) ** 7 - 1.33670397101657e23 * cos(theta) ** 5 + 2.62098817846386e21 * cos(theta) ** 3 - 1.45880603625076e19 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl35_m_minus_11(theta, phi): return ( 3.56949870606501e-17 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 5.43772034889429e25 * cos(theta) ** 24 - 2.17508813955772e26 * cos(theta) ** 22 + 3.74959224058084e26 * cos(theta) ** 20 - 3.65344884979672e26 * cos(theta) ** 18 + 2.21816537309086e26 * cos(theta) ** 16 - 8.72720802527553e25 * cos(theta) ** 14 + 2.24343483135614e25 * cos(theta) ** 12 - 3.71094483382219e24 * cos(theta) ** 10 + 3.79528448913633e23 * cos(theta) ** 8 - 2.22783995169428e22 * cos(theta) ** 6 + 6.55247044615964e20 * cos(theta) ** 4 - 7.29403018125378e18 * cos(theta) ** 2 + 1.29326776263365e16 ) * sin(11 * phi) ) # @torch.jit.script def Yl35_m_minus_10(theta, phi): return ( 1.21047590494358e-15 * (1.0 - cos(theta) ** 2) ** 5 * ( 2.17508813955772e24 * cos(theta) ** 25 - 9.45690495459877e24 * cos(theta) ** 23 + 1.78552011456231e25 * cos(theta) ** 21 - 1.92286781568248e25 * cos(theta) ** 19 + 1.30480316064168e25 * cos(theta) ** 17 - 5.81813868351702e24 * cos(theta) ** 15 + 1.72571910104318e24 * cos(theta) ** 13 - 3.37358621256562e23 * cos(theta) ** 11 + 4.21698276570703e22 * cos(theta) ** 9 - 3.1826285024204e21 * cos(theta) ** 7 + 1.31049408923193e20 * cos(theta) ** 5 - 2.43134339375126e18 * cos(theta) ** 3 + 1.29326776263365e16 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl35_m_minus_9(theta, phi): return ( 4.14046463847392e-14 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 8.36572361368353e22 * cos(theta) ** 26 - 3.94037706441615e23 * cos(theta) ** 24 + 8.11600052073775e23 * cos(theta) ** 22 - 9.61433907841241e23 * cos(theta) ** 20 + 7.24890644800936e23 * cos(theta) ** 18 - 3.63633667719814e23 * cos(theta) ** 16 + 1.23265650074513e23 * cos(theta) ** 14 - 2.81132184380469e22 * cos(theta) ** 12 + 4.21698276570703e21 * cos(theta) ** 10 - 3.9782856280255e20 * cos(theta) ** 8 + 2.18415681538655e19 * cos(theta) ** 6 - 6.07835848437815e17 * cos(theta) ** 4 + 6.46633881316824e15 * cos(theta) ** 2 - 11053570620800.4 ) * sin(9 * phi) ) # @torch.jit.script def Yl35_m_minus_8(theta, phi): return ( 1.42710951008933e-12 * (1.0 - cos(theta) ** 2) ** 4 * ( 3.09841615321612e21 * cos(theta) ** 27 - 1.57615082576646e22 * cos(theta) ** 25 + 3.52869587858163e22 * cos(theta) ** 23 - 4.57825670400591e22 * cos(theta) ** 21 + 3.81521392000493e22 * cos(theta) ** 19 - 2.13902157482243e22 * cos(theta) ** 17 + 8.21771000496754e21 * cos(theta) ** 15 - 2.16255526446514e21 * cos(theta) ** 13 + 3.8336206960973e20 * cos(theta) ** 11 - 4.42031736447278e19 * cos(theta) ** 9 + 3.12022402198078e18 * cos(theta) ** 7 - 1.21567169687563e17 * cos(theta) ** 5 + 2.15544627105608e15 * cos(theta) ** 3 - 11053570620800.4 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl35_m_minus_7(theta, phi): return ( 4.95188492471306e-11 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.10657719757719e20 * cos(theta) ** 28 - 6.06211856064024e20 * cos(theta) ** 26 + 1.47028994940901e21 * cos(theta) ** 24 - 2.08102577454814e21 * cos(theta) ** 22 + 1.90760696000246e21 * cos(theta) ** 20 - 1.1883453193458e21 * cos(theta) ** 18 + 5.13606875310471e20 * cos(theta) ** 16 - 1.54468233176082e20 * cos(theta) ** 14 + 3.19468391341442e19 * cos(theta) ** 12 - 4.42031736447278e18 * cos(theta) ** 10 + 3.90028002747598e17 * cos(theta) ** 8 - 2.02611949479272e16 * cos(theta) ** 6 + 538861567764020.0 * cos(theta) ** 4 - 5526785310400.21 * cos(theta) ** 2 + 9180706495.68141 ) * sin(7 * phi) ) # @torch.jit.script def Yl35_m_minus_6(theta, phi): return ( 1.72820074431929e-9 * (1.0 - cos(theta) ** 2) ** 3 * ( 3.81578343992133e18 * cos(theta) ** 29 - 2.24522909653342e19 * cos(theta) ** 27 + 5.88115979763605e19 * cos(theta) ** 25 - 9.04793815020931e19 * cos(theta) ** 23 + 9.08384266667839e19 * cos(theta) ** 21 - 6.2544490491884e19 * cos(theta) ** 19 + 3.02121691359101e19 * cos(theta) ** 17 - 1.02978822117388e19 * cos(theta) ** 15 + 2.45744916416494e18 * cos(theta) ** 13 - 4.01847033133889e17 * cos(theta) ** 11 + 4.33364447497331e16 * cos(theta) ** 9 - 2.89445642113245e15 * cos(theta) ** 7 + 107772313552804.0 * cos(theta) ** 5 - 1842261770133.4 * cos(theta) ** 3 + 9180706495.68141 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl35_m_minus_5(theta, phi): return ( 6.06103432557419e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.27192781330711e17 * cos(theta) ** 30 - 8.01867534476222e17 * cos(theta) ** 28 + 2.26198453755233e18 * cos(theta) ** 26 - 3.76997422925388e18 * cos(theta) ** 24 + 4.12901939394472e18 * cos(theta) ** 22 - 3.1272245245942e18 * cos(theta) ** 20 + 1.67845384088389e18 * cos(theta) ** 18 - 6.43617638233673e17 * cos(theta) ** 16 + 1.75532083154638e17 * cos(theta) ** 14 - 3.34872527611574e16 * cos(theta) ** 12 + 4.33364447497331e15 * cos(theta) ** 10 - 361807052641557.0 * cos(theta) ** 8 + 17962052258800.7 * cos(theta) ** 6 - 460565442533.351 * cos(theta) ** 4 + 4590353247.8407 * cos(theta) ** 2 - 7463989.02087919 ) * sin(5 * phi) ) # @torch.jit.script def Yl35_m_minus_4(theta, phi): return ( 2.13431042725227e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 4.10299294615197e15 * cos(theta) ** 31 - 2.76506046371111e16 * cos(theta) ** 29 + 8.37772050945307e16 * cos(theta) ** 27 - 1.50798969170155e17 * cos(theta) ** 25 + 1.79522582345423e17 * cos(theta) ** 23 - 1.48915453552105e17 * cos(theta) ** 21 + 8.83396758359944e16 * cos(theta) ** 19 - 3.7859861072569e16 * cos(theta) ** 17 + 1.17021388769759e16 * cos(theta) ** 15 - 2.57594252008903e15 * cos(theta) ** 13 + 393967679543028.0 * cos(theta) ** 11 - 40200783626839.6 * cos(theta) ** 9 + 2566007465542.95 * cos(theta) ** 7 - 92113088506.6701 * cos(theta) ** 5 + 1530117749.28023 * cos(theta) ** 3 - 7463989.02087919 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl35_m_minus_3(theta, phi): return ( 7.53988772320084e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 128218529567249.0 * cos(theta) ** 32 - 921686821237037.0 * cos(theta) ** 30 + 2.99204303909038e15 * cos(theta) ** 28 - 5.79996035269828e15 * cos(theta) ** 26 + 7.48010759772595e15 * cos(theta) ** 24 - 6.7688842523684e15 * cos(theta) ** 22 + 4.41698379179972e15 * cos(theta) ** 20 - 2.10332561514272e15 * cos(theta) ** 18 + 731383679810993.0 * cos(theta) ** 16 - 183995894292074.0 * cos(theta) ** 14 + 32830639961919.0 * cos(theta) ** 12 - 4020078362683.96 * cos(theta) ** 10 + 320750933192.869 * cos(theta) ** 8 - 15352181417.7784 * cos(theta) ** 6 + 382529437.320059 * cos(theta) ** 4 - 3731994.5104396 * cos(theta) ** 2 + 5980.76043339679 ) * sin(3 * phi) ) # @torch.jit.script def Yl35_m_minus_2(theta, phi): return ( 0.00267001466710592 * (1.0 - cos(theta) ** 2) * ( 3885409986886.33 * cos(theta) ** 33 - 29731832943130.2 * cos(theta) ** 31 + 103173897899668.0 * cos(theta) ** 29 - 214813346396232.0 * cos(theta) ** 27 + 299204303909038.0 * cos(theta) ** 25 - 294299315320365.0 * cos(theta) ** 23 + 210332561514272.0 * cos(theta) ** 21 - 110701348165407.0 * cos(theta) ** 19 + 43022569400646.6 * cos(theta) ** 17 - 12266392952804.9 * cos(theta) ** 15 + 2525433843224.54 * cos(theta) ** 13 - 365461669334.906 * cos(theta) ** 11 + 35638992576.9855 * cos(theta) ** 9 - 2193168773.96834 * cos(theta) ** 7 + 76505887.4640117 * cos(theta) ** 5 - 1243998.17014653 * cos(theta) ** 3 + 5980.76043339679 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl35_m_minus_1(theta, phi): return ( 0.09470086974142 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 114276764320.186 * cos(theta) ** 34 - 929119779472.819 * cos(theta) ** 32 + 3439129929988.94 * cos(theta) ** 30 - 7671905228436.87 * cos(theta) ** 28 + 11507857842655.3 * cos(theta) ** 26 - 12262471471681.9 * cos(theta) ** 24 + 9560570977921.47 * cos(theta) ** 22 - 5535067408270.33 * cos(theta) ** 20 + 2390142744480.37 * cos(theta) ** 18 - 766649559550.307 * cos(theta) ** 16 + 180388131658.896 * cos(theta) ** 14 - 30455139111.2421 * cos(theta) ** 12 + 3563899257.69855 * cos(theta) ** 10 - 274146096.746042 * cos(theta) ** 8 + 12750981.244002 * cos(theta) ** 6 - 310999.542536633 * cos(theta) ** 4 + 2990.3802166984 * cos(theta) ** 2 - 4.75418158457614 ) * sin(phi) ) # @torch.jit.script def Yl35_m0(theta, phi): return ( 24381701263.8311 * cos(theta) ** 35 - 210248003651.877 * cos(theta) ** 33 + 828439894986.499 * cos(theta) ** 31 - 1975510518813.96 * cos(theta) ** 29 + 3182766946978.05 * cos(theta) ** 27 - 3662790814391.13 * cos(theta) ** 25 + 3104060012195.87 * cos(theta) ** 23 - 1968238554099.14 * cos(theta) ** 21 + 939386582638.224 * cos(theta) ** 19 - 336761227738.231 * cos(theta) ** 17 + 89802994063.5284 * cos(theta) ** 15 - 17494089752.6354 * cos(theta) ** 13 + 2419395391.32192 * cos(theta) ** 11 - 227464523.970437 * cos(theta) ** 9 + 13602529.6726507 * cos(theta) ** 7 - 464476.62296856 * cos(theta) ** 5 + 7443.53562449616 * cos(theta) ** 3 - 35.5017597352758 * cos(theta) ) # @torch.jit.script def Yl35_m1(theta, phi): return ( 0.09470086974142 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 114276764320.186 * cos(theta) ** 34 - 929119779472.819 * cos(theta) ** 32 + 3439129929988.94 * cos(theta) ** 30 - 7671905228436.87 * cos(theta) ** 28 + 11507857842655.3 * cos(theta) ** 26 - 12262471471681.9 * cos(theta) ** 24 + 9560570977921.47 * cos(theta) ** 22 - 5535067408270.33 * cos(theta) ** 20 + 2390142744480.37 * cos(theta) ** 18 - 766649559550.307 * cos(theta) ** 16 + 180388131658.896 * cos(theta) ** 14 - 30455139111.2421 * cos(theta) ** 12 + 3563899257.69855 * cos(theta) ** 10 - 274146096.746042 * cos(theta) ** 8 + 12750981.244002 * cos(theta) ** 6 - 310999.542536633 * cos(theta) ** 4 + 2990.3802166984 * cos(theta) ** 2 - 4.75418158457614 ) * cos(phi) ) # @torch.jit.script def Yl35_m2(theta, phi): return ( 0.00267001466710592 * (1.0 - cos(theta) ** 2) * ( 3885409986886.33 * cos(theta) ** 33 - 29731832943130.2 * cos(theta) ** 31 + 103173897899668.0 * cos(theta) ** 29 - 214813346396232.0 * cos(theta) ** 27 + 299204303909038.0 * cos(theta) ** 25 - 294299315320365.0 * cos(theta) ** 23 + 210332561514272.0 * cos(theta) ** 21 - 110701348165407.0 * cos(theta) ** 19 + 43022569400646.6 * cos(theta) ** 17 - 12266392952804.9 * cos(theta) ** 15 + 2525433843224.54 * cos(theta) ** 13 - 365461669334.906 * cos(theta) ** 11 + 35638992576.9855 * cos(theta) ** 9 - 2193168773.96834 * cos(theta) ** 7 + 76505887.4640117 * cos(theta) ** 5 - 1243998.17014653 * cos(theta) ** 3 + 5980.76043339679 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl35_m3(theta, phi): return ( 7.53988772320084e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 128218529567249.0 * cos(theta) ** 32 - 921686821237037.0 * cos(theta) ** 30 + 2.99204303909038e15 * cos(theta) ** 28 - 5.79996035269828e15 * cos(theta) ** 26 + 7.48010759772595e15 * cos(theta) ** 24 - 6.7688842523684e15 * cos(theta) ** 22 + 4.41698379179972e15 * cos(theta) ** 20 - 2.10332561514272e15 * cos(theta) ** 18 + 731383679810993.0 * cos(theta) ** 16 - 183995894292074.0 * cos(theta) ** 14 + 32830639961919.0 * cos(theta) ** 12 - 4020078362683.96 * cos(theta) ** 10 + 320750933192.869 * cos(theta) ** 8 - 15352181417.7784 * cos(theta) ** 6 + 382529437.320059 * cos(theta) ** 4 - 3731994.5104396 * cos(theta) ** 2 + 5980.76043339679 ) * cos(3 * phi) ) # @torch.jit.script def Yl35_m4(theta, phi): return ( 2.13431042725227e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 4.10299294615197e15 * cos(theta) ** 31 - 2.76506046371111e16 * cos(theta) ** 29 + 8.37772050945307e16 * cos(theta) ** 27 - 1.50798969170155e17 * cos(theta) ** 25 + 1.79522582345423e17 * cos(theta) ** 23 - 1.48915453552105e17 * cos(theta) ** 21 + 8.83396758359944e16 * cos(theta) ** 19 - 3.7859861072569e16 * cos(theta) ** 17 + 1.17021388769759e16 * cos(theta) ** 15 - 2.57594252008903e15 * cos(theta) ** 13 + 393967679543028.0 * cos(theta) ** 11 - 40200783626839.6 * cos(theta) ** 9 + 2566007465542.95 * cos(theta) ** 7 - 92113088506.6701 * cos(theta) ** 5 + 1530117749.28023 * cos(theta) ** 3 - 7463989.02087919 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl35_m5(theta, phi): return ( 6.06103432557419e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.27192781330711e17 * cos(theta) ** 30 - 8.01867534476222e17 * cos(theta) ** 28 + 2.26198453755233e18 * cos(theta) ** 26 - 3.76997422925388e18 * cos(theta) ** 24 + 4.12901939394472e18 * cos(theta) ** 22 - 3.1272245245942e18 * cos(theta) ** 20 + 1.67845384088389e18 * cos(theta) ** 18 - 6.43617638233673e17 * cos(theta) ** 16 + 1.75532083154638e17 * cos(theta) ** 14 - 3.34872527611574e16 * cos(theta) ** 12 + 4.33364447497331e15 * cos(theta) ** 10 - 361807052641557.0 * cos(theta) ** 8 + 17962052258800.7 * cos(theta) ** 6 - 460565442533.351 * cos(theta) ** 4 + 4590353247.8407 * cos(theta) ** 2 - 7463989.02087919 ) * cos(5 * phi) ) # @torch.jit.script def Yl35_m6(theta, phi): return ( 1.72820074431929e-9 * (1.0 - cos(theta) ** 2) ** 3 * ( 3.81578343992133e18 * cos(theta) ** 29 - 2.24522909653342e19 * cos(theta) ** 27 + 5.88115979763605e19 * cos(theta) ** 25 - 9.04793815020931e19 * cos(theta) ** 23 + 9.08384266667839e19 * cos(theta) ** 21 - 6.2544490491884e19 * cos(theta) ** 19 + 3.02121691359101e19 * cos(theta) ** 17 - 1.02978822117388e19 * cos(theta) ** 15 + 2.45744916416494e18 * cos(theta) ** 13 - 4.01847033133889e17 * cos(theta) ** 11 + 4.33364447497331e16 * cos(theta) ** 9 - 2.89445642113245e15 * cos(theta) ** 7 + 107772313552804.0 * cos(theta) ** 5 - 1842261770133.4 * cos(theta) ** 3 + 9180706495.68141 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl35_m7(theta, phi): return ( 4.95188492471306e-11 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.10657719757719e20 * cos(theta) ** 28 - 6.06211856064024e20 * cos(theta) ** 26 + 1.47028994940901e21 * cos(theta) ** 24 - 2.08102577454814e21 * cos(theta) ** 22 + 1.90760696000246e21 * cos(theta) ** 20 - 1.1883453193458e21 * cos(theta) ** 18 + 5.13606875310471e20 * cos(theta) ** 16 - 1.54468233176082e20 * cos(theta) ** 14 + 3.19468391341442e19 * cos(theta) ** 12 - 4.42031736447278e18 * cos(theta) ** 10 + 3.90028002747598e17 * cos(theta) ** 8 - 2.02611949479272e16 * cos(theta) ** 6 + 538861567764020.0 * cos(theta) ** 4 - 5526785310400.21 * cos(theta) ** 2 + 9180706495.68141 ) * cos(7 * phi) ) # @torch.jit.script def Yl35_m8(theta, phi): return ( 1.42710951008933e-12 * (1.0 - cos(theta) ** 2) ** 4 * ( 3.09841615321612e21 * cos(theta) ** 27 - 1.57615082576646e22 * cos(theta) ** 25 + 3.52869587858163e22 * cos(theta) ** 23 - 4.57825670400591e22 * cos(theta) ** 21 + 3.81521392000493e22 * cos(theta) ** 19 - 2.13902157482243e22 * cos(theta) ** 17 + 8.21771000496754e21 * cos(theta) ** 15 - 2.16255526446514e21 * cos(theta) ** 13 + 3.8336206960973e20 * cos(theta) ** 11 - 4.42031736447278e19 * cos(theta) ** 9 + 3.12022402198078e18 * cos(theta) ** 7 - 1.21567169687563e17 * cos(theta) ** 5 + 2.15544627105608e15 * cos(theta) ** 3 - 11053570620800.4 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl35_m9(theta, phi): return ( 4.14046463847392e-14 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 8.36572361368353e22 * cos(theta) ** 26 - 3.94037706441615e23 * cos(theta) ** 24 + 8.11600052073775e23 * cos(theta) ** 22 - 9.61433907841241e23 * cos(theta) ** 20 + 7.24890644800936e23 * cos(theta) ** 18 - 3.63633667719814e23 * cos(theta) ** 16 + 1.23265650074513e23 * cos(theta) ** 14 - 2.81132184380469e22 * cos(theta) ** 12 + 4.21698276570703e21 * cos(theta) ** 10 - 3.9782856280255e20 * cos(theta) ** 8 + 2.18415681538655e19 * cos(theta) ** 6 - 6.07835848437815e17 * cos(theta) ** 4 + 6.46633881316824e15 * cos(theta) ** 2 - 11053570620800.4 ) * cos(9 * phi) ) # @torch.jit.script def Yl35_m10(theta, phi): return ( 1.21047590494358e-15 * (1.0 - cos(theta) ** 2) ** 5 * ( 2.17508813955772e24 * cos(theta) ** 25 - 9.45690495459877e24 * cos(theta) ** 23 + 1.78552011456231e25 * cos(theta) ** 21 - 1.92286781568248e25 * cos(theta) ** 19 + 1.30480316064168e25 * cos(theta) ** 17 - 5.81813868351702e24 * cos(theta) ** 15 + 1.72571910104318e24 * cos(theta) ** 13 - 3.37358621256562e23 * cos(theta) ** 11 + 4.21698276570703e22 * cos(theta) ** 9 - 3.1826285024204e21 * cos(theta) ** 7 + 1.31049408923193e20 * cos(theta) ** 5 - 2.43134339375126e18 * cos(theta) ** 3 + 1.29326776263365e16 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl35_m11(theta, phi): return ( 3.56949870606501e-17 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 5.43772034889429e25 * cos(theta) ** 24 - 2.17508813955772e26 * cos(theta) ** 22 + 3.74959224058084e26 * cos(theta) ** 20 - 3.65344884979672e26 * cos(theta) ** 18 + 2.21816537309086e26 * cos(theta) ** 16 - 8.72720802527553e25 * cos(theta) ** 14 + 2.24343483135614e25 * cos(theta) ** 12 - 3.71094483382219e24 * cos(theta) ** 10 + 3.79528448913633e23 * cos(theta) ** 8 - 2.22783995169428e22 * cos(theta) ** 6 + 6.55247044615964e20 * cos(theta) ** 4 - 7.29403018125378e18 * cos(theta) ** 2 + 1.29326776263365e16 ) * cos(11 * phi) ) # @torch.jit.script def Yl35_m12(theta, phi): return ( 1.06280277340603e-18 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.30505288373463e27 * cos(theta) ** 23 - 4.78519390702698e27 * cos(theta) ** 21 + 7.49918448116168e27 * cos(theta) ** 19 - 6.57620792963409e27 * cos(theta) ** 17 + 3.54906459694538e27 * cos(theta) ** 15 - 1.22180912353857e27 * cos(theta) ** 13 + 2.69212179762737e26 * cos(theta) ** 11 - 3.71094483382218e25 * cos(theta) ** 9 + 3.03622759130906e24 * cos(theta) ** 7 - 1.33670397101657e23 * cos(theta) ** 5 + 2.62098817846386e21 * cos(theta) ** 3 - 1.45880603625076e19 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl35_m13(theta, phi): return ( 3.19866046346017e-20 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 3.00162163258965e28 * cos(theta) ** 22 - 1.00489072047567e29 * cos(theta) ** 20 + 1.42484505142072e29 * cos(theta) ** 18 - 1.1179553480378e29 * cos(theta) ** 16 + 5.32359689541807e28 * cos(theta) ** 14 - 1.58835186060015e28 * cos(theta) ** 12 + 2.9613339773901e27 * cos(theta) ** 10 - 3.33985035043997e26 * cos(theta) ** 8 + 2.12535931391634e25 * cos(theta) ** 6 - 6.68351985508284e23 * cos(theta) ** 4 + 7.86296453539157e21 * cos(theta) ** 2 - 1.45880603625076e19 ) * cos(13 * phi) ) # @torch.jit.script def Yl35_m14(theta, phi): return ( 9.74223860268681e-22 * (1.0 - cos(theta) ** 2) ** 7 * ( 6.60356759169723e29 * cos(theta) ** 21 - 2.00978144095133e30 * cos(theta) ** 19 + 2.5647210925573e30 * cos(theta) ** 17 - 1.78872855686047e30 * cos(theta) ** 15 + 7.4530356535853e29 * cos(theta) ** 13 - 1.90602223272018e29 * cos(theta) ** 11 + 2.9613339773901e28 * cos(theta) ** 9 - 2.67188028035197e27 * cos(theta) ** 7 + 1.27521558834981e26 * cos(theta) ** 5 - 2.67340794203313e24 * cos(theta) ** 3 + 1.57259290707831e22 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl35_m15(theta, phi): return ( 3.00652010504917e-23 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.38674919425642e31 * cos(theta) ** 20 - 3.81858473780753e31 * cos(theta) ** 18 + 4.3600258573474e31 * cos(theta) ** 16 - 2.68309283529071e31 * cos(theta) ** 14 + 9.68894634966089e30 * cos(theta) ** 12 - 2.09662445599219e30 * cos(theta) ** 10 + 2.66520057965109e29 * cos(theta) ** 8 - 1.87031619624638e28 * cos(theta) ** 6 + 6.37607794174903e26 * cos(theta) ** 4 - 8.02022382609941e24 * cos(theta) ** 2 + 1.57259290707831e22 ) * cos(15 * phi) ) # @torch.jit.script def Yl35_m16(theta, phi): return ( 9.41377960708832e-25 * (1.0 - cos(theta) ** 2) ** 8 * ( 2.77349838851284e32 * cos(theta) ** 19 - 6.87345252805355e32 * cos(theta) ** 17 + 6.97604137175584e32 * cos(theta) ** 15 - 3.75632996940699e32 * cos(theta) ** 13 + 1.16267356195931e32 * cos(theta) ** 11 - 2.09662445599219e31 * cos(theta) ** 9 + 2.13216046372087e30 * cos(theta) ** 7 - 1.12218971774783e29 * cos(theta) ** 5 + 2.55043117669961e27 * cos(theta) ** 3 - 1.60404476521988e25 * cos(theta) ) * cos(16 * phi) ) # @torch.jit.script def Yl35_m17(theta, phi): return ( 2.9949222630012e-26 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 5.26964693817439e33 * cos(theta) ** 18 - 1.1684869297691e34 * cos(theta) ** 16 + 1.04640620576338e34 * cos(theta) ** 14 - 4.88322896022909e33 * cos(theta) ** 12 + 1.27894091815524e33 * cos(theta) ** 10 - 1.88696201039297e32 * cos(theta) ** 8 + 1.49251232460461e31 * cos(theta) ** 6 - 5.61094858873914e29 * cos(theta) ** 4 + 7.65129353009883e27 * cos(theta) ** 2 - 1.60404476521988e25 ) * cos(17 * phi) ) # @torch.jit.script def Yl35_m18(theta, phi): return ( 9.6964188430403e-28 * (1.0 - cos(theta) ** 2) ** 9 * ( 9.4853644887139e34 * cos(theta) ** 17 - 1.86957908763057e35 * cos(theta) ** 15 + 1.46496868806873e35 * cos(theta) ** 13 - 5.85987475227491e34 * cos(theta) ** 11 + 1.27894091815524e34 * cos(theta) ** 9 - 1.50956960831438e33 * cos(theta) ** 7 + 8.95507394762767e31 * cos(theta) ** 5 - 2.24437943549566e30 * cos(theta) ** 3 + 1.53025870601977e28 * cos(theta) ) * cos(18 * phi) ) # @torch.jit.script def Yl35_m19(theta, phi): return ( 3.20029509770303e-29 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.61251196308136e36 * cos(theta) ** 16 - 2.80436863144585e36 * cos(theta) ** 14 + 1.90445929448935e36 * cos(theta) ** 12 - 6.4458622275024e35 * cos(theta) ** 10 + 1.15104682633971e35 * cos(theta) ** 8 - 1.05669872582007e34 * cos(theta) ** 6 + 4.47753697381384e32 * cos(theta) ** 4 - 6.73313830648697e30 * cos(theta) ** 2 + 1.53025870601977e28 ) * cos(19 * phi) ) # @torch.jit.script def Yl35_m20(theta, phi): return ( 1.07881925735658e-30 * (1.0 - cos(theta) ** 2) ** 10 * ( 2.58001914093018e37 * cos(theta) ** 15 - 3.92611608402419e37 * cos(theta) ** 13 + 2.28535115338721e37 * cos(theta) ** 11 - 6.4458622275024e36 * cos(theta) ** 9 + 9.20837461071771e35 * cos(theta) ** 7 - 6.34019235492039e34 * cos(theta) ** 5 + 1.79101478952553e33 * cos(theta) ** 3 - 1.34662766129739e31 * cos(theta) ) * cos(20 * phi) ) # @torch.jit.script def Yl35_m21(theta, phi): return ( 3.72228007128537e-32 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 3.87002871139527e38 * cos(theta) ** 14 - 5.10395090923145e38 * cos(theta) ** 12 + 2.51388626872594e38 * cos(theta) ** 10 - 5.80127600475216e37 * cos(theta) ** 8 + 6.4458622275024e36 * cos(theta) ** 6 - 3.1700961774602e35 * cos(theta) ** 4 + 5.3730443685766e33 * cos(theta) ** 2 - 1.34662766129739e31 ) * cos(21 * phi) ) # @torch.jit.script def Yl35_m22(theta, phi): return ( 1.31767286173862e-33 * (1.0 - cos(theta) ** 2) ** 11 * ( 5.41804019595338e39 * cos(theta) ** 13 - 6.12474109107773e39 * cos(theta) ** 11 + 2.51388626872594e39 * cos(theta) ** 9 - 4.64102080380173e38 * cos(theta) ** 7 + 3.86751733650144e37 * cos(theta) ** 5 - 1.26803847098408e36 * cos(theta) ** 3 + 1.07460887371532e34 * cos(theta) ) * cos(22 * phi) ) # @torch.jit.script def Yl35_m23(theta, phi): return ( 4.79868153112577e-35 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 7.04345225473939e40 * cos(theta) ** 12 - 6.73721520018551e40 * cos(theta) ** 10 + 2.26249764185334e40 * cos(theta) ** 8 - 3.24871456266121e39 * cos(theta) ** 6 + 1.93375866825072e38 * cos(theta) ** 4 - 3.80411541295224e36 * cos(theta) ** 2 + 1.07460887371532e34 ) * cos(23 * phi) ) # @torch.jit.script def Yl35_m24(theta, phi): return ( 1.80345495626061e-36 * (1.0 - cos(theta) ** 2) ** 12 * ( 8.45214270568727e41 * cos(theta) ** 11 - 6.73721520018551e41 * cos(theta) ** 9 + 1.80999811348267e41 * cos(theta) ** 7 - 1.94922873759673e40 * cos(theta) ** 5 + 7.73503467300288e38 * cos(theta) ** 3 - 7.60823082590447e36 * cos(theta) ) * cos(24 * phi) ) # @torch.jit.script def Yl35_m25(theta, phi): return ( 7.01993889645875e-38 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 9.297356976256e42 * cos(theta) ** 10 - 6.06349368016696e42 * cos(theta) ** 8 + 1.26699867943787e42 * cos(theta) ** 6 - 9.74614368798363e40 * cos(theta) ** 4 + 2.32051040190086e39 * cos(theta) ** 2 - 7.60823082590447e36 ) * cos(25 * phi) ) # @torch.jit.script def Yl35_m26(theta, phi): return ( 2.8422901788273e-39 * (1.0 - cos(theta) ** 2) ** 13 * ( 9.297356976256e43 * cos(theta) ** 9 - 4.85079494413357e43 * cos(theta) ** 7 + 7.60199207662723e42 * cos(theta) ** 5 - 3.89845747519345e41 * cos(theta) ** 3 + 4.64102080380173e39 * cos(theta) ) * cos(26 * phi) ) # @torch.jit.script def Yl35_m27(theta, phi): return ( 1.20323737894154e-40 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 8.3676212786304e44 * cos(theta) ** 8 - 3.3955564608935e44 * cos(theta) ** 6 + 3.80099603831361e43 * cos(theta) ** 4 - 1.16953724255804e42 * cos(theta) ** 2 + 4.64102080380173e39 ) * cos(27 * phi) ) # @torch.jit.script def Yl35_m28(theta, phi): return ( 5.35964527018943e-42 * (1.0 - cos(theta) ** 2) ** 14 * ( 6.69409702290432e45 * cos(theta) ** 7 - 2.0373338765361e45 * cos(theta) ** 5 + 1.52039841532545e44 * cos(theta) ** 3 - 2.33907448511607e42 * cos(theta) ) * cos(28 * phi) ) # @torch.jit.script def Yl35_m29(theta, phi): return ( 2.53219437507943e-43 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 4.68586791603302e46 * cos(theta) ** 6 - 1.01866693826805e46 * cos(theta) ** 4 + 4.56119524597634e44 * cos(theta) ** 2 - 2.33907448511607e42 ) * cos(29 * phi) ) # @torch.jit.script def Yl35_m30(theta, phi): return ( 1.28222646437538e-44 * (1.0 - cos(theta) ** 2) ** 15 * ( 2.81152074961981e47 * cos(theta) ** 5 - 4.0746677530722e46 * cos(theta) ** 3 + 9.12239049195268e44 * cos(theta) ) * cos(30 * phi) ) # @torch.jit.script def Yl35_m31(theta, phi): return ( 7.05842437981691e-46 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 1.40576037480991e48 * cos(theta) ** 4 - 1.22240032592166e47 * cos(theta) ** 2 + 9.12239049195268e44 ) * cos(31 * phi) ) # @torch.jit.script def Yl35_m32(theta, phi): return ( 4.31161892256615e-47 * (1.0 - cos(theta) ** 2) ** 16 * (5.62304149923963e48 * cos(theta) ** 3 - 2.44480065184332e47 * cos(theta)) * cos(32 * phi) ) # @torch.jit.script def Yl35_m33(theta, phi): return ( 3.01873705359384e-48 * (1.0 - cos(theta) ** 2) ** 16.5 * (1.68691244977189e49 * cos(theta) ** 2 - 2.44480065184332e47) * cos(33 * phi) ) # @torch.jit.script def Yl35_m34(theta, phi): return 8.66978407765238 * (1.0 - cos(theta) ** 2) ** 17 * cos(34 * phi) * cos(theta) # @torch.jit.script def Yl35_m35(theta, phi): return 1.03623739663619 * (1.0 - cos(theta) ** 2) ** 17.5 * cos(35 * phi) # @torch.jit.script def Yl36_m_minus_36(theta, phi): return 1.04340867525942 * (1.0 - cos(theta) ** 2) ** 18 * sin(36 * phi) # @torch.jit.script def Yl36_m_minus_35(theta, phi): return ( 8.85361619789771 * (1.0 - cos(theta) ** 2) ** 17.5 * sin(35 * phi) * cos(theta) ) # @torch.jit.script def Yl36_m_minus_34(theta, phi): return ( 4.40437182605064e-50 * (1.0 - cos(theta) ** 2) ** 17 * (1.19770783933804e51 * cos(theta) ** 2 - 1.68691244977189e49) * sin(34 * phi) ) # @torch.jit.script def Yl36_m_minus_33(theta, phi): return ( 6.38254114616021e-49 * (1.0 - cos(theta) ** 2) ** 16.5 * (3.99235946446014e50 * cos(theta) ** 3 - 1.68691244977189e49 * cos(theta)) * sin(33 * phi) ) # @torch.jit.script def Yl36_m_minus_32(theta, phi): return ( 1.06034737181502e-47 * (1.0 - cos(theta) ** 2) ** 16 * ( 9.98089866115034e49 * cos(theta) ** 4 - 8.43456224885944e48 * cos(theta) ** 2 + 6.11200162960829e46 ) * sin(32 * phi) ) # @torch.jit.script def Yl36_m_minus_31(theta, phi): return ( 1.95518394692445e-46 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 1.99617973223007e49 * cos(theta) ** 5 - 2.81152074961981e48 * cos(theta) ** 3 + 6.11200162960829e46 * cos(theta) ) * sin(31 * phi) ) # @torch.jit.script def Yl36_m_minus_30(theta, phi): return ( 3.92013162413846e-45 * (1.0 - cos(theta) ** 2) ** 15 * ( 3.32696622038345e48 * cos(theta) ** 6 - 7.02880187404954e47 * cos(theta) ** 4 + 3.05600081480415e46 * cos(theta) ** 2 - 1.52039841532545e44 ) * sin(30 * phi) ) # @torch.jit.script def Yl36_m_minus_29(theta, phi): return ( 8.42600353736191e-44 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 4.75280888626207e47 * cos(theta) ** 7 - 1.40576037480991e47 * cos(theta) ** 5 + 1.01866693826805e46 * cos(theta) ** 3 - 1.52039841532545e44 * cos(theta) ) * sin(29 * phi) ) # @torch.jit.script def Yl36_m_minus_28(theta, phi): return ( 1.92142443301969e-42 * (1.0 - cos(theta) ** 2) ** 14 * ( 5.94101110782758e46 * cos(theta) ** 8 - 2.34293395801651e46 * cos(theta) ** 6 + 2.54666734567012e45 * cos(theta) ** 4 - 7.60199207662723e43 * cos(theta) ** 2 + 2.92384310639509e41 ) * sin(28 * phi) ) # @torch.jit.script def Yl36_m_minus_27(theta, phi): return ( 4.61141863924726e-41 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 6.60112345314176e45 * cos(theta) ** 9 - 3.34704851145216e45 * cos(theta) ** 7 + 5.09333469134024e44 * cos(theta) ** 5 - 2.53399735887574e43 * cos(theta) ** 3 + 2.92384310639509e41 * cos(theta) ) * sin(27 * phi) ) # @torch.jit.script def Yl36_m_minus_26(theta, phi): return ( 1.1574568923217e-39 * (1.0 - cos(theta) ** 2) ** 13 * ( 6.60112345314176e44 * cos(theta) ** 10 - 4.1838106393152e44 * cos(theta) ** 8 + 8.48889115223374e43 * cos(theta) ** 6 - 6.33499339718936e42 * cos(theta) ** 4 + 1.46192155319754e41 * cos(theta) ** 2 - 4.64102080380173e38 ) * sin(26 * phi) ) # @torch.jit.script def Yl36_m_minus_25(theta, phi): return ( 3.0227136881809e-38 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 6.00102132103796e43 * cos(theta) ** 11 - 4.648678488128e43 * cos(theta) ** 9 + 1.21269873603339e43 * cos(theta) ** 7 - 1.26699867943787e42 * cos(theta) ** 5 + 4.87307184399181e40 * cos(theta) ** 3 - 4.64102080380173e38 * cos(theta) ) * sin(25 * phi) ) # @torch.jit.script def Yl36_m_minus_24(theta, phi): return ( 8.17810257077045e-37 * (1.0 - cos(theta) ** 2) ** 12 * ( 5.00085110086497e42 * cos(theta) ** 12 - 4.648678488128e42 * cos(theta) ** 10 + 1.51587342004174e42 * cos(theta) ** 8 - 2.11166446572979e41 * cos(theta) ** 6 + 1.21826796099795e40 * cos(theta) ** 4 - 2.32051040190086e38 * cos(theta) ** 2 + 6.34019235492039e35 ) * sin(24 * phi) ) # @torch.jit.script def Yl36_m_minus_23(theta, phi): return ( 2.28401974801605e-35 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 3.8468085391269e41 * cos(theta) ** 13 - 4.22607135284364e41 * cos(theta) ** 11 + 1.68430380004638e41 * cos(theta) ** 9 - 3.01666352247112e40 * cos(theta) ** 7 + 2.43653592199591e39 * cos(theta) ** 5 - 7.73503467300288e37 * cos(theta) ** 3 + 6.34019235492039e35 * cos(theta) ) * sin(23 * phi) ) # @torch.jit.script def Yl36_m_minus_22(theta, phi): return ( 6.56432202813386e-34 * (1.0 - cos(theta) ** 2) ** 11 * ( 2.74772038509064e40 * cos(theta) ** 14 - 3.5217261273697e40 * cos(theta) ** 12 + 1.68430380004638e40 * cos(theta) ** 10 - 3.7708294030889e39 * cos(theta) ** 8 + 4.06089320332651e38 * cos(theta) ** 6 - 1.93375866825072e37 * cos(theta) ** 4 + 3.1700961774602e35 * cos(theta) ** 2 - 7.67577766939515e32 ) * sin(22 * phi) ) # @torch.jit.script def Yl36_m_minus_21(theta, phi): return ( 1.93619682908189e-32 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.83181359006043e39 * cos(theta) ** 15 - 2.70902009797669e39 * cos(theta) ** 13 + 1.53118527276943e39 * cos(theta) ** 11 - 4.18981044787656e38 * cos(theta) ** 9 + 5.80127600475216e37 * cos(theta) ** 7 - 3.86751733650144e36 * cos(theta) ** 5 + 1.05669872582007e35 * cos(theta) ** 3 - 7.67577766939515e32 * cos(theta) ) * sin(21 * phi) ) # @torch.jit.script def Yl36_m_minus_20(theta, phi): return ( 5.84718619746581e-31 * (1.0 - cos(theta) ** 2) ** 10 * ( 1.14488349378777e38 * cos(theta) ** 16 - 1.93501435569764e38 * cos(theta) ** 14 + 1.27598772730786e38 * cos(theta) ** 12 - 4.18981044787656e37 * cos(theta) ** 10 + 7.2515950059402e36 * cos(theta) ** 8 - 6.4458622275024e35 * cos(theta) ** 6 + 2.64174681455016e34 * cos(theta) ** 4 - 3.83788883469757e32 * cos(theta) ** 2 + 8.41642288310872e29 ) * sin(20 * phi) ) # @torch.jit.script def Yl36_m_minus_19(theta, phi): return ( 1.80411990397808e-29 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 6.73460878698687e36 * cos(theta) ** 17 - 1.29000957046509e37 * cos(theta) ** 15 + 9.81529021006047e36 * cos(theta) ** 13 - 3.80891858897869e36 * cos(theta) ** 11 + 8.057327784378e35 * cos(theta) ** 9 - 9.20837461071771e34 * cos(theta) ** 7 + 5.28349362910033e33 * cos(theta) ** 5 - 1.27929627823252e32 * cos(theta) ** 3 + 8.41642288310872e29 * cos(theta) ) * sin(19 * phi) ) # @torch.jit.script def Yl36_m_minus_18(theta, phi): return ( 5.67653075535627e-28 * (1.0 - cos(theta) ** 2) ** 9 * ( 3.74144932610382e35 * cos(theta) ** 18 - 8.06255981540682e35 * cos(theta) ** 16 + 7.01092157861462e35 * cos(theta) ** 14 - 3.17409882414891e35 * cos(theta) ** 12 + 8.057327784378e34 * cos(theta) ** 10 - 1.15104682633971e34 * cos(theta) ** 8 + 8.80582271516721e32 * cos(theta) ** 6 - 3.19824069558131e31 * cos(theta) ** 4 + 4.20821144155436e29 * cos(theta) ** 2 - 8.50143725566537e26 ) * sin(18 * phi) ) # @torch.jit.script def Yl36_m_minus_17(theta, phi): return ( 1.81826289225004e-26 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.96918385584411e34 * cos(theta) ** 19 - 4.74268224435695e34 * cos(theta) ** 17 + 4.67394771907641e34 * cos(theta) ** 15 - 2.44161448011455e34 * cos(theta) ** 13 + 7.32484344034364e33 * cos(theta) ** 11 - 1.27894091815524e33 * cos(theta) ** 9 + 1.25797467359532e32 * cos(theta) ** 7 - 6.39648139116262e30 * cos(theta) ** 5 + 1.40273714718479e29 * cos(theta) ** 3 - 8.50143725566537e26 * cos(theta) ) * sin(17 * phi) ) # @torch.jit.script def Yl36_m_minus_16(theta, phi): return ( 5.91983508389675e-25 * (1.0 - cos(theta) ** 2) ** 8 * ( 9.84591927922057e32 * cos(theta) ** 20 - 2.63482346908719e33 * cos(theta) ** 18 + 2.92121732442276e33 * cos(theta) ** 16 - 1.74401034293896e33 * cos(theta) ** 14 + 6.10403620028636e32 * cos(theta) ** 12 - 1.27894091815524e32 * cos(theta) ** 10 + 1.57246834199415e31 * cos(theta) ** 8 - 1.06608023186044e30 * cos(theta) ** 6 + 3.50684286796196e28 * cos(theta) ** 4 - 4.25071862783268e26 * cos(theta) ** 2 + 8.0202238260994e23 ) * sin(16 * phi) ) # @torch.jit.script def Yl36_m_minus_15(theta, phi): return ( 1.95623456117164e-23 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 4.68853299010503e31 * cos(theta) ** 21 - 1.38674919425642e32 * cos(theta) ** 19 + 1.71836313201339e32 * cos(theta) ** 17 - 1.16267356195931e32 * cos(theta) ** 15 + 4.69541246175874e31 * cos(theta) ** 13 - 1.16267356195931e31 * cos(theta) ** 11 + 1.74718704666016e30 * cos(theta) ** 9 - 1.52297175980062e29 * cos(theta) ** 7 + 7.01368573592393e27 * cos(theta) ** 5 - 1.41690620927756e26 * cos(theta) ** 3 + 8.0202238260994e23 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl36_m_minus_14(theta, phi): return ( 6.55265580099988e-22 * (1.0 - cos(theta) ** 2) ** 7 * ( 2.13115135913865e30 * cos(theta) ** 22 - 6.93374597128209e30 * cos(theta) ** 20 + 9.54646184451882e30 * cos(theta) ** 18 - 7.26670976224567e30 * cos(theta) ** 16 + 3.35386604411339e30 * cos(theta) ** 14 - 9.68894634966089e29 * cos(theta) ** 12 + 1.74718704666016e29 * cos(theta) ** 10 - 1.90371469975078e28 * cos(theta) ** 8 + 1.16894762265399e27 * cos(theta) ** 6 - 3.5422655231939e25 * cos(theta) ** 4 + 4.0101119130497e23 * cos(theta) ** 2 - 7.1481495776287e20 ) * sin(14 * phi) ) # @torch.jit.script def Yl36_m_minus_13(theta, phi): return ( 2.22211369541106e-20 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 9.26587547451588e28 * cos(theta) ** 23 - 3.30178379584861e29 * cos(theta) ** 21 + 5.02445360237833e29 * cos(theta) ** 19 - 4.27453515426216e29 * cos(theta) ** 17 + 2.23591069607559e29 * cos(theta) ** 15 - 7.4530356535853e28 * cos(theta) ** 13 + 1.58835186060015e28 * cos(theta) ** 11 - 2.11523855527865e27 * cos(theta) ** 9 + 1.66992517521998e26 * cos(theta) ** 7 - 7.08453104638781e24 * cos(theta) ** 5 + 1.33670397101657e23 * cos(theta) ** 3 - 7.1481495776287e20 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl36_m_minus_12(theta, phi): return ( 7.62026258589038e-19 * (1.0 - cos(theta) ** 2) ** 6 * ( 3.86078144771495e27 * cos(theta) ** 24 - 1.50081081629482e28 * cos(theta) ** 22 + 2.51222680118916e28 * cos(theta) ** 20 - 2.37474175236787e28 * cos(theta) ** 18 + 1.39744418504724e28 * cos(theta) ** 16 - 5.32359689541807e27 * cos(theta) ** 14 + 1.32362655050012e27 * cos(theta) ** 12 - 2.11523855527865e26 * cos(theta) ** 10 + 2.08740646902498e25 * cos(theta) ** 8 - 1.18075517439797e24 * cos(theta) ** 6 + 3.34175992754142e22 * cos(theta) ** 4 - 3.57407478881435e20 * cos(theta) ** 2 + 6.07835848437815e17 ) * sin(12 * phi) ) # @torch.jit.script def Yl36_m_minus_11(theta, phi): return ( 2.63973639315567e-17 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.54431257908598e26 * cos(theta) ** 25 - 6.52526441867315e26 * cos(theta) ** 23 + 1.19629847675674e27 * cos(theta) ** 21 - 1.24986408019361e27 * cos(theta) ** 19 + 8.22025991204261e26 * cos(theta) ** 17 - 3.54906459694538e26 * cos(theta) ** 15 + 1.01817426961548e26 * cos(theta) ** 13 - 1.92294414116241e25 * cos(theta) ** 11 + 2.31934052113887e24 * cos(theta) ** 9 - 1.68679310628281e23 * cos(theta) ** 7 + 6.68351985508284e21 * cos(theta) ** 5 - 1.19135826293812e20 * cos(theta) ** 3 + 6.07835848437815e17 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl36_m_minus_10(theta, phi): return ( 9.22775728515781e-16 * (1.0 - cos(theta) ** 2) ** 5 * ( 5.9396637657153e24 * cos(theta) ** 26 - 2.71886017444715e25 * cos(theta) ** 24 + 5.43772034889429e25 * cos(theta) ** 22 - 6.24932040096807e25 * cos(theta) ** 20 + 4.5668110622459e25 * cos(theta) ** 18 - 2.21816537309086e25 * cos(theta) ** 16 + 7.27267335439627e24 * cos(theta) ** 14 - 1.60245345096867e24 * cos(theta) ** 12 + 2.31934052113887e23 * cos(theta) ** 10 - 2.10849138285351e22 * cos(theta) ** 8 + 1.11391997584714e21 * cos(theta) ** 6 - 2.97839565734529e19 * cos(theta) ** 4 + 3.03917924218907e17 * cos(theta) ** 2 - 497410677936019.0 ) * sin(10 * phi) ) # @torch.jit.script def Yl36_m_minus_9(theta, phi): return ( 3.25204810244434e-14 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 2.19987546878345e23 * cos(theta) ** 27 - 1.08754406977886e24 * cos(theta) ** 25 + 2.36422623864969e24 * cos(theta) ** 23 - 2.97586685760384e24 * cos(theta) ** 21 + 2.4035847696031e24 * cos(theta) ** 19 - 1.30480316064168e24 * cos(theta) ** 17 + 4.84844890293085e23 * cos(theta) ** 15 - 1.23265650074513e23 * cos(theta) ** 13 + 2.10849138285351e22 * cos(theta) ** 11 - 2.34276820317057e21 * cos(theta) ** 9 + 1.5913142512102e20 * cos(theta) ** 7 - 5.95679131469059e18 * cos(theta) ** 5 + 1.01305974739636e17 * cos(theta) ** 3 - 497410677936019.0 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl36_m_minus_8(theta, phi): return ( 1.15436256195231e-12 * (1.0 - cos(theta) ** 2) ** 4 * ( 7.85669810279802e21 * cos(theta) ** 28 - 4.18286180684176e22 * cos(theta) ** 26 + 9.85094266104039e22 * cos(theta) ** 24 - 1.35266675345629e23 * cos(theta) ** 22 + 1.20179238480155e23 * cos(theta) ** 20 - 7.24890644800936e22 * cos(theta) ** 18 + 3.03028056433178e22 * cos(theta) ** 16 - 8.80468929103665e21 * cos(theta) ** 14 + 1.75707615237793e21 * cos(theta) ** 12 - 2.34276820317057e20 * cos(theta) ** 10 + 1.98914281401275e19 * cos(theta) ** 8 - 9.92798552448431e17 * cos(theta) ** 6 + 2.5326493684909e16 * cos(theta) ** 4 - 248705338968009.0 * cos(theta) ** 2 + 394770379314.301 ) * sin(8 * phi) ) # @torch.jit.script def Yl36_m_minus_7(theta, phi): return ( 4.12351492246812e-11 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 2.70920624234415e20 * cos(theta) ** 29 - 1.54920807660806e21 * cos(theta) ** 27 + 3.94037706441615e21 * cos(theta) ** 25 - 5.88115979763605e21 * cos(theta) ** 23 + 5.72282088000739e21 * cos(theta) ** 21 - 3.81521392000493e21 * cos(theta) ** 19 + 1.78251797901869e21 * cos(theta) ** 17 - 5.8697928606911e20 * cos(theta) ** 15 + 1.35159704029071e20 * cos(theta) ** 13 - 2.12978927560961e19 * cos(theta) ** 11 + 2.21015868223639e18 * cos(theta) ** 9 - 1.4182836463549e17 * cos(theta) ** 7 + 5.06529873698179e15 * cos(theta) ** 5 - 82901779656003.1 * cos(theta) ** 3 + 394770379314.301 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl36_m_minus_6(theta, phi): return ( 1.48102512326443e-9 * (1.0 - cos(theta) ** 2) ** 3 * ( 9.03068747448049e18 * cos(theta) ** 30 - 5.53288598788593e19 * cos(theta) ** 28 + 1.51552964016006e20 * cos(theta) ** 26 - 2.45048324901502e20 * cos(theta) ** 24 + 2.60128221818518e20 * cos(theta) ** 22 - 1.90760696000246e20 * cos(theta) ** 20 + 9.90287766121497e19 * cos(theta) ** 18 - 3.66862053793194e19 * cos(theta) ** 16 + 9.6542645735051e18 * cos(theta) ** 14 - 1.77482439634134e18 * cos(theta) ** 12 + 2.21015868223639e17 * cos(theta) ** 10 - 1.77285455794363e16 * cos(theta) ** 8 + 844216456163632.0 * cos(theta) ** 6 - 20725444914000.8 * cos(theta) ** 4 + 197385189657.15 * cos(theta) ** 2 - 306023549.856047 ) * sin(6 * phi) ) # @torch.jit.script def Yl36_m_minus_5(theta, phi): return ( 5.34401806817122e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 2.9131249917679e17 * cos(theta) ** 31 - 1.90789171996067e18 * cos(theta) ** 29 + 5.61307274133355e18 * cos(theta) ** 27 - 9.80193299606009e18 * cos(theta) ** 25 + 1.13099226877616e19 * cos(theta) ** 23 - 9.08384266667839e18 * cos(theta) ** 21 + 5.21204087432367e18 * cos(theta) ** 19 - 2.15801208113643e18 * cos(theta) ** 17 + 6.43617638233673e17 * cos(theta) ** 15 - 1.36524953564719e17 * cos(theta) ** 13 + 2.00923516566944e16 * cos(theta) ** 11 - 1.96983839771514e15 * cos(theta) ** 9 + 120602350880519.0 * cos(theta) ** 7 - 4145088982800.16 * cos(theta) ** 5 + 65795063219.0501 * cos(theta) ** 3 - 306023549.856047 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl36_m_minus_4(theta, phi): return ( 1.93568567169822e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 9.10351559927468e15 * cos(theta) ** 32 - 6.35963906653555e16 * cos(theta) ** 30 + 2.00466883619055e17 * cos(theta) ** 28 - 3.76997422925388e17 * cos(theta) ** 26 + 4.71246778656735e17 * cos(theta) ** 24 - 4.12901939394473e17 * cos(theta) ** 22 + 2.60602043716183e17 * cos(theta) ** 20 - 1.19889560063135e17 * cos(theta) ** 18 + 4.02261023896046e16 * cos(theta) ** 16 - 9.7517823974799e15 * cos(theta) ** 14 + 1.67436263805787e15 * cos(theta) ** 12 - 196983839771514.0 * cos(theta) ** 10 + 15075293860064.9 * cos(theta) ** 8 - 690848163800.026 * cos(theta) ** 6 + 16448765804.7625 * cos(theta) ** 4 - 153011774.928023 * cos(theta) ** 2 + 233249.656902475 ) * sin(4 * phi) ) # @torch.jit.script def Yl36_m_minus_3(theta, phi): return ( 7.03269529120626e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 275864109068930.0 * cos(theta) ** 33 - 2.05149647307599e15 * cos(theta) ** 31 + 6.91265115927778e15 * cos(theta) ** 29 - 1.39628675157551e16 * cos(theta) ** 27 + 1.88498711462694e16 * cos(theta) ** 25 - 1.79522582345423e16 * cos(theta) ** 23 + 1.24096211293421e16 * cos(theta) ** 21 - 6.30997684542817e15 * cos(theta) ** 19 + 2.36624131703556e15 * cos(theta) ** 17 - 650118826498660.0 * cos(theta) ** 15 + 128797126004452.0 * cos(theta) ** 13 - 17907621797410.4 * cos(theta) ** 11 + 1675032651118.32 * cos(theta) ** 9 - 98692594828.5751 * cos(theta) ** 7 + 3289753160.9525 * cos(theta) ** 5 - 51003924.9760078 * cos(theta) ** 3 + 233249.656902475 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl36_m_minus_2(theta, phi): return ( 0.00256090555968341 * (1.0 - cos(theta) ** 2) * ( 8113650266733.23 * cos(theta) ** 34 - 64109264783624.5 * cos(theta) ** 32 + 230421705309259.0 * cos(theta) ** 30 - 498673839848397.0 * cos(theta) ** 28 + 724995044087285.0 * cos(theta) ** 26 - 748010759772595.0 * cos(theta) ** 24 + 564073687697367.0 * cos(theta) ** 22 - 315498842271409.0 * cos(theta) ** 20 + 131457850946420.0 * cos(theta) ** 18 - 40632426656166.3 * cos(theta) ** 16 + 9199794714603.68 * cos(theta) ** 14 - 1492301816450.86 * cos(theta) ** 12 + 167503265111.832 * cos(theta) ** 10 - 12336574353.5719 * cos(theta) ** 8 + 548292193.492084 * cos(theta) ** 6 - 12750981.244002 * cos(theta) ** 4 + 116624.828451237 * cos(theta) ** 2 - 175.904718629317 ) * sin(2 * phi) ) # @torch.jit.script def Yl36_m_minus_1(theta, phi): return ( 0.0933940875530734 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 231818579049.521 * cos(theta) ** 35 - 1942704993443.17 * cos(theta) ** 33 + 7432958235782.55 * cos(theta) ** 31 - 17195649649944.7 * cos(theta) ** 29 + 26851668299529.1 * cos(theta) ** 27 - 29920430390903.8 * cos(theta) ** 25 + 24524942943363.8 * cos(theta) ** 23 - 15023754393876.6 * cos(theta) ** 21 + 6918834260337.91 * cos(theta) ** 19 - 2390142744480.37 * cos(theta) ** 17 + 613319647640.245 * cos(theta) ** 15 - 114792447419.297 * cos(theta) ** 13 + 15227569555.6211 * cos(theta) ** 11 - 1370730483.73021 * cos(theta) ** 9 + 78327456.2131549 * cos(theta) ** 7 - 2550196.24880039 * cos(theta) ** 5 + 38874.9428170791 * cos(theta) ** 3 - 175.904718629317 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl36_m0(theta, phi): return ( 48758699040.5494 * cos(theta) ** 36 - 432647611204.875 * cos(theta) ** 34 + 1758806593376.34 * cos(theta) ** 32 - 4340139653306.79 * cos(theta) ** 30 + 7261387496878.67 * cos(theta) ** 28 - 8713664996254.4 * cos(theta) ** 26 + 7737544054051.04 * cos(theta) ** 24 - 5170852685031.69 * cos(theta) ** 22 + 2619445110180.53 * cos(theta) ** 20 - 1005443577645.05 * cos(theta) ** 18 + 290250693169.232 * cos(theta) ** 16 - 62085709768.8196 * cos(theta) ** 14 + 9608502702.31732 * cos(theta) ** 12 - 1037907002.21431 * cos(theta) ** 10 + 74136214.4438792 * cos(theta) ** 8 - 3218316.28593584 * cos(theta) ** 6 + 73589.549221094 * cos(theta) ** 4 - 665.96877123162 * cos(theta) ** 2 + 0.999953109957387 ) # @torch.jit.script def Yl36_m1(theta, phi): return ( 0.0933940875530734 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 231818579049.521 * cos(theta) ** 35 - 1942704993443.17 * cos(theta) ** 33 + 7432958235782.55 * cos(theta) ** 31 - 17195649649944.7 * cos(theta) ** 29 + 26851668299529.1 * cos(theta) ** 27 - 29920430390903.8 * cos(theta) ** 25 + 24524942943363.8 * cos(theta) ** 23 - 15023754393876.6 * cos(theta) ** 21 + 6918834260337.91 * cos(theta) ** 19 - 2390142744480.37 * cos(theta) ** 17 + 613319647640.245 * cos(theta) ** 15 - 114792447419.297 * cos(theta) ** 13 + 15227569555.6211 * cos(theta) ** 11 - 1370730483.73021 * cos(theta) ** 9 + 78327456.2131549 * cos(theta) ** 7 - 2550196.24880039 * cos(theta) ** 5 + 38874.9428170791 * cos(theta) ** 3 - 175.904718629317 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl36_m2(theta, phi): return ( 0.00256090555968341 * (1.0 - cos(theta) ** 2) * ( 8113650266733.23 * cos(theta) ** 34 - 64109264783624.5 * cos(theta) ** 32 + 230421705309259.0 * cos(theta) ** 30 - 498673839848397.0 * cos(theta) ** 28 + 724995044087285.0 * cos(theta) ** 26 - 748010759772595.0 * cos(theta) ** 24 + 564073687697367.0 * cos(theta) ** 22 - 315498842271409.0 * cos(theta) ** 20 + 131457850946420.0 * cos(theta) ** 18 - 40632426656166.3 * cos(theta) ** 16 + 9199794714603.68 * cos(theta) ** 14 - 1492301816450.86 * cos(theta) ** 12 + 167503265111.832 * cos(theta) ** 10 - 12336574353.5719 * cos(theta) ** 8 + 548292193.492084 * cos(theta) ** 6 - 12750981.244002 * cos(theta) ** 4 + 116624.828451237 * cos(theta) ** 2 - 175.904718629317 ) * cos(2 * phi) ) # @torch.jit.script def Yl36_m3(theta, phi): return ( 7.03269529120626e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 275864109068930.0 * cos(theta) ** 33 - 2.05149647307599e15 * cos(theta) ** 31 + 6.91265115927778e15 * cos(theta) ** 29 - 1.39628675157551e16 * cos(theta) ** 27 + 1.88498711462694e16 * cos(theta) ** 25 - 1.79522582345423e16 * cos(theta) ** 23 + 1.24096211293421e16 * cos(theta) ** 21 - 6.30997684542817e15 * cos(theta) ** 19 + 2.36624131703556e15 * cos(theta) ** 17 - 650118826498660.0 * cos(theta) ** 15 + 128797126004452.0 * cos(theta) ** 13 - 17907621797410.4 * cos(theta) ** 11 + 1675032651118.32 * cos(theta) ** 9 - 98692594828.5751 * cos(theta) ** 7 + 3289753160.9525 * cos(theta) ** 5 - 51003924.9760078 * cos(theta) ** 3 + 233249.656902475 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl36_m4(theta, phi): return ( 1.93568567169822e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 9.10351559927468e15 * cos(theta) ** 32 - 6.35963906653555e16 * cos(theta) ** 30 + 2.00466883619055e17 * cos(theta) ** 28 - 3.76997422925388e17 * cos(theta) ** 26 + 4.71246778656735e17 * cos(theta) ** 24 - 4.12901939394473e17 * cos(theta) ** 22 + 2.60602043716183e17 * cos(theta) ** 20 - 1.19889560063135e17 * cos(theta) ** 18 + 4.02261023896046e16 * cos(theta) ** 16 - 9.7517823974799e15 * cos(theta) ** 14 + 1.67436263805787e15 * cos(theta) ** 12 - 196983839771514.0 * cos(theta) ** 10 + 15075293860064.9 * cos(theta) ** 8 - 690848163800.026 * cos(theta) ** 6 + 16448765804.7625 * cos(theta) ** 4 - 153011774.928023 * cos(theta) ** 2 + 233249.656902475 ) * cos(4 * phi) ) # @torch.jit.script def Yl36_m5(theta, phi): return ( 5.34401806817122e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 2.9131249917679e17 * cos(theta) ** 31 - 1.90789171996067e18 * cos(theta) ** 29 + 5.61307274133355e18 * cos(theta) ** 27 - 9.80193299606009e18 * cos(theta) ** 25 + 1.13099226877616e19 * cos(theta) ** 23 - 9.08384266667839e18 * cos(theta) ** 21 + 5.21204087432367e18 * cos(theta) ** 19 - 2.15801208113643e18 * cos(theta) ** 17 + 6.43617638233673e17 * cos(theta) ** 15 - 1.36524953564719e17 * cos(theta) ** 13 + 2.00923516566944e16 * cos(theta) ** 11 - 1.96983839771514e15 * cos(theta) ** 9 + 120602350880519.0 * cos(theta) ** 7 - 4145088982800.16 * cos(theta) ** 5 + 65795063219.0501 * cos(theta) ** 3 - 306023549.856047 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl36_m6(theta, phi): return ( 1.48102512326443e-9 * (1.0 - cos(theta) ** 2) ** 3 * ( 9.03068747448049e18 * cos(theta) ** 30 - 5.53288598788593e19 * cos(theta) ** 28 + 1.51552964016006e20 * cos(theta) ** 26 - 2.45048324901502e20 * cos(theta) ** 24 + 2.60128221818518e20 * cos(theta) ** 22 - 1.90760696000246e20 * cos(theta) ** 20 + 9.90287766121497e19 * cos(theta) ** 18 - 3.66862053793194e19 * cos(theta) ** 16 + 9.6542645735051e18 * cos(theta) ** 14 - 1.77482439634134e18 * cos(theta) ** 12 + 2.21015868223639e17 * cos(theta) ** 10 - 1.77285455794363e16 * cos(theta) ** 8 + 844216456163632.0 * cos(theta) ** 6 - 20725444914000.8 * cos(theta) ** 4 + 197385189657.15 * cos(theta) ** 2 - 306023549.856047 ) * cos(6 * phi) ) # @torch.jit.script def Yl36_m7(theta, phi): return ( 4.12351492246812e-11 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 2.70920624234415e20 * cos(theta) ** 29 - 1.54920807660806e21 * cos(theta) ** 27 + 3.94037706441615e21 * cos(theta) ** 25 - 5.88115979763605e21 * cos(theta) ** 23 + 5.72282088000739e21 * cos(theta) ** 21 - 3.81521392000493e21 * cos(theta) ** 19 + 1.78251797901869e21 * cos(theta) ** 17 - 5.8697928606911e20 * cos(theta) ** 15 + 1.35159704029071e20 * cos(theta) ** 13 - 2.12978927560961e19 * cos(theta) ** 11 + 2.21015868223639e18 * cos(theta) ** 9 - 1.4182836463549e17 * cos(theta) ** 7 + 5.06529873698179e15 * cos(theta) ** 5 - 82901779656003.1 * cos(theta) ** 3 + 394770379314.301 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl36_m8(theta, phi): return ( 1.15436256195231e-12 * (1.0 - cos(theta) ** 2) ** 4 * ( 7.85669810279802e21 * cos(theta) ** 28 - 4.18286180684176e22 * cos(theta) ** 26 + 9.85094266104039e22 * cos(theta) ** 24 - 1.35266675345629e23 * cos(theta) ** 22 + 1.20179238480155e23 * cos(theta) ** 20 - 7.24890644800936e22 * cos(theta) ** 18 + 3.03028056433178e22 * cos(theta) ** 16 - 8.80468929103665e21 * cos(theta) ** 14 + 1.75707615237793e21 * cos(theta) ** 12 - 2.34276820317057e20 * cos(theta) ** 10 + 1.98914281401275e19 * cos(theta) ** 8 - 9.92798552448431e17 * cos(theta) ** 6 + 2.5326493684909e16 * cos(theta) ** 4 - 248705338968009.0 * cos(theta) ** 2 + 394770379314.301 ) * cos(8 * phi) ) # @torch.jit.script def Yl36_m9(theta, phi): return ( 3.25204810244434e-14 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 2.19987546878345e23 * cos(theta) ** 27 - 1.08754406977886e24 * cos(theta) ** 25 + 2.36422623864969e24 * cos(theta) ** 23 - 2.97586685760384e24 * cos(theta) ** 21 + 2.4035847696031e24 * cos(theta) ** 19 - 1.30480316064168e24 * cos(theta) ** 17 + 4.84844890293085e23 * cos(theta) ** 15 - 1.23265650074513e23 * cos(theta) ** 13 + 2.10849138285351e22 * cos(theta) ** 11 - 2.34276820317057e21 * cos(theta) ** 9 + 1.5913142512102e20 * cos(theta) ** 7 - 5.95679131469059e18 * cos(theta) ** 5 + 1.01305974739636e17 * cos(theta) ** 3 - 497410677936019.0 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl36_m10(theta, phi): return ( 9.22775728515781e-16 * (1.0 - cos(theta) ** 2) ** 5 * ( 5.9396637657153e24 * cos(theta) ** 26 - 2.71886017444715e25 * cos(theta) ** 24 + 5.43772034889429e25 * cos(theta) ** 22 - 6.24932040096807e25 * cos(theta) ** 20 + 4.5668110622459e25 * cos(theta) ** 18 - 2.21816537309086e25 * cos(theta) ** 16 + 7.27267335439627e24 * cos(theta) ** 14 - 1.60245345096867e24 * cos(theta) ** 12 + 2.31934052113887e23 * cos(theta) ** 10 - 2.10849138285351e22 * cos(theta) ** 8 + 1.11391997584714e21 * cos(theta) ** 6 - 2.97839565734529e19 * cos(theta) ** 4 + 3.03917924218907e17 * cos(theta) ** 2 - 497410677936019.0 ) * cos(10 * phi) ) # @torch.jit.script def Yl36_m11(theta, phi): return ( 2.63973639315567e-17 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.54431257908598e26 * cos(theta) ** 25 - 6.52526441867315e26 * cos(theta) ** 23 + 1.19629847675674e27 * cos(theta) ** 21 - 1.24986408019361e27 * cos(theta) ** 19 + 8.22025991204261e26 * cos(theta) ** 17 - 3.54906459694538e26 * cos(theta) ** 15 + 1.01817426961548e26 * cos(theta) ** 13 - 1.92294414116241e25 * cos(theta) ** 11 + 2.31934052113887e24 * cos(theta) ** 9 - 1.68679310628281e23 * cos(theta) ** 7 + 6.68351985508284e21 * cos(theta) ** 5 - 1.19135826293812e20 * cos(theta) ** 3 + 6.07835848437815e17 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl36_m12(theta, phi): return ( 7.62026258589038e-19 * (1.0 - cos(theta) ** 2) ** 6 * ( 3.86078144771495e27 * cos(theta) ** 24 - 1.50081081629482e28 * cos(theta) ** 22 + 2.51222680118916e28 * cos(theta) ** 20 - 2.37474175236787e28 * cos(theta) ** 18 + 1.39744418504724e28 * cos(theta) ** 16 - 5.32359689541807e27 * cos(theta) ** 14 + 1.32362655050012e27 * cos(theta) ** 12 - 2.11523855527865e26 * cos(theta) ** 10 + 2.08740646902498e25 * cos(theta) ** 8 - 1.18075517439797e24 * cos(theta) ** 6 + 3.34175992754142e22 * cos(theta) ** 4 - 3.57407478881435e20 * cos(theta) ** 2 + 6.07835848437815e17 ) * cos(12 * phi) ) # @torch.jit.script def Yl36_m13(theta, phi): return ( 2.22211369541106e-20 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 9.26587547451588e28 * cos(theta) ** 23 - 3.30178379584861e29 * cos(theta) ** 21 + 5.02445360237833e29 * cos(theta) ** 19 - 4.27453515426216e29 * cos(theta) ** 17 + 2.23591069607559e29 * cos(theta) ** 15 - 7.4530356535853e28 * cos(theta) ** 13 + 1.58835186060015e28 * cos(theta) ** 11 - 2.11523855527865e27 * cos(theta) ** 9 + 1.66992517521998e26 * cos(theta) ** 7 - 7.08453104638781e24 * cos(theta) ** 5 + 1.33670397101657e23 * cos(theta) ** 3 - 7.1481495776287e20 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl36_m14(theta, phi): return ( 6.55265580099988e-22 * (1.0 - cos(theta) ** 2) ** 7 * ( 2.13115135913865e30 * cos(theta) ** 22 - 6.93374597128209e30 * cos(theta) ** 20 + 9.54646184451882e30 * cos(theta) ** 18 - 7.26670976224567e30 * cos(theta) ** 16 + 3.35386604411339e30 * cos(theta) ** 14 - 9.68894634966089e29 * cos(theta) ** 12 + 1.74718704666016e29 * cos(theta) ** 10 - 1.90371469975078e28 * cos(theta) ** 8 + 1.16894762265399e27 * cos(theta) ** 6 - 3.5422655231939e25 * cos(theta) ** 4 + 4.0101119130497e23 * cos(theta) ** 2 - 7.1481495776287e20 ) * cos(14 * phi) ) # @torch.jit.script def Yl36_m15(theta, phi): return ( 1.95623456117164e-23 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 4.68853299010503e31 * cos(theta) ** 21 - 1.38674919425642e32 * cos(theta) ** 19 + 1.71836313201339e32 * cos(theta) ** 17 - 1.16267356195931e32 * cos(theta) ** 15 + 4.69541246175874e31 * cos(theta) ** 13 - 1.16267356195931e31 * cos(theta) ** 11 + 1.74718704666016e30 * cos(theta) ** 9 - 1.52297175980062e29 * cos(theta) ** 7 + 7.01368573592393e27 * cos(theta) ** 5 - 1.41690620927756e26 * cos(theta) ** 3 + 8.0202238260994e23 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl36_m16(theta, phi): return ( 5.91983508389675e-25 * (1.0 - cos(theta) ** 2) ** 8 * ( 9.84591927922057e32 * cos(theta) ** 20 - 2.63482346908719e33 * cos(theta) ** 18 + 2.92121732442276e33 * cos(theta) ** 16 - 1.74401034293896e33 * cos(theta) ** 14 + 6.10403620028636e32 * cos(theta) ** 12 - 1.27894091815524e32 * cos(theta) ** 10 + 1.57246834199415e31 * cos(theta) ** 8 - 1.06608023186044e30 * cos(theta) ** 6 + 3.50684286796196e28 * cos(theta) ** 4 - 4.25071862783268e26 * cos(theta) ** 2 + 8.0202238260994e23 ) * cos(16 * phi) ) # @torch.jit.script def Yl36_m17(theta, phi): return ( 1.81826289225004e-26 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.96918385584411e34 * cos(theta) ** 19 - 4.74268224435695e34 * cos(theta) ** 17 + 4.67394771907641e34 * cos(theta) ** 15 - 2.44161448011455e34 * cos(theta) ** 13 + 7.32484344034364e33 * cos(theta) ** 11 - 1.27894091815524e33 * cos(theta) ** 9 + 1.25797467359532e32 * cos(theta) ** 7 - 6.39648139116262e30 * cos(theta) ** 5 + 1.40273714718479e29 * cos(theta) ** 3 - 8.50143725566537e26 * cos(theta) ) * cos(17 * phi) ) # @torch.jit.script def Yl36_m18(theta, phi): return ( 5.67653075535627e-28 * (1.0 - cos(theta) ** 2) ** 9 * ( 3.74144932610382e35 * cos(theta) ** 18 - 8.06255981540682e35 * cos(theta) ** 16 + 7.01092157861462e35 * cos(theta) ** 14 - 3.17409882414891e35 * cos(theta) ** 12 + 8.057327784378e34 * cos(theta) ** 10 - 1.15104682633971e34 * cos(theta) ** 8 + 8.80582271516721e32 * cos(theta) ** 6 - 3.19824069558131e31 * cos(theta) ** 4 + 4.20821144155436e29 * cos(theta) ** 2 - 8.50143725566537e26 ) * cos(18 * phi) ) # @torch.jit.script def Yl36_m19(theta, phi): return ( 1.80411990397808e-29 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 6.73460878698687e36 * cos(theta) ** 17 - 1.29000957046509e37 * cos(theta) ** 15 + 9.81529021006047e36 * cos(theta) ** 13 - 3.80891858897869e36 * cos(theta) ** 11 + 8.057327784378e35 * cos(theta) ** 9 - 9.20837461071771e34 * cos(theta) ** 7 + 5.28349362910033e33 * cos(theta) ** 5 - 1.27929627823252e32 * cos(theta) ** 3 + 8.41642288310872e29 * cos(theta) ) * cos(19 * phi) ) # @torch.jit.script def Yl36_m20(theta, phi): return ( 5.84718619746581e-31 * (1.0 - cos(theta) ** 2) ** 10 * ( 1.14488349378777e38 * cos(theta) ** 16 - 1.93501435569764e38 * cos(theta) ** 14 + 1.27598772730786e38 * cos(theta) ** 12 - 4.18981044787656e37 * cos(theta) ** 10 + 7.2515950059402e36 * cos(theta) ** 8 - 6.4458622275024e35 * cos(theta) ** 6 + 2.64174681455016e34 * cos(theta) ** 4 - 3.83788883469757e32 * cos(theta) ** 2 + 8.41642288310872e29 ) * cos(20 * phi) ) # @torch.jit.script def Yl36_m21(theta, phi): return ( 1.93619682908189e-32 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.83181359006043e39 * cos(theta) ** 15 - 2.70902009797669e39 * cos(theta) ** 13 + 1.53118527276943e39 * cos(theta) ** 11 - 4.18981044787656e38 * cos(theta) ** 9 + 5.80127600475216e37 * cos(theta) ** 7 - 3.86751733650144e36 * cos(theta) ** 5 + 1.05669872582007e35 * cos(theta) ** 3 - 7.67577766939515e32 * cos(theta) ) * cos(21 * phi) ) # @torch.jit.script def Yl36_m22(theta, phi): return ( 6.56432202813386e-34 * (1.0 - cos(theta) ** 2) ** 11 * ( 2.74772038509064e40 * cos(theta) ** 14 - 3.5217261273697e40 * cos(theta) ** 12 + 1.68430380004638e40 * cos(theta) ** 10 - 3.7708294030889e39 * cos(theta) ** 8 + 4.06089320332651e38 * cos(theta) ** 6 - 1.93375866825072e37 * cos(theta) ** 4 + 3.1700961774602e35 * cos(theta) ** 2 - 7.67577766939515e32 ) * cos(22 * phi) ) # @torch.jit.script def Yl36_m23(theta, phi): return ( 2.28401974801605e-35 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 3.8468085391269e41 * cos(theta) ** 13 - 4.22607135284364e41 * cos(theta) ** 11 + 1.68430380004638e41 * cos(theta) ** 9 - 3.01666352247112e40 * cos(theta) ** 7 + 2.43653592199591e39 * cos(theta) ** 5 - 7.73503467300288e37 * cos(theta) ** 3 + 6.34019235492039e35 * cos(theta) ) * cos(23 * phi) ) # @torch.jit.script def Yl36_m24(theta, phi): return ( 8.17810257077045e-37 * (1.0 - cos(theta) ** 2) ** 12 * ( 5.00085110086497e42 * cos(theta) ** 12 - 4.648678488128e42 * cos(theta) ** 10 + 1.51587342004174e42 * cos(theta) ** 8 - 2.11166446572979e41 * cos(theta) ** 6 + 1.21826796099795e40 * cos(theta) ** 4 - 2.32051040190086e38 * cos(theta) ** 2 + 6.34019235492039e35 ) * cos(24 * phi) ) # @torch.jit.script def Yl36_m25(theta, phi): return ( 3.0227136881809e-38 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 6.00102132103796e43 * cos(theta) ** 11 - 4.648678488128e43 * cos(theta) ** 9 + 1.21269873603339e43 * cos(theta) ** 7 - 1.26699867943787e42 * cos(theta) ** 5 + 4.87307184399181e40 * cos(theta) ** 3 - 4.64102080380173e38 * cos(theta) ) * cos(25 * phi) ) # @torch.jit.script def Yl36_m26(theta, phi): return ( 1.1574568923217e-39 * (1.0 - cos(theta) ** 2) ** 13 * ( 6.60112345314176e44 * cos(theta) ** 10 - 4.1838106393152e44 * cos(theta) ** 8 + 8.48889115223374e43 * cos(theta) ** 6 - 6.33499339718936e42 * cos(theta) ** 4 + 1.46192155319754e41 * cos(theta) ** 2 - 4.64102080380173e38 ) * cos(26 * phi) ) # @torch.jit.script def Yl36_m27(theta, phi): return ( 4.61141863924726e-41 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 6.60112345314176e45 * cos(theta) ** 9 - 3.34704851145216e45 * cos(theta) ** 7 + 5.09333469134024e44 * cos(theta) ** 5 - 2.53399735887574e43 * cos(theta) ** 3 + 2.92384310639509e41 * cos(theta) ) * cos(27 * phi) ) # @torch.jit.script def Yl36_m28(theta, phi): return ( 1.92142443301969e-42 * (1.0 - cos(theta) ** 2) ** 14 * ( 5.94101110782758e46 * cos(theta) ** 8 - 2.34293395801651e46 * cos(theta) ** 6 + 2.54666734567012e45 * cos(theta) ** 4 - 7.60199207662723e43 * cos(theta) ** 2 + 2.92384310639509e41 ) * cos(28 * phi) ) # @torch.jit.script def Yl36_m29(theta, phi): return ( 8.42600353736191e-44 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 4.75280888626207e47 * cos(theta) ** 7 - 1.40576037480991e47 * cos(theta) ** 5 + 1.01866693826805e46 * cos(theta) ** 3 - 1.52039841532545e44 * cos(theta) ) * cos(29 * phi) ) # @torch.jit.script def Yl36_m30(theta, phi): return ( 3.92013162413846e-45 * (1.0 - cos(theta) ** 2) ** 15 * ( 3.32696622038345e48 * cos(theta) ** 6 - 7.02880187404954e47 * cos(theta) ** 4 + 3.05600081480415e46 * cos(theta) ** 2 - 1.52039841532545e44 ) * cos(30 * phi) ) # @torch.jit.script def Yl36_m31(theta, phi): return ( 1.95518394692445e-46 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 1.99617973223007e49 * cos(theta) ** 5 - 2.81152074961981e48 * cos(theta) ** 3 + 6.11200162960829e46 * cos(theta) ) * cos(31 * phi) ) # @torch.jit.script def Yl36_m32(theta, phi): return ( 1.06034737181502e-47 * (1.0 - cos(theta) ** 2) ** 16 * ( 9.98089866115034e49 * cos(theta) ** 4 - 8.43456224885944e48 * cos(theta) ** 2 + 6.11200162960829e46 ) * cos(32 * phi) ) # @torch.jit.script def Yl36_m33(theta, phi): return ( 6.38254114616021e-49 * (1.0 - cos(theta) ** 2) ** 16.5 * (3.99235946446014e50 * cos(theta) ** 3 - 1.68691244977189e49 * cos(theta)) * cos(33 * phi) ) # @torch.jit.script def Yl36_m34(theta, phi): return ( 4.40437182605064e-50 * (1.0 - cos(theta) ** 2) ** 17 * (1.19770783933804e51 * cos(theta) ** 2 - 1.68691244977189e49) * cos(34 * phi) ) # @torch.jit.script def Yl36_m35(theta, phi): return ( 8.85361619789771 * (1.0 - cos(theta) ** 2) ** 17.5 * cos(35 * phi) * cos(theta) ) # @torch.jit.script def Yl36_m36(theta, phi): return 1.04340867525942 * (1.0 - cos(theta) ** 2) ** 18 * cos(36 * phi) # @torch.jit.script def Yl37_m_minus_37(theta, phi): return 1.05043507569481 * (1.0 - cos(theta) ** 2) ** 18.5 * sin(37 * phi) # @torch.jit.script def Yl37_m_minus_36(theta, phi): return 9.03618419303727 * (1.0 - cos(theta) ** 2) ** 18 * sin(36 * phi) * cos(theta) # @torch.jit.script def Yl37_m_minus_35(theta, phi): return ( 6.24392610871321e-52 * (1.0 - cos(theta) ** 2) ** 17.5 * (8.7432672271677e52 * cos(theta) ** 2 - 1.19770783933804e51) * sin(35 * phi) ) # @torch.jit.script def Yl37_m_minus_34(theta, phi): return ( 9.17665977479345e-51 * (1.0 - cos(theta) ** 2) ** 17 * (2.9144224090559e52 * cos(theta) ** 3 - 1.19770783933804e51 * cos(theta)) * sin(34 * phi) ) # @torch.jit.script def Yl37_m_minus_33(theta, phi): return ( 1.54647819359785e-49 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 7.28605602263975e51 * cos(theta) ** 4 - 5.98853919669021e50 * cos(theta) ** 2 + 4.21728112442972e48 ) * sin(33 * phi) ) # @torch.jit.script def Yl37_m_minus_32(theta, phi): return ( 2.89319577828011e-48 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.45721120452795e51 * cos(theta) ** 5 - 1.99617973223007e50 * cos(theta) ** 3 + 4.21728112442972e48 * cos(theta) ) * sin(32 * phi) ) # @torch.jit.script def Yl37_m_minus_31(theta, phi): return ( 5.88678254222418e-47 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 2.42868534087992e50 * cos(theta) ** 6 - 4.99044933057517e49 * cos(theta) ** 4 + 2.10864056221486e48 * cos(theta) ** 2 - 1.01866693826805e46 ) * sin(31 * phi) ) # @torch.jit.script def Yl37_m_minus_30(theta, phi): return ( 1.28434432069174e-45 * (1.0 - cos(theta) ** 2) ** 15 * ( 3.46955048697131e49 * cos(theta) ** 7 - 9.98089866115034e48 * cos(theta) ** 5 + 7.02880187404954e47 * cos(theta) ** 3 - 1.01866693826805e46 * cos(theta) ) * sin(30 * phi) ) # @torch.jit.script def Yl37_m_minus_29(theta, phi): return ( 2.9734720766705e-44 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 4.33693810871414e48 * cos(theta) ** 8 - 1.66348311019172e48 * cos(theta) ** 6 + 1.75720046851238e47 * cos(theta) ** 4 - 5.09333469134024e45 * cos(theta) ** 2 + 1.90049801915681e43 ) * sin(29 * phi) ) # @torch.jit.script def Yl37_m_minus_28(theta, phi): return ( 7.24698040379513e-43 * (1.0 - cos(theta) ** 2) ** 14 * ( 4.81882012079349e47 * cos(theta) ** 9 - 2.37640444313103e47 * cos(theta) ** 7 + 3.51440093702477e46 * cos(theta) ** 5 - 1.69777823044675e45 * cos(theta) ** 3 + 1.90049801915681e43 * cos(theta) ) * sin(28 * phi) ) # @torch.jit.script def Yl37_m_minus_27(theta, phi): return ( 1.84762472467879e-41 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 4.81882012079349e46 * cos(theta) ** 10 - 2.97050555391379e46 * cos(theta) ** 8 + 5.85733489504128e45 * cos(theta) ** 6 - 4.24444557611687e44 * cos(theta) ** 4 + 9.50249009578404e42 * cos(theta) ** 2 - 2.92384310639509e40 ) * sin(27 * phi) ) # @torch.jit.script def Yl37_m_minus_26(theta, phi): return ( 4.90230237211461e-40 * (1.0 - cos(theta) ** 2) ** 13 * ( 4.38074556435771e45 * cos(theta) ** 11 - 3.30056172657088e45 * cos(theta) ** 9 + 8.3676212786304e44 * cos(theta) ** 7 - 8.48889115223374e43 * cos(theta) ** 5 + 3.16749669859468e42 * cos(theta) ** 3 - 2.92384310639509e40 * cos(theta) ) * sin(26 * phi) ) # @torch.jit.script def Yl37_m_minus_25(theta, phi): return ( 1.34791030198661e-38 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 3.65062130363143e44 * cos(theta) ** 12 - 3.30056172657088e44 * cos(theta) ** 10 + 1.0459526598288e44 * cos(theta) ** 8 - 1.41481519203896e43 * cos(theta) ** 6 + 7.9187417464867e41 * cos(theta) ** 4 - 1.46192155319754e40 * cos(theta) ** 2 + 3.86751733650144e37 ) * sin(25 * phi) ) # @torch.jit.script def Yl37_m_minus_24(theta, phi): return ( 3.82673610124151e-37 * (1.0 - cos(theta) ** 2) ** 12 * ( 2.80817023356264e43 * cos(theta) ** 13 - 3.00051066051898e43 * cos(theta) ** 11 + 1.162169622032e43 * cos(theta) ** 9 - 2.02116456005565e42 * cos(theta) ** 7 + 1.58374834929734e41 * cos(theta) ** 5 - 4.87307184399181e39 * cos(theta) ** 3 + 3.86751733650144e37 * cos(theta) ) * sin(24 * phi) ) # @torch.jit.script def Yl37_m_minus_23(theta, phi): return ( 1.11829774420847e-35 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 2.00583588111617e42 * cos(theta) ** 14 - 2.50042555043248e42 * cos(theta) ** 12 + 1.162169622032e42 * cos(theta) ** 10 - 2.52645570006957e41 * cos(theta) ** 8 + 2.63958058216223e40 * cos(theta) ** 6 - 1.21826796099795e39 * cos(theta) ** 4 + 1.93375866825072e37 * cos(theta) ** 2 - 4.52870882494314e34 ) * sin(23 * phi) ) # @torch.jit.script def Yl37_m_minus_22(theta, phi): return ( 3.3548932326254e-34 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.33722392074411e41 * cos(theta) ** 15 - 1.92340426956345e41 * cos(theta) ** 13 + 1.05651783821091e41 * cos(theta) ** 11 - 2.80717300007729e40 * cos(theta) ** 9 + 3.7708294030889e39 * cos(theta) ** 7 - 2.43653592199591e38 * cos(theta) ** 5 + 6.4458622275024e36 * cos(theta) ** 3 - 4.52870882494314e34 * cos(theta) ) * sin(22 * phi) ) # @torch.jit.script def Yl37_m_minus_21(theta, phi): return ( 1.03077695553335e-32 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 8.35764950465071e39 * cos(theta) ** 16 - 1.37386019254532e40 * cos(theta) ** 14 + 8.80431531842424e39 * cos(theta) ** 12 - 2.80717300007729e39 * cos(theta) ** 10 + 4.71353675386113e38 * cos(theta) ** 8 - 4.06089320332651e37 * cos(theta) ** 6 + 1.6114655568756e36 * cos(theta) ** 4 - 2.26435441247157e34 * cos(theta) ** 2 + 4.79736104337197e31 ) * sin(21 * phi) ) # @torch.jit.script def Yl37_m_minus_20(theta, phi): return ( 3.236705294292e-31 * (1.0 - cos(theta) ** 2) ** 10 * ( 4.91626441450041e38 * cos(theta) ** 17 - 9.15906795030214e38 * cos(theta) ** 15 + 6.77255024494173e38 * cos(theta) ** 13 - 2.55197545461572e38 * cos(theta) ** 11 + 5.2372630598457e37 * cos(theta) ** 9 - 5.80127600475216e36 * cos(theta) ** 7 + 3.2229311137512e35 * cos(theta) ** 5 - 7.5478480415719e33 * cos(theta) ** 3 + 4.79736104337197e31 * cos(theta) ) * sin(20 * phi) ) # @torch.jit.script def Yl37_m_minus_19(theta, phi): return ( 1.03675667117759e-29 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 2.73125800805579e37 * cos(theta) ** 18 - 5.72441746893884e37 * cos(theta) ** 16 + 4.83753588924409e37 * cos(theta) ** 14 - 2.12664621217977e37 * cos(theta) ** 12 + 5.2372630598457e36 * cos(theta) ** 10 - 7.2515950059402e35 * cos(theta) ** 8 + 5.371551856252e34 * cos(theta) ** 6 - 1.88696201039297e33 * cos(theta) ** 4 + 2.39868052168598e31 * cos(theta) ** 2 - 4.67579049061595e28 ) * sin(19 * phi) ) # @torch.jit.script def Yl37_m_minus_18(theta, phi): return ( 3.38179791904549e-28 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.4375042147662e36 * cos(theta) ** 19 - 3.36730439349343e36 * cos(theta) ** 17 + 3.22502392616273e36 * cos(theta) ** 15 - 1.63588170167675e36 * cos(theta) ** 13 + 4.76114823622336e35 * cos(theta) ** 11 - 8.057327784378e34 * cos(theta) ** 9 + 7.67364550893143e33 * cos(theta) ** 7 - 3.77392402078595e32 * cos(theta) ** 5 + 7.99560173895328e30 * cos(theta) ** 3 - 4.67579049061595e28 * cos(theta) ) * sin(18 * phi) ) # @torch.jit.script def Yl37_m_minus_17(theta, phi): return ( 1.12161548142786e-26 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 7.18752107383102e34 * cos(theta) ** 20 - 1.87072466305191e35 * cos(theta) ** 18 + 2.0156399538517e35 * cos(theta) ** 16 - 1.1684869297691e35 * cos(theta) ** 14 + 3.96762353018614e34 * cos(theta) ** 12 - 8.057327784378e33 * cos(theta) ** 10 + 9.59205688616428e32 * cos(theta) ** 8 - 6.28987336797658e31 * cos(theta) ** 6 + 1.99890043473832e30 * cos(theta) ** 4 - 2.33789524530798e28 * cos(theta) ** 2 + 4.25071862783268e25 ) * sin(17 * phi) ) # @torch.jit.script def Yl37_m_minus_16(theta, phi): return ( 3.7770307660841e-25 * (1.0 - cos(theta) ** 2) ** 8 * ( 3.42262908277667e33 * cos(theta) ** 21 - 9.84591927922057e33 * cos(theta) ** 19 + 1.18567056108924e34 * cos(theta) ** 17 - 7.78991286512736e33 * cos(theta) ** 15 + 3.05201810014318e33 * cos(theta) ** 13 - 7.32484344034364e32 * cos(theta) ** 11 + 1.0657840984627e32 * cos(theta) ** 9 - 8.98553338282369e30 * cos(theta) ** 7 + 3.99780086947664e29 * cos(theta) ** 5 - 7.79298415102659e27 * cos(theta) ** 3 + 4.25071862783268e25 * cos(theta) ) * sin(16 * phi) ) # @torch.jit.script def Yl37_m_minus_15(theta, phi): return ( 1.28973295692034e-23 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.55574049217122e32 * cos(theta) ** 22 - 4.92295963961028e32 * cos(theta) ** 20 + 6.58705867271799e32 * cos(theta) ** 18 - 4.8686955407046e32 * cos(theta) ** 16 + 2.1800129286737e32 * cos(theta) ** 14 - 6.10403620028636e31 * cos(theta) ** 12 + 1.0657840984627e31 * cos(theta) ** 10 - 1.12319167285296e30 * cos(theta) ** 8 + 6.66300144912773e28 * cos(theta) ** 6 - 1.94824603775665e27 * cos(theta) ** 4 + 2.12535931391634e25 * cos(theta) ** 2 - 3.64555628459064e22 ) * sin(15 * phi) ) # @torch.jit.script def Yl37_m_minus_14(theta, phi): return ( 4.4603135268713e-22 * (1.0 - cos(theta) ** 2) ** 7 * ( 6.76408909639659e30 * cos(theta) ** 23 - 2.34426649505252e31 * cos(theta) ** 21 + 3.46687298564105e31 * cos(theta) ** 19 - 2.86393855335565e31 * cos(theta) ** 17 + 1.45334195244913e31 * cos(theta) ** 15 - 4.69541246175874e30 * cos(theta) ** 13 + 9.68894634966089e29 * cos(theta) ** 11 - 1.2479907476144e29 * cos(theta) ** 9 + 9.5185734987539e27 * cos(theta) ** 7 - 3.89649207551329e26 * cos(theta) ** 5 + 7.08453104638781e24 * cos(theta) ** 3 - 3.64555628459064e22 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl37_m_minus_13(theta, phi): return ( 1.56047241666686e-20 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 2.81837045683191e29 * cos(theta) ** 24 - 1.06557567956933e30 * cos(theta) ** 22 + 1.73343649282052e30 * cos(theta) ** 20 - 1.59107697408647e30 * cos(theta) ** 18 + 9.08338720280709e29 * cos(theta) ** 16 - 3.35386604411339e29 * cos(theta) ** 14 + 8.07412195805074e28 * cos(theta) ** 12 - 1.2479907476144e28 * cos(theta) ** 10 + 1.18982168734424e27 * cos(theta) ** 8 - 6.49415345918882e25 * cos(theta) ** 6 + 1.77113276159695e24 * cos(theta) ** 4 - 1.82277814229532e22 * cos(theta) ** 2 + 2.97839565734529e19 ) * sin(13 * phi) ) # @torch.jit.script def Yl37_m_minus_12(theta, phi): return ( 5.51710313839849e-19 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.12734818273276e28 * cos(theta) ** 25 - 4.63293773725794e28 * cos(theta) ** 23 + 8.25445948962154e28 * cos(theta) ** 21 - 8.37408933729721e28 * cos(theta) ** 19 + 5.3431689428277e28 * cos(theta) ** 17 - 2.23591069607559e28 * cos(theta) ** 15 + 6.21086304465442e27 * cos(theta) ** 13 - 1.13453704328582e27 * cos(theta) ** 11 + 1.32202409704915e26 * cos(theta) ** 9 - 9.27736208455546e24 * cos(theta) ** 7 + 3.5422655231939e23 * cos(theta) ** 5 - 6.0759271409844e21 * cos(theta) ** 3 + 2.97839565734529e19 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl37_m_minus_11(theta, phi): return ( 1.96922715928385e-17 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 4.33595454897217e26 * cos(theta) ** 26 - 1.93039072385747e27 * cos(theta) ** 24 + 3.75202704073706e27 * cos(theta) ** 22 - 4.18704466864861e27 * cos(theta) ** 20 + 2.96842719045983e27 * cos(theta) ** 18 - 1.39744418504724e27 * cos(theta) ** 16 + 4.43633074618173e26 * cos(theta) ** 14 - 9.45447536071516e25 * cos(theta) ** 12 + 1.32202409704915e25 * cos(theta) ** 10 - 1.15967026056943e24 * cos(theta) ** 8 + 5.90377587198984e22 * cos(theta) ** 6 - 1.5189817852461e21 * cos(theta) ** 4 + 1.48919782867265e19 * cos(theta) ** 2 - 2.33783018629929e16 ) * sin(11 * phi) ) # @torch.jit.script def Yl37_m_minus_10(theta, phi): return ( 7.08921777342186e-16 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.60590909221192e25 * cos(theta) ** 27 - 7.7215628954299e25 * cos(theta) ** 25 + 1.63131610466829e26 * cos(theta) ** 23 - 1.99383079459457e26 * cos(theta) ** 21 + 1.56233010024202e26 * cos(theta) ** 19 - 8.22025991204261e25 * cos(theta) ** 17 + 2.95755383078782e25 * cos(theta) ** 15 - 7.27267335439627e24 * cos(theta) ** 13 + 1.2018400882265e24 * cos(theta) ** 11 - 1.28852251174381e23 * cos(theta) ** 9 + 8.43396553141406e21 * cos(theta) ** 7 - 3.0379635704922e20 * cos(theta) ** 5 + 4.96399276224215e18 * cos(theta) ** 3 - 2.33783018629929e16 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl37_m_minus_9(theta, phi): return ( 2.57173527737449e-14 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 5.73538961504256e23 * cos(theta) ** 28 - 2.96983188285765e24 * cos(theta) ** 26 + 6.79715043611787e24 * cos(theta) ** 24 - 9.06286724815716e24 * cos(theta) ** 22 + 7.81165050121009e24 * cos(theta) ** 20 - 4.5668110622459e24 * cos(theta) ** 18 + 1.84847114424239e24 * cos(theta) ** 16 - 5.19476668171163e23 * cos(theta) ** 14 + 1.00153340685542e23 * cos(theta) ** 12 - 1.28852251174381e22 * cos(theta) ** 10 + 1.05424569142676e21 * cos(theta) ** 8 - 5.063272617487e19 * cos(theta) ** 6 + 1.24099819056054e18 * cos(theta) ** 4 - 1.16891509314964e16 * cos(theta) ** 2 + 17764667069143.5 ) * sin(9 * phi) ) # @torch.jit.script def Yl37_m_minus_8(theta, phi): return ( 9.39299685798656e-13 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.97772055691123e22 * cos(theta) ** 29 - 1.09993773439172e23 * cos(theta) ** 27 + 2.71886017444715e23 * cos(theta) ** 25 - 3.94037706441615e23 * cos(theta) ** 23 + 3.7198335720048e23 * cos(theta) ** 21 - 2.4035847696031e23 * cos(theta) ** 19 + 1.0873359672014e23 * cos(theta) ** 17 - 3.46317778780775e22 * cos(theta) ** 15 + 7.70410312965707e21 * cos(theta) ** 13 - 1.17138410158529e21 * cos(theta) ** 11 + 1.17138410158529e20 * cos(theta) ** 9 - 7.23324659641e18 * cos(theta) ** 7 + 2.48199638112108e17 * cos(theta) ** 5 - 3.89638364383215e15 * cos(theta) ** 3 + 17764667069143.5 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl37_m_minus_7(theta, phi): return ( 3.45120741864491e-11 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 6.59240185637075e20 * cos(theta) ** 30 - 3.92834905139901e21 * cos(theta) ** 28 + 1.04571545171044e22 * cos(theta) ** 26 - 1.64182377684006e22 * cos(theta) ** 24 + 1.69083344182036e22 * cos(theta) ** 22 - 1.20179238480155e22 * cos(theta) ** 20 + 6.04075537334113e21 * cos(theta) ** 18 - 2.16448611737984e21 * cos(theta) ** 16 + 5.50293080689791e20 * cos(theta) ** 14 - 9.76153417987738e19 * cos(theta) ** 12 + 1.17138410158529e19 * cos(theta) ** 10 - 9.0415582455125e17 * cos(theta) ** 8 + 4.1366606352018e16 * cos(theta) ** 6 - 974095910958037.0 * cos(theta) ** 4 + 8882333534571.76 * cos(theta) ** 2 - 13159012643.81 ) * sin(7 * phi) ) # @torch.jit.script def Yl37_m_minus_6(theta, phi): return ( 1.27461271489967e-9 * (1.0 - cos(theta) ** 2) ** 3 * ( 2.12658124399057e19 * cos(theta) ** 31 - 1.35460312117207e20 * cos(theta) ** 29 + 3.87302019152015e20 * cos(theta) ** 27 - 6.56729510736026e20 * cos(theta) ** 25 + 7.35144974704506e20 * cos(theta) ** 23 - 5.72282088000739e20 * cos(theta) ** 21 + 3.17934493333744e20 * cos(theta) ** 19 - 1.2732271278705e20 * cos(theta) ** 17 + 3.66862053793194e19 * cos(theta) ** 15 - 7.50887244605952e18 * cos(theta) ** 13 + 1.06489463780481e18 * cos(theta) ** 11 - 1.00461758283472e17 * cos(theta) ** 9 + 5.90951519314542e15 * cos(theta) ** 7 - 194819182191607.0 * cos(theta) ** 5 + 2960777844857.25 * cos(theta) ** 3 - 13159012643.81 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl37_m_minus_5(theta, phi): return ( 4.72810881899504e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 6.64556638747052e17 * cos(theta) ** 32 - 4.51534373724024e18 * cos(theta) ** 30 + 1.38322149697148e19 * cos(theta) ** 28 - 2.5258827336001e19 * cos(theta) ** 26 + 3.06310406126878e19 * cos(theta) ** 24 - 2.60128221818518e19 * cos(theta) ** 22 + 1.58967246666872e19 * cos(theta) ** 20 - 7.07348404372498e18 * cos(theta) ** 18 + 2.29288783620746e18 * cos(theta) ** 16 - 5.36348031861394e17 * cos(theta) ** 14 + 8.87412198170671e16 * cos(theta) ** 12 - 1.00461758283472e16 * cos(theta) ** 10 + 738689399143178.0 * cos(theta) ** 8 - 32469863698601.2 * cos(theta) ** 6 + 740194461214.314 * cos(theta) ** 4 - 6579506321.90501 * cos(theta) ** 2 + 9563235.93300147 ) * sin(5 * phi) ) # @torch.jit.script def Yl37_m_minus_4(theta, phi): return ( 1.76022862219379e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 2.01380799620319e16 * cos(theta) ** 33 - 1.45656249588395e17 * cos(theta) ** 31 + 4.76972929990167e17 * cos(theta) ** 29 - 9.35512123555592e17 * cos(theta) ** 27 + 1.22524162450751e18 * cos(theta) ** 25 - 1.13099226877616e18 * cos(theta) ** 23 + 7.56986888889866e17 * cos(theta) ** 21 - 3.72288633880262e17 * cos(theta) ** 19 + 1.34875755071027e17 * cos(theta) ** 17 - 3.57565354574263e16 * cos(theta) ** 15 + 6.82624767823593e15 * cos(theta) ** 13 - 913288711667929.0 * cos(theta) ** 11 + 82076599904797.5 * cos(theta) ** 9 - 4638551956943.03 * cos(theta) ** 7 + 148038892242.863 * cos(theta) ** 5 - 2193168773.96834 * cos(theta) ** 3 + 9563235.93300147 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl37_m_minus_3(theta, phi): return ( 6.57204404620968e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 592296469471526.0 * cos(theta) ** 34 - 4.55175779963734e15 * cos(theta) ** 32 + 1.58990976663389e16 * cos(theta) ** 30 - 3.34111472698426e16 * cos(theta) ** 28 + 4.71246778656735e16 * cos(theta) ** 26 - 4.71246778656735e16 * cos(theta) ** 24 + 3.44084949495394e16 * cos(theta) ** 22 - 1.86144316940131e16 * cos(theta) ** 20 + 7.49309750394595e15 * cos(theta) ** 18 - 2.23478346608914e15 * cos(theta) ** 16 + 487589119873995.0 * cos(theta) ** 14 - 76107392638994.1 * cos(theta) ** 12 + 8207659990479.75 * cos(theta) ** 10 - 579818994617.879 * cos(theta) ** 8 + 24673148707.1438 * cos(theta) ** 6 - 548292193.492084 * cos(theta) ** 4 + 4781617.96650073 * cos(theta) ** 2 - 6860.28402654338 ) * sin(3 * phi) ) # @torch.jit.script def Yl37_m_minus_2(theta, phi): return ( 0.00245903371517041 * (1.0 - cos(theta) ** 2) * ( 16922756270615.0 * cos(theta) ** 35 - 137932054534465.0 * cos(theta) ** 33 + 512874118268996.0 * cos(theta) ** 31 - 1.1521085265463e15 * cos(theta) ** 29 + 1.74535843946939e15 * cos(theta) ** 27 - 1.88498711462694e15 * cos(theta) ** 25 + 1.49602151954519e15 * cos(theta) ** 23 - 886401509238719.0 * cos(theta) ** 21 + 394373552839261.0 * cos(theta) ** 19 - 131457850946420.0 * cos(theta) ** 17 + 32505941324933.0 * cos(theta) ** 15 - 5854414818384.16 * cos(theta) ** 13 + 746150908225.432 * cos(theta) ** 11 - 64424332735.3199 * cos(theta) ** 9 + 3524735529.59197 * cos(theta) ** 7 - 109658438.698417 * cos(theta) ** 5 + 1593872.65550024 * cos(theta) ** 3 - 6860.28402654338 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl37_m_minus_1(theta, phi): return ( 0.0921399637754005 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 470076563072.639 * cos(theta) ** 36 - 4056825133366.61 * cos(theta) ** 34 + 16027316195906.1 * cos(theta) ** 32 - 38403617551543.2 * cos(theta) ** 30 + 62334229981049.6 * cos(theta) ** 28 - 72499504408728.5 * cos(theta) ** 26 + 62334229981049.6 * cos(theta) ** 24 - 40290977692669.1 * cos(theta) ** 22 + 19718677641963.0 * cos(theta) ** 20 - 7303213941467.79 * cos(theta) ** 18 + 2031621332808.31 * cos(theta) ** 16 - 418172487027.44 * cos(theta) ** 14 + 62179242352.1193 * cos(theta) ** 12 - 6442433273.53199 * cos(theta) ** 10 + 440591941.198996 * cos(theta) ** 8 - 18276406.4497361 * cos(theta) ** 6 + 398468.163875061 * cos(theta) ** 4 - 3430.14201327169 * cos(theta) ** 2 + 4.8862421841477 ) * sin(phi) ) # @torch.jit.script def Yl37_m0(theta, phi): return ( 97508493602.417 * cos(theta) ** 37 - 889598037523.421 * cos(theta) ** 35 + 3727541072721.38 * cos(theta) ** 33 - 9507930852158.88 * cos(theta) ** 31 + 16496969575574.2 * cos(theta) ** 29 - 20608521992871.1 * cos(theta) ** 27 + 19136484707666.0 * cos(theta) ** 25 - 13444837031147.1 * cos(theta) ** 23 + 7206660527288.59 * cos(theta) ** 21 - 2950094952691.24 * cos(theta) ** 19 + 917211339836.73 * cos(theta) ** 17 - 213963537251.793 * cos(theta) ** 15 + 36709430410.8468 * cos(theta) ** 13 - 4495032295.20573 * cos(theta) ** 11 + 375724583.945768 * cos(theta) ** 9 - 20038644.4771076 * cos(theta) ** 7 + 611644.671539622 * cos(theta) ** 5 - 8775.38983557564 * cos(theta) ** 3 + 37.5016659639985 * cos(theta) ) # @torch.jit.script def Yl37_m1(theta, phi): return ( 0.0921399637754005 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 470076563072.639 * cos(theta) ** 36 - 4056825133366.61 * cos(theta) ** 34 + 16027316195906.1 * cos(theta) ** 32 - 38403617551543.2 * cos(theta) ** 30 + 62334229981049.6 * cos(theta) ** 28 - 72499504408728.5 * cos(theta) ** 26 + 62334229981049.6 * cos(theta) ** 24 - 40290977692669.1 * cos(theta) ** 22 + 19718677641963.0 * cos(theta) ** 20 - 7303213941467.79 * cos(theta) ** 18 + 2031621332808.31 * cos(theta) ** 16 - 418172487027.44 * cos(theta) ** 14 + 62179242352.1193 * cos(theta) ** 12 - 6442433273.53199 * cos(theta) ** 10 + 440591941.198996 * cos(theta) ** 8 - 18276406.4497361 * cos(theta) ** 6 + 398468.163875061 * cos(theta) ** 4 - 3430.14201327169 * cos(theta) ** 2 + 4.8862421841477 ) * cos(phi) ) # @torch.jit.script def Yl37_m2(theta, phi): return ( 0.00245903371517041 * (1.0 - cos(theta) ** 2) * ( 16922756270615.0 * cos(theta) ** 35 - 137932054534465.0 * cos(theta) ** 33 + 512874118268996.0 * cos(theta) ** 31 - 1.1521085265463e15 * cos(theta) ** 29 + 1.74535843946939e15 * cos(theta) ** 27 - 1.88498711462694e15 * cos(theta) ** 25 + 1.49602151954519e15 * cos(theta) ** 23 - 886401509238719.0 * cos(theta) ** 21 + 394373552839261.0 * cos(theta) ** 19 - 131457850946420.0 * cos(theta) ** 17 + 32505941324933.0 * cos(theta) ** 15 - 5854414818384.16 * cos(theta) ** 13 + 746150908225.432 * cos(theta) ** 11 - 64424332735.3199 * cos(theta) ** 9 + 3524735529.59197 * cos(theta) ** 7 - 109658438.698417 * cos(theta) ** 5 + 1593872.65550024 * cos(theta) ** 3 - 6860.28402654338 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl37_m3(theta, phi): return ( 6.57204404620968e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 592296469471526.0 * cos(theta) ** 34 - 4.55175779963734e15 * cos(theta) ** 32 + 1.58990976663389e16 * cos(theta) ** 30 - 3.34111472698426e16 * cos(theta) ** 28 + 4.71246778656735e16 * cos(theta) ** 26 - 4.71246778656735e16 * cos(theta) ** 24 + 3.44084949495394e16 * cos(theta) ** 22 - 1.86144316940131e16 * cos(theta) ** 20 + 7.49309750394595e15 * cos(theta) ** 18 - 2.23478346608914e15 * cos(theta) ** 16 + 487589119873995.0 * cos(theta) ** 14 - 76107392638994.1 * cos(theta) ** 12 + 8207659990479.75 * cos(theta) ** 10 - 579818994617.879 * cos(theta) ** 8 + 24673148707.1438 * cos(theta) ** 6 - 548292193.492084 * cos(theta) ** 4 + 4781617.96650073 * cos(theta) ** 2 - 6860.28402654338 ) * cos(3 * phi) ) # @torch.jit.script def Yl37_m4(theta, phi): return ( 1.76022862219379e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 2.01380799620319e16 * cos(theta) ** 33 - 1.45656249588395e17 * cos(theta) ** 31 + 4.76972929990167e17 * cos(theta) ** 29 - 9.35512123555592e17 * cos(theta) ** 27 + 1.22524162450751e18 * cos(theta) ** 25 - 1.13099226877616e18 * cos(theta) ** 23 + 7.56986888889866e17 * cos(theta) ** 21 - 3.72288633880262e17 * cos(theta) ** 19 + 1.34875755071027e17 * cos(theta) ** 17 - 3.57565354574263e16 * cos(theta) ** 15 + 6.82624767823593e15 * cos(theta) ** 13 - 913288711667929.0 * cos(theta) ** 11 + 82076599904797.5 * cos(theta) ** 9 - 4638551956943.03 * cos(theta) ** 7 + 148038892242.863 * cos(theta) ** 5 - 2193168773.96834 * cos(theta) ** 3 + 9563235.93300147 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl37_m5(theta, phi): return ( 4.72810881899504e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 6.64556638747052e17 * cos(theta) ** 32 - 4.51534373724024e18 * cos(theta) ** 30 + 1.38322149697148e19 * cos(theta) ** 28 - 2.5258827336001e19 * cos(theta) ** 26 + 3.06310406126878e19 * cos(theta) ** 24 - 2.60128221818518e19 * cos(theta) ** 22 + 1.58967246666872e19 * cos(theta) ** 20 - 7.07348404372498e18 * cos(theta) ** 18 + 2.29288783620746e18 * cos(theta) ** 16 - 5.36348031861394e17 * cos(theta) ** 14 + 8.87412198170671e16 * cos(theta) ** 12 - 1.00461758283472e16 * cos(theta) ** 10 + 738689399143178.0 * cos(theta) ** 8 - 32469863698601.2 * cos(theta) ** 6 + 740194461214.314 * cos(theta) ** 4 - 6579506321.90501 * cos(theta) ** 2 + 9563235.93300147 ) * cos(5 * phi) ) # @torch.jit.script def Yl37_m6(theta, phi): return ( 1.27461271489967e-9 * (1.0 - cos(theta) ** 2) ** 3 * ( 2.12658124399057e19 * cos(theta) ** 31 - 1.35460312117207e20 * cos(theta) ** 29 + 3.87302019152015e20 * cos(theta) ** 27 - 6.56729510736026e20 * cos(theta) ** 25 + 7.35144974704506e20 * cos(theta) ** 23 - 5.72282088000739e20 * cos(theta) ** 21 + 3.17934493333744e20 * cos(theta) ** 19 - 1.2732271278705e20 * cos(theta) ** 17 + 3.66862053793194e19 * cos(theta) ** 15 - 7.50887244605952e18 * cos(theta) ** 13 + 1.06489463780481e18 * cos(theta) ** 11 - 1.00461758283472e17 * cos(theta) ** 9 + 5.90951519314542e15 * cos(theta) ** 7 - 194819182191607.0 * cos(theta) ** 5 + 2960777844857.25 * cos(theta) ** 3 - 13159012643.81 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl37_m7(theta, phi): return ( 3.45120741864491e-11 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 6.59240185637075e20 * cos(theta) ** 30 - 3.92834905139901e21 * cos(theta) ** 28 + 1.04571545171044e22 * cos(theta) ** 26 - 1.64182377684006e22 * cos(theta) ** 24 + 1.69083344182036e22 * cos(theta) ** 22 - 1.20179238480155e22 * cos(theta) ** 20 + 6.04075537334113e21 * cos(theta) ** 18 - 2.16448611737984e21 * cos(theta) ** 16 + 5.50293080689791e20 * cos(theta) ** 14 - 9.76153417987738e19 * cos(theta) ** 12 + 1.17138410158529e19 * cos(theta) ** 10 - 9.0415582455125e17 * cos(theta) ** 8 + 4.1366606352018e16 * cos(theta) ** 6 - 974095910958037.0 * cos(theta) ** 4 + 8882333534571.76 * cos(theta) ** 2 - 13159012643.81 ) * cos(7 * phi) ) # @torch.jit.script def Yl37_m8(theta, phi): return ( 9.39299685798656e-13 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.97772055691123e22 * cos(theta) ** 29 - 1.09993773439172e23 * cos(theta) ** 27 + 2.71886017444715e23 * cos(theta) ** 25 - 3.94037706441615e23 * cos(theta) ** 23 + 3.7198335720048e23 * cos(theta) ** 21 - 2.4035847696031e23 * cos(theta) ** 19 + 1.0873359672014e23 * cos(theta) ** 17 - 3.46317778780775e22 * cos(theta) ** 15 + 7.70410312965707e21 * cos(theta) ** 13 - 1.17138410158529e21 * cos(theta) ** 11 + 1.17138410158529e20 * cos(theta) ** 9 - 7.23324659641e18 * cos(theta) ** 7 + 2.48199638112108e17 * cos(theta) ** 5 - 3.89638364383215e15 * cos(theta) ** 3 + 17764667069143.5 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl37_m9(theta, phi): return ( 2.57173527737449e-14 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 5.73538961504256e23 * cos(theta) ** 28 - 2.96983188285765e24 * cos(theta) ** 26 + 6.79715043611787e24 * cos(theta) ** 24 - 9.06286724815716e24 * cos(theta) ** 22 + 7.81165050121009e24 * cos(theta) ** 20 - 4.5668110622459e24 * cos(theta) ** 18 + 1.84847114424239e24 * cos(theta) ** 16 - 5.19476668171163e23 * cos(theta) ** 14 + 1.00153340685542e23 * cos(theta) ** 12 - 1.28852251174381e22 * cos(theta) ** 10 + 1.05424569142676e21 * cos(theta) ** 8 - 5.063272617487e19 * cos(theta) ** 6 + 1.24099819056054e18 * cos(theta) ** 4 - 1.16891509314964e16 * cos(theta) ** 2 + 17764667069143.5 ) * cos(9 * phi) ) # @torch.jit.script def Yl37_m10(theta, phi): return ( 7.08921777342186e-16 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.60590909221192e25 * cos(theta) ** 27 - 7.7215628954299e25 * cos(theta) ** 25 + 1.63131610466829e26 * cos(theta) ** 23 - 1.99383079459457e26 * cos(theta) ** 21 + 1.56233010024202e26 * cos(theta) ** 19 - 8.22025991204261e25 * cos(theta) ** 17 + 2.95755383078782e25 * cos(theta) ** 15 - 7.27267335439627e24 * cos(theta) ** 13 + 1.2018400882265e24 * cos(theta) ** 11 - 1.28852251174381e23 * cos(theta) ** 9 + 8.43396553141406e21 * cos(theta) ** 7 - 3.0379635704922e20 * cos(theta) ** 5 + 4.96399276224215e18 * cos(theta) ** 3 - 2.33783018629929e16 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl37_m11(theta, phi): return ( 1.96922715928385e-17 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 4.33595454897217e26 * cos(theta) ** 26 - 1.93039072385747e27 * cos(theta) ** 24 + 3.75202704073706e27 * cos(theta) ** 22 - 4.18704466864861e27 * cos(theta) ** 20 + 2.96842719045983e27 * cos(theta) ** 18 - 1.39744418504724e27 * cos(theta) ** 16 + 4.43633074618173e26 * cos(theta) ** 14 - 9.45447536071516e25 * cos(theta) ** 12 + 1.32202409704915e25 * cos(theta) ** 10 - 1.15967026056943e24 * cos(theta) ** 8 + 5.90377587198984e22 * cos(theta) ** 6 - 1.5189817852461e21 * cos(theta) ** 4 + 1.48919782867265e19 * cos(theta) ** 2 - 2.33783018629929e16 ) * cos(11 * phi) ) # @torch.jit.script def Yl37_m12(theta, phi): return ( 5.51710313839849e-19 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.12734818273276e28 * cos(theta) ** 25 - 4.63293773725794e28 * cos(theta) ** 23 + 8.25445948962154e28 * cos(theta) ** 21 - 8.37408933729721e28 * cos(theta) ** 19 + 5.3431689428277e28 * cos(theta) ** 17 - 2.23591069607559e28 * cos(theta) ** 15 + 6.21086304465442e27 * cos(theta) ** 13 - 1.13453704328582e27 * cos(theta) ** 11 + 1.32202409704915e26 * cos(theta) ** 9 - 9.27736208455546e24 * cos(theta) ** 7 + 3.5422655231939e23 * cos(theta) ** 5 - 6.0759271409844e21 * cos(theta) ** 3 + 2.97839565734529e19 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl37_m13(theta, phi): return ( 1.56047241666686e-20 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 2.81837045683191e29 * cos(theta) ** 24 - 1.06557567956933e30 * cos(theta) ** 22 + 1.73343649282052e30 * cos(theta) ** 20 - 1.59107697408647e30 * cos(theta) ** 18 + 9.08338720280709e29 * cos(theta) ** 16 - 3.35386604411339e29 * cos(theta) ** 14 + 8.07412195805074e28 * cos(theta) ** 12 - 1.2479907476144e28 * cos(theta) ** 10 + 1.18982168734424e27 * cos(theta) ** 8 - 6.49415345918882e25 * cos(theta) ** 6 + 1.77113276159695e24 * cos(theta) ** 4 - 1.82277814229532e22 * cos(theta) ** 2 + 2.97839565734529e19 ) * cos(13 * phi) ) # @torch.jit.script def Yl37_m14(theta, phi): return ( 4.4603135268713e-22 * (1.0 - cos(theta) ** 2) ** 7 * ( 6.76408909639659e30 * cos(theta) ** 23 - 2.34426649505252e31 * cos(theta) ** 21 + 3.46687298564105e31 * cos(theta) ** 19 - 2.86393855335565e31 * cos(theta) ** 17 + 1.45334195244913e31 * cos(theta) ** 15 - 4.69541246175874e30 * cos(theta) ** 13 + 9.68894634966089e29 * cos(theta) ** 11 - 1.2479907476144e29 * cos(theta) ** 9 + 9.5185734987539e27 * cos(theta) ** 7 - 3.89649207551329e26 * cos(theta) ** 5 + 7.08453104638781e24 * cos(theta) ** 3 - 3.64555628459064e22 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl37_m15(theta, phi): return ( 1.28973295692034e-23 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.55574049217122e32 * cos(theta) ** 22 - 4.92295963961028e32 * cos(theta) ** 20 + 6.58705867271799e32 * cos(theta) ** 18 - 4.8686955407046e32 * cos(theta) ** 16 + 2.1800129286737e32 * cos(theta) ** 14 - 6.10403620028636e31 * cos(theta) ** 12 + 1.0657840984627e31 * cos(theta) ** 10 - 1.12319167285296e30 * cos(theta) ** 8 + 6.66300144912773e28 * cos(theta) ** 6 - 1.94824603775665e27 * cos(theta) ** 4 + 2.12535931391634e25 * cos(theta) ** 2 - 3.64555628459064e22 ) * cos(15 * phi) ) # @torch.jit.script def Yl37_m16(theta, phi): return ( 3.7770307660841e-25 * (1.0 - cos(theta) ** 2) ** 8 * ( 3.42262908277667e33 * cos(theta) ** 21 - 9.84591927922057e33 * cos(theta) ** 19 + 1.18567056108924e34 * cos(theta) ** 17 - 7.78991286512736e33 * cos(theta) ** 15 + 3.05201810014318e33 * cos(theta) ** 13 - 7.32484344034364e32 * cos(theta) ** 11 + 1.0657840984627e32 * cos(theta) ** 9 - 8.98553338282369e30 * cos(theta) ** 7 + 3.99780086947664e29 * cos(theta) ** 5 - 7.79298415102659e27 * cos(theta) ** 3 + 4.25071862783268e25 * cos(theta) ) * cos(16 * phi) ) # @torch.jit.script def Yl37_m17(theta, phi): return ( 1.12161548142786e-26 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 7.18752107383102e34 * cos(theta) ** 20 - 1.87072466305191e35 * cos(theta) ** 18 + 2.0156399538517e35 * cos(theta) ** 16 - 1.1684869297691e35 * cos(theta) ** 14 + 3.96762353018614e34 * cos(theta) ** 12 - 8.057327784378e33 * cos(theta) ** 10 + 9.59205688616428e32 * cos(theta) ** 8 - 6.28987336797658e31 * cos(theta) ** 6 + 1.99890043473832e30 * cos(theta) ** 4 - 2.33789524530798e28 * cos(theta) ** 2 + 4.25071862783268e25 ) * cos(17 * phi) ) # @torch.jit.script def Yl37_m18(theta, phi): return ( 3.38179791904549e-28 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.4375042147662e36 * cos(theta) ** 19 - 3.36730439349343e36 * cos(theta) ** 17 + 3.22502392616273e36 * cos(theta) ** 15 - 1.63588170167675e36 * cos(theta) ** 13 + 4.76114823622336e35 * cos(theta) ** 11 - 8.057327784378e34 * cos(theta) ** 9 + 7.67364550893143e33 * cos(theta) ** 7 - 3.77392402078595e32 * cos(theta) ** 5 + 7.99560173895328e30 * cos(theta) ** 3 - 4.67579049061595e28 * cos(theta) ) * cos(18 * phi) ) # @torch.jit.script def Yl37_m19(theta, phi): return ( 1.03675667117759e-29 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 2.73125800805579e37 * cos(theta) ** 18 - 5.72441746893884e37 * cos(theta) ** 16 + 4.83753588924409e37 * cos(theta) ** 14 - 2.12664621217977e37 * cos(theta) ** 12 + 5.2372630598457e36 * cos(theta) ** 10 - 7.2515950059402e35 * cos(theta) ** 8 + 5.371551856252e34 * cos(theta) ** 6 - 1.88696201039297e33 * cos(theta) ** 4 + 2.39868052168598e31 * cos(theta) ** 2 - 4.67579049061595e28 ) * cos(19 * phi) ) # @torch.jit.script def Yl37_m20(theta, phi): return ( 3.236705294292e-31 * (1.0 - cos(theta) ** 2) ** 10 * ( 4.91626441450041e38 * cos(theta) ** 17 - 9.15906795030214e38 * cos(theta) ** 15 + 6.77255024494173e38 * cos(theta) ** 13 - 2.55197545461572e38 * cos(theta) ** 11 + 5.2372630598457e37 * cos(theta) ** 9 - 5.80127600475216e36 * cos(theta) ** 7 + 3.2229311137512e35 * cos(theta) ** 5 - 7.5478480415719e33 * cos(theta) ** 3 + 4.79736104337197e31 * cos(theta) ) * cos(20 * phi) ) # @torch.jit.script def Yl37_m21(theta, phi): return ( 1.03077695553335e-32 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 8.35764950465071e39 * cos(theta) ** 16 - 1.37386019254532e40 * cos(theta) ** 14 + 8.80431531842424e39 * cos(theta) ** 12 - 2.80717300007729e39 * cos(theta) ** 10 + 4.71353675386113e38 * cos(theta) ** 8 - 4.06089320332651e37 * cos(theta) ** 6 + 1.6114655568756e36 * cos(theta) ** 4 - 2.26435441247157e34 * cos(theta) ** 2 + 4.79736104337197e31 ) * cos(21 * phi) ) # @torch.jit.script def Yl37_m22(theta, phi): return ( 3.3548932326254e-34 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.33722392074411e41 * cos(theta) ** 15 - 1.92340426956345e41 * cos(theta) ** 13 + 1.05651783821091e41 * cos(theta) ** 11 - 2.80717300007729e40 * cos(theta) ** 9 + 3.7708294030889e39 * cos(theta) ** 7 - 2.43653592199591e38 * cos(theta) ** 5 + 6.4458622275024e36 * cos(theta) ** 3 - 4.52870882494314e34 * cos(theta) ) * cos(22 * phi) ) # @torch.jit.script def Yl37_m23(theta, phi): return ( 1.11829774420847e-35 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 2.00583588111617e42 * cos(theta) ** 14 - 2.50042555043248e42 * cos(theta) ** 12 + 1.162169622032e42 * cos(theta) ** 10 - 2.52645570006957e41 * cos(theta) ** 8 + 2.63958058216223e40 * cos(theta) ** 6 - 1.21826796099795e39 * cos(theta) ** 4 + 1.93375866825072e37 * cos(theta) ** 2 - 4.52870882494314e34 ) * cos(23 * phi) ) # @torch.jit.script def Yl37_m24(theta, phi): return ( 3.82673610124151e-37 * (1.0 - cos(theta) ** 2) ** 12 * ( 2.80817023356264e43 * cos(theta) ** 13 - 3.00051066051898e43 * cos(theta) ** 11 + 1.162169622032e43 * cos(theta) ** 9 - 2.02116456005565e42 * cos(theta) ** 7 + 1.58374834929734e41 * cos(theta) ** 5 - 4.87307184399181e39 * cos(theta) ** 3 + 3.86751733650144e37 * cos(theta) ) * cos(24 * phi) ) # @torch.jit.script def Yl37_m25(theta, phi): return ( 1.34791030198661e-38 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 3.65062130363143e44 * cos(theta) ** 12 - 3.30056172657088e44 * cos(theta) ** 10 + 1.0459526598288e44 * cos(theta) ** 8 - 1.41481519203896e43 * cos(theta) ** 6 + 7.9187417464867e41 * cos(theta) ** 4 - 1.46192155319754e40 * cos(theta) ** 2 + 3.86751733650144e37 ) * cos(25 * phi) ) # @torch.jit.script def Yl37_m26(theta, phi): return ( 4.90230237211461e-40 * (1.0 - cos(theta) ** 2) ** 13 * ( 4.38074556435771e45 * cos(theta) ** 11 - 3.30056172657088e45 * cos(theta) ** 9 + 8.3676212786304e44 * cos(theta) ** 7 - 8.48889115223374e43 * cos(theta) ** 5 + 3.16749669859468e42 * cos(theta) ** 3 - 2.92384310639509e40 * cos(theta) ) * cos(26 * phi) ) # @torch.jit.script def Yl37_m27(theta, phi): return ( 1.84762472467879e-41 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 4.81882012079349e46 * cos(theta) ** 10 - 2.97050555391379e46 * cos(theta) ** 8 + 5.85733489504128e45 * cos(theta) ** 6 - 4.24444557611687e44 * cos(theta) ** 4 + 9.50249009578404e42 * cos(theta) ** 2 - 2.92384310639509e40 ) * cos(27 * phi) ) # @torch.jit.script def Yl37_m28(theta, phi): return ( 7.24698040379513e-43 * (1.0 - cos(theta) ** 2) ** 14 * ( 4.81882012079349e47 * cos(theta) ** 9 - 2.37640444313103e47 * cos(theta) ** 7 + 3.51440093702477e46 * cos(theta) ** 5 - 1.69777823044675e45 * cos(theta) ** 3 + 1.90049801915681e43 * cos(theta) ) * cos(28 * phi) ) # @torch.jit.script def Yl37_m29(theta, phi): return ( 2.9734720766705e-44 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 4.33693810871414e48 * cos(theta) ** 8 - 1.66348311019172e48 * cos(theta) ** 6 + 1.75720046851238e47 * cos(theta) ** 4 - 5.09333469134024e45 * cos(theta) ** 2 + 1.90049801915681e43 ) * cos(29 * phi) ) # @torch.jit.script def Yl37_m30(theta, phi): return ( 1.28434432069174e-45 * (1.0 - cos(theta) ** 2) ** 15 * ( 3.46955048697131e49 * cos(theta) ** 7 - 9.98089866115034e48 * cos(theta) ** 5 + 7.02880187404954e47 * cos(theta) ** 3 - 1.01866693826805e46 * cos(theta) ) * cos(30 * phi) ) # @torch.jit.script def Yl37_m31(theta, phi): return ( 5.88678254222418e-47 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 2.42868534087992e50 * cos(theta) ** 6 - 4.99044933057517e49 * cos(theta) ** 4 + 2.10864056221486e48 * cos(theta) ** 2 - 1.01866693826805e46 ) * cos(31 * phi) ) # @torch.jit.script def Yl37_m32(theta, phi): return ( 2.89319577828011e-48 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.45721120452795e51 * cos(theta) ** 5 - 1.99617973223007e50 * cos(theta) ** 3 + 4.21728112442972e48 * cos(theta) ) * cos(32 * phi) ) # @torch.jit.script def Yl37_m33(theta, phi): return ( 1.54647819359785e-49 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 7.28605602263975e51 * cos(theta) ** 4 - 5.98853919669021e50 * cos(theta) ** 2 + 4.21728112442972e48 ) * cos(33 * phi) ) # @torch.jit.script def Yl37_m34(theta, phi): return ( 9.17665977479345e-51 * (1.0 - cos(theta) ** 2) ** 17 * (2.9144224090559e52 * cos(theta) ** 3 - 1.19770783933804e51 * cos(theta)) * cos(34 * phi) ) # @torch.jit.script def Yl37_m35(theta, phi): return ( 6.24392610871321e-52 * (1.0 - cos(theta) ** 2) ** 17.5 * (8.7432672271677e52 * cos(theta) ** 2 - 1.19770783933804e51) * cos(35 * phi) ) # @torch.jit.script def Yl37_m36(theta, phi): return 9.03618419303727 * (1.0 - cos(theta) ** 2) ** 18 * cos(36 * phi) * cos(theta) # @torch.jit.script def Yl37_m37(theta, phi): return 1.05043507569481 * (1.0 - cos(theta) ** 2) ** 18.5 * cos(37 * phi) # @torch.jit.script def Yl38_m_minus_38(theta, phi): return 1.0573232483571 * (1.0 - cos(theta) ** 2) ** 19 * sin(38 * phi) # @torch.jit.script def Yl38_m_minus_37(theta, phi): return ( 9.21753038048947 * (1.0 - cos(theta) ** 2) ** 18.5 * sin(37 * phi) * cos(theta) ) # @torch.jit.script def Yl38_m_minus_36(theta, phi): return ( 8.60786001928606e-54 * (1.0 - cos(theta) ** 2) ** 18 * (6.55745042037577e54 * cos(theta) ** 2 - 8.7432672271677e52) * sin(36 * phi) ) # @torch.jit.script def Yl38_m_minus_35(theta, phi): return ( 1.28254225711204e-52 * (1.0 - cos(theta) ** 2) ** 17.5 * (2.18581680679192e54 * cos(theta) ** 3 - 8.7432672271677e52 * cos(theta)) * sin(35 * phi) ) # @torch.jit.script def Yl38_m_minus_34(theta, phi): return ( 2.19160916965865e-51 * (1.0 - cos(theta) ** 2) ** 17 * ( 5.46454201697981e53 * cos(theta) ** 4 - 4.37163361358385e52 * cos(theta) ** 2 + 2.9942695983451e50 ) * sin(34 * phi) ) # @torch.jit.script def Yl38_m_minus_33(theta, phi): return ( 4.15828603021903e-50 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 1.09290840339596e53 * cos(theta) ** 5 - 1.45721120452795e52 * cos(theta) ** 3 + 2.9942695983451e50 * cos(theta) ) * sin(33 * phi) ) # @torch.jit.script def Yl38_m_minus_32(theta, phi): return ( 8.58260566150099e-49 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.82151400565994e52 * cos(theta) ** 6 - 3.64302801131987e51 * cos(theta) ** 4 + 1.49713479917255e50 * cos(theta) ** 2 - 7.02880187404954e47 ) * sin(32 * phi) ) # @torch.jit.script def Yl38_m_minus_31(theta, phi): return ( 1.89984075045795e-47 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 2.60216286522848e51 * cos(theta) ** 7 - 7.28605602263975e50 * cos(theta) ** 5 + 4.99044933057517e49 * cos(theta) ** 3 - 7.02880187404954e47 * cos(theta) ) * sin(31 * phi) ) # @torch.jit.script def Yl38_m_minus_30(theta, phi): return ( 4.46361509559185e-46 * (1.0 - cos(theta) ** 2) ** 15 * ( 3.2527035815356e50 * cos(theta) ** 8 - 1.21434267043996e50 * cos(theta) ** 6 + 1.24761233264379e49 * cos(theta) ** 4 - 3.51440093702477e47 * cos(theta) ** 2 + 1.27333367283506e45 ) * sin(30 * phi) ) # @torch.jit.script def Yl38_m_minus_29(theta, phi): return ( 1.1042373906736e-44 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 3.61411509059511e49 * cos(theta) ** 9 - 1.73477524348565e49 * cos(theta) ** 7 + 2.49522466528759e48 * cos(theta) ** 5 - 1.17146697900826e47 * cos(theta) ** 3 + 1.27333367283506e45 * cos(theta) ) * sin(29 * phi) ) # @torch.jit.script def Yl38_m_minus_28(theta, phi): return ( 2.85824761702743e-43 * (1.0 - cos(theta) ** 2) ** 14 * ( 3.61411509059511e48 * cos(theta) ** 10 - 2.16846905435707e48 * cos(theta) ** 8 + 4.15870777547931e47 * cos(theta) ** 6 - 2.92866744752064e46 * cos(theta) ** 4 + 6.3666683641753e44 * cos(theta) ** 2 - 1.90049801915681e42 ) * sin(28 * phi) ) # @torch.jit.script def Yl38_m_minus_27(theta, phi): return ( 7.70137304226747e-42 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 3.28555917326829e47 * cos(theta) ** 11 - 2.40941006039674e47 * cos(theta) ** 9 + 5.94101110782758e46 * cos(theta) ** 7 - 5.85733489504128e45 * cos(theta) ** 5 + 2.12222278805844e44 * cos(theta) ** 3 - 1.90049801915681e42 * cos(theta) ) * sin(27 * phi) ) # @torch.jit.script def Yl38_m_minus_26(theta, phi): return ( 2.15087643657668e-40 * (1.0 - cos(theta) ** 2) ** 13 * ( 2.73796597772357e46 * cos(theta) ** 12 - 2.40941006039674e46 * cos(theta) ** 10 + 7.42626388478448e45 * cos(theta) ** 8 - 9.7622248250688e44 * cos(theta) ** 6 + 5.30555697014609e43 * cos(theta) ** 4 - 9.50249009578404e41 * cos(theta) ** 2 + 2.43653592199591e39 ) * sin(26 * phi) ) # @torch.jit.script def Yl38_m_minus_25(theta, phi): return ( 6.20407622341159e-39 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 2.10612767517198e45 * cos(theta) ** 13 - 2.19037278217886e45 * cos(theta) ** 11 + 8.2514043164272e44 * cos(theta) ** 9 - 1.3946035464384e44 * cos(theta) ** 7 + 1.06111139402922e43 * cos(theta) ** 5 - 3.16749669859468e41 * cos(theta) ** 3 + 2.43653592199591e39 * cos(theta) ) * sin(25 * phi) ) # @torch.jit.script def Yl38_m_minus_24(theta, phi): return ( 1.84251663480048e-37 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.50437691083713e44 * cos(theta) ** 14 - 1.82531065181571e44 * cos(theta) ** 12 + 8.2514043164272e43 * cos(theta) ** 10 - 1.743254433048e43 * cos(theta) ** 8 + 1.7685189900487e42 * cos(theta) ** 6 - 7.9187417464867e40 * cos(theta) ** 4 + 1.21826796099795e39 * cos(theta) ** 2 - 2.76251238321531e36 ) * sin(24 * phi) ) # @torch.jit.script def Yl38_m_minus_23(theta, phi): return ( 5.61892055563194e-36 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.00291794055808e43 * cos(theta) ** 15 - 1.40408511678132e43 * cos(theta) ** 13 + 7.50127665129745e42 * cos(theta) ** 11 - 1.93694937005333e42 * cos(theta) ** 9 + 2.52645570006957e41 * cos(theta) ** 7 - 1.58374834929734e40 * cos(theta) ** 5 + 4.06089320332651e38 * cos(theta) ** 3 - 2.76251238321531e36 * cos(theta) ) * sin(23 * phi) ) # @torch.jit.script def Yl38_m_minus_22(theta, phi): return ( 1.75540689794278e-34 * (1.0 - cos(theta) ** 2) ** 11 * ( 6.26823712848803e41 * cos(theta) ** 16 - 1.00291794055808e42 * cos(theta) ** 14 + 6.25106387608121e41 * cos(theta) ** 12 - 1.93694937005333e41 * cos(theta) ** 10 + 3.15806962508696e40 * cos(theta) ** 8 - 2.63958058216223e39 * cos(theta) ** 6 + 1.01522330083163e38 * cos(theta) ** 4 - 1.38125619160766e36 * cos(theta) ** 2 + 2.83044301558946e33 ) * sin(22 * phi) ) # @torch.jit.script def Yl38_m_minus_21(theta, phi): return ( 5.60632004517403e-33 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 3.68719831087531e40 * cos(theta) ** 17 - 6.68611960372056e40 * cos(theta) ** 15 + 4.80851067390862e40 * cos(theta) ** 13 - 1.76086306368485e40 * cos(theta) ** 11 + 3.50896625009662e39 * cos(theta) ** 9 - 3.7708294030889e38 * cos(theta) ** 7 + 2.03044660166326e37 * cos(theta) ** 5 - 4.60418730535886e35 * cos(theta) ** 3 + 2.83044301558946e33 * cos(theta) ) * sin(21 * phi) ) # @torch.jit.script def Yl38_m_minus_20(theta, phi): return ( 1.82700672042423e-31 * (1.0 - cos(theta) ** 2) ** 10 * ( 2.04844350604184e39 * cos(theta) ** 18 - 4.17882475232535e39 * cos(theta) ** 16 + 3.4346504813633e39 * cos(theta) ** 14 - 1.46738588640404e39 * cos(theta) ** 12 + 3.50896625009662e38 * cos(theta) ** 10 - 4.71353675386113e37 * cos(theta) ** 8 + 3.38407766943876e36 * cos(theta) ** 6 - 1.15104682633971e35 * cos(theta) ** 4 + 1.41522150779473e33 * cos(theta) ** 2 - 2.66520057965109e30 ) * sin(20 * phi) ) # @torch.jit.script def Yl38_m_minus_19(theta, phi): return ( 6.06500191198304e-30 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.07812816107465e38 * cos(theta) ** 19 - 2.45813220725021e38 * cos(theta) ** 17 + 2.28976698757554e38 * cos(theta) ** 15 - 1.12875837415695e38 * cos(theta) ** 13 + 3.18996931826965e37 * cos(theta) ** 11 - 5.2372630598457e36 * cos(theta) ** 9 + 4.8343966706268e35 * cos(theta) ** 7 - 2.30209365267943e34 * cos(theta) ** 5 + 4.71740502598244e32 * cos(theta) ** 3 - 2.66520057965109e30 * cos(theta) ) * sin(19 * phi) ) # @torch.jit.script def Yl38_m_minus_18(theta, phi): return ( 2.04778033341685e-28 * (1.0 - cos(theta) ** 2) ** 9 * ( 5.39064080537326e36 * cos(theta) ** 20 - 1.36562900402789e37 * cos(theta) ** 18 + 1.43110436723471e37 * cos(theta) ** 16 - 8.06255981540682e36 * cos(theta) ** 14 + 2.65830776522471e36 * cos(theta) ** 12 - 5.2372630598457e35 * cos(theta) ** 10 + 6.0429958382835e34 * cos(theta) ** 8 - 3.83682275446571e33 * cos(theta) ** 6 + 1.17935125649561e32 * cos(theta) ** 4 - 1.33260028982555e30 * cos(theta) ** 2 + 2.33789524530798e27 ) * sin(18 * phi) ) # @torch.jit.script def Yl38_m_minus_17(theta, phi): return ( 7.02242369104875e-27 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 2.56697181208251e35 * cos(theta) ** 21 - 7.18752107383102e35 * cos(theta) ** 19 + 8.41826098373359e35 * cos(theta) ** 17 - 5.37503987693788e35 * cos(theta) ** 15 + 2.04485212709593e35 * cos(theta) ** 13 - 4.76114823622336e34 * cos(theta) ** 11 + 6.714439820315e33 * cos(theta) ** 9 - 5.48117536352245e32 * cos(theta) ** 7 + 2.35870251299122e31 * cos(theta) ** 5 - 4.44200096608516e29 * cos(theta) ** 3 + 2.33789524530798e27 * cos(theta) ) * sin(17 * phi) ) # @torch.jit.script def Yl38_m_minus_16(theta, phi): return ( 2.44275389142847e-25 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.16680536912841e34 * cos(theta) ** 22 - 3.59376053691551e34 * cos(theta) ** 20 + 4.67681165762977e34 * cos(theta) ** 18 - 3.35939992308617e34 * cos(theta) ** 16 + 1.46060866221138e34 * cos(theta) ** 14 - 3.96762353018614e33 * cos(theta) ** 12 + 6.714439820315e32 * cos(theta) ** 10 - 6.85146920440306e31 * cos(theta) ** 8 + 3.93117085498536e30 * cos(theta) ** 6 - 1.11050024152129e29 * cos(theta) ** 4 + 1.16894762265399e27 * cos(theta) ** 2 - 1.93214483083304e24 ) * sin(16 * phi) ) # @torch.jit.script def Yl38_m_minus_15(theta, phi): return ( 8.60875824089541e-24 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 5.07306682229744e32 * cos(theta) ** 23 - 1.71131454138834e33 * cos(theta) ** 21 + 2.46147981980514e33 * cos(theta) ** 19 - 1.9761176018154e33 * cos(theta) ** 17 + 9.7373910814092e32 * cos(theta) ** 15 - 3.05201810014318e32 * cos(theta) ** 13 + 6.10403620028636e31 * cos(theta) ** 11 - 7.61274356044785e30 * cos(theta) ** 9 + 5.6159583642648e29 * cos(theta) ** 7 - 2.22100048304258e28 * cos(theta) ** 5 + 3.89649207551329e26 * cos(theta) ** 3 - 1.93214483083304e24 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl38_m_minus_14(theta, phi): return ( 3.0703230101837e-22 * (1.0 - cos(theta) ** 2) ** 7 * ( 2.11377784262393e31 * cos(theta) ** 24 - 7.77870246085608e31 * cos(theta) ** 22 + 1.23073990990257e32 * cos(theta) ** 20 - 1.09784311211966e32 * cos(theta) ** 18 + 6.08586942588075e31 * cos(theta) ** 16 - 2.1800129286737e31 * cos(theta) ** 14 + 5.08669683357197e30 * cos(theta) ** 12 - 7.61274356044784e29 * cos(theta) ** 10 + 7.019947955331e28 * cos(theta) ** 8 - 3.70166747173763e27 * cos(theta) ** 6 + 9.74123018878324e25 * cos(theta) ** 4 - 9.66072415416519e23 * cos(theta) ** 2 + 1.5189817852461e21 ) * sin(14 * phi) ) # @torch.jit.script def Yl38_m_minus_13(theta, phi): return ( 1.10702070454543e-20 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 8.45511137049574e29 * cos(theta) ** 25 - 3.38204454819829e30 * cos(theta) ** 23 + 5.86066623763129e30 * cos(theta) ** 21 - 5.77812164273508e30 * cos(theta) ** 19 + 3.57992319169456e30 * cos(theta) ** 17 - 1.45334195244913e30 * cos(theta) ** 15 + 3.91284371813228e29 * cos(theta) ** 13 - 6.9206759640435e28 * cos(theta) ** 11 + 7.79994217259001e27 * cos(theta) ** 9 - 5.28809638819661e26 * cos(theta) ** 7 + 1.94824603775665e25 * cos(theta) ** 5 - 3.22024138472173e23 * cos(theta) ** 3 + 1.5189817852461e21 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl38_m_minus_12(theta, phi): return ( 4.03113651248321e-19 * (1.0 - cos(theta) ** 2) ** 6 * ( 3.25196591172913e28 * cos(theta) ** 26 - 1.40918522841596e29 * cos(theta) ** 24 + 2.66393919892331e29 * cos(theta) ** 22 - 2.88906082136754e29 * cos(theta) ** 20 + 1.98884621760809e29 * cos(theta) ** 18 - 9.08338720280709e28 * cos(theta) ** 16 + 2.79488837009449e28 * cos(theta) ** 14 - 5.76722997003625e27 * cos(theta) ** 12 + 7.79994217259e26 * cos(theta) ** 10 - 6.61012048524577e25 * cos(theta) ** 8 + 3.24707672959441e24 * cos(theta) ** 6 - 8.05060346180433e22 * cos(theta) ** 4 + 7.5949089262305e20 * cos(theta) ** 2 - 1.14553679128665e18 ) * sin(12 * phi) ) # @torch.jit.script def Yl38_m_minus_11(theta, phi): return ( 1.48113413086296e-17 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.20443181915894e27 * cos(theta) ** 27 - 5.63674091366382e27 * cos(theta) ** 25 + 1.15823443431448e28 * cos(theta) ** 23 - 1.37574324827026e28 * cos(theta) ** 21 + 1.04676116716215e28 * cos(theta) ** 19 - 5.3431689428277e27 * cos(theta) ** 17 + 1.86325891339633e27 * cos(theta) ** 15 - 4.43633074618173e26 * cos(theta) ** 13 + 7.09085652053637e25 * cos(theta) ** 11 - 7.34457831693974e24 * cos(theta) ** 9 + 4.63868104227773e23 * cos(theta) ** 7 - 1.61012069236087e22 * cos(theta) ** 5 + 2.5316363087435e20 * cos(theta) ** 3 - 1.14553679128665e18 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl38_m_minus_10(theta, phi): return ( 5.48619759603045e-16 * (1.0 - cos(theta) ** 2) ** 5 * ( 4.30154221128192e25 * cos(theta) ** 28 - 2.16797727448609e26 * cos(theta) ** 26 + 4.82597680964369e26 * cos(theta) ** 24 - 6.25337840122844e26 * cos(theta) ** 22 + 5.23380583581076e26 * cos(theta) ** 20 - 2.96842719045983e26 * cos(theta) ** 18 + 1.1645368208727e26 * cos(theta) ** 16 - 3.16880767584409e25 * cos(theta) ** 14 + 5.90904710044697e24 * cos(theta) ** 12 - 7.34457831693974e23 * cos(theta) ** 10 + 5.79835130284716e22 * cos(theta) ** 8 - 2.68353448726811e21 * cos(theta) ** 6 + 6.32909077185875e19 * cos(theta) ** 4 - 5.72768395643326e17 * cos(theta) ** 2 + 834939352249746.0 ) * sin(10 * phi) ) # @torch.jit.script def Yl38_m_minus_9(theta, phi): return ( 2.04687378153282e-14 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1.48329041768342e24 * cos(theta) ** 29 - 8.02954546105958e24 * cos(theta) ** 27 + 1.93039072385747e25 * cos(theta) ** 25 - 2.71886017444715e25 * cos(theta) ** 23 + 2.49228849324322e25 * cos(theta) ** 21 - 1.56233010024202e25 * cos(theta) ** 19 + 6.85021659336884e24 * cos(theta) ** 17 - 2.11253845056273e24 * cos(theta) ** 15 + 4.54542084649767e23 * cos(theta) ** 13 - 6.67688937903613e22 * cos(theta) ** 11 + 6.44261255871907e21 * cos(theta) ** 9 - 3.8336206960973e20 * cos(theta) ** 7 + 1.26581815437175e19 * cos(theta) ** 5 - 1.90922798547775e17 * cos(theta) ** 3 + 834939352249746.0 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl38_m_minus_8(theta, phi): return ( 7.68600423582523e-13 * (1.0 - cos(theta) ** 2) ** 4 * ( 4.94430139227807e22 * cos(theta) ** 30 - 2.86769480752128e23 * cos(theta) ** 28 + 7.42457970714413e23 * cos(theta) ** 26 - 1.13285840601964e24 * cos(theta) ** 24 + 1.13285840601964e24 * cos(theta) ** 22 - 7.81165050121009e23 * cos(theta) ** 20 + 3.80567588520491e23 * cos(theta) ** 18 - 1.3203365316017e23 * cos(theta) ** 16 + 3.24672917606977e22 * cos(theta) ** 14 - 5.56407448253011e21 * cos(theta) ** 12 + 6.44261255871907e20 * cos(theta) ** 10 - 4.79202587012162e19 * cos(theta) ** 8 + 2.10969692395292e18 * cos(theta) ** 6 - 4.77306996369438e16 * cos(theta) ** 4 + 417469676124873.0 * cos(theta) ** 2 - 592155568971.451 ) * sin(8 * phi) ) # @torch.jit.script def Yl38_m_minus_7(theta, phi): return ( 2.90242083005401e-11 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.59493593299292e21 * cos(theta) ** 31 - 9.88860278455613e21 * cos(theta) ** 29 + 2.74984433597931e22 * cos(theta) ** 27 - 4.53143362407858e22 * cos(theta) ** 25 + 4.92547133052019e22 * cos(theta) ** 23 - 3.7198335720048e22 * cos(theta) ** 21 + 2.00298730800259e22 * cos(theta) ** 19 - 7.76668548001003e21 * cos(theta) ** 17 + 2.16448611737984e21 * cos(theta) ** 15 - 4.28005729425393e20 * cos(theta) ** 13 + 5.85692050792643e19 * cos(theta) ** 11 - 5.32447318902403e18 * cos(theta) ** 9 + 3.01385274850417e17 * cos(theta) ** 7 - 9.54613992738876e15 * cos(theta) ** 5 + 139156558708291.0 * cos(theta) ** 3 - 592155568971.451 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl38_m_minus_6(theta, phi): return ( 1.10139126615446e-9 * (1.0 - cos(theta) ** 2) ** 3 * ( 4.98417479060289e19 * cos(theta) ** 32 - 3.29620092818538e20 * cos(theta) ** 30 + 9.82087262849753e20 * cos(theta) ** 28 - 1.74285908618407e21 * cos(theta) ** 26 + 2.05227972105008e21 * cos(theta) ** 24 - 1.69083344182036e21 * cos(theta) ** 22 + 1.00149365400129e21 * cos(theta) ** 20 - 4.31482526667224e20 * cos(theta) ** 18 + 1.3528038233624e20 * cos(theta) ** 16 - 3.05718378160995e19 * cos(theta) ** 14 + 4.88076708993869e18 * cos(theta) ** 12 - 5.32447318902403e17 * cos(theta) ** 10 + 3.76731593563021e16 * cos(theta) ** 8 - 1.59102332123146e15 * cos(theta) ** 6 + 34789139677072.7 * cos(theta) ** 4 - 296077784485.725 * cos(theta) ** 2 + 411219145.119063 ) * sin(6 * phi) ) # @torch.jit.script def Yl38_m_minus_5(theta, phi): return ( 4.1968643903827e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.51035599715239e18 * cos(theta) ** 33 - 1.06329062199528e19 * cos(theta) ** 31 + 3.38650780293018e19 * cos(theta) ** 29 - 6.45503365253359e19 * cos(theta) ** 27 + 8.20911888420032e19 * cos(theta) ** 25 - 7.35144974704506e19 * cos(theta) ** 23 + 4.76901740000616e19 * cos(theta) ** 21 - 2.2709606666696e19 * cos(theta) ** 19 + 7.9576695491906e18 * cos(theta) ** 17 - 2.0381225210733e18 * cos(theta) ** 15 + 3.75443622302976e17 * cos(theta) ** 13 - 4.84043017184002e16 * cos(theta) ** 11 + 4.18590659514467e15 * cos(theta) ** 9 - 227289045890209.0 * cos(theta) ** 7 + 6957827935414.55 * cos(theta) ** 5 - 98692594828.5751 * cos(theta) ** 3 + 411219145.119063 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl38_m_minus_4(theta, phi): return ( 1.60471762562345e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 4.44222352103644e16 * cos(theta) ** 34 - 3.32278319373526e17 * cos(theta) ** 32 + 1.12883593431006e18 * cos(theta) ** 30 - 2.30536916161914e18 * cos(theta) ** 28 + 3.15735341700012e18 * cos(theta) ** 26 - 3.06310406126878e18 * cos(theta) ** 24 + 2.16773518182098e18 * cos(theta) ** 22 - 1.1354803333348e18 * cos(theta) ** 20 + 4.42092752732811e17 * cos(theta) ** 18 - 1.27382657567081e17 * cos(theta) ** 16 + 2.68174015930697e16 * cos(theta) ** 14 - 4.03369180986669e15 * cos(theta) ** 12 + 418590659514467.0 * cos(theta) ** 10 - 28411130736276.1 * cos(theta) ** 8 + 1159637989235.76 * cos(theta) ** 6 - 24673148707.1438 * cos(theta) ** 4 + 205609572.559532 * cos(theta) ** 2 - 281271.645088278 ) * sin(4 * phi) ) # @torch.jit.script def Yl38_m_minus_3(theta, phi): return ( 6.15258029386065e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 1.26920672029613e15 * cos(theta) ** 35 - 1.00690399810159e16 * cos(theta) ** 33 + 3.64140623970987e16 * cos(theta) ** 31 - 7.94954883316944e16 * cos(theta) ** 29 + 1.16939015444449e17 * cos(theta) ** 27 - 1.22524162450751e17 * cos(theta) ** 25 + 9.4249355731347e16 * cos(theta) ** 23 - 5.40704920635619e16 * cos(theta) ** 21 + 2.32680396175164e16 * cos(theta) ** 19 - 7.49309750394595e15 * cos(theta) ** 17 + 1.78782677287132e15 * cos(theta) ** 15 - 310283985374361.0 * cos(theta) ** 13 + 38053696319497.0 * cos(theta) ** 11 - 3156792304030.67 * cos(theta) ** 9 + 165662569890.823 * cos(theta) ** 7 - 4934629741.42876 * cos(theta) ** 5 + 68536524.1865105 * cos(theta) ** 3 - 281271.645088278 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl38_m_minus_2(theta, phi): return ( 0.00236374416014225 * (1.0 - cos(theta) ** 2) * ( 35255742230448.0 * cos(theta) ** 36 - 296148234735763.0 * cos(theta) ** 34 + 1.13793944990934e15 * cos(theta) ** 32 - 2.64984961105648e15 * cos(theta) ** 30 + 4.17639340873032e15 * cos(theta) ** 28 - 4.71246778656735e15 * cos(theta) ** 26 + 3.92705648880612e15 * cos(theta) ** 24 - 2.45774963925281e15 * cos(theta) ** 22 + 1.16340198087582e15 * cos(theta) ** 20 - 416283194663664.0 * cos(theta) ** 18 + 111739173304457.0 * cos(theta) ** 16 - 22163141812454.3 * cos(theta) ** 14 + 3171141359958.09 * cos(theta) ** 12 - 315679230403.067 * cos(theta) ** 10 + 20707821236.3528 * cos(theta) ** 8 - 822438290.238126 * cos(theta) ** 6 + 17134131.0466276 * cos(theta) ** 4 - 140635.822544139 * cos(theta) ** 2 + 190.56344518176 ) * sin(2 * phi) ) # @torch.jit.script def Yl38_m_minus_1(theta, phi): return ( 0.090935053487738 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 952857898120.215 * cos(theta) ** 37 - 8461378135307.51 * cos(theta) ** 35 + 34483013633616.2 * cos(theta) ** 33 - 85479019711499.4 * cos(theta) ** 31 + 144013565818287.0 * cos(theta) ** 29 - 174535843946939.0 * cos(theta) ** 27 + 157082259552245.0 * cos(theta) ** 25 - 106858679967514.0 * cos(theta) ** 23 + 55400094327420.0 * cos(theta) ** 21 - 21909641824403.4 * cos(theta) ** 19 + 6572892547321.01 * cos(theta) ** 17 - 1477542787496.95 * cos(theta) ** 15 + 243933950766.007 * cos(theta) ** 13 - 28698111854.8243 * cos(theta) ** 11 + 2300869026.26142 * cos(theta) ** 9 - 117491184.319732 * cos(theta) ** 7 + 3426826.20932553 * cos(theta) ** 5 - 46878.6075147131 * cos(theta) ** 3 + 190.56344518176 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl38_m0(theta, phi): return ( 195000104809.684 * cos(theta) ** 38 - 1827800982416.11 * cos(theta) ** 36 + 7887086430973.62 * cos(theta) ** 34 - 20773030459043.2 * cos(theta) ** 32 + 37331243143787.8 * cos(theta) ** 30 - 48474897813575.2 * cos(theta) ** 28 + 46983362496234.4 * cos(theta) ** 26 - 34624927009696.6 * cos(theta) ** 24 + 19582950521877.6 * cos(theta) ** 22 - 8519136667709.45 * cos(theta) ** 20 + 2839712222569.82 * cos(theta) ** 18 - 718142099261.458 * cos(theta) ** 16 + 135498509294.615 * cos(theta) ** 14 - 18597834609.0648 * cos(theta) ** 12 + 1789296041.10536 * cos(theta) ** 10 - 114210385.602469 * cos(theta) ** 8 + 4441514.99565159 * cos(theta) ** 6 - 91139.1585975019 * cos(theta) ** 4 + 740.968769085381 * cos(theta) ** 2 - 0.999957853016709 ) # @torch.jit.script def Yl38_m1(theta, phi): return ( 0.090935053487738 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 952857898120.215 * cos(theta) ** 37 - 8461378135307.51 * cos(theta) ** 35 + 34483013633616.2 * cos(theta) ** 33 - 85479019711499.4 * cos(theta) ** 31 + 144013565818287.0 * cos(theta) ** 29 - 174535843946939.0 * cos(theta) ** 27 + 157082259552245.0 * cos(theta) ** 25 - 106858679967514.0 * cos(theta) ** 23 + 55400094327420.0 * cos(theta) ** 21 - 21909641824403.4 * cos(theta) ** 19 + 6572892547321.01 * cos(theta) ** 17 - 1477542787496.95 * cos(theta) ** 15 + 243933950766.007 * cos(theta) ** 13 - 28698111854.8243 * cos(theta) ** 11 + 2300869026.26142 * cos(theta) ** 9 - 117491184.319732 * cos(theta) ** 7 + 3426826.20932553 * cos(theta) ** 5 - 46878.6075147131 * cos(theta) ** 3 + 190.56344518176 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl38_m2(theta, phi): return ( 0.00236374416014225 * (1.0 - cos(theta) ** 2) * ( 35255742230448.0 * cos(theta) ** 36 - 296148234735763.0 * cos(theta) ** 34 + 1.13793944990934e15 * cos(theta) ** 32 - 2.64984961105648e15 * cos(theta) ** 30 + 4.17639340873032e15 * cos(theta) ** 28 - 4.71246778656735e15 * cos(theta) ** 26 + 3.92705648880612e15 * cos(theta) ** 24 - 2.45774963925281e15 * cos(theta) ** 22 + 1.16340198087582e15 * cos(theta) ** 20 - 416283194663664.0 * cos(theta) ** 18 + 111739173304457.0 * cos(theta) ** 16 - 22163141812454.3 * cos(theta) ** 14 + 3171141359958.09 * cos(theta) ** 12 - 315679230403.067 * cos(theta) ** 10 + 20707821236.3528 * cos(theta) ** 8 - 822438290.238126 * cos(theta) ** 6 + 17134131.0466276 * cos(theta) ** 4 - 140635.822544139 * cos(theta) ** 2 + 190.56344518176 ) * cos(2 * phi) ) # @torch.jit.script def Yl38_m3(theta, phi): return ( 6.15258029386065e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 1.26920672029613e15 * cos(theta) ** 35 - 1.00690399810159e16 * cos(theta) ** 33 + 3.64140623970987e16 * cos(theta) ** 31 - 7.94954883316944e16 * cos(theta) ** 29 + 1.16939015444449e17 * cos(theta) ** 27 - 1.22524162450751e17 * cos(theta) ** 25 + 9.4249355731347e16 * cos(theta) ** 23 - 5.40704920635619e16 * cos(theta) ** 21 + 2.32680396175164e16 * cos(theta) ** 19 - 7.49309750394595e15 * cos(theta) ** 17 + 1.78782677287132e15 * cos(theta) ** 15 - 310283985374361.0 * cos(theta) ** 13 + 38053696319497.0 * cos(theta) ** 11 - 3156792304030.67 * cos(theta) ** 9 + 165662569890.823 * cos(theta) ** 7 - 4934629741.42876 * cos(theta) ** 5 + 68536524.1865105 * cos(theta) ** 3 - 281271.645088278 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl38_m4(theta, phi): return ( 1.60471762562345e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 4.44222352103644e16 * cos(theta) ** 34 - 3.32278319373526e17 * cos(theta) ** 32 + 1.12883593431006e18 * cos(theta) ** 30 - 2.30536916161914e18 * cos(theta) ** 28 + 3.15735341700012e18 * cos(theta) ** 26 - 3.06310406126878e18 * cos(theta) ** 24 + 2.16773518182098e18 * cos(theta) ** 22 - 1.1354803333348e18 * cos(theta) ** 20 + 4.42092752732811e17 * cos(theta) ** 18 - 1.27382657567081e17 * cos(theta) ** 16 + 2.68174015930697e16 * cos(theta) ** 14 - 4.03369180986669e15 * cos(theta) ** 12 + 418590659514467.0 * cos(theta) ** 10 - 28411130736276.1 * cos(theta) ** 8 + 1159637989235.76 * cos(theta) ** 6 - 24673148707.1438 * cos(theta) ** 4 + 205609572.559532 * cos(theta) ** 2 - 281271.645088278 ) * cos(4 * phi) ) # @torch.jit.script def Yl38_m5(theta, phi): return ( 4.1968643903827e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.51035599715239e18 * cos(theta) ** 33 - 1.06329062199528e19 * cos(theta) ** 31 + 3.38650780293018e19 * cos(theta) ** 29 - 6.45503365253359e19 * cos(theta) ** 27 + 8.20911888420032e19 * cos(theta) ** 25 - 7.35144974704506e19 * cos(theta) ** 23 + 4.76901740000616e19 * cos(theta) ** 21 - 2.2709606666696e19 * cos(theta) ** 19 + 7.9576695491906e18 * cos(theta) ** 17 - 2.0381225210733e18 * cos(theta) ** 15 + 3.75443622302976e17 * cos(theta) ** 13 - 4.84043017184002e16 * cos(theta) ** 11 + 4.18590659514467e15 * cos(theta) ** 9 - 227289045890209.0 * cos(theta) ** 7 + 6957827935414.55 * cos(theta) ** 5 - 98692594828.5751 * cos(theta) ** 3 + 411219145.119063 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl38_m6(theta, phi): return ( 1.10139126615446e-9 * (1.0 - cos(theta) ** 2) ** 3 * ( 4.98417479060289e19 * cos(theta) ** 32 - 3.29620092818538e20 * cos(theta) ** 30 + 9.82087262849753e20 * cos(theta) ** 28 - 1.74285908618407e21 * cos(theta) ** 26 + 2.05227972105008e21 * cos(theta) ** 24 - 1.69083344182036e21 * cos(theta) ** 22 + 1.00149365400129e21 * cos(theta) ** 20 - 4.31482526667224e20 * cos(theta) ** 18 + 1.3528038233624e20 * cos(theta) ** 16 - 3.05718378160995e19 * cos(theta) ** 14 + 4.88076708993869e18 * cos(theta) ** 12 - 5.32447318902403e17 * cos(theta) ** 10 + 3.76731593563021e16 * cos(theta) ** 8 - 1.59102332123146e15 * cos(theta) ** 6 + 34789139677072.7 * cos(theta) ** 4 - 296077784485.725 * cos(theta) ** 2 + 411219145.119063 ) * cos(6 * phi) ) # @torch.jit.script def Yl38_m7(theta, phi): return ( 2.90242083005401e-11 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.59493593299292e21 * cos(theta) ** 31 - 9.88860278455613e21 * cos(theta) ** 29 + 2.74984433597931e22 * cos(theta) ** 27 - 4.53143362407858e22 * cos(theta) ** 25 + 4.92547133052019e22 * cos(theta) ** 23 - 3.7198335720048e22 * cos(theta) ** 21 + 2.00298730800259e22 * cos(theta) ** 19 - 7.76668548001003e21 * cos(theta) ** 17 + 2.16448611737984e21 * cos(theta) ** 15 - 4.28005729425393e20 * cos(theta) ** 13 + 5.85692050792643e19 * cos(theta) ** 11 - 5.32447318902403e18 * cos(theta) ** 9 + 3.01385274850417e17 * cos(theta) ** 7 - 9.54613992738876e15 * cos(theta) ** 5 + 139156558708291.0 * cos(theta) ** 3 - 592155568971.451 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl38_m8(theta, phi): return ( 7.68600423582523e-13 * (1.0 - cos(theta) ** 2) ** 4 * ( 4.94430139227807e22 * cos(theta) ** 30 - 2.86769480752128e23 * cos(theta) ** 28 + 7.42457970714413e23 * cos(theta) ** 26 - 1.13285840601964e24 * cos(theta) ** 24 + 1.13285840601964e24 * cos(theta) ** 22 - 7.81165050121009e23 * cos(theta) ** 20 + 3.80567588520491e23 * cos(theta) ** 18 - 1.3203365316017e23 * cos(theta) ** 16 + 3.24672917606977e22 * cos(theta) ** 14 - 5.56407448253011e21 * cos(theta) ** 12 + 6.44261255871907e20 * cos(theta) ** 10 - 4.79202587012162e19 * cos(theta) ** 8 + 2.10969692395292e18 * cos(theta) ** 6 - 4.77306996369438e16 * cos(theta) ** 4 + 417469676124873.0 * cos(theta) ** 2 - 592155568971.451 ) * cos(8 * phi) ) # @torch.jit.script def Yl38_m9(theta, phi): return ( 2.04687378153282e-14 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1.48329041768342e24 * cos(theta) ** 29 - 8.02954546105958e24 * cos(theta) ** 27 + 1.93039072385747e25 * cos(theta) ** 25 - 2.71886017444715e25 * cos(theta) ** 23 + 2.49228849324322e25 * cos(theta) ** 21 - 1.56233010024202e25 * cos(theta) ** 19 + 6.85021659336884e24 * cos(theta) ** 17 - 2.11253845056273e24 * cos(theta) ** 15 + 4.54542084649767e23 * cos(theta) ** 13 - 6.67688937903613e22 * cos(theta) ** 11 + 6.44261255871907e21 * cos(theta) ** 9 - 3.8336206960973e20 * cos(theta) ** 7 + 1.26581815437175e19 * cos(theta) ** 5 - 1.90922798547775e17 * cos(theta) ** 3 + 834939352249746.0 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl38_m10(theta, phi): return ( 5.48619759603045e-16 * (1.0 - cos(theta) ** 2) ** 5 * ( 4.30154221128192e25 * cos(theta) ** 28 - 2.16797727448609e26 * cos(theta) ** 26 + 4.82597680964369e26 * cos(theta) ** 24 - 6.25337840122844e26 * cos(theta) ** 22 + 5.23380583581076e26 * cos(theta) ** 20 - 2.96842719045983e26 * cos(theta) ** 18 + 1.1645368208727e26 * cos(theta) ** 16 - 3.16880767584409e25 * cos(theta) ** 14 + 5.90904710044697e24 * cos(theta) ** 12 - 7.34457831693974e23 * cos(theta) ** 10 + 5.79835130284716e22 * cos(theta) ** 8 - 2.68353448726811e21 * cos(theta) ** 6 + 6.32909077185875e19 * cos(theta) ** 4 - 5.72768395643326e17 * cos(theta) ** 2 + 834939352249746.0 ) * cos(10 * phi) ) # @torch.jit.script def Yl38_m11(theta, phi): return ( 1.48113413086296e-17 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.20443181915894e27 * cos(theta) ** 27 - 5.63674091366382e27 * cos(theta) ** 25 + 1.15823443431448e28 * cos(theta) ** 23 - 1.37574324827026e28 * cos(theta) ** 21 + 1.04676116716215e28 * cos(theta) ** 19 - 5.3431689428277e27 * cos(theta) ** 17 + 1.86325891339633e27 * cos(theta) ** 15 - 4.43633074618173e26 * cos(theta) ** 13 + 7.09085652053637e25 * cos(theta) ** 11 - 7.34457831693974e24 * cos(theta) ** 9 + 4.63868104227773e23 * cos(theta) ** 7 - 1.61012069236087e22 * cos(theta) ** 5 + 2.5316363087435e20 * cos(theta) ** 3 - 1.14553679128665e18 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl38_m12(theta, phi): return ( 4.03113651248321e-19 * (1.0 - cos(theta) ** 2) ** 6 * ( 3.25196591172913e28 * cos(theta) ** 26 - 1.40918522841596e29 * cos(theta) ** 24 + 2.66393919892331e29 * cos(theta) ** 22 - 2.88906082136754e29 * cos(theta) ** 20 + 1.98884621760809e29 * cos(theta) ** 18 - 9.08338720280709e28 * cos(theta) ** 16 + 2.79488837009449e28 * cos(theta) ** 14 - 5.76722997003625e27 * cos(theta) ** 12 + 7.79994217259e26 * cos(theta) ** 10 - 6.61012048524577e25 * cos(theta) ** 8 + 3.24707672959441e24 * cos(theta) ** 6 - 8.05060346180433e22 * cos(theta) ** 4 + 7.5949089262305e20 * cos(theta) ** 2 - 1.14553679128665e18 ) * cos(12 * phi) ) # @torch.jit.script def Yl38_m13(theta, phi): return ( 1.10702070454543e-20 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 8.45511137049574e29 * cos(theta) ** 25 - 3.38204454819829e30 * cos(theta) ** 23 + 5.86066623763129e30 * cos(theta) ** 21 - 5.77812164273508e30 * cos(theta) ** 19 + 3.57992319169456e30 * cos(theta) ** 17 - 1.45334195244913e30 * cos(theta) ** 15 + 3.91284371813228e29 * cos(theta) ** 13 - 6.9206759640435e28 * cos(theta) ** 11 + 7.79994217259001e27 * cos(theta) ** 9 - 5.28809638819661e26 * cos(theta) ** 7 + 1.94824603775665e25 * cos(theta) ** 5 - 3.22024138472173e23 * cos(theta) ** 3 + 1.5189817852461e21 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl38_m14(theta, phi): return ( 3.0703230101837e-22 * (1.0 - cos(theta) ** 2) ** 7 * ( 2.11377784262393e31 * cos(theta) ** 24 - 7.77870246085608e31 * cos(theta) ** 22 + 1.23073990990257e32 * cos(theta) ** 20 - 1.09784311211966e32 * cos(theta) ** 18 + 6.08586942588075e31 * cos(theta) ** 16 - 2.1800129286737e31 * cos(theta) ** 14 + 5.08669683357197e30 * cos(theta) ** 12 - 7.61274356044784e29 * cos(theta) ** 10 + 7.019947955331e28 * cos(theta) ** 8 - 3.70166747173763e27 * cos(theta) ** 6 + 9.74123018878324e25 * cos(theta) ** 4 - 9.66072415416519e23 * cos(theta) ** 2 + 1.5189817852461e21 ) * cos(14 * phi) ) # @torch.jit.script def Yl38_m15(theta, phi): return ( 8.60875824089541e-24 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 5.07306682229744e32 * cos(theta) ** 23 - 1.71131454138834e33 * cos(theta) ** 21 + 2.46147981980514e33 * cos(theta) ** 19 - 1.9761176018154e33 * cos(theta) ** 17 + 9.7373910814092e32 * cos(theta) ** 15 - 3.05201810014318e32 * cos(theta) ** 13 + 6.10403620028636e31 * cos(theta) ** 11 - 7.61274356044785e30 * cos(theta) ** 9 + 5.6159583642648e29 * cos(theta) ** 7 - 2.22100048304258e28 * cos(theta) ** 5 + 3.89649207551329e26 * cos(theta) ** 3 - 1.93214483083304e24 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl38_m16(theta, phi): return ( 2.44275389142847e-25 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.16680536912841e34 * cos(theta) ** 22 - 3.59376053691551e34 * cos(theta) ** 20 + 4.67681165762977e34 * cos(theta) ** 18 - 3.35939992308617e34 * cos(theta) ** 16 + 1.46060866221138e34 * cos(theta) ** 14 - 3.96762353018614e33 * cos(theta) ** 12 + 6.714439820315e32 * cos(theta) ** 10 - 6.85146920440306e31 * cos(theta) ** 8 + 3.93117085498536e30 * cos(theta) ** 6 - 1.11050024152129e29 * cos(theta) ** 4 + 1.16894762265399e27 * cos(theta) ** 2 - 1.93214483083304e24 ) * cos(16 * phi) ) # @torch.jit.script def Yl38_m17(theta, phi): return ( 7.02242369104875e-27 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 2.56697181208251e35 * cos(theta) ** 21 - 7.18752107383102e35 * cos(theta) ** 19 + 8.41826098373359e35 * cos(theta) ** 17 - 5.37503987693788e35 * cos(theta) ** 15 + 2.04485212709593e35 * cos(theta) ** 13 - 4.76114823622336e34 * cos(theta) ** 11 + 6.714439820315e33 * cos(theta) ** 9 - 5.48117536352245e32 * cos(theta) ** 7 + 2.35870251299122e31 * cos(theta) ** 5 - 4.44200096608516e29 * cos(theta) ** 3 + 2.33789524530798e27 * cos(theta) ) * cos(17 * phi) ) # @torch.jit.script def Yl38_m18(theta, phi): return ( 2.04778033341685e-28 * (1.0 - cos(theta) ** 2) ** 9 * ( 5.39064080537326e36 * cos(theta) ** 20 - 1.36562900402789e37 * cos(theta) ** 18 + 1.43110436723471e37 * cos(theta) ** 16 - 8.06255981540682e36 * cos(theta) ** 14 + 2.65830776522471e36 * cos(theta) ** 12 - 5.2372630598457e35 * cos(theta) ** 10 + 6.0429958382835e34 * cos(theta) ** 8 - 3.83682275446571e33 * cos(theta) ** 6 + 1.17935125649561e32 * cos(theta) ** 4 - 1.33260028982555e30 * cos(theta) ** 2 + 2.33789524530798e27 ) * cos(18 * phi) ) # @torch.jit.script def Yl38_m19(theta, phi): return ( 6.06500191198304e-30 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.07812816107465e38 * cos(theta) ** 19 - 2.45813220725021e38 * cos(theta) ** 17 + 2.28976698757554e38 * cos(theta) ** 15 - 1.12875837415695e38 * cos(theta) ** 13 + 3.18996931826965e37 * cos(theta) ** 11 - 5.2372630598457e36 * cos(theta) ** 9 + 4.8343966706268e35 * cos(theta) ** 7 - 2.30209365267943e34 * cos(theta) ** 5 + 4.71740502598244e32 * cos(theta) ** 3 - 2.66520057965109e30 * cos(theta) ) * cos(19 * phi) ) # @torch.jit.script def Yl38_m20(theta, phi): return ( 1.82700672042423e-31 * (1.0 - cos(theta) ** 2) ** 10 * ( 2.04844350604184e39 * cos(theta) ** 18 - 4.17882475232535e39 * cos(theta) ** 16 + 3.4346504813633e39 * cos(theta) ** 14 - 1.46738588640404e39 * cos(theta) ** 12 + 3.50896625009662e38 * cos(theta) ** 10 - 4.71353675386113e37 * cos(theta) ** 8 + 3.38407766943876e36 * cos(theta) ** 6 - 1.15104682633971e35 * cos(theta) ** 4 + 1.41522150779473e33 * cos(theta) ** 2 - 2.66520057965109e30 ) * cos(20 * phi) ) # @torch.jit.script def Yl38_m21(theta, phi): return ( 5.60632004517403e-33 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 3.68719831087531e40 * cos(theta) ** 17 - 6.68611960372056e40 * cos(theta) ** 15 + 4.80851067390862e40 * cos(theta) ** 13 - 1.76086306368485e40 * cos(theta) ** 11 + 3.50896625009662e39 * cos(theta) ** 9 - 3.7708294030889e38 * cos(theta) ** 7 + 2.03044660166326e37 * cos(theta) ** 5 - 4.60418730535886e35 * cos(theta) ** 3 + 2.83044301558946e33 * cos(theta) ) * cos(21 * phi) ) # @torch.jit.script def Yl38_m22(theta, phi): return ( 1.75540689794278e-34 * (1.0 - cos(theta) ** 2) ** 11 * ( 6.26823712848803e41 * cos(theta) ** 16 - 1.00291794055808e42 * cos(theta) ** 14 + 6.25106387608121e41 * cos(theta) ** 12 - 1.93694937005333e41 * cos(theta) ** 10 + 3.15806962508696e40 * cos(theta) ** 8 - 2.63958058216223e39 * cos(theta) ** 6 + 1.01522330083163e38 * cos(theta) ** 4 - 1.38125619160766e36 * cos(theta) ** 2 + 2.83044301558946e33 ) * cos(22 * phi) ) # @torch.jit.script def Yl38_m23(theta, phi): return ( 5.61892055563194e-36 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.00291794055808e43 * cos(theta) ** 15 - 1.40408511678132e43 * cos(theta) ** 13 + 7.50127665129745e42 * cos(theta) ** 11 - 1.93694937005333e42 * cos(theta) ** 9 + 2.52645570006957e41 * cos(theta) ** 7 - 1.58374834929734e40 * cos(theta) ** 5 + 4.06089320332651e38 * cos(theta) ** 3 - 2.76251238321531e36 * cos(theta) ) * cos(23 * phi) ) # @torch.jit.script def Yl38_m24(theta, phi): return ( 1.84251663480048e-37 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.50437691083713e44 * cos(theta) ** 14 - 1.82531065181571e44 * cos(theta) ** 12 + 8.2514043164272e43 * cos(theta) ** 10 - 1.743254433048e43 * cos(theta) ** 8 + 1.7685189900487e42 * cos(theta) ** 6 - 7.9187417464867e40 * cos(theta) ** 4 + 1.21826796099795e39 * cos(theta) ** 2 - 2.76251238321531e36 ) * cos(24 * phi) ) # @torch.jit.script def Yl38_m25(theta, phi): return ( 6.20407622341159e-39 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 2.10612767517198e45 * cos(theta) ** 13 - 2.19037278217886e45 * cos(theta) ** 11 + 8.2514043164272e44 * cos(theta) ** 9 - 1.3946035464384e44 * cos(theta) ** 7 + 1.06111139402922e43 * cos(theta) ** 5 - 3.16749669859468e41 * cos(theta) ** 3 + 2.43653592199591e39 * cos(theta) ) * cos(25 * phi) ) # @torch.jit.script def Yl38_m26(theta, phi): return ( 2.15087643657668e-40 * (1.0 - cos(theta) ** 2) ** 13 * ( 2.73796597772357e46 * cos(theta) ** 12 - 2.40941006039674e46 * cos(theta) ** 10 + 7.42626388478448e45 * cos(theta) ** 8 - 9.7622248250688e44 * cos(theta) ** 6 + 5.30555697014609e43 * cos(theta) ** 4 - 9.50249009578404e41 * cos(theta) ** 2 + 2.43653592199591e39 ) * cos(26 * phi) ) # @torch.jit.script def Yl38_m27(theta, phi): return ( 7.70137304226747e-42 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 3.28555917326829e47 * cos(theta) ** 11 - 2.40941006039674e47 * cos(theta) ** 9 + 5.94101110782758e46 * cos(theta) ** 7 - 5.85733489504128e45 * cos(theta) ** 5 + 2.12222278805844e44 * cos(theta) ** 3 - 1.90049801915681e42 * cos(theta) ) * cos(27 * phi) ) # @torch.jit.script def Yl38_m28(theta, phi): return ( 2.85824761702743e-43 * (1.0 - cos(theta) ** 2) ** 14 * ( 3.61411509059511e48 * cos(theta) ** 10 - 2.16846905435707e48 * cos(theta) ** 8 + 4.15870777547931e47 * cos(theta) ** 6 - 2.92866744752064e46 * cos(theta) ** 4 + 6.3666683641753e44 * cos(theta) ** 2 - 1.90049801915681e42 ) * cos(28 * phi) ) # @torch.jit.script def Yl38_m29(theta, phi): return ( 1.1042373906736e-44 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 3.61411509059511e49 * cos(theta) ** 9 - 1.73477524348565e49 * cos(theta) ** 7 + 2.49522466528759e48 * cos(theta) ** 5 - 1.17146697900826e47 * cos(theta) ** 3 + 1.27333367283506e45 * cos(theta) ) * cos(29 * phi) ) # @torch.jit.script def Yl38_m30(theta, phi): return ( 4.46361509559185e-46 * (1.0 - cos(theta) ** 2) ** 15 * ( 3.2527035815356e50 * cos(theta) ** 8 - 1.21434267043996e50 * cos(theta) ** 6 + 1.24761233264379e49 * cos(theta) ** 4 - 3.51440093702477e47 * cos(theta) ** 2 + 1.27333367283506e45 ) * cos(30 * phi) ) # @torch.jit.script def Yl38_m31(theta, phi): return ( 1.89984075045795e-47 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 2.60216286522848e51 * cos(theta) ** 7 - 7.28605602263975e50 * cos(theta) ** 5 + 4.99044933057517e49 * cos(theta) ** 3 - 7.02880187404954e47 * cos(theta) ) * cos(31 * phi) ) # @torch.jit.script def Yl38_m32(theta, phi): return ( 8.58260566150099e-49 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.82151400565994e52 * cos(theta) ** 6 - 3.64302801131987e51 * cos(theta) ** 4 + 1.49713479917255e50 * cos(theta) ** 2 - 7.02880187404954e47 ) * cos(32 * phi) ) # @torch.jit.script def Yl38_m33(theta, phi): return ( 4.15828603021903e-50 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 1.09290840339596e53 * cos(theta) ** 5 - 1.45721120452795e52 * cos(theta) ** 3 + 2.9942695983451e50 * cos(theta) ) * cos(33 * phi) ) # @torch.jit.script def Yl38_m34(theta, phi): return ( 2.19160916965865e-51 * (1.0 - cos(theta) ** 2) ** 17 * ( 5.46454201697981e53 * cos(theta) ** 4 - 4.37163361358385e52 * cos(theta) ** 2 + 2.9942695983451e50 ) * cos(34 * phi) ) # @torch.jit.script def Yl38_m35(theta, phi): return ( 1.28254225711204e-52 * (1.0 - cos(theta) ** 2) ** 17.5 * (2.18581680679192e54 * cos(theta) ** 3 - 8.7432672271677e52 * cos(theta)) * cos(35 * phi) ) # @torch.jit.script def Yl38_m36(theta, phi): return ( 8.60786001928606e-54 * (1.0 - cos(theta) ** 2) ** 18 * (6.55745042037577e54 * cos(theta) ** 2 - 8.7432672271677e52) * cos(36 * phi) ) # @torch.jit.script def Yl38_m37(theta, phi): return ( 9.21753038048947 * (1.0 - cos(theta) ** 2) ** 18.5 * cos(37 * phi) * cos(theta) ) # @torch.jit.script def Yl38_m38(theta, phi): return 1.0573232483571 * (1.0 - cos(theta) ** 2) ** 19 * cos(38 * phi) # @torch.jit.script def Yl39_m_minus_39(theta, phi): return 1.064079376195 * (1.0 - cos(theta) ** 2) ** 19.5 * sin(39 * phi) # @torch.jit.script def Yl39_m_minus_38(theta, phi): return 9.39769459334552 * (1.0 - cos(theta) ** 2) ** 19 * sin(38 * phi) * cos(theta) # @torch.jit.script def Yl39_m_minus_37(theta, phi): return ( 1.15485099036113e-55 * (1.0 - cos(theta) ** 2) ** 18.5 * (5.04923682368935e56 * cos(theta) ** 2 - 6.55745042037577e54) * sin(37 * phi) ) # @torch.jit.script def Yl39_m_minus_36(theta, phi): return ( 1.743786754927e-54 * (1.0 - cos(theta) ** 2) ** 18 * (1.68307894122978e56 * cos(theta) ** 3 - 6.55745042037577e54 * cos(theta)) * sin(36 * phi) ) # @torch.jit.script def Yl39_m_minus_35(theta, phi): return ( 3.02032725709922e-53 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 4.20769735307446e55 * cos(theta) ** 4 - 3.27872521018789e54 * cos(theta) ** 2 + 2.18581680679192e52 ) * sin(35 * phi) ) # @torch.jit.script def Yl39_m_minus_34(theta, phi): return ( 5.80971547822379e-52 * (1.0 - cos(theta) ** 2) ** 17 * ( 8.41539470614891e54 * cos(theta) ** 5 - 1.09290840339596e54 * cos(theta) ** 3 + 2.18581680679192e52 * cos(theta) ) * sin(34 * phi) ) # @torch.jit.script def Yl39_m_minus_33(theta, phi): return ( 1.21588337207176e-50 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 1.40256578435815e54 * cos(theta) ** 6 - 2.73227100848991e53 * cos(theta) ** 4 + 1.09290840339596e52 * cos(theta) ** 2 - 4.99044933057517e49 ) * sin(33 * phi) ) # @torch.jit.script def Yl39_m_minus_32(theta, phi): return ( 2.72965140034074e-49 * (1.0 - cos(theta) ** 2) ** 16 * ( 2.00366540622593e53 * cos(theta) ** 7 - 5.46454201697981e52 * cos(theta) ** 5 + 3.64302801131987e51 * cos(theta) ** 3 - 4.99044933057517e49 * cos(theta) ) * sin(32 * phi) ) # @torch.jit.script def Yl39_m_minus_31(theta, phi): return ( 6.50551009827291e-48 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 2.50458175778241e52 * cos(theta) ** 8 - 9.10757002829969e51 * cos(theta) ** 6 + 9.10757002829969e50 * cos(theta) ** 4 - 2.49522466528759e49 * cos(theta) ** 2 + 8.78600234256192e46 ) * sin(31 * phi) ) # @torch.jit.script def Yl39_m_minus_30(theta, phi): return ( 1.63287007543161e-46 * (1.0 - cos(theta) ** 2) ** 15 * ( 2.78286861975824e51 * cos(theta) ** 9 - 1.30108143261424e51 * cos(theta) ** 7 + 1.82151400565994e50 * cos(theta) ** 5 - 8.31741555095862e48 * cos(theta) ** 3 + 8.78600234256192e46 * cos(theta) ) * sin(30 * phi) ) # @torch.jit.script def Yl39_m_minus_29(theta, phi): return ( 4.28919879632039e-45 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 2.78286861975824e50 * cos(theta) ** 10 - 1.6263517907678e50 * cos(theta) ** 8 + 3.0358566760999e49 * cos(theta) ** 6 - 2.07935388773965e48 * cos(theta) ** 4 + 4.39300117128096e46 * cos(theta) ** 2 - 1.27333367283506e44 ) * sin(29 * phi) ) # @torch.jit.script def Yl39_m_minus_28(theta, phi): return ( 1.1730782277043e-43 * (1.0 - cos(theta) ** 2) ** 14 * ( 2.52988056341658e49 * cos(theta) ** 11 - 1.80705754529756e49 * cos(theta) ** 9 + 4.33693810871414e48 * cos(theta) ** 7 - 4.15870777547931e47 * cos(theta) ** 5 + 1.46433372376032e46 * cos(theta) ** 3 - 1.27333367283506e44 * cos(theta) ) * sin(28 * phi) ) # @torch.jit.script def Yl39_m_minus_27(theta, phi): return ( 3.326250851581e-42 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 2.10823380284715e48 * cos(theta) ** 12 - 1.80705754529756e48 * cos(theta) ** 10 + 5.42117263589267e47 * cos(theta) ** 8 - 6.93117962579885e46 * cos(theta) ** 6 + 3.6608343094008e45 * cos(theta) ** 4 - 6.3666683641753e43 * cos(theta) ** 2 + 1.58374834929734e41 ) * sin(27 * phi) ) # @torch.jit.script def Yl39_m_minus_26(theta, phi): return ( 9.74313326210721e-41 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.62171830988242e47 * cos(theta) ** 13 - 1.64277958663414e47 * cos(theta) ** 11 + 6.02352515099186e46 * cos(theta) ** 9 - 9.90168517971264e45 * cos(theta) ** 7 + 7.3216686188016e44 * cos(theta) ** 5 - 2.12222278805844e43 * cos(theta) ** 3 + 1.58374834929734e41 * cos(theta) ) * sin(26 * phi) ) # @torch.jit.script def Yl39_m_minus_25(theta, phi): return ( 2.93913367583875e-39 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 1.15837022134459e46 * cos(theta) ** 14 - 1.36898298886179e46 * cos(theta) ** 12 + 6.02352515099186e45 * cos(theta) ** 10 - 1.23771064746408e45 * cos(theta) ** 8 + 1.2202781031336e44 * cos(theta) ** 6 - 5.30555697014609e42 * cos(theta) ** 4 + 7.9187417464867e40 * cos(theta) ** 2 - 1.74038280142565e38 ) * sin(25 * phi) ) # @torch.jit.script def Yl39_m_minus_24(theta, phi): return ( 9.10657262304068e-38 * (1.0 - cos(theta) ** 2) ** 12 * ( 7.72246814229725e44 * cos(theta) ** 15 - 1.05306383758599e45 * cos(theta) ** 13 + 5.47593195544714e44 * cos(theta) ** 11 - 1.37523405273787e44 * cos(theta) ** 9 + 1.743254433048e43 * cos(theta) ** 7 - 1.06111139402922e42 * cos(theta) ** 5 + 2.63958058216223e40 * cos(theta) ** 3 - 1.74038280142565e38 * cos(theta) ) * sin(24 * phi) ) # @torch.jit.script def Yl39_m_minus_23(theta, phi): return ( 2.89124717480577e-36 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 4.82654258893578e43 * cos(theta) ** 16 - 7.52188455418563e43 * cos(theta) ** 14 + 4.56327662953929e43 * cos(theta) ** 12 - 1.37523405273787e43 * cos(theta) ** 10 + 2.17906804131e42 * cos(theta) ** 8 - 1.7685189900487e41 * cos(theta) ** 6 + 6.59895145540558e39 * cos(theta) ** 4 - 8.70191400712824e37 * cos(theta) ** 2 + 1.72657023950957e35 ) * sin(23 * phi) ) # @torch.jit.script def Yl39_m_minus_22(theta, phi): return ( 9.38653981934599e-35 * (1.0 - cos(theta) ** 2) ** 11 * ( 2.83914269937399e42 * cos(theta) ** 17 - 5.01458970279042e42 * cos(theta) ** 15 + 3.5102127919533e42 * cos(theta) ** 13 - 1.25021277521624e42 * cos(theta) ** 11 + 2.42118671256667e41 * cos(theta) ** 9 - 2.52645570006957e40 * cos(theta) ** 7 + 1.31979029108112e39 * cos(theta) ** 5 - 2.90063800237608e37 * cos(theta) ** 3 + 1.72657023950957e35 * cos(theta) ) * sin(22 * phi) ) # @torch.jit.script def Yl39_m_minus_21(theta, phi): return ( 3.1103316302064e-33 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.57730149965222e41 * cos(theta) ** 18 - 3.13411856424401e41 * cos(theta) ** 16 + 2.50729485139521e41 * cos(theta) ** 14 - 1.04184397934687e41 * cos(theta) ** 12 + 2.42118671256667e40 * cos(theta) ** 10 - 3.15806962508696e39 * cos(theta) ** 8 + 2.19965048513519e38 * cos(theta) ** 6 - 7.2515950059402e36 * cos(theta) ** 4 + 8.63285119754786e34 * cos(theta) ** 2 - 1.57246834199415e32 ) * sin(21 * phi) ) # @torch.jit.script def Yl39_m_minus_20(theta, phi): return ( 1.05016882684848e-31 * (1.0 - cos(theta) ** 2) ** 10 * ( 8.30158684027482e39 * cos(theta) ** 19 - 1.84359915543766e40 * cos(theta) ** 17 + 1.67152990093014e40 * cos(theta) ** 15 - 8.01418445651438e39 * cos(theta) ** 13 + 2.20107882960606e39 * cos(theta) ** 11 - 3.50896625009662e38 * cos(theta) ** 9 + 3.14235783590742e37 * cos(theta) ** 7 - 1.45031900118804e36 * cos(theta) ** 5 + 2.87761706584929e34 * cos(theta) ** 3 - 1.57246834199415e32 * cos(theta) ) * sin(20 * phi) ) # @torch.jit.script def Yl39_m_minus_19(theta, phi): return ( 3.60744838710617e-30 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 4.15079342013741e38 * cos(theta) ** 20 - 1.02422175302092e39 * cos(theta) ** 18 + 1.04470618808134e39 * cos(theta) ** 16 - 5.72441746893884e38 * cos(theta) ** 14 + 1.83423235800505e38 * cos(theta) ** 12 - 3.50896625009662e37 * cos(theta) ** 10 + 3.92794729488427e36 * cos(theta) ** 8 - 2.4171983353134e35 * cos(theta) ** 6 + 7.19404266462321e33 * cos(theta) ** 4 - 7.86234170997073e31 * cos(theta) ** 2 + 1.33260028982555e29 ) * sin(19 * phi) ) # @torch.jit.script def Yl39_m_minus_18(theta, phi): return ( 1.25899431882528e-28 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.97656829530353e37 * cos(theta) ** 21 - 5.39064080537326e37 * cos(theta) ** 19 + 6.14533051812552e37 * cos(theta) ** 17 - 3.81627831262589e37 * cos(theta) ** 15 + 1.41094796769619e37 * cos(theta) ** 13 - 3.18996931826965e36 * cos(theta) ** 11 + 4.36438588320475e35 * cos(theta) ** 9 - 3.45314047901914e34 * cos(theta) ** 7 + 1.43880853292464e33 * cos(theta) ** 5 - 2.62078056999024e31 * cos(theta) ** 3 + 1.33260028982555e29 * cos(theta) ) * sin(18 * phi) ) # @torch.jit.script def Yl39_m_minus_17(theta, phi): return ( 4.45833336048602e-27 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 8.98440134228877e35 * cos(theta) ** 22 - 2.69532040268663e36 * cos(theta) ** 20 + 3.41407251006973e36 * cos(theta) ** 18 - 2.38517394539118e36 * cos(theta) ** 16 + 1.00781997692585e36 * cos(theta) ** 14 - 2.65830776522471e35 * cos(theta) ** 12 + 4.36438588320475e34 * cos(theta) ** 10 - 4.31642559877393e33 * cos(theta) ** 8 + 2.39801422154107e32 * cos(theta) ** 6 - 6.5519514249756e30 * cos(theta) ** 4 + 6.66300144912773e28 * cos(theta) ** 2 - 1.06267965695817e26 ) * sin(17 * phi) ) # @torch.jit.script def Yl39_m_minus_16(theta, phi): return ( 1.60003863775068e-25 * (1.0 - cos(theta) ** 2) ** 8 * ( 3.90626145316903e34 * cos(theta) ** 23 - 1.28348590604125e35 * cos(theta) ** 21 + 1.79688026845775e35 * cos(theta) ** 19 - 1.40304349728893e35 * cos(theta) ** 17 + 6.71879984617235e34 * cos(theta) ** 15 - 2.04485212709593e34 * cos(theta) ** 13 + 3.96762353018614e33 * cos(theta) ** 11 - 4.79602844308214e32 * cos(theta) ** 9 + 3.42573460220153e31 * cos(theta) ** 7 - 1.31039028499512e30 * cos(theta) ** 5 + 2.22100048304258e28 * cos(theta) ** 3 - 1.06267965695817e26 * cos(theta) ) * sin(16 * phi) ) # @torch.jit.script def Yl39_m_minus_15(theta, phi): return ( 5.81322905778663e-24 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.62760893882043e33 * cos(theta) ** 24 - 5.83402684564206e33 * cos(theta) ** 22 + 8.98440134228877e33 * cos(theta) ** 20 - 7.79468609604962e33 * cos(theta) ** 18 + 4.19924990385772e33 * cos(theta) ** 16 - 1.46060866221138e33 * cos(theta) ** 14 + 3.30635294182178e32 * cos(theta) ** 12 - 4.79602844308214e31 * cos(theta) ** 10 + 4.28216825275191e30 * cos(theta) ** 8 - 2.1839838083252e29 * cos(theta) ** 6 + 5.55250120760644e27 * cos(theta) ** 4 - 5.31339828479086e25 * cos(theta) ** 2 + 8.05060346180433e22 ) * sin(15 * phi) ) # @torch.jit.script def Yl39_m_minus_14(theta, phi): return ( 2.13591674242462e-22 * (1.0 - cos(theta) ** 2) ** 7 * ( 6.51043575528172e31 * cos(theta) ** 25 - 2.53653341114872e32 * cos(theta) ** 23 + 4.27828635347084e32 * cos(theta) ** 21 - 4.1024663663419e32 * cos(theta) ** 19 + 2.47014700226925e32 * cos(theta) ** 17 - 9.7373910814092e31 * cos(theta) ** 15 + 2.54334841678598e31 * cos(theta) ** 13 - 4.3600258573474e30 * cos(theta) ** 11 + 4.7579647252799e29 * cos(theta) ** 9 - 3.119976869036e28 * cos(theta) ** 7 + 1.11050024152129e27 * cos(theta) ** 5 - 1.77113276159695e25 * cos(theta) ** 3 + 8.05060346180433e22 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl39_m_minus_13(theta, phi): return ( 7.92882675780294e-21 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 2.50401375203143e30 * cos(theta) ** 26 - 1.05688892131197e31 * cos(theta) ** 24 + 1.94467561521402e31 * cos(theta) ** 22 - 2.05123318317095e31 * cos(theta) ** 20 + 1.37230389014958e31 * cos(theta) ** 18 - 6.08586942588075e30 * cos(theta) ** 16 + 1.81667744056142e30 * cos(theta) ** 14 - 3.63335488112284e29 * cos(theta) ** 12 + 4.7579647252799e28 * cos(theta) ** 10 - 3.899971086295e27 * cos(theta) ** 8 + 1.85083373586881e26 * cos(theta) ** 6 - 4.42783190399238e24 * cos(theta) ** 4 + 4.02530173090216e22 * cos(theta) ** 2 - 5.84223763556192e19 ) * sin(13 * phi) ) # @torch.jit.script def Yl39_m_minus_12(theta, phi): return ( 2.97093043392762e-19 * (1.0 - cos(theta) ** 2) ** 6 * ( 9.27412500752381e28 * cos(theta) ** 27 - 4.22755568524787e29 * cos(theta) ** 25 + 8.45511137049574e29 * cos(theta) ** 23 - 9.76777706271882e29 * cos(theta) ** 21 + 7.22265205341885e29 * cos(theta) ** 19 - 3.57992319169456e29 * cos(theta) ** 17 + 1.21111829370761e29 * cos(theta) ** 15 - 2.79488837009449e28 * cos(theta) ** 13 + 4.32542247752718e27 * cos(theta) ** 11 - 4.33330120699445e26 * cos(theta) ** 9 + 2.64404819409831e25 * cos(theta) ** 7 - 8.85566380798476e23 * cos(theta) ** 5 + 1.34176724363405e22 * cos(theta) ** 3 - 5.84223763556192e19 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl39_m_minus_11(theta, phi): return ( 1.12268155211275e-17 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 3.31218750268708e27 * cos(theta) ** 28 - 1.62598295586456e28 * cos(theta) ** 26 + 3.52296307103989e28 * cos(theta) ** 24 - 4.43989866487219e28 * cos(theta) ** 22 + 3.61132602670942e28 * cos(theta) ** 20 - 1.98884621760809e28 * cos(theta) ** 18 + 7.56948933567257e27 * cos(theta) ** 16 - 1.99634883578178e27 * cos(theta) ** 14 + 3.60451873127265e26 * cos(theta) ** 12 - 4.33330120699445e25 * cos(theta) ** 10 + 3.30506024262288e24 * cos(theta) ** 8 - 1.47594396799746e23 * cos(theta) ** 6 + 3.35441810908514e21 * cos(theta) ** 4 - 2.92111881778096e19 * cos(theta) ** 2 + 4.09120282602375e16 ) * sin(11 * phi) ) # @torch.jit.script def Yl39_m_minus_10(theta, phi): return ( 4.27504398551492e-16 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.14213362161623e26 * cos(theta) ** 29 - 6.02215909579468e26 * cos(theta) ** 27 + 1.40918522841596e27 * cos(theta) ** 25 - 1.93039072385747e27 * cos(theta) ** 23 + 1.71967906033782e27 * cos(theta) ** 21 - 1.04676116716215e27 * cos(theta) ** 19 + 4.45264078568975e26 * cos(theta) ** 17 - 1.33089922385452e26 * cos(theta) ** 15 + 2.77270671636358e25 * cos(theta) ** 13 - 3.93936473363132e24 * cos(theta) ** 11 + 3.67228915846987e23 * cos(theta) ** 9 - 2.10849138285351e22 * cos(theta) ** 7 + 6.70883621817027e20 * cos(theta) ** 5 - 9.73706272593654e18 * cos(theta) ** 3 + 4.09120282602375e16 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl39_m_minus_9(theta, phi): return ( 1.63907661763532e-14 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 3.80711207205411e24 * cos(theta) ** 30 - 2.15077110564096e25 * cos(theta) ** 28 + 5.41994318621522e25 * cos(theta) ** 26 - 8.04329468273948e25 * cos(theta) ** 24 + 7.81672300153555e25 * cos(theta) ** 22 - 5.23380583581076e25 * cos(theta) ** 20 + 2.47368932538319e25 * cos(theta) ** 18 - 8.31812014909074e24 * cos(theta) ** 16 + 1.98050479740256e24 * cos(theta) ** 14 - 3.28280394469276e23 * cos(theta) ** 12 + 3.67228915846987e22 * cos(theta) ** 10 - 2.63561422856689e21 * cos(theta) ** 8 + 1.11813936969505e20 * cos(theta) ** 6 - 2.43426568148413e18 * cos(theta) ** 4 + 2.04560141301188e16 * cos(theta) ** 2 - 27831311741658.2 ) * sin(9 * phi) ) # @torch.jit.script def Yl39_m_minus_8(theta, phi): return ( 6.32267298839384e-13 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.22810066840455e23 * cos(theta) ** 31 - 7.4164520884171e23 * cos(theta) ** 29 + 2.00738636526489e24 * cos(theta) ** 27 - 3.21731787309579e24 * cos(theta) ** 25 + 3.39857521805893e24 * cos(theta) ** 23 - 2.49228849324322e24 * cos(theta) ** 21 + 1.30194175020168e24 * cos(theta) ** 19 - 4.89301185240632e23 * cos(theta) ** 17 + 1.3203365316017e23 * cos(theta) ** 15 - 2.52523380360982e22 * cos(theta) ** 13 + 3.33844468951806e21 * cos(theta) ** 11 - 2.92846025396321e20 * cos(theta) ** 9 + 1.59734195670721e19 * cos(theta) ** 7 - 4.86853136296827e17 * cos(theta) ** 5 + 6.81867137670626e15 * cos(theta) ** 3 - 27831311741658.2 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl39_m_minus_7(theta, phi): return ( 2.45202355926937e-11 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 3.83781458876422e21 * cos(theta) ** 32 - 2.47215069613903e22 * cos(theta) ** 30 + 7.1692370188032e22 * cos(theta) ** 28 - 1.23742995119069e23 * cos(theta) ** 26 + 1.41607300752456e23 * cos(theta) ** 24 - 1.13285840601964e23 * cos(theta) ** 22 + 6.5097087510084e22 * cos(theta) ** 20 - 2.71833991800351e22 * cos(theta) ** 18 + 8.25210332251065e21 * cos(theta) ** 16 - 1.80373843114987e21 * cos(theta) ** 14 + 2.78203724126505e20 * cos(theta) ** 12 - 2.92846025396321e19 * cos(theta) ** 10 + 1.99667744588401e18 * cos(theta) ** 8 - 8.11421893828044e16 * cos(theta) ** 6 + 1.70466784417656e15 * cos(theta) ** 4 - 13915655870829.1 * cos(theta) ** 2 + 18504861530.3578 ) * sin(7 * phi) ) # @torch.jit.script def Yl39_m_minus_6(theta, phi): return ( 9.55345636639005e-10 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.16297411780734e20 * cos(theta) ** 33 - 7.97467966496462e20 * cos(theta) ** 31 + 2.47215069613903e21 * cos(theta) ** 29 - 4.58307389329885e21 * cos(theta) ** 27 + 5.66429203009822e21 * cos(theta) ** 25 - 4.92547133052019e21 * cos(theta) ** 23 + 3.099861310004e21 * cos(theta) ** 21 - 1.43070522000185e21 * cos(theta) ** 19 + 4.85417842500627e20 * cos(theta) ** 17 - 1.20249228743325e20 * cos(theta) ** 15 + 2.14002864712696e19 * cos(theta) ** 13 - 2.66223659451201e18 * cos(theta) ** 11 + 2.21853049542668e17 * cos(theta) ** 9 - 1.15917413404006e16 * cos(theta) ** 7 + 340933568835313.0 * cos(theta) ** 5 - 4638551956943.03 * cos(theta) ** 3 + 18504861530.3578 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl39_m_minus_5(theta, phi): return ( 3.73685494330611e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 3.42051211119806e18 * cos(theta) ** 34 - 2.49208739530144e19 * cos(theta) ** 32 + 8.24050232046344e19 * cos(theta) ** 30 - 1.63681210474959e20 * cos(theta) ** 28 + 2.17857385773009e20 * cos(theta) ** 26 - 2.05227972105008e20 * cos(theta) ** 24 + 1.40902786818364e20 * cos(theta) ** 22 - 7.15352610000924e19 * cos(theta) ** 20 + 2.69676579167015e19 * cos(theta) ** 18 - 7.51557679645779e18 * cos(theta) ** 16 + 1.52859189080497e18 * cos(theta) ** 14 - 2.21853049542668e17 * cos(theta) ** 12 + 2.21853049542668e16 * cos(theta) ** 10 - 1.44896766755008e15 * cos(theta) ** 8 + 56822261472552.1 * cos(theta) ** 6 - 1159637989235.76 * cos(theta) ** 4 + 9252430765.17892 * cos(theta) ** 2 - 12094680.738796 ) * sin(5 * phi) ) # @torch.jit.script def Yl39_m_minus_4(theta, phi): return ( 1.46644777253264e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 9.77289174628017e16 * cos(theta) ** 35 - 7.55177998576195e17 * cos(theta) ** 33 + 2.65822655498821e18 * cos(theta) ** 31 - 5.6441796715503e18 * cos(theta) ** 29 + 8.06879206566698e18 * cos(theta) ** 27 - 8.20911888420032e18 * cos(theta) ** 25 + 6.12620812253755e18 * cos(theta) ** 23 - 3.4064410000044e18 * cos(theta) ** 21 + 1.4193504166685e18 * cos(theta) ** 19 - 4.42092752732811e17 * cos(theta) ** 17 + 1.01906126053665e17 * cos(theta) ** 15 - 1.70656191955898e16 * cos(theta) ** 13 + 2.01684590493334e15 * cos(theta) ** 11 - 160996407505564.0 * cos(theta) ** 9 + 8117465924650.31 * cos(theta) ** 7 - 231927597847.152 * cos(theta) ** 5 + 3084143588.39297 * cos(theta) ** 3 - 12094680.738796 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl39_m_minus_3(theta, phi): return ( 5.76968467048944e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 2.71469215174449e15 * cos(theta) ** 36 - 2.22111176051822e16 * cos(theta) ** 34 + 8.30695798433815e16 * cos(theta) ** 32 - 1.8813932238501e17 * cos(theta) ** 30 + 2.88171145202392e17 * cos(theta) ** 28 - 3.15735341700012e17 * cos(theta) ** 26 + 2.55258671772398e17 * cos(theta) ** 24 - 1.54838227272927e17 * cos(theta) ** 22 + 7.0967520833425e16 * cos(theta) ** 20 - 2.45607084851562e16 * cos(theta) ** 18 + 6.36913287835406e15 * cos(theta) ** 16 - 1.21897279968499e15 * cos(theta) ** 14 + 168070492077779.0 * cos(theta) ** 12 - 16099640750556.4 * cos(theta) ** 10 + 1014683240581.29 * cos(theta) ** 8 - 38654599641.1919 * cos(theta) ** 6 + 771035897.098243 * cos(theta) ** 4 - 6047340.36939799 * cos(theta) ** 2 + 7813.10125245218 ) * sin(3 * phi) ) # @torch.jit.script def Yl39_m_minus_2(theta, phi): return ( 0.00227445624051009 * (1.0 - cos(theta) ** 2) * ( 73370058155256.6 * cos(theta) ** 37 - 634603360148063.0 * cos(theta) ** 35 + 2.51725999525398e15 * cos(theta) ** 33 - 6.06901039951646e15 * cos(theta) ** 31 + 9.9369360414618e15 * cos(theta) ** 29 - 1.16939015444449e16 * cos(theta) ** 27 + 1.02103468708959e16 * cos(theta) ** 25 - 6.73209683795336e15 * cos(theta) ** 23 + 3.37940575397262e15 * cos(theta) ** 21 - 1.2926688676398e15 * cos(theta) ** 19 + 374654875197298.0 * cos(theta) ** 17 - 81264853312332.5 * cos(theta) ** 15 + 12928499390598.4 * cos(theta) ** 13 - 1463603704596.04 * cos(theta) ** 11 + 112742582286.81 * cos(theta) ** 9 - 5522085663.02742 * cos(theta) ** 7 + 154207179.419649 * cos(theta) ** 5 - 2015780.12313266 * cos(theta) ** 3 + 7813.10125245218 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl39_m_minus_1(theta, phi): return ( 0.0897762193123137 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 1930791004085.7 * cos(theta) ** 38 - 17627871115224.0 * cos(theta) ** 36 + 74037058683940.7 * cos(theta) ** 34 - 189656574984889.0 * cos(theta) ** 32 + 331231201382060.0 * cos(theta) ** 30 - 417639340873032.0 * cos(theta) ** 28 + 392705648880612.0 * cos(theta) ** 26 - 280504034914723.0 * cos(theta) ** 24 + 153609352453301.0 * cos(theta) ** 22 - 64633443381989.9 * cos(theta) ** 20 + 20814159733183.2 * cos(theta) ** 18 - 5079053332020.78 * cos(theta) ** 16 + 923464242185.597 * cos(theta) ** 14 - 121966975383.003 * cos(theta) ** 12 + 11274258228.681 * cos(theta) ** 10 - 690260707.878427 * cos(theta) ** 8 + 25701196.5699414 * cos(theta) ** 6 - 503945.030783166 * cos(theta) ** 4 + 3906.55062622609 * cos(theta) ** 2 - 5.01482750478317 ) * sin(phi) ) # @torch.jit.script def Yl39_m0(theta, phi): return ( 389968157002.95 * cos(theta) ** 39 - 3752810445963.45 * cos(theta) ** 37 + 16662478380077.7 * cos(theta) ** 35 - 45270203818019.4 * cos(theta) ** 33 + 84164322591247.4 * cos(theta) ** 31 - 113438869579507.0 * cos(theta) ** 29 + 114567614550448.0 * cos(theta) ** 27 - 88380731224631.1 * cos(theta) ** 25 + 52607578109899.4 * cos(theta) ** 23 - 24243565139899.0 * cos(theta) ** 21 + 8629065558269.14 * cos(theta) ** 19 - 2353381515891.58 * cos(theta) ** 17 + 484939221456.448 * cos(theta) ** 15 - 73902203560.1263 * cos(theta) ** 13 + 8073349968.75329 * cos(theta) ** 11 - 604128228.954328 * cos(theta) ** 9 + 28921032.2371753 * cos(theta) ** 7 - 793910.688863635 * cos(theta) ** 5 + 10257.2440421658 * cos(theta) ** 3 - 39.501581677147 * cos(theta) ) # @torch.jit.script def Yl39_m1(theta, phi): return ( 0.0897762193123137 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 1930791004085.7 * cos(theta) ** 38 - 17627871115224.0 * cos(theta) ** 36 + 74037058683940.7 * cos(theta) ** 34 - 189656574984889.0 * cos(theta) ** 32 + 331231201382060.0 * cos(theta) ** 30 - 417639340873032.0 * cos(theta) ** 28 + 392705648880612.0 * cos(theta) ** 26 - 280504034914723.0 * cos(theta) ** 24 + 153609352453301.0 * cos(theta) ** 22 - 64633443381989.9 * cos(theta) ** 20 + 20814159733183.2 * cos(theta) ** 18 - 5079053332020.78 * cos(theta) ** 16 + 923464242185.597 * cos(theta) ** 14 - 121966975383.003 * cos(theta) ** 12 + 11274258228.681 * cos(theta) ** 10 - 690260707.878427 * cos(theta) ** 8 + 25701196.5699414 * cos(theta) ** 6 - 503945.030783166 * cos(theta) ** 4 + 3906.55062622609 * cos(theta) ** 2 - 5.01482750478317 ) * cos(phi) ) # @torch.jit.script def Yl39_m2(theta, phi): return ( 0.00227445624051009 * (1.0 - cos(theta) ** 2) * ( 73370058155256.6 * cos(theta) ** 37 - 634603360148063.0 * cos(theta) ** 35 + 2.51725999525398e15 * cos(theta) ** 33 - 6.06901039951646e15 * cos(theta) ** 31 + 9.9369360414618e15 * cos(theta) ** 29 - 1.16939015444449e16 * cos(theta) ** 27 + 1.02103468708959e16 * cos(theta) ** 25 - 6.73209683795336e15 * cos(theta) ** 23 + 3.37940575397262e15 * cos(theta) ** 21 - 1.2926688676398e15 * cos(theta) ** 19 + 374654875197298.0 * cos(theta) ** 17 - 81264853312332.5 * cos(theta) ** 15 + 12928499390598.4 * cos(theta) ** 13 - 1463603704596.04 * cos(theta) ** 11 + 112742582286.81 * cos(theta) ** 9 - 5522085663.02742 * cos(theta) ** 7 + 154207179.419649 * cos(theta) ** 5 - 2015780.12313266 * cos(theta) ** 3 + 7813.10125245218 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl39_m3(theta, phi): return ( 5.76968467048944e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 2.71469215174449e15 * cos(theta) ** 36 - 2.22111176051822e16 * cos(theta) ** 34 + 8.30695798433815e16 * cos(theta) ** 32 - 1.8813932238501e17 * cos(theta) ** 30 + 2.88171145202392e17 * cos(theta) ** 28 - 3.15735341700012e17 * cos(theta) ** 26 + 2.55258671772398e17 * cos(theta) ** 24 - 1.54838227272927e17 * cos(theta) ** 22 + 7.0967520833425e16 * cos(theta) ** 20 - 2.45607084851562e16 * cos(theta) ** 18 + 6.36913287835406e15 * cos(theta) ** 16 - 1.21897279968499e15 * cos(theta) ** 14 + 168070492077779.0 * cos(theta) ** 12 - 16099640750556.4 * cos(theta) ** 10 + 1014683240581.29 * cos(theta) ** 8 - 38654599641.1919 * cos(theta) ** 6 + 771035897.098243 * cos(theta) ** 4 - 6047340.36939799 * cos(theta) ** 2 + 7813.10125245218 ) * cos(3 * phi) ) # @torch.jit.script def Yl39_m4(theta, phi): return ( 1.46644777253264e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 9.77289174628017e16 * cos(theta) ** 35 - 7.55177998576195e17 * cos(theta) ** 33 + 2.65822655498821e18 * cos(theta) ** 31 - 5.6441796715503e18 * cos(theta) ** 29 + 8.06879206566698e18 * cos(theta) ** 27 - 8.20911888420032e18 * cos(theta) ** 25 + 6.12620812253755e18 * cos(theta) ** 23 - 3.4064410000044e18 * cos(theta) ** 21 + 1.4193504166685e18 * cos(theta) ** 19 - 4.42092752732811e17 * cos(theta) ** 17 + 1.01906126053665e17 * cos(theta) ** 15 - 1.70656191955898e16 * cos(theta) ** 13 + 2.01684590493334e15 * cos(theta) ** 11 - 160996407505564.0 * cos(theta) ** 9 + 8117465924650.31 * cos(theta) ** 7 - 231927597847.152 * cos(theta) ** 5 + 3084143588.39297 * cos(theta) ** 3 - 12094680.738796 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl39_m5(theta, phi): return ( 3.73685494330611e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 3.42051211119806e18 * cos(theta) ** 34 - 2.49208739530144e19 * cos(theta) ** 32 + 8.24050232046344e19 * cos(theta) ** 30 - 1.63681210474959e20 * cos(theta) ** 28 + 2.17857385773009e20 * cos(theta) ** 26 - 2.05227972105008e20 * cos(theta) ** 24 + 1.40902786818364e20 * cos(theta) ** 22 - 7.15352610000924e19 * cos(theta) ** 20 + 2.69676579167015e19 * cos(theta) ** 18 - 7.51557679645779e18 * cos(theta) ** 16 + 1.52859189080497e18 * cos(theta) ** 14 - 2.21853049542668e17 * cos(theta) ** 12 + 2.21853049542668e16 * cos(theta) ** 10 - 1.44896766755008e15 * cos(theta) ** 8 + 56822261472552.1 * cos(theta) ** 6 - 1159637989235.76 * cos(theta) ** 4 + 9252430765.17892 * cos(theta) ** 2 - 12094680.738796 ) * cos(5 * phi) ) # @torch.jit.script def Yl39_m6(theta, phi): return ( 9.55345636639005e-10 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.16297411780734e20 * cos(theta) ** 33 - 7.97467966496462e20 * cos(theta) ** 31 + 2.47215069613903e21 * cos(theta) ** 29 - 4.58307389329885e21 * cos(theta) ** 27 + 5.66429203009822e21 * cos(theta) ** 25 - 4.92547133052019e21 * cos(theta) ** 23 + 3.099861310004e21 * cos(theta) ** 21 - 1.43070522000185e21 * cos(theta) ** 19 + 4.85417842500627e20 * cos(theta) ** 17 - 1.20249228743325e20 * cos(theta) ** 15 + 2.14002864712696e19 * cos(theta) ** 13 - 2.66223659451201e18 * cos(theta) ** 11 + 2.21853049542668e17 * cos(theta) ** 9 - 1.15917413404006e16 * cos(theta) ** 7 + 340933568835313.0 * cos(theta) ** 5 - 4638551956943.03 * cos(theta) ** 3 + 18504861530.3578 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl39_m7(theta, phi): return ( 2.45202355926937e-11 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 3.83781458876422e21 * cos(theta) ** 32 - 2.47215069613903e22 * cos(theta) ** 30 + 7.1692370188032e22 * cos(theta) ** 28 - 1.23742995119069e23 * cos(theta) ** 26 + 1.41607300752456e23 * cos(theta) ** 24 - 1.13285840601964e23 * cos(theta) ** 22 + 6.5097087510084e22 * cos(theta) ** 20 - 2.71833991800351e22 * cos(theta) ** 18 + 8.25210332251065e21 * cos(theta) ** 16 - 1.80373843114987e21 * cos(theta) ** 14 + 2.78203724126505e20 * cos(theta) ** 12 - 2.92846025396321e19 * cos(theta) ** 10 + 1.99667744588401e18 * cos(theta) ** 8 - 8.11421893828044e16 * cos(theta) ** 6 + 1.70466784417656e15 * cos(theta) ** 4 - 13915655870829.1 * cos(theta) ** 2 + 18504861530.3578 ) * cos(7 * phi) ) # @torch.jit.script def Yl39_m8(theta, phi): return ( 6.32267298839384e-13 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.22810066840455e23 * cos(theta) ** 31 - 7.4164520884171e23 * cos(theta) ** 29 + 2.00738636526489e24 * cos(theta) ** 27 - 3.21731787309579e24 * cos(theta) ** 25 + 3.39857521805893e24 * cos(theta) ** 23 - 2.49228849324322e24 * cos(theta) ** 21 + 1.30194175020168e24 * cos(theta) ** 19 - 4.89301185240632e23 * cos(theta) ** 17 + 1.3203365316017e23 * cos(theta) ** 15 - 2.52523380360982e22 * cos(theta) ** 13 + 3.33844468951806e21 * cos(theta) ** 11 - 2.92846025396321e20 * cos(theta) ** 9 + 1.59734195670721e19 * cos(theta) ** 7 - 4.86853136296827e17 * cos(theta) ** 5 + 6.81867137670626e15 * cos(theta) ** 3 - 27831311741658.2 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl39_m9(theta, phi): return ( 1.63907661763532e-14 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 3.80711207205411e24 * cos(theta) ** 30 - 2.15077110564096e25 * cos(theta) ** 28 + 5.41994318621522e25 * cos(theta) ** 26 - 8.04329468273948e25 * cos(theta) ** 24 + 7.81672300153555e25 * cos(theta) ** 22 - 5.23380583581076e25 * cos(theta) ** 20 + 2.47368932538319e25 * cos(theta) ** 18 - 8.31812014909074e24 * cos(theta) ** 16 + 1.98050479740256e24 * cos(theta) ** 14 - 3.28280394469276e23 * cos(theta) ** 12 + 3.67228915846987e22 * cos(theta) ** 10 - 2.63561422856689e21 * cos(theta) ** 8 + 1.11813936969505e20 * cos(theta) ** 6 - 2.43426568148413e18 * cos(theta) ** 4 + 2.04560141301188e16 * cos(theta) ** 2 - 27831311741658.2 ) * cos(9 * phi) ) # @torch.jit.script def Yl39_m10(theta, phi): return ( 4.27504398551492e-16 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.14213362161623e26 * cos(theta) ** 29 - 6.02215909579468e26 * cos(theta) ** 27 + 1.40918522841596e27 * cos(theta) ** 25 - 1.93039072385747e27 * cos(theta) ** 23 + 1.71967906033782e27 * cos(theta) ** 21 - 1.04676116716215e27 * cos(theta) ** 19 + 4.45264078568975e26 * cos(theta) ** 17 - 1.33089922385452e26 * cos(theta) ** 15 + 2.77270671636358e25 * cos(theta) ** 13 - 3.93936473363132e24 * cos(theta) ** 11 + 3.67228915846987e23 * cos(theta) ** 9 - 2.10849138285351e22 * cos(theta) ** 7 + 6.70883621817027e20 * cos(theta) ** 5 - 9.73706272593654e18 * cos(theta) ** 3 + 4.09120282602375e16 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl39_m11(theta, phi): return ( 1.12268155211275e-17 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 3.31218750268708e27 * cos(theta) ** 28 - 1.62598295586456e28 * cos(theta) ** 26 + 3.52296307103989e28 * cos(theta) ** 24 - 4.43989866487219e28 * cos(theta) ** 22 + 3.61132602670942e28 * cos(theta) ** 20 - 1.98884621760809e28 * cos(theta) ** 18 + 7.56948933567257e27 * cos(theta) ** 16 - 1.99634883578178e27 * cos(theta) ** 14 + 3.60451873127265e26 * cos(theta) ** 12 - 4.33330120699445e25 * cos(theta) ** 10 + 3.30506024262288e24 * cos(theta) ** 8 - 1.47594396799746e23 * cos(theta) ** 6 + 3.35441810908514e21 * cos(theta) ** 4 - 2.92111881778096e19 * cos(theta) ** 2 + 4.09120282602375e16 ) * cos(11 * phi) ) # @torch.jit.script def Yl39_m12(theta, phi): return ( 2.97093043392762e-19 * (1.0 - cos(theta) ** 2) ** 6 * ( 9.27412500752381e28 * cos(theta) ** 27 - 4.22755568524787e29 * cos(theta) ** 25 + 8.45511137049574e29 * cos(theta) ** 23 - 9.76777706271882e29 * cos(theta) ** 21 + 7.22265205341885e29 * cos(theta) ** 19 - 3.57992319169456e29 * cos(theta) ** 17 + 1.21111829370761e29 * cos(theta) ** 15 - 2.79488837009449e28 * cos(theta) ** 13 + 4.32542247752718e27 * cos(theta) ** 11 - 4.33330120699445e26 * cos(theta) ** 9 + 2.64404819409831e25 * cos(theta) ** 7 - 8.85566380798476e23 * cos(theta) ** 5 + 1.34176724363405e22 * cos(theta) ** 3 - 5.84223763556192e19 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl39_m13(theta, phi): return ( 7.92882675780294e-21 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 2.50401375203143e30 * cos(theta) ** 26 - 1.05688892131197e31 * cos(theta) ** 24 + 1.94467561521402e31 * cos(theta) ** 22 - 2.05123318317095e31 * cos(theta) ** 20 + 1.37230389014958e31 * cos(theta) ** 18 - 6.08586942588075e30 * cos(theta) ** 16 + 1.81667744056142e30 * cos(theta) ** 14 - 3.63335488112284e29 * cos(theta) ** 12 + 4.7579647252799e28 * cos(theta) ** 10 - 3.899971086295e27 * cos(theta) ** 8 + 1.85083373586881e26 * cos(theta) ** 6 - 4.42783190399238e24 * cos(theta) ** 4 + 4.02530173090216e22 * cos(theta) ** 2 - 5.84223763556192e19 ) * cos(13 * phi) ) # @torch.jit.script def Yl39_m14(theta, phi): return ( 2.13591674242462e-22 * (1.0 - cos(theta) ** 2) ** 7 * ( 6.51043575528172e31 * cos(theta) ** 25 - 2.53653341114872e32 * cos(theta) ** 23 + 4.27828635347084e32 * cos(theta) ** 21 - 4.1024663663419e32 * cos(theta) ** 19 + 2.47014700226925e32 * cos(theta) ** 17 - 9.7373910814092e31 * cos(theta) ** 15 + 2.54334841678598e31 * cos(theta) ** 13 - 4.3600258573474e30 * cos(theta) ** 11 + 4.7579647252799e29 * cos(theta) ** 9 - 3.119976869036e28 * cos(theta) ** 7 + 1.11050024152129e27 * cos(theta) ** 5 - 1.77113276159695e25 * cos(theta) ** 3 + 8.05060346180433e22 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl39_m15(theta, phi): return ( 5.81322905778663e-24 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.62760893882043e33 * cos(theta) ** 24 - 5.83402684564206e33 * cos(theta) ** 22 + 8.98440134228877e33 * cos(theta) ** 20 - 7.79468609604962e33 * cos(theta) ** 18 + 4.19924990385772e33 * cos(theta) ** 16 - 1.46060866221138e33 * cos(theta) ** 14 + 3.30635294182178e32 * cos(theta) ** 12 - 4.79602844308214e31 * cos(theta) ** 10 + 4.28216825275191e30 * cos(theta) ** 8 - 2.1839838083252e29 * cos(theta) ** 6 + 5.55250120760644e27 * cos(theta) ** 4 - 5.31339828479086e25 * cos(theta) ** 2 + 8.05060346180433e22 ) * cos(15 * phi) ) # @torch.jit.script def Yl39_m16(theta, phi): return ( 1.60003863775068e-25 * (1.0 - cos(theta) ** 2) ** 8 * ( 3.90626145316903e34 * cos(theta) ** 23 - 1.28348590604125e35 * cos(theta) ** 21 + 1.79688026845775e35 * cos(theta) ** 19 - 1.40304349728893e35 * cos(theta) ** 17 + 6.71879984617235e34 * cos(theta) ** 15 - 2.04485212709593e34 * cos(theta) ** 13 + 3.96762353018614e33 * cos(theta) ** 11 - 4.79602844308214e32 * cos(theta) ** 9 + 3.42573460220153e31 * cos(theta) ** 7 - 1.31039028499512e30 * cos(theta) ** 5 + 2.22100048304258e28 * cos(theta) ** 3 - 1.06267965695817e26 * cos(theta) ) * cos(16 * phi) ) # @torch.jit.script def Yl39_m17(theta, phi): return ( 4.45833336048602e-27 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 8.98440134228877e35 * cos(theta) ** 22 - 2.69532040268663e36 * cos(theta) ** 20 + 3.41407251006973e36 * cos(theta) ** 18 - 2.38517394539118e36 * cos(theta) ** 16 + 1.00781997692585e36 * cos(theta) ** 14 - 2.65830776522471e35 * cos(theta) ** 12 + 4.36438588320475e34 * cos(theta) ** 10 - 4.31642559877393e33 * cos(theta) ** 8 + 2.39801422154107e32 * cos(theta) ** 6 - 6.5519514249756e30 * cos(theta) ** 4 + 6.66300144912773e28 * cos(theta) ** 2 - 1.06267965695817e26 ) * cos(17 * phi) ) # @torch.jit.script def Yl39_m18(theta, phi): return ( 1.25899431882528e-28 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.97656829530353e37 * cos(theta) ** 21 - 5.39064080537326e37 * cos(theta) ** 19 + 6.14533051812552e37 * cos(theta) ** 17 - 3.81627831262589e37 * cos(theta) ** 15 + 1.41094796769619e37 * cos(theta) ** 13 - 3.18996931826965e36 * cos(theta) ** 11 + 4.36438588320475e35 * cos(theta) ** 9 - 3.45314047901914e34 * cos(theta) ** 7 + 1.43880853292464e33 * cos(theta) ** 5 - 2.62078056999024e31 * cos(theta) ** 3 + 1.33260028982555e29 * cos(theta) ) * cos(18 * phi) ) # @torch.jit.script def Yl39_m19(theta, phi): return ( 3.60744838710617e-30 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 4.15079342013741e38 * cos(theta) ** 20 - 1.02422175302092e39 * cos(theta) ** 18 + 1.04470618808134e39 * cos(theta) ** 16 - 5.72441746893884e38 * cos(theta) ** 14 + 1.83423235800505e38 * cos(theta) ** 12 - 3.50896625009662e37 * cos(theta) ** 10 + 3.92794729488427e36 * cos(theta) ** 8 - 2.4171983353134e35 * cos(theta) ** 6 + 7.19404266462321e33 * cos(theta) ** 4 - 7.86234170997073e31 * cos(theta) ** 2 + 1.33260028982555e29 ) * cos(19 * phi) ) # @torch.jit.script def Yl39_m20(theta, phi): return ( 1.05016882684848e-31 * (1.0 - cos(theta) ** 2) ** 10 * ( 8.30158684027482e39 * cos(theta) ** 19 - 1.84359915543766e40 * cos(theta) ** 17 + 1.67152990093014e40 * cos(theta) ** 15 - 8.01418445651438e39 * cos(theta) ** 13 + 2.20107882960606e39 * cos(theta) ** 11 - 3.50896625009662e38 * cos(theta) ** 9 + 3.14235783590742e37 * cos(theta) ** 7 - 1.45031900118804e36 * cos(theta) ** 5 + 2.87761706584929e34 * cos(theta) ** 3 - 1.57246834199415e32 * cos(theta) ) * cos(20 * phi) ) # @torch.jit.script def Yl39_m21(theta, phi): return ( 3.1103316302064e-33 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.57730149965222e41 * cos(theta) ** 18 - 3.13411856424401e41 * cos(theta) ** 16 + 2.50729485139521e41 * cos(theta) ** 14 - 1.04184397934687e41 * cos(theta) ** 12 + 2.42118671256667e40 * cos(theta) ** 10 - 3.15806962508696e39 * cos(theta) ** 8 + 2.19965048513519e38 * cos(theta) ** 6 - 7.2515950059402e36 * cos(theta) ** 4 + 8.63285119754786e34 * cos(theta) ** 2 - 1.57246834199415e32 ) * cos(21 * phi) ) # @torch.jit.script def Yl39_m22(theta, phi): return ( 9.38653981934599e-35 * (1.0 - cos(theta) ** 2) ** 11 * ( 2.83914269937399e42 * cos(theta) ** 17 - 5.01458970279042e42 * cos(theta) ** 15 + 3.5102127919533e42 * cos(theta) ** 13 - 1.25021277521624e42 * cos(theta) ** 11 + 2.42118671256667e41 * cos(theta) ** 9 - 2.52645570006957e40 * cos(theta) ** 7 + 1.31979029108112e39 * cos(theta) ** 5 - 2.90063800237608e37 * cos(theta) ** 3 + 1.72657023950957e35 * cos(theta) ) * cos(22 * phi) ) # @torch.jit.script def Yl39_m23(theta, phi): return ( 2.89124717480577e-36 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 4.82654258893578e43 * cos(theta) ** 16 - 7.52188455418563e43 * cos(theta) ** 14 + 4.56327662953929e43 * cos(theta) ** 12 - 1.37523405273787e43 * cos(theta) ** 10 + 2.17906804131e42 * cos(theta) ** 8 - 1.7685189900487e41 * cos(theta) ** 6 + 6.59895145540558e39 * cos(theta) ** 4 - 8.70191400712824e37 * cos(theta) ** 2 + 1.72657023950957e35 ) * cos(23 * phi) ) # @torch.jit.script def Yl39_m24(theta, phi): return ( 9.10657262304068e-38 * (1.0 - cos(theta) ** 2) ** 12 * ( 7.72246814229725e44 * cos(theta) ** 15 - 1.05306383758599e45 * cos(theta) ** 13 + 5.47593195544714e44 * cos(theta) ** 11 - 1.37523405273787e44 * cos(theta) ** 9 + 1.743254433048e43 * cos(theta) ** 7 - 1.06111139402922e42 * cos(theta) ** 5 + 2.63958058216223e40 * cos(theta) ** 3 - 1.74038280142565e38 * cos(theta) ) * cos(24 * phi) ) # @torch.jit.script def Yl39_m25(theta, phi): return ( 2.93913367583875e-39 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 1.15837022134459e46 * cos(theta) ** 14 - 1.36898298886179e46 * cos(theta) ** 12 + 6.02352515099186e45 * cos(theta) ** 10 - 1.23771064746408e45 * cos(theta) ** 8 + 1.2202781031336e44 * cos(theta) ** 6 - 5.30555697014609e42 * cos(theta) ** 4 + 7.9187417464867e40 * cos(theta) ** 2 - 1.74038280142565e38 ) * cos(25 * phi) ) # @torch.jit.script def Yl39_m26(theta, phi): return ( 9.74313326210721e-41 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.62171830988242e47 * cos(theta) ** 13 - 1.64277958663414e47 * cos(theta) ** 11 + 6.02352515099186e46 * cos(theta) ** 9 - 9.90168517971264e45 * cos(theta) ** 7 + 7.3216686188016e44 * cos(theta) ** 5 - 2.12222278805844e43 * cos(theta) ** 3 + 1.58374834929734e41 * cos(theta) ) * cos(26 * phi) ) # @torch.jit.script def Yl39_m27(theta, phi): return ( 3.326250851581e-42 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 2.10823380284715e48 * cos(theta) ** 12 - 1.80705754529756e48 * cos(theta) ** 10 + 5.42117263589267e47 * cos(theta) ** 8 - 6.93117962579885e46 * cos(theta) ** 6 + 3.6608343094008e45 * cos(theta) ** 4 - 6.3666683641753e43 * cos(theta) ** 2 + 1.58374834929734e41 ) * cos(27 * phi) ) # @torch.jit.script def Yl39_m28(theta, phi): return ( 1.1730782277043e-43 * (1.0 - cos(theta) ** 2) ** 14 * ( 2.52988056341658e49 * cos(theta) ** 11 - 1.80705754529756e49 * cos(theta) ** 9 + 4.33693810871414e48 * cos(theta) ** 7 - 4.15870777547931e47 * cos(theta) ** 5 + 1.46433372376032e46 * cos(theta) ** 3 - 1.27333367283506e44 * cos(theta) ) * cos(28 * phi) ) # @torch.jit.script def Yl39_m29(theta, phi): return ( 4.28919879632039e-45 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 2.78286861975824e50 * cos(theta) ** 10 - 1.6263517907678e50 * cos(theta) ** 8 + 3.0358566760999e49 * cos(theta) ** 6 - 2.07935388773965e48 * cos(theta) ** 4 + 4.39300117128096e46 * cos(theta) ** 2 - 1.27333367283506e44 ) * cos(29 * phi) ) # @torch.jit.script def Yl39_m30(theta, phi): return ( 1.63287007543161e-46 * (1.0 - cos(theta) ** 2) ** 15 * ( 2.78286861975824e51 * cos(theta) ** 9 - 1.30108143261424e51 * cos(theta) ** 7 + 1.82151400565994e50 * cos(theta) ** 5 - 8.31741555095862e48 * cos(theta) ** 3 + 8.78600234256192e46 * cos(theta) ) * cos(30 * phi) ) # @torch.jit.script def Yl39_m31(theta, phi): return ( 6.50551009827291e-48 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 2.50458175778241e52 * cos(theta) ** 8 - 9.10757002829969e51 * cos(theta) ** 6 + 9.10757002829969e50 * cos(theta) ** 4 - 2.49522466528759e49 * cos(theta) ** 2 + 8.78600234256192e46 ) * cos(31 * phi) ) # @torch.jit.script def Yl39_m32(theta, phi): return ( 2.72965140034074e-49 * (1.0 - cos(theta) ** 2) ** 16 * ( 2.00366540622593e53 * cos(theta) ** 7 - 5.46454201697981e52 * cos(theta) ** 5 + 3.64302801131987e51 * cos(theta) ** 3 - 4.99044933057517e49 * cos(theta) ) * cos(32 * phi) ) # @torch.jit.script def Yl39_m33(theta, phi): return ( 1.21588337207176e-50 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 1.40256578435815e54 * cos(theta) ** 6 - 2.73227100848991e53 * cos(theta) ** 4 + 1.09290840339596e52 * cos(theta) ** 2 - 4.99044933057517e49 ) * cos(33 * phi) ) # @torch.jit.script def Yl39_m34(theta, phi): return ( 5.80971547822379e-52 * (1.0 - cos(theta) ** 2) ** 17 * ( 8.41539470614891e54 * cos(theta) ** 5 - 1.09290840339596e54 * cos(theta) ** 3 + 2.18581680679192e52 * cos(theta) ) * cos(34 * phi) ) # @torch.jit.script def Yl39_m35(theta, phi): return ( 3.02032725709922e-53 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 4.20769735307446e55 * cos(theta) ** 4 - 3.27872521018789e54 * cos(theta) ** 2 + 2.18581680679192e52 ) * cos(35 * phi) ) # @torch.jit.script def Yl39_m36(theta, phi): return ( 1.743786754927e-54 * (1.0 - cos(theta) ** 2) ** 18 * (1.68307894122978e56 * cos(theta) ** 3 - 6.55745042037577e54 * cos(theta)) * cos(36 * phi) ) # @torch.jit.script def Yl39_m37(theta, phi): return ( 1.15485099036113e-55 * (1.0 - cos(theta) ** 2) ** 18.5 * (5.04923682368935e56 * cos(theta) ** 2 - 6.55745042037577e54) * cos(37 * phi) ) # @torch.jit.script def Yl39_m38(theta, phi): return 9.39769459334552 * (1.0 - cos(theta) ** 2) ** 19 * cos(38 * phi) * cos(theta) # @torch.jit.script def Yl39_m39(theta, phi): return 1.064079376195 * (1.0 - cos(theta) ** 2) ** 19.5 * cos(39 * phi) # @torch.jit.script def Yl40_m_minus_40(theta, phi): return 1.07070921838241 * (1.0 - cos(theta) ** 2) ** 20 * sin(40 * phi) # @torch.jit.script def Yl40_m_minus_39(theta, phi): return ( 9.57671438575497 * (1.0 - cos(theta) ** 2) ** 19.5 * sin(39 * phi) * cos(theta) ) # @torch.jit.script def Yl40_m_minus_38(theta, phi): return ( 1.50890622763283e-57 * (1.0 - cos(theta) ** 2) ** 19 * (3.98889709071458e58 * cos(theta) ** 2 - 5.04923682368935e56) * sin(38 * phi) ) # @torch.jit.script def Yl40_m_minus_37(theta, phi): return ( 2.30818268966444e-56 * (1.0 - cos(theta) ** 2) ** 18.5 * (1.32963236357153e58 * cos(theta) ** 3 - 5.04923682368935e56 * cos(theta)) * sin(37 * phi) ) # @torch.jit.script def Yl40_m_minus_36(theta, phi): return ( 4.05084418028009e-55 * (1.0 - cos(theta) ** 2) ** 18 * ( 3.32408090892882e57 * cos(theta) ** 4 - 2.52461841184467e56 * cos(theta) ** 2 + 1.63936260509394e54 ) * sin(36 * phi) ) # @torch.jit.script def Yl40_m_minus_35(theta, phi): return ( 7.89654902961126e-54 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 6.64816181785764e56 * cos(theta) ** 5 - 8.41539470614891e55 * cos(theta) ** 3 + 1.63936260509394e54 * cos(theta) ) * sin(35 * phi) ) # @torch.jit.script def Yl40_m_minus_34(theta, phi): return ( 1.67511101004305e-52 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.10802696964294e56 * cos(theta) ** 6 - 2.10384867653723e55 * cos(theta) ** 4 + 8.19681302546972e53 * cos(theta) ** 2 - 3.64302801131987e51 ) * sin(34 * phi) ) # @torch.jit.script def Yl40_m_minus_33(theta, phi): return ( 3.81248789127407e-51 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 1.58289567091849e55 * cos(theta) ** 7 - 4.20769735307446e54 * cos(theta) ** 5 + 2.73227100848991e53 * cos(theta) ** 3 - 3.64302801131987e51 * cos(theta) ) * sin(33 * phi) ) # @torch.jit.script def Yl40_m_minus_32(theta, phi): return ( 9.21329329280745e-50 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.97861958864811e54 * cos(theta) ** 8 - 7.01282892179076e53 * cos(theta) ** 6 + 6.83067752122477e52 * cos(theta) ** 4 - 1.82151400565994e51 * cos(theta) ** 2 + 6.23806166321896e48 ) * sin(32 * phi) ) # @torch.jit.script def Yl40_m_minus_31(theta, phi): return ( 2.34532157918569e-48 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 2.19846620960901e53 * cos(theta) ** 9 - 1.00183270311297e53 * cos(theta) ** 7 + 1.36613550424495e52 * cos(theta) ** 5 - 6.07171335219979e50 * cos(theta) ** 3 + 6.23806166321896e48 * cos(theta) ) * sin(31 * phi) ) # @torch.jit.script def Yl40_m_minus_30(theta, phi): return ( 6.24930288108503e-47 * (1.0 - cos(theta) ** 2) ** 15 * ( 2.19846620960901e52 * cos(theta) ** 10 - 1.25229087889121e52 * cos(theta) ** 8 + 2.27689250707492e51 * cos(theta) ** 6 - 1.51792833804995e50 * cos(theta) ** 4 + 3.11903083160948e48 * cos(theta) ** 2 - 8.78600234256192e45 ) * sin(30 * phi) ) # @torch.jit.script def Yl40_m_minus_29(theta, phi): return ( 1.73411117304064e-45 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 1.9986056450991e51 * cos(theta) ** 11 - 1.39143430987912e51 * cos(theta) ** 9 + 3.2527035815356e50 * cos(theta) ** 7 - 3.0358566760999e49 * cos(theta) ** 5 + 1.03967694386983e48 * cos(theta) ** 3 - 8.78600234256192e45 * cos(theta) ) * sin(29 * phi) ) # @torch.jit.script def Yl40_m_minus_28(theta, phi): return ( 4.98990301715827e-44 * (1.0 - cos(theta) ** 2) ** 14 * ( 1.66550470424925e50 * cos(theta) ** 12 - 1.39143430987912e50 * cos(theta) ** 10 + 4.0658794769195e49 * cos(theta) ** 8 - 5.05976112683316e48 * cos(theta) ** 6 + 2.59919235967457e47 * cos(theta) ** 4 - 4.39300117128096e45 * cos(theta) ** 2 + 1.06111139402922e43 ) * sin(28 * phi) ) # @torch.jit.script def Yl40_m_minus_27(theta, phi): return ( 1.48360482591054e-42 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.28115746480711e49 * cos(theta) ** 13 - 1.26494028170829e49 * cos(theta) ** 11 + 4.51764386324389e48 * cos(theta) ** 9 - 7.22823018119023e47 * cos(theta) ** 7 + 5.19838471934914e46 * cos(theta) ** 5 - 1.46433372376032e45 * cos(theta) ** 3 + 1.06111139402922e43 * cos(theta) ) * sin(27 * phi) ) # @torch.jit.script def Yl40_m_minus_26(theta, phi): return ( 4.54380470106078e-41 * (1.0 - cos(theta) ** 2) ** 13 * ( 9.15112474862224e47 * cos(theta) ** 14 - 1.05411690142357e48 * cos(theta) ** 12 + 4.51764386324389e47 * cos(theta) ** 10 - 9.03528772648778e46 * cos(theta) ** 8 + 8.66397453224856e45 * cos(theta) ** 6 - 3.6608343094008e44 * cos(theta) ** 4 + 5.30555697014609e42 * cos(theta) ** 2 - 1.13124882092667e40 ) * sin(26 * phi) ) # @torch.jit.script def Yl40_m_minus_25(theta, phi): return ( 1.4296747724489e-39 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 6.10074983241483e46 * cos(theta) ** 15 - 8.10859154941211e46 * cos(theta) ** 13 + 4.10694896658536e46 * cos(theta) ** 11 - 1.00392085849864e46 * cos(theta) ** 9 + 1.23771064746408e45 * cos(theta) ** 7 - 7.3216686188016e43 * cos(theta) ** 5 + 1.7685189900487e42 * cos(theta) ** 3 - 1.13124882092667e40 * cos(theta) ) * sin(25 * phi) ) # @torch.jit.script def Yl40_m_minus_24(theta, phi): return ( 4.61056260468926e-38 * (1.0 - cos(theta) ** 2) ** 12 * ( 3.81296864525927e45 * cos(theta) ** 16 - 5.79185110672294e45 * cos(theta) ** 14 + 3.42245747215446e45 * cos(theta) ** 12 - 1.00392085849864e45 * cos(theta) ** 10 + 1.5471383093301e44 * cos(theta) ** 8 - 1.2202781031336e43 * cos(theta) ** 6 + 4.42129747512174e41 * cos(theta) ** 4 - 5.65624410463335e39 * cos(theta) ** 2 + 1.08773925089103e37 ) * sin(24 * phi) ) # @torch.jit.script def Yl40_m_minus_23(theta, phi): return ( 1.52078692901253e-36 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 2.24292273250545e44 * cos(theta) ** 17 - 3.86123407114863e44 * cos(theta) ** 15 + 2.63265959396497e44 * cos(theta) ** 13 - 9.12655325907857e43 * cos(theta) ** 11 + 1.71904256592233e43 * cos(theta) ** 9 - 1.743254433048e42 * cos(theta) ** 7 + 8.84259495024348e40 * cos(theta) ** 5 - 1.88541470154445e39 * cos(theta) ** 3 + 1.08773925089103e37 * cos(theta) ) * sin(23 * phi) ) # @torch.jit.script def Yl40_m_minus_22(theta, phi): return ( 5.12123728198411e-35 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.24606818472525e43 * cos(theta) ** 18 - 2.41327129446789e43 * cos(theta) ** 16 + 1.88047113854641e43 * cos(theta) ** 14 - 7.60546104923214e42 * cos(theta) ** 12 + 1.71904256592233e42 * cos(theta) ** 10 - 2.17906804131e41 * cos(theta) ** 8 + 1.47376582504058e40 * cos(theta) ** 6 - 4.71353675386113e38 * cos(theta) ** 4 + 5.43869625445515e36 * cos(theta) ** 2 - 9.59205688616428e33 ) * sin(22 * phi) ) # @torch.jit.script def Yl40_m_minus_21(theta, phi): return ( 1.75771129567675e-33 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 6.55825360381711e41 * cos(theta) ** 19 - 1.41957134968699e42 * cos(theta) ** 17 + 1.25364742569761e42 * cos(theta) ** 15 - 5.85035465325549e41 * cos(theta) ** 13 + 1.5627659690203e41 * cos(theta) ** 11 - 2.42118671256667e40 * cos(theta) ** 9 + 2.10537975005797e39 * cos(theta) ** 7 - 9.42707350772226e37 * cos(theta) ** 5 + 1.81289875148505e36 * cos(theta) ** 3 - 9.59205688616428e33 * cos(theta) ) * sin(21 * phi) ) # @torch.jit.script def Yl40_m_minus_20(theta, phi): return ( 6.13942161666598e-32 * (1.0 - cos(theta) ** 2) ** 10 * ( 3.27912680190856e40 * cos(theta) ** 20 - 7.88650749826108e40 * cos(theta) ** 18 + 7.83529641061004e40 * cos(theta) ** 16 - 4.17882475232535e40 * cos(theta) ** 14 + 1.30230497418359e40 * cos(theta) ** 12 - 2.42118671256667e39 * cos(theta) ** 10 + 2.63172468757246e38 * cos(theta) ** 8 - 1.57117891795371e37 * cos(theta) ** 6 + 4.53224687871262e35 * cos(theta) ** 4 - 4.79602844308214e33 * cos(theta) ** 2 + 7.86234170997073e30 ) * sin(20 * phi) ) # @torch.jit.script def Yl40_m_minus_19(theta, phi): return ( 2.17927848637694e-30 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.56148895328979e39 * cos(theta) ** 21 - 4.15079342013741e39 * cos(theta) ** 19 + 4.60899788859414e39 * cos(theta) ** 17 - 2.7858831682169e39 * cos(theta) ** 15 + 1.0017730570643e39 * cos(theta) ** 13 - 2.20107882960606e38 * cos(theta) ** 11 + 2.92413854174718e37 * cos(theta) ** 9 - 2.24454131136244e36 * cos(theta) ** 7 + 9.06449375742525e34 * cos(theta) ** 5 - 1.59867614769405e33 * cos(theta) ** 3 + 7.86234170997073e30 * cos(theta) ) * sin(19 * phi) ) # @torch.jit.script def Yl40_m_minus_18(theta, phi): return ( 7.85145376863331e-29 * (1.0 - cos(theta) ** 2) ** 9 * ( 7.09767706040813e37 * cos(theta) ** 22 - 2.07539671006871e38 * cos(theta) ** 20 + 2.5605543825523e38 * cos(theta) ** 18 - 1.74117698013556e38 * cos(theta) ** 16 + 7.15552183617355e37 * cos(theta) ** 14 - 1.83423235800505e37 * cos(theta) ** 12 + 2.92413854174718e36 * cos(theta) ** 10 - 2.80567663920305e35 * cos(theta) ** 8 + 1.51074895957087e34 * cos(theta) ** 6 - 3.99669036923512e32 * cos(theta) ** 4 + 3.93117085498536e30 * cos(theta) ** 2 - 6.05727404466158e27 ) * sin(18 * phi) ) # @torch.jit.script def Yl40_m_minus_17(theta, phi): return ( 2.86766220567966e-27 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 3.08594654800353e36 * cos(theta) ** 23 - 9.88284147651765e36 * cos(theta) ** 21 + 1.34766020134332e37 * cos(theta) ** 19 - 1.02422175302092e37 * cos(theta) ** 17 + 4.77034789078237e36 * cos(theta) ** 15 - 1.41094796769619e36 * cos(theta) ** 13 + 2.65830776522471e35 * cos(theta) ** 11 - 3.11741848800339e34 * cos(theta) ** 9 + 2.15821279938696e33 * cos(theta) ** 7 - 7.99338073847024e31 * cos(theta) ** 5 + 1.31039028499512e30 * cos(theta) ** 3 - 6.05727404466158e27 * cos(theta) ) * sin(17 * phi) ) # @torch.jit.script def Yl40_m_minus_16(theta, phi): return ( 1.0606474233886e-25 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.28581106166814e35 * cos(theta) ** 24 - 4.49220067114438e35 * cos(theta) ** 22 + 6.73830100671658e35 * cos(theta) ** 20 - 5.69012085011622e35 * cos(theta) ** 18 + 2.98146743173898e35 * cos(theta) ** 16 - 1.00781997692585e35 * cos(theta) ** 14 + 2.21525647102059e34 * cos(theta) ** 12 - 3.11741848800339e33 * cos(theta) ** 10 + 2.6977659992337e32 * cos(theta) ** 8 - 1.33223012307837e31 * cos(theta) ** 6 + 3.2759757124878e29 * cos(theta) ** 4 - 3.02863702233079e27 * cos(theta) ** 2 + 4.42783190399238e24 ) * sin(16 * phi) ) # @torch.jit.script def Yl40_m_minus_15(theta, phi): return ( 3.96857926648469e-24 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 5.14324424667256e33 * cos(theta) ** 25 - 1.95313072658452e34 * cos(theta) ** 23 + 3.20871476510313e34 * cos(theta) ** 21 - 2.99480044742959e34 * cos(theta) ** 19 + 1.75380437161116e34 * cos(theta) ** 17 - 6.71879984617235e33 * cos(theta) ** 15 + 1.70404343924661e33 * cos(theta) ** 13 - 2.83401680727581e32 * cos(theta) ** 11 + 2.99751777692634e31 * cos(theta) ** 9 - 1.90318589011196e30 * cos(theta) ** 7 + 6.5519514249756e28 * cos(theta) ** 5 - 1.00954567411026e27 * cos(theta) ** 3 + 4.42783190399238e24 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl40_m_minus_14(theta, phi): return ( 1.5007317746337e-22 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.97817086410483e32 * cos(theta) ** 26 - 8.13804469410215e32 * cos(theta) ** 24 + 1.45850671141051e33 * cos(theta) ** 22 - 1.49740022371479e33 * cos(theta) ** 20 + 9.74335762006202e32 * cos(theta) ** 18 - 4.19924990385772e32 * cos(theta) ** 16 + 1.21717388517615e32 * cos(theta) ** 14 - 2.36168067272984e31 * cos(theta) ** 12 + 2.99751777692634e30 * cos(theta) ** 10 - 2.37898236263995e29 * cos(theta) ** 8 + 1.0919919041626e28 * cos(theta) ** 6 - 2.52386418527566e26 * cos(theta) ** 4 + 2.21391595199619e24 * cos(theta) ** 2 - 3.09638594684782e21 ) * sin(14 * phi) ) # @torch.jit.script def Yl40_m_minus_13(theta, phi): return ( 5.73035911876231e-21 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 7.32655875594381e30 * cos(theta) ** 27 - 3.25521787764086e31 * cos(theta) ** 25 + 6.3413335278718e31 * cos(theta) ** 23 - 7.13047725578474e31 * cos(theta) ** 21 + 5.12808295792738e31 * cos(theta) ** 19 - 2.47014700226924e31 * cos(theta) ** 17 + 8.114492567841e30 * cos(theta) ** 15 - 1.81667744056142e30 * cos(theta) ** 13 + 2.72501616084213e29 * cos(theta) ** 11 - 2.64331373626661e28 * cos(theta) ** 9 + 1.559988434518e27 * cos(theta) ** 7 - 5.04772837055131e25 * cos(theta) ** 5 + 7.3797198399873e23 * cos(theta) ** 3 - 3.09638594684782e21 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl40_m_minus_12(theta, phi): return ( 2.20749023089331e-19 * (1.0 - cos(theta) ** 2) ** 6 * ( 2.61662812712279e29 * cos(theta) ** 28 - 1.25200687601571e30 * cos(theta) ** 26 + 2.64222230327992e30 * cos(theta) ** 24 - 3.2411260253567e30 * cos(theta) ** 22 + 2.56404147896369e30 * cos(theta) ** 20 - 1.37230389014958e30 * cos(theta) ** 18 + 5.07155785490062e29 * cos(theta) ** 16 - 1.29762674325816e29 * cos(theta) ** 14 + 2.27084680070177e28 * cos(theta) ** 12 - 2.64331373626661e27 * cos(theta) ** 10 + 1.9499855431475e26 * cos(theta) ** 8 - 8.41288061758552e24 * cos(theta) ** 6 + 1.84492995999682e23 * cos(theta) ** 4 - 1.54819297342391e21 * cos(theta) ** 2 + 2.08651344127211e18 ) * sin(12 * phi) ) # @torch.jit.script def Yl40_m_minus_11(theta, phi): return ( 8.5723414445471e-18 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 9.02285561076824e27 * cos(theta) ** 29 - 4.63706250376191e28 * cos(theta) ** 27 + 1.05688892131197e29 * cos(theta) ** 25 - 1.40918522841596e29 * cos(theta) ** 23 + 1.22097213283985e29 * cos(theta) ** 21 - 7.22265205341884e28 * cos(theta) ** 19 + 2.98326932641213e28 * cos(theta) ** 17 - 8.65084495505437e27 * cos(theta) ** 15 + 1.74680523130906e27 * cos(theta) ** 13 - 2.4030124875151e26 * cos(theta) ** 11 + 2.16665060349722e25 * cos(theta) ** 9 - 1.2018400882265e24 * cos(theta) ** 7 + 3.68985991999365e22 * cos(theta) ** 5 - 5.16064324474636e20 * cos(theta) ** 3 + 2.08651344127211e18 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl40_m_minus_10(theta, phi): return ( 3.35308973781059e-16 * (1.0 - cos(theta) ** 2) ** 5 * ( 3.00761853692275e26 * cos(theta) ** 30 - 1.65609375134354e27 * cos(theta) ** 28 + 4.06495738966141e27 * cos(theta) ** 26 - 5.87160511839982e27 * cos(theta) ** 24 + 5.54987333109024e27 * cos(theta) ** 22 - 3.61132602670942e27 * cos(theta) ** 20 + 1.65737184800674e27 * cos(theta) ** 18 - 5.40677809690898e26 * cos(theta) ** 16 + 1.24771802236361e26 * cos(theta) ** 14 - 2.00251040626259e25 * cos(theta) ** 12 + 2.16665060349722e24 * cos(theta) ** 10 - 1.50230011028313e23 * cos(theta) ** 8 + 6.14976653332275e21 * cos(theta) ** 6 - 1.29016081118659e20 * cos(theta) ** 4 + 1.04325672063606e18 * cos(theta) ** 2 - 1.36373427534125e15 ) * sin(10 * phi) ) # @torch.jit.script def Yl40_m_minus_9(theta, phi): return ( 1.32011274988944e-14 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 9.70199528039596e24 * cos(theta) ** 31 - 5.71066810808117e25 * cos(theta) ** 29 + 1.50553977394867e26 * cos(theta) ** 27 - 2.34864204735993e26 * cos(theta) ** 25 + 2.41298840482184e26 * cos(theta) ** 23 - 1.71967906033782e26 * cos(theta) ** 21 + 8.72300972635126e25 * cos(theta) ** 19 - 3.18045770406411e25 * cos(theta) ** 17 + 8.31812014909074e24 * cos(theta) ** 15 - 1.54039262020199e24 * cos(theta) ** 13 + 1.96968236681566e23 * cos(theta) ** 11 - 1.66922234475903e22 * cos(theta) ** 9 + 8.78538076188964e20 * cos(theta) ** 7 - 2.58032162237318e19 * cos(theta) ** 5 + 3.47752240212019e17 * cos(theta) ** 3 - 1.36373427534125e15 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl40_m_minus_8(theta, phi): return ( 5.2273797933148e-13 * (1.0 - cos(theta) ** 2) ** 4 * ( 3.03187352512374e23 * cos(theta) ** 32 - 1.90355603602706e24 * cos(theta) ** 30 + 5.3769277641024e24 * cos(theta) ** 28 - 9.03323864369203e24 * cos(theta) ** 26 + 1.00541183534243e25 * cos(theta) ** 24 - 7.81672300153555e24 * cos(theta) ** 22 + 4.36150486317563e24 * cos(theta) ** 20 - 1.76692094670228e24 * cos(theta) ** 18 + 5.19882509318171e23 * cos(theta) ** 16 - 1.10028044300142e23 * cos(theta) ** 14 + 1.64140197234638e22 * cos(theta) ** 12 - 1.66922234475903e21 * cos(theta) ** 10 + 1.09817259523621e20 * cos(theta) ** 8 - 4.30053603728864e18 * cos(theta) ** 6 + 8.69380600530048e16 * cos(theta) ** 4 - 681867137670626.0 * cos(theta) ** 2 + 869728491926.818 ) * sin(8 * phi) ) # @torch.jit.script def Yl40_m_minus_7(theta, phi): return ( 2.08047088933329e-11 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 9.18749553067799e21 * cos(theta) ** 33 - 6.14050334202276e22 * cos(theta) ** 31 + 1.85411302210427e23 * cos(theta) ** 29 - 3.34564394210816e23 * cos(theta) ** 27 + 4.02164734136974e23 * cos(theta) ** 25 - 3.39857521805893e23 * cos(theta) ** 23 + 2.07690707770268e23 * cos(theta) ** 21 - 9.29958393001201e22 * cos(theta) ** 19 + 3.05813240775395e22 * cos(theta) ** 17 - 7.3352029533428e21 * cos(theta) ** 15 + 1.26261690180491e21 * cos(theta) ** 13 - 1.51747485887185e20 * cos(theta) ** 11 + 1.22019177248467e19 * cos(theta) ** 9 - 6.14362291041234e17 * cos(theta) ** 7 + 1.7387612010601e16 * cos(theta) ** 5 - 227289045890209.0 * cos(theta) ** 3 + 869728491926.818 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl40_m_minus_6(theta, phi): return ( 8.31668075372529e-10 * (1.0 - cos(theta) ** 2) ** 3 * ( 2.70220456784647e20 * cos(theta) ** 34 - 1.91890729438211e21 * cos(theta) ** 32 + 6.18037674034758e21 * cos(theta) ** 30 - 1.1948728364672e22 * cos(theta) ** 28 + 1.54678743898836e22 * cos(theta) ** 26 - 1.41607300752456e22 * cos(theta) ** 24 + 9.44048671683037e21 * cos(theta) ** 22 - 4.649791965006e21 * cos(theta) ** 20 + 1.69896244875219e21 * cos(theta) ** 18 - 4.58450184583925e20 * cos(theta) ** 16 + 9.01869215574935e19 * cos(theta) ** 14 - 1.26456238239321e19 * cos(theta) ** 12 + 1.22019177248467e18 * cos(theta) ** 10 - 7.67952863801542e16 * cos(theta) ** 8 + 2.89793533510016e15 * cos(theta) ** 6 - 56822261472552.1 * cos(theta) ** 4 + 434864245963.409 * cos(theta) ** 2 - 544260633.245819 ) * sin(6 * phi) ) # @torch.jit.script def Yl40_m_minus_5(theta, phi): return ( 3.33705195947875e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 7.72058447956134e18 * cos(theta) ** 35 - 5.8148705890367e19 * cos(theta) ** 33 + 1.99366991624116e20 * cos(theta) ** 31 - 4.12025116023172e20 * cos(theta) ** 29 + 5.72884236662356e20 * cos(theta) ** 27 - 5.66429203009822e20 * cos(theta) ** 25 + 4.10455944210016e20 * cos(theta) ** 23 - 2.21418665000286e20 * cos(theta) ** 21 + 8.94190762501155e19 * cos(theta) ** 19 - 2.69676579167015e19 * cos(theta) ** 17 + 6.01246143716623e18 * cos(theta) ** 15 - 9.7274029414862e17 * cos(theta) ** 13 + 1.10926524771334e17 * cos(theta) ** 11 - 8.53280959779491e15 * cos(theta) ** 9 + 413990762157166.0 * cos(theta) ** 7 - 11364452294510.4 * cos(theta) ** 5 + 144954748654.47 * cos(theta) ** 3 - 544260633.245819 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl40_m_minus_4(theta, phi): return ( 1.3431375046518e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 2.14460679987815e17 * cos(theta) ** 36 - 1.71025605559903e18 * cos(theta) ** 34 + 6.23021848825361e18 * cos(theta) ** 32 - 1.37341705341057e19 * cos(theta) ** 30 + 2.04601513093699e19 * cos(theta) ** 28 - 2.17857385773009e19 * cos(theta) ** 26 + 1.71023310087507e19 * cos(theta) ** 24 - 1.00644847727403e19 * cos(theta) ** 22 + 4.47095381250577e18 * cos(theta) ** 20 - 1.49820321759453e18 * cos(theta) ** 18 + 3.7577883982289e17 * cos(theta) ** 16 - 6.94814495820443e16 * cos(theta) ** 14 + 9.24387706427782e15 * cos(theta) ** 12 - 853280959779491.0 * cos(theta) ** 10 + 51748845269645.7 * cos(theta) ** 8 - 1894075382418.4 * cos(theta) ** 6 + 36238687163.6174 * cos(theta) ** 4 - 272130316.622909 * cos(theta) ** 2 + 335963.353855444 ) * sin(4 * phi) ) # @torch.jit.script def Yl40_m_minus_3(theta, phi): return ( 5.41935594348895e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 5.79623459426527e15 * cos(theta) ** 37 - 4.88644587314009e16 * cos(theta) ** 35 + 1.88794499644049e17 * cos(theta) ** 33 - 4.43037759164701e17 * cos(theta) ** 31 + 7.05522458943788e17 * cos(theta) ** 29 - 8.06879206566698e17 * cos(theta) ** 27 + 6.84093240350027e17 * cos(theta) ** 25 - 4.37586294466968e17 * cos(theta) ** 23 + 2.12902562500275e17 * cos(theta) ** 21 - 7.88528009260277e16 * cos(theta) ** 19 + 2.21046376366406e16 * cos(theta) ** 17 - 4.63209663880295e15 * cos(theta) ** 15 + 711067466482909.0 * cos(theta) ** 13 - 77570996343590.1 * cos(theta) ** 11 + 5749871696627.3 * cos(theta) ** 9 - 270582197488.344 * cos(theta) ** 7 + 7247737432.72349 * cos(theta) ** 5 - 90710105.5409698 * cos(theta) ** 3 + 335963.353855444 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl40_m_minus_2(theta, phi): return ( 0.00219065356430911 * (1.0 - cos(theta) ** 2) * ( 152532489322770.0 * cos(theta) ** 38 - 1.35734607587225e15 * cos(theta) ** 36 + 5.55277940129555e15 * cos(theta) ** 34 - 1.38449299738969e16 * cos(theta) ** 32 + 2.35174152981263e16 * cos(theta) ** 30 - 2.88171145202392e16 * cos(theta) ** 28 + 2.6311278475001e16 * cos(theta) ** 26 - 1.8232762269457e16 * cos(theta) ** 24 + 9.67738920455795e15 * cos(theta) ** 22 - 3.94264004630139e15 * cos(theta) ** 20 + 1.22803542425781e15 * cos(theta) ** 18 - 289506039925185.0 * cos(theta) ** 16 + 50790533320207.8 * cos(theta) ** 14 - 6464249695299.18 * cos(theta) ** 12 + 574987169662.73 * cos(theta) ** 10 - 33822774686.0429 * cos(theta) ** 8 + 1207956238.78725 * cos(theta) ** 6 - 22677526.3852425 * cos(theta) ** 4 + 167981.676927722 * cos(theta) ** 2 - 205.60792769611 ) * sin(2 * phi) ) # @torch.jit.script def Yl40_m_minus_1(theta, phi): return ( 0.0886605969841593 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 3911089469814.62 * cos(theta) ** 39 - 36685029077628.3 * cos(theta) ** 37 + 158650840037016.0 * cos(theta) ** 35 - 419543332542331.0 * cos(theta) ** 33 + 758626299939557.0 * cos(theta) ** 31 - 993693604146180.0 * cos(theta) ** 29 + 974491795370409.0 * cos(theta) ** 27 - 729310490778280.0 * cos(theta) ** 25 + 420756052372085.0 * cos(theta) ** 23 - 187744764109590.0 * cos(theta) ** 21 + 64633443381989.9 * cos(theta) ** 19 - 17029767054422.6 * cos(theta) ** 17 + 3386035554680.52 * cos(theta) ** 15 - 497249976561.475 * cos(theta) ** 13 + 52271560878.43 * cos(theta) ** 11 - 3758086076.22699 * cos(theta) ** 9 + 172565176.969607 * cos(theta) ** 7 - 4535505.27704849 * cos(theta) ** 5 + 55993.8923092406 * cos(theta) ** 3 - 205.60792769611 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl40_m0(theta, phi): return ( 779875379101.005 * cos(theta) ** 40 - 7700035388592.21 * cos(theta) ** 38 + 35150161546625.5 * cos(theta) ** 36 - 98420452330551.3 * cos(theta) ** 34 + 189088608758354.0 * cos(theta) ** 32 - 264191408293362.0 * cos(theta) ** 30 + 277592421757518.0 * cos(theta) ** 28 - 223731205595611.0 * cos(theta) ** 26 + 139832003497257.0 * cos(theta) ** 24 - 68066372072738.9 * cos(theta) ** 22 + 25775954014430.6 * cos(theta) ** 20 - 7546119048908.81 * cos(theta) ** 18 + 1687947681992.76 * cos(theta) ** 16 - 283291918656.128 * cos(theta) ** 14 + 34743348514.4308 * cos(theta) ** 12 - 2997465362.02932 * cos(theta) ** 10 + 172048394.504234 * cos(theta) ** 8 - 6029230.34558016 * cos(theta) ** 6 + 111652.41380704 * cos(theta) ** 4 - 819.968767248764 * cos(theta) ** 2 + 0.999961911278981 ) # @torch.jit.script def Yl40_m1(theta, phi): return ( 0.0886605969841593 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 3911089469814.62 * cos(theta) ** 39 - 36685029077628.3 * cos(theta) ** 37 + 158650840037016.0 * cos(theta) ** 35 - 419543332542331.0 * cos(theta) ** 33 + 758626299939557.0 * cos(theta) ** 31 - 993693604146180.0 * cos(theta) ** 29 + 974491795370409.0 * cos(theta) ** 27 - 729310490778280.0 * cos(theta) ** 25 + 420756052372085.0 * cos(theta) ** 23 - 187744764109590.0 * cos(theta) ** 21 + 64633443381989.9 * cos(theta) ** 19 - 17029767054422.6 * cos(theta) ** 17 + 3386035554680.52 * cos(theta) ** 15 - 497249976561.475 * cos(theta) ** 13 + 52271560878.43 * cos(theta) ** 11 - 3758086076.22699 * cos(theta) ** 9 + 172565176.969607 * cos(theta) ** 7 - 4535505.27704849 * cos(theta) ** 5 + 55993.8923092406 * cos(theta) ** 3 - 205.60792769611 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl40_m2(theta, phi): return ( 0.00219065356430911 * (1.0 - cos(theta) ** 2) * ( 152532489322770.0 * cos(theta) ** 38 - 1.35734607587225e15 * cos(theta) ** 36 + 5.55277940129555e15 * cos(theta) ** 34 - 1.38449299738969e16 * cos(theta) ** 32 + 2.35174152981263e16 * cos(theta) ** 30 - 2.88171145202392e16 * cos(theta) ** 28 + 2.6311278475001e16 * cos(theta) ** 26 - 1.8232762269457e16 * cos(theta) ** 24 + 9.67738920455795e15 * cos(theta) ** 22 - 3.94264004630139e15 * cos(theta) ** 20 + 1.22803542425781e15 * cos(theta) ** 18 - 289506039925185.0 * cos(theta) ** 16 + 50790533320207.8 * cos(theta) ** 14 - 6464249695299.18 * cos(theta) ** 12 + 574987169662.73 * cos(theta) ** 10 - 33822774686.0429 * cos(theta) ** 8 + 1207956238.78725 * cos(theta) ** 6 - 22677526.3852425 * cos(theta) ** 4 + 167981.676927722 * cos(theta) ** 2 - 205.60792769611 ) * cos(2 * phi) ) # @torch.jit.script def Yl40_m3(theta, phi): return ( 5.41935594348895e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 5.79623459426527e15 * cos(theta) ** 37 - 4.88644587314009e16 * cos(theta) ** 35 + 1.88794499644049e17 * cos(theta) ** 33 - 4.43037759164701e17 * cos(theta) ** 31 + 7.05522458943788e17 * cos(theta) ** 29 - 8.06879206566698e17 * cos(theta) ** 27 + 6.84093240350027e17 * cos(theta) ** 25 - 4.37586294466968e17 * cos(theta) ** 23 + 2.12902562500275e17 * cos(theta) ** 21 - 7.88528009260277e16 * cos(theta) ** 19 + 2.21046376366406e16 * cos(theta) ** 17 - 4.63209663880295e15 * cos(theta) ** 15 + 711067466482909.0 * cos(theta) ** 13 - 77570996343590.1 * cos(theta) ** 11 + 5749871696627.3 * cos(theta) ** 9 - 270582197488.344 * cos(theta) ** 7 + 7247737432.72349 * cos(theta) ** 5 - 90710105.5409698 * cos(theta) ** 3 + 335963.353855444 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl40_m4(theta, phi): return ( 1.3431375046518e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 2.14460679987815e17 * cos(theta) ** 36 - 1.71025605559903e18 * cos(theta) ** 34 + 6.23021848825361e18 * cos(theta) ** 32 - 1.37341705341057e19 * cos(theta) ** 30 + 2.04601513093699e19 * cos(theta) ** 28 - 2.17857385773009e19 * cos(theta) ** 26 + 1.71023310087507e19 * cos(theta) ** 24 - 1.00644847727403e19 * cos(theta) ** 22 + 4.47095381250577e18 * cos(theta) ** 20 - 1.49820321759453e18 * cos(theta) ** 18 + 3.7577883982289e17 * cos(theta) ** 16 - 6.94814495820443e16 * cos(theta) ** 14 + 9.24387706427782e15 * cos(theta) ** 12 - 853280959779491.0 * cos(theta) ** 10 + 51748845269645.7 * cos(theta) ** 8 - 1894075382418.4 * cos(theta) ** 6 + 36238687163.6174 * cos(theta) ** 4 - 272130316.622909 * cos(theta) ** 2 + 335963.353855444 ) * cos(4 * phi) ) # @torch.jit.script def Yl40_m5(theta, phi): return ( 3.33705195947875e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 7.72058447956134e18 * cos(theta) ** 35 - 5.8148705890367e19 * cos(theta) ** 33 + 1.99366991624116e20 * cos(theta) ** 31 - 4.12025116023172e20 * cos(theta) ** 29 + 5.72884236662356e20 * cos(theta) ** 27 - 5.66429203009822e20 * cos(theta) ** 25 + 4.10455944210016e20 * cos(theta) ** 23 - 2.21418665000286e20 * cos(theta) ** 21 + 8.94190762501155e19 * cos(theta) ** 19 - 2.69676579167015e19 * cos(theta) ** 17 + 6.01246143716623e18 * cos(theta) ** 15 - 9.7274029414862e17 * cos(theta) ** 13 + 1.10926524771334e17 * cos(theta) ** 11 - 8.53280959779491e15 * cos(theta) ** 9 + 413990762157166.0 * cos(theta) ** 7 - 11364452294510.4 * cos(theta) ** 5 + 144954748654.47 * cos(theta) ** 3 - 544260633.245819 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl40_m6(theta, phi): return ( 8.31668075372529e-10 * (1.0 - cos(theta) ** 2) ** 3 * ( 2.70220456784647e20 * cos(theta) ** 34 - 1.91890729438211e21 * cos(theta) ** 32 + 6.18037674034758e21 * cos(theta) ** 30 - 1.1948728364672e22 * cos(theta) ** 28 + 1.54678743898836e22 * cos(theta) ** 26 - 1.41607300752456e22 * cos(theta) ** 24 + 9.44048671683037e21 * cos(theta) ** 22 - 4.649791965006e21 * cos(theta) ** 20 + 1.69896244875219e21 * cos(theta) ** 18 - 4.58450184583925e20 * cos(theta) ** 16 + 9.01869215574935e19 * cos(theta) ** 14 - 1.26456238239321e19 * cos(theta) ** 12 + 1.22019177248467e18 * cos(theta) ** 10 - 7.67952863801542e16 * cos(theta) ** 8 + 2.89793533510016e15 * cos(theta) ** 6 - 56822261472552.1 * cos(theta) ** 4 + 434864245963.409 * cos(theta) ** 2 - 544260633.245819 ) * cos(6 * phi) ) # @torch.jit.script def Yl40_m7(theta, phi): return ( 2.08047088933329e-11 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 9.18749553067799e21 * cos(theta) ** 33 - 6.14050334202276e22 * cos(theta) ** 31 + 1.85411302210427e23 * cos(theta) ** 29 - 3.34564394210816e23 * cos(theta) ** 27 + 4.02164734136974e23 * cos(theta) ** 25 - 3.39857521805893e23 * cos(theta) ** 23 + 2.07690707770268e23 * cos(theta) ** 21 - 9.29958393001201e22 * cos(theta) ** 19 + 3.05813240775395e22 * cos(theta) ** 17 - 7.3352029533428e21 * cos(theta) ** 15 + 1.26261690180491e21 * cos(theta) ** 13 - 1.51747485887185e20 * cos(theta) ** 11 + 1.22019177248467e19 * cos(theta) ** 9 - 6.14362291041234e17 * cos(theta) ** 7 + 1.7387612010601e16 * cos(theta) ** 5 - 227289045890209.0 * cos(theta) ** 3 + 869728491926.818 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl40_m8(theta, phi): return ( 5.2273797933148e-13 * (1.0 - cos(theta) ** 2) ** 4 * ( 3.03187352512374e23 * cos(theta) ** 32 - 1.90355603602706e24 * cos(theta) ** 30 + 5.3769277641024e24 * cos(theta) ** 28 - 9.03323864369203e24 * cos(theta) ** 26 + 1.00541183534243e25 * cos(theta) ** 24 - 7.81672300153555e24 * cos(theta) ** 22 + 4.36150486317563e24 * cos(theta) ** 20 - 1.76692094670228e24 * cos(theta) ** 18 + 5.19882509318171e23 * cos(theta) ** 16 - 1.10028044300142e23 * cos(theta) ** 14 + 1.64140197234638e22 * cos(theta) ** 12 - 1.66922234475903e21 * cos(theta) ** 10 + 1.09817259523621e20 * cos(theta) ** 8 - 4.30053603728864e18 * cos(theta) ** 6 + 8.69380600530048e16 * cos(theta) ** 4 - 681867137670626.0 * cos(theta) ** 2 + 869728491926.818 ) * cos(8 * phi) ) # @torch.jit.script def Yl40_m9(theta, phi): return ( 1.32011274988944e-14 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 9.70199528039596e24 * cos(theta) ** 31 - 5.71066810808117e25 * cos(theta) ** 29 + 1.50553977394867e26 * cos(theta) ** 27 - 2.34864204735993e26 * cos(theta) ** 25 + 2.41298840482184e26 * cos(theta) ** 23 - 1.71967906033782e26 * cos(theta) ** 21 + 8.72300972635126e25 * cos(theta) ** 19 - 3.18045770406411e25 * cos(theta) ** 17 + 8.31812014909074e24 * cos(theta) ** 15 - 1.54039262020199e24 * cos(theta) ** 13 + 1.96968236681566e23 * cos(theta) ** 11 - 1.66922234475903e22 * cos(theta) ** 9 + 8.78538076188964e20 * cos(theta) ** 7 - 2.58032162237318e19 * cos(theta) ** 5 + 3.47752240212019e17 * cos(theta) ** 3 - 1.36373427534125e15 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl40_m10(theta, phi): return ( 3.35308973781059e-16 * (1.0 - cos(theta) ** 2) ** 5 * ( 3.00761853692275e26 * cos(theta) ** 30 - 1.65609375134354e27 * cos(theta) ** 28 + 4.06495738966141e27 * cos(theta) ** 26 - 5.87160511839982e27 * cos(theta) ** 24 + 5.54987333109024e27 * cos(theta) ** 22 - 3.61132602670942e27 * cos(theta) ** 20 + 1.65737184800674e27 * cos(theta) ** 18 - 5.40677809690898e26 * cos(theta) ** 16 + 1.24771802236361e26 * cos(theta) ** 14 - 2.00251040626259e25 * cos(theta) ** 12 + 2.16665060349722e24 * cos(theta) ** 10 - 1.50230011028313e23 * cos(theta) ** 8 + 6.14976653332275e21 * cos(theta) ** 6 - 1.29016081118659e20 * cos(theta) ** 4 + 1.04325672063606e18 * cos(theta) ** 2 - 1.36373427534125e15 ) * cos(10 * phi) ) # @torch.jit.script def Yl40_m11(theta, phi): return ( 8.5723414445471e-18 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 9.02285561076824e27 * cos(theta) ** 29 - 4.63706250376191e28 * cos(theta) ** 27 + 1.05688892131197e29 * cos(theta) ** 25 - 1.40918522841596e29 * cos(theta) ** 23 + 1.22097213283985e29 * cos(theta) ** 21 - 7.22265205341884e28 * cos(theta) ** 19 + 2.98326932641213e28 * cos(theta) ** 17 - 8.65084495505437e27 * cos(theta) ** 15 + 1.74680523130906e27 * cos(theta) ** 13 - 2.4030124875151e26 * cos(theta) ** 11 + 2.16665060349722e25 * cos(theta) ** 9 - 1.2018400882265e24 * cos(theta) ** 7 + 3.68985991999365e22 * cos(theta) ** 5 - 5.16064324474636e20 * cos(theta) ** 3 + 2.08651344127211e18 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl40_m12(theta, phi): return ( 2.20749023089331e-19 * (1.0 - cos(theta) ** 2) ** 6 * ( 2.61662812712279e29 * cos(theta) ** 28 - 1.25200687601571e30 * cos(theta) ** 26 + 2.64222230327992e30 * cos(theta) ** 24 - 3.2411260253567e30 * cos(theta) ** 22 + 2.56404147896369e30 * cos(theta) ** 20 - 1.37230389014958e30 * cos(theta) ** 18 + 5.07155785490062e29 * cos(theta) ** 16 - 1.29762674325816e29 * cos(theta) ** 14 + 2.27084680070177e28 * cos(theta) ** 12 - 2.64331373626661e27 * cos(theta) ** 10 + 1.9499855431475e26 * cos(theta) ** 8 - 8.41288061758552e24 * cos(theta) ** 6 + 1.84492995999682e23 * cos(theta) ** 4 - 1.54819297342391e21 * cos(theta) ** 2 + 2.08651344127211e18 ) * cos(12 * phi) ) # @torch.jit.script def Yl40_m13(theta, phi): return ( 5.73035911876231e-21 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 7.32655875594381e30 * cos(theta) ** 27 - 3.25521787764086e31 * cos(theta) ** 25 + 6.3413335278718e31 * cos(theta) ** 23 - 7.13047725578474e31 * cos(theta) ** 21 + 5.12808295792738e31 * cos(theta) ** 19 - 2.47014700226924e31 * cos(theta) ** 17 + 8.114492567841e30 * cos(theta) ** 15 - 1.81667744056142e30 * cos(theta) ** 13 + 2.72501616084213e29 * cos(theta) ** 11 - 2.64331373626661e28 * cos(theta) ** 9 + 1.559988434518e27 * cos(theta) ** 7 - 5.04772837055131e25 * cos(theta) ** 5 + 7.3797198399873e23 * cos(theta) ** 3 - 3.09638594684782e21 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl40_m14(theta, phi): return ( 1.5007317746337e-22 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.97817086410483e32 * cos(theta) ** 26 - 8.13804469410215e32 * cos(theta) ** 24 + 1.45850671141051e33 * cos(theta) ** 22 - 1.49740022371479e33 * cos(theta) ** 20 + 9.74335762006202e32 * cos(theta) ** 18 - 4.19924990385772e32 * cos(theta) ** 16 + 1.21717388517615e32 * cos(theta) ** 14 - 2.36168067272984e31 * cos(theta) ** 12 + 2.99751777692634e30 * cos(theta) ** 10 - 2.37898236263995e29 * cos(theta) ** 8 + 1.0919919041626e28 * cos(theta) ** 6 - 2.52386418527566e26 * cos(theta) ** 4 + 2.21391595199619e24 * cos(theta) ** 2 - 3.09638594684782e21 ) * cos(14 * phi) ) # @torch.jit.script def Yl40_m15(theta, phi): return ( 3.96857926648469e-24 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 5.14324424667256e33 * cos(theta) ** 25 - 1.95313072658452e34 * cos(theta) ** 23 + 3.20871476510313e34 * cos(theta) ** 21 - 2.99480044742959e34 * cos(theta) ** 19 + 1.75380437161116e34 * cos(theta) ** 17 - 6.71879984617235e33 * cos(theta) ** 15 + 1.70404343924661e33 * cos(theta) ** 13 - 2.83401680727581e32 * cos(theta) ** 11 + 2.99751777692634e31 * cos(theta) ** 9 - 1.90318589011196e30 * cos(theta) ** 7 + 6.5519514249756e28 * cos(theta) ** 5 - 1.00954567411026e27 * cos(theta) ** 3 + 4.42783190399238e24 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl40_m16(theta, phi): return ( 1.0606474233886e-25 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.28581106166814e35 * cos(theta) ** 24 - 4.49220067114438e35 * cos(theta) ** 22 + 6.73830100671658e35 * cos(theta) ** 20 - 5.69012085011622e35 * cos(theta) ** 18 + 2.98146743173898e35 * cos(theta) ** 16 - 1.00781997692585e35 * cos(theta) ** 14 + 2.21525647102059e34 * cos(theta) ** 12 - 3.11741848800339e33 * cos(theta) ** 10 + 2.6977659992337e32 * cos(theta) ** 8 - 1.33223012307837e31 * cos(theta) ** 6 + 3.2759757124878e29 * cos(theta) ** 4 - 3.02863702233079e27 * cos(theta) ** 2 + 4.42783190399238e24 ) * cos(16 * phi) ) # @torch.jit.script def Yl40_m17(theta, phi): return ( 2.86766220567966e-27 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 3.08594654800353e36 * cos(theta) ** 23 - 9.88284147651765e36 * cos(theta) ** 21 + 1.34766020134332e37 * cos(theta) ** 19 - 1.02422175302092e37 * cos(theta) ** 17 + 4.77034789078237e36 * cos(theta) ** 15 - 1.41094796769619e36 * cos(theta) ** 13 + 2.65830776522471e35 * cos(theta) ** 11 - 3.11741848800339e34 * cos(theta) ** 9 + 2.15821279938696e33 * cos(theta) ** 7 - 7.99338073847024e31 * cos(theta) ** 5 + 1.31039028499512e30 * cos(theta) ** 3 - 6.05727404466158e27 * cos(theta) ) * cos(17 * phi) ) # @torch.jit.script def Yl40_m18(theta, phi): return ( 7.85145376863331e-29 * (1.0 - cos(theta) ** 2) ** 9 * ( 7.09767706040813e37 * cos(theta) ** 22 - 2.07539671006871e38 * cos(theta) ** 20 + 2.5605543825523e38 * cos(theta) ** 18 - 1.74117698013556e38 * cos(theta) ** 16 + 7.15552183617355e37 * cos(theta) ** 14 - 1.83423235800505e37 * cos(theta) ** 12 + 2.92413854174718e36 * cos(theta) ** 10 - 2.80567663920305e35 * cos(theta) ** 8 + 1.51074895957087e34 * cos(theta) ** 6 - 3.99669036923512e32 * cos(theta) ** 4 + 3.93117085498536e30 * cos(theta) ** 2 - 6.05727404466158e27 ) * cos(18 * phi) ) # @torch.jit.script def Yl40_m19(theta, phi): return ( 2.17927848637694e-30 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.56148895328979e39 * cos(theta) ** 21 - 4.15079342013741e39 * cos(theta) ** 19 + 4.60899788859414e39 * cos(theta) ** 17 - 2.7858831682169e39 * cos(theta) ** 15 + 1.0017730570643e39 * cos(theta) ** 13 - 2.20107882960606e38 * cos(theta) ** 11 + 2.92413854174718e37 * cos(theta) ** 9 - 2.24454131136244e36 * cos(theta) ** 7 + 9.06449375742525e34 * cos(theta) ** 5 - 1.59867614769405e33 * cos(theta) ** 3 + 7.86234170997073e30 * cos(theta) ) * cos(19 * phi) ) # @torch.jit.script def Yl40_m20(theta, phi): return ( 6.13942161666598e-32 * (1.0 - cos(theta) ** 2) ** 10 * ( 3.27912680190856e40 * cos(theta) ** 20 - 7.88650749826108e40 * cos(theta) ** 18 + 7.83529641061004e40 * cos(theta) ** 16 - 4.17882475232535e40 * cos(theta) ** 14 + 1.30230497418359e40 * cos(theta) ** 12 - 2.42118671256667e39 * cos(theta) ** 10 + 2.63172468757246e38 * cos(theta) ** 8 - 1.57117891795371e37 * cos(theta) ** 6 + 4.53224687871262e35 * cos(theta) ** 4 - 4.79602844308214e33 * cos(theta) ** 2 + 7.86234170997073e30 ) * cos(20 * phi) ) # @torch.jit.script def Yl40_m21(theta, phi): return ( 1.75771129567675e-33 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 6.55825360381711e41 * cos(theta) ** 19 - 1.41957134968699e42 * cos(theta) ** 17 + 1.25364742569761e42 * cos(theta) ** 15 - 5.85035465325549e41 * cos(theta) ** 13 + 1.5627659690203e41 * cos(theta) ** 11 - 2.42118671256667e40 * cos(theta) ** 9 + 2.10537975005797e39 * cos(theta) ** 7 - 9.42707350772226e37 * cos(theta) ** 5 + 1.81289875148505e36 * cos(theta) ** 3 - 9.59205688616428e33 * cos(theta) ) * cos(21 * phi) ) # @torch.jit.script def Yl40_m22(theta, phi): return ( 5.12123728198411e-35 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.24606818472525e43 * cos(theta) ** 18 - 2.41327129446789e43 * cos(theta) ** 16 + 1.88047113854641e43 * cos(theta) ** 14 - 7.60546104923214e42 * cos(theta) ** 12 + 1.71904256592233e42 * cos(theta) ** 10 - 2.17906804131e41 * cos(theta) ** 8 + 1.47376582504058e40 * cos(theta) ** 6 - 4.71353675386113e38 * cos(theta) ** 4 + 5.43869625445515e36 * cos(theta) ** 2 - 9.59205688616428e33 ) * cos(22 * phi) ) # @torch.jit.script def Yl40_m23(theta, phi): return ( 1.52078692901253e-36 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 2.24292273250545e44 * cos(theta) ** 17 - 3.86123407114863e44 * cos(theta) ** 15 + 2.63265959396497e44 * cos(theta) ** 13 - 9.12655325907857e43 * cos(theta) ** 11 + 1.71904256592233e43 * cos(theta) ** 9 - 1.743254433048e42 * cos(theta) ** 7 + 8.84259495024348e40 * cos(theta) ** 5 - 1.88541470154445e39 * cos(theta) ** 3 + 1.08773925089103e37 * cos(theta) ) * cos(23 * phi) ) # @torch.jit.script def Yl40_m24(theta, phi): return ( 4.61056260468926e-38 * (1.0 - cos(theta) ** 2) ** 12 * ( 3.81296864525927e45 * cos(theta) ** 16 - 5.79185110672294e45 * cos(theta) ** 14 + 3.42245747215446e45 * cos(theta) ** 12 - 1.00392085849864e45 * cos(theta) ** 10 + 1.5471383093301e44 * cos(theta) ** 8 - 1.2202781031336e43 * cos(theta) ** 6 + 4.42129747512174e41 * cos(theta) ** 4 - 5.65624410463335e39 * cos(theta) ** 2 + 1.08773925089103e37 ) * cos(24 * phi) ) # @torch.jit.script def Yl40_m25(theta, phi): return ( 1.4296747724489e-39 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 6.10074983241483e46 * cos(theta) ** 15 - 8.10859154941211e46 * cos(theta) ** 13 + 4.10694896658536e46 * cos(theta) ** 11 - 1.00392085849864e46 * cos(theta) ** 9 + 1.23771064746408e45 * cos(theta) ** 7 - 7.3216686188016e43 * cos(theta) ** 5 + 1.7685189900487e42 * cos(theta) ** 3 - 1.13124882092667e40 * cos(theta) ) * cos(25 * phi) ) # @torch.jit.script def Yl40_m26(theta, phi): return ( 4.54380470106078e-41 * (1.0 - cos(theta) ** 2) ** 13 * ( 9.15112474862224e47 * cos(theta) ** 14 - 1.05411690142357e48 * cos(theta) ** 12 + 4.51764386324389e47 * cos(theta) ** 10 - 9.03528772648778e46 * cos(theta) ** 8 + 8.66397453224856e45 * cos(theta) ** 6 - 3.6608343094008e44 * cos(theta) ** 4 + 5.30555697014609e42 * cos(theta) ** 2 - 1.13124882092667e40 ) * cos(26 * phi) ) # @torch.jit.script def Yl40_m27(theta, phi): return ( 1.48360482591054e-42 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.28115746480711e49 * cos(theta) ** 13 - 1.26494028170829e49 * cos(theta) ** 11 + 4.51764386324389e48 * cos(theta) ** 9 - 7.22823018119023e47 * cos(theta) ** 7 + 5.19838471934914e46 * cos(theta) ** 5 - 1.46433372376032e45 * cos(theta) ** 3 + 1.06111139402922e43 * cos(theta) ) * cos(27 * phi) ) # @torch.jit.script def Yl40_m28(theta, phi): return ( 4.98990301715827e-44 * (1.0 - cos(theta) ** 2) ** 14 * ( 1.66550470424925e50 * cos(theta) ** 12 - 1.39143430987912e50 * cos(theta) ** 10 + 4.0658794769195e49 * cos(theta) ** 8 - 5.05976112683316e48 * cos(theta) ** 6 + 2.59919235967457e47 * cos(theta) ** 4 - 4.39300117128096e45 * cos(theta) ** 2 + 1.06111139402922e43 ) * cos(28 * phi) ) # @torch.jit.script def Yl40_m29(theta, phi): return ( 1.73411117304064e-45 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 1.9986056450991e51 * cos(theta) ** 11 - 1.39143430987912e51 * cos(theta) ** 9 + 3.2527035815356e50 * cos(theta) ** 7 - 3.0358566760999e49 * cos(theta) ** 5 + 1.03967694386983e48 * cos(theta) ** 3 - 8.78600234256192e45 * cos(theta) ) * cos(29 * phi) ) # @torch.jit.script def Yl40_m30(theta, phi): return ( 6.24930288108503e-47 * (1.0 - cos(theta) ** 2) ** 15 * ( 2.19846620960901e52 * cos(theta) ** 10 - 1.25229087889121e52 * cos(theta) ** 8 + 2.27689250707492e51 * cos(theta) ** 6 - 1.51792833804995e50 * cos(theta) ** 4 + 3.11903083160948e48 * cos(theta) ** 2 - 8.78600234256192e45 ) * cos(30 * phi) ) # @torch.jit.script def Yl40_m31(theta, phi): return ( 2.34532157918569e-48 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 2.19846620960901e53 * cos(theta) ** 9 - 1.00183270311297e53 * cos(theta) ** 7 + 1.36613550424495e52 * cos(theta) ** 5 - 6.07171335219979e50 * cos(theta) ** 3 + 6.23806166321896e48 * cos(theta) ) * cos(31 * phi) ) # @torch.jit.script def Yl40_m32(theta, phi): return ( 9.21329329280745e-50 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.97861958864811e54 * cos(theta) ** 8 - 7.01282892179076e53 * cos(theta) ** 6 + 6.83067752122477e52 * cos(theta) ** 4 - 1.82151400565994e51 * cos(theta) ** 2 + 6.23806166321896e48 ) * cos(32 * phi) ) # @torch.jit.script def Yl40_m33(theta, phi): return ( 3.81248789127407e-51 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 1.58289567091849e55 * cos(theta) ** 7 - 4.20769735307446e54 * cos(theta) ** 5 + 2.73227100848991e53 * cos(theta) ** 3 - 3.64302801131987e51 * cos(theta) ) * cos(33 * phi) ) # @torch.jit.script def Yl40_m34(theta, phi): return ( 1.67511101004305e-52 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.10802696964294e56 * cos(theta) ** 6 - 2.10384867653723e55 * cos(theta) ** 4 + 8.19681302546972e53 * cos(theta) ** 2 - 3.64302801131987e51 ) * cos(34 * phi) ) # @torch.jit.script def Yl40_m35(theta, phi): return ( 7.89654902961126e-54 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 6.64816181785764e56 * cos(theta) ** 5 - 8.41539470614891e55 * cos(theta) ** 3 + 1.63936260509394e54 * cos(theta) ) * cos(35 * phi) ) # @torch.jit.script def Yl40_m36(theta, phi): return ( 4.05084418028009e-55 * (1.0 - cos(theta) ** 2) ** 18 * ( 3.32408090892882e57 * cos(theta) ** 4 - 2.52461841184467e56 * cos(theta) ** 2 + 1.63936260509394e54 ) * cos(36 * phi) ) # @torch.jit.script def Yl40_m37(theta, phi): return ( 2.30818268966444e-56 * (1.0 - cos(theta) ** 2) ** 18.5 * (1.32963236357153e58 * cos(theta) ** 3 - 5.04923682368935e56 * cos(theta)) * cos(37 * phi) ) # @torch.jit.script def Yl40_m38(theta, phi): return ( 1.50890622763283e-57 * (1.0 - cos(theta) ** 2) ** 19 * (3.98889709071458e58 * cos(theta) ** 2 - 5.04923682368935e56) * cos(38 * phi) ) # @torch.jit.script def Yl40_m39(theta, phi): return ( 9.57671438575497 * (1.0 - cos(theta) ** 2) ** 19.5 * cos(39 * phi) * cos(theta) ) # @torch.jit.script def Yl40_m40(theta, phi): return 1.07070921838241 * (1.0 - cos(theta) ** 2) ** 20 * cos(40 * phi) # @torch.jit.script def Yl41_m_minus_41(theta, phi): return 1.07721814896289 * (1.0 - cos(theta) ** 2) ** 20.5 * sin(41 * phi) # @torch.jit.script def Yl41_m_minus_40(theta, phi): return 9.75462521665048 * (1.0 - cos(theta) ** 2) ** 20 * sin(40 * phi) * cos(theta) # @torch.jit.script def Yl41_m_minus_39(theta, phi): return ( 1.92132241117284e-59 * (1.0 - cos(theta) ** 2) ** 19.5 * (3.23100664347881e60 * cos(theta) ** 2 - 3.98889709071458e58) * sin(39 * phi) ) # @torch.jit.script def Yl41_m_minus_38(theta, phi): return ( 2.97649988046699e-58 * (1.0 - cos(theta) ** 2) ** 19 * (1.07700221449294e60 * cos(theta) ** 3 - 3.98889709071458e58 * cos(theta)) * sin(38 * phi) ) # @torch.jit.script def Yl41_m_minus_37(theta, phi): return ( 5.29114192414144e-57 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 2.69250553623234e59 * cos(theta) ** 4 - 1.99444854535729e58 * cos(theta) ** 2 + 1.26230920592234e56 ) * sin(37 * phi) ) # @torch.jit.script def Yl41_m_minus_36(theta, phi): return ( 1.04491680606395e-55 * (1.0 - cos(theta) ** 2) ** 18 * ( 5.38501107246469e58 * cos(theta) ** 5 - 6.64816181785764e57 * cos(theta) ** 3 + 1.26230920592234e56 * cos(theta) ) * sin(36 * phi) ) # @torch.jit.script def Yl41_m_minus_35(theta, phi): return ( 2.24596354110399e-54 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 8.97501845410781e57 * cos(theta) ** 6 - 1.66204045446441e57 * cos(theta) ** 4 + 6.31154602961168e55 * cos(theta) ** 2 - 2.73227100848991e53 ) * sin(35 * phi) ) # @torch.jit.script def Yl41_m_minus_34(theta, phi): return ( 5.18034302462604e-53 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.28214549344397e57 * cos(theta) ** 7 - 3.32408090892882e56 * cos(theta) ** 5 + 2.10384867653723e55 * cos(theta) ** 3 - 2.73227100848991e53 * cos(theta) ) * sin(34 * phi) ) # @torch.jit.script def Yl41_m_minus_33(theta, phi): return ( 1.26891971029199e-51 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 1.60268186680497e56 * cos(theta) ** 8 - 5.5401348482147e55 * cos(theta) ** 6 + 5.25962169134307e54 * cos(theta) ** 4 - 1.36613550424495e53 * cos(theta) ** 2 + 4.55378501414984e50 ) * sin(33 * phi) ) # @torch.jit.script def Yl41_m_minus_32(theta, phi): return ( 3.27469802570795e-50 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.7807576297833e55 * cos(theta) ** 9 - 7.91447835459243e54 * cos(theta) ** 7 + 1.05192433826861e54 * cos(theta) ** 5 - 4.55378501414984e52 * cos(theta) ** 3 + 4.55378501414984e50 * cos(theta) ) * sin(32 * phi) ) # @torch.jit.script def Yl41_m_minus_31(theta, phi): return ( 8.84774684679108e-49 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 1.7807576297833e54 * cos(theta) ** 10 - 9.89309794324053e53 * cos(theta) ** 8 + 1.75320723044769e53 * cos(theta) ** 6 - 1.13844625353746e52 * cos(theta) ** 4 + 2.27689250707492e50 * cos(theta) ** 2 - 6.23806166321896e47 ) * sin(31 * phi) ) # @torch.jit.script def Yl41_m_minus_30(theta, phi): return ( 2.48997667494702e-47 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.61887057253027e53 * cos(theta) ** 11 - 1.0992331048045e53 * cos(theta) ** 9 + 2.50458175778241e52 * cos(theta) ** 7 - 2.27689250707492e51 * cos(theta) ** 5 + 7.58964169024974e49 * cos(theta) ** 3 - 6.23806166321896e47 * cos(theta) ) * sin(30 * phi) ) # @torch.jit.script def Yl41_m_minus_29(theta, phi): return ( 7.26800263703634e-46 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 1.34905881044189e52 * cos(theta) ** 12 - 1.0992331048045e52 * cos(theta) ** 10 + 3.13072719722802e51 * cos(theta) ** 8 - 3.79482084512487e50 * cos(theta) ** 6 + 1.89741042256243e49 * cos(theta) ** 4 - 3.11903083160948e47 * cos(theta) ** 2 + 7.3216686188016e44 ) * sin(29 * phi) ) # @torch.jit.script def Yl41_m_minus_28(theta, phi): return ( 2.19248066632502e-44 * (1.0 - cos(theta) ** 2) ** 14 * ( 1.03773754649376e51 * cos(theta) ** 13 - 9.99302822549549e50 * cos(theta) ** 11 + 3.4785857746978e50 * cos(theta) ** 9 - 5.42117263589267e49 * cos(theta) ** 7 + 3.79482084512487e48 * cos(theta) ** 5 - 1.03967694386983e47 * cos(theta) ** 3 + 7.3216686188016e44 * cos(theta) ) * sin(28 * phi) ) # @torch.jit.script def Yl41_m_minus_27(theta, phi): return ( 6.81434842237606e-43 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 7.41241104638402e49 * cos(theta) ** 14 - 8.32752352124624e49 * cos(theta) ** 12 + 3.4785857746978e49 * cos(theta) ** 10 - 6.77646579486584e48 * cos(theta) ** 8 + 6.32470140854145e47 * cos(theta) ** 6 - 2.59919235967457e46 * cos(theta) ** 4 + 3.6608343094008e44 * cos(theta) ** 2 - 7.5793671002087e41 ) * sin(27 * phi) ) # @torch.jit.script def Yl41_m_minus_26(theta, phi): return ( 2.17632836010492e-41 * (1.0 - cos(theta) ** 2) ** 13 * ( 4.94160736425601e48 * cos(theta) ** 15 - 6.40578732403557e48 * cos(theta) ** 13 + 3.16235070427072e48 * cos(theta) ** 11 - 7.52940643873982e47 * cos(theta) ** 9 + 9.03528772648778e46 * cos(theta) ** 7 - 5.19838471934914e45 * cos(theta) ** 5 + 1.2202781031336e44 * cos(theta) ** 3 - 7.5793671002087e41 * cos(theta) ) * sin(26 * phi) ) # @torch.jit.script def Yl41_m_minus_25(theta, phi): return ( 7.12560614995579e-40 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 3.08850460266001e47 * cos(theta) ** 16 - 4.57556237431112e47 * cos(theta) ** 14 + 2.63529225355894e47 * cos(theta) ** 12 - 7.52940643873982e46 * cos(theta) ** 10 + 1.12941096581097e46 * cos(theta) ** 8 - 8.66397453224856e44 * cos(theta) ** 6 + 3.050695257834e43 * cos(theta) ** 4 - 3.78968355010435e41 * cos(theta) ** 2 + 7.07030513079169e38 ) * sin(25 * phi) ) # @torch.jit.script def Yl41_m_minus_24(theta, phi): return ( 2.3868121645997e-38 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.81676741332942e46 * cos(theta) ** 17 - 3.05037491620741e46 * cos(theta) ** 15 + 2.02714788735303e46 * cos(theta) ** 13 - 6.84491494430893e45 * cos(theta) ** 11 + 1.2549010731233e45 * cos(theta) ** 9 - 1.23771064746408e44 * cos(theta) ** 7 + 6.101390515668e42 * cos(theta) ** 5 - 1.26322785003478e41 * cos(theta) ** 3 + 7.07030513079169e38 * cos(theta) ) * sin(24 * phi) ) # @torch.jit.script def Yl41_m_minus_23(theta, phi): return ( 8.16415372321275e-37 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.00931522962745e45 * cos(theta) ** 18 - 1.90648432262963e45 * cos(theta) ** 16 + 1.44796277668073e45 * cos(theta) ** 14 - 5.70409578692411e44 * cos(theta) ** 12 + 1.2549010731233e44 * cos(theta) ** 10 - 1.5471383093301e43 * cos(theta) ** 8 + 1.016898419278e42 * cos(theta) ** 6 - 3.15806962508696e40 * cos(theta) ** 4 + 3.53515256539585e38 * cos(theta) ** 2 - 6.0429958382835e35 ) * sin(23 * phi) ) # @torch.jit.script def Yl41_m_minus_22(theta, phi): return ( 2.84693768312126e-35 * (1.0 - cos(theta) ** 2) ** 11 * ( 5.31218541909186e43 * cos(theta) ** 19 - 1.12146136625273e44 * cos(theta) ** 17 + 9.65308517787156e43 * cos(theta) ** 15 - 4.38776598994162e43 * cos(theta) ** 13 + 1.14081915738482e43 * cos(theta) ** 11 - 1.71904256592233e42 * cos(theta) ** 9 + 1.45271202754e41 * cos(theta) ** 7 - 6.31613925017391e39 * cos(theta) ** 5 + 1.17838418846528e38 * cos(theta) ** 3 - 6.0429958382835e35 * cos(theta) ) * sin(22 * phi) ) # @torch.jit.script def Yl41_m_minus_21(theta, phi): return ( 1.01056262825149e-33 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 2.65609270954593e42 * cos(theta) ** 20 - 6.23034092362625e42 * cos(theta) ** 18 + 6.03317823616973e42 * cos(theta) ** 16 - 3.13411856424401e42 * cos(theta) ** 14 + 9.50682631154018e41 * cos(theta) ** 12 - 1.71904256592233e41 * cos(theta) ** 10 + 1.815890034425e40 * cos(theta) ** 8 - 1.05268987502899e39 * cos(theta) ** 6 + 2.94596047116321e37 * cos(theta) ** 4 - 3.02149791914175e35 * cos(theta) ** 2 + 4.79602844308214e32 ) * sin(21 * phi) ) # @torch.jit.script def Yl41_m_minus_20(theta, phi): return ( 3.64643709249914e-32 * (1.0 - cos(theta) ** 2) ** 10 * ( 1.26480605216473e41 * cos(theta) ** 21 - 3.27912680190856e41 * cos(theta) ** 19 + 3.54892837421749e41 * cos(theta) ** 17 - 2.08941237616268e41 * cos(theta) ** 15 + 7.31294331656937e40 * cos(theta) ** 13 - 1.5627659690203e40 * cos(theta) ** 11 + 2.01765559380556e39 * cos(theta) ** 9 - 1.50384267861284e38 * cos(theta) ** 7 + 5.89192094232641e36 * cos(theta) ** 5 - 1.00716597304725e35 * cos(theta) ** 3 + 4.79602844308214e32 * cos(theta) ) * sin(20 * phi) ) # @torch.jit.script def Yl41_m_minus_19(theta, phi): return ( 1.33581090189222e-30 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 5.74911841893058e39 * cos(theta) ** 22 - 1.63956340095428e40 * cos(theta) ** 20 + 1.97162687456527e40 * cos(theta) ** 18 - 1.30588273510167e40 * cos(theta) ** 16 + 5.22353094040669e39 * cos(theta) ** 14 - 1.30230497418359e39 * cos(theta) ** 12 + 2.01765559380556e38 * cos(theta) ** 10 - 1.87980334826605e37 * cos(theta) ** 8 + 9.81986823721069e35 * cos(theta) ** 6 - 2.51791493261812e34 * cos(theta) ** 4 + 2.39801422154107e32 * cos(theta) ** 2 - 3.57379168635033e29 ) * sin(19 * phi) ) # @torch.jit.script def Yl41_m_minus_18(theta, phi): return ( 4.96231725764027e-29 * (1.0 - cos(theta) ** 2) ** 9 * ( 2.49961670388286e38 * cos(theta) ** 23 - 7.80744476644894e38 * cos(theta) ** 21 + 1.03769835503435e39 * cos(theta) ** 19 - 7.6816631476569e38 * cos(theta) ** 17 + 3.48235396027113e38 * cos(theta) ** 15 - 1.0017730570643e38 * cos(theta) ** 13 + 1.83423235800505e37 * cos(theta) ** 11 - 2.08867038696227e36 * cos(theta) ** 9 + 1.40283831960153e35 * cos(theta) ** 7 - 5.03582986523625e33 * cos(theta) ** 5 + 7.99338073847024e31 * cos(theta) ** 3 - 3.57379168635033e29 * cos(theta) ) * sin(18 * phi) ) # @torch.jit.script def Yl41_m_minus_17(theta, phi): return ( 1.8673088408914e-27 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.04150695995119e37 * cos(theta) ** 24 - 3.54883853020406e37 * cos(theta) ** 22 + 5.18849177517177e37 * cos(theta) ** 20 - 4.26759063758717e37 * cos(theta) ** 18 + 2.17647122516945e37 * cos(theta) ** 16 - 7.15552183617355e36 * cos(theta) ** 14 + 1.52852696500421e36 * cos(theta) ** 12 - 2.08867038696227e35 * cos(theta) ** 10 + 1.75354789950191e34 * cos(theta) ** 8 - 8.39304977539375e32 * cos(theta) ** 6 + 1.99834518461756e31 * cos(theta) ** 4 - 1.78689584317516e29 * cos(theta) ** 2 + 2.52386418527566e26 ) * sin(17 * phi) ) # @torch.jit.script def Yl41_m_minus_16(theta, phi): return ( 7.11050022540132e-26 * (1.0 - cos(theta) ** 2) ** 8 * ( 4.16602783980477e35 * cos(theta) ** 25 - 1.54297327400177e36 * cos(theta) ** 23 + 2.47071036912941e36 * cos(theta) ** 21 - 2.24610033557219e36 * cos(theta) ** 19 + 1.28027719127615e36 * cos(theta) ** 17 - 4.77034789078237e35 * cos(theta) ** 15 + 1.17578997308016e35 * cos(theta) ** 13 - 1.89879126087479e34 * cos(theta) ** 11 + 1.94838655500212e33 * cos(theta) ** 9 - 1.19900711077054e32 * cos(theta) ** 7 + 3.99669036923512e30 * cos(theta) ** 5 - 5.95631947725055e28 * cos(theta) ** 3 + 2.52386418527566e26 * cos(theta) ) * sin(16 * phi) ) # @torch.jit.script def Yl41_m_minus_15(theta, phi): return ( 2.73731171664738e-24 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.60231839992491e34 * cos(theta) ** 26 - 6.4290553083407e34 * cos(theta) ** 24 + 1.1230501677861e35 * cos(theta) ** 22 - 1.1230501677861e35 * cos(theta) ** 20 + 7.11265106264528e34 * cos(theta) ** 18 - 2.98146743173898e34 * cos(theta) ** 16 + 8.39849980771543e33 * cos(theta) ** 14 - 1.58232605072899e33 * cos(theta) ** 12 + 1.94838655500212e32 * cos(theta) ** 10 - 1.49875888846317e31 * cos(theta) ** 8 + 6.66115061539186e29 * cos(theta) ** 6 - 1.48907986931264e28 * cos(theta) ** 4 + 1.26193209263783e26 * cos(theta) ** 2 - 1.7030122707663e23 ) * sin(15 * phi) ) # @torch.jit.script def Yl41_m_minus_14(theta, phi): return ( 1.06438844677832e-22 * (1.0 - cos(theta) ** 2) ** 7 * ( 5.93451259231449e32 * cos(theta) ** 27 - 2.57162212333628e33 * cos(theta) ** 25 + 4.88282681646129e33 * cos(theta) ** 23 - 5.34785794183855e33 * cos(theta) ** 21 + 3.74350055928699e33 * cos(theta) ** 19 - 1.75380437161116e33 * cos(theta) ** 17 + 5.59899987181029e32 * cos(theta) ** 15 - 1.21717388517615e32 * cos(theta) ** 13 + 1.77126050454738e31 * cos(theta) ** 11 - 1.66528765384797e30 * cos(theta) ** 9 + 9.51592945055981e28 * cos(theta) ** 7 - 2.97815973862527e27 * cos(theta) ** 5 + 4.20644030879276e25 * cos(theta) ** 3 - 1.7030122707663e23 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl41_m_minus_13(theta, phi): return ( 4.17696188524406e-21 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 2.11946878296946e31 * cos(theta) ** 28 - 9.89085432052415e31 * cos(theta) ** 26 + 2.03451117352554e32 * cos(theta) ** 24 - 2.43084451901752e32 * cos(theta) ** 22 + 1.87175027964349e32 * cos(theta) ** 20 - 9.74335762006202e31 * cos(theta) ** 18 + 3.49937491988143e31 * cos(theta) ** 16 - 8.69409917982964e30 * cos(theta) ** 14 + 1.47605042045615e30 * cos(theta) ** 12 - 1.66528765384797e29 * cos(theta) ** 10 + 1.18949118131998e28 * cos(theta) ** 8 - 4.96359956437546e26 * cos(theta) ** 6 + 1.05161007719819e25 * cos(theta) ** 4 - 8.5150613538315e22 * cos(theta) ** 2 + 1.10585212387422e20 ) * sin(13 * phi) ) # @torch.jit.script def Yl41_m_minus_12(theta, phi): return ( 1.65293734258634e-19 * (1.0 - cos(theta) ** 2) ** 6 * ( 7.30851304472228e29 * cos(theta) ** 29 - 3.66327937797191e30 * cos(theta) ** 27 + 8.13804469410215e30 * cos(theta) ** 25 - 1.05688892131197e31 * cos(theta) ** 23 + 8.91309656973092e30 * cos(theta) ** 21 - 5.12808295792738e30 * cos(theta) ** 19 + 2.05845583522437e30 * cos(theta) ** 17 - 5.79606611988643e29 * cos(theta) ** 15 + 1.13542340035089e29 * cos(theta) ** 13 - 1.51389786713451e28 * cos(theta) ** 11 + 1.32165686813331e27 * cos(theta) ** 9 - 7.09085652053637e25 * cos(theta) ** 7 + 2.10322015439638e24 * cos(theta) ** 5 - 2.8383537846105e22 * cos(theta) ** 3 + 1.10585212387422e20 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl41_m_minus_11(theta, phi): return ( 6.59105526834746e-18 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 2.43617101490743e28 * cos(theta) ** 30 - 1.3083140635614e29 * cos(theta) ** 28 + 3.13001719003929e29 * cos(theta) ** 26 - 4.40370383879986e29 * cos(theta) ** 24 + 4.05140753169587e29 * cos(theta) ** 22 - 2.56404147896369e29 * cos(theta) ** 20 + 1.14358657512465e29 * cos(theta) ** 18 - 3.62254132492902e28 * cos(theta) ** 16 + 8.11016714536347e27 * cos(theta) ** 14 - 1.26158155594543e27 * cos(theta) ** 12 + 1.32165686813331e26 * cos(theta) ** 10 - 8.86357065067046e24 * cos(theta) ** 8 + 3.50536692399397e23 * cos(theta) ** 6 - 7.09588446152625e21 * cos(theta) ** 4 + 5.5292606193711e19 * cos(theta) ** 2 - 6.95504480424038e16 ) * sin(11 * phi) ) # @torch.jit.script def Yl41_m_minus_10(theta, phi): return ( 2.64629022208945e-16 * (1.0 - cos(theta) ** 2) ** 5 * ( 7.85861617712073e26 * cos(theta) ** 31 - 4.51142780538412e27 * cos(theta) ** 29 + 1.15926562594048e28 * cos(theta) ** 27 - 1.76148153551995e28 * cos(theta) ** 25 + 1.76148153551995e28 * cos(theta) ** 23 - 1.22097213283985e28 * cos(theta) ** 21 + 6.01887671118237e27 * cos(theta) ** 19 - 2.13090666172295e27 * cos(theta) ** 17 + 5.40677809690898e26 * cos(theta) ** 15 - 9.70447350727253e25 * cos(theta) ** 13 + 1.20150624375755e25 * cos(theta) ** 11 - 9.84841183407829e23 * cos(theta) ** 9 + 5.0076670342771e22 * cos(theta) ** 7 - 1.41917689230525e21 * cos(theta) ** 5 + 1.8430868731237e19 * cos(theta) ** 3 - 6.95504480424038e16 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl41_m_minus_9(theta, phi): return ( 1.06904884665327e-14 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 2.45581755535023e25 * cos(theta) ** 32 - 1.50380926846137e26 * cos(theta) ** 30 + 4.14023437835885e26 * cos(theta) ** 28 - 6.77492898276902e26 * cos(theta) ** 26 + 7.33950639799977e26 * cos(theta) ** 24 - 5.54987333109024e26 * cos(theta) ** 22 + 3.00943835559119e26 * cos(theta) ** 20 - 1.18383703429053e26 * cos(theta) ** 18 + 3.37923631056811e25 * cos(theta) ** 16 - 6.93176679090895e24 * cos(theta) ** 14 + 1.00125520313129e24 * cos(theta) ** 12 - 9.84841183407829e22 * cos(theta) ** 10 + 6.25958379284637e21 * cos(theta) ** 8 - 2.36529482050875e20 * cos(theta) ** 6 + 4.60771718280925e18 * cos(theta) ** 4 - 3.47752240212019e16 * cos(theta) ** 2 + 42616696104414.1 ) * sin(9 * phi) ) # @torch.jit.script def Yl41_m_minus_8(theta, phi): return ( 4.34249694332146e-13 * (1.0 - cos(theta) ** 2) ** 4 * ( 7.44187137984917e23 * cos(theta) ** 33 - 4.85099764019798e24 * cos(theta) ** 31 + 1.42766702702029e25 * cos(theta) ** 29 - 2.50923295658112e25 * cos(theta) ** 27 + 2.93580255919991e25 * cos(theta) ** 25 - 2.41298840482184e25 * cos(theta) ** 23 + 1.43306588361485e25 * cos(theta) ** 21 - 6.23072123310804e24 * cos(theta) ** 19 + 1.98778606504007e24 * cos(theta) ** 17 - 4.62117786060597e23 * cos(theta) ** 15 + 7.70196310100994e22 * cos(theta) ** 13 - 8.9531016673439e21 * cos(theta) ** 11 + 6.95509310316263e20 * cos(theta) ** 9 - 3.37899260072679e19 * cos(theta) ** 7 + 9.21543436561851e17 * cos(theta) ** 5 - 1.15917413404006e16 * cos(theta) ** 3 + 42616696104414.1 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl41_m_minus_7(theta, phi): return ( 1.77246235460141e-11 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 2.18878569995564e22 * cos(theta) ** 34 - 1.51593676256187e23 * cos(theta) ** 32 + 4.75889009006764e23 * cos(theta) ** 30 - 8.96154627350399e23 * cos(theta) ** 28 + 1.1291548304615e24 * cos(theta) ** 26 - 1.00541183534243e24 * cos(theta) ** 24 + 6.51393583461296e23 * cos(theta) ** 22 - 3.11536061655402e23 * cos(theta) ** 20 + 1.10432559168893e23 * cos(theta) ** 18 - 2.88823616287873e22 * cos(theta) ** 16 + 5.5014022150071e21 * cos(theta) ** 14 - 7.46091805611992e20 * cos(theta) ** 12 + 6.95509310316263e19 * cos(theta) ** 10 - 4.22374075090848e18 * cos(theta) ** 8 + 1.53590572760308e17 * cos(theta) ** 6 - 2.89793533510016e15 * cos(theta) ** 4 + 21308348052207.1 * cos(theta) ** 2 - 25580249762.5535 ) * sin(7 * phi) ) # @torch.jit.script def Yl41_m_minus_6(theta, phi): return ( 7.264933792847e-10 * (1.0 - cos(theta) ** 2) ** 3 * ( 6.25367342844468e20 * cos(theta) ** 35 - 4.593747765339e21 * cos(theta) ** 33 + 1.53512583550569e22 * cos(theta) ** 31 - 3.09018837017379e22 * cos(theta) ** 29 + 4.1820549276352e22 * cos(theta) ** 27 - 4.02164734136974e22 * cos(theta) ** 25 + 2.83214601504911e22 * cos(theta) ** 23 - 1.48350505550192e22 * cos(theta) ** 21 + 5.8122399562575e21 * cos(theta) ** 19 - 1.69896244875219e21 * cos(theta) ** 17 + 3.6676014766714e20 * cos(theta) ** 15 - 5.73916773547686e19 * cos(theta) ** 13 + 6.32281191196603e18 * cos(theta) ** 11 - 4.6930452787872e17 * cos(theta) ** 9 + 2.19415103943298e16 * cos(theta) ** 7 - 579587067020032.0 * cos(theta) ** 5 + 7102782684069.02 * cos(theta) ** 3 - 25580249762.5535 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl41_m_minus_5(theta, phi): return ( 2.98835260671243e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.7371315079013e19 * cos(theta) ** 36 - 1.35110228392323e20 * cos(theta) ** 34 + 4.79726823595528e20 * cos(theta) ** 32 - 1.03006279005793e21 * cos(theta) ** 30 + 1.493591045584e21 * cos(theta) ** 28 - 1.54678743898836e21 * cos(theta) ** 26 + 1.1800608396038e21 * cos(theta) ** 24 - 6.74320479773598e20 * cos(theta) ** 22 + 2.90611997812875e20 * cos(theta) ** 20 - 9.43868027084552e19 * cos(theta) ** 18 + 2.29225092291963e19 * cos(theta) ** 16 - 4.09940552534061e18 * cos(theta) ** 14 + 5.26900992663836e17 * cos(theta) ** 12 - 4.6930452787872e16 * cos(theta) ** 10 + 2.74268879929122e15 * cos(theta) ** 8 - 96597844503338.6 * cos(theta) ** 6 + 1775695671017.25 * cos(theta) ** 4 - 12790124881.2767 * cos(theta) ** 2 + 15118350.923495 ) * sin(5 * phi) ) # @torch.jit.script def Yl41_m_minus_4(theta, phi): return ( 1.23285391332796e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 4.69495002135487e17 * cos(theta) ** 37 - 3.86029223978067e18 * cos(theta) ** 35 + 1.45371764725918e19 * cos(theta) ** 33 - 3.32278319373526e19 * cos(theta) ** 31 + 5.15031395028965e19 * cos(theta) ** 29 - 5.72884236662356e19 * cos(theta) ** 27 + 4.72024335841519e19 * cos(theta) ** 25 - 2.93182817292869e19 * cos(theta) ** 23 + 1.38386665625179e19 * cos(theta) ** 21 - 4.96772645833975e18 * cos(theta) ** 19 + 1.34838289583507e18 * cos(theta) ** 17 - 2.73293701689374e17 * cos(theta) ** 15 + 4.05308455895258e16 * cos(theta) ** 13 - 4.26640479889746e15 * cos(theta) ** 11 + 304743199921247.0 * cos(theta) ** 9 - 13799692071905.5 * cos(theta) ** 7 + 355139134203.451 * cos(theta) ** 5 - 4263374960.42558 * cos(theta) ** 3 + 15118350.923495 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl41_m_minus_3(theta, phi): return ( 5.09811553365533e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 1.23551316351444e16 * cos(theta) ** 38 - 1.07230339993907e17 * cos(theta) ** 36 + 4.27564013899758e17 * cos(theta) ** 34 - 1.03836974804227e18 * cos(theta) ** 32 + 1.71677131676322e18 * cos(theta) ** 30 - 2.04601513093699e18 * cos(theta) ** 28 + 1.81547821477507e18 * cos(theta) ** 26 - 1.22159507205362e18 * cos(theta) ** 24 + 6.29030298296267e17 * cos(theta) ** 22 - 2.48386322916987e17 * cos(theta) ** 20 + 7.49101608797264e16 * cos(theta) ** 18 - 1.70808563555859e16 * cos(theta) ** 16 + 2.89506039925185e15 * cos(theta) ** 14 - 355533733241455.0 * cos(theta) ** 12 + 30474319992124.7 * cos(theta) ** 10 - 1724961508988.19 * cos(theta) ** 8 + 59189855700.5751 * cos(theta) ** 6 - 1065843740.1064 * cos(theta) ** 4 + 7559175.46174748 * cos(theta) ** 2 - 8841.14089093273 ) * sin(3 * phi) ) # @torch.jit.script def Yl41_m_minus_2(theta, phi): return ( 0.00211187551485778 * (1.0 - cos(theta) ** 2) * ( 316798247054984.0 * cos(theta) ** 39 - 2.89811729713263e15 * cos(theta) ** 37 + 1.22161146828502e16 * cos(theta) ** 35 - 3.14657499406748e16 * cos(theta) ** 33 + 5.53797198955877e16 * cos(theta) ** 31 - 7.05522458943788e16 * cos(theta) ** 29 + 6.72399338805582e16 * cos(theta) ** 27 - 4.88638028821448e16 * cos(theta) ** 25 + 2.73491434041855e16 * cos(theta) ** 23 - 1.18279201389042e16 * cos(theta) ** 21 + 3.94264004630139e15 * cos(theta) ** 19 - 1.00475625621093e15 * cos(theta) ** 17 + 193004026616790.0 * cos(theta) ** 15 - 27348748710881.1 * cos(theta) ** 13 + 2770392726556.79 * cos(theta) ** 11 - 191662389887.577 * cos(theta) ** 9 + 8455693671.51074 * cos(theta) ** 7 - 213168748.021279 * cos(theta) ** 5 + 2519725.15391583 * cos(theta) ** 3 - 8841.14089093273 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl41_m_minus_1(theta, phi): return ( 0.0875855655187544 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 7919956176374.61 * cos(theta) ** 40 - 76266244661385.1 * cos(theta) ** 38 + 339336518968062.0 * cos(theta) ** 36 - 925463233549259.0 * cos(theta) ** 34 + 1.73061624673711e15 * cos(theta) ** 32 - 2.35174152981263e15 * cos(theta) ** 30 + 2.40142621001994e15 * cos(theta) ** 28 - 1.87937703392865e15 * cos(theta) ** 26 + 1.13954764184106e15 * cos(theta) ** 24 - 537632733586553.0 * cos(theta) ** 22 + 197132002315069.0 * cos(theta) ** 20 - 55819792011718.6 * cos(theta) ** 18 + 12062751663549.4 * cos(theta) ** 16 - 1953482050777.22 * cos(theta) ** 14 + 230866060546.399 * cos(theta) ** 12 - 19166238988.7577 * cos(theta) ** 10 + 1056961708.93884 * cos(theta) ** 8 - 35528124.6702132 * cos(theta) ** 6 + 629931.288478957 * cos(theta) ** 4 - 4420.57044546636 * cos(theta) ** 2 + 5.14019819240275 ) * sin(phi) ) # @torch.jit.script def Yl41_m0(theta, phi): return ( 1559634770043.59 * cos(theta) ** 41 - 15788895202910.4 * cos(theta) ** 39 + 74047919907320.4 * cos(theta) ** 37 - 213488808044482.0 * cos(theta) ** 35 + 423419469288223.0 * cos(theta) ** 33 - 612508163792279.0 * cos(theta) ** 31 + 668582854843685.0 * cos(theta) ** 29 - 561997182332373.0 * cos(theta) ** 27 + 368024274251237.0 * cos(theta) ** 25 - 188730397051916.0 * cos(theta) ** 23 + 75791730879579.0 * cos(theta) ** 21 - 23720213837126.1 * cos(theta) ** 19 + 5729034697949.94 * cos(theta) ** 17 - 1051482751580.56 * cos(theta) ** 15 + 143384011579.167 * cos(theta) ** 13 - 14067865287.0126 * cos(theta) ** 11 + 948201704.394231 * cos(theta) ** 9 - 40978705.1118755 * cos(theta) ** 7 + 1017201.89994017 * cos(theta) ** 5 - 11897.0982449143 * cos(theta) ** 3 + 41.501505505515 * cos(theta) ) # @torch.jit.script def Yl41_m1(theta, phi): return ( 0.0875855655187544 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 7919956176374.61 * cos(theta) ** 40 - 76266244661385.1 * cos(theta) ** 38 + 339336518968062.0 * cos(theta) ** 36 - 925463233549259.0 * cos(theta) ** 34 + 1.73061624673711e15 * cos(theta) ** 32 - 2.35174152981263e15 * cos(theta) ** 30 + 2.40142621001994e15 * cos(theta) ** 28 - 1.87937703392865e15 * cos(theta) ** 26 + 1.13954764184106e15 * cos(theta) ** 24 - 537632733586553.0 * cos(theta) ** 22 + 197132002315069.0 * cos(theta) ** 20 - 55819792011718.6 * cos(theta) ** 18 + 12062751663549.4 * cos(theta) ** 16 - 1953482050777.22 * cos(theta) ** 14 + 230866060546.399 * cos(theta) ** 12 - 19166238988.7577 * cos(theta) ** 10 + 1056961708.93884 * cos(theta) ** 8 - 35528124.6702132 * cos(theta) ** 6 + 629931.288478957 * cos(theta) ** 4 - 4420.57044546636 * cos(theta) ** 2 + 5.14019819240275 ) * cos(phi) ) # @torch.jit.script def Yl41_m2(theta, phi): return ( 0.00211187551485778 * (1.0 - cos(theta) ** 2) * ( 316798247054984.0 * cos(theta) ** 39 - 2.89811729713263e15 * cos(theta) ** 37 + 1.22161146828502e16 * cos(theta) ** 35 - 3.14657499406748e16 * cos(theta) ** 33 + 5.53797198955877e16 * cos(theta) ** 31 - 7.05522458943788e16 * cos(theta) ** 29 + 6.72399338805582e16 * cos(theta) ** 27 - 4.88638028821448e16 * cos(theta) ** 25 + 2.73491434041855e16 * cos(theta) ** 23 - 1.18279201389042e16 * cos(theta) ** 21 + 3.94264004630139e15 * cos(theta) ** 19 - 1.00475625621093e15 * cos(theta) ** 17 + 193004026616790.0 * cos(theta) ** 15 - 27348748710881.1 * cos(theta) ** 13 + 2770392726556.79 * cos(theta) ** 11 - 191662389887.577 * cos(theta) ** 9 + 8455693671.51074 * cos(theta) ** 7 - 213168748.021279 * cos(theta) ** 5 + 2519725.15391583 * cos(theta) ** 3 - 8841.14089093273 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl41_m3(theta, phi): return ( 5.09811553365533e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 1.23551316351444e16 * cos(theta) ** 38 - 1.07230339993907e17 * cos(theta) ** 36 + 4.27564013899758e17 * cos(theta) ** 34 - 1.03836974804227e18 * cos(theta) ** 32 + 1.71677131676322e18 * cos(theta) ** 30 - 2.04601513093699e18 * cos(theta) ** 28 + 1.81547821477507e18 * cos(theta) ** 26 - 1.22159507205362e18 * cos(theta) ** 24 + 6.29030298296267e17 * cos(theta) ** 22 - 2.48386322916987e17 * cos(theta) ** 20 + 7.49101608797264e16 * cos(theta) ** 18 - 1.70808563555859e16 * cos(theta) ** 16 + 2.89506039925185e15 * cos(theta) ** 14 - 355533733241455.0 * cos(theta) ** 12 + 30474319992124.7 * cos(theta) ** 10 - 1724961508988.19 * cos(theta) ** 8 + 59189855700.5751 * cos(theta) ** 6 - 1065843740.1064 * cos(theta) ** 4 + 7559175.46174748 * cos(theta) ** 2 - 8841.14089093273 ) * cos(3 * phi) ) # @torch.jit.script def Yl41_m4(theta, phi): return ( 1.23285391332796e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 4.69495002135487e17 * cos(theta) ** 37 - 3.86029223978067e18 * cos(theta) ** 35 + 1.45371764725918e19 * cos(theta) ** 33 - 3.32278319373526e19 * cos(theta) ** 31 + 5.15031395028965e19 * cos(theta) ** 29 - 5.72884236662356e19 * cos(theta) ** 27 + 4.72024335841519e19 * cos(theta) ** 25 - 2.93182817292869e19 * cos(theta) ** 23 + 1.38386665625179e19 * cos(theta) ** 21 - 4.96772645833975e18 * cos(theta) ** 19 + 1.34838289583507e18 * cos(theta) ** 17 - 2.73293701689374e17 * cos(theta) ** 15 + 4.05308455895258e16 * cos(theta) ** 13 - 4.26640479889746e15 * cos(theta) ** 11 + 304743199921247.0 * cos(theta) ** 9 - 13799692071905.5 * cos(theta) ** 7 + 355139134203.451 * cos(theta) ** 5 - 4263374960.42558 * cos(theta) ** 3 + 15118350.923495 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl41_m5(theta, phi): return ( 2.98835260671243e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.7371315079013e19 * cos(theta) ** 36 - 1.35110228392323e20 * cos(theta) ** 34 + 4.79726823595528e20 * cos(theta) ** 32 - 1.03006279005793e21 * cos(theta) ** 30 + 1.493591045584e21 * cos(theta) ** 28 - 1.54678743898836e21 * cos(theta) ** 26 + 1.1800608396038e21 * cos(theta) ** 24 - 6.74320479773598e20 * cos(theta) ** 22 + 2.90611997812875e20 * cos(theta) ** 20 - 9.43868027084552e19 * cos(theta) ** 18 + 2.29225092291963e19 * cos(theta) ** 16 - 4.09940552534061e18 * cos(theta) ** 14 + 5.26900992663836e17 * cos(theta) ** 12 - 4.6930452787872e16 * cos(theta) ** 10 + 2.74268879929122e15 * cos(theta) ** 8 - 96597844503338.6 * cos(theta) ** 6 + 1775695671017.25 * cos(theta) ** 4 - 12790124881.2767 * cos(theta) ** 2 + 15118350.923495 ) * cos(5 * phi) ) # @torch.jit.script def Yl41_m6(theta, phi): return ( 7.264933792847e-10 * (1.0 - cos(theta) ** 2) ** 3 * ( 6.25367342844468e20 * cos(theta) ** 35 - 4.593747765339e21 * cos(theta) ** 33 + 1.53512583550569e22 * cos(theta) ** 31 - 3.09018837017379e22 * cos(theta) ** 29 + 4.1820549276352e22 * cos(theta) ** 27 - 4.02164734136974e22 * cos(theta) ** 25 + 2.83214601504911e22 * cos(theta) ** 23 - 1.48350505550192e22 * cos(theta) ** 21 + 5.8122399562575e21 * cos(theta) ** 19 - 1.69896244875219e21 * cos(theta) ** 17 + 3.6676014766714e20 * cos(theta) ** 15 - 5.73916773547686e19 * cos(theta) ** 13 + 6.32281191196603e18 * cos(theta) ** 11 - 4.6930452787872e17 * cos(theta) ** 9 + 2.19415103943298e16 * cos(theta) ** 7 - 579587067020032.0 * cos(theta) ** 5 + 7102782684069.02 * cos(theta) ** 3 - 25580249762.5535 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl41_m7(theta, phi): return ( 1.77246235460141e-11 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 2.18878569995564e22 * cos(theta) ** 34 - 1.51593676256187e23 * cos(theta) ** 32 + 4.75889009006764e23 * cos(theta) ** 30 - 8.96154627350399e23 * cos(theta) ** 28 + 1.1291548304615e24 * cos(theta) ** 26 - 1.00541183534243e24 * cos(theta) ** 24 + 6.51393583461296e23 * cos(theta) ** 22 - 3.11536061655402e23 * cos(theta) ** 20 + 1.10432559168893e23 * cos(theta) ** 18 - 2.88823616287873e22 * cos(theta) ** 16 + 5.5014022150071e21 * cos(theta) ** 14 - 7.46091805611992e20 * cos(theta) ** 12 + 6.95509310316263e19 * cos(theta) ** 10 - 4.22374075090848e18 * cos(theta) ** 8 + 1.53590572760308e17 * cos(theta) ** 6 - 2.89793533510016e15 * cos(theta) ** 4 + 21308348052207.1 * cos(theta) ** 2 - 25580249762.5535 ) * cos(7 * phi) ) # @torch.jit.script def Yl41_m8(theta, phi): return ( 4.34249694332146e-13 * (1.0 - cos(theta) ** 2) ** 4 * ( 7.44187137984917e23 * cos(theta) ** 33 - 4.85099764019798e24 * cos(theta) ** 31 + 1.42766702702029e25 * cos(theta) ** 29 - 2.50923295658112e25 * cos(theta) ** 27 + 2.93580255919991e25 * cos(theta) ** 25 - 2.41298840482184e25 * cos(theta) ** 23 + 1.43306588361485e25 * cos(theta) ** 21 - 6.23072123310804e24 * cos(theta) ** 19 + 1.98778606504007e24 * cos(theta) ** 17 - 4.62117786060597e23 * cos(theta) ** 15 + 7.70196310100994e22 * cos(theta) ** 13 - 8.9531016673439e21 * cos(theta) ** 11 + 6.95509310316263e20 * cos(theta) ** 9 - 3.37899260072679e19 * cos(theta) ** 7 + 9.21543436561851e17 * cos(theta) ** 5 - 1.15917413404006e16 * cos(theta) ** 3 + 42616696104414.1 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl41_m9(theta, phi): return ( 1.06904884665327e-14 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 2.45581755535023e25 * cos(theta) ** 32 - 1.50380926846137e26 * cos(theta) ** 30 + 4.14023437835885e26 * cos(theta) ** 28 - 6.77492898276902e26 * cos(theta) ** 26 + 7.33950639799977e26 * cos(theta) ** 24 - 5.54987333109024e26 * cos(theta) ** 22 + 3.00943835559119e26 * cos(theta) ** 20 - 1.18383703429053e26 * cos(theta) ** 18 + 3.37923631056811e25 * cos(theta) ** 16 - 6.93176679090895e24 * cos(theta) ** 14 + 1.00125520313129e24 * cos(theta) ** 12 - 9.84841183407829e22 * cos(theta) ** 10 + 6.25958379284637e21 * cos(theta) ** 8 - 2.36529482050875e20 * cos(theta) ** 6 + 4.60771718280925e18 * cos(theta) ** 4 - 3.47752240212019e16 * cos(theta) ** 2 + 42616696104414.1 ) * cos(9 * phi) ) # @torch.jit.script def Yl41_m10(theta, phi): return ( 2.64629022208945e-16 * (1.0 - cos(theta) ** 2) ** 5 * ( 7.85861617712073e26 * cos(theta) ** 31 - 4.51142780538412e27 * cos(theta) ** 29 + 1.15926562594048e28 * cos(theta) ** 27 - 1.76148153551995e28 * cos(theta) ** 25 + 1.76148153551995e28 * cos(theta) ** 23 - 1.22097213283985e28 * cos(theta) ** 21 + 6.01887671118237e27 * cos(theta) ** 19 - 2.13090666172295e27 * cos(theta) ** 17 + 5.40677809690898e26 * cos(theta) ** 15 - 9.70447350727253e25 * cos(theta) ** 13 + 1.20150624375755e25 * cos(theta) ** 11 - 9.84841183407829e23 * cos(theta) ** 9 + 5.0076670342771e22 * cos(theta) ** 7 - 1.41917689230525e21 * cos(theta) ** 5 + 1.8430868731237e19 * cos(theta) ** 3 - 6.95504480424038e16 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl41_m11(theta, phi): return ( 6.59105526834746e-18 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 2.43617101490743e28 * cos(theta) ** 30 - 1.3083140635614e29 * cos(theta) ** 28 + 3.13001719003929e29 * cos(theta) ** 26 - 4.40370383879986e29 * cos(theta) ** 24 + 4.05140753169587e29 * cos(theta) ** 22 - 2.56404147896369e29 * cos(theta) ** 20 + 1.14358657512465e29 * cos(theta) ** 18 - 3.62254132492902e28 * cos(theta) ** 16 + 8.11016714536347e27 * cos(theta) ** 14 - 1.26158155594543e27 * cos(theta) ** 12 + 1.32165686813331e26 * cos(theta) ** 10 - 8.86357065067046e24 * cos(theta) ** 8 + 3.50536692399397e23 * cos(theta) ** 6 - 7.09588446152625e21 * cos(theta) ** 4 + 5.5292606193711e19 * cos(theta) ** 2 - 6.95504480424038e16 ) * cos(11 * phi) ) # @torch.jit.script def Yl41_m12(theta, phi): return ( 1.65293734258634e-19 * (1.0 - cos(theta) ** 2) ** 6 * ( 7.30851304472228e29 * cos(theta) ** 29 - 3.66327937797191e30 * cos(theta) ** 27 + 8.13804469410215e30 * cos(theta) ** 25 - 1.05688892131197e31 * cos(theta) ** 23 + 8.91309656973092e30 * cos(theta) ** 21 - 5.12808295792738e30 * cos(theta) ** 19 + 2.05845583522437e30 * cos(theta) ** 17 - 5.79606611988643e29 * cos(theta) ** 15 + 1.13542340035089e29 * cos(theta) ** 13 - 1.51389786713451e28 * cos(theta) ** 11 + 1.32165686813331e27 * cos(theta) ** 9 - 7.09085652053637e25 * cos(theta) ** 7 + 2.10322015439638e24 * cos(theta) ** 5 - 2.8383537846105e22 * cos(theta) ** 3 + 1.10585212387422e20 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl41_m13(theta, phi): return ( 4.17696188524406e-21 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 2.11946878296946e31 * cos(theta) ** 28 - 9.89085432052415e31 * cos(theta) ** 26 + 2.03451117352554e32 * cos(theta) ** 24 - 2.43084451901752e32 * cos(theta) ** 22 + 1.87175027964349e32 * cos(theta) ** 20 - 9.74335762006202e31 * cos(theta) ** 18 + 3.49937491988143e31 * cos(theta) ** 16 - 8.69409917982964e30 * cos(theta) ** 14 + 1.47605042045615e30 * cos(theta) ** 12 - 1.66528765384797e29 * cos(theta) ** 10 + 1.18949118131998e28 * cos(theta) ** 8 - 4.96359956437546e26 * cos(theta) ** 6 + 1.05161007719819e25 * cos(theta) ** 4 - 8.5150613538315e22 * cos(theta) ** 2 + 1.10585212387422e20 ) * cos(13 * phi) ) # @torch.jit.script def Yl41_m14(theta, phi): return ( 1.06438844677832e-22 * (1.0 - cos(theta) ** 2) ** 7 * ( 5.93451259231449e32 * cos(theta) ** 27 - 2.57162212333628e33 * cos(theta) ** 25 + 4.88282681646129e33 * cos(theta) ** 23 - 5.34785794183855e33 * cos(theta) ** 21 + 3.74350055928699e33 * cos(theta) ** 19 - 1.75380437161116e33 * cos(theta) ** 17 + 5.59899987181029e32 * cos(theta) ** 15 - 1.21717388517615e32 * cos(theta) ** 13 + 1.77126050454738e31 * cos(theta) ** 11 - 1.66528765384797e30 * cos(theta) ** 9 + 9.51592945055981e28 * cos(theta) ** 7 - 2.97815973862527e27 * cos(theta) ** 5 + 4.20644030879276e25 * cos(theta) ** 3 - 1.7030122707663e23 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl41_m15(theta, phi): return ( 2.73731171664738e-24 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.60231839992491e34 * cos(theta) ** 26 - 6.4290553083407e34 * cos(theta) ** 24 + 1.1230501677861e35 * cos(theta) ** 22 - 1.1230501677861e35 * cos(theta) ** 20 + 7.11265106264528e34 * cos(theta) ** 18 - 2.98146743173898e34 * cos(theta) ** 16 + 8.39849980771543e33 * cos(theta) ** 14 - 1.58232605072899e33 * cos(theta) ** 12 + 1.94838655500212e32 * cos(theta) ** 10 - 1.49875888846317e31 * cos(theta) ** 8 + 6.66115061539186e29 * cos(theta) ** 6 - 1.48907986931264e28 * cos(theta) ** 4 + 1.26193209263783e26 * cos(theta) ** 2 - 1.7030122707663e23 ) * cos(15 * phi) ) # @torch.jit.script def Yl41_m16(theta, phi): return ( 7.11050022540132e-26 * (1.0 - cos(theta) ** 2) ** 8 * ( 4.16602783980477e35 * cos(theta) ** 25 - 1.54297327400177e36 * cos(theta) ** 23 + 2.47071036912941e36 * cos(theta) ** 21 - 2.24610033557219e36 * cos(theta) ** 19 + 1.28027719127615e36 * cos(theta) ** 17 - 4.77034789078237e35 * cos(theta) ** 15 + 1.17578997308016e35 * cos(theta) ** 13 - 1.89879126087479e34 * cos(theta) ** 11 + 1.94838655500212e33 * cos(theta) ** 9 - 1.19900711077054e32 * cos(theta) ** 7 + 3.99669036923512e30 * cos(theta) ** 5 - 5.95631947725055e28 * cos(theta) ** 3 + 2.52386418527566e26 * cos(theta) ) * cos(16 * phi) ) # @torch.jit.script def Yl41_m17(theta, phi): return ( 1.8673088408914e-27 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.04150695995119e37 * cos(theta) ** 24 - 3.54883853020406e37 * cos(theta) ** 22 + 5.18849177517177e37 * cos(theta) ** 20 - 4.26759063758717e37 * cos(theta) ** 18 + 2.17647122516945e37 * cos(theta) ** 16 - 7.15552183617355e36 * cos(theta) ** 14 + 1.52852696500421e36 * cos(theta) ** 12 - 2.08867038696227e35 * cos(theta) ** 10 + 1.75354789950191e34 * cos(theta) ** 8 - 8.39304977539375e32 * cos(theta) ** 6 + 1.99834518461756e31 * cos(theta) ** 4 - 1.78689584317516e29 * cos(theta) ** 2 + 2.52386418527566e26 ) * cos(17 * phi) ) # @torch.jit.script def Yl41_m18(theta, phi): return ( 4.96231725764027e-29 * (1.0 - cos(theta) ** 2) ** 9 * ( 2.49961670388286e38 * cos(theta) ** 23 - 7.80744476644894e38 * cos(theta) ** 21 + 1.03769835503435e39 * cos(theta) ** 19 - 7.6816631476569e38 * cos(theta) ** 17 + 3.48235396027113e38 * cos(theta) ** 15 - 1.0017730570643e38 * cos(theta) ** 13 + 1.83423235800505e37 * cos(theta) ** 11 - 2.08867038696227e36 * cos(theta) ** 9 + 1.40283831960153e35 * cos(theta) ** 7 - 5.03582986523625e33 * cos(theta) ** 5 + 7.99338073847024e31 * cos(theta) ** 3 - 3.57379168635033e29 * cos(theta) ) * cos(18 * phi) ) # @torch.jit.script def Yl41_m19(theta, phi): return ( 1.33581090189222e-30 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 5.74911841893058e39 * cos(theta) ** 22 - 1.63956340095428e40 * cos(theta) ** 20 + 1.97162687456527e40 * cos(theta) ** 18 - 1.30588273510167e40 * cos(theta) ** 16 + 5.22353094040669e39 * cos(theta) ** 14 - 1.30230497418359e39 * cos(theta) ** 12 + 2.01765559380556e38 * cos(theta) ** 10 - 1.87980334826605e37 * cos(theta) ** 8 + 9.81986823721069e35 * cos(theta) ** 6 - 2.51791493261812e34 * cos(theta) ** 4 + 2.39801422154107e32 * cos(theta) ** 2 - 3.57379168635033e29 ) * cos(19 * phi) ) # @torch.jit.script def Yl41_m20(theta, phi): return ( 3.64643709249914e-32 * (1.0 - cos(theta) ** 2) ** 10 * ( 1.26480605216473e41 * cos(theta) ** 21 - 3.27912680190856e41 * cos(theta) ** 19 + 3.54892837421749e41 * cos(theta) ** 17 - 2.08941237616268e41 * cos(theta) ** 15 + 7.31294331656937e40 * cos(theta) ** 13 - 1.5627659690203e40 * cos(theta) ** 11 + 2.01765559380556e39 * cos(theta) ** 9 - 1.50384267861284e38 * cos(theta) ** 7 + 5.89192094232641e36 * cos(theta) ** 5 - 1.00716597304725e35 * cos(theta) ** 3 + 4.79602844308214e32 * cos(theta) ) * cos(20 * phi) ) # @torch.jit.script def Yl41_m21(theta, phi): return ( 1.01056262825149e-33 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 2.65609270954593e42 * cos(theta) ** 20 - 6.23034092362625e42 * cos(theta) ** 18 + 6.03317823616973e42 * cos(theta) ** 16 - 3.13411856424401e42 * cos(theta) ** 14 + 9.50682631154018e41 * cos(theta) ** 12 - 1.71904256592233e41 * cos(theta) ** 10 + 1.815890034425e40 * cos(theta) ** 8 - 1.05268987502899e39 * cos(theta) ** 6 + 2.94596047116321e37 * cos(theta) ** 4 - 3.02149791914175e35 * cos(theta) ** 2 + 4.79602844308214e32 ) * cos(21 * phi) ) # @torch.jit.script def Yl41_m22(theta, phi): return ( 2.84693768312126e-35 * (1.0 - cos(theta) ** 2) ** 11 * ( 5.31218541909186e43 * cos(theta) ** 19 - 1.12146136625273e44 * cos(theta) ** 17 + 9.65308517787156e43 * cos(theta) ** 15 - 4.38776598994162e43 * cos(theta) ** 13 + 1.14081915738482e43 * cos(theta) ** 11 - 1.71904256592233e42 * cos(theta) ** 9 + 1.45271202754e41 * cos(theta) ** 7 - 6.31613925017391e39 * cos(theta) ** 5 + 1.17838418846528e38 * cos(theta) ** 3 - 6.0429958382835e35 * cos(theta) ) * cos(22 * phi) ) # @torch.jit.script def Yl41_m23(theta, phi): return ( 8.16415372321275e-37 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.00931522962745e45 * cos(theta) ** 18 - 1.90648432262963e45 * cos(theta) ** 16 + 1.44796277668073e45 * cos(theta) ** 14 - 5.70409578692411e44 * cos(theta) ** 12 + 1.2549010731233e44 * cos(theta) ** 10 - 1.5471383093301e43 * cos(theta) ** 8 + 1.016898419278e42 * cos(theta) ** 6 - 3.15806962508696e40 * cos(theta) ** 4 + 3.53515256539585e38 * cos(theta) ** 2 - 6.0429958382835e35 ) * cos(23 * phi) ) # @torch.jit.script def Yl41_m24(theta, phi): return ( 2.3868121645997e-38 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.81676741332942e46 * cos(theta) ** 17 - 3.05037491620741e46 * cos(theta) ** 15 + 2.02714788735303e46 * cos(theta) ** 13 - 6.84491494430893e45 * cos(theta) ** 11 + 1.2549010731233e45 * cos(theta) ** 9 - 1.23771064746408e44 * cos(theta) ** 7 + 6.101390515668e42 * cos(theta) ** 5 - 1.26322785003478e41 * cos(theta) ** 3 + 7.07030513079169e38 * cos(theta) ) * cos(24 * phi) ) # @torch.jit.script def Yl41_m25(theta, phi): return ( 7.12560614995579e-40 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 3.08850460266001e47 * cos(theta) ** 16 - 4.57556237431112e47 * cos(theta) ** 14 + 2.63529225355894e47 * cos(theta) ** 12 - 7.52940643873982e46 * cos(theta) ** 10 + 1.12941096581097e46 * cos(theta) ** 8 - 8.66397453224856e44 * cos(theta) ** 6 + 3.050695257834e43 * cos(theta) ** 4 - 3.78968355010435e41 * cos(theta) ** 2 + 7.07030513079169e38 ) * cos(25 * phi) ) # @torch.jit.script def Yl41_m26(theta, phi): return ( 2.17632836010492e-41 * (1.0 - cos(theta) ** 2) ** 13 * ( 4.94160736425601e48 * cos(theta) ** 15 - 6.40578732403557e48 * cos(theta) ** 13 + 3.16235070427072e48 * cos(theta) ** 11 - 7.52940643873982e47 * cos(theta) ** 9 + 9.03528772648778e46 * cos(theta) ** 7 - 5.19838471934914e45 * cos(theta) ** 5 + 1.2202781031336e44 * cos(theta) ** 3 - 7.5793671002087e41 * cos(theta) ) * cos(26 * phi) ) # @torch.jit.script def Yl41_m27(theta, phi): return ( 6.81434842237606e-43 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 7.41241104638402e49 * cos(theta) ** 14 - 8.32752352124624e49 * cos(theta) ** 12 + 3.4785857746978e49 * cos(theta) ** 10 - 6.77646579486584e48 * cos(theta) ** 8 + 6.32470140854145e47 * cos(theta) ** 6 - 2.59919235967457e46 * cos(theta) ** 4 + 3.6608343094008e44 * cos(theta) ** 2 - 7.5793671002087e41 ) * cos(27 * phi) ) # @torch.jit.script def Yl41_m28(theta, phi): return ( 2.19248066632502e-44 * (1.0 - cos(theta) ** 2) ** 14 * ( 1.03773754649376e51 * cos(theta) ** 13 - 9.99302822549549e50 * cos(theta) ** 11 + 3.4785857746978e50 * cos(theta) ** 9 - 5.42117263589267e49 * cos(theta) ** 7 + 3.79482084512487e48 * cos(theta) ** 5 - 1.03967694386983e47 * cos(theta) ** 3 + 7.3216686188016e44 * cos(theta) ) * cos(28 * phi) ) # @torch.jit.script def Yl41_m29(theta, phi): return ( 7.26800263703634e-46 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 1.34905881044189e52 * cos(theta) ** 12 - 1.0992331048045e52 * cos(theta) ** 10 + 3.13072719722802e51 * cos(theta) ** 8 - 3.79482084512487e50 * cos(theta) ** 6 + 1.89741042256243e49 * cos(theta) ** 4 - 3.11903083160948e47 * cos(theta) ** 2 + 7.3216686188016e44 ) * cos(29 * phi) ) # @torch.jit.script def Yl41_m30(theta, phi): return ( 2.48997667494702e-47 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.61887057253027e53 * cos(theta) ** 11 - 1.0992331048045e53 * cos(theta) ** 9 + 2.50458175778241e52 * cos(theta) ** 7 - 2.27689250707492e51 * cos(theta) ** 5 + 7.58964169024974e49 * cos(theta) ** 3 - 6.23806166321896e47 * cos(theta) ) * cos(30 * phi) ) # @torch.jit.script def Yl41_m31(theta, phi): return ( 8.84774684679108e-49 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 1.7807576297833e54 * cos(theta) ** 10 - 9.89309794324053e53 * cos(theta) ** 8 + 1.75320723044769e53 * cos(theta) ** 6 - 1.13844625353746e52 * cos(theta) ** 4 + 2.27689250707492e50 * cos(theta) ** 2 - 6.23806166321896e47 ) * cos(31 * phi) ) # @torch.jit.script def Yl41_m32(theta, phi): return ( 3.27469802570795e-50 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.7807576297833e55 * cos(theta) ** 9 - 7.91447835459243e54 * cos(theta) ** 7 + 1.05192433826861e54 * cos(theta) ** 5 - 4.55378501414984e52 * cos(theta) ** 3 + 4.55378501414984e50 * cos(theta) ) * cos(32 * phi) ) # @torch.jit.script def Yl41_m33(theta, phi): return ( 1.26891971029199e-51 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 1.60268186680497e56 * cos(theta) ** 8 - 5.5401348482147e55 * cos(theta) ** 6 + 5.25962169134307e54 * cos(theta) ** 4 - 1.36613550424495e53 * cos(theta) ** 2 + 4.55378501414984e50 ) * cos(33 * phi) ) # @torch.jit.script def Yl41_m34(theta, phi): return ( 5.18034302462604e-53 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.28214549344397e57 * cos(theta) ** 7 - 3.32408090892882e56 * cos(theta) ** 5 + 2.10384867653723e55 * cos(theta) ** 3 - 2.73227100848991e53 * cos(theta) ) * cos(34 * phi) ) # @torch.jit.script def Yl41_m35(theta, phi): return ( 2.24596354110399e-54 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 8.97501845410781e57 * cos(theta) ** 6 - 1.66204045446441e57 * cos(theta) ** 4 + 6.31154602961168e55 * cos(theta) ** 2 - 2.73227100848991e53 ) * cos(35 * phi) ) # @torch.jit.script def Yl41_m36(theta, phi): return ( 1.04491680606395e-55 * (1.0 - cos(theta) ** 2) ** 18 * ( 5.38501107246469e58 * cos(theta) ** 5 - 6.64816181785764e57 * cos(theta) ** 3 + 1.26230920592234e56 * cos(theta) ) * cos(36 * phi) ) # @torch.jit.script def Yl41_m37(theta, phi): return ( 5.29114192414144e-57 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 2.69250553623234e59 * cos(theta) ** 4 - 1.99444854535729e58 * cos(theta) ** 2 + 1.26230920592234e56 ) * cos(37 * phi) ) # @torch.jit.script def Yl41_m38(theta, phi): return ( 2.97649988046699e-58 * (1.0 - cos(theta) ** 2) ** 19 * (1.07700221449294e60 * cos(theta) ** 3 - 3.98889709071458e58 * cos(theta)) * cos(38 * phi) ) # @torch.jit.script def Yl41_m39(theta, phi): return ( 1.92132241117284e-59 * (1.0 - cos(theta) ** 2) ** 19.5 * (3.23100664347881e60 * cos(theta) ** 2 - 3.98889709071458e58) * cos(39 * phi) ) # @torch.jit.script def Yl41_m40(theta, phi): return 9.75462521665048 * (1.0 - cos(theta) ** 2) ** 20 * cos(40 * phi) * cos(theta) # @torch.jit.script def Yl41_m41(theta, phi): return 1.07721814896289 * (1.0 - cos(theta) ** 2) ** 20.5 * cos(41 * phi) # @torch.jit.script def Yl42_m_minus_42(theta, phi): return 1.08361119113624 * (1.0 - cos(theta) ** 2) ** 21 * sin(42 * phi) # @torch.jit.script def Yl42_m_minus_41(theta, phi): return ( 9.93146061456615 * (1.0 - cos(theta) ** 2) ** 20.5 * sin(41 * phi) * cos(theta) ) # @torch.jit.script def Yl42_m_minus_40(theta, phi): return ( 2.38572965876905e-61 * (1.0 - cos(theta) ** 2) ** 20 * (2.68173551408741e62 * cos(theta) ** 2 - 3.23100664347881e60) * sin(40 * phi) ) # @torch.jit.script def Yl42_m_minus_39(theta, phi): return ( 3.74187075827541e-60 * (1.0 - cos(theta) ** 2) ** 19.5 * (8.93911838029138e61 * cos(theta) ** 3 - 3.23100664347881e60 * cos(theta)) * sin(39 * phi) ) # @torch.jit.script def Yl42_m_minus_38(theta, phi): return ( 6.73536736489573e-59 * (1.0 - cos(theta) ** 2) ** 19 * ( 2.23477959507285e61 * cos(theta) ** 4 - 1.61550332173941e60 * cos(theta) ** 2 + 9.97224272678646e57 ) * sin(38 * phi) ) # @torch.jit.script def Yl42_m_minus_37(theta, phi): return ( 1.34707347297915e-57 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 4.46955919014569e60 * cos(theta) ** 5 - 5.38501107246469e59 * cos(theta) ** 3 + 9.97224272678646e57 * cos(theta) ) * sin(37 * phi) ) # @torch.jit.script def Yl42_m_minus_36(theta, phi): return ( 2.93278654238651e-56 * (1.0 - cos(theta) ** 2) ** 18 * ( 7.44926531690948e59 * cos(theta) ** 6 - 1.34625276811617e59 * cos(theta) ** 4 + 4.98612136339323e57 * cos(theta) ** 2 - 2.10384867653723e55 ) * sin(36 * phi) ) # @torch.jit.script def Yl42_m_minus_35(theta, phi): return ( 6.85293758117573e-55 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 1.0641807595585e59 * cos(theta) ** 7 - 2.69250553623234e58 * cos(theta) ** 5 + 1.66204045446441e57 * cos(theta) ** 3 - 2.10384867653723e55 * cos(theta) ) * sin(35 * phi) ) # @torch.jit.script def Yl42_m_minus_34(theta, phi): return ( 1.70085437797474e-53 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.33022594944812e58 * cos(theta) ** 8 - 4.48750922705391e57 * cos(theta) ** 6 + 4.15510113616102e56 * cos(theta) ** 4 - 1.05192433826861e55 * cos(theta) ** 2 + 3.41533876061238e52 ) * sin(34 * phi) ) # @torch.jit.script def Yl42_m_minus_33(theta, phi): return ( 4.44831141076236e-52 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 1.47802883272014e57 * cos(theta) ** 9 - 6.41072746721987e56 * cos(theta) ** 7 + 8.31020227232205e55 * cos(theta) ** 5 - 3.50641446089538e54 * cos(theta) ** 3 + 3.41533876061238e52 * cos(theta) ) * sin(33 * phi) ) # @torch.jit.script def Yl42_m_minus_32(theta, phi): return ( 1.21822025124109e-50 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.47802883272014e56 * cos(theta) ** 10 - 8.01340933402483e55 * cos(theta) ** 8 + 1.38503371205367e55 * cos(theta) ** 6 - 8.76603615223845e53 * cos(theta) ** 4 + 1.70766938030619e52 * cos(theta) ** 2 - 4.55378501414984e49 ) * sin(32 * phi) ) # @torch.jit.script def Yl42_m_minus_31(theta, phi): return ( 3.4756658535518e-49 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 1.34366257520012e55 * cos(theta) ** 11 - 8.90378814891648e54 * cos(theta) ** 9 + 1.97861958864811e54 * cos(theta) ** 7 - 1.75320723044769e53 * cos(theta) ** 5 + 5.6922312676873e51 * cos(theta) ** 3 - 4.55378501414984e49 * cos(theta) ) * sin(31 * phi) ) # @torch.jit.script def Yl42_m_minus_30(theta, phi): return ( 1.02870315144741e-47 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.11971881266677e54 * cos(theta) ** 12 - 8.90378814891648e53 * cos(theta) ** 10 + 2.47327448581013e53 * cos(theta) ** 8 - 2.92201205074615e52 * cos(theta) ** 6 + 1.42305781692183e51 * cos(theta) ** 4 - 2.27689250707492e49 * cos(theta) ** 2 + 5.19838471934914e46 ) * sin(30 * phi) ) # @torch.jit.script def Yl42_m_minus_29(theta, phi): return ( 3.14722646575483e-46 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 8.61322163589823e52 * cos(theta) ** 13 - 8.09435286265135e52 * cos(theta) ** 11 + 2.74808276201126e52 * cos(theta) ** 9 - 4.17430292963736e51 * cos(theta) ** 7 + 2.84611563384365e50 * cos(theta) ** 5 - 7.58964169024974e48 * cos(theta) ** 3 + 5.19838471934914e46 * cos(theta) ) * sin(29 * phi) ) # @torch.jit.script def Yl42_m_minus_28(theta, phi): return ( 9.92250181163357e-45 * (1.0 - cos(theta) ** 2) ** 14 * ( 6.15230116849873e51 * cos(theta) ** 14 - 6.74529405220946e51 * cos(theta) ** 12 + 2.74808276201126e51 * cos(theta) ** 10 - 5.2178786620467e50 * cos(theta) ** 8 + 4.74352605640609e49 * cos(theta) ** 6 - 1.89741042256243e48 * cos(theta) ** 4 + 2.59919235967457e46 * cos(theta) ** 2 - 5.229763299144e43 ) * sin(28 * phi) ) # @torch.jit.script def Yl42_m_minus_27(theta, phi): return ( 3.21525806603397e-43 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 4.10153411233249e50 * cos(theta) ** 15 - 5.18868773246881e50 * cos(theta) ** 13 + 2.49825705637387e50 * cos(theta) ** 11 - 5.79764295782966e49 * cos(theta) ** 9 + 6.77646579486584e48 * cos(theta) ** 7 - 3.79482084512487e47 * cos(theta) ** 5 + 8.66397453224856e45 * cos(theta) ** 3 - 5.229763299144e43 * cos(theta) ) * sin(27 * phi) ) # @torch.jit.script def Yl42_m_minus_26(theta, phi): return ( 1.0683175750703e-41 * (1.0 - cos(theta) ** 2) ** 13 * ( 2.56345882020781e49 * cos(theta) ** 16 - 3.70620552319201e49 * cos(theta) ** 14 + 2.08188088031156e49 * cos(theta) ** 12 - 5.79764295782966e48 * cos(theta) ** 10 + 8.4705822435823e47 * cos(theta) ** 8 - 6.32470140854145e46 * cos(theta) ** 6 + 2.16599363306214e45 * cos(theta) ** 4 - 2.614881649572e43 * cos(theta) ** 2 + 4.73710443763043e40 ) * sin(26 * phi) ) # @torch.jit.script def Yl42_m_minus_25(theta, phi): return ( 3.63227975523903e-40 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 1.50791695306342e48 * cos(theta) ** 17 - 2.47080368212801e48 * cos(theta) ** 15 + 1.60144683100889e48 * cos(theta) ** 13 - 5.27058450711787e47 * cos(theta) ** 11 + 9.41175804842478e46 * cos(theta) ** 9 - 9.03528772648778e45 * cos(theta) ** 7 + 4.33198726612428e44 * cos(theta) ** 5 - 8.71627216524e42 * cos(theta) ** 3 + 4.73710443763043e40 * cos(theta) ) * sin(25 * phi) ) # @torch.jit.script def Yl42_m_minus_24(theta, phi): return ( 1.26140034095862e-38 * (1.0 - cos(theta) ** 2) ** 12 * ( 8.37731640590786e46 * cos(theta) ** 18 - 1.54425230133e47 * cos(theta) ** 16 + 1.14389059357778e47 * cos(theta) ** 14 - 4.39215375593156e46 * cos(theta) ** 12 + 9.41175804842478e45 * cos(theta) ** 10 - 1.12941096581097e45 * cos(theta) ** 8 + 7.2199787768738e43 * cos(theta) ** 6 - 2.17906804131e42 * cos(theta) ** 4 + 2.36855221881522e40 * cos(theta) ** 2 - 3.92794729488427e37 ) * sin(24 * phi) ) # @torch.jit.script def Yl42_m_minus_23(theta, phi): return ( 4.46685353296235e-37 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 4.40911389784624e45 * cos(theta) ** 19 - 9.08383706664708e45 * cos(theta) ** 17 + 7.62593729051854e45 * cos(theta) ** 15 - 3.37857981225505e45 * cos(theta) ** 13 + 8.55614368038616e44 * cos(theta) ** 11 - 1.2549010731233e44 * cos(theta) ** 9 + 1.0314255395534e43 * cos(theta) ** 7 - 4.35813608262e41 * cos(theta) ** 5 + 7.89517406271739e39 * cos(theta) ** 3 - 3.92794729488427e37 * cos(theta) ) * sin(23 * phi) ) # @torch.jit.script def Yl42_m_minus_22(theta, phi): return ( 1.61054694530832e-35 * (1.0 - cos(theta) ** 2) ** 11 * ( 2.20455694892312e44 * cos(theta) ** 20 - 5.04657614813727e44 * cos(theta) ** 18 + 4.76621080657408e44 * cos(theta) ** 16 - 2.41327129446789e44 * cos(theta) ** 14 + 7.13011973365513e43 * cos(theta) ** 12 - 1.2549010731233e43 * cos(theta) ** 10 + 1.28928192444175e42 * cos(theta) ** 8 - 7.2635601377e40 * cos(theta) ** 6 + 1.97379351567935e39 * cos(theta) ** 4 - 1.96397364744214e37 * cos(theta) ** 2 + 3.02149791914175e34 ) * sin(22 * phi) ) # @torch.jit.script def Yl42_m_minus_21(theta, phi): return ( 5.90436262972423e-34 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.04978902329672e43 * cos(theta) ** 21 - 2.65609270954593e43 * cos(theta) ** 19 + 2.80365341563181e43 * cos(theta) ** 17 - 1.60884752964526e43 * cos(theta) ** 15 + 5.48470748742703e42 * cos(theta) ** 13 - 1.14081915738482e42 * cos(theta) ** 11 + 1.43253547160194e41 * cos(theta) ** 9 - 1.03765144824286e40 * cos(theta) ** 7 + 3.9475870313587e38 * cos(theta) ** 5 - 6.54657882480712e36 * cos(theta) ** 3 + 3.02149791914175e34 * cos(theta) ) * sin(21 * phi) ) # @torch.jit.script def Yl42_m_minus_20(theta, phi): return ( 2.19813639967386e-32 * (1.0 - cos(theta) ** 2) ** 10 * ( 4.77176828771238e41 * cos(theta) ** 22 - 1.32804635477296e42 * cos(theta) ** 20 + 1.55758523090656e42 * cos(theta) ** 18 - 1.00552970602829e42 * cos(theta) ** 16 + 3.91764820530502e41 * cos(theta) ** 14 - 9.50682631154018e40 * cos(theta) ** 12 + 1.43253547160194e40 * cos(theta) ** 10 - 1.29706431030357e39 * cos(theta) ** 8 + 6.57931171893116e37 * cos(theta) ** 6 - 1.63664470620178e36 * cos(theta) ** 4 + 1.51074895957087e34 * cos(theta) ** 2 - 2.1800129286737e31 ) * sin(20 * phi) ) # @torch.jit.script def Yl42_m_minus_19(theta, phi): return ( 8.30069393401569e-31 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 2.07468186422278e40 * cos(theta) ** 23 - 6.32403026082364e40 * cos(theta) ** 21 + 8.19781700477139e40 * cos(theta) ** 19 - 5.91488062369581e40 * cos(theta) ** 17 + 2.61176547020335e40 * cos(theta) ** 15 - 7.31294331656937e39 * cos(theta) ** 13 + 1.30230497418359e39 * cos(theta) ** 11 - 1.44118256700397e38 * cos(theta) ** 9 + 9.39901674133023e36 * cos(theta) ** 7 - 3.27328941240356e35 * cos(theta) ** 5 + 5.03582986523625e33 * cos(theta) ** 3 - 2.1800129286737e31 * cos(theta) ) * sin(19 * phi) ) # @torch.jit.script def Yl42_m_minus_18(theta, phi): return ( 3.17603250876001e-29 * (1.0 - cos(theta) ** 2) ** 9 * ( 8.6445077675949e38 * cos(theta) ** 24 - 2.87455920946529e39 * cos(theta) ** 22 + 4.09890850238569e39 * cos(theta) ** 20 - 3.28604479094212e39 * cos(theta) ** 18 + 1.63235341887709e39 * cos(theta) ** 16 - 5.22353094040669e38 * cos(theta) ** 14 + 1.08525414515299e38 * cos(theta) ** 12 - 1.44118256700397e37 * cos(theta) ** 10 + 1.17487709266628e36 * cos(theta) ** 8 - 5.45548235400594e34 * cos(theta) ** 6 + 1.25895746630906e33 * cos(theta) ** 4 - 1.09000646433685e31 * cos(theta) ** 2 + 1.48907986931264e28 ) * sin(18 * phi) ) # @torch.jit.script def Yl42_m_minus_17(theta, phi): return ( 1.23007210134409e-27 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 3.45780310703796e37 * cos(theta) ** 25 - 1.24980835194143e38 * cos(theta) ** 23 + 1.95186119161224e38 * cos(theta) ** 21 - 1.72949725839059e38 * cos(theta) ** 19 + 9.60207893457112e37 * cos(theta) ** 17 - 3.48235396027113e37 * cos(theta) ** 15 + 8.34810880886914e36 * cos(theta) ** 13 - 1.31016597000361e36 * cos(theta) ** 11 + 1.30541899185142e35 * cos(theta) ** 9 - 7.79354622000848e33 * cos(theta) ** 7 + 2.51791493261812e32 * cos(theta) ** 5 - 3.63335488112284e30 * cos(theta) ** 3 + 1.48907986931264e28 * cos(theta) ) * sin(17 * phi) ) # @torch.jit.script def Yl42_m_minus_16(theta, phi): return ( 4.81773877715548e-26 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.32992427193768e36 * cos(theta) ** 26 - 5.20753479975596e36 * cos(theta) ** 24 + 8.87209632551016e36 * cos(theta) ** 22 - 8.64748629195294e36 * cos(theta) ** 20 + 5.33448829698396e36 * cos(theta) ** 18 - 2.17647122516945e36 * cos(theta) ** 16 + 5.96293486347796e35 * cos(theta) ** 14 - 1.09180497500301e35 * cos(theta) ** 12 + 1.30541899185142e34 * cos(theta) ** 10 - 9.7419327750106e32 * cos(theta) ** 8 + 4.19652488769687e31 * cos(theta) ** 6 - 9.08338720280709e29 * cos(theta) ** 4 + 7.44539934656319e27 * cos(theta) ** 2 - 9.70716994336791e24 ) * sin(16 * phi) ) # @torch.jit.script def Yl42_m_minus_15(theta, phi): return ( 1.90651017422948e-24 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 4.92564545162103e34 * cos(theta) ** 27 - 2.08301391990239e35 * cos(theta) ** 25 + 3.85743318500442e35 * cos(theta) ** 23 - 4.11785061521569e35 * cos(theta) ** 21 + 2.80762541946524e35 * cos(theta) ** 19 - 1.28027719127615e35 * cos(theta) ** 17 + 3.97528990898531e34 * cos(theta) ** 15 - 8.39849980771543e33 * cos(theta) ** 13 + 1.18674453804675e33 * cos(theta) ** 11 - 1.08243697500118e32 * cos(theta) ** 9 + 5.99503555385268e30 * cos(theta) ** 7 - 1.81667744056142e29 * cos(theta) ** 5 + 2.48179978218773e27 * cos(theta) ** 3 - 9.70716994336791e24 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl42_m_minus_14(theta, phi): return ( 7.61650218074352e-23 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.75915908986465e33 * cos(theta) ** 28 - 8.01159199962456e33 * cos(theta) ** 26 + 1.60726382708517e34 * cos(theta) ** 24 - 1.87175027964349e34 * cos(theta) ** 22 + 1.40381270973262e34 * cos(theta) ** 20 - 7.11265106264528e33 * cos(theta) ** 18 + 2.48455619311582e33 * cos(theta) ** 16 - 5.99892843408245e32 * cos(theta) ** 14 + 9.88953781705622e31 * cos(theta) ** 12 - 1.08243697500118e31 * cos(theta) ** 10 + 7.49379444231585e29 * cos(theta) ** 8 - 3.02779573426903e28 * cos(theta) ** 6 + 6.20449945546932e26 * cos(theta) ** 4 - 4.85358497168395e24 * cos(theta) ** 2 + 6.08218668130821e21 ) * sin(14 * phi) ) # @torch.jit.script def Yl42_m_minus_13(theta, phi): return ( 3.06936532987026e-21 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 6.06606582711949e31 * cos(theta) ** 29 - 2.96725629615724e32 * cos(theta) ** 27 + 6.4290553083407e32 * cos(theta) ** 25 - 8.13804469410215e32 * cos(theta) ** 23 + 6.68482242729819e32 * cos(theta) ** 21 - 3.74350055928699e32 * cos(theta) ** 19 + 1.4615036430093e32 * cos(theta) ** 17 - 3.99928562272163e31 * cos(theta) ** 15 + 7.60733678235094e30 * cos(theta) ** 13 - 9.84033613637434e29 * cos(theta) ** 11 + 8.32643826923983e28 * cos(theta) ** 9 - 4.32542247752718e27 * cos(theta) ** 7 + 1.24089989109386e26 * cos(theta) ** 5 - 1.61786165722798e24 * cos(theta) ** 3 + 6.08218668130821e21 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl42_m_minus_12(theta, phi): return ( 1.24678209088621e-19 * (1.0 - cos(theta) ** 2) ** 6 * ( 2.02202194237316e30 * cos(theta) ** 30 - 1.05973439148473e31 * cos(theta) ** 28 + 2.47271358013104e31 * cos(theta) ** 26 - 3.39085195587589e31 * cos(theta) ** 24 + 3.03855564877191e31 * cos(theta) ** 22 - 1.87175027964349e31 * cos(theta) ** 20 + 8.11946468338502e30 * cos(theta) ** 18 - 2.49955351420102e30 * cos(theta) ** 16 + 5.43381198739353e29 * cos(theta) ** 14 - 8.20028011364529e28 * cos(theta) ** 12 + 8.32643826923983e27 * cos(theta) ** 10 - 5.40677809690898e26 * cos(theta) ** 8 + 2.06816648515644e25 * cos(theta) ** 6 - 4.04465414306996e23 * cos(theta) ** 4 + 3.04109334065411e21 * cos(theta) ** 2 - 3.6861737462474e18 ) * sin(12 * phi) ) # @torch.jit.script def Yl42_m_minus_11(theta, phi): return ( 5.10115220761621e-18 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 6.5226514270102e28 * cos(theta) ** 31 - 3.65425652236114e29 * cos(theta) ** 29 + 9.15819844492977e29 * cos(theta) ** 27 - 1.35634078235036e30 * cos(theta) ** 25 + 1.32111115163996e30 * cos(theta) ** 23 - 8.91309656973092e29 * cos(theta) ** 21 + 4.27340246493948e29 * cos(theta) ** 19 - 1.47032559658884e29 * cos(theta) ** 17 + 3.62254132492902e28 * cos(theta) ** 15 - 6.30790777972714e27 * cos(theta) ** 13 + 7.56948933567257e26 * cos(theta) ** 11 - 6.00753121878776e25 * cos(theta) ** 9 + 2.95452355022349e24 * cos(theta) ** 7 - 8.08930828613992e22 * cos(theta) ** 5 + 1.01369778021804e21 * cos(theta) ** 3 - 3.6861737462474e18 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl42_m_minus_10(theta, phi): return ( 2.10078305689983e-16 * (1.0 - cos(theta) ** 2) ** 5 * ( 2.03832857094069e27 * cos(theta) ** 32 - 1.21808550745371e28 * cos(theta) ** 30 + 3.27078515890349e28 * cos(theta) ** 28 - 5.21669531673214e28 * cos(theta) ** 26 + 5.50462979849983e28 * cos(theta) ** 24 - 4.05140753169587e28 * cos(theta) ** 22 + 2.13670123246974e28 * cos(theta) ** 20 - 8.16847553660465e27 * cos(theta) ** 18 + 2.26408832808064e27 * cos(theta) ** 16 - 4.50564841409082e26 * cos(theta) ** 14 + 6.30790777972714e25 * cos(theta) ** 12 - 6.00753121878776e24 * cos(theta) ** 10 + 3.69315443777936e23 * cos(theta) ** 8 - 1.34821804768999e22 * cos(theta) ** 6 + 2.53424445054509e20 * cos(theta) ** 4 - 1.8430868731237e18 * cos(theta) ** 2 + 2.17345150132512e15 ) * sin(10 * phi) ) # @torch.jit.script def Yl42_m_minus_9(theta, phi): return ( 8.70241615868955e-15 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 6.17675324527481e25 * cos(theta) ** 33 - 3.92930808856036e26 * cos(theta) ** 31 + 1.12785695134603e27 * cos(theta) ** 29 - 1.93210937656746e27 * cos(theta) ** 27 + 2.20185191939993e27 * cos(theta) ** 25 - 1.76148153551995e27 * cos(theta) ** 23 + 1.01747677736654e27 * cos(theta) ** 21 - 4.29919765084455e26 * cos(theta) ** 19 + 1.33181666357684e26 * cos(theta) ** 17 - 3.00376560939388e25 * cos(theta) ** 15 + 4.85223675363626e24 * cos(theta) ** 13 - 5.46139201707978e23 * cos(theta) ** 11 + 4.10350493086595e22 * cos(theta) ** 9 - 1.92602578241427e21 * cos(theta) ** 7 + 5.06848890109018e19 * cos(theta) ** 5 - 6.14362291041234e17 * cos(theta) ** 3 + 2.17345150132512e15 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl42_m_minus_8(theta, phi): return ( 3.62380145008391e-13 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.81669213096318e24 * cos(theta) ** 34 - 1.22790877767511e25 * cos(theta) ** 32 + 3.75952317115343e25 * cos(theta) ** 30 - 6.90039063059808e25 * cos(theta) ** 28 + 8.46866122846127e25 * cos(theta) ** 26 - 7.33950639799977e25 * cos(theta) ** 24 + 4.6248944425752e25 * cos(theta) ** 22 - 2.14959882542228e25 * cos(theta) ** 20 + 7.3989814643158e24 * cos(theta) ** 18 - 1.87735350587117e24 * cos(theta) ** 16 + 3.46588339545447e23 * cos(theta) ** 14 - 4.55116001423315e22 * cos(theta) ** 12 + 4.10350493086595e21 * cos(theta) ** 10 - 2.40753222801783e20 * cos(theta) ** 8 + 8.44748150181696e18 * cos(theta) ** 6 - 1.53590572760308e17 * cos(theta) ** 4 + 1.08672575066256e15 * cos(theta) ** 2 - 1253432238365.12 ) * sin(8 * phi) ) # @torch.jit.script def Yl42_m_minus_7(theta, phi): return ( 1.51594490869071e-11 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 5.19054894560909e22 * cos(theta) ** 35 - 3.72093568992459e23 * cos(theta) ** 33 + 1.21274941004949e24 * cos(theta) ** 31 - 2.37944504503382e24 * cos(theta) ** 29 + 3.1365411957264e24 * cos(theta) ** 27 - 2.93580255919991e24 * cos(theta) ** 25 + 2.01082367068487e24 * cos(theta) ** 23 - 1.02361848829632e24 * cos(theta) ** 21 + 3.89420077069253e23 * cos(theta) ** 19 - 1.10432559168893e23 * cos(theta) ** 17 + 2.31058893030298e22 * cos(theta) ** 15 - 3.50089231864088e21 * cos(theta) ** 13 + 3.73045902805996e20 * cos(theta) ** 11 - 2.67503580890871e19 * cos(theta) ** 9 + 1.20678307168814e18 * cos(theta) ** 7 - 3.07181145520617e16 * cos(theta) ** 5 + 362241916887520.0 * cos(theta) ** 3 - 1253432238365.12 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl42_m_minus_6(theta, phi): return ( 6.36696861650099e-10 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.44181915155808e21 * cos(theta) ** 36 - 1.09439284997782e22 * cos(theta) ** 34 + 3.78984190640467e22 * cos(theta) ** 32 - 7.93148348344606e22 * cos(theta) ** 30 + 1.120193284188e23 * cos(theta) ** 28 - 1.1291548304615e23 * cos(theta) ** 26 + 8.37843196118695e22 * cos(theta) ** 24 - 4.65281131043783e22 * cos(theta) ** 22 + 1.94710038534626e22 * cos(theta) ** 20 - 6.13514217604959e21 * cos(theta) ** 18 + 1.44411808143936e21 * cos(theta) ** 16 - 2.50063737045777e20 * cos(theta) ** 14 + 3.10871585671663e19 * cos(theta) ** 12 - 2.67503580890871e18 * cos(theta) ** 10 + 1.50847883961017e17 * cos(theta) ** 8 - 5.11968575867695e15 * cos(theta) ** 6 + 90560479221880.0 * cos(theta) ** 4 - 626716119182.56 * cos(theta) ** 2 + 710562493.404263 ) * sin(6 * phi) ) # @torch.jit.script def Yl42_m_minus_5(theta, phi): return ( 2.68320707194937e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 3.89680851772454e19 * cos(theta) ** 37 - 3.12683671422234e20 * cos(theta) ** 35 + 1.14843694133475e21 * cos(theta) ** 33 - 2.55854305917615e21 * cos(theta) ** 31 + 3.86273546271724e21 * cos(theta) ** 29 - 4.1820549276352e21 * cos(theta) ** 27 + 3.35137278447478e21 * cos(theta) ** 25 - 2.02296143932079e21 * cos(theta) ** 23 + 9.27190659688697e20 * cos(theta) ** 21 - 3.22902219792084e20 * cos(theta) ** 19 + 8.49481224376097e19 * cos(theta) ** 17 - 1.66709158030518e19 * cos(theta) ** 15 + 2.39131988978202e18 * cos(theta) ** 13 - 2.43185073537155e17 * cos(theta) ** 11 + 1.67608759956686e16 * cos(theta) ** 9 - 731383679810993.0 * cos(theta) ** 7 + 18112095844376.0 * cos(theta) ** 5 - 208905373060.853 * cos(theta) ** 3 + 710562493.404263 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl42_m_minus_4(theta, phi): return ( 1.13395264191469e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 1.02547592571698e18 * cos(theta) ** 38 - 8.6856575395065e18 * cos(theta) ** 36 + 3.37775570980809e19 * cos(theta) ** 34 - 7.99544705992547e19 * cos(theta) ** 32 + 1.28757848757241e20 * cos(theta) ** 30 - 1.493591045584e20 * cos(theta) ** 28 + 1.2889895324903e20 * cos(theta) ** 26 - 8.42900599716997e19 * cos(theta) ** 24 + 4.21450299858499e19 * cos(theta) ** 22 - 1.61451109896042e19 * cos(theta) ** 20 + 4.71934013542276e18 * cos(theta) ** 18 - 1.04193223769074e18 * cos(theta) ** 16 + 1.70808563555859e17 * cos(theta) ** 14 - 2.02654227947629e16 * cos(theta) ** 12 + 1.67608759956686e15 * cos(theta) ** 10 - 91422959976374.1 * cos(theta) ** 8 + 3018682640729.33 * cos(theta) ** 6 - 52226343265.2134 * cos(theta) ** 4 + 355281246.702132 * cos(theta) ** 2 - 397851.340091973 ) * sin(4 * phi) ) # @torch.jit.script def Yl42_m_minus_3(theta, phi): return ( 4.80292866678749e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 2.62942545055637e16 * cos(theta) ** 39 - 2.34747501067743e17 * cos(theta) ** 37 + 9.65073059945167e17 * cos(theta) ** 35 - 2.42286274543196e18 * cos(theta) ** 33 + 4.15347899216907e18 * cos(theta) ** 31 - 5.15031395028965e18 * cos(theta) ** 29 + 4.77403530551963e18 * cos(theta) ** 27 - 3.37160239886799e18 * cos(theta) ** 25 + 1.83239260808043e18 * cos(theta) ** 23 - 7.6881480902877e17 * cos(theta) ** 21 + 2.48386322916987e17 * cos(theta) ** 19 - 6.1290131628867e16 * cos(theta) ** 17 + 1.13872375703906e16 * cos(theta) ** 15 - 1.55887867652022e15 * cos(theta) ** 13 + 152371599960623.0 * cos(theta) ** 11 - 10158106664041.6 * cos(theta) ** 9 + 431240377247.047 * cos(theta) ** 7 - 10445268653.0427 * cos(theta) ** 5 + 118427082.234044 * cos(theta) ** 3 - 397851.340091973 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl42_m_minus_2(theta, phi): return ( 0.00203771005790442 * (1.0 - cos(theta) ** 2) * ( 657356362639093.0 * cos(theta) ** 40 - 6.17756581757219e15 * cos(theta) ** 38 + 2.68075849984769e16 * cos(theta) ** 36 - 7.12606689832929e16 * cos(theta) ** 34 + 1.29796218505284e17 * cos(theta) ** 32 - 1.71677131676322e17 * cos(theta) ** 30 + 1.70501260911415e17 * cos(theta) ** 28 - 1.29677015341077e17 * cos(theta) ** 26 + 7.63496920033512e16 * cos(theta) ** 24 - 3.49461276831259e16 * cos(theta) ** 22 + 1.24193161458494e16 * cos(theta) ** 20 - 3.40500731271483e15 * cos(theta) ** 18 + 711702348149412.0 * cos(theta) ** 16 - 111348476894302.0 * cos(theta) ** 14 + 12697633330052.0 * cos(theta) ** 12 - 1015810666404.16 * cos(theta) ** 10 + 53905047155.8809 * cos(theta) ** 8 - 1740878108.84045 * cos(theta) ** 6 + 29606770.558511 * cos(theta) ** 4 - 198925.670045986 * cos(theta) ** 2 + 221.028522273318 ) * sin(2 * phi) ) # @torch.jit.script def Yl42_m_minus_1(theta, phi): return ( 0.0865487212688497 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 16033082015587.6 * cos(theta) ** 41 - 158399123527492.0 * cos(theta) ** 39 + 724529324283159.0 * cos(theta) ** 37 - 2.03601911380837e15 * cos(theta) ** 35 + 3.93321874258435e15 * cos(theta) ** 33 - 5.53797198955877e15 * cos(theta) ** 31 + 5.87935382453157e15 * cos(theta) ** 29 - 4.80285242003987e15 * cos(theta) ** 27 + 3.05398768013405e15 * cos(theta) ** 25 - 1.51939685578808e15 * cos(theta) ** 23 + 591396006945208.0 * cos(theta) ** 21 - 179210911195518.0 * cos(theta) ** 19 + 41864844008788.9 * cos(theta) ** 17 - 7423231792953.45 * cos(theta) ** 15 + 976741025388.612 * cos(theta) ** 13 - 92346424218.5597 * cos(theta) ** 11 + 5989449683.98677 * cos(theta) ** 9 - 248696872.691492 * cos(theta) ** 7 + 5921354.1117022 * cos(theta) ** 5 - 66308.5566819955 * cos(theta) ** 3 + 221.028522273318 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl42_m0(theta, phi): return ( 3119048495581.35 * cos(theta) ** 42 - 32355430779464.4 * cos(theta) ** 40 + 155785407456680.0 * cos(theta) ** 38 - 462097643215385.0 * cos(theta) ** 36 + 945199724758743.0 * cos(theta) ** 34 - 1.41401878823908e15 * cos(theta) ** 32 + 1.60126328531183e15 * cos(theta) ** 30 - 1.40150810686247e15 * cos(theta) ** 28 + 959728377525387.0 * cos(theta) ** 26 - 517266538467249.0 * cos(theta) ** 24 + 219639330179939.0 * cos(theta) ** 22 - 73213110059979.8 * cos(theta) ** 20 + 19003402884421.0 * cos(theta) ** 18 - 3790770066905.36 * cos(theta) ** 16 + 570040611564.716 * cos(theta) ** 14 - 62877206851.3808 * cos(theta) ** 12 + 4893744872.8669 * cos(theta) ** 10 - 254000598.937728 * cos(theta) ** 8 + 8063511.0773882 * cos(theta) ** 6 - 135445.314849746 * cos(theta) ** 4 + 902.968765664972 * cos(theta) ** 2 - 0.999965410481697 ) # @torch.jit.script def Yl42_m1(theta, phi): return ( 0.0865487212688497 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 16033082015587.6 * cos(theta) ** 41 - 158399123527492.0 * cos(theta) ** 39 + 724529324283159.0 * cos(theta) ** 37 - 2.03601911380837e15 * cos(theta) ** 35 + 3.93321874258435e15 * cos(theta) ** 33 - 5.53797198955877e15 * cos(theta) ** 31 + 5.87935382453157e15 * cos(theta) ** 29 - 4.80285242003987e15 * cos(theta) ** 27 + 3.05398768013405e15 * cos(theta) ** 25 - 1.51939685578808e15 * cos(theta) ** 23 + 591396006945208.0 * cos(theta) ** 21 - 179210911195518.0 * cos(theta) ** 19 + 41864844008788.9 * cos(theta) ** 17 - 7423231792953.45 * cos(theta) ** 15 + 976741025388.612 * cos(theta) ** 13 - 92346424218.5597 * cos(theta) ** 11 + 5989449683.98677 * cos(theta) ** 9 - 248696872.691492 * cos(theta) ** 7 + 5921354.1117022 * cos(theta) ** 5 - 66308.5566819955 * cos(theta) ** 3 + 221.028522273318 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl42_m2(theta, phi): return ( 0.00203771005790442 * (1.0 - cos(theta) ** 2) * ( 657356362639093.0 * cos(theta) ** 40 - 6.17756581757219e15 * cos(theta) ** 38 + 2.68075849984769e16 * cos(theta) ** 36 - 7.12606689832929e16 * cos(theta) ** 34 + 1.29796218505284e17 * cos(theta) ** 32 - 1.71677131676322e17 * cos(theta) ** 30 + 1.70501260911415e17 * cos(theta) ** 28 - 1.29677015341077e17 * cos(theta) ** 26 + 7.63496920033512e16 * cos(theta) ** 24 - 3.49461276831259e16 * cos(theta) ** 22 + 1.24193161458494e16 * cos(theta) ** 20 - 3.40500731271483e15 * cos(theta) ** 18 + 711702348149412.0 * cos(theta) ** 16 - 111348476894302.0 * cos(theta) ** 14 + 12697633330052.0 * cos(theta) ** 12 - 1015810666404.16 * cos(theta) ** 10 + 53905047155.8809 * cos(theta) ** 8 - 1740878108.84045 * cos(theta) ** 6 + 29606770.558511 * cos(theta) ** 4 - 198925.670045986 * cos(theta) ** 2 + 221.028522273318 ) * cos(2 * phi) ) # @torch.jit.script def Yl42_m3(theta, phi): return ( 4.80292866678749e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 2.62942545055637e16 * cos(theta) ** 39 - 2.34747501067743e17 * cos(theta) ** 37 + 9.65073059945167e17 * cos(theta) ** 35 - 2.42286274543196e18 * cos(theta) ** 33 + 4.15347899216907e18 * cos(theta) ** 31 - 5.15031395028965e18 * cos(theta) ** 29 + 4.77403530551963e18 * cos(theta) ** 27 - 3.37160239886799e18 * cos(theta) ** 25 + 1.83239260808043e18 * cos(theta) ** 23 - 7.6881480902877e17 * cos(theta) ** 21 + 2.48386322916987e17 * cos(theta) ** 19 - 6.1290131628867e16 * cos(theta) ** 17 + 1.13872375703906e16 * cos(theta) ** 15 - 1.55887867652022e15 * cos(theta) ** 13 + 152371599960623.0 * cos(theta) ** 11 - 10158106664041.6 * cos(theta) ** 9 + 431240377247.047 * cos(theta) ** 7 - 10445268653.0427 * cos(theta) ** 5 + 118427082.234044 * cos(theta) ** 3 - 397851.340091973 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl42_m4(theta, phi): return ( 1.13395264191469e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 1.02547592571698e18 * cos(theta) ** 38 - 8.6856575395065e18 * cos(theta) ** 36 + 3.37775570980809e19 * cos(theta) ** 34 - 7.99544705992547e19 * cos(theta) ** 32 + 1.28757848757241e20 * cos(theta) ** 30 - 1.493591045584e20 * cos(theta) ** 28 + 1.2889895324903e20 * cos(theta) ** 26 - 8.42900599716997e19 * cos(theta) ** 24 + 4.21450299858499e19 * cos(theta) ** 22 - 1.61451109896042e19 * cos(theta) ** 20 + 4.71934013542276e18 * cos(theta) ** 18 - 1.04193223769074e18 * cos(theta) ** 16 + 1.70808563555859e17 * cos(theta) ** 14 - 2.02654227947629e16 * cos(theta) ** 12 + 1.67608759956686e15 * cos(theta) ** 10 - 91422959976374.1 * cos(theta) ** 8 + 3018682640729.33 * cos(theta) ** 6 - 52226343265.2134 * cos(theta) ** 4 + 355281246.702132 * cos(theta) ** 2 - 397851.340091973 ) * cos(4 * phi) ) # @torch.jit.script def Yl42_m5(theta, phi): return ( 2.68320707194937e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 3.89680851772454e19 * cos(theta) ** 37 - 3.12683671422234e20 * cos(theta) ** 35 + 1.14843694133475e21 * cos(theta) ** 33 - 2.55854305917615e21 * cos(theta) ** 31 + 3.86273546271724e21 * cos(theta) ** 29 - 4.1820549276352e21 * cos(theta) ** 27 + 3.35137278447478e21 * cos(theta) ** 25 - 2.02296143932079e21 * cos(theta) ** 23 + 9.27190659688697e20 * cos(theta) ** 21 - 3.22902219792084e20 * cos(theta) ** 19 + 8.49481224376097e19 * cos(theta) ** 17 - 1.66709158030518e19 * cos(theta) ** 15 + 2.39131988978202e18 * cos(theta) ** 13 - 2.43185073537155e17 * cos(theta) ** 11 + 1.67608759956686e16 * cos(theta) ** 9 - 731383679810993.0 * cos(theta) ** 7 + 18112095844376.0 * cos(theta) ** 5 - 208905373060.853 * cos(theta) ** 3 + 710562493.404263 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl42_m6(theta, phi): return ( 6.36696861650099e-10 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.44181915155808e21 * cos(theta) ** 36 - 1.09439284997782e22 * cos(theta) ** 34 + 3.78984190640467e22 * cos(theta) ** 32 - 7.93148348344606e22 * cos(theta) ** 30 + 1.120193284188e23 * cos(theta) ** 28 - 1.1291548304615e23 * cos(theta) ** 26 + 8.37843196118695e22 * cos(theta) ** 24 - 4.65281131043783e22 * cos(theta) ** 22 + 1.94710038534626e22 * cos(theta) ** 20 - 6.13514217604959e21 * cos(theta) ** 18 + 1.44411808143936e21 * cos(theta) ** 16 - 2.50063737045777e20 * cos(theta) ** 14 + 3.10871585671663e19 * cos(theta) ** 12 - 2.67503580890871e18 * cos(theta) ** 10 + 1.50847883961017e17 * cos(theta) ** 8 - 5.11968575867695e15 * cos(theta) ** 6 + 90560479221880.0 * cos(theta) ** 4 - 626716119182.56 * cos(theta) ** 2 + 710562493.404263 ) * cos(6 * phi) ) # @torch.jit.script def Yl42_m7(theta, phi): return ( 1.51594490869071e-11 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 5.19054894560909e22 * cos(theta) ** 35 - 3.72093568992459e23 * cos(theta) ** 33 + 1.21274941004949e24 * cos(theta) ** 31 - 2.37944504503382e24 * cos(theta) ** 29 + 3.1365411957264e24 * cos(theta) ** 27 - 2.93580255919991e24 * cos(theta) ** 25 + 2.01082367068487e24 * cos(theta) ** 23 - 1.02361848829632e24 * cos(theta) ** 21 + 3.89420077069253e23 * cos(theta) ** 19 - 1.10432559168893e23 * cos(theta) ** 17 + 2.31058893030298e22 * cos(theta) ** 15 - 3.50089231864088e21 * cos(theta) ** 13 + 3.73045902805996e20 * cos(theta) ** 11 - 2.67503580890871e19 * cos(theta) ** 9 + 1.20678307168814e18 * cos(theta) ** 7 - 3.07181145520617e16 * cos(theta) ** 5 + 362241916887520.0 * cos(theta) ** 3 - 1253432238365.12 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl42_m8(theta, phi): return ( 3.62380145008391e-13 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.81669213096318e24 * cos(theta) ** 34 - 1.22790877767511e25 * cos(theta) ** 32 + 3.75952317115343e25 * cos(theta) ** 30 - 6.90039063059808e25 * cos(theta) ** 28 + 8.46866122846127e25 * cos(theta) ** 26 - 7.33950639799977e25 * cos(theta) ** 24 + 4.6248944425752e25 * cos(theta) ** 22 - 2.14959882542228e25 * cos(theta) ** 20 + 7.3989814643158e24 * cos(theta) ** 18 - 1.87735350587117e24 * cos(theta) ** 16 + 3.46588339545447e23 * cos(theta) ** 14 - 4.55116001423315e22 * cos(theta) ** 12 + 4.10350493086595e21 * cos(theta) ** 10 - 2.40753222801783e20 * cos(theta) ** 8 + 8.44748150181696e18 * cos(theta) ** 6 - 1.53590572760308e17 * cos(theta) ** 4 + 1.08672575066256e15 * cos(theta) ** 2 - 1253432238365.12 ) * cos(8 * phi) ) # @torch.jit.script def Yl42_m9(theta, phi): return ( 8.70241615868955e-15 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 6.17675324527481e25 * cos(theta) ** 33 - 3.92930808856036e26 * cos(theta) ** 31 + 1.12785695134603e27 * cos(theta) ** 29 - 1.93210937656746e27 * cos(theta) ** 27 + 2.20185191939993e27 * cos(theta) ** 25 - 1.76148153551995e27 * cos(theta) ** 23 + 1.01747677736654e27 * cos(theta) ** 21 - 4.29919765084455e26 * cos(theta) ** 19 + 1.33181666357684e26 * cos(theta) ** 17 - 3.00376560939388e25 * cos(theta) ** 15 + 4.85223675363626e24 * cos(theta) ** 13 - 5.46139201707978e23 * cos(theta) ** 11 + 4.10350493086595e22 * cos(theta) ** 9 - 1.92602578241427e21 * cos(theta) ** 7 + 5.06848890109018e19 * cos(theta) ** 5 - 6.14362291041234e17 * cos(theta) ** 3 + 2.17345150132512e15 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl42_m10(theta, phi): return ( 2.10078305689983e-16 * (1.0 - cos(theta) ** 2) ** 5 * ( 2.03832857094069e27 * cos(theta) ** 32 - 1.21808550745371e28 * cos(theta) ** 30 + 3.27078515890349e28 * cos(theta) ** 28 - 5.21669531673214e28 * cos(theta) ** 26 + 5.50462979849983e28 * cos(theta) ** 24 - 4.05140753169587e28 * cos(theta) ** 22 + 2.13670123246974e28 * cos(theta) ** 20 - 8.16847553660465e27 * cos(theta) ** 18 + 2.26408832808064e27 * cos(theta) ** 16 - 4.50564841409082e26 * cos(theta) ** 14 + 6.30790777972714e25 * cos(theta) ** 12 - 6.00753121878776e24 * cos(theta) ** 10 + 3.69315443777936e23 * cos(theta) ** 8 - 1.34821804768999e22 * cos(theta) ** 6 + 2.53424445054509e20 * cos(theta) ** 4 - 1.8430868731237e18 * cos(theta) ** 2 + 2.17345150132512e15 ) * cos(10 * phi) ) # @torch.jit.script def Yl42_m11(theta, phi): return ( 5.10115220761621e-18 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 6.5226514270102e28 * cos(theta) ** 31 - 3.65425652236114e29 * cos(theta) ** 29 + 9.15819844492977e29 * cos(theta) ** 27 - 1.35634078235036e30 * cos(theta) ** 25 + 1.32111115163996e30 * cos(theta) ** 23 - 8.91309656973092e29 * cos(theta) ** 21 + 4.27340246493948e29 * cos(theta) ** 19 - 1.47032559658884e29 * cos(theta) ** 17 + 3.62254132492902e28 * cos(theta) ** 15 - 6.30790777972714e27 * cos(theta) ** 13 + 7.56948933567257e26 * cos(theta) ** 11 - 6.00753121878776e25 * cos(theta) ** 9 + 2.95452355022349e24 * cos(theta) ** 7 - 8.08930828613992e22 * cos(theta) ** 5 + 1.01369778021804e21 * cos(theta) ** 3 - 3.6861737462474e18 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl42_m12(theta, phi): return ( 1.24678209088621e-19 * (1.0 - cos(theta) ** 2) ** 6 * ( 2.02202194237316e30 * cos(theta) ** 30 - 1.05973439148473e31 * cos(theta) ** 28 + 2.47271358013104e31 * cos(theta) ** 26 - 3.39085195587589e31 * cos(theta) ** 24 + 3.03855564877191e31 * cos(theta) ** 22 - 1.87175027964349e31 * cos(theta) ** 20 + 8.11946468338502e30 * cos(theta) ** 18 - 2.49955351420102e30 * cos(theta) ** 16 + 5.43381198739353e29 * cos(theta) ** 14 - 8.20028011364529e28 * cos(theta) ** 12 + 8.32643826923983e27 * cos(theta) ** 10 - 5.40677809690898e26 * cos(theta) ** 8 + 2.06816648515644e25 * cos(theta) ** 6 - 4.04465414306996e23 * cos(theta) ** 4 + 3.04109334065411e21 * cos(theta) ** 2 - 3.6861737462474e18 ) * cos(12 * phi) ) # @torch.jit.script def Yl42_m13(theta, phi): return ( 3.06936532987026e-21 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 6.06606582711949e31 * cos(theta) ** 29 - 2.96725629615724e32 * cos(theta) ** 27 + 6.4290553083407e32 * cos(theta) ** 25 - 8.13804469410215e32 * cos(theta) ** 23 + 6.68482242729819e32 * cos(theta) ** 21 - 3.74350055928699e32 * cos(theta) ** 19 + 1.4615036430093e32 * cos(theta) ** 17 - 3.99928562272163e31 * cos(theta) ** 15 + 7.60733678235094e30 * cos(theta) ** 13 - 9.84033613637434e29 * cos(theta) ** 11 + 8.32643826923983e28 * cos(theta) ** 9 - 4.32542247752718e27 * cos(theta) ** 7 + 1.24089989109386e26 * cos(theta) ** 5 - 1.61786165722798e24 * cos(theta) ** 3 + 6.08218668130821e21 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl42_m14(theta, phi): return ( 7.61650218074352e-23 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.75915908986465e33 * cos(theta) ** 28 - 8.01159199962456e33 * cos(theta) ** 26 + 1.60726382708517e34 * cos(theta) ** 24 - 1.87175027964349e34 * cos(theta) ** 22 + 1.40381270973262e34 * cos(theta) ** 20 - 7.11265106264528e33 * cos(theta) ** 18 + 2.48455619311582e33 * cos(theta) ** 16 - 5.99892843408245e32 * cos(theta) ** 14 + 9.88953781705622e31 * cos(theta) ** 12 - 1.08243697500118e31 * cos(theta) ** 10 + 7.49379444231585e29 * cos(theta) ** 8 - 3.02779573426903e28 * cos(theta) ** 6 + 6.20449945546932e26 * cos(theta) ** 4 - 4.85358497168395e24 * cos(theta) ** 2 + 6.08218668130821e21 ) * cos(14 * phi) ) # @torch.jit.script def Yl42_m15(theta, phi): return ( 1.90651017422948e-24 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 4.92564545162103e34 * cos(theta) ** 27 - 2.08301391990239e35 * cos(theta) ** 25 + 3.85743318500442e35 * cos(theta) ** 23 - 4.11785061521569e35 * cos(theta) ** 21 + 2.80762541946524e35 * cos(theta) ** 19 - 1.28027719127615e35 * cos(theta) ** 17 + 3.97528990898531e34 * cos(theta) ** 15 - 8.39849980771543e33 * cos(theta) ** 13 + 1.18674453804675e33 * cos(theta) ** 11 - 1.08243697500118e32 * cos(theta) ** 9 + 5.99503555385268e30 * cos(theta) ** 7 - 1.81667744056142e29 * cos(theta) ** 5 + 2.48179978218773e27 * cos(theta) ** 3 - 9.70716994336791e24 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl42_m16(theta, phi): return ( 4.81773877715548e-26 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.32992427193768e36 * cos(theta) ** 26 - 5.20753479975596e36 * cos(theta) ** 24 + 8.87209632551016e36 * cos(theta) ** 22 - 8.64748629195294e36 * cos(theta) ** 20 + 5.33448829698396e36 * cos(theta) ** 18 - 2.17647122516945e36 * cos(theta) ** 16 + 5.96293486347796e35 * cos(theta) ** 14 - 1.09180497500301e35 * cos(theta) ** 12 + 1.30541899185142e34 * cos(theta) ** 10 - 9.7419327750106e32 * cos(theta) ** 8 + 4.19652488769687e31 * cos(theta) ** 6 - 9.08338720280709e29 * cos(theta) ** 4 + 7.44539934656319e27 * cos(theta) ** 2 - 9.70716994336791e24 ) * cos(16 * phi) ) # @torch.jit.script def Yl42_m17(theta, phi): return ( 1.23007210134409e-27 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 3.45780310703796e37 * cos(theta) ** 25 - 1.24980835194143e38 * cos(theta) ** 23 + 1.95186119161224e38 * cos(theta) ** 21 - 1.72949725839059e38 * cos(theta) ** 19 + 9.60207893457112e37 * cos(theta) ** 17 - 3.48235396027113e37 * cos(theta) ** 15 + 8.34810880886914e36 * cos(theta) ** 13 - 1.31016597000361e36 * cos(theta) ** 11 + 1.30541899185142e35 * cos(theta) ** 9 - 7.79354622000848e33 * cos(theta) ** 7 + 2.51791493261812e32 * cos(theta) ** 5 - 3.63335488112284e30 * cos(theta) ** 3 + 1.48907986931264e28 * cos(theta) ) * cos(17 * phi) ) # @torch.jit.script def Yl42_m18(theta, phi): return ( 3.17603250876001e-29 * (1.0 - cos(theta) ** 2) ** 9 * ( 8.6445077675949e38 * cos(theta) ** 24 - 2.87455920946529e39 * cos(theta) ** 22 + 4.09890850238569e39 * cos(theta) ** 20 - 3.28604479094212e39 * cos(theta) ** 18 + 1.63235341887709e39 * cos(theta) ** 16 - 5.22353094040669e38 * cos(theta) ** 14 + 1.08525414515299e38 * cos(theta) ** 12 - 1.44118256700397e37 * cos(theta) ** 10 + 1.17487709266628e36 * cos(theta) ** 8 - 5.45548235400594e34 * cos(theta) ** 6 + 1.25895746630906e33 * cos(theta) ** 4 - 1.09000646433685e31 * cos(theta) ** 2 + 1.48907986931264e28 ) * cos(18 * phi) ) # @torch.jit.script def Yl42_m19(theta, phi): return ( 8.30069393401569e-31 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 2.07468186422278e40 * cos(theta) ** 23 - 6.32403026082364e40 * cos(theta) ** 21 + 8.19781700477139e40 * cos(theta) ** 19 - 5.91488062369581e40 * cos(theta) ** 17 + 2.61176547020335e40 * cos(theta) ** 15 - 7.31294331656937e39 * cos(theta) ** 13 + 1.30230497418359e39 * cos(theta) ** 11 - 1.44118256700397e38 * cos(theta) ** 9 + 9.39901674133023e36 * cos(theta) ** 7 - 3.27328941240356e35 * cos(theta) ** 5 + 5.03582986523625e33 * cos(theta) ** 3 - 2.1800129286737e31 * cos(theta) ) * cos(19 * phi) ) # @torch.jit.script def Yl42_m20(theta, phi): return ( 2.19813639967386e-32 * (1.0 - cos(theta) ** 2) ** 10 * ( 4.77176828771238e41 * cos(theta) ** 22 - 1.32804635477296e42 * cos(theta) ** 20 + 1.55758523090656e42 * cos(theta) ** 18 - 1.00552970602829e42 * cos(theta) ** 16 + 3.91764820530502e41 * cos(theta) ** 14 - 9.50682631154018e40 * cos(theta) ** 12 + 1.43253547160194e40 * cos(theta) ** 10 - 1.29706431030357e39 * cos(theta) ** 8 + 6.57931171893116e37 * cos(theta) ** 6 - 1.63664470620178e36 * cos(theta) ** 4 + 1.51074895957087e34 * cos(theta) ** 2 - 2.1800129286737e31 ) * cos(20 * phi) ) # @torch.jit.script def Yl42_m21(theta, phi): return ( 5.90436262972423e-34 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.04978902329672e43 * cos(theta) ** 21 - 2.65609270954593e43 * cos(theta) ** 19 + 2.80365341563181e43 * cos(theta) ** 17 - 1.60884752964526e43 * cos(theta) ** 15 + 5.48470748742703e42 * cos(theta) ** 13 - 1.14081915738482e42 * cos(theta) ** 11 + 1.43253547160194e41 * cos(theta) ** 9 - 1.03765144824286e40 * cos(theta) ** 7 + 3.9475870313587e38 * cos(theta) ** 5 - 6.54657882480712e36 * cos(theta) ** 3 + 3.02149791914175e34 * cos(theta) ) * cos(21 * phi) ) # @torch.jit.script def Yl42_m22(theta, phi): return ( 1.61054694530832e-35 * (1.0 - cos(theta) ** 2) ** 11 * ( 2.20455694892312e44 * cos(theta) ** 20 - 5.04657614813727e44 * cos(theta) ** 18 + 4.76621080657408e44 * cos(theta) ** 16 - 2.41327129446789e44 * cos(theta) ** 14 + 7.13011973365513e43 * cos(theta) ** 12 - 1.2549010731233e43 * cos(theta) ** 10 + 1.28928192444175e42 * cos(theta) ** 8 - 7.2635601377e40 * cos(theta) ** 6 + 1.97379351567935e39 * cos(theta) ** 4 - 1.96397364744214e37 * cos(theta) ** 2 + 3.02149791914175e34 ) * cos(22 * phi) ) # @torch.jit.script def Yl42_m23(theta, phi): return ( 4.46685353296235e-37 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 4.40911389784624e45 * cos(theta) ** 19 - 9.08383706664708e45 * cos(theta) ** 17 + 7.62593729051854e45 * cos(theta) ** 15 - 3.37857981225505e45 * cos(theta) ** 13 + 8.55614368038616e44 * cos(theta) ** 11 - 1.2549010731233e44 * cos(theta) ** 9 + 1.0314255395534e43 * cos(theta) ** 7 - 4.35813608262e41 * cos(theta) ** 5 + 7.89517406271739e39 * cos(theta) ** 3 - 3.92794729488427e37 * cos(theta) ) * cos(23 * phi) ) # @torch.jit.script def Yl42_m24(theta, phi): return ( 1.26140034095862e-38 * (1.0 - cos(theta) ** 2) ** 12 * ( 8.37731640590786e46 * cos(theta) ** 18 - 1.54425230133e47 * cos(theta) ** 16 + 1.14389059357778e47 * cos(theta) ** 14 - 4.39215375593156e46 * cos(theta) ** 12 + 9.41175804842478e45 * cos(theta) ** 10 - 1.12941096581097e45 * cos(theta) ** 8 + 7.2199787768738e43 * cos(theta) ** 6 - 2.17906804131e42 * cos(theta) ** 4 + 2.36855221881522e40 * cos(theta) ** 2 - 3.92794729488427e37 ) * cos(24 * phi) ) # @torch.jit.script def Yl42_m25(theta, phi): return ( 3.63227975523903e-40 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 1.50791695306342e48 * cos(theta) ** 17 - 2.47080368212801e48 * cos(theta) ** 15 + 1.60144683100889e48 * cos(theta) ** 13 - 5.27058450711787e47 * cos(theta) ** 11 + 9.41175804842478e46 * cos(theta) ** 9 - 9.03528772648778e45 * cos(theta) ** 7 + 4.33198726612428e44 * cos(theta) ** 5 - 8.71627216524e42 * cos(theta) ** 3 + 4.73710443763043e40 * cos(theta) ) * cos(25 * phi) ) # @torch.jit.script def Yl42_m26(theta, phi): return ( 1.0683175750703e-41 * (1.0 - cos(theta) ** 2) ** 13 * ( 2.56345882020781e49 * cos(theta) ** 16 - 3.70620552319201e49 * cos(theta) ** 14 + 2.08188088031156e49 * cos(theta) ** 12 - 5.79764295782966e48 * cos(theta) ** 10 + 8.4705822435823e47 * cos(theta) ** 8 - 6.32470140854145e46 * cos(theta) ** 6 + 2.16599363306214e45 * cos(theta) ** 4 - 2.614881649572e43 * cos(theta) ** 2 + 4.73710443763043e40 ) * cos(26 * phi) ) # @torch.jit.script def Yl42_m27(theta, phi): return ( 3.21525806603397e-43 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 4.10153411233249e50 * cos(theta) ** 15 - 5.18868773246881e50 * cos(theta) ** 13 + 2.49825705637387e50 * cos(theta) ** 11 - 5.79764295782966e49 * cos(theta) ** 9 + 6.77646579486584e48 * cos(theta) ** 7 - 3.79482084512487e47 * cos(theta) ** 5 + 8.66397453224856e45 * cos(theta) ** 3 - 5.229763299144e43 * cos(theta) ) * cos(27 * phi) ) # @torch.jit.script def Yl42_m28(theta, phi): return ( 9.92250181163357e-45 * (1.0 - cos(theta) ** 2) ** 14 * ( 6.15230116849873e51 * cos(theta) ** 14 - 6.74529405220946e51 * cos(theta) ** 12 + 2.74808276201126e51 * cos(theta) ** 10 - 5.2178786620467e50 * cos(theta) ** 8 + 4.74352605640609e49 * cos(theta) ** 6 - 1.89741042256243e48 * cos(theta) ** 4 + 2.59919235967457e46 * cos(theta) ** 2 - 5.229763299144e43 ) * cos(28 * phi) ) # @torch.jit.script def Yl42_m29(theta, phi): return ( 3.14722646575483e-46 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 8.61322163589823e52 * cos(theta) ** 13 - 8.09435286265135e52 * cos(theta) ** 11 + 2.74808276201126e52 * cos(theta) ** 9 - 4.17430292963736e51 * cos(theta) ** 7 + 2.84611563384365e50 * cos(theta) ** 5 - 7.58964169024974e48 * cos(theta) ** 3 + 5.19838471934914e46 * cos(theta) ) * cos(29 * phi) ) # @torch.jit.script def Yl42_m30(theta, phi): return ( 1.02870315144741e-47 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.11971881266677e54 * cos(theta) ** 12 - 8.90378814891648e53 * cos(theta) ** 10 + 2.47327448581013e53 * cos(theta) ** 8 - 2.92201205074615e52 * cos(theta) ** 6 + 1.42305781692183e51 * cos(theta) ** 4 - 2.27689250707492e49 * cos(theta) ** 2 + 5.19838471934914e46 ) * cos(30 * phi) ) # @torch.jit.script def Yl42_m31(theta, phi): return ( 3.4756658535518e-49 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 1.34366257520012e55 * cos(theta) ** 11 - 8.90378814891648e54 * cos(theta) ** 9 + 1.97861958864811e54 * cos(theta) ** 7 - 1.75320723044769e53 * cos(theta) ** 5 + 5.6922312676873e51 * cos(theta) ** 3 - 4.55378501414984e49 * cos(theta) ) * cos(31 * phi) ) # @torch.jit.script def Yl42_m32(theta, phi): return ( 1.21822025124109e-50 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.47802883272014e56 * cos(theta) ** 10 - 8.01340933402483e55 * cos(theta) ** 8 + 1.38503371205367e55 * cos(theta) ** 6 - 8.76603615223845e53 * cos(theta) ** 4 + 1.70766938030619e52 * cos(theta) ** 2 - 4.55378501414984e49 ) * cos(32 * phi) ) # @torch.jit.script def Yl42_m33(theta, phi): return ( 4.44831141076236e-52 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 1.47802883272014e57 * cos(theta) ** 9 - 6.41072746721987e56 * cos(theta) ** 7 + 8.31020227232205e55 * cos(theta) ** 5 - 3.50641446089538e54 * cos(theta) ** 3 + 3.41533876061238e52 * cos(theta) ) * cos(33 * phi) ) # @torch.jit.script def Yl42_m34(theta, phi): return ( 1.70085437797474e-53 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.33022594944812e58 * cos(theta) ** 8 - 4.48750922705391e57 * cos(theta) ** 6 + 4.15510113616102e56 * cos(theta) ** 4 - 1.05192433826861e55 * cos(theta) ** 2 + 3.41533876061238e52 ) * cos(34 * phi) ) # @torch.jit.script def Yl42_m35(theta, phi): return ( 6.85293758117573e-55 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 1.0641807595585e59 * cos(theta) ** 7 - 2.69250553623234e58 * cos(theta) ** 5 + 1.66204045446441e57 * cos(theta) ** 3 - 2.10384867653723e55 * cos(theta) ) * cos(35 * phi) ) # @torch.jit.script def Yl42_m36(theta, phi): return ( 2.93278654238651e-56 * (1.0 - cos(theta) ** 2) ** 18 * ( 7.44926531690948e59 * cos(theta) ** 6 - 1.34625276811617e59 * cos(theta) ** 4 + 4.98612136339323e57 * cos(theta) ** 2 - 2.10384867653723e55 ) * cos(36 * phi) ) # @torch.jit.script def Yl42_m37(theta, phi): return ( 1.34707347297915e-57 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 4.46955919014569e60 * cos(theta) ** 5 - 5.38501107246469e59 * cos(theta) ** 3 + 9.97224272678646e57 * cos(theta) ) * cos(37 * phi) ) # @torch.jit.script def Yl42_m38(theta, phi): return ( 6.73536736489573e-59 * (1.0 - cos(theta) ** 2) ** 19 * ( 2.23477959507285e61 * cos(theta) ** 4 - 1.61550332173941e60 * cos(theta) ** 2 + 9.97224272678646e57 ) * cos(38 * phi) ) # @torch.jit.script def Yl42_m39(theta, phi): return ( 3.74187075827541e-60 * (1.0 - cos(theta) ** 2) ** 19.5 * (8.93911838029138e61 * cos(theta) ** 3 - 3.23100664347881e60 * cos(theta)) * cos(39 * phi) ) # @torch.jit.script def Yl42_m40(theta, phi): return ( 2.38572965876905e-61 * (1.0 - cos(theta) ** 2) ** 20 * (2.68173551408741e62 * cos(theta) ** 2 - 3.23100664347881e60) * cos(40 * phi) ) # @torch.jit.script def Yl42_m41(theta, phi): return ( 9.93146061456615 * (1.0 - cos(theta) ** 2) ** 20.5 * cos(41 * phi) * cos(theta) ) # @torch.jit.script def Yl42_m42(theta, phi): return 1.08361119113624 * (1.0 - cos(theta) ** 2) ** 21 * cos(42 * phi) # @torch.jit.script def Yl43_m_minus_43(theta, phi): return 1.08989304776835 * (1.0 - cos(theta) ** 2) ** 21.5 * sin(43 * phi) # @torch.jit.script def Yl43_m_minus_42(theta, phi): return 10.1072523258968 * (1.0 - cos(theta) ** 2) ** 21 * sin(42 * phi) * cos(theta) # @torch.jit.script def Yl43_m_minus_41(theta, phi): return ( 2.89063131941515e-63 * (1.0 - cos(theta) ** 2) ** 20.5 * (2.2794751869743e64 * cos(theta) ** 2 - 2.68173551408741e62) * sin(41 * phi) ) # @torch.jit.script def Yl43_m_minus_40(theta, phi): return ( 4.5887349618882e-62 * (1.0 - cos(theta) ** 2) ** 20 * (7.59825062324767e63 * cos(theta) ** 3 - 2.68173551408741e62 * cos(theta)) * sin(40 * phi) ) # @torch.jit.script def Yl43_m_minus_39(theta, phi): return ( 8.36107301651595e-61 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 1.89956265581192e63 * cos(theta) ** 4 - 1.34086775704371e62 * cos(theta) ** 2 + 8.07751660869703e59 ) * sin(39 * phi) ) # @torch.jit.script def Yl43_m_minus_38(theta, phi): return ( 1.69298825202302e-59 * (1.0 - cos(theta) ** 2) ** 19 * ( 3.79912531162384e62 * cos(theta) ** 5 - 4.46955919014569e61 * cos(theta) ** 3 + 8.07751660869703e59 * cos(theta) ) * sin(38 * phi) ) # @torch.jit.script def Yl43_m_minus_37(theta, phi): return ( 3.73226162218452e-58 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 6.33187551937306e61 * cos(theta) ** 6 - 1.11738979753642e61 * cos(theta) ** 4 + 4.03875830434852e59 * cos(theta) ** 2 - 1.66204045446441e57 ) * sin(37 * phi) ) # @torch.jit.script def Yl43_m_minus_36(theta, phi): return ( 8.83214301129778e-57 * (1.0 - cos(theta) ** 2) ** 18 * ( 9.04553645624723e60 * cos(theta) ** 7 - 2.23477959507285e60 * cos(theta) ** 5 + 1.34625276811617e59 * cos(theta) ** 3 - 1.66204045446441e57 * cos(theta) ) * sin(36 * phi) ) # @torch.jit.script def Yl43_m_minus_35(theta, phi): return ( 2.22036632357623e-55 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 1.1306920570309e60 * cos(theta) ** 8 - 3.72463265845474e59 * cos(theta) ** 6 + 3.36563192029043e58 * cos(theta) ** 4 - 8.31020227232205e56 * cos(theta) ** 2 + 2.62981084567153e54 ) * sin(35 * phi) ) # @torch.jit.script def Yl43_m_minus_34(theta, phi): return ( 5.88292332164183e-54 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.25632450781212e59 * cos(theta) ** 9 - 5.32090379779249e58 * cos(theta) ** 7 + 6.73126384058086e57 * cos(theta) ** 5 - 2.77006742410735e56 * cos(theta) ** 3 + 2.62981084567153e54 * cos(theta) ) * sin(34 * phi) ) # @torch.jit.script def Yl43_m_minus_33(theta, phi): return ( 1.63244497127482e-52 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 1.25632450781212e58 * cos(theta) ** 10 - 6.65112974724061e57 * cos(theta) ** 8 + 1.12187730676348e57 * cos(theta) ** 6 - 6.92516856026837e55 * cos(theta) ** 4 + 1.31490542283577e54 * cos(theta) ** 2 - 3.41533876061238e51 ) * sin(33 * phi) ) # @torch.jit.script def Yl43_m_minus_32(theta, phi): return ( 4.71999663604224e-51 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.1421131889201e57 * cos(theta) ** 11 - 7.39014416360068e56 * cos(theta) ** 9 + 1.60268186680497e56 * cos(theta) ** 7 - 1.38503371205367e55 * cos(theta) ** 5 + 4.38301807611922e53 * cos(theta) ** 3 - 3.41533876061238e51 * cos(theta) ) * sin(32 * phi) ) # @torch.jit.script def Yl43_m_minus_31(theta, phi): return ( 1.41599899081267e-49 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 9.51760990766754e55 * cos(theta) ** 12 - 7.39014416360068e55 * cos(theta) ** 10 + 2.00335233350621e55 * cos(theta) ** 8 - 2.30838952008946e54 * cos(theta) ** 6 + 1.09575451902981e53 * cos(theta) ** 4 - 1.70766938030619e51 * cos(theta) ** 2 + 3.79482084512487e48 ) * sin(31 * phi) ) # @torch.jit.script def Yl43_m_minus_30(theta, phi): return ( 4.39188014702948e-48 * (1.0 - cos(theta) ** 2) ** 15 * ( 7.32123839051349e54 * cos(theta) ** 13 - 6.71831287600062e54 * cos(theta) ** 11 + 2.22594703722912e54 * cos(theta) ** 9 - 3.29769931441351e53 * cos(theta) ** 7 + 2.19150903805961e52 * cos(theta) ** 5 - 5.6922312676873e50 * cos(theta) ** 3 + 3.79482084512487e48 * cos(theta) ) * sin(30 * phi) ) # @torch.jit.script def Yl43_m_minus_29(theta, phi): return ( 1.40402851370052e-46 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 5.22945599322392e53 * cos(theta) ** 14 - 5.59859406333385e53 * cos(theta) ** 12 + 2.22594703722912e53 * cos(theta) ** 10 - 4.12212414301689e52 * cos(theta) ** 8 + 3.65251506343269e51 * cos(theta) ** 6 - 1.42305781692183e50 * cos(theta) ** 4 + 1.89741042256243e48 * cos(theta) ** 2 - 3.71313194239224e45 ) * sin(29 * phi) ) # @torch.jit.script def Yl43_m_minus_28(theta, phi): return ( 4.61410853000535e-45 * (1.0 - cos(theta) ** 2) ** 14 * ( 3.48630399548262e52 * cos(theta) ** 15 - 4.30661081794911e52 * cos(theta) ** 13 + 2.02358821566284e52 * cos(theta) ** 11 - 4.58013793668543e51 * cos(theta) ** 9 + 5.2178786620467e50 * cos(theta) ** 7 - 2.84611563384365e49 * cos(theta) ** 5 + 6.32470140854145e47 * cos(theta) ** 3 - 3.71313194239224e45 * cos(theta) ) * sin(28 * phi) ) # @torch.jit.script def Yl43_m_minus_27(theta, phi): return ( 1.55516678174063e-43 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 2.17893999717664e51 * cos(theta) ** 16 - 3.07615058424937e51 * cos(theta) ** 14 + 1.68632351305236e51 * cos(theta) ** 12 - 4.58013793668543e50 * cos(theta) ** 10 + 6.52234832755837e49 * cos(theta) ** 8 - 4.74352605640609e48 * cos(theta) ** 6 + 1.58117535213536e47 * cos(theta) ** 4 - 1.85656597119612e45 * cos(theta) ** 2 + 3.268602061965e42 ) * sin(27 * phi) ) # @torch.jit.script def Yl43_m_minus_26(theta, phi): return ( 5.36476190118919e-42 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.2817294101039e50 * cos(theta) ** 17 - 2.05076705616624e50 * cos(theta) ** 15 + 1.2971719331172e50 * cos(theta) ** 13 - 4.16376176062312e49 * cos(theta) ** 11 + 7.24705369728708e48 * cos(theta) ** 9 - 6.77646579486584e47 * cos(theta) ** 7 + 3.16235070427072e46 * cos(theta) ** 5 - 6.1885532373204e44 * cos(theta) ** 3 + 3.268602061965e42 * cos(theta) ) * sin(26 * phi) ) # @torch.jit.script def Yl43_m_minus_25(theta, phi): return ( 1.89065048220215e-40 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 7.12071894502168e48 * cos(theta) ** 18 - 1.2817294101039e49 * cos(theta) ** 16 + 9.26551380798002e48 * cos(theta) ** 14 - 3.46980146718593e48 * cos(theta) ** 12 + 7.24705369728708e47 * cos(theta) ** 10 - 8.4705822435823e46 * cos(theta) ** 8 + 5.27058450711787e45 * cos(theta) ** 6 - 1.5471383093301e44 * cos(theta) ** 4 + 1.6343010309825e42 * cos(theta) ** 2 - 2.63172468757246e39 ) * sin(25 * phi) ) # @torch.jit.script def Yl43_m_minus_24(theta, phi): return ( 6.79583000496612e-39 * (1.0 - cos(theta) ** 2) ** 12 * ( 3.74774681316931e47 * cos(theta) ** 19 - 7.53958476531708e47 * cos(theta) ** 17 + 6.17700920532001e47 * cos(theta) ** 15 - 2.66907805168149e47 * cos(theta) ** 13 + 6.58823063389734e46 * cos(theta) ** 11 - 9.41175804842478e45 * cos(theta) ** 9 + 7.52940643873982e44 * cos(theta) ** 7 - 3.0942766186602e43 * cos(theta) ** 5 + 5.447670103275e41 * cos(theta) ** 3 - 2.63172468757246e39 * cos(theta) ) * sin(24 * phi) ) # @torch.jit.script def Yl43_m_minus_23(theta, phi): return ( 2.48768224079308e-37 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.87387340658465e46 * cos(theta) ** 20 - 4.18865820295393e46 * cos(theta) ** 18 + 3.86063075332501e46 * cos(theta) ** 16 - 1.90648432262963e46 * cos(theta) ** 14 + 5.49019219491445e45 * cos(theta) ** 12 - 9.41175804842478e44 * cos(theta) ** 10 + 9.41175804842478e43 * cos(theta) ** 8 - 5.157127697767e42 * cos(theta) ** 6 + 1.36191752581875e41 * cos(theta) ** 4 - 1.31586234378623e39 * cos(theta) ** 2 + 1.96397364744214e36 ) * sin(23 * phi) ) # @torch.jit.script def Yl43_m_minus_22(theta, phi): return ( 9.26139742295083e-36 * (1.0 - cos(theta) ** 2) ** 11 * ( 8.92320669802216e44 * cos(theta) ** 21 - 2.20455694892312e45 * cos(theta) ** 19 + 2.27095926666177e45 * cos(theta) ** 17 - 1.27098954841976e45 * cos(theta) ** 15 + 4.22322476531881e44 * cos(theta) ** 13 - 8.55614368038616e43 * cos(theta) ** 11 + 1.04575089426942e43 * cos(theta) ** 9 - 7.36732528252429e41 * cos(theta) ** 7 + 2.7238350516375e40 * cos(theta) ** 5 - 4.38620781262077e38 * cos(theta) ** 3 + 1.96397364744214e36 * cos(theta) ) * sin(22 * phi) ) # @torch.jit.script def Yl43_m_minus_21(theta, phi): return ( 3.50222899855152e-34 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 4.05600304455553e43 * cos(theta) ** 22 - 1.10227847446156e44 * cos(theta) ** 20 + 1.26164403703432e44 * cos(theta) ** 18 - 7.94368467762348e43 * cos(theta) ** 16 + 3.01658911808486e43 * cos(theta) ** 14 - 7.13011973365513e42 * cos(theta) ** 12 + 1.04575089426942e42 * cos(theta) ** 10 - 9.20915660315536e40 * cos(theta) ** 8 + 4.5397250860625e39 * cos(theta) ** 6 - 1.09655195315519e38 * cos(theta) ** 4 + 9.81986823721069e35 * cos(theta) ** 2 - 1.37340814506443e33 ) * sin(21 * phi) ) # @torch.jit.script def Yl43_m_minus_20(theta, phi): return ( 1.34368801864906e-32 * (1.0 - cos(theta) ** 2) ** 10 * ( 1.76347958458936e42 * cos(theta) ** 23 - 5.24894511648362e42 * cos(theta) ** 21 + 6.64023177386482e42 * cos(theta) ** 19 - 4.67275569271969e42 * cos(theta) ** 17 + 2.01105941205658e42 * cos(theta) ** 15 - 5.48470748742703e41 * cos(theta) ** 13 + 9.50682631154018e40 * cos(theta) ** 11 - 1.02323962257282e40 * cos(theta) ** 9 + 6.48532155151786e38 * cos(theta) ** 7 - 2.19310390631039e37 * cos(theta) ** 5 + 3.27328941240356e35 * cos(theta) ** 3 - 1.37340814506443e33 * cos(theta) ) * sin(20 * phi) ) # @torch.jit.script def Yl43_m_minus_19(theta, phi): return ( 5.2248561770532e-31 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 7.34783160245567e40 * cos(theta) ** 24 - 2.38588414385619e41 * cos(theta) ** 22 + 3.32011588693241e41 * cos(theta) ** 20 - 2.59597538484427e41 * cos(theta) ** 18 + 1.25691213253536e41 * cos(theta) ** 16 - 3.91764820530502e40 * cos(theta) ** 14 + 7.92235525961681e39 * cos(theta) ** 12 - 1.02323962257282e39 * cos(theta) ** 10 + 8.10665193939732e37 * cos(theta) ** 8 - 3.65517317718398e36 * cos(theta) ** 6 + 8.18322353100891e34 * cos(theta) ** 4 - 6.86704072532216e32 * cos(theta) ** 2 + 9.08338720280709e29 ) * sin(19 * phi) ) # @torch.jit.script def Yl43_m_minus_18(theta, phi): return ( 2.05702793393481e-29 * (1.0 - cos(theta) ** 2) ** 9 * ( 2.93913264098227e39 * cos(theta) ** 25 - 1.03734093211139e40 * cos(theta) ** 23 + 1.58100756520591e40 * cos(theta) ** 21 - 1.36630283412856e40 * cos(theta) ** 19 + 7.39360077961976e39 * cos(theta) ** 17 - 2.61176547020335e39 * cos(theta) ** 15 + 6.09411943047447e38 * cos(theta) ** 13 - 9.30217838702561e37 * cos(theta) ** 11 + 9.0073910437748e36 * cos(theta) ** 9 - 5.22167596740568e35 * cos(theta) ** 7 + 1.63664470620178e34 * cos(theta) ** 5 - 2.28901357510739e32 * cos(theta) ** 3 + 9.08338720280709e29 * cos(theta) ) * sin(18 * phi) ) # @torch.jit.script def Yl43_m_minus_17(theta, phi): return ( 8.19203465488711e-28 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.13043563114703e38 * cos(theta) ** 26 - 4.32225388379745e38 * cos(theta) ** 24 + 7.18639802366323e38 * cos(theta) ** 22 - 6.83151417064282e38 * cos(theta) ** 20 + 4.10755598867765e38 * cos(theta) ** 18 - 1.63235341887709e38 * cos(theta) ** 16 + 4.35294245033891e37 * cos(theta) ** 14 - 7.75181532252134e36 * cos(theta) ** 12 + 9.0073910437748e35 * cos(theta) ** 10 - 6.5270949592571e34 * cos(theta) ** 8 + 2.72774117700297e33 * cos(theta) ** 6 - 5.72253393776847e31 * cos(theta) ** 4 + 4.54169360140354e29 * cos(theta) ** 2 - 5.72723026658707e26 ) * sin(17 * phi) ) # @torch.jit.script def Yl43_m_minus_16(theta, phi): return ( 3.29723034522509e-26 * (1.0 - cos(theta) ** 2) ** 8 * ( 4.18679863387787e36 * cos(theta) ** 27 - 1.72890155351898e37 * cos(theta) ** 25 + 3.12452087985358e37 * cos(theta) ** 23 - 3.25310198602039e37 * cos(theta) ** 21 + 2.16187157298824e37 * cos(theta) ** 19 - 9.60207893457112e36 * cos(theta) ** 17 + 2.90196163355927e36 * cos(theta) ** 15 - 5.96293486347796e35 * cos(theta) ** 13 + 8.18853731252255e34 * cos(theta) ** 11 - 7.25232773250789e33 * cos(theta) ** 9 + 3.89677311000424e32 * cos(theta) ** 7 - 1.14450678755369e31 * cos(theta) ** 5 + 1.51389786713451e29 * cos(theta) ** 3 - 5.72723026658707e26 * cos(theta) ) * sin(16 * phi) ) # @torch.jit.script def Yl43_m_minus_15(theta, phi): return ( 1.34015277384818e-24 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.49528522638495e35 * cos(theta) ** 28 - 6.64962135968838e35 * cos(theta) ** 26 + 1.30188369993899e36 * cos(theta) ** 24 - 1.47868272091836e36 * cos(theta) ** 22 + 1.08093578649412e36 * cos(theta) ** 20 - 5.33448829698396e35 * cos(theta) ** 18 + 1.81372602097455e35 * cos(theta) ** 16 - 4.25923918819854e34 * cos(theta) ** 14 + 6.82378109376879e33 * cos(theta) ** 12 - 7.25232773250789e32 * cos(theta) ** 10 + 4.8709663875053e31 * cos(theta) ** 8 - 1.90751131258949e30 * cos(theta) ** 6 + 3.78474466783629e28 * cos(theta) ** 4 - 2.86361513329353e26 * cos(theta) ** 2 + 3.46684640834568e23 ) * sin(15 * phi) ) # @torch.jit.script def Yl43_m_minus_14(theta, phi): return ( 5.49626046244125e-23 * (1.0 - cos(theta) ** 2) ** 7 * ( 5.15615595305157e33 * cos(theta) ** 29 - 2.46282272581051e34 * cos(theta) ** 27 + 5.20753479975596e34 * cos(theta) ** 25 - 6.4290553083407e34 * cos(theta) ** 23 + 5.14731326901961e34 * cos(theta) ** 21 - 2.80762541946524e34 * cos(theta) ** 19 + 1.06689765939679e34 * cos(theta) ** 17 - 2.83949279213236e33 * cos(theta) ** 15 + 5.24906237982215e32 * cos(theta) ** 13 - 6.59302521137081e31 * cos(theta) ** 11 + 5.41218487500589e30 * cos(theta) ** 9 - 2.72501616084213e29 * cos(theta) ** 7 + 7.56948933567257e27 * cos(theta) ** 5 - 9.54538377764511e25 * cos(theta) ** 3 + 3.46684640834568e23 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl43_m_minus_13(theta, phi): return ( 2.27282166505428e-21 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.71871865101719e32 * cos(theta) ** 30 - 8.79579544932326e32 * cos(theta) ** 28 + 2.00289799990614e33 * cos(theta) ** 26 - 2.67877304514196e33 * cos(theta) ** 24 + 2.33968784955437e33 * cos(theta) ** 22 - 1.40381270973262e33 * cos(theta) ** 20 + 5.92720921887106e32 * cos(theta) ** 18 - 1.77468299508273e32 * cos(theta) ** 16 + 3.74933027130153e31 * cos(theta) ** 14 - 5.49418767614234e30 * cos(theta) ** 12 + 5.41218487500589e29 * cos(theta) ** 10 - 3.40627020105266e28 * cos(theta) ** 8 + 1.26158155594543e27 * cos(theta) ** 6 - 2.38634594441128e25 * cos(theta) ** 4 + 1.73342320417284e23 * cos(theta) ** 2 - 2.02739556043607e20 ) * sin(13 * phi) ) # @torch.jit.script def Yl43_m_minus_12(theta, phi): return ( 9.469787223322e-20 * (1.0 - cos(theta) ** 2) ** 6 * ( 5.54425371295867e30 * cos(theta) ** 31 - 3.03303291355974e31 * cos(theta) ** 29 + 7.41814074039311e31 * cos(theta) ** 27 - 1.07150921805678e32 * cos(theta) ** 25 + 1.01725558676277e32 * cos(theta) ** 23 - 6.68482242729819e31 * cos(theta) ** 21 + 3.11958379940582e31 * cos(theta) ** 19 - 1.04393117357807e31 * cos(theta) ** 17 + 2.49955351420102e30 * cos(theta) ** 15 - 4.22629821241719e29 * cos(theta) ** 13 + 4.92016806818717e28 * cos(theta) ** 11 - 3.78474466783629e27 * cos(theta) ** 9 + 1.80225936563633e26 * cos(theta) ** 7 - 4.77269188882256e24 * cos(theta) ** 5 + 5.7780773472428e22 * cos(theta) ** 3 - 2.02739556043607e20 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl43_m_minus_11(theta, phi): return ( 3.97279865204351e-18 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.73257928529959e29 * cos(theta) ** 32 - 1.01101097118658e30 * cos(theta) ** 30 + 2.64933597871183e30 * cos(theta) ** 28 - 4.12118930021839e30 * cos(theta) ** 26 + 4.23856494484487e30 * cos(theta) ** 24 - 3.03855564877191e30 * cos(theta) ** 22 + 1.55979189970291e30 * cos(theta) ** 20 - 5.7996176309893e29 * cos(theta) ** 18 + 1.56222094637564e29 * cos(theta) ** 16 - 3.01878443744085e28 * cos(theta) ** 14 + 4.10014005682264e27 * cos(theta) ** 12 - 3.78474466783629e26 * cos(theta) ** 10 + 2.25282420704541e25 * cos(theta) ** 8 - 7.95448648137093e23 * cos(theta) ** 6 + 1.4445193368107e22 * cos(theta) ** 4 - 1.01369778021804e20 * cos(theta) ** 2 + 1.15192929570231e17 ) * sin(11 * phi) ) # @torch.jit.script def Yl43_m_minus_10(theta, phi): return ( 1.67706696673351e-16 * (1.0 - cos(theta) ** 2) ** 5 * ( 5.25024025848359e27 * cos(theta) ** 33 - 3.2613257135051e28 * cos(theta) ** 31 + 9.13564130590285e28 * cos(theta) ** 29 - 1.52636640748829e29 * cos(theta) ** 27 + 1.69542597793795e29 * cos(theta) ** 25 - 1.32111115163996e29 * cos(theta) ** 23 + 7.42758047477577e28 * cos(theta) ** 21 - 3.05243033209963e28 * cos(theta) ** 19 + 9.18953497868023e27 * cos(theta) ** 17 - 2.0125229582939e27 * cos(theta) ** 15 + 3.15395388986357e26 * cos(theta) ** 13 - 3.44067697076026e25 * cos(theta) ** 11 + 2.50313800782823e24 * cos(theta) ** 9 - 1.13635521162442e23 * cos(theta) ** 7 + 2.8890386736214e21 * cos(theta) ** 5 - 3.37899260072679e19 * cos(theta) ** 3 + 1.15192929570231e17 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl43_m_minus_9(theta, phi): return ( 7.11914433542231e-15 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1.5441883113187e26 * cos(theta) ** 34 - 1.01916428547034e27 * cos(theta) ** 32 + 3.04521376863428e27 * cos(theta) ** 30 - 5.45130859817248e27 * cos(theta) ** 28 + 6.52086914591518e27 * cos(theta) ** 26 - 5.50462979849983e27 * cos(theta) ** 24 + 3.37617294307989e27 * cos(theta) ** 22 - 1.52621516604982e27 * cos(theta) ** 20 + 5.1052972103779e26 * cos(theta) ** 18 - 1.25782684893369e26 * cos(theta) ** 16 + 2.25282420704541e25 * cos(theta) ** 14 - 2.86723080896688e24 * cos(theta) ** 12 + 2.50313800782823e23 * cos(theta) ** 10 - 1.42044401453052e22 * cos(theta) ** 8 + 4.81506445603567e20 * cos(theta) ** 6 - 8.44748150181696e18 * cos(theta) ** 4 + 5.75964647851157e16 * cos(theta) ** 2 - 63925044156621.2 ) * sin(9 * phi) ) # @torch.jit.script def Yl43_m_minus_8(theta, phi): return ( 3.03713077171214e-13 * (1.0 - cos(theta) ** 2) ** 4 * ( 4.41196660376772e24 * cos(theta) ** 35 - 3.08837662263741e25 * cos(theta) ** 33 + 9.82327022140091e25 * cos(theta) ** 31 - 1.87976158557672e26 * cos(theta) ** 29 + 2.41513672070933e26 * cos(theta) ** 27 - 2.20185191939993e26 * cos(theta) ** 25 + 1.46790127959995e26 * cos(theta) ** 23 - 7.26769126690388e25 * cos(theta) ** 21 + 2.68699853177784e25 * cos(theta) ** 19 - 7.3989814643158e24 * cos(theta) ** 17 + 1.50188280469694e24 * cos(theta) ** 15 - 2.20556216074376e23 * cos(theta) ** 13 + 2.27558000711657e22 * cos(theta) ** 11 - 1.57827112725614e21 * cos(theta) ** 9 + 6.87866350862239e19 * cos(theta) ** 7 - 1.68949630036339e18 * cos(theta) ** 5 + 1.91988215950386e16 * cos(theta) ** 3 - 63925044156621.2 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl43_m_minus_7(theta, phi): return ( 1.30136712205844e-11 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.22554627882437e23 * cos(theta) ** 36 - 9.0834606548159e23 * cos(theta) ** 34 + 3.06977194418778e24 * cos(theta) ** 32 - 6.26587195192239e24 * cos(theta) ** 30 + 8.6254882882476e24 * cos(theta) ** 28 - 8.46866122846128e24 * cos(theta) ** 26 + 6.11625533166648e24 * cos(theta) ** 24 - 3.30349603041086e24 * cos(theta) ** 22 + 1.34349926588892e24 * cos(theta) ** 20 - 4.11054525795322e23 * cos(theta) ** 18 + 9.38676752935587e22 * cos(theta) ** 16 - 1.5754015433884e22 * cos(theta) ** 14 + 1.89631667259715e21 * cos(theta) ** 12 - 1.57827112725614e20 * cos(theta) ** 10 + 8.59832938577798e18 * cos(theta) ** 8 - 2.81582716727232e17 * cos(theta) ** 6 + 4.79970539875964e15 * cos(theta) ** 4 - 31962522078310.6 * cos(theta) ** 2 + 34817562176.8089 ) * sin(7 * phi) ) # @torch.jit.script def Yl43_m_minus_6(theta, phi): return ( 5.59739163789093e-10 * (1.0 - cos(theta) ** 2) ** 3 * ( 3.31228724006586e21 * cos(theta) ** 37 - 2.59527447280454e22 * cos(theta) ** 35 + 9.30233922481147e22 * cos(theta) ** 33 - 2.02124901674916e23 * cos(theta) ** 31 + 2.97430630629227e23 * cos(theta) ** 29 - 3.1365411957264e23 * cos(theta) ** 27 + 2.44650213266659e23 * cos(theta) ** 25 - 1.43630262191776e23 * cos(theta) ** 23 + 6.39761555185201e22 * cos(theta) ** 21 - 2.16344487260696e22 * cos(theta) ** 19 + 5.52162795844463e21 * cos(theta) ** 17 - 1.05026769559227e21 * cos(theta) ** 15 + 1.45870513276703e20 * cos(theta) ** 13 - 1.43479193386921e19 * cos(theta) ** 11 + 9.55369931753109e17 * cos(theta) ** 9 - 4.02261023896046e16 * cos(theta) ** 7 + 959941079751928.0 * cos(theta) ** 5 - 10654174026103.5 * cos(theta) ** 3 + 34817562176.8089 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl43_m_minus_5(theta, phi): return ( 2.41532475749014e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 8.71654536859437e19 * cos(theta) ** 38 - 7.2090957577904e20 * cos(theta) ** 36 + 2.73598212494455e21 * cos(theta) ** 34 - 6.31640317734112e21 * cos(theta) ** 32 + 9.91435435430758e21 * cos(theta) ** 30 - 1.120193284188e22 * cos(theta) ** 28 + 9.40962358717919e21 * cos(theta) ** 26 - 5.98459425799068e21 * cos(theta) ** 24 + 2.90800706902364e21 * cos(theta) ** 22 - 1.08172243630348e21 * cos(theta) ** 20 + 3.06757108802479e20 * cos(theta) ** 18 - 6.56417309745166e19 * cos(theta) ** 16 + 1.04193223769074e19 * cos(theta) ** 14 - 1.19565994489101e18 * cos(theta) ** 12 + 9.55369931753109e16 * cos(theta) ** 10 - 5.02826279870057e15 * cos(theta) ** 8 + 159990179958655.0 * cos(theta) ** 6 - 2663543506525.88 * cos(theta) ** 4 + 17408781088.4045 * cos(theta) ** 2 - 18699012.9843227 ) * sin(5 * phi) ) # @torch.jit.script def Yl43_m_minus_4(theta, phi): return ( 1.0450292712034e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 2.23501163297291e18 * cos(theta) ** 39 - 1.94840425886227e19 * cos(theta) ** 37 + 7.81709178555585e19 * cos(theta) ** 35 - 1.91406156889125e20 * cos(theta) ** 33 + 3.19817882397019e20 * cos(theta) ** 31 - 3.86273546271724e20 * cos(theta) ** 29 + 3.48504577302933e20 * cos(theta) ** 27 - 2.39383770319627e20 * cos(theta) ** 25 + 1.2643508995755e20 * cos(theta) ** 23 - 5.15105922049276e19 * cos(theta) ** 21 + 1.61451109896042e19 * cos(theta) ** 19 - 3.86127829261862e18 * cos(theta) ** 17 + 6.94621491793826e17 * cos(theta) ** 15 - 9.19738419146932e16 * cos(theta) ** 13 + 8.68518119775554e15 * cos(theta) ** 11 - 558695866522286.0 * cos(theta) ** 9 + 22855739994093.5 * cos(theta) ** 7 - 532708701305.176 * cos(theta) ** 5 + 5802927029.46815 * cos(theta) ** 3 - 18699012.9843227 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl43_m_minus_3(theta, phi): return ( 4.53113894514745e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 5.58752908243229e16 * cos(theta) ** 40 - 5.12737962858492e17 * cos(theta) ** 38 + 2.17141438487663e18 * cos(theta) ** 36 - 5.62959284968014e18 * cos(theta) ** 34 + 9.99430882490683e18 * cos(theta) ** 32 - 1.28757848757241e19 * cos(theta) ** 30 + 1.24465920465333e19 * cos(theta) ** 28 - 9.20706808921643e18 * cos(theta) ** 26 + 5.26812874823123e18 * cos(theta) ** 24 - 2.34139055476944e18 * cos(theta) ** 22 + 8.07255549480209e17 * cos(theta) ** 20 - 2.14515460701035e17 * cos(theta) ** 18 + 4.34138432371141e16 * cos(theta) ** 16 - 6.5695601367638e15 * cos(theta) ** 14 + 723765099812961.0 * cos(theta) ** 12 - 55869586652228.6 * cos(theta) ** 10 + 2856967499261.69 * cos(theta) ** 8 - 88784783550.8627 * cos(theta) ** 6 + 1450731757.36704 * cos(theta) ** 4 - 9349506.49216136 * cos(theta) ** 2 + 9946.28350229932 ) * sin(3 * phi) ) # @torch.jit.script def Yl43_m_minus_2(theta, phi): return ( 0.0019677876202598 * (1.0 - cos(theta) ** 2) * ( 1.36281197132495e15 * cos(theta) ** 41 - 1.31471272527819e16 * cos(theta) ** 39 + 5.86868752669358e16 * cos(theta) ** 37 - 1.60845509990861e17 * cos(theta) ** 35 + 3.02857843178995e17 * cos(theta) ** 33 - 4.15347899216907e17 * cos(theta) ** 31 + 4.29192829190804e17 * cos(theta) ** 29 - 3.41002521822831e17 * cos(theta) ** 27 + 2.10725149929249e17 * cos(theta) ** 25 - 1.01799589337802e17 * cos(theta) ** 23 + 3.84407404514385e16 * cos(theta) ** 21 - 1.12902874053176e16 * cos(theta) ** 19 + 2.55375548453613e15 * cos(theta) ** 17 - 437970675784254.0 * cos(theta) ** 15 + 55674238447150.9 * cos(theta) ** 13 - 5079053332020.78 * cos(theta) ** 11 + 317440833251.299 * cos(theta) ** 9 - 12683540507.2661 * cos(theta) ** 7 + 290146351.473408 * cos(theta) ** 5 - 3116502.16405379 * cos(theta) ** 3 + 9946.28350229932 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl43_m_minus_1(theta, phi): return ( 0.0855478552850171 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 32447904079165.4 * cos(theta) ** 42 - 328678181319546.0 * cos(theta) ** 40 + 1.54439145439305e15 * cos(theta) ** 38 - 4.46793083307948e15 * cos(theta) ** 36 + 8.90758362291162e15 * cos(theta) ** 34 - 1.29796218505284e16 * cos(theta) ** 32 + 1.43064276396935e16 * cos(theta) ** 30 - 1.21786614936725e16 * cos(theta) ** 28 + 8.10481345881728e15 * cos(theta) ** 26 - 4.24164955574173e15 * cos(theta) ** 24 + 1.7473063841563e15 * cos(theta) ** 22 - 564514370265880.0 * cos(theta) ** 20 + 141875304696451.0 * cos(theta) ** 18 - 27373167236515.8 * cos(theta) ** 16 + 3976731317653.63 * cos(theta) ** 14 - 423254444335.065 * cos(theta) ** 12 + 31744083325.1299 * cos(theta) ** 10 - 1585442563.40826 * cos(theta) ** 8 + 48357725.2455679 * cos(theta) ** 6 - 779125.541013447 * cos(theta) ** 4 + 4973.14175114966 * cos(theta) ** 2 - 5.26258386365043 ) * sin(phi) ) # @torch.jit.script def Yl43_m0(theta, phi): return ( 6237675255909.47 * cos(theta) ** 43 - 66266126542191.2 * cos(theta) ** 41 + 327338697377089.0 * cos(theta) ** 39 - 998180966075814.0 * cos(theta) ** 37 + 2.10376115002055e15 * cos(theta) ** 35 - 3.25126723184993e15 * cos(theta) ** 33 + 3.81482021870392e15 * cos(theta) ** 31 - 3.47141174500455e15 * cos(theta) ** 29 + 2.48132600083072e15 * cos(theta) ** 27 - 1.40248860916519e15 * cos(theta) ** 25 + 627979974253069.0 * cos(theta) ** 23 - 222208298581855.0 * cos(theta) ** 21 + 61724527383848.6 * cos(theta) ** 19 - 13310080936491.9 * cos(theta) ** 17 + 2191490323683.9 * cos(theta) ** 15 - 269130390627.848 * cos(theta) ** 13 + 23854739169.2865 * cos(theta) ** 11 - 1456171647.40373 * cos(theta) ** 9 + 57104770.4864207 * cos(theta) ** 7 - 1288077.52976889 * cos(theta) ** 5 + 13702.9524443499 * cos(theta) ** 3 - 43.5014363312694 * cos(theta) ) # @torch.jit.script def Yl43_m1(theta, phi): return ( 0.0855478552850171 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 32447904079165.4 * cos(theta) ** 42 - 328678181319546.0 * cos(theta) ** 40 + 1.54439145439305e15 * cos(theta) ** 38 - 4.46793083307948e15 * cos(theta) ** 36 + 8.90758362291162e15 * cos(theta) ** 34 - 1.29796218505284e16 * cos(theta) ** 32 + 1.43064276396935e16 * cos(theta) ** 30 - 1.21786614936725e16 * cos(theta) ** 28 + 8.10481345881728e15 * cos(theta) ** 26 - 4.24164955574173e15 * cos(theta) ** 24 + 1.7473063841563e15 * cos(theta) ** 22 - 564514370265880.0 * cos(theta) ** 20 + 141875304696451.0 * cos(theta) ** 18 - 27373167236515.8 * cos(theta) ** 16 + 3976731317653.63 * cos(theta) ** 14 - 423254444335.065 * cos(theta) ** 12 + 31744083325.1299 * cos(theta) ** 10 - 1585442563.40826 * cos(theta) ** 8 + 48357725.2455679 * cos(theta) ** 6 - 779125.541013447 * cos(theta) ** 4 + 4973.14175114966 * cos(theta) ** 2 - 5.26258386365043 ) * cos(phi) ) # @torch.jit.script def Yl43_m2(theta, phi): return ( 0.0019677876202598 * (1.0 - cos(theta) ** 2) * ( 1.36281197132495e15 * cos(theta) ** 41 - 1.31471272527819e16 * cos(theta) ** 39 + 5.86868752669358e16 * cos(theta) ** 37 - 1.60845509990861e17 * cos(theta) ** 35 + 3.02857843178995e17 * cos(theta) ** 33 - 4.15347899216907e17 * cos(theta) ** 31 + 4.29192829190804e17 * cos(theta) ** 29 - 3.41002521822831e17 * cos(theta) ** 27 + 2.10725149929249e17 * cos(theta) ** 25 - 1.01799589337802e17 * cos(theta) ** 23 + 3.84407404514385e16 * cos(theta) ** 21 - 1.12902874053176e16 * cos(theta) ** 19 + 2.55375548453613e15 * cos(theta) ** 17 - 437970675784254.0 * cos(theta) ** 15 + 55674238447150.9 * cos(theta) ** 13 - 5079053332020.78 * cos(theta) ** 11 + 317440833251.299 * cos(theta) ** 9 - 12683540507.2661 * cos(theta) ** 7 + 290146351.473408 * cos(theta) ** 5 - 3116502.16405379 * cos(theta) ** 3 + 9946.28350229932 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl43_m3(theta, phi): return ( 4.53113894514745e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 5.58752908243229e16 * cos(theta) ** 40 - 5.12737962858492e17 * cos(theta) ** 38 + 2.17141438487663e18 * cos(theta) ** 36 - 5.62959284968014e18 * cos(theta) ** 34 + 9.99430882490683e18 * cos(theta) ** 32 - 1.28757848757241e19 * cos(theta) ** 30 + 1.24465920465333e19 * cos(theta) ** 28 - 9.20706808921643e18 * cos(theta) ** 26 + 5.26812874823123e18 * cos(theta) ** 24 - 2.34139055476944e18 * cos(theta) ** 22 + 8.07255549480209e17 * cos(theta) ** 20 - 2.14515460701035e17 * cos(theta) ** 18 + 4.34138432371141e16 * cos(theta) ** 16 - 6.5695601367638e15 * cos(theta) ** 14 + 723765099812961.0 * cos(theta) ** 12 - 55869586652228.6 * cos(theta) ** 10 + 2856967499261.69 * cos(theta) ** 8 - 88784783550.8627 * cos(theta) ** 6 + 1450731757.36704 * cos(theta) ** 4 - 9349506.49216136 * cos(theta) ** 2 + 9946.28350229932 ) * cos(3 * phi) ) # @torch.jit.script def Yl43_m4(theta, phi): return ( 1.0450292712034e-6 * (1.0 - cos(theta) ** 2) ** 2 * ( 2.23501163297291e18 * cos(theta) ** 39 - 1.94840425886227e19 * cos(theta) ** 37 + 7.81709178555585e19 * cos(theta) ** 35 - 1.91406156889125e20 * cos(theta) ** 33 + 3.19817882397019e20 * cos(theta) ** 31 - 3.86273546271724e20 * cos(theta) ** 29 + 3.48504577302933e20 * cos(theta) ** 27 - 2.39383770319627e20 * cos(theta) ** 25 + 1.2643508995755e20 * cos(theta) ** 23 - 5.15105922049276e19 * cos(theta) ** 21 + 1.61451109896042e19 * cos(theta) ** 19 - 3.86127829261862e18 * cos(theta) ** 17 + 6.94621491793826e17 * cos(theta) ** 15 - 9.19738419146932e16 * cos(theta) ** 13 + 8.68518119775554e15 * cos(theta) ** 11 - 558695866522286.0 * cos(theta) ** 9 + 22855739994093.5 * cos(theta) ** 7 - 532708701305.176 * cos(theta) ** 5 + 5802927029.46815 * cos(theta) ** 3 - 18699012.9843227 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl43_m5(theta, phi): return ( 2.41532475749014e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 8.71654536859437e19 * cos(theta) ** 38 - 7.2090957577904e20 * cos(theta) ** 36 + 2.73598212494455e21 * cos(theta) ** 34 - 6.31640317734112e21 * cos(theta) ** 32 + 9.91435435430758e21 * cos(theta) ** 30 - 1.120193284188e22 * cos(theta) ** 28 + 9.40962358717919e21 * cos(theta) ** 26 - 5.98459425799068e21 * cos(theta) ** 24 + 2.90800706902364e21 * cos(theta) ** 22 - 1.08172243630348e21 * cos(theta) ** 20 + 3.06757108802479e20 * cos(theta) ** 18 - 6.56417309745166e19 * cos(theta) ** 16 + 1.04193223769074e19 * cos(theta) ** 14 - 1.19565994489101e18 * cos(theta) ** 12 + 9.55369931753109e16 * cos(theta) ** 10 - 5.02826279870057e15 * cos(theta) ** 8 + 159990179958655.0 * cos(theta) ** 6 - 2663543506525.88 * cos(theta) ** 4 + 17408781088.4045 * cos(theta) ** 2 - 18699012.9843227 ) * cos(5 * phi) ) # @torch.jit.script def Yl43_m6(theta, phi): return ( 5.59739163789093e-10 * (1.0 - cos(theta) ** 2) ** 3 * ( 3.31228724006586e21 * cos(theta) ** 37 - 2.59527447280454e22 * cos(theta) ** 35 + 9.30233922481147e22 * cos(theta) ** 33 - 2.02124901674916e23 * cos(theta) ** 31 + 2.97430630629227e23 * cos(theta) ** 29 - 3.1365411957264e23 * cos(theta) ** 27 + 2.44650213266659e23 * cos(theta) ** 25 - 1.43630262191776e23 * cos(theta) ** 23 + 6.39761555185201e22 * cos(theta) ** 21 - 2.16344487260696e22 * cos(theta) ** 19 + 5.52162795844463e21 * cos(theta) ** 17 - 1.05026769559227e21 * cos(theta) ** 15 + 1.45870513276703e20 * cos(theta) ** 13 - 1.43479193386921e19 * cos(theta) ** 11 + 9.55369931753109e17 * cos(theta) ** 9 - 4.02261023896046e16 * cos(theta) ** 7 + 959941079751928.0 * cos(theta) ** 5 - 10654174026103.5 * cos(theta) ** 3 + 34817562176.8089 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl43_m7(theta, phi): return ( 1.30136712205844e-11 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.22554627882437e23 * cos(theta) ** 36 - 9.0834606548159e23 * cos(theta) ** 34 + 3.06977194418778e24 * cos(theta) ** 32 - 6.26587195192239e24 * cos(theta) ** 30 + 8.6254882882476e24 * cos(theta) ** 28 - 8.46866122846128e24 * cos(theta) ** 26 + 6.11625533166648e24 * cos(theta) ** 24 - 3.30349603041086e24 * cos(theta) ** 22 + 1.34349926588892e24 * cos(theta) ** 20 - 4.11054525795322e23 * cos(theta) ** 18 + 9.38676752935587e22 * cos(theta) ** 16 - 1.5754015433884e22 * cos(theta) ** 14 + 1.89631667259715e21 * cos(theta) ** 12 - 1.57827112725614e20 * cos(theta) ** 10 + 8.59832938577798e18 * cos(theta) ** 8 - 2.81582716727232e17 * cos(theta) ** 6 + 4.79970539875964e15 * cos(theta) ** 4 - 31962522078310.6 * cos(theta) ** 2 + 34817562176.8089 ) * cos(7 * phi) ) # @torch.jit.script def Yl43_m8(theta, phi): return ( 3.03713077171214e-13 * (1.0 - cos(theta) ** 2) ** 4 * ( 4.41196660376772e24 * cos(theta) ** 35 - 3.08837662263741e25 * cos(theta) ** 33 + 9.82327022140091e25 * cos(theta) ** 31 - 1.87976158557672e26 * cos(theta) ** 29 + 2.41513672070933e26 * cos(theta) ** 27 - 2.20185191939993e26 * cos(theta) ** 25 + 1.46790127959995e26 * cos(theta) ** 23 - 7.26769126690388e25 * cos(theta) ** 21 + 2.68699853177784e25 * cos(theta) ** 19 - 7.3989814643158e24 * cos(theta) ** 17 + 1.50188280469694e24 * cos(theta) ** 15 - 2.20556216074376e23 * cos(theta) ** 13 + 2.27558000711657e22 * cos(theta) ** 11 - 1.57827112725614e21 * cos(theta) ** 9 + 6.87866350862239e19 * cos(theta) ** 7 - 1.68949630036339e18 * cos(theta) ** 5 + 1.91988215950386e16 * cos(theta) ** 3 - 63925044156621.2 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl43_m9(theta, phi): return ( 7.11914433542231e-15 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1.5441883113187e26 * cos(theta) ** 34 - 1.01916428547034e27 * cos(theta) ** 32 + 3.04521376863428e27 * cos(theta) ** 30 - 5.45130859817248e27 * cos(theta) ** 28 + 6.52086914591518e27 * cos(theta) ** 26 - 5.50462979849983e27 * cos(theta) ** 24 + 3.37617294307989e27 * cos(theta) ** 22 - 1.52621516604982e27 * cos(theta) ** 20 + 5.1052972103779e26 * cos(theta) ** 18 - 1.25782684893369e26 * cos(theta) ** 16 + 2.25282420704541e25 * cos(theta) ** 14 - 2.86723080896688e24 * cos(theta) ** 12 + 2.50313800782823e23 * cos(theta) ** 10 - 1.42044401453052e22 * cos(theta) ** 8 + 4.81506445603567e20 * cos(theta) ** 6 - 8.44748150181696e18 * cos(theta) ** 4 + 5.75964647851157e16 * cos(theta) ** 2 - 63925044156621.2 ) * cos(9 * phi) ) # @torch.jit.script def Yl43_m10(theta, phi): return ( 1.67706696673351e-16 * (1.0 - cos(theta) ** 2) ** 5 * ( 5.25024025848359e27 * cos(theta) ** 33 - 3.2613257135051e28 * cos(theta) ** 31 + 9.13564130590285e28 * cos(theta) ** 29 - 1.52636640748829e29 * cos(theta) ** 27 + 1.69542597793795e29 * cos(theta) ** 25 - 1.32111115163996e29 * cos(theta) ** 23 + 7.42758047477577e28 * cos(theta) ** 21 - 3.05243033209963e28 * cos(theta) ** 19 + 9.18953497868023e27 * cos(theta) ** 17 - 2.0125229582939e27 * cos(theta) ** 15 + 3.15395388986357e26 * cos(theta) ** 13 - 3.44067697076026e25 * cos(theta) ** 11 + 2.50313800782823e24 * cos(theta) ** 9 - 1.13635521162442e23 * cos(theta) ** 7 + 2.8890386736214e21 * cos(theta) ** 5 - 3.37899260072679e19 * cos(theta) ** 3 + 1.15192929570231e17 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl43_m11(theta, phi): return ( 3.97279865204351e-18 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.73257928529959e29 * cos(theta) ** 32 - 1.01101097118658e30 * cos(theta) ** 30 + 2.64933597871183e30 * cos(theta) ** 28 - 4.12118930021839e30 * cos(theta) ** 26 + 4.23856494484487e30 * cos(theta) ** 24 - 3.03855564877191e30 * cos(theta) ** 22 + 1.55979189970291e30 * cos(theta) ** 20 - 5.7996176309893e29 * cos(theta) ** 18 + 1.56222094637564e29 * cos(theta) ** 16 - 3.01878443744085e28 * cos(theta) ** 14 + 4.10014005682264e27 * cos(theta) ** 12 - 3.78474466783629e26 * cos(theta) ** 10 + 2.25282420704541e25 * cos(theta) ** 8 - 7.95448648137093e23 * cos(theta) ** 6 + 1.4445193368107e22 * cos(theta) ** 4 - 1.01369778021804e20 * cos(theta) ** 2 + 1.15192929570231e17 ) * cos(11 * phi) ) # @torch.jit.script def Yl43_m12(theta, phi): return ( 9.469787223322e-20 * (1.0 - cos(theta) ** 2) ** 6 * ( 5.54425371295867e30 * cos(theta) ** 31 - 3.03303291355974e31 * cos(theta) ** 29 + 7.41814074039311e31 * cos(theta) ** 27 - 1.07150921805678e32 * cos(theta) ** 25 + 1.01725558676277e32 * cos(theta) ** 23 - 6.68482242729819e31 * cos(theta) ** 21 + 3.11958379940582e31 * cos(theta) ** 19 - 1.04393117357807e31 * cos(theta) ** 17 + 2.49955351420102e30 * cos(theta) ** 15 - 4.22629821241719e29 * cos(theta) ** 13 + 4.92016806818717e28 * cos(theta) ** 11 - 3.78474466783629e27 * cos(theta) ** 9 + 1.80225936563633e26 * cos(theta) ** 7 - 4.77269188882256e24 * cos(theta) ** 5 + 5.7780773472428e22 * cos(theta) ** 3 - 2.02739556043607e20 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl43_m13(theta, phi): return ( 2.27282166505428e-21 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.71871865101719e32 * cos(theta) ** 30 - 8.79579544932326e32 * cos(theta) ** 28 + 2.00289799990614e33 * cos(theta) ** 26 - 2.67877304514196e33 * cos(theta) ** 24 + 2.33968784955437e33 * cos(theta) ** 22 - 1.40381270973262e33 * cos(theta) ** 20 + 5.92720921887106e32 * cos(theta) ** 18 - 1.77468299508273e32 * cos(theta) ** 16 + 3.74933027130153e31 * cos(theta) ** 14 - 5.49418767614234e30 * cos(theta) ** 12 + 5.41218487500589e29 * cos(theta) ** 10 - 3.40627020105266e28 * cos(theta) ** 8 + 1.26158155594543e27 * cos(theta) ** 6 - 2.38634594441128e25 * cos(theta) ** 4 + 1.73342320417284e23 * cos(theta) ** 2 - 2.02739556043607e20 ) * cos(13 * phi) ) # @torch.jit.script def Yl43_m14(theta, phi): return ( 5.49626046244125e-23 * (1.0 - cos(theta) ** 2) ** 7 * ( 5.15615595305157e33 * cos(theta) ** 29 - 2.46282272581051e34 * cos(theta) ** 27 + 5.20753479975596e34 * cos(theta) ** 25 - 6.4290553083407e34 * cos(theta) ** 23 + 5.14731326901961e34 * cos(theta) ** 21 - 2.80762541946524e34 * cos(theta) ** 19 + 1.06689765939679e34 * cos(theta) ** 17 - 2.83949279213236e33 * cos(theta) ** 15 + 5.24906237982215e32 * cos(theta) ** 13 - 6.59302521137081e31 * cos(theta) ** 11 + 5.41218487500589e30 * cos(theta) ** 9 - 2.72501616084213e29 * cos(theta) ** 7 + 7.56948933567257e27 * cos(theta) ** 5 - 9.54538377764511e25 * cos(theta) ** 3 + 3.46684640834568e23 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl43_m15(theta, phi): return ( 1.34015277384818e-24 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.49528522638495e35 * cos(theta) ** 28 - 6.64962135968838e35 * cos(theta) ** 26 + 1.30188369993899e36 * cos(theta) ** 24 - 1.47868272091836e36 * cos(theta) ** 22 + 1.08093578649412e36 * cos(theta) ** 20 - 5.33448829698396e35 * cos(theta) ** 18 + 1.81372602097455e35 * cos(theta) ** 16 - 4.25923918819854e34 * cos(theta) ** 14 + 6.82378109376879e33 * cos(theta) ** 12 - 7.25232773250789e32 * cos(theta) ** 10 + 4.8709663875053e31 * cos(theta) ** 8 - 1.90751131258949e30 * cos(theta) ** 6 + 3.78474466783629e28 * cos(theta) ** 4 - 2.86361513329353e26 * cos(theta) ** 2 + 3.46684640834568e23 ) * cos(15 * phi) ) # @torch.jit.script def Yl43_m16(theta, phi): return ( 3.29723034522509e-26 * (1.0 - cos(theta) ** 2) ** 8 * ( 4.18679863387787e36 * cos(theta) ** 27 - 1.72890155351898e37 * cos(theta) ** 25 + 3.12452087985358e37 * cos(theta) ** 23 - 3.25310198602039e37 * cos(theta) ** 21 + 2.16187157298824e37 * cos(theta) ** 19 - 9.60207893457112e36 * cos(theta) ** 17 + 2.90196163355927e36 * cos(theta) ** 15 - 5.96293486347796e35 * cos(theta) ** 13 + 8.18853731252255e34 * cos(theta) ** 11 - 7.25232773250789e33 * cos(theta) ** 9 + 3.89677311000424e32 * cos(theta) ** 7 - 1.14450678755369e31 * cos(theta) ** 5 + 1.51389786713451e29 * cos(theta) ** 3 - 5.72723026658707e26 * cos(theta) ) * cos(16 * phi) ) # @torch.jit.script def Yl43_m17(theta, phi): return ( 8.19203465488711e-28 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.13043563114703e38 * cos(theta) ** 26 - 4.32225388379745e38 * cos(theta) ** 24 + 7.18639802366323e38 * cos(theta) ** 22 - 6.83151417064282e38 * cos(theta) ** 20 + 4.10755598867765e38 * cos(theta) ** 18 - 1.63235341887709e38 * cos(theta) ** 16 + 4.35294245033891e37 * cos(theta) ** 14 - 7.75181532252134e36 * cos(theta) ** 12 + 9.0073910437748e35 * cos(theta) ** 10 - 6.5270949592571e34 * cos(theta) ** 8 + 2.72774117700297e33 * cos(theta) ** 6 - 5.72253393776847e31 * cos(theta) ** 4 + 4.54169360140354e29 * cos(theta) ** 2 - 5.72723026658707e26 ) * cos(17 * phi) ) # @torch.jit.script def Yl43_m18(theta, phi): return ( 2.05702793393481e-29 * (1.0 - cos(theta) ** 2) ** 9 * ( 2.93913264098227e39 * cos(theta) ** 25 - 1.03734093211139e40 * cos(theta) ** 23 + 1.58100756520591e40 * cos(theta) ** 21 - 1.36630283412856e40 * cos(theta) ** 19 + 7.39360077961976e39 * cos(theta) ** 17 - 2.61176547020335e39 * cos(theta) ** 15 + 6.09411943047447e38 * cos(theta) ** 13 - 9.30217838702561e37 * cos(theta) ** 11 + 9.0073910437748e36 * cos(theta) ** 9 - 5.22167596740568e35 * cos(theta) ** 7 + 1.63664470620178e34 * cos(theta) ** 5 - 2.28901357510739e32 * cos(theta) ** 3 + 9.08338720280709e29 * cos(theta) ) * cos(18 * phi) ) # @torch.jit.script def Yl43_m19(theta, phi): return ( 5.2248561770532e-31 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 7.34783160245567e40 * cos(theta) ** 24 - 2.38588414385619e41 * cos(theta) ** 22 + 3.32011588693241e41 * cos(theta) ** 20 - 2.59597538484427e41 * cos(theta) ** 18 + 1.25691213253536e41 * cos(theta) ** 16 - 3.91764820530502e40 * cos(theta) ** 14 + 7.92235525961681e39 * cos(theta) ** 12 - 1.02323962257282e39 * cos(theta) ** 10 + 8.10665193939732e37 * cos(theta) ** 8 - 3.65517317718398e36 * cos(theta) ** 6 + 8.18322353100891e34 * cos(theta) ** 4 - 6.86704072532216e32 * cos(theta) ** 2 + 9.08338720280709e29 ) * cos(19 * phi) ) # @torch.jit.script def Yl43_m20(theta, phi): return ( 1.34368801864906e-32 * (1.0 - cos(theta) ** 2) ** 10 * ( 1.76347958458936e42 * cos(theta) ** 23 - 5.24894511648362e42 * cos(theta) ** 21 + 6.64023177386482e42 * cos(theta) ** 19 - 4.67275569271969e42 * cos(theta) ** 17 + 2.01105941205658e42 * cos(theta) ** 15 - 5.48470748742703e41 * cos(theta) ** 13 + 9.50682631154018e40 * cos(theta) ** 11 - 1.02323962257282e40 * cos(theta) ** 9 + 6.48532155151786e38 * cos(theta) ** 7 - 2.19310390631039e37 * cos(theta) ** 5 + 3.27328941240356e35 * cos(theta) ** 3 - 1.37340814506443e33 * cos(theta) ) * cos(20 * phi) ) # @torch.jit.script def Yl43_m21(theta, phi): return ( 3.50222899855152e-34 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 4.05600304455553e43 * cos(theta) ** 22 - 1.10227847446156e44 * cos(theta) ** 20 + 1.26164403703432e44 * cos(theta) ** 18 - 7.94368467762348e43 * cos(theta) ** 16 + 3.01658911808486e43 * cos(theta) ** 14 - 7.13011973365513e42 * cos(theta) ** 12 + 1.04575089426942e42 * cos(theta) ** 10 - 9.20915660315536e40 * cos(theta) ** 8 + 4.5397250860625e39 * cos(theta) ** 6 - 1.09655195315519e38 * cos(theta) ** 4 + 9.81986823721069e35 * cos(theta) ** 2 - 1.37340814506443e33 ) * cos(21 * phi) ) # @torch.jit.script def Yl43_m22(theta, phi): return ( 9.26139742295083e-36 * (1.0 - cos(theta) ** 2) ** 11 * ( 8.92320669802216e44 * cos(theta) ** 21 - 2.20455694892312e45 * cos(theta) ** 19 + 2.27095926666177e45 * cos(theta) ** 17 - 1.27098954841976e45 * cos(theta) ** 15 + 4.22322476531881e44 * cos(theta) ** 13 - 8.55614368038616e43 * cos(theta) ** 11 + 1.04575089426942e43 * cos(theta) ** 9 - 7.36732528252429e41 * cos(theta) ** 7 + 2.7238350516375e40 * cos(theta) ** 5 - 4.38620781262077e38 * cos(theta) ** 3 + 1.96397364744214e36 * cos(theta) ) * cos(22 * phi) ) # @torch.jit.script def Yl43_m23(theta, phi): return ( 2.48768224079308e-37 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.87387340658465e46 * cos(theta) ** 20 - 4.18865820295393e46 * cos(theta) ** 18 + 3.86063075332501e46 * cos(theta) ** 16 - 1.90648432262963e46 * cos(theta) ** 14 + 5.49019219491445e45 * cos(theta) ** 12 - 9.41175804842478e44 * cos(theta) ** 10 + 9.41175804842478e43 * cos(theta) ** 8 - 5.157127697767e42 * cos(theta) ** 6 + 1.36191752581875e41 * cos(theta) ** 4 - 1.31586234378623e39 * cos(theta) ** 2 + 1.96397364744214e36 ) * cos(23 * phi) ) # @torch.jit.script def Yl43_m24(theta, phi): return ( 6.79583000496612e-39 * (1.0 - cos(theta) ** 2) ** 12 * ( 3.74774681316931e47 * cos(theta) ** 19 - 7.53958476531708e47 * cos(theta) ** 17 + 6.17700920532001e47 * cos(theta) ** 15 - 2.66907805168149e47 * cos(theta) ** 13 + 6.58823063389734e46 * cos(theta) ** 11 - 9.41175804842478e45 * cos(theta) ** 9 + 7.52940643873982e44 * cos(theta) ** 7 - 3.0942766186602e43 * cos(theta) ** 5 + 5.447670103275e41 * cos(theta) ** 3 - 2.63172468757246e39 * cos(theta) ) * cos(24 * phi) ) # @torch.jit.script def Yl43_m25(theta, phi): return ( 1.89065048220215e-40 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 7.12071894502168e48 * cos(theta) ** 18 - 1.2817294101039e49 * cos(theta) ** 16 + 9.26551380798002e48 * cos(theta) ** 14 - 3.46980146718593e48 * cos(theta) ** 12 + 7.24705369728708e47 * cos(theta) ** 10 - 8.4705822435823e46 * cos(theta) ** 8 + 5.27058450711787e45 * cos(theta) ** 6 - 1.5471383093301e44 * cos(theta) ** 4 + 1.6343010309825e42 * cos(theta) ** 2 - 2.63172468757246e39 ) * cos(25 * phi) ) # @torch.jit.script def Yl43_m26(theta, phi): return ( 5.36476190118919e-42 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.2817294101039e50 * cos(theta) ** 17 - 2.05076705616624e50 * cos(theta) ** 15 + 1.2971719331172e50 * cos(theta) ** 13 - 4.16376176062312e49 * cos(theta) ** 11 + 7.24705369728708e48 * cos(theta) ** 9 - 6.77646579486584e47 * cos(theta) ** 7 + 3.16235070427072e46 * cos(theta) ** 5 - 6.1885532373204e44 * cos(theta) ** 3 + 3.268602061965e42 * cos(theta) ) * cos(26 * phi) ) # @torch.jit.script def Yl43_m27(theta, phi): return ( 1.55516678174063e-43 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 2.17893999717664e51 * cos(theta) ** 16 - 3.07615058424937e51 * cos(theta) ** 14 + 1.68632351305236e51 * cos(theta) ** 12 - 4.58013793668543e50 * cos(theta) ** 10 + 6.52234832755837e49 * cos(theta) ** 8 - 4.74352605640609e48 * cos(theta) ** 6 + 1.58117535213536e47 * cos(theta) ** 4 - 1.85656597119612e45 * cos(theta) ** 2 + 3.268602061965e42 ) * cos(27 * phi) ) # @torch.jit.script def Yl43_m28(theta, phi): return ( 4.61410853000535e-45 * (1.0 - cos(theta) ** 2) ** 14 * ( 3.48630399548262e52 * cos(theta) ** 15 - 4.30661081794911e52 * cos(theta) ** 13 + 2.02358821566284e52 * cos(theta) ** 11 - 4.58013793668543e51 * cos(theta) ** 9 + 5.2178786620467e50 * cos(theta) ** 7 - 2.84611563384365e49 * cos(theta) ** 5 + 6.32470140854145e47 * cos(theta) ** 3 - 3.71313194239224e45 * cos(theta) ) * cos(28 * phi) ) # @torch.jit.script def Yl43_m29(theta, phi): return ( 1.40402851370052e-46 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 5.22945599322392e53 * cos(theta) ** 14 - 5.59859406333385e53 * cos(theta) ** 12 + 2.22594703722912e53 * cos(theta) ** 10 - 4.12212414301689e52 * cos(theta) ** 8 + 3.65251506343269e51 * cos(theta) ** 6 - 1.42305781692183e50 * cos(theta) ** 4 + 1.89741042256243e48 * cos(theta) ** 2 - 3.71313194239224e45 ) * cos(29 * phi) ) # @torch.jit.script def Yl43_m30(theta, phi): return ( 4.39188014702948e-48 * (1.0 - cos(theta) ** 2) ** 15 * ( 7.32123839051349e54 * cos(theta) ** 13 - 6.71831287600062e54 * cos(theta) ** 11 + 2.22594703722912e54 * cos(theta) ** 9 - 3.29769931441351e53 * cos(theta) ** 7 + 2.19150903805961e52 * cos(theta) ** 5 - 5.6922312676873e50 * cos(theta) ** 3 + 3.79482084512487e48 * cos(theta) ) * cos(30 * phi) ) # @torch.jit.script def Yl43_m31(theta, phi): return ( 1.41599899081267e-49 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 9.51760990766754e55 * cos(theta) ** 12 - 7.39014416360068e55 * cos(theta) ** 10 + 2.00335233350621e55 * cos(theta) ** 8 - 2.30838952008946e54 * cos(theta) ** 6 + 1.09575451902981e53 * cos(theta) ** 4 - 1.70766938030619e51 * cos(theta) ** 2 + 3.79482084512487e48 ) * cos(31 * phi) ) # @torch.jit.script def Yl43_m32(theta, phi): return ( 4.71999663604224e-51 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.1421131889201e57 * cos(theta) ** 11 - 7.39014416360068e56 * cos(theta) ** 9 + 1.60268186680497e56 * cos(theta) ** 7 - 1.38503371205367e55 * cos(theta) ** 5 + 4.38301807611922e53 * cos(theta) ** 3 - 3.41533876061238e51 * cos(theta) ) * cos(32 * phi) ) # @torch.jit.script def Yl43_m33(theta, phi): return ( 1.63244497127482e-52 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 1.25632450781212e58 * cos(theta) ** 10 - 6.65112974724061e57 * cos(theta) ** 8 + 1.12187730676348e57 * cos(theta) ** 6 - 6.92516856026837e55 * cos(theta) ** 4 + 1.31490542283577e54 * cos(theta) ** 2 - 3.41533876061238e51 ) * cos(33 * phi) ) # @torch.jit.script def Yl43_m34(theta, phi): return ( 5.88292332164183e-54 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.25632450781212e59 * cos(theta) ** 9 - 5.32090379779249e58 * cos(theta) ** 7 + 6.73126384058086e57 * cos(theta) ** 5 - 2.77006742410735e56 * cos(theta) ** 3 + 2.62981084567153e54 * cos(theta) ) * cos(34 * phi) ) # @torch.jit.script def Yl43_m35(theta, phi): return ( 2.22036632357623e-55 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 1.1306920570309e60 * cos(theta) ** 8 - 3.72463265845474e59 * cos(theta) ** 6 + 3.36563192029043e58 * cos(theta) ** 4 - 8.31020227232205e56 * cos(theta) ** 2 + 2.62981084567153e54 ) * cos(35 * phi) ) # @torch.jit.script def Yl43_m36(theta, phi): return ( 8.83214301129778e-57 * (1.0 - cos(theta) ** 2) ** 18 * ( 9.04553645624723e60 * cos(theta) ** 7 - 2.23477959507285e60 * cos(theta) ** 5 + 1.34625276811617e59 * cos(theta) ** 3 - 1.66204045446441e57 * cos(theta) ) * cos(36 * phi) ) # @torch.jit.script def Yl43_m37(theta, phi): return ( 3.73226162218452e-58 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 6.33187551937306e61 * cos(theta) ** 6 - 1.11738979753642e61 * cos(theta) ** 4 + 4.03875830434852e59 * cos(theta) ** 2 - 1.66204045446441e57 ) * cos(37 * phi) ) # @torch.jit.script def Yl43_m38(theta, phi): return ( 1.69298825202302e-59 * (1.0 - cos(theta) ** 2) ** 19 * ( 3.79912531162384e62 * cos(theta) ** 5 - 4.46955919014569e61 * cos(theta) ** 3 + 8.07751660869703e59 * cos(theta) ) * cos(38 * phi) ) # @torch.jit.script def Yl43_m39(theta, phi): return ( 8.36107301651595e-61 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 1.89956265581192e63 * cos(theta) ** 4 - 1.34086775704371e62 * cos(theta) ** 2 + 8.07751660869703e59 ) * cos(39 * phi) ) # @torch.jit.script def Yl43_m40(theta, phi): return ( 4.5887349618882e-62 * (1.0 - cos(theta) ** 2) ** 20 * (7.59825062324767e63 * cos(theta) ** 3 - 2.68173551408741e62 * cos(theta)) * cos(40 * phi) ) # @torch.jit.script def Yl43_m41(theta, phi): return ( 2.89063131941515e-63 * (1.0 - cos(theta) ** 2) ** 20.5 * (2.2794751869743e64 * cos(theta) ** 2 - 2.68173551408741e62) * cos(41 * phi) ) # @torch.jit.script def Yl43_m42(theta, phi): return 10.1072523258968 * (1.0 - cos(theta) ** 2) ** 21 * cos(42 * phi) * cos(theta) # @torch.jit.script def Yl43_m43(theta, phi): return 1.08989304776835 * (1.0 - cos(theta) ** 2) ** 21.5 * cos(43 * phi) # @torch.jit.script def Yl44_m_minus_44(theta, phi): return 1.09606812861653 * (1.0 - cos(theta) ** 2) ** 22 * sin(44 * phi) # @torch.jit.script def Yl44_m_minus_43(theta, phi): return ( 10.2820304486063 * (1.0 - cos(theta) ** 2) ** 21.5 * sin(43 * phi) * cos(theta) ) # @torch.jit.script def Yl44_m_minus_42(theta, phi): return ( 3.4195534181066e-65 * (1.0 - cos(theta) ** 2) ** 21 * (1.98314341266764e66 * cos(theta) ** 2 - 2.2794751869743e64) * sin(42 * phi) ) # @torch.jit.script def Yl44_m_minus_41(theta, phi): return ( 5.49261609750345e-64 * (1.0 - cos(theta) ** 2) ** 20.5 * (6.61047804222548e65 * cos(theta) ** 3 - 2.2794751869743e64 * cos(theta)) * sin(41 * phi) ) # @torch.jit.script def Yl44_m_minus_40(theta, phi): return ( 1.01278836595551e-62 * (1.0 - cos(theta) ** 2) ** 20 * ( 1.65261951055637e65 * cos(theta) ** 4 - 1.13973759348715e64 * cos(theta) ** 2 + 6.70433878521854e61 ) * sin(40 * phi) ) # @torch.jit.script def Yl44_m_minus_39(theta, phi): return ( 2.07559850445656e-61 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 3.30523902111274e64 * cos(theta) ** 5 - 3.79912531162384e63 * cos(theta) ** 3 + 6.70433878521854e61 * cos(theta) ) * sin(39 * phi) ) # @torch.jit.script def Yl44_m_minus_38(theta, phi): return ( 4.63188769029189e-60 * (1.0 - cos(theta) ** 2) ** 19 * ( 5.50873170185456e63 * cos(theta) ** 6 - 9.49781327905959e62 * cos(theta) ** 4 + 3.35216939260927e61 * cos(theta) ** 2 - 1.34625276811617e59 ) * sin(38 * phi) ) # @torch.jit.script def Yl44_m_minus_37(theta, phi): return ( 1.10972141424432e-58 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 7.86961671693509e62 * cos(theta) ** 7 - 1.89956265581192e62 * cos(theta) ** 5 + 1.11738979753642e61 * cos(theta) ** 3 - 1.34625276811617e59 * cos(theta) ) * sin(37 * phi) ) # @torch.jit.script def Yl44_m_minus_36(theta, phi): return ( 2.8248895340643e-57 * (1.0 - cos(theta) ** 2) ** 18 * ( 9.83702089616886e61 * cos(theta) ** 8 - 3.16593775968653e61 * cos(theta) ** 6 + 2.79347449384106e60 * cos(theta) ** 4 - 6.73126384058086e58 * cos(theta) ** 2 + 2.07755056808051e56 ) * sin(36 * phi) ) # @torch.jit.script def Yl44_m_minus_35(theta, phi): return ( 7.57997403251458e-56 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 1.09300232179654e61 * cos(theta) ** 9 - 4.52276822812362e60 * cos(theta) ** 7 + 5.58694898768211e59 * cos(theta) ** 5 - 2.24375461352695e58 * cos(theta) ** 3 + 2.07755056808051e56 * cos(theta) ) * sin(35 * phi) ) # @torch.jit.script def Yl44_m_minus_34(theta, phi): return ( 2.13049865063417e-54 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.09300232179654e60 * cos(theta) ** 10 - 5.65346028515452e59 * cos(theta) ** 8 + 9.31158164613686e58 * cos(theta) ** 6 - 5.60938653381738e57 * cos(theta) ** 4 + 1.03877528404026e56 * cos(theta) ** 2 - 2.62981084567153e53 ) * sin(34 * phi) ) # @torch.jit.script def Yl44_m_minus_33(theta, phi): return ( 6.24057931710171e-53 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 9.93638474360491e58 * cos(theta) ** 11 - 6.28162253906058e58 * cos(theta) ** 9 + 1.33022594944812e58 * cos(theta) ** 7 - 1.12187730676348e57 * cos(theta) ** 5 + 3.46258428013419e55 * cos(theta) ** 3 - 2.62981084567153e53 * cos(theta) ) * sin(33 * phi) ) # @torch.jit.script def Yl44_m_minus_32(theta, phi): return ( 1.89697187951869e-51 * (1.0 - cos(theta) ** 2) ** 16 * ( 8.28032061967076e57 * cos(theta) ** 12 - 6.28162253906058e57 * cos(theta) ** 10 + 1.66278243681015e57 * cos(theta) ** 8 - 1.86979551127246e56 * cos(theta) ** 6 + 8.65646070033547e54 * cos(theta) ** 4 - 1.31490542283577e53 * cos(theta) ** 2 + 2.84611563384365e50 ) * sin(32 * phi) ) # @torch.jit.script def Yl44_m_minus_31(theta, phi): return ( 5.96265065549245e-50 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 6.36947739974674e56 * cos(theta) ** 13 - 5.71056594460052e56 * cos(theta) ** 11 + 1.84753604090017e56 * cos(theta) ** 9 - 2.67113644467494e55 * cos(theta) ** 7 + 1.73129214006709e54 * cos(theta) ** 5 - 4.38301807611922e52 * cos(theta) ** 3 + 2.84611563384365e50 * cos(theta) ) * sin(31 * phi) ) # @torch.jit.script def Yl44_m_minus_30(theta, phi): return ( 1.93211963867191e-48 * (1.0 - cos(theta) ** 2) ** 15 * ( 4.54962671410481e55 * cos(theta) ** 14 - 4.75880495383377e55 * cos(theta) ** 12 + 1.84753604090017e55 * cos(theta) ** 10 - 3.33892055584368e54 * cos(theta) ** 8 + 2.88548690011182e53 * cos(theta) ** 6 - 1.09575451902981e52 * cos(theta) ** 4 + 1.42305781692183e50 * cos(theta) ** 2 - 2.71058631794634e47 ) * sin(30 * phi) ) # @torch.jit.script def Yl44_m_minus_29(theta, phi): return ( 6.43717779072263e-47 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 3.03308447606988e54 * cos(theta) ** 15 - 3.66061919525675e54 * cos(theta) ** 13 + 1.67957821900015e54 * cos(theta) ** 11 - 3.7099117287152e53 * cos(theta) ** 9 + 4.12212414301689e52 * cos(theta) ** 7 - 2.19150903805961e51 * cos(theta) ** 5 + 4.74352605640609e49 * cos(theta) ** 3 - 2.71058631794634e47 * cos(theta) ) * sin(29 * phi) ) # @torch.jit.script def Yl44_m_minus_28(theta, phi): return ( 2.19997084612836e-45 * (1.0 - cos(theta) ** 2) ** 14 * ( 1.89567779754367e53 * cos(theta) ** 16 - 2.61472799661196e53 * cos(theta) ** 14 + 1.39964851583346e53 * cos(theta) ** 12 - 3.7099117287152e52 * cos(theta) ** 10 + 5.15265517877111e51 * cos(theta) ** 8 - 3.65251506343269e50 * cos(theta) ** 6 + 1.18588151410152e49 * cos(theta) ** 4 - 1.35529315897317e47 * cos(theta) ** 2 + 2.32070746399515e44 ) * sin(28 * phi) ) # @torch.jit.script def Yl44_m_minus_27(theta, phi): return ( 7.69675450430194e-44 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.1151045867904e52 * cos(theta) ** 17 - 1.74315199774131e52 * cos(theta) ** 15 + 1.07665270448728e52 * cos(theta) ** 13 - 3.37264702610473e51 * cos(theta) ** 11 + 5.72517242085679e50 * cos(theta) ** 9 - 5.2178786620467e49 * cos(theta) ** 7 + 2.37176302820304e48 * cos(theta) ** 5 - 4.51764386324389e46 * cos(theta) ** 3 + 2.32070746399515e44 * cos(theta) ) * sin(27 * phi) ) # @torch.jit.script def Yl44_m_minus_26(theta, phi): return ( 2.75152245514281e-42 * (1.0 - cos(theta) ** 2) ** 13 * ( 6.19502548216886e50 * cos(theta) ** 18 - 1.08946999858832e51 * cos(theta) ** 16 + 7.69037646062342e50 * cos(theta) ** 14 - 2.81053918842061e50 * cos(theta) ** 12 + 5.72517242085679e49 * cos(theta) ** 10 - 6.52234832755837e48 * cos(theta) ** 8 + 3.95293838033841e47 * cos(theta) ** 6 - 1.12941096581097e46 * cos(theta) ** 4 + 1.16035373199758e44 * cos(theta) ** 2 - 1.815890034425e41 ) * sin(26 * phi) ) # @torch.jit.script def Yl44_m_minus_25(theta, phi): return ( 1.00345726576353e-40 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 3.2605397274573e49 * cos(theta) ** 19 - 6.40864705051951e49 * cos(theta) ** 17 + 5.12691764041561e49 * cos(theta) ** 15 - 2.161953221862e49 * cos(theta) ** 13 + 5.2047022007789e48 * cos(theta) ** 11 - 7.24705369728708e47 * cos(theta) ** 9 + 5.64705482905487e46 * cos(theta) ** 7 - 2.25882193162195e45 * cos(theta) ** 5 + 3.86784577332525e43 * cos(theta) ** 3 - 1.815890034425e41 * cos(theta) ) * sin(25 * phi) ) # @torch.jit.script def Yl44_m_minus_24(theta, phi): return ( 3.72767829649342e-39 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.63026986372865e48 * cos(theta) ** 20 - 3.56035947251084e48 * cos(theta) ** 18 + 3.20432352525976e48 * cos(theta) ** 16 - 1.54425230133e48 * cos(theta) ** 14 + 4.33725183398242e47 * cos(theta) ** 12 - 7.24705369728708e46 * cos(theta) ** 10 + 7.05881853631858e45 * cos(theta) ** 8 - 3.76470321936991e44 * cos(theta) ** 6 + 9.66961443331313e42 * cos(theta) ** 4 - 9.079450172125e40 * cos(theta) ** 2 + 1.31586234378623e38 ) * sin(24 * phi) ) # @torch.jit.script def Yl44_m_minus_23(theta, phi): return ( 1.40864814870526e-37 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 7.76318982727928e46 * cos(theta) ** 21 - 1.87387340658465e47 * cos(theta) ** 19 + 1.88489619132927e47 * cos(theta) ** 17 - 1.02950153422e47 * cos(theta) ** 15 + 3.33634756460186e46 * cos(theta) ** 13 - 6.58823063389734e45 * cos(theta) ** 11 + 7.84313170702065e44 * cos(theta) ** 9 - 5.37814745624273e43 * cos(theta) ** 7 + 1.93392288666262e42 * cos(theta) ** 5 - 3.02648339070833e40 * cos(theta) ** 3 + 1.31586234378623e38 * cos(theta) ) * sin(23 * phi) ) # @torch.jit.script def Yl44_m_minus_22(theta, phi): return ( 5.40818165421429e-36 * (1.0 - cos(theta) ** 2) ** 11 * ( 3.52872264876331e45 * cos(theta) ** 22 - 9.36936703292327e45 * cos(theta) ** 20 + 1.04716455073848e46 * cos(theta) ** 18 - 6.43438458887501e45 * cos(theta) ** 16 + 2.38310540328704e45 * cos(theta) ** 14 - 5.49019219491445e44 * cos(theta) ** 12 + 7.84313170702065e43 * cos(theta) ** 10 - 6.72268432030341e42 * cos(theta) ** 8 + 3.22320481110438e41 * cos(theta) ** 6 - 7.56620847677083e39 * cos(theta) ** 4 + 6.57931171893116e37 * cos(theta) ** 2 - 8.92715294291881e34 ) * sin(22 * phi) ) # @torch.jit.script def Yl44_m_minus_21(theta, phi): return ( 2.10710974858833e-34 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.53422723859274e44 * cos(theta) ** 23 - 4.46160334901108e44 * cos(theta) ** 21 + 5.5113923723078e44 * cos(theta) ** 19 - 3.78493211110295e44 * cos(theta) ** 17 + 1.5887369355247e44 * cos(theta) ** 15 - 4.22322476531881e43 * cos(theta) ** 13 + 7.13011973365513e42 * cos(theta) ** 11 - 7.46964924478157e41 * cos(theta) ** 9 + 4.60457830157768e40 * cos(theta) ** 7 - 1.51324169535417e39 * cos(theta) ** 5 + 2.19310390631039e37 * cos(theta) ** 3 - 8.92715294291881e34 * cos(theta) ) * sin(21 * phi) ) # @torch.jit.script def Yl44_m_minus_20(theta, phi): return ( 8.32241667332855e-33 * (1.0 - cos(theta) ** 2) ** 10 * ( 6.39261349413643e42 * cos(theta) ** 24 - 2.02800152227776e43 * cos(theta) ** 22 + 2.7556961861539e43 * cos(theta) ** 20 - 2.10274006172386e43 * cos(theta) ** 18 + 9.92960584702934e42 * cos(theta) ** 16 - 3.01658911808486e42 * cos(theta) ** 14 + 5.94176644471261e41 * cos(theta) ** 12 - 7.46964924478157e40 * cos(theta) ** 10 + 5.7557228769721e39 * cos(theta) ** 8 - 2.52206949225694e38 * cos(theta) ** 6 + 5.48275976577597e36 * cos(theta) ** 4 - 4.4635764714594e34 * cos(theta) ** 2 + 5.72253393776847e31 ) * sin(20 * phi) ) # @torch.jit.script def Yl44_m_minus_19(theta, phi): return ( 3.32896666933142e-31 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 2.55704539765457e41 * cos(theta) ** 25 - 8.8173979229468e41 * cos(theta) ** 23 + 1.31223627912091e42 * cos(theta) ** 21 - 1.10670529564414e42 * cos(theta) ** 19 + 5.84094461589961e41 * cos(theta) ** 17 - 2.01105941205658e41 * cos(theta) ** 15 + 4.57058957285585e40 * cos(theta) ** 13 - 6.7905902225287e39 * cos(theta) ** 11 + 6.39524764108011e38 * cos(theta) ** 9 - 3.60295641750992e37 * cos(theta) ** 7 + 1.09655195315519e36 * cos(theta) ** 5 - 1.4878588238198e34 * cos(theta) ** 3 + 5.72253393776847e31 * cos(theta) ) * sin(19 * phi) ) # @torch.jit.script def Yl44_m_minus_18(theta, phi): return ( 1.34730647078091e-29 * (1.0 - cos(theta) ** 2) ** 9 * ( 9.83478999097912e39 * cos(theta) ** 26 - 3.67391580122783e40 * cos(theta) ** 24 + 5.96471035964048e40 * cos(theta) ** 22 - 5.53352647822069e40 * cos(theta) ** 20 + 3.24496923105534e40 * cos(theta) ** 18 - 1.25691213253536e40 * cos(theta) ** 16 + 3.26470683775418e39 * cos(theta) ** 14 - 5.65882518544058e38 * cos(theta) ** 12 + 6.39524764108011e37 * cos(theta) ** 10 - 4.5036955218874e36 * cos(theta) ** 8 + 1.82758658859199e35 * cos(theta) ** 6 - 3.7196470595495e33 * cos(theta) ** 4 + 2.86126696888423e31 * cos(theta) ** 2 - 3.49361046261811e28 ) * sin(18 * phi) ) # @torch.jit.script def Yl44_m_minus_17(theta, phi): return ( 5.51244313501043e-28 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 3.64251481147375e38 * cos(theta) ** 27 - 1.46956632049113e39 * cos(theta) ** 25 + 2.59335233027847e39 * cos(theta) ** 23 - 2.63501260867652e39 * cos(theta) ** 21 + 1.70787854266071e39 * cos(theta) ** 19 - 7.39360077961976e38 * cos(theta) ** 17 + 2.17647122516945e38 * cos(theta) ** 15 - 4.35294245033891e37 * cos(theta) ** 13 + 5.81386149189101e36 * cos(theta) ** 11 - 5.00410613543045e35 * cos(theta) ** 9 + 2.61083798370284e34 * cos(theta) ** 7 - 7.439294119099e32 * cos(theta) ** 5 + 9.53755656294744e30 * cos(theta) ** 3 - 3.49361046261811e28 * cos(theta) ) * sin(17 * phi) ) # @torch.jit.script def Yl44_m_minus_16(theta, phi): return ( 2.27818010861661e-26 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.30089814695491e37 * cos(theta) ** 28 - 5.65217815573513e37 * cos(theta) ** 26 + 1.08056347094936e38 * cos(theta) ** 24 - 1.19773300394387e38 * cos(theta) ** 22 + 8.53939271330353e37 * cos(theta) ** 20 - 4.10755598867765e37 * cos(theta) ** 18 + 1.36029451573091e37 * cos(theta) ** 16 - 3.10924460738494e36 * cos(theta) ** 14 + 4.84488457657584e35 * cos(theta) ** 12 - 5.00410613543045e34 * cos(theta) ** 10 + 3.26354747962855e33 * cos(theta) ** 8 - 1.23988235318317e32 * cos(theta) ** 6 + 2.38438914073686e30 * cos(theta) ** 4 - 1.74680523130906e28 * cos(theta) ** 2 + 2.04543938092395e25 ) * sin(16 * phi) ) # @torch.jit.script def Yl44_m_minus_15(theta, phi): return ( 9.50304267942416e-25 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 4.48585567915486e35 * cos(theta) ** 29 - 2.09339931693894e36 * cos(theta) ** 27 + 4.32225388379745e36 * cos(theta) ** 25 - 5.20753479975596e36 * cos(theta) ** 23 + 4.06637748252549e36 * cos(theta) ** 21 - 2.16187157298824e36 * cos(theta) ** 19 + 8.00173244547594e35 * cos(theta) ** 17 - 2.07282973825662e35 * cos(theta) ** 15 + 3.72683428967372e34 * cos(theta) ** 13 - 4.54918739584586e33 * cos(theta) ** 11 + 3.62616386625395e32 * cos(theta) ** 9 - 1.77126050454738e31 * cos(theta) ** 7 + 4.76877828147372e29 * cos(theta) ** 5 - 5.82268410436352e27 * cos(theta) ** 3 + 2.04543938092395e25 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl44_m_minus_14(theta, phi): return ( 3.99806005076855e-23 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.49528522638495e34 * cos(theta) ** 30 - 7.47642613192477e34 * cos(theta) ** 28 + 1.6624053399221e35 * cos(theta) ** 26 - 2.16980616656498e35 * cos(theta) ** 24 + 1.84835340114795e35 * cos(theta) ** 22 - 1.08093578649412e35 * cos(theta) ** 20 + 4.4454069141533e34 * cos(theta) ** 18 - 1.29551858641039e34 * cos(theta) ** 16 + 2.66202449262409e33 * cos(theta) ** 14 - 3.79098949653822e32 * cos(theta) ** 12 + 3.62616386625395e31 * cos(theta) ** 10 - 2.21407563068423e30 * cos(theta) ** 8 + 7.9479638024562e28 * cos(theta) ** 6 - 1.45567102609088e27 * cos(theta) ** 4 + 1.02271969046198e25 * cos(theta) ** 2 - 1.15561546944856e22 ) * sin(14 * phi) ) # @torch.jit.script def Yl44_m_minus_13(theta, phi): return ( 1.69529061039261e-21 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 4.82350073027405e32 * cos(theta) ** 31 - 2.57807797652578e33 * cos(theta) ** 29 + 6.15705681452628e33 * cos(theta) ** 27 - 8.67922466625994e33 * cos(theta) ** 25 + 8.03631913542587e33 * cos(theta) ** 23 - 5.14731326901961e33 * cos(theta) ** 21 + 2.33968784955437e33 * cos(theta) ** 19 - 7.62069756711994e32 * cos(theta) ** 17 + 1.77468299508273e32 * cos(theta) ** 15 - 2.91614576656786e31 * cos(theta) ** 13 + 3.29651260568541e30 * cos(theta) ** 11 - 2.46008403409359e29 * cos(theta) ** 9 + 1.13542340035089e28 * cos(theta) ** 7 - 2.91134205218176e26 * cos(theta) ** 5 + 3.40906563487325e24 * cos(theta) ** 3 - 1.15561546944856e22 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl44_m_minus_12(theta, phi): return ( 7.24030020283832e-20 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.50734397821064e31 * cos(theta) ** 32 - 8.59359325508594e31 * cos(theta) ** 30 + 2.19894886233082e32 * cos(theta) ** 28 - 3.3381633331769e32 * cos(theta) ** 26 + 3.34846630642745e32 * cos(theta) ** 24 - 2.33968784955437e32 * cos(theta) ** 22 + 1.16984392477718e32 * cos(theta) ** 20 - 4.23372087062219e31 * cos(theta) ** 18 + 1.1091768719267e31 * cos(theta) ** 16 - 2.08296126183418e30 * cos(theta) ** 14 + 2.74709383807117e29 * cos(theta) ** 12 - 2.46008403409359e28 * cos(theta) ** 10 + 1.41927925043861e27 * cos(theta) ** 8 - 4.85223675363626e25 * cos(theta) ** 6 + 8.52266408718313e23 * cos(theta) ** 4 - 5.7780773472428e21 * cos(theta) ** 2 + 6.33561112636272e18 ) * sin(12 * phi) ) # @torch.jit.script def Yl44_m_minus_11(theta, phi): return ( 3.11248707798609e-18 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 4.56770902488073e29 * cos(theta) ** 33 - 2.77212685647934e30 * cos(theta) ** 31 + 7.58258228389936e30 * cos(theta) ** 29 - 1.23635679006552e31 * cos(theta) ** 27 + 1.33938652257098e31 * cos(theta) ** 25 - 1.01725558676277e31 * cos(theta) ** 23 + 5.57068535608183e30 * cos(theta) ** 21 - 2.22827414243273e30 * cos(theta) ** 19 + 6.52456983486296e29 * cos(theta) ** 17 - 1.38864084122279e29 * cos(theta) ** 15 + 2.11314910620859e28 * cos(theta) ** 13 - 2.23644003099417e27 * cos(theta) ** 11 + 1.57697694493179e26 * cos(theta) ** 9 - 6.93176679090895e24 * cos(theta) ** 7 + 1.70453281743663e23 * cos(theta) ** 5 - 1.92602578241427e21 * cos(theta) ** 3 + 6.33561112636272e18 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl44_m_minus_10(theta, phi): return ( 1.34594824439422e-16 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.34344383084727e28 * cos(theta) ** 34 - 8.66289642649793e28 * cos(theta) ** 32 + 2.52752742796645e29 * cos(theta) ** 30 - 4.41555996451971e29 * cos(theta) ** 28 + 5.15148662527299e29 * cos(theta) ** 26 - 4.23856494484487e29 * cos(theta) ** 24 + 2.53212970730992e29 * cos(theta) ** 22 - 1.11413707121637e29 * cos(theta) ** 20 + 3.62476101936831e28 * cos(theta) ** 18 - 8.67900525764244e27 * cos(theta) ** 16 + 1.50939221872042e27 * cos(theta) ** 14 - 1.86370002582847e26 * cos(theta) ** 12 + 1.57697694493179e25 * cos(theta) ** 10 - 8.66470848863619e23 * cos(theta) ** 8 + 2.84088802906104e22 * cos(theta) ** 6 - 4.81506445603567e20 * cos(theta) ** 4 + 3.16780556318136e18 * cos(theta) ** 2 - 3.38802734030092e15 ) * sin(10 * phi) ) # @torch.jit.script def Yl44_m_minus_9(theta, phi): return ( 5.85139292711667e-15 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 3.83841094527792e26 * cos(theta) ** 35 - 2.6251201292418e27 * cos(theta) ** 33 + 8.15331428376276e27 * cos(theta) ** 31 - 1.52260688431714e28 * cos(theta) ** 29 + 1.90795800936037e28 * cos(theta) ** 27 - 1.69542597793795e28 * cos(theta) ** 25 + 1.10092595969997e28 * cos(theta) ** 23 - 5.30541462483984e27 * cos(theta) ** 21 + 1.90776895756227e27 * cos(theta) ** 19 - 5.1052972103779e26 * cos(theta) ** 17 + 1.00626147914695e26 * cos(theta) ** 15 - 1.43361540448344e25 * cos(theta) ** 13 + 1.43361540448344e24 * cos(theta) ** 11 - 9.62745387626243e22 * cos(theta) ** 9 + 4.05841147008721e21 * cos(theta) ** 7 - 9.63012891207134e19 * cos(theta) ** 5 + 1.05593518772712e18 * cos(theta) ** 3 - 3.38802734030092e15 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl44_m_minus_8(theta, phi): return ( 2.55592701088609e-13 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.0662252625772e25 * cos(theta) ** 36 - 7.72094155659352e25 * cos(theta) ** 34 + 2.54791071367586e26 * cos(theta) ** 32 - 5.07535628105714e26 * cos(theta) ** 30 + 6.8141357477156e26 * cos(theta) ** 28 - 6.52086914591518e26 * cos(theta) ** 26 + 4.58719149874986e26 * cos(theta) ** 24 - 2.41155210219992e26 * cos(theta) ** 22 + 9.53884478781135e25 * cos(theta) ** 20 - 2.83627622798772e25 * cos(theta) ** 18 + 6.28913424466843e24 * cos(theta) ** 16 - 1.02401100320246e24 * cos(theta) ** 14 + 1.1946795037362e23 * cos(theta) ** 12 - 9.62745387626243e21 * cos(theta) ** 10 + 5.07301433760901e20 * cos(theta) ** 8 - 1.60502148534522e19 * cos(theta) ** 6 + 2.6398379693178e17 * cos(theta) ** 4 - 1.69401367015046e15 * cos(theta) ** 2 + 1775695671017.25 ) * sin(8 * phi) ) # @torch.jit.script def Yl44_m_minus_7(theta, phi): return ( 1.12111711211166e-11 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 2.8816898988573e23 * cos(theta) ** 37 - 2.20598330188386e24 * cos(theta) ** 35 + 7.72094155659352e24 * cos(theta) ** 33 - 1.63721170356682e25 * cos(theta) ** 31 + 2.3497019819709e25 * cos(theta) ** 29 - 2.41513672070933e25 * cos(theta) ** 27 + 1.83487659949994e25 * cos(theta) ** 25 - 1.04850091399997e25 * cos(theta) ** 23 + 4.54230704181493e24 * cos(theta) ** 21 - 1.4927769620988e24 * cos(theta) ** 19 + 3.6994907321579e23 * cos(theta) ** 17 - 6.82674002134972e22 * cos(theta) ** 15 + 9.18984233643232e21 * cos(theta) ** 13 - 8.75223079660221e20 * cos(theta) ** 11 + 5.63668259734334e19 * cos(theta) ** 9 - 2.29288783620746e18 * cos(theta) ** 7 + 5.2796759386356e16 * cos(theta) ** 5 - 564671223383487.0 * cos(theta) ** 3 + 1775695671017.25 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl44_m_minus_6(theta, phi): return ( 4.93546262901146e-10 * (1.0 - cos(theta) ** 2) ** 3 * ( 7.5833944706771e21 * cos(theta) ** 38 - 6.12773139412184e22 * cos(theta) ** 36 + 2.27086516370398e23 * cos(theta) ** 34 - 5.11628657364631e23 * cos(theta) ** 32 + 7.83233993990299e23 * cos(theta) ** 30 - 8.62548828824759e23 * cos(theta) ** 28 + 7.0572176903844e23 * cos(theta) ** 26 - 4.3687538083332e23 * cos(theta) ** 24 + 2.06468501900678e23 * cos(theta) ** 22 - 7.46388481049401e22 * cos(theta) ** 20 + 2.05527262897661e22 * cos(theta) ** 18 - 4.26671251334358e21 * cos(theta) ** 16 + 6.56417309745166e20 * cos(theta) ** 14 - 7.29352566383517e19 * cos(theta) ** 12 + 5.63668259734334e18 * cos(theta) ** 10 - 2.86610979525933e17 * cos(theta) ** 8 + 8.799459897726e15 * cos(theta) ** 6 - 141167805845872.0 * cos(theta) ** 4 + 887847835508.627 * cos(theta) ** 2 - 916251636.231813 ) * sin(6 * phi) ) # @torch.jit.script def Yl44_m_minus_5(theta, phi): return ( 2.17944128520635e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.94446012068644e20 * cos(theta) ** 39 - 1.65614362003293e21 * cos(theta) ** 37 + 6.48818618201136e21 * cos(theta) ** 35 - 1.55038987080191e22 * cos(theta) ** 33 + 2.52656127093645e22 * cos(theta) ** 31 - 2.97430630629227e22 * cos(theta) ** 29 + 2.613784329772e22 * cos(theta) ** 27 - 1.74750152333328e22 * cos(theta) ** 25 + 8.97689138698602e21 * cos(theta) ** 23 - 3.55423086214001e21 * cos(theta) ** 21 + 1.08172243630348e21 * cos(theta) ** 19 - 2.5098308902021e20 * cos(theta) ** 17 + 4.3761153983011e19 * cos(theta) ** 15 - 5.61040435679629e18 * cos(theta) ** 13 + 5.12425690667577e17 * cos(theta) ** 11 - 3.18456643917703e16 * cos(theta) ** 9 + 1.25706569967514e15 * cos(theta) ** 7 - 28233561169174.3 * cos(theta) ** 5 + 295949278502.876 * cos(theta) ** 3 - 916251636.231813 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl44_m_minus_4(theta, phi): return ( 9.64879788299937e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 4.86115030171609e18 * cos(theta) ** 40 - 4.35827268429718e19 * cos(theta) ** 38 + 1.8022739394476e20 * cos(theta) ** 36 - 4.55997020824091e20 * cos(theta) ** 34 + 7.8955039716764e20 * cos(theta) ** 32 - 9.91435435430758e20 * cos(theta) ** 30 + 9.33494403489999e20 * cos(theta) ** 28 - 6.721159705128e20 * cos(theta) ** 26 + 3.74037141124418e20 * cos(theta) ** 24 - 1.61555948279091e20 * cos(theta) ** 22 + 5.4086121815174e19 * cos(theta) ** 20 - 1.39435049455672e19 * cos(theta) ** 18 + 2.73507212393819e18 * cos(theta) ** 16 - 4.00743168342592e17 * cos(theta) ** 14 + 4.27021408889647e16 * cos(theta) ** 12 - 3.18456643917703e15 * cos(theta) ** 10 + 157133212459393.0 * cos(theta) ** 8 - 4705593528195.72 * cos(theta) ** 6 + 73987319625.7189 * cos(theta) ** 4 - 458125818.115907 * cos(theta) ** 2 + 467475.324608068 ) * sin(4 * phi) ) # @torch.jit.script def Yl44_m_minus_3(theta, phi): return ( 4.28041380657482e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 1.1856464150527e17 * cos(theta) ** 41 - 1.11750581648646e18 * cos(theta) ** 39 + 4.87101064715568e18 * cos(theta) ** 37 - 1.30284863092598e19 * cos(theta) ** 35 + 2.39257696111406e19 * cos(theta) ** 33 - 3.19817882397019e19 * cos(theta) ** 31 + 3.21894621893103e19 * cos(theta) ** 29 - 2.48931840930666e19 * cos(theta) ** 27 + 1.49614856449767e19 * cos(theta) ** 25 - 7.02417166430831e18 * cos(theta) ** 23 + 2.57552961024638e18 * cos(theta) ** 21 - 7.33868681345644e17 * cos(theta) ** 19 + 1.60886595525776e17 * cos(theta) ** 17 - 2.67162112228395e16 * cos(theta) ** 15 + 3.2847800683819e15 * cos(theta) ** 13 - 289506039925185.0 * cos(theta) ** 11 + 17459245828821.4 * cos(theta) ** 9 - 672227646885.103 * cos(theta) ** 7 + 14797463925.1438 * cos(theta) ** 5 - 152708606.038636 * cos(theta) ** 3 + 467475.324608068 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl44_m_minus_2(theta, phi): return ( 0.00190177585981601 * (1.0 - cos(theta) ** 2) * ( 2.82296765488739e15 * cos(theta) ** 42 - 2.79376454121614e16 * cos(theta) ** 40 + 1.28184490714623e17 * cos(theta) ** 38 - 3.61902397479438e17 * cos(theta) ** 36 + 7.03699106210018e17 * cos(theta) ** 34 - 9.99430882490684e17 * cos(theta) ** 32 + 1.07298207297701e18 * cos(theta) ** 30 - 8.89042289038095e17 * cos(theta) ** 28 + 5.75441755576027e17 * cos(theta) ** 26 - 2.9267381934618e17 * cos(theta) ** 24 + 1.17069527738472e17 * cos(theta) ** 22 - 3.66934340672822e16 * cos(theta) ** 20 + 8.93814419587644e15 * cos(theta) ** 18 - 1.66976320142747e15 * cos(theta) ** 16 + 234627147741564.0 * cos(theta) ** 14 - 24125503327098.7 * cos(theta) ** 12 + 1745924582882.14 * cos(theta) ** 10 - 84028455860.6379 * cos(theta) ** 8 + 2466243987.52396 * cos(theta) ** 6 - 38177151.5096589 * cos(theta) ** 4 + 233737.662304034 * cos(theta) ** 2 - 236.81627386427 ) * sin(2 * phi) ) # @torch.jit.script def Yl44_m_minus_1(theta, phi): return ( 0.0845809334938809 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 65650410578776.6 * cos(theta) ** 43 - 681405985662474.0 * cos(theta) ** 41 + 3.28678181319546e15 * cos(theta) ** 39 - 9.78114587782264e15 * cos(theta) ** 37 + 2.01056887488577e16 * cos(theta) ** 35 - 3.02857843178995e16 * cos(theta) ** 33 + 3.46123249347423e16 * cos(theta) ** 31 - 3.0656630656486e16 * cos(theta) ** 29 + 2.13126576139269e16 * cos(theta) ** 27 - 1.17069527738472e16 * cos(theta) ** 25 + 5.08997946689008e15 * cos(theta) ** 23 - 1.7473063841563e15 * cos(theta) ** 21 + 470428641888234.0 * cos(theta) ** 19 - 98221364789851.0 * cos(theta) ** 17 + 15641809849437.6 * cos(theta) ** 15 - 1855807948238.36 * cos(theta) ** 13 + 158720416625.649 * cos(theta) ** 11 - 9336495095.62644 * cos(theta) ** 9 + 352320569.646281 * cos(theta) ** 7 - 7635430.30193178 * cos(theta) ** 5 + 77912.5541013447 * cos(theta) ** 3 - 236.81627386427 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl44_m0(theta, phi): return ( 12474545000889.2 * cos(theta) ** 44 - 135642753687829.0 * cos(theta) ** 42 + 686990652501300.0 * cos(theta) ** 40 - 2.15201891144986e15 * cos(theta) ** 38 + 4.669349675152e15 * cos(theta) ** 36 - 7.44731720340699e15 * cos(theta) ** 34 + 9.04317088985134e15 * cos(theta) ** 32 - 8.54364335498336e15 * cos(theta) ** 30 + 6.36384393735918e15 * cos(theta) ** 28 - 3.76452739956459e15 * cos(theta) ** 26 + 1.77314696356303e15 * cos(theta) ** 24 - 664027899516142.0 * cos(theta) ** 22 + 196654416395165.0 * cos(theta) ** 20 - 45621903681418.0 * cos(theta) ** 18 + 8173479230980.04 * cos(theta) ** 16 - 1108268370302.38 * cos(theta) ** 14 + 110583795720.961 * cos(theta) ** 12 - 7805914992.06784 * cos(theta) ** 10 + 368203537.36169 * cos(theta) ** 8 - 10639524.299409 * cos(theta) ** 6 + 162849.861725648 * cos(theta) ** 4 - 989.968764289654 * cos(theta) ** 2 + 0.999968448777429 ) # @torch.jit.script def Yl44_m1(theta, phi): return ( 0.0845809334938809 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 65650410578776.6 * cos(theta) ** 43 - 681405985662474.0 * cos(theta) ** 41 + 3.28678181319546e15 * cos(theta) ** 39 - 9.78114587782264e15 * cos(theta) ** 37 + 2.01056887488577e16 * cos(theta) ** 35 - 3.02857843178995e16 * cos(theta) ** 33 + 3.46123249347423e16 * cos(theta) ** 31 - 3.0656630656486e16 * cos(theta) ** 29 + 2.13126576139269e16 * cos(theta) ** 27 - 1.17069527738472e16 * cos(theta) ** 25 + 5.08997946689008e15 * cos(theta) ** 23 - 1.7473063841563e15 * cos(theta) ** 21 + 470428641888234.0 * cos(theta) ** 19 - 98221364789851.0 * cos(theta) ** 17 + 15641809849437.6 * cos(theta) ** 15 - 1855807948238.36 * cos(theta) ** 13 + 158720416625.649 * cos(theta) ** 11 - 9336495095.62644 * cos(theta) ** 9 + 352320569.646281 * cos(theta) ** 7 - 7635430.30193178 * cos(theta) ** 5 + 77912.5541013447 * cos(theta) ** 3 - 236.81627386427 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl44_m2(theta, phi): return ( 0.00190177585981601 * (1.0 - cos(theta) ** 2) * ( 2.82296765488739e15 * cos(theta) ** 42 - 2.79376454121614e16 * cos(theta) ** 40 + 1.28184490714623e17 * cos(theta) ** 38 - 3.61902397479438e17 * cos(theta) ** 36 + 7.03699106210018e17 * cos(theta) ** 34 - 9.99430882490684e17 * cos(theta) ** 32 + 1.07298207297701e18 * cos(theta) ** 30 - 8.89042289038095e17 * cos(theta) ** 28 + 5.75441755576027e17 * cos(theta) ** 26 - 2.9267381934618e17 * cos(theta) ** 24 + 1.17069527738472e17 * cos(theta) ** 22 - 3.66934340672822e16 * cos(theta) ** 20 + 8.93814419587644e15 * cos(theta) ** 18 - 1.66976320142747e15 * cos(theta) ** 16 + 234627147741564.0 * cos(theta) ** 14 - 24125503327098.7 * cos(theta) ** 12 + 1745924582882.14 * cos(theta) ** 10 - 84028455860.6379 * cos(theta) ** 8 + 2466243987.52396 * cos(theta) ** 6 - 38177151.5096589 * cos(theta) ** 4 + 233737.662304034 * cos(theta) ** 2 - 236.81627386427 ) * cos(2 * phi) ) # @torch.jit.script def Yl44_m3(theta, phi): return ( 4.28041380657482e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 1.1856464150527e17 * cos(theta) ** 41 - 1.11750581648646e18 * cos(theta) ** 39 + 4.87101064715568e18 * cos(theta) ** 37 - 1.30284863092598e19 * cos(theta) ** 35 + 2.39257696111406e19 * cos(theta) ** 33 - 3.19817882397019e19 * cos(theta) ** 31 + 3.21894621893103e19 * cos(theta) ** 29 - 2.48931840930666e19 * cos(theta) ** 27 + 1.49614856449767e19 * cos(theta) ** 25 - 7.02417166430831e18 * cos(theta) ** 23 + 2.57552961024638e18 * cos(theta) ** 21 - 7.33868681345644e17 * cos(theta) ** 19 + 1.60886595525776e17 * cos(theta) ** 17 - 2.67162112228395e16 * cos(theta) ** 15 + 3.2847800683819e15 * cos(theta) ** 13 - 289506039925185.0 * cos(theta) ** 11 + 17459245828821.4 * cos(theta) ** 9 - 672227646885.103 * cos(theta) ** 7 + 14797463925.1438 * cos(theta) ** 5 - 152708606.038636 * cos(theta) ** 3 + 467475.324608068 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl44_m4(theta, phi): return ( 9.64879788299937e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 4.86115030171609e18 * cos(theta) ** 40 - 4.35827268429718e19 * cos(theta) ** 38 + 1.8022739394476e20 * cos(theta) ** 36 - 4.55997020824091e20 * cos(theta) ** 34 + 7.8955039716764e20 * cos(theta) ** 32 - 9.91435435430758e20 * cos(theta) ** 30 + 9.33494403489999e20 * cos(theta) ** 28 - 6.721159705128e20 * cos(theta) ** 26 + 3.74037141124418e20 * cos(theta) ** 24 - 1.61555948279091e20 * cos(theta) ** 22 + 5.4086121815174e19 * cos(theta) ** 20 - 1.39435049455672e19 * cos(theta) ** 18 + 2.73507212393819e18 * cos(theta) ** 16 - 4.00743168342592e17 * cos(theta) ** 14 + 4.27021408889647e16 * cos(theta) ** 12 - 3.18456643917703e15 * cos(theta) ** 10 + 157133212459393.0 * cos(theta) ** 8 - 4705593528195.72 * cos(theta) ** 6 + 73987319625.7189 * cos(theta) ** 4 - 458125818.115907 * cos(theta) ** 2 + 467475.324608068 ) * cos(4 * phi) ) # @torch.jit.script def Yl44_m5(theta, phi): return ( 2.17944128520635e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.94446012068644e20 * cos(theta) ** 39 - 1.65614362003293e21 * cos(theta) ** 37 + 6.48818618201136e21 * cos(theta) ** 35 - 1.55038987080191e22 * cos(theta) ** 33 + 2.52656127093645e22 * cos(theta) ** 31 - 2.97430630629227e22 * cos(theta) ** 29 + 2.613784329772e22 * cos(theta) ** 27 - 1.74750152333328e22 * cos(theta) ** 25 + 8.97689138698602e21 * cos(theta) ** 23 - 3.55423086214001e21 * cos(theta) ** 21 + 1.08172243630348e21 * cos(theta) ** 19 - 2.5098308902021e20 * cos(theta) ** 17 + 4.3761153983011e19 * cos(theta) ** 15 - 5.61040435679629e18 * cos(theta) ** 13 + 5.12425690667577e17 * cos(theta) ** 11 - 3.18456643917703e16 * cos(theta) ** 9 + 1.25706569967514e15 * cos(theta) ** 7 - 28233561169174.3 * cos(theta) ** 5 + 295949278502.876 * cos(theta) ** 3 - 916251636.231813 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl44_m6(theta, phi): return ( 4.93546262901146e-10 * (1.0 - cos(theta) ** 2) ** 3 * ( 7.5833944706771e21 * cos(theta) ** 38 - 6.12773139412184e22 * cos(theta) ** 36 + 2.27086516370398e23 * cos(theta) ** 34 - 5.11628657364631e23 * cos(theta) ** 32 + 7.83233993990299e23 * cos(theta) ** 30 - 8.62548828824759e23 * cos(theta) ** 28 + 7.0572176903844e23 * cos(theta) ** 26 - 4.3687538083332e23 * cos(theta) ** 24 + 2.06468501900678e23 * cos(theta) ** 22 - 7.46388481049401e22 * cos(theta) ** 20 + 2.05527262897661e22 * cos(theta) ** 18 - 4.26671251334358e21 * cos(theta) ** 16 + 6.56417309745166e20 * cos(theta) ** 14 - 7.29352566383517e19 * cos(theta) ** 12 + 5.63668259734334e18 * cos(theta) ** 10 - 2.86610979525933e17 * cos(theta) ** 8 + 8.799459897726e15 * cos(theta) ** 6 - 141167805845872.0 * cos(theta) ** 4 + 887847835508.627 * cos(theta) ** 2 - 916251636.231813 ) * cos(6 * phi) ) # @torch.jit.script def Yl44_m7(theta, phi): return ( 1.12111711211166e-11 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 2.8816898988573e23 * cos(theta) ** 37 - 2.20598330188386e24 * cos(theta) ** 35 + 7.72094155659352e24 * cos(theta) ** 33 - 1.63721170356682e25 * cos(theta) ** 31 + 2.3497019819709e25 * cos(theta) ** 29 - 2.41513672070933e25 * cos(theta) ** 27 + 1.83487659949994e25 * cos(theta) ** 25 - 1.04850091399997e25 * cos(theta) ** 23 + 4.54230704181493e24 * cos(theta) ** 21 - 1.4927769620988e24 * cos(theta) ** 19 + 3.6994907321579e23 * cos(theta) ** 17 - 6.82674002134972e22 * cos(theta) ** 15 + 9.18984233643232e21 * cos(theta) ** 13 - 8.75223079660221e20 * cos(theta) ** 11 + 5.63668259734334e19 * cos(theta) ** 9 - 2.29288783620746e18 * cos(theta) ** 7 + 5.2796759386356e16 * cos(theta) ** 5 - 564671223383487.0 * cos(theta) ** 3 + 1775695671017.25 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl44_m8(theta, phi): return ( 2.55592701088609e-13 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.0662252625772e25 * cos(theta) ** 36 - 7.72094155659352e25 * cos(theta) ** 34 + 2.54791071367586e26 * cos(theta) ** 32 - 5.07535628105714e26 * cos(theta) ** 30 + 6.8141357477156e26 * cos(theta) ** 28 - 6.52086914591518e26 * cos(theta) ** 26 + 4.58719149874986e26 * cos(theta) ** 24 - 2.41155210219992e26 * cos(theta) ** 22 + 9.53884478781135e25 * cos(theta) ** 20 - 2.83627622798772e25 * cos(theta) ** 18 + 6.28913424466843e24 * cos(theta) ** 16 - 1.02401100320246e24 * cos(theta) ** 14 + 1.1946795037362e23 * cos(theta) ** 12 - 9.62745387626243e21 * cos(theta) ** 10 + 5.07301433760901e20 * cos(theta) ** 8 - 1.60502148534522e19 * cos(theta) ** 6 + 2.6398379693178e17 * cos(theta) ** 4 - 1.69401367015046e15 * cos(theta) ** 2 + 1775695671017.25 ) * cos(8 * phi) ) # @torch.jit.script def Yl44_m9(theta, phi): return ( 5.85139292711667e-15 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 3.83841094527792e26 * cos(theta) ** 35 - 2.6251201292418e27 * cos(theta) ** 33 + 8.15331428376276e27 * cos(theta) ** 31 - 1.52260688431714e28 * cos(theta) ** 29 + 1.90795800936037e28 * cos(theta) ** 27 - 1.69542597793795e28 * cos(theta) ** 25 + 1.10092595969997e28 * cos(theta) ** 23 - 5.30541462483984e27 * cos(theta) ** 21 + 1.90776895756227e27 * cos(theta) ** 19 - 5.1052972103779e26 * cos(theta) ** 17 + 1.00626147914695e26 * cos(theta) ** 15 - 1.43361540448344e25 * cos(theta) ** 13 + 1.43361540448344e24 * cos(theta) ** 11 - 9.62745387626243e22 * cos(theta) ** 9 + 4.05841147008721e21 * cos(theta) ** 7 - 9.63012891207134e19 * cos(theta) ** 5 + 1.05593518772712e18 * cos(theta) ** 3 - 3.38802734030092e15 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl44_m10(theta, phi): return ( 1.34594824439422e-16 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.34344383084727e28 * cos(theta) ** 34 - 8.66289642649793e28 * cos(theta) ** 32 + 2.52752742796645e29 * cos(theta) ** 30 - 4.41555996451971e29 * cos(theta) ** 28 + 5.15148662527299e29 * cos(theta) ** 26 - 4.23856494484487e29 * cos(theta) ** 24 + 2.53212970730992e29 * cos(theta) ** 22 - 1.11413707121637e29 * cos(theta) ** 20 + 3.62476101936831e28 * cos(theta) ** 18 - 8.67900525764244e27 * cos(theta) ** 16 + 1.50939221872042e27 * cos(theta) ** 14 - 1.86370002582847e26 * cos(theta) ** 12 + 1.57697694493179e25 * cos(theta) ** 10 - 8.66470848863619e23 * cos(theta) ** 8 + 2.84088802906104e22 * cos(theta) ** 6 - 4.81506445603567e20 * cos(theta) ** 4 + 3.16780556318136e18 * cos(theta) ** 2 - 3.38802734030092e15 ) * cos(10 * phi) ) # @torch.jit.script def Yl44_m11(theta, phi): return ( 3.11248707798609e-18 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 4.56770902488073e29 * cos(theta) ** 33 - 2.77212685647934e30 * cos(theta) ** 31 + 7.58258228389936e30 * cos(theta) ** 29 - 1.23635679006552e31 * cos(theta) ** 27 + 1.33938652257098e31 * cos(theta) ** 25 - 1.01725558676277e31 * cos(theta) ** 23 + 5.57068535608183e30 * cos(theta) ** 21 - 2.22827414243273e30 * cos(theta) ** 19 + 6.52456983486296e29 * cos(theta) ** 17 - 1.38864084122279e29 * cos(theta) ** 15 + 2.11314910620859e28 * cos(theta) ** 13 - 2.23644003099417e27 * cos(theta) ** 11 + 1.57697694493179e26 * cos(theta) ** 9 - 6.93176679090895e24 * cos(theta) ** 7 + 1.70453281743663e23 * cos(theta) ** 5 - 1.92602578241427e21 * cos(theta) ** 3 + 6.33561112636272e18 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl44_m12(theta, phi): return ( 7.24030020283832e-20 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.50734397821064e31 * cos(theta) ** 32 - 8.59359325508594e31 * cos(theta) ** 30 + 2.19894886233082e32 * cos(theta) ** 28 - 3.3381633331769e32 * cos(theta) ** 26 + 3.34846630642745e32 * cos(theta) ** 24 - 2.33968784955437e32 * cos(theta) ** 22 + 1.16984392477718e32 * cos(theta) ** 20 - 4.23372087062219e31 * cos(theta) ** 18 + 1.1091768719267e31 * cos(theta) ** 16 - 2.08296126183418e30 * cos(theta) ** 14 + 2.74709383807117e29 * cos(theta) ** 12 - 2.46008403409359e28 * cos(theta) ** 10 + 1.41927925043861e27 * cos(theta) ** 8 - 4.85223675363626e25 * cos(theta) ** 6 + 8.52266408718313e23 * cos(theta) ** 4 - 5.7780773472428e21 * cos(theta) ** 2 + 6.33561112636272e18 ) * cos(12 * phi) ) # @torch.jit.script def Yl44_m13(theta, phi): return ( 1.69529061039261e-21 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 4.82350073027405e32 * cos(theta) ** 31 - 2.57807797652578e33 * cos(theta) ** 29 + 6.15705681452628e33 * cos(theta) ** 27 - 8.67922466625994e33 * cos(theta) ** 25 + 8.03631913542587e33 * cos(theta) ** 23 - 5.14731326901961e33 * cos(theta) ** 21 + 2.33968784955437e33 * cos(theta) ** 19 - 7.62069756711994e32 * cos(theta) ** 17 + 1.77468299508273e32 * cos(theta) ** 15 - 2.91614576656786e31 * cos(theta) ** 13 + 3.29651260568541e30 * cos(theta) ** 11 - 2.46008403409359e29 * cos(theta) ** 9 + 1.13542340035089e28 * cos(theta) ** 7 - 2.91134205218176e26 * cos(theta) ** 5 + 3.40906563487325e24 * cos(theta) ** 3 - 1.15561546944856e22 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl44_m14(theta, phi): return ( 3.99806005076855e-23 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.49528522638495e34 * cos(theta) ** 30 - 7.47642613192477e34 * cos(theta) ** 28 + 1.6624053399221e35 * cos(theta) ** 26 - 2.16980616656498e35 * cos(theta) ** 24 + 1.84835340114795e35 * cos(theta) ** 22 - 1.08093578649412e35 * cos(theta) ** 20 + 4.4454069141533e34 * cos(theta) ** 18 - 1.29551858641039e34 * cos(theta) ** 16 + 2.66202449262409e33 * cos(theta) ** 14 - 3.79098949653822e32 * cos(theta) ** 12 + 3.62616386625395e31 * cos(theta) ** 10 - 2.21407563068423e30 * cos(theta) ** 8 + 7.9479638024562e28 * cos(theta) ** 6 - 1.45567102609088e27 * cos(theta) ** 4 + 1.02271969046198e25 * cos(theta) ** 2 - 1.15561546944856e22 ) * cos(14 * phi) ) # @torch.jit.script def Yl44_m15(theta, phi): return ( 9.50304267942416e-25 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 4.48585567915486e35 * cos(theta) ** 29 - 2.09339931693894e36 * cos(theta) ** 27 + 4.32225388379745e36 * cos(theta) ** 25 - 5.20753479975596e36 * cos(theta) ** 23 + 4.06637748252549e36 * cos(theta) ** 21 - 2.16187157298824e36 * cos(theta) ** 19 + 8.00173244547594e35 * cos(theta) ** 17 - 2.07282973825662e35 * cos(theta) ** 15 + 3.72683428967372e34 * cos(theta) ** 13 - 4.54918739584586e33 * cos(theta) ** 11 + 3.62616386625395e32 * cos(theta) ** 9 - 1.77126050454738e31 * cos(theta) ** 7 + 4.76877828147372e29 * cos(theta) ** 5 - 5.82268410436352e27 * cos(theta) ** 3 + 2.04543938092395e25 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl44_m16(theta, phi): return ( 2.27818010861661e-26 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.30089814695491e37 * cos(theta) ** 28 - 5.65217815573513e37 * cos(theta) ** 26 + 1.08056347094936e38 * cos(theta) ** 24 - 1.19773300394387e38 * cos(theta) ** 22 + 8.53939271330353e37 * cos(theta) ** 20 - 4.10755598867765e37 * cos(theta) ** 18 + 1.36029451573091e37 * cos(theta) ** 16 - 3.10924460738494e36 * cos(theta) ** 14 + 4.84488457657584e35 * cos(theta) ** 12 - 5.00410613543045e34 * cos(theta) ** 10 + 3.26354747962855e33 * cos(theta) ** 8 - 1.23988235318317e32 * cos(theta) ** 6 + 2.38438914073686e30 * cos(theta) ** 4 - 1.74680523130906e28 * cos(theta) ** 2 + 2.04543938092395e25 ) * cos(16 * phi) ) # @torch.jit.script def Yl44_m17(theta, phi): return ( 5.51244313501043e-28 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 3.64251481147375e38 * cos(theta) ** 27 - 1.46956632049113e39 * cos(theta) ** 25 + 2.59335233027847e39 * cos(theta) ** 23 - 2.63501260867652e39 * cos(theta) ** 21 + 1.70787854266071e39 * cos(theta) ** 19 - 7.39360077961976e38 * cos(theta) ** 17 + 2.17647122516945e38 * cos(theta) ** 15 - 4.35294245033891e37 * cos(theta) ** 13 + 5.81386149189101e36 * cos(theta) ** 11 - 5.00410613543045e35 * cos(theta) ** 9 + 2.61083798370284e34 * cos(theta) ** 7 - 7.439294119099e32 * cos(theta) ** 5 + 9.53755656294744e30 * cos(theta) ** 3 - 3.49361046261811e28 * cos(theta) ) * cos(17 * phi) ) # @torch.jit.script def Yl44_m18(theta, phi): return ( 1.34730647078091e-29 * (1.0 - cos(theta) ** 2) ** 9 * ( 9.83478999097912e39 * cos(theta) ** 26 - 3.67391580122783e40 * cos(theta) ** 24 + 5.96471035964048e40 * cos(theta) ** 22 - 5.53352647822069e40 * cos(theta) ** 20 + 3.24496923105534e40 * cos(theta) ** 18 - 1.25691213253536e40 * cos(theta) ** 16 + 3.26470683775418e39 * cos(theta) ** 14 - 5.65882518544058e38 * cos(theta) ** 12 + 6.39524764108011e37 * cos(theta) ** 10 - 4.5036955218874e36 * cos(theta) ** 8 + 1.82758658859199e35 * cos(theta) ** 6 - 3.7196470595495e33 * cos(theta) ** 4 + 2.86126696888423e31 * cos(theta) ** 2 - 3.49361046261811e28 ) * cos(18 * phi) ) # @torch.jit.script def Yl44_m19(theta, phi): return ( 3.32896666933142e-31 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 2.55704539765457e41 * cos(theta) ** 25 - 8.8173979229468e41 * cos(theta) ** 23 + 1.31223627912091e42 * cos(theta) ** 21 - 1.10670529564414e42 * cos(theta) ** 19 + 5.84094461589961e41 * cos(theta) ** 17 - 2.01105941205658e41 * cos(theta) ** 15 + 4.57058957285585e40 * cos(theta) ** 13 - 6.7905902225287e39 * cos(theta) ** 11 + 6.39524764108011e38 * cos(theta) ** 9 - 3.60295641750992e37 * cos(theta) ** 7 + 1.09655195315519e36 * cos(theta) ** 5 - 1.4878588238198e34 * cos(theta) ** 3 + 5.72253393776847e31 * cos(theta) ) * cos(19 * phi) ) # @torch.jit.script def Yl44_m20(theta, phi): return ( 8.32241667332855e-33 * (1.0 - cos(theta) ** 2) ** 10 * ( 6.39261349413643e42 * cos(theta) ** 24 - 2.02800152227776e43 * cos(theta) ** 22 + 2.7556961861539e43 * cos(theta) ** 20 - 2.10274006172386e43 * cos(theta) ** 18 + 9.92960584702934e42 * cos(theta) ** 16 - 3.01658911808486e42 * cos(theta) ** 14 + 5.94176644471261e41 * cos(theta) ** 12 - 7.46964924478157e40 * cos(theta) ** 10 + 5.7557228769721e39 * cos(theta) ** 8 - 2.52206949225694e38 * cos(theta) ** 6 + 5.48275976577597e36 * cos(theta) ** 4 - 4.4635764714594e34 * cos(theta) ** 2 + 5.72253393776847e31 ) * cos(20 * phi) ) # @torch.jit.script def Yl44_m21(theta, phi): return ( 2.10710974858833e-34 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.53422723859274e44 * cos(theta) ** 23 - 4.46160334901108e44 * cos(theta) ** 21 + 5.5113923723078e44 * cos(theta) ** 19 - 3.78493211110295e44 * cos(theta) ** 17 + 1.5887369355247e44 * cos(theta) ** 15 - 4.22322476531881e43 * cos(theta) ** 13 + 7.13011973365513e42 * cos(theta) ** 11 - 7.46964924478157e41 * cos(theta) ** 9 + 4.60457830157768e40 * cos(theta) ** 7 - 1.51324169535417e39 * cos(theta) ** 5 + 2.19310390631039e37 * cos(theta) ** 3 - 8.92715294291881e34 * cos(theta) ) * cos(21 * phi) ) # @torch.jit.script def Yl44_m22(theta, phi): return ( 5.40818165421429e-36 * (1.0 - cos(theta) ** 2) ** 11 * ( 3.52872264876331e45 * cos(theta) ** 22 - 9.36936703292327e45 * cos(theta) ** 20 + 1.04716455073848e46 * cos(theta) ** 18 - 6.43438458887501e45 * cos(theta) ** 16 + 2.38310540328704e45 * cos(theta) ** 14 - 5.49019219491445e44 * cos(theta) ** 12 + 7.84313170702065e43 * cos(theta) ** 10 - 6.72268432030341e42 * cos(theta) ** 8 + 3.22320481110438e41 * cos(theta) ** 6 - 7.56620847677083e39 * cos(theta) ** 4 + 6.57931171893116e37 * cos(theta) ** 2 - 8.92715294291881e34 ) * cos(22 * phi) ) # @torch.jit.script def Yl44_m23(theta, phi): return ( 1.40864814870526e-37 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 7.76318982727928e46 * cos(theta) ** 21 - 1.87387340658465e47 * cos(theta) ** 19 + 1.88489619132927e47 * cos(theta) ** 17 - 1.02950153422e47 * cos(theta) ** 15 + 3.33634756460186e46 * cos(theta) ** 13 - 6.58823063389734e45 * cos(theta) ** 11 + 7.84313170702065e44 * cos(theta) ** 9 - 5.37814745624273e43 * cos(theta) ** 7 + 1.93392288666262e42 * cos(theta) ** 5 - 3.02648339070833e40 * cos(theta) ** 3 + 1.31586234378623e38 * cos(theta) ) * cos(23 * phi) ) # @torch.jit.script def Yl44_m24(theta, phi): return ( 3.72767829649342e-39 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.63026986372865e48 * cos(theta) ** 20 - 3.56035947251084e48 * cos(theta) ** 18 + 3.20432352525976e48 * cos(theta) ** 16 - 1.54425230133e48 * cos(theta) ** 14 + 4.33725183398242e47 * cos(theta) ** 12 - 7.24705369728708e46 * cos(theta) ** 10 + 7.05881853631858e45 * cos(theta) ** 8 - 3.76470321936991e44 * cos(theta) ** 6 + 9.66961443331313e42 * cos(theta) ** 4 - 9.079450172125e40 * cos(theta) ** 2 + 1.31586234378623e38 ) * cos(24 * phi) ) # @torch.jit.script def Yl44_m25(theta, phi): return ( 1.00345726576353e-40 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 3.2605397274573e49 * cos(theta) ** 19 - 6.40864705051951e49 * cos(theta) ** 17 + 5.12691764041561e49 * cos(theta) ** 15 - 2.161953221862e49 * cos(theta) ** 13 + 5.2047022007789e48 * cos(theta) ** 11 - 7.24705369728708e47 * cos(theta) ** 9 + 5.64705482905487e46 * cos(theta) ** 7 - 2.25882193162195e45 * cos(theta) ** 5 + 3.86784577332525e43 * cos(theta) ** 3 - 1.815890034425e41 * cos(theta) ) * cos(25 * phi) ) # @torch.jit.script def Yl44_m26(theta, phi): return ( 2.75152245514281e-42 * (1.0 - cos(theta) ** 2) ** 13 * ( 6.19502548216886e50 * cos(theta) ** 18 - 1.08946999858832e51 * cos(theta) ** 16 + 7.69037646062342e50 * cos(theta) ** 14 - 2.81053918842061e50 * cos(theta) ** 12 + 5.72517242085679e49 * cos(theta) ** 10 - 6.52234832755837e48 * cos(theta) ** 8 + 3.95293838033841e47 * cos(theta) ** 6 - 1.12941096581097e46 * cos(theta) ** 4 + 1.16035373199758e44 * cos(theta) ** 2 - 1.815890034425e41 ) * cos(26 * phi) ) # @torch.jit.script def Yl44_m27(theta, phi): return ( 7.69675450430194e-44 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.1151045867904e52 * cos(theta) ** 17 - 1.74315199774131e52 * cos(theta) ** 15 + 1.07665270448728e52 * cos(theta) ** 13 - 3.37264702610473e51 * cos(theta) ** 11 + 5.72517242085679e50 * cos(theta) ** 9 - 5.2178786620467e49 * cos(theta) ** 7 + 2.37176302820304e48 * cos(theta) ** 5 - 4.51764386324389e46 * cos(theta) ** 3 + 2.32070746399515e44 * cos(theta) ) * cos(27 * phi) ) # @torch.jit.script def Yl44_m28(theta, phi): return ( 2.19997084612836e-45 * (1.0 - cos(theta) ** 2) ** 14 * ( 1.89567779754367e53 * cos(theta) ** 16 - 2.61472799661196e53 * cos(theta) ** 14 + 1.39964851583346e53 * cos(theta) ** 12 - 3.7099117287152e52 * cos(theta) ** 10 + 5.15265517877111e51 * cos(theta) ** 8 - 3.65251506343269e50 * cos(theta) ** 6 + 1.18588151410152e49 * cos(theta) ** 4 - 1.35529315897317e47 * cos(theta) ** 2 + 2.32070746399515e44 ) * cos(28 * phi) ) # @torch.jit.script def Yl44_m29(theta, phi): return ( 6.43717779072263e-47 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 3.03308447606988e54 * cos(theta) ** 15 - 3.66061919525675e54 * cos(theta) ** 13 + 1.67957821900015e54 * cos(theta) ** 11 - 3.7099117287152e53 * cos(theta) ** 9 + 4.12212414301689e52 * cos(theta) ** 7 - 2.19150903805961e51 * cos(theta) ** 5 + 4.74352605640609e49 * cos(theta) ** 3 - 2.71058631794634e47 * cos(theta) ) * cos(29 * phi) ) # @torch.jit.script def Yl44_m30(theta, phi): return ( 1.93211963867191e-48 * (1.0 - cos(theta) ** 2) ** 15 * ( 4.54962671410481e55 * cos(theta) ** 14 - 4.75880495383377e55 * cos(theta) ** 12 + 1.84753604090017e55 * cos(theta) ** 10 - 3.33892055584368e54 * cos(theta) ** 8 + 2.88548690011182e53 * cos(theta) ** 6 - 1.09575451902981e52 * cos(theta) ** 4 + 1.42305781692183e50 * cos(theta) ** 2 - 2.71058631794634e47 ) * cos(30 * phi) ) # @torch.jit.script def Yl44_m31(theta, phi): return ( 5.96265065549245e-50 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 6.36947739974674e56 * cos(theta) ** 13 - 5.71056594460052e56 * cos(theta) ** 11 + 1.84753604090017e56 * cos(theta) ** 9 - 2.67113644467494e55 * cos(theta) ** 7 + 1.73129214006709e54 * cos(theta) ** 5 - 4.38301807611922e52 * cos(theta) ** 3 + 2.84611563384365e50 * cos(theta) ) * cos(31 * phi) ) # @torch.jit.script def Yl44_m32(theta, phi): return ( 1.89697187951869e-51 * (1.0 - cos(theta) ** 2) ** 16 * ( 8.28032061967076e57 * cos(theta) ** 12 - 6.28162253906058e57 * cos(theta) ** 10 + 1.66278243681015e57 * cos(theta) ** 8 - 1.86979551127246e56 * cos(theta) ** 6 + 8.65646070033547e54 * cos(theta) ** 4 - 1.31490542283577e53 * cos(theta) ** 2 + 2.84611563384365e50 ) * cos(32 * phi) ) # @torch.jit.script def Yl44_m33(theta, phi): return ( 6.24057931710171e-53 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 9.93638474360491e58 * cos(theta) ** 11 - 6.28162253906058e58 * cos(theta) ** 9 + 1.33022594944812e58 * cos(theta) ** 7 - 1.12187730676348e57 * cos(theta) ** 5 + 3.46258428013419e55 * cos(theta) ** 3 - 2.62981084567153e53 * cos(theta) ) * cos(33 * phi) ) # @torch.jit.script def Yl44_m34(theta, phi): return ( 2.13049865063417e-54 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.09300232179654e60 * cos(theta) ** 10 - 5.65346028515452e59 * cos(theta) ** 8 + 9.31158164613686e58 * cos(theta) ** 6 - 5.60938653381738e57 * cos(theta) ** 4 + 1.03877528404026e56 * cos(theta) ** 2 - 2.62981084567153e53 ) * cos(34 * phi) ) # @torch.jit.script def Yl44_m35(theta, phi): return ( 7.57997403251458e-56 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 1.09300232179654e61 * cos(theta) ** 9 - 4.52276822812362e60 * cos(theta) ** 7 + 5.58694898768211e59 * cos(theta) ** 5 - 2.24375461352695e58 * cos(theta) ** 3 + 2.07755056808051e56 * cos(theta) ) * cos(35 * phi) ) # @torch.jit.script def Yl44_m36(theta, phi): return ( 2.8248895340643e-57 * (1.0 - cos(theta) ** 2) ** 18 * ( 9.83702089616886e61 * cos(theta) ** 8 - 3.16593775968653e61 * cos(theta) ** 6 + 2.79347449384106e60 * cos(theta) ** 4 - 6.73126384058086e58 * cos(theta) ** 2 + 2.07755056808051e56 ) * cos(36 * phi) ) # @torch.jit.script def Yl44_m37(theta, phi): return ( 1.10972141424432e-58 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 7.86961671693509e62 * cos(theta) ** 7 - 1.89956265581192e62 * cos(theta) ** 5 + 1.11738979753642e61 * cos(theta) ** 3 - 1.34625276811617e59 * cos(theta) ) * cos(37 * phi) ) # @torch.jit.script def Yl44_m38(theta, phi): return ( 4.63188769029189e-60 * (1.0 - cos(theta) ** 2) ** 19 * ( 5.50873170185456e63 * cos(theta) ** 6 - 9.49781327905959e62 * cos(theta) ** 4 + 3.35216939260927e61 * cos(theta) ** 2 - 1.34625276811617e59 ) * cos(38 * phi) ) # @torch.jit.script def Yl44_m39(theta, phi): return ( 2.07559850445656e-61 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 3.30523902111274e64 * cos(theta) ** 5 - 3.79912531162384e63 * cos(theta) ** 3 + 6.70433878521854e61 * cos(theta) ) * cos(39 * phi) ) # @torch.jit.script def Yl44_m40(theta, phi): return ( 1.01278836595551e-62 * (1.0 - cos(theta) ** 2) ** 20 * ( 1.65261951055637e65 * cos(theta) ** 4 - 1.13973759348715e64 * cos(theta) ** 2 + 6.70433878521854e61 ) * cos(40 * phi) ) # @torch.jit.script def Yl44_m41(theta, phi): return ( 5.49261609750345e-64 * (1.0 - cos(theta) ** 2) ** 20.5 * (6.61047804222548e65 * cos(theta) ** 3 - 2.2794751869743e64 * cos(theta)) * cos(41 * phi) ) # @torch.jit.script def Yl44_m42(theta, phi): return ( 3.4195534181066e-65 * (1.0 - cos(theta) ** 2) ** 21 * (1.98314341266764e66 * cos(theta) ** 2 - 2.2794751869743e64) * cos(42 * phi) ) # @torch.jit.script def Yl44_m43(theta, phi): return ( 10.2820304486063 * (1.0 - cos(theta) ** 2) ** 21.5 * cos(43 * phi) * cos(theta) ) # @torch.jit.script def Yl44_m44(theta, phi): return 1.09606812861653 * (1.0 - cos(theta) ** 2) ** 22 * cos(44 * phi) # @torch.jit.script def Yl45_m_minus_45(theta, phi): return 1.10214057468876 * (1.0 - cos(theta) ** 2) ** 22.5 * sin(45 * phi) # @torch.jit.script def Yl45_m_minus_44(theta, phi): return 10.4558235531102 * (1.0 - cos(theta) ** 2) ** 22 * sin(44 * phi) * cos(theta) # @torch.jit.script def Yl45_m_minus_43(theta, phi): return ( 3.95179241074826e-67 * (1.0 - cos(theta) ** 2) ** 21.5 * (1.7649976372742e68 * cos(theta) ** 2 - 1.98314341266764e66) * sin(43 * phi) ) # @torch.jit.script def Yl45_m_minus_42(theta, phi): return ( 6.42090266241355e-66 * (1.0 - cos(theta) ** 2) ** 21 * (5.88332545758067e67 * cos(theta) ** 3 - 1.98314341266764e66 * cos(theta)) * sin(42 * phi) ) # @torch.jit.script def Yl45_m_minus_41(theta, phi): return ( 1.19780385990637e-64 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 1.47083136439517e67 * cos(theta) ** 4 - 9.91571706333822e65 * cos(theta) ** 2 + 5.69868796743576e63 ) * sin(41 * phi) ) # @torch.jit.script def Yl45_m_minus_40(theta, phi): return ( 2.4838189493738e-63 * (1.0 - cos(theta) ** 2) ** 20 * ( 2.94166272879034e66 * cos(theta) ** 5 - 3.30523902111274e65 * cos(theta) ** 3 + 5.69868796743576e63 * cos(theta) ) * sin(40 * phi) ) # @torch.jit.script def Yl45_m_minus_39(theta, phi): return ( 5.60925293810759e-62 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 4.90277121465056e65 * cos(theta) ** 6 - 8.26309755278185e64 * cos(theta) ** 4 + 2.84934398371788e63 * cos(theta) ** 2 - 1.11738979753642e61 ) * sin(39 * phi) ) # @torch.jit.script def Yl45_m_minus_38(theta, phi): return ( 1.36017155138303e-60 * (1.0 - cos(theta) ** 2) ** 19 * ( 7.00395887807223e64 * cos(theta) ** 7 - 1.65261951055637e64 * cos(theta) ** 5 + 9.49781327905959e62 * cos(theta) ** 3 - 1.11738979753642e61 * cos(theta) ) * sin(38 * phi) ) # @torch.jit.script def Yl45_m_minus_37(theta, phi): return ( 3.50491691066036e-59 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 8.75494859759029e63 * cos(theta) ** 8 - 2.75436585092728e63 * cos(theta) ** 6 + 2.3744533197649e62 * cos(theta) ** 4 - 5.58694898768211e60 * cos(theta) ** 2 + 1.68281596014522e58 ) * sin(37 * phi) ) # @torch.jit.script def Yl45_m_minus_36(theta, phi): return ( 9.52151175096011e-58 * (1.0 - cos(theta) ** 2) ** 18 * ( 9.72772066398921e62 * cos(theta) ** 9 - 3.93480835846755e62 * cos(theta) ** 7 + 4.7489066395298e61 * cos(theta) ** 5 - 1.86231632922737e60 * cos(theta) ** 3 + 1.68281596014522e58 * cos(theta) ) * sin(36 * phi) ) # @torch.jit.script def Yl45_m_minus_35(theta, phi): return ( 2.70986975109827e-56 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 9.72772066398921e61 * cos(theta) ** 10 - 4.91851044808443e61 * cos(theta) ** 8 + 7.91484439921633e60 * cos(theta) ** 6 - 4.65579082306843e59 * cos(theta) ** 4 + 8.41407980072608e57 * cos(theta) ** 2 - 2.07755056808051e55 ) * sin(35 * phi) ) # @torch.jit.script def Yl45_m_minus_34(theta, phi): return ( 8.03877277932851e-55 * (1.0 - cos(theta) ** 2) ** 17 * ( 8.84338242180837e60 * cos(theta) ** 11 - 5.4650116089827e60 * cos(theta) ** 9 + 1.1306920570309e60 * cos(theta) ** 7 - 9.31158164613686e58 * cos(theta) ** 5 + 2.80469326690869e57 * cos(theta) ** 3 - 2.07755056808051e55 * cos(theta) ) * sin(34 * phi) ) # @torch.jit.script def Yl45_m_minus_33(theta, phi): return ( 2.47510667794732e-53 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 7.36948535150698e59 * cos(theta) ** 12 - 5.4650116089827e59 * cos(theta) ** 10 + 1.41336507128863e59 * cos(theta) ** 8 - 1.55193027435614e58 * cos(theta) ** 6 + 7.01173316727173e56 * cos(theta) ** 4 - 1.03877528404026e55 * cos(theta) ** 2 + 2.19150903805961e52 ) * sin(33 * phi) ) # @torch.jit.script def Yl45_m_minus_32(theta, phi): return ( 7.88157294590393e-52 * (1.0 - cos(theta) ** 2) ** 16 * ( 5.6688348857746e58 * cos(theta) ** 13 - 4.96819237180246e58 * cos(theta) ** 11 + 1.57040563476514e58 * cos(theta) ** 9 - 2.2170432490802e57 * cos(theta) ** 7 + 1.40234663345435e56 * cos(theta) ** 5 - 3.46258428013419e54 * cos(theta) ** 3 + 2.19150903805961e52 * cos(theta) ) * sin(32 * phi) ) # @torch.jit.script def Yl45_m_minus_31(theta, phi): return ( 2.5877497770366e-50 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 4.04916777555328e57 * cos(theta) ** 14 - 4.14016030983538e57 * cos(theta) ** 12 + 1.57040563476514e57 * cos(theta) ** 10 - 2.77130406135025e56 * cos(theta) ** 8 + 2.33724438909058e55 * cos(theta) ** 6 - 8.65646070033547e53 * cos(theta) ** 4 + 1.09575451902981e52 * cos(theta) ** 2 - 2.03293973845975e49 ) * sin(31 * phi) ) # @torch.jit.script def Yl45_m_minus_30(theta, phi): return ( 8.73724885518915e-49 * (1.0 - cos(theta) ** 2) ** 15 * ( 2.69944518370219e56 * cos(theta) ** 15 - 3.18473869987337e56 * cos(theta) ** 13 + 1.42764148615013e56 * cos(theta) ** 11 - 3.07922673483362e55 * cos(theta) ** 9 + 3.33892055584368e54 * cos(theta) ** 7 - 1.73129214006709e53 * cos(theta) ** 5 + 3.65251506343269e51 * cos(theta) ** 3 - 2.03293973845975e49 * cos(theta) ) * sin(30 * phi) ) # @torch.jit.script def Yl45_m_minus_29(theta, phi): return ( 3.02667178711212e-47 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 1.68715323981387e55 * cos(theta) ** 16 - 2.27481335705241e55 * cos(theta) ** 14 + 1.18970123845844e55 * cos(theta) ** 12 - 3.07922673483362e54 * cos(theta) ** 10 + 4.1736506948046e53 * cos(theta) ** 8 - 2.88548690011182e52 * cos(theta) ** 6 + 9.13128765858172e50 * cos(theta) ** 4 - 1.01646986922988e49 * cos(theta) ** 2 + 1.69411644871646e46 ) * sin(29 * phi) ) # @torch.jit.script def Yl45_m_minus_28(theta, phi): return ( 1.07350889938001e-45 * (1.0 - cos(theta) ** 2) ** 14 * ( 9.92443082243452e53 * cos(theta) ** 17 - 1.51654223803494e54 * cos(theta) ** 15 + 9.15154798814187e53 * cos(theta) ** 13 - 2.79929703166692e53 * cos(theta) ** 11 + 4.637389660894e52 * cos(theta) ** 9 - 4.12212414301689e51 * cos(theta) ** 7 + 1.82625753171634e50 * cos(theta) ** 5 - 3.38823289743292e48 * cos(theta) ** 3 + 1.69411644871646e46 * cos(theta) ) * sin(28 * phi) ) # @torch.jit.script def Yl45_m_minus_27(theta, phi): return ( 3.89137721528147e-44 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 5.51357267913029e52 * cos(theta) ** 18 - 9.47838898771836e52 * cos(theta) ** 16 + 6.5368199915299e52 * cos(theta) ** 14 - 2.3327475263891e52 * cos(theta) ** 12 + 4.637389660894e51 * cos(theta) ** 10 - 5.15265517877111e50 * cos(theta) ** 8 + 3.04376255286057e49 * cos(theta) ** 6 - 8.4705822435823e47 * cos(theta) ** 4 + 8.4705822435823e45 * cos(theta) ** 2 - 1.28928192444175e43 ) * sin(27 * phi) ) # @torch.jit.script def Yl45_m_minus_26(theta, phi): return ( 1.43928361180293e-42 * (1.0 - cos(theta) ** 2) ** 13 * ( 2.90188035743699e51 * cos(theta) ** 19 - 5.57552293395198e51 * cos(theta) ** 17 + 4.35787999435327e51 * cos(theta) ** 15 - 1.79442117414546e51 * cos(theta) ** 13 + 4.21580878263091e50 * cos(theta) ** 11 - 5.72517242085679e49 * cos(theta) ** 9 + 4.34823221837225e48 * cos(theta) ** 7 - 1.69411644871646e47 * cos(theta) ** 5 + 2.82352741452743e45 * cos(theta) ** 3 - 1.28928192444175e43 * cos(theta) ) * sin(26 * phi) ) # @torch.jit.script def Yl45_m_minus_25(theta, phi): return ( 5.42363622267421e-41 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 1.4509401787185e50 * cos(theta) ** 20 - 3.09751274108443e50 * cos(theta) ** 18 + 2.72367499647079e50 * cos(theta) ** 16 - 1.2817294101039e50 * cos(theta) ** 14 + 3.51317398552576e49 * cos(theta) ** 12 - 5.72517242085679e48 * cos(theta) ** 10 + 5.43529027296531e47 * cos(theta) ** 8 - 2.82352741452743e46 * cos(theta) ** 6 + 7.05881853631858e44 * cos(theta) ** 4 - 6.44640962220875e42 * cos(theta) ** 2 + 9.079450172125e39 ) * sin(25 * phi) ) # @torch.jit.script def Yl45_m_minus_24(theta, phi): return ( 2.07945353200254e-39 * (1.0 - cos(theta) ** 2) ** 12 * ( 6.90923894627856e48 * cos(theta) ** 21 - 1.63026986372865e49 * cos(theta) ** 19 + 1.60216176262988e49 * cos(theta) ** 17 - 8.54486273402602e48 * cos(theta) ** 15 + 2.70244152732751e48 * cos(theta) ** 13 - 5.2047022007789e47 * cos(theta) ** 11 + 6.0392114144059e46 * cos(theta) ** 9 - 4.03361059218205e45 * cos(theta) ** 7 + 1.41176370726372e44 * cos(theta) ** 5 - 2.14880320740292e42 * cos(theta) ** 3 + 9.079450172125e39 * cos(theta) ) * sin(24 * phi) ) # @torch.jit.script def Yl45_m_minus_23(theta, phi): return ( 8.10186692897904e-38 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 3.14056315739934e47 * cos(theta) ** 22 - 8.15134931864324e47 * cos(theta) ** 20 + 8.9008986812771e47 * cos(theta) ** 18 - 5.34053920876626e47 * cos(theta) ** 16 + 1.9303153766625e47 * cos(theta) ** 14 - 4.33725183398242e46 * cos(theta) ** 12 + 6.0392114144059e45 * cos(theta) ** 10 - 5.04201324022756e44 * cos(theta) ** 8 + 2.35293951210619e43 * cos(theta) ** 6 - 5.37200801850729e41 * cos(theta) ** 4 + 4.5397250860625e39 * cos(theta) ** 2 - 5.9811924717556e36 ) * sin(23 * phi) ) # @torch.jit.script def Yl45_m_minus_22(theta, phi): return ( 3.20408095180754e-36 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.36546224234754e46 * cos(theta) ** 23 - 3.88159491363964e46 * cos(theta) ** 21 + 4.68468351646163e46 * cos(theta) ** 19 - 3.14149365221545e46 * cos(theta) ** 17 + 1.286876917775e46 * cos(theta) ** 15 - 3.33634756460186e45 * cos(theta) ** 13 + 5.49019219491445e44 * cos(theta) ** 11 - 5.60223693358618e43 * cos(theta) ** 9 + 3.36134216015171e42 * cos(theta) ** 7 - 1.07440160370146e41 * cos(theta) ** 5 + 1.51324169535417e39 * cos(theta) ** 3 - 5.9811924717556e36 * cos(theta) ) * sin(22 * phi) ) # @torch.jit.script def Yl45_m_minus_21(theta, phi): return ( 1.28483246655521e-34 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 5.68942600978142e44 * cos(theta) ** 24 - 1.76436132438165e45 * cos(theta) ** 22 + 2.34234175823082e45 * cos(theta) ** 20 - 1.7452742512308e45 * cos(theta) ** 18 + 8.04298073609377e44 * cos(theta) ** 16 - 2.38310540328704e44 * cos(theta) ** 14 + 4.57516016242871e43 * cos(theta) ** 12 - 5.60223693358618e42 * cos(theta) ** 10 + 4.20167770018963e41 * cos(theta) ** 8 - 1.79066933950243e40 * cos(theta) ** 6 + 3.78310423838542e38 * cos(theta) ** 4 - 2.9905962358778e36 * cos(theta) ** 2 + 3.7196470595495e33 ) * sin(21 * phi) ) # @torch.jit.script def Yl45_m_minus_20(theta, phi): return ( 5.21901415090882e-33 * (1.0 - cos(theta) ** 2) ** 10 * ( 2.27577040391257e43 * cos(theta) ** 25 - 7.67113619296371e43 * cos(theta) ** 23 + 1.11540083725277e44 * cos(theta) ** 21 - 9.18565395384634e43 * cos(theta) ** 19 + 4.73116513887869e43 * cos(theta) ** 17 - 1.5887369355247e43 * cos(theta) ** 15 + 3.51935397109901e42 * cos(theta) ** 13 - 5.09294266689652e41 * cos(theta) ** 11 + 4.66853077798848e40 * cos(theta) ** 9 - 2.55809905643204e39 * cos(theta) ** 7 + 7.56620847677083e37 * cos(theta) ** 5 - 9.96865411959267e35 * cos(theta) ** 3 + 3.7196470595495e33 * cos(theta) ) * sin(20 * phi) ) # @torch.jit.script def Yl45_m_minus_19(theta, phi): return ( 2.14551634147781e-31 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 8.75296309197142e41 * cos(theta) ** 26 - 3.19630674706821e42 * cos(theta) ** 24 + 5.07000380569441e42 * cos(theta) ** 22 - 4.59282697692317e42 * cos(theta) ** 20 + 2.62842507715483e42 * cos(theta) ** 18 - 9.92960584702934e41 * cos(theta) ** 16 + 2.51382426507072e41 * cos(theta) ** 14 - 4.24411888908044e40 * cos(theta) ** 12 + 4.66853077798848e39 * cos(theta) ** 10 - 3.19762382054005e38 * cos(theta) ** 8 + 1.26103474612847e37 * cos(theta) ** 6 - 2.49216352989817e35 * cos(theta) ** 4 + 1.85982352977475e33 * cos(theta) ** 2 - 2.20097459144941e30 ) * sin(19 * phi) ) # @torch.jit.script def Yl45_m_minus_18(theta, phi): return ( 8.91874394858126e-30 * (1.0 - cos(theta) ** 2) ** 9 * ( 3.24183818221164e40 * cos(theta) ** 27 - 1.27852269882729e41 * cos(theta) ** 25 + 2.2043494807367e41 * cos(theta) ** 23 - 2.18706046520151e41 * cos(theta) ** 21 + 1.38338161955517e41 * cos(theta) ** 19 - 5.84094461589961e40 * cos(theta) ** 17 + 1.67588284338048e40 * cos(theta) ** 15 - 3.26470683775418e39 * cos(theta) ** 13 + 4.24411888908044e38 * cos(theta) ** 11 - 3.55291535615562e37 * cos(theta) ** 9 + 1.80147820875496e36 * cos(theta) ** 7 - 4.98432705979633e34 * cos(theta) ** 5 + 6.19941176591584e32 * cos(theta) ** 3 - 2.20097459144941e30 * cos(theta) ) * sin(18 * phi) ) # @torch.jit.script def Yl45_m_minus_17(theta, phi): return ( 3.74587245840413e-28 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.15779935078987e39 * cos(theta) ** 28 - 4.91739499548956e39 * cos(theta) ** 26 + 9.18478950306958e39 * cos(theta) ** 24 - 9.94118393273413e39 * cos(theta) ** 22 + 6.91690809777586e39 * cos(theta) ** 20 - 3.24496923105534e39 * cos(theta) ** 18 + 1.0474267771128e39 * cos(theta) ** 16 - 2.3319334555387e38 * cos(theta) ** 14 + 3.53676574090036e37 * cos(theta) ** 12 - 3.55291535615562e36 * cos(theta) ** 10 + 2.2518477609437e35 * cos(theta) ** 8 - 8.30721176632722e33 * cos(theta) ** 6 + 1.54985294147896e32 * cos(theta) ** 4 - 1.1004872957247e30 * cos(theta) ** 2 + 1.24771802236361e27 ) * sin(17 * phi) ) # @torch.jit.script def Yl45_m_minus_16(theta, phi): return ( 1.5883559340836e-26 * (1.0 - cos(theta) ** 2) ** 8 * ( 3.99241155444783e37 * cos(theta) ** 29 - 1.82125740573687e38 * cos(theta) ** 27 + 3.67391580122783e38 * cos(theta) ** 25 - 4.32225388379745e38 * cos(theta) ** 23 + 3.29376576084565e38 * cos(theta) ** 21 - 1.70787854266071e38 * cos(theta) ** 19 + 6.16133398301647e37 * cos(theta) ** 17 - 1.55462230369247e37 * cos(theta) ** 15 + 2.72058903146182e36 * cos(theta) ** 13 - 3.22992305105056e35 * cos(theta) ** 11 + 2.50205306771522e34 * cos(theta) ** 9 - 1.18674453804675e33 * cos(theta) ** 7 + 3.09970588295792e31 * cos(theta) ** 5 - 3.66829098574902e29 * cos(theta) ** 3 + 1.24771802236361e27 * cos(theta) ) * sin(16 * phi) ) # @torch.jit.script def Yl45_m_minus_15(theta, phi): return ( 6.79474831705311e-25 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.33080385148261e36 * cos(theta) ** 30 - 6.50449073477455e36 * cos(theta) ** 28 + 1.41304453893378e37 * cos(theta) ** 26 - 1.80093911824894e37 * cos(theta) ** 24 + 1.49716625492984e37 * cos(theta) ** 22 - 8.53939271330353e36 * cos(theta) ** 20 + 3.42296332389804e36 * cos(theta) ** 18 - 9.71638939807792e35 * cos(theta) ** 16 + 1.94327787961558e35 * cos(theta) ** 14 - 2.69160254254213e34 * cos(theta) ** 12 + 2.50205306771522e33 * cos(theta) ** 10 - 1.48343067255843e32 * cos(theta) ** 8 + 5.16617647159653e30 * cos(theta) ** 6 - 9.17072746437254e28 * cos(theta) ** 4 + 6.23859011181806e26 * cos(theta) ** 2 - 6.81813126974651e23 ) * sin(15 * phi) ) # @torch.jit.script def Yl45_m_minus_14(theta, phi): return ( 2.93041984581218e-23 * (1.0 - cos(theta) ** 2) ** 7 * ( 4.2929156499439e34 * cos(theta) ** 31 - 2.24292783957743e35 * cos(theta) ** 29 + 5.23349829234734e35 * cos(theta) ** 27 - 7.20375647299575e35 * cos(theta) ** 25 + 6.50941849969495e35 * cos(theta) ** 23 - 4.06637748252549e35 * cos(theta) ** 21 + 1.80155964415686e35 * cos(theta) ** 19 - 5.71552317533995e34 * cos(theta) ** 17 + 1.29551858641039e34 * cos(theta) ** 15 - 2.07046349426318e33 * cos(theta) ** 13 + 2.27459369792293e32 * cos(theta) ** 11 - 1.6482563028427e31 * cos(theta) ** 9 + 7.38025210228076e29 * cos(theta) ** 7 - 1.83414549287451e28 * cos(theta) ** 5 + 2.07953003727268e26 * cos(theta) ** 3 - 6.81813126974651e23 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl45_m_minus_13(theta, phi): return ( 1.27330030128458e-21 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.34153614060747e33 * cos(theta) ** 32 - 7.47642613192477e33 * cos(theta) ** 30 + 1.86910653298119e34 * cos(theta) ** 28 - 2.77067556653683e34 * cos(theta) ** 26 + 2.71225770820623e34 * cos(theta) ** 24 - 1.84835340114795e34 * cos(theta) ** 22 + 9.00779822078431e33 * cos(theta) ** 20 - 3.17529065296664e33 * cos(theta) ** 18 + 8.09699116506493e32 * cos(theta) ** 16 - 1.47890249590227e32 * cos(theta) ** 14 + 1.89549474826911e31 * cos(theta) ** 12 - 1.6482563028427e30 * cos(theta) ** 10 + 9.22531512785095e28 * cos(theta) ** 8 - 3.05690915479085e27 * cos(theta) ** 6 + 5.19882509318171e25 * cos(theta) ** 4 - 3.40906563487325e23 * cos(theta) ** 2 + 3.61129834202675e20 ) * sin(13 * phi) ) # @torch.jit.script def Yl45_m_minus_12(theta, phi): return ( 5.57059786735605e-20 * (1.0 - cos(theta) ** 2) ** 6 * ( 4.06526103214385e31 * cos(theta) ** 33 - 2.41175036513702e32 * cos(theta) ** 31 + 6.44519494131446e32 * cos(theta) ** 29 - 1.02617613575438e33 * cos(theta) ** 27 + 1.08490308328249e33 * cos(theta) ** 25 - 8.03631913542587e32 * cos(theta) ** 23 + 4.28942772418301e32 * cos(theta) ** 21 - 1.67120560682455e32 * cos(theta) ** 19 + 4.76293597944996e31 * cos(theta) ** 17 - 9.85934997268181e30 * cos(theta) ** 15 + 1.45807288328393e30 * cos(theta) ** 13 - 1.49841482076609e29 * cos(theta) ** 11 + 1.02503501420566e28 * cos(theta) ** 9 - 4.36701307827264e26 * cos(theta) ** 7 + 1.03976501863634e25 * cos(theta) ** 5 - 1.13635521162442e23 * cos(theta) ** 3 + 3.61129834202675e20 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl45_m_minus_11(theta, phi): return ( 2.45232877980087e-18 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.19566500945407e30 * cos(theta) ** 34 - 7.5367198910532e30 * cos(theta) ** 32 + 2.14839831377149e31 * cos(theta) ** 30 - 3.66491477055136e31 * cos(theta) ** 28 + 4.17270416647112e31 * cos(theta) ** 26 - 3.34846630642745e31 * cos(theta) ** 24 + 1.94973987462864e31 * cos(theta) ** 22 - 8.35602803412274e30 * cos(theta) ** 20 + 2.64607554413887e30 * cos(theta) ** 18 - 6.16209373292613e29 * cos(theta) ** 16 + 1.04148063091709e29 * cos(theta) ** 14 - 1.24867901730508e28 * cos(theta) ** 12 + 1.02503501420566e27 * cos(theta) ** 10 - 5.4587663478408e25 * cos(theta) ** 8 + 1.73294169772724e24 * cos(theta) ** 6 - 2.84088802906104e22 * cos(theta) ** 4 + 1.80564917101338e20 * cos(theta) ** 2 - 1.86341503716551e17 ) * sin(11 * phi) ) # @torch.jit.script def Yl45_m_minus_10(theta, phi): return ( 1.08569223220532e-16 * (1.0 - cos(theta) ** 2) ** 5 * ( 3.41618574129735e28 * cos(theta) ** 35 - 2.28385451244036e29 * cos(theta) ** 33 + 6.93031714119834e29 * cos(theta) ** 31 - 1.26376371398323e30 * cos(theta) ** 29 + 1.5454459875819e30 * cos(theta) ** 27 - 1.33938652257098e30 * cos(theta) ** 25 + 8.47712988968974e29 * cos(theta) ** 23 - 3.97906096862988e29 * cos(theta) ** 21 + 1.39267133902046e29 * cos(theta) ** 19 - 3.62476101936831e28 * cos(theta) ** 17 + 6.94320420611395e27 * cos(theta) ** 15 - 9.60522321003906e26 * cos(theta) ** 13 + 9.31850012914237e25 * cos(theta) ** 11 - 6.06529594204533e24 * cos(theta) ** 9 + 2.4756309967532e23 * cos(theta) ** 7 - 5.68177605812209e21 * cos(theta) ** 5 + 6.01883057004459e19 * cos(theta) ** 3 - 1.86341503716551e17 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl45_m_minus_9(theta, phi): return ( 4.83102545395957e-15 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 9.48940483693708e26 * cos(theta) ** 36 - 6.71721915423636e27 * cos(theta) ** 34 + 2.16572410662448e28 * cos(theta) ** 32 - 4.21254571327742e28 * cos(theta) ** 30 + 5.51944995564964e28 * cos(theta) ** 28 - 5.15148662527299e28 * cos(theta) ** 26 + 3.53213745403739e28 * cos(theta) ** 24 - 1.80866407664994e28 * cos(theta) ** 22 + 6.96335669510228e27 * cos(theta) ** 20 - 2.01375612187128e27 * cos(theta) ** 18 + 4.33950262882122e26 * cos(theta) ** 16 - 6.86087372145647e25 * cos(theta) ** 14 + 7.76541677428531e24 * cos(theta) ** 12 - 6.06529594204533e23 * cos(theta) ** 10 + 3.0945387459415e22 * cos(theta) ** 8 - 9.46962676353682e20 * cos(theta) ** 6 + 1.50470764251115e19 * cos(theta) ** 4 - 9.31707518582753e16 * cos(theta) ** 2 + 94111870563914.5 ) * sin(9 * phi) ) # @torch.jit.script def Yl45_m_minus_8(theta, phi): return ( 2.15941974288782e-13 * (1.0 - cos(theta) ** 2) ** 4 * ( 2.56470400998299e25 * cos(theta) ** 37 - 1.91920547263896e26 * cos(theta) ** 35 + 6.56280032310449e26 * cos(theta) ** 33 - 1.35888571396046e27 * cos(theta) ** 31 + 1.90325860539643e27 * cos(theta) ** 29 - 1.90795800936037e27 * cos(theta) ** 27 + 1.41285498161496e27 * cos(theta) ** 25 - 7.86375685499976e26 * cos(theta) ** 23 + 3.3158841405249e26 * cos(theta) ** 21 - 1.05987164309015e26 * cos(theta) ** 19 + 2.55264860518895e25 * cos(theta) ** 17 - 4.57391581430431e24 * cos(theta) ** 15 + 5.97339751868101e23 * cos(theta) ** 13 - 5.51390540185939e22 * cos(theta) ** 11 + 3.43837638437944e21 * cos(theta) ** 9 - 1.3528038233624e20 * cos(theta) ** 7 + 3.00941528502229e18 * cos(theta) ** 5 - 3.10569172860918e16 * cos(theta) ** 3 + 94111870563914.5 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl45_m_minus_7(theta, phi): return ( 9.69095999512484e-12 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 6.74922107890262e23 * cos(theta) ** 38 - 5.331126312886e24 * cos(theta) ** 36 + 1.93023538914838e25 * cos(theta) ** 34 - 4.24651785612643e25 * cos(theta) ** 32 + 6.34419535132142e25 * cos(theta) ** 30 - 6.8141357477156e25 * cos(theta) ** 28 + 5.43405762159598e25 * cos(theta) ** 26 - 3.2765653562499e25 * cos(theta) ** 24 + 1.50722006387495e25 * cos(theta) ** 22 - 5.29935821545075e24 * cos(theta) ** 20 + 1.41813811399386e24 * cos(theta) ** 18 - 2.8586973839402e23 * cos(theta) ** 16 + 4.26671251334358e22 * cos(theta) ** 14 - 4.59492116821616e21 * cos(theta) ** 12 + 3.43837638437944e20 * cos(theta) ** 10 - 1.691004779203e19 * cos(theta) ** 8 + 5.01569214170382e17 * cos(theta) ** 6 - 7.76422932152295e15 * cos(theta) ** 4 + 47055935281957.2 * cos(theta) ** 2 - 46728833447.8225 ) * sin(7 * phi) ) # @torch.jit.script def Yl45_m_minus_6(theta, phi): return ( 4.36416112227515e-10 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.73056950741093e22 * cos(theta) ** 39 - 1.44084494942865e23 * cos(theta) ** 37 + 5.51495825470966e23 * cos(theta) ** 35 - 1.28682359276559e24 * cos(theta) ** 33 + 2.04651462945852e24 * cos(theta) ** 31 - 2.3497019819709e24 * cos(theta) ** 29 + 2.01261393392444e24 * cos(theta) ** 27 - 1.31062614249996e24 * cos(theta) ** 25 + 6.5531307124998e23 * cos(theta) ** 23 - 2.5235039121194e23 * cos(theta) ** 21 + 7.46388481049401e22 * cos(theta) ** 19 - 1.68158669643541e22 * cos(theta) ** 17 + 2.84447500889572e21 * cos(theta) ** 15 - 3.53455474478166e20 * cos(theta) ** 13 + 3.12579671307222e19 * cos(theta) ** 11 - 1.87889419911445e18 * cos(theta) ** 9 + 7.16527448814832e16 * cos(theta) ** 7 - 1.55284586430459e15 * cos(theta) ** 5 + 15685311760652.4 * cos(theta) ** 3 - 46728833447.8225 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl45_m_minus_5(theta, phi): return ( 1.97113268691894e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 4.32642376852732e20 * cos(theta) ** 40 - 3.79169723533855e21 * cos(theta) ** 38 + 1.53193284853046e22 * cos(theta) ** 36 - 3.78477527283996e22 * cos(theta) ** 34 + 6.39535821705788e22 * cos(theta) ** 32 - 7.83233993990299e22 * cos(theta) ** 30 + 7.187906906873e22 * cos(theta) ** 28 - 5.040869778846e22 * cos(theta) ** 26 + 2.73047113020825e22 * cos(theta) ** 24 - 1.14704723278155e22 * cos(theta) ** 22 + 3.73194240524701e21 * cos(theta) ** 20 - 9.34214831353005e20 * cos(theta) ** 18 + 1.77779688055982e20 * cos(theta) ** 16 - 2.52468196055833e19 * cos(theta) ** 14 + 2.60483059422685e18 * cos(theta) ** 12 - 1.87889419911445e17 * cos(theta) ** 10 + 8.9565931101854e15 * cos(theta) ** 8 - 258807644050765.0 * cos(theta) ** 6 + 3921327940163.1 * cos(theta) ** 4 - 23364416723.9112 * cos(theta) ** 2 + 22906290.9057953 ) * sin(5 * phi) ) # @torch.jit.script def Yl45_m_minus_4(theta, phi): return ( 8.92468281921133e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 1.05522530939691e19 * cos(theta) ** 41 - 9.72230060343218e19 * cos(theta) ** 39 + 4.14035905008232e20 * cos(theta) ** 37 - 1.08136436366856e21 * cos(theta) ** 35 + 1.93798733850239e21 * cos(theta) ** 33 - 2.52656127093645e21 * cos(theta) ** 31 + 2.4785885885769e21 * cos(theta) ** 29 - 1.86698880698e21 * cos(theta) ** 27 + 1.0921884520833e21 * cos(theta) ** 25 - 4.9871618816589e20 * cos(theta) ** 23 + 1.77711543107e20 * cos(theta) ** 21 - 4.91692016501582e19 * cos(theta) ** 19 + 1.04576287091754e19 * cos(theta) ** 17 - 1.68312130703889e18 * cos(theta) ** 15 + 2.00371584171296e17 * cos(theta) ** 13 - 1.70808563555859e16 * cos(theta) ** 11 + 995177012242822.0 * cos(theta) ** 9 - 36972520578680.7 * cos(theta) ** 7 + 784265588032.621 * cos(theta) ** 5 - 7788138907.97041 * cos(theta) ** 3 + 22906290.9057953 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl45_m_minus_3(theta, phi): return ( 4.0486988616791e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 2.51244121284978e17 * cos(theta) ** 42 - 2.43057515085804e18 * cos(theta) ** 40 + 1.0895681710743e19 * cos(theta) ** 38 - 3.00378989907933e19 * cos(theta) ** 36 + 5.69996276030114e19 * cos(theta) ** 34 - 7.8955039716764e19 * cos(theta) ** 32 + 8.26196196192298e19 * cos(theta) ** 30 - 6.66781716778571e19 * cos(theta) ** 28 + 4.200724815705e19 * cos(theta) ** 26 - 2.07798411735788e19 * cos(theta) ** 24 + 8.07779741395456e18 * cos(theta) ** 22 - 2.45846008250791e18 * cos(theta) ** 20 + 5.80979372731969e17 * cos(theta) ** 18 - 1.0519508168993e17 * cos(theta) ** 16 + 1.43122560122354e16 * cos(theta) ** 14 - 1.42340469629882e15 * cos(theta) ** 12 + 99517701224282.2 * cos(theta) ** 10 - 4621565072335.09 * cos(theta) ** 8 + 130710931338.77 * cos(theta) ** 6 - 1947034726.9926 * cos(theta) ** 4 + 11453145.4528977 * cos(theta) ** 2 - 11130.3648716207 ) * sin(3 * phi) ) # @torch.jit.script def Yl45_m_minus_2(theta, phi): return ( 0.00183937518041772 * (1.0 - cos(theta) ** 2) * ( 5.84288654151111e15 * cos(theta) ** 43 - 5.92823207526352e16 * cos(theta) ** 41 + 2.79376454121614e17 * cos(theta) ** 39 - 8.11835107859279e17 * cos(theta) ** 37 + 1.62856078865747e18 * cos(theta) ** 35 - 2.39257696111406e18 * cos(theta) ** 33 + 2.66514901997516e18 * cos(theta) ** 31 - 2.29924729923645e18 * cos(theta) ** 29 + 1.55582400581667e18 * cos(theta) ** 27 - 8.3119364694315e17 * cos(theta) ** 25 + 3.51208583215416e17 * cos(theta) ** 23 - 1.17069527738472e17 * cos(theta) ** 21 + 3.05778617227352e16 * cos(theta) ** 19 - 6.18794598176061e15 * cos(theta) ** 17 + 954150400815695.0 * cos(theta) ** 15 - 109492668946063.0 * cos(theta) ** 13 + 9047063747662.02 * cos(theta) ** 11 - 513507230259.454 * cos(theta) ** 9 + 18672990191.2529 * cos(theta) ** 7 - 389406945.398521 * cos(theta) ** 5 + 3817715.15096589 * cos(theta) ** 3 - 11130.3648716207 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl45_m_minus_1(theta, phi): return ( 0.0836460792886812 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 132792875943434.0 * cos(theta) ** 44 - 1.4114838274437e15 * cos(theta) ** 42 + 6.98441135304036e15 * cos(theta) ** 40 - 2.13640817857705e16 * cos(theta) ** 38 + 4.52377996849297e16 * cos(theta) ** 36 - 7.03699106210018e16 * cos(theta) ** 34 + 8.32859068742236e16 * cos(theta) ** 32 - 7.66415766412151e16 * cos(theta) ** 30 + 5.55651430648809e16 * cos(theta) ** 28 - 3.19689864208904e16 * cos(theta) ** 26 + 1.4633690967309e16 * cos(theta) ** 24 - 5.32134216993054e15 * cos(theta) ** 22 + 1.52889308613676e15 * cos(theta) ** 20 - 343774776764478.0 * cos(theta) ** 18 + 59634400050981.0 * cos(theta) ** 16 - 7820904924718.81 * cos(theta) ** 14 + 753921978971.835 * cos(theta) ** 12 - 51350723025.9454 * cos(theta) ** 10 + 2334123773.90661 * cos(theta) ** 8 - 64901157.5664201 * cos(theta) ** 6 + 954428.787741472 * cos(theta) ** 4 - 5565.18243581033 * cos(theta) ** 2 + 5.38218804236976 ) * sin(phi) ) # @torch.jit.script def Yl45_m0(theta, phi): return ( 24947549886958.4 * cos(theta) ** 45 - 277506453798751.0 * cos(theta) ** 43 + 1.4401628033349e15 * cos(theta) ** 41 - 4.63111175974358e15 * cos(theta) ** 39 + 1.03363066685843e16 * cos(theta) ** 37 - 1.69974820772276e16 * cos(theta) ** 35 + 2.13365017636084e16 * cos(theta) ** 33 - 2.09010629521062e16 * cos(theta) ** 31 + 1.61983237878823e16 * cos(theta) ** 29 - 1.0009923071355e16 * cos(theta) ** 27 + 4.94856760288112e15 * cos(theta) ** 25 - 1.95595557426131e15 * cos(theta) ** 23 + 615493482945413.0 * cos(theta) ** 21 - 152962877418387.0 * cos(theta) ** 19 + 29656068070911.7 * cos(theta) ** 17 - 4407896456441.52 * cos(theta) ** 15 + 490285093142.33 * cos(theta) ** 13 - 39465673132.2 * cos(theta) ** 11 + 2192537396.23333 * cos(theta) ** 9 - 78382667.5912611 * cos(theta) ** 7 + 1613760.80334949 * cos(theta) ** 5 - 15682.8066409086 * cos(theta) ** 3 + 45.5013732328102 * cos(theta) ) # @torch.jit.script def Yl45_m1(theta, phi): return ( 0.0836460792886812 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 132792875943434.0 * cos(theta) ** 44 - 1.4114838274437e15 * cos(theta) ** 42 + 6.98441135304036e15 * cos(theta) ** 40 - 2.13640817857705e16 * cos(theta) ** 38 + 4.52377996849297e16 * cos(theta) ** 36 - 7.03699106210018e16 * cos(theta) ** 34 + 8.32859068742236e16 * cos(theta) ** 32 - 7.66415766412151e16 * cos(theta) ** 30 + 5.55651430648809e16 * cos(theta) ** 28 - 3.19689864208904e16 * cos(theta) ** 26 + 1.4633690967309e16 * cos(theta) ** 24 - 5.32134216993054e15 * cos(theta) ** 22 + 1.52889308613676e15 * cos(theta) ** 20 - 343774776764478.0 * cos(theta) ** 18 + 59634400050981.0 * cos(theta) ** 16 - 7820904924718.81 * cos(theta) ** 14 + 753921978971.835 * cos(theta) ** 12 - 51350723025.9454 * cos(theta) ** 10 + 2334123773.90661 * cos(theta) ** 8 - 64901157.5664201 * cos(theta) ** 6 + 954428.787741472 * cos(theta) ** 4 - 5565.18243581033 * cos(theta) ** 2 + 5.38218804236976 ) * cos(phi) ) # @torch.jit.script def Yl45_m2(theta, phi): return ( 0.00183937518041772 * (1.0 - cos(theta) ** 2) * ( 5.84288654151111e15 * cos(theta) ** 43 - 5.92823207526352e16 * cos(theta) ** 41 + 2.79376454121614e17 * cos(theta) ** 39 - 8.11835107859279e17 * cos(theta) ** 37 + 1.62856078865747e18 * cos(theta) ** 35 - 2.39257696111406e18 * cos(theta) ** 33 + 2.66514901997516e18 * cos(theta) ** 31 - 2.29924729923645e18 * cos(theta) ** 29 + 1.55582400581667e18 * cos(theta) ** 27 - 8.3119364694315e17 * cos(theta) ** 25 + 3.51208583215416e17 * cos(theta) ** 23 - 1.17069527738472e17 * cos(theta) ** 21 + 3.05778617227352e16 * cos(theta) ** 19 - 6.18794598176061e15 * cos(theta) ** 17 + 954150400815695.0 * cos(theta) ** 15 - 109492668946063.0 * cos(theta) ** 13 + 9047063747662.02 * cos(theta) ** 11 - 513507230259.454 * cos(theta) ** 9 + 18672990191.2529 * cos(theta) ** 7 - 389406945.398521 * cos(theta) ** 5 + 3817715.15096589 * cos(theta) ** 3 - 11130.3648716207 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl45_m3(theta, phi): return ( 4.0486988616791e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 2.51244121284978e17 * cos(theta) ** 42 - 2.43057515085804e18 * cos(theta) ** 40 + 1.0895681710743e19 * cos(theta) ** 38 - 3.00378989907933e19 * cos(theta) ** 36 + 5.69996276030114e19 * cos(theta) ** 34 - 7.8955039716764e19 * cos(theta) ** 32 + 8.26196196192298e19 * cos(theta) ** 30 - 6.66781716778571e19 * cos(theta) ** 28 + 4.200724815705e19 * cos(theta) ** 26 - 2.07798411735788e19 * cos(theta) ** 24 + 8.07779741395456e18 * cos(theta) ** 22 - 2.45846008250791e18 * cos(theta) ** 20 + 5.80979372731969e17 * cos(theta) ** 18 - 1.0519508168993e17 * cos(theta) ** 16 + 1.43122560122354e16 * cos(theta) ** 14 - 1.42340469629882e15 * cos(theta) ** 12 + 99517701224282.2 * cos(theta) ** 10 - 4621565072335.09 * cos(theta) ** 8 + 130710931338.77 * cos(theta) ** 6 - 1947034726.9926 * cos(theta) ** 4 + 11453145.4528977 * cos(theta) ** 2 - 11130.3648716207 ) * cos(3 * phi) ) # @torch.jit.script def Yl45_m4(theta, phi): return ( 8.92468281921133e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 1.05522530939691e19 * cos(theta) ** 41 - 9.72230060343218e19 * cos(theta) ** 39 + 4.14035905008232e20 * cos(theta) ** 37 - 1.08136436366856e21 * cos(theta) ** 35 + 1.93798733850239e21 * cos(theta) ** 33 - 2.52656127093645e21 * cos(theta) ** 31 + 2.4785885885769e21 * cos(theta) ** 29 - 1.86698880698e21 * cos(theta) ** 27 + 1.0921884520833e21 * cos(theta) ** 25 - 4.9871618816589e20 * cos(theta) ** 23 + 1.77711543107e20 * cos(theta) ** 21 - 4.91692016501582e19 * cos(theta) ** 19 + 1.04576287091754e19 * cos(theta) ** 17 - 1.68312130703889e18 * cos(theta) ** 15 + 2.00371584171296e17 * cos(theta) ** 13 - 1.70808563555859e16 * cos(theta) ** 11 + 995177012242822.0 * cos(theta) ** 9 - 36972520578680.7 * cos(theta) ** 7 + 784265588032.621 * cos(theta) ** 5 - 7788138907.97041 * cos(theta) ** 3 + 22906290.9057953 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl45_m5(theta, phi): return ( 1.97113268691894e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 4.32642376852732e20 * cos(theta) ** 40 - 3.79169723533855e21 * cos(theta) ** 38 + 1.53193284853046e22 * cos(theta) ** 36 - 3.78477527283996e22 * cos(theta) ** 34 + 6.39535821705788e22 * cos(theta) ** 32 - 7.83233993990299e22 * cos(theta) ** 30 + 7.187906906873e22 * cos(theta) ** 28 - 5.040869778846e22 * cos(theta) ** 26 + 2.73047113020825e22 * cos(theta) ** 24 - 1.14704723278155e22 * cos(theta) ** 22 + 3.73194240524701e21 * cos(theta) ** 20 - 9.34214831353005e20 * cos(theta) ** 18 + 1.77779688055982e20 * cos(theta) ** 16 - 2.52468196055833e19 * cos(theta) ** 14 + 2.60483059422685e18 * cos(theta) ** 12 - 1.87889419911445e17 * cos(theta) ** 10 + 8.9565931101854e15 * cos(theta) ** 8 - 258807644050765.0 * cos(theta) ** 6 + 3921327940163.1 * cos(theta) ** 4 - 23364416723.9112 * cos(theta) ** 2 + 22906290.9057953 ) * cos(5 * phi) ) # @torch.jit.script def Yl45_m6(theta, phi): return ( 4.36416112227515e-10 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.73056950741093e22 * cos(theta) ** 39 - 1.44084494942865e23 * cos(theta) ** 37 + 5.51495825470966e23 * cos(theta) ** 35 - 1.28682359276559e24 * cos(theta) ** 33 + 2.04651462945852e24 * cos(theta) ** 31 - 2.3497019819709e24 * cos(theta) ** 29 + 2.01261393392444e24 * cos(theta) ** 27 - 1.31062614249996e24 * cos(theta) ** 25 + 6.5531307124998e23 * cos(theta) ** 23 - 2.5235039121194e23 * cos(theta) ** 21 + 7.46388481049401e22 * cos(theta) ** 19 - 1.68158669643541e22 * cos(theta) ** 17 + 2.84447500889572e21 * cos(theta) ** 15 - 3.53455474478166e20 * cos(theta) ** 13 + 3.12579671307222e19 * cos(theta) ** 11 - 1.87889419911445e18 * cos(theta) ** 9 + 7.16527448814832e16 * cos(theta) ** 7 - 1.55284586430459e15 * cos(theta) ** 5 + 15685311760652.4 * cos(theta) ** 3 - 46728833447.8225 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl45_m7(theta, phi): return ( 9.69095999512484e-12 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 6.74922107890262e23 * cos(theta) ** 38 - 5.331126312886e24 * cos(theta) ** 36 + 1.93023538914838e25 * cos(theta) ** 34 - 4.24651785612643e25 * cos(theta) ** 32 + 6.34419535132142e25 * cos(theta) ** 30 - 6.8141357477156e25 * cos(theta) ** 28 + 5.43405762159598e25 * cos(theta) ** 26 - 3.2765653562499e25 * cos(theta) ** 24 + 1.50722006387495e25 * cos(theta) ** 22 - 5.29935821545075e24 * cos(theta) ** 20 + 1.41813811399386e24 * cos(theta) ** 18 - 2.8586973839402e23 * cos(theta) ** 16 + 4.26671251334358e22 * cos(theta) ** 14 - 4.59492116821616e21 * cos(theta) ** 12 + 3.43837638437944e20 * cos(theta) ** 10 - 1.691004779203e19 * cos(theta) ** 8 + 5.01569214170382e17 * cos(theta) ** 6 - 7.76422932152295e15 * cos(theta) ** 4 + 47055935281957.2 * cos(theta) ** 2 - 46728833447.8225 ) * cos(7 * phi) ) # @torch.jit.script def Yl45_m8(theta, phi): return ( 2.15941974288782e-13 * (1.0 - cos(theta) ** 2) ** 4 * ( 2.56470400998299e25 * cos(theta) ** 37 - 1.91920547263896e26 * cos(theta) ** 35 + 6.56280032310449e26 * cos(theta) ** 33 - 1.35888571396046e27 * cos(theta) ** 31 + 1.90325860539643e27 * cos(theta) ** 29 - 1.90795800936037e27 * cos(theta) ** 27 + 1.41285498161496e27 * cos(theta) ** 25 - 7.86375685499976e26 * cos(theta) ** 23 + 3.3158841405249e26 * cos(theta) ** 21 - 1.05987164309015e26 * cos(theta) ** 19 + 2.55264860518895e25 * cos(theta) ** 17 - 4.57391581430431e24 * cos(theta) ** 15 + 5.97339751868101e23 * cos(theta) ** 13 - 5.51390540185939e22 * cos(theta) ** 11 + 3.43837638437944e21 * cos(theta) ** 9 - 1.3528038233624e20 * cos(theta) ** 7 + 3.00941528502229e18 * cos(theta) ** 5 - 3.10569172860918e16 * cos(theta) ** 3 + 94111870563914.5 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl45_m9(theta, phi): return ( 4.83102545395957e-15 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 9.48940483693708e26 * cos(theta) ** 36 - 6.71721915423636e27 * cos(theta) ** 34 + 2.16572410662448e28 * cos(theta) ** 32 - 4.21254571327742e28 * cos(theta) ** 30 + 5.51944995564964e28 * cos(theta) ** 28 - 5.15148662527299e28 * cos(theta) ** 26 + 3.53213745403739e28 * cos(theta) ** 24 - 1.80866407664994e28 * cos(theta) ** 22 + 6.96335669510228e27 * cos(theta) ** 20 - 2.01375612187128e27 * cos(theta) ** 18 + 4.33950262882122e26 * cos(theta) ** 16 - 6.86087372145647e25 * cos(theta) ** 14 + 7.76541677428531e24 * cos(theta) ** 12 - 6.06529594204533e23 * cos(theta) ** 10 + 3.0945387459415e22 * cos(theta) ** 8 - 9.46962676353682e20 * cos(theta) ** 6 + 1.50470764251115e19 * cos(theta) ** 4 - 9.31707518582753e16 * cos(theta) ** 2 + 94111870563914.5 ) * cos(9 * phi) ) # @torch.jit.script def Yl45_m10(theta, phi): return ( 1.08569223220532e-16 * (1.0 - cos(theta) ** 2) ** 5 * ( 3.41618574129735e28 * cos(theta) ** 35 - 2.28385451244036e29 * cos(theta) ** 33 + 6.93031714119834e29 * cos(theta) ** 31 - 1.26376371398323e30 * cos(theta) ** 29 + 1.5454459875819e30 * cos(theta) ** 27 - 1.33938652257098e30 * cos(theta) ** 25 + 8.47712988968974e29 * cos(theta) ** 23 - 3.97906096862988e29 * cos(theta) ** 21 + 1.39267133902046e29 * cos(theta) ** 19 - 3.62476101936831e28 * cos(theta) ** 17 + 6.94320420611395e27 * cos(theta) ** 15 - 9.60522321003906e26 * cos(theta) ** 13 + 9.31850012914237e25 * cos(theta) ** 11 - 6.06529594204533e24 * cos(theta) ** 9 + 2.4756309967532e23 * cos(theta) ** 7 - 5.68177605812209e21 * cos(theta) ** 5 + 6.01883057004459e19 * cos(theta) ** 3 - 1.86341503716551e17 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl45_m11(theta, phi): return ( 2.45232877980087e-18 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.19566500945407e30 * cos(theta) ** 34 - 7.5367198910532e30 * cos(theta) ** 32 + 2.14839831377149e31 * cos(theta) ** 30 - 3.66491477055136e31 * cos(theta) ** 28 + 4.17270416647112e31 * cos(theta) ** 26 - 3.34846630642745e31 * cos(theta) ** 24 + 1.94973987462864e31 * cos(theta) ** 22 - 8.35602803412274e30 * cos(theta) ** 20 + 2.64607554413887e30 * cos(theta) ** 18 - 6.16209373292613e29 * cos(theta) ** 16 + 1.04148063091709e29 * cos(theta) ** 14 - 1.24867901730508e28 * cos(theta) ** 12 + 1.02503501420566e27 * cos(theta) ** 10 - 5.4587663478408e25 * cos(theta) ** 8 + 1.73294169772724e24 * cos(theta) ** 6 - 2.84088802906104e22 * cos(theta) ** 4 + 1.80564917101338e20 * cos(theta) ** 2 - 1.86341503716551e17 ) * cos(11 * phi) ) # @torch.jit.script def Yl45_m12(theta, phi): return ( 5.57059786735605e-20 * (1.0 - cos(theta) ** 2) ** 6 * ( 4.06526103214385e31 * cos(theta) ** 33 - 2.41175036513702e32 * cos(theta) ** 31 + 6.44519494131446e32 * cos(theta) ** 29 - 1.02617613575438e33 * cos(theta) ** 27 + 1.08490308328249e33 * cos(theta) ** 25 - 8.03631913542587e32 * cos(theta) ** 23 + 4.28942772418301e32 * cos(theta) ** 21 - 1.67120560682455e32 * cos(theta) ** 19 + 4.76293597944996e31 * cos(theta) ** 17 - 9.85934997268181e30 * cos(theta) ** 15 + 1.45807288328393e30 * cos(theta) ** 13 - 1.49841482076609e29 * cos(theta) ** 11 + 1.02503501420566e28 * cos(theta) ** 9 - 4.36701307827264e26 * cos(theta) ** 7 + 1.03976501863634e25 * cos(theta) ** 5 - 1.13635521162442e23 * cos(theta) ** 3 + 3.61129834202675e20 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl45_m13(theta, phi): return ( 1.27330030128458e-21 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.34153614060747e33 * cos(theta) ** 32 - 7.47642613192477e33 * cos(theta) ** 30 + 1.86910653298119e34 * cos(theta) ** 28 - 2.77067556653683e34 * cos(theta) ** 26 + 2.71225770820623e34 * cos(theta) ** 24 - 1.84835340114795e34 * cos(theta) ** 22 + 9.00779822078431e33 * cos(theta) ** 20 - 3.17529065296664e33 * cos(theta) ** 18 + 8.09699116506493e32 * cos(theta) ** 16 - 1.47890249590227e32 * cos(theta) ** 14 + 1.89549474826911e31 * cos(theta) ** 12 - 1.6482563028427e30 * cos(theta) ** 10 + 9.22531512785095e28 * cos(theta) ** 8 - 3.05690915479085e27 * cos(theta) ** 6 + 5.19882509318171e25 * cos(theta) ** 4 - 3.40906563487325e23 * cos(theta) ** 2 + 3.61129834202675e20 ) * cos(13 * phi) ) # @torch.jit.script def Yl45_m14(theta, phi): return ( 2.93041984581218e-23 * (1.0 - cos(theta) ** 2) ** 7 * ( 4.2929156499439e34 * cos(theta) ** 31 - 2.24292783957743e35 * cos(theta) ** 29 + 5.23349829234734e35 * cos(theta) ** 27 - 7.20375647299575e35 * cos(theta) ** 25 + 6.50941849969495e35 * cos(theta) ** 23 - 4.06637748252549e35 * cos(theta) ** 21 + 1.80155964415686e35 * cos(theta) ** 19 - 5.71552317533995e34 * cos(theta) ** 17 + 1.29551858641039e34 * cos(theta) ** 15 - 2.07046349426318e33 * cos(theta) ** 13 + 2.27459369792293e32 * cos(theta) ** 11 - 1.6482563028427e31 * cos(theta) ** 9 + 7.38025210228076e29 * cos(theta) ** 7 - 1.83414549287451e28 * cos(theta) ** 5 + 2.07953003727268e26 * cos(theta) ** 3 - 6.81813126974651e23 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl45_m15(theta, phi): return ( 6.79474831705311e-25 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.33080385148261e36 * cos(theta) ** 30 - 6.50449073477455e36 * cos(theta) ** 28 + 1.41304453893378e37 * cos(theta) ** 26 - 1.80093911824894e37 * cos(theta) ** 24 + 1.49716625492984e37 * cos(theta) ** 22 - 8.53939271330353e36 * cos(theta) ** 20 + 3.42296332389804e36 * cos(theta) ** 18 - 9.71638939807792e35 * cos(theta) ** 16 + 1.94327787961558e35 * cos(theta) ** 14 - 2.69160254254213e34 * cos(theta) ** 12 + 2.50205306771522e33 * cos(theta) ** 10 - 1.48343067255843e32 * cos(theta) ** 8 + 5.16617647159653e30 * cos(theta) ** 6 - 9.17072746437254e28 * cos(theta) ** 4 + 6.23859011181806e26 * cos(theta) ** 2 - 6.81813126974651e23 ) * cos(15 * phi) ) # @torch.jit.script def Yl45_m16(theta, phi): return ( 1.5883559340836e-26 * (1.0 - cos(theta) ** 2) ** 8 * ( 3.99241155444783e37 * cos(theta) ** 29 - 1.82125740573687e38 * cos(theta) ** 27 + 3.67391580122783e38 * cos(theta) ** 25 - 4.32225388379745e38 * cos(theta) ** 23 + 3.29376576084565e38 * cos(theta) ** 21 - 1.70787854266071e38 * cos(theta) ** 19 + 6.16133398301647e37 * cos(theta) ** 17 - 1.55462230369247e37 * cos(theta) ** 15 + 2.72058903146182e36 * cos(theta) ** 13 - 3.22992305105056e35 * cos(theta) ** 11 + 2.50205306771522e34 * cos(theta) ** 9 - 1.18674453804675e33 * cos(theta) ** 7 + 3.09970588295792e31 * cos(theta) ** 5 - 3.66829098574902e29 * cos(theta) ** 3 + 1.24771802236361e27 * cos(theta) ) * cos(16 * phi) ) # @torch.jit.script def Yl45_m17(theta, phi): return ( 3.74587245840413e-28 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.15779935078987e39 * cos(theta) ** 28 - 4.91739499548956e39 * cos(theta) ** 26 + 9.18478950306958e39 * cos(theta) ** 24 - 9.94118393273413e39 * cos(theta) ** 22 + 6.91690809777586e39 * cos(theta) ** 20 - 3.24496923105534e39 * cos(theta) ** 18 + 1.0474267771128e39 * cos(theta) ** 16 - 2.3319334555387e38 * cos(theta) ** 14 + 3.53676574090036e37 * cos(theta) ** 12 - 3.55291535615562e36 * cos(theta) ** 10 + 2.2518477609437e35 * cos(theta) ** 8 - 8.30721176632722e33 * cos(theta) ** 6 + 1.54985294147896e32 * cos(theta) ** 4 - 1.1004872957247e30 * cos(theta) ** 2 + 1.24771802236361e27 ) * cos(17 * phi) ) # @torch.jit.script def Yl45_m18(theta, phi): return ( 8.91874394858126e-30 * (1.0 - cos(theta) ** 2) ** 9 * ( 3.24183818221164e40 * cos(theta) ** 27 - 1.27852269882729e41 * cos(theta) ** 25 + 2.2043494807367e41 * cos(theta) ** 23 - 2.18706046520151e41 * cos(theta) ** 21 + 1.38338161955517e41 * cos(theta) ** 19 - 5.84094461589961e40 * cos(theta) ** 17 + 1.67588284338048e40 * cos(theta) ** 15 - 3.26470683775418e39 * cos(theta) ** 13 + 4.24411888908044e38 * cos(theta) ** 11 - 3.55291535615562e37 * cos(theta) ** 9 + 1.80147820875496e36 * cos(theta) ** 7 - 4.98432705979633e34 * cos(theta) ** 5 + 6.19941176591584e32 * cos(theta) ** 3 - 2.20097459144941e30 * cos(theta) ) * cos(18 * phi) ) # @torch.jit.script def Yl45_m19(theta, phi): return ( 2.14551634147781e-31 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 8.75296309197142e41 * cos(theta) ** 26 - 3.19630674706821e42 * cos(theta) ** 24 + 5.07000380569441e42 * cos(theta) ** 22 - 4.59282697692317e42 * cos(theta) ** 20 + 2.62842507715483e42 * cos(theta) ** 18 - 9.92960584702934e41 * cos(theta) ** 16 + 2.51382426507072e41 * cos(theta) ** 14 - 4.24411888908044e40 * cos(theta) ** 12 + 4.66853077798848e39 * cos(theta) ** 10 - 3.19762382054005e38 * cos(theta) ** 8 + 1.26103474612847e37 * cos(theta) ** 6 - 2.49216352989817e35 * cos(theta) ** 4 + 1.85982352977475e33 * cos(theta) ** 2 - 2.20097459144941e30 ) * cos(19 * phi) ) # @torch.jit.script def Yl45_m20(theta, phi): return ( 5.21901415090882e-33 * (1.0 - cos(theta) ** 2) ** 10 * ( 2.27577040391257e43 * cos(theta) ** 25 - 7.67113619296371e43 * cos(theta) ** 23 + 1.11540083725277e44 * cos(theta) ** 21 - 9.18565395384634e43 * cos(theta) ** 19 + 4.73116513887869e43 * cos(theta) ** 17 - 1.5887369355247e43 * cos(theta) ** 15 + 3.51935397109901e42 * cos(theta) ** 13 - 5.09294266689652e41 * cos(theta) ** 11 + 4.66853077798848e40 * cos(theta) ** 9 - 2.55809905643204e39 * cos(theta) ** 7 + 7.56620847677083e37 * cos(theta) ** 5 - 9.96865411959267e35 * cos(theta) ** 3 + 3.7196470595495e33 * cos(theta) ) * cos(20 * phi) ) # @torch.jit.script def Yl45_m21(theta, phi): return ( 1.28483246655521e-34 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 5.68942600978142e44 * cos(theta) ** 24 - 1.76436132438165e45 * cos(theta) ** 22 + 2.34234175823082e45 * cos(theta) ** 20 - 1.7452742512308e45 * cos(theta) ** 18 + 8.04298073609377e44 * cos(theta) ** 16 - 2.38310540328704e44 * cos(theta) ** 14 + 4.57516016242871e43 * cos(theta) ** 12 - 5.60223693358618e42 * cos(theta) ** 10 + 4.20167770018963e41 * cos(theta) ** 8 - 1.79066933950243e40 * cos(theta) ** 6 + 3.78310423838542e38 * cos(theta) ** 4 - 2.9905962358778e36 * cos(theta) ** 2 + 3.7196470595495e33 ) * cos(21 * phi) ) # @torch.jit.script def Yl45_m22(theta, phi): return ( 3.20408095180754e-36 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.36546224234754e46 * cos(theta) ** 23 - 3.88159491363964e46 * cos(theta) ** 21 + 4.68468351646163e46 * cos(theta) ** 19 - 3.14149365221545e46 * cos(theta) ** 17 + 1.286876917775e46 * cos(theta) ** 15 - 3.33634756460186e45 * cos(theta) ** 13 + 5.49019219491445e44 * cos(theta) ** 11 - 5.60223693358618e43 * cos(theta) ** 9 + 3.36134216015171e42 * cos(theta) ** 7 - 1.07440160370146e41 * cos(theta) ** 5 + 1.51324169535417e39 * cos(theta) ** 3 - 5.9811924717556e36 * cos(theta) ) * cos(22 * phi) ) # @torch.jit.script def Yl45_m23(theta, phi): return ( 8.10186692897904e-38 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 3.14056315739934e47 * cos(theta) ** 22 - 8.15134931864324e47 * cos(theta) ** 20 + 8.9008986812771e47 * cos(theta) ** 18 - 5.34053920876626e47 * cos(theta) ** 16 + 1.9303153766625e47 * cos(theta) ** 14 - 4.33725183398242e46 * cos(theta) ** 12 + 6.0392114144059e45 * cos(theta) ** 10 - 5.04201324022756e44 * cos(theta) ** 8 + 2.35293951210619e43 * cos(theta) ** 6 - 5.37200801850729e41 * cos(theta) ** 4 + 4.5397250860625e39 * cos(theta) ** 2 - 5.9811924717556e36 ) * cos(23 * phi) ) # @torch.jit.script def Yl45_m24(theta, phi): return ( 2.07945353200254e-39 * (1.0 - cos(theta) ** 2) ** 12 * ( 6.90923894627856e48 * cos(theta) ** 21 - 1.63026986372865e49 * cos(theta) ** 19 + 1.60216176262988e49 * cos(theta) ** 17 - 8.54486273402602e48 * cos(theta) ** 15 + 2.70244152732751e48 * cos(theta) ** 13 - 5.2047022007789e47 * cos(theta) ** 11 + 6.0392114144059e46 * cos(theta) ** 9 - 4.03361059218205e45 * cos(theta) ** 7 + 1.41176370726372e44 * cos(theta) ** 5 - 2.14880320740292e42 * cos(theta) ** 3 + 9.079450172125e39 * cos(theta) ) * cos(24 * phi) ) # @torch.jit.script def Yl45_m25(theta, phi): return ( 5.42363622267421e-41 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 1.4509401787185e50 * cos(theta) ** 20 - 3.09751274108443e50 * cos(theta) ** 18 + 2.72367499647079e50 * cos(theta) ** 16 - 1.2817294101039e50 * cos(theta) ** 14 + 3.51317398552576e49 * cos(theta) ** 12 - 5.72517242085679e48 * cos(theta) ** 10 + 5.43529027296531e47 * cos(theta) ** 8 - 2.82352741452743e46 * cos(theta) ** 6 + 7.05881853631858e44 * cos(theta) ** 4 - 6.44640962220875e42 * cos(theta) ** 2 + 9.079450172125e39 ) * cos(25 * phi) ) # @torch.jit.script def Yl45_m26(theta, phi): return ( 1.43928361180293e-42 * (1.0 - cos(theta) ** 2) ** 13 * ( 2.90188035743699e51 * cos(theta) ** 19 - 5.57552293395198e51 * cos(theta) ** 17 + 4.35787999435327e51 * cos(theta) ** 15 - 1.79442117414546e51 * cos(theta) ** 13 + 4.21580878263091e50 * cos(theta) ** 11 - 5.72517242085679e49 * cos(theta) ** 9 + 4.34823221837225e48 * cos(theta) ** 7 - 1.69411644871646e47 * cos(theta) ** 5 + 2.82352741452743e45 * cos(theta) ** 3 - 1.28928192444175e43 * cos(theta) ) * cos(26 * phi) ) # @torch.jit.script def Yl45_m27(theta, phi): return ( 3.89137721528147e-44 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 5.51357267913029e52 * cos(theta) ** 18 - 9.47838898771836e52 * cos(theta) ** 16 + 6.5368199915299e52 * cos(theta) ** 14 - 2.3327475263891e52 * cos(theta) ** 12 + 4.637389660894e51 * cos(theta) ** 10 - 5.15265517877111e50 * cos(theta) ** 8 + 3.04376255286057e49 * cos(theta) ** 6 - 8.4705822435823e47 * cos(theta) ** 4 + 8.4705822435823e45 * cos(theta) ** 2 - 1.28928192444175e43 ) * cos(27 * phi) ) # @torch.jit.script def Yl45_m28(theta, phi): return ( 1.07350889938001e-45 * (1.0 - cos(theta) ** 2) ** 14 * ( 9.92443082243452e53 * cos(theta) ** 17 - 1.51654223803494e54 * cos(theta) ** 15 + 9.15154798814187e53 * cos(theta) ** 13 - 2.79929703166692e53 * cos(theta) ** 11 + 4.637389660894e52 * cos(theta) ** 9 - 4.12212414301689e51 * cos(theta) ** 7 + 1.82625753171634e50 * cos(theta) ** 5 - 3.38823289743292e48 * cos(theta) ** 3 + 1.69411644871646e46 * cos(theta) ) * cos(28 * phi) ) # @torch.jit.script def Yl45_m29(theta, phi): return ( 3.02667178711212e-47 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 1.68715323981387e55 * cos(theta) ** 16 - 2.27481335705241e55 * cos(theta) ** 14 + 1.18970123845844e55 * cos(theta) ** 12 - 3.07922673483362e54 * cos(theta) ** 10 + 4.1736506948046e53 * cos(theta) ** 8 - 2.88548690011182e52 * cos(theta) ** 6 + 9.13128765858172e50 * cos(theta) ** 4 - 1.01646986922988e49 * cos(theta) ** 2 + 1.69411644871646e46 ) * cos(29 * phi) ) # @torch.jit.script def Yl45_m30(theta, phi): return ( 8.73724885518915e-49 * (1.0 - cos(theta) ** 2) ** 15 * ( 2.69944518370219e56 * cos(theta) ** 15 - 3.18473869987337e56 * cos(theta) ** 13 + 1.42764148615013e56 * cos(theta) ** 11 - 3.07922673483362e55 * cos(theta) ** 9 + 3.33892055584368e54 * cos(theta) ** 7 - 1.73129214006709e53 * cos(theta) ** 5 + 3.65251506343269e51 * cos(theta) ** 3 - 2.03293973845975e49 * cos(theta) ) * cos(30 * phi) ) # @torch.jit.script def Yl45_m31(theta, phi): return ( 2.5877497770366e-50 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 4.04916777555328e57 * cos(theta) ** 14 - 4.14016030983538e57 * cos(theta) ** 12 + 1.57040563476514e57 * cos(theta) ** 10 - 2.77130406135025e56 * cos(theta) ** 8 + 2.33724438909058e55 * cos(theta) ** 6 - 8.65646070033547e53 * cos(theta) ** 4 + 1.09575451902981e52 * cos(theta) ** 2 - 2.03293973845975e49 ) * cos(31 * phi) ) # @torch.jit.script def Yl45_m32(theta, phi): return ( 7.88157294590393e-52 * (1.0 - cos(theta) ** 2) ** 16 * ( 5.6688348857746e58 * cos(theta) ** 13 - 4.96819237180246e58 * cos(theta) ** 11 + 1.57040563476514e58 * cos(theta) ** 9 - 2.2170432490802e57 * cos(theta) ** 7 + 1.40234663345435e56 * cos(theta) ** 5 - 3.46258428013419e54 * cos(theta) ** 3 + 2.19150903805961e52 * cos(theta) ) * cos(32 * phi) ) # @torch.jit.script def Yl45_m33(theta, phi): return ( 2.47510667794732e-53 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 7.36948535150698e59 * cos(theta) ** 12 - 5.4650116089827e59 * cos(theta) ** 10 + 1.41336507128863e59 * cos(theta) ** 8 - 1.55193027435614e58 * cos(theta) ** 6 + 7.01173316727173e56 * cos(theta) ** 4 - 1.03877528404026e55 * cos(theta) ** 2 + 2.19150903805961e52 ) * cos(33 * phi) ) # @torch.jit.script def Yl45_m34(theta, phi): return ( 8.03877277932851e-55 * (1.0 - cos(theta) ** 2) ** 17 * ( 8.84338242180837e60 * cos(theta) ** 11 - 5.4650116089827e60 * cos(theta) ** 9 + 1.1306920570309e60 * cos(theta) ** 7 - 9.31158164613686e58 * cos(theta) ** 5 + 2.80469326690869e57 * cos(theta) ** 3 - 2.07755056808051e55 * cos(theta) ) * cos(34 * phi) ) # @torch.jit.script def Yl45_m35(theta, phi): return ( 2.70986975109827e-56 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 9.72772066398921e61 * cos(theta) ** 10 - 4.91851044808443e61 * cos(theta) ** 8 + 7.91484439921633e60 * cos(theta) ** 6 - 4.65579082306843e59 * cos(theta) ** 4 + 8.41407980072608e57 * cos(theta) ** 2 - 2.07755056808051e55 ) * cos(35 * phi) ) # @torch.jit.script def Yl45_m36(theta, phi): return ( 9.52151175096011e-58 * (1.0 - cos(theta) ** 2) ** 18 * ( 9.72772066398921e62 * cos(theta) ** 9 - 3.93480835846755e62 * cos(theta) ** 7 + 4.7489066395298e61 * cos(theta) ** 5 - 1.86231632922737e60 * cos(theta) ** 3 + 1.68281596014522e58 * cos(theta) ) * cos(36 * phi) ) # @torch.jit.script def Yl45_m37(theta, phi): return ( 3.50491691066036e-59 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 8.75494859759029e63 * cos(theta) ** 8 - 2.75436585092728e63 * cos(theta) ** 6 + 2.3744533197649e62 * cos(theta) ** 4 - 5.58694898768211e60 * cos(theta) ** 2 + 1.68281596014522e58 ) * cos(37 * phi) ) # @torch.jit.script def Yl45_m38(theta, phi): return ( 1.36017155138303e-60 * (1.0 - cos(theta) ** 2) ** 19 * ( 7.00395887807223e64 * cos(theta) ** 7 - 1.65261951055637e64 * cos(theta) ** 5 + 9.49781327905959e62 * cos(theta) ** 3 - 1.11738979753642e61 * cos(theta) ) * cos(38 * phi) ) # @torch.jit.script def Yl45_m39(theta, phi): return ( 5.60925293810759e-62 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 4.90277121465056e65 * cos(theta) ** 6 - 8.26309755278185e64 * cos(theta) ** 4 + 2.84934398371788e63 * cos(theta) ** 2 - 1.11738979753642e61 ) * cos(39 * phi) ) # @torch.jit.script def Yl45_m40(theta, phi): return ( 2.4838189493738e-63 * (1.0 - cos(theta) ** 2) ** 20 * ( 2.94166272879034e66 * cos(theta) ** 5 - 3.30523902111274e65 * cos(theta) ** 3 + 5.69868796743576e63 * cos(theta) ) * cos(40 * phi) ) # @torch.jit.script def Yl45_m41(theta, phi): return ( 1.19780385990637e-64 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 1.47083136439517e67 * cos(theta) ** 4 - 9.91571706333822e65 * cos(theta) ** 2 + 5.69868796743576e63 ) * cos(41 * phi) ) # @torch.jit.script def Yl45_m42(theta, phi): return ( 6.42090266241355e-66 * (1.0 - cos(theta) ** 2) ** 21 * (5.88332545758067e67 * cos(theta) ** 3 - 1.98314341266764e66 * cos(theta)) * cos(42 * phi) ) # @torch.jit.script def Yl45_m43(theta, phi): return ( 3.95179241074826e-67 * (1.0 - cos(theta) ** 2) ** 21.5 * (1.7649976372742e68 * cos(theta) ** 2 - 1.98314341266764e66) * cos(43 * phi) ) # @torch.jit.script def Yl45_m44(theta, phi): return 10.4558235531102 * (1.0 - cos(theta) ** 2) ** 22 * cos(44 * phi) * cos(theta) # @torch.jit.script def Yl45_m45(theta, phi): return 1.10214057468876 * (1.0 - cos(theta) ** 2) ** 22.5 * cos(45 * phi) # @torch.jit.script def Yl46_m_minus_46(theta, phi): return 1.1081142800943 * (1.0 - cos(theta) ** 2) ** 23 * sin(46 * phi) # @torch.jit.script def Yl46_m_minus_45(theta, phi): return ( 10.6286587918185 * (1.0 - cos(theta) ** 2) ** 22.5 * sin(45 * phi) * cos(theta) ) # @torch.jit.script def Yl46_m_minus_44(theta, phi): return ( 4.46373745781704e-69 * (1.0 - cos(theta) ** 2) ** 22 * (1.60614784991952e70 * cos(theta) ** 2 - 1.7649976372742e68) * sin(44 * phi) ) # @torch.jit.script def Yl46_m_minus_43(theta, phi): return ( 7.33466908928147e-68 * (1.0 - cos(theta) ** 2) ** 21.5 * (5.35382616639841e69 * cos(theta) ** 3 - 1.7649976372742e68 * cos(theta)) * sin(43 * phi) ) # @torch.jit.script def Yl46_m_minus_42(theta, phi): return ( 1.3839025959632e-66 * (1.0 - cos(theta) ** 2) ** 21 * ( 1.3384565415996e69 * cos(theta) ** 4 - 8.82498818637101e67 * cos(theta) ** 2 + 4.95785853166911e65 ) * sin(42 * phi) ) # @torch.jit.script def Yl46_m_minus_41(theta, phi): return ( 2.9028985753037e-65 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 2.67691308319921e68 * cos(theta) ** 5 - 2.94166272879034e67 * cos(theta) ** 3 + 4.95785853166911e65 * cos(theta) ) * sin(41 * phi) ) # @torch.jit.script def Yl46_m_minus_40(theta, phi): return ( 6.63234506965458e-64 * (1.0 - cos(theta) ** 2) ** 20 * ( 4.46152180533201e67 * cos(theta) ** 6 - 7.35415682197584e66 * cos(theta) ** 4 + 2.47892926583455e65 * cos(theta) ** 2 - 9.49781327905959e62 ) * sin(40 * phi) ) # @torch.jit.script def Yl46_m_minus_39(theta, phi): return ( 1.62729151279139e-62 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 6.37360257904573e66 * cos(theta) ** 7 - 1.47083136439517e66 * cos(theta) ** 5 + 8.26309755278185e64 * cos(theta) ** 3 - 9.49781327905959e62 * cos(theta) ) * sin(39 * phi) ) # @torch.jit.script def Yl46_m_minus_38(theta, phi): return ( 4.24345709766218e-61 * (1.0 - cos(theta) ** 2) ** 19 * ( 7.96700322380716e65 * cos(theta) ** 8 - 2.45138560732528e65 * cos(theta) ** 6 + 2.06577438819546e64 * cos(theta) ** 4 - 4.7489066395298e62 * cos(theta) ** 2 + 1.39673724692053e60 ) * sin(38 * phi) ) # @torch.jit.script def Yl46_m_minus_37(theta, phi): return ( 1.16675780150007e-59 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 8.85222580423018e64 * cos(theta) ** 9 - 3.50197943903612e64 * cos(theta) ** 7 + 4.13154877639092e63 * cos(theta) ** 5 - 1.58296887984327e62 * cos(theta) ** 3 + 1.39673724692053e60 * cos(theta) ) * sin(37 * phi) ) # @torch.jit.script def Yl46_m_minus_36(theta, phi): return ( 3.36139662478243e-58 * (1.0 - cos(theta) ** 2) ** 18 * ( 8.85222580423018e63 * cos(theta) ** 10 - 4.37747429879514e63 * cos(theta) ** 8 + 6.88591462731821e62 * cos(theta) ** 6 - 3.95742219960816e61 * cos(theta) ** 4 + 6.98368623460264e59 * cos(theta) ** 2 - 1.68281596014521e57 ) * sin(36 * phi) ) # @torch.jit.script def Yl46_m_minus_35(theta, phi): return ( 1.00953883118615e-56 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 8.04747800384562e62 * cos(theta) ** 11 - 4.8638603319946e62 * cos(theta) ** 9 + 9.83702089616886e61 * cos(theta) ** 7 - 7.91484439921633e60 * cos(theta) ** 5 + 2.32789541153421e59 * cos(theta) ** 3 - 1.68281596014521e57 * cos(theta) ) * sin(35 * phi) ) # @torch.jit.script def Yl46_m_minus_34(theta, phi): return ( 3.14743058609061e-55 * (1.0 - cos(theta) ** 2) ** 17 * ( 6.70623166987135e61 * cos(theta) ** 12 - 4.86386033199461e61 * cos(theta) ** 10 + 1.22962761202111e61 * cos(theta) ** 8 - 1.31914073320272e60 * cos(theta) ** 6 + 5.81973852883553e58 * cos(theta) ** 4 - 8.41407980072607e56 * cos(theta) ** 2 + 1.73129214006709e54 ) * sin(34 * phi) ) # @torch.jit.script def Yl46_m_minus_33(theta, phi): return ( 1.01501586519763e-53 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 5.15863974605488e60 * cos(theta) ** 13 - 4.42169121090419e60 * cos(theta) ** 11 + 1.36625290224568e60 * cos(theta) ** 9 - 1.88448676171817e59 * cos(theta) ** 7 + 1.16394770576711e58 * cos(theta) ** 5 - 2.80469326690869e56 * cos(theta) ** 3 + 1.73129214006709e54 * cos(theta) ) * sin(33 * phi) ) # @torch.jit.script def Yl46_m_minus_32(theta, phi): return ( 3.37559545932685e-52 * (1.0 - cos(theta) ** 2) ** 16 * ( 3.68474267575349e59 * cos(theta) ** 14 - 3.68474267575349e59 * cos(theta) ** 12 + 1.36625290224568e59 * cos(theta) ** 10 - 2.35560845214772e58 * cos(theta) ** 8 + 1.93991284294518e57 * cos(theta) ** 6 - 7.01173316727173e55 * cos(theta) ** 4 + 8.65646070033547e53 * cos(theta) ** 2 - 1.56536359861401e51 ) * sin(32 * phi) ) # @torch.jit.script def Yl46_m_minus_31(theta, phi): return ( 1.15463129634021e-50 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 2.45649511716899e58 * cos(theta) ** 15 - 2.8344174428873e58 * cos(theta) ** 13 + 1.24204809295061e58 * cos(theta) ** 11 - 2.61734272460857e57 * cos(theta) ** 9 + 2.77130406135025e56 * cos(theta) ** 7 - 1.40234663345435e55 * cos(theta) ** 5 + 2.88548690011182e53 * cos(theta) ** 3 - 1.56536359861401e51 * cos(theta) ) * sin(31 * phi) ) # @torch.jit.script def Yl46_m_minus_30(theta, phi): return ( 4.05273940238151e-49 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.53530944823062e57 * cos(theta) ** 16 - 2.02458388777664e57 * cos(theta) ** 14 + 1.03504007745885e57 * cos(theta) ** 12 - 2.61734272460857e56 * cos(theta) ** 10 + 3.46413007668782e55 * cos(theta) ** 8 - 2.33724438909058e54 * cos(theta) ** 6 + 7.21371725027956e52 * cos(theta) ** 4 - 7.82681799307004e50 * cos(theta) ** 2 + 1.27058733653734e48 ) * sin(30 * phi) ) # @torch.jit.script def Yl46_m_minus_29(theta, phi): return ( 1.45673292299555e-47 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 9.03123204841541e55 * cos(theta) ** 17 - 1.34972259185109e56 * cos(theta) ** 15 + 7.96184674968342e55 * cos(theta) ** 13 - 2.37940247691689e55 * cos(theta) ** 11 + 3.84903341854202e54 * cos(theta) ** 9 - 3.33892055584368e53 * cos(theta) ** 7 + 1.44274345005591e52 * cos(theta) ** 5 - 2.60893933102335e50 * cos(theta) ** 3 + 1.27058733653734e48 * cos(theta) ) * sin(29 * phi) ) # @torch.jit.script def Yl46_m_minus_28(theta, phi): return ( 5.35237852927822e-46 * (1.0 - cos(theta) ** 2) ** 14 * ( 5.01735113800856e54 * cos(theta) ** 18 - 8.43576619906934e54 * cos(theta) ** 16 + 5.68703339263102e54 * cos(theta) ** 14 - 1.98283539743074e54 * cos(theta) ** 12 + 3.84903341854202e53 * cos(theta) ** 10 - 4.1736506948046e52 * cos(theta) ** 8 + 2.40457241675985e51 * cos(theta) ** 6 - 6.52234832755837e49 * cos(theta) ** 4 + 6.35293668268672e47 * cos(theta) ** 2 - 9.41175804842478e44 ) * sin(28 * phi) ) # @torch.jit.script def Yl46_m_minus_27(theta, phi): return ( 2.00696352793153e-44 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 2.64071112526766e53 * cos(theta) ** 19 - 4.96221541121726e53 * cos(theta) ** 17 + 3.79135559508734e53 * cos(theta) ** 15 - 1.52525799802364e53 * cos(theta) ** 13 + 3.49912128958366e52 * cos(theta) ** 11 - 4.637389660894e51 * cos(theta) ** 9 + 3.43510345251407e50 * cos(theta) ** 7 - 1.30446966551167e49 * cos(theta) ** 5 + 2.11764556089557e47 * cos(theta) ** 3 - 9.41175804842478e44 * cos(theta) ) * sin(27 * phi) ) # @torch.jit.script def Yl46_m_minus_26(theta, phi): return ( 7.66859687268355e-43 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.32035556263383e52 * cos(theta) ** 20 - 2.75678633956514e52 * cos(theta) ** 18 + 2.36959724692959e52 * cos(theta) ** 16 - 1.08946999858832e52 * cos(theta) ** 14 + 2.91593440798638e51 * cos(theta) ** 12 - 4.637389660894e50 * cos(theta) ** 10 + 4.29387931564259e49 * cos(theta) ** 8 - 2.17411610918612e48 * cos(theta) ** 6 + 5.29411390223894e46 * cos(theta) ** 4 - 4.70587902421239e44 * cos(theta) ** 2 + 6.44640962220875e41 ) * sin(26 * phi) ) # @torch.jit.script def Yl46_m_minus_25(theta, phi): return ( 2.98189127114901e-41 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 6.28740744111349e50 * cos(theta) ** 21 - 1.4509401787185e51 * cos(theta) ** 19 + 1.39388073348799e51 * cos(theta) ** 17 - 7.26313332392212e50 * cos(theta) ** 15 + 2.24302646768183e50 * cos(theta) ** 13 - 4.21580878263091e49 * cos(theta) ** 11 + 4.77097701738066e48 * cos(theta) ** 9 - 3.10588015598018e47 * cos(theta) ** 7 + 1.05882278044779e46 * cos(theta) ** 5 - 1.56862634140413e44 * cos(theta) ** 3 + 6.44640962220875e41 * cos(theta) ) * sin(25 * phi) ) # @torch.jit.script def Yl46_m_minus_24(theta, phi): return ( 1.17850741252294e-39 * (1.0 - cos(theta) ** 2) ** 12 * ( 2.8579124732334e49 * cos(theta) ** 22 - 7.25470089359249e49 * cos(theta) ** 20 + 7.74378185271108e49 * cos(theta) ** 18 - 4.53945832745132e49 * cos(theta) ** 16 + 1.60216176262988e49 * cos(theta) ** 14 - 3.51317398552576e48 * cos(theta) ** 12 + 4.77097701738066e47 * cos(theta) ** 10 - 3.88235019497522e46 * cos(theta) ** 8 + 1.76470463407965e45 * cos(theta) ** 6 - 3.92156585351032e43 * cos(theta) ** 4 + 3.22320481110438e41 * cos(theta) ** 2 - 4.12702280551136e38 ) * sin(24 * phi) ) # @torch.jit.script def Yl46_m_minus_23(theta, phi): return ( 4.72873804667603e-38 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.24257064053626e48 * cos(theta) ** 23 - 3.45461947313928e48 * cos(theta) ** 21 + 4.07567465932162e48 * cos(theta) ** 19 - 2.67026960438313e48 * cos(theta) ** 17 + 1.06810784175325e48 * cos(theta) ** 15 - 2.70244152732751e47 * cos(theta) ** 13 + 4.33725183398242e46 * cos(theta) ** 11 - 4.31372243886136e45 * cos(theta) ** 9 + 2.52100662011378e44 * cos(theta) ** 7 - 7.84313170702065e42 * cos(theta) ** 5 + 1.07440160370146e41 * cos(theta) ** 3 - 4.12702280551136e38 * cos(theta) ) * sin(23 * phi) ) # @torch.jit.script def Yl46_m_minus_22(theta, phi): return ( 1.92431171017896e-36 * (1.0 - cos(theta) ** 2) ** 11 * ( 5.17737766890109e46 * cos(theta) ** 24 - 1.57028157869967e47 * cos(theta) ** 22 + 2.03783732966081e47 * cos(theta) ** 20 - 1.48348311354618e47 * cos(theta) ** 18 + 6.67567401095783e46 * cos(theta) ** 16 - 1.9303153766625e46 * cos(theta) ** 14 + 3.61437652831868e45 * cos(theta) ** 12 - 4.31372243886136e44 * cos(theta) ** 10 + 3.15125827514222e43 * cos(theta) ** 8 - 1.30718861783677e42 * cos(theta) ** 6 + 2.68600400925365e40 * cos(theta) ** 4 - 2.06351140275568e38 * cos(theta) ** 2 + 2.49216352989817e35 ) * sin(22 * phi) ) # @torch.jit.script def Yl46_m_minus_21(theta, phi): return ( 7.93414043768083e-35 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 2.07095106756044e45 * cos(theta) ** 25 - 6.82731121173771e45 * cos(theta) ** 23 + 9.7039872840991e45 * cos(theta) ** 21 - 7.80780586076939e45 * cos(theta) ** 19 + 3.92686706526931e45 * cos(theta) ** 17 - 1.286876917775e45 * cos(theta) ** 15 + 2.78028963716822e44 * cos(theta) ** 13 - 3.92156585351032e43 * cos(theta) ** 11 + 3.50139808349136e42 * cos(theta) ** 9 - 1.86741231119539e41 * cos(theta) ** 7 + 5.37200801850729e39 * cos(theta) ** 5 - 6.87837134251894e37 * cos(theta) ** 3 + 2.49216352989817e35 * cos(theta) ) * sin(21 * phi) ) # @torch.jit.script def Yl46_m_minus_20(theta, phi): return ( 3.31149389509621e-33 * (1.0 - cos(theta) ** 2) ** 10 * ( 7.96519641369399e43 * cos(theta) ** 26 - 2.84471300489071e44 * cos(theta) ** 24 + 4.41090331095414e44 * cos(theta) ** 22 - 3.90390293038469e44 * cos(theta) ** 20 + 2.18159281403851e44 * cos(theta) ** 18 - 8.04298073609377e43 * cos(theta) ** 16 + 1.98592116940587e43 * cos(theta) ** 14 - 3.26797154459194e42 * cos(theta) ** 12 + 3.50139808349136e41 * cos(theta) ** 10 - 2.33426538899424e40 * cos(theta) ** 8 + 8.95334669751215e38 * cos(theta) ** 6 - 1.71959283562973e37 * cos(theta) ** 4 + 1.24608176494908e35 * cos(theta) ** 2 - 1.43063348444212e32 ) * sin(20 * phi) ) # @torch.jit.script def Yl46_m_minus_19(theta, phi): return ( 1.39790548387065e-31 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 2.95007274581259e42 * cos(theta) ** 27 - 1.13788520195628e43 * cos(theta) ** 25 + 1.91778404824093e43 * cos(theta) ** 23 - 1.85900139542128e43 * cos(theta) ** 21 + 1.14820674423079e43 * cos(theta) ** 19 - 4.73116513887869e42 * cos(theta) ** 17 + 1.32394744627058e42 * cos(theta) ** 15 - 2.51382426507072e41 * cos(theta) ** 13 + 3.18308916681033e40 * cos(theta) ** 11 - 2.5936282099936e39 * cos(theta) ** 9 + 1.27904952821602e38 * cos(theta) ** 7 - 3.43918567125947e36 * cos(theta) ** 5 + 4.15360588316361e34 * cos(theta) ** 3 - 1.43063348444212e32 * cos(theta) ) * sin(19 * phi) ) # @torch.jit.script def Yl46_m_minus_18(theta, phi): return ( 5.96366861096496e-30 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.05359740921878e41 * cos(theta) ** 28 - 4.37648154598571e41 * cos(theta) ** 26 + 7.99076686767054e41 * cos(theta) ** 24 - 8.45000634282401e41 * cos(theta) ** 22 + 5.74103372115396e41 * cos(theta) ** 20 - 2.62842507715483e41 * cos(theta) ** 18 + 8.27467153919112e40 * cos(theta) ** 16 - 1.7955887607648e40 * cos(theta) ** 14 + 2.65257430567527e39 * cos(theta) ** 12 - 2.5936282099936e38 * cos(theta) ** 10 + 1.59881191027003e37 * cos(theta) ** 8 - 5.73197611876578e35 * cos(theta) ** 6 + 1.0384014707909e34 * cos(theta) ** 4 - 7.15316742221058e31 * cos(theta) ** 2 + 7.86062354089075e28 ) * sin(18 * phi) ) # @torch.jit.script def Yl46_m_minus_17(theta, phi): return ( 2.56922706601449e-28 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 3.63309451454752e39 * cos(theta) ** 29 - 1.62091909110582e40 * cos(theta) ** 27 + 3.19630674706821e40 * cos(theta) ** 25 - 3.67391580122783e40 * cos(theta) ** 23 + 2.73382558150189e40 * cos(theta) ** 21 - 1.38338161955517e40 * cos(theta) ** 19 + 4.86745384658301e39 * cos(theta) ** 17 - 1.1970591738432e39 * cos(theta) ** 15 + 2.04044177359636e38 * cos(theta) ** 13 - 2.35784382726691e37 * cos(theta) ** 11 + 1.77645767807781e36 * cos(theta) ** 9 - 8.18853731252255e34 * cos(theta) ** 7 + 2.07680294158181e33 * cos(theta) ** 5 - 2.38438914073686e31 * cos(theta) ** 3 + 7.86062354089075e28 * cos(theta) ) * sin(17 * phi) ) # @torch.jit.script def Yl46_m_minus_16(theta, phi): return ( 1.11694912080369e-26 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.21103150484917e38 * cos(theta) ** 30 - 5.78899675394935e38 * cos(theta) ** 28 + 1.22934874887239e39 * cos(theta) ** 26 - 1.5307982505116e39 * cos(theta) ** 24 + 1.24264799159177e39 * cos(theta) ** 22 - 6.91690809777586e38 * cos(theta) ** 20 + 2.70414102587945e38 * cos(theta) ** 18 - 7.48161983652e37 * cos(theta) ** 16 + 1.45745840971169e37 * cos(theta) ** 14 - 1.96486985605576e36 * cos(theta) ** 12 + 1.77645767807781e35 * cos(theta) ** 10 - 1.02356716406532e34 * cos(theta) ** 8 + 3.46133823596968e32 * cos(theta) ** 6 - 5.96097285184215e30 * cos(theta) ** 4 + 3.93031177044537e28 * cos(theta) ** 2 - 4.15906007454537e25 ) * sin(16 * phi) ) # @torch.jit.script def Yl46_m_minus_15(theta, phi): return ( 4.89677424487597e-25 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 3.90655324144895e36 * cos(theta) ** 31 - 1.99620577722391e37 * cos(theta) ** 29 + 4.55314351434219e37 * cos(theta) ** 27 - 6.12319300204639e37 * cos(theta) ** 25 + 5.40281735474681e37 * cos(theta) ** 23 - 3.29376576084565e37 * cos(theta) ** 21 + 1.42323211888392e37 * cos(theta) ** 19 - 4.40095284501176e36 * cos(theta) ** 17 + 9.71638939807792e35 * cos(theta) ** 15 - 1.51143835081212e35 * cos(theta) ** 13 + 1.61496152552528e34 * cos(theta) ** 11 - 1.13729684896146e33 * cos(theta) ** 9 + 4.94476890852811e31 * cos(theta) ** 7 - 1.19219457036843e30 * cos(theta) ** 5 + 1.31010392348179e28 * cos(theta) ** 3 - 4.15906007454537e25 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl46_m_minus_14(theta, phi): return ( 2.16346557417279e-23 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.2207978879528e35 * cos(theta) ** 32 - 6.65401925741305e35 * cos(theta) ** 30 + 1.62612268369364e36 * cos(theta) ** 28 - 2.3550742315563e36 * cos(theta) ** 26 + 2.25117389781117e36 * cos(theta) ** 24 - 1.49716625492984e36 * cos(theta) ** 22 + 7.11616059441961e35 * cos(theta) ** 20 - 2.44497380278431e35 * cos(theta) ** 18 + 6.0727433737987e34 * cos(theta) ** 16 - 1.07959882200866e34 * cos(theta) ** 14 + 1.34580127127107e33 * cos(theta) ** 12 - 1.13729684896146e32 * cos(theta) ** 10 + 6.18096113566013e30 * cos(theta) ** 8 - 1.98699095061405e29 * cos(theta) ** 6 + 3.27525980870448e27 * cos(theta) ** 4 - 2.07953003727268e25 * cos(theta) ** 2 + 2.13066602179578e22 ) * sin(14 * phi) ) # @torch.jit.script def Yl46_m_minus_13(theta, phi): return ( 9.62681407083826e-22 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 3.6993875392509e33 * cos(theta) ** 33 - 2.14645782497195e34 * cos(theta) ** 31 + 5.60731959894358e34 * cos(theta) ** 29 - 8.72249715391223e34 * cos(theta) ** 27 + 9.00469559124469e34 * cos(theta) ** 25 - 6.50941849969495e34 * cos(theta) ** 23 + 3.38864790210458e34 * cos(theta) ** 21 - 1.2868283172549e34 * cos(theta) ** 19 + 3.57220198458747e33 * cos(theta) ** 17 - 7.19732548005772e32 * cos(theta) ** 15 + 1.03523174713159e32 * cos(theta) ** 13 - 1.0339062263286e31 * cos(theta) ** 11 + 6.86773459517793e29 * cos(theta) ** 9 - 2.83855850087721e28 * cos(theta) ** 7 + 6.55051961740896e26 * cos(theta) ** 5 - 6.93176679090895e24 * cos(theta) ** 3 + 2.13066602179578e22 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl46_m_minus_12(theta, phi): return ( 4.31169516088401e-20 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.08805515860321e32 * cos(theta) ** 34 - 6.70768070303734e32 * cos(theta) ** 32 + 1.86910653298119e33 * cos(theta) ** 30 - 3.11517755496865e33 * cos(theta) ** 28 + 3.46334445817103e33 * cos(theta) ** 26 - 2.71225770820623e33 * cos(theta) ** 24 + 1.54029450095663e33 * cos(theta) ** 22 - 6.43414158627451e32 * cos(theta) ** 20 + 1.98455665810415e32 * cos(theta) ** 18 - 4.49832842503608e31 * cos(theta) ** 16 + 7.39451247951136e30 * cos(theta) ** 14 - 8.61588521940504e29 * cos(theta) ** 12 + 6.86773459517793e28 * cos(theta) ** 10 - 3.54819812609652e27 * cos(theta) ** 8 + 1.09175326956816e26 * cos(theta) ** 6 - 1.73294169772724e24 * cos(theta) ** 4 + 1.06533301089789e22 * cos(theta) ** 2 - 1.06214657118434e19 ) * sin(12 * phi) ) # @torch.jit.script def Yl46_m_minus_11(theta, phi): return ( 1.9426567317875e-18 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 3.10872902458059e30 * cos(theta) ** 35 - 2.03263051607192e31 * cos(theta) ** 33 + 6.02937591284256e31 * cos(theta) ** 31 - 1.07419915688574e32 * cos(theta) ** 29 + 1.28272016969298e32 * cos(theta) ** 27 - 1.08490308328249e32 * cos(theta) ** 25 + 6.69693261285489e31 * cos(theta) ** 23 - 3.063876945845e31 * cos(theta) ** 21 + 1.04450350426534e31 * cos(theta) ** 19 - 2.64607554413887e30 * cos(theta) ** 17 + 4.9296749863409e29 * cos(theta) ** 15 - 6.62760401492695e28 * cos(theta) ** 13 + 6.24339508652539e27 * cos(theta) ** 11 - 3.94244236232947e26 * cos(theta) ** 9 + 1.55964752795451e25 * cos(theta) ** 7 - 3.46588339545447e23 * cos(theta) ** 5 + 3.55111003632631e21 * cos(theta) ** 3 - 1.06214657118434e19 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl46_m_minus_10(theta, phi): return ( 8.80004201373588e-17 * (1.0 - cos(theta) ** 2) ** 5 * ( 8.63535840161274e28 * cos(theta) ** 36 - 5.97832504727036e29 * cos(theta) ** 34 + 1.8841799727633e30 * cos(theta) ** 32 - 3.58066385628581e30 * cos(theta) ** 30 + 4.5811434631892e30 * cos(theta) ** 28 - 4.17270416647112e30 * cos(theta) ** 26 + 2.79038858868954e30 * cos(theta) ** 24 - 1.39267133902046e30 * cos(theta) ** 22 + 5.22251752132671e29 * cos(theta) ** 20 - 1.47004196896604e29 * cos(theta) ** 18 + 3.08104686646307e28 * cos(theta) ** 16 - 4.73400286780497e27 * cos(theta) ** 14 + 5.20282923877116e26 * cos(theta) ** 12 - 3.94244236232946e25 * cos(theta) ** 10 + 1.94955940994314e24 * cos(theta) ** 8 - 5.77647232575746e22 * cos(theta) ** 6 + 8.87777509081577e20 * cos(theta) ** 4 - 5.31073285592169e18 * cos(theta) ** 2 + 5.1761528810153e15 ) * sin(10 * phi) ) # @torch.jit.script def Yl46_m_minus_9(theta, phi): return ( 4.00571107454053e-15 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 2.33388064908453e27 * cos(theta) ** 37 - 1.70809287064867e28 * cos(theta) ** 35 + 5.70963628110091e28 * cos(theta) ** 33 - 1.15505285686639e29 * cos(theta) ** 31 + 1.57970464247903e29 * cos(theta) ** 29 - 1.5454459875819e29 * cos(theta) ** 27 + 1.11615543547582e29 * cos(theta) ** 25 - 6.05509277834981e28 * cos(theta) ** 23 + 2.48691310539367e28 * cos(theta) ** 21 - 7.73706299455809e27 * cos(theta) ** 19 + 1.81238050968416e27 * cos(theta) ** 17 - 3.15600191186998e26 * cos(theta) ** 15 + 4.00217633751628e25 * cos(theta) ** 13 - 3.5840385112086e24 * cos(theta) ** 11 + 2.16617712215905e23 * cos(theta) ** 9 - 8.25210332251065e21 * cos(theta) ** 7 + 1.77555501816315e20 * cos(theta) ** 5 - 1.77024428530723e18 * cos(theta) ** 3 + 5.1761528810153e15 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl46_m_minus_8(theta, phi): return ( 1.83127161651504e-13 * (1.0 - cos(theta) ** 2) ** 4 * ( 6.14179118180138e25 * cos(theta) ** 38 - 4.74470241846854e26 * cos(theta) ** 36 + 1.67930478855909e27 * cos(theta) ** 34 - 3.60954017770747e27 * cos(theta) ** 32 + 5.26568214159678e27 * cos(theta) ** 30 - 5.51944995564964e27 * cos(theta) ** 28 + 4.29290552106083e27 * cos(theta) ** 26 - 2.52295532431242e27 * cos(theta) ** 24 + 1.13041504790621e27 * cos(theta) ** 22 - 3.86853149727905e26 * cos(theta) ** 20 + 1.00687806093564e26 * cos(theta) ** 18 - 1.97250119491874e25 * cos(theta) ** 16 + 2.8586973839402e24 * cos(theta) ** 14 - 2.9866987593405e23 * cos(theta) ** 12 + 2.16617712215905e22 * cos(theta) ** 10 - 1.03151291531383e21 * cos(theta) ** 8 + 2.95925836360525e19 * cos(theta) ** 6 - 4.42561071326808e17 * cos(theta) ** 4 + 2.58807644050765e15 * cos(theta) ** 2 - 2476628172734.59 ) * sin(8 * phi) ) # @torch.jit.script def Yl46_m_minus_7(theta, phi): return ( 8.4039207365689e-12 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.57481825174394e24 * cos(theta) ** 39 - 1.2823520049915e25 * cos(theta) ** 37 + 4.7980136815974e25 * cos(theta) ** 35 - 1.09380005385075e26 * cos(theta) ** 33 + 1.69860714245057e26 * cos(theta) ** 31 - 1.90325860539643e26 * cos(theta) ** 29 + 1.58996500780031e26 * cos(theta) ** 27 - 1.00918212972497e26 * cos(theta) ** 25 + 4.91484803437485e25 * cos(theta) ** 23 - 1.84215785584716e25 * cos(theta) ** 21 + 5.29935821545075e24 * cos(theta) ** 19 - 1.16029482054043e24 * cos(theta) ** 17 + 1.90579825596013e23 * cos(theta) ** 15 - 2.29746058410808e22 * cos(theta) ** 13 + 1.9692519292355e21 * cos(theta) ** 11 - 1.14612546145981e20 * cos(theta) ** 9 + 4.22751194800751e18 * cos(theta) ** 7 - 8.85122142653616e16 * cos(theta) ** 5 + 862692146835883.0 * cos(theta) ** 3 - 2476628172734.59 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl46_m_minus_6(theta, phi): return ( 3.86945569224729e-10 * (1.0 - cos(theta) ** 2) ** 3 * ( 3.93704562935986e22 * cos(theta) ** 40 - 3.37461053945131e23 * cos(theta) ** 38 + 1.3327815782215e24 * cos(theta) ** 36 - 3.21705898191397e24 * cos(theta) ** 34 + 5.30814732015804e24 * cos(theta) ** 32 - 6.34419535132142e24 * cos(theta) ** 30 + 5.67844645642967e24 * cos(theta) ** 28 - 3.88146972971142e24 * cos(theta) ** 26 + 2.04785334765619e24 * cos(theta) ** 24 - 8.3734447993053e23 * cos(theta) ** 22 + 2.64967910772537e23 * cos(theta) ** 20 - 6.44608233633574e22 * cos(theta) ** 18 + 1.19112390997508e22 * cos(theta) ** 16 - 1.64104327436291e21 * cos(theta) ** 14 + 1.64104327436291e20 * cos(theta) ** 12 - 1.14612546145981e19 * cos(theta) ** 10 + 5.28438993500938e17 * cos(theta) ** 8 - 1.47520357108936e16 * cos(theta) ** 6 + 215673036708971.0 * cos(theta) ** 4 - 1238314086367.3 * cos(theta) ** 2 + 1168220836.19556 ) * sin(6 * phi) ) # @torch.jit.script def Yl46_m_minus_5(theta, phi): return ( 1.78666643331353e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 9.60255031551185e20 * cos(theta) ** 41 - 8.65284753705464e21 * cos(theta) ** 39 + 3.60211237357162e22 * cos(theta) ** 37 - 9.19159709118276e22 * cos(theta) ** 35 + 1.60852949095698e23 * cos(theta) ** 33 - 2.04651462945852e23 * cos(theta) ** 31 + 1.95808498497575e23 * cos(theta) ** 29 - 1.4375813813746e23 * cos(theta) ** 27 + 8.19141339062474e22 * cos(theta) ** 25 - 3.640628173611e22 * cos(theta) ** 23 + 1.2617519560597e22 * cos(theta) ** 21 - 3.39267491386091e21 * cos(theta) ** 19 + 7.00661123514754e20 * cos(theta) ** 17 - 1.09402884957528e20 * cos(theta) ** 15 + 1.26234098027916e19 * cos(theta) ** 13 - 1.04193223769074e18 * cos(theta) ** 11 + 5.87154437223265e16 * cos(theta) ** 9 - 2.1074336729848e15 * cos(theta) ** 7 + 43134607341794.1 * cos(theta) ** 5 - 412771362122.432 * cos(theta) ** 3 + 1168220836.19556 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl46_m_minus_4(theta, phi): return ( 8.26900418061119e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 2.2863215036933e19 * cos(theta) ** 42 - 2.16321188426366e20 * cos(theta) ** 40 + 9.47924308834637e20 * cos(theta) ** 38 - 2.55322141421743e21 * cos(theta) ** 36 + 4.73096909104995e21 * cos(theta) ** 34 - 6.39535821705788e21 * cos(theta) ** 32 + 6.52694994991916e21 * cos(theta) ** 30 - 5.134219219195e21 * cos(theta) ** 28 + 3.15054361177875e21 * cos(theta) ** 26 - 1.51692840567125e21 * cos(theta) ** 24 + 5.73523616390774e20 * cos(theta) ** 22 - 1.69633745693046e20 * cos(theta) ** 20 + 3.89256179730419e19 * cos(theta) ** 18 - 6.83768030984548e18 * cos(theta) ** 16 + 9.01672128770832e17 * cos(theta) ** 14 - 8.68276864742283e16 * cos(theta) ** 12 + 5.87154437223265e15 * cos(theta) ** 10 - 263429209123100.0 * cos(theta) ** 8 + 7189101223632.36 * cos(theta) ** 6 - 103192840530.608 * cos(theta) ** 4 + 584110418.097781 * cos(theta) ** 2 - 545387.878709413 ) * sin(4 * phi) ) # @torch.jit.script def Yl46_m_minus_3(theta, phi): return ( 3.83417950543236e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 5.31702675277511e17 * cos(theta) ** 43 - 5.27612654698454e18 * cos(theta) ** 41 + 2.43057515085804e19 * cos(theta) ** 39 - 6.90059841680387e19 * cos(theta) ** 37 + 1.3517054545857e20 * cos(theta) ** 35 - 1.93798733850239e20 * cos(theta) ** 33 + 2.10546772578037e20 * cos(theta) ** 31 - 1.77042042041207e20 * cos(theta) ** 29 + 1.1668680043625e20 * cos(theta) ** 27 - 6.067713622685e19 * cos(theta) ** 25 + 2.49358094082945e19 * cos(theta) ** 23 - 8.07779741395456e18 * cos(theta) ** 21 + 2.04871673542326e18 * cos(theta) ** 19 - 4.0221648881444e17 * cos(theta) ** 17 + 6.01114752513888e16 * cos(theta) ** 15 - 6.67905280570987e15 * cos(theta) ** 13 + 533776761112059.0 * cos(theta) ** 11 - 29269912124788.9 * cos(theta) ** 9 + 1027014460518.91 * cos(theta) ** 7 - 20638568106.1216 * cos(theta) ** 5 + 194703472.69926 * cos(theta) ** 3 - 545387.878709413 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl46_m_minus_2(theta, phi): return ( 0.00178031487177454 * (1.0 - cos(theta) ** 2) * ( 1.20841517108525e16 * cos(theta) ** 44 - 1.25622060642489e17 * cos(theta) ** 42 + 6.07643787714511e17 * cos(theta) ** 40 - 1.81594695179049e18 * cos(theta) ** 38 + 3.75473737384917e18 * cos(theta) ** 36 - 5.69996276030114e18 * cos(theta) ** 34 + 6.57958664306367e18 * cos(theta) ** 32 - 5.90140140137356e18 * cos(theta) ** 30 + 4.16738572986607e18 * cos(theta) ** 28 - 2.333736008725e18 * cos(theta) ** 26 + 1.03899205867894e18 * cos(theta) ** 24 - 3.67172609725207e17 * cos(theta) ** 22 + 1.02435836771163e17 * cos(theta) ** 20 - 2.23453604896911e16 * cos(theta) ** 18 + 3.7569672032118e15 * cos(theta) ** 16 - 477075200407848.0 * cos(theta) ** 14 + 44481396759338.3 * cos(theta) ** 12 - 2926991212478.89 * cos(theta) ** 10 + 128376807564.864 * cos(theta) ** 8 - 3439761351.02027 * cos(theta) ** 6 + 48675868.1748151 * cos(theta) ** 4 - 272693.939354706 * cos(theta) ** 2 + 252.962837991379 ) * sin(2 * phi) ) # @torch.jit.script def Yl46_m_minus_1(theta, phi): return ( 0.0827415581926583 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 268536704685612.0 * cos(theta) ** 45 - 2.92144327075556e15 * cos(theta) ** 43 + 1.48205801881588e16 * cos(theta) ** 41 - 4.65627423536024e16 * cos(theta) ** 39 + 1.0147938848241e17 * cos(theta) ** 37 - 1.62856078865747e17 * cos(theta) ** 35 + 1.99381413426172e17 * cos(theta) ** 33 - 1.90367787141083e17 * cos(theta) ** 31 + 1.43702956202278e17 * cos(theta) ** 29 - 8.64346669898148e16 * cos(theta) ** 27 + 4.15596823471575e16 * cos(theta) ** 25 - 1.59640265097916e16 * cos(theta) ** 23 + 4.87789698910299e15 * cos(theta) ** 21 - 1.17607160472058e15 * cos(theta) ** 19 + 220998070777165.0 * cos(theta) ** 17 - 31805013360523.2 * cos(theta) ** 15 + 3421645904564.48 * cos(theta) ** 13 - 266090110225.353 * cos(theta) ** 11 + 14264089729.4293 * cos(theta) ** 9 - 491394478.717181 * cos(theta) ** 7 + 9735173.63496302 * cos(theta) ** 5 - 90897.9797849021 * cos(theta) ** 3 + 252.962837991379 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl46_m0(theta, phi): return ( 49892152197498.7 * cos(theta) ** 46 - 567454698070452.0 * cos(theta) ** 44 + 3.01579856390251e15 * cos(theta) ** 42 - 9.94866882574737e15 * cos(theta) ** 40 + 2.2823416717891e16 * cos(theta) ** 38 - 3.86623179582588e16 * cos(theta) ** 36 + 5.01178195755206e16 * cos(theta) ** 34 - 5.08428513234486e16 * cos(theta) ** 32 + 4.09383997669326e16 * cos(theta) ** 30 - 2.63825242942455e16 * cos(theta) ** 28 + 1.36610879222257e16 * cos(theta) ** 26 - 5.68483172179689e15 * cos(theta) ** 24 + 1.89494390726563e15 * cos(theta) ** 22 - 502562620641056.0 * cos(theta) ** 20 + 104930657056924.0 * cos(theta) ** 18 - 16988773047311.5 * cos(theta) ** 16 + 2088783571390.76 * cos(theta) ** 14 - 189510772678.523 * cos(theta) ** 12 + 12190751458.8524 * cos(theta) ** 10 - 524960589.137183 * cos(theta) ** 8 + 13866883.4866426 * cos(theta) ** 6 - 194214.05443477 * cos(theta) ** 4 + 1080.96876308777 * cos(theta) ** 2 - 0.999971103688968 ) # @torch.jit.script def Yl46_m1(theta, phi): return ( 0.0827415581926583 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 268536704685612.0 * cos(theta) ** 45 - 2.92144327075556e15 * cos(theta) ** 43 + 1.48205801881588e16 * cos(theta) ** 41 - 4.65627423536024e16 * cos(theta) ** 39 + 1.0147938848241e17 * cos(theta) ** 37 - 1.62856078865747e17 * cos(theta) ** 35 + 1.99381413426172e17 * cos(theta) ** 33 - 1.90367787141083e17 * cos(theta) ** 31 + 1.43702956202278e17 * cos(theta) ** 29 - 8.64346669898148e16 * cos(theta) ** 27 + 4.15596823471575e16 * cos(theta) ** 25 - 1.59640265097916e16 * cos(theta) ** 23 + 4.87789698910299e15 * cos(theta) ** 21 - 1.17607160472058e15 * cos(theta) ** 19 + 220998070777165.0 * cos(theta) ** 17 - 31805013360523.2 * cos(theta) ** 15 + 3421645904564.48 * cos(theta) ** 13 - 266090110225.353 * cos(theta) ** 11 + 14264089729.4293 * cos(theta) ** 9 - 491394478.717181 * cos(theta) ** 7 + 9735173.63496302 * cos(theta) ** 5 - 90897.9797849021 * cos(theta) ** 3 + 252.962837991379 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl46_m2(theta, phi): return ( 0.00178031487177454 * (1.0 - cos(theta) ** 2) * ( 1.20841517108525e16 * cos(theta) ** 44 - 1.25622060642489e17 * cos(theta) ** 42 + 6.07643787714511e17 * cos(theta) ** 40 - 1.81594695179049e18 * cos(theta) ** 38 + 3.75473737384917e18 * cos(theta) ** 36 - 5.69996276030114e18 * cos(theta) ** 34 + 6.57958664306367e18 * cos(theta) ** 32 - 5.90140140137356e18 * cos(theta) ** 30 + 4.16738572986607e18 * cos(theta) ** 28 - 2.333736008725e18 * cos(theta) ** 26 + 1.03899205867894e18 * cos(theta) ** 24 - 3.67172609725207e17 * cos(theta) ** 22 + 1.02435836771163e17 * cos(theta) ** 20 - 2.23453604896911e16 * cos(theta) ** 18 + 3.7569672032118e15 * cos(theta) ** 16 - 477075200407848.0 * cos(theta) ** 14 + 44481396759338.3 * cos(theta) ** 12 - 2926991212478.89 * cos(theta) ** 10 + 128376807564.864 * cos(theta) ** 8 - 3439761351.02027 * cos(theta) ** 6 + 48675868.1748151 * cos(theta) ** 4 - 272693.939354706 * cos(theta) ** 2 + 252.962837991379 ) * cos(2 * phi) ) # @torch.jit.script def Yl46_m3(theta, phi): return ( 3.83417950543236e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 5.31702675277511e17 * cos(theta) ** 43 - 5.27612654698454e18 * cos(theta) ** 41 + 2.43057515085804e19 * cos(theta) ** 39 - 6.90059841680387e19 * cos(theta) ** 37 + 1.3517054545857e20 * cos(theta) ** 35 - 1.93798733850239e20 * cos(theta) ** 33 + 2.10546772578037e20 * cos(theta) ** 31 - 1.77042042041207e20 * cos(theta) ** 29 + 1.1668680043625e20 * cos(theta) ** 27 - 6.067713622685e19 * cos(theta) ** 25 + 2.49358094082945e19 * cos(theta) ** 23 - 8.07779741395456e18 * cos(theta) ** 21 + 2.04871673542326e18 * cos(theta) ** 19 - 4.0221648881444e17 * cos(theta) ** 17 + 6.01114752513888e16 * cos(theta) ** 15 - 6.67905280570987e15 * cos(theta) ** 13 + 533776761112059.0 * cos(theta) ** 11 - 29269912124788.9 * cos(theta) ** 9 + 1027014460518.91 * cos(theta) ** 7 - 20638568106.1216 * cos(theta) ** 5 + 194703472.69926 * cos(theta) ** 3 - 545387.878709413 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl46_m4(theta, phi): return ( 8.26900418061119e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 2.2863215036933e19 * cos(theta) ** 42 - 2.16321188426366e20 * cos(theta) ** 40 + 9.47924308834637e20 * cos(theta) ** 38 - 2.55322141421743e21 * cos(theta) ** 36 + 4.73096909104995e21 * cos(theta) ** 34 - 6.39535821705788e21 * cos(theta) ** 32 + 6.52694994991916e21 * cos(theta) ** 30 - 5.134219219195e21 * cos(theta) ** 28 + 3.15054361177875e21 * cos(theta) ** 26 - 1.51692840567125e21 * cos(theta) ** 24 + 5.73523616390774e20 * cos(theta) ** 22 - 1.69633745693046e20 * cos(theta) ** 20 + 3.89256179730419e19 * cos(theta) ** 18 - 6.83768030984548e18 * cos(theta) ** 16 + 9.01672128770832e17 * cos(theta) ** 14 - 8.68276864742283e16 * cos(theta) ** 12 + 5.87154437223265e15 * cos(theta) ** 10 - 263429209123100.0 * cos(theta) ** 8 + 7189101223632.36 * cos(theta) ** 6 - 103192840530.608 * cos(theta) ** 4 + 584110418.097781 * cos(theta) ** 2 - 545387.878709413 ) * cos(4 * phi) ) # @torch.jit.script def Yl46_m5(theta, phi): return ( 1.78666643331353e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 9.60255031551185e20 * cos(theta) ** 41 - 8.65284753705464e21 * cos(theta) ** 39 + 3.60211237357162e22 * cos(theta) ** 37 - 9.19159709118276e22 * cos(theta) ** 35 + 1.60852949095698e23 * cos(theta) ** 33 - 2.04651462945852e23 * cos(theta) ** 31 + 1.95808498497575e23 * cos(theta) ** 29 - 1.4375813813746e23 * cos(theta) ** 27 + 8.19141339062474e22 * cos(theta) ** 25 - 3.640628173611e22 * cos(theta) ** 23 + 1.2617519560597e22 * cos(theta) ** 21 - 3.39267491386091e21 * cos(theta) ** 19 + 7.00661123514754e20 * cos(theta) ** 17 - 1.09402884957528e20 * cos(theta) ** 15 + 1.26234098027916e19 * cos(theta) ** 13 - 1.04193223769074e18 * cos(theta) ** 11 + 5.87154437223265e16 * cos(theta) ** 9 - 2.1074336729848e15 * cos(theta) ** 7 + 43134607341794.1 * cos(theta) ** 5 - 412771362122.432 * cos(theta) ** 3 + 1168220836.19556 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl46_m6(theta, phi): return ( 3.86945569224729e-10 * (1.0 - cos(theta) ** 2) ** 3 * ( 3.93704562935986e22 * cos(theta) ** 40 - 3.37461053945131e23 * cos(theta) ** 38 + 1.3327815782215e24 * cos(theta) ** 36 - 3.21705898191397e24 * cos(theta) ** 34 + 5.30814732015804e24 * cos(theta) ** 32 - 6.34419535132142e24 * cos(theta) ** 30 + 5.67844645642967e24 * cos(theta) ** 28 - 3.88146972971142e24 * cos(theta) ** 26 + 2.04785334765619e24 * cos(theta) ** 24 - 8.3734447993053e23 * cos(theta) ** 22 + 2.64967910772537e23 * cos(theta) ** 20 - 6.44608233633574e22 * cos(theta) ** 18 + 1.19112390997508e22 * cos(theta) ** 16 - 1.64104327436291e21 * cos(theta) ** 14 + 1.64104327436291e20 * cos(theta) ** 12 - 1.14612546145981e19 * cos(theta) ** 10 + 5.28438993500938e17 * cos(theta) ** 8 - 1.47520357108936e16 * cos(theta) ** 6 + 215673036708971.0 * cos(theta) ** 4 - 1238314086367.3 * cos(theta) ** 2 + 1168220836.19556 ) * cos(6 * phi) ) # @torch.jit.script def Yl46_m7(theta, phi): return ( 8.4039207365689e-12 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.57481825174394e24 * cos(theta) ** 39 - 1.2823520049915e25 * cos(theta) ** 37 + 4.7980136815974e25 * cos(theta) ** 35 - 1.09380005385075e26 * cos(theta) ** 33 + 1.69860714245057e26 * cos(theta) ** 31 - 1.90325860539643e26 * cos(theta) ** 29 + 1.58996500780031e26 * cos(theta) ** 27 - 1.00918212972497e26 * cos(theta) ** 25 + 4.91484803437485e25 * cos(theta) ** 23 - 1.84215785584716e25 * cos(theta) ** 21 + 5.29935821545075e24 * cos(theta) ** 19 - 1.16029482054043e24 * cos(theta) ** 17 + 1.90579825596013e23 * cos(theta) ** 15 - 2.29746058410808e22 * cos(theta) ** 13 + 1.9692519292355e21 * cos(theta) ** 11 - 1.14612546145981e20 * cos(theta) ** 9 + 4.22751194800751e18 * cos(theta) ** 7 - 8.85122142653616e16 * cos(theta) ** 5 + 862692146835883.0 * cos(theta) ** 3 - 2476628172734.59 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl46_m8(theta, phi): return ( 1.83127161651504e-13 * (1.0 - cos(theta) ** 2) ** 4 * ( 6.14179118180138e25 * cos(theta) ** 38 - 4.74470241846854e26 * cos(theta) ** 36 + 1.67930478855909e27 * cos(theta) ** 34 - 3.60954017770747e27 * cos(theta) ** 32 + 5.26568214159678e27 * cos(theta) ** 30 - 5.51944995564964e27 * cos(theta) ** 28 + 4.29290552106083e27 * cos(theta) ** 26 - 2.52295532431242e27 * cos(theta) ** 24 + 1.13041504790621e27 * cos(theta) ** 22 - 3.86853149727905e26 * cos(theta) ** 20 + 1.00687806093564e26 * cos(theta) ** 18 - 1.97250119491874e25 * cos(theta) ** 16 + 2.8586973839402e24 * cos(theta) ** 14 - 2.9866987593405e23 * cos(theta) ** 12 + 2.16617712215905e22 * cos(theta) ** 10 - 1.03151291531383e21 * cos(theta) ** 8 + 2.95925836360525e19 * cos(theta) ** 6 - 4.42561071326808e17 * cos(theta) ** 4 + 2.58807644050765e15 * cos(theta) ** 2 - 2476628172734.59 ) * cos(8 * phi) ) # @torch.jit.script def Yl46_m9(theta, phi): return ( 4.00571107454053e-15 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 2.33388064908453e27 * cos(theta) ** 37 - 1.70809287064867e28 * cos(theta) ** 35 + 5.70963628110091e28 * cos(theta) ** 33 - 1.15505285686639e29 * cos(theta) ** 31 + 1.57970464247903e29 * cos(theta) ** 29 - 1.5454459875819e29 * cos(theta) ** 27 + 1.11615543547582e29 * cos(theta) ** 25 - 6.05509277834981e28 * cos(theta) ** 23 + 2.48691310539367e28 * cos(theta) ** 21 - 7.73706299455809e27 * cos(theta) ** 19 + 1.81238050968416e27 * cos(theta) ** 17 - 3.15600191186998e26 * cos(theta) ** 15 + 4.00217633751628e25 * cos(theta) ** 13 - 3.5840385112086e24 * cos(theta) ** 11 + 2.16617712215905e23 * cos(theta) ** 9 - 8.25210332251065e21 * cos(theta) ** 7 + 1.77555501816315e20 * cos(theta) ** 5 - 1.77024428530723e18 * cos(theta) ** 3 + 5.1761528810153e15 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl46_m10(theta, phi): return ( 8.80004201373588e-17 * (1.0 - cos(theta) ** 2) ** 5 * ( 8.63535840161274e28 * cos(theta) ** 36 - 5.97832504727036e29 * cos(theta) ** 34 + 1.8841799727633e30 * cos(theta) ** 32 - 3.58066385628581e30 * cos(theta) ** 30 + 4.5811434631892e30 * cos(theta) ** 28 - 4.17270416647112e30 * cos(theta) ** 26 + 2.79038858868954e30 * cos(theta) ** 24 - 1.39267133902046e30 * cos(theta) ** 22 + 5.22251752132671e29 * cos(theta) ** 20 - 1.47004196896604e29 * cos(theta) ** 18 + 3.08104686646307e28 * cos(theta) ** 16 - 4.73400286780497e27 * cos(theta) ** 14 + 5.20282923877116e26 * cos(theta) ** 12 - 3.94244236232946e25 * cos(theta) ** 10 + 1.94955940994314e24 * cos(theta) ** 8 - 5.77647232575746e22 * cos(theta) ** 6 + 8.87777509081577e20 * cos(theta) ** 4 - 5.31073285592169e18 * cos(theta) ** 2 + 5.1761528810153e15 ) * cos(10 * phi) ) # @torch.jit.script def Yl46_m11(theta, phi): return ( 1.9426567317875e-18 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 3.10872902458059e30 * cos(theta) ** 35 - 2.03263051607192e31 * cos(theta) ** 33 + 6.02937591284256e31 * cos(theta) ** 31 - 1.07419915688574e32 * cos(theta) ** 29 + 1.28272016969298e32 * cos(theta) ** 27 - 1.08490308328249e32 * cos(theta) ** 25 + 6.69693261285489e31 * cos(theta) ** 23 - 3.063876945845e31 * cos(theta) ** 21 + 1.04450350426534e31 * cos(theta) ** 19 - 2.64607554413887e30 * cos(theta) ** 17 + 4.9296749863409e29 * cos(theta) ** 15 - 6.62760401492695e28 * cos(theta) ** 13 + 6.24339508652539e27 * cos(theta) ** 11 - 3.94244236232947e26 * cos(theta) ** 9 + 1.55964752795451e25 * cos(theta) ** 7 - 3.46588339545447e23 * cos(theta) ** 5 + 3.55111003632631e21 * cos(theta) ** 3 - 1.06214657118434e19 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl46_m12(theta, phi): return ( 4.31169516088401e-20 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.08805515860321e32 * cos(theta) ** 34 - 6.70768070303734e32 * cos(theta) ** 32 + 1.86910653298119e33 * cos(theta) ** 30 - 3.11517755496865e33 * cos(theta) ** 28 + 3.46334445817103e33 * cos(theta) ** 26 - 2.71225770820623e33 * cos(theta) ** 24 + 1.54029450095663e33 * cos(theta) ** 22 - 6.43414158627451e32 * cos(theta) ** 20 + 1.98455665810415e32 * cos(theta) ** 18 - 4.49832842503608e31 * cos(theta) ** 16 + 7.39451247951136e30 * cos(theta) ** 14 - 8.61588521940504e29 * cos(theta) ** 12 + 6.86773459517793e28 * cos(theta) ** 10 - 3.54819812609652e27 * cos(theta) ** 8 + 1.09175326956816e26 * cos(theta) ** 6 - 1.73294169772724e24 * cos(theta) ** 4 + 1.06533301089789e22 * cos(theta) ** 2 - 1.06214657118434e19 ) * cos(12 * phi) ) # @torch.jit.script def Yl46_m13(theta, phi): return ( 9.62681407083826e-22 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 3.6993875392509e33 * cos(theta) ** 33 - 2.14645782497195e34 * cos(theta) ** 31 + 5.60731959894358e34 * cos(theta) ** 29 - 8.72249715391223e34 * cos(theta) ** 27 + 9.00469559124469e34 * cos(theta) ** 25 - 6.50941849969495e34 * cos(theta) ** 23 + 3.38864790210458e34 * cos(theta) ** 21 - 1.2868283172549e34 * cos(theta) ** 19 + 3.57220198458747e33 * cos(theta) ** 17 - 7.19732548005772e32 * cos(theta) ** 15 + 1.03523174713159e32 * cos(theta) ** 13 - 1.0339062263286e31 * cos(theta) ** 11 + 6.86773459517793e29 * cos(theta) ** 9 - 2.83855850087721e28 * cos(theta) ** 7 + 6.55051961740896e26 * cos(theta) ** 5 - 6.93176679090895e24 * cos(theta) ** 3 + 2.13066602179578e22 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl46_m14(theta, phi): return ( 2.16346557417279e-23 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.2207978879528e35 * cos(theta) ** 32 - 6.65401925741305e35 * cos(theta) ** 30 + 1.62612268369364e36 * cos(theta) ** 28 - 2.3550742315563e36 * cos(theta) ** 26 + 2.25117389781117e36 * cos(theta) ** 24 - 1.49716625492984e36 * cos(theta) ** 22 + 7.11616059441961e35 * cos(theta) ** 20 - 2.44497380278431e35 * cos(theta) ** 18 + 6.0727433737987e34 * cos(theta) ** 16 - 1.07959882200866e34 * cos(theta) ** 14 + 1.34580127127107e33 * cos(theta) ** 12 - 1.13729684896146e32 * cos(theta) ** 10 + 6.18096113566013e30 * cos(theta) ** 8 - 1.98699095061405e29 * cos(theta) ** 6 + 3.27525980870448e27 * cos(theta) ** 4 - 2.07953003727268e25 * cos(theta) ** 2 + 2.13066602179578e22 ) * cos(14 * phi) ) # @torch.jit.script def Yl46_m15(theta, phi): return ( 4.89677424487597e-25 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 3.90655324144895e36 * cos(theta) ** 31 - 1.99620577722391e37 * cos(theta) ** 29 + 4.55314351434219e37 * cos(theta) ** 27 - 6.12319300204639e37 * cos(theta) ** 25 + 5.40281735474681e37 * cos(theta) ** 23 - 3.29376576084565e37 * cos(theta) ** 21 + 1.42323211888392e37 * cos(theta) ** 19 - 4.40095284501176e36 * cos(theta) ** 17 + 9.71638939807792e35 * cos(theta) ** 15 - 1.51143835081212e35 * cos(theta) ** 13 + 1.61496152552528e34 * cos(theta) ** 11 - 1.13729684896146e33 * cos(theta) ** 9 + 4.94476890852811e31 * cos(theta) ** 7 - 1.19219457036843e30 * cos(theta) ** 5 + 1.31010392348179e28 * cos(theta) ** 3 - 4.15906007454537e25 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl46_m16(theta, phi): return ( 1.11694912080369e-26 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.21103150484917e38 * cos(theta) ** 30 - 5.78899675394935e38 * cos(theta) ** 28 + 1.22934874887239e39 * cos(theta) ** 26 - 1.5307982505116e39 * cos(theta) ** 24 + 1.24264799159177e39 * cos(theta) ** 22 - 6.91690809777586e38 * cos(theta) ** 20 + 2.70414102587945e38 * cos(theta) ** 18 - 7.48161983652e37 * cos(theta) ** 16 + 1.45745840971169e37 * cos(theta) ** 14 - 1.96486985605576e36 * cos(theta) ** 12 + 1.77645767807781e35 * cos(theta) ** 10 - 1.02356716406532e34 * cos(theta) ** 8 + 3.46133823596968e32 * cos(theta) ** 6 - 5.96097285184215e30 * cos(theta) ** 4 + 3.93031177044537e28 * cos(theta) ** 2 - 4.15906007454537e25 ) * cos(16 * phi) ) # @torch.jit.script def Yl46_m17(theta, phi): return ( 2.56922706601449e-28 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 3.63309451454752e39 * cos(theta) ** 29 - 1.62091909110582e40 * cos(theta) ** 27 + 3.19630674706821e40 * cos(theta) ** 25 - 3.67391580122783e40 * cos(theta) ** 23 + 2.73382558150189e40 * cos(theta) ** 21 - 1.38338161955517e40 * cos(theta) ** 19 + 4.86745384658301e39 * cos(theta) ** 17 - 1.1970591738432e39 * cos(theta) ** 15 + 2.04044177359636e38 * cos(theta) ** 13 - 2.35784382726691e37 * cos(theta) ** 11 + 1.77645767807781e36 * cos(theta) ** 9 - 8.18853731252255e34 * cos(theta) ** 7 + 2.07680294158181e33 * cos(theta) ** 5 - 2.38438914073686e31 * cos(theta) ** 3 + 7.86062354089075e28 * cos(theta) ) * cos(17 * phi) ) # @torch.jit.script def Yl46_m18(theta, phi): return ( 5.96366861096496e-30 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.05359740921878e41 * cos(theta) ** 28 - 4.37648154598571e41 * cos(theta) ** 26 + 7.99076686767054e41 * cos(theta) ** 24 - 8.45000634282401e41 * cos(theta) ** 22 + 5.74103372115396e41 * cos(theta) ** 20 - 2.62842507715483e41 * cos(theta) ** 18 + 8.27467153919112e40 * cos(theta) ** 16 - 1.7955887607648e40 * cos(theta) ** 14 + 2.65257430567527e39 * cos(theta) ** 12 - 2.5936282099936e38 * cos(theta) ** 10 + 1.59881191027003e37 * cos(theta) ** 8 - 5.73197611876578e35 * cos(theta) ** 6 + 1.0384014707909e34 * cos(theta) ** 4 - 7.15316742221058e31 * cos(theta) ** 2 + 7.86062354089075e28 ) * cos(18 * phi) ) # @torch.jit.script def Yl46_m19(theta, phi): return ( 1.39790548387065e-31 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 2.95007274581259e42 * cos(theta) ** 27 - 1.13788520195628e43 * cos(theta) ** 25 + 1.91778404824093e43 * cos(theta) ** 23 - 1.85900139542128e43 * cos(theta) ** 21 + 1.14820674423079e43 * cos(theta) ** 19 - 4.73116513887869e42 * cos(theta) ** 17 + 1.32394744627058e42 * cos(theta) ** 15 - 2.51382426507072e41 * cos(theta) ** 13 + 3.18308916681033e40 * cos(theta) ** 11 - 2.5936282099936e39 * cos(theta) ** 9 + 1.27904952821602e38 * cos(theta) ** 7 - 3.43918567125947e36 * cos(theta) ** 5 + 4.15360588316361e34 * cos(theta) ** 3 - 1.43063348444212e32 * cos(theta) ) * cos(19 * phi) ) # @torch.jit.script def Yl46_m20(theta, phi): return ( 3.31149389509621e-33 * (1.0 - cos(theta) ** 2) ** 10 * ( 7.96519641369399e43 * cos(theta) ** 26 - 2.84471300489071e44 * cos(theta) ** 24 + 4.41090331095414e44 * cos(theta) ** 22 - 3.90390293038469e44 * cos(theta) ** 20 + 2.18159281403851e44 * cos(theta) ** 18 - 8.04298073609377e43 * cos(theta) ** 16 + 1.98592116940587e43 * cos(theta) ** 14 - 3.26797154459194e42 * cos(theta) ** 12 + 3.50139808349136e41 * cos(theta) ** 10 - 2.33426538899424e40 * cos(theta) ** 8 + 8.95334669751215e38 * cos(theta) ** 6 - 1.71959283562973e37 * cos(theta) ** 4 + 1.24608176494908e35 * cos(theta) ** 2 - 1.43063348444212e32 ) * cos(20 * phi) ) # @torch.jit.script def Yl46_m21(theta, phi): return ( 7.93414043768083e-35 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 2.07095106756044e45 * cos(theta) ** 25 - 6.82731121173771e45 * cos(theta) ** 23 + 9.7039872840991e45 * cos(theta) ** 21 - 7.80780586076939e45 * cos(theta) ** 19 + 3.92686706526931e45 * cos(theta) ** 17 - 1.286876917775e45 * cos(theta) ** 15 + 2.78028963716822e44 * cos(theta) ** 13 - 3.92156585351032e43 * cos(theta) ** 11 + 3.50139808349136e42 * cos(theta) ** 9 - 1.86741231119539e41 * cos(theta) ** 7 + 5.37200801850729e39 * cos(theta) ** 5 - 6.87837134251894e37 * cos(theta) ** 3 + 2.49216352989817e35 * cos(theta) ) * cos(21 * phi) ) # @torch.jit.script def Yl46_m22(theta, phi): return ( 1.92431171017896e-36 * (1.0 - cos(theta) ** 2) ** 11 * ( 5.17737766890109e46 * cos(theta) ** 24 - 1.57028157869967e47 * cos(theta) ** 22 + 2.03783732966081e47 * cos(theta) ** 20 - 1.48348311354618e47 * cos(theta) ** 18 + 6.67567401095783e46 * cos(theta) ** 16 - 1.9303153766625e46 * cos(theta) ** 14 + 3.61437652831868e45 * cos(theta) ** 12 - 4.31372243886136e44 * cos(theta) ** 10 + 3.15125827514222e43 * cos(theta) ** 8 - 1.30718861783677e42 * cos(theta) ** 6 + 2.68600400925365e40 * cos(theta) ** 4 - 2.06351140275568e38 * cos(theta) ** 2 + 2.49216352989817e35 ) * cos(22 * phi) ) # @torch.jit.script def Yl46_m23(theta, phi): return ( 4.72873804667603e-38 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.24257064053626e48 * cos(theta) ** 23 - 3.45461947313928e48 * cos(theta) ** 21 + 4.07567465932162e48 * cos(theta) ** 19 - 2.67026960438313e48 * cos(theta) ** 17 + 1.06810784175325e48 * cos(theta) ** 15 - 2.70244152732751e47 * cos(theta) ** 13 + 4.33725183398242e46 * cos(theta) ** 11 - 4.31372243886136e45 * cos(theta) ** 9 + 2.52100662011378e44 * cos(theta) ** 7 - 7.84313170702065e42 * cos(theta) ** 5 + 1.07440160370146e41 * cos(theta) ** 3 - 4.12702280551136e38 * cos(theta) ) * cos(23 * phi) ) # @torch.jit.script def Yl46_m24(theta, phi): return ( 1.17850741252294e-39 * (1.0 - cos(theta) ** 2) ** 12 * ( 2.8579124732334e49 * cos(theta) ** 22 - 7.25470089359249e49 * cos(theta) ** 20 + 7.74378185271108e49 * cos(theta) ** 18 - 4.53945832745132e49 * cos(theta) ** 16 + 1.60216176262988e49 * cos(theta) ** 14 - 3.51317398552576e48 * cos(theta) ** 12 + 4.77097701738066e47 * cos(theta) ** 10 - 3.88235019497522e46 * cos(theta) ** 8 + 1.76470463407965e45 * cos(theta) ** 6 - 3.92156585351032e43 * cos(theta) ** 4 + 3.22320481110438e41 * cos(theta) ** 2 - 4.12702280551136e38 ) * cos(24 * phi) ) # @torch.jit.script def Yl46_m25(theta, phi): return ( 2.98189127114901e-41 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 6.28740744111349e50 * cos(theta) ** 21 - 1.4509401787185e51 * cos(theta) ** 19 + 1.39388073348799e51 * cos(theta) ** 17 - 7.26313332392212e50 * cos(theta) ** 15 + 2.24302646768183e50 * cos(theta) ** 13 - 4.21580878263091e49 * cos(theta) ** 11 + 4.77097701738066e48 * cos(theta) ** 9 - 3.10588015598018e47 * cos(theta) ** 7 + 1.05882278044779e46 * cos(theta) ** 5 - 1.56862634140413e44 * cos(theta) ** 3 + 6.44640962220875e41 * cos(theta) ) * cos(25 * phi) ) # @torch.jit.script def Yl46_m26(theta, phi): return ( 7.66859687268355e-43 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.32035556263383e52 * cos(theta) ** 20 - 2.75678633956514e52 * cos(theta) ** 18 + 2.36959724692959e52 * cos(theta) ** 16 - 1.08946999858832e52 * cos(theta) ** 14 + 2.91593440798638e51 * cos(theta) ** 12 - 4.637389660894e50 * cos(theta) ** 10 + 4.29387931564259e49 * cos(theta) ** 8 - 2.17411610918612e48 * cos(theta) ** 6 + 5.29411390223894e46 * cos(theta) ** 4 - 4.70587902421239e44 * cos(theta) ** 2 + 6.44640962220875e41 ) * cos(26 * phi) ) # @torch.jit.script def Yl46_m27(theta, phi): return ( 2.00696352793153e-44 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 2.64071112526766e53 * cos(theta) ** 19 - 4.96221541121726e53 * cos(theta) ** 17 + 3.79135559508734e53 * cos(theta) ** 15 - 1.52525799802364e53 * cos(theta) ** 13 + 3.49912128958366e52 * cos(theta) ** 11 - 4.637389660894e51 * cos(theta) ** 9 + 3.43510345251407e50 * cos(theta) ** 7 - 1.30446966551167e49 * cos(theta) ** 5 + 2.11764556089557e47 * cos(theta) ** 3 - 9.41175804842478e44 * cos(theta) ) * cos(27 * phi) ) # @torch.jit.script def Yl46_m28(theta, phi): return ( 5.35237852927822e-46 * (1.0 - cos(theta) ** 2) ** 14 * ( 5.01735113800856e54 * cos(theta) ** 18 - 8.43576619906934e54 * cos(theta) ** 16 + 5.68703339263102e54 * cos(theta) ** 14 - 1.98283539743074e54 * cos(theta) ** 12 + 3.84903341854202e53 * cos(theta) ** 10 - 4.1736506948046e52 * cos(theta) ** 8 + 2.40457241675985e51 * cos(theta) ** 6 - 6.52234832755837e49 * cos(theta) ** 4 + 6.35293668268672e47 * cos(theta) ** 2 - 9.41175804842478e44 ) * cos(28 * phi) ) # @torch.jit.script def Yl46_m29(theta, phi): return ( 1.45673292299555e-47 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 9.03123204841541e55 * cos(theta) ** 17 - 1.34972259185109e56 * cos(theta) ** 15 + 7.96184674968342e55 * cos(theta) ** 13 - 2.37940247691689e55 * cos(theta) ** 11 + 3.84903341854202e54 * cos(theta) ** 9 - 3.33892055584368e53 * cos(theta) ** 7 + 1.44274345005591e52 * cos(theta) ** 5 - 2.60893933102335e50 * cos(theta) ** 3 + 1.27058733653734e48 * cos(theta) ) * cos(29 * phi) ) # @torch.jit.script def Yl46_m30(theta, phi): return ( 4.05273940238151e-49 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.53530944823062e57 * cos(theta) ** 16 - 2.02458388777664e57 * cos(theta) ** 14 + 1.03504007745885e57 * cos(theta) ** 12 - 2.61734272460857e56 * cos(theta) ** 10 + 3.46413007668782e55 * cos(theta) ** 8 - 2.33724438909058e54 * cos(theta) ** 6 + 7.21371725027956e52 * cos(theta) ** 4 - 7.82681799307004e50 * cos(theta) ** 2 + 1.27058733653734e48 ) * cos(30 * phi) ) # @torch.jit.script def Yl46_m31(theta, phi): return ( 1.15463129634021e-50 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 2.45649511716899e58 * cos(theta) ** 15 - 2.8344174428873e58 * cos(theta) ** 13 + 1.24204809295061e58 * cos(theta) ** 11 - 2.61734272460857e57 * cos(theta) ** 9 + 2.77130406135025e56 * cos(theta) ** 7 - 1.40234663345435e55 * cos(theta) ** 5 + 2.88548690011182e53 * cos(theta) ** 3 - 1.56536359861401e51 * cos(theta) ) * cos(31 * phi) ) # @torch.jit.script def Yl46_m32(theta, phi): return ( 3.37559545932685e-52 * (1.0 - cos(theta) ** 2) ** 16 * ( 3.68474267575349e59 * cos(theta) ** 14 - 3.68474267575349e59 * cos(theta) ** 12 + 1.36625290224568e59 * cos(theta) ** 10 - 2.35560845214772e58 * cos(theta) ** 8 + 1.93991284294518e57 * cos(theta) ** 6 - 7.01173316727173e55 * cos(theta) ** 4 + 8.65646070033547e53 * cos(theta) ** 2 - 1.56536359861401e51 ) * cos(32 * phi) ) # @torch.jit.script def Yl46_m33(theta, phi): return ( 1.01501586519763e-53 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 5.15863974605488e60 * cos(theta) ** 13 - 4.42169121090419e60 * cos(theta) ** 11 + 1.36625290224568e60 * cos(theta) ** 9 - 1.88448676171817e59 * cos(theta) ** 7 + 1.16394770576711e58 * cos(theta) ** 5 - 2.80469326690869e56 * cos(theta) ** 3 + 1.73129214006709e54 * cos(theta) ) * cos(33 * phi) ) # @torch.jit.script def Yl46_m34(theta, phi): return ( 3.14743058609061e-55 * (1.0 - cos(theta) ** 2) ** 17 * ( 6.70623166987135e61 * cos(theta) ** 12 - 4.86386033199461e61 * cos(theta) ** 10 + 1.22962761202111e61 * cos(theta) ** 8 - 1.31914073320272e60 * cos(theta) ** 6 + 5.81973852883553e58 * cos(theta) ** 4 - 8.41407980072607e56 * cos(theta) ** 2 + 1.73129214006709e54 ) * cos(34 * phi) ) # @torch.jit.script def Yl46_m35(theta, phi): return ( 1.00953883118615e-56 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 8.04747800384562e62 * cos(theta) ** 11 - 4.8638603319946e62 * cos(theta) ** 9 + 9.83702089616886e61 * cos(theta) ** 7 - 7.91484439921633e60 * cos(theta) ** 5 + 2.32789541153421e59 * cos(theta) ** 3 - 1.68281596014521e57 * cos(theta) ) * cos(35 * phi) ) # @torch.jit.script def Yl46_m36(theta, phi): return ( 3.36139662478243e-58 * (1.0 - cos(theta) ** 2) ** 18 * ( 8.85222580423018e63 * cos(theta) ** 10 - 4.37747429879514e63 * cos(theta) ** 8 + 6.88591462731821e62 * cos(theta) ** 6 - 3.95742219960816e61 * cos(theta) ** 4 + 6.98368623460264e59 * cos(theta) ** 2 - 1.68281596014521e57 ) * cos(36 * phi) ) # @torch.jit.script def Yl46_m37(theta, phi): return ( 1.16675780150007e-59 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 8.85222580423018e64 * cos(theta) ** 9 - 3.50197943903612e64 * cos(theta) ** 7 + 4.13154877639092e63 * cos(theta) ** 5 - 1.58296887984327e62 * cos(theta) ** 3 + 1.39673724692053e60 * cos(theta) ) * cos(37 * phi) ) # @torch.jit.script def Yl46_m38(theta, phi): return ( 4.24345709766218e-61 * (1.0 - cos(theta) ** 2) ** 19 * ( 7.96700322380716e65 * cos(theta) ** 8 - 2.45138560732528e65 * cos(theta) ** 6 + 2.06577438819546e64 * cos(theta) ** 4 - 4.7489066395298e62 * cos(theta) ** 2 + 1.39673724692053e60 ) * cos(38 * phi) ) # @torch.jit.script def Yl46_m39(theta, phi): return ( 1.62729151279139e-62 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 6.37360257904573e66 * cos(theta) ** 7 - 1.47083136439517e66 * cos(theta) ** 5 + 8.26309755278185e64 * cos(theta) ** 3 - 9.49781327905959e62 * cos(theta) ) * cos(39 * phi) ) # @torch.jit.script def Yl46_m40(theta, phi): return ( 6.63234506965458e-64 * (1.0 - cos(theta) ** 2) ** 20 * ( 4.46152180533201e67 * cos(theta) ** 6 - 7.35415682197584e66 * cos(theta) ** 4 + 2.47892926583455e65 * cos(theta) ** 2 - 9.49781327905959e62 ) * cos(40 * phi) ) # @torch.jit.script def Yl46_m41(theta, phi): return ( 2.9028985753037e-65 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 2.67691308319921e68 * cos(theta) ** 5 - 2.94166272879034e67 * cos(theta) ** 3 + 4.95785853166911e65 * cos(theta) ) * cos(41 * phi) ) # @torch.jit.script def Yl46_m42(theta, phi): return ( 1.3839025959632e-66 * (1.0 - cos(theta) ** 2) ** 21 * ( 1.3384565415996e69 * cos(theta) ** 4 - 8.82498818637101e67 * cos(theta) ** 2 + 4.95785853166911e65 ) * cos(42 * phi) ) # @torch.jit.script def Yl46_m43(theta, phi): return ( 7.33466908928147e-68 * (1.0 - cos(theta) ** 2) ** 21.5 * (5.35382616639841e69 * cos(theta) ** 3 - 1.7649976372742e68 * cos(theta)) * cos(43 * phi) ) # @torch.jit.script def Yl46_m44(theta, phi): return ( 4.46373745781704e-69 * (1.0 - cos(theta) ** 2) ** 22 * (1.60614784991952e70 * cos(theta) ** 2 - 1.7649976372742e68) * cos(44 * phi) ) # @torch.jit.script def Yl46_m45(theta, phi): return ( 10.6286587918185 * (1.0 - cos(theta) ** 2) ** 22.5 * cos(45 * phi) * cos(theta) ) # @torch.jit.script def Yl46_m46(theta, phi): return 1.1081142800943 * (1.0 - cos(theta) ** 2) ** 23 * cos(46 * phi) # @torch.jit.script def Yl47_m_minus_47(theta, phi): return 1.11399291169174 * (1.0 - cos(theta) ** 2) ** 23.5 * sin(47 * phi) # @torch.jit.script def Yl47_m_minus_46(theta, phi): return 10.8005619986252 * (1.0 - cos(theta) ** 2) ** 23 * sin(46 * phi) * cos(theta) # @torch.jit.script def Yl47_m_minus_45(theta, phi): return ( 4.93065211209231e-71 * (1.0 - cos(theta) ** 2) ** 22.5 * (1.49371750042516e72 * cos(theta) ** 2 - 1.60614784991952e70) * sin(45 * phi) ) # @torch.jit.script def Yl47_m_minus_44(theta, phi): return ( 8.19141449881068e-70 * (1.0 - cos(theta) ** 2) ** 22 * (4.97905833475052e71 * cos(theta) ** 3 - 1.60614784991952e70 * cos(theta)) * sin(44 * phi) ) # @torch.jit.script def Yl47_m_minus_43(theta, phi): return ( 1.56282228109413e-68 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 1.24476458368763e71 * cos(theta) ** 4 - 8.03073924959762e69 * cos(theta) ** 2 + 4.41249409318551e67 ) * sin(43 * phi) ) # @torch.jit.script def Yl47_m_minus_42(theta, phi): return ( 3.31524669825326e-67 * (1.0 - cos(theta) ** 2) ** 21 * ( 2.48952916737526e70 * cos(theta) ** 5 - 2.67691308319921e69 * cos(theta) ** 3 + 4.41249409318551e67 * cos(theta) ) * sin(42 * phi) ) # @torch.jit.script def Yl47_m_minus_41(theta, phi): return ( 7.66101794667593e-66 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 4.14921527895877e69 * cos(theta) ** 6 - 6.69228270799802e68 * cos(theta) ** 4 + 2.20624704659275e67 * cos(theta) ** 2 - 8.26309755278185e64 ) * sin(41 * phi) ) # @torch.jit.script def Yl47_m_minus_40(theta, phi): return ( 1.90141465028655e-64 * (1.0 - cos(theta) ** 2) ** 20 * ( 5.92745039851253e68 * cos(theta) ** 7 - 1.3384565415996e68 * cos(theta) ** 5 + 7.35415682197584e66 * cos(theta) ** 3 - 8.26309755278185e64 * cos(theta) ) * sin(40 * phi) ) # @torch.jit.script def Yl47_m_minus_39(theta, phi): return ( 5.01627636792244e-63 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 7.40931299814066e67 * cos(theta) ** 8 - 2.23076090266601e67 * cos(theta) ** 6 + 1.83853920549396e66 * cos(theta) ** 4 - 4.13154877639092e64 * cos(theta) ** 2 + 1.18722665988245e62 ) * sin(39 * phi) ) # @torch.jit.script def Yl47_m_minus_38(theta, phi): return ( 1.39557099912251e-61 * (1.0 - cos(theta) ** 2) ** 19 * ( 8.23256999793407e66 * cos(theta) ** 9 - 3.18680128952287e66 * cos(theta) ** 7 + 3.67707841098792e65 * cos(theta) ** 5 - 1.37718292546364e64 * cos(theta) ** 3 + 1.18722665988245e62 * cos(theta) ) * sin(38 * phi) ) # @torch.jit.script def Yl47_m_minus_37(theta, phi): return ( 4.06875368086227e-60 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 8.23256999793407e65 * cos(theta) ** 10 - 3.98350161190358e65 * cos(theta) ** 8 + 6.1284640183132e64 * cos(theta) ** 6 - 3.4429573136591e63 * cos(theta) ** 4 + 5.93613329941225e61 * cos(theta) ** 2 - 1.39673724692053e59 ) * sin(37 * phi) ) # @torch.jit.script def Yl47_m_minus_36(theta, phi): return ( 1.23679404188207e-58 * (1.0 - cos(theta) ** 2) ** 18 * ( 7.48415454357643e64 * cos(theta) ** 11 - 4.42611290211509e64 * cos(theta) ** 9 + 8.75494859759029e63 * cos(theta) ** 7 - 6.88591462731821e62 * cos(theta) ** 5 + 1.97871109980408e61 * cos(theta) ** 3 - 1.39673724692053e59 * cos(theta) ) * sin(36 * phi) ) # @torch.jit.script def Yl47_m_minus_35(theta, phi): return ( 3.90325615867939e-57 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 6.23679545298036e63 * cos(theta) ** 12 - 4.42611290211509e63 * cos(theta) ** 10 + 1.09436857469879e63 * cos(theta) ** 8 - 1.14765243788637e62 * cos(theta) ** 6 + 4.94677774951021e60 * cos(theta) ** 4 - 6.98368623460264e58 * cos(theta) ** 2 + 1.40234663345435e56 ) * sin(35 * phi) ) # @torch.jit.script def Yl47_m_minus_34(theta, phi): return ( 1.27439968653976e-55 * (1.0 - cos(theta) ** 2) ** 17 * ( 4.79753496383104e62 * cos(theta) ** 13 - 4.02373900192281e62 * cos(theta) ** 11 + 1.21596508299865e62 * cos(theta) ** 9 - 1.63950348269481e61 * cos(theta) ** 7 + 9.89355549902041e59 * cos(theta) ** 5 - 2.32789541153421e58 * cos(theta) ** 3 + 1.40234663345435e56 * cos(theta) ) * sin(34 * phi) ) # @torch.jit.script def Yl47_m_minus_33(theta, phi): return ( 4.29153030075948e-54 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 3.42681068845074e61 * cos(theta) ** 14 - 3.35311583493567e61 * cos(theta) ** 12 + 1.21596508299865e61 * cos(theta) ** 10 - 2.04937935336851e60 * cos(theta) ** 8 + 1.6489259165034e59 * cos(theta) ** 6 - 5.81973852883553e57 * cos(theta) ** 4 + 7.01173316727173e55 * cos(theta) ** 2 - 1.23663724290507e53 ) * sin(33 * phi) ) # @torch.jit.script def Yl47_m_minus_32(theta, phi): return ( 1.48662970462735e-52 * (1.0 - cos(theta) ** 2) ** 16 * ( 2.28454045896716e60 * cos(theta) ** 15 - 2.57931987302744e60 * cos(theta) ** 13 + 1.10542280272605e60 * cos(theta) ** 11 - 2.27708817040946e59 * cos(theta) ** 9 + 2.35560845214772e58 * cos(theta) ** 7 - 1.16394770576711e57 * cos(theta) ** 5 + 2.33724438909058e55 * cos(theta) ** 3 - 1.23663724290507e53 * cos(theta) ) * sin(32 * phi) ) # @torch.jit.script def Yl47_m_minus_31(theta, phi): return ( 5.28538153651375e-51 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 1.42783778685448e59 * cos(theta) ** 16 - 1.84237133787674e59 * cos(theta) ** 14 + 9.21185668938372e58 * cos(theta) ** 12 - 2.27708817040946e58 * cos(theta) ** 10 + 2.94451056518465e57 * cos(theta) ** 8 - 1.93991284294518e56 * cos(theta) ** 6 + 5.84311097272644e54 * cos(theta) ** 4 - 6.18318621452533e52 * cos(theta) ** 2 + 9.78352249133755e49 ) * sin(31 * phi) ) # @torch.jit.script def Yl47_m_minus_30(theta, phi): return ( 1.92463378568823e-49 * (1.0 - cos(theta) ** 2) ** 15 * ( 8.39904580502633e57 * cos(theta) ** 17 - 1.2282475585845e58 * cos(theta) ** 15 + 7.08604360721825e57 * cos(theta) ** 13 - 2.07008015491769e57 * cos(theta) ** 11 + 3.27167840576072e56 * cos(theta) ** 9 - 2.77130406135025e55 * cos(theta) ** 7 + 1.16862219454529e54 * cos(theta) ** 5 - 2.06106207150844e52 * cos(theta) ** 3 + 9.78352249133755e49 * cos(theta) ) * sin(30 * phi) ) # @torch.jit.script def Yl47_m_minus_29(theta, phi): return ( 7.16522315053166e-48 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 4.66613655834796e56 * cos(theta) ** 18 - 7.6765472411531e56 * cos(theta) ** 16 + 5.06145971944161e56 * cos(theta) ** 14 - 1.72506679576474e56 * cos(theta) ** 12 + 3.27167840576072e55 * cos(theta) ** 10 - 3.46413007668782e54 * cos(theta) ** 8 + 1.94770365757548e53 * cos(theta) ** 6 - 5.15265517877111e51 * cos(theta) ** 4 + 4.89176124566878e49 * cos(theta) ** 2 - 7.05881853631858e46 ) * sin(29 * phi) ) # @torch.jit.script def Yl47_m_minus_28(theta, phi): return ( 2.72278479720203e-46 * (1.0 - cos(theta) ** 2) ** 14 * ( 2.45586134649893e55 * cos(theta) ** 19 - 4.51561602420771e55 * cos(theta) ** 17 + 3.37430647962774e55 * cos(theta) ** 15 - 1.32697445828057e55 * cos(theta) ** 13 + 2.97425309614611e54 * cos(theta) ** 11 - 3.84903341854202e53 * cos(theta) ** 9 + 2.7824337965364e52 * cos(theta) ** 7 - 1.03053103575422e51 * cos(theta) ** 5 + 1.63058708188959e49 * cos(theta) ** 3 - 7.05881853631858e46 * cos(theta) ) * sin(28 * phi) ) # @torch.jit.script def Yl47_m_minus_27(theta, phi): return ( 1.05453001748702e-44 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.22793067324946e54 * cos(theta) ** 20 - 2.50867556900428e54 * cos(theta) ** 18 + 2.10894154976734e54 * cos(theta) ** 16 - 9.47838898771836e53 * cos(theta) ** 14 + 2.47854424678842e53 * cos(theta) ** 12 - 3.84903341854202e52 * cos(theta) ** 10 + 3.4780422456705e51 * cos(theta) ** 8 - 1.71755172625704e50 * cos(theta) ** 6 + 4.07646770472398e48 * cos(theta) ** 4 - 3.52940926815929e46 * cos(theta) ** 2 + 4.70587902421239e43 ) * sin(27 * phi) ) # @torch.jit.script def Yl47_m_minus_26(theta, phi): return ( 4.15704239669497e-43 * (1.0 - cos(theta) ** 2) ** 13 * ( 5.84728892023554e52 * cos(theta) ** 21 - 1.32035556263383e53 * cos(theta) ** 19 + 1.24055385280432e53 * cos(theta) ** 17 - 6.31892599181224e52 * cos(theta) ** 15 + 1.90657249752956e52 * cos(theta) ** 13 - 3.49912128958366e51 * cos(theta) ** 11 + 3.86449138407833e50 * cos(theta) ** 9 - 2.45364532322434e49 * cos(theta) ** 7 + 8.15293540944796e47 * cos(theta) ** 5 - 1.1764697560531e46 * cos(theta) ** 3 + 4.70587902421239e43 * cos(theta) ) * sin(26 * phi) ) # @torch.jit.script def Yl47_m_minus_25(theta, phi): return ( 1.66593182302274e-41 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 2.65785860010707e51 * cos(theta) ** 22 - 6.60177781316916e51 * cos(theta) ** 20 + 6.89196584891286e51 * cos(theta) ** 18 - 3.94932874488265e51 * cos(theta) ** 16 + 1.3618374982354e51 * cos(theta) ** 14 - 2.91593440798638e50 * cos(theta) ** 12 + 3.86449138407833e49 * cos(theta) ** 10 - 3.06705665403042e48 * cos(theta) ** 8 + 1.35882256824133e47 * cos(theta) ** 6 - 2.94117439013274e45 * cos(theta) ** 4 + 2.35293951210619e43 * cos(theta) ** 2 - 2.93018619191307e40 ) * sin(25 * phi) ) # @torch.jit.script def Yl47_m_minus_24(theta, phi): return ( 6.77933961187779e-40 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.15559069569872e50 * cos(theta) ** 23 - 3.14370372055674e50 * cos(theta) ** 21 + 3.62735044679624e50 * cos(theta) ** 19 - 2.32313455581332e50 * cos(theta) ** 17 + 9.07891665490265e49 * cos(theta) ** 15 - 2.24302646768183e49 * cos(theta) ** 13 + 3.51317398552576e48 * cos(theta) ** 11 - 3.40784072670047e47 * cos(theta) ** 9 + 1.94117509748761e46 * cos(theta) ** 7 - 5.88234878026548e44 * cos(theta) ** 5 + 7.84313170702065e42 * cos(theta) ** 3 - 2.93018619191307e40 * cos(theta) ) * sin(24 * phi) ) # @torch.jit.script def Yl47_m_minus_23(theta, phi): return ( 2.79847985979336e-38 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 4.81496123207802e48 * cos(theta) ** 24 - 1.4289562366167e49 * cos(theta) ** 22 + 1.81367522339812e49 * cos(theta) ** 20 - 1.29063030878518e49 * cos(theta) ** 18 + 5.67432290931415e48 * cos(theta) ** 16 - 1.60216176262988e48 * cos(theta) ** 14 + 2.92764498793813e47 * cos(theta) ** 12 - 3.40784072670047e46 * cos(theta) ** 10 + 2.42646887185951e45 * cos(theta) ** 8 - 9.80391463377581e43 * cos(theta) ** 6 + 1.96078292675516e42 * cos(theta) ** 4 - 1.46509309595653e40 * cos(theta) ** 2 + 1.71959283562973e37 ) * sin(23 * phi) ) # @torch.jit.script def Yl47_m_minus_22(theta, phi): return ( 1.1706881168749e-36 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.92598449283121e47 * cos(theta) ** 25 - 6.21285320268131e47 * cos(theta) ** 23 + 8.6365486828482e47 * cos(theta) ** 21 - 6.79279109886937e47 * cos(theta) ** 19 + 3.33783700547891e47 * cos(theta) ** 17 - 1.06810784175325e47 * cos(theta) ** 15 + 2.25203460610626e46 * cos(theta) ** 13 - 3.09803702427316e45 * cos(theta) ** 11 + 2.69607652428835e44 * cos(theta) ** 9 - 1.40055923339654e43 * cos(theta) ** 7 + 3.92156585351032e41 * cos(theta) ** 5 - 4.88364365318845e39 * cos(theta) ** 3 + 1.71959283562973e37 * cos(theta) ) * sin(22 * phi) ) # @torch.jit.script def Yl47_m_minus_21(theta, phi): return ( 4.95852411165239e-35 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 7.40763266473541e45 * cos(theta) ** 26 - 2.58868883445055e46 * cos(theta) ** 24 + 3.92570394674918e46 * cos(theta) ** 22 - 3.39639554943468e46 * cos(theta) ** 20 + 1.85435389193273e46 * cos(theta) ** 18 - 6.67567401095783e45 * cos(theta) ** 16 + 1.60859614721875e45 * cos(theta) ** 14 - 2.58169752022763e44 * cos(theta) ** 12 + 2.69607652428835e43 * cos(theta) ** 10 - 1.75069904174568e42 * cos(theta) ** 8 + 6.53594308918387e40 * cos(theta) ** 6 - 1.22091091329711e39 * cos(theta) ** 4 + 8.59796417814867e36 * cos(theta) ** 2 - 9.58524434576218e33 ) * sin(21 * phi) ) # @torch.jit.script def Yl47_m_minus_20(theta, phi): return ( 2.12465670327417e-33 * (1.0 - cos(theta) ** 2) ** 10 * ( 2.74356765360571e44 * cos(theta) ** 27 - 1.03547553378022e45 * cos(theta) ** 25 + 1.70682780293443e45 * cos(theta) ** 23 - 1.61733121401652e45 * cos(theta) ** 21 + 9.75975732596174e44 * cos(theta) ** 19 - 3.92686706526931e44 * cos(theta) ** 17 + 1.07239743147917e44 * cos(theta) ** 15 - 1.98592116940587e43 * cos(theta) ** 13 + 2.45097865844395e42 * cos(theta) ** 11 - 1.9452211574952e41 * cos(theta) ** 9 + 9.33706155597696e39 * cos(theta) ** 7 - 2.44182182659422e38 * cos(theta) ** 5 + 2.86598805938289e36 * cos(theta) ** 3 - 9.58524434576218e33 * cos(theta) ) * sin(20 * phi) ) # @torch.jit.script def Yl47_m_minus_19(theta, phi): return ( 9.20248641199569e-32 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 9.79845590573467e42 * cos(theta) ** 28 - 3.98259820684699e43 * cos(theta) ** 26 + 7.11178251222678e43 * cos(theta) ** 24 - 7.35150551825689e43 * cos(theta) ** 22 + 4.87987866298087e43 * cos(theta) ** 20 - 2.18159281403851e43 * cos(theta) ** 18 + 6.70248394674481e42 * cos(theta) ** 16 - 1.41851512100419e42 * cos(theta) ** 14 + 2.04248221536996e41 * cos(theta) ** 12 - 1.9452211574952e40 * cos(theta) ** 10 + 1.16713269449712e39 * cos(theta) ** 8 - 4.06970304432371e37 * cos(theta) ** 6 + 7.16497014845723e35 * cos(theta) ** 4 - 4.79262217288109e33 * cos(theta) ** 2 + 5.10940530157899e30 ) * sin(19 * phi) ) # @torch.jit.script def Yl47_m_minus_18(theta, phi): return ( 4.02602207266572e-30 * (1.0 - cos(theta) ** 2) ** 9 * ( 3.3787778985292e41 * cos(theta) ** 29 - 1.47503637290629e42 * cos(theta) ** 27 + 2.84471300489071e42 * cos(theta) ** 25 - 3.19630674706821e42 * cos(theta) ** 23 + 2.3237517442766e42 * cos(theta) ** 21 - 1.14820674423079e42 * cos(theta) ** 19 + 3.94263761573224e41 * cos(theta) ** 17 - 9.45676747336128e40 * cos(theta) ** 15 + 1.5711401656692e40 * cos(theta) ** 13 - 1.76838287045018e39 * cos(theta) ** 11 + 1.2968141049968e38 * cos(theta) ** 9 - 5.81386149189101e36 * cos(theta) ** 7 + 1.43299402969145e35 * cos(theta) ** 5 - 1.5975407242937e33 * cos(theta) ** 3 + 5.10940530157899e30 * cos(theta) ) * sin(18 * phi) ) # @torch.jit.script def Yl47_m_minus_17(theta, phi): return ( 1.77784320941706e-28 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.12625929950973e40 * cos(theta) ** 30 - 5.26798704609391e40 * cos(theta) ** 28 + 1.09412038649643e41 * cos(theta) ** 26 - 1.33179447794509e41 * cos(theta) ** 24 + 1.056250792853e41 * cos(theta) ** 22 - 5.74103372115396e40 * cos(theta) ** 20 + 2.19035423096236e40 * cos(theta) ** 18 - 5.9104796708508e39 * cos(theta) ** 16 + 1.122242975478e39 * cos(theta) ** 14 - 1.47365239204182e38 * cos(theta) ** 12 + 1.2968141049968e37 * cos(theta) ** 10 - 7.26732686486376e35 * cos(theta) ** 8 + 2.38832338281908e34 * cos(theta) ** 6 - 3.99385181073424e32 * cos(theta) ** 4 + 2.55470265078949e30 * cos(theta) ** 2 - 2.62020784696358e27 ) * sin(17 * phi) ) # @torch.jit.script def Yl47_m_minus_16(theta, phi): return ( 7.91888965127333e-27 * (1.0 - cos(theta) ** 2) ** 8 * ( 3.63309451454752e38 * cos(theta) ** 31 - 1.81654725727376e39 * cos(theta) ** 29 + 4.05229772776454e39 * cos(theta) ** 27 - 5.32717791178036e39 * cos(theta) ** 25 + 4.59239475153479e39 * cos(theta) ** 23 - 2.73382558150189e39 * cos(theta) ** 21 + 1.15281801629598e39 * cos(theta) ** 19 - 3.47675274755929e38 * cos(theta) ** 17 + 7.48161983652e37 * cos(theta) ** 15 - 1.13357876310909e37 * cos(theta) ** 13 + 1.17892191363345e36 * cos(theta) ** 11 - 8.0748076276264e34 * cos(theta) ** 9 + 3.41189054688439e33 * cos(theta) ** 7 - 7.98770362146848e31 * cos(theta) ** 5 + 8.51567550263164e29 * cos(theta) ** 3 - 2.62020784696358e27 * cos(theta) ) * sin(16 * phi) ) # @torch.jit.script def Yl47_m_minus_15(theta, phi): return ( 3.55557263504815e-25 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.1353420357961e37 * cos(theta) ** 32 - 6.05515752424587e37 * cos(theta) ** 30 + 1.44724918848734e38 * cos(theta) ** 28 - 2.04891458145398e38 * cos(theta) ** 26 + 1.9134978131395e38 * cos(theta) ** 24 - 1.24264799159177e38 * cos(theta) ** 22 + 5.76409008147988e37 * cos(theta) ** 20 - 1.93152930419961e37 * cos(theta) ** 18 + 4.676012397825e36 * cos(theta) ** 16 - 8.09699116506493e35 * cos(theta) ** 14 + 9.82434928027879e34 * cos(theta) ** 12 - 8.0748076276264e33 * cos(theta) ** 10 + 4.26486318360549e32 * cos(theta) ** 8 - 1.33128393691141e31 * cos(theta) ** 6 + 2.12891887565791e29 * cos(theta) ** 4 - 1.31010392348179e27 * cos(theta) ** 2 + 1.29970627329543e24 ) * sin(15 * phi) ) # @torch.jit.script def Yl47_m_minus_14(theta, phi): return ( 1.60828262371106e-23 * (1.0 - cos(theta) ** 2) ** 7 * ( 3.44043041150334e35 * cos(theta) ** 33 - 1.95327662072447e36 * cos(theta) ** 31 + 4.99051444305978e36 * cos(theta) ** 29 - 7.58857252390364e36 * cos(theta) ** 27 + 7.65399125255798e36 * cos(theta) ** 25 - 5.40281735474681e36 * cos(theta) ** 23 + 2.74480480070471e36 * cos(theta) ** 21 - 1.01659437063137e36 * cos(theta) ** 19 + 2.75059552813235e35 * cos(theta) ** 17 - 5.39799411004329e34 * cos(theta) ** 15 + 7.55719175406061e33 * cos(theta) ** 13 - 7.34073420693309e32 * cos(theta) ** 11 + 4.73873687067277e31 * cos(theta) ** 9 - 1.90183419558773e30 * cos(theta) ** 7 + 4.25783775131582e28 * cos(theta) ** 5 - 4.36701307827264e26 * cos(theta) ** 3 + 1.29970627329543e24 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl47_m_minus_13(theta, phi): return ( 7.32431047764493e-22 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.01189129750098e34 * cos(theta) ** 34 - 6.10398943976398e34 * cos(theta) ** 32 + 1.66350481435326e35 * cos(theta) ** 30 - 2.71020447282273e35 * cos(theta) ** 28 + 2.94384278944538e35 * cos(theta) ** 26 - 2.25117389781117e35 * cos(theta) ** 24 + 1.24763854577487e35 * cos(theta) ** 22 - 5.08297185315686e34 * cos(theta) ** 20 + 1.5281086267402e34 * cos(theta) ** 18 - 3.37374631877706e33 * cos(theta) ** 16 + 5.39799411004329e32 * cos(theta) ** 14 - 6.11727850577758e31 * cos(theta) ** 12 + 4.73873687067277e30 * cos(theta) ** 10 - 2.37729274448467e29 * cos(theta) ** 8 + 7.09639625219304e27 * cos(theta) ** 6 - 1.09175326956816e26 * cos(theta) ** 4 + 6.49853136647714e23 * cos(theta) ** 2 - 6.2666647699876e20 ) * sin(13 * phi) ) # @torch.jit.script def Yl47_m_minus_12(theta, phi): return ( 3.35642071771661e-20 * (1.0 - cos(theta) ** 2) ** 6 * ( 2.89111799285995e32 * cos(theta) ** 35 - 1.84969376962545e33 * cos(theta) ** 33 + 5.36614456242988e33 * cos(theta) ** 31 - 9.34553266490596e33 * cos(theta) ** 29 + 1.09031214423903e34 * cos(theta) ** 27 - 9.00469559124469e33 * cos(theta) ** 25 + 5.42451541641246e33 * cos(theta) ** 23 - 2.42046278721755e33 * cos(theta) ** 21 + 8.04267698284314e32 * cos(theta) ** 19 - 1.98455665810415e32 * cos(theta) ** 17 + 3.59866274002886e31 * cos(theta) ** 15 - 4.70559885059814e30 * cos(theta) ** 13 + 4.30794260970252e29 * cos(theta) ** 11 - 2.64143638276074e28 * cos(theta) ** 9 + 1.01377089317043e27 * cos(theta) ** 7 - 2.18350653913632e25 * cos(theta) ** 5 + 2.16617712215905e23 * cos(theta) ** 3 - 6.2666647699876e20 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl47_m_minus_11(theta, phi): return ( 1.54686940343682e-18 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 8.03088331349985e30 * cos(theta) ** 36 - 5.44027579301603e31 * cos(theta) ** 34 + 1.67692017575934e32 * cos(theta) ** 32 - 3.11517755496865e32 * cos(theta) ** 30 + 3.89397194371082e32 * cos(theta) ** 28 - 3.46334445817103e32 * cos(theta) ** 26 + 2.26021475683853e32 * cos(theta) ** 24 - 1.10021035782616e32 * cos(theta) ** 22 + 4.02133849142157e31 * cos(theta) ** 20 - 1.10253147672453e31 * cos(theta) ** 18 + 2.24916421251804e30 * cos(theta) ** 16 - 3.36114203614153e29 * cos(theta) ** 14 + 3.5899521747521e28 * cos(theta) ** 12 - 2.64143638276074e27 * cos(theta) ** 10 + 1.26721361646304e26 * cos(theta) ** 8 - 3.6391775652272e24 * cos(theta) ** 6 + 5.41544280539762e22 * cos(theta) ** 4 - 3.1333323849938e20 * cos(theta) ** 2 + 2.95040714217872e17 ) * sin(11 * phi) ) # @torch.jit.script def Yl47_m_minus_10(theta, phi): return ( 7.16586312000596e-17 * (1.0 - cos(theta) ** 2) ** 5 * ( 2.17050900364861e29 * cos(theta) ** 37 - 1.55436451229029e30 * cos(theta) ** 35 + 5.08157629017981e30 * cos(theta) ** 33 - 1.00489598547376e31 * cos(theta) ** 31 + 1.34274894610718e31 * cos(theta) ** 29 - 1.28272016969298e31 * cos(theta) ** 27 + 9.0408590273541e30 * cos(theta) ** 25 - 4.78352329489635e30 * cos(theta) ** 23 + 1.91492309115313e30 * cos(theta) ** 21 - 5.80279724591857e29 * cos(theta) ** 19 + 1.32303777206943e29 * cos(theta) ** 17 - 2.24076135742768e28 * cos(theta) ** 15 + 2.76150167288623e27 * cos(theta) ** 13 - 2.40130580250977e26 * cos(theta) ** 11 + 1.40801512940338e25 * cos(theta) ** 9 - 5.19882509318171e23 * cos(theta) ** 7 + 1.08308856107952e22 * cos(theta) ** 5 - 1.04444412833127e20 * cos(theta) ** 3 + 2.95040714217872e17 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl47_m_minus_9(theta, phi): return ( 3.33501456002215e-15 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 5.71186579907529e27 * cos(theta) ** 38 - 4.31767920080637e28 * cos(theta) ** 36 + 1.49458126181759e29 * cos(theta) ** 34 - 3.1402999546055e29 * cos(theta) ** 32 + 4.47582982035726e29 * cos(theta) ** 30 - 4.5811434631892e29 * cos(theta) ** 28 + 3.47725347205927e29 * cos(theta) ** 26 - 1.99313470620681e29 * cos(theta) ** 24 + 8.70419586887785e28 * cos(theta) ** 22 - 2.90139862295928e28 * cos(theta) ** 20 + 7.35020984483019e27 * cos(theta) ** 18 - 1.4004758483923e27 * cos(theta) ** 16 + 1.97250119491874e26 * cos(theta) ** 14 - 2.00108816875814e25 * cos(theta) ** 12 + 1.40801512940338e24 * cos(theta) ** 10 - 6.49853136647714e22 * cos(theta) ** 8 + 1.80514760179921e21 * cos(theta) ** 6 - 2.61111032082817e19 * cos(theta) ** 4 + 1.47520357108936e17 * cos(theta) ** 2 - 136214549500403.0 ) * sin(9 * phi) ) # @torch.jit.script def Yl47_m_minus_8(theta, phi): return ( 1.55856188521285e-13 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.46458097412187e26 * cos(theta) ** 39 - 1.16694032454226e27 * cos(theta) ** 37 + 4.27023217662169e27 * cos(theta) ** 35 - 9.51606046850151e27 * cos(theta) ** 33 + 1.44381607108299e28 * cos(theta) ** 31 - 1.57970464247903e28 * cos(theta) ** 29 + 1.28787165631825e28 * cos(theta) ** 27 - 7.97253882482725e27 * cos(theta) ** 25 + 3.78443298646863e27 * cos(theta) ** 23 - 1.38161839188537e27 * cos(theta) ** 21 + 3.86853149727905e26 * cos(theta) ** 19 - 8.23809322583707e25 * cos(theta) ** 17 + 1.31500079661249e25 * cos(theta) ** 15 - 1.53929859135241e24 * cos(theta) ** 13 + 1.28001375400307e23 * cos(theta) ** 11 - 7.22059040719682e21 * cos(theta) ** 9 + 2.57878228828458e20 * cos(theta) ** 7 - 5.22222064165633e18 * cos(theta) ** 5 + 4.91734523696453e16 * cos(theta) ** 3 - 136214549500403.0 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl47_m_minus_7(theta, phi): return ( 7.31030322906247e-12 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 3.66145243530467e24 * cos(theta) ** 40 - 3.07089559090069e25 * cos(theta) ** 38 + 1.18617560461714e26 * cos(theta) ** 36 - 2.79884131426515e26 * cos(theta) ** 34 + 4.51192522213434e26 * cos(theta) ** 32 - 5.26568214159678e26 * cos(theta) ** 30 + 4.59954162970803e26 * cos(theta) ** 28 - 3.06636108647202e26 * cos(theta) ** 26 + 1.57684707769526e26 * cos(theta) ** 24 - 6.28008359947897e25 * cos(theta) ** 22 + 1.93426574863952e25 * cos(theta) ** 20 - 4.57671845879837e24 * cos(theta) ** 18 + 8.21875497882807e23 * cos(theta) ** 16 - 1.09949899382315e23 * cos(theta) ** 14 + 1.06667812833589e22 * cos(theta) ** 12 - 7.22059040719682e20 * cos(theta) ** 10 + 3.22347786035572e19 * cos(theta) ** 8 - 8.70370106942722e17 * cos(theta) ** 6 + 1.22933630924113e16 * cos(theta) ** 4 - 68107274750201.3 * cos(theta) ** 2 + 61915704318.3648 ) * sin(7 * phi) ) # @torch.jit.script def Yl47_m_minus_6(theta, phi): return ( 3.43972877896009e-10 * (1.0 - cos(theta) ** 2) ** 3 * ( 8.93037179342602e22 * cos(theta) ** 41 - 7.87409125871972e23 * cos(theta) ** 39 + 3.20588001247874e24 * cos(theta) ** 37 - 7.996689469329e24 * cos(theta) ** 35 + 1.36725006731344e25 * cos(theta) ** 33 - 1.69860714245057e25 * cos(theta) ** 31 + 1.58604883783036e25 * cos(theta) ** 29 - 1.13568929128593e25 * cos(theta) ** 27 + 6.30738831078105e24 * cos(theta) ** 25 - 2.73047113020825e24 * cos(theta) ** 23 + 9.21078927923582e23 * cos(theta) ** 21 - 2.40879918884125e23 * cos(theta) ** 19 + 4.8345617522518e22 * cos(theta) ** 17 - 7.32999329215435e21 * cos(theta) ** 15 + 8.20521637181457e20 * cos(theta) ** 13 - 6.56417309745166e19 * cos(theta) ** 11 + 3.58164206706192e18 * cos(theta) ** 9 - 1.24338586706103e17 * cos(theta) ** 7 + 2.45867261848227e15 * cos(theta) ** 5 - 22702424916733.8 * cos(theta) ** 3 + 61915704318.3648 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl47_m_minus_5(theta, phi): return ( 1.62288138956816e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 2.12627899843477e21 * cos(theta) ** 42 - 1.96852281467993e22 * cos(theta) ** 40 + 8.43652634862827e22 * cos(theta) ** 38 - 2.22130263036917e23 * cos(theta) ** 36 + 4.02132372739246e23 * cos(theta) ** 34 - 5.30814732015804e23 * cos(theta) ** 32 + 5.28682945943452e23 * cos(theta) ** 30 - 4.05603318316405e23 * cos(theta) ** 28 + 2.42591858106964e23 * cos(theta) ** 26 - 1.13769630425344e23 * cos(theta) ** 24 + 4.18672239965265e22 * cos(theta) ** 22 - 1.20439959442062e22 * cos(theta) ** 20 + 2.68586764013989e21 * cos(theta) ** 18 - 4.58124580759647e20 * cos(theta) ** 16 + 5.86086883701041e19 * cos(theta) ** 14 - 5.47014424787638e18 * cos(theta) ** 12 + 3.58164206706192e17 * cos(theta) ** 10 - 1.55423233382629e16 * cos(theta) ** 8 + 409778769747044.0 * cos(theta) ** 6 - 5675606229183.44 * cos(theta) ** 4 + 30957852159.1824 * cos(theta) ** 2 - 27814781.8141801 ) * sin(5 * phi) ) # @torch.jit.script def Yl47_m_minus_4(theta, phi): return ( 7.67401563348715e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 4.94483488008086e19 * cos(theta) ** 43 - 4.80127515775593e20 * cos(theta) ** 41 + 2.16321188426366e21 * cos(theta) ** 39 - 6.00352062261937e21 * cos(theta) ** 37 + 1.14894963639784e22 * cos(theta) ** 35 - 1.60852949095698e22 * cos(theta) ** 33 + 1.7054288578821e22 * cos(theta) ** 31 - 1.39863213212553e22 * cos(theta) ** 29 + 8.98488363359124e21 * cos(theta) ** 27 - 4.55078521701375e21 * cos(theta) ** 25 + 1.8203140868055e21 * cos(theta) ** 23 - 5.73523616390774e20 * cos(theta) ** 21 + 1.41361454744205e20 * cos(theta) ** 19 - 2.69485047505675e19 * cos(theta) ** 17 + 3.90724589134027e18 * cos(theta) ** 15 - 4.20780326759722e17 * cos(theta) ** 13 + 3.25603824278356e16 * cos(theta) ** 11 - 1.72692481536254e15 * cos(theta) ** 9 + 58539824249577.8 * cos(theta) ** 7 - 1135121245836.69 * cos(theta) ** 5 + 10319284053.0608 * cos(theta) ** 3 - 27814781.8141801 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl47_m_minus_3(theta, phi): return ( 3.63524851662309e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 1.12382610910929e18 * cos(theta) ** 44 - 1.14316075184665e19 * cos(theta) ** 42 + 5.40802971065915e19 * cos(theta) ** 40 - 1.57987384805773e20 * cos(theta) ** 38 + 3.19152676777179e20 * cos(theta) ** 36 - 4.73096909104995e20 * cos(theta) ** 34 + 5.32946518088157e20 * cos(theta) ** 32 - 4.66210710708511e20 * cos(theta) ** 30 + 3.20888701199687e20 * cos(theta) ** 28 - 1.75030200654375e20 * cos(theta) ** 26 + 7.58464202835625e19 * cos(theta) ** 24 - 2.60692552904897e19 * cos(theta) ** 22 + 7.06807273721024e18 * cos(theta) ** 20 - 1.4971391528093e18 * cos(theta) ** 18 + 2.44202868208767e17 * cos(theta) ** 16 - 3.00557376256944e16 * cos(theta) ** 14 + 2.71336520231963e15 * cos(theta) ** 12 - 172692481536254.0 * cos(theta) ** 10 + 7317478031197.22 * cos(theta) ** 8 - 189186874306.115 * cos(theta) ** 6 + 2579821013.2652 * cos(theta) ** 4 - 13907390.90709 * cos(theta) ** 2 + 12395.1790615776 ) * sin(3 * phi) ) # @torch.jit.script def Yl47_m_minus_2(theta, phi): return ( 0.00172434977599161 * (1.0 - cos(theta) ** 2) * ( 2.49739135357619e16 * cos(theta) ** 45 - 2.65851337638756e17 * cos(theta) ** 43 + 1.31903163674613e18 * cos(theta) ** 41 - 4.05095858476341e18 * cos(theta) ** 39 + 8.62574802100484e18 * cos(theta) ** 37 - 1.3517054545857e19 * cos(theta) ** 35 + 1.61498944875199e19 * cos(theta) ** 33 - 1.50390551841455e19 * cos(theta) ** 31 + 1.10651276275754e19 * cos(theta) ** 29 - 6.48260002423611e18 * cos(theta) ** 27 + 3.0338568113425e18 * cos(theta) ** 25 - 1.1334458821952e18 * cos(theta) ** 23 + 3.36574892248107e17 * cos(theta) ** 21 - 7.87967975162791e16 * cos(theta) ** 19 + 1.43648746005157e16 * cos(theta) ** 17 - 2.00371584171296e15 * cos(theta) ** 15 + 208720400178433.0 * cos(theta) ** 13 - 15699316503295.9 * cos(theta) ** 11 + 813053114577.469 * cos(theta) ** 9 - 27026696329.4449 * cos(theta) ** 7 + 515964202.65304 * cos(theta) ** 5 - 4635796.96903001 * cos(theta) ** 3 + 12395.1790615776 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl47_m_minus_1(theta, phi): return ( 0.0818657643097229 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 542911163820911.0 * cos(theta) ** 46 - 6.04207585542627e15 * cos(theta) ** 44 + 3.14055151606222e16 * cos(theta) ** 42 - 1.01273964619085e17 * cos(theta) ** 40 + 2.26993368973812e17 * cos(theta) ** 38 - 3.75473737384917e17 * cos(theta) ** 36 + 4.74996896691762e17 * cos(theta) ** 34 - 4.69970474504548e17 * cos(theta) ** 32 + 3.68837587585847e17 * cos(theta) ** 30 - 2.31521429437004e17 * cos(theta) ** 28 + 1.1668680043625e17 * cos(theta) ** 26 - 4.72269117581335e16 * cos(theta) ** 24 + 1.52988587385503e16 * cos(theta) ** 22 - 3.93983987581396e15 * cos(theta) ** 20 + 798048588917539.0 * cos(theta) ** 18 - 125232240107060.0 * cos(theta) ** 16 + 14908600012745.2 * cos(theta) ** 14 - 1308276375274.65 * cos(theta) ** 12 + 81305311457.7469 * cos(theta) ** 10 - 3378337041.18062 * cos(theta) ** 8 + 85994033.7755067 * cos(theta) ** 6 - 1158949.2422575 * cos(theta) ** 4 + 6197.58953078878 * cos(theta) ** 2 - 5.49919213024737 ) * sin(phi) ) # @torch.jit.script def Yl47_m0(theta, phi): return ( 99778657771650.4 * cos(theta) ** 47 - 1.15979278549628e15 * cos(theta) ** 45 + 6.30876295407318e15 * cos(theta) ** 43 - 2.13363780806295e16 * cos(theta) ** 41 + 5.02753736382649e16 * cos(theta) ** 39 - 8.76565926257748e16 * cos(theta) ** 37 + 1.17227491342904e17 * cos(theta) ** 35 - 1.23016503261072e17 * cos(theta) ** 33 + 1.02773281205452e17 * cos(theta) ** 31 - 6.89604267828793e16 * cos(theta) ** 29 + 3.73305776984653e16 * cos(theta) ** 27 - 1.63175999653317e16 * cos(theta) ** 25 + 5.74563379060974e15 * cos(theta) ** 23 - 1.62056337683865e15 * cos(theta) ** 21 + 362812696307159.0 * cos(theta) ** 19 - 63631765198486.4 * cos(theta) ** 17 + 8585238161700.55 * cos(theta) ** 15 - 869286409815.388 * cos(theta) ** 13 + 63845894506.215 * cos(theta) ** 11 - 3242404614.81239 * cos(theta) ** 9 + 106115060.121133 * cos(theta) ** 7 - 2002170.94568175 * cos(theta) ** 5 + 17844.6608349532 * cos(theta) ** 3 - 47.5013154435312 * cos(theta) ) # @torch.jit.script def Yl47_m1(theta, phi): return ( 0.0818657643097229 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 542911163820911.0 * cos(theta) ** 46 - 6.04207585542627e15 * cos(theta) ** 44 + 3.14055151606222e16 * cos(theta) ** 42 - 1.01273964619085e17 * cos(theta) ** 40 + 2.26993368973812e17 * cos(theta) ** 38 - 3.75473737384917e17 * cos(theta) ** 36 + 4.74996896691762e17 * cos(theta) ** 34 - 4.69970474504548e17 * cos(theta) ** 32 + 3.68837587585847e17 * cos(theta) ** 30 - 2.31521429437004e17 * cos(theta) ** 28 + 1.1668680043625e17 * cos(theta) ** 26 - 4.72269117581335e16 * cos(theta) ** 24 + 1.52988587385503e16 * cos(theta) ** 22 - 3.93983987581396e15 * cos(theta) ** 20 + 798048588917539.0 * cos(theta) ** 18 - 125232240107060.0 * cos(theta) ** 16 + 14908600012745.2 * cos(theta) ** 14 - 1308276375274.65 * cos(theta) ** 12 + 81305311457.7469 * cos(theta) ** 10 - 3378337041.18062 * cos(theta) ** 8 + 85994033.7755067 * cos(theta) ** 6 - 1158949.2422575 * cos(theta) ** 4 + 6197.58953078878 * cos(theta) ** 2 - 5.49919213024737 ) * cos(phi) ) # @torch.jit.script def Yl47_m2(theta, phi): return ( 0.00172434977599161 * (1.0 - cos(theta) ** 2) * ( 2.49739135357619e16 * cos(theta) ** 45 - 2.65851337638756e17 * cos(theta) ** 43 + 1.31903163674613e18 * cos(theta) ** 41 - 4.05095858476341e18 * cos(theta) ** 39 + 8.62574802100484e18 * cos(theta) ** 37 - 1.3517054545857e19 * cos(theta) ** 35 + 1.61498944875199e19 * cos(theta) ** 33 - 1.50390551841455e19 * cos(theta) ** 31 + 1.10651276275754e19 * cos(theta) ** 29 - 6.48260002423611e18 * cos(theta) ** 27 + 3.0338568113425e18 * cos(theta) ** 25 - 1.1334458821952e18 * cos(theta) ** 23 + 3.36574892248107e17 * cos(theta) ** 21 - 7.87967975162791e16 * cos(theta) ** 19 + 1.43648746005157e16 * cos(theta) ** 17 - 2.00371584171296e15 * cos(theta) ** 15 + 208720400178433.0 * cos(theta) ** 13 - 15699316503295.9 * cos(theta) ** 11 + 813053114577.469 * cos(theta) ** 9 - 27026696329.4449 * cos(theta) ** 7 + 515964202.65304 * cos(theta) ** 5 - 4635796.96903001 * cos(theta) ** 3 + 12395.1790615776 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl47_m3(theta, phi): return ( 3.63524851662309e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 1.12382610910929e18 * cos(theta) ** 44 - 1.14316075184665e19 * cos(theta) ** 42 + 5.40802971065915e19 * cos(theta) ** 40 - 1.57987384805773e20 * cos(theta) ** 38 + 3.19152676777179e20 * cos(theta) ** 36 - 4.73096909104995e20 * cos(theta) ** 34 + 5.32946518088157e20 * cos(theta) ** 32 - 4.66210710708511e20 * cos(theta) ** 30 + 3.20888701199687e20 * cos(theta) ** 28 - 1.75030200654375e20 * cos(theta) ** 26 + 7.58464202835625e19 * cos(theta) ** 24 - 2.60692552904897e19 * cos(theta) ** 22 + 7.06807273721024e18 * cos(theta) ** 20 - 1.4971391528093e18 * cos(theta) ** 18 + 2.44202868208767e17 * cos(theta) ** 16 - 3.00557376256944e16 * cos(theta) ** 14 + 2.71336520231963e15 * cos(theta) ** 12 - 172692481536254.0 * cos(theta) ** 10 + 7317478031197.22 * cos(theta) ** 8 - 189186874306.115 * cos(theta) ** 6 + 2579821013.2652 * cos(theta) ** 4 - 13907390.90709 * cos(theta) ** 2 + 12395.1790615776 ) * cos(3 * phi) ) # @torch.jit.script def Yl47_m4(theta, phi): return ( 7.67401563348715e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 4.94483488008086e19 * cos(theta) ** 43 - 4.80127515775593e20 * cos(theta) ** 41 + 2.16321188426366e21 * cos(theta) ** 39 - 6.00352062261937e21 * cos(theta) ** 37 + 1.14894963639784e22 * cos(theta) ** 35 - 1.60852949095698e22 * cos(theta) ** 33 + 1.7054288578821e22 * cos(theta) ** 31 - 1.39863213212553e22 * cos(theta) ** 29 + 8.98488363359124e21 * cos(theta) ** 27 - 4.55078521701375e21 * cos(theta) ** 25 + 1.8203140868055e21 * cos(theta) ** 23 - 5.73523616390774e20 * cos(theta) ** 21 + 1.41361454744205e20 * cos(theta) ** 19 - 2.69485047505675e19 * cos(theta) ** 17 + 3.90724589134027e18 * cos(theta) ** 15 - 4.20780326759722e17 * cos(theta) ** 13 + 3.25603824278356e16 * cos(theta) ** 11 - 1.72692481536254e15 * cos(theta) ** 9 + 58539824249577.8 * cos(theta) ** 7 - 1135121245836.69 * cos(theta) ** 5 + 10319284053.0608 * cos(theta) ** 3 - 27814781.8141801 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl47_m5(theta, phi): return ( 1.62288138956816e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 2.12627899843477e21 * cos(theta) ** 42 - 1.96852281467993e22 * cos(theta) ** 40 + 8.43652634862827e22 * cos(theta) ** 38 - 2.22130263036917e23 * cos(theta) ** 36 + 4.02132372739246e23 * cos(theta) ** 34 - 5.30814732015804e23 * cos(theta) ** 32 + 5.28682945943452e23 * cos(theta) ** 30 - 4.05603318316405e23 * cos(theta) ** 28 + 2.42591858106964e23 * cos(theta) ** 26 - 1.13769630425344e23 * cos(theta) ** 24 + 4.18672239965265e22 * cos(theta) ** 22 - 1.20439959442062e22 * cos(theta) ** 20 + 2.68586764013989e21 * cos(theta) ** 18 - 4.58124580759647e20 * cos(theta) ** 16 + 5.86086883701041e19 * cos(theta) ** 14 - 5.47014424787638e18 * cos(theta) ** 12 + 3.58164206706192e17 * cos(theta) ** 10 - 1.55423233382629e16 * cos(theta) ** 8 + 409778769747044.0 * cos(theta) ** 6 - 5675606229183.44 * cos(theta) ** 4 + 30957852159.1824 * cos(theta) ** 2 - 27814781.8141801 ) * cos(5 * phi) ) # @torch.jit.script def Yl47_m6(theta, phi): return ( 3.43972877896009e-10 * (1.0 - cos(theta) ** 2) ** 3 * ( 8.93037179342602e22 * cos(theta) ** 41 - 7.87409125871972e23 * cos(theta) ** 39 + 3.20588001247874e24 * cos(theta) ** 37 - 7.996689469329e24 * cos(theta) ** 35 + 1.36725006731344e25 * cos(theta) ** 33 - 1.69860714245057e25 * cos(theta) ** 31 + 1.58604883783036e25 * cos(theta) ** 29 - 1.13568929128593e25 * cos(theta) ** 27 + 6.30738831078105e24 * cos(theta) ** 25 - 2.73047113020825e24 * cos(theta) ** 23 + 9.21078927923582e23 * cos(theta) ** 21 - 2.40879918884125e23 * cos(theta) ** 19 + 4.8345617522518e22 * cos(theta) ** 17 - 7.32999329215435e21 * cos(theta) ** 15 + 8.20521637181457e20 * cos(theta) ** 13 - 6.56417309745166e19 * cos(theta) ** 11 + 3.58164206706192e18 * cos(theta) ** 9 - 1.24338586706103e17 * cos(theta) ** 7 + 2.45867261848227e15 * cos(theta) ** 5 - 22702424916733.8 * cos(theta) ** 3 + 61915704318.3648 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl47_m7(theta, phi): return ( 7.31030322906247e-12 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 3.66145243530467e24 * cos(theta) ** 40 - 3.07089559090069e25 * cos(theta) ** 38 + 1.18617560461714e26 * cos(theta) ** 36 - 2.79884131426515e26 * cos(theta) ** 34 + 4.51192522213434e26 * cos(theta) ** 32 - 5.26568214159678e26 * cos(theta) ** 30 + 4.59954162970803e26 * cos(theta) ** 28 - 3.06636108647202e26 * cos(theta) ** 26 + 1.57684707769526e26 * cos(theta) ** 24 - 6.28008359947897e25 * cos(theta) ** 22 + 1.93426574863952e25 * cos(theta) ** 20 - 4.57671845879837e24 * cos(theta) ** 18 + 8.21875497882807e23 * cos(theta) ** 16 - 1.09949899382315e23 * cos(theta) ** 14 + 1.06667812833589e22 * cos(theta) ** 12 - 7.22059040719682e20 * cos(theta) ** 10 + 3.22347786035572e19 * cos(theta) ** 8 - 8.70370106942722e17 * cos(theta) ** 6 + 1.22933630924113e16 * cos(theta) ** 4 - 68107274750201.3 * cos(theta) ** 2 + 61915704318.3648 ) * cos(7 * phi) ) # @torch.jit.script def Yl47_m8(theta, phi): return ( 1.55856188521285e-13 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.46458097412187e26 * cos(theta) ** 39 - 1.16694032454226e27 * cos(theta) ** 37 + 4.27023217662169e27 * cos(theta) ** 35 - 9.51606046850151e27 * cos(theta) ** 33 + 1.44381607108299e28 * cos(theta) ** 31 - 1.57970464247903e28 * cos(theta) ** 29 + 1.28787165631825e28 * cos(theta) ** 27 - 7.97253882482725e27 * cos(theta) ** 25 + 3.78443298646863e27 * cos(theta) ** 23 - 1.38161839188537e27 * cos(theta) ** 21 + 3.86853149727905e26 * cos(theta) ** 19 - 8.23809322583707e25 * cos(theta) ** 17 + 1.31500079661249e25 * cos(theta) ** 15 - 1.53929859135241e24 * cos(theta) ** 13 + 1.28001375400307e23 * cos(theta) ** 11 - 7.22059040719682e21 * cos(theta) ** 9 + 2.57878228828458e20 * cos(theta) ** 7 - 5.22222064165633e18 * cos(theta) ** 5 + 4.91734523696453e16 * cos(theta) ** 3 - 136214549500403.0 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl47_m9(theta, phi): return ( 3.33501456002215e-15 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 5.71186579907529e27 * cos(theta) ** 38 - 4.31767920080637e28 * cos(theta) ** 36 + 1.49458126181759e29 * cos(theta) ** 34 - 3.1402999546055e29 * cos(theta) ** 32 + 4.47582982035726e29 * cos(theta) ** 30 - 4.5811434631892e29 * cos(theta) ** 28 + 3.47725347205927e29 * cos(theta) ** 26 - 1.99313470620681e29 * cos(theta) ** 24 + 8.70419586887785e28 * cos(theta) ** 22 - 2.90139862295928e28 * cos(theta) ** 20 + 7.35020984483019e27 * cos(theta) ** 18 - 1.4004758483923e27 * cos(theta) ** 16 + 1.97250119491874e26 * cos(theta) ** 14 - 2.00108816875814e25 * cos(theta) ** 12 + 1.40801512940338e24 * cos(theta) ** 10 - 6.49853136647714e22 * cos(theta) ** 8 + 1.80514760179921e21 * cos(theta) ** 6 - 2.61111032082817e19 * cos(theta) ** 4 + 1.47520357108936e17 * cos(theta) ** 2 - 136214549500403.0 ) * cos(9 * phi) ) # @torch.jit.script def Yl47_m10(theta, phi): return ( 7.16586312000596e-17 * (1.0 - cos(theta) ** 2) ** 5 * ( 2.17050900364861e29 * cos(theta) ** 37 - 1.55436451229029e30 * cos(theta) ** 35 + 5.08157629017981e30 * cos(theta) ** 33 - 1.00489598547376e31 * cos(theta) ** 31 + 1.34274894610718e31 * cos(theta) ** 29 - 1.28272016969298e31 * cos(theta) ** 27 + 9.0408590273541e30 * cos(theta) ** 25 - 4.78352329489635e30 * cos(theta) ** 23 + 1.91492309115313e30 * cos(theta) ** 21 - 5.80279724591857e29 * cos(theta) ** 19 + 1.32303777206943e29 * cos(theta) ** 17 - 2.24076135742768e28 * cos(theta) ** 15 + 2.76150167288623e27 * cos(theta) ** 13 - 2.40130580250977e26 * cos(theta) ** 11 + 1.40801512940338e25 * cos(theta) ** 9 - 5.19882509318171e23 * cos(theta) ** 7 + 1.08308856107952e22 * cos(theta) ** 5 - 1.04444412833127e20 * cos(theta) ** 3 + 2.95040714217872e17 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl47_m11(theta, phi): return ( 1.54686940343682e-18 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 8.03088331349985e30 * cos(theta) ** 36 - 5.44027579301603e31 * cos(theta) ** 34 + 1.67692017575934e32 * cos(theta) ** 32 - 3.11517755496865e32 * cos(theta) ** 30 + 3.89397194371082e32 * cos(theta) ** 28 - 3.46334445817103e32 * cos(theta) ** 26 + 2.26021475683853e32 * cos(theta) ** 24 - 1.10021035782616e32 * cos(theta) ** 22 + 4.02133849142157e31 * cos(theta) ** 20 - 1.10253147672453e31 * cos(theta) ** 18 + 2.24916421251804e30 * cos(theta) ** 16 - 3.36114203614153e29 * cos(theta) ** 14 + 3.5899521747521e28 * cos(theta) ** 12 - 2.64143638276074e27 * cos(theta) ** 10 + 1.26721361646304e26 * cos(theta) ** 8 - 3.6391775652272e24 * cos(theta) ** 6 + 5.41544280539762e22 * cos(theta) ** 4 - 3.1333323849938e20 * cos(theta) ** 2 + 2.95040714217872e17 ) * cos(11 * phi) ) # @torch.jit.script def Yl47_m12(theta, phi): return ( 3.35642071771661e-20 * (1.0 - cos(theta) ** 2) ** 6 * ( 2.89111799285995e32 * cos(theta) ** 35 - 1.84969376962545e33 * cos(theta) ** 33 + 5.36614456242988e33 * cos(theta) ** 31 - 9.34553266490596e33 * cos(theta) ** 29 + 1.09031214423903e34 * cos(theta) ** 27 - 9.00469559124469e33 * cos(theta) ** 25 + 5.42451541641246e33 * cos(theta) ** 23 - 2.42046278721755e33 * cos(theta) ** 21 + 8.04267698284314e32 * cos(theta) ** 19 - 1.98455665810415e32 * cos(theta) ** 17 + 3.59866274002886e31 * cos(theta) ** 15 - 4.70559885059814e30 * cos(theta) ** 13 + 4.30794260970252e29 * cos(theta) ** 11 - 2.64143638276074e28 * cos(theta) ** 9 + 1.01377089317043e27 * cos(theta) ** 7 - 2.18350653913632e25 * cos(theta) ** 5 + 2.16617712215905e23 * cos(theta) ** 3 - 6.2666647699876e20 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl47_m13(theta, phi): return ( 7.32431047764493e-22 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.01189129750098e34 * cos(theta) ** 34 - 6.10398943976398e34 * cos(theta) ** 32 + 1.66350481435326e35 * cos(theta) ** 30 - 2.71020447282273e35 * cos(theta) ** 28 + 2.94384278944538e35 * cos(theta) ** 26 - 2.25117389781117e35 * cos(theta) ** 24 + 1.24763854577487e35 * cos(theta) ** 22 - 5.08297185315686e34 * cos(theta) ** 20 + 1.5281086267402e34 * cos(theta) ** 18 - 3.37374631877706e33 * cos(theta) ** 16 + 5.39799411004329e32 * cos(theta) ** 14 - 6.11727850577758e31 * cos(theta) ** 12 + 4.73873687067277e30 * cos(theta) ** 10 - 2.37729274448467e29 * cos(theta) ** 8 + 7.09639625219304e27 * cos(theta) ** 6 - 1.09175326956816e26 * cos(theta) ** 4 + 6.49853136647714e23 * cos(theta) ** 2 - 6.2666647699876e20 ) * cos(13 * phi) ) # @torch.jit.script def Yl47_m14(theta, phi): return ( 1.60828262371106e-23 * (1.0 - cos(theta) ** 2) ** 7 * ( 3.44043041150334e35 * cos(theta) ** 33 - 1.95327662072447e36 * cos(theta) ** 31 + 4.99051444305978e36 * cos(theta) ** 29 - 7.58857252390364e36 * cos(theta) ** 27 + 7.65399125255798e36 * cos(theta) ** 25 - 5.40281735474681e36 * cos(theta) ** 23 + 2.74480480070471e36 * cos(theta) ** 21 - 1.01659437063137e36 * cos(theta) ** 19 + 2.75059552813235e35 * cos(theta) ** 17 - 5.39799411004329e34 * cos(theta) ** 15 + 7.55719175406061e33 * cos(theta) ** 13 - 7.34073420693309e32 * cos(theta) ** 11 + 4.73873687067277e31 * cos(theta) ** 9 - 1.90183419558773e30 * cos(theta) ** 7 + 4.25783775131582e28 * cos(theta) ** 5 - 4.36701307827264e26 * cos(theta) ** 3 + 1.29970627329543e24 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl47_m15(theta, phi): return ( 3.55557263504815e-25 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.1353420357961e37 * cos(theta) ** 32 - 6.05515752424587e37 * cos(theta) ** 30 + 1.44724918848734e38 * cos(theta) ** 28 - 2.04891458145398e38 * cos(theta) ** 26 + 1.9134978131395e38 * cos(theta) ** 24 - 1.24264799159177e38 * cos(theta) ** 22 + 5.76409008147988e37 * cos(theta) ** 20 - 1.93152930419961e37 * cos(theta) ** 18 + 4.676012397825e36 * cos(theta) ** 16 - 8.09699116506493e35 * cos(theta) ** 14 + 9.82434928027879e34 * cos(theta) ** 12 - 8.0748076276264e33 * cos(theta) ** 10 + 4.26486318360549e32 * cos(theta) ** 8 - 1.33128393691141e31 * cos(theta) ** 6 + 2.12891887565791e29 * cos(theta) ** 4 - 1.31010392348179e27 * cos(theta) ** 2 + 1.29970627329543e24 ) * cos(15 * phi) ) # @torch.jit.script def Yl47_m16(theta, phi): return ( 7.91888965127333e-27 * (1.0 - cos(theta) ** 2) ** 8 * ( 3.63309451454752e38 * cos(theta) ** 31 - 1.81654725727376e39 * cos(theta) ** 29 + 4.05229772776454e39 * cos(theta) ** 27 - 5.32717791178036e39 * cos(theta) ** 25 + 4.59239475153479e39 * cos(theta) ** 23 - 2.73382558150189e39 * cos(theta) ** 21 + 1.15281801629598e39 * cos(theta) ** 19 - 3.47675274755929e38 * cos(theta) ** 17 + 7.48161983652e37 * cos(theta) ** 15 - 1.13357876310909e37 * cos(theta) ** 13 + 1.17892191363345e36 * cos(theta) ** 11 - 8.0748076276264e34 * cos(theta) ** 9 + 3.41189054688439e33 * cos(theta) ** 7 - 7.98770362146848e31 * cos(theta) ** 5 + 8.51567550263164e29 * cos(theta) ** 3 - 2.62020784696358e27 * cos(theta) ) * cos(16 * phi) ) # @torch.jit.script def Yl47_m17(theta, phi): return ( 1.77784320941706e-28 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.12625929950973e40 * cos(theta) ** 30 - 5.26798704609391e40 * cos(theta) ** 28 + 1.09412038649643e41 * cos(theta) ** 26 - 1.33179447794509e41 * cos(theta) ** 24 + 1.056250792853e41 * cos(theta) ** 22 - 5.74103372115396e40 * cos(theta) ** 20 + 2.19035423096236e40 * cos(theta) ** 18 - 5.9104796708508e39 * cos(theta) ** 16 + 1.122242975478e39 * cos(theta) ** 14 - 1.47365239204182e38 * cos(theta) ** 12 + 1.2968141049968e37 * cos(theta) ** 10 - 7.26732686486376e35 * cos(theta) ** 8 + 2.38832338281908e34 * cos(theta) ** 6 - 3.99385181073424e32 * cos(theta) ** 4 + 2.55470265078949e30 * cos(theta) ** 2 - 2.62020784696358e27 ) * cos(17 * phi) ) # @torch.jit.script def Yl47_m18(theta, phi): return ( 4.02602207266572e-30 * (1.0 - cos(theta) ** 2) ** 9 * ( 3.3787778985292e41 * cos(theta) ** 29 - 1.47503637290629e42 * cos(theta) ** 27 + 2.84471300489071e42 * cos(theta) ** 25 - 3.19630674706821e42 * cos(theta) ** 23 + 2.3237517442766e42 * cos(theta) ** 21 - 1.14820674423079e42 * cos(theta) ** 19 + 3.94263761573224e41 * cos(theta) ** 17 - 9.45676747336128e40 * cos(theta) ** 15 + 1.5711401656692e40 * cos(theta) ** 13 - 1.76838287045018e39 * cos(theta) ** 11 + 1.2968141049968e38 * cos(theta) ** 9 - 5.81386149189101e36 * cos(theta) ** 7 + 1.43299402969145e35 * cos(theta) ** 5 - 1.5975407242937e33 * cos(theta) ** 3 + 5.10940530157899e30 * cos(theta) ) * cos(18 * phi) ) # @torch.jit.script def Yl47_m19(theta, phi): return ( 9.20248641199569e-32 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 9.79845590573467e42 * cos(theta) ** 28 - 3.98259820684699e43 * cos(theta) ** 26 + 7.11178251222678e43 * cos(theta) ** 24 - 7.35150551825689e43 * cos(theta) ** 22 + 4.87987866298087e43 * cos(theta) ** 20 - 2.18159281403851e43 * cos(theta) ** 18 + 6.70248394674481e42 * cos(theta) ** 16 - 1.41851512100419e42 * cos(theta) ** 14 + 2.04248221536996e41 * cos(theta) ** 12 - 1.9452211574952e40 * cos(theta) ** 10 + 1.16713269449712e39 * cos(theta) ** 8 - 4.06970304432371e37 * cos(theta) ** 6 + 7.16497014845723e35 * cos(theta) ** 4 - 4.79262217288109e33 * cos(theta) ** 2 + 5.10940530157899e30 ) * cos(19 * phi) ) # @torch.jit.script def Yl47_m20(theta, phi): return ( 2.12465670327417e-33 * (1.0 - cos(theta) ** 2) ** 10 * ( 2.74356765360571e44 * cos(theta) ** 27 - 1.03547553378022e45 * cos(theta) ** 25 + 1.70682780293443e45 * cos(theta) ** 23 - 1.61733121401652e45 * cos(theta) ** 21 + 9.75975732596174e44 * cos(theta) ** 19 - 3.92686706526931e44 * cos(theta) ** 17 + 1.07239743147917e44 * cos(theta) ** 15 - 1.98592116940587e43 * cos(theta) ** 13 + 2.45097865844395e42 * cos(theta) ** 11 - 1.9452211574952e41 * cos(theta) ** 9 + 9.33706155597696e39 * cos(theta) ** 7 - 2.44182182659422e38 * cos(theta) ** 5 + 2.86598805938289e36 * cos(theta) ** 3 - 9.58524434576218e33 * cos(theta) ) * cos(20 * phi) ) # @torch.jit.script def Yl47_m21(theta, phi): return ( 4.95852411165239e-35 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 7.40763266473541e45 * cos(theta) ** 26 - 2.58868883445055e46 * cos(theta) ** 24 + 3.92570394674918e46 * cos(theta) ** 22 - 3.39639554943468e46 * cos(theta) ** 20 + 1.85435389193273e46 * cos(theta) ** 18 - 6.67567401095783e45 * cos(theta) ** 16 + 1.60859614721875e45 * cos(theta) ** 14 - 2.58169752022763e44 * cos(theta) ** 12 + 2.69607652428835e43 * cos(theta) ** 10 - 1.75069904174568e42 * cos(theta) ** 8 + 6.53594308918387e40 * cos(theta) ** 6 - 1.22091091329711e39 * cos(theta) ** 4 + 8.59796417814867e36 * cos(theta) ** 2 - 9.58524434576218e33 ) * cos(21 * phi) ) # @torch.jit.script def Yl47_m22(theta, phi): return ( 1.1706881168749e-36 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.92598449283121e47 * cos(theta) ** 25 - 6.21285320268131e47 * cos(theta) ** 23 + 8.6365486828482e47 * cos(theta) ** 21 - 6.79279109886937e47 * cos(theta) ** 19 + 3.33783700547891e47 * cos(theta) ** 17 - 1.06810784175325e47 * cos(theta) ** 15 + 2.25203460610626e46 * cos(theta) ** 13 - 3.09803702427316e45 * cos(theta) ** 11 + 2.69607652428835e44 * cos(theta) ** 9 - 1.40055923339654e43 * cos(theta) ** 7 + 3.92156585351032e41 * cos(theta) ** 5 - 4.88364365318845e39 * cos(theta) ** 3 + 1.71959283562973e37 * cos(theta) ) * cos(22 * phi) ) # @torch.jit.script def Yl47_m23(theta, phi): return ( 2.79847985979336e-38 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 4.81496123207802e48 * cos(theta) ** 24 - 1.4289562366167e49 * cos(theta) ** 22 + 1.81367522339812e49 * cos(theta) ** 20 - 1.29063030878518e49 * cos(theta) ** 18 + 5.67432290931415e48 * cos(theta) ** 16 - 1.60216176262988e48 * cos(theta) ** 14 + 2.92764498793813e47 * cos(theta) ** 12 - 3.40784072670047e46 * cos(theta) ** 10 + 2.42646887185951e45 * cos(theta) ** 8 - 9.80391463377581e43 * cos(theta) ** 6 + 1.96078292675516e42 * cos(theta) ** 4 - 1.46509309595653e40 * cos(theta) ** 2 + 1.71959283562973e37 ) * cos(23 * phi) ) # @torch.jit.script def Yl47_m24(theta, phi): return ( 6.77933961187779e-40 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.15559069569872e50 * cos(theta) ** 23 - 3.14370372055674e50 * cos(theta) ** 21 + 3.62735044679624e50 * cos(theta) ** 19 - 2.32313455581332e50 * cos(theta) ** 17 + 9.07891665490265e49 * cos(theta) ** 15 - 2.24302646768183e49 * cos(theta) ** 13 + 3.51317398552576e48 * cos(theta) ** 11 - 3.40784072670047e47 * cos(theta) ** 9 + 1.94117509748761e46 * cos(theta) ** 7 - 5.88234878026548e44 * cos(theta) ** 5 + 7.84313170702065e42 * cos(theta) ** 3 - 2.93018619191307e40 * cos(theta) ) * cos(24 * phi) ) # @torch.jit.script def Yl47_m25(theta, phi): return ( 1.66593182302274e-41 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 2.65785860010707e51 * cos(theta) ** 22 - 6.60177781316916e51 * cos(theta) ** 20 + 6.89196584891286e51 * cos(theta) ** 18 - 3.94932874488265e51 * cos(theta) ** 16 + 1.3618374982354e51 * cos(theta) ** 14 - 2.91593440798638e50 * cos(theta) ** 12 + 3.86449138407833e49 * cos(theta) ** 10 - 3.06705665403042e48 * cos(theta) ** 8 + 1.35882256824133e47 * cos(theta) ** 6 - 2.94117439013274e45 * cos(theta) ** 4 + 2.35293951210619e43 * cos(theta) ** 2 - 2.93018619191307e40 ) * cos(25 * phi) ) # @torch.jit.script def Yl47_m26(theta, phi): return ( 4.15704239669497e-43 * (1.0 - cos(theta) ** 2) ** 13 * ( 5.84728892023554e52 * cos(theta) ** 21 - 1.32035556263383e53 * cos(theta) ** 19 + 1.24055385280432e53 * cos(theta) ** 17 - 6.31892599181224e52 * cos(theta) ** 15 + 1.90657249752956e52 * cos(theta) ** 13 - 3.49912128958366e51 * cos(theta) ** 11 + 3.86449138407833e50 * cos(theta) ** 9 - 2.45364532322434e49 * cos(theta) ** 7 + 8.15293540944796e47 * cos(theta) ** 5 - 1.1764697560531e46 * cos(theta) ** 3 + 4.70587902421239e43 * cos(theta) ) * cos(26 * phi) ) # @torch.jit.script def Yl47_m27(theta, phi): return ( 1.05453001748702e-44 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.22793067324946e54 * cos(theta) ** 20 - 2.50867556900428e54 * cos(theta) ** 18 + 2.10894154976734e54 * cos(theta) ** 16 - 9.47838898771836e53 * cos(theta) ** 14 + 2.47854424678842e53 * cos(theta) ** 12 - 3.84903341854202e52 * cos(theta) ** 10 + 3.4780422456705e51 * cos(theta) ** 8 - 1.71755172625704e50 * cos(theta) ** 6 + 4.07646770472398e48 * cos(theta) ** 4 - 3.52940926815929e46 * cos(theta) ** 2 + 4.70587902421239e43 ) * cos(27 * phi) ) # @torch.jit.script def Yl47_m28(theta, phi): return ( 2.72278479720203e-46 * (1.0 - cos(theta) ** 2) ** 14 * ( 2.45586134649893e55 * cos(theta) ** 19 - 4.51561602420771e55 * cos(theta) ** 17 + 3.37430647962774e55 * cos(theta) ** 15 - 1.32697445828057e55 * cos(theta) ** 13 + 2.97425309614611e54 * cos(theta) ** 11 - 3.84903341854202e53 * cos(theta) ** 9 + 2.7824337965364e52 * cos(theta) ** 7 - 1.03053103575422e51 * cos(theta) ** 5 + 1.63058708188959e49 * cos(theta) ** 3 - 7.05881853631858e46 * cos(theta) ) * cos(28 * phi) ) # @torch.jit.script def Yl47_m29(theta, phi): return ( 7.16522315053166e-48 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 4.66613655834796e56 * cos(theta) ** 18 - 7.6765472411531e56 * cos(theta) ** 16 + 5.06145971944161e56 * cos(theta) ** 14 - 1.72506679576474e56 * cos(theta) ** 12 + 3.27167840576072e55 * cos(theta) ** 10 - 3.46413007668782e54 * cos(theta) ** 8 + 1.94770365757548e53 * cos(theta) ** 6 - 5.15265517877111e51 * cos(theta) ** 4 + 4.89176124566878e49 * cos(theta) ** 2 - 7.05881853631858e46 ) * cos(29 * phi) ) # @torch.jit.script def Yl47_m30(theta, phi): return ( 1.92463378568823e-49 * (1.0 - cos(theta) ** 2) ** 15 * ( 8.39904580502633e57 * cos(theta) ** 17 - 1.2282475585845e58 * cos(theta) ** 15 + 7.08604360721825e57 * cos(theta) ** 13 - 2.07008015491769e57 * cos(theta) ** 11 + 3.27167840576072e56 * cos(theta) ** 9 - 2.77130406135025e55 * cos(theta) ** 7 + 1.16862219454529e54 * cos(theta) ** 5 - 2.06106207150844e52 * cos(theta) ** 3 + 9.78352249133755e49 * cos(theta) ) * cos(30 * phi) ) # @torch.jit.script def Yl47_m31(theta, phi): return ( 5.28538153651375e-51 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 1.42783778685448e59 * cos(theta) ** 16 - 1.84237133787674e59 * cos(theta) ** 14 + 9.21185668938372e58 * cos(theta) ** 12 - 2.27708817040946e58 * cos(theta) ** 10 + 2.94451056518465e57 * cos(theta) ** 8 - 1.93991284294518e56 * cos(theta) ** 6 + 5.84311097272644e54 * cos(theta) ** 4 - 6.18318621452533e52 * cos(theta) ** 2 + 9.78352249133755e49 ) * cos(31 * phi) ) # @torch.jit.script def Yl47_m32(theta, phi): return ( 1.48662970462735e-52 * (1.0 - cos(theta) ** 2) ** 16 * ( 2.28454045896716e60 * cos(theta) ** 15 - 2.57931987302744e60 * cos(theta) ** 13 + 1.10542280272605e60 * cos(theta) ** 11 - 2.27708817040946e59 * cos(theta) ** 9 + 2.35560845214772e58 * cos(theta) ** 7 - 1.16394770576711e57 * cos(theta) ** 5 + 2.33724438909058e55 * cos(theta) ** 3 - 1.23663724290507e53 * cos(theta) ) * cos(32 * phi) ) # @torch.jit.script def Yl47_m33(theta, phi): return ( 4.29153030075948e-54 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 3.42681068845074e61 * cos(theta) ** 14 - 3.35311583493567e61 * cos(theta) ** 12 + 1.21596508299865e61 * cos(theta) ** 10 - 2.04937935336851e60 * cos(theta) ** 8 + 1.6489259165034e59 * cos(theta) ** 6 - 5.81973852883553e57 * cos(theta) ** 4 + 7.01173316727173e55 * cos(theta) ** 2 - 1.23663724290507e53 ) * cos(33 * phi) ) # @torch.jit.script def Yl47_m34(theta, phi): return ( 1.27439968653976e-55 * (1.0 - cos(theta) ** 2) ** 17 * ( 4.79753496383104e62 * cos(theta) ** 13 - 4.02373900192281e62 * cos(theta) ** 11 + 1.21596508299865e62 * cos(theta) ** 9 - 1.63950348269481e61 * cos(theta) ** 7 + 9.89355549902041e59 * cos(theta) ** 5 - 2.32789541153421e58 * cos(theta) ** 3 + 1.40234663345435e56 * cos(theta) ) * cos(34 * phi) ) # @torch.jit.script def Yl47_m35(theta, phi): return ( 3.90325615867939e-57 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 6.23679545298036e63 * cos(theta) ** 12 - 4.42611290211509e63 * cos(theta) ** 10 + 1.09436857469879e63 * cos(theta) ** 8 - 1.14765243788637e62 * cos(theta) ** 6 + 4.94677774951021e60 * cos(theta) ** 4 - 6.98368623460264e58 * cos(theta) ** 2 + 1.40234663345435e56 ) * cos(35 * phi) ) # @torch.jit.script def Yl47_m36(theta, phi): return ( 1.23679404188207e-58 * (1.0 - cos(theta) ** 2) ** 18 * ( 7.48415454357643e64 * cos(theta) ** 11 - 4.42611290211509e64 * cos(theta) ** 9 + 8.75494859759029e63 * cos(theta) ** 7 - 6.88591462731821e62 * cos(theta) ** 5 + 1.97871109980408e61 * cos(theta) ** 3 - 1.39673724692053e59 * cos(theta) ) * cos(36 * phi) ) # @torch.jit.script def Yl47_m37(theta, phi): return ( 4.06875368086227e-60 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 8.23256999793407e65 * cos(theta) ** 10 - 3.98350161190358e65 * cos(theta) ** 8 + 6.1284640183132e64 * cos(theta) ** 6 - 3.4429573136591e63 * cos(theta) ** 4 + 5.93613329941225e61 * cos(theta) ** 2 - 1.39673724692053e59 ) * cos(37 * phi) ) # @torch.jit.script def Yl47_m38(theta, phi): return ( 1.39557099912251e-61 * (1.0 - cos(theta) ** 2) ** 19 * ( 8.23256999793407e66 * cos(theta) ** 9 - 3.18680128952287e66 * cos(theta) ** 7 + 3.67707841098792e65 * cos(theta) ** 5 - 1.37718292546364e64 * cos(theta) ** 3 + 1.18722665988245e62 * cos(theta) ) * cos(38 * phi) ) # @torch.jit.script def Yl47_m39(theta, phi): return ( 5.01627636792244e-63 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 7.40931299814066e67 * cos(theta) ** 8 - 2.23076090266601e67 * cos(theta) ** 6 + 1.83853920549396e66 * cos(theta) ** 4 - 4.13154877639092e64 * cos(theta) ** 2 + 1.18722665988245e62 ) * cos(39 * phi) ) # @torch.jit.script def Yl47_m40(theta, phi): return ( 1.90141465028655e-64 * (1.0 - cos(theta) ** 2) ** 20 * ( 5.92745039851253e68 * cos(theta) ** 7 - 1.3384565415996e68 * cos(theta) ** 5 + 7.35415682197584e66 * cos(theta) ** 3 - 8.26309755278185e64 * cos(theta) ) * cos(40 * phi) ) # @torch.jit.script def Yl47_m41(theta, phi): return ( 7.66101794667593e-66 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 4.14921527895877e69 * cos(theta) ** 6 - 6.69228270799802e68 * cos(theta) ** 4 + 2.20624704659275e67 * cos(theta) ** 2 - 8.26309755278185e64 ) * cos(41 * phi) ) # @torch.jit.script def Yl47_m42(theta, phi): return ( 3.31524669825326e-67 * (1.0 - cos(theta) ** 2) ** 21 * ( 2.48952916737526e70 * cos(theta) ** 5 - 2.67691308319921e69 * cos(theta) ** 3 + 4.41249409318551e67 * cos(theta) ) * cos(42 * phi) ) # @torch.jit.script def Yl47_m43(theta, phi): return ( 1.56282228109413e-68 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 1.24476458368763e71 * cos(theta) ** 4 - 8.03073924959762e69 * cos(theta) ** 2 + 4.41249409318551e67 ) * cos(43 * phi) ) # @torch.jit.script def Yl47_m44(theta, phi): return ( 8.19141449881068e-70 * (1.0 - cos(theta) ** 2) ** 22 * (4.97905833475052e71 * cos(theta) ** 3 - 1.60614784991952e70 * cos(theta)) * cos(44 * phi) ) # @torch.jit.script def Yl47_m45(theta, phi): return ( 4.93065211209231e-71 * (1.0 - cos(theta) ** 2) ** 22.5 * (1.49371750042516e72 * cos(theta) ** 2 - 1.60614784991952e70) * cos(45 * phi) ) # @torch.jit.script def Yl47_m46(theta, phi): return 10.8005619986252 * (1.0 - cos(theta) ** 2) ** 23 * cos(46 * phi) * cos(theta) # @torch.jit.script def Yl47_m47(theta, phi): return 1.11399291169174 * (1.0 - cos(theta) ** 2) ** 23.5 * cos(47 * phi) # @torch.jit.script def Yl48_m_minus_48(theta, phi): return 1.11977992679758 * (1.0 - cos(theta) ** 2) ** 24 * sin(48 * phi) # @torch.jit.script def Yl48_m_minus_47(theta, phi): return ( 10.9715577794607 * (1.0 - cos(theta) ** 2) ** 23.5 * sin(47 * phi) * cos(theta) ) # @torch.jit.script def Yl48_m_minus_46(theta, phi): return ( 5.32872152427948e-73 * (1.0 - cos(theta) ** 2) ** 23 * (1.4190316254039e74 * cos(theta) ** 2 - 1.49371750042516e72) * sin(46 * phi) ) # @torch.jit.script def Yl48_m_minus_45(theta, phi): return ( 8.94844512163766e-72 * (1.0 - cos(theta) ** 2) ** 22.5 * (4.730105418013e73 * cos(theta) ** 3 - 1.49371750042516e72 * cos(theta)) * sin(45 * phi) ) # @torch.jit.script def Yl48_m_minus_44(theta, phi): return ( 1.72591359213969e-70 * (1.0 - cos(theta) ** 2) ** 22 * ( 1.18252635450325e73 * cos(theta) ** 4 - 7.46858750212579e71 * cos(theta) ** 2 + 4.01536962479881e69 ) * sin(44 * phi) ) # @torch.jit.script def Yl48_m_minus_43(theta, phi): return ( 3.70167226353842e-69 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 2.3650527090065e72 * cos(theta) ** 5 - 2.48952916737526e71 * cos(theta) ** 3 + 4.01536962479881e69 * cos(theta) ) * sin(43 * phi) ) # @torch.jit.script def Yl48_m_minus_42(theta, phi): return ( 8.64956538819768e-68 * (1.0 - cos(theta) ** 2) ** 21 * ( 3.94175451501083e71 * cos(theta) ** 6 - 6.22382291843816e70 * cos(theta) ** 4 + 2.00768481239941e69 * cos(theta) ** 2 - 7.35415682197584e66 ) * sin(42 * phi) ) # @torch.jit.script def Yl48_m_minus_41(theta, phi): return ( 2.17102368215931e-66 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 5.6310778785869e70 * cos(theta) ** 7 - 1.24476458368763e70 * cos(theta) ** 5 + 6.69228270799802e68 * cos(theta) ** 3 - 7.35415682197584e66 * cos(theta) ) * sin(41 * phi) ) # @torch.jit.script def Yl48_m_minus_40(theta, phi): return ( 5.79301372852641e-65 * (1.0 - cos(theta) ** 2) ** 20 * ( 7.03884734823363e69 * cos(theta) ** 8 - 2.07460763947939e69 * cos(theta) ** 6 + 1.6730706769995e68 * cos(theta) ** 4 - 3.67707841098792e66 * cos(theta) ** 2 + 1.03288719409773e64 ) * sin(40 * phi) ) # @torch.jit.script def Yl48_m_minus_39(theta, phi): return ( 1.63029857334923e-63 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 7.82094149803737e68 * cos(theta) ** 9 - 2.96372519925626e68 * cos(theta) ** 7 + 3.34614135399901e67 * cos(theta) ** 5 - 1.22569280366264e66 * cos(theta) ** 3 + 1.03288719409773e64 * cos(theta) ) * sin(39 * phi) ) # @torch.jit.script def Yl48_m_minus_38(theta, phi): return ( 4.80868993728036e-62 * (1.0 - cos(theta) ** 2) ** 19 * ( 7.82094149803737e67 * cos(theta) ** 10 - 3.70465649907033e67 * cos(theta) ** 8 + 5.57690225666501e66 * cos(theta) ** 6 - 3.0642320091566e65 * cos(theta) ** 4 + 5.16443597048865e63 * cos(theta) ** 2 - 1.18722665988245e61 ) * sin(38 * phi) ) # @torch.jit.script def Yl48_m_minus_37(theta, phi): return ( 1.47901419775487e-60 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 7.1099468163976e66 * cos(theta) ** 11 - 4.11628499896703e66 * cos(theta) ** 9 + 7.96700322380716e65 * cos(theta) ** 7 - 6.1284640183132e64 * cos(theta) ** 5 + 1.72147865682955e63 * cos(theta) ** 3 - 1.18722665988245e61 * cos(theta) ) * sin(37 * phi) ) # @torch.jit.script def Yl48_m_minus_36(theta, phi): return ( 4.72359254921895e-59 * (1.0 - cos(theta) ** 2) ** 18 * ( 5.92495568033134e65 * cos(theta) ** 12 - 4.11628499896703e65 * cos(theta) ** 10 + 9.95875402975895e64 * cos(theta) ** 8 - 1.02141066971887e64 * cos(theta) ** 6 + 4.30369664207388e62 * cos(theta) ** 4 - 5.93613329941225e60 * cos(theta) ** 2 + 1.16394770576711e58 ) * sin(36 * phi) ) # @torch.jit.script def Yl48_m_minus_35(theta, phi): return ( 1.5609311520875e-57 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 4.55765821563949e64 * cos(theta) ** 13 - 3.74207727178821e64 * cos(theta) ** 11 + 1.10652822552877e64 * cos(theta) ** 9 - 1.45915809959838e63 * cos(theta) ** 7 + 8.60739328414776e61 * cos(theta) ** 5 - 1.97871109980408e60 * cos(theta) ** 3 + 1.16394770576711e58 * cos(theta) ) * sin(35 * phi) ) # @torch.jit.script def Yl48_m_minus_34(theta, phi): return ( 5.32092101381846e-56 * (1.0 - cos(theta) ** 2) ** 17 * ( 3.25547015402821e63 * cos(theta) ** 14 - 3.11839772649018e63 * cos(theta) ** 12 + 1.10652822552877e63 * cos(theta) ** 10 - 1.82394762449798e62 * cos(theta) ** 8 + 1.43456554735796e61 * cos(theta) ** 6 - 4.94677774951021e59 * cos(theta) ** 4 + 5.81973852883553e57 * cos(theta) ** 2 - 1.0016761667531e55 ) * sin(34 * phi) ) # @torch.jit.script def Yl48_m_minus_33(theta, phi): return ( 1.86611914237577e-54 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 2.1703134360188e62 * cos(theta) ** 15 - 2.39876748191552e62 * cos(theta) ** 13 + 1.0059347504807e62 * cos(theta) ** 11 - 2.02660847166442e61 * cos(theta) ** 9 + 2.04937935336851e60 * cos(theta) ** 7 - 9.89355549902041e58 * cos(theta) ** 5 + 1.93991284294518e57 * cos(theta) ** 3 - 1.0016761667531e55 * cos(theta) ) * sin(33 * phi) ) # @torch.jit.script def Yl48_m_minus_32(theta, phi): return ( 6.71802891255276e-53 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.35644589751175e61 * cos(theta) ** 16 - 1.71340534422537e61 * cos(theta) ** 14 + 8.38278958733919e60 * cos(theta) ** 12 - 2.02660847166442e60 * cos(theta) ** 10 + 2.56172419171064e59 * cos(theta) ** 8 - 1.6489259165034e58 * cos(theta) ** 6 + 4.84978210736295e56 * cos(theta) ** 4 - 5.00838083376552e54 * cos(theta) ** 2 + 7.72898276815667e51 ) * sin(32 * phi) ) # @torch.jit.script def Yl48_m_minus_31(theta, phi): return ( 2.47748664898637e-51 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 7.97909351477502e59 * cos(theta) ** 17 - 1.14227022948358e60 * cos(theta) ** 15 + 6.44829968256861e59 * cos(theta) ** 13 - 1.84237133787674e59 * cos(theta) ** 11 + 2.84636021301182e58 * cos(theta) ** 9 - 2.35560845214772e57 * cos(theta) ** 7 + 9.69956421472589e55 * cos(theta) ** 5 - 1.66946027792184e54 * cos(theta) ** 3 + 7.72898276815667e51 * cos(theta) ) * sin(31 * phi) ) # @torch.jit.script def Yl48_m_minus_30(theta, phi): return ( 9.34245728723332e-50 * (1.0 - cos(theta) ** 2) ** 15 * ( 4.43282973043057e58 * cos(theta) ** 18 - 7.13918893427238e58 * cos(theta) ** 16 + 4.60592834469186e58 * cos(theta) ** 14 - 1.53530944823062e58 * cos(theta) ** 12 + 2.84636021301182e57 * cos(theta) ** 10 - 2.94451056518465e56 * cos(theta) ** 8 + 1.61659403578765e55 * cos(theta) ** 6 - 4.1736506948046e53 * cos(theta) ** 4 + 3.86449138407833e51 * cos(theta) ** 2 - 5.43529027296531e48 ) * sin(30 * phi) ) # @torch.jit.script def Yl48_m_minus_29(theta, phi): return ( 3.5965427162585e-48 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 2.33306827917398e57 * cos(theta) ** 19 - 4.19952290251317e57 * cos(theta) ** 17 + 3.07061889646124e57 * cos(theta) ** 15 - 1.18100726786971e57 * cos(theta) ** 13 + 2.58760019364711e56 * cos(theta) ** 11 - 3.27167840576072e55 * cos(theta) ** 9 + 2.30942005112521e54 * cos(theta) ** 7 - 8.3473013896092e52 * cos(theta) ** 5 + 1.28816379469278e51 * cos(theta) ** 3 - 5.43529027296531e48 * cos(theta) ) * sin(29 * phi) ) # @torch.jit.script def Yl48_m_minus_28(theta, phi): return ( 1.41138527855448e-46 * (1.0 - cos(theta) ** 2) ** 14 * ( 1.16653413958699e56 * cos(theta) ** 20 - 2.33306827917398e56 * cos(theta) ** 18 + 1.91913681028828e56 * cos(theta) ** 16 - 8.43576619906934e55 * cos(theta) ** 14 + 2.15633349470593e55 * cos(theta) ** 12 - 3.27167840576072e54 * cos(theta) ** 10 + 2.88677506390652e53 * cos(theta) ** 8 - 1.3912168982682e52 * cos(theta) ** 6 + 3.22040948673195e50 * cos(theta) ** 4 - 2.71764513648265e48 * cos(theta) ** 2 + 3.52940926815929e45 ) * sin(28 * phi) ) # @torch.jit.script def Yl48_m_minus_27(theta, phi): return ( 5.63847977172428e-45 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 5.55492447422377e54 * cos(theta) ** 21 - 1.22793067324946e55 * cos(theta) ** 19 + 1.12890400605193e55 * cos(theta) ** 17 - 5.6238441327129e54 * cos(theta) ** 15 + 1.65871807285071e54 * cos(theta) ** 13 - 2.97425309614611e53 * cos(theta) ** 11 + 3.20752784878502e52 * cos(theta) ** 9 - 1.98745271181171e51 * cos(theta) ** 7 + 6.44081897346389e49 * cos(theta) ** 5 - 9.05881712160885e47 * cos(theta) ** 3 + 3.52940926815929e45 * cos(theta) ) * sin(27 * phi) ) # @torch.jit.script def Yl48_m_minus_26(theta, phi): return ( 2.29036131046255e-43 * (1.0 - cos(theta) ** 2) ** 13 * ( 2.52496567010171e53 * cos(theta) ** 22 - 6.13965336624732e53 * cos(theta) ** 20 + 6.2716889225107e53 * cos(theta) ** 18 - 3.51490258294556e53 * cos(theta) ** 16 + 1.1847986234648e53 * cos(theta) ** 14 - 2.47854424678842e52 * cos(theta) ** 12 + 3.20752784878502e51 * cos(theta) ** 10 - 2.48431588976464e50 * cos(theta) ** 8 + 1.07346982891065e49 * cos(theta) ** 6 - 2.26470428040221e47 * cos(theta) ** 4 + 1.76470463407965e45 * cos(theta) ** 2 - 2.13903592009654e42 ) * sin(26 * phi) ) # @torch.jit.script def Yl48_m_minus_25(theta, phi): return ( 9.44895491313896e-42 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 1.09781116091379e52 * cos(theta) ** 23 - 2.92364446011777e52 * cos(theta) ** 21 + 3.30088890658458e52 * cos(theta) ** 19 - 2.06758975467386e52 * cos(theta) ** 17 + 7.8986574897653e51 * cos(theta) ** 15 - 1.90657249752956e51 * cos(theta) ** 13 + 2.91593440798638e50 * cos(theta) ** 11 - 2.76035098862738e49 * cos(theta) ** 9 + 1.53352832701521e48 * cos(theta) ** 7 - 4.52940856080442e46 * cos(theta) ** 5 + 5.88234878026548e44 * cos(theta) ** 3 - 2.13903592009654e42 * cos(theta) ) * sin(25 * phi) ) # @torch.jit.script def Yl48_m_minus_24(theta, phi): return ( 3.9550395214376e-40 * (1.0 - cos(theta) ** 2) ** 12 * ( 4.57421317047412e50 * cos(theta) ** 24 - 1.32892930005353e51 * cos(theta) ** 22 + 1.65044445329229e51 * cos(theta) ** 20 - 1.14866097481881e51 * cos(theta) ** 18 + 4.93666093110331e50 * cos(theta) ** 16 - 1.3618374982354e50 * cos(theta) ** 14 + 2.42994533998865e49 * cos(theta) ** 12 - 2.76035098862738e48 * cos(theta) ** 10 + 1.91691040876902e47 * cos(theta) ** 8 - 7.54901426800737e45 * cos(theta) ** 6 + 1.47058719506637e44 * cos(theta) ** 4 - 1.06951796004827e42 * cos(theta) ** 2 + 1.22091091329711e39 ) * sin(24 * phi) ) # @torch.jit.script def Yl48_m_minus_23(theta, phi): return ( 1.67798115928159e-38 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.82968526818965e49 * cos(theta) ** 25 - 5.77795347849362e49 * cos(theta) ** 23 + 7.85925930139186e49 * cos(theta) ** 21 - 6.04558407799374e49 * cos(theta) ** 19 + 2.90391819476665e49 * cos(theta) ** 17 - 9.07891665490265e48 * cos(theta) ** 15 + 1.86918872306819e48 * cos(theta) ** 13 - 2.50940998966126e47 * cos(theta) ** 11 + 2.12990045418779e46 * cos(theta) ** 9 - 1.07843060971534e45 * cos(theta) ** 7 + 2.94117439013274e43 * cos(theta) ** 5 - 3.56505986682757e41 * cos(theta) ** 3 + 1.22091091329711e39 * cos(theta) ) * sin(23 * phi) ) # @torch.jit.script def Yl48_m_minus_22(theta, phi): return ( 7.20946318604152e-37 * (1.0 - cos(theta) ** 2) ** 11 * ( 7.03725103149864e47 * cos(theta) ** 26 - 2.40748061603901e48 * cos(theta) ** 24 + 3.57239059154175e48 * cos(theta) ** 22 - 3.02279203899687e48 * cos(theta) ** 20 + 1.61328788598148e48 * cos(theta) ** 18 - 5.67432290931415e47 * cos(theta) ** 16 + 1.33513480219157e47 * cos(theta) ** 14 - 2.09117499138438e46 * cos(theta) ** 12 + 2.12990045418779e45 * cos(theta) ** 10 - 1.34803826214417e44 * cos(theta) ** 8 + 4.9019573168879e42 * cos(theta) ** 6 - 8.91264966706892e40 * cos(theta) ** 4 + 6.10455456648556e38 * cos(theta) ** 2 - 6.6138185985759e35 ) * sin(22 * phi) ) # @torch.jit.script def Yl48_m_minus_21(theta, phi): return ( 3.13425141500133e-35 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 2.60638927092542e46 * cos(theta) ** 27 - 9.62992246415603e46 * cos(theta) ** 25 + 1.55321330067033e47 * cos(theta) ** 23 - 1.4394247804747e47 * cos(theta) ** 21 + 8.49098887358671e46 * cos(theta) ** 19 - 3.33783700547891e46 * cos(theta) ** 17 + 8.9008986812771e45 * cos(theta) ** 15 - 1.60859614721875e45 * cos(theta) ** 13 + 1.93627314017072e44 * cos(theta) ** 11 - 1.4978202912713e43 * cos(theta) ** 9 + 7.00279616698272e41 * cos(theta) ** 7 - 1.78252993341378e40 * cos(theta) ** 5 + 2.03485152216185e38 * cos(theta) ** 3 - 6.6138185985759e35 * cos(theta) ) * sin(21 * phi) ) # @torch.jit.script def Yl48_m_minus_20(theta, phi): return ( 1.37764522622734e-33 * (1.0 - cos(theta) ** 2) ** 10 * ( 9.30853311044794e44 * cos(theta) ** 28 - 3.70381633236771e45 * cos(theta) ** 26 + 6.47172208612637e45 * cos(theta) ** 24 - 6.54283991124863e45 * cos(theta) ** 22 + 4.24549443679336e45 * cos(theta) ** 20 - 1.85435389193273e45 * cos(theta) ** 18 + 5.56306167579819e44 * cos(theta) ** 16 - 1.1489972480134e44 * cos(theta) ** 14 + 1.61356095014227e43 * cos(theta) ** 12 - 1.4978202912713e42 * cos(theta) ** 10 + 8.7534952087284e40 * cos(theta) ** 8 - 2.97088322235631e39 * cos(theta) ** 6 + 5.08712880540463e37 * cos(theta) ** 4 - 3.30690929928795e35 * cos(theta) ** 2 + 3.42330155205792e32 ) * sin(20 * phi) ) # @torch.jit.script def Yl48_m_minus_19(theta, phi): return ( 6.11773762133704e-32 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 3.20983900360274e43 * cos(theta) ** 29 - 1.37178382680285e44 * cos(theta) ** 27 + 2.58868883445055e44 * cos(theta) ** 25 - 2.84471300489071e44 * cos(theta) ** 23 + 2.02166401752065e44 * cos(theta) ** 21 - 9.75975732596174e43 * cos(theta) ** 19 + 3.27238922105776e43 * cos(theta) ** 17 - 7.65998165342264e42 * cos(theta) ** 15 + 1.24120073087867e42 * cos(theta) ** 13 - 1.36165481024664e41 * cos(theta) ** 11 + 9.726105787476e39 * cos(theta) ** 9 - 4.24411888908044e38 * cos(theta) ** 7 + 1.01742576108093e37 * cos(theta) ** 5 - 1.10230309976265e35 * cos(theta) ** 3 + 3.42330155205792e32 * cos(theta) ) * sin(19 * phi) ) # @torch.jit.script def Yl48_m_minus_18(theta, phi): return ( 2.7427667480681e-30 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.06994633453425e42 * cos(theta) ** 30 - 4.89922795286733e42 * cos(theta) ** 28 + 9.95649551711749e42 * cos(theta) ** 26 - 1.18529708537113e43 * cos(theta) ** 24 + 9.18938189782112e42 * cos(theta) ** 22 - 4.87987866298087e42 * cos(theta) ** 20 + 1.81799401169875e42 * cos(theta) ** 18 - 4.78748853338915e41 * cos(theta) ** 16 + 8.8657195062762e40 * cos(theta) ** 14 - 1.1347123418722e40 * cos(theta) ** 12 + 9.726105787476e38 * cos(theta) ** 10 - 5.30514861135055e37 * cos(theta) ** 8 + 1.69570960180154e36 * cos(theta) ** 6 - 2.75575774940663e34 * cos(theta) ** 4 + 1.71165077602896e32 * cos(theta) ** 2 - 1.70313510052633e29 ) * sin(18 * phi) ) # @torch.jit.script def Yl48_m_minus_17(theta, phi): return ( 1.24062831914294e-28 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 3.45143978882015e40 * cos(theta) ** 31 - 1.6893889492646e41 * cos(theta) ** 29 + 3.68759093226574e41 * cos(theta) ** 27 - 4.74118834148452e41 * cos(theta) ** 25 + 3.99538343383527e41 * cos(theta) ** 23 - 2.3237517442766e41 * cos(theta) ** 21 + 9.5683895352566e40 * cos(theta) ** 19 - 2.81616972552303e40 * cos(theta) ** 17 + 5.9104796708508e39 * cos(theta) ** 15 - 8.72855647594e38 * cos(theta) ** 13 + 8.84191435225091e37 * cos(theta) ** 11 - 5.89460956816727e36 * cos(theta) ** 9 + 2.42244228828792e35 * cos(theta) ** 7 - 5.51151549881325e33 * cos(theta) ** 5 + 5.7055025867632e31 * cos(theta) ** 3 - 1.70313510052633e29 * cos(theta) ) * sin(17 * phi) ) # @torch.jit.script def Yl48_m_minus_16(theta, phi): return ( 5.6581356846753e-27 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.0785749340063e39 * cos(theta) ** 32 - 5.63129649754866e39 * cos(theta) ** 30 + 1.31699676152348e40 * cos(theta) ** 28 - 1.82353397749405e40 * cos(theta) ** 26 + 1.66474309743136e40 * cos(theta) ** 24 - 1.056250792853e40 * cos(theta) ** 22 + 4.7841947676283e39 * cos(theta) ** 20 - 1.56453873640168e39 * cos(theta) ** 18 + 3.69404979428175e38 * cos(theta) ** 16 - 6.2346831971e37 * cos(theta) ** 14 + 7.36826196020909e36 * cos(theta) ** 12 - 5.89460956816727e35 * cos(theta) ** 10 + 3.0280528603599e34 * cos(theta) ** 8 - 9.18585916468876e32 * cos(theta) ** 6 + 1.4263756466908e31 * cos(theta) ** 4 - 8.51567550263164e28 * cos(theta) ** 2 + 8.1881495217612e25 ) * sin(16 * phi) ) # @torch.jit.script def Yl48_m_minus_15(theta, phi): return ( 2.60028119225837e-25 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 3.26840889092817e37 * cos(theta) ** 33 - 1.81654725727376e38 * cos(theta) ** 31 + 4.5413681431844e38 * cos(theta) ** 29 - 6.75382954627424e38 * cos(theta) ** 27 + 6.65897238972545e38 * cos(theta) ** 25 - 4.59239475153479e38 * cos(theta) ** 23 + 2.27818798458491e38 * cos(theta) ** 21 - 8.23441440211412e37 * cos(theta) ** 19 + 2.17297046722456e37 * cos(theta) ** 17 - 4.15645546473333e36 * cos(theta) ** 15 + 5.66789381554545e35 * cos(theta) ** 13 - 5.35873597106116e34 * cos(theta) ** 11 + 3.36450317817767e33 * cos(theta) ** 9 - 1.31226559495554e32 * cos(theta) ** 7 + 2.8527512933816e30 * cos(theta) ** 5 - 2.83855850087721e28 * cos(theta) ** 3 + 8.1881495217612e25 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl48_m_minus_14(theta, phi): return ( 1.20345553308864e-23 * (1.0 - cos(theta) ** 2) ** 7 * ( 9.61296732625932e35 * cos(theta) ** 34 - 5.67671017898051e36 * cos(theta) ** 32 + 1.51378938106147e37 * cos(theta) ** 30 - 2.41208198081223e37 * cos(theta) ** 28 + 2.56114322681748e37 * cos(theta) ** 26 - 1.9134978131395e37 * cos(theta) ** 24 + 1.03553999299314e37 * cos(theta) ** 22 - 4.11720720105706e36 * cos(theta) ** 20 + 1.20720581512475e36 * cos(theta) ** 18 - 2.59778466545833e35 * cos(theta) ** 16 + 4.04849558253247e34 * cos(theta) ** 14 - 4.46561330921763e33 * cos(theta) ** 12 + 3.36450317817767e32 * cos(theta) ** 10 - 1.64033199369442e31 * cos(theta) ** 8 + 4.75458548896934e29 * cos(theta) ** 6 - 7.09639625219304e27 * cos(theta) ** 4 + 4.0940747608806e25 * cos(theta) ** 2 - 3.82266550969244e22 ) * sin(14 * phi) ) # @torch.jit.script def Yl48_m_minus_13(theta, phi): return ( 5.60608805466343e-22 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 2.74656209321695e34 * cos(theta) ** 35 - 1.72021520575167e35 * cos(theta) ** 33 + 4.88319155181119e35 * cos(theta) ** 31 - 8.31752407176631e35 * cos(theta) ** 29 + 9.48571565487955e35 * cos(theta) ** 27 - 7.65399125255798e35 * cos(theta) ** 25 + 4.50234779562234e35 * cos(theta) ** 23 - 1.96057485764622e35 * cos(theta) ** 21 + 6.35371481644608e34 * cos(theta) ** 19 - 1.5281086267402e34 * cos(theta) ** 17 + 2.69899705502165e33 * cos(theta) ** 15 - 3.43508716093664e32 * cos(theta) ** 13 + 3.05863925288879e31 * cos(theta) ** 11 - 1.82259110410491e30 * cos(theta) ** 9 + 6.79226498424191e28 * cos(theta) ** 7 - 1.41927925043861e27 * cos(theta) ** 5 + 1.3646915869602e25 * cos(theta) ** 3 - 3.82266550969244e22 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl48_m_minus_12(theta, phi): return ( 2.62709684472235e-20 * (1.0 - cos(theta) ** 2) ** 6 * ( 7.62933914782486e32 * cos(theta) ** 36 - 5.05945648750491e33 * cos(theta) ** 34 + 1.525997359941e34 * cos(theta) ** 32 - 2.7725080239221e34 * cos(theta) ** 30 + 3.38775559102841e34 * cos(theta) ** 28 - 2.94384278944538e34 * cos(theta) ** 26 + 1.87597824817598e34 * cos(theta) ** 24 - 8.9117038983919e33 * cos(theta) ** 22 + 3.17685740822304e33 * cos(theta) ** 20 - 8.48949237077887e32 * cos(theta) ** 18 + 1.68687315938853e32 * cos(theta) ** 16 - 2.45363368638331e31 * cos(theta) ** 14 + 2.54886604407399e30 * cos(theta) ** 12 - 1.82259110410491e29 * cos(theta) ** 10 + 8.49033123030238e27 * cos(theta) ** 8 - 2.36546541739768e26 * cos(theta) ** 6 + 3.4117289674005e24 * cos(theta) ** 4 - 1.91133275484622e22 * cos(theta) ** 2 + 1.74074021388544e19 ) * sin(12 * phi) ) # @torch.jit.script def Yl48_m_minus_11(theta, phi): return ( 1.23780596161278e-18 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 2.06198355346618e31 * cos(theta) ** 37 - 1.44555899642997e32 * cos(theta) ** 35 + 4.62423442406362e32 * cos(theta) ** 33 - 8.94357427071646e32 * cos(theta) ** 31 + 1.16819158311325e33 * cos(theta) ** 29 - 1.09031214423903e33 * cos(theta) ** 27 + 7.50391299270391e32 * cos(theta) ** 25 - 3.87465386886604e32 * cos(theta) ** 23 + 1.51278924201097e32 * cos(theta) ** 21 - 4.4681538793573e31 * cos(theta) ** 19 + 9.92278329052075e30 * cos(theta) ** 17 - 1.63575579092221e30 * cos(theta) ** 15 + 1.96066618774922e29 * cos(theta) ** 13 - 1.65690100373174e28 * cos(theta) ** 11 + 9.43370136700265e26 * cos(theta) ** 9 - 3.37923631056811e25 * cos(theta) ** 7 + 6.823457934801e23 * cos(theta) ** 5 - 6.37110918282073e21 * cos(theta) ** 3 + 1.74074021388544e19 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl48_m_minus_10(theta, phi): return ( 5.86098181883417e-17 * (1.0 - cos(theta) ** 2) ** 5 * ( 5.42627250912152e29 * cos(theta) ** 38 - 4.01544165674993e30 * cos(theta) ** 36 + 1.36006894825401e31 * cos(theta) ** 34 - 2.79486695959889e31 * cos(theta) ** 32 + 3.89397194371082e31 * cos(theta) ** 30 - 3.89397194371082e31 * cos(theta) ** 28 + 2.88612038180919e31 * cos(theta) ** 26 - 1.61443911202752e31 * cos(theta) ** 24 + 6.8763147364135e30 * cos(theta) ** 22 - 2.23407693967865e30 * cos(theta) ** 20 + 5.51265738362264e29 * cos(theta) ** 18 - 1.02234736932638e29 * cos(theta) ** 16 + 1.4004758483923e28 * cos(theta) ** 14 - 1.38075083644311e27 * cos(theta) ** 12 + 9.43370136700265e25 * cos(theta) ** 10 - 4.22404538821014e24 * cos(theta) ** 8 + 1.1372429891335e23 * cos(theta) ** 6 - 1.59277729570518e21 * cos(theta) ** 4 + 8.70370106942722e18 * cos(theta) ** 2 - 7.76422932152295e15 ) * sin(10 * phi) ) # @torch.jit.script def Yl48_m_minus_9(theta, phi): return ( 2.78751154304613e-15 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1.39135192541577e28 * cos(theta) ** 39 - 1.0852545018243e29 * cos(theta) ** 37 + 3.88591128072573e29 * cos(theta) ** 35 - 8.46929381696635e29 * cos(theta) ** 33 + 1.2561199818422e30 * cos(theta) ** 31 - 1.34274894610718e30 * cos(theta) ** 29 + 1.06893347474415e30 * cos(theta) ** 27 - 6.45775644811007e29 * cos(theta) ** 25 + 2.98970205931022e29 * cos(theta) ** 23 - 1.06384616175174e29 * cos(theta) ** 21 + 2.90139862295928e28 * cos(theta) ** 19 - 6.01380805486106e27 * cos(theta) ** 17 + 9.33650565594868e26 * cos(theta) ** 15 - 1.06211602803317e26 * cos(theta) ** 13 + 8.57609215182059e24 * cos(theta) ** 11 - 4.69338376467793e23 * cos(theta) ** 9 + 1.62463284161929e22 * cos(theta) ** 7 - 3.18555459141036e20 * cos(theta) ** 5 + 2.90123368980907e18 * cos(theta) ** 3 - 7.76422932152295e15 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl48_m_minus_8(theta, phi): return ( 1.33101851880292e-13 * (1.0 - cos(theta) ** 2) ** 4 * ( 3.47837981353944e26 * cos(theta) ** 40 - 2.85593289953764e27 * cos(theta) ** 38 + 1.07941980020159e28 * cos(theta) ** 36 - 2.49096876969598e28 * cos(theta) ** 34 + 3.92537494325687e28 * cos(theta) ** 32 - 4.47582982035726e28 * cos(theta) ** 30 + 3.81761955265766e28 * cos(theta) ** 28 - 2.48375248004234e28 * cos(theta) ** 26 + 1.24570919137926e28 * cos(theta) ** 24 - 4.83566437159881e27 * cos(theta) ** 22 + 1.45069931147964e27 * cos(theta) ** 20 - 3.34100447492281e26 * cos(theta) ** 18 + 5.83531603496793e25 * cos(theta) ** 16 - 7.58654305737975e24 * cos(theta) ** 14 + 7.14674345985049e23 * cos(theta) ** 12 - 4.69338376467793e22 * cos(theta) ** 10 + 2.03079105202411e21 * cos(theta) ** 8 - 5.3092576523506e19 * cos(theta) ** 6 + 7.25308422452268e17 * cos(theta) ** 4 - 3.88211466076147e15 * cos(theta) ** 2 + 3405363737510.06 ) * sin(8 * phi) ) # @torch.jit.script def Yl48_m_minus_7(theta, phi): return ( 6.37778742419495e-12 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 8.48385320375472e24 * cos(theta) ** 41 - 7.32290487060934e25 * cos(theta) ** 39 + 2.91735081135566e26 * cos(theta) ** 37 - 7.11705362770281e26 * cos(theta) ** 35 + 1.18950755856269e27 * cos(theta) ** 33 - 1.44381607108299e27 * cos(theta) ** 31 + 1.31642053539919e27 * cos(theta) ** 29 - 9.19908325941606e26 * cos(theta) ** 27 + 4.98283676551703e26 * cos(theta) ** 25 - 2.10246277026035e26 * cos(theta) ** 23 + 6.90809195942687e25 * cos(theta) ** 21 - 1.75842340785411e25 * cos(theta) ** 19 + 3.43253884409878e24 * cos(theta) ** 17 - 5.0576953715865e23 * cos(theta) ** 15 + 5.49749496911576e22 * cos(theta) ** 13 - 4.26671251334358e21 * cos(theta) ** 11 + 2.25643450224901e20 * cos(theta) ** 9 - 7.58465378907229e18 * cos(theta) ** 7 + 1.45061684490454e17 * cos(theta) ** 5 - 1.29403822025382e15 * cos(theta) ** 3 + 3405363737510.06 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl48_m_minus_6(theta, phi): return ( 3.06532148899894e-10 * (1.0 - cos(theta) ** 2) ** 3 * ( 2.01996504851303e23 * cos(theta) ** 42 - 1.83072621765233e24 * cos(theta) ** 40 + 7.67723897725173e24 * cos(theta) ** 38 - 1.97695934102856e25 * cos(theta) ** 36 + 3.49855164283144e25 * cos(theta) ** 34 - 4.51192522213434e25 * cos(theta) ** 32 + 4.38806845133065e25 * cos(theta) ** 30 - 3.28538687836288e25 * cos(theta) ** 28 + 1.91647567904501e25 * cos(theta) ** 26 - 8.76026154275146e24 * cos(theta) ** 24 + 3.14004179973949e24 * cos(theta) ** 22 - 8.79211703927056e23 * cos(theta) ** 20 + 1.90696602449932e23 * cos(theta) ** 18 - 3.16105960724156e22 * cos(theta) ** 16 + 3.92678212079697e21 * cos(theta) ** 14 - 3.55559376111965e20 * cos(theta) ** 12 + 2.25643450224901e19 * cos(theta) ** 10 - 9.48081723634037e17 * cos(theta) ** 8 + 2.41769474150756e16 * cos(theta) ** 6 - 323509555063456.0 * cos(theta) ** 4 + 1702681868755.03 * cos(theta) ** 2 - 1474183436.15154 ) * sin(6 * phi) ) # @torch.jit.script def Yl48_m_minus_5(theta, phi): return ( 1.47709061060563e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 4.69759313607681e21 * cos(theta) ** 43 - 4.46518589671301e22 * cos(theta) ** 41 + 1.96852281467993e23 * cos(theta) ** 39 - 5.34313335413124e23 * cos(theta) ** 37 + 9.99586183666125e23 * cos(theta) ** 35 - 1.36725006731344e24 * cos(theta) ** 33 + 1.41550595204214e24 * cos(theta) ** 31 - 1.13289202702168e24 * cos(theta) ** 29 + 7.09805807053708e23 * cos(theta) ** 27 - 3.50410461710059e23 * cos(theta) ** 25 + 1.36523556510412e23 * cos(theta) ** 23 - 4.18672239965265e22 * cos(theta) ** 21 + 1.00366632868385e22 * cos(theta) ** 19 - 1.85944682778916e21 * cos(theta) ** 17 + 2.61785474719798e20 * cos(theta) ** 15 - 2.73507212393819e19 * cos(theta) ** 13 + 2.05130409295364e18 * cos(theta) ** 11 - 1.05342413737115e17 * cos(theta) ** 9 + 3.45384963072509e15 * cos(theta) ** 7 - 64701911012691.2 * cos(theta) ** 5 + 567560622918.344 * cos(theta) ** 3 - 1474183436.15154 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl48_m_minus_4(theta, phi): return ( 7.13298663882281e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 1.06763480365382e20 * cos(theta) ** 44 - 1.06313949921738e21 * cos(theta) ** 42 + 4.92130703669983e21 * cos(theta) ** 40 - 1.40608772477138e22 * cos(theta) ** 38 + 2.77662828796146e22 * cos(theta) ** 36 - 4.02132372739246e22 * cos(theta) ** 34 + 4.4234561001317e22 * cos(theta) ** 32 - 3.77630675673894e22 * cos(theta) ** 30 + 2.53502073947753e22 * cos(theta) ** 28 - 1.34773254503869e22 * cos(theta) ** 26 + 5.68848152126718e21 * cos(theta) ** 24 - 1.90305563620575e21 * cos(theta) ** 22 + 5.01833164341927e20 * cos(theta) ** 20 - 1.03302601543842e20 * cos(theta) ** 18 + 1.63615921699874e19 * cos(theta) ** 16 - 1.95362294567014e18 * cos(theta) ** 14 + 1.70942007746137e17 * cos(theta) ** 12 - 1.05342413737115e16 * cos(theta) ** 10 + 431731203840636.0 * cos(theta) ** 8 - 10783651835448.5 * cos(theta) ** 6 + 141890155729.586 * cos(theta) ** 4 - 737091718.075771 * cos(theta) ** 2 + 632154.132140456 ) * sin(4 * phi) ) # @torch.jit.script def Yl48_m_minus_3(theta, phi): return ( 3.45047860784155e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 2.37252178589738e18 * cos(theta) ** 45 - 2.47241744004043e19 * cos(theta) ** 43 + 1.20031878943898e20 * cos(theta) ** 41 - 3.60535314043943e20 * cos(theta) ** 39 + 7.50440077827421e20 * cos(theta) ** 37 - 1.14894963639784e21 * cos(theta) ** 35 + 1.34044124246415e21 * cos(theta) ** 33 - 1.21816346991579e21 * cos(theta) ** 31 + 8.74145082578459e20 * cos(theta) ** 29 - 4.9916020186618e20 * cos(theta) ** 27 + 2.27539260850687e20 * cos(theta) ** 25 - 8.27415494002499e19 * cos(theta) ** 23 + 2.38968173496156e19 * cos(theta) ** 21 - 5.43697902862326e18 * cos(theta) ** 19 + 9.62446598234552e17 * cos(theta) ** 17 - 1.30241529711342e17 * cos(theta) ** 15 + 1.31493852112413e16 * cos(theta) ** 13 - 957658306701047.0 * cos(theta) ** 11 + 47970133760070.7 * cos(theta) ** 9 - 1540521690778.36 * cos(theta) ** 7 + 28378031145.9172 * cos(theta) ** 5 - 245697239.35859 * cos(theta) ** 3 + 632154.132140456 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl48_m_minus_2(theta, phi): return ( 0.0016712573995038 * (1.0 - cos(theta) ** 2) * ( 5.15765605629865e16 * cos(theta) ** 46 - 5.61913054554643e17 * cos(theta) ** 44 + 2.85790187961662e18 * cos(theta) ** 42 - 9.01338285109858e18 * cos(theta) ** 40 + 1.97484231007216e19 * cos(theta) ** 38 - 3.19152676777179e19 * cos(theta) ** 36 + 3.94247424254162e19 * cos(theta) ** 34 - 3.80676084348684e19 * cos(theta) ** 32 + 2.91381694192819e19 * cos(theta) ** 30 - 1.78271500666493e19 * cos(theta) ** 28 + 8.75151003271874e18 * cos(theta) ** 26 - 3.44756455834375e18 * cos(theta) ** 24 + 1.08621897043707e18 * cos(theta) ** 22 - 2.71848951431163e17 * cos(theta) ** 20 + 5.34692554574751e16 * cos(theta) ** 18 - 8.1400956069589e15 * cos(theta) ** 16 + 939241800802950.0 * cos(theta) ** 14 - 79804858891753.9 * cos(theta) ** 12 + 4797013376007.07 * cos(theta) ** 10 - 192565211347.295 * cos(theta) ** 8 + 4729671857.65287 * cos(theta) ** 6 - 61424309.8396476 * cos(theta) ** 4 + 316077.066070228 * cos(theta) ** 2 - 269.460414382121 ) * sin(2 * phi) ) # @torch.jit.script def Yl48_m_minus_1(theta, phi): return ( 0.0810172083213255 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 1.09737362899971e15 * cos(theta) ** 47 - 1.24869567678809e16 * cos(theta) ** 45 + 6.64628344096889e16 * cos(theta) ** 43 - 2.19838606124356e17 * cos(theta) ** 41 + 5.06369823095426e17 * cos(theta) ** 39 - 8.62574802100484e17 * cos(theta) ** 37 + 1.12642121215475e18 * cos(theta) ** 35 - 1.15356389196571e18 * cos(theta) ** 33 + 9.39940949009095e17 * cos(theta) ** 31 - 6.14729312643079e17 * cos(theta) ** 29 + 3.24130001211805e17 * cos(theta) ** 27 - 1.3790258233375e17 * cos(theta) ** 25 + 4.72269117581335e16 * cos(theta) ** 23 - 1.29451881633887e16 * cos(theta) ** 21 + 2.81417133986711e15 * cos(theta) ** 19 - 478829153350524.0 * cos(theta) ** 17 + 62616120053530.0 * cos(theta) ** 15 - 6138835299365.69 * cos(theta) ** 13 + 436092125091.551 * cos(theta) ** 11 - 21396134594.1439 * cos(theta) ** 9 + 675667408.236124 * cos(theta) ** 7 - 12284861.9679295 * cos(theta) ** 5 + 105359.022023409 * cos(theta) ** 3 - 269.460414382121 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl48_m0(theta, phi): return ( 199546488572317.0 * cos(theta) ** 48 - 2.36935199062709e15 * cos(theta) ** 46 + 1.31842973671991e16 * cos(theta) ** 44 - 4.56862465544702e16 * cos(theta) ** 42 + 1.10493983942132e17 * cos(theta) ** 40 - 1.98127143620374e17 * cos(theta) ** 38 + 2.73104670519849e17 * cos(theta) ** 36 - 2.96137594539595e17 * cos(theta) ** 34 + 2.5637838045789e17 * cos(theta) ** 32 - 1.78851865973437e17 * cos(theta) ** 30 + 1.01039690517461e17 * cos(theta) ** 28 - 4.62945491098185e16 * cos(theta) ** 26 + 1.71754891103779e16 * cos(theta) ** 24 - 5.13589923560595e15 * cos(theta) ** 22 + 1.22814981721012e15 * cos(theta) ** 20 - 232187527631764.0 * cos(theta) ** 18 + 34158357430442.2 * cos(theta) ** 16 - 3827266938985.12 * cos(theta) ** 14 + 317196075999.677 * cos(theta) ** 12 - 18675237302.3896 * cos(theta) ** 10 + 737180419.831167 * cos(theta) ** 8 - 17871040.4807556 * cos(theta) ** 6 + 229901.89297713 * cos(theta) ** 4 - 1175.96876203136 * cos(theta) ** 2 + 0.999973437101492 ) # @torch.jit.script def Yl48_m1(theta, phi): return ( 0.0810172083213255 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 1.09737362899971e15 * cos(theta) ** 47 - 1.24869567678809e16 * cos(theta) ** 45 + 6.64628344096889e16 * cos(theta) ** 43 - 2.19838606124356e17 * cos(theta) ** 41 + 5.06369823095426e17 * cos(theta) ** 39 - 8.62574802100484e17 * cos(theta) ** 37 + 1.12642121215475e18 * cos(theta) ** 35 - 1.15356389196571e18 * cos(theta) ** 33 + 9.39940949009095e17 * cos(theta) ** 31 - 6.14729312643079e17 * cos(theta) ** 29 + 3.24130001211805e17 * cos(theta) ** 27 - 1.3790258233375e17 * cos(theta) ** 25 + 4.72269117581335e16 * cos(theta) ** 23 - 1.29451881633887e16 * cos(theta) ** 21 + 2.81417133986711e15 * cos(theta) ** 19 - 478829153350524.0 * cos(theta) ** 17 + 62616120053530.0 * cos(theta) ** 15 - 6138835299365.69 * cos(theta) ** 13 + 436092125091.551 * cos(theta) ** 11 - 21396134594.1439 * cos(theta) ** 9 + 675667408.236124 * cos(theta) ** 7 - 12284861.9679295 * cos(theta) ** 5 + 105359.022023409 * cos(theta) ** 3 - 269.460414382121 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl48_m2(theta, phi): return ( 0.0016712573995038 * (1.0 - cos(theta) ** 2) * ( 5.15765605629865e16 * cos(theta) ** 46 - 5.61913054554643e17 * cos(theta) ** 44 + 2.85790187961662e18 * cos(theta) ** 42 - 9.01338285109858e18 * cos(theta) ** 40 + 1.97484231007216e19 * cos(theta) ** 38 - 3.19152676777179e19 * cos(theta) ** 36 + 3.94247424254162e19 * cos(theta) ** 34 - 3.80676084348684e19 * cos(theta) ** 32 + 2.91381694192819e19 * cos(theta) ** 30 - 1.78271500666493e19 * cos(theta) ** 28 + 8.75151003271874e18 * cos(theta) ** 26 - 3.44756455834375e18 * cos(theta) ** 24 + 1.08621897043707e18 * cos(theta) ** 22 - 2.71848951431163e17 * cos(theta) ** 20 + 5.34692554574751e16 * cos(theta) ** 18 - 8.1400956069589e15 * cos(theta) ** 16 + 939241800802950.0 * cos(theta) ** 14 - 79804858891753.9 * cos(theta) ** 12 + 4797013376007.07 * cos(theta) ** 10 - 192565211347.295 * cos(theta) ** 8 + 4729671857.65287 * cos(theta) ** 6 - 61424309.8396476 * cos(theta) ** 4 + 316077.066070228 * cos(theta) ** 2 - 269.460414382121 ) * cos(2 * phi) ) # @torch.jit.script def Yl48_m3(theta, phi): return ( 3.45047860784155e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 2.37252178589738e18 * cos(theta) ** 45 - 2.47241744004043e19 * cos(theta) ** 43 + 1.20031878943898e20 * cos(theta) ** 41 - 3.60535314043943e20 * cos(theta) ** 39 + 7.50440077827421e20 * cos(theta) ** 37 - 1.14894963639784e21 * cos(theta) ** 35 + 1.34044124246415e21 * cos(theta) ** 33 - 1.21816346991579e21 * cos(theta) ** 31 + 8.74145082578459e20 * cos(theta) ** 29 - 4.9916020186618e20 * cos(theta) ** 27 + 2.27539260850687e20 * cos(theta) ** 25 - 8.27415494002499e19 * cos(theta) ** 23 + 2.38968173496156e19 * cos(theta) ** 21 - 5.43697902862326e18 * cos(theta) ** 19 + 9.62446598234552e17 * cos(theta) ** 17 - 1.30241529711342e17 * cos(theta) ** 15 + 1.31493852112413e16 * cos(theta) ** 13 - 957658306701047.0 * cos(theta) ** 11 + 47970133760070.7 * cos(theta) ** 9 - 1540521690778.36 * cos(theta) ** 7 + 28378031145.9172 * cos(theta) ** 5 - 245697239.35859 * cos(theta) ** 3 + 632154.132140456 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl48_m4(theta, phi): return ( 7.13298663882281e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 1.06763480365382e20 * cos(theta) ** 44 - 1.06313949921738e21 * cos(theta) ** 42 + 4.92130703669983e21 * cos(theta) ** 40 - 1.40608772477138e22 * cos(theta) ** 38 + 2.77662828796146e22 * cos(theta) ** 36 - 4.02132372739246e22 * cos(theta) ** 34 + 4.4234561001317e22 * cos(theta) ** 32 - 3.77630675673894e22 * cos(theta) ** 30 + 2.53502073947753e22 * cos(theta) ** 28 - 1.34773254503869e22 * cos(theta) ** 26 + 5.68848152126718e21 * cos(theta) ** 24 - 1.90305563620575e21 * cos(theta) ** 22 + 5.01833164341927e20 * cos(theta) ** 20 - 1.03302601543842e20 * cos(theta) ** 18 + 1.63615921699874e19 * cos(theta) ** 16 - 1.95362294567014e18 * cos(theta) ** 14 + 1.70942007746137e17 * cos(theta) ** 12 - 1.05342413737115e16 * cos(theta) ** 10 + 431731203840636.0 * cos(theta) ** 8 - 10783651835448.5 * cos(theta) ** 6 + 141890155729.586 * cos(theta) ** 4 - 737091718.075771 * cos(theta) ** 2 + 632154.132140456 ) * cos(4 * phi) ) # @torch.jit.script def Yl48_m5(theta, phi): return ( 1.47709061060563e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 4.69759313607681e21 * cos(theta) ** 43 - 4.46518589671301e22 * cos(theta) ** 41 + 1.96852281467993e23 * cos(theta) ** 39 - 5.34313335413124e23 * cos(theta) ** 37 + 9.99586183666125e23 * cos(theta) ** 35 - 1.36725006731344e24 * cos(theta) ** 33 + 1.41550595204214e24 * cos(theta) ** 31 - 1.13289202702168e24 * cos(theta) ** 29 + 7.09805807053708e23 * cos(theta) ** 27 - 3.50410461710059e23 * cos(theta) ** 25 + 1.36523556510412e23 * cos(theta) ** 23 - 4.18672239965265e22 * cos(theta) ** 21 + 1.00366632868385e22 * cos(theta) ** 19 - 1.85944682778916e21 * cos(theta) ** 17 + 2.61785474719798e20 * cos(theta) ** 15 - 2.73507212393819e19 * cos(theta) ** 13 + 2.05130409295364e18 * cos(theta) ** 11 - 1.05342413737115e17 * cos(theta) ** 9 + 3.45384963072509e15 * cos(theta) ** 7 - 64701911012691.2 * cos(theta) ** 5 + 567560622918.344 * cos(theta) ** 3 - 1474183436.15154 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl48_m6(theta, phi): return ( 3.06532148899894e-10 * (1.0 - cos(theta) ** 2) ** 3 * ( 2.01996504851303e23 * cos(theta) ** 42 - 1.83072621765233e24 * cos(theta) ** 40 + 7.67723897725173e24 * cos(theta) ** 38 - 1.97695934102856e25 * cos(theta) ** 36 + 3.49855164283144e25 * cos(theta) ** 34 - 4.51192522213434e25 * cos(theta) ** 32 + 4.38806845133065e25 * cos(theta) ** 30 - 3.28538687836288e25 * cos(theta) ** 28 + 1.91647567904501e25 * cos(theta) ** 26 - 8.76026154275146e24 * cos(theta) ** 24 + 3.14004179973949e24 * cos(theta) ** 22 - 8.79211703927056e23 * cos(theta) ** 20 + 1.90696602449932e23 * cos(theta) ** 18 - 3.16105960724156e22 * cos(theta) ** 16 + 3.92678212079697e21 * cos(theta) ** 14 - 3.55559376111965e20 * cos(theta) ** 12 + 2.25643450224901e19 * cos(theta) ** 10 - 9.48081723634037e17 * cos(theta) ** 8 + 2.41769474150756e16 * cos(theta) ** 6 - 323509555063456.0 * cos(theta) ** 4 + 1702681868755.03 * cos(theta) ** 2 - 1474183436.15154 ) * cos(6 * phi) ) # @torch.jit.script def Yl48_m7(theta, phi): return ( 6.37778742419495e-12 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 8.48385320375472e24 * cos(theta) ** 41 - 7.32290487060934e25 * cos(theta) ** 39 + 2.91735081135566e26 * cos(theta) ** 37 - 7.11705362770281e26 * cos(theta) ** 35 + 1.18950755856269e27 * cos(theta) ** 33 - 1.44381607108299e27 * cos(theta) ** 31 + 1.31642053539919e27 * cos(theta) ** 29 - 9.19908325941606e26 * cos(theta) ** 27 + 4.98283676551703e26 * cos(theta) ** 25 - 2.10246277026035e26 * cos(theta) ** 23 + 6.90809195942687e25 * cos(theta) ** 21 - 1.75842340785411e25 * cos(theta) ** 19 + 3.43253884409878e24 * cos(theta) ** 17 - 5.0576953715865e23 * cos(theta) ** 15 + 5.49749496911576e22 * cos(theta) ** 13 - 4.26671251334358e21 * cos(theta) ** 11 + 2.25643450224901e20 * cos(theta) ** 9 - 7.58465378907229e18 * cos(theta) ** 7 + 1.45061684490454e17 * cos(theta) ** 5 - 1.29403822025382e15 * cos(theta) ** 3 + 3405363737510.06 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl48_m8(theta, phi): return ( 1.33101851880292e-13 * (1.0 - cos(theta) ** 2) ** 4 * ( 3.47837981353944e26 * cos(theta) ** 40 - 2.85593289953764e27 * cos(theta) ** 38 + 1.07941980020159e28 * cos(theta) ** 36 - 2.49096876969598e28 * cos(theta) ** 34 + 3.92537494325687e28 * cos(theta) ** 32 - 4.47582982035726e28 * cos(theta) ** 30 + 3.81761955265766e28 * cos(theta) ** 28 - 2.48375248004234e28 * cos(theta) ** 26 + 1.24570919137926e28 * cos(theta) ** 24 - 4.83566437159881e27 * cos(theta) ** 22 + 1.45069931147964e27 * cos(theta) ** 20 - 3.34100447492281e26 * cos(theta) ** 18 + 5.83531603496793e25 * cos(theta) ** 16 - 7.58654305737975e24 * cos(theta) ** 14 + 7.14674345985049e23 * cos(theta) ** 12 - 4.69338376467793e22 * cos(theta) ** 10 + 2.03079105202411e21 * cos(theta) ** 8 - 5.3092576523506e19 * cos(theta) ** 6 + 7.25308422452268e17 * cos(theta) ** 4 - 3.88211466076147e15 * cos(theta) ** 2 + 3405363737510.06 ) * cos(8 * phi) ) # @torch.jit.script def Yl48_m9(theta, phi): return ( 2.78751154304613e-15 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1.39135192541577e28 * cos(theta) ** 39 - 1.0852545018243e29 * cos(theta) ** 37 + 3.88591128072573e29 * cos(theta) ** 35 - 8.46929381696635e29 * cos(theta) ** 33 + 1.2561199818422e30 * cos(theta) ** 31 - 1.34274894610718e30 * cos(theta) ** 29 + 1.06893347474415e30 * cos(theta) ** 27 - 6.45775644811007e29 * cos(theta) ** 25 + 2.98970205931022e29 * cos(theta) ** 23 - 1.06384616175174e29 * cos(theta) ** 21 + 2.90139862295928e28 * cos(theta) ** 19 - 6.01380805486106e27 * cos(theta) ** 17 + 9.33650565594868e26 * cos(theta) ** 15 - 1.06211602803317e26 * cos(theta) ** 13 + 8.57609215182059e24 * cos(theta) ** 11 - 4.69338376467793e23 * cos(theta) ** 9 + 1.62463284161929e22 * cos(theta) ** 7 - 3.18555459141036e20 * cos(theta) ** 5 + 2.90123368980907e18 * cos(theta) ** 3 - 7.76422932152295e15 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl48_m10(theta, phi): return ( 5.86098181883417e-17 * (1.0 - cos(theta) ** 2) ** 5 * ( 5.42627250912152e29 * cos(theta) ** 38 - 4.01544165674993e30 * cos(theta) ** 36 + 1.36006894825401e31 * cos(theta) ** 34 - 2.79486695959889e31 * cos(theta) ** 32 + 3.89397194371082e31 * cos(theta) ** 30 - 3.89397194371082e31 * cos(theta) ** 28 + 2.88612038180919e31 * cos(theta) ** 26 - 1.61443911202752e31 * cos(theta) ** 24 + 6.8763147364135e30 * cos(theta) ** 22 - 2.23407693967865e30 * cos(theta) ** 20 + 5.51265738362264e29 * cos(theta) ** 18 - 1.02234736932638e29 * cos(theta) ** 16 + 1.4004758483923e28 * cos(theta) ** 14 - 1.38075083644311e27 * cos(theta) ** 12 + 9.43370136700265e25 * cos(theta) ** 10 - 4.22404538821014e24 * cos(theta) ** 8 + 1.1372429891335e23 * cos(theta) ** 6 - 1.59277729570518e21 * cos(theta) ** 4 + 8.70370106942722e18 * cos(theta) ** 2 - 7.76422932152295e15 ) * cos(10 * phi) ) # @torch.jit.script def Yl48_m11(theta, phi): return ( 1.23780596161278e-18 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 2.06198355346618e31 * cos(theta) ** 37 - 1.44555899642997e32 * cos(theta) ** 35 + 4.62423442406362e32 * cos(theta) ** 33 - 8.94357427071646e32 * cos(theta) ** 31 + 1.16819158311325e33 * cos(theta) ** 29 - 1.09031214423903e33 * cos(theta) ** 27 + 7.50391299270391e32 * cos(theta) ** 25 - 3.87465386886604e32 * cos(theta) ** 23 + 1.51278924201097e32 * cos(theta) ** 21 - 4.4681538793573e31 * cos(theta) ** 19 + 9.92278329052075e30 * cos(theta) ** 17 - 1.63575579092221e30 * cos(theta) ** 15 + 1.96066618774922e29 * cos(theta) ** 13 - 1.65690100373174e28 * cos(theta) ** 11 + 9.43370136700265e26 * cos(theta) ** 9 - 3.37923631056811e25 * cos(theta) ** 7 + 6.823457934801e23 * cos(theta) ** 5 - 6.37110918282073e21 * cos(theta) ** 3 + 1.74074021388544e19 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl48_m12(theta, phi): return ( 2.62709684472235e-20 * (1.0 - cos(theta) ** 2) ** 6 * ( 7.62933914782486e32 * cos(theta) ** 36 - 5.05945648750491e33 * cos(theta) ** 34 + 1.525997359941e34 * cos(theta) ** 32 - 2.7725080239221e34 * cos(theta) ** 30 + 3.38775559102841e34 * cos(theta) ** 28 - 2.94384278944538e34 * cos(theta) ** 26 + 1.87597824817598e34 * cos(theta) ** 24 - 8.9117038983919e33 * cos(theta) ** 22 + 3.17685740822304e33 * cos(theta) ** 20 - 8.48949237077887e32 * cos(theta) ** 18 + 1.68687315938853e32 * cos(theta) ** 16 - 2.45363368638331e31 * cos(theta) ** 14 + 2.54886604407399e30 * cos(theta) ** 12 - 1.82259110410491e29 * cos(theta) ** 10 + 8.49033123030238e27 * cos(theta) ** 8 - 2.36546541739768e26 * cos(theta) ** 6 + 3.4117289674005e24 * cos(theta) ** 4 - 1.91133275484622e22 * cos(theta) ** 2 + 1.74074021388544e19 ) * cos(12 * phi) ) # @torch.jit.script def Yl48_m13(theta, phi): return ( 5.60608805466343e-22 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 2.74656209321695e34 * cos(theta) ** 35 - 1.72021520575167e35 * cos(theta) ** 33 + 4.88319155181119e35 * cos(theta) ** 31 - 8.31752407176631e35 * cos(theta) ** 29 + 9.48571565487955e35 * cos(theta) ** 27 - 7.65399125255798e35 * cos(theta) ** 25 + 4.50234779562234e35 * cos(theta) ** 23 - 1.96057485764622e35 * cos(theta) ** 21 + 6.35371481644608e34 * cos(theta) ** 19 - 1.5281086267402e34 * cos(theta) ** 17 + 2.69899705502165e33 * cos(theta) ** 15 - 3.43508716093664e32 * cos(theta) ** 13 + 3.05863925288879e31 * cos(theta) ** 11 - 1.82259110410491e30 * cos(theta) ** 9 + 6.79226498424191e28 * cos(theta) ** 7 - 1.41927925043861e27 * cos(theta) ** 5 + 1.3646915869602e25 * cos(theta) ** 3 - 3.82266550969244e22 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl48_m14(theta, phi): return ( 1.20345553308864e-23 * (1.0 - cos(theta) ** 2) ** 7 * ( 9.61296732625932e35 * cos(theta) ** 34 - 5.67671017898051e36 * cos(theta) ** 32 + 1.51378938106147e37 * cos(theta) ** 30 - 2.41208198081223e37 * cos(theta) ** 28 + 2.56114322681748e37 * cos(theta) ** 26 - 1.9134978131395e37 * cos(theta) ** 24 + 1.03553999299314e37 * cos(theta) ** 22 - 4.11720720105706e36 * cos(theta) ** 20 + 1.20720581512475e36 * cos(theta) ** 18 - 2.59778466545833e35 * cos(theta) ** 16 + 4.04849558253247e34 * cos(theta) ** 14 - 4.46561330921763e33 * cos(theta) ** 12 + 3.36450317817767e32 * cos(theta) ** 10 - 1.64033199369442e31 * cos(theta) ** 8 + 4.75458548896934e29 * cos(theta) ** 6 - 7.09639625219304e27 * cos(theta) ** 4 + 4.0940747608806e25 * cos(theta) ** 2 - 3.82266550969244e22 ) * cos(14 * phi) ) # @torch.jit.script def Yl48_m15(theta, phi): return ( 2.60028119225837e-25 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 3.26840889092817e37 * cos(theta) ** 33 - 1.81654725727376e38 * cos(theta) ** 31 + 4.5413681431844e38 * cos(theta) ** 29 - 6.75382954627424e38 * cos(theta) ** 27 + 6.65897238972545e38 * cos(theta) ** 25 - 4.59239475153479e38 * cos(theta) ** 23 + 2.27818798458491e38 * cos(theta) ** 21 - 8.23441440211412e37 * cos(theta) ** 19 + 2.17297046722456e37 * cos(theta) ** 17 - 4.15645546473333e36 * cos(theta) ** 15 + 5.66789381554545e35 * cos(theta) ** 13 - 5.35873597106116e34 * cos(theta) ** 11 + 3.36450317817767e33 * cos(theta) ** 9 - 1.31226559495554e32 * cos(theta) ** 7 + 2.8527512933816e30 * cos(theta) ** 5 - 2.83855850087721e28 * cos(theta) ** 3 + 8.1881495217612e25 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl48_m16(theta, phi): return ( 5.6581356846753e-27 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.0785749340063e39 * cos(theta) ** 32 - 5.63129649754866e39 * cos(theta) ** 30 + 1.31699676152348e40 * cos(theta) ** 28 - 1.82353397749405e40 * cos(theta) ** 26 + 1.66474309743136e40 * cos(theta) ** 24 - 1.056250792853e40 * cos(theta) ** 22 + 4.7841947676283e39 * cos(theta) ** 20 - 1.56453873640168e39 * cos(theta) ** 18 + 3.69404979428175e38 * cos(theta) ** 16 - 6.2346831971e37 * cos(theta) ** 14 + 7.36826196020909e36 * cos(theta) ** 12 - 5.89460956816727e35 * cos(theta) ** 10 + 3.0280528603599e34 * cos(theta) ** 8 - 9.18585916468876e32 * cos(theta) ** 6 + 1.4263756466908e31 * cos(theta) ** 4 - 8.51567550263164e28 * cos(theta) ** 2 + 8.1881495217612e25 ) * cos(16 * phi) ) # @torch.jit.script def Yl48_m17(theta, phi): return ( 1.24062831914294e-28 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 3.45143978882015e40 * cos(theta) ** 31 - 1.6893889492646e41 * cos(theta) ** 29 + 3.68759093226574e41 * cos(theta) ** 27 - 4.74118834148452e41 * cos(theta) ** 25 + 3.99538343383527e41 * cos(theta) ** 23 - 2.3237517442766e41 * cos(theta) ** 21 + 9.5683895352566e40 * cos(theta) ** 19 - 2.81616972552303e40 * cos(theta) ** 17 + 5.9104796708508e39 * cos(theta) ** 15 - 8.72855647594e38 * cos(theta) ** 13 + 8.84191435225091e37 * cos(theta) ** 11 - 5.89460956816727e36 * cos(theta) ** 9 + 2.42244228828792e35 * cos(theta) ** 7 - 5.51151549881325e33 * cos(theta) ** 5 + 5.7055025867632e31 * cos(theta) ** 3 - 1.70313510052633e29 * cos(theta) ) * cos(17 * phi) ) # @torch.jit.script def Yl48_m18(theta, phi): return ( 2.7427667480681e-30 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.06994633453425e42 * cos(theta) ** 30 - 4.89922795286733e42 * cos(theta) ** 28 + 9.95649551711749e42 * cos(theta) ** 26 - 1.18529708537113e43 * cos(theta) ** 24 + 9.18938189782112e42 * cos(theta) ** 22 - 4.87987866298087e42 * cos(theta) ** 20 + 1.81799401169875e42 * cos(theta) ** 18 - 4.78748853338915e41 * cos(theta) ** 16 + 8.8657195062762e40 * cos(theta) ** 14 - 1.1347123418722e40 * cos(theta) ** 12 + 9.726105787476e38 * cos(theta) ** 10 - 5.30514861135055e37 * cos(theta) ** 8 + 1.69570960180154e36 * cos(theta) ** 6 - 2.75575774940663e34 * cos(theta) ** 4 + 1.71165077602896e32 * cos(theta) ** 2 - 1.70313510052633e29 ) * cos(18 * phi) ) # @torch.jit.script def Yl48_m19(theta, phi): return ( 6.11773762133704e-32 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 3.20983900360274e43 * cos(theta) ** 29 - 1.37178382680285e44 * cos(theta) ** 27 + 2.58868883445055e44 * cos(theta) ** 25 - 2.84471300489071e44 * cos(theta) ** 23 + 2.02166401752065e44 * cos(theta) ** 21 - 9.75975732596174e43 * cos(theta) ** 19 + 3.27238922105776e43 * cos(theta) ** 17 - 7.65998165342264e42 * cos(theta) ** 15 + 1.24120073087867e42 * cos(theta) ** 13 - 1.36165481024664e41 * cos(theta) ** 11 + 9.726105787476e39 * cos(theta) ** 9 - 4.24411888908044e38 * cos(theta) ** 7 + 1.01742576108093e37 * cos(theta) ** 5 - 1.10230309976265e35 * cos(theta) ** 3 + 3.42330155205792e32 * cos(theta) ) * cos(19 * phi) ) # @torch.jit.script def Yl48_m20(theta, phi): return ( 1.37764522622734e-33 * (1.0 - cos(theta) ** 2) ** 10 * ( 9.30853311044794e44 * cos(theta) ** 28 - 3.70381633236771e45 * cos(theta) ** 26 + 6.47172208612637e45 * cos(theta) ** 24 - 6.54283991124863e45 * cos(theta) ** 22 + 4.24549443679336e45 * cos(theta) ** 20 - 1.85435389193273e45 * cos(theta) ** 18 + 5.56306167579819e44 * cos(theta) ** 16 - 1.1489972480134e44 * cos(theta) ** 14 + 1.61356095014227e43 * cos(theta) ** 12 - 1.4978202912713e42 * cos(theta) ** 10 + 8.7534952087284e40 * cos(theta) ** 8 - 2.97088322235631e39 * cos(theta) ** 6 + 5.08712880540463e37 * cos(theta) ** 4 - 3.30690929928795e35 * cos(theta) ** 2 + 3.42330155205792e32 ) * cos(20 * phi) ) # @torch.jit.script def Yl48_m21(theta, phi): return ( 3.13425141500133e-35 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 2.60638927092542e46 * cos(theta) ** 27 - 9.62992246415603e46 * cos(theta) ** 25 + 1.55321330067033e47 * cos(theta) ** 23 - 1.4394247804747e47 * cos(theta) ** 21 + 8.49098887358671e46 * cos(theta) ** 19 - 3.33783700547891e46 * cos(theta) ** 17 + 8.9008986812771e45 * cos(theta) ** 15 - 1.60859614721875e45 * cos(theta) ** 13 + 1.93627314017072e44 * cos(theta) ** 11 - 1.4978202912713e43 * cos(theta) ** 9 + 7.00279616698272e41 * cos(theta) ** 7 - 1.78252993341378e40 * cos(theta) ** 5 + 2.03485152216185e38 * cos(theta) ** 3 - 6.6138185985759e35 * cos(theta) ) * cos(21 * phi) ) # @torch.jit.script def Yl48_m22(theta, phi): return ( 7.20946318604152e-37 * (1.0 - cos(theta) ** 2) ** 11 * ( 7.03725103149864e47 * cos(theta) ** 26 - 2.40748061603901e48 * cos(theta) ** 24 + 3.57239059154175e48 * cos(theta) ** 22 - 3.02279203899687e48 * cos(theta) ** 20 + 1.61328788598148e48 * cos(theta) ** 18 - 5.67432290931415e47 * cos(theta) ** 16 + 1.33513480219157e47 * cos(theta) ** 14 - 2.09117499138438e46 * cos(theta) ** 12 + 2.12990045418779e45 * cos(theta) ** 10 - 1.34803826214417e44 * cos(theta) ** 8 + 4.9019573168879e42 * cos(theta) ** 6 - 8.91264966706892e40 * cos(theta) ** 4 + 6.10455456648556e38 * cos(theta) ** 2 - 6.6138185985759e35 ) * cos(22 * phi) ) # @torch.jit.script def Yl48_m23(theta, phi): return ( 1.67798115928159e-38 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.82968526818965e49 * cos(theta) ** 25 - 5.77795347849362e49 * cos(theta) ** 23 + 7.85925930139186e49 * cos(theta) ** 21 - 6.04558407799374e49 * cos(theta) ** 19 + 2.90391819476665e49 * cos(theta) ** 17 - 9.07891665490265e48 * cos(theta) ** 15 + 1.86918872306819e48 * cos(theta) ** 13 - 2.50940998966126e47 * cos(theta) ** 11 + 2.12990045418779e46 * cos(theta) ** 9 - 1.07843060971534e45 * cos(theta) ** 7 + 2.94117439013274e43 * cos(theta) ** 5 - 3.56505986682757e41 * cos(theta) ** 3 + 1.22091091329711e39 * cos(theta) ) * cos(23 * phi) ) # @torch.jit.script def Yl48_m24(theta, phi): return ( 3.9550395214376e-40 * (1.0 - cos(theta) ** 2) ** 12 * ( 4.57421317047412e50 * cos(theta) ** 24 - 1.32892930005353e51 * cos(theta) ** 22 + 1.65044445329229e51 * cos(theta) ** 20 - 1.14866097481881e51 * cos(theta) ** 18 + 4.93666093110331e50 * cos(theta) ** 16 - 1.3618374982354e50 * cos(theta) ** 14 + 2.42994533998865e49 * cos(theta) ** 12 - 2.76035098862738e48 * cos(theta) ** 10 + 1.91691040876902e47 * cos(theta) ** 8 - 7.54901426800737e45 * cos(theta) ** 6 + 1.47058719506637e44 * cos(theta) ** 4 - 1.06951796004827e42 * cos(theta) ** 2 + 1.22091091329711e39 ) * cos(24 * phi) ) # @torch.jit.script def Yl48_m25(theta, phi): return ( 9.44895491313896e-42 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 1.09781116091379e52 * cos(theta) ** 23 - 2.92364446011777e52 * cos(theta) ** 21 + 3.30088890658458e52 * cos(theta) ** 19 - 2.06758975467386e52 * cos(theta) ** 17 + 7.8986574897653e51 * cos(theta) ** 15 - 1.90657249752956e51 * cos(theta) ** 13 + 2.91593440798638e50 * cos(theta) ** 11 - 2.76035098862738e49 * cos(theta) ** 9 + 1.53352832701521e48 * cos(theta) ** 7 - 4.52940856080442e46 * cos(theta) ** 5 + 5.88234878026548e44 * cos(theta) ** 3 - 2.13903592009654e42 * cos(theta) ) * cos(25 * phi) ) # @torch.jit.script def Yl48_m26(theta, phi): return ( 2.29036131046255e-43 * (1.0 - cos(theta) ** 2) ** 13 * ( 2.52496567010171e53 * cos(theta) ** 22 - 6.13965336624732e53 * cos(theta) ** 20 + 6.2716889225107e53 * cos(theta) ** 18 - 3.51490258294556e53 * cos(theta) ** 16 + 1.1847986234648e53 * cos(theta) ** 14 - 2.47854424678842e52 * cos(theta) ** 12 + 3.20752784878502e51 * cos(theta) ** 10 - 2.48431588976464e50 * cos(theta) ** 8 + 1.07346982891065e49 * cos(theta) ** 6 - 2.26470428040221e47 * cos(theta) ** 4 + 1.76470463407965e45 * cos(theta) ** 2 - 2.13903592009654e42 ) * cos(26 * phi) ) # @torch.jit.script def Yl48_m27(theta, phi): return ( 5.63847977172428e-45 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 5.55492447422377e54 * cos(theta) ** 21 - 1.22793067324946e55 * cos(theta) ** 19 + 1.12890400605193e55 * cos(theta) ** 17 - 5.6238441327129e54 * cos(theta) ** 15 + 1.65871807285071e54 * cos(theta) ** 13 - 2.97425309614611e53 * cos(theta) ** 11 + 3.20752784878502e52 * cos(theta) ** 9 - 1.98745271181171e51 * cos(theta) ** 7 + 6.44081897346389e49 * cos(theta) ** 5 - 9.05881712160885e47 * cos(theta) ** 3 + 3.52940926815929e45 * cos(theta) ) * cos(27 * phi) ) # @torch.jit.script def Yl48_m28(theta, phi): return ( 1.41138527855448e-46 * (1.0 - cos(theta) ** 2) ** 14 * ( 1.16653413958699e56 * cos(theta) ** 20 - 2.33306827917398e56 * cos(theta) ** 18 + 1.91913681028828e56 * cos(theta) ** 16 - 8.43576619906934e55 * cos(theta) ** 14 + 2.15633349470593e55 * cos(theta) ** 12 - 3.27167840576072e54 * cos(theta) ** 10 + 2.88677506390652e53 * cos(theta) ** 8 - 1.3912168982682e52 * cos(theta) ** 6 + 3.22040948673195e50 * cos(theta) ** 4 - 2.71764513648265e48 * cos(theta) ** 2 + 3.52940926815929e45 ) * cos(28 * phi) ) # @torch.jit.script def Yl48_m29(theta, phi): return ( 3.5965427162585e-48 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 2.33306827917398e57 * cos(theta) ** 19 - 4.19952290251317e57 * cos(theta) ** 17 + 3.07061889646124e57 * cos(theta) ** 15 - 1.18100726786971e57 * cos(theta) ** 13 + 2.58760019364711e56 * cos(theta) ** 11 - 3.27167840576072e55 * cos(theta) ** 9 + 2.30942005112521e54 * cos(theta) ** 7 - 8.3473013896092e52 * cos(theta) ** 5 + 1.28816379469278e51 * cos(theta) ** 3 - 5.43529027296531e48 * cos(theta) ) * cos(29 * phi) ) # @torch.jit.script def Yl48_m30(theta, phi): return ( 9.34245728723332e-50 * (1.0 - cos(theta) ** 2) ** 15 * ( 4.43282973043057e58 * cos(theta) ** 18 - 7.13918893427238e58 * cos(theta) ** 16 + 4.60592834469186e58 * cos(theta) ** 14 - 1.53530944823062e58 * cos(theta) ** 12 + 2.84636021301182e57 * cos(theta) ** 10 - 2.94451056518465e56 * cos(theta) ** 8 + 1.61659403578765e55 * cos(theta) ** 6 - 4.1736506948046e53 * cos(theta) ** 4 + 3.86449138407833e51 * cos(theta) ** 2 - 5.43529027296531e48 ) * cos(30 * phi) ) # @torch.jit.script def Yl48_m31(theta, phi): return ( 2.47748664898637e-51 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 7.97909351477502e59 * cos(theta) ** 17 - 1.14227022948358e60 * cos(theta) ** 15 + 6.44829968256861e59 * cos(theta) ** 13 - 1.84237133787674e59 * cos(theta) ** 11 + 2.84636021301182e58 * cos(theta) ** 9 - 2.35560845214772e57 * cos(theta) ** 7 + 9.69956421472589e55 * cos(theta) ** 5 - 1.66946027792184e54 * cos(theta) ** 3 + 7.72898276815667e51 * cos(theta) ) * cos(31 * phi) ) # @torch.jit.script def Yl48_m32(theta, phi): return ( 6.71802891255276e-53 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.35644589751175e61 * cos(theta) ** 16 - 1.71340534422537e61 * cos(theta) ** 14 + 8.38278958733919e60 * cos(theta) ** 12 - 2.02660847166442e60 * cos(theta) ** 10 + 2.56172419171064e59 * cos(theta) ** 8 - 1.6489259165034e58 * cos(theta) ** 6 + 4.84978210736295e56 * cos(theta) ** 4 - 5.00838083376552e54 * cos(theta) ** 2 + 7.72898276815667e51 ) * cos(32 * phi) ) # @torch.jit.script def Yl48_m33(theta, phi): return ( 1.86611914237577e-54 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 2.1703134360188e62 * cos(theta) ** 15 - 2.39876748191552e62 * cos(theta) ** 13 + 1.0059347504807e62 * cos(theta) ** 11 - 2.02660847166442e61 * cos(theta) ** 9 + 2.04937935336851e60 * cos(theta) ** 7 - 9.89355549902041e58 * cos(theta) ** 5 + 1.93991284294518e57 * cos(theta) ** 3 - 1.0016761667531e55 * cos(theta) ) * cos(33 * phi) ) # @torch.jit.script def Yl48_m34(theta, phi): return ( 5.32092101381846e-56 * (1.0 - cos(theta) ** 2) ** 17 * ( 3.25547015402821e63 * cos(theta) ** 14 - 3.11839772649018e63 * cos(theta) ** 12 + 1.10652822552877e63 * cos(theta) ** 10 - 1.82394762449798e62 * cos(theta) ** 8 + 1.43456554735796e61 * cos(theta) ** 6 - 4.94677774951021e59 * cos(theta) ** 4 + 5.81973852883553e57 * cos(theta) ** 2 - 1.0016761667531e55 ) * cos(34 * phi) ) # @torch.jit.script def Yl48_m35(theta, phi): return ( 1.5609311520875e-57 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 4.55765821563949e64 * cos(theta) ** 13 - 3.74207727178821e64 * cos(theta) ** 11 + 1.10652822552877e64 * cos(theta) ** 9 - 1.45915809959838e63 * cos(theta) ** 7 + 8.60739328414776e61 * cos(theta) ** 5 - 1.97871109980408e60 * cos(theta) ** 3 + 1.16394770576711e58 * cos(theta) ) * cos(35 * phi) ) # @torch.jit.script def Yl48_m36(theta, phi): return ( 4.72359254921895e-59 * (1.0 - cos(theta) ** 2) ** 18 * ( 5.92495568033134e65 * cos(theta) ** 12 - 4.11628499896703e65 * cos(theta) ** 10 + 9.95875402975895e64 * cos(theta) ** 8 - 1.02141066971887e64 * cos(theta) ** 6 + 4.30369664207388e62 * cos(theta) ** 4 - 5.93613329941225e60 * cos(theta) ** 2 + 1.16394770576711e58 ) * cos(36 * phi) ) # @torch.jit.script def Yl48_m37(theta, phi): return ( 1.47901419775487e-60 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 7.1099468163976e66 * cos(theta) ** 11 - 4.11628499896703e66 * cos(theta) ** 9 + 7.96700322380716e65 * cos(theta) ** 7 - 6.1284640183132e64 * cos(theta) ** 5 + 1.72147865682955e63 * cos(theta) ** 3 - 1.18722665988245e61 * cos(theta) ) * cos(37 * phi) ) # @torch.jit.script def Yl48_m38(theta, phi): return ( 4.80868993728036e-62 * (1.0 - cos(theta) ** 2) ** 19 * ( 7.82094149803737e67 * cos(theta) ** 10 - 3.70465649907033e67 * cos(theta) ** 8 + 5.57690225666501e66 * cos(theta) ** 6 - 3.0642320091566e65 * cos(theta) ** 4 + 5.16443597048865e63 * cos(theta) ** 2 - 1.18722665988245e61 ) * cos(38 * phi) ) # @torch.jit.script def Yl48_m39(theta, phi): return ( 1.63029857334923e-63 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 7.82094149803737e68 * cos(theta) ** 9 - 2.96372519925626e68 * cos(theta) ** 7 + 3.34614135399901e67 * cos(theta) ** 5 - 1.22569280366264e66 * cos(theta) ** 3 + 1.03288719409773e64 * cos(theta) ) * cos(39 * phi) ) # @torch.jit.script def Yl48_m40(theta, phi): return ( 5.79301372852641e-65 * (1.0 - cos(theta) ** 2) ** 20 * ( 7.03884734823363e69 * cos(theta) ** 8 - 2.07460763947939e69 * cos(theta) ** 6 + 1.6730706769995e68 * cos(theta) ** 4 - 3.67707841098792e66 * cos(theta) ** 2 + 1.03288719409773e64 ) * cos(40 * phi) ) # @torch.jit.script def Yl48_m41(theta, phi): return ( 2.17102368215931e-66 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 5.6310778785869e70 * cos(theta) ** 7 - 1.24476458368763e70 * cos(theta) ** 5 + 6.69228270799802e68 * cos(theta) ** 3 - 7.35415682197584e66 * cos(theta) ) * cos(41 * phi) ) # @torch.jit.script def Yl48_m42(theta, phi): return ( 8.64956538819768e-68 * (1.0 - cos(theta) ** 2) ** 21 * ( 3.94175451501083e71 * cos(theta) ** 6 - 6.22382291843816e70 * cos(theta) ** 4 + 2.00768481239941e69 * cos(theta) ** 2 - 7.35415682197584e66 ) * cos(42 * phi) ) # @torch.jit.script def Yl48_m43(theta, phi): return ( 3.70167226353842e-69 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 2.3650527090065e72 * cos(theta) ** 5 - 2.48952916737526e71 * cos(theta) ** 3 + 4.01536962479881e69 * cos(theta) ) * cos(43 * phi) ) # @torch.jit.script def Yl48_m44(theta, phi): return ( 1.72591359213969e-70 * (1.0 - cos(theta) ** 2) ** 22 * ( 1.18252635450325e73 * cos(theta) ** 4 - 7.46858750212579e71 * cos(theta) ** 2 + 4.01536962479881e69 ) * cos(44 * phi) ) # @torch.jit.script def Yl48_m45(theta, phi): return ( 8.94844512163766e-72 * (1.0 - cos(theta) ** 2) ** 22.5 * (4.730105418013e73 * cos(theta) ** 3 - 1.49371750042516e72 * cos(theta)) * cos(45 * phi) ) # @torch.jit.script def Yl48_m46(theta, phi): return ( 5.32872152427948e-73 * (1.0 - cos(theta) ** 2) ** 23 * (1.4190316254039e74 * cos(theta) ** 2 - 1.49371750042516e72) * cos(46 * phi) ) # @torch.jit.script def Yl48_m47(theta, phi): return ( 10.9715577794607 * (1.0 - cos(theta) ** 2) ** 23.5 * cos(47 * phi) * cos(theta) ) # @torch.jit.script def Yl48_m48(theta, phi): return 1.11977992679758 * (1.0 - cos(theta) ** 2) ** 24 * cos(48 * phi) # @torch.jit.script def Yl49_m_minus_49(theta, phi): return 1.12547858918257 * (1.0 - cos(theta) ** 2) ** 24.5 * sin(49 * phi) # @torch.jit.script def Yl49_m_minus_48(theta, phi): return 11.1416695948776 * (1.0 - cos(theta) ** 2) ** 24 * sin(48 * phi) * cos(theta) # @torch.jit.script def Yl49_m_minus_47(theta, phi): return ( 5.63712072589557e-75 * (1.0 - cos(theta) ** 2) ** 23.5 * (1.37646067664178e76 * cos(theta) ** 2 - 1.4190316254039e74) * sin(47 * phi) ) # @torch.jit.script def Yl49_m_minus_46(theta, phi): return ( 9.56651109995517e-74 * (1.0 - cos(theta) ** 2) ** 23 * (4.58820225547261e75 * cos(theta) ** 3 - 1.4190316254039e74 * cos(theta)) * sin(46 * phi) ) # @torch.jit.script def Yl49_m_minus_45(theta, phi): return ( 1.86485632577191e-72 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 1.14705056386815e75 * cos(theta) ** 4 - 7.0951581270195e73 * cos(theta) ** 2 + 3.73429375106289e71 ) * sin(45 * phi) ) # @torch.jit.script def Yl49_m_minus_44(theta, phi): return ( 4.04291217368446e-71 * (1.0 - cos(theta) ** 2) ** 22 * ( 2.2941011277363e74 * cos(theta) ** 5 - 2.3650527090065e73 * cos(theta) ** 3 + 3.73429375106289e71 * cos(theta) ) * sin(44 * phi) ) # @torch.jit.script def Yl49_m_minus_43(theta, phi): return ( 9.55017668685889e-70 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 3.82350187956051e73 * cos(theta) ** 6 - 5.91263177251625e72 * cos(theta) ** 4 + 1.86714687553145e71 * cos(theta) ** 2 - 6.69228270799802e68 ) * sin(43 * phi) ) # @torch.jit.script def Yl49_m_minus_42(theta, phi): return ( 2.42356314832405e-68 * (1.0 - cos(theta) ** 2) ** 21 * ( 5.4621455422293e72 * cos(theta) ** 7 - 1.18252635450325e72 * cos(theta) ** 5 + 6.22382291843816e70 * cos(theta) ** 3 - 6.69228270799802e68 * cos(theta) ) * sin(42 * phi) ) # @torch.jit.script def Yl49_m_minus_41(theta, phi): return ( 6.53913088039203e-67 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 6.82768192778662e71 * cos(theta) ** 8 - 1.97087725750542e71 * cos(theta) ** 6 + 1.55595572960954e70 * cos(theta) ** 4 - 3.34614135399901e68 * cos(theta) ** 2 + 9.1926960274698e65 ) * sin(41 * phi) ) # @torch.jit.script def Yl49_m_minus_40(theta, phi): return ( 1.86106927499828e-65 * (1.0 - cos(theta) ** 2) ** 20 * ( 7.58631325309624e70 * cos(theta) ** 9 - 2.81553893929345e70 * cos(theta) ** 7 + 3.11191145921908e69 * cos(theta) ** 5 - 1.115380451333e68 * cos(theta) ** 3 + 9.1926960274698e65 * cos(theta) ) * sin(40 * phi) ) # @torch.jit.script def Yl49_m_minus_39(theta, phi): return ( 5.55210336111004e-64 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 7.58631325309624e69 * cos(theta) ** 10 - 3.51942367411681e69 * cos(theta) ** 8 + 5.18651909869846e68 * cos(theta) ** 6 - 2.78845112833251e67 * cos(theta) ** 4 + 4.5963480137349e65 * cos(theta) ** 2 - 1.03288719409773e63 ) * sin(39 * phi) ) # @torch.jit.script def Yl49_m_minus_38(theta, phi): return ( 1.72740917205539e-62 * (1.0 - cos(theta) ** 2) ** 19 * ( 6.89664841190568e68 * cos(theta) ** 11 - 3.91047074901868e68 * cos(theta) ** 9 + 7.40931299814066e67 * cos(theta) ** 7 - 5.57690225666501e66 * cos(theta) ** 5 + 1.5321160045783e65 * cos(theta) ** 3 - 1.03288719409773e63 * cos(theta) ) * sin(38 * phi) ) # @torch.jit.script def Yl49_m_minus_37(theta, phi): return ( 5.58142984852443e-61 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 5.7472070099214e67 * cos(theta) ** 12 - 3.91047074901868e67 * cos(theta) ** 10 + 9.26164124767583e66 * cos(theta) ** 8 - 9.29483709444169e65 * cos(theta) ** 6 + 3.83029001144575e64 * cos(theta) ** 4 - 5.16443597048865e62 * cos(theta) ** 2 + 9.89355549902041e59 ) * sin(37 * phi) ) # @torch.jit.script def Yl49_m_minus_36(theta, phi): return ( 1.86623518170062e-59 * (1.0 - cos(theta) ** 2) ** 18 * ( 4.42092846917031e66 * cos(theta) ** 13 - 3.5549734081988e66 * cos(theta) ** 11 + 1.02907124974176e66 * cos(theta) ** 9 - 1.32783387063453e65 * cos(theta) ** 7 + 7.6605800228915e63 * cos(theta) ** 5 - 1.72147865682955e62 * cos(theta) ** 3 + 9.89355549902041e59 * cos(theta) ) * sin(36 * phi) ) # @torch.jit.script def Yl49_m_minus_35(theta, phi): return ( 6.43783516919034e-58 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 3.15780604940736e65 * cos(theta) ** 14 - 2.96247784016567e65 * cos(theta) ** 12 + 1.02907124974176e65 * cos(theta) ** 10 - 1.65979233829316e64 * cos(theta) ** 8 + 1.27676333714858e63 * cos(theta) ** 6 - 4.30369664207388e61 * cos(theta) ** 4 + 4.94677774951021e59 * cos(theta) ** 2 - 8.31391218405076e56 ) * sin(35 * phi) ) # @torch.jit.script def Yl49_m_minus_34(theta, phi): return ( 2.28520478948248e-56 * (1.0 - cos(theta) ** 2) ** 17 * ( 2.10520403293824e64 * cos(theta) ** 15 - 2.27882910781975e64 * cos(theta) ** 13 + 9.35519317947053e63 * cos(theta) ** 11 - 1.84421370921462e63 * cos(theta) ** 9 + 1.82394762449798e62 * cos(theta) ** 7 - 8.60739328414776e60 * cos(theta) ** 5 + 1.6489259165034e59 * cos(theta) ** 3 - 8.31391218405076e56 * cos(theta) ) * sin(34 * phi) ) # @torch.jit.script def Yl49_m_minus_33(theta, phi): return ( 8.32768257972902e-55 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 1.3157525205864e63 * cos(theta) ** 16 - 1.6277350770141e63 * cos(theta) ** 14 + 7.79599431622544e62 * cos(theta) ** 12 - 1.84421370921462e62 * cos(theta) ** 10 + 2.27993453062247e61 * cos(theta) ** 8 - 1.43456554735796e60 * cos(theta) ** 6 + 4.1223147912585e58 * cos(theta) ** 4 - 4.15695609202538e56 * cos(theta) ** 2 + 6.2604760422069e53 ) * sin(33 * phi) ) # @torch.jit.script def Yl49_m_minus_32(theta, phi): return ( 3.10924933424965e-53 * (1.0 - cos(theta) ** 2) ** 16 * ( 7.73972070933177e61 * cos(theta) ** 17 - 1.0851567180094e62 * cos(theta) ** 15 + 5.9969187047888e61 * cos(theta) ** 13 - 1.67655791746784e61 * cos(theta) ** 11 + 2.53326058958052e60 * cos(theta) ** 9 - 2.04937935336851e59 * cos(theta) ** 7 + 8.24462958251701e57 * cos(theta) ** 5 - 1.38565203067513e56 * cos(theta) ** 3 + 6.2604760422069e53 * cos(theta) ) * sin(32 * phi) ) # @torch.jit.script def Yl49_m_minus_31(theta, phi): return ( 1.18722849586975e-51 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 4.29984483851765e60 * cos(theta) ** 18 - 6.78222948755876e60 * cos(theta) ** 16 + 4.28351336056343e60 * cos(theta) ** 14 - 1.39713159788986e60 * cos(theta) ** 12 + 2.53326058958052e59 * cos(theta) ** 10 - 2.56172419171064e58 * cos(theta) ** 8 + 1.3741049304195e57 * cos(theta) ** 6 - 3.46413007668782e55 * cos(theta) ** 4 + 3.13023802110345e53 * cos(theta) ** 2 - 4.29387931564259e50 ) * sin(31 * phi) ) # @torch.jit.script def Yl49_m_minus_30(theta, phi): return ( 4.62866879581573e-50 * (1.0 - cos(theta) ** 2) ** 15 * ( 2.26307623079876e59 * cos(theta) ** 19 - 3.98954675738751e59 * cos(theta) ** 17 + 2.85567557370895e59 * cos(theta) ** 15 - 1.07471661376143e59 * cos(theta) ** 13 + 2.30296417234593e58 * cos(theta) ** 11 - 2.84636021301182e57 * cos(theta) ** 9 + 1.96300704345643e56 * cos(theta) ** 7 - 6.92826015337564e54 * cos(theta) ** 5 + 1.04341267370115e53 * cos(theta) ** 3 - 4.29387931564259e50 * cos(theta) ) * sin(30 * phi) ) # @torch.jit.script def Yl49_m_minus_29(theta, phi): return ( 1.83985945707127e-48 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 1.13153811539938e58 * cos(theta) ** 20 - 2.21641486521528e58 * cos(theta) ** 18 + 1.7847972335681e58 * cos(theta) ** 16 - 7.6765472411531e57 * cos(theta) ** 14 + 1.91913681028828e57 * cos(theta) ** 12 - 2.84636021301182e56 * cos(theta) ** 10 + 2.45375880432054e55 * cos(theta) ** 8 - 1.15471002556261e54 * cos(theta) ** 6 + 2.60853168425288e52 * cos(theta) ** 4 - 2.1469396578213e50 * cos(theta) ** 2 + 2.71764513648265e47 ) * sin(29 * phi) ) # @torch.jit.script def Yl49_m_minus_28(theta, phi): return ( 7.44631832657374e-47 * (1.0 - cos(theta) ** 2) ** 14 * ( 5.38827673999705e56 * cos(theta) ** 21 - 1.16653413958699e57 * cos(theta) ** 19 + 1.04988072562829e57 * cos(theta) ** 17 - 5.11769816076873e56 * cos(theta) ** 15 + 1.47625908483713e56 * cos(theta) ** 13 - 2.58760019364711e55 * cos(theta) ** 11 + 2.72639867146726e54 * cos(theta) ** 9 - 1.64958575080372e53 * cos(theta) ** 7 + 5.21706336850575e51 * cos(theta) ** 5 - 7.15646552607099e49 * cos(theta) ** 3 + 2.71764513648265e47 * cos(theta) ) * sin(28 * phi) ) # @torch.jit.script def Yl49_m_minus_27(theta, phi): return ( 3.06477291679843e-45 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 2.44921669999866e55 * cos(theta) ** 22 - 5.83267069793495e55 * cos(theta) ** 20 + 5.83267069793495e55 * cos(theta) ** 18 - 3.19856135048046e55 * cos(theta) ** 16 + 1.05447077488367e55 * cos(theta) ** 14 - 2.15633349470593e54 * cos(theta) ** 12 + 2.72639867146726e53 * cos(theta) ** 10 - 2.06198218850465e52 * cos(theta) ** 8 + 8.69510561417625e50 * cos(theta) ** 6 - 1.78911638151775e49 * cos(theta) ** 4 + 1.35882256824133e47 * cos(theta) ** 2 - 1.6042769400724e44 ) * sin(27 * phi) ) # @torch.jit.script def Yl49_m_minus_26(theta, phi): return ( 1.28135366465055e-43 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.06487682608637e54 * cos(theta) ** 23 - 2.77746223711188e54 * cos(theta) ** 21 + 3.06982668312366e54 * cos(theta) ** 19 - 1.88150667675321e54 * cos(theta) ** 17 + 7.02980516589112e53 * cos(theta) ** 15 - 1.65871807285071e53 * cos(theta) ** 13 + 2.47854424678842e52 * cos(theta) ** 11 - 2.29109132056073e51 * cos(theta) ** 9 + 1.24215794488232e50 * cos(theta) ** 7 - 3.57823276303549e48 * cos(theta) ** 5 + 4.52940856080442e46 * cos(theta) ** 3 - 1.6042769400724e44 * cos(theta) ) * sin(26 * phi) ) # @torch.jit.script def Yl49_m_minus_25(theta, phi): return ( 5.43632319223582e-42 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 4.43698677535989e52 * cos(theta) ** 24 - 1.26248283505086e53 * cos(theta) ** 22 + 1.53491334156183e53 * cos(theta) ** 20 - 1.04528148708512e53 * cos(theta) ** 18 + 4.39362822868195e52 * cos(theta) ** 16 - 1.1847986234648e52 * cos(theta) ** 14 + 2.06545353899035e51 * cos(theta) ** 12 - 2.29109132056073e50 * cos(theta) ** 10 + 1.5526974311029e49 * cos(theta) ** 8 - 5.96372127172582e47 * cos(theta) ** 6 + 1.13235214020111e46 * cos(theta) ** 4 - 8.02138470036202e43 * cos(theta) ** 2 + 8.91264966706892e40 ) * sin(25 * phi) ) # @torch.jit.script def Yl49_m_minus_24(theta, phi): return ( 2.338251017819e-40 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.77479471014396e51 * cos(theta) ** 25 - 5.48905580456894e51 * cos(theta) ** 23 + 7.30911115029443e51 * cos(theta) ** 21 - 5.5014815109743e51 * cos(theta) ** 19 + 2.58448719334232e51 * cos(theta) ** 17 - 7.8986574897653e50 * cos(theta) ** 15 + 1.58881041460796e50 * cos(theta) ** 13 - 2.08281029141884e49 * cos(theta) ** 11 + 1.72521936789211e48 * cos(theta) ** 9 - 8.51960181675118e46 * cos(theta) ** 7 + 2.26470428040221e45 * cos(theta) ** 5 - 2.67379490012067e43 * cos(theta) ** 3 + 8.91264966706892e40 * cos(theta) ) * sin(24 * phi) ) # @torch.jit.script def Yl49_m_minus_23(theta, phi): return ( 1.01868341631664e-38 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 6.82613350055368e49 * cos(theta) ** 26 - 2.28710658523706e50 * cos(theta) ** 24 + 3.32232325013383e50 * cos(theta) ** 22 - 2.75074075548715e50 * cos(theta) ** 20 + 1.43582621852351e50 * cos(theta) ** 18 - 4.93666093110331e49 * cos(theta) ** 16 + 1.13486458186283e49 * cos(theta) ** 14 - 1.73567524284904e48 * cos(theta) ** 12 + 1.72521936789211e47 * cos(theta) ** 10 - 1.0649502270939e46 * cos(theta) ** 8 + 3.77450713400369e44 * cos(theta) ** 6 - 6.68448725030169e42 * cos(theta) ** 4 + 4.45632483353446e40 * cos(theta) ** 2 - 4.69581120498889e37 ) * sin(23 * phi) ) # @torch.jit.script def Yl49_m_minus_22(theta, phi): return ( 4.49145824293968e-37 * (1.0 - cos(theta) ** 2) ** 11 * ( 2.52819759279766e48 * cos(theta) ** 27 - 9.14842634094823e48 * cos(theta) ** 25 + 1.44448836962341e49 * cos(theta) ** 23 - 1.30987655023198e49 * cos(theta) ** 21 + 7.55698009749217e48 * cos(theta) ** 19 - 2.90391819476666e48 * cos(theta) ** 17 + 7.56576387908554e47 * cos(theta) ** 15 - 1.33513480219157e47 * cos(theta) ** 13 + 1.56838124353828e46 * cos(theta) ** 11 - 1.18327803010433e45 * cos(theta) ** 9 + 5.39215304857669e43 * cos(theta) ** 7 - 1.33689745006034e42 * cos(theta) ** 5 + 1.48544161117815e40 * cos(theta) ** 3 - 4.69581120498889e37 * cos(theta) ) * sin(22 * phi) ) # @torch.jit.script def Yl49_m_minus_21(theta, phi): return ( 2.00260620018926e-35 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 9.0292771171345e46 * cos(theta) ** 28 - 3.51862551574932e47 * cos(theta) ** 26 + 6.01870154009752e47 * cos(theta) ** 24 - 5.95398431923626e47 * cos(theta) ** 22 + 3.77849004874609e47 * cos(theta) ** 20 - 1.61328788598148e47 * cos(theta) ** 18 + 4.72860242442846e46 * cos(theta) ** 16 - 9.53667715851118e45 * cos(theta) ** 14 + 1.30698436961524e45 * cos(theta) ** 12 - 1.18327803010433e44 * cos(theta) ** 10 + 6.74019131072087e42 * cos(theta) ** 8 - 2.22816241676723e41 * cos(theta) ** 6 + 3.71360402794538e39 * cos(theta) ** 4 - 2.34790560249445e37 * cos(theta) ** 2 + 2.36207807091997e34 ) * sin(21 * phi) ) # @torch.jit.script def Yl49_m_minus_20(theta, phi): return ( 9.0228466316701e-34 * (1.0 - cos(theta) ** 2) ** 10 * ( 3.11354383349465e45 * cos(theta) ** 29 - 1.30319463546271e46 * cos(theta) ** 27 + 2.40748061603901e46 * cos(theta) ** 25 - 2.58868883445055e46 * cos(theta) ** 23 + 1.79928097559337e46 * cos(theta) ** 21 - 8.49098887358671e45 * cos(theta) ** 19 + 2.78153083789909e45 * cos(theta) ** 17 - 6.35778477234079e44 * cos(theta) ** 15 + 1.00537259201172e44 * cos(theta) ** 13 - 1.07570730009485e43 * cos(theta) ** 11 + 7.48910145635652e41 * cos(theta) ** 9 - 3.18308916681033e40 * cos(theta) ** 7 + 7.42720805589076e38 * cos(theta) ** 5 - 7.82635200831482e36 * cos(theta) ** 3 + 2.36207807091997e34 * cos(theta) ) * sin(20 * phi) ) # @torch.jit.script def Yl49_m_minus_19(theta, phi): return ( 4.10514732952406e-32 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.03784794449822e44 * cos(theta) ** 30 - 4.65426655522397e44 * cos(theta) ** 28 + 9.25954083091926e44 * cos(theta) ** 26 - 1.07862034768773e45 * cos(theta) ** 24 + 8.17854988906079e44 * cos(theta) ** 22 - 4.24549443679336e44 * cos(theta) ** 20 + 1.54529490994394e44 * cos(theta) ** 18 - 3.97361548271299e43 * cos(theta) ** 16 + 7.18123280008372e42 * cos(theta) ** 14 - 8.96422750079038e41 * cos(theta) ** 12 + 7.48910145635652e40 * cos(theta) ** 10 - 3.97886145851291e39 * cos(theta) ** 8 + 1.23786800931513e38 * cos(theta) ** 6 - 1.9565880020787e36 * cos(theta) ** 4 + 1.18103903545998e34 * cos(theta) ** 2 - 1.14110051735264e31 ) * sin(19 * phi) ) # @torch.jit.script def Yl49_m_minus_18(theta, phi): return ( 1.88479469785661e-30 * (1.0 - cos(theta) ** 2) ** 9 * ( 3.34789659515554e42 * cos(theta) ** 31 - 1.60491950180137e43 * cos(theta) ** 29 + 3.42945956700713e43 * cos(theta) ** 27 - 4.31448139075091e43 * cos(theta) ** 25 + 3.55589125611339e43 * cos(theta) ** 23 - 2.02166401752065e43 * cos(theta) ** 21 + 8.13313110496811e42 * cos(theta) ** 19 - 2.33742087218411e42 * cos(theta) ** 17 + 4.78748853338915e41 * cos(theta) ** 15 - 6.8955596159926e40 * cos(theta) ** 13 + 6.8082740512332e39 * cos(theta) ** 11 - 4.42095717612545e38 * cos(theta) ** 9 + 1.76838287045018e37 * cos(theta) ** 7 - 3.91317600415741e35 * cos(theta) ** 5 + 3.93679678486661e33 * cos(theta) ** 3 - 1.14110051735264e31 * cos(theta) ) * sin(18 * phi) ) # @torch.jit.script def Yl49_m_minus_17(theta, phi): return ( 8.72723040705274e-29 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.04621768598611e41 * cos(theta) ** 32 - 5.34973167267123e41 * cos(theta) ** 30 + 1.22480698821683e42 * cos(theta) ** 28 - 1.65941591951958e42 * cos(theta) ** 26 + 1.48162135671391e42 * cos(theta) ** 24 - 9.18938189782112e41 * cos(theta) ** 22 + 4.06656555248406e41 * cos(theta) ** 20 - 1.2985671512134e41 * cos(theta) ** 18 + 2.99218033336822e40 * cos(theta) ** 16 - 4.925399725709e39 * cos(theta) ** 14 + 5.673561709361e38 * cos(theta) ** 12 - 4.42095717612545e37 * cos(theta) ** 10 + 2.21047858806273e36 * cos(theta) ** 8 - 6.52196000692902e34 * cos(theta) ** 6 + 9.84199196216652e32 * cos(theta) ** 4 - 5.7055025867632e30 * cos(theta) ** 2 + 5.32229718914478e27 ) * sin(17 * phi) ) # @torch.jit.script def Yl49_m_minus_16(theta, phi): return ( 4.07291530919092e-27 * (1.0 - cos(theta) ** 2) ** 8 * ( 3.17035662420032e39 * cos(theta) ** 33 - 1.72571989441007e40 * cos(theta) ** 31 + 4.2234723731615e40 * cos(theta) ** 29 - 6.14598488710956e40 * cos(theta) ** 27 + 5.92648542685565e40 * cos(theta) ** 25 - 3.99538343383527e40 * cos(theta) ** 23 + 1.93645978689717e40 * cos(theta) ** 21 - 6.83456395375472e39 * cos(theta) ** 19 + 1.76010607845189e39 * cos(theta) ** 17 - 3.28359981713933e38 * cos(theta) ** 15 + 4.36427823797e37 * cos(theta) ** 13 - 4.01905197829587e36 * cos(theta) ** 11 + 2.4560873200697e35 * cos(theta) ** 9 - 9.31708572418431e33 * cos(theta) ** 7 + 1.9683983924333e32 * cos(theta) ** 5 - 1.90183419558773e30 * cos(theta) ** 3 + 5.32229718914478e27 * cos(theta) ) * sin(16 * phi) ) # @torch.jit.script def Yl49_m_minus_15(theta, phi): return ( 1.91470343515674e-25 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 9.32457830647154e37 * cos(theta) ** 34 - 5.39287467003148e38 * cos(theta) ** 32 + 1.40782412438717e39 * cos(theta) ** 30 - 2.19499460253913e39 * cos(theta) ** 28 + 2.27941747186756e39 * cos(theta) ** 26 - 1.66474309743136e39 * cos(theta) ** 24 + 8.80208994044168e38 * cos(theta) ** 22 - 3.41728197687736e38 * cos(theta) ** 20 + 9.77836710251051e37 * cos(theta) ** 18 - 2.05224988571208e37 * cos(theta) ** 16 + 3.11734159855e36 * cos(theta) ** 14 - 3.34920998191322e35 * cos(theta) ** 12 + 2.4560873200697e34 * cos(theta) ** 10 - 1.16463571552304e33 * cos(theta) ** 8 + 3.28066398738884e31 * cos(theta) ** 6 - 4.75458548896934e29 * cos(theta) ** 4 + 2.66114859457239e27 * cos(theta) ** 2 - 2.40827927110623e24 ) * sin(15 * phi) ) # @torch.jit.script def Yl49_m_minus_14(theta, phi): return ( 9.06203062668976e-24 * (1.0 - cos(theta) ** 2) ** 7 * ( 2.66416523042044e36 * cos(theta) ** 35 - 1.63420444546408e37 * cos(theta) ** 33 + 4.5413681431844e37 * cos(theta) ** 31 - 7.56894690530734e37 * cos(theta) ** 29 + 8.4422869328428e37 * cos(theta) ** 27 - 6.65897238972545e37 * cos(theta) ** 25 + 3.82699562627899e37 * cos(theta) ** 23 - 1.62727713184636e37 * cos(theta) ** 21 + 5.14650900132132e36 * cos(theta) ** 19 - 1.20720581512475e36 * cos(theta) ** 17 + 2.07822773236667e35 * cos(theta) ** 15 - 2.57631537070248e34 * cos(theta) ** 13 + 2.23280665460882e33 * cos(theta) ** 11 - 1.29403968391449e32 * cos(theta) ** 9 + 4.68666283912692e30 * cos(theta) ** 7 - 9.50917097793867e28 * cos(theta) ** 5 + 8.8704953152413e26 * cos(theta) ** 3 - 2.40827927110623e24 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl49_m_minus_13(theta, phi): return ( 4.31565829406494e-22 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 7.40045897339011e34 * cos(theta) ** 36 - 4.80648366312966e35 * cos(theta) ** 34 + 1.41917754474513e36 * cos(theta) ** 32 - 2.52298230176911e36 * cos(theta) ** 30 + 3.01510247601529e36 * cos(theta) ** 28 - 2.56114322681748e36 * cos(theta) ** 26 + 1.59458151094958e36 * cos(theta) ** 24 - 7.39671423566528e35 * cos(theta) ** 22 + 2.57325450066066e35 * cos(theta) ** 20 - 6.70669897291531e34 * cos(theta) ** 18 + 1.29889233272917e34 * cos(theta) ** 16 - 1.84022526478749e33 * cos(theta) ** 14 + 1.86067221217401e32 * cos(theta) ** 12 - 1.29403968391449e31 * cos(theta) ** 10 + 5.85832854890864e29 * cos(theta) ** 8 - 1.58486182965644e28 * cos(theta) ** 6 + 2.21762382881032e26 * cos(theta) ** 4 - 1.20413963555312e24 * cos(theta) ** 2 + 1.06185153047012e21 ) * sin(13 * phi) ) # @torch.jit.script def Yl49_m_minus_12(theta, phi): return ( 2.06701561524183e-20 * (1.0 - cos(theta) ** 2) ** 6 * ( 2.00012404686219e33 * cos(theta) ** 37 - 1.37328104660847e34 * cos(theta) ** 35 + 4.30053801437917e34 * cos(theta) ** 33 - 8.13865258635198e34 * cos(theta) ** 31 + 1.03969050897079e35 * cos(theta) ** 29 - 9.48571565487955e34 * cos(theta) ** 27 + 6.37832604379832e34 * cos(theta) ** 25 - 3.21596271115882e34 * cos(theta) ** 23 + 1.22535928602889e34 * cos(theta) ** 21 - 3.52984156469227e33 * cos(theta) ** 19 + 7.64054313370098e32 * cos(theta) ** 17 - 1.22681684319166e32 * cos(theta) ** 15 + 1.43128631705693e31 * cos(theta) ** 13 - 1.17639971264953e30 * cos(theta) ** 11 + 6.50925394323183e28 * cos(theta) ** 9 - 2.26408832808064e27 * cos(theta) ** 7 + 4.43524765762065e25 * cos(theta) ** 5 - 4.01379878517706e23 * cos(theta) ** 3 + 1.06185153047012e21 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl49_m_minus_11(theta, phi): return ( 9.95177327784801e-19 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 5.26348433384788e31 * cos(theta) ** 38 - 3.81466957391243e32 * cos(theta) ** 36 + 1.26486412187623e33 * cos(theta) ** 34 - 2.54332893323499e33 * cos(theta) ** 32 + 3.46563502990263e33 * cos(theta) ** 30 - 3.38775559102841e33 * cos(theta) ** 28 + 2.45320232453782e33 * cos(theta) ** 26 - 1.33998446298284e33 * cos(theta) ** 24 + 5.56981493649494e32 * cos(theta) ** 22 - 1.76492078234613e32 * cos(theta) ** 20 + 4.24474618538943e31 * cos(theta) ** 18 - 7.66760526994786e30 * cos(theta) ** 16 + 1.02234736932638e30 * cos(theta) ** 14 - 9.80333093874612e28 * cos(theta) ** 12 + 6.50925394323183e27 * cos(theta) ** 10 - 2.83011041010079e26 * cos(theta) ** 8 + 7.39207942936775e24 * cos(theta) ** 6 - 1.00344969629426e23 * cos(theta) ** 4 + 5.30925765235061e20 * cos(theta) ** 2 - 4.58089529969854e17 ) * sin(11 * phi) ) # @torch.jit.script def Yl49_m_minus_10(theta, phi): return ( 4.81402567311844e-17 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.3496113676533e30 * cos(theta) ** 39 - 1.03099177673309e31 * cos(theta) ** 37 + 3.61389749107493e31 * cos(theta) ** 35 - 7.70705737343937e31 * cos(theta) ** 33 + 1.11794678383956e32 * cos(theta) ** 31 - 1.16819158311325e32 * cos(theta) ** 29 + 9.08593453532524e31 * cos(theta) ** 27 - 5.35993785193136e31 * cos(theta) ** 25 + 2.42165866804128e31 * cos(theta) ** 23 - 8.40438467783873e30 * cos(theta) ** 21 + 2.23407693967865e30 * cos(theta) ** 19 - 4.5103560411458e29 * cos(theta) ** 17 + 6.81564912884254e28 * cos(theta) ** 15 - 7.54102379903547e27 * cos(theta) ** 13 + 5.91750358475621e26 * cos(theta) ** 11 - 3.14456712233422e25 * cos(theta) ** 9 + 1.05601134705254e24 * cos(theta) ** 7 - 2.00689939258853e22 * cos(theta) ** 5 + 1.76975255078354e20 * cos(theta) ** 3 - 4.58089529969854e17 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl49_m_minus_9(theta, phi): return ( 2.33864554621273e-15 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 3.37402841913325e28 * cos(theta) ** 40 - 2.71313625456076e29 * cos(theta) ** 38 + 1.00386041418748e30 * cos(theta) ** 36 - 2.26678158042335e30 * cos(theta) ** 34 + 3.49358369949862e30 * cos(theta) ** 32 - 3.89397194371082e30 * cos(theta) ** 30 + 3.24497661975901e30 * cos(theta) ** 28 - 2.06151455843514e30 * cos(theta) ** 26 + 1.0090244450172e30 * cos(theta) ** 24 - 3.82017485356306e29 * cos(theta) ** 22 + 1.11703846983932e29 * cos(theta) ** 20 - 2.50575335619211e28 * cos(theta) ** 18 + 4.25978070552659e27 * cos(theta) ** 16 - 5.38644557073962e26 * cos(theta) ** 14 + 4.93125298729684e25 * cos(theta) ** 12 - 3.14456712233422e24 * cos(theta) ** 10 + 1.32001418381567e23 * cos(theta) ** 8 - 3.34483232098088e21 * cos(theta) ** 6 + 4.42438137695884e19 * cos(theta) ** 4 - 2.29044764984927e17 * cos(theta) ** 2 + 194105733038074.0 ) * sin(9 * phi) ) # @torch.jit.script def Yl49_m_minus_8(theta, phi): return ( 1.14043445195993e-13 * (1.0 - cos(theta) ** 2) ** 4 * ( 8.22933760764208e26 * cos(theta) ** 41 - 6.95675962707887e27 * cos(theta) ** 39 + 2.71313625456076e28 * cos(theta) ** 37 - 6.47651880120956e28 * cos(theta) ** 35 + 1.05866172712079e29 * cos(theta) ** 33 - 1.2561199818422e29 * cos(theta) ** 31 + 1.11895745508932e29 * cos(theta) ** 29 - 7.63523910531533e28 * cos(theta) ** 27 + 4.0360977800688e28 * cos(theta) ** 25 - 1.66094558850568e28 * cos(theta) ** 23 + 5.31923080875869e27 * cos(theta) ** 21 - 1.31881755589058e27 * cos(theta) ** 19 + 2.50575335619211e26 * cos(theta) ** 17 - 3.59096371382642e25 * cos(theta) ** 15 + 3.79327152868988e24 * cos(theta) ** 13 - 2.8586973839402e23 * cos(theta) ** 11 + 1.46668242646185e22 * cos(theta) ** 9 - 4.77833188711554e20 * cos(theta) ** 7 + 8.84876275391767e18 * cos(theta) ** 5 - 7.63482549949756e16 * cos(theta) ** 3 + 194105733038074.0 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl49_m_minus_7(theta, phi): return ( 5.57997690827288e-12 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.95936609705764e25 * cos(theta) ** 42 - 1.73918990676972e26 * cos(theta) ** 40 + 7.13983224884411e26 * cos(theta) ** 38 - 1.79903300033599e27 * cos(theta) ** 36 + 3.11371096211998e27 * cos(theta) ** 34 - 3.92537494325687e27 * cos(theta) ** 32 + 3.72985818363105e27 * cos(theta) ** 30 - 2.72687110904119e27 * cos(theta) ** 28 + 1.55234530002646e27 * cos(theta) ** 26 - 6.92060661877366e26 * cos(theta) ** 24 + 2.4178321857994e26 * cos(theta) ** 22 - 6.59408777945292e25 * cos(theta) ** 20 + 1.39208519788451e25 * cos(theta) ** 18 - 2.24435232114151e24 * cos(theta) ** 16 + 2.70947966334991e23 * cos(theta) ** 14 - 2.38224781995016e22 * cos(theta) ** 12 + 1.46668242646185e21 * cos(theta) ** 10 - 5.97291485889443e19 * cos(theta) ** 8 + 1.47479379231961e18 * cos(theta) ** 6 - 1.90870637487439e16 * cos(theta) ** 4 + 97052866519036.8 * cos(theta) ** 2 - 81080088988.3348 ) * sin(7 * phi) ) # @torch.jit.script def Yl49_m_minus_6(theta, phi): return ( 2.73817148204482e-10 * (1.0 - cos(theta) ** 2) ** 3 * ( 4.55666534199451e23 * cos(theta) ** 43 - 4.24192660187736e24 * cos(theta) ** 41 + 1.83072621765234e25 * cos(theta) ** 39 - 4.86225135225943e25 * cos(theta) ** 37 + 8.89631703462851e25 * cos(theta) ** 35 - 1.18950755856269e26 * cos(theta) ** 33 + 1.20318005923582e26 * cos(theta) ** 31 - 9.40300382427996e25 * cos(theta) ** 29 + 5.74942703713504e25 * cos(theta) ** 27 - 2.76824264750946e25 * cos(theta) ** 25 + 1.05123138513018e25 * cos(theta) ** 23 - 3.14004179973949e24 * cos(theta) ** 21 + 7.32676419939213e23 * cos(theta) ** 19 - 1.3202072477303e23 * cos(theta) ** 17 + 1.80631977556661e22 * cos(theta) ** 15 - 1.83249832303859e21 * cos(theta) ** 13 + 1.33334766041987e20 * cos(theta) ** 11 - 6.63657206543826e18 * cos(theta) ** 9 + 2.1068482747423e17 * cos(theta) ** 7 - 3.81741274974878e15 * cos(theta) ** 5 + 32350955506345.6 * cos(theta) ** 3 - 81080088988.3348 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl49_m_minus_5(theta, phi): return ( 1.34700226493879e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.03560575954421e22 * cos(theta) ** 44 - 1.00998252425651e23 * cos(theta) ** 42 + 4.57681554413084e23 * cos(theta) ** 40 - 1.27953982954195e24 * cos(theta) ** 38 + 2.4711991762857e24 * cos(theta) ** 36 - 3.49855164283144e24 * cos(theta) ** 34 + 3.75993768511195e24 * cos(theta) ** 32 - 3.13433460809332e24 * cos(theta) ** 30 + 2.0533667989768e24 * cos(theta) ** 28 - 1.06470871058056e24 * cos(theta) ** 26 + 4.38013077137573e23 * cos(theta) ** 24 - 1.42729172715431e23 * cos(theta) ** 22 + 3.66338209969607e22 * cos(theta) ** 20 - 7.33448470961278e21 * cos(theta) ** 18 + 1.12894985972913e21 * cos(theta) ** 16 - 1.30892737359899e20 * cos(theta) ** 14 + 1.11112305034989e19 * cos(theta) ** 12 - 6.63657206543826e17 * cos(theta) ** 10 + 2.63356034342788e16 * cos(theta) ** 8 - 636235458291464.0 * cos(theta) ** 6 + 8087738876586.4 * cos(theta) ** 4 - 40540044494.1674 * cos(theta) ** 2 + 33504169.0034442 ) * sin(5 * phi) ) # @torch.jit.script def Yl49_m_minus_4(theta, phi): return ( 6.6400517296577e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 2.30134613232046e20 * cos(theta) ** 45 - 2.34879656803841e21 * cos(theta) ** 43 + 1.11629647417825e22 * cos(theta) ** 41 - 3.28087135779988e22 * cos(theta) ** 39 + 6.67891669266405e22 * cos(theta) ** 37 - 9.99586183666125e22 * cos(theta) ** 35 + 1.13937505609453e23 * cos(theta) ** 33 - 1.0110756800301e23 * cos(theta) ** 31 + 7.08057516888551e22 * cos(theta) ** 29 - 3.94336559474282e22 * cos(theta) ** 27 + 1.75205230855029e22 * cos(theta) ** 25 - 6.20561620501875e21 * cos(theta) ** 23 + 1.74446766652194e21 * cos(theta) ** 21 - 3.86025511032251e20 * cos(theta) ** 19 + 6.64088152781841e19 * cos(theta) ** 17 - 8.72618249065994e18 * cos(theta) ** 15 + 8.54710038730685e17 * cos(theta) ** 13 - 6.0332473322166e16 * cos(theta) ** 11 + 2.92617815936431e15 * cos(theta) ** 9 - 90890779755923.4 * cos(theta) ** 7 + 1617547775317.28 * cos(theta) ** 5 - 13513348164.7225 * cos(theta) ** 3 + 33504169.0034442 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl49_m_minus_3(theta, phi): return ( 3.27859908557037e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 5.00292637460969e18 * cos(theta) ** 46 - 5.33817401826911e19 * cos(theta) ** 44 + 2.65784874804346e20 * cos(theta) ** 42 - 8.20217839449971e20 * cos(theta) ** 40 + 1.75760965596422e21 * cos(theta) ** 38 - 2.77662828796146e21 * cos(theta) ** 36 + 3.35110310616038e21 * cos(theta) ** 34 - 3.15961150009407e21 * cos(theta) ** 32 + 2.36019172296184e21 * cos(theta) ** 30 - 1.40834485526529e21 * cos(theta) ** 28 + 6.73866272519343e20 * cos(theta) ** 26 - 2.58567341875781e20 * cos(theta) ** 24 + 7.92939848419062e19 * cos(theta) ** 22 - 1.93012755516126e19 * cos(theta) ** 20 + 3.68937862656578e18 * cos(theta) ** 18 - 5.45386405666246e17 * cos(theta) ** 16 + 6.10507170521918e16 * cos(theta) ** 14 - 5.0277061101805e15 * cos(theta) ** 12 + 292617815936431.0 * cos(theta) ** 10 - 11361347469490.4 * cos(theta) ** 8 + 269591295886.213 * cos(theta) ** 6 - 3378337041.18062 * cos(theta) ** 4 + 16752084.5017221 * cos(theta) ** 2 - 13742.4811334882 ) * sin(3 * phi) ) # @torch.jit.script def Yl49_m_minus_2(theta, phi): return ( 0.00162083540311096 * (1.0 - cos(theta) ** 2) * ( 1.06445242012972e17 * cos(theta) ** 47 - 1.18626089294869e18 * cos(theta) ** 45 + 6.18104360010107e18 * cos(theta) ** 43 - 2.00053131573164e19 * cos(theta) ** 41 + 4.50669142554929e19 * cos(theta) ** 39 - 7.50440077827421e19 * cos(theta) ** 37 + 9.57458030331537e19 * cos(theta) ** 35 - 9.57458030331537e19 * cos(theta) ** 33 + 7.61352168697367e19 * cos(theta) ** 31 - 4.85636156988033e19 * cos(theta) ** 29 + 2.4958010093309e19 * cos(theta) ** 27 - 1.03426936750312e19 * cos(theta) ** 25 + 3.44756455834375e18 * cos(theta) ** 23 - 9.19108359600599e17 * cos(theta) ** 21 + 1.94177822450831e17 * cos(theta) ** 19 - 3.20815532744851e16 * cos(theta) ** 17 + 4.07004780347945e15 * cos(theta) ** 15 - 386746623860038.0 * cos(theta) ** 13 + 26601619630584.6 * cos(theta) ** 11 - 1262371941054.49 * cos(theta) ** 9 + 38513042269.4591 * cos(theta) ** 7 - 675667408.236124 * cos(theta) ** 5 + 5584028.16724069 * cos(theta) ** 3 - 13742.4811334882 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl49_m_minus_1(theta, phi): return ( 0.0801945068252048 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 2.21760920860359e15 * cos(theta) ** 48 - 2.57882802814933e16 * cos(theta) ** 46 + 1.40478263638661e17 * cos(theta) ** 44 - 4.76316979936104e17 * cos(theta) ** 42 + 1.12667285638732e18 * cos(theta) ** 40 - 1.97484231007216e18 * cos(theta) ** 38 + 2.65960563980983e18 * cos(theta) ** 36 - 2.81605303038687e18 * cos(theta) ** 34 + 2.37922552717927e18 * cos(theta) ** 32 - 1.61878718996011e18 * cos(theta) ** 30 + 8.91357503332465e17 * cos(theta) ** 28 - 3.97795910578125e17 * cos(theta) ** 26 + 1.43648523264323e17 * cos(theta) ** 24 - 4.17776527091181e16 * cos(theta) ** 22 + 9.70889112254154e15 * cos(theta) ** 20 - 1.78230851524917e15 * cos(theta) ** 18 + 254377987717466.0 * cos(theta) ** 16 - 27624758847145.6 * cos(theta) ** 14 + 2216801635882.05 * cos(theta) ** 12 - 126237194105.449 * cos(theta) ** 10 + 4814130283.68238 * cos(theta) ** 8 - 112611234.706021 * cos(theta) ** 6 + 1396007.04181017 * cos(theta) ** 4 - 6871.24056674408 * cos(theta) ** 2 + 5.61375863296085 ) * sin(phi) ) # @torch.jit.script def Yl49_m0(theta, phi): return ( 399072199168457.0 * cos(theta) ** 49 - 4.83823614661965e15 * cos(theta) ** 47 + 2.75270172341886e16 * cos(theta) ** 45 - 9.76765127664757e16 * cos(theta) ** 43 + 2.42312887439911e17 * cos(theta) ** 41 - 4.4650914090051e17 * cos(theta) ** 39 + 6.33837688519689e17 * cos(theta) ** 37 - 7.09472101771619e17 * cos(theta) ** 35 + 6.35746838183905e17 * cos(theta) ** 33 - 4.60458615310154e17 * cos(theta) ** 31 + 2.71029438125597e17 * cos(theta) ** 29 - 1.29914937283344e17 * cos(theta) ** 27 + 5.06668255405041e16 * cos(theta) ** 25 - 1.60169100760287e16 * cos(theta) ** 23 + 4.0767386813232e15 * cos(theta) ** 21 - 827164370123548.0 * cos(theta) ** 19 + 131945062771573.0 * cos(theta) ** 17 - 16239392341116.7 * cos(theta) ** 15 + 1503647438992.29 * cos(theta) ** 13 - 101194564487.833 * cos(theta) ** 11 + 4716695802.399 * cos(theta) ** 9 - 141855512.854105 * cos(theta) ** 7 + 2461955.18176546 * cos(theta) ** 5 - 20196.5150267881 * cos(theta) ** 3 + 49.501262320559 * cos(theta) ) # @torch.jit.script def Yl49_m1(theta, phi): return ( 0.0801945068252048 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 2.21760920860359e15 * cos(theta) ** 48 - 2.57882802814933e16 * cos(theta) ** 46 + 1.40478263638661e17 * cos(theta) ** 44 - 4.76316979936104e17 * cos(theta) ** 42 + 1.12667285638732e18 * cos(theta) ** 40 - 1.97484231007216e18 * cos(theta) ** 38 + 2.65960563980983e18 * cos(theta) ** 36 - 2.81605303038687e18 * cos(theta) ** 34 + 2.37922552717927e18 * cos(theta) ** 32 - 1.61878718996011e18 * cos(theta) ** 30 + 8.91357503332465e17 * cos(theta) ** 28 - 3.97795910578125e17 * cos(theta) ** 26 + 1.43648523264323e17 * cos(theta) ** 24 - 4.17776527091181e16 * cos(theta) ** 22 + 9.70889112254154e15 * cos(theta) ** 20 - 1.78230851524917e15 * cos(theta) ** 18 + 254377987717466.0 * cos(theta) ** 16 - 27624758847145.6 * cos(theta) ** 14 + 2216801635882.05 * cos(theta) ** 12 - 126237194105.449 * cos(theta) ** 10 + 4814130283.68238 * cos(theta) ** 8 - 112611234.706021 * cos(theta) ** 6 + 1396007.04181017 * cos(theta) ** 4 - 6871.24056674408 * cos(theta) ** 2 + 5.61375863296085 ) * cos(phi) ) # @torch.jit.script def Yl49_m2(theta, phi): return ( 0.00162083540311096 * (1.0 - cos(theta) ** 2) * ( 1.06445242012972e17 * cos(theta) ** 47 - 1.18626089294869e18 * cos(theta) ** 45 + 6.18104360010107e18 * cos(theta) ** 43 - 2.00053131573164e19 * cos(theta) ** 41 + 4.50669142554929e19 * cos(theta) ** 39 - 7.50440077827421e19 * cos(theta) ** 37 + 9.57458030331537e19 * cos(theta) ** 35 - 9.57458030331537e19 * cos(theta) ** 33 + 7.61352168697367e19 * cos(theta) ** 31 - 4.85636156988033e19 * cos(theta) ** 29 + 2.4958010093309e19 * cos(theta) ** 27 - 1.03426936750312e19 * cos(theta) ** 25 + 3.44756455834375e18 * cos(theta) ** 23 - 9.19108359600599e17 * cos(theta) ** 21 + 1.94177822450831e17 * cos(theta) ** 19 - 3.20815532744851e16 * cos(theta) ** 17 + 4.07004780347945e15 * cos(theta) ** 15 - 386746623860038.0 * cos(theta) ** 13 + 26601619630584.6 * cos(theta) ** 11 - 1262371941054.49 * cos(theta) ** 9 + 38513042269.4591 * cos(theta) ** 7 - 675667408.236124 * cos(theta) ** 5 + 5584028.16724069 * cos(theta) ** 3 - 13742.4811334882 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl49_m3(theta, phi): return ( 3.27859908557037e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 5.00292637460969e18 * cos(theta) ** 46 - 5.33817401826911e19 * cos(theta) ** 44 + 2.65784874804346e20 * cos(theta) ** 42 - 8.20217839449971e20 * cos(theta) ** 40 + 1.75760965596422e21 * cos(theta) ** 38 - 2.77662828796146e21 * cos(theta) ** 36 + 3.35110310616038e21 * cos(theta) ** 34 - 3.15961150009407e21 * cos(theta) ** 32 + 2.36019172296184e21 * cos(theta) ** 30 - 1.40834485526529e21 * cos(theta) ** 28 + 6.73866272519343e20 * cos(theta) ** 26 - 2.58567341875781e20 * cos(theta) ** 24 + 7.92939848419062e19 * cos(theta) ** 22 - 1.93012755516126e19 * cos(theta) ** 20 + 3.68937862656578e18 * cos(theta) ** 18 - 5.45386405666246e17 * cos(theta) ** 16 + 6.10507170521918e16 * cos(theta) ** 14 - 5.0277061101805e15 * cos(theta) ** 12 + 292617815936431.0 * cos(theta) ** 10 - 11361347469490.4 * cos(theta) ** 8 + 269591295886.213 * cos(theta) ** 6 - 3378337041.18062 * cos(theta) ** 4 + 16752084.5017221 * cos(theta) ** 2 - 13742.4811334882 ) * cos(3 * phi) ) # @torch.jit.script def Yl49_m4(theta, phi): return ( 6.6400517296577e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 2.30134613232046e20 * cos(theta) ** 45 - 2.34879656803841e21 * cos(theta) ** 43 + 1.11629647417825e22 * cos(theta) ** 41 - 3.28087135779988e22 * cos(theta) ** 39 + 6.67891669266405e22 * cos(theta) ** 37 - 9.99586183666125e22 * cos(theta) ** 35 + 1.13937505609453e23 * cos(theta) ** 33 - 1.0110756800301e23 * cos(theta) ** 31 + 7.08057516888551e22 * cos(theta) ** 29 - 3.94336559474282e22 * cos(theta) ** 27 + 1.75205230855029e22 * cos(theta) ** 25 - 6.20561620501875e21 * cos(theta) ** 23 + 1.74446766652194e21 * cos(theta) ** 21 - 3.86025511032251e20 * cos(theta) ** 19 + 6.64088152781841e19 * cos(theta) ** 17 - 8.72618249065994e18 * cos(theta) ** 15 + 8.54710038730685e17 * cos(theta) ** 13 - 6.0332473322166e16 * cos(theta) ** 11 + 2.92617815936431e15 * cos(theta) ** 9 - 90890779755923.4 * cos(theta) ** 7 + 1617547775317.28 * cos(theta) ** 5 - 13513348164.7225 * cos(theta) ** 3 + 33504169.0034442 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl49_m5(theta, phi): return ( 1.34700226493879e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.03560575954421e22 * cos(theta) ** 44 - 1.00998252425651e23 * cos(theta) ** 42 + 4.57681554413084e23 * cos(theta) ** 40 - 1.27953982954195e24 * cos(theta) ** 38 + 2.4711991762857e24 * cos(theta) ** 36 - 3.49855164283144e24 * cos(theta) ** 34 + 3.75993768511195e24 * cos(theta) ** 32 - 3.13433460809332e24 * cos(theta) ** 30 + 2.0533667989768e24 * cos(theta) ** 28 - 1.06470871058056e24 * cos(theta) ** 26 + 4.38013077137573e23 * cos(theta) ** 24 - 1.42729172715431e23 * cos(theta) ** 22 + 3.66338209969607e22 * cos(theta) ** 20 - 7.33448470961278e21 * cos(theta) ** 18 + 1.12894985972913e21 * cos(theta) ** 16 - 1.30892737359899e20 * cos(theta) ** 14 + 1.11112305034989e19 * cos(theta) ** 12 - 6.63657206543826e17 * cos(theta) ** 10 + 2.63356034342788e16 * cos(theta) ** 8 - 636235458291464.0 * cos(theta) ** 6 + 8087738876586.4 * cos(theta) ** 4 - 40540044494.1674 * cos(theta) ** 2 + 33504169.0034442 ) * cos(5 * phi) ) # @torch.jit.script def Yl49_m6(theta, phi): return ( 2.73817148204482e-10 * (1.0 - cos(theta) ** 2) ** 3 * ( 4.55666534199451e23 * cos(theta) ** 43 - 4.24192660187736e24 * cos(theta) ** 41 + 1.83072621765234e25 * cos(theta) ** 39 - 4.86225135225943e25 * cos(theta) ** 37 + 8.89631703462851e25 * cos(theta) ** 35 - 1.18950755856269e26 * cos(theta) ** 33 + 1.20318005923582e26 * cos(theta) ** 31 - 9.40300382427996e25 * cos(theta) ** 29 + 5.74942703713504e25 * cos(theta) ** 27 - 2.76824264750946e25 * cos(theta) ** 25 + 1.05123138513018e25 * cos(theta) ** 23 - 3.14004179973949e24 * cos(theta) ** 21 + 7.32676419939213e23 * cos(theta) ** 19 - 1.3202072477303e23 * cos(theta) ** 17 + 1.80631977556661e22 * cos(theta) ** 15 - 1.83249832303859e21 * cos(theta) ** 13 + 1.33334766041987e20 * cos(theta) ** 11 - 6.63657206543826e18 * cos(theta) ** 9 + 2.1068482747423e17 * cos(theta) ** 7 - 3.81741274974878e15 * cos(theta) ** 5 + 32350955506345.6 * cos(theta) ** 3 - 81080088988.3348 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl49_m7(theta, phi): return ( 5.57997690827288e-12 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.95936609705764e25 * cos(theta) ** 42 - 1.73918990676972e26 * cos(theta) ** 40 + 7.13983224884411e26 * cos(theta) ** 38 - 1.79903300033599e27 * cos(theta) ** 36 + 3.11371096211998e27 * cos(theta) ** 34 - 3.92537494325687e27 * cos(theta) ** 32 + 3.72985818363105e27 * cos(theta) ** 30 - 2.72687110904119e27 * cos(theta) ** 28 + 1.55234530002646e27 * cos(theta) ** 26 - 6.92060661877366e26 * cos(theta) ** 24 + 2.4178321857994e26 * cos(theta) ** 22 - 6.59408777945292e25 * cos(theta) ** 20 + 1.39208519788451e25 * cos(theta) ** 18 - 2.24435232114151e24 * cos(theta) ** 16 + 2.70947966334991e23 * cos(theta) ** 14 - 2.38224781995016e22 * cos(theta) ** 12 + 1.46668242646185e21 * cos(theta) ** 10 - 5.97291485889443e19 * cos(theta) ** 8 + 1.47479379231961e18 * cos(theta) ** 6 - 1.90870637487439e16 * cos(theta) ** 4 + 97052866519036.8 * cos(theta) ** 2 - 81080088988.3348 ) * cos(7 * phi) ) # @torch.jit.script def Yl49_m8(theta, phi): return ( 1.14043445195993e-13 * (1.0 - cos(theta) ** 2) ** 4 * ( 8.22933760764208e26 * cos(theta) ** 41 - 6.95675962707887e27 * cos(theta) ** 39 + 2.71313625456076e28 * cos(theta) ** 37 - 6.47651880120956e28 * cos(theta) ** 35 + 1.05866172712079e29 * cos(theta) ** 33 - 1.2561199818422e29 * cos(theta) ** 31 + 1.11895745508932e29 * cos(theta) ** 29 - 7.63523910531533e28 * cos(theta) ** 27 + 4.0360977800688e28 * cos(theta) ** 25 - 1.66094558850568e28 * cos(theta) ** 23 + 5.31923080875869e27 * cos(theta) ** 21 - 1.31881755589058e27 * cos(theta) ** 19 + 2.50575335619211e26 * cos(theta) ** 17 - 3.59096371382642e25 * cos(theta) ** 15 + 3.79327152868988e24 * cos(theta) ** 13 - 2.8586973839402e23 * cos(theta) ** 11 + 1.46668242646185e22 * cos(theta) ** 9 - 4.77833188711554e20 * cos(theta) ** 7 + 8.84876275391767e18 * cos(theta) ** 5 - 7.63482549949756e16 * cos(theta) ** 3 + 194105733038074.0 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl49_m9(theta, phi): return ( 2.33864554621273e-15 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 3.37402841913325e28 * cos(theta) ** 40 - 2.71313625456076e29 * cos(theta) ** 38 + 1.00386041418748e30 * cos(theta) ** 36 - 2.26678158042335e30 * cos(theta) ** 34 + 3.49358369949862e30 * cos(theta) ** 32 - 3.89397194371082e30 * cos(theta) ** 30 + 3.24497661975901e30 * cos(theta) ** 28 - 2.06151455843514e30 * cos(theta) ** 26 + 1.0090244450172e30 * cos(theta) ** 24 - 3.82017485356306e29 * cos(theta) ** 22 + 1.11703846983932e29 * cos(theta) ** 20 - 2.50575335619211e28 * cos(theta) ** 18 + 4.25978070552659e27 * cos(theta) ** 16 - 5.38644557073962e26 * cos(theta) ** 14 + 4.93125298729684e25 * cos(theta) ** 12 - 3.14456712233422e24 * cos(theta) ** 10 + 1.32001418381567e23 * cos(theta) ** 8 - 3.34483232098088e21 * cos(theta) ** 6 + 4.42438137695884e19 * cos(theta) ** 4 - 2.29044764984927e17 * cos(theta) ** 2 + 194105733038074.0 ) * cos(9 * phi) ) # @torch.jit.script def Yl49_m10(theta, phi): return ( 4.81402567311844e-17 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.3496113676533e30 * cos(theta) ** 39 - 1.03099177673309e31 * cos(theta) ** 37 + 3.61389749107493e31 * cos(theta) ** 35 - 7.70705737343937e31 * cos(theta) ** 33 + 1.11794678383956e32 * cos(theta) ** 31 - 1.16819158311325e32 * cos(theta) ** 29 + 9.08593453532524e31 * cos(theta) ** 27 - 5.35993785193136e31 * cos(theta) ** 25 + 2.42165866804128e31 * cos(theta) ** 23 - 8.40438467783873e30 * cos(theta) ** 21 + 2.23407693967865e30 * cos(theta) ** 19 - 4.5103560411458e29 * cos(theta) ** 17 + 6.81564912884254e28 * cos(theta) ** 15 - 7.54102379903547e27 * cos(theta) ** 13 + 5.91750358475621e26 * cos(theta) ** 11 - 3.14456712233422e25 * cos(theta) ** 9 + 1.05601134705254e24 * cos(theta) ** 7 - 2.00689939258853e22 * cos(theta) ** 5 + 1.76975255078354e20 * cos(theta) ** 3 - 4.58089529969854e17 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl49_m11(theta, phi): return ( 9.95177327784801e-19 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 5.26348433384788e31 * cos(theta) ** 38 - 3.81466957391243e32 * cos(theta) ** 36 + 1.26486412187623e33 * cos(theta) ** 34 - 2.54332893323499e33 * cos(theta) ** 32 + 3.46563502990263e33 * cos(theta) ** 30 - 3.38775559102841e33 * cos(theta) ** 28 + 2.45320232453782e33 * cos(theta) ** 26 - 1.33998446298284e33 * cos(theta) ** 24 + 5.56981493649494e32 * cos(theta) ** 22 - 1.76492078234613e32 * cos(theta) ** 20 + 4.24474618538943e31 * cos(theta) ** 18 - 7.66760526994786e30 * cos(theta) ** 16 + 1.02234736932638e30 * cos(theta) ** 14 - 9.80333093874612e28 * cos(theta) ** 12 + 6.50925394323183e27 * cos(theta) ** 10 - 2.83011041010079e26 * cos(theta) ** 8 + 7.39207942936775e24 * cos(theta) ** 6 - 1.00344969629426e23 * cos(theta) ** 4 + 5.30925765235061e20 * cos(theta) ** 2 - 4.58089529969854e17 ) * cos(11 * phi) ) # @torch.jit.script def Yl49_m12(theta, phi): return ( 2.06701561524183e-20 * (1.0 - cos(theta) ** 2) ** 6 * ( 2.00012404686219e33 * cos(theta) ** 37 - 1.37328104660847e34 * cos(theta) ** 35 + 4.30053801437917e34 * cos(theta) ** 33 - 8.13865258635198e34 * cos(theta) ** 31 + 1.03969050897079e35 * cos(theta) ** 29 - 9.48571565487955e34 * cos(theta) ** 27 + 6.37832604379832e34 * cos(theta) ** 25 - 3.21596271115882e34 * cos(theta) ** 23 + 1.22535928602889e34 * cos(theta) ** 21 - 3.52984156469227e33 * cos(theta) ** 19 + 7.64054313370098e32 * cos(theta) ** 17 - 1.22681684319166e32 * cos(theta) ** 15 + 1.43128631705693e31 * cos(theta) ** 13 - 1.17639971264953e30 * cos(theta) ** 11 + 6.50925394323183e28 * cos(theta) ** 9 - 2.26408832808064e27 * cos(theta) ** 7 + 4.43524765762065e25 * cos(theta) ** 5 - 4.01379878517706e23 * cos(theta) ** 3 + 1.06185153047012e21 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl49_m13(theta, phi): return ( 4.31565829406494e-22 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 7.40045897339011e34 * cos(theta) ** 36 - 4.80648366312966e35 * cos(theta) ** 34 + 1.41917754474513e36 * cos(theta) ** 32 - 2.52298230176911e36 * cos(theta) ** 30 + 3.01510247601529e36 * cos(theta) ** 28 - 2.56114322681748e36 * cos(theta) ** 26 + 1.59458151094958e36 * cos(theta) ** 24 - 7.39671423566528e35 * cos(theta) ** 22 + 2.57325450066066e35 * cos(theta) ** 20 - 6.70669897291531e34 * cos(theta) ** 18 + 1.29889233272917e34 * cos(theta) ** 16 - 1.84022526478749e33 * cos(theta) ** 14 + 1.86067221217401e32 * cos(theta) ** 12 - 1.29403968391449e31 * cos(theta) ** 10 + 5.85832854890864e29 * cos(theta) ** 8 - 1.58486182965644e28 * cos(theta) ** 6 + 2.21762382881032e26 * cos(theta) ** 4 - 1.20413963555312e24 * cos(theta) ** 2 + 1.06185153047012e21 ) * cos(13 * phi) ) # @torch.jit.script def Yl49_m14(theta, phi): return ( 9.06203062668976e-24 * (1.0 - cos(theta) ** 2) ** 7 * ( 2.66416523042044e36 * cos(theta) ** 35 - 1.63420444546408e37 * cos(theta) ** 33 + 4.5413681431844e37 * cos(theta) ** 31 - 7.56894690530734e37 * cos(theta) ** 29 + 8.4422869328428e37 * cos(theta) ** 27 - 6.65897238972545e37 * cos(theta) ** 25 + 3.82699562627899e37 * cos(theta) ** 23 - 1.62727713184636e37 * cos(theta) ** 21 + 5.14650900132132e36 * cos(theta) ** 19 - 1.20720581512475e36 * cos(theta) ** 17 + 2.07822773236667e35 * cos(theta) ** 15 - 2.57631537070248e34 * cos(theta) ** 13 + 2.23280665460882e33 * cos(theta) ** 11 - 1.29403968391449e32 * cos(theta) ** 9 + 4.68666283912692e30 * cos(theta) ** 7 - 9.50917097793867e28 * cos(theta) ** 5 + 8.8704953152413e26 * cos(theta) ** 3 - 2.40827927110623e24 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl49_m15(theta, phi): return ( 1.91470343515674e-25 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 9.32457830647154e37 * cos(theta) ** 34 - 5.39287467003148e38 * cos(theta) ** 32 + 1.40782412438717e39 * cos(theta) ** 30 - 2.19499460253913e39 * cos(theta) ** 28 + 2.27941747186756e39 * cos(theta) ** 26 - 1.66474309743136e39 * cos(theta) ** 24 + 8.80208994044168e38 * cos(theta) ** 22 - 3.41728197687736e38 * cos(theta) ** 20 + 9.77836710251051e37 * cos(theta) ** 18 - 2.05224988571208e37 * cos(theta) ** 16 + 3.11734159855e36 * cos(theta) ** 14 - 3.34920998191322e35 * cos(theta) ** 12 + 2.4560873200697e34 * cos(theta) ** 10 - 1.16463571552304e33 * cos(theta) ** 8 + 3.28066398738884e31 * cos(theta) ** 6 - 4.75458548896934e29 * cos(theta) ** 4 + 2.66114859457239e27 * cos(theta) ** 2 - 2.40827927110623e24 ) * cos(15 * phi) ) # @torch.jit.script def Yl49_m16(theta, phi): return ( 4.07291530919092e-27 * (1.0 - cos(theta) ** 2) ** 8 * ( 3.17035662420032e39 * cos(theta) ** 33 - 1.72571989441007e40 * cos(theta) ** 31 + 4.2234723731615e40 * cos(theta) ** 29 - 6.14598488710956e40 * cos(theta) ** 27 + 5.92648542685565e40 * cos(theta) ** 25 - 3.99538343383527e40 * cos(theta) ** 23 + 1.93645978689717e40 * cos(theta) ** 21 - 6.83456395375472e39 * cos(theta) ** 19 + 1.76010607845189e39 * cos(theta) ** 17 - 3.28359981713933e38 * cos(theta) ** 15 + 4.36427823797e37 * cos(theta) ** 13 - 4.01905197829587e36 * cos(theta) ** 11 + 2.4560873200697e35 * cos(theta) ** 9 - 9.31708572418431e33 * cos(theta) ** 7 + 1.9683983924333e32 * cos(theta) ** 5 - 1.90183419558773e30 * cos(theta) ** 3 + 5.32229718914478e27 * cos(theta) ) * cos(16 * phi) ) # @torch.jit.script def Yl49_m17(theta, phi): return ( 8.72723040705274e-29 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.04621768598611e41 * cos(theta) ** 32 - 5.34973167267123e41 * cos(theta) ** 30 + 1.22480698821683e42 * cos(theta) ** 28 - 1.65941591951958e42 * cos(theta) ** 26 + 1.48162135671391e42 * cos(theta) ** 24 - 9.18938189782112e41 * cos(theta) ** 22 + 4.06656555248406e41 * cos(theta) ** 20 - 1.2985671512134e41 * cos(theta) ** 18 + 2.99218033336822e40 * cos(theta) ** 16 - 4.925399725709e39 * cos(theta) ** 14 + 5.673561709361e38 * cos(theta) ** 12 - 4.42095717612545e37 * cos(theta) ** 10 + 2.21047858806273e36 * cos(theta) ** 8 - 6.52196000692902e34 * cos(theta) ** 6 + 9.84199196216652e32 * cos(theta) ** 4 - 5.7055025867632e30 * cos(theta) ** 2 + 5.32229718914478e27 ) * cos(17 * phi) ) # @torch.jit.script def Yl49_m18(theta, phi): return ( 1.88479469785661e-30 * (1.0 - cos(theta) ** 2) ** 9 * ( 3.34789659515554e42 * cos(theta) ** 31 - 1.60491950180137e43 * cos(theta) ** 29 + 3.42945956700713e43 * cos(theta) ** 27 - 4.31448139075091e43 * cos(theta) ** 25 + 3.55589125611339e43 * cos(theta) ** 23 - 2.02166401752065e43 * cos(theta) ** 21 + 8.13313110496811e42 * cos(theta) ** 19 - 2.33742087218411e42 * cos(theta) ** 17 + 4.78748853338915e41 * cos(theta) ** 15 - 6.8955596159926e40 * cos(theta) ** 13 + 6.8082740512332e39 * cos(theta) ** 11 - 4.42095717612545e38 * cos(theta) ** 9 + 1.76838287045018e37 * cos(theta) ** 7 - 3.91317600415741e35 * cos(theta) ** 5 + 3.93679678486661e33 * cos(theta) ** 3 - 1.14110051735264e31 * cos(theta) ) * cos(18 * phi) ) # @torch.jit.script def Yl49_m19(theta, phi): return ( 4.10514732952406e-32 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.03784794449822e44 * cos(theta) ** 30 - 4.65426655522397e44 * cos(theta) ** 28 + 9.25954083091926e44 * cos(theta) ** 26 - 1.07862034768773e45 * cos(theta) ** 24 + 8.17854988906079e44 * cos(theta) ** 22 - 4.24549443679336e44 * cos(theta) ** 20 + 1.54529490994394e44 * cos(theta) ** 18 - 3.97361548271299e43 * cos(theta) ** 16 + 7.18123280008372e42 * cos(theta) ** 14 - 8.96422750079038e41 * cos(theta) ** 12 + 7.48910145635652e40 * cos(theta) ** 10 - 3.97886145851291e39 * cos(theta) ** 8 + 1.23786800931513e38 * cos(theta) ** 6 - 1.9565880020787e36 * cos(theta) ** 4 + 1.18103903545998e34 * cos(theta) ** 2 - 1.14110051735264e31 ) * cos(19 * phi) ) # @torch.jit.script def Yl49_m20(theta, phi): return ( 9.0228466316701e-34 * (1.0 - cos(theta) ** 2) ** 10 * ( 3.11354383349465e45 * cos(theta) ** 29 - 1.30319463546271e46 * cos(theta) ** 27 + 2.40748061603901e46 * cos(theta) ** 25 - 2.58868883445055e46 * cos(theta) ** 23 + 1.79928097559337e46 * cos(theta) ** 21 - 8.49098887358671e45 * cos(theta) ** 19 + 2.78153083789909e45 * cos(theta) ** 17 - 6.35778477234079e44 * cos(theta) ** 15 + 1.00537259201172e44 * cos(theta) ** 13 - 1.07570730009485e43 * cos(theta) ** 11 + 7.48910145635652e41 * cos(theta) ** 9 - 3.18308916681033e40 * cos(theta) ** 7 + 7.42720805589076e38 * cos(theta) ** 5 - 7.82635200831482e36 * cos(theta) ** 3 + 2.36207807091997e34 * cos(theta) ) * cos(20 * phi) ) # @torch.jit.script def Yl49_m21(theta, phi): return ( 2.00260620018926e-35 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 9.0292771171345e46 * cos(theta) ** 28 - 3.51862551574932e47 * cos(theta) ** 26 + 6.01870154009752e47 * cos(theta) ** 24 - 5.95398431923626e47 * cos(theta) ** 22 + 3.77849004874609e47 * cos(theta) ** 20 - 1.61328788598148e47 * cos(theta) ** 18 + 4.72860242442846e46 * cos(theta) ** 16 - 9.53667715851118e45 * cos(theta) ** 14 + 1.30698436961524e45 * cos(theta) ** 12 - 1.18327803010433e44 * cos(theta) ** 10 + 6.74019131072087e42 * cos(theta) ** 8 - 2.22816241676723e41 * cos(theta) ** 6 + 3.71360402794538e39 * cos(theta) ** 4 - 2.34790560249445e37 * cos(theta) ** 2 + 2.36207807091997e34 ) * cos(21 * phi) ) # @torch.jit.script def Yl49_m22(theta, phi): return ( 4.49145824293968e-37 * (1.0 - cos(theta) ** 2) ** 11 * ( 2.52819759279766e48 * cos(theta) ** 27 - 9.14842634094823e48 * cos(theta) ** 25 + 1.44448836962341e49 * cos(theta) ** 23 - 1.30987655023198e49 * cos(theta) ** 21 + 7.55698009749217e48 * cos(theta) ** 19 - 2.90391819476666e48 * cos(theta) ** 17 + 7.56576387908554e47 * cos(theta) ** 15 - 1.33513480219157e47 * cos(theta) ** 13 + 1.56838124353828e46 * cos(theta) ** 11 - 1.18327803010433e45 * cos(theta) ** 9 + 5.39215304857669e43 * cos(theta) ** 7 - 1.33689745006034e42 * cos(theta) ** 5 + 1.48544161117815e40 * cos(theta) ** 3 - 4.69581120498889e37 * cos(theta) ) * cos(22 * phi) ) # @torch.jit.script def Yl49_m23(theta, phi): return ( 1.01868341631664e-38 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 6.82613350055368e49 * cos(theta) ** 26 - 2.28710658523706e50 * cos(theta) ** 24 + 3.32232325013383e50 * cos(theta) ** 22 - 2.75074075548715e50 * cos(theta) ** 20 + 1.43582621852351e50 * cos(theta) ** 18 - 4.93666093110331e49 * cos(theta) ** 16 + 1.13486458186283e49 * cos(theta) ** 14 - 1.73567524284904e48 * cos(theta) ** 12 + 1.72521936789211e47 * cos(theta) ** 10 - 1.0649502270939e46 * cos(theta) ** 8 + 3.77450713400369e44 * cos(theta) ** 6 - 6.68448725030169e42 * cos(theta) ** 4 + 4.45632483353446e40 * cos(theta) ** 2 - 4.69581120498889e37 ) * cos(23 * phi) ) # @torch.jit.script def Yl49_m24(theta, phi): return ( 2.338251017819e-40 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.77479471014396e51 * cos(theta) ** 25 - 5.48905580456894e51 * cos(theta) ** 23 + 7.30911115029443e51 * cos(theta) ** 21 - 5.5014815109743e51 * cos(theta) ** 19 + 2.58448719334232e51 * cos(theta) ** 17 - 7.8986574897653e50 * cos(theta) ** 15 + 1.58881041460796e50 * cos(theta) ** 13 - 2.08281029141884e49 * cos(theta) ** 11 + 1.72521936789211e48 * cos(theta) ** 9 - 8.51960181675118e46 * cos(theta) ** 7 + 2.26470428040221e45 * cos(theta) ** 5 - 2.67379490012067e43 * cos(theta) ** 3 + 8.91264966706892e40 * cos(theta) ) * cos(24 * phi) ) # @torch.jit.script def Yl49_m25(theta, phi): return ( 5.43632319223582e-42 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 4.43698677535989e52 * cos(theta) ** 24 - 1.26248283505086e53 * cos(theta) ** 22 + 1.53491334156183e53 * cos(theta) ** 20 - 1.04528148708512e53 * cos(theta) ** 18 + 4.39362822868195e52 * cos(theta) ** 16 - 1.1847986234648e52 * cos(theta) ** 14 + 2.06545353899035e51 * cos(theta) ** 12 - 2.29109132056073e50 * cos(theta) ** 10 + 1.5526974311029e49 * cos(theta) ** 8 - 5.96372127172582e47 * cos(theta) ** 6 + 1.13235214020111e46 * cos(theta) ** 4 - 8.02138470036202e43 * cos(theta) ** 2 + 8.91264966706892e40 ) * cos(25 * phi) ) # @torch.jit.script def Yl49_m26(theta, phi): return ( 1.28135366465055e-43 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.06487682608637e54 * cos(theta) ** 23 - 2.77746223711188e54 * cos(theta) ** 21 + 3.06982668312366e54 * cos(theta) ** 19 - 1.88150667675321e54 * cos(theta) ** 17 + 7.02980516589112e53 * cos(theta) ** 15 - 1.65871807285071e53 * cos(theta) ** 13 + 2.47854424678842e52 * cos(theta) ** 11 - 2.29109132056073e51 * cos(theta) ** 9 + 1.24215794488232e50 * cos(theta) ** 7 - 3.57823276303549e48 * cos(theta) ** 5 + 4.52940856080442e46 * cos(theta) ** 3 - 1.6042769400724e44 * cos(theta) ) * cos(26 * phi) ) # @torch.jit.script def Yl49_m27(theta, phi): return ( 3.06477291679843e-45 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 2.44921669999866e55 * cos(theta) ** 22 - 5.83267069793495e55 * cos(theta) ** 20 + 5.83267069793495e55 * cos(theta) ** 18 - 3.19856135048046e55 * cos(theta) ** 16 + 1.05447077488367e55 * cos(theta) ** 14 - 2.15633349470593e54 * cos(theta) ** 12 + 2.72639867146726e53 * cos(theta) ** 10 - 2.06198218850465e52 * cos(theta) ** 8 + 8.69510561417625e50 * cos(theta) ** 6 - 1.78911638151775e49 * cos(theta) ** 4 + 1.35882256824133e47 * cos(theta) ** 2 - 1.6042769400724e44 ) * cos(27 * phi) ) # @torch.jit.script def Yl49_m28(theta, phi): return ( 7.44631832657374e-47 * (1.0 - cos(theta) ** 2) ** 14 * ( 5.38827673999705e56 * cos(theta) ** 21 - 1.16653413958699e57 * cos(theta) ** 19 + 1.04988072562829e57 * cos(theta) ** 17 - 5.11769816076873e56 * cos(theta) ** 15 + 1.47625908483713e56 * cos(theta) ** 13 - 2.58760019364711e55 * cos(theta) ** 11 + 2.72639867146726e54 * cos(theta) ** 9 - 1.64958575080372e53 * cos(theta) ** 7 + 5.21706336850575e51 * cos(theta) ** 5 - 7.15646552607099e49 * cos(theta) ** 3 + 2.71764513648265e47 * cos(theta) ) * cos(28 * phi) ) # @torch.jit.script def Yl49_m29(theta, phi): return ( 1.83985945707127e-48 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 1.13153811539938e58 * cos(theta) ** 20 - 2.21641486521528e58 * cos(theta) ** 18 + 1.7847972335681e58 * cos(theta) ** 16 - 7.6765472411531e57 * cos(theta) ** 14 + 1.91913681028828e57 * cos(theta) ** 12 - 2.84636021301182e56 * cos(theta) ** 10 + 2.45375880432054e55 * cos(theta) ** 8 - 1.15471002556261e54 * cos(theta) ** 6 + 2.60853168425288e52 * cos(theta) ** 4 - 2.1469396578213e50 * cos(theta) ** 2 + 2.71764513648265e47 ) * cos(29 * phi) ) # @torch.jit.script def Yl49_m30(theta, phi): return ( 4.62866879581573e-50 * (1.0 - cos(theta) ** 2) ** 15 * ( 2.26307623079876e59 * cos(theta) ** 19 - 3.98954675738751e59 * cos(theta) ** 17 + 2.85567557370895e59 * cos(theta) ** 15 - 1.07471661376143e59 * cos(theta) ** 13 + 2.30296417234593e58 * cos(theta) ** 11 - 2.84636021301182e57 * cos(theta) ** 9 + 1.96300704345643e56 * cos(theta) ** 7 - 6.92826015337564e54 * cos(theta) ** 5 + 1.04341267370115e53 * cos(theta) ** 3 - 4.29387931564259e50 * cos(theta) ) * cos(30 * phi) ) # @torch.jit.script def Yl49_m31(theta, phi): return ( 1.18722849586975e-51 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 4.29984483851765e60 * cos(theta) ** 18 - 6.78222948755876e60 * cos(theta) ** 16 + 4.28351336056343e60 * cos(theta) ** 14 - 1.39713159788986e60 * cos(theta) ** 12 + 2.53326058958052e59 * cos(theta) ** 10 - 2.56172419171064e58 * cos(theta) ** 8 + 1.3741049304195e57 * cos(theta) ** 6 - 3.46413007668782e55 * cos(theta) ** 4 + 3.13023802110345e53 * cos(theta) ** 2 - 4.29387931564259e50 ) * cos(31 * phi) ) # @torch.jit.script def Yl49_m32(theta, phi): return ( 3.10924933424965e-53 * (1.0 - cos(theta) ** 2) ** 16 * ( 7.73972070933177e61 * cos(theta) ** 17 - 1.0851567180094e62 * cos(theta) ** 15 + 5.9969187047888e61 * cos(theta) ** 13 - 1.67655791746784e61 * cos(theta) ** 11 + 2.53326058958052e60 * cos(theta) ** 9 - 2.04937935336851e59 * cos(theta) ** 7 + 8.24462958251701e57 * cos(theta) ** 5 - 1.38565203067513e56 * cos(theta) ** 3 + 6.2604760422069e53 * cos(theta) ) * cos(32 * phi) ) # @torch.jit.script def Yl49_m33(theta, phi): return ( 8.32768257972902e-55 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 1.3157525205864e63 * cos(theta) ** 16 - 1.6277350770141e63 * cos(theta) ** 14 + 7.79599431622544e62 * cos(theta) ** 12 - 1.84421370921462e62 * cos(theta) ** 10 + 2.27993453062247e61 * cos(theta) ** 8 - 1.43456554735796e60 * cos(theta) ** 6 + 4.1223147912585e58 * cos(theta) ** 4 - 4.15695609202538e56 * cos(theta) ** 2 + 6.2604760422069e53 ) * cos(33 * phi) ) # @torch.jit.script def Yl49_m34(theta, phi): return ( 2.28520478948248e-56 * (1.0 - cos(theta) ** 2) ** 17 * ( 2.10520403293824e64 * cos(theta) ** 15 - 2.27882910781975e64 * cos(theta) ** 13 + 9.35519317947053e63 * cos(theta) ** 11 - 1.84421370921462e63 * cos(theta) ** 9 + 1.82394762449798e62 * cos(theta) ** 7 - 8.60739328414776e60 * cos(theta) ** 5 + 1.6489259165034e59 * cos(theta) ** 3 - 8.31391218405076e56 * cos(theta) ) * cos(34 * phi) ) # @torch.jit.script def Yl49_m35(theta, phi): return ( 6.43783516919034e-58 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 3.15780604940736e65 * cos(theta) ** 14 - 2.96247784016567e65 * cos(theta) ** 12 + 1.02907124974176e65 * cos(theta) ** 10 - 1.65979233829316e64 * cos(theta) ** 8 + 1.27676333714858e63 * cos(theta) ** 6 - 4.30369664207388e61 * cos(theta) ** 4 + 4.94677774951021e59 * cos(theta) ** 2 - 8.31391218405076e56 ) * cos(35 * phi) ) # @torch.jit.script def Yl49_m36(theta, phi): return ( 1.86623518170062e-59 * (1.0 - cos(theta) ** 2) ** 18 * ( 4.42092846917031e66 * cos(theta) ** 13 - 3.5549734081988e66 * cos(theta) ** 11 + 1.02907124974176e66 * cos(theta) ** 9 - 1.32783387063453e65 * cos(theta) ** 7 + 7.6605800228915e63 * cos(theta) ** 5 - 1.72147865682955e62 * cos(theta) ** 3 + 9.89355549902041e59 * cos(theta) ) * cos(36 * phi) ) # @torch.jit.script def Yl49_m37(theta, phi): return ( 5.58142984852443e-61 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 5.7472070099214e67 * cos(theta) ** 12 - 3.91047074901868e67 * cos(theta) ** 10 + 9.26164124767583e66 * cos(theta) ** 8 - 9.29483709444169e65 * cos(theta) ** 6 + 3.83029001144575e64 * cos(theta) ** 4 - 5.16443597048865e62 * cos(theta) ** 2 + 9.89355549902041e59 ) * cos(37 * phi) ) # @torch.jit.script def Yl49_m38(theta, phi): return ( 1.72740917205539e-62 * (1.0 - cos(theta) ** 2) ** 19 * ( 6.89664841190568e68 * cos(theta) ** 11 - 3.91047074901868e68 * cos(theta) ** 9 + 7.40931299814066e67 * cos(theta) ** 7 - 5.57690225666501e66 * cos(theta) ** 5 + 1.5321160045783e65 * cos(theta) ** 3 - 1.03288719409773e63 * cos(theta) ) * cos(38 * phi) ) # @torch.jit.script def Yl49_m39(theta, phi): return ( 5.55210336111004e-64 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 7.58631325309624e69 * cos(theta) ** 10 - 3.51942367411681e69 * cos(theta) ** 8 + 5.18651909869846e68 * cos(theta) ** 6 - 2.78845112833251e67 * cos(theta) ** 4 + 4.5963480137349e65 * cos(theta) ** 2 - 1.03288719409773e63 ) * cos(39 * phi) ) # @torch.jit.script def Yl49_m40(theta, phi): return ( 1.86106927499828e-65 * (1.0 - cos(theta) ** 2) ** 20 * ( 7.58631325309624e70 * cos(theta) ** 9 - 2.81553893929345e70 * cos(theta) ** 7 + 3.11191145921908e69 * cos(theta) ** 5 - 1.115380451333e68 * cos(theta) ** 3 + 9.1926960274698e65 * cos(theta) ) * cos(40 * phi) ) # @torch.jit.script def Yl49_m41(theta, phi): return ( 6.53913088039203e-67 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 6.82768192778662e71 * cos(theta) ** 8 - 1.97087725750542e71 * cos(theta) ** 6 + 1.55595572960954e70 * cos(theta) ** 4 - 3.34614135399901e68 * cos(theta) ** 2 + 9.1926960274698e65 ) * cos(41 * phi) ) # @torch.jit.script def Yl49_m42(theta, phi): return ( 2.42356314832405e-68 * (1.0 - cos(theta) ** 2) ** 21 * ( 5.4621455422293e72 * cos(theta) ** 7 - 1.18252635450325e72 * cos(theta) ** 5 + 6.22382291843816e70 * cos(theta) ** 3 - 6.69228270799802e68 * cos(theta) ) * cos(42 * phi) ) # @torch.jit.script def Yl49_m43(theta, phi): return ( 9.55017668685889e-70 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 3.82350187956051e73 * cos(theta) ** 6 - 5.91263177251625e72 * cos(theta) ** 4 + 1.86714687553145e71 * cos(theta) ** 2 - 6.69228270799802e68 ) * cos(43 * phi) ) # @torch.jit.script def Yl49_m44(theta, phi): return ( 4.04291217368446e-71 * (1.0 - cos(theta) ** 2) ** 22 * ( 2.2941011277363e74 * cos(theta) ** 5 - 2.3650527090065e73 * cos(theta) ** 3 + 3.73429375106289e71 * cos(theta) ) * cos(44 * phi) ) # @torch.jit.script def Yl49_m45(theta, phi): return ( 1.86485632577191e-72 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 1.14705056386815e75 * cos(theta) ** 4 - 7.0951581270195e73 * cos(theta) ** 2 + 3.73429375106289e71 ) * cos(45 * phi) ) # @torch.jit.script def Yl49_m46(theta, phi): return ( 9.56651109995517e-74 * (1.0 - cos(theta) ** 2) ** 23 * (4.58820225547261e75 * cos(theta) ** 3 - 1.4190316254039e74 * cos(theta)) * cos(46 * phi) ) # @torch.jit.script def Yl49_m47(theta, phi): return ( 5.63712072589557e-75 * (1.0 - cos(theta) ** 2) ** 23.5 * (1.37646067664178e76 * cos(theta) ** 2 - 1.4190316254039e74) * cos(47 * phi) ) # @torch.jit.script def Yl49_m48(theta, phi): return 11.1416695948776 * (1.0 - cos(theta) ** 2) ** 24 * cos(48 * phi) * cos(theta) # @torch.jit.script def Yl49_m49(theta, phi): return 1.12547858918257 * (1.0 - cos(theta) ** 2) ** 24.5 * cos(49 * phi) # @torch.jit.script def Yl50_m_minus_50(theta, phi): return 1.13109198355194 * (1.0 - cos(theta) ** 2) ** 25 * sin(50 * phi) # @torch.jit.script def Yl50_m_minus_49(theta, phi): return ( 11.3109198355194 * (1.0 - cos(theta) ** 2) ** 24.5 * sin(49 * phi) * cos(theta) ) # @torch.jit.script def Yl50_m_minus_48(theta, phi): return ( 5.83984769173129e-77 * (1.0 - cos(theta) ** 2) ** 24 * (1.36269606987536e78 * cos(theta) ** 2 - 1.37646067664178e76) * sin(48 * phi) ) # @torch.jit.script def Yl50_m_minus_47(theta, phi): return ( 1.00132529142183e-75 * (1.0 - cos(theta) ** 2) ** 23.5 * (4.54232023291788e77 * cos(theta) ** 3 - 1.37646067664178e76 * cos(theta)) * sin(47 * phi) ) # @torch.jit.script def Yl50_m_minus_46(theta, phi): return ( 1.97238208171112e-74 * (1.0 - cos(theta) ** 2) ** 23 * ( 1.13558005822947e77 * cos(theta) ** 4 - 6.88230338320891e75 * cos(theta) ** 2 + 3.54757906350975e73 ) * sin(46 * phi) ) # @torch.jit.script def Yl50_m_minus_45(theta, phi): return ( 4.32127263268872e-73 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 2.27116011645894e76 * cos(theta) ** 5 - 2.2941011277363e75 * cos(theta) ** 3 + 3.54757906350975e73 * cos(theta) ) * sin(45 * phi) ) # @torch.jit.script def Yl50_m_minus_44(theta, phi): return ( 1.0316897006675e-71 * (1.0 - cos(theta) ** 2) ** 22 * ( 3.7852668607649e75 * cos(theta) ** 6 - 5.73525281934076e74 * cos(theta) ** 4 + 1.77378953175487e73 * cos(theta) ** 2 - 6.22382291843816e70 ) * sin(44 * phi) ) # @torch.jit.script def Yl50_m_minus_43(theta, phi): return ( 2.64643993717771e-70 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 5.407524086807e74 * cos(theta) ** 7 - 1.14705056386815e74 * cos(theta) ** 5 + 5.91263177251625e72 * cos(theta) ** 3 - 6.22382291843816e70 * cos(theta) ) * sin(43 * phi) ) # @torch.jit.script def Yl50_m_minus_42(theta, phi): return ( 7.21852574267788e-69 * (1.0 - cos(theta) ** 2) ** 21 * ( 6.75940510850875e73 * cos(theta) ** 8 - 1.91175093978025e73 * cos(theta) ** 6 + 1.47815794312906e72 * cos(theta) ** 4 - 3.11191145921908e70 * cos(theta) ** 2 + 8.36535338499752e67 ) * sin(42 * phi) ) # @torch.jit.script def Yl50_m_minus_41(theta, phi): return ( 2.07712999851474e-67 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 7.51045012056528e72 * cos(theta) ** 9 - 2.73107277111465e72 * cos(theta) ** 7 + 2.95631588625812e71 * cos(theta) ** 5 - 1.03730381973969e70 * cos(theta) ** 3 + 8.36535338499752e67 * cos(theta) ) * sin(41 * phi) ) # @torch.jit.script def Yl50_m_minus_40(theta, phi): return ( 6.26591319598679e-66 * (1.0 - cos(theta) ** 2) ** 20 * ( 7.51045012056528e71 * cos(theta) ** 10 - 3.41384096389331e71 * cos(theta) ** 8 + 4.92719314376354e70 * cos(theta) ** 6 - 2.59325954934923e69 * cos(theta) ** 4 + 4.18267669249876e67 * cos(theta) ** 2 - 9.1926960274698e64 ) * sin(40 * phi) ) # @torch.jit.script def Yl50_m_minus_39(theta, phi): return ( 1.97152356054512e-64 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 6.82768192778662e70 * cos(theta) ** 11 - 3.79315662654812e70 * cos(theta) ** 9 + 7.03884734823363e69 * cos(theta) ** 7 - 5.18651909869846e68 * cos(theta) ** 5 + 1.39422556416625e67 * cos(theta) ** 3 - 9.1926960274698e64 * cos(theta) ) * sin(39 * phi) ) # @torch.jit.script def Yl50_m_minus_38(theta, phi): return ( 6.44299208440446e-63 * (1.0 - cos(theta) ** 2) ** 19 * ( 5.68973493982218e69 * cos(theta) ** 12 - 3.79315662654812e69 * cos(theta) ** 10 + 8.79855918529204e68 * cos(theta) ** 8 - 8.64419849783077e67 * cos(theta) ** 6 + 3.48556391041563e66 * cos(theta) ** 4 - 4.5963480137349e64 * cos(theta) ** 2 + 8.60739328414776e61 ) * sin(38 * phi) ) # @torch.jit.script def Yl50_m_minus_37(theta, phi): return ( 2.17921766163123e-61 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 4.3767191844786e68 * cos(theta) ** 13 - 3.44832420595284e68 * cos(theta) ** 11 + 9.77617687254671e67 * cos(theta) ** 9 - 1.23488549969011e67 * cos(theta) ** 7 + 6.97112782083127e65 * cos(theta) ** 5 - 1.5321160045783e64 * cos(theta) ** 3 + 8.60739328414776e61 * cos(theta) ) * sin(37 * phi) ) # @torch.jit.script def Yl50_m_minus_36(theta, phi): return ( 7.60543841814552e-60 * (1.0 - cos(theta) ** 2) ** 18 * ( 3.12622798891329e67 * cos(theta) ** 14 - 2.8736035049607e67 * cos(theta) ** 12 + 9.77617687254671e66 * cos(theta) ** 10 - 1.54360687461264e66 * cos(theta) ** 8 + 1.16185463680521e65 * cos(theta) ** 6 - 3.83029001144575e63 * cos(theta) ** 4 + 4.30369664207388e61 * cos(theta) ** 2 - 7.06682535644315e58 ) * sin(36 * phi) ) # @torch.jit.script def Yl50_m_minus_35(theta, phi): return ( 2.73161261266203e-58 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 2.08415199260886e66 * cos(theta) ** 15 - 2.21046423458515e66 * cos(theta) ** 13 + 8.88743352049701e65 * cos(theta) ** 11 - 1.7151187495696e65 * cos(theta) ** 9 + 1.65979233829316e64 * cos(theta) ** 7 - 7.6605800228915e62 * cos(theta) ** 5 + 1.43456554735796e61 * cos(theta) ** 3 - 7.06682535644315e58 * cos(theta) ) * sin(35 * phi) ) # @torch.jit.script def Yl50_m_minus_34(theta, phi): return ( 1.00736895690158e-56 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.30259499538054e65 * cos(theta) ** 16 - 1.57890302470368e65 * cos(theta) ** 14 + 7.40619460041417e64 * cos(theta) ** 12 - 1.7151187495696e64 * cos(theta) ** 10 + 2.07474042286645e63 * cos(theta) ** 8 - 1.27676333714858e62 * cos(theta) ** 6 + 3.5864138683949e60 * cos(theta) ** 4 - 3.53341267822157e58 * cos(theta) ** 2 + 5.19619511503173e55 ) * sin(34 * phi) ) # @torch.jit.script def Yl50_m_minus_33(theta, phi): return ( 3.80673519369261e-55 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 7.66232350223845e63 * cos(theta) ** 17 - 1.05260201646912e64 * cos(theta) ** 15 + 5.69707276954936e63 * cos(theta) ** 13 - 1.55919886324509e63 * cos(theta) ** 11 + 2.30526713651828e62 * cos(theta) ** 9 - 1.82394762449798e61 * cos(theta) ** 7 + 7.1728277367898e59 * cos(theta) ** 5 - 1.17780422607386e58 * cos(theta) ** 3 + 5.19619511503173e55 * cos(theta) ) * sin(33 * phi) ) # @torch.jit.script def Yl50_m_minus_32(theta, phi): return ( 1.47139056186104e-53 * (1.0 - cos(theta) ** 2) ** 16 * ( 4.25684639013247e62 * cos(theta) ** 18 - 6.578762602932e62 * cos(theta) ** 16 + 4.06933769253526e62 * cos(theta) ** 14 - 1.29933238603757e62 * cos(theta) ** 12 + 2.30526713651828e61 * cos(theta) ** 10 - 2.27993453062247e60 * cos(theta) ** 8 + 1.19547128946497e59 * cos(theta) ** 6 - 2.94451056518465e57 * cos(theta) ** 4 + 2.59809755751586e55 * cos(theta) ** 2 - 3.4780422456705e52 ) * sin(32 * phi) ) # @torch.jit.script def Yl50_m_minus_31(theta, phi): return ( 5.80780053812248e-52 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 2.24044546849077e61 * cos(theta) ** 19 - 3.86986035466588e61 * cos(theta) ** 17 + 2.71289179502351e61 * cos(theta) ** 15 - 9.99486450798134e60 * cos(theta) ** 13 + 2.0956973968348e60 * cos(theta) ** 11 - 2.53326058958052e59 * cos(theta) ** 9 + 1.70781612780709e58 * cos(theta) ** 7 - 5.88902113036929e56 * cos(theta) ** 5 + 8.66032519171955e54 * cos(theta) ** 3 - 3.4780422456705e52 * cos(theta) ) * sin(31 * phi) ) # @torch.jit.script def Yl50_m_minus_30(theta, phi): return ( 2.33759462454031e-50 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.12022273424539e60 * cos(theta) ** 20 - 2.14992241925882e60 * cos(theta) ** 18 + 1.69555737188969e60 * cos(theta) ** 16 - 7.13918893427238e59 * cos(theta) ** 14 + 1.74641449736233e59 * cos(theta) ** 12 - 2.53326058958052e58 * cos(theta) ** 10 + 2.13477015975887e57 * cos(theta) ** 8 - 9.81503521728215e55 * cos(theta) ** 6 + 2.16508129792989e54 * cos(theta) ** 4 - 1.73902112283525e52 * cos(theta) ** 2 + 2.1469396578213e49 ) * sin(30 * phi) ) # @torch.jit.script def Yl50_m_minus_29(theta, phi): return ( 9.58128681137455e-49 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 5.33439397259708e58 * cos(theta) ** 21 - 1.13153811539938e59 * cos(theta) ** 19 + 9.97386689346877e58 * cos(theta) ** 17 - 4.75945928951492e58 * cos(theta) ** 15 + 1.34339576720179e58 * cos(theta) ** 13 - 2.30296417234593e57 * cos(theta) ** 11 + 2.37196684417652e56 * cos(theta) ** 9 - 1.40214788818316e55 * cos(theta) ** 7 + 4.33016259585977e53 * cos(theta) ** 5 - 5.7967370761175e51 * cos(theta) ** 3 + 2.1469396578213e49 * cos(theta) ) * sin(29 * phi) ) # @torch.jit.script def Yl50_m_minus_28(theta, phi): return ( 3.9943740060195e-47 * (1.0 - cos(theta) ** 2) ** 14 * ( 2.42472453299867e57 * cos(theta) ** 22 - 5.65769057699691e57 * cos(theta) ** 20 + 5.54103716303821e57 * cos(theta) ** 18 - 2.97466205594683e57 * cos(theta) ** 16 + 9.59568405144138e56 * cos(theta) ** 14 - 1.91913681028828e56 * cos(theta) ** 12 + 2.37196684417652e55 * cos(theta) ** 10 - 1.75268486022896e54 * cos(theta) ** 8 + 7.21693765976629e52 * cos(theta) ** 6 - 1.44918426902938e51 * cos(theta) ** 4 + 1.07346982891065e49 * cos(theta) ** 2 - 1.23529324385575e46 ) * sin(28 * phi) ) # @torch.jit.script def Yl50_m_minus_27(theta, phi): return ( 1.69184256116626e-45 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.05422805782551e56 * cos(theta) ** 23 - 2.69413836999853e56 * cos(theta) ** 21 + 2.91633534896748e56 * cos(theta) ** 19 - 1.74980120938049e56 * cos(theta) ** 17 + 6.39712270096092e55 * cos(theta) ** 15 - 1.47625908483713e55 * cos(theta) ** 13 + 2.15633349470593e54 * cos(theta) ** 11 - 1.94742762247662e53 * cos(theta) ** 9 + 1.03099109425233e52 * cos(theta) ** 7 - 2.89836853805875e50 * cos(theta) ** 5 + 3.57823276303549e48 * cos(theta) ** 3 - 1.23529324385575e46 * cos(theta) ) * sin(27 * phi) ) # @torch.jit.script def Yl50_m_minus_26(theta, phi): return ( 7.27295548816133e-44 * (1.0 - cos(theta) ** 2) ** 13 * ( 4.39261690760629e54 * cos(theta) ** 24 - 1.22460834999933e55 * cos(theta) ** 22 + 1.45816767448374e55 * cos(theta) ** 20 - 9.72111782989159e54 * cos(theta) ** 18 + 3.99820168810057e54 * cos(theta) ** 16 - 1.05447077488367e54 * cos(theta) ** 14 + 1.79694457892161e53 * cos(theta) ** 12 - 1.94742762247662e52 * cos(theta) ** 10 + 1.28873886781541e51 * cos(theta) ** 8 - 4.83061423009792e49 * cos(theta) ** 6 + 8.94558190758874e47 * cos(theta) ** 4 - 6.17646621927876e45 * cos(theta) ** 2 + 6.68448725030169e42 ) * sin(26 * phi) ) # @torch.jit.script def Yl50_m_minus_25(theta, phi): return ( 3.17020779937648e-42 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 1.75704676304252e53 * cos(theta) ** 25 - 5.32438413043187e53 * cos(theta) ** 23 + 6.94365559277971e53 * cos(theta) ** 21 - 5.1163778052061e53 * cos(theta) ** 19 + 2.35188334594151e53 * cos(theta) ** 17 - 7.02980516589112e52 * cos(theta) ** 15 + 1.38226506070893e52 * cos(theta) ** 13 - 1.77038874770602e51 * cos(theta) ** 11 + 1.43193207535045e50 * cos(theta) ** 9 - 6.90087747156845e48 * cos(theta) ** 7 + 1.78911638151775e47 * cos(theta) ** 5 - 2.05882207309292e45 * cos(theta) ** 3 + 6.68448725030169e42 * cos(theta) ) * sin(25 * phi) ) # @torch.jit.script def Yl50_m_minus_24(theta, phi): return ( 1.39992585903302e-40 * (1.0 - cos(theta) ** 2) ** 12 * ( 6.75787216554814e51 * cos(theta) ** 26 - 2.21849338767995e52 * cos(theta) ** 24 + 3.15620708762714e52 * cos(theta) ** 22 - 2.55818890260305e52 * cos(theta) ** 20 + 1.3066018588564e52 * cos(theta) ** 18 - 4.39362822868195e51 * cos(theta) ** 16 + 9.87332186220663e50 * cos(theta) ** 14 - 1.47532395642168e50 * cos(theta) ** 12 + 1.43193207535045e49 * cos(theta) ** 10 - 8.62609683946057e47 * cos(theta) ** 8 + 2.98186063586291e46 * cos(theta) ** 6 - 5.1470551827323e44 * cos(theta) ** 4 + 3.34224362515084e42 * cos(theta) ** 2 - 3.42794217964189e39 ) * sin(24 * phi) ) # @torch.jit.script def Yl50_m_minus_23(theta, phi): return ( 6.25752765615712e-39 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 2.50291561686968e50 * cos(theta) ** 27 - 8.87397355071979e50 * cos(theta) ** 25 + 1.37226395114223e51 * cos(theta) ** 23 - 1.21818519171574e51 * cos(theta) ** 21 + 6.87685188871788e50 * cos(theta) ** 19 - 2.58448719334232e50 * cos(theta) ** 17 + 6.58221457480442e49 * cos(theta) ** 15 - 1.13486458186283e49 * cos(theta) ** 13 + 1.30175643213678e48 * cos(theta) ** 11 - 9.58455204384508e46 * cos(theta) ** 9 + 4.25980090837559e45 * cos(theta) ** 7 - 1.02941103654646e44 * cos(theta) ** 5 + 1.11408120838361e42 * cos(theta) ** 3 - 3.42794217964189e39 * cos(theta) ) * sin(23 * phi) ) # @torch.jit.script def Yl50_m_minus_22(theta, phi): return ( 2.82906693875058e-37 * (1.0 - cos(theta) ** 2) ** 11 * ( 8.93898434596315e48 * cos(theta) ** 28 - 3.41306675027684e49 * cos(theta) ** 26 + 5.71776646309264e49 * cos(theta) ** 24 - 5.53720541688972e49 * cos(theta) ** 22 + 3.43842594435894e49 * cos(theta) ** 20 - 1.43582621852351e49 * cos(theta) ** 18 + 4.11388410925276e48 * cos(theta) ** 16 - 8.1061755847345e47 * cos(theta) ** 14 + 1.08479702678065e47 * cos(theta) ** 12 - 9.58455204384507e45 * cos(theta) ** 10 + 5.32475113546949e44 * cos(theta) ** 8 - 1.71568506091077e43 * cos(theta) ** 6 + 2.78520302095904e41 * cos(theta) ** 4 - 1.71397108982095e39 * cos(theta) ** 2 + 1.67707543035318e36 ) * sin(22 * phi) ) # @torch.jit.script def Yl50_m_minus_21(theta, phi): return ( 1.29273191440952e-35 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 3.08240839515971e47 * cos(theta) ** 29 - 1.26409879639883e48 * cos(theta) ** 27 + 2.28710658523706e48 * cos(theta) ** 25 - 2.40748061603901e48 * cos(theta) ** 23 + 1.63734568778997e48 * cos(theta) ** 21 - 7.55698009749217e47 * cos(theta) ** 19 + 2.41993182897221e47 * cos(theta) ** 17 - 5.40411705648967e46 * cos(theta) ** 15 + 8.34459251369728e45 * cos(theta) ** 13 - 8.71322913076825e44 * cos(theta) ** 11 + 5.91639015052165e43 * cos(theta) ** 9 - 2.45097865844395e42 * cos(theta) ** 7 + 5.57040604191807e40 * cos(theta) ** 5 - 5.71323696606982e38 * cos(theta) ** 3 + 1.67707543035318e36 * cos(theta) ) * sin(21 * phi) ) # @torch.jit.script def Yl50_m_minus_20(theta, phi): return ( 5.96620638211175e-34 * (1.0 - cos(theta) ** 2) ** 10 * ( 1.02746946505324e46 * cos(theta) ** 30 - 4.51463855856725e46 * cos(theta) ** 28 + 8.7965637893733e46 * cos(theta) ** 26 - 1.00311692334959e47 * cos(theta) ** 24 + 7.44248039904532e46 * cos(theta) ** 22 - 3.77849004874609e46 * cos(theta) ** 20 + 1.34440657165123e46 * cos(theta) ** 18 - 3.37757316030604e45 * cos(theta) ** 16 + 5.96042322406949e44 * cos(theta) ** 14 - 7.26102427564021e43 * cos(theta) ** 12 + 5.91639015052165e42 * cos(theta) ** 10 - 3.06372332305494e41 * cos(theta) ** 8 + 9.28401006986345e39 * cos(theta) ** 6 - 1.42830924151745e38 * cos(theta) ** 4 + 8.38537715176588e35 * cos(theta) ** 2 - 7.87359356973322e32 ) * sin(20 * phi) ) # @torch.jit.script def Yl50_m_minus_19(theta, phi): return ( 2.77925335924729e-32 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 3.31441762920399e44 * cos(theta) ** 31 - 1.55677191674733e45 * cos(theta) ** 29 + 3.25798658865678e45 * cos(theta) ** 27 - 4.01246769339835e45 * cos(theta) ** 25 + 3.23586104306318e45 * cos(theta) ** 23 - 1.79928097559337e45 * cos(theta) ** 21 + 7.07582406132226e44 * cos(theta) ** 19 - 1.9868077413565e44 * cos(theta) ** 17 + 3.97361548271299e43 * cos(theta) ** 15 - 5.58540328895401e42 * cos(theta) ** 13 + 5.37853650047423e41 * cos(theta) ** 11 - 3.4041370256166e40 * cos(theta) ** 9 + 1.32628715283764e39 * cos(theta) ** 7 - 2.85661848303491e37 * cos(theta) ** 5 + 2.79512571725529e35 * cos(theta) ** 3 - 7.87359356973322e32 * cos(theta) ) * sin(19 * phi) ) # @torch.jit.script def Yl50_m_minus_18(theta, phi): return ( 1.30595338012623e-30 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.03575550912625e43 * cos(theta) ** 32 - 5.18923972249109e43 * cos(theta) ** 30 + 1.16356663880599e44 * cos(theta) ** 28 - 1.54325680515321e44 * cos(theta) ** 26 + 1.34827543460966e44 * cos(theta) ** 24 - 8.17854988906079e43 * cos(theta) ** 22 + 3.53791203066113e43 * cos(theta) ** 20 - 1.10378207853139e43 * cos(theta) ** 18 + 2.48350967669562e42 * cos(theta) ** 16 - 3.98957377782429e41 * cos(theta) ** 14 + 4.48211375039519e40 * cos(theta) ** 12 - 3.4041370256166e39 * cos(theta) ** 10 + 1.65785894104705e38 * cos(theta) ** 8 - 4.76103080505818e36 * cos(theta) ** 6 + 6.98781429313823e34 * cos(theta) ** 4 - 3.93679678486661e32 * cos(theta) ** 2 + 3.565939116727e29 ) * sin(18 * phi) ) # @torch.jit.script def Yl50_m_minus_17(theta, phi): return ( 6.18641571065642e-29 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 3.13865305795832e41 * cos(theta) ** 33 - 1.67394829757777e42 * cos(theta) ** 31 + 4.01229875450342e42 * cos(theta) ** 29 - 5.71576594501189e42 * cos(theta) ** 27 + 5.39310173843864e42 * cos(theta) ** 25 - 3.55589125611339e42 * cos(theta) ** 23 + 1.68472001460054e42 * cos(theta) ** 21 - 5.80937936069151e41 * cos(theta) ** 19 + 1.46088804511507e41 * cos(theta) ** 17 - 2.65971585188286e40 * cos(theta) ** 15 + 3.4477798079963e39 * cos(theta) ** 13 - 3.09467002328782e38 * cos(theta) ** 11 + 1.84206549005227e37 * cos(theta) ** 9 - 6.80147257865454e35 * cos(theta) ** 7 + 1.39756285862765e34 * cos(theta) ** 5 - 1.31226559495554e32 * cos(theta) ** 3 + 3.565939116727e29 * cos(theta) ) * sin(17 * phi) ) # @torch.jit.script def Yl50_m_minus_16(theta, phi): return ( 2.95267712809984e-27 * (1.0 - cos(theta) ** 2) ** 8 * ( 9.23133252340683e39 * cos(theta) ** 34 - 5.23108842993054e40 * cos(theta) ** 32 + 1.33743291816781e41 * cos(theta) ** 30 - 2.04134498036139e41 * cos(theta) ** 28 + 2.07426989939948e41 * cos(theta) ** 26 - 1.48162135671391e41 * cos(theta) ** 24 + 7.65781824818426e40 * cos(theta) ** 22 - 2.90468968034575e40 * cos(theta) ** 20 + 8.11604469508373e39 * cos(theta) ** 18 - 1.66232240742679e39 * cos(theta) ** 16 + 2.4626998628545e38 * cos(theta) ** 14 - 2.57889168607318e37 * cos(theta) ** 12 + 1.84206549005227e36 * cos(theta) ** 10 - 8.50184072331818e34 * cos(theta) ** 8 + 2.32927143104608e33 * cos(theta) ** 6 - 3.28066398738884e31 * cos(theta) ** 4 + 1.7829695583635e29 * cos(theta) ** 2 - 1.56538152621905e26 ) * sin(16 * phi) ) # @torch.jit.script def Yl50_m_minus_15(theta, phi): return ( 1.41912924480743e-25 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 2.63752357811624e38 * cos(theta) ** 35 - 1.58517831210016e39 * cos(theta) ** 33 + 4.31429973602518e39 * cos(theta) ** 31 - 7.03912062193583e39 * cos(theta) ** 29 + 7.68248110888695e39 * cos(theta) ** 27 - 5.92648542685565e39 * cos(theta) ** 25 + 3.32948619486272e39 * cos(theta) ** 23 - 1.38318556206941e39 * cos(theta) ** 21 + 4.2716024710967e38 * cos(theta) ** 19 - 9.77836710251051e37 * cos(theta) ** 17 + 1.64179990856967e37 * cos(theta) ** 15 - 1.98376283544091e36 * cos(theta) ** 13 + 1.67460499095661e35 * cos(theta) ** 11 - 9.44648969257576e33 * cos(theta) ** 9 + 3.32753061578011e32 * cos(theta) ** 7 - 6.56132797477768e30 * cos(theta) ** 5 + 5.94323186121167e28 * cos(theta) ** 3 - 1.56538152621905e26 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl50_m_minus_14(theta, phi): return ( 6.86483144987145e-24 * (1.0 - cos(theta) ** 2) ** 7 * ( 7.32645438365621e36 * cos(theta) ** 36 - 4.66228915323577e37 * cos(theta) ** 34 + 1.34821866750787e38 * cos(theta) ** 32 - 2.34637354064528e38 * cos(theta) ** 30 + 2.74374325317391e38 * cos(theta) ** 28 - 2.27941747186756e38 * cos(theta) ** 26 + 1.38728591452613e38 * cos(theta) ** 24 - 6.28720710031549e37 * cos(theta) ** 22 + 2.13580123554835e37 * cos(theta) ** 20 - 5.4324261680614e36 * cos(theta) ** 18 + 1.02612494285604e36 * cos(theta) ** 16 - 1.41697345388636e35 * cos(theta) ** 14 + 1.39550415913051e34 * cos(theta) ** 12 - 9.44648969257576e32 * cos(theta) ** 10 + 4.15941326972514e31 * cos(theta) ** 8 - 1.09355466246295e30 * cos(theta) ** 6 + 1.48580796530292e28 * cos(theta) ** 4 - 7.82690763109526e25 * cos(theta) ** 2 + 6.68966464196176e22 ) * sin(14 * phi) ) # @torch.jit.script def Yl50_m_minus_13(theta, phi): return ( 3.34057116160727e-22 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.98012280639357e35 * cos(theta) ** 37 - 1.33208261521022e36 * cos(theta) ** 35 + 4.08551111366021e36 * cos(theta) ** 33 - 7.56894690530734e36 * cos(theta) ** 31 + 9.46118363163418e36 * cos(theta) ** 29 - 8.4422869328428e36 * cos(theta) ** 27 + 5.54914365810454e36 * cos(theta) ** 25 - 2.73356830448499e36 * cos(theta) ** 23 + 1.01704820740398e36 * cos(theta) ** 21 - 2.85917166740074e35 * cos(theta) ** 19 + 6.03602907562377e34 * cos(theta) ** 17 - 9.44648969257576e33 * cos(theta) ** 15 + 1.0734647377927e33 * cos(theta) ** 13 - 8.5877179023416e31 * cos(theta) ** 11 + 4.6215702996946e30 * cos(theta) ** 9 - 1.56222094637564e29 * cos(theta) ** 7 + 2.97161593060583e27 * cos(theta) ** 5 - 2.60896921036509e25 * cos(theta) ** 3 + 6.68966464196176e22 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl50_m_minus_12(theta, phi): return ( 1.63449200523326e-20 * (1.0 - cos(theta) ** 2) ** 6 * ( 5.2108494905094e33 * cos(theta) ** 38 - 3.70022948669506e34 * cos(theta) ** 36 + 1.20162091578242e35 * cos(theta) ** 34 - 2.36529590790854e35 * cos(theta) ** 32 + 3.15372787721139e35 * cos(theta) ** 30 - 3.01510247601529e35 * cos(theta) ** 28 + 2.1342860223479e35 * cos(theta) ** 26 - 1.13898679353541e35 * cos(theta) ** 24 + 4.6229463972908e34 * cos(theta) ** 22 - 1.42958583370037e34 * cos(theta) ** 20 + 3.35334948645765e33 * cos(theta) ** 18 - 5.90405605785985e32 * cos(theta) ** 16 + 7.66760526994786e31 * cos(theta) ** 14 - 7.15643158528467e30 * cos(theta) ** 12 + 4.6215702996946e29 * cos(theta) ** 10 - 1.95277618296955e28 * cos(theta) ** 8 + 4.95269321767639e26 * cos(theta) ** 6 - 6.52242302591272e24 * cos(theta) ** 4 + 3.34483232098088e22 * cos(theta) ** 2 - 2.79434613281611e19 ) * sin(12 * phi) ) # @torch.jit.script def Yl50_m_minus_11(theta, phi): return ( 8.0373142469886e-19 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.33611525397677e32 * cos(theta) ** 39 - 1.0000620234311e33 * cos(theta) ** 37 + 3.43320261652119e33 * cos(theta) ** 35 - 7.16756335729862e33 * cos(theta) ** 33 + 1.017331573294e34 * cos(theta) ** 31 - 1.03969050897079e34 * cos(theta) ** 29 + 7.90476304573296e33 * cos(theta) ** 27 - 4.55594717414166e33 * cos(theta) ** 25 + 2.00997669447426e33 * cos(theta) ** 23 - 6.80755158904937e32 * cos(theta) ** 21 + 1.76492078234613e32 * cos(theta) ** 19 - 3.47297415168226e31 * cos(theta) ** 17 + 5.1117368466319e30 * cos(theta) ** 15 - 5.5049473732959e29 * cos(theta) ** 13 + 4.20142754517691e28 * cos(theta) ** 11 - 2.16975131441061e27 * cos(theta) ** 9 + 7.07527602525199e25 * cos(theta) ** 7 - 1.30448460518254e24 * cos(theta) ** 5 + 1.11494410699363e22 * cos(theta) ** 3 - 2.79434613281611e19 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl50_m_minus_10(theta, phi): return ( 3.9701403696069e-17 * (1.0 - cos(theta) ** 2) ** 5 * ( 3.34028813494192e30 * cos(theta) ** 40 - 2.63174216692394e31 * cos(theta) ** 38 + 9.53667393478107e31 * cos(theta) ** 36 - 2.10810686979371e32 * cos(theta) ** 34 + 3.17916116654374e32 * cos(theta) ** 32 - 3.46563502990263e32 * cos(theta) ** 30 + 2.82312965919034e32 * cos(theta) ** 28 - 1.75228737466987e32 * cos(theta) ** 26 + 8.37490289364275e31 * cos(theta) ** 24 - 3.09434163138608e31 * cos(theta) ** 22 + 8.82460391173066e30 * cos(theta) ** 20 - 1.92943008426792e30 * cos(theta) ** 18 + 3.19483552914494e29 * cos(theta) ** 16 - 3.93210526663993e28 * cos(theta) ** 14 + 3.50118962098076e27 * cos(theta) ** 12 - 2.16975131441061e26 * cos(theta) ** 10 + 8.84409503156498e24 * cos(theta) ** 8 - 2.17414100863757e23 * cos(theta) ** 6 + 2.78736026748407e21 * cos(theta) ** 4 - 1.39717306640805e19 * cos(theta) ** 2 + 1.14522382492463e16 ) * sin(10 * phi) ) # @torch.jit.script def Yl50_m_minus_9(theta, phi): return ( 1.96912558776175e-15 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 8.14704423156566e28 * cos(theta) ** 41 - 6.74805683826651e29 * cos(theta) ** 39 + 2.57747944183272e30 * cos(theta) ** 37 - 6.02316248512489e30 * cos(theta) ** 35 + 9.63382171679922e30 * cos(theta) ** 33 - 1.11794678383956e31 * cos(theta) ** 31 + 9.73492985927705e30 * cos(theta) ** 29 - 6.48995323951803e30 * cos(theta) ** 27 + 3.3499611574571e30 * cos(theta) ** 25 - 1.3453659266896e30 * cos(theta) ** 23 + 4.20219233891936e29 * cos(theta) ** 21 - 1.01548951803575e29 * cos(theta) ** 19 + 1.87931501714408e28 * cos(theta) ** 17 - 2.62140351109328e27 * cos(theta) ** 15 + 2.69322278536981e26 * cos(theta) ** 13 - 1.97250119491874e25 * cos(theta) ** 11 + 9.82677225729443e23 * cos(theta) ** 9 - 3.1059157266251e22 * cos(theta) ** 7 + 5.57472053496814e20 * cos(theta) ** 5 - 4.65724355469351e18 * cos(theta) ** 3 + 1.14522382492463e16 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl50_m_minus_8(theta, phi): return ( 9.80221144853387e-14 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.93977243608706e27 * cos(theta) ** 42 - 1.68701420956663e28 * cos(theta) ** 40 + 6.7828406364019e28 * cos(theta) ** 38 - 1.67310069031247e29 * cos(theta) ** 36 + 2.83347697552918e29 * cos(theta) ** 34 - 3.49358369949862e29 * cos(theta) ** 32 + 3.24497661975902e29 * cos(theta) ** 30 - 2.31784044268501e29 * cos(theta) ** 28 + 1.28844659902196e29 * cos(theta) ** 26 - 5.60569136120666e28 * cos(theta) ** 24 + 1.91008742678153e28 * cos(theta) ** 22 - 5.07744759017875e27 * cos(theta) ** 20 + 1.04406389841338e27 * cos(theta) ** 18 - 1.6383771944333e26 * cos(theta) ** 16 + 1.92373056097844e25 * cos(theta) ** 14 - 1.64375099576561e24 * cos(theta) ** 12 + 9.82677225729443e22 * cos(theta) ** 10 - 3.88239465828138e21 * cos(theta) ** 8 + 9.29120089161356e19 * cos(theta) ** 6 - 1.16431088867338e18 * cos(theta) ** 4 + 5.72611912462317e15 * cos(theta) ** 2 - 4621565072335.09 ) * sin(8 * phi) ) # @torch.jit.script def Yl50_m_minus_7(theta, phi): return ( 4.89522086436078e-12 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 4.51109868857456e25 * cos(theta) ** 43 - 4.11466880382104e26 * cos(theta) ** 41 + 1.73918990676972e27 * cos(theta) ** 39 - 4.52189375760127e27 * cos(theta) ** 37 + 8.09564850151195e27 * cos(theta) ** 35 - 1.05866172712079e28 * cos(theta) ** 33 + 1.04676665153517e28 * cos(theta) ** 31 - 7.99255325063797e27 * cos(theta) ** 29 + 4.77202444082208e27 * cos(theta) ** 27 - 2.24227654448266e27 * cos(theta) ** 25 + 8.30472794252839e26 * cos(theta) ** 23 - 2.4178321857994e26 * cos(theta) ** 21 + 5.4950731495441e25 * cos(theta) ** 19 - 9.63751290843119e24 * cos(theta) ** 17 + 1.28248704065229e24 * cos(theta) ** 15 - 1.26442384289663e23 * cos(theta) ** 13 + 8.93342932481311e21 * cos(theta) ** 11 - 4.31377184253487e20 * cos(theta) ** 9 + 1.32731441308765e19 * cos(theta) ** 7 - 2.32862177734676e17 * cos(theta) ** 5 + 1.90870637487439e15 * cos(theta) ** 3 - 4621565072335.09 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl50_m_minus_6(theta, phi): return ( 2.45152348093323e-10 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.02524970194876e24 * cos(theta) ** 44 - 9.79683048528819e24 * cos(theta) ** 42 + 4.3479747669243e25 * cos(theta) ** 40 - 1.18997204147402e26 * cos(theta) ** 38 + 2.24879125041999e26 * cos(theta) ** 36 - 3.11371096211998e26 * cos(theta) ** 34 + 3.27114578604739e26 * cos(theta) ** 32 - 2.66418441687932e26 * cos(theta) ** 30 + 1.70429444315074e26 * cos(theta) ** 28 - 8.62414055570256e25 * cos(theta) ** 26 + 3.46030330938683e25 * cos(theta) ** 24 - 1.09901462990882e25 * cos(theta) ** 22 + 2.74753657477205e24 * cos(theta) ** 20 - 5.35417383801733e23 * cos(theta) ** 18 + 8.01554400407682e22 * cos(theta) ** 16 - 9.03159887783304e21 * cos(theta) ** 14 + 7.44452443734426e20 * cos(theta) ** 12 - 4.31377184253487e19 * cos(theta) ** 10 + 1.65914301635956e18 * cos(theta) ** 8 - 3.88103629557793e16 * cos(theta) ** 6 + 477176593718598.0 * cos(theta) ** 4 - 2310782536167.54 * cos(theta) ** 2 + 1842729295.18943 ) * sin(6 * phi) ) # @torch.jit.script def Yl50_m_minus_5(theta, phi): return ( 1.2306550203639e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 2.27833267099725e22 * cos(theta) ** 45 - 2.27833267099725e23 * cos(theta) ** 43 + 1.06048165046934e24 * cos(theta) ** 41 - 3.05121036275389e24 * cos(theta) ** 39 + 6.07781419032428e24 * cos(theta) ** 37 - 8.89631703462851e24 * cos(theta) ** 35 + 9.91256298802241e24 * cos(theta) ** 33 - 8.59414328025588e24 * cos(theta) ** 31 + 5.87687739017498e24 * cos(theta) ** 29 - 3.19412613174169e24 * cos(theta) ** 27 + 1.38412132375473e24 * cos(theta) ** 25 - 4.77832447786443e23 * cos(theta) ** 23 + 1.30835074989145e23 * cos(theta) ** 21 - 2.81798623053544e22 * cos(theta) ** 19 + 4.71502588475107e21 * cos(theta) ** 17 - 6.02106591855536e20 * cos(theta) ** 15 + 5.72655725949559e19 * cos(theta) ** 13 - 3.92161076594079e18 * cos(theta) ** 11 + 1.84349224039952e17 * cos(theta) ** 9 - 5.54433756511133e15 * cos(theta) ** 7 + 95435318743719.5 * cos(theta) ** 5 - 770260845389.181 * cos(theta) ** 3 + 1842729295.18943 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl50_m_minus_4(theta, phi): return ( 6.19008465308964e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 4.9528971108636e20 * cos(theta) ** 46 - 5.17802879772103e21 * cos(theta) ** 44 + 2.52495631064129e22 * cos(theta) ** 42 - 7.62802590688473e22 * cos(theta) ** 40 + 1.59942478692744e23 * cos(theta) ** 38 - 2.4711991762857e23 * cos(theta) ** 36 + 2.91545970235953e23 * cos(theta) ** 34 - 2.68566977507996e23 * cos(theta) ** 32 + 1.95895913005833e23 * cos(theta) ** 30 - 1.14075933276489e23 * cos(theta) ** 28 + 5.32354355290281e22 * cos(theta) ** 26 - 1.99096853244351e22 * cos(theta) ** 24 + 5.94704886314296e21 * cos(theta) ** 22 - 1.40899311526772e21 * cos(theta) ** 20 + 2.61945882486171e20 * cos(theta) ** 18 - 3.7631661990971e19 * cos(theta) ** 16 + 4.09039804249685e18 * cos(theta) ** 14 - 3.26800897161732e17 * cos(theta) ** 12 + 1.84349224039952e16 * cos(theta) ** 10 - 693042195638916.0 * cos(theta) ** 8 + 15905886457286.6 * cos(theta) ** 6 - 192565211347.295 * cos(theta) ** 4 + 921364647.594714 * cos(theta) ** 2 - 728351.500074873 ) * sin(4 * phi) ) # @torch.jit.script def Yl50_m_minus_3(theta, phi): return ( 3.11847593634313e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 1.05380789592842e19 * cos(theta) ** 47 - 1.15067306616023e20 * cos(theta) ** 45 + 5.87199142009602e20 * cos(theta) ** 43 - 1.86049412363042e21 * cos(theta) ** 41 + 4.10108919724985e21 * cos(theta) ** 39 - 6.67891669266405e21 * cos(theta) ** 37 + 8.32988486388438e21 * cos(theta) ** 35 - 8.13839325781807e21 * cos(theta) ** 33 + 6.31922300018815e21 * cos(theta) ** 31 - 3.93365287160306e21 * cos(theta) ** 29 + 1.97168279737141e21 * cos(theta) ** 27 - 7.96387412977406e20 * cos(theta) ** 25 + 2.58567341875781e20 * cos(theta) ** 23 - 6.70949102508437e19 * cos(theta) ** 21 + 1.3786625394009e19 * cos(theta) ** 19 - 2.21362717593947e18 * cos(theta) ** 17 + 2.72693202833123e17 * cos(theta) ** 15 - 2.51385305509025e16 * cos(theta) ** 13 + 1.67590203672683e15 * cos(theta) ** 11 - 77004688404324.0 * cos(theta) ** 9 + 2272269493898.08 * cos(theta) ** 7 - 38513042269.4591 * cos(theta) ** 5 + 307121549.198238 * cos(theta) ** 3 - 728351.500074873 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl50_m_minus_2(theta, phi): return ( 0.00157289941411275 * (1.0 - cos(theta) ** 2) * ( 2.19543311651755e17 * cos(theta) ** 48 - 2.50146318730485e18 * cos(theta) ** 46 + 1.33454350456728e19 * cos(theta) ** 44 - 4.42974791340577e19 * cos(theta) ** 42 + 1.02527229931246e20 * cos(theta) ** 40 - 1.75760965596422e20 * cos(theta) ** 38 + 2.31385690663455e20 * cos(theta) ** 36 - 2.39364507582884e20 * cos(theta) ** 34 + 1.9747571875588e20 * cos(theta) ** 32 - 1.31121762386769e20 * cos(theta) ** 30 + 7.04172427632647e19 * cos(theta) ** 28 - 3.06302851145156e19 * cos(theta) ** 26 + 1.07736392448242e19 * cos(theta) ** 24 - 3.04976864776562e18 * cos(theta) ** 22 + 6.89331269700449e17 * cos(theta) ** 20 - 1.22979287552193e17 * cos(theta) ** 18 + 1.70433251770702e16 * cos(theta) ** 16 - 1.79560932506446e15 * cos(theta) ** 14 + 139658503060569.0 * cos(theta) ** 12 - 7700468840432.4 * cos(theta) ** 10 + 284033686737.26 * cos(theta) ** 8 - 6418840378.24318 * cos(theta) ** 6 + 76780387.2995595 * cos(theta) ** 4 - 364175.750037436 * cos(theta) ** 2 + 286.301690281003 ) * sin(2 * phi) ) # @torch.jit.script def Yl50_m_minus_1(theta, phi): return ( 0.0793963728422308 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 4.480475747995e15 * cos(theta) ** 49 - 5.32226210064861e16 * cos(theta) ** 47 + 2.96565223237172e17 * cos(theta) ** 45 - 1.03017393335018e18 * cos(theta) ** 43 + 2.50066414466455e18 * cos(theta) ** 41 - 4.50669142554929e18 * cos(theta) ** 39 + 6.25366731522851e18 * cos(theta) ** 37 - 6.83898593093955e18 * cos(theta) ** 35 + 5.98411268957211e18 * cos(theta) ** 33 - 4.22973427054093e18 * cos(theta) ** 31 + 2.42818078494016e18 * cos(theta) ** 29 - 1.13445500424132e18 * cos(theta) ** 27 + 4.30945569792969e17 * cos(theta) ** 25 - 1.32598636859375e17 * cos(theta) ** 23 + 3.28252985571642e16 * cos(theta) ** 21 - 6.47259408169436e15 * cos(theta) ** 19 + 1.00254853982766e15 * cos(theta) ** 17 - 119707288337631.0 * cos(theta) ** 15 + 10742961773890.0 * cos(theta) ** 13 - 700042621857.49 * cos(theta) ** 11 + 31559298526.3623 * cos(theta) ** 9 - 916977196.891882 * cos(theta) ** 7 + 15356077.4599119 * cos(theta) ** 5 - 121391.916679145 * cos(theta) ** 3 + 286.301690281003 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl50_m0(theta, phi): return ( 798104490119267.0 * cos(theta) ** 50 - 9.87553535753638e15 * cos(theta) ** 48 + 5.74206385737167e16 * cos(theta) ** 46 - 2.08527582188761e17 * cos(theta) ** 44 + 5.30287883738085e17 * cos(theta) ** 42 - 1.00346784153515e18 * cos(theta) ** 40 + 1.46573954381538e18 * cos(theta) ** 38 - 1.69197848818097e18 * cos(theta) ** 36 + 1.56756830522649e18 * cos(theta) ** 34 - 1.17725009268013e18 * cos(theta) ** 32 + 7.20884007369564e17 * cos(theta) ** 30 - 3.60856781594661e17 * cos(theta) ** 28 + 1.47623228834179e17 * cos(theta) ** 26 - 4.92077429447265e16 * cos(theta) ** 24 + 1.32889795036639e16 * cos(theta) ** 22 - 2.88239837121724e15 * cos(theta) ** 20 + 496064937075431.0 * cos(theta) ** 18 - 66635588562371.3 * cos(theta) ** 16 + 6834419339730.39 * cos(theta) ** 14 - 519575739277.749 * cos(theta) ** 12 + 28108195731.4192 * cos(theta) ** 10 - 1020878779.5915 * cos(theta) ** 8 + 22794741.4900813 * cos(theta) ** 6 - 270293.377352742 * cos(theta) ** 4 + 1274.96876109784 * cos(theta) ** 2 - 0.999975498900268 ) # @torch.jit.script def Yl50_m1(theta, phi): return ( 0.0793963728422308 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 4.480475747995e15 * cos(theta) ** 49 - 5.32226210064861e16 * cos(theta) ** 47 + 2.96565223237172e17 * cos(theta) ** 45 - 1.03017393335018e18 * cos(theta) ** 43 + 2.50066414466455e18 * cos(theta) ** 41 - 4.50669142554929e18 * cos(theta) ** 39 + 6.25366731522851e18 * cos(theta) ** 37 - 6.83898593093955e18 * cos(theta) ** 35 + 5.98411268957211e18 * cos(theta) ** 33 - 4.22973427054093e18 * cos(theta) ** 31 + 2.42818078494016e18 * cos(theta) ** 29 - 1.13445500424132e18 * cos(theta) ** 27 + 4.30945569792969e17 * cos(theta) ** 25 - 1.32598636859375e17 * cos(theta) ** 23 + 3.28252985571642e16 * cos(theta) ** 21 - 6.47259408169436e15 * cos(theta) ** 19 + 1.00254853982766e15 * cos(theta) ** 17 - 119707288337631.0 * cos(theta) ** 15 + 10742961773890.0 * cos(theta) ** 13 - 700042621857.49 * cos(theta) ** 11 + 31559298526.3623 * cos(theta) ** 9 - 916977196.891882 * cos(theta) ** 7 + 15356077.4599119 * cos(theta) ** 5 - 121391.916679145 * cos(theta) ** 3 + 286.301690281003 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl50_m2(theta, phi): return ( 0.00157289941411275 * (1.0 - cos(theta) ** 2) * ( 2.19543311651755e17 * cos(theta) ** 48 - 2.50146318730485e18 * cos(theta) ** 46 + 1.33454350456728e19 * cos(theta) ** 44 - 4.42974791340577e19 * cos(theta) ** 42 + 1.02527229931246e20 * cos(theta) ** 40 - 1.75760965596422e20 * cos(theta) ** 38 + 2.31385690663455e20 * cos(theta) ** 36 - 2.39364507582884e20 * cos(theta) ** 34 + 1.9747571875588e20 * cos(theta) ** 32 - 1.31121762386769e20 * cos(theta) ** 30 + 7.04172427632647e19 * cos(theta) ** 28 - 3.06302851145156e19 * cos(theta) ** 26 + 1.07736392448242e19 * cos(theta) ** 24 - 3.04976864776562e18 * cos(theta) ** 22 + 6.89331269700449e17 * cos(theta) ** 20 - 1.22979287552193e17 * cos(theta) ** 18 + 1.70433251770702e16 * cos(theta) ** 16 - 1.79560932506446e15 * cos(theta) ** 14 + 139658503060569.0 * cos(theta) ** 12 - 7700468840432.4 * cos(theta) ** 10 + 284033686737.26 * cos(theta) ** 8 - 6418840378.24318 * cos(theta) ** 6 + 76780387.2995595 * cos(theta) ** 4 - 364175.750037436 * cos(theta) ** 2 + 286.301690281003 ) * cos(2 * phi) ) # @torch.jit.script def Yl50_m3(theta, phi): return ( 3.11847593634313e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 1.05380789592842e19 * cos(theta) ** 47 - 1.15067306616023e20 * cos(theta) ** 45 + 5.87199142009602e20 * cos(theta) ** 43 - 1.86049412363042e21 * cos(theta) ** 41 + 4.10108919724985e21 * cos(theta) ** 39 - 6.67891669266405e21 * cos(theta) ** 37 + 8.32988486388438e21 * cos(theta) ** 35 - 8.13839325781807e21 * cos(theta) ** 33 + 6.31922300018815e21 * cos(theta) ** 31 - 3.93365287160306e21 * cos(theta) ** 29 + 1.97168279737141e21 * cos(theta) ** 27 - 7.96387412977406e20 * cos(theta) ** 25 + 2.58567341875781e20 * cos(theta) ** 23 - 6.70949102508437e19 * cos(theta) ** 21 + 1.3786625394009e19 * cos(theta) ** 19 - 2.21362717593947e18 * cos(theta) ** 17 + 2.72693202833123e17 * cos(theta) ** 15 - 2.51385305509025e16 * cos(theta) ** 13 + 1.67590203672683e15 * cos(theta) ** 11 - 77004688404324.0 * cos(theta) ** 9 + 2272269493898.08 * cos(theta) ** 7 - 38513042269.4591 * cos(theta) ** 5 + 307121549.198238 * cos(theta) ** 3 - 728351.500074873 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl50_m4(theta, phi): return ( 6.19008465308964e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 4.9528971108636e20 * cos(theta) ** 46 - 5.17802879772103e21 * cos(theta) ** 44 + 2.52495631064129e22 * cos(theta) ** 42 - 7.62802590688473e22 * cos(theta) ** 40 + 1.59942478692744e23 * cos(theta) ** 38 - 2.4711991762857e23 * cos(theta) ** 36 + 2.91545970235953e23 * cos(theta) ** 34 - 2.68566977507996e23 * cos(theta) ** 32 + 1.95895913005833e23 * cos(theta) ** 30 - 1.14075933276489e23 * cos(theta) ** 28 + 5.32354355290281e22 * cos(theta) ** 26 - 1.99096853244351e22 * cos(theta) ** 24 + 5.94704886314296e21 * cos(theta) ** 22 - 1.40899311526772e21 * cos(theta) ** 20 + 2.61945882486171e20 * cos(theta) ** 18 - 3.7631661990971e19 * cos(theta) ** 16 + 4.09039804249685e18 * cos(theta) ** 14 - 3.26800897161732e17 * cos(theta) ** 12 + 1.84349224039952e16 * cos(theta) ** 10 - 693042195638916.0 * cos(theta) ** 8 + 15905886457286.6 * cos(theta) ** 6 - 192565211347.295 * cos(theta) ** 4 + 921364647.594714 * cos(theta) ** 2 - 728351.500074873 ) * cos(4 * phi) ) # @torch.jit.script def Yl50_m5(theta, phi): return ( 1.2306550203639e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 2.27833267099725e22 * cos(theta) ** 45 - 2.27833267099725e23 * cos(theta) ** 43 + 1.06048165046934e24 * cos(theta) ** 41 - 3.05121036275389e24 * cos(theta) ** 39 + 6.07781419032428e24 * cos(theta) ** 37 - 8.89631703462851e24 * cos(theta) ** 35 + 9.91256298802241e24 * cos(theta) ** 33 - 8.59414328025588e24 * cos(theta) ** 31 + 5.87687739017498e24 * cos(theta) ** 29 - 3.19412613174169e24 * cos(theta) ** 27 + 1.38412132375473e24 * cos(theta) ** 25 - 4.77832447786443e23 * cos(theta) ** 23 + 1.30835074989145e23 * cos(theta) ** 21 - 2.81798623053544e22 * cos(theta) ** 19 + 4.71502588475107e21 * cos(theta) ** 17 - 6.02106591855536e20 * cos(theta) ** 15 + 5.72655725949559e19 * cos(theta) ** 13 - 3.92161076594079e18 * cos(theta) ** 11 + 1.84349224039952e17 * cos(theta) ** 9 - 5.54433756511133e15 * cos(theta) ** 7 + 95435318743719.5 * cos(theta) ** 5 - 770260845389.181 * cos(theta) ** 3 + 1842729295.18943 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl50_m6(theta, phi): return ( 2.45152348093323e-10 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.02524970194876e24 * cos(theta) ** 44 - 9.79683048528819e24 * cos(theta) ** 42 + 4.3479747669243e25 * cos(theta) ** 40 - 1.18997204147402e26 * cos(theta) ** 38 + 2.24879125041999e26 * cos(theta) ** 36 - 3.11371096211998e26 * cos(theta) ** 34 + 3.27114578604739e26 * cos(theta) ** 32 - 2.66418441687932e26 * cos(theta) ** 30 + 1.70429444315074e26 * cos(theta) ** 28 - 8.62414055570256e25 * cos(theta) ** 26 + 3.46030330938683e25 * cos(theta) ** 24 - 1.09901462990882e25 * cos(theta) ** 22 + 2.74753657477205e24 * cos(theta) ** 20 - 5.35417383801733e23 * cos(theta) ** 18 + 8.01554400407682e22 * cos(theta) ** 16 - 9.03159887783304e21 * cos(theta) ** 14 + 7.44452443734426e20 * cos(theta) ** 12 - 4.31377184253487e19 * cos(theta) ** 10 + 1.65914301635956e18 * cos(theta) ** 8 - 3.88103629557793e16 * cos(theta) ** 6 + 477176593718598.0 * cos(theta) ** 4 - 2310782536167.54 * cos(theta) ** 2 + 1842729295.18943 ) * cos(6 * phi) ) # @torch.jit.script def Yl50_m7(theta, phi): return ( 4.89522086436078e-12 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 4.51109868857456e25 * cos(theta) ** 43 - 4.11466880382104e26 * cos(theta) ** 41 + 1.73918990676972e27 * cos(theta) ** 39 - 4.52189375760127e27 * cos(theta) ** 37 + 8.09564850151195e27 * cos(theta) ** 35 - 1.05866172712079e28 * cos(theta) ** 33 + 1.04676665153517e28 * cos(theta) ** 31 - 7.99255325063797e27 * cos(theta) ** 29 + 4.77202444082208e27 * cos(theta) ** 27 - 2.24227654448266e27 * cos(theta) ** 25 + 8.30472794252839e26 * cos(theta) ** 23 - 2.4178321857994e26 * cos(theta) ** 21 + 5.4950731495441e25 * cos(theta) ** 19 - 9.63751290843119e24 * cos(theta) ** 17 + 1.28248704065229e24 * cos(theta) ** 15 - 1.26442384289663e23 * cos(theta) ** 13 + 8.93342932481311e21 * cos(theta) ** 11 - 4.31377184253487e20 * cos(theta) ** 9 + 1.32731441308765e19 * cos(theta) ** 7 - 2.32862177734676e17 * cos(theta) ** 5 + 1.90870637487439e15 * cos(theta) ** 3 - 4621565072335.09 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl50_m8(theta, phi): return ( 9.80221144853387e-14 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.93977243608706e27 * cos(theta) ** 42 - 1.68701420956663e28 * cos(theta) ** 40 + 6.7828406364019e28 * cos(theta) ** 38 - 1.67310069031247e29 * cos(theta) ** 36 + 2.83347697552918e29 * cos(theta) ** 34 - 3.49358369949862e29 * cos(theta) ** 32 + 3.24497661975902e29 * cos(theta) ** 30 - 2.31784044268501e29 * cos(theta) ** 28 + 1.28844659902196e29 * cos(theta) ** 26 - 5.60569136120666e28 * cos(theta) ** 24 + 1.91008742678153e28 * cos(theta) ** 22 - 5.07744759017875e27 * cos(theta) ** 20 + 1.04406389841338e27 * cos(theta) ** 18 - 1.6383771944333e26 * cos(theta) ** 16 + 1.92373056097844e25 * cos(theta) ** 14 - 1.64375099576561e24 * cos(theta) ** 12 + 9.82677225729443e22 * cos(theta) ** 10 - 3.88239465828138e21 * cos(theta) ** 8 + 9.29120089161356e19 * cos(theta) ** 6 - 1.16431088867338e18 * cos(theta) ** 4 + 5.72611912462317e15 * cos(theta) ** 2 - 4621565072335.09 ) * cos(8 * phi) ) # @torch.jit.script def Yl50_m9(theta, phi): return ( 1.96912558776175e-15 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 8.14704423156566e28 * cos(theta) ** 41 - 6.74805683826651e29 * cos(theta) ** 39 + 2.57747944183272e30 * cos(theta) ** 37 - 6.02316248512489e30 * cos(theta) ** 35 + 9.63382171679922e30 * cos(theta) ** 33 - 1.11794678383956e31 * cos(theta) ** 31 + 9.73492985927705e30 * cos(theta) ** 29 - 6.48995323951803e30 * cos(theta) ** 27 + 3.3499611574571e30 * cos(theta) ** 25 - 1.3453659266896e30 * cos(theta) ** 23 + 4.20219233891936e29 * cos(theta) ** 21 - 1.01548951803575e29 * cos(theta) ** 19 + 1.87931501714408e28 * cos(theta) ** 17 - 2.62140351109328e27 * cos(theta) ** 15 + 2.69322278536981e26 * cos(theta) ** 13 - 1.97250119491874e25 * cos(theta) ** 11 + 9.82677225729443e23 * cos(theta) ** 9 - 3.1059157266251e22 * cos(theta) ** 7 + 5.57472053496814e20 * cos(theta) ** 5 - 4.65724355469351e18 * cos(theta) ** 3 + 1.14522382492463e16 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl50_m10(theta, phi): return ( 3.9701403696069e-17 * (1.0 - cos(theta) ** 2) ** 5 * ( 3.34028813494192e30 * cos(theta) ** 40 - 2.63174216692394e31 * cos(theta) ** 38 + 9.53667393478107e31 * cos(theta) ** 36 - 2.10810686979371e32 * cos(theta) ** 34 + 3.17916116654374e32 * cos(theta) ** 32 - 3.46563502990263e32 * cos(theta) ** 30 + 2.82312965919034e32 * cos(theta) ** 28 - 1.75228737466987e32 * cos(theta) ** 26 + 8.37490289364275e31 * cos(theta) ** 24 - 3.09434163138608e31 * cos(theta) ** 22 + 8.82460391173066e30 * cos(theta) ** 20 - 1.92943008426792e30 * cos(theta) ** 18 + 3.19483552914494e29 * cos(theta) ** 16 - 3.93210526663993e28 * cos(theta) ** 14 + 3.50118962098076e27 * cos(theta) ** 12 - 2.16975131441061e26 * cos(theta) ** 10 + 8.84409503156498e24 * cos(theta) ** 8 - 2.17414100863757e23 * cos(theta) ** 6 + 2.78736026748407e21 * cos(theta) ** 4 - 1.39717306640805e19 * cos(theta) ** 2 + 1.14522382492463e16 ) * cos(10 * phi) ) # @torch.jit.script def Yl50_m11(theta, phi): return ( 8.0373142469886e-19 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.33611525397677e32 * cos(theta) ** 39 - 1.0000620234311e33 * cos(theta) ** 37 + 3.43320261652119e33 * cos(theta) ** 35 - 7.16756335729862e33 * cos(theta) ** 33 + 1.017331573294e34 * cos(theta) ** 31 - 1.03969050897079e34 * cos(theta) ** 29 + 7.90476304573296e33 * cos(theta) ** 27 - 4.55594717414166e33 * cos(theta) ** 25 + 2.00997669447426e33 * cos(theta) ** 23 - 6.80755158904937e32 * cos(theta) ** 21 + 1.76492078234613e32 * cos(theta) ** 19 - 3.47297415168226e31 * cos(theta) ** 17 + 5.1117368466319e30 * cos(theta) ** 15 - 5.5049473732959e29 * cos(theta) ** 13 + 4.20142754517691e28 * cos(theta) ** 11 - 2.16975131441061e27 * cos(theta) ** 9 + 7.07527602525199e25 * cos(theta) ** 7 - 1.30448460518254e24 * cos(theta) ** 5 + 1.11494410699363e22 * cos(theta) ** 3 - 2.79434613281611e19 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl50_m12(theta, phi): return ( 1.63449200523326e-20 * (1.0 - cos(theta) ** 2) ** 6 * ( 5.2108494905094e33 * cos(theta) ** 38 - 3.70022948669506e34 * cos(theta) ** 36 + 1.20162091578242e35 * cos(theta) ** 34 - 2.36529590790854e35 * cos(theta) ** 32 + 3.15372787721139e35 * cos(theta) ** 30 - 3.01510247601529e35 * cos(theta) ** 28 + 2.1342860223479e35 * cos(theta) ** 26 - 1.13898679353541e35 * cos(theta) ** 24 + 4.6229463972908e34 * cos(theta) ** 22 - 1.42958583370037e34 * cos(theta) ** 20 + 3.35334948645765e33 * cos(theta) ** 18 - 5.90405605785985e32 * cos(theta) ** 16 + 7.66760526994786e31 * cos(theta) ** 14 - 7.15643158528467e30 * cos(theta) ** 12 + 4.6215702996946e29 * cos(theta) ** 10 - 1.95277618296955e28 * cos(theta) ** 8 + 4.95269321767639e26 * cos(theta) ** 6 - 6.52242302591272e24 * cos(theta) ** 4 + 3.34483232098088e22 * cos(theta) ** 2 - 2.79434613281611e19 ) * cos(12 * phi) ) # @torch.jit.script def Yl50_m13(theta, phi): return ( 3.34057116160727e-22 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.98012280639357e35 * cos(theta) ** 37 - 1.33208261521022e36 * cos(theta) ** 35 + 4.08551111366021e36 * cos(theta) ** 33 - 7.56894690530734e36 * cos(theta) ** 31 + 9.46118363163418e36 * cos(theta) ** 29 - 8.4422869328428e36 * cos(theta) ** 27 + 5.54914365810454e36 * cos(theta) ** 25 - 2.73356830448499e36 * cos(theta) ** 23 + 1.01704820740398e36 * cos(theta) ** 21 - 2.85917166740074e35 * cos(theta) ** 19 + 6.03602907562377e34 * cos(theta) ** 17 - 9.44648969257576e33 * cos(theta) ** 15 + 1.0734647377927e33 * cos(theta) ** 13 - 8.5877179023416e31 * cos(theta) ** 11 + 4.6215702996946e30 * cos(theta) ** 9 - 1.56222094637564e29 * cos(theta) ** 7 + 2.97161593060583e27 * cos(theta) ** 5 - 2.60896921036509e25 * cos(theta) ** 3 + 6.68966464196176e22 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl50_m14(theta, phi): return ( 6.86483144987145e-24 * (1.0 - cos(theta) ** 2) ** 7 * ( 7.32645438365621e36 * cos(theta) ** 36 - 4.66228915323577e37 * cos(theta) ** 34 + 1.34821866750787e38 * cos(theta) ** 32 - 2.34637354064528e38 * cos(theta) ** 30 + 2.74374325317391e38 * cos(theta) ** 28 - 2.27941747186756e38 * cos(theta) ** 26 + 1.38728591452613e38 * cos(theta) ** 24 - 6.28720710031549e37 * cos(theta) ** 22 + 2.13580123554835e37 * cos(theta) ** 20 - 5.4324261680614e36 * cos(theta) ** 18 + 1.02612494285604e36 * cos(theta) ** 16 - 1.41697345388636e35 * cos(theta) ** 14 + 1.39550415913051e34 * cos(theta) ** 12 - 9.44648969257576e32 * cos(theta) ** 10 + 4.15941326972514e31 * cos(theta) ** 8 - 1.09355466246295e30 * cos(theta) ** 6 + 1.48580796530292e28 * cos(theta) ** 4 - 7.82690763109526e25 * cos(theta) ** 2 + 6.68966464196176e22 ) * cos(14 * phi) ) # @torch.jit.script def Yl50_m15(theta, phi): return ( 1.41912924480743e-25 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 2.63752357811624e38 * cos(theta) ** 35 - 1.58517831210016e39 * cos(theta) ** 33 + 4.31429973602518e39 * cos(theta) ** 31 - 7.03912062193583e39 * cos(theta) ** 29 + 7.68248110888695e39 * cos(theta) ** 27 - 5.92648542685565e39 * cos(theta) ** 25 + 3.32948619486272e39 * cos(theta) ** 23 - 1.38318556206941e39 * cos(theta) ** 21 + 4.2716024710967e38 * cos(theta) ** 19 - 9.77836710251051e37 * cos(theta) ** 17 + 1.64179990856967e37 * cos(theta) ** 15 - 1.98376283544091e36 * cos(theta) ** 13 + 1.67460499095661e35 * cos(theta) ** 11 - 9.44648969257576e33 * cos(theta) ** 9 + 3.32753061578011e32 * cos(theta) ** 7 - 6.56132797477768e30 * cos(theta) ** 5 + 5.94323186121167e28 * cos(theta) ** 3 - 1.56538152621905e26 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl50_m16(theta, phi): return ( 2.95267712809984e-27 * (1.0 - cos(theta) ** 2) ** 8 * ( 9.23133252340683e39 * cos(theta) ** 34 - 5.23108842993054e40 * cos(theta) ** 32 + 1.33743291816781e41 * cos(theta) ** 30 - 2.04134498036139e41 * cos(theta) ** 28 + 2.07426989939948e41 * cos(theta) ** 26 - 1.48162135671391e41 * cos(theta) ** 24 + 7.65781824818426e40 * cos(theta) ** 22 - 2.90468968034575e40 * cos(theta) ** 20 + 8.11604469508373e39 * cos(theta) ** 18 - 1.66232240742679e39 * cos(theta) ** 16 + 2.4626998628545e38 * cos(theta) ** 14 - 2.57889168607318e37 * cos(theta) ** 12 + 1.84206549005227e36 * cos(theta) ** 10 - 8.50184072331818e34 * cos(theta) ** 8 + 2.32927143104608e33 * cos(theta) ** 6 - 3.28066398738884e31 * cos(theta) ** 4 + 1.7829695583635e29 * cos(theta) ** 2 - 1.56538152621905e26 ) * cos(16 * phi) ) # @torch.jit.script def Yl50_m17(theta, phi): return ( 6.18641571065642e-29 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 3.13865305795832e41 * cos(theta) ** 33 - 1.67394829757777e42 * cos(theta) ** 31 + 4.01229875450342e42 * cos(theta) ** 29 - 5.71576594501189e42 * cos(theta) ** 27 + 5.39310173843864e42 * cos(theta) ** 25 - 3.55589125611339e42 * cos(theta) ** 23 + 1.68472001460054e42 * cos(theta) ** 21 - 5.80937936069151e41 * cos(theta) ** 19 + 1.46088804511507e41 * cos(theta) ** 17 - 2.65971585188286e40 * cos(theta) ** 15 + 3.4477798079963e39 * cos(theta) ** 13 - 3.09467002328782e38 * cos(theta) ** 11 + 1.84206549005227e37 * cos(theta) ** 9 - 6.80147257865454e35 * cos(theta) ** 7 + 1.39756285862765e34 * cos(theta) ** 5 - 1.31226559495554e32 * cos(theta) ** 3 + 3.565939116727e29 * cos(theta) ) * cos(17 * phi) ) # @torch.jit.script def Yl50_m18(theta, phi): return ( 1.30595338012623e-30 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.03575550912625e43 * cos(theta) ** 32 - 5.18923972249109e43 * cos(theta) ** 30 + 1.16356663880599e44 * cos(theta) ** 28 - 1.54325680515321e44 * cos(theta) ** 26 + 1.34827543460966e44 * cos(theta) ** 24 - 8.17854988906079e43 * cos(theta) ** 22 + 3.53791203066113e43 * cos(theta) ** 20 - 1.10378207853139e43 * cos(theta) ** 18 + 2.48350967669562e42 * cos(theta) ** 16 - 3.98957377782429e41 * cos(theta) ** 14 + 4.48211375039519e40 * cos(theta) ** 12 - 3.4041370256166e39 * cos(theta) ** 10 + 1.65785894104705e38 * cos(theta) ** 8 - 4.76103080505818e36 * cos(theta) ** 6 + 6.98781429313823e34 * cos(theta) ** 4 - 3.93679678486661e32 * cos(theta) ** 2 + 3.565939116727e29 ) * cos(18 * phi) ) # @torch.jit.script def Yl50_m19(theta, phi): return ( 2.77925335924729e-32 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 3.31441762920399e44 * cos(theta) ** 31 - 1.55677191674733e45 * cos(theta) ** 29 + 3.25798658865678e45 * cos(theta) ** 27 - 4.01246769339835e45 * cos(theta) ** 25 + 3.23586104306318e45 * cos(theta) ** 23 - 1.79928097559337e45 * cos(theta) ** 21 + 7.07582406132226e44 * cos(theta) ** 19 - 1.9868077413565e44 * cos(theta) ** 17 + 3.97361548271299e43 * cos(theta) ** 15 - 5.58540328895401e42 * cos(theta) ** 13 + 5.37853650047423e41 * cos(theta) ** 11 - 3.4041370256166e40 * cos(theta) ** 9 + 1.32628715283764e39 * cos(theta) ** 7 - 2.85661848303491e37 * cos(theta) ** 5 + 2.79512571725529e35 * cos(theta) ** 3 - 7.87359356973322e32 * cos(theta) ) * cos(19 * phi) ) # @torch.jit.script def Yl50_m20(theta, phi): return ( 5.96620638211175e-34 * (1.0 - cos(theta) ** 2) ** 10 * ( 1.02746946505324e46 * cos(theta) ** 30 - 4.51463855856725e46 * cos(theta) ** 28 + 8.7965637893733e46 * cos(theta) ** 26 - 1.00311692334959e47 * cos(theta) ** 24 + 7.44248039904532e46 * cos(theta) ** 22 - 3.77849004874609e46 * cos(theta) ** 20 + 1.34440657165123e46 * cos(theta) ** 18 - 3.37757316030604e45 * cos(theta) ** 16 + 5.96042322406949e44 * cos(theta) ** 14 - 7.26102427564021e43 * cos(theta) ** 12 + 5.91639015052165e42 * cos(theta) ** 10 - 3.06372332305494e41 * cos(theta) ** 8 + 9.28401006986345e39 * cos(theta) ** 6 - 1.42830924151745e38 * cos(theta) ** 4 + 8.38537715176588e35 * cos(theta) ** 2 - 7.87359356973322e32 ) * cos(20 * phi) ) # @torch.jit.script def Yl50_m21(theta, phi): return ( 1.29273191440952e-35 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 3.08240839515971e47 * cos(theta) ** 29 - 1.26409879639883e48 * cos(theta) ** 27 + 2.28710658523706e48 * cos(theta) ** 25 - 2.40748061603901e48 * cos(theta) ** 23 + 1.63734568778997e48 * cos(theta) ** 21 - 7.55698009749217e47 * cos(theta) ** 19 + 2.41993182897221e47 * cos(theta) ** 17 - 5.40411705648967e46 * cos(theta) ** 15 + 8.34459251369728e45 * cos(theta) ** 13 - 8.71322913076825e44 * cos(theta) ** 11 + 5.91639015052165e43 * cos(theta) ** 9 - 2.45097865844395e42 * cos(theta) ** 7 + 5.57040604191807e40 * cos(theta) ** 5 - 5.71323696606982e38 * cos(theta) ** 3 + 1.67707543035318e36 * cos(theta) ) * cos(21 * phi) ) # @torch.jit.script def Yl50_m22(theta, phi): return ( 2.82906693875058e-37 * (1.0 - cos(theta) ** 2) ** 11 * ( 8.93898434596315e48 * cos(theta) ** 28 - 3.41306675027684e49 * cos(theta) ** 26 + 5.71776646309264e49 * cos(theta) ** 24 - 5.53720541688972e49 * cos(theta) ** 22 + 3.43842594435894e49 * cos(theta) ** 20 - 1.43582621852351e49 * cos(theta) ** 18 + 4.11388410925276e48 * cos(theta) ** 16 - 8.1061755847345e47 * cos(theta) ** 14 + 1.08479702678065e47 * cos(theta) ** 12 - 9.58455204384507e45 * cos(theta) ** 10 + 5.32475113546949e44 * cos(theta) ** 8 - 1.71568506091077e43 * cos(theta) ** 6 + 2.78520302095904e41 * cos(theta) ** 4 - 1.71397108982095e39 * cos(theta) ** 2 + 1.67707543035318e36 ) * cos(22 * phi) ) # @torch.jit.script def Yl50_m23(theta, phi): return ( 6.25752765615712e-39 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 2.50291561686968e50 * cos(theta) ** 27 - 8.87397355071979e50 * cos(theta) ** 25 + 1.37226395114223e51 * cos(theta) ** 23 - 1.21818519171574e51 * cos(theta) ** 21 + 6.87685188871788e50 * cos(theta) ** 19 - 2.58448719334232e50 * cos(theta) ** 17 + 6.58221457480442e49 * cos(theta) ** 15 - 1.13486458186283e49 * cos(theta) ** 13 + 1.30175643213678e48 * cos(theta) ** 11 - 9.58455204384508e46 * cos(theta) ** 9 + 4.25980090837559e45 * cos(theta) ** 7 - 1.02941103654646e44 * cos(theta) ** 5 + 1.11408120838361e42 * cos(theta) ** 3 - 3.42794217964189e39 * cos(theta) ) * cos(23 * phi) ) # @torch.jit.script def Yl50_m24(theta, phi): return ( 1.39992585903302e-40 * (1.0 - cos(theta) ** 2) ** 12 * ( 6.75787216554814e51 * cos(theta) ** 26 - 2.21849338767995e52 * cos(theta) ** 24 + 3.15620708762714e52 * cos(theta) ** 22 - 2.55818890260305e52 * cos(theta) ** 20 + 1.3066018588564e52 * cos(theta) ** 18 - 4.39362822868195e51 * cos(theta) ** 16 + 9.87332186220663e50 * cos(theta) ** 14 - 1.47532395642168e50 * cos(theta) ** 12 + 1.43193207535045e49 * cos(theta) ** 10 - 8.62609683946057e47 * cos(theta) ** 8 + 2.98186063586291e46 * cos(theta) ** 6 - 5.1470551827323e44 * cos(theta) ** 4 + 3.34224362515084e42 * cos(theta) ** 2 - 3.42794217964189e39 ) * cos(24 * phi) ) # @torch.jit.script def Yl50_m25(theta, phi): return ( 3.17020779937648e-42 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 1.75704676304252e53 * cos(theta) ** 25 - 5.32438413043187e53 * cos(theta) ** 23 + 6.94365559277971e53 * cos(theta) ** 21 - 5.1163778052061e53 * cos(theta) ** 19 + 2.35188334594151e53 * cos(theta) ** 17 - 7.02980516589112e52 * cos(theta) ** 15 + 1.38226506070893e52 * cos(theta) ** 13 - 1.77038874770602e51 * cos(theta) ** 11 + 1.43193207535045e50 * cos(theta) ** 9 - 6.90087747156845e48 * cos(theta) ** 7 + 1.78911638151775e47 * cos(theta) ** 5 - 2.05882207309292e45 * cos(theta) ** 3 + 6.68448725030169e42 * cos(theta) ) * cos(25 * phi) ) # @torch.jit.script def Yl50_m26(theta, phi): return ( 7.27295548816133e-44 * (1.0 - cos(theta) ** 2) ** 13 * ( 4.39261690760629e54 * cos(theta) ** 24 - 1.22460834999933e55 * cos(theta) ** 22 + 1.45816767448374e55 * cos(theta) ** 20 - 9.72111782989159e54 * cos(theta) ** 18 + 3.99820168810057e54 * cos(theta) ** 16 - 1.05447077488367e54 * cos(theta) ** 14 + 1.79694457892161e53 * cos(theta) ** 12 - 1.94742762247662e52 * cos(theta) ** 10 + 1.28873886781541e51 * cos(theta) ** 8 - 4.83061423009792e49 * cos(theta) ** 6 + 8.94558190758874e47 * cos(theta) ** 4 - 6.17646621927876e45 * cos(theta) ** 2 + 6.68448725030169e42 ) * cos(26 * phi) ) # @torch.jit.script def Yl50_m27(theta, phi): return ( 1.69184256116626e-45 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.05422805782551e56 * cos(theta) ** 23 - 2.69413836999853e56 * cos(theta) ** 21 + 2.91633534896748e56 * cos(theta) ** 19 - 1.74980120938049e56 * cos(theta) ** 17 + 6.39712270096092e55 * cos(theta) ** 15 - 1.47625908483713e55 * cos(theta) ** 13 + 2.15633349470593e54 * cos(theta) ** 11 - 1.94742762247662e53 * cos(theta) ** 9 + 1.03099109425233e52 * cos(theta) ** 7 - 2.89836853805875e50 * cos(theta) ** 5 + 3.57823276303549e48 * cos(theta) ** 3 - 1.23529324385575e46 * cos(theta) ) * cos(27 * phi) ) # @torch.jit.script def Yl50_m28(theta, phi): return ( 3.9943740060195e-47 * (1.0 - cos(theta) ** 2) ** 14 * ( 2.42472453299867e57 * cos(theta) ** 22 - 5.65769057699691e57 * cos(theta) ** 20 + 5.54103716303821e57 * cos(theta) ** 18 - 2.97466205594683e57 * cos(theta) ** 16 + 9.59568405144138e56 * cos(theta) ** 14 - 1.91913681028828e56 * cos(theta) ** 12 + 2.37196684417652e55 * cos(theta) ** 10 - 1.75268486022896e54 * cos(theta) ** 8 + 7.21693765976629e52 * cos(theta) ** 6 - 1.44918426902938e51 * cos(theta) ** 4 + 1.07346982891065e49 * cos(theta) ** 2 - 1.23529324385575e46 ) * cos(28 * phi) ) # @torch.jit.script def Yl50_m29(theta, phi): return ( 9.58128681137455e-49 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 5.33439397259708e58 * cos(theta) ** 21 - 1.13153811539938e59 * cos(theta) ** 19 + 9.97386689346877e58 * cos(theta) ** 17 - 4.75945928951492e58 * cos(theta) ** 15 + 1.34339576720179e58 * cos(theta) ** 13 - 2.30296417234593e57 * cos(theta) ** 11 + 2.37196684417652e56 * cos(theta) ** 9 - 1.40214788818316e55 * cos(theta) ** 7 + 4.33016259585977e53 * cos(theta) ** 5 - 5.7967370761175e51 * cos(theta) ** 3 + 2.1469396578213e49 * cos(theta) ) * cos(29 * phi) ) # @torch.jit.script def Yl50_m30(theta, phi): return ( 2.33759462454031e-50 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.12022273424539e60 * cos(theta) ** 20 - 2.14992241925882e60 * cos(theta) ** 18 + 1.69555737188969e60 * cos(theta) ** 16 - 7.13918893427238e59 * cos(theta) ** 14 + 1.74641449736233e59 * cos(theta) ** 12 - 2.53326058958052e58 * cos(theta) ** 10 + 2.13477015975887e57 * cos(theta) ** 8 - 9.81503521728215e55 * cos(theta) ** 6 + 2.16508129792989e54 * cos(theta) ** 4 - 1.73902112283525e52 * cos(theta) ** 2 + 2.1469396578213e49 ) * cos(30 * phi) ) # @torch.jit.script def Yl50_m31(theta, phi): return ( 5.80780053812248e-52 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 2.24044546849077e61 * cos(theta) ** 19 - 3.86986035466588e61 * cos(theta) ** 17 + 2.71289179502351e61 * cos(theta) ** 15 - 9.99486450798134e60 * cos(theta) ** 13 + 2.0956973968348e60 * cos(theta) ** 11 - 2.53326058958052e59 * cos(theta) ** 9 + 1.70781612780709e58 * cos(theta) ** 7 - 5.88902113036929e56 * cos(theta) ** 5 + 8.66032519171955e54 * cos(theta) ** 3 - 3.4780422456705e52 * cos(theta) ) * cos(31 * phi) ) # @torch.jit.script def Yl50_m32(theta, phi): return ( 1.47139056186104e-53 * (1.0 - cos(theta) ** 2) ** 16 * ( 4.25684639013247e62 * cos(theta) ** 18 - 6.578762602932e62 * cos(theta) ** 16 + 4.06933769253526e62 * cos(theta) ** 14 - 1.29933238603757e62 * cos(theta) ** 12 + 2.30526713651828e61 * cos(theta) ** 10 - 2.27993453062247e60 * cos(theta) ** 8 + 1.19547128946497e59 * cos(theta) ** 6 - 2.94451056518465e57 * cos(theta) ** 4 + 2.59809755751586e55 * cos(theta) ** 2 - 3.4780422456705e52 ) * cos(32 * phi) ) # @torch.jit.script def Yl50_m33(theta, phi): return ( 3.80673519369261e-55 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 7.66232350223845e63 * cos(theta) ** 17 - 1.05260201646912e64 * cos(theta) ** 15 + 5.69707276954936e63 * cos(theta) ** 13 - 1.55919886324509e63 * cos(theta) ** 11 + 2.30526713651828e62 * cos(theta) ** 9 - 1.82394762449798e61 * cos(theta) ** 7 + 7.1728277367898e59 * cos(theta) ** 5 - 1.17780422607386e58 * cos(theta) ** 3 + 5.19619511503173e55 * cos(theta) ) * cos(33 * phi) ) # @torch.jit.script def Yl50_m34(theta, phi): return ( 1.00736895690158e-56 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.30259499538054e65 * cos(theta) ** 16 - 1.57890302470368e65 * cos(theta) ** 14 + 7.40619460041417e64 * cos(theta) ** 12 - 1.7151187495696e64 * cos(theta) ** 10 + 2.07474042286645e63 * cos(theta) ** 8 - 1.27676333714858e62 * cos(theta) ** 6 + 3.5864138683949e60 * cos(theta) ** 4 - 3.53341267822157e58 * cos(theta) ** 2 + 5.19619511503173e55 ) * cos(34 * phi) ) # @torch.jit.script def Yl50_m35(theta, phi): return ( 2.73161261266203e-58 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 2.08415199260886e66 * cos(theta) ** 15 - 2.21046423458515e66 * cos(theta) ** 13 + 8.88743352049701e65 * cos(theta) ** 11 - 1.7151187495696e65 * cos(theta) ** 9 + 1.65979233829316e64 * cos(theta) ** 7 - 7.6605800228915e62 * cos(theta) ** 5 + 1.43456554735796e61 * cos(theta) ** 3 - 7.06682535644315e58 * cos(theta) ) * cos(35 * phi) ) # @torch.jit.script def Yl50_m36(theta, phi): return ( 7.60543841814552e-60 * (1.0 - cos(theta) ** 2) ** 18 * ( 3.12622798891329e67 * cos(theta) ** 14 - 2.8736035049607e67 * cos(theta) ** 12 + 9.77617687254671e66 * cos(theta) ** 10 - 1.54360687461264e66 * cos(theta) ** 8 + 1.16185463680521e65 * cos(theta) ** 6 - 3.83029001144575e63 * cos(theta) ** 4 + 4.30369664207388e61 * cos(theta) ** 2 - 7.06682535644315e58 ) * cos(36 * phi) ) # @torch.jit.script def Yl50_m37(theta, phi): return ( 2.17921766163123e-61 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 4.3767191844786e68 * cos(theta) ** 13 - 3.44832420595284e68 * cos(theta) ** 11 + 9.77617687254671e67 * cos(theta) ** 9 - 1.23488549969011e67 * cos(theta) ** 7 + 6.97112782083127e65 * cos(theta) ** 5 - 1.5321160045783e64 * cos(theta) ** 3 + 8.60739328414776e61 * cos(theta) ) * cos(37 * phi) ) # @torch.jit.script def Yl50_m38(theta, phi): return ( 6.44299208440446e-63 * (1.0 - cos(theta) ** 2) ** 19 * ( 5.68973493982218e69 * cos(theta) ** 12 - 3.79315662654812e69 * cos(theta) ** 10 + 8.79855918529204e68 * cos(theta) ** 8 - 8.64419849783077e67 * cos(theta) ** 6 + 3.48556391041563e66 * cos(theta) ** 4 - 4.5963480137349e64 * cos(theta) ** 2 + 8.60739328414776e61 ) * cos(38 * phi) ) # @torch.jit.script def Yl50_m39(theta, phi): return ( 1.97152356054512e-64 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 6.82768192778662e70 * cos(theta) ** 11 - 3.79315662654812e70 * cos(theta) ** 9 + 7.03884734823363e69 * cos(theta) ** 7 - 5.18651909869846e68 * cos(theta) ** 5 + 1.39422556416625e67 * cos(theta) ** 3 - 9.1926960274698e64 * cos(theta) ) * cos(39 * phi) ) # @torch.jit.script def Yl50_m40(theta, phi): return ( 6.26591319598679e-66 * (1.0 - cos(theta) ** 2) ** 20 * ( 7.51045012056528e71 * cos(theta) ** 10 - 3.41384096389331e71 * cos(theta) ** 8 + 4.92719314376354e70 * cos(theta) ** 6 - 2.59325954934923e69 * cos(theta) ** 4 + 4.18267669249876e67 * cos(theta) ** 2 - 9.1926960274698e64 ) * cos(40 * phi) ) # @torch.jit.script def Yl50_m41(theta, phi): return ( 2.07712999851474e-67 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 7.51045012056528e72 * cos(theta) ** 9 - 2.73107277111465e72 * cos(theta) ** 7 + 2.95631588625812e71 * cos(theta) ** 5 - 1.03730381973969e70 * cos(theta) ** 3 + 8.36535338499752e67 * cos(theta) ) * cos(41 * phi) ) # @torch.jit.script def Yl50_m42(theta, phi): return ( 7.21852574267788e-69 * (1.0 - cos(theta) ** 2) ** 21 * ( 6.75940510850875e73 * cos(theta) ** 8 - 1.91175093978025e73 * cos(theta) ** 6 + 1.47815794312906e72 * cos(theta) ** 4 - 3.11191145921908e70 * cos(theta) ** 2 + 8.36535338499752e67 ) * cos(42 * phi) ) # @torch.jit.script def Yl50_m43(theta, phi): return ( 2.64643993717771e-70 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 5.407524086807e74 * cos(theta) ** 7 - 1.14705056386815e74 * cos(theta) ** 5 + 5.91263177251625e72 * cos(theta) ** 3 - 6.22382291843816e70 * cos(theta) ) * cos(43 * phi) ) # @torch.jit.script def Yl50_m44(theta, phi): return ( 1.0316897006675e-71 * (1.0 - cos(theta) ** 2) ** 22 * ( 3.7852668607649e75 * cos(theta) ** 6 - 5.73525281934076e74 * cos(theta) ** 4 + 1.77378953175487e73 * cos(theta) ** 2 - 6.22382291843816e70 ) * cos(44 * phi) ) # @torch.jit.script def Yl50_m45(theta, phi): return ( 4.32127263268872e-73 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 2.27116011645894e76 * cos(theta) ** 5 - 2.2941011277363e75 * cos(theta) ** 3 + 3.54757906350975e73 * cos(theta) ) * cos(45 * phi) ) # @torch.jit.script def Yl50_m46(theta, phi): return ( 1.97238208171112e-74 * (1.0 - cos(theta) ** 2) ** 23 * ( 1.13558005822947e77 * cos(theta) ** 4 - 6.88230338320891e75 * cos(theta) ** 2 + 3.54757906350975e73 ) * cos(46 * phi) ) # @torch.jit.script def Yl50_m47(theta, phi): return ( 1.00132529142183e-75 * (1.0 - cos(theta) ** 2) ** 23.5 * (4.54232023291788e77 * cos(theta) ** 3 - 1.37646067664178e76 * cos(theta)) * cos(47 * phi) ) # @torch.jit.script def Yl50_m48(theta, phi): return ( 5.83984769173129e-77 * (1.0 - cos(theta) ** 2) ** 24 * (1.36269606987536e78 * cos(theta) ** 2 - 1.37646067664178e76) * cos(48 * phi) ) # @torch.jit.script def Yl50_m49(theta, phi): return ( 11.3109198355194 * (1.0 - cos(theta) ** 2) ** 24.5 * cos(49 * phi) * cos(theta) ) # @torch.jit.script def Yl50_m50(theta, phi): return 1.13109198355194 * (1.0 - cos(theta) ** 2) ** 25 * cos(50 * phi) # @torch.jit.script def Yl51_m_minus_51(theta, phi): return 1.1366230286804 * (1.0 - cos(theta) ** 2) ** 25.5 * sin(51 * phi) # @torch.jit.script def Yl51_m_minus_50(theta, phi): return 11.4793298912137 * (1.0 - cos(theta) ** 2) ** 25 * sin(50 * phi) * cos(theta) # @torch.jit.script def Yl51_m_minus_49(theta, phi): return ( 5.92709446013574e-79 * (1.0 - cos(theta) ** 2) ** 24.5 * (1.37632303057412e80 * cos(theta) ** 2 - 1.36269606987536e78) * sin(49 * phi) ) # @torch.jit.script def Yl51_m_minus_48(theta, phi): return ( 1.02660287462151e-77 * (1.0 - cos(theta) ** 2) ** 24 * (4.58774343524706e79 * cos(theta) ** 3 - 1.36269606987536e78 * cos(theta)) * sin(48 * phi) ) # @torch.jit.script def Yl51_m_minus_47(theta, phi): return ( 2.04291392629189e-76 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 1.14693585881177e79 * cos(theta) ** 4 - 6.81348034937682e77 * cos(theta) ** 2 + 3.44115169160446e75 ) * sin(47 * phi) ) # @torch.jit.script def Yl51_m_minus_46(theta, phi): return ( 4.52218274953181e-75 * (1.0 - cos(theta) ** 2) ** 23 * ( 2.29387171762353e78 * cos(theta) ** 5 - 2.27116011645894e77 * cos(theta) ** 3 + 3.44115169160446e75 * cos(theta) ) * sin(46 * phi) ) # @torch.jit.script def Yl51_m_minus_45(theta, phi): return ( 1.09096194385207e-73 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 3.82311952937255e77 * cos(theta) ** 6 - 5.67790029114735e76 * cos(theta) ** 4 + 1.72057584580223e75 * cos(theta) ** 2 - 5.91263177251625e72 ) * sin(45 * phi) ) # @torch.jit.script def Yl51_m_minus_44(theta, phi): return ( 2.82809658797451e-72 * (1.0 - cos(theta) ** 2) ** 22 * ( 5.46159932767507e76 * cos(theta) ** 7 - 1.13558005822947e76 * cos(theta) ** 5 + 5.73525281934076e74 * cos(theta) ** 3 - 5.91263177251625e72 * cos(theta) ) * sin(44 * phi) ) # @torch.jit.script def Yl51_m_minus_43(theta, phi): return ( 7.79652424885213e-71 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 6.82699915959384e75 * cos(theta) ** 8 - 1.89263343038245e75 * cos(theta) ** 6 + 1.43381320483519e74 * cos(theta) ** 4 - 2.95631588625812e72 * cos(theta) ** 2 + 7.77977864804769e69 ) * sin(43 * phi) ) # @torch.jit.script def Yl51_m_minus_42(theta, phi): return ( 2.26770321354111e-69 * (1.0 - cos(theta) ** 2) ** 21 * ( 7.58555462177093e74 * cos(theta) ** 9 - 2.7037620434035e74 * cos(theta) ** 7 + 2.86762640967038e73 * cos(theta) ** 5 - 9.85438628752708e71 * cos(theta) ** 3 + 7.77977864804769e69 * cos(theta) ) * sin(42 * phi) ) # @torch.jit.script def Yl51_m_minus_41(theta, phi): return ( 6.91556535228707e-68 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 7.58555462177093e73 * cos(theta) ** 10 - 3.37970255425438e73 * cos(theta) ** 8 + 4.77937734945063e72 * cos(theta) ** 6 - 2.46359657188177e71 * cos(theta) ** 4 + 3.88988932402385e69 * cos(theta) ** 2 - 8.36535338499752e66 ) * sin(41 * phi) ) # @torch.jit.script def Yl51_m_minus_40(theta, phi): return ( 2.19997601512958e-66 * (1.0 - cos(theta) ** 2) ** 20 * ( 6.89595874706449e72 * cos(theta) ** 11 - 3.75522506028264e72 * cos(theta) ** 9 + 6.82768192778662e71 * cos(theta) ** 7 - 4.92719314376354e70 * cos(theta) ** 5 + 1.29662977467462e69 * cos(theta) ** 3 - 8.36535338499752e66 * cos(theta) ) * sin(40 * phi) ) # @torch.jit.script def Yl51_m_minus_39(theta, phi): return ( 7.26991386339812e-65 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 5.7466322892204e71 * cos(theta) ** 12 - 3.75522506028264e71 * cos(theta) ** 10 + 8.53460240973327e70 * cos(theta) ** 8 - 8.21198857293923e69 * cos(theta) ** 6 + 3.24157443668654e68 * cos(theta) ** 4 - 4.18267669249876e66 * cos(theta) ** 2 + 7.6605800228915e63 ) * sin(39 * phi) ) # @torch.jit.script def Yl51_m_minus_38(theta, phi): return ( 2.48669313889022e-63 * (1.0 - cos(theta) ** 2) ** 19 * ( 4.42048637632339e70 * cos(theta) ** 13 - 3.41384096389331e70 * cos(theta) ** 11 + 9.48289156637031e69 * cos(theta) ** 9 - 1.1731412247056e69 * cos(theta) ** 7 + 6.48314887337308e67 * cos(theta) ** 5 - 1.39422556416625e66 * cos(theta) ** 3 + 7.6605800228915e63 * cos(theta) ) * sin(38 * phi) ) # @torch.jit.script def Yl51_m_minus_37(theta, phi): return ( 8.77770977401657e-62 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 3.15749026880242e69 * cos(theta) ** 14 - 2.84486746991109e69 * cos(theta) ** 12 + 9.4828915663703e68 * cos(theta) ** 10 - 1.46642653088201e68 * cos(theta) ** 8 + 1.08052481222885e67 * cos(theta) ** 6 - 3.48556391041563e65 * cos(theta) ** 4 + 3.83029001144575e63 * cos(theta) ** 2 - 6.14813806010554e60 ) * sin(37 * phi) ) # @torch.jit.script def Yl51_m_minus_36(theta, phi): return ( 3.18910033265596e-60 * (1.0 - cos(theta) ** 2) ** 18 * ( 2.10499351253495e68 * cos(theta) ** 15 - 2.1883595922393e68 * cos(theta) ** 13 + 8.6208105148821e67 * cos(theta) ** 11 - 1.62936281209112e67 * cos(theta) ** 9 + 1.54360687461264e66 * cos(theta) ** 7 - 6.97112782083127e64 * cos(theta) ** 5 + 1.27676333714858e63 * cos(theta) ** 3 - 6.14813806010554e60 * cos(theta) ) * sin(36 * phi) ) # @torch.jit.script def Yl51_m_minus_35(theta, phi): return ( 1.18983790564055e-58 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 1.31562094533434e67 * cos(theta) ** 16 - 1.56311399445664e67 * cos(theta) ** 14 + 7.18400876240175e66 * cos(theta) ** 12 - 1.62936281209112e66 * cos(theta) ** 10 + 1.9295085932658e65 * cos(theta) ** 8 - 1.16185463680521e64 * cos(theta) ** 6 + 3.19190834287146e62 * cos(theta) ** 4 - 3.07406903005277e60 * cos(theta) ** 2 + 4.41676584777697e57 ) * sin(35 * phi) ) # @torch.jit.script def Yl51_m_minus_34(theta, phi): return ( 4.54947713629167e-57 * (1.0 - cos(theta) ** 2) ** 17 * ( 7.73894673726083e65 * cos(theta) ** 17 - 1.04207599630443e66 * cos(theta) ** 15 + 5.52616058646288e65 * cos(theta) ** 13 - 1.48123892008283e65 * cos(theta) ** 11 + 2.143898436962e64 * cos(theta) ** 9 - 1.65979233829316e63 * cos(theta) ** 7 + 6.38381668574292e61 * cos(theta) ** 5 - 1.02468967668426e60 * cos(theta) ** 3 + 4.41676584777697e57 * cos(theta) ) * sin(34 * phi) ) # @torch.jit.script def Yl51_m_minus_33(theta, phi): return ( 1.77953773735963e-55 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 4.2994148540338e64 * cos(theta) ** 18 - 6.51297497690268e64 * cos(theta) ** 16 + 3.9472575617592e64 * cos(theta) ** 14 - 1.2343657667357e64 * cos(theta) ** 12 + 2.143898436962e63 * cos(theta) ** 10 - 2.07474042286645e62 * cos(theta) ** 8 + 1.06396944762382e61 * cos(theta) ** 6 - 2.56172419171064e59 * cos(theta) ** 4 + 2.20838292388848e57 * cos(theta) ** 2 - 2.88677506390652e54 ) * sin(33 * phi) ) # @torch.jit.script def Yl51_m_minus_32(theta, phi): return ( 7.10924769273408e-54 * (1.0 - cos(theta) ** 2) ** 16 * ( 2.26284992317568e63 * cos(theta) ** 19 - 3.83116175111923e63 * cos(theta) ** 17 + 2.6315050411728e63 * cos(theta) ** 15 - 9.49512128258227e62 * cos(theta) ** 13 + 1.94899857905636e62 * cos(theta) ** 11 - 2.30526713651828e61 * cos(theta) ** 9 + 1.51995635374831e60 * cos(theta) ** 7 - 5.12344838342128e58 * cos(theta) ** 5 + 7.36127641296161e56 * cos(theta) ** 3 - 2.88677506390652e54 * cos(theta) ) * sin(32 * phi) ) # @torch.jit.script def Yl51_m_minus_31(theta, phi): return ( 2.89652772429387e-52 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 1.13142496158784e62 * cos(theta) ** 20 - 2.12842319506624e62 * cos(theta) ** 18 + 1.644690650733e62 * cos(theta) ** 16 - 6.78222948755877e61 * cos(theta) ** 14 + 1.62416548254697e61 * cos(theta) ** 12 - 2.30526713651828e60 * cos(theta) ** 10 + 1.89994544218539e59 * cos(theta) ** 8 - 8.53908063903547e57 * cos(theta) ** 6 + 1.8403191032404e56 * cos(theta) ** 4 - 1.44338753195326e54 * cos(theta) ** 2 + 1.73902112283525e51 ) * sin(31 * phi) ) # @torch.jit.script def Yl51_m_minus_30(theta, phi): return ( 1.20197175760466e-50 * (1.0 - cos(theta) ** 2) ** 15 * ( 5.38773791232305e60 * cos(theta) ** 21 - 1.12022273424539e61 * cos(theta) ** 19 + 9.67465088666471e60 * cos(theta) ** 17 - 4.52148632503918e60 * cos(theta) ** 15 + 1.24935806349767e60 * cos(theta) ** 13 - 2.0956973968348e59 * cos(theta) ** 11 + 2.1110504913171e58 * cos(theta) ** 9 - 1.21986866271935e57 * cos(theta) ** 7 + 3.68063820648081e55 * cos(theta) ** 5 - 4.81129177317753e53 * cos(theta) ** 3 + 1.73902112283525e51 * cos(theta) ) * sin(30 * phi) ) # @torch.jit.script def Yl51_m_minus_29(theta, phi): return ( 5.07397254725842e-49 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 2.44897177832866e59 * cos(theta) ** 22 - 5.60111367122694e59 * cos(theta) ** 20 + 5.37480604814706e59 * cos(theta) ** 18 - 2.82592895314949e59 * cos(theta) ** 16 + 8.92398616784048e58 * cos(theta) ** 14 - 1.74641449736233e58 * cos(theta) ** 12 + 2.1110504913171e57 * cos(theta) ** 10 - 1.52483582839919e56 * cos(theta) ** 8 + 6.13439701080135e54 * cos(theta) ** 6 - 1.20282294329438e53 * cos(theta) ** 4 + 8.69510561417625e50 * cos(theta) ** 2 - 9.75881662646044e47 ) * sin(29 * phi) ) # @torch.jit.script def Yl51_m_minus_28(theta, phi): return ( 2.176491746711e-47 * (1.0 - cos(theta) ** 2) ** 14 * ( 1.06477033840377e58 * cos(theta) ** 23 - 2.66719698629854e58 * cos(theta) ** 21 + 2.82884528849845e58 * cos(theta) ** 19 - 1.66231114891146e58 * cos(theta) ** 17 + 5.94932411189365e57 * cos(theta) ** 15 - 1.34339576720179e57 * cos(theta) ** 13 + 1.91913681028828e56 * cos(theta) ** 11 - 1.69426203155466e55 * cos(theta) ** 9 + 8.76342430114478e53 * cos(theta) ** 7 - 2.40564588658876e52 * cos(theta) ** 5 + 2.89836853805875e50 * cos(theta) ** 3 - 9.75881662646044e47 * cos(theta) ) * sin(28 * phi) ) # @torch.jit.script def Yl51_m_minus_27(theta, phi): return ( 9.47711588478168e-46 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 4.43654307668236e56 * cos(theta) ** 24 - 1.21236226649934e57 * cos(theta) ** 22 + 1.41442264424923e57 * cos(theta) ** 20 - 9.23506193839701e56 * cos(theta) ** 18 + 3.71832756993353e56 * cos(theta) ** 16 - 9.59568405144138e55 * cos(theta) ** 14 + 1.59928067524023e55 * cos(theta) ** 12 - 1.69426203155466e54 * cos(theta) ** 10 + 1.0954280376431e53 * cos(theta) ** 8 - 4.00940981098127e51 * cos(theta) ** 6 + 7.24592134514688e49 * cos(theta) ** 4 - 4.87940831323022e47 * cos(theta) ** 2 + 5.1470551827323e44 ) * sin(27 * phi) ) # @torch.jit.script def Yl51_m_minus_26(theta, phi): return ( 4.18498105984344e-44 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.77461723067294e55 * cos(theta) ** 25 - 5.27114028912755e55 * cos(theta) ** 23 + 6.73534592499632e55 * cos(theta) ** 21 - 4.8605589149458e55 * cos(theta) ** 19 + 2.18725151172561e55 * cos(theta) ** 17 - 6.39712270096092e54 * cos(theta) ** 15 + 1.23021590403095e54 * cos(theta) ** 13 - 1.54023821050423e53 * cos(theta) ** 11 + 1.21714226404789e52 * cos(theta) ** 9 - 5.72772830140182e50 * cos(theta) ** 7 + 1.44918426902938e49 * cos(theta) ** 5 - 1.62646943774341e47 * cos(theta) ** 3 + 5.1470551827323e44 * cos(theta) ) * sin(26 * phi) ) # @torch.jit.script def Yl51_m_minus_25(theta, phi): return ( 1.87251598325459e-42 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 6.82545088720363e53 * cos(theta) ** 26 - 2.19630845380315e54 * cos(theta) ** 24 + 3.06152087499833e54 * cos(theta) ** 22 - 2.4302794574729e54 * cos(theta) ** 20 + 1.21513972873645e54 * cos(theta) ** 18 - 3.99820168810057e53 * cos(theta) ** 16 + 8.7872564573639e52 * cos(theta) ** 14 - 1.28353184208686e52 * cos(theta) ** 12 + 1.21714226404789e51 * cos(theta) ** 10 - 7.15966037675227e49 * cos(theta) ** 8 + 2.41530711504896e48 * cos(theta) ** 6 - 4.06617359435852e46 * cos(theta) ** 4 + 2.57352759136615e44 * cos(theta) ** 2 - 2.57095663473142e41 ) * sin(25 * phi) ) # @torch.jit.script def Yl51_m_minus_24(theta, phi): return ( 8.48231139058224e-41 * (1.0 - cos(theta) ** 2) ** 12 * ( 2.52794477303838e52 * cos(theta) ** 27 - 8.78523381521259e52 * cos(theta) ** 25 + 1.33109603260797e53 * cos(theta) ** 23 - 1.15727593212995e53 * cos(theta) ** 21 + 6.39547225650763e52 * cos(theta) ** 19 - 2.35188334594151e52 * cos(theta) ** 17 + 5.85817097157593e51 * cos(theta) ** 15 - 9.87332186220663e50 * cos(theta) ** 13 + 1.10649296731626e50 * cos(theta) ** 11 - 7.95517819639141e48 * cos(theta) ** 9 + 3.45043873578423e47 * cos(theta) ** 7 - 8.13234718871703e45 * cos(theta) ** 5 + 8.57842530455383e43 * cos(theta) ** 3 - 2.57095663473142e41 * cos(theta) ) * sin(24 * phi) ) # @torch.jit.script def Yl51_m_minus_23(theta, phi): return ( 3.88708340155292e-39 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 9.02837418942278e50 * cos(theta) ** 28 - 3.37893608277407e51 * cos(theta) ** 26 + 5.54623346919987e51 * cos(theta) ** 24 - 5.26034514604523e51 * cos(theta) ** 22 + 3.19773612825381e51 * cos(theta) ** 20 - 1.3066018588564e51 * cos(theta) ** 18 + 3.66135685723496e50 * cos(theta) ** 16 - 7.05237275871902e49 * cos(theta) ** 14 + 9.2207747276355e48 * cos(theta) ** 12 - 7.95517819639141e47 * cos(theta) ** 10 + 4.31304841973028e46 * cos(theta) ** 8 - 1.35539119811951e45 * cos(theta) ** 6 + 2.14460632613846e43 * cos(theta) ** 4 - 1.28547831736571e41 * cos(theta) ** 2 + 1.22426506415782e38 ) * sin(23 * phi) ) # @torch.jit.script def Yl51_m_minus_22(theta, phi): return ( 1.80068902582784e-37 * (1.0 - cos(theta) ** 2) ** 11 * ( 3.1132324791113e49 * cos(theta) ** 29 - 1.25145780843484e50 * cos(theta) ** 27 + 2.21849338767995e50 * cos(theta) ** 25 - 2.28710658523706e50 * cos(theta) ** 23 + 1.52273148964467e50 * cos(theta) ** 21 - 6.87685188871788e49 * cos(theta) ** 19 + 2.15373932778527e49 * cos(theta) ** 17 - 4.70158183914601e48 * cos(theta) ** 15 + 7.09290363664269e47 * cos(theta) ** 13 - 7.23198017853765e46 * cos(theta) ** 11 + 4.79227602192254e45 * cos(theta) ** 9 - 1.93627314017072e44 * cos(theta) ** 7 + 4.28921265227692e42 * cos(theta) ** 5 - 4.28492772455236e40 * cos(theta) ** 3 + 1.22426506415782e38 * cos(theta) ) * sin(22 * phi) ) # @torch.jit.script def Yl51_m_minus_21(theta, phi): return ( 8.42676291309043e-36 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.03774415970377e48 * cos(theta) ** 30 - 4.46949217298158e48 * cos(theta) ** 28 + 8.5326668756921e48 * cos(theta) ** 26 - 9.52961077182108e48 * cos(theta) ** 24 + 6.92150677111215e48 * cos(theta) ** 22 - 3.43842594435894e48 * cos(theta) ** 20 + 1.19652184876959e48 * cos(theta) ** 18 - 2.93848864946626e47 * cos(theta) ** 16 + 5.06635974045907e46 * cos(theta) ** 14 - 6.02665014878137e45 * cos(theta) ** 12 + 4.79227602192254e44 * cos(theta) ** 10 - 2.4203414252134e43 * cos(theta) ** 8 + 7.14868775379486e41 * cos(theta) ** 6 - 1.07123193113809e40 * cos(theta) ** 4 + 6.12132532078909e37 * cos(theta) ** 2 - 5.59025143451059e34 ) * sin(21 * phi) ) # @torch.jit.script def Yl51_m_minus_20(theta, phi): return ( 3.98114385180629e-34 * (1.0 - cos(theta) ** 2) ** 10 * ( 3.34756180549603e46 * cos(theta) ** 31 - 1.54120419757985e47 * cos(theta) ** 29 + 3.16024699099707e47 * cos(theta) ** 27 - 3.81184430872843e47 * cos(theta) ** 25 + 3.00935077004876e47 * cos(theta) ** 23 - 1.63734568778997e47 * cos(theta) ** 21 + 6.29748341457681e46 * cos(theta) ** 19 - 1.72852273498015e46 * cos(theta) ** 17 + 3.37757316030604e45 * cos(theta) ** 15 - 4.63588472983183e44 * cos(theta) ** 13 + 4.35661456538412e43 * cos(theta) ** 11 - 2.68926825023711e42 * cos(theta) ** 9 + 1.02124110768498e41 * cos(theta) ** 7 - 2.14246386227618e39 * cos(theta) ** 5 + 2.04044177359636e37 * cos(theta) ** 3 - 5.59025143451059e34 * cos(theta) ) * sin(20 * phi) ) # @torch.jit.script def Yl51_m_minus_19(theta, phi): return ( 1.89763216851572e-32 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.04611306421751e45 * cos(theta) ** 32 - 5.13734732526618e45 * cos(theta) ** 30 + 1.12865963964181e46 * cos(theta) ** 28 - 1.46609396489555e46 * cos(theta) ** 26 + 1.25389615418698e46 * cos(theta) ** 24 - 7.44248039904532e45 * cos(theta) ** 22 + 3.14874170728841e45 * cos(theta) ** 20 - 9.60290408322307e44 * cos(theta) ** 18 + 2.11098322519128e44 * cos(theta) ** 16 - 3.31134623559416e43 * cos(theta) ** 14 + 3.6305121378201e42 * cos(theta) ** 12 - 2.68926825023711e41 * cos(theta) ** 10 + 1.27655138460622e40 * cos(theta) ** 8 - 3.57077310379364e38 * cos(theta) ** 6 + 5.10110443399091e36 * cos(theta) ** 4 - 2.79512571725529e34 * cos(theta) ** 2 + 2.46049799054163e31 ) * sin(19 * phi) ) # @torch.jit.script def Yl51_m_minus_18(theta, phi): return ( 9.12048689848131e-31 * (1.0 - cos(theta) ** 2) ** 9 * ( 3.1700395885379e43 * cos(theta) ** 33 - 1.65720881460199e44 * cos(theta) ** 31 + 3.89192979186832e44 * cos(theta) ** 29 - 5.4299776477613e44 * cos(theta) ** 27 + 5.01558461674793e44 * cos(theta) ** 25 - 3.23586104306318e44 * cos(theta) ** 23 + 1.49940081299448e44 * cos(theta) ** 21 - 5.05416004380161e43 * cos(theta) ** 19 + 1.24175483834781e43 * cos(theta) ** 17 - 2.20756415706277e42 * cos(theta) ** 15 + 2.792701644477e41 * cos(theta) ** 13 - 2.44478931839738e40 * cos(theta) ** 11 + 1.41839042734025e39 * cos(theta) ** 9 - 5.10110443399091e37 * cos(theta) ** 7 + 1.02022088679818e36 * cos(theta) ** 5 - 9.31708572418431e33 * cos(theta) ** 3 + 2.46049799054163e31 * cos(theta) ) * sin(18 * phi) ) # @torch.jit.script def Yl51_m_minus_17(theta, phi): return ( 4.41755563460786e-29 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 9.3236458486409e41 * cos(theta) ** 34 - 5.17877754563123e42 * cos(theta) ** 32 + 1.29730993062277e43 * cos(theta) ** 30 - 1.93927773134332e43 * cos(theta) ** 28 + 1.92907100644151e43 * cos(theta) ** 26 - 1.34827543460966e43 * cos(theta) ** 24 + 6.81545824088399e42 * cos(theta) ** 22 - 2.52708002190081e42 * cos(theta) ** 20 + 6.89863799082117e41 * cos(theta) ** 18 - 1.37972759816423e41 * cos(theta) ** 16 + 1.99478688891214e40 * cos(theta) ** 14 - 2.03732443199781e39 * cos(theta) ** 12 + 1.41839042734025e38 * cos(theta) ** 10 - 6.37638054248864e36 * cos(theta) ** 8 + 1.70036814466364e35 * cos(theta) ** 6 - 2.32927143104608e33 * cos(theta) ** 4 + 1.23024899527082e31 * cos(theta) ** 2 - 1.04880562256677e28 ) * sin(17 * phi) ) # @torch.jit.script def Yl51_m_minus_16(theta, phi): return ( 2.15511528062785e-27 * (1.0 - cos(theta) ** 2) ** 8 * ( 2.6638988138974e40 * cos(theta) ** 35 - 1.56932652897916e41 * cos(theta) ** 33 + 4.18487074394443e41 * cos(theta) ** 31 - 6.68716459083903e41 * cos(theta) ** 29 + 7.14470743126486e41 * cos(theta) ** 27 - 5.39310173843864e41 * cos(theta) ** 25 + 2.96324271342782e41 * cos(theta) ** 23 - 1.20337143900038e41 * cos(theta) ** 21 + 3.63086210043219e40 * cos(theta) ** 19 - 8.11604469508373e39 * cos(theta) ** 17 + 1.32985792594143e39 * cos(theta) ** 15 - 1.56717263999832e38 * cos(theta) ** 13 + 1.28944584303659e37 * cos(theta) ** 11 - 7.08486726943182e35 * cos(theta) ** 9 + 2.42909734951948e34 * cos(theta) ** 7 - 4.65854286209215e32 * cos(theta) ** 5 + 4.10082998423605e30 * cos(theta) ** 3 - 1.04880562256677e28 * cos(theta) ) * sin(16 * phi) ) # @torch.jit.script def Yl51_m_minus_15(theta, phi): return ( 1.05842273015951e-25 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 7.39971892749277e38 * cos(theta) ** 36 - 4.61566626170341e39 * cos(theta) ** 34 + 1.30777210748263e40 * cos(theta) ** 32 - 2.22905486361301e40 * cos(theta) ** 30 + 2.55168122545174e40 * cos(theta) ** 28 - 2.07426989939948e40 * cos(theta) ** 26 + 1.23468446392826e40 * cos(theta) ** 24 - 5.46987017727447e39 * cos(theta) ** 22 + 1.8154310502161e39 * cos(theta) ** 20 - 4.50891371949096e38 * cos(theta) ** 18 + 8.31161203713394e37 * cos(theta) ** 16 - 1.11940902857023e37 * cos(theta) ** 14 + 1.07453820253049e36 * cos(theta) ** 12 - 7.08486726943182e34 * cos(theta) ** 10 + 3.03637168689935e33 * cos(theta) ** 8 - 7.76423810348692e31 * cos(theta) ** 6 + 1.02520749605901e30 * cos(theta) ** 4 - 5.24402811283383e27 * cos(theta) ** 2 + 4.34828201727515e24 ) * sin(15 * phi) ) # @torch.jit.script def Yl51_m_minus_14(theta, phi): return ( 5.23036488794434e-24 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.99992403445751e37 * cos(theta) ** 37 - 1.31876178905812e38 * cos(theta) ** 35 + 3.96294578025041e38 * cos(theta) ** 33 - 7.19049956004197e38 * cos(theta) ** 31 + 8.79890077741978e38 * cos(theta) ** 29 - 7.68248110888695e38 * cos(theta) ** 27 + 4.93873785571304e38 * cos(theta) ** 25 - 2.37820442490195e38 * cos(theta) ** 23 + 8.64490976293379e37 * cos(theta) ** 21 - 2.37311248394261e37 * cos(theta) ** 19 + 4.88918355125526e36 * cos(theta) ** 17 - 7.46272685713485e35 * cos(theta) ** 15 + 8.26567848100379e34 * cos(theta) ** 13 - 6.4407884267562e33 * cos(theta) ** 11 + 3.37374631877706e32 * cos(theta) ** 9 - 1.1091768719267e31 * cos(theta) ** 7 + 2.05041499211803e29 * cos(theta) ** 5 - 1.74800937094461e27 * cos(theta) ** 3 + 4.34828201727515e24 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl51_m_minus_13(theta, phi): return ( 2.59944399144839e-22 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 5.26295798541449e35 * cos(theta) ** 38 - 3.66322719182811e36 * cos(theta) ** 36 + 1.16557228830894e37 * cos(theta) ** 34 - 2.24703111251312e37 * cos(theta) ** 32 + 2.93296692580659e37 * cos(theta) ** 30 - 2.74374325317391e37 * cos(theta) ** 28 + 1.89951455988963e37 * cos(theta) ** 26 - 9.9091851037581e36 * cos(theta) ** 24 + 3.92950443769718e36 * cos(theta) ** 22 - 1.18655624197131e36 * cos(theta) ** 20 + 2.7162130840307e35 * cos(theta) ** 18 - 4.66420428570928e34 * cos(theta) ** 16 + 5.90405605785985e33 * cos(theta) ** 14 - 5.3673236889635e32 * cos(theta) ** 12 + 3.37374631877706e31 * cos(theta) ** 10 - 1.38647108990838e30 * cos(theta) ** 8 + 3.41735832019671e28 * cos(theta) ** 6 - 4.37002342736152e26 * cos(theta) ** 4 + 2.17414100863757e24 * cos(theta) ** 2 - 1.76043806367415e21 ) * sin(13 * phi) ) # @torch.jit.script def Yl51_m_minus_12(theta, phi): return ( 1.29868180188352e-20 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.34947640651654e34 * cos(theta) ** 39 - 9.90061403196785e34 * cos(theta) ** 37 + 3.33020653802555e35 * cos(theta) ** 35 - 6.80918518943369e35 * cos(theta) ** 33 + 9.46118363163418e35 * cos(theta) ** 31 - 9.46118363163418e35 * cos(theta) ** 29 + 7.03523911070233e35 * cos(theta) ** 27 - 3.96367404150324e35 * cos(theta) ** 25 + 1.70848019030312e35 * cos(theta) ** 23 - 5.65026781891098e34 * cos(theta) ** 21 + 1.42958583370037e34 * cos(theta) ** 19 - 2.74364957982899e33 * cos(theta) ** 17 + 3.93603737190657e32 * cos(theta) ** 15 - 4.12871052997192e31 * cos(theta) ** 13 + 3.06704210797914e30 * cos(theta) ** 11 - 1.54052343323153e29 * cos(theta) ** 9 + 4.88194045742387e27 * cos(theta) ** 7 - 8.74004685472304e25 * cos(theta) ** 5 + 7.24713669545858e23 * cos(theta) ** 3 - 1.76043806367415e21 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl51_m_minus_11(theta, phi): return ( 6.5193309049391e-19 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 3.37369101629134e32 * cos(theta) ** 40 - 2.6054247452547e33 * cos(theta) ** 38 + 9.25057371673764e33 * cos(theta) ** 36 - 2.00270152630403e34 * cos(theta) ** 34 + 2.95661988488568e34 * cos(theta) ** 32 - 3.15372787721139e34 * cos(theta) ** 30 + 2.51258539667941e34 * cos(theta) ** 28 - 1.52449001596279e34 * cos(theta) ** 26 + 7.11866745959634e33 * cos(theta) ** 24 - 2.56830355405044e33 * cos(theta) ** 22 + 7.14792916850184e32 * cos(theta) ** 20 - 1.52424976657166e32 * cos(theta) ** 18 + 2.4600233574416e31 * cos(theta) ** 16 - 2.94907894997994e30 * cos(theta) ** 14 + 2.55586842331595e29 * cos(theta) ** 12 - 1.54052343323153e28 * cos(theta) ** 10 + 6.10242557177984e26 * cos(theta) ** 8 - 1.45667447578717e25 * cos(theta) ** 6 + 1.81178417386464e23 * cos(theta) ** 4 - 8.80219031837074e20 * cos(theta) ** 2 + 6.98586533204027e17 ) * sin(11 * phi) ) # @torch.jit.script def Yl51_m_minus_10(theta, phi): return ( 3.28693259725622e-17 * (1.0 - cos(theta) ** 2) ** 5 * ( 8.22851467388132e30 * cos(theta) ** 41 - 6.68057626988384e31 * cos(theta) ** 39 + 2.50015505857774e32 * cos(theta) ** 37 - 5.72200436086864e32 * cos(theta) ** 35 + 8.95945419662327e32 * cos(theta) ** 33 - 1.017331573294e33 * cos(theta) ** 31 + 8.66408757475657e32 * cos(theta) ** 29 - 5.64625931838069e32 * cos(theta) ** 27 + 2.84746698383854e32 * cos(theta) ** 25 - 1.11665371915237e32 * cos(theta) ** 23 + 3.40377579452468e31 * cos(theta) ** 21 - 8.02236719248242e30 * cos(theta) ** 19 + 1.44707256320094e30 * cos(theta) ** 17 - 1.96605263331996e29 * cos(theta) ** 15 + 1.96605263331996e28 * cos(theta) ** 13 - 1.4004758483923e27 * cos(theta) ** 11 + 6.78047285753315e25 * cos(theta) ** 9 - 2.08096353683882e24 * cos(theta) ** 7 + 3.62356834772929e22 * cos(theta) ** 5 - 2.93406343945691e20 * cos(theta) ** 3 + 6.98586533204027e17 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl51_m_minus_9(theta, phi): return ( 1.66372047390768e-15 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1.95917016044793e29 * cos(theta) ** 42 - 1.67014406747096e30 * cos(theta) ** 40 + 6.57935541730984e30 * cos(theta) ** 38 - 1.58944565579685e31 * cos(theta) ** 36 + 2.63513358724214e31 * cos(theta) ** 34 - 3.17916116654374e31 * cos(theta) ** 32 + 2.88802919158552e31 * cos(theta) ** 30 - 2.01652118513596e31 * cos(theta) ** 28 + 1.09517960916867e31 * cos(theta) ** 26 - 4.65272382980153e30 * cos(theta) ** 24 + 1.54717081569304e30 * cos(theta) ** 22 - 4.01118359624121e29 * cos(theta) ** 20 + 8.03929201778302e28 * cos(theta) ** 18 - 1.22878289582498e28 * cos(theta) ** 16 + 1.40432330951426e27 * cos(theta) ** 14 - 1.16706320699359e26 * cos(theta) ** 12 + 6.78047285753315e24 * cos(theta) ** 10 - 2.60120442104852e23 * cos(theta) ** 8 + 6.03928057954881e21 * cos(theta) ** 6 - 7.33515859864228e19 * cos(theta) ** 4 + 3.49293266602014e17 * cos(theta) ** 2 - 272672339267770.0 ) * sin(9 * phi) ) # @torch.jit.script def Yl51_m_minus_8(theta, phi): return ( 8.45065192956907e-14 * (1.0 - cos(theta) ** 2) ** 4 * ( 4.55620967546031e27 * cos(theta) ** 43 - 4.07352211578283e28 * cos(theta) ** 41 + 1.68701420956663e29 * cos(theta) ** 39 - 4.2957990697212e29 * cos(theta) ** 37 + 7.52895310640611e29 * cos(theta) ** 35 - 9.63382171679922e29 * cos(theta) ** 33 + 9.31622319866298e29 * cos(theta) ** 31 - 6.95352132805503e29 * cos(theta) ** 29 + 4.05622077469877e29 * cos(theta) ** 27 - 1.86108953192061e29 * cos(theta) ** 25 + 6.72682963344799e28 * cos(theta) ** 23 - 1.91008742678153e28 * cos(theta) ** 21 + 4.23120632514896e27 * cos(theta) ** 19 - 7.22813468132339e26 * cos(theta) ** 17 + 9.36215539676173e25 * cos(theta) ** 15 - 8.97740928456604e24 * cos(theta) ** 13 + 6.16406623412105e23 * cos(theta) ** 11 - 2.89022713449836e22 * cos(theta) ** 9 + 8.62754368506973e20 * cos(theta) ** 7 - 1.46703171972846e19 * cos(theta) ** 5 + 1.16431088867338e17 * cos(theta) ** 3 - 272672339267770.0 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl51_m_minus_7(theta, phi): return ( 4.30568801491884e-12 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.03550219896825e26 * cos(theta) ** 44 - 9.69886218043531e26 * cos(theta) ** 42 + 4.21753552391657e27 * cos(theta) ** 40 - 1.13047343940032e28 * cos(theta) ** 38 + 2.09137586289059e28 * cos(theta) ** 36 - 2.83347697552918e28 * cos(theta) ** 34 + 2.91131974958218e28 * cos(theta) ** 32 - 2.31784044268501e28 * cos(theta) ** 30 + 1.44865027667813e28 * cos(theta) ** 28 - 7.15803666123312e27 * cos(theta) ** 26 + 2.80284568060333e27 * cos(theta) ** 24 - 8.68221557627968e26 * cos(theta) ** 22 + 2.11560316257448e26 * cos(theta) ** 20 - 4.015630378513e25 * cos(theta) ** 18 + 5.85134712297608e24 * cos(theta) ** 16 - 6.41243520326146e23 * cos(theta) ** 14 + 5.13672186176754e22 * cos(theta) ** 12 - 2.89022713449836e21 * cos(theta) ** 10 + 1.07844296063372e20 * cos(theta) ** 8 - 2.44505286621409e18 * cos(theta) ** 6 + 2.91077722168345e16 * cos(theta) ** 4 - 136336169633885.0 * cos(theta) ** 2 + 105035569825.797 ) * sin(7 * phi) ) # @torch.jit.script def Yl51_m_minus_6(theta, phi): return ( 2.19969674331575e-10 * (1.0 - cos(theta) ** 2) ** 3 * ( 2.30111599770723e24 * cos(theta) ** 45 - 2.25554934428728e25 * cos(theta) ** 43 + 1.02866720095526e26 * cos(theta) ** 41 - 2.8986498446162e26 * cos(theta) ** 39 + 5.65236719700158e26 * cos(theta) ** 37 - 8.09564850151195e26 * cos(theta) ** 35 + 8.82218105933994e26 * cos(theta) ** 33 - 7.47690465382262e26 * cos(theta) ** 31 + 4.99534578164873e26 * cos(theta) ** 29 - 2.6511246893456e26 * cos(theta) ** 27 + 1.12113827224133e26 * cos(theta) ** 25 - 3.7748763375129e25 * cos(theta) ** 23 + 1.00743007741642e25 * cos(theta) ** 21 - 2.11348967290158e24 * cos(theta) ** 19 + 3.44196889586828e23 * cos(theta) ** 17 - 4.2749568021743e22 * cos(theta) ** 15 + 3.95132450905195e21 * cos(theta) ** 13 - 2.62747921318033e20 * cos(theta) ** 11 + 1.19826995625969e19 * cos(theta) ** 9 - 3.49293266602014e17 * cos(theta) ** 7 + 5.82155444336689e15 * cos(theta) ** 5 - 45445389877961.7 * cos(theta) ** 3 + 105035569825.797 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl51_m_minus_5(theta, phi): return ( 1.12636502206951e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 5.00242608197223e22 * cos(theta) ** 46 - 5.12624850974382e23 * cos(theta) ** 44 + 2.44920762132205e24 * cos(theta) ** 42 - 7.24662461154049e24 * cos(theta) ** 40 + 1.48746505184252e25 * cos(theta) ** 38 - 2.24879125041999e25 * cos(theta) ** 36 + 2.59475913509998e25 * cos(theta) ** 34 - 2.33653270431957e25 * cos(theta) ** 32 + 1.66511526054958e25 * cos(theta) ** 30 - 9.46830246194857e24 * cos(theta) ** 28 + 4.31207027785128e24 * cos(theta) ** 26 - 1.57286514063038e24 * cos(theta) ** 24 + 4.57922762462008e23 * cos(theta) ** 22 - 1.05674483645079e23 * cos(theta) ** 20 + 1.91220494214905e22 * cos(theta) ** 18 - 2.67184800135894e21 * cos(theta) ** 16 + 2.82237464932282e20 * cos(theta) ** 14 - 2.18956601098361e19 * cos(theta) ** 12 + 1.19826995625969e18 * cos(theta) ** 10 - 4.36616583252517e16 * cos(theta) ** 8 + 970259073894482.0 * cos(theta) ** 6 - 11361347469490.4 * cos(theta) ** 4 + 52517784912.8987 * cos(theta) ** 2 - 40059332.504118 ) * sin(5 * phi) ) # @torch.jit.script def Yl51_m_minus_4(theta, phi): return ( 5.77859287790928e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 1.06434597488771e21 * cos(theta) ** 47 - 1.13916633549863e22 * cos(theta) ** 45 + 5.69583167749313e22 * cos(theta) ** 43 - 1.7674694174489e23 * cos(theta) ** 41 + 3.81401295344236e23 * cos(theta) ** 39 - 6.07781419032428e23 * cos(theta) ** 37 + 7.41359752885709e23 * cos(theta) ** 35 - 7.08040213430172e23 * cos(theta) ** 33 + 5.37133955015992e23 * cos(theta) ** 31 - 3.26493188343054e23 * cos(theta) ** 29 + 1.59706306587084e23 * cos(theta) ** 27 - 6.29146056252151e22 * cos(theta) ** 25 + 1.99096853244351e22 * cos(theta) ** 23 - 5.03211826881328e21 * cos(theta) ** 21 + 1.00642365376266e21 * cos(theta) ** 19 - 1.57167529491702e20 * cos(theta) ** 17 + 1.88158309954855e19 * cos(theta) ** 15 - 1.68428154691047e18 * cos(theta) ** 13 + 1.08933632387244e17 * cos(theta) ** 11 - 4.85129536947241e15 * cos(theta) ** 9 + 138608439127783.0 * cos(theta) ** 7 - 2272269493898.08 * cos(theta) ** 5 + 17505928304.2996 * cos(theta) ** 3 - 40059332.504118 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl51_m_minus_3(theta, phi): return ( 2.9690947797665e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 2.21738744768273e19 * cos(theta) ** 48 - 2.4764485554318e20 * cos(theta) ** 46 + 1.29450719943026e21 * cos(theta) ** 44 - 4.20826051773548e21 * cos(theta) ** 42 + 9.53503238360591e21 * cos(theta) ** 40 - 1.59942478692744e22 * cos(theta) ** 38 + 2.05933264690475e22 * cos(theta) ** 36 - 2.08247121597109e22 * cos(theta) ** 34 + 1.67854360942498e22 * cos(theta) ** 32 - 1.08831062781018e22 * cos(theta) ** 30 + 5.70379666382444e21 * cos(theta) ** 28 - 2.41979252404673e21 * cos(theta) ** 26 + 8.29570221851464e20 * cos(theta) ** 24 - 2.28732648582422e20 * cos(theta) ** 22 + 5.03211826881328e19 * cos(theta) ** 20 - 8.73152941620569e18 * cos(theta) ** 18 + 1.17598943721784e18 * cos(theta) ** 16 - 1.20305824779319e17 * cos(theta) ** 14 + 9.07780269893701e15 * cos(theta) ** 12 - 485129536947241.0 * cos(theta) ** 10 + 17326054890972.9 * cos(theta) ** 8 - 378711582316.347 * cos(theta) ** 6 + 4376482076.07489 * cos(theta) ** 4 - 20029666.252059 * cos(theta) ** 2 + 15173.9895848932 ) * sin(3 * phi) ) # @torch.jit.script def Yl51_m_minus_2(theta, phi): return ( 0.00152728111376172 * (1.0 - cos(theta) ** 2) * ( 4.52528050547495e17 * cos(theta) ** 49 - 5.26903947964212e18 * cos(theta) ** 47 + 2.87668266540057e19 * cos(theta) ** 45 - 9.78665236682669e19 * cos(theta) ** 43 + 2.32561765453803e20 * cos(theta) ** 41 - 4.10108919724985e20 * cos(theta) ** 39 + 5.56576391055337e20 * cos(theta) ** 37 - 5.94991775991741e20 * cos(theta) ** 35 + 5.08649578613629e20 * cos(theta) ** 33 - 3.51067944454897e20 * cos(theta) ** 31 + 1.96682643580153e20 * cos(theta) ** 29 - 8.96219453350642e19 * cos(theta) ** 27 + 3.31828088740586e19 * cos(theta) ** 25 - 9.94489776445312e18 * cos(theta) ** 23 + 2.39624679467299e18 * cos(theta) ** 21 - 4.59554179800299e17 * cos(theta) ** 19 + 6.91758492481084e16 * cos(theta) ** 17 - 8.02038831862127e15 * cos(theta) ** 15 + 698292515302847.0 * cos(theta) ** 13 - 44102685177021.9 * cos(theta) ** 11 + 1925117210108.1 * cos(theta) ** 9 - 54101654616.621 * cos(theta) ** 7 + 875296415.214978 * cos(theta) ** 5 - 6676555.417353 * cos(theta) ** 3 + 15173.9895848932 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl51_m_minus_1(theta, phi): return ( 0.0786216073430267 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 9.05056101094991e15 * cos(theta) ** 50 - 1.09771655825878e17 * cos(theta) ** 48 + 6.25365796826212e17 * cos(theta) ** 46 - 2.22423917427879e18 * cos(theta) ** 44 + 5.53718489175721e18 * cos(theta) ** 42 - 1.02527229931246e19 * cos(theta) ** 40 + 1.46467471330352e19 * cos(theta) ** 38 - 1.65275493331039e19 * cos(theta) ** 36 + 1.49602817239303e19 * cos(theta) ** 34 - 1.09708732642155e19 * cos(theta) ** 32 + 6.55608811933844e18 * cos(theta) ** 30 - 3.20078376196658e18 * cos(theta) ** 28 + 1.27626187977148e18 * cos(theta) ** 26 - 4.14370740185547e17 * cos(theta) ** 24 + 1.08920308848772e17 * cos(theta) ** 22 - 2.2977708990015e16 * cos(theta) ** 20 + 3.84310273600602e15 * cos(theta) ** 18 - 501274269913829.0 * cos(theta) ** 16 + 49878036807346.2 * cos(theta) ** 14 - 3675223764751.83 * cos(theta) ** 12 + 192511721010.81 * cos(theta) ** 10 - 6762706827.07763 * cos(theta) ** 8 + 145882735.869163 * cos(theta) ** 6 - 1669138.85433825 * cos(theta) ** 4 + 7586.99479244659 * cos(theta) ** 2 - 5.72603380562007 ) * sin(phi) ) # @torch.jit.script def Yl51_m0(theta, phi): return ( 1.59613226708313e15 * cos(theta) ** 51 - 2.01491944607028e16 * cos(theta) ** 49 + 1.19674003463568e17 * cos(theta) ** 47 - 4.44562191560541e17 * cos(theta) ** 45 + 1.15820149906562e18 * cos(theta) ** 43 - 2.24915258850807e18 * cos(theta) ** 41 + 3.37784820984729e18 * cos(theta) ** 39 - 4.01763326403987e18 * cos(theta) ** 37 + 3.84445941645195e18 * cos(theta) ** 35 - 2.99013510168485e18 * cos(theta) ** 33 + 1.90215823336096e18 * cos(theta) ** 31 - 9.92708842326429e17 * cos(theta) ** 29 + 4.25147457789589e17 * cos(theta) ** 27 - 1.49077680004141e17 * cos(theta) ** 25 + 4.25936228583261e16 * cos(theta) ** 23 - 9.84126628598768e15 * cos(theta) ** 21 + 1.81924816906462e15 * cos(theta) ** 19 - 265210091142413.0 * cos(theta) ** 17 + 29907605634633.7 * cos(theta) ** 15 - 2542751896061.97 * cos(theta) ** 13 + 157408450708.598 * cos(theta) ** 11 - 6758364394.20211 * cos(theta) ** 9 + 187443080.270629 * cos(theta) ** 7 - 3002520.73660046 * cos(theta) ** 5 + 22746.3692166701 * cos(theta) ** 3 - 51.5012133207626 * cos(theta) ) # @torch.jit.script def Yl51_m1(theta, phi): return ( 0.0786216073430267 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 9.05056101094991e15 * cos(theta) ** 50 - 1.09771655825878e17 * cos(theta) ** 48 + 6.25365796826212e17 * cos(theta) ** 46 - 2.22423917427879e18 * cos(theta) ** 44 + 5.53718489175721e18 * cos(theta) ** 42 - 1.02527229931246e19 * cos(theta) ** 40 + 1.46467471330352e19 * cos(theta) ** 38 - 1.65275493331039e19 * cos(theta) ** 36 + 1.49602817239303e19 * cos(theta) ** 34 - 1.09708732642155e19 * cos(theta) ** 32 + 6.55608811933844e18 * cos(theta) ** 30 - 3.20078376196658e18 * cos(theta) ** 28 + 1.27626187977148e18 * cos(theta) ** 26 - 4.14370740185547e17 * cos(theta) ** 24 + 1.08920308848772e17 * cos(theta) ** 22 - 2.2977708990015e16 * cos(theta) ** 20 + 3.84310273600602e15 * cos(theta) ** 18 - 501274269913829.0 * cos(theta) ** 16 + 49878036807346.2 * cos(theta) ** 14 - 3675223764751.83 * cos(theta) ** 12 + 192511721010.81 * cos(theta) ** 10 - 6762706827.07763 * cos(theta) ** 8 + 145882735.869163 * cos(theta) ** 6 - 1669138.85433825 * cos(theta) ** 4 + 7586.99479244659 * cos(theta) ** 2 - 5.72603380562007 ) * cos(phi) ) # @torch.jit.script def Yl51_m2(theta, phi): return ( 0.00152728111376172 * (1.0 - cos(theta) ** 2) * ( 4.52528050547495e17 * cos(theta) ** 49 - 5.26903947964212e18 * cos(theta) ** 47 + 2.87668266540057e19 * cos(theta) ** 45 - 9.78665236682669e19 * cos(theta) ** 43 + 2.32561765453803e20 * cos(theta) ** 41 - 4.10108919724985e20 * cos(theta) ** 39 + 5.56576391055337e20 * cos(theta) ** 37 - 5.94991775991741e20 * cos(theta) ** 35 + 5.08649578613629e20 * cos(theta) ** 33 - 3.51067944454897e20 * cos(theta) ** 31 + 1.96682643580153e20 * cos(theta) ** 29 - 8.96219453350642e19 * cos(theta) ** 27 + 3.31828088740586e19 * cos(theta) ** 25 - 9.94489776445312e18 * cos(theta) ** 23 + 2.39624679467299e18 * cos(theta) ** 21 - 4.59554179800299e17 * cos(theta) ** 19 + 6.91758492481084e16 * cos(theta) ** 17 - 8.02038831862127e15 * cos(theta) ** 15 + 698292515302847.0 * cos(theta) ** 13 - 44102685177021.9 * cos(theta) ** 11 + 1925117210108.1 * cos(theta) ** 9 - 54101654616.621 * cos(theta) ** 7 + 875296415.214978 * cos(theta) ** 5 - 6676555.417353 * cos(theta) ** 3 + 15173.9895848932 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl51_m3(theta, phi): return ( 2.9690947797665e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 2.21738744768273e19 * cos(theta) ** 48 - 2.4764485554318e20 * cos(theta) ** 46 + 1.29450719943026e21 * cos(theta) ** 44 - 4.20826051773548e21 * cos(theta) ** 42 + 9.53503238360591e21 * cos(theta) ** 40 - 1.59942478692744e22 * cos(theta) ** 38 + 2.05933264690475e22 * cos(theta) ** 36 - 2.08247121597109e22 * cos(theta) ** 34 + 1.67854360942498e22 * cos(theta) ** 32 - 1.08831062781018e22 * cos(theta) ** 30 + 5.70379666382444e21 * cos(theta) ** 28 - 2.41979252404673e21 * cos(theta) ** 26 + 8.29570221851464e20 * cos(theta) ** 24 - 2.28732648582422e20 * cos(theta) ** 22 + 5.03211826881328e19 * cos(theta) ** 20 - 8.73152941620569e18 * cos(theta) ** 18 + 1.17598943721784e18 * cos(theta) ** 16 - 1.20305824779319e17 * cos(theta) ** 14 + 9.07780269893701e15 * cos(theta) ** 12 - 485129536947241.0 * cos(theta) ** 10 + 17326054890972.9 * cos(theta) ** 8 - 378711582316.347 * cos(theta) ** 6 + 4376482076.07489 * cos(theta) ** 4 - 20029666.252059 * cos(theta) ** 2 + 15173.9895848932 ) * cos(3 * phi) ) # @torch.jit.script def Yl51_m4(theta, phi): return ( 5.77859287790928e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 1.06434597488771e21 * cos(theta) ** 47 - 1.13916633549863e22 * cos(theta) ** 45 + 5.69583167749313e22 * cos(theta) ** 43 - 1.7674694174489e23 * cos(theta) ** 41 + 3.81401295344236e23 * cos(theta) ** 39 - 6.07781419032428e23 * cos(theta) ** 37 + 7.41359752885709e23 * cos(theta) ** 35 - 7.08040213430172e23 * cos(theta) ** 33 + 5.37133955015992e23 * cos(theta) ** 31 - 3.26493188343054e23 * cos(theta) ** 29 + 1.59706306587084e23 * cos(theta) ** 27 - 6.29146056252151e22 * cos(theta) ** 25 + 1.99096853244351e22 * cos(theta) ** 23 - 5.03211826881328e21 * cos(theta) ** 21 + 1.00642365376266e21 * cos(theta) ** 19 - 1.57167529491702e20 * cos(theta) ** 17 + 1.88158309954855e19 * cos(theta) ** 15 - 1.68428154691047e18 * cos(theta) ** 13 + 1.08933632387244e17 * cos(theta) ** 11 - 4.85129536947241e15 * cos(theta) ** 9 + 138608439127783.0 * cos(theta) ** 7 - 2272269493898.08 * cos(theta) ** 5 + 17505928304.2996 * cos(theta) ** 3 - 40059332.504118 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl51_m5(theta, phi): return ( 1.12636502206951e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 5.00242608197223e22 * cos(theta) ** 46 - 5.12624850974382e23 * cos(theta) ** 44 + 2.44920762132205e24 * cos(theta) ** 42 - 7.24662461154049e24 * cos(theta) ** 40 + 1.48746505184252e25 * cos(theta) ** 38 - 2.24879125041999e25 * cos(theta) ** 36 + 2.59475913509998e25 * cos(theta) ** 34 - 2.33653270431957e25 * cos(theta) ** 32 + 1.66511526054958e25 * cos(theta) ** 30 - 9.46830246194857e24 * cos(theta) ** 28 + 4.31207027785128e24 * cos(theta) ** 26 - 1.57286514063038e24 * cos(theta) ** 24 + 4.57922762462008e23 * cos(theta) ** 22 - 1.05674483645079e23 * cos(theta) ** 20 + 1.91220494214905e22 * cos(theta) ** 18 - 2.67184800135894e21 * cos(theta) ** 16 + 2.82237464932282e20 * cos(theta) ** 14 - 2.18956601098361e19 * cos(theta) ** 12 + 1.19826995625969e18 * cos(theta) ** 10 - 4.36616583252517e16 * cos(theta) ** 8 + 970259073894482.0 * cos(theta) ** 6 - 11361347469490.4 * cos(theta) ** 4 + 52517784912.8987 * cos(theta) ** 2 - 40059332.504118 ) * cos(5 * phi) ) # @torch.jit.script def Yl51_m6(theta, phi): return ( 2.19969674331575e-10 * (1.0 - cos(theta) ** 2) ** 3 * ( 2.30111599770723e24 * cos(theta) ** 45 - 2.25554934428728e25 * cos(theta) ** 43 + 1.02866720095526e26 * cos(theta) ** 41 - 2.8986498446162e26 * cos(theta) ** 39 + 5.65236719700158e26 * cos(theta) ** 37 - 8.09564850151195e26 * cos(theta) ** 35 + 8.82218105933994e26 * cos(theta) ** 33 - 7.47690465382262e26 * cos(theta) ** 31 + 4.99534578164873e26 * cos(theta) ** 29 - 2.6511246893456e26 * cos(theta) ** 27 + 1.12113827224133e26 * cos(theta) ** 25 - 3.7748763375129e25 * cos(theta) ** 23 + 1.00743007741642e25 * cos(theta) ** 21 - 2.11348967290158e24 * cos(theta) ** 19 + 3.44196889586828e23 * cos(theta) ** 17 - 4.2749568021743e22 * cos(theta) ** 15 + 3.95132450905195e21 * cos(theta) ** 13 - 2.62747921318033e20 * cos(theta) ** 11 + 1.19826995625969e19 * cos(theta) ** 9 - 3.49293266602014e17 * cos(theta) ** 7 + 5.82155444336689e15 * cos(theta) ** 5 - 45445389877961.7 * cos(theta) ** 3 + 105035569825.797 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl51_m7(theta, phi): return ( 4.30568801491884e-12 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.03550219896825e26 * cos(theta) ** 44 - 9.69886218043531e26 * cos(theta) ** 42 + 4.21753552391657e27 * cos(theta) ** 40 - 1.13047343940032e28 * cos(theta) ** 38 + 2.09137586289059e28 * cos(theta) ** 36 - 2.83347697552918e28 * cos(theta) ** 34 + 2.91131974958218e28 * cos(theta) ** 32 - 2.31784044268501e28 * cos(theta) ** 30 + 1.44865027667813e28 * cos(theta) ** 28 - 7.15803666123312e27 * cos(theta) ** 26 + 2.80284568060333e27 * cos(theta) ** 24 - 8.68221557627968e26 * cos(theta) ** 22 + 2.11560316257448e26 * cos(theta) ** 20 - 4.015630378513e25 * cos(theta) ** 18 + 5.85134712297608e24 * cos(theta) ** 16 - 6.41243520326146e23 * cos(theta) ** 14 + 5.13672186176754e22 * cos(theta) ** 12 - 2.89022713449836e21 * cos(theta) ** 10 + 1.07844296063372e20 * cos(theta) ** 8 - 2.44505286621409e18 * cos(theta) ** 6 + 2.91077722168345e16 * cos(theta) ** 4 - 136336169633885.0 * cos(theta) ** 2 + 105035569825.797 ) * cos(7 * phi) ) # @torch.jit.script def Yl51_m8(theta, phi): return ( 8.45065192956907e-14 * (1.0 - cos(theta) ** 2) ** 4 * ( 4.55620967546031e27 * cos(theta) ** 43 - 4.07352211578283e28 * cos(theta) ** 41 + 1.68701420956663e29 * cos(theta) ** 39 - 4.2957990697212e29 * cos(theta) ** 37 + 7.52895310640611e29 * cos(theta) ** 35 - 9.63382171679922e29 * cos(theta) ** 33 + 9.31622319866298e29 * cos(theta) ** 31 - 6.95352132805503e29 * cos(theta) ** 29 + 4.05622077469877e29 * cos(theta) ** 27 - 1.86108953192061e29 * cos(theta) ** 25 + 6.72682963344799e28 * cos(theta) ** 23 - 1.91008742678153e28 * cos(theta) ** 21 + 4.23120632514896e27 * cos(theta) ** 19 - 7.22813468132339e26 * cos(theta) ** 17 + 9.36215539676173e25 * cos(theta) ** 15 - 8.97740928456604e24 * cos(theta) ** 13 + 6.16406623412105e23 * cos(theta) ** 11 - 2.89022713449836e22 * cos(theta) ** 9 + 8.62754368506973e20 * cos(theta) ** 7 - 1.46703171972846e19 * cos(theta) ** 5 + 1.16431088867338e17 * cos(theta) ** 3 - 272672339267770.0 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl51_m9(theta, phi): return ( 1.66372047390768e-15 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1.95917016044793e29 * cos(theta) ** 42 - 1.67014406747096e30 * cos(theta) ** 40 + 6.57935541730984e30 * cos(theta) ** 38 - 1.58944565579685e31 * cos(theta) ** 36 + 2.63513358724214e31 * cos(theta) ** 34 - 3.17916116654374e31 * cos(theta) ** 32 + 2.88802919158552e31 * cos(theta) ** 30 - 2.01652118513596e31 * cos(theta) ** 28 + 1.09517960916867e31 * cos(theta) ** 26 - 4.65272382980153e30 * cos(theta) ** 24 + 1.54717081569304e30 * cos(theta) ** 22 - 4.01118359624121e29 * cos(theta) ** 20 + 8.03929201778302e28 * cos(theta) ** 18 - 1.22878289582498e28 * cos(theta) ** 16 + 1.40432330951426e27 * cos(theta) ** 14 - 1.16706320699359e26 * cos(theta) ** 12 + 6.78047285753315e24 * cos(theta) ** 10 - 2.60120442104852e23 * cos(theta) ** 8 + 6.03928057954881e21 * cos(theta) ** 6 - 7.33515859864228e19 * cos(theta) ** 4 + 3.49293266602014e17 * cos(theta) ** 2 - 272672339267770.0 ) * cos(9 * phi) ) # @torch.jit.script def Yl51_m10(theta, phi): return ( 3.28693259725622e-17 * (1.0 - cos(theta) ** 2) ** 5 * ( 8.22851467388132e30 * cos(theta) ** 41 - 6.68057626988384e31 * cos(theta) ** 39 + 2.50015505857774e32 * cos(theta) ** 37 - 5.72200436086864e32 * cos(theta) ** 35 + 8.95945419662327e32 * cos(theta) ** 33 - 1.017331573294e33 * cos(theta) ** 31 + 8.66408757475657e32 * cos(theta) ** 29 - 5.64625931838069e32 * cos(theta) ** 27 + 2.84746698383854e32 * cos(theta) ** 25 - 1.11665371915237e32 * cos(theta) ** 23 + 3.40377579452468e31 * cos(theta) ** 21 - 8.02236719248242e30 * cos(theta) ** 19 + 1.44707256320094e30 * cos(theta) ** 17 - 1.96605263331996e29 * cos(theta) ** 15 + 1.96605263331996e28 * cos(theta) ** 13 - 1.4004758483923e27 * cos(theta) ** 11 + 6.78047285753315e25 * cos(theta) ** 9 - 2.08096353683882e24 * cos(theta) ** 7 + 3.62356834772929e22 * cos(theta) ** 5 - 2.93406343945691e20 * cos(theta) ** 3 + 6.98586533204027e17 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl51_m11(theta, phi): return ( 6.5193309049391e-19 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 3.37369101629134e32 * cos(theta) ** 40 - 2.6054247452547e33 * cos(theta) ** 38 + 9.25057371673764e33 * cos(theta) ** 36 - 2.00270152630403e34 * cos(theta) ** 34 + 2.95661988488568e34 * cos(theta) ** 32 - 3.15372787721139e34 * cos(theta) ** 30 + 2.51258539667941e34 * cos(theta) ** 28 - 1.52449001596279e34 * cos(theta) ** 26 + 7.11866745959634e33 * cos(theta) ** 24 - 2.56830355405044e33 * cos(theta) ** 22 + 7.14792916850184e32 * cos(theta) ** 20 - 1.52424976657166e32 * cos(theta) ** 18 + 2.4600233574416e31 * cos(theta) ** 16 - 2.94907894997994e30 * cos(theta) ** 14 + 2.55586842331595e29 * cos(theta) ** 12 - 1.54052343323153e28 * cos(theta) ** 10 + 6.10242557177984e26 * cos(theta) ** 8 - 1.45667447578717e25 * cos(theta) ** 6 + 1.81178417386464e23 * cos(theta) ** 4 - 8.80219031837074e20 * cos(theta) ** 2 + 6.98586533204027e17 ) * cos(11 * phi) ) # @torch.jit.script def Yl51_m12(theta, phi): return ( 1.29868180188352e-20 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.34947640651654e34 * cos(theta) ** 39 - 9.90061403196785e34 * cos(theta) ** 37 + 3.33020653802555e35 * cos(theta) ** 35 - 6.80918518943369e35 * cos(theta) ** 33 + 9.46118363163418e35 * cos(theta) ** 31 - 9.46118363163418e35 * cos(theta) ** 29 + 7.03523911070233e35 * cos(theta) ** 27 - 3.96367404150324e35 * cos(theta) ** 25 + 1.70848019030312e35 * cos(theta) ** 23 - 5.65026781891098e34 * cos(theta) ** 21 + 1.42958583370037e34 * cos(theta) ** 19 - 2.74364957982899e33 * cos(theta) ** 17 + 3.93603737190657e32 * cos(theta) ** 15 - 4.12871052997192e31 * cos(theta) ** 13 + 3.06704210797914e30 * cos(theta) ** 11 - 1.54052343323153e29 * cos(theta) ** 9 + 4.88194045742387e27 * cos(theta) ** 7 - 8.74004685472304e25 * cos(theta) ** 5 + 7.24713669545858e23 * cos(theta) ** 3 - 1.76043806367415e21 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl51_m13(theta, phi): return ( 2.59944399144839e-22 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 5.26295798541449e35 * cos(theta) ** 38 - 3.66322719182811e36 * cos(theta) ** 36 + 1.16557228830894e37 * cos(theta) ** 34 - 2.24703111251312e37 * cos(theta) ** 32 + 2.93296692580659e37 * cos(theta) ** 30 - 2.74374325317391e37 * cos(theta) ** 28 + 1.89951455988963e37 * cos(theta) ** 26 - 9.9091851037581e36 * cos(theta) ** 24 + 3.92950443769718e36 * cos(theta) ** 22 - 1.18655624197131e36 * cos(theta) ** 20 + 2.7162130840307e35 * cos(theta) ** 18 - 4.66420428570928e34 * cos(theta) ** 16 + 5.90405605785985e33 * cos(theta) ** 14 - 5.3673236889635e32 * cos(theta) ** 12 + 3.37374631877706e31 * cos(theta) ** 10 - 1.38647108990838e30 * cos(theta) ** 8 + 3.41735832019671e28 * cos(theta) ** 6 - 4.37002342736152e26 * cos(theta) ** 4 + 2.17414100863757e24 * cos(theta) ** 2 - 1.76043806367415e21 ) * cos(13 * phi) ) # @torch.jit.script def Yl51_m14(theta, phi): return ( 5.23036488794434e-24 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.99992403445751e37 * cos(theta) ** 37 - 1.31876178905812e38 * cos(theta) ** 35 + 3.96294578025041e38 * cos(theta) ** 33 - 7.19049956004197e38 * cos(theta) ** 31 + 8.79890077741978e38 * cos(theta) ** 29 - 7.68248110888695e38 * cos(theta) ** 27 + 4.93873785571304e38 * cos(theta) ** 25 - 2.37820442490195e38 * cos(theta) ** 23 + 8.64490976293379e37 * cos(theta) ** 21 - 2.37311248394261e37 * cos(theta) ** 19 + 4.88918355125526e36 * cos(theta) ** 17 - 7.46272685713485e35 * cos(theta) ** 15 + 8.26567848100379e34 * cos(theta) ** 13 - 6.4407884267562e33 * cos(theta) ** 11 + 3.37374631877706e32 * cos(theta) ** 9 - 1.1091768719267e31 * cos(theta) ** 7 + 2.05041499211803e29 * cos(theta) ** 5 - 1.74800937094461e27 * cos(theta) ** 3 + 4.34828201727515e24 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl51_m15(theta, phi): return ( 1.05842273015951e-25 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 7.39971892749277e38 * cos(theta) ** 36 - 4.61566626170341e39 * cos(theta) ** 34 + 1.30777210748263e40 * cos(theta) ** 32 - 2.22905486361301e40 * cos(theta) ** 30 + 2.55168122545174e40 * cos(theta) ** 28 - 2.07426989939948e40 * cos(theta) ** 26 + 1.23468446392826e40 * cos(theta) ** 24 - 5.46987017727447e39 * cos(theta) ** 22 + 1.8154310502161e39 * cos(theta) ** 20 - 4.50891371949096e38 * cos(theta) ** 18 + 8.31161203713394e37 * cos(theta) ** 16 - 1.11940902857023e37 * cos(theta) ** 14 + 1.07453820253049e36 * cos(theta) ** 12 - 7.08486726943182e34 * cos(theta) ** 10 + 3.03637168689935e33 * cos(theta) ** 8 - 7.76423810348692e31 * cos(theta) ** 6 + 1.02520749605901e30 * cos(theta) ** 4 - 5.24402811283383e27 * cos(theta) ** 2 + 4.34828201727515e24 ) * cos(15 * phi) ) # @torch.jit.script def Yl51_m16(theta, phi): return ( 2.15511528062785e-27 * (1.0 - cos(theta) ** 2) ** 8 * ( 2.6638988138974e40 * cos(theta) ** 35 - 1.56932652897916e41 * cos(theta) ** 33 + 4.18487074394443e41 * cos(theta) ** 31 - 6.68716459083903e41 * cos(theta) ** 29 + 7.14470743126486e41 * cos(theta) ** 27 - 5.39310173843864e41 * cos(theta) ** 25 + 2.96324271342782e41 * cos(theta) ** 23 - 1.20337143900038e41 * cos(theta) ** 21 + 3.63086210043219e40 * cos(theta) ** 19 - 8.11604469508373e39 * cos(theta) ** 17 + 1.32985792594143e39 * cos(theta) ** 15 - 1.56717263999832e38 * cos(theta) ** 13 + 1.28944584303659e37 * cos(theta) ** 11 - 7.08486726943182e35 * cos(theta) ** 9 + 2.42909734951948e34 * cos(theta) ** 7 - 4.65854286209215e32 * cos(theta) ** 5 + 4.10082998423605e30 * cos(theta) ** 3 - 1.04880562256677e28 * cos(theta) ) * cos(16 * phi) ) # @torch.jit.script def Yl51_m17(theta, phi): return ( 4.41755563460786e-29 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 9.3236458486409e41 * cos(theta) ** 34 - 5.17877754563123e42 * cos(theta) ** 32 + 1.29730993062277e43 * cos(theta) ** 30 - 1.93927773134332e43 * cos(theta) ** 28 + 1.92907100644151e43 * cos(theta) ** 26 - 1.34827543460966e43 * cos(theta) ** 24 + 6.81545824088399e42 * cos(theta) ** 22 - 2.52708002190081e42 * cos(theta) ** 20 + 6.89863799082117e41 * cos(theta) ** 18 - 1.37972759816423e41 * cos(theta) ** 16 + 1.99478688891214e40 * cos(theta) ** 14 - 2.03732443199781e39 * cos(theta) ** 12 + 1.41839042734025e38 * cos(theta) ** 10 - 6.37638054248864e36 * cos(theta) ** 8 + 1.70036814466364e35 * cos(theta) ** 6 - 2.32927143104608e33 * cos(theta) ** 4 + 1.23024899527082e31 * cos(theta) ** 2 - 1.04880562256677e28 ) * cos(17 * phi) ) # @torch.jit.script def Yl51_m18(theta, phi): return ( 9.12048689848131e-31 * (1.0 - cos(theta) ** 2) ** 9 * ( 3.1700395885379e43 * cos(theta) ** 33 - 1.65720881460199e44 * cos(theta) ** 31 + 3.89192979186832e44 * cos(theta) ** 29 - 5.4299776477613e44 * cos(theta) ** 27 + 5.01558461674793e44 * cos(theta) ** 25 - 3.23586104306318e44 * cos(theta) ** 23 + 1.49940081299448e44 * cos(theta) ** 21 - 5.05416004380161e43 * cos(theta) ** 19 + 1.24175483834781e43 * cos(theta) ** 17 - 2.20756415706277e42 * cos(theta) ** 15 + 2.792701644477e41 * cos(theta) ** 13 - 2.44478931839738e40 * cos(theta) ** 11 + 1.41839042734025e39 * cos(theta) ** 9 - 5.10110443399091e37 * cos(theta) ** 7 + 1.02022088679818e36 * cos(theta) ** 5 - 9.31708572418431e33 * cos(theta) ** 3 + 2.46049799054163e31 * cos(theta) ) * cos(18 * phi) ) # @torch.jit.script def Yl51_m19(theta, phi): return ( 1.89763216851572e-32 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.04611306421751e45 * cos(theta) ** 32 - 5.13734732526618e45 * cos(theta) ** 30 + 1.12865963964181e46 * cos(theta) ** 28 - 1.46609396489555e46 * cos(theta) ** 26 + 1.25389615418698e46 * cos(theta) ** 24 - 7.44248039904532e45 * cos(theta) ** 22 + 3.14874170728841e45 * cos(theta) ** 20 - 9.60290408322307e44 * cos(theta) ** 18 + 2.11098322519128e44 * cos(theta) ** 16 - 3.31134623559416e43 * cos(theta) ** 14 + 3.6305121378201e42 * cos(theta) ** 12 - 2.68926825023711e41 * cos(theta) ** 10 + 1.27655138460622e40 * cos(theta) ** 8 - 3.57077310379364e38 * cos(theta) ** 6 + 5.10110443399091e36 * cos(theta) ** 4 - 2.79512571725529e34 * cos(theta) ** 2 + 2.46049799054163e31 ) * cos(19 * phi) ) # @torch.jit.script def Yl51_m20(theta, phi): return ( 3.98114385180629e-34 * (1.0 - cos(theta) ** 2) ** 10 * ( 3.34756180549603e46 * cos(theta) ** 31 - 1.54120419757985e47 * cos(theta) ** 29 + 3.16024699099707e47 * cos(theta) ** 27 - 3.81184430872843e47 * cos(theta) ** 25 + 3.00935077004876e47 * cos(theta) ** 23 - 1.63734568778997e47 * cos(theta) ** 21 + 6.29748341457681e46 * cos(theta) ** 19 - 1.72852273498015e46 * cos(theta) ** 17 + 3.37757316030604e45 * cos(theta) ** 15 - 4.63588472983183e44 * cos(theta) ** 13 + 4.35661456538412e43 * cos(theta) ** 11 - 2.68926825023711e42 * cos(theta) ** 9 + 1.02124110768498e41 * cos(theta) ** 7 - 2.14246386227618e39 * cos(theta) ** 5 + 2.04044177359636e37 * cos(theta) ** 3 - 5.59025143451059e34 * cos(theta) ) * cos(20 * phi) ) # @torch.jit.script def Yl51_m21(theta, phi): return ( 8.42676291309043e-36 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.03774415970377e48 * cos(theta) ** 30 - 4.46949217298158e48 * cos(theta) ** 28 + 8.5326668756921e48 * cos(theta) ** 26 - 9.52961077182108e48 * cos(theta) ** 24 + 6.92150677111215e48 * cos(theta) ** 22 - 3.43842594435894e48 * cos(theta) ** 20 + 1.19652184876959e48 * cos(theta) ** 18 - 2.93848864946626e47 * cos(theta) ** 16 + 5.06635974045907e46 * cos(theta) ** 14 - 6.02665014878137e45 * cos(theta) ** 12 + 4.79227602192254e44 * cos(theta) ** 10 - 2.4203414252134e43 * cos(theta) ** 8 + 7.14868775379486e41 * cos(theta) ** 6 - 1.07123193113809e40 * cos(theta) ** 4 + 6.12132532078909e37 * cos(theta) ** 2 - 5.59025143451059e34 ) * cos(21 * phi) ) # @torch.jit.script def Yl51_m22(theta, phi): return ( 1.80068902582784e-37 * (1.0 - cos(theta) ** 2) ** 11 * ( 3.1132324791113e49 * cos(theta) ** 29 - 1.25145780843484e50 * cos(theta) ** 27 + 2.21849338767995e50 * cos(theta) ** 25 - 2.28710658523706e50 * cos(theta) ** 23 + 1.52273148964467e50 * cos(theta) ** 21 - 6.87685188871788e49 * cos(theta) ** 19 + 2.15373932778527e49 * cos(theta) ** 17 - 4.70158183914601e48 * cos(theta) ** 15 + 7.09290363664269e47 * cos(theta) ** 13 - 7.23198017853765e46 * cos(theta) ** 11 + 4.79227602192254e45 * cos(theta) ** 9 - 1.93627314017072e44 * cos(theta) ** 7 + 4.28921265227692e42 * cos(theta) ** 5 - 4.28492772455236e40 * cos(theta) ** 3 + 1.22426506415782e38 * cos(theta) ) * cos(22 * phi) ) # @torch.jit.script def Yl51_m23(theta, phi): return ( 3.88708340155292e-39 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 9.02837418942278e50 * cos(theta) ** 28 - 3.37893608277407e51 * cos(theta) ** 26 + 5.54623346919987e51 * cos(theta) ** 24 - 5.26034514604523e51 * cos(theta) ** 22 + 3.19773612825381e51 * cos(theta) ** 20 - 1.3066018588564e51 * cos(theta) ** 18 + 3.66135685723496e50 * cos(theta) ** 16 - 7.05237275871902e49 * cos(theta) ** 14 + 9.2207747276355e48 * cos(theta) ** 12 - 7.95517819639141e47 * cos(theta) ** 10 + 4.31304841973028e46 * cos(theta) ** 8 - 1.35539119811951e45 * cos(theta) ** 6 + 2.14460632613846e43 * cos(theta) ** 4 - 1.28547831736571e41 * cos(theta) ** 2 + 1.22426506415782e38 ) * cos(23 * phi) ) # @torch.jit.script def Yl51_m24(theta, phi): return ( 8.48231139058224e-41 * (1.0 - cos(theta) ** 2) ** 12 * ( 2.52794477303838e52 * cos(theta) ** 27 - 8.78523381521259e52 * cos(theta) ** 25 + 1.33109603260797e53 * cos(theta) ** 23 - 1.15727593212995e53 * cos(theta) ** 21 + 6.39547225650763e52 * cos(theta) ** 19 - 2.35188334594151e52 * cos(theta) ** 17 + 5.85817097157593e51 * cos(theta) ** 15 - 9.87332186220663e50 * cos(theta) ** 13 + 1.10649296731626e50 * cos(theta) ** 11 - 7.95517819639141e48 * cos(theta) ** 9 + 3.45043873578423e47 * cos(theta) ** 7 - 8.13234718871703e45 * cos(theta) ** 5 + 8.57842530455383e43 * cos(theta) ** 3 - 2.57095663473142e41 * cos(theta) ) * cos(24 * phi) ) # @torch.jit.script def Yl51_m25(theta, phi): return ( 1.87251598325459e-42 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 6.82545088720363e53 * cos(theta) ** 26 - 2.19630845380315e54 * cos(theta) ** 24 + 3.06152087499833e54 * cos(theta) ** 22 - 2.4302794574729e54 * cos(theta) ** 20 + 1.21513972873645e54 * cos(theta) ** 18 - 3.99820168810057e53 * cos(theta) ** 16 + 8.7872564573639e52 * cos(theta) ** 14 - 1.28353184208686e52 * cos(theta) ** 12 + 1.21714226404789e51 * cos(theta) ** 10 - 7.15966037675227e49 * cos(theta) ** 8 + 2.41530711504896e48 * cos(theta) ** 6 - 4.06617359435852e46 * cos(theta) ** 4 + 2.57352759136615e44 * cos(theta) ** 2 - 2.57095663473142e41 ) * cos(25 * phi) ) # @torch.jit.script def Yl51_m26(theta, phi): return ( 4.18498105984344e-44 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.77461723067294e55 * cos(theta) ** 25 - 5.27114028912755e55 * cos(theta) ** 23 + 6.73534592499632e55 * cos(theta) ** 21 - 4.8605589149458e55 * cos(theta) ** 19 + 2.18725151172561e55 * cos(theta) ** 17 - 6.39712270096092e54 * cos(theta) ** 15 + 1.23021590403095e54 * cos(theta) ** 13 - 1.54023821050423e53 * cos(theta) ** 11 + 1.21714226404789e52 * cos(theta) ** 9 - 5.72772830140182e50 * cos(theta) ** 7 + 1.44918426902938e49 * cos(theta) ** 5 - 1.62646943774341e47 * cos(theta) ** 3 + 5.1470551827323e44 * cos(theta) ) * cos(26 * phi) ) # @torch.jit.script def Yl51_m27(theta, phi): return ( 9.47711588478168e-46 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 4.43654307668236e56 * cos(theta) ** 24 - 1.21236226649934e57 * cos(theta) ** 22 + 1.41442264424923e57 * cos(theta) ** 20 - 9.23506193839701e56 * cos(theta) ** 18 + 3.71832756993353e56 * cos(theta) ** 16 - 9.59568405144138e55 * cos(theta) ** 14 + 1.59928067524023e55 * cos(theta) ** 12 - 1.69426203155466e54 * cos(theta) ** 10 + 1.0954280376431e53 * cos(theta) ** 8 - 4.00940981098127e51 * cos(theta) ** 6 + 7.24592134514688e49 * cos(theta) ** 4 - 4.87940831323022e47 * cos(theta) ** 2 + 5.1470551827323e44 ) * cos(27 * phi) ) # @torch.jit.script def Yl51_m28(theta, phi): return ( 2.176491746711e-47 * (1.0 - cos(theta) ** 2) ** 14 * ( 1.06477033840377e58 * cos(theta) ** 23 - 2.66719698629854e58 * cos(theta) ** 21 + 2.82884528849845e58 * cos(theta) ** 19 - 1.66231114891146e58 * cos(theta) ** 17 + 5.94932411189365e57 * cos(theta) ** 15 - 1.34339576720179e57 * cos(theta) ** 13 + 1.91913681028828e56 * cos(theta) ** 11 - 1.69426203155466e55 * cos(theta) ** 9 + 8.76342430114478e53 * cos(theta) ** 7 - 2.40564588658876e52 * cos(theta) ** 5 + 2.89836853805875e50 * cos(theta) ** 3 - 9.75881662646044e47 * cos(theta) ) * cos(28 * phi) ) # @torch.jit.script def Yl51_m29(theta, phi): return ( 5.07397254725842e-49 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 2.44897177832866e59 * cos(theta) ** 22 - 5.60111367122694e59 * cos(theta) ** 20 + 5.37480604814706e59 * cos(theta) ** 18 - 2.82592895314949e59 * cos(theta) ** 16 + 8.92398616784048e58 * cos(theta) ** 14 - 1.74641449736233e58 * cos(theta) ** 12 + 2.1110504913171e57 * cos(theta) ** 10 - 1.52483582839919e56 * cos(theta) ** 8 + 6.13439701080135e54 * cos(theta) ** 6 - 1.20282294329438e53 * cos(theta) ** 4 + 8.69510561417625e50 * cos(theta) ** 2 - 9.75881662646044e47 ) * cos(29 * phi) ) # @torch.jit.script def Yl51_m30(theta, phi): return ( 1.20197175760466e-50 * (1.0 - cos(theta) ** 2) ** 15 * ( 5.38773791232305e60 * cos(theta) ** 21 - 1.12022273424539e61 * cos(theta) ** 19 + 9.67465088666471e60 * cos(theta) ** 17 - 4.52148632503918e60 * cos(theta) ** 15 + 1.24935806349767e60 * cos(theta) ** 13 - 2.0956973968348e59 * cos(theta) ** 11 + 2.1110504913171e58 * cos(theta) ** 9 - 1.21986866271935e57 * cos(theta) ** 7 + 3.68063820648081e55 * cos(theta) ** 5 - 4.81129177317753e53 * cos(theta) ** 3 + 1.73902112283525e51 * cos(theta) ) * cos(30 * phi) ) # @torch.jit.script def Yl51_m31(theta, phi): return ( 2.89652772429387e-52 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 1.13142496158784e62 * cos(theta) ** 20 - 2.12842319506624e62 * cos(theta) ** 18 + 1.644690650733e62 * cos(theta) ** 16 - 6.78222948755877e61 * cos(theta) ** 14 + 1.62416548254697e61 * cos(theta) ** 12 - 2.30526713651828e60 * cos(theta) ** 10 + 1.89994544218539e59 * cos(theta) ** 8 - 8.53908063903547e57 * cos(theta) ** 6 + 1.8403191032404e56 * cos(theta) ** 4 - 1.44338753195326e54 * cos(theta) ** 2 + 1.73902112283525e51 ) * cos(31 * phi) ) # @torch.jit.script def Yl51_m32(theta, phi): return ( 7.10924769273408e-54 * (1.0 - cos(theta) ** 2) ** 16 * ( 2.26284992317568e63 * cos(theta) ** 19 - 3.83116175111923e63 * cos(theta) ** 17 + 2.6315050411728e63 * cos(theta) ** 15 - 9.49512128258227e62 * cos(theta) ** 13 + 1.94899857905636e62 * cos(theta) ** 11 - 2.30526713651828e61 * cos(theta) ** 9 + 1.51995635374831e60 * cos(theta) ** 7 - 5.12344838342128e58 * cos(theta) ** 5 + 7.36127641296161e56 * cos(theta) ** 3 - 2.88677506390652e54 * cos(theta) ) * cos(32 * phi) ) # @torch.jit.script def Yl51_m33(theta, phi): return ( 1.77953773735963e-55 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 4.2994148540338e64 * cos(theta) ** 18 - 6.51297497690268e64 * cos(theta) ** 16 + 3.9472575617592e64 * cos(theta) ** 14 - 1.2343657667357e64 * cos(theta) ** 12 + 2.143898436962e63 * cos(theta) ** 10 - 2.07474042286645e62 * cos(theta) ** 8 + 1.06396944762382e61 * cos(theta) ** 6 - 2.56172419171064e59 * cos(theta) ** 4 + 2.20838292388848e57 * cos(theta) ** 2 - 2.88677506390652e54 ) * cos(33 * phi) ) # @torch.jit.script def Yl51_m34(theta, phi): return ( 4.54947713629167e-57 * (1.0 - cos(theta) ** 2) ** 17 * ( 7.73894673726083e65 * cos(theta) ** 17 - 1.04207599630443e66 * cos(theta) ** 15 + 5.52616058646288e65 * cos(theta) ** 13 - 1.48123892008283e65 * cos(theta) ** 11 + 2.143898436962e64 * cos(theta) ** 9 - 1.65979233829316e63 * cos(theta) ** 7 + 6.38381668574292e61 * cos(theta) ** 5 - 1.02468967668426e60 * cos(theta) ** 3 + 4.41676584777697e57 * cos(theta) ) * cos(34 * phi) ) # @torch.jit.script def Yl51_m35(theta, phi): return ( 1.18983790564055e-58 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 1.31562094533434e67 * cos(theta) ** 16 - 1.56311399445664e67 * cos(theta) ** 14 + 7.18400876240175e66 * cos(theta) ** 12 - 1.62936281209112e66 * cos(theta) ** 10 + 1.9295085932658e65 * cos(theta) ** 8 - 1.16185463680521e64 * cos(theta) ** 6 + 3.19190834287146e62 * cos(theta) ** 4 - 3.07406903005277e60 * cos(theta) ** 2 + 4.41676584777697e57 ) * cos(35 * phi) ) # @torch.jit.script def Yl51_m36(theta, phi): return ( 3.18910033265596e-60 * (1.0 - cos(theta) ** 2) ** 18 * ( 2.10499351253495e68 * cos(theta) ** 15 - 2.1883595922393e68 * cos(theta) ** 13 + 8.6208105148821e67 * cos(theta) ** 11 - 1.62936281209112e67 * cos(theta) ** 9 + 1.54360687461264e66 * cos(theta) ** 7 - 6.97112782083127e64 * cos(theta) ** 5 + 1.27676333714858e63 * cos(theta) ** 3 - 6.14813806010554e60 * cos(theta) ) * cos(36 * phi) ) # @torch.jit.script def Yl51_m37(theta, phi): return ( 8.77770977401657e-62 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 3.15749026880242e69 * cos(theta) ** 14 - 2.84486746991109e69 * cos(theta) ** 12 + 9.4828915663703e68 * cos(theta) ** 10 - 1.46642653088201e68 * cos(theta) ** 8 + 1.08052481222885e67 * cos(theta) ** 6 - 3.48556391041563e65 * cos(theta) ** 4 + 3.83029001144575e63 * cos(theta) ** 2 - 6.14813806010554e60 ) * cos(37 * phi) ) # @torch.jit.script def Yl51_m38(theta, phi): return ( 2.48669313889022e-63 * (1.0 - cos(theta) ** 2) ** 19 * ( 4.42048637632339e70 * cos(theta) ** 13 - 3.41384096389331e70 * cos(theta) ** 11 + 9.48289156637031e69 * cos(theta) ** 9 - 1.1731412247056e69 * cos(theta) ** 7 + 6.48314887337308e67 * cos(theta) ** 5 - 1.39422556416625e66 * cos(theta) ** 3 + 7.6605800228915e63 * cos(theta) ) * cos(38 * phi) ) # @torch.jit.script def Yl51_m39(theta, phi): return ( 7.26991386339812e-65 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 5.7466322892204e71 * cos(theta) ** 12 - 3.75522506028264e71 * cos(theta) ** 10 + 8.53460240973327e70 * cos(theta) ** 8 - 8.21198857293923e69 * cos(theta) ** 6 + 3.24157443668654e68 * cos(theta) ** 4 - 4.18267669249876e66 * cos(theta) ** 2 + 7.6605800228915e63 ) * cos(39 * phi) ) # @torch.jit.script def Yl51_m40(theta, phi): return ( 2.19997601512958e-66 * (1.0 - cos(theta) ** 2) ** 20 * ( 6.89595874706449e72 * cos(theta) ** 11 - 3.75522506028264e72 * cos(theta) ** 9 + 6.82768192778662e71 * cos(theta) ** 7 - 4.92719314376354e70 * cos(theta) ** 5 + 1.29662977467462e69 * cos(theta) ** 3 - 8.36535338499752e66 * cos(theta) ) * cos(40 * phi) ) # @torch.jit.script def Yl51_m41(theta, phi): return ( 6.91556535228707e-68 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 7.58555462177093e73 * cos(theta) ** 10 - 3.37970255425438e73 * cos(theta) ** 8 + 4.77937734945063e72 * cos(theta) ** 6 - 2.46359657188177e71 * cos(theta) ** 4 + 3.88988932402385e69 * cos(theta) ** 2 - 8.36535338499752e66 ) * cos(41 * phi) ) # @torch.jit.script def Yl51_m42(theta, phi): return ( 2.26770321354111e-69 * (1.0 - cos(theta) ** 2) ** 21 * ( 7.58555462177093e74 * cos(theta) ** 9 - 2.7037620434035e74 * cos(theta) ** 7 + 2.86762640967038e73 * cos(theta) ** 5 - 9.85438628752708e71 * cos(theta) ** 3 + 7.77977864804769e69 * cos(theta) ) * cos(42 * phi) ) # @torch.jit.script def Yl51_m43(theta, phi): return ( 7.79652424885213e-71 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 6.82699915959384e75 * cos(theta) ** 8 - 1.89263343038245e75 * cos(theta) ** 6 + 1.43381320483519e74 * cos(theta) ** 4 - 2.95631588625812e72 * cos(theta) ** 2 + 7.77977864804769e69 ) * cos(43 * phi) ) # @torch.jit.script def Yl51_m44(theta, phi): return ( 2.82809658797451e-72 * (1.0 - cos(theta) ** 2) ** 22 * ( 5.46159932767507e76 * cos(theta) ** 7 - 1.13558005822947e76 * cos(theta) ** 5 + 5.73525281934076e74 * cos(theta) ** 3 - 5.91263177251625e72 * cos(theta) ) * cos(44 * phi) ) # @torch.jit.script def Yl51_m45(theta, phi): return ( 1.09096194385207e-73 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 3.82311952937255e77 * cos(theta) ** 6 - 5.67790029114735e76 * cos(theta) ** 4 + 1.72057584580223e75 * cos(theta) ** 2 - 5.91263177251625e72 ) * cos(45 * phi) ) # @torch.jit.script def Yl51_m46(theta, phi): return ( 4.52218274953181e-75 * (1.0 - cos(theta) ** 2) ** 23 * ( 2.29387171762353e78 * cos(theta) ** 5 - 2.27116011645894e77 * cos(theta) ** 3 + 3.44115169160446e75 * cos(theta) ) * cos(46 * phi) ) # @torch.jit.script def Yl51_m47(theta, phi): return ( 2.04291392629189e-76 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 1.14693585881177e79 * cos(theta) ** 4 - 6.81348034937682e77 * cos(theta) ** 2 + 3.44115169160446e75 ) * cos(47 * phi) ) # @torch.jit.script def Yl51_m48(theta, phi): return ( 1.02660287462151e-77 * (1.0 - cos(theta) ** 2) ** 24 * (4.58774343524706e79 * cos(theta) ** 3 - 1.36269606987536e78 * cos(theta)) * cos(48 * phi) ) # @torch.jit.script def Yl51_m49(theta, phi): return ( 5.92709446013574e-79 * (1.0 - cos(theta) ** 2) ** 24.5 * (1.37632303057412e80 * cos(theta) ** 2 - 1.36269606987536e78) * cos(49 * phi) ) # @torch.jit.script def Yl51_m50(theta, phi): return 11.4793298912137 * (1.0 - cos(theta) ** 2) ** 25 * cos(50 * phi) * cos(theta) # @torch.jit.script def Yl51_m51(theta, phi): return 1.1366230286804 * (1.0 - cos(theta) ** 2) ** 25.5 * cos(51 * phi) # @torch.jit.script def Yl52_m_minus_52(theta, phi): return 1.14207448934996 * (1.0 - cos(theta) ** 2) ** 26 * sin(52 * phi) # @torch.jit.script def Yl52_m_minus_51(theta, phi): return ( 11.6469202143439 * (1.0 - cos(theta) ** 2) ** 25.5 * sin(51 * phi) * cos(theta) ) # @torch.jit.script def Yl52_m_minus_50(theta, phi): return ( 5.89599508828156e-81 * (1.0 - cos(theta) ** 2) ** 25 * (1.41761272149134e82 * cos(theta) ** 2 - 1.37632303057412e80) * sin(50 * phi) ) # @torch.jit.script def Yl52_m_minus_49(theta, phi): return ( 1.03137791196042e-79 * (1.0 - cos(theta) ** 2) ** 24.5 * (4.72537573830447e81 * cos(theta) ** 3 - 1.37632303057412e80 * cos(theta)) * sin(49 * phi) ) # @torch.jit.script def Yl52_m_minus_48(theta, phi): return ( 2.07304394671472e-78 * (1.0 - cos(theta) ** 2) ** 24 * ( 1.18134393457612e81 * cos(theta) ** 4 - 6.88161515287059e79 * cos(theta) ** 2 + 3.40674017468841e77 ) * sin(48 * phi) ) # @torch.jit.script def Yl52_m_minus_47(theta, phi): return ( 4.63546718519856e-77 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 2.36268786915224e80 * cos(theta) ** 5 - 2.29387171762353e79 * cos(theta) ** 3 + 3.40674017468841e77 * cos(theta) ) * sin(47 * phi) ) # @torch.jit.script def Yl52_m_minus_46(theta, phi): return ( 1.12976140307948e-75 * (1.0 - cos(theta) ** 2) ** 23 * ( 3.93781311525373e79 * cos(theta) ** 6 - 5.73467929405883e78 * cos(theta) ** 4 + 1.70337008734421e77 * cos(theta) ** 2 - 5.73525281934076e74 ) * sin(46 * phi) ) # @torch.jit.script def Yl52_m_minus_45(theta, phi): return ( 2.95902606938711e-74 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 5.62544730750532e78 * cos(theta) ** 7 - 1.14693585881177e78 * cos(theta) ** 5 + 5.67790029114735e76 * cos(theta) ** 3 - 5.73525281934076e74 * cos(theta) ) * sin(45 * phi) ) # @torch.jit.script def Yl52_m_minus_44(theta, phi): return ( 8.24289280334673e-73 * (1.0 - cos(theta) ** 2) ** 22 * ( 7.03180913438166e77 * cos(theta) ** 8 - 1.91155976468628e77 * cos(theta) ** 6 + 1.41947507278684e76 * cos(theta) ** 4 - 2.86762640967038e74 * cos(theta) ** 2 + 7.39078971564531e71 ) * sin(44 * phi) ) # @torch.jit.script def Yl52_m_minus_43(theta, phi): return ( 2.42290576471909e-71 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 7.81312126042406e76 * cos(theta) ** 9 - 2.73079966383754e76 * cos(theta) ** 7 + 2.83895014557368e75 * cos(theta) ** 5 - 9.55875469890127e73 * cos(theta) ** 3 + 7.39078971564531e71 * cos(theta) ) * sin(43 * phi) ) # @torch.jit.script def Yl52_m_minus_42(theta, phi): return ( 7.46789711195431e-70 * (1.0 - cos(theta) ** 2) ** 21 * ( 7.81312126042406e75 * cos(theta) ** 10 - 3.41349957979692e75 * cos(theta) ** 8 + 4.73158357595613e74 * cos(theta) ** 6 - 2.38968867472532e73 * cos(theta) ** 4 + 3.69539485782266e71 * cos(theta) ** 2 - 7.77977864804769e68 ) * sin(42 * phi) ) # @torch.jit.script def Yl52_m_minus_41(theta, phi): return ( 2.4013673155533e-68 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 7.10283750947642e74 * cos(theta) ** 11 - 3.79277731088547e74 * cos(theta) ** 9 + 6.75940510850875e73 * cos(theta) ** 7 - 4.77937734945063e72 * cos(theta) ** 5 + 1.23179828594088e71 * cos(theta) ** 3 - 7.77977864804769e68 * cos(theta) ) * sin(41 * phi) ) # @torch.jit.script def Yl52_m_minus_40(theta, phi): return ( 8.02214841696147e-67 * (1.0 - cos(theta) ** 2) ** 20 * ( 5.91903125789702e73 * cos(theta) ** 12 - 3.79277731088547e73 * cos(theta) ** 10 + 8.44925638563594e72 * cos(theta) ** 8 - 7.96562891575106e71 * cos(theta) ** 6 + 3.07949571485221e70 * cos(theta) ** 4 - 3.88988932402385e68 * cos(theta) ** 2 + 6.97112782083127e65 ) * sin(40 * phi) ) # @torch.jit.script def Yl52_m_minus_39(theta, phi): return ( 2.77431827315494e-65 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 4.55310096761309e72 * cos(theta) ** 13 - 3.44797937353224e72 * cos(theta) ** 11 + 9.3880626507066e71 * cos(theta) ** 9 - 1.13794698796444e71 * cos(theta) ** 7 + 6.15899142970443e69 * cos(theta) ** 5 - 1.29662977467462e68 * cos(theta) ** 3 + 6.97112782083127e65 * cos(theta) ) * sin(39 * phi) ) # @torch.jit.script def Yl52_m_minus_38(theta, phi): return ( 9.90241210821384e-64 * (1.0 - cos(theta) ** 2) ** 19 * ( 3.25221497686649e71 * cos(theta) ** 14 - 2.8733161446102e71 * cos(theta) ** 12 + 9.3880626507066e70 * cos(theta) ** 10 - 1.42243373495555e70 * cos(theta) ** 8 + 1.0264985716174e69 * cos(theta) ** 6 - 3.24157443668654e67 * cos(theta) ** 4 + 3.48556391041563e65 * cos(theta) ** 2 - 5.47184287349393e62 ) * sin(38 * phi) ) # @torch.jit.script def Yl52_m_minus_37(theta, phi): return ( 3.63837853318226e-62 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 2.168143317911e70 * cos(theta) ** 15 - 2.21024318816169e70 * cos(theta) ** 13 + 8.53460240973327e69 * cos(theta) ** 11 - 1.58048192772838e69 * cos(theta) ** 9 + 1.46642653088201e68 * cos(theta) ** 7 - 6.48314887337308e66 * cos(theta) ** 5 + 1.16185463680521e65 * cos(theta) ** 3 - 5.47184287349393e62 * cos(theta) ) * sin(37 * phi) ) # @torch.jit.script def Yl52_m_minus_36(theta, phi): return ( 1.37297577733285e-60 * (1.0 - cos(theta) ** 2) ** 18 * ( 1.35508957369437e69 * cos(theta) ** 16 - 1.57874513440121e69 * cos(theta) ** 14 + 7.11216867477773e68 * cos(theta) ** 12 - 1.58048192772838e68 * cos(theta) ** 10 + 1.83303316360251e67 * cos(theta) ** 8 - 1.08052481222885e66 * cos(theta) ** 6 + 2.90463659201303e64 * cos(theta) ** 4 - 2.73592143674697e62 * cos(theta) ** 2 + 3.84258628756596e59 ) * sin(36 * phi) ) # @torch.jit.script def Yl52_m_minus_35(theta, phi): return ( 5.31041757093879e-59 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 7.97111513937866e67 * cos(theta) ** 17 - 1.05249675626747e68 * cos(theta) ** 15 + 5.47089898059825e67 * cos(theta) ** 13 - 1.43680175248035e67 * cos(theta) ** 11 + 2.0367035151139e66 * cos(theta) ** 9 - 1.54360687461264e65 * cos(theta) ** 7 + 5.80927318402606e63 * cos(theta) ** 5 - 9.11973812248989e61 * cos(theta) ** 3 + 3.84258628756596e59 * cos(theta) ) * sin(35 * phi) ) # @torch.jit.script def Yl52_m_minus_34(theta, phi): return ( 2.10147656332241e-57 * (1.0 - cos(theta) ** 2) ** 17 * ( 4.42839729965481e66 * cos(theta) ** 18 - 6.57810472667171e66 * cos(theta) ** 16 + 3.90778498614161e66 * cos(theta) ** 14 - 1.19733479373362e66 * cos(theta) ** 12 + 2.0367035151139e65 * cos(theta) ** 10 - 1.9295085932658e64 * cos(theta) ** 8 + 9.68212197337676e62 * cos(theta) ** 6 - 2.27993453062247e61 * cos(theta) ** 4 + 1.92129314378298e59 * cos(theta) ** 2 - 2.45375880432054e56 ) * sin(34 * phi) ) # @torch.jit.script def Yl52_m_minus_33(theta, phi): return ( 8.49474950853759e-56 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 2.33073542087095e65 * cos(theta) ** 19 - 3.86947336863042e65 * cos(theta) ** 17 + 2.60518999076107e65 * cos(theta) ** 15 - 9.2102676441048e64 * cos(theta) ** 13 + 1.85154865010354e64 * cos(theta) ** 11 - 2.143898436962e63 * cos(theta) ** 9 + 1.38316028191097e62 * cos(theta) ** 7 - 4.55986906124494e60 * cos(theta) ** 5 + 6.4043104792766e58 * cos(theta) ** 3 - 2.45375880432054e56 * cos(theta) ) * sin(33 * phi) ) # @torch.jit.script def Yl52_m_minus_32(theta, phi): return ( 3.50247494868642e-54 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.16536771043548e64 * cos(theta) ** 20 - 2.1497074270169e64 * cos(theta) ** 18 + 1.62824374422567e64 * cos(theta) ** 16 - 6.578762602932e63 * cos(theta) ** 14 + 1.54295720841962e63 * cos(theta) ** 12 - 2.143898436962e62 * cos(theta) ** 10 + 1.72895035238871e61 * cos(theta) ** 8 - 7.59978176874157e59 * cos(theta) ** 6 + 1.60107761981915e58 * cos(theta) ** 4 - 1.22687940216027e56 * cos(theta) ** 2 + 1.44338753195326e53 ) * sin(32 * phi) ) # @torch.jit.script def Yl52_m_minus_31(theta, phi): return ( 1.4710394784483e-52 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 5.54937004969274e62 * cos(theta) ** 21 - 1.13142496158784e63 * cos(theta) ** 19 + 9.57790437779806e62 * cos(theta) ** 17 - 4.385841735288e62 * cos(theta) ** 15 + 1.18689016032278e62 * cos(theta) ** 13 - 1.94899857905636e61 * cos(theta) ** 11 + 1.92105594709856e60 * cos(theta) ** 9 - 1.08568310982022e59 * cos(theta) ** 7 + 3.2021552396383e57 * cos(theta) ** 5 - 4.0895980072009e55 * cos(theta) ** 3 + 1.44338753195326e53 * cos(theta) ) * sin(31 * phi) ) # @torch.jit.script def Yl52_m_minus_30(theta, phi): return ( 6.28600489237972e-51 * (1.0 - cos(theta) ** 2) ** 15 * ( 2.52244093167852e61 * cos(theta) ** 22 - 5.65712480793921e61 * cos(theta) ** 20 + 5.32105798766559e61 * cos(theta) ** 18 - 2.741151084555e61 * cos(theta) ** 16 + 8.47778685944846e60 * cos(theta) ** 14 - 1.62416548254697e60 * cos(theta) ** 12 + 1.92105594709856e59 * cos(theta) ** 10 - 1.35710388727528e58 * cos(theta) ** 8 + 5.33692539939717e56 * cos(theta) ** 6 - 1.02239950180022e55 * cos(theta) ** 4 + 7.21693765976629e52 * cos(theta) ** 2 - 7.90464146743296e49 ) * sin(30 * phi) ) # @torch.jit.script def Yl52_m_minus_29(theta, phi): return ( 2.72989258503413e-49 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 1.09671344855588e60 * cos(theta) ** 23 - 2.69386895616153e60 * cos(theta) ** 21 + 2.80055683561347e60 * cos(theta) ** 19 - 1.61244181444412e60 * cos(theta) ** 17 + 5.65185790629897e59 * cos(theta) ** 15 - 1.24935806349767e59 * cos(theta) ** 13 + 1.74641449736233e58 * cos(theta) ** 11 - 1.50789320808365e57 * cos(theta) ** 9 + 7.62417914199596e55 * cos(theta) ** 7 - 2.04479900360045e54 * cos(theta) ** 5 + 2.40564588658876e52 * cos(theta) ** 3 - 7.90464146743296e49 * cos(theta) ) * sin(29 * phi) ) # @torch.jit.script def Yl52_m_minus_28(theta, phi): return ( 1.20363189946937e-47 * (1.0 - cos(theta) ** 2) ** 14 * ( 4.56963936898283e58 * cos(theta) ** 24 - 1.22448588916433e59 * cos(theta) ** 22 + 1.40027841780673e59 * cos(theta) ** 20 - 8.9580100802451e58 * cos(theta) ** 18 + 3.53241119143686e58 * cos(theta) ** 16 - 8.92398616784048e57 * cos(theta) ** 14 + 1.45534541446861e57 * cos(theta) ** 12 - 1.50789320808364e56 * cos(theta) ** 10 + 9.53022392749495e54 * cos(theta) ** 8 - 3.40799833933408e53 * cos(theta) ** 6 + 6.01411471647191e51 * cos(theta) ** 4 - 3.95232073371648e49 * cos(theta) ** 2 + 4.06617359435852e46 ) * sin(28 * phi) ) # @torch.jit.script def Yl52_m_minus_27(theta, phi): return ( 5.38280549420141e-46 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.82785574759313e57 * cos(theta) ** 25 - 5.32385169201883e57 * cos(theta) ** 23 + 6.66799246574635e57 * cos(theta) ** 21 - 4.71474214749742e57 * cos(theta) ** 19 + 2.07788893613933e57 * cos(theta) ** 17 - 5.94932411189365e56 * cos(theta) ** 15 + 1.11949647266816e56 * cos(theta) ** 13 - 1.37081200734877e55 * cos(theta) ** 11 + 1.05891376972166e54 * cos(theta) ** 9 - 4.86856905619154e52 * cos(theta) ** 7 + 1.20282294329438e51 * cos(theta) ** 5 - 1.31744024457216e49 * cos(theta) ** 3 + 4.06617359435852e46 * cos(theta) ) * sin(27 * phi) ) # @torch.jit.script def Yl52_m_minus_26(theta, phi): return ( 2.43954541064895e-44 * (1.0 - cos(theta) ** 2) ** 13 * ( 7.03021441381973e55 * cos(theta) ** 26 - 2.21827153834118e56 * cos(theta) ** 24 + 3.03090566624834e56 * cos(theta) ** 22 - 2.35737107374871e56 * cos(theta) ** 20 + 1.15438274229963e56 * cos(theta) ** 18 - 3.71832756993353e55 * cos(theta) ** 16 + 7.99640337620115e54 * cos(theta) ** 14 - 1.14234333945731e54 * cos(theta) ** 12 + 1.05891376972166e53 * cos(theta) ** 10 - 6.08571132023943e51 * cos(theta) ** 8 + 2.00470490549064e50 * cos(theta) ** 6 - 3.2936006114304e48 * cos(theta) ** 4 + 2.03308679717926e46 * cos(theta) ** 2 - 1.97963660874319e43 ) * sin(26 * phi) ) # @torch.jit.script def Yl52_m_minus_25(theta, phi): return ( 1.11953606878753e-42 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 2.60378311622953e54 * cos(theta) ** 27 - 8.87308615336471e54 * cos(theta) ** 25 + 1.31778507228189e55 * cos(theta) ** 23 - 1.12255765416605e55 * cos(theta) ** 21 + 6.07569864368224e54 * cos(theta) ** 19 - 2.18725151172561e54 * cos(theta) ** 17 + 5.3309355841341e53 * cos(theta) ** 15 - 8.7872564573639e52 * cos(theta) ** 13 + 9.62648881565146e51 * cos(theta) ** 11 - 6.7619014669327e50 * cos(theta) ** 9 + 2.86386415070091e49 * cos(theta) ** 7 - 6.5872012228608e47 * cos(theta) ** 5 + 6.77695599059753e45 * cos(theta) ** 3 - 1.97963660874319e43 * cos(theta) ) * sin(25 * phi) ) # @torch.jit.script def Yl52_m_minus_24(theta, phi): return ( 5.19831351121283e-41 * (1.0 - cos(theta) ** 2) ** 12 * ( 9.29922541510547e52 * cos(theta) ** 28 - 3.41272544360181e53 * cos(theta) ** 26 + 5.49077113450787e53 * cos(theta) ** 24 - 5.10253479166388e53 * cos(theta) ** 22 + 3.03784932184112e53 * cos(theta) ** 20 - 1.21513972873645e53 * cos(theta) ** 18 + 3.33183474008381e52 * cos(theta) ** 16 - 6.27661175525993e51 * cos(theta) ** 14 + 8.02207401304289e50 * cos(theta) ** 12 - 6.7619014669327e49 * cos(theta) ** 10 + 3.57983018837613e48 * cos(theta) ** 8 - 1.0978668704768e47 * cos(theta) ** 6 + 1.69423899764938e45 * cos(theta) ** 4 - 9.89818304371596e42 * cos(theta) ** 2 + 9.18198798118364e39 ) * sin(24 * phi) ) # @torch.jit.script def Yl52_m_minus_23(theta, phi): return ( 2.44044072346227e-39 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 3.20662945348464e51 * cos(theta) ** 29 - 1.26397238651919e52 * cos(theta) ** 27 + 2.19630845380315e52 * cos(theta) ** 25 - 2.21849338767995e52 * cos(theta) ** 23 + 1.44659491516244e52 * cos(theta) ** 21 - 6.39547225650763e51 * cos(theta) ** 19 + 1.95990278828459e51 * cos(theta) ** 17 - 4.18440783683995e50 * cos(theta) ** 15 + 6.17082616387914e49 * cos(theta) ** 13 - 6.147183151757e48 * cos(theta) ** 11 + 3.97758909819571e47 * cos(theta) ** 9 - 1.56838124353828e46 * cos(theta) ** 7 + 3.38847799529876e44 * cos(theta) ** 5 - 3.29939434790532e42 * cos(theta) ** 3 + 9.18198798118364e39 * cos(theta) ) * sin(23 * phi) ) # @torch.jit.script def Yl52_m_minus_22(theta, phi): return ( 1.15760267711549e-37 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.06887648449488e50 * cos(theta) ** 30 - 4.51418709471139e50 * cos(theta) ** 28 + 8.44734020693518e50 * cos(theta) ** 26 - 9.24372244866644e50 * cos(theta) ** 24 + 6.57543143255654e50 * cos(theta) ** 22 - 3.19773612825381e50 * cos(theta) ** 20 + 1.08883488238033e50 * cos(theta) ** 18 - 2.61525489802497e49 * cos(theta) ** 16 + 4.40773297419939e48 * cos(theta) ** 14 - 5.12265262646417e47 * cos(theta) ** 12 + 3.97758909819571e46 * cos(theta) ** 10 - 1.96047655442286e45 * cos(theta) ** 8 + 5.64746332549794e43 * cos(theta) ** 6 - 8.2484858697633e41 * cos(theta) ** 4 + 4.59099399059182e39 * cos(theta) ** 2 - 4.08088354719273e36 ) * sin(22 * phi) ) # @torch.jit.script def Yl52_m_minus_21(theta, phi): return ( 5.54442137630337e-36 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 3.44798865966091e48 * cos(theta) ** 31 - 1.55661623955565e49 * cos(theta) ** 29 + 3.1286445210871e49 * cos(theta) ** 27 - 3.69748897946658e49 * cos(theta) ** 25 + 2.85888323154632e49 * cos(theta) ** 23 - 1.52273148964467e49 * cos(theta) ** 21 + 5.7307099072649e48 * cos(theta) ** 19 - 1.53838523413234e48 * cos(theta) ** 17 + 2.93848864946626e47 * cos(theta) ** 15 - 3.94050202035705e46 * cos(theta) ** 13 + 3.61599008926882e45 * cos(theta) ** 11 - 2.17830728269206e44 * cos(theta) ** 9 + 8.06780475071134e42 * cos(theta) ** 7 - 1.64969717395266e41 * cos(theta) ** 5 + 1.53033133019727e39 * cos(theta) ** 3 - 4.08088354719273e36 * cos(theta) ) * sin(21 * phi) ) # @torch.jit.script def Yl52_m_minus_20(theta, phi): return ( 2.67973993547416e-34 * (1.0 - cos(theta) ** 2) ** 10 * ( 1.07749645614403e47 * cos(theta) ** 32 - 5.18872079851884e47 * cos(theta) ** 30 + 1.11737304324539e48 * cos(theta) ** 28 - 1.42211114594868e48 * cos(theta) ** 26 + 1.19120134647763e48 * cos(theta) ** 24 - 6.92150677111215e47 * cos(theta) ** 22 + 2.86535495363245e47 * cos(theta) ** 20 - 8.54658463406853e46 * cos(theta) ** 18 + 1.83655540591641e46 * cos(theta) ** 16 - 2.81464430025504e45 * cos(theta) ** 14 + 3.01332507439069e44 * cos(theta) ** 12 - 2.17830728269206e43 * cos(theta) ** 10 + 1.00847559383892e42 * cos(theta) ** 8 - 2.7494952899211e40 * cos(theta) ** 6 + 3.82582832549318e38 * cos(theta) ** 4 - 2.04044177359636e36 * cos(theta) ** 2 + 1.74695357328456e33 ) * sin(20 * phi) ) # @torch.jit.script def Yl52_m_minus_19(theta, phi): return ( 1.30621860901373e-32 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 3.26514077619404e45 * cos(theta) ** 33 - 1.67378090274801e46 * cos(theta) ** 31 + 3.85301049394963e46 * cos(theta) ** 29 - 5.26707831832846e46 * cos(theta) ** 27 + 4.76480538591054e46 * cos(theta) ** 25 - 3.00935077004876e46 * cos(theta) ** 23 + 1.36445473982498e46 * cos(theta) ** 21 - 4.49820243898344e45 * cos(theta) ** 19 + 1.08032670936259e45 * cos(theta) ** 17 - 1.87642953350336e44 * cos(theta) ** 15 + 2.31794236491591e43 * cos(theta) ** 13 - 1.98027934790187e42 * cos(theta) ** 11 + 1.1205284375988e41 * cos(theta) ** 9 - 3.927850414173e39 * cos(theta) ** 7 + 7.65165665098636e37 * cos(theta) ** 5 - 6.80147257865454e35 * cos(theta) ** 3 + 1.74695357328456e33 * cos(theta) ) * sin(19 * phi) ) # @torch.jit.script def Yl52_m_minus_18(theta, phi): return ( 6.41777518275959e-31 * (1.0 - cos(theta) ** 2) ** 9 * ( 9.60335522410012e43 * cos(theta) ** 34 - 5.23056532108754e44 * cos(theta) ** 32 + 1.28433683131654e45 * cos(theta) ** 30 - 1.88109939940302e45 * cos(theta) ** 28 + 1.83261745611944e45 * cos(theta) ** 26 - 1.25389615418698e45 * cos(theta) ** 24 + 6.20206699920443e44 * cos(theta) ** 22 - 2.24910121949172e44 * cos(theta) ** 20 + 6.00181505201442e43 * cos(theta) ** 18 - 1.1727684584396e43 * cos(theta) ** 16 + 1.65567311779708e42 * cos(theta) ** 14 - 1.65023278991823e41 * cos(theta) ** 12 + 1.1205284375988e40 * cos(theta) ** 10 - 4.90981301771625e38 * cos(theta) ** 8 + 1.27527610849773e37 * cos(theta) ** 6 - 1.70036814466364e35 * cos(theta) ** 4 + 8.73476786642279e32 * cos(theta) ** 2 - 7.23675879571068e29 ) * sin(18 * phi) ) # @torch.jit.script def Yl52_m_minus_17(theta, phi): return ( 3.17663664630203e-29 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 2.74381577831432e42 * cos(theta) ** 35 - 1.58501979426895e43 * cos(theta) ** 33 + 4.14302203650498e43 * cos(theta) ** 31 - 6.48654965311386e43 * cos(theta) ** 29 + 6.78747205970162e43 * cos(theta) ** 27 - 5.01558461674793e43 * cos(theta) ** 25 + 2.69655086921932e43 * cos(theta) ** 23 - 1.07100058071034e43 * cos(theta) ** 21 + 3.15885002737601e42 * cos(theta) ** 19 - 6.89863799082117e41 * cos(theta) ** 17 + 1.10378207853139e41 * cos(theta) ** 15 - 1.26940983839864e40 * cos(theta) ** 13 + 1.01866221599891e39 * cos(theta) ** 11 - 5.4553477974625e37 * cos(theta) ** 9 + 1.82182301213961e36 * cos(theta) ** 7 - 3.40073628932727e34 * cos(theta) ** 5 + 2.9115892888076e32 * cos(theta) ** 3 - 7.23675879571068e29 * cos(theta) ) * sin(17 * phi) ) # @torch.jit.script def Yl52_m_minus_16(theta, phi): return ( 1.58322754619955e-27 * (1.0 - cos(theta) ** 2) ** 8 * ( 7.62171049531756e40 * cos(theta) ** 36 - 4.66182292432045e41 * cos(theta) ** 34 + 1.29469438640781e42 * cos(theta) ** 32 - 2.16218321770462e42 * cos(theta) ** 30 + 2.42409716417915e42 * cos(theta) ** 28 - 1.92907100644151e42 * cos(theta) ** 26 + 1.12356286217472e42 * cos(theta) ** 24 - 4.86818445777428e41 * cos(theta) ** 22 + 1.579425013688e41 * cos(theta) ** 20 - 3.83257666156732e40 * cos(theta) ** 18 + 6.89863799082117e39 * cos(theta) ** 16 - 9.06721313141884e38 * cos(theta) ** 14 + 8.48885179999089e37 * cos(theta) ** 12 - 5.4553477974625e36 * cos(theta) ** 10 + 2.27727876517451e35 * cos(theta) ** 8 - 5.66789381554545e33 * cos(theta) ** 6 + 7.27897322201899e31 * cos(theta) ** 4 - 3.61837939785534e29 * cos(theta) ** 2 + 2.91334895157435e26 ) * sin(16 * phi) ) # @torch.jit.script def Yl52_m_minus_15(theta, phi): return ( 7.94142897029328e-26 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 2.05992175549123e39 * cos(theta) ** 37 - 1.3319494069487e40 * cos(theta) ** 35 + 3.9233163224479e40 * cos(theta) ** 33 - 6.97478457324071e40 * cos(theta) ** 31 + 8.35895573854879e40 * cos(theta) ** 29 - 7.14470743126486e40 * cos(theta) ** 27 + 4.49425144869887e40 * cos(theta) ** 25 - 2.11660193816273e40 * cos(theta) ** 23 + 7.5210714937524e39 * cos(theta) ** 21 - 2.01714561135122e39 * cos(theta) ** 19 + 4.05802234754186e38 * cos(theta) ** 17 - 6.04480875427923e37 * cos(theta) ** 15 + 6.52988599999299e36 * cos(theta) ** 13 - 4.95940708860227e35 * cos(theta) ** 11 + 2.53030973908279e34 * cos(theta) ** 9 - 8.09699116506493e32 * cos(theta) ** 7 + 1.4557946444038e31 * cos(theta) ** 5 - 1.20612646595178e29 * cos(theta) ** 3 + 2.91334895157435e26 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl52_m_minus_14(theta, phi): return ( 4.00707854619401e-24 * (1.0 - cos(theta) ** 2) ** 7 * ( 5.42084672497692e37 * cos(theta) ** 38 - 3.69985946374639e38 * cos(theta) ** 36 + 1.15391656542585e39 * cos(theta) ** 34 - 2.17962017913772e39 * cos(theta) ** 32 + 2.78631857951626e39 * cos(theta) ** 30 - 2.55168122545174e39 * cos(theta) ** 28 + 1.72855824949956e39 * cos(theta) ** 26 - 8.81917474234471e38 * cos(theta) ** 24 + 3.41866886079655e38 * cos(theta) ** 22 - 1.00857280567561e38 * cos(theta) ** 20 + 2.25445685974548e37 * cos(theta) ** 18 - 3.77800547142452e36 * cos(theta) ** 16 + 4.66420428570928e35 * cos(theta) ** 14 - 4.13283924050189e34 * cos(theta) ** 12 + 2.53030973908279e33 * cos(theta) ** 10 - 1.01212389563312e32 * cos(theta) ** 8 + 2.42632440733966e30 * cos(theta) ** 6 - 3.01531616487945e28 * cos(theta) ** 4 + 1.45667447578717e26 * cos(theta) ** 2 - 1.1442847413882e23 ) * sin(14 * phi) ) # @torch.jit.script def Yl52_m_minus_13(theta, phi): return ( 2.032975415385e-22 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.38996069871203e36 * cos(theta) ** 39 - 9.99962017228753e36 * cos(theta) ** 37 + 3.2969044726453e37 * cos(theta) ** 35 - 6.60490963375068e37 * cos(theta) ** 33 + 8.98812445005247e37 * cos(theta) ** 31 - 8.79890077741978e37 * cos(theta) ** 29 + 6.40206759073913e37 * cos(theta) ** 27 - 3.52766989693789e37 * cos(theta) ** 25 + 1.48637776556372e37 * cos(theta) ** 23 - 4.80272764607433e36 * cos(theta) ** 21 + 1.18655624197131e36 * cos(theta) ** 19 - 2.22235615966148e35 * cos(theta) ** 17 + 3.10946952380619e34 * cos(theta) ** 15 - 3.17910710807838e33 * cos(theta) ** 13 + 2.30028158098436e32 * cos(theta) ** 11 - 1.12458210625902e31 * cos(theta) ** 9 + 3.46617772477095e29 * cos(theta) ** 7 - 6.0306323297589e27 * cos(theta) ** 5 + 4.85558158595725e25 * cos(theta) ** 3 - 1.1442847413882e23 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl52_m_minus_12(theta, phi): return ( 1.03661813137025e-20 * (1.0 - cos(theta) ** 2) ** 6 * ( 3.47490174678008e34 * cos(theta) ** 40 - 2.63147899270725e35 * cos(theta) ** 38 + 9.15806797957027e35 * cos(theta) ** 36 - 1.9426204805149e36 * cos(theta) ** 34 + 2.8087888906414e36 * cos(theta) ** 32 - 2.93296692580659e36 * cos(theta) ** 30 + 2.28645271097826e36 * cos(theta) ** 28 - 1.35679611420688e36 * cos(theta) ** 26 + 6.19324068984882e35 * cos(theta) ** 24 - 2.18305802094288e35 * cos(theta) ** 22 + 5.93278120985653e34 * cos(theta) ** 20 - 1.23464231092304e34 * cos(theta) ** 18 + 1.94341845237887e33 * cos(theta) ** 16 - 2.27079079148456e32 * cos(theta) ** 14 + 1.91690131748696e31 * cos(theta) ** 12 - 1.12458210625902e30 * cos(theta) ** 10 + 4.33272215596369e28 * cos(theta) ** 8 - 1.00510538829315e27 * cos(theta) ** 6 + 1.21389539648931e25 * cos(theta) ** 4 - 5.72142370694098e22 * cos(theta) ** 2 + 4.40109515918537e19 ) * sin(12 * phi) ) # @torch.jit.script def Yl52_m_minus_11(theta, phi): return ( 5.31007574555136e-19 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 8.47537011409776e32 * cos(theta) ** 41 - 6.74738203258268e33 * cos(theta) ** 39 + 2.47515350799196e34 * cos(theta) ** 37 - 5.55034423004258e34 * cos(theta) ** 35 + 8.51148148679211e34 * cos(theta) ** 33 - 9.46118363163417e34 * cos(theta) ** 31 + 7.88431969302848e34 * cos(theta) ** 29 - 5.02517079335881e34 * cos(theta) ** 27 + 2.47729627593953e34 * cos(theta) ** 25 - 9.49155661279512e33 * cos(theta) ** 23 + 2.82513390945549e33 * cos(theta) ** 21 - 6.49811742591076e32 * cos(theta) ** 19 + 1.14318732492875e32 * cos(theta) ** 17 - 1.51386052765637e31 * cos(theta) ** 15 + 1.47453947498997e30 * cos(theta) ** 13 - 1.02234736932638e29 * cos(theta) ** 11 + 4.81413572884854e27 * cos(theta) ** 9 - 1.43586484041879e26 * cos(theta) ** 7 + 2.42779079297862e24 * cos(theta) ** 5 - 1.90714123564699e22 * cos(theta) ** 3 + 4.40109515918537e19 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl52_m_minus_10(theta, phi): return ( 2.73146497514726e-17 * (1.0 - cos(theta) ** 2) ** 5 * ( 2.01794526526137e31 * cos(theta) ** 42 - 1.68684550814567e32 * cos(theta) ** 40 + 6.51356186313675e32 * cos(theta) ** 38 - 1.54176228612294e33 * cos(theta) ** 36 + 2.50337690788003e33 * cos(theta) ** 34 - 2.95661988488568e33 * cos(theta) ** 32 + 2.62810656434283e33 * cos(theta) ** 30 - 1.794703854771e33 * cos(theta) ** 28 + 9.52806259976741e32 * cos(theta) ** 26 - 3.9548152553313e32 * cos(theta) ** 24 + 1.28415177702522e32 * cos(theta) ** 22 - 3.24905871295538e31 * cos(theta) ** 20 + 6.35104069404858e30 * cos(theta) ** 18 - 9.46162829785232e29 * cos(theta) ** 16 + 1.05324248213569e29 * cos(theta) ** 14 - 8.51956141105317e27 * cos(theta) ** 12 + 4.81413572884854e26 * cos(theta) ** 10 - 1.79483105052348e25 * cos(theta) ** 8 + 4.0463179882977e23 * cos(theta) ** 6 - 4.76785308911748e21 * cos(theta) ** 4 + 2.20054757959268e19 * cos(theta) ** 2 - 1.6633012695334e16 ) * sin(10 * phi) ) # @torch.jit.script def Yl52_m_minus_9(theta, phi): return ( 1.41034612160548e-15 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 4.69289596572412e29 * cos(theta) ** 43 - 4.11425733694066e30 * cos(theta) ** 41 + 1.67014406747096e31 * cos(theta) ** 39 - 4.16692509762957e31 * cos(theta) ** 37 + 7.1525054510858e31 * cos(theta) ** 35 - 8.95945419662327e31 * cos(theta) ** 33 + 8.47776311078331e31 * cos(theta) ** 31 - 6.18863398196898e31 * cos(theta) ** 29 + 3.52891207398793e31 * cos(theta) ** 27 - 1.58192610213252e31 * cos(theta) ** 25 + 5.58326859576184e30 * cos(theta) ** 23 - 1.54717081569304e30 * cos(theta) ** 21 + 3.34265299686768e29 * cos(theta) ** 19 - 5.56566370461901e28 * cos(theta) ** 17 + 7.0216165475713e27 * cos(theta) ** 15 - 6.55350877773321e26 * cos(theta) ** 13 + 4.37648702622595e25 * cos(theta) ** 11 - 1.99425672280387e24 * cos(theta) ** 9 + 5.78045426899672e22 * cos(theta) ** 7 - 9.53570617823497e20 * cos(theta) ** 5 + 7.33515859864228e18 * cos(theta) ** 3 - 1.6633012695334e16 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl52_m_minus_8(theta, phi): return ( 7.3066274535116e-14 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.0665672649373e28 * cos(theta) ** 44 - 9.79585080223966e28 * cos(theta) ** 42 + 4.1753601686774e29 * cos(theta) ** 40 - 1.09655923621831e30 * cos(theta) ** 38 + 1.98680706974606e30 * cos(theta) ** 36 - 2.63513358724214e30 * cos(theta) ** 34 + 2.64930097211978e30 * cos(theta) ** 32 - 2.06287799398966e30 * cos(theta) ** 30 + 1.26032574070997e30 * cos(theta) ** 28 - 6.08433116204815e29 * cos(theta) ** 26 + 2.32636191490076e29 * cos(theta) ** 24 - 7.03259461678654e28 * cos(theta) ** 22 + 1.67132649843384e28 * cos(theta) ** 20 - 3.09203539145501e27 * cos(theta) ** 18 + 4.38851034223206e26 * cos(theta) ** 16 - 4.68107769838086e25 * cos(theta) ** 14 + 3.64707252185495e24 * cos(theta) ** 12 - 1.99425672280387e23 * cos(theta) ** 10 + 7.2255678362459e21 * cos(theta) ** 8 - 1.58928436303916e20 * cos(theta) ** 6 + 1.83378964966057e18 * cos(theta) ** 4 - 8.31650634766699e15 * cos(theta) ** 2 + 6197098619722.05 ) * sin(8 * phi) ) # @torch.jit.script def Yl52_m_minus_7(theta, phi): return ( 3.79663499443791e-12 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 2.37014947763844e26 * cos(theta) ** 45 - 2.27810483773015e27 * cos(theta) ** 43 + 1.01838052894571e28 * cos(theta) ** 41 - 2.81169034927771e28 * cos(theta) ** 39 + 5.36974883715151e28 * cos(theta) ** 37 - 7.52895310640611e28 * cos(theta) ** 35 + 8.02818476399935e28 * cos(theta) ** 33 - 6.65444514190213e28 * cos(theta) ** 31 + 4.3459508300344e28 * cos(theta) ** 29 - 2.25345598594376e28 * cos(theta) ** 27 + 9.30544765960306e27 * cos(theta) ** 25 - 3.05764983338545e27 * cos(theta) ** 23 + 7.9586976115897e26 * cos(theta) ** 21 - 1.62738704813421e26 * cos(theta) ** 19 + 2.58147667190121e25 * cos(theta) ** 17 - 3.12071846558724e24 * cos(theta) ** 15 + 2.80544040142689e23 * cos(theta) ** 13 - 1.81296065709443e22 * cos(theta) ** 11 + 8.02840870693989e20 * cos(theta) ** 9 - 2.27040623291309e19 * cos(theta) ** 7 + 3.66757929932114e17 * cos(theta) ** 5 - 2.77216878255566e15 * cos(theta) ** 3 + 6197098619722.05 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl52_m_minus_6(theta, phi): return ( 1.97789743871133e-10 * (1.0 - cos(theta) ** 2) ** 3 * ( 5.1524988644314e24 * cos(theta) ** 46 - 5.17751099484126e25 * cos(theta) ** 44 + 2.42471554510883e26 * cos(theta) ** 42 - 7.02922587319428e26 * cos(theta) ** 40 + 1.4130917992504e27 * cos(theta) ** 38 - 2.09137586289059e27 * cos(theta) ** 36 + 2.36123081294098e27 * cos(theta) ** 34 - 2.07951410684441e27 * cos(theta) ** 32 + 1.44865027667813e27 * cos(theta) ** 30 - 8.04805709265629e26 * cos(theta) ** 28 + 3.57901833061656e26 * cos(theta) ** 26 - 1.2740207639106e26 * cos(theta) ** 24 + 3.61758982344987e25 * cos(theta) ** 22 - 8.13693524067107e24 * cos(theta) ** 20 + 1.43415370661178e24 * cos(theta) ** 18 - 1.95044904099203e23 * cos(theta) ** 16 + 2.00388600101921e22 * cos(theta) ** 14 - 1.51080054757869e21 * cos(theta) ** 12 + 8.02840870693989e19 * cos(theta) ** 10 - 2.83800779114136e18 * cos(theta) ** 8 + 6.11263216553524e16 * cos(theta) ** 6 - 693042195638916.0 * cos(theta) ** 4 + 3098549309861.02 * cos(theta) ** 2 - 2283381952.73473 ) * sin(6 * phi) ) # @torch.jit.script def Yl52_m_minus_5(theta, phi): return ( 1.03268220600501e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.09627635413434e23 * cos(theta) ** 47 - 1.15055799885361e24 * cos(theta) ** 45 + 5.6388733607182e24 * cos(theta) ** 43 - 1.71444533492543e25 * cos(theta) ** 41 + 3.62331230577025e25 * cos(theta) ** 39 - 5.65236719700158e25 * cos(theta) ** 37 + 6.74637375125996e25 * cos(theta) ** 35 - 6.30155789952853e25 * cos(theta) ** 33 + 4.67306540863913e25 * cos(theta) ** 31 - 2.77519210091596e25 * cos(theta) ** 29 + 1.3255623446728e25 * cos(theta) ** 27 - 5.09608305564242e24 * cos(theta) ** 25 + 1.57286514063038e24 * cos(theta) ** 23 - 3.87473106698622e23 * cos(theta) ** 21 + 7.54817740321992e22 * cos(theta) ** 19 - 1.14732296528943e22 * cos(theta) ** 17 + 1.33592400067947e21 * cos(theta) ** 15 - 1.16215426736822e20 * cos(theta) ** 13 + 7.29855336994536e18 * cos(theta) ** 11 - 3.15334199015707e17 * cos(theta) ** 9 + 8.73233166505034e15 * cos(theta) ** 7 - 138608439127783.0 * cos(theta) ** 5 + 1032849769953.67 * cos(theta) ** 3 - 2283381952.73473 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl52_m_minus_4(theta, phi): return ( 5.40162885212221e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 2.28390907111321e21 * cos(theta) ** 48 - 2.50121304098612e22 * cos(theta) ** 46 + 1.28156212743596e23 * cos(theta) ** 44 - 4.08201270220341e23 * cos(theta) ** 42 + 9.05828076442562e23 * cos(theta) ** 40 - 1.48746505184252e24 * cos(theta) ** 38 + 1.87399270868332e24 * cos(theta) ** 36 - 1.85339938221427e24 * cos(theta) ** 34 + 1.46033294019973e24 * cos(theta) ** 32 - 9.25064033638654e23 * cos(theta) ** 30 + 4.73415123097429e23 * cos(theta) ** 28 - 1.96003194447785e23 * cos(theta) ** 26 + 6.55360475262657e22 * cos(theta) ** 24 - 1.76124139408465e22 * cos(theta) ** 22 + 3.77408870160996e21 * cos(theta) ** 20 - 6.37401647383015e20 * cos(theta) ** 18 + 8.34952500424669e19 * cos(theta) ** 16 - 8.30110190977301e18 * cos(theta) ** 14 + 6.0821278082878e17 * cos(theta) ** 12 - 3.15334199015707e16 * cos(theta) ** 10 + 1.09154145813129e15 * cos(theta) ** 8 - 23101406521297.2 * cos(theta) ** 6 + 258212442488.419 * cos(theta) ** 4 - 1141690976.36736 * cos(theta) ** 2 + 834569.427169125 ) * sin(4 * phi) ) # @torch.jit.script def Yl52_m_minus_3(theta, phi): return ( 2.8295462293216e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 4.6610389206392e19 * cos(theta) ** 49 - 5.32172987443854e20 * cos(theta) ** 47 + 2.84791583874657e21 * cos(theta) ** 45 - 9.49305279582189e21 * cos(theta) ** 43 + 2.20933677181113e22 * cos(theta) ** 41 - 3.81401295344236e22 * cos(theta) ** 39 + 5.06484515860357e22 * cos(theta) ** 37 - 5.2954268063265e22 * cos(theta) ** 35 + 4.42525133393857e22 * cos(theta) ** 33 - 2.98407752786662e22 * cos(theta) ** 31 + 1.63246594171527e22 * cos(theta) ** 29 - 7.2593775721402e21 * cos(theta) ** 27 + 2.62144190105063e21 * cos(theta) ** 25 - 7.6575712786289e20 * cos(theta) ** 23 + 1.79718509600474e20 * cos(theta) ** 21 - 3.35474551254219e19 * cos(theta) ** 19 + 4.9114852966157e18 * cos(theta) ** 17 - 5.53406793984868e17 * cos(theta) ** 15 + 4.67855985252907e16 * cos(theta) ** 13 - 2.86667453650642e15 * cos(theta) ** 11 + 121282384236810.0 * cos(theta) ** 9 - 3300200931613.88 * cos(theta) ** 7 + 51642488497.6837 * cos(theta) ** 5 - 380563658.789121 * cos(theta) ** 3 + 834569.427169125 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl52_m_minus_2(theta, phi): return ( 0.00148382656080949 * (1.0 - cos(theta) ** 2) * ( 9.3220778412784e17 * cos(theta) ** 50 - 1.10869372384136e19 * cos(theta) ** 48 + 6.1911213885795e19 * cos(theta) ** 46 - 2.15751199905043e20 * cos(theta) ** 44 + 5.26032564716935e20 * cos(theta) ** 42 - 9.53503238360591e20 * cos(theta) ** 40 + 1.3328539891062e21 * cos(theta) ** 38 - 1.47095189064625e21 * cos(theta) ** 36 + 1.30154450998193e21 * cos(theta) ** 34 - 9.3252422745832e20 * cos(theta) ** 32 + 5.4415531390509e20 * cos(theta) ** 30 - 2.59263484719293e20 * cos(theta) ** 28 + 1.00824688501947e20 * cos(theta) ** 26 - 3.19065469942871e19 * cos(theta) ** 24 + 8.16902316365792e18 * cos(theta) ** 22 - 1.67737275627109e18 * cos(theta) ** 20 + 2.72860294256428e17 * cos(theta) ** 18 - 3.45879246240542e16 * cos(theta) ** 16 + 3.3418284660922e15 * cos(theta) ** 14 - 238889544708869.0 * cos(theta) ** 12 + 12128238423681.0 * cos(theta) ** 10 - 412525116451.735 * cos(theta) ** 8 + 8607081416.28062 * cos(theta) ** 6 - 95140914.6972803 * cos(theta) ** 4 + 417284.713584563 * cos(theta) ** 2 - 303.479791697864 ) * sin(2 * phi) ) # @torch.jit.script def Yl52_m_minus_1(theta, phi): return ( 0.0778690916673651 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 1.82785840025067e16 * cos(theta) ** 51 - 2.26264025273748e17 * cos(theta) ** 49 + 1.31725986991053e18 * cos(theta) ** 47 - 4.79447110900096e18 * cos(theta) ** 45 + 1.22333154585334e19 * cos(theta) ** 43 - 2.32561765453803e19 * cos(theta) ** 41 + 3.41757433104155e19 * cos(theta) ** 39 - 3.97554565039527e19 * cos(theta) ** 37 + 3.71869859994838e19 * cos(theta) ** 35 - 2.82583099229794e19 * cos(theta) ** 33 + 1.75533972227449e19 * cos(theta) ** 31 - 8.94012016273423e18 * cos(theta) ** 29 + 3.73424772229434e18 * cos(theta) ** 27 - 1.27626187977148e18 * cos(theta) ** 25 + 3.5517492015904e17 * cos(theta) ** 23 - 7.98748931557663e16 * cos(theta) ** 21 + 1.43610681187594e16 * cos(theta) ** 19 - 2.03458380141495e15 * cos(theta) ** 17 + 222788564406146.0 * cos(theta) ** 15 - 18376118823759.1 * cos(theta) ** 13 + 1102567129425.55 * cos(theta) ** 11 - 45836124050.1928 * cos(theta) ** 9 + 1229583059.46866 * cos(theta) ** 7 - 19028182.9394561 * cos(theta) ** 5 + 139094.904528188 * cos(theta) ** 3 - 303.479791697864 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl52_m0(theta, phi): return ( 3.19211695935471e15 * cos(theta) ** 52 - 4.10946319233431e16 * cos(theta) ** 50 + 2.49212495574729e17 * cos(theta) ** 48 - 9.46504023596952e17 * cos(theta) ** 46 + 2.52482387737847e18 * cos(theta) ** 44 - 5.02838608000006e18 * cos(theta) ** 42 + 7.75885379010763e18 * cos(theta) ** 40 - 9.50063729400934e18 * cos(theta) ** 38 + 9.38054496866372e18 * cos(theta) ** 36 - 7.54756491731563e18 * cos(theta) ** 34 + 4.98139284542832e18 * cos(theta) ** 32 - 2.7062112281845e18 * cos(theta) ** 30 + 1.21111304965047e18 * cos(theta) ** 28 - 4.45765075723347e17 * cos(theta) ** 26 + 1.34391140640156e17 * cos(theta) ** 24 - 3.29706265037182e16 * cos(theta) ** 22 + 6.52073178284152e15 * cos(theta) ** 20 - 1.02646150682675e15 * cos(theta) ** 18 + 126448156638078.0 * cos(theta) ** 16 - 11919700547187.3 * cos(theta) ** 14 + 834379038303.108 * cos(theta) ** 12 - 41624351117.1618 * cos(theta) ** 10 + 1395749478.59336 * cos(theta) ** 8 - 28799547.0896197 * cos(theta) ** 6 + 315784.50756162 * cos(theta) ** 4 - 1377.96876026889 * cos(theta) ** 2 + 0.999977329658117 ) # @torch.jit.script def Yl52_m1(theta, phi): return ( 0.0778690916673651 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 1.82785840025067e16 * cos(theta) ** 51 - 2.26264025273748e17 * cos(theta) ** 49 + 1.31725986991053e18 * cos(theta) ** 47 - 4.79447110900096e18 * cos(theta) ** 45 + 1.22333154585334e19 * cos(theta) ** 43 - 2.32561765453803e19 * cos(theta) ** 41 + 3.41757433104155e19 * cos(theta) ** 39 - 3.97554565039527e19 * cos(theta) ** 37 + 3.71869859994838e19 * cos(theta) ** 35 - 2.82583099229794e19 * cos(theta) ** 33 + 1.75533972227449e19 * cos(theta) ** 31 - 8.94012016273423e18 * cos(theta) ** 29 + 3.73424772229434e18 * cos(theta) ** 27 - 1.27626187977148e18 * cos(theta) ** 25 + 3.5517492015904e17 * cos(theta) ** 23 - 7.98748931557663e16 * cos(theta) ** 21 + 1.43610681187594e16 * cos(theta) ** 19 - 2.03458380141495e15 * cos(theta) ** 17 + 222788564406146.0 * cos(theta) ** 15 - 18376118823759.1 * cos(theta) ** 13 + 1102567129425.55 * cos(theta) ** 11 - 45836124050.1928 * cos(theta) ** 9 + 1229583059.46866 * cos(theta) ** 7 - 19028182.9394561 * cos(theta) ** 5 + 139094.904528188 * cos(theta) ** 3 - 303.479791697864 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl52_m2(theta, phi): return ( 0.00148382656080949 * (1.0 - cos(theta) ** 2) * ( 9.3220778412784e17 * cos(theta) ** 50 - 1.10869372384136e19 * cos(theta) ** 48 + 6.1911213885795e19 * cos(theta) ** 46 - 2.15751199905043e20 * cos(theta) ** 44 + 5.26032564716935e20 * cos(theta) ** 42 - 9.53503238360591e20 * cos(theta) ** 40 + 1.3328539891062e21 * cos(theta) ** 38 - 1.47095189064625e21 * cos(theta) ** 36 + 1.30154450998193e21 * cos(theta) ** 34 - 9.3252422745832e20 * cos(theta) ** 32 + 5.4415531390509e20 * cos(theta) ** 30 - 2.59263484719293e20 * cos(theta) ** 28 + 1.00824688501947e20 * cos(theta) ** 26 - 3.19065469942871e19 * cos(theta) ** 24 + 8.16902316365792e18 * cos(theta) ** 22 - 1.67737275627109e18 * cos(theta) ** 20 + 2.72860294256428e17 * cos(theta) ** 18 - 3.45879246240542e16 * cos(theta) ** 16 + 3.3418284660922e15 * cos(theta) ** 14 - 238889544708869.0 * cos(theta) ** 12 + 12128238423681.0 * cos(theta) ** 10 - 412525116451.735 * cos(theta) ** 8 + 8607081416.28062 * cos(theta) ** 6 - 95140914.6972803 * cos(theta) ** 4 + 417284.713584563 * cos(theta) ** 2 - 303.479791697864 ) * cos(2 * phi) ) # @torch.jit.script def Yl52_m3(theta, phi): return ( 2.8295462293216e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 4.6610389206392e19 * cos(theta) ** 49 - 5.32172987443854e20 * cos(theta) ** 47 + 2.84791583874657e21 * cos(theta) ** 45 - 9.49305279582189e21 * cos(theta) ** 43 + 2.20933677181113e22 * cos(theta) ** 41 - 3.81401295344236e22 * cos(theta) ** 39 + 5.06484515860357e22 * cos(theta) ** 37 - 5.2954268063265e22 * cos(theta) ** 35 + 4.42525133393857e22 * cos(theta) ** 33 - 2.98407752786662e22 * cos(theta) ** 31 + 1.63246594171527e22 * cos(theta) ** 29 - 7.2593775721402e21 * cos(theta) ** 27 + 2.62144190105063e21 * cos(theta) ** 25 - 7.6575712786289e20 * cos(theta) ** 23 + 1.79718509600474e20 * cos(theta) ** 21 - 3.35474551254219e19 * cos(theta) ** 19 + 4.9114852966157e18 * cos(theta) ** 17 - 5.53406793984868e17 * cos(theta) ** 15 + 4.67855985252907e16 * cos(theta) ** 13 - 2.86667453650642e15 * cos(theta) ** 11 + 121282384236810.0 * cos(theta) ** 9 - 3300200931613.88 * cos(theta) ** 7 + 51642488497.6837 * cos(theta) ** 5 - 380563658.789121 * cos(theta) ** 3 + 834569.427169125 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl52_m4(theta, phi): return ( 5.40162885212221e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 2.28390907111321e21 * cos(theta) ** 48 - 2.50121304098612e22 * cos(theta) ** 46 + 1.28156212743596e23 * cos(theta) ** 44 - 4.08201270220341e23 * cos(theta) ** 42 + 9.05828076442562e23 * cos(theta) ** 40 - 1.48746505184252e24 * cos(theta) ** 38 + 1.87399270868332e24 * cos(theta) ** 36 - 1.85339938221427e24 * cos(theta) ** 34 + 1.46033294019973e24 * cos(theta) ** 32 - 9.25064033638654e23 * cos(theta) ** 30 + 4.73415123097429e23 * cos(theta) ** 28 - 1.96003194447785e23 * cos(theta) ** 26 + 6.55360475262657e22 * cos(theta) ** 24 - 1.76124139408465e22 * cos(theta) ** 22 + 3.77408870160996e21 * cos(theta) ** 20 - 6.37401647383015e20 * cos(theta) ** 18 + 8.34952500424669e19 * cos(theta) ** 16 - 8.30110190977301e18 * cos(theta) ** 14 + 6.0821278082878e17 * cos(theta) ** 12 - 3.15334199015707e16 * cos(theta) ** 10 + 1.09154145813129e15 * cos(theta) ** 8 - 23101406521297.2 * cos(theta) ** 6 + 258212442488.419 * cos(theta) ** 4 - 1141690976.36736 * cos(theta) ** 2 + 834569.427169125 ) * cos(4 * phi) ) # @torch.jit.script def Yl52_m5(theta, phi): return ( 1.03268220600501e-8 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.09627635413434e23 * cos(theta) ** 47 - 1.15055799885361e24 * cos(theta) ** 45 + 5.6388733607182e24 * cos(theta) ** 43 - 1.71444533492543e25 * cos(theta) ** 41 + 3.62331230577025e25 * cos(theta) ** 39 - 5.65236719700158e25 * cos(theta) ** 37 + 6.74637375125996e25 * cos(theta) ** 35 - 6.30155789952853e25 * cos(theta) ** 33 + 4.67306540863913e25 * cos(theta) ** 31 - 2.77519210091596e25 * cos(theta) ** 29 + 1.3255623446728e25 * cos(theta) ** 27 - 5.09608305564242e24 * cos(theta) ** 25 + 1.57286514063038e24 * cos(theta) ** 23 - 3.87473106698622e23 * cos(theta) ** 21 + 7.54817740321992e22 * cos(theta) ** 19 - 1.14732296528943e22 * cos(theta) ** 17 + 1.33592400067947e21 * cos(theta) ** 15 - 1.16215426736822e20 * cos(theta) ** 13 + 7.29855336994536e18 * cos(theta) ** 11 - 3.15334199015707e17 * cos(theta) ** 9 + 8.73233166505034e15 * cos(theta) ** 7 - 138608439127783.0 * cos(theta) ** 5 + 1032849769953.67 * cos(theta) ** 3 - 2283381952.73473 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl52_m6(theta, phi): return ( 1.97789743871133e-10 * (1.0 - cos(theta) ** 2) ** 3 * ( 5.1524988644314e24 * cos(theta) ** 46 - 5.17751099484126e25 * cos(theta) ** 44 + 2.42471554510883e26 * cos(theta) ** 42 - 7.02922587319428e26 * cos(theta) ** 40 + 1.4130917992504e27 * cos(theta) ** 38 - 2.09137586289059e27 * cos(theta) ** 36 + 2.36123081294098e27 * cos(theta) ** 34 - 2.07951410684441e27 * cos(theta) ** 32 + 1.44865027667813e27 * cos(theta) ** 30 - 8.04805709265629e26 * cos(theta) ** 28 + 3.57901833061656e26 * cos(theta) ** 26 - 1.2740207639106e26 * cos(theta) ** 24 + 3.61758982344987e25 * cos(theta) ** 22 - 8.13693524067107e24 * cos(theta) ** 20 + 1.43415370661178e24 * cos(theta) ** 18 - 1.95044904099203e23 * cos(theta) ** 16 + 2.00388600101921e22 * cos(theta) ** 14 - 1.51080054757869e21 * cos(theta) ** 12 + 8.02840870693989e19 * cos(theta) ** 10 - 2.83800779114136e18 * cos(theta) ** 8 + 6.11263216553524e16 * cos(theta) ** 6 - 693042195638916.0 * cos(theta) ** 4 + 3098549309861.02 * cos(theta) ** 2 - 2283381952.73473 ) * cos(6 * phi) ) # @torch.jit.script def Yl52_m7(theta, phi): return ( 3.79663499443791e-12 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 2.37014947763844e26 * cos(theta) ** 45 - 2.27810483773015e27 * cos(theta) ** 43 + 1.01838052894571e28 * cos(theta) ** 41 - 2.81169034927771e28 * cos(theta) ** 39 + 5.36974883715151e28 * cos(theta) ** 37 - 7.52895310640611e28 * cos(theta) ** 35 + 8.02818476399935e28 * cos(theta) ** 33 - 6.65444514190213e28 * cos(theta) ** 31 + 4.3459508300344e28 * cos(theta) ** 29 - 2.25345598594376e28 * cos(theta) ** 27 + 9.30544765960306e27 * cos(theta) ** 25 - 3.05764983338545e27 * cos(theta) ** 23 + 7.9586976115897e26 * cos(theta) ** 21 - 1.62738704813421e26 * cos(theta) ** 19 + 2.58147667190121e25 * cos(theta) ** 17 - 3.12071846558724e24 * cos(theta) ** 15 + 2.80544040142689e23 * cos(theta) ** 13 - 1.81296065709443e22 * cos(theta) ** 11 + 8.02840870693989e20 * cos(theta) ** 9 - 2.27040623291309e19 * cos(theta) ** 7 + 3.66757929932114e17 * cos(theta) ** 5 - 2.77216878255566e15 * cos(theta) ** 3 + 6197098619722.05 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl52_m8(theta, phi): return ( 7.3066274535116e-14 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.0665672649373e28 * cos(theta) ** 44 - 9.79585080223966e28 * cos(theta) ** 42 + 4.1753601686774e29 * cos(theta) ** 40 - 1.09655923621831e30 * cos(theta) ** 38 + 1.98680706974606e30 * cos(theta) ** 36 - 2.63513358724214e30 * cos(theta) ** 34 + 2.64930097211978e30 * cos(theta) ** 32 - 2.06287799398966e30 * cos(theta) ** 30 + 1.26032574070997e30 * cos(theta) ** 28 - 6.08433116204815e29 * cos(theta) ** 26 + 2.32636191490076e29 * cos(theta) ** 24 - 7.03259461678654e28 * cos(theta) ** 22 + 1.67132649843384e28 * cos(theta) ** 20 - 3.09203539145501e27 * cos(theta) ** 18 + 4.38851034223206e26 * cos(theta) ** 16 - 4.68107769838086e25 * cos(theta) ** 14 + 3.64707252185495e24 * cos(theta) ** 12 - 1.99425672280387e23 * cos(theta) ** 10 + 7.2255678362459e21 * cos(theta) ** 8 - 1.58928436303916e20 * cos(theta) ** 6 + 1.83378964966057e18 * cos(theta) ** 4 - 8.31650634766699e15 * cos(theta) ** 2 + 6197098619722.05 ) * cos(8 * phi) ) # @torch.jit.script def Yl52_m9(theta, phi): return ( 1.41034612160548e-15 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 4.69289596572412e29 * cos(theta) ** 43 - 4.11425733694066e30 * cos(theta) ** 41 + 1.67014406747096e31 * cos(theta) ** 39 - 4.16692509762957e31 * cos(theta) ** 37 + 7.1525054510858e31 * cos(theta) ** 35 - 8.95945419662327e31 * cos(theta) ** 33 + 8.47776311078331e31 * cos(theta) ** 31 - 6.18863398196898e31 * cos(theta) ** 29 + 3.52891207398793e31 * cos(theta) ** 27 - 1.58192610213252e31 * cos(theta) ** 25 + 5.58326859576184e30 * cos(theta) ** 23 - 1.54717081569304e30 * cos(theta) ** 21 + 3.34265299686768e29 * cos(theta) ** 19 - 5.56566370461901e28 * cos(theta) ** 17 + 7.0216165475713e27 * cos(theta) ** 15 - 6.55350877773321e26 * cos(theta) ** 13 + 4.37648702622595e25 * cos(theta) ** 11 - 1.99425672280387e24 * cos(theta) ** 9 + 5.78045426899672e22 * cos(theta) ** 7 - 9.53570617823497e20 * cos(theta) ** 5 + 7.33515859864228e18 * cos(theta) ** 3 - 1.6633012695334e16 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl52_m10(theta, phi): return ( 2.73146497514726e-17 * (1.0 - cos(theta) ** 2) ** 5 * ( 2.01794526526137e31 * cos(theta) ** 42 - 1.68684550814567e32 * cos(theta) ** 40 + 6.51356186313675e32 * cos(theta) ** 38 - 1.54176228612294e33 * cos(theta) ** 36 + 2.50337690788003e33 * cos(theta) ** 34 - 2.95661988488568e33 * cos(theta) ** 32 + 2.62810656434283e33 * cos(theta) ** 30 - 1.794703854771e33 * cos(theta) ** 28 + 9.52806259976741e32 * cos(theta) ** 26 - 3.9548152553313e32 * cos(theta) ** 24 + 1.28415177702522e32 * cos(theta) ** 22 - 3.24905871295538e31 * cos(theta) ** 20 + 6.35104069404858e30 * cos(theta) ** 18 - 9.46162829785232e29 * cos(theta) ** 16 + 1.05324248213569e29 * cos(theta) ** 14 - 8.51956141105317e27 * cos(theta) ** 12 + 4.81413572884854e26 * cos(theta) ** 10 - 1.79483105052348e25 * cos(theta) ** 8 + 4.0463179882977e23 * cos(theta) ** 6 - 4.76785308911748e21 * cos(theta) ** 4 + 2.20054757959268e19 * cos(theta) ** 2 - 1.6633012695334e16 ) * cos(10 * phi) ) # @torch.jit.script def Yl52_m11(theta, phi): return ( 5.31007574555136e-19 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 8.47537011409776e32 * cos(theta) ** 41 - 6.74738203258268e33 * cos(theta) ** 39 + 2.47515350799196e34 * cos(theta) ** 37 - 5.55034423004258e34 * cos(theta) ** 35 + 8.51148148679211e34 * cos(theta) ** 33 - 9.46118363163417e34 * cos(theta) ** 31 + 7.88431969302848e34 * cos(theta) ** 29 - 5.02517079335881e34 * cos(theta) ** 27 + 2.47729627593953e34 * cos(theta) ** 25 - 9.49155661279512e33 * cos(theta) ** 23 + 2.82513390945549e33 * cos(theta) ** 21 - 6.49811742591076e32 * cos(theta) ** 19 + 1.14318732492875e32 * cos(theta) ** 17 - 1.51386052765637e31 * cos(theta) ** 15 + 1.47453947498997e30 * cos(theta) ** 13 - 1.02234736932638e29 * cos(theta) ** 11 + 4.81413572884854e27 * cos(theta) ** 9 - 1.43586484041879e26 * cos(theta) ** 7 + 2.42779079297862e24 * cos(theta) ** 5 - 1.90714123564699e22 * cos(theta) ** 3 + 4.40109515918537e19 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl52_m12(theta, phi): return ( 1.03661813137025e-20 * (1.0 - cos(theta) ** 2) ** 6 * ( 3.47490174678008e34 * cos(theta) ** 40 - 2.63147899270725e35 * cos(theta) ** 38 + 9.15806797957027e35 * cos(theta) ** 36 - 1.9426204805149e36 * cos(theta) ** 34 + 2.8087888906414e36 * cos(theta) ** 32 - 2.93296692580659e36 * cos(theta) ** 30 + 2.28645271097826e36 * cos(theta) ** 28 - 1.35679611420688e36 * cos(theta) ** 26 + 6.19324068984882e35 * cos(theta) ** 24 - 2.18305802094288e35 * cos(theta) ** 22 + 5.93278120985653e34 * cos(theta) ** 20 - 1.23464231092304e34 * cos(theta) ** 18 + 1.94341845237887e33 * cos(theta) ** 16 - 2.27079079148456e32 * cos(theta) ** 14 + 1.91690131748696e31 * cos(theta) ** 12 - 1.12458210625902e30 * cos(theta) ** 10 + 4.33272215596369e28 * cos(theta) ** 8 - 1.00510538829315e27 * cos(theta) ** 6 + 1.21389539648931e25 * cos(theta) ** 4 - 5.72142370694098e22 * cos(theta) ** 2 + 4.40109515918537e19 ) * cos(12 * phi) ) # @torch.jit.script def Yl52_m13(theta, phi): return ( 2.032975415385e-22 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.38996069871203e36 * cos(theta) ** 39 - 9.99962017228753e36 * cos(theta) ** 37 + 3.2969044726453e37 * cos(theta) ** 35 - 6.60490963375068e37 * cos(theta) ** 33 + 8.98812445005247e37 * cos(theta) ** 31 - 8.79890077741978e37 * cos(theta) ** 29 + 6.40206759073913e37 * cos(theta) ** 27 - 3.52766989693789e37 * cos(theta) ** 25 + 1.48637776556372e37 * cos(theta) ** 23 - 4.80272764607433e36 * cos(theta) ** 21 + 1.18655624197131e36 * cos(theta) ** 19 - 2.22235615966148e35 * cos(theta) ** 17 + 3.10946952380619e34 * cos(theta) ** 15 - 3.17910710807838e33 * cos(theta) ** 13 + 2.30028158098436e32 * cos(theta) ** 11 - 1.12458210625902e31 * cos(theta) ** 9 + 3.46617772477095e29 * cos(theta) ** 7 - 6.0306323297589e27 * cos(theta) ** 5 + 4.85558158595725e25 * cos(theta) ** 3 - 1.1442847413882e23 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl52_m14(theta, phi): return ( 4.00707854619401e-24 * (1.0 - cos(theta) ** 2) ** 7 * ( 5.42084672497692e37 * cos(theta) ** 38 - 3.69985946374639e38 * cos(theta) ** 36 + 1.15391656542585e39 * cos(theta) ** 34 - 2.17962017913772e39 * cos(theta) ** 32 + 2.78631857951626e39 * cos(theta) ** 30 - 2.55168122545174e39 * cos(theta) ** 28 + 1.72855824949956e39 * cos(theta) ** 26 - 8.81917474234471e38 * cos(theta) ** 24 + 3.41866886079655e38 * cos(theta) ** 22 - 1.00857280567561e38 * cos(theta) ** 20 + 2.25445685974548e37 * cos(theta) ** 18 - 3.77800547142452e36 * cos(theta) ** 16 + 4.66420428570928e35 * cos(theta) ** 14 - 4.13283924050189e34 * cos(theta) ** 12 + 2.53030973908279e33 * cos(theta) ** 10 - 1.01212389563312e32 * cos(theta) ** 8 + 2.42632440733966e30 * cos(theta) ** 6 - 3.01531616487945e28 * cos(theta) ** 4 + 1.45667447578717e26 * cos(theta) ** 2 - 1.1442847413882e23 ) * cos(14 * phi) ) # @torch.jit.script def Yl52_m15(theta, phi): return ( 7.94142897029328e-26 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 2.05992175549123e39 * cos(theta) ** 37 - 1.3319494069487e40 * cos(theta) ** 35 + 3.9233163224479e40 * cos(theta) ** 33 - 6.97478457324071e40 * cos(theta) ** 31 + 8.35895573854879e40 * cos(theta) ** 29 - 7.14470743126486e40 * cos(theta) ** 27 + 4.49425144869887e40 * cos(theta) ** 25 - 2.11660193816273e40 * cos(theta) ** 23 + 7.5210714937524e39 * cos(theta) ** 21 - 2.01714561135122e39 * cos(theta) ** 19 + 4.05802234754186e38 * cos(theta) ** 17 - 6.04480875427923e37 * cos(theta) ** 15 + 6.52988599999299e36 * cos(theta) ** 13 - 4.95940708860227e35 * cos(theta) ** 11 + 2.53030973908279e34 * cos(theta) ** 9 - 8.09699116506493e32 * cos(theta) ** 7 + 1.4557946444038e31 * cos(theta) ** 5 - 1.20612646595178e29 * cos(theta) ** 3 + 2.91334895157435e26 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl52_m16(theta, phi): return ( 1.58322754619955e-27 * (1.0 - cos(theta) ** 2) ** 8 * ( 7.62171049531756e40 * cos(theta) ** 36 - 4.66182292432045e41 * cos(theta) ** 34 + 1.29469438640781e42 * cos(theta) ** 32 - 2.16218321770462e42 * cos(theta) ** 30 + 2.42409716417915e42 * cos(theta) ** 28 - 1.92907100644151e42 * cos(theta) ** 26 + 1.12356286217472e42 * cos(theta) ** 24 - 4.86818445777428e41 * cos(theta) ** 22 + 1.579425013688e41 * cos(theta) ** 20 - 3.83257666156732e40 * cos(theta) ** 18 + 6.89863799082117e39 * cos(theta) ** 16 - 9.06721313141884e38 * cos(theta) ** 14 + 8.48885179999089e37 * cos(theta) ** 12 - 5.4553477974625e36 * cos(theta) ** 10 + 2.27727876517451e35 * cos(theta) ** 8 - 5.66789381554545e33 * cos(theta) ** 6 + 7.27897322201899e31 * cos(theta) ** 4 - 3.61837939785534e29 * cos(theta) ** 2 + 2.91334895157435e26 ) * cos(16 * phi) ) # @torch.jit.script def Yl52_m17(theta, phi): return ( 3.17663664630203e-29 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 2.74381577831432e42 * cos(theta) ** 35 - 1.58501979426895e43 * cos(theta) ** 33 + 4.14302203650498e43 * cos(theta) ** 31 - 6.48654965311386e43 * cos(theta) ** 29 + 6.78747205970162e43 * cos(theta) ** 27 - 5.01558461674793e43 * cos(theta) ** 25 + 2.69655086921932e43 * cos(theta) ** 23 - 1.07100058071034e43 * cos(theta) ** 21 + 3.15885002737601e42 * cos(theta) ** 19 - 6.89863799082117e41 * cos(theta) ** 17 + 1.10378207853139e41 * cos(theta) ** 15 - 1.26940983839864e40 * cos(theta) ** 13 + 1.01866221599891e39 * cos(theta) ** 11 - 5.4553477974625e37 * cos(theta) ** 9 + 1.82182301213961e36 * cos(theta) ** 7 - 3.40073628932727e34 * cos(theta) ** 5 + 2.9115892888076e32 * cos(theta) ** 3 - 7.23675879571068e29 * cos(theta) ) * cos(17 * phi) ) # @torch.jit.script def Yl52_m18(theta, phi): return ( 6.41777518275959e-31 * (1.0 - cos(theta) ** 2) ** 9 * ( 9.60335522410012e43 * cos(theta) ** 34 - 5.23056532108754e44 * cos(theta) ** 32 + 1.28433683131654e45 * cos(theta) ** 30 - 1.88109939940302e45 * cos(theta) ** 28 + 1.83261745611944e45 * cos(theta) ** 26 - 1.25389615418698e45 * cos(theta) ** 24 + 6.20206699920443e44 * cos(theta) ** 22 - 2.24910121949172e44 * cos(theta) ** 20 + 6.00181505201442e43 * cos(theta) ** 18 - 1.1727684584396e43 * cos(theta) ** 16 + 1.65567311779708e42 * cos(theta) ** 14 - 1.65023278991823e41 * cos(theta) ** 12 + 1.1205284375988e40 * cos(theta) ** 10 - 4.90981301771625e38 * cos(theta) ** 8 + 1.27527610849773e37 * cos(theta) ** 6 - 1.70036814466364e35 * cos(theta) ** 4 + 8.73476786642279e32 * cos(theta) ** 2 - 7.23675879571068e29 ) * cos(18 * phi) ) # @torch.jit.script def Yl52_m19(theta, phi): return ( 1.30621860901373e-32 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 3.26514077619404e45 * cos(theta) ** 33 - 1.67378090274801e46 * cos(theta) ** 31 + 3.85301049394963e46 * cos(theta) ** 29 - 5.26707831832846e46 * cos(theta) ** 27 + 4.76480538591054e46 * cos(theta) ** 25 - 3.00935077004876e46 * cos(theta) ** 23 + 1.36445473982498e46 * cos(theta) ** 21 - 4.49820243898344e45 * cos(theta) ** 19 + 1.08032670936259e45 * cos(theta) ** 17 - 1.87642953350336e44 * cos(theta) ** 15 + 2.31794236491591e43 * cos(theta) ** 13 - 1.98027934790187e42 * cos(theta) ** 11 + 1.1205284375988e41 * cos(theta) ** 9 - 3.927850414173e39 * cos(theta) ** 7 + 7.65165665098636e37 * cos(theta) ** 5 - 6.80147257865454e35 * cos(theta) ** 3 + 1.74695357328456e33 * cos(theta) ) * cos(19 * phi) ) # @torch.jit.script def Yl52_m20(theta, phi): return ( 2.67973993547416e-34 * (1.0 - cos(theta) ** 2) ** 10 * ( 1.07749645614403e47 * cos(theta) ** 32 - 5.18872079851884e47 * cos(theta) ** 30 + 1.11737304324539e48 * cos(theta) ** 28 - 1.42211114594868e48 * cos(theta) ** 26 + 1.19120134647763e48 * cos(theta) ** 24 - 6.92150677111215e47 * cos(theta) ** 22 + 2.86535495363245e47 * cos(theta) ** 20 - 8.54658463406853e46 * cos(theta) ** 18 + 1.83655540591641e46 * cos(theta) ** 16 - 2.81464430025504e45 * cos(theta) ** 14 + 3.01332507439069e44 * cos(theta) ** 12 - 2.17830728269206e43 * cos(theta) ** 10 + 1.00847559383892e42 * cos(theta) ** 8 - 2.7494952899211e40 * cos(theta) ** 6 + 3.82582832549318e38 * cos(theta) ** 4 - 2.04044177359636e36 * cos(theta) ** 2 + 1.74695357328456e33 ) * cos(20 * phi) ) # @torch.jit.script def Yl52_m21(theta, phi): return ( 5.54442137630337e-36 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 3.44798865966091e48 * cos(theta) ** 31 - 1.55661623955565e49 * cos(theta) ** 29 + 3.1286445210871e49 * cos(theta) ** 27 - 3.69748897946658e49 * cos(theta) ** 25 + 2.85888323154632e49 * cos(theta) ** 23 - 1.52273148964467e49 * cos(theta) ** 21 + 5.7307099072649e48 * cos(theta) ** 19 - 1.53838523413234e48 * cos(theta) ** 17 + 2.93848864946626e47 * cos(theta) ** 15 - 3.94050202035705e46 * cos(theta) ** 13 + 3.61599008926882e45 * cos(theta) ** 11 - 2.17830728269206e44 * cos(theta) ** 9 + 8.06780475071134e42 * cos(theta) ** 7 - 1.64969717395266e41 * cos(theta) ** 5 + 1.53033133019727e39 * cos(theta) ** 3 - 4.08088354719273e36 * cos(theta) ) * cos(21 * phi) ) # @torch.jit.script def Yl52_m22(theta, phi): return ( 1.15760267711549e-37 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.06887648449488e50 * cos(theta) ** 30 - 4.51418709471139e50 * cos(theta) ** 28 + 8.44734020693518e50 * cos(theta) ** 26 - 9.24372244866644e50 * cos(theta) ** 24 + 6.57543143255654e50 * cos(theta) ** 22 - 3.19773612825381e50 * cos(theta) ** 20 + 1.08883488238033e50 * cos(theta) ** 18 - 2.61525489802497e49 * cos(theta) ** 16 + 4.40773297419939e48 * cos(theta) ** 14 - 5.12265262646417e47 * cos(theta) ** 12 + 3.97758909819571e46 * cos(theta) ** 10 - 1.96047655442286e45 * cos(theta) ** 8 + 5.64746332549794e43 * cos(theta) ** 6 - 8.2484858697633e41 * cos(theta) ** 4 + 4.59099399059182e39 * cos(theta) ** 2 - 4.08088354719273e36 ) * cos(22 * phi) ) # @torch.jit.script def Yl52_m23(theta, phi): return ( 2.44044072346227e-39 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 3.20662945348464e51 * cos(theta) ** 29 - 1.26397238651919e52 * cos(theta) ** 27 + 2.19630845380315e52 * cos(theta) ** 25 - 2.21849338767995e52 * cos(theta) ** 23 + 1.44659491516244e52 * cos(theta) ** 21 - 6.39547225650763e51 * cos(theta) ** 19 + 1.95990278828459e51 * cos(theta) ** 17 - 4.18440783683995e50 * cos(theta) ** 15 + 6.17082616387914e49 * cos(theta) ** 13 - 6.147183151757e48 * cos(theta) ** 11 + 3.97758909819571e47 * cos(theta) ** 9 - 1.56838124353828e46 * cos(theta) ** 7 + 3.38847799529876e44 * cos(theta) ** 5 - 3.29939434790532e42 * cos(theta) ** 3 + 9.18198798118364e39 * cos(theta) ) * cos(23 * phi) ) # @torch.jit.script def Yl52_m24(theta, phi): return ( 5.19831351121283e-41 * (1.0 - cos(theta) ** 2) ** 12 * ( 9.29922541510547e52 * cos(theta) ** 28 - 3.41272544360181e53 * cos(theta) ** 26 + 5.49077113450787e53 * cos(theta) ** 24 - 5.10253479166388e53 * cos(theta) ** 22 + 3.03784932184112e53 * cos(theta) ** 20 - 1.21513972873645e53 * cos(theta) ** 18 + 3.33183474008381e52 * cos(theta) ** 16 - 6.27661175525993e51 * cos(theta) ** 14 + 8.02207401304289e50 * cos(theta) ** 12 - 6.7619014669327e49 * cos(theta) ** 10 + 3.57983018837613e48 * cos(theta) ** 8 - 1.0978668704768e47 * cos(theta) ** 6 + 1.69423899764938e45 * cos(theta) ** 4 - 9.89818304371596e42 * cos(theta) ** 2 + 9.18198798118364e39 ) * cos(24 * phi) ) # @torch.jit.script def Yl52_m25(theta, phi): return ( 1.11953606878753e-42 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 2.60378311622953e54 * cos(theta) ** 27 - 8.87308615336471e54 * cos(theta) ** 25 + 1.31778507228189e55 * cos(theta) ** 23 - 1.12255765416605e55 * cos(theta) ** 21 + 6.07569864368224e54 * cos(theta) ** 19 - 2.18725151172561e54 * cos(theta) ** 17 + 5.3309355841341e53 * cos(theta) ** 15 - 8.7872564573639e52 * cos(theta) ** 13 + 9.62648881565146e51 * cos(theta) ** 11 - 6.7619014669327e50 * cos(theta) ** 9 + 2.86386415070091e49 * cos(theta) ** 7 - 6.5872012228608e47 * cos(theta) ** 5 + 6.77695599059753e45 * cos(theta) ** 3 - 1.97963660874319e43 * cos(theta) ) * cos(25 * phi) ) # @torch.jit.script def Yl52_m26(theta, phi): return ( 2.43954541064895e-44 * (1.0 - cos(theta) ** 2) ** 13 * ( 7.03021441381973e55 * cos(theta) ** 26 - 2.21827153834118e56 * cos(theta) ** 24 + 3.03090566624834e56 * cos(theta) ** 22 - 2.35737107374871e56 * cos(theta) ** 20 + 1.15438274229963e56 * cos(theta) ** 18 - 3.71832756993353e55 * cos(theta) ** 16 + 7.99640337620115e54 * cos(theta) ** 14 - 1.14234333945731e54 * cos(theta) ** 12 + 1.05891376972166e53 * cos(theta) ** 10 - 6.08571132023943e51 * cos(theta) ** 8 + 2.00470490549064e50 * cos(theta) ** 6 - 3.2936006114304e48 * cos(theta) ** 4 + 2.03308679717926e46 * cos(theta) ** 2 - 1.97963660874319e43 ) * cos(26 * phi) ) # @torch.jit.script def Yl52_m27(theta, phi): return ( 5.38280549420141e-46 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.82785574759313e57 * cos(theta) ** 25 - 5.32385169201883e57 * cos(theta) ** 23 + 6.66799246574635e57 * cos(theta) ** 21 - 4.71474214749742e57 * cos(theta) ** 19 + 2.07788893613933e57 * cos(theta) ** 17 - 5.94932411189365e56 * cos(theta) ** 15 + 1.11949647266816e56 * cos(theta) ** 13 - 1.37081200734877e55 * cos(theta) ** 11 + 1.05891376972166e54 * cos(theta) ** 9 - 4.86856905619154e52 * cos(theta) ** 7 + 1.20282294329438e51 * cos(theta) ** 5 - 1.31744024457216e49 * cos(theta) ** 3 + 4.06617359435852e46 * cos(theta) ) * cos(27 * phi) ) # @torch.jit.script def Yl52_m28(theta, phi): return ( 1.20363189946937e-47 * (1.0 - cos(theta) ** 2) ** 14 * ( 4.56963936898283e58 * cos(theta) ** 24 - 1.22448588916433e59 * cos(theta) ** 22 + 1.40027841780673e59 * cos(theta) ** 20 - 8.9580100802451e58 * cos(theta) ** 18 + 3.53241119143686e58 * cos(theta) ** 16 - 8.92398616784048e57 * cos(theta) ** 14 + 1.45534541446861e57 * cos(theta) ** 12 - 1.50789320808364e56 * cos(theta) ** 10 + 9.53022392749495e54 * cos(theta) ** 8 - 3.40799833933408e53 * cos(theta) ** 6 + 6.01411471647191e51 * cos(theta) ** 4 - 3.95232073371648e49 * cos(theta) ** 2 + 4.06617359435852e46 ) * cos(28 * phi) ) # @torch.jit.script def Yl52_m29(theta, phi): return ( 2.72989258503413e-49 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 1.09671344855588e60 * cos(theta) ** 23 - 2.69386895616153e60 * cos(theta) ** 21 + 2.80055683561347e60 * cos(theta) ** 19 - 1.61244181444412e60 * cos(theta) ** 17 + 5.65185790629897e59 * cos(theta) ** 15 - 1.24935806349767e59 * cos(theta) ** 13 + 1.74641449736233e58 * cos(theta) ** 11 - 1.50789320808365e57 * cos(theta) ** 9 + 7.62417914199596e55 * cos(theta) ** 7 - 2.04479900360045e54 * cos(theta) ** 5 + 2.40564588658876e52 * cos(theta) ** 3 - 7.90464146743296e49 * cos(theta) ) * cos(29 * phi) ) # @torch.jit.script def Yl52_m30(theta, phi): return ( 6.28600489237972e-51 * (1.0 - cos(theta) ** 2) ** 15 * ( 2.52244093167852e61 * cos(theta) ** 22 - 5.65712480793921e61 * cos(theta) ** 20 + 5.32105798766559e61 * cos(theta) ** 18 - 2.741151084555e61 * cos(theta) ** 16 + 8.47778685944846e60 * cos(theta) ** 14 - 1.62416548254697e60 * cos(theta) ** 12 + 1.92105594709856e59 * cos(theta) ** 10 - 1.35710388727528e58 * cos(theta) ** 8 + 5.33692539939717e56 * cos(theta) ** 6 - 1.02239950180022e55 * cos(theta) ** 4 + 7.21693765976629e52 * cos(theta) ** 2 - 7.90464146743296e49 ) * cos(30 * phi) ) # @torch.jit.script def Yl52_m31(theta, phi): return ( 1.4710394784483e-52 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 5.54937004969274e62 * cos(theta) ** 21 - 1.13142496158784e63 * cos(theta) ** 19 + 9.57790437779806e62 * cos(theta) ** 17 - 4.385841735288e62 * cos(theta) ** 15 + 1.18689016032278e62 * cos(theta) ** 13 - 1.94899857905636e61 * cos(theta) ** 11 + 1.92105594709856e60 * cos(theta) ** 9 - 1.08568310982022e59 * cos(theta) ** 7 + 3.2021552396383e57 * cos(theta) ** 5 - 4.0895980072009e55 * cos(theta) ** 3 + 1.44338753195326e53 * cos(theta) ) * cos(31 * phi) ) # @torch.jit.script def Yl52_m32(theta, phi): return ( 3.50247494868642e-54 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.16536771043548e64 * cos(theta) ** 20 - 2.1497074270169e64 * cos(theta) ** 18 + 1.62824374422567e64 * cos(theta) ** 16 - 6.578762602932e63 * cos(theta) ** 14 + 1.54295720841962e63 * cos(theta) ** 12 - 2.143898436962e62 * cos(theta) ** 10 + 1.72895035238871e61 * cos(theta) ** 8 - 7.59978176874157e59 * cos(theta) ** 6 + 1.60107761981915e58 * cos(theta) ** 4 - 1.22687940216027e56 * cos(theta) ** 2 + 1.44338753195326e53 ) * cos(32 * phi) ) # @torch.jit.script def Yl52_m33(theta, phi): return ( 8.49474950853759e-56 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 2.33073542087095e65 * cos(theta) ** 19 - 3.86947336863042e65 * cos(theta) ** 17 + 2.60518999076107e65 * cos(theta) ** 15 - 9.2102676441048e64 * cos(theta) ** 13 + 1.85154865010354e64 * cos(theta) ** 11 - 2.143898436962e63 * cos(theta) ** 9 + 1.38316028191097e62 * cos(theta) ** 7 - 4.55986906124494e60 * cos(theta) ** 5 + 6.4043104792766e58 * cos(theta) ** 3 - 2.45375880432054e56 * cos(theta) ) * cos(33 * phi) ) # @torch.jit.script def Yl52_m34(theta, phi): return ( 2.10147656332241e-57 * (1.0 - cos(theta) ** 2) ** 17 * ( 4.42839729965481e66 * cos(theta) ** 18 - 6.57810472667171e66 * cos(theta) ** 16 + 3.90778498614161e66 * cos(theta) ** 14 - 1.19733479373362e66 * cos(theta) ** 12 + 2.0367035151139e65 * cos(theta) ** 10 - 1.9295085932658e64 * cos(theta) ** 8 + 9.68212197337676e62 * cos(theta) ** 6 - 2.27993453062247e61 * cos(theta) ** 4 + 1.92129314378298e59 * cos(theta) ** 2 - 2.45375880432054e56 ) * cos(34 * phi) ) # @torch.jit.script def Yl52_m35(theta, phi): return ( 5.31041757093879e-59 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 7.97111513937866e67 * cos(theta) ** 17 - 1.05249675626747e68 * cos(theta) ** 15 + 5.47089898059825e67 * cos(theta) ** 13 - 1.43680175248035e67 * cos(theta) ** 11 + 2.0367035151139e66 * cos(theta) ** 9 - 1.54360687461264e65 * cos(theta) ** 7 + 5.80927318402606e63 * cos(theta) ** 5 - 9.11973812248989e61 * cos(theta) ** 3 + 3.84258628756596e59 * cos(theta) ) * cos(35 * phi) ) # @torch.jit.script def Yl52_m36(theta, phi): return ( 1.37297577733285e-60 * (1.0 - cos(theta) ** 2) ** 18 * ( 1.35508957369437e69 * cos(theta) ** 16 - 1.57874513440121e69 * cos(theta) ** 14 + 7.11216867477773e68 * cos(theta) ** 12 - 1.58048192772838e68 * cos(theta) ** 10 + 1.83303316360251e67 * cos(theta) ** 8 - 1.08052481222885e66 * cos(theta) ** 6 + 2.90463659201303e64 * cos(theta) ** 4 - 2.73592143674697e62 * cos(theta) ** 2 + 3.84258628756596e59 ) * cos(36 * phi) ) # @torch.jit.script def Yl52_m37(theta, phi): return ( 3.63837853318226e-62 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 2.168143317911e70 * cos(theta) ** 15 - 2.21024318816169e70 * cos(theta) ** 13 + 8.53460240973327e69 * cos(theta) ** 11 - 1.58048192772838e69 * cos(theta) ** 9 + 1.46642653088201e68 * cos(theta) ** 7 - 6.48314887337308e66 * cos(theta) ** 5 + 1.16185463680521e65 * cos(theta) ** 3 - 5.47184287349393e62 * cos(theta) ) * cos(37 * phi) ) # @torch.jit.script def Yl52_m38(theta, phi): return ( 9.90241210821384e-64 * (1.0 - cos(theta) ** 2) ** 19 * ( 3.25221497686649e71 * cos(theta) ** 14 - 2.8733161446102e71 * cos(theta) ** 12 + 9.3880626507066e70 * cos(theta) ** 10 - 1.42243373495555e70 * cos(theta) ** 8 + 1.0264985716174e69 * cos(theta) ** 6 - 3.24157443668654e67 * cos(theta) ** 4 + 3.48556391041563e65 * cos(theta) ** 2 - 5.47184287349393e62 ) * cos(38 * phi) ) # @torch.jit.script def Yl52_m39(theta, phi): return ( 2.77431827315494e-65 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 4.55310096761309e72 * cos(theta) ** 13 - 3.44797937353224e72 * cos(theta) ** 11 + 9.3880626507066e71 * cos(theta) ** 9 - 1.13794698796444e71 * cos(theta) ** 7 + 6.15899142970443e69 * cos(theta) ** 5 - 1.29662977467462e68 * cos(theta) ** 3 + 6.97112782083127e65 * cos(theta) ) * cos(39 * phi) ) # @torch.jit.script def Yl52_m40(theta, phi): return ( 8.02214841696147e-67 * (1.0 - cos(theta) ** 2) ** 20 * ( 5.91903125789702e73 * cos(theta) ** 12 - 3.79277731088547e73 * cos(theta) ** 10 + 8.44925638563594e72 * cos(theta) ** 8 - 7.96562891575106e71 * cos(theta) ** 6 + 3.07949571485221e70 * cos(theta) ** 4 - 3.88988932402385e68 * cos(theta) ** 2 + 6.97112782083127e65 ) * cos(40 * phi) ) # @torch.jit.script def Yl52_m41(theta, phi): return ( 2.4013673155533e-68 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 7.10283750947642e74 * cos(theta) ** 11 - 3.79277731088547e74 * cos(theta) ** 9 + 6.75940510850875e73 * cos(theta) ** 7 - 4.77937734945063e72 * cos(theta) ** 5 + 1.23179828594088e71 * cos(theta) ** 3 - 7.77977864804769e68 * cos(theta) ) * cos(41 * phi) ) # @torch.jit.script def Yl52_m42(theta, phi): return ( 7.46789711195431e-70 * (1.0 - cos(theta) ** 2) ** 21 * ( 7.81312126042406e75 * cos(theta) ** 10 - 3.41349957979692e75 * cos(theta) ** 8 + 4.73158357595613e74 * cos(theta) ** 6 - 2.38968867472532e73 * cos(theta) ** 4 + 3.69539485782266e71 * cos(theta) ** 2 - 7.77977864804769e68 ) * cos(42 * phi) ) # @torch.jit.script def Yl52_m43(theta, phi): return ( 2.42290576471909e-71 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 7.81312126042406e76 * cos(theta) ** 9 - 2.73079966383754e76 * cos(theta) ** 7 + 2.83895014557368e75 * cos(theta) ** 5 - 9.55875469890127e73 * cos(theta) ** 3 + 7.39078971564531e71 * cos(theta) ) * cos(43 * phi) ) # @torch.jit.script def Yl52_m44(theta, phi): return ( 8.24289280334673e-73 * (1.0 - cos(theta) ** 2) ** 22 * ( 7.03180913438166e77 * cos(theta) ** 8 - 1.91155976468628e77 * cos(theta) ** 6 + 1.41947507278684e76 * cos(theta) ** 4 - 2.86762640967038e74 * cos(theta) ** 2 + 7.39078971564531e71 ) * cos(44 * phi) ) # @torch.jit.script def Yl52_m45(theta, phi): return ( 2.95902606938711e-74 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 5.62544730750532e78 * cos(theta) ** 7 - 1.14693585881177e78 * cos(theta) ** 5 + 5.67790029114735e76 * cos(theta) ** 3 - 5.73525281934076e74 * cos(theta) ) * cos(45 * phi) ) # @torch.jit.script def Yl52_m46(theta, phi): return ( 1.12976140307948e-75 * (1.0 - cos(theta) ** 2) ** 23 * ( 3.93781311525373e79 * cos(theta) ** 6 - 5.73467929405883e78 * cos(theta) ** 4 + 1.70337008734421e77 * cos(theta) ** 2 - 5.73525281934076e74 ) * cos(46 * phi) ) # @torch.jit.script def Yl52_m47(theta, phi): return ( 4.63546718519856e-77 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 2.36268786915224e80 * cos(theta) ** 5 - 2.29387171762353e79 * cos(theta) ** 3 + 3.40674017468841e77 * cos(theta) ) * cos(47 * phi) ) # @torch.jit.script def Yl52_m48(theta, phi): return ( 2.07304394671472e-78 * (1.0 - cos(theta) ** 2) ** 24 * ( 1.18134393457612e81 * cos(theta) ** 4 - 6.88161515287059e79 * cos(theta) ** 2 + 3.40674017468841e77 ) * cos(48 * phi) ) # @torch.jit.script def Yl52_m49(theta, phi): return ( 1.03137791196042e-79 * (1.0 - cos(theta) ** 2) ** 24.5 * (4.72537573830447e81 * cos(theta) ** 3 - 1.37632303057412e80 * cos(theta)) * cos(49 * phi) ) # @torch.jit.script def Yl52_m50(theta, phi): return ( 5.89599508828156e-81 * (1.0 - cos(theta) ** 2) ** 25 * (1.41761272149134e82 * cos(theta) ** 2 - 1.37632303057412e80) * cos(50 * phi) ) # @torch.jit.script def Yl52_m51(theta, phi): return ( 11.6469202143439 * (1.0 - cos(theta) ** 2) ** 25.5 * cos(51 * phi) * cos(theta) ) # @torch.jit.script def Yl52_m52(theta, phi): return 1.14207448934996 * (1.0 - cos(theta) ** 2) ** 26 * cos(52 * phi) # @torch.jit.script def Yl53_m_minus_53(theta, phi): return 1.14744898722045 * (1.0 - cos(theta) ** 2) ** 26.5 * sin(53 * phi) # @torch.jit.script def Yl53_m_minus_52(theta, phi): return 11.8137103780719 * (1.0 - cos(theta) ** 2) ** 26 * sin(52 * phi) * cos(theta) # @torch.jit.script def Yl53_m_minus_51(theta, phi): return ( 5.75067826096859e-83 * (1.0 - cos(theta) ** 2) ** 25.5 * (1.48849335756591e84 * cos(theta) ** 2 - 1.41761272149134e82) * sin(51 * phi) ) # @torch.jit.script def Yl53_m_minus_50(theta, phi): return ( 1.01577230440129e-81 * (1.0 - cos(theta) ** 2) ** 25 * (4.9616445252197e83 * cos(theta) ** 3 - 1.41761272149134e82 * cos(theta)) * sin(50 * phi) ) # @torch.jit.script def Yl53_m_minus_49(theta, phi): return ( 2.06179259443851e-80 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.24041113130492e83 * cos(theta) ** 4 - 7.08806360745671e81 * cos(theta) ** 2 + 3.4408075764353e79 ) * sin(49 * phi) ) # @torch.jit.script def Yl53_m_minus_48(theta, phi): return ( 4.65618324195425e-79 * (1.0 - cos(theta) ** 2) ** 24 * ( 2.48082226260985e82 * cos(theta) ** 5 - 2.36268786915224e81 * cos(theta) ** 3 + 3.4408075764353e79 * cos(theta) ) * sin(48 * phi) ) # @torch.jit.script def Yl53_m_minus_47(theta, phi): return ( 1.1462157599636e-77 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 4.13470377101641e81 * cos(theta) ** 6 - 5.90671967288059e80 * cos(theta) ** 4 + 1.72040378821765e79 * cos(theta) ** 2 - 5.67790029114735e76 ) * sin(47 * phi) ) # @torch.jit.script def Yl53_m_minus_46(theta, phi): return ( 3.03260184968659e-76 * (1.0 - cos(theta) ** 2) ** 23 * ( 5.90671967288059e80 * cos(theta) ** 7 - 1.18134393457612e80 * cos(theta) ** 5 + 5.73467929405883e78 * cos(theta) ** 3 - 5.67790029114735e76 * cos(theta) ) * sin(46 * phi) ) # @torch.jit.script def Yl53_m_minus_45(theta, phi): return ( 8.5344981054238e-75 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 7.38339959110074e79 * cos(theta) ** 8 - 1.96890655762686e79 * cos(theta) ** 6 + 1.43366982351471e78 * cos(theta) ** 4 - 2.83895014557368e76 * cos(theta) ** 2 + 7.16906602417595e73 ) * sin(45 * phi) ) # @torch.jit.script def Yl53_m_minus_44(theta, phi): return ( 2.53461662343494e-73 * (1.0 - cos(theta) ** 2) ** 22 * ( 8.20377732344527e78 * cos(theta) ** 9 - 2.81272365375266e78 * cos(theta) ** 7 + 2.86733964702941e77 * cos(theta) ** 5 - 9.46316715191225e75 * cos(theta) ** 3 + 7.16906602417595e73 * cos(theta) ) * sin(44 * phi) ) # @torch.jit.script def Yl53_m_minus_43(theta, phi): return ( 7.89401861218921e-72 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 8.20377732344527e77 * cos(theta) ** 10 - 3.51590456719083e77 * cos(theta) ** 8 + 4.77889941171569e76 * cos(theta) ** 6 - 2.36579178797806e75 * cos(theta) ** 4 + 3.58453301208798e73 * cos(theta) ** 2 - 7.39078971564531e70 ) * sin(43 * phi) ) # @torch.jit.script def Yl53_m_minus_42(theta, phi): return ( 2.56525241489345e-70 * (1.0 - cos(theta) ** 2) ** 21 * ( 7.45797938495024e76 * cos(theta) ** 11 - 3.90656063021203e76 * cos(theta) ** 9 + 6.82699915959384e75 * cos(theta) ** 7 - 4.73158357595613e74 * cos(theta) ** 5 + 1.19484433736266e73 * cos(theta) ** 3 - 7.39078971564531e70 * cos(theta) ) * sin(42 * phi) ) # @torch.jit.script def Yl53_m_minus_41(theta, phi): return ( 8.66128901804633e-69 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 6.21498282079187e75 * cos(theta) ** 12 - 3.90656063021203e75 * cos(theta) ** 10 + 8.5337489494923e74 * cos(theta) ** 8 - 7.88597262659355e73 * cos(theta) ** 6 + 2.98711084340665e72 * cos(theta) ** 4 - 3.69539485782266e70 * cos(theta) ** 2 + 6.48314887337308e67 ) * sin(41 * phi) ) # @torch.jit.script def Yl53_m_minus_40(theta, phi): return ( 3.02773689987996e-67 * (1.0 - cos(theta) ** 2) ** 20 * ( 4.78075601599374e74 * cos(theta) ** 13 - 3.55141875473821e74 * cos(theta) ** 11 + 9.48194327721367e73 * cos(theta) ** 9 - 1.12656751808479e73 * cos(theta) ** 7 + 5.97422168681329e71 * cos(theta) ** 5 - 1.23179828594089e70 * cos(theta) ** 3 + 6.48314887337308e67 * cos(theta) ) * sin(40 * phi) ) # @torch.jit.script def Yl53_m_minus_39(theta, phi): return ( 1.09250548450948e-65 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 3.41482572570982e73 * cos(theta) ** 14 - 2.95951562894851e73 * cos(theta) ** 12 + 9.48194327721367e72 * cos(theta) ** 10 - 1.40820939760599e72 * cos(theta) ** 8 + 9.95703614468882e70 * cos(theta) ** 6 - 3.07949571485221e69 * cos(theta) ** 4 + 3.24157443668654e67 * cos(theta) ** 2 - 4.97937701487948e64 ) * sin(39 * phi) ) # @torch.jit.script def Yl53_m_minus_38(theta, phi): return ( 4.05847774723841e-64 * (1.0 - cos(theta) ** 2) ** 19 * ( 2.27655048380654e72 * cos(theta) ** 15 - 2.27655048380654e72 * cos(theta) ** 13 + 8.61994843383061e71 * cos(theta) ** 11 - 1.5646771084511e71 * cos(theta) ** 9 + 1.42243373495555e70 * cos(theta) ** 7 - 6.15899142970443e68 * cos(theta) ** 5 + 1.08052481222885e67 * cos(theta) ** 3 - 4.97937701487948e64 * cos(theta) ) * sin(38 * phi) ) # @torch.jit.script def Yl53_m_minus_37(theta, phi): return ( 1.54861640846762e-62 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 1.42284405237909e71 * cos(theta) ** 16 - 1.62610748843325e71 * cos(theta) ** 14 + 7.18329036152551e70 * cos(theta) ** 12 - 1.5646771084511e70 * cos(theta) ** 10 + 1.77804216869443e69 * cos(theta) ** 8 - 1.0264985716174e68 * cos(theta) ** 6 + 2.70131203057212e66 * cos(theta) ** 4 - 2.48968850743974e64 * cos(theta) ** 2 + 3.41990179593371e61 ) * sin(37 * phi) ) # @torch.jit.script def Yl53_m_minus_36(theta, phi): return ( 6.05744628889105e-61 * (1.0 - cos(theta) ** 2) ** 18 * ( 8.36967089634759e69 * cos(theta) ** 17 - 1.0840716589555e70 * cos(theta) ** 15 + 5.52560797040424e69 * cos(theta) ** 13 - 1.42243373495555e69 * cos(theta) ** 11 + 1.97560240966048e68 * cos(theta) ** 9 - 1.46642653088201e67 * cos(theta) ** 7 + 5.40262406114423e65 * cos(theta) ** 5 - 8.29896169146579e63 * cos(theta) ** 3 + 3.41990179593371e61 * cos(theta) ) * sin(36 * phi) ) # @torch.jit.script def Yl53_m_minus_35(theta, phi): return ( 2.42449240418619e-59 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 4.64981716463755e68 * cos(theta) ** 18 - 6.77544786847186e68 * cos(theta) ** 16 + 3.94686283600303e68 * cos(theta) ** 14 - 1.18536144579629e68 * cos(theta) ** 12 + 1.97560240966048e67 * cos(theta) ** 10 - 1.83303316360251e66 * cos(theta) ** 8 + 9.00437343524039e64 * cos(theta) ** 6 - 2.07474042286645e63 * cos(theta) ** 4 + 1.70995089796685e61 * cos(theta) ** 2 - 2.13477015975887e58 ) * sin(35 * phi) ) # @torch.jit.script def Yl53_m_minus_34(theta, phi): return ( 9.91377286144046e-58 * (1.0 - cos(theta) ** 2) ** 17 * ( 2.4472721919145e67 * cos(theta) ** 19 - 3.98555756968933e67 * cos(theta) ** 17 + 2.63124189066868e67 * cos(theta) ** 15 - 9.11816496766376e66 * cos(theta) ** 13 + 1.79600219060044e66 * cos(theta) ** 11 - 2.0367035151139e65 * cos(theta) ** 9 + 1.2863390621772e64 * cos(theta) ** 7 - 4.1494808457329e62 * cos(theta) ** 5 + 5.69983632655618e60 * cos(theta) ** 3 - 2.13477015975887e58 * cos(theta) ) * sin(34 * phi) ) # @torch.jit.script def Yl53_m_minus_33(theta, phi): return ( 4.13536253170053e-56 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 1.22363609595725e66 * cos(theta) ** 20 - 2.21419864982741e66 * cos(theta) ** 18 + 1.64452618166793e66 * cos(theta) ** 16 - 6.51297497690268e65 * cos(theta) ** 14 + 1.49666849216703e65 * cos(theta) ** 12 - 2.0367035151139e64 * cos(theta) ** 10 + 1.6079238277215e63 * cos(theta) ** 8 - 6.91580140955483e61 * cos(theta) ** 6 + 1.42495908163904e60 * cos(theta) ** 4 - 1.06738507987943e58 * cos(theta) ** 2 + 1.22687940216027e55 ) * sin(33 * phi) ) # @torch.jit.script def Yl53_m_minus_32(theta, phi): return ( 1.75740744345409e-54 * (1.0 - cos(theta) ** 2) ** 16 * ( 5.82683855217738e64 * cos(theta) ** 21 - 1.16536771043548e65 * cos(theta) ** 19 + 9.67368342157604e64 * cos(theta) ** 17 - 4.34198331793512e64 * cos(theta) ** 15 + 1.1512834555131e64 * cos(theta) ** 13 - 1.85154865010354e63 * cos(theta) ** 11 + 1.78658203080166e62 * cos(theta) ** 9 - 9.87971629936404e60 * cos(theta) ** 7 + 2.84991816327809e59 * cos(theta) ** 5 - 3.55795026626478e57 * cos(theta) ** 3 + 1.22687940216027e55 * cos(theta) ) * sin(32 * phi) ) # @torch.jit.script def Yl53_m_minus_31(theta, phi): return ( 7.59964428425149e-53 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 2.64856297826245e63 * cos(theta) ** 22 - 5.82683855217738e63 * cos(theta) ** 20 + 5.37426856754225e63 * cos(theta) ** 18 - 2.71373957370945e63 * cos(theta) ** 16 + 8.223453253665e62 * cos(theta) ** 14 - 1.54295720841962e62 * cos(theta) ** 12 + 1.78658203080166e61 * cos(theta) ** 10 - 1.23496453742051e60 * cos(theta) ** 8 + 4.74986360546348e58 * cos(theta) ** 6 - 8.89487566566195e56 * cos(theta) ** 4 + 6.13439701080135e54 * cos(theta) ** 2 - 6.56085241796935e51 ) * sin(31 * phi) ) # @torch.jit.script def Yl53_m_minus_30(theta, phi): return ( 3.34038731517029e-51 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.15154912098367e62 * cos(theta) ** 23 - 2.77468502484637e62 * cos(theta) ** 21 + 2.8285624039696e62 * cos(theta) ** 19 - 1.59631739629968e62 * cos(theta) ** 17 + 5.48230216911e61 * cos(theta) ** 15 - 1.18689016032278e61 * cos(theta) ** 13 + 1.62416548254697e60 * cos(theta) ** 11 - 1.37218281935612e59 * cos(theta) ** 9 + 6.7855194363764e57 * cos(theta) ** 7 - 1.77897513313239e56 * cos(theta) ** 5 + 2.04479900360045e54 * cos(theta) ** 3 - 6.56085241796935e51 * cos(theta) ) * sin(30 * phi) ) # @torch.jit.script def Yl53_m_minus_29(theta, phi): return ( 1.49087589461291e-49 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 4.79812133743197e60 * cos(theta) ** 24 - 1.26122046583926e61 * cos(theta) ** 22 + 1.4142812019848e61 * cos(theta) ** 20 - 8.86842997944265e60 * cos(theta) ** 18 + 3.42643885569375e60 * cos(theta) ** 16 - 8.47778685944846e59 * cos(theta) ** 14 + 1.35347123545581e59 * cos(theta) ** 12 - 1.37218281935612e58 * cos(theta) ** 10 + 8.4818992954705e56 * cos(theta) ** 8 - 2.96495855522065e55 * cos(theta) ** 6 + 5.11199750900112e53 * cos(theta) ** 4 - 3.28042620898468e51 * cos(theta) ** 2 + 3.2936006114304e48 ) * sin(29 * phi) ) # @torch.jit.script def Yl53_m_minus_28(theta, phi): return ( 6.75022770944253e-48 * (1.0 - cos(theta) ** 2) ** 14 * ( 1.91924853497279e59 * cos(theta) ** 25 - 5.48356724277939e59 * cos(theta) ** 23 + 6.73467239040382e59 * cos(theta) ** 21 - 4.66759472602245e59 * cos(theta) ** 19 + 2.01555226805515e59 * cos(theta) ** 17 - 5.65185790629897e58 * cos(theta) ** 15 + 1.04113171958139e58 * cos(theta) ** 13 - 1.24743892668738e57 * cos(theta) ** 11 + 9.42433255052278e55 * cos(theta) ** 9 - 4.23565507888664e54 * cos(theta) ** 7 + 1.02239950180022e53 * cos(theta) ** 5 - 1.09347540299489e51 * cos(theta) ** 3 + 3.2936006114304e48 * cos(theta) ) * sin(28 * phi) ) # @torch.jit.script def Yl53_m_minus_27(theta, phi): return ( 3.0977588530478e-46 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 7.38172513451072e57 * cos(theta) ** 26 - 2.28481968449141e58 * cos(theta) ** 24 + 3.06121472291083e58 * cos(theta) ** 22 - 2.33379736301122e58 * cos(theta) ** 20 + 1.11975126003064e58 * cos(theta) ** 18 - 3.53241119143686e57 * cos(theta) ** 16 + 7.43665513986707e56 * cos(theta) ** 14 - 1.03953243890615e56 * cos(theta) ** 12 + 9.42433255052278e54 * cos(theta) ** 10 - 5.2945688486083e53 * cos(theta) ** 8 + 1.70399916966704e52 * cos(theta) ** 6 - 2.73368850748723e50 * cos(theta) ** 4 + 1.6468003057152e48 * cos(theta) ** 2 - 1.56391292090712e45 ) * sin(27 * phi) ) # @torch.jit.script def Yl53_m_minus_26(theta, phi): return ( 1.43970821381048e-44 * (1.0 - cos(theta) ** 2) ** 13 * ( 2.73397227204101e56 * cos(theta) ** 27 - 9.13927873796566e56 * cos(theta) ** 25 + 1.33096292300471e57 * cos(theta) ** 23 - 1.11133207762439e57 * cos(theta) ** 21 + 5.89342768437178e56 * cos(theta) ** 19 - 2.07788893613933e56 * cos(theta) ** 17 + 4.95777009324471e55 * cos(theta) ** 15 - 7.99640337620115e54 * cos(theta) ** 13 + 8.5675750459298e53 * cos(theta) ** 11 - 5.88285427623145e52 * cos(theta) ** 9 + 2.43428452809577e51 * cos(theta) ** 7 - 5.46737701497446e49 * cos(theta) ** 5 + 5.489334352384e47 * cos(theta) ** 3 - 1.56391292090712e45 * cos(theta) ) * sin(26 * phi) ) # @torch.jit.script def Yl53_m_minus_25(theta, phi): return ( 6.77122185938431e-43 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 9.76418668586074e54 * cos(theta) ** 28 - 3.51510720690987e55 * cos(theta) ** 26 + 5.54567884585295e55 * cos(theta) ** 24 - 5.05150944374724e55 * cos(theta) ** 22 + 2.94671384218589e55 * cos(theta) ** 20 - 1.15438274229963e55 * cos(theta) ** 18 + 3.09860630827794e54 * cos(theta) ** 16 - 5.71171669728653e53 * cos(theta) ** 14 + 7.13964587160817e52 * cos(theta) ** 12 - 5.88285427623145e51 * cos(theta) ** 10 + 3.04285566011971e50 * cos(theta) ** 8 - 9.11229502495744e48 * cos(theta) ** 6 + 1.372333588096e47 * cos(theta) ** 4 - 7.81956460453561e44 * cos(theta) ** 2 + 7.0701307455114e41 ) * sin(25 * phi) ) # @torch.jit.script def Yl53_m_minus_24(theta, phi): return ( 3.22042614650432e-41 * (1.0 - cos(theta) ** 2) ** 12 * ( 3.36696092615888e53 * cos(theta) ** 29 - 1.30189155811477e54 * cos(theta) ** 27 + 2.21827153834118e54 * cos(theta) ** 25 - 2.19630845380315e54 * cos(theta) ** 23 + 1.40319706770757e54 * cos(theta) ** 21 - 6.07569864368224e53 * cos(theta) ** 19 + 1.82270959310467e53 * cos(theta) ** 17 - 3.80781113152436e52 * cos(theta) ** 15 + 5.49203528585244e51 * cos(theta) ** 13 - 5.34804934202859e50 * cos(theta) ** 11 + 3.38095073346635e49 * cos(theta) ** 9 - 1.30175643213678e48 * cos(theta) ** 7 + 2.744667176192e46 * cos(theta) ** 5 - 2.6065215348452e44 * cos(theta) ** 3 + 7.0701307455114e41 * cos(theta) ) * sin(24 * phi) ) # @torch.jit.script def Yl53_m_minus_23(theta, phi): return ( 1.54781600797236e-39 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.12232030871963e52 * cos(theta) ** 30 - 4.64961270755273e52 * cos(theta) ** 28 + 8.53181360900453e52 * cos(theta) ** 26 - 9.15128522417978e52 * cos(theta) ** 24 + 6.37816848957985e52 * cos(theta) ** 22 - 3.03784932184112e52 * cos(theta) ** 20 + 1.01261644061371e52 * cos(theta) ** 18 - 2.37988195720272e51 * cos(theta) ** 16 + 3.92288234703745e50 * cos(theta) ** 14 - 4.45670778502382e49 * cos(theta) ** 12 + 3.38095073346635e48 * cos(theta) ** 10 - 1.62719554017097e47 * cos(theta) ** 8 + 4.57444529365333e45 * cos(theta) ** 6 - 6.51630383711301e43 * cos(theta) ** 4 + 3.5350653727557e41 * cos(theta) ** 2 - 3.06066266039455e38 ) * sin(23 * phi) ) # @torch.jit.script def Yl53_m_minus_22(theta, phi): return ( 7.5128890804574e-38 * (1.0 - cos(theta) ** 2) ** 11 * ( 3.62038809264395e50 * cos(theta) ** 31 - 1.60331472674232e51 * cos(theta) ** 29 + 3.15993096629797e51 * cos(theta) ** 27 - 3.66051408967191e51 * cos(theta) ** 25 + 2.77311673459993e51 * cos(theta) ** 23 - 1.44659491516244e51 * cos(theta) ** 21 + 5.32956021375635e50 * cos(theta) ** 19 - 1.39993056306042e50 * cos(theta) ** 17 + 2.61525489802497e49 * cos(theta) ** 15 - 3.42823675771063e48 * cos(theta) ** 13 + 3.0735915758785e47 * cos(theta) ** 11 - 1.80799504463441e46 * cos(theta) ** 9 + 6.53492184807619e44 * cos(theta) ** 7 - 1.3032607674226e43 * cos(theta) ** 5 + 1.1783551242519e41 * cos(theta) ** 3 - 3.06066266039455e38 * cos(theta) ) * sin(22 * phi) ) # @torch.jit.script def Yl53_m_minus_21(theta, phi): return ( 3.68054894824963e-36 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.13137127895124e49 * cos(theta) ** 32 - 5.34438242247441e49 * cos(theta) ** 30 + 1.12854677367785e50 * cos(theta) ** 28 - 1.4078900344892e50 * cos(theta) ** 26 + 1.15546530608331e50 * cos(theta) ** 24 - 6.57543143255654e49 * cos(theta) ** 22 + 2.66478010687818e49 * cos(theta) ** 20 - 7.77739201700236e48 * cos(theta) ** 18 + 1.63453431126561e48 * cos(theta) ** 16 - 2.44874054122188e47 * cos(theta) ** 14 + 2.56132631323208e46 * cos(theta) ** 12 - 1.80799504463441e45 * cos(theta) ** 10 + 8.16865231009523e43 * cos(theta) ** 8 - 2.17210127903767e42 * cos(theta) ** 6 + 2.94588781062975e40 * cos(theta) ** 4 - 1.53033133019727e38 * cos(theta) ** 2 + 1.27527610849773e35 ) * sin(21 * phi) ) # @torch.jit.script def Yl53_m_minus_20(theta, phi): return ( 1.81880201915016e-34 * (1.0 - cos(theta) ** 2) ** 10 * ( 3.42839781500374e47 * cos(theta) ** 33 - 1.72399432983045e48 * cos(theta) ** 31 + 3.89154059888913e48 * cos(theta) ** 29 - 5.21440753514517e48 * cos(theta) ** 27 + 4.62186122433322e48 * cos(theta) ** 25 - 2.85888323154632e48 * cos(theta) ** 23 + 1.26894290803723e48 * cos(theta) ** 21 - 4.09336421947493e47 * cos(theta) ** 19 + 9.61490771332709e46 * cos(theta) ** 17 - 1.63249369414792e46 * cos(theta) ** 15 + 1.97025101017853e45 * cos(theta) ** 13 - 1.64363185875856e44 * cos(theta) ** 11 + 9.07628034455026e42 * cos(theta) ** 9 - 3.10300182719667e41 * cos(theta) ** 7 + 5.8917756212595e39 * cos(theta) ** 5 - 5.10110443399091e37 * cos(theta) ** 3 + 1.27527610849773e35 * cos(theta) ) * sin(20 * phi) ) # @torch.jit.script def Yl53_m_minus_19(theta, phi): return ( 9.0612125171161e-33 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.00835229853051e46 * cos(theta) ** 34 - 5.38748228072017e46 * cos(theta) ** 32 + 1.29718019962971e47 * cos(theta) ** 30 - 1.86228840540899e47 * cos(theta) ** 28 + 1.77763893243585e47 * cos(theta) ** 26 - 1.19120134647763e47 * cos(theta) ** 24 + 5.76792230926012e46 * cos(theta) ** 22 - 2.04668210973746e46 * cos(theta) ** 20 + 5.34161539629283e45 * cos(theta) ** 18 - 1.02030855884245e45 * cos(theta) ** 16 + 1.40732215012752e44 * cos(theta) ** 14 - 1.36969321563213e43 * cos(theta) ** 12 + 9.07628034455026e41 * cos(theta) ** 10 - 3.87875228399584e40 * cos(theta) ** 8 + 9.8196260354325e38 * cos(theta) ** 6 - 1.27527610849773e37 * cos(theta) ** 4 + 6.37638054248864e34 * cos(theta) ** 2 - 5.13809874495458e31 ) * sin(19 * phi) ) # @torch.jit.script def Yl53_m_minus_18(theta, phi): return ( 4.54869258300075e-31 * (1.0 - cos(theta) ** 2) ** 9 * ( 2.88100656723004e44 * cos(theta) ** 35 - 1.63257038809702e45 * cos(theta) ** 33 + 4.18445225687003e45 * cos(theta) ** 31 - 6.42168415658272e45 * cos(theta) ** 29 + 6.58384789791057e45 * cos(theta) ** 27 - 4.76480538591054e45 * cos(theta) ** 25 + 2.50779230837397e45 * cos(theta) ** 23 - 9.74610528446411e44 * cos(theta) ** 21 + 2.81137652436465e44 * cos(theta) ** 19 - 6.00181505201442e43 * cos(theta) ** 17 + 9.38214766751679e42 * cos(theta) ** 15 - 1.05361016587087e42 * cos(theta) ** 13 + 8.25116394959114e40 * cos(theta) ** 11 - 4.30972475999538e39 * cos(theta) ** 9 + 1.4028037193475e38 * cos(theta) ** 7 - 2.55055221699545e36 * cos(theta) ** 5 + 2.12546018082955e34 * cos(theta) ** 3 - 5.13809874495458e31 * cos(theta) ) * sin(18 * phi) ) # @torch.jit.script def Yl53_m_minus_17(theta, phi): return ( 2.29967789859005e-29 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 8.00279602008343e42 * cos(theta) ** 36 - 4.80167761205006e43 * cos(theta) ** 34 + 1.30764133027189e44 * cos(theta) ** 32 - 2.14056138552757e44 * cos(theta) ** 30 + 2.35137424925378e44 * cos(theta) ** 28 - 1.83261745611944e44 * cos(theta) ** 26 + 1.04491346182249e44 * cos(theta) ** 24 - 4.4300478565746e43 * cos(theta) ** 22 + 1.40568826218232e43 * cos(theta) ** 20 - 3.33434169556356e42 * cos(theta) ** 18 + 5.86384229219799e41 * cos(theta) ** 16 - 7.52578689907764e40 * cos(theta) ** 14 + 6.87596995799262e39 * cos(theta) ** 12 - 4.30972475999537e38 * cos(theta) ** 10 + 1.75350464918438e37 * cos(theta) ** 8 - 4.25092036165909e35 * cos(theta) ** 6 + 5.31365045207386e33 * cos(theta) ** 4 - 2.56904937247729e31 * cos(theta) ** 2 + 2.0102107765863e28 ) * sin(17 * phi) ) # @torch.jit.script def Yl53_m_minus_16(theta, phi): return ( 1.17035305581318e-27 * (1.0 - cos(theta) ** 2) ** 8 * ( 2.16291784326579e41 * cos(theta) ** 37 - 1.37190788915716e42 * cos(theta) ** 35 + 3.96254948567238e42 * cos(theta) ** 33 - 6.90503672750831e42 * cos(theta) ** 31 + 8.10818706639233e42 * cos(theta) ** 29 - 6.78747205970162e42 * cos(theta) ** 27 + 4.17965384728995e42 * cos(theta) ** 25 - 1.92610776372809e42 * cos(theta) ** 23 + 6.69375362943964e41 * cos(theta) ** 21 - 1.75491668187556e41 * cos(theta) ** 19 + 3.44931899541058e40 * cos(theta) ** 17 - 5.01719126605176e39 * cos(theta) ** 15 + 5.28920765999432e38 * cos(theta) ** 13 - 3.9179315999958e37 * cos(theta) ** 11 + 1.94833849909375e36 * cos(theta) ** 9 - 6.0727433737987e34 * cos(theta) ** 7 + 1.06273009041477e33 * cos(theta) ** 5 - 8.56349790825764e30 * cos(theta) ** 3 + 2.0102107765863e28 * cos(theta) ) * sin(16 * phi) ) # @torch.jit.script def Yl53_m_minus_15(theta, phi): return ( 5.99284764841289e-26 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 5.69188906122577e39 * cos(theta) ** 38 - 3.81085524765878e40 * cos(theta) ** 36 + 1.16545573108011e41 * cos(theta) ** 34 - 2.15782397734635e41 * cos(theta) ** 32 + 2.70272902213078e41 * cos(theta) ** 30 - 2.42409716417915e41 * cos(theta) ** 28 + 1.60755917203459e41 * cos(theta) ** 26 - 8.02544901553369e40 * cos(theta) ** 24 + 3.04261528610893e40 * cos(theta) ** 22 - 8.7745834093778e39 * cos(theta) ** 20 + 1.91628833078366e39 * cos(theta) ** 18 - 3.13574454128235e38 * cos(theta) ** 16 + 3.77800547142452e37 * cos(theta) ** 14 - 3.2649429999965e36 * cos(theta) ** 12 + 1.94833849909375e35 * cos(theta) ** 10 - 7.59092921724838e33 * cos(theta) ** 8 + 1.77121681735795e32 * cos(theta) ** 6 - 2.14087447706441e30 * cos(theta) ** 4 + 1.00510538829315e28 * cos(theta) ** 2 - 7.66670776730091e24 ) * sin(15 * phi) ) # @torch.jit.script def Yl53_m_minus_14(theta, phi): return ( 3.08617107803759e-24 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.45945873364763e38 * cos(theta) ** 39 - 1.02996087774562e39 * cos(theta) ** 37 + 3.32987351737175e39 * cos(theta) ** 35 - 6.53886053741317e39 * cos(theta) ** 33 + 8.71848071655089e39 * cos(theta) ** 31 - 8.35895573854879e39 * cos(theta) ** 29 + 5.95392285938739e39 * cos(theta) ** 27 - 3.21017960621348e39 * cos(theta) ** 25 + 1.32287621135171e39 * cos(theta) ** 23 - 4.17837305208467e38 * cos(theta) ** 21 + 1.00857280567561e38 * cos(theta) ** 19 - 1.84455561251903e37 * cos(theta) ** 17 + 2.51867031428301e36 * cos(theta) ** 15 - 2.51149461538192e35 * cos(theta) ** 13 + 1.77121681735795e34 * cos(theta) ** 11 - 8.43436579694264e32 * cos(theta) ** 9 + 2.53030973908279e31 * cos(theta) ** 7 - 4.28174895412882e29 * cos(theta) ** 5 + 3.3503512943105e27 * cos(theta) ** 3 - 7.66670776730091e24 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl53_m_minus_13(theta, phi): return ( 1.59767115369259e-22 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 3.64864683411908e36 * cos(theta) ** 40 - 2.71042336248846e37 * cos(theta) ** 38 + 9.24964865936597e37 * cos(theta) ** 36 - 1.92319427570976e38 * cos(theta) ** 34 + 2.72452522392215e38 * cos(theta) ** 32 - 2.78631857951626e38 * cos(theta) ** 30 + 2.12640102120978e38 * cos(theta) ** 28 - 1.23468446392826e38 * cos(theta) ** 26 + 5.51198421396545e37 * cos(theta) ** 24 - 1.8992604782203e37 * cos(theta) ** 22 + 5.04286402837805e36 * cos(theta) ** 20 - 1.02475311806613e36 * cos(theta) ** 18 + 1.57416894642688e35 * cos(theta) ** 16 - 1.7939247252728e34 * cos(theta) ** 14 + 1.47601401446496e33 * cos(theta) ** 12 - 8.43436579694264e31 * cos(theta) ** 10 + 3.16288717385349e30 * cos(theta) ** 8 - 7.13624825688136e28 * cos(theta) ** 6 + 8.37587823577625e26 * cos(theta) ** 4 - 3.83335388365046e24 * cos(theta) ** 2 + 2.86071185347049e21 ) * sin(13 * phi) ) # @torch.jit.script def Yl53_m_minus_12(theta, phi): return ( 8.31096187580827e-21 * (1.0 - cos(theta) ** 2) ** 6 * ( 8.89913861980265e34 * cos(theta) ** 41 - 6.94980349356016e35 * cos(theta) ** 39 + 2.49990504307188e36 * cos(theta) ** 37 - 5.49484078774216e36 * cos(theta) ** 35 + 8.25613704218834e36 * cos(theta) ** 33 - 8.98812445005247e36 * cos(theta) ** 31 + 7.33241731451649e36 * cos(theta) ** 29 - 4.57290542195652e36 * cos(theta) ** 27 + 2.20479368558618e36 * cos(theta) ** 25 - 8.25765425313175e35 * cos(theta) ** 23 + 2.40136382303717e35 * cos(theta) ** 21 - 5.39343746350593e34 * cos(theta) ** 19 + 9.25981733192284e33 * cos(theta) ** 17 - 1.19594981684853e33 * cos(theta) ** 15 + 1.13539539574228e32 * cos(theta) ** 13 - 7.66760526994786e30 * cos(theta) ** 11 + 3.51431908205943e29 * cos(theta) ** 9 - 1.01946403669734e28 * cos(theta) ** 7 + 1.67517564715525e26 * cos(theta) ** 5 - 1.27778462788349e24 * cos(theta) ** 3 + 2.86071185347049e21 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl53_m_minus_11(theta, phi): return ( 4.34242787311555e-19 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 2.11884252852444e33 * cos(theta) ** 42 - 1.73745087339004e34 * cos(theta) ** 40 + 6.57869748176811e34 * cos(theta) ** 38 - 1.52634466326171e35 * cos(theta) ** 36 + 2.42827560064363e35 * cos(theta) ** 34 - 2.8087888906414e35 * cos(theta) ** 32 + 2.44413910483883e35 * cos(theta) ** 30 - 1.63318050784161e35 * cos(theta) ** 28 + 8.47997571379299e34 * cos(theta) ** 26 - 3.44068927213823e34 * cos(theta) ** 24 + 1.09152901047144e34 * cos(theta) ** 22 - 2.69671873175297e33 * cos(theta) ** 20 + 5.14434296217935e32 * cos(theta) ** 18 - 7.47468635530333e31 * cos(theta) ** 16 + 8.10996711244485e30 * cos(theta) ** 14 - 6.38967105828988e29 * cos(theta) ** 12 + 3.51431908205943e28 * cos(theta) ** 10 - 1.27433004587167e27 * cos(theta) ** 8 + 2.79195941192542e25 * cos(theta) ** 6 - 3.19446156970871e23 * cos(theta) ** 4 + 1.43035592673525e21 * cos(theta) ** 2 - 1.04787979980604e18 ) * sin(11 * phi) ) # @torch.jit.script def Yl53_m_minus_10(theta, phi): return ( 2.27801630593366e-17 * (1.0 - cos(theta) ** 2) ** 5 * ( 4.92754076401032e31 * cos(theta) ** 43 - 4.23768505704888e32 * cos(theta) ** 41 + 1.68684550814567e33 * cos(theta) ** 39 - 4.12525584665327e33 * cos(theta) ** 37 + 6.93793028755323e33 * cos(theta) ** 35 - 8.51148148679211e33 * cos(theta) ** 33 + 7.88431969302848e33 * cos(theta) ** 31 - 5.63165692359177e33 * cos(theta) ** 29 + 3.14073174584926e33 * cos(theta) ** 27 - 1.37627570885529e33 * cos(theta) ** 25 + 4.74577830639756e32 * cos(theta) ** 23 - 1.28415177702522e32 * cos(theta) ** 21 + 2.70754892746282e31 * cos(theta) ** 19 - 4.39687432664902e30 * cos(theta) ** 17 + 5.4066447416299e29 * cos(theta) ** 15 - 4.91513158329991e28 * cos(theta) ** 13 + 3.19483552914494e27 * cos(theta) ** 11 - 1.41592227319075e26 * cos(theta) ** 9 + 3.98851344560774e24 * cos(theta) ** 7 - 6.38892313941743e22 * cos(theta) ** 5 + 4.76785308911748e20 * cos(theta) ** 3 - 1.04787979980604e18 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl53_m_minus_9(theta, phi): return ( 1.19937071750798e-15 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1.11989562818416e30 * cos(theta) ** 44 - 1.00897263263069e31 * cos(theta) ** 42 + 4.21711377036417e31 * cos(theta) ** 40 - 1.08559364385612e32 * cos(theta) ** 38 + 1.92720285765368e32 * cos(theta) ** 36 - 2.50337690788003e32 * cos(theta) ** 34 + 2.4638499040714e32 * cos(theta) ** 32 - 1.87721897453059e32 * cos(theta) ** 30 + 1.12168990923188e32 * cos(theta) ** 28 - 5.29336811098189e31 * cos(theta) ** 26 + 1.97740762766565e31 * cos(theta) ** 24 - 5.83705353193283e30 * cos(theta) ** 22 + 1.35377446373141e30 * cos(theta) ** 20 - 2.44270795924946e29 * cos(theta) ** 18 + 3.37915296351869e28 * cos(theta) ** 16 - 3.51080827378565e27 * cos(theta) ** 14 + 2.66236294095412e26 * cos(theta) ** 12 - 1.41592227319075e25 * cos(theta) ** 10 + 4.98564180700967e23 * cos(theta) ** 8 - 1.06482052323624e22 * cos(theta) ** 6 + 1.19196327227937e20 * cos(theta) ** 4 - 5.2393989990302e17 * cos(theta) ** 2 + 378023015803045.0 ) * sin(9 * phi) ) # @torch.jit.script def Yl53_m_minus_8(theta, phi): return ( 6.33513017171989e-14 * (1.0 - cos(theta) ** 2) ** 4 * ( 2.48865695152037e28 * cos(theta) ** 45 - 2.34644798286206e29 * cos(theta) ** 43 + 1.02856433423516e30 * cos(theta) ** 41 - 2.78357344578493e30 * cos(theta) ** 39 + 5.20865637203696e30 * cos(theta) ** 37 - 7.15250545108581e30 * cos(theta) ** 35 + 7.46621183051939e30 * cos(theta) ** 33 - 6.05554507913094e30 * cos(theta) ** 31 + 3.86789623873061e30 * cos(theta) ** 29 - 1.96050670777107e30 * cos(theta) ** 27 + 7.9096305106626e29 * cos(theta) ** 25 - 2.53784936170992e29 * cos(theta) ** 23 + 6.44654506538766e28 * cos(theta) ** 21 - 1.28563576802603e28 * cos(theta) ** 19 + 1.98773703736393e27 * cos(theta) ** 17 - 2.34053884919043e26 * cos(theta) ** 15 + 2.04797149304163e25 * cos(theta) ** 13 - 1.28720206653704e24 * cos(theta) ** 11 + 5.53960200778852e22 * cos(theta) ** 9 - 1.52117217605177e21 * cos(theta) ** 7 + 2.38392654455874e19 * cos(theta) ** 5 - 1.74646633301007e17 * cos(theta) ** 3 + 378023015803045.0 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl53_m_minus_7(theta, phi): return ( 3.35582555066761e-12 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 5.41012380765297e26 * cos(theta) ** 46 - 5.3328363246865e27 * cos(theta) ** 44 + 2.44896270055992e28 * cos(theta) ** 42 - 6.95893361446234e28 * cos(theta) ** 40 + 1.37069904527288e29 * cos(theta) ** 38 - 1.98680706974606e29 * cos(theta) ** 36 + 2.19594465603512e29 * cos(theta) ** 34 - 1.89235783722842e29 * cos(theta) ** 32 + 1.28929874624354e29 * cos(theta) ** 30 - 7.00180967061097e28 * cos(theta) ** 28 + 3.04216558102408e28 * cos(theta) ** 26 - 1.0574372340458e28 * cos(theta) ** 24 + 2.93024775699439e27 * cos(theta) ** 22 - 6.42817884013015e26 * cos(theta) ** 20 + 1.10429835409107e26 * cos(theta) ** 18 - 1.46283678074402e25 * cos(theta) ** 16 + 1.46283678074402e24 * cos(theta) ** 14 - 1.07266838878087e23 * cos(theta) ** 12 + 5.53960200778852e21 * cos(theta) ** 10 - 1.90146522006471e20 * cos(theta) ** 8 + 3.9732109075979e18 * cos(theta) ** 6 - 4.36616583252517e16 * cos(theta) ** 4 + 189011507901522.0 * cos(theta) ** 2 - 134719535211.349 ) * sin(7 * phi) ) # @torch.jit.script def Yl53_m_minus_6(theta, phi): return ( 1.78206659967489e-10 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.15109017184106e25 * cos(theta) ** 47 - 1.18507473881922e26 * cos(theta) ** 45 + 5.69526209432539e26 * cos(theta) ** 43 - 1.69730088157618e27 * cos(theta) ** 41 + 3.51461293659714e27 * cos(theta) ** 39 - 5.3697488371515e27 * cos(theta) ** 37 + 6.27412758867176e27 * cos(theta) ** 35 - 5.73441768857096e27 * cos(theta) ** 33 + 4.15902821368883e27 * cos(theta) ** 31 - 2.41441712779689e27 * cos(theta) ** 29 + 1.12672799297188e27 * cos(theta) ** 27 - 4.22974893618321e26 * cos(theta) ** 25 + 1.2740207639106e26 * cos(theta) ** 23 - 3.06103754291912e25 * cos(theta) ** 21 + 5.81209660047934e24 * cos(theta) ** 19 - 8.60492223967071e23 * cos(theta) ** 17 + 9.75224520496013e22 * cos(theta) ** 15 - 8.25129529831438e21 * cos(theta) ** 13 + 5.03600182526229e20 * cos(theta) ** 11 - 2.11273913340523e19 * cos(theta) ** 9 + 5.67601558228272e17 * cos(theta) ** 7 - 8.73233166505034e15 * cos(theta) ** 5 + 63003835967174.1 * cos(theta) ** 3 - 134719535211.349 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl53_m_minus_5(theta, phi): return ( 9.48354163147754e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 2.39810452466887e23 * cos(theta) ** 48 - 2.5762494322157e24 * cos(theta) ** 46 + 1.29437774871031e25 * cos(theta) ** 44 - 4.04119257518138e25 * cos(theta) ** 42 + 8.78653234149285e25 * cos(theta) ** 40 - 1.4130917992504e26 * cos(theta) ** 38 + 1.74281321907549e26 * cos(theta) ** 36 - 1.68659343781499e26 * cos(theta) ** 34 + 1.29969631677776e26 * cos(theta) ** 32 - 8.04805709265629e25 * cos(theta) ** 30 + 4.02402854632814e25 * cos(theta) ** 28 - 1.62682651391662e25 * cos(theta) ** 26 + 5.30841984962752e24 * cos(theta) ** 24 - 1.39138070132687e24 * cos(theta) ** 22 + 2.90604830023967e23 * cos(theta) ** 20 - 4.78051235537261e22 * cos(theta) ** 18 + 6.09515325310008e21 * cos(theta) ** 16 - 5.89378235593884e20 * cos(theta) ** 14 + 4.19666818771858e19 * cos(theta) ** 12 - 2.11273913340523e18 * cos(theta) ** 10 + 7.0950194778534e16 * cos(theta) ** 8 - 1.45538861084172e15 * cos(theta) ** 6 + 15750958991793.5 * cos(theta) ** 4 - 67359767605.6744 * cos(theta) ** 2 + 47570457.3486401 ) * sin(5 * phi) ) # @torch.jit.script def Yl53_m_minus_4(theta, phi): return ( 5.05571509137432e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 4.89409086667116e21 * cos(theta) ** 49 - 5.4813817706717e22 * cos(theta) ** 47 + 2.87639499713403e23 * cos(theta) ** 45 - 9.39812226786367e23 * cos(theta) ** 43 + 2.14305666865679e24 * cos(theta) ** 41 - 3.62331230577025e24 * cos(theta) ** 39 + 4.71030599750132e24 * cos(theta) ** 37 - 4.81883839375711e24 * cos(theta) ** 35 + 3.93847368720533e24 * cos(theta) ** 33 - 2.59614744924396e24 * cos(theta) ** 31 + 1.38759605045798e24 * cos(theta) ** 29 - 6.02528338487636e23 * cos(theta) ** 27 + 2.12336793985101e23 * cos(theta) ** 25 - 6.04948131011683e22 * cos(theta) ** 23 + 1.38383252392365e22 * cos(theta) ** 21 - 2.51605913440664e21 * cos(theta) ** 19 + 3.58538426652946e20 * cos(theta) ** 17 - 3.92918823729256e19 * cos(theta) ** 15 + 3.22820629824506e18 * cos(theta) ** 13 - 1.9206719394593e17 * cos(theta) ** 11 + 7.88335497539267e15 * cos(theta) ** 9 - 207912658691675.0 * cos(theta) ** 7 + 3150191798358.71 * cos(theta) ** 5 - 22453255868.5581 * cos(theta) ** 3 + 47570457.3486401 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl53_m_minus_3(theta, phi): return ( 2.69901328252896e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 9.78818173334232e19 * cos(theta) ** 50 - 1.1419545355566e21 * cos(theta) ** 48 + 6.25303260246529e21 * cos(theta) ** 46 - 2.13593687905993e22 * cos(theta) ** 44 + 5.10251587775427e22 * cos(theta) ** 42 - 9.05828076442562e22 * cos(theta) ** 40 + 1.23955420986877e23 * cos(theta) ** 38 - 1.33856622048809e23 * cos(theta) ** 36 + 1.15837461388392e23 * cos(theta) ** 34 - 8.11296077888739e22 * cos(theta) ** 32 + 4.62532016819327e22 * cos(theta) ** 30 - 2.15188692317013e22 * cos(theta) ** 28 + 8.16679976865772e21 * cos(theta) ** 26 - 2.52061721254868e21 * cos(theta) ** 24 + 6.2901478360166e20 * cos(theta) ** 22 - 1.25802956720332e20 * cos(theta) ** 20 + 1.99188014807192e19 * cos(theta) ** 18 - 2.45574264830785e18 * cos(theta) ** 16 + 2.30586164160361e17 * cos(theta) ** 14 - 1.60055994954942e16 * cos(theta) ** 12 + 788335497539267.0 * cos(theta) ** 10 - 25989082336459.3 * cos(theta) ** 8 + 525031966393.118 * cos(theta) ** 6 - 5613313967.13954 * cos(theta) ** 4 + 23785228.6743201 * cos(theta) ** 2 - 16691.3885433825 ) * sin(3 * phi) ) # @torch.jit.script def Yl53_m_minus_2(theta, phi): return ( 0.00144239471813747 * (1.0 - cos(theta) ** 2) * ( 1.9192513202632e18 * cos(theta) ** 51 - 2.3305194603196e19 * cos(theta) ** 49 + 1.33043246860964e20 * cos(theta) ** 47 - 4.74652639791095e20 * cos(theta) ** 45 + 1.18663159947774e21 * cos(theta) ** 43 - 2.20933677181113e21 * cos(theta) ** 41 + 3.17834412786864e21 * cos(theta) ** 39 - 3.61774654185969e21 * cos(theta) ** 37 + 3.30964175395406e21 * cos(theta) ** 35 - 2.45847296329921e21 * cos(theta) ** 33 + 1.49203876393331e21 * cos(theta) ** 31 - 7.42029973506942e20 * cos(theta) ** 29 + 3.02474065505842e20 * cos(theta) ** 27 - 1.00824688501947e20 * cos(theta) ** 25 + 2.73484688522461e19 * cos(theta) ** 23 - 5.99061698668247e18 * cos(theta) ** 21 + 1.04835797266943e18 * cos(theta) ** 19 - 1.44455449900462e17 * cos(theta) ** 17 + 1.53724109440241e16 * cos(theta) ** 15 - 1.23119996119186e15 * cos(theta) ** 13 + 71666863412660.6 * cos(theta) ** 11 - 2887675815162.15 * cos(theta) ** 9 + 75004566627.5883 * cos(theta) ** 7 - 1122662793.42791 * cos(theta) ** 5 + 7928409.55810669 * cos(theta) ** 3 - 16691.3885433825 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl53_m_minus_1(theta, phi): return ( 0.0771377807272486 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 3.69086792358308e16 * cos(theta) ** 52 - 4.6610389206392e17 * cos(theta) ** 50 + 2.77173430960341e18 * cos(theta) ** 48 - 1.03185356476325e19 * cos(theta) ** 46 + 2.69688999881304e19 * cos(theta) ** 44 - 5.26032564716935e19 * cos(theta) ** 42 + 7.94586031967159e19 * cos(theta) ** 40 - 9.52038563647288e19 * cos(theta) ** 38 + 9.19344931653905e19 * cos(theta) ** 36 - 7.23080283323296e19 * cos(theta) ** 34 + 4.6626211372916e19 * cos(theta) ** 32 - 2.47343324502314e19 * cos(theta) ** 30 + 1.08026451966372e19 * cos(theta) ** 28 - 3.87787263469028e18 * cos(theta) ** 26 + 1.13951953551025e18 * cos(theta) ** 24 - 2.72300772121931e17 * cos(theta) ** 22 + 5.24178986334716e16 * cos(theta) ** 20 - 8.02530277224788e15 * cos(theta) ** 18 + 960775684001506.0 * cos(theta) ** 16 - 87942854370847.3 * cos(theta) ** 14 + 5972238617721.72 * cos(theta) ** 12 - 288767581516.215 * cos(theta) ** 10 + 9375570828.44853 * cos(theta) ** 8 - 187110465.571318 * cos(theta) ** 6 + 1982102.38952667 * cos(theta) ** 4 - 8345.69427169125 * cos(theta) ** 2 + 5.83614984034353 ) * sin(phi) ) # @torch.jit.script def Yl53_m0(theta, phi): return ( 6.383949815115e15 * cos(theta) ** 53 - 8.37817413831283e16 * cos(theta) ** 51 + 5.18552040114023e17 * cos(theta) ** 49 - 2.01259801707621e18 * cos(theta) ** 47 + 5.49398600116005e18 * cos(theta) ** 45 - 1.12145281260793e19 * cos(theta) ** 43 + 1.77661735049993e19 * cos(theta) ** 41 - 2.23782830631327e19 * cos(theta) ** 39 + 2.27778952606887e19 * cos(theta) ** 37 - 1.89389241493366e19 * cos(theta) ** 35 + 1.29524826078797e19 * cos(theta) ** 33 - 7.31434311974381e18 * cos(theta) ** 31 + 3.41482886614545e18 * cos(theta) ** 29 - 1.31663867013775e18 * cos(theta) ** 27 + 4.17848257882777e17 * cos(theta) ** 25 - 1.08532015034487e17 * cos(theta) ** 23 + 2.28821665031044e16 * cos(theta) ** 21 - 3.87208296990486e15 * cos(theta) ** 19 + 518095608649242.0 * cos(theta) ** 17 - 53745997541035.0 * cos(theta) ** 15 + 4211440105827.37 * cos(theta) ** 13 - 240653720332.993 * cos(theta) ** 11 + 9549750806.86479 * cos(theta) ** 9 - 245039935.172582 * cos(theta) ** 7 + 3634066.8351866 * cos(theta) ** 5 - 25502.2234048182 * cos(theta) ** 3 + 53.5011679821361 * cos(theta) ) # @torch.jit.script def Yl53_m1(theta, phi): return ( 0.0771377807272486 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 3.69086792358308e16 * cos(theta) ** 52 - 4.6610389206392e17 * cos(theta) ** 50 + 2.77173430960341e18 * cos(theta) ** 48 - 1.03185356476325e19 * cos(theta) ** 46 + 2.69688999881304e19 * cos(theta) ** 44 - 5.26032564716935e19 * cos(theta) ** 42 + 7.94586031967159e19 * cos(theta) ** 40 - 9.52038563647288e19 * cos(theta) ** 38 + 9.19344931653905e19 * cos(theta) ** 36 - 7.23080283323296e19 * cos(theta) ** 34 + 4.6626211372916e19 * cos(theta) ** 32 - 2.47343324502314e19 * cos(theta) ** 30 + 1.08026451966372e19 * cos(theta) ** 28 - 3.87787263469028e18 * cos(theta) ** 26 + 1.13951953551025e18 * cos(theta) ** 24 - 2.72300772121931e17 * cos(theta) ** 22 + 5.24178986334716e16 * cos(theta) ** 20 - 8.02530277224788e15 * cos(theta) ** 18 + 960775684001506.0 * cos(theta) ** 16 - 87942854370847.3 * cos(theta) ** 14 + 5972238617721.72 * cos(theta) ** 12 - 288767581516.215 * cos(theta) ** 10 + 9375570828.44853 * cos(theta) ** 8 - 187110465.571318 * cos(theta) ** 6 + 1982102.38952667 * cos(theta) ** 4 - 8345.69427169125 * cos(theta) ** 2 + 5.83614984034353 ) * cos(phi) ) # @torch.jit.script def Yl53_m2(theta, phi): return ( 0.00144239471813747 * (1.0 - cos(theta) ** 2) * ( 1.9192513202632e18 * cos(theta) ** 51 - 2.3305194603196e19 * cos(theta) ** 49 + 1.33043246860964e20 * cos(theta) ** 47 - 4.74652639791095e20 * cos(theta) ** 45 + 1.18663159947774e21 * cos(theta) ** 43 - 2.20933677181113e21 * cos(theta) ** 41 + 3.17834412786864e21 * cos(theta) ** 39 - 3.61774654185969e21 * cos(theta) ** 37 + 3.30964175395406e21 * cos(theta) ** 35 - 2.45847296329921e21 * cos(theta) ** 33 + 1.49203876393331e21 * cos(theta) ** 31 - 7.42029973506942e20 * cos(theta) ** 29 + 3.02474065505842e20 * cos(theta) ** 27 - 1.00824688501947e20 * cos(theta) ** 25 + 2.73484688522461e19 * cos(theta) ** 23 - 5.99061698668247e18 * cos(theta) ** 21 + 1.04835797266943e18 * cos(theta) ** 19 - 1.44455449900462e17 * cos(theta) ** 17 + 1.53724109440241e16 * cos(theta) ** 15 - 1.23119996119186e15 * cos(theta) ** 13 + 71666863412660.6 * cos(theta) ** 11 - 2887675815162.15 * cos(theta) ** 9 + 75004566627.5883 * cos(theta) ** 7 - 1122662793.42791 * cos(theta) ** 5 + 7928409.55810669 * cos(theta) ** 3 - 16691.3885433825 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl53_m3(theta, phi): return ( 2.69901328252896e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 9.78818173334232e19 * cos(theta) ** 50 - 1.1419545355566e21 * cos(theta) ** 48 + 6.25303260246529e21 * cos(theta) ** 46 - 2.13593687905993e22 * cos(theta) ** 44 + 5.10251587775427e22 * cos(theta) ** 42 - 9.05828076442562e22 * cos(theta) ** 40 + 1.23955420986877e23 * cos(theta) ** 38 - 1.33856622048809e23 * cos(theta) ** 36 + 1.15837461388392e23 * cos(theta) ** 34 - 8.11296077888739e22 * cos(theta) ** 32 + 4.62532016819327e22 * cos(theta) ** 30 - 2.15188692317013e22 * cos(theta) ** 28 + 8.16679976865772e21 * cos(theta) ** 26 - 2.52061721254868e21 * cos(theta) ** 24 + 6.2901478360166e20 * cos(theta) ** 22 - 1.25802956720332e20 * cos(theta) ** 20 + 1.99188014807192e19 * cos(theta) ** 18 - 2.45574264830785e18 * cos(theta) ** 16 + 2.30586164160361e17 * cos(theta) ** 14 - 1.60055994954942e16 * cos(theta) ** 12 + 788335497539267.0 * cos(theta) ** 10 - 25989082336459.3 * cos(theta) ** 8 + 525031966393.118 * cos(theta) ** 6 - 5613313967.13954 * cos(theta) ** 4 + 23785228.6743201 * cos(theta) ** 2 - 16691.3885433825 ) * cos(3 * phi) ) # @torch.jit.script def Yl53_m4(theta, phi): return ( 5.05571509137432e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 4.89409086667116e21 * cos(theta) ** 49 - 5.4813817706717e22 * cos(theta) ** 47 + 2.87639499713403e23 * cos(theta) ** 45 - 9.39812226786367e23 * cos(theta) ** 43 + 2.14305666865679e24 * cos(theta) ** 41 - 3.62331230577025e24 * cos(theta) ** 39 + 4.71030599750132e24 * cos(theta) ** 37 - 4.81883839375711e24 * cos(theta) ** 35 + 3.93847368720533e24 * cos(theta) ** 33 - 2.59614744924396e24 * cos(theta) ** 31 + 1.38759605045798e24 * cos(theta) ** 29 - 6.02528338487636e23 * cos(theta) ** 27 + 2.12336793985101e23 * cos(theta) ** 25 - 6.04948131011683e22 * cos(theta) ** 23 + 1.38383252392365e22 * cos(theta) ** 21 - 2.51605913440664e21 * cos(theta) ** 19 + 3.58538426652946e20 * cos(theta) ** 17 - 3.92918823729256e19 * cos(theta) ** 15 + 3.22820629824506e18 * cos(theta) ** 13 - 1.9206719394593e17 * cos(theta) ** 11 + 7.88335497539267e15 * cos(theta) ** 9 - 207912658691675.0 * cos(theta) ** 7 + 3150191798358.71 * cos(theta) ** 5 - 22453255868.5581 * cos(theta) ** 3 + 47570457.3486401 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl53_m5(theta, phi): return ( 9.48354163147754e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 2.39810452466887e23 * cos(theta) ** 48 - 2.5762494322157e24 * cos(theta) ** 46 + 1.29437774871031e25 * cos(theta) ** 44 - 4.04119257518138e25 * cos(theta) ** 42 + 8.78653234149285e25 * cos(theta) ** 40 - 1.4130917992504e26 * cos(theta) ** 38 + 1.74281321907549e26 * cos(theta) ** 36 - 1.68659343781499e26 * cos(theta) ** 34 + 1.29969631677776e26 * cos(theta) ** 32 - 8.04805709265629e25 * cos(theta) ** 30 + 4.02402854632814e25 * cos(theta) ** 28 - 1.62682651391662e25 * cos(theta) ** 26 + 5.30841984962752e24 * cos(theta) ** 24 - 1.39138070132687e24 * cos(theta) ** 22 + 2.90604830023967e23 * cos(theta) ** 20 - 4.78051235537261e22 * cos(theta) ** 18 + 6.09515325310008e21 * cos(theta) ** 16 - 5.89378235593884e20 * cos(theta) ** 14 + 4.19666818771858e19 * cos(theta) ** 12 - 2.11273913340523e18 * cos(theta) ** 10 + 7.0950194778534e16 * cos(theta) ** 8 - 1.45538861084172e15 * cos(theta) ** 6 + 15750958991793.5 * cos(theta) ** 4 - 67359767605.6744 * cos(theta) ** 2 + 47570457.3486401 ) * cos(5 * phi) ) # @torch.jit.script def Yl53_m6(theta, phi): return ( 1.78206659967489e-10 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.15109017184106e25 * cos(theta) ** 47 - 1.18507473881922e26 * cos(theta) ** 45 + 5.69526209432539e26 * cos(theta) ** 43 - 1.69730088157618e27 * cos(theta) ** 41 + 3.51461293659714e27 * cos(theta) ** 39 - 5.3697488371515e27 * cos(theta) ** 37 + 6.27412758867176e27 * cos(theta) ** 35 - 5.73441768857096e27 * cos(theta) ** 33 + 4.15902821368883e27 * cos(theta) ** 31 - 2.41441712779689e27 * cos(theta) ** 29 + 1.12672799297188e27 * cos(theta) ** 27 - 4.22974893618321e26 * cos(theta) ** 25 + 1.2740207639106e26 * cos(theta) ** 23 - 3.06103754291912e25 * cos(theta) ** 21 + 5.81209660047934e24 * cos(theta) ** 19 - 8.60492223967071e23 * cos(theta) ** 17 + 9.75224520496013e22 * cos(theta) ** 15 - 8.25129529831438e21 * cos(theta) ** 13 + 5.03600182526229e20 * cos(theta) ** 11 - 2.11273913340523e19 * cos(theta) ** 9 + 5.67601558228272e17 * cos(theta) ** 7 - 8.73233166505034e15 * cos(theta) ** 5 + 63003835967174.1 * cos(theta) ** 3 - 134719535211.349 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl53_m7(theta, phi): return ( 3.35582555066761e-12 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 5.41012380765297e26 * cos(theta) ** 46 - 5.3328363246865e27 * cos(theta) ** 44 + 2.44896270055992e28 * cos(theta) ** 42 - 6.95893361446234e28 * cos(theta) ** 40 + 1.37069904527288e29 * cos(theta) ** 38 - 1.98680706974606e29 * cos(theta) ** 36 + 2.19594465603512e29 * cos(theta) ** 34 - 1.89235783722842e29 * cos(theta) ** 32 + 1.28929874624354e29 * cos(theta) ** 30 - 7.00180967061097e28 * cos(theta) ** 28 + 3.04216558102408e28 * cos(theta) ** 26 - 1.0574372340458e28 * cos(theta) ** 24 + 2.93024775699439e27 * cos(theta) ** 22 - 6.42817884013015e26 * cos(theta) ** 20 + 1.10429835409107e26 * cos(theta) ** 18 - 1.46283678074402e25 * cos(theta) ** 16 + 1.46283678074402e24 * cos(theta) ** 14 - 1.07266838878087e23 * cos(theta) ** 12 + 5.53960200778852e21 * cos(theta) ** 10 - 1.90146522006471e20 * cos(theta) ** 8 + 3.9732109075979e18 * cos(theta) ** 6 - 4.36616583252517e16 * cos(theta) ** 4 + 189011507901522.0 * cos(theta) ** 2 - 134719535211.349 ) * cos(7 * phi) ) # @torch.jit.script def Yl53_m8(theta, phi): return ( 6.33513017171989e-14 * (1.0 - cos(theta) ** 2) ** 4 * ( 2.48865695152037e28 * cos(theta) ** 45 - 2.34644798286206e29 * cos(theta) ** 43 + 1.02856433423516e30 * cos(theta) ** 41 - 2.78357344578493e30 * cos(theta) ** 39 + 5.20865637203696e30 * cos(theta) ** 37 - 7.15250545108581e30 * cos(theta) ** 35 + 7.46621183051939e30 * cos(theta) ** 33 - 6.05554507913094e30 * cos(theta) ** 31 + 3.86789623873061e30 * cos(theta) ** 29 - 1.96050670777107e30 * cos(theta) ** 27 + 7.9096305106626e29 * cos(theta) ** 25 - 2.53784936170992e29 * cos(theta) ** 23 + 6.44654506538766e28 * cos(theta) ** 21 - 1.28563576802603e28 * cos(theta) ** 19 + 1.98773703736393e27 * cos(theta) ** 17 - 2.34053884919043e26 * cos(theta) ** 15 + 2.04797149304163e25 * cos(theta) ** 13 - 1.28720206653704e24 * cos(theta) ** 11 + 5.53960200778852e22 * cos(theta) ** 9 - 1.52117217605177e21 * cos(theta) ** 7 + 2.38392654455874e19 * cos(theta) ** 5 - 1.74646633301007e17 * cos(theta) ** 3 + 378023015803045.0 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl53_m9(theta, phi): return ( 1.19937071750798e-15 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1.11989562818416e30 * cos(theta) ** 44 - 1.00897263263069e31 * cos(theta) ** 42 + 4.21711377036417e31 * cos(theta) ** 40 - 1.08559364385612e32 * cos(theta) ** 38 + 1.92720285765368e32 * cos(theta) ** 36 - 2.50337690788003e32 * cos(theta) ** 34 + 2.4638499040714e32 * cos(theta) ** 32 - 1.87721897453059e32 * cos(theta) ** 30 + 1.12168990923188e32 * cos(theta) ** 28 - 5.29336811098189e31 * cos(theta) ** 26 + 1.97740762766565e31 * cos(theta) ** 24 - 5.83705353193283e30 * cos(theta) ** 22 + 1.35377446373141e30 * cos(theta) ** 20 - 2.44270795924946e29 * cos(theta) ** 18 + 3.37915296351869e28 * cos(theta) ** 16 - 3.51080827378565e27 * cos(theta) ** 14 + 2.66236294095412e26 * cos(theta) ** 12 - 1.41592227319075e25 * cos(theta) ** 10 + 4.98564180700967e23 * cos(theta) ** 8 - 1.06482052323624e22 * cos(theta) ** 6 + 1.19196327227937e20 * cos(theta) ** 4 - 5.2393989990302e17 * cos(theta) ** 2 + 378023015803045.0 ) * cos(9 * phi) ) # @torch.jit.script def Yl53_m10(theta, phi): return ( 2.27801630593366e-17 * (1.0 - cos(theta) ** 2) ** 5 * ( 4.92754076401032e31 * cos(theta) ** 43 - 4.23768505704888e32 * cos(theta) ** 41 + 1.68684550814567e33 * cos(theta) ** 39 - 4.12525584665327e33 * cos(theta) ** 37 + 6.93793028755323e33 * cos(theta) ** 35 - 8.51148148679211e33 * cos(theta) ** 33 + 7.88431969302848e33 * cos(theta) ** 31 - 5.63165692359177e33 * cos(theta) ** 29 + 3.14073174584926e33 * cos(theta) ** 27 - 1.37627570885529e33 * cos(theta) ** 25 + 4.74577830639756e32 * cos(theta) ** 23 - 1.28415177702522e32 * cos(theta) ** 21 + 2.70754892746282e31 * cos(theta) ** 19 - 4.39687432664902e30 * cos(theta) ** 17 + 5.4066447416299e29 * cos(theta) ** 15 - 4.91513158329991e28 * cos(theta) ** 13 + 3.19483552914494e27 * cos(theta) ** 11 - 1.41592227319075e26 * cos(theta) ** 9 + 3.98851344560774e24 * cos(theta) ** 7 - 6.38892313941743e22 * cos(theta) ** 5 + 4.76785308911748e20 * cos(theta) ** 3 - 1.04787979980604e18 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl53_m11(theta, phi): return ( 4.34242787311555e-19 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 2.11884252852444e33 * cos(theta) ** 42 - 1.73745087339004e34 * cos(theta) ** 40 + 6.57869748176811e34 * cos(theta) ** 38 - 1.52634466326171e35 * cos(theta) ** 36 + 2.42827560064363e35 * cos(theta) ** 34 - 2.8087888906414e35 * cos(theta) ** 32 + 2.44413910483883e35 * cos(theta) ** 30 - 1.63318050784161e35 * cos(theta) ** 28 + 8.47997571379299e34 * cos(theta) ** 26 - 3.44068927213823e34 * cos(theta) ** 24 + 1.09152901047144e34 * cos(theta) ** 22 - 2.69671873175297e33 * cos(theta) ** 20 + 5.14434296217935e32 * cos(theta) ** 18 - 7.47468635530333e31 * cos(theta) ** 16 + 8.10996711244485e30 * cos(theta) ** 14 - 6.38967105828988e29 * cos(theta) ** 12 + 3.51431908205943e28 * cos(theta) ** 10 - 1.27433004587167e27 * cos(theta) ** 8 + 2.79195941192542e25 * cos(theta) ** 6 - 3.19446156970871e23 * cos(theta) ** 4 + 1.43035592673525e21 * cos(theta) ** 2 - 1.04787979980604e18 ) * cos(11 * phi) ) # @torch.jit.script def Yl53_m12(theta, phi): return ( 8.31096187580827e-21 * (1.0 - cos(theta) ** 2) ** 6 * ( 8.89913861980265e34 * cos(theta) ** 41 - 6.94980349356016e35 * cos(theta) ** 39 + 2.49990504307188e36 * cos(theta) ** 37 - 5.49484078774216e36 * cos(theta) ** 35 + 8.25613704218834e36 * cos(theta) ** 33 - 8.98812445005247e36 * cos(theta) ** 31 + 7.33241731451649e36 * cos(theta) ** 29 - 4.57290542195652e36 * cos(theta) ** 27 + 2.20479368558618e36 * cos(theta) ** 25 - 8.25765425313175e35 * cos(theta) ** 23 + 2.40136382303717e35 * cos(theta) ** 21 - 5.39343746350593e34 * cos(theta) ** 19 + 9.25981733192284e33 * cos(theta) ** 17 - 1.19594981684853e33 * cos(theta) ** 15 + 1.13539539574228e32 * cos(theta) ** 13 - 7.66760526994786e30 * cos(theta) ** 11 + 3.51431908205943e29 * cos(theta) ** 9 - 1.01946403669734e28 * cos(theta) ** 7 + 1.67517564715525e26 * cos(theta) ** 5 - 1.27778462788349e24 * cos(theta) ** 3 + 2.86071185347049e21 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl53_m13(theta, phi): return ( 1.59767115369259e-22 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 3.64864683411908e36 * cos(theta) ** 40 - 2.71042336248846e37 * cos(theta) ** 38 + 9.24964865936597e37 * cos(theta) ** 36 - 1.92319427570976e38 * cos(theta) ** 34 + 2.72452522392215e38 * cos(theta) ** 32 - 2.78631857951626e38 * cos(theta) ** 30 + 2.12640102120978e38 * cos(theta) ** 28 - 1.23468446392826e38 * cos(theta) ** 26 + 5.51198421396545e37 * cos(theta) ** 24 - 1.8992604782203e37 * cos(theta) ** 22 + 5.04286402837805e36 * cos(theta) ** 20 - 1.02475311806613e36 * cos(theta) ** 18 + 1.57416894642688e35 * cos(theta) ** 16 - 1.7939247252728e34 * cos(theta) ** 14 + 1.47601401446496e33 * cos(theta) ** 12 - 8.43436579694264e31 * cos(theta) ** 10 + 3.16288717385349e30 * cos(theta) ** 8 - 7.13624825688136e28 * cos(theta) ** 6 + 8.37587823577625e26 * cos(theta) ** 4 - 3.83335388365046e24 * cos(theta) ** 2 + 2.86071185347049e21 ) * cos(13 * phi) ) # @torch.jit.script def Yl53_m14(theta, phi): return ( 3.08617107803759e-24 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.45945873364763e38 * cos(theta) ** 39 - 1.02996087774562e39 * cos(theta) ** 37 + 3.32987351737175e39 * cos(theta) ** 35 - 6.53886053741317e39 * cos(theta) ** 33 + 8.71848071655089e39 * cos(theta) ** 31 - 8.35895573854879e39 * cos(theta) ** 29 + 5.95392285938739e39 * cos(theta) ** 27 - 3.21017960621348e39 * cos(theta) ** 25 + 1.32287621135171e39 * cos(theta) ** 23 - 4.17837305208467e38 * cos(theta) ** 21 + 1.00857280567561e38 * cos(theta) ** 19 - 1.84455561251903e37 * cos(theta) ** 17 + 2.51867031428301e36 * cos(theta) ** 15 - 2.51149461538192e35 * cos(theta) ** 13 + 1.77121681735795e34 * cos(theta) ** 11 - 8.43436579694264e32 * cos(theta) ** 9 + 2.53030973908279e31 * cos(theta) ** 7 - 4.28174895412882e29 * cos(theta) ** 5 + 3.3503512943105e27 * cos(theta) ** 3 - 7.66670776730091e24 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl53_m15(theta, phi): return ( 5.99284764841289e-26 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 5.69188906122577e39 * cos(theta) ** 38 - 3.81085524765878e40 * cos(theta) ** 36 + 1.16545573108011e41 * cos(theta) ** 34 - 2.15782397734635e41 * cos(theta) ** 32 + 2.70272902213078e41 * cos(theta) ** 30 - 2.42409716417915e41 * cos(theta) ** 28 + 1.60755917203459e41 * cos(theta) ** 26 - 8.02544901553369e40 * cos(theta) ** 24 + 3.04261528610893e40 * cos(theta) ** 22 - 8.7745834093778e39 * cos(theta) ** 20 + 1.91628833078366e39 * cos(theta) ** 18 - 3.13574454128235e38 * cos(theta) ** 16 + 3.77800547142452e37 * cos(theta) ** 14 - 3.2649429999965e36 * cos(theta) ** 12 + 1.94833849909375e35 * cos(theta) ** 10 - 7.59092921724838e33 * cos(theta) ** 8 + 1.77121681735795e32 * cos(theta) ** 6 - 2.14087447706441e30 * cos(theta) ** 4 + 1.00510538829315e28 * cos(theta) ** 2 - 7.66670776730091e24 ) * cos(15 * phi) ) # @torch.jit.script def Yl53_m16(theta, phi): return ( 1.17035305581318e-27 * (1.0 - cos(theta) ** 2) ** 8 * ( 2.16291784326579e41 * cos(theta) ** 37 - 1.37190788915716e42 * cos(theta) ** 35 + 3.96254948567238e42 * cos(theta) ** 33 - 6.90503672750831e42 * cos(theta) ** 31 + 8.10818706639233e42 * cos(theta) ** 29 - 6.78747205970162e42 * cos(theta) ** 27 + 4.17965384728995e42 * cos(theta) ** 25 - 1.92610776372809e42 * cos(theta) ** 23 + 6.69375362943964e41 * cos(theta) ** 21 - 1.75491668187556e41 * cos(theta) ** 19 + 3.44931899541058e40 * cos(theta) ** 17 - 5.01719126605176e39 * cos(theta) ** 15 + 5.28920765999432e38 * cos(theta) ** 13 - 3.9179315999958e37 * cos(theta) ** 11 + 1.94833849909375e36 * cos(theta) ** 9 - 6.0727433737987e34 * cos(theta) ** 7 + 1.06273009041477e33 * cos(theta) ** 5 - 8.56349790825764e30 * cos(theta) ** 3 + 2.0102107765863e28 * cos(theta) ) * cos(16 * phi) ) # @torch.jit.script def Yl53_m17(theta, phi): return ( 2.29967789859005e-29 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 8.00279602008343e42 * cos(theta) ** 36 - 4.80167761205006e43 * cos(theta) ** 34 + 1.30764133027189e44 * cos(theta) ** 32 - 2.14056138552757e44 * cos(theta) ** 30 + 2.35137424925378e44 * cos(theta) ** 28 - 1.83261745611944e44 * cos(theta) ** 26 + 1.04491346182249e44 * cos(theta) ** 24 - 4.4300478565746e43 * cos(theta) ** 22 + 1.40568826218232e43 * cos(theta) ** 20 - 3.33434169556356e42 * cos(theta) ** 18 + 5.86384229219799e41 * cos(theta) ** 16 - 7.52578689907764e40 * cos(theta) ** 14 + 6.87596995799262e39 * cos(theta) ** 12 - 4.30972475999537e38 * cos(theta) ** 10 + 1.75350464918438e37 * cos(theta) ** 8 - 4.25092036165909e35 * cos(theta) ** 6 + 5.31365045207386e33 * cos(theta) ** 4 - 2.56904937247729e31 * cos(theta) ** 2 + 2.0102107765863e28 ) * cos(17 * phi) ) # @torch.jit.script def Yl53_m18(theta, phi): return ( 4.54869258300075e-31 * (1.0 - cos(theta) ** 2) ** 9 * ( 2.88100656723004e44 * cos(theta) ** 35 - 1.63257038809702e45 * cos(theta) ** 33 + 4.18445225687003e45 * cos(theta) ** 31 - 6.42168415658272e45 * cos(theta) ** 29 + 6.58384789791057e45 * cos(theta) ** 27 - 4.76480538591054e45 * cos(theta) ** 25 + 2.50779230837397e45 * cos(theta) ** 23 - 9.74610528446411e44 * cos(theta) ** 21 + 2.81137652436465e44 * cos(theta) ** 19 - 6.00181505201442e43 * cos(theta) ** 17 + 9.38214766751679e42 * cos(theta) ** 15 - 1.05361016587087e42 * cos(theta) ** 13 + 8.25116394959114e40 * cos(theta) ** 11 - 4.30972475999538e39 * cos(theta) ** 9 + 1.4028037193475e38 * cos(theta) ** 7 - 2.55055221699545e36 * cos(theta) ** 5 + 2.12546018082955e34 * cos(theta) ** 3 - 5.13809874495458e31 * cos(theta) ) * cos(18 * phi) ) # @torch.jit.script def Yl53_m19(theta, phi): return ( 9.0612125171161e-33 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.00835229853051e46 * cos(theta) ** 34 - 5.38748228072017e46 * cos(theta) ** 32 + 1.29718019962971e47 * cos(theta) ** 30 - 1.86228840540899e47 * cos(theta) ** 28 + 1.77763893243585e47 * cos(theta) ** 26 - 1.19120134647763e47 * cos(theta) ** 24 + 5.76792230926012e46 * cos(theta) ** 22 - 2.04668210973746e46 * cos(theta) ** 20 + 5.34161539629283e45 * cos(theta) ** 18 - 1.02030855884245e45 * cos(theta) ** 16 + 1.40732215012752e44 * cos(theta) ** 14 - 1.36969321563213e43 * cos(theta) ** 12 + 9.07628034455026e41 * cos(theta) ** 10 - 3.87875228399584e40 * cos(theta) ** 8 + 9.8196260354325e38 * cos(theta) ** 6 - 1.27527610849773e37 * cos(theta) ** 4 + 6.37638054248864e34 * cos(theta) ** 2 - 5.13809874495458e31 ) * cos(19 * phi) ) # @torch.jit.script def Yl53_m20(theta, phi): return ( 1.81880201915016e-34 * (1.0 - cos(theta) ** 2) ** 10 * ( 3.42839781500374e47 * cos(theta) ** 33 - 1.72399432983045e48 * cos(theta) ** 31 + 3.89154059888913e48 * cos(theta) ** 29 - 5.21440753514517e48 * cos(theta) ** 27 + 4.62186122433322e48 * cos(theta) ** 25 - 2.85888323154632e48 * cos(theta) ** 23 + 1.26894290803723e48 * cos(theta) ** 21 - 4.09336421947493e47 * cos(theta) ** 19 + 9.61490771332709e46 * cos(theta) ** 17 - 1.63249369414792e46 * cos(theta) ** 15 + 1.97025101017853e45 * cos(theta) ** 13 - 1.64363185875856e44 * cos(theta) ** 11 + 9.07628034455026e42 * cos(theta) ** 9 - 3.10300182719667e41 * cos(theta) ** 7 + 5.8917756212595e39 * cos(theta) ** 5 - 5.10110443399091e37 * cos(theta) ** 3 + 1.27527610849773e35 * cos(theta) ) * cos(20 * phi) ) # @torch.jit.script def Yl53_m21(theta, phi): return ( 3.68054894824963e-36 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.13137127895124e49 * cos(theta) ** 32 - 5.34438242247441e49 * cos(theta) ** 30 + 1.12854677367785e50 * cos(theta) ** 28 - 1.4078900344892e50 * cos(theta) ** 26 + 1.15546530608331e50 * cos(theta) ** 24 - 6.57543143255654e49 * cos(theta) ** 22 + 2.66478010687818e49 * cos(theta) ** 20 - 7.77739201700236e48 * cos(theta) ** 18 + 1.63453431126561e48 * cos(theta) ** 16 - 2.44874054122188e47 * cos(theta) ** 14 + 2.56132631323208e46 * cos(theta) ** 12 - 1.80799504463441e45 * cos(theta) ** 10 + 8.16865231009523e43 * cos(theta) ** 8 - 2.17210127903767e42 * cos(theta) ** 6 + 2.94588781062975e40 * cos(theta) ** 4 - 1.53033133019727e38 * cos(theta) ** 2 + 1.27527610849773e35 ) * cos(21 * phi) ) # @torch.jit.script def Yl53_m22(theta, phi): return ( 7.5128890804574e-38 * (1.0 - cos(theta) ** 2) ** 11 * ( 3.62038809264395e50 * cos(theta) ** 31 - 1.60331472674232e51 * cos(theta) ** 29 + 3.15993096629797e51 * cos(theta) ** 27 - 3.66051408967191e51 * cos(theta) ** 25 + 2.77311673459993e51 * cos(theta) ** 23 - 1.44659491516244e51 * cos(theta) ** 21 + 5.32956021375635e50 * cos(theta) ** 19 - 1.39993056306042e50 * cos(theta) ** 17 + 2.61525489802497e49 * cos(theta) ** 15 - 3.42823675771063e48 * cos(theta) ** 13 + 3.0735915758785e47 * cos(theta) ** 11 - 1.80799504463441e46 * cos(theta) ** 9 + 6.53492184807619e44 * cos(theta) ** 7 - 1.3032607674226e43 * cos(theta) ** 5 + 1.1783551242519e41 * cos(theta) ** 3 - 3.06066266039455e38 * cos(theta) ) * cos(22 * phi) ) # @torch.jit.script def Yl53_m23(theta, phi): return ( 1.54781600797236e-39 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.12232030871963e52 * cos(theta) ** 30 - 4.64961270755273e52 * cos(theta) ** 28 + 8.53181360900453e52 * cos(theta) ** 26 - 9.15128522417978e52 * cos(theta) ** 24 + 6.37816848957985e52 * cos(theta) ** 22 - 3.03784932184112e52 * cos(theta) ** 20 + 1.01261644061371e52 * cos(theta) ** 18 - 2.37988195720272e51 * cos(theta) ** 16 + 3.92288234703745e50 * cos(theta) ** 14 - 4.45670778502382e49 * cos(theta) ** 12 + 3.38095073346635e48 * cos(theta) ** 10 - 1.62719554017097e47 * cos(theta) ** 8 + 4.57444529365333e45 * cos(theta) ** 6 - 6.51630383711301e43 * cos(theta) ** 4 + 3.5350653727557e41 * cos(theta) ** 2 - 3.06066266039455e38 ) * cos(23 * phi) ) # @torch.jit.script def Yl53_m24(theta, phi): return ( 3.22042614650432e-41 * (1.0 - cos(theta) ** 2) ** 12 * ( 3.36696092615888e53 * cos(theta) ** 29 - 1.30189155811477e54 * cos(theta) ** 27 + 2.21827153834118e54 * cos(theta) ** 25 - 2.19630845380315e54 * cos(theta) ** 23 + 1.40319706770757e54 * cos(theta) ** 21 - 6.07569864368224e53 * cos(theta) ** 19 + 1.82270959310467e53 * cos(theta) ** 17 - 3.80781113152436e52 * cos(theta) ** 15 + 5.49203528585244e51 * cos(theta) ** 13 - 5.34804934202859e50 * cos(theta) ** 11 + 3.38095073346635e49 * cos(theta) ** 9 - 1.30175643213678e48 * cos(theta) ** 7 + 2.744667176192e46 * cos(theta) ** 5 - 2.6065215348452e44 * cos(theta) ** 3 + 7.0701307455114e41 * cos(theta) ) * cos(24 * phi) ) # @torch.jit.script def Yl53_m25(theta, phi): return ( 6.77122185938431e-43 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 9.76418668586074e54 * cos(theta) ** 28 - 3.51510720690987e55 * cos(theta) ** 26 + 5.54567884585295e55 * cos(theta) ** 24 - 5.05150944374724e55 * cos(theta) ** 22 + 2.94671384218589e55 * cos(theta) ** 20 - 1.15438274229963e55 * cos(theta) ** 18 + 3.09860630827794e54 * cos(theta) ** 16 - 5.71171669728653e53 * cos(theta) ** 14 + 7.13964587160817e52 * cos(theta) ** 12 - 5.88285427623145e51 * cos(theta) ** 10 + 3.04285566011971e50 * cos(theta) ** 8 - 9.11229502495744e48 * cos(theta) ** 6 + 1.372333588096e47 * cos(theta) ** 4 - 7.81956460453561e44 * cos(theta) ** 2 + 7.0701307455114e41 ) * cos(25 * phi) ) # @torch.jit.script def Yl53_m26(theta, phi): return ( 1.43970821381048e-44 * (1.0 - cos(theta) ** 2) ** 13 * ( 2.73397227204101e56 * cos(theta) ** 27 - 9.13927873796566e56 * cos(theta) ** 25 + 1.33096292300471e57 * cos(theta) ** 23 - 1.11133207762439e57 * cos(theta) ** 21 + 5.89342768437178e56 * cos(theta) ** 19 - 2.07788893613933e56 * cos(theta) ** 17 + 4.95777009324471e55 * cos(theta) ** 15 - 7.99640337620115e54 * cos(theta) ** 13 + 8.5675750459298e53 * cos(theta) ** 11 - 5.88285427623145e52 * cos(theta) ** 9 + 2.43428452809577e51 * cos(theta) ** 7 - 5.46737701497446e49 * cos(theta) ** 5 + 5.489334352384e47 * cos(theta) ** 3 - 1.56391292090712e45 * cos(theta) ) * cos(26 * phi) ) # @torch.jit.script def Yl53_m27(theta, phi): return ( 3.0977588530478e-46 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 7.38172513451072e57 * cos(theta) ** 26 - 2.28481968449141e58 * cos(theta) ** 24 + 3.06121472291083e58 * cos(theta) ** 22 - 2.33379736301122e58 * cos(theta) ** 20 + 1.11975126003064e58 * cos(theta) ** 18 - 3.53241119143686e57 * cos(theta) ** 16 + 7.43665513986707e56 * cos(theta) ** 14 - 1.03953243890615e56 * cos(theta) ** 12 + 9.42433255052278e54 * cos(theta) ** 10 - 5.2945688486083e53 * cos(theta) ** 8 + 1.70399916966704e52 * cos(theta) ** 6 - 2.73368850748723e50 * cos(theta) ** 4 + 1.6468003057152e48 * cos(theta) ** 2 - 1.56391292090712e45 ) * cos(27 * phi) ) # @torch.jit.script def Yl53_m28(theta, phi): return ( 6.75022770944253e-48 * (1.0 - cos(theta) ** 2) ** 14 * ( 1.91924853497279e59 * cos(theta) ** 25 - 5.48356724277939e59 * cos(theta) ** 23 + 6.73467239040382e59 * cos(theta) ** 21 - 4.66759472602245e59 * cos(theta) ** 19 + 2.01555226805515e59 * cos(theta) ** 17 - 5.65185790629897e58 * cos(theta) ** 15 + 1.04113171958139e58 * cos(theta) ** 13 - 1.24743892668738e57 * cos(theta) ** 11 + 9.42433255052278e55 * cos(theta) ** 9 - 4.23565507888664e54 * cos(theta) ** 7 + 1.02239950180022e53 * cos(theta) ** 5 - 1.09347540299489e51 * cos(theta) ** 3 + 3.2936006114304e48 * cos(theta) ) * cos(28 * phi) ) # @torch.jit.script def Yl53_m29(theta, phi): return ( 1.49087589461291e-49 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 4.79812133743197e60 * cos(theta) ** 24 - 1.26122046583926e61 * cos(theta) ** 22 + 1.4142812019848e61 * cos(theta) ** 20 - 8.86842997944265e60 * cos(theta) ** 18 + 3.42643885569375e60 * cos(theta) ** 16 - 8.47778685944846e59 * cos(theta) ** 14 + 1.35347123545581e59 * cos(theta) ** 12 - 1.37218281935612e58 * cos(theta) ** 10 + 8.4818992954705e56 * cos(theta) ** 8 - 2.96495855522065e55 * cos(theta) ** 6 + 5.11199750900112e53 * cos(theta) ** 4 - 3.28042620898468e51 * cos(theta) ** 2 + 3.2936006114304e48 ) * cos(29 * phi) ) # @torch.jit.script def Yl53_m30(theta, phi): return ( 3.34038731517029e-51 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.15154912098367e62 * cos(theta) ** 23 - 2.77468502484637e62 * cos(theta) ** 21 + 2.8285624039696e62 * cos(theta) ** 19 - 1.59631739629968e62 * cos(theta) ** 17 + 5.48230216911e61 * cos(theta) ** 15 - 1.18689016032278e61 * cos(theta) ** 13 + 1.62416548254697e60 * cos(theta) ** 11 - 1.37218281935612e59 * cos(theta) ** 9 + 6.7855194363764e57 * cos(theta) ** 7 - 1.77897513313239e56 * cos(theta) ** 5 + 2.04479900360045e54 * cos(theta) ** 3 - 6.56085241796935e51 * cos(theta) ) * cos(30 * phi) ) # @torch.jit.script def Yl53_m31(theta, phi): return ( 7.59964428425149e-53 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 2.64856297826245e63 * cos(theta) ** 22 - 5.82683855217738e63 * cos(theta) ** 20 + 5.37426856754225e63 * cos(theta) ** 18 - 2.71373957370945e63 * cos(theta) ** 16 + 8.223453253665e62 * cos(theta) ** 14 - 1.54295720841962e62 * cos(theta) ** 12 + 1.78658203080166e61 * cos(theta) ** 10 - 1.23496453742051e60 * cos(theta) ** 8 + 4.74986360546348e58 * cos(theta) ** 6 - 8.89487566566195e56 * cos(theta) ** 4 + 6.13439701080135e54 * cos(theta) ** 2 - 6.56085241796935e51 ) * cos(31 * phi) ) # @torch.jit.script def Yl53_m32(theta, phi): return ( 1.75740744345409e-54 * (1.0 - cos(theta) ** 2) ** 16 * ( 5.82683855217738e64 * cos(theta) ** 21 - 1.16536771043548e65 * cos(theta) ** 19 + 9.67368342157604e64 * cos(theta) ** 17 - 4.34198331793512e64 * cos(theta) ** 15 + 1.1512834555131e64 * cos(theta) ** 13 - 1.85154865010354e63 * cos(theta) ** 11 + 1.78658203080166e62 * cos(theta) ** 9 - 9.87971629936404e60 * cos(theta) ** 7 + 2.84991816327809e59 * cos(theta) ** 5 - 3.55795026626478e57 * cos(theta) ** 3 + 1.22687940216027e55 * cos(theta) ) * cos(32 * phi) ) # @torch.jit.script def Yl53_m33(theta, phi): return ( 4.13536253170053e-56 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 1.22363609595725e66 * cos(theta) ** 20 - 2.21419864982741e66 * cos(theta) ** 18 + 1.64452618166793e66 * cos(theta) ** 16 - 6.51297497690268e65 * cos(theta) ** 14 + 1.49666849216703e65 * cos(theta) ** 12 - 2.0367035151139e64 * cos(theta) ** 10 + 1.6079238277215e63 * cos(theta) ** 8 - 6.91580140955483e61 * cos(theta) ** 6 + 1.42495908163904e60 * cos(theta) ** 4 - 1.06738507987943e58 * cos(theta) ** 2 + 1.22687940216027e55 ) * cos(33 * phi) ) # @torch.jit.script def Yl53_m34(theta, phi): return ( 9.91377286144046e-58 * (1.0 - cos(theta) ** 2) ** 17 * ( 2.4472721919145e67 * cos(theta) ** 19 - 3.98555756968933e67 * cos(theta) ** 17 + 2.63124189066868e67 * cos(theta) ** 15 - 9.11816496766376e66 * cos(theta) ** 13 + 1.79600219060044e66 * cos(theta) ** 11 - 2.0367035151139e65 * cos(theta) ** 9 + 1.2863390621772e64 * cos(theta) ** 7 - 4.1494808457329e62 * cos(theta) ** 5 + 5.69983632655618e60 * cos(theta) ** 3 - 2.13477015975887e58 * cos(theta) ) * cos(34 * phi) ) # @torch.jit.script def Yl53_m35(theta, phi): return ( 2.42449240418619e-59 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 4.64981716463755e68 * cos(theta) ** 18 - 6.77544786847186e68 * cos(theta) ** 16 + 3.94686283600303e68 * cos(theta) ** 14 - 1.18536144579629e68 * cos(theta) ** 12 + 1.97560240966048e67 * cos(theta) ** 10 - 1.83303316360251e66 * cos(theta) ** 8 + 9.00437343524039e64 * cos(theta) ** 6 - 2.07474042286645e63 * cos(theta) ** 4 + 1.70995089796685e61 * cos(theta) ** 2 - 2.13477015975887e58 ) * cos(35 * phi) ) # @torch.jit.script def Yl53_m36(theta, phi): return ( 6.05744628889105e-61 * (1.0 - cos(theta) ** 2) ** 18 * ( 8.36967089634759e69 * cos(theta) ** 17 - 1.0840716589555e70 * cos(theta) ** 15 + 5.52560797040424e69 * cos(theta) ** 13 - 1.42243373495555e69 * cos(theta) ** 11 + 1.97560240966048e68 * cos(theta) ** 9 - 1.46642653088201e67 * cos(theta) ** 7 + 5.40262406114423e65 * cos(theta) ** 5 - 8.29896169146579e63 * cos(theta) ** 3 + 3.41990179593371e61 * cos(theta) ) * cos(36 * phi) ) # @torch.jit.script def Yl53_m37(theta, phi): return ( 1.54861640846762e-62 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 1.42284405237909e71 * cos(theta) ** 16 - 1.62610748843325e71 * cos(theta) ** 14 + 7.18329036152551e70 * cos(theta) ** 12 - 1.5646771084511e70 * cos(theta) ** 10 + 1.77804216869443e69 * cos(theta) ** 8 - 1.0264985716174e68 * cos(theta) ** 6 + 2.70131203057212e66 * cos(theta) ** 4 - 2.48968850743974e64 * cos(theta) ** 2 + 3.41990179593371e61 ) * cos(37 * phi) ) # @torch.jit.script def Yl53_m38(theta, phi): return ( 4.05847774723841e-64 * (1.0 - cos(theta) ** 2) ** 19 * ( 2.27655048380654e72 * cos(theta) ** 15 - 2.27655048380654e72 * cos(theta) ** 13 + 8.61994843383061e71 * cos(theta) ** 11 - 1.5646771084511e71 * cos(theta) ** 9 + 1.42243373495555e70 * cos(theta) ** 7 - 6.15899142970443e68 * cos(theta) ** 5 + 1.08052481222885e67 * cos(theta) ** 3 - 4.97937701487948e64 * cos(theta) ) * cos(38 * phi) ) # @torch.jit.script def Yl53_m39(theta, phi): return ( 1.09250548450948e-65 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 3.41482572570982e73 * cos(theta) ** 14 - 2.95951562894851e73 * cos(theta) ** 12 + 9.48194327721367e72 * cos(theta) ** 10 - 1.40820939760599e72 * cos(theta) ** 8 + 9.95703614468882e70 * cos(theta) ** 6 - 3.07949571485221e69 * cos(theta) ** 4 + 3.24157443668654e67 * cos(theta) ** 2 - 4.97937701487948e64 ) * cos(39 * phi) ) # @torch.jit.script def Yl53_m40(theta, phi): return ( 3.02773689987996e-67 * (1.0 - cos(theta) ** 2) ** 20 * ( 4.78075601599374e74 * cos(theta) ** 13 - 3.55141875473821e74 * cos(theta) ** 11 + 9.48194327721367e73 * cos(theta) ** 9 - 1.12656751808479e73 * cos(theta) ** 7 + 5.97422168681329e71 * cos(theta) ** 5 - 1.23179828594089e70 * cos(theta) ** 3 + 6.48314887337308e67 * cos(theta) ) * cos(40 * phi) ) # @torch.jit.script def Yl53_m41(theta, phi): return ( 8.66128901804633e-69 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 6.21498282079187e75 * cos(theta) ** 12 - 3.90656063021203e75 * cos(theta) ** 10 + 8.5337489494923e74 * cos(theta) ** 8 - 7.88597262659355e73 * cos(theta) ** 6 + 2.98711084340665e72 * cos(theta) ** 4 - 3.69539485782266e70 * cos(theta) ** 2 + 6.48314887337308e67 ) * cos(41 * phi) ) # @torch.jit.script def Yl53_m42(theta, phi): return ( 2.56525241489345e-70 * (1.0 - cos(theta) ** 2) ** 21 * ( 7.45797938495024e76 * cos(theta) ** 11 - 3.90656063021203e76 * cos(theta) ** 9 + 6.82699915959384e75 * cos(theta) ** 7 - 4.73158357595613e74 * cos(theta) ** 5 + 1.19484433736266e73 * cos(theta) ** 3 - 7.39078971564531e70 * cos(theta) ) * cos(42 * phi) ) # @torch.jit.script def Yl53_m43(theta, phi): return ( 7.89401861218921e-72 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 8.20377732344527e77 * cos(theta) ** 10 - 3.51590456719083e77 * cos(theta) ** 8 + 4.77889941171569e76 * cos(theta) ** 6 - 2.36579178797806e75 * cos(theta) ** 4 + 3.58453301208798e73 * cos(theta) ** 2 - 7.39078971564531e70 ) * cos(43 * phi) ) # @torch.jit.script def Yl53_m44(theta, phi): return ( 2.53461662343494e-73 * (1.0 - cos(theta) ** 2) ** 22 * ( 8.20377732344527e78 * cos(theta) ** 9 - 2.81272365375266e78 * cos(theta) ** 7 + 2.86733964702941e77 * cos(theta) ** 5 - 9.46316715191225e75 * cos(theta) ** 3 + 7.16906602417595e73 * cos(theta) ) * cos(44 * phi) ) # @torch.jit.script def Yl53_m45(theta, phi): return ( 8.5344981054238e-75 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 7.38339959110074e79 * cos(theta) ** 8 - 1.96890655762686e79 * cos(theta) ** 6 + 1.43366982351471e78 * cos(theta) ** 4 - 2.83895014557368e76 * cos(theta) ** 2 + 7.16906602417595e73 ) * cos(45 * phi) ) # @torch.jit.script def Yl53_m46(theta, phi): return ( 3.03260184968659e-76 * (1.0 - cos(theta) ** 2) ** 23 * ( 5.90671967288059e80 * cos(theta) ** 7 - 1.18134393457612e80 * cos(theta) ** 5 + 5.73467929405883e78 * cos(theta) ** 3 - 5.67790029114735e76 * cos(theta) ) * cos(46 * phi) ) # @torch.jit.script def Yl53_m47(theta, phi): return ( 1.1462157599636e-77 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 4.13470377101641e81 * cos(theta) ** 6 - 5.90671967288059e80 * cos(theta) ** 4 + 1.72040378821765e79 * cos(theta) ** 2 - 5.67790029114735e76 ) * cos(47 * phi) ) # @torch.jit.script def Yl53_m48(theta, phi): return ( 4.65618324195425e-79 * (1.0 - cos(theta) ** 2) ** 24 * ( 2.48082226260985e82 * cos(theta) ** 5 - 2.36268786915224e81 * cos(theta) ** 3 + 3.4408075764353e79 * cos(theta) ) * cos(48 * phi) ) # @torch.jit.script def Yl53_m49(theta, phi): return ( 2.06179259443851e-80 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.24041113130492e83 * cos(theta) ** 4 - 7.08806360745671e81 * cos(theta) ** 2 + 3.4408075764353e79 ) * cos(49 * phi) ) # @torch.jit.script def Yl53_m50(theta, phi): return ( 1.01577230440129e-81 * (1.0 - cos(theta) ** 2) ** 25 * (4.9616445252197e83 * cos(theta) ** 3 - 1.41761272149134e82 * cos(theta)) * cos(50 * phi) ) # @torch.jit.script def Yl53_m51(theta, phi): return ( 5.75067826096859e-83 * (1.0 - cos(theta) ** 2) ** 25.5 * (1.48849335756591e84 * cos(theta) ** 2 - 1.41761272149134e82) * cos(51 * phi) ) # @torch.jit.script def Yl53_m52(theta, phi): return 11.8137103780719 * (1.0 - cos(theta) ** 2) ** 26 * cos(52 * phi) * cos(theta) # @torch.jit.script def Yl53_m53(theta, phi): return 1.14744898722045 * (1.0 - cos(theta) ** 2) ** 26.5 * cos(53 * phi) # @torch.jit.script def Yl54_m_minus_54(theta, phi): return 1.15274901074596 * (1.0 - cos(theta) ** 2) ** 27 * sin(54 * phi) # @torch.jit.script def Yl54_m_minus_53(theta, phi): return ( 11.9797191299205 * (1.0 - cos(theta) ** 2) ** 26.5 * sin(53 * phi) * cos(theta) ) # @torch.jit.script def Yl54_m_minus_52(theta, phi): return ( 5.50164860682572e-85 * (1.0 - cos(theta) ** 2) ** 26 * (1.59268789259552e86 * cos(theta) ** 2 - 1.48849335756591e84) * sin(52 * phi) ) # @torch.jit.script def Yl54_m_minus_51(theta, phi): return ( 9.81084486217675e-84 * (1.0 - cos(theta) ** 2) ** 25.5 * (5.30895964198508e85 * cos(theta) ** 3 - 1.48849335756591e84 * cos(theta)) * sin(51 * phi) ) # @torch.jit.script def Yl54_m_minus_50(theta, phi): return ( 2.01062488550386e-82 * (1.0 - cos(theta) ** 2) ** 25 * ( 1.32723991049627e85 * cos(theta) ** 4 - 7.44246678782954e83 * cos(theta) ** 2 + 3.54403180372835e81 ) * sin(50 * phi) ) # @torch.jit.script def Yl54_m_minus_49(theta, phi): return ( 4.58493016708853e-81 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 2.65447982099254e84 * cos(theta) ** 5 - 2.48082226260985e83 * cos(theta) ** 3 + 3.54403180372835e81 * cos(theta) ) * sin(49 * phi) ) # @torch.jit.script def Yl54_m_minus_48(theta, phi): return ( 1.13979556525346e-79 * (1.0 - cos(theta) ** 2) ** 24 * ( 4.42413303498756e83 * cos(theta) ** 6 - 6.20205565652462e82 * cos(theta) ** 4 + 1.77201590186418e81 * cos(theta) ** 2 - 5.73467929405883e78 ) * sin(48 * phi) ) # @torch.jit.script def Yl54_m_minus_47(theta, phi): return ( 3.04562247566571e-78 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 6.32019004998223e82 * cos(theta) ** 7 - 1.24041113130492e82 * cos(theta) ** 5 + 5.90671967288059e80 * cos(theta) ** 3 - 5.73467929405883e78 * cos(theta) ) * sin(47 * phi) ) # @torch.jit.script def Yl54_m_minus_46(theta, phi): return ( 8.6572856840573e-77 * (1.0 - cos(theta) ** 2) ** 23 * ( 7.90023756247779e81 * cos(theta) ** 8 - 2.06735188550821e81 * cos(theta) ** 6 + 1.47667991822015e80 * cos(theta) ** 4 - 2.86733964702941e78 * cos(theta) ** 2 + 7.09737536393419e75 ) * sin(46 * phi) ) # @torch.jit.script def Yl54_m_minus_45(theta, phi): return ( 2.59718570521719e-75 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 8.77804173608644e80 * cos(theta) ** 9 - 2.9533598364403e80 * cos(theta) ** 7 + 2.9533598364403e79 * cos(theta) ** 5 - 9.55779882343138e77 * cos(theta) ** 3 + 7.09737536393419e75 * cos(theta) ) * sin(45 * phi) ) # @torch.jit.script def Yl54_m_minus_44(theta, phi): return ( 8.17185404391848e-74 * (1.0 - cos(theta) ** 2) ** 22 * ( 8.77804173608644e79 * cos(theta) ** 10 - 3.69169979555037e79 * cos(theta) ** 8 + 4.92226639406716e78 * cos(theta) ** 6 - 2.38944970585784e77 * cos(theta) ** 4 + 3.5486876819671e75 * cos(theta) ** 2 - 7.16906602417595e72 ) * sin(44 * phi) ) # @torch.jit.script def Yl54_m_minus_43(theta, phi): return ( 2.68305750962004e-72 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 7.98003794189676e78 * cos(theta) ** 11 - 4.10188866172263e78 * cos(theta) ** 9 + 7.03180913438166e77 * cos(theta) ** 7 - 4.77889941171569e76 * cos(theta) ** 5 + 1.18289589398903e75 * cos(theta) ** 3 - 7.16906602417595e72 * cos(theta) ) * sin(43 * phi) ) # @torch.jit.script def Yl54_m_minus_42(theta, phi): return ( 9.15390649193927e-71 * (1.0 - cos(theta) ** 2) ** 21 * ( 6.6500316182473e77 * cos(theta) ** 12 - 4.10188866172263e77 * cos(theta) ** 10 + 8.78976141797707e76 * cos(theta) ** 8 - 7.96483235285948e75 * cos(theta) ** 6 + 2.95723973497258e74 * cos(theta) ** 4 - 3.58453301208798e72 * cos(theta) ** 2 + 6.15899142970443e69 ) * sin(42 * phi) ) # @torch.jit.script def Yl54_m_minus_41(theta, phi): return ( 3.23380452518134e-69 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 5.11540893711331e76 * cos(theta) ** 13 - 3.72898969247512e76 * cos(theta) ** 11 + 9.76640157553008e75 * cos(theta) ** 9 - 1.13783319326564e75 * cos(theta) ** 7 + 5.91447946994516e73 * cos(theta) ** 5 - 1.19484433736266e72 * cos(theta) ** 3 + 6.15899142970443e69 * cos(theta) ) * sin(41 * phi) ) # @torch.jit.script def Yl54_m_minus_40(theta, phi): return ( 1.1793415099292e-67 * (1.0 - cos(theta) ** 2) ** 20 * ( 3.65386352650951e75 * cos(theta) ** 14 - 3.10749141039593e75 * cos(theta) ** 12 + 9.76640157553008e74 * cos(theta) ** 10 - 1.42229149158205e74 * cos(theta) ** 8 + 9.85746578324193e72 * cos(theta) ** 6 - 2.98711084340665e71 * cos(theta) ** 4 + 3.07949571485221e69 * cos(theta) ** 2 - 4.63082062383791e66 ) * sin(40 * phi) ) # @torch.jit.script def Yl54_m_minus_39(theta, phi): return ( 4.42842344387858e-66 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 2.435909017673e74 * cos(theta) ** 15 - 2.39037800799687e74 * cos(theta) ** 13 + 8.87854688684553e73 * cos(theta) ** 11 - 1.58032387953561e73 * cos(theta) ** 9 + 1.40820939760599e72 * cos(theta) ** 7 - 5.97422168681329e70 * cos(theta) ** 5 + 1.0264985716174e69 * cos(theta) ** 3 - 4.63082062383791e66 * cos(theta) ) * sin(39 * phi) ) # @torch.jit.script def Yl54_m_minus_38(theta, phi): return ( 1.70824676458235e-64 * (1.0 - cos(theta) ** 2) ** 19 * ( 1.52244313604563e73 * cos(theta) ** 16 - 1.70741286285491e73 * cos(theta) ** 14 + 7.39878907237127e72 * cos(theta) ** 12 - 1.58032387953561e72 * cos(theta) ** 10 + 1.76026174700749e71 * cos(theta) ** 8 - 9.95703614468882e69 * cos(theta) ** 6 + 2.56624642904351e68 * cos(theta) ** 4 - 2.31541031191896e66 * cos(theta) ** 2 + 3.11211063429967e63 ) * sin(38 * phi) ) # @torch.jit.script def Yl54_m_minus_37(theta, phi): return ( 6.75567861995838e-63 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 8.95554785909192e71 * cos(theta) ** 17 - 1.13827524190327e72 * cos(theta) ** 15 + 5.69137620951636e71 * cos(theta) ** 13 - 1.4366580723051e71 * cos(theta) ** 11 + 1.95584638556388e70 * cos(theta) ** 9 - 1.42243373495555e69 * cos(theta) ** 7 + 5.13249285808702e67 * cos(theta) ** 5 - 7.71803437306319e65 * cos(theta) ** 3 + 3.11211063429967e63 * cos(theta) ) * sin(37 * phi) ) # @torch.jit.script def Yl54_m_minus_36(theta, phi): return ( 2.73417261970188e-61 * (1.0 - cos(theta) ** 2) ** 18 * ( 4.97530436616218e70 * cos(theta) ** 18 - 7.11422026189545e70 * cos(theta) ** 16 + 4.06526872108312e70 * cos(theta) ** 14 - 1.19721506025425e70 * cos(theta) ** 12 + 1.95584638556388e69 * cos(theta) ** 10 - 1.77804216869443e68 * cos(theta) ** 8 + 8.55415476347837e66 * cos(theta) ** 6 - 1.9295085932658e65 * cos(theta) ** 4 + 1.55605531714984e63 * cos(theta) ** 2 - 1.89994544218539e60 ) * sin(36 * phi) ) # @torch.jit.script def Yl54_m_minus_35(theta, phi): return ( 1.13063906059803e-59 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 2.61858124534852e69 * cos(theta) ** 19 - 4.1848354481738e69 * cos(theta) ** 17 + 2.71017914738874e69 * cos(theta) ** 15 - 9.20934661734039e68 * cos(theta) ** 13 + 1.77804216869443e68 * cos(theta) ** 11 - 1.97560240966048e67 * cos(theta) ** 9 + 1.22202210906834e66 * cos(theta) ** 7 - 3.85901718653159e64 * cos(theta) ** 5 + 5.18685105716612e62 * cos(theta) ** 3 - 1.89994544218539e60 * cos(theta) ) * sin(35 * phi) ) # @torch.jit.script def Yl54_m_minus_34(theta, phi): return ( 4.77017142241554e-58 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.30929062267426e68 * cos(theta) ** 20 - 2.32490858231878e68 * cos(theta) ** 18 + 1.69386196711797e68 * cos(theta) ** 16 - 6.57810472667171e67 * cos(theta) ** 14 + 1.48170180724536e67 * cos(theta) ** 12 - 1.97560240966048e66 * cos(theta) ** 10 + 1.52752763633542e65 * cos(theta) ** 8 - 6.43169531088599e63 * cos(theta) ** 6 + 1.29671276429153e62 * cos(theta) ** 4 - 9.49972721092696e59 * cos(theta) ** 2 + 1.06738507987943e57 ) * sin(34 * phi) ) # @torch.jit.script def Yl54_m_minus_33(theta, phi): return ( 2.05061896552667e-56 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 6.2347172508298e66 * cos(theta) ** 21 - 1.22363609595725e67 * cos(theta) ** 19 + 9.96389392422332e66 * cos(theta) ** 17 - 4.38540315111447e66 * cos(theta) ** 15 + 1.13977062095797e66 * cos(theta) ** 13 - 1.79600219060044e65 * cos(theta) ** 11 + 1.69725292926158e64 * cos(theta) ** 9 - 9.18813615840856e62 * cos(theta) ** 7 + 2.59342552858306e61 * cos(theta) ** 5 - 3.16657573697565e59 * cos(theta) ** 3 + 1.06738507987943e57 * cos(theta) ) * sin(33 * phi) ) # @torch.jit.script def Yl54_m_minus_32(theta, phi): return ( 8.97131150020023e-55 * (1.0 - cos(theta) ** 2) ** 16 * ( 2.83396238674082e65 * cos(theta) ** 22 - 6.11818047978625e65 * cos(theta) ** 20 + 5.53549662456851e65 * cos(theta) ** 18 - 2.74087696944655e65 * cos(theta) ** 16 + 8.14121872112835e64 * cos(theta) ** 14 - 1.49666849216703e64 * cos(theta) ** 12 + 1.69725292926158e63 * cos(theta) ** 10 - 1.14851701980107e62 * cos(theta) ** 8 + 4.32237588097177e60 * cos(theta) ** 6 - 7.91643934243914e58 * cos(theta) ** 4 + 5.33692539939717e56 * cos(theta) ** 2 - 5.57672455527395e53 ) * sin(32 * phi) ) # @torch.jit.script def Yl54_m_minus_31(theta, phi): return ( 3.98996494478974e-53 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 1.23215755945253e64 * cos(theta) ** 23 - 2.91341927608869e64 * cos(theta) ** 21 + 2.91341927608869e64 * cos(theta) ** 19 - 1.61228057026267e64 * cos(theta) ** 17 + 5.4274791474189e63 * cos(theta) ** 15 - 1.1512834555131e63 * cos(theta) ** 13 + 1.54295720841962e62 * cos(theta) ** 11 - 1.27613002200119e61 * cos(theta) ** 9 + 6.17482268710253e59 * cos(theta) ** 7 - 1.58328786848783e58 * cos(theta) ** 5 + 1.77897513313239e56 * cos(theta) ** 3 - 5.57672455527395e53 * cos(theta) ) * sin(31 * phi) ) # @torch.jit.script def Yl54_m_minus_30(theta, phi): return ( 1.80212189742337e-51 * (1.0 - cos(theta) ** 2) ** 15 * ( 5.13398983105221e62 * cos(theta) ** 24 - 1.32428148913122e63 * cos(theta) ** 22 + 1.45670963804435e63 * cos(theta) ** 20 - 8.95711427923708e62 * cos(theta) ** 18 + 3.39217446713681e62 * cos(theta) ** 16 - 8.223453253665e61 * cos(theta) ** 14 + 1.28579767368302e61 * cos(theta) ** 12 - 1.27613002200119e60 * cos(theta) ** 10 + 7.71852835887816e58 * cos(theta) ** 8 - 2.63881311414638e57 * cos(theta) ** 6 + 4.44743783283098e55 * cos(theta) ** 4 - 2.78836227763698e53 * cos(theta) ** 2 + 2.73368850748723e50 ) * sin(30 * phi) ) # @torch.jit.script def Yl54_m_minus_29(theta, phi): return ( 8.25836000648004e-50 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 2.05359593242088e61 * cos(theta) ** 25 - 5.75774560491836e61 * cos(theta) ** 23 + 6.93671256211593e61 * cos(theta) ** 21 - 4.71427067328267e61 * cos(theta) ** 19 + 1.9953967453746e61 * cos(theta) ** 17 - 5.48230216911e60 * cos(theta) ** 15 + 9.8907513360232e59 * cos(theta) ** 13 - 1.16011820181926e59 * cos(theta) ** 11 + 8.57614262097573e57 * cos(theta) ** 9 - 3.76973302020911e56 * cos(theta) ** 7 + 8.89487566566195e54 * cos(theta) ** 5 - 9.29454092545658e52 * cos(theta) ** 3 + 2.73368850748723e50 * cos(theta) ) * sin(29 * phi) ) # @torch.jit.script def Yl54_m_minus_28(theta, phi): return ( 3.83636156498218e-48 * (1.0 - cos(theta) ** 2) ** 14 * ( 7.89844589392647e59 * cos(theta) ** 26 - 2.39906066871598e60 * cos(theta) ** 24 + 3.15305116459815e60 * cos(theta) ** 22 - 2.35713533664134e60 * cos(theta) ** 20 + 1.10855374743033e60 * cos(theta) ** 18 - 3.42643885569375e59 * cos(theta) ** 16 + 7.06482238287371e58 * cos(theta) ** 14 - 9.66765168182719e57 * cos(theta) ** 12 + 8.57614262097573e56 * cos(theta) ** 10 - 4.71216627526139e55 * cos(theta) ** 8 + 1.48247927761033e54 * cos(theta) ** 6 - 2.32363523136415e52 * cos(theta) ** 4 + 1.36684425374362e50 * cos(theta) ** 2 - 1.26676946593477e47 ) * sin(28 * phi) ) # @torch.jit.script def Yl54_m_minus_27(theta, phi): return ( 1.80512939998221e-46 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 2.92535033108388e58 * cos(theta) ** 27 - 9.59624267486394e58 * cos(theta) ** 25 + 1.37089181069485e59 * cos(theta) ** 23 - 1.12244539840064e59 * cos(theta) ** 21 + 5.83449340752806e58 * cos(theta) ** 19 - 2.01555226805515e58 * cos(theta) ** 17 + 4.70988158858248e57 * cos(theta) ** 15 - 7.43665513986707e56 * cos(theta) ** 13 + 7.79649329179612e55 * cos(theta) ** 11 - 5.23574030584599e54 * cos(theta) ** 9 + 2.11782753944332e53 * cos(theta) ** 7 - 4.64727046272829e51 * cos(theta) ** 5 + 4.55614751247872e49 * cos(theta) ** 3 - 1.26676946593477e47 * cos(theta) ) * sin(27 * phi) ) # @torch.jit.script def Yl54_m_minus_26(theta, phi): return ( 8.59666225795951e-45 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.0447679753871e57 * cos(theta) ** 28 - 3.69086256725536e57 * cos(theta) ** 26 + 5.71204921122853e57 * cos(theta) ** 24 - 5.10202453818471e57 * cos(theta) ** 22 + 2.91724670376403e57 * cos(theta) ** 20 - 1.11975126003064e57 * cos(theta) ** 18 + 2.94367599286405e56 * cos(theta) ** 16 - 5.31189652847648e55 * cos(theta) ** 14 + 6.49707774316343e54 * cos(theta) ** 12 - 5.23574030584599e53 * cos(theta) ** 10 + 2.64728442430415e52 * cos(theta) ** 8 - 7.74545077121382e50 * cos(theta) ** 6 + 1.13903687811968e49 * cos(theta) ** 4 - 6.33384732967384e46 * cos(theta) ** 2 + 5.58540328895401e43 ) * sin(26 * phi) ) # @torch.jit.script def Yl54_m_minus_25(theta, phi): return ( 4.14070086564614e-43 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 3.60264819099e55 * cos(theta) ** 29 - 1.3669861360205e56 * cos(theta) ** 27 + 2.28481968449141e56 * cos(theta) ** 25 - 2.21827153834118e56 * cos(theta) ** 23 + 1.38916509703049e56 * cos(theta) ** 21 - 5.89342768437178e55 * cos(theta) ** 19 + 1.73157411344944e55 * cos(theta) ** 17 - 3.54126435231765e54 * cos(theta) ** 15 + 4.99775211012572e53 * cos(theta) ** 13 - 4.75976391440545e52 * cos(theta) ** 11 + 2.94142713811572e51 * cos(theta) ** 9 - 1.10649296731626e50 * cos(theta) ** 7 + 2.27807375623936e48 * cos(theta) ** 5 - 2.11128244322461e46 * cos(theta) ** 3 + 5.58540328895401e43 * cos(theta) ) * sin(25 * phi) ) # @torch.jit.script def Yl54_m_minus_24(theta, phi): return ( 2.01580273517196e-41 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.20088273033e54 * cos(theta) ** 30 - 4.88209334293037e54 * cos(theta) ** 28 + 8.78776801727467e54 * cos(theta) ** 26 - 9.24279807642158e54 * cos(theta) ** 24 + 6.31438680468405e54 * cos(theta) ** 22 - 2.94671384218589e54 * cos(theta) ** 20 + 9.61985618583022e53 * cos(theta) ** 18 - 2.21329022019853e53 * cos(theta) ** 16 + 3.56982293580408e52 * cos(theta) ** 14 - 3.9664699286712e51 * cos(theta) ** 12 + 2.94142713811572e50 * cos(theta) ** 10 - 1.38311620914532e49 * cos(theta) ** 8 + 3.79678959373226e47 * cos(theta) ** 6 - 5.27820610806154e45 * cos(theta) ** 4 + 2.792701644477e43 * cos(theta) ** 2 - 2.3567102485038e40 ) * sin(24 * phi) ) # @torch.jit.script def Yl54_m_minus_23(theta, phi): return ( 9.91233973041305e-40 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 3.87381525912903e52 * cos(theta) ** 31 - 1.68348046307944e53 * cos(theta) ** 29 + 3.25472889528691e53 * cos(theta) ** 27 - 3.69711923056863e53 * cos(theta) ** 25 + 2.74538556725393e53 * cos(theta) ** 23 - 1.40319706770757e53 * cos(theta) ** 21 + 5.06308220306854e52 * cos(theta) ** 19 - 1.3019354236462e52 * cos(theta) ** 17 + 2.37988195720272e51 * cos(theta) ** 15 - 3.05113071436246e50 * cos(theta) ** 13 + 2.6740246710143e49 * cos(theta) ** 11 - 1.53679578793925e48 * cos(theta) ** 9 + 5.42398513390323e46 * cos(theta) ** 7 - 1.05564122161231e45 * cos(theta) ** 5 + 9.30900548159001e42 * cos(theta) ** 3 - 2.3567102485038e40 * cos(theta) ) * sin(23 * phi) ) # @torch.jit.script def Yl54_m_minus_22(theta, phi): return ( 4.9203560449046e-38 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.21056726847782e51 * cos(theta) ** 32 - 5.61160154359813e51 * cos(theta) ** 30 + 1.16240317688818e52 * cos(theta) ** 28 - 1.42196893483409e52 * cos(theta) ** 26 + 1.14391065302247e52 * cos(theta) ** 24 - 6.37816848957984e51 * cos(theta) ** 22 + 2.53154110153427e51 * cos(theta) ** 20 - 7.2329745758122e50 * cos(theta) ** 18 + 1.4874262232517e50 * cos(theta) ** 16 - 2.17937908168747e49 * cos(theta) ** 14 + 2.22835389251191e48 * cos(theta) ** 12 - 1.53679578793925e47 * cos(theta) ** 10 + 6.77998141737904e45 * cos(theta) ** 8 - 1.75940203602051e44 * cos(theta) ** 6 + 2.3272513703975e42 * cos(theta) ** 4 - 1.1783551242519e40 * cos(theta) ** 2 + 9.56457081373295e36 ) * sin(22 * phi) ) # @torch.jit.script def Yl54_m_minus_21(theta, phi): return ( 2.46411116328874e-36 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 3.66838566205401e49 * cos(theta) ** 33 - 1.81019404632198e50 * cos(theta) ** 31 + 4.00828681685581e50 * cos(theta) ** 29 - 5.26655161049662e50 * cos(theta) ** 27 + 4.57564261208989e50 * cos(theta) ** 25 - 2.77311673459993e50 * cos(theta) ** 23 + 1.20549576263537e50 * cos(theta) ** 21 - 3.80682872411168e49 * cos(theta) ** 19 + 8.74956601912766e48 * cos(theta) ** 17 - 1.45291938779165e48 * cos(theta) ** 15 + 1.71411837885532e47 * cos(theta) ** 13 - 1.39708707994477e46 * cos(theta) ** 11 + 7.53331268597672e44 * cos(theta) ** 9 - 2.5134314800293e43 * cos(theta) ** 7 + 4.654502740795e41 * cos(theta) ** 5 - 3.927850414173e39 * cos(theta) ** 3 + 9.56457081373295e36 * cos(theta) ) * sin(21 * phi) ) # @torch.jit.script def Yl54_m_minus_20(theta, phi): return ( 1.24431514311539e-34 * (1.0 - cos(theta) ** 2) ** 10 * ( 1.07893695942765e48 * cos(theta) ** 34 - 5.65685639475618e48 * cos(theta) ** 32 + 1.3360956056186e49 * cos(theta) ** 30 - 1.88091128946308e49 * cos(theta) ** 28 + 1.7598625431115e49 * cos(theta) ** 26 - 1.15546530608331e49 * cos(theta) ** 24 + 5.47952619379712e48 * cos(theta) ** 22 - 1.90341436205584e48 * cos(theta) ** 20 + 4.86087001062648e47 * cos(theta) ** 18 - 9.08074617369781e46 * cos(theta) ** 16 + 1.22437027061094e46 * cos(theta) ** 14 - 1.16423923328731e45 * cos(theta) ** 12 + 7.53331268597672e43 * cos(theta) ** 10 - 3.14178935003663e42 * cos(theta) ** 8 + 7.75750456799167e40 * cos(theta) ** 6 - 9.8196260354325e38 * cos(theta) ** 4 + 4.78228540686648e36 * cos(theta) ** 2 - 3.75081208381684e33 ) * sin(20 * phi) ) # @torch.jit.script def Yl54_m_minus_19(theta, phi): return ( 6.33257392712509e-33 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 3.08267702693614e46 * cos(theta) ** 35 - 1.71419890750187e47 * cos(theta) ** 33 + 4.30998582457614e47 * cos(theta) ** 31 - 6.48590099814855e47 * cos(theta) ** 29 + 6.51800941893147e47 * cos(theta) ** 27 - 4.62186122433322e47 * cos(theta) ** 25 + 2.38240269295527e47 * cos(theta) ** 23 - 9.06387791455162e46 * cos(theta) ** 21 + 2.55835263717183e46 * cos(theta) ** 19 - 5.34161539629283e45 * cos(theta) ** 17 + 8.16246847073961e44 * cos(theta) ** 15 - 8.95568640990239e43 * cos(theta) ** 13 + 6.84846607816065e42 * cos(theta) ** 11 - 3.49087705559625e41 * cos(theta) ** 9 + 1.10821493828453e40 * cos(theta) ** 7 - 1.9639252070865e38 * cos(theta) ** 5 + 1.59409513562216e36 * cos(theta) ** 3 - 3.75081208381684e33 * cos(theta) ) * sin(19 * phi) ) # @torch.jit.script def Yl54_m_minus_18(theta, phi): return ( 3.24633212105142e-31 * (1.0 - cos(theta) ** 2) ** 9 * ( 8.56299174148928e44 * cos(theta) ** 36 - 5.04176149265256e45 * cos(theta) ** 34 + 1.34687057018004e46 * cos(theta) ** 32 - 2.16196699938285e46 * cos(theta) ** 30 + 2.32786050676124e46 * cos(theta) ** 28 - 1.77763893243585e46 * cos(theta) ** 26 + 9.92667788731362e45 * cos(theta) ** 24 - 4.11994450661437e45 * cos(theta) ** 22 + 1.27917631858591e45 * cos(theta) ** 20 - 2.96756410905157e44 * cos(theta) ** 18 + 5.10154279421225e43 * cos(theta) ** 16 - 6.39691886421599e42 * cos(theta) ** 14 + 5.70705506513388e41 * cos(theta) ** 12 - 3.49087705559625e40 * cos(theta) ** 10 + 1.38526867285566e39 * cos(theta) ** 8 - 3.2732086784775e37 * cos(theta) ** 6 + 3.9852378390554e35 * cos(theta) ** 4 - 1.87540604190842e33 * cos(theta) ** 2 + 1.42724965137627e30 ) * sin(18 * phi) ) # @torch.jit.script def Yl54_m_minus_17(theta, phi): return ( 1.67556028980796e-29 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 2.3143220922944e43 * cos(theta) ** 37 - 1.44050328361502e44 * cos(theta) ** 35 + 4.08142597024255e44 * cos(theta) ** 33 - 6.97408709478339e44 * cos(theta) ** 31 + 8.02710519572841e44 * cos(theta) ** 29 - 6.58384789791057e44 * cos(theta) ** 27 + 3.97067115492545e44 * cos(theta) ** 25 - 1.79128022026712e44 * cos(theta) ** 23 + 6.09131580279007e43 * cos(theta) ** 21 - 1.56187584686925e43 * cos(theta) ** 19 + 3.00090752600721e42 * cos(theta) ** 17 - 4.26461257614399e41 * cos(theta) ** 15 + 4.39004235779529e40 * cos(theta) ** 13 - 3.17352459599659e39 * cos(theta) ** 11 + 1.53918741428406e38 * cos(theta) ** 9 - 4.676012397825e36 * cos(theta) ** 7 + 7.97047567811079e34 * cos(theta) ** 5 - 6.25135347302808e32 * cos(theta) ** 3 + 1.42724965137627e30 * cos(theta) ) * sin(17 * phi) ) # @torch.jit.script def Yl54_m_minus_16(theta, phi): return ( 8.70324144462283e-28 * (1.0 - cos(theta) ** 2) ** 8 * ( 6.09032129551158e41 * cos(theta) ** 38 - 4.00139801004172e42 * cos(theta) ** 36 + 1.20041940301252e43 * cos(theta) ** 34 - 2.17940221711981e43 * cos(theta) ** 32 + 2.67570173190947e43 * cos(theta) ** 30 - 2.35137424925378e43 * cos(theta) ** 28 + 1.52718121343286e43 * cos(theta) ** 26 - 7.46366758444633e42 * cos(theta) ** 24 + 2.76877991035912e42 * cos(theta) ** 22 - 7.80937923434624e41 * cos(theta) ** 20 + 1.66717084778178e41 * cos(theta) ** 18 - 2.66538286009e40 * cos(theta) ** 16 + 3.13574454128235e39 * cos(theta) ** 14 - 2.64460382999716e38 * cos(theta) ** 12 + 1.53918741428406e37 * cos(theta) ** 10 - 5.84501549728125e35 * cos(theta) ** 8 + 1.32841261301847e34 * cos(theta) ** 6 - 1.56283836825702e32 * cos(theta) ** 4 + 7.13624825688136e29 * cos(theta) ** 2 - 5.29002835943763e26 ) * sin(16 * phi) ) # @torch.jit.script def Yl54_m_minus_15(theta, phi): return ( 4.54739160163806e-26 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.56162084500297e40 * cos(theta) ** 39 - 1.0814589216329e41 * cos(theta) ** 37 + 3.4297697228929e41 * cos(theta) ** 35 - 6.6042491427873e41 * cos(theta) ** 33 + 8.63129590938538e41 * cos(theta) ** 31 - 8.10818706639233e41 * cos(theta) ** 29 + 5.65622671641802e41 * cos(theta) ** 27 - 2.98546703377853e41 * cos(theta) ** 25 + 1.20381735233005e41 * cos(theta) ** 23 - 3.71875201635535e40 * cos(theta) ** 21 + 8.7745834093778e39 * cos(theta) ** 19 - 1.56787227064117e39 * cos(theta) ** 17 + 2.0904963608549e38 * cos(theta) ** 15 - 2.03431063845936e37 * cos(theta) ** 13 + 1.39926128571278e36 * cos(theta) ** 11 - 6.49446166364583e34 * cos(theta) ** 9 + 1.89773230431209e33 * cos(theta) ** 7 - 3.12567673651404e31 * cos(theta) ** 5 + 2.37874941896045e29 * cos(theta) ** 3 - 5.29002835943763e26 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl54_m_minus_14(theta, phi): return ( 2.38900410726037e-24 * (1.0 - cos(theta) ** 2) ** 7 * ( 3.90405211250742e38 * cos(theta) ** 40 - 2.84594453061289e39 * cos(theta) ** 38 + 9.52713811914695e39 * cos(theta) ** 36 - 1.94242621846685e40 * cos(theta) ** 34 + 2.69727997168293e40 * cos(theta) ** 32 - 2.70272902213078e40 * cos(theta) ** 30 + 2.02008097014929e40 * cos(theta) ** 28 - 1.14825655145328e40 * cos(theta) ** 26 + 5.01590563470856e39 * cos(theta) ** 24 - 1.69034182561607e39 * cos(theta) ** 22 + 4.3872917046889e38 * cos(theta) ** 20 - 8.71040150356208e37 * cos(theta) ** 18 + 1.30656022553431e37 * cos(theta) ** 16 - 1.45307902747097e36 * cos(theta) ** 14 + 1.16605107142732e35 * cos(theta) ** 12 - 6.49446166364583e33 * cos(theta) ** 10 + 2.37216538039012e32 * cos(theta) ** 8 - 5.2094612275234e30 * cos(theta) ** 6 + 5.94687354740114e28 * cos(theta) ** 4 - 2.64501417971882e26 * cos(theta) ** 2 + 1.91667694182523e23 ) * sin(14 * phi) ) # @torch.jit.script def Yl54_m_minus_13(theta, phi): return ( 1.26143036514606e-22 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 9.52207832318883e36 * cos(theta) ** 41 - 7.29729366823817e37 * cos(theta) ** 39 + 2.57490219436404e38 * cos(theta) ** 37 - 5.54978919561958e38 * cos(theta) ** 35 + 8.17357567176646e38 * cos(theta) ** 33 - 8.71848071655089e38 * cos(theta) ** 31 + 6.96579644879066e38 * cos(theta) ** 29 - 4.25280204241956e38 * cos(theta) ** 27 + 2.00636225388342e38 * cos(theta) ** 25 - 7.34931228528726e37 * cos(theta) ** 23 + 2.08918652604233e37 * cos(theta) ** 21 - 4.58442184398004e36 * cos(theta) ** 19 + 7.68564838549595e35 * cos(theta) ** 17 - 9.68719351647312e34 * cos(theta) ** 15 + 8.969623626364e33 * cos(theta) ** 13 - 5.90405605785985e32 * cos(theta) ** 11 + 2.63573931154458e31 * cos(theta) ** 9 - 7.44208746789057e29 * cos(theta) ** 7 + 1.18937470948023e28 * cos(theta) ** 5 - 8.81671393239605e25 * cos(theta) ** 3 + 1.91667694182523e23 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl54_m_minus_12(theta, phi): return ( 6.69152843305673e-21 * (1.0 - cos(theta) ** 2) ** 6 * ( 2.26716150552115e35 * cos(theta) ** 42 - 1.82432341705954e36 * cos(theta) ** 40 + 6.77605840622116e36 * cos(theta) ** 38 - 1.54160810989433e37 * cos(theta) ** 36 + 2.40399284463719e37 * cos(theta) ** 34 - 2.72452522392215e37 * cos(theta) ** 32 + 2.32193214959689e37 * cos(theta) ** 30 - 1.5188578722927e37 * cos(theta) ** 28 + 7.71677789955162e36 * cos(theta) ** 26 - 3.06221345220303e36 * cos(theta) ** 24 + 9.49630239110152e35 * cos(theta) ** 22 - 2.29221092199002e35 * cos(theta) ** 20 + 4.26980465860886e34 * cos(theta) ** 18 - 6.0544959477957e33 * cos(theta) ** 16 + 6.40687401883143e32 * cos(theta) ** 14 - 4.92004671488321e31 * cos(theta) ** 12 + 2.63573931154458e30 * cos(theta) ** 10 - 9.30260933486321e28 * cos(theta) ** 8 + 1.98229118246705e27 * cos(theta) ** 6 - 2.20417848309901e25 * cos(theta) ** 4 + 9.58338470912614e22 * cos(theta) ** 2 - 6.81121869873926e19 ) * sin(12 * phi) ) # @torch.jit.script def Yl54_m_minus_11(theta, phi): return ( 3.56477007340465e-19 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 5.27246861749105e33 * cos(theta) ** 43 - 4.44956930990132e34 * cos(theta) ** 41 + 1.73745087339004e35 * cos(theta) ** 39 - 4.16650840511981e35 * cos(theta) ** 37 + 6.8685509846777e35 * cos(theta) ** 35 - 8.25613704218834e35 * cos(theta) ** 33 + 7.49010370837705e35 * cos(theta) ** 31 - 5.23744093894035e35 * cos(theta) ** 29 + 2.85806588872282e35 * cos(theta) ** 27 - 1.22488538088121e35 * cos(theta) ** 25 + 4.12882712656588e34 * cos(theta) ** 23 - 1.09152901047144e34 * cos(theta) ** 21 + 2.24726560979414e33 * cos(theta) ** 19 - 3.56146820458571e32 * cos(theta) ** 17 + 4.27124934588762e31 * cos(theta) ** 15 - 3.78465131914093e30 * cos(theta) ** 13 + 2.3961266468587e29 * cos(theta) ** 11 - 1.03362325942925e28 * cos(theta) ** 9 + 2.83184454638149e26 * cos(theta) ** 7 - 4.40835696619803e24 * cos(theta) ** 5 + 3.19446156970871e22 * cos(theta) ** 3 - 6.81121869873926e19 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl54_m_minus_10(theta, phi): return ( 1.90640224071549e-17 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.19828832215706e32 * cos(theta) ** 44 - 1.05942126426222e33 * cos(theta) ** 42 + 4.3436271834751e33 * cos(theta) ** 40 - 1.09644958029469e34 * cos(theta) ** 38 + 1.90793082907714e34 * cos(theta) ** 36 - 2.42827560064363e34 * cos(theta) ** 34 + 2.34065740886783e34 * cos(theta) ** 32 - 1.74581364631345e34 * cos(theta) ** 30 + 1.02073781740101e34 * cos(theta) ** 28 - 4.71109761877389e33 * cos(theta) ** 26 + 1.72034463606912e33 * cos(theta) ** 24 - 4.9614955021429e32 * cos(theta) ** 22 + 1.12363280489707e32 * cos(theta) ** 20 - 1.97859344699206e31 * cos(theta) ** 18 + 2.66953084117976e30 * cos(theta) ** 16 - 2.70332237081495e29 * cos(theta) ** 14 + 1.99677220571559e28 * cos(theta) ** 12 - 1.03362325942925e27 * cos(theta) ** 10 + 3.53980568297687e25 * cos(theta) ** 8 - 7.34726161033004e23 * cos(theta) ** 6 + 7.98615392427179e21 * cos(theta) ** 4 - 3.40560934936963e19 * cos(theta) ** 2 + 2.38154499955918e16 ) * sin(10 * phi) ) # @torch.jit.script def Yl54_m_minus_9(theta, phi): return ( 1.02308280064746e-15 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 2.66286293812679e30 * cos(theta) ** 45 - 2.46377038200516e31 * cos(theta) ** 43 + 1.05942126426222e32 * cos(theta) ** 41 - 2.81140918024278e32 * cos(theta) ** 39 + 5.15656980831659e32 * cos(theta) ** 37 - 6.93793028755323e32 * cos(theta) ** 35 + 7.09290123899342e32 * cos(theta) ** 33 - 5.63165692359177e32 * cos(theta) ** 31 + 3.51978557724486e32 * cos(theta) ** 29 - 1.74485096991625e32 * cos(theta) ** 27 + 6.88137854427646e31 * cos(theta) ** 25 - 2.15717195745344e31 * cos(theta) ** 23 + 5.35063240427176e30 * cos(theta) ** 21 - 1.04136497210108e30 * cos(theta) ** 19 + 1.57031225951751e29 * cos(theta) ** 17 - 1.80221491387663e28 * cos(theta) ** 15 + 1.53597861978122e27 * cos(theta) ** 13 - 9.39657508572041e25 * cos(theta) ** 11 + 3.93311742552985e24 * cos(theta) ** 9 - 1.04960880147572e23 * cos(theta) ** 7 + 1.59723078485436e21 * cos(theta) ** 5 - 1.13520311645654e19 * cos(theta) ** 3 + 2.38154499955918e16 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl54_m_minus_8(theta, phi): return ( 5.50756934809716e-14 * (1.0 - cos(theta) ** 2) ** 4 * ( 5.78883247418868e28 * cos(theta) ** 46 - 5.59947814092082e29 * cos(theta) ** 44 + 2.52243158157671e30 * cos(theta) ** 42 - 7.02852295060696e30 * cos(theta) ** 40 + 1.35699205482016e31 * cos(theta) ** 38 - 1.92720285765368e31 * cos(theta) ** 36 + 2.08614742323336e31 * cos(theta) ** 34 - 1.75989278862243e31 * cos(theta) ** 32 + 1.17326185908162e31 * cos(theta) ** 30 - 6.23161060684376e30 * cos(theta) ** 28 + 2.64668405549095e30 * cos(theta) ** 26 - 8.98821648938932e29 * cos(theta) ** 24 + 2.43210563830534e29 * cos(theta) ** 22 - 5.20682486050542e28 * cos(theta) ** 20 + 8.72395699731948e27 * cos(theta) ** 18 - 1.1263843211729e27 * cos(theta) ** 16 + 1.09712758555802e26 * cos(theta) ** 14 - 7.83047923810034e24 * cos(theta) ** 12 + 3.93311742552985e23 * cos(theta) ** 10 - 1.31201100184465e22 * cos(theta) ** 8 + 2.6620513080906e20 * cos(theta) ** 6 - 2.83800779114136e18 * cos(theta) ** 4 + 1.19077249977959e16 * cos(theta) ** 2 - 8217891647892.28 ) * sin(8 * phi) ) # @torch.jit.script def Yl54_m_minus_7(theta, phi): return ( 2.97306735277937e-12 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.23166648386993e27 * cos(theta) ** 47 - 1.24432847576018e28 * cos(theta) ** 45 + 5.86611995715515e28 * cos(theta) ** 43 - 1.71427389039194e29 * cos(theta) ** 41 + 3.47946680723117e29 * cos(theta) ** 39 - 5.20865637203696e29 * cos(theta) ** 37 + 5.96042120923817e29 * cos(theta) ** 35 - 5.33300845037099e29 * cos(theta) ** 33 + 3.78471567445684e29 * cos(theta) ** 31 - 2.14883124373923e29 * cos(theta) ** 29 + 9.80253353885536e28 * cos(theta) ** 27 - 3.59528659575573e28 * cos(theta) ** 25 + 1.0574372340458e28 * cos(theta) ** 23 - 2.47944040976448e27 * cos(theta) ** 21 + 4.59155631437868e26 * cos(theta) ** 19 - 6.62579012454644e25 * cos(theta) ** 17 + 7.3141839037201e24 * cos(theta) ** 15 - 6.02344556776949e23 * cos(theta) ** 13 + 3.57556129593623e22 * cos(theta) ** 11 - 1.45779000204961e21 * cos(theta) ** 9 + 3.80293044012942e19 * cos(theta) ** 7 - 5.67601558228272e17 * cos(theta) ** 5 + 3.96924166593197e15 * cos(theta) ** 3 - 8217891647892.28 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl54_m_minus_6(theta, phi): return ( 1.60875638707754e-10 * (1.0 - cos(theta) ** 2) ** 3 * ( 2.56597184139569e25 * cos(theta) ** 48 - 2.70506190382648e26 * cos(theta) ** 46 + 1.33320908117162e27 * cos(theta) ** 44 - 4.08160450093319e27 * cos(theta) ** 42 + 8.69866701807792e27 * cos(theta) ** 40 - 1.37069904527288e28 * cos(theta) ** 38 + 1.65567255812171e28 * cos(theta) ** 36 - 1.56853189716794e28 * cos(theta) ** 34 + 1.18272364826776e28 * cos(theta) ** 32 - 7.1627708124641e27 * cos(theta) ** 30 + 3.50090483530548e27 * cos(theta) ** 28 - 1.38280253682913e27 * cos(theta) ** 26 + 4.40598847519084e26 * cos(theta) ** 24 - 1.12701836807477e26 * cos(theta) ** 22 + 2.29577815718934e25 * cos(theta) ** 20 - 3.68099451363691e24 * cos(theta) ** 18 + 4.57136493982506e23 * cos(theta) ** 16 - 4.30246111983535e22 * cos(theta) ** 14 + 2.97963441328019e21 * cos(theta) ** 12 - 1.45779000204961e20 * cos(theta) ** 10 + 4.75366305016178e18 * cos(theta) ** 8 - 9.4600259704712e16 * cos(theta) ** 6 + 992310416482993.0 * cos(theta) ** 4 - 4108945823946.14 * cos(theta) ** 2 + 2806656983.56977 ) * sin(6 * phi) ) # @torch.jit.script def Yl54_m_minus_5(theta, phi): return ( 8.7229613733586e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 5.23667722733814e23 * cos(theta) ** 49 - 5.75545085920529e24 * cos(theta) ** 47 + 2.96268684704805e25 * cos(theta) ** 45 - 9.49210349054231e25 * cos(theta) ** 43 + 2.12162610197022e26 * cos(theta) ** 41 - 3.51461293659714e26 * cos(theta) ** 39 + 4.47479069762625e26 * cos(theta) ** 37 - 4.48151970619411e26 * cos(theta) ** 35 + 3.58401105535685e26 * cos(theta) ** 33 - 2.31057122982713e26 * cos(theta) ** 31 + 1.20720856389844e26 * cos(theta) ** 29 - 5.12149087714491e25 * cos(theta) ** 27 + 1.76239539007634e25 * cos(theta) ** 25 - 4.90007986119463e24 * cos(theta) ** 23 + 1.09322769389968e24 * cos(theta) ** 21 - 1.93736553349311e23 * cos(theta) ** 19 + 2.6890381998971e22 * cos(theta) ** 17 - 2.86830741322357e21 * cos(theta) ** 15 + 2.29202647175399e20 * cos(theta) ** 13 - 1.32526363822692e19 * cos(theta) ** 11 + 5.28184783351309e17 * cos(theta) ** 9 - 1.35143228149589e16 * cos(theta) ** 7 + 198462083296599.0 * cos(theta) ** 5 - 1369648607982.05 * cos(theta) ** 3 + 2806656983.56977 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl54_m_minus_4(theta, phi): return ( 4.73778073160064e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 1.04733544546763e22 * cos(theta) ** 50 - 1.19905226233443e23 * cos(theta) ** 48 + 6.44062358053925e23 * cos(theta) ** 46 - 2.15729624785052e24 * cos(theta) ** 44 + 5.05149071897672e24 * cos(theta) ** 42 - 8.78653234149285e24 * cos(theta) ** 40 + 1.17757649937533e25 * cos(theta) ** 38 - 1.24486658505392e25 * cos(theta) ** 36 + 1.05412089863437e25 * cos(theta) ** 34 - 7.22053509320977e24 * cos(theta) ** 32 + 4.02402854632814e24 * cos(theta) ** 30 - 1.82910388469461e24 * cos(theta) ** 28 + 6.77844380798591e23 * cos(theta) ** 26 - 2.04169994216443e23 * cos(theta) ** 24 + 4.96921679045311e22 * cos(theta) ** 22 - 9.68682766746556e21 * cos(theta) ** 20 + 1.49391011105394e21 * cos(theta) ** 18 - 1.79269213326473e20 * cos(theta) ** 16 + 1.63716176553857e19 * cos(theta) ** 14 - 1.1043863651891e18 * cos(theta) ** 12 + 5.28184783351309e16 * cos(theta) ** 10 - 1.68929035186986e15 * cos(theta) ** 8 + 33077013882766.4 * cos(theta) ** 6 - 342412151995.512 * cos(theta) ** 4 + 1403328491.78488 * cos(theta) ** 2 - 951409.146972803 ) * sin(4 * phi) ) # @torch.jit.script def Yl54_m_minus_3(theta, phi): return ( 2.57676042734338e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 2.05359891268162e20 * cos(theta) ** 51 - 2.44704543333558e21 * cos(theta) ** 49 + 1.37034544266793e22 * cos(theta) ** 47 - 4.79399166189006e22 * cos(theta) ** 45 + 1.17476528348296e23 * cos(theta) ** 43 - 2.14305666865679e23 * cos(theta) ** 41 + 3.01942692147521e23 * cos(theta) ** 39 - 3.36450428392951e23 * cos(theta) ** 37 + 3.01177399609819e23 * cos(theta) ** 35 - 2.1880409373363e23 * cos(theta) ** 33 + 1.29807372462198e23 * cos(theta) ** 31 - 6.307254774809e22 * cos(theta) ** 29 + 2.51053474369849e22 * cos(theta) ** 27 - 8.16679976865772e21 * cos(theta) ** 25 + 2.16052903932744e21 * cos(theta) ** 23 - 4.61277507974551e20 * cos(theta) ** 21 + 7.86268479502075e19 * cos(theta) ** 19 - 1.05452478427337e19 * cos(theta) ** 17 + 1.09144117702571e18 * cos(theta) ** 15 - 8.49527973222384e16 * cos(theta) ** 13 + 4.80167984864826e15 * cos(theta) ** 11 - 187698927985540.0 * cos(theta) ** 9 + 4725287697538.06 * cos(theta) ** 7 - 68482430399.1023 * cos(theta) ** 5 + 467776163.928295 * cos(theta) ** 3 - 951409.146972803 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl54_m_minus_2(theta, phi): return ( 0.0014028561545993 * (1.0 - cos(theta) ** 2) * ( 3.94922867823389e18 * cos(theta) ** 52 - 4.89409086667116e19 * cos(theta) ** 50 + 2.85488633889151e20 * cos(theta) ** 48 - 1.04217210041088e21 * cos(theta) ** 46 + 2.66992109882491e21 * cos(theta) ** 44 - 5.10251587775427e21 * cos(theta) ** 42 + 7.54856730368801e21 * cos(theta) ** 40 - 8.85395864191977e21 * cos(theta) ** 38 + 8.36603887805054e21 * cos(theta) ** 36 - 6.43541452157734e21 * cos(theta) ** 34 + 4.05648038944369e21 * cos(theta) ** 32 - 2.10241825826967e21 * cos(theta) ** 30 + 8.96619551320888e20 * cos(theta) ** 28 - 3.14107683409912e20 * cos(theta) ** 26 + 9.002204330531e19 * cos(theta) ** 24 - 2.09671594533887e19 * cos(theta) ** 22 + 3.93134239751037e18 * cos(theta) ** 20 - 5.85847102374095e17 * cos(theta) ** 18 + 6.82150735641069e16 * cos(theta) ** 16 - 6.06805695158846e15 * cos(theta) ** 14 + 400139987387355.0 * cos(theta) ** 12 - 18769892798554.0 * cos(theta) ** 10 + 590660962192.258 * cos(theta) ** 8 - 11413738399.8504 * cos(theta) ** 6 + 116944040.982074 * cos(theta) ** 4 - 475704.573486401 * cos(theta) ** 2 + 320.988241218894 ) * sin(2 * phi) ) # @torch.jit.script def Yl54_m_minus_1(theta, phi): return ( 0.0764266968996795 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 7.45137486459225e16 * cos(theta) ** 53 - 9.596256601316e17 * cos(theta) ** 51 + 5.826298650799e18 * cos(theta) ** 49 - 2.21738744768273e19 * cos(theta) ** 47 + 5.93315799738868e19 * cos(theta) ** 45 - 1.18663159947774e20 * cos(theta) ** 43 + 1.84111397650927e20 * cos(theta) ** 41 - 2.27024580562046e20 * cos(theta) ** 39 + 2.26109158866231e20 * cos(theta) ** 37 - 1.83868986330781e20 * cos(theta) ** 35 + 1.2292364816496e20 * cos(theta) ** 33 - 6.78199438151506e19 * cos(theta) ** 31 + 3.09179155627892e19 * cos(theta) ** 29 - 1.16336179040708e19 * cos(theta) ** 27 + 3.6008817322124e18 * cos(theta) ** 25 - 9.11615628408203e17 * cos(theta) ** 23 + 1.87206780833827e17 * cos(theta) ** 21 - 3.08340580196892e16 * cos(theta) ** 19 + 4.01265138612394e15 * cos(theta) ** 17 - 404537130105897.0 * cos(theta) ** 15 + 30779999029796.5 * cos(theta) ** 13 - 1706353890777.63 * cos(theta) ** 11 + 65628995799.1397 * cos(theta) ** 9 - 1630534057.12148 * cos(theta) ** 7 + 23388808.1964147 * cos(theta) ** 5 - 158568.191162134 * cos(theta) ** 3 + 320.988241218894 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl54_m0(theta, phi): return ( 1.27673522976982e16 * cos(theta) ** 54 - 1.70748421850524e17 * cos(theta) ** 52 + 1.0781543208276e18 * cos(theta) ** 50 - 4.27423638515795e18 * cos(theta) ** 48 + 1.1934006540738e19 * cos(theta) ** 46 - 2.49529227669977e19 * cos(theta) ** 44 + 4.05592181058073e19 * cos(theta) ** 42 - 5.25135139685715e19 * cos(theta) ** 40 + 5.50544904509217e19 * cos(theta) ** 38 - 4.72567848437094e19 * cos(theta) ** 36 + 3.3451431968019e19 * cos(theta) ** 34 - 1.96094601191836e19 * cos(theta) ** 32 + 9.53558060697553e18 * cos(theta) ** 30 - 3.8442794847399e18 * cos(theta) ** 28 + 1.2814264949133e18 * cos(theta) ** 26 - 3.51446085102804e17 * cos(theta) ** 24 + 7.87330515327711e16 * cos(theta) ** 22 - 1.42645763953491e16 * cos(theta) ** 20 + 2.06260998106266e15 * cos(theta) ** 18 - 233935750261369.0 * cos(theta) ** 16 + 20342239153162.5 * cos(theta) ** 14 - 1315667208911.01 * cos(theta) ** 12 + 60723101949.7388 * cos(theta) ** 10 - 1885810619.55711 * cos(theta) ** 8 + 36067416.2210375 * cos(theta) ** 6 - 366787.283603772 * cos(theta) ** 4 + 1484.96875952944 * cos(theta) ** 2 - 0.999978962646087 ) # @torch.jit.script def Yl54_m1(theta, phi): return ( 0.0764266968996795 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 7.45137486459225e16 * cos(theta) ** 53 - 9.596256601316e17 * cos(theta) ** 51 + 5.826298650799e18 * cos(theta) ** 49 - 2.21738744768273e19 * cos(theta) ** 47 + 5.93315799738868e19 * cos(theta) ** 45 - 1.18663159947774e20 * cos(theta) ** 43 + 1.84111397650927e20 * cos(theta) ** 41 - 2.27024580562046e20 * cos(theta) ** 39 + 2.26109158866231e20 * cos(theta) ** 37 - 1.83868986330781e20 * cos(theta) ** 35 + 1.2292364816496e20 * cos(theta) ** 33 - 6.78199438151506e19 * cos(theta) ** 31 + 3.09179155627892e19 * cos(theta) ** 29 - 1.16336179040708e19 * cos(theta) ** 27 + 3.6008817322124e18 * cos(theta) ** 25 - 9.11615628408203e17 * cos(theta) ** 23 + 1.87206780833827e17 * cos(theta) ** 21 - 3.08340580196892e16 * cos(theta) ** 19 + 4.01265138612394e15 * cos(theta) ** 17 - 404537130105897.0 * cos(theta) ** 15 + 30779999029796.5 * cos(theta) ** 13 - 1706353890777.63 * cos(theta) ** 11 + 65628995799.1397 * cos(theta) ** 9 - 1630534057.12148 * cos(theta) ** 7 + 23388808.1964147 * cos(theta) ** 5 - 158568.191162134 * cos(theta) ** 3 + 320.988241218894 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl54_m2(theta, phi): return ( 0.0014028561545993 * (1.0 - cos(theta) ** 2) * ( 3.94922867823389e18 * cos(theta) ** 52 - 4.89409086667116e19 * cos(theta) ** 50 + 2.85488633889151e20 * cos(theta) ** 48 - 1.04217210041088e21 * cos(theta) ** 46 + 2.66992109882491e21 * cos(theta) ** 44 - 5.10251587775427e21 * cos(theta) ** 42 + 7.54856730368801e21 * cos(theta) ** 40 - 8.85395864191977e21 * cos(theta) ** 38 + 8.36603887805054e21 * cos(theta) ** 36 - 6.43541452157734e21 * cos(theta) ** 34 + 4.05648038944369e21 * cos(theta) ** 32 - 2.10241825826967e21 * cos(theta) ** 30 + 8.96619551320888e20 * cos(theta) ** 28 - 3.14107683409912e20 * cos(theta) ** 26 + 9.002204330531e19 * cos(theta) ** 24 - 2.09671594533887e19 * cos(theta) ** 22 + 3.93134239751037e18 * cos(theta) ** 20 - 5.85847102374095e17 * cos(theta) ** 18 + 6.82150735641069e16 * cos(theta) ** 16 - 6.06805695158846e15 * cos(theta) ** 14 + 400139987387355.0 * cos(theta) ** 12 - 18769892798554.0 * cos(theta) ** 10 + 590660962192.258 * cos(theta) ** 8 - 11413738399.8504 * cos(theta) ** 6 + 116944040.982074 * cos(theta) ** 4 - 475704.573486401 * cos(theta) ** 2 + 320.988241218894 ) * cos(2 * phi) ) # @torch.jit.script def Yl54_m3(theta, phi): return ( 2.57676042734338e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 2.05359891268162e20 * cos(theta) ** 51 - 2.44704543333558e21 * cos(theta) ** 49 + 1.37034544266793e22 * cos(theta) ** 47 - 4.79399166189006e22 * cos(theta) ** 45 + 1.17476528348296e23 * cos(theta) ** 43 - 2.14305666865679e23 * cos(theta) ** 41 + 3.01942692147521e23 * cos(theta) ** 39 - 3.36450428392951e23 * cos(theta) ** 37 + 3.01177399609819e23 * cos(theta) ** 35 - 2.1880409373363e23 * cos(theta) ** 33 + 1.29807372462198e23 * cos(theta) ** 31 - 6.307254774809e22 * cos(theta) ** 29 + 2.51053474369849e22 * cos(theta) ** 27 - 8.16679976865772e21 * cos(theta) ** 25 + 2.16052903932744e21 * cos(theta) ** 23 - 4.61277507974551e20 * cos(theta) ** 21 + 7.86268479502075e19 * cos(theta) ** 19 - 1.05452478427337e19 * cos(theta) ** 17 + 1.09144117702571e18 * cos(theta) ** 15 - 8.49527973222384e16 * cos(theta) ** 13 + 4.80167984864826e15 * cos(theta) ** 11 - 187698927985540.0 * cos(theta) ** 9 + 4725287697538.06 * cos(theta) ** 7 - 68482430399.1023 * cos(theta) ** 5 + 467776163.928295 * cos(theta) ** 3 - 951409.146972803 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl54_m4(theta, phi): return ( 4.73778073160064e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 1.04733544546763e22 * cos(theta) ** 50 - 1.19905226233443e23 * cos(theta) ** 48 + 6.44062358053925e23 * cos(theta) ** 46 - 2.15729624785052e24 * cos(theta) ** 44 + 5.05149071897672e24 * cos(theta) ** 42 - 8.78653234149285e24 * cos(theta) ** 40 + 1.17757649937533e25 * cos(theta) ** 38 - 1.24486658505392e25 * cos(theta) ** 36 + 1.05412089863437e25 * cos(theta) ** 34 - 7.22053509320977e24 * cos(theta) ** 32 + 4.02402854632814e24 * cos(theta) ** 30 - 1.82910388469461e24 * cos(theta) ** 28 + 6.77844380798591e23 * cos(theta) ** 26 - 2.04169994216443e23 * cos(theta) ** 24 + 4.96921679045311e22 * cos(theta) ** 22 - 9.68682766746556e21 * cos(theta) ** 20 + 1.49391011105394e21 * cos(theta) ** 18 - 1.79269213326473e20 * cos(theta) ** 16 + 1.63716176553857e19 * cos(theta) ** 14 - 1.1043863651891e18 * cos(theta) ** 12 + 5.28184783351309e16 * cos(theta) ** 10 - 1.68929035186986e15 * cos(theta) ** 8 + 33077013882766.4 * cos(theta) ** 6 - 342412151995.512 * cos(theta) ** 4 + 1403328491.78488 * cos(theta) ** 2 - 951409.146972803 ) * cos(4 * phi) ) # @torch.jit.script def Yl54_m5(theta, phi): return ( 8.7229613733586e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 5.23667722733814e23 * cos(theta) ** 49 - 5.75545085920529e24 * cos(theta) ** 47 + 2.96268684704805e25 * cos(theta) ** 45 - 9.49210349054231e25 * cos(theta) ** 43 + 2.12162610197022e26 * cos(theta) ** 41 - 3.51461293659714e26 * cos(theta) ** 39 + 4.47479069762625e26 * cos(theta) ** 37 - 4.48151970619411e26 * cos(theta) ** 35 + 3.58401105535685e26 * cos(theta) ** 33 - 2.31057122982713e26 * cos(theta) ** 31 + 1.20720856389844e26 * cos(theta) ** 29 - 5.12149087714491e25 * cos(theta) ** 27 + 1.76239539007634e25 * cos(theta) ** 25 - 4.90007986119463e24 * cos(theta) ** 23 + 1.09322769389968e24 * cos(theta) ** 21 - 1.93736553349311e23 * cos(theta) ** 19 + 2.6890381998971e22 * cos(theta) ** 17 - 2.86830741322357e21 * cos(theta) ** 15 + 2.29202647175399e20 * cos(theta) ** 13 - 1.32526363822692e19 * cos(theta) ** 11 + 5.28184783351309e17 * cos(theta) ** 9 - 1.35143228149589e16 * cos(theta) ** 7 + 198462083296599.0 * cos(theta) ** 5 - 1369648607982.05 * cos(theta) ** 3 + 2806656983.56977 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl54_m6(theta, phi): return ( 1.60875638707754e-10 * (1.0 - cos(theta) ** 2) ** 3 * ( 2.56597184139569e25 * cos(theta) ** 48 - 2.70506190382648e26 * cos(theta) ** 46 + 1.33320908117162e27 * cos(theta) ** 44 - 4.08160450093319e27 * cos(theta) ** 42 + 8.69866701807792e27 * cos(theta) ** 40 - 1.37069904527288e28 * cos(theta) ** 38 + 1.65567255812171e28 * cos(theta) ** 36 - 1.56853189716794e28 * cos(theta) ** 34 + 1.18272364826776e28 * cos(theta) ** 32 - 7.1627708124641e27 * cos(theta) ** 30 + 3.50090483530548e27 * cos(theta) ** 28 - 1.38280253682913e27 * cos(theta) ** 26 + 4.40598847519084e26 * cos(theta) ** 24 - 1.12701836807477e26 * cos(theta) ** 22 + 2.29577815718934e25 * cos(theta) ** 20 - 3.68099451363691e24 * cos(theta) ** 18 + 4.57136493982506e23 * cos(theta) ** 16 - 4.30246111983535e22 * cos(theta) ** 14 + 2.97963441328019e21 * cos(theta) ** 12 - 1.45779000204961e20 * cos(theta) ** 10 + 4.75366305016178e18 * cos(theta) ** 8 - 9.4600259704712e16 * cos(theta) ** 6 + 992310416482993.0 * cos(theta) ** 4 - 4108945823946.14 * cos(theta) ** 2 + 2806656983.56977 ) * cos(6 * phi) ) # @torch.jit.script def Yl54_m7(theta, phi): return ( 2.97306735277937e-12 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.23166648386993e27 * cos(theta) ** 47 - 1.24432847576018e28 * cos(theta) ** 45 + 5.86611995715515e28 * cos(theta) ** 43 - 1.71427389039194e29 * cos(theta) ** 41 + 3.47946680723117e29 * cos(theta) ** 39 - 5.20865637203696e29 * cos(theta) ** 37 + 5.96042120923817e29 * cos(theta) ** 35 - 5.33300845037099e29 * cos(theta) ** 33 + 3.78471567445684e29 * cos(theta) ** 31 - 2.14883124373923e29 * cos(theta) ** 29 + 9.80253353885536e28 * cos(theta) ** 27 - 3.59528659575573e28 * cos(theta) ** 25 + 1.0574372340458e28 * cos(theta) ** 23 - 2.47944040976448e27 * cos(theta) ** 21 + 4.59155631437868e26 * cos(theta) ** 19 - 6.62579012454644e25 * cos(theta) ** 17 + 7.3141839037201e24 * cos(theta) ** 15 - 6.02344556776949e23 * cos(theta) ** 13 + 3.57556129593623e22 * cos(theta) ** 11 - 1.45779000204961e21 * cos(theta) ** 9 + 3.80293044012942e19 * cos(theta) ** 7 - 5.67601558228272e17 * cos(theta) ** 5 + 3.96924166593197e15 * cos(theta) ** 3 - 8217891647892.28 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl54_m8(theta, phi): return ( 5.50756934809716e-14 * (1.0 - cos(theta) ** 2) ** 4 * ( 5.78883247418868e28 * cos(theta) ** 46 - 5.59947814092082e29 * cos(theta) ** 44 + 2.52243158157671e30 * cos(theta) ** 42 - 7.02852295060696e30 * cos(theta) ** 40 + 1.35699205482016e31 * cos(theta) ** 38 - 1.92720285765368e31 * cos(theta) ** 36 + 2.08614742323336e31 * cos(theta) ** 34 - 1.75989278862243e31 * cos(theta) ** 32 + 1.17326185908162e31 * cos(theta) ** 30 - 6.23161060684376e30 * cos(theta) ** 28 + 2.64668405549095e30 * cos(theta) ** 26 - 8.98821648938932e29 * cos(theta) ** 24 + 2.43210563830534e29 * cos(theta) ** 22 - 5.20682486050542e28 * cos(theta) ** 20 + 8.72395699731948e27 * cos(theta) ** 18 - 1.1263843211729e27 * cos(theta) ** 16 + 1.09712758555802e26 * cos(theta) ** 14 - 7.83047923810034e24 * cos(theta) ** 12 + 3.93311742552985e23 * cos(theta) ** 10 - 1.31201100184465e22 * cos(theta) ** 8 + 2.6620513080906e20 * cos(theta) ** 6 - 2.83800779114136e18 * cos(theta) ** 4 + 1.19077249977959e16 * cos(theta) ** 2 - 8217891647892.28 ) * cos(8 * phi) ) # @torch.jit.script def Yl54_m9(theta, phi): return ( 1.02308280064746e-15 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 2.66286293812679e30 * cos(theta) ** 45 - 2.46377038200516e31 * cos(theta) ** 43 + 1.05942126426222e32 * cos(theta) ** 41 - 2.81140918024278e32 * cos(theta) ** 39 + 5.15656980831659e32 * cos(theta) ** 37 - 6.93793028755323e32 * cos(theta) ** 35 + 7.09290123899342e32 * cos(theta) ** 33 - 5.63165692359177e32 * cos(theta) ** 31 + 3.51978557724486e32 * cos(theta) ** 29 - 1.74485096991625e32 * cos(theta) ** 27 + 6.88137854427646e31 * cos(theta) ** 25 - 2.15717195745344e31 * cos(theta) ** 23 + 5.35063240427176e30 * cos(theta) ** 21 - 1.04136497210108e30 * cos(theta) ** 19 + 1.57031225951751e29 * cos(theta) ** 17 - 1.80221491387663e28 * cos(theta) ** 15 + 1.53597861978122e27 * cos(theta) ** 13 - 9.39657508572041e25 * cos(theta) ** 11 + 3.93311742552985e24 * cos(theta) ** 9 - 1.04960880147572e23 * cos(theta) ** 7 + 1.59723078485436e21 * cos(theta) ** 5 - 1.13520311645654e19 * cos(theta) ** 3 + 2.38154499955918e16 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl54_m10(theta, phi): return ( 1.90640224071549e-17 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.19828832215706e32 * cos(theta) ** 44 - 1.05942126426222e33 * cos(theta) ** 42 + 4.3436271834751e33 * cos(theta) ** 40 - 1.09644958029469e34 * cos(theta) ** 38 + 1.90793082907714e34 * cos(theta) ** 36 - 2.42827560064363e34 * cos(theta) ** 34 + 2.34065740886783e34 * cos(theta) ** 32 - 1.74581364631345e34 * cos(theta) ** 30 + 1.02073781740101e34 * cos(theta) ** 28 - 4.71109761877389e33 * cos(theta) ** 26 + 1.72034463606912e33 * cos(theta) ** 24 - 4.9614955021429e32 * cos(theta) ** 22 + 1.12363280489707e32 * cos(theta) ** 20 - 1.97859344699206e31 * cos(theta) ** 18 + 2.66953084117976e30 * cos(theta) ** 16 - 2.70332237081495e29 * cos(theta) ** 14 + 1.99677220571559e28 * cos(theta) ** 12 - 1.03362325942925e27 * cos(theta) ** 10 + 3.53980568297687e25 * cos(theta) ** 8 - 7.34726161033004e23 * cos(theta) ** 6 + 7.98615392427179e21 * cos(theta) ** 4 - 3.40560934936963e19 * cos(theta) ** 2 + 2.38154499955918e16 ) * cos(10 * phi) ) # @torch.jit.script def Yl54_m11(theta, phi): return ( 3.56477007340465e-19 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 5.27246861749105e33 * cos(theta) ** 43 - 4.44956930990132e34 * cos(theta) ** 41 + 1.73745087339004e35 * cos(theta) ** 39 - 4.16650840511981e35 * cos(theta) ** 37 + 6.8685509846777e35 * cos(theta) ** 35 - 8.25613704218834e35 * cos(theta) ** 33 + 7.49010370837705e35 * cos(theta) ** 31 - 5.23744093894035e35 * cos(theta) ** 29 + 2.85806588872282e35 * cos(theta) ** 27 - 1.22488538088121e35 * cos(theta) ** 25 + 4.12882712656588e34 * cos(theta) ** 23 - 1.09152901047144e34 * cos(theta) ** 21 + 2.24726560979414e33 * cos(theta) ** 19 - 3.56146820458571e32 * cos(theta) ** 17 + 4.27124934588762e31 * cos(theta) ** 15 - 3.78465131914093e30 * cos(theta) ** 13 + 2.3961266468587e29 * cos(theta) ** 11 - 1.03362325942925e28 * cos(theta) ** 9 + 2.83184454638149e26 * cos(theta) ** 7 - 4.40835696619803e24 * cos(theta) ** 5 + 3.19446156970871e22 * cos(theta) ** 3 - 6.81121869873926e19 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl54_m12(theta, phi): return ( 6.69152843305673e-21 * (1.0 - cos(theta) ** 2) ** 6 * ( 2.26716150552115e35 * cos(theta) ** 42 - 1.82432341705954e36 * cos(theta) ** 40 + 6.77605840622116e36 * cos(theta) ** 38 - 1.54160810989433e37 * cos(theta) ** 36 + 2.40399284463719e37 * cos(theta) ** 34 - 2.72452522392215e37 * cos(theta) ** 32 + 2.32193214959689e37 * cos(theta) ** 30 - 1.5188578722927e37 * cos(theta) ** 28 + 7.71677789955162e36 * cos(theta) ** 26 - 3.06221345220303e36 * cos(theta) ** 24 + 9.49630239110152e35 * cos(theta) ** 22 - 2.29221092199002e35 * cos(theta) ** 20 + 4.26980465860886e34 * cos(theta) ** 18 - 6.0544959477957e33 * cos(theta) ** 16 + 6.40687401883143e32 * cos(theta) ** 14 - 4.92004671488321e31 * cos(theta) ** 12 + 2.63573931154458e30 * cos(theta) ** 10 - 9.30260933486321e28 * cos(theta) ** 8 + 1.98229118246705e27 * cos(theta) ** 6 - 2.20417848309901e25 * cos(theta) ** 4 + 9.58338470912614e22 * cos(theta) ** 2 - 6.81121869873926e19 ) * cos(12 * phi) ) # @torch.jit.script def Yl54_m13(theta, phi): return ( 1.26143036514606e-22 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 9.52207832318883e36 * cos(theta) ** 41 - 7.29729366823817e37 * cos(theta) ** 39 + 2.57490219436404e38 * cos(theta) ** 37 - 5.54978919561958e38 * cos(theta) ** 35 + 8.17357567176646e38 * cos(theta) ** 33 - 8.71848071655089e38 * cos(theta) ** 31 + 6.96579644879066e38 * cos(theta) ** 29 - 4.25280204241956e38 * cos(theta) ** 27 + 2.00636225388342e38 * cos(theta) ** 25 - 7.34931228528726e37 * cos(theta) ** 23 + 2.08918652604233e37 * cos(theta) ** 21 - 4.58442184398004e36 * cos(theta) ** 19 + 7.68564838549595e35 * cos(theta) ** 17 - 9.68719351647312e34 * cos(theta) ** 15 + 8.969623626364e33 * cos(theta) ** 13 - 5.90405605785985e32 * cos(theta) ** 11 + 2.63573931154458e31 * cos(theta) ** 9 - 7.44208746789057e29 * cos(theta) ** 7 + 1.18937470948023e28 * cos(theta) ** 5 - 8.81671393239605e25 * cos(theta) ** 3 + 1.91667694182523e23 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl54_m14(theta, phi): return ( 2.38900410726037e-24 * (1.0 - cos(theta) ** 2) ** 7 * ( 3.90405211250742e38 * cos(theta) ** 40 - 2.84594453061289e39 * cos(theta) ** 38 + 9.52713811914695e39 * cos(theta) ** 36 - 1.94242621846685e40 * cos(theta) ** 34 + 2.69727997168293e40 * cos(theta) ** 32 - 2.70272902213078e40 * cos(theta) ** 30 + 2.02008097014929e40 * cos(theta) ** 28 - 1.14825655145328e40 * cos(theta) ** 26 + 5.01590563470856e39 * cos(theta) ** 24 - 1.69034182561607e39 * cos(theta) ** 22 + 4.3872917046889e38 * cos(theta) ** 20 - 8.71040150356208e37 * cos(theta) ** 18 + 1.30656022553431e37 * cos(theta) ** 16 - 1.45307902747097e36 * cos(theta) ** 14 + 1.16605107142732e35 * cos(theta) ** 12 - 6.49446166364583e33 * cos(theta) ** 10 + 2.37216538039012e32 * cos(theta) ** 8 - 5.2094612275234e30 * cos(theta) ** 6 + 5.94687354740114e28 * cos(theta) ** 4 - 2.64501417971882e26 * cos(theta) ** 2 + 1.91667694182523e23 ) * cos(14 * phi) ) # @torch.jit.script def Yl54_m15(theta, phi): return ( 4.54739160163806e-26 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.56162084500297e40 * cos(theta) ** 39 - 1.0814589216329e41 * cos(theta) ** 37 + 3.4297697228929e41 * cos(theta) ** 35 - 6.6042491427873e41 * cos(theta) ** 33 + 8.63129590938538e41 * cos(theta) ** 31 - 8.10818706639233e41 * cos(theta) ** 29 + 5.65622671641802e41 * cos(theta) ** 27 - 2.98546703377853e41 * cos(theta) ** 25 + 1.20381735233005e41 * cos(theta) ** 23 - 3.71875201635535e40 * cos(theta) ** 21 + 8.7745834093778e39 * cos(theta) ** 19 - 1.56787227064117e39 * cos(theta) ** 17 + 2.0904963608549e38 * cos(theta) ** 15 - 2.03431063845936e37 * cos(theta) ** 13 + 1.39926128571278e36 * cos(theta) ** 11 - 6.49446166364583e34 * cos(theta) ** 9 + 1.89773230431209e33 * cos(theta) ** 7 - 3.12567673651404e31 * cos(theta) ** 5 + 2.37874941896045e29 * cos(theta) ** 3 - 5.29002835943763e26 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl54_m16(theta, phi): return ( 8.70324144462283e-28 * (1.0 - cos(theta) ** 2) ** 8 * ( 6.09032129551158e41 * cos(theta) ** 38 - 4.00139801004172e42 * cos(theta) ** 36 + 1.20041940301252e43 * cos(theta) ** 34 - 2.17940221711981e43 * cos(theta) ** 32 + 2.67570173190947e43 * cos(theta) ** 30 - 2.35137424925378e43 * cos(theta) ** 28 + 1.52718121343286e43 * cos(theta) ** 26 - 7.46366758444633e42 * cos(theta) ** 24 + 2.76877991035912e42 * cos(theta) ** 22 - 7.80937923434624e41 * cos(theta) ** 20 + 1.66717084778178e41 * cos(theta) ** 18 - 2.66538286009e40 * cos(theta) ** 16 + 3.13574454128235e39 * cos(theta) ** 14 - 2.64460382999716e38 * cos(theta) ** 12 + 1.53918741428406e37 * cos(theta) ** 10 - 5.84501549728125e35 * cos(theta) ** 8 + 1.32841261301847e34 * cos(theta) ** 6 - 1.56283836825702e32 * cos(theta) ** 4 + 7.13624825688136e29 * cos(theta) ** 2 - 5.29002835943763e26 ) * cos(16 * phi) ) # @torch.jit.script def Yl54_m17(theta, phi): return ( 1.67556028980796e-29 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 2.3143220922944e43 * cos(theta) ** 37 - 1.44050328361502e44 * cos(theta) ** 35 + 4.08142597024255e44 * cos(theta) ** 33 - 6.97408709478339e44 * cos(theta) ** 31 + 8.02710519572841e44 * cos(theta) ** 29 - 6.58384789791057e44 * cos(theta) ** 27 + 3.97067115492545e44 * cos(theta) ** 25 - 1.79128022026712e44 * cos(theta) ** 23 + 6.09131580279007e43 * cos(theta) ** 21 - 1.56187584686925e43 * cos(theta) ** 19 + 3.00090752600721e42 * cos(theta) ** 17 - 4.26461257614399e41 * cos(theta) ** 15 + 4.39004235779529e40 * cos(theta) ** 13 - 3.17352459599659e39 * cos(theta) ** 11 + 1.53918741428406e38 * cos(theta) ** 9 - 4.676012397825e36 * cos(theta) ** 7 + 7.97047567811079e34 * cos(theta) ** 5 - 6.25135347302808e32 * cos(theta) ** 3 + 1.42724965137627e30 * cos(theta) ) * cos(17 * phi) ) # @torch.jit.script def Yl54_m18(theta, phi): return ( 3.24633212105142e-31 * (1.0 - cos(theta) ** 2) ** 9 * ( 8.56299174148928e44 * cos(theta) ** 36 - 5.04176149265256e45 * cos(theta) ** 34 + 1.34687057018004e46 * cos(theta) ** 32 - 2.16196699938285e46 * cos(theta) ** 30 + 2.32786050676124e46 * cos(theta) ** 28 - 1.77763893243585e46 * cos(theta) ** 26 + 9.92667788731362e45 * cos(theta) ** 24 - 4.11994450661437e45 * cos(theta) ** 22 + 1.27917631858591e45 * cos(theta) ** 20 - 2.96756410905157e44 * cos(theta) ** 18 + 5.10154279421225e43 * cos(theta) ** 16 - 6.39691886421599e42 * cos(theta) ** 14 + 5.70705506513388e41 * cos(theta) ** 12 - 3.49087705559625e40 * cos(theta) ** 10 + 1.38526867285566e39 * cos(theta) ** 8 - 3.2732086784775e37 * cos(theta) ** 6 + 3.9852378390554e35 * cos(theta) ** 4 - 1.87540604190842e33 * cos(theta) ** 2 + 1.42724965137627e30 ) * cos(18 * phi) ) # @torch.jit.script def Yl54_m19(theta, phi): return ( 6.33257392712509e-33 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 3.08267702693614e46 * cos(theta) ** 35 - 1.71419890750187e47 * cos(theta) ** 33 + 4.30998582457614e47 * cos(theta) ** 31 - 6.48590099814855e47 * cos(theta) ** 29 + 6.51800941893147e47 * cos(theta) ** 27 - 4.62186122433322e47 * cos(theta) ** 25 + 2.38240269295527e47 * cos(theta) ** 23 - 9.06387791455162e46 * cos(theta) ** 21 + 2.55835263717183e46 * cos(theta) ** 19 - 5.34161539629283e45 * cos(theta) ** 17 + 8.16246847073961e44 * cos(theta) ** 15 - 8.95568640990239e43 * cos(theta) ** 13 + 6.84846607816065e42 * cos(theta) ** 11 - 3.49087705559625e41 * cos(theta) ** 9 + 1.10821493828453e40 * cos(theta) ** 7 - 1.9639252070865e38 * cos(theta) ** 5 + 1.59409513562216e36 * cos(theta) ** 3 - 3.75081208381684e33 * cos(theta) ) * cos(19 * phi) ) # @torch.jit.script def Yl54_m20(theta, phi): return ( 1.24431514311539e-34 * (1.0 - cos(theta) ** 2) ** 10 * ( 1.07893695942765e48 * cos(theta) ** 34 - 5.65685639475618e48 * cos(theta) ** 32 + 1.3360956056186e49 * cos(theta) ** 30 - 1.88091128946308e49 * cos(theta) ** 28 + 1.7598625431115e49 * cos(theta) ** 26 - 1.15546530608331e49 * cos(theta) ** 24 + 5.47952619379712e48 * cos(theta) ** 22 - 1.90341436205584e48 * cos(theta) ** 20 + 4.86087001062648e47 * cos(theta) ** 18 - 9.08074617369781e46 * cos(theta) ** 16 + 1.22437027061094e46 * cos(theta) ** 14 - 1.16423923328731e45 * cos(theta) ** 12 + 7.53331268597672e43 * cos(theta) ** 10 - 3.14178935003663e42 * cos(theta) ** 8 + 7.75750456799167e40 * cos(theta) ** 6 - 9.8196260354325e38 * cos(theta) ** 4 + 4.78228540686648e36 * cos(theta) ** 2 - 3.75081208381684e33 ) * cos(20 * phi) ) # @torch.jit.script def Yl54_m21(theta, phi): return ( 2.46411116328874e-36 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 3.66838566205401e49 * cos(theta) ** 33 - 1.81019404632198e50 * cos(theta) ** 31 + 4.00828681685581e50 * cos(theta) ** 29 - 5.26655161049662e50 * cos(theta) ** 27 + 4.57564261208989e50 * cos(theta) ** 25 - 2.77311673459993e50 * cos(theta) ** 23 + 1.20549576263537e50 * cos(theta) ** 21 - 3.80682872411168e49 * cos(theta) ** 19 + 8.74956601912766e48 * cos(theta) ** 17 - 1.45291938779165e48 * cos(theta) ** 15 + 1.71411837885532e47 * cos(theta) ** 13 - 1.39708707994477e46 * cos(theta) ** 11 + 7.53331268597672e44 * cos(theta) ** 9 - 2.5134314800293e43 * cos(theta) ** 7 + 4.654502740795e41 * cos(theta) ** 5 - 3.927850414173e39 * cos(theta) ** 3 + 9.56457081373295e36 * cos(theta) ) * cos(21 * phi) ) # @torch.jit.script def Yl54_m22(theta, phi): return ( 4.9203560449046e-38 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.21056726847782e51 * cos(theta) ** 32 - 5.61160154359813e51 * cos(theta) ** 30 + 1.16240317688818e52 * cos(theta) ** 28 - 1.42196893483409e52 * cos(theta) ** 26 + 1.14391065302247e52 * cos(theta) ** 24 - 6.37816848957984e51 * cos(theta) ** 22 + 2.53154110153427e51 * cos(theta) ** 20 - 7.2329745758122e50 * cos(theta) ** 18 + 1.4874262232517e50 * cos(theta) ** 16 - 2.17937908168747e49 * cos(theta) ** 14 + 2.22835389251191e48 * cos(theta) ** 12 - 1.53679578793925e47 * cos(theta) ** 10 + 6.77998141737904e45 * cos(theta) ** 8 - 1.75940203602051e44 * cos(theta) ** 6 + 2.3272513703975e42 * cos(theta) ** 4 - 1.1783551242519e40 * cos(theta) ** 2 + 9.56457081373295e36 ) * cos(22 * phi) ) # @torch.jit.script def Yl54_m23(theta, phi): return ( 9.91233973041305e-40 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 3.87381525912903e52 * cos(theta) ** 31 - 1.68348046307944e53 * cos(theta) ** 29 + 3.25472889528691e53 * cos(theta) ** 27 - 3.69711923056863e53 * cos(theta) ** 25 + 2.74538556725393e53 * cos(theta) ** 23 - 1.40319706770757e53 * cos(theta) ** 21 + 5.06308220306854e52 * cos(theta) ** 19 - 1.3019354236462e52 * cos(theta) ** 17 + 2.37988195720272e51 * cos(theta) ** 15 - 3.05113071436246e50 * cos(theta) ** 13 + 2.6740246710143e49 * cos(theta) ** 11 - 1.53679578793925e48 * cos(theta) ** 9 + 5.42398513390323e46 * cos(theta) ** 7 - 1.05564122161231e45 * cos(theta) ** 5 + 9.30900548159001e42 * cos(theta) ** 3 - 2.3567102485038e40 * cos(theta) ) * cos(23 * phi) ) # @torch.jit.script def Yl54_m24(theta, phi): return ( 2.01580273517196e-41 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.20088273033e54 * cos(theta) ** 30 - 4.88209334293037e54 * cos(theta) ** 28 + 8.78776801727467e54 * cos(theta) ** 26 - 9.24279807642158e54 * cos(theta) ** 24 + 6.31438680468405e54 * cos(theta) ** 22 - 2.94671384218589e54 * cos(theta) ** 20 + 9.61985618583022e53 * cos(theta) ** 18 - 2.21329022019853e53 * cos(theta) ** 16 + 3.56982293580408e52 * cos(theta) ** 14 - 3.9664699286712e51 * cos(theta) ** 12 + 2.94142713811572e50 * cos(theta) ** 10 - 1.38311620914532e49 * cos(theta) ** 8 + 3.79678959373226e47 * cos(theta) ** 6 - 5.27820610806154e45 * cos(theta) ** 4 + 2.792701644477e43 * cos(theta) ** 2 - 2.3567102485038e40 ) * cos(24 * phi) ) # @torch.jit.script def Yl54_m25(theta, phi): return ( 4.14070086564614e-43 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 3.60264819099e55 * cos(theta) ** 29 - 1.3669861360205e56 * cos(theta) ** 27 + 2.28481968449141e56 * cos(theta) ** 25 - 2.21827153834118e56 * cos(theta) ** 23 + 1.38916509703049e56 * cos(theta) ** 21 - 5.89342768437178e55 * cos(theta) ** 19 + 1.73157411344944e55 * cos(theta) ** 17 - 3.54126435231765e54 * cos(theta) ** 15 + 4.99775211012572e53 * cos(theta) ** 13 - 4.75976391440545e52 * cos(theta) ** 11 + 2.94142713811572e51 * cos(theta) ** 9 - 1.10649296731626e50 * cos(theta) ** 7 + 2.27807375623936e48 * cos(theta) ** 5 - 2.11128244322461e46 * cos(theta) ** 3 + 5.58540328895401e43 * cos(theta) ) * cos(25 * phi) ) # @torch.jit.script def Yl54_m26(theta, phi): return ( 8.59666225795951e-45 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.0447679753871e57 * cos(theta) ** 28 - 3.69086256725536e57 * cos(theta) ** 26 + 5.71204921122853e57 * cos(theta) ** 24 - 5.10202453818471e57 * cos(theta) ** 22 + 2.91724670376403e57 * cos(theta) ** 20 - 1.11975126003064e57 * cos(theta) ** 18 + 2.94367599286405e56 * cos(theta) ** 16 - 5.31189652847648e55 * cos(theta) ** 14 + 6.49707774316343e54 * cos(theta) ** 12 - 5.23574030584599e53 * cos(theta) ** 10 + 2.64728442430415e52 * cos(theta) ** 8 - 7.74545077121382e50 * cos(theta) ** 6 + 1.13903687811968e49 * cos(theta) ** 4 - 6.33384732967384e46 * cos(theta) ** 2 + 5.58540328895401e43 ) * cos(26 * phi) ) # @torch.jit.script def Yl54_m27(theta, phi): return ( 1.80512939998221e-46 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 2.92535033108388e58 * cos(theta) ** 27 - 9.59624267486394e58 * cos(theta) ** 25 + 1.37089181069485e59 * cos(theta) ** 23 - 1.12244539840064e59 * cos(theta) ** 21 + 5.83449340752806e58 * cos(theta) ** 19 - 2.01555226805515e58 * cos(theta) ** 17 + 4.70988158858248e57 * cos(theta) ** 15 - 7.43665513986707e56 * cos(theta) ** 13 + 7.79649329179612e55 * cos(theta) ** 11 - 5.23574030584599e54 * cos(theta) ** 9 + 2.11782753944332e53 * cos(theta) ** 7 - 4.64727046272829e51 * cos(theta) ** 5 + 4.55614751247872e49 * cos(theta) ** 3 - 1.26676946593477e47 * cos(theta) ) * cos(27 * phi) ) # @torch.jit.script def Yl54_m28(theta, phi): return ( 3.83636156498218e-48 * (1.0 - cos(theta) ** 2) ** 14 * ( 7.89844589392647e59 * cos(theta) ** 26 - 2.39906066871598e60 * cos(theta) ** 24 + 3.15305116459815e60 * cos(theta) ** 22 - 2.35713533664134e60 * cos(theta) ** 20 + 1.10855374743033e60 * cos(theta) ** 18 - 3.42643885569375e59 * cos(theta) ** 16 + 7.06482238287371e58 * cos(theta) ** 14 - 9.66765168182719e57 * cos(theta) ** 12 + 8.57614262097573e56 * cos(theta) ** 10 - 4.71216627526139e55 * cos(theta) ** 8 + 1.48247927761033e54 * cos(theta) ** 6 - 2.32363523136415e52 * cos(theta) ** 4 + 1.36684425374362e50 * cos(theta) ** 2 - 1.26676946593477e47 ) * cos(28 * phi) ) # @torch.jit.script def Yl54_m29(theta, phi): return ( 8.25836000648004e-50 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 2.05359593242088e61 * cos(theta) ** 25 - 5.75774560491836e61 * cos(theta) ** 23 + 6.93671256211593e61 * cos(theta) ** 21 - 4.71427067328267e61 * cos(theta) ** 19 + 1.9953967453746e61 * cos(theta) ** 17 - 5.48230216911e60 * cos(theta) ** 15 + 9.8907513360232e59 * cos(theta) ** 13 - 1.16011820181926e59 * cos(theta) ** 11 + 8.57614262097573e57 * cos(theta) ** 9 - 3.76973302020911e56 * cos(theta) ** 7 + 8.89487566566195e54 * cos(theta) ** 5 - 9.29454092545658e52 * cos(theta) ** 3 + 2.73368850748723e50 * cos(theta) ) * cos(29 * phi) ) # @torch.jit.script def Yl54_m30(theta, phi): return ( 1.80212189742337e-51 * (1.0 - cos(theta) ** 2) ** 15 * ( 5.13398983105221e62 * cos(theta) ** 24 - 1.32428148913122e63 * cos(theta) ** 22 + 1.45670963804435e63 * cos(theta) ** 20 - 8.95711427923708e62 * cos(theta) ** 18 + 3.39217446713681e62 * cos(theta) ** 16 - 8.223453253665e61 * cos(theta) ** 14 + 1.28579767368302e61 * cos(theta) ** 12 - 1.27613002200119e60 * cos(theta) ** 10 + 7.71852835887816e58 * cos(theta) ** 8 - 2.63881311414638e57 * cos(theta) ** 6 + 4.44743783283098e55 * cos(theta) ** 4 - 2.78836227763698e53 * cos(theta) ** 2 + 2.73368850748723e50 ) * cos(30 * phi) ) # @torch.jit.script def Yl54_m31(theta, phi): return ( 3.98996494478974e-53 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 1.23215755945253e64 * cos(theta) ** 23 - 2.91341927608869e64 * cos(theta) ** 21 + 2.91341927608869e64 * cos(theta) ** 19 - 1.61228057026267e64 * cos(theta) ** 17 + 5.4274791474189e63 * cos(theta) ** 15 - 1.1512834555131e63 * cos(theta) ** 13 + 1.54295720841962e62 * cos(theta) ** 11 - 1.27613002200119e61 * cos(theta) ** 9 + 6.17482268710253e59 * cos(theta) ** 7 - 1.58328786848783e58 * cos(theta) ** 5 + 1.77897513313239e56 * cos(theta) ** 3 - 5.57672455527395e53 * cos(theta) ) * cos(31 * phi) ) # @torch.jit.script def Yl54_m32(theta, phi): return ( 8.97131150020023e-55 * (1.0 - cos(theta) ** 2) ** 16 * ( 2.83396238674082e65 * cos(theta) ** 22 - 6.11818047978625e65 * cos(theta) ** 20 + 5.53549662456851e65 * cos(theta) ** 18 - 2.74087696944655e65 * cos(theta) ** 16 + 8.14121872112835e64 * cos(theta) ** 14 - 1.49666849216703e64 * cos(theta) ** 12 + 1.69725292926158e63 * cos(theta) ** 10 - 1.14851701980107e62 * cos(theta) ** 8 + 4.32237588097177e60 * cos(theta) ** 6 - 7.91643934243914e58 * cos(theta) ** 4 + 5.33692539939717e56 * cos(theta) ** 2 - 5.57672455527395e53 ) * cos(32 * phi) ) # @torch.jit.script def Yl54_m33(theta, phi): return ( 2.05061896552667e-56 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 6.2347172508298e66 * cos(theta) ** 21 - 1.22363609595725e67 * cos(theta) ** 19 + 9.96389392422332e66 * cos(theta) ** 17 - 4.38540315111447e66 * cos(theta) ** 15 + 1.13977062095797e66 * cos(theta) ** 13 - 1.79600219060044e65 * cos(theta) ** 11 + 1.69725292926158e64 * cos(theta) ** 9 - 9.18813615840856e62 * cos(theta) ** 7 + 2.59342552858306e61 * cos(theta) ** 5 - 3.16657573697565e59 * cos(theta) ** 3 + 1.06738507987943e57 * cos(theta) ) * cos(33 * phi) ) # @torch.jit.script def Yl54_m34(theta, phi): return ( 4.77017142241554e-58 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.30929062267426e68 * cos(theta) ** 20 - 2.32490858231878e68 * cos(theta) ** 18 + 1.69386196711797e68 * cos(theta) ** 16 - 6.57810472667171e67 * cos(theta) ** 14 + 1.48170180724536e67 * cos(theta) ** 12 - 1.97560240966048e66 * cos(theta) ** 10 + 1.52752763633542e65 * cos(theta) ** 8 - 6.43169531088599e63 * cos(theta) ** 6 + 1.29671276429153e62 * cos(theta) ** 4 - 9.49972721092696e59 * cos(theta) ** 2 + 1.06738507987943e57 ) * cos(34 * phi) ) # @torch.jit.script def Yl54_m35(theta, phi): return ( 1.13063906059803e-59 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 2.61858124534852e69 * cos(theta) ** 19 - 4.1848354481738e69 * cos(theta) ** 17 + 2.71017914738874e69 * cos(theta) ** 15 - 9.20934661734039e68 * cos(theta) ** 13 + 1.77804216869443e68 * cos(theta) ** 11 - 1.97560240966048e67 * cos(theta) ** 9 + 1.22202210906834e66 * cos(theta) ** 7 - 3.85901718653159e64 * cos(theta) ** 5 + 5.18685105716612e62 * cos(theta) ** 3 - 1.89994544218539e60 * cos(theta) ) * cos(35 * phi) ) # @torch.jit.script def Yl54_m36(theta, phi): return ( 2.73417261970188e-61 * (1.0 - cos(theta) ** 2) ** 18 * ( 4.97530436616218e70 * cos(theta) ** 18 - 7.11422026189545e70 * cos(theta) ** 16 + 4.06526872108312e70 * cos(theta) ** 14 - 1.19721506025425e70 * cos(theta) ** 12 + 1.95584638556388e69 * cos(theta) ** 10 - 1.77804216869443e68 * cos(theta) ** 8 + 8.55415476347837e66 * cos(theta) ** 6 - 1.9295085932658e65 * cos(theta) ** 4 + 1.55605531714984e63 * cos(theta) ** 2 - 1.89994544218539e60 ) * cos(36 * phi) ) # @torch.jit.script def Yl54_m37(theta, phi): return ( 6.75567861995838e-63 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 8.95554785909192e71 * cos(theta) ** 17 - 1.13827524190327e72 * cos(theta) ** 15 + 5.69137620951636e71 * cos(theta) ** 13 - 1.4366580723051e71 * cos(theta) ** 11 + 1.95584638556388e70 * cos(theta) ** 9 - 1.42243373495555e69 * cos(theta) ** 7 + 5.13249285808702e67 * cos(theta) ** 5 - 7.71803437306319e65 * cos(theta) ** 3 + 3.11211063429967e63 * cos(theta) ) * cos(37 * phi) ) # @torch.jit.script def Yl54_m38(theta, phi): return ( 1.70824676458235e-64 * (1.0 - cos(theta) ** 2) ** 19 * ( 1.52244313604563e73 * cos(theta) ** 16 - 1.70741286285491e73 * cos(theta) ** 14 + 7.39878907237127e72 * cos(theta) ** 12 - 1.58032387953561e72 * cos(theta) ** 10 + 1.76026174700749e71 * cos(theta) ** 8 - 9.95703614468882e69 * cos(theta) ** 6 + 2.56624642904351e68 * cos(theta) ** 4 - 2.31541031191896e66 * cos(theta) ** 2 + 3.11211063429967e63 ) * cos(38 * phi) ) # @torch.jit.script def Yl54_m39(theta, phi): return ( 4.42842344387858e-66 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 2.435909017673e74 * cos(theta) ** 15 - 2.39037800799687e74 * cos(theta) ** 13 + 8.87854688684553e73 * cos(theta) ** 11 - 1.58032387953561e73 * cos(theta) ** 9 + 1.40820939760599e72 * cos(theta) ** 7 - 5.97422168681329e70 * cos(theta) ** 5 + 1.0264985716174e69 * cos(theta) ** 3 - 4.63082062383791e66 * cos(theta) ) * cos(39 * phi) ) # @torch.jit.script def Yl54_m40(theta, phi): return ( 1.1793415099292e-67 * (1.0 - cos(theta) ** 2) ** 20 * ( 3.65386352650951e75 * cos(theta) ** 14 - 3.10749141039593e75 * cos(theta) ** 12 + 9.76640157553008e74 * cos(theta) ** 10 - 1.42229149158205e74 * cos(theta) ** 8 + 9.85746578324193e72 * cos(theta) ** 6 - 2.98711084340665e71 * cos(theta) ** 4 + 3.07949571485221e69 * cos(theta) ** 2 - 4.63082062383791e66 ) * cos(40 * phi) ) # @torch.jit.script def Yl54_m41(theta, phi): return ( 3.23380452518134e-69 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 5.11540893711331e76 * cos(theta) ** 13 - 3.72898969247512e76 * cos(theta) ** 11 + 9.76640157553008e75 * cos(theta) ** 9 - 1.13783319326564e75 * cos(theta) ** 7 + 5.91447946994516e73 * cos(theta) ** 5 - 1.19484433736266e72 * cos(theta) ** 3 + 6.15899142970443e69 * cos(theta) ) * cos(41 * phi) ) # @torch.jit.script def Yl54_m42(theta, phi): return ( 9.15390649193927e-71 * (1.0 - cos(theta) ** 2) ** 21 * ( 6.6500316182473e77 * cos(theta) ** 12 - 4.10188866172263e77 * cos(theta) ** 10 + 8.78976141797707e76 * cos(theta) ** 8 - 7.96483235285948e75 * cos(theta) ** 6 + 2.95723973497258e74 * cos(theta) ** 4 - 3.58453301208798e72 * cos(theta) ** 2 + 6.15899142970443e69 ) * cos(42 * phi) ) # @torch.jit.script def Yl54_m43(theta, phi): return ( 2.68305750962004e-72 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 7.98003794189676e78 * cos(theta) ** 11 - 4.10188866172263e78 * cos(theta) ** 9 + 7.03180913438166e77 * cos(theta) ** 7 - 4.77889941171569e76 * cos(theta) ** 5 + 1.18289589398903e75 * cos(theta) ** 3 - 7.16906602417595e72 * cos(theta) ) * cos(43 * phi) ) # @torch.jit.script def Yl54_m44(theta, phi): return ( 8.17185404391848e-74 * (1.0 - cos(theta) ** 2) ** 22 * ( 8.77804173608644e79 * cos(theta) ** 10 - 3.69169979555037e79 * cos(theta) ** 8 + 4.92226639406716e78 * cos(theta) ** 6 - 2.38944970585784e77 * cos(theta) ** 4 + 3.5486876819671e75 * cos(theta) ** 2 - 7.16906602417595e72 ) * cos(44 * phi) ) # @torch.jit.script def Yl54_m45(theta, phi): return ( 2.59718570521719e-75 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 8.77804173608644e80 * cos(theta) ** 9 - 2.9533598364403e80 * cos(theta) ** 7 + 2.9533598364403e79 * cos(theta) ** 5 - 9.55779882343138e77 * cos(theta) ** 3 + 7.09737536393419e75 * cos(theta) ) * cos(45 * phi) ) # @torch.jit.script def Yl54_m46(theta, phi): return ( 8.6572856840573e-77 * (1.0 - cos(theta) ** 2) ** 23 * ( 7.90023756247779e81 * cos(theta) ** 8 - 2.06735188550821e81 * cos(theta) ** 6 + 1.47667991822015e80 * cos(theta) ** 4 - 2.86733964702941e78 * cos(theta) ** 2 + 7.09737536393419e75 ) * cos(46 * phi) ) # @torch.jit.script def Yl54_m47(theta, phi): return ( 3.04562247566571e-78 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 6.32019004998223e82 * cos(theta) ** 7 - 1.24041113130492e82 * cos(theta) ** 5 + 5.90671967288059e80 * cos(theta) ** 3 - 5.73467929405883e78 * cos(theta) ) * cos(47 * phi) ) # @torch.jit.script def Yl54_m48(theta, phi): return ( 1.13979556525346e-79 * (1.0 - cos(theta) ** 2) ** 24 * ( 4.42413303498756e83 * cos(theta) ** 6 - 6.20205565652462e82 * cos(theta) ** 4 + 1.77201590186418e81 * cos(theta) ** 2 - 5.73467929405883e78 ) * cos(48 * phi) ) # @torch.jit.script def Yl54_m49(theta, phi): return ( 4.58493016708853e-81 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 2.65447982099254e84 * cos(theta) ** 5 - 2.48082226260985e83 * cos(theta) ** 3 + 3.54403180372835e81 * cos(theta) ) * cos(49 * phi) ) # @torch.jit.script def Yl54_m50(theta, phi): return ( 2.01062488550386e-82 * (1.0 - cos(theta) ** 2) ** 25 * ( 1.32723991049627e85 * cos(theta) ** 4 - 7.44246678782954e83 * cos(theta) ** 2 + 3.54403180372835e81 ) * cos(50 * phi) ) # @torch.jit.script def Yl54_m51(theta, phi): return ( 9.81084486217675e-84 * (1.0 - cos(theta) ** 2) ** 25.5 * (5.30895964198508e85 * cos(theta) ** 3 - 1.48849335756591e84 * cos(theta)) * cos(51 * phi) ) # @torch.jit.script def Yl54_m52(theta, phi): return ( 5.50164860682572e-85 * (1.0 - cos(theta) ** 2) ** 26 * (1.59268789259552e86 * cos(theta) ** 2 - 1.48849335756591e84) * cos(52 * phi) ) # @torch.jit.script def Yl54_m53(theta, phi): return ( 11.9797191299205 * (1.0 - cos(theta) ** 2) ** 26.5 * cos(53 * phi) * cos(theta) ) # @torch.jit.script def Yl54_m54(theta, phi): return 1.15274901074596 * (1.0 - cos(theta) ** 2) ** 27 * cos(54 * phi) # @torch.jit.script def Yl55_m_minus_55(theta, phi): return 1.15797692423668 * (1.0 - cos(theta) ** 2) ** 27.5 * sin(55 * phi) # @torch.jit.script def Yl55_m_minus_54(theta, phi): return 12.1449644411629 * (1.0 - cos(theta) ** 2) ** 27 * sin(54 * phi) * cos(theta) # @torch.jit.script def Yl55_m_minus_53(theta, phi): return ( 5.1646075068539e-87 * (1.0 - cos(theta) ** 2) ** 26.5 * (1.73602980292912e88 * cos(theta) ** 2 - 1.59268789259552e86) * sin(53 * phi) ) # @torch.jit.script def Yl55_m_minus_52(theta, phi): return ( 9.29629351233703e-86 * (1.0 - cos(theta) ** 2) ** 26 * (5.78676600976373e87 * cos(theta) ** 3 - 1.59268789259552e86 * cos(theta)) * sin(52 * phi) ) # @torch.jit.script def Yl55_m_minus_51(theta, phi): return ( 1.9232321563685e-84 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 1.44669150244093e87 * cos(theta) ** 4 - 7.96343946297761e85 * cos(theta) ** 2 + 3.72123339391477e83 ) * sin(51 * phi) ) # @torch.jit.script def Yl55_m_minus_50(theta, phi): return ( 4.42761292511395e-83 * (1.0 - cos(theta) ** 2) ** 25 * ( 2.89338300488187e86 * cos(theta) ** 5 - 2.65447982099254e85 * cos(theta) ** 3 + 3.72123339391477e83 * cos(theta) ) * sin(50 * phi) ) # @torch.jit.script def Yl55_m_minus_49(theta, phi): return ( 1.11132202422254e-81 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 4.82230500813644e85 * cos(theta) ** 6 - 6.63619955248134e84 * cos(theta) ** 4 + 1.86061669695739e83 * cos(theta) ** 2 - 5.90671967288059e80 ) * sin(49 * phi) ) # @torch.jit.script def Yl55_m_minus_48(theta, phi): return ( 2.99851075540521e-80 * (1.0 - cos(theta) ** 2) ** 24 * ( 6.88900715448063e84 * cos(theta) ** 7 - 1.32723991049627e84 * cos(theta) ** 5 + 6.20205565652462e82 * cos(theta) ** 3 - 5.90671967288059e80 * cos(theta) ) * sin(48 * phi) ) # @torch.jit.script def Yl55_m_minus_47(theta, phi): return ( 8.60734512043714e-79 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 8.61125894310079e83 * cos(theta) ** 8 - 2.21206651749378e83 * cos(theta) ** 6 + 1.55051391413116e82 * cos(theta) ** 4 - 2.9533598364403e80 * cos(theta) ** 2 + 7.16834911757353e77 ) * sin(47 * phi) ) # @torch.jit.script def Yl55_m_minus_46(theta, phi): return ( 2.60789773650125e-77 * (1.0 - cos(theta) ** 2) ** 23 * ( 9.56806549233421e82 * cos(theta) ** 9 - 3.16009502499112e82 * cos(theta) ** 7 + 3.10102782826231e81 * cos(theta) ** 5 - 9.84453278813432e79 * cos(theta) ** 3 + 7.16834911757353e77 * cos(theta) ) * sin(46 * phi) ) # @torch.jit.script def Yl55_m_minus_45(theta, phi): return ( 8.28802866192487e-76 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 9.56806549233421e81 * cos(theta) ** 10 - 3.9501187812389e81 * cos(theta) ** 8 + 5.16837971377052e80 * cos(theta) ** 6 - 2.46113319703358e79 * cos(theta) ** 4 + 3.58417455878677e77 * cos(theta) ** 2 - 7.09737536393419e74 ) * sin(45 * phi) ) # @torch.jit.script def Yl55_m_minus_44(theta, phi): return ( 2.74882813233161e-74 * (1.0 - cos(theta) ** 2) ** 22 * ( 8.69824135666747e80 * cos(theta) ** 11 - 4.38902086804322e80 * cos(theta) ** 9 + 7.38339959110074e79 * cos(theta) ** 7 - 4.92226639406716e78 * cos(theta) ** 5 + 1.19472485292892e77 * cos(theta) ** 3 - 7.09737536393419e74 * cos(theta) ) * sin(44 * phi) ) # @torch.jit.script def Yl55_m_minus_43(theta, phi): return ( 9.47448924644705e-73 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 7.24853446388956e79 * cos(theta) ** 12 - 4.38902086804322e79 * cos(theta) ** 10 + 9.22924948887592e78 * cos(theta) ** 8 - 8.20377732344527e77 * cos(theta) ** 6 + 2.98681213232231e76 * cos(theta) ** 4 - 3.5486876819671e74 * cos(theta) ** 2 + 5.97422168681329e71 ) * sin(43 * phi) ) # @torch.jit.script def Yl55_m_minus_42(theta, phi): return ( 3.38174238842709e-71 * (1.0 - cos(theta) ** 2) ** 21 * ( 5.5757957414535e78 * cos(theta) ** 13 - 3.99001897094838e78 * cos(theta) ** 11 + 1.02547216543066e78 * cos(theta) ** 9 - 1.17196818906361e77 * cos(theta) ** 7 + 5.97362426464461e75 * cos(theta) ** 5 - 1.18289589398903e74 * cos(theta) ** 3 + 5.97422168681329e71 * cos(theta) ) * sin(42 * phi) ) # @torch.jit.script def Yl55_m_minus_41(theta, phi): return ( 1.24620763069112e-69 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 3.98271124389536e77 * cos(theta) ** 14 - 3.32501580912365e77 * cos(theta) ** 12 + 1.02547216543066e77 * cos(theta) ** 10 - 1.46496023632951e76 * cos(theta) ** 8 + 9.95604044107435e74 * cos(theta) ** 6 - 2.95723973497258e73 * cos(theta) ** 4 + 2.98711084340665e71 * cos(theta) ** 2 - 4.39927959264602e68 ) * sin(41 * phi) ) # @torch.jit.script def Yl55_m_minus_40(theta, phi): return ( 4.72902546055906e-68 * (1.0 - cos(theta) ** 2) ** 20 * ( 2.65514082926357e76 * cos(theta) ** 15 - 2.55770446855665e76 * cos(theta) ** 13 + 9.3224742311878e75 * cos(theta) ** 11 - 1.62773359592168e75 * cos(theta) ** 9 + 1.42229149158205e74 * cos(theta) ** 7 - 5.91447946994516e72 * cos(theta) ** 5 + 9.95703614468882e70 * cos(theta) ** 3 - 4.39927959264602e68 * cos(theta) ) * sin(40 * phi) ) # @torch.jit.script def Yl55_m_minus_39(theta, phi): return ( 1.84371354461739e-66 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 1.65946301828973e75 * cos(theta) ** 16 - 1.82693176325475e75 * cos(theta) ** 14 + 7.76872852598984e74 * cos(theta) ** 12 - 1.62773359592168e74 * cos(theta) ** 10 + 1.77786436447756e73 * cos(theta) ** 8 - 9.85746578324193e71 * cos(theta) ** 6 + 2.48925903617221e70 * cos(theta) ** 4 - 2.19963979632301e68 * cos(theta) ** 2 + 2.8942628898987e65 ) * sin(39 * phi) ) # @torch.jit.script def Yl55_m_minus_38(theta, phi): return ( 7.37024345330584e-65 * (1.0 - cos(theta) ** 2) ** 19 * ( 9.7615471664102e73 * cos(theta) ** 17 - 1.2179545088365e74 * cos(theta) ** 15 + 5.97594501999218e73 * cos(theta) ** 13 - 1.47975781447425e73 * cos(theta) ** 11 + 1.97540484941951e72 * cos(theta) ** 9 - 1.40820939760599e71 * cos(theta) ** 7 + 4.97851807234441e69 * cos(theta) ** 5 - 7.33213265441003e67 * cos(theta) ** 3 + 2.8942628898987e65 * cos(theta) ) * sin(38 * phi) ) # @torch.jit.script def Yl55_m_minus_37(theta, phi): return ( 3.01550158101617e-63 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 5.42308175911678e72 * cos(theta) ** 18 - 7.61221568022814e72 * cos(theta) ** 16 + 4.26853215713727e72 * cos(theta) ** 14 - 1.23313151206188e72 * cos(theta) ** 12 + 1.97540484941951e71 * cos(theta) ** 10 - 1.76026174700749e70 * cos(theta) ** 8 + 8.29753012057402e68 * cos(theta) ** 6 - 1.83303316360251e67 * cos(theta) ** 4 + 1.44713144494935e65 * cos(theta) ** 2 - 1.72895035238871e62 ) * sin(37 * phi) ) # @torch.jit.script def Yl55_m_minus_36(theta, phi): return ( 1.2607537675682e-61 * (1.0 - cos(theta) ** 2) ** 18 * ( 2.85425355742988e71 * cos(theta) ** 19 - 4.47777392954596e71 * cos(theta) ** 17 + 2.84568810475818e71 * cos(theta) ** 15 - 9.4856270158606e70 * cos(theta) ** 13 + 1.79582259038138e70 * cos(theta) ** 11 - 1.95584638556388e69 * cos(theta) ** 9 + 1.18536144579629e68 * cos(theta) ** 7 - 3.66606632720501e66 * cos(theta) ** 5 + 4.82377148316449e64 * cos(theta) ** 3 - 1.72895035238871e62 * cos(theta) ) * sin(36 * phi) ) # @torch.jit.script def Yl55_m_minus_35(theta, phi): return ( 5.37855939228719e-60 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 1.42712677871494e70 * cos(theta) ** 20 - 2.48765218308109e70 * cos(theta) ** 18 + 1.77855506547386e70 * cos(theta) ** 16 - 6.77544786847186e69 * cos(theta) ** 14 + 1.49651882531781e69 * cos(theta) ** 12 - 1.95584638556388e68 * cos(theta) ** 10 + 1.48170180724536e67 * cos(theta) ** 8 - 6.11011054534169e65 * cos(theta) ** 6 + 1.20594287079112e64 * cos(theta) ** 4 - 8.64475176194354e61 * cos(theta) ** 2 + 9.49972721092696e58 ) * sin(35 * phi) ) # @torch.jit.script def Yl55_m_minus_34(theta, phi): return ( 2.33828191516168e-58 * (1.0 - cos(theta) ** 2) ** 17 * ( 6.79584180340448e68 * cos(theta) ** 21 - 1.30929062267426e69 * cos(theta) ** 19 + 1.04620886204345e69 * cos(theta) ** 17 - 4.51696524564791e68 * cos(theta) ** 15 + 1.15116832716755e68 * cos(theta) ** 13 - 1.77804216869443e67 * cos(theta) ** 11 + 1.64633534138373e66 * cos(theta) ** 9 - 8.72872935048813e64 * cos(theta) ** 7 + 2.41188574158225e63 * cos(theta) ** 5 - 2.88158392064785e61 * cos(theta) ** 3 + 9.49972721092696e58 * cos(theta) ) * sin(34 * phi) ) # @torch.jit.script def Yl55_m_minus_33(theta, phi): return ( 1.03467323403691e-56 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 3.08901900154749e67 * cos(theta) ** 22 - 6.54645311337129e67 * cos(theta) ** 20 + 5.81227145579694e67 * cos(theta) ** 18 - 2.82310327852994e67 * cos(theta) ** 16 + 8.22263090833964e66 * cos(theta) ** 14 - 1.48170180724536e66 * cos(theta) ** 12 + 1.64633534138373e65 * cos(theta) ** 10 - 1.09109116881102e64 * cos(theta) ** 8 + 4.01980956930374e62 * cos(theta) ** 6 - 7.20395980161961e60 * cos(theta) ** 4 + 4.74986360546348e58 * cos(theta) ** 2 - 4.85175036308834e55 ) * sin(33 * phi) ) # @torch.jit.script def Yl55_m_minus_32(theta, phi): return ( 4.65487977427384e-55 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.34305173980326e66 * cos(theta) ** 23 - 3.1173586254149e66 * cos(theta) ** 21 + 3.05909023989313e66 * cos(theta) ** 19 - 1.66064898737055e66 * cos(theta) ** 17 + 5.48175393889309e65 * cos(theta) ** 15 - 1.13977062095797e65 * cos(theta) ** 13 + 1.49666849216703e64 * cos(theta) ** 11 - 1.21232352090113e63 * cos(theta) ** 9 + 5.74258509900535e61 * cos(theta) ** 7 - 1.44079196032392e60 * cos(theta) ** 5 + 1.58328786848783e58 * cos(theta) ** 3 - 4.85175036308834e55 * cos(theta) ) * sin(32 * phi) ) # @torch.jit.script def Yl55_m_minus_31(theta, phi): return ( 2.12703049175667e-53 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 5.5960489158469e64 * cos(theta) ** 24 - 1.41698119337041e65 * cos(theta) ** 22 + 1.52954511994656e65 * cos(theta) ** 20 - 9.22582770761419e64 * cos(theta) ** 18 + 3.42609621180818e64 * cos(theta) ** 16 - 8.14121872112835e63 * cos(theta) ** 14 + 1.24722374347253e63 * cos(theta) ** 12 - 1.21232352090113e62 * cos(theta) ** 10 + 7.17823137375669e60 * cos(theta) ** 8 - 2.4013199338732e59 * cos(theta) ** 6 + 3.95821967121957e57 * cos(theta) ** 4 - 2.42587518154417e55 * cos(theta) ** 2 + 2.32363523136415e52 ) * sin(31 * phi) ) # @torch.jit.script def Yl55_m_minus_30(theta, phi): return ( 9.862634654419e-52 * (1.0 - cos(theta) ** 2) ** 15 * ( 2.23841956633876e63 * cos(theta) ** 25 - 6.16078779726265e63 * cos(theta) ** 23 + 7.28354819022173e63 * cos(theta) ** 21 - 4.85569879348115e63 * cos(theta) ** 19 + 2.01535071282834e63 * cos(theta) ** 17 - 5.4274791474189e62 * cos(theta) ** 15 + 9.5940287959425e61 * cos(theta) ** 13 - 1.1021122917283e61 * cos(theta) ** 11 + 7.97581263750743e59 * cos(theta) ** 9 - 3.43045704839029e58 * cos(theta) ** 7 + 7.91643934243914e56 * cos(theta) ** 5 - 8.08625060514723e54 * cos(theta) ** 3 + 2.32363523136415e52 * cos(theta) ) * sin(30 * phi) ) # @torch.jit.script def Yl55_m_minus_29(theta, phi): return ( 4.63648738531302e-50 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 8.60930602437985e61 * cos(theta) ** 26 - 2.5669949155261e62 * cos(theta) ** 24 + 3.31070372282806e62 * cos(theta) ** 22 - 2.42784939674058e62 * cos(theta) ** 20 + 1.11963928490463e62 * cos(theta) ** 18 - 3.39217446713681e61 * cos(theta) ** 16 + 6.8528777113875e60 * cos(theta) ** 14 - 9.18426909773583e59 * cos(theta) ** 12 + 7.97581263750743e58 * cos(theta) ** 10 - 4.28807131048787e57 * cos(theta) ** 8 + 1.31940655707319e56 * cos(theta) ** 6 - 2.02156265128681e54 * cos(theta) ** 4 + 1.16181761568207e52 * cos(theta) ** 2 - 1.05141865672586e49 ) * sin(29 * phi) ) # @torch.jit.script def Yl55_m_minus_28(theta, phi): return ( 2.20805866411675e-48 * (1.0 - cos(theta) ** 2) ** 14 * ( 3.18863186088143e60 * cos(theta) ** 27 - 1.02679796621044e61 * cos(theta) ** 25 + 1.43943640122959e61 * cos(theta) ** 23 - 1.15611876035266e61 * cos(theta) ** 21 + 5.89283834160334e60 * cos(theta) ** 19 - 1.9953967453746e60 * cos(theta) ** 17 + 4.568585140925e59 * cos(theta) ** 15 - 7.06482238287371e58 * cos(theta) ** 13 + 7.25073876137039e57 * cos(theta) ** 11 - 4.76452367831985e56 * cos(theta) ** 9 + 1.88486651010456e55 * cos(theta) ** 7 - 4.04312530257361e53 * cos(theta) ** 5 + 3.87272538560691e51 * cos(theta) ** 3 - 1.05141865672586e49 * cos(theta) ) * sin(28 * phi) ) # @torch.jit.script def Yl55_m_minus_27(theta, phi): return ( 1.06445834118375e-46 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.13879709317194e59 * cos(theta) ** 28 - 3.94922294696324e59 * cos(theta) ** 26 + 5.99765167178996e59 * cos(theta) ** 24 - 5.25508527433025e59 * cos(theta) ** 22 + 2.94641917080167e59 * cos(theta) ** 20 - 1.10855374743033e59 * cos(theta) ** 18 + 2.85536571307813e58 * cos(theta) ** 16 - 5.04630170205265e57 * cos(theta) ** 14 + 6.04228230114199e56 * cos(theta) ** 12 - 4.76452367831985e55 * cos(theta) ** 10 + 2.3560831376307e54 * cos(theta) ** 8 - 6.73854217095602e52 * cos(theta) ** 6 + 9.68181346401727e50 * cos(theta) ** 4 - 5.25709328362929e48 * cos(theta) ** 2 + 4.52417666405274e45 ) * sin(27 * phi) ) # @torch.jit.script def Yl55_m_minus_26(theta, phi): return ( 5.19080356973279e-45 * (1.0 - cos(theta) ** 2) ** 13 * ( 3.9268865281791e57 * cos(theta) ** 29 - 1.46267516554194e58 * cos(theta) ** 27 + 2.39906066871598e58 * cos(theta) ** 25 - 2.28481968449141e58 * cos(theta) ** 23 + 1.4030567480008e58 * cos(theta) ** 21 - 5.83449340752806e57 * cos(theta) ** 19 + 1.67962689004596e57 * cos(theta) ** 17 - 3.36420113470177e56 * cos(theta) ** 15 + 4.64790946241692e55 * cos(theta) ** 13 - 4.33138516210895e54 * cos(theta) ** 11 + 2.61787015292299e53 * cos(theta) ** 9 - 9.62648881565146e51 * cos(theta) ** 7 + 1.93636269280345e50 * cos(theta) ** 5 - 1.75236442787643e48 * cos(theta) ** 3 + 4.52417666405274e45 * cos(theta) ) * sin(26 * phi) ) # @torch.jit.script def Yl55_m_minus_25(theta, phi): return ( 2.55880818604889e-43 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 1.3089621760597e56 * cos(theta) ** 30 - 5.2238398769355e56 * cos(theta) ** 28 + 9.2271564181384e56 * cos(theta) ** 26 - 9.52008201871422e56 * cos(theta) ** 24 + 6.37753067273089e56 * cos(theta) ** 22 - 2.91724670376403e56 * cos(theta) ** 20 + 9.33126050025531e55 * cos(theta) ** 18 - 2.10262570918861e55 * cos(theta) ** 16 + 3.3199353302978e54 * cos(theta) ** 14 - 3.6094876350908e53 * cos(theta) ** 12 + 2.61787015292299e52 * cos(theta) ** 10 - 1.20331110195643e51 * cos(theta) ** 8 + 3.22727115467243e49 * cos(theta) ** 6 - 4.38091106969107e47 * cos(theta) ** 4 + 2.26208833202637e45 * cos(theta) ** 2 - 1.861801096318e42 ) * sin(25 * phi) ) # @torch.jit.script def Yl55_m_minus_24(theta, phi): return ( 1.27427620027281e-41 * (1.0 - cos(theta) ** 2) ** 12 * ( 4.22245863245064e54 * cos(theta) ** 31 - 1.801324095495e55 * cos(theta) ** 29 + 3.41746534005126e55 * cos(theta) ** 27 - 3.80803280748569e55 * cos(theta) ** 25 + 2.77283942292647e55 * cos(theta) ** 23 - 1.38916509703049e55 * cos(theta) ** 21 + 4.91118973697648e54 * cos(theta) ** 19 - 1.23683865246389e54 * cos(theta) ** 17 + 2.21329022019853e53 * cos(theta) ** 15 - 2.77652895006984e52 * cos(theta) ** 13 + 2.37988195720272e51 * cos(theta) ** 11 - 1.33701233550715e50 * cos(theta) ** 9 + 4.61038736381775e48 * cos(theta) ** 7 - 8.76182213938215e46 * cos(theta) ** 5 + 7.54029444008791e44 * cos(theta) ** 3 - 1.861801096318e42 * cos(theta) ) * sin(24 * phi) ) # @torch.jit.script def Yl55_m_minus_23(theta, phi): return ( 6.40696138729007e-40 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.31951832264083e53 * cos(theta) ** 32 - 6.00441365165e53 * cos(theta) ** 30 + 1.22052333573259e54 * cos(theta) ** 28 - 1.46462800287911e54 * cos(theta) ** 26 + 1.1553497595527e54 * cos(theta) ** 24 - 6.31438680468405e53 * cos(theta) ** 22 + 2.45559486848824e53 * cos(theta) ** 20 - 6.87132584702159e52 * cos(theta) ** 18 + 1.38330638762408e52 * cos(theta) ** 16 - 1.9832349643356e51 * cos(theta) ** 14 + 1.9832349643356e50 * cos(theta) ** 12 - 1.33701233550715e49 * cos(theta) ** 10 + 5.76298420477219e47 * cos(theta) ** 8 - 1.46030368989702e46 * cos(theta) ** 6 + 1.88507361002198e44 * cos(theta) ** 4 - 9.30900548159001e41 * cos(theta) ** 2 + 7.36471952657437e38 ) * sin(23 * phi) ) # @torch.jit.script def Yl55_m_minus_22(theta, phi): return ( 3.25054646110025e-38 * (1.0 - cos(theta) ** 2) ** 11 * ( 3.99854037163887e51 * cos(theta) ** 33 - 1.93690762956452e52 * cos(theta) ** 31 + 4.2087011576986e52 * cos(theta) ** 29 - 5.42454815881152e52 * cos(theta) ** 27 + 4.62139903821079e52 * cos(theta) ** 25 - 2.74538556725393e52 * cos(theta) ** 23 + 1.16933088975631e52 * cos(theta) ** 21 - 3.6164872879061e51 * cos(theta) ** 19 + 8.13709639778872e50 * cos(theta) ** 17 - 1.3221566428904e50 * cos(theta) ** 15 + 1.52556535718123e49 * cos(theta) ** 13 - 1.21546575955195e48 * cos(theta) ** 11 + 6.40331578308021e46 * cos(theta) ** 9 - 2.08614812842432e45 * cos(theta) ** 7 + 3.77014722004395e43 * cos(theta) ** 5 - 3.10300182719667e41 * cos(theta) ** 3 + 7.36471952657437e38 * cos(theta) ) * sin(22 * phi) ) # @torch.jit.script def Yl55_m_minus_21(theta, phi): return ( 1.66318744915687e-36 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.17604128577614e50 * cos(theta) ** 34 - 6.05283634238911e50 * cos(theta) ** 32 + 1.40290038589953e51 * cos(theta) ** 30 - 1.93733862814697e51 * cos(theta) ** 28 + 1.77746116854261e51 * cos(theta) ** 26 - 1.14391065302247e51 * cos(theta) ** 24 + 5.3151404079832e50 * cos(theta) ** 22 - 1.80824364395305e50 * cos(theta) ** 20 + 4.52060910988262e49 * cos(theta) ** 18 - 8.26347901806501e48 * cos(theta) ** 16 + 1.08968954084374e48 * cos(theta) ** 14 - 1.01288813295996e47 * cos(theta) ** 12 + 6.40331578308021e45 * cos(theta) ** 10 - 2.6076851605304e44 * cos(theta) ** 8 + 6.28357870007326e42 * cos(theta) ** 6 - 7.75750456799167e40 * cos(theta) ** 4 + 3.68235976328719e38 * cos(theta) ** 2 - 2.81310906286263e35 ) * sin(21 * phi) ) # @torch.jit.script def Yl55_m_minus_20(theta, phi): return ( 8.57792050916049e-35 * (1.0 - cos(theta) ** 2) ** 10 * ( 3.36011795936039e48 * cos(theta) ** 35 - 1.834192831027e49 * cos(theta) ** 33 + 4.52548511580494e49 * cos(theta) ** 31 - 6.68047802809301e49 * cos(theta) ** 29 + 6.58318951312078e49 * cos(theta) ** 27 - 4.57564261208989e49 * cos(theta) ** 25 + 2.31093061216661e49 * cos(theta) ** 23 - 8.61068401882404e48 * cos(theta) ** 21 + 2.3792679525698e48 * cos(theta) ** 19 - 4.86087001062648e47 * cos(theta) ** 17 + 7.26459693895825e46 * cos(theta) ** 15 - 7.79144717661508e45 * cos(theta) ** 13 + 5.82119616643655e44 * cos(theta) ** 11 - 2.89742795614489e43 * cos(theta) ** 9 + 8.97654100010465e41 * cos(theta) ** 7 - 1.55150091359833e40 * cos(theta) ** 5 + 1.22745325442906e38 * cos(theta) ** 3 - 2.81310906286263e35 * cos(theta) ) * sin(20 * phi) ) # @torch.jit.script def Yl55_m_minus_19(theta, phi): return ( 4.45721824354592e-33 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 9.33366099822331e46 * cos(theta) ** 36 - 5.39468479713824e47 * cos(theta) ** 34 + 1.41421409868904e48 * cos(theta) ** 32 - 2.22682600936434e48 * cos(theta) ** 30 + 2.35113911182885e48 * cos(theta) ** 28 - 1.7598625431115e48 * cos(theta) ** 26 + 9.62887755069421e47 * cos(theta) ** 24 - 3.91394728128366e47 * cos(theta) ** 22 + 1.1896339762849e47 * cos(theta) ** 20 - 2.70048333923693e46 * cos(theta) ** 18 + 4.54037308684891e45 * cos(theta) ** 16 - 5.56531941186791e44 * cos(theta) ** 14 + 4.85099680536379e43 * cos(theta) ** 12 - 2.89742795614489e42 * cos(theta) ** 10 + 1.12206762501308e41 * cos(theta) ** 8 - 2.58583485599723e39 * cos(theta) ** 6 + 3.06863313607266e37 * cos(theta) ** 4 - 1.40655453143132e35 * cos(theta) ** 2 + 1.04189224550468e32 ) * sin(19 * phi) ) # @torch.jit.script def Yl55_m_minus_18(theta, phi): return ( 2.33227964147739e-31 * (1.0 - cos(theta) ** 2) ** 9 * ( 2.52261108060089e45 * cos(theta) ** 37 - 1.54133851346807e46 * cos(theta) ** 35 + 4.28549726875468e46 * cos(theta) ** 33 - 7.18330970762689e46 * cos(theta) ** 31 + 8.10737624768569e46 * cos(theta) ** 29 - 6.51800941893147e46 * cos(theta) ** 27 + 3.85155102027768e46 * cos(theta) ** 25 - 1.70171620925376e46 * cos(theta) ** 23 + 5.66492369659476e45 * cos(theta) ** 21 - 1.42130702065102e45 * cos(theta) ** 19 + 2.67080769814642e44 * cos(theta) ** 17 - 3.71021294124528e43 * cos(theta) ** 15 + 3.731536004126e42 * cos(theta) ** 13 - 2.63402541467717e41 * cos(theta) ** 11 + 1.24674180557009e40 * cos(theta) ** 9 - 3.69404979428175e38 * cos(theta) ** 7 + 6.13726627214531e36 * cos(theta) ** 5 - 4.68851510477106e34 * cos(theta) ** 3 + 1.04189224550468e32 * cos(theta) ) * sin(18 * phi) ) # @torch.jit.script def Yl55_m_minus_17(theta, phi): return ( 1.22838314773781e-29 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 6.63845021210762e43 * cos(theta) ** 38 - 4.28149587074464e44 * cos(theta) ** 36 + 1.26044037316314e45 * cos(theta) ** 34 - 2.2447842836334e45 * cos(theta) ** 32 + 2.70245874922856e45 * cos(theta) ** 30 - 2.32786050676124e45 * cos(theta) ** 28 + 1.48136577702988e45 * cos(theta) ** 26 - 7.09048420522401e44 * cos(theta) ** 24 + 2.57496531663398e44 * cos(theta) ** 22 - 7.10653510325508e43 * cos(theta) ** 20 + 1.48378205452579e43 * cos(theta) ** 18 - 2.3188830882783e42 * cos(theta) ** 16 + 2.66538286009e41 * cos(theta) ** 14 - 2.19502117889764e40 * cos(theta) ** 12 + 1.24674180557009e39 * cos(theta) ** 10 - 4.61756224285219e37 * cos(theta) ** 8 + 1.02287771202422e36 * cos(theta) ** 6 - 1.17212877619276e34 * cos(theta) ** 4 + 5.2094612275234e31 * cos(theta) ** 2 - 3.75592013520072e28 ) * sin(17 * phi) ) # @torch.jit.script def Yl55_m_minus_16(theta, phi): return ( 6.50927172782842e-28 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.70216672105324e42 * cos(theta) ** 39 - 1.1571610461472e43 * cos(theta) ** 37 + 3.60125820903755e43 * cos(theta) ** 35 - 6.80237661707092e43 * cos(theta) ** 33 + 8.71760886847924e43 * cos(theta) ** 31 - 8.02710519572841e43 * cos(theta) ** 29 + 5.48653991492548e43 * cos(theta) ** 27 - 2.83619368208961e43 * cos(theta) ** 25 + 1.11955013766695e43 * cos(theta) ** 23 - 3.38406433488337e42 * cos(theta) ** 21 + 7.80937923434624e41 * cos(theta) ** 19 - 1.36404887545782e41 * cos(theta) ** 17 + 1.77692190672666e40 * cos(theta) ** 15 - 1.68847782992126e39 * cos(theta) ** 13 + 1.13340164142736e38 * cos(theta) ** 11 - 5.13062471428021e36 * cos(theta) ** 9 + 1.46125387432031e35 * cos(theta) ** 7 - 2.34425755238553e33 * cos(theta) ** 5 + 1.73648707584113e31 * cos(theta) ** 3 - 3.75592013520072e28 * cos(theta) ) * sin(16 * phi) ) # @torch.jit.script def Yl55_m_minus_15(theta, phi): return ( 3.46889833134161e-26 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 4.25541680263309e40 * cos(theta) ** 40 - 3.04516064775579e41 * cos(theta) ** 38 + 1.00034950251043e42 * cos(theta) ** 36 - 2.00069900502086e42 * cos(theta) ** 34 + 2.72425277139976e42 * cos(theta) ** 32 - 2.67570173190947e42 * cos(theta) ** 30 + 1.95947854104481e42 * cos(theta) ** 28 - 1.09084372388062e42 * cos(theta) ** 26 + 4.66479224027896e41 * cos(theta) ** 24 - 1.53821106131062e41 * cos(theta) ** 22 + 3.90468961717312e40 * cos(theta) ** 20 - 7.57804930809901e39 * cos(theta) ** 18 + 1.11057619170417e39 * cos(theta) ** 16 - 1.2060555928009e38 * cos(theta) ** 14 + 9.44501367856129e36 * cos(theta) ** 12 - 5.13062471428021e35 * cos(theta) ** 10 + 1.82656734290039e34 * cos(theta) ** 8 - 3.90709592064255e32 * cos(theta) ** 6 + 4.34121768960283e30 * cos(theta) ** 4 - 1.87796006760036e28 * cos(theta) ** 2 + 1.32250708985941e25 ) * sin(15 * phi) ) # @torch.jit.script def Yl55_m_minus_14(theta, phi): return ( 1.85837142862346e-24 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.03790653722758e39 * cos(theta) ** 41 - 7.80810422501484e39 * cos(theta) ** 39 + 2.70364730408224e40 * cos(theta) ** 37 - 5.71628287148817e40 * cos(theta) ** 35 + 8.25531142848413e40 * cos(theta) ** 33 - 8.63129590938538e40 * cos(theta) ** 31 + 6.75682255532694e40 * cos(theta) ** 29 - 4.04016194029858e40 * cos(theta) ** 27 + 1.86591689611158e40 * cos(theta) ** 25 - 6.68787417961141e39 * cos(theta) ** 23 + 1.85937600817768e39 * cos(theta) ** 21 - 3.98844700426264e38 * cos(theta) ** 19 + 6.53280112767156e37 * cos(theta) ** 17 - 8.04037061867269e36 * cos(theta) ** 15 + 7.26539513735484e35 * cos(theta) ** 13 - 4.66420428570928e34 * cos(theta) ** 11 + 2.02951926988932e33 * cos(theta) ** 9 - 5.58156560091792e31 * cos(theta) ** 7 + 8.68243537920566e29 * cos(theta) ** 5 - 6.2598668920012e27 * cos(theta) ** 3 + 1.32250708985941e25 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl55_m_minus_13(theta, phi): return ( 1.00041849117088e-22 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 2.47120604101805e37 * cos(theta) ** 42 - 1.95202605625371e38 * cos(theta) ** 40 + 7.11486132653221e38 * cos(theta) ** 38 - 1.58785635319116e39 * cos(theta) ** 36 + 2.42803277308357e39 * cos(theta) ** 34 - 2.69727997168293e39 * cos(theta) ** 32 + 2.25227418510898e39 * cos(theta) ** 30 - 1.44291497867807e39 * cos(theta) ** 28 + 7.17660344658301e38 * cos(theta) ** 26 - 2.78661424150475e38 * cos(theta) ** 24 + 8.45170912808035e37 * cos(theta) ** 22 - 1.99422350213132e37 * cos(theta) ** 20 + 3.62933395981753e36 * cos(theta) ** 18 - 5.02523163667043e35 * cos(theta) ** 16 + 5.18956795525346e34 * cos(theta) ** 14 - 3.88683690475773e33 * cos(theta) ** 12 + 2.02951926988932e32 * cos(theta) ** 10 - 6.9769570011474e30 * cos(theta) ** 8 + 1.44707256320094e29 * cos(theta) ** 6 - 1.5649667230003e27 * cos(theta) ** 4 + 6.61253544929704e24 * cos(theta) ** 2 - 4.56351652815531e21 ) * sin(13 * phi) ) # @torch.jit.script def Yl55_m_minus_12(theta, phi): return ( 5.40966528397239e-21 * (1.0 - cos(theta) ** 2) ** 6 * ( 5.74699079306524e35 * cos(theta) ** 43 - 4.76103916159442e36 * cos(theta) ** 41 + 1.82432341705954e37 * cos(theta) ** 39 - 4.2915036572734e37 * cos(theta) ** 37 + 6.93723649452448e37 * cos(theta) ** 35 - 8.17357567176646e37 * cos(theta) ** 33 + 7.26540059712574e37 * cos(theta) ** 31 - 4.97556889199333e37 * cos(theta) ** 29 + 2.65800127651223e37 * cos(theta) ** 27 - 1.1146456966019e37 * cos(theta) ** 25 + 3.67465614264363e36 * cos(theta) ** 23 - 9.49630239110152e35 * cos(theta) ** 21 + 1.91017576832502e35 * cos(theta) ** 19 - 2.95601860980614e34 * cos(theta) ** 17 + 3.45971197016897e33 * cos(theta) ** 15 - 2.98987454212133e32 * cos(theta) ** 13 + 1.8450175180812e31 * cos(theta) ** 11 - 7.75217444571934e29 * cos(theta) ** 9 + 2.06724651885849e28 * cos(theta) ** 7 - 3.1299334460006e26 * cos(theta) ** 5 + 2.20417848309901e24 * cos(theta) ** 3 - 4.56351652815531e21 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl55_m_minus_11(theta, phi): return ( 2.93720415655174e-19 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.30613427115119e34 * cos(theta) ** 44 - 1.13358075276057e35 * cos(theta) ** 42 + 4.56080854264886e35 * cos(theta) ** 40 - 1.12934306770353e36 * cos(theta) ** 38 + 1.92701013736791e36 * cos(theta) ** 36 - 2.40399284463719e36 * cos(theta) ** 34 + 2.27043768660179e36 * cos(theta) ** 32 - 1.65852296399778e36 * cos(theta) ** 30 + 9.49286170182938e35 * cos(theta) ** 28 - 4.28709883308424e35 * cos(theta) ** 26 + 1.53110672610151e35 * cos(theta) ** 24 - 4.31650108686433e34 * cos(theta) ** 22 + 9.55087884162509e33 * cos(theta) ** 20 - 1.64223256100341e33 * cos(theta) ** 18 + 2.16231998135561e32 * cos(theta) ** 16 - 2.13562467294381e31 * cos(theta) ** 14 + 1.537514598401e30 * cos(theta) ** 12 - 7.75217444571934e28 * cos(theta) ** 10 + 2.58405814857311e27 * cos(theta) ** 8 - 5.21655574333433e25 * cos(theta) ** 6 + 5.51044620774753e23 * cos(theta) ** 4 - 2.28175826407765e21 * cos(theta) ** 2 + 1.54800424971347e18 ) * sin(11 * phi) ) # @torch.jit.script def Yl55_m_minus_10(theta, phi): return ( 1.60070889683529e-17 * (1.0 - cos(theta) ** 2) ** 5 * ( 2.9025206025582e32 * cos(theta) ** 45 - 2.63623430874552e33 * cos(theta) ** 43 + 1.11239232747533e34 * cos(theta) ** 41 - 2.89575145565007e34 * cos(theta) ** 39 + 5.20813550639976e34 * cos(theta) ** 37 - 6.8685509846777e34 * cos(theta) ** 35 + 6.88011420182362e34 * cos(theta) ** 33 - 5.35007407741218e34 * cos(theta) ** 31 + 3.27340058683772e34 * cos(theta) ** 29 - 1.58781438262379e34 * cos(theta) ** 27 + 6.12442690440605e33 * cos(theta) ** 25 - 1.87673960298449e33 * cos(theta) ** 23 + 4.54803754363099e32 * cos(theta) ** 21 - 8.64332926843899e31 * cos(theta) ** 19 + 1.27195293020918e31 * cos(theta) ** 17 - 1.42374978196254e30 * cos(theta) ** 15 + 1.18270353723154e29 * cos(theta) ** 13 - 7.04743131429031e27 * cos(theta) ** 11 + 2.87117572063679e26 * cos(theta) ** 9 - 7.45222249047762e24 * cos(theta) ** 7 + 1.10208924154951e23 * cos(theta) ** 5 - 7.60586088025884e20 * cos(theta) ** 3 + 1.54800424971347e18 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl55_m_minus_9(theta, phi): return ( 8.75281910443651e-16 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 6.30982739686566e30 * cos(theta) ** 46 - 5.99144161078528e31 * cos(theta) ** 44 + 2.64855316065555e32 * cos(theta) ** 42 - 7.23937863912517e32 * cos(theta) ** 40 + 1.37056197536836e33 * cos(theta) ** 38 - 1.90793082907714e33 * cos(theta) ** 36 + 2.02356300053636e33 * cos(theta) ** 34 - 1.67189814919131e33 * cos(theta) ** 32 + 1.09113352894591e33 * cos(theta) ** 30 - 5.67076565222782e32 * cos(theta) ** 28 + 2.35554880938694e32 * cos(theta) ** 26 - 7.81974834576871e31 * cos(theta) ** 24 + 2.06728979255954e31 * cos(theta) ** 22 - 4.3216646342195e30 * cos(theta) ** 20 + 7.06640516782878e29 * cos(theta) ** 18 - 8.89843613726587e28 * cos(theta) ** 16 + 8.44788240879672e27 * cos(theta) ** 14 - 5.87285942857526e26 * cos(theta) ** 12 + 2.87117572063679e25 * cos(theta) ** 10 - 9.31527811309702e23 * cos(theta) ** 8 + 1.83681540258251e22 * cos(theta) ** 6 - 1.90146522006471e20 * cos(theta) ** 4 + 7.74002124856734e17 * cos(theta) ** 2 - 517727173817214.0 ) * sin(9 * phi) ) # @torch.jit.script def Yl55_m_minus_8(theta, phi): return ( 4.80050436478467e-14 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.34251646741823e29 * cos(theta) ** 47 - 1.3314314690634e30 * cos(theta) ** 45 + 6.1594259550129e30 * cos(theta) ** 43 - 1.7657021071037e31 * cos(theta) ** 41 + 3.51426147530348e31 * cos(theta) ** 39 - 5.15656980831659e31 * cos(theta) ** 37 + 5.78160857296103e31 * cos(theta) ** 35 - 5.06635802785245e31 * cos(theta) ** 33 + 3.51978557724486e31 * cos(theta) ** 31 - 1.9554364318027e31 * cos(theta) ** 29 + 8.72425484958127e30 * cos(theta) ** 27 - 3.12789933830748e30 * cos(theta) ** 25 + 8.98821648938932e29 * cos(theta) ** 23 - 2.05793554010452e29 * cos(theta) ** 21 + 3.71916061464673e28 * cos(theta) ** 19 - 5.23437419839169e27 * cos(theta) ** 17 + 5.63192160586448e26 * cos(theta) ** 15 - 4.51758417582712e25 * cos(theta) ** 13 + 2.61015974603345e24 * cos(theta) ** 11 - 1.03503090145522e23 * cos(theta) ** 9 + 2.6240220036893e21 * cos(theta) ** 7 - 3.80293044012942e19 * cos(theta) ** 5 + 2.58000708285578e17 * cos(theta) ** 3 - 517727173817214.0 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl55_m_minus_7(theta, phi): return ( 2.639840955071e-12 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 2.7969093071213e27 * cos(theta) ** 48 - 2.89441623709434e28 * cos(theta) ** 46 + 1.39986953523021e29 * cos(theta) ** 44 - 4.20405263596119e29 * cos(theta) ** 42 + 8.7856536882587e29 * cos(theta) ** 40 - 1.35699205482016e30 * cos(theta) ** 38 + 1.60600238137806e30 * cos(theta) ** 36 - 1.49010530230954e30 * cos(theta) ** 34 + 1.09993299288902e30 * cos(theta) ** 32 - 6.51812143934233e29 * cos(theta) ** 30 + 3.11580530342188e29 * cos(theta) ** 28 - 1.20303820704134e29 * cos(theta) ** 26 + 3.74509020391222e28 * cos(theta) ** 24 - 9.35425245502056e27 * cos(theta) ** 22 + 1.85958030732336e27 * cos(theta) ** 20 - 2.90798566577316e26 * cos(theta) ** 18 + 3.5199510036653e25 * cos(theta) ** 16 - 3.22684583987651e24 * cos(theta) ** 14 + 2.17513312169454e23 * cos(theta) ** 12 - 1.03503090145522e22 * cos(theta) ** 10 + 3.28002750461163e20 * cos(theta) ** 8 - 6.3382174002157e18 * cos(theta) ** 6 + 6.45001770713945e16 * cos(theta) ** 4 - 258863586908607.0 * cos(theta) ** 2 + 171206075997.756 ) * sin(7 * phi) ) # @torch.jit.script def Yl55_m_minus_6(theta, phi): return ( 1.45502899264575e-10 * (1.0 - cos(theta) ** 2) ** 3 * ( 5.70797817779858e25 * cos(theta) ** 49 - 6.15833241934966e26 * cos(theta) ** 47 + 3.11082118940046e27 * cos(theta) ** 45 - 9.77686659525858e27 * cos(theta) ** 43 + 2.14284236298993e28 * cos(theta) ** 41 - 3.47946680723117e28 * cos(theta) ** 39 + 4.34054697669747e28 * cos(theta) ** 37 - 4.25744372088441e28 * cos(theta) ** 35 + 3.33313028148187e28 * cos(theta) ** 33 - 2.10261981914269e28 * cos(theta) ** 31 + 1.07441562186961e28 * cos(theta) ** 29 - 4.45569706311607e27 * cos(theta) ** 27 + 1.49803608156489e27 * cos(theta) ** 25 - 4.06706628479155e26 * cos(theta) ** 23 + 8.85514432058745e25 * cos(theta) ** 21 - 1.53051877145956e25 * cos(theta) ** 19 + 2.07055941392076e24 * cos(theta) ** 17 - 2.15123055991768e23 * cos(theta) ** 15 + 1.67317932438041e22 * cos(theta) ** 13 - 9.40937183141113e20 * cos(theta) ** 11 + 3.64447500512403e19 * cos(theta) ** 9 - 9.05459628602243e17 * cos(theta) ** 7 + 1.29000354142789e16 * cos(theta) ** 5 - 86287862302868.9 * cos(theta) ** 3 + 171206075997.756 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl55_m_minus_5(theta, phi): return ( 8.03566025712332e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.14159563555972e24 * cos(theta) ** 50 - 1.28298592069785e25 * cos(theta) ** 48 + 6.76265475956621e25 * cos(theta) ** 46 - 2.22201513528604e26 * cos(theta) ** 44 + 5.10200562616649e26 * cos(theta) ** 42 - 8.69866701807792e26 * cos(theta) ** 40 + 1.14224920439407e27 * cos(theta) ** 38 - 1.18262325580122e27 * cos(theta) ** 36 + 9.80332435729962e26 * cos(theta) ** 34 - 6.57068693482089e26 * cos(theta) ** 32 + 3.58138540623205e26 * cos(theta) ** 30 - 1.59132037968431e26 * cos(theta) ** 28 + 5.76167723678802e25 * cos(theta) ** 26 - 1.69461095199648e25 * cos(theta) ** 24 + 4.02506560026702e24 * cos(theta) ** 22 - 7.65259385729779e23 * cos(theta) ** 20 + 1.15031078551154e23 * cos(theta) ** 18 - 1.34451909994855e22 * cos(theta) ** 16 + 1.19512808884315e21 * cos(theta) ** 14 - 7.84114319284261e19 * cos(theta) ** 12 + 3.64447500512403e18 * cos(theta) ** 10 - 1.1318245357528e17 * cos(theta) ** 8 + 2.15000590237982e15 * cos(theta) ** 6 - 21571965575717.2 * cos(theta) ** 4 + 85603037998.8779 * cos(theta) ** 2 - 56133139.6713954 ) * sin(5 * phi) ) # @torch.jit.script def Yl55_m_minus_4(theta, phi): return ( 4.445107619055e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 2.23842281482297e22 * cos(theta) ** 51 - 2.61833861366907e23 * cos(theta) ** 49 + 1.43886271480132e24 * cos(theta) ** 47 - 4.93781141174676e24 * cos(theta) ** 45 + 1.18651293631779e25 * cos(theta) ** 43 - 2.12162610197022e25 * cos(theta) ** 41 + 2.92884411383095e25 * cos(theta) ** 39 - 3.19627906973304e25 * cos(theta) ** 37 + 2.80094981637132e25 * cos(theta) ** 35 - 1.99111725297603e25 * cos(theta) ** 33 + 1.15528561491356e25 * cos(theta) ** 31 - 5.48731165408383e24 * cos(theta) ** 29 + 2.13395453214371e24 * cos(theta) ** 27 - 6.77844380798591e23 * cos(theta) ** 25 + 1.75002852185523e23 * cos(theta) ** 23 - 3.64409231299895e22 * cos(theta) ** 21 + 6.05426729216598e21 * cos(theta) ** 19 - 7.90893588205028e20 * cos(theta) ** 17 + 7.96752059228769e19 * cos(theta) ** 15 - 6.03164860987893e18 * cos(theta) ** 13 + 3.3131590955673e17 * cos(theta) ** 11 - 1.25758281750312e16 * cos(theta) ** 9 + 307143700339974.0 * cos(theta) ** 7 - 4314393115143.45 * cos(theta) ** 5 + 28534345999.626 * cos(theta) ** 3 - 56133139.6713954 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl55_m_minus_3(theta, phi): return ( 2.46212420469807e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 4.30465925927494e20 * cos(theta) ** 52 - 5.23667722733814e21 * cos(theta) ** 50 + 2.99763065583609e22 * cos(theta) ** 48 - 1.07343726342321e23 * cos(theta) ** 46 + 2.69662030981316e23 * cos(theta) ** 44 - 5.05149071897672e23 * cos(theta) ** 42 + 7.32211028457737e23 * cos(theta) ** 40 - 8.41126070982379e23 * cos(theta) ** 38 + 7.780416156587e23 * cos(theta) ** 36 - 5.85622721463538e23 * cos(theta) ** 34 + 3.61026754660489e23 * cos(theta) ** 32 - 1.82910388469461e23 * cos(theta) ** 30 + 7.62126618622755e22 * cos(theta) ** 28 - 2.60709377230227e22 * cos(theta) ** 26 + 7.29178550773011e21 * cos(theta) ** 24 - 1.6564055968177e21 * cos(theta) ** 22 + 3.02713364608299e20 * cos(theta) ** 20 - 4.39385326780571e19 * cos(theta) ** 18 + 4.97970037017981e18 * cos(theta) ** 16 - 4.30832043562781e17 * cos(theta) ** 14 + 2.76096591297275e16 * cos(theta) ** 12 - 1.25758281750312e15 * cos(theta) ** 10 + 38392962542496.8 * cos(theta) ** 8 - 719065519190.574 * cos(theta) ** 6 + 7133586499.90649 * cos(theta) ** 4 - 28066569.8356977 * cos(theta) ** 2 + 18296.329749477 ) * sin(3 * phi) ) # @torch.jit.script def Yl55_m_minus_2(theta, phi): return ( 0.0013650918984608 * (1.0 - cos(theta) ** 2) * ( 8.12199860240555e18 * cos(theta) ** 53 - 1.02679945634081e20 * cos(theta) ** 51 + 6.11761358333895e20 * cos(theta) ** 49 - 2.28390907111321e21 * cos(theta) ** 47 + 5.99248957736257e21 * cos(theta) ** 45 - 1.17476528348296e22 * cos(theta) ** 43 + 1.78588055721399e22 * cos(theta) ** 41 - 2.15673351533943e22 * cos(theta) ** 39 + 2.10281517745595e22 * cos(theta) ** 37 - 1.67320777561011e22 * cos(theta) ** 35 + 1.09402046866815e22 * cos(theta) ** 33 - 5.9003351119181e21 * cos(theta) ** 31 + 2.62802282283708e21 * cos(theta) ** 29 - 9.65590286037879e20 * cos(theta) ** 27 + 2.91671420309204e20 * cos(theta) ** 25 - 7.2017634644248e19 * cos(theta) ** 23 + 1.44149221242047e19 * cos(theta) ** 21 - 2.31255435147669e18 * cos(theta) ** 19 + 2.92923551187047e17 * cos(theta) ** 17 - 2.87221362375187e16 * cos(theta) ** 15 + 2.12381993305596e15 * cos(theta) ** 13 - 114325710682101.0 * cos(theta) ** 11 + 4265884726944.08 * cos(theta) ** 9 - 102723645598.654 * cos(theta) ** 7 + 1426717299.9813 * cos(theta) ** 5 - 9355523.27856589 * cos(theta) ** 3 + 18296.329749477 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl55_m_minus_1(theta, phi): return ( 0.0757349245279011 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 1.50407381526029e17 * cos(theta) ** 54 - 1.97461433911695e18 * cos(theta) ** 52 + 1.22352271666779e19 * cos(theta) ** 50 - 4.75814389815252e19 * cos(theta) ** 48 + 1.3027151255136e20 * cos(theta) ** 46 - 2.66992109882491e20 * cos(theta) ** 44 + 4.25209656479522e20 * cos(theta) ** 42 - 5.39183378834858e20 * cos(theta) ** 40 + 5.53372415119986e20 * cos(theta) ** 38 - 4.64779937669474e20 * cos(theta) ** 36 + 3.21770726078867e20 * cos(theta) ** 34 - 1.84385472247441e20 * cos(theta) ** 32 + 8.76007607612361e19 * cos(theta) ** 30 - 3.44853673584957e19 * cos(theta) ** 28 + 1.1218131550354e19 * cos(theta) ** 26 - 3.00073477684367e18 * cos(theta) ** 24 + 6.55223732918396e17 * cos(theta) ** 22 - 1.15627717573835e17 * cos(theta) ** 20 + 1.62735306215026e16 * cos(theta) ** 18 - 1.79513351484492e15 * cos(theta) ** 16 + 151701423789712.0 * cos(theta) ** 14 - 9527142556841.79 * cos(theta) ** 12 + 426588472694.408 * cos(theta) ** 10 - 12840455699.8317 * cos(theta) ** 8 + 237786216.66355 * cos(theta) ** 6 - 2338880.81964147 * cos(theta) ** 4 + 9148.16487473849 * cos(theta) ** 2 - 5.94422668923878 ) * sin(phi) ) # @torch.jit.script def Yl55_m0(theta, phi): return ( 2.55336494205123e16 * cos(theta) ** 55 - 3.47866691646429e17 * cos(theta) ** 53 + 2.24000140695692e18 * cos(theta) ** 51 - 9.06667236149228e18 * cos(theta) ** 49 + 2.58796279056187e19 * cos(theta) ** 47 - 5.53977777544037e19 * cos(theta) ** 45 + 9.23296295906728e19 * cos(theta) ** 43 - 1.2278888883708e20 * cos(theta) ** 41 + 1.32482748482113e20 * cos(theta) ** 39 - 1.17287594534344e20 * cos(theta) ** 37 + 8.5839052703157e19 * cos(theta) ** 35 - 5.21698022046766e19 * cos(theta) ** 33 + 2.63847275517905e19 * cos(theta) ** 31 - 1.11030753950974e19 * cos(theta) ** 29 + 3.87938778864847e18 * cos(theta) ** 27 - 1.12071202783178e18 * cos(theta) ** 25 + 2.65991778757543e17 * cos(theta) ** 23 - 5.14101757262478e16 * cos(theta) ** 21 + 7.99713844630521e15 * cos(theta) ** 19 - 985948575571876.0 * cos(theta) ** 17 + 94428877660405.0 * cos(theta) ** 15 - 6842672294232.25 * cos(theta) ** 13 + 362095277442.412 * cos(theta) ** 11 - 13321230942.6974 * cos(theta) ** 9 + 317172165.30232 * cos(theta) ** 7 - 4367616.70252375 * cos(theta) ** 5 + 28472.0775914195 * cos(theta) ** 3 - 55.5011259091998 * cos(theta) ) # @torch.jit.script def Yl55_m1(theta, phi): return ( 0.0757349245279011 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 1.50407381526029e17 * cos(theta) ** 54 - 1.97461433911695e18 * cos(theta) ** 52 + 1.22352271666779e19 * cos(theta) ** 50 - 4.75814389815252e19 * cos(theta) ** 48 + 1.3027151255136e20 * cos(theta) ** 46 - 2.66992109882491e20 * cos(theta) ** 44 + 4.25209656479522e20 * cos(theta) ** 42 - 5.39183378834858e20 * cos(theta) ** 40 + 5.53372415119986e20 * cos(theta) ** 38 - 4.64779937669474e20 * cos(theta) ** 36 + 3.21770726078867e20 * cos(theta) ** 34 - 1.84385472247441e20 * cos(theta) ** 32 + 8.76007607612361e19 * cos(theta) ** 30 - 3.44853673584957e19 * cos(theta) ** 28 + 1.1218131550354e19 * cos(theta) ** 26 - 3.00073477684367e18 * cos(theta) ** 24 + 6.55223732918396e17 * cos(theta) ** 22 - 1.15627717573835e17 * cos(theta) ** 20 + 1.62735306215026e16 * cos(theta) ** 18 - 1.79513351484492e15 * cos(theta) ** 16 + 151701423789712.0 * cos(theta) ** 14 - 9527142556841.79 * cos(theta) ** 12 + 426588472694.408 * cos(theta) ** 10 - 12840455699.8317 * cos(theta) ** 8 + 237786216.66355 * cos(theta) ** 6 - 2338880.81964147 * cos(theta) ** 4 + 9148.16487473849 * cos(theta) ** 2 - 5.94422668923878 ) * cos(phi) ) # @torch.jit.script def Yl55_m2(theta, phi): return ( 0.0013650918984608 * (1.0 - cos(theta) ** 2) * ( 8.12199860240555e18 * cos(theta) ** 53 - 1.02679945634081e20 * cos(theta) ** 51 + 6.11761358333895e20 * cos(theta) ** 49 - 2.28390907111321e21 * cos(theta) ** 47 + 5.99248957736257e21 * cos(theta) ** 45 - 1.17476528348296e22 * cos(theta) ** 43 + 1.78588055721399e22 * cos(theta) ** 41 - 2.15673351533943e22 * cos(theta) ** 39 + 2.10281517745595e22 * cos(theta) ** 37 - 1.67320777561011e22 * cos(theta) ** 35 + 1.09402046866815e22 * cos(theta) ** 33 - 5.9003351119181e21 * cos(theta) ** 31 + 2.62802282283708e21 * cos(theta) ** 29 - 9.65590286037879e20 * cos(theta) ** 27 + 2.91671420309204e20 * cos(theta) ** 25 - 7.2017634644248e19 * cos(theta) ** 23 + 1.44149221242047e19 * cos(theta) ** 21 - 2.31255435147669e18 * cos(theta) ** 19 + 2.92923551187047e17 * cos(theta) ** 17 - 2.87221362375187e16 * cos(theta) ** 15 + 2.12381993305596e15 * cos(theta) ** 13 - 114325710682101.0 * cos(theta) ** 11 + 4265884726944.08 * cos(theta) ** 9 - 102723645598.654 * cos(theta) ** 7 + 1426717299.9813 * cos(theta) ** 5 - 9355523.27856589 * cos(theta) ** 3 + 18296.329749477 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl55_m3(theta, phi): return ( 2.46212420469807e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 4.30465925927494e20 * cos(theta) ** 52 - 5.23667722733814e21 * cos(theta) ** 50 + 2.99763065583609e22 * cos(theta) ** 48 - 1.07343726342321e23 * cos(theta) ** 46 + 2.69662030981316e23 * cos(theta) ** 44 - 5.05149071897672e23 * cos(theta) ** 42 + 7.32211028457737e23 * cos(theta) ** 40 - 8.41126070982379e23 * cos(theta) ** 38 + 7.780416156587e23 * cos(theta) ** 36 - 5.85622721463538e23 * cos(theta) ** 34 + 3.61026754660489e23 * cos(theta) ** 32 - 1.82910388469461e23 * cos(theta) ** 30 + 7.62126618622755e22 * cos(theta) ** 28 - 2.60709377230227e22 * cos(theta) ** 26 + 7.29178550773011e21 * cos(theta) ** 24 - 1.6564055968177e21 * cos(theta) ** 22 + 3.02713364608299e20 * cos(theta) ** 20 - 4.39385326780571e19 * cos(theta) ** 18 + 4.97970037017981e18 * cos(theta) ** 16 - 4.30832043562781e17 * cos(theta) ** 14 + 2.76096591297275e16 * cos(theta) ** 12 - 1.25758281750312e15 * cos(theta) ** 10 + 38392962542496.8 * cos(theta) ** 8 - 719065519190.574 * cos(theta) ** 6 + 7133586499.90649 * cos(theta) ** 4 - 28066569.8356977 * cos(theta) ** 2 + 18296.329749477 ) * cos(3 * phi) ) # @torch.jit.script def Yl55_m4(theta, phi): return ( 4.445107619055e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 2.23842281482297e22 * cos(theta) ** 51 - 2.61833861366907e23 * cos(theta) ** 49 + 1.43886271480132e24 * cos(theta) ** 47 - 4.93781141174676e24 * cos(theta) ** 45 + 1.18651293631779e25 * cos(theta) ** 43 - 2.12162610197022e25 * cos(theta) ** 41 + 2.92884411383095e25 * cos(theta) ** 39 - 3.19627906973304e25 * cos(theta) ** 37 + 2.80094981637132e25 * cos(theta) ** 35 - 1.99111725297603e25 * cos(theta) ** 33 + 1.15528561491356e25 * cos(theta) ** 31 - 5.48731165408383e24 * cos(theta) ** 29 + 2.13395453214371e24 * cos(theta) ** 27 - 6.77844380798591e23 * cos(theta) ** 25 + 1.75002852185523e23 * cos(theta) ** 23 - 3.64409231299895e22 * cos(theta) ** 21 + 6.05426729216598e21 * cos(theta) ** 19 - 7.90893588205028e20 * cos(theta) ** 17 + 7.96752059228769e19 * cos(theta) ** 15 - 6.03164860987893e18 * cos(theta) ** 13 + 3.3131590955673e17 * cos(theta) ** 11 - 1.25758281750312e16 * cos(theta) ** 9 + 307143700339974.0 * cos(theta) ** 7 - 4314393115143.45 * cos(theta) ** 5 + 28534345999.626 * cos(theta) ** 3 - 56133139.6713954 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl55_m5(theta, phi): return ( 8.03566025712332e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.14159563555972e24 * cos(theta) ** 50 - 1.28298592069785e25 * cos(theta) ** 48 + 6.76265475956621e25 * cos(theta) ** 46 - 2.22201513528604e26 * cos(theta) ** 44 + 5.10200562616649e26 * cos(theta) ** 42 - 8.69866701807792e26 * cos(theta) ** 40 + 1.14224920439407e27 * cos(theta) ** 38 - 1.18262325580122e27 * cos(theta) ** 36 + 9.80332435729962e26 * cos(theta) ** 34 - 6.57068693482089e26 * cos(theta) ** 32 + 3.58138540623205e26 * cos(theta) ** 30 - 1.59132037968431e26 * cos(theta) ** 28 + 5.76167723678802e25 * cos(theta) ** 26 - 1.69461095199648e25 * cos(theta) ** 24 + 4.02506560026702e24 * cos(theta) ** 22 - 7.65259385729779e23 * cos(theta) ** 20 + 1.15031078551154e23 * cos(theta) ** 18 - 1.34451909994855e22 * cos(theta) ** 16 + 1.19512808884315e21 * cos(theta) ** 14 - 7.84114319284261e19 * cos(theta) ** 12 + 3.64447500512403e18 * cos(theta) ** 10 - 1.1318245357528e17 * cos(theta) ** 8 + 2.15000590237982e15 * cos(theta) ** 6 - 21571965575717.2 * cos(theta) ** 4 + 85603037998.8779 * cos(theta) ** 2 - 56133139.6713954 ) * cos(5 * phi) ) # @torch.jit.script def Yl55_m6(theta, phi): return ( 1.45502899264575e-10 * (1.0 - cos(theta) ** 2) ** 3 * ( 5.70797817779858e25 * cos(theta) ** 49 - 6.15833241934966e26 * cos(theta) ** 47 + 3.11082118940046e27 * cos(theta) ** 45 - 9.77686659525858e27 * cos(theta) ** 43 + 2.14284236298993e28 * cos(theta) ** 41 - 3.47946680723117e28 * cos(theta) ** 39 + 4.34054697669747e28 * cos(theta) ** 37 - 4.25744372088441e28 * cos(theta) ** 35 + 3.33313028148187e28 * cos(theta) ** 33 - 2.10261981914269e28 * cos(theta) ** 31 + 1.07441562186961e28 * cos(theta) ** 29 - 4.45569706311607e27 * cos(theta) ** 27 + 1.49803608156489e27 * cos(theta) ** 25 - 4.06706628479155e26 * cos(theta) ** 23 + 8.85514432058745e25 * cos(theta) ** 21 - 1.53051877145956e25 * cos(theta) ** 19 + 2.07055941392076e24 * cos(theta) ** 17 - 2.15123055991768e23 * cos(theta) ** 15 + 1.67317932438041e22 * cos(theta) ** 13 - 9.40937183141113e20 * cos(theta) ** 11 + 3.64447500512403e19 * cos(theta) ** 9 - 9.05459628602243e17 * cos(theta) ** 7 + 1.29000354142789e16 * cos(theta) ** 5 - 86287862302868.9 * cos(theta) ** 3 + 171206075997.756 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl55_m7(theta, phi): return ( 2.639840955071e-12 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 2.7969093071213e27 * cos(theta) ** 48 - 2.89441623709434e28 * cos(theta) ** 46 + 1.39986953523021e29 * cos(theta) ** 44 - 4.20405263596119e29 * cos(theta) ** 42 + 8.7856536882587e29 * cos(theta) ** 40 - 1.35699205482016e30 * cos(theta) ** 38 + 1.60600238137806e30 * cos(theta) ** 36 - 1.49010530230954e30 * cos(theta) ** 34 + 1.09993299288902e30 * cos(theta) ** 32 - 6.51812143934233e29 * cos(theta) ** 30 + 3.11580530342188e29 * cos(theta) ** 28 - 1.20303820704134e29 * cos(theta) ** 26 + 3.74509020391222e28 * cos(theta) ** 24 - 9.35425245502056e27 * cos(theta) ** 22 + 1.85958030732336e27 * cos(theta) ** 20 - 2.90798566577316e26 * cos(theta) ** 18 + 3.5199510036653e25 * cos(theta) ** 16 - 3.22684583987651e24 * cos(theta) ** 14 + 2.17513312169454e23 * cos(theta) ** 12 - 1.03503090145522e22 * cos(theta) ** 10 + 3.28002750461163e20 * cos(theta) ** 8 - 6.3382174002157e18 * cos(theta) ** 6 + 6.45001770713945e16 * cos(theta) ** 4 - 258863586908607.0 * cos(theta) ** 2 + 171206075997.756 ) * cos(7 * phi) ) # @torch.jit.script def Yl55_m8(theta, phi): return ( 4.80050436478467e-14 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.34251646741823e29 * cos(theta) ** 47 - 1.3314314690634e30 * cos(theta) ** 45 + 6.1594259550129e30 * cos(theta) ** 43 - 1.7657021071037e31 * cos(theta) ** 41 + 3.51426147530348e31 * cos(theta) ** 39 - 5.15656980831659e31 * cos(theta) ** 37 + 5.78160857296103e31 * cos(theta) ** 35 - 5.06635802785245e31 * cos(theta) ** 33 + 3.51978557724486e31 * cos(theta) ** 31 - 1.9554364318027e31 * cos(theta) ** 29 + 8.72425484958127e30 * cos(theta) ** 27 - 3.12789933830748e30 * cos(theta) ** 25 + 8.98821648938932e29 * cos(theta) ** 23 - 2.05793554010452e29 * cos(theta) ** 21 + 3.71916061464673e28 * cos(theta) ** 19 - 5.23437419839169e27 * cos(theta) ** 17 + 5.63192160586448e26 * cos(theta) ** 15 - 4.51758417582712e25 * cos(theta) ** 13 + 2.61015974603345e24 * cos(theta) ** 11 - 1.03503090145522e23 * cos(theta) ** 9 + 2.6240220036893e21 * cos(theta) ** 7 - 3.80293044012942e19 * cos(theta) ** 5 + 2.58000708285578e17 * cos(theta) ** 3 - 517727173817214.0 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl55_m9(theta, phi): return ( 8.75281910443651e-16 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 6.30982739686566e30 * cos(theta) ** 46 - 5.99144161078528e31 * cos(theta) ** 44 + 2.64855316065555e32 * cos(theta) ** 42 - 7.23937863912517e32 * cos(theta) ** 40 + 1.37056197536836e33 * cos(theta) ** 38 - 1.90793082907714e33 * cos(theta) ** 36 + 2.02356300053636e33 * cos(theta) ** 34 - 1.67189814919131e33 * cos(theta) ** 32 + 1.09113352894591e33 * cos(theta) ** 30 - 5.67076565222782e32 * cos(theta) ** 28 + 2.35554880938694e32 * cos(theta) ** 26 - 7.81974834576871e31 * cos(theta) ** 24 + 2.06728979255954e31 * cos(theta) ** 22 - 4.3216646342195e30 * cos(theta) ** 20 + 7.06640516782878e29 * cos(theta) ** 18 - 8.89843613726587e28 * cos(theta) ** 16 + 8.44788240879672e27 * cos(theta) ** 14 - 5.87285942857526e26 * cos(theta) ** 12 + 2.87117572063679e25 * cos(theta) ** 10 - 9.31527811309702e23 * cos(theta) ** 8 + 1.83681540258251e22 * cos(theta) ** 6 - 1.90146522006471e20 * cos(theta) ** 4 + 7.74002124856734e17 * cos(theta) ** 2 - 517727173817214.0 ) * cos(9 * phi) ) # @torch.jit.script def Yl55_m10(theta, phi): return ( 1.60070889683529e-17 * (1.0 - cos(theta) ** 2) ** 5 * ( 2.9025206025582e32 * cos(theta) ** 45 - 2.63623430874552e33 * cos(theta) ** 43 + 1.11239232747533e34 * cos(theta) ** 41 - 2.89575145565007e34 * cos(theta) ** 39 + 5.20813550639976e34 * cos(theta) ** 37 - 6.8685509846777e34 * cos(theta) ** 35 + 6.88011420182362e34 * cos(theta) ** 33 - 5.35007407741218e34 * cos(theta) ** 31 + 3.27340058683772e34 * cos(theta) ** 29 - 1.58781438262379e34 * cos(theta) ** 27 + 6.12442690440605e33 * cos(theta) ** 25 - 1.87673960298449e33 * cos(theta) ** 23 + 4.54803754363099e32 * cos(theta) ** 21 - 8.64332926843899e31 * cos(theta) ** 19 + 1.27195293020918e31 * cos(theta) ** 17 - 1.42374978196254e30 * cos(theta) ** 15 + 1.18270353723154e29 * cos(theta) ** 13 - 7.04743131429031e27 * cos(theta) ** 11 + 2.87117572063679e26 * cos(theta) ** 9 - 7.45222249047762e24 * cos(theta) ** 7 + 1.10208924154951e23 * cos(theta) ** 5 - 7.60586088025884e20 * cos(theta) ** 3 + 1.54800424971347e18 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl55_m11(theta, phi): return ( 2.93720415655174e-19 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.30613427115119e34 * cos(theta) ** 44 - 1.13358075276057e35 * cos(theta) ** 42 + 4.56080854264886e35 * cos(theta) ** 40 - 1.12934306770353e36 * cos(theta) ** 38 + 1.92701013736791e36 * cos(theta) ** 36 - 2.40399284463719e36 * cos(theta) ** 34 + 2.27043768660179e36 * cos(theta) ** 32 - 1.65852296399778e36 * cos(theta) ** 30 + 9.49286170182938e35 * cos(theta) ** 28 - 4.28709883308424e35 * cos(theta) ** 26 + 1.53110672610151e35 * cos(theta) ** 24 - 4.31650108686433e34 * cos(theta) ** 22 + 9.55087884162509e33 * cos(theta) ** 20 - 1.64223256100341e33 * cos(theta) ** 18 + 2.16231998135561e32 * cos(theta) ** 16 - 2.13562467294381e31 * cos(theta) ** 14 + 1.537514598401e30 * cos(theta) ** 12 - 7.75217444571934e28 * cos(theta) ** 10 + 2.58405814857311e27 * cos(theta) ** 8 - 5.21655574333433e25 * cos(theta) ** 6 + 5.51044620774753e23 * cos(theta) ** 4 - 2.28175826407765e21 * cos(theta) ** 2 + 1.54800424971347e18 ) * cos(11 * phi) ) # @torch.jit.script def Yl55_m12(theta, phi): return ( 5.40966528397239e-21 * (1.0 - cos(theta) ** 2) ** 6 * ( 5.74699079306524e35 * cos(theta) ** 43 - 4.76103916159442e36 * cos(theta) ** 41 + 1.82432341705954e37 * cos(theta) ** 39 - 4.2915036572734e37 * cos(theta) ** 37 + 6.93723649452448e37 * cos(theta) ** 35 - 8.17357567176646e37 * cos(theta) ** 33 + 7.26540059712574e37 * cos(theta) ** 31 - 4.97556889199333e37 * cos(theta) ** 29 + 2.65800127651223e37 * cos(theta) ** 27 - 1.1146456966019e37 * cos(theta) ** 25 + 3.67465614264363e36 * cos(theta) ** 23 - 9.49630239110152e35 * cos(theta) ** 21 + 1.91017576832502e35 * cos(theta) ** 19 - 2.95601860980614e34 * cos(theta) ** 17 + 3.45971197016897e33 * cos(theta) ** 15 - 2.98987454212133e32 * cos(theta) ** 13 + 1.8450175180812e31 * cos(theta) ** 11 - 7.75217444571934e29 * cos(theta) ** 9 + 2.06724651885849e28 * cos(theta) ** 7 - 3.1299334460006e26 * cos(theta) ** 5 + 2.20417848309901e24 * cos(theta) ** 3 - 4.56351652815531e21 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl55_m13(theta, phi): return ( 1.00041849117088e-22 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 2.47120604101805e37 * cos(theta) ** 42 - 1.95202605625371e38 * cos(theta) ** 40 + 7.11486132653221e38 * cos(theta) ** 38 - 1.58785635319116e39 * cos(theta) ** 36 + 2.42803277308357e39 * cos(theta) ** 34 - 2.69727997168293e39 * cos(theta) ** 32 + 2.25227418510898e39 * cos(theta) ** 30 - 1.44291497867807e39 * cos(theta) ** 28 + 7.17660344658301e38 * cos(theta) ** 26 - 2.78661424150475e38 * cos(theta) ** 24 + 8.45170912808035e37 * cos(theta) ** 22 - 1.99422350213132e37 * cos(theta) ** 20 + 3.62933395981753e36 * cos(theta) ** 18 - 5.02523163667043e35 * cos(theta) ** 16 + 5.18956795525346e34 * cos(theta) ** 14 - 3.88683690475773e33 * cos(theta) ** 12 + 2.02951926988932e32 * cos(theta) ** 10 - 6.9769570011474e30 * cos(theta) ** 8 + 1.44707256320094e29 * cos(theta) ** 6 - 1.5649667230003e27 * cos(theta) ** 4 + 6.61253544929704e24 * cos(theta) ** 2 - 4.56351652815531e21 ) * cos(13 * phi) ) # @torch.jit.script def Yl55_m14(theta, phi): return ( 1.85837142862346e-24 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.03790653722758e39 * cos(theta) ** 41 - 7.80810422501484e39 * cos(theta) ** 39 + 2.70364730408224e40 * cos(theta) ** 37 - 5.71628287148817e40 * cos(theta) ** 35 + 8.25531142848413e40 * cos(theta) ** 33 - 8.63129590938538e40 * cos(theta) ** 31 + 6.75682255532694e40 * cos(theta) ** 29 - 4.04016194029858e40 * cos(theta) ** 27 + 1.86591689611158e40 * cos(theta) ** 25 - 6.68787417961141e39 * cos(theta) ** 23 + 1.85937600817768e39 * cos(theta) ** 21 - 3.98844700426264e38 * cos(theta) ** 19 + 6.53280112767156e37 * cos(theta) ** 17 - 8.04037061867269e36 * cos(theta) ** 15 + 7.26539513735484e35 * cos(theta) ** 13 - 4.66420428570928e34 * cos(theta) ** 11 + 2.02951926988932e33 * cos(theta) ** 9 - 5.58156560091792e31 * cos(theta) ** 7 + 8.68243537920566e29 * cos(theta) ** 5 - 6.2598668920012e27 * cos(theta) ** 3 + 1.32250708985941e25 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl55_m15(theta, phi): return ( 3.46889833134161e-26 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 4.25541680263309e40 * cos(theta) ** 40 - 3.04516064775579e41 * cos(theta) ** 38 + 1.00034950251043e42 * cos(theta) ** 36 - 2.00069900502086e42 * cos(theta) ** 34 + 2.72425277139976e42 * cos(theta) ** 32 - 2.67570173190947e42 * cos(theta) ** 30 + 1.95947854104481e42 * cos(theta) ** 28 - 1.09084372388062e42 * cos(theta) ** 26 + 4.66479224027896e41 * cos(theta) ** 24 - 1.53821106131062e41 * cos(theta) ** 22 + 3.90468961717312e40 * cos(theta) ** 20 - 7.57804930809901e39 * cos(theta) ** 18 + 1.11057619170417e39 * cos(theta) ** 16 - 1.2060555928009e38 * cos(theta) ** 14 + 9.44501367856129e36 * cos(theta) ** 12 - 5.13062471428021e35 * cos(theta) ** 10 + 1.82656734290039e34 * cos(theta) ** 8 - 3.90709592064255e32 * cos(theta) ** 6 + 4.34121768960283e30 * cos(theta) ** 4 - 1.87796006760036e28 * cos(theta) ** 2 + 1.32250708985941e25 ) * cos(15 * phi) ) # @torch.jit.script def Yl55_m16(theta, phi): return ( 6.50927172782842e-28 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.70216672105324e42 * cos(theta) ** 39 - 1.1571610461472e43 * cos(theta) ** 37 + 3.60125820903755e43 * cos(theta) ** 35 - 6.80237661707092e43 * cos(theta) ** 33 + 8.71760886847924e43 * cos(theta) ** 31 - 8.02710519572841e43 * cos(theta) ** 29 + 5.48653991492548e43 * cos(theta) ** 27 - 2.83619368208961e43 * cos(theta) ** 25 + 1.11955013766695e43 * cos(theta) ** 23 - 3.38406433488337e42 * cos(theta) ** 21 + 7.80937923434624e41 * cos(theta) ** 19 - 1.36404887545782e41 * cos(theta) ** 17 + 1.77692190672666e40 * cos(theta) ** 15 - 1.68847782992126e39 * cos(theta) ** 13 + 1.13340164142736e38 * cos(theta) ** 11 - 5.13062471428021e36 * cos(theta) ** 9 + 1.46125387432031e35 * cos(theta) ** 7 - 2.34425755238553e33 * cos(theta) ** 5 + 1.73648707584113e31 * cos(theta) ** 3 - 3.75592013520072e28 * cos(theta) ) * cos(16 * phi) ) # @torch.jit.script def Yl55_m17(theta, phi): return ( 1.22838314773781e-29 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 6.63845021210762e43 * cos(theta) ** 38 - 4.28149587074464e44 * cos(theta) ** 36 + 1.26044037316314e45 * cos(theta) ** 34 - 2.2447842836334e45 * cos(theta) ** 32 + 2.70245874922856e45 * cos(theta) ** 30 - 2.32786050676124e45 * cos(theta) ** 28 + 1.48136577702988e45 * cos(theta) ** 26 - 7.09048420522401e44 * cos(theta) ** 24 + 2.57496531663398e44 * cos(theta) ** 22 - 7.10653510325508e43 * cos(theta) ** 20 + 1.48378205452579e43 * cos(theta) ** 18 - 2.3188830882783e42 * cos(theta) ** 16 + 2.66538286009e41 * cos(theta) ** 14 - 2.19502117889764e40 * cos(theta) ** 12 + 1.24674180557009e39 * cos(theta) ** 10 - 4.61756224285219e37 * cos(theta) ** 8 + 1.02287771202422e36 * cos(theta) ** 6 - 1.17212877619276e34 * cos(theta) ** 4 + 5.2094612275234e31 * cos(theta) ** 2 - 3.75592013520072e28 ) * cos(17 * phi) ) # @torch.jit.script def Yl55_m18(theta, phi): return ( 2.33227964147739e-31 * (1.0 - cos(theta) ** 2) ** 9 * ( 2.52261108060089e45 * cos(theta) ** 37 - 1.54133851346807e46 * cos(theta) ** 35 + 4.28549726875468e46 * cos(theta) ** 33 - 7.18330970762689e46 * cos(theta) ** 31 + 8.10737624768569e46 * cos(theta) ** 29 - 6.51800941893147e46 * cos(theta) ** 27 + 3.85155102027768e46 * cos(theta) ** 25 - 1.70171620925376e46 * cos(theta) ** 23 + 5.66492369659476e45 * cos(theta) ** 21 - 1.42130702065102e45 * cos(theta) ** 19 + 2.67080769814642e44 * cos(theta) ** 17 - 3.71021294124528e43 * cos(theta) ** 15 + 3.731536004126e42 * cos(theta) ** 13 - 2.63402541467717e41 * cos(theta) ** 11 + 1.24674180557009e40 * cos(theta) ** 9 - 3.69404979428175e38 * cos(theta) ** 7 + 6.13726627214531e36 * cos(theta) ** 5 - 4.68851510477106e34 * cos(theta) ** 3 + 1.04189224550468e32 * cos(theta) ) * cos(18 * phi) ) # @torch.jit.script def Yl55_m19(theta, phi): return ( 4.45721824354592e-33 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 9.33366099822331e46 * cos(theta) ** 36 - 5.39468479713824e47 * cos(theta) ** 34 + 1.41421409868904e48 * cos(theta) ** 32 - 2.22682600936434e48 * cos(theta) ** 30 + 2.35113911182885e48 * cos(theta) ** 28 - 1.7598625431115e48 * cos(theta) ** 26 + 9.62887755069421e47 * cos(theta) ** 24 - 3.91394728128366e47 * cos(theta) ** 22 + 1.1896339762849e47 * cos(theta) ** 20 - 2.70048333923693e46 * cos(theta) ** 18 + 4.54037308684891e45 * cos(theta) ** 16 - 5.56531941186791e44 * cos(theta) ** 14 + 4.85099680536379e43 * cos(theta) ** 12 - 2.89742795614489e42 * cos(theta) ** 10 + 1.12206762501308e41 * cos(theta) ** 8 - 2.58583485599723e39 * cos(theta) ** 6 + 3.06863313607266e37 * cos(theta) ** 4 - 1.40655453143132e35 * cos(theta) ** 2 + 1.04189224550468e32 ) * cos(19 * phi) ) # @torch.jit.script def Yl55_m20(theta, phi): return ( 8.57792050916049e-35 * (1.0 - cos(theta) ** 2) ** 10 * ( 3.36011795936039e48 * cos(theta) ** 35 - 1.834192831027e49 * cos(theta) ** 33 + 4.52548511580494e49 * cos(theta) ** 31 - 6.68047802809301e49 * cos(theta) ** 29 + 6.58318951312078e49 * cos(theta) ** 27 - 4.57564261208989e49 * cos(theta) ** 25 + 2.31093061216661e49 * cos(theta) ** 23 - 8.61068401882404e48 * cos(theta) ** 21 + 2.3792679525698e48 * cos(theta) ** 19 - 4.86087001062648e47 * cos(theta) ** 17 + 7.26459693895825e46 * cos(theta) ** 15 - 7.79144717661508e45 * cos(theta) ** 13 + 5.82119616643655e44 * cos(theta) ** 11 - 2.89742795614489e43 * cos(theta) ** 9 + 8.97654100010465e41 * cos(theta) ** 7 - 1.55150091359833e40 * cos(theta) ** 5 + 1.22745325442906e38 * cos(theta) ** 3 - 2.81310906286263e35 * cos(theta) ) * cos(20 * phi) ) # @torch.jit.script def Yl55_m21(theta, phi): return ( 1.66318744915687e-36 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.17604128577614e50 * cos(theta) ** 34 - 6.05283634238911e50 * cos(theta) ** 32 + 1.40290038589953e51 * cos(theta) ** 30 - 1.93733862814697e51 * cos(theta) ** 28 + 1.77746116854261e51 * cos(theta) ** 26 - 1.14391065302247e51 * cos(theta) ** 24 + 5.3151404079832e50 * cos(theta) ** 22 - 1.80824364395305e50 * cos(theta) ** 20 + 4.52060910988262e49 * cos(theta) ** 18 - 8.26347901806501e48 * cos(theta) ** 16 + 1.08968954084374e48 * cos(theta) ** 14 - 1.01288813295996e47 * cos(theta) ** 12 + 6.40331578308021e45 * cos(theta) ** 10 - 2.6076851605304e44 * cos(theta) ** 8 + 6.28357870007326e42 * cos(theta) ** 6 - 7.75750456799167e40 * cos(theta) ** 4 + 3.68235976328719e38 * cos(theta) ** 2 - 2.81310906286263e35 ) * cos(21 * phi) ) # @torch.jit.script def Yl55_m22(theta, phi): return ( 3.25054646110025e-38 * (1.0 - cos(theta) ** 2) ** 11 * ( 3.99854037163887e51 * cos(theta) ** 33 - 1.93690762956452e52 * cos(theta) ** 31 + 4.2087011576986e52 * cos(theta) ** 29 - 5.42454815881152e52 * cos(theta) ** 27 + 4.62139903821079e52 * cos(theta) ** 25 - 2.74538556725393e52 * cos(theta) ** 23 + 1.16933088975631e52 * cos(theta) ** 21 - 3.6164872879061e51 * cos(theta) ** 19 + 8.13709639778872e50 * cos(theta) ** 17 - 1.3221566428904e50 * cos(theta) ** 15 + 1.52556535718123e49 * cos(theta) ** 13 - 1.21546575955195e48 * cos(theta) ** 11 + 6.40331578308021e46 * cos(theta) ** 9 - 2.08614812842432e45 * cos(theta) ** 7 + 3.77014722004395e43 * cos(theta) ** 5 - 3.10300182719667e41 * cos(theta) ** 3 + 7.36471952657437e38 * cos(theta) ) * cos(22 * phi) ) # @torch.jit.script def Yl55_m23(theta, phi): return ( 6.40696138729007e-40 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.31951832264083e53 * cos(theta) ** 32 - 6.00441365165e53 * cos(theta) ** 30 + 1.22052333573259e54 * cos(theta) ** 28 - 1.46462800287911e54 * cos(theta) ** 26 + 1.1553497595527e54 * cos(theta) ** 24 - 6.31438680468405e53 * cos(theta) ** 22 + 2.45559486848824e53 * cos(theta) ** 20 - 6.87132584702159e52 * cos(theta) ** 18 + 1.38330638762408e52 * cos(theta) ** 16 - 1.9832349643356e51 * cos(theta) ** 14 + 1.9832349643356e50 * cos(theta) ** 12 - 1.33701233550715e49 * cos(theta) ** 10 + 5.76298420477219e47 * cos(theta) ** 8 - 1.46030368989702e46 * cos(theta) ** 6 + 1.88507361002198e44 * cos(theta) ** 4 - 9.30900548159001e41 * cos(theta) ** 2 + 7.36471952657437e38 ) * cos(23 * phi) ) # @torch.jit.script def Yl55_m24(theta, phi): return ( 1.27427620027281e-41 * (1.0 - cos(theta) ** 2) ** 12 * ( 4.22245863245064e54 * cos(theta) ** 31 - 1.801324095495e55 * cos(theta) ** 29 + 3.41746534005126e55 * cos(theta) ** 27 - 3.80803280748569e55 * cos(theta) ** 25 + 2.77283942292647e55 * cos(theta) ** 23 - 1.38916509703049e55 * cos(theta) ** 21 + 4.91118973697648e54 * cos(theta) ** 19 - 1.23683865246389e54 * cos(theta) ** 17 + 2.21329022019853e53 * cos(theta) ** 15 - 2.77652895006984e52 * cos(theta) ** 13 + 2.37988195720272e51 * cos(theta) ** 11 - 1.33701233550715e50 * cos(theta) ** 9 + 4.61038736381775e48 * cos(theta) ** 7 - 8.76182213938215e46 * cos(theta) ** 5 + 7.54029444008791e44 * cos(theta) ** 3 - 1.861801096318e42 * cos(theta) ) * cos(24 * phi) ) # @torch.jit.script def Yl55_m25(theta, phi): return ( 2.55880818604889e-43 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 1.3089621760597e56 * cos(theta) ** 30 - 5.2238398769355e56 * cos(theta) ** 28 + 9.2271564181384e56 * cos(theta) ** 26 - 9.52008201871422e56 * cos(theta) ** 24 + 6.37753067273089e56 * cos(theta) ** 22 - 2.91724670376403e56 * cos(theta) ** 20 + 9.33126050025531e55 * cos(theta) ** 18 - 2.10262570918861e55 * cos(theta) ** 16 + 3.3199353302978e54 * cos(theta) ** 14 - 3.6094876350908e53 * cos(theta) ** 12 + 2.61787015292299e52 * cos(theta) ** 10 - 1.20331110195643e51 * cos(theta) ** 8 + 3.22727115467243e49 * cos(theta) ** 6 - 4.38091106969107e47 * cos(theta) ** 4 + 2.26208833202637e45 * cos(theta) ** 2 - 1.861801096318e42 ) * cos(25 * phi) ) # @torch.jit.script def Yl55_m26(theta, phi): return ( 5.19080356973279e-45 * (1.0 - cos(theta) ** 2) ** 13 * ( 3.9268865281791e57 * cos(theta) ** 29 - 1.46267516554194e58 * cos(theta) ** 27 + 2.39906066871598e58 * cos(theta) ** 25 - 2.28481968449141e58 * cos(theta) ** 23 + 1.4030567480008e58 * cos(theta) ** 21 - 5.83449340752806e57 * cos(theta) ** 19 + 1.67962689004596e57 * cos(theta) ** 17 - 3.36420113470177e56 * cos(theta) ** 15 + 4.64790946241692e55 * cos(theta) ** 13 - 4.33138516210895e54 * cos(theta) ** 11 + 2.61787015292299e53 * cos(theta) ** 9 - 9.62648881565146e51 * cos(theta) ** 7 + 1.93636269280345e50 * cos(theta) ** 5 - 1.75236442787643e48 * cos(theta) ** 3 + 4.52417666405274e45 * cos(theta) ) * cos(26 * phi) ) # @torch.jit.script def Yl55_m27(theta, phi): return ( 1.06445834118375e-46 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.13879709317194e59 * cos(theta) ** 28 - 3.94922294696324e59 * cos(theta) ** 26 + 5.99765167178996e59 * cos(theta) ** 24 - 5.25508527433025e59 * cos(theta) ** 22 + 2.94641917080167e59 * cos(theta) ** 20 - 1.10855374743033e59 * cos(theta) ** 18 + 2.85536571307813e58 * cos(theta) ** 16 - 5.04630170205265e57 * cos(theta) ** 14 + 6.04228230114199e56 * cos(theta) ** 12 - 4.76452367831985e55 * cos(theta) ** 10 + 2.3560831376307e54 * cos(theta) ** 8 - 6.73854217095602e52 * cos(theta) ** 6 + 9.68181346401727e50 * cos(theta) ** 4 - 5.25709328362929e48 * cos(theta) ** 2 + 4.52417666405274e45 ) * cos(27 * phi) ) # @torch.jit.script def Yl55_m28(theta, phi): return ( 2.20805866411675e-48 * (1.0 - cos(theta) ** 2) ** 14 * ( 3.18863186088143e60 * cos(theta) ** 27 - 1.02679796621044e61 * cos(theta) ** 25 + 1.43943640122959e61 * cos(theta) ** 23 - 1.15611876035266e61 * cos(theta) ** 21 + 5.89283834160334e60 * cos(theta) ** 19 - 1.9953967453746e60 * cos(theta) ** 17 + 4.568585140925e59 * cos(theta) ** 15 - 7.06482238287371e58 * cos(theta) ** 13 + 7.25073876137039e57 * cos(theta) ** 11 - 4.76452367831985e56 * cos(theta) ** 9 + 1.88486651010456e55 * cos(theta) ** 7 - 4.04312530257361e53 * cos(theta) ** 5 + 3.87272538560691e51 * cos(theta) ** 3 - 1.05141865672586e49 * cos(theta) ) * cos(28 * phi) ) # @torch.jit.script def Yl55_m29(theta, phi): return ( 4.63648738531302e-50 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 8.60930602437985e61 * cos(theta) ** 26 - 2.5669949155261e62 * cos(theta) ** 24 + 3.31070372282806e62 * cos(theta) ** 22 - 2.42784939674058e62 * cos(theta) ** 20 + 1.11963928490463e62 * cos(theta) ** 18 - 3.39217446713681e61 * cos(theta) ** 16 + 6.8528777113875e60 * cos(theta) ** 14 - 9.18426909773583e59 * cos(theta) ** 12 + 7.97581263750743e58 * cos(theta) ** 10 - 4.28807131048787e57 * cos(theta) ** 8 + 1.31940655707319e56 * cos(theta) ** 6 - 2.02156265128681e54 * cos(theta) ** 4 + 1.16181761568207e52 * cos(theta) ** 2 - 1.05141865672586e49 ) * cos(29 * phi) ) # @torch.jit.script def Yl55_m30(theta, phi): return ( 9.862634654419e-52 * (1.0 - cos(theta) ** 2) ** 15 * ( 2.23841956633876e63 * cos(theta) ** 25 - 6.16078779726265e63 * cos(theta) ** 23 + 7.28354819022173e63 * cos(theta) ** 21 - 4.85569879348115e63 * cos(theta) ** 19 + 2.01535071282834e63 * cos(theta) ** 17 - 5.4274791474189e62 * cos(theta) ** 15 + 9.5940287959425e61 * cos(theta) ** 13 - 1.1021122917283e61 * cos(theta) ** 11 + 7.97581263750743e59 * cos(theta) ** 9 - 3.43045704839029e58 * cos(theta) ** 7 + 7.91643934243914e56 * cos(theta) ** 5 - 8.08625060514723e54 * cos(theta) ** 3 + 2.32363523136415e52 * cos(theta) ) * cos(30 * phi) ) # @torch.jit.script def Yl55_m31(theta, phi): return ( 2.12703049175667e-53 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 5.5960489158469e64 * cos(theta) ** 24 - 1.41698119337041e65 * cos(theta) ** 22 + 1.52954511994656e65 * cos(theta) ** 20 - 9.22582770761419e64 * cos(theta) ** 18 + 3.42609621180818e64 * cos(theta) ** 16 - 8.14121872112835e63 * cos(theta) ** 14 + 1.24722374347253e63 * cos(theta) ** 12 - 1.21232352090113e62 * cos(theta) ** 10 + 7.17823137375669e60 * cos(theta) ** 8 - 2.4013199338732e59 * cos(theta) ** 6 + 3.95821967121957e57 * cos(theta) ** 4 - 2.42587518154417e55 * cos(theta) ** 2 + 2.32363523136415e52 ) * cos(31 * phi) ) # @torch.jit.script def Yl55_m32(theta, phi): return ( 4.65487977427384e-55 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.34305173980326e66 * cos(theta) ** 23 - 3.1173586254149e66 * cos(theta) ** 21 + 3.05909023989313e66 * cos(theta) ** 19 - 1.66064898737055e66 * cos(theta) ** 17 + 5.48175393889309e65 * cos(theta) ** 15 - 1.13977062095797e65 * cos(theta) ** 13 + 1.49666849216703e64 * cos(theta) ** 11 - 1.21232352090113e63 * cos(theta) ** 9 + 5.74258509900535e61 * cos(theta) ** 7 - 1.44079196032392e60 * cos(theta) ** 5 + 1.58328786848783e58 * cos(theta) ** 3 - 4.85175036308834e55 * cos(theta) ) * cos(32 * phi) ) # @torch.jit.script def Yl55_m33(theta, phi): return ( 1.03467323403691e-56 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 3.08901900154749e67 * cos(theta) ** 22 - 6.54645311337129e67 * cos(theta) ** 20 + 5.81227145579694e67 * cos(theta) ** 18 - 2.82310327852994e67 * cos(theta) ** 16 + 8.22263090833964e66 * cos(theta) ** 14 - 1.48170180724536e66 * cos(theta) ** 12 + 1.64633534138373e65 * cos(theta) ** 10 - 1.09109116881102e64 * cos(theta) ** 8 + 4.01980956930374e62 * cos(theta) ** 6 - 7.20395980161961e60 * cos(theta) ** 4 + 4.74986360546348e58 * cos(theta) ** 2 - 4.85175036308834e55 ) * cos(33 * phi) ) # @torch.jit.script def Yl55_m34(theta, phi): return ( 2.33828191516168e-58 * (1.0 - cos(theta) ** 2) ** 17 * ( 6.79584180340448e68 * cos(theta) ** 21 - 1.30929062267426e69 * cos(theta) ** 19 + 1.04620886204345e69 * cos(theta) ** 17 - 4.51696524564791e68 * cos(theta) ** 15 + 1.15116832716755e68 * cos(theta) ** 13 - 1.77804216869443e67 * cos(theta) ** 11 + 1.64633534138373e66 * cos(theta) ** 9 - 8.72872935048813e64 * cos(theta) ** 7 + 2.41188574158225e63 * cos(theta) ** 5 - 2.88158392064785e61 * cos(theta) ** 3 + 9.49972721092696e58 * cos(theta) ) * cos(34 * phi) ) # @torch.jit.script def Yl55_m35(theta, phi): return ( 5.37855939228719e-60 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 1.42712677871494e70 * cos(theta) ** 20 - 2.48765218308109e70 * cos(theta) ** 18 + 1.77855506547386e70 * cos(theta) ** 16 - 6.77544786847186e69 * cos(theta) ** 14 + 1.49651882531781e69 * cos(theta) ** 12 - 1.95584638556388e68 * cos(theta) ** 10 + 1.48170180724536e67 * cos(theta) ** 8 - 6.11011054534169e65 * cos(theta) ** 6 + 1.20594287079112e64 * cos(theta) ** 4 - 8.64475176194354e61 * cos(theta) ** 2 + 9.49972721092696e58 ) * cos(35 * phi) ) # @torch.jit.script def Yl55_m36(theta, phi): return ( 1.2607537675682e-61 * (1.0 - cos(theta) ** 2) ** 18 * ( 2.85425355742988e71 * cos(theta) ** 19 - 4.47777392954596e71 * cos(theta) ** 17 + 2.84568810475818e71 * cos(theta) ** 15 - 9.4856270158606e70 * cos(theta) ** 13 + 1.79582259038138e70 * cos(theta) ** 11 - 1.95584638556388e69 * cos(theta) ** 9 + 1.18536144579629e68 * cos(theta) ** 7 - 3.66606632720501e66 * cos(theta) ** 5 + 4.82377148316449e64 * cos(theta) ** 3 - 1.72895035238871e62 * cos(theta) ) * cos(36 * phi) ) # @torch.jit.script def Yl55_m37(theta, phi): return ( 3.01550158101617e-63 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 5.42308175911678e72 * cos(theta) ** 18 - 7.61221568022814e72 * cos(theta) ** 16 + 4.26853215713727e72 * cos(theta) ** 14 - 1.23313151206188e72 * cos(theta) ** 12 + 1.97540484941951e71 * cos(theta) ** 10 - 1.76026174700749e70 * cos(theta) ** 8 + 8.29753012057402e68 * cos(theta) ** 6 - 1.83303316360251e67 * cos(theta) ** 4 + 1.44713144494935e65 * cos(theta) ** 2 - 1.72895035238871e62 ) * cos(37 * phi) ) # @torch.jit.script def Yl55_m38(theta, phi): return ( 7.37024345330584e-65 * (1.0 - cos(theta) ** 2) ** 19 * ( 9.7615471664102e73 * cos(theta) ** 17 - 1.2179545088365e74 * cos(theta) ** 15 + 5.97594501999218e73 * cos(theta) ** 13 - 1.47975781447425e73 * cos(theta) ** 11 + 1.97540484941951e72 * cos(theta) ** 9 - 1.40820939760599e71 * cos(theta) ** 7 + 4.97851807234441e69 * cos(theta) ** 5 - 7.33213265441003e67 * cos(theta) ** 3 + 2.8942628898987e65 * cos(theta) ) * cos(38 * phi) ) # @torch.jit.script def Yl55_m39(theta, phi): return ( 1.84371354461739e-66 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 1.65946301828973e75 * cos(theta) ** 16 - 1.82693176325475e75 * cos(theta) ** 14 + 7.76872852598984e74 * cos(theta) ** 12 - 1.62773359592168e74 * cos(theta) ** 10 + 1.77786436447756e73 * cos(theta) ** 8 - 9.85746578324193e71 * cos(theta) ** 6 + 2.48925903617221e70 * cos(theta) ** 4 - 2.19963979632301e68 * cos(theta) ** 2 + 2.8942628898987e65 ) * cos(39 * phi) ) # @torch.jit.script def Yl55_m40(theta, phi): return ( 4.72902546055906e-68 * (1.0 - cos(theta) ** 2) ** 20 * ( 2.65514082926357e76 * cos(theta) ** 15 - 2.55770446855665e76 * cos(theta) ** 13 + 9.3224742311878e75 * cos(theta) ** 11 - 1.62773359592168e75 * cos(theta) ** 9 + 1.42229149158205e74 * cos(theta) ** 7 - 5.91447946994516e72 * cos(theta) ** 5 + 9.95703614468882e70 * cos(theta) ** 3 - 4.39927959264602e68 * cos(theta) ) * cos(40 * phi) ) # @torch.jit.script def Yl55_m41(theta, phi): return ( 1.24620763069112e-69 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 3.98271124389536e77 * cos(theta) ** 14 - 3.32501580912365e77 * cos(theta) ** 12 + 1.02547216543066e77 * cos(theta) ** 10 - 1.46496023632951e76 * cos(theta) ** 8 + 9.95604044107435e74 * cos(theta) ** 6 - 2.95723973497258e73 * cos(theta) ** 4 + 2.98711084340665e71 * cos(theta) ** 2 - 4.39927959264602e68 ) * cos(41 * phi) ) # @torch.jit.script def Yl55_m42(theta, phi): return ( 3.38174238842709e-71 * (1.0 - cos(theta) ** 2) ** 21 * ( 5.5757957414535e78 * cos(theta) ** 13 - 3.99001897094838e78 * cos(theta) ** 11 + 1.02547216543066e78 * cos(theta) ** 9 - 1.17196818906361e77 * cos(theta) ** 7 + 5.97362426464461e75 * cos(theta) ** 5 - 1.18289589398903e74 * cos(theta) ** 3 + 5.97422168681329e71 * cos(theta) ) * cos(42 * phi) ) # @torch.jit.script def Yl55_m43(theta, phi): return ( 9.47448924644705e-73 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 7.24853446388956e79 * cos(theta) ** 12 - 4.38902086804322e79 * cos(theta) ** 10 + 9.22924948887592e78 * cos(theta) ** 8 - 8.20377732344527e77 * cos(theta) ** 6 + 2.98681213232231e76 * cos(theta) ** 4 - 3.5486876819671e74 * cos(theta) ** 2 + 5.97422168681329e71 ) * cos(43 * phi) ) # @torch.jit.script def Yl55_m44(theta, phi): return ( 2.74882813233161e-74 * (1.0 - cos(theta) ** 2) ** 22 * ( 8.69824135666747e80 * cos(theta) ** 11 - 4.38902086804322e80 * cos(theta) ** 9 + 7.38339959110074e79 * cos(theta) ** 7 - 4.92226639406716e78 * cos(theta) ** 5 + 1.19472485292892e77 * cos(theta) ** 3 - 7.09737536393419e74 * cos(theta) ) * cos(44 * phi) ) # @torch.jit.script def Yl55_m45(theta, phi): return ( 8.28802866192487e-76 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 9.56806549233421e81 * cos(theta) ** 10 - 3.9501187812389e81 * cos(theta) ** 8 + 5.16837971377052e80 * cos(theta) ** 6 - 2.46113319703358e79 * cos(theta) ** 4 + 3.58417455878677e77 * cos(theta) ** 2 - 7.09737536393419e74 ) * cos(45 * phi) ) # @torch.jit.script def Yl55_m46(theta, phi): return ( 2.60789773650125e-77 * (1.0 - cos(theta) ** 2) ** 23 * ( 9.56806549233421e82 * cos(theta) ** 9 - 3.16009502499112e82 * cos(theta) ** 7 + 3.10102782826231e81 * cos(theta) ** 5 - 9.84453278813432e79 * cos(theta) ** 3 + 7.16834911757353e77 * cos(theta) ) * cos(46 * phi) ) # @torch.jit.script def Yl55_m47(theta, phi): return ( 8.60734512043714e-79 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 8.61125894310079e83 * cos(theta) ** 8 - 2.21206651749378e83 * cos(theta) ** 6 + 1.55051391413116e82 * cos(theta) ** 4 - 2.9533598364403e80 * cos(theta) ** 2 + 7.16834911757353e77 ) * cos(47 * phi) ) # @torch.jit.script def Yl55_m48(theta, phi): return ( 2.99851075540521e-80 * (1.0 - cos(theta) ** 2) ** 24 * ( 6.88900715448063e84 * cos(theta) ** 7 - 1.32723991049627e84 * cos(theta) ** 5 + 6.20205565652462e82 * cos(theta) ** 3 - 5.90671967288059e80 * cos(theta) ) * cos(48 * phi) ) # @torch.jit.script def Yl55_m49(theta, phi): return ( 1.11132202422254e-81 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 4.82230500813644e85 * cos(theta) ** 6 - 6.63619955248134e84 * cos(theta) ** 4 + 1.86061669695739e83 * cos(theta) ** 2 - 5.90671967288059e80 ) * cos(49 * phi) ) # @torch.jit.script def Yl55_m50(theta, phi): return ( 4.42761292511395e-83 * (1.0 - cos(theta) ** 2) ** 25 * ( 2.89338300488187e86 * cos(theta) ** 5 - 2.65447982099254e85 * cos(theta) ** 3 + 3.72123339391477e83 * cos(theta) ) * cos(50 * phi) ) # @torch.jit.script def Yl55_m51(theta, phi): return ( 1.9232321563685e-84 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 1.44669150244093e87 * cos(theta) ** 4 - 7.96343946297761e85 * cos(theta) ** 2 + 3.72123339391477e83 ) * cos(51 * phi) ) # @torch.jit.script def Yl55_m52(theta, phi): return ( 9.29629351233703e-86 * (1.0 - cos(theta) ** 2) ** 26 * (5.78676600976373e87 * cos(theta) ** 3 - 1.59268789259552e86 * cos(theta)) * cos(52 * phi) ) # @torch.jit.script def Yl55_m53(theta, phi): return ( 5.1646075068539e-87 * (1.0 - cos(theta) ** 2) ** 26.5 * (1.73602980292912e88 * cos(theta) ** 2 - 1.59268789259552e86) * cos(53 * phi) ) # @torch.jit.script def Yl55_m54(theta, phi): return 12.1449644411629 * (1.0 - cos(theta) ** 2) ** 27 * cos(54 * phi) * cos(theta) # @torch.jit.script def Yl55_m55(theta, phi): return 1.15797692423668 * (1.0 - cos(theta) ** 2) ** 27.5 * cos(55 * phi) # @torch.jit.script def Yl56_m_minus_56(theta, phi): return 1.16313497615398 * (1.0 - cos(theta) ** 2) ** 28 * sin(56 * phi) # @torch.jit.script def Yl56_m_minus_55(theta, phi): return ( 12.3094635524179 * (1.0 - cos(theta) ** 2) ** 27.5 * sin(55 * phi) * cos(theta) ) # @torch.jit.script def Yl56_m_minus_54(theta, phi): return ( 4.75888777122505e-89 * (1.0 - cos(theta) ** 2) ** 27 * (1.92699308125132e90 * cos(theta) ** 2 - 1.73602980292912e88) * sin(54 * phi) ) # @torch.jit.script def Yl56_m_minus_53(theta, phi): return ( 8.64494894739585e-88 * (1.0 - cos(theta) ** 2) ** 26.5 * (6.42331027083774e89 * cos(theta) ** 3 - 1.73602980292912e88 * cos(theta)) * sin(53 * phi) ) # @torch.jit.script def Yl56_m_minus_52(theta, phi): return ( 1.80511833529393e-86 * (1.0 - cos(theta) ** 2) ** 26 * ( 1.60582756770944e89 * cos(theta) ** 4 - 8.6801490146456e87 * cos(theta) ** 2 + 3.98171973148881e85 ) * sin(52 * phi) ) # @torch.jit.script def Yl56_m_minus_51(theta, phi): return ( 4.19471595031622e-85 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 3.21165513541887e88 * cos(theta) ** 5 - 2.89338300488187e87 * cos(theta) ** 3 + 3.98171973148881e85 * cos(theta) ) * sin(51 * phi) ) # @torch.jit.script def Yl56_m_minus_50(theta, phi): return ( 1.06284533692648e-83 * (1.0 - cos(theta) ** 2) ** 25 * ( 5.35275855903145e87 * cos(theta) ** 6 - 7.23345751220467e86 * cos(theta) ** 4 + 1.9908598657444e85 * cos(theta) ** 2 - 6.20205565652462e82 ) * sin(50 * phi) ) # @torch.jit.script def Yl56_m_minus_49(theta, phi): return ( 2.8951563619051e-82 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 7.6467979414735e86 * cos(theta) ** 7 - 1.44669150244093e86 * cos(theta) ** 5 + 6.63619955248134e84 * cos(theta) ** 3 - 6.20205565652462e82 * cos(theta) ) * sin(49 * phi) ) # @torch.jit.script def Yl56_m_minus_48(theta, phi): return ( 8.39096031589878e-81 * (1.0 - cos(theta) ** 2) ** 24 * ( 9.55849742684188e85 * cos(theta) ** 8 - 2.41115250406822e85 * cos(theta) ** 6 + 1.65904988812034e84 * cos(theta) ** 4 - 3.10102782826231e82 * cos(theta) ** 2 + 7.38339959110074e79 ) * sin(48 * phi) ) # @torch.jit.script def Yl56_m_minus_47(theta, phi): return ( 2.56714022331303e-79 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 1.0620552696491e85 * cos(theta) ** 9 - 3.44450357724032e84 * cos(theta) ** 7 + 3.31809977624067e83 * cos(theta) ** 5 - 1.0336759427541e82 * cos(theta) ** 3 + 7.38339959110074e79 * cos(theta) ) * sin(47 * phi) ) # @torch.jit.script def Yl56_m_minus_46(theta, phi): return ( 8.23888050279663e-78 * (1.0 - cos(theta) ** 2) ** 23 * ( 1.0620552696491e84 * cos(theta) ** 10 - 4.3056294715504e83 * cos(theta) ** 8 + 5.53016629373445e82 * cos(theta) ** 6 - 2.58418985688526e81 * cos(theta) ** 4 + 3.69169979555037e79 * cos(theta) ** 2 - 7.16834911757353e76 ) * sin(46 * phi) ) # @torch.jit.script def Yl56_m_minus_45(theta, phi): return ( 2.75971753039989e-76 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 9.65504790590089e82 * cos(theta) ** 11 - 4.78403274616711e82 * cos(theta) ** 9 + 7.90023756247779e81 * cos(theta) ** 7 - 5.16837971377052e80 * cos(theta) ** 5 + 1.23056659851679e79 * cos(theta) ** 3 - 7.16834911757353e76 * cos(theta) ) * sin(45 * phi) ) # @torch.jit.script def Yl56_m_minus_44(theta, phi): return ( 9.60762275866768e-75 * (1.0 - cos(theta) ** 2) ** 22 * ( 8.04587325491741e81 * cos(theta) ** 12 - 4.78403274616711e81 * cos(theta) ** 10 + 9.87529695309724e80 * cos(theta) ** 8 - 8.61396618961753e79 * cos(theta) ** 6 + 3.07641649629197e78 * cos(theta) ** 4 - 3.58417455878677e76 * cos(theta) ** 2 + 5.91447946994516e73 ) * sin(44 * phi) ) # @torch.jit.script def Yl56_m_minus_43(theta, phi): return ( 3.46407764916911e-73 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 6.18913327301339e80 * cos(theta) ** 13 - 4.34912067833373e80 * cos(theta) ** 11 + 1.0972552170108e80 * cos(theta) ** 9 - 1.23056659851679e79 * cos(theta) ** 7 + 6.15283299258395e77 * cos(theta) ** 5 - 1.19472485292892e76 * cos(theta) ** 3 + 5.91447946994516e73 * cos(theta) ) * sin(43 * phi) ) # @torch.jit.script def Yl56_m_minus_42(theta, phi): return ( 1.2896421933168e-71 * (1.0 - cos(theta) ** 2) ** 21 * ( 4.42080948072385e79 * cos(theta) ** 14 - 3.62426723194478e79 * cos(theta) ** 12 + 1.0972552170108e79 * cos(theta) ** 10 - 1.53820824814599e78 * cos(theta) ** 8 + 1.02547216543066e77 * cos(theta) ** 6 - 2.98681213232231e75 * cos(theta) ** 4 + 2.95723973497258e73 * cos(theta) ** 2 - 4.26730120486664e70 ) * sin(42 * phi) ) # @torch.jit.script def Yl56_m_minus_41(theta, phi): return ( 4.94456284273033e-70 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 2.94720632048257e78 * cos(theta) ** 15 - 2.78789787072675e78 * cos(theta) ** 13 + 9.97504742737095e77 * cos(theta) ** 11 - 1.70912027571776e77 * cos(theta) ** 9 + 1.46496023632951e76 * cos(theta) ** 7 - 5.97362426464461e74 * cos(theta) ** 5 + 9.85746578324193e72 * cos(theta) ** 3 - 4.26730120486664e70 * cos(theta) ) * sin(41 * phi) ) # @torch.jit.script def Yl56_m_minus_40(theta, phi): return ( 1.94793185320383e-68 * (1.0 - cos(theta) ** 2) ** 20 * ( 1.8420039503016e77 * cos(theta) ** 16 - 1.99135562194768e77 * cos(theta) ** 14 + 8.31253952280912e76 * cos(theta) ** 12 - 1.70912027571776e76 * cos(theta) ** 10 + 1.83120029541189e75 * cos(theta) ** 8 - 9.95604044107435e73 * cos(theta) ** 6 + 2.46436644581048e72 * cos(theta) ** 4 - 2.13365060243332e70 * cos(theta) ** 2 + 2.74954974540376e67 ) * sin(40 * phi) ) # @torch.jit.script def Yl56_m_minus_39(theta, phi): return ( 7.86925894840995e-67 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 1.08353173547153e76 * cos(theta) ** 17 - 1.32757041463179e76 * cos(theta) ** 15 + 6.39426117139163e75 * cos(theta) ** 13 - 1.55374570519797e75 * cos(theta) ** 11 + 2.0346669949021e74 * cos(theta) ** 9 - 1.42229149158205e73 * cos(theta) ** 7 + 4.92873289162097e71 * cos(theta) ** 5 - 7.11216867477773e69 * cos(theta) ** 3 + 2.74954974540376e67 * cos(theta) ) * sin(39 * phi) ) # @torch.jit.script def Yl56_m_minus_38(theta, phi): return ( 3.25410746963115e-65 * (1.0 - cos(theta) ** 2) ** 19 * ( 6.01962075261962e74 * cos(theta) ** 18 - 8.29731509144867e74 * cos(theta) ** 16 + 4.56732940813688e74 * cos(theta) ** 14 - 1.29478808766497e74 * cos(theta) ** 12 + 2.0346669949021e73 * cos(theta) ** 10 - 1.77786436447756e72 * cos(theta) ** 8 + 8.21455481936828e70 * cos(theta) ** 6 - 1.77804216869443e69 * cos(theta) ** 4 + 1.37477487270188e67 * cos(theta) ** 2 - 1.6079238277215e64 ) * sin(38 * phi) ) # @torch.jit.script def Yl56_m_minus_37(theta, phi): return ( 1.37522139116224e-63 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 3.16822144874717e73 * cos(theta) ** 19 - 4.8807735832051e73 * cos(theta) ** 17 + 3.04488627209125e73 * cos(theta) ** 15 - 9.95990836665363e72 * cos(theta) ** 13 + 1.84969726809282e72 * cos(theta) ** 11 - 1.97540484941951e71 * cos(theta) ** 9 + 1.17350783133833e70 * cos(theta) ** 7 - 3.55608433738886e68 * cos(theta) ** 5 + 4.58258290900627e66 * cos(theta) ** 3 - 1.6079238277215e64 * cos(theta) ) * sin(37 * phi) ) # @torch.jit.script def Yl56_m_minus_36(theta, phi): return ( 5.93101593907904e-62 * (1.0 - cos(theta) ** 2) ** 18 * ( 1.58411072437358e72 * cos(theta) ** 20 - 2.71154087955839e72 * cos(theta) ** 18 + 1.90305392005703e72 * cos(theta) ** 16 - 7.11422026189545e71 * cos(theta) ** 14 + 1.54141439007735e71 * cos(theta) ** 12 - 1.97540484941951e70 * cos(theta) ** 10 + 1.46688478917291e69 * cos(theta) ** 8 - 5.92680722898144e67 * cos(theta) ** 6 + 1.14564572725157e66 * cos(theta) ** 4 - 8.03961913860749e63 * cos(theta) ** 2 + 8.64475176194354e60 ) * sin(36 * phi) ) # @torch.jit.script def Yl56_m_minus_35(theta, phi): return ( 2.60694970289965e-60 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 7.54338440177897e70 * cos(theta) ** 21 - 1.42712677871494e71 * cos(theta) ** 19 + 1.11944348238649e71 * cos(theta) ** 17 - 4.7428135079303e70 * cos(theta) ** 15 + 1.18570337698258e70 * cos(theta) ** 13 - 1.79582259038138e69 * cos(theta) ** 11 + 1.6298719879699e68 * cos(theta) ** 9 - 8.46686746997349e66 * cos(theta) ** 7 + 2.29129145450313e65 * cos(theta) ** 5 - 2.6798730462025e63 * cos(theta) ** 3 + 8.64475176194354e60 * cos(theta) ) * sin(35 * phi) ) # @torch.jit.script def Yl56_m_minus_34(theta, phi): return ( 1.16644613593616e-58 * (1.0 - cos(theta) ** 2) ** 17 * ( 3.42881109171772e69 * cos(theta) ** 22 - 7.1356338935747e69 * cos(theta) ** 20 + 6.21913045770272e69 * cos(theta) ** 18 - 2.96425844245644e69 * cos(theta) ** 16 + 8.46930983558983e68 * cos(theta) ** 14 - 1.49651882531781e68 * cos(theta) ** 12 + 1.6298719879699e67 * cos(theta) ** 10 - 1.05835843374669e66 * cos(theta) ** 8 + 3.81881909083856e64 * cos(theta) ** 6 - 6.69968261550624e62 * cos(theta) ** 4 + 4.32237588097177e60 * cos(theta) ** 2 - 4.31805782314862e57 ) * sin(34 * phi) ) # @torch.jit.script def Yl56_m_minus_33(theta, phi): return ( 5.30700945659949e-57 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 1.49078743118162e68 * cos(theta) ** 23 - 3.39792090170224e68 * cos(theta) ** 21 + 3.27322655668564e68 * cos(theta) ** 19 - 1.74368143673908e68 * cos(theta) ** 17 + 5.64620655705988e67 * cos(theta) ** 15 - 1.15116832716755e67 * cos(theta) ** 13 + 1.48170180724536e66 * cos(theta) ** 11 - 1.1759538152741e65 * cos(theta) ** 9 + 5.45545584405508e63 * cos(theta) ** 7 - 1.33993652310125e62 * cos(theta) ** 5 + 1.44079196032392e60 * cos(theta) ** 3 - 4.31805782314862e57 * cos(theta) ) * sin(33 * phi) ) # @torch.jit.script def Yl56_m_minus_32(theta, phi): return ( 2.45273419390533e-55 * (1.0 - cos(theta) ** 2) ** 16 * ( 6.21161429659006e66 * cos(theta) ** 24 - 1.54450950077375e67 * cos(theta) ** 22 + 1.63661327834282e67 * cos(theta) ** 20 - 9.6871190929949e66 * cos(theta) ** 18 + 3.52887909816243e66 * cos(theta) ** 16 - 8.22263090833964e65 * cos(theta) ** 14 + 1.2347515060378e65 * cos(theta) ** 12 - 1.1759538152741e64 * cos(theta) ** 10 + 6.81931980506885e62 * cos(theta) ** 8 - 2.23322753850208e61 * cos(theta) ** 6 + 3.60197990080981e59 * cos(theta) ** 4 - 2.15902891157431e57 * cos(theta) ** 2 + 2.02156265128681e54 ) * sin(32 * phi) ) # @torch.jit.script def Yl56_m_minus_31(theta, phi): return ( 1.15043431177514e-53 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 2.48464571863603e65 * cos(theta) ** 25 - 6.71525869901629e65 * cos(theta) ** 23 + 7.79339656353725e65 * cos(theta) ** 21 - 5.09848373315521e65 * cos(theta) ** 19 + 2.07581123421319e65 * cos(theta) ** 17 - 5.48175393889309e64 * cos(theta) ** 15 + 9.49808850798308e63 * cos(theta) ** 13 - 1.06904892297645e63 * cos(theta) ** 11 + 7.57702200563206e61 * cos(theta) ** 9 - 3.19032505500297e60 * cos(theta) ** 7 + 7.20395980161961e58 * cos(theta) ** 5 - 7.19676303858103e56 * cos(theta) ** 3 + 2.02156265128681e54 * cos(theta) ) * sin(31 * phi) ) # @torch.jit.script def Yl56_m_minus_30(theta, phi): return ( 5.47152170526167e-52 * (1.0 - cos(theta) ** 2) ** 15 * ( 9.55632968706164e63 * cos(theta) ** 26 - 2.79802445792345e64 * cos(theta) ** 24 + 3.54245298342602e64 * cos(theta) ** 22 - 2.5492418665776e64 * cos(theta) ** 20 + 1.15322846345177e64 * cos(theta) ** 18 - 3.42609621180818e63 * cos(theta) ** 16 + 6.78434893427363e62 * cos(theta) ** 14 - 8.90874102480375e61 * cos(theta) ** 12 + 7.57702200563206e60 * cos(theta) ** 10 - 3.98790631875371e59 * cos(theta) ** 8 + 1.2006599669366e58 * cos(theta) ** 6 - 1.79919075964526e56 * cos(theta) ** 4 + 1.0107813256434e54 * cos(theta) ** 2 - 8.93705858216979e50 ) * sin(30 * phi) ) # @torch.jit.script def Yl56_m_minus_29(theta, phi): return ( 2.63656956230268e-50 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 3.53938136557838e62 * cos(theta) ** 27 - 1.11920978316938e63 * cos(theta) ** 25 + 1.54019694931566e63 * cos(theta) ** 23 - 1.21392469837029e63 * cos(theta) ** 21 + 6.06962349185144e62 * cos(theta) ** 19 - 2.01535071282834e62 * cos(theta) ** 17 + 4.52289928951575e61 * cos(theta) ** 15 - 6.8528777113875e60 * cos(theta) ** 13 + 6.88820182330187e59 * cos(theta) ** 11 - 4.43100702083746e58 * cos(theta) ** 9 + 1.71522852419515e57 * cos(theta) ** 7 - 3.59838151929052e55 * cos(theta) ** 5 + 3.36927108547801e53 * cos(theta) ** 3 - 8.93705858216979e50 * cos(theta) ) * sin(29 * phi) ) # @torch.jit.script def Yl56_m_minus_28(theta, phi): return ( 1.28625688551428e-48 * (1.0 - cos(theta) ** 2) ** 14 * ( 1.26406477342085e61 * cos(theta) ** 28 - 4.30465301218993e61 * cos(theta) ** 26 + 6.41748728881526e61 * cos(theta) ** 24 - 5.51783953804676e61 * cos(theta) ** 22 + 3.03481174592572e61 * cos(theta) ** 20 - 1.11963928490463e61 * cos(theta) ** 18 + 2.82681205594734e60 * cos(theta) ** 16 - 4.89491265099107e59 * cos(theta) ** 14 + 5.74016818608489e58 * cos(theta) ** 12 - 4.43100702083746e57 * cos(theta) ** 10 + 2.14403565524393e56 * cos(theta) ** 8 - 5.99730253215086e54 * cos(theta) ** 6 + 8.42317771369503e52 * cos(theta) ** 4 - 4.4685292910849e50 * cos(theta) ** 2 + 3.75506663116378e47 ) * sin(28 * phi) ) # @torch.jit.script def Yl56_m_minus_27(theta, phi): return ( 6.3484302825172e-47 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 4.3588440462788e59 * cos(theta) ** 29 - 1.59431593044071e60 * cos(theta) ** 27 + 2.5669949155261e60 * cos(theta) ** 25 - 2.39906066871598e60 * cos(theta) ** 23 + 1.44514845044082e60 * cos(theta) ** 21 - 5.89283834160334e59 * cos(theta) ** 19 + 1.6628306211455e59 * cos(theta) ** 17 - 3.26327510066072e58 * cos(theta) ** 15 + 4.41551398929607e57 * cos(theta) ** 13 - 4.02818820076133e56 * cos(theta) ** 11 + 2.38226183915993e55 * cos(theta) ** 9 - 8.5675750459298e53 * cos(theta) ** 7 + 1.68463554273901e52 * cos(theta) ** 5 - 1.48950976369497e50 * cos(theta) ** 3 + 3.75506663116378e47 * cos(theta) ) * sin(27 * phi) ) # @torch.jit.script def Yl56_m_minus_26(theta, phi): return ( 3.16786034981711e-45 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.45294801542627e58 * cos(theta) ** 30 - 5.69398546585969e58 * cos(theta) ** 28 + 9.87305736740809e58 * cos(theta) ** 26 - 9.99608611964993e58 * cos(theta) ** 24 + 6.56885659291281e58 * cos(theta) ** 22 - 2.94641917080167e58 * cos(theta) ** 20 + 9.23794789525276e57 * cos(theta) ** 18 - 2.03954693791295e57 * cos(theta) ** 16 + 3.15393856378291e56 * cos(theta) ** 14 - 3.35682350063444e55 * cos(theta) ** 12 + 2.38226183915993e54 * cos(theta) ** 10 - 1.07094688074123e53 * cos(theta) ** 8 + 2.80772590456501e51 * cos(theta) ** 6 - 3.72377440923741e49 * cos(theta) ** 4 + 1.87753331558189e47 * cos(theta) ** 2 - 1.50805888801758e44 ) * sin(26 * phi) ) # @torch.jit.script def Yl56_m_minus_25(theta, phi): return ( 1.59717977185062e-43 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 4.68692908202021e56 * cos(theta) ** 31 - 1.96344326408955e57 * cos(theta) ** 29 + 3.65668791385485e57 * cos(theta) ** 27 - 3.99843444785997e57 * cos(theta) ** 25 + 2.85602460561427e57 * cos(theta) ** 23 - 1.4030567480008e57 * cos(theta) ** 21 + 4.86207783960672e56 * cos(theta) ** 19 - 1.19973349288997e56 * cos(theta) ** 17 + 2.10262570918861e55 * cos(theta) ** 15 - 2.58217192356495e54 * cos(theta) ** 13 + 2.16569258105448e53 * cos(theta) ** 11 - 1.18994097860136e52 * cos(theta) ** 9 + 4.01103700652144e50 * cos(theta) ** 7 - 7.44754881847483e48 * cos(theta) ** 5 + 6.25844438527296e46 * cos(theta) ** 3 - 1.50805888801758e44 * cos(theta) ) * sin(25 * phi) ) # @torch.jit.script def Yl56_m_minus_24(theta, phi): return ( 8.13151186163682e-42 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.46466533813132e55 * cos(theta) ** 32 - 6.5448108802985e55 * cos(theta) ** 30 + 1.30595996923387e56 * cos(theta) ** 28 - 1.53785940302307e56 * cos(theta) ** 26 + 1.19001025233928e56 * cos(theta) ** 24 - 6.37753067273089e55 * cos(theta) ** 22 + 2.43103891980336e55 * cos(theta) ** 20 - 6.66518607161094e54 * cos(theta) ** 18 + 1.31414106824288e54 * cos(theta) ** 16 - 1.84440851683211e53 * cos(theta) ** 14 + 1.8047438175454e52 * cos(theta) ** 12 - 1.18994097860136e51 * cos(theta) ** 10 + 5.0137962581518e49 * cos(theta) ** 8 - 1.24125813641247e48 * cos(theta) ** 6 + 1.56461109631824e46 * cos(theta) ** 4 - 7.54029444008791e43 * cos(theta) ** 2 + 5.81812842599376e40 ) * sin(24 * phi) ) # @torch.jit.script def Yl56_m_minus_23(theta, phi): return ( 4.17804644315597e-40 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 4.43837981251914e53 * cos(theta) ** 33 - 2.11122931622532e54 * cos(theta) ** 31 + 4.5033102387375e54 * cos(theta) ** 29 - 5.6957755667521e54 * cos(theta) ** 27 + 4.76004100935711e54 * cos(theta) ** 25 - 2.77283942292647e54 * cos(theta) ** 23 + 1.15763758085874e54 * cos(theta) ** 21 - 3.50799266926891e53 * cos(theta) ** 19 + 7.73024157789928e52 * cos(theta) ** 17 - 1.22960567788807e52 * cos(theta) ** 15 + 1.38826447503492e51 * cos(theta) ** 13 - 1.08176452600124e50 * cos(theta) ** 11 + 5.57088473127978e48 * cos(theta) ** 9 - 1.77322590916067e47 * cos(theta) ** 7 + 3.12922219263648e45 * cos(theta) ** 5 - 2.5134314800293e43 * cos(theta) ** 3 + 5.81812842599376e40 * cos(theta) ) * sin(23 * phi) ) # @torch.jit.script def Yl56_m_minus_22(theta, phi): return ( 2.16534084176182e-38 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.30540582721151e52 * cos(theta) ** 34 - 6.59759161320413e52 * cos(theta) ** 32 + 1.5011034129125e53 * cos(theta) ** 30 - 2.03420555955432e53 * cos(theta) ** 28 + 1.83078500359889e53 * cos(theta) ** 26 - 1.1553497595527e53 * cos(theta) ** 24 + 5.26198900390337e52 * cos(theta) ** 22 - 1.75399633463446e52 * cos(theta) ** 20 + 4.29457865438849e51 * cos(theta) ** 18 - 7.68503548680046e50 * cos(theta) ** 16 + 9.91617482167801e49 * cos(theta) ** 14 - 9.01470438334365e48 * cos(theta) ** 12 + 5.57088473127978e47 * cos(theta) ** 10 - 2.21653238645084e46 * cos(theta) ** 8 + 5.2153703210608e44 * cos(theta) ** 6 - 6.28357870007326e42 * cos(theta) ** 4 + 2.90906421299688e40 * cos(theta) ** 2 - 2.16609397840423e37 ) * sin(22 * phi) ) # @torch.jit.script def Yl56_m_minus_21(theta, phi): return ( 1.13137763914331e-36 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 3.72973093489003e50 * cos(theta) ** 35 - 1.99927018581943e51 * cos(theta) ** 33 + 4.84226907391129e51 * cos(theta) ** 31 - 7.01450192949766e51 * cos(theta) ** 29 + 6.7806851985144e51 * cos(theta) ** 27 - 4.62139903821079e51 * cos(theta) ** 25 + 2.28782130604494e51 * cos(theta) ** 23 - 8.35236349825932e50 * cos(theta) ** 21 + 2.26030455494131e50 * cos(theta) ** 19 - 4.52060910988262e49 * cos(theta) ** 17 + 6.61078321445201e48 * cos(theta) ** 15 - 6.93438798718742e47 * cos(theta) ** 13 + 5.0644406647998e46 * cos(theta) ** 11 - 2.46281376272316e45 * cos(theta) ** 9 + 7.45052903008686e43 * cos(theta) ** 7 - 1.25671574001465e42 * cos(theta) ** 5 + 9.69688070998959e39 * cos(theta) ** 3 - 2.16609397840423e37 * cos(theta) ) * sin(21 * phi) ) # @torch.jit.script def Yl56_m_minus_20(theta, phi): return ( 5.95667909530459e-35 * (1.0 - cos(theta) ** 2) ** 10 * ( 1.03603637080279e49 * cos(theta) ** 36 - 5.88020642888069e49 * cos(theta) ** 34 + 1.51320908559728e50 * cos(theta) ** 32 - 2.33816730983255e50 * cos(theta) ** 30 + 2.42167328518372e50 * cos(theta) ** 28 - 1.77746116854261e50 * cos(theta) ** 26 + 9.53258877518727e49 * cos(theta) ** 24 - 3.79652886284515e49 * cos(theta) ** 22 + 1.13015227747066e49 * cos(theta) ** 20 - 2.51144950549035e48 * cos(theta) ** 18 + 4.1317395090325e47 * cos(theta) ** 16 - 4.95313427656244e46 * cos(theta) ** 14 + 4.2203672206665e45 * cos(theta) ** 12 - 2.46281376272316e44 * cos(theta) ** 10 + 9.31316128760858e42 * cos(theta) ** 8 - 2.09452623335775e41 * cos(theta) ** 6 + 2.4242201774974e39 * cos(theta) ** 4 - 1.08304698920211e37 * cos(theta) ** 2 + 7.81419184128509e33 ) * sin(20 * phi) ) # @torch.jit.script def Yl56_m_minus_19(theta, phi): return ( 3.15872532320494e-33 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 2.80009829946699e47 * cos(theta) ** 37 - 1.6800589796802e48 * cos(theta) ** 35 + 4.58548207756751e48 * cos(theta) ** 33 - 7.54247519300824e48 * cos(theta) ** 31 + 8.35059753511626e48 * cos(theta) ** 29 - 6.58318951312078e48 * cos(theta) ** 27 + 3.81303551007491e48 * cos(theta) ** 25 - 1.65066472297615e48 * cos(theta) ** 23 + 5.38167751176503e47 * cos(theta) ** 21 - 1.32181552920545e47 * cos(theta) ** 19 + 2.43043500531324e46 * cos(theta) ** 17 - 3.3020895177083e45 * cos(theta) ** 15 + 3.24643632358962e44 * cos(theta) ** 13 - 2.2389216024756e43 * cos(theta) ** 11 + 1.03479569862318e42 * cos(theta) ** 9 - 2.99218033336822e40 * cos(theta) ** 7 + 4.8484403549948e38 * cos(theta) ** 5 - 3.61015663067371e36 * cos(theta) ** 3 + 7.81419184128509e33 * cos(theta) ) * sin(19 * phi) ) # @torch.jit.script def Yl56_m_minus_18(theta, phi): return ( 1.6862978726266e-31 * (1.0 - cos(theta) ** 2) ** 9 * ( 7.36867973543946e45 * cos(theta) ** 38 - 4.66683049911165e46 * cos(theta) ** 36 + 1.34867119928456e47 * cos(theta) ** 34 - 2.35702349781507e47 * cos(theta) ** 32 + 2.78353251170542e47 * cos(theta) ** 30 - 2.35113911182885e47 * cos(theta) ** 28 + 1.46655211925958e47 * cos(theta) ** 26 - 6.87776967906729e46 * cos(theta) ** 24 + 2.44621705080229e46 * cos(theta) ** 22 - 6.60907764602723e45 * cos(theta) ** 20 + 1.35024166961847e45 * cos(theta) ** 18 - 2.06380594856768e44 * cos(theta) ** 16 + 2.3188830882783e43 * cos(theta) ** 14 - 1.865768002063e42 * cos(theta) ** 12 + 1.03479569862318e41 * cos(theta) ** 10 - 3.74022541671027e39 * cos(theta) ** 8 + 8.08073392499133e37 * cos(theta) ** 6 - 9.02539157668428e35 * cos(theta) ** 4 + 3.90709592064255e33 * cos(theta) ** 2 - 2.74182169869652e30 ) * sin(18 * phi) ) # @torch.jit.script def Yl56_m_minus_17(theta, phi): return ( 9.05904580347145e-30 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.88940506036909e44 * cos(theta) ** 39 - 1.26130554030045e45 * cos(theta) ** 37 + 3.85334628367017e45 * cos(theta) ** 35 - 7.14249544792447e45 * cos(theta) ** 33 + 8.97913713453361e45 * cos(theta) ** 31 - 8.10737624768569e45 * cos(theta) ** 29 + 5.43167451577622e45 * cos(theta) ** 27 - 2.75110787162692e45 * cos(theta) ** 25 + 1.0635726307836e45 * cos(theta) ** 23 - 3.14717983144154e44 * cos(theta) ** 21 + 7.10653510325508e43 * cos(theta) ** 19 - 1.21400349915746e43 * cos(theta) ** 17 + 1.5459220588522e42 * cos(theta) ** 15 - 1.43520615543308e41 * cos(theta) ** 13 + 9.40723362384705e39 * cos(theta) ** 11 - 4.15580601856697e38 * cos(theta) ** 9 + 1.15439056071305e37 * cos(theta) ** 7 - 1.80507831533686e35 * cos(theta) ** 5 + 1.30236530688085e33 * cos(theta) ** 3 - 2.74182169869652e30 * cos(theta) ) * sin(17 * phi) ) # @torch.jit.script def Yl56_m_minus_16(theta, phi): return ( 4.8952387861945e-28 * (1.0 - cos(theta) ** 2) ** 8 * ( 4.72351265092273e42 * cos(theta) ** 40 - 3.31922510605381e43 * cos(theta) ** 38 + 1.07037396768616e44 * cos(theta) ** 36 - 2.1007339552719e44 * cos(theta) ** 34 + 2.80598035454175e44 * cos(theta) ** 32 - 2.70245874922856e44 * cos(theta) ** 30 + 1.93988375563437e44 * cos(theta) ** 28 - 1.0581184121642e44 * cos(theta) ** 26 + 4.43155262826501e43 * cos(theta) ** 24 - 1.43053628701888e43 * cos(theta) ** 22 + 3.55326755162754e42 * cos(theta) ** 20 - 6.74446388420812e41 * cos(theta) ** 18 + 9.66201286782624e40 * cos(theta) ** 16 - 1.02514725388077e40 * cos(theta) ** 14 + 7.83936135320587e38 * cos(theta) ** 12 - 4.15580601856697e37 * cos(theta) ** 10 + 1.44298820089131e36 * cos(theta) ** 8 - 3.00846385889476e34 * cos(theta) ** 6 + 3.25591326720212e32 * cos(theta) ** 4 - 1.37091084934826e30 * cos(theta) ** 2 + 9.38980033800179e26 ) * sin(16 * phi) ) # @torch.jit.script def Yl56_m_minus_15(theta, phi): return ( 2.65969635312837e-26 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.15207625632262e41 * cos(theta) ** 41 - 8.51083360526618e41 * cos(theta) ** 39 + 2.892902615368e42 * cos(theta) ** 37 - 6.00209701506258e42 * cos(theta) ** 35 + 8.50297077133865e42 * cos(theta) ** 33 - 8.71760886847924e42 * cos(theta) ** 31 + 6.68925432977367e42 * cos(theta) ** 29 - 3.91895708208963e42 * cos(theta) ** 27 + 1.772621051306e42 * cos(theta) ** 25 - 6.21972298703861e41 * cos(theta) ** 23 + 1.69203216744169e41 * cos(theta) ** 21 - 3.54971783379375e40 * cos(theta) ** 19 + 5.68353698107426e39 * cos(theta) ** 17 - 6.83431502587179e38 * cos(theta) ** 15 + 6.03027796400452e37 * cos(theta) ** 13 - 3.77800547142452e36 * cos(theta) ** 11 + 1.60332022321257e35 * cos(theta) ** 9 - 4.2978055127068e33 * cos(theta) ** 7 + 6.51182653440424e31 * cos(theta) ** 5 - 4.56970283116087e29 * cos(theta) ** 3 + 9.38980033800179e26 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl56_m_minus_14(theta, phi): return ( 1.45239878642533e-24 * (1.0 - cos(theta) ** 2) ** 7 * ( 2.74303870553004e39 * cos(theta) ** 42 - 2.12770840131654e40 * cos(theta) ** 40 + 7.61290161938947e40 * cos(theta) ** 38 - 1.66724917085072e41 * cos(theta) ** 36 + 2.50087375627607e41 * cos(theta) ** 34 - 2.72425277139976e41 * cos(theta) ** 32 + 2.22975144325789e41 * cos(theta) ** 30 - 1.39962752931772e41 * cos(theta) ** 28 + 6.81777327425386e40 * cos(theta) ** 26 - 2.59155124459942e40 * cos(theta) ** 24 + 7.69105530655312e39 * cos(theta) ** 22 - 1.77485891689687e39 * cos(theta) ** 20 + 3.15752054504125e38 * cos(theta) ** 18 - 4.27144689116987e37 * cos(theta) ** 16 + 4.30734140286037e36 * cos(theta) ** 14 - 3.14833789285376e35 * cos(theta) ** 12 + 1.60332022321257e34 * cos(theta) ** 10 - 5.3722568908835e32 * cos(theta) ** 8 + 1.08530442240071e31 * cos(theta) ** 6 - 1.14242570779022e29 * cos(theta) ** 4 + 4.6949001690009e26 * cos(theta) ** 2 - 3.14882640442716e23 ) * sin(14 * phi) ) # @torch.jit.script def Yl56_m_minus_13(theta, phi): return ( 7.96836327408424e-23 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 6.37915978030242e37 * cos(theta) ** 43 - 5.18953268613791e38 * cos(theta) ** 41 + 1.95202605625371e39 * cos(theta) ** 39 - 4.50607884013707e39 * cos(theta) ** 37 + 7.14535358936021e39 * cos(theta) ** 35 - 8.25531142848413e39 * cos(theta) ** 33 + 7.19274659115449e39 * cos(theta) ** 31 - 4.82630182523353e39 * cos(theta) ** 29 + 2.52510121268661e39 * cos(theta) ** 27 - 1.03662049783977e39 * cos(theta) ** 25 + 3.3439370898057e38 * cos(theta) ** 23 - 8.45170912808035e37 * cos(theta) ** 21 + 1.66185291844277e37 * cos(theta) ** 19 - 2.51261581833522e36 * cos(theta) ** 17 + 2.87156093524025e35 * cos(theta) ** 15 - 2.42179837911828e34 * cos(theta) ** 13 + 1.45756383928415e33 * cos(theta) ** 11 - 5.96917432320389e31 * cos(theta) ** 9 + 1.55043488914387e30 * cos(theta) ** 7 - 2.28485141558044e28 * cos(theta) ** 5 + 1.5649667230003e26 * cos(theta) ** 3 - 3.14882640442716e23 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl56_m_minus_12(theta, phi): return ( 4.39056093319479e-21 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.44980904097782e36 * cos(theta) ** 44 - 1.23560302050903e37 * cos(theta) ** 42 + 4.88006514063427e37 * cos(theta) ** 40 - 1.1858102210887e38 * cos(theta) ** 38 + 1.98482044148895e38 * cos(theta) ** 36 - 2.42803277308357e38 * cos(theta) ** 34 + 2.24773330973578e38 * cos(theta) ** 32 - 1.60876727507784e38 * cos(theta) ** 30 + 9.01821861673791e37 * cos(theta) ** 28 - 3.98700191476834e37 * cos(theta) ** 26 + 1.39330712075238e37 * cos(theta) ** 24 - 3.84168596730925e36 * cos(theta) ** 22 + 8.30926459221383e35 * cos(theta) ** 20 - 1.3958976768529e35 * cos(theta) ** 18 + 1.79472558452515e34 * cos(theta) ** 16 - 1.72985598508449e33 * cos(theta) ** 14 + 1.21463653273679e32 * cos(theta) ** 12 - 5.96917432320389e30 * cos(theta) ** 10 + 1.93804361142983e29 * cos(theta) ** 8 - 3.80808569263406e27 * cos(theta) ** 6 + 3.91241680750075e25 * cos(theta) ** 4 - 1.57441320221358e23 * cos(theta) ** 2 + 1.03716284730802e20 ) * sin(12 * phi) ) # @torch.jit.script def Yl56_m_minus_11(theta, phi): return ( 2.42873830296257e-19 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 3.2217978688396e34 * cos(theta) ** 45 - 2.87349539653262e35 * cos(theta) ** 43 + 1.1902597903986e36 * cos(theta) ** 41 - 3.04053902843257e36 * cos(theta) ** 39 + 5.36437957159175e36 * cos(theta) ** 37 - 6.93723649452447e36 * cos(theta) ** 35 + 6.81131305980538e36 * cos(theta) ** 33 - 5.18957185508982e36 * cos(theta) ** 31 + 3.10973055749583e36 * cos(theta) ** 29 - 1.47666737584013e36 * cos(theta) ** 27 + 5.57322848300951e35 * cos(theta) ** 25 - 1.6702982466562e35 * cos(theta) ** 23 + 3.95679266295897e34 * cos(theta) ** 21 - 7.34682987817314e33 * cos(theta) ** 19 + 1.05572093207362e33 * cos(theta) ** 17 - 1.15323732338966e32 * cos(theta) ** 15 + 9.34335794412917e30 * cos(theta) ** 13 - 5.42652211200354e29 * cos(theta) ** 11 + 2.15338179047759e28 * cos(theta) ** 9 - 5.44012241804866e26 * cos(theta) ** 7 + 7.8248336150015e24 * cos(theta) ** 5 - 5.2480440073786e22 * cos(theta) ** 3 + 1.03716284730802e20 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl56_m_minus_10(theta, phi): return ( 1.34833261296548e-17 * (1.0 - cos(theta) ** 2) ** 5 * ( 7.00390841052088e32 * cos(theta) ** 46 - 6.53067135575596e33 * cos(theta) ** 44 + 2.83395188190144e34 * cos(theta) ** 42 - 7.60134757108143e34 * cos(theta) ** 40 + 1.41167883462941e35 * cos(theta) ** 38 - 1.92701013736791e35 * cos(theta) ** 36 + 2.003327370531e35 * cos(theta) ** 34 - 1.62174120471557e35 * cos(theta) ** 32 + 1.03657685249861e35 * cos(theta) ** 30 - 5.27381205657188e34 * cos(theta) ** 28 + 2.14354941654212e34 * cos(theta) ** 26 - 6.95957602773415e33 * cos(theta) ** 24 + 1.7985421195268e33 * cos(theta) ** 22 - 3.67341493908657e32 * cos(theta) ** 20 + 5.86511628929789e31 * cos(theta) ** 18 - 7.20773327118536e30 * cos(theta) ** 16 + 6.6738271029494e29 * cos(theta) ** 14 - 4.52210176000295e28 * cos(theta) ** 12 + 2.15338179047759e27 * cos(theta) ** 10 - 6.80015302256082e25 * cos(theta) ** 8 + 1.30413893583358e24 * cos(theta) ** 6 - 1.31201100184465e22 * cos(theta) ** 4 + 5.18581423654012e19 * cos(theta) ** 2 - 3.36522662981189e16 ) * sin(10 * phi) ) # @torch.jit.script def Yl56_m_minus_9(theta, phi): return ( 7.50961955810543e-16 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1.49019327883423e31 * cos(theta) ** 47 - 1.4512603012791e32 * cos(theta) ** 45 + 6.59058577186381e32 * cos(theta) ** 43 - 1.85398721245888e33 * cos(theta) ** 41 + 3.61968931956258e33 * cos(theta) ** 39 - 5.20813550639976e33 * cos(theta) ** 37 + 5.72379248723142e33 * cos(theta) ** 35 - 4.91436728701687e33 * cos(theta) ** 33 + 3.34379629838261e33 * cos(theta) ** 31 - 1.81855588157651e33 * cos(theta) ** 29 + 7.93907191311895e32 * cos(theta) ** 27 - 2.78383041109366e32 * cos(theta) ** 25 + 7.81974834576871e31 * cos(theta) ** 23 - 1.74924520908884e31 * cos(theta) ** 21 + 3.08690331015678e30 * cos(theta) ** 19 - 4.23984310069727e29 * cos(theta) ** 17 + 4.44921806863294e28 * cos(theta) ** 15 - 3.47853981538688e27 * cos(theta) ** 13 + 1.95761980952509e26 * cos(theta) ** 11 - 7.55572558062314e24 * cos(theta) ** 9 + 1.8630556226194e23 * cos(theta) ** 7 - 2.6240220036893e21 * cos(theta) ** 5 + 1.72860474551337e19 * cos(theta) ** 3 - 3.36522662981189e16 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl56_m_minus_8(theta, phi): return ( 4.19464520587065e-14 * (1.0 - cos(theta) ** 2) ** 4 * ( 3.10456933090465e29 * cos(theta) ** 48 - 3.15491369843283e30 * cos(theta) ** 46 + 1.49786040269632e31 * cos(theta) ** 44 - 4.41425526775925e31 * cos(theta) ** 42 + 9.04922329890646e31 * cos(theta) ** 40 - 1.37056197536836e32 * cos(theta) ** 38 + 1.58994235756428e32 * cos(theta) ** 36 - 1.44540214324026e32 * cos(theta) ** 34 + 1.04493634324457e32 * cos(theta) ** 32 - 6.06185293858836e31 * cos(theta) ** 30 + 2.83538282611391e31 * cos(theta) ** 28 - 1.07070400426679e31 * cos(theta) ** 26 + 3.25822847740363e30 * cos(theta) ** 24 - 7.95111458676747e29 * cos(theta) ** 22 + 1.54345165507839e29 * cos(theta) ** 20 - 2.35546838927626e28 * cos(theta) ** 18 + 2.78076129289559e27 * cos(theta) ** 16 - 2.48467129670492e26 * cos(theta) ** 14 + 1.6313498412709e25 * cos(theta) ** 12 - 7.55572558062314e23 * cos(theta) ** 10 + 2.32881952827425e22 * cos(theta) ** 8 - 4.37337000614883e20 * cos(theta) ** 6 + 4.32151186378343e18 * cos(theta) ** 4 - 1.68261331490594e16 * cos(theta) ** 2 + 10785982787858.6 ) * sin(8 * phi) ) # @torch.jit.script def Yl56_m_minus_7(theta, phi): return ( 2.34900131528757e-12 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 6.33585577735642e27 * cos(theta) ** 49 - 6.71258233709113e28 * cos(theta) ** 47 + 3.32857867265849e29 * cos(theta) ** 45 - 1.02657099250215e30 * cos(theta) ** 43 + 2.20712763387962e30 * cos(theta) ** 41 - 3.51426147530348e30 * cos(theta) ** 39 + 4.29714150693049e30 * cos(theta) ** 37 - 4.12972040925788e30 * cos(theta) ** 35 + 3.16647376740778e30 * cos(theta) ** 33 - 1.9554364318027e30 * cos(theta) ** 31 + 9.77718215901349e29 * cos(theta) ** 29 - 3.9655703861733e29 * cos(theta) ** 27 + 1.30329139096145e29 * cos(theta) ** 25 - 3.45700634207281e28 * cos(theta) ** 23 + 7.34976978608758e27 * cos(theta) ** 21 - 1.23972020488224e27 * cos(theta) ** 19 + 1.6357419369974e26 * cos(theta) ** 17 - 1.65644753113661e25 * cos(theta) ** 15 + 1.25488449328531e24 * cos(theta) ** 13 - 6.86884143693012e22 * cos(theta) ** 11 + 2.58757725363806e21 * cos(theta) ** 9 - 6.24767143735548e19 * cos(theta) ** 7 + 8.64302372756687e17 * cos(theta) ** 5 - 5.60871104968648e15 * cos(theta) ** 3 + 10785982787858.6 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl56_m_minus_6(theta, phi): return ( 1.31837371843311e-10 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.26717115547128e26 * cos(theta) ** 50 - 1.39845465356065e27 * cos(theta) ** 48 + 7.23604059273585e27 * cos(theta) ** 46 - 2.33311589205034e28 * cos(theta) ** 44 + 5.25506579495149e28 * cos(theta) ** 42 - 8.7856536882587e28 * cos(theta) ** 40 + 1.13082671235013e29 * cos(theta) ** 38 - 1.14714455812719e29 * cos(theta) ** 36 + 9.31315813943464e28 * cos(theta) ** 34 - 6.11073884938343e28 * cos(theta) ** 32 + 3.25906071967116e28 * cos(theta) ** 30 - 1.41627513791904e28 * cos(theta) ** 28 + 5.01265919600558e27 * cos(theta) ** 26 - 1.44041930919701e27 * cos(theta) ** 24 + 3.34080444822163e26 * cos(theta) ** 22 - 6.19860102441121e25 * cos(theta) ** 20 + 9.08745520554113e24 * cos(theta) ** 18 - 1.03527970696038e24 * cos(theta) ** 16 + 8.96346066632365e22 * cos(theta) ** 14 - 5.7240345307751e21 * cos(theta) ** 12 + 2.58757725363806e20 * cos(theta) ** 10 - 7.80958929669435e18 * cos(theta) ** 8 + 1.44050395459448e17 * cos(theta) ** 6 - 1.40217776242162e15 * cos(theta) ** 4 + 5392991393929.31 * cos(theta) ** 2 - 3424121519.95512 ) * sin(6 * phi) ) # @torch.jit.script def Yl56_m_minus_5(theta, phi): return ( 7.41343475368955e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 2.4846493244535e24 * cos(theta) ** 51 - 2.85398908889929e25 * cos(theta) ** 49 + 1.53958310483741e26 * cos(theta) ** 47 - 5.18470198233409e26 * cos(theta) ** 45 + 1.22210832440732e27 * cos(theta) ** 43 - 2.14284236298993e27 * cos(theta) ** 41 + 2.89955567269264e27 * cos(theta) ** 39 - 3.10039069764105e27 * cos(theta) ** 37 + 2.66090232555275e27 * cos(theta) ** 35 - 1.85173904526771e27 * cos(theta) ** 33 + 1.05130990957134e27 * cos(theta) ** 31 - 4.88370737213461e26 * cos(theta) ** 29 + 1.85654044296503e26 * cos(theta) ** 27 - 5.76167723678802e25 * cos(theta) ** 25 + 1.45252367313984e25 * cos(theta) ** 23 - 2.95171477352915e24 * cos(theta) ** 21 + 4.78287116081112e23 * cos(theta) ** 19 - 6.08988062917872e22 * cos(theta) ** 17 + 5.97564044421577e21 * cos(theta) ** 15 - 4.40310348521162e20 * cos(theta) ** 13 + 2.35234295785278e19 * cos(theta) ** 11 - 8.6773214407715e17 * cos(theta) ** 9 + 2.05786279227783e16 * cos(theta) ** 7 - 280435552484324.0 * cos(theta) ** 5 + 1797663797976.44 * cos(theta) ** 3 - 3424121519.95512 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl56_m_minus_4(theta, phi): return ( 4.17528436271539e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 4.77817177779519e22 * cos(theta) ** 52 - 5.70797817779858e23 * cos(theta) ** 50 + 3.20746480174461e24 * cos(theta) ** 48 - 1.12710912659437e25 * cos(theta) ** 46 + 2.77751891910755e25 * cos(theta) ** 44 - 5.10200562616649e25 * cos(theta) ** 42 + 7.2488891817316e25 * cos(theta) ** 40 - 8.15892288852907e25 * cos(theta) ** 38 + 7.39139534875765e25 * cos(theta) ** 36 - 5.4462913096109e25 * cos(theta) ** 34 + 3.28534346741045e25 * cos(theta) ** 32 - 1.6279024573782e25 * cos(theta) ** 30 + 6.63050158201796e24 * cos(theta) ** 28 - 2.21602970645693e24 * cos(theta) ** 26 + 6.05218197141599e23 * cos(theta) ** 24 - 1.34168853342234e23 * cos(theta) ** 22 + 2.39143558040556e22 * cos(theta) ** 20 - 3.3832670162104e21 * cos(theta) ** 18 + 3.73477527763485e20 * cos(theta) ** 16 - 3.1450739180083e19 * cos(theta) ** 14 + 1.96028579821065e18 * cos(theta) ** 12 - 8.6773214407715e16 * cos(theta) ** 10 + 2.57232849034728e15 * cos(theta) ** 8 - 46739258747387.3 * cos(theta) ** 6 + 449415949494.109 * cos(theta) ** 4 - 1712060759.97756 * cos(theta) ** 2 + 1079483.45521914 ) * sin(4 * phi) ) # @torch.jit.script def Yl56_m_minus_3(theta, phi): return ( 2.35450501040714e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 9.01541844867017e20 * cos(theta) ** 53 - 1.11921140741149e22 * cos(theta) ** 51 + 6.54584653417268e22 * cos(theta) ** 49 - 2.39810452466887e23 * cos(theta) ** 47 + 6.17226426468345e23 * cos(theta) ** 45 - 1.18651293631779e24 * cos(theta) ** 43 + 1.76802175164185e24 * cos(theta) ** 41 - 2.09203150987925e24 * cos(theta) ** 39 + 1.99767441858315e24 * cos(theta) ** 37 - 1.5560832313174e24 * cos(theta) ** 35 + 9.95558626488014e23 * cos(theta) ** 33 - 5.25129824960711e23 * cos(theta) ** 31 + 2.28637985586826e23 * cos(theta) ** 29 - 8.20751743132197e22 * cos(theta) ** 27 + 2.4208727885664e22 * cos(theta) ** 25 - 5.83342840618409e21 * cos(theta) ** 23 + 1.13877884781217e21 * cos(theta) ** 21 - 1.78066685063705e20 * cos(theta) ** 19 + 2.19692663390286e19 * cos(theta) ** 17 - 2.09671594533887e18 * cos(theta) ** 15 + 1.50791215246973e17 * cos(theta) ** 13 - 7.888474037065e15 * cos(theta) ** 11 + 285814276705254.0 * cos(theta) ** 9 - 6677036963912.48 * cos(theta) ** 7 + 89883189898.8218 * cos(theta) ** 5 - 570686919.992519 * cos(theta) ** 3 + 1079483.45521914 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl56_m_minus_2(theta, phi): return ( 0.00132899242236692 * (1.0 - cos(theta) ** 2) * ( 1.66952193493892e19 * cos(theta) ** 54 - 2.15232962963747e20 * cos(theta) ** 52 + 1.30916930683454e21 * cos(theta) ** 50 - 4.99605109306014e21 * cos(theta) ** 48 + 1.34179657927901e22 * cos(theta) ** 46 - 2.69662030981316e22 * cos(theta) ** 44 + 4.20957559914727e22 * cos(theta) ** 42 - 5.23007877469812e22 * cos(theta) ** 40 + 5.25703794363987e22 * cos(theta) ** 38 - 4.32245342032611e22 * cos(theta) ** 36 + 2.92811360731769e22 * cos(theta) ** 34 - 1.64103070300222e22 * cos(theta) ** 32 + 7.62126618622755e21 * cos(theta) ** 30 - 2.93125622547213e21 * cos(theta) ** 28 + 9.31104918679383e20 * cos(theta) ** 26 - 2.43059516924337e20 * cos(theta) ** 24 + 5.17626749005533e19 * cos(theta) ** 22 - 8.90333425318526e18 * cos(theta) ** 20 + 1.2205147966127e18 * cos(theta) ** 18 - 1.31044746583679e17 * cos(theta) ** 16 + 1.07708010890695e16 * cos(theta) ** 14 - 657372836422083.0 * cos(theta) ** 12 + 28581427670525.4 * cos(theta) ** 10 - 834629620489.06 * cos(theta) ** 8 + 14980531649.8036 * cos(theta) ** 6 - 142671729.99813 * cos(theta) ** 4 + 539741.727609571 * cos(theta) ** 2 - 338.820921286611 ) * sin(2 * phi) ) # @torch.jit.script def Yl56_m_minus_1(theta, phi): return ( 0.0750616049607305 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 3.03549442716167e17 * cos(theta) ** 55 - 4.06099930120278e18 * cos(theta) ** 53 + 2.56699864085203e19 * cos(theta) ** 51 - 1.01960226388983e20 * cos(theta) ** 49 + 2.85488633889151e20 * cos(theta) ** 47 - 5.99248957736257e20 * cos(theta) ** 45 + 9.78971069569133e20 * cos(theta) ** 43 - 1.27562896943857e21 * cos(theta) ** 41 + 1.34795844708715e21 * cos(theta) ** 39 - 1.16823065414219e21 * cos(theta) ** 37 + 8.36603887805054e20 * cos(theta) ** 35 - 4.97282031212794e20 * cos(theta) ** 33 + 2.45847296329921e20 * cos(theta) ** 31 - 1.01077800878349e20 * cos(theta) ** 29 + 3.44853673584957e19 * cos(theta) ** 27 - 9.72238067697348e18 * cos(theta) ** 25 + 2.25055108263275e18 * cos(theta) ** 23 - 4.23968297770727e17 * cos(theta) ** 21 + 6.42376208743525e16 * cos(theta) ** 19 - 7.7085145049223e15 * cos(theta) ** 17 + 718053405937968.0 * cos(theta) ** 15 - 50567141263237.2 * cos(theta) ** 13 + 2598311606411.4 * cos(theta) ** 11 - 92736624498.7844 * cos(theta) ** 9 + 2140075949.97195 * cos(theta) ** 7 - 28534345.999626 * cos(theta) ** 5 + 179913.90920319 * cos(theta) ** 3 - 338.820921286611 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl56_m0(theta, phi): return ( 5.10652632735564e16 * cos(theta) ** 56 - 7.08473021993485e17 * cos(theta) ** 54 + 4.65057291042512e18 * cos(theta) ** 52 - 1.92107778168963e19 * cos(theta) ** 50 + 5.60314352992809e19 * cos(theta) ** 48 - 1.22725163140949e20 * cos(theta) ** 46 + 2.0960485783974e20 * cos(theta) ** 44 - 2.86127266257423e20 * cos(theta) ** 42 + 3.17468526092321e20 * cos(theta) ** 40 - 2.89620409768433e20 * cos(theta) ** 38 + 2.18928116201299e20 * cos(theta) ** 36 - 1.37786926280538e20 * cos(theta) ** 34 + 7.23768404900579e19 * cos(theta) ** 32 - 3.17408601972314e19 * cos(theta) ** 30 + 1.1602751416635e19 * cos(theta) ** 28 - 3.52276308071328e18 * cos(theta) ** 26 + 8.83408951567759e17 * cos(theta) ** 24 - 1.81549419681833e17 * cos(theta) ** 22 + 3.02582366136388e16 * cos(theta) ** 20 - 4.03443154848518e15 * cos(theta) ** 18 + 422786319807008.0 * cos(theta) ** 16 - 34027067992515.8 * cos(theta) ** 14 + 2039830821685.73 * cos(theta) ** 12 - 87364590675.7028 * cos(theta) ** 10 + 2520132423.33758 * cos(theta) ** 8 - 44802354.1926681 * cos(theta) ** 6 + 423729.705479206 * cos(theta) ** 4 - 1595.96875886707 * cos(theta) ** 2 + 0.999980425355305 ) # @torch.jit.script def Yl56_m1(theta, phi): return ( 0.0750616049607305 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 3.03549442716167e17 * cos(theta) ** 55 - 4.06099930120278e18 * cos(theta) ** 53 + 2.56699864085203e19 * cos(theta) ** 51 - 1.01960226388983e20 * cos(theta) ** 49 + 2.85488633889151e20 * cos(theta) ** 47 - 5.99248957736257e20 * cos(theta) ** 45 + 9.78971069569133e20 * cos(theta) ** 43 - 1.27562896943857e21 * cos(theta) ** 41 + 1.34795844708715e21 * cos(theta) ** 39 - 1.16823065414219e21 * cos(theta) ** 37 + 8.36603887805054e20 * cos(theta) ** 35 - 4.97282031212794e20 * cos(theta) ** 33 + 2.45847296329921e20 * cos(theta) ** 31 - 1.01077800878349e20 * cos(theta) ** 29 + 3.44853673584957e19 * cos(theta) ** 27 - 9.72238067697348e18 * cos(theta) ** 25 + 2.25055108263275e18 * cos(theta) ** 23 - 4.23968297770727e17 * cos(theta) ** 21 + 6.42376208743525e16 * cos(theta) ** 19 - 7.7085145049223e15 * cos(theta) ** 17 + 718053405937968.0 * cos(theta) ** 15 - 50567141263237.2 * cos(theta) ** 13 + 2598311606411.4 * cos(theta) ** 11 - 92736624498.7844 * cos(theta) ** 9 + 2140075949.97195 * cos(theta) ** 7 - 28534345.999626 * cos(theta) ** 5 + 179913.90920319 * cos(theta) ** 3 - 338.820921286611 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl56_m2(theta, phi): return ( 0.00132899242236692 * (1.0 - cos(theta) ** 2) * ( 1.66952193493892e19 * cos(theta) ** 54 - 2.15232962963747e20 * cos(theta) ** 52 + 1.30916930683454e21 * cos(theta) ** 50 - 4.99605109306014e21 * cos(theta) ** 48 + 1.34179657927901e22 * cos(theta) ** 46 - 2.69662030981316e22 * cos(theta) ** 44 + 4.20957559914727e22 * cos(theta) ** 42 - 5.23007877469812e22 * cos(theta) ** 40 + 5.25703794363987e22 * cos(theta) ** 38 - 4.32245342032611e22 * cos(theta) ** 36 + 2.92811360731769e22 * cos(theta) ** 34 - 1.64103070300222e22 * cos(theta) ** 32 + 7.62126618622755e21 * cos(theta) ** 30 - 2.93125622547213e21 * cos(theta) ** 28 + 9.31104918679383e20 * cos(theta) ** 26 - 2.43059516924337e20 * cos(theta) ** 24 + 5.17626749005533e19 * cos(theta) ** 22 - 8.90333425318526e18 * cos(theta) ** 20 + 1.2205147966127e18 * cos(theta) ** 18 - 1.31044746583679e17 * cos(theta) ** 16 + 1.07708010890695e16 * cos(theta) ** 14 - 657372836422083.0 * cos(theta) ** 12 + 28581427670525.4 * cos(theta) ** 10 - 834629620489.06 * cos(theta) ** 8 + 14980531649.8036 * cos(theta) ** 6 - 142671729.99813 * cos(theta) ** 4 + 539741.727609571 * cos(theta) ** 2 - 338.820921286611 ) * cos(2 * phi) ) # @torch.jit.script def Yl56_m3(theta, phi): return ( 2.35450501040714e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 9.01541844867017e20 * cos(theta) ** 53 - 1.11921140741149e22 * cos(theta) ** 51 + 6.54584653417268e22 * cos(theta) ** 49 - 2.39810452466887e23 * cos(theta) ** 47 + 6.17226426468345e23 * cos(theta) ** 45 - 1.18651293631779e24 * cos(theta) ** 43 + 1.76802175164185e24 * cos(theta) ** 41 - 2.09203150987925e24 * cos(theta) ** 39 + 1.99767441858315e24 * cos(theta) ** 37 - 1.5560832313174e24 * cos(theta) ** 35 + 9.95558626488014e23 * cos(theta) ** 33 - 5.25129824960711e23 * cos(theta) ** 31 + 2.28637985586826e23 * cos(theta) ** 29 - 8.20751743132197e22 * cos(theta) ** 27 + 2.4208727885664e22 * cos(theta) ** 25 - 5.83342840618409e21 * cos(theta) ** 23 + 1.13877884781217e21 * cos(theta) ** 21 - 1.78066685063705e20 * cos(theta) ** 19 + 2.19692663390286e19 * cos(theta) ** 17 - 2.09671594533887e18 * cos(theta) ** 15 + 1.50791215246973e17 * cos(theta) ** 13 - 7.888474037065e15 * cos(theta) ** 11 + 285814276705254.0 * cos(theta) ** 9 - 6677036963912.48 * cos(theta) ** 7 + 89883189898.8218 * cos(theta) ** 5 - 570686919.992519 * cos(theta) ** 3 + 1079483.45521914 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl56_m4(theta, phi): return ( 4.17528436271539e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 4.77817177779519e22 * cos(theta) ** 52 - 5.70797817779858e23 * cos(theta) ** 50 + 3.20746480174461e24 * cos(theta) ** 48 - 1.12710912659437e25 * cos(theta) ** 46 + 2.77751891910755e25 * cos(theta) ** 44 - 5.10200562616649e25 * cos(theta) ** 42 + 7.2488891817316e25 * cos(theta) ** 40 - 8.15892288852907e25 * cos(theta) ** 38 + 7.39139534875765e25 * cos(theta) ** 36 - 5.4462913096109e25 * cos(theta) ** 34 + 3.28534346741045e25 * cos(theta) ** 32 - 1.6279024573782e25 * cos(theta) ** 30 + 6.63050158201796e24 * cos(theta) ** 28 - 2.21602970645693e24 * cos(theta) ** 26 + 6.05218197141599e23 * cos(theta) ** 24 - 1.34168853342234e23 * cos(theta) ** 22 + 2.39143558040556e22 * cos(theta) ** 20 - 3.3832670162104e21 * cos(theta) ** 18 + 3.73477527763485e20 * cos(theta) ** 16 - 3.1450739180083e19 * cos(theta) ** 14 + 1.96028579821065e18 * cos(theta) ** 12 - 8.6773214407715e16 * cos(theta) ** 10 + 2.57232849034728e15 * cos(theta) ** 8 - 46739258747387.3 * cos(theta) ** 6 + 449415949494.109 * cos(theta) ** 4 - 1712060759.97756 * cos(theta) ** 2 + 1079483.45521914 ) * cos(4 * phi) ) # @torch.jit.script def Yl56_m5(theta, phi): return ( 7.41343475368955e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 2.4846493244535e24 * cos(theta) ** 51 - 2.85398908889929e25 * cos(theta) ** 49 + 1.53958310483741e26 * cos(theta) ** 47 - 5.18470198233409e26 * cos(theta) ** 45 + 1.22210832440732e27 * cos(theta) ** 43 - 2.14284236298993e27 * cos(theta) ** 41 + 2.89955567269264e27 * cos(theta) ** 39 - 3.10039069764105e27 * cos(theta) ** 37 + 2.66090232555275e27 * cos(theta) ** 35 - 1.85173904526771e27 * cos(theta) ** 33 + 1.05130990957134e27 * cos(theta) ** 31 - 4.88370737213461e26 * cos(theta) ** 29 + 1.85654044296503e26 * cos(theta) ** 27 - 5.76167723678802e25 * cos(theta) ** 25 + 1.45252367313984e25 * cos(theta) ** 23 - 2.95171477352915e24 * cos(theta) ** 21 + 4.78287116081112e23 * cos(theta) ** 19 - 6.08988062917872e22 * cos(theta) ** 17 + 5.97564044421577e21 * cos(theta) ** 15 - 4.40310348521162e20 * cos(theta) ** 13 + 2.35234295785278e19 * cos(theta) ** 11 - 8.6773214407715e17 * cos(theta) ** 9 + 2.05786279227783e16 * cos(theta) ** 7 - 280435552484324.0 * cos(theta) ** 5 + 1797663797976.44 * cos(theta) ** 3 - 3424121519.95512 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl56_m6(theta, phi): return ( 1.31837371843311e-10 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.26717115547128e26 * cos(theta) ** 50 - 1.39845465356065e27 * cos(theta) ** 48 + 7.23604059273585e27 * cos(theta) ** 46 - 2.33311589205034e28 * cos(theta) ** 44 + 5.25506579495149e28 * cos(theta) ** 42 - 8.7856536882587e28 * cos(theta) ** 40 + 1.13082671235013e29 * cos(theta) ** 38 - 1.14714455812719e29 * cos(theta) ** 36 + 9.31315813943464e28 * cos(theta) ** 34 - 6.11073884938343e28 * cos(theta) ** 32 + 3.25906071967116e28 * cos(theta) ** 30 - 1.41627513791904e28 * cos(theta) ** 28 + 5.01265919600558e27 * cos(theta) ** 26 - 1.44041930919701e27 * cos(theta) ** 24 + 3.34080444822163e26 * cos(theta) ** 22 - 6.19860102441121e25 * cos(theta) ** 20 + 9.08745520554113e24 * cos(theta) ** 18 - 1.03527970696038e24 * cos(theta) ** 16 + 8.96346066632365e22 * cos(theta) ** 14 - 5.7240345307751e21 * cos(theta) ** 12 + 2.58757725363806e20 * cos(theta) ** 10 - 7.80958929669435e18 * cos(theta) ** 8 + 1.44050395459448e17 * cos(theta) ** 6 - 1.40217776242162e15 * cos(theta) ** 4 + 5392991393929.31 * cos(theta) ** 2 - 3424121519.95512 ) * cos(6 * phi) ) # @torch.jit.script def Yl56_m7(theta, phi): return ( 2.34900131528757e-12 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 6.33585577735642e27 * cos(theta) ** 49 - 6.71258233709113e28 * cos(theta) ** 47 + 3.32857867265849e29 * cos(theta) ** 45 - 1.02657099250215e30 * cos(theta) ** 43 + 2.20712763387962e30 * cos(theta) ** 41 - 3.51426147530348e30 * cos(theta) ** 39 + 4.29714150693049e30 * cos(theta) ** 37 - 4.12972040925788e30 * cos(theta) ** 35 + 3.16647376740778e30 * cos(theta) ** 33 - 1.9554364318027e30 * cos(theta) ** 31 + 9.77718215901349e29 * cos(theta) ** 29 - 3.9655703861733e29 * cos(theta) ** 27 + 1.30329139096145e29 * cos(theta) ** 25 - 3.45700634207281e28 * cos(theta) ** 23 + 7.34976978608758e27 * cos(theta) ** 21 - 1.23972020488224e27 * cos(theta) ** 19 + 1.6357419369974e26 * cos(theta) ** 17 - 1.65644753113661e25 * cos(theta) ** 15 + 1.25488449328531e24 * cos(theta) ** 13 - 6.86884143693012e22 * cos(theta) ** 11 + 2.58757725363806e21 * cos(theta) ** 9 - 6.24767143735548e19 * cos(theta) ** 7 + 8.64302372756687e17 * cos(theta) ** 5 - 5.60871104968648e15 * cos(theta) ** 3 + 10785982787858.6 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl56_m8(theta, phi): return ( 4.19464520587065e-14 * (1.0 - cos(theta) ** 2) ** 4 * ( 3.10456933090465e29 * cos(theta) ** 48 - 3.15491369843283e30 * cos(theta) ** 46 + 1.49786040269632e31 * cos(theta) ** 44 - 4.41425526775925e31 * cos(theta) ** 42 + 9.04922329890646e31 * cos(theta) ** 40 - 1.37056197536836e32 * cos(theta) ** 38 + 1.58994235756428e32 * cos(theta) ** 36 - 1.44540214324026e32 * cos(theta) ** 34 + 1.04493634324457e32 * cos(theta) ** 32 - 6.06185293858836e31 * cos(theta) ** 30 + 2.83538282611391e31 * cos(theta) ** 28 - 1.07070400426679e31 * cos(theta) ** 26 + 3.25822847740363e30 * cos(theta) ** 24 - 7.95111458676747e29 * cos(theta) ** 22 + 1.54345165507839e29 * cos(theta) ** 20 - 2.35546838927626e28 * cos(theta) ** 18 + 2.78076129289559e27 * cos(theta) ** 16 - 2.48467129670492e26 * cos(theta) ** 14 + 1.6313498412709e25 * cos(theta) ** 12 - 7.55572558062314e23 * cos(theta) ** 10 + 2.32881952827425e22 * cos(theta) ** 8 - 4.37337000614883e20 * cos(theta) ** 6 + 4.32151186378343e18 * cos(theta) ** 4 - 1.68261331490594e16 * cos(theta) ** 2 + 10785982787858.6 ) * cos(8 * phi) ) # @torch.jit.script def Yl56_m9(theta, phi): return ( 7.50961955810543e-16 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1.49019327883423e31 * cos(theta) ** 47 - 1.4512603012791e32 * cos(theta) ** 45 + 6.59058577186381e32 * cos(theta) ** 43 - 1.85398721245888e33 * cos(theta) ** 41 + 3.61968931956258e33 * cos(theta) ** 39 - 5.20813550639976e33 * cos(theta) ** 37 + 5.72379248723142e33 * cos(theta) ** 35 - 4.91436728701687e33 * cos(theta) ** 33 + 3.34379629838261e33 * cos(theta) ** 31 - 1.81855588157651e33 * cos(theta) ** 29 + 7.93907191311895e32 * cos(theta) ** 27 - 2.78383041109366e32 * cos(theta) ** 25 + 7.81974834576871e31 * cos(theta) ** 23 - 1.74924520908884e31 * cos(theta) ** 21 + 3.08690331015678e30 * cos(theta) ** 19 - 4.23984310069727e29 * cos(theta) ** 17 + 4.44921806863294e28 * cos(theta) ** 15 - 3.47853981538688e27 * cos(theta) ** 13 + 1.95761980952509e26 * cos(theta) ** 11 - 7.55572558062314e24 * cos(theta) ** 9 + 1.8630556226194e23 * cos(theta) ** 7 - 2.6240220036893e21 * cos(theta) ** 5 + 1.72860474551337e19 * cos(theta) ** 3 - 3.36522662981189e16 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl56_m10(theta, phi): return ( 1.34833261296548e-17 * (1.0 - cos(theta) ** 2) ** 5 * ( 7.00390841052088e32 * cos(theta) ** 46 - 6.53067135575596e33 * cos(theta) ** 44 + 2.83395188190144e34 * cos(theta) ** 42 - 7.60134757108143e34 * cos(theta) ** 40 + 1.41167883462941e35 * cos(theta) ** 38 - 1.92701013736791e35 * cos(theta) ** 36 + 2.003327370531e35 * cos(theta) ** 34 - 1.62174120471557e35 * cos(theta) ** 32 + 1.03657685249861e35 * cos(theta) ** 30 - 5.27381205657188e34 * cos(theta) ** 28 + 2.14354941654212e34 * cos(theta) ** 26 - 6.95957602773415e33 * cos(theta) ** 24 + 1.7985421195268e33 * cos(theta) ** 22 - 3.67341493908657e32 * cos(theta) ** 20 + 5.86511628929789e31 * cos(theta) ** 18 - 7.20773327118536e30 * cos(theta) ** 16 + 6.6738271029494e29 * cos(theta) ** 14 - 4.52210176000295e28 * cos(theta) ** 12 + 2.15338179047759e27 * cos(theta) ** 10 - 6.80015302256082e25 * cos(theta) ** 8 + 1.30413893583358e24 * cos(theta) ** 6 - 1.31201100184465e22 * cos(theta) ** 4 + 5.18581423654012e19 * cos(theta) ** 2 - 3.36522662981189e16 ) * cos(10 * phi) ) # @torch.jit.script def Yl56_m11(theta, phi): return ( 2.42873830296257e-19 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 3.2217978688396e34 * cos(theta) ** 45 - 2.87349539653262e35 * cos(theta) ** 43 + 1.1902597903986e36 * cos(theta) ** 41 - 3.04053902843257e36 * cos(theta) ** 39 + 5.36437957159175e36 * cos(theta) ** 37 - 6.93723649452447e36 * cos(theta) ** 35 + 6.81131305980538e36 * cos(theta) ** 33 - 5.18957185508982e36 * cos(theta) ** 31 + 3.10973055749583e36 * cos(theta) ** 29 - 1.47666737584013e36 * cos(theta) ** 27 + 5.57322848300951e35 * cos(theta) ** 25 - 1.6702982466562e35 * cos(theta) ** 23 + 3.95679266295897e34 * cos(theta) ** 21 - 7.34682987817314e33 * cos(theta) ** 19 + 1.05572093207362e33 * cos(theta) ** 17 - 1.15323732338966e32 * cos(theta) ** 15 + 9.34335794412917e30 * cos(theta) ** 13 - 5.42652211200354e29 * cos(theta) ** 11 + 2.15338179047759e28 * cos(theta) ** 9 - 5.44012241804866e26 * cos(theta) ** 7 + 7.8248336150015e24 * cos(theta) ** 5 - 5.2480440073786e22 * cos(theta) ** 3 + 1.03716284730802e20 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl56_m12(theta, phi): return ( 4.39056093319479e-21 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.44980904097782e36 * cos(theta) ** 44 - 1.23560302050903e37 * cos(theta) ** 42 + 4.88006514063427e37 * cos(theta) ** 40 - 1.1858102210887e38 * cos(theta) ** 38 + 1.98482044148895e38 * cos(theta) ** 36 - 2.42803277308357e38 * cos(theta) ** 34 + 2.24773330973578e38 * cos(theta) ** 32 - 1.60876727507784e38 * cos(theta) ** 30 + 9.01821861673791e37 * cos(theta) ** 28 - 3.98700191476834e37 * cos(theta) ** 26 + 1.39330712075238e37 * cos(theta) ** 24 - 3.84168596730925e36 * cos(theta) ** 22 + 8.30926459221383e35 * cos(theta) ** 20 - 1.3958976768529e35 * cos(theta) ** 18 + 1.79472558452515e34 * cos(theta) ** 16 - 1.72985598508449e33 * cos(theta) ** 14 + 1.21463653273679e32 * cos(theta) ** 12 - 5.96917432320389e30 * cos(theta) ** 10 + 1.93804361142983e29 * cos(theta) ** 8 - 3.80808569263406e27 * cos(theta) ** 6 + 3.91241680750075e25 * cos(theta) ** 4 - 1.57441320221358e23 * cos(theta) ** 2 + 1.03716284730802e20 ) * cos(12 * phi) ) # @torch.jit.script def Yl56_m13(theta, phi): return ( 7.96836327408424e-23 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 6.37915978030242e37 * cos(theta) ** 43 - 5.18953268613791e38 * cos(theta) ** 41 + 1.95202605625371e39 * cos(theta) ** 39 - 4.50607884013707e39 * cos(theta) ** 37 + 7.14535358936021e39 * cos(theta) ** 35 - 8.25531142848413e39 * cos(theta) ** 33 + 7.19274659115449e39 * cos(theta) ** 31 - 4.82630182523353e39 * cos(theta) ** 29 + 2.52510121268661e39 * cos(theta) ** 27 - 1.03662049783977e39 * cos(theta) ** 25 + 3.3439370898057e38 * cos(theta) ** 23 - 8.45170912808035e37 * cos(theta) ** 21 + 1.66185291844277e37 * cos(theta) ** 19 - 2.51261581833522e36 * cos(theta) ** 17 + 2.87156093524025e35 * cos(theta) ** 15 - 2.42179837911828e34 * cos(theta) ** 13 + 1.45756383928415e33 * cos(theta) ** 11 - 5.96917432320389e31 * cos(theta) ** 9 + 1.55043488914387e30 * cos(theta) ** 7 - 2.28485141558044e28 * cos(theta) ** 5 + 1.5649667230003e26 * cos(theta) ** 3 - 3.14882640442716e23 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl56_m14(theta, phi): return ( 1.45239878642533e-24 * (1.0 - cos(theta) ** 2) ** 7 * ( 2.74303870553004e39 * cos(theta) ** 42 - 2.12770840131654e40 * cos(theta) ** 40 + 7.61290161938947e40 * cos(theta) ** 38 - 1.66724917085072e41 * cos(theta) ** 36 + 2.50087375627607e41 * cos(theta) ** 34 - 2.72425277139976e41 * cos(theta) ** 32 + 2.22975144325789e41 * cos(theta) ** 30 - 1.39962752931772e41 * cos(theta) ** 28 + 6.81777327425386e40 * cos(theta) ** 26 - 2.59155124459942e40 * cos(theta) ** 24 + 7.69105530655312e39 * cos(theta) ** 22 - 1.77485891689687e39 * cos(theta) ** 20 + 3.15752054504125e38 * cos(theta) ** 18 - 4.27144689116987e37 * cos(theta) ** 16 + 4.30734140286037e36 * cos(theta) ** 14 - 3.14833789285376e35 * cos(theta) ** 12 + 1.60332022321257e34 * cos(theta) ** 10 - 5.3722568908835e32 * cos(theta) ** 8 + 1.08530442240071e31 * cos(theta) ** 6 - 1.14242570779022e29 * cos(theta) ** 4 + 4.6949001690009e26 * cos(theta) ** 2 - 3.14882640442716e23 ) * cos(14 * phi) ) # @torch.jit.script def Yl56_m15(theta, phi): return ( 2.65969635312837e-26 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.15207625632262e41 * cos(theta) ** 41 - 8.51083360526618e41 * cos(theta) ** 39 + 2.892902615368e42 * cos(theta) ** 37 - 6.00209701506258e42 * cos(theta) ** 35 + 8.50297077133865e42 * cos(theta) ** 33 - 8.71760886847924e42 * cos(theta) ** 31 + 6.68925432977367e42 * cos(theta) ** 29 - 3.91895708208963e42 * cos(theta) ** 27 + 1.772621051306e42 * cos(theta) ** 25 - 6.21972298703861e41 * cos(theta) ** 23 + 1.69203216744169e41 * cos(theta) ** 21 - 3.54971783379375e40 * cos(theta) ** 19 + 5.68353698107426e39 * cos(theta) ** 17 - 6.83431502587179e38 * cos(theta) ** 15 + 6.03027796400452e37 * cos(theta) ** 13 - 3.77800547142452e36 * cos(theta) ** 11 + 1.60332022321257e35 * cos(theta) ** 9 - 4.2978055127068e33 * cos(theta) ** 7 + 6.51182653440424e31 * cos(theta) ** 5 - 4.56970283116087e29 * cos(theta) ** 3 + 9.38980033800179e26 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl56_m16(theta, phi): return ( 4.8952387861945e-28 * (1.0 - cos(theta) ** 2) ** 8 * ( 4.72351265092273e42 * cos(theta) ** 40 - 3.31922510605381e43 * cos(theta) ** 38 + 1.07037396768616e44 * cos(theta) ** 36 - 2.1007339552719e44 * cos(theta) ** 34 + 2.80598035454175e44 * cos(theta) ** 32 - 2.70245874922856e44 * cos(theta) ** 30 + 1.93988375563437e44 * cos(theta) ** 28 - 1.0581184121642e44 * cos(theta) ** 26 + 4.43155262826501e43 * cos(theta) ** 24 - 1.43053628701888e43 * cos(theta) ** 22 + 3.55326755162754e42 * cos(theta) ** 20 - 6.74446388420812e41 * cos(theta) ** 18 + 9.66201286782624e40 * cos(theta) ** 16 - 1.02514725388077e40 * cos(theta) ** 14 + 7.83936135320587e38 * cos(theta) ** 12 - 4.15580601856697e37 * cos(theta) ** 10 + 1.44298820089131e36 * cos(theta) ** 8 - 3.00846385889476e34 * cos(theta) ** 6 + 3.25591326720212e32 * cos(theta) ** 4 - 1.37091084934826e30 * cos(theta) ** 2 + 9.38980033800179e26 ) * cos(16 * phi) ) # @torch.jit.script def Yl56_m17(theta, phi): return ( 9.05904580347145e-30 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.88940506036909e44 * cos(theta) ** 39 - 1.26130554030045e45 * cos(theta) ** 37 + 3.85334628367017e45 * cos(theta) ** 35 - 7.14249544792447e45 * cos(theta) ** 33 + 8.97913713453361e45 * cos(theta) ** 31 - 8.10737624768569e45 * cos(theta) ** 29 + 5.43167451577622e45 * cos(theta) ** 27 - 2.75110787162692e45 * cos(theta) ** 25 + 1.0635726307836e45 * cos(theta) ** 23 - 3.14717983144154e44 * cos(theta) ** 21 + 7.10653510325508e43 * cos(theta) ** 19 - 1.21400349915746e43 * cos(theta) ** 17 + 1.5459220588522e42 * cos(theta) ** 15 - 1.43520615543308e41 * cos(theta) ** 13 + 9.40723362384705e39 * cos(theta) ** 11 - 4.15580601856697e38 * cos(theta) ** 9 + 1.15439056071305e37 * cos(theta) ** 7 - 1.80507831533686e35 * cos(theta) ** 5 + 1.30236530688085e33 * cos(theta) ** 3 - 2.74182169869652e30 * cos(theta) ) * cos(17 * phi) ) # @torch.jit.script def Yl56_m18(theta, phi): return ( 1.6862978726266e-31 * (1.0 - cos(theta) ** 2) ** 9 * ( 7.36867973543946e45 * cos(theta) ** 38 - 4.66683049911165e46 * cos(theta) ** 36 + 1.34867119928456e47 * cos(theta) ** 34 - 2.35702349781507e47 * cos(theta) ** 32 + 2.78353251170542e47 * cos(theta) ** 30 - 2.35113911182885e47 * cos(theta) ** 28 + 1.46655211925958e47 * cos(theta) ** 26 - 6.87776967906729e46 * cos(theta) ** 24 + 2.44621705080229e46 * cos(theta) ** 22 - 6.60907764602723e45 * cos(theta) ** 20 + 1.35024166961847e45 * cos(theta) ** 18 - 2.06380594856768e44 * cos(theta) ** 16 + 2.3188830882783e43 * cos(theta) ** 14 - 1.865768002063e42 * cos(theta) ** 12 + 1.03479569862318e41 * cos(theta) ** 10 - 3.74022541671027e39 * cos(theta) ** 8 + 8.08073392499133e37 * cos(theta) ** 6 - 9.02539157668428e35 * cos(theta) ** 4 + 3.90709592064255e33 * cos(theta) ** 2 - 2.74182169869652e30 ) * cos(18 * phi) ) # @torch.jit.script def Yl56_m19(theta, phi): return ( 3.15872532320494e-33 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 2.80009829946699e47 * cos(theta) ** 37 - 1.6800589796802e48 * cos(theta) ** 35 + 4.58548207756751e48 * cos(theta) ** 33 - 7.54247519300824e48 * cos(theta) ** 31 + 8.35059753511626e48 * cos(theta) ** 29 - 6.58318951312078e48 * cos(theta) ** 27 + 3.81303551007491e48 * cos(theta) ** 25 - 1.65066472297615e48 * cos(theta) ** 23 + 5.38167751176503e47 * cos(theta) ** 21 - 1.32181552920545e47 * cos(theta) ** 19 + 2.43043500531324e46 * cos(theta) ** 17 - 3.3020895177083e45 * cos(theta) ** 15 + 3.24643632358962e44 * cos(theta) ** 13 - 2.2389216024756e43 * cos(theta) ** 11 + 1.03479569862318e42 * cos(theta) ** 9 - 2.99218033336822e40 * cos(theta) ** 7 + 4.8484403549948e38 * cos(theta) ** 5 - 3.61015663067371e36 * cos(theta) ** 3 + 7.81419184128509e33 * cos(theta) ) * cos(19 * phi) ) # @torch.jit.script def Yl56_m20(theta, phi): return ( 5.95667909530459e-35 * (1.0 - cos(theta) ** 2) ** 10 * ( 1.03603637080279e49 * cos(theta) ** 36 - 5.88020642888069e49 * cos(theta) ** 34 + 1.51320908559728e50 * cos(theta) ** 32 - 2.33816730983255e50 * cos(theta) ** 30 + 2.42167328518372e50 * cos(theta) ** 28 - 1.77746116854261e50 * cos(theta) ** 26 + 9.53258877518727e49 * cos(theta) ** 24 - 3.79652886284515e49 * cos(theta) ** 22 + 1.13015227747066e49 * cos(theta) ** 20 - 2.51144950549035e48 * cos(theta) ** 18 + 4.1317395090325e47 * cos(theta) ** 16 - 4.95313427656244e46 * cos(theta) ** 14 + 4.2203672206665e45 * cos(theta) ** 12 - 2.46281376272316e44 * cos(theta) ** 10 + 9.31316128760858e42 * cos(theta) ** 8 - 2.09452623335775e41 * cos(theta) ** 6 + 2.4242201774974e39 * cos(theta) ** 4 - 1.08304698920211e37 * cos(theta) ** 2 + 7.81419184128509e33 ) * cos(20 * phi) ) # @torch.jit.script def Yl56_m21(theta, phi): return ( 1.13137763914331e-36 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 3.72973093489003e50 * cos(theta) ** 35 - 1.99927018581943e51 * cos(theta) ** 33 + 4.84226907391129e51 * cos(theta) ** 31 - 7.01450192949766e51 * cos(theta) ** 29 + 6.7806851985144e51 * cos(theta) ** 27 - 4.62139903821079e51 * cos(theta) ** 25 + 2.28782130604494e51 * cos(theta) ** 23 - 8.35236349825932e50 * cos(theta) ** 21 + 2.26030455494131e50 * cos(theta) ** 19 - 4.52060910988262e49 * cos(theta) ** 17 + 6.61078321445201e48 * cos(theta) ** 15 - 6.93438798718742e47 * cos(theta) ** 13 + 5.0644406647998e46 * cos(theta) ** 11 - 2.46281376272316e45 * cos(theta) ** 9 + 7.45052903008686e43 * cos(theta) ** 7 - 1.25671574001465e42 * cos(theta) ** 5 + 9.69688070998959e39 * cos(theta) ** 3 - 2.16609397840423e37 * cos(theta) ) * cos(21 * phi) ) # @torch.jit.script def Yl56_m22(theta, phi): return ( 2.16534084176182e-38 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.30540582721151e52 * cos(theta) ** 34 - 6.59759161320413e52 * cos(theta) ** 32 + 1.5011034129125e53 * cos(theta) ** 30 - 2.03420555955432e53 * cos(theta) ** 28 + 1.83078500359889e53 * cos(theta) ** 26 - 1.1553497595527e53 * cos(theta) ** 24 + 5.26198900390337e52 * cos(theta) ** 22 - 1.75399633463446e52 * cos(theta) ** 20 + 4.29457865438849e51 * cos(theta) ** 18 - 7.68503548680046e50 * cos(theta) ** 16 + 9.91617482167801e49 * cos(theta) ** 14 - 9.01470438334365e48 * cos(theta) ** 12 + 5.57088473127978e47 * cos(theta) ** 10 - 2.21653238645084e46 * cos(theta) ** 8 + 5.2153703210608e44 * cos(theta) ** 6 - 6.28357870007326e42 * cos(theta) ** 4 + 2.90906421299688e40 * cos(theta) ** 2 - 2.16609397840423e37 ) * cos(22 * phi) ) # @torch.jit.script def Yl56_m23(theta, phi): return ( 4.17804644315597e-40 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 4.43837981251914e53 * cos(theta) ** 33 - 2.11122931622532e54 * cos(theta) ** 31 + 4.5033102387375e54 * cos(theta) ** 29 - 5.6957755667521e54 * cos(theta) ** 27 + 4.76004100935711e54 * cos(theta) ** 25 - 2.77283942292647e54 * cos(theta) ** 23 + 1.15763758085874e54 * cos(theta) ** 21 - 3.50799266926891e53 * cos(theta) ** 19 + 7.73024157789928e52 * cos(theta) ** 17 - 1.22960567788807e52 * cos(theta) ** 15 + 1.38826447503492e51 * cos(theta) ** 13 - 1.08176452600124e50 * cos(theta) ** 11 + 5.57088473127978e48 * cos(theta) ** 9 - 1.77322590916067e47 * cos(theta) ** 7 + 3.12922219263648e45 * cos(theta) ** 5 - 2.5134314800293e43 * cos(theta) ** 3 + 5.81812842599376e40 * cos(theta) ) * cos(23 * phi) ) # @torch.jit.script def Yl56_m24(theta, phi): return ( 8.13151186163682e-42 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.46466533813132e55 * cos(theta) ** 32 - 6.5448108802985e55 * cos(theta) ** 30 + 1.30595996923387e56 * cos(theta) ** 28 - 1.53785940302307e56 * cos(theta) ** 26 + 1.19001025233928e56 * cos(theta) ** 24 - 6.37753067273089e55 * cos(theta) ** 22 + 2.43103891980336e55 * cos(theta) ** 20 - 6.66518607161094e54 * cos(theta) ** 18 + 1.31414106824288e54 * cos(theta) ** 16 - 1.84440851683211e53 * cos(theta) ** 14 + 1.8047438175454e52 * cos(theta) ** 12 - 1.18994097860136e51 * cos(theta) ** 10 + 5.0137962581518e49 * cos(theta) ** 8 - 1.24125813641247e48 * cos(theta) ** 6 + 1.56461109631824e46 * cos(theta) ** 4 - 7.54029444008791e43 * cos(theta) ** 2 + 5.81812842599376e40 ) * cos(24 * phi) ) # @torch.jit.script def Yl56_m25(theta, phi): return ( 1.59717977185062e-43 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 4.68692908202021e56 * cos(theta) ** 31 - 1.96344326408955e57 * cos(theta) ** 29 + 3.65668791385485e57 * cos(theta) ** 27 - 3.99843444785997e57 * cos(theta) ** 25 + 2.85602460561427e57 * cos(theta) ** 23 - 1.4030567480008e57 * cos(theta) ** 21 + 4.86207783960672e56 * cos(theta) ** 19 - 1.19973349288997e56 * cos(theta) ** 17 + 2.10262570918861e55 * cos(theta) ** 15 - 2.58217192356495e54 * cos(theta) ** 13 + 2.16569258105448e53 * cos(theta) ** 11 - 1.18994097860136e52 * cos(theta) ** 9 + 4.01103700652144e50 * cos(theta) ** 7 - 7.44754881847483e48 * cos(theta) ** 5 + 6.25844438527296e46 * cos(theta) ** 3 - 1.50805888801758e44 * cos(theta) ) * cos(25 * phi) ) # @torch.jit.script def Yl56_m26(theta, phi): return ( 3.16786034981711e-45 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.45294801542627e58 * cos(theta) ** 30 - 5.69398546585969e58 * cos(theta) ** 28 + 9.87305736740809e58 * cos(theta) ** 26 - 9.99608611964993e58 * cos(theta) ** 24 + 6.56885659291281e58 * cos(theta) ** 22 - 2.94641917080167e58 * cos(theta) ** 20 + 9.23794789525276e57 * cos(theta) ** 18 - 2.03954693791295e57 * cos(theta) ** 16 + 3.15393856378291e56 * cos(theta) ** 14 - 3.35682350063444e55 * cos(theta) ** 12 + 2.38226183915993e54 * cos(theta) ** 10 - 1.07094688074123e53 * cos(theta) ** 8 + 2.80772590456501e51 * cos(theta) ** 6 - 3.72377440923741e49 * cos(theta) ** 4 + 1.87753331558189e47 * cos(theta) ** 2 - 1.50805888801758e44 ) * cos(26 * phi) ) # @torch.jit.script def Yl56_m27(theta, phi): return ( 6.3484302825172e-47 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 4.3588440462788e59 * cos(theta) ** 29 - 1.59431593044071e60 * cos(theta) ** 27 + 2.5669949155261e60 * cos(theta) ** 25 - 2.39906066871598e60 * cos(theta) ** 23 + 1.44514845044082e60 * cos(theta) ** 21 - 5.89283834160334e59 * cos(theta) ** 19 + 1.6628306211455e59 * cos(theta) ** 17 - 3.26327510066072e58 * cos(theta) ** 15 + 4.41551398929607e57 * cos(theta) ** 13 - 4.02818820076133e56 * cos(theta) ** 11 + 2.38226183915993e55 * cos(theta) ** 9 - 8.5675750459298e53 * cos(theta) ** 7 + 1.68463554273901e52 * cos(theta) ** 5 - 1.48950976369497e50 * cos(theta) ** 3 + 3.75506663116378e47 * cos(theta) ) * cos(27 * phi) ) # @torch.jit.script def Yl56_m28(theta, phi): return ( 1.28625688551428e-48 * (1.0 - cos(theta) ** 2) ** 14 * ( 1.26406477342085e61 * cos(theta) ** 28 - 4.30465301218993e61 * cos(theta) ** 26 + 6.41748728881526e61 * cos(theta) ** 24 - 5.51783953804676e61 * cos(theta) ** 22 + 3.03481174592572e61 * cos(theta) ** 20 - 1.11963928490463e61 * cos(theta) ** 18 + 2.82681205594734e60 * cos(theta) ** 16 - 4.89491265099107e59 * cos(theta) ** 14 + 5.74016818608489e58 * cos(theta) ** 12 - 4.43100702083746e57 * cos(theta) ** 10 + 2.14403565524393e56 * cos(theta) ** 8 - 5.99730253215086e54 * cos(theta) ** 6 + 8.42317771369503e52 * cos(theta) ** 4 - 4.4685292910849e50 * cos(theta) ** 2 + 3.75506663116378e47 ) * cos(28 * phi) ) # @torch.jit.script def Yl56_m29(theta, phi): return ( 2.63656956230268e-50 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 3.53938136557838e62 * cos(theta) ** 27 - 1.11920978316938e63 * cos(theta) ** 25 + 1.54019694931566e63 * cos(theta) ** 23 - 1.21392469837029e63 * cos(theta) ** 21 + 6.06962349185144e62 * cos(theta) ** 19 - 2.01535071282834e62 * cos(theta) ** 17 + 4.52289928951575e61 * cos(theta) ** 15 - 6.8528777113875e60 * cos(theta) ** 13 + 6.88820182330187e59 * cos(theta) ** 11 - 4.43100702083746e58 * cos(theta) ** 9 + 1.71522852419515e57 * cos(theta) ** 7 - 3.59838151929052e55 * cos(theta) ** 5 + 3.36927108547801e53 * cos(theta) ** 3 - 8.93705858216979e50 * cos(theta) ) * cos(29 * phi) ) # @torch.jit.script def Yl56_m30(theta, phi): return ( 5.47152170526167e-52 * (1.0 - cos(theta) ** 2) ** 15 * ( 9.55632968706164e63 * cos(theta) ** 26 - 2.79802445792345e64 * cos(theta) ** 24 + 3.54245298342602e64 * cos(theta) ** 22 - 2.5492418665776e64 * cos(theta) ** 20 + 1.15322846345177e64 * cos(theta) ** 18 - 3.42609621180818e63 * cos(theta) ** 16 + 6.78434893427363e62 * cos(theta) ** 14 - 8.90874102480375e61 * cos(theta) ** 12 + 7.57702200563206e60 * cos(theta) ** 10 - 3.98790631875371e59 * cos(theta) ** 8 + 1.2006599669366e58 * cos(theta) ** 6 - 1.79919075964526e56 * cos(theta) ** 4 + 1.0107813256434e54 * cos(theta) ** 2 - 8.93705858216979e50 ) * cos(30 * phi) ) # @torch.jit.script def Yl56_m31(theta, phi): return ( 1.15043431177514e-53 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 2.48464571863603e65 * cos(theta) ** 25 - 6.71525869901629e65 * cos(theta) ** 23 + 7.79339656353725e65 * cos(theta) ** 21 - 5.09848373315521e65 * cos(theta) ** 19 + 2.07581123421319e65 * cos(theta) ** 17 - 5.48175393889309e64 * cos(theta) ** 15 + 9.49808850798308e63 * cos(theta) ** 13 - 1.06904892297645e63 * cos(theta) ** 11 + 7.57702200563206e61 * cos(theta) ** 9 - 3.19032505500297e60 * cos(theta) ** 7 + 7.20395980161961e58 * cos(theta) ** 5 - 7.19676303858103e56 * cos(theta) ** 3 + 2.02156265128681e54 * cos(theta) ) * cos(31 * phi) ) # @torch.jit.script def Yl56_m32(theta, phi): return ( 2.45273419390533e-55 * (1.0 - cos(theta) ** 2) ** 16 * ( 6.21161429659006e66 * cos(theta) ** 24 - 1.54450950077375e67 * cos(theta) ** 22 + 1.63661327834282e67 * cos(theta) ** 20 - 9.6871190929949e66 * cos(theta) ** 18 + 3.52887909816243e66 * cos(theta) ** 16 - 8.22263090833964e65 * cos(theta) ** 14 + 1.2347515060378e65 * cos(theta) ** 12 - 1.1759538152741e64 * cos(theta) ** 10 + 6.81931980506885e62 * cos(theta) ** 8 - 2.23322753850208e61 * cos(theta) ** 6 + 3.60197990080981e59 * cos(theta) ** 4 - 2.15902891157431e57 * cos(theta) ** 2 + 2.02156265128681e54 ) * cos(32 * phi) ) # @torch.jit.script def Yl56_m33(theta, phi): return ( 5.30700945659949e-57 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 1.49078743118162e68 * cos(theta) ** 23 - 3.39792090170224e68 * cos(theta) ** 21 + 3.27322655668564e68 * cos(theta) ** 19 - 1.74368143673908e68 * cos(theta) ** 17 + 5.64620655705988e67 * cos(theta) ** 15 - 1.15116832716755e67 * cos(theta) ** 13 + 1.48170180724536e66 * cos(theta) ** 11 - 1.1759538152741e65 * cos(theta) ** 9 + 5.45545584405508e63 * cos(theta) ** 7 - 1.33993652310125e62 * cos(theta) ** 5 + 1.44079196032392e60 * cos(theta) ** 3 - 4.31805782314862e57 * cos(theta) ) * cos(33 * phi) ) # @torch.jit.script def Yl56_m34(theta, phi): return ( 1.16644613593616e-58 * (1.0 - cos(theta) ** 2) ** 17 * ( 3.42881109171772e69 * cos(theta) ** 22 - 7.1356338935747e69 * cos(theta) ** 20 + 6.21913045770272e69 * cos(theta) ** 18 - 2.96425844245644e69 * cos(theta) ** 16 + 8.46930983558983e68 * cos(theta) ** 14 - 1.49651882531781e68 * cos(theta) ** 12 + 1.6298719879699e67 * cos(theta) ** 10 - 1.05835843374669e66 * cos(theta) ** 8 + 3.81881909083856e64 * cos(theta) ** 6 - 6.69968261550624e62 * cos(theta) ** 4 + 4.32237588097177e60 * cos(theta) ** 2 - 4.31805782314862e57 ) * cos(34 * phi) ) # @torch.jit.script def Yl56_m35(theta, phi): return ( 2.60694970289965e-60 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 7.54338440177897e70 * cos(theta) ** 21 - 1.42712677871494e71 * cos(theta) ** 19 + 1.11944348238649e71 * cos(theta) ** 17 - 4.7428135079303e70 * cos(theta) ** 15 + 1.18570337698258e70 * cos(theta) ** 13 - 1.79582259038138e69 * cos(theta) ** 11 + 1.6298719879699e68 * cos(theta) ** 9 - 8.46686746997349e66 * cos(theta) ** 7 + 2.29129145450313e65 * cos(theta) ** 5 - 2.6798730462025e63 * cos(theta) ** 3 + 8.64475176194354e60 * cos(theta) ) * cos(35 * phi) ) # @torch.jit.script def Yl56_m36(theta, phi): return ( 5.93101593907904e-62 * (1.0 - cos(theta) ** 2) ** 18 * ( 1.58411072437358e72 * cos(theta) ** 20 - 2.71154087955839e72 * cos(theta) ** 18 + 1.90305392005703e72 * cos(theta) ** 16 - 7.11422026189545e71 * cos(theta) ** 14 + 1.54141439007735e71 * cos(theta) ** 12 - 1.97540484941951e70 * cos(theta) ** 10 + 1.46688478917291e69 * cos(theta) ** 8 - 5.92680722898144e67 * cos(theta) ** 6 + 1.14564572725157e66 * cos(theta) ** 4 - 8.03961913860749e63 * cos(theta) ** 2 + 8.64475176194354e60 ) * cos(36 * phi) ) # @torch.jit.script def Yl56_m37(theta, phi): return ( 1.37522139116224e-63 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 3.16822144874717e73 * cos(theta) ** 19 - 4.8807735832051e73 * cos(theta) ** 17 + 3.04488627209125e73 * cos(theta) ** 15 - 9.95990836665363e72 * cos(theta) ** 13 + 1.84969726809282e72 * cos(theta) ** 11 - 1.97540484941951e71 * cos(theta) ** 9 + 1.17350783133833e70 * cos(theta) ** 7 - 3.55608433738886e68 * cos(theta) ** 5 + 4.58258290900627e66 * cos(theta) ** 3 - 1.6079238277215e64 * cos(theta) ) * cos(37 * phi) ) # @torch.jit.script def Yl56_m38(theta, phi): return ( 3.25410746963115e-65 * (1.0 - cos(theta) ** 2) ** 19 * ( 6.01962075261962e74 * cos(theta) ** 18 - 8.29731509144867e74 * cos(theta) ** 16 + 4.56732940813688e74 * cos(theta) ** 14 - 1.29478808766497e74 * cos(theta) ** 12 + 2.0346669949021e73 * cos(theta) ** 10 - 1.77786436447756e72 * cos(theta) ** 8 + 8.21455481936828e70 * cos(theta) ** 6 - 1.77804216869443e69 * cos(theta) ** 4 + 1.37477487270188e67 * cos(theta) ** 2 - 1.6079238277215e64 ) * cos(38 * phi) ) # @torch.jit.script def Yl56_m39(theta, phi): return ( 7.86925894840995e-67 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 1.08353173547153e76 * cos(theta) ** 17 - 1.32757041463179e76 * cos(theta) ** 15 + 6.39426117139163e75 * cos(theta) ** 13 - 1.55374570519797e75 * cos(theta) ** 11 + 2.0346669949021e74 * cos(theta) ** 9 - 1.42229149158205e73 * cos(theta) ** 7 + 4.92873289162097e71 * cos(theta) ** 5 - 7.11216867477773e69 * cos(theta) ** 3 + 2.74954974540376e67 * cos(theta) ) * cos(39 * phi) ) # @torch.jit.script def Yl56_m40(theta, phi): return ( 1.94793185320383e-68 * (1.0 - cos(theta) ** 2) ** 20 * ( 1.8420039503016e77 * cos(theta) ** 16 - 1.99135562194768e77 * cos(theta) ** 14 + 8.31253952280912e76 * cos(theta) ** 12 - 1.70912027571776e76 * cos(theta) ** 10 + 1.83120029541189e75 * cos(theta) ** 8 - 9.95604044107435e73 * cos(theta) ** 6 + 2.46436644581048e72 * cos(theta) ** 4 - 2.13365060243332e70 * cos(theta) ** 2 + 2.74954974540376e67 ) * cos(40 * phi) ) # @torch.jit.script def Yl56_m41(theta, phi): return ( 4.94456284273033e-70 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 2.94720632048257e78 * cos(theta) ** 15 - 2.78789787072675e78 * cos(theta) ** 13 + 9.97504742737095e77 * cos(theta) ** 11 - 1.70912027571776e77 * cos(theta) ** 9 + 1.46496023632951e76 * cos(theta) ** 7 - 5.97362426464461e74 * cos(theta) ** 5 + 9.85746578324193e72 * cos(theta) ** 3 - 4.26730120486664e70 * cos(theta) ) * cos(41 * phi) ) # @torch.jit.script def Yl56_m42(theta, phi): return ( 1.2896421933168e-71 * (1.0 - cos(theta) ** 2) ** 21 * ( 4.42080948072385e79 * cos(theta) ** 14 - 3.62426723194478e79 * cos(theta) ** 12 + 1.0972552170108e79 * cos(theta) ** 10 - 1.53820824814599e78 * cos(theta) ** 8 + 1.02547216543066e77 * cos(theta) ** 6 - 2.98681213232231e75 * cos(theta) ** 4 + 2.95723973497258e73 * cos(theta) ** 2 - 4.26730120486664e70 ) * cos(42 * phi) ) # @torch.jit.script def Yl56_m43(theta, phi): return ( 3.46407764916911e-73 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 6.18913327301339e80 * cos(theta) ** 13 - 4.34912067833373e80 * cos(theta) ** 11 + 1.0972552170108e80 * cos(theta) ** 9 - 1.23056659851679e79 * cos(theta) ** 7 + 6.15283299258395e77 * cos(theta) ** 5 - 1.19472485292892e76 * cos(theta) ** 3 + 5.91447946994516e73 * cos(theta) ) * cos(43 * phi) ) # @torch.jit.script def Yl56_m44(theta, phi): return ( 9.60762275866768e-75 * (1.0 - cos(theta) ** 2) ** 22 * ( 8.04587325491741e81 * cos(theta) ** 12 - 4.78403274616711e81 * cos(theta) ** 10 + 9.87529695309724e80 * cos(theta) ** 8 - 8.61396618961753e79 * cos(theta) ** 6 + 3.07641649629197e78 * cos(theta) ** 4 - 3.58417455878677e76 * cos(theta) ** 2 + 5.91447946994516e73 ) * cos(44 * phi) ) # @torch.jit.script def Yl56_m45(theta, phi): return ( 2.75971753039989e-76 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 9.65504790590089e82 * cos(theta) ** 11 - 4.78403274616711e82 * cos(theta) ** 9 + 7.90023756247779e81 * cos(theta) ** 7 - 5.16837971377052e80 * cos(theta) ** 5 + 1.23056659851679e79 * cos(theta) ** 3 - 7.16834911757353e76 * cos(theta) ) * cos(45 * phi) ) # @torch.jit.script def Yl56_m46(theta, phi): return ( 8.23888050279663e-78 * (1.0 - cos(theta) ** 2) ** 23 * ( 1.0620552696491e84 * cos(theta) ** 10 - 4.3056294715504e83 * cos(theta) ** 8 + 5.53016629373445e82 * cos(theta) ** 6 - 2.58418985688526e81 * cos(theta) ** 4 + 3.69169979555037e79 * cos(theta) ** 2 - 7.16834911757353e76 ) * cos(46 * phi) ) # @torch.jit.script def Yl56_m47(theta, phi): return ( 2.56714022331303e-79 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 1.0620552696491e85 * cos(theta) ** 9 - 3.44450357724032e84 * cos(theta) ** 7 + 3.31809977624067e83 * cos(theta) ** 5 - 1.0336759427541e82 * cos(theta) ** 3 + 7.38339959110074e79 * cos(theta) ) * cos(47 * phi) ) # @torch.jit.script def Yl56_m48(theta, phi): return ( 8.39096031589878e-81 * (1.0 - cos(theta) ** 2) ** 24 * ( 9.55849742684188e85 * cos(theta) ** 8 - 2.41115250406822e85 * cos(theta) ** 6 + 1.65904988812034e84 * cos(theta) ** 4 - 3.10102782826231e82 * cos(theta) ** 2 + 7.38339959110074e79 ) * cos(48 * phi) ) # @torch.jit.script def Yl56_m49(theta, phi): return ( 2.8951563619051e-82 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 7.6467979414735e86 * cos(theta) ** 7 - 1.44669150244093e86 * cos(theta) ** 5 + 6.63619955248134e84 * cos(theta) ** 3 - 6.20205565652462e82 * cos(theta) ) * cos(49 * phi) ) # @torch.jit.script def Yl56_m50(theta, phi): return ( 1.06284533692648e-83 * (1.0 - cos(theta) ** 2) ** 25 * ( 5.35275855903145e87 * cos(theta) ** 6 - 7.23345751220467e86 * cos(theta) ** 4 + 1.9908598657444e85 * cos(theta) ** 2 - 6.20205565652462e82 ) * cos(50 * phi) ) # @torch.jit.script def Yl56_m51(theta, phi): return ( 4.19471595031622e-85 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 3.21165513541887e88 * cos(theta) ** 5 - 2.89338300488187e87 * cos(theta) ** 3 + 3.98171973148881e85 * cos(theta) ) * cos(51 * phi) ) # @torch.jit.script def Yl56_m52(theta, phi): return ( 1.80511833529393e-86 * (1.0 - cos(theta) ** 2) ** 26 * ( 1.60582756770944e89 * cos(theta) ** 4 - 8.6801490146456e87 * cos(theta) ** 2 + 3.98171973148881e85 ) * cos(52 * phi) ) # @torch.jit.script def Yl56_m53(theta, phi): return ( 8.64494894739585e-88 * (1.0 - cos(theta) ** 2) ** 26.5 * (6.42331027083774e89 * cos(theta) ** 3 - 1.73602980292912e88 * cos(theta)) * cos(53 * phi) ) # @torch.jit.script def Yl56_m54(theta, phi): return ( 4.75888777122505e-89 * (1.0 - cos(theta) ** 2) ** 27 * (1.92699308125132e90 * cos(theta) ** 2 - 1.73602980292912e88) * cos(54 * phi) ) # @torch.jit.script def Yl56_m55(theta, phi): return ( 12.3094635524179 * (1.0 - cos(theta) ** 2) ** 27.5 * cos(55 * phi) * cos(theta) ) # @torch.jit.script def Yl56_m56(theta, phi): return 1.16313497615398 * (1.0 - cos(theta) ** 2) ** 28 * cos(56 * phi) # @torch.jit.script def Yl57_m_minus_57(theta, phi): return 1.16822530671551 * (1.0 - cos(theta) ** 2) ** 28.5 * sin(57 * phi) # @torch.jit.script def Yl57_m_minus_56(theta, phi): return 12.4732330158048 * (1.0 - cos(theta) ** 2) ** 28 * sin(56 * phi) * cos(theta) # @torch.jit.script def Yl57_m_minus_55(theta, phi): return ( 4.30570885965518e-91 * (1.0 - cos(theta) ** 2) ** 27.5 * (2.17750218181399e92 * cos(theta) ** 2 - 1.92699308125132e90) * sin(55 * phi) ) # @torch.jit.script def Yl57_m_minus_54(theta, phi): return ( 7.89249470792474e-90 * (1.0 - cos(theta) ** 2) ** 27 * (7.25834060604665e91 * cos(theta) ** 3 - 1.92699308125132e90 * cos(theta)) * sin(54 * phi) ) # @torch.jit.script def Yl57_m_minus_53(theta, phi): return ( 1.66305182977835e-88 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 1.81458515151166e91 * cos(theta) ** 4 - 9.63496540625661e89 * cos(theta) ** 2 + 4.3400745073228e87 ) * sin(53 * phi) ) # @torch.jit.script def Yl57_m_minus_52(theta, phi): return ( 3.90020225589779e-87 * (1.0 - cos(theta) ** 2) ** 26 * ( 3.62917030302332e90 * cos(theta) ** 5 - 3.21165513541887e89 * cos(theta) ** 3 + 4.3400745073228e87 * cos(theta) ) * sin(52 * phi) ) # @torch.jit.script def Yl57_m_minus_51(theta, phi): return ( 9.97415248256175e-86 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 6.04861717170554e89 * cos(theta) ** 6 - 8.02913783854718e88 * cos(theta) ** 4 + 2.1700372536614e87 * cos(theta) ** 2 - 6.63619955248134e84 ) * sin(51 * phi) ) # @torch.jit.script def Yl57_m_minus_50(theta, phi): return ( 2.74243852466226e-84 * (1.0 - cos(theta) ** 2) ** 25 * ( 8.64088167386506e88 * cos(theta) ** 7 - 1.60582756770944e88 * cos(theta) ** 5 + 7.23345751220467e86 * cos(theta) ** 3 - 6.63619955248134e84 * cos(theta) ) * sin(50 * phi) ) # @torch.jit.script def Yl57_m_minus_49(theta, phi): return ( 8.02368339149063e-83 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.08011020923313e88 * cos(theta) ** 8 - 2.67637927951573e87 * cos(theta) ** 6 + 1.80836437805117e86 * cos(theta) ** 4 - 3.31809977624067e84 * cos(theta) ** 2 + 7.75256957065578e81 ) * sin(49 * phi) ) # @torch.jit.script def Yl57_m_minus_48(theta, phi): return ( 2.47826629701503e-81 * (1.0 - cos(theta) ** 2) ** 24 * ( 1.20012245470348e87 * cos(theta) ** 9 - 3.82339897073675e86 * cos(theta) ** 7 + 3.61672875610233e85 * cos(theta) ** 5 - 1.10603325874689e84 * cos(theta) ** 3 + 7.75256957065578e81 * cos(theta) ) * sin(48 * phi) ) # @torch.jit.script def Yl57_m_minus_47(theta, phi): return ( 8.03050062627893e-80 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 1.20012245470348e86 * cos(theta) ** 10 - 4.77924871342094e85 * cos(theta) ** 8 + 6.02788126017056e84 * cos(theta) ** 6 - 2.76508314686723e83 * cos(theta) ** 4 + 3.87628478532789e81 * cos(theta) ** 2 - 7.38339959110074e78 ) * sin(47 * phi) ) # @torch.jit.script def Yl57_m_minus_46(theta, phi): return ( 2.71616177193322e-78 * (1.0 - cos(theta) ** 2) ** 23 * ( 1.0910204133668e85 * cos(theta) ** 11 - 5.31027634824549e84 * cos(theta) ** 9 + 8.61125894310079e83 * cos(theta) ** 7 - 5.53016629373445e82 * cos(theta) ** 5 + 1.29209492844263e81 * cos(theta) ** 3 - 7.38339959110074e78 * cos(theta) ) * sin(46 * phi) ) # @torch.jit.script def Yl57_m_minus_45(theta, phi): return ( 9.54915335374865e-77 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 9.09183677805667e83 * cos(theta) ** 12 - 5.31027634824549e83 * cos(theta) ** 10 + 1.0764073678876e83 * cos(theta) ** 8 - 9.21694382289076e81 * cos(theta) ** 6 + 3.23023732110657e80 * cos(theta) ** 4 - 3.69169979555037e78 * cos(theta) ** 2 + 5.97362426464461e75 ) * sin(45 * phi) ) # @torch.jit.script def Yl57_m_minus_44(theta, phi): return ( 3.4772557179411e-75 * (1.0 - cos(theta) ** 2) ** 22 * ( 6.99372059850513e82 * cos(theta) ** 13 - 4.82752395295044e82 * cos(theta) ** 11 + 1.19600818654178e82 * cos(theta) ** 9 - 1.31670626041297e81 * cos(theta) ** 7 + 6.46047464221315e79 * cos(theta) ** 5 - 1.23056659851679e78 * cos(theta) ** 3 + 5.97362426464461e75 * cos(theta) ) * sin(44 * phi) ) # @torch.jit.script def Yl57_m_minus_43(theta, phi): return ( 1.30755912148274e-73 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 4.99551471321795e81 * cos(theta) ** 14 - 4.0229366274587e81 * cos(theta) ** 12 + 1.19600818654178e81 * cos(theta) ** 10 - 1.64588282551621e80 * cos(theta) ** 8 + 1.07674577370219e79 * cos(theta) ** 6 - 3.07641649629197e77 * cos(theta) ** 4 + 2.98681213232231e75 * cos(theta) ** 2 - 4.22462819281797e72 ) * sin(43 * phi) ) # @torch.jit.script def Yl57_m_minus_42(theta, phi): return ( 5.06415470168423e-72 * (1.0 - cos(theta) ** 2) ** 21 * ( 3.3303431421453e80 * cos(theta) ** 15 - 3.09456663650669e80 * cos(theta) ** 13 + 1.08728016958343e80 * cos(theta) ** 11 - 1.82875869501801e79 * cos(theta) ** 9 + 1.53820824814599e78 * cos(theta) ** 7 - 6.15283299258395e76 * cos(theta) ** 5 + 9.95604044107435e74 * cos(theta) ** 3 - 4.22462819281797e72 * cos(theta) ) * sin(42 * phi) ) # @torch.jit.script def Yl57_m_minus_41(theta, phi): return ( 2.01550812309609e-70 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 2.08146446384081e79 * cos(theta) ** 16 - 2.21040474036192e79 * cos(theta) ** 14 + 9.06066807986194e78 * cos(theta) ** 12 - 1.82875869501801e78 * cos(theta) ** 10 + 1.92276031018248e77 * cos(theta) ** 8 - 1.02547216543066e76 * cos(theta) ** 6 + 2.48901011026859e74 * cos(theta) ** 4 - 2.11231409640899e72 * cos(theta) ** 2 + 2.66706325304165e69 ) * sin(41 * phi) ) # @torch.jit.script def Yl57_m_minus_40(theta, phi): return ( 8.22663163661029e-69 * (1.0 - cos(theta) ** 2) ** 20 * ( 1.22439086108283e78 * cos(theta) ** 17 - 1.47360316024128e78 * cos(theta) ** 15 + 6.96974467681688e77 * cos(theta) ** 13 - 1.66250790456182e77 * cos(theta) ** 11 + 2.1364003446472e76 * cos(theta) ** 9 - 1.46496023632951e75 * cos(theta) ** 7 + 4.97802022053718e73 * cos(theta) ** 5 - 7.04104698802995e71 * cos(theta) ** 3 + 2.66706325304165e69 * cos(theta) ) * sin(40 * phi) ) # @torch.jit.script def Yl57_m_minus_39(theta, phi): return ( 3.43751158944224e-67 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 6.80217145046017e76 * cos(theta) ** 18 - 9.21001975150802e76 * cos(theta) ** 16 + 4.9783890548692e76 * cos(theta) ** 14 - 1.38542325380152e76 * cos(theta) ** 12 + 2.1364003446472e75 * cos(theta) ** 10 - 1.83120029541189e74 * cos(theta) ** 8 + 8.29670036756196e72 * cos(theta) ** 6 - 1.76026174700749e71 * cos(theta) ** 4 + 1.33353162652082e69 * cos(theta) ** 2 - 1.52752763633542e66 ) * sin(39 * phi) ) # @torch.jit.script def Yl57_m_minus_38(theta, phi): return ( 1.46810320930957e-65 * (1.0 - cos(theta) ** 2) ** 19 * ( 3.5800902370843e75 * cos(theta) ** 19 - 5.41765867735766e75 * cos(theta) ** 17 + 3.31892603657947e75 * cos(theta) ** 15 - 1.06571019523194e75 * cos(theta) ** 13 + 1.94218213149746e74 * cos(theta) ** 11 - 2.0346669949021e73 * cos(theta) ** 9 + 1.18524290965171e72 * cos(theta) ** 7 - 3.52052349401498e70 * cos(theta) ** 5 + 4.44510542173608e68 * cos(theta) ** 3 - 1.52752763633542e66 * cos(theta) ) * sin(38 * phi) ) # @torch.jit.script def Yl57_m_minus_37(theta, phi): return ( 6.39931352806817e-64 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 1.79004511854215e74 * cos(theta) ** 20 - 3.00981037630981e74 * cos(theta) ** 18 + 2.07432877286217e74 * cos(theta) ** 16 - 7.61221568022814e73 * cos(theta) ** 14 + 1.61848510958122e73 * cos(theta) ** 12 - 2.0346669949021e72 * cos(theta) ** 10 + 1.48155363706464e71 * cos(theta) ** 8 - 5.86753915669163e69 * cos(theta) ** 6 + 1.11127635543402e68 * cos(theta) ** 4 - 7.63763818167711e65 * cos(theta) ** 2 + 8.03961913860749e62 ) * sin(37 * phi) ) # @torch.jit.script def Yl57_m_minus_36(theta, phi): return ( 2.84319706855925e-62 * (1.0 - cos(theta) ** 2) ** 18 * ( 8.52402437401024e72 * cos(theta) ** 21 - 1.58411072437358e73 * cos(theta) ** 19 + 1.22019339580127e73 * cos(theta) ** 17 - 5.07481045348542e72 * cos(theta) ** 15 + 1.2449885458317e72 * cos(theta) ** 13 - 1.84969726809282e71 * cos(theta) ** 11 + 1.6461707078496e70 * cos(theta) ** 9 - 8.38219879527375e68 * cos(theta) ** 7 + 2.22255271086804e67 * cos(theta) ** 5 - 2.54587939389237e65 * cos(theta) ** 3 + 8.03961913860749e62 * cos(theta) ) * sin(36 * phi) ) # @torch.jit.script def Yl57_m_minus_35(theta, phi): return ( 1.28605569636693e-60 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 3.87455653364102e71 * cos(theta) ** 22 - 7.92055362186792e71 * cos(theta) ** 20 + 6.77885219889597e71 * cos(theta) ** 18 - 3.17175653342839e71 * cos(theta) ** 16 + 8.89277532736932e70 * cos(theta) ** 14 - 1.54141439007735e70 * cos(theta) ** 12 + 1.6461707078496e69 * cos(theta) ** 10 - 1.04777484940922e68 * cos(theta) ** 8 + 3.7042545181134e66 * cos(theta) ** 6 - 6.36469848473093e64 * cos(theta) ** 4 + 4.01980956930374e62 * cos(theta) ** 2 - 3.92943261906524e59 ) * sin(35 * phi) ) # @torch.jit.script def Yl57_m_minus_34(theta, phi): return ( 5.91585620328789e-59 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.68458979723523e70 * cos(theta) ** 23 - 3.77169220088949e70 * cos(theta) ** 21 + 3.56781694678735e70 * cos(theta) ** 19 - 1.86573913731082e70 * cos(theta) ** 17 + 5.92851688491288e69 * cos(theta) ** 15 - 1.18570337698258e69 * cos(theta) ** 13 + 1.49651882531781e68 * cos(theta) ** 11 - 1.16419427712135e67 * cos(theta) ** 9 + 5.29179216873343e65 * cos(theta) ** 7 - 1.27293969694619e64 * cos(theta) ** 5 + 1.33993652310125e62 * cos(theta) ** 3 - 3.92943261906524e59 * cos(theta) ) * sin(34 * phi) ) # @torch.jit.script def Yl57_m_minus_33(theta, phi): return ( 2.76467398594605e-57 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 7.01912415514677e68 * cos(theta) ** 24 - 1.71440554585886e69 * cos(theta) ** 22 + 1.78390847339368e69 * cos(theta) ** 20 - 1.03652174295045e69 * cos(theta) ** 18 + 3.70532305307055e68 * cos(theta) ** 16 - 8.46930983558983e67 * cos(theta) ** 14 + 1.24709902109818e67 * cos(theta) ** 12 - 1.16419427712135e66 * cos(theta) ** 10 + 6.61474021091679e64 * cos(theta) ** 8 - 2.12156616157698e63 * cos(theta) ** 6 + 3.34984130775312e61 * cos(theta) ** 4 - 1.96471630953262e59 * cos(theta) ** 2 + 1.79919075964526e56 ) * sin(33 * phi) ) # @torch.jit.script def Yl57_m_minus_32(theta, phi): return ( 1.31140001751088e-55 * (1.0 - cos(theta) ** 2) ** 16 * ( 2.80764966205871e67 * cos(theta) ** 25 - 7.45393715590808e67 * cos(theta) ** 23 + 8.4948022542556e67 * cos(theta) ** 21 - 5.45537759447607e67 * cos(theta) ** 19 + 2.17960179592385e67 * cos(theta) ** 17 - 5.64620655705988e66 * cos(theta) ** 15 + 9.59306939306291e65 * cos(theta) ** 13 - 1.05835843374669e65 * cos(theta) ** 11 + 7.3497113454631e63 * cos(theta) ** 9 - 3.03080880225282e62 * cos(theta) ** 7 + 6.69968261550624e60 * cos(theta) ** 5 - 6.54905436510874e58 * cos(theta) ** 3 + 1.79919075964526e56 * cos(theta) ) * sin(32 * phi) ) # @torch.jit.script def Yl57_m_minus_31(theta, phi): return ( 6.30836571048026e-54 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 1.07986525463796e66 * cos(theta) ** 26 - 3.10580714829503e66 * cos(theta) ** 24 + 3.86127375193436e66 * cos(theta) ** 22 - 2.72768879723804e66 * cos(theta) ** 20 + 1.21088988662436e66 * cos(theta) ** 18 - 3.52887909816243e65 * cos(theta) ** 16 + 6.85219242361636e64 * cos(theta) ** 14 - 8.81965361455572e63 * cos(theta) ** 12 + 7.3497113454631e62 * cos(theta) ** 10 - 3.78851100281603e61 * cos(theta) ** 8 + 1.11661376925104e60 * cos(theta) ** 6 - 1.63726359127718e58 * cos(theta) ** 4 + 8.99595379822629e55 * cos(theta) ** 2 - 7.77524096648772e52 ) * sin(31 * phi) ) # @torch.jit.script def Yl57_m_minus_30(theta, phi): return ( 3.07496431814581e-52 * (1.0 - cos(theta) ** 2) ** 15 * ( 3.99950094310357e64 * cos(theta) ** 27 - 1.24232285931801e65 * cos(theta) ** 25 + 1.67881467475407e65 * cos(theta) ** 23 - 1.29889942725621e65 * cos(theta) ** 21 + 6.37310466644401e64 * cos(theta) ** 19 - 2.07581123421319e64 * cos(theta) ** 17 + 4.56812828241091e63 * cos(theta) ** 15 - 6.78434893427363e62 * cos(theta) ** 13 + 6.68155576860281e61 * cos(theta) ** 11 - 4.20945666979559e60 * cos(theta) ** 9 + 1.59516252750149e59 * cos(theta) ** 7 - 3.27452718255437e57 * cos(theta) ** 5 + 2.99865126607543e55 * cos(theta) ** 3 - 7.77524096648772e52 * cos(theta) ) * sin(30 * phi) ) # @torch.jit.script def Yl57_m_minus_29(theta, phi): return ( 1.51767479846544e-50 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 1.42839319396556e63 * cos(theta) ** 28 - 4.77816484353082e63 * cos(theta) ** 26 + 6.99506114480863e63 * cos(theta) ** 24 - 5.90408830571004e63 * cos(theta) ** 22 + 3.18655233322201e63 * cos(theta) ** 20 - 1.15322846345177e63 * cos(theta) ** 18 + 2.85508017650682e62 * cos(theta) ** 16 - 4.84596352448116e61 * cos(theta) ** 14 + 5.56796314050235e60 * cos(theta) ** 12 - 4.20945666979559e59 * cos(theta) ** 10 + 1.99395315937686e58 * cos(theta) ** 8 - 5.45754530425728e56 * cos(theta) ** 6 + 7.49662816518858e54 * cos(theta) ** 4 - 3.88762048324386e52 * cos(theta) ** 2 + 3.19180663648921e49 ) * sin(29 * phi) ) # @torch.jit.script def Yl57_m_minus_28(theta, phi): return ( 7.57926247334093e-49 * (1.0 - cos(theta) ** 2) ** 14 * ( 4.92549377229504e61 * cos(theta) ** 29 - 1.76969068278919e62 * cos(theta) ** 27 + 2.79802445792345e62 * cos(theta) ** 25 - 2.5669949155261e62 * cos(theta) ** 23 + 1.51740587296286e62 * cos(theta) ** 21 - 6.06962349185144e61 * cos(theta) ** 19 + 1.67945892735695e61 * cos(theta) ** 17 - 3.23064234965411e60 * cos(theta) ** 15 + 4.28304856961719e59 * cos(theta) ** 13 - 3.82677879072326e58 * cos(theta) ** 11 + 2.21550351041873e57 * cos(theta) ** 9 - 7.79649329179612e55 * cos(theta) ** 7 + 1.49932563303772e54 * cos(theta) ** 5 - 1.29587349441462e52 * cos(theta) ** 3 + 3.19180663648921e49 * cos(theta) ) * sin(28 * phi) ) # @torch.jit.script def Yl57_m_minus_27(theta, phi): return ( 3.82733993893246e-47 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.64183125743168e60 * cos(theta) ** 30 - 6.32032386710426e60 * cos(theta) ** 28 + 1.07616325304748e61 * cos(theta) ** 26 - 1.06958121480254e61 * cos(theta) ** 24 + 6.89729942255845e60 * cos(theta) ** 22 - 3.03481174592572e60 * cos(theta) ** 20 + 9.33032737420529e59 * cos(theta) ** 18 - 2.01915146853382e59 * cos(theta) ** 16 + 3.05932040686942e58 * cos(theta) ** 14 - 3.18898232560272e57 * cos(theta) ** 12 + 2.21550351041873e56 * cos(theta) ** 10 - 9.74561661474515e54 * cos(theta) ** 8 + 2.49887605506286e53 * cos(theta) ** 6 - 3.23968373603655e51 * cos(theta) ** 4 + 1.59590331824461e49 * cos(theta) ** 2 - 1.25168887705459e46 ) * sin(27 * phi) ) # @torch.jit.script def Yl57_m_minus_26(theta, phi): return ( 1.95306873266703e-45 * (1.0 - cos(theta) ** 2) ** 13 * ( 5.29622986268284e58 * cos(theta) ** 31 - 2.1794220231394e59 * cos(theta) ** 29 + 3.98578982610178e59 * cos(theta) ** 27 - 4.27832485921017e59 * cos(theta) ** 25 + 2.99882583589498e59 * cos(theta) ** 23 - 1.44514845044082e59 * cos(theta) ** 21 + 4.91069861800278e58 * cos(theta) ** 19 - 1.18773615796107e58 * cos(theta) ** 17 + 2.03954693791295e57 * cos(theta) ** 15 - 2.45306332738671e56 * cos(theta) ** 13 + 2.01409410038066e55 * cos(theta) ** 11 - 1.08284629052724e54 * cos(theta) ** 9 + 3.56982293580408e52 * cos(theta) ** 7 - 6.4793674720731e50 * cos(theta) ** 5 + 5.31967772748202e48 * cos(theta) ** 3 - 1.25168887705459e46 * cos(theta) ) * sin(26 * phi) ) # @torch.jit.script def Yl57_m_minus_25(theta, phi): return ( 1.00654121487048e-43 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 1.65507183208839e57 * cos(theta) ** 32 - 7.26474007713133e57 * cos(theta) ** 30 + 1.42349636646492e58 * cos(theta) ** 28 - 1.64550956123468e58 * cos(theta) ** 26 + 1.24951076495624e58 * cos(theta) ** 24 - 6.56885659291281e57 * cos(theta) ** 22 + 2.45534930900139e57 * cos(theta) ** 20 - 6.59853421089483e56 * cos(theta) ** 18 + 1.27471683619559e56 * cos(theta) ** 16 - 1.7521880909905e55 * cos(theta) ** 14 + 1.67841175031722e54 * cos(theta) ** 12 - 1.08284629052724e53 * cos(theta) ** 10 + 4.4622786697551e51 * cos(theta) ** 8 - 1.07989457867885e50 * cos(theta) ** 6 + 1.3299194318705e48 * cos(theta) ** 4 - 6.25844438527296e45 * cos(theta) ** 2 + 4.71268402505494e42 ) * sin(25 * phi) ) # @torch.jit.script def Yl57_m_minus_24(theta, phi): return ( 5.23594961571665e-42 * (1.0 - cos(theta) ** 2) ** 12 * ( 5.01536918814663e55 * cos(theta) ** 33 - 2.34346454101011e56 * cos(theta) ** 31 + 4.90860816022387e56 * cos(theta) ** 29 - 6.09447985642475e56 * cos(theta) ** 27 + 4.99804305982497e56 * cos(theta) ** 25 - 2.85602460561427e56 * cos(theta) ** 23 + 1.16921395666733e56 * cos(theta) ** 21 - 3.47291274257623e55 * cos(theta) ** 19 + 7.49833433056231e54 * cos(theta) ** 17 - 1.16812539399367e54 * cos(theta) ** 15 + 1.29108596178248e53 * cos(theta) ** 13 - 9.84405718661126e51 * cos(theta) ** 11 + 4.95808741083901e50 * cos(theta) ** 9 - 1.54270654096979e49 * cos(theta) ** 7 + 2.65983886374101e47 * cos(theta) ** 5 - 2.08614812842432e45 * cos(theta) ** 3 + 4.71268402505494e42 * cos(theta) ) * sin(24 * phi) ) # @torch.jit.script def Yl57_m_minus_23(theta, phi): return ( 2.74775132997698e-40 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.47510858474901e54 * cos(theta) ** 34 - 7.32332669065658e54 * cos(theta) ** 32 + 1.63620272007462e55 * cos(theta) ** 30 - 2.17659994872312e55 * cos(theta) ** 28 + 1.92232425377883e55 * cos(theta) ** 26 - 1.19001025233928e55 * cos(theta) ** 24 + 5.31460889394241e54 * cos(theta) ** 22 - 1.73645637128811e54 * cos(theta) ** 20 + 4.16574129475684e53 * cos(theta) ** 18 - 7.30078371246043e52 * cos(theta) ** 16 + 9.22204258416055e51 * cos(theta) ** 14 - 8.20338098884272e50 * cos(theta) ** 12 + 4.95808741083901e49 * cos(theta) ** 10 - 1.92838317621223e48 * cos(theta) ** 8 + 4.43306477290168e46 * cos(theta) ** 6 - 5.2153703210608e44 * cos(theta) ** 4 + 2.35634201252747e42 * cos(theta) ** 2 - 1.71121424293934e39 ) * sin(23 * phi) ) # @torch.jit.script def Yl57_m_minus_22(theta, phi): return ( 1.45397333675321e-38 * (1.0 - cos(theta) ** 2) ** 11 * ( 4.21459595642574e52 * cos(theta) ** 35 - 2.21918990625957e53 * cos(theta) ** 33 + 5.2780732905633e53 * cos(theta) ** 31 - 7.5055170645625e53 * cos(theta) ** 29 + 7.11971945844012e53 * cos(theta) ** 27 - 4.76004100935711e53 * cos(theta) ** 25 + 2.31069951910539e53 * cos(theta) ** 23 - 8.26883986327673e52 * cos(theta) ** 21 + 2.19249541829307e52 * cos(theta) ** 19 - 4.29457865438849e51 * cos(theta) ** 17 + 6.14802838944037e50 * cos(theta) ** 15 - 6.31029306834055e49 * cos(theta) ** 13 + 4.50735219167182e48 * cos(theta) ** 11 - 2.14264797356915e47 * cos(theta) ** 9 + 6.33294967557383e45 * cos(theta) ** 7 - 1.04307406421216e44 * cos(theta) ** 5 + 7.85447337509157e41 * cos(theta) ** 3 - 1.71121424293934e39 * cos(theta) ) * sin(22 * phi) ) # @torch.jit.script def Yl57_m_minus_21(theta, phi): return ( 7.75391861679337e-37 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.17072109900715e51 * cos(theta) ** 36 - 6.52702913605756e51 * cos(theta) ** 34 + 1.64939790330103e52 * cos(theta) ** 32 - 2.50183902152083e52 * cos(theta) ** 30 + 2.5427569494429e52 * cos(theta) ** 28 - 1.83078500359889e52 * cos(theta) ** 26 + 9.62791466293914e51 * cos(theta) ** 24 - 3.75856357421669e51 * cos(theta) ** 22 + 1.09624770914654e51 * cos(theta) ** 20 - 2.38587703021583e50 * cos(theta) ** 18 + 3.84251774340023e49 * cos(theta) ** 16 - 4.50735219167182e48 * cos(theta) ** 14 + 3.75612682639319e47 * cos(theta) ** 12 - 2.14264797356915e46 * cos(theta) ** 10 + 7.91618709446729e44 * cos(theta) ** 8 - 1.73845677368693e43 * cos(theta) ** 6 + 1.96361834377289e41 * cos(theta) ** 4 - 8.5560712146967e38 * cos(theta) ** 2 + 6.01692771778952e35 ) * sin(21 * phi) ) # @torch.jit.script def Yl57_m_minus_20(theta, phi): return ( 4.16552170563493e-35 * (1.0 - cos(theta) ** 2) ** 10 * ( 3.1641110783977e49 * cos(theta) ** 37 - 1.86486546744502e50 * cos(theta) ** 35 + 4.99817546454858e50 * cos(theta) ** 33 - 8.07044845651881e50 * cos(theta) ** 31 + 8.76812741187207e50 * cos(theta) ** 29 - 6.7806851985144e50 * cos(theta) ** 27 + 3.85116586517566e50 * cos(theta) ** 25 - 1.63415807574639e50 * cos(theta) ** 23 + 5.22022718641208e49 * cos(theta) ** 21 - 1.25572475274517e49 * cos(theta) ** 19 + 2.26030455494131e48 * cos(theta) ** 17 - 3.00490146111455e47 * cos(theta) ** 15 + 2.88932832799476e46 * cos(theta) ** 13 - 1.94786179415377e45 * cos(theta) ** 11 + 8.79576343829699e43 * cos(theta) ** 9 - 2.48350967669562e42 * cos(theta) ** 7 + 3.92723668754579e40 * cos(theta) ** 5 - 2.85202373823223e38 * cos(theta) ** 3 + 6.01692771778952e35 * cos(theta) ) * sin(20 * phi) ) # @torch.jit.script def Yl57_m_minus_19(theta, phi): return ( 2.25323538451753e-33 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 8.32660810104658e47 * cos(theta) ** 38 - 5.18018185401394e48 * cos(theta) ** 36 + 1.47005160722017e49 * cos(theta) ** 34 - 2.52201514266213e49 * cos(theta) ** 32 + 2.92270913729069e49 * cos(theta) ** 30 - 2.42167328518372e49 * cos(theta) ** 28 + 1.48121764045218e49 * cos(theta) ** 26 - 6.80899198227662e48 * cos(theta) ** 24 + 2.37283053927822e48 * cos(theta) ** 22 - 6.27862376372586e47 * cos(theta) ** 20 + 1.25572475274517e47 * cos(theta) ** 18 - 1.87806341319659e46 * cos(theta) ** 16 + 2.06380594856768e45 * cos(theta) ** 14 - 1.62321816179481e44 * cos(theta) ** 12 + 8.79576343829699e42 * cos(theta) ** 10 - 3.10438709586953e41 * cos(theta) ** 8 + 6.54539447924298e39 * cos(theta) ** 6 - 7.13005934558058e37 * cos(theta) ** 4 + 3.00846385889476e35 * cos(theta) ** 2 - 2.05636627402239e32 ) * sin(19 * phi) ) # @torch.jit.script def Yl57_m_minus_18(theta, phi): return ( 1.22672061142691e-31 * (1.0 - cos(theta) ** 2) ** 9 * ( 2.13502771821707e46 * cos(theta) ** 39 - 1.4000491497335e47 * cos(theta) ** 37 + 4.20014744920049e47 * cos(theta) ** 35 - 7.64247012927918e47 * cos(theta) ** 33 + 9.42809399126029e47 * cos(theta) ** 31 - 8.35059753511626e47 * cos(theta) ** 29 + 5.48599126093398e47 * cos(theta) ** 27 - 2.72359679291065e47 * cos(theta) ** 25 + 1.03166545186009e47 * cos(theta) ** 23 - 2.98982083986946e46 * cos(theta) ** 21 + 6.60907764602723e45 * cos(theta) ** 19 - 1.10474318423329e45 * cos(theta) ** 17 + 1.37587063237846e44 * cos(theta) ** 15 - 1.24862935522678e43 * cos(theta) ** 13 + 7.99614858026999e41 * cos(theta) ** 11 - 3.44931899541058e40 * cos(theta) ** 9 + 9.35056354177568e38 * cos(theta) ** 7 - 1.42601186911612e37 * cos(theta) ** 5 + 1.00282128629825e35 * cos(theta) ** 3 - 2.05636627402239e32 * cos(theta) ) * sin(18 * phi) ) # @torch.jit.script def Yl57_m_minus_17(theta, phi): return ( 6.71902550635047e-30 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 5.33756929554268e44 * cos(theta) ** 40 - 3.68433986771973e45 * cos(theta) ** 38 + 1.16670762477791e46 * cos(theta) ** 36 - 2.24778533214093e46 * cos(theta) ** 34 + 2.94627937226884e46 * cos(theta) ** 32 - 2.78353251170542e46 * cos(theta) ** 30 + 1.95928259319071e46 * cos(theta) ** 28 - 1.04753722804256e46 * cos(theta) ** 26 + 4.29860604941706e45 * cos(theta) ** 24 - 1.35900947266794e45 * cos(theta) ** 22 + 3.30453882301361e44 * cos(theta) ** 20 - 6.13746213462939e43 * cos(theta) ** 18 + 8.59919145236535e42 * cos(theta) ** 16 - 8.91878110876268e41 * cos(theta) ** 14 + 6.66345715022499e40 * cos(theta) ** 12 - 3.44931899541058e39 * cos(theta) ** 10 + 1.16882044272196e38 * cos(theta) ** 8 - 2.37668644852686e36 * cos(theta) ** 6 + 2.50705321574563e34 * cos(theta) ** 4 - 1.0281831370112e32 * cos(theta) ** 2 + 6.85455424674131e28 ) * sin(17 * phi) ) # @torch.jit.script def Yl57_m_minus_16(theta, phi): return ( 3.70095733010574e-28 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.30184616964456e43 * cos(theta) ** 41 - 9.44702530184545e43 * cos(theta) ** 39 + 3.15326385075112e44 * cos(theta) ** 37 - 6.42224380611696e44 * cos(theta) ** 35 + 8.92811930990558e44 * cos(theta) ** 33 - 8.97913713453361e44 * cos(theta) ** 31 + 6.75614687307141e44 * cos(theta) ** 29 - 3.87976751126873e44 * cos(theta) ** 27 + 1.71944241976682e44 * cos(theta) ** 25 - 5.90873683768668e43 * cos(theta) ** 23 + 1.57358991572077e43 * cos(theta) ** 21 - 3.23024322875231e42 * cos(theta) ** 19 + 5.05834791315609e41 * cos(theta) ** 17 - 5.94585407250845e40 * cos(theta) ** 15 + 5.12573626940384e39 * cos(theta) ** 13 - 3.13574454128235e38 * cos(theta) ** 11 + 1.29868938080218e37 * cos(theta) ** 9 - 3.39526635503837e35 * cos(theta) ** 7 + 5.01410643149127e33 * cos(theta) ** 5 - 3.42727712337066e31 * cos(theta) ** 3 + 6.85455424674131e28 * cos(theta) ) * sin(16 * phi) ) # @torch.jit.script def Yl57_m_minus_15(theta, phi): return ( 2.04927458136536e-26 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 3.09963373724894e41 * cos(theta) ** 42 - 2.36175632546136e42 * cos(theta) ** 40 + 8.29806276513452e42 * cos(theta) ** 38 - 1.78395661281027e43 * cos(theta) ** 36 + 2.62591744408988e43 * cos(theta) ** 34 - 2.80598035454175e43 * cos(theta) ** 32 + 2.25204895769047e43 * cos(theta) ** 30 - 1.38563125402455e43 * cos(theta) ** 28 + 6.61324007602624e42 * cos(theta) ** 26 - 2.46197368236945e42 * cos(theta) ** 24 + 7.1526814350944e41 * cos(theta) ** 22 - 1.61512161437615e41 * cos(theta) ** 20 + 2.81019328508672e40 * cos(theta) ** 18 - 3.71615879531778e39 * cos(theta) ** 16 + 3.66124019243131e38 * cos(theta) ** 14 - 2.61312045106862e37 * cos(theta) ** 12 + 1.29868938080218e36 * cos(theta) ** 10 - 4.24408294379797e34 * cos(theta) ** 8 + 8.35684405248545e32 * cos(theta) ** 6 - 8.56819280842664e30 * cos(theta) ** 4 + 3.42727712337065e28 * cos(theta) ** 2 - 2.23566674714328e25 ) * sin(15 * phi) ) # @torch.jit.script def Yl57_m_minus_14(theta, phi): return ( 1.14025143960594e-24 * (1.0 - cos(theta) ** 2) ** 7 * ( 7.20845055174173e39 * cos(theta) ** 43 - 5.76038128161308e40 * cos(theta) ** 41 + 2.12770840131654e41 * cos(theta) ** 39 - 4.82150435894666e41 * cos(theta) ** 37 + 7.50262126882822e41 * cos(theta) ** 35 - 8.50297077133865e41 * cos(theta) ** 33 + 7.26467405706603e41 * cos(theta) ** 31 - 4.77803880698119e41 * cos(theta) ** 29 + 2.44934817630602e41 * cos(theta) ** 27 - 9.8478947294778e40 * cos(theta) ** 25 + 3.1098614935193e40 * cos(theta) ** 23 - 7.69105530655312e39 * cos(theta) ** 21 + 1.47904909741406e39 * cos(theta) ** 19 - 2.18597576195164e38 * cos(theta) ** 17 + 2.44082679495421e37 * cos(theta) ** 15 - 2.01009265466817e36 * cos(theta) ** 13 + 1.18062670982016e35 * cos(theta) ** 11 - 4.71564771533107e33 * cos(theta) ** 9 + 1.19383486464078e32 * cos(theta) ** 7 - 1.71363856168533e30 * cos(theta) ** 5 + 1.14242570779022e28 * cos(theta) ** 3 - 2.23566674714328e25 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl57_m_minus_13(theta, phi): return ( 6.37317937250722e-23 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.63828421630494e38 * cos(theta) ** 44 - 1.37151935276502e39 * cos(theta) ** 42 + 5.31927100329136e39 * cos(theta) ** 40 - 1.26881693656491e40 * cos(theta) ** 38 + 2.08406146356339e40 * cos(theta) ** 36 - 2.50087375627607e40 * cos(theta) ** 34 + 2.27021064283313e40 * cos(theta) ** 32 - 1.59267960232706e40 * cos(theta) ** 30 + 8.74767205823577e39 * cos(theta) ** 28 - 3.78765181902992e39 * cos(theta) ** 26 + 1.29577562229971e39 * cos(theta) ** 24 - 3.49593423025142e38 * cos(theta) ** 22 + 7.39524548707031e37 * cos(theta) ** 20 - 1.21443097886202e37 * cos(theta) ** 18 + 1.52551674684638e36 * cos(theta) ** 16 - 1.43578046762012e35 * cos(theta) ** 14 + 9.83855591516801e33 * cos(theta) ** 12 - 4.71564771533107e32 * cos(theta) ** 10 + 1.49229358080097e31 * cos(theta) ** 8 - 2.85606426947555e29 * cos(theta) ** 6 + 2.85606426947555e27 * cos(theta) ** 4 - 1.11783337357164e25 * cos(theta) ** 2 + 7.15642364642537e21 ) * sin(13 * phi) ) # @torch.jit.script def Yl57_m_minus_12(theta, phi): return ( 3.57693805145655e-21 * (1.0 - cos(theta) ** 2) ** 6 * ( 3.64063159178875e36 * cos(theta) ** 45 - 3.18957989015121e37 * cos(theta) ** 43 + 1.29738317153448e38 * cos(theta) ** 41 - 3.25337676042285e38 * cos(theta) ** 39 + 5.63259855017134e38 * cos(theta) ** 37 - 7.14535358936021e38 * cos(theta) ** 35 + 6.87942619040344e38 * cos(theta) ** 33 - 5.13767613653892e38 * cos(theta) ** 31 + 3.01643864077096e38 * cos(theta) ** 29 - 1.40283400704812e38 * cos(theta) ** 27 + 5.18310248919884e37 * cos(theta) ** 25 - 1.51997140445714e37 * cos(theta) ** 23 + 3.52154547003348e36 * cos(theta) ** 21 - 6.39174199401064e35 * cos(theta) ** 19 + 8.97362792262577e34 * cos(theta) ** 17 - 9.57186978413416e33 * cos(theta) ** 15 + 7.56811993474463e32 * cos(theta) ** 13 - 4.28695246848279e31 * cos(theta) ** 11 + 1.65810397866775e30 * cos(theta) ** 9 - 4.08009181353649e28 * cos(theta) ** 7 + 5.71212853895109e26 * cos(theta) ** 5 - 3.72611124523881e24 * cos(theta) ** 3 + 7.15642364642537e21 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl57_m_minus_11(theta, phi): return ( 2.01518480555114e-19 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 7.91441650388859e34 * cos(theta) ** 46 - 7.24904520488911e35 * cos(theta) ** 44 + 3.08900755127257e36 * cos(theta) ** 42 - 8.13344190105713e36 * cos(theta) ** 40 + 1.48226277636088e37 * cos(theta) ** 38 - 1.98482044148895e37 * cos(theta) ** 36 + 2.02336064423631e37 * cos(theta) ** 34 - 1.60552379266841e37 * cos(theta) ** 32 + 1.00547954692365e37 * cos(theta) ** 30 - 5.01012145374328e36 * cos(theta) ** 28 + 1.99350095738417e36 * cos(theta) ** 26 - 6.33321418523808e35 * cos(theta) ** 24 + 1.60070248637885e35 * cos(theta) ** 22 - 3.19587099700532e34 * cos(theta) ** 20 + 4.98534884590321e33 * cos(theta) ** 18 - 5.98241861508385e32 * cos(theta) ** 16 + 5.40579995338902e31 * cos(theta) ** 14 - 3.57246039040233e30 * cos(theta) ** 12 + 1.65810397866775e29 * cos(theta) ** 10 - 5.10011476692062e27 * cos(theta) ** 8 + 9.52021423158515e25 * cos(theta) ** 6 - 9.31527811309702e23 * cos(theta) ** 4 + 3.57821182321268e21 * cos(theta) ** 2 - 2.25470184197397e18 ) * sin(11 * phi) ) # @torch.jit.script def Yl57_m_minus_10(theta, phi): return ( 1.13924797487094e-17 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.68391840508268e33 * cos(theta) ** 47 - 1.6108989344198e34 * cos(theta) ** 45 + 7.18373849133155e34 * cos(theta) ** 43 - 1.98376631733101e35 * cos(theta) ** 41 + 3.80067378554071e35 * cos(theta) ** 39 - 5.36437957159175e35 * cos(theta) ** 37 + 5.78103041210373e35 * cos(theta) ** 35 - 4.8652236141467e35 * cos(theta) ** 33 + 3.24348240943114e35 * cos(theta) ** 31 - 1.72762808749768e35 * cos(theta) ** 29 + 7.38333687920063e34 * cos(theta) ** 27 - 2.53328567409523e34 * cos(theta) ** 25 + 6.95957602773415e33 * cos(theta) ** 23 - 1.52184333190729e33 * cos(theta) ** 21 + 2.62386781363327e32 * cos(theta) ** 19 - 3.51906977357873e31 * cos(theta) ** 17 + 3.60386663559268e30 * cos(theta) ** 15 - 2.74804645415564e29 * cos(theta) ** 13 + 1.50736725333432e28 * cos(theta) ** 11 - 5.66679418546735e26 * cos(theta) ** 9 + 1.36003060451216e25 * cos(theta) ** 7 - 1.8630556226194e23 * cos(theta) ** 5 + 1.19273727440423e21 * cos(theta) ** 3 - 2.25470184197397e18 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl57_m_minus_9(theta, phi): return ( 6.46065105818606e-16 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 3.50816334392225e31 * cos(theta) ** 48 - 3.50195420526044e32 * cos(theta) ** 46 + 1.63266783893899e33 * cos(theta) ** 44 - 4.7232531365024e33 * cos(theta) ** 42 + 9.50168446385178e33 * cos(theta) ** 40 - 1.41167883462941e34 * cos(theta) ** 38 + 1.60584178113992e34 * cos(theta) ** 36 - 1.43094812180785e34 * cos(theta) ** 34 + 1.01358825294723e34 * cos(theta) ** 32 - 5.75876029165895e33 * cos(theta) ** 30 + 2.63690602828594e33 * cos(theta) ** 28 - 9.74340643882781e32 * cos(theta) ** 26 + 2.89982334488923e32 * cos(theta) ** 24 - 6.9174696904877e31 * cos(theta) ** 22 + 1.31193390681663e31 * cos(theta) ** 20 - 1.9550387630993e30 * cos(theta) ** 18 + 2.25241664724542e29 * cos(theta) ** 16 - 1.96289032439688e28 * cos(theta) ** 14 + 1.2561393777786e27 * cos(theta) ** 12 - 5.66679418546735e25 * cos(theta) ** 10 + 1.70003825564021e24 * cos(theta) ** 8 - 3.10509270436567e22 * cos(theta) ** 6 + 2.98184318601057e20 * cos(theta) ** 4 - 1.12735092098698e18 * cos(theta) ** 2 + 701088881210810.0 ) * sin(9 * phi) ) # @torch.jit.script def Yl57_m_minus_8(theta, phi): return ( 3.67406041209588e-14 * (1.0 - cos(theta) ** 2) ** 4 * ( 7.15951702841275e29 * cos(theta) ** 49 - 7.45096639417115e30 * cos(theta) ** 47 + 3.62815075319775e31 * cos(theta) ** 45 - 1.0984309619773e32 * cos(theta) ** 43 + 2.31748401557361e32 * cos(theta) ** 41 - 3.61968931956258e32 * cos(theta) ** 39 + 4.3401129219998e32 * cos(theta) ** 37 - 4.0884232051653e32 * cos(theta) ** 35 + 3.07147955438554e32 * cos(theta) ** 33 - 1.85766461021256e32 * cos(theta) ** 31 + 9.09277940788255e31 * cos(theta) ** 29 - 3.60866905141771e31 * cos(theta) ** 27 + 1.15992933795569e31 * cos(theta) ** 25 - 3.00759551760335e30 * cos(theta) ** 23 + 6.24730431817444e29 * cos(theta) ** 21 - 1.02896777005226e29 * cos(theta) ** 19 + 1.3249509689679e28 * cos(theta) ** 17 - 1.30859354959792e27 * cos(theta) ** 15 + 9.6626105982969e25 * cos(theta) ** 13 - 5.15163107769759e24 * cos(theta) ** 11 + 1.88893139515578e23 * cos(theta) ** 9 - 4.43584672052239e21 * cos(theta) ** 7 + 5.96368637202114e19 * cos(theta) ** 5 - 3.75783640328994e17 * cos(theta) ** 3 + 701088881210810.0 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl57_m_minus_7(theta, phi): return ( 2.09453669610067e-12 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.43190340568255e28 * cos(theta) ** 50 - 1.55228466545232e29 * cos(theta) ** 48 + 7.88728424608207e29 * cos(theta) ** 46 - 2.49643400449387e30 * cos(theta) ** 44 + 5.51781908469906e30 * cos(theta) ** 42 - 9.04922329890646e30 * cos(theta) ** 40 + 1.14213497947363e31 * cos(theta) ** 38 - 1.13567311254592e31 * cos(theta) ** 36 + 9.0337633952516e30 * cos(theta) ** 34 - 5.80520190691426e30 * cos(theta) ** 32 + 3.03092646929418e30 * cos(theta) ** 30 - 1.28881037550632e30 * cos(theta) ** 28 + 4.46126668444497e29 * cos(theta) ** 26 - 1.2531647990014e29 * cos(theta) ** 24 + 2.83968378098838e28 * cos(theta) ** 22 - 5.14483885026131e27 * cos(theta) ** 20 + 7.36083871648831e26 * cos(theta) ** 18 - 8.17870968498702e25 * cos(theta) ** 16 + 6.90186471306921e24 * cos(theta) ** 14 - 4.29302589808133e23 * cos(theta) ** 12 + 1.88893139515578e22 * cos(theta) ** 10 - 5.54480840065299e20 * cos(theta) ** 8 + 9.9394772867019e18 * cos(theta) ** 6 - 9.39459100822486e16 * cos(theta) ** 4 + 350544440605405.0 * cos(theta) ** 2 - 215719655757.172 ) * sin(7 * phi) ) # @torch.jit.script def Yl57_m_minus_6(theta, phi): return ( 1.19663871249276e-10 * (1.0 - cos(theta) ** 2) ** 3 * ( 2.80765373663245e26 * cos(theta) ** 51 - 3.16792788867821e27 * cos(theta) ** 49 + 1.67814558427278e28 * cos(theta) ** 47 - 5.54763112109748e28 * cos(theta) ** 45 + 1.28321374062769e29 * cos(theta) ** 43 - 2.20712763387962e29 * cos(theta) ** 41 + 2.92855122941957e29 * cos(theta) ** 39 - 3.06938679066464e29 * cos(theta) ** 37 + 2.58107525578617e29 * cos(theta) ** 35 - 1.75915209300432e29 * cos(theta) ** 33 + 9.77718215901349e28 * cos(theta) ** 31 - 4.4441737086425e28 * cos(theta) ** 29 + 1.65232099423888e28 * cos(theta) ** 27 - 5.01265919600558e27 * cos(theta) ** 25 + 1.23464512216886e27 * cos(theta) ** 23 - 2.44992326202919e26 * cos(theta) ** 21 + 3.87412564025701e25 * cos(theta) ** 19 - 4.81100569705119e24 * cos(theta) ** 17 + 4.60124314204614e23 * cos(theta) ** 15 - 3.30232761390871e22 * cos(theta) ** 13 + 1.71721035923253e21 * cos(theta) ** 11 - 6.16089822294776e19 * cos(theta) ** 9 + 1.4199253266717e18 * cos(theta) ** 7 - 1.87891820164497e16 * cos(theta) ** 5 + 116848146868468.0 * cos(theta) ** 3 - 215719655757.172 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl57_m_minus_5(theta, phi): return ( 6.84912346667969e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 5.39933410890856e24 * cos(theta) ** 52 - 6.33585577735642e25 * cos(theta) ** 50 + 3.49613663390163e26 * cos(theta) ** 48 - 1.20600676545597e27 * cos(theta) ** 46 + 2.91639486506293e27 * cos(theta) ** 44 - 5.25506579495149e27 * cos(theta) ** 42 + 7.32137807354892e27 * cos(theta) ** 40 - 8.07733365964378e27 * cos(theta) ** 38 + 7.16965348829492e27 * cos(theta) ** 36 - 5.17397674413036e27 * cos(theta) ** 34 + 3.05536942469172e27 * cos(theta) ** 32 - 1.48139123621417e27 * cos(theta) ** 30 + 5.90114640799599e26 * cos(theta) ** 28 - 1.92794584461753e26 * cos(theta) ** 26 + 5.14435467570359e25 * cos(theta) ** 24 - 1.11360148274054e25 * cos(theta) ** 22 + 1.9370628201285e24 * cos(theta) ** 20 - 2.67278094280621e23 * cos(theta) ** 18 + 2.87577696377884e22 * cos(theta) ** 16 - 2.35880543850622e21 * cos(theta) ** 14 + 1.43100863269378e20 * cos(theta) ** 12 - 6.16089822294776e18 * cos(theta) ** 10 + 1.77490665833962e17 * cos(theta) ** 8 - 3.13153033607495e15 * cos(theta) ** 6 + 29212036717117.1 * cos(theta) ** 4 - 107859827878.586 * cos(theta) ** 2 + 65848490.7683676 ) * sin(5 * phi) ) # @torch.jit.script def Yl57_m_minus_4(theta, phi): return ( 3.92616705671509e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 1.01874228469973e23 * cos(theta) ** 53 - 1.24232466222675e24 * cos(theta) ** 51 + 7.13497272224822e24 * cos(theta) ** 49 - 2.56597184139569e25 * cos(theta) ** 47 + 6.48087747791762e25 * cos(theta) ** 45 - 1.22210832440732e26 * cos(theta) ** 43 + 1.78570196915827e26 * cos(theta) ** 41 - 2.07111119478046e26 * cos(theta) ** 39 + 1.93774418602565e26 * cos(theta) ** 37 - 1.47827906975153e26 * cos(theta) ** 35 + 9.25869522633853e25 * cos(theta) ** 33 - 4.77868140714247e25 * cos(theta) ** 31 + 2.03487807172275e25 * cos(theta) ** 29 - 7.14054016525012e24 * cos(theta) ** 27 + 2.05774187028144e24 * cos(theta) ** 25 - 4.84174557713279e23 * cos(theta) ** 23 + 9.22410866727859e22 * cos(theta) ** 21 - 1.40672681200327e22 * cos(theta) ** 19 + 1.6916335081052e21 * cos(theta) ** 17 - 1.57253695900415e20 * cos(theta) ** 15 + 1.1007758713029e19 * cos(theta) ** 13 - 5.60081656631615e17 * cos(theta) ** 11 + 1.97211850926625e16 * cos(theta) ** 9 - 447361476582136.0 * cos(theta) ** 7 + 5842407343423.42 * cos(theta) ** 5 - 35953275959.5287 * cos(theta) ** 3 + 65848490.7683676 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl57_m_minus_3(theta, phi): return ( 2.25335995509665e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 1.88655978648098e21 * cos(theta) ** 54 - 2.38908588889759e22 * cos(theta) ** 52 + 1.42699454444964e23 * cos(theta) ** 50 - 5.34577466957435e23 * cos(theta) ** 48 + 1.40888640824296e24 * cos(theta) ** 46 - 2.77751891910755e24 * cos(theta) ** 44 + 4.25167135513874e24 * cos(theta) ** 42 - 5.17777798695114e24 * cos(theta) ** 40 + 5.09932680533067e24 * cos(theta) ** 38 - 4.10633074930981e24 * cos(theta) ** 36 + 2.72314565480545e24 * cos(theta) ** 34 - 1.49333793973202e24 * cos(theta) ** 32 + 6.78292690574251e23 * cos(theta) ** 30 - 2.55019291616076e23 * cos(theta) ** 28 + 7.91439180877476e22 * cos(theta) ** 26 - 2.017393990472e22 * cos(theta) ** 24 + 4.19277666694481e21 * cos(theta) ** 22 - 7.03363406001635e20 * cos(theta) ** 20 + 9.39796393391777e19 * cos(theta) ** 18 - 9.82835599377593e18 * cos(theta) ** 16 + 7.86268479502075e17 * cos(theta) ** 14 - 4.66734713859679e16 * cos(theta) ** 12 + 1.97211850926625e15 * cos(theta) ** 10 - 55920184572767.0 * cos(theta) ** 8 + 973734557237.236 * cos(theta) ** 6 - 8988318989.88218 * cos(theta) ** 4 + 32924245.3841838 * cos(theta) ** 2 - 19990.43435591 ) * sin(3 * phi) ) # @torch.jit.script def Yl57_m_minus_2(theta, phi): return ( 0.00129445674272528 * (1.0 - cos(theta) ** 2) * ( 3.43010870269269e19 * cos(theta) ** 55 - 4.50770922433508e20 * cos(theta) ** 53 + 2.79802851852871e21 * cos(theta) ** 51 - 1.09097442236211e22 * cos(theta) ** 49 + 2.99763065583609e22 * cos(theta) ** 47 - 6.17226426468345e22 * cos(theta) ** 45 + 9.88760780264824e22 * cos(theta) ** 43 - 1.26287267974418e23 * cos(theta) ** 41 + 1.30751969367453e23 * cos(theta) ** 39 - 1.10981912143508e23 * cos(theta) ** 37 + 7.780416156587e22 * cos(theta) ** 35 - 4.52526648403643e22 * cos(theta) ** 33 + 2.18804093733629e22 * cos(theta) ** 31 - 8.7937686764164e21 * cos(theta) ** 29 + 2.93125622547213e21 * cos(theta) ** 27 - 8.06957596188799e20 * cos(theta) ** 25 + 1.82294637693253e20 * cos(theta) ** 23 - 3.34934955238874e19 * cos(theta) ** 21 + 4.94629680732514e18 * cos(theta) ** 19 - 5.78138587869173e17 * cos(theta) ** 17 + 5.24178986334716e16 * cos(theta) ** 15 - 3.59026702968984e15 * cos(theta) ** 13 + 179283500842386.0 * cos(theta) ** 11 - 6213353841418.56 * cos(theta) ** 9 + 139104936748.177 * cos(theta) ** 7 - 1797663797.97644 * cos(theta) ** 5 + 10974748.4613946 * cos(theta) ** 3 - 19990.43435591 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl57_m_minus_1(theta, phi): return ( 0.0744059320688348 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 6.12519411195123e17 * cos(theta) ** 56 - 8.3476096746946e18 * cos(theta) ** 54 + 5.38082407409368e19 * cos(theta) ** 52 - 2.18194884472423e20 * cos(theta) ** 50 + 6.24506386632518e20 * cos(theta) ** 48 - 1.34179657927901e21 * cos(theta) ** 46 + 2.24718359151096e21 * cos(theta) ** 44 - 3.00683971367662e21 * cos(theta) ** 42 + 3.26879923418633e21 * cos(theta) ** 40 - 2.92057663535548e21 * cos(theta) ** 38 + 2.16122671016306e21 * cos(theta) ** 36 - 1.33096073059895e21 * cos(theta) ** 34 + 6.83762792917592e20 * cos(theta) ** 32 - 2.93125622547213e20 * cos(theta) ** 30 + 1.0468772233829e20 * cos(theta) ** 28 - 3.10368306226461e19 * cos(theta) ** 26 + 7.59560990388553e18 * cos(theta) ** 24 - 1.52243161472215e18 * cos(theta) ** 22 + 2.47314840366257e17 * cos(theta) ** 20 - 3.21188104371763e16 * cos(theta) ** 18 + 3.27611866459198e15 * cos(theta) ** 16 - 256447644977846.0 * cos(theta) ** 14 + 14940291736865.5 * cos(theta) ** 12 - 621335384141.856 * cos(theta) ** 10 + 17388117093.5221 * cos(theta) ** 8 - 299610632.996073 * cos(theta) ** 6 + 2743687.11534865 * cos(theta) ** 4 - 9995.21717795501 * cos(theta) ** 2 + 6.05037359440376 ) * sin(phi) ) # @torch.jit.script def Yl57_m0(theta, phi): return ( 1.02126597165331e17 * cos(theta) ** 57 - 1.44242521306078e18 * cos(theta) ** 55 + 9.64865514142007e18 * cos(theta) ** 53 - 4.06600819109384e19 * cos(theta) ** 51 + 1.21125244010389e20 * cos(theta) ** 49 - 2.71320546583271e20 * cos(theta) ** 47 + 4.74591441515398e20 * cos(theta) ** 45 - 6.64562273126229e20 * cos(theta) ** 43 + 7.57701682617406e20 * cos(theta) ** 41 - 7.11701465917838e20 * cos(theta) ** 39 + 5.55127143415914e20 * cos(theta) ** 37 - 3.61402421813293e20 * cos(theta) ** 35 + 1.96917986244422e20 * cos(theta) ** 33 - 8.9864042123643e19 * cos(theta) ** 31 + 3.43077008107504e19 * cos(theta) ** 29 - 1.09246482581684e19 * cos(theta) ** 27 + 2.8874635079948e18 * cos(theta) ** 25 - 6.29077016992332e17 * cos(theta) ** 23 + 1.11924391912138e17 * cos(theta) ** 21 - 1.60657021883451e16 * cos(theta) ** 19 + 1.83149004947135e15 * cos(theta) ** 17 - 162480526241424.0 * cos(theta) ** 15 + 10922186463091.9 * cos(theta) ** 13 - 536818238261.605 * cos(theta) ** 11 + 18361320338.5499 * cos(theta) ** 9 - 406773865.961721 * cos(theta) ** 7 + 5215049.56361181 * cos(theta) ** 5 - 31663.9317766352 * cos(theta) ** 3 + 57.501086761444 * cos(theta) ) # @torch.jit.script def Yl57_m1(theta, phi): return ( 0.0744059320688348 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 6.12519411195123e17 * cos(theta) ** 56 - 8.3476096746946e18 * cos(theta) ** 54 + 5.38082407409368e19 * cos(theta) ** 52 - 2.18194884472423e20 * cos(theta) ** 50 + 6.24506386632518e20 * cos(theta) ** 48 - 1.34179657927901e21 * cos(theta) ** 46 + 2.24718359151096e21 * cos(theta) ** 44 - 3.00683971367662e21 * cos(theta) ** 42 + 3.26879923418633e21 * cos(theta) ** 40 - 2.92057663535548e21 * cos(theta) ** 38 + 2.16122671016306e21 * cos(theta) ** 36 - 1.33096073059895e21 * cos(theta) ** 34 + 6.83762792917592e20 * cos(theta) ** 32 - 2.93125622547213e20 * cos(theta) ** 30 + 1.0468772233829e20 * cos(theta) ** 28 - 3.10368306226461e19 * cos(theta) ** 26 + 7.59560990388553e18 * cos(theta) ** 24 - 1.52243161472215e18 * cos(theta) ** 22 + 2.47314840366257e17 * cos(theta) ** 20 - 3.21188104371763e16 * cos(theta) ** 18 + 3.27611866459198e15 * cos(theta) ** 16 - 256447644977846.0 * cos(theta) ** 14 + 14940291736865.5 * cos(theta) ** 12 - 621335384141.856 * cos(theta) ** 10 + 17388117093.5221 * cos(theta) ** 8 - 299610632.996073 * cos(theta) ** 6 + 2743687.11534865 * cos(theta) ** 4 - 9995.21717795501 * cos(theta) ** 2 + 6.05037359440376 ) * cos(phi) ) # @torch.jit.script def Yl57_m2(theta, phi): return ( 0.00129445674272528 * (1.0 - cos(theta) ** 2) * ( 3.43010870269269e19 * cos(theta) ** 55 - 4.50770922433508e20 * cos(theta) ** 53 + 2.79802851852871e21 * cos(theta) ** 51 - 1.09097442236211e22 * cos(theta) ** 49 + 2.99763065583609e22 * cos(theta) ** 47 - 6.17226426468345e22 * cos(theta) ** 45 + 9.88760780264824e22 * cos(theta) ** 43 - 1.26287267974418e23 * cos(theta) ** 41 + 1.30751969367453e23 * cos(theta) ** 39 - 1.10981912143508e23 * cos(theta) ** 37 + 7.780416156587e22 * cos(theta) ** 35 - 4.52526648403643e22 * cos(theta) ** 33 + 2.18804093733629e22 * cos(theta) ** 31 - 8.7937686764164e21 * cos(theta) ** 29 + 2.93125622547213e21 * cos(theta) ** 27 - 8.06957596188799e20 * cos(theta) ** 25 + 1.82294637693253e20 * cos(theta) ** 23 - 3.34934955238874e19 * cos(theta) ** 21 + 4.94629680732514e18 * cos(theta) ** 19 - 5.78138587869173e17 * cos(theta) ** 17 + 5.24178986334716e16 * cos(theta) ** 15 - 3.59026702968984e15 * cos(theta) ** 13 + 179283500842386.0 * cos(theta) ** 11 - 6213353841418.56 * cos(theta) ** 9 + 139104936748.177 * cos(theta) ** 7 - 1797663797.97644 * cos(theta) ** 5 + 10974748.4613946 * cos(theta) ** 3 - 19990.43435591 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl57_m3(theta, phi): return ( 2.25335995509665e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 1.88655978648098e21 * cos(theta) ** 54 - 2.38908588889759e22 * cos(theta) ** 52 + 1.42699454444964e23 * cos(theta) ** 50 - 5.34577466957435e23 * cos(theta) ** 48 + 1.40888640824296e24 * cos(theta) ** 46 - 2.77751891910755e24 * cos(theta) ** 44 + 4.25167135513874e24 * cos(theta) ** 42 - 5.17777798695114e24 * cos(theta) ** 40 + 5.09932680533067e24 * cos(theta) ** 38 - 4.10633074930981e24 * cos(theta) ** 36 + 2.72314565480545e24 * cos(theta) ** 34 - 1.49333793973202e24 * cos(theta) ** 32 + 6.78292690574251e23 * cos(theta) ** 30 - 2.55019291616076e23 * cos(theta) ** 28 + 7.91439180877476e22 * cos(theta) ** 26 - 2.017393990472e22 * cos(theta) ** 24 + 4.19277666694481e21 * cos(theta) ** 22 - 7.03363406001635e20 * cos(theta) ** 20 + 9.39796393391777e19 * cos(theta) ** 18 - 9.82835599377593e18 * cos(theta) ** 16 + 7.86268479502075e17 * cos(theta) ** 14 - 4.66734713859679e16 * cos(theta) ** 12 + 1.97211850926625e15 * cos(theta) ** 10 - 55920184572767.0 * cos(theta) ** 8 + 973734557237.236 * cos(theta) ** 6 - 8988318989.88218 * cos(theta) ** 4 + 32924245.3841838 * cos(theta) ** 2 - 19990.43435591 ) * cos(3 * phi) ) # @torch.jit.script def Yl57_m4(theta, phi): return ( 3.92616705671509e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 1.01874228469973e23 * cos(theta) ** 53 - 1.24232466222675e24 * cos(theta) ** 51 + 7.13497272224822e24 * cos(theta) ** 49 - 2.56597184139569e25 * cos(theta) ** 47 + 6.48087747791762e25 * cos(theta) ** 45 - 1.22210832440732e26 * cos(theta) ** 43 + 1.78570196915827e26 * cos(theta) ** 41 - 2.07111119478046e26 * cos(theta) ** 39 + 1.93774418602565e26 * cos(theta) ** 37 - 1.47827906975153e26 * cos(theta) ** 35 + 9.25869522633853e25 * cos(theta) ** 33 - 4.77868140714247e25 * cos(theta) ** 31 + 2.03487807172275e25 * cos(theta) ** 29 - 7.14054016525012e24 * cos(theta) ** 27 + 2.05774187028144e24 * cos(theta) ** 25 - 4.84174557713279e23 * cos(theta) ** 23 + 9.22410866727859e22 * cos(theta) ** 21 - 1.40672681200327e22 * cos(theta) ** 19 + 1.6916335081052e21 * cos(theta) ** 17 - 1.57253695900415e20 * cos(theta) ** 15 + 1.1007758713029e19 * cos(theta) ** 13 - 5.60081656631615e17 * cos(theta) ** 11 + 1.97211850926625e16 * cos(theta) ** 9 - 447361476582136.0 * cos(theta) ** 7 + 5842407343423.42 * cos(theta) ** 5 - 35953275959.5287 * cos(theta) ** 3 + 65848490.7683676 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl57_m5(theta, phi): return ( 6.84912346667969e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 5.39933410890856e24 * cos(theta) ** 52 - 6.33585577735642e25 * cos(theta) ** 50 + 3.49613663390163e26 * cos(theta) ** 48 - 1.20600676545597e27 * cos(theta) ** 46 + 2.91639486506293e27 * cos(theta) ** 44 - 5.25506579495149e27 * cos(theta) ** 42 + 7.32137807354892e27 * cos(theta) ** 40 - 8.07733365964378e27 * cos(theta) ** 38 + 7.16965348829492e27 * cos(theta) ** 36 - 5.17397674413036e27 * cos(theta) ** 34 + 3.05536942469172e27 * cos(theta) ** 32 - 1.48139123621417e27 * cos(theta) ** 30 + 5.90114640799599e26 * cos(theta) ** 28 - 1.92794584461753e26 * cos(theta) ** 26 + 5.14435467570359e25 * cos(theta) ** 24 - 1.11360148274054e25 * cos(theta) ** 22 + 1.9370628201285e24 * cos(theta) ** 20 - 2.67278094280621e23 * cos(theta) ** 18 + 2.87577696377884e22 * cos(theta) ** 16 - 2.35880543850622e21 * cos(theta) ** 14 + 1.43100863269378e20 * cos(theta) ** 12 - 6.16089822294776e18 * cos(theta) ** 10 + 1.77490665833962e17 * cos(theta) ** 8 - 3.13153033607495e15 * cos(theta) ** 6 + 29212036717117.1 * cos(theta) ** 4 - 107859827878.586 * cos(theta) ** 2 + 65848490.7683676 ) * cos(5 * phi) ) # @torch.jit.script def Yl57_m6(theta, phi): return ( 1.19663871249276e-10 * (1.0 - cos(theta) ** 2) ** 3 * ( 2.80765373663245e26 * cos(theta) ** 51 - 3.16792788867821e27 * cos(theta) ** 49 + 1.67814558427278e28 * cos(theta) ** 47 - 5.54763112109748e28 * cos(theta) ** 45 + 1.28321374062769e29 * cos(theta) ** 43 - 2.20712763387962e29 * cos(theta) ** 41 + 2.92855122941957e29 * cos(theta) ** 39 - 3.06938679066464e29 * cos(theta) ** 37 + 2.58107525578617e29 * cos(theta) ** 35 - 1.75915209300432e29 * cos(theta) ** 33 + 9.77718215901349e28 * cos(theta) ** 31 - 4.4441737086425e28 * cos(theta) ** 29 + 1.65232099423888e28 * cos(theta) ** 27 - 5.01265919600558e27 * cos(theta) ** 25 + 1.23464512216886e27 * cos(theta) ** 23 - 2.44992326202919e26 * cos(theta) ** 21 + 3.87412564025701e25 * cos(theta) ** 19 - 4.81100569705119e24 * cos(theta) ** 17 + 4.60124314204614e23 * cos(theta) ** 15 - 3.30232761390871e22 * cos(theta) ** 13 + 1.71721035923253e21 * cos(theta) ** 11 - 6.16089822294776e19 * cos(theta) ** 9 + 1.4199253266717e18 * cos(theta) ** 7 - 1.87891820164497e16 * cos(theta) ** 5 + 116848146868468.0 * cos(theta) ** 3 - 215719655757.172 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl57_m7(theta, phi): return ( 2.09453669610067e-12 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.43190340568255e28 * cos(theta) ** 50 - 1.55228466545232e29 * cos(theta) ** 48 + 7.88728424608207e29 * cos(theta) ** 46 - 2.49643400449387e30 * cos(theta) ** 44 + 5.51781908469906e30 * cos(theta) ** 42 - 9.04922329890646e30 * cos(theta) ** 40 + 1.14213497947363e31 * cos(theta) ** 38 - 1.13567311254592e31 * cos(theta) ** 36 + 9.0337633952516e30 * cos(theta) ** 34 - 5.80520190691426e30 * cos(theta) ** 32 + 3.03092646929418e30 * cos(theta) ** 30 - 1.28881037550632e30 * cos(theta) ** 28 + 4.46126668444497e29 * cos(theta) ** 26 - 1.2531647990014e29 * cos(theta) ** 24 + 2.83968378098838e28 * cos(theta) ** 22 - 5.14483885026131e27 * cos(theta) ** 20 + 7.36083871648831e26 * cos(theta) ** 18 - 8.17870968498702e25 * cos(theta) ** 16 + 6.90186471306921e24 * cos(theta) ** 14 - 4.29302589808133e23 * cos(theta) ** 12 + 1.88893139515578e22 * cos(theta) ** 10 - 5.54480840065299e20 * cos(theta) ** 8 + 9.9394772867019e18 * cos(theta) ** 6 - 9.39459100822486e16 * cos(theta) ** 4 + 350544440605405.0 * cos(theta) ** 2 - 215719655757.172 ) * cos(7 * phi) ) # @torch.jit.script def Yl57_m8(theta, phi): return ( 3.67406041209588e-14 * (1.0 - cos(theta) ** 2) ** 4 * ( 7.15951702841275e29 * cos(theta) ** 49 - 7.45096639417115e30 * cos(theta) ** 47 + 3.62815075319775e31 * cos(theta) ** 45 - 1.0984309619773e32 * cos(theta) ** 43 + 2.31748401557361e32 * cos(theta) ** 41 - 3.61968931956258e32 * cos(theta) ** 39 + 4.3401129219998e32 * cos(theta) ** 37 - 4.0884232051653e32 * cos(theta) ** 35 + 3.07147955438554e32 * cos(theta) ** 33 - 1.85766461021256e32 * cos(theta) ** 31 + 9.09277940788255e31 * cos(theta) ** 29 - 3.60866905141771e31 * cos(theta) ** 27 + 1.15992933795569e31 * cos(theta) ** 25 - 3.00759551760335e30 * cos(theta) ** 23 + 6.24730431817444e29 * cos(theta) ** 21 - 1.02896777005226e29 * cos(theta) ** 19 + 1.3249509689679e28 * cos(theta) ** 17 - 1.30859354959792e27 * cos(theta) ** 15 + 9.6626105982969e25 * cos(theta) ** 13 - 5.15163107769759e24 * cos(theta) ** 11 + 1.88893139515578e23 * cos(theta) ** 9 - 4.43584672052239e21 * cos(theta) ** 7 + 5.96368637202114e19 * cos(theta) ** 5 - 3.75783640328994e17 * cos(theta) ** 3 + 701088881210810.0 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl57_m9(theta, phi): return ( 6.46065105818606e-16 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 3.50816334392225e31 * cos(theta) ** 48 - 3.50195420526044e32 * cos(theta) ** 46 + 1.63266783893899e33 * cos(theta) ** 44 - 4.7232531365024e33 * cos(theta) ** 42 + 9.50168446385178e33 * cos(theta) ** 40 - 1.41167883462941e34 * cos(theta) ** 38 + 1.60584178113992e34 * cos(theta) ** 36 - 1.43094812180785e34 * cos(theta) ** 34 + 1.01358825294723e34 * cos(theta) ** 32 - 5.75876029165895e33 * cos(theta) ** 30 + 2.63690602828594e33 * cos(theta) ** 28 - 9.74340643882781e32 * cos(theta) ** 26 + 2.89982334488923e32 * cos(theta) ** 24 - 6.9174696904877e31 * cos(theta) ** 22 + 1.31193390681663e31 * cos(theta) ** 20 - 1.9550387630993e30 * cos(theta) ** 18 + 2.25241664724542e29 * cos(theta) ** 16 - 1.96289032439688e28 * cos(theta) ** 14 + 1.2561393777786e27 * cos(theta) ** 12 - 5.66679418546735e25 * cos(theta) ** 10 + 1.70003825564021e24 * cos(theta) ** 8 - 3.10509270436567e22 * cos(theta) ** 6 + 2.98184318601057e20 * cos(theta) ** 4 - 1.12735092098698e18 * cos(theta) ** 2 + 701088881210810.0 ) * cos(9 * phi) ) # @torch.jit.script def Yl57_m10(theta, phi): return ( 1.13924797487094e-17 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.68391840508268e33 * cos(theta) ** 47 - 1.6108989344198e34 * cos(theta) ** 45 + 7.18373849133155e34 * cos(theta) ** 43 - 1.98376631733101e35 * cos(theta) ** 41 + 3.80067378554071e35 * cos(theta) ** 39 - 5.36437957159175e35 * cos(theta) ** 37 + 5.78103041210373e35 * cos(theta) ** 35 - 4.8652236141467e35 * cos(theta) ** 33 + 3.24348240943114e35 * cos(theta) ** 31 - 1.72762808749768e35 * cos(theta) ** 29 + 7.38333687920063e34 * cos(theta) ** 27 - 2.53328567409523e34 * cos(theta) ** 25 + 6.95957602773415e33 * cos(theta) ** 23 - 1.52184333190729e33 * cos(theta) ** 21 + 2.62386781363327e32 * cos(theta) ** 19 - 3.51906977357873e31 * cos(theta) ** 17 + 3.60386663559268e30 * cos(theta) ** 15 - 2.74804645415564e29 * cos(theta) ** 13 + 1.50736725333432e28 * cos(theta) ** 11 - 5.66679418546735e26 * cos(theta) ** 9 + 1.36003060451216e25 * cos(theta) ** 7 - 1.8630556226194e23 * cos(theta) ** 5 + 1.19273727440423e21 * cos(theta) ** 3 - 2.25470184197397e18 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl57_m11(theta, phi): return ( 2.01518480555114e-19 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 7.91441650388859e34 * cos(theta) ** 46 - 7.24904520488911e35 * cos(theta) ** 44 + 3.08900755127257e36 * cos(theta) ** 42 - 8.13344190105713e36 * cos(theta) ** 40 + 1.48226277636088e37 * cos(theta) ** 38 - 1.98482044148895e37 * cos(theta) ** 36 + 2.02336064423631e37 * cos(theta) ** 34 - 1.60552379266841e37 * cos(theta) ** 32 + 1.00547954692365e37 * cos(theta) ** 30 - 5.01012145374328e36 * cos(theta) ** 28 + 1.99350095738417e36 * cos(theta) ** 26 - 6.33321418523808e35 * cos(theta) ** 24 + 1.60070248637885e35 * cos(theta) ** 22 - 3.19587099700532e34 * cos(theta) ** 20 + 4.98534884590321e33 * cos(theta) ** 18 - 5.98241861508385e32 * cos(theta) ** 16 + 5.40579995338902e31 * cos(theta) ** 14 - 3.57246039040233e30 * cos(theta) ** 12 + 1.65810397866775e29 * cos(theta) ** 10 - 5.10011476692062e27 * cos(theta) ** 8 + 9.52021423158515e25 * cos(theta) ** 6 - 9.31527811309702e23 * cos(theta) ** 4 + 3.57821182321268e21 * cos(theta) ** 2 - 2.25470184197397e18 ) * cos(11 * phi) ) # @torch.jit.script def Yl57_m12(theta, phi): return ( 3.57693805145655e-21 * (1.0 - cos(theta) ** 2) ** 6 * ( 3.64063159178875e36 * cos(theta) ** 45 - 3.18957989015121e37 * cos(theta) ** 43 + 1.29738317153448e38 * cos(theta) ** 41 - 3.25337676042285e38 * cos(theta) ** 39 + 5.63259855017134e38 * cos(theta) ** 37 - 7.14535358936021e38 * cos(theta) ** 35 + 6.87942619040344e38 * cos(theta) ** 33 - 5.13767613653892e38 * cos(theta) ** 31 + 3.01643864077096e38 * cos(theta) ** 29 - 1.40283400704812e38 * cos(theta) ** 27 + 5.18310248919884e37 * cos(theta) ** 25 - 1.51997140445714e37 * cos(theta) ** 23 + 3.52154547003348e36 * cos(theta) ** 21 - 6.39174199401064e35 * cos(theta) ** 19 + 8.97362792262577e34 * cos(theta) ** 17 - 9.57186978413416e33 * cos(theta) ** 15 + 7.56811993474463e32 * cos(theta) ** 13 - 4.28695246848279e31 * cos(theta) ** 11 + 1.65810397866775e30 * cos(theta) ** 9 - 4.08009181353649e28 * cos(theta) ** 7 + 5.71212853895109e26 * cos(theta) ** 5 - 3.72611124523881e24 * cos(theta) ** 3 + 7.15642364642537e21 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl57_m13(theta, phi): return ( 6.37317937250722e-23 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.63828421630494e38 * cos(theta) ** 44 - 1.37151935276502e39 * cos(theta) ** 42 + 5.31927100329136e39 * cos(theta) ** 40 - 1.26881693656491e40 * cos(theta) ** 38 + 2.08406146356339e40 * cos(theta) ** 36 - 2.50087375627607e40 * cos(theta) ** 34 + 2.27021064283313e40 * cos(theta) ** 32 - 1.59267960232706e40 * cos(theta) ** 30 + 8.74767205823577e39 * cos(theta) ** 28 - 3.78765181902992e39 * cos(theta) ** 26 + 1.29577562229971e39 * cos(theta) ** 24 - 3.49593423025142e38 * cos(theta) ** 22 + 7.39524548707031e37 * cos(theta) ** 20 - 1.21443097886202e37 * cos(theta) ** 18 + 1.52551674684638e36 * cos(theta) ** 16 - 1.43578046762012e35 * cos(theta) ** 14 + 9.83855591516801e33 * cos(theta) ** 12 - 4.71564771533107e32 * cos(theta) ** 10 + 1.49229358080097e31 * cos(theta) ** 8 - 2.85606426947555e29 * cos(theta) ** 6 + 2.85606426947555e27 * cos(theta) ** 4 - 1.11783337357164e25 * cos(theta) ** 2 + 7.15642364642537e21 ) * cos(13 * phi) ) # @torch.jit.script def Yl57_m14(theta, phi): return ( 1.14025143960594e-24 * (1.0 - cos(theta) ** 2) ** 7 * ( 7.20845055174173e39 * cos(theta) ** 43 - 5.76038128161308e40 * cos(theta) ** 41 + 2.12770840131654e41 * cos(theta) ** 39 - 4.82150435894666e41 * cos(theta) ** 37 + 7.50262126882822e41 * cos(theta) ** 35 - 8.50297077133865e41 * cos(theta) ** 33 + 7.26467405706603e41 * cos(theta) ** 31 - 4.77803880698119e41 * cos(theta) ** 29 + 2.44934817630602e41 * cos(theta) ** 27 - 9.8478947294778e40 * cos(theta) ** 25 + 3.1098614935193e40 * cos(theta) ** 23 - 7.69105530655312e39 * cos(theta) ** 21 + 1.47904909741406e39 * cos(theta) ** 19 - 2.18597576195164e38 * cos(theta) ** 17 + 2.44082679495421e37 * cos(theta) ** 15 - 2.01009265466817e36 * cos(theta) ** 13 + 1.18062670982016e35 * cos(theta) ** 11 - 4.71564771533107e33 * cos(theta) ** 9 + 1.19383486464078e32 * cos(theta) ** 7 - 1.71363856168533e30 * cos(theta) ** 5 + 1.14242570779022e28 * cos(theta) ** 3 - 2.23566674714328e25 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl57_m15(theta, phi): return ( 2.04927458136536e-26 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 3.09963373724894e41 * cos(theta) ** 42 - 2.36175632546136e42 * cos(theta) ** 40 + 8.29806276513452e42 * cos(theta) ** 38 - 1.78395661281027e43 * cos(theta) ** 36 + 2.62591744408988e43 * cos(theta) ** 34 - 2.80598035454175e43 * cos(theta) ** 32 + 2.25204895769047e43 * cos(theta) ** 30 - 1.38563125402455e43 * cos(theta) ** 28 + 6.61324007602624e42 * cos(theta) ** 26 - 2.46197368236945e42 * cos(theta) ** 24 + 7.1526814350944e41 * cos(theta) ** 22 - 1.61512161437615e41 * cos(theta) ** 20 + 2.81019328508672e40 * cos(theta) ** 18 - 3.71615879531778e39 * cos(theta) ** 16 + 3.66124019243131e38 * cos(theta) ** 14 - 2.61312045106862e37 * cos(theta) ** 12 + 1.29868938080218e36 * cos(theta) ** 10 - 4.24408294379797e34 * cos(theta) ** 8 + 8.35684405248545e32 * cos(theta) ** 6 - 8.56819280842664e30 * cos(theta) ** 4 + 3.42727712337065e28 * cos(theta) ** 2 - 2.23566674714328e25 ) * cos(15 * phi) ) # @torch.jit.script def Yl57_m16(theta, phi): return ( 3.70095733010574e-28 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.30184616964456e43 * cos(theta) ** 41 - 9.44702530184545e43 * cos(theta) ** 39 + 3.15326385075112e44 * cos(theta) ** 37 - 6.42224380611696e44 * cos(theta) ** 35 + 8.92811930990558e44 * cos(theta) ** 33 - 8.97913713453361e44 * cos(theta) ** 31 + 6.75614687307141e44 * cos(theta) ** 29 - 3.87976751126873e44 * cos(theta) ** 27 + 1.71944241976682e44 * cos(theta) ** 25 - 5.90873683768668e43 * cos(theta) ** 23 + 1.57358991572077e43 * cos(theta) ** 21 - 3.23024322875231e42 * cos(theta) ** 19 + 5.05834791315609e41 * cos(theta) ** 17 - 5.94585407250845e40 * cos(theta) ** 15 + 5.12573626940384e39 * cos(theta) ** 13 - 3.13574454128235e38 * cos(theta) ** 11 + 1.29868938080218e37 * cos(theta) ** 9 - 3.39526635503837e35 * cos(theta) ** 7 + 5.01410643149127e33 * cos(theta) ** 5 - 3.42727712337066e31 * cos(theta) ** 3 + 6.85455424674131e28 * cos(theta) ) * cos(16 * phi) ) # @torch.jit.script def Yl57_m17(theta, phi): return ( 6.71902550635047e-30 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 5.33756929554268e44 * cos(theta) ** 40 - 3.68433986771973e45 * cos(theta) ** 38 + 1.16670762477791e46 * cos(theta) ** 36 - 2.24778533214093e46 * cos(theta) ** 34 + 2.94627937226884e46 * cos(theta) ** 32 - 2.78353251170542e46 * cos(theta) ** 30 + 1.95928259319071e46 * cos(theta) ** 28 - 1.04753722804256e46 * cos(theta) ** 26 + 4.29860604941706e45 * cos(theta) ** 24 - 1.35900947266794e45 * cos(theta) ** 22 + 3.30453882301361e44 * cos(theta) ** 20 - 6.13746213462939e43 * cos(theta) ** 18 + 8.59919145236535e42 * cos(theta) ** 16 - 8.91878110876268e41 * cos(theta) ** 14 + 6.66345715022499e40 * cos(theta) ** 12 - 3.44931899541058e39 * cos(theta) ** 10 + 1.16882044272196e38 * cos(theta) ** 8 - 2.37668644852686e36 * cos(theta) ** 6 + 2.50705321574563e34 * cos(theta) ** 4 - 1.0281831370112e32 * cos(theta) ** 2 + 6.85455424674131e28 ) * cos(17 * phi) ) # @torch.jit.script def Yl57_m18(theta, phi): return ( 1.22672061142691e-31 * (1.0 - cos(theta) ** 2) ** 9 * ( 2.13502771821707e46 * cos(theta) ** 39 - 1.4000491497335e47 * cos(theta) ** 37 + 4.20014744920049e47 * cos(theta) ** 35 - 7.64247012927918e47 * cos(theta) ** 33 + 9.42809399126029e47 * cos(theta) ** 31 - 8.35059753511626e47 * cos(theta) ** 29 + 5.48599126093398e47 * cos(theta) ** 27 - 2.72359679291065e47 * cos(theta) ** 25 + 1.03166545186009e47 * cos(theta) ** 23 - 2.98982083986946e46 * cos(theta) ** 21 + 6.60907764602723e45 * cos(theta) ** 19 - 1.10474318423329e45 * cos(theta) ** 17 + 1.37587063237846e44 * cos(theta) ** 15 - 1.24862935522678e43 * cos(theta) ** 13 + 7.99614858026999e41 * cos(theta) ** 11 - 3.44931899541058e40 * cos(theta) ** 9 + 9.35056354177568e38 * cos(theta) ** 7 - 1.42601186911612e37 * cos(theta) ** 5 + 1.00282128629825e35 * cos(theta) ** 3 - 2.05636627402239e32 * cos(theta) ) * cos(18 * phi) ) # @torch.jit.script def Yl57_m19(theta, phi): return ( 2.25323538451753e-33 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 8.32660810104658e47 * cos(theta) ** 38 - 5.18018185401394e48 * cos(theta) ** 36 + 1.47005160722017e49 * cos(theta) ** 34 - 2.52201514266213e49 * cos(theta) ** 32 + 2.92270913729069e49 * cos(theta) ** 30 - 2.42167328518372e49 * cos(theta) ** 28 + 1.48121764045218e49 * cos(theta) ** 26 - 6.80899198227662e48 * cos(theta) ** 24 + 2.37283053927822e48 * cos(theta) ** 22 - 6.27862376372586e47 * cos(theta) ** 20 + 1.25572475274517e47 * cos(theta) ** 18 - 1.87806341319659e46 * cos(theta) ** 16 + 2.06380594856768e45 * cos(theta) ** 14 - 1.62321816179481e44 * cos(theta) ** 12 + 8.79576343829699e42 * cos(theta) ** 10 - 3.10438709586953e41 * cos(theta) ** 8 + 6.54539447924298e39 * cos(theta) ** 6 - 7.13005934558058e37 * cos(theta) ** 4 + 3.00846385889476e35 * cos(theta) ** 2 - 2.05636627402239e32 ) * cos(19 * phi) ) # @torch.jit.script def Yl57_m20(theta, phi): return ( 4.16552170563493e-35 * (1.0 - cos(theta) ** 2) ** 10 * ( 3.1641110783977e49 * cos(theta) ** 37 - 1.86486546744502e50 * cos(theta) ** 35 + 4.99817546454858e50 * cos(theta) ** 33 - 8.07044845651881e50 * cos(theta) ** 31 + 8.76812741187207e50 * cos(theta) ** 29 - 6.7806851985144e50 * cos(theta) ** 27 + 3.85116586517566e50 * cos(theta) ** 25 - 1.63415807574639e50 * cos(theta) ** 23 + 5.22022718641208e49 * cos(theta) ** 21 - 1.25572475274517e49 * cos(theta) ** 19 + 2.26030455494131e48 * cos(theta) ** 17 - 3.00490146111455e47 * cos(theta) ** 15 + 2.88932832799476e46 * cos(theta) ** 13 - 1.94786179415377e45 * cos(theta) ** 11 + 8.79576343829699e43 * cos(theta) ** 9 - 2.48350967669562e42 * cos(theta) ** 7 + 3.92723668754579e40 * cos(theta) ** 5 - 2.85202373823223e38 * cos(theta) ** 3 + 6.01692771778952e35 * cos(theta) ) * cos(20 * phi) ) # @torch.jit.script def Yl57_m21(theta, phi): return ( 7.75391861679337e-37 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.17072109900715e51 * cos(theta) ** 36 - 6.52702913605756e51 * cos(theta) ** 34 + 1.64939790330103e52 * cos(theta) ** 32 - 2.50183902152083e52 * cos(theta) ** 30 + 2.5427569494429e52 * cos(theta) ** 28 - 1.83078500359889e52 * cos(theta) ** 26 + 9.62791466293914e51 * cos(theta) ** 24 - 3.75856357421669e51 * cos(theta) ** 22 + 1.09624770914654e51 * cos(theta) ** 20 - 2.38587703021583e50 * cos(theta) ** 18 + 3.84251774340023e49 * cos(theta) ** 16 - 4.50735219167182e48 * cos(theta) ** 14 + 3.75612682639319e47 * cos(theta) ** 12 - 2.14264797356915e46 * cos(theta) ** 10 + 7.91618709446729e44 * cos(theta) ** 8 - 1.73845677368693e43 * cos(theta) ** 6 + 1.96361834377289e41 * cos(theta) ** 4 - 8.5560712146967e38 * cos(theta) ** 2 + 6.01692771778952e35 ) * cos(21 * phi) ) # @torch.jit.script def Yl57_m22(theta, phi): return ( 1.45397333675321e-38 * (1.0 - cos(theta) ** 2) ** 11 * ( 4.21459595642574e52 * cos(theta) ** 35 - 2.21918990625957e53 * cos(theta) ** 33 + 5.2780732905633e53 * cos(theta) ** 31 - 7.5055170645625e53 * cos(theta) ** 29 + 7.11971945844012e53 * cos(theta) ** 27 - 4.76004100935711e53 * cos(theta) ** 25 + 2.31069951910539e53 * cos(theta) ** 23 - 8.26883986327673e52 * cos(theta) ** 21 + 2.19249541829307e52 * cos(theta) ** 19 - 4.29457865438849e51 * cos(theta) ** 17 + 6.14802838944037e50 * cos(theta) ** 15 - 6.31029306834055e49 * cos(theta) ** 13 + 4.50735219167182e48 * cos(theta) ** 11 - 2.14264797356915e47 * cos(theta) ** 9 + 6.33294967557383e45 * cos(theta) ** 7 - 1.04307406421216e44 * cos(theta) ** 5 + 7.85447337509157e41 * cos(theta) ** 3 - 1.71121424293934e39 * cos(theta) ) * cos(22 * phi) ) # @torch.jit.script def Yl57_m23(theta, phi): return ( 2.74775132997698e-40 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.47510858474901e54 * cos(theta) ** 34 - 7.32332669065658e54 * cos(theta) ** 32 + 1.63620272007462e55 * cos(theta) ** 30 - 2.17659994872312e55 * cos(theta) ** 28 + 1.92232425377883e55 * cos(theta) ** 26 - 1.19001025233928e55 * cos(theta) ** 24 + 5.31460889394241e54 * cos(theta) ** 22 - 1.73645637128811e54 * cos(theta) ** 20 + 4.16574129475684e53 * cos(theta) ** 18 - 7.30078371246043e52 * cos(theta) ** 16 + 9.22204258416055e51 * cos(theta) ** 14 - 8.20338098884272e50 * cos(theta) ** 12 + 4.95808741083901e49 * cos(theta) ** 10 - 1.92838317621223e48 * cos(theta) ** 8 + 4.43306477290168e46 * cos(theta) ** 6 - 5.2153703210608e44 * cos(theta) ** 4 + 2.35634201252747e42 * cos(theta) ** 2 - 1.71121424293934e39 ) * cos(23 * phi) ) # @torch.jit.script def Yl57_m24(theta, phi): return ( 5.23594961571665e-42 * (1.0 - cos(theta) ** 2) ** 12 * ( 5.01536918814663e55 * cos(theta) ** 33 - 2.34346454101011e56 * cos(theta) ** 31 + 4.90860816022387e56 * cos(theta) ** 29 - 6.09447985642475e56 * cos(theta) ** 27 + 4.99804305982497e56 * cos(theta) ** 25 - 2.85602460561427e56 * cos(theta) ** 23 + 1.16921395666733e56 * cos(theta) ** 21 - 3.47291274257623e55 * cos(theta) ** 19 + 7.49833433056231e54 * cos(theta) ** 17 - 1.16812539399367e54 * cos(theta) ** 15 + 1.29108596178248e53 * cos(theta) ** 13 - 9.84405718661126e51 * cos(theta) ** 11 + 4.95808741083901e50 * cos(theta) ** 9 - 1.54270654096979e49 * cos(theta) ** 7 + 2.65983886374101e47 * cos(theta) ** 5 - 2.08614812842432e45 * cos(theta) ** 3 + 4.71268402505494e42 * cos(theta) ) * cos(24 * phi) ) # @torch.jit.script def Yl57_m25(theta, phi): return ( 1.00654121487048e-43 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 1.65507183208839e57 * cos(theta) ** 32 - 7.26474007713133e57 * cos(theta) ** 30 + 1.42349636646492e58 * cos(theta) ** 28 - 1.64550956123468e58 * cos(theta) ** 26 + 1.24951076495624e58 * cos(theta) ** 24 - 6.56885659291281e57 * cos(theta) ** 22 + 2.45534930900139e57 * cos(theta) ** 20 - 6.59853421089483e56 * cos(theta) ** 18 + 1.27471683619559e56 * cos(theta) ** 16 - 1.7521880909905e55 * cos(theta) ** 14 + 1.67841175031722e54 * cos(theta) ** 12 - 1.08284629052724e53 * cos(theta) ** 10 + 4.4622786697551e51 * cos(theta) ** 8 - 1.07989457867885e50 * cos(theta) ** 6 + 1.3299194318705e48 * cos(theta) ** 4 - 6.25844438527296e45 * cos(theta) ** 2 + 4.71268402505494e42 ) * cos(25 * phi) ) # @torch.jit.script def Yl57_m26(theta, phi): return ( 1.95306873266703e-45 * (1.0 - cos(theta) ** 2) ** 13 * ( 5.29622986268284e58 * cos(theta) ** 31 - 2.1794220231394e59 * cos(theta) ** 29 + 3.98578982610178e59 * cos(theta) ** 27 - 4.27832485921017e59 * cos(theta) ** 25 + 2.99882583589498e59 * cos(theta) ** 23 - 1.44514845044082e59 * cos(theta) ** 21 + 4.91069861800278e58 * cos(theta) ** 19 - 1.18773615796107e58 * cos(theta) ** 17 + 2.03954693791295e57 * cos(theta) ** 15 - 2.45306332738671e56 * cos(theta) ** 13 + 2.01409410038066e55 * cos(theta) ** 11 - 1.08284629052724e54 * cos(theta) ** 9 + 3.56982293580408e52 * cos(theta) ** 7 - 6.4793674720731e50 * cos(theta) ** 5 + 5.31967772748202e48 * cos(theta) ** 3 - 1.25168887705459e46 * cos(theta) ) * cos(26 * phi) ) # @torch.jit.script def Yl57_m27(theta, phi): return ( 3.82733993893246e-47 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.64183125743168e60 * cos(theta) ** 30 - 6.32032386710426e60 * cos(theta) ** 28 + 1.07616325304748e61 * cos(theta) ** 26 - 1.06958121480254e61 * cos(theta) ** 24 + 6.89729942255845e60 * cos(theta) ** 22 - 3.03481174592572e60 * cos(theta) ** 20 + 9.33032737420529e59 * cos(theta) ** 18 - 2.01915146853382e59 * cos(theta) ** 16 + 3.05932040686942e58 * cos(theta) ** 14 - 3.18898232560272e57 * cos(theta) ** 12 + 2.21550351041873e56 * cos(theta) ** 10 - 9.74561661474515e54 * cos(theta) ** 8 + 2.49887605506286e53 * cos(theta) ** 6 - 3.23968373603655e51 * cos(theta) ** 4 + 1.59590331824461e49 * cos(theta) ** 2 - 1.25168887705459e46 ) * cos(27 * phi) ) # @torch.jit.script def Yl57_m28(theta, phi): return ( 7.57926247334093e-49 * (1.0 - cos(theta) ** 2) ** 14 * ( 4.92549377229504e61 * cos(theta) ** 29 - 1.76969068278919e62 * cos(theta) ** 27 + 2.79802445792345e62 * cos(theta) ** 25 - 2.5669949155261e62 * cos(theta) ** 23 + 1.51740587296286e62 * cos(theta) ** 21 - 6.06962349185144e61 * cos(theta) ** 19 + 1.67945892735695e61 * cos(theta) ** 17 - 3.23064234965411e60 * cos(theta) ** 15 + 4.28304856961719e59 * cos(theta) ** 13 - 3.82677879072326e58 * cos(theta) ** 11 + 2.21550351041873e57 * cos(theta) ** 9 - 7.79649329179612e55 * cos(theta) ** 7 + 1.49932563303772e54 * cos(theta) ** 5 - 1.29587349441462e52 * cos(theta) ** 3 + 3.19180663648921e49 * cos(theta) ) * cos(28 * phi) ) # @torch.jit.script def Yl57_m29(theta, phi): return ( 1.51767479846544e-50 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 1.42839319396556e63 * cos(theta) ** 28 - 4.77816484353082e63 * cos(theta) ** 26 + 6.99506114480863e63 * cos(theta) ** 24 - 5.90408830571004e63 * cos(theta) ** 22 + 3.18655233322201e63 * cos(theta) ** 20 - 1.15322846345177e63 * cos(theta) ** 18 + 2.85508017650682e62 * cos(theta) ** 16 - 4.84596352448116e61 * cos(theta) ** 14 + 5.56796314050235e60 * cos(theta) ** 12 - 4.20945666979559e59 * cos(theta) ** 10 + 1.99395315937686e58 * cos(theta) ** 8 - 5.45754530425728e56 * cos(theta) ** 6 + 7.49662816518858e54 * cos(theta) ** 4 - 3.88762048324386e52 * cos(theta) ** 2 + 3.19180663648921e49 ) * cos(29 * phi) ) # @torch.jit.script def Yl57_m30(theta, phi): return ( 3.07496431814581e-52 * (1.0 - cos(theta) ** 2) ** 15 * ( 3.99950094310357e64 * cos(theta) ** 27 - 1.24232285931801e65 * cos(theta) ** 25 + 1.67881467475407e65 * cos(theta) ** 23 - 1.29889942725621e65 * cos(theta) ** 21 + 6.37310466644401e64 * cos(theta) ** 19 - 2.07581123421319e64 * cos(theta) ** 17 + 4.56812828241091e63 * cos(theta) ** 15 - 6.78434893427363e62 * cos(theta) ** 13 + 6.68155576860281e61 * cos(theta) ** 11 - 4.20945666979559e60 * cos(theta) ** 9 + 1.59516252750149e59 * cos(theta) ** 7 - 3.27452718255437e57 * cos(theta) ** 5 + 2.99865126607543e55 * cos(theta) ** 3 - 7.77524096648772e52 * cos(theta) ) * cos(30 * phi) ) # @torch.jit.script def Yl57_m31(theta, phi): return ( 6.30836571048026e-54 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 1.07986525463796e66 * cos(theta) ** 26 - 3.10580714829503e66 * cos(theta) ** 24 + 3.86127375193436e66 * cos(theta) ** 22 - 2.72768879723804e66 * cos(theta) ** 20 + 1.21088988662436e66 * cos(theta) ** 18 - 3.52887909816243e65 * cos(theta) ** 16 + 6.85219242361636e64 * cos(theta) ** 14 - 8.81965361455572e63 * cos(theta) ** 12 + 7.3497113454631e62 * cos(theta) ** 10 - 3.78851100281603e61 * cos(theta) ** 8 + 1.11661376925104e60 * cos(theta) ** 6 - 1.63726359127718e58 * cos(theta) ** 4 + 8.99595379822629e55 * cos(theta) ** 2 - 7.77524096648772e52 ) * cos(31 * phi) ) # @torch.jit.script def Yl57_m32(theta, phi): return ( 1.31140001751088e-55 * (1.0 - cos(theta) ** 2) ** 16 * ( 2.80764966205871e67 * cos(theta) ** 25 - 7.45393715590808e67 * cos(theta) ** 23 + 8.4948022542556e67 * cos(theta) ** 21 - 5.45537759447607e67 * cos(theta) ** 19 + 2.17960179592385e67 * cos(theta) ** 17 - 5.64620655705988e66 * cos(theta) ** 15 + 9.59306939306291e65 * cos(theta) ** 13 - 1.05835843374669e65 * cos(theta) ** 11 + 7.3497113454631e63 * cos(theta) ** 9 - 3.03080880225282e62 * cos(theta) ** 7 + 6.69968261550624e60 * cos(theta) ** 5 - 6.54905436510874e58 * cos(theta) ** 3 + 1.79919075964526e56 * cos(theta) ) * cos(32 * phi) ) # @torch.jit.script def Yl57_m33(theta, phi): return ( 2.76467398594605e-57 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 7.01912415514677e68 * cos(theta) ** 24 - 1.71440554585886e69 * cos(theta) ** 22 + 1.78390847339368e69 * cos(theta) ** 20 - 1.03652174295045e69 * cos(theta) ** 18 + 3.70532305307055e68 * cos(theta) ** 16 - 8.46930983558983e67 * cos(theta) ** 14 + 1.24709902109818e67 * cos(theta) ** 12 - 1.16419427712135e66 * cos(theta) ** 10 + 6.61474021091679e64 * cos(theta) ** 8 - 2.12156616157698e63 * cos(theta) ** 6 + 3.34984130775312e61 * cos(theta) ** 4 - 1.96471630953262e59 * cos(theta) ** 2 + 1.79919075964526e56 ) * cos(33 * phi) ) # @torch.jit.script def Yl57_m34(theta, phi): return ( 5.91585620328789e-59 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.68458979723523e70 * cos(theta) ** 23 - 3.77169220088949e70 * cos(theta) ** 21 + 3.56781694678735e70 * cos(theta) ** 19 - 1.86573913731082e70 * cos(theta) ** 17 + 5.92851688491288e69 * cos(theta) ** 15 - 1.18570337698258e69 * cos(theta) ** 13 + 1.49651882531781e68 * cos(theta) ** 11 - 1.16419427712135e67 * cos(theta) ** 9 + 5.29179216873343e65 * cos(theta) ** 7 - 1.27293969694619e64 * cos(theta) ** 5 + 1.33993652310125e62 * cos(theta) ** 3 - 3.92943261906524e59 * cos(theta) ) * cos(34 * phi) ) # @torch.jit.script def Yl57_m35(theta, phi): return ( 1.28605569636693e-60 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 3.87455653364102e71 * cos(theta) ** 22 - 7.92055362186792e71 * cos(theta) ** 20 + 6.77885219889597e71 * cos(theta) ** 18 - 3.17175653342839e71 * cos(theta) ** 16 + 8.89277532736932e70 * cos(theta) ** 14 - 1.54141439007735e70 * cos(theta) ** 12 + 1.6461707078496e69 * cos(theta) ** 10 - 1.04777484940922e68 * cos(theta) ** 8 + 3.7042545181134e66 * cos(theta) ** 6 - 6.36469848473093e64 * cos(theta) ** 4 + 4.01980956930374e62 * cos(theta) ** 2 - 3.92943261906524e59 ) * cos(35 * phi) ) # @torch.jit.script def Yl57_m36(theta, phi): return ( 2.84319706855925e-62 * (1.0 - cos(theta) ** 2) ** 18 * ( 8.52402437401024e72 * cos(theta) ** 21 - 1.58411072437358e73 * cos(theta) ** 19 + 1.22019339580127e73 * cos(theta) ** 17 - 5.07481045348542e72 * cos(theta) ** 15 + 1.2449885458317e72 * cos(theta) ** 13 - 1.84969726809282e71 * cos(theta) ** 11 + 1.6461707078496e70 * cos(theta) ** 9 - 8.38219879527375e68 * cos(theta) ** 7 + 2.22255271086804e67 * cos(theta) ** 5 - 2.54587939389237e65 * cos(theta) ** 3 + 8.03961913860749e62 * cos(theta) ) * cos(36 * phi) ) # @torch.jit.script def Yl57_m37(theta, phi): return ( 6.39931352806817e-64 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 1.79004511854215e74 * cos(theta) ** 20 - 3.00981037630981e74 * cos(theta) ** 18 + 2.07432877286217e74 * cos(theta) ** 16 - 7.61221568022814e73 * cos(theta) ** 14 + 1.61848510958122e73 * cos(theta) ** 12 - 2.0346669949021e72 * cos(theta) ** 10 + 1.48155363706464e71 * cos(theta) ** 8 - 5.86753915669163e69 * cos(theta) ** 6 + 1.11127635543402e68 * cos(theta) ** 4 - 7.63763818167711e65 * cos(theta) ** 2 + 8.03961913860749e62 ) * cos(37 * phi) ) # @torch.jit.script def Yl57_m38(theta, phi): return ( 1.46810320930957e-65 * (1.0 - cos(theta) ** 2) ** 19 * ( 3.5800902370843e75 * cos(theta) ** 19 - 5.41765867735766e75 * cos(theta) ** 17 + 3.31892603657947e75 * cos(theta) ** 15 - 1.06571019523194e75 * cos(theta) ** 13 + 1.94218213149746e74 * cos(theta) ** 11 - 2.0346669949021e73 * cos(theta) ** 9 + 1.18524290965171e72 * cos(theta) ** 7 - 3.52052349401498e70 * cos(theta) ** 5 + 4.44510542173608e68 * cos(theta) ** 3 - 1.52752763633542e66 * cos(theta) ) * cos(38 * phi) ) # @torch.jit.script def Yl57_m39(theta, phi): return ( 3.43751158944224e-67 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 6.80217145046017e76 * cos(theta) ** 18 - 9.21001975150802e76 * cos(theta) ** 16 + 4.9783890548692e76 * cos(theta) ** 14 - 1.38542325380152e76 * cos(theta) ** 12 + 2.1364003446472e75 * cos(theta) ** 10 - 1.83120029541189e74 * cos(theta) ** 8 + 8.29670036756196e72 * cos(theta) ** 6 - 1.76026174700749e71 * cos(theta) ** 4 + 1.33353162652082e69 * cos(theta) ** 2 - 1.52752763633542e66 ) * cos(39 * phi) ) # @torch.jit.script def Yl57_m40(theta, phi): return ( 8.22663163661029e-69 * (1.0 - cos(theta) ** 2) ** 20 * ( 1.22439086108283e78 * cos(theta) ** 17 - 1.47360316024128e78 * cos(theta) ** 15 + 6.96974467681688e77 * cos(theta) ** 13 - 1.66250790456182e77 * cos(theta) ** 11 + 2.1364003446472e76 * cos(theta) ** 9 - 1.46496023632951e75 * cos(theta) ** 7 + 4.97802022053718e73 * cos(theta) ** 5 - 7.04104698802995e71 * cos(theta) ** 3 + 2.66706325304165e69 * cos(theta) ) * cos(40 * phi) ) # @torch.jit.script def Yl57_m41(theta, phi): return ( 2.01550812309609e-70 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 2.08146446384081e79 * cos(theta) ** 16 - 2.21040474036192e79 * cos(theta) ** 14 + 9.06066807986194e78 * cos(theta) ** 12 - 1.82875869501801e78 * cos(theta) ** 10 + 1.92276031018248e77 * cos(theta) ** 8 - 1.02547216543066e76 * cos(theta) ** 6 + 2.48901011026859e74 * cos(theta) ** 4 - 2.11231409640899e72 * cos(theta) ** 2 + 2.66706325304165e69 ) * cos(41 * phi) ) # @torch.jit.script def Yl57_m42(theta, phi): return ( 5.06415470168423e-72 * (1.0 - cos(theta) ** 2) ** 21 * ( 3.3303431421453e80 * cos(theta) ** 15 - 3.09456663650669e80 * cos(theta) ** 13 + 1.08728016958343e80 * cos(theta) ** 11 - 1.82875869501801e79 * cos(theta) ** 9 + 1.53820824814599e78 * cos(theta) ** 7 - 6.15283299258395e76 * cos(theta) ** 5 + 9.95604044107435e74 * cos(theta) ** 3 - 4.22462819281797e72 * cos(theta) ) * cos(42 * phi) ) # @torch.jit.script def Yl57_m43(theta, phi): return ( 1.30755912148274e-73 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 4.99551471321795e81 * cos(theta) ** 14 - 4.0229366274587e81 * cos(theta) ** 12 + 1.19600818654178e81 * cos(theta) ** 10 - 1.64588282551621e80 * cos(theta) ** 8 + 1.07674577370219e79 * cos(theta) ** 6 - 3.07641649629197e77 * cos(theta) ** 4 + 2.98681213232231e75 * cos(theta) ** 2 - 4.22462819281797e72 ) * cos(43 * phi) ) # @torch.jit.script def Yl57_m44(theta, phi): return ( 3.4772557179411e-75 * (1.0 - cos(theta) ** 2) ** 22 * ( 6.99372059850513e82 * cos(theta) ** 13 - 4.82752395295044e82 * cos(theta) ** 11 + 1.19600818654178e82 * cos(theta) ** 9 - 1.31670626041297e81 * cos(theta) ** 7 + 6.46047464221315e79 * cos(theta) ** 5 - 1.23056659851679e78 * cos(theta) ** 3 + 5.97362426464461e75 * cos(theta) ) * cos(44 * phi) ) # @torch.jit.script def Yl57_m45(theta, phi): return ( 9.54915335374865e-77 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 9.09183677805667e83 * cos(theta) ** 12 - 5.31027634824549e83 * cos(theta) ** 10 + 1.0764073678876e83 * cos(theta) ** 8 - 9.21694382289076e81 * cos(theta) ** 6 + 3.23023732110657e80 * cos(theta) ** 4 - 3.69169979555037e78 * cos(theta) ** 2 + 5.97362426464461e75 ) * cos(45 * phi) ) # @torch.jit.script def Yl57_m46(theta, phi): return ( 2.71616177193322e-78 * (1.0 - cos(theta) ** 2) ** 23 * ( 1.0910204133668e85 * cos(theta) ** 11 - 5.31027634824549e84 * cos(theta) ** 9 + 8.61125894310079e83 * cos(theta) ** 7 - 5.53016629373445e82 * cos(theta) ** 5 + 1.29209492844263e81 * cos(theta) ** 3 - 7.38339959110074e78 * cos(theta) ) * cos(46 * phi) ) # @torch.jit.script def Yl57_m47(theta, phi): return ( 8.03050062627893e-80 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 1.20012245470348e86 * cos(theta) ** 10 - 4.77924871342094e85 * cos(theta) ** 8 + 6.02788126017056e84 * cos(theta) ** 6 - 2.76508314686723e83 * cos(theta) ** 4 + 3.87628478532789e81 * cos(theta) ** 2 - 7.38339959110074e78 ) * cos(47 * phi) ) # @torch.jit.script def Yl57_m48(theta, phi): return ( 2.47826629701503e-81 * (1.0 - cos(theta) ** 2) ** 24 * ( 1.20012245470348e87 * cos(theta) ** 9 - 3.82339897073675e86 * cos(theta) ** 7 + 3.61672875610233e85 * cos(theta) ** 5 - 1.10603325874689e84 * cos(theta) ** 3 + 7.75256957065578e81 * cos(theta) ) * cos(48 * phi) ) # @torch.jit.script def Yl57_m49(theta, phi): return ( 8.02368339149063e-83 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.08011020923313e88 * cos(theta) ** 8 - 2.67637927951573e87 * cos(theta) ** 6 + 1.80836437805117e86 * cos(theta) ** 4 - 3.31809977624067e84 * cos(theta) ** 2 + 7.75256957065578e81 ) * cos(49 * phi) ) # @torch.jit.script def Yl57_m50(theta, phi): return ( 2.74243852466226e-84 * (1.0 - cos(theta) ** 2) ** 25 * ( 8.64088167386506e88 * cos(theta) ** 7 - 1.60582756770944e88 * cos(theta) ** 5 + 7.23345751220467e86 * cos(theta) ** 3 - 6.63619955248134e84 * cos(theta) ) * cos(50 * phi) ) # @torch.jit.script def Yl57_m51(theta, phi): return ( 9.97415248256175e-86 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 6.04861717170554e89 * cos(theta) ** 6 - 8.02913783854718e88 * cos(theta) ** 4 + 2.1700372536614e87 * cos(theta) ** 2 - 6.63619955248134e84 ) * cos(51 * phi) ) # @torch.jit.script def Yl57_m52(theta, phi): return ( 3.90020225589779e-87 * (1.0 - cos(theta) ** 2) ** 26 * ( 3.62917030302332e90 * cos(theta) ** 5 - 3.21165513541887e89 * cos(theta) ** 3 + 4.3400745073228e87 * cos(theta) ) * cos(52 * phi) ) # @torch.jit.script def Yl57_m53(theta, phi): return ( 1.66305182977835e-88 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 1.81458515151166e91 * cos(theta) ** 4 - 9.63496540625661e89 * cos(theta) ** 2 + 4.3400745073228e87 ) * cos(53 * phi) ) # @torch.jit.script def Yl57_m54(theta, phi): return ( 7.89249470792474e-90 * (1.0 - cos(theta) ** 2) ** 27 * (7.25834060604665e91 * cos(theta) ** 3 - 1.92699308125132e90 * cos(theta)) * cos(54 * phi) ) # @torch.jit.script def Yl57_m55(theta, phi): return ( 4.30570885965518e-91 * (1.0 - cos(theta) ** 2) ** 27.5 * (2.17750218181399e92 * cos(theta) ** 2 - 1.92699308125132e90) * cos(55 * phi) ) # @torch.jit.script def Yl57_m56(theta, phi): return 12.4732330158048 * (1.0 - cos(theta) ** 2) ** 28 * cos(56 * phi) * cos(theta) # @torch.jit.script def Yl57_m57(theta, phi): return 1.16822530671551 * (1.0 - cos(theta) ** 2) ** 28.5 * cos(57 * phi) # @torch.jit.script def Yl58_m_minus_58(theta, phi): return 1.17324995487893 * (1.0 - cos(theta) ** 2) ** 29 * sin(58 * phi) # @torch.jit.script def Yl58_m_minus_57(theta, phi): return ( 12.6362887339723 * (1.0 - cos(theta) ** 2) ** 28.5 * sin(57 * phi) * cos(theta) ) # @torch.jit.script def Yl58_m_minus_56(theta, phi): return ( 3.82645864466199e-93 * (1.0 - cos(theta) ** 2) ** 28 * (2.50412750908609e94 * cos(theta) ** 2 - 2.17750218181399e92) * sin(56 * phi) ) # @torch.jit.script def Yl58_m_minus_55(theta, phi): return ( 7.07636257528082e-92 * (1.0 - cos(theta) ** 2) ** 27.5 * (8.34709169695365e93 * cos(theta) ** 3 - 2.17750218181399e92 * cos(theta)) * sin(55 * phi) ) # @torch.jit.script def Yl58_m_minus_54(theta, phi): return ( 1.50445531998027e-90 * (1.0 - cos(theta) ** 2) ** 27 * ( 2.08677292423841e93 * cos(theta) ** 4 - 1.088751090907e92 * cos(theta) ** 2 + 4.81748270312831e89 ) * sin(54 * phi) ) # @torch.jit.script def Yl58_m_minus_53(theta, phi): return ( 3.56019108124478e-89 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 4.17354584847682e92 * cos(theta) ** 5 - 3.62917030302332e91 * cos(theta) ** 3 + 4.81748270312831e89 * cos(theta) ) * sin(53 * phi) ) # @torch.jit.script def Yl58_m_minus_52(theta, phi): return ( 9.18777650810753e-88 * (1.0 - cos(theta) ** 2) ** 26 * ( 6.95590974746137e91 * cos(theta) ** 6 - 9.07292575755831e90 * cos(theta) ** 4 + 2.40874135156415e89 * cos(theta) ** 2 - 7.23345751220467e86 ) * sin(52 * phi) ) # @torch.jit.script def Yl58_m_minus_51(theta, phi): return ( 2.5495045129487e-86 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 9.93701392494482e90 * cos(theta) ** 7 - 1.81458515151166e90 * cos(theta) ** 5 + 8.02913783854718e88 * cos(theta) ** 3 - 7.23345751220467e86 * cos(theta) ) * sin(51 * phi) ) # @torch.jit.script def Yl58_m_minus_50(theta, phi): return ( 7.52859660499083e-85 * (1.0 - cos(theta) ** 2) ** 25 * ( 1.2421267406181e90 * cos(theta) ** 8 - 3.02430858585277e89 * cos(theta) ** 6 + 2.00728445963679e88 * cos(theta) ** 4 - 3.61672875610233e86 * cos(theta) ** 2 + 8.29524944060168e83 ) * sin(50 * phi) ) # @torch.jit.script def Yl58_m_minus_49(theta, phi): return ( 2.34718412931624e-83 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.380140822909e89 * cos(theta) ** 9 - 4.32044083693253e88 * cos(theta) ** 7 + 4.01456891927359e87 * cos(theta) ** 5 - 1.20557625203411e86 * cos(theta) ** 3 + 8.29524944060168e83 * cos(theta) ) * sin(49 * phi) ) # @torch.jit.script def Yl58_m_minus_48(theta, phi): return ( 7.67783984627058e-82 * (1.0 - cos(theta) ** 2) ** 24 * ( 1.380140822909e88 * cos(theta) ** 10 - 5.40055104616566e87 * cos(theta) ** 8 + 6.69094819878932e86 * cos(theta) ** 6 - 3.01394063008528e85 * cos(theta) ** 4 + 4.14762472030084e83 * cos(theta) ** 2 - 7.75256957065578e80 ) * sin(48 * phi) ) # @torch.jit.script def Yl58_m_minus_47(theta, phi): return ( 2.62173217560465e-80 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 1.25467347537182e87 * cos(theta) ** 11 - 6.0006122735174e86 * cos(theta) ** 9 + 9.55849742684188e85 * cos(theta) ** 7 - 6.02788126017056e84 * cos(theta) ** 5 + 1.38254157343361e83 * cos(theta) ** 3 - 7.75256957065578e80 * cos(theta) ) * sin(47 * phi) ) # @torch.jit.script def Yl58_m_minus_46(theta, phi): return ( 9.30622603247787e-79 * (1.0 - cos(theta) ** 2) ** 23 * ( 1.04556122947652e86 * cos(theta) ** 12 - 6.0006122735174e85 * cos(theta) ** 10 + 1.19481217835523e85 * cos(theta) ** 8 - 1.00464687669509e84 * cos(theta) ** 6 + 3.45635393358403e82 * cos(theta) ** 4 - 3.87628478532789e80 * cos(theta) ** 2 + 6.15283299258395e77 ) * sin(46 * phi) ) # @torch.jit.script def Yl58_m_minus_45(theta, phi): return ( 3.42185767810634e-77 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 8.0427786882809e84 * cos(theta) ** 13 - 5.455102066834e84 * cos(theta) ** 11 + 1.32756908706137e84 * cos(theta) ** 9 - 1.43520982385013e83 * cos(theta) ** 7 + 6.91270786716807e81 * cos(theta) ** 5 - 1.29209492844263e80 * cos(theta) ** 3 + 6.15283299258395e77 * cos(theta) ) * sin(45 * phi) ) # @torch.jit.script def Yl58_m_minus_44(theta, phi): return ( 1.29940511679801e-75 * (1.0 - cos(theta) ** 2) ** 22 * ( 5.74484192020064e83 * cos(theta) ** 14 - 4.54591838902833e83 * cos(theta) ** 12 + 1.32756908706137e83 * cos(theta) ** 10 - 1.79401227981266e82 * cos(theta) ** 8 + 1.15211797786134e81 * cos(theta) ** 6 - 3.23023732110657e79 * cos(theta) ** 4 + 3.07641649629197e77 * cos(theta) ** 2 - 4.26687447474615e74 ) * sin(44 * phi) ) # @torch.jit.script def Yl58_m_minus_43(theta, phi): return ( 5.08265097765732e-74 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 3.8298946134671e82 * cos(theta) ** 15 - 3.49686029925257e82 * cos(theta) ** 13 + 1.20688098823761e82 * cos(theta) ** 11 - 1.99334697756963e81 * cos(theta) ** 9 + 1.64588282551621e80 * cos(theta) ** 7 - 6.46047464221315e78 * cos(theta) ** 5 + 1.02547216543066e77 * cos(theta) ** 3 - 4.26687447474615e74 * cos(theta) ) * sin(43 * phi) ) # @torch.jit.script def Yl58_m_minus_42(theta, phi): return ( 2.04320040604098e-72 * (1.0 - cos(theta) ** 2) ** 21 * ( 2.39368413341693e81 * cos(theta) ** 16 - 2.49775735660898e81 * cos(theta) ** 14 + 1.00573415686468e81 * cos(theta) ** 12 - 1.99334697756963e80 * cos(theta) ** 10 + 2.05735353189526e79 * cos(theta) ** 8 - 1.07674577370219e78 * cos(theta) ** 6 + 2.56368041357665e76 * cos(theta) ** 4 - 2.13343723737308e74 * cos(theta) ** 2 + 2.64039262051123e71 ) * sin(42 * phi) ) # @torch.jit.script def Yl58_m_minus_41(theta, phi): return ( 8.42433108841187e-71 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 1.40804949024526e80 * cos(theta) ** 17 - 1.66517157107265e80 * cos(theta) ** 15 + 7.73641659126674e79 * cos(theta) ** 13 - 1.81213361597239e79 * cos(theta) ** 11 + 2.28594836877251e78 * cos(theta) ** 9 - 1.53820824814599e77 * cos(theta) ** 7 + 5.12736082715329e75 * cos(theta) ** 5 - 7.11145745791025e73 * cos(theta) ** 3 + 2.64039262051123e71 * cos(theta) ) * sin(41 * phi) ) # @torch.jit.script def Yl58_m_minus_40(theta, phi): return ( 3.55622537727517e-69 * (1.0 - cos(theta) ** 2) ** 20 * ( 7.8224971680292e78 * cos(theta) ** 18 - 1.04073223192041e79 * cos(theta) ** 16 + 5.52601185090481e78 * cos(theta) ** 14 - 1.51011134664366e78 * cos(theta) ** 12 + 2.28594836877251e77 * cos(theta) ** 10 - 1.92276031018248e76 * cos(theta) ** 8 + 8.54560137858882e74 * cos(theta) ** 6 - 1.77786436447756e73 * cos(theta) ** 4 + 1.32019631025562e71 * cos(theta) ** 2 - 1.48170180724536e68 ) * sin(40 * phi) ) # @torch.jit.script def Yl58_m_minus_39(theta, phi): return ( 1.53454318593721e-67 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 4.11710377264695e77 * cos(theta) ** 19 - 6.12195430541416e77 * cos(theta) ** 17 + 3.68400790060321e77 * cos(theta) ** 15 - 1.16162411280281e77 * cos(theta) ** 13 + 2.07813488070228e76 * cos(theta) ** 11 - 2.1364003446472e75 * cos(theta) ** 9 + 1.22080019694126e74 * cos(theta) ** 7 - 3.55572872895513e72 * cos(theta) ** 5 + 4.40065436751872e70 * cos(theta) ** 3 - 1.48170180724536e68 * cos(theta) ) * sin(39 * phi) ) # @torch.jit.script def Yl58_m_minus_38(theta, phi): return ( 6.75896161524998e-66 * (1.0 - cos(theta) ** 2) ** 19 * ( 2.05855188632347e76 * cos(theta) ** 20 - 3.40108572523009e76 * cos(theta) ** 18 + 2.30250493787701e76 * cos(theta) ** 16 - 8.29731509144867e75 * cos(theta) ** 14 + 1.7317790672519e75 * cos(theta) ** 12 - 2.1364003446472e74 * cos(theta) ** 10 + 1.52600024617657e73 * cos(theta) ** 8 - 5.92621454825854e71 * cos(theta) ** 6 + 1.10016359187968e70 * cos(theta) ** 4 - 7.4085090362268e67 * cos(theta) ** 2 + 7.63763818167712e64 ) * sin(38 * phi) ) # @torch.jit.script def Yl58_m_minus_37(theta, phi): return ( 3.0347662385546e-64 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 9.80262803011178e74 * cos(theta) ** 21 - 1.79004511854215e75 * cos(theta) ** 19 + 1.35441466933941e75 * cos(theta) ** 17 - 5.53154339429911e74 * cos(theta) ** 15 + 1.33213774403992e74 * cos(theta) ** 13 - 1.94218213149746e73 * cos(theta) ** 11 + 1.69555582908508e72 * cos(theta) ** 9 - 8.46602078322649e70 * cos(theta) ** 7 + 2.20032718375936e69 * cos(theta) ** 5 - 2.4695030120756e67 * cos(theta) ** 3 + 7.63763818167712e64 * cos(theta) ) * sin(37 * phi) ) # @torch.jit.script def Yl58_m_minus_36(theta, phi): return ( 1.38738944771762e-62 * (1.0 - cos(theta) ** 2) ** 18 * ( 4.45574001368717e73 * cos(theta) ** 22 - 8.95022559271075e73 * cos(theta) ** 20 + 7.52452594077453e73 * cos(theta) ** 18 - 3.45721462143694e73 * cos(theta) ** 16 + 9.51526960028517e72 * cos(theta) ** 14 - 1.61848510958122e72 * cos(theta) ** 12 + 1.69555582908508e71 * cos(theta) ** 10 - 1.05825259790331e70 * cos(theta) ** 8 + 3.66721197293227e68 * cos(theta) ** 6 - 6.173757530189e66 * cos(theta) ** 4 + 3.81881909083856e64 * cos(theta) ** 2 - 3.65437233573068e61 ) * sin(36 * phi) ) # @torch.jit.script def Yl58_m_minus_35(theta, phi): return ( 6.45098796695342e-61 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 1.93727826682051e72 * cos(theta) ** 23 - 4.26201218700512e72 * cos(theta) ** 21 + 3.96027681093396e72 * cos(theta) ** 19 - 2.03365565966879e72 * cos(theta) ** 17 + 6.34351306685678e71 * cos(theta) ** 15 - 1.2449885458317e71 * cos(theta) ** 13 + 1.54141439007735e70 * cos(theta) ** 11 - 1.17583621989257e69 * cos(theta) ** 9 + 5.23887424704609e67 * cos(theta) ** 7 - 1.2347515060378e66 * cos(theta) ** 5 + 1.27293969694619e64 * cos(theta) ** 3 - 3.65437233573068e61 * cos(theta) ) * sin(35 * phi) ) # @torch.jit.script def Yl58_m_minus_34(theta, phi): return ( 3.0477078028168e-59 * (1.0 - cos(theta) ** 2) ** 17 * ( 8.07199277841879e70 * cos(theta) ** 24 - 1.93727826682051e71 * cos(theta) ** 22 + 1.98013840546698e71 * cos(theta) ** 20 - 1.129808699816e71 * cos(theta) ** 18 + 3.96469566678549e70 * cos(theta) ** 16 - 8.89277532736932e69 * cos(theta) ** 14 + 1.28451199173112e69 * cos(theta) ** 12 - 1.17583621989257e68 * cos(theta) ** 10 + 6.54859280880762e66 * cos(theta) ** 8 - 2.05791917672967e65 * cos(theta) ** 6 + 3.18234924236546e63 * cos(theta) ** 4 - 1.82718616786534e61 * cos(theta) ** 2 + 1.63726359127718e58 ) * sin(34 * phi) ) # @torch.jit.script def Yl58_m_minus_33(theta, phi): return ( 1.4616293154595e-57 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 3.22879711136752e69 * cos(theta) ** 25 - 8.42294898617613e69 * cos(theta) ** 23 + 9.42923050222372e69 * cos(theta) ** 21 - 5.94636157797892e69 * cos(theta) ** 19 + 2.33217392163852e69 * cos(theta) ** 17 - 5.92851688491288e68 * cos(theta) ** 15 + 9.8808614748548e67 * cos(theta) ** 13 - 1.06894201808415e67 * cos(theta) ** 11 + 7.27621423200847e65 * cos(theta) ** 9 - 2.93988453818524e64 * cos(theta) ** 7 + 6.36469848473093e62 * cos(theta) ** 5 - 6.09062055955113e60 * cos(theta) ** 3 + 1.63726359127718e58 * cos(theta) ) * sin(33 * phi) ) # @torch.jit.script def Yl58_m_minus_32(theta, phi): return ( 7.10959096238867e-56 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.24184504283366e68 * cos(theta) ** 26 - 3.50956207757339e68 * cos(theta) ** 24 + 4.28601386464714e68 * cos(theta) ** 22 - 2.97318078898946e68 * cos(theta) ** 20 + 1.29565217868807e68 * cos(theta) ** 18 - 3.70532305307055e67 * cos(theta) ** 16 + 7.05775819632485e66 * cos(theta) ** 14 - 8.90785015070127e65 * cos(theta) ** 12 + 7.27621423200846e64 * cos(theta) ** 10 - 3.67485567273155e63 * cos(theta) ** 8 + 1.06078308078849e62 * cos(theta) ** 6 - 1.52265513988778e60 * cos(theta) ** 4 + 8.18631795638592e57 * cos(theta) ** 2 - 6.91996446017407e54 ) * sin(32 * phi) ) # @torch.jit.script def Yl58_m_minus_31(theta, phi): return ( 3.50467501026163e-54 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 4.59942608456911e66 * cos(theta) ** 27 - 1.40382483102935e67 * cos(theta) ** 25 + 1.86348428897702e67 * cos(theta) ** 23 - 1.41580037570927e67 * cos(theta) ** 21 + 6.81922199309509e66 * cos(theta) ** 19 - 2.17960179592385e66 * cos(theta) ** 17 + 4.70517213088324e65 * cos(theta) ** 15 - 6.85219242361636e64 * cos(theta) ** 13 + 6.61474021091679e63 * cos(theta) ** 11 - 4.08317296970172e62 * cos(theta) ** 9 + 1.51540440112641e61 * cos(theta) ** 7 - 3.04531027977556e59 * cos(theta) ** 5 + 2.72877265212864e57 * cos(theta) ** 3 - 6.91996446017407e54 * cos(theta) ) * sin(31 * phi) ) # @torch.jit.script def Yl58_m_minus_30(theta, phi): return ( 1.74953151853462e-52 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.6426521730604e65 * cos(theta) ** 28 - 5.39932627318982e65 * cos(theta) ** 26 + 7.76451787073758e65 * cos(theta) ** 24 - 6.43545625322394e65 * cos(theta) ** 22 + 3.40961099654755e65 * cos(theta) ** 20 - 1.21088988662436e65 * cos(theta) ** 18 + 2.94073258180202e64 * cos(theta) ** 16 - 4.89442315972597e63 * cos(theta) ** 14 + 5.51228350909732e62 * cos(theta) ** 12 - 4.08317296970172e61 * cos(theta) ** 10 + 1.89425550140801e60 * cos(theta) ** 8 - 5.07551713295927e58 * cos(theta) ** 6 + 6.8219316303216e56 * cos(theta) ** 4 - 3.45998223008703e54 * cos(theta) ** 2 + 2.77687177374561e51 ) * sin(30 * phi) ) # @torch.jit.script def Yl58_m_minus_29(theta, phi): return ( 8.83816501523427e-51 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 5.6643178381393e63 * cos(theta) ** 29 - 1.99975047155179e64 * cos(theta) ** 27 + 3.10580714829503e64 * cos(theta) ** 25 - 2.79802445792345e64 * cos(theta) ** 23 + 1.62362428407026e64 * cos(theta) ** 21 - 6.37310466644401e63 * cos(theta) ** 19 + 1.72984269517766e63 * cos(theta) ** 17 - 3.26294877315065e62 * cos(theta) ** 15 + 4.24021808392102e61 * cos(theta) ** 13 - 3.71197542700156e60 * cos(theta) ** 11 + 2.10472833489779e59 * cos(theta) ** 9 - 7.25073876137039e57 * cos(theta) ** 7 + 1.36438632606432e56 * cos(theta) ** 5 - 1.15332741002901e54 * cos(theta) ** 3 + 2.77687177374561e51 * cos(theta) ) * sin(29 * phi) ) # @torch.jit.script def Yl58_m_minus_28(theta, phi): return ( 4.51525580430714e-49 * (1.0 - cos(theta) ** 2) ** 14 * ( 1.88810594604643e62 * cos(theta) ** 30 - 7.14196596982781e62 * cos(theta) ** 28 + 1.1945412108827e63 * cos(theta) ** 26 - 1.16584352413477e63 * cos(theta) ** 24 + 7.38011038213755e62 * cos(theta) ** 22 - 3.18655233322201e62 * cos(theta) ** 20 + 9.61023719543145e61 * cos(theta) ** 18 - 2.03934298321916e61 * cos(theta) ** 16 + 3.02872720280073e60 * cos(theta) ** 14 - 3.09331285583464e59 * cos(theta) ** 12 + 2.10472833489779e58 * cos(theta) ** 10 - 9.06342345171299e56 * cos(theta) ** 8 + 2.2739772101072e55 * cos(theta) ** 6 - 2.88331852507253e53 * cos(theta) ** 4 + 1.38843588687281e51 * cos(theta) ** 2 - 1.0639355454964e48 ) * sin(28 * phi) ) # @torch.jit.script def Yl58_m_minus_27(theta, phi): return ( 2.33137659446573e-47 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 6.09066434208527e60 * cos(theta) ** 31 - 2.46274688614752e61 * cos(theta) ** 29 + 4.42422670697298e61 * cos(theta) ** 27 - 4.66337409653909e61 * cos(theta) ** 25 + 3.20874364440763e61 * cos(theta) ** 23 - 1.51740587296286e61 * cos(theta) ** 21 + 5.05801957654287e60 * cos(theta) ** 19 - 1.19961351954068e60 * cos(theta) ** 17 + 2.01915146853382e59 * cos(theta) ** 15 - 2.3794714275651e58 * cos(theta) ** 13 + 1.91338939536163e57 * cos(theta) ** 11 - 1.00704705019033e56 * cos(theta) ** 9 + 3.24853887158172e54 * cos(theta) ** 7 - 5.76663705014506e52 * cos(theta) ** 5 + 4.62811962290936e50 * cos(theta) ** 3 - 1.0639355454964e48 * cos(theta) ) * sin(27 * phi) ) # @torch.jit.script def Yl58_m_minus_26(theta, phi): return ( 1.21589727216593e-45 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.90333260690165e59 * cos(theta) ** 32 - 8.2091562871584e59 * cos(theta) ** 30 + 1.58008096677606e60 * cos(theta) ** 28 - 1.7936054217458e60 * cos(theta) ** 26 + 1.33697651850318e60 * cos(theta) ** 24 - 6.89729942255845e59 * cos(theta) ** 22 + 2.52900978827143e59 * cos(theta) ** 20 - 6.66451955300378e58 * cos(theta) ** 18 + 1.26196966783364e58 * cos(theta) ** 16 - 1.69962244826079e57 * cos(theta) ** 14 + 1.59449116280136e56 * cos(theta) ** 12 - 1.00704705019033e55 * cos(theta) ** 10 + 4.06067358947715e53 * cos(theta) ** 8 - 9.61106175024176e51 * cos(theta) ** 6 + 1.15702990572734e50 * cos(theta) ** 4 - 5.31967772748202e47 * cos(theta) ** 2 + 3.9115277407956e44 ) * sin(26 * phi) ) # @torch.jit.script def Yl58_m_minus_25(theta, phi): return ( 6.40167315718996e-44 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 5.76767456636862e57 * cos(theta) ** 33 - 2.64811493134142e58 * cos(theta) ** 31 + 5.4485550578485e58 * cos(theta) ** 29 - 6.64298304350297e58 * cos(theta) ** 27 + 5.34790607401271e58 * cos(theta) ** 25 - 2.99882583589498e58 * cos(theta) ** 23 + 1.20429037536735e58 * cos(theta) ** 21 - 3.50764187000199e57 * cos(theta) ** 19 + 7.42335098725668e56 * cos(theta) ** 17 - 1.13308163217386e56 * cos(theta) ** 15 + 1.22653166369335e55 * cos(theta) ** 13 - 9.15497318354847e53 * cos(theta) ** 11 + 4.51185954386349e52 * cos(theta) ** 9 - 1.37300882146311e51 * cos(theta) ** 7 + 2.31405981145468e49 * cos(theta) ** 5 - 1.77322590916067e47 * cos(theta) ** 3 + 3.9115277407956e44 * cos(theta) ) * sin(25 * phi) ) # @torch.jit.script def Yl58_m_minus_24(theta, phi): return ( 3.40072881916237e-42 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.69637487246136e56 * cos(theta) ** 34 - 8.27535916044194e56 * cos(theta) ** 32 + 1.81618501928283e57 * cos(theta) ** 30 - 2.3724939441082e57 * cos(theta) ** 28 + 2.05688695154335e57 * cos(theta) ** 26 - 1.24951076495624e57 * cos(theta) ** 24 + 5.47404716076068e56 * cos(theta) ** 22 - 1.75382093500099e56 * cos(theta) ** 20 + 4.12408388180927e55 * cos(theta) ** 18 - 7.08176020108662e54 * cos(theta) ** 16 + 8.76094045495252e53 * cos(theta) ** 14 - 7.62914431962373e52 * cos(theta) ** 12 + 4.51185954386349e51 * cos(theta) ** 10 - 1.71626102682889e50 * cos(theta) ** 8 + 3.85676635242446e48 * cos(theta) ** 6 - 4.43306477290168e46 * cos(theta) ** 4 + 1.9557638703978e44 * cos(theta) ** 2 - 1.38608353678087e41 ) * sin(24 * phi) ) # @torch.jit.script def Yl58_m_minus_23(theta, phi): return ( 1.82185139787118e-40 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 4.8467853498896e54 * cos(theta) ** 35 - 2.50768459407331e55 * cos(theta) ** 33 + 5.85866135252527e55 * cos(theta) ** 31 - 8.18101360037312e55 * cos(theta) ** 29 + 7.61809982053093e55 * cos(theta) ** 27 - 4.99804305982497e55 * cos(theta) ** 25 + 2.38002050467856e55 * cos(theta) ** 23 - 8.3515282619095e54 * cos(theta) ** 21 + 2.17057046411014e54 * cos(theta) ** 19 - 4.16574129475684e53 * cos(theta) ** 17 + 5.84062696996835e52 * cos(theta) ** 15 - 5.86857255355671e51 * cos(theta) ** 13 + 4.10169049442136e50 * cos(theta) ** 11 - 1.90695669647654e49 * cos(theta) ** 9 + 5.50966621774923e47 * cos(theta) ** 7 - 8.86612954580337e45 * cos(theta) ** 5 + 6.519212901326e43 * cos(theta) ** 3 - 1.38608353678087e41 * cos(theta) ) * sin(23 * phi) ) # @torch.jit.script def Yl58_m_minus_22(theta, phi): return ( 9.83799754850438e-39 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.34632926385822e53 * cos(theta) ** 36 - 7.37554292374504e53 * cos(theta) ** 34 + 1.83083167266415e54 * cos(theta) ** 32 - 2.72700453345771e54 * cos(theta) ** 30 + 2.7207499359039e54 * cos(theta) ** 28 - 1.92232425377883e54 * cos(theta) ** 26 + 9.91675210282732e53 * cos(theta) ** 24 - 3.79614920995886e53 * cos(theta) ** 22 + 1.08528523205507e53 * cos(theta) ** 20 - 2.31430071930935e52 * cos(theta) ** 18 + 3.65039185623022e51 * cos(theta) ** 16 - 4.1918375382548e50 * cos(theta) ** 14 + 3.4180754120178e49 * cos(theta) ** 12 - 1.90695669647654e48 * cos(theta) ** 10 + 6.88708277218654e46 * cos(theta) ** 8 - 1.47768825763389e45 * cos(theta) ** 6 + 1.6298032253315e43 * cos(theta) ** 4 - 6.93041768390433e40 * cos(theta) ** 2 + 4.75337289705372e37 ) * sin(22 * phi) ) # @torch.jit.script def Yl58_m_minus_21(theta, phi): return ( 5.35244934083976e-37 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 3.63872774015736e51 * cos(theta) ** 37 - 2.10729797821287e52 * cos(theta) ** 35 + 5.54797476564893e52 * cos(theta) ** 33 - 8.79678881760551e52 * cos(theta) ** 31 + 9.38189633070312e52 * cos(theta) ** 29 - 7.11971945844012e52 * cos(theta) ** 27 + 3.96670084113093e52 * cos(theta) ** 25 - 1.65049965650385e52 * cos(theta) ** 23 + 5.16802491454796e51 * cos(theta) ** 21 - 1.21805301016282e51 * cos(theta) ** 19 + 2.14728932719425e50 * cos(theta) ** 17 - 2.79455835883653e49 * cos(theta) ** 15 + 2.62928877847523e48 * cos(theta) ** 13 - 1.73359699679686e47 * cos(theta) ** 11 + 7.65231419131838e45 * cos(theta) ** 9 - 2.11098322519128e44 * cos(theta) ** 7 + 3.259606450663e42 * cos(theta) ** 5 - 2.31013922796811e40 * cos(theta) ** 3 + 4.75337289705372e37 * cos(theta) ) * sin(21 * phi) ) # @torch.jit.script def Yl58_m_minus_20(theta, phi): return ( 2.93263429814664e-35 * (1.0 - cos(theta) ** 2) ** 10 * ( 9.57559931620357e49 * cos(theta) ** 38 - 5.85360549503575e50 * cos(theta) ** 36 + 1.63175728401439e51 * cos(theta) ** 34 - 2.74899650550172e51 * cos(theta) ** 32 + 3.12729877690104e51 * cos(theta) ** 30 - 2.5427569494429e51 * cos(theta) ** 28 + 1.52565416966574e51 * cos(theta) ** 26 - 6.87708190209939e50 * cos(theta) ** 24 + 2.34910223388543e50 * cos(theta) ** 22 - 6.09026505081409e49 * cos(theta) ** 20 + 1.19293851510791e49 * cos(theta) ** 18 - 1.74659897427283e48 * cos(theta) ** 16 + 1.87806341319659e47 * cos(theta) ** 14 - 1.44466416399738e46 * cos(theta) ** 12 + 7.65231419131838e44 * cos(theta) ** 10 - 2.6387290314891e43 * cos(theta) ** 8 + 5.43267741777167e41 * cos(theta) ** 6 - 5.77534806992027e39 * cos(theta) ** 4 + 2.37668644852686e37 * cos(theta) ** 2 - 1.58340203099724e34 ) * sin(20 * phi) ) # @torch.jit.script def Yl58_m_minus_19(theta, phi): return ( 1.6174747671886e-33 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 2.45528187594963e48 * cos(theta) ** 39 - 1.58205553919885e49 * cos(theta) ** 37 + 4.66216366861254e49 * cos(theta) ** 35 - 8.3302924409143e49 * cos(theta) ** 33 + 1.00880605706485e50 * cos(theta) ** 31 - 8.76812741187207e49 * cos(theta) ** 29 + 5.650570998762e49 * cos(theta) ** 27 - 2.75083276083975e49 * cos(theta) ** 25 + 1.02134879734149e49 * cos(theta) ** 23 - 2.90012621467338e48 * cos(theta) ** 21 + 6.27862376372586e47 * cos(theta) ** 19 - 1.02741116133696e47 * cos(theta) ** 17 + 1.2520422754644e46 * cos(theta) ** 15 - 1.11128012615183e45 * cos(theta) ** 13 + 6.95664926483489e43 * cos(theta) ** 11 - 2.931921146099e42 * cos(theta) ** 9 + 7.76096773967381e40 * cos(theta) ** 7 - 1.15506961398405e39 * cos(theta) ** 5 + 7.9222881617562e36 * cos(theta) ** 3 - 1.58340203099724e34 * cos(theta) ) * sin(19 * phi) ) # @torch.jit.script def Yl58_m_minus_18(theta, phi): return ( 8.97662065438591e-32 * (1.0 - cos(theta) ** 2) ** 9 * ( 6.13820468987408e46 * cos(theta) ** 40 - 4.16330405052329e47 * cos(theta) ** 38 + 1.29504546350348e48 * cos(theta) ** 36 - 2.45008601203362e48 * cos(theta) ** 34 + 3.15251892832766e48 * cos(theta) ** 32 - 2.92270913729069e48 * cos(theta) ** 30 + 2.01806107098643e48 * cos(theta) ** 28 - 1.05801260032298e48 * cos(theta) ** 26 + 4.25561998892289e47 * cos(theta) ** 24 - 1.3182391884879e47 * cos(theta) ** 22 + 3.13931188186293e46 * cos(theta) ** 20 - 5.70783978520533e45 * cos(theta) ** 18 + 7.82526422165247e44 * cos(theta) ** 16 - 7.93771518679879e43 * cos(theta) ** 14 + 5.79720772069574e42 * cos(theta) ** 12 - 2.931921146099e41 * cos(theta) ** 10 + 9.70120967459227e39 * cos(theta) ** 8 - 1.92511602330676e38 * cos(theta) ** 6 + 1.98057204043905e36 * cos(theta) ** 4 - 7.91701015498621e33 * cos(theta) ** 2 + 5.14091568505598e30 ) * sin(18 * phi) ) # @torch.jit.script def Yl58_m_minus_17(theta, phi): return ( 5.01085224736753e-30 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.49712309509124e45 * cos(theta) ** 41 - 1.06751385910854e46 * cos(theta) ** 39 + 3.50012287433374e46 * cos(theta) ** 37 - 7.00024574866748e46 * cos(theta) ** 35 + 9.55308766159897e46 * cos(theta) ** 33 - 9.42809399126029e46 * cos(theta) ** 31 + 6.95883127926355e46 * cos(theta) ** 29 - 3.91856518638142e46 * cos(theta) ** 27 + 1.70224799556916e46 * cos(theta) ** 25 - 5.73147473255608e45 * cos(theta) ** 23 + 1.49491041993473e45 * cos(theta) ** 21 - 3.00412620273965e44 * cos(theta) ** 19 + 4.60309660097204e43 * cos(theta) ** 17 - 5.29181012453252e42 * cos(theta) ** 15 + 4.45939055438134e41 * cos(theta) ** 13 - 2.66538286009e40 * cos(theta) ** 11 + 1.07791218606581e39 * cos(theta) ** 9 - 2.75016574758108e37 * cos(theta) ** 7 + 3.9611440808781e35 * cos(theta) ** 5 - 2.6390033849954e33 * cos(theta) ** 3 + 5.14091568505598e30 * cos(theta) ) * sin(17 * phi) ) # @torch.jit.script def Yl58_m_minus_16(theta, phi): return ( 2.81233384880933e-28 * (1.0 - cos(theta) ** 2) ** 8 * ( 3.56457879783629e43 * cos(theta) ** 42 - 2.66878464777134e44 * cos(theta) ** 40 + 9.21084966929932e44 * cos(theta) ** 38 - 1.94451270796319e45 * cos(theta) ** 36 + 2.80973166517617e45 * cos(theta) ** 34 - 2.94627937226884e45 * cos(theta) ** 32 + 2.31961042642118e45 * cos(theta) ** 30 - 1.39948756656479e45 * cos(theta) ** 28 + 6.54710767526598e44 * cos(theta) ** 26 - 2.38811447189837e44 * cos(theta) ** 24 + 6.79504736333968e43 * cos(theta) ** 22 - 1.50206310136982e43 * cos(theta) ** 20 + 2.55727588942891e42 * cos(theta) ** 18 - 3.30738132783283e41 * cos(theta) ** 16 + 3.18527896741524e40 * cos(theta) ** 14 - 2.22115238340833e39 * cos(theta) ** 12 + 1.07791218606581e38 * cos(theta) ** 10 - 3.43770718447635e36 * cos(theta) ** 8 + 6.6019068014635e34 * cos(theta) ** 6 - 6.59750846248851e32 * cos(theta) ** 4 + 2.57045784252799e30 * cos(theta) ** 2 - 1.6320367254146e27 ) * sin(16 * phi) ) # @torch.jit.script def Yl58_m_minus_15(theta, phi): return ( 1.58641556272998e-26 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 8.28971813450299e41 * cos(theta) ** 43 - 6.50923084822278e42 * cos(theta) ** 41 + 2.36175632546136e43 * cos(theta) ** 39 - 5.25543975125186e43 * cos(theta) ** 37 + 8.0278047576462e43 * cos(theta) ** 35 - 8.92811930990558e43 * cos(theta) ** 33 + 7.48261427877801e43 * cos(theta) ** 31 - 4.82581919505101e43 * cos(theta) ** 29 + 2.42485469454296e43 * cos(theta) ** 27 - 9.55245788759346e42 * cos(theta) ** 25 + 2.95436841884334e42 * cos(theta) ** 23 - 7.1526814350944e41 * cos(theta) ** 21 + 1.3459346786468e41 * cos(theta) ** 19 - 1.94551842813696e40 * cos(theta) ** 17 + 2.12351931161016e39 * cos(theta) ** 15 - 1.70857875646795e38 * cos(theta) ** 13 + 9.79920169150734e36 * cos(theta) ** 11 - 3.81967464941817e35 * cos(theta) ** 9 + 9.43129543066215e33 * cos(theta) ** 7 - 1.3195016924977e32 * cos(theta) ** 5 + 8.56819280842664e29 * cos(theta) ** 3 - 1.6320367254146e27 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl58_m_minus_14(theta, phi): return ( 8.99093235020825e-25 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.88402684875068e40 * cos(theta) ** 44 - 1.54981686862447e41 * cos(theta) ** 42 + 5.90439081365341e41 * cos(theta) ** 40 - 1.38301046085575e42 * cos(theta) ** 38 + 2.22994576601283e42 * cos(theta) ** 36 - 2.62591744408988e42 * cos(theta) ** 34 + 2.33831696211813e42 * cos(theta) ** 32 - 1.60860639835034e42 * cos(theta) ** 30 + 8.66019533765341e41 * cos(theta) ** 28 - 3.67402226445902e41 * cos(theta) ** 26 + 1.23098684118472e41 * cos(theta) ** 24 - 3.25121883413382e40 * cos(theta) ** 22 + 6.72967339323398e39 * cos(theta) ** 20 - 1.0808435711872e39 * cos(theta) ** 18 + 1.32719956975635e38 * cos(theta) ** 16 - 1.2204133974771e37 * cos(theta) ** 14 + 8.16600140958945e35 * cos(theta) ** 12 - 3.81967464941817e34 * cos(theta) ** 10 + 1.17891192883277e33 * cos(theta) ** 8 - 2.19916948749617e31 * cos(theta) ** 6 + 2.14204820210666e29 * cos(theta) ** 4 - 8.16018362707299e26 * cos(theta) ** 2 + 5.08106078896201e23 ) * sin(14 * phi) ) # @torch.jit.script def Yl58_m_minus_13(theta, phi): return ( 5.11772841272677e-23 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 4.18672633055707e38 * cos(theta) ** 45 - 3.60422527587087e39 * cos(theta) ** 43 + 1.44009532040327e40 * cos(theta) ** 41 - 3.54618066886091e40 * cos(theta) ** 39 + 6.02688044868333e40 * cos(theta) ** 37 - 7.50262126882822e40 * cos(theta) ** 35 + 7.08580897611554e40 * cos(theta) ** 33 - 5.18905289790431e40 * cos(theta) ** 31 + 2.98627425436325e40 * cos(theta) ** 29 - 1.36074898683668e40 * cos(theta) ** 27 + 4.9239473647389e39 * cos(theta) ** 25 - 1.41357340614514e39 * cos(theta) ** 23 + 3.20460637773047e38 * cos(theta) ** 21 - 5.68865037466947e37 * cos(theta) ** 19 + 7.80705629268442e36 * cos(theta) ** 17 - 8.13608931651403e35 * cos(theta) ** 15 + 6.28153954583804e34 * cos(theta) ** 13 - 3.47243149947106e33 * cos(theta) ** 11 + 1.30990214314752e32 * cos(theta) ** 9 - 3.1416706964231e30 * cos(theta) ** 7 + 4.28409640421332e28 * cos(theta) ** 5 - 2.72006120902433e26 * cos(theta) ** 3 + 5.08106078896201e23 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl58_m_minus_12(theta, phi): return ( 2.92472693856372e-21 * (1.0 - cos(theta) ** 2) ** 6 * ( 9.10157897947188e36 * cos(theta) ** 46 - 8.19142108152469e37 * cos(theta) ** 44 + 3.42879838191255e38 * cos(theta) ** 42 - 8.86545167215227e38 * cos(theta) ** 40 + 1.58602117070614e39 * cos(theta) ** 38 - 2.08406146356339e39 * cos(theta) ** 36 + 2.08406146356339e39 * cos(theta) ** 34 - 1.6215790305951e39 * cos(theta) ** 32 + 9.95424751454416e38 * cos(theta) ** 30 - 4.85981781013098e38 * cos(theta) ** 28 + 1.89382590951496e38 * cos(theta) ** 26 - 5.88988919227141e37 * cos(theta) ** 24 + 1.45663926260476e37 * cos(theta) ** 22 - 2.84432518733473e36 * cos(theta) ** 20 + 4.33725349593579e35 * cos(theta) ** 18 - 5.08505582282127e34 * cos(theta) ** 16 + 4.48681396131288e33 * cos(theta) ** 14 - 2.89369291622589e32 * cos(theta) ** 12 + 1.30990214314752e31 * cos(theta) ** 10 - 3.92708837052888e29 * cos(theta) ** 8 + 7.14016067368886e27 * cos(theta) ** 6 - 6.80015302256082e25 * cos(theta) ** 4 + 2.54053039448101e23 * cos(theta) ** 2 - 1.55574427096204e20 ) * sin(12 * phi) ) # @torch.jit.script def Yl58_m_minus_11(theta, phi): return ( 1.67758013276199e-19 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.93650616584508e35 * cos(theta) ** 47 - 1.82031579589438e36 * cos(theta) ** 45 + 7.97394972537802e36 * cos(theta) ** 43 - 2.1623052858908e37 * cos(theta) ** 41 + 4.06672095052856e37 * cos(theta) ** 39 - 5.63259855017134e37 * cos(theta) ** 37 + 5.95446132446684e37 * cos(theta) ** 35 - 4.91387585028817e37 * cos(theta) ** 33 + 3.21104758533682e37 * cos(theta) ** 31 - 1.67579924487275e37 * cos(theta) ** 29 + 7.0141700352406e36 * cos(theta) ** 27 - 2.35595567690856e36 * cos(theta) ** 25 + 6.33321418523808e35 * cos(theta) ** 23 - 1.35444056539749e35 * cos(theta) ** 21 + 2.28276499786094e34 * cos(theta) ** 19 - 2.99120930754192e33 * cos(theta) ** 17 + 2.99120930754192e32 * cos(theta) ** 15 - 2.22591762786607e31 * cos(theta) ** 13 + 1.19082013013411e30 * cos(theta) ** 11 - 4.36343152280986e28 * cos(theta) ** 9 + 1.02002295338412e27 * cos(theta) ** 7 - 1.36003060451216e25 * cos(theta) ** 5 + 8.46843464827002e22 * cos(theta) ** 3 - 1.55574427096204e20 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl58_m_minus_10(theta, phi): return ( 9.65447002029972e-18 * (1.0 - cos(theta) ** 2) ** 5 * ( 4.03438784551059e33 * cos(theta) ** 48 - 3.9572082519443e34 * cos(theta) ** 46 + 1.81226130122228e35 * cos(theta) ** 44 - 5.14834591878761e35 * cos(theta) ** 42 + 1.01668023763214e36 * cos(theta) ** 40 - 1.48226277636088e36 * cos(theta) ** 38 + 1.65401703457412e36 * cos(theta) ** 36 - 1.44525760302593e36 * cos(theta) ** 34 + 1.00345237041776e36 * cos(theta) ** 32 - 5.58599748290918e35 * cos(theta) ** 30 + 2.50506072687164e35 * cos(theta) ** 28 - 9.06136798810986e34 * cos(theta) ** 26 + 2.6388392438492e34 * cos(theta) ** 24 - 6.15654802453405e33 * cos(theta) ** 22 + 1.14138249893047e33 * cos(theta) ** 20 - 1.6617829486344e32 * cos(theta) ** 18 + 1.8695058172137e31 * cos(theta) ** 16 - 1.58994116276148e30 * cos(theta) ** 14 + 9.92350108445091e28 * cos(theta) ** 12 - 4.36343152280986e27 * cos(theta) ** 10 + 1.27502869173015e26 * cos(theta) ** 8 - 2.26671767418694e24 * cos(theta) ** 6 + 2.1171086620675e22 * cos(theta) ** 4 - 7.77872135481018e19 * cos(theta) ** 2 + 4.69729550411243e16 ) * sin(10 * phi) ) # @torch.jit.script def Yl58_m_minus_9(theta, phi): return ( 5.57289595142768e-16 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 8.23344458267467e31 * cos(theta) ** 49 - 8.4195920254134e32 * cos(theta) ** 47 + 4.02724733604951e33 * cos(theta) ** 45 - 1.19728974855526e34 * cos(theta) ** 43 + 2.47970789666376e34 * cos(theta) ** 41 - 3.80067378554071e34 * cos(theta) ** 39 + 4.47031630965979e34 * cos(theta) ** 37 - 4.12930743721695e34 * cos(theta) ** 35 + 3.04076475884169e34 * cos(theta) ** 33 - 1.80193467190619e34 * cos(theta) ** 31 + 8.63814043748842e33 * cos(theta) ** 29 - 3.35606221781847e33 * cos(theta) ** 27 + 1.05553569753968e33 * cos(theta) ** 25 - 2.67676001066698e32 * cos(theta) ** 23 + 5.43515475681177e31 * cos(theta) ** 21 - 8.74622604544422e30 * cos(theta) ** 19 + 1.09970930424335e30 * cos(theta) ** 17 - 1.05996077517432e29 * cos(theta) ** 15 + 7.63346237265455e27 * cos(theta) ** 13 - 3.96675592982715e26 * cos(theta) ** 11 + 1.41669854636684e25 * cos(theta) ** 9 - 3.23816810598134e23 * cos(theta) ** 7 + 4.23421732413501e21 * cos(theta) ** 5 - 2.59290711827006e19 * cos(theta) ** 3 + 4.69729550411243e16 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl58_m_minus_8(theta, phi): return ( 3.22554673049734e-14 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.64668891653493e30 * cos(theta) ** 50 - 1.75408167196112e31 * cos(theta) ** 48 + 8.7548855131511e31 * cos(theta) ** 46 - 2.72111306489831e32 * cos(theta) ** 44 + 5.904066420628e32 * cos(theta) ** 42 - 9.50168446385178e32 * cos(theta) ** 40 + 1.17639902885784e33 * cos(theta) ** 38 - 1.14702984367137e33 * cos(theta) ** 36 + 8.94342576129909e32 * cos(theta) ** 34 - 5.63104584970683e32 * cos(theta) ** 32 + 2.87938014582947e32 * cos(theta) ** 30 - 1.19859364922088e32 * cos(theta) ** 28 + 4.05975268284492e31 * cos(theta) ** 26 - 1.11531667111124e31 * cos(theta) ** 24 + 2.47052488945989e30 * cos(theta) ** 22 - 4.37311302272211e29 * cos(theta) ** 20 + 6.1094961346853e28 * cos(theta) ** 18 - 6.62475484483948e27 * cos(theta) ** 16 + 5.45247312332468e26 * cos(theta) ** 14 - 3.30562994152262e25 * cos(theta) ** 12 + 1.41669854636684e24 * cos(theta) ** 10 - 4.04771013247668e22 * cos(theta) ** 8 + 7.05702887355835e20 * cos(theta) ** 6 - 6.48226779567515e18 * cos(theta) ** 4 + 2.34864775205621e16 * cos(theta) ** 2 - 14021777624216.2 ) * sin(8 * phi) ) # @torch.jit.script def Yl58_m_minus_7(theta, phi): return ( 1.87137314980081e-12 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 3.22880179712732e28 * cos(theta) ** 51 - 3.57975851420638e29 * cos(theta) ** 49 + 1.86274159854279e30 * cos(theta) ** 47 - 6.04691792199626e30 * cos(theta) ** 45 + 1.37303870247163e31 * cos(theta) ** 43 - 2.31748401557361e31 * cos(theta) ** 41 + 3.01640776630215e31 * cos(theta) ** 39 - 3.10008065857128e31 * cos(theta) ** 37 + 2.55526450322831e31 * cos(theta) ** 35 - 1.70637753021419e31 * cos(theta) ** 33 + 9.28832305106282e30 * cos(theta) ** 31 - 4.13308154903752e30 * cos(theta) ** 29 + 1.50361210475738e30 * cos(theta) ** 27 - 4.46126668444497e29 * cos(theta) ** 25 + 1.07414125628691e29 * cos(theta) ** 23 - 2.08243477272481e28 * cos(theta) ** 21 + 3.21552428141332e27 * cos(theta) ** 19 - 3.89691461461146e26 * cos(theta) ** 17 + 3.63498208221645e25 * cos(theta) ** 15 - 2.54279226270971e24 * cos(theta) ** 13 + 1.2879077694244e23 * cos(theta) ** 11 - 4.49745570275187e21 * cos(theta) ** 9 + 1.00814698193691e20 * cos(theta) ** 7 - 1.29645355913503e18 * cos(theta) ** 5 + 7.82882584018738e15 * cos(theta) ** 3 - 14021777624216.2 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl58_m_minus_6(theta, phi): return ( 1.08797456929785e-10 * (1.0 - cos(theta) ** 2) ** 3 * ( 6.20923422524485e26 * cos(theta) ** 52 - 7.15951702841275e27 * cos(theta) ** 50 + 3.88071166363081e28 * cos(theta) ** 48 - 1.31454737434701e29 * cos(theta) ** 46 + 3.12054250561733e29 * cos(theta) ** 44 - 5.51781908469906e29 * cos(theta) ** 42 + 7.54101941575538e29 * cos(theta) ** 40 - 8.15810699624022e29 * cos(theta) ** 38 + 7.09795695341197e29 * cos(theta) ** 36 - 5.01875744180645e29 * cos(theta) ** 34 + 2.90260095345713e29 * cos(theta) ** 32 - 1.37769384967917e29 * cos(theta) ** 30 + 5.37004323127635e28 * cos(theta) ** 28 - 1.7158718017096e28 * cos(theta) ** 26 + 4.47558856786213e27 * cos(theta) ** 24 - 9.46561260329461e26 * cos(theta) ** 22 + 1.60776214070666e26 * cos(theta) ** 20 - 2.16495256367303e25 * cos(theta) ** 18 + 2.27186380138528e24 * cos(theta) ** 16 - 1.81628018764979e23 * cos(theta) ** 14 + 1.07325647452033e22 * cos(theta) ** 12 - 4.49745570275187e20 * cos(theta) ** 10 + 1.26018372742113e19 * cos(theta) ** 8 - 2.16075593189172e17 * cos(theta) ** 6 + 1.95720646004685e15 * cos(theta) ** 4 - 7010888812108.1 * cos(theta) ** 2 + 4148454918.40716 ) * sin(6 * phi) ) # @torch.jit.script def Yl58_m_minus_5(theta, phi): return ( 6.33645953698479e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.17155362740469e25 * cos(theta) ** 53 - 1.40382686831623e26 * cos(theta) ** 51 + 7.91981972169552e26 * cos(theta) ** 49 - 2.7969093071213e27 * cos(theta) ** 47 + 6.93453890137185e27 * cos(theta) ** 45 - 1.28321374062769e28 * cos(theta) ** 43 + 1.83927302823302e28 * cos(theta) ** 41 - 2.09182230672826e28 * cos(theta) ** 39 + 1.9183667441654e28 * cos(theta) ** 37 - 1.43393069765898e28 * cos(theta) ** 35 + 8.79576046502161e27 * cos(theta) ** 33 - 4.4441737086425e27 * cos(theta) ** 31 + 1.85173904526771e27 * cos(theta) ** 29 - 6.3550807470726e26 * cos(theta) ** 27 + 1.79023542714485e26 * cos(theta) ** 25 - 4.11548374056287e25 * cos(theta) ** 23 + 7.65601019384123e24 * cos(theta) ** 21 - 1.13944871772265e24 * cos(theta) ** 19 + 1.33639047140311e23 * cos(theta) ** 17 - 1.2108534584332e22 * cos(theta) ** 15 + 8.25581903477178e20 * cos(theta) ** 13 - 4.08859609341079e19 * cos(theta) ** 11 + 1.40020414157904e18 * cos(theta) ** 9 - 3.08679418841674e16 * cos(theta) ** 7 + 391441292009369.0 * cos(theta) ** 5 - 2336962937369.37 * cos(theta) ** 3 + 4148454918.40716 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl58_m_minus_4(theta, phi): return ( 3.69584560846368e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 2.16954375445313e23 * cos(theta) ** 54 - 2.69966705445428e24 * cos(theta) ** 52 + 1.5839639443391e25 * cos(theta) ** 50 - 5.82689438983605e25 * cos(theta) ** 48 + 1.50750845681997e26 * cos(theta) ** 46 - 2.91639486506293e26 * cos(theta) ** 44 + 4.37922149579291e26 * cos(theta) ** 42 - 5.22955576682065e26 * cos(theta) ** 40 + 5.04833353727736e26 * cos(theta) ** 38 - 3.98314082683051e26 * cos(theta) ** 36 + 2.58698837206518e26 * cos(theta) ** 34 - 1.38880428395078e26 * cos(theta) ** 32 + 6.17246348422569e25 * cos(theta) ** 30 - 2.26967169538307e25 * cos(theta) ** 28 + 6.88552087363404e24 * cos(theta) ** 26 - 1.7147848919012e24 * cos(theta) ** 24 + 3.4800046335642e23 * cos(theta) ** 22 - 5.69724358861325e22 * cos(theta) ** 20 + 7.42439150779504e21 * cos(theta) ** 18 - 7.56783411520747e20 * cos(theta) ** 16 + 5.89701359626556e19 * cos(theta) ** 14 - 3.40716341117566e18 * cos(theta) ** 12 + 1.40020414157904e17 * cos(theta) ** 10 - 3.85849273552092e15 * cos(theta) ** 8 + 65240215334894.8 * cos(theta) ** 6 - 584240734342.342 * cos(theta) ** 4 + 2074227459.20358 * cos(theta) ** 2 - 1219416.49571051 ) * sin(4 * phi) ) # @torch.jit.script def Yl58_m_minus_3(theta, phi): return ( 2.15819662999127e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 3.94462500809659e21 * cos(theta) ** 55 - 5.09371142349864e22 * cos(theta) ** 53 + 3.10581165556687e23 * cos(theta) ** 51 - 1.1891621203747e24 * cos(theta) ** 49 + 3.20746480174461e24 * cos(theta) ** 47 - 6.48087747791762e24 * cos(theta) ** 45 + 1.01842360367277e25 * cos(theta) ** 43 - 1.27550140654162e25 * cos(theta) ** 41 + 1.29444449673779e25 * cos(theta) ** 39 - 1.07652454779203e25 * cos(theta) ** 37 + 7.39139534875765e24 * cos(theta) ** 35 - 4.20849783015388e24 * cos(theta) ** 33 + 1.99111725297603e24 * cos(theta) ** 31 - 7.82645412201059e23 * cos(theta) ** 29 + 2.55019291616076e23 * cos(theta) ** 27 - 6.85913956760479e22 * cos(theta) ** 25 + 1.513045492854e22 * cos(theta) ** 23 - 2.71297313743488e21 * cos(theta) ** 21 + 3.90757447778686e20 * cos(theta) ** 19 - 4.45166712659263e19 * cos(theta) ** 17 + 3.93134239751037e18 * cos(theta) ** 15 - 2.62089493167358e17 * cos(theta) ** 13 + 1.27291285598094e16 * cos(theta) ** 11 - 428721415057880.0 * cos(theta) ** 9 + 9320030762127.83 * cos(theta) ** 7 - 116848146868.468 * cos(theta) ** 5 + 691409153.06786 * cos(theta) ** 3 - 1219416.49571051 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl58_m_minus_2(theta, phi): return ( 0.0012613916188757 * (1.0 - cos(theta) ** 2) * ( 7.04397322874392e19 * cos(theta) ** 56 - 9.4327989324049e20 * cos(theta) ** 54 + 5.97271472224398e21 * cos(theta) ** 52 - 2.37832424074941e22 * cos(theta) ** 50 + 6.68221833696794e22 * cos(theta) ** 48 - 1.40888640824296e23 * cos(theta) ** 46 + 2.31459909925629e23 * cos(theta) ** 44 - 3.03690811081339e23 * cos(theta) ** 42 + 3.23611124184446e23 * cos(theta) ** 40 - 2.83295933629482e23 * cos(theta) ** 38 + 2.0531653746549e23 * cos(theta) ** 36 - 1.23779347945702e23 * cos(theta) ** 34 + 6.22224141555009e22 * cos(theta) ** 32 - 2.6088180406702e22 * cos(theta) ** 30 + 9.10783184343127e21 * cos(theta) ** 28 - 2.63813060292492e21 * cos(theta) ** 26 + 6.30435622022499e20 * cos(theta) ** 24 - 1.23316960792495e20 * cos(theta) ** 22 + 1.95378723889343e19 * cos(theta) ** 20 - 2.47314840366257e18 * cos(theta) ** 18 + 2.45708899844398e17 * cos(theta) ** 16 - 1.87206780833827e16 * cos(theta) ** 14 + 1.06076071331745e15 * cos(theta) ** 12 - 42872141505788.0 * cos(theta) ** 10 + 1165003845265.98 * cos(theta) ** 8 - 19474691144.7447 * cos(theta) ** 6 + 172852288.266965 * cos(theta) ** 4 - 609708.247855256 * cos(theta) ** 2 + 356.972042069822 ) * sin(2 * phi) ) # @torch.jit.script def Yl58_m_minus_1(theta, phi): return ( 0.0737671481846826 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 1.23578477697262e18 * cos(theta) ** 57 - 1.71505435134634e19 * cos(theta) ** 55 + 1.12692730608377e20 * cos(theta) ** 53 - 4.66338086421452e20 * cos(theta) ** 51 + 1.36371802795264e21 * cos(theta) ** 49 - 2.99763065583609e21 * cos(theta) ** 47 + 5.14355355390287e21 * cos(theta) ** 45 - 7.0625770018916e21 * cos(theta) ** 43 + 7.89295424840113e21 * cos(theta) ** 41 - 7.26399829819184e21 * cos(theta) ** 39 + 5.54909560717541e21 * cos(theta) ** 37 - 3.53655279844864e21 * cos(theta) ** 35 + 1.88552770168185e21 * cos(theta) ** 33 - 8.41554206667806e20 * cos(theta) ** 31 + 3.14063167014871e20 * cos(theta) ** 29 - 9.77085408490711e19 * cos(theta) ** 27 + 2.52174248809e19 * cos(theta) ** 25 - 5.36160699097802e18 * cos(theta) ** 23 + 9.30374875663539e17 * cos(theta) ** 21 - 1.30165705455925e17 * cos(theta) ** 19 + 1.44534646967293e16 * cos(theta) ** 17 - 1.24804520555885e15 * cos(theta) ** 15 + 81596977947496.3 * cos(theta) ** 13 - 3897467409617.09 * cos(theta) ** 11 + 129444871696.22 * cos(theta) ** 9 - 2782098734.96353 * cos(theta) ** 7 + 34570457.653393 * cos(theta) ** 5 - 203236.082618419 * cos(theta) ** 3 + 356.972042069822 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl58_m0(theta, phi): return ( 2.04245604519822e17 * cos(theta) ** 58 - 2.93580855888058e18 * cos(theta) ** 56 + 2.00050671711331e19 * cos(theta) ** 54 - 8.59677210867613e19 * cos(theta) ** 52 + 2.61452289360196e20 * cos(theta) ** 50 - 5.98652438254654e20 * cos(theta) ** 48 + 1.07187293706548e21 * cos(theta) ** 46 - 1.5386802910718e21 * cos(theta) ** 44 + 1.8014746972202e21 * cos(theta) ** 42 - 1.74081898350908e21 * cos(theta) ** 40 + 1.39983382179081e21 * cos(theta) ** 38 - 9.41706389204727e20 * cos(theta) ** 36 + 5.31608445518797e20 * cos(theta) ** 34 - 2.52098341450588e20 * cos(theta) ** 32 + 1.00353753900073e20 * cos(theta) ** 30 - 3.34512513000245e19 * cos(theta) ** 28 + 9.2974801407421e18 * cos(theta) ** 26 - 2.1415173959895e18 * cos(theta) ** 24 + 4.05390124343691e17 * cos(theta) ** 22 - 6.23884868243788e16 * cos(theta) ** 20 + 7.69728084196882e15 * cos(theta) ** 18 - 747735853219828.0 * cos(theta) ** 16 + 55870673964121.6 * cos(theta) ** 14 - 3113430086181.92 * cos(theta) ** 12 + 124085981695.656 * cos(theta) ** 10 - 3333653239.58479 * cos(theta) ** 8 + 55232124.6795113 * cos(theta) ** 6 - 487055.773187931 * cos(theta) ** 4 + 1710.96875827142 * cos(theta) ** 2 - 0.999981740661262 ) # @torch.jit.script def Yl58_m1(theta, phi): return ( 0.0737671481846826 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 1.23578477697262e18 * cos(theta) ** 57 - 1.71505435134634e19 * cos(theta) ** 55 + 1.12692730608377e20 * cos(theta) ** 53 - 4.66338086421452e20 * cos(theta) ** 51 + 1.36371802795264e21 * cos(theta) ** 49 - 2.99763065583609e21 * cos(theta) ** 47 + 5.14355355390287e21 * cos(theta) ** 45 - 7.0625770018916e21 * cos(theta) ** 43 + 7.89295424840113e21 * cos(theta) ** 41 - 7.26399829819184e21 * cos(theta) ** 39 + 5.54909560717541e21 * cos(theta) ** 37 - 3.53655279844864e21 * cos(theta) ** 35 + 1.88552770168185e21 * cos(theta) ** 33 - 8.41554206667806e20 * cos(theta) ** 31 + 3.14063167014871e20 * cos(theta) ** 29 - 9.77085408490711e19 * cos(theta) ** 27 + 2.52174248809e19 * cos(theta) ** 25 - 5.36160699097802e18 * cos(theta) ** 23 + 9.30374875663539e17 * cos(theta) ** 21 - 1.30165705455925e17 * cos(theta) ** 19 + 1.44534646967293e16 * cos(theta) ** 17 - 1.24804520555885e15 * cos(theta) ** 15 + 81596977947496.3 * cos(theta) ** 13 - 3897467409617.09 * cos(theta) ** 11 + 129444871696.22 * cos(theta) ** 9 - 2782098734.96353 * cos(theta) ** 7 + 34570457.653393 * cos(theta) ** 5 - 203236.082618419 * cos(theta) ** 3 + 356.972042069822 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl58_m2(theta, phi): return ( 0.0012613916188757 * (1.0 - cos(theta) ** 2) * ( 7.04397322874392e19 * cos(theta) ** 56 - 9.4327989324049e20 * cos(theta) ** 54 + 5.97271472224398e21 * cos(theta) ** 52 - 2.37832424074941e22 * cos(theta) ** 50 + 6.68221833696794e22 * cos(theta) ** 48 - 1.40888640824296e23 * cos(theta) ** 46 + 2.31459909925629e23 * cos(theta) ** 44 - 3.03690811081339e23 * cos(theta) ** 42 + 3.23611124184446e23 * cos(theta) ** 40 - 2.83295933629482e23 * cos(theta) ** 38 + 2.0531653746549e23 * cos(theta) ** 36 - 1.23779347945702e23 * cos(theta) ** 34 + 6.22224141555009e22 * cos(theta) ** 32 - 2.6088180406702e22 * cos(theta) ** 30 + 9.10783184343127e21 * cos(theta) ** 28 - 2.63813060292492e21 * cos(theta) ** 26 + 6.30435622022499e20 * cos(theta) ** 24 - 1.23316960792495e20 * cos(theta) ** 22 + 1.95378723889343e19 * cos(theta) ** 20 - 2.47314840366257e18 * cos(theta) ** 18 + 2.45708899844398e17 * cos(theta) ** 16 - 1.87206780833827e16 * cos(theta) ** 14 + 1.06076071331745e15 * cos(theta) ** 12 - 42872141505788.0 * cos(theta) ** 10 + 1165003845265.98 * cos(theta) ** 8 - 19474691144.7447 * cos(theta) ** 6 + 172852288.266965 * cos(theta) ** 4 - 609708.247855256 * cos(theta) ** 2 + 356.972042069822 ) * cos(2 * phi) ) # @torch.jit.script def Yl58_m3(theta, phi): return ( 2.15819662999127e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 3.94462500809659e21 * cos(theta) ** 55 - 5.09371142349864e22 * cos(theta) ** 53 + 3.10581165556687e23 * cos(theta) ** 51 - 1.1891621203747e24 * cos(theta) ** 49 + 3.20746480174461e24 * cos(theta) ** 47 - 6.48087747791762e24 * cos(theta) ** 45 + 1.01842360367277e25 * cos(theta) ** 43 - 1.27550140654162e25 * cos(theta) ** 41 + 1.29444449673779e25 * cos(theta) ** 39 - 1.07652454779203e25 * cos(theta) ** 37 + 7.39139534875765e24 * cos(theta) ** 35 - 4.20849783015388e24 * cos(theta) ** 33 + 1.99111725297603e24 * cos(theta) ** 31 - 7.82645412201059e23 * cos(theta) ** 29 + 2.55019291616076e23 * cos(theta) ** 27 - 6.85913956760479e22 * cos(theta) ** 25 + 1.513045492854e22 * cos(theta) ** 23 - 2.71297313743488e21 * cos(theta) ** 21 + 3.90757447778686e20 * cos(theta) ** 19 - 4.45166712659263e19 * cos(theta) ** 17 + 3.93134239751037e18 * cos(theta) ** 15 - 2.62089493167358e17 * cos(theta) ** 13 + 1.27291285598094e16 * cos(theta) ** 11 - 428721415057880.0 * cos(theta) ** 9 + 9320030762127.83 * cos(theta) ** 7 - 116848146868.468 * cos(theta) ** 5 + 691409153.06786 * cos(theta) ** 3 - 1219416.49571051 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl58_m4(theta, phi): return ( 3.69584560846368e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 2.16954375445313e23 * cos(theta) ** 54 - 2.69966705445428e24 * cos(theta) ** 52 + 1.5839639443391e25 * cos(theta) ** 50 - 5.82689438983605e25 * cos(theta) ** 48 + 1.50750845681997e26 * cos(theta) ** 46 - 2.91639486506293e26 * cos(theta) ** 44 + 4.37922149579291e26 * cos(theta) ** 42 - 5.22955576682065e26 * cos(theta) ** 40 + 5.04833353727736e26 * cos(theta) ** 38 - 3.98314082683051e26 * cos(theta) ** 36 + 2.58698837206518e26 * cos(theta) ** 34 - 1.38880428395078e26 * cos(theta) ** 32 + 6.17246348422569e25 * cos(theta) ** 30 - 2.26967169538307e25 * cos(theta) ** 28 + 6.88552087363404e24 * cos(theta) ** 26 - 1.7147848919012e24 * cos(theta) ** 24 + 3.4800046335642e23 * cos(theta) ** 22 - 5.69724358861325e22 * cos(theta) ** 20 + 7.42439150779504e21 * cos(theta) ** 18 - 7.56783411520747e20 * cos(theta) ** 16 + 5.89701359626556e19 * cos(theta) ** 14 - 3.40716341117566e18 * cos(theta) ** 12 + 1.40020414157904e17 * cos(theta) ** 10 - 3.85849273552092e15 * cos(theta) ** 8 + 65240215334894.8 * cos(theta) ** 6 - 584240734342.342 * cos(theta) ** 4 + 2074227459.20358 * cos(theta) ** 2 - 1219416.49571051 ) * cos(4 * phi) ) # @torch.jit.script def Yl58_m5(theta, phi): return ( 6.33645953698479e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.17155362740469e25 * cos(theta) ** 53 - 1.40382686831623e26 * cos(theta) ** 51 + 7.91981972169552e26 * cos(theta) ** 49 - 2.7969093071213e27 * cos(theta) ** 47 + 6.93453890137185e27 * cos(theta) ** 45 - 1.28321374062769e28 * cos(theta) ** 43 + 1.83927302823302e28 * cos(theta) ** 41 - 2.09182230672826e28 * cos(theta) ** 39 + 1.9183667441654e28 * cos(theta) ** 37 - 1.43393069765898e28 * cos(theta) ** 35 + 8.79576046502161e27 * cos(theta) ** 33 - 4.4441737086425e27 * cos(theta) ** 31 + 1.85173904526771e27 * cos(theta) ** 29 - 6.3550807470726e26 * cos(theta) ** 27 + 1.79023542714485e26 * cos(theta) ** 25 - 4.11548374056287e25 * cos(theta) ** 23 + 7.65601019384123e24 * cos(theta) ** 21 - 1.13944871772265e24 * cos(theta) ** 19 + 1.33639047140311e23 * cos(theta) ** 17 - 1.2108534584332e22 * cos(theta) ** 15 + 8.25581903477178e20 * cos(theta) ** 13 - 4.08859609341079e19 * cos(theta) ** 11 + 1.40020414157904e18 * cos(theta) ** 9 - 3.08679418841674e16 * cos(theta) ** 7 + 391441292009369.0 * cos(theta) ** 5 - 2336962937369.37 * cos(theta) ** 3 + 4148454918.40716 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl58_m6(theta, phi): return ( 1.08797456929785e-10 * (1.0 - cos(theta) ** 2) ** 3 * ( 6.20923422524485e26 * cos(theta) ** 52 - 7.15951702841275e27 * cos(theta) ** 50 + 3.88071166363081e28 * cos(theta) ** 48 - 1.31454737434701e29 * cos(theta) ** 46 + 3.12054250561733e29 * cos(theta) ** 44 - 5.51781908469906e29 * cos(theta) ** 42 + 7.54101941575538e29 * cos(theta) ** 40 - 8.15810699624022e29 * cos(theta) ** 38 + 7.09795695341197e29 * cos(theta) ** 36 - 5.01875744180645e29 * cos(theta) ** 34 + 2.90260095345713e29 * cos(theta) ** 32 - 1.37769384967917e29 * cos(theta) ** 30 + 5.37004323127635e28 * cos(theta) ** 28 - 1.7158718017096e28 * cos(theta) ** 26 + 4.47558856786213e27 * cos(theta) ** 24 - 9.46561260329461e26 * cos(theta) ** 22 + 1.60776214070666e26 * cos(theta) ** 20 - 2.16495256367303e25 * cos(theta) ** 18 + 2.27186380138528e24 * cos(theta) ** 16 - 1.81628018764979e23 * cos(theta) ** 14 + 1.07325647452033e22 * cos(theta) ** 12 - 4.49745570275187e20 * cos(theta) ** 10 + 1.26018372742113e19 * cos(theta) ** 8 - 2.16075593189172e17 * cos(theta) ** 6 + 1.95720646004685e15 * cos(theta) ** 4 - 7010888812108.1 * cos(theta) ** 2 + 4148454918.40716 ) * cos(6 * phi) ) # @torch.jit.script def Yl58_m7(theta, phi): return ( 1.87137314980081e-12 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 3.22880179712732e28 * cos(theta) ** 51 - 3.57975851420638e29 * cos(theta) ** 49 + 1.86274159854279e30 * cos(theta) ** 47 - 6.04691792199626e30 * cos(theta) ** 45 + 1.37303870247163e31 * cos(theta) ** 43 - 2.31748401557361e31 * cos(theta) ** 41 + 3.01640776630215e31 * cos(theta) ** 39 - 3.10008065857128e31 * cos(theta) ** 37 + 2.55526450322831e31 * cos(theta) ** 35 - 1.70637753021419e31 * cos(theta) ** 33 + 9.28832305106282e30 * cos(theta) ** 31 - 4.13308154903752e30 * cos(theta) ** 29 + 1.50361210475738e30 * cos(theta) ** 27 - 4.46126668444497e29 * cos(theta) ** 25 + 1.07414125628691e29 * cos(theta) ** 23 - 2.08243477272481e28 * cos(theta) ** 21 + 3.21552428141332e27 * cos(theta) ** 19 - 3.89691461461146e26 * cos(theta) ** 17 + 3.63498208221645e25 * cos(theta) ** 15 - 2.54279226270971e24 * cos(theta) ** 13 + 1.2879077694244e23 * cos(theta) ** 11 - 4.49745570275187e21 * cos(theta) ** 9 + 1.00814698193691e20 * cos(theta) ** 7 - 1.29645355913503e18 * cos(theta) ** 5 + 7.82882584018738e15 * cos(theta) ** 3 - 14021777624216.2 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl58_m8(theta, phi): return ( 3.22554673049734e-14 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.64668891653493e30 * cos(theta) ** 50 - 1.75408167196112e31 * cos(theta) ** 48 + 8.7548855131511e31 * cos(theta) ** 46 - 2.72111306489831e32 * cos(theta) ** 44 + 5.904066420628e32 * cos(theta) ** 42 - 9.50168446385178e32 * cos(theta) ** 40 + 1.17639902885784e33 * cos(theta) ** 38 - 1.14702984367137e33 * cos(theta) ** 36 + 8.94342576129909e32 * cos(theta) ** 34 - 5.63104584970683e32 * cos(theta) ** 32 + 2.87938014582947e32 * cos(theta) ** 30 - 1.19859364922088e32 * cos(theta) ** 28 + 4.05975268284492e31 * cos(theta) ** 26 - 1.11531667111124e31 * cos(theta) ** 24 + 2.47052488945989e30 * cos(theta) ** 22 - 4.37311302272211e29 * cos(theta) ** 20 + 6.1094961346853e28 * cos(theta) ** 18 - 6.62475484483948e27 * cos(theta) ** 16 + 5.45247312332468e26 * cos(theta) ** 14 - 3.30562994152262e25 * cos(theta) ** 12 + 1.41669854636684e24 * cos(theta) ** 10 - 4.04771013247668e22 * cos(theta) ** 8 + 7.05702887355835e20 * cos(theta) ** 6 - 6.48226779567515e18 * cos(theta) ** 4 + 2.34864775205621e16 * cos(theta) ** 2 - 14021777624216.2 ) * cos(8 * phi) ) # @torch.jit.script def Yl58_m9(theta, phi): return ( 5.57289595142768e-16 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 8.23344458267467e31 * cos(theta) ** 49 - 8.4195920254134e32 * cos(theta) ** 47 + 4.02724733604951e33 * cos(theta) ** 45 - 1.19728974855526e34 * cos(theta) ** 43 + 2.47970789666376e34 * cos(theta) ** 41 - 3.80067378554071e34 * cos(theta) ** 39 + 4.47031630965979e34 * cos(theta) ** 37 - 4.12930743721695e34 * cos(theta) ** 35 + 3.04076475884169e34 * cos(theta) ** 33 - 1.80193467190619e34 * cos(theta) ** 31 + 8.63814043748842e33 * cos(theta) ** 29 - 3.35606221781847e33 * cos(theta) ** 27 + 1.05553569753968e33 * cos(theta) ** 25 - 2.67676001066698e32 * cos(theta) ** 23 + 5.43515475681177e31 * cos(theta) ** 21 - 8.74622604544422e30 * cos(theta) ** 19 + 1.09970930424335e30 * cos(theta) ** 17 - 1.05996077517432e29 * cos(theta) ** 15 + 7.63346237265455e27 * cos(theta) ** 13 - 3.96675592982715e26 * cos(theta) ** 11 + 1.41669854636684e25 * cos(theta) ** 9 - 3.23816810598134e23 * cos(theta) ** 7 + 4.23421732413501e21 * cos(theta) ** 5 - 2.59290711827006e19 * cos(theta) ** 3 + 4.69729550411243e16 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl58_m10(theta, phi): return ( 9.65447002029972e-18 * (1.0 - cos(theta) ** 2) ** 5 * ( 4.03438784551059e33 * cos(theta) ** 48 - 3.9572082519443e34 * cos(theta) ** 46 + 1.81226130122228e35 * cos(theta) ** 44 - 5.14834591878761e35 * cos(theta) ** 42 + 1.01668023763214e36 * cos(theta) ** 40 - 1.48226277636088e36 * cos(theta) ** 38 + 1.65401703457412e36 * cos(theta) ** 36 - 1.44525760302593e36 * cos(theta) ** 34 + 1.00345237041776e36 * cos(theta) ** 32 - 5.58599748290918e35 * cos(theta) ** 30 + 2.50506072687164e35 * cos(theta) ** 28 - 9.06136798810986e34 * cos(theta) ** 26 + 2.6388392438492e34 * cos(theta) ** 24 - 6.15654802453405e33 * cos(theta) ** 22 + 1.14138249893047e33 * cos(theta) ** 20 - 1.6617829486344e32 * cos(theta) ** 18 + 1.8695058172137e31 * cos(theta) ** 16 - 1.58994116276148e30 * cos(theta) ** 14 + 9.92350108445091e28 * cos(theta) ** 12 - 4.36343152280986e27 * cos(theta) ** 10 + 1.27502869173015e26 * cos(theta) ** 8 - 2.26671767418694e24 * cos(theta) ** 6 + 2.1171086620675e22 * cos(theta) ** 4 - 7.77872135481018e19 * cos(theta) ** 2 + 4.69729550411243e16 ) * cos(10 * phi) ) # @torch.jit.script def Yl58_m11(theta, phi): return ( 1.67758013276199e-19 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.93650616584508e35 * cos(theta) ** 47 - 1.82031579589438e36 * cos(theta) ** 45 + 7.97394972537802e36 * cos(theta) ** 43 - 2.1623052858908e37 * cos(theta) ** 41 + 4.06672095052856e37 * cos(theta) ** 39 - 5.63259855017134e37 * cos(theta) ** 37 + 5.95446132446684e37 * cos(theta) ** 35 - 4.91387585028817e37 * cos(theta) ** 33 + 3.21104758533682e37 * cos(theta) ** 31 - 1.67579924487275e37 * cos(theta) ** 29 + 7.0141700352406e36 * cos(theta) ** 27 - 2.35595567690856e36 * cos(theta) ** 25 + 6.33321418523808e35 * cos(theta) ** 23 - 1.35444056539749e35 * cos(theta) ** 21 + 2.28276499786094e34 * cos(theta) ** 19 - 2.99120930754192e33 * cos(theta) ** 17 + 2.99120930754192e32 * cos(theta) ** 15 - 2.22591762786607e31 * cos(theta) ** 13 + 1.19082013013411e30 * cos(theta) ** 11 - 4.36343152280986e28 * cos(theta) ** 9 + 1.02002295338412e27 * cos(theta) ** 7 - 1.36003060451216e25 * cos(theta) ** 5 + 8.46843464827002e22 * cos(theta) ** 3 - 1.55574427096204e20 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl58_m12(theta, phi): return ( 2.92472693856372e-21 * (1.0 - cos(theta) ** 2) ** 6 * ( 9.10157897947188e36 * cos(theta) ** 46 - 8.19142108152469e37 * cos(theta) ** 44 + 3.42879838191255e38 * cos(theta) ** 42 - 8.86545167215227e38 * cos(theta) ** 40 + 1.58602117070614e39 * cos(theta) ** 38 - 2.08406146356339e39 * cos(theta) ** 36 + 2.08406146356339e39 * cos(theta) ** 34 - 1.6215790305951e39 * cos(theta) ** 32 + 9.95424751454416e38 * cos(theta) ** 30 - 4.85981781013098e38 * cos(theta) ** 28 + 1.89382590951496e38 * cos(theta) ** 26 - 5.88988919227141e37 * cos(theta) ** 24 + 1.45663926260476e37 * cos(theta) ** 22 - 2.84432518733473e36 * cos(theta) ** 20 + 4.33725349593579e35 * cos(theta) ** 18 - 5.08505582282127e34 * cos(theta) ** 16 + 4.48681396131288e33 * cos(theta) ** 14 - 2.89369291622589e32 * cos(theta) ** 12 + 1.30990214314752e31 * cos(theta) ** 10 - 3.92708837052888e29 * cos(theta) ** 8 + 7.14016067368886e27 * cos(theta) ** 6 - 6.80015302256082e25 * cos(theta) ** 4 + 2.54053039448101e23 * cos(theta) ** 2 - 1.55574427096204e20 ) * cos(12 * phi) ) # @torch.jit.script def Yl58_m13(theta, phi): return ( 5.11772841272677e-23 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 4.18672633055707e38 * cos(theta) ** 45 - 3.60422527587087e39 * cos(theta) ** 43 + 1.44009532040327e40 * cos(theta) ** 41 - 3.54618066886091e40 * cos(theta) ** 39 + 6.02688044868333e40 * cos(theta) ** 37 - 7.50262126882822e40 * cos(theta) ** 35 + 7.08580897611554e40 * cos(theta) ** 33 - 5.18905289790431e40 * cos(theta) ** 31 + 2.98627425436325e40 * cos(theta) ** 29 - 1.36074898683668e40 * cos(theta) ** 27 + 4.9239473647389e39 * cos(theta) ** 25 - 1.41357340614514e39 * cos(theta) ** 23 + 3.20460637773047e38 * cos(theta) ** 21 - 5.68865037466947e37 * cos(theta) ** 19 + 7.80705629268442e36 * cos(theta) ** 17 - 8.13608931651403e35 * cos(theta) ** 15 + 6.28153954583804e34 * cos(theta) ** 13 - 3.47243149947106e33 * cos(theta) ** 11 + 1.30990214314752e32 * cos(theta) ** 9 - 3.1416706964231e30 * cos(theta) ** 7 + 4.28409640421332e28 * cos(theta) ** 5 - 2.72006120902433e26 * cos(theta) ** 3 + 5.08106078896201e23 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl58_m14(theta, phi): return ( 8.99093235020825e-25 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.88402684875068e40 * cos(theta) ** 44 - 1.54981686862447e41 * cos(theta) ** 42 + 5.90439081365341e41 * cos(theta) ** 40 - 1.38301046085575e42 * cos(theta) ** 38 + 2.22994576601283e42 * cos(theta) ** 36 - 2.62591744408988e42 * cos(theta) ** 34 + 2.33831696211813e42 * cos(theta) ** 32 - 1.60860639835034e42 * cos(theta) ** 30 + 8.66019533765341e41 * cos(theta) ** 28 - 3.67402226445902e41 * cos(theta) ** 26 + 1.23098684118472e41 * cos(theta) ** 24 - 3.25121883413382e40 * cos(theta) ** 22 + 6.72967339323398e39 * cos(theta) ** 20 - 1.0808435711872e39 * cos(theta) ** 18 + 1.32719956975635e38 * cos(theta) ** 16 - 1.2204133974771e37 * cos(theta) ** 14 + 8.16600140958945e35 * cos(theta) ** 12 - 3.81967464941817e34 * cos(theta) ** 10 + 1.17891192883277e33 * cos(theta) ** 8 - 2.19916948749617e31 * cos(theta) ** 6 + 2.14204820210666e29 * cos(theta) ** 4 - 8.16018362707299e26 * cos(theta) ** 2 + 5.08106078896201e23 ) * cos(14 * phi) ) # @torch.jit.script def Yl58_m15(theta, phi): return ( 1.58641556272998e-26 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 8.28971813450299e41 * cos(theta) ** 43 - 6.50923084822278e42 * cos(theta) ** 41 + 2.36175632546136e43 * cos(theta) ** 39 - 5.25543975125186e43 * cos(theta) ** 37 + 8.0278047576462e43 * cos(theta) ** 35 - 8.92811930990558e43 * cos(theta) ** 33 + 7.48261427877801e43 * cos(theta) ** 31 - 4.82581919505101e43 * cos(theta) ** 29 + 2.42485469454296e43 * cos(theta) ** 27 - 9.55245788759346e42 * cos(theta) ** 25 + 2.95436841884334e42 * cos(theta) ** 23 - 7.1526814350944e41 * cos(theta) ** 21 + 1.3459346786468e41 * cos(theta) ** 19 - 1.94551842813696e40 * cos(theta) ** 17 + 2.12351931161016e39 * cos(theta) ** 15 - 1.70857875646795e38 * cos(theta) ** 13 + 9.79920169150734e36 * cos(theta) ** 11 - 3.81967464941817e35 * cos(theta) ** 9 + 9.43129543066215e33 * cos(theta) ** 7 - 1.3195016924977e32 * cos(theta) ** 5 + 8.56819280842664e29 * cos(theta) ** 3 - 1.6320367254146e27 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl58_m16(theta, phi): return ( 2.81233384880933e-28 * (1.0 - cos(theta) ** 2) ** 8 * ( 3.56457879783629e43 * cos(theta) ** 42 - 2.66878464777134e44 * cos(theta) ** 40 + 9.21084966929932e44 * cos(theta) ** 38 - 1.94451270796319e45 * cos(theta) ** 36 + 2.80973166517617e45 * cos(theta) ** 34 - 2.94627937226884e45 * cos(theta) ** 32 + 2.31961042642118e45 * cos(theta) ** 30 - 1.39948756656479e45 * cos(theta) ** 28 + 6.54710767526598e44 * cos(theta) ** 26 - 2.38811447189837e44 * cos(theta) ** 24 + 6.79504736333968e43 * cos(theta) ** 22 - 1.50206310136982e43 * cos(theta) ** 20 + 2.55727588942891e42 * cos(theta) ** 18 - 3.30738132783283e41 * cos(theta) ** 16 + 3.18527896741524e40 * cos(theta) ** 14 - 2.22115238340833e39 * cos(theta) ** 12 + 1.07791218606581e38 * cos(theta) ** 10 - 3.43770718447635e36 * cos(theta) ** 8 + 6.6019068014635e34 * cos(theta) ** 6 - 6.59750846248851e32 * cos(theta) ** 4 + 2.57045784252799e30 * cos(theta) ** 2 - 1.6320367254146e27 ) * cos(16 * phi) ) # @torch.jit.script def Yl58_m17(theta, phi): return ( 5.01085224736753e-30 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.49712309509124e45 * cos(theta) ** 41 - 1.06751385910854e46 * cos(theta) ** 39 + 3.50012287433374e46 * cos(theta) ** 37 - 7.00024574866748e46 * cos(theta) ** 35 + 9.55308766159897e46 * cos(theta) ** 33 - 9.42809399126029e46 * cos(theta) ** 31 + 6.95883127926355e46 * cos(theta) ** 29 - 3.91856518638142e46 * cos(theta) ** 27 + 1.70224799556916e46 * cos(theta) ** 25 - 5.73147473255608e45 * cos(theta) ** 23 + 1.49491041993473e45 * cos(theta) ** 21 - 3.00412620273965e44 * cos(theta) ** 19 + 4.60309660097204e43 * cos(theta) ** 17 - 5.29181012453252e42 * cos(theta) ** 15 + 4.45939055438134e41 * cos(theta) ** 13 - 2.66538286009e40 * cos(theta) ** 11 + 1.07791218606581e39 * cos(theta) ** 9 - 2.75016574758108e37 * cos(theta) ** 7 + 3.9611440808781e35 * cos(theta) ** 5 - 2.6390033849954e33 * cos(theta) ** 3 + 5.14091568505598e30 * cos(theta) ) * cos(17 * phi) ) # @torch.jit.script def Yl58_m18(theta, phi): return ( 8.97662065438591e-32 * (1.0 - cos(theta) ** 2) ** 9 * ( 6.13820468987408e46 * cos(theta) ** 40 - 4.16330405052329e47 * cos(theta) ** 38 + 1.29504546350348e48 * cos(theta) ** 36 - 2.45008601203362e48 * cos(theta) ** 34 + 3.15251892832766e48 * cos(theta) ** 32 - 2.92270913729069e48 * cos(theta) ** 30 + 2.01806107098643e48 * cos(theta) ** 28 - 1.05801260032298e48 * cos(theta) ** 26 + 4.25561998892289e47 * cos(theta) ** 24 - 1.3182391884879e47 * cos(theta) ** 22 + 3.13931188186293e46 * cos(theta) ** 20 - 5.70783978520533e45 * cos(theta) ** 18 + 7.82526422165247e44 * cos(theta) ** 16 - 7.93771518679879e43 * cos(theta) ** 14 + 5.79720772069574e42 * cos(theta) ** 12 - 2.931921146099e41 * cos(theta) ** 10 + 9.70120967459227e39 * cos(theta) ** 8 - 1.92511602330676e38 * cos(theta) ** 6 + 1.98057204043905e36 * cos(theta) ** 4 - 7.91701015498621e33 * cos(theta) ** 2 + 5.14091568505598e30 ) * cos(18 * phi) ) # @torch.jit.script def Yl58_m19(theta, phi): return ( 1.6174747671886e-33 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 2.45528187594963e48 * cos(theta) ** 39 - 1.58205553919885e49 * cos(theta) ** 37 + 4.66216366861254e49 * cos(theta) ** 35 - 8.3302924409143e49 * cos(theta) ** 33 + 1.00880605706485e50 * cos(theta) ** 31 - 8.76812741187207e49 * cos(theta) ** 29 + 5.650570998762e49 * cos(theta) ** 27 - 2.75083276083975e49 * cos(theta) ** 25 + 1.02134879734149e49 * cos(theta) ** 23 - 2.90012621467338e48 * cos(theta) ** 21 + 6.27862376372586e47 * cos(theta) ** 19 - 1.02741116133696e47 * cos(theta) ** 17 + 1.2520422754644e46 * cos(theta) ** 15 - 1.11128012615183e45 * cos(theta) ** 13 + 6.95664926483489e43 * cos(theta) ** 11 - 2.931921146099e42 * cos(theta) ** 9 + 7.76096773967381e40 * cos(theta) ** 7 - 1.15506961398405e39 * cos(theta) ** 5 + 7.9222881617562e36 * cos(theta) ** 3 - 1.58340203099724e34 * cos(theta) ) * cos(19 * phi) ) # @torch.jit.script def Yl58_m20(theta, phi): return ( 2.93263429814664e-35 * (1.0 - cos(theta) ** 2) ** 10 * ( 9.57559931620357e49 * cos(theta) ** 38 - 5.85360549503575e50 * cos(theta) ** 36 + 1.63175728401439e51 * cos(theta) ** 34 - 2.74899650550172e51 * cos(theta) ** 32 + 3.12729877690104e51 * cos(theta) ** 30 - 2.5427569494429e51 * cos(theta) ** 28 + 1.52565416966574e51 * cos(theta) ** 26 - 6.87708190209939e50 * cos(theta) ** 24 + 2.34910223388543e50 * cos(theta) ** 22 - 6.09026505081409e49 * cos(theta) ** 20 + 1.19293851510791e49 * cos(theta) ** 18 - 1.74659897427283e48 * cos(theta) ** 16 + 1.87806341319659e47 * cos(theta) ** 14 - 1.44466416399738e46 * cos(theta) ** 12 + 7.65231419131838e44 * cos(theta) ** 10 - 2.6387290314891e43 * cos(theta) ** 8 + 5.43267741777167e41 * cos(theta) ** 6 - 5.77534806992027e39 * cos(theta) ** 4 + 2.37668644852686e37 * cos(theta) ** 2 - 1.58340203099724e34 ) * cos(20 * phi) ) # @torch.jit.script def Yl58_m21(theta, phi): return ( 5.35244934083976e-37 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 3.63872774015736e51 * cos(theta) ** 37 - 2.10729797821287e52 * cos(theta) ** 35 + 5.54797476564893e52 * cos(theta) ** 33 - 8.79678881760551e52 * cos(theta) ** 31 + 9.38189633070312e52 * cos(theta) ** 29 - 7.11971945844012e52 * cos(theta) ** 27 + 3.96670084113093e52 * cos(theta) ** 25 - 1.65049965650385e52 * cos(theta) ** 23 + 5.16802491454796e51 * cos(theta) ** 21 - 1.21805301016282e51 * cos(theta) ** 19 + 2.14728932719425e50 * cos(theta) ** 17 - 2.79455835883653e49 * cos(theta) ** 15 + 2.62928877847523e48 * cos(theta) ** 13 - 1.73359699679686e47 * cos(theta) ** 11 + 7.65231419131838e45 * cos(theta) ** 9 - 2.11098322519128e44 * cos(theta) ** 7 + 3.259606450663e42 * cos(theta) ** 5 - 2.31013922796811e40 * cos(theta) ** 3 + 4.75337289705372e37 * cos(theta) ) * cos(21 * phi) ) # @torch.jit.script def Yl58_m22(theta, phi): return ( 9.83799754850438e-39 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.34632926385822e53 * cos(theta) ** 36 - 7.37554292374504e53 * cos(theta) ** 34 + 1.83083167266415e54 * cos(theta) ** 32 - 2.72700453345771e54 * cos(theta) ** 30 + 2.7207499359039e54 * cos(theta) ** 28 - 1.92232425377883e54 * cos(theta) ** 26 + 9.91675210282732e53 * cos(theta) ** 24 - 3.79614920995886e53 * cos(theta) ** 22 + 1.08528523205507e53 * cos(theta) ** 20 - 2.31430071930935e52 * cos(theta) ** 18 + 3.65039185623022e51 * cos(theta) ** 16 - 4.1918375382548e50 * cos(theta) ** 14 + 3.4180754120178e49 * cos(theta) ** 12 - 1.90695669647654e48 * cos(theta) ** 10 + 6.88708277218654e46 * cos(theta) ** 8 - 1.47768825763389e45 * cos(theta) ** 6 + 1.6298032253315e43 * cos(theta) ** 4 - 6.93041768390433e40 * cos(theta) ** 2 + 4.75337289705372e37 ) * cos(22 * phi) ) # @torch.jit.script def Yl58_m23(theta, phi): return ( 1.82185139787118e-40 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 4.8467853498896e54 * cos(theta) ** 35 - 2.50768459407331e55 * cos(theta) ** 33 + 5.85866135252527e55 * cos(theta) ** 31 - 8.18101360037312e55 * cos(theta) ** 29 + 7.61809982053093e55 * cos(theta) ** 27 - 4.99804305982497e55 * cos(theta) ** 25 + 2.38002050467856e55 * cos(theta) ** 23 - 8.3515282619095e54 * cos(theta) ** 21 + 2.17057046411014e54 * cos(theta) ** 19 - 4.16574129475684e53 * cos(theta) ** 17 + 5.84062696996835e52 * cos(theta) ** 15 - 5.86857255355671e51 * cos(theta) ** 13 + 4.10169049442136e50 * cos(theta) ** 11 - 1.90695669647654e49 * cos(theta) ** 9 + 5.50966621774923e47 * cos(theta) ** 7 - 8.86612954580337e45 * cos(theta) ** 5 + 6.519212901326e43 * cos(theta) ** 3 - 1.38608353678087e41 * cos(theta) ) * cos(23 * phi) ) # @torch.jit.script def Yl58_m24(theta, phi): return ( 3.40072881916237e-42 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.69637487246136e56 * cos(theta) ** 34 - 8.27535916044194e56 * cos(theta) ** 32 + 1.81618501928283e57 * cos(theta) ** 30 - 2.3724939441082e57 * cos(theta) ** 28 + 2.05688695154335e57 * cos(theta) ** 26 - 1.24951076495624e57 * cos(theta) ** 24 + 5.47404716076068e56 * cos(theta) ** 22 - 1.75382093500099e56 * cos(theta) ** 20 + 4.12408388180927e55 * cos(theta) ** 18 - 7.08176020108662e54 * cos(theta) ** 16 + 8.76094045495252e53 * cos(theta) ** 14 - 7.62914431962373e52 * cos(theta) ** 12 + 4.51185954386349e51 * cos(theta) ** 10 - 1.71626102682889e50 * cos(theta) ** 8 + 3.85676635242446e48 * cos(theta) ** 6 - 4.43306477290168e46 * cos(theta) ** 4 + 1.9557638703978e44 * cos(theta) ** 2 - 1.38608353678087e41 ) * cos(24 * phi) ) # @torch.jit.script def Yl58_m25(theta, phi): return ( 6.40167315718996e-44 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 5.76767456636862e57 * cos(theta) ** 33 - 2.64811493134142e58 * cos(theta) ** 31 + 5.4485550578485e58 * cos(theta) ** 29 - 6.64298304350297e58 * cos(theta) ** 27 + 5.34790607401271e58 * cos(theta) ** 25 - 2.99882583589498e58 * cos(theta) ** 23 + 1.20429037536735e58 * cos(theta) ** 21 - 3.50764187000199e57 * cos(theta) ** 19 + 7.42335098725668e56 * cos(theta) ** 17 - 1.13308163217386e56 * cos(theta) ** 15 + 1.22653166369335e55 * cos(theta) ** 13 - 9.15497318354847e53 * cos(theta) ** 11 + 4.51185954386349e52 * cos(theta) ** 9 - 1.37300882146311e51 * cos(theta) ** 7 + 2.31405981145468e49 * cos(theta) ** 5 - 1.77322590916067e47 * cos(theta) ** 3 + 3.9115277407956e44 * cos(theta) ) * cos(25 * phi) ) # @torch.jit.script def Yl58_m26(theta, phi): return ( 1.21589727216593e-45 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.90333260690165e59 * cos(theta) ** 32 - 8.2091562871584e59 * cos(theta) ** 30 + 1.58008096677606e60 * cos(theta) ** 28 - 1.7936054217458e60 * cos(theta) ** 26 + 1.33697651850318e60 * cos(theta) ** 24 - 6.89729942255845e59 * cos(theta) ** 22 + 2.52900978827143e59 * cos(theta) ** 20 - 6.66451955300378e58 * cos(theta) ** 18 + 1.26196966783364e58 * cos(theta) ** 16 - 1.69962244826079e57 * cos(theta) ** 14 + 1.59449116280136e56 * cos(theta) ** 12 - 1.00704705019033e55 * cos(theta) ** 10 + 4.06067358947715e53 * cos(theta) ** 8 - 9.61106175024176e51 * cos(theta) ** 6 + 1.15702990572734e50 * cos(theta) ** 4 - 5.31967772748202e47 * cos(theta) ** 2 + 3.9115277407956e44 ) * cos(26 * phi) ) # @torch.jit.script def Yl58_m27(theta, phi): return ( 2.33137659446573e-47 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 6.09066434208527e60 * cos(theta) ** 31 - 2.46274688614752e61 * cos(theta) ** 29 + 4.42422670697298e61 * cos(theta) ** 27 - 4.66337409653909e61 * cos(theta) ** 25 + 3.20874364440763e61 * cos(theta) ** 23 - 1.51740587296286e61 * cos(theta) ** 21 + 5.05801957654287e60 * cos(theta) ** 19 - 1.19961351954068e60 * cos(theta) ** 17 + 2.01915146853382e59 * cos(theta) ** 15 - 2.3794714275651e58 * cos(theta) ** 13 + 1.91338939536163e57 * cos(theta) ** 11 - 1.00704705019033e56 * cos(theta) ** 9 + 3.24853887158172e54 * cos(theta) ** 7 - 5.76663705014506e52 * cos(theta) ** 5 + 4.62811962290936e50 * cos(theta) ** 3 - 1.0639355454964e48 * cos(theta) ) * cos(27 * phi) ) # @torch.jit.script def Yl58_m28(theta, phi): return ( 4.51525580430714e-49 * (1.0 - cos(theta) ** 2) ** 14 * ( 1.88810594604643e62 * cos(theta) ** 30 - 7.14196596982781e62 * cos(theta) ** 28 + 1.1945412108827e63 * cos(theta) ** 26 - 1.16584352413477e63 * cos(theta) ** 24 + 7.38011038213755e62 * cos(theta) ** 22 - 3.18655233322201e62 * cos(theta) ** 20 + 9.61023719543145e61 * cos(theta) ** 18 - 2.03934298321916e61 * cos(theta) ** 16 + 3.02872720280073e60 * cos(theta) ** 14 - 3.09331285583464e59 * cos(theta) ** 12 + 2.10472833489779e58 * cos(theta) ** 10 - 9.06342345171299e56 * cos(theta) ** 8 + 2.2739772101072e55 * cos(theta) ** 6 - 2.88331852507253e53 * cos(theta) ** 4 + 1.38843588687281e51 * cos(theta) ** 2 - 1.0639355454964e48 ) * cos(28 * phi) ) # @torch.jit.script def Yl58_m29(theta, phi): return ( 8.83816501523427e-51 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 5.6643178381393e63 * cos(theta) ** 29 - 1.99975047155179e64 * cos(theta) ** 27 + 3.10580714829503e64 * cos(theta) ** 25 - 2.79802445792345e64 * cos(theta) ** 23 + 1.62362428407026e64 * cos(theta) ** 21 - 6.37310466644401e63 * cos(theta) ** 19 + 1.72984269517766e63 * cos(theta) ** 17 - 3.26294877315065e62 * cos(theta) ** 15 + 4.24021808392102e61 * cos(theta) ** 13 - 3.71197542700156e60 * cos(theta) ** 11 + 2.10472833489779e59 * cos(theta) ** 9 - 7.25073876137039e57 * cos(theta) ** 7 + 1.36438632606432e56 * cos(theta) ** 5 - 1.15332741002901e54 * cos(theta) ** 3 + 2.77687177374561e51 * cos(theta) ) * cos(29 * phi) ) # @torch.jit.script def Yl58_m30(theta, phi): return ( 1.74953151853462e-52 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.6426521730604e65 * cos(theta) ** 28 - 5.39932627318982e65 * cos(theta) ** 26 + 7.76451787073758e65 * cos(theta) ** 24 - 6.43545625322394e65 * cos(theta) ** 22 + 3.40961099654755e65 * cos(theta) ** 20 - 1.21088988662436e65 * cos(theta) ** 18 + 2.94073258180202e64 * cos(theta) ** 16 - 4.89442315972597e63 * cos(theta) ** 14 + 5.51228350909732e62 * cos(theta) ** 12 - 4.08317296970172e61 * cos(theta) ** 10 + 1.89425550140801e60 * cos(theta) ** 8 - 5.07551713295927e58 * cos(theta) ** 6 + 6.8219316303216e56 * cos(theta) ** 4 - 3.45998223008703e54 * cos(theta) ** 2 + 2.77687177374561e51 ) * cos(30 * phi) ) # @torch.jit.script def Yl58_m31(theta, phi): return ( 3.50467501026163e-54 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 4.59942608456911e66 * cos(theta) ** 27 - 1.40382483102935e67 * cos(theta) ** 25 + 1.86348428897702e67 * cos(theta) ** 23 - 1.41580037570927e67 * cos(theta) ** 21 + 6.81922199309509e66 * cos(theta) ** 19 - 2.17960179592385e66 * cos(theta) ** 17 + 4.70517213088324e65 * cos(theta) ** 15 - 6.85219242361636e64 * cos(theta) ** 13 + 6.61474021091679e63 * cos(theta) ** 11 - 4.08317296970172e62 * cos(theta) ** 9 + 1.51540440112641e61 * cos(theta) ** 7 - 3.04531027977556e59 * cos(theta) ** 5 + 2.72877265212864e57 * cos(theta) ** 3 - 6.91996446017407e54 * cos(theta) ) * cos(31 * phi) ) # @torch.jit.script def Yl58_m32(theta, phi): return ( 7.10959096238867e-56 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.24184504283366e68 * cos(theta) ** 26 - 3.50956207757339e68 * cos(theta) ** 24 + 4.28601386464714e68 * cos(theta) ** 22 - 2.97318078898946e68 * cos(theta) ** 20 + 1.29565217868807e68 * cos(theta) ** 18 - 3.70532305307055e67 * cos(theta) ** 16 + 7.05775819632485e66 * cos(theta) ** 14 - 8.90785015070127e65 * cos(theta) ** 12 + 7.27621423200846e64 * cos(theta) ** 10 - 3.67485567273155e63 * cos(theta) ** 8 + 1.06078308078849e62 * cos(theta) ** 6 - 1.52265513988778e60 * cos(theta) ** 4 + 8.18631795638592e57 * cos(theta) ** 2 - 6.91996446017407e54 ) * cos(32 * phi) ) # @torch.jit.script def Yl58_m33(theta, phi): return ( 1.4616293154595e-57 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 3.22879711136752e69 * cos(theta) ** 25 - 8.42294898617613e69 * cos(theta) ** 23 + 9.42923050222372e69 * cos(theta) ** 21 - 5.94636157797892e69 * cos(theta) ** 19 + 2.33217392163852e69 * cos(theta) ** 17 - 5.92851688491288e68 * cos(theta) ** 15 + 9.8808614748548e67 * cos(theta) ** 13 - 1.06894201808415e67 * cos(theta) ** 11 + 7.27621423200847e65 * cos(theta) ** 9 - 2.93988453818524e64 * cos(theta) ** 7 + 6.36469848473093e62 * cos(theta) ** 5 - 6.09062055955113e60 * cos(theta) ** 3 + 1.63726359127718e58 * cos(theta) ) * cos(33 * phi) ) # @torch.jit.script def Yl58_m34(theta, phi): return ( 3.0477078028168e-59 * (1.0 - cos(theta) ** 2) ** 17 * ( 8.07199277841879e70 * cos(theta) ** 24 - 1.93727826682051e71 * cos(theta) ** 22 + 1.98013840546698e71 * cos(theta) ** 20 - 1.129808699816e71 * cos(theta) ** 18 + 3.96469566678549e70 * cos(theta) ** 16 - 8.89277532736932e69 * cos(theta) ** 14 + 1.28451199173112e69 * cos(theta) ** 12 - 1.17583621989257e68 * cos(theta) ** 10 + 6.54859280880762e66 * cos(theta) ** 8 - 2.05791917672967e65 * cos(theta) ** 6 + 3.18234924236546e63 * cos(theta) ** 4 - 1.82718616786534e61 * cos(theta) ** 2 + 1.63726359127718e58 ) * cos(34 * phi) ) # @torch.jit.script def Yl58_m35(theta, phi): return ( 6.45098796695342e-61 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 1.93727826682051e72 * cos(theta) ** 23 - 4.26201218700512e72 * cos(theta) ** 21 + 3.96027681093396e72 * cos(theta) ** 19 - 2.03365565966879e72 * cos(theta) ** 17 + 6.34351306685678e71 * cos(theta) ** 15 - 1.2449885458317e71 * cos(theta) ** 13 + 1.54141439007735e70 * cos(theta) ** 11 - 1.17583621989257e69 * cos(theta) ** 9 + 5.23887424704609e67 * cos(theta) ** 7 - 1.2347515060378e66 * cos(theta) ** 5 + 1.27293969694619e64 * cos(theta) ** 3 - 3.65437233573068e61 * cos(theta) ) * cos(35 * phi) ) # @torch.jit.script def Yl58_m36(theta, phi): return ( 1.38738944771762e-62 * (1.0 - cos(theta) ** 2) ** 18 * ( 4.45574001368717e73 * cos(theta) ** 22 - 8.95022559271075e73 * cos(theta) ** 20 + 7.52452594077453e73 * cos(theta) ** 18 - 3.45721462143694e73 * cos(theta) ** 16 + 9.51526960028517e72 * cos(theta) ** 14 - 1.61848510958122e72 * cos(theta) ** 12 + 1.69555582908508e71 * cos(theta) ** 10 - 1.05825259790331e70 * cos(theta) ** 8 + 3.66721197293227e68 * cos(theta) ** 6 - 6.173757530189e66 * cos(theta) ** 4 + 3.81881909083856e64 * cos(theta) ** 2 - 3.65437233573068e61 ) * cos(36 * phi) ) # @torch.jit.script def Yl58_m37(theta, phi): return ( 3.0347662385546e-64 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 9.80262803011178e74 * cos(theta) ** 21 - 1.79004511854215e75 * cos(theta) ** 19 + 1.35441466933941e75 * cos(theta) ** 17 - 5.53154339429911e74 * cos(theta) ** 15 + 1.33213774403992e74 * cos(theta) ** 13 - 1.94218213149746e73 * cos(theta) ** 11 + 1.69555582908508e72 * cos(theta) ** 9 - 8.46602078322649e70 * cos(theta) ** 7 + 2.20032718375936e69 * cos(theta) ** 5 - 2.4695030120756e67 * cos(theta) ** 3 + 7.63763818167712e64 * cos(theta) ) * cos(37 * phi) ) # @torch.jit.script def Yl58_m38(theta, phi): return ( 6.75896161524998e-66 * (1.0 - cos(theta) ** 2) ** 19 * ( 2.05855188632347e76 * cos(theta) ** 20 - 3.40108572523009e76 * cos(theta) ** 18 + 2.30250493787701e76 * cos(theta) ** 16 - 8.29731509144867e75 * cos(theta) ** 14 + 1.7317790672519e75 * cos(theta) ** 12 - 2.1364003446472e74 * cos(theta) ** 10 + 1.52600024617657e73 * cos(theta) ** 8 - 5.92621454825854e71 * cos(theta) ** 6 + 1.10016359187968e70 * cos(theta) ** 4 - 7.4085090362268e67 * cos(theta) ** 2 + 7.63763818167712e64 ) * cos(38 * phi) ) # @torch.jit.script def Yl58_m39(theta, phi): return ( 1.53454318593721e-67 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 4.11710377264695e77 * cos(theta) ** 19 - 6.12195430541416e77 * cos(theta) ** 17 + 3.68400790060321e77 * cos(theta) ** 15 - 1.16162411280281e77 * cos(theta) ** 13 + 2.07813488070228e76 * cos(theta) ** 11 - 2.1364003446472e75 * cos(theta) ** 9 + 1.22080019694126e74 * cos(theta) ** 7 - 3.55572872895513e72 * cos(theta) ** 5 + 4.40065436751872e70 * cos(theta) ** 3 - 1.48170180724536e68 * cos(theta) ) * cos(39 * phi) ) # @torch.jit.script def Yl58_m40(theta, phi): return ( 3.55622537727517e-69 * (1.0 - cos(theta) ** 2) ** 20 * ( 7.8224971680292e78 * cos(theta) ** 18 - 1.04073223192041e79 * cos(theta) ** 16 + 5.52601185090481e78 * cos(theta) ** 14 - 1.51011134664366e78 * cos(theta) ** 12 + 2.28594836877251e77 * cos(theta) ** 10 - 1.92276031018248e76 * cos(theta) ** 8 + 8.54560137858882e74 * cos(theta) ** 6 - 1.77786436447756e73 * cos(theta) ** 4 + 1.32019631025562e71 * cos(theta) ** 2 - 1.48170180724536e68 ) * cos(40 * phi) ) # @torch.jit.script def Yl58_m41(theta, phi): return ( 8.42433108841187e-71 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 1.40804949024526e80 * cos(theta) ** 17 - 1.66517157107265e80 * cos(theta) ** 15 + 7.73641659126674e79 * cos(theta) ** 13 - 1.81213361597239e79 * cos(theta) ** 11 + 2.28594836877251e78 * cos(theta) ** 9 - 1.53820824814599e77 * cos(theta) ** 7 + 5.12736082715329e75 * cos(theta) ** 5 - 7.11145745791025e73 * cos(theta) ** 3 + 2.64039262051123e71 * cos(theta) ) * cos(41 * phi) ) # @torch.jit.script def Yl58_m42(theta, phi): return ( 2.04320040604098e-72 * (1.0 - cos(theta) ** 2) ** 21 * ( 2.39368413341693e81 * cos(theta) ** 16 - 2.49775735660898e81 * cos(theta) ** 14 + 1.00573415686468e81 * cos(theta) ** 12 - 1.99334697756963e80 * cos(theta) ** 10 + 2.05735353189526e79 * cos(theta) ** 8 - 1.07674577370219e78 * cos(theta) ** 6 + 2.56368041357665e76 * cos(theta) ** 4 - 2.13343723737308e74 * cos(theta) ** 2 + 2.64039262051123e71 ) * cos(42 * phi) ) # @torch.jit.script def Yl58_m43(theta, phi): return ( 5.08265097765732e-74 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 3.8298946134671e82 * cos(theta) ** 15 - 3.49686029925257e82 * cos(theta) ** 13 + 1.20688098823761e82 * cos(theta) ** 11 - 1.99334697756963e81 * cos(theta) ** 9 + 1.64588282551621e80 * cos(theta) ** 7 - 6.46047464221315e78 * cos(theta) ** 5 + 1.02547216543066e77 * cos(theta) ** 3 - 4.26687447474615e74 * cos(theta) ) * cos(43 * phi) ) # @torch.jit.script def Yl58_m44(theta, phi): return ( 1.29940511679801e-75 * (1.0 - cos(theta) ** 2) ** 22 * ( 5.74484192020064e83 * cos(theta) ** 14 - 4.54591838902833e83 * cos(theta) ** 12 + 1.32756908706137e83 * cos(theta) ** 10 - 1.79401227981266e82 * cos(theta) ** 8 + 1.15211797786134e81 * cos(theta) ** 6 - 3.23023732110657e79 * cos(theta) ** 4 + 3.07641649629197e77 * cos(theta) ** 2 - 4.26687447474615e74 ) * cos(44 * phi) ) # @torch.jit.script def Yl58_m45(theta, phi): return ( 3.42185767810634e-77 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 8.0427786882809e84 * cos(theta) ** 13 - 5.455102066834e84 * cos(theta) ** 11 + 1.32756908706137e84 * cos(theta) ** 9 - 1.43520982385013e83 * cos(theta) ** 7 + 6.91270786716807e81 * cos(theta) ** 5 - 1.29209492844263e80 * cos(theta) ** 3 + 6.15283299258395e77 * cos(theta) ) * cos(45 * phi) ) # @torch.jit.script def Yl58_m46(theta, phi): return ( 9.30622603247787e-79 * (1.0 - cos(theta) ** 2) ** 23 * ( 1.04556122947652e86 * cos(theta) ** 12 - 6.0006122735174e85 * cos(theta) ** 10 + 1.19481217835523e85 * cos(theta) ** 8 - 1.00464687669509e84 * cos(theta) ** 6 + 3.45635393358403e82 * cos(theta) ** 4 - 3.87628478532789e80 * cos(theta) ** 2 + 6.15283299258395e77 ) * cos(46 * phi) ) # @torch.jit.script def Yl58_m47(theta, phi): return ( 2.62173217560465e-80 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 1.25467347537182e87 * cos(theta) ** 11 - 6.0006122735174e86 * cos(theta) ** 9 + 9.55849742684188e85 * cos(theta) ** 7 - 6.02788126017056e84 * cos(theta) ** 5 + 1.38254157343361e83 * cos(theta) ** 3 - 7.75256957065578e80 * cos(theta) ) * cos(47 * phi) ) # @torch.jit.script def Yl58_m48(theta, phi): return ( 7.67783984627058e-82 * (1.0 - cos(theta) ** 2) ** 24 * ( 1.380140822909e88 * cos(theta) ** 10 - 5.40055104616566e87 * cos(theta) ** 8 + 6.69094819878932e86 * cos(theta) ** 6 - 3.01394063008528e85 * cos(theta) ** 4 + 4.14762472030084e83 * cos(theta) ** 2 - 7.75256957065578e80 ) * cos(48 * phi) ) # @torch.jit.script def Yl58_m49(theta, phi): return ( 2.34718412931624e-83 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.380140822909e89 * cos(theta) ** 9 - 4.32044083693253e88 * cos(theta) ** 7 + 4.01456891927359e87 * cos(theta) ** 5 - 1.20557625203411e86 * cos(theta) ** 3 + 8.29524944060168e83 * cos(theta) ) * cos(49 * phi) ) # @torch.jit.script def Yl58_m50(theta, phi): return ( 7.52859660499083e-85 * (1.0 - cos(theta) ** 2) ** 25 * ( 1.2421267406181e90 * cos(theta) ** 8 - 3.02430858585277e89 * cos(theta) ** 6 + 2.00728445963679e88 * cos(theta) ** 4 - 3.61672875610233e86 * cos(theta) ** 2 + 8.29524944060168e83 ) * cos(50 * phi) ) # @torch.jit.script def Yl58_m51(theta, phi): return ( 2.5495045129487e-86 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 9.93701392494482e90 * cos(theta) ** 7 - 1.81458515151166e90 * cos(theta) ** 5 + 8.02913783854718e88 * cos(theta) ** 3 - 7.23345751220467e86 * cos(theta) ) * cos(51 * phi) ) # @torch.jit.script def Yl58_m52(theta, phi): return ( 9.18777650810753e-88 * (1.0 - cos(theta) ** 2) ** 26 * ( 6.95590974746137e91 * cos(theta) ** 6 - 9.07292575755831e90 * cos(theta) ** 4 + 2.40874135156415e89 * cos(theta) ** 2 - 7.23345751220467e86 ) * cos(52 * phi) ) # @torch.jit.script def Yl58_m53(theta, phi): return ( 3.56019108124478e-89 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 4.17354584847682e92 * cos(theta) ** 5 - 3.62917030302332e91 * cos(theta) ** 3 + 4.81748270312831e89 * cos(theta) ) * cos(53 * phi) ) # @torch.jit.script def Yl58_m54(theta, phi): return ( 1.50445531998027e-90 * (1.0 - cos(theta) ** 2) ** 27 * ( 2.08677292423841e93 * cos(theta) ** 4 - 1.088751090907e92 * cos(theta) ** 2 + 4.81748270312831e89 ) * cos(54 * phi) ) # @torch.jit.script def Yl58_m55(theta, phi): return ( 7.07636257528082e-92 * (1.0 - cos(theta) ** 2) ** 27.5 * (8.34709169695365e93 * cos(theta) ** 3 - 2.17750218181399e92 * cos(theta)) * cos(55 * phi) ) # @torch.jit.script def Yl58_m56(theta, phi): return ( 3.82645864466199e-93 * (1.0 - cos(theta) ** 2) ** 28 * (2.50412750908609e94 * cos(theta) ** 2 - 2.17750218181399e92) * cos(56 * phi) ) # @torch.jit.script def Yl58_m57(theta, phi): return ( 12.6362887339723 * (1.0 - cos(theta) ** 2) ** 28.5 * cos(57 * phi) * cos(theta) ) # @torch.jit.script def Yl58_m58(theta, phi): return 1.17324995487893 * (1.0 - cos(theta) ** 2) ** 29 * cos(58 * phi) # @torch.jit.script def Yl59_m_minus_59(theta, phi): return 1.17821086476446 * (1.0 - cos(theta) ** 2) ** 29.5 * sin(59 * phi) # @torch.jit.script def Yl59_m_minus_58(theta, phi): return 12.7986459962836 * (1.0 - cos(theta) ** 2) ** 29 * sin(58 * phi) * cos(theta) # @torch.jit.script def Yl59_m_minus_57(theta, phi): return ( 3.34117835278681e-95 * (1.0 - cos(theta) ** 2) ** 28.5 * (2.92982918563073e96 * cos(theta) ** 2 - 2.50412750908609e94) * sin(57 * phi) ) # @torch.jit.script def Yl59_m_minus_56(theta, phi): return ( 6.2328873960835e-94 * (1.0 - cos(theta) ** 2) ** 28 * (9.76609728543577e95 * cos(theta) ** 3 - 2.50412750908609e94 * cos(theta)) * sin(56 * phi) ) # @torch.jit.script def Yl59_m_minus_55(theta, phi): return ( 1.33680541719571e-92 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 2.44152432135894e95 * cos(theta) ** 4 - 1.25206375454305e94 * cos(theta) ** 2 + 5.44375545453499e91 ) * sin(55 * phi) ) # @torch.jit.script def Yl59_m_minus_54(theta, phi): return ( 3.19157918962223e-91 * (1.0 - cos(theta) ** 2) ** 27 * ( 4.88304864271788e94 * cos(theta) ** 5 - 4.17354584847682e93 * cos(theta) ** 3 + 5.44375545453499e91 * cos(theta) ) * sin(54 * phi) ) # @torch.jit.script def Yl59_m_minus_53(theta, phi): return ( 8.3103721316322e-90 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 8.13841440452981e93 * cos(theta) ** 6 - 1.04338646211921e93 * cos(theta) ** 4 + 2.72187772726749e91 * cos(theta) ** 2 - 8.02913783854718e88 ) * sin(53 * phi) ) # @torch.jit.script def Yl59_m_minus_52(theta, phi): return ( 2.32690419685702e-88 * (1.0 - cos(theta) ** 2) ** 26 * ( 1.16263062921854e93 * cos(theta) ** 7 - 2.08677292423841e92 * cos(theta) ** 5 + 9.07292575755831e90 * cos(theta) ** 3 - 8.02913783854718e88 * cos(theta) ) * sin(52 * phi) ) # @torch.jit.script def Yl59_m_minus_51(theta, phi): return ( 6.9340183368084e-87 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 1.45328828652318e92 * cos(theta) ** 8 - 3.47795487373069e91 * cos(theta) ** 6 + 2.26823143938958e90 * cos(theta) ** 4 - 4.01456891927359e88 * cos(theta) ** 2 + 9.04182189025583e85 ) * sin(51 * phi) ) # @torch.jit.script def Yl59_m_minus_50(theta, phi): return ( 2.18173793550562e-85 * (1.0 - cos(theta) ** 2) ** 25 * ( 1.61476476280353e91 * cos(theta) ** 9 - 4.96850696247241e90 * cos(theta) ** 7 + 4.53646287877916e89 * cos(theta) ** 5 - 1.33818963975786e88 * cos(theta) ** 3 + 9.04182189025583e85 * cos(theta) ) * sin(50 * phi) ) # @torch.jit.script def Yl59_m_minus_49(theta, phi): return ( 7.20304009217948e-84 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.61476476280353e90 * cos(theta) ** 10 - 6.21063370309051e89 * cos(theta) ** 8 + 7.56077146463193e88 * cos(theta) ** 6 - 3.34547409939466e87 * cos(theta) ** 4 + 4.52091094512792e85 * cos(theta) ** 2 - 8.29524944060168e82 ) * sin(49 * phi) ) # @torch.jit.script def Yl59_m_minus_48(theta, phi): return ( 2.48269890330301e-82 * (1.0 - cos(theta) ** 2) ** 24 * ( 1.46796796618503e89 * cos(theta) ** 11 - 6.90070411454501e88 * cos(theta) ** 9 + 1.08011020923313e88 * cos(theta) ** 7 - 6.69094819878932e86 * cos(theta) ** 5 + 1.50697031504264e85 * cos(theta) ** 3 - 8.29524944060168e82 * cos(theta) ) * sin(48 * phi) ) # @torch.jit.script def Yl59_m_minus_47(theta, phi): return ( 8.89624150767567e-81 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 1.22330663848752e88 * cos(theta) ** 12 - 6.90070411454501e87 * cos(theta) ** 10 + 1.35013776154142e87 * cos(theta) ** 8 - 1.11515803313155e86 * cos(theta) ** 6 + 3.7674257876066e84 * cos(theta) ** 4 - 4.14762472030084e82 * cos(theta) ** 2 + 6.46047464221315e79 ) * sin(47 * phi) ) # @torch.jit.script def Yl59_m_minus_46(theta, phi): return ( 3.30241138659108e-79 * (1.0 - cos(theta) ** 2) ** 23 * ( 9.41005106528865e86 * cos(theta) ** 13 - 6.2733673768591e86 * cos(theta) ** 11 + 1.50015306837935e86 * cos(theta) ** 9 - 1.59308290447365e85 * cos(theta) ** 7 + 7.53485157521319e83 * cos(theta) ** 5 - 1.38254157343361e82 * cos(theta) ** 3 + 6.46047464221315e79 * cos(theta) ) * sin(46 * phi) ) # @torch.jit.script def Yl59_m_minus_45(theta, phi): return ( 1.26616364741849e-77 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 6.72146504663475e85 * cos(theta) ** 14 - 5.22780614738258e85 * cos(theta) ** 12 + 1.50015306837935e85 * cos(theta) ** 10 - 1.99135363059206e84 * cos(theta) ** 8 + 1.25580859586887e83 * cos(theta) ** 6 - 3.45635393358403e81 * cos(theta) ** 4 + 3.23023732110657e79 * cos(theta) ** 2 - 4.39488070898854e76 ) * sin(45 * phi) ) # @torch.jit.script def Yl59_m_minus_44(theta, phi): return ( 5.00094570655272e-76 * (1.0 - cos(theta) ** 2) ** 22 * ( 4.4809766977565e84 * cos(theta) ** 15 - 4.02138934414045e84 * cos(theta) ** 13 + 1.3637755167085e84 * cos(theta) ** 11 - 2.21261514510229e83 * cos(theta) ** 9 + 1.79401227981266e82 * cos(theta) ** 7 - 6.91270786716807e80 * cos(theta) ** 5 + 1.07674577370219e79 * cos(theta) ** 3 - 4.39488070898854e76 * cos(theta) ) * sin(44 * phi) ) # @torch.jit.script def Yl59_m_minus_43(theta, phi): return ( 2.03016222794868e-74 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 2.80061043609781e83 * cos(theta) ** 16 - 2.87242096010032e83 * cos(theta) ** 14 + 1.13647959725708e83 * cos(theta) ** 12 - 2.21261514510229e82 * cos(theta) ** 10 + 2.24251534976583e81 * cos(theta) ** 8 - 1.15211797786134e80 * cos(theta) ** 6 + 2.69186443425548e78 * cos(theta) ** 4 - 2.19744035449427e76 * cos(theta) ** 2 + 2.66679654671634e73 ) * sin(43 * phi) ) # @torch.jit.script def Yl59_m_minus_42(theta, phi): return ( 8.45386464102844e-73 * (1.0 - cos(theta) ** 2) ** 21 * ( 1.64741790358695e82 * cos(theta) ** 17 - 1.91494730673355e82 * cos(theta) ** 15 + 8.74215074813141e81 * cos(theta) ** 13 - 2.01146831372935e81 * cos(theta) ** 11 + 2.49168372196203e80 * cos(theta) ** 9 - 1.64588282551621e79 * cos(theta) ** 7 + 5.38372886851096e77 * cos(theta) ** 5 - 7.32480118164756e75 * cos(theta) ** 3 + 2.66679654671634e73 * cos(theta) ) * sin(42 * phi) ) # @torch.jit.script def Yl59_m_minus_41(theta, phi): return ( 3.60455975337536e-71 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 9.15232168659416e80 * cos(theta) ** 18 - 1.19684206670847e81 * cos(theta) ** 16 + 6.24439339152244e80 * cos(theta) ** 14 - 1.67622359477446e80 * cos(theta) ** 12 + 2.49168372196203e79 * cos(theta) ** 10 - 2.05735353189526e78 * cos(theta) ** 8 + 8.97288144751826e76 * cos(theta) ** 6 - 1.83120029541189e75 * cos(theta) ** 4 + 1.33339827335817e73 * cos(theta) ** 2 - 1.46688478917291e70 ) * sin(41 * phi) ) # @torch.jit.script def Yl59_m_minus_40(theta, phi): return ( 1.57119117009171e-69 * (1.0 - cos(theta) ** 2) ** 20 * ( 4.81701141399693e79 * cos(theta) ** 19 - 7.04024745122628e79 * cos(theta) ** 17 + 4.16292892768163e79 * cos(theta) ** 15 - 1.28940276521112e79 * cos(theta) ** 13 + 2.26516701996549e78 * cos(theta) ** 11 - 2.28594836877251e77 * cos(theta) ** 9 + 1.28184020678832e76 * cos(theta) ** 7 - 3.66240059082378e74 * cos(theta) ** 5 + 4.44466091119391e72 * cos(theta) ** 3 - 1.46688478917291e70 * cos(theta) ) * sin(40 * phi) ) # @torch.jit.script def Yl59_m_minus_39(theta, phi): return ( 6.99135934714332e-68 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 2.40850570699846e78 * cos(theta) ** 20 - 3.9112485840146e78 * cos(theta) ** 18 + 2.60183057980102e78 * cos(theta) ** 16 - 9.21001975150802e77 * cos(theta) ** 14 + 1.88763918330457e77 * cos(theta) ** 12 - 2.28594836877251e76 * cos(theta) ** 10 + 1.6023002584854e75 * cos(theta) ** 8 - 6.1040009847063e73 * cos(theta) ** 6 + 1.11116522779848e72 * cos(theta) ** 4 - 7.33442394586453e69 * cos(theta) ** 2 + 7.4085090362268e66 ) * sin(39 * phi) ) # @torch.jit.script def Yl59_m_minus_38(theta, phi): return ( 3.17164309407581e-66 * (1.0 - cos(theta) ** 2) ** 19 * ( 1.14690747952308e77 * cos(theta) ** 21 - 2.05855188632347e77 * cos(theta) ** 19 + 1.53048857635354e77 * cos(theta) ** 17 - 6.14001316767201e76 * cos(theta) ** 15 + 1.45203014100352e76 * cos(theta) ** 13 - 2.07813488070228e75 * cos(theta) ** 11 + 1.78033362053934e74 * cos(theta) ** 9 - 8.72000140672328e72 * cos(theta) ** 7 + 2.22233045559695e71 * cos(theta) ** 5 - 2.44480798195484e69 * cos(theta) ** 3 + 7.4085090362268e66 * cos(theta) ) * sin(38 * phi) ) # @torch.jit.script def Yl59_m_minus_37(theta, phi): return ( 1.46514807105522e-64 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 5.21321581601399e75 * cos(theta) ** 22 - 1.02927594316174e76 * cos(theta) ** 20 + 8.50271431307522e75 * cos(theta) ** 18 - 3.83750822979501e75 * cos(theta) ** 16 + 1.03716438643108e75 * cos(theta) ** 14 - 1.7317790672519e74 * cos(theta) ** 12 + 1.78033362053934e73 * cos(theta) ** 10 - 1.09000017584041e72 * cos(theta) ** 8 + 3.70388409266159e70 * cos(theta) ** 6 - 6.11201995488711e68 * cos(theta) ** 4 + 3.7042545181134e66 * cos(theta) ** 2 - 3.47165371894414e63 ) * sin(37 * phi) ) # @torch.jit.script def Yl59_m_minus_36(theta, phi): return ( 6.88463708935914e-63 * (1.0 - cos(theta) ** 2) ** 18 * ( 2.26661557218e74 * cos(theta) ** 23 - 4.90131401505589e74 * cos(theta) ** 21 + 4.47511279635538e74 * cos(theta) ** 19 - 2.25735778223236e74 * cos(theta) ** 17 + 6.91442924287389e73 * cos(theta) ** 15 - 1.33213774403992e73 * cos(theta) ** 13 + 1.61848510958122e72 * cos(theta) ** 11 - 1.21111130648935e71 * cos(theta) ** 9 + 5.29126298951656e69 * cos(theta) ** 7 - 1.22240399097742e68 * cos(theta) ** 5 + 1.2347515060378e66 * cos(theta) ** 3 - 3.47165371894414e63 * cos(theta) ) * sin(36 * phi) ) # @torch.jit.script def Yl59_m_minus_35(theta, phi): return ( 3.28736915333476e-61 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 9.44423155074998e72 * cos(theta) ** 24 - 2.22787000684359e73 * cos(theta) ** 22 + 2.23755639817769e73 * cos(theta) ** 20 - 1.25408765679575e73 * cos(theta) ** 18 + 4.32151827679618e72 * cos(theta) ** 16 - 9.51526960028517e71 * cos(theta) ** 14 + 1.34873759131768e71 * cos(theta) ** 12 - 1.21111130648935e70 * cos(theta) ** 10 + 6.6140787368957e68 * cos(theta) ** 8 - 2.03733998496237e67 * cos(theta) ** 6 + 3.0868787650945e65 * cos(theta) ** 4 - 1.73582685947207e63 * cos(theta) ** 2 + 1.52265513988778e60 ) * sin(35 * phi) ) # @torch.jit.script def Yl59_m_minus_34(theta, phi): return ( 1.59361132285127e-59 * (1.0 - cos(theta) ** 2) ** 17 * ( 3.77769262029999e71 * cos(theta) ** 25 - 9.68639133410255e71 * cos(theta) ** 23 + 1.06550304675128e72 * cos(theta) ** 21 - 6.6004613515566e71 * cos(theta) ** 19 + 2.54206957458599e71 * cos(theta) ** 17 - 6.34351306685678e70 * cos(theta) ** 15 + 1.03749045485975e70 * cos(theta) ** 13 - 1.10101027862668e69 * cos(theta) ** 11 + 7.34897637432855e67 * cos(theta) ** 9 - 2.91048569280339e66 * cos(theta) ** 7 + 6.173757530189e64 * cos(theta) ** 5 - 5.78608953157357e62 * cos(theta) ** 3 + 1.52265513988778e60 * cos(theta) ) * sin(34 * phi) ) # @torch.jit.script def Yl59_m_minus_33(theta, phi): return ( 7.83629099946985e-58 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 1.45295870011538e70 * cos(theta) ** 26 - 4.03599638920939e70 * cos(theta) ** 24 + 4.84319566705127e70 * cos(theta) ** 22 - 3.3002306757783e70 * cos(theta) ** 20 + 1.41226087476999e70 * cos(theta) ** 18 - 3.96469566678549e69 * cos(theta) ** 16 + 7.4106461061411e68 * cos(theta) ** 14 - 9.17508565522231e67 * cos(theta) ** 12 + 7.34897637432855e66 * cos(theta) ** 10 - 3.63810711600423e65 * cos(theta) ** 8 + 1.02895958836483e64 * cos(theta) ** 6 - 1.44652238289339e62 * cos(theta) ** 4 + 7.61327569943891e59 * cos(theta) ** 2 - 6.2971676587584e56 ) * sin(33 * phi) ) # @torch.jit.script def Yl59_m_minus_32(theta, phi): return ( 3.90558730877798e-56 * (1.0 - cos(theta) ** 2) ** 16 * ( 5.38132851894586e68 * cos(theta) ** 27 - 1.61439855568376e69 * cos(theta) ** 25 + 2.10573724654403e69 * cos(theta) ** 23 - 1.57153841703729e69 * cos(theta) ** 21 + 7.43295197247365e68 * cos(theta) ** 19 - 2.33217392163852e68 * cos(theta) ** 17 + 4.9404307374274e67 * cos(theta) ** 15 - 7.05775819632485e66 * cos(theta) ** 13 + 6.68088761302595e65 * cos(theta) ** 11 - 4.0423412400047e64 * cos(theta) ** 9 + 1.46994226909262e63 * cos(theta) ** 7 - 2.89304476578679e61 * cos(theta) ** 5 + 2.53775856647964e59 * cos(theta) ** 3 - 6.2971676587584e56 * cos(theta) ) * sin(32 * phi) ) # @torch.jit.script def Yl59_m_minus_31(theta, phi): return ( 1.97145134236406e-54 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 1.92190304248066e67 * cos(theta) ** 28 - 6.2092252141683e67 * cos(theta) ** 26 + 8.77390519393347e67 * cos(theta) ** 24 - 7.14335644107857e67 * cos(theta) ** 22 + 3.71647598623683e67 * cos(theta) ** 20 - 1.29565217868807e67 * cos(theta) ** 18 + 3.08776921089212e66 * cos(theta) ** 16 - 5.04125585451775e65 * cos(theta) ** 14 + 5.5674063441883e64 * cos(theta) ** 12 - 4.0423412400047e63 * cos(theta) ** 10 + 1.83742783636577e62 * cos(theta) ** 8 - 4.82174127631131e60 * cos(theta) ** 6 + 6.34439641619909e58 * cos(theta) ** 4 - 3.1485838293792e56 * cos(theta) ** 2 + 2.4714158786336e53 ) * sin(31 * phi) ) # @torch.jit.script def Yl59_m_minus_30(theta, phi): return ( 1.00717819832226e-52 * (1.0 - cos(theta) ** 2) ** 15 * ( 6.62725187062298e65 * cos(theta) ** 29 - 2.29971304228456e66 * cos(theta) ** 27 + 3.50956207757339e66 * cos(theta) ** 25 - 3.10580714829503e66 * cos(theta) ** 23 + 1.76975046963658e66 * cos(theta) ** 21 - 6.81922199309509e65 * cos(theta) ** 19 + 1.81633482993654e65 * cos(theta) ** 17 - 3.36083723634517e64 * cos(theta) ** 15 + 4.28262026476023e63 * cos(theta) ** 13 - 3.67485567273155e62 * cos(theta) ** 11 + 2.04158648485086e61 * cos(theta) ** 9 - 6.88820182330187e59 * cos(theta) ** 7 + 1.26887928323982e58 * cos(theta) ** 5 - 1.0495279431264e56 * cos(theta) ** 3 + 2.4714158786336e53 * cos(theta) ) * sin(30 * phi) ) # @torch.jit.script def Yl59_m_minus_29(theta, phi): return ( 5.20429549014948e-51 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 2.20908395687433e64 * cos(theta) ** 30 - 8.21326086530198e64 * cos(theta) ** 28 + 1.34983156829746e65 * cos(theta) ** 26 - 1.2940863117896e65 * cos(theta) ** 24 + 8.04432031652993e64 * cos(theta) ** 22 - 3.40961099654755e64 * cos(theta) ** 20 + 1.0090749055203e64 * cos(theta) ** 18 - 2.10052327271573e63 * cos(theta) ** 16 + 3.05901447482873e62 * cos(theta) ** 14 - 3.06237972727629e61 * cos(theta) ** 12 + 2.04158648485086e60 * cos(theta) ** 10 - 8.61025227912734e58 * cos(theta) ** 8 + 2.1147988053997e57 * cos(theta) ** 6 - 2.623819857816e55 * cos(theta) ** 4 + 1.2357079393168e53 * cos(theta) ** 2 - 9.25623924581871e49 ) * sin(29 * phi) ) # @torch.jit.script def Yl59_m_minus_28(theta, phi): return ( 2.71821703594654e-49 * (1.0 - cos(theta) ** 2) ** 14 * ( 7.12607728023976e62 * cos(theta) ** 31 - 2.83215891906965e63 * cos(theta) ** 29 + 4.99937617887947e63 * cos(theta) ** 27 - 5.17634524715839e63 * cos(theta) ** 25 + 3.49753057240432e63 * cos(theta) ** 23 - 1.62362428407026e63 * cos(theta) ** 21 + 5.31092055537001e62 * cos(theta) ** 19 - 1.2356019251269e62 * cos(theta) ** 17 + 2.03934298321916e61 * cos(theta) ** 15 - 2.35567671328945e60 * cos(theta) ** 13 + 1.85598771350078e59 * cos(theta) ** 11 - 9.56694697680815e57 * cos(theta) ** 9 + 3.021141150571e56 * cos(theta) ** 7 - 5.247639715632e54 * cos(theta) ** 5 + 4.11902646438933e52 * cos(theta) ** 3 - 9.25623924581871e49 * cos(theta) ) * sin(28 * phi) ) # @torch.jit.script def Yl59_m_minus_27(theta, phi): return ( 1.43422981181384e-47 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 2.22689915007493e61 * cos(theta) ** 32 - 9.44052973023216e61 * cos(theta) ** 30 + 1.78549149245695e62 * cos(theta) ** 28 - 1.99090201813784e62 * cos(theta) ** 26 + 1.45730440516846e62 * cos(theta) ** 24 - 7.38011038213755e61 * cos(theta) ** 22 + 2.655460277685e61 * cos(theta) ** 20 - 6.86445513959389e60 * cos(theta) ** 18 + 1.27458936451197e60 * cos(theta) ** 16 - 1.68262622377818e59 * cos(theta) ** 14 + 1.54665642791732e58 * cos(theta) ** 12 - 9.56694697680815e56 * cos(theta) ** 10 + 3.77642643821374e55 * cos(theta) ** 8 - 8.74606619272001e53 * cos(theta) ** 6 + 1.02975661609733e52 * cos(theta) ** 4 - 4.62811962290936e49 * cos(theta) ** 2 + 3.32479857967626e46 ) * sin(27 * phi) ) # @torch.jit.script def Yl59_m_minus_26(theta, phi): return ( 7.64055561100451e-46 * (1.0 - cos(theta) ** 2) ** 13 * ( 6.74817924265129e59 * cos(theta) ** 33 - 3.04533217104263e60 * cos(theta) ** 31 + 6.1568672153688e60 * cos(theta) ** 29 - 7.3737111782883e60 * cos(theta) ** 27 + 5.82921762067386e60 * cos(theta) ** 25 - 3.20874364440763e60 * cos(theta) ** 23 + 1.26450489413572e60 * cos(theta) ** 21 - 3.61287112610205e59 * cos(theta) ** 19 + 7.49758449712925e58 * cos(theta) ** 17 - 1.12175081585212e58 * cos(theta) ** 15 + 1.18973571378255e57 * cos(theta) ** 13 - 8.69722452437105e55 * cos(theta) ** 11 + 4.19602937579305e54 * cos(theta) ** 9 - 1.24943802753143e53 * cos(theta) ** 7 + 2.05951323219466e51 * cos(theta) ** 5 - 1.54270654096979e49 * cos(theta) ** 3 + 3.32479857967626e46 * cos(theta) ) * sin(26 * phi) ) # @torch.jit.script def Yl59_m_minus_25(theta, phi): return ( 4.10746491439213e-44 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 1.98475860077979e58 * cos(theta) ** 34 - 9.51666303450823e58 * cos(theta) ** 32 + 2.0522890717896e59 * cos(theta) ** 30 - 2.63346827796011e59 * cos(theta) ** 28 + 2.24200677718225e59 * cos(theta) ** 26 - 1.33697651850318e59 * cos(theta) ** 24 + 5.74774951879871e58 * cos(theta) ** 22 - 1.80643556305102e58 * cos(theta) ** 20 + 4.16532472062736e57 * cos(theta) ** 18 - 7.01094259907576e56 * cos(theta) ** 16 + 8.49811224130395e55 * cos(theta) ** 14 - 7.24768710364254e54 * cos(theta) ** 12 + 4.19602937579305e53 * cos(theta) ** 10 - 1.56179753441429e52 * cos(theta) ** 8 + 3.43252205365777e50 * cos(theta) ** 6 - 3.85676635242446e48 * cos(theta) ** 4 + 1.66239928983813e46 * cos(theta) ** 2 - 1.15044933552812e43 ) * sin(25 * phi) ) # @torch.jit.script def Yl59_m_minus_24(theta, phi): return ( 2.22714004920008e-42 * (1.0 - cos(theta) ** 2) ** 12 * ( 5.67073885937083e56 * cos(theta) ** 35 - 2.88383728318431e57 * cos(theta) ** 33 + 6.62028732835355e57 * cos(theta) ** 31 - 9.08092509641416e57 * cos(theta) ** 29 + 8.30372880437872e57 * cos(theta) ** 27 - 5.34790607401271e57 * cos(theta) ** 25 + 2.49902152991248e57 * cos(theta) ** 23 - 8.60207410976678e56 * cos(theta) ** 21 + 2.19227616875124e56 * cos(theta) ** 19 - 4.12408388180927e55 * cos(theta) ** 17 + 5.6654081608693e54 * cos(theta) ** 15 - 5.57514392587888e53 * cos(theta) ** 13 + 3.81457215981186e52 * cos(theta) ** 11 - 1.73533059379365e51 * cos(theta) ** 9 + 4.90360293379682e49 * cos(theta) ** 7 - 7.71353270484893e47 * cos(theta) ** 5 + 5.5413309661271e45 * cos(theta) ** 3 - 1.15044933552812e43 * cos(theta) ) * sin(24 * phi) ) # @torch.jit.script def Yl59_m_minus_23(theta, phi): return ( 1.21741268938137e-40 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.57520523871412e55 * cos(theta) ** 36 - 8.4818743623068e55 * cos(theta) ** 34 + 2.06883979011048e56 * cos(theta) ** 32 - 3.02697503213805e56 * cos(theta) ** 30 + 2.96561743013526e56 * cos(theta) ** 28 - 2.05688695154335e56 * cos(theta) ** 26 + 1.04125897079687e56 * cos(theta) ** 24 - 3.91003368625763e55 * cos(theta) ** 22 + 1.09613808437562e55 * cos(theta) ** 20 - 2.29115771211626e54 * cos(theta) ** 18 + 3.54088010054331e53 * cos(theta) ** 16 - 3.98224566134206e52 * cos(theta) ** 14 + 3.17881013317655e51 * cos(theta) ** 12 - 1.73533059379365e50 * cos(theta) ** 10 + 6.12950366724602e48 * cos(theta) ** 8 - 1.28558878414149e47 * cos(theta) ** 6 + 1.38533274153178e45 * cos(theta) ** 4 - 5.75224667764059e42 * cos(theta) ** 2 + 3.85023204661352e39 ) * sin(23 * phi) ) # @torch.jit.script def Yl59_m_minus_22(theta, phi): return ( 6.70572304312772e-39 * (1.0 - cos(theta) ** 2) ** 11 * ( 4.25731145598411e53 * cos(theta) ** 37 - 2.4233926749448e54 * cos(theta) ** 35 + 6.26921148518329e54 * cos(theta) ** 33 - 9.76443558754211e54 * cos(theta) ** 31 + 1.02262670004664e55 * cos(theta) ** 29 - 7.61809982053093e54 * cos(theta) ** 27 + 4.16503588318747e54 * cos(theta) ** 25 - 1.70001464619897e54 * cos(theta) ** 23 + 5.21970516369343e53 * cos(theta) ** 21 - 1.20587248006119e53 * cos(theta) ** 19 + 2.08287064737842e52 * cos(theta) ** 17 - 2.6548304408947e51 * cos(theta) ** 15 + 2.44523856398196e50 * cos(theta) ** 13 - 1.57757326708514e49 * cos(theta) ** 11 + 6.81055963027336e47 * cos(theta) ** 9 - 1.83655540591641e46 * cos(theta) ** 7 + 2.77066548306355e44 * cos(theta) ** 5 - 1.91741555921353e42 * cos(theta) ** 3 + 3.85023204661352e39 * cos(theta) ) * sin(22 * phi) ) # @torch.jit.script def Yl59_m_minus_21(theta, phi): return ( 3.72031677243794e-37 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.12034511999582e52 * cos(theta) ** 38 - 6.73164631929111e52 * cos(theta) ** 36 + 1.84388573093626e53 * cos(theta) ** 34 - 3.05138612110691e53 * cos(theta) ** 32 + 3.40875566682213e53 * cos(theta) ** 30 - 2.7207499359039e53 * cos(theta) ** 28 + 1.60193687814903e53 * cos(theta) ** 26 - 7.08339435916237e52 * cos(theta) ** 24 + 2.37259325622429e52 * cos(theta) ** 22 - 6.02936240030595e51 * cos(theta) ** 20 + 1.15715035965468e51 * cos(theta) ** 18 - 1.65926902555919e50 * cos(theta) ** 16 + 1.74659897427283e49 * cos(theta) ** 14 - 1.31464438923762e48 * cos(theta) ** 12 + 6.81055963027336e46 * cos(theta) ** 10 - 2.29569425739551e45 * cos(theta) ** 8 + 4.61777580510592e43 * cos(theta) ** 6 - 4.79353889803383e41 * cos(theta) ** 4 + 1.92511602330676e39 * cos(theta) ** 2 - 1.25088760448782e36 ) * sin(21 * phi) ) # @torch.jit.script def Yl59_m_minus_20(theta, phi): return ( 2.07805585796733e-35 * (1.0 - cos(theta) ** 2) ** 10 * ( 2.87267979486107e50 * cos(theta) ** 39 - 1.81936387007868e51 * cos(theta) ** 37 + 5.26824494553217e51 * cos(theta) ** 35 - 9.24662460941488e51 * cos(theta) ** 33 + 1.09959860220069e52 * cos(theta) ** 31 - 9.38189633070312e51 * cos(theta) ** 29 + 5.9330995487001e51 * cos(theta) ** 27 - 2.83335774366495e51 * cos(theta) ** 25 + 1.03156228531491e51 * cos(theta) ** 23 - 2.87112495252664e50 * cos(theta) ** 21 + 6.09026505081409e49 * cos(theta) ** 19 - 9.76040603270112e48 * cos(theta) ** 17 + 1.16439931618189e48 * cos(theta) ** 15 - 1.01126491479817e47 * cos(theta) ** 13 + 6.19141784570305e45 * cos(theta) ** 11 - 2.55077139710613e44 * cos(theta) ** 9 + 6.59682257872274e42 * cos(theta) ** 7 - 9.58707779606765e40 * cos(theta) ** 5 + 6.41705341102253e38 * cos(theta) ** 3 - 1.25088760448782e36 * cos(theta) ) * sin(20 * phi) ) # @torch.jit.script def Yl59_m_minus_19(theta, phi): return ( 1.16815577002e-33 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 7.18169948715268e48 * cos(theta) ** 40 - 4.78779965810179e49 * cos(theta) ** 38 + 1.46340137375894e50 * cos(theta) ** 36 - 2.71959547335732e50 * cos(theta) ** 34 + 3.43624563187715e50 * cos(theta) ** 32 - 3.12729877690104e50 * cos(theta) ** 30 + 2.11896412453575e50 * cos(theta) ** 28 - 1.08975297833267e50 * cos(theta) ** 26 + 4.29817618881212e49 * cos(theta) ** 24 - 1.30505679660302e49 * cos(theta) ** 22 + 3.04513252540704e48 * cos(theta) ** 20 - 5.42244779594507e47 * cos(theta) ** 18 + 7.2774957261368e46 * cos(theta) ** 16 - 7.2233208199869e45 * cos(theta) ** 14 + 5.15951487141921e44 * cos(theta) ** 12 - 2.55077139710613e43 * cos(theta) ** 10 + 8.24602822340343e41 * cos(theta) ** 8 - 1.59784629934461e40 * cos(theta) ** 6 + 1.60426335275563e38 * cos(theta) ** 4 - 6.25443802243911e35 * cos(theta) ** 2 + 3.95850507749311e32 ) * sin(19 * phi) ) # @torch.jit.script def Yl59_m_minus_18(theta, phi): return ( 6.60602158177914e-32 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.75163402125675e47 * cos(theta) ** 41 - 1.22764093797482e48 * cos(theta) ** 39 + 3.95513884799713e48 * cos(theta) ** 37 - 7.77027278102091e48 * cos(theta) ** 35 + 1.04128655511429e49 * cos(theta) ** 33 - 1.00880605706485e49 * cos(theta) ** 31 + 7.30677284322673e48 * cos(theta) ** 29 - 4.03612214197286e48 * cos(theta) ** 27 + 1.71927047552485e48 * cos(theta) ** 25 - 5.67415998523052e47 * cos(theta) ** 23 + 1.45006310733669e47 * cos(theta) ** 21 - 2.85391989260267e46 * cos(theta) ** 19 + 4.280879838904e45 * cos(theta) ** 17 - 4.8155472133246e44 * cos(theta) ** 15 + 3.96885759339939e43 * cos(theta) ** 13 - 2.3188830882783e42 * cos(theta) ** 11 + 9.16225358155936e40 * cos(theta) ** 9 - 2.2826375704923e39 * cos(theta) ** 7 + 3.20852670551126e37 * cos(theta) ** 5 - 2.08481267414637e35 * cos(theta) ** 3 + 3.95850507749311e32 * cos(theta) ) * sin(18 * phi) ) # @torch.jit.script def Yl59_m_minus_17(theta, phi): return ( 3.75673011225594e-30 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 4.17055719346846e45 * cos(theta) ** 42 - 3.06910234493704e46 * cos(theta) ** 40 + 1.04082601263082e47 * cos(theta) ** 38 - 2.15840910583914e47 * cos(theta) ** 36 + 3.06260751504202e47 * cos(theta) ** 34 - 3.15251892832766e47 * cos(theta) ** 32 + 2.43559094774224e47 * cos(theta) ** 30 - 1.44147219356174e47 * cos(theta) ** 28 + 6.61257875201864e46 * cos(theta) ** 26 - 2.36423332717938e46 * cos(theta) ** 24 + 6.59119594243949e45 * cos(theta) ** 22 - 1.42695994630133e45 * cos(theta) ** 20 + 2.37826657716889e44 * cos(theta) ** 18 - 3.00971700832787e43 * cos(theta) ** 16 + 2.83489828099957e42 * cos(theta) ** 14 - 1.93240257356525e41 * cos(theta) ** 12 + 9.16225358155936e39 * cos(theta) ** 10 - 2.85329696311537e38 * cos(theta) ** 8 + 5.34754450918544e36 * cos(theta) ** 6 - 5.21203168536592e34 * cos(theta) ** 4 + 1.97925253874655e32 * cos(theta) ** 2 - 1.22402754406095e29 ) * sin(17 * phi) ) # @torch.jit.script def Yl59_m_minus_16(theta, phi): return ( 2.14758825368198e-28 * (1.0 - cos(theta) ** 2) ** 8 * ( 9.6989702173685e43 * cos(theta) ** 43 - 7.4856154754562e44 * cos(theta) ** 41 + 2.66878464777134e45 * cos(theta) ** 39 - 5.83353812388957e45 * cos(theta) ** 37 + 8.75030718583435e45 * cos(theta) ** 35 - 9.55308766159897e45 * cos(theta) ** 33 + 7.85674499271691e45 * cos(theta) ** 31 - 4.97059377090254e45 * cos(theta) ** 29 + 2.44910324148839e45 * cos(theta) ** 27 - 9.45693330871753e44 * cos(theta) ** 25 + 2.86573736627804e44 * cos(theta) ** 23 - 6.79504736333968e43 * cos(theta) ** 21 + 1.25171925114152e43 * cos(theta) ** 19 - 1.77042176960463e42 * cos(theta) ** 17 + 1.88993218733304e41 * cos(theta) ** 15 - 1.48646351812711e40 * cos(theta) ** 13 + 8.32932143778124e38 * cos(theta) ** 11 - 3.17032995901708e37 * cos(theta) ** 9 + 7.63934929883634e35 * cos(theta) ** 7 - 1.04240633707318e34 * cos(theta) ** 5 + 6.59750846248851e31 * cos(theta) ** 3 - 1.22402754406095e29 * cos(theta) ) * sin(16 * phi) ) # @torch.jit.script def Yl59_m_minus_15(theta, phi): return ( 1.23369552622453e-26 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 2.2043114130383e42 * cos(theta) ** 44 - 1.78228939891814e43 * cos(theta) ** 42 + 6.67196161942835e43 * cos(theta) ** 40 - 1.53514161154989e44 * cos(theta) ** 38 + 2.43064088495399e44 * cos(theta) ** 36 - 2.80973166517617e44 * cos(theta) ** 34 + 2.45523281022403e44 * cos(theta) ** 32 - 1.65686459030085e44 * cos(theta) ** 30 + 8.74679729102995e43 * cos(theta) ** 28 - 3.63728204181443e43 * cos(theta) ** 26 + 1.19405723594918e43 * cos(theta) ** 24 - 3.08865789242713e42 * cos(theta) ** 22 + 6.2585962557076e41 * cos(theta) ** 20 - 9.83567649780351e40 * cos(theta) ** 18 + 1.18120761708315e40 * cos(theta) ** 16 - 1.06175965580508e39 * cos(theta) ** 14 + 6.94110119815103e37 * cos(theta) ** 12 - 3.17032995901708e36 * cos(theta) ** 10 + 9.54918662354542e34 * cos(theta) ** 8 - 1.73734389512197e33 * cos(theta) ** 6 + 1.64937711562213e31 * cos(theta) ** 4 - 6.12013772030474e28 * cos(theta) ** 2 + 3.70917437594227e25 ) * sin(15 * phi) ) # @torch.jit.script def Yl59_m_minus_14(theta, phi): return ( 7.11918217862839e-25 * (1.0 - cos(theta) ** 2) ** 7 * ( 4.89846980675177e40 * cos(theta) ** 45 - 4.1448590672515e41 * cos(theta) ** 43 + 1.6273077120557e42 * cos(theta) ** 41 - 3.93626054243561e42 * cos(theta) ** 39 + 6.56929968906483e42 * cos(theta) ** 37 - 8.0278047576462e42 * cos(theta) ** 35 + 7.44009942492132e42 * cos(theta) ** 33 - 5.34472448484144e42 * cos(theta) ** 31 + 3.01613699690688e42 * cos(theta) ** 29 - 1.34714149696831e42 * cos(theta) ** 27 + 4.77622894379673e41 * cos(theta) ** 25 - 1.34289473583788e41 * cos(theta) ** 23 + 2.98028393128933e40 * cos(theta) ** 21 - 5.17667184094921e39 * cos(theta) ** 19 + 6.94828010048913e38 * cos(theta) ** 17 - 7.07839770536721e37 * cos(theta) ** 15 + 5.33930861396233e36 * cos(theta) ** 13 - 2.88211814456098e35 * cos(theta) ** 11 + 1.06102073594949e34 * cos(theta) ** 9 - 2.48191985017425e32 * cos(theta) ** 7 + 3.29875423124426e30 * cos(theta) ** 5 - 2.04004590676825e28 * cos(theta) ** 3 + 3.70917437594227e25 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl59_m_minus_13(theta, phi): return ( 4.12544168458379e-23 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.06488474059821e39 * cos(theta) ** 46 - 9.4201342437534e39 * cos(theta) ** 44 + 3.87454217156118e40 * cos(theta) ** 42 - 9.84065135608902e40 * cos(theta) ** 40 + 1.72876307606969e41 * cos(theta) ** 38 - 2.22994576601283e41 * cos(theta) ** 36 + 2.18826453674156e41 * cos(theta) ** 34 - 1.67022640151295e41 * cos(theta) ** 32 + 1.00537899896896e41 * cos(theta) ** 30 - 4.81121963202967e40 * cos(theta) ** 28 + 1.83701113222951e40 * cos(theta) ** 26 - 5.59539473265784e39 * cos(theta) ** 24 + 1.35467451422242e39 * cos(theta) ** 22 - 2.58833592047461e38 * cos(theta) ** 20 + 3.86015561138285e37 * cos(theta) ** 18 - 4.4239985658545e36 * cos(theta) ** 16 + 3.81379186711595e35 * cos(theta) ** 14 - 2.40176512046749e34 * cos(theta) ** 12 + 1.06102073594949e33 * cos(theta) ** 10 - 3.10239981271781e31 * cos(theta) ** 8 + 5.49792371874043e29 * cos(theta) ** 6 - 5.10011476692062e27 * cos(theta) ** 4 + 1.85458718797113e25 * cos(theta) ** 2 - 1.10457843238305e22 ) * sin(13 * phi) ) # @torch.jit.script def Yl59_m_minus_12(theta, phi): return ( 2.3998584668763e-21 * (1.0 - cos(theta) ** 2) ** 6 * ( 2.26571221403875e37 * cos(theta) ** 47 - 2.09336316527853e38 * cos(theta) ** 45 + 9.01056318967716e38 * cos(theta) ** 43 - 2.40015886733878e39 * cos(theta) ** 41 + 4.43272583607613e39 * cos(theta) ** 39 - 6.02688044868333e39 * cos(theta) ** 37 + 6.25218439069018e39 * cos(theta) ** 35 - 5.06129212579682e39 * cos(theta) ** 33 + 3.24315806119019e39 * cos(theta) ** 31 - 1.65904125242403e39 * cos(theta) ** 29 + 6.80374493418338e38 * cos(theta) ** 27 - 2.23815789306314e38 * cos(theta) ** 25 + 5.88988919227141e37 * cos(theta) ** 23 - 1.23254091451172e37 * cos(theta) ** 21 + 2.03166084809624e36 * cos(theta) ** 19 - 2.60235209756147e35 * cos(theta) ** 17 + 2.54252791141063e34 * cos(theta) ** 15 - 1.84751163112884e33 * cos(theta) ** 13 + 9.64564305408629e31 * cos(theta) ** 11 - 3.44711090301979e30 * cos(theta) ** 9 + 7.85417674105775e28 * cos(theta) ** 7 - 1.02002295338412e27 * cos(theta) ** 5 + 6.18195729323711e24 * cos(theta) ** 3 - 1.10457843238305e22 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl59_m_minus_11(theta, phi): return ( 1.40099124953788e-19 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 4.72023377924739e35 * cos(theta) ** 48 - 4.55078948973594e36 * cos(theta) ** 46 + 2.04785527038117e37 * cos(theta) ** 44 - 5.71466396985425e37 * cos(theta) ** 42 + 1.10818145901903e38 * cos(theta) ** 40 - 1.58602117070614e38 * cos(theta) ** 38 + 1.73671788630283e38 * cos(theta) ** 36 - 1.48861533111671e38 * cos(theta) ** 34 + 1.01348689412194e38 * cos(theta) ** 32 - 5.53013750808009e37 * cos(theta) ** 30 + 2.42990890506549e37 * cos(theta) ** 28 - 8.60829958870437e36 * cos(theta) ** 26 + 2.45412049677975e36 * cos(theta) ** 24 - 5.60245870232599e35 * cos(theta) ** 22 + 1.01583042404812e35 * cos(theta) ** 20 - 1.44575116531193e34 * cos(theta) ** 18 + 1.58907994463165e33 * cos(theta) ** 16 - 1.31965116509203e32 * cos(theta) ** 14 + 8.03803587840524e30 * cos(theta) ** 12 - 3.44711090301979e29 * cos(theta) ** 10 + 9.81772092632219e27 * cos(theta) ** 8 - 1.70003825564021e26 * cos(theta) ** 6 + 1.54548932330928e24 * cos(theta) ** 4 - 5.52289216191523e21 * cos(theta) ** 2 + 3.24113389783758e18 ) * sin(11 * phi) ) # @torch.jit.script def Yl59_m_minus_10(theta, phi): return ( 8.20507363208659e-18 * (1.0 - cos(theta) ** 2) ** 5 * ( 9.63313016172936e33 * cos(theta) ** 49 - 9.68253082922541e34 * cos(theta) ** 47 + 4.55078948973594e35 * cos(theta) ** 45 - 1.32899162089634e36 * cos(theta) ** 43 + 2.7028816073635e36 * cos(theta) ** 41 - 4.06672095052856e36 * cos(theta) ** 39 + 4.69383212514278e36 * cos(theta) ** 37 - 4.25318666033346e36 * cos(theta) ** 35 + 3.07117240643011e36 * cos(theta) ** 33 - 1.78391532518712e36 * cos(theta) ** 31 + 8.37899622436377e35 * cos(theta) ** 29 - 3.18825910692754e35 * cos(theta) ** 27 + 9.81648198711902e34 * cos(theta) ** 25 - 2.43585160970695e34 * cos(theta) ** 23 + 4.83728773356247e33 * cos(theta) ** 21 - 7.60921665953647e32 * cos(theta) ** 19 + 9.34752908606851e31 * cos(theta) ** 17 - 8.79767443394683e30 * cos(theta) ** 15 + 6.18310452185018e29 * cos(theta) ** 13 - 3.13373718456345e28 * cos(theta) ** 11 + 1.09085788070247e27 * cos(theta) ** 9 - 2.42862607948601e25 * cos(theta) ** 7 + 3.09097864661856e23 * cos(theta) ** 5 - 1.84096405397174e21 * cos(theta) ** 3 + 3.24113389783758e18 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl59_m_minus_9(theta, phi): return ( 4.81938953512238e-16 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1.92662603234587e32 * cos(theta) ** 50 - 2.01719392275529e33 * cos(theta) ** 48 + 9.89302062986074e33 * cos(theta) ** 46 - 3.02043550203713e34 * cos(theta) ** 44 + 6.43543239848451e34 * cos(theta) ** 42 - 1.01668023763214e35 * cos(theta) ** 40 + 1.23521898030073e35 * cos(theta) ** 38 - 1.18144073898152e35 * cos(theta) ** 36 + 9.03286001891208e34 * cos(theta) ** 34 - 5.57473539120976e34 * cos(theta) ** 32 + 2.79299874145459e34 * cos(theta) ** 30 - 1.13866396675984e34 * cos(theta) ** 28 + 3.77556999504578e33 * cos(theta) ** 26 - 1.01493817071123e33 * cos(theta) ** 24 + 2.19876715161931e32 * cos(theta) ** 22 - 3.80460832976824e31 * cos(theta) ** 20 + 5.19307171448251e30 * cos(theta) ** 18 - 5.49854652121677e29 * cos(theta) ** 16 + 4.41650322989299e28 * cos(theta) ** 14 - 2.61144765380287e27 * cos(theta) ** 12 + 1.09085788070247e26 * cos(theta) ** 10 - 3.03578259935751e24 * cos(theta) ** 8 + 5.15163107769759e22 * cos(theta) ** 6 - 4.60241013492936e20 * cos(theta) ** 4 + 1.62056694891879e18 * cos(theta) ** 2 - 939459100822486.0 ) * sin(9 * phi) ) # @torch.jit.script def Yl59_m_minus_8(theta, phi): return ( 2.83812536234122e-14 * (1.0 - cos(theta) ** 2) ** 4 * ( 3.77769810263896e30 * cos(theta) ** 51 - 4.11672229133733e31 * cos(theta) ** 49 + 2.10489800635335e32 * cos(theta) ** 47 - 6.71207889341584e32 * cos(theta) ** 45 + 1.49661218569407e33 * cos(theta) ** 43 - 2.47970789666376e33 * cos(theta) ** 41 + 3.16722815461726e33 * cos(theta) ** 39 - 3.19308307832842e33 * cos(theta) ** 37 + 2.58081714826059e33 * cos(theta) ** 35 - 1.68931375491205e33 * cos(theta) ** 33 + 9.00967335953093e32 * cos(theta) ** 31 - 3.92642747158565e32 * cos(theta) ** 29 + 1.39835925742436e32 * cos(theta) ** 27 - 4.05975268284492e31 * cos(theta) ** 25 + 9.5598571809535e30 * cos(theta) ** 23 - 1.81171825227059e30 * cos(theta) ** 21 + 2.73319563920132e29 * cos(theta) ** 19 - 3.23443913012751e28 * cos(theta) ** 17 + 2.94433548659533e27 * cos(theta) ** 15 - 2.00880588754067e26 * cos(theta) ** 13 + 9.91688982456787e24 * cos(theta) ** 11 - 3.3730917770639e23 * cos(theta) ** 9 + 7.35947296813942e21 * cos(theta) ** 7 - 9.20482026985871e19 * cos(theta) ** 5 + 5.40188982972929e17 * cos(theta) ** 3 - 939459100822486.0 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl59_m_minus_7(theta, phi): return ( 1.67521536568042e-12 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 7.26480404353647e28 * cos(theta) ** 52 - 8.23344458267467e29 * cos(theta) ** 50 + 4.38520417990281e30 * cos(theta) ** 48 - 1.45914758552518e31 * cos(theta) ** 46 + 3.40139133112289e31 * cos(theta) ** 44 - 5.90406642062799e31 * cos(theta) ** 42 + 7.91807038654315e31 * cos(theta) ** 40 - 8.40285020612743e31 * cos(theta) ** 38 + 7.16893652294609e31 * cos(theta) ** 36 - 4.96856986738838e31 * cos(theta) ** 34 + 2.81552292485342e31 * cos(theta) ** 32 - 1.30880915719521e31 * cos(theta) ** 30 + 4.994140205087e30 * cos(theta) ** 28 - 1.56144333955574e30 * cos(theta) ** 26 + 3.98327382539729e29 * cos(theta) ** 24 - 8.23508296486631e28 * cos(theta) ** 22 + 1.36659781960066e28 * cos(theta) ** 20 - 1.79691062784862e27 * cos(theta) ** 18 + 1.84020967912208e26 * cos(theta) ** 16 - 1.43486134824334e25 * cos(theta) ** 14 + 8.26407485380656e23 * cos(theta) ** 12 - 3.3730917770639e22 * cos(theta) ** 10 + 9.19934121017427e20 * cos(theta) ** 8 - 1.53413671164312e19 * cos(theta) ** 6 + 1.35047245743232e17 * cos(theta) ** 4 - 469729550411243.0 * cos(theta) ** 2 + 269649569696.465 ) * sin(7 * phi) ) # @torch.jit.script def Yl59_m_minus_6(theta, phi): return ( 9.90787572181769e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.37071774406348e27 * cos(theta) ** 53 - 1.61440089856366e28 * cos(theta) ** 51 + 8.94939628551594e28 * cos(theta) ** 49 - 3.10456933090465e29 * cos(theta) ** 47 + 7.55864740249532e29 * cos(theta) ** 45 - 1.37303870247163e30 * cos(theta) ** 43 + 1.93123667964467e30 * cos(theta) ** 41 - 2.15457697593011e30 * cos(theta) ** 39 + 1.93755041160705e30 * cos(theta) ** 37 - 1.41959139068239e30 * cos(theta) ** 35 + 8.53188765107096e29 * cos(theta) ** 33 - 4.22196502321037e29 * cos(theta) ** 31 + 1.72211731209897e29 * cos(theta) ** 29 - 5.78312347983607e28 * cos(theta) ** 27 + 1.59330953015892e28 * cos(theta) ** 25 - 3.5804708542897e27 * cos(theta) ** 23 + 6.50760866476505e26 * cos(theta) ** 21 - 9.45742435709799e25 * cos(theta) ** 19 + 1.08247628183652e25 * cos(theta) ** 17 - 9.56574232162224e23 * cos(theta) ** 15 + 6.35698065677427e22 * cos(theta) ** 13 - 3.06644707005809e21 * cos(theta) ** 11 + 1.0221490233527e20 * cos(theta) ** 9 - 2.19162387377588e18 * cos(theta) ** 7 + 2.70094491486465e16 * cos(theta) ** 5 - 156576516803748.0 * cos(theta) ** 3 + 269649569696.465 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl59_m_minus_5(theta, phi): return ( 5.86994603577951e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 2.53836619271016e25 * cos(theta) ** 54 - 3.10461711262242e26 * cos(theta) ** 52 + 1.78987925710319e27 * cos(theta) ** 50 - 6.46785277271801e27 * cos(theta) ** 48 + 1.64318421793376e28 * cos(theta) ** 46 - 3.12054250561733e28 * cos(theta) ** 44 + 4.59818257058255e28 * cos(theta) ** 42 - 5.38644243982527e28 * cos(theta) ** 40 + 5.09881687265014e28 * cos(theta) ** 38 - 3.94330941856221e28 * cos(theta) ** 36 + 2.50937872090322e28 * cos(theta) ** 34 - 1.31936406975324e28 * cos(theta) ** 32 + 5.74039104032989e27 * cos(theta) ** 30 - 2.0654012427986e27 * cos(theta) ** 28 + 6.1281135775343e26 * cos(theta) ** 26 - 1.49186285595404e26 * cos(theta) ** 24 + 2.95800393852957e25 * cos(theta) ** 22 - 4.72871217854899e24 * cos(theta) ** 20 + 6.01375712131398e23 * cos(theta) ** 18 - 5.9785889510139e22 * cos(theta) ** 16 + 4.54070046912448e21 * cos(theta) ** 14 - 2.55537255838174e20 * cos(theta) ** 12 + 1.0221490233527e19 * cos(theta) ** 10 - 2.73952984221986e17 * cos(theta) ** 8 + 4.50157485810774e15 * cos(theta) ** 6 - 39144129200936.9 * cos(theta) ** 4 + 134824784848.233 * cos(theta) ** 2 - 76823239.2297622 ) * sin(5 * phi) ) # @torch.jit.script def Yl59_m_minus_4(theta, phi): return ( 3.48261479279049e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 4.61521125947301e23 * cos(theta) ** 55 - 5.85776813702344e24 * cos(theta) ** 53 + 3.50956717079057e25 * cos(theta) ** 51 - 1.31996995361592e26 * cos(theta) ** 49 + 3.49613663390163e26 * cos(theta) ** 47 - 6.93453890137185e26 * cos(theta) ** 45 + 1.06934478385641e27 * cos(theta) ** 43 - 1.31376644873787e27 * cos(theta) ** 41 + 1.30738894170516e27 * cos(theta) ** 39 - 1.06575930231411e27 * cos(theta) ** 37 + 7.16965348829492e26 * cos(theta) ** 35 - 3.99807293864618e26 * cos(theta) ** 33 + 1.85173904526771e26 * cos(theta) ** 31 - 7.12207325102964e25 * cos(theta) ** 29 + 2.26967169538307e25 * cos(theta) ** 27 - 5.96745142381617e24 * cos(theta) ** 25 + 1.2860886689259e24 * cos(theta) ** 23 - 2.25176770407095e23 * cos(theta) ** 21 + 3.16513532700736e22 * cos(theta) ** 19 - 3.51681703000818e21 * cos(theta) ** 17 + 3.02713364608299e20 * cos(theta) ** 15 - 1.96567119875519e19 * cos(theta) ** 13 + 9.29226384866088e17 * cos(theta) ** 11 - 3.04392204691095e16 * cos(theta) ** 9 + 643082122586821.0 * cos(theta) ** 7 - 7828825840187.38 * cos(theta) ** 5 + 44941594949.4109 * cos(theta) ** 3 - 76823239.2297622 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl59_m_minus_3(theta, phi): return ( 2.0685676504439e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 8.24144867763038e21 * cos(theta) ** 56 - 1.08477187722656e23 * cos(theta) ** 54 + 6.7491676361357e23 * cos(theta) ** 52 - 2.63993990723184e24 * cos(theta) ** 50 + 7.28361798729506e24 * cos(theta) ** 48 - 1.50750845681997e25 * cos(theta) ** 46 + 2.43032905421911e25 * cos(theta) ** 44 - 3.12801535413779e25 * cos(theta) ** 42 + 3.26847235426291e25 * cos(theta) ** 40 - 2.80462974293187e25 * cos(theta) ** 38 + 1.99157041341526e25 * cos(theta) ** 36 - 1.17590380548417e25 * cos(theta) ** 34 + 5.78668451646158e24 * cos(theta) ** 32 - 2.37402441700988e24 * cos(theta) ** 30 + 8.10597034065383e23 * cos(theta) ** 28 - 2.29517362454468e23 * cos(theta) ** 26 + 5.35870278719124e22 * cos(theta) ** 24 - 1.0235307745777e22 * cos(theta) ** 22 + 1.58256766350368e21 * cos(theta) ** 20 - 1.95378723889343e20 * cos(theta) ** 18 + 1.89195852880187e19 * cos(theta) ** 16 - 1.4040508562537e18 * cos(theta) ** 14 + 7.7435532072174e16 * cos(theta) ** 12 - 3.04392204691095e15 * cos(theta) ** 10 + 80385265323352.6 * cos(theta) ** 8 - 1304804306697.9 * cos(theta) ** 6 + 11235398737.3527 * cos(theta) ** 4 - 38411619.6148811 * cos(theta) ** 2 + 21775.2945662591 ) * sin(3 * phi) ) # @torch.jit.script def Yl59_m_minus_2(theta, phi): return ( 0.00122971083950058 * (1.0 - cos(theta) ** 2) * ( 1.44586818905796e20 * cos(theta) ** 57 - 1.9723125040483e21 * cos(theta) ** 55 + 1.27342785587466e22 * cos(theta) ** 53 - 5.17635275927812e22 * cos(theta) ** 51 + 1.48645265046838e23 * cos(theta) ** 49 - 3.20746480174461e23 * cos(theta) ** 47 + 5.40073123159802e23 * cos(theta) ** 45 - 7.27445431194835e23 * cos(theta) ** 43 + 7.97188379088514e23 * cos(theta) ** 41 - 7.19135831520992e23 * cos(theta) ** 39 + 5.38262273896015e23 * cos(theta) ** 37 - 3.35972515852621e23 * cos(theta) ** 35 + 1.75354076256412e23 * cos(theta) ** 33 - 7.65814328067703e22 * cos(theta) ** 31 + 2.79516218643235e22 * cos(theta) ** 29 - 8.50064305386918e21 * cos(theta) ** 27 + 2.1434811148765e21 * cos(theta) ** 25 - 4.45013380251176e20 * cos(theta) ** 23 + 7.53603649287467e19 * cos(theta) ** 21 - 1.02830907310181e19 * cos(theta) ** 19 + 1.11291678164816e18 * cos(theta) ** 17 - 9.36033904169137e16 * cos(theta) ** 15 + 5.95657939016723e15 * cos(theta) ** 13 - 276720186082814.0 * cos(theta) ** 11 + 8931696147039.17 * cos(theta) ** 9 - 186400615242.557 * cos(theta) ** 7 + 2247079747.47055 * cos(theta) ** 5 - 12803873.2049604 * cos(theta) ** 3 + 21775.2945662591 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl59_m_minus_1(theta, phi): return ( 0.0731445404196522 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 2.49287618803097e18 * cos(theta) ** 58 - 3.52198661437196e19 * cos(theta) ** 56 + 2.35819973310122e20 * cos(theta) ** 54 - 9.95452453707331e20 * cos(theta) ** 52 + 2.97290530093676e21 * cos(theta) ** 50 - 6.68221833696794e21 * cos(theta) ** 48 + 1.17407200686913e22 * cos(theta) ** 46 - 1.65328507089735e22 * cos(theta) ** 44 + 1.89806756925837e22 * cos(theta) ** 42 - 1.79783957880248e22 * cos(theta) ** 40 + 1.41647966814741e22 * cos(theta) ** 38 - 9.33256988479502e21 * cos(theta) ** 36 + 5.15747283107093e21 * cos(theta) ** 34 - 2.39316977521157e21 * cos(theta) ** 32 + 9.31720728810785e20 * cos(theta) ** 30 - 3.03594394781042e20 * cos(theta) ** 28 + 8.24415813414037e19 * cos(theta) ** 26 - 1.85422241771323e19 * cos(theta) ** 24 + 3.42547113312485e18 * cos(theta) ** 22 - 5.14154536550903e17 * cos(theta) ** 20 + 6.18287100915643e16 * cos(theta) ** 18 - 5.8502119010571e15 * cos(theta) ** 16 + 425469956440517.0 * cos(theta) ** 14 - 23060015506901.1 * cos(theta) ** 12 + 893169614703.917 * cos(theta) ** 10 - 23300076905.3196 * cos(theta) ** 8 + 374513291.245091 * cos(theta) ** 6 - 3200968.30124009 * cos(theta) ** 4 + 10887.6472831296 * cos(theta) ** 2 - 6.15469038051417 ) * sin(phi) ) # @torch.jit.script def Yl59_m0(theta, phi): return ( 4.08476540174965e17 * cos(theta) ** 59 - 5.97353299349884e18 * cos(theta) ** 57 + 4.14511245983659e19 * cos(theta) ** 55 - 1.81577935187532e20 * cos(theta) ** 53 + 5.63545933982926e20 * cos(theta) ** 51 - 1.31838727674905e21 * cos(theta) ** 49 + 2.41498977797022e21 * cos(theta) ** 47 - 3.55184210882422e21 * cos(theta) ** 45 + 4.26738311618444e21 * cos(theta) ** 43 - 4.23921557086309e21 * cos(theta) ** 41 + 3.51126946273509e21 * cos(theta) ** 39 - 2.43847298208688e21 * cos(theta) ** 37 + 1.42458158427181e21 * cos(theta) ** 35 - 7.01096809463793e20 * cos(theta) ** 33 + 2.90564454785622e20 * cos(theta) ** 31 - 1.01207843801734e20 * cos(theta) ** 29 + 2.95189544421723e19 * cos(theta) ** 27 - 7.17034810325431e18 * cos(theta) ** 25 + 1.43982893639645e18 * cos(theta) ** 23 - 2.36697024631775e17 * cos(theta) ** 21 + 3.14597311219447e16 * cos(theta) ** 19 - 3.32691034128173e15 * cos(theta) ** 17 + 274218064493524.0 * cos(theta) ** 15 - 17148836671721.3 * cos(theta) ** 13 + 784981960325.27 * cos(theta) ** 11 - 25028410329.2115 * cos(theta) ** 9 + 517234656.631236 * cos(theta) ** 7 - 6189132.64345069 * cos(theta) ** 5 + 35085.7859606048 * cos(theta) ** 3 - 59.5010502441009 * cos(theta) ) # @torch.jit.script def Yl59_m1(theta, phi): return ( 0.0731445404196522 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 2.49287618803097e18 * cos(theta) ** 58 - 3.52198661437196e19 * cos(theta) ** 56 + 2.35819973310122e20 * cos(theta) ** 54 - 9.95452453707331e20 * cos(theta) ** 52 + 2.97290530093676e21 * cos(theta) ** 50 - 6.68221833696794e21 * cos(theta) ** 48 + 1.17407200686913e22 * cos(theta) ** 46 - 1.65328507089735e22 * cos(theta) ** 44 + 1.89806756925837e22 * cos(theta) ** 42 - 1.79783957880248e22 * cos(theta) ** 40 + 1.41647966814741e22 * cos(theta) ** 38 - 9.33256988479502e21 * cos(theta) ** 36 + 5.15747283107093e21 * cos(theta) ** 34 - 2.39316977521157e21 * cos(theta) ** 32 + 9.31720728810785e20 * cos(theta) ** 30 - 3.03594394781042e20 * cos(theta) ** 28 + 8.24415813414037e19 * cos(theta) ** 26 - 1.85422241771323e19 * cos(theta) ** 24 + 3.42547113312485e18 * cos(theta) ** 22 - 5.14154536550903e17 * cos(theta) ** 20 + 6.18287100915643e16 * cos(theta) ** 18 - 5.8502119010571e15 * cos(theta) ** 16 + 425469956440517.0 * cos(theta) ** 14 - 23060015506901.1 * cos(theta) ** 12 + 893169614703.917 * cos(theta) ** 10 - 23300076905.3196 * cos(theta) ** 8 + 374513291.245091 * cos(theta) ** 6 - 3200968.30124009 * cos(theta) ** 4 + 10887.6472831296 * cos(theta) ** 2 - 6.15469038051417 ) * cos(phi) ) # @torch.jit.script def Yl59_m2(theta, phi): return ( 0.00122971083950058 * (1.0 - cos(theta) ** 2) * ( 1.44586818905796e20 * cos(theta) ** 57 - 1.9723125040483e21 * cos(theta) ** 55 + 1.27342785587466e22 * cos(theta) ** 53 - 5.17635275927812e22 * cos(theta) ** 51 + 1.48645265046838e23 * cos(theta) ** 49 - 3.20746480174461e23 * cos(theta) ** 47 + 5.40073123159802e23 * cos(theta) ** 45 - 7.27445431194835e23 * cos(theta) ** 43 + 7.97188379088514e23 * cos(theta) ** 41 - 7.19135831520992e23 * cos(theta) ** 39 + 5.38262273896015e23 * cos(theta) ** 37 - 3.35972515852621e23 * cos(theta) ** 35 + 1.75354076256412e23 * cos(theta) ** 33 - 7.65814328067703e22 * cos(theta) ** 31 + 2.79516218643235e22 * cos(theta) ** 29 - 8.50064305386918e21 * cos(theta) ** 27 + 2.1434811148765e21 * cos(theta) ** 25 - 4.45013380251176e20 * cos(theta) ** 23 + 7.53603649287467e19 * cos(theta) ** 21 - 1.02830907310181e19 * cos(theta) ** 19 + 1.11291678164816e18 * cos(theta) ** 17 - 9.36033904169137e16 * cos(theta) ** 15 + 5.95657939016723e15 * cos(theta) ** 13 - 276720186082814.0 * cos(theta) ** 11 + 8931696147039.17 * cos(theta) ** 9 - 186400615242.557 * cos(theta) ** 7 + 2247079747.47055 * cos(theta) ** 5 - 12803873.2049604 * cos(theta) ** 3 + 21775.2945662591 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl59_m3(theta, phi): return ( 2.0685676504439e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 8.24144867763038e21 * cos(theta) ** 56 - 1.08477187722656e23 * cos(theta) ** 54 + 6.7491676361357e23 * cos(theta) ** 52 - 2.63993990723184e24 * cos(theta) ** 50 + 7.28361798729506e24 * cos(theta) ** 48 - 1.50750845681997e25 * cos(theta) ** 46 + 2.43032905421911e25 * cos(theta) ** 44 - 3.12801535413779e25 * cos(theta) ** 42 + 3.26847235426291e25 * cos(theta) ** 40 - 2.80462974293187e25 * cos(theta) ** 38 + 1.99157041341526e25 * cos(theta) ** 36 - 1.17590380548417e25 * cos(theta) ** 34 + 5.78668451646158e24 * cos(theta) ** 32 - 2.37402441700988e24 * cos(theta) ** 30 + 8.10597034065383e23 * cos(theta) ** 28 - 2.29517362454468e23 * cos(theta) ** 26 + 5.35870278719124e22 * cos(theta) ** 24 - 1.0235307745777e22 * cos(theta) ** 22 + 1.58256766350368e21 * cos(theta) ** 20 - 1.95378723889343e20 * cos(theta) ** 18 + 1.89195852880187e19 * cos(theta) ** 16 - 1.4040508562537e18 * cos(theta) ** 14 + 7.7435532072174e16 * cos(theta) ** 12 - 3.04392204691095e15 * cos(theta) ** 10 + 80385265323352.6 * cos(theta) ** 8 - 1304804306697.9 * cos(theta) ** 6 + 11235398737.3527 * cos(theta) ** 4 - 38411619.6148811 * cos(theta) ** 2 + 21775.2945662591 ) * cos(3 * phi) ) # @torch.jit.script def Yl59_m4(theta, phi): return ( 3.48261479279049e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 4.61521125947301e23 * cos(theta) ** 55 - 5.85776813702344e24 * cos(theta) ** 53 + 3.50956717079057e25 * cos(theta) ** 51 - 1.31996995361592e26 * cos(theta) ** 49 + 3.49613663390163e26 * cos(theta) ** 47 - 6.93453890137185e26 * cos(theta) ** 45 + 1.06934478385641e27 * cos(theta) ** 43 - 1.31376644873787e27 * cos(theta) ** 41 + 1.30738894170516e27 * cos(theta) ** 39 - 1.06575930231411e27 * cos(theta) ** 37 + 7.16965348829492e26 * cos(theta) ** 35 - 3.99807293864618e26 * cos(theta) ** 33 + 1.85173904526771e26 * cos(theta) ** 31 - 7.12207325102964e25 * cos(theta) ** 29 + 2.26967169538307e25 * cos(theta) ** 27 - 5.96745142381617e24 * cos(theta) ** 25 + 1.2860886689259e24 * cos(theta) ** 23 - 2.25176770407095e23 * cos(theta) ** 21 + 3.16513532700736e22 * cos(theta) ** 19 - 3.51681703000818e21 * cos(theta) ** 17 + 3.02713364608299e20 * cos(theta) ** 15 - 1.96567119875519e19 * cos(theta) ** 13 + 9.29226384866088e17 * cos(theta) ** 11 - 3.04392204691095e16 * cos(theta) ** 9 + 643082122586821.0 * cos(theta) ** 7 - 7828825840187.38 * cos(theta) ** 5 + 44941594949.4109 * cos(theta) ** 3 - 76823239.2297622 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl59_m5(theta, phi): return ( 5.86994603577951e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 2.53836619271016e25 * cos(theta) ** 54 - 3.10461711262242e26 * cos(theta) ** 52 + 1.78987925710319e27 * cos(theta) ** 50 - 6.46785277271801e27 * cos(theta) ** 48 + 1.64318421793376e28 * cos(theta) ** 46 - 3.12054250561733e28 * cos(theta) ** 44 + 4.59818257058255e28 * cos(theta) ** 42 - 5.38644243982527e28 * cos(theta) ** 40 + 5.09881687265014e28 * cos(theta) ** 38 - 3.94330941856221e28 * cos(theta) ** 36 + 2.50937872090322e28 * cos(theta) ** 34 - 1.31936406975324e28 * cos(theta) ** 32 + 5.74039104032989e27 * cos(theta) ** 30 - 2.0654012427986e27 * cos(theta) ** 28 + 6.1281135775343e26 * cos(theta) ** 26 - 1.49186285595404e26 * cos(theta) ** 24 + 2.95800393852957e25 * cos(theta) ** 22 - 4.72871217854899e24 * cos(theta) ** 20 + 6.01375712131398e23 * cos(theta) ** 18 - 5.9785889510139e22 * cos(theta) ** 16 + 4.54070046912448e21 * cos(theta) ** 14 - 2.55537255838174e20 * cos(theta) ** 12 + 1.0221490233527e19 * cos(theta) ** 10 - 2.73952984221986e17 * cos(theta) ** 8 + 4.50157485810774e15 * cos(theta) ** 6 - 39144129200936.9 * cos(theta) ** 4 + 134824784848.233 * cos(theta) ** 2 - 76823239.2297622 ) * cos(5 * phi) ) # @torch.jit.script def Yl59_m6(theta, phi): return ( 9.90787572181769e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.37071774406348e27 * cos(theta) ** 53 - 1.61440089856366e28 * cos(theta) ** 51 + 8.94939628551594e28 * cos(theta) ** 49 - 3.10456933090465e29 * cos(theta) ** 47 + 7.55864740249532e29 * cos(theta) ** 45 - 1.37303870247163e30 * cos(theta) ** 43 + 1.93123667964467e30 * cos(theta) ** 41 - 2.15457697593011e30 * cos(theta) ** 39 + 1.93755041160705e30 * cos(theta) ** 37 - 1.41959139068239e30 * cos(theta) ** 35 + 8.53188765107096e29 * cos(theta) ** 33 - 4.22196502321037e29 * cos(theta) ** 31 + 1.72211731209897e29 * cos(theta) ** 29 - 5.78312347983607e28 * cos(theta) ** 27 + 1.59330953015892e28 * cos(theta) ** 25 - 3.5804708542897e27 * cos(theta) ** 23 + 6.50760866476505e26 * cos(theta) ** 21 - 9.45742435709799e25 * cos(theta) ** 19 + 1.08247628183652e25 * cos(theta) ** 17 - 9.56574232162224e23 * cos(theta) ** 15 + 6.35698065677427e22 * cos(theta) ** 13 - 3.06644707005809e21 * cos(theta) ** 11 + 1.0221490233527e20 * cos(theta) ** 9 - 2.19162387377588e18 * cos(theta) ** 7 + 2.70094491486465e16 * cos(theta) ** 5 - 156576516803748.0 * cos(theta) ** 3 + 269649569696.465 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl59_m7(theta, phi): return ( 1.67521536568042e-12 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 7.26480404353647e28 * cos(theta) ** 52 - 8.23344458267467e29 * cos(theta) ** 50 + 4.38520417990281e30 * cos(theta) ** 48 - 1.45914758552518e31 * cos(theta) ** 46 + 3.40139133112289e31 * cos(theta) ** 44 - 5.90406642062799e31 * cos(theta) ** 42 + 7.91807038654315e31 * cos(theta) ** 40 - 8.40285020612743e31 * cos(theta) ** 38 + 7.16893652294609e31 * cos(theta) ** 36 - 4.96856986738838e31 * cos(theta) ** 34 + 2.81552292485342e31 * cos(theta) ** 32 - 1.30880915719521e31 * cos(theta) ** 30 + 4.994140205087e30 * cos(theta) ** 28 - 1.56144333955574e30 * cos(theta) ** 26 + 3.98327382539729e29 * cos(theta) ** 24 - 8.23508296486631e28 * cos(theta) ** 22 + 1.36659781960066e28 * cos(theta) ** 20 - 1.79691062784862e27 * cos(theta) ** 18 + 1.84020967912208e26 * cos(theta) ** 16 - 1.43486134824334e25 * cos(theta) ** 14 + 8.26407485380656e23 * cos(theta) ** 12 - 3.3730917770639e22 * cos(theta) ** 10 + 9.19934121017427e20 * cos(theta) ** 8 - 1.53413671164312e19 * cos(theta) ** 6 + 1.35047245743232e17 * cos(theta) ** 4 - 469729550411243.0 * cos(theta) ** 2 + 269649569696.465 ) * cos(7 * phi) ) # @torch.jit.script def Yl59_m8(theta, phi): return ( 2.83812536234122e-14 * (1.0 - cos(theta) ** 2) ** 4 * ( 3.77769810263896e30 * cos(theta) ** 51 - 4.11672229133733e31 * cos(theta) ** 49 + 2.10489800635335e32 * cos(theta) ** 47 - 6.71207889341584e32 * cos(theta) ** 45 + 1.49661218569407e33 * cos(theta) ** 43 - 2.47970789666376e33 * cos(theta) ** 41 + 3.16722815461726e33 * cos(theta) ** 39 - 3.19308307832842e33 * cos(theta) ** 37 + 2.58081714826059e33 * cos(theta) ** 35 - 1.68931375491205e33 * cos(theta) ** 33 + 9.00967335953093e32 * cos(theta) ** 31 - 3.92642747158565e32 * cos(theta) ** 29 + 1.39835925742436e32 * cos(theta) ** 27 - 4.05975268284492e31 * cos(theta) ** 25 + 9.5598571809535e30 * cos(theta) ** 23 - 1.81171825227059e30 * cos(theta) ** 21 + 2.73319563920132e29 * cos(theta) ** 19 - 3.23443913012751e28 * cos(theta) ** 17 + 2.94433548659533e27 * cos(theta) ** 15 - 2.00880588754067e26 * cos(theta) ** 13 + 9.91688982456787e24 * cos(theta) ** 11 - 3.3730917770639e23 * cos(theta) ** 9 + 7.35947296813942e21 * cos(theta) ** 7 - 9.20482026985871e19 * cos(theta) ** 5 + 5.40188982972929e17 * cos(theta) ** 3 - 939459100822486.0 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl59_m9(theta, phi): return ( 4.81938953512238e-16 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1.92662603234587e32 * cos(theta) ** 50 - 2.01719392275529e33 * cos(theta) ** 48 + 9.89302062986074e33 * cos(theta) ** 46 - 3.02043550203713e34 * cos(theta) ** 44 + 6.43543239848451e34 * cos(theta) ** 42 - 1.01668023763214e35 * cos(theta) ** 40 + 1.23521898030073e35 * cos(theta) ** 38 - 1.18144073898152e35 * cos(theta) ** 36 + 9.03286001891208e34 * cos(theta) ** 34 - 5.57473539120976e34 * cos(theta) ** 32 + 2.79299874145459e34 * cos(theta) ** 30 - 1.13866396675984e34 * cos(theta) ** 28 + 3.77556999504578e33 * cos(theta) ** 26 - 1.01493817071123e33 * cos(theta) ** 24 + 2.19876715161931e32 * cos(theta) ** 22 - 3.80460832976824e31 * cos(theta) ** 20 + 5.19307171448251e30 * cos(theta) ** 18 - 5.49854652121677e29 * cos(theta) ** 16 + 4.41650322989299e28 * cos(theta) ** 14 - 2.61144765380287e27 * cos(theta) ** 12 + 1.09085788070247e26 * cos(theta) ** 10 - 3.03578259935751e24 * cos(theta) ** 8 + 5.15163107769759e22 * cos(theta) ** 6 - 4.60241013492936e20 * cos(theta) ** 4 + 1.62056694891879e18 * cos(theta) ** 2 - 939459100822486.0 ) * cos(9 * phi) ) # @torch.jit.script def Yl59_m10(theta, phi): return ( 8.20507363208659e-18 * (1.0 - cos(theta) ** 2) ** 5 * ( 9.63313016172936e33 * cos(theta) ** 49 - 9.68253082922541e34 * cos(theta) ** 47 + 4.55078948973594e35 * cos(theta) ** 45 - 1.32899162089634e36 * cos(theta) ** 43 + 2.7028816073635e36 * cos(theta) ** 41 - 4.06672095052856e36 * cos(theta) ** 39 + 4.69383212514278e36 * cos(theta) ** 37 - 4.25318666033346e36 * cos(theta) ** 35 + 3.07117240643011e36 * cos(theta) ** 33 - 1.78391532518712e36 * cos(theta) ** 31 + 8.37899622436377e35 * cos(theta) ** 29 - 3.18825910692754e35 * cos(theta) ** 27 + 9.81648198711902e34 * cos(theta) ** 25 - 2.43585160970695e34 * cos(theta) ** 23 + 4.83728773356247e33 * cos(theta) ** 21 - 7.60921665953647e32 * cos(theta) ** 19 + 9.34752908606851e31 * cos(theta) ** 17 - 8.79767443394683e30 * cos(theta) ** 15 + 6.18310452185018e29 * cos(theta) ** 13 - 3.13373718456345e28 * cos(theta) ** 11 + 1.09085788070247e27 * cos(theta) ** 9 - 2.42862607948601e25 * cos(theta) ** 7 + 3.09097864661856e23 * cos(theta) ** 5 - 1.84096405397174e21 * cos(theta) ** 3 + 3.24113389783758e18 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl59_m11(theta, phi): return ( 1.40099124953788e-19 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 4.72023377924739e35 * cos(theta) ** 48 - 4.55078948973594e36 * cos(theta) ** 46 + 2.04785527038117e37 * cos(theta) ** 44 - 5.71466396985425e37 * cos(theta) ** 42 + 1.10818145901903e38 * cos(theta) ** 40 - 1.58602117070614e38 * cos(theta) ** 38 + 1.73671788630283e38 * cos(theta) ** 36 - 1.48861533111671e38 * cos(theta) ** 34 + 1.01348689412194e38 * cos(theta) ** 32 - 5.53013750808009e37 * cos(theta) ** 30 + 2.42990890506549e37 * cos(theta) ** 28 - 8.60829958870437e36 * cos(theta) ** 26 + 2.45412049677975e36 * cos(theta) ** 24 - 5.60245870232599e35 * cos(theta) ** 22 + 1.01583042404812e35 * cos(theta) ** 20 - 1.44575116531193e34 * cos(theta) ** 18 + 1.58907994463165e33 * cos(theta) ** 16 - 1.31965116509203e32 * cos(theta) ** 14 + 8.03803587840524e30 * cos(theta) ** 12 - 3.44711090301979e29 * cos(theta) ** 10 + 9.81772092632219e27 * cos(theta) ** 8 - 1.70003825564021e26 * cos(theta) ** 6 + 1.54548932330928e24 * cos(theta) ** 4 - 5.52289216191523e21 * cos(theta) ** 2 + 3.24113389783758e18 ) * cos(11 * phi) ) # @torch.jit.script def Yl59_m12(theta, phi): return ( 2.3998584668763e-21 * (1.0 - cos(theta) ** 2) ** 6 * ( 2.26571221403875e37 * cos(theta) ** 47 - 2.09336316527853e38 * cos(theta) ** 45 + 9.01056318967716e38 * cos(theta) ** 43 - 2.40015886733878e39 * cos(theta) ** 41 + 4.43272583607613e39 * cos(theta) ** 39 - 6.02688044868333e39 * cos(theta) ** 37 + 6.25218439069018e39 * cos(theta) ** 35 - 5.06129212579682e39 * cos(theta) ** 33 + 3.24315806119019e39 * cos(theta) ** 31 - 1.65904125242403e39 * cos(theta) ** 29 + 6.80374493418338e38 * cos(theta) ** 27 - 2.23815789306314e38 * cos(theta) ** 25 + 5.88988919227141e37 * cos(theta) ** 23 - 1.23254091451172e37 * cos(theta) ** 21 + 2.03166084809624e36 * cos(theta) ** 19 - 2.60235209756147e35 * cos(theta) ** 17 + 2.54252791141063e34 * cos(theta) ** 15 - 1.84751163112884e33 * cos(theta) ** 13 + 9.64564305408629e31 * cos(theta) ** 11 - 3.44711090301979e30 * cos(theta) ** 9 + 7.85417674105775e28 * cos(theta) ** 7 - 1.02002295338412e27 * cos(theta) ** 5 + 6.18195729323711e24 * cos(theta) ** 3 - 1.10457843238305e22 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl59_m13(theta, phi): return ( 4.12544168458379e-23 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.06488474059821e39 * cos(theta) ** 46 - 9.4201342437534e39 * cos(theta) ** 44 + 3.87454217156118e40 * cos(theta) ** 42 - 9.84065135608902e40 * cos(theta) ** 40 + 1.72876307606969e41 * cos(theta) ** 38 - 2.22994576601283e41 * cos(theta) ** 36 + 2.18826453674156e41 * cos(theta) ** 34 - 1.67022640151295e41 * cos(theta) ** 32 + 1.00537899896896e41 * cos(theta) ** 30 - 4.81121963202967e40 * cos(theta) ** 28 + 1.83701113222951e40 * cos(theta) ** 26 - 5.59539473265784e39 * cos(theta) ** 24 + 1.35467451422242e39 * cos(theta) ** 22 - 2.58833592047461e38 * cos(theta) ** 20 + 3.86015561138285e37 * cos(theta) ** 18 - 4.4239985658545e36 * cos(theta) ** 16 + 3.81379186711595e35 * cos(theta) ** 14 - 2.40176512046749e34 * cos(theta) ** 12 + 1.06102073594949e33 * cos(theta) ** 10 - 3.10239981271781e31 * cos(theta) ** 8 + 5.49792371874043e29 * cos(theta) ** 6 - 5.10011476692062e27 * cos(theta) ** 4 + 1.85458718797113e25 * cos(theta) ** 2 - 1.10457843238305e22 ) * cos(13 * phi) ) # @torch.jit.script def Yl59_m14(theta, phi): return ( 7.11918217862839e-25 * (1.0 - cos(theta) ** 2) ** 7 * ( 4.89846980675177e40 * cos(theta) ** 45 - 4.1448590672515e41 * cos(theta) ** 43 + 1.6273077120557e42 * cos(theta) ** 41 - 3.93626054243561e42 * cos(theta) ** 39 + 6.56929968906483e42 * cos(theta) ** 37 - 8.0278047576462e42 * cos(theta) ** 35 + 7.44009942492132e42 * cos(theta) ** 33 - 5.34472448484144e42 * cos(theta) ** 31 + 3.01613699690688e42 * cos(theta) ** 29 - 1.34714149696831e42 * cos(theta) ** 27 + 4.77622894379673e41 * cos(theta) ** 25 - 1.34289473583788e41 * cos(theta) ** 23 + 2.98028393128933e40 * cos(theta) ** 21 - 5.17667184094921e39 * cos(theta) ** 19 + 6.94828010048913e38 * cos(theta) ** 17 - 7.07839770536721e37 * cos(theta) ** 15 + 5.33930861396233e36 * cos(theta) ** 13 - 2.88211814456098e35 * cos(theta) ** 11 + 1.06102073594949e34 * cos(theta) ** 9 - 2.48191985017425e32 * cos(theta) ** 7 + 3.29875423124426e30 * cos(theta) ** 5 - 2.04004590676825e28 * cos(theta) ** 3 + 3.70917437594227e25 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl59_m15(theta, phi): return ( 1.23369552622453e-26 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 2.2043114130383e42 * cos(theta) ** 44 - 1.78228939891814e43 * cos(theta) ** 42 + 6.67196161942835e43 * cos(theta) ** 40 - 1.53514161154989e44 * cos(theta) ** 38 + 2.43064088495399e44 * cos(theta) ** 36 - 2.80973166517617e44 * cos(theta) ** 34 + 2.45523281022403e44 * cos(theta) ** 32 - 1.65686459030085e44 * cos(theta) ** 30 + 8.74679729102995e43 * cos(theta) ** 28 - 3.63728204181443e43 * cos(theta) ** 26 + 1.19405723594918e43 * cos(theta) ** 24 - 3.08865789242713e42 * cos(theta) ** 22 + 6.2585962557076e41 * cos(theta) ** 20 - 9.83567649780351e40 * cos(theta) ** 18 + 1.18120761708315e40 * cos(theta) ** 16 - 1.06175965580508e39 * cos(theta) ** 14 + 6.94110119815103e37 * cos(theta) ** 12 - 3.17032995901708e36 * cos(theta) ** 10 + 9.54918662354542e34 * cos(theta) ** 8 - 1.73734389512197e33 * cos(theta) ** 6 + 1.64937711562213e31 * cos(theta) ** 4 - 6.12013772030474e28 * cos(theta) ** 2 + 3.70917437594227e25 ) * cos(15 * phi) ) # @torch.jit.script def Yl59_m16(theta, phi): return ( 2.14758825368198e-28 * (1.0 - cos(theta) ** 2) ** 8 * ( 9.6989702173685e43 * cos(theta) ** 43 - 7.4856154754562e44 * cos(theta) ** 41 + 2.66878464777134e45 * cos(theta) ** 39 - 5.83353812388957e45 * cos(theta) ** 37 + 8.75030718583435e45 * cos(theta) ** 35 - 9.55308766159897e45 * cos(theta) ** 33 + 7.85674499271691e45 * cos(theta) ** 31 - 4.97059377090254e45 * cos(theta) ** 29 + 2.44910324148839e45 * cos(theta) ** 27 - 9.45693330871753e44 * cos(theta) ** 25 + 2.86573736627804e44 * cos(theta) ** 23 - 6.79504736333968e43 * cos(theta) ** 21 + 1.25171925114152e43 * cos(theta) ** 19 - 1.77042176960463e42 * cos(theta) ** 17 + 1.88993218733304e41 * cos(theta) ** 15 - 1.48646351812711e40 * cos(theta) ** 13 + 8.32932143778124e38 * cos(theta) ** 11 - 3.17032995901708e37 * cos(theta) ** 9 + 7.63934929883634e35 * cos(theta) ** 7 - 1.04240633707318e34 * cos(theta) ** 5 + 6.59750846248851e31 * cos(theta) ** 3 - 1.22402754406095e29 * cos(theta) ) * cos(16 * phi) ) # @torch.jit.script def Yl59_m17(theta, phi): return ( 3.75673011225594e-30 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 4.17055719346846e45 * cos(theta) ** 42 - 3.06910234493704e46 * cos(theta) ** 40 + 1.04082601263082e47 * cos(theta) ** 38 - 2.15840910583914e47 * cos(theta) ** 36 + 3.06260751504202e47 * cos(theta) ** 34 - 3.15251892832766e47 * cos(theta) ** 32 + 2.43559094774224e47 * cos(theta) ** 30 - 1.44147219356174e47 * cos(theta) ** 28 + 6.61257875201864e46 * cos(theta) ** 26 - 2.36423332717938e46 * cos(theta) ** 24 + 6.59119594243949e45 * cos(theta) ** 22 - 1.42695994630133e45 * cos(theta) ** 20 + 2.37826657716889e44 * cos(theta) ** 18 - 3.00971700832787e43 * cos(theta) ** 16 + 2.83489828099957e42 * cos(theta) ** 14 - 1.93240257356525e41 * cos(theta) ** 12 + 9.16225358155936e39 * cos(theta) ** 10 - 2.85329696311537e38 * cos(theta) ** 8 + 5.34754450918544e36 * cos(theta) ** 6 - 5.21203168536592e34 * cos(theta) ** 4 + 1.97925253874655e32 * cos(theta) ** 2 - 1.22402754406095e29 ) * cos(17 * phi) ) # @torch.jit.script def Yl59_m18(theta, phi): return ( 6.60602158177914e-32 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.75163402125675e47 * cos(theta) ** 41 - 1.22764093797482e48 * cos(theta) ** 39 + 3.95513884799713e48 * cos(theta) ** 37 - 7.77027278102091e48 * cos(theta) ** 35 + 1.04128655511429e49 * cos(theta) ** 33 - 1.00880605706485e49 * cos(theta) ** 31 + 7.30677284322673e48 * cos(theta) ** 29 - 4.03612214197286e48 * cos(theta) ** 27 + 1.71927047552485e48 * cos(theta) ** 25 - 5.67415998523052e47 * cos(theta) ** 23 + 1.45006310733669e47 * cos(theta) ** 21 - 2.85391989260267e46 * cos(theta) ** 19 + 4.280879838904e45 * cos(theta) ** 17 - 4.8155472133246e44 * cos(theta) ** 15 + 3.96885759339939e43 * cos(theta) ** 13 - 2.3188830882783e42 * cos(theta) ** 11 + 9.16225358155936e40 * cos(theta) ** 9 - 2.2826375704923e39 * cos(theta) ** 7 + 3.20852670551126e37 * cos(theta) ** 5 - 2.08481267414637e35 * cos(theta) ** 3 + 3.95850507749311e32 * cos(theta) ) * cos(18 * phi) ) # @torch.jit.script def Yl59_m19(theta, phi): return ( 1.16815577002e-33 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 7.18169948715268e48 * cos(theta) ** 40 - 4.78779965810179e49 * cos(theta) ** 38 + 1.46340137375894e50 * cos(theta) ** 36 - 2.71959547335732e50 * cos(theta) ** 34 + 3.43624563187715e50 * cos(theta) ** 32 - 3.12729877690104e50 * cos(theta) ** 30 + 2.11896412453575e50 * cos(theta) ** 28 - 1.08975297833267e50 * cos(theta) ** 26 + 4.29817618881212e49 * cos(theta) ** 24 - 1.30505679660302e49 * cos(theta) ** 22 + 3.04513252540704e48 * cos(theta) ** 20 - 5.42244779594507e47 * cos(theta) ** 18 + 7.2774957261368e46 * cos(theta) ** 16 - 7.2233208199869e45 * cos(theta) ** 14 + 5.15951487141921e44 * cos(theta) ** 12 - 2.55077139710613e43 * cos(theta) ** 10 + 8.24602822340343e41 * cos(theta) ** 8 - 1.59784629934461e40 * cos(theta) ** 6 + 1.60426335275563e38 * cos(theta) ** 4 - 6.25443802243911e35 * cos(theta) ** 2 + 3.95850507749311e32 ) * cos(19 * phi) ) # @torch.jit.script def Yl59_m20(theta, phi): return ( 2.07805585796733e-35 * (1.0 - cos(theta) ** 2) ** 10 * ( 2.87267979486107e50 * cos(theta) ** 39 - 1.81936387007868e51 * cos(theta) ** 37 + 5.26824494553217e51 * cos(theta) ** 35 - 9.24662460941488e51 * cos(theta) ** 33 + 1.09959860220069e52 * cos(theta) ** 31 - 9.38189633070312e51 * cos(theta) ** 29 + 5.9330995487001e51 * cos(theta) ** 27 - 2.83335774366495e51 * cos(theta) ** 25 + 1.03156228531491e51 * cos(theta) ** 23 - 2.87112495252664e50 * cos(theta) ** 21 + 6.09026505081409e49 * cos(theta) ** 19 - 9.76040603270112e48 * cos(theta) ** 17 + 1.16439931618189e48 * cos(theta) ** 15 - 1.01126491479817e47 * cos(theta) ** 13 + 6.19141784570305e45 * cos(theta) ** 11 - 2.55077139710613e44 * cos(theta) ** 9 + 6.59682257872274e42 * cos(theta) ** 7 - 9.58707779606765e40 * cos(theta) ** 5 + 6.41705341102253e38 * cos(theta) ** 3 - 1.25088760448782e36 * cos(theta) ) * cos(20 * phi) ) # @torch.jit.script def Yl59_m21(theta, phi): return ( 3.72031677243794e-37 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.12034511999582e52 * cos(theta) ** 38 - 6.73164631929111e52 * cos(theta) ** 36 + 1.84388573093626e53 * cos(theta) ** 34 - 3.05138612110691e53 * cos(theta) ** 32 + 3.40875566682213e53 * cos(theta) ** 30 - 2.7207499359039e53 * cos(theta) ** 28 + 1.60193687814903e53 * cos(theta) ** 26 - 7.08339435916237e52 * cos(theta) ** 24 + 2.37259325622429e52 * cos(theta) ** 22 - 6.02936240030595e51 * cos(theta) ** 20 + 1.15715035965468e51 * cos(theta) ** 18 - 1.65926902555919e50 * cos(theta) ** 16 + 1.74659897427283e49 * cos(theta) ** 14 - 1.31464438923762e48 * cos(theta) ** 12 + 6.81055963027336e46 * cos(theta) ** 10 - 2.29569425739551e45 * cos(theta) ** 8 + 4.61777580510592e43 * cos(theta) ** 6 - 4.79353889803383e41 * cos(theta) ** 4 + 1.92511602330676e39 * cos(theta) ** 2 - 1.25088760448782e36 ) * cos(21 * phi) ) # @torch.jit.script def Yl59_m22(theta, phi): return ( 6.70572304312772e-39 * (1.0 - cos(theta) ** 2) ** 11 * ( 4.25731145598411e53 * cos(theta) ** 37 - 2.4233926749448e54 * cos(theta) ** 35 + 6.26921148518329e54 * cos(theta) ** 33 - 9.76443558754211e54 * cos(theta) ** 31 + 1.02262670004664e55 * cos(theta) ** 29 - 7.61809982053093e54 * cos(theta) ** 27 + 4.16503588318747e54 * cos(theta) ** 25 - 1.70001464619897e54 * cos(theta) ** 23 + 5.21970516369343e53 * cos(theta) ** 21 - 1.20587248006119e53 * cos(theta) ** 19 + 2.08287064737842e52 * cos(theta) ** 17 - 2.6548304408947e51 * cos(theta) ** 15 + 2.44523856398196e50 * cos(theta) ** 13 - 1.57757326708514e49 * cos(theta) ** 11 + 6.81055963027336e47 * cos(theta) ** 9 - 1.83655540591641e46 * cos(theta) ** 7 + 2.77066548306355e44 * cos(theta) ** 5 - 1.91741555921353e42 * cos(theta) ** 3 + 3.85023204661352e39 * cos(theta) ) * cos(22 * phi) ) # @torch.jit.script def Yl59_m23(theta, phi): return ( 1.21741268938137e-40 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.57520523871412e55 * cos(theta) ** 36 - 8.4818743623068e55 * cos(theta) ** 34 + 2.06883979011048e56 * cos(theta) ** 32 - 3.02697503213805e56 * cos(theta) ** 30 + 2.96561743013526e56 * cos(theta) ** 28 - 2.05688695154335e56 * cos(theta) ** 26 + 1.04125897079687e56 * cos(theta) ** 24 - 3.91003368625763e55 * cos(theta) ** 22 + 1.09613808437562e55 * cos(theta) ** 20 - 2.29115771211626e54 * cos(theta) ** 18 + 3.54088010054331e53 * cos(theta) ** 16 - 3.98224566134206e52 * cos(theta) ** 14 + 3.17881013317655e51 * cos(theta) ** 12 - 1.73533059379365e50 * cos(theta) ** 10 + 6.12950366724602e48 * cos(theta) ** 8 - 1.28558878414149e47 * cos(theta) ** 6 + 1.38533274153178e45 * cos(theta) ** 4 - 5.75224667764059e42 * cos(theta) ** 2 + 3.85023204661352e39 ) * cos(23 * phi) ) # @torch.jit.script def Yl59_m24(theta, phi): return ( 2.22714004920008e-42 * (1.0 - cos(theta) ** 2) ** 12 * ( 5.67073885937083e56 * cos(theta) ** 35 - 2.88383728318431e57 * cos(theta) ** 33 + 6.62028732835355e57 * cos(theta) ** 31 - 9.08092509641416e57 * cos(theta) ** 29 + 8.30372880437872e57 * cos(theta) ** 27 - 5.34790607401271e57 * cos(theta) ** 25 + 2.49902152991248e57 * cos(theta) ** 23 - 8.60207410976678e56 * cos(theta) ** 21 + 2.19227616875124e56 * cos(theta) ** 19 - 4.12408388180927e55 * cos(theta) ** 17 + 5.6654081608693e54 * cos(theta) ** 15 - 5.57514392587888e53 * cos(theta) ** 13 + 3.81457215981186e52 * cos(theta) ** 11 - 1.73533059379365e51 * cos(theta) ** 9 + 4.90360293379682e49 * cos(theta) ** 7 - 7.71353270484893e47 * cos(theta) ** 5 + 5.5413309661271e45 * cos(theta) ** 3 - 1.15044933552812e43 * cos(theta) ) * cos(24 * phi) ) # @torch.jit.script def Yl59_m25(theta, phi): return ( 4.10746491439213e-44 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 1.98475860077979e58 * cos(theta) ** 34 - 9.51666303450823e58 * cos(theta) ** 32 + 2.0522890717896e59 * cos(theta) ** 30 - 2.63346827796011e59 * cos(theta) ** 28 + 2.24200677718225e59 * cos(theta) ** 26 - 1.33697651850318e59 * cos(theta) ** 24 + 5.74774951879871e58 * cos(theta) ** 22 - 1.80643556305102e58 * cos(theta) ** 20 + 4.16532472062736e57 * cos(theta) ** 18 - 7.01094259907576e56 * cos(theta) ** 16 + 8.49811224130395e55 * cos(theta) ** 14 - 7.24768710364254e54 * cos(theta) ** 12 + 4.19602937579305e53 * cos(theta) ** 10 - 1.56179753441429e52 * cos(theta) ** 8 + 3.43252205365777e50 * cos(theta) ** 6 - 3.85676635242446e48 * cos(theta) ** 4 + 1.66239928983813e46 * cos(theta) ** 2 - 1.15044933552812e43 ) * cos(25 * phi) ) # @torch.jit.script def Yl59_m26(theta, phi): return ( 7.64055561100451e-46 * (1.0 - cos(theta) ** 2) ** 13 * ( 6.74817924265129e59 * cos(theta) ** 33 - 3.04533217104263e60 * cos(theta) ** 31 + 6.1568672153688e60 * cos(theta) ** 29 - 7.3737111782883e60 * cos(theta) ** 27 + 5.82921762067386e60 * cos(theta) ** 25 - 3.20874364440763e60 * cos(theta) ** 23 + 1.26450489413572e60 * cos(theta) ** 21 - 3.61287112610205e59 * cos(theta) ** 19 + 7.49758449712925e58 * cos(theta) ** 17 - 1.12175081585212e58 * cos(theta) ** 15 + 1.18973571378255e57 * cos(theta) ** 13 - 8.69722452437105e55 * cos(theta) ** 11 + 4.19602937579305e54 * cos(theta) ** 9 - 1.24943802753143e53 * cos(theta) ** 7 + 2.05951323219466e51 * cos(theta) ** 5 - 1.54270654096979e49 * cos(theta) ** 3 + 3.32479857967626e46 * cos(theta) ) * cos(26 * phi) ) # @torch.jit.script def Yl59_m27(theta, phi): return ( 1.43422981181384e-47 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 2.22689915007493e61 * cos(theta) ** 32 - 9.44052973023216e61 * cos(theta) ** 30 + 1.78549149245695e62 * cos(theta) ** 28 - 1.99090201813784e62 * cos(theta) ** 26 + 1.45730440516846e62 * cos(theta) ** 24 - 7.38011038213755e61 * cos(theta) ** 22 + 2.655460277685e61 * cos(theta) ** 20 - 6.86445513959389e60 * cos(theta) ** 18 + 1.27458936451197e60 * cos(theta) ** 16 - 1.68262622377818e59 * cos(theta) ** 14 + 1.54665642791732e58 * cos(theta) ** 12 - 9.56694697680815e56 * cos(theta) ** 10 + 3.77642643821374e55 * cos(theta) ** 8 - 8.74606619272001e53 * cos(theta) ** 6 + 1.02975661609733e52 * cos(theta) ** 4 - 4.62811962290936e49 * cos(theta) ** 2 + 3.32479857967626e46 ) * cos(27 * phi) ) # @torch.jit.script def Yl59_m28(theta, phi): return ( 2.71821703594654e-49 * (1.0 - cos(theta) ** 2) ** 14 * ( 7.12607728023976e62 * cos(theta) ** 31 - 2.83215891906965e63 * cos(theta) ** 29 + 4.99937617887947e63 * cos(theta) ** 27 - 5.17634524715839e63 * cos(theta) ** 25 + 3.49753057240432e63 * cos(theta) ** 23 - 1.62362428407026e63 * cos(theta) ** 21 + 5.31092055537001e62 * cos(theta) ** 19 - 1.2356019251269e62 * cos(theta) ** 17 + 2.03934298321916e61 * cos(theta) ** 15 - 2.35567671328945e60 * cos(theta) ** 13 + 1.85598771350078e59 * cos(theta) ** 11 - 9.56694697680815e57 * cos(theta) ** 9 + 3.021141150571e56 * cos(theta) ** 7 - 5.247639715632e54 * cos(theta) ** 5 + 4.11902646438933e52 * cos(theta) ** 3 - 9.25623924581871e49 * cos(theta) ) * cos(28 * phi) ) # @torch.jit.script def Yl59_m29(theta, phi): return ( 5.20429549014948e-51 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 2.20908395687433e64 * cos(theta) ** 30 - 8.21326086530198e64 * cos(theta) ** 28 + 1.34983156829746e65 * cos(theta) ** 26 - 1.2940863117896e65 * cos(theta) ** 24 + 8.04432031652993e64 * cos(theta) ** 22 - 3.40961099654755e64 * cos(theta) ** 20 + 1.0090749055203e64 * cos(theta) ** 18 - 2.10052327271573e63 * cos(theta) ** 16 + 3.05901447482873e62 * cos(theta) ** 14 - 3.06237972727629e61 * cos(theta) ** 12 + 2.04158648485086e60 * cos(theta) ** 10 - 8.61025227912734e58 * cos(theta) ** 8 + 2.1147988053997e57 * cos(theta) ** 6 - 2.623819857816e55 * cos(theta) ** 4 + 1.2357079393168e53 * cos(theta) ** 2 - 9.25623924581871e49 ) * cos(29 * phi) ) # @torch.jit.script def Yl59_m30(theta, phi): return ( 1.00717819832226e-52 * (1.0 - cos(theta) ** 2) ** 15 * ( 6.62725187062298e65 * cos(theta) ** 29 - 2.29971304228456e66 * cos(theta) ** 27 + 3.50956207757339e66 * cos(theta) ** 25 - 3.10580714829503e66 * cos(theta) ** 23 + 1.76975046963658e66 * cos(theta) ** 21 - 6.81922199309509e65 * cos(theta) ** 19 + 1.81633482993654e65 * cos(theta) ** 17 - 3.36083723634517e64 * cos(theta) ** 15 + 4.28262026476023e63 * cos(theta) ** 13 - 3.67485567273155e62 * cos(theta) ** 11 + 2.04158648485086e61 * cos(theta) ** 9 - 6.88820182330187e59 * cos(theta) ** 7 + 1.26887928323982e58 * cos(theta) ** 5 - 1.0495279431264e56 * cos(theta) ** 3 + 2.4714158786336e53 * cos(theta) ) * cos(30 * phi) ) # @torch.jit.script def Yl59_m31(theta, phi): return ( 1.97145134236406e-54 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 1.92190304248066e67 * cos(theta) ** 28 - 6.2092252141683e67 * cos(theta) ** 26 + 8.77390519393347e67 * cos(theta) ** 24 - 7.14335644107857e67 * cos(theta) ** 22 + 3.71647598623683e67 * cos(theta) ** 20 - 1.29565217868807e67 * cos(theta) ** 18 + 3.08776921089212e66 * cos(theta) ** 16 - 5.04125585451775e65 * cos(theta) ** 14 + 5.5674063441883e64 * cos(theta) ** 12 - 4.0423412400047e63 * cos(theta) ** 10 + 1.83742783636577e62 * cos(theta) ** 8 - 4.82174127631131e60 * cos(theta) ** 6 + 6.34439641619909e58 * cos(theta) ** 4 - 3.1485838293792e56 * cos(theta) ** 2 + 2.4714158786336e53 ) * cos(31 * phi) ) # @torch.jit.script def Yl59_m32(theta, phi): return ( 3.90558730877798e-56 * (1.0 - cos(theta) ** 2) ** 16 * ( 5.38132851894586e68 * cos(theta) ** 27 - 1.61439855568376e69 * cos(theta) ** 25 + 2.10573724654403e69 * cos(theta) ** 23 - 1.57153841703729e69 * cos(theta) ** 21 + 7.43295197247365e68 * cos(theta) ** 19 - 2.33217392163852e68 * cos(theta) ** 17 + 4.9404307374274e67 * cos(theta) ** 15 - 7.05775819632485e66 * cos(theta) ** 13 + 6.68088761302595e65 * cos(theta) ** 11 - 4.0423412400047e64 * cos(theta) ** 9 + 1.46994226909262e63 * cos(theta) ** 7 - 2.89304476578679e61 * cos(theta) ** 5 + 2.53775856647964e59 * cos(theta) ** 3 - 6.2971676587584e56 * cos(theta) ) * cos(32 * phi) ) # @torch.jit.script def Yl59_m33(theta, phi): return ( 7.83629099946985e-58 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 1.45295870011538e70 * cos(theta) ** 26 - 4.03599638920939e70 * cos(theta) ** 24 + 4.84319566705127e70 * cos(theta) ** 22 - 3.3002306757783e70 * cos(theta) ** 20 + 1.41226087476999e70 * cos(theta) ** 18 - 3.96469566678549e69 * cos(theta) ** 16 + 7.4106461061411e68 * cos(theta) ** 14 - 9.17508565522231e67 * cos(theta) ** 12 + 7.34897637432855e66 * cos(theta) ** 10 - 3.63810711600423e65 * cos(theta) ** 8 + 1.02895958836483e64 * cos(theta) ** 6 - 1.44652238289339e62 * cos(theta) ** 4 + 7.61327569943891e59 * cos(theta) ** 2 - 6.2971676587584e56 ) * cos(33 * phi) ) # @torch.jit.script def Yl59_m34(theta, phi): return ( 1.59361132285127e-59 * (1.0 - cos(theta) ** 2) ** 17 * ( 3.77769262029999e71 * cos(theta) ** 25 - 9.68639133410255e71 * cos(theta) ** 23 + 1.06550304675128e72 * cos(theta) ** 21 - 6.6004613515566e71 * cos(theta) ** 19 + 2.54206957458599e71 * cos(theta) ** 17 - 6.34351306685678e70 * cos(theta) ** 15 + 1.03749045485975e70 * cos(theta) ** 13 - 1.10101027862668e69 * cos(theta) ** 11 + 7.34897637432855e67 * cos(theta) ** 9 - 2.91048569280339e66 * cos(theta) ** 7 + 6.173757530189e64 * cos(theta) ** 5 - 5.78608953157357e62 * cos(theta) ** 3 + 1.52265513988778e60 * cos(theta) ) * cos(34 * phi) ) # @torch.jit.script def Yl59_m35(theta, phi): return ( 3.28736915333476e-61 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 9.44423155074998e72 * cos(theta) ** 24 - 2.22787000684359e73 * cos(theta) ** 22 + 2.23755639817769e73 * cos(theta) ** 20 - 1.25408765679575e73 * cos(theta) ** 18 + 4.32151827679618e72 * cos(theta) ** 16 - 9.51526960028517e71 * cos(theta) ** 14 + 1.34873759131768e71 * cos(theta) ** 12 - 1.21111130648935e70 * cos(theta) ** 10 + 6.6140787368957e68 * cos(theta) ** 8 - 2.03733998496237e67 * cos(theta) ** 6 + 3.0868787650945e65 * cos(theta) ** 4 - 1.73582685947207e63 * cos(theta) ** 2 + 1.52265513988778e60 ) * cos(35 * phi) ) # @torch.jit.script def Yl59_m36(theta, phi): return ( 6.88463708935914e-63 * (1.0 - cos(theta) ** 2) ** 18 * ( 2.26661557218e74 * cos(theta) ** 23 - 4.90131401505589e74 * cos(theta) ** 21 + 4.47511279635538e74 * cos(theta) ** 19 - 2.25735778223236e74 * cos(theta) ** 17 + 6.91442924287389e73 * cos(theta) ** 15 - 1.33213774403992e73 * cos(theta) ** 13 + 1.61848510958122e72 * cos(theta) ** 11 - 1.21111130648935e71 * cos(theta) ** 9 + 5.29126298951656e69 * cos(theta) ** 7 - 1.22240399097742e68 * cos(theta) ** 5 + 1.2347515060378e66 * cos(theta) ** 3 - 3.47165371894414e63 * cos(theta) ) * cos(36 * phi) ) # @torch.jit.script def Yl59_m37(theta, phi): return ( 1.46514807105522e-64 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 5.21321581601399e75 * cos(theta) ** 22 - 1.02927594316174e76 * cos(theta) ** 20 + 8.50271431307522e75 * cos(theta) ** 18 - 3.83750822979501e75 * cos(theta) ** 16 + 1.03716438643108e75 * cos(theta) ** 14 - 1.7317790672519e74 * cos(theta) ** 12 + 1.78033362053934e73 * cos(theta) ** 10 - 1.09000017584041e72 * cos(theta) ** 8 + 3.70388409266159e70 * cos(theta) ** 6 - 6.11201995488711e68 * cos(theta) ** 4 + 3.7042545181134e66 * cos(theta) ** 2 - 3.47165371894414e63 ) * cos(37 * phi) ) # @torch.jit.script def Yl59_m38(theta, phi): return ( 3.17164309407581e-66 * (1.0 - cos(theta) ** 2) ** 19 * ( 1.14690747952308e77 * cos(theta) ** 21 - 2.05855188632347e77 * cos(theta) ** 19 + 1.53048857635354e77 * cos(theta) ** 17 - 6.14001316767201e76 * cos(theta) ** 15 + 1.45203014100352e76 * cos(theta) ** 13 - 2.07813488070228e75 * cos(theta) ** 11 + 1.78033362053934e74 * cos(theta) ** 9 - 8.72000140672328e72 * cos(theta) ** 7 + 2.22233045559695e71 * cos(theta) ** 5 - 2.44480798195484e69 * cos(theta) ** 3 + 7.4085090362268e66 * cos(theta) ) * cos(38 * phi) ) # @torch.jit.script def Yl59_m39(theta, phi): return ( 6.99135934714332e-68 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 2.40850570699846e78 * cos(theta) ** 20 - 3.9112485840146e78 * cos(theta) ** 18 + 2.60183057980102e78 * cos(theta) ** 16 - 9.21001975150802e77 * cos(theta) ** 14 + 1.88763918330457e77 * cos(theta) ** 12 - 2.28594836877251e76 * cos(theta) ** 10 + 1.6023002584854e75 * cos(theta) ** 8 - 6.1040009847063e73 * cos(theta) ** 6 + 1.11116522779848e72 * cos(theta) ** 4 - 7.33442394586453e69 * cos(theta) ** 2 + 7.4085090362268e66 ) * cos(39 * phi) ) # @torch.jit.script def Yl59_m40(theta, phi): return ( 1.57119117009171e-69 * (1.0 - cos(theta) ** 2) ** 20 * ( 4.81701141399693e79 * cos(theta) ** 19 - 7.04024745122628e79 * cos(theta) ** 17 + 4.16292892768163e79 * cos(theta) ** 15 - 1.28940276521112e79 * cos(theta) ** 13 + 2.26516701996549e78 * cos(theta) ** 11 - 2.28594836877251e77 * cos(theta) ** 9 + 1.28184020678832e76 * cos(theta) ** 7 - 3.66240059082378e74 * cos(theta) ** 5 + 4.44466091119391e72 * cos(theta) ** 3 - 1.46688478917291e70 * cos(theta) ) * cos(40 * phi) ) # @torch.jit.script def Yl59_m41(theta, phi): return ( 3.60455975337536e-71 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 9.15232168659416e80 * cos(theta) ** 18 - 1.19684206670847e81 * cos(theta) ** 16 + 6.24439339152244e80 * cos(theta) ** 14 - 1.67622359477446e80 * cos(theta) ** 12 + 2.49168372196203e79 * cos(theta) ** 10 - 2.05735353189526e78 * cos(theta) ** 8 + 8.97288144751826e76 * cos(theta) ** 6 - 1.83120029541189e75 * cos(theta) ** 4 + 1.33339827335817e73 * cos(theta) ** 2 - 1.46688478917291e70 ) * cos(41 * phi) ) # @torch.jit.script def Yl59_m42(theta, phi): return ( 8.45386464102844e-73 * (1.0 - cos(theta) ** 2) ** 21 * ( 1.64741790358695e82 * cos(theta) ** 17 - 1.91494730673355e82 * cos(theta) ** 15 + 8.74215074813141e81 * cos(theta) ** 13 - 2.01146831372935e81 * cos(theta) ** 11 + 2.49168372196203e80 * cos(theta) ** 9 - 1.64588282551621e79 * cos(theta) ** 7 + 5.38372886851096e77 * cos(theta) ** 5 - 7.32480118164756e75 * cos(theta) ** 3 + 2.66679654671634e73 * cos(theta) ) * cos(42 * phi) ) # @torch.jit.script def Yl59_m43(theta, phi): return ( 2.03016222794868e-74 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 2.80061043609781e83 * cos(theta) ** 16 - 2.87242096010032e83 * cos(theta) ** 14 + 1.13647959725708e83 * cos(theta) ** 12 - 2.21261514510229e82 * cos(theta) ** 10 + 2.24251534976583e81 * cos(theta) ** 8 - 1.15211797786134e80 * cos(theta) ** 6 + 2.69186443425548e78 * cos(theta) ** 4 - 2.19744035449427e76 * cos(theta) ** 2 + 2.66679654671634e73 ) * cos(43 * phi) ) # @torch.jit.script def Yl59_m44(theta, phi): return ( 5.00094570655272e-76 * (1.0 - cos(theta) ** 2) ** 22 * ( 4.4809766977565e84 * cos(theta) ** 15 - 4.02138934414045e84 * cos(theta) ** 13 + 1.3637755167085e84 * cos(theta) ** 11 - 2.21261514510229e83 * cos(theta) ** 9 + 1.79401227981266e82 * cos(theta) ** 7 - 6.91270786716807e80 * cos(theta) ** 5 + 1.07674577370219e79 * cos(theta) ** 3 - 4.39488070898854e76 * cos(theta) ) * cos(44 * phi) ) # @torch.jit.script def Yl59_m45(theta, phi): return ( 1.26616364741849e-77 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 6.72146504663475e85 * cos(theta) ** 14 - 5.22780614738258e85 * cos(theta) ** 12 + 1.50015306837935e85 * cos(theta) ** 10 - 1.99135363059206e84 * cos(theta) ** 8 + 1.25580859586887e83 * cos(theta) ** 6 - 3.45635393358403e81 * cos(theta) ** 4 + 3.23023732110657e79 * cos(theta) ** 2 - 4.39488070898854e76 ) * cos(45 * phi) ) # @torch.jit.script def Yl59_m46(theta, phi): return ( 3.30241138659108e-79 * (1.0 - cos(theta) ** 2) ** 23 * ( 9.41005106528865e86 * cos(theta) ** 13 - 6.2733673768591e86 * cos(theta) ** 11 + 1.50015306837935e86 * cos(theta) ** 9 - 1.59308290447365e85 * cos(theta) ** 7 + 7.53485157521319e83 * cos(theta) ** 5 - 1.38254157343361e82 * cos(theta) ** 3 + 6.46047464221315e79 * cos(theta) ) * cos(46 * phi) ) # @torch.jit.script def Yl59_m47(theta, phi): return ( 8.89624150767567e-81 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 1.22330663848752e88 * cos(theta) ** 12 - 6.90070411454501e87 * cos(theta) ** 10 + 1.35013776154142e87 * cos(theta) ** 8 - 1.11515803313155e86 * cos(theta) ** 6 + 3.7674257876066e84 * cos(theta) ** 4 - 4.14762472030084e82 * cos(theta) ** 2 + 6.46047464221315e79 ) * cos(47 * phi) ) # @torch.jit.script def Yl59_m48(theta, phi): return ( 2.48269890330301e-82 * (1.0 - cos(theta) ** 2) ** 24 * ( 1.46796796618503e89 * cos(theta) ** 11 - 6.90070411454501e88 * cos(theta) ** 9 + 1.08011020923313e88 * cos(theta) ** 7 - 6.69094819878932e86 * cos(theta) ** 5 + 1.50697031504264e85 * cos(theta) ** 3 - 8.29524944060168e82 * cos(theta) ) * cos(48 * phi) ) # @torch.jit.script def Yl59_m49(theta, phi): return ( 7.20304009217948e-84 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.61476476280353e90 * cos(theta) ** 10 - 6.21063370309051e89 * cos(theta) ** 8 + 7.56077146463193e88 * cos(theta) ** 6 - 3.34547409939466e87 * cos(theta) ** 4 + 4.52091094512792e85 * cos(theta) ** 2 - 8.29524944060168e82 ) * cos(49 * phi) ) # @torch.jit.script def Yl59_m50(theta, phi): return ( 2.18173793550562e-85 * (1.0 - cos(theta) ** 2) ** 25 * ( 1.61476476280353e91 * cos(theta) ** 9 - 4.96850696247241e90 * cos(theta) ** 7 + 4.53646287877916e89 * cos(theta) ** 5 - 1.33818963975786e88 * cos(theta) ** 3 + 9.04182189025583e85 * cos(theta) ) * cos(50 * phi) ) # @torch.jit.script def Yl59_m51(theta, phi): return ( 6.9340183368084e-87 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 1.45328828652318e92 * cos(theta) ** 8 - 3.47795487373069e91 * cos(theta) ** 6 + 2.26823143938958e90 * cos(theta) ** 4 - 4.01456891927359e88 * cos(theta) ** 2 + 9.04182189025583e85 ) * cos(51 * phi) ) # @torch.jit.script def Yl59_m52(theta, phi): return ( 2.32690419685702e-88 * (1.0 - cos(theta) ** 2) ** 26 * ( 1.16263062921854e93 * cos(theta) ** 7 - 2.08677292423841e92 * cos(theta) ** 5 + 9.07292575755831e90 * cos(theta) ** 3 - 8.02913783854718e88 * cos(theta) ) * cos(52 * phi) ) # @torch.jit.script def Yl59_m53(theta, phi): return ( 8.3103721316322e-90 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 8.13841440452981e93 * cos(theta) ** 6 - 1.04338646211921e93 * cos(theta) ** 4 + 2.72187772726749e91 * cos(theta) ** 2 - 8.02913783854718e88 ) * cos(53 * phi) ) # @torch.jit.script def Yl59_m54(theta, phi): return ( 3.19157918962223e-91 * (1.0 - cos(theta) ** 2) ** 27 * ( 4.88304864271788e94 * cos(theta) ** 5 - 4.17354584847682e93 * cos(theta) ** 3 + 5.44375545453499e91 * cos(theta) ) * cos(54 * phi) ) # @torch.jit.script def Yl59_m55(theta, phi): return ( 1.33680541719571e-92 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 2.44152432135894e95 * cos(theta) ** 4 - 1.25206375454305e94 * cos(theta) ** 2 + 5.44375545453499e91 ) * cos(55 * phi) ) # @torch.jit.script def Yl59_m56(theta, phi): return ( 6.2328873960835e-94 * (1.0 - cos(theta) ** 2) ** 28 * (9.76609728543577e95 * cos(theta) ** 3 - 2.50412750908609e94 * cos(theta)) * cos(56 * phi) ) # @torch.jit.script def Yl59_m57(theta, phi): return ( 3.34117835278681e-95 * (1.0 - cos(theta) ** 2) ** 28.5 * (2.92982918563073e96 * cos(theta) ** 2 - 2.50412750908609e94) * cos(57 * phi) ) # @torch.jit.script def Yl59_m58(theta, phi): return 12.7986459962836 * (1.0 - cos(theta) ** 2) ** 29 * cos(58 * phi) * cos(theta) # @torch.jit.script def Yl59_m59(theta, phi): return 1.17821086476446 * (1.0 - cos(theta) ** 2) ** 29.5 * cos(59 * phi) # @torch.jit.script def Yl60_m_minus_60(theta, phi): return 1.18310989157014 * (1.0 - cos(theta) ** 2) ** 30 * sin(60 * phi) # @torch.jit.script def Yl60_m_minus_59(theta, phi): return ( 12.9603195124091 * (1.0 - cos(theta) ** 2) ** 29.5 * sin(59 * phi) * cos(theta) ) # @torch.jit.script def Yl60_m_minus_58(theta, phi): return ( 2.86737786884351e-97 * (1.0 - cos(theta) ** 2) ** 29 * (3.48649673090057e98 * cos(theta) ** 2 - 2.92982918563073e96) * sin(58 * phi) ) # @torch.jit.script def Yl60_m_minus_57(theta, phi): return ( 5.39493926594886e-96 * (1.0 - cos(theta) ** 2) ** 28.5 * (1.16216557696686e98 * cos(theta) ** 3 - 2.92982918563073e96 * cos(theta)) * sin(57 * phi) ) # @torch.jit.script def Yl60_m_minus_56(theta, phi): return ( 1.16710380908356e-94 * (1.0 - cos(theta) ** 2) ** 28 * ( 2.90541394241714e97 * cos(theta) ** 4 - 1.46491459281536e96 * cos(theta) ** 2 + 6.26031877271524e93 ) * sin(56 * phi) ) # @torch.jit.script def Yl60_m_minus_55(theta, phi): return ( 2.81075818006968e-93 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 5.81082788483428e96 * cos(theta) ** 5 - 4.88304864271788e95 * cos(theta) ** 3 + 6.26031877271524e93 * cos(theta) ) * sin(55 * phi) ) # @torch.jit.script def Yl60_m_minus_54(theta, phi): return ( 7.38325772766451e-92 * (1.0 - cos(theta) ** 2) ** 27 * ( 9.68471314139047e95 * cos(theta) ** 6 - 1.22076216067947e95 * cos(theta) ** 4 + 3.13015938635762e93 * cos(theta) ** 2 - 9.07292575755831e90 ) * sin(54 * phi) ) # @torch.jit.script def Yl60_m_minus_53(theta, phi): return ( 2.08568863326116e-90 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 1.38353044877007e95 * cos(theta) ** 7 - 2.44152432135894e94 * cos(theta) ** 5 + 1.04338646211921e93 * cos(theta) ** 3 - 9.07292575755831e90 * cos(theta) ) * sin(53 * phi) ) # @torch.jit.script def Yl60_m_minus_52(theta, phi): return ( 6.2709550753637e-89 * (1.0 - cos(theta) ** 2) ** 26 * ( 1.72941306096258e94 * cos(theta) ** 8 - 4.0692072022649e93 * cos(theta) ** 6 + 2.60846615529801e92 * cos(theta) ** 4 - 4.53646287877916e90 * cos(theta) ** 2 + 1.0036422298184e88 ) * sin(52 * phi) ) # @torch.jit.script def Yl60_m_minus_51(theta, phi): return ( 1.99096651347248e-87 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 1.9215700677362e93 * cos(theta) ** 9 - 5.81315314609272e92 * cos(theta) ** 7 + 5.21693231059603e91 * cos(theta) ** 5 - 1.51215429292639e90 * cos(theta) ** 3 + 1.0036422298184e88 * cos(theta) ) * sin(51 * phi) ) # @torch.jit.script def Yl60_m_minus_50(theta, phi): return ( 6.63323593740138e-86 * (1.0 - cos(theta) ** 2) ** 25 * ( 1.9215700677362e92 * cos(theta) ** 10 - 7.2664414326159e91 * cos(theta) ** 8 + 8.69488718432672e90 * cos(theta) ** 6 - 3.78038573231596e89 * cos(theta) ** 4 + 5.01821114909199e87 * cos(theta) ** 2 - 9.04182189025583e84 ) * sin(50 * phi) ) # @torch.jit.script def Yl60_m_minus_49(theta, phi): return ( 2.30737472014175e-84 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.74688187976019e91 * cos(theta) ** 11 - 8.07382381401766e90 * cos(theta) ** 9 + 1.2421267406181e90 * cos(theta) ** 7 - 7.56077146463193e88 * cos(theta) ** 5 + 1.67273704969733e87 * cos(theta) ** 3 - 9.04182189025583e84 * cos(theta) ) * sin(49 * phi) ) # @torch.jit.script def Yl60_m_minus_48(theta, phi): return ( 8.34491662851533e-83 * (1.0 - cos(theta) ** 2) ** 24 * ( 1.45573489980015e90 * cos(theta) ** 12 - 8.07382381401766e89 * cos(theta) ** 10 + 1.55265842577263e89 * cos(theta) ** 8 - 1.26012857743865e88 * cos(theta) ** 6 + 4.18184262424332e86 * cos(theta) ** 4 - 4.52091094512792e84 * cos(theta) ** 2 + 6.91270786716807e81 ) * sin(48 * phi) ) # @torch.jit.script def Yl60_m_minus_47(theta, phi): return ( 3.12683925851279e-81 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 1.11979607676935e89 * cos(theta) ** 13 - 7.33983983092515e88 * cos(theta) ** 11 + 1.72517602863625e88 * cos(theta) ** 9 - 1.80018368205522e87 * cos(theta) ** 7 + 8.36368524848664e85 * cos(theta) ** 5 - 1.50697031504264e84 * cos(theta) ** 3 + 6.91270786716807e81 * cos(theta) ) * sin(47 * phi) ) # @torch.jit.script def Yl60_m_minus_46(theta, phi): return ( 1.21021202172876e-79 * (1.0 - cos(theta) ** 2) ** 23 * ( 7.99854340549535e87 * cos(theta) ** 14 - 6.11653319243762e87 * cos(theta) ** 12 + 1.72517602863625e87 * cos(theta) ** 10 - 2.25022960256903e86 * cos(theta) ** 8 + 1.39394754141444e85 * cos(theta) ** 6 - 3.7674257876066e83 * cos(theta) ** 4 + 3.45635393358403e81 * cos(theta) ** 2 - 4.61462474443796e78 ) * sin(46 * phi) ) # @torch.jit.script def Yl60_m_minus_45(theta, phi): return ( 4.82569672553458e-78 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 5.33236227033024e86 * cos(theta) ** 15 - 4.70502553264433e86 * cos(theta) ** 13 + 1.56834184421478e86 * cos(theta) ** 11 - 2.50025511396558e85 * cos(theta) ** 9 + 1.99135363059206e84 * cos(theta) ** 7 - 7.53485157521319e82 * cos(theta) ** 5 + 1.15211797786134e81 * cos(theta) ** 3 - 4.61462474443796e78 * cos(theta) ) * sin(45 * phi) ) # @torch.jit.script def Yl60_m_minus_44(theta, phi): return ( 1.97794707032021e-76 * (1.0 - cos(theta) ** 2) ** 22 * ( 3.3327264189564e85 * cos(theta) ** 16 - 3.36073252331738e85 * cos(theta) ** 14 + 1.30695153684565e85 * cos(theta) ** 12 - 2.50025511396558e84 * cos(theta) ** 10 + 2.48919203824007e83 * cos(theta) ** 8 - 1.25580859586887e82 * cos(theta) ** 6 + 2.88029494465336e80 * cos(theta) ** 4 - 2.30731237221898e78 * cos(theta) ** 2 + 2.74680044311783e75 ) * sin(44 * phi) ) # @torch.jit.script def Yl60_m_minus_43(theta, phi): return ( 8.3167911575098e-75 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 1.96042730526847e84 * cos(theta) ** 17 - 2.24048834887825e84 * cos(theta) ** 15 + 1.00534733603511e84 * cos(theta) ** 13 - 2.27295919451417e83 * cos(theta) ** 11 + 2.76576893137786e82 * cos(theta) ** 9 - 1.79401227981267e81 * cos(theta) ** 7 + 5.76058988930672e79 * cos(theta) ** 5 - 7.69104124072994e77 * cos(theta) ** 3 + 2.74680044311783e75 * cos(theta) ) * sin(43 * phi) ) # @torch.jit.script def Yl60_m_minus_42(theta, phi): return ( 3.58105227694671e-73 * (1.0 - cos(theta) ** 2) ** 21 * ( 1.08912628070471e83 * cos(theta) ** 18 - 1.40030521804891e83 * cos(theta) ** 16 + 7.1810524002508e82 * cos(theta) ** 14 - 1.89413266209514e82 * cos(theta) ** 12 + 2.76576893137786e81 * cos(theta) ** 10 - 2.24251534976583e80 * cos(theta) ** 8 + 9.60098314884454e78 * cos(theta) ** 6 - 1.92276031018248e77 * cos(theta) ** 4 + 1.37340022155892e75 * cos(theta) ** 2 - 1.48155363706464e72 ) * sin(42 * phi) ) # @torch.jit.script def Yl60_m_minus_41(theta, phi): return ( 1.57647666728742e-71 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 5.73224358265634e81 * cos(theta) ** 19 - 8.23708951793475e81 * cos(theta) ** 17 + 4.78736826683387e81 * cos(theta) ** 15 - 1.45702512468857e81 * cos(theta) ** 13 + 2.51433539216169e80 * cos(theta) ** 11 - 2.49168372196203e79 * cos(theta) ** 9 + 1.37156902126351e78 * cos(theta) ** 7 - 3.84552062036497e76 * cos(theta) ** 5 + 4.57800073852972e74 * cos(theta) ** 3 - 1.48155363706464e72 * cos(theta) ) * sin(41 * phi) ) # @torch.jit.script def Yl60_m_minus_40(theta, phi): return ( 7.08538138610289e-70 * (1.0 - cos(theta) ** 2) ** 20 * ( 2.86612179132817e80 * cos(theta) ** 20 - 4.57616084329708e80 * cos(theta) ** 18 + 2.99210516677117e80 * cos(theta) ** 16 - 1.04073223192041e80 * cos(theta) ** 14 + 2.09527949346807e79 * cos(theta) ** 12 - 2.49168372196203e78 * cos(theta) ** 10 + 1.71446127657938e77 * cos(theta) ** 8 - 6.40920103394161e75 * cos(theta) ** 6 + 1.14450018463243e74 * cos(theta) ** 4 - 7.40776818532318e71 * cos(theta) ** 2 + 7.33442394586453e68 ) * sin(40 * phi) ) # @torch.jit.script def Yl60_m_minus_39(theta, phi): return ( 3.24692965294476e-68 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 1.36481990063246e79 * cos(theta) ** 21 - 2.40850570699846e79 * cos(theta) ** 19 + 1.76006186280657e79 * cos(theta) ** 17 - 6.93821487946938e78 * cos(theta) ** 15 + 1.6117534565139e78 * cos(theta) ** 13 - 2.26516701996549e77 * cos(theta) ** 11 + 1.90495697397709e76 * cos(theta) ** 9 - 9.15600147705945e74 * cos(theta) ** 7 + 2.28900036926486e73 * cos(theta) ** 5 - 2.46925606177439e71 * cos(theta) ** 3 + 7.33442394586453e68 * cos(theta) ) * sin(39 * phi) ) # @torch.jit.script def Yl60_m_minus_38(theta, phi): return ( 1.51531114391773e-66 * (1.0 - cos(theta) ** 2) ** 19 * ( 6.20372682105665e77 * cos(theta) ** 22 - 1.20425285349923e78 * cos(theta) ** 20 + 9.7781214600365e77 * cos(theta) ** 18 - 4.33638429966836e77 * cos(theta) ** 16 + 1.1512524689385e77 * cos(theta) ** 14 - 1.88763918330457e76 * cos(theta) ** 12 + 1.90495697397709e75 * cos(theta) ** 10 - 1.14450018463243e74 * cos(theta) ** 8 + 3.81500061544144e72 * cos(theta) ** 6 - 6.17314015443598e70 * cos(theta) ** 4 + 3.66721197293227e68 * cos(theta) ** 2 - 3.36750410737582e65 ) * sin(38 * phi) ) # @torch.jit.script def Yl60_m_minus_37(theta, phi): return ( 7.19413814360994e-65 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 2.6972725308942e76 * cos(theta) ** 23 - 5.73453739761539e76 * cos(theta) ** 21 + 5.14637971580868e76 * cos(theta) ** 19 - 2.55081429392256e76 * cos(theta) ** 17 + 7.67501645959002e75 * cos(theta) ** 15 - 1.45203014100352e75 * cos(theta) ** 13 + 1.7317790672519e74 * cos(theta) ** 11 - 1.27166687181381e73 * cos(theta) ** 9 + 5.45000087920205e71 * cos(theta) ** 7 - 1.2346280308872e70 * cos(theta) ** 5 + 1.22240399097742e68 * cos(theta) ** 3 - 3.36750410737582e65 * cos(theta) ) * sin(37 * phi) ) # @torch.jit.script def Yl60_m_minus_36(theta, phi): return ( 3.47112505982011e-63 * (1.0 - cos(theta) ** 2) ** 18 * ( 1.12386355453925e75 * cos(theta) ** 24 - 2.606607908007e75 * cos(theta) ** 22 + 2.57318985790434e75 * cos(theta) ** 20 - 1.4171190521792e75 * cos(theta) ** 18 + 4.79688528724376e74 * cos(theta) ** 16 - 1.03716438643108e74 * cos(theta) ** 14 + 1.44314922270992e73 * cos(theta) ** 12 - 1.27166687181381e72 * cos(theta) ** 10 + 6.81250109900257e70 * cos(theta) ** 8 - 2.05771338481199e69 * cos(theta) ** 6 + 3.05600997744356e67 * cos(theta) ** 4 - 1.68375205368791e65 * cos(theta) ** 2 + 1.44652238289339e62 ) * sin(36 * phi) ) # @torch.jit.script def Yl60_m_minus_35(theta, phi): return ( 1.7004970459894e-61 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 4.49545421815699e73 * cos(theta) ** 25 - 1.13330778609e74 * cos(theta) ** 23 + 1.22532850376397e74 * cos(theta) ** 21 - 7.45852132725896e73 * cos(theta) ** 19 + 2.82169722779045e73 * cos(theta) ** 17 - 6.91442924287389e72 * cos(theta) ** 15 + 1.11011478669994e72 * cos(theta) ** 13 - 1.15606079255801e71 * cos(theta) ** 11 + 7.56944566555841e69 * cos(theta) ** 9 - 2.93959054973142e68 * cos(theta) ** 7 + 6.11201995488711e66 * cos(theta) ** 5 - 5.61250684562636e64 * cos(theta) ** 3 + 1.44652238289339e62 * cos(theta) ) * sin(35 * phi) ) # @torch.jit.script def Yl60_m_minus_34(theta, phi): return ( 8.4513163486194e-60 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.7290208531373e72 * cos(theta) ** 26 - 4.72211577537499e72 * cos(theta) ** 24 + 5.56967501710896e72 * cos(theta) ** 22 - 3.72926066362948e72 * cos(theta) ** 20 + 1.56760957099469e72 * cos(theta) ** 18 - 4.32151827679618e71 * cos(theta) ** 16 + 7.92939133357097e70 * cos(theta) ** 14 - 9.63383993798343e69 * cos(theta) ** 12 + 7.56944566555841e68 * cos(theta) ** 10 - 3.67448818716428e67 * cos(theta) ** 8 + 1.01866999248119e66 * cos(theta) ** 6 - 1.40312671140659e64 * cos(theta) ** 4 + 7.23261191446696e61 * cos(theta) ** 2 - 5.85636592264531e58 ) * sin(34 * phi) ) # @torch.jit.script def Yl60_m_minus_33(theta, phi): return ( 4.25765205818926e-58 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 6.40378093754557e70 * cos(theta) ** 27 - 1.88884631015e71 * cos(theta) ** 25 + 2.42159783352564e71 * cos(theta) ** 23 - 1.77583841125213e71 * cos(theta) ** 21 + 8.25057668944575e70 * cos(theta) ** 19 - 2.54206957458599e70 * cos(theta) ** 17 + 5.28626088904732e69 * cos(theta) ** 15 - 7.4106461061411e68 * cos(theta) ** 13 + 6.88131424141673e67 * cos(theta) ** 11 - 4.08276465240475e66 * cos(theta) ** 9 + 1.45524284640169e65 * cos(theta) ** 7 - 2.80625342281318e63 * cos(theta) ** 5 + 2.41087063815565e61 * cos(theta) ** 3 - 5.85636592264531e58 * cos(theta) ) * sin(33 * phi) ) # @torch.jit.script def Yl60_m_minus_32(theta, phi): return ( 2.17265443940271e-56 * (1.0 - cos(theta) ** 2) ** 16 * ( 2.28706462055199e69 * cos(theta) ** 28 - 7.26479350057691e69 * cos(theta) ** 26 + 1.00899909730235e70 * cos(theta) ** 24 - 8.07199277841879e69 * cos(theta) ** 22 + 4.12528834472288e69 * cos(theta) ** 20 - 1.41226087476999e69 * cos(theta) ** 18 + 3.30391305565457e68 * cos(theta) ** 16 - 5.29331864724364e67 * cos(theta) ** 14 + 5.73442853451394e66 * cos(theta) ** 12 - 4.08276465240475e65 * cos(theta) ** 10 + 1.81905355800212e64 * cos(theta) ** 8 - 4.67708903802197e62 * cos(theta) ** 6 + 6.02717659538914e60 * cos(theta) ** 4 - 2.92818296132266e58 * cos(theta) ** 2 + 2.24898844955657e55 ) * sin(32 * phi) ) # @torch.jit.script def Yl60_m_minus_31(theta, phi): return ( 1.12223438154577e-54 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 7.88642972604135e67 * cos(theta) ** 29 - 2.69066425947293e68 * cos(theta) ** 27 + 4.03599638920939e68 * cos(theta) ** 25 - 3.50956207757339e68 * cos(theta) ** 23 + 1.96442302129661e68 * cos(theta) ** 21 - 7.43295197247365e67 * cos(theta) ** 19 + 1.9434782680321e67 * cos(theta) ** 17 - 3.52887909816243e66 * cos(theta) ** 15 + 4.41109887270303e65 * cos(theta) ** 13 - 3.71160422945886e64 * cos(theta) ** 11 + 2.02117062000235e63 * cos(theta) ** 9 - 6.68155576860281e61 * cos(theta) ** 7 + 1.20543531907783e60 * cos(theta) ** 5 - 9.76060987107553e57 * cos(theta) ** 3 + 2.24898844955657e55 * cos(theta) ) * sin(31 * phi) ) # @torch.jit.script def Yl60_m_minus_30(theta, phi): return ( 5.8636075239113e-53 * (1.0 - cos(theta) ** 2) ** 15 * ( 2.62880990868045e66 * cos(theta) ** 30 - 9.60951521240332e66 * cos(theta) ** 28 + 1.55230630354207e67 * cos(theta) ** 26 - 1.46231753232224e67 * cos(theta) ** 24 + 8.92919555134822e66 * cos(theta) ** 22 - 3.71647598623683e66 * cos(theta) ** 20 + 1.07971014890672e66 * cos(theta) ** 18 - 2.20554943635152e65 * cos(theta) ** 16 + 3.1507849090736e64 * cos(theta) ** 14 - 3.09300352454905e63 * cos(theta) ** 12 + 2.02117062000235e62 * cos(theta) ** 10 - 8.35194471075352e60 * cos(theta) ** 8 + 2.00905886512971e59 * cos(theta) ** 6 - 2.44015246776888e57 * cos(theta) ** 4 + 1.12449422477829e55 * cos(theta) ** 2 - 8.23805292877866e51 ) * sin(30 * phi) ) # @torch.jit.script def Yl60_m_minus_29(theta, phi): return ( 3.09718391466457e-51 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 8.48003196348532e64 * cos(theta) ** 31 - 3.31362593531149e65 * cos(theta) ** 29 + 5.74928260571139e65 * cos(theta) ** 27 - 5.84927012928898e65 * cos(theta) ** 25 + 3.88225893536879e65 * cos(theta) ** 23 - 1.76975046963658e65 * cos(theta) ** 21 + 5.68268499424591e64 * cos(theta) ** 19 - 1.29738202138325e64 * cos(theta) ** 17 + 2.10052327271573e63 * cos(theta) ** 15 - 2.37923348042235e62 * cos(theta) ** 13 + 1.83742783636577e61 * cos(theta) ** 11 - 9.27993856750391e59 * cos(theta) ** 9 + 2.87008409304245e58 * cos(theta) ** 7 - 4.88030493553776e56 * cos(theta) ** 5 + 3.74831408259429e54 * cos(theta) ** 3 - 8.23805292877866e51 * cos(theta) ) * sin(29 * phi) ) # @torch.jit.script def Yl60_m_minus_28(theta, phi): return ( 1.65286349337081e-49 * (1.0 - cos(theta) ** 2) ** 14 * ( 2.65000998858916e63 * cos(theta) ** 32 - 1.10454197843716e64 * cos(theta) ** 30 + 2.0533152163255e64 * cos(theta) ** 28 - 2.24971928049576e64 * cos(theta) ** 26 + 1.617607889737e64 * cos(theta) ** 24 - 8.04432031652993e63 * cos(theta) ** 22 + 2.84134249712296e63 * cos(theta) ** 20 - 7.20767789657359e62 * cos(theta) ** 18 + 1.31282704544733e62 * cos(theta) ** 16 - 1.69945248601596e61 * cos(theta) ** 14 + 1.53118986363815e60 * cos(theta) ** 12 - 9.27993856750391e58 * cos(theta) ** 10 + 3.58760511630306e57 * cos(theta) ** 8 - 8.1338415592296e55 * cos(theta) ** 6 + 9.37078520648572e53 * cos(theta) ** 4 - 4.11902646438933e51 * cos(theta) ** 2 + 2.89257476431835e48 ) * sin(28 * phi) ) # @torch.jit.script def Yl60_m_minus_27(theta, phi): return ( 8.90707878111168e-48 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 8.03033329875504e61 * cos(theta) ** 33 - 3.56303864011988e62 * cos(theta) ** 31 + 7.08039729767412e62 * cos(theta) ** 29 - 8.33229363146578e62 * cos(theta) ** 27 + 6.47043155894798e62 * cos(theta) ** 25 - 3.49753057240432e62 * cos(theta) ** 23 + 1.35302023672522e62 * cos(theta) ** 21 - 3.79351468240715e61 * cos(theta) ** 19 + 7.72251203204313e60 * cos(theta) ** 17 - 1.13296832401064e60 * cos(theta) ** 15 + 1.17783835664473e59 * cos(theta) ** 13 - 8.43630778863992e57 * cos(theta) ** 11 + 3.9862279070034e56 * cos(theta) ** 9 - 1.16197736560423e55 * cos(theta) ** 7 + 1.87415704129714e53 * cos(theta) ** 5 - 1.37300882146311e51 * cos(theta) ** 3 + 2.89257476431835e48 * cos(theta) ) * sin(27 * phi) ) # @torch.jit.script def Yl60_m_minus_26(theta, phi): return ( 4.84433734413125e-46 * (1.0 - cos(theta) ** 2) ** 13 * ( 2.36186273492795e60 * cos(theta) ** 34 - 1.11344957503746e61 * cos(theta) ** 32 + 2.36013243255804e61 * cos(theta) ** 30 - 2.97581915409492e61 * cos(theta) ** 28 + 2.4886275226723e61 * cos(theta) ** 26 - 1.45730440516846e61 * cos(theta) ** 24 + 6.15009198511462e60 * cos(theta) ** 22 - 1.89675734120358e60 * cos(theta) ** 20 + 4.29028446224618e59 * cos(theta) ** 18 - 7.08105202506651e58 * cos(theta) ** 16 + 8.41313111889091e57 * cos(theta) ** 14 - 7.03025649053326e56 * cos(theta) ** 12 + 3.9862279070034e55 * cos(theta) ** 10 - 1.45247170700529e54 * cos(theta) ** 8 + 3.12359506882857e52 * cos(theta) ** 6 - 3.43252205365777e50 * cos(theta) ** 4 + 1.44628738215917e48 * cos(theta) ** 2 - 9.77881935198901e44 ) * sin(26 * phi) ) # @torch.jit.script def Yl60_m_minus_25(theta, phi): return ( 2.65777141519491e-44 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 6.74817924265129e58 * cos(theta) ** 35 - 3.37408962132565e59 * cos(theta) ** 33 + 7.61333042760658e59 * cos(theta) ** 31 - 1.0261445358948e60 * cos(theta) ** 29 + 9.21713897286037e59 * cos(theta) ** 27 - 5.82921762067386e59 * cos(theta) ** 25 + 2.67395303700636e59 * cos(theta) ** 23 - 9.03217781525512e58 * cos(theta) ** 21 + 2.25804445381378e58 * cos(theta) ** 19 - 4.16532472062736e57 * cos(theta) ** 17 + 5.6087540792606e56 * cos(theta) ** 15 - 5.40788960810251e55 * cos(theta) ** 13 + 3.62384355182127e54 * cos(theta) ** 11 - 1.6138574522281e53 * cos(theta) ** 9 + 4.4622786697551e51 * cos(theta) ** 7 - 6.86504410731555e49 * cos(theta) ** 5 + 4.82095794053058e47 * cos(theta) ** 3 - 9.77881935198901e44 * cos(theta) ) * sin(25 * phi) ) # @torch.jit.script def Yl60_m_minus_24(theta, phi): return ( 1.4702065031827e-42 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.8744942340698e57 * cos(theta) ** 36 - 9.92379300389896e57 * cos(theta) ** 34 + 2.37916575862706e58 * cos(theta) ** 32 - 3.420481786316e58 * cos(theta) ** 30 + 3.29183534745013e58 * cos(theta) ** 28 - 2.24200677718225e58 * cos(theta) ** 26 + 1.11414709875265e58 * cos(theta) ** 24 - 4.10553537057051e57 * cos(theta) ** 22 + 1.12902222690689e57 * cos(theta) ** 20 - 2.31406928923742e56 * cos(theta) ** 18 + 3.50547129953788e55 * cos(theta) ** 16 - 3.86277829150179e54 * cos(theta) ** 14 + 3.01986962651773e53 * cos(theta) ** 12 - 1.6138574522281e52 * cos(theta) ** 10 + 5.57784833719388e50 * cos(theta) ** 8 - 1.14417401788592e49 * cos(theta) ** 6 + 1.20523948513264e47 * cos(theta) ** 4 - 4.8894096759945e44 * cos(theta) ** 2 + 3.19569259868922e41 ) * sin(24 * phi) ) # @torch.jit.script def Yl60_m_minus_23(theta, phi): return ( 8.19631884415083e-41 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 5.06620063262109e55 * cos(theta) ** 37 - 2.83536942968542e56 * cos(theta) ** 35 + 7.20959320796078e56 * cos(theta) ** 33 - 1.10338122139226e57 * cos(theta) ** 31 + 1.13511563705177e57 * cos(theta) ** 29 - 8.30372880437872e56 * cos(theta) ** 27 + 4.4565883950106e56 * cos(theta) ** 25 - 1.78501537850892e56 * cos(theta) ** 23 + 5.37629631860424e55 * cos(theta) ** 21 - 1.2179312048618e55 * cos(theta) ** 19 + 2.06204194090463e54 * cos(theta) ** 17 - 2.57518552766786e53 * cos(theta) ** 15 + 2.32297663578287e52 * cos(theta) ** 13 - 1.46714313838918e51 * cos(theta) ** 11 + 6.19760926354876e49 * cos(theta) ** 9 - 1.63453431126561e48 * cos(theta) ** 7 + 2.41047897026529e46 * cos(theta) ** 5 - 1.6298032253315e44 * cos(theta) ** 3 + 3.19569259868922e41 * cos(theta) ) * sin(23 * phi) ) # @torch.jit.script def Yl60_m_minus_22(theta, phi): return ( 4.60309235997469e-39 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.33321069279502e54 * cos(theta) ** 38 - 7.8760261935706e54 * cos(theta) ** 36 + 2.1204685905767e55 * cos(theta) ** 34 - 3.44806631685081e55 * cos(theta) ** 32 + 3.78371879017257e55 * cos(theta) ** 30 - 2.96561743013526e55 * cos(theta) ** 28 + 1.71407245961946e55 * cos(theta) ** 26 - 7.43756407712049e54 * cos(theta) ** 24 + 2.44377105391102e54 * cos(theta) ** 22 - 6.08965602430901e53 * cos(theta) ** 20 + 1.14557885605813e53 * cos(theta) ** 18 - 1.60949095479241e52 * cos(theta) ** 16 + 1.65926902555919e51 * cos(theta) ** 14 - 1.22261928199098e50 * cos(theta) ** 12 + 6.19760926354876e48 * cos(theta) ** 10 - 2.04316788908201e47 * cos(theta) ** 8 + 4.01746495044215e45 * cos(theta) ** 6 - 4.07450806332875e43 * cos(theta) ** 4 + 1.59784629934461e41 * cos(theta) ** 2 - 1.01321895963514e38 ) * sin(22 * phi) ) # @torch.jit.script def Yl60_m_minus_21(theta, phi): return ( 2.60308841109392e-37 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 3.41848895588468e52 * cos(theta) ** 39 - 2.12865572799205e53 * cos(theta) ** 37 + 6.058481687362e53 * cos(theta) ** 35 - 1.04486858086388e54 * cos(theta) ** 33 + 1.22055444844276e54 * cos(theta) ** 31 - 1.02262670004664e54 * cos(theta) ** 29 + 6.34841651710911e53 * cos(theta) ** 27 - 2.97502563084819e53 * cos(theta) ** 25 + 1.06250915387436e53 * cos(theta) ** 23 - 2.89983620205191e52 * cos(theta) ** 21 + 6.02936240030595e51 * cos(theta) ** 19 - 9.46759385172008e50 * cos(theta) ** 17 + 1.10617935037279e50 * cos(theta) ** 15 - 9.40476370762294e48 * cos(theta) ** 13 + 5.63419023958978e47 * cos(theta) ** 11 - 2.27018654342445e46 * cos(theta) ** 9 + 5.73923564348879e44 * cos(theta) ** 7 - 8.1490161266575e42 * cos(theta) ** 5 + 5.3261543311487e40 * cos(theta) ** 3 - 1.01321895963514e38 * cos(theta) ) * sin(21 * phi) ) # @torch.jit.script def Yl60_m_minus_20(theta, phi): return ( 1.48170389937219e-35 * (1.0 - cos(theta) ** 2) ** 10 * ( 8.54622238971169e50 * cos(theta) ** 40 - 5.60172559997909e51 * cos(theta) ** 38 + 1.68291157982278e52 * cos(theta) ** 36 - 3.07314288489377e52 * cos(theta) ** 34 + 3.81423265138364e52 * cos(theta) ** 32 - 3.40875566682213e52 * cos(theta) ** 30 + 2.26729161325325e52 * cos(theta) ** 28 - 1.14424062724931e52 * cos(theta) ** 26 + 4.42712147447648e51 * cos(theta) ** 24 - 1.31810736456905e51 * cos(theta) ** 22 + 3.01468120015297e50 * cos(theta) ** 20 - 5.25977436206671e49 * cos(theta) ** 18 + 6.91362093982996e48 * cos(theta) ** 16 - 6.71768836258781e47 * cos(theta) ** 14 + 4.69515853299148e46 * cos(theta) ** 12 - 2.27018654342445e45 * cos(theta) ** 10 + 7.17404455436098e43 * cos(theta) ** 8 - 1.35816935444292e42 * cos(theta) ** 6 + 1.33153858278717e40 * cos(theta) ** 4 - 5.06609479817568e37 * cos(theta) ** 2 + 3.12721901121955e34 ) * sin(20 * phi) ) # @torch.jit.script def Yl60_m_minus_19(theta, phi): return ( 8.48590851998793e-34 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 2.08444448529553e49 * cos(theta) ** 41 - 1.43633989743054e50 * cos(theta) ** 39 + 4.5484096751967e50 * cos(theta) ** 37 - 8.78040824255362e50 * cos(theta) ** 35 + 1.15582807617686e51 * cos(theta) ** 33 - 1.09959860220069e51 * cos(theta) ** 31 + 7.8182469422526e50 * cos(theta) ** 29 - 4.2379282490715e50 * cos(theta) ** 27 + 1.77084858979059e50 * cos(theta) ** 25 - 5.73090158508282e49 * cos(theta) ** 23 + 1.43556247626332e49 * cos(theta) ** 21 - 2.76830229582459e48 * cos(theta) ** 19 + 4.0668358469588e47 * cos(theta) ** 17 - 4.47845890839188e46 * cos(theta) ** 15 + 3.61166040999345e45 * cos(theta) ** 13 - 2.06380594856768e44 * cos(theta) ** 11 + 7.97116061595665e42 * cos(theta) ** 9 - 1.94024193491845e41 * cos(theta) ** 7 + 2.66307716557435e39 * cos(theta) ** 5 - 1.68869826605856e37 * cos(theta) ** 3 + 3.12721901121955e34 * cos(theta) ) * sin(19 * phi) ) # @torch.jit.script def Yl60_m_minus_18(theta, phi): return ( 4.88806009407684e-32 * (1.0 - cos(theta) ** 2) ** 9 * ( 4.96296306022746e47 * cos(theta) ** 42 - 3.59084974357634e48 * cos(theta) ** 40 + 1.19694991452545e49 * cos(theta) ** 38 - 2.43900228959823e49 * cos(theta) ** 36 + 3.39949434169665e49 * cos(theta) ** 34 - 3.43624563187715e49 * cos(theta) ** 32 + 2.6060823140842e49 * cos(theta) ** 30 - 1.51354580323982e49 * cos(theta) ** 28 + 6.8109561145792e48 * cos(theta) ** 26 - 2.38787566045118e48 * cos(theta) ** 24 + 6.5252839830151e47 * cos(theta) ** 22 - 1.38415114791229e47 * cos(theta) ** 20 + 2.25935324831044e46 * cos(theta) ** 18 - 2.79903681774492e45 * cos(theta) ** 16 + 2.57975743570961e44 * cos(theta) ** 14 - 1.71983829047307e43 * cos(theta) ** 12 + 7.97116061595665e41 * cos(theta) ** 10 - 2.42530241864807e40 * cos(theta) ** 8 + 4.43846194262391e38 * cos(theta) ** 6 - 4.2217456651464e36 * cos(theta) ** 4 + 1.56360950560978e34 * cos(theta) ** 2 - 9.4250120892693e30 ) * sin(18 * phi) ) # @torch.jit.script def Yl60_m_minus_17(theta, phi): return ( 2.83085787341947e-30 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.15417745586685e46 * cos(theta) ** 43 - 8.75817010628375e46 * cos(theta) ** 41 + 3.06910234493704e47 * cos(theta) ** 39 - 6.59189807999521e47 * cos(theta) ** 37 + 9.71284097627613e47 * cos(theta) ** 35 - 1.04128655511429e48 * cos(theta) ** 33 + 8.4067171422071e47 * cos(theta) ** 31 - 5.21912345944766e47 * cos(theta) ** 29 + 2.52257633873304e47 * cos(theta) ** 27 - 9.5515026418047e46 * cos(theta) ** 25 + 2.83707999261526e46 * cos(theta) ** 23 - 6.59119594243949e45 * cos(theta) ** 21 + 1.18913328858444e45 * cos(theta) ** 19 - 1.64649224573231e44 * cos(theta) ** 17 + 1.71983829047307e43 * cos(theta) ** 15 - 1.32295253113313e42 * cos(theta) ** 13 + 7.24650965086968e40 * cos(theta) ** 11 - 2.69478046516452e39 * cos(theta) ** 9 + 6.34065991803416e37 * cos(theta) ** 7 - 8.4434913302928e35 * cos(theta) ** 5 + 5.21203168536592e33 * cos(theta) ** 3 - 9.4250120892693e30 * cos(theta) ) * sin(17 * phi) ) # @torch.jit.script def Yl60_m_minus_16(theta, phi): return ( 1.64774410460816e-28 * (1.0 - cos(theta) ** 2) ** 8 * ( 2.62313058151557e44 * cos(theta) ** 44 - 2.08527859673423e45 * cos(theta) ** 42 + 7.67275586234261e45 * cos(theta) ** 40 - 1.73471002105137e46 * cos(theta) ** 38 + 2.69801138229893e46 * cos(theta) ** 36 - 3.06260751504202e46 * cos(theta) ** 34 + 2.62709910693972e46 * cos(theta) ** 32 - 1.73970781981589e46 * cos(theta) ** 30 + 9.00920120976085e45 * cos(theta) ** 28 - 3.67365486223258e45 * cos(theta) ** 26 + 1.18211666358969e45 * cos(theta) ** 24 - 2.99599815565431e44 * cos(theta) ** 22 + 5.94566644292222e43 * cos(theta) ** 20 - 9.14717914295726e42 * cos(theta) ** 18 + 1.07489893154567e42 * cos(theta) ** 16 - 9.44966093666522e40 * cos(theta) ** 14 + 6.0387580423914e39 * cos(theta) ** 12 - 2.69478046516452e38 * cos(theta) ** 10 + 7.9258248975427e36 * cos(theta) ** 8 - 1.4072485550488e35 * cos(theta) ** 6 + 1.30300792134148e33 * cos(theta) ** 4 - 4.71250604463465e30 * cos(theta) ** 2 + 2.7818807819567e27 ) * sin(16 * phi) ) # @torch.jit.script def Yl60_m_minus_15(theta, phi): return ( 9.63613375229227e-27 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 5.8291790700346e42 * cos(theta) ** 45 - 4.84948510868425e43 * cos(theta) ** 43 + 1.87140386886405e44 * cos(theta) ** 41 - 4.44797441295224e44 * cos(theta) ** 39 + 7.29192265486196e44 * cos(theta) ** 37 - 8.75030718583435e44 * cos(theta) ** 35 + 7.96090638466581e44 * cos(theta) ** 33 - 5.61196070908351e44 * cos(theta) ** 31 + 3.10662110681409e44 * cos(theta) ** 29 - 1.36061291193799e44 * cos(theta) ** 27 + 4.72846665435876e43 * cos(theta) ** 25 - 1.30260789376275e43 * cos(theta) ** 23 + 2.83126973472487e42 * cos(theta) ** 21 - 4.81430481208277e41 * cos(theta) ** 19 + 6.32293489144511e40 * cos(theta) ** 17 - 6.29977395777681e39 * cos(theta) ** 15 + 4.64519849414723e38 * cos(theta) ** 13 - 2.44980042287684e37 * cos(theta) ** 11 + 8.80647210838078e35 * cos(theta) ** 9 - 2.01035507864114e34 * cos(theta) ** 7 + 2.60601584268296e32 * cos(theta) ** 5 - 1.57083534821155e30 * cos(theta) ** 3 + 2.7818807819567e27 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl60_m_minus_14(theta, phi): return ( 5.65994703365348e-25 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.26721284131187e41 * cos(theta) ** 46 - 1.10215570651915e42 * cos(theta) ** 44 + 4.45572349729536e42 * cos(theta) ** 42 - 1.11199360323806e43 * cos(theta) ** 40 + 1.91892701443736e43 * cos(theta) ** 38 - 2.43064088495399e43 * cos(theta) ** 36 + 2.34144305431347e43 * cos(theta) ** 34 - 1.7537377215886e43 * cos(theta) ** 32 + 1.03554036893803e43 * cos(theta) ** 30 - 4.85933182834997e42 * cos(theta) ** 28 + 1.81864102090722e42 * cos(theta) ** 26 - 5.4275328906781e41 * cos(theta) ** 24 + 1.2869407885113e41 * cos(theta) ** 22 - 2.40715240604138e40 * cos(theta) ** 20 + 3.5127416063584e39 * cos(theta) ** 18 - 3.93735872361051e38 * cos(theta) ** 16 + 3.31799892439088e37 * cos(theta) ** 14 - 2.04150035239736e36 * cos(theta) ** 12 + 8.80647210838078e34 * cos(theta) ** 10 - 2.51294384830143e33 * cos(theta) ** 8 + 4.34335973780494e31 * cos(theta) ** 6 - 3.92708837052888e29 * cos(theta) ** 4 + 1.39094039097835e27 * cos(theta) ** 2 - 8.06342255639623e23 ) * sin(14 * phi) ) # @torch.jit.script def Yl60_m_minus_13(theta, phi): return ( 3.33792947010339e-23 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 2.69619753470611e39 * cos(theta) ** 47 - 2.44923490337588e40 * cos(theta) ** 45 + 1.03621476681287e41 * cos(theta) ** 43 - 2.71217952009283e41 * cos(theta) ** 41 + 4.92032567804451e41 * cos(theta) ** 39 - 6.56929968906483e41 * cos(theta) ** 37 + 6.6898372980385e41 * cos(theta) ** 35 - 5.31435673208666e41 * cos(theta) ** 33 + 3.3404528030259e41 * cos(theta) ** 31 - 1.67563166494827e41 * cos(theta) ** 29 + 6.73570748484154e40 * cos(theta) ** 27 - 2.17101315627124e40 * cos(theta) ** 25 + 5.59539473265784e39 * cos(theta) ** 23 - 1.1462630504959e39 * cos(theta) ** 21 + 1.84881137176758e38 * cos(theta) ** 19 - 2.31609336682971e37 * cos(theta) ** 17 + 2.21199928292725e36 * cos(theta) ** 15 - 1.57038488645951e35 * cos(theta) ** 13 + 8.00588373489162e33 * cos(theta) ** 11 - 2.79215983144603e32 * cos(theta) ** 9 + 6.20479962543562e30 * cos(theta) ** 7 - 7.85417674105775e28 * cos(theta) ** 5 + 4.63646796992783e26 * cos(theta) ** 3 - 8.06342255639623e23 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl60_m_minus_12(theta, phi): return ( 1.97587380944321e-21 * (1.0 - cos(theta) ** 2) ** 6 * ( 5.61707819730439e37 * cos(theta) ** 48 - 5.32442370299105e38 * cos(theta) ** 46 + 2.35503356093835e39 * cos(theta) ** 44 - 6.4575702859353e39 * cos(theta) ** 42 + 1.23008141951113e40 * cos(theta) ** 40 - 1.72876307606969e40 * cos(theta) ** 38 + 1.85828813834403e40 * cos(theta) ** 36 - 1.56304609767255e40 * cos(theta) ** 34 + 1.04389150094559e40 * cos(theta) ** 32 - 5.58543888316089e39 * cos(theta) ** 30 + 2.40560981601484e39 * cos(theta) ** 28 - 8.35005060104324e38 * cos(theta) ** 26 + 2.33141447194077e38 * cos(theta) ** 24 - 5.21028659316317e37 * cos(theta) ** 22 + 9.24405685883788e36 * cos(theta) ** 20 - 1.28671853712762e36 * cos(theta) ** 18 + 1.38249955182953e35 * cos(theta) ** 16 - 1.12170349032822e34 * cos(theta) ** 14 + 6.67156977907635e32 * cos(theta) ** 12 - 2.79215983144603e31 * cos(theta) ** 10 + 7.75599953179453e29 * cos(theta) ** 8 - 1.30902945684296e28 * cos(theta) ** 6 + 1.15911699248196e26 * cos(theta) ** 4 - 4.03171127819812e23 * cos(theta) ** 2 + 2.30120506746468e20 ) * sin(12 * phi) ) # @torch.jit.script def Yl60_m_minus_11(theta, phi): return ( 1.173609166318e-19 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.14634248924579e36 * cos(theta) ** 49 - 1.13285610701937e37 * cos(theta) ** 47 + 5.23340791319633e37 * cos(theta) ** 45 - 1.50176053161286e38 * cos(theta) ** 43 + 3.00019858417348e38 * cos(theta) ** 41 - 4.43272583607613e38 * cos(theta) ** 39 + 5.02240037390277e38 * cos(theta) ** 37 - 4.46584599335013e38 * cos(theta) ** 35 + 3.16330757862301e38 * cos(theta) ** 33 - 1.801754478439e38 * cos(theta) ** 31 + 8.29520626212013e37 * cos(theta) ** 29 - 3.09261133371972e37 * cos(theta) ** 27 + 9.32565788776307e36 * cos(theta) ** 25 - 2.26534199702747e36 * cos(theta) ** 23 + 4.40193183754185e35 * cos(theta) ** 21 - 6.77220282698746e34 * cos(theta) ** 19 + 8.1323503048796e33 * cos(theta) ** 17 - 7.47802326885481e32 * cos(theta) ** 15 + 5.13197675313565e31 * cos(theta) ** 13 - 2.53832711949639e30 * cos(theta) ** 11 + 8.61777725754948e28 * cos(theta) ** 9 - 1.87004208120423e27 * cos(theta) ** 7 + 2.31823398496392e25 * cos(theta) ** 5 - 1.34390375939937e23 * cos(theta) ** 3 + 2.30120506746468e20 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl60_m_minus_10(theta, phi): return ( 6.99258363353129e-18 * (1.0 - cos(theta) ** 2) ** 5 * ( 2.29268497849159e34 * cos(theta) ** 50 - 2.36011688962369e35 * cos(theta) ** 48 + 1.13769737243399e36 * cos(theta) ** 46 - 3.41309211730196e36 * cos(theta) ** 44 + 7.14332996231781e36 * cos(theta) ** 42 - 1.10818145901903e37 * cos(theta) ** 40 + 1.32168430892178e37 * cos(theta) ** 38 - 1.24051277593059e37 * cos(theta) ** 36 + 9.30384581947944e36 * cos(theta) ** 34 - 5.63048274512186e36 * cos(theta) ** 32 + 2.76506875404004e36 * cos(theta) ** 30 - 1.10450404775704e36 * cos(theta) ** 28 + 3.58679149529349e35 * cos(theta) ** 26 - 9.43892498761444e34 * cos(theta) ** 24 + 2.00087810797357e34 * cos(theta) ** 22 - 3.38610141349373e33 * cos(theta) ** 20 + 4.51797239159978e32 * cos(theta) ** 18 - 4.67376454303425e31 * cos(theta) ** 16 + 3.66569768081118e30 * cos(theta) ** 14 - 2.11527259958033e29 * cos(theta) ** 12 + 8.61777725754948e27 * cos(theta) ** 10 - 2.33755260150528e26 * cos(theta) ** 8 + 3.8637233082732e24 * cos(theta) ** 6 - 3.35975939849843e22 * cos(theta) ** 4 + 1.15060253373234e20 * cos(theta) ** 2 - 6.48226779567515e16 ) * sin(10 * phi) ) # @torch.jit.script def Yl60_m_minus_9(theta, phi): return ( 4.17803214878475e-16 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 4.49546074214037e32 * cos(theta) ** 51 - 4.81656508086468e33 * cos(theta) ** 49 + 2.42063270730635e34 * cos(theta) ** 47 - 7.5846491495599e34 * cos(theta) ** 45 + 1.66123952612042e35 * cos(theta) ** 43 - 2.7028816073635e35 * cos(theta) ** 41 + 3.38893412544047e35 * cos(theta) ** 39 - 3.35273723224484e35 * cos(theta) ** 37 + 2.65824166270841e35 * cos(theta) ** 35 - 1.70620689246117e35 * cos(theta) ** 33 + 8.91957662593562e34 * cos(theta) ** 31 - 3.80863464743808e34 * cos(theta) ** 29 + 1.32844129455314e34 * cos(theta) ** 27 - 3.77556999504578e33 * cos(theta) ** 25 + 8.69947003466769e32 * cos(theta) ** 23 - 1.61242924452082e32 * cos(theta) ** 21 + 2.37788020610515e31 * cos(theta) ** 19 - 2.74927326060839e30 * cos(theta) ** 17 + 2.44379845387412e29 * cos(theta) ** 15 - 1.62713276890794e28 * cos(theta) ** 13 + 7.83434296140861e26 * cos(theta) ** 11 - 2.5972806683392e25 * cos(theta) ** 9 + 5.51960472610456e23 * cos(theta) ** 7 - 6.71951879699686e21 * cos(theta) ** 5 + 3.8353417791078e19 * cos(theta) ** 3 - 6.48226779567515e16 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl60_m_minus_8(theta, phi): return ( 2.50263776961367e-14 * (1.0 - cos(theta) ** 2) ** 4 * ( 8.6451168118084e30 * cos(theta) ** 52 - 9.63313016172936e31 * cos(theta) ** 50 + 5.04298480688823e32 * cos(theta) ** 48 - 1.64883677164346e33 * cos(theta) ** 46 + 3.77554437754641e33 * cos(theta) ** 44 - 6.43543239848451e33 * cos(theta) ** 42 + 8.47233531360117e33 * cos(theta) ** 40 - 8.8229927164338e33 * cos(theta) ** 38 + 7.38400461863448e33 * cos(theta) ** 36 - 5.01825556606227e33 * cos(theta) ** 34 + 2.78736769560488e33 * cos(theta) ** 32 - 1.26954488247936e33 * cos(theta) ** 30 + 4.74443319483265e32 * cos(theta) ** 28 - 1.45214230578684e32 * cos(theta) ** 26 + 3.62477918111154e31 * cos(theta) ** 24 - 7.32922383873102e30 * cos(theta) ** 22 + 1.18894010305257e30 * cos(theta) ** 20 - 1.52737403367133e29 * cos(theta) ** 18 + 1.52737403367133e28 * cos(theta) ** 16 - 1.1622376920771e27 * cos(theta) ** 14 + 6.52861913450718e25 * cos(theta) ** 12 - 2.5972806683392e24 * cos(theta) ** 10 + 6.89950590763071e22 * cos(theta) ** 8 - 1.11991979949948e21 * cos(theta) ** 6 + 9.58835444776949e18 * cos(theta) ** 4 - 3.24113389783758e16 * cos(theta) ** 2 + 18066521169663.2 ) * sin(8 * phi) ) # @torch.jit.script def Yl60_m_minus_7(theta, phi): return ( 1.502416642761e-12 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.63115411543555e29 * cos(theta) ** 53 - 1.88884905131948e30 * cos(theta) ** 51 + 1.02918057283433e31 * cos(theta) ** 49 - 3.50816334392225e31 * cos(theta) ** 47 + 8.3900986167698e31 * cos(theta) ** 45 - 1.49661218569407e32 * cos(theta) ** 43 + 2.0664232472198e32 * cos(theta) ** 41 - 2.26230582472661e32 * cos(theta) ** 39 + 1.99567692395526e32 * cos(theta) ** 37 - 1.43378730458922e32 * cos(theta) ** 35 + 8.44656877456025e31 * cos(theta) ** 33 - 4.09530607251406e31 * cos(theta) ** 31 + 1.63601144649402e31 * cos(theta) ** 29 - 5.37830483624754e30 * cos(theta) ** 27 + 1.44991167244461e30 * cos(theta) ** 25 - 3.18661906031783e29 * cos(theta) ** 23 + 5.66161953834559e28 * cos(theta) ** 21 - 8.03881070353329e27 * cos(theta) ** 19 + 8.98455313924309e26 * cos(theta) ** 17 - 7.74825128051401e25 * cos(theta) ** 15 + 5.02201471885168e24 * cos(theta) ** 13 - 2.36116424394473e23 * cos(theta) ** 11 + 7.66611767514523e21 * cos(theta) ** 9 - 1.5998854278564e20 * cos(theta) ** 7 + 1.9176708895539e18 * cos(theta) ** 5 - 1.08037796594586e16 * cos(theta) ** 3 + 18066521169663.2 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl60_m_minus_6(theta, phi): return ( 9.03700800610182e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 3.02065576932509e27 * cos(theta) ** 54 - 3.63240202176824e28 * cos(theta) ** 52 + 2.05836114566867e29 * cos(theta) ** 50 - 7.30867363317135e29 * cos(theta) ** 48 + 1.82393448190648e30 * cos(theta) ** 46 - 3.40139133112289e30 * cos(theta) ** 44 + 4.92005535052333e30 * cos(theta) ** 42 - 5.65576456181654e30 * cos(theta) ** 40 + 5.25178137882964e30 * cos(theta) ** 38 - 3.98274251274783e30 * cos(theta) ** 36 + 2.48428493369419e30 * cos(theta) ** 34 - 1.27978314766064e30 * cos(theta) ** 32 + 5.4533714883134e29 * cos(theta) ** 30 - 1.92082315580269e29 * cos(theta) ** 28 + 5.57658335555621e28 * cos(theta) ** 26 - 1.3277579417991e28 * cos(theta) ** 24 + 2.57346342652072e27 * cos(theta) ** 22 - 4.01940535176665e26 * cos(theta) ** 20 + 4.99141841069061e25 * cos(theta) ** 18 - 4.84265705032126e24 * cos(theta) ** 16 + 3.58715337060834e23 * cos(theta) ** 14 - 1.96763686995394e22 * cos(theta) ** 12 + 7.66611767514523e20 * cos(theta) ** 10 - 1.99985678482049e19 * cos(theta) ** 8 + 3.1961181492565e17 * cos(theta) ** 6 - 2.70094491486465e15 * cos(theta) ** 4 + 9033260584831.59 * cos(theta) ** 2 - 4993510549.93455 ) * sin(6 * phi) ) # @torch.jit.script def Yl60_m_minus_5(theta, phi): return ( 5.44475045102643e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 5.49210139877289e25 * cos(theta) ** 55 - 6.85358872031742e26 * cos(theta) ** 53 + 4.03600224640915e27 * cos(theta) ** 51 - 1.49156604758599e28 * cos(theta) ** 49 + 3.88071166363081e28 * cos(theta) ** 47 - 7.55864740249532e28 * cos(theta) ** 45 + 1.14419891872636e29 * cos(theta) ** 43 - 1.37945477117477e29 * cos(theta) ** 41 + 1.34661060995632e29 * cos(theta) ** 39 - 1.07641689533725e29 * cos(theta) ** 37 + 7.09795695341197e28 * cos(theta) ** 35 - 3.8781307504868e28 * cos(theta) ** 33 + 1.75915209300432e28 * cos(theta) ** 31 - 6.62352812345757e27 * cos(theta) ** 29 + 2.0654012427986e27 * cos(theta) ** 27 - 5.31103176719639e26 * cos(theta) ** 25 + 1.11889714196553e26 * cos(theta) ** 23 - 1.91400254846031e25 * cos(theta) ** 21 + 2.62706232141611e24 * cos(theta) ** 19 - 2.84862179430662e23 * cos(theta) ** 17 + 2.39143558040556e22 * cos(theta) ** 15 - 1.51356682304149e21 * cos(theta) ** 13 + 6.96919788649566e19 * cos(theta) ** 11 - 2.22206309424499e18 * cos(theta) ** 9 + 4.56588307036643e16 * cos(theta) ** 7 - 540188982972929.0 * cos(theta) ** 5 + 3011086861610.53 * cos(theta) ** 3 - 4993510549.93455 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl60_m_minus_4(theta, phi): return ( 3.28494930257968e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 9.80732392638015e23 * cos(theta) ** 56 - 1.26918309635508e25 * cos(theta) ** 54 + 7.76154278155606e25 * cos(theta) ** 52 - 2.98313209517198e26 * cos(theta) ** 50 + 8.08481596589751e26 * cos(theta) ** 48 - 1.64318421793376e27 * cos(theta) ** 46 + 2.60045208801444e27 * cos(theta) ** 44 - 3.28441612184468e27 * cos(theta) ** 42 + 3.3665265248908e27 * cos(theta) ** 40 - 2.83267604036119e27 * cos(theta) ** 38 + 1.9716547092811e27 * cos(theta) ** 36 - 1.14062669131965e27 * cos(theta) ** 34 + 5.4973502906385e26 * cos(theta) ** 32 - 2.20784270781919e26 * cos(theta) ** 30 + 7.37643300999499e25 * cos(theta) ** 28 - 2.04270452584476e25 * cos(theta) ** 26 + 4.66207142485638e24 * cos(theta) ** 24 - 8.70001158391049e23 * cos(theta) ** 22 + 1.31353116070805e23 * cos(theta) ** 20 - 1.58256766350368e22 * cos(theta) ** 18 + 1.49464723775348e21 * cos(theta) ** 16 - 1.08111915931535e20 * cos(theta) ** 14 + 5.80766490541305e18 * cos(theta) ** 12 - 2.22206309424499e17 * cos(theta) ** 10 + 5.70735383795803e15 * cos(theta) ** 8 - 90031497162154.9 * cos(theta) ** 6 + 752771715402.633 * cos(theta) ** 4 - 2496755274.96727 * cos(theta) ** 2 + 1371843.55767433 ) * sin(4 * phi) ) # @torch.jit.script def Yl60_m_minus_3(theta, phi): return ( 1.98406586901877e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 1.72058314497897e22 * cos(theta) ** 57 - 2.30760562973651e23 * cos(theta) ** 55 + 1.46444203425586e24 * cos(theta) ** 53 - 5.84927861798428e24 * cos(theta) ** 51 + 1.6499624420199e25 * cos(theta) ** 49 - 3.49613663390163e25 * cos(theta) ** 47 + 5.77878241780988e25 * cos(theta) ** 45 - 7.63817702754577e25 * cos(theta) ** 43 + 8.2110403046117e25 * cos(theta) ** 41 - 7.26327189836202e25 * cos(theta) ** 39 + 5.32879651157055e25 * cos(theta) ** 37 - 3.25893340377042e25 * cos(theta) ** 35 + 1.66586372443591e25 * cos(theta) ** 33 - 7.12207325102964e24 * cos(theta) ** 31 + 2.54359758965344e24 * cos(theta) ** 29 - 7.56557231794357e23 * cos(theta) ** 27 + 1.86482856994255e23 * cos(theta) ** 25 - 3.78261373213499e22 * cos(theta) ** 23 + 6.25491028908597e21 * cos(theta) ** 21 - 8.32930349212463e20 * cos(theta) ** 19 + 8.79204257502044e19 * cos(theta) ** 17 - 7.20746106210235e18 * cos(theta) ** 15 + 4.46743454262542e17 * cos(theta) ** 13 - 2.02005735840454e16 * cos(theta) ** 11 + 634150426439781.0 * cos(theta) ** 9 - 12861642451736.4 * cos(theta) ** 7 + 150554343080.527 * cos(theta) ** 5 - 832251758.322424 * cos(theta) ** 3 + 1371843.55767433 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl60_m_minus_2(theta, phi): return ( 0.00119933458548895 * (1.0 - cos(theta) ** 2) * ( 2.96652266375685e20 * cos(theta) ** 58 - 4.12072433881519e21 * cos(theta) ** 56 + 2.71192969306641e22 * cos(theta) ** 54 - 1.12486127268928e23 * cos(theta) ** 52 + 3.2999248840398e23 * cos(theta) ** 50 - 7.28361798729506e23 * cos(theta) ** 48 + 1.25625704734997e24 * cos(theta) ** 46 - 1.73594932444222e24 * cos(theta) ** 44 + 1.95500959633612e24 * cos(theta) ** 42 - 1.8158179745905e24 * cos(theta) ** 40 + 1.40231487146593e24 * cos(theta) ** 38 - 9.05259278825117e23 * cos(theta) ** 36 + 4.89959918951738e23 * cos(theta) ** 34 - 2.22564789094676e23 * cos(theta) ** 32 + 8.47865863217814e22 * cos(theta) ** 30 - 2.70199011355128e22 * cos(theta) ** 28 + 7.17241757670212e21 * cos(theta) ** 26 - 1.57608905505625e21 * cos(theta) ** 24 + 2.84314104049362e20 * cos(theta) ** 22 - 4.16465174606231e19 * cos(theta) ** 20 + 4.88446809723358e18 * cos(theta) ** 18 - 4.50466316381397e17 * cos(theta) ** 16 + 3.19102467330387e16 * cos(theta) ** 14 - 1.68338113200378e15 * cos(theta) ** 12 + 63415042643978.1 * cos(theta) ** 10 - 1607705306467.05 * cos(theta) ** 8 + 25092390513.4211 * cos(theta) ** 6 - 208062939.580606 * cos(theta) ** 4 + 685921.778837163 * cos(theta) ** 2 - 375.436113211364 ) * sin(2 * phi) ) # @torch.jit.script def Yl60_m_minus_1(theta, phi): return ( 0.0725374373175736 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 5.02800451484212e18 * cos(theta) ** 59 - 7.22934094528981e19 * cos(theta) ** 57 + 4.93078126012074e20 * cos(theta) ** 55 - 2.1223797597911e21 * cos(theta) ** 53 + 6.47044094909765e21 * cos(theta) ** 51 - 1.48645265046838e22 * cos(theta) ** 49 + 2.67288733478718e22 * cos(theta) ** 47 - 3.85766516542715e22 * cos(theta) ** 45 + 4.54653394496772e22 * cos(theta) ** 43 - 4.42882432826952e22 * cos(theta) ** 41 + 3.59567915760496e22 * cos(theta) ** 39 - 2.44664669952734e22 * cos(theta) ** 37 + 1.39988548271925e22 * cos(theta) ** 35 - 6.74438754832352e21 * cos(theta) ** 33 + 2.73505117167037e21 * cos(theta) ** 31 - 9.31720728810785e20 * cos(theta) ** 29 + 2.65645095433412e20 * cos(theta) ** 27 - 6.30435622022499e19 * cos(theta) ** 25 + 1.23614827847549e19 * cos(theta) ** 23 - 1.98316749812491e18 * cos(theta) ** 21 + 2.57077268275452e17 * cos(theta) ** 19 - 2.64980186106704e16 * cos(theta) ** 17 + 2.12734978220258e15 * cos(theta) ** 15 - 129490856307983.0 * cos(theta) ** 13 + 5765003876725.29 * cos(theta) ** 11 - 178633922940.783 * cos(theta) ** 9 + 3584627216.20301 * cos(theta) ** 7 - 41612587.9161212 * cos(theta) ** 5 + 228640.592945721 * cos(theta) ** 3 - 375.436113211364 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl60_m0(theta, phi): return ( 8.16924713431039e17 * cos(theta) ** 60 - 1.21508969980919e19 * cos(theta) ** 58 + 8.58351826403673e19 * cos(theta) ** 56 - 3.83148351496132e20 * cos(theta) ** 54 + 1.21302055528975e21 * cos(theta) ** 52 - 2.89813559696253e21 * cos(theta) ** 50 + 5.42846499431055e21 * cos(theta) ** 48 - 8.17531176713257e21 * cos(theta) ** 46 + 1.00731519987883e22 * cos(theta) ** 44 - 1.02796135823665e22 * cos(theta) ** 42 + 8.76311613308672e21 * cos(theta) ** 40 - 6.2766121063431e21 * cos(theta) ** 38 + 3.79077174463849e21 * cos(theta) ** 36 - 1.93375400738644e21 * cos(theta) ** 34 + 8.33207371846229e20 * cos(theta) ** 32 - 3.02762532187348e20 * cos(theta) ** 30 + 9.2487149930826e19 * cos(theta) ** 28 - 2.36376894346533e19 * cos(theta) ** 26 + 5.02107782108649e18 * cos(theta) ** 24 - 8.78768217260539e17 * cos(theta) ** 22 + 1.25305838387151e17 * cos(theta) ** 20 - 1.43508796223982e16 * cos(theta) ** 18 + 1.29615382658024e15 * cos(theta) ** 16 - 90167222718625.6 * cos(theta) ** 14 + 4683343189152.36 * cos(theta) ** 12 - 174141211540.313 * cos(theta) ** 10 + 4368090590.47608 * cos(theta) ** 8 - 67610025.7232339 * cos(theta) ** 6 + 557225.48672995 * cos(theta) ** 4 - 1829.96875773383 * cos(theta) ** 2 + 0.999982927723402 ) # @torch.jit.script def Yl60_m1(theta, phi): return ( 0.0725374373175736 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 5.02800451484212e18 * cos(theta) ** 59 - 7.22934094528981e19 * cos(theta) ** 57 + 4.93078126012074e20 * cos(theta) ** 55 - 2.1223797597911e21 * cos(theta) ** 53 + 6.47044094909765e21 * cos(theta) ** 51 - 1.48645265046838e22 * cos(theta) ** 49 + 2.67288733478718e22 * cos(theta) ** 47 - 3.85766516542715e22 * cos(theta) ** 45 + 4.54653394496772e22 * cos(theta) ** 43 - 4.42882432826952e22 * cos(theta) ** 41 + 3.59567915760496e22 * cos(theta) ** 39 - 2.44664669952734e22 * cos(theta) ** 37 + 1.39988548271925e22 * cos(theta) ** 35 - 6.74438754832352e21 * cos(theta) ** 33 + 2.73505117167037e21 * cos(theta) ** 31 - 9.31720728810785e20 * cos(theta) ** 29 + 2.65645095433412e20 * cos(theta) ** 27 - 6.30435622022499e19 * cos(theta) ** 25 + 1.23614827847549e19 * cos(theta) ** 23 - 1.98316749812491e18 * cos(theta) ** 21 + 2.57077268275452e17 * cos(theta) ** 19 - 2.64980186106704e16 * cos(theta) ** 17 + 2.12734978220258e15 * cos(theta) ** 15 - 129490856307983.0 * cos(theta) ** 13 + 5765003876725.29 * cos(theta) ** 11 - 178633922940.783 * cos(theta) ** 9 + 3584627216.20301 * cos(theta) ** 7 - 41612587.9161212 * cos(theta) ** 5 + 228640.592945721 * cos(theta) ** 3 - 375.436113211364 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl60_m2(theta, phi): return ( 0.00119933458548895 * (1.0 - cos(theta) ** 2) * ( 2.96652266375685e20 * cos(theta) ** 58 - 4.12072433881519e21 * cos(theta) ** 56 + 2.71192969306641e22 * cos(theta) ** 54 - 1.12486127268928e23 * cos(theta) ** 52 + 3.2999248840398e23 * cos(theta) ** 50 - 7.28361798729506e23 * cos(theta) ** 48 + 1.25625704734997e24 * cos(theta) ** 46 - 1.73594932444222e24 * cos(theta) ** 44 + 1.95500959633612e24 * cos(theta) ** 42 - 1.8158179745905e24 * cos(theta) ** 40 + 1.40231487146593e24 * cos(theta) ** 38 - 9.05259278825117e23 * cos(theta) ** 36 + 4.89959918951738e23 * cos(theta) ** 34 - 2.22564789094676e23 * cos(theta) ** 32 + 8.47865863217814e22 * cos(theta) ** 30 - 2.70199011355128e22 * cos(theta) ** 28 + 7.17241757670212e21 * cos(theta) ** 26 - 1.57608905505625e21 * cos(theta) ** 24 + 2.84314104049362e20 * cos(theta) ** 22 - 4.16465174606231e19 * cos(theta) ** 20 + 4.88446809723358e18 * cos(theta) ** 18 - 4.50466316381397e17 * cos(theta) ** 16 + 3.19102467330387e16 * cos(theta) ** 14 - 1.68338113200378e15 * cos(theta) ** 12 + 63415042643978.1 * cos(theta) ** 10 - 1607705306467.05 * cos(theta) ** 8 + 25092390513.4211 * cos(theta) ** 6 - 208062939.580606 * cos(theta) ** 4 + 685921.778837163 * cos(theta) ** 2 - 375.436113211364 ) * cos(2 * phi) ) # @torch.jit.script def Yl60_m3(theta, phi): return ( 1.98406586901877e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 1.72058314497897e22 * cos(theta) ** 57 - 2.30760562973651e23 * cos(theta) ** 55 + 1.46444203425586e24 * cos(theta) ** 53 - 5.84927861798428e24 * cos(theta) ** 51 + 1.6499624420199e25 * cos(theta) ** 49 - 3.49613663390163e25 * cos(theta) ** 47 + 5.77878241780988e25 * cos(theta) ** 45 - 7.63817702754577e25 * cos(theta) ** 43 + 8.2110403046117e25 * cos(theta) ** 41 - 7.26327189836202e25 * cos(theta) ** 39 + 5.32879651157055e25 * cos(theta) ** 37 - 3.25893340377042e25 * cos(theta) ** 35 + 1.66586372443591e25 * cos(theta) ** 33 - 7.12207325102964e24 * cos(theta) ** 31 + 2.54359758965344e24 * cos(theta) ** 29 - 7.56557231794357e23 * cos(theta) ** 27 + 1.86482856994255e23 * cos(theta) ** 25 - 3.78261373213499e22 * cos(theta) ** 23 + 6.25491028908597e21 * cos(theta) ** 21 - 8.32930349212463e20 * cos(theta) ** 19 + 8.79204257502044e19 * cos(theta) ** 17 - 7.20746106210235e18 * cos(theta) ** 15 + 4.46743454262542e17 * cos(theta) ** 13 - 2.02005735840454e16 * cos(theta) ** 11 + 634150426439781.0 * cos(theta) ** 9 - 12861642451736.4 * cos(theta) ** 7 + 150554343080.527 * cos(theta) ** 5 - 832251758.322424 * cos(theta) ** 3 + 1371843.55767433 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl60_m4(theta, phi): return ( 3.28494930257968e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 9.80732392638015e23 * cos(theta) ** 56 - 1.26918309635508e25 * cos(theta) ** 54 + 7.76154278155606e25 * cos(theta) ** 52 - 2.98313209517198e26 * cos(theta) ** 50 + 8.08481596589751e26 * cos(theta) ** 48 - 1.64318421793376e27 * cos(theta) ** 46 + 2.60045208801444e27 * cos(theta) ** 44 - 3.28441612184468e27 * cos(theta) ** 42 + 3.3665265248908e27 * cos(theta) ** 40 - 2.83267604036119e27 * cos(theta) ** 38 + 1.9716547092811e27 * cos(theta) ** 36 - 1.14062669131965e27 * cos(theta) ** 34 + 5.4973502906385e26 * cos(theta) ** 32 - 2.20784270781919e26 * cos(theta) ** 30 + 7.37643300999499e25 * cos(theta) ** 28 - 2.04270452584476e25 * cos(theta) ** 26 + 4.66207142485638e24 * cos(theta) ** 24 - 8.70001158391049e23 * cos(theta) ** 22 + 1.31353116070805e23 * cos(theta) ** 20 - 1.58256766350368e22 * cos(theta) ** 18 + 1.49464723775348e21 * cos(theta) ** 16 - 1.08111915931535e20 * cos(theta) ** 14 + 5.80766490541305e18 * cos(theta) ** 12 - 2.22206309424499e17 * cos(theta) ** 10 + 5.70735383795803e15 * cos(theta) ** 8 - 90031497162154.9 * cos(theta) ** 6 + 752771715402.633 * cos(theta) ** 4 - 2496755274.96727 * cos(theta) ** 2 + 1371843.55767433 ) * cos(4 * phi) ) # @torch.jit.script def Yl60_m5(theta, phi): return ( 5.44475045102643e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 5.49210139877289e25 * cos(theta) ** 55 - 6.85358872031742e26 * cos(theta) ** 53 + 4.03600224640915e27 * cos(theta) ** 51 - 1.49156604758599e28 * cos(theta) ** 49 + 3.88071166363081e28 * cos(theta) ** 47 - 7.55864740249532e28 * cos(theta) ** 45 + 1.14419891872636e29 * cos(theta) ** 43 - 1.37945477117477e29 * cos(theta) ** 41 + 1.34661060995632e29 * cos(theta) ** 39 - 1.07641689533725e29 * cos(theta) ** 37 + 7.09795695341197e28 * cos(theta) ** 35 - 3.8781307504868e28 * cos(theta) ** 33 + 1.75915209300432e28 * cos(theta) ** 31 - 6.62352812345757e27 * cos(theta) ** 29 + 2.0654012427986e27 * cos(theta) ** 27 - 5.31103176719639e26 * cos(theta) ** 25 + 1.11889714196553e26 * cos(theta) ** 23 - 1.91400254846031e25 * cos(theta) ** 21 + 2.62706232141611e24 * cos(theta) ** 19 - 2.84862179430662e23 * cos(theta) ** 17 + 2.39143558040556e22 * cos(theta) ** 15 - 1.51356682304149e21 * cos(theta) ** 13 + 6.96919788649566e19 * cos(theta) ** 11 - 2.22206309424499e18 * cos(theta) ** 9 + 4.56588307036643e16 * cos(theta) ** 7 - 540188982972929.0 * cos(theta) ** 5 + 3011086861610.53 * cos(theta) ** 3 - 4993510549.93455 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl60_m6(theta, phi): return ( 9.03700800610182e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 3.02065576932509e27 * cos(theta) ** 54 - 3.63240202176824e28 * cos(theta) ** 52 + 2.05836114566867e29 * cos(theta) ** 50 - 7.30867363317135e29 * cos(theta) ** 48 + 1.82393448190648e30 * cos(theta) ** 46 - 3.40139133112289e30 * cos(theta) ** 44 + 4.92005535052333e30 * cos(theta) ** 42 - 5.65576456181654e30 * cos(theta) ** 40 + 5.25178137882964e30 * cos(theta) ** 38 - 3.98274251274783e30 * cos(theta) ** 36 + 2.48428493369419e30 * cos(theta) ** 34 - 1.27978314766064e30 * cos(theta) ** 32 + 5.4533714883134e29 * cos(theta) ** 30 - 1.92082315580269e29 * cos(theta) ** 28 + 5.57658335555621e28 * cos(theta) ** 26 - 1.3277579417991e28 * cos(theta) ** 24 + 2.57346342652072e27 * cos(theta) ** 22 - 4.01940535176665e26 * cos(theta) ** 20 + 4.99141841069061e25 * cos(theta) ** 18 - 4.84265705032126e24 * cos(theta) ** 16 + 3.58715337060834e23 * cos(theta) ** 14 - 1.96763686995394e22 * cos(theta) ** 12 + 7.66611767514523e20 * cos(theta) ** 10 - 1.99985678482049e19 * cos(theta) ** 8 + 3.1961181492565e17 * cos(theta) ** 6 - 2.70094491486465e15 * cos(theta) ** 4 + 9033260584831.59 * cos(theta) ** 2 - 4993510549.93455 ) * cos(6 * phi) ) # @torch.jit.script def Yl60_m7(theta, phi): return ( 1.502416642761e-12 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.63115411543555e29 * cos(theta) ** 53 - 1.88884905131948e30 * cos(theta) ** 51 + 1.02918057283433e31 * cos(theta) ** 49 - 3.50816334392225e31 * cos(theta) ** 47 + 8.3900986167698e31 * cos(theta) ** 45 - 1.49661218569407e32 * cos(theta) ** 43 + 2.0664232472198e32 * cos(theta) ** 41 - 2.26230582472661e32 * cos(theta) ** 39 + 1.99567692395526e32 * cos(theta) ** 37 - 1.43378730458922e32 * cos(theta) ** 35 + 8.44656877456025e31 * cos(theta) ** 33 - 4.09530607251406e31 * cos(theta) ** 31 + 1.63601144649402e31 * cos(theta) ** 29 - 5.37830483624754e30 * cos(theta) ** 27 + 1.44991167244461e30 * cos(theta) ** 25 - 3.18661906031783e29 * cos(theta) ** 23 + 5.66161953834559e28 * cos(theta) ** 21 - 8.03881070353329e27 * cos(theta) ** 19 + 8.98455313924309e26 * cos(theta) ** 17 - 7.74825128051401e25 * cos(theta) ** 15 + 5.02201471885168e24 * cos(theta) ** 13 - 2.36116424394473e23 * cos(theta) ** 11 + 7.66611767514523e21 * cos(theta) ** 9 - 1.5998854278564e20 * cos(theta) ** 7 + 1.9176708895539e18 * cos(theta) ** 5 - 1.08037796594586e16 * cos(theta) ** 3 + 18066521169663.2 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl60_m8(theta, phi): return ( 2.50263776961367e-14 * (1.0 - cos(theta) ** 2) ** 4 * ( 8.6451168118084e30 * cos(theta) ** 52 - 9.63313016172936e31 * cos(theta) ** 50 + 5.04298480688823e32 * cos(theta) ** 48 - 1.64883677164346e33 * cos(theta) ** 46 + 3.77554437754641e33 * cos(theta) ** 44 - 6.43543239848451e33 * cos(theta) ** 42 + 8.47233531360117e33 * cos(theta) ** 40 - 8.8229927164338e33 * cos(theta) ** 38 + 7.38400461863448e33 * cos(theta) ** 36 - 5.01825556606227e33 * cos(theta) ** 34 + 2.78736769560488e33 * cos(theta) ** 32 - 1.26954488247936e33 * cos(theta) ** 30 + 4.74443319483265e32 * cos(theta) ** 28 - 1.45214230578684e32 * cos(theta) ** 26 + 3.62477918111154e31 * cos(theta) ** 24 - 7.32922383873102e30 * cos(theta) ** 22 + 1.18894010305257e30 * cos(theta) ** 20 - 1.52737403367133e29 * cos(theta) ** 18 + 1.52737403367133e28 * cos(theta) ** 16 - 1.1622376920771e27 * cos(theta) ** 14 + 6.52861913450718e25 * cos(theta) ** 12 - 2.5972806683392e24 * cos(theta) ** 10 + 6.89950590763071e22 * cos(theta) ** 8 - 1.11991979949948e21 * cos(theta) ** 6 + 9.58835444776949e18 * cos(theta) ** 4 - 3.24113389783758e16 * cos(theta) ** 2 + 18066521169663.2 ) * cos(8 * phi) ) # @torch.jit.script def Yl60_m9(theta, phi): return ( 4.17803214878475e-16 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 4.49546074214037e32 * cos(theta) ** 51 - 4.81656508086468e33 * cos(theta) ** 49 + 2.42063270730635e34 * cos(theta) ** 47 - 7.5846491495599e34 * cos(theta) ** 45 + 1.66123952612042e35 * cos(theta) ** 43 - 2.7028816073635e35 * cos(theta) ** 41 + 3.38893412544047e35 * cos(theta) ** 39 - 3.35273723224484e35 * cos(theta) ** 37 + 2.65824166270841e35 * cos(theta) ** 35 - 1.70620689246117e35 * cos(theta) ** 33 + 8.91957662593562e34 * cos(theta) ** 31 - 3.80863464743808e34 * cos(theta) ** 29 + 1.32844129455314e34 * cos(theta) ** 27 - 3.77556999504578e33 * cos(theta) ** 25 + 8.69947003466769e32 * cos(theta) ** 23 - 1.61242924452082e32 * cos(theta) ** 21 + 2.37788020610515e31 * cos(theta) ** 19 - 2.74927326060839e30 * cos(theta) ** 17 + 2.44379845387412e29 * cos(theta) ** 15 - 1.62713276890794e28 * cos(theta) ** 13 + 7.83434296140861e26 * cos(theta) ** 11 - 2.5972806683392e25 * cos(theta) ** 9 + 5.51960472610456e23 * cos(theta) ** 7 - 6.71951879699686e21 * cos(theta) ** 5 + 3.8353417791078e19 * cos(theta) ** 3 - 6.48226779567515e16 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl60_m10(theta, phi): return ( 6.99258363353129e-18 * (1.0 - cos(theta) ** 2) ** 5 * ( 2.29268497849159e34 * cos(theta) ** 50 - 2.36011688962369e35 * cos(theta) ** 48 + 1.13769737243399e36 * cos(theta) ** 46 - 3.41309211730196e36 * cos(theta) ** 44 + 7.14332996231781e36 * cos(theta) ** 42 - 1.10818145901903e37 * cos(theta) ** 40 + 1.32168430892178e37 * cos(theta) ** 38 - 1.24051277593059e37 * cos(theta) ** 36 + 9.30384581947944e36 * cos(theta) ** 34 - 5.63048274512186e36 * cos(theta) ** 32 + 2.76506875404004e36 * cos(theta) ** 30 - 1.10450404775704e36 * cos(theta) ** 28 + 3.58679149529349e35 * cos(theta) ** 26 - 9.43892498761444e34 * cos(theta) ** 24 + 2.00087810797357e34 * cos(theta) ** 22 - 3.38610141349373e33 * cos(theta) ** 20 + 4.51797239159978e32 * cos(theta) ** 18 - 4.67376454303425e31 * cos(theta) ** 16 + 3.66569768081118e30 * cos(theta) ** 14 - 2.11527259958033e29 * cos(theta) ** 12 + 8.61777725754948e27 * cos(theta) ** 10 - 2.33755260150528e26 * cos(theta) ** 8 + 3.8637233082732e24 * cos(theta) ** 6 - 3.35975939849843e22 * cos(theta) ** 4 + 1.15060253373234e20 * cos(theta) ** 2 - 6.48226779567515e16 ) * cos(10 * phi) ) # @torch.jit.script def Yl60_m11(theta, phi): return ( 1.173609166318e-19 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.14634248924579e36 * cos(theta) ** 49 - 1.13285610701937e37 * cos(theta) ** 47 + 5.23340791319633e37 * cos(theta) ** 45 - 1.50176053161286e38 * cos(theta) ** 43 + 3.00019858417348e38 * cos(theta) ** 41 - 4.43272583607613e38 * cos(theta) ** 39 + 5.02240037390277e38 * cos(theta) ** 37 - 4.46584599335013e38 * cos(theta) ** 35 + 3.16330757862301e38 * cos(theta) ** 33 - 1.801754478439e38 * cos(theta) ** 31 + 8.29520626212013e37 * cos(theta) ** 29 - 3.09261133371972e37 * cos(theta) ** 27 + 9.32565788776307e36 * cos(theta) ** 25 - 2.26534199702747e36 * cos(theta) ** 23 + 4.40193183754185e35 * cos(theta) ** 21 - 6.77220282698746e34 * cos(theta) ** 19 + 8.1323503048796e33 * cos(theta) ** 17 - 7.47802326885481e32 * cos(theta) ** 15 + 5.13197675313565e31 * cos(theta) ** 13 - 2.53832711949639e30 * cos(theta) ** 11 + 8.61777725754948e28 * cos(theta) ** 9 - 1.87004208120423e27 * cos(theta) ** 7 + 2.31823398496392e25 * cos(theta) ** 5 - 1.34390375939937e23 * cos(theta) ** 3 + 2.30120506746468e20 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl60_m12(theta, phi): return ( 1.97587380944321e-21 * (1.0 - cos(theta) ** 2) ** 6 * ( 5.61707819730439e37 * cos(theta) ** 48 - 5.32442370299105e38 * cos(theta) ** 46 + 2.35503356093835e39 * cos(theta) ** 44 - 6.4575702859353e39 * cos(theta) ** 42 + 1.23008141951113e40 * cos(theta) ** 40 - 1.72876307606969e40 * cos(theta) ** 38 + 1.85828813834403e40 * cos(theta) ** 36 - 1.56304609767255e40 * cos(theta) ** 34 + 1.04389150094559e40 * cos(theta) ** 32 - 5.58543888316089e39 * cos(theta) ** 30 + 2.40560981601484e39 * cos(theta) ** 28 - 8.35005060104324e38 * cos(theta) ** 26 + 2.33141447194077e38 * cos(theta) ** 24 - 5.21028659316317e37 * cos(theta) ** 22 + 9.24405685883788e36 * cos(theta) ** 20 - 1.28671853712762e36 * cos(theta) ** 18 + 1.38249955182953e35 * cos(theta) ** 16 - 1.12170349032822e34 * cos(theta) ** 14 + 6.67156977907635e32 * cos(theta) ** 12 - 2.79215983144603e31 * cos(theta) ** 10 + 7.75599953179453e29 * cos(theta) ** 8 - 1.30902945684296e28 * cos(theta) ** 6 + 1.15911699248196e26 * cos(theta) ** 4 - 4.03171127819812e23 * cos(theta) ** 2 + 2.30120506746468e20 ) * cos(12 * phi) ) # @torch.jit.script def Yl60_m13(theta, phi): return ( 3.33792947010339e-23 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 2.69619753470611e39 * cos(theta) ** 47 - 2.44923490337588e40 * cos(theta) ** 45 + 1.03621476681287e41 * cos(theta) ** 43 - 2.71217952009283e41 * cos(theta) ** 41 + 4.92032567804451e41 * cos(theta) ** 39 - 6.56929968906483e41 * cos(theta) ** 37 + 6.6898372980385e41 * cos(theta) ** 35 - 5.31435673208666e41 * cos(theta) ** 33 + 3.3404528030259e41 * cos(theta) ** 31 - 1.67563166494827e41 * cos(theta) ** 29 + 6.73570748484154e40 * cos(theta) ** 27 - 2.17101315627124e40 * cos(theta) ** 25 + 5.59539473265784e39 * cos(theta) ** 23 - 1.1462630504959e39 * cos(theta) ** 21 + 1.84881137176758e38 * cos(theta) ** 19 - 2.31609336682971e37 * cos(theta) ** 17 + 2.21199928292725e36 * cos(theta) ** 15 - 1.57038488645951e35 * cos(theta) ** 13 + 8.00588373489162e33 * cos(theta) ** 11 - 2.79215983144603e32 * cos(theta) ** 9 + 6.20479962543562e30 * cos(theta) ** 7 - 7.85417674105775e28 * cos(theta) ** 5 + 4.63646796992783e26 * cos(theta) ** 3 - 8.06342255639623e23 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl60_m14(theta, phi): return ( 5.65994703365348e-25 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.26721284131187e41 * cos(theta) ** 46 - 1.10215570651915e42 * cos(theta) ** 44 + 4.45572349729536e42 * cos(theta) ** 42 - 1.11199360323806e43 * cos(theta) ** 40 + 1.91892701443736e43 * cos(theta) ** 38 - 2.43064088495399e43 * cos(theta) ** 36 + 2.34144305431347e43 * cos(theta) ** 34 - 1.7537377215886e43 * cos(theta) ** 32 + 1.03554036893803e43 * cos(theta) ** 30 - 4.85933182834997e42 * cos(theta) ** 28 + 1.81864102090722e42 * cos(theta) ** 26 - 5.4275328906781e41 * cos(theta) ** 24 + 1.2869407885113e41 * cos(theta) ** 22 - 2.40715240604138e40 * cos(theta) ** 20 + 3.5127416063584e39 * cos(theta) ** 18 - 3.93735872361051e38 * cos(theta) ** 16 + 3.31799892439088e37 * cos(theta) ** 14 - 2.04150035239736e36 * cos(theta) ** 12 + 8.80647210838078e34 * cos(theta) ** 10 - 2.51294384830143e33 * cos(theta) ** 8 + 4.34335973780494e31 * cos(theta) ** 6 - 3.92708837052888e29 * cos(theta) ** 4 + 1.39094039097835e27 * cos(theta) ** 2 - 8.06342255639623e23 ) * cos(14 * phi) ) # @torch.jit.script def Yl60_m15(theta, phi): return ( 9.63613375229227e-27 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 5.8291790700346e42 * cos(theta) ** 45 - 4.84948510868425e43 * cos(theta) ** 43 + 1.87140386886405e44 * cos(theta) ** 41 - 4.44797441295224e44 * cos(theta) ** 39 + 7.29192265486196e44 * cos(theta) ** 37 - 8.75030718583435e44 * cos(theta) ** 35 + 7.96090638466581e44 * cos(theta) ** 33 - 5.61196070908351e44 * cos(theta) ** 31 + 3.10662110681409e44 * cos(theta) ** 29 - 1.36061291193799e44 * cos(theta) ** 27 + 4.72846665435876e43 * cos(theta) ** 25 - 1.30260789376275e43 * cos(theta) ** 23 + 2.83126973472487e42 * cos(theta) ** 21 - 4.81430481208277e41 * cos(theta) ** 19 + 6.32293489144511e40 * cos(theta) ** 17 - 6.29977395777681e39 * cos(theta) ** 15 + 4.64519849414723e38 * cos(theta) ** 13 - 2.44980042287684e37 * cos(theta) ** 11 + 8.80647210838078e35 * cos(theta) ** 9 - 2.01035507864114e34 * cos(theta) ** 7 + 2.60601584268296e32 * cos(theta) ** 5 - 1.57083534821155e30 * cos(theta) ** 3 + 2.7818807819567e27 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl60_m16(theta, phi): return ( 1.64774410460816e-28 * (1.0 - cos(theta) ** 2) ** 8 * ( 2.62313058151557e44 * cos(theta) ** 44 - 2.08527859673423e45 * cos(theta) ** 42 + 7.67275586234261e45 * cos(theta) ** 40 - 1.73471002105137e46 * cos(theta) ** 38 + 2.69801138229893e46 * cos(theta) ** 36 - 3.06260751504202e46 * cos(theta) ** 34 + 2.62709910693972e46 * cos(theta) ** 32 - 1.73970781981589e46 * cos(theta) ** 30 + 9.00920120976085e45 * cos(theta) ** 28 - 3.67365486223258e45 * cos(theta) ** 26 + 1.18211666358969e45 * cos(theta) ** 24 - 2.99599815565431e44 * cos(theta) ** 22 + 5.94566644292222e43 * cos(theta) ** 20 - 9.14717914295726e42 * cos(theta) ** 18 + 1.07489893154567e42 * cos(theta) ** 16 - 9.44966093666522e40 * cos(theta) ** 14 + 6.0387580423914e39 * cos(theta) ** 12 - 2.69478046516452e38 * cos(theta) ** 10 + 7.9258248975427e36 * cos(theta) ** 8 - 1.4072485550488e35 * cos(theta) ** 6 + 1.30300792134148e33 * cos(theta) ** 4 - 4.71250604463465e30 * cos(theta) ** 2 + 2.7818807819567e27 ) * cos(16 * phi) ) # @torch.jit.script def Yl60_m17(theta, phi): return ( 2.83085787341947e-30 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.15417745586685e46 * cos(theta) ** 43 - 8.75817010628375e46 * cos(theta) ** 41 + 3.06910234493704e47 * cos(theta) ** 39 - 6.59189807999521e47 * cos(theta) ** 37 + 9.71284097627613e47 * cos(theta) ** 35 - 1.04128655511429e48 * cos(theta) ** 33 + 8.4067171422071e47 * cos(theta) ** 31 - 5.21912345944766e47 * cos(theta) ** 29 + 2.52257633873304e47 * cos(theta) ** 27 - 9.5515026418047e46 * cos(theta) ** 25 + 2.83707999261526e46 * cos(theta) ** 23 - 6.59119594243949e45 * cos(theta) ** 21 + 1.18913328858444e45 * cos(theta) ** 19 - 1.64649224573231e44 * cos(theta) ** 17 + 1.71983829047307e43 * cos(theta) ** 15 - 1.32295253113313e42 * cos(theta) ** 13 + 7.24650965086968e40 * cos(theta) ** 11 - 2.69478046516452e39 * cos(theta) ** 9 + 6.34065991803416e37 * cos(theta) ** 7 - 8.4434913302928e35 * cos(theta) ** 5 + 5.21203168536592e33 * cos(theta) ** 3 - 9.4250120892693e30 * cos(theta) ) * cos(17 * phi) ) # @torch.jit.script def Yl60_m18(theta, phi): return ( 4.88806009407684e-32 * (1.0 - cos(theta) ** 2) ** 9 * ( 4.96296306022746e47 * cos(theta) ** 42 - 3.59084974357634e48 * cos(theta) ** 40 + 1.19694991452545e49 * cos(theta) ** 38 - 2.43900228959823e49 * cos(theta) ** 36 + 3.39949434169665e49 * cos(theta) ** 34 - 3.43624563187715e49 * cos(theta) ** 32 + 2.6060823140842e49 * cos(theta) ** 30 - 1.51354580323982e49 * cos(theta) ** 28 + 6.8109561145792e48 * cos(theta) ** 26 - 2.38787566045118e48 * cos(theta) ** 24 + 6.5252839830151e47 * cos(theta) ** 22 - 1.38415114791229e47 * cos(theta) ** 20 + 2.25935324831044e46 * cos(theta) ** 18 - 2.79903681774492e45 * cos(theta) ** 16 + 2.57975743570961e44 * cos(theta) ** 14 - 1.71983829047307e43 * cos(theta) ** 12 + 7.97116061595665e41 * cos(theta) ** 10 - 2.42530241864807e40 * cos(theta) ** 8 + 4.43846194262391e38 * cos(theta) ** 6 - 4.2217456651464e36 * cos(theta) ** 4 + 1.56360950560978e34 * cos(theta) ** 2 - 9.4250120892693e30 ) * cos(18 * phi) ) # @torch.jit.script def Yl60_m19(theta, phi): return ( 8.48590851998793e-34 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 2.08444448529553e49 * cos(theta) ** 41 - 1.43633989743054e50 * cos(theta) ** 39 + 4.5484096751967e50 * cos(theta) ** 37 - 8.78040824255362e50 * cos(theta) ** 35 + 1.15582807617686e51 * cos(theta) ** 33 - 1.09959860220069e51 * cos(theta) ** 31 + 7.8182469422526e50 * cos(theta) ** 29 - 4.2379282490715e50 * cos(theta) ** 27 + 1.77084858979059e50 * cos(theta) ** 25 - 5.73090158508282e49 * cos(theta) ** 23 + 1.43556247626332e49 * cos(theta) ** 21 - 2.76830229582459e48 * cos(theta) ** 19 + 4.0668358469588e47 * cos(theta) ** 17 - 4.47845890839188e46 * cos(theta) ** 15 + 3.61166040999345e45 * cos(theta) ** 13 - 2.06380594856768e44 * cos(theta) ** 11 + 7.97116061595665e42 * cos(theta) ** 9 - 1.94024193491845e41 * cos(theta) ** 7 + 2.66307716557435e39 * cos(theta) ** 5 - 1.68869826605856e37 * cos(theta) ** 3 + 3.12721901121955e34 * cos(theta) ) * cos(19 * phi) ) # @torch.jit.script def Yl60_m20(theta, phi): return ( 1.48170389937219e-35 * (1.0 - cos(theta) ** 2) ** 10 * ( 8.54622238971169e50 * cos(theta) ** 40 - 5.60172559997909e51 * cos(theta) ** 38 + 1.68291157982278e52 * cos(theta) ** 36 - 3.07314288489377e52 * cos(theta) ** 34 + 3.81423265138364e52 * cos(theta) ** 32 - 3.40875566682213e52 * cos(theta) ** 30 + 2.26729161325325e52 * cos(theta) ** 28 - 1.14424062724931e52 * cos(theta) ** 26 + 4.42712147447648e51 * cos(theta) ** 24 - 1.31810736456905e51 * cos(theta) ** 22 + 3.01468120015297e50 * cos(theta) ** 20 - 5.25977436206671e49 * cos(theta) ** 18 + 6.91362093982996e48 * cos(theta) ** 16 - 6.71768836258781e47 * cos(theta) ** 14 + 4.69515853299148e46 * cos(theta) ** 12 - 2.27018654342445e45 * cos(theta) ** 10 + 7.17404455436098e43 * cos(theta) ** 8 - 1.35816935444292e42 * cos(theta) ** 6 + 1.33153858278717e40 * cos(theta) ** 4 - 5.06609479817568e37 * cos(theta) ** 2 + 3.12721901121955e34 ) * cos(20 * phi) ) # @torch.jit.script def Yl60_m21(theta, phi): return ( 2.60308841109392e-37 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 3.41848895588468e52 * cos(theta) ** 39 - 2.12865572799205e53 * cos(theta) ** 37 + 6.058481687362e53 * cos(theta) ** 35 - 1.04486858086388e54 * cos(theta) ** 33 + 1.22055444844276e54 * cos(theta) ** 31 - 1.02262670004664e54 * cos(theta) ** 29 + 6.34841651710911e53 * cos(theta) ** 27 - 2.97502563084819e53 * cos(theta) ** 25 + 1.06250915387436e53 * cos(theta) ** 23 - 2.89983620205191e52 * cos(theta) ** 21 + 6.02936240030595e51 * cos(theta) ** 19 - 9.46759385172008e50 * cos(theta) ** 17 + 1.10617935037279e50 * cos(theta) ** 15 - 9.40476370762294e48 * cos(theta) ** 13 + 5.63419023958978e47 * cos(theta) ** 11 - 2.27018654342445e46 * cos(theta) ** 9 + 5.73923564348879e44 * cos(theta) ** 7 - 8.1490161266575e42 * cos(theta) ** 5 + 5.3261543311487e40 * cos(theta) ** 3 - 1.01321895963514e38 * cos(theta) ) * cos(21 * phi) ) # @torch.jit.script def Yl60_m22(theta, phi): return ( 4.60309235997469e-39 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.33321069279502e54 * cos(theta) ** 38 - 7.8760261935706e54 * cos(theta) ** 36 + 2.1204685905767e55 * cos(theta) ** 34 - 3.44806631685081e55 * cos(theta) ** 32 + 3.78371879017257e55 * cos(theta) ** 30 - 2.96561743013526e55 * cos(theta) ** 28 + 1.71407245961946e55 * cos(theta) ** 26 - 7.43756407712049e54 * cos(theta) ** 24 + 2.44377105391102e54 * cos(theta) ** 22 - 6.08965602430901e53 * cos(theta) ** 20 + 1.14557885605813e53 * cos(theta) ** 18 - 1.60949095479241e52 * cos(theta) ** 16 + 1.65926902555919e51 * cos(theta) ** 14 - 1.22261928199098e50 * cos(theta) ** 12 + 6.19760926354876e48 * cos(theta) ** 10 - 2.04316788908201e47 * cos(theta) ** 8 + 4.01746495044215e45 * cos(theta) ** 6 - 4.07450806332875e43 * cos(theta) ** 4 + 1.59784629934461e41 * cos(theta) ** 2 - 1.01321895963514e38 ) * cos(22 * phi) ) # @torch.jit.script def Yl60_m23(theta, phi): return ( 8.19631884415083e-41 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 5.06620063262109e55 * cos(theta) ** 37 - 2.83536942968542e56 * cos(theta) ** 35 + 7.20959320796078e56 * cos(theta) ** 33 - 1.10338122139226e57 * cos(theta) ** 31 + 1.13511563705177e57 * cos(theta) ** 29 - 8.30372880437872e56 * cos(theta) ** 27 + 4.4565883950106e56 * cos(theta) ** 25 - 1.78501537850892e56 * cos(theta) ** 23 + 5.37629631860424e55 * cos(theta) ** 21 - 1.2179312048618e55 * cos(theta) ** 19 + 2.06204194090463e54 * cos(theta) ** 17 - 2.57518552766786e53 * cos(theta) ** 15 + 2.32297663578287e52 * cos(theta) ** 13 - 1.46714313838918e51 * cos(theta) ** 11 + 6.19760926354876e49 * cos(theta) ** 9 - 1.63453431126561e48 * cos(theta) ** 7 + 2.41047897026529e46 * cos(theta) ** 5 - 1.6298032253315e44 * cos(theta) ** 3 + 3.19569259868922e41 * cos(theta) ) * cos(23 * phi) ) # @torch.jit.script def Yl60_m24(theta, phi): return ( 1.4702065031827e-42 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.8744942340698e57 * cos(theta) ** 36 - 9.92379300389896e57 * cos(theta) ** 34 + 2.37916575862706e58 * cos(theta) ** 32 - 3.420481786316e58 * cos(theta) ** 30 + 3.29183534745013e58 * cos(theta) ** 28 - 2.24200677718225e58 * cos(theta) ** 26 + 1.11414709875265e58 * cos(theta) ** 24 - 4.10553537057051e57 * cos(theta) ** 22 + 1.12902222690689e57 * cos(theta) ** 20 - 2.31406928923742e56 * cos(theta) ** 18 + 3.50547129953788e55 * cos(theta) ** 16 - 3.86277829150179e54 * cos(theta) ** 14 + 3.01986962651773e53 * cos(theta) ** 12 - 1.6138574522281e52 * cos(theta) ** 10 + 5.57784833719388e50 * cos(theta) ** 8 - 1.14417401788592e49 * cos(theta) ** 6 + 1.20523948513264e47 * cos(theta) ** 4 - 4.8894096759945e44 * cos(theta) ** 2 + 3.19569259868922e41 ) * cos(24 * phi) ) # @torch.jit.script def Yl60_m25(theta, phi): return ( 2.65777141519491e-44 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 6.74817924265129e58 * cos(theta) ** 35 - 3.37408962132565e59 * cos(theta) ** 33 + 7.61333042760658e59 * cos(theta) ** 31 - 1.0261445358948e60 * cos(theta) ** 29 + 9.21713897286037e59 * cos(theta) ** 27 - 5.82921762067386e59 * cos(theta) ** 25 + 2.67395303700636e59 * cos(theta) ** 23 - 9.03217781525512e58 * cos(theta) ** 21 + 2.25804445381378e58 * cos(theta) ** 19 - 4.16532472062736e57 * cos(theta) ** 17 + 5.6087540792606e56 * cos(theta) ** 15 - 5.40788960810251e55 * cos(theta) ** 13 + 3.62384355182127e54 * cos(theta) ** 11 - 1.6138574522281e53 * cos(theta) ** 9 + 4.4622786697551e51 * cos(theta) ** 7 - 6.86504410731555e49 * cos(theta) ** 5 + 4.82095794053058e47 * cos(theta) ** 3 - 9.77881935198901e44 * cos(theta) ) * cos(25 * phi) ) # @torch.jit.script def Yl60_m26(theta, phi): return ( 4.84433734413125e-46 * (1.0 - cos(theta) ** 2) ** 13 * ( 2.36186273492795e60 * cos(theta) ** 34 - 1.11344957503746e61 * cos(theta) ** 32 + 2.36013243255804e61 * cos(theta) ** 30 - 2.97581915409492e61 * cos(theta) ** 28 + 2.4886275226723e61 * cos(theta) ** 26 - 1.45730440516846e61 * cos(theta) ** 24 + 6.15009198511462e60 * cos(theta) ** 22 - 1.89675734120358e60 * cos(theta) ** 20 + 4.29028446224618e59 * cos(theta) ** 18 - 7.08105202506651e58 * cos(theta) ** 16 + 8.41313111889091e57 * cos(theta) ** 14 - 7.03025649053326e56 * cos(theta) ** 12 + 3.9862279070034e55 * cos(theta) ** 10 - 1.45247170700529e54 * cos(theta) ** 8 + 3.12359506882857e52 * cos(theta) ** 6 - 3.43252205365777e50 * cos(theta) ** 4 + 1.44628738215917e48 * cos(theta) ** 2 - 9.77881935198901e44 ) * cos(26 * phi) ) # @torch.jit.script def Yl60_m27(theta, phi): return ( 8.90707878111168e-48 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 8.03033329875504e61 * cos(theta) ** 33 - 3.56303864011988e62 * cos(theta) ** 31 + 7.08039729767412e62 * cos(theta) ** 29 - 8.33229363146578e62 * cos(theta) ** 27 + 6.47043155894798e62 * cos(theta) ** 25 - 3.49753057240432e62 * cos(theta) ** 23 + 1.35302023672522e62 * cos(theta) ** 21 - 3.79351468240715e61 * cos(theta) ** 19 + 7.72251203204313e60 * cos(theta) ** 17 - 1.13296832401064e60 * cos(theta) ** 15 + 1.17783835664473e59 * cos(theta) ** 13 - 8.43630778863992e57 * cos(theta) ** 11 + 3.9862279070034e56 * cos(theta) ** 9 - 1.16197736560423e55 * cos(theta) ** 7 + 1.87415704129714e53 * cos(theta) ** 5 - 1.37300882146311e51 * cos(theta) ** 3 + 2.89257476431835e48 * cos(theta) ) * cos(27 * phi) ) # @torch.jit.script def Yl60_m28(theta, phi): return ( 1.65286349337081e-49 * (1.0 - cos(theta) ** 2) ** 14 * ( 2.65000998858916e63 * cos(theta) ** 32 - 1.10454197843716e64 * cos(theta) ** 30 + 2.0533152163255e64 * cos(theta) ** 28 - 2.24971928049576e64 * cos(theta) ** 26 + 1.617607889737e64 * cos(theta) ** 24 - 8.04432031652993e63 * cos(theta) ** 22 + 2.84134249712296e63 * cos(theta) ** 20 - 7.20767789657359e62 * cos(theta) ** 18 + 1.31282704544733e62 * cos(theta) ** 16 - 1.69945248601596e61 * cos(theta) ** 14 + 1.53118986363815e60 * cos(theta) ** 12 - 9.27993856750391e58 * cos(theta) ** 10 + 3.58760511630306e57 * cos(theta) ** 8 - 8.1338415592296e55 * cos(theta) ** 6 + 9.37078520648572e53 * cos(theta) ** 4 - 4.11902646438933e51 * cos(theta) ** 2 + 2.89257476431835e48 ) * cos(28 * phi) ) # @torch.jit.script def Yl60_m29(theta, phi): return ( 3.09718391466457e-51 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 8.48003196348532e64 * cos(theta) ** 31 - 3.31362593531149e65 * cos(theta) ** 29 + 5.74928260571139e65 * cos(theta) ** 27 - 5.84927012928898e65 * cos(theta) ** 25 + 3.88225893536879e65 * cos(theta) ** 23 - 1.76975046963658e65 * cos(theta) ** 21 + 5.68268499424591e64 * cos(theta) ** 19 - 1.29738202138325e64 * cos(theta) ** 17 + 2.10052327271573e63 * cos(theta) ** 15 - 2.37923348042235e62 * cos(theta) ** 13 + 1.83742783636577e61 * cos(theta) ** 11 - 9.27993856750391e59 * cos(theta) ** 9 + 2.87008409304245e58 * cos(theta) ** 7 - 4.88030493553776e56 * cos(theta) ** 5 + 3.74831408259429e54 * cos(theta) ** 3 - 8.23805292877866e51 * cos(theta) ) * cos(29 * phi) ) # @torch.jit.script def Yl60_m30(theta, phi): return ( 5.8636075239113e-53 * (1.0 - cos(theta) ** 2) ** 15 * ( 2.62880990868045e66 * cos(theta) ** 30 - 9.60951521240332e66 * cos(theta) ** 28 + 1.55230630354207e67 * cos(theta) ** 26 - 1.46231753232224e67 * cos(theta) ** 24 + 8.92919555134822e66 * cos(theta) ** 22 - 3.71647598623683e66 * cos(theta) ** 20 + 1.07971014890672e66 * cos(theta) ** 18 - 2.20554943635152e65 * cos(theta) ** 16 + 3.1507849090736e64 * cos(theta) ** 14 - 3.09300352454905e63 * cos(theta) ** 12 + 2.02117062000235e62 * cos(theta) ** 10 - 8.35194471075352e60 * cos(theta) ** 8 + 2.00905886512971e59 * cos(theta) ** 6 - 2.44015246776888e57 * cos(theta) ** 4 + 1.12449422477829e55 * cos(theta) ** 2 - 8.23805292877866e51 ) * cos(30 * phi) ) # @torch.jit.script def Yl60_m31(theta, phi): return ( 1.12223438154577e-54 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 7.88642972604135e67 * cos(theta) ** 29 - 2.69066425947293e68 * cos(theta) ** 27 + 4.03599638920939e68 * cos(theta) ** 25 - 3.50956207757339e68 * cos(theta) ** 23 + 1.96442302129661e68 * cos(theta) ** 21 - 7.43295197247365e67 * cos(theta) ** 19 + 1.9434782680321e67 * cos(theta) ** 17 - 3.52887909816243e66 * cos(theta) ** 15 + 4.41109887270303e65 * cos(theta) ** 13 - 3.71160422945886e64 * cos(theta) ** 11 + 2.02117062000235e63 * cos(theta) ** 9 - 6.68155576860281e61 * cos(theta) ** 7 + 1.20543531907783e60 * cos(theta) ** 5 - 9.76060987107553e57 * cos(theta) ** 3 + 2.24898844955657e55 * cos(theta) ) * cos(31 * phi) ) # @torch.jit.script def Yl60_m32(theta, phi): return ( 2.17265443940271e-56 * (1.0 - cos(theta) ** 2) ** 16 * ( 2.28706462055199e69 * cos(theta) ** 28 - 7.26479350057691e69 * cos(theta) ** 26 + 1.00899909730235e70 * cos(theta) ** 24 - 8.07199277841879e69 * cos(theta) ** 22 + 4.12528834472288e69 * cos(theta) ** 20 - 1.41226087476999e69 * cos(theta) ** 18 + 3.30391305565457e68 * cos(theta) ** 16 - 5.29331864724364e67 * cos(theta) ** 14 + 5.73442853451394e66 * cos(theta) ** 12 - 4.08276465240475e65 * cos(theta) ** 10 + 1.81905355800212e64 * cos(theta) ** 8 - 4.67708903802197e62 * cos(theta) ** 6 + 6.02717659538914e60 * cos(theta) ** 4 - 2.92818296132266e58 * cos(theta) ** 2 + 2.24898844955657e55 ) * cos(32 * phi) ) # @torch.jit.script def Yl60_m33(theta, phi): return ( 4.25765205818926e-58 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 6.40378093754557e70 * cos(theta) ** 27 - 1.88884631015e71 * cos(theta) ** 25 + 2.42159783352564e71 * cos(theta) ** 23 - 1.77583841125213e71 * cos(theta) ** 21 + 8.25057668944575e70 * cos(theta) ** 19 - 2.54206957458599e70 * cos(theta) ** 17 + 5.28626088904732e69 * cos(theta) ** 15 - 7.4106461061411e68 * cos(theta) ** 13 + 6.88131424141673e67 * cos(theta) ** 11 - 4.08276465240475e66 * cos(theta) ** 9 + 1.45524284640169e65 * cos(theta) ** 7 - 2.80625342281318e63 * cos(theta) ** 5 + 2.41087063815565e61 * cos(theta) ** 3 - 5.85636592264531e58 * cos(theta) ) * cos(33 * phi) ) # @torch.jit.script def Yl60_m34(theta, phi): return ( 8.4513163486194e-60 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.7290208531373e72 * cos(theta) ** 26 - 4.72211577537499e72 * cos(theta) ** 24 + 5.56967501710896e72 * cos(theta) ** 22 - 3.72926066362948e72 * cos(theta) ** 20 + 1.56760957099469e72 * cos(theta) ** 18 - 4.32151827679618e71 * cos(theta) ** 16 + 7.92939133357097e70 * cos(theta) ** 14 - 9.63383993798343e69 * cos(theta) ** 12 + 7.56944566555841e68 * cos(theta) ** 10 - 3.67448818716428e67 * cos(theta) ** 8 + 1.01866999248119e66 * cos(theta) ** 6 - 1.40312671140659e64 * cos(theta) ** 4 + 7.23261191446696e61 * cos(theta) ** 2 - 5.85636592264531e58 ) * cos(34 * phi) ) # @torch.jit.script def Yl60_m35(theta, phi): return ( 1.7004970459894e-61 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 4.49545421815699e73 * cos(theta) ** 25 - 1.13330778609e74 * cos(theta) ** 23 + 1.22532850376397e74 * cos(theta) ** 21 - 7.45852132725896e73 * cos(theta) ** 19 + 2.82169722779045e73 * cos(theta) ** 17 - 6.91442924287389e72 * cos(theta) ** 15 + 1.11011478669994e72 * cos(theta) ** 13 - 1.15606079255801e71 * cos(theta) ** 11 + 7.56944566555841e69 * cos(theta) ** 9 - 2.93959054973142e68 * cos(theta) ** 7 + 6.11201995488711e66 * cos(theta) ** 5 - 5.61250684562636e64 * cos(theta) ** 3 + 1.44652238289339e62 * cos(theta) ) * cos(35 * phi) ) # @torch.jit.script def Yl60_m36(theta, phi): return ( 3.47112505982011e-63 * (1.0 - cos(theta) ** 2) ** 18 * ( 1.12386355453925e75 * cos(theta) ** 24 - 2.606607908007e75 * cos(theta) ** 22 + 2.57318985790434e75 * cos(theta) ** 20 - 1.4171190521792e75 * cos(theta) ** 18 + 4.79688528724376e74 * cos(theta) ** 16 - 1.03716438643108e74 * cos(theta) ** 14 + 1.44314922270992e73 * cos(theta) ** 12 - 1.27166687181381e72 * cos(theta) ** 10 + 6.81250109900257e70 * cos(theta) ** 8 - 2.05771338481199e69 * cos(theta) ** 6 + 3.05600997744356e67 * cos(theta) ** 4 - 1.68375205368791e65 * cos(theta) ** 2 + 1.44652238289339e62 ) * cos(36 * phi) ) # @torch.jit.script def Yl60_m37(theta, phi): return ( 7.19413814360994e-65 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 2.6972725308942e76 * cos(theta) ** 23 - 5.73453739761539e76 * cos(theta) ** 21 + 5.14637971580868e76 * cos(theta) ** 19 - 2.55081429392256e76 * cos(theta) ** 17 + 7.67501645959002e75 * cos(theta) ** 15 - 1.45203014100352e75 * cos(theta) ** 13 + 1.7317790672519e74 * cos(theta) ** 11 - 1.27166687181381e73 * cos(theta) ** 9 + 5.45000087920205e71 * cos(theta) ** 7 - 1.2346280308872e70 * cos(theta) ** 5 + 1.22240399097742e68 * cos(theta) ** 3 - 3.36750410737582e65 * cos(theta) ) * cos(37 * phi) ) # @torch.jit.script def Yl60_m38(theta, phi): return ( 1.51531114391773e-66 * (1.0 - cos(theta) ** 2) ** 19 * ( 6.20372682105665e77 * cos(theta) ** 22 - 1.20425285349923e78 * cos(theta) ** 20 + 9.7781214600365e77 * cos(theta) ** 18 - 4.33638429966836e77 * cos(theta) ** 16 + 1.1512524689385e77 * cos(theta) ** 14 - 1.88763918330457e76 * cos(theta) ** 12 + 1.90495697397709e75 * cos(theta) ** 10 - 1.14450018463243e74 * cos(theta) ** 8 + 3.81500061544144e72 * cos(theta) ** 6 - 6.17314015443598e70 * cos(theta) ** 4 + 3.66721197293227e68 * cos(theta) ** 2 - 3.36750410737582e65 ) * cos(38 * phi) ) # @torch.jit.script def Yl60_m39(theta, phi): return ( 3.24692965294476e-68 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 1.36481990063246e79 * cos(theta) ** 21 - 2.40850570699846e79 * cos(theta) ** 19 + 1.76006186280657e79 * cos(theta) ** 17 - 6.93821487946938e78 * cos(theta) ** 15 + 1.6117534565139e78 * cos(theta) ** 13 - 2.26516701996549e77 * cos(theta) ** 11 + 1.90495697397709e76 * cos(theta) ** 9 - 9.15600147705945e74 * cos(theta) ** 7 + 2.28900036926486e73 * cos(theta) ** 5 - 2.46925606177439e71 * cos(theta) ** 3 + 7.33442394586453e68 * cos(theta) ) * cos(39 * phi) ) # @torch.jit.script def Yl60_m40(theta, phi): return ( 7.08538138610289e-70 * (1.0 - cos(theta) ** 2) ** 20 * ( 2.86612179132817e80 * cos(theta) ** 20 - 4.57616084329708e80 * cos(theta) ** 18 + 2.99210516677117e80 * cos(theta) ** 16 - 1.04073223192041e80 * cos(theta) ** 14 + 2.09527949346807e79 * cos(theta) ** 12 - 2.49168372196203e78 * cos(theta) ** 10 + 1.71446127657938e77 * cos(theta) ** 8 - 6.40920103394161e75 * cos(theta) ** 6 + 1.14450018463243e74 * cos(theta) ** 4 - 7.40776818532318e71 * cos(theta) ** 2 + 7.33442394586453e68 ) * cos(40 * phi) ) # @torch.jit.script def Yl60_m41(theta, phi): return ( 1.57647666728742e-71 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 5.73224358265634e81 * cos(theta) ** 19 - 8.23708951793475e81 * cos(theta) ** 17 + 4.78736826683387e81 * cos(theta) ** 15 - 1.45702512468857e81 * cos(theta) ** 13 + 2.51433539216169e80 * cos(theta) ** 11 - 2.49168372196203e79 * cos(theta) ** 9 + 1.37156902126351e78 * cos(theta) ** 7 - 3.84552062036497e76 * cos(theta) ** 5 + 4.57800073852972e74 * cos(theta) ** 3 - 1.48155363706464e72 * cos(theta) ) * cos(41 * phi) ) # @torch.jit.script def Yl60_m42(theta, phi): return ( 3.58105227694671e-73 * (1.0 - cos(theta) ** 2) ** 21 * ( 1.08912628070471e83 * cos(theta) ** 18 - 1.40030521804891e83 * cos(theta) ** 16 + 7.1810524002508e82 * cos(theta) ** 14 - 1.89413266209514e82 * cos(theta) ** 12 + 2.76576893137786e81 * cos(theta) ** 10 - 2.24251534976583e80 * cos(theta) ** 8 + 9.60098314884454e78 * cos(theta) ** 6 - 1.92276031018248e77 * cos(theta) ** 4 + 1.37340022155892e75 * cos(theta) ** 2 - 1.48155363706464e72 ) * cos(42 * phi) ) # @torch.jit.script def Yl60_m43(theta, phi): return ( 8.3167911575098e-75 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 1.96042730526847e84 * cos(theta) ** 17 - 2.24048834887825e84 * cos(theta) ** 15 + 1.00534733603511e84 * cos(theta) ** 13 - 2.27295919451417e83 * cos(theta) ** 11 + 2.76576893137786e82 * cos(theta) ** 9 - 1.79401227981267e81 * cos(theta) ** 7 + 5.76058988930672e79 * cos(theta) ** 5 - 7.69104124072994e77 * cos(theta) ** 3 + 2.74680044311783e75 * cos(theta) ) * cos(43 * phi) ) # @torch.jit.script def Yl60_m44(theta, phi): return ( 1.97794707032021e-76 * (1.0 - cos(theta) ** 2) ** 22 * ( 3.3327264189564e85 * cos(theta) ** 16 - 3.36073252331738e85 * cos(theta) ** 14 + 1.30695153684565e85 * cos(theta) ** 12 - 2.50025511396558e84 * cos(theta) ** 10 + 2.48919203824007e83 * cos(theta) ** 8 - 1.25580859586887e82 * cos(theta) ** 6 + 2.88029494465336e80 * cos(theta) ** 4 - 2.30731237221898e78 * cos(theta) ** 2 + 2.74680044311783e75 ) * cos(44 * phi) ) # @torch.jit.script def Yl60_m45(theta, phi): return ( 4.82569672553458e-78 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 5.33236227033024e86 * cos(theta) ** 15 - 4.70502553264433e86 * cos(theta) ** 13 + 1.56834184421478e86 * cos(theta) ** 11 - 2.50025511396558e85 * cos(theta) ** 9 + 1.99135363059206e84 * cos(theta) ** 7 - 7.53485157521319e82 * cos(theta) ** 5 + 1.15211797786134e81 * cos(theta) ** 3 - 4.61462474443796e78 * cos(theta) ) * cos(45 * phi) ) # @torch.jit.script def Yl60_m46(theta, phi): return ( 1.21021202172876e-79 * (1.0 - cos(theta) ** 2) ** 23 * ( 7.99854340549535e87 * cos(theta) ** 14 - 6.11653319243762e87 * cos(theta) ** 12 + 1.72517602863625e87 * cos(theta) ** 10 - 2.25022960256903e86 * cos(theta) ** 8 + 1.39394754141444e85 * cos(theta) ** 6 - 3.7674257876066e83 * cos(theta) ** 4 + 3.45635393358403e81 * cos(theta) ** 2 - 4.61462474443796e78 ) * cos(46 * phi) ) # @torch.jit.script def Yl60_m47(theta, phi): return ( 3.12683925851279e-81 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 1.11979607676935e89 * cos(theta) ** 13 - 7.33983983092515e88 * cos(theta) ** 11 + 1.72517602863625e88 * cos(theta) ** 9 - 1.80018368205522e87 * cos(theta) ** 7 + 8.36368524848664e85 * cos(theta) ** 5 - 1.50697031504264e84 * cos(theta) ** 3 + 6.91270786716807e81 * cos(theta) ) * cos(47 * phi) ) # @torch.jit.script def Yl60_m48(theta, phi): return ( 8.34491662851533e-83 * (1.0 - cos(theta) ** 2) ** 24 * ( 1.45573489980015e90 * cos(theta) ** 12 - 8.07382381401766e89 * cos(theta) ** 10 + 1.55265842577263e89 * cos(theta) ** 8 - 1.26012857743865e88 * cos(theta) ** 6 + 4.18184262424332e86 * cos(theta) ** 4 - 4.52091094512792e84 * cos(theta) ** 2 + 6.91270786716807e81 ) * cos(48 * phi) ) # @torch.jit.script def Yl60_m49(theta, phi): return ( 2.30737472014175e-84 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.74688187976019e91 * cos(theta) ** 11 - 8.07382381401766e90 * cos(theta) ** 9 + 1.2421267406181e90 * cos(theta) ** 7 - 7.56077146463193e88 * cos(theta) ** 5 + 1.67273704969733e87 * cos(theta) ** 3 - 9.04182189025583e84 * cos(theta) ) * cos(49 * phi) ) # @torch.jit.script def Yl60_m50(theta, phi): return ( 6.63323593740138e-86 * (1.0 - cos(theta) ** 2) ** 25 * ( 1.9215700677362e92 * cos(theta) ** 10 - 7.2664414326159e91 * cos(theta) ** 8 + 8.69488718432672e90 * cos(theta) ** 6 - 3.78038573231596e89 * cos(theta) ** 4 + 5.01821114909199e87 * cos(theta) ** 2 - 9.04182189025583e84 ) * cos(50 * phi) ) # @torch.jit.script def Yl60_m51(theta, phi): return ( 1.99096651347248e-87 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 1.9215700677362e93 * cos(theta) ** 9 - 5.81315314609272e92 * cos(theta) ** 7 + 5.21693231059603e91 * cos(theta) ** 5 - 1.51215429292639e90 * cos(theta) ** 3 + 1.0036422298184e88 * cos(theta) ) * cos(51 * phi) ) # @torch.jit.script def Yl60_m52(theta, phi): return ( 6.2709550753637e-89 * (1.0 - cos(theta) ** 2) ** 26 * ( 1.72941306096258e94 * cos(theta) ** 8 - 4.0692072022649e93 * cos(theta) ** 6 + 2.60846615529801e92 * cos(theta) ** 4 - 4.53646287877916e90 * cos(theta) ** 2 + 1.0036422298184e88 ) * cos(52 * phi) ) # @torch.jit.script def Yl60_m53(theta, phi): return ( 2.08568863326116e-90 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 1.38353044877007e95 * cos(theta) ** 7 - 2.44152432135894e94 * cos(theta) ** 5 + 1.04338646211921e93 * cos(theta) ** 3 - 9.07292575755831e90 * cos(theta) ) * cos(53 * phi) ) # @torch.jit.script def Yl60_m54(theta, phi): return ( 7.38325772766451e-92 * (1.0 - cos(theta) ** 2) ** 27 * ( 9.68471314139047e95 * cos(theta) ** 6 - 1.22076216067947e95 * cos(theta) ** 4 + 3.13015938635762e93 * cos(theta) ** 2 - 9.07292575755831e90 ) * cos(54 * phi) ) # @torch.jit.script def Yl60_m55(theta, phi): return ( 2.81075818006968e-93 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 5.81082788483428e96 * cos(theta) ** 5 - 4.88304864271788e95 * cos(theta) ** 3 + 6.26031877271524e93 * cos(theta) ) * cos(55 * phi) ) # @torch.jit.script def Yl60_m56(theta, phi): return ( 1.16710380908356e-94 * (1.0 - cos(theta) ** 2) ** 28 * ( 2.90541394241714e97 * cos(theta) ** 4 - 1.46491459281536e96 * cos(theta) ** 2 + 6.26031877271524e93 ) * cos(56 * phi) ) # @torch.jit.script def Yl60_m57(theta, phi): return ( 5.39493926594886e-96 * (1.0 - cos(theta) ** 2) ** 28.5 * (1.16216557696686e98 * cos(theta) ** 3 - 2.92982918563073e96 * cos(theta)) * cos(57 * phi) ) # @torch.jit.script def Yl60_m58(theta, phi): return ( 2.86737786884351e-97 * (1.0 - cos(theta) ** 2) ** 29 * (3.48649673090057e98 * cos(theta) ** 2 - 2.92982918563073e96) * cos(58 * phi) ) # @torch.jit.script def Yl60_m59(theta, phi): return ( 12.9603195124091 * (1.0 - cos(theta) ** 2) ** 29.5 * cos(59 * phi) * cos(theta) ) # @torch.jit.script def Yl60_m60(theta, phi): return 1.18310989157014 * (1.0 - cos(theta) ** 2) ** 30 * cos(60 * phi) # @torch.jit.script def Yl61_m_minus_61(theta, phi): return 1.18794880702723 * (1.0 - cos(theta) ** 2) ** 30.5 * sin(61 * phi) # @torch.jit.script def Yl61_m_minus_60(theta, phi): return 13.1213234435527 * (1.0 - cos(theta) ** 2) ** 30 * sin(60 * phi) * cos(theta) # @torch.jit.script def Yl61_m_minus_59(theta, phi): return ( 2.41924969941795e-99 * (1.0 - cos(theta) ** 2) ** 29.5 * (4.21866104438969e100 * cos(theta) ** 2 - 3.48649673090057e98) * sin(59 * phi) ) # @torch.jit.script def Yl61_m_minus_58(theta, phi): return ( 4.59020356730306e-98 * (1.0 - cos(theta) ** 2) ** 29 * (1.4062203481299e100 * cos(theta) ** 3 - 3.48649673090057e98 * cos(theta)) * sin(58 * phi) ) # @torch.jit.script def Yl61_m_minus_57(theta, phi): return ( 1.00146418526566e-96 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 3.51555087032474e99 * cos(theta) ** 4 - 1.74324836545028e98 * cos(theta) ** 2 + 7.32457296407682e95 ) * sin(57 * phi) ) # @torch.jit.script def Yl61_m_minus_56(theta, phi): return ( 2.43254805395122e-95 * (1.0 - cos(theta) ** 2) ** 28 * ( 7.03110174064948e98 * cos(theta) ** 5 - 5.81082788483428e97 * cos(theta) ** 3 + 7.32457296407682e95 * cos(theta) ) * sin(56 * phi) ) # @torch.jit.script def Yl61_m_minus_55(theta, phi): return ( 6.44510481250452e-94 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 1.17185029010825e98 * cos(theta) ** 6 - 1.45270697120857e97 * cos(theta) ** 4 + 3.66228648203841e95 * cos(theta) ** 2 - 1.04338646211921e93 ) * sin(55 * phi) ) # @torch.jit.script def Yl61_m_minus_54(theta, phi): return ( 1.83657216977349e-92 * (1.0 - cos(theta) ** 2) ** 27 * ( 1.67407184301178e97 * cos(theta) ** 7 - 2.90541394241714e96 * cos(theta) ** 5 + 1.22076216067947e95 * cos(theta) ** 3 - 1.04338646211921e93 * cos(theta) ) * sin(54 * phi) ) # @torch.jit.script def Yl61_m_minus_53(theta, phi): return ( 5.57059920296156e-91 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 2.09258980376473e96 * cos(theta) ** 8 - 4.84235657069523e95 * cos(theta) ** 6 + 3.05190540169868e94 * cos(theta) ** 4 - 5.21693231059603e92 * cos(theta) ** 2 + 1.13411571969479e90 ) * sin(53 * phi) ) # @torch.jit.script def Yl61_m_minus_52(theta, phi): return ( 1.78433170802171e-89 * (1.0 - cos(theta) ** 2) ** 26 * ( 2.32509978196081e95 * cos(theta) ** 9 - 6.91765224385034e94 * cos(theta) ** 7 + 6.10381080339735e93 * cos(theta) ** 5 - 1.73897743686534e92 * cos(theta) ** 3 + 1.13411571969479e90 * cos(theta) ) * sin(52 * phi) ) # @torch.jit.script def Yl61_m_minus_51(theta, phi): return ( 5.99811536901751e-88 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 2.32509978196081e94 * cos(theta) ** 10 - 8.64706530481292e93 * cos(theta) ** 8 + 1.01730180056623e93 * cos(theta) ** 6 - 4.34744359216336e91 * cos(theta) ** 4 + 5.67057859847394e89 * cos(theta) ** 2 - 1.0036422298184e87 ) * sin(51 * phi) ) # @torch.jit.script def Yl61_m_minus_50(theta, phi): return ( 2.10532995018392e-86 * (1.0 - cos(theta) ** 2) ** 25 * ( 2.11372707450982e93 * cos(theta) ** 11 - 9.60785033868102e92 * cos(theta) ** 9 + 1.45328828652318e92 * cos(theta) ** 7 - 8.69488718432672e90 * cos(theta) ** 5 + 1.89019286615798e89 * cos(theta) ** 3 - 1.0036422298184e87 * cos(theta) ) * sin(50 * phi) ) # @torch.jit.script def Yl61_m_minus_49(theta, phi): return ( 7.68373328093602e-85 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.76143922875819e92 * cos(theta) ** 12 - 9.60785033868102e91 * cos(theta) ** 10 + 1.81661035815397e91 * cos(theta) ** 8 - 1.44914786405445e90 * cos(theta) ** 6 + 4.72548216539495e88 * cos(theta) ** 4 - 5.01821114909199e86 * cos(theta) ** 2 + 7.53485157521319e83 ) * sin(49 * phi) ) # @torch.jit.script def Yl61_m_minus_48(theta, phi): return ( 2.9056299265317e-83 * (1.0 - cos(theta) ** 2) ** 24 * ( 1.35495325289091e91 * cos(theta) ** 13 - 8.73440939880093e90 * cos(theta) ** 11 + 2.01845595350442e90 * cos(theta) ** 9 - 2.0702112343635e89 * cos(theta) ** 7 + 9.45096433078991e87 * cos(theta) ** 5 - 1.67273704969733e86 * cos(theta) ** 3 + 7.53485157521319e83 * cos(theta) ) * sin(48 * phi) ) # @torch.jit.script def Yl61_m_minus_47(theta, phi): return ( 1.1350567264218e-81 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 9.67823752064938e89 * cos(theta) ** 14 - 7.27867449900077e89 * cos(theta) ** 12 + 2.01845595350442e89 * cos(theta) ** 10 - 2.58776404295438e88 * cos(theta) ** 8 + 1.57516072179832e87 * cos(theta) ** 6 - 4.18184262424332e85 * cos(theta) ** 4 + 3.7674257876066e83 * cos(theta) ** 2 - 4.93764847654862e80 ) * sin(47 * phi) ) # @torch.jit.script def Yl61_m_minus_46(theta, phi): return ( 4.56851519747556e-80 * (1.0 - cos(theta) ** 2) ** 23 * ( 6.45215834709959e88 * cos(theta) ** 15 - 5.59898038384675e88 * cos(theta) ** 13 + 1.83495995773129e88 * cos(theta) ** 11 - 2.87529338106042e87 * cos(theta) ** 9 + 2.25022960256903e86 * cos(theta) ** 7 - 8.36368524848664e84 * cos(theta) ** 5 + 1.25580859586887e83 * cos(theta) ** 3 - 4.93764847654862e80 * cos(theta) ) * sin(46 * phi) ) # @torch.jit.script def Yl61_m_minus_45(theta, phi): return ( 1.89028354644417e-78 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 4.03259896693724e87 * cos(theta) ** 16 - 3.99927170274768e87 * cos(theta) ** 14 + 1.52913329810941e87 * cos(theta) ** 12 - 2.87529338106042e86 * cos(theta) ** 10 + 2.81278700321128e85 * cos(theta) ** 8 - 1.39394754141444e84 * cos(theta) ** 6 + 3.13952148967216e82 * cos(theta) ** 4 - 2.46882423827431e80 * cos(theta) ** 2 + 2.88414046527373e77 ) * sin(45 * phi) ) # @torch.jit.script def Yl61_m_minus_44(theta, phi): return ( 8.02424808844761e-77 * (1.0 - cos(theta) ** 2) ** 22 * ( 2.37211703937485e86 * cos(theta) ** 17 - 2.66618113516512e86 * cos(theta) ** 15 + 1.17625638316108e86 * cos(theta) ** 13 - 2.61390307369129e85 * cos(theta) ** 11 + 3.12531889245698e84 * cos(theta) ** 9 - 1.99135363059206e83 * cos(theta) ** 7 + 6.27904297934433e81 * cos(theta) ** 5 - 8.22941412758103e79 * cos(theta) ** 3 + 2.88414046527373e77 * cos(theta) ) * sin(44 * phi) ) # @torch.jit.script def Yl61_m_minus_43(theta, phi): return ( 3.48847206463754e-75 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 1.31784279965269e85 * cos(theta) ** 18 - 1.6663632094782e85 * cos(theta) ** 16 + 8.40183130829344e84 * cos(theta) ** 14 - 2.17825256140941e84 * cos(theta) ** 12 + 3.12531889245698e83 * cos(theta) ** 10 - 2.48919203824007e82 * cos(theta) ** 8 + 1.04650716322405e81 * cos(theta) ** 6 - 2.05735353189526e79 * cos(theta) ** 4 + 1.44207023263686e77 * cos(theta) ** 2 - 1.52600024617657e74 ) * sin(43 * phi) ) # @torch.jit.script def Yl61_m_minus_42(theta, phi): return ( 1.55070333059599e-73 * (1.0 - cos(theta) ** 2) ** 21 * ( 6.93601473501418e83 * cos(theta) ** 19 - 9.80213652634235e83 * cos(theta) ** 17 + 5.60122087219563e83 * cos(theta) ** 15 - 1.67557889339185e83 * cos(theta) ** 13 + 2.84119899314271e82 * cos(theta) ** 11 - 2.76576893137786e81 * cos(theta) ** 9 + 1.49501023317722e80 * cos(theta) ** 7 - 4.11470706379052e78 * cos(theta) ** 5 + 4.80690077545621e76 * cos(theta) ** 3 - 1.52600024617657e74 * cos(theta) ) * sin(42 * phi) ) # @torch.jit.script def Yl61_m_minus_41(theta, phi): return ( 7.03821176735559e-72 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 3.46800736750709e82 * cos(theta) ** 20 - 5.44563140352353e82 * cos(theta) ** 18 + 3.50076304512227e82 * cos(theta) ** 16 - 1.19684206670847e82 * cos(theta) ** 14 + 2.36766582761892e81 * cos(theta) ** 12 - 2.76576893137786e80 * cos(theta) ** 10 + 1.86876279147153e79 * cos(theta) ** 8 - 6.85784510631753e77 * cos(theta) ** 6 + 1.20172519386405e76 * cos(theta) ** 4 - 7.63000123088287e73 * cos(theta) ** 2 + 7.40776818532318e70 ) * sin(41 * phi) ) # @torch.jit.script def Yl61_m_minus_40(theta, phi): return ( 3.25740728337047e-70 * (1.0 - cos(theta) ** 2) ** 20 * ( 1.65143207976528e81 * cos(theta) ** 21 - 2.86612179132817e81 * cos(theta) ** 19 + 2.05927237948369e81 * cos(theta) ** 17 - 7.97894711138978e80 * cos(theta) ** 15 + 1.82128140586071e80 * cos(theta) ** 13 - 2.51433539216169e79 * cos(theta) ** 11 + 2.07640310163503e78 * cos(theta) ** 9 - 9.79692158045361e76 * cos(theta) ** 7 + 2.40345038772811e75 * cos(theta) ** 5 - 2.54333374362762e73 * cos(theta) ** 3 + 7.40776818532318e70 * cos(theta) ) * sin(40 * phi) ) # @torch.jit.script def Yl61_m_minus_39(theta, phi): return ( 1.53547973969296e-68 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 7.50650945347855e79 * cos(theta) ** 22 - 1.43306089566409e80 * cos(theta) ** 20 + 1.14404021082427e80 * cos(theta) ** 18 - 4.98684194461861e79 * cos(theta) ** 16 + 1.30091528990051e79 * cos(theta) ** 14 - 2.09527949346807e78 * cos(theta) ** 12 + 2.07640310163503e77 * cos(theta) ** 10 - 1.2246151975567e76 * cos(theta) ** 8 + 4.00575064621351e74 * cos(theta) ** 6 - 6.35833435906906e72 * cos(theta) ** 4 + 3.70388409266159e70 * cos(theta) ** 2 - 3.33382906630206e67 ) * sin(39 * phi) ) # @torch.jit.script def Yl61_m_minus_38(theta, phi): return ( 7.36390213902749e-67 * (1.0 - cos(theta) ** 2) ** 19 * ( 3.26369976238198e78 * cos(theta) ** 23 - 6.82409950316231e78 * cos(theta) ** 21 + 6.02126426749616e78 * cos(theta) ** 19 - 2.93343643801095e78 * cos(theta) ** 17 + 8.67276859933672e77 * cos(theta) ** 15 - 1.6117534565139e77 * cos(theta) ** 13 + 1.88763918330457e76 * cos(theta) ** 11 - 1.36068355284078e75 * cos(theta) ** 9 + 5.72250092316216e73 * cos(theta) ** 7 - 1.27166687181381e72 * cos(theta) ** 5 + 1.2346280308872e70 * cos(theta) ** 3 - 3.33382906630206e67 * cos(theta) ) * sin(38 * phi) ) # @torch.jit.script def Yl61_m_minus_37(theta, phi): return ( 3.58947742712642e-65 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 1.35987490099249e77 * cos(theta) ** 24 - 3.10186341052832e77 * cos(theta) ** 22 + 3.01063213374808e77 * cos(theta) ** 20 - 1.62968691000608e77 * cos(theta) ** 18 + 5.42048037458545e76 * cos(theta) ** 16 - 1.1512524689385e76 * cos(theta) ** 14 + 1.57303265275381e75 * cos(theta) ** 12 - 1.36068355284078e74 * cos(theta) ** 10 + 7.15312615395269e72 * cos(theta) ** 8 - 2.11944478635635e71 * cos(theta) ** 6 + 3.08657007721799e69 * cos(theta) ** 4 - 1.66691453315103e67 * cos(theta) ** 2 + 1.40312671140659e64 ) * sin(37 * phi) ) # @torch.jit.script def Yl61_m_minus_36(theta, phi): return ( 1.77670068074599e-63 * (1.0 - cos(theta) ** 2) ** 18 * ( 5.43949960396996e75 * cos(theta) ** 25 - 1.3486362654471e76 * cos(theta) ** 23 + 1.43363434940385e76 * cos(theta) ** 21 - 8.5772995263478e75 * cos(theta) ** 19 + 3.18851786740321e75 * cos(theta) ** 17 - 7.67501645959002e74 * cos(theta) ** 15 + 1.21002511750293e74 * cos(theta) ** 13 - 1.23698504803707e73 * cos(theta) ** 11 + 7.94791794883633e71 * cos(theta) ** 9 - 3.02777826622336e70 * cos(theta) ** 7 + 6.17314015443598e68 * cos(theta) ** 5 - 5.5563817771701e66 * cos(theta) ** 3 + 1.40312671140659e64 * cos(theta) ) * sin(36 * phi) ) # @torch.jit.script def Yl61_m_minus_35(theta, phi): return ( 8.92250520269132e-62 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 2.09211523229614e74 * cos(theta) ** 26 - 5.61931777269624e74 * cos(theta) ** 24 + 6.51651977001749e74 * cos(theta) ** 22 - 4.2886497631739e74 * cos(theta) ** 20 + 1.771398815224e74 * cos(theta) ** 18 - 4.79688528724376e73 * cos(theta) ** 16 + 8.64303655359236e72 * cos(theta) ** 14 - 1.03082087336423e72 * cos(theta) ** 12 + 7.94791794883633e70 * cos(theta) ** 10 - 3.7847228327792e69 * cos(theta) ** 8 + 1.028856692406e68 * cos(theta) ** 6 - 1.38909544429253e66 * cos(theta) ** 4 + 7.01563355703296e63 * cos(theta) ** 2 - 5.56354762651305e60 ) * sin(35 * phi) ) # @torch.jit.script def Yl61_m_minus_34(theta, phi): return ( 4.5425980324766e-60 * (1.0 - cos(theta) ** 2) ** 17 * ( 7.74857493443014e72 * cos(theta) ** 27 - 2.2477271090785e73 * cos(theta) ** 25 + 2.83326946522499e73 * cos(theta) ** 23 - 2.04221417293995e73 * cos(theta) ** 21 + 9.3231516590737e72 * cos(theta) ** 19 - 2.82169722779045e72 * cos(theta) ** 17 + 5.76202436906157e71 * cos(theta) ** 15 - 7.92939133357097e70 * cos(theta) ** 13 + 7.22537995348757e69 * cos(theta) ** 11 - 4.20524759197689e68 * cos(theta) ** 9 + 1.46979527486571e67 * cos(theta) ** 7 - 2.77819088858505e65 * cos(theta) ** 5 + 2.33854451901099e63 * cos(theta) ** 3 - 5.56354762651305e60 * cos(theta) ) * sin(34 * phi) ) # @torch.jit.script def Yl61_m_minus_33(theta, phi): return ( 2.3428534677439e-58 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 2.76734819086791e71 * cos(theta) ** 28 - 8.64510426568652e71 * cos(theta) ** 26 + 1.18052894384375e72 * cos(theta) ** 24 - 9.28279169518161e71 * cos(theta) ** 22 + 4.66157582953685e71 * cos(theta) ** 20 - 1.56760957099469e71 * cos(theta) ** 18 + 3.60126523066348e70 * cos(theta) ** 16 - 5.6638509525507e69 * cos(theta) ** 14 + 6.02114996123964e68 * cos(theta) ** 12 - 4.20524759197689e67 * cos(theta) ** 10 + 1.83724409358214e66 * cos(theta) ** 8 - 4.63031814764175e64 * cos(theta) ** 6 + 5.84636129752746e62 * cos(theta) ** 4 - 2.78177381325652e60 * cos(theta) ** 2 + 2.09155925808761e57 ) * sin(33 * phi) ) # @torch.jit.script def Yl61_m_minus_32(theta, phi): return ( 1.22322979951509e-56 * (1.0 - cos(theta) ** 2) ** 16 * ( 9.54257996851003e69 * cos(theta) ** 29 - 3.20189046877279e70 * cos(theta) ** 27 + 4.72211577537499e70 * cos(theta) ** 25 - 4.03599638920939e70 * cos(theta) ** 23 + 2.21979801406517e70 * cos(theta) ** 21 - 8.25057668944575e69 * cos(theta) ** 19 + 2.11839131215499e69 * cos(theta) ** 17 - 3.7759006350338e68 * cos(theta) ** 15 + 4.63165381633819e67 * cos(theta) ** 13 - 3.82295235634263e66 * cos(theta) ** 11 + 2.04138232620238e65 * cos(theta) ** 9 - 6.61474021091679e63 * cos(theta) ** 7 + 1.16927225950549e62 * cos(theta) ** 5 - 9.27257937752175e59 * cos(theta) ** 3 + 2.09155925808761e57 * cos(theta) ) * sin(32 * phi) ) # @torch.jit.script def Yl61_m_minus_31(theta, phi): return ( 6.46115491793583e-55 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 3.18085998950334e68 * cos(theta) ** 30 - 1.143532310276e69 * cos(theta) ** 28 + 1.81619837514423e69 * cos(theta) ** 26 - 1.68166516217058e69 * cos(theta) ** 24 + 1.00899909730235e69 * cos(theta) ** 22 - 4.12528834472288e68 * cos(theta) ** 20 + 1.17688406230833e68 * cos(theta) ** 18 - 2.35993789689612e67 * cos(theta) ** 16 + 3.30832415452728e66 * cos(theta) ** 14 - 3.18579363028552e65 * cos(theta) ** 12 + 2.04138232620237e64 * cos(theta) ** 10 - 8.26842526364598e62 * cos(theta) ** 8 + 1.94878709917582e61 * cos(theta) ** 6 - 2.31814484438044e59 * cos(theta) ** 4 + 1.04577962904381e57 * cos(theta) ** 2 - 7.49662816518858e53 ) * sin(31 * phi) ) # @torch.jit.script def Yl61_m_minus_30(theta, phi): return ( 3.45052290581314e-53 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.02608386758172e67 * cos(theta) ** 31 - 3.94321486302067e67 * cos(theta) ** 29 + 6.72666064868232e67 * cos(theta) ** 27 - 6.72666064868232e67 * cos(theta) ** 25 + 4.38695259696673e67 * cos(theta) ** 23 - 1.96442302129661e67 * cos(theta) ** 21 + 6.19412664372804e66 * cos(theta) ** 19 - 1.38819876288007e66 * cos(theta) ** 17 + 2.20554943635152e65 * cos(theta) ** 15 - 2.45061048483502e64 * cos(theta) ** 13 + 1.85580211472943e63 * cos(theta) ** 11 - 9.18713918182887e61 * cos(theta) ** 9 + 2.78398157025117e60 * cos(theta) ** 7 - 4.63628968876087e58 * cos(theta) ** 5 + 3.48593209681269e56 * cos(theta) ** 3 - 7.49662816518858e53 * cos(theta) ) * sin(30 * phi) ) # @torch.jit.script def Yl61_m_minus_29(theta, phi): return ( 1.86200395912983e-51 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 3.20651208619289e65 * cos(theta) ** 32 - 1.31440495434022e66 * cos(theta) ** 30 + 2.40237880310083e66 * cos(theta) ** 28 - 2.58717717257012e66 * cos(theta) ** 26 + 1.82789691540281e66 * cos(theta) ** 24 - 8.92919555134822e65 * cos(theta) ** 22 + 3.09706332186402e65 * cos(theta) ** 20 - 7.71221534933374e64 * cos(theta) ** 18 + 1.3784683977197e64 * cos(theta) ** 16 - 1.75043606059644e63 * cos(theta) ** 14 + 1.54650176227453e62 * cos(theta) ** 12 - 9.18713918182887e60 * cos(theta) ** 10 + 3.47997696281397e59 * cos(theta) ** 8 - 7.72714948126812e57 * cos(theta) ** 6 + 8.71483024203172e55 * cos(theta) ** 4 - 3.74831408259429e53 * cos(theta) ** 2 + 2.57439154024333e50 ) * sin(29 * phi) ) # @torch.jit.script def Yl61_m_minus_28(theta, phi): return ( 1.01474945031427e-49 * (1.0 - cos(theta) ** 2) ** 14 * ( 9.71670329149359e63 * cos(theta) ** 33 - 4.24001598174266e64 * cos(theta) ** 31 + 8.28406483827872e64 * cos(theta) ** 29 - 9.58213767618565e64 * cos(theta) ** 27 + 7.31158766161122e64 * cos(theta) ** 25 - 3.88225893536879e64 * cos(theta) ** 23 + 1.47479205803049e64 * cos(theta) ** 21 - 4.05906071017565e63 * cos(theta) ** 19 + 8.10863763364528e62 * cos(theta) ** 17 - 1.16695737373096e62 * cos(theta) ** 15 + 1.18961674021117e61 * cos(theta) ** 13 - 8.35194471075352e59 * cos(theta) ** 11 + 3.8666410697933e58 * cos(theta) ** 9 - 1.10387849732402e57 * cos(theta) ** 7 + 1.74296604840634e55 * cos(theta) ** 5 - 1.24943802753143e53 * cos(theta) ** 3 + 2.57439154024333e50 * cos(theta) ) * sin(28 * phi) ) # @torch.jit.script def Yl61_m_minus_27(theta, phi): return ( 5.58204440000173e-48 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 2.85785390926282e62 * cos(theta) ** 34 - 1.32500499429458e63 * cos(theta) ** 32 + 2.76135494609291e63 * cos(theta) ** 30 - 3.42219202720916e63 * cos(theta) ** 28 + 2.8121491006197e63 * cos(theta) ** 26 - 1.617607889737e63 * cos(theta) ** 24 + 6.70360026377494e62 * cos(theta) ** 22 - 2.02953035508783e62 * cos(theta) ** 20 + 4.50479868535849e61 * cos(theta) ** 18 - 7.29348358581851e60 * cos(theta) ** 16 + 8.49726243007982e59 * cos(theta) ** 14 - 6.95995392562793e58 * cos(theta) ** 12 + 3.8666410697933e57 * cos(theta) ** 10 - 1.37984812165502e56 * cos(theta) ** 8 + 2.90494341401057e54 * cos(theta) ** 6 - 3.12359506882857e52 * cos(theta) ** 4 + 1.28719577012166e50 * cos(theta) ** 2 - 8.50757283623044e46 ) * sin(27 * phi) ) # @torch.jit.script def Yl61_m_minus_26(theta, phi): return ( 3.09790891772917e-46 * (1.0 - cos(theta) ** 2) ** 13 * ( 8.16529688360806e60 * cos(theta) ** 35 - 4.01516664937752e61 * cos(theta) ** 33 + 8.9075966002997e61 * cos(theta) ** 31 - 1.18006621627902e62 * cos(theta) ** 29 + 1.04153670393322e62 * cos(theta) ** 27 - 6.47043155894798e61 * cos(theta) ** 25 + 2.91460881033693e61 * cos(theta) ** 23 - 9.66443026232298e60 * cos(theta) ** 21 + 2.37094667650447e60 * cos(theta) ** 19 - 4.29028446224618e59 * cos(theta) ** 17 + 5.66484162005321e58 * cos(theta) ** 15 - 5.35381071202149e57 * cos(theta) ** 13 + 3.51512824526663e56 * cos(theta) ** 11 - 1.53316457961669e55 * cos(theta) ** 9 + 4.14991916287225e53 * cos(theta) ** 7 - 6.24719013765715e51 * cos(theta) ** 5 + 4.29065256707222e49 * cos(theta) ** 3 - 8.50757283623044e46 * cos(theta) ) * sin(26 * phi) ) # @torch.jit.script def Yl61_m_minus_25(theta, phi): return ( 1.73372224485625e-44 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 2.26813802322446e59 * cos(theta) ** 36 - 1.18093136746398e60 * cos(theta) ** 34 + 2.78362393759366e60 * cos(theta) ** 32 - 3.9335540542634e60 * cos(theta) ** 30 + 3.71977394261865e60 * cos(theta) ** 28 - 2.4886275226723e60 * cos(theta) ** 26 + 1.21442033764039e60 * cos(theta) ** 24 - 4.39292284651044e59 * cos(theta) ** 22 + 1.18547333825223e59 * cos(theta) ** 20 - 2.38349136791455e58 * cos(theta) ** 18 + 3.54052601253326e57 * cos(theta) ** 16 - 3.82415050858678e56 * cos(theta) ** 14 + 2.92927353772219e55 * cos(theta) ** 12 - 1.53316457961669e54 * cos(theta) ** 10 + 5.18739895359031e52 * cos(theta) ** 8 - 1.04119835627619e51 * cos(theta) ** 6 + 1.07266314176805e49 * cos(theta) ** 4 - 4.25378641811522e46 * cos(theta) ** 2 + 2.71633870888584e43 ) * sin(25 * phi) ) # @torch.jit.script def Yl61_m_minus_24(theta, phi): return ( 9.77979179767568e-43 * (1.0 - cos(theta) ** 2) ** 12 * ( 6.13010276547152e57 * cos(theta) ** 37 - 3.37408962132565e58 * cos(theta) ** 35 + 8.43522405331411e58 * cos(theta) ** 33 - 1.2688884046011e59 * cos(theta) ** 31 + 1.2826806698685e59 * cos(theta) ** 29 - 9.21713897286038e58 * cos(theta) ** 27 + 4.85768135056155e58 * cos(theta) ** 25 - 1.90996645500454e58 * cos(theta) ** 23 + 5.64511113453445e57 * cos(theta) ** 21 - 1.25446914100766e57 * cos(theta) ** 19 + 2.08266236031368e56 * cos(theta) ** 17 - 2.54943367239118e55 * cos(theta) ** 15 + 2.25328733670938e54 * cos(theta) ** 13 - 1.39378598146972e53 * cos(theta) ** 11 + 5.76377661510034e51 * cos(theta) ** 9 - 1.4874262232517e50 * cos(theta) ** 7 + 2.14532628353611e48 * cos(theta) ** 5 - 1.41792880603841e46 * cos(theta) ** 3 + 2.71633870888584e43 * cos(theta) ) * sin(24 * phi) ) # @torch.jit.script def Yl61_m_minus_23(theta, phi): return ( 5.55815777184317e-41 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.61318493828198e56 * cos(theta) ** 38 - 9.37247117034901e56 * cos(theta) ** 36 + 2.48094825097474e57 * cos(theta) ** 34 - 3.96527626437843e57 * cos(theta) ** 32 + 4.275602232895e57 * cos(theta) ** 30 - 3.29183534745013e57 * cos(theta) ** 28 + 1.86833898098521e57 * cos(theta) ** 26 - 7.95819356251892e56 * cos(theta) ** 24 + 2.56595960660657e56 * cos(theta) ** 22 - 6.27234570503828e55 * cos(theta) ** 20 + 1.15703464461871e55 * cos(theta) ** 18 - 1.59339604524449e54 * cos(theta) ** 16 + 1.60949095479241e53 * cos(theta) ** 14 - 1.16148831789143e52 * cos(theta) ** 12 + 5.76377661510034e50 * cos(theta) ** 10 - 1.85928277906463e49 * cos(theta) ** 8 + 3.57554380589351e47 * cos(theta) ** 6 - 3.54482201509601e45 * cos(theta) ** 4 + 1.35816935444292e43 * cos(theta) ** 2 - 8.40971736497163e39 ) * sin(23 * phi) ) # @torch.jit.script def Yl61_m_minus_22(theta, phi): return ( 3.18128675173288e-39 * (1.0 - cos(theta) ** 2) ** 11 * ( 4.13637163662046e54 * cos(theta) ** 39 - 2.53310031631054e55 * cos(theta) ** 37 + 7.08842357421354e55 * cos(theta) ** 35 - 1.20159886799346e56 * cos(theta) ** 33 + 1.37922652674032e56 * cos(theta) ** 31 - 1.13511563705177e56 * cos(theta) ** 29 + 6.91977400364893e55 * cos(theta) ** 27 - 3.18327742500757e55 * cos(theta) ** 25 + 1.11563461156807e55 * cos(theta) ** 23 - 2.98683128811347e54 * cos(theta) ** 21 + 6.08965602430901e53 * cos(theta) ** 19 - 9.37291791320288e52 * cos(theta) ** 17 + 1.07299396986161e52 * cos(theta) ** 15 - 8.93452552224179e50 * cos(theta) ** 13 + 5.23979692281849e49 * cos(theta) ** 11 - 2.06586975451625e48 * cos(theta) ** 9 + 5.10791972270502e46 * cos(theta) ** 7 - 7.08964403019203e44 * cos(theta) ** 5 + 4.52723118147639e42 * cos(theta) ** 3 - 8.40971736497163e39 * cos(theta) ) * sin(22 * phi) ) # @torch.jit.script def Yl61_m_minus_21(theta, phi): return ( 1.83303964815859e-37 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.03409290915511e53 * cos(theta) ** 40 - 6.66605346397512e53 * cos(theta) ** 38 + 1.96900654839265e54 * cos(theta) ** 36 - 3.53411431762783e54 * cos(theta) ** 34 + 4.31008289606351e54 * cos(theta) ** 32 - 3.78371879017257e54 * cos(theta) ** 30 + 2.47134785844605e54 * cos(theta) ** 28 - 1.22433747115676e54 * cos(theta) ** 26 + 4.6484775482003e53 * cos(theta) ** 24 - 1.35765058550612e53 * cos(theta) ** 22 + 3.0448280121545e52 * cos(theta) ** 20 - 5.20717661844605e51 * cos(theta) ** 18 + 6.70621231163506e50 * cos(theta) ** 16 - 6.38180394445842e49 * cos(theta) ** 14 + 4.36649743568208e48 * cos(theta) ** 12 - 2.06586975451625e47 * cos(theta) ** 10 + 6.38489965338127e45 * cos(theta) ** 8 - 1.18160733836534e44 * cos(theta) ** 6 + 1.1318077953691e42 * cos(theta) ** 4 - 4.20485868248581e39 * cos(theta) ** 2 + 2.53304739908784e36 ) * sin(21 * phi) ) # @torch.jit.script def Yl61_m_minus_20(theta, phi): return ( 1.06284690762533e-35 * (1.0 - cos(theta) ** 2) ** 10 * ( 2.5221778272076e51 * cos(theta) ** 41 - 1.70924447794234e52 * cos(theta) ** 39 + 5.32163931998014e52 * cos(theta) ** 37 - 1.00974694789367e53 * cos(theta) ** 35 + 1.30608572607985e53 * cos(theta) ** 33 - 1.22055444844276e53 * cos(theta) ** 31 + 8.52188916705533e52 * cos(theta) ** 29 - 4.53458322650651e52 * cos(theta) ** 27 + 1.85939101928012e52 * cos(theta) ** 25 - 5.90282863263531e51 * cos(theta) ** 23 + 1.44991810102595e51 * cos(theta) ** 21 - 2.74061927286634e50 * cos(theta) ** 19 + 3.94483077155003e49 * cos(theta) ** 17 - 4.25453596297228e48 * cos(theta) ** 15 + 3.35884418129391e47 * cos(theta) ** 13 - 1.87806341319659e46 * cos(theta) ** 11 + 7.09433294820142e44 * cos(theta) ** 9 - 1.68801048337905e43 * cos(theta) ** 7 + 2.2636155907382e41 * cos(theta) ** 5 - 1.4016195608286e39 * cos(theta) ** 3 + 2.53304739908784e36 * cos(theta) ) * sin(20 * phi) ) # @torch.jit.script def Yl61_m_minus_19(theta, phi): return ( 6.19923168938198e-34 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 6.00518530287523e49 * cos(theta) ** 42 - 4.27311119485584e50 * cos(theta) ** 40 + 1.40043139999477e51 * cos(theta) ** 38 - 2.80485263303796e51 * cos(theta) ** 36 + 3.84142860611721e51 * cos(theta) ** 34 - 3.81423265138364e51 * cos(theta) ** 32 + 2.84062972235178e51 * cos(theta) ** 30 - 1.61949400946661e51 * cos(theta) ** 28 + 7.15150392030816e50 * cos(theta) ** 26 - 2.45951193026471e50 * cos(theta) ** 24 + 6.59053682284525e49 * cos(theta) ** 22 - 1.37030963643317e49 * cos(theta) ** 20 + 2.19157265086113e48 * cos(theta) ** 18 - 2.65908497685768e47 * cos(theta) ** 16 + 2.39917441520993e46 * cos(theta) ** 14 - 1.56505284433049e45 * cos(theta) ** 12 + 7.09433294820142e43 * cos(theta) ** 10 - 2.11001310422382e42 * cos(theta) ** 8 + 3.77269265123033e40 * cos(theta) ** 6 - 3.50404890207151e38 * cos(theta) ** 4 + 1.26652369954392e36 * cos(theta) ** 2 - 7.44575955052275e32 ) * sin(19 * phi) ) # @torch.jit.script def Yl61_m_minus_18(theta, phi): return ( 3.63594319225306e-32 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.39655472159889e48 * cos(theta) ** 43 - 1.04222224264777e49 * cos(theta) ** 41 + 3.59084974357634e49 * cos(theta) ** 39 - 7.5806827919945e49 * cos(theta) ** 37 + 1.0975510303192e50 * cos(theta) ** 35 - 1.15582807617686e50 * cos(theta) ** 33 + 9.16332168500574e49 * cos(theta) ** 31 - 5.584462101609e49 * cos(theta) ** 29 + 2.64870515566969e49 * cos(theta) ** 27 - 9.83804772105885e48 * cos(theta) ** 25 + 2.86545079254141e48 * cos(theta) ** 23 - 6.5252839830151e47 * cos(theta) ** 21 + 1.15345928992691e47 * cos(theta) ** 19 - 1.56416763344569e46 * cos(theta) ** 17 + 1.59944961013996e45 * cos(theta) ** 15 - 1.20388680333115e44 * cos(theta) ** 13 + 6.44939358927401e42 * cos(theta) ** 11 - 2.34445900469313e41 * cos(theta) ** 9 + 5.38956093032904e39 * cos(theta) ** 7 - 7.00809780414302e37 * cos(theta) ** 5 + 4.2217456651464e35 * cos(theta) ** 3 - 7.44575955052275e32 * cos(theta) ) * sin(18 * phi) ) # @torch.jit.script def Yl61_m_minus_17(theta, phi): return ( 2.14366527589978e-30 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 3.17398800363384e46 * cos(theta) ** 44 - 2.48148153011373e47 * cos(theta) ** 42 + 8.97712435894085e47 * cos(theta) ** 40 - 1.99491652420908e48 * cos(theta) ** 38 + 3.04875286199779e48 * cos(theta) ** 36 - 3.39949434169665e48 * cos(theta) ** 34 + 2.86353802656429e48 * cos(theta) ** 32 - 1.861487367203e48 * cos(theta) ** 30 + 9.45966127024889e47 * cos(theta) ** 28 - 3.78386450809956e47 * cos(theta) ** 26 + 1.19393783022559e47 * cos(theta) ** 24 - 2.96603817409777e46 * cos(theta) ** 22 + 5.76729644963455e45 * cos(theta) ** 20 - 8.6898201858094e44 * cos(theta) ** 18 + 9.99656006337472e43 * cos(theta) ** 16 - 8.59919145236535e42 * cos(theta) ** 14 + 5.37449465772834e41 * cos(theta) ** 12 - 2.34445900469313e40 * cos(theta) ** 10 + 6.7369511629113e38 * cos(theta) ** 8 - 1.1680163006905e37 * cos(theta) ** 6 + 1.0554364162866e35 * cos(theta) ** 4 - 3.72287977526137e32 * cos(theta) ** 2 + 2.14204820210666e29 ) * sin(17 * phi) ) # @torch.jit.script def Yl61_m_minus_16(theta, phi): return ( 1.27001991563108e-28 * (1.0 - cos(theta) ** 2) ** 8 * ( 7.05330667474187e44 * cos(theta) ** 45 - 5.77088727933426e45 * cos(theta) ** 43 + 2.18954252657094e46 * cos(theta) ** 41 - 5.11517057489507e46 * cos(theta) ** 39 + 8.23987259999402e46 * cos(theta) ** 37 - 9.71284097627613e46 * cos(theta) ** 35 + 8.67738795928573e46 * cos(theta) ** 33 - 6.00479795871935e46 * cos(theta) ** 31 + 3.26195216215479e46 * cos(theta) ** 29 - 1.40143129929613e46 * cos(theta) ** 27 + 4.77575132090235e45 * cos(theta) ** 25 - 1.28958181482512e45 * cos(theta) ** 23 + 2.74633164268312e44 * cos(theta) ** 21 - 4.57358957147863e43 * cos(theta) ** 19 + 5.88032944904395e42 * cos(theta) ** 17 - 5.7327943015769e41 * cos(theta) ** 15 + 4.13422665979103e40 * cos(theta) ** 13 - 2.13132636790285e39 * cos(theta) ** 11 + 7.48550129212366e37 * cos(theta) ** 9 - 1.66859471527215e36 * cos(theta) ** 7 + 2.1108728325732e34 * cos(theta) ** 5 - 1.24095992508712e32 * cos(theta) ** 3 + 2.14204820210666e29 * cos(theta) ) * sin(16 * phi) ) # @torch.jit.script def Yl61_m_minus_15(theta, phi): return ( 7.55848594360317e-27 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.53332753798736e43 * cos(theta) ** 46 - 1.31156529075779e44 * cos(theta) ** 44 + 5.21319649183557e44 * cos(theta) ** 42 - 1.27879264372377e45 * cos(theta) ** 40 + 2.16838752631421e45 * cos(theta) ** 38 - 2.69801138229893e45 * cos(theta) ** 36 + 2.55217292920169e45 * cos(theta) ** 34 - 1.8764993620998e45 * cos(theta) ** 32 + 1.08731738738493e45 * cos(theta) ** 30 - 5.00511178320047e44 * cos(theta) ** 28 + 1.83682743111629e44 * cos(theta) ** 26 - 5.37325756177132e43 * cos(theta) ** 24 + 1.24833256485596e43 * cos(theta) ** 22 - 2.28679478573932e42 * cos(theta) ** 20 + 3.26684969391331e41 * cos(theta) ** 18 - 3.58299643848556e40 * cos(theta) ** 16 + 2.95301904270788e39 * cos(theta) ** 14 - 1.77610530658571e38 * cos(theta) ** 12 + 7.48550129212366e36 * cos(theta) ** 10 - 2.08574339409018e35 * cos(theta) ** 8 + 3.518121387622e33 * cos(theta) ** 6 - 3.10239981271781e31 * cos(theta) ** 4 + 1.07102410105333e29 * cos(theta) ** 2 - 6.04756691729717e25 ) * sin(15 * phi) ) # @torch.jit.script def Yl61_m_minus_14(theta, phi): return ( 4.51742067181548e-25 * (1.0 - cos(theta) ** 2) ** 7 * ( 3.26239901699439e41 * cos(theta) ** 47 - 2.9145895350173e42 * cos(theta) ** 45 + 1.21237127717106e43 * cos(theta) ** 43 - 3.11900644810675e43 * cos(theta) ** 41 + 5.55996801619029e43 * cos(theta) ** 39 - 7.29192265486196e43 * cos(theta) ** 37 + 7.29192265486196e43 * cos(theta) ** 35 - 5.68636170333272e43 * cos(theta) ** 33 + 3.50747544317719e43 * cos(theta) ** 31 - 1.72590061489671e43 * cos(theta) ** 29 + 6.80306455968996e42 * cos(theta) ** 27 - 2.14930302470853e42 * cos(theta) ** 25 + 5.4275328906781e41 * cos(theta) ** 23 - 1.0889498979711e41 * cos(theta) ** 21 + 1.71939457574385e40 * cos(theta) ** 19 - 2.10764496381504e39 * cos(theta) ** 17 + 1.96867936180525e38 * cos(theta) ** 15 - 1.36623485121977e37 * cos(theta) ** 13 + 6.80500117465788e35 * cos(theta) ** 11 - 2.31749266010021e34 * cos(theta) ** 9 + 5.02588769660285e32 * cos(theta) ** 7 - 6.20479962543562e30 * cos(theta) ** 5 + 3.57008033684443e28 * cos(theta) ** 3 - 6.04756691729717e25 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl61_m_minus_13(theta, phi): return ( 2.71045240308929e-23 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 6.79666461873831e39 * cos(theta) ** 48 - 6.33606420655935e40 * cos(theta) ** 46 + 2.75538926629787e41 * cos(theta) ** 44 - 7.4262058288256e41 * cos(theta) ** 42 + 1.38999200404757e42 * cos(theta) ** 40 - 1.91892701443736e42 * cos(theta) ** 38 + 2.02553407079499e42 * cos(theta) ** 36 - 1.67245932450962e42 * cos(theta) ** 34 + 1.09608607599287e42 * cos(theta) ** 32 - 5.75300204965571e41 * cos(theta) ** 30 + 2.42966591417499e41 * cos(theta) ** 28 - 8.26655009503281e40 * cos(theta) ** 26 + 2.26147203778254e40 * cos(theta) ** 24 - 4.94977226350501e39 * cos(theta) ** 22 + 8.59697287871923e38 * cos(theta) ** 20 - 1.17091386878613e38 * cos(theta) ** 18 + 1.23042460112828e37 * cos(theta) ** 16 - 9.75882036585553e35 * cos(theta) ** 14 + 5.6708343122149e34 * cos(theta) ** 12 - 2.31749266010021e33 * cos(theta) ** 10 + 6.28235962075357e31 * cos(theta) ** 8 - 1.03413327090594e30 * cos(theta) ** 6 + 8.92520084211108e27 * cos(theta) ** 4 - 3.02378345864859e25 * cos(theta) ** 2 + 1.67987969924922e22 ) * sin(13 * phi) ) # @torch.jit.script def Yl61_m_minus_12(theta, phi): return ( 1.6321335234548e-21 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.38707441198741e38 * cos(theta) ** 49 - 1.34809876735305e39 * cos(theta) ** 47 + 6.12308725843971e39 * cos(theta) ** 45 - 1.72702461135479e40 * cos(theta) ** 43 + 3.39022440011603e40 * cos(theta) ** 41 - 4.92032567804451e40 * cos(theta) ** 39 + 5.47441640755402e40 * cos(theta) ** 37 - 4.77845521288464e40 * cos(theta) ** 35 + 3.32147295755416e40 * cos(theta) ** 33 - 1.85580711279217e40 * cos(theta) ** 31 + 8.37815832474133e39 * cos(theta) ** 29 - 3.06168522038252e39 * cos(theta) ** 27 + 9.04588815113017e38 * cos(theta) ** 25 - 2.15207489717609e38 * cos(theta) ** 23 + 4.09379660891392e37 * cos(theta) ** 21 - 6.16270457255859e36 * cos(theta) ** 19 + 7.23779177134285e35 * cos(theta) ** 17 - 6.50588024390368e34 * cos(theta) ** 15 + 4.3621802401653e33 * cos(theta) ** 13 - 2.106811509182e32 * cos(theta) ** 11 + 6.98039957861508e30 * cos(theta) ** 9 - 1.47733324415134e29 * cos(theta) ** 7 + 1.78504016842222e27 * cos(theta) ** 5 - 1.00792781954953e25 * cos(theta) ** 3 + 1.67987969924922e22 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl61_m_minus_11(theta, phi): return ( 9.8605721994746e-20 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 2.77414882397482e36 * cos(theta) ** 50 - 2.80853909865219e37 * cos(theta) ** 48 + 1.33110592574776e38 * cos(theta) ** 46 - 3.92505593489725e38 * cos(theta) ** 44 + 8.07196285741913e38 * cos(theta) ** 42 - 1.23008141951113e39 * cos(theta) ** 40 + 1.44063589672474e39 * cos(theta) ** 38 - 1.32734867024573e39 * cos(theta) ** 36 + 9.76903811045341e38 * cos(theta) ** 34 - 5.79939722747552e38 * cos(theta) ** 32 + 2.79271944158044e38 * cos(theta) ** 30 - 1.09345900727947e38 * cos(theta) ** 28 + 3.47918775043468e37 * cos(theta) ** 26 - 8.96697873823372e36 * cos(theta) ** 24 + 1.86081664041542e36 * cos(theta) ** 22 - 3.08135228627929e35 * cos(theta) ** 20 + 4.0209954285238e34 * cos(theta) ** 18 - 4.0661751524398e33 * cos(theta) ** 16 + 3.1158430286895e32 * cos(theta) ** 14 - 1.75567625765167e31 * cos(theta) ** 12 + 6.98039957861508e29 * cos(theta) ** 10 - 1.84666655518917e28 * cos(theta) ** 8 + 2.97506694737036e26 * cos(theta) ** 6 - 2.51981954887382e24 * cos(theta) ** 4 + 8.39939849624608e21 * cos(theta) ** 2 - 4.60241013492936e18 ) * sin(11 * phi) ) # @torch.jit.script def Yl61_m_minus_10(theta, phi): return ( 5.97521385742017e-18 * (1.0 - cos(theta) ** 2) ** 5 * ( 5.43950749798985e34 * cos(theta) ** 51 - 5.73171244622897e35 * cos(theta) ** 49 + 2.83214026754843e36 * cos(theta) ** 47 - 8.72234652199389e36 * cos(theta) ** 45 + 1.87720066451608e37 * cos(theta) ** 43 - 3.00019858417348e37 * cos(theta) ** 41 + 3.69393819673011e37 * cos(theta) ** 39 - 3.58742883850198e37 * cos(theta) ** 37 + 2.79115374584383e37 * cos(theta) ** 35 - 1.75739309923501e37 * cos(theta) ** 33 + 9.00877239219498e36 * cos(theta) ** 31 - 3.77054830096369e36 * cos(theta) ** 29 + 1.28858805571655e36 * cos(theta) ** 27 - 3.58679149529349e35 * cos(theta) ** 25 + 8.09050713224095e34 * cos(theta) ** 23 - 1.46731061251395e34 * cos(theta) ** 21 + 2.11631338343358e33 * cos(theta) ** 19 - 2.3918677367293e32 * cos(theta) ** 17 + 2.077228685793e31 * cos(theta) ** 15 - 1.35052019819359e30 * cos(theta) ** 13 + 6.34581779874098e28 * cos(theta) ** 11 - 2.05185172798797e27 * cos(theta) ** 9 + 4.25009563910051e25 * cos(theta) ** 7 - 5.03963909774765e23 * cos(theta) ** 5 + 2.79979949874869e21 * cos(theta) ** 3 - 4.60241013492936e18 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl61_m_minus_9(theta, phi): return ( 3.63064929358258e-16 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1.04605913422882e33 * cos(theta) ** 52 - 1.14634248924579e34 * cos(theta) ** 50 + 5.90029222405923e34 * cos(theta) ** 48 - 1.89616228738998e35 * cos(theta) ** 46 + 4.26636514662745e35 * cos(theta) ** 44 - 7.14332996231781e35 * cos(theta) ** 42 + 9.23484549182528e35 * cos(theta) ** 40 - 9.44060220658416e35 * cos(theta) ** 38 + 7.7532048495662e35 * cos(theta) ** 36 - 5.16880323304413e35 * cos(theta) ** 34 + 2.81524137256093e35 * cos(theta) ** 32 - 1.25684943365456e35 * cos(theta) ** 30 + 4.60210019898767e34 * cos(theta) ** 28 - 1.37953519049749e34 * cos(theta) ** 26 + 3.37104463843373e33 * cos(theta) ** 24 - 6.66959369324523e32 * cos(theta) ** 22 + 1.05815669171679e32 * cos(theta) ** 20 - 1.32881540929405e31 * cos(theta) ** 18 + 1.29826792862063e30 * cos(theta) ** 16 - 9.64657284423995e28 * cos(theta) ** 14 + 5.28818149895081e27 * cos(theta) ** 12 - 2.05185172798797e26 * cos(theta) ** 10 + 5.31261954887564e24 * cos(theta) ** 8 - 8.39939849624608e22 * cos(theta) ** 6 + 6.99949874687173e20 * cos(theta) ** 4 - 2.30120506746468e18 * cos(theta) ** 2 + 1.24658996070676e15 ) * sin(9 * phi) ) # @torch.jit.script def Yl61_m_minus_8(theta, phi): return ( 2.21142010995196e-14 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.97369647967701e31 * cos(theta) ** 53 - 2.24773037107018e32 * cos(theta) ** 51 + 1.20414127021617e33 * cos(theta) ** 49 - 4.03438784551059e33 * cos(theta) ** 47 + 9.48081143694988e33 * cos(theta) ** 45 - 1.66123952612042e34 * cos(theta) ** 43 + 2.25240133946958e34 * cos(theta) ** 41 - 2.42066723245748e34 * cos(theta) ** 39 + 2.09546077015303e34 * cos(theta) ** 37 - 1.4768009237269e34 * cos(theta) ** 35 + 8.53103446230585e33 * cos(theta) ** 33 - 4.05435301178892e33 * cos(theta) ** 31 + 1.5869311030992e33 * cos(theta) ** 29 - 5.10938959443517e32 * cos(theta) ** 27 + 1.34841785537349e32 * cos(theta) ** 25 - 2.89982334488923e31 * cos(theta) ** 23 + 5.03884138912757e30 * cos(theta) ** 21 - 6.99376531207396e29 * cos(theta) ** 19 + 7.63687016835663e28 * cos(theta) ** 17 - 6.43104856282663e27 * cos(theta) ** 15 + 4.06783192226986e26 * cos(theta) ** 13 - 1.86531975271634e25 * cos(theta) ** 11 + 5.90291060986183e23 * cos(theta) ** 9 - 1.1999140708923e22 * cos(theta) ** 7 + 1.39989974937435e20 * cos(theta) ** 5 - 7.6706835582156e17 * cos(theta) ** 3 + 1.24658996070676e15 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl61_m_minus_7(theta, phi): return ( 1.3498722825312e-12 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 3.65499348088336e29 * cos(theta) ** 54 - 4.3225584059042e30 * cos(theta) ** 52 + 2.40828254043234e31 * cos(theta) ** 50 - 8.40497467814706e31 * cos(theta) ** 48 + 2.06104596455432e32 * cos(theta) ** 46 - 3.77554437754641e32 * cos(theta) ** 44 + 5.36286033207043e32 * cos(theta) ** 42 - 6.05166808114369e32 * cos(theta) ** 40 + 5.51437044777112e32 * cos(theta) ** 38 - 4.10222478813026e32 * cos(theta) ** 36 + 2.50912778303113e32 * cos(theta) ** 34 - 1.26698531618404e32 * cos(theta) ** 32 + 5.28977034366399e31 * cos(theta) ** 30 - 1.82478199801256e31 * cos(theta) ** 28 + 5.18622252066727e30 * cos(theta) ** 26 - 1.20825972703718e30 * cos(theta) ** 24 + 2.29038244960344e29 * cos(theta) ** 22 - 3.49688265603698e28 * cos(theta) ** 20 + 4.24270564908701e27 * cos(theta) ** 18 - 4.01940535176665e26 * cos(theta) ** 16 + 2.90559423019276e25 * cos(theta) ** 14 - 1.55443312726361e24 * cos(theta) ** 12 + 5.90291060986183e22 * cos(theta) ** 10 - 1.49989258861537e21 * cos(theta) ** 8 + 2.33316624895724e19 * cos(theta) ** 6 - 1.9176708895539e17 * cos(theta) ** 4 + 623294980353380.0 * cos(theta) ** 2 - 334565206845.615 ) * sin(7 * phi) ) # @torch.jit.script def Yl61_m_minus_6(theta, phi): return ( 8.25521675669756e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 6.64544269251519e27 * cos(theta) ** 55 - 8.15577057717774e28 * cos(theta) ** 53 + 4.72212262829871e29 * cos(theta) ** 51 - 1.71530095472389e30 * cos(theta) ** 49 + 4.38520417990281e30 * cos(theta) ** 47 - 8.3900986167698e30 * cos(theta) ** 45 + 1.24717682141173e31 * cos(theta) ** 43 - 1.476016605157e31 * cos(theta) ** 41 + 1.41394114045413e31 * cos(theta) ** 39 - 1.10870940219737e31 * cos(theta) ** 37 + 7.16893652294609e30 * cos(theta) ** 35 - 3.83934944298193e30 * cos(theta) ** 33 + 1.70637753021419e30 * cos(theta) ** 31 - 6.29235171728469e29 * cos(theta) ** 29 + 1.92082315580269e29 * cos(theta) ** 27 - 4.83303890814871e28 * cos(theta) ** 25 + 9.95818456349323e27 * cos(theta) ** 23 - 1.66518221716047e27 * cos(theta) ** 21 + 2.23300297320369e26 * cos(theta) ** 19 - 2.3643560892745e25 * cos(theta) ** 17 + 1.9370628201285e24 * cos(theta) ** 15 - 1.19571779020278e23 * cos(theta) ** 13 + 5.36628237260166e21 * cos(theta) ** 11 - 1.66654732068375e20 * cos(theta) ** 9 + 3.33309464136749e18 * cos(theta) ** 7 - 3.8353417791078e16 * cos(theta) ** 5 + 207764993451127.0 * cos(theta) ** 3 - 334565206845.615 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl61_m_minus_5(theta, phi): return ( 5.05661508405203e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.186686195092e26 * cos(theta) ** 56 - 1.51032788466254e27 * cos(theta) ** 54 + 9.08100505442059e27 * cos(theta) ** 52 - 3.43060190944778e28 * cos(theta) ** 50 + 9.13584204146419e28 * cos(theta) ** 48 - 1.82393448190648e29 * cos(theta) ** 46 + 2.83449277593574e29 * cos(theta) ** 44 - 3.51432525037381e29 * cos(theta) ** 42 + 3.53485285113534e29 * cos(theta) ** 40 - 2.91765632157202e29 * cos(theta) ** 38 + 1.99137125637391e29 * cos(theta) ** 36 - 1.12922042440645e29 * cos(theta) ** 34 + 5.33242978191935e28 * cos(theta) ** 32 - 2.09745057242823e28 * cos(theta) ** 30 + 6.86008269929534e27 * cos(theta) ** 28 - 1.85886111851874e27 * cos(theta) ** 26 + 4.14924356812218e26 * cos(theta) ** 24 - 7.56901007800212e25 * cos(theta) ** 22 + 1.11650148660185e25 * cos(theta) ** 20 - 1.31353116070805e24 * cos(theta) ** 18 + 1.21066426258031e23 * cos(theta) ** 16 - 8.54084135859129e21 * cos(theta) ** 14 + 4.47190197716805e20 * cos(theta) ** 12 - 1.66654732068375e19 * cos(theta) ** 10 + 4.16636830170936e17 * cos(theta) ** 8 - 6.392236298513e15 * cos(theta) ** 6 + 51941248362781.7 * cos(theta) ** 4 - 167282603422.807 * cos(theta) ** 2 + 89169831.2488312 ) * sin(5 * phi) ) # @torch.jit.script def Yl61_m_minus_4(theta, phi): return ( 3.10148218887814e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 2.08190560542456e24 * cos(theta) ** 57 - 2.74605069938644e25 * cos(theta) ** 55 + 1.71339718007936e26 * cos(theta) ** 53 - 6.72667041068192e26 * cos(theta) ** 51 + 1.86445755948249e27 * cos(theta) ** 49 - 3.88071166363081e27 * cos(theta) ** 47 + 6.29887283541277e27 * cos(theta) ** 45 - 8.17284941947397e27 * cos(theta) ** 43 + 8.62159231984228e27 * cos(theta) ** 41 - 7.48117005531288e27 * cos(theta) ** 39 + 5.38208447668626e27 * cos(theta) ** 37 - 3.22634406973272e27 * cos(theta) ** 35 + 1.61588781270283e27 * cos(theta) ** 33 - 6.76596958847816e26 * cos(theta) ** 31 + 2.3655457583777e26 * cos(theta) ** 29 - 6.88467080932865e25 * cos(theta) ** 27 + 1.65969742724887e25 * cos(theta) ** 25 - 3.29087394695745e24 * cos(theta) ** 23 + 5.31667374572308e23 * cos(theta) ** 21 - 6.91332189846344e22 * cos(theta) ** 19 + 7.12155448576656e21 * cos(theta) ** 17 - 5.69389423906086e20 * cos(theta) ** 15 + 3.43992459782158e19 * cos(theta) ** 13 - 1.5150430188034e18 * cos(theta) ** 11 + 4.6292981130104e16 * cos(theta) ** 9 - 913176614073285.0 * cos(theta) ** 7 + 10388249672556.3 * cos(theta) ** 5 - 55760867807.6024 * cos(theta) ** 3 + 89169831.2488312 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl61_m_minus_3(theta, phi): return ( 1.90432016649223e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 3.58949242314579e22 * cos(theta) ** 58 - 4.90366196319008e23 * cos(theta) ** 56 + 3.1729577408877e24 * cos(theta) ** 54 - 1.29359046359268e25 * cos(theta) ** 52 + 3.72891511896498e25 * cos(theta) ** 50 - 8.08481596589751e25 * cos(theta) ** 48 + 1.36932018161147e26 * cos(theta) ** 46 - 1.85746577715317e26 * cos(theta) ** 44 + 2.05276007615292e26 * cos(theta) ** 42 - 1.87029251382822e26 * cos(theta) ** 40 + 1.41633802018059e26 * cos(theta) ** 38 - 8.96206686036865e25 * cos(theta) ** 36 + 4.75261121383186e25 * cos(theta) ** 34 - 2.11436549639942e25 * cos(theta) ** 32 + 7.88515252792567e24 * cos(theta) ** 30 - 2.45881100333166e24 * cos(theta) ** 28 + 6.38345164326489e23 * cos(theta) ** 26 - 1.37119747789894e23 * cos(theta) ** 24 + 2.41666988441958e22 * cos(theta) ** 22 - 3.45666094923172e21 * cos(theta) ** 20 + 3.9564191587592e20 * cos(theta) ** 18 - 3.55868389941304e19 * cos(theta) ** 16 + 2.45708899844398e18 * cos(theta) ** 14 - 1.26253584900284e17 * cos(theta) ** 12 + 4.6292981130104e15 * cos(theta) ** 10 - 114147076759161.0 * cos(theta) ** 8 + 1731374945426.06 * cos(theta) ** 6 - 13940216951.9006 * cos(theta) ** 4 + 44584915.6244156 * cos(theta) ** 2 - 23652.475132316 ) * sin(3 * phi) ) # @torch.jit.script def Yl61_m_minus_2(theta, phi): return ( 0.00117018885995458 * (1.0 - cos(theta) ** 2) * ( 6.08388546295897e20 * cos(theta) ** 59 - 8.60291572489487e21 * cos(theta) ** 57 + 5.76901407434127e22 * cos(theta) ** 55 - 2.44073672375977e23 * cos(theta) ** 53 + 7.31159827248035e23 * cos(theta) ** 51 - 1.6499624420199e24 * cos(theta) ** 49 + 2.91344719491802e24 * cos(theta) ** 47 - 4.12770172700705e24 * cos(theta) ** 45 + 4.7738606422161e24 * cos(theta) ** 43 - 4.56168905811761e24 * cos(theta) ** 41 + 3.63163594918101e24 * cos(theta) ** 39 - 2.42218023253207e24 * cos(theta) ** 37 + 1.35788891823767e24 * cos(theta) ** 35 - 6.40716817090735e23 * cos(theta) ** 33 + 2.54359758965344e23 * cos(theta) ** 31 - 8.47865863217814e22 * cos(theta) ** 29 + 2.36424134935737e22 * cos(theta) ** 27 - 5.48478991159574e21 * cos(theta) ** 25 + 1.05072603670417e21 * cos(theta) ** 23 - 1.64602902344368e20 * cos(theta) ** 21 + 2.08232587303116e19 * cos(theta) ** 19 - 2.09334347024296e18 * cos(theta) ** 17 + 1.63805933229599e17 * cos(theta) ** 15 - 9.71181422309875e15 * cos(theta) ** 13 + 420845283000946.0 * cos(theta) ** 11 - 12683008528795.6 * cos(theta) ** 9 + 247339277918.008 * cos(theta) ** 7 - 2788043390.38012 * cos(theta) ** 5 + 14861638.5414719 * cos(theta) ** 3 - 23652.475132316 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl61_m_minus_1(theta, phi): return ( 0.0719452058089738 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 1.01398091049316e19 * cos(theta) ** 60 - 1.48326133187843e20 * cos(theta) ** 58 + 1.0301810847038e21 * cos(theta) ** 56 - 4.51988282177735e21 * cos(theta) ** 54 + 1.4060765908616e22 * cos(theta) ** 52 - 3.2999248840398e22 * cos(theta) ** 50 + 6.06968165607921e22 * cos(theta) ** 48 - 8.97326462392838e22 * cos(theta) ** 46 + 1.08496832777639e23 * cos(theta) ** 44 - 1.08611644240895e23 * cos(theta) ** 42 + 9.07908987295252e22 * cos(theta) ** 40 - 6.37415850666334e22 * cos(theta) ** 38 + 3.77191366177132e22 * cos(theta) ** 36 - 1.88446122673746e22 * cos(theta) ** 34 + 7.94874246766701e21 * cos(theta) ** 32 - 2.82621954405938e21 * cos(theta) ** 30 + 8.44371910484774e20 * cos(theta) ** 28 - 2.10953458138298e20 * cos(theta) ** 26 + 4.37802515293402e19 * cos(theta) ** 24 - 7.48195010656217e18 * cos(theta) ** 22 + 1.04116293651558e18 * cos(theta) ** 20 - 1.16296859457942e17 * cos(theta) ** 18 + 1.02378708268499e16 * cos(theta) ** 16 - 693701015935625.0 * cos(theta) ** 14 + 35070440250078.8 * cos(theta) ** 12 - 1268300852879.56 * cos(theta) ** 10 + 30917409739.751 * cos(theta) ** 8 - 464673898.396687 * cos(theta) ** 6 + 3715409.63536797 * cos(theta) ** 4 - 11826.237566158 * cos(theta) ** 2 + 6.25726855352274 ) * sin(phi) ) # @torch.jit.script def Yl61_m0(theta, phi): return ( 1.63379453984008e18 * cos(theta) ** 61 - 2.47094546108045e19 * cos(theta) ** 59 + 1.77638137979355e20 * cos(theta) ** 57 - 8.07722131666811e20 * cos(theta) ** 55 + 2.60753775114177e21 * cos(theta) ** 53 - 6.35962304614754e21 * cos(theta) ** 51 + 1.2174954029787e22 * cos(theta) ** 49 - 1.87650667615065e22 * cos(theta) ** 47 + 2.36974733284913e22 * cos(theta) ** 45 - 2.48259244393718e22 * cos(theta) ** 43 + 2.1764863853158e22 * cos(theta) ** 41 - 1.60640759312237e22 * cos(theta) ** 39 + 1.00197645328592e22 * cos(theta) ** 37 - 5.29196128380988e21 * cos(theta) ** 35 + 2.36745636380968e21 * cos(theta) ** 33 - 8.96069505441944e20 * cos(theta) ** 31 + 2.86176043976995e20 * cos(theta) ** 29 - 7.67927784895306e19 * cos(theta) ** 27 + 1.72121744890327e19 * cos(theta) ** 25 - 3.19730795461908e18 * cos(theta) ** 23 + 4.87300549710017e17 * cos(theta) ** 21 - 6.01605616925947e16 * cos(theta) ** 19 + 5.91913466595724e15 * cos(theta) ** 17 - 454546761473848.0 * cos(theta) ** 15 + 26515227752641.1 * cos(theta) ** 13 - 1133253569701.92 * cos(theta) ** 11 + 33764326291.2274 * cos(theta) ** 9 - 652450749.588935 * cos(theta) ** 7 + 7303553.16704031 * cos(theta) ** 5 - 38745.6401434499 * cos(theta) ** 3 + 61.5010161007142 * cos(theta) ) # @torch.jit.script def Yl61_m1(theta, phi): return ( 0.0719452058089738 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 1.01398091049316e19 * cos(theta) ** 60 - 1.48326133187843e20 * cos(theta) ** 58 + 1.0301810847038e21 * cos(theta) ** 56 - 4.51988282177735e21 * cos(theta) ** 54 + 1.4060765908616e22 * cos(theta) ** 52 - 3.2999248840398e22 * cos(theta) ** 50 + 6.06968165607921e22 * cos(theta) ** 48 - 8.97326462392838e22 * cos(theta) ** 46 + 1.08496832777639e23 * cos(theta) ** 44 - 1.08611644240895e23 * cos(theta) ** 42 + 9.07908987295252e22 * cos(theta) ** 40 - 6.37415850666334e22 * cos(theta) ** 38 + 3.77191366177132e22 * cos(theta) ** 36 - 1.88446122673746e22 * cos(theta) ** 34 + 7.94874246766701e21 * cos(theta) ** 32 - 2.82621954405938e21 * cos(theta) ** 30 + 8.44371910484774e20 * cos(theta) ** 28 - 2.10953458138298e20 * cos(theta) ** 26 + 4.37802515293402e19 * cos(theta) ** 24 - 7.48195010656217e18 * cos(theta) ** 22 + 1.04116293651558e18 * cos(theta) ** 20 - 1.16296859457942e17 * cos(theta) ** 18 + 1.02378708268499e16 * cos(theta) ** 16 - 693701015935625.0 * cos(theta) ** 14 + 35070440250078.8 * cos(theta) ** 12 - 1268300852879.56 * cos(theta) ** 10 + 30917409739.751 * cos(theta) ** 8 - 464673898.396687 * cos(theta) ** 6 + 3715409.63536797 * cos(theta) ** 4 - 11826.237566158 * cos(theta) ** 2 + 6.25726855352274 ) * cos(phi) ) # @torch.jit.script def Yl61_m2(theta, phi): return ( 0.00117018885995458 * (1.0 - cos(theta) ** 2) * ( 6.08388546295897e20 * cos(theta) ** 59 - 8.60291572489487e21 * cos(theta) ** 57 + 5.76901407434127e22 * cos(theta) ** 55 - 2.44073672375977e23 * cos(theta) ** 53 + 7.31159827248035e23 * cos(theta) ** 51 - 1.6499624420199e24 * cos(theta) ** 49 + 2.91344719491802e24 * cos(theta) ** 47 - 4.12770172700705e24 * cos(theta) ** 45 + 4.7738606422161e24 * cos(theta) ** 43 - 4.56168905811761e24 * cos(theta) ** 41 + 3.63163594918101e24 * cos(theta) ** 39 - 2.42218023253207e24 * cos(theta) ** 37 + 1.35788891823767e24 * cos(theta) ** 35 - 6.40716817090735e23 * cos(theta) ** 33 + 2.54359758965344e23 * cos(theta) ** 31 - 8.47865863217814e22 * cos(theta) ** 29 + 2.36424134935737e22 * cos(theta) ** 27 - 5.48478991159574e21 * cos(theta) ** 25 + 1.05072603670417e21 * cos(theta) ** 23 - 1.64602902344368e20 * cos(theta) ** 21 + 2.08232587303116e19 * cos(theta) ** 19 - 2.09334347024296e18 * cos(theta) ** 17 + 1.63805933229599e17 * cos(theta) ** 15 - 9.71181422309875e15 * cos(theta) ** 13 + 420845283000946.0 * cos(theta) ** 11 - 12683008528795.6 * cos(theta) ** 9 + 247339277918.008 * cos(theta) ** 7 - 2788043390.38012 * cos(theta) ** 5 + 14861638.5414719 * cos(theta) ** 3 - 23652.475132316 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl61_m3(theta, phi): return ( 1.90432016649223e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 3.58949242314579e22 * cos(theta) ** 58 - 4.90366196319008e23 * cos(theta) ** 56 + 3.1729577408877e24 * cos(theta) ** 54 - 1.29359046359268e25 * cos(theta) ** 52 + 3.72891511896498e25 * cos(theta) ** 50 - 8.08481596589751e25 * cos(theta) ** 48 + 1.36932018161147e26 * cos(theta) ** 46 - 1.85746577715317e26 * cos(theta) ** 44 + 2.05276007615292e26 * cos(theta) ** 42 - 1.87029251382822e26 * cos(theta) ** 40 + 1.41633802018059e26 * cos(theta) ** 38 - 8.96206686036865e25 * cos(theta) ** 36 + 4.75261121383186e25 * cos(theta) ** 34 - 2.11436549639942e25 * cos(theta) ** 32 + 7.88515252792567e24 * cos(theta) ** 30 - 2.45881100333166e24 * cos(theta) ** 28 + 6.38345164326489e23 * cos(theta) ** 26 - 1.37119747789894e23 * cos(theta) ** 24 + 2.41666988441958e22 * cos(theta) ** 22 - 3.45666094923172e21 * cos(theta) ** 20 + 3.9564191587592e20 * cos(theta) ** 18 - 3.55868389941304e19 * cos(theta) ** 16 + 2.45708899844398e18 * cos(theta) ** 14 - 1.26253584900284e17 * cos(theta) ** 12 + 4.6292981130104e15 * cos(theta) ** 10 - 114147076759161.0 * cos(theta) ** 8 + 1731374945426.06 * cos(theta) ** 6 - 13940216951.9006 * cos(theta) ** 4 + 44584915.6244156 * cos(theta) ** 2 - 23652.475132316 ) * cos(3 * phi) ) # @torch.jit.script def Yl61_m4(theta, phi): return ( 3.10148218887814e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 2.08190560542456e24 * cos(theta) ** 57 - 2.74605069938644e25 * cos(theta) ** 55 + 1.71339718007936e26 * cos(theta) ** 53 - 6.72667041068192e26 * cos(theta) ** 51 + 1.86445755948249e27 * cos(theta) ** 49 - 3.88071166363081e27 * cos(theta) ** 47 + 6.29887283541277e27 * cos(theta) ** 45 - 8.17284941947397e27 * cos(theta) ** 43 + 8.62159231984228e27 * cos(theta) ** 41 - 7.48117005531288e27 * cos(theta) ** 39 + 5.38208447668626e27 * cos(theta) ** 37 - 3.22634406973272e27 * cos(theta) ** 35 + 1.61588781270283e27 * cos(theta) ** 33 - 6.76596958847816e26 * cos(theta) ** 31 + 2.3655457583777e26 * cos(theta) ** 29 - 6.88467080932865e25 * cos(theta) ** 27 + 1.65969742724887e25 * cos(theta) ** 25 - 3.29087394695745e24 * cos(theta) ** 23 + 5.31667374572308e23 * cos(theta) ** 21 - 6.91332189846344e22 * cos(theta) ** 19 + 7.12155448576656e21 * cos(theta) ** 17 - 5.69389423906086e20 * cos(theta) ** 15 + 3.43992459782158e19 * cos(theta) ** 13 - 1.5150430188034e18 * cos(theta) ** 11 + 4.6292981130104e16 * cos(theta) ** 9 - 913176614073285.0 * cos(theta) ** 7 + 10388249672556.3 * cos(theta) ** 5 - 55760867807.6024 * cos(theta) ** 3 + 89169831.2488312 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl61_m5(theta, phi): return ( 5.05661508405203e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.186686195092e26 * cos(theta) ** 56 - 1.51032788466254e27 * cos(theta) ** 54 + 9.08100505442059e27 * cos(theta) ** 52 - 3.43060190944778e28 * cos(theta) ** 50 + 9.13584204146419e28 * cos(theta) ** 48 - 1.82393448190648e29 * cos(theta) ** 46 + 2.83449277593574e29 * cos(theta) ** 44 - 3.51432525037381e29 * cos(theta) ** 42 + 3.53485285113534e29 * cos(theta) ** 40 - 2.91765632157202e29 * cos(theta) ** 38 + 1.99137125637391e29 * cos(theta) ** 36 - 1.12922042440645e29 * cos(theta) ** 34 + 5.33242978191935e28 * cos(theta) ** 32 - 2.09745057242823e28 * cos(theta) ** 30 + 6.86008269929534e27 * cos(theta) ** 28 - 1.85886111851874e27 * cos(theta) ** 26 + 4.14924356812218e26 * cos(theta) ** 24 - 7.56901007800212e25 * cos(theta) ** 22 + 1.11650148660185e25 * cos(theta) ** 20 - 1.31353116070805e24 * cos(theta) ** 18 + 1.21066426258031e23 * cos(theta) ** 16 - 8.54084135859129e21 * cos(theta) ** 14 + 4.47190197716805e20 * cos(theta) ** 12 - 1.66654732068375e19 * cos(theta) ** 10 + 4.16636830170936e17 * cos(theta) ** 8 - 6.392236298513e15 * cos(theta) ** 6 + 51941248362781.7 * cos(theta) ** 4 - 167282603422.807 * cos(theta) ** 2 + 89169831.2488312 ) * cos(5 * phi) ) # @torch.jit.script def Yl61_m6(theta, phi): return ( 8.25521675669756e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 6.64544269251519e27 * cos(theta) ** 55 - 8.15577057717774e28 * cos(theta) ** 53 + 4.72212262829871e29 * cos(theta) ** 51 - 1.71530095472389e30 * cos(theta) ** 49 + 4.38520417990281e30 * cos(theta) ** 47 - 8.3900986167698e30 * cos(theta) ** 45 + 1.24717682141173e31 * cos(theta) ** 43 - 1.476016605157e31 * cos(theta) ** 41 + 1.41394114045413e31 * cos(theta) ** 39 - 1.10870940219737e31 * cos(theta) ** 37 + 7.16893652294609e30 * cos(theta) ** 35 - 3.83934944298193e30 * cos(theta) ** 33 + 1.70637753021419e30 * cos(theta) ** 31 - 6.29235171728469e29 * cos(theta) ** 29 + 1.92082315580269e29 * cos(theta) ** 27 - 4.83303890814871e28 * cos(theta) ** 25 + 9.95818456349323e27 * cos(theta) ** 23 - 1.66518221716047e27 * cos(theta) ** 21 + 2.23300297320369e26 * cos(theta) ** 19 - 2.3643560892745e25 * cos(theta) ** 17 + 1.9370628201285e24 * cos(theta) ** 15 - 1.19571779020278e23 * cos(theta) ** 13 + 5.36628237260166e21 * cos(theta) ** 11 - 1.66654732068375e20 * cos(theta) ** 9 + 3.33309464136749e18 * cos(theta) ** 7 - 3.8353417791078e16 * cos(theta) ** 5 + 207764993451127.0 * cos(theta) ** 3 - 334565206845.615 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl61_m7(theta, phi): return ( 1.3498722825312e-12 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 3.65499348088336e29 * cos(theta) ** 54 - 4.3225584059042e30 * cos(theta) ** 52 + 2.40828254043234e31 * cos(theta) ** 50 - 8.40497467814706e31 * cos(theta) ** 48 + 2.06104596455432e32 * cos(theta) ** 46 - 3.77554437754641e32 * cos(theta) ** 44 + 5.36286033207043e32 * cos(theta) ** 42 - 6.05166808114369e32 * cos(theta) ** 40 + 5.51437044777112e32 * cos(theta) ** 38 - 4.10222478813026e32 * cos(theta) ** 36 + 2.50912778303113e32 * cos(theta) ** 34 - 1.26698531618404e32 * cos(theta) ** 32 + 5.28977034366399e31 * cos(theta) ** 30 - 1.82478199801256e31 * cos(theta) ** 28 + 5.18622252066727e30 * cos(theta) ** 26 - 1.20825972703718e30 * cos(theta) ** 24 + 2.29038244960344e29 * cos(theta) ** 22 - 3.49688265603698e28 * cos(theta) ** 20 + 4.24270564908701e27 * cos(theta) ** 18 - 4.01940535176665e26 * cos(theta) ** 16 + 2.90559423019276e25 * cos(theta) ** 14 - 1.55443312726361e24 * cos(theta) ** 12 + 5.90291060986183e22 * cos(theta) ** 10 - 1.49989258861537e21 * cos(theta) ** 8 + 2.33316624895724e19 * cos(theta) ** 6 - 1.9176708895539e17 * cos(theta) ** 4 + 623294980353380.0 * cos(theta) ** 2 - 334565206845.615 ) * cos(7 * phi) ) # @torch.jit.script def Yl61_m8(theta, phi): return ( 2.21142010995196e-14 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.97369647967701e31 * cos(theta) ** 53 - 2.24773037107018e32 * cos(theta) ** 51 + 1.20414127021617e33 * cos(theta) ** 49 - 4.03438784551059e33 * cos(theta) ** 47 + 9.48081143694988e33 * cos(theta) ** 45 - 1.66123952612042e34 * cos(theta) ** 43 + 2.25240133946958e34 * cos(theta) ** 41 - 2.42066723245748e34 * cos(theta) ** 39 + 2.09546077015303e34 * cos(theta) ** 37 - 1.4768009237269e34 * cos(theta) ** 35 + 8.53103446230585e33 * cos(theta) ** 33 - 4.05435301178892e33 * cos(theta) ** 31 + 1.5869311030992e33 * cos(theta) ** 29 - 5.10938959443517e32 * cos(theta) ** 27 + 1.34841785537349e32 * cos(theta) ** 25 - 2.89982334488923e31 * cos(theta) ** 23 + 5.03884138912757e30 * cos(theta) ** 21 - 6.99376531207396e29 * cos(theta) ** 19 + 7.63687016835663e28 * cos(theta) ** 17 - 6.43104856282663e27 * cos(theta) ** 15 + 4.06783192226986e26 * cos(theta) ** 13 - 1.86531975271634e25 * cos(theta) ** 11 + 5.90291060986183e23 * cos(theta) ** 9 - 1.1999140708923e22 * cos(theta) ** 7 + 1.39989974937435e20 * cos(theta) ** 5 - 7.6706835582156e17 * cos(theta) ** 3 + 1.24658996070676e15 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl61_m9(theta, phi): return ( 3.63064929358258e-16 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1.04605913422882e33 * cos(theta) ** 52 - 1.14634248924579e34 * cos(theta) ** 50 + 5.90029222405923e34 * cos(theta) ** 48 - 1.89616228738998e35 * cos(theta) ** 46 + 4.26636514662745e35 * cos(theta) ** 44 - 7.14332996231781e35 * cos(theta) ** 42 + 9.23484549182528e35 * cos(theta) ** 40 - 9.44060220658416e35 * cos(theta) ** 38 + 7.7532048495662e35 * cos(theta) ** 36 - 5.16880323304413e35 * cos(theta) ** 34 + 2.81524137256093e35 * cos(theta) ** 32 - 1.25684943365456e35 * cos(theta) ** 30 + 4.60210019898767e34 * cos(theta) ** 28 - 1.37953519049749e34 * cos(theta) ** 26 + 3.37104463843373e33 * cos(theta) ** 24 - 6.66959369324523e32 * cos(theta) ** 22 + 1.05815669171679e32 * cos(theta) ** 20 - 1.32881540929405e31 * cos(theta) ** 18 + 1.29826792862063e30 * cos(theta) ** 16 - 9.64657284423995e28 * cos(theta) ** 14 + 5.28818149895081e27 * cos(theta) ** 12 - 2.05185172798797e26 * cos(theta) ** 10 + 5.31261954887564e24 * cos(theta) ** 8 - 8.39939849624608e22 * cos(theta) ** 6 + 6.99949874687173e20 * cos(theta) ** 4 - 2.30120506746468e18 * cos(theta) ** 2 + 1.24658996070676e15 ) * cos(9 * phi) ) # @torch.jit.script def Yl61_m10(theta, phi): return ( 5.97521385742017e-18 * (1.0 - cos(theta) ** 2) ** 5 * ( 5.43950749798985e34 * cos(theta) ** 51 - 5.73171244622897e35 * cos(theta) ** 49 + 2.83214026754843e36 * cos(theta) ** 47 - 8.72234652199389e36 * cos(theta) ** 45 + 1.87720066451608e37 * cos(theta) ** 43 - 3.00019858417348e37 * cos(theta) ** 41 + 3.69393819673011e37 * cos(theta) ** 39 - 3.58742883850198e37 * cos(theta) ** 37 + 2.79115374584383e37 * cos(theta) ** 35 - 1.75739309923501e37 * cos(theta) ** 33 + 9.00877239219498e36 * cos(theta) ** 31 - 3.77054830096369e36 * cos(theta) ** 29 + 1.28858805571655e36 * cos(theta) ** 27 - 3.58679149529349e35 * cos(theta) ** 25 + 8.09050713224095e34 * cos(theta) ** 23 - 1.46731061251395e34 * cos(theta) ** 21 + 2.11631338343358e33 * cos(theta) ** 19 - 2.3918677367293e32 * cos(theta) ** 17 + 2.077228685793e31 * cos(theta) ** 15 - 1.35052019819359e30 * cos(theta) ** 13 + 6.34581779874098e28 * cos(theta) ** 11 - 2.05185172798797e27 * cos(theta) ** 9 + 4.25009563910051e25 * cos(theta) ** 7 - 5.03963909774765e23 * cos(theta) ** 5 + 2.79979949874869e21 * cos(theta) ** 3 - 4.60241013492936e18 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl61_m11(theta, phi): return ( 9.8605721994746e-20 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 2.77414882397482e36 * cos(theta) ** 50 - 2.80853909865219e37 * cos(theta) ** 48 + 1.33110592574776e38 * cos(theta) ** 46 - 3.92505593489725e38 * cos(theta) ** 44 + 8.07196285741913e38 * cos(theta) ** 42 - 1.23008141951113e39 * cos(theta) ** 40 + 1.44063589672474e39 * cos(theta) ** 38 - 1.32734867024573e39 * cos(theta) ** 36 + 9.76903811045341e38 * cos(theta) ** 34 - 5.79939722747552e38 * cos(theta) ** 32 + 2.79271944158044e38 * cos(theta) ** 30 - 1.09345900727947e38 * cos(theta) ** 28 + 3.47918775043468e37 * cos(theta) ** 26 - 8.96697873823372e36 * cos(theta) ** 24 + 1.86081664041542e36 * cos(theta) ** 22 - 3.08135228627929e35 * cos(theta) ** 20 + 4.0209954285238e34 * cos(theta) ** 18 - 4.0661751524398e33 * cos(theta) ** 16 + 3.1158430286895e32 * cos(theta) ** 14 - 1.75567625765167e31 * cos(theta) ** 12 + 6.98039957861508e29 * cos(theta) ** 10 - 1.84666655518917e28 * cos(theta) ** 8 + 2.97506694737036e26 * cos(theta) ** 6 - 2.51981954887382e24 * cos(theta) ** 4 + 8.39939849624608e21 * cos(theta) ** 2 - 4.60241013492936e18 ) * cos(11 * phi) ) # @torch.jit.script def Yl61_m12(theta, phi): return ( 1.6321335234548e-21 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.38707441198741e38 * cos(theta) ** 49 - 1.34809876735305e39 * cos(theta) ** 47 + 6.12308725843971e39 * cos(theta) ** 45 - 1.72702461135479e40 * cos(theta) ** 43 + 3.39022440011603e40 * cos(theta) ** 41 - 4.92032567804451e40 * cos(theta) ** 39 + 5.47441640755402e40 * cos(theta) ** 37 - 4.77845521288464e40 * cos(theta) ** 35 + 3.32147295755416e40 * cos(theta) ** 33 - 1.85580711279217e40 * cos(theta) ** 31 + 8.37815832474133e39 * cos(theta) ** 29 - 3.06168522038252e39 * cos(theta) ** 27 + 9.04588815113017e38 * cos(theta) ** 25 - 2.15207489717609e38 * cos(theta) ** 23 + 4.09379660891392e37 * cos(theta) ** 21 - 6.16270457255859e36 * cos(theta) ** 19 + 7.23779177134285e35 * cos(theta) ** 17 - 6.50588024390368e34 * cos(theta) ** 15 + 4.3621802401653e33 * cos(theta) ** 13 - 2.106811509182e32 * cos(theta) ** 11 + 6.98039957861508e30 * cos(theta) ** 9 - 1.47733324415134e29 * cos(theta) ** 7 + 1.78504016842222e27 * cos(theta) ** 5 - 1.00792781954953e25 * cos(theta) ** 3 + 1.67987969924922e22 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl61_m13(theta, phi): return ( 2.71045240308929e-23 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 6.79666461873831e39 * cos(theta) ** 48 - 6.33606420655935e40 * cos(theta) ** 46 + 2.75538926629787e41 * cos(theta) ** 44 - 7.4262058288256e41 * cos(theta) ** 42 + 1.38999200404757e42 * cos(theta) ** 40 - 1.91892701443736e42 * cos(theta) ** 38 + 2.02553407079499e42 * cos(theta) ** 36 - 1.67245932450962e42 * cos(theta) ** 34 + 1.09608607599287e42 * cos(theta) ** 32 - 5.75300204965571e41 * cos(theta) ** 30 + 2.42966591417499e41 * cos(theta) ** 28 - 8.26655009503281e40 * cos(theta) ** 26 + 2.26147203778254e40 * cos(theta) ** 24 - 4.94977226350501e39 * cos(theta) ** 22 + 8.59697287871923e38 * cos(theta) ** 20 - 1.17091386878613e38 * cos(theta) ** 18 + 1.23042460112828e37 * cos(theta) ** 16 - 9.75882036585553e35 * cos(theta) ** 14 + 5.6708343122149e34 * cos(theta) ** 12 - 2.31749266010021e33 * cos(theta) ** 10 + 6.28235962075357e31 * cos(theta) ** 8 - 1.03413327090594e30 * cos(theta) ** 6 + 8.92520084211108e27 * cos(theta) ** 4 - 3.02378345864859e25 * cos(theta) ** 2 + 1.67987969924922e22 ) * cos(13 * phi) ) # @torch.jit.script def Yl61_m14(theta, phi): return ( 4.51742067181548e-25 * (1.0 - cos(theta) ** 2) ** 7 * ( 3.26239901699439e41 * cos(theta) ** 47 - 2.9145895350173e42 * cos(theta) ** 45 + 1.21237127717106e43 * cos(theta) ** 43 - 3.11900644810675e43 * cos(theta) ** 41 + 5.55996801619029e43 * cos(theta) ** 39 - 7.29192265486196e43 * cos(theta) ** 37 + 7.29192265486196e43 * cos(theta) ** 35 - 5.68636170333272e43 * cos(theta) ** 33 + 3.50747544317719e43 * cos(theta) ** 31 - 1.72590061489671e43 * cos(theta) ** 29 + 6.80306455968996e42 * cos(theta) ** 27 - 2.14930302470853e42 * cos(theta) ** 25 + 5.4275328906781e41 * cos(theta) ** 23 - 1.0889498979711e41 * cos(theta) ** 21 + 1.71939457574385e40 * cos(theta) ** 19 - 2.10764496381504e39 * cos(theta) ** 17 + 1.96867936180525e38 * cos(theta) ** 15 - 1.36623485121977e37 * cos(theta) ** 13 + 6.80500117465788e35 * cos(theta) ** 11 - 2.31749266010021e34 * cos(theta) ** 9 + 5.02588769660285e32 * cos(theta) ** 7 - 6.20479962543562e30 * cos(theta) ** 5 + 3.57008033684443e28 * cos(theta) ** 3 - 6.04756691729717e25 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl61_m15(theta, phi): return ( 7.55848594360317e-27 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.53332753798736e43 * cos(theta) ** 46 - 1.31156529075779e44 * cos(theta) ** 44 + 5.21319649183557e44 * cos(theta) ** 42 - 1.27879264372377e45 * cos(theta) ** 40 + 2.16838752631421e45 * cos(theta) ** 38 - 2.69801138229893e45 * cos(theta) ** 36 + 2.55217292920169e45 * cos(theta) ** 34 - 1.8764993620998e45 * cos(theta) ** 32 + 1.08731738738493e45 * cos(theta) ** 30 - 5.00511178320047e44 * cos(theta) ** 28 + 1.83682743111629e44 * cos(theta) ** 26 - 5.37325756177132e43 * cos(theta) ** 24 + 1.24833256485596e43 * cos(theta) ** 22 - 2.28679478573932e42 * cos(theta) ** 20 + 3.26684969391331e41 * cos(theta) ** 18 - 3.58299643848556e40 * cos(theta) ** 16 + 2.95301904270788e39 * cos(theta) ** 14 - 1.77610530658571e38 * cos(theta) ** 12 + 7.48550129212366e36 * cos(theta) ** 10 - 2.08574339409018e35 * cos(theta) ** 8 + 3.518121387622e33 * cos(theta) ** 6 - 3.10239981271781e31 * cos(theta) ** 4 + 1.07102410105333e29 * cos(theta) ** 2 - 6.04756691729717e25 ) * cos(15 * phi) ) # @torch.jit.script def Yl61_m16(theta, phi): return ( 1.27001991563108e-28 * (1.0 - cos(theta) ** 2) ** 8 * ( 7.05330667474187e44 * cos(theta) ** 45 - 5.77088727933426e45 * cos(theta) ** 43 + 2.18954252657094e46 * cos(theta) ** 41 - 5.11517057489507e46 * cos(theta) ** 39 + 8.23987259999402e46 * cos(theta) ** 37 - 9.71284097627613e46 * cos(theta) ** 35 + 8.67738795928573e46 * cos(theta) ** 33 - 6.00479795871935e46 * cos(theta) ** 31 + 3.26195216215479e46 * cos(theta) ** 29 - 1.40143129929613e46 * cos(theta) ** 27 + 4.77575132090235e45 * cos(theta) ** 25 - 1.28958181482512e45 * cos(theta) ** 23 + 2.74633164268312e44 * cos(theta) ** 21 - 4.57358957147863e43 * cos(theta) ** 19 + 5.88032944904395e42 * cos(theta) ** 17 - 5.7327943015769e41 * cos(theta) ** 15 + 4.13422665979103e40 * cos(theta) ** 13 - 2.13132636790285e39 * cos(theta) ** 11 + 7.48550129212366e37 * cos(theta) ** 9 - 1.66859471527215e36 * cos(theta) ** 7 + 2.1108728325732e34 * cos(theta) ** 5 - 1.24095992508712e32 * cos(theta) ** 3 + 2.14204820210666e29 * cos(theta) ) * cos(16 * phi) ) # @torch.jit.script def Yl61_m17(theta, phi): return ( 2.14366527589978e-30 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 3.17398800363384e46 * cos(theta) ** 44 - 2.48148153011373e47 * cos(theta) ** 42 + 8.97712435894085e47 * cos(theta) ** 40 - 1.99491652420908e48 * cos(theta) ** 38 + 3.04875286199779e48 * cos(theta) ** 36 - 3.39949434169665e48 * cos(theta) ** 34 + 2.86353802656429e48 * cos(theta) ** 32 - 1.861487367203e48 * cos(theta) ** 30 + 9.45966127024889e47 * cos(theta) ** 28 - 3.78386450809956e47 * cos(theta) ** 26 + 1.19393783022559e47 * cos(theta) ** 24 - 2.96603817409777e46 * cos(theta) ** 22 + 5.76729644963455e45 * cos(theta) ** 20 - 8.6898201858094e44 * cos(theta) ** 18 + 9.99656006337472e43 * cos(theta) ** 16 - 8.59919145236535e42 * cos(theta) ** 14 + 5.37449465772834e41 * cos(theta) ** 12 - 2.34445900469313e40 * cos(theta) ** 10 + 6.7369511629113e38 * cos(theta) ** 8 - 1.1680163006905e37 * cos(theta) ** 6 + 1.0554364162866e35 * cos(theta) ** 4 - 3.72287977526137e32 * cos(theta) ** 2 + 2.14204820210666e29 ) * cos(17 * phi) ) # @torch.jit.script def Yl61_m18(theta, phi): return ( 3.63594319225306e-32 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.39655472159889e48 * cos(theta) ** 43 - 1.04222224264777e49 * cos(theta) ** 41 + 3.59084974357634e49 * cos(theta) ** 39 - 7.5806827919945e49 * cos(theta) ** 37 + 1.0975510303192e50 * cos(theta) ** 35 - 1.15582807617686e50 * cos(theta) ** 33 + 9.16332168500574e49 * cos(theta) ** 31 - 5.584462101609e49 * cos(theta) ** 29 + 2.64870515566969e49 * cos(theta) ** 27 - 9.83804772105885e48 * cos(theta) ** 25 + 2.86545079254141e48 * cos(theta) ** 23 - 6.5252839830151e47 * cos(theta) ** 21 + 1.15345928992691e47 * cos(theta) ** 19 - 1.56416763344569e46 * cos(theta) ** 17 + 1.59944961013996e45 * cos(theta) ** 15 - 1.20388680333115e44 * cos(theta) ** 13 + 6.44939358927401e42 * cos(theta) ** 11 - 2.34445900469313e41 * cos(theta) ** 9 + 5.38956093032904e39 * cos(theta) ** 7 - 7.00809780414302e37 * cos(theta) ** 5 + 4.2217456651464e35 * cos(theta) ** 3 - 7.44575955052275e32 * cos(theta) ) * cos(18 * phi) ) # @torch.jit.script def Yl61_m19(theta, phi): return ( 6.19923168938198e-34 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 6.00518530287523e49 * cos(theta) ** 42 - 4.27311119485584e50 * cos(theta) ** 40 + 1.40043139999477e51 * cos(theta) ** 38 - 2.80485263303796e51 * cos(theta) ** 36 + 3.84142860611721e51 * cos(theta) ** 34 - 3.81423265138364e51 * cos(theta) ** 32 + 2.84062972235178e51 * cos(theta) ** 30 - 1.61949400946661e51 * cos(theta) ** 28 + 7.15150392030816e50 * cos(theta) ** 26 - 2.45951193026471e50 * cos(theta) ** 24 + 6.59053682284525e49 * cos(theta) ** 22 - 1.37030963643317e49 * cos(theta) ** 20 + 2.19157265086113e48 * cos(theta) ** 18 - 2.65908497685768e47 * cos(theta) ** 16 + 2.39917441520993e46 * cos(theta) ** 14 - 1.56505284433049e45 * cos(theta) ** 12 + 7.09433294820142e43 * cos(theta) ** 10 - 2.11001310422382e42 * cos(theta) ** 8 + 3.77269265123033e40 * cos(theta) ** 6 - 3.50404890207151e38 * cos(theta) ** 4 + 1.26652369954392e36 * cos(theta) ** 2 - 7.44575955052275e32 ) * cos(19 * phi) ) # @torch.jit.script def Yl61_m20(theta, phi): return ( 1.06284690762533e-35 * (1.0 - cos(theta) ** 2) ** 10 * ( 2.5221778272076e51 * cos(theta) ** 41 - 1.70924447794234e52 * cos(theta) ** 39 + 5.32163931998014e52 * cos(theta) ** 37 - 1.00974694789367e53 * cos(theta) ** 35 + 1.30608572607985e53 * cos(theta) ** 33 - 1.22055444844276e53 * cos(theta) ** 31 + 8.52188916705533e52 * cos(theta) ** 29 - 4.53458322650651e52 * cos(theta) ** 27 + 1.85939101928012e52 * cos(theta) ** 25 - 5.90282863263531e51 * cos(theta) ** 23 + 1.44991810102595e51 * cos(theta) ** 21 - 2.74061927286634e50 * cos(theta) ** 19 + 3.94483077155003e49 * cos(theta) ** 17 - 4.25453596297228e48 * cos(theta) ** 15 + 3.35884418129391e47 * cos(theta) ** 13 - 1.87806341319659e46 * cos(theta) ** 11 + 7.09433294820142e44 * cos(theta) ** 9 - 1.68801048337905e43 * cos(theta) ** 7 + 2.2636155907382e41 * cos(theta) ** 5 - 1.4016195608286e39 * cos(theta) ** 3 + 2.53304739908784e36 * cos(theta) ) * cos(20 * phi) ) # @torch.jit.script def Yl61_m21(theta, phi): return ( 1.83303964815859e-37 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.03409290915511e53 * cos(theta) ** 40 - 6.66605346397512e53 * cos(theta) ** 38 + 1.96900654839265e54 * cos(theta) ** 36 - 3.53411431762783e54 * cos(theta) ** 34 + 4.31008289606351e54 * cos(theta) ** 32 - 3.78371879017257e54 * cos(theta) ** 30 + 2.47134785844605e54 * cos(theta) ** 28 - 1.22433747115676e54 * cos(theta) ** 26 + 4.6484775482003e53 * cos(theta) ** 24 - 1.35765058550612e53 * cos(theta) ** 22 + 3.0448280121545e52 * cos(theta) ** 20 - 5.20717661844605e51 * cos(theta) ** 18 + 6.70621231163506e50 * cos(theta) ** 16 - 6.38180394445842e49 * cos(theta) ** 14 + 4.36649743568208e48 * cos(theta) ** 12 - 2.06586975451625e47 * cos(theta) ** 10 + 6.38489965338127e45 * cos(theta) ** 8 - 1.18160733836534e44 * cos(theta) ** 6 + 1.1318077953691e42 * cos(theta) ** 4 - 4.20485868248581e39 * cos(theta) ** 2 + 2.53304739908784e36 ) * cos(21 * phi) ) # @torch.jit.script def Yl61_m22(theta, phi): return ( 3.18128675173288e-39 * (1.0 - cos(theta) ** 2) ** 11 * ( 4.13637163662046e54 * cos(theta) ** 39 - 2.53310031631054e55 * cos(theta) ** 37 + 7.08842357421354e55 * cos(theta) ** 35 - 1.20159886799346e56 * cos(theta) ** 33 + 1.37922652674032e56 * cos(theta) ** 31 - 1.13511563705177e56 * cos(theta) ** 29 + 6.91977400364893e55 * cos(theta) ** 27 - 3.18327742500757e55 * cos(theta) ** 25 + 1.11563461156807e55 * cos(theta) ** 23 - 2.98683128811347e54 * cos(theta) ** 21 + 6.08965602430901e53 * cos(theta) ** 19 - 9.37291791320288e52 * cos(theta) ** 17 + 1.07299396986161e52 * cos(theta) ** 15 - 8.93452552224179e50 * cos(theta) ** 13 + 5.23979692281849e49 * cos(theta) ** 11 - 2.06586975451625e48 * cos(theta) ** 9 + 5.10791972270502e46 * cos(theta) ** 7 - 7.08964403019203e44 * cos(theta) ** 5 + 4.52723118147639e42 * cos(theta) ** 3 - 8.40971736497163e39 * cos(theta) ) * cos(22 * phi) ) # @torch.jit.script def Yl61_m23(theta, phi): return ( 5.55815777184317e-41 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.61318493828198e56 * cos(theta) ** 38 - 9.37247117034901e56 * cos(theta) ** 36 + 2.48094825097474e57 * cos(theta) ** 34 - 3.96527626437843e57 * cos(theta) ** 32 + 4.275602232895e57 * cos(theta) ** 30 - 3.29183534745013e57 * cos(theta) ** 28 + 1.86833898098521e57 * cos(theta) ** 26 - 7.95819356251892e56 * cos(theta) ** 24 + 2.56595960660657e56 * cos(theta) ** 22 - 6.27234570503828e55 * cos(theta) ** 20 + 1.15703464461871e55 * cos(theta) ** 18 - 1.59339604524449e54 * cos(theta) ** 16 + 1.60949095479241e53 * cos(theta) ** 14 - 1.16148831789143e52 * cos(theta) ** 12 + 5.76377661510034e50 * cos(theta) ** 10 - 1.85928277906463e49 * cos(theta) ** 8 + 3.57554380589351e47 * cos(theta) ** 6 - 3.54482201509601e45 * cos(theta) ** 4 + 1.35816935444292e43 * cos(theta) ** 2 - 8.40971736497163e39 ) * cos(23 * phi) ) # @torch.jit.script def Yl61_m24(theta, phi): return ( 9.77979179767568e-43 * (1.0 - cos(theta) ** 2) ** 12 * ( 6.13010276547152e57 * cos(theta) ** 37 - 3.37408962132565e58 * cos(theta) ** 35 + 8.43522405331411e58 * cos(theta) ** 33 - 1.2688884046011e59 * cos(theta) ** 31 + 1.2826806698685e59 * cos(theta) ** 29 - 9.21713897286038e58 * cos(theta) ** 27 + 4.85768135056155e58 * cos(theta) ** 25 - 1.90996645500454e58 * cos(theta) ** 23 + 5.64511113453445e57 * cos(theta) ** 21 - 1.25446914100766e57 * cos(theta) ** 19 + 2.08266236031368e56 * cos(theta) ** 17 - 2.54943367239118e55 * cos(theta) ** 15 + 2.25328733670938e54 * cos(theta) ** 13 - 1.39378598146972e53 * cos(theta) ** 11 + 5.76377661510034e51 * cos(theta) ** 9 - 1.4874262232517e50 * cos(theta) ** 7 + 2.14532628353611e48 * cos(theta) ** 5 - 1.41792880603841e46 * cos(theta) ** 3 + 2.71633870888584e43 * cos(theta) ) * cos(24 * phi) ) # @torch.jit.script def Yl61_m25(theta, phi): return ( 1.73372224485625e-44 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 2.26813802322446e59 * cos(theta) ** 36 - 1.18093136746398e60 * cos(theta) ** 34 + 2.78362393759366e60 * cos(theta) ** 32 - 3.9335540542634e60 * cos(theta) ** 30 + 3.71977394261865e60 * cos(theta) ** 28 - 2.4886275226723e60 * cos(theta) ** 26 + 1.21442033764039e60 * cos(theta) ** 24 - 4.39292284651044e59 * cos(theta) ** 22 + 1.18547333825223e59 * cos(theta) ** 20 - 2.38349136791455e58 * cos(theta) ** 18 + 3.54052601253326e57 * cos(theta) ** 16 - 3.82415050858678e56 * cos(theta) ** 14 + 2.92927353772219e55 * cos(theta) ** 12 - 1.53316457961669e54 * cos(theta) ** 10 + 5.18739895359031e52 * cos(theta) ** 8 - 1.04119835627619e51 * cos(theta) ** 6 + 1.07266314176805e49 * cos(theta) ** 4 - 4.25378641811522e46 * cos(theta) ** 2 + 2.71633870888584e43 ) * cos(25 * phi) ) # @torch.jit.script def Yl61_m26(theta, phi): return ( 3.09790891772917e-46 * (1.0 - cos(theta) ** 2) ** 13 * ( 8.16529688360806e60 * cos(theta) ** 35 - 4.01516664937752e61 * cos(theta) ** 33 + 8.9075966002997e61 * cos(theta) ** 31 - 1.18006621627902e62 * cos(theta) ** 29 + 1.04153670393322e62 * cos(theta) ** 27 - 6.47043155894798e61 * cos(theta) ** 25 + 2.91460881033693e61 * cos(theta) ** 23 - 9.66443026232298e60 * cos(theta) ** 21 + 2.37094667650447e60 * cos(theta) ** 19 - 4.29028446224618e59 * cos(theta) ** 17 + 5.66484162005321e58 * cos(theta) ** 15 - 5.35381071202149e57 * cos(theta) ** 13 + 3.51512824526663e56 * cos(theta) ** 11 - 1.53316457961669e55 * cos(theta) ** 9 + 4.14991916287225e53 * cos(theta) ** 7 - 6.24719013765715e51 * cos(theta) ** 5 + 4.29065256707222e49 * cos(theta) ** 3 - 8.50757283623044e46 * cos(theta) ) * cos(26 * phi) ) # @torch.jit.script def Yl61_m27(theta, phi): return ( 5.58204440000173e-48 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 2.85785390926282e62 * cos(theta) ** 34 - 1.32500499429458e63 * cos(theta) ** 32 + 2.76135494609291e63 * cos(theta) ** 30 - 3.42219202720916e63 * cos(theta) ** 28 + 2.8121491006197e63 * cos(theta) ** 26 - 1.617607889737e63 * cos(theta) ** 24 + 6.70360026377494e62 * cos(theta) ** 22 - 2.02953035508783e62 * cos(theta) ** 20 + 4.50479868535849e61 * cos(theta) ** 18 - 7.29348358581851e60 * cos(theta) ** 16 + 8.49726243007982e59 * cos(theta) ** 14 - 6.95995392562793e58 * cos(theta) ** 12 + 3.8666410697933e57 * cos(theta) ** 10 - 1.37984812165502e56 * cos(theta) ** 8 + 2.90494341401057e54 * cos(theta) ** 6 - 3.12359506882857e52 * cos(theta) ** 4 + 1.28719577012166e50 * cos(theta) ** 2 - 8.50757283623044e46 ) * cos(27 * phi) ) # @torch.jit.script def Yl61_m28(theta, phi): return ( 1.01474945031427e-49 * (1.0 - cos(theta) ** 2) ** 14 * ( 9.71670329149359e63 * cos(theta) ** 33 - 4.24001598174266e64 * cos(theta) ** 31 + 8.28406483827872e64 * cos(theta) ** 29 - 9.58213767618565e64 * cos(theta) ** 27 + 7.31158766161122e64 * cos(theta) ** 25 - 3.88225893536879e64 * cos(theta) ** 23 + 1.47479205803049e64 * cos(theta) ** 21 - 4.05906071017565e63 * cos(theta) ** 19 + 8.10863763364528e62 * cos(theta) ** 17 - 1.16695737373096e62 * cos(theta) ** 15 + 1.18961674021117e61 * cos(theta) ** 13 - 8.35194471075352e59 * cos(theta) ** 11 + 3.8666410697933e58 * cos(theta) ** 9 - 1.10387849732402e57 * cos(theta) ** 7 + 1.74296604840634e55 * cos(theta) ** 5 - 1.24943802753143e53 * cos(theta) ** 3 + 2.57439154024333e50 * cos(theta) ) * cos(28 * phi) ) # @torch.jit.script def Yl61_m29(theta, phi): return ( 1.86200395912983e-51 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 3.20651208619289e65 * cos(theta) ** 32 - 1.31440495434022e66 * cos(theta) ** 30 + 2.40237880310083e66 * cos(theta) ** 28 - 2.58717717257012e66 * cos(theta) ** 26 + 1.82789691540281e66 * cos(theta) ** 24 - 8.92919555134822e65 * cos(theta) ** 22 + 3.09706332186402e65 * cos(theta) ** 20 - 7.71221534933374e64 * cos(theta) ** 18 + 1.3784683977197e64 * cos(theta) ** 16 - 1.75043606059644e63 * cos(theta) ** 14 + 1.54650176227453e62 * cos(theta) ** 12 - 9.18713918182887e60 * cos(theta) ** 10 + 3.47997696281397e59 * cos(theta) ** 8 - 7.72714948126812e57 * cos(theta) ** 6 + 8.71483024203172e55 * cos(theta) ** 4 - 3.74831408259429e53 * cos(theta) ** 2 + 2.57439154024333e50 ) * cos(29 * phi) ) # @torch.jit.script def Yl61_m30(theta, phi): return ( 3.45052290581314e-53 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.02608386758172e67 * cos(theta) ** 31 - 3.94321486302067e67 * cos(theta) ** 29 + 6.72666064868232e67 * cos(theta) ** 27 - 6.72666064868232e67 * cos(theta) ** 25 + 4.38695259696673e67 * cos(theta) ** 23 - 1.96442302129661e67 * cos(theta) ** 21 + 6.19412664372804e66 * cos(theta) ** 19 - 1.38819876288007e66 * cos(theta) ** 17 + 2.20554943635152e65 * cos(theta) ** 15 - 2.45061048483502e64 * cos(theta) ** 13 + 1.85580211472943e63 * cos(theta) ** 11 - 9.18713918182887e61 * cos(theta) ** 9 + 2.78398157025117e60 * cos(theta) ** 7 - 4.63628968876087e58 * cos(theta) ** 5 + 3.48593209681269e56 * cos(theta) ** 3 - 7.49662816518858e53 * cos(theta) ) * cos(30 * phi) ) # @torch.jit.script def Yl61_m31(theta, phi): return ( 6.46115491793583e-55 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 3.18085998950334e68 * cos(theta) ** 30 - 1.143532310276e69 * cos(theta) ** 28 + 1.81619837514423e69 * cos(theta) ** 26 - 1.68166516217058e69 * cos(theta) ** 24 + 1.00899909730235e69 * cos(theta) ** 22 - 4.12528834472288e68 * cos(theta) ** 20 + 1.17688406230833e68 * cos(theta) ** 18 - 2.35993789689612e67 * cos(theta) ** 16 + 3.30832415452728e66 * cos(theta) ** 14 - 3.18579363028552e65 * cos(theta) ** 12 + 2.04138232620237e64 * cos(theta) ** 10 - 8.26842526364598e62 * cos(theta) ** 8 + 1.94878709917582e61 * cos(theta) ** 6 - 2.31814484438044e59 * cos(theta) ** 4 + 1.04577962904381e57 * cos(theta) ** 2 - 7.49662816518858e53 ) * cos(31 * phi) ) # @torch.jit.script def Yl61_m32(theta, phi): return ( 1.22322979951509e-56 * (1.0 - cos(theta) ** 2) ** 16 * ( 9.54257996851003e69 * cos(theta) ** 29 - 3.20189046877279e70 * cos(theta) ** 27 + 4.72211577537499e70 * cos(theta) ** 25 - 4.03599638920939e70 * cos(theta) ** 23 + 2.21979801406517e70 * cos(theta) ** 21 - 8.25057668944575e69 * cos(theta) ** 19 + 2.11839131215499e69 * cos(theta) ** 17 - 3.7759006350338e68 * cos(theta) ** 15 + 4.63165381633819e67 * cos(theta) ** 13 - 3.82295235634263e66 * cos(theta) ** 11 + 2.04138232620238e65 * cos(theta) ** 9 - 6.61474021091679e63 * cos(theta) ** 7 + 1.16927225950549e62 * cos(theta) ** 5 - 9.27257937752175e59 * cos(theta) ** 3 + 2.09155925808761e57 * cos(theta) ) * cos(32 * phi) ) # @torch.jit.script def Yl61_m33(theta, phi): return ( 2.3428534677439e-58 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 2.76734819086791e71 * cos(theta) ** 28 - 8.64510426568652e71 * cos(theta) ** 26 + 1.18052894384375e72 * cos(theta) ** 24 - 9.28279169518161e71 * cos(theta) ** 22 + 4.66157582953685e71 * cos(theta) ** 20 - 1.56760957099469e71 * cos(theta) ** 18 + 3.60126523066348e70 * cos(theta) ** 16 - 5.6638509525507e69 * cos(theta) ** 14 + 6.02114996123964e68 * cos(theta) ** 12 - 4.20524759197689e67 * cos(theta) ** 10 + 1.83724409358214e66 * cos(theta) ** 8 - 4.63031814764175e64 * cos(theta) ** 6 + 5.84636129752746e62 * cos(theta) ** 4 - 2.78177381325652e60 * cos(theta) ** 2 + 2.09155925808761e57 ) * cos(33 * phi) ) # @torch.jit.script def Yl61_m34(theta, phi): return ( 4.5425980324766e-60 * (1.0 - cos(theta) ** 2) ** 17 * ( 7.74857493443014e72 * cos(theta) ** 27 - 2.2477271090785e73 * cos(theta) ** 25 + 2.83326946522499e73 * cos(theta) ** 23 - 2.04221417293995e73 * cos(theta) ** 21 + 9.3231516590737e72 * cos(theta) ** 19 - 2.82169722779045e72 * cos(theta) ** 17 + 5.76202436906157e71 * cos(theta) ** 15 - 7.92939133357097e70 * cos(theta) ** 13 + 7.22537995348757e69 * cos(theta) ** 11 - 4.20524759197689e68 * cos(theta) ** 9 + 1.46979527486571e67 * cos(theta) ** 7 - 2.77819088858505e65 * cos(theta) ** 5 + 2.33854451901099e63 * cos(theta) ** 3 - 5.56354762651305e60 * cos(theta) ) * cos(34 * phi) ) # @torch.jit.script def Yl61_m35(theta, phi): return ( 8.92250520269132e-62 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 2.09211523229614e74 * cos(theta) ** 26 - 5.61931777269624e74 * cos(theta) ** 24 + 6.51651977001749e74 * cos(theta) ** 22 - 4.2886497631739e74 * cos(theta) ** 20 + 1.771398815224e74 * cos(theta) ** 18 - 4.79688528724376e73 * cos(theta) ** 16 + 8.64303655359236e72 * cos(theta) ** 14 - 1.03082087336423e72 * cos(theta) ** 12 + 7.94791794883633e70 * cos(theta) ** 10 - 3.7847228327792e69 * cos(theta) ** 8 + 1.028856692406e68 * cos(theta) ** 6 - 1.38909544429253e66 * cos(theta) ** 4 + 7.01563355703296e63 * cos(theta) ** 2 - 5.56354762651305e60 ) * cos(35 * phi) ) # @torch.jit.script def Yl61_m36(theta, phi): return ( 1.77670068074599e-63 * (1.0 - cos(theta) ** 2) ** 18 * ( 5.43949960396996e75 * cos(theta) ** 25 - 1.3486362654471e76 * cos(theta) ** 23 + 1.43363434940385e76 * cos(theta) ** 21 - 8.5772995263478e75 * cos(theta) ** 19 + 3.18851786740321e75 * cos(theta) ** 17 - 7.67501645959002e74 * cos(theta) ** 15 + 1.21002511750293e74 * cos(theta) ** 13 - 1.23698504803707e73 * cos(theta) ** 11 + 7.94791794883633e71 * cos(theta) ** 9 - 3.02777826622336e70 * cos(theta) ** 7 + 6.17314015443598e68 * cos(theta) ** 5 - 5.5563817771701e66 * cos(theta) ** 3 + 1.40312671140659e64 * cos(theta) ) * cos(36 * phi) ) # @torch.jit.script def Yl61_m37(theta, phi): return ( 3.58947742712642e-65 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 1.35987490099249e77 * cos(theta) ** 24 - 3.10186341052832e77 * cos(theta) ** 22 + 3.01063213374808e77 * cos(theta) ** 20 - 1.62968691000608e77 * cos(theta) ** 18 + 5.42048037458545e76 * cos(theta) ** 16 - 1.1512524689385e76 * cos(theta) ** 14 + 1.57303265275381e75 * cos(theta) ** 12 - 1.36068355284078e74 * cos(theta) ** 10 + 7.15312615395269e72 * cos(theta) ** 8 - 2.11944478635635e71 * cos(theta) ** 6 + 3.08657007721799e69 * cos(theta) ** 4 - 1.66691453315103e67 * cos(theta) ** 2 + 1.40312671140659e64 ) * cos(37 * phi) ) # @torch.jit.script def Yl61_m38(theta, phi): return ( 7.36390213902749e-67 * (1.0 - cos(theta) ** 2) ** 19 * ( 3.26369976238198e78 * cos(theta) ** 23 - 6.82409950316231e78 * cos(theta) ** 21 + 6.02126426749616e78 * cos(theta) ** 19 - 2.93343643801095e78 * cos(theta) ** 17 + 8.67276859933672e77 * cos(theta) ** 15 - 1.6117534565139e77 * cos(theta) ** 13 + 1.88763918330457e76 * cos(theta) ** 11 - 1.36068355284078e75 * cos(theta) ** 9 + 5.72250092316216e73 * cos(theta) ** 7 - 1.27166687181381e72 * cos(theta) ** 5 + 1.2346280308872e70 * cos(theta) ** 3 - 3.33382906630206e67 * cos(theta) ) * cos(38 * phi) ) # @torch.jit.script def Yl61_m39(theta, phi): return ( 1.53547973969296e-68 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 7.50650945347855e79 * cos(theta) ** 22 - 1.43306089566409e80 * cos(theta) ** 20 + 1.14404021082427e80 * cos(theta) ** 18 - 4.98684194461861e79 * cos(theta) ** 16 + 1.30091528990051e79 * cos(theta) ** 14 - 2.09527949346807e78 * cos(theta) ** 12 + 2.07640310163503e77 * cos(theta) ** 10 - 1.2246151975567e76 * cos(theta) ** 8 + 4.00575064621351e74 * cos(theta) ** 6 - 6.35833435906906e72 * cos(theta) ** 4 + 3.70388409266159e70 * cos(theta) ** 2 - 3.33382906630206e67 ) * cos(39 * phi) ) # @torch.jit.script def Yl61_m40(theta, phi): return ( 3.25740728337047e-70 * (1.0 - cos(theta) ** 2) ** 20 * ( 1.65143207976528e81 * cos(theta) ** 21 - 2.86612179132817e81 * cos(theta) ** 19 + 2.05927237948369e81 * cos(theta) ** 17 - 7.97894711138978e80 * cos(theta) ** 15 + 1.82128140586071e80 * cos(theta) ** 13 - 2.51433539216169e79 * cos(theta) ** 11 + 2.07640310163503e78 * cos(theta) ** 9 - 9.79692158045361e76 * cos(theta) ** 7 + 2.40345038772811e75 * cos(theta) ** 5 - 2.54333374362762e73 * cos(theta) ** 3 + 7.40776818532318e70 * cos(theta) ) * cos(40 * phi) ) # @torch.jit.script def Yl61_m41(theta, phi): return ( 7.03821176735559e-72 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 3.46800736750709e82 * cos(theta) ** 20 - 5.44563140352353e82 * cos(theta) ** 18 + 3.50076304512227e82 * cos(theta) ** 16 - 1.19684206670847e82 * cos(theta) ** 14 + 2.36766582761892e81 * cos(theta) ** 12 - 2.76576893137786e80 * cos(theta) ** 10 + 1.86876279147153e79 * cos(theta) ** 8 - 6.85784510631753e77 * cos(theta) ** 6 + 1.20172519386405e76 * cos(theta) ** 4 - 7.63000123088287e73 * cos(theta) ** 2 + 7.40776818532318e70 ) * cos(41 * phi) ) # @torch.jit.script def Yl61_m42(theta, phi): return ( 1.55070333059599e-73 * (1.0 - cos(theta) ** 2) ** 21 * ( 6.93601473501418e83 * cos(theta) ** 19 - 9.80213652634235e83 * cos(theta) ** 17 + 5.60122087219563e83 * cos(theta) ** 15 - 1.67557889339185e83 * cos(theta) ** 13 + 2.84119899314271e82 * cos(theta) ** 11 - 2.76576893137786e81 * cos(theta) ** 9 + 1.49501023317722e80 * cos(theta) ** 7 - 4.11470706379052e78 * cos(theta) ** 5 + 4.80690077545621e76 * cos(theta) ** 3 - 1.52600024617657e74 * cos(theta) ) * cos(42 * phi) ) # @torch.jit.script def Yl61_m43(theta, phi): return ( 3.48847206463754e-75 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 1.31784279965269e85 * cos(theta) ** 18 - 1.6663632094782e85 * cos(theta) ** 16 + 8.40183130829344e84 * cos(theta) ** 14 - 2.17825256140941e84 * cos(theta) ** 12 + 3.12531889245698e83 * cos(theta) ** 10 - 2.48919203824007e82 * cos(theta) ** 8 + 1.04650716322405e81 * cos(theta) ** 6 - 2.05735353189526e79 * cos(theta) ** 4 + 1.44207023263686e77 * cos(theta) ** 2 - 1.52600024617657e74 ) * cos(43 * phi) ) # @torch.jit.script def Yl61_m44(theta, phi): return ( 8.02424808844761e-77 * (1.0 - cos(theta) ** 2) ** 22 * ( 2.37211703937485e86 * cos(theta) ** 17 - 2.66618113516512e86 * cos(theta) ** 15 + 1.17625638316108e86 * cos(theta) ** 13 - 2.61390307369129e85 * cos(theta) ** 11 + 3.12531889245698e84 * cos(theta) ** 9 - 1.99135363059206e83 * cos(theta) ** 7 + 6.27904297934433e81 * cos(theta) ** 5 - 8.22941412758103e79 * cos(theta) ** 3 + 2.88414046527373e77 * cos(theta) ) * cos(44 * phi) ) # @torch.jit.script def Yl61_m45(theta, phi): return ( 1.89028354644417e-78 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 4.03259896693724e87 * cos(theta) ** 16 - 3.99927170274768e87 * cos(theta) ** 14 + 1.52913329810941e87 * cos(theta) ** 12 - 2.87529338106042e86 * cos(theta) ** 10 + 2.81278700321128e85 * cos(theta) ** 8 - 1.39394754141444e84 * cos(theta) ** 6 + 3.13952148967216e82 * cos(theta) ** 4 - 2.46882423827431e80 * cos(theta) ** 2 + 2.88414046527373e77 ) * cos(45 * phi) ) # @torch.jit.script def Yl61_m46(theta, phi): return ( 4.56851519747556e-80 * (1.0 - cos(theta) ** 2) ** 23 * ( 6.45215834709959e88 * cos(theta) ** 15 - 5.59898038384675e88 * cos(theta) ** 13 + 1.83495995773129e88 * cos(theta) ** 11 - 2.87529338106042e87 * cos(theta) ** 9 + 2.25022960256903e86 * cos(theta) ** 7 - 8.36368524848664e84 * cos(theta) ** 5 + 1.25580859586887e83 * cos(theta) ** 3 - 4.93764847654862e80 * cos(theta) ) * cos(46 * phi) ) # @torch.jit.script def Yl61_m47(theta, phi): return ( 1.1350567264218e-81 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 9.67823752064938e89 * cos(theta) ** 14 - 7.27867449900077e89 * cos(theta) ** 12 + 2.01845595350442e89 * cos(theta) ** 10 - 2.58776404295438e88 * cos(theta) ** 8 + 1.57516072179832e87 * cos(theta) ** 6 - 4.18184262424332e85 * cos(theta) ** 4 + 3.7674257876066e83 * cos(theta) ** 2 - 4.93764847654862e80 ) * cos(47 * phi) ) # @torch.jit.script def Yl61_m48(theta, phi): return ( 2.9056299265317e-83 * (1.0 - cos(theta) ** 2) ** 24 * ( 1.35495325289091e91 * cos(theta) ** 13 - 8.73440939880093e90 * cos(theta) ** 11 + 2.01845595350442e90 * cos(theta) ** 9 - 2.0702112343635e89 * cos(theta) ** 7 + 9.45096433078991e87 * cos(theta) ** 5 - 1.67273704969733e86 * cos(theta) ** 3 + 7.53485157521319e83 * cos(theta) ) * cos(48 * phi) ) # @torch.jit.script def Yl61_m49(theta, phi): return ( 7.68373328093602e-85 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.76143922875819e92 * cos(theta) ** 12 - 9.60785033868102e91 * cos(theta) ** 10 + 1.81661035815397e91 * cos(theta) ** 8 - 1.44914786405445e90 * cos(theta) ** 6 + 4.72548216539495e88 * cos(theta) ** 4 - 5.01821114909199e86 * cos(theta) ** 2 + 7.53485157521319e83 ) * cos(49 * phi) ) # @torch.jit.script def Yl61_m50(theta, phi): return ( 2.10532995018392e-86 * (1.0 - cos(theta) ** 2) ** 25 * ( 2.11372707450982e93 * cos(theta) ** 11 - 9.60785033868102e92 * cos(theta) ** 9 + 1.45328828652318e92 * cos(theta) ** 7 - 8.69488718432672e90 * cos(theta) ** 5 + 1.89019286615798e89 * cos(theta) ** 3 - 1.0036422298184e87 * cos(theta) ) * cos(50 * phi) ) # @torch.jit.script def Yl61_m51(theta, phi): return ( 5.99811536901751e-88 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 2.32509978196081e94 * cos(theta) ** 10 - 8.64706530481292e93 * cos(theta) ** 8 + 1.01730180056623e93 * cos(theta) ** 6 - 4.34744359216336e91 * cos(theta) ** 4 + 5.67057859847394e89 * cos(theta) ** 2 - 1.0036422298184e87 ) * cos(51 * phi) ) # @torch.jit.script def Yl61_m52(theta, phi): return ( 1.78433170802171e-89 * (1.0 - cos(theta) ** 2) ** 26 * ( 2.32509978196081e95 * cos(theta) ** 9 - 6.91765224385034e94 * cos(theta) ** 7 + 6.10381080339735e93 * cos(theta) ** 5 - 1.73897743686534e92 * cos(theta) ** 3 + 1.13411571969479e90 * cos(theta) ) * cos(52 * phi) ) # @torch.jit.script def Yl61_m53(theta, phi): return ( 5.57059920296156e-91 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 2.09258980376473e96 * cos(theta) ** 8 - 4.84235657069523e95 * cos(theta) ** 6 + 3.05190540169868e94 * cos(theta) ** 4 - 5.21693231059603e92 * cos(theta) ** 2 + 1.13411571969479e90 ) * cos(53 * phi) ) # @torch.jit.script def Yl61_m54(theta, phi): return ( 1.83657216977349e-92 * (1.0 - cos(theta) ** 2) ** 27 * ( 1.67407184301178e97 * cos(theta) ** 7 - 2.90541394241714e96 * cos(theta) ** 5 + 1.22076216067947e95 * cos(theta) ** 3 - 1.04338646211921e93 * cos(theta) ) * cos(54 * phi) ) # @torch.jit.script def Yl61_m55(theta, phi): return ( 6.44510481250452e-94 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 1.17185029010825e98 * cos(theta) ** 6 - 1.45270697120857e97 * cos(theta) ** 4 + 3.66228648203841e95 * cos(theta) ** 2 - 1.04338646211921e93 ) * cos(55 * phi) ) # @torch.jit.script def Yl61_m56(theta, phi): return ( 2.43254805395122e-95 * (1.0 - cos(theta) ** 2) ** 28 * ( 7.03110174064948e98 * cos(theta) ** 5 - 5.81082788483428e97 * cos(theta) ** 3 + 7.32457296407682e95 * cos(theta) ) * cos(56 * phi) ) # @torch.jit.script def Yl61_m57(theta, phi): return ( 1.00146418526566e-96 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 3.51555087032474e99 * cos(theta) ** 4 - 1.74324836545028e98 * cos(theta) ** 2 + 7.32457296407682e95 ) * cos(57 * phi) ) # @torch.jit.script def Yl61_m58(theta, phi): return ( 4.59020356730306e-98 * (1.0 - cos(theta) ** 2) ** 29 * (1.4062203481299e100 * cos(theta) ** 3 - 3.48649673090057e98 * cos(theta)) * cos(58 * phi) ) # @torch.jit.script def Yl61_m59(theta, phi): return ( 2.41924969941795e-99 * (1.0 - cos(theta) ** 2) ** 29.5 * (4.21866104438969e100 * cos(theta) ** 2 - 3.48649673090057e98) * cos(59 * phi) ) # @torch.jit.script def Yl61_m60(theta, phi): return 13.1213234435527 * (1.0 - cos(theta) ** 2) ** 30 * cos(60 * phi) * cos(theta) # @torch.jit.script def Yl61_m61(theta, phi): return 1.18794880702723 * (1.0 - cos(theta) ** 2) ** 30.5 * cos(61 * phi) # @torch.jit.script def Yl62_m_minus_62(theta, phi): return 1.19272930443867 * (1.0 - cos(theta) ** 2) ** 31 * sin(62 * phi) # @torch.jit.script def Yl62_m_minus_61(theta, phi): return ( 13.2816714315134 * (1.0 - cos(theta) ** 2) ** 30.5 * sin(61 * phi) * cos(theta) ) # @torch.jit.script def Yl62_m_minus_60(theta, phi): return ( 2.00729196448552e-101 * (1.0 - cos(theta) ** 2) ** 30 * (5.18895308459932e102 * cos(theta) ** 2 - 4.21866104438969e100) * sin(60 * phi) ) # @torch.jit.script def Yl62_m_minus_59(theta, phi): return ( 3.84017564342032e-100 * (1.0 - cos(theta) ** 2) ** 29.5 * (1.72965102819977e102 * cos(theta) ** 3 - 4.21866104438969e100 * cos(theta)) * sin(59 * phi) ) # @torch.jit.script def Yl62_m_minus_58(theta, phi): return ( 8.4483864155247e-99 * (1.0 - cos(theta) ** 2) ** 29 * ( 4.32412757049943e101 * cos(theta) ** 4 - 2.10933052219484e100 * cos(theta) ** 2 + 8.71624182725142e97 ) * sin(58 * phi) ) # @torch.jit.script def Yl62_m_minus_57(theta, phi): return ( 2.06942358678965e-97 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 8.64825514099886e100 * cos(theta) ** 5 - 7.03110174064948e99 * cos(theta) ** 3 + 8.71624182725142e97 * cos(theta) ) * sin(57 * phi) ) # @torch.jit.script def Yl62_m_minus_56(theta, phi): return ( 5.52966091440948e-96 * (1.0 - cos(theta) ** 2) ** 28 * ( 1.44137585683314e100 * cos(theta) ** 6 - 1.75777543516237e99 * cos(theta) ** 4 + 4.35812091362571e97 * cos(theta) ** 2 - 1.22076216067947e95 ) * sin(56 * phi) ) # @torch.jit.script def Yl62_m_minus_55(theta, phi): return ( 1.5892364757397e-94 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 2.05910836690449e99 * cos(theta) ** 7 - 3.51555087032474e98 * cos(theta) ** 5 + 1.45270697120857e97 * cos(theta) ** 3 - 1.22076216067947e95 * cos(theta) ) * sin(55 * phi) ) # @torch.jit.script def Yl62_m_minus_54(theta, phi): return ( 4.86212868090609e-93 * (1.0 - cos(theta) ** 2) ** 27 * ( 2.57388545863061e98 * cos(theta) ** 8 - 5.85925145054123e97 * cos(theta) ** 6 + 3.63176742802143e96 * cos(theta) ** 4 - 6.10381080339735e94 * cos(theta) ** 2 + 1.30423307764901e92 ) * sin(54 * phi) ) # @torch.jit.script def Yl62_m_minus_53(theta, phi): return ( 1.57100185561049e-91 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 2.85987273181179e97 * cos(theta) ** 9 - 8.37035921505891e96 * cos(theta) ** 7 + 7.26353485604285e95 * cos(theta) ** 5 - 2.03460360113245e94 * cos(theta) ** 3 + 1.30423307764901e92 * cos(theta) ) * sin(53 * phi) ) # @torch.jit.script def Yl62_m_minus_52(theta, phi): return ( 5.32752649442622e-90 * (1.0 - cos(theta) ** 2) ** 26 * ( 2.85987273181179e96 * cos(theta) ** 10 - 1.04629490188236e96 * cos(theta) ** 8 + 1.21058914267381e95 * cos(theta) ** 6 - 5.08650900283113e93 * cos(theta) ** 4 + 6.52116538824504e91 * cos(theta) ** 2 - 1.13411571969479e89 ) * sin(52 * phi) ) # @torch.jit.script def Yl62_m_minus_51(theta, phi): return ( 1.88657635255539e-88 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 2.59988430164708e95 * cos(theta) ** 11 - 1.1625498909804e95 * cos(theta) ** 9 + 1.72941306096258e94 * cos(theta) ** 7 - 1.01730180056623e93 * cos(theta) ** 5 + 2.17372179608168e91 * cos(theta) ** 3 - 1.13411571969479e89 * cos(theta) ) * sin(51 * phi) ) # @torch.jit.script def Yl62_m_minus_50(theta, phi): return ( 6.94711089081838e-87 * (1.0 - cos(theta) ** 2) ** 25 * ( 2.16657025137257e94 * cos(theta) ** 12 - 1.1625498909804e94 * cos(theta) ** 10 + 2.16176632620323e93 * cos(theta) ** 8 - 1.69550300094371e92 * cos(theta) ** 6 + 5.4343044902042e90 * cos(theta) ** 4 - 5.67057859847394e88 * cos(theta) ** 2 + 8.36368524848664e85 ) * sin(50 * phi) ) # @torch.jit.script def Yl62_m_minus_49(theta, phi): return ( 2.6508485661369e-85 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.66659250105582e93 * cos(theta) ** 13 - 1.05686353725491e93 * cos(theta) ** 11 + 2.40196258467026e92 * cos(theta) ** 9 - 2.4221471442053e91 * cos(theta) ** 7 + 1.08686089804084e90 * cos(theta) ** 5 - 1.89019286615798e88 * cos(theta) ** 3 + 8.36368524848664e85 * cos(theta) ) * sin(49 * phi) ) # @torch.jit.script def Yl62_m_minus_48(theta, phi): return ( 1.04498588887109e-83 * (1.0 - cos(theta) ** 2) ** 24 * ( 1.19042321503987e92 * cos(theta) ** 14 - 8.80719614379094e91 * cos(theta) ** 12 + 2.40196258467026e91 * cos(theta) ** 10 - 3.02768393025662e90 * cos(theta) ** 8 + 1.81143483006807e89 * cos(theta) ** 6 - 4.72548216539495e87 * cos(theta) ** 4 + 4.18184262424332e85 * cos(theta) ** 2 - 5.382036839438e82 ) * sin(48 * phi) ) # @torch.jit.script def Yl62_m_minus_47(theta, phi): return ( 4.24475274674568e-82 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 7.93615476693249e90 * cos(theta) ** 15 - 6.77476626445457e90 * cos(theta) ** 13 + 2.18360234970023e90 * cos(theta) ** 11 - 3.36409325584069e89 * cos(theta) ** 9 + 2.58776404295438e88 * cos(theta) ** 7 - 9.45096433078991e86 * cos(theta) ** 5 + 1.39394754141444e85 * cos(theta) ** 3 - 5.382036839438e82 * cos(theta) ) * sin(47 * phi) ) # @torch.jit.script def Yl62_m_minus_46(theta, phi): return ( 1.77266078922259e-80 * (1.0 - cos(theta) ** 2) ** 23 * ( 4.96009672933281e89 * cos(theta) ** 16 - 4.83911876032469e89 * cos(theta) ** 14 + 1.81966862475019e89 * cos(theta) ** 12 - 3.36409325584069e88 * cos(theta) ** 10 + 3.23470505369297e87 * cos(theta) ** 8 - 1.57516072179832e86 * cos(theta) ** 6 + 3.4848688535361e84 * cos(theta) ** 4 - 2.691018419719e82 * cos(theta) ** 2 + 3.08603029784289e79 ) * sin(46 * phi) ) # @torch.jit.script def Yl62_m_minus_45(theta, phi): return ( 7.59559809259046e-79 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 2.91770395843106e88 * cos(theta) ** 17 - 3.22607917354979e88 * cos(theta) ** 15 + 1.39974509596169e88 * cos(theta) ** 13 - 3.05826659621881e87 * cos(theta) ** 11 + 3.59411672632553e86 * cos(theta) ** 9 - 2.25022960256903e85 * cos(theta) ** 7 + 6.9697377070722e83 * cos(theta) ** 5 - 8.97006139906332e81 * cos(theta) ** 3 + 3.08603029784289e79 * cos(theta) ) * sin(45 * phi) ) # @torch.jit.script def Yl62_m_minus_44(theta, phi): return ( 3.3334206245222e-77 * (1.0 - cos(theta) ** 2) ** 22 * ( 1.62094664357281e87 * cos(theta) ** 18 - 2.01629948346862e87 * cos(theta) ** 16 + 9.99817925686919e86 * cos(theta) ** 14 - 2.54855549684901e86 * cos(theta) ** 12 + 3.59411672632553e85 * cos(theta) ** 10 - 2.81278700321128e84 * cos(theta) ** 8 + 1.1616229511787e83 * cos(theta) ** 6 - 2.24251534976583e81 * cos(theta) ** 4 + 1.54301514892144e79 * cos(theta) ** 2 - 1.6023002584854e76 ) * sin(44 * phi) ) # @torch.jit.script def Yl62_m_minus_43(theta, phi): return ( 1.49595955235494e-75 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 8.53129812406744e85 * cos(theta) ** 19 - 1.18605851968742e86 * cos(theta) ** 17 + 6.6654528379128e85 * cos(theta) ** 15 - 1.96042730526847e85 * cos(theta) ** 13 + 3.26737884211412e84 * cos(theta) ** 11 - 3.12531889245698e83 * cos(theta) ** 9 + 1.65946135882672e82 * cos(theta) ** 7 - 4.48503069953166e80 * cos(theta) ** 5 + 5.14338382973815e78 * cos(theta) ** 3 - 1.6023002584854e76 * cos(theta) ) * sin(43 * phi) ) # @torch.jit.script def Yl62_m_minus_42(theta, phi): return ( 6.85534788525874e-74 * (1.0 - cos(theta) ** 2) ** 21 * ( 4.26564906203372e84 * cos(theta) ** 20 - 6.58921399826347e84 * cos(theta) ** 18 + 4.1659080236955e84 * cos(theta) ** 16 - 1.40030521804891e84 * cos(theta) ** 14 + 2.72281570176176e83 * cos(theta) ** 12 - 3.12531889245698e82 * cos(theta) ** 10 + 2.07432669853339e81 * cos(theta) ** 8 - 7.4750511658861e79 * cos(theta) ** 6 + 1.28584595743454e78 * cos(theta) ** 4 - 8.01150129242702e75 * cos(theta) ** 2 + 7.63000123088287e72 ) * sin(42 * phi) ) # @torch.jit.script def Yl62_m_minus_41(theta, phi): return ( 3.2037293185814e-72 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 2.03126145811129e83 * cos(theta) ** 21 - 3.46800736750709e83 * cos(theta) ** 19 + 2.45053413158559e83 * cos(theta) ** 17 - 9.33536812032604e82 * cos(theta) ** 15 + 2.09447361673982e82 * cos(theta) ** 13 - 2.84119899314271e81 * cos(theta) ** 11 + 2.30480744281488e80 * cos(theta) ** 9 - 1.06786445226944e79 * cos(theta) ** 7 + 2.57169191486907e77 * cos(theta) ** 5 - 2.67050043080901e75 * cos(theta) ** 3 + 7.63000123088287e72 * cos(theta) ) * sin(41 * phi) ) # @torch.jit.script def Yl62_m_minus_40(theta, phi): return ( 1.52505591979142e-70 * (1.0 - cos(theta) ** 2) ** 20 * ( 9.23300662777861e81 * cos(theta) ** 22 - 1.73400368375354e82 * cos(theta) ** 20 + 1.36140785088088e82 * cos(theta) ** 18 - 5.83460507520378e81 * cos(theta) ** 16 + 1.49605258338558e81 * cos(theta) ** 14 - 2.36766582761892e80 * cos(theta) ** 12 + 2.30480744281488e79 * cos(theta) ** 10 - 1.3348305653368e78 * cos(theta) ** 8 + 4.28615319144845e76 * cos(theta) ** 6 - 6.67625107702251e74 * cos(theta) ** 4 + 3.81500061544144e72 * cos(theta) ** 2 - 3.36716735696508e69 ) * sin(40 * phi) ) # @torch.jit.script def Yl62_m_minus_39(theta, phi): return ( 7.38668828381131e-69 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 4.01435070772983e80 * cos(theta) ** 23 - 8.2571603988264e80 * cos(theta) ** 21 + 7.16530447832043e80 * cos(theta) ** 19 - 3.43212063247281e80 * cos(theta) ** 17 + 9.97368388923723e79 * cos(theta) ** 15 - 1.82128140586071e79 * cos(theta) ** 13 + 2.09527949346807e78 * cos(theta) ** 11 - 1.48314507259645e77 * cos(theta) ** 9 + 6.12307598778351e75 * cos(theta) ** 7 - 1.3352502154045e74 * cos(theta) ** 5 + 1.27166687181381e72 * cos(theta) ** 3 - 3.36716735696508e69 * cos(theta) ) * sin(39 * phi) ) # @torch.jit.script def Yl62_m_minus_38(theta, phi): return ( 3.63677204477434e-67 * (1.0 - cos(theta) ** 2) ** 19 * ( 1.67264612822076e79 * cos(theta) ** 24 - 3.75325472673927e79 * cos(theta) ** 22 + 3.58265223916021e79 * cos(theta) ** 20 - 1.90673368470712e79 * cos(theta) ** 18 + 6.23355243077327e78 * cos(theta) ** 16 - 1.30091528990051e78 * cos(theta) ** 14 + 1.74606624455673e77 * cos(theta) ** 12 - 1.48314507259645e76 * cos(theta) ** 10 + 7.65384498472938e74 * cos(theta) ** 8 - 2.22541702567417e73 * cos(theta) ** 6 + 3.17916717953453e71 * cos(theta) ** 4 - 1.68358367848254e69 * cos(theta) ** 2 + 1.38909544429253e66 ) * sin(38 * phi) ) # @torch.jit.script def Yl62_m_minus_37(theta, phi): return ( 1.81838602238717e-65 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 6.69058451288305e77 * cos(theta) ** 25 - 1.63184988119099e78 * cos(theta) ** 23 + 1.70602487579058e78 * cos(theta) ** 21 - 1.00354404458269e78 * cos(theta) ** 19 + 3.66679554751369e77 * cos(theta) ** 17 - 8.67276859933672e76 * cos(theta) ** 15 + 1.34312788042825e76 * cos(theta) ** 13 - 1.34831370236041e75 * cos(theta) ** 11 + 8.50427220525487e73 * cos(theta) ** 9 - 3.17916717953453e72 * cos(theta) ** 7 + 6.35833435906906e70 * cos(theta) ** 5 - 5.6119455949418e68 * cos(theta) ** 3 + 1.38909544429253e66 * cos(theta) ) * sin(37 * phi) ) # @torch.jit.script def Yl62_m_minus_36(theta, phi): return ( 9.22550939937039e-64 * (1.0 - cos(theta) ** 2) ** 18 * ( 2.57330173572425e76 * cos(theta) ** 26 - 6.79937450496245e76 * cos(theta) ** 24 + 7.75465852632081e76 * cos(theta) ** 22 - 5.01772022291347e76 * cos(theta) ** 20 + 2.0371086375076e76 * cos(theta) ** 18 - 5.42048037458545e75 * cos(theta) ** 16 + 9.59377057448752e74 * cos(theta) ** 14 - 1.12359475196701e74 * cos(theta) ** 12 + 8.50427220525487e72 * cos(theta) ** 10 - 3.97395897441816e71 * cos(theta) ** 8 + 1.05972239317818e70 * cos(theta) ** 6 - 1.40298639873545e68 * cos(theta) ** 4 + 6.94547722146263e65 * cos(theta) ** 2 - 5.39664119771766e62 ) * sin(36 * phi) ) # @torch.jit.script def Yl62_m_minus_35(theta, phi): return ( 4.74553603559859e-62 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 9.53074716934908e74 * cos(theta) ** 27 - 2.71974980198498e75 * cos(theta) ** 25 + 3.37159066361774e75 * cos(theta) ** 23 - 2.38939058233975e75 * cos(theta) ** 21 + 1.07216244079348e75 * cos(theta) ** 19 - 3.18851786740321e74 * cos(theta) ** 17 + 6.39584704965835e73 * cos(theta) ** 15 - 8.64303655359236e72 * cos(theta) ** 13 + 7.7311565502317e71 * cos(theta) ** 11 - 4.41550997157574e70 * cos(theta) ** 9 + 1.51388913311168e69 * cos(theta) ** 7 - 2.8059727974709e67 * cos(theta) ** 5 + 2.31515907382088e65 * cos(theta) ** 3 - 5.39664119771766e62 * cos(theta) ) * sin(35 * phi) ) # @torch.jit.script def Yl62_m_minus_34(theta, phi): return ( 2.47314829543615e-60 * (1.0 - cos(theta) ** 2) ** 17 * ( 3.40383827476753e73 * cos(theta) ** 28 - 1.04605761614807e74 * cos(theta) ** 26 + 1.40482944317406e74 * cos(theta) ** 24 - 1.08608662833625e74 * cos(theta) ** 22 + 5.36081220396738e73 * cos(theta) ** 20 - 1.771398815224e73 * cos(theta) ** 18 + 3.99740440603647e72 * cos(theta) ** 16 - 6.17359753828026e71 * cos(theta) ** 14 + 6.44263045852642e70 * cos(theta) ** 12 - 4.41550997157574e69 * cos(theta) ** 10 + 1.8923614163896e68 * cos(theta) ** 8 - 4.67662132911817e66 * cos(theta) ** 6 + 5.78789768455219e64 * cos(theta) ** 4 - 2.69832059885883e62 * cos(theta) ** 2 + 1.98698129518323e59 ) * sin(34 * phi) ) # @torch.jit.script def Yl62_m_minus_33(theta, phi): return ( 1.30492266343845e-58 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 1.17373733612673e72 * cos(theta) ** 29 - 3.87428746721507e72 * cos(theta) ** 27 + 5.61931777269624e72 * cos(theta) ** 25 - 4.72211577537499e72 * cos(theta) ** 23 + 2.55276771617494e72 * cos(theta) ** 21 - 9.3231516590737e71 * cos(theta) ** 19 + 2.35141435649204e71 * cos(theta) ** 17 - 4.11573169218684e70 * cos(theta) ** 15 + 4.95586958348186e69 * cos(theta) ** 13 - 4.01409997415976e68 * cos(theta) ** 11 + 2.10262379598845e67 * cos(theta) ** 9 - 6.68088761302595e65 * cos(theta) ** 7 + 1.15757953691044e64 * cos(theta) ** 5 - 8.9944019961961e61 * cos(theta) ** 3 + 1.98698129518323e59 * cos(theta) ) * sin(33 * phi) ) # @torch.jit.script def Yl62_m_minus_32(theta, phi): return ( 6.96638069519073e-57 * (1.0 - cos(theta) ** 2) ** 16 * ( 3.91245778708911e70 * cos(theta) ** 30 - 1.38367409543395e71 * cos(theta) ** 28 + 2.16127606642163e71 * cos(theta) ** 26 - 1.96754823973958e71 * cos(theta) ** 24 + 1.1603489618977e71 * cos(theta) ** 22 - 4.66157582953685e70 * cos(theta) ** 20 + 1.30634130916224e70 * cos(theta) ** 18 - 2.57233230761677e69 * cos(theta) ** 16 + 3.53990684534418e68 * cos(theta) ** 14 - 3.3450833117998e67 * cos(theta) ** 12 + 2.10262379598845e66 * cos(theta) ** 10 - 8.35110951628244e64 * cos(theta) ** 8 + 1.92929922818406e63 * cos(theta) ** 6 - 2.24860049904902e61 * cos(theta) ** 4 + 9.93490647591616e58 * cos(theta) ** 2 - 6.97186419362538e55 ) * sin(32 * phi) ) # @torch.jit.script def Yl62_m_minus_31(theta, phi): return ( 3.76055528362249e-55 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 1.26208315712552e69 * cos(theta) ** 31 - 4.77128998425501e69 * cos(theta) ** 29 + 8.00472617193197e69 * cos(theta) ** 27 - 7.87019295895832e69 * cos(theta) ** 25 + 5.04499548651174e69 * cos(theta) ** 23 - 2.21979801406517e69 * cos(theta) ** 21 + 6.87548057453813e68 * cos(theta) ** 19 - 1.51313665153928e68 * cos(theta) ** 17 + 2.35993789689612e67 * cos(theta) ** 15 - 2.57314100907677e66 * cos(theta) ** 13 + 1.91147617817131e65 * cos(theta) ** 11 - 9.27901057364716e63 * cos(theta) ** 9 + 2.75614175454866e62 * cos(theta) ** 7 - 4.49720099809805e60 * cos(theta) ** 5 + 3.31163549197205e58 * cos(theta) ** 3 - 6.97186419362538e55 * cos(theta) ) * sin(31 * phi) ) # @torch.jit.script def Yl62_m_minus_30(theta, phi): return ( 2.05148544958415e-53 * (1.0 - cos(theta) ** 2) ** 15 * ( 3.94400986601725e67 * cos(theta) ** 32 - 1.59042999475167e68 * cos(theta) ** 30 + 2.85883077568999e68 * cos(theta) ** 28 - 3.02699729190705e68 * cos(theta) ** 26 + 2.10208145271323e68 * cos(theta) ** 24 - 1.00899909730235e68 * cos(theta) ** 22 + 3.43774028726906e67 * cos(theta) ** 20 - 8.40631473077377e66 * cos(theta) ** 18 + 1.47496118556008e66 * cos(theta) ** 16 - 1.83795786362626e65 * cos(theta) ** 14 + 1.59289681514276e64 * cos(theta) ** 12 - 9.27901057364716e62 * cos(theta) ** 10 + 3.44517719318583e61 * cos(theta) ** 8 - 7.49533499683008e59 * cos(theta) ** 6 + 8.27908872993013e57 * cos(theta) ** 4 - 3.48593209681269e55 * cos(theta) ** 2 + 2.34269630162143e52 ) * sin(30 * phi) ) # @torch.jit.script def Yl62_m_minus_29(theta, phi): return ( 1.13036662111729e-51 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 1.19515450485371e66 * cos(theta) ** 33 - 5.13041933790862e66 * cos(theta) ** 31 + 9.85803715755168e66 * cos(theta) ** 29 - 1.12111010811372e67 * cos(theta) ** 27 + 8.40832581085291e66 * cos(theta) ** 25 - 4.38695259696673e66 * cos(theta) ** 23 + 1.63701918441384e66 * cos(theta) ** 21 - 4.42437617409146e65 * cos(theta) ** 19 + 8.67624226800045e64 * cos(theta) ** 17 - 1.22530524241751e64 * cos(theta) ** 15 + 1.22530524241751e63 * cos(theta) ** 13 - 8.43546415786105e61 * cos(theta) ** 11 + 3.82797465909536e60 * cos(theta) ** 9 - 1.0707621424043e59 * cos(theta) ** 7 + 1.65581774598603e57 * cos(theta) ** 5 - 1.16197736560423e55 * cos(theta) ** 3 + 2.34269630162143e52 * cos(theta) ) * sin(29 * phi) ) # @torch.jit.script def Yl62_m_minus_28(theta, phi): return ( 6.28752144492021e-50 * (1.0 - cos(theta) ** 2) ** 14 * ( 3.51516030839327e64 * cos(theta) ** 34 - 1.60325604309644e65 * cos(theta) ** 32 + 3.28601238585056e65 * cos(theta) ** 30 - 4.00396467183472e65 * cos(theta) ** 28 + 3.23397146571266e65 * cos(theta) ** 26 - 1.82789691540281e65 * cos(theta) ** 24 + 7.44099629279018e64 * cos(theta) ** 22 - 2.21218808704573e64 * cos(theta) ** 20 + 4.82013459333359e63 * cos(theta) ** 18 - 7.65815776510943e62 * cos(theta) ** 16 + 8.75218030298221e61 * cos(theta) ** 14 - 7.02955346488421e60 * cos(theta) ** 12 + 3.82797465909536e59 * cos(theta) ** 10 - 1.33845267800537e58 * cos(theta) ** 8 + 2.75969624331004e56 * cos(theta) ** 6 - 2.90494341401057e54 * cos(theta) ** 4 + 1.17134815081071e52 * cos(theta) ** 2 - 7.57173982424509e48 ) * sin(28 * phi) ) # @torch.jit.script def Yl62_m_minus_27(theta, phi): return ( 3.52886265883279e-48 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.00433151668379e63 * cos(theta) ** 35 - 4.8583516457468e63 * cos(theta) ** 33 + 1.06000399543566e64 * cos(theta) ** 31 - 1.38067747304645e64 * cos(theta) ** 29 + 1.19776720952321e64 * cos(theta) ** 27 - 7.31158766161122e63 * cos(theta) ** 25 + 3.23521577947399e63 * cos(theta) ** 23 - 1.0534228985932e63 * cos(theta) ** 21 + 2.53691294385978e62 * cos(theta) ** 19 - 4.50479868535849e61 * cos(theta) ** 17 + 5.83478686865481e60 * cos(theta) ** 15 - 5.4073488191417e59 * cos(theta) ** 13 + 3.47997696281397e58 * cos(theta) ** 11 - 1.48716964222819e57 * cos(theta) ** 9 + 3.94242320472863e55 * cos(theta) ** 7 - 5.80988682802115e53 * cos(theta) ** 5 + 3.90449383603572e51 * cos(theta) ** 3 - 7.57173982424509e48 * cos(theta) ) * sin(27 * phi) ) # @torch.jit.script def Yl62_m_minus_26(theta, phi): return ( 1.99747342446286e-46 * (1.0 - cos(theta) ** 2) ** 13 * ( 2.78980976856609e61 * cos(theta) ** 36 - 1.42892695463141e62 * cos(theta) ** 34 + 3.31251248573645e62 * cos(theta) ** 32 - 4.60225824348818e62 * cos(theta) ** 30 + 4.27774003401145e62 * cos(theta) ** 28 - 2.8121491006197e62 * cos(theta) ** 26 + 1.34800657478083e62 * cos(theta) ** 24 - 4.78828590269638e61 * cos(theta) ** 22 + 1.26845647192989e61 * cos(theta) ** 20 - 2.50266593631027e60 * cos(theta) ** 18 + 3.64674179290925e59 * cos(theta) ** 16 - 3.86239201367264e58 * cos(theta) ** 14 + 2.89998080234497e57 * cos(theta) ** 12 - 1.48716964222819e56 * cos(theta) ** 10 + 4.92802900591079e54 * cos(theta) ** 8 - 9.68314471336858e52 * cos(theta) ** 6 + 9.76123459008929e50 * cos(theta) ** 4 - 3.78586991212254e48 * cos(theta) ** 2 + 2.36321467673068e45 ) * sin(26 * phi) ) # @torch.jit.script def Yl62_m_minus_25(theta, phi): return ( 1.1397857107875e-44 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 7.54002640152997e59 * cos(theta) ** 37 - 4.08264844180403e60 * cos(theta) ** 35 + 1.00379166234438e61 * cos(theta) ** 33 - 1.48459943338328e61 * cos(theta) ** 31 + 1.47508277034878e61 * cos(theta) ** 29 - 1.04153670393322e61 * cos(theta) ** 27 + 5.39202629912332e60 * cos(theta) ** 25 - 2.08186343595495e60 * cos(theta) ** 23 + 6.04026891395186e59 * cos(theta) ** 21 - 1.31719259805804e59 * cos(theta) ** 19 + 2.14514223112309e58 * cos(theta) ** 17 - 2.5749280091151e57 * cos(theta) ** 15 + 2.23075446334229e56 * cos(theta) ** 13 - 1.35197240202563e55 * cos(theta) ** 11 + 5.47558778434533e53 * cos(theta) ** 9 - 1.38330638762408e52 * cos(theta) ** 7 + 1.95224691801786e50 * cos(theta) ** 5 - 1.26195663737418e48 * cos(theta) ** 3 + 2.36321467673068e45 * cos(theta) ) * sin(25 * phi) ) # @torch.jit.script def Yl62_m_minus_24(theta, phi): return ( 6.55352005284167e-43 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.98421747408683e58 * cos(theta) ** 38 - 1.13406901161223e59 * cos(theta) ** 36 + 2.95232841865994e59 * cos(theta) ** 34 - 4.63937322932276e59 * cos(theta) ** 32 + 4.91694256782925e59 * cos(theta) ** 30 - 3.71977394261865e59 * cos(theta) ** 28 + 2.07385626889358e59 * cos(theta) ** 26 - 8.67443098314562e58 * cos(theta) ** 24 + 2.74557677906903e58 * cos(theta) ** 22 - 6.58596299029019e57 * cos(theta) ** 20 + 1.19174568395727e57 * cos(theta) ** 18 - 1.60933000569693e56 * cos(theta) ** 16 + 1.59339604524449e55 * cos(theta) ** 14 - 1.12664366835469e54 * cos(theta) ** 12 + 5.47558778434533e52 * cos(theta) ** 10 - 1.7291329845301e51 * cos(theta) ** 8 + 3.2537448633631e49 * cos(theta) ** 6 - 3.15489159343545e47 * cos(theta) ** 4 + 1.18160733836534e45 * cos(theta) ** 2 - 7.14825976022588e41 ) * sin(24 * phi) ) # @torch.jit.script def Yl62_m_minus_23(theta, phi): return ( 3.79538783958076e-41 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 5.08773711304316e56 * cos(theta) ** 39 - 3.06505138273576e57 * cos(theta) ** 37 + 8.43522405331411e57 * cos(theta) ** 35 - 1.40587067555235e58 * cos(theta) ** 33 + 1.58611050575137e58 * cos(theta) ** 31 - 1.2826806698685e58 * cos(theta) ** 29 + 7.68094914405031e57 * cos(theta) ** 27 - 3.46977239325825e57 * cos(theta) ** 25 + 1.19372903437784e57 * cos(theta) ** 23 - 3.13617285251914e56 * cos(theta) ** 21 + 6.27234570503828e55 * cos(theta) ** 19 - 9.46664709233491e54 * cos(theta) ** 17 + 1.06226403016299e54 * cos(theta) ** 15 - 8.66648975657454e52 * cos(theta) ** 13 + 4.97780707667757e51 * cos(theta) ** 11 - 1.92125887170011e50 * cos(theta) ** 9 + 4.64820694766157e48 * cos(theta) ** 7 - 6.30978318687091e46 * cos(theta) ** 5 + 3.93869112788446e44 * cos(theta) ** 3 - 7.14825976022588e41 * cos(theta) ) * sin(23 * phi) ) # @torch.jit.script def Yl62_m_minus_22(theta, phi): return ( 2.21307239148762e-39 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.27193427826079e55 * cos(theta) ** 40 - 8.06592469140989e55 * cos(theta) ** 38 + 2.34311779258725e56 * cos(theta) ** 36 - 4.13491375162457e56 * cos(theta) ** 34 + 4.95659533047304e56 * cos(theta) ** 32 - 4.275602232895e56 * cos(theta) ** 30 + 2.74319612287511e56 * cos(theta) ** 28 - 1.33452784356087e56 * cos(theta) ** 26 + 4.97387097657433e55 * cos(theta) ** 24 - 1.42553311478143e55 * cos(theta) ** 22 + 3.13617285251914e54 * cos(theta) ** 20 - 5.25924838463051e53 * cos(theta) ** 18 + 6.63915018851871e52 * cos(theta) ** 16 - 6.19034982612467e51 * cos(theta) ** 14 + 4.14817256389797e50 * cos(theta) ** 12 - 1.92125887170011e49 * cos(theta) ** 10 + 5.81025868457696e47 * cos(theta) ** 8 - 1.05163053114515e46 * cos(theta) ** 6 + 9.84672781971115e43 * cos(theta) ** 4 - 3.57412988011294e41 * cos(theta) ** 2 + 2.10242934124291e38 ) * sin(22 * phi) ) # @torch.jit.script def Yl62_m_minus_21(theta, phi): return ( 1.29875487787028e-37 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 3.10227872746534e53 * cos(theta) ** 41 - 2.06818581831023e54 * cos(theta) ** 39 + 6.33275079077636e54 * cos(theta) ** 37 - 1.18140392903559e55 * cos(theta) ** 35 + 1.50199858499183e55 * cos(theta) ** 33 - 1.37922652674032e55 * cos(theta) ** 31 + 9.45929697543142e54 * cos(theta) ** 29 - 4.94269571689209e54 * cos(theta) ** 27 + 1.98954839062973e54 * cos(theta) ** 25 - 6.19797006426707e53 * cos(theta) ** 23 + 1.49341564405673e53 * cos(theta) ** 21 - 2.768025465595e52 * cos(theta) ** 19 + 3.90538246383453e51 * cos(theta) ** 17 - 4.12689988408311e50 * cos(theta) ** 15 + 3.19090197222921e49 * cos(theta) ** 13 - 1.74659897427283e48 * cos(theta) ** 11 + 6.45584298286329e46 * cos(theta) ** 9 - 1.50232933020736e45 * cos(theta) ** 7 + 1.96934556394223e43 * cos(theta) ** 5 - 1.19137662670431e41 * cos(theta) ** 3 + 2.10242934124291e38 * cos(theta) ) * sin(21 * phi) ) # @torch.jit.script def Yl62_m_minus_20(theta, phi): return ( 7.66815500333191e-36 * (1.0 - cos(theta) ** 2) ** 10 * ( 7.38637792253653e51 * cos(theta) ** 42 - 5.17046454577557e52 * cos(theta) ** 40 + 1.66651336599378e53 * cos(theta) ** 38 - 3.28167758065442e53 * cos(theta) ** 36 + 4.41764289703479e53 * cos(theta) ** 34 - 4.31008289606351e53 * cos(theta) ** 32 + 3.15309899181047e53 * cos(theta) ** 30 - 1.7652484703186e53 * cos(theta) ** 28 + 7.65210919472973e52 * cos(theta) ** 26 - 2.58248752677795e52 * cos(theta) ** 24 + 6.7882529275306e51 * cos(theta) ** 22 - 1.3840127327975e51 * cos(theta) ** 20 + 2.16965692435252e50 * cos(theta) ** 18 - 2.57931242755195e49 * cos(theta) ** 16 + 2.27921569444944e48 * cos(theta) ** 14 - 1.45549914522736e47 * cos(theta) ** 12 + 6.45584298286329e45 * cos(theta) ** 10 - 1.8779116627592e44 * cos(theta) ** 8 + 3.28224260657038e42 * cos(theta) ** 6 - 2.97844156676078e40 * cos(theta) ** 4 + 1.05121467062145e38 * cos(theta) ** 2 - 6.03106523592343e34 ) * sin(20 * phi) ) # @torch.jit.script def Yl62_m_minus_19(theta, phi): return ( 4.55336051365327e-34 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.71776230756663e50 * cos(theta) ** 43 - 1.2610889136038e51 * cos(theta) ** 41 + 4.27311119485584e51 * cos(theta) ** 39 - 8.86939886663356e51 * cos(theta) ** 37 + 1.26218368486708e52 * cos(theta) ** 35 - 1.30608572607985e52 * cos(theta) ** 33 + 1.01712870703564e52 * cos(theta) ** 31 - 6.08706369075381e51 * cos(theta) ** 29 + 2.83411451656657e51 * cos(theta) ** 27 - 1.03299501071118e51 * cos(theta) ** 25 + 2.95141431631765e50 * cos(theta) ** 23 - 6.59053682284525e49 * cos(theta) ** 21 + 1.14192469702764e49 * cos(theta) ** 19 - 1.51724260444232e48 * cos(theta) ** 17 + 1.51947712963296e47 * cos(theta) ** 15 - 1.11961472709797e46 * cos(theta) ** 13 + 5.86894816623935e44 * cos(theta) ** 11 - 2.08656851417689e43 * cos(theta) ** 9 + 4.68891800938626e41 * cos(theta) ** 7 - 5.95688313352157e39 * cos(theta) ** 5 + 3.50404890207151e37 * cos(theta) ** 3 - 6.03106523592343e34 * cos(theta) ) * sin(19 * phi) ) # @torch.jit.script def Yl62_m_minus_18(theta, phi): return ( 2.71832190462141e-32 * (1.0 - cos(theta) ** 2) ** 9 * ( 3.90400524446963e48 * cos(theta) ** 44 - 3.00259265143761e49 * cos(theta) ** 42 + 1.06827779871396e50 * cos(theta) ** 40 - 2.33405233332462e50 * cos(theta) ** 38 + 3.50606579129745e50 * cos(theta) ** 36 - 3.84142860611721e50 * cos(theta) ** 34 + 3.17852720948636e50 * cos(theta) ** 32 - 2.02902123025127e50 * cos(theta) ** 30 + 1.01218375591663e50 * cos(theta) ** 28 - 3.97305773350453e49 * cos(theta) ** 26 + 1.22975596513236e49 * cos(theta) ** 24 - 2.99569855583875e48 * cos(theta) ** 22 + 5.70962348513821e47 * cos(theta) ** 20 - 8.42912558023512e46 * cos(theta) ** 18 + 9.49673206020599e45 * cos(theta) ** 16 - 7.99724805069978e44 * cos(theta) ** 14 + 4.89079013853279e43 * cos(theta) ** 12 - 2.08656851417689e42 * cos(theta) ** 10 + 5.86114751173283e40 * cos(theta) ** 8 - 9.92813855586928e38 * cos(theta) ** 6 + 8.76012225517878e36 * cos(theta) ** 4 - 3.01553261796171e34 * cos(theta) ** 2 + 1.69221807966426e31 ) * sin(18 * phi) ) # @torch.jit.script def Yl62_m_minus_17(theta, phi): return ( 1.63099314277285e-30 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 8.6755672099325e46 * cos(theta) ** 45 - 6.98277360799445e47 * cos(theta) ** 43 + 2.60555560661942e48 * cos(theta) ** 41 - 5.98474957262723e48 * cos(theta) ** 39 + 9.47585348999312e48 * cos(theta) ** 37 - 1.0975510303192e49 * cos(theta) ** 35 + 9.63190063480717e48 * cos(theta) ** 33 - 6.5452297750041e48 * cos(theta) ** 31 + 3.49028881350562e48 * cos(theta) ** 29 - 1.47150286426094e48 * cos(theta) ** 27 + 4.91902386052942e47 * cos(theta) ** 25 - 1.30247763297337e47 * cos(theta) ** 23 + 2.71886832625629e46 * cos(theta) ** 21 - 4.43638188433427e45 * cos(theta) ** 19 + 5.58631297659176e44 * cos(theta) ** 17 - 5.33149870046652e43 * cos(theta) ** 15 + 3.76214626040984e42 * cos(theta) ** 13 - 1.89688046743353e41 * cos(theta) ** 11 + 6.51238612414759e39 * cos(theta) ** 9 - 1.41830550798133e38 * cos(theta) ** 7 + 1.75202445103576e36 * cos(theta) ** 5 - 1.00517753932057e34 * cos(theta) ** 3 + 1.69221807966426e31 * cos(theta) ) * sin(17 * phi) ) # @torch.jit.script def Yl62_m_minus_16(theta, phi): return ( 9.832061730817e-29 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.88599287172446e45 * cos(theta) ** 46 - 1.58699400181692e46 * cos(theta) ** 44 + 6.20370382528433e46 * cos(theta) ** 42 - 1.49618739315681e47 * cos(theta) ** 40 + 2.49364565526135e47 * cos(theta) ** 38 - 3.04875286199779e47 * cos(theta) ** 36 + 2.83291195141387e47 * cos(theta) ** 34 - 2.04538430468878e47 * cos(theta) ** 32 + 1.16342960450187e47 * cos(theta) ** 30 - 5.25536737236049e46 * cos(theta) ** 28 + 1.89193225404978e46 * cos(theta) ** 26 - 5.42699013738904e45 * cos(theta) ** 24 + 1.2358492392074e45 * cos(theta) ** 22 - 2.21819094216714e44 * cos(theta) ** 20 + 3.10350720921764e43 * cos(theta) ** 18 - 3.33218668779157e42 * cos(theta) ** 16 + 2.68724732886417e41 * cos(theta) ** 14 - 1.58073372286128e40 * cos(theta) ** 12 + 6.51238612414759e38 * cos(theta) ** 10 - 1.77288188497666e37 * cos(theta) ** 8 + 2.92004075172626e35 * cos(theta) ** 6 - 2.51294384830143e33 * cos(theta) ** 4 + 8.4610903983213e30 * cos(theta) ** 2 - 4.65662652631882e27 ) * sin(16 * phi) ) # @torch.jit.script def Yl62_m_minus_15(theta, phi): return ( 5.95306777437426e-27 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 4.0127507909031e43 * cos(theta) ** 47 - 3.52665333737093e44 * cos(theta) ** 45 + 1.44272181983356e45 * cos(theta) ** 43 - 3.6492375442849e45 * cos(theta) ** 41 + 6.39396321861884e45 * cos(theta) ** 39 - 8.23987259999402e45 * cos(theta) ** 37 + 8.09403414689678e45 * cos(theta) ** 35 - 6.19813425663267e45 * cos(theta) ** 33 + 3.7529987241996e45 * cos(theta) ** 31 - 1.81219564564155e45 * cos(theta) ** 29 + 7.00715649648066e44 * cos(theta) ** 27 - 2.17079605495561e44 * cos(theta) ** 25 + 5.37325756177132e43 * cos(theta) ** 23 - 1.05628140103197e43 * cos(theta) ** 21 + 1.63342484695665e42 * cos(theta) ** 19 - 1.96010981634798e41 * cos(theta) ** 17 + 1.79149821924278e40 * cos(theta) ** 15 - 1.2159490175856e39 * cos(theta) ** 13 + 5.92035102195235e37 * cos(theta) ** 11 - 1.96986876108517e36 * cos(theta) ** 9 + 4.17148678818037e34 * cos(theta) ** 7 - 5.02588769660285e32 * cos(theta) ** 5 + 2.8203634661071e30 * cos(theta) ** 3 - 4.65662652631882e27 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl62_m_minus_14(theta, phi): return ( 3.61915187390057e-25 * (1.0 - cos(theta) ** 2) ** 7 * ( 8.35989748104812e41 * cos(theta) ** 48 - 7.66663768993682e42 * cos(theta) ** 46 + 3.27891322689446e43 * cos(theta) ** 44 - 8.68866081972595e43 * cos(theta) ** 42 + 1.59849080465471e44 * cos(theta) ** 40 - 2.16838752631421e44 * cos(theta) ** 38 + 2.24834281858244e44 * cos(theta) ** 36 - 1.82298066371549e44 * cos(theta) ** 34 + 1.17281210131237e44 * cos(theta) ** 32 - 6.0406521521385e43 * cos(theta) ** 30 + 2.50255589160024e43 * cos(theta) ** 28 - 8.34921559598313e42 * cos(theta) ** 26 + 2.23885731740472e42 * cos(theta) ** 24 - 4.80127909559986e41 * cos(theta) ** 22 + 8.16712423478327e40 * cos(theta) ** 20 - 1.0889498979711e40 * cos(theta) ** 18 + 1.11968638702674e39 * cos(theta) ** 16 - 8.68535012561142e37 * cos(theta) ** 14 + 4.93362585162696e36 * cos(theta) ** 12 - 1.96986876108517e35 * cos(theta) ** 10 + 5.21435848522546e33 * cos(theta) ** 8 - 8.37647949433809e31 * cos(theta) ** 6 + 7.05090866526775e29 * cos(theta) ** 4 - 2.32831326315941e27 * cos(theta) ** 2 + 1.25990977443691e24 ) * sin(14 * phi) ) # @torch.jit.script def Yl62_m_minus_13(theta, phi): return ( 2.20857241915218e-23 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.70610152674451e40 * cos(theta) ** 49 - 1.63119950849719e41 * cos(theta) ** 47 + 7.28647383754325e41 * cos(theta) ** 45 - 2.0206187952851e42 * cos(theta) ** 43 + 3.89875806013344e42 * cos(theta) ** 41 - 5.55996801619029e42 * cos(theta) ** 39 + 6.07660221238497e42 * cos(theta) ** 37 - 5.20851618204426e42 * cos(theta) ** 35 + 3.55397606458295e42 * cos(theta) ** 33 - 1.94859746843177e42 * cos(theta) ** 31 + 8.62950307448357e41 * cos(theta) ** 29 - 3.09230207258635e41 * cos(theta) ** 27 + 8.95542926961887e40 * cos(theta) ** 25 - 2.08751265026081e40 * cos(theta) ** 23 + 3.88910677846822e39 * cos(theta) ** 21 - 5.73131525247949e38 * cos(theta) ** 19 + 6.58639051192199e37 * cos(theta) ** 17 - 5.79023341707428e36 * cos(theta) ** 15 + 3.79509680894382e35 * cos(theta) ** 13 - 1.7907897828047e34 * cos(theta) ** 11 + 5.79373165025051e32 * cos(theta) ** 9 - 1.19663992776258e31 * cos(theta) ** 7 + 1.41018173305355e29 * cos(theta) ** 5 - 7.76104421053137e26 * cos(theta) ** 3 + 1.25990977443691e24 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl62_m_minus_12(theta, phi): return ( 1.35246887172678e-21 * (1.0 - cos(theta) ** 2) ** 6 * ( 3.41220305348903e38 * cos(theta) ** 50 - 3.39833230936916e39 * cos(theta) ** 48 + 1.58401605163984e40 * cos(theta) ** 46 - 4.59231544382978e40 * cos(theta) ** 44 + 9.282757286032e40 * cos(theta) ** 42 - 1.38999200404757e41 * cos(theta) ** 40 + 1.59910584536447e41 * cos(theta) ** 38 - 1.44681005056785e41 * cos(theta) ** 36 + 1.04528707781852e41 * cos(theta) ** 34 - 6.08936708884929e40 * cos(theta) ** 32 + 2.87650102482786e40 * cos(theta) ** 30 - 1.10439359735227e40 * cos(theta) ** 28 + 3.44439587293034e39 * cos(theta) ** 26 - 8.69796937608671e38 * cos(theta) ** 24 + 1.76777580839465e38 * cos(theta) ** 22 - 2.86565762623974e37 * cos(theta) ** 20 + 3.65910583995666e36 * cos(theta) ** 18 - 3.61889588567142e35 * cos(theta) ** 16 + 2.71078343495987e34 * cos(theta) ** 14 - 1.49232481900392e33 * cos(theta) ** 12 + 5.79373165025051e31 * cos(theta) ** 10 - 1.49579990970323e30 * cos(theta) ** 8 + 2.35030288842258e28 * cos(theta) ** 6 - 1.94026105263284e26 * cos(theta) ** 4 + 6.29954887218456e23 * cos(theta) ** 2 - 3.35975939849843e20 ) * sin(12 * phi) ) # @torch.jit.script def Yl62_m_minus_11(theta, phi): return ( 8.30860717141439e-20 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 6.69059422252751e36 * cos(theta) ** 51 - 6.93537205993705e37 * cos(theta) ** 49 + 3.37024691838263e38 * cos(theta) ** 47 - 1.02051454307328e39 * cos(theta) ** 45 + 2.15878076419349e39 * cos(theta) ** 43 - 3.39022440011603e39 * cos(theta) ** 41 + 4.10027139837042e39 * cos(theta) ** 39 - 3.91029743396716e39 * cos(theta) ** 37 + 2.9865345080529e39 * cos(theta) ** 35 - 1.84526275419676e39 * cos(theta) ** 33 + 9.27903556396083e38 * cos(theta) ** 31 - 3.80825378397333e38 * cos(theta) ** 29 + 1.27570217515938e38 * cos(theta) ** 27 - 3.47918775043468e37 * cos(theta) ** 25 + 7.6859817756289e36 * cos(theta) ** 23 - 1.36459886963797e36 * cos(theta) ** 21 + 1.92584517892456e35 * cos(theta) ** 19 - 2.12876228568907e34 * cos(theta) ** 17 + 1.80718895663991e33 * cos(theta) ** 15 - 1.14794216846455e32 * cos(theta) ** 13 + 5.26702877295501e30 * cos(theta) ** 11 - 1.66199989967026e29 * cos(theta) ** 9 + 3.35757555488941e27 * cos(theta) ** 7 - 3.88052210526569e25 * cos(theta) ** 5 + 2.09984962406152e23 * cos(theta) ** 3 - 3.35975939849843e20 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl62_m_minus_10(theta, phi): return ( 5.11907306137765e-18 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.28665273510144e35 * cos(theta) ** 52 - 1.38707441198741e36 * cos(theta) ** 50 + 7.02134774663049e36 * cos(theta) ** 48 - 2.21850987624627e37 * cos(theta) ** 46 + 4.90631991862156e37 * cos(theta) ** 44 - 8.07196285741913e37 * cos(theta) ** 42 + 1.02506784959261e38 * cos(theta) ** 40 - 1.02902564051767e38 * cos(theta) ** 38 + 8.29592918903583e37 * cos(theta) ** 36 - 5.42724339469634e37 * cos(theta) ** 34 + 2.89969861373776e37 * cos(theta) ** 32 - 1.26941792799111e37 * cos(theta) ** 30 + 4.5560791969978e36 * cos(theta) ** 28 - 1.33814913478257e36 * cos(theta) ** 26 + 3.20249240651204e35 * cos(theta) ** 24 - 6.20272213471806e34 * cos(theta) ** 22 + 9.62922589462279e33 * cos(theta) ** 20 - 1.18264571427171e33 * cos(theta) ** 18 + 1.12949309789995e32 * cos(theta) ** 16 - 8.19958691760396e30 * cos(theta) ** 14 + 4.38919064412918e29 * cos(theta) ** 12 - 1.66199989967026e28 * cos(theta) ** 10 + 4.19696944361176e26 * cos(theta) ** 8 - 6.46753684210948e24 * cos(theta) ** 6 + 5.2496240601538e22 * cos(theta) ** 4 - 1.67987969924922e20 * cos(theta) ** 2 + 8.85078872101799e16 ) * sin(10 * phi) ) # @torch.jit.script def Yl62_m_minus_9(theta, phi): return ( 3.16224497427806e-16 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 2.42764667000272e33 * cos(theta) ** 53 - 2.71975374899492e34 * cos(theta) ** 51 + 1.43292811155724e35 * cos(theta) ** 49 - 4.72023377924739e35 * cos(theta) ** 47 + 1.09029331524924e36 * cos(theta) ** 45 - 1.87720066451608e36 * cos(theta) ** 43 + 2.50016548681123e36 * cos(theta) ** 41 - 2.63852728337865e36 * cos(theta) ** 39 + 2.24214302406374e36 * cos(theta) ** 37 - 1.55064096991324e36 * cos(theta) ** 35 + 8.78696549617503e35 * cos(theta) ** 33 - 4.09489654190681e35 * cos(theta) ** 31 + 1.57106179206821e35 * cos(theta) ** 29 - 4.95610790660211e34 * cos(theta) ** 27 + 1.28099696260482e34 * cos(theta) ** 25 - 2.69683571074698e33 * cos(theta) ** 23 + 4.58534566410609e32 * cos(theta) ** 21 - 6.22445112774583e31 * cos(theta) ** 19 + 6.64407704647026e30 * cos(theta) ** 17 - 5.46639127840264e29 * cos(theta) ** 15 + 3.37630049548398e28 * cos(theta) ** 13 - 1.51090899970023e27 * cos(theta) ** 11 + 4.66329938179084e25 * cos(theta) ** 9 - 9.23933834587068e23 * cos(theta) ** 7 + 1.04992481203076e22 * cos(theta) ** 5 - 5.59959899749738e19 * cos(theta) ** 3 + 8.85078872101799e16 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl62_m_minus_8(theta, phi): return ( 1.95804002577444e-14 * (1.0 - cos(theta) ** 2) ** 4 * ( 4.49564198148653e31 * cos(theta) ** 54 - 5.23029567114408e32 * cos(theta) ** 52 + 2.86585622311448e33 * cos(theta) ** 50 - 9.83382037343205e33 * cos(theta) ** 48 + 2.37020285923747e34 * cos(theta) ** 46 - 4.26636514662745e34 * cos(theta) ** 44 + 5.95277496859818e34 * cos(theta) ** 42 - 6.59631820844663e34 * cos(theta) ** 40 + 5.9003763791151e34 * cos(theta) ** 38 - 4.30733602753678e34 * cos(theta) ** 36 + 2.58440161652207e34 * cos(theta) ** 34 - 1.27965516934588e34 * cos(theta) ** 32 + 5.23687264022735e33 * cos(theta) ** 30 - 1.77003853807218e33 * cos(theta) ** 28 + 4.92691139463391e32 * cos(theta) ** 26 - 1.12368154614458e32 * cos(theta) ** 24 + 2.08424802913913e31 * cos(theta) ** 22 - 3.11222556387291e30 * cos(theta) ** 20 + 3.6911539147057e29 * cos(theta) ** 18 - 3.41649454900165e28 * cos(theta) ** 16 + 2.41164321105999e27 * cos(theta) ** 14 - 1.25909083308353e26 * cos(theta) ** 12 + 4.66329938179084e24 * cos(theta) ** 10 - 1.15491729323384e23 * cos(theta) ** 8 + 1.74987468671793e21 * cos(theta) ** 6 - 1.39989974937435e19 * cos(theta) ** 4 + 4.425394360509e16 * cos(theta) ** 2 - 23084999272347.4 ) * sin(8 * phi) ) # @torch.jit.script def Yl62_m_minus_7(theta, phi): return ( 1.21493188528242e-12 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 8.17389451179369e29 * cos(theta) ** 55 - 9.86848239838506e30 * cos(theta) ** 53 + 5.61932592767546e31 * cos(theta) ** 51 - 2.00690211702695e32 * cos(theta) ** 49 + 5.04298480688823e32 * cos(theta) ** 47 - 9.48081143694988e32 * cos(theta) ** 45 + 1.38436627176702e33 * cos(theta) ** 43 - 1.60885809962113e33 * cos(theta) ** 41 + 1.51291702028592e33 * cos(theta) ** 39 - 1.16414487230724e33 * cos(theta) ** 37 + 7.38400461863448e32 * cos(theta) ** 35 - 3.87774293741175e32 * cos(theta) ** 33 + 1.68931375491205e32 * cos(theta) ** 31 - 6.10358116576615e31 * cos(theta) ** 29 + 1.82478199801256e31 * cos(theta) ** 27 - 4.4947261845783e30 * cos(theta) ** 25 + 9.06194795277884e29 * cos(theta) ** 23 - 1.48201217327282e29 * cos(theta) ** 21 + 1.94271258668721e28 * cos(theta) ** 19 - 2.00970267588332e27 * cos(theta) ** 17 + 1.60776214070666e26 * cos(theta) ** 15 - 9.68531410064252e24 * cos(theta) ** 13 + 4.23936307435531e23 * cos(theta) ** 11 - 1.28324143692648e22 * cos(theta) ** 9 + 2.49982098102562e20 * cos(theta) ** 7 - 2.79979949874869e18 * cos(theta) ** 5 + 1.475131453503e16 * cos(theta) ** 3 - 23084999272347.4 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl62_m_minus_6(theta, phi): return ( 7.55214794176097e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.45962401996316e28 * cos(theta) ** 56 - 1.82749674044168e29 * cos(theta) ** 54 + 1.08063960147605e30 * cos(theta) ** 52 - 4.0138042340539e30 * cos(theta) ** 50 + 1.05062183476838e31 * cos(theta) ** 48 - 2.06104596455432e31 * cos(theta) ** 46 + 3.14628698128868e31 * cos(theta) ** 44 - 3.83061452290745e31 * cos(theta) ** 42 + 3.78229255071481e31 * cos(theta) ** 40 - 3.06353913765062e31 * cos(theta) ** 38 + 2.05111239406513e31 * cos(theta) ** 36 - 1.14051262865051e31 * cos(theta) ** 34 + 5.27910548410016e30 * cos(theta) ** 32 - 2.03452705525538e30 * cos(theta) ** 30 + 6.51707856433057e29 * cos(theta) ** 28 - 1.72874084022242e29 * cos(theta) ** 26 + 3.77581164699118e28 * cos(theta) ** 24 - 6.73641896942189e27 * cos(theta) ** 22 + 9.71356293343606e26 * cos(theta) ** 20 - 1.11650148660185e26 * cos(theta) ** 18 + 1.00485133794166e25 * cos(theta) ** 16 - 6.91808150045894e23 * cos(theta) ** 14 + 3.53280256196276e22 * cos(theta) ** 12 - 1.28324143692648e21 * cos(theta) ** 10 + 3.12477622628202e19 * cos(theta) ** 8 - 4.66633249791449e17 * cos(theta) ** 6 + 3.6878286337575e15 * cos(theta) ** 4 - 11542499636173.7 * cos(theta) ** 2 + 5974378693.67169 ) * sin(6 * phi) ) # @torch.jit.script def Yl62_m_minus_5(theta, phi): return ( 4.70178074519359e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 2.56074389467221e26 * cos(theta) ** 57 - 3.3227213462576e27 * cos(theta) ** 55 + 2.03894264429443e28 * cos(theta) ** 53 - 7.87020438049784e28 * cos(theta) ** 51 + 2.14412619340486e29 * cos(theta) ** 49 - 4.38520417990281e29 * cos(theta) ** 47 + 6.99174884730817e29 * cos(theta) ** 45 - 8.90840586722663e29 * cos(theta) ** 43 + 9.22510378223124e29 * cos(theta) ** 41 - 7.85522855807852e29 * cos(theta) ** 39 + 5.54354701098684e29 * cos(theta) ** 37 - 3.25860751043004e29 * cos(theta) ** 35 + 1.5997289345758e29 * cos(theta) ** 33 - 6.56299050082381e28 * cos(theta) ** 31 + 2.24726847045882e28 * cos(theta) ** 29 - 6.40274385267565e27 * cos(theta) ** 27 + 1.51032465879647e27 * cos(theta) ** 25 - 2.92887781279213e26 * cos(theta) ** 23 + 4.62550615877908e25 * cos(theta) ** 21 - 5.87632361369393e24 * cos(theta) ** 19 + 5.91089022318624e23 * cos(theta) ** 17 - 4.6120543336393e22 * cos(theta) ** 15 + 2.71754043227905e21 * cos(theta) ** 13 - 1.16658312447862e20 * cos(theta) ** 11 + 3.4719735847578e18 * cos(theta) ** 9 - 6.66618928273498e16 * cos(theta) ** 7 + 737565726751500.0 * cos(theta) ** 5 - 3847499878724.57 * cos(theta) ** 3 + 5974378693.67169 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl62_m_minus_4(theta, phi): return ( 2.93098618378598e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 4.41507568046932e24 * cos(theta) ** 58 - 5.93343097545999e25 * cos(theta) ** 56 + 3.77581971165636e26 * cos(theta) ** 54 - 1.51350084240343e27 * cos(theta) ** 52 + 4.28825238680972e27 * cos(theta) ** 50 - 9.13584204146419e27 * cos(theta) ** 48 + 1.51994540158873e28 * cos(theta) ** 46 - 2.02463769709696e28 * cos(theta) ** 44 + 2.19645328148363e28 * cos(theta) ** 42 - 1.96380713951963e28 * cos(theta) ** 40 + 1.45882816078601e28 * cos(theta) ** 38 - 9.05168752897234e27 * cos(theta) ** 36 + 4.70508510169354e27 * cos(theta) ** 34 - 2.05093453150744e27 * cos(theta) ** 32 + 7.49089490152939e26 * cos(theta) ** 30 - 2.28669423309845e26 * cos(theta) ** 28 + 5.80894099537105e25 * cos(theta) ** 26 - 1.22036575533005e25 * cos(theta) ** 24 + 2.10250279944503e24 * cos(theta) ** 22 - 2.93816180684696e23 * cos(theta) ** 20 + 3.28382790177014e22 * cos(theta) ** 18 - 2.88253395852456e21 * cos(theta) ** 16 + 1.94110030877075e20 * cos(theta) ** 14 - 9.72152603732185e18 * cos(theta) ** 12 + 3.4719735847578e17 * cos(theta) ** 10 - 8.33273660341873e15 * cos(theta) ** 8 + 122927621125250.0 * cos(theta) ** 6 - 961874969681.142 * cos(theta) ** 4 + 2987189346.83584 * cos(theta) ** 2 - 1537410.88360054 ) * sin(4 * phi) ) # @torch.jit.script def Yl62_m_minus_3(theta, phi): return ( 1.82899174293285e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 7.48317911943953e22 * cos(theta) ** 59 - 1.04095280271228e24 * cos(theta) ** 57 + 6.86512674846611e24 * cos(theta) ** 55 - 2.85566196679893e25 * cos(theta) ** 53 + 8.4083380133524e25 * cos(theta) ** 51 - 1.86445755948249e26 * cos(theta) ** 49 + 3.23392638635901e26 * cos(theta) ** 47 - 4.49919488243769e26 * cos(theta) ** 45 + 5.10803088717123e26 * cos(theta) ** 43 - 4.78977351102349e26 * cos(theta) ** 41 + 3.74058502765644e26 * cos(theta) ** 39 - 2.44640203485739e26 * cos(theta) ** 37 + 1.3443100290553e26 * cos(theta) ** 35 - 6.21495312578013e25 * cos(theta) ** 33 + 2.41641771017077e25 * cos(theta) ** 31 - 7.88515252792567e24 * cos(theta) ** 29 + 2.1514596279152e24 * cos(theta) ** 27 - 4.88146302132021e23 * cos(theta) ** 25 + 9.14131651932624e22 * cos(theta) ** 23 - 1.39912466992713e22 * cos(theta) ** 21 + 1.72833047461586e21 * cos(theta) ** 19 - 1.6956082108968e20 * cos(theta) ** 17 + 1.29406687251383e19 * cos(theta) ** 15 - 7.47809695178604e17 * cos(theta) ** 13 + 3.15633962250709e16 * cos(theta) ** 11 - 925859622602081.0 * cos(theta) ** 9 + 17561088732178.6 * cos(theta) ** 7 - 192374993936.228 * cos(theta) ** 5 + 995729782.278615 * cos(theta) ** 3 - 1537410.88360054 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl62_m_minus_2(theta, phi): return ( 0.00114220497737029 * (1.0 - cos(theta) ** 2) * ( 1.24719651990659e21 * cos(theta) ** 60 - 1.7947462115729e22 * cos(theta) ** 58 + 1.22591549079752e23 * cos(theta) ** 56 - 5.28826290147949e23 * cos(theta) ** 54 + 1.61698807949085e24 * cos(theta) ** 52 - 3.72891511896498e24 * cos(theta) ** 50 + 6.73734663824793e24 * cos(theta) ** 48 - 9.78085844008193e24 * cos(theta) ** 46 + 1.16091611072073e25 * cos(theta) ** 44 - 1.1404222645294e25 * cos(theta) ** 42 + 9.3514625691411e24 * cos(theta) ** 40 - 6.43790009172997e24 * cos(theta) ** 38 + 3.73419452515361e24 * cos(theta) ** 36 - 1.82792738993533e24 * cos(theta) ** 34 + 7.55130534428366e23 * cos(theta) ** 32 - 2.62838417597522e23 * cos(theta) ** 30 + 7.68378438541144e22 * cos(theta) ** 28 - 1.87748577743085e22 * cos(theta) ** 26 + 3.8088818830526e21 * cos(theta) ** 24 - 6.35965759057784e20 * cos(theta) ** 22 + 8.6416523730793e19 * cos(theta) ** 20 - 9.42004561609333e18 * cos(theta) ** 18 + 8.08791795321145e17 * cos(theta) ** 16 - 5.34149782270431e16 * cos(theta) ** 14 + 2.63028301875591e15 * cos(theta) ** 12 - 92585962260208.1 * cos(theta) ** 10 + 2195136091522.32 * cos(theta) ** 8 - 32062498989.3714 * cos(theta) ** 6 + 248932445.569654 * cos(theta) ** 4 - 768705.441800269 * cos(theta) ** 2 + 394.207918871933 ) * sin(2 * phi) ) # @torch.jit.script def Yl62_m_minus_1(theta, phi): return ( 0.071367248434602 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 2.04458445886326e19 * cos(theta) ** 61 - 3.04194273147948e20 * cos(theta) ** 59 + 2.15072893122372e21 * cos(theta) ** 57 - 9.61502345723545e21 * cos(theta) ** 55 + 3.05092090469971e22 * cos(theta) ** 53 - 7.31159827248034e22 * cos(theta) ** 51 + 1.37496870168325e23 * cos(theta) ** 49 - 2.08103371065573e23 * cos(theta) ** 47 + 2.57981357937941e23 * cos(theta) ** 45 - 2.65214480123117e23 * cos(theta) ** 43 + 2.2808445290588e23 * cos(theta) ** 41 - 1.6507436132641e23 * cos(theta) ** 39 + 1.00924176355503e23 * cos(theta) ** 37 - 5.22264968552952e22 * cos(theta) ** 35 + 2.28827434675262e22 * cos(theta) ** 33 - 8.47865863217814e21 * cos(theta) ** 31 + 2.64958082255567e21 * cos(theta) ** 29 - 6.95365102752167e20 * cos(theta) ** 27 + 1.52355275322104e20 * cos(theta) ** 25 - 2.76506851764254e19 * cos(theta) ** 23 + 4.11507255860919e18 * cos(theta) ** 21 - 4.95791874531228e17 * cos(theta) ** 19 + 4.75759879600673e16 * cos(theta) ** 17 - 3.56099854846954e15 * cos(theta) ** 15 + 202329462981224.0 * cos(theta) ** 13 - 8416905660018.92 * cos(theta) ** 11 + 243904010169.147 * cos(theta) ** 9 - 4580356998.48163 * cos(theta) ** 7 + 49786489.1139307 * cos(theta) ** 5 - 256235.147266756 * cos(theta) ** 3 + 394.207918871933 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl62_m0(theta, phi): return ( 3.26748282180394e18 * cos(theta) ** 62 - 5.02342277726118e19 * cos(theta) ** 60 + 3.67415632882326e20 * cos(theta) ** 58 - 1.70122700603497e21 * cos(theta) ** 56 + 5.59805467797832e21 * cos(theta) ** 54 - 1.39318543377165e22 * cos(theta) ** 52 + 2.72472549436756e22 * cos(theta) ** 50 - 4.29573839202093e22 * cos(theta) ** 48 + 5.55687259885276e22 * cos(theta) ** 46 - 5.97233970904736e22 * cos(theta) ** 44 + 5.38079368072267e22 * cos(theta) ** 42 - 4.08902326487398e22 * cos(theta) ** 40 + 2.631549625909e22 * cos(theta) ** 38 - 1.43743542114532e22 * cos(theta) ** 36 + 6.66851484036488e21 * cos(theta) ** 34 - 2.62528900031207e21 * cos(theta) ** 32 + 8.75096333437356e20 * cos(theta) ** 30 - 2.46067811923238e20 * cos(theta) ** 28 + 5.80609443863821e19 * cos(theta) ** 26 - 1.14154911830455e19 * cos(theta) ** 24 + 1.8533385685415e18 * cos(theta) ** 22 - 2.45623183782609e17 * cos(theta) ** 20 + 2.61887794156541e16 * cos(theta) ** 18 - 2.20521918029449e15 * cos(theta) ** 16 + 143196050668473.0 * cos(theta) ** 14 - 6949781659109.9 * cos(theta) ** 12 + 241667855374.738 * cos(theta) ** 10 - 5672954351.51968 * cos(theta) ** 8 + 82216729.7321692 * cos(theta) ** 6 - 634714.846105269 * cos(theta) ** 4 + 1952.96875724698 * cos(theta) ** 2 - 0.999984002686627 ) # @torch.jit.script def Yl62_m1(theta, phi): return ( 0.071367248434602 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 2.04458445886326e19 * cos(theta) ** 61 - 3.04194273147948e20 * cos(theta) ** 59 + 2.15072893122372e21 * cos(theta) ** 57 - 9.61502345723545e21 * cos(theta) ** 55 + 3.05092090469971e22 * cos(theta) ** 53 - 7.31159827248034e22 * cos(theta) ** 51 + 1.37496870168325e23 * cos(theta) ** 49 - 2.08103371065573e23 * cos(theta) ** 47 + 2.57981357937941e23 * cos(theta) ** 45 - 2.65214480123117e23 * cos(theta) ** 43 + 2.2808445290588e23 * cos(theta) ** 41 - 1.6507436132641e23 * cos(theta) ** 39 + 1.00924176355503e23 * cos(theta) ** 37 - 5.22264968552952e22 * cos(theta) ** 35 + 2.28827434675262e22 * cos(theta) ** 33 - 8.47865863217814e21 * cos(theta) ** 31 + 2.64958082255567e21 * cos(theta) ** 29 - 6.95365102752167e20 * cos(theta) ** 27 + 1.52355275322104e20 * cos(theta) ** 25 - 2.76506851764254e19 * cos(theta) ** 23 + 4.11507255860919e18 * cos(theta) ** 21 - 4.95791874531228e17 * cos(theta) ** 19 + 4.75759879600673e16 * cos(theta) ** 17 - 3.56099854846954e15 * cos(theta) ** 15 + 202329462981224.0 * cos(theta) ** 13 - 8416905660018.92 * cos(theta) ** 11 + 243904010169.147 * cos(theta) ** 9 - 4580356998.48163 * cos(theta) ** 7 + 49786489.1139307 * cos(theta) ** 5 - 256235.147266756 * cos(theta) ** 3 + 394.207918871933 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl62_m2(theta, phi): return ( 0.00114220497737029 * (1.0 - cos(theta) ** 2) * ( 1.24719651990659e21 * cos(theta) ** 60 - 1.7947462115729e22 * cos(theta) ** 58 + 1.22591549079752e23 * cos(theta) ** 56 - 5.28826290147949e23 * cos(theta) ** 54 + 1.61698807949085e24 * cos(theta) ** 52 - 3.72891511896498e24 * cos(theta) ** 50 + 6.73734663824793e24 * cos(theta) ** 48 - 9.78085844008193e24 * cos(theta) ** 46 + 1.16091611072073e25 * cos(theta) ** 44 - 1.1404222645294e25 * cos(theta) ** 42 + 9.3514625691411e24 * cos(theta) ** 40 - 6.43790009172997e24 * cos(theta) ** 38 + 3.73419452515361e24 * cos(theta) ** 36 - 1.82792738993533e24 * cos(theta) ** 34 + 7.55130534428366e23 * cos(theta) ** 32 - 2.62838417597522e23 * cos(theta) ** 30 + 7.68378438541144e22 * cos(theta) ** 28 - 1.87748577743085e22 * cos(theta) ** 26 + 3.8088818830526e21 * cos(theta) ** 24 - 6.35965759057784e20 * cos(theta) ** 22 + 8.6416523730793e19 * cos(theta) ** 20 - 9.42004561609333e18 * cos(theta) ** 18 + 8.08791795321145e17 * cos(theta) ** 16 - 5.34149782270431e16 * cos(theta) ** 14 + 2.63028301875591e15 * cos(theta) ** 12 - 92585962260208.1 * cos(theta) ** 10 + 2195136091522.32 * cos(theta) ** 8 - 32062498989.3714 * cos(theta) ** 6 + 248932445.569654 * cos(theta) ** 4 - 768705.441800269 * cos(theta) ** 2 + 394.207918871933 ) * cos(2 * phi) ) # @torch.jit.script def Yl62_m3(theta, phi): return ( 1.82899174293285e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 7.48317911943953e22 * cos(theta) ** 59 - 1.04095280271228e24 * cos(theta) ** 57 + 6.86512674846611e24 * cos(theta) ** 55 - 2.85566196679893e25 * cos(theta) ** 53 + 8.4083380133524e25 * cos(theta) ** 51 - 1.86445755948249e26 * cos(theta) ** 49 + 3.23392638635901e26 * cos(theta) ** 47 - 4.49919488243769e26 * cos(theta) ** 45 + 5.10803088717123e26 * cos(theta) ** 43 - 4.78977351102349e26 * cos(theta) ** 41 + 3.74058502765644e26 * cos(theta) ** 39 - 2.44640203485739e26 * cos(theta) ** 37 + 1.3443100290553e26 * cos(theta) ** 35 - 6.21495312578013e25 * cos(theta) ** 33 + 2.41641771017077e25 * cos(theta) ** 31 - 7.88515252792567e24 * cos(theta) ** 29 + 2.1514596279152e24 * cos(theta) ** 27 - 4.88146302132021e23 * cos(theta) ** 25 + 9.14131651932624e22 * cos(theta) ** 23 - 1.39912466992713e22 * cos(theta) ** 21 + 1.72833047461586e21 * cos(theta) ** 19 - 1.6956082108968e20 * cos(theta) ** 17 + 1.29406687251383e19 * cos(theta) ** 15 - 7.47809695178604e17 * cos(theta) ** 13 + 3.15633962250709e16 * cos(theta) ** 11 - 925859622602081.0 * cos(theta) ** 9 + 17561088732178.6 * cos(theta) ** 7 - 192374993936.228 * cos(theta) ** 5 + 995729782.278615 * cos(theta) ** 3 - 1537410.88360054 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl62_m4(theta, phi): return ( 2.93098618378598e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 4.41507568046932e24 * cos(theta) ** 58 - 5.93343097545999e25 * cos(theta) ** 56 + 3.77581971165636e26 * cos(theta) ** 54 - 1.51350084240343e27 * cos(theta) ** 52 + 4.28825238680972e27 * cos(theta) ** 50 - 9.13584204146419e27 * cos(theta) ** 48 + 1.51994540158873e28 * cos(theta) ** 46 - 2.02463769709696e28 * cos(theta) ** 44 + 2.19645328148363e28 * cos(theta) ** 42 - 1.96380713951963e28 * cos(theta) ** 40 + 1.45882816078601e28 * cos(theta) ** 38 - 9.05168752897234e27 * cos(theta) ** 36 + 4.70508510169354e27 * cos(theta) ** 34 - 2.05093453150744e27 * cos(theta) ** 32 + 7.49089490152939e26 * cos(theta) ** 30 - 2.28669423309845e26 * cos(theta) ** 28 + 5.80894099537105e25 * cos(theta) ** 26 - 1.22036575533005e25 * cos(theta) ** 24 + 2.10250279944503e24 * cos(theta) ** 22 - 2.93816180684696e23 * cos(theta) ** 20 + 3.28382790177014e22 * cos(theta) ** 18 - 2.88253395852456e21 * cos(theta) ** 16 + 1.94110030877075e20 * cos(theta) ** 14 - 9.72152603732185e18 * cos(theta) ** 12 + 3.4719735847578e17 * cos(theta) ** 10 - 8.33273660341873e15 * cos(theta) ** 8 + 122927621125250.0 * cos(theta) ** 6 - 961874969681.142 * cos(theta) ** 4 + 2987189346.83584 * cos(theta) ** 2 - 1537410.88360054 ) * cos(4 * phi) ) # @torch.jit.script def Yl62_m5(theta, phi): return ( 4.70178074519359e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 2.56074389467221e26 * cos(theta) ** 57 - 3.3227213462576e27 * cos(theta) ** 55 + 2.03894264429443e28 * cos(theta) ** 53 - 7.87020438049784e28 * cos(theta) ** 51 + 2.14412619340486e29 * cos(theta) ** 49 - 4.38520417990281e29 * cos(theta) ** 47 + 6.99174884730817e29 * cos(theta) ** 45 - 8.90840586722663e29 * cos(theta) ** 43 + 9.22510378223124e29 * cos(theta) ** 41 - 7.85522855807852e29 * cos(theta) ** 39 + 5.54354701098684e29 * cos(theta) ** 37 - 3.25860751043004e29 * cos(theta) ** 35 + 1.5997289345758e29 * cos(theta) ** 33 - 6.56299050082381e28 * cos(theta) ** 31 + 2.24726847045882e28 * cos(theta) ** 29 - 6.40274385267565e27 * cos(theta) ** 27 + 1.51032465879647e27 * cos(theta) ** 25 - 2.92887781279213e26 * cos(theta) ** 23 + 4.62550615877908e25 * cos(theta) ** 21 - 5.87632361369393e24 * cos(theta) ** 19 + 5.91089022318624e23 * cos(theta) ** 17 - 4.6120543336393e22 * cos(theta) ** 15 + 2.71754043227905e21 * cos(theta) ** 13 - 1.16658312447862e20 * cos(theta) ** 11 + 3.4719735847578e18 * cos(theta) ** 9 - 6.66618928273498e16 * cos(theta) ** 7 + 737565726751500.0 * cos(theta) ** 5 - 3847499878724.57 * cos(theta) ** 3 + 5974378693.67169 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl62_m6(theta, phi): return ( 7.55214794176097e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.45962401996316e28 * cos(theta) ** 56 - 1.82749674044168e29 * cos(theta) ** 54 + 1.08063960147605e30 * cos(theta) ** 52 - 4.0138042340539e30 * cos(theta) ** 50 + 1.05062183476838e31 * cos(theta) ** 48 - 2.06104596455432e31 * cos(theta) ** 46 + 3.14628698128868e31 * cos(theta) ** 44 - 3.83061452290745e31 * cos(theta) ** 42 + 3.78229255071481e31 * cos(theta) ** 40 - 3.06353913765062e31 * cos(theta) ** 38 + 2.05111239406513e31 * cos(theta) ** 36 - 1.14051262865051e31 * cos(theta) ** 34 + 5.27910548410016e30 * cos(theta) ** 32 - 2.03452705525538e30 * cos(theta) ** 30 + 6.51707856433057e29 * cos(theta) ** 28 - 1.72874084022242e29 * cos(theta) ** 26 + 3.77581164699118e28 * cos(theta) ** 24 - 6.73641896942189e27 * cos(theta) ** 22 + 9.71356293343606e26 * cos(theta) ** 20 - 1.11650148660185e26 * cos(theta) ** 18 + 1.00485133794166e25 * cos(theta) ** 16 - 6.91808150045894e23 * cos(theta) ** 14 + 3.53280256196276e22 * cos(theta) ** 12 - 1.28324143692648e21 * cos(theta) ** 10 + 3.12477622628202e19 * cos(theta) ** 8 - 4.66633249791449e17 * cos(theta) ** 6 + 3.6878286337575e15 * cos(theta) ** 4 - 11542499636173.7 * cos(theta) ** 2 + 5974378693.67169 ) * cos(6 * phi) ) # @torch.jit.script def Yl62_m7(theta, phi): return ( 1.21493188528242e-12 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 8.17389451179369e29 * cos(theta) ** 55 - 9.86848239838506e30 * cos(theta) ** 53 + 5.61932592767546e31 * cos(theta) ** 51 - 2.00690211702695e32 * cos(theta) ** 49 + 5.04298480688823e32 * cos(theta) ** 47 - 9.48081143694988e32 * cos(theta) ** 45 + 1.38436627176702e33 * cos(theta) ** 43 - 1.60885809962113e33 * cos(theta) ** 41 + 1.51291702028592e33 * cos(theta) ** 39 - 1.16414487230724e33 * cos(theta) ** 37 + 7.38400461863448e32 * cos(theta) ** 35 - 3.87774293741175e32 * cos(theta) ** 33 + 1.68931375491205e32 * cos(theta) ** 31 - 6.10358116576615e31 * cos(theta) ** 29 + 1.82478199801256e31 * cos(theta) ** 27 - 4.4947261845783e30 * cos(theta) ** 25 + 9.06194795277884e29 * cos(theta) ** 23 - 1.48201217327282e29 * cos(theta) ** 21 + 1.94271258668721e28 * cos(theta) ** 19 - 2.00970267588332e27 * cos(theta) ** 17 + 1.60776214070666e26 * cos(theta) ** 15 - 9.68531410064252e24 * cos(theta) ** 13 + 4.23936307435531e23 * cos(theta) ** 11 - 1.28324143692648e22 * cos(theta) ** 9 + 2.49982098102562e20 * cos(theta) ** 7 - 2.79979949874869e18 * cos(theta) ** 5 + 1.475131453503e16 * cos(theta) ** 3 - 23084999272347.4 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl62_m8(theta, phi): return ( 1.95804002577444e-14 * (1.0 - cos(theta) ** 2) ** 4 * ( 4.49564198148653e31 * cos(theta) ** 54 - 5.23029567114408e32 * cos(theta) ** 52 + 2.86585622311448e33 * cos(theta) ** 50 - 9.83382037343205e33 * cos(theta) ** 48 + 2.37020285923747e34 * cos(theta) ** 46 - 4.26636514662745e34 * cos(theta) ** 44 + 5.95277496859818e34 * cos(theta) ** 42 - 6.59631820844663e34 * cos(theta) ** 40 + 5.9003763791151e34 * cos(theta) ** 38 - 4.30733602753678e34 * cos(theta) ** 36 + 2.58440161652207e34 * cos(theta) ** 34 - 1.27965516934588e34 * cos(theta) ** 32 + 5.23687264022735e33 * cos(theta) ** 30 - 1.77003853807218e33 * cos(theta) ** 28 + 4.92691139463391e32 * cos(theta) ** 26 - 1.12368154614458e32 * cos(theta) ** 24 + 2.08424802913913e31 * cos(theta) ** 22 - 3.11222556387291e30 * cos(theta) ** 20 + 3.6911539147057e29 * cos(theta) ** 18 - 3.41649454900165e28 * cos(theta) ** 16 + 2.41164321105999e27 * cos(theta) ** 14 - 1.25909083308353e26 * cos(theta) ** 12 + 4.66329938179084e24 * cos(theta) ** 10 - 1.15491729323384e23 * cos(theta) ** 8 + 1.74987468671793e21 * cos(theta) ** 6 - 1.39989974937435e19 * cos(theta) ** 4 + 4.425394360509e16 * cos(theta) ** 2 - 23084999272347.4 ) * cos(8 * phi) ) # @torch.jit.script def Yl62_m9(theta, phi): return ( 3.16224497427806e-16 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 2.42764667000272e33 * cos(theta) ** 53 - 2.71975374899492e34 * cos(theta) ** 51 + 1.43292811155724e35 * cos(theta) ** 49 - 4.72023377924739e35 * cos(theta) ** 47 + 1.09029331524924e36 * cos(theta) ** 45 - 1.87720066451608e36 * cos(theta) ** 43 + 2.50016548681123e36 * cos(theta) ** 41 - 2.63852728337865e36 * cos(theta) ** 39 + 2.24214302406374e36 * cos(theta) ** 37 - 1.55064096991324e36 * cos(theta) ** 35 + 8.78696549617503e35 * cos(theta) ** 33 - 4.09489654190681e35 * cos(theta) ** 31 + 1.57106179206821e35 * cos(theta) ** 29 - 4.95610790660211e34 * cos(theta) ** 27 + 1.28099696260482e34 * cos(theta) ** 25 - 2.69683571074698e33 * cos(theta) ** 23 + 4.58534566410609e32 * cos(theta) ** 21 - 6.22445112774583e31 * cos(theta) ** 19 + 6.64407704647026e30 * cos(theta) ** 17 - 5.46639127840264e29 * cos(theta) ** 15 + 3.37630049548398e28 * cos(theta) ** 13 - 1.51090899970023e27 * cos(theta) ** 11 + 4.66329938179084e25 * cos(theta) ** 9 - 9.23933834587068e23 * cos(theta) ** 7 + 1.04992481203076e22 * cos(theta) ** 5 - 5.59959899749738e19 * cos(theta) ** 3 + 8.85078872101799e16 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl62_m10(theta, phi): return ( 5.11907306137765e-18 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.28665273510144e35 * cos(theta) ** 52 - 1.38707441198741e36 * cos(theta) ** 50 + 7.02134774663049e36 * cos(theta) ** 48 - 2.21850987624627e37 * cos(theta) ** 46 + 4.90631991862156e37 * cos(theta) ** 44 - 8.07196285741913e37 * cos(theta) ** 42 + 1.02506784959261e38 * cos(theta) ** 40 - 1.02902564051767e38 * cos(theta) ** 38 + 8.29592918903583e37 * cos(theta) ** 36 - 5.42724339469634e37 * cos(theta) ** 34 + 2.89969861373776e37 * cos(theta) ** 32 - 1.26941792799111e37 * cos(theta) ** 30 + 4.5560791969978e36 * cos(theta) ** 28 - 1.33814913478257e36 * cos(theta) ** 26 + 3.20249240651204e35 * cos(theta) ** 24 - 6.20272213471806e34 * cos(theta) ** 22 + 9.62922589462279e33 * cos(theta) ** 20 - 1.18264571427171e33 * cos(theta) ** 18 + 1.12949309789995e32 * cos(theta) ** 16 - 8.19958691760396e30 * cos(theta) ** 14 + 4.38919064412918e29 * cos(theta) ** 12 - 1.66199989967026e28 * cos(theta) ** 10 + 4.19696944361176e26 * cos(theta) ** 8 - 6.46753684210948e24 * cos(theta) ** 6 + 5.2496240601538e22 * cos(theta) ** 4 - 1.67987969924922e20 * cos(theta) ** 2 + 8.85078872101799e16 ) * cos(10 * phi) ) # @torch.jit.script def Yl62_m11(theta, phi): return ( 8.30860717141439e-20 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 6.69059422252751e36 * cos(theta) ** 51 - 6.93537205993705e37 * cos(theta) ** 49 + 3.37024691838263e38 * cos(theta) ** 47 - 1.02051454307328e39 * cos(theta) ** 45 + 2.15878076419349e39 * cos(theta) ** 43 - 3.39022440011603e39 * cos(theta) ** 41 + 4.10027139837042e39 * cos(theta) ** 39 - 3.91029743396716e39 * cos(theta) ** 37 + 2.9865345080529e39 * cos(theta) ** 35 - 1.84526275419676e39 * cos(theta) ** 33 + 9.27903556396083e38 * cos(theta) ** 31 - 3.80825378397333e38 * cos(theta) ** 29 + 1.27570217515938e38 * cos(theta) ** 27 - 3.47918775043468e37 * cos(theta) ** 25 + 7.6859817756289e36 * cos(theta) ** 23 - 1.36459886963797e36 * cos(theta) ** 21 + 1.92584517892456e35 * cos(theta) ** 19 - 2.12876228568907e34 * cos(theta) ** 17 + 1.80718895663991e33 * cos(theta) ** 15 - 1.14794216846455e32 * cos(theta) ** 13 + 5.26702877295501e30 * cos(theta) ** 11 - 1.66199989967026e29 * cos(theta) ** 9 + 3.35757555488941e27 * cos(theta) ** 7 - 3.88052210526569e25 * cos(theta) ** 5 + 2.09984962406152e23 * cos(theta) ** 3 - 3.35975939849843e20 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl62_m12(theta, phi): return ( 1.35246887172678e-21 * (1.0 - cos(theta) ** 2) ** 6 * ( 3.41220305348903e38 * cos(theta) ** 50 - 3.39833230936916e39 * cos(theta) ** 48 + 1.58401605163984e40 * cos(theta) ** 46 - 4.59231544382978e40 * cos(theta) ** 44 + 9.282757286032e40 * cos(theta) ** 42 - 1.38999200404757e41 * cos(theta) ** 40 + 1.59910584536447e41 * cos(theta) ** 38 - 1.44681005056785e41 * cos(theta) ** 36 + 1.04528707781852e41 * cos(theta) ** 34 - 6.08936708884929e40 * cos(theta) ** 32 + 2.87650102482786e40 * cos(theta) ** 30 - 1.10439359735227e40 * cos(theta) ** 28 + 3.44439587293034e39 * cos(theta) ** 26 - 8.69796937608671e38 * cos(theta) ** 24 + 1.76777580839465e38 * cos(theta) ** 22 - 2.86565762623974e37 * cos(theta) ** 20 + 3.65910583995666e36 * cos(theta) ** 18 - 3.61889588567142e35 * cos(theta) ** 16 + 2.71078343495987e34 * cos(theta) ** 14 - 1.49232481900392e33 * cos(theta) ** 12 + 5.79373165025051e31 * cos(theta) ** 10 - 1.49579990970323e30 * cos(theta) ** 8 + 2.35030288842258e28 * cos(theta) ** 6 - 1.94026105263284e26 * cos(theta) ** 4 + 6.29954887218456e23 * cos(theta) ** 2 - 3.35975939849843e20 ) * cos(12 * phi) ) # @torch.jit.script def Yl62_m13(theta, phi): return ( 2.20857241915218e-23 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.70610152674451e40 * cos(theta) ** 49 - 1.63119950849719e41 * cos(theta) ** 47 + 7.28647383754325e41 * cos(theta) ** 45 - 2.0206187952851e42 * cos(theta) ** 43 + 3.89875806013344e42 * cos(theta) ** 41 - 5.55996801619029e42 * cos(theta) ** 39 + 6.07660221238497e42 * cos(theta) ** 37 - 5.20851618204426e42 * cos(theta) ** 35 + 3.55397606458295e42 * cos(theta) ** 33 - 1.94859746843177e42 * cos(theta) ** 31 + 8.62950307448357e41 * cos(theta) ** 29 - 3.09230207258635e41 * cos(theta) ** 27 + 8.95542926961887e40 * cos(theta) ** 25 - 2.08751265026081e40 * cos(theta) ** 23 + 3.88910677846822e39 * cos(theta) ** 21 - 5.73131525247949e38 * cos(theta) ** 19 + 6.58639051192199e37 * cos(theta) ** 17 - 5.79023341707428e36 * cos(theta) ** 15 + 3.79509680894382e35 * cos(theta) ** 13 - 1.7907897828047e34 * cos(theta) ** 11 + 5.79373165025051e32 * cos(theta) ** 9 - 1.19663992776258e31 * cos(theta) ** 7 + 1.41018173305355e29 * cos(theta) ** 5 - 7.76104421053137e26 * cos(theta) ** 3 + 1.25990977443691e24 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl62_m14(theta, phi): return ( 3.61915187390057e-25 * (1.0 - cos(theta) ** 2) ** 7 * ( 8.35989748104812e41 * cos(theta) ** 48 - 7.66663768993682e42 * cos(theta) ** 46 + 3.27891322689446e43 * cos(theta) ** 44 - 8.68866081972595e43 * cos(theta) ** 42 + 1.59849080465471e44 * cos(theta) ** 40 - 2.16838752631421e44 * cos(theta) ** 38 + 2.24834281858244e44 * cos(theta) ** 36 - 1.82298066371549e44 * cos(theta) ** 34 + 1.17281210131237e44 * cos(theta) ** 32 - 6.0406521521385e43 * cos(theta) ** 30 + 2.50255589160024e43 * cos(theta) ** 28 - 8.34921559598313e42 * cos(theta) ** 26 + 2.23885731740472e42 * cos(theta) ** 24 - 4.80127909559986e41 * cos(theta) ** 22 + 8.16712423478327e40 * cos(theta) ** 20 - 1.0889498979711e40 * cos(theta) ** 18 + 1.11968638702674e39 * cos(theta) ** 16 - 8.68535012561142e37 * cos(theta) ** 14 + 4.93362585162696e36 * cos(theta) ** 12 - 1.96986876108517e35 * cos(theta) ** 10 + 5.21435848522546e33 * cos(theta) ** 8 - 8.37647949433809e31 * cos(theta) ** 6 + 7.05090866526775e29 * cos(theta) ** 4 - 2.32831326315941e27 * cos(theta) ** 2 + 1.25990977443691e24 ) * cos(14 * phi) ) # @torch.jit.script def Yl62_m15(theta, phi): return ( 5.95306777437426e-27 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 4.0127507909031e43 * cos(theta) ** 47 - 3.52665333737093e44 * cos(theta) ** 45 + 1.44272181983356e45 * cos(theta) ** 43 - 3.6492375442849e45 * cos(theta) ** 41 + 6.39396321861884e45 * cos(theta) ** 39 - 8.23987259999402e45 * cos(theta) ** 37 + 8.09403414689678e45 * cos(theta) ** 35 - 6.19813425663267e45 * cos(theta) ** 33 + 3.7529987241996e45 * cos(theta) ** 31 - 1.81219564564155e45 * cos(theta) ** 29 + 7.00715649648066e44 * cos(theta) ** 27 - 2.17079605495561e44 * cos(theta) ** 25 + 5.37325756177132e43 * cos(theta) ** 23 - 1.05628140103197e43 * cos(theta) ** 21 + 1.63342484695665e42 * cos(theta) ** 19 - 1.96010981634798e41 * cos(theta) ** 17 + 1.79149821924278e40 * cos(theta) ** 15 - 1.2159490175856e39 * cos(theta) ** 13 + 5.92035102195235e37 * cos(theta) ** 11 - 1.96986876108517e36 * cos(theta) ** 9 + 4.17148678818037e34 * cos(theta) ** 7 - 5.02588769660285e32 * cos(theta) ** 5 + 2.8203634661071e30 * cos(theta) ** 3 - 4.65662652631882e27 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl62_m16(theta, phi): return ( 9.832061730817e-29 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.88599287172446e45 * cos(theta) ** 46 - 1.58699400181692e46 * cos(theta) ** 44 + 6.20370382528433e46 * cos(theta) ** 42 - 1.49618739315681e47 * cos(theta) ** 40 + 2.49364565526135e47 * cos(theta) ** 38 - 3.04875286199779e47 * cos(theta) ** 36 + 2.83291195141387e47 * cos(theta) ** 34 - 2.04538430468878e47 * cos(theta) ** 32 + 1.16342960450187e47 * cos(theta) ** 30 - 5.25536737236049e46 * cos(theta) ** 28 + 1.89193225404978e46 * cos(theta) ** 26 - 5.42699013738904e45 * cos(theta) ** 24 + 1.2358492392074e45 * cos(theta) ** 22 - 2.21819094216714e44 * cos(theta) ** 20 + 3.10350720921764e43 * cos(theta) ** 18 - 3.33218668779157e42 * cos(theta) ** 16 + 2.68724732886417e41 * cos(theta) ** 14 - 1.58073372286128e40 * cos(theta) ** 12 + 6.51238612414759e38 * cos(theta) ** 10 - 1.77288188497666e37 * cos(theta) ** 8 + 2.92004075172626e35 * cos(theta) ** 6 - 2.51294384830143e33 * cos(theta) ** 4 + 8.4610903983213e30 * cos(theta) ** 2 - 4.65662652631882e27 ) * cos(16 * phi) ) # @torch.jit.script def Yl62_m17(theta, phi): return ( 1.63099314277285e-30 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 8.6755672099325e46 * cos(theta) ** 45 - 6.98277360799445e47 * cos(theta) ** 43 + 2.60555560661942e48 * cos(theta) ** 41 - 5.98474957262723e48 * cos(theta) ** 39 + 9.47585348999312e48 * cos(theta) ** 37 - 1.0975510303192e49 * cos(theta) ** 35 + 9.63190063480717e48 * cos(theta) ** 33 - 6.5452297750041e48 * cos(theta) ** 31 + 3.49028881350562e48 * cos(theta) ** 29 - 1.47150286426094e48 * cos(theta) ** 27 + 4.91902386052942e47 * cos(theta) ** 25 - 1.30247763297337e47 * cos(theta) ** 23 + 2.71886832625629e46 * cos(theta) ** 21 - 4.43638188433427e45 * cos(theta) ** 19 + 5.58631297659176e44 * cos(theta) ** 17 - 5.33149870046652e43 * cos(theta) ** 15 + 3.76214626040984e42 * cos(theta) ** 13 - 1.89688046743353e41 * cos(theta) ** 11 + 6.51238612414759e39 * cos(theta) ** 9 - 1.41830550798133e38 * cos(theta) ** 7 + 1.75202445103576e36 * cos(theta) ** 5 - 1.00517753932057e34 * cos(theta) ** 3 + 1.69221807966426e31 * cos(theta) ) * cos(17 * phi) ) # @torch.jit.script def Yl62_m18(theta, phi): return ( 2.71832190462141e-32 * (1.0 - cos(theta) ** 2) ** 9 * ( 3.90400524446963e48 * cos(theta) ** 44 - 3.00259265143761e49 * cos(theta) ** 42 + 1.06827779871396e50 * cos(theta) ** 40 - 2.33405233332462e50 * cos(theta) ** 38 + 3.50606579129745e50 * cos(theta) ** 36 - 3.84142860611721e50 * cos(theta) ** 34 + 3.17852720948636e50 * cos(theta) ** 32 - 2.02902123025127e50 * cos(theta) ** 30 + 1.01218375591663e50 * cos(theta) ** 28 - 3.97305773350453e49 * cos(theta) ** 26 + 1.22975596513236e49 * cos(theta) ** 24 - 2.99569855583875e48 * cos(theta) ** 22 + 5.70962348513821e47 * cos(theta) ** 20 - 8.42912558023512e46 * cos(theta) ** 18 + 9.49673206020599e45 * cos(theta) ** 16 - 7.99724805069978e44 * cos(theta) ** 14 + 4.89079013853279e43 * cos(theta) ** 12 - 2.08656851417689e42 * cos(theta) ** 10 + 5.86114751173283e40 * cos(theta) ** 8 - 9.92813855586928e38 * cos(theta) ** 6 + 8.76012225517878e36 * cos(theta) ** 4 - 3.01553261796171e34 * cos(theta) ** 2 + 1.69221807966426e31 ) * cos(18 * phi) ) # @torch.jit.script def Yl62_m19(theta, phi): return ( 4.55336051365327e-34 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.71776230756663e50 * cos(theta) ** 43 - 1.2610889136038e51 * cos(theta) ** 41 + 4.27311119485584e51 * cos(theta) ** 39 - 8.86939886663356e51 * cos(theta) ** 37 + 1.26218368486708e52 * cos(theta) ** 35 - 1.30608572607985e52 * cos(theta) ** 33 + 1.01712870703564e52 * cos(theta) ** 31 - 6.08706369075381e51 * cos(theta) ** 29 + 2.83411451656657e51 * cos(theta) ** 27 - 1.03299501071118e51 * cos(theta) ** 25 + 2.95141431631765e50 * cos(theta) ** 23 - 6.59053682284525e49 * cos(theta) ** 21 + 1.14192469702764e49 * cos(theta) ** 19 - 1.51724260444232e48 * cos(theta) ** 17 + 1.51947712963296e47 * cos(theta) ** 15 - 1.11961472709797e46 * cos(theta) ** 13 + 5.86894816623935e44 * cos(theta) ** 11 - 2.08656851417689e43 * cos(theta) ** 9 + 4.68891800938626e41 * cos(theta) ** 7 - 5.95688313352157e39 * cos(theta) ** 5 + 3.50404890207151e37 * cos(theta) ** 3 - 6.03106523592343e34 * cos(theta) ) * cos(19 * phi) ) # @torch.jit.script def Yl62_m20(theta, phi): return ( 7.66815500333191e-36 * (1.0 - cos(theta) ** 2) ** 10 * ( 7.38637792253653e51 * cos(theta) ** 42 - 5.17046454577557e52 * cos(theta) ** 40 + 1.66651336599378e53 * cos(theta) ** 38 - 3.28167758065442e53 * cos(theta) ** 36 + 4.41764289703479e53 * cos(theta) ** 34 - 4.31008289606351e53 * cos(theta) ** 32 + 3.15309899181047e53 * cos(theta) ** 30 - 1.7652484703186e53 * cos(theta) ** 28 + 7.65210919472973e52 * cos(theta) ** 26 - 2.58248752677795e52 * cos(theta) ** 24 + 6.7882529275306e51 * cos(theta) ** 22 - 1.3840127327975e51 * cos(theta) ** 20 + 2.16965692435252e50 * cos(theta) ** 18 - 2.57931242755195e49 * cos(theta) ** 16 + 2.27921569444944e48 * cos(theta) ** 14 - 1.45549914522736e47 * cos(theta) ** 12 + 6.45584298286329e45 * cos(theta) ** 10 - 1.8779116627592e44 * cos(theta) ** 8 + 3.28224260657038e42 * cos(theta) ** 6 - 2.97844156676078e40 * cos(theta) ** 4 + 1.05121467062145e38 * cos(theta) ** 2 - 6.03106523592343e34 ) * cos(20 * phi) ) # @torch.jit.script def Yl62_m21(theta, phi): return ( 1.29875487787028e-37 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 3.10227872746534e53 * cos(theta) ** 41 - 2.06818581831023e54 * cos(theta) ** 39 + 6.33275079077636e54 * cos(theta) ** 37 - 1.18140392903559e55 * cos(theta) ** 35 + 1.50199858499183e55 * cos(theta) ** 33 - 1.37922652674032e55 * cos(theta) ** 31 + 9.45929697543142e54 * cos(theta) ** 29 - 4.94269571689209e54 * cos(theta) ** 27 + 1.98954839062973e54 * cos(theta) ** 25 - 6.19797006426707e53 * cos(theta) ** 23 + 1.49341564405673e53 * cos(theta) ** 21 - 2.768025465595e52 * cos(theta) ** 19 + 3.90538246383453e51 * cos(theta) ** 17 - 4.12689988408311e50 * cos(theta) ** 15 + 3.19090197222921e49 * cos(theta) ** 13 - 1.74659897427283e48 * cos(theta) ** 11 + 6.45584298286329e46 * cos(theta) ** 9 - 1.50232933020736e45 * cos(theta) ** 7 + 1.96934556394223e43 * cos(theta) ** 5 - 1.19137662670431e41 * cos(theta) ** 3 + 2.10242934124291e38 * cos(theta) ) * cos(21 * phi) ) # @torch.jit.script def Yl62_m22(theta, phi): return ( 2.21307239148762e-39 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.27193427826079e55 * cos(theta) ** 40 - 8.06592469140989e55 * cos(theta) ** 38 + 2.34311779258725e56 * cos(theta) ** 36 - 4.13491375162457e56 * cos(theta) ** 34 + 4.95659533047304e56 * cos(theta) ** 32 - 4.275602232895e56 * cos(theta) ** 30 + 2.74319612287511e56 * cos(theta) ** 28 - 1.33452784356087e56 * cos(theta) ** 26 + 4.97387097657433e55 * cos(theta) ** 24 - 1.42553311478143e55 * cos(theta) ** 22 + 3.13617285251914e54 * cos(theta) ** 20 - 5.25924838463051e53 * cos(theta) ** 18 + 6.63915018851871e52 * cos(theta) ** 16 - 6.19034982612467e51 * cos(theta) ** 14 + 4.14817256389797e50 * cos(theta) ** 12 - 1.92125887170011e49 * cos(theta) ** 10 + 5.81025868457696e47 * cos(theta) ** 8 - 1.05163053114515e46 * cos(theta) ** 6 + 9.84672781971115e43 * cos(theta) ** 4 - 3.57412988011294e41 * cos(theta) ** 2 + 2.10242934124291e38 ) * cos(22 * phi) ) # @torch.jit.script def Yl62_m23(theta, phi): return ( 3.79538783958076e-41 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 5.08773711304316e56 * cos(theta) ** 39 - 3.06505138273576e57 * cos(theta) ** 37 + 8.43522405331411e57 * cos(theta) ** 35 - 1.40587067555235e58 * cos(theta) ** 33 + 1.58611050575137e58 * cos(theta) ** 31 - 1.2826806698685e58 * cos(theta) ** 29 + 7.68094914405031e57 * cos(theta) ** 27 - 3.46977239325825e57 * cos(theta) ** 25 + 1.19372903437784e57 * cos(theta) ** 23 - 3.13617285251914e56 * cos(theta) ** 21 + 6.27234570503828e55 * cos(theta) ** 19 - 9.46664709233491e54 * cos(theta) ** 17 + 1.06226403016299e54 * cos(theta) ** 15 - 8.66648975657454e52 * cos(theta) ** 13 + 4.97780707667757e51 * cos(theta) ** 11 - 1.92125887170011e50 * cos(theta) ** 9 + 4.64820694766157e48 * cos(theta) ** 7 - 6.30978318687091e46 * cos(theta) ** 5 + 3.93869112788446e44 * cos(theta) ** 3 - 7.14825976022588e41 * cos(theta) ) * cos(23 * phi) ) # @torch.jit.script def Yl62_m24(theta, phi): return ( 6.55352005284167e-43 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.98421747408683e58 * cos(theta) ** 38 - 1.13406901161223e59 * cos(theta) ** 36 + 2.95232841865994e59 * cos(theta) ** 34 - 4.63937322932276e59 * cos(theta) ** 32 + 4.91694256782925e59 * cos(theta) ** 30 - 3.71977394261865e59 * cos(theta) ** 28 + 2.07385626889358e59 * cos(theta) ** 26 - 8.67443098314562e58 * cos(theta) ** 24 + 2.74557677906903e58 * cos(theta) ** 22 - 6.58596299029019e57 * cos(theta) ** 20 + 1.19174568395727e57 * cos(theta) ** 18 - 1.60933000569693e56 * cos(theta) ** 16 + 1.59339604524449e55 * cos(theta) ** 14 - 1.12664366835469e54 * cos(theta) ** 12 + 5.47558778434533e52 * cos(theta) ** 10 - 1.7291329845301e51 * cos(theta) ** 8 + 3.2537448633631e49 * cos(theta) ** 6 - 3.15489159343545e47 * cos(theta) ** 4 + 1.18160733836534e45 * cos(theta) ** 2 - 7.14825976022588e41 ) * cos(24 * phi) ) # @torch.jit.script def Yl62_m25(theta, phi): return ( 1.1397857107875e-44 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 7.54002640152997e59 * cos(theta) ** 37 - 4.08264844180403e60 * cos(theta) ** 35 + 1.00379166234438e61 * cos(theta) ** 33 - 1.48459943338328e61 * cos(theta) ** 31 + 1.47508277034878e61 * cos(theta) ** 29 - 1.04153670393322e61 * cos(theta) ** 27 + 5.39202629912332e60 * cos(theta) ** 25 - 2.08186343595495e60 * cos(theta) ** 23 + 6.04026891395186e59 * cos(theta) ** 21 - 1.31719259805804e59 * cos(theta) ** 19 + 2.14514223112309e58 * cos(theta) ** 17 - 2.5749280091151e57 * cos(theta) ** 15 + 2.23075446334229e56 * cos(theta) ** 13 - 1.35197240202563e55 * cos(theta) ** 11 + 5.47558778434533e53 * cos(theta) ** 9 - 1.38330638762408e52 * cos(theta) ** 7 + 1.95224691801786e50 * cos(theta) ** 5 - 1.26195663737418e48 * cos(theta) ** 3 + 2.36321467673068e45 * cos(theta) ) * cos(25 * phi) ) # @torch.jit.script def Yl62_m26(theta, phi): return ( 1.99747342446286e-46 * (1.0 - cos(theta) ** 2) ** 13 * ( 2.78980976856609e61 * cos(theta) ** 36 - 1.42892695463141e62 * cos(theta) ** 34 + 3.31251248573645e62 * cos(theta) ** 32 - 4.60225824348818e62 * cos(theta) ** 30 + 4.27774003401145e62 * cos(theta) ** 28 - 2.8121491006197e62 * cos(theta) ** 26 + 1.34800657478083e62 * cos(theta) ** 24 - 4.78828590269638e61 * cos(theta) ** 22 + 1.26845647192989e61 * cos(theta) ** 20 - 2.50266593631027e60 * cos(theta) ** 18 + 3.64674179290925e59 * cos(theta) ** 16 - 3.86239201367264e58 * cos(theta) ** 14 + 2.89998080234497e57 * cos(theta) ** 12 - 1.48716964222819e56 * cos(theta) ** 10 + 4.92802900591079e54 * cos(theta) ** 8 - 9.68314471336858e52 * cos(theta) ** 6 + 9.76123459008929e50 * cos(theta) ** 4 - 3.78586991212254e48 * cos(theta) ** 2 + 2.36321467673068e45 ) * cos(26 * phi) ) # @torch.jit.script def Yl62_m27(theta, phi): return ( 3.52886265883279e-48 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.00433151668379e63 * cos(theta) ** 35 - 4.8583516457468e63 * cos(theta) ** 33 + 1.06000399543566e64 * cos(theta) ** 31 - 1.38067747304645e64 * cos(theta) ** 29 + 1.19776720952321e64 * cos(theta) ** 27 - 7.31158766161122e63 * cos(theta) ** 25 + 3.23521577947399e63 * cos(theta) ** 23 - 1.0534228985932e63 * cos(theta) ** 21 + 2.53691294385978e62 * cos(theta) ** 19 - 4.50479868535849e61 * cos(theta) ** 17 + 5.83478686865481e60 * cos(theta) ** 15 - 5.4073488191417e59 * cos(theta) ** 13 + 3.47997696281397e58 * cos(theta) ** 11 - 1.48716964222819e57 * cos(theta) ** 9 + 3.94242320472863e55 * cos(theta) ** 7 - 5.80988682802115e53 * cos(theta) ** 5 + 3.90449383603572e51 * cos(theta) ** 3 - 7.57173982424509e48 * cos(theta) ) * cos(27 * phi) ) # @torch.jit.script def Yl62_m28(theta, phi): return ( 6.28752144492021e-50 * (1.0 - cos(theta) ** 2) ** 14 * ( 3.51516030839327e64 * cos(theta) ** 34 - 1.60325604309644e65 * cos(theta) ** 32 + 3.28601238585056e65 * cos(theta) ** 30 - 4.00396467183472e65 * cos(theta) ** 28 + 3.23397146571266e65 * cos(theta) ** 26 - 1.82789691540281e65 * cos(theta) ** 24 + 7.44099629279018e64 * cos(theta) ** 22 - 2.21218808704573e64 * cos(theta) ** 20 + 4.82013459333359e63 * cos(theta) ** 18 - 7.65815776510943e62 * cos(theta) ** 16 + 8.75218030298221e61 * cos(theta) ** 14 - 7.02955346488421e60 * cos(theta) ** 12 + 3.82797465909536e59 * cos(theta) ** 10 - 1.33845267800537e58 * cos(theta) ** 8 + 2.75969624331004e56 * cos(theta) ** 6 - 2.90494341401057e54 * cos(theta) ** 4 + 1.17134815081071e52 * cos(theta) ** 2 - 7.57173982424509e48 ) * cos(28 * phi) ) # @torch.jit.script def Yl62_m29(theta, phi): return ( 1.13036662111729e-51 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 1.19515450485371e66 * cos(theta) ** 33 - 5.13041933790862e66 * cos(theta) ** 31 + 9.85803715755168e66 * cos(theta) ** 29 - 1.12111010811372e67 * cos(theta) ** 27 + 8.40832581085291e66 * cos(theta) ** 25 - 4.38695259696673e66 * cos(theta) ** 23 + 1.63701918441384e66 * cos(theta) ** 21 - 4.42437617409146e65 * cos(theta) ** 19 + 8.67624226800045e64 * cos(theta) ** 17 - 1.22530524241751e64 * cos(theta) ** 15 + 1.22530524241751e63 * cos(theta) ** 13 - 8.43546415786105e61 * cos(theta) ** 11 + 3.82797465909536e60 * cos(theta) ** 9 - 1.0707621424043e59 * cos(theta) ** 7 + 1.65581774598603e57 * cos(theta) ** 5 - 1.16197736560423e55 * cos(theta) ** 3 + 2.34269630162143e52 * cos(theta) ) * cos(29 * phi) ) # @torch.jit.script def Yl62_m30(theta, phi): return ( 2.05148544958415e-53 * (1.0 - cos(theta) ** 2) ** 15 * ( 3.94400986601725e67 * cos(theta) ** 32 - 1.59042999475167e68 * cos(theta) ** 30 + 2.85883077568999e68 * cos(theta) ** 28 - 3.02699729190705e68 * cos(theta) ** 26 + 2.10208145271323e68 * cos(theta) ** 24 - 1.00899909730235e68 * cos(theta) ** 22 + 3.43774028726906e67 * cos(theta) ** 20 - 8.40631473077377e66 * cos(theta) ** 18 + 1.47496118556008e66 * cos(theta) ** 16 - 1.83795786362626e65 * cos(theta) ** 14 + 1.59289681514276e64 * cos(theta) ** 12 - 9.27901057364716e62 * cos(theta) ** 10 + 3.44517719318583e61 * cos(theta) ** 8 - 7.49533499683008e59 * cos(theta) ** 6 + 8.27908872993013e57 * cos(theta) ** 4 - 3.48593209681269e55 * cos(theta) ** 2 + 2.34269630162143e52 ) * cos(30 * phi) ) # @torch.jit.script def Yl62_m31(theta, phi): return ( 3.76055528362249e-55 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 1.26208315712552e69 * cos(theta) ** 31 - 4.77128998425501e69 * cos(theta) ** 29 + 8.00472617193197e69 * cos(theta) ** 27 - 7.87019295895832e69 * cos(theta) ** 25 + 5.04499548651174e69 * cos(theta) ** 23 - 2.21979801406517e69 * cos(theta) ** 21 + 6.87548057453813e68 * cos(theta) ** 19 - 1.51313665153928e68 * cos(theta) ** 17 + 2.35993789689612e67 * cos(theta) ** 15 - 2.57314100907677e66 * cos(theta) ** 13 + 1.91147617817131e65 * cos(theta) ** 11 - 9.27901057364716e63 * cos(theta) ** 9 + 2.75614175454866e62 * cos(theta) ** 7 - 4.49720099809805e60 * cos(theta) ** 5 + 3.31163549197205e58 * cos(theta) ** 3 - 6.97186419362538e55 * cos(theta) ) * cos(31 * phi) ) # @torch.jit.script def Yl62_m32(theta, phi): return ( 6.96638069519073e-57 * (1.0 - cos(theta) ** 2) ** 16 * ( 3.91245778708911e70 * cos(theta) ** 30 - 1.38367409543395e71 * cos(theta) ** 28 + 2.16127606642163e71 * cos(theta) ** 26 - 1.96754823973958e71 * cos(theta) ** 24 + 1.1603489618977e71 * cos(theta) ** 22 - 4.66157582953685e70 * cos(theta) ** 20 + 1.30634130916224e70 * cos(theta) ** 18 - 2.57233230761677e69 * cos(theta) ** 16 + 3.53990684534418e68 * cos(theta) ** 14 - 3.3450833117998e67 * cos(theta) ** 12 + 2.10262379598845e66 * cos(theta) ** 10 - 8.35110951628244e64 * cos(theta) ** 8 + 1.92929922818406e63 * cos(theta) ** 6 - 2.24860049904902e61 * cos(theta) ** 4 + 9.93490647591616e58 * cos(theta) ** 2 - 6.97186419362538e55 ) * cos(32 * phi) ) # @torch.jit.script def Yl62_m33(theta, phi): return ( 1.30492266343845e-58 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 1.17373733612673e72 * cos(theta) ** 29 - 3.87428746721507e72 * cos(theta) ** 27 + 5.61931777269624e72 * cos(theta) ** 25 - 4.72211577537499e72 * cos(theta) ** 23 + 2.55276771617494e72 * cos(theta) ** 21 - 9.3231516590737e71 * cos(theta) ** 19 + 2.35141435649204e71 * cos(theta) ** 17 - 4.11573169218684e70 * cos(theta) ** 15 + 4.95586958348186e69 * cos(theta) ** 13 - 4.01409997415976e68 * cos(theta) ** 11 + 2.10262379598845e67 * cos(theta) ** 9 - 6.68088761302595e65 * cos(theta) ** 7 + 1.15757953691044e64 * cos(theta) ** 5 - 8.9944019961961e61 * cos(theta) ** 3 + 1.98698129518323e59 * cos(theta) ) * cos(33 * phi) ) # @torch.jit.script def Yl62_m34(theta, phi): return ( 2.47314829543615e-60 * (1.0 - cos(theta) ** 2) ** 17 * ( 3.40383827476753e73 * cos(theta) ** 28 - 1.04605761614807e74 * cos(theta) ** 26 + 1.40482944317406e74 * cos(theta) ** 24 - 1.08608662833625e74 * cos(theta) ** 22 + 5.36081220396738e73 * cos(theta) ** 20 - 1.771398815224e73 * cos(theta) ** 18 + 3.99740440603647e72 * cos(theta) ** 16 - 6.17359753828026e71 * cos(theta) ** 14 + 6.44263045852642e70 * cos(theta) ** 12 - 4.41550997157574e69 * cos(theta) ** 10 + 1.8923614163896e68 * cos(theta) ** 8 - 4.67662132911817e66 * cos(theta) ** 6 + 5.78789768455219e64 * cos(theta) ** 4 - 2.69832059885883e62 * cos(theta) ** 2 + 1.98698129518323e59 ) * cos(34 * phi) ) # @torch.jit.script def Yl62_m35(theta, phi): return ( 4.74553603559859e-62 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 9.53074716934908e74 * cos(theta) ** 27 - 2.71974980198498e75 * cos(theta) ** 25 + 3.37159066361774e75 * cos(theta) ** 23 - 2.38939058233975e75 * cos(theta) ** 21 + 1.07216244079348e75 * cos(theta) ** 19 - 3.18851786740321e74 * cos(theta) ** 17 + 6.39584704965835e73 * cos(theta) ** 15 - 8.64303655359236e72 * cos(theta) ** 13 + 7.7311565502317e71 * cos(theta) ** 11 - 4.41550997157574e70 * cos(theta) ** 9 + 1.51388913311168e69 * cos(theta) ** 7 - 2.8059727974709e67 * cos(theta) ** 5 + 2.31515907382088e65 * cos(theta) ** 3 - 5.39664119771766e62 * cos(theta) ) * cos(35 * phi) ) # @torch.jit.script def Yl62_m36(theta, phi): return ( 9.22550939937039e-64 * (1.0 - cos(theta) ** 2) ** 18 * ( 2.57330173572425e76 * cos(theta) ** 26 - 6.79937450496245e76 * cos(theta) ** 24 + 7.75465852632081e76 * cos(theta) ** 22 - 5.01772022291347e76 * cos(theta) ** 20 + 2.0371086375076e76 * cos(theta) ** 18 - 5.42048037458545e75 * cos(theta) ** 16 + 9.59377057448752e74 * cos(theta) ** 14 - 1.12359475196701e74 * cos(theta) ** 12 + 8.50427220525487e72 * cos(theta) ** 10 - 3.97395897441816e71 * cos(theta) ** 8 + 1.05972239317818e70 * cos(theta) ** 6 - 1.40298639873545e68 * cos(theta) ** 4 + 6.94547722146263e65 * cos(theta) ** 2 - 5.39664119771766e62 ) * cos(36 * phi) ) # @torch.jit.script def Yl62_m37(theta, phi): return ( 1.81838602238717e-65 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 6.69058451288305e77 * cos(theta) ** 25 - 1.63184988119099e78 * cos(theta) ** 23 + 1.70602487579058e78 * cos(theta) ** 21 - 1.00354404458269e78 * cos(theta) ** 19 + 3.66679554751369e77 * cos(theta) ** 17 - 8.67276859933672e76 * cos(theta) ** 15 + 1.34312788042825e76 * cos(theta) ** 13 - 1.34831370236041e75 * cos(theta) ** 11 + 8.50427220525487e73 * cos(theta) ** 9 - 3.17916717953453e72 * cos(theta) ** 7 + 6.35833435906906e70 * cos(theta) ** 5 - 5.6119455949418e68 * cos(theta) ** 3 + 1.38909544429253e66 * cos(theta) ) * cos(37 * phi) ) # @torch.jit.script def Yl62_m38(theta, phi): return ( 3.63677204477434e-67 * (1.0 - cos(theta) ** 2) ** 19 * ( 1.67264612822076e79 * cos(theta) ** 24 - 3.75325472673927e79 * cos(theta) ** 22 + 3.58265223916021e79 * cos(theta) ** 20 - 1.90673368470712e79 * cos(theta) ** 18 + 6.23355243077327e78 * cos(theta) ** 16 - 1.30091528990051e78 * cos(theta) ** 14 + 1.74606624455673e77 * cos(theta) ** 12 - 1.48314507259645e76 * cos(theta) ** 10 + 7.65384498472938e74 * cos(theta) ** 8 - 2.22541702567417e73 * cos(theta) ** 6 + 3.17916717953453e71 * cos(theta) ** 4 - 1.68358367848254e69 * cos(theta) ** 2 + 1.38909544429253e66 ) * cos(38 * phi) ) # @torch.jit.script def Yl62_m39(theta, phi): return ( 7.38668828381131e-69 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 4.01435070772983e80 * cos(theta) ** 23 - 8.2571603988264e80 * cos(theta) ** 21 + 7.16530447832043e80 * cos(theta) ** 19 - 3.43212063247281e80 * cos(theta) ** 17 + 9.97368388923723e79 * cos(theta) ** 15 - 1.82128140586071e79 * cos(theta) ** 13 + 2.09527949346807e78 * cos(theta) ** 11 - 1.48314507259645e77 * cos(theta) ** 9 + 6.12307598778351e75 * cos(theta) ** 7 - 1.3352502154045e74 * cos(theta) ** 5 + 1.27166687181381e72 * cos(theta) ** 3 - 3.36716735696508e69 * cos(theta) ) * cos(39 * phi) ) # @torch.jit.script def Yl62_m40(theta, phi): return ( 1.52505591979142e-70 * (1.0 - cos(theta) ** 2) ** 20 * ( 9.23300662777861e81 * cos(theta) ** 22 - 1.73400368375354e82 * cos(theta) ** 20 + 1.36140785088088e82 * cos(theta) ** 18 - 5.83460507520378e81 * cos(theta) ** 16 + 1.49605258338558e81 * cos(theta) ** 14 - 2.36766582761892e80 * cos(theta) ** 12 + 2.30480744281488e79 * cos(theta) ** 10 - 1.3348305653368e78 * cos(theta) ** 8 + 4.28615319144845e76 * cos(theta) ** 6 - 6.67625107702251e74 * cos(theta) ** 4 + 3.81500061544144e72 * cos(theta) ** 2 - 3.36716735696508e69 ) * cos(40 * phi) ) # @torch.jit.script def Yl62_m41(theta, phi): return ( 3.2037293185814e-72 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 2.03126145811129e83 * cos(theta) ** 21 - 3.46800736750709e83 * cos(theta) ** 19 + 2.45053413158559e83 * cos(theta) ** 17 - 9.33536812032604e82 * cos(theta) ** 15 + 2.09447361673982e82 * cos(theta) ** 13 - 2.84119899314271e81 * cos(theta) ** 11 + 2.30480744281488e80 * cos(theta) ** 9 - 1.06786445226944e79 * cos(theta) ** 7 + 2.57169191486907e77 * cos(theta) ** 5 - 2.67050043080901e75 * cos(theta) ** 3 + 7.63000123088287e72 * cos(theta) ) * cos(41 * phi) ) # @torch.jit.script def Yl62_m42(theta, phi): return ( 6.85534788525874e-74 * (1.0 - cos(theta) ** 2) ** 21 * ( 4.26564906203372e84 * cos(theta) ** 20 - 6.58921399826347e84 * cos(theta) ** 18 + 4.1659080236955e84 * cos(theta) ** 16 - 1.40030521804891e84 * cos(theta) ** 14 + 2.72281570176176e83 * cos(theta) ** 12 - 3.12531889245698e82 * cos(theta) ** 10 + 2.07432669853339e81 * cos(theta) ** 8 - 7.4750511658861e79 * cos(theta) ** 6 + 1.28584595743454e78 * cos(theta) ** 4 - 8.01150129242702e75 * cos(theta) ** 2 + 7.63000123088287e72 ) * cos(42 * phi) ) # @torch.jit.script def Yl62_m43(theta, phi): return ( 1.49595955235494e-75 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 8.53129812406744e85 * cos(theta) ** 19 - 1.18605851968742e86 * cos(theta) ** 17 + 6.6654528379128e85 * cos(theta) ** 15 - 1.96042730526847e85 * cos(theta) ** 13 + 3.26737884211412e84 * cos(theta) ** 11 - 3.12531889245698e83 * cos(theta) ** 9 + 1.65946135882672e82 * cos(theta) ** 7 - 4.48503069953166e80 * cos(theta) ** 5 + 5.14338382973815e78 * cos(theta) ** 3 - 1.6023002584854e76 * cos(theta) ) * cos(43 * phi) ) # @torch.jit.script def Yl62_m44(theta, phi): return ( 3.3334206245222e-77 * (1.0 - cos(theta) ** 2) ** 22 * ( 1.62094664357281e87 * cos(theta) ** 18 - 2.01629948346862e87 * cos(theta) ** 16 + 9.99817925686919e86 * cos(theta) ** 14 - 2.54855549684901e86 * cos(theta) ** 12 + 3.59411672632553e85 * cos(theta) ** 10 - 2.81278700321128e84 * cos(theta) ** 8 + 1.1616229511787e83 * cos(theta) ** 6 - 2.24251534976583e81 * cos(theta) ** 4 + 1.54301514892144e79 * cos(theta) ** 2 - 1.6023002584854e76 ) * cos(44 * phi) ) # @torch.jit.script def Yl62_m45(theta, phi): return ( 7.59559809259046e-79 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 2.91770395843106e88 * cos(theta) ** 17 - 3.22607917354979e88 * cos(theta) ** 15 + 1.39974509596169e88 * cos(theta) ** 13 - 3.05826659621881e87 * cos(theta) ** 11 + 3.59411672632553e86 * cos(theta) ** 9 - 2.25022960256903e85 * cos(theta) ** 7 + 6.9697377070722e83 * cos(theta) ** 5 - 8.97006139906332e81 * cos(theta) ** 3 + 3.08603029784289e79 * cos(theta) ) * cos(45 * phi) ) # @torch.jit.script def Yl62_m46(theta, phi): return ( 1.77266078922259e-80 * (1.0 - cos(theta) ** 2) ** 23 * ( 4.96009672933281e89 * cos(theta) ** 16 - 4.83911876032469e89 * cos(theta) ** 14 + 1.81966862475019e89 * cos(theta) ** 12 - 3.36409325584069e88 * cos(theta) ** 10 + 3.23470505369297e87 * cos(theta) ** 8 - 1.57516072179832e86 * cos(theta) ** 6 + 3.4848688535361e84 * cos(theta) ** 4 - 2.691018419719e82 * cos(theta) ** 2 + 3.08603029784289e79 ) * cos(46 * phi) ) # @torch.jit.script def Yl62_m47(theta, phi): return ( 4.24475274674568e-82 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 7.93615476693249e90 * cos(theta) ** 15 - 6.77476626445457e90 * cos(theta) ** 13 + 2.18360234970023e90 * cos(theta) ** 11 - 3.36409325584069e89 * cos(theta) ** 9 + 2.58776404295438e88 * cos(theta) ** 7 - 9.45096433078991e86 * cos(theta) ** 5 + 1.39394754141444e85 * cos(theta) ** 3 - 5.382036839438e82 * cos(theta) ) * cos(47 * phi) ) # @torch.jit.script def Yl62_m48(theta, phi): return ( 1.04498588887109e-83 * (1.0 - cos(theta) ** 2) ** 24 * ( 1.19042321503987e92 * cos(theta) ** 14 - 8.80719614379094e91 * cos(theta) ** 12 + 2.40196258467026e91 * cos(theta) ** 10 - 3.02768393025662e90 * cos(theta) ** 8 + 1.81143483006807e89 * cos(theta) ** 6 - 4.72548216539495e87 * cos(theta) ** 4 + 4.18184262424332e85 * cos(theta) ** 2 - 5.382036839438e82 ) * cos(48 * phi) ) # @torch.jit.script def Yl62_m49(theta, phi): return ( 2.6508485661369e-85 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.66659250105582e93 * cos(theta) ** 13 - 1.05686353725491e93 * cos(theta) ** 11 + 2.40196258467026e92 * cos(theta) ** 9 - 2.4221471442053e91 * cos(theta) ** 7 + 1.08686089804084e90 * cos(theta) ** 5 - 1.89019286615798e88 * cos(theta) ** 3 + 8.36368524848664e85 * cos(theta) ) * cos(49 * phi) ) # @torch.jit.script def Yl62_m50(theta, phi): return ( 6.94711089081838e-87 * (1.0 - cos(theta) ** 2) ** 25 * ( 2.16657025137257e94 * cos(theta) ** 12 - 1.1625498909804e94 * cos(theta) ** 10 + 2.16176632620323e93 * cos(theta) ** 8 - 1.69550300094371e92 * cos(theta) ** 6 + 5.4343044902042e90 * cos(theta) ** 4 - 5.67057859847394e88 * cos(theta) ** 2 + 8.36368524848664e85 ) * cos(50 * phi) ) # @torch.jit.script def Yl62_m51(theta, phi): return ( 1.88657635255539e-88 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 2.59988430164708e95 * cos(theta) ** 11 - 1.1625498909804e95 * cos(theta) ** 9 + 1.72941306096258e94 * cos(theta) ** 7 - 1.01730180056623e93 * cos(theta) ** 5 + 2.17372179608168e91 * cos(theta) ** 3 - 1.13411571969479e89 * cos(theta) ) * cos(51 * phi) ) # @torch.jit.script def Yl62_m52(theta, phi): return ( 5.32752649442622e-90 * (1.0 - cos(theta) ** 2) ** 26 * ( 2.85987273181179e96 * cos(theta) ** 10 - 1.04629490188236e96 * cos(theta) ** 8 + 1.21058914267381e95 * cos(theta) ** 6 - 5.08650900283113e93 * cos(theta) ** 4 + 6.52116538824504e91 * cos(theta) ** 2 - 1.13411571969479e89 ) * cos(52 * phi) ) # @torch.jit.script def Yl62_m53(theta, phi): return ( 1.57100185561049e-91 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 2.85987273181179e97 * cos(theta) ** 9 - 8.37035921505891e96 * cos(theta) ** 7 + 7.26353485604285e95 * cos(theta) ** 5 - 2.03460360113245e94 * cos(theta) ** 3 + 1.30423307764901e92 * cos(theta) ) * cos(53 * phi) ) # @torch.jit.script def Yl62_m54(theta, phi): return ( 4.86212868090609e-93 * (1.0 - cos(theta) ** 2) ** 27 * ( 2.57388545863061e98 * cos(theta) ** 8 - 5.85925145054123e97 * cos(theta) ** 6 + 3.63176742802143e96 * cos(theta) ** 4 - 6.10381080339735e94 * cos(theta) ** 2 + 1.30423307764901e92 ) * cos(54 * phi) ) # @torch.jit.script def Yl62_m55(theta, phi): return ( 1.5892364757397e-94 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 2.05910836690449e99 * cos(theta) ** 7 - 3.51555087032474e98 * cos(theta) ** 5 + 1.45270697120857e97 * cos(theta) ** 3 - 1.22076216067947e95 * cos(theta) ) * cos(55 * phi) ) # @torch.jit.script def Yl62_m56(theta, phi): return ( 5.52966091440948e-96 * (1.0 - cos(theta) ** 2) ** 28 * ( 1.44137585683314e100 * cos(theta) ** 6 - 1.75777543516237e99 * cos(theta) ** 4 + 4.35812091362571e97 * cos(theta) ** 2 - 1.22076216067947e95 ) * cos(56 * phi) ) # @torch.jit.script def Yl62_m57(theta, phi): return ( 2.06942358678965e-97 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 8.64825514099886e100 * cos(theta) ** 5 - 7.03110174064948e99 * cos(theta) ** 3 + 8.71624182725142e97 * cos(theta) ) * cos(57 * phi) ) # @torch.jit.script def Yl62_m58(theta, phi): return ( 8.4483864155247e-99 * (1.0 - cos(theta) ** 2) ** 29 * ( 4.32412757049943e101 * cos(theta) ** 4 - 2.10933052219484e100 * cos(theta) ** 2 + 8.71624182725142e97 ) * cos(58 * phi) ) # @torch.jit.script def Yl62_m59(theta, phi): return ( 3.84017564342032e-100 * (1.0 - cos(theta) ** 2) ** 29.5 * (1.72965102819977e102 * cos(theta) ** 3 - 4.21866104438969e100 * cos(theta)) * cos(59 * phi) ) # @torch.jit.script def Yl62_m60(theta, phi): return ( 2.00729196448552e-101 * (1.0 - cos(theta) ** 2) ** 30 * (5.18895308459932e102 * cos(theta) ** 2 - 4.21866104438969e100) * cos(60 * phi) ) # @torch.jit.script def Yl62_m61(theta, phi): return ( 13.2816714315134 * (1.0 - cos(theta) ** 2) ** 30.5 * cos(61 * phi) * cos(theta) ) # @torch.jit.script def Yl62_m62(theta, phi): return 1.19272930443867 * (1.0 - cos(theta) ** 2) ** 31 * cos(62 * phi) # @torch.jit.script def Yl63_m_minus_63(theta, phi): return 1.19745300333825 * (1.0 - cos(theta) ** 2) ** 31.5 * sin(63 * phi) # @torch.jit.script def Yl63_m_minus_62(theta, phi): return 13.4413766257656 * (1.0 - cos(theta) ** 2) ** 31 * sin(62 * phi) * cos(theta) # @torch.jit.script def Yl63_m_minus_61(theta, phi): return ( 1.63830215199759e-103 * (1.0 - cos(theta) ** 2) ** 30.5 * (6.48619135574915e104 * cos(theta) ** 2 - 5.18895308459932e102) * sin(61 * phi) ) # @torch.jit.script def Yl63_m_minus_60(theta, phi): return ( 3.1598427589696e-102 * (1.0 - cos(theta) ** 2) ** 30 * (2.16206378524972e104 * cos(theta) ** 3 - 5.18895308459932e102 * cos(theta)) * sin(60 * phi) ) # @torch.jit.script def Yl63_m_minus_59(theta, phi): return ( 7.00887029457315e-101 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 5.40515946312429e103 * cos(theta) ** 4 - 2.59447654229966e102 * cos(theta) ** 2 + 1.05466526109742e100 ) * sin(59 * phi) ) # @torch.jit.script def Yl63_m_minus_58(theta, phi): return ( 1.73106326608104e-99 * (1.0 - cos(theta) ** 2) ** 29 * ( 1.08103189262486e103 * cos(theta) ** 5 - 8.64825514099886e101 * cos(theta) ** 3 + 1.05466526109742e100 * cos(theta) ) * sin(58 * phi) ) # @torch.jit.script def Yl63_m_minus_57(theta, phi): return ( 4.66424388581167e-98 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 1.80171982104143e102 * cos(theta) ** 6 - 2.16206378524972e101 * cos(theta) ** 4 + 5.27332630548711e99 * cos(theta) ** 2 - 1.45270697120857e97 ) * sin(57 * phi) ) # @torch.jit.script def Yl63_m_minus_56(theta, phi): return ( 1.35182630770815e-96 * (1.0 - cos(theta) ** 2) ** 28 * ( 2.57388545863061e101 * cos(theta) ** 7 - 4.32412757049943e100 * cos(theta) ** 5 + 1.75777543516237e99 * cos(theta) ** 3 - 1.45270697120857e97 * cos(theta) ) * sin(56 * phi) ) # @torch.jit.script def Yl63_m_minus_55(theta, phi): return ( 4.17099210816046e-95 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 3.21735682328827e100 * cos(theta) ** 8 - 7.20687928416572e99 * cos(theta) ** 6 + 4.39443858790593e98 * cos(theta) ** 4 - 7.26353485604285e96 * cos(theta) ** 2 + 1.52595270084934e94 ) * sin(55 * phi) ) # @torch.jit.script def Yl63_m_minus_54(theta, phi): return ( 1.35925715104427e-93 * (1.0 - cos(theta) ** 2) ** 27 * ( 3.57484091476474e99 * cos(theta) ** 9 - 1.02955418345225e99 * cos(theta) ** 7 + 8.78887717581185e97 * cos(theta) ** 5 - 2.42117828534762e96 * cos(theta) ** 3 + 1.52595270084934e94 * cos(theta) ) * sin(54 * phi) ) # @torch.jit.script def Yl63_m_minus_53(theta, phi): return ( 4.64937480003281e-92 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 3.57484091476474e98 * cos(theta) ** 10 - 1.28694272931531e98 * cos(theta) ** 8 + 1.46481286263531e97 * cos(theta) ** 6 - 6.05294571336904e95 * cos(theta) ** 4 + 7.62976350424669e93 * cos(theta) ** 2 - 1.30423307764901e91 ) * sin(53 * phi) ) # @torch.jit.script def Yl63_m_minus_52(theta, phi): return ( 1.66080978368343e-90 * (1.0 - cos(theta) ** 2) ** 26 * ( 3.24985537705886e97 * cos(theta) ** 11 - 1.4299363659059e97 * cos(theta) ** 9 + 2.09258980376473e96 * cos(theta) ** 7 - 1.21058914267381e95 * cos(theta) ** 5 + 2.54325450141556e93 * cos(theta) ** 3 - 1.30423307764901e91 * cos(theta) ) * sin(52 * phi) ) # @torch.jit.script def Yl63_m_minus_51(theta, phi): return ( 6.16963451904442e-89 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 2.70821281421571e96 * cos(theta) ** 12 - 1.4299363659059e96 * cos(theta) ** 10 + 2.61573725470591e95 * cos(theta) ** 8 - 2.01764857112301e94 * cos(theta) ** 6 + 6.35813625353891e92 * cos(theta) ** 4 - 6.52116538824504e90 * cos(theta) ** 2 + 9.45096433078991e87 ) * sin(51 * phi) ) # @torch.jit.script def Yl63_m_minus_50(theta, phi): return ( 2.37510896857602e-87 * (1.0 - cos(theta) ** 2) ** 25 * ( 2.08324062631978e95 * cos(theta) ** 13 - 1.29994215082354e95 * cos(theta) ** 11 + 2.90637472745101e94 * cos(theta) ** 9 - 2.88235510160431e93 * cos(theta) ** 7 + 1.27162725070778e92 * cos(theta) ** 5 - 2.17372179608168e90 * cos(theta) ** 3 + 9.45096433078991e87 * cos(theta) ) * sin(50 * phi) ) # @torch.jit.script def Yl63_m_minus_49(theta, phi): return ( 9.44684477121826e-86 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.48802901879984e94 * cos(theta) ** 14 - 1.08328512568629e94 * cos(theta) ** 12 + 2.90637472745101e93 * cos(theta) ** 10 - 3.60294387700538e92 * cos(theta) ** 8 + 2.11937875117964e91 * cos(theta) ** 6 - 5.4343044902042e89 * cos(theta) ** 4 + 4.72548216539495e87 * cos(theta) ** 2 - 5.97406089177617e84 ) * sin(49 * phi) ) # @torch.jit.script def Yl63_m_minus_48(theta, phi): return ( 3.87205413057346e-84 * (1.0 - cos(theta) ** 2) ** 24 * ( 9.92019345866561e92 * cos(theta) ** 15 - 8.33296250527912e92 * cos(theta) ** 13 + 2.64215884313728e92 * cos(theta) ** 11 - 4.00327097445043e91 * cos(theta) ** 9 + 3.02768393025662e90 * cos(theta) ** 7 - 1.08686089804084e89 * cos(theta) ** 5 + 1.57516072179832e87 * cos(theta) ** 3 - 5.97406089177617e84 * cos(theta) ) * sin(48 * phi) ) # @torch.jit.script def Yl63_m_minus_47(theta, phi): return ( 1.63178486528101e-82 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 6.20012091166601e91 * cos(theta) ** 16 - 5.95211607519937e91 * cos(theta) ** 14 + 2.20179903594773e91 * cos(theta) ** 12 - 4.00327097445043e90 * cos(theta) ** 10 + 3.78460491282078e89 * cos(theta) ** 8 - 1.81143483006807e88 * cos(theta) ** 6 + 3.9379018044958e86 * cos(theta) ** 4 - 2.98703044588809e84 * cos(theta) ** 2 + 3.36377302464875e81 ) * sin(47 * phi) ) # @torch.jit.script def Yl63_m_minus_46(theta, phi): return ( 7.05640833077812e-81 * (1.0 - cos(theta) ** 2) ** 23 * ( 3.64712994803883e90 * cos(theta) ** 17 - 3.96807738346625e90 * cos(theta) ** 15 + 1.69369156611364e90 * cos(theta) ** 13 - 3.63933724950039e89 * cos(theta) ** 11 + 4.20511656980087e88 * cos(theta) ** 9 - 2.58776404295438e87 * cos(theta) ** 7 + 7.87580360899159e85 * cos(theta) ** 5 - 9.95676815296029e83 * cos(theta) ** 3 + 3.36377302464875e81 * cos(theta) ) * sin(46 * phi) ) # @torch.jit.script def Yl63_m_minus_45(theta, phi): return ( 3.12559861334088e-79 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 2.02618330446602e89 * cos(theta) ** 18 - 2.4800483646664e89 * cos(theta) ** 16 + 1.20977969008117e89 * cos(theta) ** 14 - 3.03278104125032e88 * cos(theta) ** 12 + 4.20511656980087e87 * cos(theta) ** 10 - 3.23470505369297e86 * cos(theta) ** 8 + 1.31263393483193e85 * cos(theta) ** 6 - 2.48919203824007e83 * cos(theta) ** 4 + 1.68188651232437e81 * cos(theta) ** 2 - 1.71446127657938e78 ) * sin(45 * phi) ) # @torch.jit.script def Yl63_m_minus_44(theta, phi): return ( 1.41586512251013e-77 * (1.0 - cos(theta) ** 2) ** 22 * ( 1.06641226550843e88 * cos(theta) ** 19 - 1.45885197921553e88 * cos(theta) ** 17 + 8.06519793387448e87 * cos(theta) ** 15 - 2.33290849326948e87 * cos(theta) ** 13 + 3.82283324527352e86 * cos(theta) ** 11 - 3.59411672632553e85 * cos(theta) ** 9 + 1.87519133547419e84 * cos(theta) ** 7 - 4.97838407648015e82 * cos(theta) ** 5 + 5.60628837441458e80 * cos(theta) ** 3 - 1.71446127657938e78 * cos(theta) ) * sin(44 * phi) ) # @torch.jit.script def Yl63_m_minus_43(theta, phi): return ( 6.54981103284738e-76 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 5.33206132754215e86 * cos(theta) ** 20 - 8.10473321786406e86 * cos(theta) ** 18 + 5.04074870867155e86 * cos(theta) ** 16 - 1.6663632094782e86 * cos(theta) ** 14 + 3.18569437106126e85 * cos(theta) ** 12 - 3.59411672632553e84 * cos(theta) ** 10 + 2.34398916934274e83 * cos(theta) ** 8 - 8.29730679413358e81 * cos(theta) ** 6 + 1.40157209360364e80 * cos(theta) ** 4 - 8.57230638289691e77 * cos(theta) ** 2 + 8.01150129242702e74 ) * sin(43 * phi) ) # @torch.jit.script def Yl63_m_minus_42(theta, phi): return ( 3.09023388571054e-74 * (1.0 - cos(theta) ** 2) ** 21 * ( 2.53907682263912e85 * cos(theta) ** 21 - 4.26564906203372e85 * cos(theta) ** 19 + 2.96514629921856e85 * cos(theta) ** 17 - 1.1109088063188e85 * cos(theta) ** 15 + 2.45053413158559e84 * cos(theta) ** 13 - 3.26737884211412e83 * cos(theta) ** 11 + 2.60443241038082e82 * cos(theta) ** 9 - 1.18532954201908e81 * cos(theta) ** 7 + 2.80314418720729e79 * cos(theta) ** 5 - 2.85743546096564e77 * cos(theta) ** 3 + 8.01150129242702e74 * cos(theta) ) * sin(42 * phi) ) # @torch.jit.script def Yl63_m_minus_41(theta, phi): return ( 1.48524240553485e-72 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 1.15412582847233e84 * cos(theta) ** 22 - 2.13282453101686e84 * cos(theta) ** 20 + 1.64730349956587e84 * cos(theta) ** 18 - 6.9431800394925e83 * cos(theta) ** 16 + 1.75038152256113e83 * cos(theta) ** 14 - 2.72281570176176e82 * cos(theta) ** 12 + 2.60443241038082e81 * cos(theta) ** 10 - 1.48166192752385e80 * cos(theta) ** 8 + 4.67190697867882e78 * cos(theta) ** 6 - 7.14358865241409e76 * cos(theta) ** 4 + 4.00575064621351e74 * cos(theta) ** 2 - 3.46818237767403e71 ) * sin(41 * phi) ) # @torch.jit.script def Yl63_m_minus_40(theta, phi): return ( 7.26403499967604e-71 * (1.0 - cos(theta) ** 2) ** 20 * ( 5.01793838466229e82 * cos(theta) ** 23 - 1.01563072905565e83 * cos(theta) ** 21 + 8.67001841876772e82 * cos(theta) ** 19 - 4.08422355264264e82 * cos(theta) ** 17 + 1.16692101504076e82 * cos(theta) ** 15 - 2.09447361673982e81 * cos(theta) ** 13 + 2.36766582761892e80 * cos(theta) ** 11 - 1.64629103058206e79 * cos(theta) ** 9 + 6.67415282668402e77 * cos(theta) ** 7 - 1.42871773048282e76 * cos(theta) ** 5 + 1.3352502154045e74 * cos(theta) ** 3 - 3.46818237767403e71 * cos(theta) ) * sin(40 * phi) ) # @torch.jit.script def Yl63_m_minus_39(theta, phi): return ( 3.61162093063425e-69 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 2.09080766027595e81 * cos(theta) ** 24 - 4.61650331388931e81 * cos(theta) ** 22 + 4.33500920938386e81 * cos(theta) ** 20 - 2.26901308480147e81 * cos(theta) ** 18 + 7.29325634400472e80 * cos(theta) ** 16 - 1.49605258338558e80 * cos(theta) ** 14 + 1.9730548563491e79 * cos(theta) ** 12 - 1.64629103058206e78 * cos(theta) ** 10 + 8.34269103335503e76 * cos(theta) ** 8 - 2.38119621747136e75 * cos(theta) ** 6 + 3.33812553851126e73 * cos(theta) ** 4 - 1.73409118883702e71 * cos(theta) ** 2 + 1.40298639873545e68 ) * sin(39 * phi) ) # @torch.jit.script def Yl63_m_minus_38(theta, phi): return ( 1.82377917122162e-67 * (1.0 - cos(theta) ** 2) ** 19 * ( 8.36323064110381e79 * cos(theta) ** 25 - 2.00717535386492e80 * cos(theta) ** 23 + 2.0642900997066e80 * cos(theta) ** 21 - 1.1942174130534e80 * cos(theta) ** 19 + 4.29015079059101e79 * cos(theta) ** 17 - 9.97368388923723e78 * cos(theta) ** 15 + 1.51773450488393e78 * cos(theta) ** 13 - 1.49662820962005e77 * cos(theta) ** 11 + 9.26965670372781e75 * cos(theta) ** 9 - 3.40170888210195e74 * cos(theta) ** 7 + 6.67625107702251e72 * cos(theta) ** 5 - 5.78030396279006e70 * cos(theta) ** 3 + 1.40298639873545e68 * cos(theta) ) * sin(38 * phi) ) # @torch.jit.script def Yl63_m_minus_37(theta, phi): return ( 9.34586734449653e-66 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 3.21662716965531e78 * cos(theta) ** 26 - 8.36323064110381e78 * cos(theta) ** 24 + 9.38313681684818e78 * cos(theta) ** 22 - 5.97108706526702e78 * cos(theta) ** 20 + 2.3834171058839e78 * cos(theta) ** 18 - 6.23355243077327e77 * cos(theta) ** 16 + 1.08409607491709e77 * cos(theta) ** 14 - 1.24719017468338e76 * cos(theta) ** 12 + 9.26965670372781e74 * cos(theta) ** 10 - 4.25213610262743e73 * cos(theta) ** 8 + 1.11270851283709e72 * cos(theta) ** 6 - 1.44507599069751e70 * cos(theta) ** 4 + 7.01493199367725e67 * cos(theta) ** 2 - 5.34267478574048e64 ) * sin(37 * phi) ) # @torch.jit.script def Yl63_m_minus_36(theta, phi): return ( 4.85625512444004e-64 * (1.0 - cos(theta) ** 2) ** 18 * ( 1.19134339616863e77 * cos(theta) ** 27 - 3.34529225644153e77 * cos(theta) ** 25 + 4.07962470297747e77 * cos(theta) ** 23 - 2.8433747929843e77 * cos(theta) ** 21 + 1.25443005572837e77 * cos(theta) ** 19 - 3.66679554751369e76 * cos(theta) ** 17 + 7.22730716611393e75 * cos(theta) ** 15 - 9.59377057448752e74 * cos(theta) ** 13 + 8.42696063975255e73 * cos(theta) ** 11 - 4.72459566958604e72 * cos(theta) ** 9 + 1.58958358976727e71 * cos(theta) ** 7 - 2.89015198139503e69 * cos(theta) ** 5 + 2.33831066455908e67 * cos(theta) ** 3 - 5.34267478574048e64 * cos(theta) ) * sin(36 * phi) ) # @torch.jit.script def Yl63_m_minus_35(theta, phi): return ( 2.55680794638311e-62 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 4.25479784345941e75 * cos(theta) ** 28 - 1.28665086786213e76 * cos(theta) ** 26 + 1.69984362624061e76 * cos(theta) ** 24 - 1.29244308772014e76 * cos(theta) ** 22 + 6.27215027864183e75 * cos(theta) ** 20 - 2.0371086375076e75 * cos(theta) ** 18 + 4.51706697882121e74 * cos(theta) ** 16 - 6.85269326749109e73 * cos(theta) ** 14 + 7.02246719979379e72 * cos(theta) ** 12 - 4.72459566958604e71 * cos(theta) ** 10 + 1.98697948720908e70 * cos(theta) ** 8 - 4.81691996899171e68 * cos(theta) ** 6 + 5.84577666139771e66 * cos(theta) ** 4 - 2.67133739287024e64 * cos(theta) ** 2 + 1.92737185632774e61 ) * sin(35 * phi) ) # @torch.jit.script def Yl63_m_minus_34(theta, phi): return ( 1.36304484364465e-60 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.46717167015842e74 * cos(theta) ** 29 - 4.76537358467454e74 * cos(theta) ** 27 + 6.79937450496245e74 * cos(theta) ** 25 - 5.61931777269624e74 * cos(theta) ** 23 + 2.98673822792468e74 * cos(theta) ** 21 - 1.07216244079348e74 * cos(theta) ** 19 + 2.657098222836e73 * cos(theta) ** 17 - 4.56846217832739e72 * cos(theta) ** 15 + 5.40189784599523e71 * cos(theta) ** 13 - 4.29508697235094e70 * cos(theta) ** 11 + 2.20775498578787e69 * cos(theta) ** 9 - 6.88131424141673e67 * cos(theta) ** 7 + 1.16915533227954e66 * cos(theta) ** 5 - 8.90445797623414e63 * cos(theta) ** 3 + 1.92737185632774e61 * cos(theta) ) * sin(34 * phi) ) # @torch.jit.script def Yl63_m_minus_33(theta, phi): return ( 7.35286578501069e-59 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 4.89057223386139e72 * cos(theta) ** 30 - 1.70191913738376e73 * cos(theta) ** 28 + 2.61514404037017e73 * cos(theta) ** 26 - 2.3413824052901e73 * cos(theta) ** 24 + 1.35760828542031e73 * cos(theta) ** 22 - 5.36081220396738e72 * cos(theta) ** 20 + 1.47616567935334e72 * cos(theta) ** 18 - 2.85528886145462e71 * cos(theta) ** 16 + 3.85849846142516e70 * cos(theta) ** 14 - 3.57923914362579e69 * cos(theta) ** 12 + 2.20775498578787e68 * cos(theta) ** 10 - 8.60164280177092e66 * cos(theta) ** 8 + 1.9485922204659e65 * cos(theta) ** 6 - 2.22611449405853e63 * cos(theta) ** 4 + 9.63685928163868e60 * cos(theta) ** 2 - 6.62327098394411e57 ) * sin(33 * phi) ) # @torch.jit.script def Yl63_m_minus_32(theta, phi): return ( 4.01118878278105e-57 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.5776039464069e71 * cos(theta) ** 31 - 5.86868668063367e71 * cos(theta) ** 29 + 9.68571866803768e71 * cos(theta) ** 27 - 9.3655296211604e71 * cos(theta) ** 25 + 5.90264471921874e71 * cos(theta) ** 23 - 2.55276771617494e71 * cos(theta) ** 21 + 7.76929304922808e70 * cos(theta) ** 19 - 1.6795816832086e70 * cos(theta) ** 17 + 2.57233230761677e69 * cos(theta) ** 15 - 2.75326087971214e68 * cos(theta) ** 13 + 2.00704998707988e67 * cos(theta) ** 11 - 9.55738089085657e65 * cos(theta) ** 9 + 2.78370317209415e64 * cos(theta) ** 7 - 4.45222898811707e62 * cos(theta) ** 5 + 3.21228642721289e60 * cos(theta) ** 3 - 6.62327098394411e57 * cos(theta) ) * sin(32 * phi) ) # @torch.jit.script def Yl63_m_minus_31(theta, phi): return ( 2.21161686942766e-55 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 4.93001233252156e69 * cos(theta) ** 32 - 1.95622889354456e70 * cos(theta) ** 30 + 3.45918523858488e70 * cos(theta) ** 28 - 3.60212677736938e70 * cos(theta) ** 26 + 2.45943529967447e70 * cos(theta) ** 24 - 1.1603489618977e70 * cos(theta) ** 22 + 3.88464652461404e69 * cos(theta) ** 20 - 9.33100935115889e68 * cos(theta) ** 18 + 1.60770769226048e68 * cos(theta) ** 16 - 1.9666149140801e67 * cos(theta) ** 14 + 1.6725416558999e66 * cos(theta) ** 12 - 9.55738089085657e64 * cos(theta) ** 10 + 3.47962896511768e63 * cos(theta) ** 8 - 7.42038164686178e61 * cos(theta) ** 6 + 8.03071606803223e59 * cos(theta) ** 4 - 3.31163549197205e57 * cos(theta) ** 2 + 2.17870756050793e54 ) * sin(31 * phi) ) # @torch.jit.script def Yl63_m_minus_30(theta, phi): return ( 1.23177331305232e-53 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.49394313106714e68 * cos(theta) ** 33 - 6.3104157856276e68 * cos(theta) ** 31 + 1.19282249606375e69 * cos(theta) ** 29 - 1.33412102865533e69 * cos(theta) ** 27 + 9.8377411986979e68 * cos(theta) ** 25 - 5.04499548651174e68 * cos(theta) ** 23 + 1.84983167838764e68 * cos(theta) ** 21 - 4.91105755324152e67 * cos(theta) ** 19 + 9.45710407212049e66 * cos(theta) ** 17 - 1.31107660938674e66 * cos(theta) ** 15 + 1.28657050453838e65 * cos(theta) ** 13 - 8.68852808259689e63 * cos(theta) ** 11 + 3.86625440568632e62 * cos(theta) ** 9 - 1.06005452098025e61 * cos(theta) ** 7 + 1.60614321360645e59 * cos(theta) ** 5 - 1.10387849732402e57 * cos(theta) ** 3 + 2.17870756050793e54 * cos(theta) ) * sin(30 * phi) ) # @torch.jit.script def Yl63_m_minus_29(theta, phi): return ( 6.92646626671411e-52 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 4.39395038549159e66 * cos(theta) ** 34 - 1.97200493300862e67 * cos(theta) ** 32 + 3.97607498687918e67 * cos(theta) ** 30 - 4.76471795948331e67 * cos(theta) ** 28 + 3.78374661488381e67 * cos(theta) ** 26 - 2.10208145271323e67 * cos(theta) ** 24 + 8.40832581085291e66 * cos(theta) ** 22 - 2.45552877662076e66 * cos(theta) ** 20 + 5.25394670673361e65 * cos(theta) ** 18 - 8.19422880866709e64 * cos(theta) ** 16 + 9.18978931813132e63 * cos(theta) ** 14 - 7.24044006883074e62 * cos(theta) ** 12 + 3.86625440568632e61 * cos(theta) ** 10 - 1.32506815122532e60 * cos(theta) ** 8 + 2.67690535601074e58 * cos(theta) ** 6 - 2.75969624331004e56 * cos(theta) ** 4 + 1.08935378025396e54 * cos(theta) ** 2 - 6.89028324006303e50 ) * sin(29 * phi) ) # @torch.jit.script def Yl63_m_minus_28(theta, phi): return ( 3.93042631936345e-50 * (1.0 - cos(theta) ** 2) ** 14 * ( 1.25541439585474e65 * cos(theta) ** 35 - 5.97577252426856e65 * cos(theta) ** 33 + 1.28260483447715e66 * cos(theta) ** 31 - 1.64300619292528e66 * cos(theta) ** 29 + 1.40138763514215e66 * cos(theta) ** 27 - 8.4083258108529e65 * cos(theta) ** 25 + 3.65579383080561e65 * cos(theta) ** 23 - 1.16929941743846e65 * cos(theta) ** 21 + 2.76523510880716e64 * cos(theta) ** 19 - 4.82013459333359e63 * cos(theta) ** 17 + 6.12652621208755e62 * cos(theta) ** 15 - 5.56956928371595e61 * cos(theta) ** 13 + 3.51477673244211e60 * cos(theta) ** 11 - 1.47229794580591e59 * cos(theta) ** 9 + 3.82415050858678e57 * cos(theta) ** 7 - 5.51939248662009e55 * cos(theta) ** 5 + 3.63117926751322e53 * cos(theta) ** 3 - 6.89028324006303e50 * cos(theta) ) * sin(28 * phi) ) # @torch.jit.script def Yl63_m_minus_27(theta, phi): return ( 2.24963264659303e-48 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 3.48726221070761e63 * cos(theta) ** 36 - 1.75758015419664e64 * cos(theta) ** 34 + 4.00814010774111e64 * cos(theta) ** 32 - 5.47668730975093e64 * cos(theta) ** 30 + 5.0049558397934e64 * cos(theta) ** 28 - 3.23397146571266e64 * cos(theta) ** 26 + 1.52324742950234e64 * cos(theta) ** 24 - 5.31499735199299e63 * cos(theta) ** 22 + 1.38261755440358e63 * cos(theta) ** 20 - 2.67785255185199e62 * cos(theta) ** 18 + 3.82907888255472e61 * cos(theta) ** 16 - 3.97826377408282e60 * cos(theta) ** 14 + 2.92898061036842e59 * cos(theta) ** 12 - 1.47229794580591e58 * cos(theta) ** 10 + 4.78018813573347e56 * cos(theta) ** 8 - 9.19898747770015e54 * cos(theta) ** 6 + 9.07794816878304e52 * cos(theta) ** 4 - 3.44514162003151e50 * cos(theta) ** 2 + 2.1032610622903e47 ) * sin(27 * phi) ) # @torch.jit.script def Yl63_m_minus_26(theta, phi): return ( 1.29817643864673e-46 * (1.0 - cos(theta) ** 2) ** 13 * ( 9.42503300191246e61 * cos(theta) ** 37 - 5.02165758341896e62 * cos(theta) ** 35 + 1.2145879114367e63 * cos(theta) ** 33 - 1.76667332572611e63 * cos(theta) ** 31 + 1.72584684130807e63 * cos(theta) ** 29 - 1.19776720952321e63 * cos(theta) ** 27 + 6.09298971800935e62 * cos(theta) ** 25 - 2.31086841390999e62 * cos(theta) ** 23 + 6.58389311620753e61 * cos(theta) ** 21 - 1.4093960799221e61 * cos(theta) ** 19 + 2.25239934267925e60 * cos(theta) ** 17 - 2.65217584938855e59 * cos(theta) ** 15 + 2.25306200797571e58 * cos(theta) ** 13 - 1.33845267800537e57 * cos(theta) ** 11 + 5.31132015081497e55 * cos(theta) ** 9 - 1.31414106824288e54 * cos(theta) ** 7 + 1.81558963375661e52 * cos(theta) ** 5 - 1.1483805400105e50 * cos(theta) ** 3 + 2.1032610622903e47 * cos(theta) ) * sin(26 * phi) ) # @torch.jit.script def Yl63_m_minus_25(theta, phi): return ( 7.54954058650599e-45 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 2.48027184260854e60 * cos(theta) ** 38 - 1.39490488428304e61 * cos(theta) ** 36 + 3.57231738657853e61 * cos(theta) ** 34 - 5.52085414289409e61 * cos(theta) ** 32 + 5.75282280436023e61 * cos(theta) ** 30 - 4.27774003401145e61 * cos(theta) ** 28 + 2.34345758384975e61 * cos(theta) ** 26 - 9.62861839129164e60 * cos(theta) ** 24 + 2.99267868918524e60 * cos(theta) ** 22 - 7.0469803996105e59 * cos(theta) ** 20 + 1.25133296815514e59 * cos(theta) ** 18 - 1.65760990586784e58 * cos(theta) ** 16 + 1.60933000569693e57 * cos(theta) ** 14 - 1.11537723167114e56 * cos(theta) ** 12 + 5.31132015081497e54 * cos(theta) ** 10 - 1.6426763353036e53 * cos(theta) ** 8 + 3.02598272292768e51 * cos(theta) ** 6 - 2.87095135002626e49 * cos(theta) ** 4 + 1.05163053114515e47 * cos(theta) ** 2 - 6.21898599139652e43 ) * sin(25 * phi) ) # @torch.jit.script def Yl63_m_minus_24(theta, phi): return ( 4.42276805232852e-43 * (1.0 - cos(theta) ** 2) ** 12 * ( 6.35967139130395e58 * cos(theta) ** 39 - 3.77001320076498e59 * cos(theta) ** 37 + 1.02066211045101e60 * cos(theta) ** 35 - 1.6729861039073e60 * cos(theta) ** 33 + 1.8557492917291e60 * cos(theta) ** 31 - 1.47508277034878e60 * cos(theta) ** 29 + 8.67947253277685e59 * cos(theta) ** 27 - 3.85144735651666e59 * cos(theta) ** 25 + 1.30116464747184e59 * cos(theta) ** 23 - 3.35570495219548e58 * cos(theta) ** 21 + 6.58596299029019e57 * cos(theta) ** 19 - 9.75064650510496e56 * cos(theta) ** 17 + 1.07288667046462e56 * cos(theta) ** 15 - 8.57982485900879e54 * cos(theta) ** 13 + 4.82847286437724e53 * cos(theta) ** 11 - 1.82519592811511e52 * cos(theta) ** 9 + 4.32283246132526e50 * cos(theta) ** 7 - 5.74190270005252e48 * cos(theta) ** 5 + 3.50543510381717e46 * cos(theta) ** 3 - 6.21898599139652e43 * cos(theta) ) * sin(24 * phi) ) # @torch.jit.script def Yl63_m_minus_23(theta, phi): return ( 2.60905831309973e-41 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.58991784782599e57 * cos(theta) ** 40 - 9.92108737043417e57 * cos(theta) ** 38 + 2.83517252903058e58 * cos(theta) ** 36 - 4.92054736443323e58 * cos(theta) ** 34 + 5.79921653665345e58 * cos(theta) ** 32 - 4.91694256782925e58 * cos(theta) ** 30 + 3.09981161884888e58 * cos(theta) ** 28 - 1.48132590635256e58 * cos(theta) ** 26 + 5.42151936446602e57 * cos(theta) ** 24 - 1.52532043281613e57 * cos(theta) ** 22 + 3.2929814951451e56 * cos(theta) ** 20 - 5.41702583616942e55 * cos(theta) ** 18 + 6.7055416904039e54 * cos(theta) ** 16 - 6.12844632786342e53 * cos(theta) ** 14 + 4.02372738698104e52 * cos(theta) ** 12 - 1.82519592811511e51 * cos(theta) ** 10 + 5.40354057665657e49 * cos(theta) ** 8 - 9.56983783342087e47 * cos(theta) ** 6 + 8.76358775954292e45 * cos(theta) ** 4 - 3.10949299569826e43 * cos(theta) ** 2 + 1.78706494005647e40 ) * sin(23 * phi) ) # @torch.jit.script def Yl63_m_minus_22(theta, phi): return ( 1.54926225350494e-39 * (1.0 - cos(theta) ** 2) ** 11 * ( 3.87784840933168e55 * cos(theta) ** 41 - 2.54386855652158e56 * cos(theta) ** 39 + 7.6626284568394e56 * cos(theta) ** 37 - 1.40587067555235e57 * cos(theta) ** 35 + 1.75733834444044e57 * cos(theta) ** 33 - 1.58611050575137e57 * cos(theta) ** 31 + 1.06890055822375e57 * cos(theta) ** 29 - 5.48639224575022e56 * cos(theta) ** 27 + 2.16860774578641e56 * cos(theta) ** 25 - 6.63182796876577e55 * cos(theta) ** 23 + 1.56808642625957e55 * cos(theta) ** 21 - 2.85106622956285e54 * cos(theta) ** 19 + 3.94443628847288e53 * cos(theta) ** 17 - 4.08563088524228e52 * cos(theta) ** 15 + 3.09517491306233e51 * cos(theta) ** 13 - 1.65926902555919e50 * cos(theta) ** 11 + 6.00393397406286e48 * cos(theta) ** 9 - 1.3671196904887e47 * cos(theta) ** 7 + 1.75271755190858e45 * cos(theta) ** 5 - 1.03649766523275e43 * cos(theta) ** 3 + 1.78706494005647e40 * cos(theta) ) * sin(22 * phi) ) # @torch.jit.script def Yl63_m_minus_21(theta, phi): return ( 9.25676093597681e-38 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 9.23297240317066e53 * cos(theta) ** 42 - 6.35967139130395e54 * cos(theta) ** 40 + 2.01648117285247e55 * cos(theta) ** 38 - 3.90519632097876e55 * cos(theta) ** 36 + 5.16864218953071e55 * cos(theta) ** 34 - 4.95659533047304e55 * cos(theta) ** 32 + 3.56300186074583e55 * cos(theta) ** 30 - 1.95942580205365e55 * cos(theta) ** 28 + 8.34079902225541e54 * cos(theta) ** 26 - 2.7632616536524e54 * cos(theta) ** 24 + 7.12766557390713e53 * cos(theta) ** 22 - 1.42553311478143e53 * cos(theta) ** 20 + 2.19135349359604e52 * cos(theta) ** 18 - 2.55351930327643e51 * cos(theta) ** 16 + 2.21083922361595e50 * cos(theta) ** 14 - 1.38272418796599e49 * cos(theta) ** 12 + 6.00393397406286e47 * cos(theta) ** 10 - 1.70889961311087e46 * cos(theta) ** 8 + 2.92119591984764e44 * cos(theta) ** 6 - 2.59124416308188e42 * cos(theta) ** 4 + 8.93532470028235e39 * cos(theta) ** 2 - 5.00578414581644e36 ) * sin(21 * phi) ) # @torch.jit.script def Yl63_m_minus_20(theta, phi): return ( 5.56330562138451e-36 * (1.0 - cos(theta) ** 2) ** 10 * ( 2.14720288445829e52 * cos(theta) ** 43 - 1.55113936373267e53 * cos(theta) ** 41 + 5.17046454577557e53 * cos(theta) ** 39 - 1.05545846512939e54 * cos(theta) ** 37 + 1.47675491129449e54 * cos(theta) ** 35 - 1.50199858499183e54 * cos(theta) ** 33 + 1.14935543895027e54 * cos(theta) ** 31 - 6.75664069673673e53 * cos(theta) ** 29 + 3.08918482305756e53 * cos(theta) ** 27 - 1.10530466146096e53 * cos(theta) ** 25 + 3.09898503213354e52 * cos(theta) ** 23 - 6.7882529275306e51 * cos(theta) ** 21 + 1.15334394399792e51 * cos(theta) ** 19 - 1.5020701783979e50 * cos(theta) ** 17 + 1.47389281574397e49 * cos(theta) ** 15 - 1.06363399074307e48 * cos(theta) ** 13 + 5.4581217946026e46 * cos(theta) ** 11 - 1.89877734790097e45 * cos(theta) ** 9 + 4.17313702835377e43 * cos(theta) ** 7 - 5.18248832616376e41 * cos(theta) ** 5 + 2.97844156676078e39 * cos(theta) ** 3 - 5.00578414581644e36 * cos(theta) ) * sin(20 * phi) ) # @torch.jit.script def Yl63_m_minus_19(theta, phi): return ( 3.36200459820719e-34 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 4.88000655558703e50 * cos(theta) ** 44 - 3.69318896126827e51 * cos(theta) ** 42 + 1.29261613644389e52 * cos(theta) ** 40 - 2.7775222766563e52 * cos(theta) ** 38 + 4.10209697581802e52 * cos(theta) ** 36 - 4.41764289703479e52 * cos(theta) ** 34 + 3.59173574671959e52 * cos(theta) ** 32 - 2.25221356557891e52 * cos(theta) ** 30 + 1.10328029394913e52 * cos(theta) ** 28 - 4.25117177484985e51 * cos(theta) ** 26 + 1.29124376338897e51 * cos(theta) ** 24 - 3.08556951251391e50 * cos(theta) ** 22 + 5.76671971998959e49 * cos(theta) ** 20 - 8.34483432443277e48 * cos(theta) ** 18 + 9.21183009839981e47 * cos(theta) ** 16 - 7.59738564816479e46 * cos(theta) ** 14 + 4.5484348288355e45 * cos(theta) ** 12 - 1.89877734790097e44 * cos(theta) ** 10 + 5.21642128544222e42 * cos(theta) ** 8 - 8.63748054360627e40 * cos(theta) ** 6 + 7.44610391690196e38 * cos(theta) ** 4 - 2.50289207290822e36 * cos(theta) ** 2 + 1.37069664452805e33 ) * sin(19 * phi) ) # @torch.jit.script def Yl63_m_minus_18(theta, phi): return ( 2.04226213911857e-32 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.08444590124156e49 * cos(theta) ** 45 - 8.58881153783317e49 * cos(theta) ** 43 + 3.15272228400949e50 * cos(theta) ** 41 - 7.12185199142641e50 * cos(theta) ** 39 + 1.10867485832919e51 * cos(theta) ** 37 - 1.26218368486708e51 * cos(theta) ** 35 + 1.08840477173321e51 * cos(theta) ** 33 - 7.26520505025455e50 * cos(theta) ** 31 + 3.80441480672113e50 * cos(theta) ** 29 - 1.5745080647592e50 * cos(theta) ** 27 + 5.16497505355589e49 * cos(theta) ** 25 - 1.34155196196257e49 * cos(theta) ** 23 + 2.74605700951885e48 * cos(theta) ** 21 - 4.39201806549093e47 * cos(theta) ** 19 + 5.418723587294e46 * cos(theta) ** 17 - 5.06492376544319e45 * cos(theta) ** 15 + 3.49879602218115e44 * cos(theta) ** 13 - 1.72616122536452e43 * cos(theta) ** 11 + 5.79602365049135e41 * cos(theta) ** 9 - 1.23392579194375e40 * cos(theta) ** 7 + 1.48922078338039e38 * cos(theta) ** 5 - 8.34297357636074e35 * cos(theta) ** 3 + 1.37069664452805e33 * cos(theta) ) * sin(18 * phi) ) # @torch.jit.script def Yl63_m_minus_17(theta, phi): return ( 1.24661661655909e-30 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 2.35749108965557e47 * cos(theta) ** 46 - 1.95200262223481e48 * cos(theta) ** 44 + 7.50648162859404e48 * cos(theta) ** 42 - 1.7804629978566e49 * cos(theta) ** 40 + 2.91756541665578e49 * cos(theta) ** 38 - 3.50606579129745e49 * cos(theta) ** 36 + 3.20119050509768e49 * cos(theta) ** 34 - 2.27037657820455e49 * cos(theta) ** 32 + 1.26813826890704e49 * cos(theta) ** 30 - 5.62324308842573e48 * cos(theta) ** 28 + 1.98652886675227e48 * cos(theta) ** 26 - 5.58979984151071e47 * cos(theta) ** 24 + 1.24820773159948e47 * cos(theta) ** 22 - 2.19600903274546e46 * cos(theta) ** 20 + 3.01040199294111e45 * cos(theta) ** 18 - 3.165577353402e44 * cos(theta) ** 16 + 2.49914001584368e43 * cos(theta) ** 14 - 1.43846768780376e42 * cos(theta) ** 12 + 5.79602365049135e40 * cos(theta) ** 10 - 1.54240723992969e39 * cos(theta) ** 8 + 2.48203463896732e37 * cos(theta) ** 6 - 2.08574339409018e35 * cos(theta) ** 4 + 6.85348322264026e32 * cos(theta) ** 2 - 3.67873495579187e29 ) * sin(17 * phi) ) # @torch.jit.script def Yl63_m_minus_16(theta, phi): return ( 7.64410834397408e-29 * (1.0 - cos(theta) ** 2) ** 8 * ( 5.01593848862887e45 * cos(theta) ** 47 - 4.33778360496625e46 * cos(theta) ** 45 + 1.74569340199861e47 * cos(theta) ** 43 - 4.34259267769903e47 * cos(theta) ** 41 + 7.48093696578404e47 * cos(theta) ** 39 - 9.47585348999312e47 * cos(theta) ** 37 + 9.14625858599336e47 * cos(theta) ** 35 - 6.87992902486226e47 * cos(theta) ** 33 + 4.09076860937756e47 * cos(theta) ** 31 - 1.93904934083646e47 * cos(theta) ** 29 + 7.35751432130469e46 * cos(theta) ** 27 - 2.23591993660428e46 * cos(theta) ** 25 + 5.42699013738904e45 * cos(theta) ** 23 - 1.04571858702165e45 * cos(theta) ** 21 + 1.58442210154795e44 * cos(theta) ** 19 - 1.86210432553059e43 * cos(theta) ** 17 + 1.66609334389579e42 * cos(theta) ** 15 - 1.10651360600289e41 * cos(theta) ** 13 + 5.26911240953759e39 * cos(theta) ** 11 - 1.7137858221441e38 * cos(theta) ** 9 + 3.54576376995331e36 * cos(theta) ** 7 - 4.17148678818037e34 * cos(theta) ** 5 + 2.28449440754675e32 * cos(theta) ** 3 - 3.67873495579187e29 * cos(theta) ) * sin(16 * phi) ) # @torch.jit.script def Yl63_m_minus_15(theta, phi): return ( 4.70718208574704e-27 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.04498718513102e44 * cos(theta) ** 48 - 9.42996435862228e44 * cos(theta) ** 46 + 3.9674850045423e45 * cos(theta) ** 44 - 1.03395063754739e46 * cos(theta) ** 42 + 1.87023424144601e46 * cos(theta) ** 40 - 2.49364565526135e46 * cos(theta) ** 38 + 2.54062738499815e46 * cos(theta) ** 36 - 2.02350853672419e46 * cos(theta) ** 34 + 1.27836519043049e46 * cos(theta) ** 32 - 6.46349780278819e45 * cos(theta) ** 30 + 2.62768368618025e45 * cos(theta) ** 28 - 8.59969206386263e44 * cos(theta) ** 26 + 2.26124589057877e44 * cos(theta) ** 24 - 4.75326630464386e43 * cos(theta) ** 22 + 7.92211050773977e42 * cos(theta) ** 20 - 1.03450240307255e42 * cos(theta) ** 18 + 1.04130833993487e41 * cos(theta) ** 16 - 7.90366861430639e39 * cos(theta) ** 14 + 4.39092700794799e38 * cos(theta) ** 12 - 1.7137858221441e37 * cos(theta) ** 10 + 4.43220471244164e35 * cos(theta) ** 8 - 6.95247798030062e33 * cos(theta) ** 6 + 5.71123601886688e31 * cos(theta) ** 4 - 1.83936747789594e29 * cos(theta) ** 2 + 9.70130526316422e25 ) * sin(15 * phi) ) # @torch.jit.script def Yl63_m_minus_14(theta, phi): return ( 2.91008945749061e-25 * (1.0 - cos(theta) ** 2) ** 7 * ( 2.13262690843064e42 * cos(theta) ** 49 - 2.00637539545155e43 * cos(theta) ** 47 + 8.81663334342734e43 * cos(theta) ** 45 - 2.40453636638927e44 * cos(theta) ** 43 + 4.56154693035612e44 * cos(theta) ** 41 - 6.39396321861884e44 * cos(theta) ** 39 + 6.86656049999501e44 * cos(theta) ** 37 - 5.78145296206913e44 * cos(theta) ** 35 + 3.87383391039542e44 * cos(theta) ** 33 - 2.084999291222e44 * cos(theta) ** 31 + 9.06097822820775e43 * cos(theta) ** 29 - 3.18507113476394e43 * cos(theta) ** 27 + 9.04498356231506e42 * cos(theta) ** 25 - 2.0666375237582e42 * cos(theta) ** 23 + 3.77243357511418e41 * cos(theta) ** 21 - 5.44474948985551e40 * cos(theta) ** 19 + 6.12534317608745e39 * cos(theta) ** 17 - 5.26911240953759e38 * cos(theta) ** 15 + 3.37763615996e37 * cos(theta) ** 13 - 1.55798711104009e36 * cos(theta) ** 11 + 4.92467190271294e34 * cos(theta) ** 9 - 9.93211140042945e32 * cos(theta) ** 7 + 1.14224720377338e31 * cos(theta) ** 5 - 6.13122492631979e28 * cos(theta) ** 3 + 9.70130526316422e25 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl63_m_minus_13(theta, phi): return ( 1.80566302240486e-23 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 4.26525381686129e40 * cos(theta) ** 50 - 4.17994874052406e41 * cos(theta) ** 48 + 1.9166594224842e42 * cos(theta) ** 46 - 5.46485537815744e42 * cos(theta) ** 44 + 1.08608260246574e43 * cos(theta) ** 42 - 1.59849080465471e43 * cos(theta) ** 40 + 1.80698960526185e43 * cos(theta) ** 38 - 1.60595915613031e43 * cos(theta) ** 36 + 1.13936291482218e43 * cos(theta) ** 34 - 6.51562278506874e42 * cos(theta) ** 32 + 3.02032607606925e42 * cos(theta) ** 30 - 1.13752540527283e42 * cos(theta) ** 28 + 3.47883983165964e41 * cos(theta) ** 26 - 8.61098968232584e40 * cos(theta) ** 24 + 1.71474253414281e40 * cos(theta) ** 22 - 2.72237474492776e39 * cos(theta) ** 20 + 3.4029684311597e38 * cos(theta) ** 18 - 3.293195255961e37 * cos(theta) ** 16 + 2.41259725711428e36 * cos(theta) ** 14 - 1.29832259253341e35 * cos(theta) ** 12 + 4.92467190271294e33 * cos(theta) ** 10 - 1.24151392505368e32 * cos(theta) ** 8 + 1.90374533962229e30 * cos(theta) ** 6 - 1.53280623157995e28 * cos(theta) ** 4 + 4.85065263158211e25 * cos(theta) ** 2 - 2.51981954887382e22 ) * sin(13 * phi) ) # @torch.jit.script def Yl63_m_minus_12(theta, phi): return ( 1.12416119182533e-21 * (1.0 - cos(theta) ** 2) ** 6 * ( 8.36324277815939e38 * cos(theta) ** 51 - 8.53050763372257e39 * cos(theta) ** 49 + 4.07799877124299e40 * cos(theta) ** 47 - 1.21441230625721e41 * cos(theta) ** 45 + 2.52577349410638e41 * cos(theta) ** 43 - 3.89875806013344e41 * cos(theta) ** 41 + 4.63330668015858e41 * cos(theta) ** 39 - 4.34043015170355e41 * cos(theta) ** 37 + 3.25532261377766e41 * cos(theta) ** 35 - 1.97443114699053e41 * cos(theta) ** 33 + 9.74298734215887e40 * cos(theta) ** 31 - 3.92250139749253e40 * cos(theta) ** 29 + 1.28845919691098e40 * cos(theta) ** 27 - 3.44439587293034e39 * cos(theta) ** 25 + 7.45540232236003e38 * cos(theta) ** 23 - 1.29636892615607e38 * cos(theta) ** 21 + 1.79103601639984e37 * cos(theta) ** 19 - 1.93717367997706e36 * cos(theta) ** 17 + 1.60839817140952e35 * cos(theta) ** 15 - 9.98709686564162e33 * cos(theta) ** 13 + 4.47697445701176e32 * cos(theta) ** 11 - 1.37945991672631e31 * cos(theta) ** 9 + 2.71963619946042e29 * cos(theta) ** 7 - 3.06561246315989e27 * cos(theta) ** 5 + 1.61688421052737e25 * cos(theta) ** 3 - 2.51981954887382e22 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl63_m_minus_11(theta, phi): return ( 7.02038439282633e-20 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.60831591887681e37 * cos(theta) ** 52 - 1.70610152674451e38 * cos(theta) ** 50 + 8.49583077342289e38 * cos(theta) ** 48 - 2.64002675273306e39 * cos(theta) ** 46 + 5.74039430478723e39 * cos(theta) ** 44 - 9.282757286032e39 * cos(theta) ** 42 + 1.15832667003964e40 * cos(theta) ** 40 - 1.14221846097462e40 * cos(theta) ** 38 + 9.04256281604906e39 * cos(theta) ** 36 - 5.80715043232508e39 * cos(theta) ** 34 + 3.04468354442465e39 * cos(theta) ** 32 - 1.30750046583084e39 * cos(theta) ** 30 + 4.60163998896778e38 * cos(theta) ** 28 - 1.32476764343474e38 * cos(theta) ** 26 + 3.10641763431668e37 * cos(theta) ** 24 - 5.89258602798216e36 * cos(theta) ** 22 + 8.9551800819992e35 * cos(theta) ** 20 - 1.07620759998725e35 * cos(theta) ** 18 + 1.00524885713095e34 * cos(theta) ** 16 - 7.13364061831544e32 * cos(theta) ** 14 + 3.7308120475098e31 * cos(theta) ** 12 - 1.37945991672631e30 * cos(theta) ** 10 + 3.39954524932552e28 * cos(theta) ** 8 - 5.10935410526649e26 * cos(theta) ** 6 + 4.04221052631842e24 * cos(theta) ** 4 - 1.25990977443691e22 * cos(theta) ** 2 + 6.46107576634314e18 ) * sin(11 * phi) ) # @torch.jit.script def Yl63_m_minus_10(theta, phi): return ( 4.396577031332e-18 * (1.0 - cos(theta) ** 2) ** 5 * ( 3.03455833750341e35 * cos(theta) ** 53 - 3.34529711126375e36 * cos(theta) ** 51 + 1.73384301498426e37 * cos(theta) ** 49 - 5.61707819730439e37 * cos(theta) ** 47 + 1.27564317884161e38 * cos(theta) ** 45 - 2.15878076419349e38 * cos(theta) ** 43 + 2.82518700009669e38 * cos(theta) ** 41 - 2.9287652845503e38 * cos(theta) ** 39 + 2.44393589622948e38 * cos(theta) ** 37 - 1.65918583780717e38 * cos(theta) ** 35 + 9.22631377098378e37 * cos(theta) ** 33 - 4.21774343816401e37 * cos(theta) ** 31 + 1.58677240998889e37 * cos(theta) ** 29 - 4.90654682753609e36 * cos(theta) ** 27 + 1.24256705372667e36 * cos(theta) ** 25 - 2.56199392520963e35 * cos(theta) ** 23 + 4.26437146761867e34 * cos(theta) ** 21 - 5.6642505262487e33 * cos(theta) ** 19 + 5.91322857135854e32 * cos(theta) ** 17 - 4.7557604122103e31 * cos(theta) ** 15 + 2.86985542116138e30 * cos(theta) ** 13 - 1.25405446975119e29 * cos(theta) ** 11 + 3.77727249925058e27 * cos(theta) ** 9 - 7.29907729323784e25 * cos(theta) ** 7 + 8.08442105263685e23 * cos(theta) ** 5 - 4.19969924812304e21 * cos(theta) ** 3 + 6.46107576634314e18 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl63_m_minus_9(theta, phi): return ( 2.76040621600124e-16 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 5.61955247685816e33 * cos(theta) ** 54 - 6.43326367550722e34 * cos(theta) ** 52 + 3.46768602996853e35 * cos(theta) ** 50 - 1.17022462443841e36 * cos(theta) ** 48 + 2.77313734530784e36 * cos(theta) ** 46 - 4.90631991862156e36 * cos(theta) ** 44 + 6.72663571451594e36 * cos(theta) ** 42 - 7.32191321137576e36 * cos(theta) ** 40 + 6.43141025323546e36 * cos(theta) ** 38 - 4.60884954946435e36 * cos(theta) ** 36 + 2.71362169734817e36 * cos(theta) ** 34 - 1.31804482442625e36 * cos(theta) ** 32 + 5.28924136662963e35 * cos(theta) ** 30 - 1.75233815269146e35 * cos(theta) ** 28 + 4.77910405279489e34 * cos(theta) ** 26 - 1.06749746883735e34 * cos(theta) ** 24 + 1.93835066709939e33 * cos(theta) ** 22 - 2.83212526312435e32 * cos(theta) ** 20 + 3.28512698408808e31 * cos(theta) ** 18 - 2.97235025763143e30 * cos(theta) ** 16 + 2.04989672940099e29 * cos(theta) ** 14 - 1.04504539145933e28 * cos(theta) ** 12 + 3.77727249925058e26 * cos(theta) ** 10 - 9.1238466165473e24 * cos(theta) ** 8 + 1.34740350877281e23 * cos(theta) ** 6 - 1.04992481203076e21 * cos(theta) ** 4 + 3.23053788317157e18 * cos(theta) ** 2 - 1.63903494833667e15 ) * sin(9 * phi) ) # @torch.jit.script def Yl63_m_minus_8(theta, phi): return ( 1.73708307833159e-14 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.02173681397421e32 * cos(theta) ** 55 - 1.21382333500136e33 * cos(theta) ** 53 + 6.79938437248731e33 * cos(theta) ** 51 - 2.38821351926207e34 * cos(theta) ** 49 + 5.90029222405923e34 * cos(theta) ** 47 - 1.09029331524924e35 * cos(theta) ** 45 + 1.56433388709673e35 * cos(theta) ** 43 - 1.78583249057945e35 * cos(theta) ** 41 + 1.64907955211166e35 * cos(theta) ** 39 - 1.24563501336874e35 * cos(theta) ** 37 + 7.7532048495662e34 * cos(theta) ** 35 - 3.9940752255341e34 * cos(theta) ** 33 + 1.70620689246117e34 * cos(theta) ** 31 - 6.04254535410849e33 * cos(theta) ** 29 + 1.77003853807218e33 * cos(theta) ** 27 - 4.26998987534939e32 * cos(theta) ** 25 + 8.42761159608432e31 * cos(theta) ** 23 - 1.34863107767826e31 * cos(theta) ** 21 + 1.72901420215162e30 * cos(theta) ** 19 - 1.74844132801849e29 * cos(theta) ** 17 + 1.36659781960066e28 * cos(theta) ** 15 - 8.03881070353329e26 * cos(theta) ** 13 + 3.4338840902278e25 * cos(theta) ** 11 - 1.01376073517192e24 * cos(theta) ** 9 + 1.92486215538973e22 * cos(theta) ** 7 - 2.09984962406152e20 * cos(theta) ** 5 + 1.07684596105719e18 * cos(theta) ** 3 - 1.63903494833667e15 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl63_m_minus_7(theta, phi): return ( 1.09532696037299e-12 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.82453002495395e30 * cos(theta) ** 56 - 2.24782099074326e31 * cos(theta) ** 54 + 1.30757391778602e32 * cos(theta) ** 52 - 4.77642703852414e32 * cos(theta) ** 50 + 1.22922754667901e33 * cos(theta) ** 48 - 2.37020285923747e33 * cos(theta) ** 46 + 3.5553042888562e33 * cos(theta) ** 44 - 4.25198212042727e33 * cos(theta) ** 42 + 4.12269888027914e33 * cos(theta) ** 40 - 3.27798687728617e33 * cos(theta) ** 38 + 2.15366801376839e33 * cos(theta) ** 36 - 1.17472800751003e33 * cos(theta) ** 34 + 5.33189653894116e32 * cos(theta) ** 32 - 2.01418178470283e32 * cos(theta) ** 30 + 6.32156620740065e31 * cos(theta) ** 28 - 1.6423037982113e31 * cos(theta) ** 26 + 3.5115048317018e30 * cos(theta) ** 24 - 6.13014126217392e29 * cos(theta) ** 22 + 8.64507101075809e28 * cos(theta) ** 20 - 9.71356293343606e27 * cos(theta) ** 18 + 8.54123637250412e26 * cos(theta) ** 16 - 5.74200764538092e25 * cos(theta) ** 14 + 2.86157007518983e24 * cos(theta) ** 12 - 1.01376073517192e23 * cos(theta) ** 10 + 2.40607769423716e21 * cos(theta) ** 8 - 3.49974937343587e19 * cos(theta) ** 6 + 2.69211490264297e17 * cos(theta) ** 4 - 819517474168333.0 * cos(theta) ** 2 + 412232129863.346 ) * sin(7 * phi) ) # @torch.jit.script def Yl63_m_minus_6(theta, phi): return ( 6.91879121594119e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 3.20092986834026e28 * cos(theta) ** 57 - 4.08694725589684e29 * cos(theta) ** 55 + 2.46712059959626e30 * cos(theta) ** 53 - 9.36554321279243e30 * cos(theta) ** 51 + 2.50862764628369e31 * cos(theta) ** 49 - 5.04298480688823e31 * cos(theta) ** 47 + 7.90067619745823e31 * cos(theta) ** 45 - 9.88833051262155e31 * cos(theta) ** 43 + 1.00553631226321e32 * cos(theta) ** 41 - 8.40509455714402e31 * cos(theta) ** 39 + 5.82072436153619e31 * cos(theta) ** 37 - 3.35636573574294e31 * cos(theta) ** 35 + 1.61572622392156e31 * cos(theta) ** 33 - 6.49736059581558e30 * cos(theta) ** 31 + 2.17985041634505e30 * cos(theta) ** 29 - 6.08260666004186e29 * cos(theta) ** 27 + 1.40460193268072e29 * cos(theta) ** 25 - 2.66527880964084e28 * cos(theta) ** 23 + 4.11670048131338e27 * cos(theta) ** 21 - 5.11240154391372e26 * cos(theta) ** 19 + 5.02425668970831e25 * cos(theta) ** 17 - 3.82800509692061e24 * cos(theta) ** 15 + 2.20120775014603e23 * cos(theta) ** 13 - 9.21600668338111e21 * cos(theta) ** 11 + 2.67341966026351e20 * cos(theta) ** 9 - 4.99964196205124e18 * cos(theta) ** 7 + 5.38422980528595e16 * cos(theta) ** 5 - 273172491389444.0 * cos(theta) ** 3 + 412232129863.346 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl63_m_minus_5(theta, phi): return ( 4.37692159974244e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 5.51884460058665e26 * cos(theta) ** 58 - 7.29812009981579e27 * cos(theta) ** 56 + 4.56874185110419e28 * cos(theta) ** 54 - 1.80106600246008e29 * cos(theta) ** 52 + 5.01725529256738e29 * cos(theta) ** 50 - 1.05062183476838e30 * cos(theta) ** 48 + 1.71753830379527e30 * cos(theta) ** 46 - 2.24734784377763e30 * cos(theta) ** 44 + 2.39413407681716e30 * cos(theta) ** 42 - 2.10127363928601e30 * cos(theta) ** 40 + 1.53176956882531e30 * cos(theta) ** 38 - 9.32323815484151e29 * cos(theta) ** 36 + 4.75213595271048e29 * cos(theta) ** 34 - 2.03042518619237e29 * cos(theta) ** 32 + 7.26616805448351e28 * cos(theta) ** 30 - 2.17235952144352e28 * cos(theta) ** 28 + 5.40231512569508e27 * cos(theta) ** 26 - 1.11053283735035e27 * cos(theta) ** 24 + 1.87122749150608e26 * cos(theta) ** 22 - 2.55620077195686e25 * cos(theta) ** 20 + 2.79125371650461e24 * cos(theta) ** 18 - 2.39250318557538e23 * cos(theta) ** 16 + 1.57229125010431e22 * cos(theta) ** 14 - 7.68000556948426e20 * cos(theta) ** 12 + 2.67341966026351e19 * cos(theta) ** 10 - 6.24955245256404e17 * cos(theta) ** 8 + 8.97371634214324e15 * cos(theta) ** 6 - 68293122847361.1 * cos(theta) ** 4 + 206116064931.673 * cos(theta) ** 2 - 103006529.201236 ) * sin(5 * phi) ) # @torch.jit.script def Yl63_m_minus_4(theta, phi): return ( 2.77235748188164e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 9.35397389929941e24 * cos(theta) ** 59 - 1.2803719473361e26 * cos(theta) ** 57 + 8.30680336564399e26 * cos(theta) ** 55 - 3.39823774049072e27 * cos(theta) ** 53 + 9.8377554756223e27 * cos(theta) ** 51 - 2.14412619340486e28 * cos(theta) ** 49 + 3.65433681658568e28 * cos(theta) ** 47 - 4.99410631950584e28 * cos(theta) ** 45 + 5.56775366701664e28 * cos(theta) ** 43 - 5.12505765679513e28 * cos(theta) ** 41 + 3.92761427903926e28 * cos(theta) ** 39 - 2.51979409590311e28 * cos(theta) ** 37 + 1.35775312934585e28 * cos(theta) ** 35 - 6.15280359452233e27 * cos(theta) ** 33 + 2.34392517886565e27 * cos(theta) ** 31 - 7.49089490152939e26 * cos(theta) ** 29 + 2.00085745396114e26 * cos(theta) ** 27 - 4.44213134940139e25 * cos(theta) ** 25 + 8.13577170220035e24 * cos(theta) ** 23 - 1.2172384628366e24 * cos(theta) ** 21 + 1.46908090342348e23 * cos(theta) ** 19 - 1.40735481504434e22 * cos(theta) ** 17 + 1.0481941667362e21 * cos(theta) ** 15 - 5.90769659191097e19 * cos(theta) ** 13 + 2.43038150933046e18 * cos(theta) ** 11 - 6.94394716951561e16 * cos(theta) ** 9 + 1.28195947744903e15 * cos(theta) ** 7 - 13658624569472.2 * cos(theta) ** 5 + 68705354977.2244 * cos(theta) ** 3 - 103006529.201236 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl63_m_minus_3(theta, phi): return ( 1.75777084255962e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 1.55899564988324e23 * cos(theta) ** 60 - 2.20753784023466e24 * cos(theta) ** 58 + 1.483357743865e25 * cos(theta) ** 56 - 6.2930328527606e25 * cos(theta) ** 54 + 1.89187605300429e26 * cos(theta) ** 52 - 4.28825238680972e26 * cos(theta) ** 50 + 7.61320170122016e26 * cos(theta) ** 48 - 1.08567528684909e27 * cos(theta) ** 46 + 1.2653985606856e27 * cos(theta) ** 44 - 1.22025182304646e27 * cos(theta) ** 42 + 9.81903569759815e26 * cos(theta) ** 40 - 6.63103709448187e26 * cos(theta) ** 38 + 3.77153647040514e26 * cos(theta) ** 36 - 1.80964811603598e26 * cos(theta) ** 34 + 7.32476618395515e25 * cos(theta) ** 32 - 2.49696496717646e25 * cos(theta) ** 30 + 7.14591947843264e24 * cos(theta) ** 28 - 1.70851205746207e24 * cos(theta) ** 26 + 3.38990487591681e23 * cos(theta) ** 24 - 5.53290210380272e22 * cos(theta) ** 22 + 7.34540451711741e21 * cos(theta) ** 20 - 7.81863786135747e20 * cos(theta) ** 18 + 6.55121354210127e19 * cos(theta) ** 16 - 4.21978327993641e18 * cos(theta) ** 14 + 2.02531792444205e17 * cos(theta) ** 12 - 6.94394716951561e15 * cos(theta) ** 10 + 160244934681129.0 * cos(theta) ** 8 - 2276437428245.37 * cos(theta) ** 6 + 17176338744.3061 * cos(theta) ** 4 - 51503264.600618 * cos(theta) ** 2 + 25623.5147266756 ) * sin(3 * phi) ) # @torch.jit.script def Yl63_m_minus_2(theta, phi): return ( 0.00111531910485384 * (1.0 - cos(theta) ** 2) * ( 2.55573057357907e21 * cos(theta) ** 61 - 3.74158955971977e22 * cos(theta) ** 59 + 2.6023820067807e23 * cos(theta) ** 57 - 1.14418779141102e24 * cos(theta) ** 55 + 3.56957745849866e24 * cos(theta) ** 53 - 8.4083380133524e24 * cos(theta) ** 51 + 1.55371463290207e25 * cos(theta) ** 49 - 2.30994741882786e25 * cos(theta) ** 47 + 2.81199680152356e25 * cos(theta) ** 45 - 2.83779493731735e25 * cos(theta) ** 43 + 2.39488675551175e25 * cos(theta) ** 41 - 1.70026592166202e25 * cos(theta) ** 39 + 1.01933418119058e25 * cos(theta) ** 37 - 5.17042318867422e24 * cos(theta) ** 35 + 2.21962611635005e24 * cos(theta) ** 33 - 8.05472570056924e23 * cos(theta) ** 31 + 2.46411016497677e23 * cos(theta) ** 29 - 6.32782243504472e22 * cos(theta) ** 27 + 1.35596195036673e22 * cos(theta) ** 25 - 2.40560961034901e21 * cos(theta) ** 23 + 3.49781167481781e20 * cos(theta) ** 21 - 4.11507255860919e19 * cos(theta) ** 19 + 3.85365502476545e18 * cos(theta) ** 17 - 2.81318885329094e17 * cos(theta) ** 15 + 1.55793686495542e16 * cos(theta) ** 13 - 631267924501419.0 * cos(theta) ** 11 + 17804992742347.7 * cos(theta) ** 9 - 325205346892.196 * cos(theta) ** 7 + 3435267748.86122 * cos(theta) ** 5 - 17167754.8668727 * cos(theta) ** 3 + 25623.5147266756 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl63_m_minus_1(theta, phi): return ( 0.0708030008105409 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 4.12214608641786e19 * cos(theta) ** 62 - 6.23598259953294e20 * cos(theta) ** 60 + 4.48686552893224e21 * cos(theta) ** 58 - 2.04319248466253e22 * cos(theta) ** 56 + 6.61032862684937e22 * cos(theta) ** 54 - 1.61698807949085e23 * cos(theta) ** 52 + 3.10742926580415e23 * cos(theta) ** 50 - 4.81239045589138e23 * cos(theta) ** 48 + 6.11303652505121e23 * cos(theta) ** 46 - 6.44953394844852e23 * cos(theta) ** 44 + 5.70211132264701e23 * cos(theta) ** 42 - 4.25066480415505e23 * cos(theta) ** 40 + 2.68245837155415e23 * cos(theta) ** 38 - 1.43622866352062e23 * cos(theta) ** 36 + 6.5283121069119e22 * cos(theta) ** 34 - 2.51710178142789e22 * cos(theta) ** 32 + 8.21370054992258e21 * cos(theta) ** 30 - 2.25993658394454e21 * cos(theta) ** 28 + 5.21523827064125e20 * cos(theta) ** 26 - 1.00233733764542e20 * cos(theta) ** 24 + 1.58991439764446e19 * cos(theta) ** 22 - 2.0575362793046e18 * cos(theta) ** 20 + 2.14091945820303e17 * cos(theta) ** 18 - 1.75824303330684e16 * cos(theta) ** 16 + 1.11281204639673e15 * cos(theta) ** 14 - 52605660375118.2 * cos(theta) ** 12 + 1780499274234.77 * cos(theta) ** 10 - 40650668361.5244 * cos(theta) ** 8 + 572544624.810203 * cos(theta) ** 6 - 4291938.71671817 * cos(theta) ** 4 + 12811.7573633378 * cos(theta) ** 2 - 6.35819223986988 ) * sin(phi) ) # @torch.jit.script def Yl63_m0(theta, phi): return ( 6.53475982764185e18 * cos(theta) ** 63 - 1.02099087547076e20 * cos(theta) ** 61 + 7.59517602484348e20 * cos(theta) ** 59 - 3.57998517314248e21 * cos(theta) ** 57 + 1.20034796981836e22 * cos(theta) ** 55 - 3.0470371541543e22 * cos(theta) ** 53 + 6.08524231655743e22 * cos(theta) ** 51 - 9.80870284906539e22 * cos(theta) ** 49 + 1.29899037730866e23 * cos(theta) ** 47 - 1.43140529854298e23 * cos(theta) ** 45 + 1.32438434164257e23 * cos(theta) ** 43 - 1.03542775801146e23 * cos(theta) ** 41 + 6.869342731144e22 * cos(theta) ** 39 - 3.87675777896246e22 * cos(theta) ** 37 + 1.8628576340469e22 * cos(theta) ** 35 - 7.61787142445294e21 * cos(theta) ** 33 + 2.64620796849418e21 * cos(theta) ** 31 - 7.78296461321817e20 * cos(theta) ** 29 + 1.92911088703698e20 * cos(theta) ** 27 - 4.00424554316961e19 * cos(theta) ** 25 + 6.9038716261545e18 * cos(theta) ** 23 - 9.78531944771478e17 * cos(theta) ** 21 + 1.12536532531221e17 * cos(theta) ** 19 - 1.03294401840252e16 * cos(theta) ** 17 + 740930308558767.0 * cos(theta) ** 15 - 40414380466841.8 * cos(theta) ** 13 + 1616575218673.67 * cos(theta) ** 11 - 45109912241.0208 * cos(theta) ** 9 + 816879698.529552 * cos(theta) ** 7 - 8572950.3593806 * cos(theta) ** 5 + 42651.4943252766 * cos(theta) ** 3 - 63.5009841071116 * cos(theta) ) # @torch.jit.script def Yl63_m1(theta, phi): return ( 0.0708030008105409 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 4.12214608641786e19 * cos(theta) ** 62 - 6.23598259953294e20 * cos(theta) ** 60 + 4.48686552893224e21 * cos(theta) ** 58 - 2.04319248466253e22 * cos(theta) ** 56 + 6.61032862684937e22 * cos(theta) ** 54 - 1.61698807949085e23 * cos(theta) ** 52 + 3.10742926580415e23 * cos(theta) ** 50 - 4.81239045589138e23 * cos(theta) ** 48 + 6.11303652505121e23 * cos(theta) ** 46 - 6.44953394844852e23 * cos(theta) ** 44 + 5.70211132264701e23 * cos(theta) ** 42 - 4.25066480415505e23 * cos(theta) ** 40 + 2.68245837155415e23 * cos(theta) ** 38 - 1.43622866352062e23 * cos(theta) ** 36 + 6.5283121069119e22 * cos(theta) ** 34 - 2.51710178142789e22 * cos(theta) ** 32 + 8.21370054992258e21 * cos(theta) ** 30 - 2.25993658394454e21 * cos(theta) ** 28 + 5.21523827064125e20 * cos(theta) ** 26 - 1.00233733764542e20 * cos(theta) ** 24 + 1.58991439764446e19 * cos(theta) ** 22 - 2.0575362793046e18 * cos(theta) ** 20 + 2.14091945820303e17 * cos(theta) ** 18 - 1.75824303330684e16 * cos(theta) ** 16 + 1.11281204639673e15 * cos(theta) ** 14 - 52605660375118.2 * cos(theta) ** 12 + 1780499274234.77 * cos(theta) ** 10 - 40650668361.5244 * cos(theta) ** 8 + 572544624.810203 * cos(theta) ** 6 - 4291938.71671817 * cos(theta) ** 4 + 12811.7573633378 * cos(theta) ** 2 - 6.35819223986988 ) * cos(phi) ) # @torch.jit.script def Yl63_m2(theta, phi): return ( 0.00111531910485384 * (1.0 - cos(theta) ** 2) * ( 2.55573057357907e21 * cos(theta) ** 61 - 3.74158955971977e22 * cos(theta) ** 59 + 2.6023820067807e23 * cos(theta) ** 57 - 1.14418779141102e24 * cos(theta) ** 55 + 3.56957745849866e24 * cos(theta) ** 53 - 8.4083380133524e24 * cos(theta) ** 51 + 1.55371463290207e25 * cos(theta) ** 49 - 2.30994741882786e25 * cos(theta) ** 47 + 2.81199680152356e25 * cos(theta) ** 45 - 2.83779493731735e25 * cos(theta) ** 43 + 2.39488675551175e25 * cos(theta) ** 41 - 1.70026592166202e25 * cos(theta) ** 39 + 1.01933418119058e25 * cos(theta) ** 37 - 5.17042318867422e24 * cos(theta) ** 35 + 2.21962611635005e24 * cos(theta) ** 33 - 8.05472570056924e23 * cos(theta) ** 31 + 2.46411016497677e23 * cos(theta) ** 29 - 6.32782243504472e22 * cos(theta) ** 27 + 1.35596195036673e22 * cos(theta) ** 25 - 2.40560961034901e21 * cos(theta) ** 23 + 3.49781167481781e20 * cos(theta) ** 21 - 4.11507255860919e19 * cos(theta) ** 19 + 3.85365502476545e18 * cos(theta) ** 17 - 2.81318885329094e17 * cos(theta) ** 15 + 1.55793686495542e16 * cos(theta) ** 13 - 631267924501419.0 * cos(theta) ** 11 + 17804992742347.7 * cos(theta) ** 9 - 325205346892.196 * cos(theta) ** 7 + 3435267748.86122 * cos(theta) ** 5 - 17167754.8668727 * cos(theta) ** 3 + 25623.5147266756 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl63_m3(theta, phi): return ( 1.75777084255962e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 1.55899564988324e23 * cos(theta) ** 60 - 2.20753784023466e24 * cos(theta) ** 58 + 1.483357743865e25 * cos(theta) ** 56 - 6.2930328527606e25 * cos(theta) ** 54 + 1.89187605300429e26 * cos(theta) ** 52 - 4.28825238680972e26 * cos(theta) ** 50 + 7.61320170122016e26 * cos(theta) ** 48 - 1.08567528684909e27 * cos(theta) ** 46 + 1.2653985606856e27 * cos(theta) ** 44 - 1.22025182304646e27 * cos(theta) ** 42 + 9.81903569759815e26 * cos(theta) ** 40 - 6.63103709448187e26 * cos(theta) ** 38 + 3.77153647040514e26 * cos(theta) ** 36 - 1.80964811603598e26 * cos(theta) ** 34 + 7.32476618395515e25 * cos(theta) ** 32 - 2.49696496717646e25 * cos(theta) ** 30 + 7.14591947843264e24 * cos(theta) ** 28 - 1.70851205746207e24 * cos(theta) ** 26 + 3.38990487591681e23 * cos(theta) ** 24 - 5.53290210380272e22 * cos(theta) ** 22 + 7.34540451711741e21 * cos(theta) ** 20 - 7.81863786135747e20 * cos(theta) ** 18 + 6.55121354210127e19 * cos(theta) ** 16 - 4.21978327993641e18 * cos(theta) ** 14 + 2.02531792444205e17 * cos(theta) ** 12 - 6.94394716951561e15 * cos(theta) ** 10 + 160244934681129.0 * cos(theta) ** 8 - 2276437428245.37 * cos(theta) ** 6 + 17176338744.3061 * cos(theta) ** 4 - 51503264.600618 * cos(theta) ** 2 + 25623.5147266756 ) * cos(3 * phi) ) # @torch.jit.script def Yl63_m4(theta, phi): return ( 2.77235748188164e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 9.35397389929941e24 * cos(theta) ** 59 - 1.2803719473361e26 * cos(theta) ** 57 + 8.30680336564399e26 * cos(theta) ** 55 - 3.39823774049072e27 * cos(theta) ** 53 + 9.8377554756223e27 * cos(theta) ** 51 - 2.14412619340486e28 * cos(theta) ** 49 + 3.65433681658568e28 * cos(theta) ** 47 - 4.99410631950584e28 * cos(theta) ** 45 + 5.56775366701664e28 * cos(theta) ** 43 - 5.12505765679513e28 * cos(theta) ** 41 + 3.92761427903926e28 * cos(theta) ** 39 - 2.51979409590311e28 * cos(theta) ** 37 + 1.35775312934585e28 * cos(theta) ** 35 - 6.15280359452233e27 * cos(theta) ** 33 + 2.34392517886565e27 * cos(theta) ** 31 - 7.49089490152939e26 * cos(theta) ** 29 + 2.00085745396114e26 * cos(theta) ** 27 - 4.44213134940139e25 * cos(theta) ** 25 + 8.13577170220035e24 * cos(theta) ** 23 - 1.2172384628366e24 * cos(theta) ** 21 + 1.46908090342348e23 * cos(theta) ** 19 - 1.40735481504434e22 * cos(theta) ** 17 + 1.0481941667362e21 * cos(theta) ** 15 - 5.90769659191097e19 * cos(theta) ** 13 + 2.43038150933046e18 * cos(theta) ** 11 - 6.94394716951561e16 * cos(theta) ** 9 + 1.28195947744903e15 * cos(theta) ** 7 - 13658624569472.2 * cos(theta) ** 5 + 68705354977.2244 * cos(theta) ** 3 - 103006529.201236 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl63_m5(theta, phi): return ( 4.37692159974244e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 5.51884460058665e26 * cos(theta) ** 58 - 7.29812009981579e27 * cos(theta) ** 56 + 4.56874185110419e28 * cos(theta) ** 54 - 1.80106600246008e29 * cos(theta) ** 52 + 5.01725529256738e29 * cos(theta) ** 50 - 1.05062183476838e30 * cos(theta) ** 48 + 1.71753830379527e30 * cos(theta) ** 46 - 2.24734784377763e30 * cos(theta) ** 44 + 2.39413407681716e30 * cos(theta) ** 42 - 2.10127363928601e30 * cos(theta) ** 40 + 1.53176956882531e30 * cos(theta) ** 38 - 9.32323815484151e29 * cos(theta) ** 36 + 4.75213595271048e29 * cos(theta) ** 34 - 2.03042518619237e29 * cos(theta) ** 32 + 7.26616805448351e28 * cos(theta) ** 30 - 2.17235952144352e28 * cos(theta) ** 28 + 5.40231512569508e27 * cos(theta) ** 26 - 1.11053283735035e27 * cos(theta) ** 24 + 1.87122749150608e26 * cos(theta) ** 22 - 2.55620077195686e25 * cos(theta) ** 20 + 2.79125371650461e24 * cos(theta) ** 18 - 2.39250318557538e23 * cos(theta) ** 16 + 1.57229125010431e22 * cos(theta) ** 14 - 7.68000556948426e20 * cos(theta) ** 12 + 2.67341966026351e19 * cos(theta) ** 10 - 6.24955245256404e17 * cos(theta) ** 8 + 8.97371634214324e15 * cos(theta) ** 6 - 68293122847361.1 * cos(theta) ** 4 + 206116064931.673 * cos(theta) ** 2 - 103006529.201236 ) * cos(5 * phi) ) # @torch.jit.script def Yl63_m6(theta, phi): return ( 6.91879121594119e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 3.20092986834026e28 * cos(theta) ** 57 - 4.08694725589684e29 * cos(theta) ** 55 + 2.46712059959626e30 * cos(theta) ** 53 - 9.36554321279243e30 * cos(theta) ** 51 + 2.50862764628369e31 * cos(theta) ** 49 - 5.04298480688823e31 * cos(theta) ** 47 + 7.90067619745823e31 * cos(theta) ** 45 - 9.88833051262155e31 * cos(theta) ** 43 + 1.00553631226321e32 * cos(theta) ** 41 - 8.40509455714402e31 * cos(theta) ** 39 + 5.82072436153619e31 * cos(theta) ** 37 - 3.35636573574294e31 * cos(theta) ** 35 + 1.61572622392156e31 * cos(theta) ** 33 - 6.49736059581558e30 * cos(theta) ** 31 + 2.17985041634505e30 * cos(theta) ** 29 - 6.08260666004186e29 * cos(theta) ** 27 + 1.40460193268072e29 * cos(theta) ** 25 - 2.66527880964084e28 * cos(theta) ** 23 + 4.11670048131338e27 * cos(theta) ** 21 - 5.11240154391372e26 * cos(theta) ** 19 + 5.02425668970831e25 * cos(theta) ** 17 - 3.82800509692061e24 * cos(theta) ** 15 + 2.20120775014603e23 * cos(theta) ** 13 - 9.21600668338111e21 * cos(theta) ** 11 + 2.67341966026351e20 * cos(theta) ** 9 - 4.99964196205124e18 * cos(theta) ** 7 + 5.38422980528595e16 * cos(theta) ** 5 - 273172491389444.0 * cos(theta) ** 3 + 412232129863.346 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl63_m7(theta, phi): return ( 1.09532696037299e-12 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.82453002495395e30 * cos(theta) ** 56 - 2.24782099074326e31 * cos(theta) ** 54 + 1.30757391778602e32 * cos(theta) ** 52 - 4.77642703852414e32 * cos(theta) ** 50 + 1.22922754667901e33 * cos(theta) ** 48 - 2.37020285923747e33 * cos(theta) ** 46 + 3.5553042888562e33 * cos(theta) ** 44 - 4.25198212042727e33 * cos(theta) ** 42 + 4.12269888027914e33 * cos(theta) ** 40 - 3.27798687728617e33 * cos(theta) ** 38 + 2.15366801376839e33 * cos(theta) ** 36 - 1.17472800751003e33 * cos(theta) ** 34 + 5.33189653894116e32 * cos(theta) ** 32 - 2.01418178470283e32 * cos(theta) ** 30 + 6.32156620740065e31 * cos(theta) ** 28 - 1.6423037982113e31 * cos(theta) ** 26 + 3.5115048317018e30 * cos(theta) ** 24 - 6.13014126217392e29 * cos(theta) ** 22 + 8.64507101075809e28 * cos(theta) ** 20 - 9.71356293343606e27 * cos(theta) ** 18 + 8.54123637250412e26 * cos(theta) ** 16 - 5.74200764538092e25 * cos(theta) ** 14 + 2.86157007518983e24 * cos(theta) ** 12 - 1.01376073517192e23 * cos(theta) ** 10 + 2.40607769423716e21 * cos(theta) ** 8 - 3.49974937343587e19 * cos(theta) ** 6 + 2.69211490264297e17 * cos(theta) ** 4 - 819517474168333.0 * cos(theta) ** 2 + 412232129863.346 ) * cos(7 * phi) ) # @torch.jit.script def Yl63_m8(theta, phi): return ( 1.73708307833159e-14 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.02173681397421e32 * cos(theta) ** 55 - 1.21382333500136e33 * cos(theta) ** 53 + 6.79938437248731e33 * cos(theta) ** 51 - 2.38821351926207e34 * cos(theta) ** 49 + 5.90029222405923e34 * cos(theta) ** 47 - 1.09029331524924e35 * cos(theta) ** 45 + 1.56433388709673e35 * cos(theta) ** 43 - 1.78583249057945e35 * cos(theta) ** 41 + 1.64907955211166e35 * cos(theta) ** 39 - 1.24563501336874e35 * cos(theta) ** 37 + 7.7532048495662e34 * cos(theta) ** 35 - 3.9940752255341e34 * cos(theta) ** 33 + 1.70620689246117e34 * cos(theta) ** 31 - 6.04254535410849e33 * cos(theta) ** 29 + 1.77003853807218e33 * cos(theta) ** 27 - 4.26998987534939e32 * cos(theta) ** 25 + 8.42761159608432e31 * cos(theta) ** 23 - 1.34863107767826e31 * cos(theta) ** 21 + 1.72901420215162e30 * cos(theta) ** 19 - 1.74844132801849e29 * cos(theta) ** 17 + 1.36659781960066e28 * cos(theta) ** 15 - 8.03881070353329e26 * cos(theta) ** 13 + 3.4338840902278e25 * cos(theta) ** 11 - 1.01376073517192e24 * cos(theta) ** 9 + 1.92486215538973e22 * cos(theta) ** 7 - 2.09984962406152e20 * cos(theta) ** 5 + 1.07684596105719e18 * cos(theta) ** 3 - 1.63903494833667e15 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl63_m9(theta, phi): return ( 2.76040621600124e-16 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 5.61955247685816e33 * cos(theta) ** 54 - 6.43326367550722e34 * cos(theta) ** 52 + 3.46768602996853e35 * cos(theta) ** 50 - 1.17022462443841e36 * cos(theta) ** 48 + 2.77313734530784e36 * cos(theta) ** 46 - 4.90631991862156e36 * cos(theta) ** 44 + 6.72663571451594e36 * cos(theta) ** 42 - 7.32191321137576e36 * cos(theta) ** 40 + 6.43141025323546e36 * cos(theta) ** 38 - 4.60884954946435e36 * cos(theta) ** 36 + 2.71362169734817e36 * cos(theta) ** 34 - 1.31804482442625e36 * cos(theta) ** 32 + 5.28924136662963e35 * cos(theta) ** 30 - 1.75233815269146e35 * cos(theta) ** 28 + 4.77910405279489e34 * cos(theta) ** 26 - 1.06749746883735e34 * cos(theta) ** 24 + 1.93835066709939e33 * cos(theta) ** 22 - 2.83212526312435e32 * cos(theta) ** 20 + 3.28512698408808e31 * cos(theta) ** 18 - 2.97235025763143e30 * cos(theta) ** 16 + 2.04989672940099e29 * cos(theta) ** 14 - 1.04504539145933e28 * cos(theta) ** 12 + 3.77727249925058e26 * cos(theta) ** 10 - 9.1238466165473e24 * cos(theta) ** 8 + 1.34740350877281e23 * cos(theta) ** 6 - 1.04992481203076e21 * cos(theta) ** 4 + 3.23053788317157e18 * cos(theta) ** 2 - 1.63903494833667e15 ) * cos(9 * phi) ) # @torch.jit.script def Yl63_m10(theta, phi): return ( 4.396577031332e-18 * (1.0 - cos(theta) ** 2) ** 5 * ( 3.03455833750341e35 * cos(theta) ** 53 - 3.34529711126375e36 * cos(theta) ** 51 + 1.73384301498426e37 * cos(theta) ** 49 - 5.61707819730439e37 * cos(theta) ** 47 + 1.27564317884161e38 * cos(theta) ** 45 - 2.15878076419349e38 * cos(theta) ** 43 + 2.82518700009669e38 * cos(theta) ** 41 - 2.9287652845503e38 * cos(theta) ** 39 + 2.44393589622948e38 * cos(theta) ** 37 - 1.65918583780717e38 * cos(theta) ** 35 + 9.22631377098378e37 * cos(theta) ** 33 - 4.21774343816401e37 * cos(theta) ** 31 + 1.58677240998889e37 * cos(theta) ** 29 - 4.90654682753609e36 * cos(theta) ** 27 + 1.24256705372667e36 * cos(theta) ** 25 - 2.56199392520963e35 * cos(theta) ** 23 + 4.26437146761867e34 * cos(theta) ** 21 - 5.6642505262487e33 * cos(theta) ** 19 + 5.91322857135854e32 * cos(theta) ** 17 - 4.7557604122103e31 * cos(theta) ** 15 + 2.86985542116138e30 * cos(theta) ** 13 - 1.25405446975119e29 * cos(theta) ** 11 + 3.77727249925058e27 * cos(theta) ** 9 - 7.29907729323784e25 * cos(theta) ** 7 + 8.08442105263685e23 * cos(theta) ** 5 - 4.19969924812304e21 * cos(theta) ** 3 + 6.46107576634314e18 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl63_m11(theta, phi): return ( 7.02038439282633e-20 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.60831591887681e37 * cos(theta) ** 52 - 1.70610152674451e38 * cos(theta) ** 50 + 8.49583077342289e38 * cos(theta) ** 48 - 2.64002675273306e39 * cos(theta) ** 46 + 5.74039430478723e39 * cos(theta) ** 44 - 9.282757286032e39 * cos(theta) ** 42 + 1.15832667003964e40 * cos(theta) ** 40 - 1.14221846097462e40 * cos(theta) ** 38 + 9.04256281604906e39 * cos(theta) ** 36 - 5.80715043232508e39 * cos(theta) ** 34 + 3.04468354442465e39 * cos(theta) ** 32 - 1.30750046583084e39 * cos(theta) ** 30 + 4.60163998896778e38 * cos(theta) ** 28 - 1.32476764343474e38 * cos(theta) ** 26 + 3.10641763431668e37 * cos(theta) ** 24 - 5.89258602798216e36 * cos(theta) ** 22 + 8.9551800819992e35 * cos(theta) ** 20 - 1.07620759998725e35 * cos(theta) ** 18 + 1.00524885713095e34 * cos(theta) ** 16 - 7.13364061831544e32 * cos(theta) ** 14 + 3.7308120475098e31 * cos(theta) ** 12 - 1.37945991672631e30 * cos(theta) ** 10 + 3.39954524932552e28 * cos(theta) ** 8 - 5.10935410526649e26 * cos(theta) ** 6 + 4.04221052631842e24 * cos(theta) ** 4 - 1.25990977443691e22 * cos(theta) ** 2 + 6.46107576634314e18 ) * cos(11 * phi) ) # @torch.jit.script def Yl63_m12(theta, phi): return ( 1.12416119182533e-21 * (1.0 - cos(theta) ** 2) ** 6 * ( 8.36324277815939e38 * cos(theta) ** 51 - 8.53050763372257e39 * cos(theta) ** 49 + 4.07799877124299e40 * cos(theta) ** 47 - 1.21441230625721e41 * cos(theta) ** 45 + 2.52577349410638e41 * cos(theta) ** 43 - 3.89875806013344e41 * cos(theta) ** 41 + 4.63330668015858e41 * cos(theta) ** 39 - 4.34043015170355e41 * cos(theta) ** 37 + 3.25532261377766e41 * cos(theta) ** 35 - 1.97443114699053e41 * cos(theta) ** 33 + 9.74298734215887e40 * cos(theta) ** 31 - 3.92250139749253e40 * cos(theta) ** 29 + 1.28845919691098e40 * cos(theta) ** 27 - 3.44439587293034e39 * cos(theta) ** 25 + 7.45540232236003e38 * cos(theta) ** 23 - 1.29636892615607e38 * cos(theta) ** 21 + 1.79103601639984e37 * cos(theta) ** 19 - 1.93717367997706e36 * cos(theta) ** 17 + 1.60839817140952e35 * cos(theta) ** 15 - 9.98709686564162e33 * cos(theta) ** 13 + 4.47697445701176e32 * cos(theta) ** 11 - 1.37945991672631e31 * cos(theta) ** 9 + 2.71963619946042e29 * cos(theta) ** 7 - 3.06561246315989e27 * cos(theta) ** 5 + 1.61688421052737e25 * cos(theta) ** 3 - 2.51981954887382e22 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl63_m13(theta, phi): return ( 1.80566302240486e-23 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 4.26525381686129e40 * cos(theta) ** 50 - 4.17994874052406e41 * cos(theta) ** 48 + 1.9166594224842e42 * cos(theta) ** 46 - 5.46485537815744e42 * cos(theta) ** 44 + 1.08608260246574e43 * cos(theta) ** 42 - 1.59849080465471e43 * cos(theta) ** 40 + 1.80698960526185e43 * cos(theta) ** 38 - 1.60595915613031e43 * cos(theta) ** 36 + 1.13936291482218e43 * cos(theta) ** 34 - 6.51562278506874e42 * cos(theta) ** 32 + 3.02032607606925e42 * cos(theta) ** 30 - 1.13752540527283e42 * cos(theta) ** 28 + 3.47883983165964e41 * cos(theta) ** 26 - 8.61098968232584e40 * cos(theta) ** 24 + 1.71474253414281e40 * cos(theta) ** 22 - 2.72237474492776e39 * cos(theta) ** 20 + 3.4029684311597e38 * cos(theta) ** 18 - 3.293195255961e37 * cos(theta) ** 16 + 2.41259725711428e36 * cos(theta) ** 14 - 1.29832259253341e35 * cos(theta) ** 12 + 4.92467190271294e33 * cos(theta) ** 10 - 1.24151392505368e32 * cos(theta) ** 8 + 1.90374533962229e30 * cos(theta) ** 6 - 1.53280623157995e28 * cos(theta) ** 4 + 4.85065263158211e25 * cos(theta) ** 2 - 2.51981954887382e22 ) * cos(13 * phi) ) # @torch.jit.script def Yl63_m14(theta, phi): return ( 2.91008945749061e-25 * (1.0 - cos(theta) ** 2) ** 7 * ( 2.13262690843064e42 * cos(theta) ** 49 - 2.00637539545155e43 * cos(theta) ** 47 + 8.81663334342734e43 * cos(theta) ** 45 - 2.40453636638927e44 * cos(theta) ** 43 + 4.56154693035612e44 * cos(theta) ** 41 - 6.39396321861884e44 * cos(theta) ** 39 + 6.86656049999501e44 * cos(theta) ** 37 - 5.78145296206913e44 * cos(theta) ** 35 + 3.87383391039542e44 * cos(theta) ** 33 - 2.084999291222e44 * cos(theta) ** 31 + 9.06097822820775e43 * cos(theta) ** 29 - 3.18507113476394e43 * cos(theta) ** 27 + 9.04498356231506e42 * cos(theta) ** 25 - 2.0666375237582e42 * cos(theta) ** 23 + 3.77243357511418e41 * cos(theta) ** 21 - 5.44474948985551e40 * cos(theta) ** 19 + 6.12534317608745e39 * cos(theta) ** 17 - 5.26911240953759e38 * cos(theta) ** 15 + 3.37763615996e37 * cos(theta) ** 13 - 1.55798711104009e36 * cos(theta) ** 11 + 4.92467190271294e34 * cos(theta) ** 9 - 9.93211140042945e32 * cos(theta) ** 7 + 1.14224720377338e31 * cos(theta) ** 5 - 6.13122492631979e28 * cos(theta) ** 3 + 9.70130526316422e25 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl63_m15(theta, phi): return ( 4.70718208574704e-27 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.04498718513102e44 * cos(theta) ** 48 - 9.42996435862228e44 * cos(theta) ** 46 + 3.9674850045423e45 * cos(theta) ** 44 - 1.03395063754739e46 * cos(theta) ** 42 + 1.87023424144601e46 * cos(theta) ** 40 - 2.49364565526135e46 * cos(theta) ** 38 + 2.54062738499815e46 * cos(theta) ** 36 - 2.02350853672419e46 * cos(theta) ** 34 + 1.27836519043049e46 * cos(theta) ** 32 - 6.46349780278819e45 * cos(theta) ** 30 + 2.62768368618025e45 * cos(theta) ** 28 - 8.59969206386263e44 * cos(theta) ** 26 + 2.26124589057877e44 * cos(theta) ** 24 - 4.75326630464386e43 * cos(theta) ** 22 + 7.92211050773977e42 * cos(theta) ** 20 - 1.03450240307255e42 * cos(theta) ** 18 + 1.04130833993487e41 * cos(theta) ** 16 - 7.90366861430639e39 * cos(theta) ** 14 + 4.39092700794799e38 * cos(theta) ** 12 - 1.7137858221441e37 * cos(theta) ** 10 + 4.43220471244164e35 * cos(theta) ** 8 - 6.95247798030062e33 * cos(theta) ** 6 + 5.71123601886688e31 * cos(theta) ** 4 - 1.83936747789594e29 * cos(theta) ** 2 + 9.70130526316422e25 ) * cos(15 * phi) ) # @torch.jit.script def Yl63_m16(theta, phi): return ( 7.64410834397408e-29 * (1.0 - cos(theta) ** 2) ** 8 * ( 5.01593848862887e45 * cos(theta) ** 47 - 4.33778360496625e46 * cos(theta) ** 45 + 1.74569340199861e47 * cos(theta) ** 43 - 4.34259267769903e47 * cos(theta) ** 41 + 7.48093696578404e47 * cos(theta) ** 39 - 9.47585348999312e47 * cos(theta) ** 37 + 9.14625858599336e47 * cos(theta) ** 35 - 6.87992902486226e47 * cos(theta) ** 33 + 4.09076860937756e47 * cos(theta) ** 31 - 1.93904934083646e47 * cos(theta) ** 29 + 7.35751432130469e46 * cos(theta) ** 27 - 2.23591993660428e46 * cos(theta) ** 25 + 5.42699013738904e45 * cos(theta) ** 23 - 1.04571858702165e45 * cos(theta) ** 21 + 1.58442210154795e44 * cos(theta) ** 19 - 1.86210432553059e43 * cos(theta) ** 17 + 1.66609334389579e42 * cos(theta) ** 15 - 1.10651360600289e41 * cos(theta) ** 13 + 5.26911240953759e39 * cos(theta) ** 11 - 1.7137858221441e38 * cos(theta) ** 9 + 3.54576376995331e36 * cos(theta) ** 7 - 4.17148678818037e34 * cos(theta) ** 5 + 2.28449440754675e32 * cos(theta) ** 3 - 3.67873495579187e29 * cos(theta) ) * cos(16 * phi) ) # @torch.jit.script def Yl63_m17(theta, phi): return ( 1.24661661655909e-30 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 2.35749108965557e47 * cos(theta) ** 46 - 1.95200262223481e48 * cos(theta) ** 44 + 7.50648162859404e48 * cos(theta) ** 42 - 1.7804629978566e49 * cos(theta) ** 40 + 2.91756541665578e49 * cos(theta) ** 38 - 3.50606579129745e49 * cos(theta) ** 36 + 3.20119050509768e49 * cos(theta) ** 34 - 2.27037657820455e49 * cos(theta) ** 32 + 1.26813826890704e49 * cos(theta) ** 30 - 5.62324308842573e48 * cos(theta) ** 28 + 1.98652886675227e48 * cos(theta) ** 26 - 5.58979984151071e47 * cos(theta) ** 24 + 1.24820773159948e47 * cos(theta) ** 22 - 2.19600903274546e46 * cos(theta) ** 20 + 3.01040199294111e45 * cos(theta) ** 18 - 3.165577353402e44 * cos(theta) ** 16 + 2.49914001584368e43 * cos(theta) ** 14 - 1.43846768780376e42 * cos(theta) ** 12 + 5.79602365049135e40 * cos(theta) ** 10 - 1.54240723992969e39 * cos(theta) ** 8 + 2.48203463896732e37 * cos(theta) ** 6 - 2.08574339409018e35 * cos(theta) ** 4 + 6.85348322264026e32 * cos(theta) ** 2 - 3.67873495579187e29 ) * cos(17 * phi) ) # @torch.jit.script def Yl63_m18(theta, phi): return ( 2.04226213911857e-32 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.08444590124156e49 * cos(theta) ** 45 - 8.58881153783317e49 * cos(theta) ** 43 + 3.15272228400949e50 * cos(theta) ** 41 - 7.12185199142641e50 * cos(theta) ** 39 + 1.10867485832919e51 * cos(theta) ** 37 - 1.26218368486708e51 * cos(theta) ** 35 + 1.08840477173321e51 * cos(theta) ** 33 - 7.26520505025455e50 * cos(theta) ** 31 + 3.80441480672113e50 * cos(theta) ** 29 - 1.5745080647592e50 * cos(theta) ** 27 + 5.16497505355589e49 * cos(theta) ** 25 - 1.34155196196257e49 * cos(theta) ** 23 + 2.74605700951885e48 * cos(theta) ** 21 - 4.39201806549093e47 * cos(theta) ** 19 + 5.418723587294e46 * cos(theta) ** 17 - 5.06492376544319e45 * cos(theta) ** 15 + 3.49879602218115e44 * cos(theta) ** 13 - 1.72616122536452e43 * cos(theta) ** 11 + 5.79602365049135e41 * cos(theta) ** 9 - 1.23392579194375e40 * cos(theta) ** 7 + 1.48922078338039e38 * cos(theta) ** 5 - 8.34297357636074e35 * cos(theta) ** 3 + 1.37069664452805e33 * cos(theta) ) * cos(18 * phi) ) # @torch.jit.script def Yl63_m19(theta, phi): return ( 3.36200459820719e-34 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 4.88000655558703e50 * cos(theta) ** 44 - 3.69318896126827e51 * cos(theta) ** 42 + 1.29261613644389e52 * cos(theta) ** 40 - 2.7775222766563e52 * cos(theta) ** 38 + 4.10209697581802e52 * cos(theta) ** 36 - 4.41764289703479e52 * cos(theta) ** 34 + 3.59173574671959e52 * cos(theta) ** 32 - 2.25221356557891e52 * cos(theta) ** 30 + 1.10328029394913e52 * cos(theta) ** 28 - 4.25117177484985e51 * cos(theta) ** 26 + 1.29124376338897e51 * cos(theta) ** 24 - 3.08556951251391e50 * cos(theta) ** 22 + 5.76671971998959e49 * cos(theta) ** 20 - 8.34483432443277e48 * cos(theta) ** 18 + 9.21183009839981e47 * cos(theta) ** 16 - 7.59738564816479e46 * cos(theta) ** 14 + 4.5484348288355e45 * cos(theta) ** 12 - 1.89877734790097e44 * cos(theta) ** 10 + 5.21642128544222e42 * cos(theta) ** 8 - 8.63748054360627e40 * cos(theta) ** 6 + 7.44610391690196e38 * cos(theta) ** 4 - 2.50289207290822e36 * cos(theta) ** 2 + 1.37069664452805e33 ) * cos(19 * phi) ) # @torch.jit.script def Yl63_m20(theta, phi): return ( 5.56330562138451e-36 * (1.0 - cos(theta) ** 2) ** 10 * ( 2.14720288445829e52 * cos(theta) ** 43 - 1.55113936373267e53 * cos(theta) ** 41 + 5.17046454577557e53 * cos(theta) ** 39 - 1.05545846512939e54 * cos(theta) ** 37 + 1.47675491129449e54 * cos(theta) ** 35 - 1.50199858499183e54 * cos(theta) ** 33 + 1.14935543895027e54 * cos(theta) ** 31 - 6.75664069673673e53 * cos(theta) ** 29 + 3.08918482305756e53 * cos(theta) ** 27 - 1.10530466146096e53 * cos(theta) ** 25 + 3.09898503213354e52 * cos(theta) ** 23 - 6.7882529275306e51 * cos(theta) ** 21 + 1.15334394399792e51 * cos(theta) ** 19 - 1.5020701783979e50 * cos(theta) ** 17 + 1.47389281574397e49 * cos(theta) ** 15 - 1.06363399074307e48 * cos(theta) ** 13 + 5.4581217946026e46 * cos(theta) ** 11 - 1.89877734790097e45 * cos(theta) ** 9 + 4.17313702835377e43 * cos(theta) ** 7 - 5.18248832616376e41 * cos(theta) ** 5 + 2.97844156676078e39 * cos(theta) ** 3 - 5.00578414581644e36 * cos(theta) ) * cos(20 * phi) ) # @torch.jit.script def Yl63_m21(theta, phi): return ( 9.25676093597681e-38 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 9.23297240317066e53 * cos(theta) ** 42 - 6.35967139130395e54 * cos(theta) ** 40 + 2.01648117285247e55 * cos(theta) ** 38 - 3.90519632097876e55 * cos(theta) ** 36 + 5.16864218953071e55 * cos(theta) ** 34 - 4.95659533047304e55 * cos(theta) ** 32 + 3.56300186074583e55 * cos(theta) ** 30 - 1.95942580205365e55 * cos(theta) ** 28 + 8.34079902225541e54 * cos(theta) ** 26 - 2.7632616536524e54 * cos(theta) ** 24 + 7.12766557390713e53 * cos(theta) ** 22 - 1.42553311478143e53 * cos(theta) ** 20 + 2.19135349359604e52 * cos(theta) ** 18 - 2.55351930327643e51 * cos(theta) ** 16 + 2.21083922361595e50 * cos(theta) ** 14 - 1.38272418796599e49 * cos(theta) ** 12 + 6.00393397406286e47 * cos(theta) ** 10 - 1.70889961311087e46 * cos(theta) ** 8 + 2.92119591984764e44 * cos(theta) ** 6 - 2.59124416308188e42 * cos(theta) ** 4 + 8.93532470028235e39 * cos(theta) ** 2 - 5.00578414581644e36 ) * cos(21 * phi) ) # @torch.jit.script def Yl63_m22(theta, phi): return ( 1.54926225350494e-39 * (1.0 - cos(theta) ** 2) ** 11 * ( 3.87784840933168e55 * cos(theta) ** 41 - 2.54386855652158e56 * cos(theta) ** 39 + 7.6626284568394e56 * cos(theta) ** 37 - 1.40587067555235e57 * cos(theta) ** 35 + 1.75733834444044e57 * cos(theta) ** 33 - 1.58611050575137e57 * cos(theta) ** 31 + 1.06890055822375e57 * cos(theta) ** 29 - 5.48639224575022e56 * cos(theta) ** 27 + 2.16860774578641e56 * cos(theta) ** 25 - 6.63182796876577e55 * cos(theta) ** 23 + 1.56808642625957e55 * cos(theta) ** 21 - 2.85106622956285e54 * cos(theta) ** 19 + 3.94443628847288e53 * cos(theta) ** 17 - 4.08563088524228e52 * cos(theta) ** 15 + 3.09517491306233e51 * cos(theta) ** 13 - 1.65926902555919e50 * cos(theta) ** 11 + 6.00393397406286e48 * cos(theta) ** 9 - 1.3671196904887e47 * cos(theta) ** 7 + 1.75271755190858e45 * cos(theta) ** 5 - 1.03649766523275e43 * cos(theta) ** 3 + 1.78706494005647e40 * cos(theta) ) * cos(22 * phi) ) # @torch.jit.script def Yl63_m23(theta, phi): return ( 2.60905831309973e-41 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.58991784782599e57 * cos(theta) ** 40 - 9.92108737043417e57 * cos(theta) ** 38 + 2.83517252903058e58 * cos(theta) ** 36 - 4.92054736443323e58 * cos(theta) ** 34 + 5.79921653665345e58 * cos(theta) ** 32 - 4.91694256782925e58 * cos(theta) ** 30 + 3.09981161884888e58 * cos(theta) ** 28 - 1.48132590635256e58 * cos(theta) ** 26 + 5.42151936446602e57 * cos(theta) ** 24 - 1.52532043281613e57 * cos(theta) ** 22 + 3.2929814951451e56 * cos(theta) ** 20 - 5.41702583616942e55 * cos(theta) ** 18 + 6.7055416904039e54 * cos(theta) ** 16 - 6.12844632786342e53 * cos(theta) ** 14 + 4.02372738698104e52 * cos(theta) ** 12 - 1.82519592811511e51 * cos(theta) ** 10 + 5.40354057665657e49 * cos(theta) ** 8 - 9.56983783342087e47 * cos(theta) ** 6 + 8.76358775954292e45 * cos(theta) ** 4 - 3.10949299569826e43 * cos(theta) ** 2 + 1.78706494005647e40 ) * cos(23 * phi) ) # @torch.jit.script def Yl63_m24(theta, phi): return ( 4.42276805232852e-43 * (1.0 - cos(theta) ** 2) ** 12 * ( 6.35967139130395e58 * cos(theta) ** 39 - 3.77001320076498e59 * cos(theta) ** 37 + 1.02066211045101e60 * cos(theta) ** 35 - 1.6729861039073e60 * cos(theta) ** 33 + 1.8557492917291e60 * cos(theta) ** 31 - 1.47508277034878e60 * cos(theta) ** 29 + 8.67947253277685e59 * cos(theta) ** 27 - 3.85144735651666e59 * cos(theta) ** 25 + 1.30116464747184e59 * cos(theta) ** 23 - 3.35570495219548e58 * cos(theta) ** 21 + 6.58596299029019e57 * cos(theta) ** 19 - 9.75064650510496e56 * cos(theta) ** 17 + 1.07288667046462e56 * cos(theta) ** 15 - 8.57982485900879e54 * cos(theta) ** 13 + 4.82847286437724e53 * cos(theta) ** 11 - 1.82519592811511e52 * cos(theta) ** 9 + 4.32283246132526e50 * cos(theta) ** 7 - 5.74190270005252e48 * cos(theta) ** 5 + 3.50543510381717e46 * cos(theta) ** 3 - 6.21898599139652e43 * cos(theta) ) * cos(24 * phi) ) # @torch.jit.script def Yl63_m25(theta, phi): return ( 7.54954058650599e-45 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 2.48027184260854e60 * cos(theta) ** 38 - 1.39490488428304e61 * cos(theta) ** 36 + 3.57231738657853e61 * cos(theta) ** 34 - 5.52085414289409e61 * cos(theta) ** 32 + 5.75282280436023e61 * cos(theta) ** 30 - 4.27774003401145e61 * cos(theta) ** 28 + 2.34345758384975e61 * cos(theta) ** 26 - 9.62861839129164e60 * cos(theta) ** 24 + 2.99267868918524e60 * cos(theta) ** 22 - 7.0469803996105e59 * cos(theta) ** 20 + 1.25133296815514e59 * cos(theta) ** 18 - 1.65760990586784e58 * cos(theta) ** 16 + 1.60933000569693e57 * cos(theta) ** 14 - 1.11537723167114e56 * cos(theta) ** 12 + 5.31132015081497e54 * cos(theta) ** 10 - 1.6426763353036e53 * cos(theta) ** 8 + 3.02598272292768e51 * cos(theta) ** 6 - 2.87095135002626e49 * cos(theta) ** 4 + 1.05163053114515e47 * cos(theta) ** 2 - 6.21898599139652e43 ) * cos(25 * phi) ) # @torch.jit.script def Yl63_m26(theta, phi): return ( 1.29817643864673e-46 * (1.0 - cos(theta) ** 2) ** 13 * ( 9.42503300191246e61 * cos(theta) ** 37 - 5.02165758341896e62 * cos(theta) ** 35 + 1.2145879114367e63 * cos(theta) ** 33 - 1.76667332572611e63 * cos(theta) ** 31 + 1.72584684130807e63 * cos(theta) ** 29 - 1.19776720952321e63 * cos(theta) ** 27 + 6.09298971800935e62 * cos(theta) ** 25 - 2.31086841390999e62 * cos(theta) ** 23 + 6.58389311620753e61 * cos(theta) ** 21 - 1.4093960799221e61 * cos(theta) ** 19 + 2.25239934267925e60 * cos(theta) ** 17 - 2.65217584938855e59 * cos(theta) ** 15 + 2.25306200797571e58 * cos(theta) ** 13 - 1.33845267800537e57 * cos(theta) ** 11 + 5.31132015081497e55 * cos(theta) ** 9 - 1.31414106824288e54 * cos(theta) ** 7 + 1.81558963375661e52 * cos(theta) ** 5 - 1.1483805400105e50 * cos(theta) ** 3 + 2.1032610622903e47 * cos(theta) ) * cos(26 * phi) ) # @torch.jit.script def Yl63_m27(theta, phi): return ( 2.24963264659303e-48 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 3.48726221070761e63 * cos(theta) ** 36 - 1.75758015419664e64 * cos(theta) ** 34 + 4.00814010774111e64 * cos(theta) ** 32 - 5.47668730975093e64 * cos(theta) ** 30 + 5.0049558397934e64 * cos(theta) ** 28 - 3.23397146571266e64 * cos(theta) ** 26 + 1.52324742950234e64 * cos(theta) ** 24 - 5.31499735199299e63 * cos(theta) ** 22 + 1.38261755440358e63 * cos(theta) ** 20 - 2.67785255185199e62 * cos(theta) ** 18 + 3.82907888255472e61 * cos(theta) ** 16 - 3.97826377408282e60 * cos(theta) ** 14 + 2.92898061036842e59 * cos(theta) ** 12 - 1.47229794580591e58 * cos(theta) ** 10 + 4.78018813573347e56 * cos(theta) ** 8 - 9.19898747770015e54 * cos(theta) ** 6 + 9.07794816878304e52 * cos(theta) ** 4 - 3.44514162003151e50 * cos(theta) ** 2 + 2.1032610622903e47 ) * cos(27 * phi) ) # @torch.jit.script def Yl63_m28(theta, phi): return ( 3.93042631936345e-50 * (1.0 - cos(theta) ** 2) ** 14 * ( 1.25541439585474e65 * cos(theta) ** 35 - 5.97577252426856e65 * cos(theta) ** 33 + 1.28260483447715e66 * cos(theta) ** 31 - 1.64300619292528e66 * cos(theta) ** 29 + 1.40138763514215e66 * cos(theta) ** 27 - 8.4083258108529e65 * cos(theta) ** 25 + 3.65579383080561e65 * cos(theta) ** 23 - 1.16929941743846e65 * cos(theta) ** 21 + 2.76523510880716e64 * cos(theta) ** 19 - 4.82013459333359e63 * cos(theta) ** 17 + 6.12652621208755e62 * cos(theta) ** 15 - 5.56956928371595e61 * cos(theta) ** 13 + 3.51477673244211e60 * cos(theta) ** 11 - 1.47229794580591e59 * cos(theta) ** 9 + 3.82415050858678e57 * cos(theta) ** 7 - 5.51939248662009e55 * cos(theta) ** 5 + 3.63117926751322e53 * cos(theta) ** 3 - 6.89028324006303e50 * cos(theta) ) * cos(28 * phi) ) # @torch.jit.script def Yl63_m29(theta, phi): return ( 6.92646626671411e-52 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 4.39395038549159e66 * cos(theta) ** 34 - 1.97200493300862e67 * cos(theta) ** 32 + 3.97607498687918e67 * cos(theta) ** 30 - 4.76471795948331e67 * cos(theta) ** 28 + 3.78374661488381e67 * cos(theta) ** 26 - 2.10208145271323e67 * cos(theta) ** 24 + 8.40832581085291e66 * cos(theta) ** 22 - 2.45552877662076e66 * cos(theta) ** 20 + 5.25394670673361e65 * cos(theta) ** 18 - 8.19422880866709e64 * cos(theta) ** 16 + 9.18978931813132e63 * cos(theta) ** 14 - 7.24044006883074e62 * cos(theta) ** 12 + 3.86625440568632e61 * cos(theta) ** 10 - 1.32506815122532e60 * cos(theta) ** 8 + 2.67690535601074e58 * cos(theta) ** 6 - 2.75969624331004e56 * cos(theta) ** 4 + 1.08935378025396e54 * cos(theta) ** 2 - 6.89028324006303e50 ) * cos(29 * phi) ) # @torch.jit.script def Yl63_m30(theta, phi): return ( 1.23177331305232e-53 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.49394313106714e68 * cos(theta) ** 33 - 6.3104157856276e68 * cos(theta) ** 31 + 1.19282249606375e69 * cos(theta) ** 29 - 1.33412102865533e69 * cos(theta) ** 27 + 9.8377411986979e68 * cos(theta) ** 25 - 5.04499548651174e68 * cos(theta) ** 23 + 1.84983167838764e68 * cos(theta) ** 21 - 4.91105755324152e67 * cos(theta) ** 19 + 9.45710407212049e66 * cos(theta) ** 17 - 1.31107660938674e66 * cos(theta) ** 15 + 1.28657050453838e65 * cos(theta) ** 13 - 8.68852808259689e63 * cos(theta) ** 11 + 3.86625440568632e62 * cos(theta) ** 9 - 1.06005452098025e61 * cos(theta) ** 7 + 1.60614321360645e59 * cos(theta) ** 5 - 1.10387849732402e57 * cos(theta) ** 3 + 2.17870756050793e54 * cos(theta) ) * cos(30 * phi) ) # @torch.jit.script def Yl63_m31(theta, phi): return ( 2.21161686942766e-55 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 4.93001233252156e69 * cos(theta) ** 32 - 1.95622889354456e70 * cos(theta) ** 30 + 3.45918523858488e70 * cos(theta) ** 28 - 3.60212677736938e70 * cos(theta) ** 26 + 2.45943529967447e70 * cos(theta) ** 24 - 1.1603489618977e70 * cos(theta) ** 22 + 3.88464652461404e69 * cos(theta) ** 20 - 9.33100935115889e68 * cos(theta) ** 18 + 1.60770769226048e68 * cos(theta) ** 16 - 1.9666149140801e67 * cos(theta) ** 14 + 1.6725416558999e66 * cos(theta) ** 12 - 9.55738089085657e64 * cos(theta) ** 10 + 3.47962896511768e63 * cos(theta) ** 8 - 7.42038164686178e61 * cos(theta) ** 6 + 8.03071606803223e59 * cos(theta) ** 4 - 3.31163549197205e57 * cos(theta) ** 2 + 2.17870756050793e54 ) * cos(31 * phi) ) # @torch.jit.script def Yl63_m32(theta, phi): return ( 4.01118878278105e-57 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.5776039464069e71 * cos(theta) ** 31 - 5.86868668063367e71 * cos(theta) ** 29 + 9.68571866803768e71 * cos(theta) ** 27 - 9.3655296211604e71 * cos(theta) ** 25 + 5.90264471921874e71 * cos(theta) ** 23 - 2.55276771617494e71 * cos(theta) ** 21 + 7.76929304922808e70 * cos(theta) ** 19 - 1.6795816832086e70 * cos(theta) ** 17 + 2.57233230761677e69 * cos(theta) ** 15 - 2.75326087971214e68 * cos(theta) ** 13 + 2.00704998707988e67 * cos(theta) ** 11 - 9.55738089085657e65 * cos(theta) ** 9 + 2.78370317209415e64 * cos(theta) ** 7 - 4.45222898811707e62 * cos(theta) ** 5 + 3.21228642721289e60 * cos(theta) ** 3 - 6.62327098394411e57 * cos(theta) ) * cos(32 * phi) ) # @torch.jit.script def Yl63_m33(theta, phi): return ( 7.35286578501069e-59 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 4.89057223386139e72 * cos(theta) ** 30 - 1.70191913738376e73 * cos(theta) ** 28 + 2.61514404037017e73 * cos(theta) ** 26 - 2.3413824052901e73 * cos(theta) ** 24 + 1.35760828542031e73 * cos(theta) ** 22 - 5.36081220396738e72 * cos(theta) ** 20 + 1.47616567935334e72 * cos(theta) ** 18 - 2.85528886145462e71 * cos(theta) ** 16 + 3.85849846142516e70 * cos(theta) ** 14 - 3.57923914362579e69 * cos(theta) ** 12 + 2.20775498578787e68 * cos(theta) ** 10 - 8.60164280177092e66 * cos(theta) ** 8 + 1.9485922204659e65 * cos(theta) ** 6 - 2.22611449405853e63 * cos(theta) ** 4 + 9.63685928163868e60 * cos(theta) ** 2 - 6.62327098394411e57 ) * cos(33 * phi) ) # @torch.jit.script def Yl63_m34(theta, phi): return ( 1.36304484364465e-60 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.46717167015842e74 * cos(theta) ** 29 - 4.76537358467454e74 * cos(theta) ** 27 + 6.79937450496245e74 * cos(theta) ** 25 - 5.61931777269624e74 * cos(theta) ** 23 + 2.98673822792468e74 * cos(theta) ** 21 - 1.07216244079348e74 * cos(theta) ** 19 + 2.657098222836e73 * cos(theta) ** 17 - 4.56846217832739e72 * cos(theta) ** 15 + 5.40189784599523e71 * cos(theta) ** 13 - 4.29508697235094e70 * cos(theta) ** 11 + 2.20775498578787e69 * cos(theta) ** 9 - 6.88131424141673e67 * cos(theta) ** 7 + 1.16915533227954e66 * cos(theta) ** 5 - 8.90445797623414e63 * cos(theta) ** 3 + 1.92737185632774e61 * cos(theta) ) * cos(34 * phi) ) # @torch.jit.script def Yl63_m35(theta, phi): return ( 2.55680794638311e-62 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 4.25479784345941e75 * cos(theta) ** 28 - 1.28665086786213e76 * cos(theta) ** 26 + 1.69984362624061e76 * cos(theta) ** 24 - 1.29244308772014e76 * cos(theta) ** 22 + 6.27215027864183e75 * cos(theta) ** 20 - 2.0371086375076e75 * cos(theta) ** 18 + 4.51706697882121e74 * cos(theta) ** 16 - 6.85269326749109e73 * cos(theta) ** 14 + 7.02246719979379e72 * cos(theta) ** 12 - 4.72459566958604e71 * cos(theta) ** 10 + 1.98697948720908e70 * cos(theta) ** 8 - 4.81691996899171e68 * cos(theta) ** 6 + 5.84577666139771e66 * cos(theta) ** 4 - 2.67133739287024e64 * cos(theta) ** 2 + 1.92737185632774e61 ) * cos(35 * phi) ) # @torch.jit.script def Yl63_m36(theta, phi): return ( 4.85625512444004e-64 * (1.0 - cos(theta) ** 2) ** 18 * ( 1.19134339616863e77 * cos(theta) ** 27 - 3.34529225644153e77 * cos(theta) ** 25 + 4.07962470297747e77 * cos(theta) ** 23 - 2.8433747929843e77 * cos(theta) ** 21 + 1.25443005572837e77 * cos(theta) ** 19 - 3.66679554751369e76 * cos(theta) ** 17 + 7.22730716611393e75 * cos(theta) ** 15 - 9.59377057448752e74 * cos(theta) ** 13 + 8.42696063975255e73 * cos(theta) ** 11 - 4.72459566958604e72 * cos(theta) ** 9 + 1.58958358976727e71 * cos(theta) ** 7 - 2.89015198139503e69 * cos(theta) ** 5 + 2.33831066455908e67 * cos(theta) ** 3 - 5.34267478574048e64 * cos(theta) ) * cos(36 * phi) ) # @torch.jit.script def Yl63_m37(theta, phi): return ( 9.34586734449653e-66 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 3.21662716965531e78 * cos(theta) ** 26 - 8.36323064110381e78 * cos(theta) ** 24 + 9.38313681684818e78 * cos(theta) ** 22 - 5.97108706526702e78 * cos(theta) ** 20 + 2.3834171058839e78 * cos(theta) ** 18 - 6.23355243077327e77 * cos(theta) ** 16 + 1.08409607491709e77 * cos(theta) ** 14 - 1.24719017468338e76 * cos(theta) ** 12 + 9.26965670372781e74 * cos(theta) ** 10 - 4.25213610262743e73 * cos(theta) ** 8 + 1.11270851283709e72 * cos(theta) ** 6 - 1.44507599069751e70 * cos(theta) ** 4 + 7.01493199367725e67 * cos(theta) ** 2 - 5.34267478574048e64 ) * cos(37 * phi) ) # @torch.jit.script def Yl63_m38(theta, phi): return ( 1.82377917122162e-67 * (1.0 - cos(theta) ** 2) ** 19 * ( 8.36323064110381e79 * cos(theta) ** 25 - 2.00717535386492e80 * cos(theta) ** 23 + 2.0642900997066e80 * cos(theta) ** 21 - 1.1942174130534e80 * cos(theta) ** 19 + 4.29015079059101e79 * cos(theta) ** 17 - 9.97368388923723e78 * cos(theta) ** 15 + 1.51773450488393e78 * cos(theta) ** 13 - 1.49662820962005e77 * cos(theta) ** 11 + 9.26965670372781e75 * cos(theta) ** 9 - 3.40170888210195e74 * cos(theta) ** 7 + 6.67625107702251e72 * cos(theta) ** 5 - 5.78030396279006e70 * cos(theta) ** 3 + 1.40298639873545e68 * cos(theta) ) * cos(38 * phi) ) # @torch.jit.script def Yl63_m39(theta, phi): return ( 3.61162093063425e-69 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 2.09080766027595e81 * cos(theta) ** 24 - 4.61650331388931e81 * cos(theta) ** 22 + 4.33500920938386e81 * cos(theta) ** 20 - 2.26901308480147e81 * cos(theta) ** 18 + 7.29325634400472e80 * cos(theta) ** 16 - 1.49605258338558e80 * cos(theta) ** 14 + 1.9730548563491e79 * cos(theta) ** 12 - 1.64629103058206e78 * cos(theta) ** 10 + 8.34269103335503e76 * cos(theta) ** 8 - 2.38119621747136e75 * cos(theta) ** 6 + 3.33812553851126e73 * cos(theta) ** 4 - 1.73409118883702e71 * cos(theta) ** 2 + 1.40298639873545e68 ) * cos(39 * phi) ) # @torch.jit.script def Yl63_m40(theta, phi): return ( 7.26403499967604e-71 * (1.0 - cos(theta) ** 2) ** 20 * ( 5.01793838466229e82 * cos(theta) ** 23 - 1.01563072905565e83 * cos(theta) ** 21 + 8.67001841876772e82 * cos(theta) ** 19 - 4.08422355264264e82 * cos(theta) ** 17 + 1.16692101504076e82 * cos(theta) ** 15 - 2.09447361673982e81 * cos(theta) ** 13 + 2.36766582761892e80 * cos(theta) ** 11 - 1.64629103058206e79 * cos(theta) ** 9 + 6.67415282668402e77 * cos(theta) ** 7 - 1.42871773048282e76 * cos(theta) ** 5 + 1.3352502154045e74 * cos(theta) ** 3 - 3.46818237767403e71 * cos(theta) ) * cos(40 * phi) ) # @torch.jit.script def Yl63_m41(theta, phi): return ( 1.48524240553485e-72 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 1.15412582847233e84 * cos(theta) ** 22 - 2.13282453101686e84 * cos(theta) ** 20 + 1.64730349956587e84 * cos(theta) ** 18 - 6.9431800394925e83 * cos(theta) ** 16 + 1.75038152256113e83 * cos(theta) ** 14 - 2.72281570176176e82 * cos(theta) ** 12 + 2.60443241038082e81 * cos(theta) ** 10 - 1.48166192752385e80 * cos(theta) ** 8 + 4.67190697867882e78 * cos(theta) ** 6 - 7.14358865241409e76 * cos(theta) ** 4 + 4.00575064621351e74 * cos(theta) ** 2 - 3.46818237767403e71 ) * cos(41 * phi) ) # @torch.jit.script def Yl63_m42(theta, phi): return ( 3.09023388571054e-74 * (1.0 - cos(theta) ** 2) ** 21 * ( 2.53907682263912e85 * cos(theta) ** 21 - 4.26564906203372e85 * cos(theta) ** 19 + 2.96514629921856e85 * cos(theta) ** 17 - 1.1109088063188e85 * cos(theta) ** 15 + 2.45053413158559e84 * cos(theta) ** 13 - 3.26737884211412e83 * cos(theta) ** 11 + 2.60443241038082e82 * cos(theta) ** 9 - 1.18532954201908e81 * cos(theta) ** 7 + 2.80314418720729e79 * cos(theta) ** 5 - 2.85743546096564e77 * cos(theta) ** 3 + 8.01150129242702e74 * cos(theta) ) * cos(42 * phi) ) # @torch.jit.script def Yl63_m43(theta, phi): return ( 6.54981103284738e-76 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 5.33206132754215e86 * cos(theta) ** 20 - 8.10473321786406e86 * cos(theta) ** 18 + 5.04074870867155e86 * cos(theta) ** 16 - 1.6663632094782e86 * cos(theta) ** 14 + 3.18569437106126e85 * cos(theta) ** 12 - 3.59411672632553e84 * cos(theta) ** 10 + 2.34398916934274e83 * cos(theta) ** 8 - 8.29730679413358e81 * cos(theta) ** 6 + 1.40157209360364e80 * cos(theta) ** 4 - 8.57230638289691e77 * cos(theta) ** 2 + 8.01150129242702e74 ) * cos(43 * phi) ) # @torch.jit.script def Yl63_m44(theta, phi): return ( 1.41586512251013e-77 * (1.0 - cos(theta) ** 2) ** 22 * ( 1.06641226550843e88 * cos(theta) ** 19 - 1.45885197921553e88 * cos(theta) ** 17 + 8.06519793387448e87 * cos(theta) ** 15 - 2.33290849326948e87 * cos(theta) ** 13 + 3.82283324527352e86 * cos(theta) ** 11 - 3.59411672632553e85 * cos(theta) ** 9 + 1.87519133547419e84 * cos(theta) ** 7 - 4.97838407648015e82 * cos(theta) ** 5 + 5.60628837441458e80 * cos(theta) ** 3 - 1.71446127657938e78 * cos(theta) ) * cos(44 * phi) ) # @torch.jit.script def Yl63_m45(theta, phi): return ( 3.12559861334088e-79 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 2.02618330446602e89 * cos(theta) ** 18 - 2.4800483646664e89 * cos(theta) ** 16 + 1.20977969008117e89 * cos(theta) ** 14 - 3.03278104125032e88 * cos(theta) ** 12 + 4.20511656980087e87 * cos(theta) ** 10 - 3.23470505369297e86 * cos(theta) ** 8 + 1.31263393483193e85 * cos(theta) ** 6 - 2.48919203824007e83 * cos(theta) ** 4 + 1.68188651232437e81 * cos(theta) ** 2 - 1.71446127657938e78 ) * cos(45 * phi) ) # @torch.jit.script def Yl63_m46(theta, phi): return ( 7.05640833077812e-81 * (1.0 - cos(theta) ** 2) ** 23 * ( 3.64712994803883e90 * cos(theta) ** 17 - 3.96807738346625e90 * cos(theta) ** 15 + 1.69369156611364e90 * cos(theta) ** 13 - 3.63933724950039e89 * cos(theta) ** 11 + 4.20511656980087e88 * cos(theta) ** 9 - 2.58776404295438e87 * cos(theta) ** 7 + 7.87580360899159e85 * cos(theta) ** 5 - 9.95676815296029e83 * cos(theta) ** 3 + 3.36377302464875e81 * cos(theta) ) * cos(46 * phi) ) # @torch.jit.script def Yl63_m47(theta, phi): return ( 1.63178486528101e-82 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 6.20012091166601e91 * cos(theta) ** 16 - 5.95211607519937e91 * cos(theta) ** 14 + 2.20179903594773e91 * cos(theta) ** 12 - 4.00327097445043e90 * cos(theta) ** 10 + 3.78460491282078e89 * cos(theta) ** 8 - 1.81143483006807e88 * cos(theta) ** 6 + 3.9379018044958e86 * cos(theta) ** 4 - 2.98703044588809e84 * cos(theta) ** 2 + 3.36377302464875e81 ) * cos(47 * phi) ) # @torch.jit.script def Yl63_m48(theta, phi): return ( 3.87205413057346e-84 * (1.0 - cos(theta) ** 2) ** 24 * ( 9.92019345866561e92 * cos(theta) ** 15 - 8.33296250527912e92 * cos(theta) ** 13 + 2.64215884313728e92 * cos(theta) ** 11 - 4.00327097445043e91 * cos(theta) ** 9 + 3.02768393025662e90 * cos(theta) ** 7 - 1.08686089804084e89 * cos(theta) ** 5 + 1.57516072179832e87 * cos(theta) ** 3 - 5.97406089177617e84 * cos(theta) ) * cos(48 * phi) ) # @torch.jit.script def Yl63_m49(theta, phi): return ( 9.44684477121826e-86 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.48802901879984e94 * cos(theta) ** 14 - 1.08328512568629e94 * cos(theta) ** 12 + 2.90637472745101e93 * cos(theta) ** 10 - 3.60294387700538e92 * cos(theta) ** 8 + 2.11937875117964e91 * cos(theta) ** 6 - 5.4343044902042e89 * cos(theta) ** 4 + 4.72548216539495e87 * cos(theta) ** 2 - 5.97406089177617e84 ) * cos(49 * phi) ) # @torch.jit.script def Yl63_m50(theta, phi): return ( 2.37510896857602e-87 * (1.0 - cos(theta) ** 2) ** 25 * ( 2.08324062631978e95 * cos(theta) ** 13 - 1.29994215082354e95 * cos(theta) ** 11 + 2.90637472745101e94 * cos(theta) ** 9 - 2.88235510160431e93 * cos(theta) ** 7 + 1.27162725070778e92 * cos(theta) ** 5 - 2.17372179608168e90 * cos(theta) ** 3 + 9.45096433078991e87 * cos(theta) ) * cos(50 * phi) ) # @torch.jit.script def Yl63_m51(theta, phi): return ( 6.16963451904442e-89 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 2.70821281421571e96 * cos(theta) ** 12 - 1.4299363659059e96 * cos(theta) ** 10 + 2.61573725470591e95 * cos(theta) ** 8 - 2.01764857112301e94 * cos(theta) ** 6 + 6.35813625353891e92 * cos(theta) ** 4 - 6.52116538824504e90 * cos(theta) ** 2 + 9.45096433078991e87 ) * cos(51 * phi) ) # @torch.jit.script def Yl63_m52(theta, phi): return ( 1.66080978368343e-90 * (1.0 - cos(theta) ** 2) ** 26 * ( 3.24985537705886e97 * cos(theta) ** 11 - 1.4299363659059e97 * cos(theta) ** 9 + 2.09258980376473e96 * cos(theta) ** 7 - 1.21058914267381e95 * cos(theta) ** 5 + 2.54325450141556e93 * cos(theta) ** 3 - 1.30423307764901e91 * cos(theta) ) * cos(52 * phi) ) # @torch.jit.script def Yl63_m53(theta, phi): return ( 4.64937480003281e-92 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 3.57484091476474e98 * cos(theta) ** 10 - 1.28694272931531e98 * cos(theta) ** 8 + 1.46481286263531e97 * cos(theta) ** 6 - 6.05294571336904e95 * cos(theta) ** 4 + 7.62976350424669e93 * cos(theta) ** 2 - 1.30423307764901e91 ) * cos(53 * phi) ) # @torch.jit.script def Yl63_m54(theta, phi): return ( 1.35925715104427e-93 * (1.0 - cos(theta) ** 2) ** 27 * ( 3.57484091476474e99 * cos(theta) ** 9 - 1.02955418345225e99 * cos(theta) ** 7 + 8.78887717581185e97 * cos(theta) ** 5 - 2.42117828534762e96 * cos(theta) ** 3 + 1.52595270084934e94 * cos(theta) ) * cos(54 * phi) ) # @torch.jit.script def Yl63_m55(theta, phi): return ( 4.17099210816046e-95 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 3.21735682328827e100 * cos(theta) ** 8 - 7.20687928416572e99 * cos(theta) ** 6 + 4.39443858790593e98 * cos(theta) ** 4 - 7.26353485604285e96 * cos(theta) ** 2 + 1.52595270084934e94 ) * cos(55 * phi) ) # @torch.jit.script def Yl63_m56(theta, phi): return ( 1.35182630770815e-96 * (1.0 - cos(theta) ** 2) ** 28 * ( 2.57388545863061e101 * cos(theta) ** 7 - 4.32412757049943e100 * cos(theta) ** 5 + 1.75777543516237e99 * cos(theta) ** 3 - 1.45270697120857e97 * cos(theta) ) * cos(56 * phi) ) # @torch.jit.script def Yl63_m57(theta, phi): return ( 4.66424388581167e-98 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 1.80171982104143e102 * cos(theta) ** 6 - 2.16206378524972e101 * cos(theta) ** 4 + 5.27332630548711e99 * cos(theta) ** 2 - 1.45270697120857e97 ) * cos(57 * phi) ) # @torch.jit.script def Yl63_m58(theta, phi): return ( 1.73106326608104e-99 * (1.0 - cos(theta) ** 2) ** 29 * ( 1.08103189262486e103 * cos(theta) ** 5 - 8.64825514099886e101 * cos(theta) ** 3 + 1.05466526109742e100 * cos(theta) ) * cos(58 * phi) ) # @torch.jit.script def Yl63_m59(theta, phi): return ( 7.00887029457315e-101 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 5.40515946312429e103 * cos(theta) ** 4 - 2.59447654229966e102 * cos(theta) ** 2 + 1.05466526109742e100 ) * cos(59 * phi) ) # @torch.jit.script def Yl63_m60(theta, phi): return ( 3.1598427589696e-102 * (1.0 - cos(theta) ** 2) ** 30 * (2.16206378524972e104 * cos(theta) ** 3 - 5.18895308459932e102 * cos(theta)) * cos(60 * phi) ) # @torch.jit.script def Yl63_m61(theta, phi): return ( 1.63830215199759e-103 * (1.0 - cos(theta) ** 2) ** 30.5 * (6.48619135574915e104 * cos(theta) ** 2 - 5.18895308459932e102) * cos(61 * phi) ) # @torch.jit.script def Yl63_m62(theta, phi): return 13.4413766257656 * (1.0 - cos(theta) ** 2) ** 31 * cos(62 * phi) * cos(theta) # @torch.jit.script def Yl63_m63(theta, phi): return 1.19745300333825 * (1.0 - cos(theta) ** 2) ** 31.5 * cos(63 * phi) # @torch.jit.script def Yl64_m_minus_64(theta, phi): return 1.20212145380472 * (1.0 - cos(theta) ** 2) ** 32 * sin(64 * phi) # @torch.jit.script def Yl64_m_minus_63(theta, phi): return ( 13.6004517087224 * (1.0 - cos(theta) ** 2) ** 31.5 * sin(63 * phi) * cos(theta) ) # @torch.jit.script def Yl64_m_minus_62(theta, phi): return ( 1.31566922853349e-105 * (1.0 - cos(theta) ** 2) ** 31 * (8.23746302180142e106 * cos(theta) ** 2 - 6.48619135574915e104) * sin(62 * phi) ) # @torch.jit.script def Yl64_m_minus_61(theta, phi): return ( 2.55795333449995e-104 * (1.0 - cos(theta) ** 2) ** 30.5 * (2.74582100726714e106 * cos(theta) ** 3 - 6.48619135574915e104 * cos(theta)) * sin(61 * phi) ) # @torch.jit.script def Yl64_m_minus_60(theta, phi): return ( 5.71975753921415e-103 * (1.0 - cos(theta) ** 2) ** 30 * ( 6.86455251816785e105 * cos(theta) ** 4 - 3.24309567787457e104 * cos(theta) ** 2 + 1.29723827114983e102 ) * sin(60 * phi) ) # @torch.jit.script def Yl64_m_minus_59(theta, phi): return ( 1.42420814176111e-101 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 1.37291050363357e105 * cos(theta) ** 5 - 1.08103189262486e104 * cos(theta) ** 3 + 1.29723827114983e102 * cos(theta) ) * sin(59 * phi) ) # @torch.jit.script def Yl64_m_minus_58(theta, phi): return ( 3.86902597215535e-100 * (1.0 - cos(theta) ** 2) ** 29 * ( 2.28818417272262e104 * cos(theta) ** 6 - 2.70257973156214e103 * cos(theta) ** 4 + 6.48619135574915e101 * cos(theta) ** 2 - 1.75777543516237e99 ) * sin(58 * phi) ) # @torch.jit.script def Yl64_m_minus_57(theta, phi): return ( 1.13065623091741e-98 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 3.26883453246088e103 * cos(theta) ** 7 - 5.40515946312429e102 * cos(theta) ** 5 + 2.16206378524972e101 * cos(theta) ** 3 - 1.75777543516237e99 * cos(theta) ) * sin(57 * phi) ) # @torch.jit.script def Yl64_m_minus_56(theta, phi): return ( 3.5177766275191e-97 * (1.0 - cos(theta) ** 2) ** 28 * ( 4.0860431655761e102 * cos(theta) ** 8 - 9.00859910520715e101 * cos(theta) ** 6 + 5.40515946312429e100 * cos(theta) ** 4 - 8.78887717581185e98 * cos(theta) ** 2 + 1.81588371401071e96 ) * sin(56 * phi) ) # @torch.jit.script def Yl64_m_minus_55(theta, phi): return ( 1.15605936669399e-95 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 4.54004796175122e101 * cos(theta) ** 9 - 1.28694272931531e101 * cos(theta) ** 7 + 1.08103189262486e100 * cos(theta) ** 5 - 2.92962572527062e98 * cos(theta) ** 3 + 1.81588371401071e96 * cos(theta) ) * sin(55 * phi) ) # @torch.jit.script def Yl64_m_minus_54(theta, phi): return ( 3.98798593100815e-94 * (1.0 - cos(theta) ** 2) ** 27 * ( 4.54004796175122e100 * cos(theta) ** 10 - 1.60867841164413e100 * cos(theta) ** 8 + 1.80171982104143e99 * cos(theta) ** 6 - 7.32406431317654e97 * cos(theta) ** 4 + 9.07941857005357e95 * cos(theta) ** 2 - 1.52595270084934e93 ) * sin(54 * phi) ) # @torch.jit.script def Yl64_m_minus_53(theta, phi): return ( 1.43678228198022e-92 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 4.12731632886475e99 * cos(theta) ** 11 - 1.78742045738237e99 * cos(theta) ** 9 + 2.57388545863061e98 * cos(theta) ** 7 - 1.46481286263531e97 * cos(theta) ** 5 + 3.02647285668452e95 * cos(theta) ** 3 - 1.52595270084934e93 * cos(theta) ) * sin(53 * phi) ) # @torch.jit.script def Yl64_m_minus_52(theta, phi): return ( 5.38362148506044e-91 * (1.0 - cos(theta) ** 2) ** 26 * ( 3.43943027405396e98 * cos(theta) ** 12 - 1.78742045738237e98 * cos(theta) ** 10 + 3.21735682328827e97 * cos(theta) ** 8 - 2.44135477105885e96 * cos(theta) ** 6 + 7.5661821417113e94 * cos(theta) ** 4 - 7.62976350424669e92 * cos(theta) ** 2 + 1.08686089804084e90 ) * sin(52 * phi) ) # @torch.jit.script def Yl64_m_minus_51(theta, phi): return ( 2.09062042188346e-89 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 2.64571559542612e97 * cos(theta) ** 13 - 1.62492768852943e97 * cos(theta) ** 11 + 3.57484091476474e96 * cos(theta) ** 9 - 3.48764967294121e95 * cos(theta) ** 7 + 1.51323642834226e94 * cos(theta) ** 5 - 2.54325450141556e92 * cos(theta) ** 3 + 1.08686089804084e90 * cos(theta) ) * sin(51 * phi) ) # @torch.jit.script def Yl64_m_minus_50(theta, phi): return ( 8.38857373748235e-88 * (1.0 - cos(theta) ** 2) ** 25 * ( 1.8897968538758e96 * cos(theta) ** 14 - 1.35410640710786e96 * cos(theta) ** 12 + 3.57484091476474e95 * cos(theta) ** 10 - 4.35956209117651e94 * cos(theta) ** 8 + 2.52206071390377e93 * cos(theta) ** 6 - 6.35813625353891e91 * cos(theta) ** 4 + 5.4343044902042e89 * cos(theta) ** 2 - 6.75068880770708e86 ) * sin(50 * phi) ) # @torch.jit.script def Yl64_m_minus_49(theta, phi): return ( 3.46885528073881e-86 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.25986456925053e95 * cos(theta) ** 15 - 1.04162031315989e95 * cos(theta) ** 13 + 3.24985537705886e94 * cos(theta) ** 11 - 4.84395787908501e93 * cos(theta) ** 9 + 3.60294387700538e92 * cos(theta) ** 7 - 1.27162725070778e91 * cos(theta) ** 5 + 1.81143483006807e89 * cos(theta) ** 3 - 6.75068880770708e86 * cos(theta) ) * sin(49 * phi) ) # @torch.jit.script def Yl64_m_minus_48(theta, phi): return ( 1.47497749750113e-84 * (1.0 - cos(theta) ** 2) ** 24 * ( 7.87415355781583e93 * cos(theta) ** 16 - 7.44014509399921e93 * cos(theta) ** 14 + 2.70821281421571e93 * cos(theta) ** 12 - 4.84395787908501e92 * cos(theta) ** 10 + 4.50367984625673e91 * cos(theta) ** 8 - 2.11937875117964e90 * cos(theta) ** 6 + 4.52858707517016e88 * cos(theta) ** 4 - 3.37534440385354e86 * cos(theta) ** 2 + 3.73378805736011e83 ) * sin(48 * phi) ) # @torch.jit.script def Yl64_m_minus_47(theta, phi): return ( 6.43604195832224e-83 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 4.63185503400931e92 * cos(theta) ** 17 - 4.96009672933281e92 * cos(theta) ** 15 + 2.08324062631978e92 * cos(theta) ** 13 - 4.40359807189547e91 * cos(theta) ** 11 + 5.00408871806303e90 * cos(theta) ** 9 - 3.02768393025662e89 * cos(theta) ** 7 + 9.05717415034033e87 * cos(theta) ** 5 - 1.12511480128451e86 * cos(theta) ** 3 + 3.73378805736011e83 * cos(theta) ) * sin(47 * phi) ) # @torch.jit.script def Yl64_m_minus_46(theta, phi): return ( 2.87684596227171e-81 * (1.0 - cos(theta) ** 2) ** 23 * ( 2.57325279667184e91 * cos(theta) ** 18 - 3.100060455833e91 * cos(theta) ** 16 + 1.48802901879984e91 * cos(theta) ** 14 - 3.66966505991289e90 * cos(theta) ** 12 + 5.00408871806303e89 * cos(theta) ** 10 - 3.78460491282078e88 * cos(theta) ** 8 + 1.50952902505672e87 * cos(theta) ** 6 - 2.81278700321128e85 * cos(theta) ** 4 + 1.86689402868005e83 * cos(theta) ** 2 - 1.86876279147153e80 ) * sin(46 * phi) ) # @torch.jit.script def Yl64_m_minus_45(theta, phi): return ( 1.31519379649676e-79 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 1.35434357719571e90 * cos(theta) ** 19 - 1.82356497401941e90 * cos(theta) ** 17 + 9.92019345866561e89 * cos(theta) ** 15 - 2.82281927685607e89 * cos(theta) ** 13 + 4.54917156187548e88 * cos(theta) ** 11 - 4.20511656980087e87 * cos(theta) ** 9 + 2.15647003579532e86 * cos(theta) ** 7 - 5.62557400642256e84 * cos(theta) ** 5 + 6.22298009560018e82 * cos(theta) ** 3 - 1.86876279147153e80 * cos(theta) ) * sin(45 * phi) ) # @torch.jit.script def Yl64_m_minus_44(theta, phi): return ( 6.14070166569664e-78 * (1.0 - cos(theta) ** 2) ** 22 * ( 6.77171788597853e88 * cos(theta) ** 20 - 1.01309165223301e89 * cos(theta) ** 18 + 6.20012091166601e88 * cos(theta) ** 16 - 2.01629948346862e88 * cos(theta) ** 14 + 3.7909763015629e87 * cos(theta) ** 12 - 4.20511656980087e86 * cos(theta) ** 10 + 2.69558754474415e85 * cos(theta) ** 8 - 9.37595667737094e83 * cos(theta) ** 6 + 1.55574502390005e82 * cos(theta) ** 4 - 9.34381395735763e79 * cos(theta) ** 2 + 8.57230638289691e76 ) * sin(44 * phi) ) # @torch.jit.script def Yl64_m_minus_43(theta, phi): return ( 2.92441850691721e-76 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 3.22462756475168e87 * cos(theta) ** 21 - 5.33206132754215e87 * cos(theta) ** 19 + 3.64712994803883e87 * cos(theta) ** 17 - 1.34419965564575e87 * cos(theta) ** 15 + 2.91613561658685e86 * cos(theta) ** 13 - 3.82283324527352e85 * cos(theta) ** 11 + 2.99509727193794e84 * cos(theta) ** 9 - 1.33942238248156e83 * cos(theta) ** 7 + 3.11149004780009e81 * cos(theta) ** 5 - 3.11460465245254e79 * cos(theta) ** 3 + 8.57230638289691e76 * cos(theta) ) * sin(43 * phi) ) # @torch.jit.script def Yl64_m_minus_42(theta, phi): return ( 1.41887047903867e-74 * (1.0 - cos(theta) ** 2) ** 21 * ( 1.46573980215985e86 * cos(theta) ** 22 - 2.66603066377107e86 * cos(theta) ** 20 + 2.02618330446602e86 * cos(theta) ** 18 - 8.40124784778592e85 * cos(theta) ** 16 + 2.08295401184775e85 * cos(theta) ** 14 - 3.18569437106126e84 * cos(theta) ** 12 + 2.99509727193794e83 * cos(theta) ** 10 - 1.67427797810195e82 * cos(theta) ** 8 + 5.18581674633348e80 * cos(theta) ** 6 - 7.78651163113136e78 * cos(theta) ** 4 + 4.28615319144845e76 * cos(theta) ** 2 - 3.64159149655773e73 ) * sin(42 * phi) ) # @torch.jit.script def Yl64_m_minus_41(theta, phi): return ( 7.00583014186664e-73 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 6.37278174852111e84 * cos(theta) ** 23 - 1.26953841131956e85 * cos(theta) ** 21 + 1.06641226550843e85 * cos(theta) ** 19 - 4.9419104986976e84 * cos(theta) ** 17 + 1.3886360078985e84 * cos(theta) ** 15 - 2.45053413158559e83 * cos(theta) ** 13 + 2.72281570176176e82 * cos(theta) ** 11 - 1.86030886455773e81 * cos(theta) ** 9 + 7.40830963761926e79 * cos(theta) ** 7 - 1.55730232622627e78 * cos(theta) ** 5 + 1.42871773048282e76 * cos(theta) ** 3 - 3.64159149655773e73 * cos(theta) ) * sin(41 * phi) ) # @torch.jit.script def Yl64_m_minus_40(theta, phi): return ( 3.51689881943242e-71 * (1.0 - cos(theta) ** 2) ** 20 * ( 2.65532572855046e83 * cos(theta) ** 24 - 5.77062914236163e83 * cos(theta) ** 22 + 5.33206132754215e83 * cos(theta) ** 20 - 2.74550583260978e83 * cos(theta) ** 18 + 8.67897504936562e82 * cos(theta) ** 16 - 1.75038152256113e82 * cos(theta) ** 14 + 2.26901308480147e81 * cos(theta) ** 12 - 1.86030886455773e80 * cos(theta) ** 10 + 9.26038704702408e78 * cos(theta) ** 8 - 2.59550387704379e77 * cos(theta) ** 6 + 3.57179432620705e75 * cos(theta) ** 4 - 1.82079574827887e73 * cos(theta) ** 2 + 1.44507599069751e70 ) * sin(40 * phi) ) # @torch.jit.script def Yl64_m_minus_39(theta, phi): return ( 1.79327357076174e-69 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 1.06213029142018e82 * cos(theta) ** 25 - 2.50896919233114e82 * cos(theta) ** 23 + 2.53907682263912e82 * cos(theta) ** 21 - 1.44500306979462e82 * cos(theta) ** 19 + 5.10527944080331e81 * cos(theta) ** 17 - 1.16692101504076e81 * cos(theta) ** 15 + 1.74539468061651e80 * cos(theta) ** 13 - 1.69118987687066e79 * cos(theta) ** 11 + 1.02893189411379e78 * cos(theta) ** 9 - 3.70786268149112e76 * cos(theta) ** 7 + 7.14358865241409e74 * cos(theta) ** 5 - 6.06931916092956e72 * cos(theta) ** 3 + 1.44507599069751e70 * cos(theta) ) * sin(39 * phi) ) # @torch.jit.script def Yl64_m_minus_38(theta, phi): return ( 9.28008243859333e-68 * (1.0 - cos(theta) ** 2) ** 19 * ( 4.08511650546225e80 * cos(theta) ** 26 - 1.04540383013798e81 * cos(theta) ** 24 + 1.15412582847233e81 * cos(theta) ** 22 - 7.2250153489731e80 * cos(theta) ** 20 + 2.83626635600184e80 * cos(theta) ** 18 - 7.29325634400472e79 * cos(theta) ** 16 + 1.24671048615465e79 * cos(theta) ** 14 - 1.40932489739222e78 * cos(theta) ** 12 + 1.02893189411379e77 * cos(theta) ** 10 - 4.6348283518639e75 * cos(theta) ** 8 + 1.19059810873568e74 * cos(theta) ** 6 - 1.51732979023239e72 * cos(theta) ** 4 + 7.22537995348757e69 * cos(theta) ** 2 - 5.39610153359789e66 ) * sin(38 * phi) ) # @torch.jit.script def Yl64_m_minus_37(theta, phi): return ( 4.87005428516727e-66 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 1.51300611313417e79 * cos(theta) ** 27 - 4.18161532055191e79 * cos(theta) ** 25 + 5.01793838466229e79 * cos(theta) ** 23 - 3.440483499511e79 * cos(theta) ** 21 + 1.49277176631676e79 * cos(theta) ** 19 - 4.29015079059101e78 * cos(theta) ** 17 + 8.31140324103102e77 * cos(theta) ** 15 - 1.08409607491709e77 * cos(theta) ** 13 + 9.35392631012533e75 * cos(theta) ** 11 - 5.14980927984878e74 * cos(theta) ** 9 + 1.70085444105097e73 * cos(theta) ** 7 - 3.03465958046478e71 * cos(theta) ** 5 + 2.40845998449586e69 * cos(theta) ** 3 - 5.39610153359789e66 * cos(theta) ) * sin(37 * phi) ) # @torch.jit.script def Yl64_m_minus_36(theta, phi): return ( 2.58984340217833e-64 * (1.0 - cos(theta) ** 2) ** 18 * ( 5.40359326119345e77 * cos(theta) ** 28 - 1.60831358482766e78 * cos(theta) ** 26 + 2.09080766027595e78 * cos(theta) ** 24 - 1.56385613614136e78 * cos(theta) ** 22 + 7.46385883158378e77 * cos(theta) ** 20 - 2.3834171058839e77 * cos(theta) ** 18 + 5.19462702564439e76 * cos(theta) ** 16 - 7.74354339226493e75 * cos(theta) ** 14 + 7.79493859177111e74 * cos(theta) ** 12 - 5.14980927984878e73 * cos(theta) ** 10 + 2.12606805131372e72 * cos(theta) ** 8 - 5.0577659674413e70 * cos(theta) ** 6 + 6.02114996123964e68 * cos(theta) ** 4 - 2.69805076679894e66 * cos(theta) ** 2 + 1.90809813776446e63 ) * sin(36 * phi) ) # @torch.jit.script def Yl64_m_minus_35(theta, phi): return ( 1.39467335454003e-62 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 1.86330802110119e76 * cos(theta) ** 29 - 5.95671698084317e76 * cos(theta) ** 27 + 8.36323064110381e76 * cos(theta) ** 25 - 6.79937450496245e76 * cos(theta) ** 23 + 3.55421849123037e76 * cos(theta) ** 21 - 1.25443005572837e76 * cos(theta) ** 19 + 3.05566295626141e75 * cos(theta) ** 17 - 5.16236226150995e74 * cos(theta) ** 15 + 5.9961066090547e73 * cos(theta) ** 13 - 4.68164479986253e72 * cos(theta) ** 11 + 2.36229783479302e71 * cos(theta) ** 9 - 7.22537995348757e69 * cos(theta) ** 7 + 1.20422999224793e68 * cos(theta) ** 5 - 8.99350255599648e65 * cos(theta) ** 3 + 1.90809813776446e63 * cos(theta) ) * sin(35 * phi) ) # @torch.jit.script def Yl64_m_minus_34(theta, phi): return ( 7.6006498963022e-61 * (1.0 - cos(theta) ** 2) ** 17 * ( 6.21102673700396e74 * cos(theta) ** 30 - 2.1273989217297e75 * cos(theta) ** 28 + 3.21662716965531e75 * cos(theta) ** 26 - 2.83307271040102e75 * cos(theta) ** 24 + 1.61555385965017e75 * cos(theta) ** 22 - 6.27215027864183e74 * cos(theta) ** 20 + 1.69759053125634e74 * cos(theta) ** 18 - 3.22647641344372e73 * cos(theta) ** 16 + 4.28293329218193e72 * cos(theta) ** 14 - 3.90137066655211e71 * cos(theta) ** 12 + 2.36229783479302e70 * cos(theta) ** 10 - 9.03172494185946e68 * cos(theta) ** 8 + 2.00704998707988e67 * cos(theta) ** 6 - 2.24837563899912e65 * cos(theta) ** 4 + 9.54049068882229e62 * cos(theta) ** 2 - 6.42457285442578e59 ) * sin(34 * phi) ) # @torch.jit.script def Yl64_m_minus_33(theta, phi): return ( 4.18933039917634e-59 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 2.00355701193676e73 * cos(theta) ** 31 - 7.33585835079208e73 * cos(theta) ** 29 + 1.19134339616863e74 * cos(theta) ** 27 - 1.13322908416041e74 * cos(theta) ** 25 + 7.0241472158703e73 * cos(theta) ** 23 - 2.98673822792468e73 * cos(theta) ** 21 + 8.9346870066123e72 * cos(theta) ** 19 - 1.89792730202572e72 * cos(theta) ** 17 + 2.85528886145462e71 * cos(theta) ** 15 - 3.00105435888624e70 * cos(theta) ** 13 + 2.14754348617547e69 * cos(theta) ** 11 - 1.00352499353994e68 * cos(theta) ** 9 + 2.86721426725697e66 * cos(theta) ** 7 - 4.49675127799824e64 * cos(theta) ** 5 + 3.18016356294076e62 * cos(theta) ** 3 - 6.42457285442578e59 * cos(theta) ) * sin(33 * phi) ) # @torch.jit.script def Yl64_m_minus_32(theta, phi): return ( 2.33402481684555e-57 * (1.0 - cos(theta) ** 2) ** 16 * ( 6.26111566230238e71 * cos(theta) ** 32 - 2.44528611693069e72 * cos(theta) ** 30 + 4.25479784345941e72 * cos(theta) ** 28 - 4.35857340061695e72 * cos(theta) ** 26 + 2.92672800661262e72 * cos(theta) ** 24 - 1.35760828542031e72 * cos(theta) ** 22 + 4.46734350330615e71 * cos(theta) ** 20 - 1.05440405668095e71 * cos(theta) ** 18 + 1.78455553840914e70 * cos(theta) ** 16 - 2.14361025634731e69 * cos(theta) ** 14 + 1.78961957181289e68 * cos(theta) ** 12 - 1.00352499353994e67 * cos(theta) ** 10 + 3.58401783407122e65 * cos(theta) ** 8 - 7.4945854633304e63 * cos(theta) ** 6 + 7.95040890735191e61 * cos(theta) ** 4 - 3.21228642721289e59 * cos(theta) ** 2 + 2.06977218248253e56 ) * sin(32 * phi) ) # @torch.jit.script def Yl64_m_minus_31(theta, phi): return ( 1.31370561417017e-55 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 1.89730777645527e70 * cos(theta) ** 33 - 7.8880197320345e70 * cos(theta) ** 31 + 1.46717167015842e71 * cos(theta) ** 29 - 1.61428644467295e71 * cos(theta) ** 27 + 1.17069120264505e71 * cos(theta) ** 25 - 5.90264471921874e70 * cos(theta) ** 23 + 2.12730643014579e70 * cos(theta) ** 21 - 5.54949503516292e69 * cos(theta) ** 19 + 1.04973855200537e69 * cos(theta) ** 17 - 1.42907350423154e68 * cos(theta) ** 15 + 1.37663043985607e67 * cos(theta) ** 13 - 9.12295448672673e65 * cos(theta) ** 11 + 3.98224203785691e64 * cos(theta) ** 9 - 1.07065506619006e63 * cos(theta) ** 7 + 1.59008178147038e61 * cos(theta) ** 5 - 1.0707621424043e59 * cos(theta) ** 3 + 2.06977218248253e56 * cos(theta) ) * sin(31 * phi) ) # @torch.jit.script def Yl64_m_minus_30(theta, phi): return ( 7.46619480288864e-54 * (1.0 - cos(theta) ** 2) ** 15 * ( 5.58031698957432e68 * cos(theta) ** 34 - 2.46500616626078e69 * cos(theta) ** 32 + 4.89057223386139e69 * cos(theta) ** 30 - 5.76530873097481e69 * cos(theta) ** 28 + 4.50265847171173e69 * cos(theta) ** 26 - 2.45943529967447e69 * cos(theta) ** 24 + 9.66957468248084e68 * cos(theta) ** 22 - 2.77474751758146e68 * cos(theta) ** 20 + 5.8318808444743e67 * cos(theta) ** 18 - 8.93170940144713e66 * cos(theta) ** 16 + 9.83307457040051e65 * cos(theta) ** 14 - 7.60246207227227e64 * cos(theta) ** 12 + 3.98224203785691e63 * cos(theta) ** 10 - 1.33831883273757e62 * cos(theta) ** 8 + 2.65013630245064e60 * cos(theta) ** 6 - 2.67690535601074e58 * cos(theta) ** 4 + 1.03488609124127e56 * cos(theta) ** 2 - 6.40796341325862e52 ) * sin(30 * phi) ) # @torch.jit.script def Yl64_m_minus_29(theta, phi): return ( 4.28249895862336e-52 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 1.59437628273552e67 * cos(theta) ** 35 - 7.4697156553357e67 * cos(theta) ** 33 + 1.5776039464069e68 * cos(theta) ** 31 - 1.98803749343959e68 * cos(theta) ** 29 + 1.66765128581916e68 * cos(theta) ** 27 - 9.8377411986979e67 * cos(theta) ** 25 + 4.20416290542645e67 * cos(theta) ** 23 - 1.32130834170546e67 * cos(theta) ** 21 + 3.06941097077595e66 * cos(theta) ** 19 - 5.25394670673361e65 * cos(theta) ** 17 + 6.55538304693368e64 * cos(theta) ** 15 - 5.84804774790175e63 * cos(theta) ** 13 + 3.62022003441537e62 * cos(theta) ** 11 - 1.48702092526397e61 * cos(theta) ** 9 + 3.78590900350091e59 * cos(theta) ** 7 - 5.35381071202149e57 * cos(theta) ** 5 + 3.44962030413756e55 * cos(theta) ** 3 - 6.40796341325862e52 * cos(theta) ) * sin(29 * phi) ) # @torch.jit.script def Yl64_m_minus_28(theta, phi): return ( 2.47793546047678e-50 * (1.0 - cos(theta) ** 2) ** 14 * ( 4.42882300759866e65 * cos(theta) ** 36 - 2.19697519274579e66 * cos(theta) ** 34 + 4.93001233252156e66 * cos(theta) ** 32 - 6.62679164479863e66 * cos(theta) ** 30 + 5.95589744935414e66 * cos(theta) ** 28 - 3.78374661488381e66 * cos(theta) ** 26 + 1.75173454392769e66 * cos(theta) ** 24 - 6.00594700775208e65 * cos(theta) ** 22 + 1.53470548538797e65 * cos(theta) ** 20 - 2.91885928151867e64 * cos(theta) ** 18 + 4.09711440433355e63 * cos(theta) ** 16 - 4.17717696278696e62 * cos(theta) ** 14 + 3.01685002867947e61 * cos(theta) ** 12 - 1.48702092526397e60 * cos(theta) ** 10 + 4.73238625437614e58 * cos(theta) ** 8 - 8.92301785336914e56 * cos(theta) ** 6 + 8.62405076034389e54 * cos(theta) ** 4 - 3.20398170662931e52 * cos(theta) ** 2 + 1.91396756668417e49 ) * sin(28 * phi) ) # @torch.jit.script def Yl64_m_minus_27(theta, phi): return ( 1.44572192187728e-48 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.19697919124288e64 * cos(theta) ** 37 - 6.2770719792737e64 * cos(theta) ** 35 + 1.49394313106714e65 * cos(theta) ** 33 - 2.13767472412859e65 * cos(theta) ** 31 + 2.0537577411566e65 * cos(theta) ** 29 - 1.40138763514215e65 * cos(theta) ** 27 + 7.00693817571075e64 * cos(theta) ** 25 - 2.61128130771829e64 * cos(theta) ** 23 + 7.30812135899036e63 * cos(theta) ** 21 - 1.53624172711509e63 * cos(theta) ** 19 + 2.41006729666679e62 * cos(theta) ** 17 - 2.78478464185798e61 * cos(theta) ** 15 + 2.32065386821498e60 * cos(theta) ** 13 - 1.35183720478543e59 * cos(theta) ** 11 + 5.25820694930682e57 * cos(theta) ** 9 - 1.27471683619559e56 * cos(theta) ** 7 + 1.72481015206878e54 * cos(theta) ** 5 - 1.06799390220977e52 * cos(theta) ** 3 + 1.91396756668417e49 * cos(theta) ) * sin(27 * phi) ) # @torch.jit.script def Yl64_m_minus_26(theta, phi): return ( 8.50153331177454e-47 * (1.0 - cos(theta) ** 2) ** 13 * ( 3.14994524011285e62 * cos(theta) ** 38 - 1.7436311053538e63 * cos(theta) ** 36 + 4.39395038549159e63 * cos(theta) ** 34 - 6.68023351290185e63 * cos(theta) ** 32 + 6.84585913718867e63 * cos(theta) ** 30 - 5.0049558397934e63 * cos(theta) ** 28 + 2.69497622142721e63 * cos(theta) ** 26 - 1.08803387821596e63 * cos(theta) ** 24 + 3.32187334499562e62 * cos(theta) ** 22 - 7.68120863557545e61 * cos(theta) ** 20 + 1.338926275926e61 * cos(theta) ** 18 - 1.74049040116124e60 * cos(theta) ** 16 + 1.65760990586784e59 * cos(theta) ** 14 - 1.12653100398785e58 * cos(theta) ** 12 + 5.25820694930682e56 * cos(theta) ** 10 - 1.59339604524449e55 * cos(theta) ** 8 + 2.8746835867813e53 * cos(theta) ** 6 - 2.66998475552442e51 * cos(theta) ** 4 + 9.56983783342087e48 * cos(theta) ** 2 - 5.5348975323429e45 ) * sin(26 * phi) ) # @torch.jit.script def Yl64_m_minus_25(theta, phi): return ( 5.03675491726324e-45 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 8.07678266695602e60 * cos(theta) ** 39 - 4.71251650095623e61 * cos(theta) ** 37 + 1.25541439585474e62 * cos(theta) ** 35 - 2.02431318572783e62 * cos(theta) ** 33 + 2.20834165715763e62 * cos(theta) ** 31 - 1.72584684130807e62 * cos(theta) ** 29 + 9.98139341269338e61 * cos(theta) ** 27 - 4.35213551286382e61 * cos(theta) ** 25 + 1.44429275869375e61 * cos(theta) ** 23 - 3.65771839789307e60 * cos(theta) ** 21 + 7.0469803996105e59 * cos(theta) ** 19 - 1.02381788303602e59 * cos(theta) ** 17 + 1.10507327057856e58 * cos(theta) ** 15 - 8.66562310759888e56 * cos(theta) ** 13 + 4.78018813573347e55 * cos(theta) ** 11 - 1.77044005027166e54 * cos(theta) ** 9 + 4.10669083825899e52 * cos(theta) ** 7 - 5.33996951104885e50 * cos(theta) ** 5 + 3.18994594447362e48 * cos(theta) ** 3 - 5.5348975323429e45 * cos(theta) ) * sin(25 * phi) ) # @torch.jit.script def Yl64_m_minus_24(theta, phi): return ( 3.0052168697751e-43 * (1.0 - cos(theta) ** 2) ** 12 * ( 2.01919566673901e59 * cos(theta) ** 40 - 1.24013592130427e60 * cos(theta) ** 38 + 3.48726221070761e60 * cos(theta) ** 36 - 5.95386231096421e60 * cos(theta) ** 34 + 6.90106767861761e60 * cos(theta) ** 32 - 5.75282280436023e60 * cos(theta) ** 30 + 3.56478336167621e60 * cos(theta) ** 28 - 1.67389827417839e60 * cos(theta) ** 26 + 6.01788649455728e59 * cos(theta) ** 24 - 1.66259927176958e59 * cos(theta) ** 22 + 3.52349019980525e58 * cos(theta) ** 20 - 5.68787712797789e57 * cos(theta) ** 18 + 6.90670794111601e56 * cos(theta) ** 16 - 6.18973079114206e55 * cos(theta) ** 14 + 3.98349011311122e54 * cos(theta) ** 12 - 1.77044005027166e53 * cos(theta) ** 10 + 5.13336354782374e51 * cos(theta) ** 8 - 8.89994918508141e49 * cos(theta) ** 6 + 7.97486486118406e47 * cos(theta) ** 4 - 2.76744876617145e45 * cos(theta) ** 2 + 1.55474649784913e42 ) * sin(24 * phi) ) # @torch.jit.script def Yl64_m_minus_23(theta, phi): return ( 1.80513248796996e-41 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 4.92486747985123e57 * cos(theta) ** 41 - 3.17983569565198e58 * cos(theta) ** 39 + 9.42503300191246e58 * cos(theta) ** 37 - 1.70110351741835e59 * cos(theta) ** 35 + 2.09123262988412e59 * cos(theta) ** 33 - 1.8557492917291e59 * cos(theta) ** 31 + 1.22923564195731e59 * cos(theta) ** 29 - 6.19962323769775e58 * cos(theta) ** 27 + 2.40715459782291e58 * cos(theta) ** 25 - 7.22869248595469e57 * cos(theta) ** 23 + 1.67785247609774e57 * cos(theta) ** 21 - 2.993619541041e56 * cos(theta) ** 19 + 4.06276937712707e55 * cos(theta) ** 17 - 4.1264871940947e54 * cos(theta) ** 15 + 3.06422316393171e53 * cos(theta) ** 13 - 1.60949095479241e52 * cos(theta) ** 11 + 5.70373727535971e50 * cos(theta) ** 9 - 1.27142131215449e49 * cos(theta) ** 7 + 1.59497297223681e47 * cos(theta) ** 5 - 9.2248292205715e44 * cos(theta) ** 3 + 1.55474649784913e42 * cos(theta) ) * sin(23 * phi) ) # @torch.jit.script def Yl64_m_minus_22(theta, phi): return ( 1.09117235370959e-39 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.17258749520267e56 * cos(theta) ** 42 - 7.94958923912994e56 * cos(theta) ** 40 + 2.48027184260854e57 * cos(theta) ** 38 - 4.72528754838429e57 * cos(theta) ** 36 + 6.15068420554154e57 * cos(theta) ** 34 - 5.79921653665345e57 * cos(theta) ** 32 + 4.09745213985771e57 * cos(theta) ** 30 - 2.21415115632063e57 * cos(theta) ** 28 + 9.2582869147035e56 * cos(theta) ** 26 - 3.01195520248112e56 * cos(theta) ** 24 + 7.62660216408063e55 * cos(theta) ** 22 - 1.4968097705205e55 * cos(theta) ** 20 + 2.25709409840393e54 * cos(theta) ** 18 - 2.57905449630919e53 * cos(theta) ** 16 + 2.18873083137979e52 * cos(theta) ** 14 - 1.34124246232701e51 * cos(theta) ** 12 + 5.70373727535971e49 * cos(theta) ** 10 - 1.58927664019311e48 * cos(theta) ** 8 + 2.65828828706135e46 * cos(theta) ** 6 - 2.30620730514287e44 * cos(theta) ** 4 + 7.77373248924565e41 * cos(theta) ** 2 - 4.25491652394398e38 ) * sin(22 * phi) ) # @torch.jit.script def Yl64_m_minus_21(theta, phi): return ( 6.63554818846152e-38 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 2.72694766326203e54 * cos(theta) ** 43 - 1.93892420466584e55 * cos(theta) ** 41 + 6.35967139130395e55 * cos(theta) ** 39 - 1.27710474280657e56 * cos(theta) ** 37 + 1.75733834444044e56 * cos(theta) ** 35 - 1.75733834444044e56 * cos(theta) ** 33 + 1.32175875479281e56 * cos(theta) ** 31 - 7.6350039873125e55 * cos(theta) ** 29 + 3.42899515359389e55 * cos(theta) ** 27 - 1.20478208099245e55 * cos(theta) ** 25 + 3.31591398438288e54 * cos(theta) ** 23 - 7.12766557390713e53 * cos(theta) ** 21 + 1.18794426231786e53 * cos(theta) ** 19 - 1.51709088018188e52 * cos(theta) ** 17 + 1.45915388758653e51 * cos(theta) ** 15 - 1.03172497102078e50 * cos(theta) ** 13 + 5.18521570487247e48 * cos(theta) ** 11 - 1.7658629335479e47 * cos(theta) ** 9 + 3.79755469580193e45 * cos(theta) ** 7 - 4.61241461028575e43 * cos(theta) ** 5 + 2.59124416308188e41 * cos(theta) ** 3 - 4.25491652394398e38 * cos(theta) ) * sin(21 * phi) ) # @torch.jit.script def Yl64_m_minus_20(theta, phi): return ( 4.05800528717764e-36 * (1.0 - cos(theta) ** 2) ** 10 * ( 6.19760832559553e52 * cos(theta) ** 44 - 4.61648620158533e53 * cos(theta) ** 42 + 1.58991784782599e54 * cos(theta) ** 40 - 3.36080195475412e54 * cos(theta) ** 38 + 4.88149540122344e54 * cos(theta) ** 36 - 5.16864218953071e54 * cos(theta) ** 34 + 4.13049610872753e54 * cos(theta) ** 32 - 2.54500132910417e54 * cos(theta) ** 30 + 1.22464112628353e54 * cos(theta) ** 28 - 4.63377723458634e53 * cos(theta) ** 26 + 1.3816308268262e53 * cos(theta) ** 24 - 3.23984798813961e52 * cos(theta) ** 22 + 5.93972131158928e51 * cos(theta) ** 20 - 8.42828266767709e50 * cos(theta) ** 18 + 9.11971179741581e49 * cos(theta) ** 16 - 7.36946407871984e48 * cos(theta) ** 14 + 4.32101308739372e47 * cos(theta) ** 12 - 1.7658629335479e46 * cos(theta) ** 10 + 4.74694336975242e44 * cos(theta) ** 8 - 7.68735768380958e42 * cos(theta) ** 6 + 6.4781104077047e40 * cos(theta) ** 4 - 2.12745826197199e38 * cos(theta) ** 2 + 1.13767821495828e35 ) * sin(20 * phi) ) # @torch.jit.script def Yl64_m_minus_19(theta, phi): return ( 2.49493082314278e-34 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.37724629457678e51 * cos(theta) ** 45 - 1.07360144222915e52 * cos(theta) ** 43 + 3.87784840933168e52 * cos(theta) ** 41 - 8.61744090962595e52 * cos(theta) ** 39 + 1.31932308141174e53 * cos(theta) ** 37 - 1.47675491129449e53 * cos(theta) ** 35 + 1.25166548749319e53 * cos(theta) ** 33 - 8.20968170678764e52 * cos(theta) ** 31 + 4.22290043546046e52 * cos(theta) ** 29 - 1.71621379058753e52 * cos(theta) ** 27 + 5.52652330730481e51 * cos(theta) ** 25 - 1.4086295600607e51 * cos(theta) ** 23 + 2.82843871980442e50 * cos(theta) ** 21 - 4.43593824614584e49 * cos(theta) ** 19 + 5.36453635142106e48 * cos(theta) ** 17 - 4.9129760524799e47 * cos(theta) ** 15 + 3.3238562210721e46 * cos(theta) ** 13 - 1.605329939589e45 * cos(theta) ** 11 + 5.27438152194713e43 * cos(theta) ** 9 - 1.09819395482994e42 * cos(theta) ** 7 + 1.29562208154094e40 * cos(theta) ** 5 - 7.09152753990663e37 * cos(theta) ** 3 + 1.13767821495828e35 * cos(theta) ) * sin(19 * phi) ) # @torch.jit.script def Yl64_m_minus_18(theta, phi): return ( 1.54161692787926e-32 * (1.0 - cos(theta) ** 2) ** 9 * ( 2.99401368386257e49 * cos(theta) ** 46 - 2.44000327779352e50 * cos(theta) ** 44 + 9.23297240317066e50 * cos(theta) ** 42 - 2.15436022740649e51 * cos(theta) ** 40 + 3.47190284582037e51 * cos(theta) ** 38 - 4.10209697581802e51 * cos(theta) ** 36 + 3.68136908086233e51 * cos(theta) ** 34 - 2.56552553337114e51 * cos(theta) ** 32 + 1.40763347848682e51 * cos(theta) ** 30 - 6.12933496638404e50 * cos(theta) ** 28 + 2.12558588742493e50 * cos(theta) ** 26 - 5.86928983358624e49 * cos(theta) ** 24 + 1.28565396354746e49 * cos(theta) ** 22 - 2.21796912307292e48 * cos(theta) ** 20 + 2.9802979730117e47 * cos(theta) ** 18 - 3.07061003279994e46 * cos(theta) ** 16 + 2.3741830150515e45 * cos(theta) ** 14 - 1.3377749496575e44 * cos(theta) ** 12 + 5.27438152194713e42 * cos(theta) ** 10 - 1.37274244353743e41 * cos(theta) ** 8 + 2.15937013590157e39 * cos(theta) ** 6 - 1.77288188497666e37 * cos(theta) ** 4 + 5.68839107479141e34 * cos(theta) ** 2 - 2.97977531419142e31 ) * sin(18 * phi) ) # @torch.jit.script def Yl64_m_minus_17(theta, phi): return ( 9.57044927234678e-31 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 6.37024188055867e47 * cos(theta) ** 47 - 5.42222950620781e48 * cos(theta) ** 45 + 2.14720288445829e49 * cos(theta) ** 43 - 5.25453714001582e49 * cos(theta) ** 41 + 8.90231498928301e49 * cos(theta) ** 39 - 1.10867485832919e50 * cos(theta) ** 37 + 1.05181973738924e50 * cos(theta) ** 35 - 7.77431979809435e49 * cos(theta) ** 33 + 4.54075315640909e49 * cos(theta) ** 31 - 2.11356378151174e49 * cos(theta) ** 29 + 7.87254032379602e48 * cos(theta) ** 27 - 2.3477159334345e48 * cos(theta) ** 25 + 5.58979984151071e47 * cos(theta) ** 23 - 1.05617577289187e47 * cos(theta) ** 21 + 1.56857788053247e46 * cos(theta) ** 19 - 1.80624119576467e45 * cos(theta) ** 17 + 1.582788676701e44 * cos(theta) ** 15 - 1.02905765358269e43 * cos(theta) ** 13 + 4.79489229267921e41 * cos(theta) ** 11 - 1.52526938170825e40 * cos(theta) ** 9 + 3.08481447985938e38 * cos(theta) ** 7 - 3.54576376995331e36 * cos(theta) ** 5 + 1.8961303582638e34 * cos(theta) ** 3 - 2.97977531419142e31 * cos(theta) ) * sin(17 * phi) ) # @torch.jit.script def Yl64_m_minus_16(theta, phi): return ( 5.96754158074748e-29 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.32713372511639e46 * cos(theta) ** 48 - 1.17874554482779e47 * cos(theta) ** 46 + 4.88000655558703e47 * cos(theta) ** 44 - 1.25108027143234e48 * cos(theta) ** 42 + 2.22557874732075e48 * cos(theta) ** 40 - 2.91756541665578e48 * cos(theta) ** 38 + 2.92172149274788e48 * cos(theta) ** 36 - 2.28656464649834e48 * cos(theta) ** 34 + 1.41898536137784e48 * cos(theta) ** 32 - 7.04521260503913e47 * cos(theta) ** 30 + 2.81162154421286e47 * cos(theta) ** 28 - 9.02967666705576e46 * cos(theta) ** 26 + 2.32908326729613e46 * cos(theta) ** 24 - 4.8007989676903e45 * cos(theta) ** 22 + 7.84288940266237e44 * cos(theta) ** 20 - 1.00346733098037e44 * cos(theta) ** 18 + 9.89242922938124e42 * cos(theta) ** 16 - 7.35041181130494e41 * cos(theta) ** 14 + 3.99574357723267e40 * cos(theta) ** 12 - 1.52526938170825e39 * cos(theta) ** 10 + 3.85601809982423e37 * cos(theta) ** 8 - 5.90960628325552e35 * cos(theta) ** 6 + 4.74032589565951e33 * cos(theta) ** 4 - 1.48988765709571e31 * cos(theta) ** 2 + 7.66403115789973e27 ) * sin(16 * phi) ) # @torch.jit.script def Yl64_m_minus_15(theta, phi): return ( 3.73627201727021e-27 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 2.70843617370692e44 * cos(theta) ** 49 - 2.50796924431444e45 * cos(theta) ** 47 + 1.08444590124156e46 * cos(theta) ** 45 - 2.90948900333102e46 * cos(theta) ** 43 + 5.42824084712379e46 * cos(theta) ** 41 - 7.48093696578404e46 * cos(theta) ** 39 + 7.89654457499427e46 * cos(theta) ** 37 - 6.53304184713811e46 * cos(theta) ** 35 + 4.29995564053891e46 * cos(theta) ** 33 - 2.27264922743198e46 * cos(theta) ** 31 + 9.69524670418229e45 * cos(theta) ** 29 - 3.34432469150213e45 * cos(theta) ** 27 + 9.31633306918451e44 * cos(theta) ** 25 - 2.08730389899578e44 * cos(theta) ** 23 + 3.73470923936304e43 * cos(theta) ** 21 - 5.28140700515985e42 * cos(theta) ** 19 + 5.81907601728308e41 * cos(theta) ** 17 - 4.90027454086996e40 * cos(theta) ** 15 + 3.0736489055636e39 * cos(theta) ** 13 - 1.38660852882568e38 * cos(theta) ** 11 + 4.28446455536025e36 * cos(theta) ** 9 - 8.44229469036503e34 * cos(theta) ** 7 + 9.48065179131902e32 * cos(theta) ** 5 - 4.96629219031903e30 * cos(theta) ** 3 + 7.66403115789973e27 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl64_m_minus_14(theta, phi): return ( 2.348210551011e-25 * (1.0 - cos(theta) ** 2) ** 7 * ( 5.41687234741383e42 * cos(theta) ** 50 - 5.22493592565508e43 * cos(theta) ** 48 + 2.35749108965557e44 * cos(theta) ** 46 - 6.6124750075705e44 * cos(theta) ** 44 + 1.29243829693423e45 * cos(theta) ** 42 - 1.87023424144601e45 * cos(theta) ** 40 + 2.07803804605112e45 * cos(theta) ** 38 - 1.81473384642725e45 * cos(theta) ** 36 + 1.26469283545262e45 * cos(theta) ** 34 - 7.10202883572493e44 * cos(theta) ** 32 + 3.2317489013941e44 * cos(theta) ** 30 - 1.19440167553648e44 * cos(theta) ** 28 + 3.58320502660943e43 * cos(theta) ** 26 - 8.6970995791491e42 * cos(theta) ** 24 + 1.69759510880138e42 * cos(theta) ** 22 - 2.64070350257992e41 * cos(theta) ** 20 + 3.23282000960171e40 * cos(theta) ** 18 - 3.06267158804373e39 * cos(theta) ** 16 + 2.195463503974e38 * cos(theta) ** 14 - 1.15550710735474e37 * cos(theta) ** 12 + 4.28446455536025e35 * cos(theta) ** 10 - 1.05528683629563e34 * cos(theta) ** 8 + 1.5801086318865e32 * cos(theta) ** 6 - 1.24157304757976e30 * cos(theta) ** 4 + 3.83201557894987e27 * cos(theta) ** 2 - 1.94026105263284e24 ) * sin(14 * phi) ) # @torch.jit.script def Yl64_m_minus_13(theta, phi): return ( 1.48104899061767e-23 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.06213183282624e41 * cos(theta) ** 51 - 1.06631345421532e42 * cos(theta) ** 49 + 5.01593848862887e42 * cos(theta) ** 47 - 1.46943889057122e43 * cos(theta) ** 45 + 3.00567045798659e43 * cos(theta) ** 43 - 4.56154693035612e43 * cos(theta) ** 41 + 5.32830268218237e43 * cos(theta) ** 39 - 4.90468607142501e43 * cos(theta) ** 37 + 3.6134081012932e43 * cos(theta) ** 35 - 2.15212995021968e43 * cos(theta) ** 33 + 1.042499645611e43 * cos(theta) ** 31 - 4.11862646736716e42 * cos(theta) ** 29 + 1.32711297281831e42 * cos(theta) ** 27 - 3.47883983165964e41 * cos(theta) ** 25 + 7.38084829913643e40 * cos(theta) ** 23 - 1.25747785837139e40 * cos(theta) ** 21 + 1.70148421557985e39 * cos(theta) ** 19 - 1.80157152237866e38 * cos(theta) ** 17 + 1.46364233598266e37 * cos(theta) ** 15 - 8.88851621042104e35 * cos(theta) ** 13 + 3.89496777760023e34 * cos(theta) ** 11 - 1.17254092921737e33 * cos(theta) ** 9 + 2.25729804555215e31 * cos(theta) ** 7 - 2.48314609515951e29 * cos(theta) ** 5 + 1.27733852631662e27 * cos(theta) ** 3 - 1.94026105263284e24 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl64_m_minus_12(theta, phi): return ( 9.37165859114006e-22 * (1.0 - cos(theta) ** 2) ** 6 * ( 2.04256121697354e39 * cos(theta) ** 52 - 2.13262690843064e40 * cos(theta) ** 50 + 1.04498718513102e41 * cos(theta) ** 48 - 3.19443237080701e41 * cos(theta) ** 46 + 6.8310692226968e41 * cos(theta) ** 44 - 1.08608260246574e42 * cos(theta) ** 42 + 1.33207567054559e42 * cos(theta) ** 40 - 1.29070686090132e42 * cos(theta) ** 38 + 1.00372447258145e42 * cos(theta) ** 36 - 6.32979397123434e41 * cos(theta) ** 34 + 3.25781139253437e41 * cos(theta) ** 32 - 1.37287548912239e41 * cos(theta) ** 30 + 4.73968918863681e40 * cos(theta) ** 28 - 1.33801531986909e40 * cos(theta) ** 26 + 3.07535345797351e39 * cos(theta) ** 24 - 5.71580844714269e38 * cos(theta) ** 22 + 8.50742107789924e37 * cos(theta) ** 20 - 1.00087306798815e37 * cos(theta) ** 18 + 9.14776459989165e35 * cos(theta) ** 16 - 6.34894015030074e34 * cos(theta) ** 14 + 3.24580648133353e33 * cos(theta) ** 12 - 1.17254092921737e32 * cos(theta) ** 10 + 2.82162255694018e30 * cos(theta) ** 8 - 4.13857682526586e28 * cos(theta) ** 6 + 3.19334631579155e26 * cos(theta) ** 4 - 9.70130526316422e23 * cos(theta) ** 2 + 4.84580682475735e20 ) * sin(12 * phi) ) # @torch.jit.script def Yl64_m_minus_11(theta, phi): return ( 5.94786619359015e-20 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 3.85388908862933e37 * cos(theta) ** 53 - 4.18162138907969e38 * cos(theta) ** 51 + 2.13262690843064e39 * cos(theta) ** 49 - 6.79666461873831e39 * cos(theta) ** 47 + 1.51801538282151e40 * cos(theta) ** 45 - 2.52577349410638e40 * cos(theta) ** 43 + 3.2489650501112e40 * cos(theta) ** 41 - 3.30950477154184e40 * cos(theta) ** 39 + 2.71276884481472e40 * cos(theta) ** 37 - 1.80851256320981e40 * cos(theta) ** 35 + 9.87215573495264e39 * cos(theta) ** 33 - 4.42863061007221e39 * cos(theta) ** 31 + 1.63437558228856e39 * cos(theta) ** 29 - 4.95561229581145e38 * cos(theta) ** 27 + 1.23014138318941e38 * cos(theta) ** 25 - 2.48513410745334e37 * cos(theta) ** 23 + 4.05115289423773e36 * cos(theta) ** 21 - 5.26775298941129e35 * cos(theta) ** 19 + 5.38103799993627e34 * cos(theta) ** 17 - 4.23262676686716e33 * cos(theta) ** 15 + 2.4967742164104e32 * cos(theta) ** 13 - 1.06594629928851e31 * cos(theta) ** 11 + 3.13513617437798e29 * cos(theta) ** 9 - 5.91225260752265e27 * cos(theta) ** 7 + 6.38669263158311e25 * cos(theta) ** 5 - 3.23376842105474e23 * cos(theta) ** 3 + 4.84580682475735e20 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl64_m_minus_10(theta, phi): return ( 3.78519886717003e-18 * (1.0 - cos(theta) ** 2) ** 5 * ( 7.13683164560986e35 * cos(theta) ** 54 - 8.04157959438403e36 * cos(theta) ** 52 + 4.26525381686129e37 * cos(theta) ** 50 - 1.41597179557048e38 * cos(theta) ** 48 + 3.30003344091633e38 * cos(theta) ** 46 - 5.74039430478723e38 * cos(theta) ** 44 + 7.73563107169333e38 * cos(theta) ** 42 - 8.2737619288546e38 * cos(theta) ** 40 + 7.13886538109136e38 * cos(theta) ** 38 - 5.02364600891614e38 * cos(theta) ** 36 + 2.90357521616254e38 * cos(theta) ** 34 - 1.38394706564757e38 * cos(theta) ** 32 + 5.44791860762852e37 * cos(theta) ** 30 - 1.76986153421838e37 * cos(theta) ** 28 + 4.73131301226694e36 * cos(theta) ** 26 - 1.03547254477223e36 * cos(theta) ** 24 + 1.84143313374442e35 * cos(theta) ** 22 - 2.63387649470565e34 * cos(theta) ** 20 + 2.98946555552015e33 * cos(theta) ** 18 - 2.64539172929198e32 * cos(theta) ** 16 + 1.78341015457886e31 * cos(theta) ** 14 - 8.88288582740429e29 * cos(theta) ** 12 + 3.13513617437798e28 * cos(theta) ** 10 - 7.39031575940331e26 * cos(theta) ** 8 + 1.06444877193052e25 * cos(theta) ** 6 - 8.08442105263685e22 * cos(theta) ** 4 + 2.42290341237868e20 * cos(theta) ** 2 - 1.19649551228577e17 ) * sin(10 * phi) ) # @torch.jit.script def Yl64_m_minus_9(theta, phi): return ( 2.41482634962813e-16 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1.29760575374725e34 * cos(theta) ** 55 - 1.5172791687517e35 * cos(theta) ** 53 + 8.36324277815939e35 * cos(theta) ** 51 - 2.8897383583071e36 * cos(theta) ** 49 + 7.02134774663049e36 * cos(theta) ** 47 - 1.27564317884161e37 * cos(theta) ** 45 + 1.79898397016124e37 * cos(theta) ** 43 - 2.01799071435478e37 * cos(theta) ** 41 + 1.83047830284394e37 * cos(theta) ** 39 - 1.35774216457193e37 * cos(theta) ** 37 + 8.29592918903583e36 * cos(theta) ** 35 - 4.19377898681081e36 * cos(theta) ** 33 + 1.75739309923501e36 * cos(theta) ** 31 - 6.10297080764957e35 * cos(theta) ** 29 + 1.75233815269146e35 * cos(theta) ** 27 - 4.14189017908891e34 * cos(theta) ** 25 + 8.0062310162801e33 * cos(theta) ** 23 - 1.25422690224078e33 * cos(theta) ** 21 + 1.57340292395797e32 * cos(theta) ** 19 - 1.55611278193646e31 * cos(theta) ** 17 + 1.18894010305257e30 * cos(theta) ** 15 - 6.8329890980033e28 * cos(theta) ** 13 + 2.85012379488908e27 * cos(theta) ** 11 - 8.21146195489257e25 * cos(theta) ** 9 + 1.52064110275788e24 * cos(theta) ** 7 - 1.61688421052737e22 * cos(theta) ** 5 + 8.07634470792892e19 * cos(theta) ** 3 - 1.19649551228577e17 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl64_m_minus_8(theta, phi): return ( 1.54397885962641e-14 * (1.0 - cos(theta) ** 2) ** 4 * ( 2.31715313169151e32 * cos(theta) ** 56 - 2.80977623842908e33 * cos(theta) ** 54 + 1.60831591887681e34 * cos(theta) ** 52 - 5.77947671661421e34 * cos(theta) ** 50 + 1.46278078054802e35 * cos(theta) ** 48 - 2.77313734530784e35 * cos(theta) ** 46 + 4.08859993218463e35 * cos(theta) ** 44 - 4.80473979608281e35 * cos(theta) ** 42 + 4.57619575710985e35 * cos(theta) ** 40 - 3.57300569624192e35 * cos(theta) ** 38 + 2.30442477473218e35 * cos(theta) ** 36 - 1.23346440788553e35 * cos(theta) ** 34 + 5.49185343510939e34 * cos(theta) ** 32 - 2.03432360254986e34 * cos(theta) ** 30 + 6.25835054532665e33 * cos(theta) ** 28 - 1.59303468426496e33 * cos(theta) ** 26 + 3.33592959011671e32 * cos(theta) ** 24 - 5.70103137382175e31 * cos(theta) ** 22 + 7.86701461978987e30 * cos(theta) ** 20 - 8.64507101075809e29 * cos(theta) ** 18 + 7.43087564407859e28 * cos(theta) ** 16 - 4.88070649857378e27 * cos(theta) ** 14 + 2.37510316240756e26 * cos(theta) ** 12 - 8.21146195489257e24 * cos(theta) ** 10 + 1.90080137844735e23 * cos(theta) ** 8 - 2.69480701754562e21 * cos(theta) ** 6 + 2.01908617698223e19 * cos(theta) ** 4 - 5.98247756142883e16 * cos(theta) ** 2 + 29268481220297.6 ) * sin(8 * phi) ) # @torch.jit.script def Yl64_m_minus_7(theta, phi): return ( 9.89110986222795e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 4.06518093279213e30 * cos(theta) ** 57 - 5.10868406987105e31 * cos(theta) ** 55 + 3.03455833750341e32 * cos(theta) ** 53 - 1.13323072874788e33 * cos(theta) ** 51 + 2.98526689907759e33 * cos(theta) ** 49 - 5.90029222405923e33 * cos(theta) ** 47 + 9.08577762707697e33 * cos(theta) ** 45 - 1.11738134792624e34 * cos(theta) ** 43 + 1.11614530661216e34 * cos(theta) ** 41 - 9.16155306728698e33 * cos(theta) ** 39 + 6.22817506684372e33 * cos(theta) ** 37 - 3.52418402253009e33 * cos(theta) ** 35 + 1.66419801063921e33 * cos(theta) ** 33 - 6.56233420177373e32 * cos(theta) ** 31 + 2.1580519121816e32 * cos(theta) ** 29 - 5.90012846024061e31 * cos(theta) ** 27 + 1.33437183604668e31 * cos(theta) ** 25 - 2.47870929296598e30 * cos(theta) ** 23 + 3.74619743799517e29 * cos(theta) ** 21 - 4.55003737408321e28 * cos(theta) ** 19 + 4.37110332004623e27 * cos(theta) ** 17 - 3.25380433238252e26 * cos(theta) ** 15 + 1.8270024326212e25 * cos(theta) ** 13 - 7.4649654135387e23 * cos(theta) ** 11 + 2.11200153160817e22 * cos(theta) ** 9 - 3.84972431077945e20 * cos(theta) ** 7 + 4.03817235396446e18 * cos(theta) ** 5 - 1.99415918714294e16 * cos(theta) ** 3 + 29268481220297.6 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl64_m_minus_6(theta, phi): return ( 6.34728789038939e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 7.00893264274505e28 * cos(theta) ** 58 - 9.12265012476974e29 * cos(theta) ** 56 + 5.61955247685816e30 * cos(theta) ** 54 - 2.1792898629767e31 * cos(theta) ** 52 + 5.97053379815518e31 * cos(theta) ** 50 - 1.22922754667901e32 * cos(theta) ** 48 + 1.97516904936456e32 * cos(theta) ** 46 - 2.53950306346872e32 * cos(theta) ** 44 + 2.65748882526704e32 * cos(theta) ** 42 - 2.29038826682175e32 * cos(theta) ** 40 + 1.63899343864308e32 * cos(theta) ** 38 - 9.78940006258359e31 * cos(theta) ** 36 + 4.89470003129179e31 * cos(theta) ** 34 - 2.05072943805429e31 * cos(theta) ** 32 + 7.19350637393867e30 * cos(theta) ** 30 - 2.10718873580022e30 * cos(theta) ** 28 + 5.13219936941032e29 * cos(theta) ** 26 - 1.03279553873582e29 * cos(theta) ** 24 + 1.70281701727053e28 * cos(theta) ** 22 - 2.2750186870416e27 * cos(theta) ** 20 + 2.42839073335901e26 * cos(theta) ** 18 - 2.03362770773908e25 * cos(theta) ** 16 + 1.30500173758657e24 * cos(theta) ** 14 - 6.22080451128225e22 * cos(theta) ** 12 + 2.11200153160817e21 * cos(theta) ** 10 - 4.81215538847431e19 * cos(theta) ** 8 + 6.73028725660743e17 * cos(theta) ** 6 - 4.98539796785736e15 * cos(theta) ** 4 + 14634240610148.8 * cos(theta) ** 2 - 7107450514.88528 ) * sin(6 * phi) ) # @torch.jit.script def Yl64_m_minus_5(theta, phi): return ( 4.07908939001327e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.18795468521103e27 * cos(theta) ** 59 - 1.60046493417013e28 * cos(theta) ** 57 + 1.02173681397421e29 * cos(theta) ** 55 - 4.11186766599377e29 * cos(theta) ** 53 + 1.17069290159905e30 * cos(theta) ** 51 - 2.50862764628369e30 * cos(theta) ** 49 + 4.20248733907353e30 * cos(theta) ** 47 - 5.64334014104159e30 * cos(theta) ** 45 + 6.18020657038847e30 * cos(theta) ** 43 - 5.5863128459067e30 * cos(theta) ** 41 + 4.20254727857201e30 * cos(theta) ** 39 - 2.64578380069827e30 * cos(theta) ** 37 + 1.39848572322623e30 * cos(theta) ** 35 - 6.21433163046755e29 * cos(theta) ** 33 + 2.32048592707699e29 * cos(theta) ** 31 - 7.26616805448351e28 * cos(theta) ** 29 + 1.90081458126308e28 * cos(theta) ** 27 - 4.13118215494329e27 * cos(theta) ** 25 + 7.40355224900232e26 * cos(theta) ** 23 - 1.08334223192457e26 * cos(theta) ** 21 + 1.27810038597843e25 * cos(theta) ** 19 - 1.19625159278769e24 * cos(theta) ** 17 + 8.70001158391049e22 * cos(theta) ** 15 - 4.78523423944788e21 * cos(theta) ** 13 + 1.92000139237106e20 * cos(theta) ** 11 - 5.34683932052702e18 * cos(theta) ** 9 + 9.61469608086776e16 * cos(theta) ** 7 - 997079593571472.0 * cos(theta) ** 5 + 4878080203382.93 * cos(theta) ** 3 - 7107450514.88528 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl64_m_minus_4(theta, phi): return ( 2.6246016239063e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 1.97992447535171e25 * cos(theta) ** 60 - 2.75942230029333e26 * cos(theta) ** 58 + 1.82453002495395e27 * cos(theta) ** 56 - 7.61456975184032e27 * cos(theta) ** 54 + 2.2513325030751e28 * cos(theta) ** 52 - 5.01725529256737e28 * cos(theta) ** 50 + 8.75518195640318e28 * cos(theta) ** 48 - 1.22681307413948e29 * cos(theta) ** 46 + 1.40459240236102e29 * cos(theta) ** 44 - 1.33007448712064e29 * cos(theta) ** 42 + 1.050636819643e29 * cos(theta) ** 40 - 6.96258894920596e28 * cos(theta) ** 38 + 3.8846825645173e28 * cos(theta) ** 36 - 1.82774459719634e28 * cos(theta) ** 34 + 7.2515185221156e27 * cos(theta) ** 32 - 2.42205601816117e27 * cos(theta) ** 30 + 6.78862350451101e26 * cos(theta) ** 28 - 1.58891621343973e26 * cos(theta) ** 26 + 3.0848134370843e25 * cos(theta) ** 24 - 4.92428287238442e24 * cos(theta) ** 22 + 6.39050192989214e23 * cos(theta) ** 20 - 6.64584218215384e22 * cos(theta) ** 18 + 5.43750723994406e21 * cos(theta) ** 16 - 3.41802445674849e20 * cos(theta) ** 14 + 1.60000116030922e19 * cos(theta) ** 12 - 5.34683932052702e17 * cos(theta) ** 10 + 1.20183701010847e16 * cos(theta) ** 8 - 166179932261912.0 * cos(theta) ** 6 + 1219520050845.73 * cos(theta) ** 4 - 3553725257.44264 * cos(theta) ** 2 + 1716775.48668727 ) * sin(4 * phi) ) # @torch.jit.script def Yl64_m_minus_3(theta, phi): return ( 1.69037385575232e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 3.24577782844542e23 * cos(theta) ** 61 - 4.67698694964971e24 * cos(theta) ** 59 + 3.20092986834026e25 * cos(theta) ** 57 - 1.38446722760733e26 * cos(theta) ** 55 + 4.2477971756134e26 * cos(theta) ** 53 - 9.8377554756223e26 * cos(theta) ** 51 + 1.78677182783738e27 * cos(theta) ** 49 - 2.61024058327548e27 * cos(theta) ** 47 + 3.12131644969115e27 * cos(theta) ** 45 - 3.09319648167591e27 * cos(theta) ** 43 + 2.56252882839757e27 * cos(theta) ** 41 - 1.78527921774512e27 * cos(theta) ** 39 + 1.0499142066263e27 * cos(theta) ** 37 - 5.22212742056097e26 * cos(theta) ** 35 + 2.19742985518654e26 * cos(theta) ** 33 - 7.81308392955216e25 * cos(theta) ** 31 + 2.34090465672793e25 * cos(theta) ** 29 - 5.88487486459159e24 * cos(theta) ** 27 + 1.23392537483372e24 * cos(theta) ** 25 - 2.14099255321062e23 * cos(theta) ** 23 + 3.0430961570915e22 * cos(theta) ** 21 - 3.49781167481781e21 * cos(theta) ** 19 + 3.19853367055533e20 * cos(theta) ** 17 - 2.27868297116566e19 * cos(theta) ** 15 + 1.23077012331479e18 * cos(theta) ** 13 - 4.86076301866092e16 * cos(theta) ** 11 + 1.33537445567608e15 * cos(theta) ** 9 - 23739990323130.3 * cos(theta) ** 7 + 243904010169.147 * cos(theta) ** 5 - 1184575085.81421 * cos(theta) ** 3 + 1716775.48668727 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl64_m_minus_2(theta, phi): return ( 0.00108947184955667 * (1.0 - cos(theta) ** 2) * ( 5.23512552975069e21 * cos(theta) ** 62 - 7.79497824941618e22 * cos(theta) ** 60 + 5.51884460058665e23 * cos(theta) ** 58 - 2.47226290644166e24 * cos(theta) ** 56 + 7.86629106595075e24 * cos(theta) ** 54 - 1.89187605300429e25 * cos(theta) ** 52 + 3.57354365567477e25 * cos(theta) ** 50 - 5.43800121515726e25 * cos(theta) ** 48 + 6.78547054280684e25 * cos(theta) ** 46 - 7.02999200380889e25 * cos(theta) ** 44 + 6.1012591152323e25 * cos(theta) ** 42 - 4.4631980443628e25 * cos(theta) ** 40 + 2.76293212270078e25 * cos(theta) ** 38 - 1.45059095015582e25 * cos(theta) ** 36 + 6.46302898584278e24 * cos(theta) ** 34 - 2.44158872798505e24 * cos(theta) ** 32 + 7.80301552242645e23 * cos(theta) ** 30 - 2.10174102306842e23 * cos(theta) ** 28 + 4.74586682628354e22 * cos(theta) ** 26 - 8.92080230504424e21 * cos(theta) ** 24 + 1.38322552595068e21 * cos(theta) ** 22 - 1.74890583740891e20 * cos(theta) ** 20 + 1.77696315030851e19 * cos(theta) ** 18 - 1.42417685697854e18 * cos(theta) ** 16 + 8.79121516653418e16 * cos(theta) ** 14 - 4.0506358488841e15 * cos(theta) ** 12 + 133537445567608.0 * cos(theta) ** 10 - 2967498790391.28 * cos(theta) ** 8 + 40650668361.5244 * cos(theta) ** 6 - 296143771.453553 * cos(theta) ** 4 + 858387.743343633 * cos(theta) ** 2 - 413.282495591542 ) * sin(2 * phi) ) # @torch.jit.script def Yl64_m_minus_1(theta, phi): return ( 0.0702519293104469 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 8.30972306309633e19 * cos(theta) ** 63 - 1.27786528678954e21 * cos(theta) ** 61 + 9.35397389929941e21 * cos(theta) ** 59 - 4.3373033446345e22 * cos(theta) ** 57 + 1.43023473926377e23 * cos(theta) ** 55 - 3.56957745849866e23 * cos(theta) ** 53 + 7.00694834446033e23 * cos(theta) ** 51 - 1.10979616635862e24 * cos(theta) ** 49 + 1.44371713676741e24 * cos(theta) ** 47 - 1.56222044529086e24 * cos(theta) ** 45 + 1.41889746865868e24 * cos(theta) ** 43 - 1.08858488886898e24 * cos(theta) ** 41 + 7.08444134025841e23 * cos(theta) ** 39 - 3.92051608150223e23 * cos(theta) ** 37 + 1.84657971024079e23 * cos(theta) ** 35 - 7.39875372116682e22 * cos(theta) ** 33 + 2.51710178142789e22 * cos(theta) ** 31 - 7.24738283816698e21 * cos(theta) ** 29 + 1.75772845417909e21 * cos(theta) ** 27 - 3.5683209220177e20 * cos(theta) ** 25 + 6.01402402587252e19 * cos(theta) ** 23 - 8.32812303528051e18 * cos(theta) ** 21 + 9.35243763320271e17 * cos(theta) ** 19 - 8.37751092340316e16 * cos(theta) ** 17 + 5.86081011102279e15 * cos(theta) ** 15 - 311587372991085.0 * cos(theta) ** 13 + 12139767778873.4 * cos(theta) ** 11 - 329722087821.254 * cos(theta) ** 9 + 5807238337.36063 * cos(theta) ** 7 - 59228754.2907107 * cos(theta) ** 5 + 286129.247781211 * cos(theta) ** 3 - 413.282495591542 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl64_m0(theta, phi): return ( 1.30691207991104e19 * cos(theta) ** 64 - 2.07459429378005e20 * cos(theta) ** 62 + 1.56922312381523e21 * cos(theta) ** 60 - 7.5271678296828e21 * cos(theta) ** 58 + 2.57074554183175e22 * cos(theta) ** 56 - 6.65369434356453e22 * cos(theta) ** 54 + 1.35633000080354e23 * cos(theta) ** 52 - 2.23415351685154e23 * cos(theta) ** 50 + 3.02747572803445e23 * cos(theta) ** 48 - 3.41841103225511e23 * cos(theta) ** 46 + 3.24592240218719e23 * cos(theta) ** 44 - 2.60887221110373e23 * cos(theta) ** 42 + 1.78272934425421e23 * cos(theta) ** 40 - 1.03848311315779e23 * cos(theta) ** 38 + 5.16303839144221e22 * cos(theta) ** 36 - 2.19037992364215e22 * cos(theta) ** 34 + 7.91754598687659e21 * cos(theta) ** 32 - 2.43164260649584e21 * cos(theta) ** 30 + 6.31878455093006e20 * cos(theta) ** 28 - 1.3814346791507e20 * cos(theta) ** 26 + 2.52228241979763e19 * cos(theta) ** 24 - 3.81034454222302e18 * cos(theta) ** 22 + 4.70689619921667e17 * cos(theta) ** 20 - 4.68470548900559e16 * cos(theta) ** 18 + 3.68703672745811e15 * cos(theta) ** 16 - 224022484706315.0 * cos(theta) ** 14 + 10182840213923.4 * cos(theta) ** 12 - 331885162527.874 * cos(theta) ** 10 + 7306669429.42972 * cos(theta) ** 8 - 99362187.4813172 * cos(theta) ** 6 + 720015.851313893 * cos(theta) ** 4 - 2079.9687568047 * cos(theta) ** 2 + 0.999984979233028 ) # @torch.jit.script def Yl64_m1(theta, phi): return ( 0.0702519293104469 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 8.30972306309633e19 * cos(theta) ** 63 - 1.27786528678954e21 * cos(theta) ** 61 + 9.35397389929941e21 * cos(theta) ** 59 - 4.3373033446345e22 * cos(theta) ** 57 + 1.43023473926377e23 * cos(theta) ** 55 - 3.56957745849866e23 * cos(theta) ** 53 + 7.00694834446033e23 * cos(theta) ** 51 - 1.10979616635862e24 * cos(theta) ** 49 + 1.44371713676741e24 * cos(theta) ** 47 - 1.56222044529086e24 * cos(theta) ** 45 + 1.41889746865868e24 * cos(theta) ** 43 - 1.08858488886898e24 * cos(theta) ** 41 + 7.08444134025841e23 * cos(theta) ** 39 - 3.92051608150223e23 * cos(theta) ** 37 + 1.84657971024079e23 * cos(theta) ** 35 - 7.39875372116682e22 * cos(theta) ** 33 + 2.51710178142789e22 * cos(theta) ** 31 - 7.24738283816698e21 * cos(theta) ** 29 + 1.75772845417909e21 * cos(theta) ** 27 - 3.5683209220177e20 * cos(theta) ** 25 + 6.01402402587252e19 * cos(theta) ** 23 - 8.32812303528051e18 * cos(theta) ** 21 + 9.35243763320271e17 * cos(theta) ** 19 - 8.37751092340316e16 * cos(theta) ** 17 + 5.86081011102279e15 * cos(theta) ** 15 - 311587372991085.0 * cos(theta) ** 13 + 12139767778873.4 * cos(theta) ** 11 - 329722087821.254 * cos(theta) ** 9 + 5807238337.36063 * cos(theta) ** 7 - 59228754.2907107 * cos(theta) ** 5 + 286129.247781211 * cos(theta) ** 3 - 413.282495591542 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl64_m2(theta, phi): return ( 0.00108947184955667 * (1.0 - cos(theta) ** 2) * ( 5.23512552975069e21 * cos(theta) ** 62 - 7.79497824941618e22 * cos(theta) ** 60 + 5.51884460058665e23 * cos(theta) ** 58 - 2.47226290644166e24 * cos(theta) ** 56 + 7.86629106595075e24 * cos(theta) ** 54 - 1.89187605300429e25 * cos(theta) ** 52 + 3.57354365567477e25 * cos(theta) ** 50 - 5.43800121515726e25 * cos(theta) ** 48 + 6.78547054280684e25 * cos(theta) ** 46 - 7.02999200380889e25 * cos(theta) ** 44 + 6.1012591152323e25 * cos(theta) ** 42 - 4.4631980443628e25 * cos(theta) ** 40 + 2.76293212270078e25 * cos(theta) ** 38 - 1.45059095015582e25 * cos(theta) ** 36 + 6.46302898584278e24 * cos(theta) ** 34 - 2.44158872798505e24 * cos(theta) ** 32 + 7.80301552242645e23 * cos(theta) ** 30 - 2.10174102306842e23 * cos(theta) ** 28 + 4.74586682628354e22 * cos(theta) ** 26 - 8.92080230504424e21 * cos(theta) ** 24 + 1.38322552595068e21 * cos(theta) ** 22 - 1.74890583740891e20 * cos(theta) ** 20 + 1.77696315030851e19 * cos(theta) ** 18 - 1.42417685697854e18 * cos(theta) ** 16 + 8.79121516653418e16 * cos(theta) ** 14 - 4.0506358488841e15 * cos(theta) ** 12 + 133537445567608.0 * cos(theta) ** 10 - 2967498790391.28 * cos(theta) ** 8 + 40650668361.5244 * cos(theta) ** 6 - 296143771.453553 * cos(theta) ** 4 + 858387.743343633 * cos(theta) ** 2 - 413.282495591542 ) * cos(2 * phi) ) # @torch.jit.script def Yl64_m3(theta, phi): return ( 1.69037385575232e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 3.24577782844542e23 * cos(theta) ** 61 - 4.67698694964971e24 * cos(theta) ** 59 + 3.20092986834026e25 * cos(theta) ** 57 - 1.38446722760733e26 * cos(theta) ** 55 + 4.2477971756134e26 * cos(theta) ** 53 - 9.8377554756223e26 * cos(theta) ** 51 + 1.78677182783738e27 * cos(theta) ** 49 - 2.61024058327548e27 * cos(theta) ** 47 + 3.12131644969115e27 * cos(theta) ** 45 - 3.09319648167591e27 * cos(theta) ** 43 + 2.56252882839757e27 * cos(theta) ** 41 - 1.78527921774512e27 * cos(theta) ** 39 + 1.0499142066263e27 * cos(theta) ** 37 - 5.22212742056097e26 * cos(theta) ** 35 + 2.19742985518654e26 * cos(theta) ** 33 - 7.81308392955216e25 * cos(theta) ** 31 + 2.34090465672793e25 * cos(theta) ** 29 - 5.88487486459159e24 * cos(theta) ** 27 + 1.23392537483372e24 * cos(theta) ** 25 - 2.14099255321062e23 * cos(theta) ** 23 + 3.0430961570915e22 * cos(theta) ** 21 - 3.49781167481781e21 * cos(theta) ** 19 + 3.19853367055533e20 * cos(theta) ** 17 - 2.27868297116566e19 * cos(theta) ** 15 + 1.23077012331479e18 * cos(theta) ** 13 - 4.86076301866092e16 * cos(theta) ** 11 + 1.33537445567608e15 * cos(theta) ** 9 - 23739990323130.3 * cos(theta) ** 7 + 243904010169.147 * cos(theta) ** 5 - 1184575085.81421 * cos(theta) ** 3 + 1716775.48668727 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl64_m4(theta, phi): return ( 2.6246016239063e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 1.97992447535171e25 * cos(theta) ** 60 - 2.75942230029333e26 * cos(theta) ** 58 + 1.82453002495395e27 * cos(theta) ** 56 - 7.61456975184032e27 * cos(theta) ** 54 + 2.2513325030751e28 * cos(theta) ** 52 - 5.01725529256737e28 * cos(theta) ** 50 + 8.75518195640318e28 * cos(theta) ** 48 - 1.22681307413948e29 * cos(theta) ** 46 + 1.40459240236102e29 * cos(theta) ** 44 - 1.33007448712064e29 * cos(theta) ** 42 + 1.050636819643e29 * cos(theta) ** 40 - 6.96258894920596e28 * cos(theta) ** 38 + 3.8846825645173e28 * cos(theta) ** 36 - 1.82774459719634e28 * cos(theta) ** 34 + 7.2515185221156e27 * cos(theta) ** 32 - 2.42205601816117e27 * cos(theta) ** 30 + 6.78862350451101e26 * cos(theta) ** 28 - 1.58891621343973e26 * cos(theta) ** 26 + 3.0848134370843e25 * cos(theta) ** 24 - 4.92428287238442e24 * cos(theta) ** 22 + 6.39050192989214e23 * cos(theta) ** 20 - 6.64584218215384e22 * cos(theta) ** 18 + 5.43750723994406e21 * cos(theta) ** 16 - 3.41802445674849e20 * cos(theta) ** 14 + 1.60000116030922e19 * cos(theta) ** 12 - 5.34683932052702e17 * cos(theta) ** 10 + 1.20183701010847e16 * cos(theta) ** 8 - 166179932261912.0 * cos(theta) ** 6 + 1219520050845.73 * cos(theta) ** 4 - 3553725257.44264 * cos(theta) ** 2 + 1716775.48668727 ) * cos(4 * phi) ) # @torch.jit.script def Yl64_m5(theta, phi): return ( 4.07908939001327e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.18795468521103e27 * cos(theta) ** 59 - 1.60046493417013e28 * cos(theta) ** 57 + 1.02173681397421e29 * cos(theta) ** 55 - 4.11186766599377e29 * cos(theta) ** 53 + 1.17069290159905e30 * cos(theta) ** 51 - 2.50862764628369e30 * cos(theta) ** 49 + 4.20248733907353e30 * cos(theta) ** 47 - 5.64334014104159e30 * cos(theta) ** 45 + 6.18020657038847e30 * cos(theta) ** 43 - 5.5863128459067e30 * cos(theta) ** 41 + 4.20254727857201e30 * cos(theta) ** 39 - 2.64578380069827e30 * cos(theta) ** 37 + 1.39848572322623e30 * cos(theta) ** 35 - 6.21433163046755e29 * cos(theta) ** 33 + 2.32048592707699e29 * cos(theta) ** 31 - 7.26616805448351e28 * cos(theta) ** 29 + 1.90081458126308e28 * cos(theta) ** 27 - 4.13118215494329e27 * cos(theta) ** 25 + 7.40355224900232e26 * cos(theta) ** 23 - 1.08334223192457e26 * cos(theta) ** 21 + 1.27810038597843e25 * cos(theta) ** 19 - 1.19625159278769e24 * cos(theta) ** 17 + 8.70001158391049e22 * cos(theta) ** 15 - 4.78523423944788e21 * cos(theta) ** 13 + 1.92000139237106e20 * cos(theta) ** 11 - 5.34683932052702e18 * cos(theta) ** 9 + 9.61469608086776e16 * cos(theta) ** 7 - 997079593571472.0 * cos(theta) ** 5 + 4878080203382.93 * cos(theta) ** 3 - 7107450514.88528 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl64_m6(theta, phi): return ( 6.34728789038939e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 7.00893264274505e28 * cos(theta) ** 58 - 9.12265012476974e29 * cos(theta) ** 56 + 5.61955247685816e30 * cos(theta) ** 54 - 2.1792898629767e31 * cos(theta) ** 52 + 5.97053379815518e31 * cos(theta) ** 50 - 1.22922754667901e32 * cos(theta) ** 48 + 1.97516904936456e32 * cos(theta) ** 46 - 2.53950306346872e32 * cos(theta) ** 44 + 2.65748882526704e32 * cos(theta) ** 42 - 2.29038826682175e32 * cos(theta) ** 40 + 1.63899343864308e32 * cos(theta) ** 38 - 9.78940006258359e31 * cos(theta) ** 36 + 4.89470003129179e31 * cos(theta) ** 34 - 2.05072943805429e31 * cos(theta) ** 32 + 7.19350637393867e30 * cos(theta) ** 30 - 2.10718873580022e30 * cos(theta) ** 28 + 5.13219936941032e29 * cos(theta) ** 26 - 1.03279553873582e29 * cos(theta) ** 24 + 1.70281701727053e28 * cos(theta) ** 22 - 2.2750186870416e27 * cos(theta) ** 20 + 2.42839073335901e26 * cos(theta) ** 18 - 2.03362770773908e25 * cos(theta) ** 16 + 1.30500173758657e24 * cos(theta) ** 14 - 6.22080451128225e22 * cos(theta) ** 12 + 2.11200153160817e21 * cos(theta) ** 10 - 4.81215538847431e19 * cos(theta) ** 8 + 6.73028725660743e17 * cos(theta) ** 6 - 4.98539796785736e15 * cos(theta) ** 4 + 14634240610148.8 * cos(theta) ** 2 - 7107450514.88528 ) * cos(6 * phi) ) # @torch.jit.script def Yl64_m7(theta, phi): return ( 9.89110986222795e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 4.06518093279213e30 * cos(theta) ** 57 - 5.10868406987105e31 * cos(theta) ** 55 + 3.03455833750341e32 * cos(theta) ** 53 - 1.13323072874788e33 * cos(theta) ** 51 + 2.98526689907759e33 * cos(theta) ** 49 - 5.90029222405923e33 * cos(theta) ** 47 + 9.08577762707697e33 * cos(theta) ** 45 - 1.11738134792624e34 * cos(theta) ** 43 + 1.11614530661216e34 * cos(theta) ** 41 - 9.16155306728698e33 * cos(theta) ** 39 + 6.22817506684372e33 * cos(theta) ** 37 - 3.52418402253009e33 * cos(theta) ** 35 + 1.66419801063921e33 * cos(theta) ** 33 - 6.56233420177373e32 * cos(theta) ** 31 + 2.1580519121816e32 * cos(theta) ** 29 - 5.90012846024061e31 * cos(theta) ** 27 + 1.33437183604668e31 * cos(theta) ** 25 - 2.47870929296598e30 * cos(theta) ** 23 + 3.74619743799517e29 * cos(theta) ** 21 - 4.55003737408321e28 * cos(theta) ** 19 + 4.37110332004623e27 * cos(theta) ** 17 - 3.25380433238252e26 * cos(theta) ** 15 + 1.8270024326212e25 * cos(theta) ** 13 - 7.4649654135387e23 * cos(theta) ** 11 + 2.11200153160817e22 * cos(theta) ** 9 - 3.84972431077945e20 * cos(theta) ** 7 + 4.03817235396446e18 * cos(theta) ** 5 - 1.99415918714294e16 * cos(theta) ** 3 + 29268481220297.6 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl64_m8(theta, phi): return ( 1.54397885962641e-14 * (1.0 - cos(theta) ** 2) ** 4 * ( 2.31715313169151e32 * cos(theta) ** 56 - 2.80977623842908e33 * cos(theta) ** 54 + 1.60831591887681e34 * cos(theta) ** 52 - 5.77947671661421e34 * cos(theta) ** 50 + 1.46278078054802e35 * cos(theta) ** 48 - 2.77313734530784e35 * cos(theta) ** 46 + 4.08859993218463e35 * cos(theta) ** 44 - 4.80473979608281e35 * cos(theta) ** 42 + 4.57619575710985e35 * cos(theta) ** 40 - 3.57300569624192e35 * cos(theta) ** 38 + 2.30442477473218e35 * cos(theta) ** 36 - 1.23346440788553e35 * cos(theta) ** 34 + 5.49185343510939e34 * cos(theta) ** 32 - 2.03432360254986e34 * cos(theta) ** 30 + 6.25835054532665e33 * cos(theta) ** 28 - 1.59303468426496e33 * cos(theta) ** 26 + 3.33592959011671e32 * cos(theta) ** 24 - 5.70103137382175e31 * cos(theta) ** 22 + 7.86701461978987e30 * cos(theta) ** 20 - 8.64507101075809e29 * cos(theta) ** 18 + 7.43087564407859e28 * cos(theta) ** 16 - 4.88070649857378e27 * cos(theta) ** 14 + 2.37510316240756e26 * cos(theta) ** 12 - 8.21146195489257e24 * cos(theta) ** 10 + 1.90080137844735e23 * cos(theta) ** 8 - 2.69480701754562e21 * cos(theta) ** 6 + 2.01908617698223e19 * cos(theta) ** 4 - 5.98247756142883e16 * cos(theta) ** 2 + 29268481220297.6 ) * cos(8 * phi) ) # @torch.jit.script def Yl64_m9(theta, phi): return ( 2.41482634962813e-16 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1.29760575374725e34 * cos(theta) ** 55 - 1.5172791687517e35 * cos(theta) ** 53 + 8.36324277815939e35 * cos(theta) ** 51 - 2.8897383583071e36 * cos(theta) ** 49 + 7.02134774663049e36 * cos(theta) ** 47 - 1.27564317884161e37 * cos(theta) ** 45 + 1.79898397016124e37 * cos(theta) ** 43 - 2.01799071435478e37 * cos(theta) ** 41 + 1.83047830284394e37 * cos(theta) ** 39 - 1.35774216457193e37 * cos(theta) ** 37 + 8.29592918903583e36 * cos(theta) ** 35 - 4.19377898681081e36 * cos(theta) ** 33 + 1.75739309923501e36 * cos(theta) ** 31 - 6.10297080764957e35 * cos(theta) ** 29 + 1.75233815269146e35 * cos(theta) ** 27 - 4.14189017908891e34 * cos(theta) ** 25 + 8.0062310162801e33 * cos(theta) ** 23 - 1.25422690224078e33 * cos(theta) ** 21 + 1.57340292395797e32 * cos(theta) ** 19 - 1.55611278193646e31 * cos(theta) ** 17 + 1.18894010305257e30 * cos(theta) ** 15 - 6.8329890980033e28 * cos(theta) ** 13 + 2.85012379488908e27 * cos(theta) ** 11 - 8.21146195489257e25 * cos(theta) ** 9 + 1.52064110275788e24 * cos(theta) ** 7 - 1.61688421052737e22 * cos(theta) ** 5 + 8.07634470792892e19 * cos(theta) ** 3 - 1.19649551228577e17 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl64_m10(theta, phi): return ( 3.78519886717003e-18 * (1.0 - cos(theta) ** 2) ** 5 * ( 7.13683164560986e35 * cos(theta) ** 54 - 8.04157959438403e36 * cos(theta) ** 52 + 4.26525381686129e37 * cos(theta) ** 50 - 1.41597179557048e38 * cos(theta) ** 48 + 3.30003344091633e38 * cos(theta) ** 46 - 5.74039430478723e38 * cos(theta) ** 44 + 7.73563107169333e38 * cos(theta) ** 42 - 8.2737619288546e38 * cos(theta) ** 40 + 7.13886538109136e38 * cos(theta) ** 38 - 5.02364600891614e38 * cos(theta) ** 36 + 2.90357521616254e38 * cos(theta) ** 34 - 1.38394706564757e38 * cos(theta) ** 32 + 5.44791860762852e37 * cos(theta) ** 30 - 1.76986153421838e37 * cos(theta) ** 28 + 4.73131301226694e36 * cos(theta) ** 26 - 1.03547254477223e36 * cos(theta) ** 24 + 1.84143313374442e35 * cos(theta) ** 22 - 2.63387649470565e34 * cos(theta) ** 20 + 2.98946555552015e33 * cos(theta) ** 18 - 2.64539172929198e32 * cos(theta) ** 16 + 1.78341015457886e31 * cos(theta) ** 14 - 8.88288582740429e29 * cos(theta) ** 12 + 3.13513617437798e28 * cos(theta) ** 10 - 7.39031575940331e26 * cos(theta) ** 8 + 1.06444877193052e25 * cos(theta) ** 6 - 8.08442105263685e22 * cos(theta) ** 4 + 2.42290341237868e20 * cos(theta) ** 2 - 1.19649551228577e17 ) * cos(10 * phi) ) # @torch.jit.script def Yl64_m11(theta, phi): return ( 5.94786619359015e-20 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 3.85388908862933e37 * cos(theta) ** 53 - 4.18162138907969e38 * cos(theta) ** 51 + 2.13262690843064e39 * cos(theta) ** 49 - 6.79666461873831e39 * cos(theta) ** 47 + 1.51801538282151e40 * cos(theta) ** 45 - 2.52577349410638e40 * cos(theta) ** 43 + 3.2489650501112e40 * cos(theta) ** 41 - 3.30950477154184e40 * cos(theta) ** 39 + 2.71276884481472e40 * cos(theta) ** 37 - 1.80851256320981e40 * cos(theta) ** 35 + 9.87215573495264e39 * cos(theta) ** 33 - 4.42863061007221e39 * cos(theta) ** 31 + 1.63437558228856e39 * cos(theta) ** 29 - 4.95561229581145e38 * cos(theta) ** 27 + 1.23014138318941e38 * cos(theta) ** 25 - 2.48513410745334e37 * cos(theta) ** 23 + 4.05115289423773e36 * cos(theta) ** 21 - 5.26775298941129e35 * cos(theta) ** 19 + 5.38103799993627e34 * cos(theta) ** 17 - 4.23262676686716e33 * cos(theta) ** 15 + 2.4967742164104e32 * cos(theta) ** 13 - 1.06594629928851e31 * cos(theta) ** 11 + 3.13513617437798e29 * cos(theta) ** 9 - 5.91225260752265e27 * cos(theta) ** 7 + 6.38669263158311e25 * cos(theta) ** 5 - 3.23376842105474e23 * cos(theta) ** 3 + 4.84580682475735e20 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl64_m12(theta, phi): return ( 9.37165859114006e-22 * (1.0 - cos(theta) ** 2) ** 6 * ( 2.04256121697354e39 * cos(theta) ** 52 - 2.13262690843064e40 * cos(theta) ** 50 + 1.04498718513102e41 * cos(theta) ** 48 - 3.19443237080701e41 * cos(theta) ** 46 + 6.8310692226968e41 * cos(theta) ** 44 - 1.08608260246574e42 * cos(theta) ** 42 + 1.33207567054559e42 * cos(theta) ** 40 - 1.29070686090132e42 * cos(theta) ** 38 + 1.00372447258145e42 * cos(theta) ** 36 - 6.32979397123434e41 * cos(theta) ** 34 + 3.25781139253437e41 * cos(theta) ** 32 - 1.37287548912239e41 * cos(theta) ** 30 + 4.73968918863681e40 * cos(theta) ** 28 - 1.33801531986909e40 * cos(theta) ** 26 + 3.07535345797351e39 * cos(theta) ** 24 - 5.71580844714269e38 * cos(theta) ** 22 + 8.50742107789924e37 * cos(theta) ** 20 - 1.00087306798815e37 * cos(theta) ** 18 + 9.14776459989165e35 * cos(theta) ** 16 - 6.34894015030074e34 * cos(theta) ** 14 + 3.24580648133353e33 * cos(theta) ** 12 - 1.17254092921737e32 * cos(theta) ** 10 + 2.82162255694018e30 * cos(theta) ** 8 - 4.13857682526586e28 * cos(theta) ** 6 + 3.19334631579155e26 * cos(theta) ** 4 - 9.70130526316422e23 * cos(theta) ** 2 + 4.84580682475735e20 ) * cos(12 * phi) ) # @torch.jit.script def Yl64_m13(theta, phi): return ( 1.48104899061767e-23 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.06213183282624e41 * cos(theta) ** 51 - 1.06631345421532e42 * cos(theta) ** 49 + 5.01593848862887e42 * cos(theta) ** 47 - 1.46943889057122e43 * cos(theta) ** 45 + 3.00567045798659e43 * cos(theta) ** 43 - 4.56154693035612e43 * cos(theta) ** 41 + 5.32830268218237e43 * cos(theta) ** 39 - 4.90468607142501e43 * cos(theta) ** 37 + 3.6134081012932e43 * cos(theta) ** 35 - 2.15212995021968e43 * cos(theta) ** 33 + 1.042499645611e43 * cos(theta) ** 31 - 4.11862646736716e42 * cos(theta) ** 29 + 1.32711297281831e42 * cos(theta) ** 27 - 3.47883983165964e41 * cos(theta) ** 25 + 7.38084829913643e40 * cos(theta) ** 23 - 1.25747785837139e40 * cos(theta) ** 21 + 1.70148421557985e39 * cos(theta) ** 19 - 1.80157152237866e38 * cos(theta) ** 17 + 1.46364233598266e37 * cos(theta) ** 15 - 8.88851621042104e35 * cos(theta) ** 13 + 3.89496777760023e34 * cos(theta) ** 11 - 1.17254092921737e33 * cos(theta) ** 9 + 2.25729804555215e31 * cos(theta) ** 7 - 2.48314609515951e29 * cos(theta) ** 5 + 1.27733852631662e27 * cos(theta) ** 3 - 1.94026105263284e24 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl64_m14(theta, phi): return ( 2.348210551011e-25 * (1.0 - cos(theta) ** 2) ** 7 * ( 5.41687234741383e42 * cos(theta) ** 50 - 5.22493592565508e43 * cos(theta) ** 48 + 2.35749108965557e44 * cos(theta) ** 46 - 6.6124750075705e44 * cos(theta) ** 44 + 1.29243829693423e45 * cos(theta) ** 42 - 1.87023424144601e45 * cos(theta) ** 40 + 2.07803804605112e45 * cos(theta) ** 38 - 1.81473384642725e45 * cos(theta) ** 36 + 1.26469283545262e45 * cos(theta) ** 34 - 7.10202883572493e44 * cos(theta) ** 32 + 3.2317489013941e44 * cos(theta) ** 30 - 1.19440167553648e44 * cos(theta) ** 28 + 3.58320502660943e43 * cos(theta) ** 26 - 8.6970995791491e42 * cos(theta) ** 24 + 1.69759510880138e42 * cos(theta) ** 22 - 2.64070350257992e41 * cos(theta) ** 20 + 3.23282000960171e40 * cos(theta) ** 18 - 3.06267158804373e39 * cos(theta) ** 16 + 2.195463503974e38 * cos(theta) ** 14 - 1.15550710735474e37 * cos(theta) ** 12 + 4.28446455536025e35 * cos(theta) ** 10 - 1.05528683629563e34 * cos(theta) ** 8 + 1.5801086318865e32 * cos(theta) ** 6 - 1.24157304757976e30 * cos(theta) ** 4 + 3.83201557894987e27 * cos(theta) ** 2 - 1.94026105263284e24 ) * cos(14 * phi) ) # @torch.jit.script def Yl64_m15(theta, phi): return ( 3.73627201727021e-27 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 2.70843617370692e44 * cos(theta) ** 49 - 2.50796924431444e45 * cos(theta) ** 47 + 1.08444590124156e46 * cos(theta) ** 45 - 2.90948900333102e46 * cos(theta) ** 43 + 5.42824084712379e46 * cos(theta) ** 41 - 7.48093696578404e46 * cos(theta) ** 39 + 7.89654457499427e46 * cos(theta) ** 37 - 6.53304184713811e46 * cos(theta) ** 35 + 4.29995564053891e46 * cos(theta) ** 33 - 2.27264922743198e46 * cos(theta) ** 31 + 9.69524670418229e45 * cos(theta) ** 29 - 3.34432469150213e45 * cos(theta) ** 27 + 9.31633306918451e44 * cos(theta) ** 25 - 2.08730389899578e44 * cos(theta) ** 23 + 3.73470923936304e43 * cos(theta) ** 21 - 5.28140700515985e42 * cos(theta) ** 19 + 5.81907601728308e41 * cos(theta) ** 17 - 4.90027454086996e40 * cos(theta) ** 15 + 3.0736489055636e39 * cos(theta) ** 13 - 1.38660852882568e38 * cos(theta) ** 11 + 4.28446455536025e36 * cos(theta) ** 9 - 8.44229469036503e34 * cos(theta) ** 7 + 9.48065179131902e32 * cos(theta) ** 5 - 4.96629219031903e30 * cos(theta) ** 3 + 7.66403115789973e27 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl64_m16(theta, phi): return ( 5.96754158074748e-29 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.32713372511639e46 * cos(theta) ** 48 - 1.17874554482779e47 * cos(theta) ** 46 + 4.88000655558703e47 * cos(theta) ** 44 - 1.25108027143234e48 * cos(theta) ** 42 + 2.22557874732075e48 * cos(theta) ** 40 - 2.91756541665578e48 * cos(theta) ** 38 + 2.92172149274788e48 * cos(theta) ** 36 - 2.28656464649834e48 * cos(theta) ** 34 + 1.41898536137784e48 * cos(theta) ** 32 - 7.04521260503913e47 * cos(theta) ** 30 + 2.81162154421286e47 * cos(theta) ** 28 - 9.02967666705576e46 * cos(theta) ** 26 + 2.32908326729613e46 * cos(theta) ** 24 - 4.8007989676903e45 * cos(theta) ** 22 + 7.84288940266237e44 * cos(theta) ** 20 - 1.00346733098037e44 * cos(theta) ** 18 + 9.89242922938124e42 * cos(theta) ** 16 - 7.35041181130494e41 * cos(theta) ** 14 + 3.99574357723267e40 * cos(theta) ** 12 - 1.52526938170825e39 * cos(theta) ** 10 + 3.85601809982423e37 * cos(theta) ** 8 - 5.90960628325552e35 * cos(theta) ** 6 + 4.74032589565951e33 * cos(theta) ** 4 - 1.48988765709571e31 * cos(theta) ** 2 + 7.66403115789973e27 ) * cos(16 * phi) ) # @torch.jit.script def Yl64_m17(theta, phi): return ( 9.57044927234678e-31 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 6.37024188055867e47 * cos(theta) ** 47 - 5.42222950620781e48 * cos(theta) ** 45 + 2.14720288445829e49 * cos(theta) ** 43 - 5.25453714001582e49 * cos(theta) ** 41 + 8.90231498928301e49 * cos(theta) ** 39 - 1.10867485832919e50 * cos(theta) ** 37 + 1.05181973738924e50 * cos(theta) ** 35 - 7.77431979809435e49 * cos(theta) ** 33 + 4.54075315640909e49 * cos(theta) ** 31 - 2.11356378151174e49 * cos(theta) ** 29 + 7.87254032379602e48 * cos(theta) ** 27 - 2.3477159334345e48 * cos(theta) ** 25 + 5.58979984151071e47 * cos(theta) ** 23 - 1.05617577289187e47 * cos(theta) ** 21 + 1.56857788053247e46 * cos(theta) ** 19 - 1.80624119576467e45 * cos(theta) ** 17 + 1.582788676701e44 * cos(theta) ** 15 - 1.02905765358269e43 * cos(theta) ** 13 + 4.79489229267921e41 * cos(theta) ** 11 - 1.52526938170825e40 * cos(theta) ** 9 + 3.08481447985938e38 * cos(theta) ** 7 - 3.54576376995331e36 * cos(theta) ** 5 + 1.8961303582638e34 * cos(theta) ** 3 - 2.97977531419142e31 * cos(theta) ) * cos(17 * phi) ) # @torch.jit.script def Yl64_m18(theta, phi): return ( 1.54161692787926e-32 * (1.0 - cos(theta) ** 2) ** 9 * ( 2.99401368386257e49 * cos(theta) ** 46 - 2.44000327779352e50 * cos(theta) ** 44 + 9.23297240317066e50 * cos(theta) ** 42 - 2.15436022740649e51 * cos(theta) ** 40 + 3.47190284582037e51 * cos(theta) ** 38 - 4.10209697581802e51 * cos(theta) ** 36 + 3.68136908086233e51 * cos(theta) ** 34 - 2.56552553337114e51 * cos(theta) ** 32 + 1.40763347848682e51 * cos(theta) ** 30 - 6.12933496638404e50 * cos(theta) ** 28 + 2.12558588742493e50 * cos(theta) ** 26 - 5.86928983358624e49 * cos(theta) ** 24 + 1.28565396354746e49 * cos(theta) ** 22 - 2.21796912307292e48 * cos(theta) ** 20 + 2.9802979730117e47 * cos(theta) ** 18 - 3.07061003279994e46 * cos(theta) ** 16 + 2.3741830150515e45 * cos(theta) ** 14 - 1.3377749496575e44 * cos(theta) ** 12 + 5.27438152194713e42 * cos(theta) ** 10 - 1.37274244353743e41 * cos(theta) ** 8 + 2.15937013590157e39 * cos(theta) ** 6 - 1.77288188497666e37 * cos(theta) ** 4 + 5.68839107479141e34 * cos(theta) ** 2 - 2.97977531419142e31 ) * cos(18 * phi) ) # @torch.jit.script def Yl64_m19(theta, phi): return ( 2.49493082314278e-34 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.37724629457678e51 * cos(theta) ** 45 - 1.07360144222915e52 * cos(theta) ** 43 + 3.87784840933168e52 * cos(theta) ** 41 - 8.61744090962595e52 * cos(theta) ** 39 + 1.31932308141174e53 * cos(theta) ** 37 - 1.47675491129449e53 * cos(theta) ** 35 + 1.25166548749319e53 * cos(theta) ** 33 - 8.20968170678764e52 * cos(theta) ** 31 + 4.22290043546046e52 * cos(theta) ** 29 - 1.71621379058753e52 * cos(theta) ** 27 + 5.52652330730481e51 * cos(theta) ** 25 - 1.4086295600607e51 * cos(theta) ** 23 + 2.82843871980442e50 * cos(theta) ** 21 - 4.43593824614584e49 * cos(theta) ** 19 + 5.36453635142106e48 * cos(theta) ** 17 - 4.9129760524799e47 * cos(theta) ** 15 + 3.3238562210721e46 * cos(theta) ** 13 - 1.605329939589e45 * cos(theta) ** 11 + 5.27438152194713e43 * cos(theta) ** 9 - 1.09819395482994e42 * cos(theta) ** 7 + 1.29562208154094e40 * cos(theta) ** 5 - 7.09152753990663e37 * cos(theta) ** 3 + 1.13767821495828e35 * cos(theta) ) * cos(19 * phi) ) # @torch.jit.script def Yl64_m20(theta, phi): return ( 4.05800528717764e-36 * (1.0 - cos(theta) ** 2) ** 10 * ( 6.19760832559553e52 * cos(theta) ** 44 - 4.61648620158533e53 * cos(theta) ** 42 + 1.58991784782599e54 * cos(theta) ** 40 - 3.36080195475412e54 * cos(theta) ** 38 + 4.88149540122344e54 * cos(theta) ** 36 - 5.16864218953071e54 * cos(theta) ** 34 + 4.13049610872753e54 * cos(theta) ** 32 - 2.54500132910417e54 * cos(theta) ** 30 + 1.22464112628353e54 * cos(theta) ** 28 - 4.63377723458634e53 * cos(theta) ** 26 + 1.3816308268262e53 * cos(theta) ** 24 - 3.23984798813961e52 * cos(theta) ** 22 + 5.93972131158928e51 * cos(theta) ** 20 - 8.42828266767709e50 * cos(theta) ** 18 + 9.11971179741581e49 * cos(theta) ** 16 - 7.36946407871984e48 * cos(theta) ** 14 + 4.32101308739372e47 * cos(theta) ** 12 - 1.7658629335479e46 * cos(theta) ** 10 + 4.74694336975242e44 * cos(theta) ** 8 - 7.68735768380958e42 * cos(theta) ** 6 + 6.4781104077047e40 * cos(theta) ** 4 - 2.12745826197199e38 * cos(theta) ** 2 + 1.13767821495828e35 ) * cos(20 * phi) ) # @torch.jit.script def Yl64_m21(theta, phi): return ( 6.63554818846152e-38 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 2.72694766326203e54 * cos(theta) ** 43 - 1.93892420466584e55 * cos(theta) ** 41 + 6.35967139130395e55 * cos(theta) ** 39 - 1.27710474280657e56 * cos(theta) ** 37 + 1.75733834444044e56 * cos(theta) ** 35 - 1.75733834444044e56 * cos(theta) ** 33 + 1.32175875479281e56 * cos(theta) ** 31 - 7.6350039873125e55 * cos(theta) ** 29 + 3.42899515359389e55 * cos(theta) ** 27 - 1.20478208099245e55 * cos(theta) ** 25 + 3.31591398438288e54 * cos(theta) ** 23 - 7.12766557390713e53 * cos(theta) ** 21 + 1.18794426231786e53 * cos(theta) ** 19 - 1.51709088018188e52 * cos(theta) ** 17 + 1.45915388758653e51 * cos(theta) ** 15 - 1.03172497102078e50 * cos(theta) ** 13 + 5.18521570487247e48 * cos(theta) ** 11 - 1.7658629335479e47 * cos(theta) ** 9 + 3.79755469580193e45 * cos(theta) ** 7 - 4.61241461028575e43 * cos(theta) ** 5 + 2.59124416308188e41 * cos(theta) ** 3 - 4.25491652394398e38 * cos(theta) ) * cos(21 * phi) ) # @torch.jit.script def Yl64_m22(theta, phi): return ( 1.09117235370959e-39 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.17258749520267e56 * cos(theta) ** 42 - 7.94958923912994e56 * cos(theta) ** 40 + 2.48027184260854e57 * cos(theta) ** 38 - 4.72528754838429e57 * cos(theta) ** 36 + 6.15068420554154e57 * cos(theta) ** 34 - 5.79921653665345e57 * cos(theta) ** 32 + 4.09745213985771e57 * cos(theta) ** 30 - 2.21415115632063e57 * cos(theta) ** 28 + 9.2582869147035e56 * cos(theta) ** 26 - 3.01195520248112e56 * cos(theta) ** 24 + 7.62660216408063e55 * cos(theta) ** 22 - 1.4968097705205e55 * cos(theta) ** 20 + 2.25709409840393e54 * cos(theta) ** 18 - 2.57905449630919e53 * cos(theta) ** 16 + 2.18873083137979e52 * cos(theta) ** 14 - 1.34124246232701e51 * cos(theta) ** 12 + 5.70373727535971e49 * cos(theta) ** 10 - 1.58927664019311e48 * cos(theta) ** 8 + 2.65828828706135e46 * cos(theta) ** 6 - 2.30620730514287e44 * cos(theta) ** 4 + 7.77373248924565e41 * cos(theta) ** 2 - 4.25491652394398e38 ) * cos(22 * phi) ) # @torch.jit.script def Yl64_m23(theta, phi): return ( 1.80513248796996e-41 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 4.92486747985123e57 * cos(theta) ** 41 - 3.17983569565198e58 * cos(theta) ** 39 + 9.42503300191246e58 * cos(theta) ** 37 - 1.70110351741835e59 * cos(theta) ** 35 + 2.09123262988412e59 * cos(theta) ** 33 - 1.8557492917291e59 * cos(theta) ** 31 + 1.22923564195731e59 * cos(theta) ** 29 - 6.19962323769775e58 * cos(theta) ** 27 + 2.40715459782291e58 * cos(theta) ** 25 - 7.22869248595469e57 * cos(theta) ** 23 + 1.67785247609774e57 * cos(theta) ** 21 - 2.993619541041e56 * cos(theta) ** 19 + 4.06276937712707e55 * cos(theta) ** 17 - 4.1264871940947e54 * cos(theta) ** 15 + 3.06422316393171e53 * cos(theta) ** 13 - 1.60949095479241e52 * cos(theta) ** 11 + 5.70373727535971e50 * cos(theta) ** 9 - 1.27142131215449e49 * cos(theta) ** 7 + 1.59497297223681e47 * cos(theta) ** 5 - 9.2248292205715e44 * cos(theta) ** 3 + 1.55474649784913e42 * cos(theta) ) * cos(23 * phi) ) # @torch.jit.script def Yl64_m24(theta, phi): return ( 3.0052168697751e-43 * (1.0 - cos(theta) ** 2) ** 12 * ( 2.01919566673901e59 * cos(theta) ** 40 - 1.24013592130427e60 * cos(theta) ** 38 + 3.48726221070761e60 * cos(theta) ** 36 - 5.95386231096421e60 * cos(theta) ** 34 + 6.90106767861761e60 * cos(theta) ** 32 - 5.75282280436023e60 * cos(theta) ** 30 + 3.56478336167621e60 * cos(theta) ** 28 - 1.67389827417839e60 * cos(theta) ** 26 + 6.01788649455728e59 * cos(theta) ** 24 - 1.66259927176958e59 * cos(theta) ** 22 + 3.52349019980525e58 * cos(theta) ** 20 - 5.68787712797789e57 * cos(theta) ** 18 + 6.90670794111601e56 * cos(theta) ** 16 - 6.18973079114206e55 * cos(theta) ** 14 + 3.98349011311122e54 * cos(theta) ** 12 - 1.77044005027166e53 * cos(theta) ** 10 + 5.13336354782374e51 * cos(theta) ** 8 - 8.89994918508141e49 * cos(theta) ** 6 + 7.97486486118406e47 * cos(theta) ** 4 - 2.76744876617145e45 * cos(theta) ** 2 + 1.55474649784913e42 ) * cos(24 * phi) ) # @torch.jit.script def Yl64_m25(theta, phi): return ( 5.03675491726324e-45 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 8.07678266695602e60 * cos(theta) ** 39 - 4.71251650095623e61 * cos(theta) ** 37 + 1.25541439585474e62 * cos(theta) ** 35 - 2.02431318572783e62 * cos(theta) ** 33 + 2.20834165715763e62 * cos(theta) ** 31 - 1.72584684130807e62 * cos(theta) ** 29 + 9.98139341269338e61 * cos(theta) ** 27 - 4.35213551286382e61 * cos(theta) ** 25 + 1.44429275869375e61 * cos(theta) ** 23 - 3.65771839789307e60 * cos(theta) ** 21 + 7.0469803996105e59 * cos(theta) ** 19 - 1.02381788303602e59 * cos(theta) ** 17 + 1.10507327057856e58 * cos(theta) ** 15 - 8.66562310759888e56 * cos(theta) ** 13 + 4.78018813573347e55 * cos(theta) ** 11 - 1.77044005027166e54 * cos(theta) ** 9 + 4.10669083825899e52 * cos(theta) ** 7 - 5.33996951104885e50 * cos(theta) ** 5 + 3.18994594447362e48 * cos(theta) ** 3 - 5.5348975323429e45 * cos(theta) ) * cos(25 * phi) ) # @torch.jit.script def Yl64_m26(theta, phi): return ( 8.50153331177454e-47 * (1.0 - cos(theta) ** 2) ** 13 * ( 3.14994524011285e62 * cos(theta) ** 38 - 1.7436311053538e63 * cos(theta) ** 36 + 4.39395038549159e63 * cos(theta) ** 34 - 6.68023351290185e63 * cos(theta) ** 32 + 6.84585913718867e63 * cos(theta) ** 30 - 5.0049558397934e63 * cos(theta) ** 28 + 2.69497622142721e63 * cos(theta) ** 26 - 1.08803387821596e63 * cos(theta) ** 24 + 3.32187334499562e62 * cos(theta) ** 22 - 7.68120863557545e61 * cos(theta) ** 20 + 1.338926275926e61 * cos(theta) ** 18 - 1.74049040116124e60 * cos(theta) ** 16 + 1.65760990586784e59 * cos(theta) ** 14 - 1.12653100398785e58 * cos(theta) ** 12 + 5.25820694930682e56 * cos(theta) ** 10 - 1.59339604524449e55 * cos(theta) ** 8 + 2.8746835867813e53 * cos(theta) ** 6 - 2.66998475552442e51 * cos(theta) ** 4 + 9.56983783342087e48 * cos(theta) ** 2 - 5.5348975323429e45 ) * cos(26 * phi) ) # @torch.jit.script def Yl64_m27(theta, phi): return ( 1.44572192187728e-48 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.19697919124288e64 * cos(theta) ** 37 - 6.2770719792737e64 * cos(theta) ** 35 + 1.49394313106714e65 * cos(theta) ** 33 - 2.13767472412859e65 * cos(theta) ** 31 + 2.0537577411566e65 * cos(theta) ** 29 - 1.40138763514215e65 * cos(theta) ** 27 + 7.00693817571075e64 * cos(theta) ** 25 - 2.61128130771829e64 * cos(theta) ** 23 + 7.30812135899036e63 * cos(theta) ** 21 - 1.53624172711509e63 * cos(theta) ** 19 + 2.41006729666679e62 * cos(theta) ** 17 - 2.78478464185798e61 * cos(theta) ** 15 + 2.32065386821498e60 * cos(theta) ** 13 - 1.35183720478543e59 * cos(theta) ** 11 + 5.25820694930682e57 * cos(theta) ** 9 - 1.27471683619559e56 * cos(theta) ** 7 + 1.72481015206878e54 * cos(theta) ** 5 - 1.06799390220977e52 * cos(theta) ** 3 + 1.91396756668417e49 * cos(theta) ) * cos(27 * phi) ) # @torch.jit.script def Yl64_m28(theta, phi): return ( 2.47793546047678e-50 * (1.0 - cos(theta) ** 2) ** 14 * ( 4.42882300759866e65 * cos(theta) ** 36 - 2.19697519274579e66 * cos(theta) ** 34 + 4.93001233252156e66 * cos(theta) ** 32 - 6.62679164479863e66 * cos(theta) ** 30 + 5.95589744935414e66 * cos(theta) ** 28 - 3.78374661488381e66 * cos(theta) ** 26 + 1.75173454392769e66 * cos(theta) ** 24 - 6.00594700775208e65 * cos(theta) ** 22 + 1.53470548538797e65 * cos(theta) ** 20 - 2.91885928151867e64 * cos(theta) ** 18 + 4.09711440433355e63 * cos(theta) ** 16 - 4.17717696278696e62 * cos(theta) ** 14 + 3.01685002867947e61 * cos(theta) ** 12 - 1.48702092526397e60 * cos(theta) ** 10 + 4.73238625437614e58 * cos(theta) ** 8 - 8.92301785336914e56 * cos(theta) ** 6 + 8.62405076034389e54 * cos(theta) ** 4 - 3.20398170662931e52 * cos(theta) ** 2 + 1.91396756668417e49 ) * cos(28 * phi) ) # @torch.jit.script def Yl64_m29(theta, phi): return ( 4.28249895862336e-52 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 1.59437628273552e67 * cos(theta) ** 35 - 7.4697156553357e67 * cos(theta) ** 33 + 1.5776039464069e68 * cos(theta) ** 31 - 1.98803749343959e68 * cos(theta) ** 29 + 1.66765128581916e68 * cos(theta) ** 27 - 9.8377411986979e67 * cos(theta) ** 25 + 4.20416290542645e67 * cos(theta) ** 23 - 1.32130834170546e67 * cos(theta) ** 21 + 3.06941097077595e66 * cos(theta) ** 19 - 5.25394670673361e65 * cos(theta) ** 17 + 6.55538304693368e64 * cos(theta) ** 15 - 5.84804774790175e63 * cos(theta) ** 13 + 3.62022003441537e62 * cos(theta) ** 11 - 1.48702092526397e61 * cos(theta) ** 9 + 3.78590900350091e59 * cos(theta) ** 7 - 5.35381071202149e57 * cos(theta) ** 5 + 3.44962030413756e55 * cos(theta) ** 3 - 6.40796341325862e52 * cos(theta) ) * cos(29 * phi) ) # @torch.jit.script def Yl64_m30(theta, phi): return ( 7.46619480288864e-54 * (1.0 - cos(theta) ** 2) ** 15 * ( 5.58031698957432e68 * cos(theta) ** 34 - 2.46500616626078e69 * cos(theta) ** 32 + 4.89057223386139e69 * cos(theta) ** 30 - 5.76530873097481e69 * cos(theta) ** 28 + 4.50265847171173e69 * cos(theta) ** 26 - 2.45943529967447e69 * cos(theta) ** 24 + 9.66957468248084e68 * cos(theta) ** 22 - 2.77474751758146e68 * cos(theta) ** 20 + 5.8318808444743e67 * cos(theta) ** 18 - 8.93170940144713e66 * cos(theta) ** 16 + 9.83307457040051e65 * cos(theta) ** 14 - 7.60246207227227e64 * cos(theta) ** 12 + 3.98224203785691e63 * cos(theta) ** 10 - 1.33831883273757e62 * cos(theta) ** 8 + 2.65013630245064e60 * cos(theta) ** 6 - 2.67690535601074e58 * cos(theta) ** 4 + 1.03488609124127e56 * cos(theta) ** 2 - 6.40796341325862e52 ) * cos(30 * phi) ) # @torch.jit.script def Yl64_m31(theta, phi): return ( 1.31370561417017e-55 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 1.89730777645527e70 * cos(theta) ** 33 - 7.8880197320345e70 * cos(theta) ** 31 + 1.46717167015842e71 * cos(theta) ** 29 - 1.61428644467295e71 * cos(theta) ** 27 + 1.17069120264505e71 * cos(theta) ** 25 - 5.90264471921874e70 * cos(theta) ** 23 + 2.12730643014579e70 * cos(theta) ** 21 - 5.54949503516292e69 * cos(theta) ** 19 + 1.04973855200537e69 * cos(theta) ** 17 - 1.42907350423154e68 * cos(theta) ** 15 + 1.37663043985607e67 * cos(theta) ** 13 - 9.12295448672673e65 * cos(theta) ** 11 + 3.98224203785691e64 * cos(theta) ** 9 - 1.07065506619006e63 * cos(theta) ** 7 + 1.59008178147038e61 * cos(theta) ** 5 - 1.0707621424043e59 * cos(theta) ** 3 + 2.06977218248253e56 * cos(theta) ) * cos(31 * phi) ) # @torch.jit.script def Yl64_m32(theta, phi): return ( 2.33402481684555e-57 * (1.0 - cos(theta) ** 2) ** 16 * ( 6.26111566230238e71 * cos(theta) ** 32 - 2.44528611693069e72 * cos(theta) ** 30 + 4.25479784345941e72 * cos(theta) ** 28 - 4.35857340061695e72 * cos(theta) ** 26 + 2.92672800661262e72 * cos(theta) ** 24 - 1.35760828542031e72 * cos(theta) ** 22 + 4.46734350330615e71 * cos(theta) ** 20 - 1.05440405668095e71 * cos(theta) ** 18 + 1.78455553840914e70 * cos(theta) ** 16 - 2.14361025634731e69 * cos(theta) ** 14 + 1.78961957181289e68 * cos(theta) ** 12 - 1.00352499353994e67 * cos(theta) ** 10 + 3.58401783407122e65 * cos(theta) ** 8 - 7.4945854633304e63 * cos(theta) ** 6 + 7.95040890735191e61 * cos(theta) ** 4 - 3.21228642721289e59 * cos(theta) ** 2 + 2.06977218248253e56 ) * cos(32 * phi) ) # @torch.jit.script def Yl64_m33(theta, phi): return ( 4.18933039917634e-59 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 2.00355701193676e73 * cos(theta) ** 31 - 7.33585835079208e73 * cos(theta) ** 29 + 1.19134339616863e74 * cos(theta) ** 27 - 1.13322908416041e74 * cos(theta) ** 25 + 7.0241472158703e73 * cos(theta) ** 23 - 2.98673822792468e73 * cos(theta) ** 21 + 8.9346870066123e72 * cos(theta) ** 19 - 1.89792730202572e72 * cos(theta) ** 17 + 2.85528886145462e71 * cos(theta) ** 15 - 3.00105435888624e70 * cos(theta) ** 13 + 2.14754348617547e69 * cos(theta) ** 11 - 1.00352499353994e68 * cos(theta) ** 9 + 2.86721426725697e66 * cos(theta) ** 7 - 4.49675127799824e64 * cos(theta) ** 5 + 3.18016356294076e62 * cos(theta) ** 3 - 6.42457285442578e59 * cos(theta) ) * cos(33 * phi) ) # @torch.jit.script def Yl64_m34(theta, phi): return ( 7.6006498963022e-61 * (1.0 - cos(theta) ** 2) ** 17 * ( 6.21102673700396e74 * cos(theta) ** 30 - 2.1273989217297e75 * cos(theta) ** 28 + 3.21662716965531e75 * cos(theta) ** 26 - 2.83307271040102e75 * cos(theta) ** 24 + 1.61555385965017e75 * cos(theta) ** 22 - 6.27215027864183e74 * cos(theta) ** 20 + 1.69759053125634e74 * cos(theta) ** 18 - 3.22647641344372e73 * cos(theta) ** 16 + 4.28293329218193e72 * cos(theta) ** 14 - 3.90137066655211e71 * cos(theta) ** 12 + 2.36229783479302e70 * cos(theta) ** 10 - 9.03172494185946e68 * cos(theta) ** 8 + 2.00704998707988e67 * cos(theta) ** 6 - 2.24837563899912e65 * cos(theta) ** 4 + 9.54049068882229e62 * cos(theta) ** 2 - 6.42457285442578e59 ) * cos(34 * phi) ) # @torch.jit.script def Yl64_m35(theta, phi): return ( 1.39467335454003e-62 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 1.86330802110119e76 * cos(theta) ** 29 - 5.95671698084317e76 * cos(theta) ** 27 + 8.36323064110381e76 * cos(theta) ** 25 - 6.79937450496245e76 * cos(theta) ** 23 + 3.55421849123037e76 * cos(theta) ** 21 - 1.25443005572837e76 * cos(theta) ** 19 + 3.05566295626141e75 * cos(theta) ** 17 - 5.16236226150995e74 * cos(theta) ** 15 + 5.9961066090547e73 * cos(theta) ** 13 - 4.68164479986253e72 * cos(theta) ** 11 + 2.36229783479302e71 * cos(theta) ** 9 - 7.22537995348757e69 * cos(theta) ** 7 + 1.20422999224793e68 * cos(theta) ** 5 - 8.99350255599648e65 * cos(theta) ** 3 + 1.90809813776446e63 * cos(theta) ) * cos(35 * phi) ) # @torch.jit.script def Yl64_m36(theta, phi): return ( 2.58984340217833e-64 * (1.0 - cos(theta) ** 2) ** 18 * ( 5.40359326119345e77 * cos(theta) ** 28 - 1.60831358482766e78 * cos(theta) ** 26 + 2.09080766027595e78 * cos(theta) ** 24 - 1.56385613614136e78 * cos(theta) ** 22 + 7.46385883158378e77 * cos(theta) ** 20 - 2.3834171058839e77 * cos(theta) ** 18 + 5.19462702564439e76 * cos(theta) ** 16 - 7.74354339226493e75 * cos(theta) ** 14 + 7.79493859177111e74 * cos(theta) ** 12 - 5.14980927984878e73 * cos(theta) ** 10 + 2.12606805131372e72 * cos(theta) ** 8 - 5.0577659674413e70 * cos(theta) ** 6 + 6.02114996123964e68 * cos(theta) ** 4 - 2.69805076679894e66 * cos(theta) ** 2 + 1.90809813776446e63 ) * cos(36 * phi) ) # @torch.jit.script def Yl64_m37(theta, phi): return ( 4.87005428516727e-66 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 1.51300611313417e79 * cos(theta) ** 27 - 4.18161532055191e79 * cos(theta) ** 25 + 5.01793838466229e79 * cos(theta) ** 23 - 3.440483499511e79 * cos(theta) ** 21 + 1.49277176631676e79 * cos(theta) ** 19 - 4.29015079059101e78 * cos(theta) ** 17 + 8.31140324103102e77 * cos(theta) ** 15 - 1.08409607491709e77 * cos(theta) ** 13 + 9.35392631012533e75 * cos(theta) ** 11 - 5.14980927984878e74 * cos(theta) ** 9 + 1.70085444105097e73 * cos(theta) ** 7 - 3.03465958046478e71 * cos(theta) ** 5 + 2.40845998449586e69 * cos(theta) ** 3 - 5.39610153359789e66 * cos(theta) ) * cos(37 * phi) ) # @torch.jit.script def Yl64_m38(theta, phi): return ( 9.28008243859333e-68 * (1.0 - cos(theta) ** 2) ** 19 * ( 4.08511650546225e80 * cos(theta) ** 26 - 1.04540383013798e81 * cos(theta) ** 24 + 1.15412582847233e81 * cos(theta) ** 22 - 7.2250153489731e80 * cos(theta) ** 20 + 2.83626635600184e80 * cos(theta) ** 18 - 7.29325634400472e79 * cos(theta) ** 16 + 1.24671048615465e79 * cos(theta) ** 14 - 1.40932489739222e78 * cos(theta) ** 12 + 1.02893189411379e77 * cos(theta) ** 10 - 4.6348283518639e75 * cos(theta) ** 8 + 1.19059810873568e74 * cos(theta) ** 6 - 1.51732979023239e72 * cos(theta) ** 4 + 7.22537995348757e69 * cos(theta) ** 2 - 5.39610153359789e66 ) * cos(38 * phi) ) # @torch.jit.script def Yl64_m39(theta, phi): return ( 1.79327357076174e-69 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 1.06213029142018e82 * cos(theta) ** 25 - 2.50896919233114e82 * cos(theta) ** 23 + 2.53907682263912e82 * cos(theta) ** 21 - 1.44500306979462e82 * cos(theta) ** 19 + 5.10527944080331e81 * cos(theta) ** 17 - 1.16692101504076e81 * cos(theta) ** 15 + 1.74539468061651e80 * cos(theta) ** 13 - 1.69118987687066e79 * cos(theta) ** 11 + 1.02893189411379e78 * cos(theta) ** 9 - 3.70786268149112e76 * cos(theta) ** 7 + 7.14358865241409e74 * cos(theta) ** 5 - 6.06931916092956e72 * cos(theta) ** 3 + 1.44507599069751e70 * cos(theta) ) * cos(39 * phi) ) # @torch.jit.script def Yl64_m40(theta, phi): return ( 3.51689881943242e-71 * (1.0 - cos(theta) ** 2) ** 20 * ( 2.65532572855046e83 * cos(theta) ** 24 - 5.77062914236163e83 * cos(theta) ** 22 + 5.33206132754215e83 * cos(theta) ** 20 - 2.74550583260978e83 * cos(theta) ** 18 + 8.67897504936562e82 * cos(theta) ** 16 - 1.75038152256113e82 * cos(theta) ** 14 + 2.26901308480147e81 * cos(theta) ** 12 - 1.86030886455773e80 * cos(theta) ** 10 + 9.26038704702408e78 * cos(theta) ** 8 - 2.59550387704379e77 * cos(theta) ** 6 + 3.57179432620705e75 * cos(theta) ** 4 - 1.82079574827887e73 * cos(theta) ** 2 + 1.44507599069751e70 ) * cos(40 * phi) ) # @torch.jit.script def Yl64_m41(theta, phi): return ( 7.00583014186664e-73 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 6.37278174852111e84 * cos(theta) ** 23 - 1.26953841131956e85 * cos(theta) ** 21 + 1.06641226550843e85 * cos(theta) ** 19 - 4.9419104986976e84 * cos(theta) ** 17 + 1.3886360078985e84 * cos(theta) ** 15 - 2.45053413158559e83 * cos(theta) ** 13 + 2.72281570176176e82 * cos(theta) ** 11 - 1.86030886455773e81 * cos(theta) ** 9 + 7.40830963761926e79 * cos(theta) ** 7 - 1.55730232622627e78 * cos(theta) ** 5 + 1.42871773048282e76 * cos(theta) ** 3 - 3.64159149655773e73 * cos(theta) ) * cos(41 * phi) ) # @torch.jit.script def Yl64_m42(theta, phi): return ( 1.41887047903867e-74 * (1.0 - cos(theta) ** 2) ** 21 * ( 1.46573980215985e86 * cos(theta) ** 22 - 2.66603066377107e86 * cos(theta) ** 20 + 2.02618330446602e86 * cos(theta) ** 18 - 8.40124784778592e85 * cos(theta) ** 16 + 2.08295401184775e85 * cos(theta) ** 14 - 3.18569437106126e84 * cos(theta) ** 12 + 2.99509727193794e83 * cos(theta) ** 10 - 1.67427797810195e82 * cos(theta) ** 8 + 5.18581674633348e80 * cos(theta) ** 6 - 7.78651163113136e78 * cos(theta) ** 4 + 4.28615319144845e76 * cos(theta) ** 2 - 3.64159149655773e73 ) * cos(42 * phi) ) # @torch.jit.script def Yl64_m43(theta, phi): return ( 2.92441850691721e-76 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 3.22462756475168e87 * cos(theta) ** 21 - 5.33206132754215e87 * cos(theta) ** 19 + 3.64712994803883e87 * cos(theta) ** 17 - 1.34419965564575e87 * cos(theta) ** 15 + 2.91613561658685e86 * cos(theta) ** 13 - 3.82283324527352e85 * cos(theta) ** 11 + 2.99509727193794e84 * cos(theta) ** 9 - 1.33942238248156e83 * cos(theta) ** 7 + 3.11149004780009e81 * cos(theta) ** 5 - 3.11460465245254e79 * cos(theta) ** 3 + 8.57230638289691e76 * cos(theta) ) * cos(43 * phi) ) # @torch.jit.script def Yl64_m44(theta, phi): return ( 6.14070166569664e-78 * (1.0 - cos(theta) ** 2) ** 22 * ( 6.77171788597853e88 * cos(theta) ** 20 - 1.01309165223301e89 * cos(theta) ** 18 + 6.20012091166601e88 * cos(theta) ** 16 - 2.01629948346862e88 * cos(theta) ** 14 + 3.7909763015629e87 * cos(theta) ** 12 - 4.20511656980087e86 * cos(theta) ** 10 + 2.69558754474415e85 * cos(theta) ** 8 - 9.37595667737094e83 * cos(theta) ** 6 + 1.55574502390005e82 * cos(theta) ** 4 - 9.34381395735763e79 * cos(theta) ** 2 + 8.57230638289691e76 ) * cos(44 * phi) ) # @torch.jit.script def Yl64_m45(theta, phi): return ( 1.31519379649676e-79 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 1.35434357719571e90 * cos(theta) ** 19 - 1.82356497401941e90 * cos(theta) ** 17 + 9.92019345866561e89 * cos(theta) ** 15 - 2.82281927685607e89 * cos(theta) ** 13 + 4.54917156187548e88 * cos(theta) ** 11 - 4.20511656980087e87 * cos(theta) ** 9 + 2.15647003579532e86 * cos(theta) ** 7 - 5.62557400642256e84 * cos(theta) ** 5 + 6.22298009560018e82 * cos(theta) ** 3 - 1.86876279147153e80 * cos(theta) ) * cos(45 * phi) ) # @torch.jit.script def Yl64_m46(theta, phi): return ( 2.87684596227171e-81 * (1.0 - cos(theta) ** 2) ** 23 * ( 2.57325279667184e91 * cos(theta) ** 18 - 3.100060455833e91 * cos(theta) ** 16 + 1.48802901879984e91 * cos(theta) ** 14 - 3.66966505991289e90 * cos(theta) ** 12 + 5.00408871806303e89 * cos(theta) ** 10 - 3.78460491282078e88 * cos(theta) ** 8 + 1.50952902505672e87 * cos(theta) ** 6 - 2.81278700321128e85 * cos(theta) ** 4 + 1.86689402868005e83 * cos(theta) ** 2 - 1.86876279147153e80 ) * cos(46 * phi) ) # @torch.jit.script def Yl64_m47(theta, phi): return ( 6.43604195832224e-83 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 4.63185503400931e92 * cos(theta) ** 17 - 4.96009672933281e92 * cos(theta) ** 15 + 2.08324062631978e92 * cos(theta) ** 13 - 4.40359807189547e91 * cos(theta) ** 11 + 5.00408871806303e90 * cos(theta) ** 9 - 3.02768393025662e89 * cos(theta) ** 7 + 9.05717415034033e87 * cos(theta) ** 5 - 1.12511480128451e86 * cos(theta) ** 3 + 3.73378805736011e83 * cos(theta) ) * cos(47 * phi) ) # @torch.jit.script def Yl64_m48(theta, phi): return ( 1.47497749750113e-84 * (1.0 - cos(theta) ** 2) ** 24 * ( 7.87415355781583e93 * cos(theta) ** 16 - 7.44014509399921e93 * cos(theta) ** 14 + 2.70821281421571e93 * cos(theta) ** 12 - 4.84395787908501e92 * cos(theta) ** 10 + 4.50367984625673e91 * cos(theta) ** 8 - 2.11937875117964e90 * cos(theta) ** 6 + 4.52858707517016e88 * cos(theta) ** 4 - 3.37534440385354e86 * cos(theta) ** 2 + 3.73378805736011e83 ) * cos(48 * phi) ) # @torch.jit.script def Yl64_m49(theta, phi): return ( 3.46885528073881e-86 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.25986456925053e95 * cos(theta) ** 15 - 1.04162031315989e95 * cos(theta) ** 13 + 3.24985537705886e94 * cos(theta) ** 11 - 4.84395787908501e93 * cos(theta) ** 9 + 3.60294387700538e92 * cos(theta) ** 7 - 1.27162725070778e91 * cos(theta) ** 5 + 1.81143483006807e89 * cos(theta) ** 3 - 6.75068880770708e86 * cos(theta) ) * cos(49 * phi) ) # @torch.jit.script def Yl64_m50(theta, phi): return ( 8.38857373748235e-88 * (1.0 - cos(theta) ** 2) ** 25 * ( 1.8897968538758e96 * cos(theta) ** 14 - 1.35410640710786e96 * cos(theta) ** 12 + 3.57484091476474e95 * cos(theta) ** 10 - 4.35956209117651e94 * cos(theta) ** 8 + 2.52206071390377e93 * cos(theta) ** 6 - 6.35813625353891e91 * cos(theta) ** 4 + 5.4343044902042e89 * cos(theta) ** 2 - 6.75068880770708e86 ) * cos(50 * phi) ) # @torch.jit.script def Yl64_m51(theta, phi): return ( 2.09062042188346e-89 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 2.64571559542612e97 * cos(theta) ** 13 - 1.62492768852943e97 * cos(theta) ** 11 + 3.57484091476474e96 * cos(theta) ** 9 - 3.48764967294121e95 * cos(theta) ** 7 + 1.51323642834226e94 * cos(theta) ** 5 - 2.54325450141556e92 * cos(theta) ** 3 + 1.08686089804084e90 * cos(theta) ) * cos(51 * phi) ) # @torch.jit.script def Yl64_m52(theta, phi): return ( 5.38362148506044e-91 * (1.0 - cos(theta) ** 2) ** 26 * ( 3.43943027405396e98 * cos(theta) ** 12 - 1.78742045738237e98 * cos(theta) ** 10 + 3.21735682328827e97 * cos(theta) ** 8 - 2.44135477105885e96 * cos(theta) ** 6 + 7.5661821417113e94 * cos(theta) ** 4 - 7.62976350424669e92 * cos(theta) ** 2 + 1.08686089804084e90 ) * cos(52 * phi) ) # @torch.jit.script def Yl64_m53(theta, phi): return ( 1.43678228198022e-92 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 4.12731632886475e99 * cos(theta) ** 11 - 1.78742045738237e99 * cos(theta) ** 9 + 2.57388545863061e98 * cos(theta) ** 7 - 1.46481286263531e97 * cos(theta) ** 5 + 3.02647285668452e95 * cos(theta) ** 3 - 1.52595270084934e93 * cos(theta) ) * cos(53 * phi) ) # @torch.jit.script def Yl64_m54(theta, phi): return ( 3.98798593100815e-94 * (1.0 - cos(theta) ** 2) ** 27 * ( 4.54004796175122e100 * cos(theta) ** 10 - 1.60867841164413e100 * cos(theta) ** 8 + 1.80171982104143e99 * cos(theta) ** 6 - 7.32406431317654e97 * cos(theta) ** 4 + 9.07941857005357e95 * cos(theta) ** 2 - 1.52595270084934e93 ) * cos(54 * phi) ) # @torch.jit.script def Yl64_m55(theta, phi): return ( 1.15605936669399e-95 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 4.54004796175122e101 * cos(theta) ** 9 - 1.28694272931531e101 * cos(theta) ** 7 + 1.08103189262486e100 * cos(theta) ** 5 - 2.92962572527062e98 * cos(theta) ** 3 + 1.81588371401071e96 * cos(theta) ) * cos(55 * phi) ) # @torch.jit.script def Yl64_m56(theta, phi): return ( 3.5177766275191e-97 * (1.0 - cos(theta) ** 2) ** 28 * ( 4.0860431655761e102 * cos(theta) ** 8 - 9.00859910520715e101 * cos(theta) ** 6 + 5.40515946312429e100 * cos(theta) ** 4 - 8.78887717581185e98 * cos(theta) ** 2 + 1.81588371401071e96 ) * cos(56 * phi) ) # @torch.jit.script def Yl64_m57(theta, phi): return ( 1.13065623091741e-98 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 3.26883453246088e103 * cos(theta) ** 7 - 5.40515946312429e102 * cos(theta) ** 5 + 2.16206378524972e101 * cos(theta) ** 3 - 1.75777543516237e99 * cos(theta) ) * cos(57 * phi) ) # @torch.jit.script def Yl64_m58(theta, phi): return ( 3.86902597215535e-100 * (1.0 - cos(theta) ** 2) ** 29 * ( 2.28818417272262e104 * cos(theta) ** 6 - 2.70257973156214e103 * cos(theta) ** 4 + 6.48619135574915e101 * cos(theta) ** 2 - 1.75777543516237e99 ) * cos(58 * phi) ) # @torch.jit.script def Yl64_m59(theta, phi): return ( 1.42420814176111e-101 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 1.37291050363357e105 * cos(theta) ** 5 - 1.08103189262486e104 * cos(theta) ** 3 + 1.29723827114983e102 * cos(theta) ) * cos(59 * phi) ) # @torch.jit.script def Yl64_m60(theta, phi): return ( 5.71975753921415e-103 * (1.0 - cos(theta) ** 2) ** 30 * ( 6.86455251816785e105 * cos(theta) ** 4 - 3.24309567787457e104 * cos(theta) ** 2 + 1.29723827114983e102 ) * cos(60 * phi) ) # @torch.jit.script def Yl64_m61(theta, phi): return ( 2.55795333449995e-104 * (1.0 - cos(theta) ** 2) ** 30.5 * (2.74582100726714e106 * cos(theta) ** 3 - 6.48619135574915e104 * cos(theta)) * cos(61 * phi) ) # @torch.jit.script def Yl64_m62(theta, phi): return ( 1.31566922853349e-105 * (1.0 - cos(theta) ** 2) ** 31 * (8.23746302180142e106 * cos(theta) ** 2 - 6.48619135574915e104) * cos(62 * phi) ) # @torch.jit.script def Yl64_m63(theta, phi): return ( 13.6004517087224 * (1.0 - cos(theta) ** 2) ** 31.5 * cos(63 * phi) * cos(theta) ) # @torch.jit.script def Yl64_m64(theta, phi): return 1.20212145380472 * (1.0 - cos(theta) ** 2) ** 32 * cos(64 * phi) # @torch.jit.script def Yl65_m_minus_65(theta, phi): return 1.20673614046122 * (1.0 - cos(theta) ** 2) ** 32.5 * sin(65 * phi) # @torch.jit.script def Yl65_m_minus_64(theta, phi): return 13.7589089193287 * (1.0 - cos(theta) ** 2) ** 32 * sin(64 * phi) * cos(theta) # @torch.jit.script def Yl65_m_minus_63(theta, phi): return ( 1.039873868417e-107 * (1.0 - cos(theta) ** 2) ** 31.5 * (1.06263272981238e109 * cos(theta) ** 2 - 8.23746302180142e106) * sin(63 * phi) ) # @torch.jit.script def Yl65_m_minus_62(theta, phi): return ( 2.03772829958056e-106 * (1.0 - cos(theta) ** 2) ** 31 * (3.54210909937461e108 * cos(theta) ** 3 - 8.23746302180142e106 * cos(theta)) * sin(62 * phi) ) # @torch.jit.script def Yl65_m_minus_61(theta, phi): return ( 4.59280633647778e-105 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 8.85527274843652e107 * cos(theta) ** 4 - 4.11873151090071e106 * cos(theta) ** 2 + 1.62154783893729e104 ) * sin(61 * phi) ) # @torch.jit.script def Yl65_m_minus_60(theta, phi): return ( 1.15278524140301e-103 * (1.0 - cos(theta) ** 2) ** 30 * ( 1.7710545496873e107 * cos(theta) ** 5 - 1.37291050363357e106 * cos(theta) ** 3 + 1.62154783893729e104 * cos(theta) ) * sin(60 * phi) ) # @torch.jit.script def Yl65_m_minus_59(theta, phi): return ( 3.15703240337733e-102 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 2.95175758281217e106 * cos(theta) ** 6 - 3.43227625908392e105 * cos(theta) ** 4 + 8.10773919468643e103 * cos(theta) ** 2 - 2.16206378524972e101 ) * sin(59 * phi) ) # @torch.jit.script def Yl65_m_minus_58(theta, phi): return ( 9.30119826759211e-101 * (1.0 - cos(theta) ** 2) ** 29 * ( 4.21679654687453e105 * cos(theta) ** 7 - 6.86455251816785e104 * cos(theta) ** 5 + 2.70257973156214e103 * cos(theta) ** 3 - 2.16206378524972e101 * cos(theta) ) * sin(58 * phi) ) # @torch.jit.script def Yl65_m_minus_57(theta, phi): return ( 2.91767189014888e-99 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 5.27099568359317e104 * cos(theta) ** 8 - 1.14409208636131e104 * cos(theta) ** 6 + 6.75644932890536e102 * cos(theta) ** 4 - 1.08103189262486e101 * cos(theta) ** 2 + 2.19721929395296e98 ) * sin(57 * phi) ) # @torch.jit.script def Yl65_m_minus_56(theta, phi): return ( 9.66802180691806e-98 * (1.0 - cos(theta) ** 2) ** 28 * ( 5.85666187065908e103 * cos(theta) ** 9 - 1.63441726623044e103 * cos(theta) ** 7 + 1.35128986578107e102 * cos(theta) ** 5 - 3.60343964208286e100 * cos(theta) ** 3 + 2.19721929395296e98 * cos(theta) ) * sin(56 * phi) ) # @torch.jit.script def Yl65_m_minus_55(theta, phi): return ( 3.36302663158415e-96 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 5.85666187065908e102 * cos(theta) ** 10 - 2.04302158278805e102 * cos(theta) ** 8 + 2.25214977630179e101 * cos(theta) ** 6 - 9.00859910520715e99 * cos(theta) ** 4 + 1.09860964697648e98 * cos(theta) ** 2 - 1.81588371401071e95 ) * sin(55 * phi) ) # @torch.jit.script def Yl65_m_minus_54(theta, phi): return ( 1.2218482526346e-94 * (1.0 - cos(theta) ** 2) ** 27 * ( 5.32423806423552e101 * cos(theta) ** 11 - 2.27002398087561e101 * cos(theta) ** 9 + 3.21735682328827e100 * cos(theta) ** 7 - 1.80171982104143e99 * cos(theta) ** 5 + 3.66203215658827e97 * cos(theta) ** 3 - 1.81588371401071e95 * cos(theta) ) * sin(54 * phi) ) # @torch.jit.script def Yl65_m_minus_53(theta, phi): return ( 4.6172285861995e-93 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 4.4368650535296e100 * cos(theta) ** 12 - 2.27002398087561e100 * cos(theta) ** 10 + 4.02169602911033e99 * cos(theta) ** 8 - 3.00286636840238e98 * cos(theta) ** 6 + 9.15508039147068e96 * cos(theta) ** 4 - 9.07941857005356e94 * cos(theta) ** 2 + 1.27162725070778e92 ) * sin(53 * phi) ) # @torch.jit.script def Yl65_m_minus_52(theta, phi): return ( 1.80839815636967e-91 * (1.0 - cos(theta) ** 2) ** 26 * ( 3.41297311809969e99 * cos(theta) ** 13 - 2.06365816443237e99 * cos(theta) ** 11 + 4.46855114345593e98 * cos(theta) ** 9 - 4.28980909771769e97 * cos(theta) ** 7 + 1.83101607829414e96 * cos(theta) ** 5 - 3.02647285668452e94 * cos(theta) ** 3 + 1.27162725070778e92 * cos(theta) ) * sin(52 * phi) ) # @torch.jit.script def Yl65_m_minus_51(theta, phi): return ( 7.31898748122476e-90 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 2.43783794149978e98 * cos(theta) ** 14 - 1.71971513702698e98 * cos(theta) ** 12 + 4.46855114345593e97 * cos(theta) ** 10 - 5.36226137214711e96 * cos(theta) ** 8 + 3.05169346382356e95 * cos(theta) ** 6 - 7.5661821417113e93 * cos(theta) ** 4 + 6.35813625353891e91 * cos(theta) ** 2 - 7.76329212886314e88 ) * sin(51 * phi) ) # @torch.jit.script def Yl65_m_minus_50(theta, phi): return ( 3.05299173411205e-88 * (1.0 - cos(theta) ** 2) ** 25 * ( 1.62522529433319e97 * cos(theta) ** 15 - 1.32285779771306e97 * cos(theta) ** 13 + 4.06231922132357e96 * cos(theta) ** 11 - 5.95806819127457e95 * cos(theta) ** 9 + 4.35956209117651e94 * cos(theta) ** 7 - 1.51323642834226e93 * cos(theta) ** 5 + 2.11937875117964e91 * cos(theta) ** 3 - 7.76329212886314e88 * cos(theta) ) * sin(50 * phi) ) # @torch.jit.script def Yl65_m_minus_49(theta, phi): return ( 1.30958755692561e-86 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.01576580895824e96 * cos(theta) ** 16 - 9.448984269379e95 * cos(theta) ** 14 + 3.38526601776964e95 * cos(theta) ** 12 - 5.95806819127457e94 * cos(theta) ** 10 + 5.44945261397064e93 * cos(theta) ** 8 - 2.52206071390377e92 * cos(theta) ** 6 + 5.29844687794909e90 * cos(theta) ** 4 - 3.88164606443157e88 * cos(theta) ** 2 + 4.21918050481692e85 ) * sin(49 * phi) ) # @torch.jit.script def Yl65_m_minus_48(theta, phi): return ( 5.76516081754449e-85 * (1.0 - cos(theta) ** 2) ** 24 * ( 5.97509299387201e94 * cos(theta) ** 17 - 6.29932284625267e94 * cos(theta) ** 15 + 2.60405078289972e94 * cos(theta) ** 13 - 5.41642562843143e93 * cos(theta) ** 11 + 6.05494734885627e92 * cos(theta) ** 9 - 3.60294387700538e91 * cos(theta) ** 7 + 1.05968937558982e90 * cos(theta) ** 5 - 1.29388202147719e88 * cos(theta) ** 3 + 4.21918050481692e85 * cos(theta) ) * sin(48 * phi) ) # @torch.jit.script def Yl65_m_minus_47(theta, phi): return ( 2.60008113717387e-83 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 3.31949610770667e93 * cos(theta) ** 18 - 3.93707677890792e93 * cos(theta) ** 16 + 1.8600362734998e93 * cos(theta) ** 14 - 4.51368802369285e92 * cos(theta) ** 12 + 6.05494734885627e91 * cos(theta) ** 10 - 4.50367984625673e90 * cos(theta) ** 8 + 1.76614895931636e89 * cos(theta) ** 6 - 3.23470505369297e87 * cos(theta) ** 4 + 2.10959025240846e85 * cos(theta) ** 2 - 2.07432669853339e82 ) * sin(47 * phi) ) # @torch.jit.script def Yl65_m_minus_46(theta, phi): return ( 1.19942393862722e-81 * (1.0 - cos(theta) ** 2) ** 23 * ( 1.74710321458246e92 * cos(theta) ** 19 - 2.31592751700466e92 * cos(theta) ** 17 + 1.2400241823332e92 * cos(theta) ** 15 - 3.47206771053296e91 * cos(theta) ** 13 + 5.50449758986933e90 * cos(theta) ** 11 - 5.00408871806303e89 * cos(theta) ** 9 + 2.52306994188052e88 * cos(theta) ** 7 - 6.46941010738595e86 * cos(theta) ** 5 + 7.03196750802821e84 * cos(theta) ** 3 - 2.07432669853339e82 * cos(theta) ) * sin(46 * phi) ) # @torch.jit.script def Yl65_m_minus_45(theta, phi): return ( 5.65131089368255e-80 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 8.7355160729123e90 * cos(theta) ** 20 - 1.28662639833592e91 * cos(theta) ** 18 + 7.75015113958251e90 * cos(theta) ** 16 - 2.4800483646664e90 * cos(theta) ** 14 + 4.58708132489111e89 * cos(theta) ** 12 - 5.00408871806303e88 * cos(theta) ** 10 + 3.15383742735065e87 * cos(theta) ** 8 - 1.07823501789766e86 * cos(theta) ** 6 + 1.75799187700705e84 * cos(theta) ** 4 - 1.0371633492667e82 * cos(theta) ** 2 + 9.34381395735763e78 ) * sin(45 * phi) ) # @torch.jit.script def Yl65_m_minus_44(theta, phi): return ( 2.71615900174119e-78 * (1.0 - cos(theta) ** 2) ** 22 * ( 4.15976955852967e89 * cos(theta) ** 21 - 6.77171788597853e89 * cos(theta) ** 19 + 4.55891243504854e89 * cos(theta) ** 17 - 1.65336557644427e89 * cos(theta) ** 15 + 3.52852409607009e88 * cos(theta) ** 13 - 4.54917156187548e87 * cos(theta) ** 11 + 3.50426380816739e86 * cos(theta) ** 9 - 1.5403357398538e85 * cos(theta) ** 7 + 3.5159837540141e83 * cos(theta) ** 5 - 3.45721116422232e81 * cos(theta) ** 3 + 9.34381395735763e78 * cos(theta) ) * sin(44 * phi) ) # @torch.jit.script def Yl65_m_minus_43(theta, phi): return ( 1.33008617371695e-76 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 1.89080434478621e88 * cos(theta) ** 22 - 3.38585894298926e88 * cos(theta) ** 20 + 2.53272913058252e88 * cos(theta) ** 18 - 1.03335348527767e88 * cos(theta) ** 16 + 2.52037435433578e87 * cos(theta) ** 14 - 3.7909763015629e86 * cos(theta) ** 12 + 3.50426380816739e85 * cos(theta) ** 10 - 1.92541967481725e84 * cos(theta) ** 8 + 5.85997292335684e82 * cos(theta) ** 6 - 8.64302791055581e80 * cos(theta) ** 4 + 4.67190697867882e78 * cos(theta) ** 2 - 3.89650290131678e75 ) * sin(43 * phi) ) # @torch.jit.script def Yl65_m_minus_42(theta, phi): return ( 6.62911533020075e-75 * (1.0 - cos(theta) ** 2) ** 21 * ( 8.22088845559223e86 * cos(theta) ** 23 - 1.61231378237584e87 * cos(theta) ** 21 + 1.33301533188554e87 * cos(theta) ** 19 - 6.07854991339805e86 * cos(theta) ** 17 + 1.68024956955718e86 * cos(theta) ** 15 - 2.91613561658685e85 * cos(theta) ** 13 + 3.18569437106126e84 * cos(theta) ** 11 - 2.13935519424139e83 * cos(theta) ** 9 + 8.37138989050977e81 * cos(theta) ** 7 - 1.72860558211116e80 * cos(theta) ** 5 + 1.55730232622627e78 * cos(theta) ** 3 - 3.89650290131678e75 * cos(theta) ) * sin(42 * phi) ) # @torch.jit.script def Yl65_m_minus_41(theta, phi): return ( 3.35933321831746e-73 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 3.42537018983009e85 * cos(theta) ** 24 - 7.32869901079927e85 * cos(theta) ** 22 + 6.66507665942768e85 * cos(theta) ** 20 - 3.37697217411003e85 * cos(theta) ** 18 + 1.05015598097324e85 * cos(theta) ** 16 - 2.08295401184775e84 * cos(theta) ** 14 + 2.65474530921772e83 * cos(theta) ** 12 - 2.13935519424139e82 * cos(theta) ** 10 + 1.04642373631372e81 * cos(theta) ** 8 - 2.8810093035186e79 * cos(theta) ** 6 + 3.89325581556568e77 * cos(theta) ** 4 - 1.94825145065839e75 * cos(theta) ** 2 + 1.51732979023239e72 ) * sin(41 * phi) ) # @torch.jit.script def Yl65_m_minus_40(theta, phi): return ( 1.7293226168064e-71 * (1.0 - cos(theta) ** 2) ** 20 * ( 1.37014807593204e84 * cos(theta) ** 25 - 3.18639087426055e84 * cos(theta) ** 23 + 3.1738460282989e84 * cos(theta) ** 21 - 1.77735377584738e84 * cos(theta) ** 19 + 6.177388123372e83 * cos(theta) ** 17 - 1.3886360078985e83 * cos(theta) ** 15 + 2.04211177632132e82 * cos(theta) ** 13 - 1.94486835840126e81 * cos(theta) ** 11 + 1.16269304034858e80 * cos(theta) ** 9 - 4.11572757645515e78 * cos(theta) ** 7 + 7.78651163113136e76 * cos(theta) ** 5 - 6.49417150219463e74 * cos(theta) ** 3 + 1.51732979023239e72 * cos(theta) ) * sin(40 * phi) ) # @torch.jit.script def Yl65_m_minus_39(theta, phi): return ( 9.03560724383533e-70 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 5.2698002920463e82 * cos(theta) ** 26 - 1.32766286427523e83 * cos(theta) ** 24 + 1.44265728559041e83 * cos(theta) ** 22 - 8.88676887923691e82 * cos(theta) ** 20 + 3.43188229076222e82 * cos(theta) ** 18 - 8.67897504936562e81 * cos(theta) ** 16 + 1.45865126880094e81 * cos(theta) ** 14 - 1.62072363200105e80 * cos(theta) ** 12 + 1.16269304034858e79 * cos(theta) ** 10 - 5.14465947056893e77 * cos(theta) ** 8 + 1.29775193852189e76 * cos(theta) ** 6 - 1.62354287554866e74 * cos(theta) ** 4 + 7.58664895116195e71 * cos(theta) ** 2 - 5.55798457960582e68 ) * sin(39 * phi) ) # @torch.jit.script def Yl65_m_minus_38(theta, phi): return ( 4.7880193475768e-68 * (1.0 - cos(theta) ** 2) ** 19 * ( 1.95177788594307e81 * cos(theta) ** 27 - 5.31065145710092e81 * cos(theta) ** 25 + 6.27242298082786e81 * cos(theta) ** 23 - 4.23179470439853e81 * cos(theta) ** 21 + 1.80625383724327e81 * cos(theta) ** 19 - 5.10527944080331e80 * cos(theta) ** 17 + 9.7243417920063e79 * cos(theta) ** 15 - 1.24671048615465e79 * cos(theta) ** 13 + 1.05699367304416e78 * cos(theta) ** 11 - 5.71628830063215e76 * cos(theta) ** 9 + 1.85393134074556e75 * cos(theta) ** 7 - 3.24708575109731e73 * cos(theta) ** 5 + 2.52888298372065e71 * cos(theta) ** 3 - 5.55798457960582e68 * cos(theta) ) * sin(38 * phi) ) # @torch.jit.script def Yl65_m_minus_37(theta, phi): return ( 2.5713045876105e-66 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 6.97063530693955e79 * cos(theta) ** 28 - 2.04255825273112e80 * cos(theta) ** 26 + 2.61350957534494e80 * cos(theta) ** 24 - 1.92354304745388e80 * cos(theta) ** 22 + 9.03126918621637e79 * cos(theta) ** 20 - 2.83626635600184e79 * cos(theta) ** 18 + 6.07771362000394e78 * cos(theta) ** 16 - 8.90507490110467e77 * cos(theta) ** 14 + 8.80828060870136e76 * cos(theta) ** 12 - 5.71628830063215e75 * cos(theta) ** 10 + 2.31741417593195e74 * cos(theta) ** 8 - 5.41180958516219e72 * cos(theta) ** 6 + 6.32220745930162e70 * cos(theta) ** 4 - 2.77899228980291e68 * cos(theta) ** 2 + 1.9271791191421e65 ) * sin(37 * phi) ) # @torch.jit.script def Yl65_m_minus_36(theta, phi): return ( 1.39846824565112e-64 * (1.0 - cos(theta) ** 2) ** 18 * ( 2.40366734722053e78 * cos(theta) ** 29 - 7.56503056567083e78 * cos(theta) ** 27 + 1.04540383013798e79 * cos(theta) ** 25 - 8.36323064110381e78 * cos(theta) ** 23 + 4.30060437438875e78 * cos(theta) ** 21 - 1.49277176631676e78 * cos(theta) ** 19 + 3.57512565882584e77 * cos(theta) ** 17 - 5.93671660073644e76 * cos(theta) ** 15 + 6.77560046823181e75 * cos(theta) ** 13 - 5.19662572784741e74 * cos(theta) ** 11 + 2.57490463992439e73 * cos(theta) ** 9 - 7.7311565502317e71 * cos(theta) ** 7 + 1.26444149186032e70 * cos(theta) ** 5 - 9.26330763267637e67 * cos(theta) ** 3 + 1.9271791191421e65 * cos(theta) ) * sin(36 * phi) ) # @torch.jit.script def Yl65_m_minus_35(theta, phi): return ( 7.6979294003689e-63 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 8.01222449073511e76 * cos(theta) ** 30 - 2.70179663059672e77 * cos(theta) ** 28 + 4.02078396206914e77 * cos(theta) ** 26 - 3.48467943379326e77 * cos(theta) ** 24 + 1.9548201701767e77 * cos(theta) ** 22 - 7.46385883158378e76 * cos(theta) ** 20 + 1.98618092156991e76 * cos(theta) ** 18 - 3.71044787546028e75 * cos(theta) ** 16 + 4.83971462016558e74 * cos(theta) ** 14 - 4.33052143987284e73 * cos(theta) ** 12 + 2.57490463992439e72 * cos(theta) ** 10 - 9.66394568778962e70 * cos(theta) ** 8 + 2.10740248643387e69 * cos(theta) ** 6 - 2.31582690816909e67 * cos(theta) ** 4 + 9.63589559571051e64 * cos(theta) ** 2 - 6.36032712588153e61 ) * sin(35 * phi) ) # @torch.jit.script def Yl65_m_minus_34(theta, phi): return ( 4.28602569829554e-61 * (1.0 - cos(theta) ** 2) ** 17 * ( 2.58458854539842e75 * cos(theta) ** 31 - 9.31654010550595e75 * cos(theta) ** 29 + 1.48917924521079e76 * cos(theta) ** 27 - 1.3938717735173e76 * cos(theta) ** 25 + 8.49921813120306e75 * cos(theta) ** 23 - 3.55421849123037e75 * cos(theta) ** 21 + 1.04535837977364e75 * cos(theta) ** 19 - 2.18261639732958e74 * cos(theta) ** 17 + 3.22647641344372e73 * cos(theta) ** 15 - 3.33117033836372e72 * cos(theta) ** 13 + 2.34082239993126e71 * cos(theta) ** 11 - 1.07377174308774e70 * cos(theta) ** 9 + 3.01057498061982e68 * cos(theta) ** 7 - 4.63165381633819e66 * cos(theta) ** 5 + 3.21196519857017e64 * cos(theta) ** 3 - 6.36032712588153e61 * cos(theta) ) * sin(34 * phi) ) # @torch.jit.script def Yl65_m_minus_33(theta, phi): return ( 2.41238909787524e-59 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 8.07683920437007e73 * cos(theta) ** 32 - 3.10551336850198e74 * cos(theta) ** 30 + 5.31849730432426e74 * cos(theta) ** 28 - 5.36104528275885e74 * cos(theta) ** 26 + 3.54134088800128e74 * cos(theta) ** 24 - 1.61555385965017e74 * cos(theta) ** 22 + 5.22679189886819e73 * cos(theta) ** 20 - 1.2125646651831e73 * cos(theta) ** 18 + 2.01654775840232e72 * cos(theta) ** 16 - 2.37940738454552e71 * cos(theta) ** 14 + 1.95068533327605e70 * cos(theta) ** 12 - 1.07377174308774e69 * cos(theta) ** 10 + 3.76321872577478e67 * cos(theta) ** 8 - 7.71942302723031e65 * cos(theta) ** 6 + 8.02991299642543e63 * cos(theta) ** 4 - 3.18016356294076e61 * cos(theta) ** 2 + 2.00767901700806e58 ) * sin(33 * phi) ) # @torch.jit.script def Yl65_m_minus_32(theta, phi): return ( 1.37188391746445e-57 * (1.0 - cos(theta) ** 2) ** 16 * ( 2.4475270316273e72 * cos(theta) ** 33 - 1.00177850596838e73 * cos(theta) ** 31 + 1.83396458769802e73 * cos(theta) ** 29 - 1.98557232694772e73 * cos(theta) ** 27 + 1.41653635520051e73 * cos(theta) ** 25 - 7.0241472158703e72 * cos(theta) ** 23 + 2.48894852327057e72 * cos(theta) ** 21 - 6.38191929043735e71 * cos(theta) ** 19 + 1.18620456376607e71 * cos(theta) ** 17 - 1.58627158969701e70 * cos(theta) ** 15 + 1.50052717944312e69 * cos(theta) ** 13 - 9.7615613007976e67 * cos(theta) ** 11 + 4.18135413974975e66 * cos(theta) ** 9 - 1.10277471817576e65 * cos(theta) ** 7 + 1.60598259928509e63 * cos(theta) ** 5 - 1.06005452098025e61 * cos(theta) ** 3 + 2.00767901700806e58 * cos(theta) ) * sin(32 * phi) ) # @torch.jit.script def Yl65_m_minus_31(theta, phi): return ( 7.87848460233697e-56 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 7.19860891655087e70 * cos(theta) ** 34 - 3.13055783115119e71 * cos(theta) ** 32 + 6.11321529232674e71 * cos(theta) ** 30 - 7.09132973909901e71 * cos(theta) ** 28 + 5.44821675077119e71 * cos(theta) ** 26 - 2.92672800661262e71 * cos(theta) ** 24 + 1.13134023785026e71 * cos(theta) ** 22 - 3.19095964521868e70 * cos(theta) ** 20 + 6.59002535425596e69 * cos(theta) ** 18 - 9.91419743560632e68 * cos(theta) ** 16 + 1.07180512817366e68 * cos(theta) ** 14 - 8.13463441733133e66 * cos(theta) ** 12 + 4.18135413974975e65 * cos(theta) ** 10 - 1.3784683977197e64 * cos(theta) ** 8 + 2.67663766547514e62 * cos(theta) ** 6 - 2.65013630245064e60 * cos(theta) ** 4 + 1.00383950850403e58 * cos(theta) ** 2 - 6.08756524259569e54 ) * sin(31 * phi) ) # @torch.jit.script def Yl65_m_minus_30(theta, phi): return ( 4.5668035424607e-54 * (1.0 - cos(theta) ** 2) ** 15 * ( 2.05674540472882e69 * cos(theta) ** 35 - 9.48653888227634e69 * cos(theta) ** 33 + 1.97200493300862e70 * cos(theta) ** 31 - 2.44528611693069e70 * cos(theta) ** 29 + 2.01785805584118e70 * cos(theta) ** 27 - 1.17069120264505e70 * cos(theta) ** 25 + 4.91887059934895e69 * cos(theta) ** 23 - 1.51950459296127e69 * cos(theta) ** 21 + 3.46843439697682e68 * cos(theta) ** 19 - 5.8318808444743e67 * cos(theta) ** 17 + 7.14536752115771e66 * cos(theta) ** 15 - 6.25741109025487e65 * cos(theta) ** 13 + 3.80123103613614e64 * cos(theta) ** 11 - 1.53163155302189e63 * cos(theta) ** 9 + 3.82376809353592e61 * cos(theta) ** 7 - 5.30027260490127e59 * cos(theta) ** 5 + 3.34613169501343e57 * cos(theta) ** 3 - 6.08756524259569e54 * cos(theta) ) * sin(30 * phi) ) # @torch.jit.script def Yl65_m_minus_29(theta, phi): return ( 2.67070169649057e-52 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 5.71318167980228e67 * cos(theta) ** 36 - 2.79015849478716e68 * cos(theta) ** 34 + 6.16251541565195e68 * cos(theta) ** 32 - 8.15095372310231e68 * cos(theta) ** 30 + 7.20663591371851e68 * cos(theta) ** 28 - 4.50265847171173e68 * cos(theta) ** 26 + 2.0495294163954e68 * cos(theta) ** 24 - 6.90683905891489e67 * cos(theta) ** 22 + 1.73421719848841e67 * cos(theta) ** 20 - 3.23993380248572e66 * cos(theta) ** 18 + 4.46585470072357e65 * cos(theta) ** 16 - 4.46957935018205e64 * cos(theta) ** 14 + 3.16769253011345e63 * cos(theta) ** 12 - 1.53163155302189e62 * cos(theta) ** 10 + 4.7797101169199e60 * cos(theta) ** 8 - 8.83378767483545e58 * cos(theta) ** 6 + 8.36532923753357e56 * cos(theta) ** 4 - 3.04378262129784e54 * cos(theta) ** 2 + 1.77998983701628e51 ) * sin(29 * phi) ) # @torch.jit.script def Yl65_m_minus_28(theta, phi): return ( 1.57503486261719e-50 * (1.0 - cos(theta) ** 2) ** 14 * ( 1.54410315670332e66 * cos(theta) ** 37 - 7.9718814136776e66 * cos(theta) ** 35 + 1.86742891383393e67 * cos(theta) ** 33 - 2.62933991067817e67 * cos(theta) ** 31 + 2.48504686679949e67 * cos(theta) ** 29 - 1.66765128581916e67 * cos(theta) ** 27 + 8.19811766558158e66 * cos(theta) ** 25 - 3.00297350387604e66 * cos(theta) ** 23 + 8.2581771356591e65 * cos(theta) ** 21 - 1.70522831709775e65 * cos(theta) ** 19 + 2.6269733533668e64 * cos(theta) ** 17 - 2.97971956678803e63 * cos(theta) ** 15 + 2.43668656162573e62 * cos(theta) ** 13 - 1.39239232092899e61 * cos(theta) ** 11 + 5.31078901879989e59 * cos(theta) ** 9 - 1.26196966783364e58 * cos(theta) ** 7 + 1.67306584750671e56 * cos(theta) ** 5 - 1.01459420709928e54 * cos(theta) ** 3 + 1.77998983701628e51 * cos(theta) ) * sin(28 * phi) ) # @torch.jit.script def Yl65_m_minus_27(theta, phi): return ( 9.3631815364416e-49 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 4.06342935974557e64 * cos(theta) ** 38 - 2.21441150379933e65 * cos(theta) ** 36 + 5.49243798186449e65 * cos(theta) ** 34 - 8.21668722086927e65 * cos(theta) ** 32 + 8.28348955599829e65 * cos(theta) ** 30 - 5.95589744935414e65 * cos(theta) ** 28 + 3.15312217906984e65 * cos(theta) ** 26 - 1.25123895994835e65 * cos(theta) ** 24 + 3.75371687984505e64 * cos(theta) ** 22 - 8.52614158548875e63 * cos(theta) ** 20 + 1.45942964075934e63 * cos(theta) ** 18 - 1.86232472924252e62 * cos(theta) ** 16 + 1.74049040116124e61 * cos(theta) ** 14 - 1.16032693410749e60 * cos(theta) ** 12 + 5.31078901879989e58 * cos(theta) ** 10 - 1.57746208479205e57 * cos(theta) ** 8 + 2.78844307917786e55 * cos(theta) ** 6 - 2.5364855177482e53 * cos(theta) ** 4 + 8.89994918508141e50 * cos(theta) ** 2 - 5.03675675443204e47 ) * sin(27 * phi) ) # @torch.jit.script def Yl65_m_minus_26(theta, phi): return ( 5.60853792464566e-47 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.04190496403733e63 * cos(theta) ** 39 - 5.98489595621441e63 * cos(theta) ** 37 + 1.56926799481842e64 * cos(theta) ** 35 - 2.48990521844523e64 * cos(theta) ** 33 + 2.67209340516074e64 * cos(theta) ** 31 - 2.0537577411566e64 * cos(theta) ** 29 + 1.16782302928513e64 * cos(theta) ** 27 - 5.0049558397934e63 * cos(theta) ** 25 + 1.63205081732393e63 * cos(theta) ** 23 - 4.06006742166131e62 * cos(theta) ** 21 + 7.68120863557545e61 * cos(theta) ** 19 - 1.09548513484854e61 * cos(theta) ** 17 + 1.16032693410749e60 * cos(theta) ** 15 - 8.92559180082685e58 * cos(theta) ** 13 + 4.8279900170908e57 * cos(theta) ** 11 - 1.75273564976894e56 * cos(theta) ** 9 + 3.98349011311122e54 * cos(theta) ** 7 - 5.07297103549641e52 * cos(theta) ** 5 + 2.96664972836047e50 * cos(theta) ** 3 - 5.03675675443204e47 * cos(theta) ) * sin(26 * phi) ) # @torch.jit.script def Yl65_m_minus_25(theta, phi): return ( 3.38376623681316e-45 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 2.60476241009332e61 * cos(theta) ** 40 - 1.57497262005642e62 * cos(theta) ** 38 + 4.35907776338451e62 * cos(theta) ** 36 - 7.32325064248598e62 * cos(theta) ** 34 + 8.35029189112731e62 * cos(theta) ** 32 - 6.84585913718867e62 * cos(theta) ** 30 + 4.17079653316116e62 * cos(theta) ** 28 - 1.92498301530515e62 * cos(theta) ** 26 + 6.80021173884972e61 * cos(theta) ** 24 - 1.84548519166423e61 * cos(theta) ** 22 + 3.84060431778773e60 * cos(theta) ** 20 - 6.08602852693634e59 * cos(theta) ** 18 + 7.25204333817181e58 * cos(theta) ** 16 - 6.37542271487632e57 * cos(theta) ** 14 + 4.02332501424234e56 * cos(theta) ** 12 - 1.75273564976894e55 * cos(theta) ** 10 + 4.97936264138903e53 * cos(theta) ** 8 - 8.45495172582734e51 * cos(theta) ** 6 + 7.41662432090118e49 * cos(theta) ** 4 - 2.51837837721602e47 * cos(theta) ** 2 + 1.38372438308572e44 ) * sin(25 * phi) ) # @torch.jit.script def Yl65_m_minus_24(theta, phi): return ( 2.05548132705004e-43 * (1.0 - cos(theta) ** 2) ** 12 * ( 6.35307904900809e59 * cos(theta) ** 41 - 4.03839133347801e60 * cos(theta) ** 39 + 1.17812912523906e61 * cos(theta) ** 37 - 2.09235732642457e61 * cos(theta) ** 35 + 2.53039148215979e61 * cos(theta) ** 33 - 2.20834165715763e61 * cos(theta) ** 31 + 1.43820570109006e61 * cos(theta) ** 29 - 7.12956672335242e60 * cos(theta) ** 27 + 2.72008469553989e60 * cos(theta) ** 25 - 8.0238486594097e59 * cos(theta) ** 23 + 1.82885919894654e59 * cos(theta) ** 21 - 3.20317290891387e58 * cos(theta) ** 19 + 4.26590784598342e57 * cos(theta) ** 17 - 4.25028180991755e56 * cos(theta) ** 15 + 3.09486539557103e55 * cos(theta) ** 13 - 1.59339604524449e54 * cos(theta) ** 11 + 5.53262515709892e52 * cos(theta) ** 9 - 1.20785024654676e51 * cos(theta) ** 7 + 1.48332486418024e49 * cos(theta) ** 5 - 8.39459459072006e46 * cos(theta) ** 3 + 1.38372438308572e44 * cos(theta) ) * sin(24 * phi) ) # @torch.jit.script def Yl65_m_minus_23(theta, phi): return ( 1.25670454085725e-41 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.51263786881145e58 * cos(theta) ** 42 - 1.0095978333695e59 * cos(theta) ** 40 + 3.10033980326068e59 * cos(theta) ** 38 - 5.81210368451268e59 * cos(theta) ** 36 + 7.44232788870526e59 * cos(theta) ** 34 - 6.90106767861761e59 * cos(theta) ** 32 + 4.79401900363352e59 * cos(theta) ** 30 - 2.54627382976872e59 * cos(theta) ** 28 + 1.0461864213615e59 * cos(theta) ** 26 - 3.34327027475404e58 * cos(theta) ** 24 + 8.31299635884789e57 * cos(theta) ** 22 - 1.60158645445693e57 * cos(theta) ** 20 + 2.36994880332412e56 * cos(theta) ** 18 - 2.65642613119847e55 * cos(theta) ** 16 + 2.21061813969359e54 * cos(theta) ** 14 - 1.32783003770374e53 * cos(theta) ** 12 + 5.53262515709892e51 * cos(theta) ** 10 - 1.50981280818345e50 * cos(theta) ** 8 + 2.47220810696706e48 * cos(theta) ** 6 - 2.09864864768002e46 * cos(theta) ** 4 + 6.91862191542862e43 * cos(theta) ** 2 - 3.70177737583126e40 ) * sin(23 * phi) ) # @torch.jit.script def Yl65_m_minus_22(theta, phi): return ( 7.73052071376472e-40 * (1.0 - cos(theta) ** 2) ** 11 * ( 3.51776248560802e56 * cos(theta) ** 43 - 2.46243373992562e57 * cos(theta) ** 41 + 7.94958923912994e57 * cos(theta) ** 39 - 1.57083883365208e58 * cos(theta) ** 37 + 2.12637939677293e58 * cos(theta) ** 35 - 2.09123262988412e58 * cos(theta) ** 33 + 1.54645774310759e58 * cos(theta) ** 31 - 8.78025458540938e57 * cos(theta) ** 29 + 3.8747645235611e57 * cos(theta) ** 27 - 1.33730810990162e57 * cos(theta) ** 25 + 3.61434624297734e56 * cos(theta) ** 23 - 7.62660216408063e55 * cos(theta) ** 21 + 1.24734147543375e55 * cos(theta) ** 19 - 1.56260360658733e54 * cos(theta) ** 17 + 1.47374542646239e53 * cos(theta) ** 15 - 1.02140772131057e52 * cos(theta) ** 13 + 5.02965923372629e50 * cos(theta) ** 11 - 1.6775697868705e49 * cos(theta) ** 9 + 3.5317258670958e47 * cos(theta) ** 7 - 4.19729729536003e45 * cos(theta) ** 5 + 2.30620730514287e43 * cos(theta) ** 3 - 3.70177737583126e40 * cos(theta) ) * sin(22 * phi) ) # @torch.jit.script def Yl65_m_minus_21(theta, phi): return ( 4.78293757576616e-38 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 7.99491474001823e54 * cos(theta) ** 44 - 5.86293747601337e55 * cos(theta) ** 42 + 1.98739730978249e56 * cos(theta) ** 40 - 4.13378640434757e56 * cos(theta) ** 38 + 5.90660943548037e56 * cos(theta) ** 36 - 6.15068420554154e56 * cos(theta) ** 34 + 4.83268044721121e56 * cos(theta) ** 32 - 2.92675152846979e56 * cos(theta) ** 30 + 1.38384447270039e56 * cos(theta) ** 28 - 5.14349273039083e55 * cos(theta) ** 26 + 1.50597760124056e55 * cos(theta) ** 24 - 3.46663734730938e54 * cos(theta) ** 22 + 6.23670737716874e53 * cos(theta) ** 20 - 8.68113114770741e52 * cos(theta) ** 18 + 9.21090891538997e51 * cos(theta) ** 16 - 7.29576943793265e50 * cos(theta) ** 14 + 4.19138269477191e49 * cos(theta) ** 12 - 1.6775697868705e48 * cos(theta) ** 10 + 4.41465733386975e46 * cos(theta) ** 8 - 6.99549549226672e44 * cos(theta) ** 6 + 5.76551826285719e42 * cos(theta) ** 4 - 1.85088868791563e40 * cos(theta) ** 2 + 9.6702648271454e36 ) * sin(21 * phi) ) # @torch.jit.script def Yl65_m_minus_20(theta, phi): return ( 2.97543313609508e-36 * (1.0 - cos(theta) ** 2) ** 10 * ( 1.77664772000405e53 * cos(theta) ** 45 - 1.36347383163102e54 * cos(theta) ** 43 + 4.8473105116646e54 * cos(theta) ** 41 - 1.05994523188399e55 * cos(theta) ** 39 + 1.59638092850821e55 * cos(theta) ** 37 - 1.75733834444044e55 * cos(theta) ** 35 + 1.46444862036703e55 * cos(theta) ** 33 - 9.44113396280578e54 * cos(theta) ** 31 + 4.77187749207031e54 * cos(theta) ** 29 - 1.90499730755216e54 * cos(theta) ** 27 + 6.02391040496224e53 * cos(theta) ** 25 - 1.50723362926495e53 * cos(theta) ** 23 + 2.96986065579464e52 * cos(theta) ** 21 - 4.56901639353021e51 * cos(theta) ** 19 + 5.41818171493527e50 * cos(theta) ** 17 - 4.8638462919551e49 * cos(theta) ** 15 + 3.22414053443993e48 * cos(theta) ** 13 - 1.52506344260955e47 * cos(theta) ** 11 + 4.90517481541083e45 * cos(theta) ** 9 - 9.99356498895246e43 * cos(theta) ** 7 + 1.15310365257144e42 * cos(theta) ** 5 - 6.16962895971877e39 * cos(theta) ** 3 + 9.6702648271454e36 * cos(theta) ) * sin(20 * phi) ) # @torch.jit.script def Yl65_m_minus_19(theta, phi): return ( 1.86053812587183e-34 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 3.86227765218272e51 * cos(theta) ** 46 - 3.09880416279776e52 * cos(theta) ** 44 + 1.15412155039633e53 * cos(theta) ** 42 - 2.64986307970998e53 * cos(theta) ** 40 + 4.20100244344265e53 * cos(theta) ** 38 - 4.88149540122344e53 * cos(theta) ** 36 + 4.30720182460892e53 * cos(theta) ** 34 - 2.95035436337681e53 * cos(theta) ** 32 + 1.5906258306901e53 * cos(theta) ** 30 - 6.80356181268629e52 * cos(theta) ** 28 + 2.31688861729317e52 * cos(theta) ** 26 - 6.28014012193728e51 * cos(theta) ** 24 + 1.34993666172484e51 * cos(theta) ** 22 - 2.28450819676511e50 * cos(theta) ** 20 + 3.01010095274182e49 * cos(theta) ** 18 - 3.03990393247194e48 * cos(theta) ** 16 + 2.30295752459995e47 * cos(theta) ** 14 - 1.27088620217462e46 * cos(theta) ** 12 + 4.90517481541083e44 * cos(theta) ** 10 - 1.24919562361906e43 * cos(theta) ** 8 + 1.9218394209524e41 * cos(theta) ** 6 - 1.54240723992969e39 * cos(theta) ** 4 + 4.8351324135727e36 * cos(theta) ** 2 - 2.47321351077888e33 ) * sin(19 * phi) ) # @torch.jit.script def Yl65_m_minus_18(theta, phi): return ( 1.16903400982024e-32 * (1.0 - cos(theta) ** 2) ** 9 * ( 8.21761202592068e49 * cos(theta) ** 47 - 6.88623147288392e50 * cos(theta) ** 45 + 2.68400360557287e51 * cos(theta) ** 43 - 6.46308068221946e51 * cos(theta) ** 41 + 1.07718011370324e52 * cos(theta) ** 39 - 1.31932308141174e52 * cos(theta) ** 37 + 1.23062909274541e52 * cos(theta) ** 35 - 8.94046776780851e51 * cos(theta) ** 33 + 5.13105106674227e51 * cos(theta) ** 31 - 2.34605579747803e51 * cos(theta) ** 29 + 8.58106895293766e50 * cos(theta) ** 27 - 2.51205604877491e50 * cos(theta) ** 25 + 5.86928983358624e49 * cos(theta) ** 23 - 1.08786104607862e49 * cos(theta) ** 21 + 1.5842636593378e48 * cos(theta) ** 19 - 1.78817878380702e47 * cos(theta) ** 17 + 1.53530501639997e46 * cos(theta) ** 15 - 9.77604770903557e44 * cos(theta) ** 13 + 4.45924983219166e43 * cos(theta) ** 11 - 1.38799513735451e42 * cos(theta) ** 9 + 2.74548488707485e40 * cos(theta) ** 7 - 3.08481447985938e38 * cos(theta) ** 5 + 1.61171080452423e36 * cos(theta) ** 3 - 2.47321351077888e33 * cos(theta) ) * sin(18 * phi) ) # @torch.jit.script def Yl65_m_minus_17(theta, phi): return ( 7.37881820904114e-31 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.71200250540014e48 * cos(theta) ** 48 - 1.49700684193129e49 * cos(theta) ** 46 + 6.10000819448379e49 * cos(theta) ** 44 - 1.53882873386178e50 * cos(theta) ** 42 + 2.69295028425811e50 * cos(theta) ** 40 - 3.47190284582037e50 * cos(theta) ** 38 + 3.41841414651502e50 * cos(theta) ** 36 - 2.62954934347309e50 * cos(theta) ** 34 + 1.60345345835696e50 * cos(theta) ** 32 - 7.82018599159344e49 * cos(theta) ** 30 + 3.06466748319202e49 * cos(theta) ** 28 - 9.66175403374966e48 * cos(theta) ** 26 + 2.44553743066093e48 * cos(theta) ** 24 - 4.94482293672101e47 * cos(theta) ** 22 + 7.921318296689e46 * cos(theta) ** 20 - 9.93432657670567e45 * cos(theta) ** 18 + 9.5956563524998e44 * cos(theta) ** 16 - 6.98289122073969e43 * cos(theta) ** 14 + 3.71604152682639e42 * cos(theta) ** 12 - 1.38799513735451e41 * cos(theta) ** 10 + 3.43185610884356e39 * cos(theta) ** 8 - 5.14135746643231e37 * cos(theta) ** 6 + 4.02927701131058e35 * cos(theta) ** 4 - 1.23660675538944e33 * cos(theta) ** 2 + 6.20786523789878e29 ) * sin(17 * phi) ) # @torch.jit.script def Yl65_m_minus_16(theta, phi): return ( 4.67726285230182e-29 * (1.0 - cos(theta) ** 2) ** 8 * ( 3.49388266408192e46 * cos(theta) ** 49 - 3.18512094027933e47 * cos(theta) ** 47 + 1.35555737655195e48 * cos(theta) ** 45 - 3.57867147409716e48 * cos(theta) ** 43 + 6.56817142501978e48 * cos(theta) ** 41 - 8.90231498928301e48 * cos(theta) ** 39 + 9.23895715274329e48 * cos(theta) ** 37 - 7.51299812420883e48 * cos(theta) ** 35 + 4.85894987380897e48 * cos(theta) ** 33 - 2.5226406424495e48 * cos(theta) ** 31 + 1.05678189075587e48 * cos(theta) ** 29 - 3.57842741990728e47 * cos(theta) ** 27 + 9.78214972264374e46 * cos(theta) ** 25 - 2.14992301596566e46 * cos(theta) ** 23 + 3.77205633175667e45 * cos(theta) ** 21 - 5.22859293510825e44 * cos(theta) ** 19 + 5.64450373676459e43 * cos(theta) ** 17 - 4.65526081382646e42 * cos(theta) ** 15 + 2.85849348217414e41 * cos(theta) ** 13 - 1.26181376123137e40 * cos(theta) ** 11 + 3.81317345427063e38 * cos(theta) ** 9 - 7.34479638061758e36 * cos(theta) ** 7 + 8.05855402262117e34 * cos(theta) ** 5 - 4.12202251796479e32 * cos(theta) ** 3 + 6.20786523789878e29 * cos(theta) ) * sin(16 * phi) ) # @torch.jit.script def Yl65_m_minus_15(theta, phi): return ( 2.9765918522291e-27 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 6.98776532816385e44 * cos(theta) ** 50 - 6.63566862558195e45 * cos(theta) ** 48 + 2.94686386206946e46 * cos(theta) ** 46 - 8.13334425931172e46 * cos(theta) ** 44 + 1.56385033929042e47 * cos(theta) ** 42 - 2.22557874732075e47 * cos(theta) ** 40 + 2.43130451387981e47 * cos(theta) ** 38 - 2.08694392339134e47 * cos(theta) ** 36 + 1.42910290406146e47 * cos(theta) ** 34 - 7.88325200765467e46 * cos(theta) ** 32 + 3.52260630251957e46 * cos(theta) ** 30 - 1.27800979282403e46 * cos(theta) ** 28 + 3.7623652779399e45 * cos(theta) ** 26 - 8.95801256652357e44 * cos(theta) ** 24 + 1.71457105988939e44 * cos(theta) ** 22 - 2.61429646755412e43 * cos(theta) ** 20 + 3.13583540931366e42 * cos(theta) ** 18 - 2.90953800864154e41 * cos(theta) ** 16 + 2.04178105869582e40 * cos(theta) ** 14 - 1.05151146769281e39 * cos(theta) ** 12 + 3.81317345427063e37 * cos(theta) ** 10 - 9.18099547577197e35 * cos(theta) ** 8 + 1.34309233710353e34 * cos(theta) ** 6 - 1.0305056294912e32 * cos(theta) ** 4 + 3.10393261894939e29 * cos(theta) ** 2 - 1.53280623157995e26 ) * sin(15 * phi) ) # @torch.jit.script def Yl65_m_minus_14(theta, phi): return ( 1.90129440496224e-25 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.37015006434585e43 * cos(theta) ** 51 - 1.35421808685346e44 * cos(theta) ** 49 + 6.26992311078609e44 * cos(theta) ** 47 - 1.8074098354026e45 * cos(theta) ** 45 + 3.63686125416378e45 * cos(theta) ** 43 - 5.42824084712379e45 * cos(theta) ** 41 + 6.23411413815337e45 * cos(theta) ** 39 - 5.64038898213876e45 * cos(theta) ** 37 + 4.08315115446132e45 * cos(theta) ** 35 - 2.38886424474384e45 * cos(theta) ** 33 + 1.13632461371599e45 * cos(theta) ** 31 - 4.40693032008286e44 * cos(theta) ** 29 + 1.39346862145922e44 * cos(theta) ** 27 - 3.58320502660943e43 * cos(theta) ** 25 + 7.4546567821278e42 * cos(theta) ** 23 - 1.24490307978768e42 * cos(theta) ** 21 + 1.65043968911245e41 * cos(theta) ** 19 - 1.71149294625973e40 * cos(theta) ** 17 + 1.36118737246388e39 * cos(theta) ** 15 - 8.08854975148315e37 * cos(theta) ** 13 + 3.46652132206421e36 * cos(theta) ** 11 - 1.02011060841911e35 * cos(theta) ** 9 + 1.91870333871933e33 * cos(theta) ** 7 - 2.0610112589824e31 * cos(theta) ** 5 + 1.03464420631646e29 * cos(theta) ** 3 - 1.53280623157995e26 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl65_m_minus_13(theta, phi): return ( 1.2186095790741e-23 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 2.63490396989587e41 * cos(theta) ** 52 - 2.70843617370692e42 * cos(theta) ** 50 + 1.30623398141377e43 * cos(theta) ** 48 - 3.92915181609262e43 * cos(theta) ** 46 + 8.26559375946313e43 * cos(theta) ** 44 - 1.29243829693423e44 * cos(theta) ** 42 + 1.55852853453834e44 * cos(theta) ** 40 - 1.48431289003652e44 * cos(theta) ** 38 + 1.13420865401703e44 * cos(theta) ** 36 - 7.02607130807012e43 * cos(theta) ** 34 + 3.55101441786247e43 * cos(theta) ** 32 - 1.46897677336095e43 * cos(theta) ** 30 + 4.97667364806865e42 * cos(theta) ** 28 - 1.37815577946516e42 * cos(theta) ** 26 + 3.10610699255325e41 * cos(theta) ** 24 - 5.65865036267127e40 * cos(theta) ** 22 + 8.25219844556226e39 * cos(theta) ** 20 - 9.50829414588738e38 * cos(theta) ** 18 + 8.50742107789924e37 * cos(theta) ** 16 - 5.77753553677368e36 * cos(theta) ** 14 + 2.88876776838684e35 * cos(theta) ** 12 - 1.02011060841911e34 * cos(theta) ** 10 + 2.39837917339916e32 * cos(theta) ** 8 - 3.43501876497066e30 * cos(theta) ** 6 + 2.58661051579116e28 * cos(theta) ** 4 - 7.66403115789973e25 * cos(theta) ** 2 + 3.73127125506316e22 ) * sin(13 * phi) ) # @torch.jit.script def Yl65_m_minus_12(theta, phi): return ( 7.83519525722043e-22 * (1.0 - cos(theta) ** 2) ** 6 * ( 4.97151692433183e39 * cos(theta) ** 53 - 5.31065916413121e40 * cos(theta) ** 51 + 2.6657836355383e41 * cos(theta) ** 49 - 8.35989748104812e41 * cos(theta) ** 47 + 1.83679861321403e42 * cos(theta) ** 45 - 3.00567045798659e42 * cos(theta) ** 43 + 3.8012891086301e42 * cos(theta) ** 41 - 3.80593048727312e42 * cos(theta) ** 39 + 3.06542879464063e42 * cos(theta) ** 37 - 2.00744894516289e42 * cos(theta) ** 35 + 1.07606497510984e42 * cos(theta) ** 33 - 4.73863475277727e41 * cos(theta) ** 31 + 1.71609436140298e41 * cos(theta) ** 29 - 5.1042806646858e40 * cos(theta) ** 27 + 1.2424427970213e40 * cos(theta) ** 25 - 2.46028276637881e39 * cos(theta) ** 23 + 3.9296183074106e38 * cos(theta) ** 21 - 5.00436533994073e37 * cos(theta) ** 19 + 5.00436533994073e36 * cos(theta) ** 17 - 3.85169035784912e35 * cos(theta) ** 15 + 2.22212905260526e34 * cos(theta) ** 13 - 9.27373280381008e32 * cos(theta) ** 11 + 2.66486574822129e31 * cos(theta) ** 9 - 4.9071696642438e29 * cos(theta) ** 7 + 5.17322103158232e27 * cos(theta) ** 5 - 2.55467705263324e25 * cos(theta) ** 3 + 3.73127125506316e22 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl65_m_minus_11(theta, phi): return ( 5.05233415225719e-20 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 9.20651282283672e37 * cos(theta) ** 54 - 1.02128060848677e39 * cos(theta) ** 52 + 5.33156727107661e39 * cos(theta) ** 50 - 1.74164530855169e40 * cos(theta) ** 48 + 3.99304046350876e40 * cos(theta) ** 46 - 6.8310692226968e40 * cos(theta) ** 44 + 9.0506883538812e40 * cos(theta) ** 42 - 9.5148262181828e40 * cos(theta) ** 40 + 8.06691788063324e40 * cos(theta) ** 38 - 5.57624706989692e40 * cos(theta) ** 36 + 3.16489698561717e40 * cos(theta) ** 34 - 1.4808233602429e40 * cos(theta) ** 32 + 5.72031453800994e39 * cos(theta) ** 30 - 1.82295738024493e39 * cos(theta) ** 28 + 4.77862614238961e38 * cos(theta) ** 26 - 1.0251178193245e38 * cos(theta) ** 24 + 1.78619013973209e37 * cos(theta) ** 22 - 2.50218266997036e36 * cos(theta) ** 20 + 2.78020296663374e35 * cos(theta) ** 18 - 2.4073064736557e34 * cos(theta) ** 16 + 1.58723503757519e33 * cos(theta) ** 14 - 7.72811066984173e31 * cos(theta) ** 12 + 2.66486574822129e30 * cos(theta) ** 10 - 6.13396208030475e28 * cos(theta) ** 8 + 8.6220350526372e26 * cos(theta) ** 6 - 6.38669263158311e24 * cos(theta) ** 4 + 1.86563562753158e22 * cos(theta) ** 2 - 8.97371634214324e18 ) * sin(11 * phi) ) # @torch.jit.script def Yl65_m_minus_10(theta, phi): return ( 3.26648153237928e-18 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.67391142233395e36 * cos(theta) ** 55 - 1.92694454431466e37 * cos(theta) ** 53 + 1.04540534726992e38 * cos(theta) ** 51 - 3.55437818071774e38 * cos(theta) ** 49 + 8.49583077342289e38 * cos(theta) ** 47 - 1.51801538282151e39 * cos(theta) ** 45 + 2.10481124508865e39 * cos(theta) ** 43 - 2.320689321508e39 * cos(theta) ** 41 + 2.06844048221365e39 * cos(theta) ** 39 - 1.50709380267484e39 * cos(theta) ** 37 + 9.04256281604906e38 * cos(theta) ** 35 - 4.48734351588756e38 * cos(theta) ** 33 + 1.84526275419676e38 * cos(theta) ** 31 - 6.28605993187906e37 * cos(theta) ** 29 + 1.76986153421838e37 * cos(theta) ** 27 - 4.10047127729802e36 * cos(theta) ** 25 + 7.7660440857917e35 * cos(theta) ** 23 - 1.19151555712874e35 * cos(theta) ** 21 + 1.46326471928091e34 * cos(theta) ** 19 - 1.41606263156218e33 * cos(theta) ** 17 + 1.05815669171679e32 * cos(theta) ** 15 - 5.94470051526287e30 * cos(theta) ** 13 + 2.42260522565571e29 * cos(theta) ** 11 - 6.81551342256083e27 * cos(theta) ** 9 + 1.23171929323389e26 * cos(theta) ** 7 - 1.27733852631662e24 * cos(theta) ** 5 + 6.21878542510527e21 * cos(theta) ** 3 - 8.97371634214324e18 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl65_m_minus_9(theta, phi): return ( 2.11692198074881e-16 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 2.98912753988205e34 * cos(theta) ** 56 - 3.56841582280493e35 * cos(theta) ** 54 + 2.01039489859601e36 * cos(theta) ** 52 - 7.10875636143548e36 * cos(theta) ** 50 + 1.7699647444631e37 * cos(theta) ** 48 - 3.30003344091633e37 * cos(theta) ** 46 + 4.78366192065602e37 * cos(theta) ** 44 - 5.52545076549524e37 * cos(theta) ** 42 + 5.17110120553413e37 * cos(theta) ** 40 - 3.96603632282853e37 * cos(theta) ** 38 + 2.51182300445807e37 * cos(theta) ** 36 - 1.31980691643752e37 * cos(theta) ** 34 + 5.76644610686486e36 * cos(theta) ** 32 - 2.09535331062635e36 * cos(theta) ** 30 + 6.32093405077991e35 * cos(theta) ** 28 - 1.57710433742231e35 * cos(theta) ** 26 + 3.23585170241321e34 * cos(theta) ** 24 - 5.41597980513066e33 * cos(theta) ** 22 + 7.31632359640457e32 * cos(theta) ** 20 - 7.86701461978987e31 * cos(theta) ** 18 + 6.61347932322994e30 * cos(theta) ** 16 - 4.24621465375919e29 * cos(theta) ** 14 + 2.01883768804643e28 * cos(theta) ** 12 - 6.81551342256083e26 * cos(theta) ** 10 + 1.53964911654236e25 * cos(theta) ** 8 - 2.12889754386104e23 * cos(theta) ** 6 + 1.55469635627632e21 * cos(theta) ** 4 - 4.48685817107162e18 * cos(theta) ** 2 + 2.13659912908172e15 ) * sin(9 * phi) ) # @torch.jit.script def Yl65_m_minus_8(theta, phi): return ( 1.37485893388855e-14 * (1.0 - cos(theta) ** 2) ** 4 * ( 5.24408340330185e32 * cos(theta) ** 57 - 6.48802876873624e33 * cos(theta) ** 55 + 3.79319792187926e34 * cos(theta) ** 53 - 1.3938737963599e35 * cos(theta) ** 51 + 3.61217294788388e35 * cos(theta) ** 49 - 7.02134774663049e35 * cos(theta) ** 47 + 1.06303598236801e36 * cos(theta) ** 45 - 1.28498855011517e36 * cos(theta) ** 43 + 1.26124419647174e36 * cos(theta) ** 41 - 1.01693239046886e36 * cos(theta) ** 39 + 6.78871082285965e35 * cos(theta) ** 37 - 3.7708769041072e35 * cos(theta) ** 35 + 1.74740791117117e35 * cos(theta) ** 33 - 6.75920422782694e34 * cos(theta) ** 31 + 2.17963243130342e34 * cos(theta) ** 29 - 5.8411271756382e33 * cos(theta) ** 27 + 1.29434068096528e33 * cos(theta) ** 25 - 2.35477382831768e32 * cos(theta) ** 23 + 3.48396361733551e31 * cos(theta) ** 21 - 4.14053401041572e30 * cos(theta) ** 19 + 3.89028195484114e29 * cos(theta) ** 17 - 2.83080976917279e28 * cos(theta) ** 15 + 1.55295206772802e27 * cos(theta) ** 13 - 6.19592129323712e25 * cos(theta) ** 11 + 1.71072124060262e24 * cos(theta) ** 9 - 3.04128220551577e22 * cos(theta) ** 7 + 3.10939271255263e20 * cos(theta) ** 5 - 1.49561939035721e18 * cos(theta) ** 3 + 2.13659912908172e15 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl65_m_minus_7(theta, phi): return ( 8.94609626093219e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 9.04152310914111e30 * cos(theta) ** 58 - 1.15857656584576e32 * cos(theta) ** 56 + 7.0244405960727e32 * cos(theta) ** 54 - 2.68052653146134e33 * cos(theta) ** 52 + 7.22434589576776e33 * cos(theta) ** 50 - 1.46278078054802e34 * cos(theta) ** 48 + 2.31094778775653e34 * cos(theta) ** 46 - 2.92042852298903e34 * cos(theta) ** 44 + 3.00296237255176e34 * cos(theta) ** 42 - 2.54233097617214e34 * cos(theta) ** 40 + 1.78650284812096e34 * cos(theta) ** 38 - 1.04746580669644e34 * cos(theta) ** 36 + 5.13943503285638e33 * cos(theta) ** 34 - 2.11225132119592e33 * cos(theta) ** 32 + 7.26544143767806e32 * cos(theta) ** 30 - 2.08611684844222e32 * cos(theta) ** 28 + 4.97823338832801e31 * cos(theta) ** 26 - 9.81155761799032e30 * cos(theta) ** 24 + 1.5836198260616e30 * cos(theta) ** 22 - 2.07026700520786e29 * cos(theta) ** 20 + 2.16126775268952e28 * cos(theta) ** 18 - 1.769256105733e27 * cos(theta) ** 16 + 1.10925147694859e26 * cos(theta) ** 14 - 5.16326774436427e24 * cos(theta) ** 12 + 1.71072124060262e23 * cos(theta) ** 10 - 3.80160275689471e21 * cos(theta) ** 8 + 5.18232118758772e19 * cos(theta) ** 6 - 3.73904847589302e17 * cos(theta) ** 4 + 1.06829956454086e15 * cos(theta) ** 2 - 504628986556.855 ) * sin(7 * phi) ) # @torch.jit.script def Yl65_m_minus_6(theta, phi): return ( 5.8307687961392e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.53246154392222e29 * cos(theta) ** 59 - 2.03259046639606e30 * cos(theta) ** 57 + 1.27717101746776e31 * cos(theta) ** 55 - 5.05759722917234e31 * cos(theta) ** 53 + 1.41653841093486e32 * cos(theta) ** 51 - 2.98526689907759e32 * cos(theta) ** 49 + 4.91691018671603e32 * cos(theta) ** 47 - 6.48984116219783e32 * cos(theta) ** 45 + 6.98363342453897e32 * cos(theta) ** 43 - 6.20080725895643e32 * cos(theta) ** 41 + 4.58077653364349e32 * cos(theta) ** 39 - 2.83098866674715e32 * cos(theta) ** 37 + 1.46841000938754e32 * cos(theta) ** 35 - 6.40076157938158e31 * cos(theta) ** 33 + 2.34369078634776e31 * cos(theta) ** 31 - 7.19350637393867e30 * cos(theta) ** 29 + 1.84379014382519e30 * cos(theta) ** 27 - 3.92462304719613e29 * cos(theta) ** 25 + 6.88530359157216e28 * cos(theta) ** 23 - 9.85841431051361e27 * cos(theta) ** 21 + 1.1375093435208e27 * cos(theta) ** 19 - 1.04073888572529e26 * cos(theta) ** 17 + 7.39500984632391e24 * cos(theta) ** 15 - 3.97174441874174e23 * cos(theta) ** 13 + 1.55520112782056e22 * cos(theta) ** 11 - 4.22400306321634e20 * cos(theta) ** 9 + 7.40331598226818e18 * cos(theta) ** 7 - 7.47809695178604e16 * cos(theta) ** 5 + 356099854846954.0 * cos(theta) ** 3 - 504628986556.855 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl65_m_minus_5(theta, phi): return ( 3.80566556402649e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 2.5541025732037e27 * cos(theta) ** 60 - 3.50446632137253e28 * cos(theta) ** 58 + 2.28066253119243e29 * cos(theta) ** 56 - 9.3659207947636e29 * cos(theta) ** 54 + 2.72411232872088e30 * cos(theta) ** 52 - 5.97053379815518e30 * cos(theta) ** 50 + 1.02435628889917e31 * cos(theta) ** 48 - 1.4108350352604e31 * cos(theta) ** 46 + 1.58718941466795e31 * cos(theta) ** 44 - 1.47638268070391e31 * cos(theta) ** 42 + 1.14519413341087e31 * cos(theta) ** 40 - 7.44997017565038e30 * cos(theta) ** 38 + 4.07891669274316e30 * cos(theta) ** 36 - 1.88257693511223e30 * cos(theta) ** 34 + 7.32403370733675e29 * cos(theta) ** 32 - 2.39783545797956e29 * cos(theta) ** 30 + 6.58496479937568e28 * cos(theta) ** 28 - 1.50947040276774e28 * cos(theta) ** 26 + 2.8688764964884e27 * cos(theta) ** 24 - 4.48109741386982e26 * cos(theta) ** 22 + 5.68754671760401e25 * cos(theta) ** 20 - 5.78188269847385e24 * cos(theta) ** 18 + 4.62188115395245e23 * cos(theta) ** 16 - 2.83696029910125e22 * cos(theta) ** 14 + 1.29600093985047e21 * cos(theta) ** 12 - 4.22400306321634e19 * cos(theta) ** 10 + 9.25414497783522e17 * cos(theta) ** 8 - 1.24634949196434e16 * cos(theta) ** 6 + 89024963711738.5 * cos(theta) ** 4 - 252314493278.428 * cos(theta) ** 2 + 118457508.581421 ) * sin(5 * phi) ) # @torch.jit.script def Yl65_m_minus_4(theta, phi): return ( 2.4868211826522e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 4.1870533986946e25 * cos(theta) ** 61 - 5.93977342605513e26 * cos(theta) ** 59 + 4.00116233542532e27 * cos(theta) ** 57 - 1.70289468995702e28 * cos(theta) ** 55 + 5.13983458249222e28 * cos(theta) ** 53 - 1.17069290159905e29 * cos(theta) ** 51 + 2.09052303856974e29 * cos(theta) ** 49 - 3.00177667076681e29 * cos(theta) ** 47 + 3.527087588151e29 * cos(theta) ** 45 - 3.43344809466026e29 * cos(theta) ** 43 + 2.79315642295335e29 * cos(theta) ** 41 - 1.91024876298728e29 * cos(theta) ** 39 + 1.10240991695761e29 * cos(theta) ** 37 - 5.37879124317779e28 * cos(theta) ** 35 + 2.21940415373841e28 * cos(theta) ** 33 - 7.73495309025664e27 * cos(theta) ** 31 + 2.2706775170261e27 * cos(theta) ** 29 - 5.59063112136201e26 * cos(theta) ** 27 + 1.14755059859536e26 * cos(theta) ** 25 - 1.94830322342166e25 * cos(theta) ** 23 + 2.70835557981143e24 * cos(theta) ** 21 - 3.0430961570915e23 * cos(theta) ** 19 + 2.71875361997203e22 * cos(theta) ** 17 - 1.8913068660675e21 * cos(theta) ** 15 + 9.96923799884976e19 * cos(theta) ** 13 - 3.84000278474213e18 * cos(theta) ** 11 + 1.02823833087058e17 * cos(theta) ** 9 - 1.78049927423477e15 * cos(theta) ** 7 + 17804992742347.7 * cos(theta) ** 5 - 84104831092.8092 * cos(theta) ** 3 + 118457508.581421 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl65_m_minus_3(theta, phi): return ( 1.6265407497268e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 6.75331193337838e23 * cos(theta) ** 62 - 9.89962237675855e24 * cos(theta) ** 60 + 6.89855575073332e25 * cos(theta) ** 58 - 3.04088337492325e26 * cos(theta) ** 56 + 9.51821218980041e26 * cos(theta) ** 54 - 2.2513325030751e27 * cos(theta) ** 52 + 4.18104607713948e27 * cos(theta) ** 50 - 6.25370139743085e27 * cos(theta) ** 48 + 7.66758171337173e27 * cos(theta) ** 46 - 7.80329112422787e27 * cos(theta) ** 44 + 6.65037243560321e27 * cos(theta) ** 42 - 4.77562190746819e27 * cos(theta) ** 40 + 2.90107872883582e27 * cos(theta) ** 38 - 1.4941086786605e27 * cos(theta) ** 36 + 6.52765927570121e26 * cos(theta) ** 34 - 2.4171728407052e26 * cos(theta) ** 32 + 7.56892505675365e25 * cos(theta) ** 30 - 1.996653971915e25 * cos(theta) ** 28 + 4.41365614844369e24 * cos(theta) ** 26 - 8.11793009759026e23 * cos(theta) ** 24 + 1.23107071809611e23 * cos(theta) ** 22 - 1.52154807854575e22 * cos(theta) ** 20 + 1.51041867776224e21 * cos(theta) ** 18 - 1.18206679129219e20 * cos(theta) ** 16 + 7.12088428489269e18 * cos(theta) ** 14 - 3.20000232061844e17 * cos(theta) ** 12 + 1.02823833087058e16 * cos(theta) ** 10 - 222562409279346.0 * cos(theta) ** 8 + 2967498790391.28 * cos(theta) ** 6 - 21026207773.2023 * cos(theta) ** 4 + 59228754.2907107 * cos(theta) ** 2 - 27689.9272046333 ) * sin(3 * phi) ) # @torch.jit.script def Yl65_m_minus_2(theta, phi): return ( 0.00106460788688961 * (1.0 - cos(theta) ** 2) * ( 1.07195427513943e22 * cos(theta) ** 63 - 1.62288891422271e23 * cos(theta) ** 61 + 1.16924673741243e24 * cos(theta) ** 59 - 5.33488311390043e24 * cos(theta) ** 57 + 1.73058403450916e25 * cos(theta) ** 55 - 4.2477971756134e25 * cos(theta) ** 53 + 8.19812956301859e25 * cos(theta) ** 51 - 1.27626559131242e26 * cos(theta) ** 49 + 1.63140036454718e26 * cos(theta) ** 47 - 1.73406469427286e26 * cos(theta) ** 45 + 1.54659824083796e26 * cos(theta) ** 43 - 1.1647858310898e26 * cos(theta) ** 41 + 7.43866340727133e25 * cos(theta) ** 39 - 4.03813156394729e25 * cos(theta) ** 37 + 1.8650455073432e25 * cos(theta) ** 35 - 7.32476618395515e24 * cos(theta) ** 33 + 2.44158872798505e24 * cos(theta) ** 31 - 6.88501369625863e23 * cos(theta) ** 29 + 1.63468746238655e23 * cos(theta) ** 27 - 3.24717203903611e22 * cos(theta) ** 25 + 5.35248138302655e21 * cos(theta) ** 23 - 7.24546704069404e20 * cos(theta) ** 21 + 7.9495719882223e19 * cos(theta) ** 19 - 6.95333406642462e18 * cos(theta) ** 17 + 4.74725618992846e17 * cos(theta) ** 15 - 2.46154024662957e16 * cos(theta) ** 13 + 934762118973255.0 * cos(theta) ** 11 - 24729156586594.0 * cos(theta) ** 9 + 423928398627.326 * cos(theta) ** 7 - 4205241554.64046 * cos(theta) ** 5 + 19742918.0969036 * cos(theta) ** 3 - 27689.9272046333 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl65_m_minus_1(theta, phi): return ( 0.0697135289432729 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 1.67492855490535e20 * cos(theta) ** 64 - 2.61756276487534e21 * cos(theta) ** 62 + 1.94874456235404e22 * cos(theta) ** 60 - 9.19807433431109e22 * cos(theta) ** 58 + 3.09032863305208e23 * cos(theta) ** 56 - 7.86629106595075e23 * cos(theta) ** 54 + 1.57656337750357e24 * cos(theta) ** 52 - 2.55253118262483e24 * cos(theta) ** 50 + 3.39875075947329e24 * cos(theta) ** 48 - 3.76970585711491e24 * cos(theta) ** 46 + 3.51499600190444e24 * cos(theta) ** 44 - 2.77329959783287e24 * cos(theta) ** 42 + 1.85966585181783e24 * cos(theta) ** 40 - 1.06266620103876e24 * cos(theta) ** 38 + 5.18068196484223e23 * cos(theta) ** 36 - 2.15434299528093e23 * cos(theta) ** 34 + 7.62996477495328e22 * cos(theta) ** 32 - 2.29500456541954e22 * cos(theta) ** 30 + 5.8381695085234e21 * cos(theta) ** 28 - 1.24891232270619e21 * cos(theta) ** 26 + 2.23020057626106e20 * cos(theta) ** 24 - 3.29339410940638e19 * cos(theta) ** 22 + 3.97478599411115e18 * cos(theta) ** 20 - 3.8629633702359e17 * cos(theta) ** 18 + 2.96703511870529e16 * cos(theta) ** 16 - 1.75824303330684e15 * cos(theta) ** 14 + 77896843247771.2 * cos(theta) ** 12 - 2472915658659.4 * cos(theta) ** 10 + 52991049828.4158 * cos(theta) ** 8 - 700873592.440077 * cos(theta) ** 6 + 4935729.52422589 * cos(theta) ** 4 - 13844.9636023167 * cos(theta) ** 2 + 6.45753899361785 ) * sin(phi) ) # @torch.jit.script def Yl65_m0(theta, phi): return ( 2.61374682660235e19 * cos(theta) ** 65 - 4.21441348785495e20 * cos(theta) ** 63 + 3.24045257550422e21 * cos(theta) ** 61 - 1.58134085684606e22 * cos(theta) ** 59 + 5.49933781720246e22 * cos(theta) ** 57 - 1.45073440599258e23 * cos(theta) ** 55 + 3.017283743556e23 * cos(theta) ** 53 - 5.07669963201486e23 * cos(theta) ** 51 + 7.03564351175972e23 * cos(theta) ** 49 - 8.13561137643012e23 * cos(theta) ** 47 + 7.92305936749636e23 * cos(theta) ** 45 - 6.54197562453828e23 * cos(theta) ** 43 + 4.60078192286454e23 * cos(theta) ** 41 - 2.76383968992595e23 * cos(theta) ** 39 + 1.42025326645987e23 * cos(theta) ** 37 - 6.24348960701169e22 * cos(theta) ** 35 + 2.34525019960351e22 * cos(theta) ** 33 - 7.50935176101063e21 * cos(theta) ** 31 + 2.04201670694149e21 * cos(theta) ** 29 - 4.69190030004665e20 * cos(theta) ** 27 + 9.04866486437569e19 * cos(theta) ** 25 - 1.45243416763655e19 * cos(theta) ** 23 + 1.91988424457704e18 * cos(theta) ** 21 - 2.06227975120808e17 * cos(theta) ** 19 + 1.77033050932019e16 * cos(theta) ** 17 - 1.18896271243232e15 * cos(theta) ** 15 + 60779496010415.8 * cos(theta) ** 13 - 2280327411646.19 * cos(theta) ** 11 + 59722860781.2097 * cos(theta) ** 9 - 1015598955.18354 * cos(theta) ** 7 + 10012947.4454715 * cos(theta) ** 5 - 46811.3485061782 * cos(theta) ** 3 + 65.5009540664806 * cos(theta) ) # @torch.jit.script def Yl65_m1(theta, phi): return ( 0.0697135289432729 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 1.67492855490535e20 * cos(theta) ** 64 - 2.61756276487534e21 * cos(theta) ** 62 + 1.94874456235404e22 * cos(theta) ** 60 - 9.19807433431109e22 * cos(theta) ** 58 + 3.09032863305208e23 * cos(theta) ** 56 - 7.86629106595075e23 * cos(theta) ** 54 + 1.57656337750357e24 * cos(theta) ** 52 - 2.55253118262483e24 * cos(theta) ** 50 + 3.39875075947329e24 * cos(theta) ** 48 - 3.76970585711491e24 * cos(theta) ** 46 + 3.51499600190444e24 * cos(theta) ** 44 - 2.77329959783287e24 * cos(theta) ** 42 + 1.85966585181783e24 * cos(theta) ** 40 - 1.06266620103876e24 * cos(theta) ** 38 + 5.18068196484223e23 * cos(theta) ** 36 - 2.15434299528093e23 * cos(theta) ** 34 + 7.62996477495328e22 * cos(theta) ** 32 - 2.29500456541954e22 * cos(theta) ** 30 + 5.8381695085234e21 * cos(theta) ** 28 - 1.24891232270619e21 * cos(theta) ** 26 + 2.23020057626106e20 * cos(theta) ** 24 - 3.29339410940638e19 * cos(theta) ** 22 + 3.97478599411115e18 * cos(theta) ** 20 - 3.8629633702359e17 * cos(theta) ** 18 + 2.96703511870529e16 * cos(theta) ** 16 - 1.75824303330684e15 * cos(theta) ** 14 + 77896843247771.2 * cos(theta) ** 12 - 2472915658659.4 * cos(theta) ** 10 + 52991049828.4158 * cos(theta) ** 8 - 700873592.440077 * cos(theta) ** 6 + 4935729.52422589 * cos(theta) ** 4 - 13844.9636023167 * cos(theta) ** 2 + 6.45753899361785 ) * cos(phi) ) # @torch.jit.script def Yl65_m2(theta, phi): return ( 0.00106460788688961 * (1.0 - cos(theta) ** 2) * ( 1.07195427513943e22 * cos(theta) ** 63 - 1.62288891422271e23 * cos(theta) ** 61 + 1.16924673741243e24 * cos(theta) ** 59 - 5.33488311390043e24 * cos(theta) ** 57 + 1.73058403450916e25 * cos(theta) ** 55 - 4.2477971756134e25 * cos(theta) ** 53 + 8.19812956301859e25 * cos(theta) ** 51 - 1.27626559131242e26 * cos(theta) ** 49 + 1.63140036454718e26 * cos(theta) ** 47 - 1.73406469427286e26 * cos(theta) ** 45 + 1.54659824083796e26 * cos(theta) ** 43 - 1.1647858310898e26 * cos(theta) ** 41 + 7.43866340727133e25 * cos(theta) ** 39 - 4.03813156394729e25 * cos(theta) ** 37 + 1.8650455073432e25 * cos(theta) ** 35 - 7.32476618395515e24 * cos(theta) ** 33 + 2.44158872798505e24 * cos(theta) ** 31 - 6.88501369625863e23 * cos(theta) ** 29 + 1.63468746238655e23 * cos(theta) ** 27 - 3.24717203903611e22 * cos(theta) ** 25 + 5.35248138302655e21 * cos(theta) ** 23 - 7.24546704069404e20 * cos(theta) ** 21 + 7.9495719882223e19 * cos(theta) ** 19 - 6.95333406642462e18 * cos(theta) ** 17 + 4.74725618992846e17 * cos(theta) ** 15 - 2.46154024662957e16 * cos(theta) ** 13 + 934762118973255.0 * cos(theta) ** 11 - 24729156586594.0 * cos(theta) ** 9 + 423928398627.326 * cos(theta) ** 7 - 4205241554.64046 * cos(theta) ** 5 + 19742918.0969036 * cos(theta) ** 3 - 27689.9272046333 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl65_m3(theta, phi): return ( 1.6265407497268e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 6.75331193337838e23 * cos(theta) ** 62 - 9.89962237675855e24 * cos(theta) ** 60 + 6.89855575073332e25 * cos(theta) ** 58 - 3.04088337492325e26 * cos(theta) ** 56 + 9.51821218980041e26 * cos(theta) ** 54 - 2.2513325030751e27 * cos(theta) ** 52 + 4.18104607713948e27 * cos(theta) ** 50 - 6.25370139743085e27 * cos(theta) ** 48 + 7.66758171337173e27 * cos(theta) ** 46 - 7.80329112422787e27 * cos(theta) ** 44 + 6.65037243560321e27 * cos(theta) ** 42 - 4.77562190746819e27 * cos(theta) ** 40 + 2.90107872883582e27 * cos(theta) ** 38 - 1.4941086786605e27 * cos(theta) ** 36 + 6.52765927570121e26 * cos(theta) ** 34 - 2.4171728407052e26 * cos(theta) ** 32 + 7.56892505675365e25 * cos(theta) ** 30 - 1.996653971915e25 * cos(theta) ** 28 + 4.41365614844369e24 * cos(theta) ** 26 - 8.11793009759026e23 * cos(theta) ** 24 + 1.23107071809611e23 * cos(theta) ** 22 - 1.52154807854575e22 * cos(theta) ** 20 + 1.51041867776224e21 * cos(theta) ** 18 - 1.18206679129219e20 * cos(theta) ** 16 + 7.12088428489269e18 * cos(theta) ** 14 - 3.20000232061844e17 * cos(theta) ** 12 + 1.02823833087058e16 * cos(theta) ** 10 - 222562409279346.0 * cos(theta) ** 8 + 2967498790391.28 * cos(theta) ** 6 - 21026207773.2023 * cos(theta) ** 4 + 59228754.2907107 * cos(theta) ** 2 - 27689.9272046333 ) * cos(3 * phi) ) # @torch.jit.script def Yl65_m4(theta, phi): return ( 2.4868211826522e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 4.1870533986946e25 * cos(theta) ** 61 - 5.93977342605513e26 * cos(theta) ** 59 + 4.00116233542532e27 * cos(theta) ** 57 - 1.70289468995702e28 * cos(theta) ** 55 + 5.13983458249222e28 * cos(theta) ** 53 - 1.17069290159905e29 * cos(theta) ** 51 + 2.09052303856974e29 * cos(theta) ** 49 - 3.00177667076681e29 * cos(theta) ** 47 + 3.527087588151e29 * cos(theta) ** 45 - 3.43344809466026e29 * cos(theta) ** 43 + 2.79315642295335e29 * cos(theta) ** 41 - 1.91024876298728e29 * cos(theta) ** 39 + 1.10240991695761e29 * cos(theta) ** 37 - 5.37879124317779e28 * cos(theta) ** 35 + 2.21940415373841e28 * cos(theta) ** 33 - 7.73495309025664e27 * cos(theta) ** 31 + 2.2706775170261e27 * cos(theta) ** 29 - 5.59063112136201e26 * cos(theta) ** 27 + 1.14755059859536e26 * cos(theta) ** 25 - 1.94830322342166e25 * cos(theta) ** 23 + 2.70835557981143e24 * cos(theta) ** 21 - 3.0430961570915e23 * cos(theta) ** 19 + 2.71875361997203e22 * cos(theta) ** 17 - 1.8913068660675e21 * cos(theta) ** 15 + 9.96923799884976e19 * cos(theta) ** 13 - 3.84000278474213e18 * cos(theta) ** 11 + 1.02823833087058e17 * cos(theta) ** 9 - 1.78049927423477e15 * cos(theta) ** 7 + 17804992742347.7 * cos(theta) ** 5 - 84104831092.8092 * cos(theta) ** 3 + 118457508.581421 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl65_m5(theta, phi): return ( 3.80566556402649e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 2.5541025732037e27 * cos(theta) ** 60 - 3.50446632137253e28 * cos(theta) ** 58 + 2.28066253119243e29 * cos(theta) ** 56 - 9.3659207947636e29 * cos(theta) ** 54 + 2.72411232872088e30 * cos(theta) ** 52 - 5.97053379815518e30 * cos(theta) ** 50 + 1.02435628889917e31 * cos(theta) ** 48 - 1.4108350352604e31 * cos(theta) ** 46 + 1.58718941466795e31 * cos(theta) ** 44 - 1.47638268070391e31 * cos(theta) ** 42 + 1.14519413341087e31 * cos(theta) ** 40 - 7.44997017565038e30 * cos(theta) ** 38 + 4.07891669274316e30 * cos(theta) ** 36 - 1.88257693511223e30 * cos(theta) ** 34 + 7.32403370733675e29 * cos(theta) ** 32 - 2.39783545797956e29 * cos(theta) ** 30 + 6.58496479937568e28 * cos(theta) ** 28 - 1.50947040276774e28 * cos(theta) ** 26 + 2.8688764964884e27 * cos(theta) ** 24 - 4.48109741386982e26 * cos(theta) ** 22 + 5.68754671760401e25 * cos(theta) ** 20 - 5.78188269847385e24 * cos(theta) ** 18 + 4.62188115395245e23 * cos(theta) ** 16 - 2.83696029910125e22 * cos(theta) ** 14 + 1.29600093985047e21 * cos(theta) ** 12 - 4.22400306321634e19 * cos(theta) ** 10 + 9.25414497783522e17 * cos(theta) ** 8 - 1.24634949196434e16 * cos(theta) ** 6 + 89024963711738.5 * cos(theta) ** 4 - 252314493278.428 * cos(theta) ** 2 + 118457508.581421 ) * cos(5 * phi) ) # @torch.jit.script def Yl65_m6(theta, phi): return ( 5.8307687961392e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.53246154392222e29 * cos(theta) ** 59 - 2.03259046639606e30 * cos(theta) ** 57 + 1.27717101746776e31 * cos(theta) ** 55 - 5.05759722917234e31 * cos(theta) ** 53 + 1.41653841093486e32 * cos(theta) ** 51 - 2.98526689907759e32 * cos(theta) ** 49 + 4.91691018671603e32 * cos(theta) ** 47 - 6.48984116219783e32 * cos(theta) ** 45 + 6.98363342453897e32 * cos(theta) ** 43 - 6.20080725895643e32 * cos(theta) ** 41 + 4.58077653364349e32 * cos(theta) ** 39 - 2.83098866674715e32 * cos(theta) ** 37 + 1.46841000938754e32 * cos(theta) ** 35 - 6.40076157938158e31 * cos(theta) ** 33 + 2.34369078634776e31 * cos(theta) ** 31 - 7.19350637393867e30 * cos(theta) ** 29 + 1.84379014382519e30 * cos(theta) ** 27 - 3.92462304719613e29 * cos(theta) ** 25 + 6.88530359157216e28 * cos(theta) ** 23 - 9.85841431051361e27 * cos(theta) ** 21 + 1.1375093435208e27 * cos(theta) ** 19 - 1.04073888572529e26 * cos(theta) ** 17 + 7.39500984632391e24 * cos(theta) ** 15 - 3.97174441874174e23 * cos(theta) ** 13 + 1.55520112782056e22 * cos(theta) ** 11 - 4.22400306321634e20 * cos(theta) ** 9 + 7.40331598226818e18 * cos(theta) ** 7 - 7.47809695178604e16 * cos(theta) ** 5 + 356099854846954.0 * cos(theta) ** 3 - 504628986556.855 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl65_m7(theta, phi): return ( 8.94609626093219e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 9.04152310914111e30 * cos(theta) ** 58 - 1.15857656584576e32 * cos(theta) ** 56 + 7.0244405960727e32 * cos(theta) ** 54 - 2.68052653146134e33 * cos(theta) ** 52 + 7.22434589576776e33 * cos(theta) ** 50 - 1.46278078054802e34 * cos(theta) ** 48 + 2.31094778775653e34 * cos(theta) ** 46 - 2.92042852298903e34 * cos(theta) ** 44 + 3.00296237255176e34 * cos(theta) ** 42 - 2.54233097617214e34 * cos(theta) ** 40 + 1.78650284812096e34 * cos(theta) ** 38 - 1.04746580669644e34 * cos(theta) ** 36 + 5.13943503285638e33 * cos(theta) ** 34 - 2.11225132119592e33 * cos(theta) ** 32 + 7.26544143767806e32 * cos(theta) ** 30 - 2.08611684844222e32 * cos(theta) ** 28 + 4.97823338832801e31 * cos(theta) ** 26 - 9.81155761799032e30 * cos(theta) ** 24 + 1.5836198260616e30 * cos(theta) ** 22 - 2.07026700520786e29 * cos(theta) ** 20 + 2.16126775268952e28 * cos(theta) ** 18 - 1.769256105733e27 * cos(theta) ** 16 + 1.10925147694859e26 * cos(theta) ** 14 - 5.16326774436427e24 * cos(theta) ** 12 + 1.71072124060262e23 * cos(theta) ** 10 - 3.80160275689471e21 * cos(theta) ** 8 + 5.18232118758772e19 * cos(theta) ** 6 - 3.73904847589302e17 * cos(theta) ** 4 + 1.06829956454086e15 * cos(theta) ** 2 - 504628986556.855 ) * cos(7 * phi) ) # @torch.jit.script def Yl65_m8(theta, phi): return ( 1.37485893388855e-14 * (1.0 - cos(theta) ** 2) ** 4 * ( 5.24408340330185e32 * cos(theta) ** 57 - 6.48802876873624e33 * cos(theta) ** 55 + 3.79319792187926e34 * cos(theta) ** 53 - 1.3938737963599e35 * cos(theta) ** 51 + 3.61217294788388e35 * cos(theta) ** 49 - 7.02134774663049e35 * cos(theta) ** 47 + 1.06303598236801e36 * cos(theta) ** 45 - 1.28498855011517e36 * cos(theta) ** 43 + 1.26124419647174e36 * cos(theta) ** 41 - 1.01693239046886e36 * cos(theta) ** 39 + 6.78871082285965e35 * cos(theta) ** 37 - 3.7708769041072e35 * cos(theta) ** 35 + 1.74740791117117e35 * cos(theta) ** 33 - 6.75920422782694e34 * cos(theta) ** 31 + 2.17963243130342e34 * cos(theta) ** 29 - 5.8411271756382e33 * cos(theta) ** 27 + 1.29434068096528e33 * cos(theta) ** 25 - 2.35477382831768e32 * cos(theta) ** 23 + 3.48396361733551e31 * cos(theta) ** 21 - 4.14053401041572e30 * cos(theta) ** 19 + 3.89028195484114e29 * cos(theta) ** 17 - 2.83080976917279e28 * cos(theta) ** 15 + 1.55295206772802e27 * cos(theta) ** 13 - 6.19592129323712e25 * cos(theta) ** 11 + 1.71072124060262e24 * cos(theta) ** 9 - 3.04128220551577e22 * cos(theta) ** 7 + 3.10939271255263e20 * cos(theta) ** 5 - 1.49561939035721e18 * cos(theta) ** 3 + 2.13659912908172e15 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl65_m9(theta, phi): return ( 2.11692198074881e-16 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 2.98912753988205e34 * cos(theta) ** 56 - 3.56841582280493e35 * cos(theta) ** 54 + 2.01039489859601e36 * cos(theta) ** 52 - 7.10875636143548e36 * cos(theta) ** 50 + 1.7699647444631e37 * cos(theta) ** 48 - 3.30003344091633e37 * cos(theta) ** 46 + 4.78366192065602e37 * cos(theta) ** 44 - 5.52545076549524e37 * cos(theta) ** 42 + 5.17110120553413e37 * cos(theta) ** 40 - 3.96603632282853e37 * cos(theta) ** 38 + 2.51182300445807e37 * cos(theta) ** 36 - 1.31980691643752e37 * cos(theta) ** 34 + 5.76644610686486e36 * cos(theta) ** 32 - 2.09535331062635e36 * cos(theta) ** 30 + 6.32093405077991e35 * cos(theta) ** 28 - 1.57710433742231e35 * cos(theta) ** 26 + 3.23585170241321e34 * cos(theta) ** 24 - 5.41597980513066e33 * cos(theta) ** 22 + 7.31632359640457e32 * cos(theta) ** 20 - 7.86701461978987e31 * cos(theta) ** 18 + 6.61347932322994e30 * cos(theta) ** 16 - 4.24621465375919e29 * cos(theta) ** 14 + 2.01883768804643e28 * cos(theta) ** 12 - 6.81551342256083e26 * cos(theta) ** 10 + 1.53964911654236e25 * cos(theta) ** 8 - 2.12889754386104e23 * cos(theta) ** 6 + 1.55469635627632e21 * cos(theta) ** 4 - 4.48685817107162e18 * cos(theta) ** 2 + 2.13659912908172e15 ) * cos(9 * phi) ) # @torch.jit.script def Yl65_m10(theta, phi): return ( 3.26648153237928e-18 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.67391142233395e36 * cos(theta) ** 55 - 1.92694454431466e37 * cos(theta) ** 53 + 1.04540534726992e38 * cos(theta) ** 51 - 3.55437818071774e38 * cos(theta) ** 49 + 8.49583077342289e38 * cos(theta) ** 47 - 1.51801538282151e39 * cos(theta) ** 45 + 2.10481124508865e39 * cos(theta) ** 43 - 2.320689321508e39 * cos(theta) ** 41 + 2.06844048221365e39 * cos(theta) ** 39 - 1.50709380267484e39 * cos(theta) ** 37 + 9.04256281604906e38 * cos(theta) ** 35 - 4.48734351588756e38 * cos(theta) ** 33 + 1.84526275419676e38 * cos(theta) ** 31 - 6.28605993187906e37 * cos(theta) ** 29 + 1.76986153421838e37 * cos(theta) ** 27 - 4.10047127729802e36 * cos(theta) ** 25 + 7.7660440857917e35 * cos(theta) ** 23 - 1.19151555712874e35 * cos(theta) ** 21 + 1.46326471928091e34 * cos(theta) ** 19 - 1.41606263156218e33 * cos(theta) ** 17 + 1.05815669171679e32 * cos(theta) ** 15 - 5.94470051526287e30 * cos(theta) ** 13 + 2.42260522565571e29 * cos(theta) ** 11 - 6.81551342256083e27 * cos(theta) ** 9 + 1.23171929323389e26 * cos(theta) ** 7 - 1.27733852631662e24 * cos(theta) ** 5 + 6.21878542510527e21 * cos(theta) ** 3 - 8.97371634214324e18 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl65_m11(theta, phi): return ( 5.05233415225719e-20 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 9.20651282283672e37 * cos(theta) ** 54 - 1.02128060848677e39 * cos(theta) ** 52 + 5.33156727107661e39 * cos(theta) ** 50 - 1.74164530855169e40 * cos(theta) ** 48 + 3.99304046350876e40 * cos(theta) ** 46 - 6.8310692226968e40 * cos(theta) ** 44 + 9.0506883538812e40 * cos(theta) ** 42 - 9.5148262181828e40 * cos(theta) ** 40 + 8.06691788063324e40 * cos(theta) ** 38 - 5.57624706989692e40 * cos(theta) ** 36 + 3.16489698561717e40 * cos(theta) ** 34 - 1.4808233602429e40 * cos(theta) ** 32 + 5.72031453800994e39 * cos(theta) ** 30 - 1.82295738024493e39 * cos(theta) ** 28 + 4.77862614238961e38 * cos(theta) ** 26 - 1.0251178193245e38 * cos(theta) ** 24 + 1.78619013973209e37 * cos(theta) ** 22 - 2.50218266997036e36 * cos(theta) ** 20 + 2.78020296663374e35 * cos(theta) ** 18 - 2.4073064736557e34 * cos(theta) ** 16 + 1.58723503757519e33 * cos(theta) ** 14 - 7.72811066984173e31 * cos(theta) ** 12 + 2.66486574822129e30 * cos(theta) ** 10 - 6.13396208030475e28 * cos(theta) ** 8 + 8.6220350526372e26 * cos(theta) ** 6 - 6.38669263158311e24 * cos(theta) ** 4 + 1.86563562753158e22 * cos(theta) ** 2 - 8.97371634214324e18 ) * cos(11 * phi) ) # @torch.jit.script def Yl65_m12(theta, phi): return ( 7.83519525722043e-22 * (1.0 - cos(theta) ** 2) ** 6 * ( 4.97151692433183e39 * cos(theta) ** 53 - 5.31065916413121e40 * cos(theta) ** 51 + 2.6657836355383e41 * cos(theta) ** 49 - 8.35989748104812e41 * cos(theta) ** 47 + 1.83679861321403e42 * cos(theta) ** 45 - 3.00567045798659e42 * cos(theta) ** 43 + 3.8012891086301e42 * cos(theta) ** 41 - 3.80593048727312e42 * cos(theta) ** 39 + 3.06542879464063e42 * cos(theta) ** 37 - 2.00744894516289e42 * cos(theta) ** 35 + 1.07606497510984e42 * cos(theta) ** 33 - 4.73863475277727e41 * cos(theta) ** 31 + 1.71609436140298e41 * cos(theta) ** 29 - 5.1042806646858e40 * cos(theta) ** 27 + 1.2424427970213e40 * cos(theta) ** 25 - 2.46028276637881e39 * cos(theta) ** 23 + 3.9296183074106e38 * cos(theta) ** 21 - 5.00436533994073e37 * cos(theta) ** 19 + 5.00436533994073e36 * cos(theta) ** 17 - 3.85169035784912e35 * cos(theta) ** 15 + 2.22212905260526e34 * cos(theta) ** 13 - 9.27373280381008e32 * cos(theta) ** 11 + 2.66486574822129e31 * cos(theta) ** 9 - 4.9071696642438e29 * cos(theta) ** 7 + 5.17322103158232e27 * cos(theta) ** 5 - 2.55467705263324e25 * cos(theta) ** 3 + 3.73127125506316e22 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl65_m13(theta, phi): return ( 1.2186095790741e-23 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 2.63490396989587e41 * cos(theta) ** 52 - 2.70843617370692e42 * cos(theta) ** 50 + 1.30623398141377e43 * cos(theta) ** 48 - 3.92915181609262e43 * cos(theta) ** 46 + 8.26559375946313e43 * cos(theta) ** 44 - 1.29243829693423e44 * cos(theta) ** 42 + 1.55852853453834e44 * cos(theta) ** 40 - 1.48431289003652e44 * cos(theta) ** 38 + 1.13420865401703e44 * cos(theta) ** 36 - 7.02607130807012e43 * cos(theta) ** 34 + 3.55101441786247e43 * cos(theta) ** 32 - 1.46897677336095e43 * cos(theta) ** 30 + 4.97667364806865e42 * cos(theta) ** 28 - 1.37815577946516e42 * cos(theta) ** 26 + 3.10610699255325e41 * cos(theta) ** 24 - 5.65865036267127e40 * cos(theta) ** 22 + 8.25219844556226e39 * cos(theta) ** 20 - 9.50829414588738e38 * cos(theta) ** 18 + 8.50742107789924e37 * cos(theta) ** 16 - 5.77753553677368e36 * cos(theta) ** 14 + 2.88876776838684e35 * cos(theta) ** 12 - 1.02011060841911e34 * cos(theta) ** 10 + 2.39837917339916e32 * cos(theta) ** 8 - 3.43501876497066e30 * cos(theta) ** 6 + 2.58661051579116e28 * cos(theta) ** 4 - 7.66403115789973e25 * cos(theta) ** 2 + 3.73127125506316e22 ) * cos(13 * phi) ) # @torch.jit.script def Yl65_m14(theta, phi): return ( 1.90129440496224e-25 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.37015006434585e43 * cos(theta) ** 51 - 1.35421808685346e44 * cos(theta) ** 49 + 6.26992311078609e44 * cos(theta) ** 47 - 1.8074098354026e45 * cos(theta) ** 45 + 3.63686125416378e45 * cos(theta) ** 43 - 5.42824084712379e45 * cos(theta) ** 41 + 6.23411413815337e45 * cos(theta) ** 39 - 5.64038898213876e45 * cos(theta) ** 37 + 4.08315115446132e45 * cos(theta) ** 35 - 2.38886424474384e45 * cos(theta) ** 33 + 1.13632461371599e45 * cos(theta) ** 31 - 4.40693032008286e44 * cos(theta) ** 29 + 1.39346862145922e44 * cos(theta) ** 27 - 3.58320502660943e43 * cos(theta) ** 25 + 7.4546567821278e42 * cos(theta) ** 23 - 1.24490307978768e42 * cos(theta) ** 21 + 1.65043968911245e41 * cos(theta) ** 19 - 1.71149294625973e40 * cos(theta) ** 17 + 1.36118737246388e39 * cos(theta) ** 15 - 8.08854975148315e37 * cos(theta) ** 13 + 3.46652132206421e36 * cos(theta) ** 11 - 1.02011060841911e35 * cos(theta) ** 9 + 1.91870333871933e33 * cos(theta) ** 7 - 2.0610112589824e31 * cos(theta) ** 5 + 1.03464420631646e29 * cos(theta) ** 3 - 1.53280623157995e26 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl65_m15(theta, phi): return ( 2.9765918522291e-27 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 6.98776532816385e44 * cos(theta) ** 50 - 6.63566862558195e45 * cos(theta) ** 48 + 2.94686386206946e46 * cos(theta) ** 46 - 8.13334425931172e46 * cos(theta) ** 44 + 1.56385033929042e47 * cos(theta) ** 42 - 2.22557874732075e47 * cos(theta) ** 40 + 2.43130451387981e47 * cos(theta) ** 38 - 2.08694392339134e47 * cos(theta) ** 36 + 1.42910290406146e47 * cos(theta) ** 34 - 7.88325200765467e46 * cos(theta) ** 32 + 3.52260630251957e46 * cos(theta) ** 30 - 1.27800979282403e46 * cos(theta) ** 28 + 3.7623652779399e45 * cos(theta) ** 26 - 8.95801256652357e44 * cos(theta) ** 24 + 1.71457105988939e44 * cos(theta) ** 22 - 2.61429646755412e43 * cos(theta) ** 20 + 3.13583540931366e42 * cos(theta) ** 18 - 2.90953800864154e41 * cos(theta) ** 16 + 2.04178105869582e40 * cos(theta) ** 14 - 1.05151146769281e39 * cos(theta) ** 12 + 3.81317345427063e37 * cos(theta) ** 10 - 9.18099547577197e35 * cos(theta) ** 8 + 1.34309233710353e34 * cos(theta) ** 6 - 1.0305056294912e32 * cos(theta) ** 4 + 3.10393261894939e29 * cos(theta) ** 2 - 1.53280623157995e26 ) * cos(15 * phi) ) # @torch.jit.script def Yl65_m16(theta, phi): return ( 4.67726285230182e-29 * (1.0 - cos(theta) ** 2) ** 8 * ( 3.49388266408192e46 * cos(theta) ** 49 - 3.18512094027933e47 * cos(theta) ** 47 + 1.35555737655195e48 * cos(theta) ** 45 - 3.57867147409716e48 * cos(theta) ** 43 + 6.56817142501978e48 * cos(theta) ** 41 - 8.90231498928301e48 * cos(theta) ** 39 + 9.23895715274329e48 * cos(theta) ** 37 - 7.51299812420883e48 * cos(theta) ** 35 + 4.85894987380897e48 * cos(theta) ** 33 - 2.5226406424495e48 * cos(theta) ** 31 + 1.05678189075587e48 * cos(theta) ** 29 - 3.57842741990728e47 * cos(theta) ** 27 + 9.78214972264374e46 * cos(theta) ** 25 - 2.14992301596566e46 * cos(theta) ** 23 + 3.77205633175667e45 * cos(theta) ** 21 - 5.22859293510825e44 * cos(theta) ** 19 + 5.64450373676459e43 * cos(theta) ** 17 - 4.65526081382646e42 * cos(theta) ** 15 + 2.85849348217414e41 * cos(theta) ** 13 - 1.26181376123137e40 * cos(theta) ** 11 + 3.81317345427063e38 * cos(theta) ** 9 - 7.34479638061758e36 * cos(theta) ** 7 + 8.05855402262117e34 * cos(theta) ** 5 - 4.12202251796479e32 * cos(theta) ** 3 + 6.20786523789878e29 * cos(theta) ) * cos(16 * phi) ) # @torch.jit.script def Yl65_m17(theta, phi): return ( 7.37881820904114e-31 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.71200250540014e48 * cos(theta) ** 48 - 1.49700684193129e49 * cos(theta) ** 46 + 6.10000819448379e49 * cos(theta) ** 44 - 1.53882873386178e50 * cos(theta) ** 42 + 2.69295028425811e50 * cos(theta) ** 40 - 3.47190284582037e50 * cos(theta) ** 38 + 3.41841414651502e50 * cos(theta) ** 36 - 2.62954934347309e50 * cos(theta) ** 34 + 1.60345345835696e50 * cos(theta) ** 32 - 7.82018599159344e49 * cos(theta) ** 30 + 3.06466748319202e49 * cos(theta) ** 28 - 9.66175403374966e48 * cos(theta) ** 26 + 2.44553743066093e48 * cos(theta) ** 24 - 4.94482293672101e47 * cos(theta) ** 22 + 7.921318296689e46 * cos(theta) ** 20 - 9.93432657670567e45 * cos(theta) ** 18 + 9.5956563524998e44 * cos(theta) ** 16 - 6.98289122073969e43 * cos(theta) ** 14 + 3.71604152682639e42 * cos(theta) ** 12 - 1.38799513735451e41 * cos(theta) ** 10 + 3.43185610884356e39 * cos(theta) ** 8 - 5.14135746643231e37 * cos(theta) ** 6 + 4.02927701131058e35 * cos(theta) ** 4 - 1.23660675538944e33 * cos(theta) ** 2 + 6.20786523789878e29 ) * cos(17 * phi) ) # @torch.jit.script def Yl65_m18(theta, phi): return ( 1.16903400982024e-32 * (1.0 - cos(theta) ** 2) ** 9 * ( 8.21761202592068e49 * cos(theta) ** 47 - 6.88623147288392e50 * cos(theta) ** 45 + 2.68400360557287e51 * cos(theta) ** 43 - 6.46308068221946e51 * cos(theta) ** 41 + 1.07718011370324e52 * cos(theta) ** 39 - 1.31932308141174e52 * cos(theta) ** 37 + 1.23062909274541e52 * cos(theta) ** 35 - 8.94046776780851e51 * cos(theta) ** 33 + 5.13105106674227e51 * cos(theta) ** 31 - 2.34605579747803e51 * cos(theta) ** 29 + 8.58106895293766e50 * cos(theta) ** 27 - 2.51205604877491e50 * cos(theta) ** 25 + 5.86928983358624e49 * cos(theta) ** 23 - 1.08786104607862e49 * cos(theta) ** 21 + 1.5842636593378e48 * cos(theta) ** 19 - 1.78817878380702e47 * cos(theta) ** 17 + 1.53530501639997e46 * cos(theta) ** 15 - 9.77604770903557e44 * cos(theta) ** 13 + 4.45924983219166e43 * cos(theta) ** 11 - 1.38799513735451e42 * cos(theta) ** 9 + 2.74548488707485e40 * cos(theta) ** 7 - 3.08481447985938e38 * cos(theta) ** 5 + 1.61171080452423e36 * cos(theta) ** 3 - 2.47321351077888e33 * cos(theta) ) * cos(18 * phi) ) # @torch.jit.script def Yl65_m19(theta, phi): return ( 1.86053812587183e-34 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 3.86227765218272e51 * cos(theta) ** 46 - 3.09880416279776e52 * cos(theta) ** 44 + 1.15412155039633e53 * cos(theta) ** 42 - 2.64986307970998e53 * cos(theta) ** 40 + 4.20100244344265e53 * cos(theta) ** 38 - 4.88149540122344e53 * cos(theta) ** 36 + 4.30720182460892e53 * cos(theta) ** 34 - 2.95035436337681e53 * cos(theta) ** 32 + 1.5906258306901e53 * cos(theta) ** 30 - 6.80356181268629e52 * cos(theta) ** 28 + 2.31688861729317e52 * cos(theta) ** 26 - 6.28014012193728e51 * cos(theta) ** 24 + 1.34993666172484e51 * cos(theta) ** 22 - 2.28450819676511e50 * cos(theta) ** 20 + 3.01010095274182e49 * cos(theta) ** 18 - 3.03990393247194e48 * cos(theta) ** 16 + 2.30295752459995e47 * cos(theta) ** 14 - 1.27088620217462e46 * cos(theta) ** 12 + 4.90517481541083e44 * cos(theta) ** 10 - 1.24919562361906e43 * cos(theta) ** 8 + 1.9218394209524e41 * cos(theta) ** 6 - 1.54240723992969e39 * cos(theta) ** 4 + 4.8351324135727e36 * cos(theta) ** 2 - 2.47321351077888e33 ) * cos(19 * phi) ) # @torch.jit.script def Yl65_m20(theta, phi): return ( 2.97543313609508e-36 * (1.0 - cos(theta) ** 2) ** 10 * ( 1.77664772000405e53 * cos(theta) ** 45 - 1.36347383163102e54 * cos(theta) ** 43 + 4.8473105116646e54 * cos(theta) ** 41 - 1.05994523188399e55 * cos(theta) ** 39 + 1.59638092850821e55 * cos(theta) ** 37 - 1.75733834444044e55 * cos(theta) ** 35 + 1.46444862036703e55 * cos(theta) ** 33 - 9.44113396280578e54 * cos(theta) ** 31 + 4.77187749207031e54 * cos(theta) ** 29 - 1.90499730755216e54 * cos(theta) ** 27 + 6.02391040496224e53 * cos(theta) ** 25 - 1.50723362926495e53 * cos(theta) ** 23 + 2.96986065579464e52 * cos(theta) ** 21 - 4.56901639353021e51 * cos(theta) ** 19 + 5.41818171493527e50 * cos(theta) ** 17 - 4.8638462919551e49 * cos(theta) ** 15 + 3.22414053443993e48 * cos(theta) ** 13 - 1.52506344260955e47 * cos(theta) ** 11 + 4.90517481541083e45 * cos(theta) ** 9 - 9.99356498895246e43 * cos(theta) ** 7 + 1.15310365257144e42 * cos(theta) ** 5 - 6.16962895971877e39 * cos(theta) ** 3 + 9.6702648271454e36 * cos(theta) ) * cos(20 * phi) ) # @torch.jit.script def Yl65_m21(theta, phi): return ( 4.78293757576616e-38 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 7.99491474001823e54 * cos(theta) ** 44 - 5.86293747601337e55 * cos(theta) ** 42 + 1.98739730978249e56 * cos(theta) ** 40 - 4.13378640434757e56 * cos(theta) ** 38 + 5.90660943548037e56 * cos(theta) ** 36 - 6.15068420554154e56 * cos(theta) ** 34 + 4.83268044721121e56 * cos(theta) ** 32 - 2.92675152846979e56 * cos(theta) ** 30 + 1.38384447270039e56 * cos(theta) ** 28 - 5.14349273039083e55 * cos(theta) ** 26 + 1.50597760124056e55 * cos(theta) ** 24 - 3.46663734730938e54 * cos(theta) ** 22 + 6.23670737716874e53 * cos(theta) ** 20 - 8.68113114770741e52 * cos(theta) ** 18 + 9.21090891538997e51 * cos(theta) ** 16 - 7.29576943793265e50 * cos(theta) ** 14 + 4.19138269477191e49 * cos(theta) ** 12 - 1.6775697868705e48 * cos(theta) ** 10 + 4.41465733386975e46 * cos(theta) ** 8 - 6.99549549226672e44 * cos(theta) ** 6 + 5.76551826285719e42 * cos(theta) ** 4 - 1.85088868791563e40 * cos(theta) ** 2 + 9.6702648271454e36 ) * cos(21 * phi) ) # @torch.jit.script def Yl65_m22(theta, phi): return ( 7.73052071376472e-40 * (1.0 - cos(theta) ** 2) ** 11 * ( 3.51776248560802e56 * cos(theta) ** 43 - 2.46243373992562e57 * cos(theta) ** 41 + 7.94958923912994e57 * cos(theta) ** 39 - 1.57083883365208e58 * cos(theta) ** 37 + 2.12637939677293e58 * cos(theta) ** 35 - 2.09123262988412e58 * cos(theta) ** 33 + 1.54645774310759e58 * cos(theta) ** 31 - 8.78025458540938e57 * cos(theta) ** 29 + 3.8747645235611e57 * cos(theta) ** 27 - 1.33730810990162e57 * cos(theta) ** 25 + 3.61434624297734e56 * cos(theta) ** 23 - 7.62660216408063e55 * cos(theta) ** 21 + 1.24734147543375e55 * cos(theta) ** 19 - 1.56260360658733e54 * cos(theta) ** 17 + 1.47374542646239e53 * cos(theta) ** 15 - 1.02140772131057e52 * cos(theta) ** 13 + 5.02965923372629e50 * cos(theta) ** 11 - 1.6775697868705e49 * cos(theta) ** 9 + 3.5317258670958e47 * cos(theta) ** 7 - 4.19729729536003e45 * cos(theta) ** 5 + 2.30620730514287e43 * cos(theta) ** 3 - 3.70177737583126e40 * cos(theta) ) * cos(22 * phi) ) # @torch.jit.script def Yl65_m23(theta, phi): return ( 1.25670454085725e-41 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.51263786881145e58 * cos(theta) ** 42 - 1.0095978333695e59 * cos(theta) ** 40 + 3.10033980326068e59 * cos(theta) ** 38 - 5.81210368451268e59 * cos(theta) ** 36 + 7.44232788870526e59 * cos(theta) ** 34 - 6.90106767861761e59 * cos(theta) ** 32 + 4.79401900363352e59 * cos(theta) ** 30 - 2.54627382976872e59 * cos(theta) ** 28 + 1.0461864213615e59 * cos(theta) ** 26 - 3.34327027475404e58 * cos(theta) ** 24 + 8.31299635884789e57 * cos(theta) ** 22 - 1.60158645445693e57 * cos(theta) ** 20 + 2.36994880332412e56 * cos(theta) ** 18 - 2.65642613119847e55 * cos(theta) ** 16 + 2.21061813969359e54 * cos(theta) ** 14 - 1.32783003770374e53 * cos(theta) ** 12 + 5.53262515709892e51 * cos(theta) ** 10 - 1.50981280818345e50 * cos(theta) ** 8 + 2.47220810696706e48 * cos(theta) ** 6 - 2.09864864768002e46 * cos(theta) ** 4 + 6.91862191542862e43 * cos(theta) ** 2 - 3.70177737583126e40 ) * cos(23 * phi) ) # @torch.jit.script def Yl65_m24(theta, phi): return ( 2.05548132705004e-43 * (1.0 - cos(theta) ** 2) ** 12 * ( 6.35307904900809e59 * cos(theta) ** 41 - 4.03839133347801e60 * cos(theta) ** 39 + 1.17812912523906e61 * cos(theta) ** 37 - 2.09235732642457e61 * cos(theta) ** 35 + 2.53039148215979e61 * cos(theta) ** 33 - 2.20834165715763e61 * cos(theta) ** 31 + 1.43820570109006e61 * cos(theta) ** 29 - 7.12956672335242e60 * cos(theta) ** 27 + 2.72008469553989e60 * cos(theta) ** 25 - 8.0238486594097e59 * cos(theta) ** 23 + 1.82885919894654e59 * cos(theta) ** 21 - 3.20317290891387e58 * cos(theta) ** 19 + 4.26590784598342e57 * cos(theta) ** 17 - 4.25028180991755e56 * cos(theta) ** 15 + 3.09486539557103e55 * cos(theta) ** 13 - 1.59339604524449e54 * cos(theta) ** 11 + 5.53262515709892e52 * cos(theta) ** 9 - 1.20785024654676e51 * cos(theta) ** 7 + 1.48332486418024e49 * cos(theta) ** 5 - 8.39459459072006e46 * cos(theta) ** 3 + 1.38372438308572e44 * cos(theta) ) * cos(24 * phi) ) # @torch.jit.script def Yl65_m25(theta, phi): return ( 3.38376623681316e-45 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 2.60476241009332e61 * cos(theta) ** 40 - 1.57497262005642e62 * cos(theta) ** 38 + 4.35907776338451e62 * cos(theta) ** 36 - 7.32325064248598e62 * cos(theta) ** 34 + 8.35029189112731e62 * cos(theta) ** 32 - 6.84585913718867e62 * cos(theta) ** 30 + 4.17079653316116e62 * cos(theta) ** 28 - 1.92498301530515e62 * cos(theta) ** 26 + 6.80021173884972e61 * cos(theta) ** 24 - 1.84548519166423e61 * cos(theta) ** 22 + 3.84060431778773e60 * cos(theta) ** 20 - 6.08602852693634e59 * cos(theta) ** 18 + 7.25204333817181e58 * cos(theta) ** 16 - 6.37542271487632e57 * cos(theta) ** 14 + 4.02332501424234e56 * cos(theta) ** 12 - 1.75273564976894e55 * cos(theta) ** 10 + 4.97936264138903e53 * cos(theta) ** 8 - 8.45495172582734e51 * cos(theta) ** 6 + 7.41662432090118e49 * cos(theta) ** 4 - 2.51837837721602e47 * cos(theta) ** 2 + 1.38372438308572e44 ) * cos(25 * phi) ) # @torch.jit.script def Yl65_m26(theta, phi): return ( 5.60853792464566e-47 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.04190496403733e63 * cos(theta) ** 39 - 5.98489595621441e63 * cos(theta) ** 37 + 1.56926799481842e64 * cos(theta) ** 35 - 2.48990521844523e64 * cos(theta) ** 33 + 2.67209340516074e64 * cos(theta) ** 31 - 2.0537577411566e64 * cos(theta) ** 29 + 1.16782302928513e64 * cos(theta) ** 27 - 5.0049558397934e63 * cos(theta) ** 25 + 1.63205081732393e63 * cos(theta) ** 23 - 4.06006742166131e62 * cos(theta) ** 21 + 7.68120863557545e61 * cos(theta) ** 19 - 1.09548513484854e61 * cos(theta) ** 17 + 1.16032693410749e60 * cos(theta) ** 15 - 8.92559180082685e58 * cos(theta) ** 13 + 4.8279900170908e57 * cos(theta) ** 11 - 1.75273564976894e56 * cos(theta) ** 9 + 3.98349011311122e54 * cos(theta) ** 7 - 5.07297103549641e52 * cos(theta) ** 5 + 2.96664972836047e50 * cos(theta) ** 3 - 5.03675675443204e47 * cos(theta) ) * cos(26 * phi) ) # @torch.jit.script def Yl65_m27(theta, phi): return ( 9.3631815364416e-49 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 4.06342935974557e64 * cos(theta) ** 38 - 2.21441150379933e65 * cos(theta) ** 36 + 5.49243798186449e65 * cos(theta) ** 34 - 8.21668722086927e65 * cos(theta) ** 32 + 8.28348955599829e65 * cos(theta) ** 30 - 5.95589744935414e65 * cos(theta) ** 28 + 3.15312217906984e65 * cos(theta) ** 26 - 1.25123895994835e65 * cos(theta) ** 24 + 3.75371687984505e64 * cos(theta) ** 22 - 8.52614158548875e63 * cos(theta) ** 20 + 1.45942964075934e63 * cos(theta) ** 18 - 1.86232472924252e62 * cos(theta) ** 16 + 1.74049040116124e61 * cos(theta) ** 14 - 1.16032693410749e60 * cos(theta) ** 12 + 5.31078901879989e58 * cos(theta) ** 10 - 1.57746208479205e57 * cos(theta) ** 8 + 2.78844307917786e55 * cos(theta) ** 6 - 2.5364855177482e53 * cos(theta) ** 4 + 8.89994918508141e50 * cos(theta) ** 2 - 5.03675675443204e47 ) * cos(27 * phi) ) # @torch.jit.script def Yl65_m28(theta, phi): return ( 1.57503486261719e-50 * (1.0 - cos(theta) ** 2) ** 14 * ( 1.54410315670332e66 * cos(theta) ** 37 - 7.9718814136776e66 * cos(theta) ** 35 + 1.86742891383393e67 * cos(theta) ** 33 - 2.62933991067817e67 * cos(theta) ** 31 + 2.48504686679949e67 * cos(theta) ** 29 - 1.66765128581916e67 * cos(theta) ** 27 + 8.19811766558158e66 * cos(theta) ** 25 - 3.00297350387604e66 * cos(theta) ** 23 + 8.2581771356591e65 * cos(theta) ** 21 - 1.70522831709775e65 * cos(theta) ** 19 + 2.6269733533668e64 * cos(theta) ** 17 - 2.97971956678803e63 * cos(theta) ** 15 + 2.43668656162573e62 * cos(theta) ** 13 - 1.39239232092899e61 * cos(theta) ** 11 + 5.31078901879989e59 * cos(theta) ** 9 - 1.26196966783364e58 * cos(theta) ** 7 + 1.67306584750671e56 * cos(theta) ** 5 - 1.01459420709928e54 * cos(theta) ** 3 + 1.77998983701628e51 * cos(theta) ) * cos(28 * phi) ) # @torch.jit.script def Yl65_m29(theta, phi): return ( 2.67070169649057e-52 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 5.71318167980228e67 * cos(theta) ** 36 - 2.79015849478716e68 * cos(theta) ** 34 + 6.16251541565195e68 * cos(theta) ** 32 - 8.15095372310231e68 * cos(theta) ** 30 + 7.20663591371851e68 * cos(theta) ** 28 - 4.50265847171173e68 * cos(theta) ** 26 + 2.0495294163954e68 * cos(theta) ** 24 - 6.90683905891489e67 * cos(theta) ** 22 + 1.73421719848841e67 * cos(theta) ** 20 - 3.23993380248572e66 * cos(theta) ** 18 + 4.46585470072357e65 * cos(theta) ** 16 - 4.46957935018205e64 * cos(theta) ** 14 + 3.16769253011345e63 * cos(theta) ** 12 - 1.53163155302189e62 * cos(theta) ** 10 + 4.7797101169199e60 * cos(theta) ** 8 - 8.83378767483545e58 * cos(theta) ** 6 + 8.36532923753357e56 * cos(theta) ** 4 - 3.04378262129784e54 * cos(theta) ** 2 + 1.77998983701628e51 ) * cos(29 * phi) ) # @torch.jit.script def Yl65_m30(theta, phi): return ( 4.5668035424607e-54 * (1.0 - cos(theta) ** 2) ** 15 * ( 2.05674540472882e69 * cos(theta) ** 35 - 9.48653888227634e69 * cos(theta) ** 33 + 1.97200493300862e70 * cos(theta) ** 31 - 2.44528611693069e70 * cos(theta) ** 29 + 2.01785805584118e70 * cos(theta) ** 27 - 1.17069120264505e70 * cos(theta) ** 25 + 4.91887059934895e69 * cos(theta) ** 23 - 1.51950459296127e69 * cos(theta) ** 21 + 3.46843439697682e68 * cos(theta) ** 19 - 5.8318808444743e67 * cos(theta) ** 17 + 7.14536752115771e66 * cos(theta) ** 15 - 6.25741109025487e65 * cos(theta) ** 13 + 3.80123103613614e64 * cos(theta) ** 11 - 1.53163155302189e63 * cos(theta) ** 9 + 3.82376809353592e61 * cos(theta) ** 7 - 5.30027260490127e59 * cos(theta) ** 5 + 3.34613169501343e57 * cos(theta) ** 3 - 6.08756524259569e54 * cos(theta) ) * cos(30 * phi) ) # @torch.jit.script def Yl65_m31(theta, phi): return ( 7.87848460233697e-56 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 7.19860891655087e70 * cos(theta) ** 34 - 3.13055783115119e71 * cos(theta) ** 32 + 6.11321529232674e71 * cos(theta) ** 30 - 7.09132973909901e71 * cos(theta) ** 28 + 5.44821675077119e71 * cos(theta) ** 26 - 2.92672800661262e71 * cos(theta) ** 24 + 1.13134023785026e71 * cos(theta) ** 22 - 3.19095964521868e70 * cos(theta) ** 20 + 6.59002535425596e69 * cos(theta) ** 18 - 9.91419743560632e68 * cos(theta) ** 16 + 1.07180512817366e68 * cos(theta) ** 14 - 8.13463441733133e66 * cos(theta) ** 12 + 4.18135413974975e65 * cos(theta) ** 10 - 1.3784683977197e64 * cos(theta) ** 8 + 2.67663766547514e62 * cos(theta) ** 6 - 2.65013630245064e60 * cos(theta) ** 4 + 1.00383950850403e58 * cos(theta) ** 2 - 6.08756524259569e54 ) * cos(31 * phi) ) # @torch.jit.script def Yl65_m32(theta, phi): return ( 1.37188391746445e-57 * (1.0 - cos(theta) ** 2) ** 16 * ( 2.4475270316273e72 * cos(theta) ** 33 - 1.00177850596838e73 * cos(theta) ** 31 + 1.83396458769802e73 * cos(theta) ** 29 - 1.98557232694772e73 * cos(theta) ** 27 + 1.41653635520051e73 * cos(theta) ** 25 - 7.0241472158703e72 * cos(theta) ** 23 + 2.48894852327057e72 * cos(theta) ** 21 - 6.38191929043735e71 * cos(theta) ** 19 + 1.18620456376607e71 * cos(theta) ** 17 - 1.58627158969701e70 * cos(theta) ** 15 + 1.50052717944312e69 * cos(theta) ** 13 - 9.7615613007976e67 * cos(theta) ** 11 + 4.18135413974975e66 * cos(theta) ** 9 - 1.10277471817576e65 * cos(theta) ** 7 + 1.60598259928509e63 * cos(theta) ** 5 - 1.06005452098025e61 * cos(theta) ** 3 + 2.00767901700806e58 * cos(theta) ) * cos(32 * phi) ) # @torch.jit.script def Yl65_m33(theta, phi): return ( 2.41238909787524e-59 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 8.07683920437007e73 * cos(theta) ** 32 - 3.10551336850198e74 * cos(theta) ** 30 + 5.31849730432426e74 * cos(theta) ** 28 - 5.36104528275885e74 * cos(theta) ** 26 + 3.54134088800128e74 * cos(theta) ** 24 - 1.61555385965017e74 * cos(theta) ** 22 + 5.22679189886819e73 * cos(theta) ** 20 - 1.2125646651831e73 * cos(theta) ** 18 + 2.01654775840232e72 * cos(theta) ** 16 - 2.37940738454552e71 * cos(theta) ** 14 + 1.95068533327605e70 * cos(theta) ** 12 - 1.07377174308774e69 * cos(theta) ** 10 + 3.76321872577478e67 * cos(theta) ** 8 - 7.71942302723031e65 * cos(theta) ** 6 + 8.02991299642543e63 * cos(theta) ** 4 - 3.18016356294076e61 * cos(theta) ** 2 + 2.00767901700806e58 ) * cos(33 * phi) ) # @torch.jit.script def Yl65_m34(theta, phi): return ( 4.28602569829554e-61 * (1.0 - cos(theta) ** 2) ** 17 * ( 2.58458854539842e75 * cos(theta) ** 31 - 9.31654010550595e75 * cos(theta) ** 29 + 1.48917924521079e76 * cos(theta) ** 27 - 1.3938717735173e76 * cos(theta) ** 25 + 8.49921813120306e75 * cos(theta) ** 23 - 3.55421849123037e75 * cos(theta) ** 21 + 1.04535837977364e75 * cos(theta) ** 19 - 2.18261639732958e74 * cos(theta) ** 17 + 3.22647641344372e73 * cos(theta) ** 15 - 3.33117033836372e72 * cos(theta) ** 13 + 2.34082239993126e71 * cos(theta) ** 11 - 1.07377174308774e70 * cos(theta) ** 9 + 3.01057498061982e68 * cos(theta) ** 7 - 4.63165381633819e66 * cos(theta) ** 5 + 3.21196519857017e64 * cos(theta) ** 3 - 6.36032712588153e61 * cos(theta) ) * cos(34 * phi) ) # @torch.jit.script def Yl65_m35(theta, phi): return ( 7.6979294003689e-63 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 8.01222449073511e76 * cos(theta) ** 30 - 2.70179663059672e77 * cos(theta) ** 28 + 4.02078396206914e77 * cos(theta) ** 26 - 3.48467943379326e77 * cos(theta) ** 24 + 1.9548201701767e77 * cos(theta) ** 22 - 7.46385883158378e76 * cos(theta) ** 20 + 1.98618092156991e76 * cos(theta) ** 18 - 3.71044787546028e75 * cos(theta) ** 16 + 4.83971462016558e74 * cos(theta) ** 14 - 4.33052143987284e73 * cos(theta) ** 12 + 2.57490463992439e72 * cos(theta) ** 10 - 9.66394568778962e70 * cos(theta) ** 8 + 2.10740248643387e69 * cos(theta) ** 6 - 2.31582690816909e67 * cos(theta) ** 4 + 9.63589559571051e64 * cos(theta) ** 2 - 6.36032712588153e61 ) * cos(35 * phi) ) # @torch.jit.script def Yl65_m36(theta, phi): return ( 1.39846824565112e-64 * (1.0 - cos(theta) ** 2) ** 18 * ( 2.40366734722053e78 * cos(theta) ** 29 - 7.56503056567083e78 * cos(theta) ** 27 + 1.04540383013798e79 * cos(theta) ** 25 - 8.36323064110381e78 * cos(theta) ** 23 + 4.30060437438875e78 * cos(theta) ** 21 - 1.49277176631676e78 * cos(theta) ** 19 + 3.57512565882584e77 * cos(theta) ** 17 - 5.93671660073644e76 * cos(theta) ** 15 + 6.77560046823181e75 * cos(theta) ** 13 - 5.19662572784741e74 * cos(theta) ** 11 + 2.57490463992439e73 * cos(theta) ** 9 - 7.7311565502317e71 * cos(theta) ** 7 + 1.26444149186032e70 * cos(theta) ** 5 - 9.26330763267637e67 * cos(theta) ** 3 + 1.9271791191421e65 * cos(theta) ) * cos(36 * phi) ) # @torch.jit.script def Yl65_m37(theta, phi): return ( 2.5713045876105e-66 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 6.97063530693955e79 * cos(theta) ** 28 - 2.04255825273112e80 * cos(theta) ** 26 + 2.61350957534494e80 * cos(theta) ** 24 - 1.92354304745388e80 * cos(theta) ** 22 + 9.03126918621637e79 * cos(theta) ** 20 - 2.83626635600184e79 * cos(theta) ** 18 + 6.07771362000394e78 * cos(theta) ** 16 - 8.90507490110467e77 * cos(theta) ** 14 + 8.80828060870136e76 * cos(theta) ** 12 - 5.71628830063215e75 * cos(theta) ** 10 + 2.31741417593195e74 * cos(theta) ** 8 - 5.41180958516219e72 * cos(theta) ** 6 + 6.32220745930162e70 * cos(theta) ** 4 - 2.77899228980291e68 * cos(theta) ** 2 + 1.9271791191421e65 ) * cos(37 * phi) ) # @torch.jit.script def Yl65_m38(theta, phi): return ( 4.7880193475768e-68 * (1.0 - cos(theta) ** 2) ** 19 * ( 1.95177788594307e81 * cos(theta) ** 27 - 5.31065145710092e81 * cos(theta) ** 25 + 6.27242298082786e81 * cos(theta) ** 23 - 4.23179470439853e81 * cos(theta) ** 21 + 1.80625383724327e81 * cos(theta) ** 19 - 5.10527944080331e80 * cos(theta) ** 17 + 9.7243417920063e79 * cos(theta) ** 15 - 1.24671048615465e79 * cos(theta) ** 13 + 1.05699367304416e78 * cos(theta) ** 11 - 5.71628830063215e76 * cos(theta) ** 9 + 1.85393134074556e75 * cos(theta) ** 7 - 3.24708575109731e73 * cos(theta) ** 5 + 2.52888298372065e71 * cos(theta) ** 3 - 5.55798457960582e68 * cos(theta) ) * cos(38 * phi) ) # @torch.jit.script def Yl65_m39(theta, phi): return ( 9.03560724383533e-70 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 5.2698002920463e82 * cos(theta) ** 26 - 1.32766286427523e83 * cos(theta) ** 24 + 1.44265728559041e83 * cos(theta) ** 22 - 8.88676887923691e82 * cos(theta) ** 20 + 3.43188229076222e82 * cos(theta) ** 18 - 8.67897504936562e81 * cos(theta) ** 16 + 1.45865126880094e81 * cos(theta) ** 14 - 1.62072363200105e80 * cos(theta) ** 12 + 1.16269304034858e79 * cos(theta) ** 10 - 5.14465947056893e77 * cos(theta) ** 8 + 1.29775193852189e76 * cos(theta) ** 6 - 1.62354287554866e74 * cos(theta) ** 4 + 7.58664895116195e71 * cos(theta) ** 2 - 5.55798457960582e68 ) * cos(39 * phi) ) # @torch.jit.script def Yl65_m40(theta, phi): return ( 1.7293226168064e-71 * (1.0 - cos(theta) ** 2) ** 20 * ( 1.37014807593204e84 * cos(theta) ** 25 - 3.18639087426055e84 * cos(theta) ** 23 + 3.1738460282989e84 * cos(theta) ** 21 - 1.77735377584738e84 * cos(theta) ** 19 + 6.177388123372e83 * cos(theta) ** 17 - 1.3886360078985e83 * cos(theta) ** 15 + 2.04211177632132e82 * cos(theta) ** 13 - 1.94486835840126e81 * cos(theta) ** 11 + 1.16269304034858e80 * cos(theta) ** 9 - 4.11572757645515e78 * cos(theta) ** 7 + 7.78651163113136e76 * cos(theta) ** 5 - 6.49417150219463e74 * cos(theta) ** 3 + 1.51732979023239e72 * cos(theta) ) * cos(40 * phi) ) # @torch.jit.script def Yl65_m41(theta, phi): return ( 3.35933321831746e-73 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 3.42537018983009e85 * cos(theta) ** 24 - 7.32869901079927e85 * cos(theta) ** 22 + 6.66507665942768e85 * cos(theta) ** 20 - 3.37697217411003e85 * cos(theta) ** 18 + 1.05015598097324e85 * cos(theta) ** 16 - 2.08295401184775e84 * cos(theta) ** 14 + 2.65474530921772e83 * cos(theta) ** 12 - 2.13935519424139e82 * cos(theta) ** 10 + 1.04642373631372e81 * cos(theta) ** 8 - 2.8810093035186e79 * cos(theta) ** 6 + 3.89325581556568e77 * cos(theta) ** 4 - 1.94825145065839e75 * cos(theta) ** 2 + 1.51732979023239e72 ) * cos(41 * phi) ) # @torch.jit.script def Yl65_m42(theta, phi): return ( 6.62911533020075e-75 * (1.0 - cos(theta) ** 2) ** 21 * ( 8.22088845559223e86 * cos(theta) ** 23 - 1.61231378237584e87 * cos(theta) ** 21 + 1.33301533188554e87 * cos(theta) ** 19 - 6.07854991339805e86 * cos(theta) ** 17 + 1.68024956955718e86 * cos(theta) ** 15 - 2.91613561658685e85 * cos(theta) ** 13 + 3.18569437106126e84 * cos(theta) ** 11 - 2.13935519424139e83 * cos(theta) ** 9 + 8.37138989050977e81 * cos(theta) ** 7 - 1.72860558211116e80 * cos(theta) ** 5 + 1.55730232622627e78 * cos(theta) ** 3 - 3.89650290131678e75 * cos(theta) ) * cos(42 * phi) ) # @torch.jit.script def Yl65_m43(theta, phi): return ( 1.33008617371695e-76 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 1.89080434478621e88 * cos(theta) ** 22 - 3.38585894298926e88 * cos(theta) ** 20 + 2.53272913058252e88 * cos(theta) ** 18 - 1.03335348527767e88 * cos(theta) ** 16 + 2.52037435433578e87 * cos(theta) ** 14 - 3.7909763015629e86 * cos(theta) ** 12 + 3.50426380816739e85 * cos(theta) ** 10 - 1.92541967481725e84 * cos(theta) ** 8 + 5.85997292335684e82 * cos(theta) ** 6 - 8.64302791055581e80 * cos(theta) ** 4 + 4.67190697867882e78 * cos(theta) ** 2 - 3.89650290131678e75 ) * cos(43 * phi) ) # @torch.jit.script def Yl65_m44(theta, phi): return ( 2.71615900174119e-78 * (1.0 - cos(theta) ** 2) ** 22 * ( 4.15976955852967e89 * cos(theta) ** 21 - 6.77171788597853e89 * cos(theta) ** 19 + 4.55891243504854e89 * cos(theta) ** 17 - 1.65336557644427e89 * cos(theta) ** 15 + 3.52852409607009e88 * cos(theta) ** 13 - 4.54917156187548e87 * cos(theta) ** 11 + 3.50426380816739e86 * cos(theta) ** 9 - 1.5403357398538e85 * cos(theta) ** 7 + 3.5159837540141e83 * cos(theta) ** 5 - 3.45721116422232e81 * cos(theta) ** 3 + 9.34381395735763e78 * cos(theta) ) * cos(44 * phi) ) # @torch.jit.script def Yl65_m45(theta, phi): return ( 5.65131089368255e-80 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 8.7355160729123e90 * cos(theta) ** 20 - 1.28662639833592e91 * cos(theta) ** 18 + 7.75015113958251e90 * cos(theta) ** 16 - 2.4800483646664e90 * cos(theta) ** 14 + 4.58708132489111e89 * cos(theta) ** 12 - 5.00408871806303e88 * cos(theta) ** 10 + 3.15383742735065e87 * cos(theta) ** 8 - 1.07823501789766e86 * cos(theta) ** 6 + 1.75799187700705e84 * cos(theta) ** 4 - 1.0371633492667e82 * cos(theta) ** 2 + 9.34381395735763e78 ) * cos(45 * phi) ) # @torch.jit.script def Yl65_m46(theta, phi): return ( 1.19942393862722e-81 * (1.0 - cos(theta) ** 2) ** 23 * ( 1.74710321458246e92 * cos(theta) ** 19 - 2.31592751700466e92 * cos(theta) ** 17 + 1.2400241823332e92 * cos(theta) ** 15 - 3.47206771053296e91 * cos(theta) ** 13 + 5.50449758986933e90 * cos(theta) ** 11 - 5.00408871806303e89 * cos(theta) ** 9 + 2.52306994188052e88 * cos(theta) ** 7 - 6.46941010738595e86 * cos(theta) ** 5 + 7.03196750802821e84 * cos(theta) ** 3 - 2.07432669853339e82 * cos(theta) ) * cos(46 * phi) ) # @torch.jit.script def Yl65_m47(theta, phi): return ( 2.60008113717387e-83 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 3.31949610770667e93 * cos(theta) ** 18 - 3.93707677890792e93 * cos(theta) ** 16 + 1.8600362734998e93 * cos(theta) ** 14 - 4.51368802369285e92 * cos(theta) ** 12 + 6.05494734885627e91 * cos(theta) ** 10 - 4.50367984625673e90 * cos(theta) ** 8 + 1.76614895931636e89 * cos(theta) ** 6 - 3.23470505369297e87 * cos(theta) ** 4 + 2.10959025240846e85 * cos(theta) ** 2 - 2.07432669853339e82 ) * cos(47 * phi) ) # @torch.jit.script def Yl65_m48(theta, phi): return ( 5.76516081754449e-85 * (1.0 - cos(theta) ** 2) ** 24 * ( 5.97509299387201e94 * cos(theta) ** 17 - 6.29932284625267e94 * cos(theta) ** 15 + 2.60405078289972e94 * cos(theta) ** 13 - 5.41642562843143e93 * cos(theta) ** 11 + 6.05494734885627e92 * cos(theta) ** 9 - 3.60294387700538e91 * cos(theta) ** 7 + 1.05968937558982e90 * cos(theta) ** 5 - 1.29388202147719e88 * cos(theta) ** 3 + 4.21918050481692e85 * cos(theta) ) * cos(48 * phi) ) # @torch.jit.script def Yl65_m49(theta, phi): return ( 1.30958755692561e-86 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.01576580895824e96 * cos(theta) ** 16 - 9.448984269379e95 * cos(theta) ** 14 + 3.38526601776964e95 * cos(theta) ** 12 - 5.95806819127457e94 * cos(theta) ** 10 + 5.44945261397064e93 * cos(theta) ** 8 - 2.52206071390377e92 * cos(theta) ** 6 + 5.29844687794909e90 * cos(theta) ** 4 - 3.88164606443157e88 * cos(theta) ** 2 + 4.21918050481692e85 ) * cos(49 * phi) ) # @torch.jit.script def Yl65_m50(theta, phi): return ( 3.05299173411205e-88 * (1.0 - cos(theta) ** 2) ** 25 * ( 1.62522529433319e97 * cos(theta) ** 15 - 1.32285779771306e97 * cos(theta) ** 13 + 4.06231922132357e96 * cos(theta) ** 11 - 5.95806819127457e95 * cos(theta) ** 9 + 4.35956209117651e94 * cos(theta) ** 7 - 1.51323642834226e93 * cos(theta) ** 5 + 2.11937875117964e91 * cos(theta) ** 3 - 7.76329212886314e88 * cos(theta) ) * cos(50 * phi) ) # @torch.jit.script def Yl65_m51(theta, phi): return ( 7.31898748122476e-90 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 2.43783794149978e98 * cos(theta) ** 14 - 1.71971513702698e98 * cos(theta) ** 12 + 4.46855114345593e97 * cos(theta) ** 10 - 5.36226137214711e96 * cos(theta) ** 8 + 3.05169346382356e95 * cos(theta) ** 6 - 7.5661821417113e93 * cos(theta) ** 4 + 6.35813625353891e91 * cos(theta) ** 2 - 7.76329212886314e88 ) * cos(51 * phi) ) # @torch.jit.script def Yl65_m52(theta, phi): return ( 1.80839815636967e-91 * (1.0 - cos(theta) ** 2) ** 26 * ( 3.41297311809969e99 * cos(theta) ** 13 - 2.06365816443237e99 * cos(theta) ** 11 + 4.46855114345593e98 * cos(theta) ** 9 - 4.28980909771769e97 * cos(theta) ** 7 + 1.83101607829414e96 * cos(theta) ** 5 - 3.02647285668452e94 * cos(theta) ** 3 + 1.27162725070778e92 * cos(theta) ) * cos(52 * phi) ) # @torch.jit.script def Yl65_m53(theta, phi): return ( 4.6172285861995e-93 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 4.4368650535296e100 * cos(theta) ** 12 - 2.27002398087561e100 * cos(theta) ** 10 + 4.02169602911033e99 * cos(theta) ** 8 - 3.00286636840238e98 * cos(theta) ** 6 + 9.15508039147068e96 * cos(theta) ** 4 - 9.07941857005356e94 * cos(theta) ** 2 + 1.27162725070778e92 ) * cos(53 * phi) ) # @torch.jit.script def Yl65_m54(theta, phi): return ( 1.2218482526346e-94 * (1.0 - cos(theta) ** 2) ** 27 * ( 5.32423806423552e101 * cos(theta) ** 11 - 2.27002398087561e101 * cos(theta) ** 9 + 3.21735682328827e100 * cos(theta) ** 7 - 1.80171982104143e99 * cos(theta) ** 5 + 3.66203215658827e97 * cos(theta) ** 3 - 1.81588371401071e95 * cos(theta) ) * cos(54 * phi) ) # @torch.jit.script def Yl65_m55(theta, phi): return ( 3.36302663158415e-96 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 5.85666187065908e102 * cos(theta) ** 10 - 2.04302158278805e102 * cos(theta) ** 8 + 2.25214977630179e101 * cos(theta) ** 6 - 9.00859910520715e99 * cos(theta) ** 4 + 1.09860964697648e98 * cos(theta) ** 2 - 1.81588371401071e95 ) * cos(55 * phi) ) # @torch.jit.script def Yl65_m56(theta, phi): return ( 9.66802180691806e-98 * (1.0 - cos(theta) ** 2) ** 28 * ( 5.85666187065908e103 * cos(theta) ** 9 - 1.63441726623044e103 * cos(theta) ** 7 + 1.35128986578107e102 * cos(theta) ** 5 - 3.60343964208286e100 * cos(theta) ** 3 + 2.19721929395296e98 * cos(theta) ) * cos(56 * phi) ) # @torch.jit.script def Yl65_m57(theta, phi): return ( 2.91767189014888e-99 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 5.27099568359317e104 * cos(theta) ** 8 - 1.14409208636131e104 * cos(theta) ** 6 + 6.75644932890536e102 * cos(theta) ** 4 - 1.08103189262486e101 * cos(theta) ** 2 + 2.19721929395296e98 ) * cos(57 * phi) ) # @torch.jit.script def Yl65_m58(theta, phi): return ( 9.30119826759211e-101 * (1.0 - cos(theta) ** 2) ** 29 * ( 4.21679654687453e105 * cos(theta) ** 7 - 6.86455251816785e104 * cos(theta) ** 5 + 2.70257973156214e103 * cos(theta) ** 3 - 2.16206378524972e101 * cos(theta) ) * cos(58 * phi) ) # @torch.jit.script def Yl65_m59(theta, phi): return ( 3.15703240337733e-102 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 2.95175758281217e106 * cos(theta) ** 6 - 3.43227625908392e105 * cos(theta) ** 4 + 8.10773919468643e103 * cos(theta) ** 2 - 2.16206378524972e101 ) * cos(59 * phi) ) # @torch.jit.script def Yl65_m60(theta, phi): return ( 1.15278524140301e-103 * (1.0 - cos(theta) ** 2) ** 30 * ( 1.7710545496873e107 * cos(theta) ** 5 - 1.37291050363357e106 * cos(theta) ** 3 + 1.62154783893729e104 * cos(theta) ) * cos(60 * phi) ) # @torch.jit.script def Yl65_m61(theta, phi): return ( 4.59280633647778e-105 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 8.85527274843652e107 * cos(theta) ** 4 - 4.11873151090071e106 * cos(theta) ** 2 + 1.62154783893729e104 ) * cos(61 * phi) ) # @torch.jit.script def Yl65_m62(theta, phi): return ( 2.03772829958056e-106 * (1.0 - cos(theta) ** 2) ** 31 * (3.54210909937461e108 * cos(theta) ** 3 - 8.23746302180142e106 * cos(theta)) * cos(62 * phi) ) # @torch.jit.script def Yl65_m63(theta, phi): return ( 1.039873868417e-107 * (1.0 - cos(theta) ** 2) ** 31.5 * (1.06263272981238e109 * cos(theta) ** 2 - 8.23746302180142e106) * cos(63 * phi) ) # @torch.jit.script def Yl65_m64(theta, phi): return 13.7589089193287 * (1.0 - cos(theta) ** 2) ** 32 * cos(64 * phi) * cos(theta) # @torch.jit.script def Yl65_m65(theta, phi): return 1.20673614046122 * (1.0 - cos(theta) ** 2) ** 32.5 * cos(65 * phi) # @torch.jit.script def Yl66_m_minus_66(theta, phi): return 1.21129848618741 * (1.0 - cos(theta) ** 2) ** 33 * sin(66 * phi) # @torch.jit.script def Yl66_m_minus_65(theta, phi): return ( 13.9167600751205 * (1.0 - cos(theta) ** 2) ** 32.5 * sin(65 * phi) * cos(theta) ) # @torch.jit.script def Yl66_m_minus_64(theta, phi): return ( 8.09103921464814e-110 * (1.0 - cos(theta) ** 2) ** 32 * (1.39204887605422e111 * cos(theta) ** 2 - 1.06263272981238e109) * sin(64 * phi) ) # @torch.jit.script def Yl66_m_minus_63(theta, phi): return ( 1.59785221699192e-108 * (1.0 - cos(theta) ** 2) ** 31.5 * (4.64016292018074e110 * cos(theta) ** 3 - 1.06263272981238e109 * cos(theta)) * sin(63 * phi) ) # @torch.jit.script def Yl66_m_minus_62(theta, phi): return ( 3.62962251617235e-107 * (1.0 - cos(theta) ** 2) ** 31 * ( 1.16004073004518e110 * cos(theta) ** 4 - 5.31316364906191e108 * cos(theta) ** 2 + 2.05936575545035e106 ) * sin(62 * phi) ) # @torch.jit.script def Yl66_m_minus_61(theta, phi): return ( 9.18229935818876e-106 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 2.32008146009037e109 * cos(theta) ** 5 - 1.7710545496873e108 * cos(theta) ** 3 + 2.05936575545035e106 * cos(theta) ) * sin(61 * phi) ) # @torch.jit.script def Yl66_m_minus_60(theta, phi): return ( 2.53471382182656e-104 * (1.0 - cos(theta) ** 2) ** 30 * ( 3.86680243348395e108 * cos(theta) ** 6 - 4.42763637421826e107 * cos(theta) ** 4 + 1.02968287772518e106 * cos(theta) ** 2 - 2.70257973156214e103 ) * sin(60 * phi) ) # @torch.jit.script def Yl66_m_minus_59(theta, phi): return ( 7.52771599347949e-103 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 5.52400347640564e107 * cos(theta) ** 7 - 8.85527274843652e106 * cos(theta) ** 5 + 3.43227625908392e105 * cos(theta) ** 3 - 2.70257973156214e103 * cos(theta) ) * sin(59 * phi) ) # @torch.jit.script def Yl66_m_minus_58(theta, phi): return ( 2.38047281182724e-101 * (1.0 - cos(theta) ** 2) ** 29 * ( 6.90500434550705e106 * cos(theta) ** 8 - 1.47587879140609e106 * cos(theta) ** 6 + 8.58069064770981e104 * cos(theta) ** 4 - 1.35128986578107e103 * cos(theta) ** 2 + 2.70257973156214e100 ) * sin(58 * phi) ) # @torch.jit.script def Yl66_m_minus_57(theta, phi): return ( 7.95234701302649e-100 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 7.67222705056339e105 * cos(theta) ** 9 - 2.10839827343727e105 * cos(theta) ** 7 + 1.71613812954196e104 * cos(theta) ** 5 - 4.50429955260357e102 * cos(theta) ** 3 + 2.70257973156214e100 * cos(theta) ) * sin(57 * phi) ) # @torch.jit.script def Yl66_m_minus_56(theta, phi): return ( 2.78899591805326e-98 * (1.0 - cos(theta) ** 2) ** 28 * ( 7.67222705056339e104 * cos(theta) ** 10 - 2.63549784179658e104 * cos(theta) ** 8 + 2.86023021590327e103 * cos(theta) ** 6 - 1.12607488815089e102 * cos(theta) ** 4 + 1.35128986578107e100 * cos(theta) ** 2 - 2.19721929395296e97 ) * sin(56 * phi) ) # @torch.jit.script def Yl66_m_minus_55(theta, phi): return ( 1.02170174835378e-96 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 6.97475186414853e103 * cos(theta) ** 11 - 2.92833093532954e103 * cos(theta) ** 9 + 4.0860431655761e102 * cos(theta) ** 7 - 2.25214977630179e101 * cos(theta) ** 5 + 4.50429955260357e99 * cos(theta) ** 3 - 2.19721929395296e97 * cos(theta) ) * sin(55 * phi) ) # @torch.jit.script def Yl66_m_minus_54(theta, phi): return ( 3.89320654432752e-95 * (1.0 - cos(theta) ** 2) ** 27 * ( 5.81229322012378e102 * cos(theta) ** 12 - 2.92833093532954e102 * cos(theta) ** 10 + 5.10755395697012e101 * cos(theta) ** 8 - 3.75358296050298e100 * cos(theta) ** 6 + 1.12607488815089e99 * cos(theta) ** 4 - 1.09860964697648e97 * cos(theta) ** 2 + 1.51323642834226e94 ) * sin(54 * phi) ) # @torch.jit.script def Yl66_m_minus_53(theta, phi): return ( 1.53769337733501e-93 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 4.4709947847106e101 * cos(theta) ** 13 - 2.66211903211776e101 * cos(theta) ** 11 + 5.67505995218903e100 * cos(theta) ** 9 - 5.36226137214711e99 * cos(theta) ** 7 + 2.25214977630179e98 * cos(theta) ** 5 - 3.66203215658827e96 * cos(theta) ** 3 + 1.51323642834226e94 * cos(theta) ) * sin(53 * phi) ) # @torch.jit.script def Yl66_m_minus_52(theta, phi): return ( 6.27635127858387e-92 * (1.0 - cos(theta) ** 2) ** 26 * ( 3.19356770336471e100 * cos(theta) ** 14 - 2.2184325267648e100 * cos(theta) ** 12 + 5.67505995218903e99 * cos(theta) ** 10 - 6.70282671518389e98 * cos(theta) ** 8 + 3.75358296050298e97 * cos(theta) ** 6 - 9.15508039147068e95 * cos(theta) ** 4 + 7.5661821417113e93 * cos(theta) ** 2 - 9.08305179076987e90 ) * sin(52 * phi) ) # @torch.jit.script def Yl66_m_minus_51(theta, phi): return ( 2.64054683936417e-90 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 2.12904513557648e99 * cos(theta) ** 15 - 1.70648655904985e99 * cos(theta) ** 13 + 5.15914541108093e98 * cos(theta) ** 11 - 7.44758523909321e97 * cos(theta) ** 9 + 5.36226137214711e96 * cos(theta) ** 7 - 1.83101607829414e95 * cos(theta) ** 5 + 2.52206071390377e93 * cos(theta) ** 3 - 9.08305179076987e90 * cos(theta) ) * sin(51 * phi) ) # @torch.jit.script def Yl66_m_minus_50(theta, phi): return ( 1.14247524295103e-88 * (1.0 - cos(theta) ** 2) ** 25 * ( 1.3306532097353e98 * cos(theta) ** 16 - 1.21891897074989e98 * cos(theta) ** 14 + 4.29928784256744e97 * cos(theta) ** 12 - 7.44758523909321e96 * cos(theta) ** 10 + 6.70282671518389e95 * cos(theta) ** 8 - 3.05169346382356e94 * cos(theta) ** 6 + 6.30515178475942e92 * cos(theta) ** 4 - 4.54152589538494e90 * cos(theta) ** 2 + 4.85205758053946e87 ) * sin(50 * phi) ) # @torch.jit.script def Yl66_m_minus_49(theta, phi): return ( 5.07341341746446e-87 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 7.82737182197234e96 * cos(theta) ** 17 - 8.12612647166594e96 * cos(theta) ** 15 + 3.30714449428265e96 * cos(theta) ** 13 - 6.77053203553928e95 * cos(theta) ** 11 + 7.44758523909321e94 * cos(theta) ** 9 - 4.35956209117651e93 * cos(theta) ** 7 + 1.26103035695188e92 * cos(theta) ** 5 - 1.51384196512831e90 * cos(theta) ** 3 + 4.85205758053946e87 * cos(theta) ) * sin(49 * phi) ) # @torch.jit.script def Yl66_m_minus_48(theta, phi): return ( 2.30826372124878e-85 * (1.0 - cos(theta) ** 2) ** 24 * ( 4.34853990109574e95 * cos(theta) ** 18 - 5.07882904479121e95 * cos(theta) ** 16 + 2.36224606734475e95 * cos(theta) ** 14 - 5.64211002961607e94 * cos(theta) ** 12 + 7.44758523909321e93 * cos(theta) ** 10 - 5.44945261397064e92 * cos(theta) ** 8 + 2.10171726158647e91 * cos(theta) ** 6 - 3.78460491282078e89 * cos(theta) ** 4 + 2.42602879026973e87 * cos(theta) ** 2 - 2.34398916934274e84 ) * sin(48 * phi) ) # @torch.jit.script def Yl66_m_minus_47(theta, phi): return ( 1.07427297867911e-83 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 2.28870521110302e94 * cos(theta) ** 19 - 2.98754649693601e94 * cos(theta) ** 17 + 1.57483071156317e94 * cos(theta) ** 15 - 4.34008463816621e93 * cos(theta) ** 13 + 6.77053203553928e92 * cos(theta) ** 11 - 6.05494734885627e91 * cos(theta) ** 9 + 3.00245323083782e90 * cos(theta) ** 7 - 7.56920982564156e88 * cos(theta) ** 5 + 8.08676263423244e86 * cos(theta) ** 3 - 2.34398916934274e84 * cos(theta) ) * sin(47 * phi) ) # @torch.jit.script def Yl66_m_minus_46(theta, phi): return ( 5.10703543941824e-82 * (1.0 - cos(theta) ** 2) ** 23 * ( 1.14435260555151e93 * cos(theta) ** 20 - 1.65974805385334e93 * cos(theta) ** 18 + 9.84269194726979e92 * cos(theta) ** 16 - 3.100060455833e92 * cos(theta) ** 14 + 5.64211002961607e91 * cos(theta) ** 12 - 6.05494734885627e90 * cos(theta) ** 10 + 3.75306653854727e89 * cos(theta) ** 8 - 1.26153497094026e88 * cos(theta) ** 6 + 2.02169065855811e86 * cos(theta) ** 4 - 1.17199458467137e84 * cos(theta) ** 2 + 1.0371633492667e81 ) * sin(46 * phi) ) # @torch.jit.script def Yl66_m_minus_45(theta, phi): return ( 2.47678055999563e-80 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 5.44929812167386e91 * cos(theta) ** 21 - 8.7355160729123e91 * cos(theta) ** 19 + 5.78981879251164e91 * cos(theta) ** 17 - 2.06670697055534e91 * cos(theta) ** 15 + 4.34008463816621e90 * cos(theta) ** 13 - 5.50449758986933e89 * cos(theta) ** 11 + 4.17007393171919e88 * cos(theta) ** 9 - 1.80219281562894e87 * cos(theta) ** 7 + 4.04338131711622e85 * cos(theta) ** 5 - 3.90664861557123e83 * cos(theta) ** 3 + 1.0371633492667e81 * cos(theta) ) * sin(45 * phi) ) # @torch.jit.script def Yl66_m_minus_44(theta, phi): return ( 1.22394065310672e-78 * (1.0 - cos(theta) ** 2) ** 22 * ( 2.47695369166994e90 * cos(theta) ** 22 - 4.36775803645615e90 * cos(theta) ** 20 + 3.2165659958398e90 * cos(theta) ** 18 - 1.29169185659709e90 * cos(theta) ** 16 + 3.100060455833e89 * cos(theta) ** 14 - 4.58708132489111e88 * cos(theta) ** 12 + 4.17007393171919e87 * cos(theta) ** 10 - 2.25274101953618e86 * cos(theta) ** 8 + 6.73896886186036e84 * cos(theta) ** 6 - 9.76662153892806e82 * cos(theta) ** 4 + 5.18581674633348e80 * cos(theta) ** 2 - 4.24718816243529e77 ) * sin(44 * phi) ) # @torch.jit.script def Yl66_m_minus_43(theta, phi): return ( 6.15631198648028e-77 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 1.07693638768258e89 * cos(theta) ** 23 - 2.07988477926483e89 * cos(theta) ** 21 + 1.69292947149463e89 * cos(theta) ** 19 - 7.59818739174756e88 * cos(theta) ** 17 + 2.06670697055534e88 * cos(theta) ** 15 - 3.52852409607009e87 * cos(theta) ** 13 + 3.7909763015629e86 * cos(theta) ** 11 - 2.50304557726242e85 * cos(theta) ** 9 + 9.62709837408623e83 * cos(theta) ** 7 - 1.95332430778561e82 * cos(theta) ** 5 + 1.72860558211116e80 * cos(theta) ** 3 - 4.24718816243529e77 * cos(theta) ) * sin(43 * phi) ) # @torch.jit.script def Yl66_m_minus_42(theta, phi): return ( 3.14875949781955e-75 * (1.0 - cos(theta) ** 2) ** 21 * ( 4.48723494867742e87 * cos(theta) ** 24 - 9.45402172393106e87 * cos(theta) ** 22 + 8.46464735747316e87 * cos(theta) ** 20 - 4.22121521763753e87 * cos(theta) ** 18 + 1.29169185659709e87 * cos(theta) ** 16 - 2.52037435433578e86 * cos(theta) ** 14 + 3.15914691796909e85 * cos(theta) ** 12 - 2.50304557726242e84 * cos(theta) ** 10 + 1.20338729676078e83 * cos(theta) ** 8 - 3.25554051297602e81 * cos(theta) ** 6 + 4.3215139552779e79 * cos(theta) ** 4 - 2.12359408121764e77 * cos(theta) ** 2 + 1.62354287554866e74 ) * sin(42 * phi) ) # @torch.jit.script def Yl66_m_minus_41(theta, phi): return ( 1.63614342931156e-73 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 1.79489397947097e86 * cos(theta) ** 25 - 4.11044422779611e86 * cos(theta) ** 23 + 4.0307844559396e86 * cos(theta) ** 21 - 2.22169221980923e86 * cos(theta) ** 19 + 7.59818739174756e85 * cos(theta) ** 17 - 1.68024956955718e85 * cos(theta) ** 15 + 2.43011301382237e84 * cos(theta) ** 13 - 2.27549597932947e83 * cos(theta) ** 11 + 1.33709699640087e82 * cos(theta) ** 9 - 4.65077216139432e80 * cos(theta) ** 7 + 8.64302791055581e78 * cos(theta) ** 5 - 7.07864693739214e76 * cos(theta) ** 3 + 1.62354287554866e74 * cos(theta) ) * sin(41 * phi) ) # @torch.jit.script def Yl66_m_minus_40(theta, phi): return ( 8.62978419417266e-72 * (1.0 - cos(theta) ** 2) ** 20 * ( 6.90343838258065e84 * cos(theta) ** 26 - 1.71268509491505e85 * cos(theta) ** 24 + 1.83217475269982e85 * cos(theta) ** 22 - 1.11084610990461e85 * cos(theta) ** 20 + 4.22121521763753e84 * cos(theta) ** 18 - 1.05015598097324e84 * cos(theta) ** 16 + 1.73579500987312e83 * cos(theta) ** 14 - 1.89624664944123e82 * cos(theta) ** 12 + 1.33709699640087e81 * cos(theta) ** 10 - 5.81346520174289e79 * cos(theta) ** 8 + 1.4405046517593e78 * cos(theta) ** 6 - 1.76966173434804e76 * cos(theta) ** 4 + 8.11771437774329e73 * cos(theta) ** 2 - 5.83588380858611e70 ) * sin(40 * phi) ) # @torch.jit.script def Yl66_m_minus_39(theta, phi): return ( 4.61673290900756e-70 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 2.55682903058543e83 * cos(theta) ** 27 - 6.85074037966019e83 * cos(theta) ** 25 + 7.96597718565138e83 * cos(theta) ** 23 - 5.28974338049816e83 * cos(theta) ** 21 + 2.22169221980923e83 * cos(theta) ** 19 - 6.177388123372e82 * cos(theta) ** 17 + 1.15719667324875e82 * cos(theta) ** 15 - 1.45865126880094e81 * cos(theta) ** 13 + 1.21554272400079e80 * cos(theta) ** 11 - 6.45940577971433e78 * cos(theta) ** 9 + 2.05786378822757e77 * cos(theta) ** 7 - 3.53932346869607e75 * cos(theta) ** 5 + 2.70590479258109e73 * cos(theta) ** 3 - 5.83588380858611e70 * cos(theta) ) * sin(39 * phi) ) # @torch.jit.script def Yl66_m_minus_38(theta, phi): return ( 2.50327415386636e-68 * (1.0 - cos(theta) ** 2) ** 19 * ( 9.13153225209081e81 * cos(theta) ** 28 - 2.63490014602315e82 * cos(theta) ** 26 + 3.31915716068808e82 * cos(theta) ** 24 - 2.40442880931735e82 * cos(theta) ** 22 + 1.11084610990461e82 * cos(theta) ** 20 - 3.43188229076222e81 * cos(theta) ** 18 + 7.23247920780468e80 * cos(theta) ** 16 - 1.04189376342925e80 * cos(theta) ** 14 + 1.01295227000066e79 * cos(theta) ** 12 - 6.45940577971433e77 * cos(theta) ** 10 + 2.57232973528447e76 * cos(theta) ** 8 - 5.89887244782679e74 * cos(theta) ** 6 + 6.76476198145274e72 * cos(theta) ** 4 - 2.91794190429306e70 * cos(theta) ** 2 + 1.98499449271637e67 ) * sin(38 * phi) ) # @torch.jit.script def Yl66_m_minus_37(theta, phi): return ( 1.37475112555243e-66 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 3.1488042248589e80 * cos(theta) ** 29 - 9.75888942971537e80 * cos(theta) ** 27 + 1.32766286427523e81 * cos(theta) ** 25 - 1.04540383013798e81 * cos(theta) ** 23 + 5.28974338049816e80 * cos(theta) ** 21 - 1.80625383724327e80 * cos(theta) ** 19 + 4.25439953400275e79 * cos(theta) ** 17 - 6.94595842286164e78 * cos(theta) ** 15 + 7.79194053846658e77 * cos(theta) ** 13 - 5.87218707246757e76 * cos(theta) ** 11 + 2.85814415031607e75 * cos(theta) ** 9 - 8.42696063975255e73 * cos(theta) ** 7 + 1.35295239629055e72 * cos(theta) ** 5 - 9.72647301431019e69 * cos(theta) ** 3 + 1.98499449271637e67 * cos(theta) ) * sin(37 * phi) ) # @torch.jit.script def Yl66_m_minus_36(theta, phi): return ( 7.64193472281181e-65 * (1.0 - cos(theta) ** 2) ** 18 * ( 1.0496014082863e79 * cos(theta) ** 30 - 3.48531765346977e79 * cos(theta) ** 28 + 5.10639563182781e79 * cos(theta) ** 26 - 4.35584929224157e79 * cos(theta) ** 24 + 2.40442880931735e79 * cos(theta) ** 22 - 9.03126918621637e78 * cos(theta) ** 20 + 2.3635552966682e78 * cos(theta) ** 18 - 4.34122401428853e77 * cos(theta) ** 16 + 5.56567181319042e76 * cos(theta) ** 14 - 4.89348922705631e75 * cos(theta) ** 12 + 2.85814415031607e74 * cos(theta) ** 10 - 1.05337007996907e73 * cos(theta) ** 8 + 2.25492066048425e71 * cos(theta) ** 6 - 2.43161825357755e69 * cos(theta) ** 4 + 9.92497246358183e66 * cos(theta) ** 2 - 6.42393039714034e63 ) * sin(36 * phi) ) # @torch.jit.script def Yl66_m_minus_35(theta, phi): return ( 4.29718703182676e-63 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 3.38581099447194e77 * cos(theta) ** 31 - 1.20183367361027e78 * cos(theta) ** 29 + 1.89125764141771e78 * cos(theta) ** 27 - 1.74233971689663e78 * cos(theta) ** 25 + 1.04540383013798e78 * cos(theta) ** 23 - 4.30060437438875e77 * cos(theta) ** 21 + 1.24397647193063e77 * cos(theta) ** 19 - 2.5536611848756e76 * cos(theta) ** 17 + 3.71044787546028e75 * cos(theta) ** 15 - 3.76422248235101e74 * cos(theta) ** 13 + 2.5983128639237e73 * cos(theta) ** 11 - 1.17041119996563e72 * cos(theta) ** 9 + 3.22131522926321e70 * cos(theta) ** 7 - 4.8632365071551e68 * cos(theta) ** 5 + 3.30832415452728e66 * cos(theta) ** 3 - 6.42393039714034e63 * cos(theta) ) * sin(35 * phi) ) # @torch.jit.script def Yl66_m_minus_34(theta, phi): return ( 2.44298011783085e-61 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.05806593577248e76 * cos(theta) ** 32 - 4.00611224536756e76 * cos(theta) ** 30 + 6.75449157649181e76 * cos(theta) ** 28 - 6.70130660344857e76 * cos(theta) ** 26 + 4.35584929224157e76 * cos(theta) ** 24 - 1.9548201701767e76 * cos(theta) ** 22 + 6.21988235965315e75 * cos(theta) ** 20 - 1.41870065826422e75 * cos(theta) ** 18 + 2.31902992216267e74 * cos(theta) ** 16 - 2.68873034453643e73 * cos(theta) ** 14 + 2.16526071993642e72 * cos(theta) ** 12 - 1.17041119996563e71 * cos(theta) ** 10 + 4.02664403657901e69 * cos(theta) ** 8 - 8.10539417859183e67 * cos(theta) ** 6 + 8.27081038631819e65 * cos(theta) ** 4 - 3.21196519857017e63 * cos(theta) ** 2 + 1.98760222683798e60 ) * sin(34 * phi) ) # @torch.jit.script def Yl66_m_minus_33(theta, phi): return ( 1.40338523311262e-59 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 3.20626041143176e74 * cos(theta) ** 33 - 1.29229427269921e75 * cos(theta) ** 31 + 2.32913502637649e75 * cos(theta) ** 29 - 2.48196540868465e75 * cos(theta) ** 27 + 1.74233971689663e75 * cos(theta) ** 25 - 8.49921813120306e74 * cos(theta) ** 23 + 2.96184874269198e74 * cos(theta) ** 21 - 7.46684556981171e73 * cos(theta) ** 19 + 1.36413524833098e73 * cos(theta) ** 17 - 1.79248689635762e72 * cos(theta) ** 15 + 1.66558516918186e71 * cos(theta) ** 13 - 1.06401018178694e70 * cos(theta) ** 11 + 4.47404892953223e68 * cos(theta) ** 9 - 1.15791345408455e67 * cos(theta) ** 7 + 1.65416207726364e65 * cos(theta) ** 5 - 1.07065506619006e63 * cos(theta) ** 3 + 1.98760222683798e60 * cos(theta) ) * sin(33 * phi) ) # @torch.jit.script def Yl66_m_minus_32(theta, phi): return ( 8.14205362223649e-58 * (1.0 - cos(theta) ** 2) ** 16 * ( 9.43017768068164e72 * cos(theta) ** 34 - 4.03841960218504e73 * cos(theta) ** 32 + 7.76378342125496e73 * cos(theta) ** 30 - 8.86416217387377e73 * cos(theta) ** 28 + 6.70130660344857e73 * cos(theta) ** 26 - 3.54134088800128e73 * cos(theta) ** 24 + 1.34629488304181e73 * cos(theta) ** 22 - 3.73342278490585e72 * cos(theta) ** 20 + 7.57852915739436e71 * cos(theta) ** 18 - 1.12030431022351e71 * cos(theta) ** 16 + 1.18970369227276e70 * cos(theta) ** 14 - 8.86675151489115e68 * cos(theta) ** 12 + 4.47404892953223e67 * cos(theta) ** 10 - 1.44739181760568e66 * cos(theta) ** 8 + 2.7569367954394e64 * cos(theta) ** 6 - 2.67663766547514e62 * cos(theta) ** 4 + 9.93801113418988e59 * cos(theta) ** 2 - 5.90493828531782e56 ) * sin(32 * phi) ) # @torch.jit.script def Yl66_m_minus_31(theta, phi): return ( 4.76849155973558e-56 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 2.69433648019475e71 * cos(theta) ** 35 - 1.22376351581365e72 * cos(theta) ** 33 + 2.50444626492095e72 * cos(theta) ** 31 - 3.05660764616337e72 * cos(theta) ** 29 + 2.48196540868465e72 * cos(theta) ** 27 - 1.41653635520051e72 * cos(theta) ** 25 + 5.85345601322525e71 * cos(theta) ** 23 - 1.77782037376469e71 * cos(theta) ** 21 + 3.98869955652335e70 * cos(theta) ** 19 - 6.59002535425596e69 * cos(theta) ** 17 + 7.93135794848505e68 * cos(theta) ** 15 - 6.82057808837781e67 * cos(theta) ** 13 + 4.06731720866567e66 * cos(theta) ** 11 - 1.60821313067298e65 * cos(theta) ** 9 + 3.93848113634199e63 * cos(theta) ** 7 - 5.35327533095028e61 * cos(theta) ** 5 + 3.31267037806329e59 * cos(theta) ** 3 - 5.90493828531782e56 * cos(theta) ) * sin(31 * phi) ) # @torch.jit.script def Yl66_m_minus_30(theta, phi): return ( 2.81785171805404e-54 * (1.0 - cos(theta) ** 2) ** 15 * ( 7.48426800054098e69 * cos(theta) ** 36 - 3.59930445827543e70 * cos(theta) ** 34 + 7.82639457787798e70 * cos(theta) ** 32 - 1.01886921538779e71 * cos(theta) ** 30 + 8.86416217387377e70 * cos(theta) ** 28 - 5.44821675077119e70 * cos(theta) ** 26 + 2.43894000551052e70 * cos(theta) ** 24 - 8.08100169893042e69 * cos(theta) ** 22 + 1.99434977826167e69 * cos(theta) ** 20 - 3.66112519680887e68 * cos(theta) ** 18 + 4.95709871780316e67 * cos(theta) ** 16 - 4.87184149169844e66 * cos(theta) ** 14 + 3.38943100722139e65 * cos(theta) ** 12 - 1.60821313067298e64 * cos(theta) ** 10 + 4.92310142042749e62 * cos(theta) ** 8 - 8.92212555158381e60 * cos(theta) ** 6 + 8.28167594515824e58 * cos(theta) ** 4 - 2.95246914265891e56 * cos(theta) ** 2 + 1.69099034516547e53 ) * sin(30 * phi) ) # @torch.jit.script def Yl66_m_minus_29(theta, phi): return ( 1.67940180002128e-52 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 2.02277513528135e68 * cos(theta) ** 37 - 1.02837270236441e69 * cos(theta) ** 35 + 2.37163472056908e69 * cos(theta) ** 33 - 3.28667488834771e69 * cos(theta) ** 31 + 3.05660764616337e69 * cos(theta) ** 29 - 2.01785805584118e69 * cos(theta) ** 27 + 9.75576002204208e68 * cos(theta) ** 25 - 3.51347899953496e68 * cos(theta) ** 23 + 9.49690370600797e67 * cos(theta) ** 21 - 1.92690799832046e67 * cos(theta) ** 19 + 2.91594042223715e66 * cos(theta) ** 17 - 3.24789432779896e65 * cos(theta) ** 15 + 2.60725462093953e64 * cos(theta) ** 13 - 1.46201193697544e63 * cos(theta) ** 11 + 5.47011268936388e61 * cos(theta) ** 9 - 1.27458936451197e60 * cos(theta) ** 7 + 1.65633518903165e58 * cos(theta) ** 5 - 9.84156380886303e55 * cos(theta) ** 3 + 1.69099034516547e53 * cos(theta) ) * sin(29 * phi) ) # @torch.jit.script def Yl66_m_minus_28(theta, phi): return ( 1.00903961098423e-50 * (1.0 - cos(theta) ** 2) ** 14 * ( 5.3230924612667e66 * cos(theta) ** 38 - 2.85659083990114e67 * cos(theta) ** 36 + 6.9753962369679e67 * cos(theta) ** 34 - 1.02708590260866e68 * cos(theta) ** 32 + 1.01886921538779e68 * cos(theta) ** 30 - 7.20663591371851e67 * cos(theta) ** 28 + 3.75221539309311e67 * cos(theta) ** 26 - 1.46394958313957e67 * cos(theta) ** 24 + 4.3167744118218e66 * cos(theta) ** 22 - 9.63453999160229e65 * cos(theta) ** 20 + 1.61996690124286e65 * cos(theta) ** 18 - 2.02993395487435e64 * cos(theta) ** 16 + 1.86232472924252e63 * cos(theta) ** 14 - 1.21834328081286e62 * cos(theta) ** 12 + 5.47011268936388e60 * cos(theta) ** 10 - 1.59323670563997e59 * cos(theta) ** 8 + 2.76055864838608e57 * cos(theta) ** 6 - 2.46039095221576e55 * cos(theta) ** 4 + 8.45495172582734e52 * cos(theta) ** 2 - 4.6841837816218e49 ) * sin(28 * phi) ) # @torch.jit.script def Yl66_m_minus_27(theta, phi): return ( 6.1094827877146e-49 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.3648955028889e65 * cos(theta) ** 39 - 7.72051578351659e65 * cos(theta) ** 37 + 1.9929703534194e66 * cos(theta) ** 35 - 3.11238152305654e66 * cos(theta) ** 33 + 3.28667488834771e66 * cos(theta) ** 31 - 2.48504686679949e66 * cos(theta) ** 29 + 1.3897094048493e66 * cos(theta) ** 27 - 5.85579833255827e65 * cos(theta) ** 25 + 1.87685843992252e65 * cos(theta) ** 23 - 4.58787618647728e64 * cos(theta) ** 21 + 8.52614158548875e63 * cos(theta) ** 19 - 1.19407879698491e63 * cos(theta) ** 17 + 1.24154981949501e62 * cos(theta) ** 15 - 9.37187139086819e60 * cos(theta) ** 13 + 4.97282971760353e59 * cos(theta) ** 11 - 1.77026300626663e58 * cos(theta) ** 9 + 3.94365521198011e56 * cos(theta) ** 7 - 4.92078190443151e54 * cos(theta) ** 5 + 2.81831724194245e52 * cos(theta) ** 3 - 4.6841837816218e49 * cos(theta) ) * sin(27 * phi) ) # @torch.jit.script def Yl66_m_minus_26(theta, phi): return ( 3.72628368957836e-47 * (1.0 - cos(theta) ** 2) ** 13 * ( 3.41223875722224e63 * cos(theta) ** 40 - 2.03171467987279e64 * cos(theta) ** 38 + 5.53602875949833e64 * cos(theta) ** 36 - 9.15406330310747e64 * cos(theta) ** 34 + 1.02708590260866e65 * cos(theta) ** 32 - 8.28348955599829e64 * cos(theta) ** 30 + 4.96324787446178e64 * cos(theta) ** 28 - 2.25223012790703e64 * cos(theta) ** 26 + 7.82024349967718e63 * cos(theta) ** 24 - 2.08539826658058e63 * cos(theta) ** 22 + 4.26307079274438e62 * cos(theta) ** 20 - 6.63377109436062e61 * cos(theta) ** 18 + 7.75968637184384e60 * cos(theta) ** 16 - 6.69419385062013e59 * cos(theta) ** 14 + 4.14402476466961e58 * cos(theta) ** 12 - 1.77026300626663e57 * cos(theta) ** 10 + 4.92956901497514e55 * cos(theta) ** 8 - 8.20130317405252e53 * cos(theta) ** 6 + 7.04579310485612e51 * cos(theta) ** 4 - 2.3420918908109e49 * cos(theta) ** 2 + 1.25918918860801e46 ) * sin(26 * phi) ) # @torch.jit.script def Yl66_m_minus_25(theta, phi): return ( 2.28855712600846e-45 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 8.3225335542006e61 * cos(theta) ** 41 - 5.20952482018663e62 * cos(theta) ** 39 + 1.4962239890536e63 * cos(theta) ** 37 - 2.61544665803071e63 * cos(theta) ** 35 + 3.11238152305654e63 * cos(theta) ** 33 - 2.67209340516074e63 * cos(theta) ** 31 + 1.71146478429717e63 * cos(theta) ** 29 - 8.34159306632233e62 * cos(theta) ** 27 + 3.12809739987087e62 * cos(theta) ** 25 - 9.06694898513296e61 * cos(theta) ** 23 + 2.03003371083065e61 * cos(theta) ** 21 - 3.49145847071611e60 * cos(theta) ** 19 + 4.56452139520226e59 * cos(theta) ** 17 - 4.46279590041342e58 * cos(theta) ** 15 + 3.18771135743816e57 * cos(theta) ** 13 - 1.60933000569693e56 * cos(theta) ** 11 + 5.47729890552793e54 * cos(theta) ** 9 - 1.17161473915036e53 * cos(theta) ** 7 + 1.40915862097122e51 * cos(theta) ** 5 - 7.80697296936966e48 * cos(theta) ** 3 + 1.25918918860801e46 * cos(theta) ) * sin(25 * phi) ) # @torch.jit.script def Yl66_m_minus_24(theta, phi): return ( 1.41483924860861e-43 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.981555608143e60 * cos(theta) ** 42 - 1.30238120504666e61 * cos(theta) ** 40 + 3.93743155014106e61 * cos(theta) ** 38 - 7.26512960564085e61 * cos(theta) ** 36 + 9.15406330310748e61 * cos(theta) ** 34 - 8.35029189112731e61 * cos(theta) ** 32 + 5.70488261432389e61 * cos(theta) ** 30 - 2.9791403808294e61 * cos(theta) ** 28 + 1.20311438456572e61 * cos(theta) ** 26 - 3.77789541047207e60 * cos(theta) ** 24 + 9.22742595832116e59 * cos(theta) ** 22 - 1.74572923535806e59 * cos(theta) ** 20 + 2.53584521955681e58 * cos(theta) ** 18 - 2.78924743775839e57 * cos(theta) ** 16 + 2.2769366838844e56 * cos(theta) ** 14 - 1.34110833808078e55 * cos(theta) ** 12 + 5.47729890552793e53 * cos(theta) ** 10 - 1.46451842393795e52 * cos(theta) ** 8 + 2.34859770161871e50 * cos(theta) ** 6 - 1.95174324234241e48 * cos(theta) ** 4 + 6.29594594304005e45 * cos(theta) ** 2 - 3.29458186448982e42 ) * sin(24 * phi) ) # @torch.jit.script def Yl66_m_minus_23(theta, phi): return ( 8.8016193309476e-42 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 4.60826885614651e58 * cos(theta) ** 43 - 3.17653952450404e59 * cos(theta) ** 41 + 1.0095978333695e60 * cos(theta) ** 39 - 1.9635485420651e60 * cos(theta) ** 37 + 2.61544665803071e60 * cos(theta) ** 35 - 2.53039148215979e60 * cos(theta) ** 33 + 1.84028471429803e60 * cos(theta) ** 31 - 1.0272897864929e60 * cos(theta) ** 29 + 4.45597920209526e59 * cos(theta) ** 27 - 1.51115816418883e59 * cos(theta) ** 25 + 4.01192432970485e58 * cos(theta) ** 23 - 8.31299635884789e57 * cos(theta) ** 21 + 1.33465537871411e57 * cos(theta) ** 19 - 1.6407337869167e56 * cos(theta) ** 17 + 1.51795778925627e55 * cos(theta) ** 15 - 1.03162179852368e54 * cos(theta) ** 13 + 4.97936264138903e52 * cos(theta) ** 11 - 1.62724269326439e51 * cos(theta) ** 9 + 3.35513957374101e49 * cos(theta) ** 7 - 3.90348648468483e47 * cos(theta) ** 5 + 2.09864864768002e45 * cos(theta) ** 3 - 3.29458186448982e42 * cos(theta) ) * sin(23 * phi) ) # @torch.jit.script def Yl66_m_minus_22(theta, phi): return ( 5.50787306633424e-40 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.04733383094239e57 * cos(theta) ** 44 - 7.56318934405725e57 * cos(theta) ** 42 + 2.52399458342376e58 * cos(theta) ** 40 - 5.16723300543446e58 * cos(theta) ** 38 + 7.26512960564085e58 * cos(theta) ** 36 - 7.44232788870526e58 * cos(theta) ** 34 + 5.75088973218134e58 * cos(theta) ** 32 - 3.42429928830966e58 * cos(theta) ** 30 + 1.59142114360545e58 * cos(theta) ** 28 - 5.81214678534164e57 * cos(theta) ** 26 + 1.67163513737702e57 * cos(theta) ** 24 - 3.77863470856722e56 * cos(theta) ** 22 + 6.67327689357055e55 * cos(theta) ** 20 - 9.11518770509278e54 * cos(theta) ** 18 + 9.48723618285166e53 * cos(theta) ** 16 - 7.36872713231197e52 * cos(theta) ** 14 + 4.14946886782419e51 * cos(theta) ** 12 - 1.62724269326439e50 * cos(theta) ** 10 + 4.19392446717626e48 * cos(theta) ** 8 - 6.50581080780805e46 * cos(theta) ** 6 + 5.24662161920004e44 * cos(theta) ** 4 - 1.64729093224491e42 * cos(theta) ** 2 + 8.4131303996165e38 ) * sin(22 * phi) ) # @torch.jit.script def Yl66_m_minus_21(theta, phi): return ( 3.46602360394165e-38 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 2.32740851320531e55 * cos(theta) ** 45 - 1.75888124280401e56 * cos(theta) ** 43 + 6.15608434981404e56 * cos(theta) ** 41 - 1.32493153985499e57 * cos(theta) ** 39 + 1.9635485420651e57 * cos(theta) ** 37 - 2.12637939677293e57 * cos(theta) ** 35 + 1.74269385823677e57 * cos(theta) ** 33 - 1.10461267364828e57 * cos(theta) ** 31 + 5.48765911588086e56 * cos(theta) ** 29 - 2.15264695753394e56 * cos(theta) ** 27 + 6.68654054950809e55 * cos(theta) ** 25 - 1.64288465589879e55 * cos(theta) ** 23 + 3.17775090170026e54 * cos(theta) ** 21 - 4.79746721320672e53 * cos(theta) ** 19 + 5.58072716638333e52 * cos(theta) ** 17 - 4.91248475487465e51 * cos(theta) ** 15 + 3.19189912909553e50 * cos(theta) ** 13 - 1.47931153933126e49 * cos(theta) ** 11 + 4.65991607464029e47 * cos(theta) ** 9 - 9.29401543972579e45 * cos(theta) ** 7 + 1.04932432384001e44 * cos(theta) ** 5 - 5.4909697741497e41 * cos(theta) ** 3 + 8.4131303996165e38 * cos(theta) ) * sin(21 * phi) ) # @torch.jit.script def Yl66_m_minus_20(theta, phi): return ( 2.19265376043663e-36 * (1.0 - cos(theta) ** 2) ** 10 * ( 5.05958372435937e53 * cos(theta) ** 46 - 3.99745737000912e54 * cos(theta) ** 44 + 1.46573436900334e55 * cos(theta) ** 42 - 3.31232884963748e55 * cos(theta) ** 40 + 5.16723300543446e55 * cos(theta) ** 38 - 5.90660943548037e55 * cos(theta) ** 36 + 5.12557017128462e55 * cos(theta) ** 34 - 3.45191460515086e55 * cos(theta) ** 32 + 1.82921970529362e55 * cos(theta) ** 30 - 7.68802484833551e54 * cos(theta) ** 28 + 2.57174636519542e54 * cos(theta) ** 26 - 6.84535273291163e53 * cos(theta) ** 24 + 1.44443222804557e53 * cos(theta) ** 22 - 2.39873360660336e52 * cos(theta) ** 20 + 3.10040398132407e51 * cos(theta) ** 18 - 3.07030297179666e50 * cos(theta) ** 16 + 2.27992794935395e49 * cos(theta) ** 14 - 1.23275961610939e48 * cos(theta) ** 12 + 4.65991607464029e46 * cos(theta) ** 10 - 1.16175192996572e45 * cos(theta) ** 8 + 1.74887387306668e43 * cos(theta) ** 6 - 1.37274244353743e41 * cos(theta) ** 4 + 4.20656519980825e38 * cos(theta) ** 2 - 2.10223148416204e35 ) * sin(20 * phi) ) # @torch.jit.script def Yl66_m_minus_19(theta, phi): return ( 1.39401745807505e-34 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.07650717539561e52 * cos(theta) ** 47 - 8.88323860002026e52 * cos(theta) ** 45 + 3.40868457907754e53 * cos(theta) ** 43 - 8.07885085277433e53 * cos(theta) ** 41 + 1.32493153985499e54 * cos(theta) ** 39 - 1.59638092850821e54 * cos(theta) ** 37 + 1.46444862036703e54 * cos(theta) ** 35 - 1.0460347288336e54 * cos(theta) ** 33 + 5.90070872675361e53 * cos(theta) ** 31 - 2.65104305115017e53 * cos(theta) ** 29 + 9.5249865377608e52 * cos(theta) ** 27 - 2.73814109316465e52 * cos(theta) ** 25 + 6.28014012193728e51 * cos(theta) ** 23 - 1.14225409838255e51 * cos(theta) ** 21 + 1.63179156911793e50 * cos(theta) ** 19 - 1.80606057164509e49 * cos(theta) ** 17 + 1.51995196623597e48 * cos(theta) ** 15 - 9.48276627776451e46 * cos(theta) ** 13 + 4.23628734058208e45 * cos(theta) ** 11 - 1.29083547773969e44 * cos(theta) ** 9 + 2.49839124723811e42 * cos(theta) ** 7 - 2.74548488707485e40 * cos(theta) ** 5 + 1.40218839993608e38 * cos(theta) ** 3 - 2.10223148416204e35 * cos(theta) ) * sin(19 * phi) ) # @torch.jit.script def Yl66_m_minus_18(theta, phi): return ( 8.90426946332235e-33 * (1.0 - cos(theta) ** 2) ** 9 * ( 2.24272328207419e50 * cos(theta) ** 48 - 1.93113882609136e51 * cos(theta) ** 46 + 7.74701040699441e51 * cos(theta) ** 44 - 1.92353591732722e52 * cos(theta) ** 42 + 3.31232884963748e52 * cos(theta) ** 40 - 4.20100244344265e52 * cos(theta) ** 38 + 4.06791283435287e52 * cos(theta) ** 36 - 3.07657273186352e52 * cos(theta) ** 34 + 1.8439714771105e52 * cos(theta) ** 32 - 8.83681017050058e51 * cos(theta) ** 30 + 3.40178090634314e51 * cos(theta) ** 28 - 1.05313118967871e51 * cos(theta) ** 26 + 2.6167250508072e50 * cos(theta) ** 24 - 5.19206408355706e49 * cos(theta) ** 22 + 8.15895784558967e48 * cos(theta) ** 20 - 1.00336698424727e48 * cos(theta) ** 18 + 9.4996997889748e46 * cos(theta) ** 16 - 6.7734044841175e45 * cos(theta) ** 14 + 3.53023945048507e44 * cos(theta) ** 12 - 1.29083547773969e43 * cos(theta) ** 10 + 3.12298905904764e41 * cos(theta) ** 8 - 4.57580814512475e39 * cos(theta) ** 6 + 3.50547099984021e37 * cos(theta) ** 4 - 1.05111574208102e35 * cos(theta) ** 2 + 5.15252814745599e31 ) * sin(18 * phi) ) # @torch.jit.script def Yl66_m_minus_17(theta, phi): return ( 5.71262843535419e-31 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 4.57698628994732e48 * cos(theta) ** 49 - 4.10880601296034e49 * cos(theta) ** 47 + 1.72155786822098e50 * cos(theta) ** 45 - 4.47333934262145e50 * cos(theta) ** 43 + 8.07885085277433e50 * cos(theta) ** 41 - 1.07718011370324e51 * cos(theta) ** 39 + 1.09943590117645e51 * cos(theta) ** 37 - 8.79020780532433e50 * cos(theta) ** 35 + 5.58779235488032e50 * cos(theta) ** 33 - 2.85058392596793e50 * cos(theta) ** 31 + 1.17302789873902e50 * cos(theta) ** 29 - 3.90048588769894e49 * cos(theta) ** 27 + 1.04669002032288e49 * cos(theta) ** 25 - 2.25741916676394e48 * cos(theta) ** 23 + 3.88521802170937e47 * cos(theta) ** 21 - 5.28087886445933e46 * cos(theta) ** 19 + 5.58805869939694e45 * cos(theta) ** 17 - 4.51560298941167e44 * cos(theta) ** 15 + 2.71556880806544e43 * cos(theta) ** 13 - 1.17348679794518e42 * cos(theta) ** 11 + 3.46998784338627e40 * cos(theta) ** 9 - 6.53686877874965e38 * cos(theta) ** 7 + 7.01094199968042e36 * cos(theta) ** 5 - 3.50371914027007e34 * cos(theta) ** 3 + 5.15252814745599e31 * cos(theta) ) * sin(17 * phi) ) # @torch.jit.script def Yl66_m_minus_16(theta, phi): return ( 3.68010343751003e-29 * (1.0 - cos(theta) ** 2) ** 8 * ( 9.15397257989464e46 * cos(theta) ** 50 - 8.56001252700071e47 * cos(theta) ** 48 + 3.74251710482822e48 * cos(theta) ** 46 - 1.01666803241396e49 * cos(theta) ** 44 + 1.92353591732722e49 * cos(theta) ** 42 - 2.69295028425811e49 * cos(theta) ** 40 + 2.89325237151698e49 * cos(theta) ** 38 - 2.44172439036787e49 * cos(theta) ** 36 + 1.64346833967068e49 * cos(theta) ** 34 - 8.90807476864978e48 * cos(theta) ** 32 + 3.91009299579672e48 * cos(theta) ** 30 - 1.39303067417819e48 * cos(theta) ** 28 + 4.02573084739569e47 * cos(theta) ** 26 - 9.40591319484975e46 * cos(theta) ** 24 + 1.76600819168608e46 * cos(theta) ** 22 - 2.64043943222967e45 * cos(theta) ** 20 + 3.10447705522052e44 * cos(theta) ** 18 - 2.82225186838229e43 * cos(theta) ** 16 + 1.93969200576103e42 * cos(theta) ** 14 - 9.77905664954312e40 * cos(theta) ** 12 + 3.46998784338627e39 * cos(theta) ** 10 - 8.17108597343706e37 * cos(theta) ** 8 + 1.16849033328007e36 * cos(theta) ** 6 - 8.75929785067518e33 * cos(theta) ** 4 + 2.576264073728e31 * cos(theta) ** 2 - 1.24157304757976e28 ) * sin(16 * phi) ) # @torch.jit.script def Yl66_m_minus_15(theta, phi): return ( 2.37986345410096e-27 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.79489658429307e45 * cos(theta) ** 51 - 1.74694133204096e46 * cos(theta) ** 49 + 7.96280235069834e46 * cos(theta) ** 47 - 2.25926229425326e47 * cos(theta) ** 45 + 4.47333934262145e47 * cos(theta) ** 43 - 6.56817142501978e47 * cos(theta) ** 41 + 7.41859582440251e47 * cos(theta) ** 39 - 6.59925510910235e47 * cos(theta) ** 37 + 4.69562382763052e47 * cos(theta) ** 35 - 2.69941659656054e47 * cos(theta) ** 33 + 1.26132032122475e47 * cos(theta) ** 31 - 4.80355404889032e46 * cos(theta) ** 29 + 1.49101142496137e46 * cos(theta) ** 27 - 3.7623652779399e45 * cos(theta) ** 25 + 7.67829648559163e44 * cos(theta) ** 23 - 1.25735211058556e44 * cos(theta) ** 21 + 1.63393529222133e43 * cos(theta) ** 19 - 1.66014815787194e42 * cos(theta) ** 17 + 1.29312800384068e41 * cos(theta) ** 15 - 7.52235126887933e39 * cos(theta) ** 13 + 3.15453440307843e38 * cos(theta) ** 11 - 9.07898441493006e36 * cos(theta) ** 9 + 1.66927190468581e35 * cos(theta) ** 7 - 1.75185957013504e33 * cos(theta) ** 5 + 8.58754691242665e30 * cos(theta) ** 3 - 1.24157304757976e28 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl66_m_minus_14(theta, phi): return ( 1.54452954822549e-25 * (1.0 - cos(theta) ** 2) ** 7 * ( 3.45172420056359e43 * cos(theta) ** 52 - 3.49388266408192e44 * cos(theta) ** 50 + 1.65891715639549e45 * cos(theta) ** 48 - 4.91143977011577e45 * cos(theta) ** 46 + 1.01666803241396e46 * cos(theta) ** 44 - 1.56385033929042e46 * cos(theta) ** 42 + 1.85464895610063e46 * cos(theta) ** 40 - 1.73664608134272e46 * cos(theta) ** 38 + 1.30433995211959e46 * cos(theta) ** 36 - 7.93946057811923e45 * cos(theta) ** 34 + 3.94162600382734e45 * cos(theta) ** 32 - 1.60118468296344e45 * cos(theta) ** 30 + 5.32504080343346e44 * cos(theta) ** 28 - 1.44706356843842e44 * cos(theta) ** 26 + 3.19929020232985e43 * cos(theta) ** 24 - 5.71523686629798e42 * cos(theta) ** 22 + 8.16967646110664e41 * cos(theta) ** 20 - 9.22304532151076e40 * cos(theta) ** 18 + 8.08205002400428e39 * cos(theta) ** 16 - 5.37310804919952e38 * cos(theta) ** 14 + 2.62877866923202e37 * cos(theta) ** 12 - 9.07898441493006e35 * cos(theta) ** 10 + 2.08658988085727e34 * cos(theta) ** 8 - 2.91976595022506e32 * cos(theta) ** 6 + 2.14688672810666e30 * cos(theta) ** 4 - 6.20786523789878e27 * cos(theta) ** 2 + 2.9477042914999e24 ) * sin(14 * phi) ) # @torch.jit.script def Yl66_m_minus_13(theta, phi): return ( 1.00572477683751e-23 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 6.5126871708747e41 * cos(theta) ** 53 - 6.85075032172926e42 * cos(theta) ** 51 + 3.38554521713365e43 * cos(theta) ** 49 - 1.04498718513102e44 * cos(theta) ** 47 + 2.25926229425326e44 * cos(theta) ** 45 - 3.63686125416378e44 * cos(theta) ** 43 + 4.52353403926982e44 * cos(theta) ** 41 - 4.45293867010955e44 * cos(theta) ** 39 + 3.52524311383673e44 * cos(theta) ** 37 - 2.26841730803407e44 * cos(theta) ** 35 + 1.19443212237192e44 * cos(theta) ** 33 - 5.16511188052722e43 * cos(theta) ** 31 + 1.83622096670119e43 * cos(theta) ** 29 - 5.35949469792008e42 * cos(theta) ** 27 + 1.27971608093194e42 * cos(theta) ** 25 - 2.4848855940426e41 * cos(theta) ** 23 + 3.89032212433649e40 * cos(theta) ** 21 - 4.85423437974251e39 * cos(theta) ** 19 + 4.75414707294369e38 * cos(theta) ** 17 - 3.58207203279968e37 * cos(theta) ** 15 + 2.02213743787079e36 * cos(theta) ** 13 - 8.25362219539097e34 * cos(theta) ** 11 + 2.31843320095252e33 * cos(theta) ** 9 - 4.17109421460723e31 * cos(theta) ** 7 + 4.29377345621333e29 * cos(theta) ** 5 - 2.06928841263293e27 * cos(theta) ** 3 + 2.9477042914999e24 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl66_m_minus_12(theta, phi): return ( 6.56885348131129e-22 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.20605317979161e40 * cos(theta) ** 54 - 1.31745198494793e41 * cos(theta) ** 52 + 6.77109043426729e41 * cos(theta) ** 50 - 2.17705663568962e42 * cos(theta) ** 48 + 4.91143977011577e42 * cos(theta) ** 46 - 8.26559375946313e42 * cos(theta) ** 44 + 1.07703191411186e43 * cos(theta) ** 42 - 1.11323466752739e43 * cos(theta) ** 40 + 9.27695556272823e42 * cos(theta) ** 38 - 6.30115918898352e42 * cos(theta) ** 36 + 3.51303565403506e42 * cos(theta) ** 34 - 1.61409746266476e42 * cos(theta) ** 32 + 6.12073655567064e41 * cos(theta) ** 30 - 1.91410524925717e41 * cos(theta) ** 28 + 4.9219849266613e40 * cos(theta) ** 26 - 1.03536899751775e40 * cos(theta) ** 24 + 1.76832823833477e39 * cos(theta) ** 22 - 2.42711718987125e38 * cos(theta) ** 20 + 2.64119281830205e37 * cos(theta) ** 18 - 2.2387950204998e36 * cos(theta) ** 16 + 1.44438388419342e35 * cos(theta) ** 14 - 6.87801849615914e33 * cos(theta) ** 12 + 2.31843320095252e32 * cos(theta) ** 10 - 5.21386776825904e30 * cos(theta) ** 8 + 7.15628909368888e28 * cos(theta) ** 6 - 5.17322103158232e26 * cos(theta) ** 4 + 1.47385214574995e24 * cos(theta) ** 2 - 6.9097615834503e20 ) * sin(12 * phi) ) # @torch.jit.script def Yl66_m_minus_11(theta, phi): return ( 4.30247366863335e-20 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 2.19282396325747e38 * cos(theta) ** 55 - 2.48575846216591e39 * cos(theta) ** 53 + 1.3276647910328e40 * cos(theta) ** 51 - 4.44297272589717e40 * cos(theta) ** 49 + 1.04498718513102e41 * cos(theta) ** 47 - 1.83679861321403e41 * cos(theta) ** 45 + 2.50472538165549e41 * cos(theta) ** 43 - 2.71520650616436e41 * cos(theta) ** 41 + 2.3787065545457e41 * cos(theta) ** 39 - 1.70301599702257e41 * cos(theta) ** 37 + 1.00372447258145e41 * cos(theta) ** 35 - 4.89120443231745e40 * cos(theta) ** 33 + 1.97443114699053e40 * cos(theta) ** 31 - 6.60036292847301e39 * cos(theta) ** 29 + 1.82295738024493e39 * cos(theta) ** 27 - 4.141475990071e38 * cos(theta) ** 25 + 7.68838364493378e37 * cos(theta) ** 23 - 1.15577009041488e37 * cos(theta) ** 21 + 1.39010148331687e36 * cos(theta) ** 19 - 1.31693824735282e35 * cos(theta) ** 17 + 9.62922589462279e33 * cos(theta) ** 15 - 5.29078345858395e32 * cos(theta) ** 13 + 2.10766654632047e31 * cos(theta) ** 11 - 5.79318640917671e29 * cos(theta) ** 9 + 1.02232701338413e28 * cos(theta) ** 7 - 1.03464420631646e26 * cos(theta) ** 5 + 4.91284048583316e23 * cos(theta) ** 3 - 6.9097615834503e20 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl66_m_minus_10(theta, phi): return ( 2.82525464222165e-18 * (1.0 - cos(theta) ** 2) ** 5 * ( 3.91575707724549e36 * cos(theta) ** 56 - 4.60325641141836e37 * cos(theta) ** 54 + 2.55320152121693e38 * cos(theta) ** 52 - 8.88594545179435e38 * cos(theta) ** 50 + 2.17705663568962e39 * cos(theta) ** 48 - 3.99304046350876e39 * cos(theta) ** 46 + 5.69255768558067e39 * cos(theta) ** 44 - 6.46477739562943e39 * cos(theta) ** 42 + 5.94676638636425e39 * cos(theta) ** 40 - 4.48162104479624e39 * cos(theta) ** 38 + 2.78812353494846e39 * cos(theta) ** 36 - 1.4385895389169e39 * cos(theta) ** 34 + 6.1700973343454e38 * cos(theta) ** 32 - 2.20012097615767e38 * cos(theta) ** 30 + 6.51056207230331e37 * cos(theta) ** 28 - 1.59287538079654e37 * cos(theta) ** 26 + 3.20349318538908e36 * cos(theta) ** 24 - 5.25350041097674e35 * cos(theta) ** 22 + 6.95050741658435e34 * cos(theta) ** 20 - 7.31632359640457e33 * cos(theta) ** 18 + 6.01826618413925e32 * cos(theta) ** 16 - 3.77913104184568e31 * cos(theta) ** 14 + 1.75638878860039e30 * cos(theta) ** 12 - 5.79318640917671e28 * cos(theta) ** 10 + 1.27790876673016e27 * cos(theta) ** 8 - 1.72440701052744e25 * cos(theta) ** 6 + 1.22821012145829e23 * cos(theta) ** 4 - 3.45488079172515e20 * cos(theta) ** 2 + 1.60244934681129e17 ) * sin(10 * phi) ) # @torch.jit.script def Yl66_m_minus_9(theta, phi): return ( 1.85952414216614e-16 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 6.86974925832542e34 * cos(theta) ** 57 - 8.36955711166975e35 * cos(theta) ** 55 + 4.81736136078666e36 * cos(theta) ** 53 - 1.74234224544987e37 * cos(theta) ** 51 + 4.44297272589717e37 * cos(theta) ** 49 - 8.49583077342289e37 * cos(theta) ** 47 + 1.26501281901793e38 * cos(theta) ** 45 - 1.50343660363475e38 * cos(theta) ** 43 + 1.4504308259425e38 * cos(theta) ** 41 - 1.14913360122981e38 * cos(theta) ** 39 + 7.53546901337422e37 * cos(theta) ** 37 - 4.11025582547685e37 * cos(theta) ** 35 + 1.86972646495315e37 * cos(theta) ** 33 - 7.09716443921829e36 * cos(theta) ** 31 + 2.24502140424252e36 * cos(theta) ** 29 - 5.89953844739458e35 * cos(theta) ** 27 + 1.28139727415563e35 * cos(theta) ** 25 - 2.28413061346815e34 * cos(theta) ** 23 + 3.30976543646874e33 * cos(theta) ** 21 - 3.85069662968662e32 * cos(theta) ** 19 + 3.54015657890544e31 * cos(theta) ** 17 - 2.51942069456379e30 * cos(theta) ** 15 + 1.35106829892338e29 * cos(theta) ** 13 - 5.26653309925155e27 * cos(theta) ** 11 + 1.41989862970017e26 * cos(theta) ** 9 - 2.46343858646777e24 * cos(theta) ** 7 + 2.45642024291658e22 * cos(theta) ** 5 - 1.15162693057505e20 * cos(theta) ** 3 + 1.60244934681129e17 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl66_m_minus_8(theta, phi): return ( 1.22644040432258e-14 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.18443952729749e33 * cos(theta) ** 58 - 1.49456376994103e34 * cos(theta) ** 56 + 8.92103955701233e34 * cos(theta) ** 54 - 3.35065816432668e35 * cos(theta) ** 52 + 8.88594545179435e35 * cos(theta) ** 50 - 1.7699647444631e36 * cos(theta) ** 48 + 2.75002786743027e36 * cos(theta) ** 46 - 3.41690137189716e36 * cos(theta) ** 44 + 3.45340672843452e36 * cos(theta) ** 42 - 2.87283400307452e36 * cos(theta) ** 40 + 1.98301816141427e36 * cos(theta) ** 38 - 1.14173772929912e36 * cos(theta) ** 36 + 5.49919548515633e35 * cos(theta) ** 34 - 2.21786388725572e35 * cos(theta) ** 32 + 7.4834046808084e34 * cos(theta) ** 30 - 2.10697801692664e34 * cos(theta) ** 28 + 4.92845105444473e33 * cos(theta) ** 26 - 9.51721088945061e32 * cos(theta) ** 24 + 1.50443883475852e32 * cos(theta) ** 22 - 1.92534831484331e31 * cos(theta) ** 20 + 1.96675365494747e30 * cos(theta) ** 18 - 1.57463793410237e29 * cos(theta) ** 16 + 9.65048784945271e27 * cos(theta) ** 14 - 4.38877758270963e26 * cos(theta) ** 12 + 1.41989862970017e25 * cos(theta) ** 10 - 3.07929823308471e23 * cos(theta) ** 8 + 4.0940337381943e21 * cos(theta) ** 6 - 2.87906732643762e19 * cos(theta) ** 4 + 8.01224673405647e16 * cos(theta) ** 2 - 36837916018650.4 ) * sin(8 * phi) ) # @torch.jit.script def Yl66_m_minus_7(theta, phi): return ( 8.10379255740153e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 2.00752462253811e31 * cos(theta) ** 59 - 2.62204170165092e32 * cos(theta) ** 57 + 1.62200719218406e33 * cos(theta) ** 55 - 6.32199653646543e33 * cos(theta) ** 53 + 1.74234224544987e34 * cos(theta) ** 51 - 3.61217294788388e34 * cos(theta) ** 49 + 5.85112312219207e34 * cos(theta) ** 47 - 7.59311415977147e34 * cos(theta) ** 45 + 8.03117843821982e34 * cos(theta) ** 43 - 7.00691220262077e34 * cos(theta) ** 41 + 5.08466195234428e34 * cos(theta) ** 39 - 3.08577764675439e34 * cos(theta) ** 37 + 1.57119871004467e34 * cos(theta) ** 35 - 6.72079965835065e33 * cos(theta) ** 33 + 2.41400150993819e33 * cos(theta) ** 31 - 7.26544143767806e32 * cos(theta) ** 29 + 1.82535224238694e32 * cos(theta) ** 27 - 3.80688435578025e31 * cos(theta) ** 25 + 6.54103841199355e30 * cos(theta) ** 23 - 9.16832530877766e29 * cos(theta) ** 21 + 1.03513350260393e29 * cos(theta) ** 19 - 9.2625760829551e27 * cos(theta) ** 17 + 6.43365856630181e26 * cos(theta) ** 15 - 3.37598275593048e25 * cos(theta) ** 13 + 1.29081693609107e24 * cos(theta) ** 11 - 3.42144248120524e22 * cos(theta) ** 9 + 5.84861962599186e20 * cos(theta) ** 7 - 5.75813465287525e18 * cos(theta) ** 5 + 2.67074891135216e16 * cos(theta) ** 3 - 36837916018650.4 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl66_m_minus_6(theta, phi): return ( 5.36321701689086e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 3.34587437089685e29 * cos(theta) ** 60 - 4.52076155457056e30 * cos(theta) ** 58 + 2.89644141461439e31 * cos(theta) ** 56 - 1.17074009934545e32 * cos(theta) ** 54 + 3.35065816432668e32 * cos(theta) ** 52 - 7.22434589576776e32 * cos(theta) ** 50 + 1.21898398379002e33 * cos(theta) ** 48 - 1.65067699125467e33 * cos(theta) ** 46 + 1.82526782686814e33 * cos(theta) ** 44 - 1.66831242919542e33 * cos(theta) ** 42 + 1.27116548808607e33 * cos(theta) ** 40 - 8.12046749145892e32 * cos(theta) ** 38 + 4.36444086123518e32 * cos(theta) ** 36 - 1.97670578186784e32 * cos(theta) ** 34 + 7.54375471855686e31 * cos(theta) ** 32 - 2.42181381255935e31 * cos(theta) ** 30 + 6.51911515138192e30 * cos(theta) ** 28 - 1.46418629068471e30 * cos(theta) ** 26 + 2.72543267166398e29 * cos(theta) ** 24 - 4.16742059489894e28 * cos(theta) ** 22 + 5.17566751301965e27 * cos(theta) ** 20 - 5.14587560164172e26 * cos(theta) ** 18 + 4.02103660393863e25 * cos(theta) ** 16 - 2.41141625423606e24 * cos(theta) ** 14 + 1.07568078007589e23 * cos(theta) ** 12 - 3.42144248120524e21 * cos(theta) ** 10 + 7.31077453248982e19 * cos(theta) ** 8 - 9.59689108812541e17 * cos(theta) ** 6 + 6.67687227838039e15 * cos(theta) ** 4 - 18418958009325.2 * cos(theta) ** 2 + 8410483109.28092 ) * sin(6 * phi) ) # @torch.jit.script def Yl66_m_minus_5(theta, phi): return ( 3.5543200899049e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 5.48503995228992e27 * cos(theta) ** 61 - 7.66230771961111e28 * cos(theta) ** 59 + 5.08147616599016e29 * cos(theta) ** 57 - 2.12861836244627e30 * cos(theta) ** 55 + 6.32199653646543e30 * cos(theta) ** 53 - 1.41653841093486e31 * cos(theta) ** 51 + 2.48772241589799e31 * cos(theta) ** 49 - 3.51207870479716e31 * cos(theta) ** 47 + 4.05615072637365e31 * cos(theta) ** 45 - 3.8797963469661e31 * cos(theta) ** 43 + 3.10040362947822e31 * cos(theta) ** 41 - 2.08217115165613e31 * cos(theta) ** 39 + 1.17957861114464e31 * cos(theta) ** 37 - 5.64773080533668e30 * cos(theta) ** 35 + 2.28598627835056e30 * cos(theta) ** 33 - 7.8123026211592e29 * cos(theta) ** 31 + 2.24797074185584e29 * cos(theta) ** 29 - 5.42291218772115e28 * cos(theta) ** 27 + 1.09017306866559e28 * cos(theta) ** 25 - 1.81192199778215e27 * cos(theta) ** 23 + 2.4646035776284e26 * cos(theta) ** 21 - 2.70835557981143e25 * cos(theta) ** 19 + 2.36531564937566e24 * cos(theta) ** 17 - 1.60761083615737e23 * cos(theta) ** 15 + 8.2744675390453e21 * cos(theta) ** 13 - 3.11040225564113e20 * cos(theta) ** 11 + 8.12308281387758e18 * cos(theta) ** 9 - 1.37098444116077e17 * cos(theta) ** 7 + 1.33537445567608e15 * cos(theta) ** 5 - 6139652669775.07 * cos(theta) ** 3 + 8410483109.28092 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl66_m_minus_4(theta, phi): return ( 2.35820499764566e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 8.84683863272568e25 * cos(theta) ** 62 - 1.27705128660185e27 * cos(theta) ** 60 + 8.76116580343131e27 * cos(theta) ** 58 - 3.80110421865406e28 * cos(theta) ** 56 + 1.17074009934545e29 * cos(theta) ** 54 - 2.72411232872088e29 * cos(theta) ** 52 + 4.97544483179598e29 * cos(theta) ** 50 - 7.31683063499409e29 * cos(theta) ** 48 + 8.81771897037749e29 * cos(theta) ** 46 - 8.81771897037749e29 * cos(theta) ** 44 + 7.38191340351956e29 * cos(theta) ** 42 - 5.20542787914033e29 * cos(theta) ** 40 + 3.10415423985433e29 * cos(theta) ** 38 - 1.56881411259352e29 * cos(theta) ** 36 + 6.72348905397224e28 * cos(theta) ** 34 - 2.44134456911225e28 * cos(theta) ** 32 + 7.49323580618612e27 * cos(theta) ** 30 - 1.93675435275755e27 * cos(theta) ** 28 + 4.19297334102151e26 * cos(theta) ** 26 - 7.54967499075894e25 * cos(theta) ** 24 + 1.12027435346746e25 * cos(theta) ** 22 - 1.35417778990572e24 * cos(theta) ** 20 + 1.31406424965315e23 * cos(theta) ** 18 - 1.00475677259836e22 * cos(theta) ** 16 + 5.91033395646093e20 * cos(theta) ** 14 - 2.59200187970094e19 * cos(theta) ** 12 + 8.12308281387758e17 * cos(theta) ** 10 - 1.71373055145097e16 * cos(theta) ** 8 + 222562409279346.0 * cos(theta) ** 6 - 1534913167443.77 * cos(theta) ** 4 + 4205241554.64046 * cos(theta) ** 2 - 1910604.9771197 ) * sin(4 * phi) ) # @torch.jit.script def Yl66_m_minus_3(theta, phi): return ( 1.56603278625198e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 1.40426010043265e24 * cos(theta) ** 63 - 2.0935266993473e25 * cos(theta) ** 61 + 1.48494335651378e26 * cos(theta) ** 59 - 6.66860389237554e26 * cos(theta) ** 57 + 2.12861836244627e27 * cos(theta) ** 55 - 5.13983458249222e27 * cos(theta) ** 53 + 9.75577417999212e27 * cos(theta) ** 51 - 1.49323074183553e28 * cos(theta) ** 49 + 1.87611041922925e28 * cos(theta) ** 47 - 1.95949310452833e28 * cos(theta) ** 45 + 1.71672404733013e28 * cos(theta) ** 43 - 1.26961655588789e28 * cos(theta) ** 41 + 7.95936984578032e27 * cos(theta) ** 39 - 4.24003814214466e27 * cos(theta) ** 37 + 1.9209968725635e27 * cos(theta) ** 35 - 7.3980138457947e26 * cos(theta) ** 33 + 2.4171728407052e26 * cos(theta) ** 31 - 6.67846328537087e25 * cos(theta) ** 29 + 1.55295308926722e25 * cos(theta) ** 27 - 3.01986999630358e24 * cos(theta) ** 25 + 4.87075805855416e23 * cos(theta) ** 23 - 6.4484656662177e22 * cos(theta) ** 21 + 6.9161276297534e21 * cos(theta) ** 19 - 5.91033395646093e20 * cos(theta) ** 17 + 3.94022263764062e19 * cos(theta) ** 15 - 1.99384759976995e18 * cos(theta) ** 13 + 7.38462073988871e16 * cos(theta) ** 11 - 1.90414505716774e15 * cos(theta) ** 9 + 31794629897049.5 * cos(theta) ** 7 - 306982633488.754 * cos(theta) ** 5 + 1401747184.88015 * cos(theta) ** 3 - 1910604.9771197 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl66_m_minus_2(theta, phi): return ( 0.00104067562499143 * (1.0 - cos(theta) ** 2) * ( 2.19415640692601e22 * cos(theta) ** 64 - 3.37665596668919e23 * cos(theta) ** 62 + 2.47490559418964e24 * cos(theta) ** 60 - 1.14975929178889e25 * cos(theta) ** 58 + 3.80110421865406e25 * cos(theta) ** 56 - 9.51821218980041e25 * cos(theta) ** 54 + 1.87611041922925e26 * cos(theta) ** 52 - 2.98646148367106e26 * cos(theta) ** 50 + 3.90856337339428e26 * cos(theta) ** 48 - 4.25976761853985e26 * cos(theta) ** 46 + 3.90164556211393e26 * cos(theta) ** 44 - 3.02289656163782e26 * cos(theta) ** 42 + 1.98984246144508e26 * cos(theta) ** 40 - 1.1157995110907e26 * cos(theta) ** 38 + 5.33610242378749e25 * cos(theta) ** 36 - 2.17588642523374e25 * cos(theta) ** 34 + 7.55366512720375e24 * cos(theta) ** 32 - 2.22615442845696e24 * cos(theta) ** 30 + 5.54626103309723e23 * cos(theta) ** 28 - 1.16148846011676e23 * cos(theta) ** 26 + 2.02948252439757e22 * cos(theta) ** 24 - 2.93112075737168e21 * cos(theta) ** 22 + 3.4580638148767e20 * cos(theta) ** 20 - 3.28351886470052e19 * cos(theta) ** 18 + 2.46263914852539e18 * cos(theta) ** 16 - 1.42417685697854e17 * cos(theta) ** 14 + 6.15385061657393e15 * cos(theta) ** 12 - 190414505716774.0 * cos(theta) ** 10 + 3974328737131.18 * cos(theta) ** 8 - 51163772248.1256 * cos(theta) ** 6 + 350436796.220038 * cos(theta) ** 4 - 955302.48855985 * cos(theta) ** 2 + 432.655112572396 ) * sin(2 * phi) ) # @torch.jit.script def Yl66_m_minus_1(theta, phi): return ( 0.0691873214072833 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 3.37562524142463e20 * cos(theta) ** 65 - 5.35977137569713e21 * cos(theta) ** 63 + 4.05722228555678e22 * cos(theta) ** 61 - 1.94874456235404e23 * cos(theta) ** 59 + 6.66860389237554e23 * cos(theta) ** 57 - 1.73058403450916e24 * cos(theta) ** 55 + 3.53983097967784e24 * cos(theta) ** 53 - 5.85580683072756e24 * cos(theta) ** 51 + 7.97665994570261e24 * cos(theta) ** 49 - 9.06333535859543e24 * cos(theta) ** 47 + 8.6703234713643e24 * cos(theta) ** 45 - 7.02999200380889e24 * cos(theta) ** 43 + 4.85327429620751e24 * cos(theta) ** 41 - 2.86102438741205e24 * cos(theta) ** 39 + 1.44218984426689e24 * cos(theta) ** 37 - 6.21681835781067e23 * cos(theta) ** 35 + 2.28898943248598e23 * cos(theta) ** 33 - 7.18114331760309e22 * cos(theta) ** 31 + 1.91250380451629e22 * cos(theta) ** 29 - 4.30180911154356e21 * cos(theta) ** 27 + 8.11793009759026e20 * cos(theta) ** 25 - 1.27440032929204e20 * cos(theta) ** 23 + 1.64669705470319e19 * cos(theta) ** 21 - 1.72816782352659e18 * cos(theta) ** 19 + 1.44861126383846e17 * cos(theta) ** 17 - 9.49451237985691e15 * cos(theta) ** 15 + 473373124351840.0 * cos(theta) ** 13 - 17310409610615.8 * cos(theta) ** 11 + 441592081903.465 * cos(theta) ** 9 - 7309110321.1608 * cos(theta) ** 7 + 70087359.2440077 * cos(theta) ** 5 - 318434.162853283 * cos(theta) ** 3 + 432.655112572396 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl66_m0(theta, phi): return ( 5.22734364262563e19 * cos(theta) ** 66 - 8.55927642246715e20 * cos(theta) ** 64 + 6.68817878592782e21 * cos(theta) ** 62 - 3.31951340792376e22 * cos(theta) ** 60 + 1.17510774640501e23 * cos(theta) ** 58 - 3.15846033302029e23 * cos(theta) ** 56 + 6.69976434277032e23 * cos(theta) ** 54 - 1.15094391050472e24 * cos(theta) ** 52 + 1.63050387321502e24 * cos(theta) ** 50 - 1.92982342481971e24 * cos(theta) ** 48 + 1.92640780813862e24 * cos(theta) ** 46 - 1.63295010763593e24 * cos(theta) ** 44 + 1.18101743258684e24 * cos(theta) ** 42 - 7.31025168553033e23 * cos(theta) ** 40 + 3.87890905762834e23 * cos(theta) ** 38 - 1.76496638673963e23 * cos(theta) ** 36 + 6.88074767107651e22 * cos(theta) ** 34 - 2.2935825570255e22 * cos(theta) ** 32 + 6.51556098673912e21 * cos(theta) ** 30 - 1.57023214915874e21 * cos(theta) ** 28 + 3.19111694829033e20 * cos(theta) ** 26 - 5.42706963994954e19 * cos(theta) ** 24 + 7.65000623404532e18 * cos(theta) ** 22 - 8.83134152955757e17 * cos(theta) ** 20 + 8.22526907164676e16 * cos(theta) ** 18 - 6.06489719499737e15 * cos(theta) ** 16 + 345578187749138.0 * cos(theta) ** 14 - 14743373223240.3 * cos(theta) ** 12 + 451327751731.846 * cos(theta) ** 10 - 9337815553.07267 * cos(theta) ** 8 + 119387596.112345 * cos(theta) ** 6 - 813636.502355824 * cos(theta) ** 4 + 2210.9687564017 * cos(theta) ** 2 - 0.999985869019311 ) # @torch.jit.script def Yl66_m1(theta, phi): return ( 0.0691873214072833 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 3.37562524142463e20 * cos(theta) ** 65 - 5.35977137569713e21 * cos(theta) ** 63 + 4.05722228555678e22 * cos(theta) ** 61 - 1.94874456235404e23 * cos(theta) ** 59 + 6.66860389237554e23 * cos(theta) ** 57 - 1.73058403450916e24 * cos(theta) ** 55 + 3.53983097967784e24 * cos(theta) ** 53 - 5.85580683072756e24 * cos(theta) ** 51 + 7.97665994570261e24 * cos(theta) ** 49 - 9.06333535859543e24 * cos(theta) ** 47 + 8.6703234713643e24 * cos(theta) ** 45 - 7.02999200380889e24 * cos(theta) ** 43 + 4.85327429620751e24 * cos(theta) ** 41 - 2.86102438741205e24 * cos(theta) ** 39 + 1.44218984426689e24 * cos(theta) ** 37 - 6.21681835781067e23 * cos(theta) ** 35 + 2.28898943248598e23 * cos(theta) ** 33 - 7.18114331760309e22 * cos(theta) ** 31 + 1.91250380451629e22 * cos(theta) ** 29 - 4.30180911154356e21 * cos(theta) ** 27 + 8.11793009759026e20 * cos(theta) ** 25 - 1.27440032929204e20 * cos(theta) ** 23 + 1.64669705470319e19 * cos(theta) ** 21 - 1.72816782352659e18 * cos(theta) ** 19 + 1.44861126383846e17 * cos(theta) ** 17 - 9.49451237985691e15 * cos(theta) ** 15 + 473373124351840.0 * cos(theta) ** 13 - 17310409610615.8 * cos(theta) ** 11 + 441592081903.465 * cos(theta) ** 9 - 7309110321.1608 * cos(theta) ** 7 + 70087359.2440077 * cos(theta) ** 5 - 318434.162853283 * cos(theta) ** 3 + 432.655112572396 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl66_m2(theta, phi): return ( 0.00104067562499143 * (1.0 - cos(theta) ** 2) * ( 2.19415640692601e22 * cos(theta) ** 64 - 3.37665596668919e23 * cos(theta) ** 62 + 2.47490559418964e24 * cos(theta) ** 60 - 1.14975929178889e25 * cos(theta) ** 58 + 3.80110421865406e25 * cos(theta) ** 56 - 9.51821218980041e25 * cos(theta) ** 54 + 1.87611041922925e26 * cos(theta) ** 52 - 2.98646148367106e26 * cos(theta) ** 50 + 3.90856337339428e26 * cos(theta) ** 48 - 4.25976761853985e26 * cos(theta) ** 46 + 3.90164556211393e26 * cos(theta) ** 44 - 3.02289656163782e26 * cos(theta) ** 42 + 1.98984246144508e26 * cos(theta) ** 40 - 1.1157995110907e26 * cos(theta) ** 38 + 5.33610242378749e25 * cos(theta) ** 36 - 2.17588642523374e25 * cos(theta) ** 34 + 7.55366512720375e24 * cos(theta) ** 32 - 2.22615442845696e24 * cos(theta) ** 30 + 5.54626103309723e23 * cos(theta) ** 28 - 1.16148846011676e23 * cos(theta) ** 26 + 2.02948252439757e22 * cos(theta) ** 24 - 2.93112075737168e21 * cos(theta) ** 22 + 3.4580638148767e20 * cos(theta) ** 20 - 3.28351886470052e19 * cos(theta) ** 18 + 2.46263914852539e18 * cos(theta) ** 16 - 1.42417685697854e17 * cos(theta) ** 14 + 6.15385061657393e15 * cos(theta) ** 12 - 190414505716774.0 * cos(theta) ** 10 + 3974328737131.18 * cos(theta) ** 8 - 51163772248.1256 * cos(theta) ** 6 + 350436796.220038 * cos(theta) ** 4 - 955302.48855985 * cos(theta) ** 2 + 432.655112572396 ) * cos(2 * phi) ) # @torch.jit.script def Yl66_m3(theta, phi): return ( 1.56603278625198e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 1.40426010043265e24 * cos(theta) ** 63 - 2.0935266993473e25 * cos(theta) ** 61 + 1.48494335651378e26 * cos(theta) ** 59 - 6.66860389237554e26 * cos(theta) ** 57 + 2.12861836244627e27 * cos(theta) ** 55 - 5.13983458249222e27 * cos(theta) ** 53 + 9.75577417999212e27 * cos(theta) ** 51 - 1.49323074183553e28 * cos(theta) ** 49 + 1.87611041922925e28 * cos(theta) ** 47 - 1.95949310452833e28 * cos(theta) ** 45 + 1.71672404733013e28 * cos(theta) ** 43 - 1.26961655588789e28 * cos(theta) ** 41 + 7.95936984578032e27 * cos(theta) ** 39 - 4.24003814214466e27 * cos(theta) ** 37 + 1.9209968725635e27 * cos(theta) ** 35 - 7.3980138457947e26 * cos(theta) ** 33 + 2.4171728407052e26 * cos(theta) ** 31 - 6.67846328537087e25 * cos(theta) ** 29 + 1.55295308926722e25 * cos(theta) ** 27 - 3.01986999630358e24 * cos(theta) ** 25 + 4.87075805855416e23 * cos(theta) ** 23 - 6.4484656662177e22 * cos(theta) ** 21 + 6.9161276297534e21 * cos(theta) ** 19 - 5.91033395646093e20 * cos(theta) ** 17 + 3.94022263764062e19 * cos(theta) ** 15 - 1.99384759976995e18 * cos(theta) ** 13 + 7.38462073988871e16 * cos(theta) ** 11 - 1.90414505716774e15 * cos(theta) ** 9 + 31794629897049.5 * cos(theta) ** 7 - 306982633488.754 * cos(theta) ** 5 + 1401747184.88015 * cos(theta) ** 3 - 1910604.9771197 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl66_m4(theta, phi): return ( 2.35820499764566e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 8.84683863272568e25 * cos(theta) ** 62 - 1.27705128660185e27 * cos(theta) ** 60 + 8.76116580343131e27 * cos(theta) ** 58 - 3.80110421865406e28 * cos(theta) ** 56 + 1.17074009934545e29 * cos(theta) ** 54 - 2.72411232872088e29 * cos(theta) ** 52 + 4.97544483179598e29 * cos(theta) ** 50 - 7.31683063499409e29 * cos(theta) ** 48 + 8.81771897037749e29 * cos(theta) ** 46 - 8.81771897037749e29 * cos(theta) ** 44 + 7.38191340351956e29 * cos(theta) ** 42 - 5.20542787914033e29 * cos(theta) ** 40 + 3.10415423985433e29 * cos(theta) ** 38 - 1.56881411259352e29 * cos(theta) ** 36 + 6.72348905397224e28 * cos(theta) ** 34 - 2.44134456911225e28 * cos(theta) ** 32 + 7.49323580618612e27 * cos(theta) ** 30 - 1.93675435275755e27 * cos(theta) ** 28 + 4.19297334102151e26 * cos(theta) ** 26 - 7.54967499075894e25 * cos(theta) ** 24 + 1.12027435346746e25 * cos(theta) ** 22 - 1.35417778990572e24 * cos(theta) ** 20 + 1.31406424965315e23 * cos(theta) ** 18 - 1.00475677259836e22 * cos(theta) ** 16 + 5.91033395646093e20 * cos(theta) ** 14 - 2.59200187970094e19 * cos(theta) ** 12 + 8.12308281387758e17 * cos(theta) ** 10 - 1.71373055145097e16 * cos(theta) ** 8 + 222562409279346.0 * cos(theta) ** 6 - 1534913167443.77 * cos(theta) ** 4 + 4205241554.64046 * cos(theta) ** 2 - 1910604.9771197 ) * cos(4 * phi) ) # @torch.jit.script def Yl66_m5(theta, phi): return ( 3.5543200899049e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 5.48503995228992e27 * cos(theta) ** 61 - 7.66230771961111e28 * cos(theta) ** 59 + 5.08147616599016e29 * cos(theta) ** 57 - 2.12861836244627e30 * cos(theta) ** 55 + 6.32199653646543e30 * cos(theta) ** 53 - 1.41653841093486e31 * cos(theta) ** 51 + 2.48772241589799e31 * cos(theta) ** 49 - 3.51207870479716e31 * cos(theta) ** 47 + 4.05615072637365e31 * cos(theta) ** 45 - 3.8797963469661e31 * cos(theta) ** 43 + 3.10040362947822e31 * cos(theta) ** 41 - 2.08217115165613e31 * cos(theta) ** 39 + 1.17957861114464e31 * cos(theta) ** 37 - 5.64773080533668e30 * cos(theta) ** 35 + 2.28598627835056e30 * cos(theta) ** 33 - 7.8123026211592e29 * cos(theta) ** 31 + 2.24797074185584e29 * cos(theta) ** 29 - 5.42291218772115e28 * cos(theta) ** 27 + 1.09017306866559e28 * cos(theta) ** 25 - 1.81192199778215e27 * cos(theta) ** 23 + 2.4646035776284e26 * cos(theta) ** 21 - 2.70835557981143e25 * cos(theta) ** 19 + 2.36531564937566e24 * cos(theta) ** 17 - 1.60761083615737e23 * cos(theta) ** 15 + 8.2744675390453e21 * cos(theta) ** 13 - 3.11040225564113e20 * cos(theta) ** 11 + 8.12308281387758e18 * cos(theta) ** 9 - 1.37098444116077e17 * cos(theta) ** 7 + 1.33537445567608e15 * cos(theta) ** 5 - 6139652669775.07 * cos(theta) ** 3 + 8410483109.28092 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl66_m6(theta, phi): return ( 5.36321701689086e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 3.34587437089685e29 * cos(theta) ** 60 - 4.52076155457056e30 * cos(theta) ** 58 + 2.89644141461439e31 * cos(theta) ** 56 - 1.17074009934545e32 * cos(theta) ** 54 + 3.35065816432668e32 * cos(theta) ** 52 - 7.22434589576776e32 * cos(theta) ** 50 + 1.21898398379002e33 * cos(theta) ** 48 - 1.65067699125467e33 * cos(theta) ** 46 + 1.82526782686814e33 * cos(theta) ** 44 - 1.66831242919542e33 * cos(theta) ** 42 + 1.27116548808607e33 * cos(theta) ** 40 - 8.12046749145892e32 * cos(theta) ** 38 + 4.36444086123518e32 * cos(theta) ** 36 - 1.97670578186784e32 * cos(theta) ** 34 + 7.54375471855686e31 * cos(theta) ** 32 - 2.42181381255935e31 * cos(theta) ** 30 + 6.51911515138192e30 * cos(theta) ** 28 - 1.46418629068471e30 * cos(theta) ** 26 + 2.72543267166398e29 * cos(theta) ** 24 - 4.16742059489894e28 * cos(theta) ** 22 + 5.17566751301965e27 * cos(theta) ** 20 - 5.14587560164172e26 * cos(theta) ** 18 + 4.02103660393863e25 * cos(theta) ** 16 - 2.41141625423606e24 * cos(theta) ** 14 + 1.07568078007589e23 * cos(theta) ** 12 - 3.42144248120524e21 * cos(theta) ** 10 + 7.31077453248982e19 * cos(theta) ** 8 - 9.59689108812541e17 * cos(theta) ** 6 + 6.67687227838039e15 * cos(theta) ** 4 - 18418958009325.2 * cos(theta) ** 2 + 8410483109.28092 ) * cos(6 * phi) ) # @torch.jit.script def Yl66_m7(theta, phi): return ( 8.10379255740153e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 2.00752462253811e31 * cos(theta) ** 59 - 2.62204170165092e32 * cos(theta) ** 57 + 1.62200719218406e33 * cos(theta) ** 55 - 6.32199653646543e33 * cos(theta) ** 53 + 1.74234224544987e34 * cos(theta) ** 51 - 3.61217294788388e34 * cos(theta) ** 49 + 5.85112312219207e34 * cos(theta) ** 47 - 7.59311415977147e34 * cos(theta) ** 45 + 8.03117843821982e34 * cos(theta) ** 43 - 7.00691220262077e34 * cos(theta) ** 41 + 5.08466195234428e34 * cos(theta) ** 39 - 3.08577764675439e34 * cos(theta) ** 37 + 1.57119871004467e34 * cos(theta) ** 35 - 6.72079965835065e33 * cos(theta) ** 33 + 2.41400150993819e33 * cos(theta) ** 31 - 7.26544143767806e32 * cos(theta) ** 29 + 1.82535224238694e32 * cos(theta) ** 27 - 3.80688435578025e31 * cos(theta) ** 25 + 6.54103841199355e30 * cos(theta) ** 23 - 9.16832530877766e29 * cos(theta) ** 21 + 1.03513350260393e29 * cos(theta) ** 19 - 9.2625760829551e27 * cos(theta) ** 17 + 6.43365856630181e26 * cos(theta) ** 15 - 3.37598275593048e25 * cos(theta) ** 13 + 1.29081693609107e24 * cos(theta) ** 11 - 3.42144248120524e22 * cos(theta) ** 9 + 5.84861962599186e20 * cos(theta) ** 7 - 5.75813465287525e18 * cos(theta) ** 5 + 2.67074891135216e16 * cos(theta) ** 3 - 36837916018650.4 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl66_m8(theta, phi): return ( 1.22644040432258e-14 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.18443952729749e33 * cos(theta) ** 58 - 1.49456376994103e34 * cos(theta) ** 56 + 8.92103955701233e34 * cos(theta) ** 54 - 3.35065816432668e35 * cos(theta) ** 52 + 8.88594545179435e35 * cos(theta) ** 50 - 1.7699647444631e36 * cos(theta) ** 48 + 2.75002786743027e36 * cos(theta) ** 46 - 3.41690137189716e36 * cos(theta) ** 44 + 3.45340672843452e36 * cos(theta) ** 42 - 2.87283400307452e36 * cos(theta) ** 40 + 1.98301816141427e36 * cos(theta) ** 38 - 1.14173772929912e36 * cos(theta) ** 36 + 5.49919548515633e35 * cos(theta) ** 34 - 2.21786388725572e35 * cos(theta) ** 32 + 7.4834046808084e34 * cos(theta) ** 30 - 2.10697801692664e34 * cos(theta) ** 28 + 4.92845105444473e33 * cos(theta) ** 26 - 9.51721088945061e32 * cos(theta) ** 24 + 1.50443883475852e32 * cos(theta) ** 22 - 1.92534831484331e31 * cos(theta) ** 20 + 1.96675365494747e30 * cos(theta) ** 18 - 1.57463793410237e29 * cos(theta) ** 16 + 9.65048784945271e27 * cos(theta) ** 14 - 4.38877758270963e26 * cos(theta) ** 12 + 1.41989862970017e25 * cos(theta) ** 10 - 3.07929823308471e23 * cos(theta) ** 8 + 4.0940337381943e21 * cos(theta) ** 6 - 2.87906732643762e19 * cos(theta) ** 4 + 8.01224673405647e16 * cos(theta) ** 2 - 36837916018650.4 ) * cos(8 * phi) ) # @torch.jit.script def Yl66_m9(theta, phi): return ( 1.85952414216614e-16 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 6.86974925832542e34 * cos(theta) ** 57 - 8.36955711166975e35 * cos(theta) ** 55 + 4.81736136078666e36 * cos(theta) ** 53 - 1.74234224544987e37 * cos(theta) ** 51 + 4.44297272589717e37 * cos(theta) ** 49 - 8.49583077342289e37 * cos(theta) ** 47 + 1.26501281901793e38 * cos(theta) ** 45 - 1.50343660363475e38 * cos(theta) ** 43 + 1.4504308259425e38 * cos(theta) ** 41 - 1.14913360122981e38 * cos(theta) ** 39 + 7.53546901337422e37 * cos(theta) ** 37 - 4.11025582547685e37 * cos(theta) ** 35 + 1.86972646495315e37 * cos(theta) ** 33 - 7.09716443921829e36 * cos(theta) ** 31 + 2.24502140424252e36 * cos(theta) ** 29 - 5.89953844739458e35 * cos(theta) ** 27 + 1.28139727415563e35 * cos(theta) ** 25 - 2.28413061346815e34 * cos(theta) ** 23 + 3.30976543646874e33 * cos(theta) ** 21 - 3.85069662968662e32 * cos(theta) ** 19 + 3.54015657890544e31 * cos(theta) ** 17 - 2.51942069456379e30 * cos(theta) ** 15 + 1.35106829892338e29 * cos(theta) ** 13 - 5.26653309925155e27 * cos(theta) ** 11 + 1.41989862970017e26 * cos(theta) ** 9 - 2.46343858646777e24 * cos(theta) ** 7 + 2.45642024291658e22 * cos(theta) ** 5 - 1.15162693057505e20 * cos(theta) ** 3 + 1.60244934681129e17 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl66_m10(theta, phi): return ( 2.82525464222165e-18 * (1.0 - cos(theta) ** 2) ** 5 * ( 3.91575707724549e36 * cos(theta) ** 56 - 4.60325641141836e37 * cos(theta) ** 54 + 2.55320152121693e38 * cos(theta) ** 52 - 8.88594545179435e38 * cos(theta) ** 50 + 2.17705663568962e39 * cos(theta) ** 48 - 3.99304046350876e39 * cos(theta) ** 46 + 5.69255768558067e39 * cos(theta) ** 44 - 6.46477739562943e39 * cos(theta) ** 42 + 5.94676638636425e39 * cos(theta) ** 40 - 4.48162104479624e39 * cos(theta) ** 38 + 2.78812353494846e39 * cos(theta) ** 36 - 1.4385895389169e39 * cos(theta) ** 34 + 6.1700973343454e38 * cos(theta) ** 32 - 2.20012097615767e38 * cos(theta) ** 30 + 6.51056207230331e37 * cos(theta) ** 28 - 1.59287538079654e37 * cos(theta) ** 26 + 3.20349318538908e36 * cos(theta) ** 24 - 5.25350041097674e35 * cos(theta) ** 22 + 6.95050741658435e34 * cos(theta) ** 20 - 7.31632359640457e33 * cos(theta) ** 18 + 6.01826618413925e32 * cos(theta) ** 16 - 3.77913104184568e31 * cos(theta) ** 14 + 1.75638878860039e30 * cos(theta) ** 12 - 5.79318640917671e28 * cos(theta) ** 10 + 1.27790876673016e27 * cos(theta) ** 8 - 1.72440701052744e25 * cos(theta) ** 6 + 1.22821012145829e23 * cos(theta) ** 4 - 3.45488079172515e20 * cos(theta) ** 2 + 1.60244934681129e17 ) * cos(10 * phi) ) # @torch.jit.script def Yl66_m11(theta, phi): return ( 4.30247366863335e-20 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 2.19282396325747e38 * cos(theta) ** 55 - 2.48575846216591e39 * cos(theta) ** 53 + 1.3276647910328e40 * cos(theta) ** 51 - 4.44297272589717e40 * cos(theta) ** 49 + 1.04498718513102e41 * cos(theta) ** 47 - 1.83679861321403e41 * cos(theta) ** 45 + 2.50472538165549e41 * cos(theta) ** 43 - 2.71520650616436e41 * cos(theta) ** 41 + 2.3787065545457e41 * cos(theta) ** 39 - 1.70301599702257e41 * cos(theta) ** 37 + 1.00372447258145e41 * cos(theta) ** 35 - 4.89120443231745e40 * cos(theta) ** 33 + 1.97443114699053e40 * cos(theta) ** 31 - 6.60036292847301e39 * cos(theta) ** 29 + 1.82295738024493e39 * cos(theta) ** 27 - 4.141475990071e38 * cos(theta) ** 25 + 7.68838364493378e37 * cos(theta) ** 23 - 1.15577009041488e37 * cos(theta) ** 21 + 1.39010148331687e36 * cos(theta) ** 19 - 1.31693824735282e35 * cos(theta) ** 17 + 9.62922589462279e33 * cos(theta) ** 15 - 5.29078345858395e32 * cos(theta) ** 13 + 2.10766654632047e31 * cos(theta) ** 11 - 5.79318640917671e29 * cos(theta) ** 9 + 1.02232701338413e28 * cos(theta) ** 7 - 1.03464420631646e26 * cos(theta) ** 5 + 4.91284048583316e23 * cos(theta) ** 3 - 6.9097615834503e20 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl66_m12(theta, phi): return ( 6.56885348131129e-22 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.20605317979161e40 * cos(theta) ** 54 - 1.31745198494793e41 * cos(theta) ** 52 + 6.77109043426729e41 * cos(theta) ** 50 - 2.17705663568962e42 * cos(theta) ** 48 + 4.91143977011577e42 * cos(theta) ** 46 - 8.26559375946313e42 * cos(theta) ** 44 + 1.07703191411186e43 * cos(theta) ** 42 - 1.11323466752739e43 * cos(theta) ** 40 + 9.27695556272823e42 * cos(theta) ** 38 - 6.30115918898352e42 * cos(theta) ** 36 + 3.51303565403506e42 * cos(theta) ** 34 - 1.61409746266476e42 * cos(theta) ** 32 + 6.12073655567064e41 * cos(theta) ** 30 - 1.91410524925717e41 * cos(theta) ** 28 + 4.9219849266613e40 * cos(theta) ** 26 - 1.03536899751775e40 * cos(theta) ** 24 + 1.76832823833477e39 * cos(theta) ** 22 - 2.42711718987125e38 * cos(theta) ** 20 + 2.64119281830205e37 * cos(theta) ** 18 - 2.2387950204998e36 * cos(theta) ** 16 + 1.44438388419342e35 * cos(theta) ** 14 - 6.87801849615914e33 * cos(theta) ** 12 + 2.31843320095252e32 * cos(theta) ** 10 - 5.21386776825904e30 * cos(theta) ** 8 + 7.15628909368888e28 * cos(theta) ** 6 - 5.17322103158232e26 * cos(theta) ** 4 + 1.47385214574995e24 * cos(theta) ** 2 - 6.9097615834503e20 ) * cos(12 * phi) ) # @torch.jit.script def Yl66_m13(theta, phi): return ( 1.00572477683751e-23 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 6.5126871708747e41 * cos(theta) ** 53 - 6.85075032172926e42 * cos(theta) ** 51 + 3.38554521713365e43 * cos(theta) ** 49 - 1.04498718513102e44 * cos(theta) ** 47 + 2.25926229425326e44 * cos(theta) ** 45 - 3.63686125416378e44 * cos(theta) ** 43 + 4.52353403926982e44 * cos(theta) ** 41 - 4.45293867010955e44 * cos(theta) ** 39 + 3.52524311383673e44 * cos(theta) ** 37 - 2.26841730803407e44 * cos(theta) ** 35 + 1.19443212237192e44 * cos(theta) ** 33 - 5.16511188052722e43 * cos(theta) ** 31 + 1.83622096670119e43 * cos(theta) ** 29 - 5.35949469792008e42 * cos(theta) ** 27 + 1.27971608093194e42 * cos(theta) ** 25 - 2.4848855940426e41 * cos(theta) ** 23 + 3.89032212433649e40 * cos(theta) ** 21 - 4.85423437974251e39 * cos(theta) ** 19 + 4.75414707294369e38 * cos(theta) ** 17 - 3.58207203279968e37 * cos(theta) ** 15 + 2.02213743787079e36 * cos(theta) ** 13 - 8.25362219539097e34 * cos(theta) ** 11 + 2.31843320095252e33 * cos(theta) ** 9 - 4.17109421460723e31 * cos(theta) ** 7 + 4.29377345621333e29 * cos(theta) ** 5 - 2.06928841263293e27 * cos(theta) ** 3 + 2.9477042914999e24 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl66_m14(theta, phi): return ( 1.54452954822549e-25 * (1.0 - cos(theta) ** 2) ** 7 * ( 3.45172420056359e43 * cos(theta) ** 52 - 3.49388266408192e44 * cos(theta) ** 50 + 1.65891715639549e45 * cos(theta) ** 48 - 4.91143977011577e45 * cos(theta) ** 46 + 1.01666803241396e46 * cos(theta) ** 44 - 1.56385033929042e46 * cos(theta) ** 42 + 1.85464895610063e46 * cos(theta) ** 40 - 1.73664608134272e46 * cos(theta) ** 38 + 1.30433995211959e46 * cos(theta) ** 36 - 7.93946057811923e45 * cos(theta) ** 34 + 3.94162600382734e45 * cos(theta) ** 32 - 1.60118468296344e45 * cos(theta) ** 30 + 5.32504080343346e44 * cos(theta) ** 28 - 1.44706356843842e44 * cos(theta) ** 26 + 3.19929020232985e43 * cos(theta) ** 24 - 5.71523686629798e42 * cos(theta) ** 22 + 8.16967646110664e41 * cos(theta) ** 20 - 9.22304532151076e40 * cos(theta) ** 18 + 8.08205002400428e39 * cos(theta) ** 16 - 5.37310804919952e38 * cos(theta) ** 14 + 2.62877866923202e37 * cos(theta) ** 12 - 9.07898441493006e35 * cos(theta) ** 10 + 2.08658988085727e34 * cos(theta) ** 8 - 2.91976595022506e32 * cos(theta) ** 6 + 2.14688672810666e30 * cos(theta) ** 4 - 6.20786523789878e27 * cos(theta) ** 2 + 2.9477042914999e24 ) * cos(14 * phi) ) # @torch.jit.script def Yl66_m15(theta, phi): return ( 2.37986345410096e-27 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.79489658429307e45 * cos(theta) ** 51 - 1.74694133204096e46 * cos(theta) ** 49 + 7.96280235069834e46 * cos(theta) ** 47 - 2.25926229425326e47 * cos(theta) ** 45 + 4.47333934262145e47 * cos(theta) ** 43 - 6.56817142501978e47 * cos(theta) ** 41 + 7.41859582440251e47 * cos(theta) ** 39 - 6.59925510910235e47 * cos(theta) ** 37 + 4.69562382763052e47 * cos(theta) ** 35 - 2.69941659656054e47 * cos(theta) ** 33 + 1.26132032122475e47 * cos(theta) ** 31 - 4.80355404889032e46 * cos(theta) ** 29 + 1.49101142496137e46 * cos(theta) ** 27 - 3.7623652779399e45 * cos(theta) ** 25 + 7.67829648559163e44 * cos(theta) ** 23 - 1.25735211058556e44 * cos(theta) ** 21 + 1.63393529222133e43 * cos(theta) ** 19 - 1.66014815787194e42 * cos(theta) ** 17 + 1.29312800384068e41 * cos(theta) ** 15 - 7.52235126887933e39 * cos(theta) ** 13 + 3.15453440307843e38 * cos(theta) ** 11 - 9.07898441493006e36 * cos(theta) ** 9 + 1.66927190468581e35 * cos(theta) ** 7 - 1.75185957013504e33 * cos(theta) ** 5 + 8.58754691242665e30 * cos(theta) ** 3 - 1.24157304757976e28 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl66_m16(theta, phi): return ( 3.68010343751003e-29 * (1.0 - cos(theta) ** 2) ** 8 * ( 9.15397257989464e46 * cos(theta) ** 50 - 8.56001252700071e47 * cos(theta) ** 48 + 3.74251710482822e48 * cos(theta) ** 46 - 1.01666803241396e49 * cos(theta) ** 44 + 1.92353591732722e49 * cos(theta) ** 42 - 2.69295028425811e49 * cos(theta) ** 40 + 2.89325237151698e49 * cos(theta) ** 38 - 2.44172439036787e49 * cos(theta) ** 36 + 1.64346833967068e49 * cos(theta) ** 34 - 8.90807476864978e48 * cos(theta) ** 32 + 3.91009299579672e48 * cos(theta) ** 30 - 1.39303067417819e48 * cos(theta) ** 28 + 4.02573084739569e47 * cos(theta) ** 26 - 9.40591319484975e46 * cos(theta) ** 24 + 1.76600819168608e46 * cos(theta) ** 22 - 2.64043943222967e45 * cos(theta) ** 20 + 3.10447705522052e44 * cos(theta) ** 18 - 2.82225186838229e43 * cos(theta) ** 16 + 1.93969200576103e42 * cos(theta) ** 14 - 9.77905664954312e40 * cos(theta) ** 12 + 3.46998784338627e39 * cos(theta) ** 10 - 8.17108597343706e37 * cos(theta) ** 8 + 1.16849033328007e36 * cos(theta) ** 6 - 8.75929785067518e33 * cos(theta) ** 4 + 2.576264073728e31 * cos(theta) ** 2 - 1.24157304757976e28 ) * cos(16 * phi) ) # @torch.jit.script def Yl66_m17(theta, phi): return ( 5.71262843535419e-31 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 4.57698628994732e48 * cos(theta) ** 49 - 4.10880601296034e49 * cos(theta) ** 47 + 1.72155786822098e50 * cos(theta) ** 45 - 4.47333934262145e50 * cos(theta) ** 43 + 8.07885085277433e50 * cos(theta) ** 41 - 1.07718011370324e51 * cos(theta) ** 39 + 1.09943590117645e51 * cos(theta) ** 37 - 8.79020780532433e50 * cos(theta) ** 35 + 5.58779235488032e50 * cos(theta) ** 33 - 2.85058392596793e50 * cos(theta) ** 31 + 1.17302789873902e50 * cos(theta) ** 29 - 3.90048588769894e49 * cos(theta) ** 27 + 1.04669002032288e49 * cos(theta) ** 25 - 2.25741916676394e48 * cos(theta) ** 23 + 3.88521802170937e47 * cos(theta) ** 21 - 5.28087886445933e46 * cos(theta) ** 19 + 5.58805869939694e45 * cos(theta) ** 17 - 4.51560298941167e44 * cos(theta) ** 15 + 2.71556880806544e43 * cos(theta) ** 13 - 1.17348679794518e42 * cos(theta) ** 11 + 3.46998784338627e40 * cos(theta) ** 9 - 6.53686877874965e38 * cos(theta) ** 7 + 7.01094199968042e36 * cos(theta) ** 5 - 3.50371914027007e34 * cos(theta) ** 3 + 5.15252814745599e31 * cos(theta) ) * cos(17 * phi) ) # @torch.jit.script def Yl66_m18(theta, phi): return ( 8.90426946332235e-33 * (1.0 - cos(theta) ** 2) ** 9 * ( 2.24272328207419e50 * cos(theta) ** 48 - 1.93113882609136e51 * cos(theta) ** 46 + 7.74701040699441e51 * cos(theta) ** 44 - 1.92353591732722e52 * cos(theta) ** 42 + 3.31232884963748e52 * cos(theta) ** 40 - 4.20100244344265e52 * cos(theta) ** 38 + 4.06791283435287e52 * cos(theta) ** 36 - 3.07657273186352e52 * cos(theta) ** 34 + 1.8439714771105e52 * cos(theta) ** 32 - 8.83681017050058e51 * cos(theta) ** 30 + 3.40178090634314e51 * cos(theta) ** 28 - 1.05313118967871e51 * cos(theta) ** 26 + 2.6167250508072e50 * cos(theta) ** 24 - 5.19206408355706e49 * cos(theta) ** 22 + 8.15895784558967e48 * cos(theta) ** 20 - 1.00336698424727e48 * cos(theta) ** 18 + 9.4996997889748e46 * cos(theta) ** 16 - 6.7734044841175e45 * cos(theta) ** 14 + 3.53023945048507e44 * cos(theta) ** 12 - 1.29083547773969e43 * cos(theta) ** 10 + 3.12298905904764e41 * cos(theta) ** 8 - 4.57580814512475e39 * cos(theta) ** 6 + 3.50547099984021e37 * cos(theta) ** 4 - 1.05111574208102e35 * cos(theta) ** 2 + 5.15252814745599e31 ) * cos(18 * phi) ) # @torch.jit.script def Yl66_m19(theta, phi): return ( 1.39401745807505e-34 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.07650717539561e52 * cos(theta) ** 47 - 8.88323860002026e52 * cos(theta) ** 45 + 3.40868457907754e53 * cos(theta) ** 43 - 8.07885085277433e53 * cos(theta) ** 41 + 1.32493153985499e54 * cos(theta) ** 39 - 1.59638092850821e54 * cos(theta) ** 37 + 1.46444862036703e54 * cos(theta) ** 35 - 1.0460347288336e54 * cos(theta) ** 33 + 5.90070872675361e53 * cos(theta) ** 31 - 2.65104305115017e53 * cos(theta) ** 29 + 9.5249865377608e52 * cos(theta) ** 27 - 2.73814109316465e52 * cos(theta) ** 25 + 6.28014012193728e51 * cos(theta) ** 23 - 1.14225409838255e51 * cos(theta) ** 21 + 1.63179156911793e50 * cos(theta) ** 19 - 1.80606057164509e49 * cos(theta) ** 17 + 1.51995196623597e48 * cos(theta) ** 15 - 9.48276627776451e46 * cos(theta) ** 13 + 4.23628734058208e45 * cos(theta) ** 11 - 1.29083547773969e44 * cos(theta) ** 9 + 2.49839124723811e42 * cos(theta) ** 7 - 2.74548488707485e40 * cos(theta) ** 5 + 1.40218839993608e38 * cos(theta) ** 3 - 2.10223148416204e35 * cos(theta) ) * cos(19 * phi) ) # @torch.jit.script def Yl66_m20(theta, phi): return ( 2.19265376043663e-36 * (1.0 - cos(theta) ** 2) ** 10 * ( 5.05958372435937e53 * cos(theta) ** 46 - 3.99745737000912e54 * cos(theta) ** 44 + 1.46573436900334e55 * cos(theta) ** 42 - 3.31232884963748e55 * cos(theta) ** 40 + 5.16723300543446e55 * cos(theta) ** 38 - 5.90660943548037e55 * cos(theta) ** 36 + 5.12557017128462e55 * cos(theta) ** 34 - 3.45191460515086e55 * cos(theta) ** 32 + 1.82921970529362e55 * cos(theta) ** 30 - 7.68802484833551e54 * cos(theta) ** 28 + 2.57174636519542e54 * cos(theta) ** 26 - 6.84535273291163e53 * cos(theta) ** 24 + 1.44443222804557e53 * cos(theta) ** 22 - 2.39873360660336e52 * cos(theta) ** 20 + 3.10040398132407e51 * cos(theta) ** 18 - 3.07030297179666e50 * cos(theta) ** 16 + 2.27992794935395e49 * cos(theta) ** 14 - 1.23275961610939e48 * cos(theta) ** 12 + 4.65991607464029e46 * cos(theta) ** 10 - 1.16175192996572e45 * cos(theta) ** 8 + 1.74887387306668e43 * cos(theta) ** 6 - 1.37274244353743e41 * cos(theta) ** 4 + 4.20656519980825e38 * cos(theta) ** 2 - 2.10223148416204e35 ) * cos(20 * phi) ) # @torch.jit.script def Yl66_m21(theta, phi): return ( 3.46602360394165e-38 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 2.32740851320531e55 * cos(theta) ** 45 - 1.75888124280401e56 * cos(theta) ** 43 + 6.15608434981404e56 * cos(theta) ** 41 - 1.32493153985499e57 * cos(theta) ** 39 + 1.9635485420651e57 * cos(theta) ** 37 - 2.12637939677293e57 * cos(theta) ** 35 + 1.74269385823677e57 * cos(theta) ** 33 - 1.10461267364828e57 * cos(theta) ** 31 + 5.48765911588086e56 * cos(theta) ** 29 - 2.15264695753394e56 * cos(theta) ** 27 + 6.68654054950809e55 * cos(theta) ** 25 - 1.64288465589879e55 * cos(theta) ** 23 + 3.17775090170026e54 * cos(theta) ** 21 - 4.79746721320672e53 * cos(theta) ** 19 + 5.58072716638333e52 * cos(theta) ** 17 - 4.91248475487465e51 * cos(theta) ** 15 + 3.19189912909553e50 * cos(theta) ** 13 - 1.47931153933126e49 * cos(theta) ** 11 + 4.65991607464029e47 * cos(theta) ** 9 - 9.29401543972579e45 * cos(theta) ** 7 + 1.04932432384001e44 * cos(theta) ** 5 - 5.4909697741497e41 * cos(theta) ** 3 + 8.4131303996165e38 * cos(theta) ) * cos(21 * phi) ) # @torch.jit.script def Yl66_m22(theta, phi): return ( 5.50787306633424e-40 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.04733383094239e57 * cos(theta) ** 44 - 7.56318934405725e57 * cos(theta) ** 42 + 2.52399458342376e58 * cos(theta) ** 40 - 5.16723300543446e58 * cos(theta) ** 38 + 7.26512960564085e58 * cos(theta) ** 36 - 7.44232788870526e58 * cos(theta) ** 34 + 5.75088973218134e58 * cos(theta) ** 32 - 3.42429928830966e58 * cos(theta) ** 30 + 1.59142114360545e58 * cos(theta) ** 28 - 5.81214678534164e57 * cos(theta) ** 26 + 1.67163513737702e57 * cos(theta) ** 24 - 3.77863470856722e56 * cos(theta) ** 22 + 6.67327689357055e55 * cos(theta) ** 20 - 9.11518770509278e54 * cos(theta) ** 18 + 9.48723618285166e53 * cos(theta) ** 16 - 7.36872713231197e52 * cos(theta) ** 14 + 4.14946886782419e51 * cos(theta) ** 12 - 1.62724269326439e50 * cos(theta) ** 10 + 4.19392446717626e48 * cos(theta) ** 8 - 6.50581080780805e46 * cos(theta) ** 6 + 5.24662161920004e44 * cos(theta) ** 4 - 1.64729093224491e42 * cos(theta) ** 2 + 8.4131303996165e38 ) * cos(22 * phi) ) # @torch.jit.script def Yl66_m23(theta, phi): return ( 8.8016193309476e-42 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 4.60826885614651e58 * cos(theta) ** 43 - 3.17653952450404e59 * cos(theta) ** 41 + 1.0095978333695e60 * cos(theta) ** 39 - 1.9635485420651e60 * cos(theta) ** 37 + 2.61544665803071e60 * cos(theta) ** 35 - 2.53039148215979e60 * cos(theta) ** 33 + 1.84028471429803e60 * cos(theta) ** 31 - 1.0272897864929e60 * cos(theta) ** 29 + 4.45597920209526e59 * cos(theta) ** 27 - 1.51115816418883e59 * cos(theta) ** 25 + 4.01192432970485e58 * cos(theta) ** 23 - 8.31299635884789e57 * cos(theta) ** 21 + 1.33465537871411e57 * cos(theta) ** 19 - 1.6407337869167e56 * cos(theta) ** 17 + 1.51795778925627e55 * cos(theta) ** 15 - 1.03162179852368e54 * cos(theta) ** 13 + 4.97936264138903e52 * cos(theta) ** 11 - 1.62724269326439e51 * cos(theta) ** 9 + 3.35513957374101e49 * cos(theta) ** 7 - 3.90348648468483e47 * cos(theta) ** 5 + 2.09864864768002e45 * cos(theta) ** 3 - 3.29458186448982e42 * cos(theta) ) * cos(23 * phi) ) # @torch.jit.script def Yl66_m24(theta, phi): return ( 1.41483924860861e-43 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.981555608143e60 * cos(theta) ** 42 - 1.30238120504666e61 * cos(theta) ** 40 + 3.93743155014106e61 * cos(theta) ** 38 - 7.26512960564085e61 * cos(theta) ** 36 + 9.15406330310748e61 * cos(theta) ** 34 - 8.35029189112731e61 * cos(theta) ** 32 + 5.70488261432389e61 * cos(theta) ** 30 - 2.9791403808294e61 * cos(theta) ** 28 + 1.20311438456572e61 * cos(theta) ** 26 - 3.77789541047207e60 * cos(theta) ** 24 + 9.22742595832116e59 * cos(theta) ** 22 - 1.74572923535806e59 * cos(theta) ** 20 + 2.53584521955681e58 * cos(theta) ** 18 - 2.78924743775839e57 * cos(theta) ** 16 + 2.2769366838844e56 * cos(theta) ** 14 - 1.34110833808078e55 * cos(theta) ** 12 + 5.47729890552793e53 * cos(theta) ** 10 - 1.46451842393795e52 * cos(theta) ** 8 + 2.34859770161871e50 * cos(theta) ** 6 - 1.95174324234241e48 * cos(theta) ** 4 + 6.29594594304005e45 * cos(theta) ** 2 - 3.29458186448982e42 ) * cos(24 * phi) ) # @torch.jit.script def Yl66_m25(theta, phi): return ( 2.28855712600846e-45 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 8.3225335542006e61 * cos(theta) ** 41 - 5.20952482018663e62 * cos(theta) ** 39 + 1.4962239890536e63 * cos(theta) ** 37 - 2.61544665803071e63 * cos(theta) ** 35 + 3.11238152305654e63 * cos(theta) ** 33 - 2.67209340516074e63 * cos(theta) ** 31 + 1.71146478429717e63 * cos(theta) ** 29 - 8.34159306632233e62 * cos(theta) ** 27 + 3.12809739987087e62 * cos(theta) ** 25 - 9.06694898513296e61 * cos(theta) ** 23 + 2.03003371083065e61 * cos(theta) ** 21 - 3.49145847071611e60 * cos(theta) ** 19 + 4.56452139520226e59 * cos(theta) ** 17 - 4.46279590041342e58 * cos(theta) ** 15 + 3.18771135743816e57 * cos(theta) ** 13 - 1.60933000569693e56 * cos(theta) ** 11 + 5.47729890552793e54 * cos(theta) ** 9 - 1.17161473915036e53 * cos(theta) ** 7 + 1.40915862097122e51 * cos(theta) ** 5 - 7.80697296936966e48 * cos(theta) ** 3 + 1.25918918860801e46 * cos(theta) ) * cos(25 * phi) ) # @torch.jit.script def Yl66_m26(theta, phi): return ( 3.72628368957836e-47 * (1.0 - cos(theta) ** 2) ** 13 * ( 3.41223875722224e63 * cos(theta) ** 40 - 2.03171467987279e64 * cos(theta) ** 38 + 5.53602875949833e64 * cos(theta) ** 36 - 9.15406330310747e64 * cos(theta) ** 34 + 1.02708590260866e65 * cos(theta) ** 32 - 8.28348955599829e64 * cos(theta) ** 30 + 4.96324787446178e64 * cos(theta) ** 28 - 2.25223012790703e64 * cos(theta) ** 26 + 7.82024349967718e63 * cos(theta) ** 24 - 2.08539826658058e63 * cos(theta) ** 22 + 4.26307079274438e62 * cos(theta) ** 20 - 6.63377109436062e61 * cos(theta) ** 18 + 7.75968637184384e60 * cos(theta) ** 16 - 6.69419385062013e59 * cos(theta) ** 14 + 4.14402476466961e58 * cos(theta) ** 12 - 1.77026300626663e57 * cos(theta) ** 10 + 4.92956901497514e55 * cos(theta) ** 8 - 8.20130317405252e53 * cos(theta) ** 6 + 7.04579310485612e51 * cos(theta) ** 4 - 2.3420918908109e49 * cos(theta) ** 2 + 1.25918918860801e46 ) * cos(26 * phi) ) # @torch.jit.script def Yl66_m27(theta, phi): return ( 6.1094827877146e-49 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.3648955028889e65 * cos(theta) ** 39 - 7.72051578351659e65 * cos(theta) ** 37 + 1.9929703534194e66 * cos(theta) ** 35 - 3.11238152305654e66 * cos(theta) ** 33 + 3.28667488834771e66 * cos(theta) ** 31 - 2.48504686679949e66 * cos(theta) ** 29 + 1.3897094048493e66 * cos(theta) ** 27 - 5.85579833255827e65 * cos(theta) ** 25 + 1.87685843992252e65 * cos(theta) ** 23 - 4.58787618647728e64 * cos(theta) ** 21 + 8.52614158548875e63 * cos(theta) ** 19 - 1.19407879698491e63 * cos(theta) ** 17 + 1.24154981949501e62 * cos(theta) ** 15 - 9.37187139086819e60 * cos(theta) ** 13 + 4.97282971760353e59 * cos(theta) ** 11 - 1.77026300626663e58 * cos(theta) ** 9 + 3.94365521198011e56 * cos(theta) ** 7 - 4.92078190443151e54 * cos(theta) ** 5 + 2.81831724194245e52 * cos(theta) ** 3 - 4.6841837816218e49 * cos(theta) ) * cos(27 * phi) ) # @torch.jit.script def Yl66_m28(theta, phi): return ( 1.00903961098423e-50 * (1.0 - cos(theta) ** 2) ** 14 * ( 5.3230924612667e66 * cos(theta) ** 38 - 2.85659083990114e67 * cos(theta) ** 36 + 6.9753962369679e67 * cos(theta) ** 34 - 1.02708590260866e68 * cos(theta) ** 32 + 1.01886921538779e68 * cos(theta) ** 30 - 7.20663591371851e67 * cos(theta) ** 28 + 3.75221539309311e67 * cos(theta) ** 26 - 1.46394958313957e67 * cos(theta) ** 24 + 4.3167744118218e66 * cos(theta) ** 22 - 9.63453999160229e65 * cos(theta) ** 20 + 1.61996690124286e65 * cos(theta) ** 18 - 2.02993395487435e64 * cos(theta) ** 16 + 1.86232472924252e63 * cos(theta) ** 14 - 1.21834328081286e62 * cos(theta) ** 12 + 5.47011268936388e60 * cos(theta) ** 10 - 1.59323670563997e59 * cos(theta) ** 8 + 2.76055864838608e57 * cos(theta) ** 6 - 2.46039095221576e55 * cos(theta) ** 4 + 8.45495172582734e52 * cos(theta) ** 2 - 4.6841837816218e49 ) * cos(28 * phi) ) # @torch.jit.script def Yl66_m29(theta, phi): return ( 1.67940180002128e-52 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 2.02277513528135e68 * cos(theta) ** 37 - 1.02837270236441e69 * cos(theta) ** 35 + 2.37163472056908e69 * cos(theta) ** 33 - 3.28667488834771e69 * cos(theta) ** 31 + 3.05660764616337e69 * cos(theta) ** 29 - 2.01785805584118e69 * cos(theta) ** 27 + 9.75576002204208e68 * cos(theta) ** 25 - 3.51347899953496e68 * cos(theta) ** 23 + 9.49690370600797e67 * cos(theta) ** 21 - 1.92690799832046e67 * cos(theta) ** 19 + 2.91594042223715e66 * cos(theta) ** 17 - 3.24789432779896e65 * cos(theta) ** 15 + 2.60725462093953e64 * cos(theta) ** 13 - 1.46201193697544e63 * cos(theta) ** 11 + 5.47011268936388e61 * cos(theta) ** 9 - 1.27458936451197e60 * cos(theta) ** 7 + 1.65633518903165e58 * cos(theta) ** 5 - 9.84156380886303e55 * cos(theta) ** 3 + 1.69099034516547e53 * cos(theta) ) * cos(29 * phi) ) # @torch.jit.script def Yl66_m30(theta, phi): return ( 2.81785171805404e-54 * (1.0 - cos(theta) ** 2) ** 15 * ( 7.48426800054098e69 * cos(theta) ** 36 - 3.59930445827543e70 * cos(theta) ** 34 + 7.82639457787798e70 * cos(theta) ** 32 - 1.01886921538779e71 * cos(theta) ** 30 + 8.86416217387377e70 * cos(theta) ** 28 - 5.44821675077119e70 * cos(theta) ** 26 + 2.43894000551052e70 * cos(theta) ** 24 - 8.08100169893042e69 * cos(theta) ** 22 + 1.99434977826167e69 * cos(theta) ** 20 - 3.66112519680887e68 * cos(theta) ** 18 + 4.95709871780316e67 * cos(theta) ** 16 - 4.87184149169844e66 * cos(theta) ** 14 + 3.38943100722139e65 * cos(theta) ** 12 - 1.60821313067298e64 * cos(theta) ** 10 + 4.92310142042749e62 * cos(theta) ** 8 - 8.92212555158381e60 * cos(theta) ** 6 + 8.28167594515824e58 * cos(theta) ** 4 - 2.95246914265891e56 * cos(theta) ** 2 + 1.69099034516547e53 ) * cos(30 * phi) ) # @torch.jit.script def Yl66_m31(theta, phi): return ( 4.76849155973558e-56 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 2.69433648019475e71 * cos(theta) ** 35 - 1.22376351581365e72 * cos(theta) ** 33 + 2.50444626492095e72 * cos(theta) ** 31 - 3.05660764616337e72 * cos(theta) ** 29 + 2.48196540868465e72 * cos(theta) ** 27 - 1.41653635520051e72 * cos(theta) ** 25 + 5.85345601322525e71 * cos(theta) ** 23 - 1.77782037376469e71 * cos(theta) ** 21 + 3.98869955652335e70 * cos(theta) ** 19 - 6.59002535425596e69 * cos(theta) ** 17 + 7.93135794848505e68 * cos(theta) ** 15 - 6.82057808837781e67 * cos(theta) ** 13 + 4.06731720866567e66 * cos(theta) ** 11 - 1.60821313067298e65 * cos(theta) ** 9 + 3.93848113634199e63 * cos(theta) ** 7 - 5.35327533095028e61 * cos(theta) ** 5 + 3.31267037806329e59 * cos(theta) ** 3 - 5.90493828531782e56 * cos(theta) ) * cos(31 * phi) ) # @torch.jit.script def Yl66_m32(theta, phi): return ( 8.14205362223649e-58 * (1.0 - cos(theta) ** 2) ** 16 * ( 9.43017768068164e72 * cos(theta) ** 34 - 4.03841960218504e73 * cos(theta) ** 32 + 7.76378342125496e73 * cos(theta) ** 30 - 8.86416217387377e73 * cos(theta) ** 28 + 6.70130660344857e73 * cos(theta) ** 26 - 3.54134088800128e73 * cos(theta) ** 24 + 1.34629488304181e73 * cos(theta) ** 22 - 3.73342278490585e72 * cos(theta) ** 20 + 7.57852915739436e71 * cos(theta) ** 18 - 1.12030431022351e71 * cos(theta) ** 16 + 1.18970369227276e70 * cos(theta) ** 14 - 8.86675151489115e68 * cos(theta) ** 12 + 4.47404892953223e67 * cos(theta) ** 10 - 1.44739181760568e66 * cos(theta) ** 8 + 2.7569367954394e64 * cos(theta) ** 6 - 2.67663766547514e62 * cos(theta) ** 4 + 9.93801113418988e59 * cos(theta) ** 2 - 5.90493828531782e56 ) * cos(32 * phi) ) # @torch.jit.script def Yl66_m33(theta, phi): return ( 1.40338523311262e-59 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 3.20626041143176e74 * cos(theta) ** 33 - 1.29229427269921e75 * cos(theta) ** 31 + 2.32913502637649e75 * cos(theta) ** 29 - 2.48196540868465e75 * cos(theta) ** 27 + 1.74233971689663e75 * cos(theta) ** 25 - 8.49921813120306e74 * cos(theta) ** 23 + 2.96184874269198e74 * cos(theta) ** 21 - 7.46684556981171e73 * cos(theta) ** 19 + 1.36413524833098e73 * cos(theta) ** 17 - 1.79248689635762e72 * cos(theta) ** 15 + 1.66558516918186e71 * cos(theta) ** 13 - 1.06401018178694e70 * cos(theta) ** 11 + 4.47404892953223e68 * cos(theta) ** 9 - 1.15791345408455e67 * cos(theta) ** 7 + 1.65416207726364e65 * cos(theta) ** 5 - 1.07065506619006e63 * cos(theta) ** 3 + 1.98760222683798e60 * cos(theta) ) * cos(33 * phi) ) # @torch.jit.script def Yl66_m34(theta, phi): return ( 2.44298011783085e-61 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.05806593577248e76 * cos(theta) ** 32 - 4.00611224536756e76 * cos(theta) ** 30 + 6.75449157649181e76 * cos(theta) ** 28 - 6.70130660344857e76 * cos(theta) ** 26 + 4.35584929224157e76 * cos(theta) ** 24 - 1.9548201701767e76 * cos(theta) ** 22 + 6.21988235965315e75 * cos(theta) ** 20 - 1.41870065826422e75 * cos(theta) ** 18 + 2.31902992216267e74 * cos(theta) ** 16 - 2.68873034453643e73 * cos(theta) ** 14 + 2.16526071993642e72 * cos(theta) ** 12 - 1.17041119996563e71 * cos(theta) ** 10 + 4.02664403657901e69 * cos(theta) ** 8 - 8.10539417859183e67 * cos(theta) ** 6 + 8.27081038631819e65 * cos(theta) ** 4 - 3.21196519857017e63 * cos(theta) ** 2 + 1.98760222683798e60 ) * cos(34 * phi) ) # @torch.jit.script def Yl66_m35(theta, phi): return ( 4.29718703182676e-63 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 3.38581099447194e77 * cos(theta) ** 31 - 1.20183367361027e78 * cos(theta) ** 29 + 1.89125764141771e78 * cos(theta) ** 27 - 1.74233971689663e78 * cos(theta) ** 25 + 1.04540383013798e78 * cos(theta) ** 23 - 4.30060437438875e77 * cos(theta) ** 21 + 1.24397647193063e77 * cos(theta) ** 19 - 2.5536611848756e76 * cos(theta) ** 17 + 3.71044787546028e75 * cos(theta) ** 15 - 3.76422248235101e74 * cos(theta) ** 13 + 2.5983128639237e73 * cos(theta) ** 11 - 1.17041119996563e72 * cos(theta) ** 9 + 3.22131522926321e70 * cos(theta) ** 7 - 4.8632365071551e68 * cos(theta) ** 5 + 3.30832415452728e66 * cos(theta) ** 3 - 6.42393039714034e63 * cos(theta) ) * cos(35 * phi) ) # @torch.jit.script def Yl66_m36(theta, phi): return ( 7.64193472281181e-65 * (1.0 - cos(theta) ** 2) ** 18 * ( 1.0496014082863e79 * cos(theta) ** 30 - 3.48531765346977e79 * cos(theta) ** 28 + 5.10639563182781e79 * cos(theta) ** 26 - 4.35584929224157e79 * cos(theta) ** 24 + 2.40442880931735e79 * cos(theta) ** 22 - 9.03126918621637e78 * cos(theta) ** 20 + 2.3635552966682e78 * cos(theta) ** 18 - 4.34122401428853e77 * cos(theta) ** 16 + 5.56567181319042e76 * cos(theta) ** 14 - 4.89348922705631e75 * cos(theta) ** 12 + 2.85814415031607e74 * cos(theta) ** 10 - 1.05337007996907e73 * cos(theta) ** 8 + 2.25492066048425e71 * cos(theta) ** 6 - 2.43161825357755e69 * cos(theta) ** 4 + 9.92497246358183e66 * cos(theta) ** 2 - 6.42393039714034e63 ) * cos(36 * phi) ) # @torch.jit.script def Yl66_m37(theta, phi): return ( 1.37475112555243e-66 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 3.1488042248589e80 * cos(theta) ** 29 - 9.75888942971537e80 * cos(theta) ** 27 + 1.32766286427523e81 * cos(theta) ** 25 - 1.04540383013798e81 * cos(theta) ** 23 + 5.28974338049816e80 * cos(theta) ** 21 - 1.80625383724327e80 * cos(theta) ** 19 + 4.25439953400275e79 * cos(theta) ** 17 - 6.94595842286164e78 * cos(theta) ** 15 + 7.79194053846658e77 * cos(theta) ** 13 - 5.87218707246757e76 * cos(theta) ** 11 + 2.85814415031607e75 * cos(theta) ** 9 - 8.42696063975255e73 * cos(theta) ** 7 + 1.35295239629055e72 * cos(theta) ** 5 - 9.72647301431019e69 * cos(theta) ** 3 + 1.98499449271637e67 * cos(theta) ) * cos(37 * phi) ) # @torch.jit.script def Yl66_m38(theta, phi): return ( 2.50327415386636e-68 * (1.0 - cos(theta) ** 2) ** 19 * ( 9.13153225209081e81 * cos(theta) ** 28 - 2.63490014602315e82 * cos(theta) ** 26 + 3.31915716068808e82 * cos(theta) ** 24 - 2.40442880931735e82 * cos(theta) ** 22 + 1.11084610990461e82 * cos(theta) ** 20 - 3.43188229076222e81 * cos(theta) ** 18 + 7.23247920780468e80 * cos(theta) ** 16 - 1.04189376342925e80 * cos(theta) ** 14 + 1.01295227000066e79 * cos(theta) ** 12 - 6.45940577971433e77 * cos(theta) ** 10 + 2.57232973528447e76 * cos(theta) ** 8 - 5.89887244782679e74 * cos(theta) ** 6 + 6.76476198145274e72 * cos(theta) ** 4 - 2.91794190429306e70 * cos(theta) ** 2 + 1.98499449271637e67 ) * cos(38 * phi) ) # @torch.jit.script def Yl66_m39(theta, phi): return ( 4.61673290900756e-70 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 2.55682903058543e83 * cos(theta) ** 27 - 6.85074037966019e83 * cos(theta) ** 25 + 7.96597718565138e83 * cos(theta) ** 23 - 5.28974338049816e83 * cos(theta) ** 21 + 2.22169221980923e83 * cos(theta) ** 19 - 6.177388123372e82 * cos(theta) ** 17 + 1.15719667324875e82 * cos(theta) ** 15 - 1.45865126880094e81 * cos(theta) ** 13 + 1.21554272400079e80 * cos(theta) ** 11 - 6.45940577971433e78 * cos(theta) ** 9 + 2.05786378822757e77 * cos(theta) ** 7 - 3.53932346869607e75 * cos(theta) ** 5 + 2.70590479258109e73 * cos(theta) ** 3 - 5.83588380858611e70 * cos(theta) ) * cos(39 * phi) ) # @torch.jit.script def Yl66_m40(theta, phi): return ( 8.62978419417266e-72 * (1.0 - cos(theta) ** 2) ** 20 * ( 6.90343838258065e84 * cos(theta) ** 26 - 1.71268509491505e85 * cos(theta) ** 24 + 1.83217475269982e85 * cos(theta) ** 22 - 1.11084610990461e85 * cos(theta) ** 20 + 4.22121521763753e84 * cos(theta) ** 18 - 1.05015598097324e84 * cos(theta) ** 16 + 1.73579500987312e83 * cos(theta) ** 14 - 1.89624664944123e82 * cos(theta) ** 12 + 1.33709699640087e81 * cos(theta) ** 10 - 5.81346520174289e79 * cos(theta) ** 8 + 1.4405046517593e78 * cos(theta) ** 6 - 1.76966173434804e76 * cos(theta) ** 4 + 8.11771437774329e73 * cos(theta) ** 2 - 5.83588380858611e70 ) * cos(40 * phi) ) # @torch.jit.script def Yl66_m41(theta, phi): return ( 1.63614342931156e-73 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 1.79489397947097e86 * cos(theta) ** 25 - 4.11044422779611e86 * cos(theta) ** 23 + 4.0307844559396e86 * cos(theta) ** 21 - 2.22169221980923e86 * cos(theta) ** 19 + 7.59818739174756e85 * cos(theta) ** 17 - 1.68024956955718e85 * cos(theta) ** 15 + 2.43011301382237e84 * cos(theta) ** 13 - 2.27549597932947e83 * cos(theta) ** 11 + 1.33709699640087e82 * cos(theta) ** 9 - 4.65077216139432e80 * cos(theta) ** 7 + 8.64302791055581e78 * cos(theta) ** 5 - 7.07864693739214e76 * cos(theta) ** 3 + 1.62354287554866e74 * cos(theta) ) * cos(41 * phi) ) # @torch.jit.script def Yl66_m42(theta, phi): return ( 3.14875949781955e-75 * (1.0 - cos(theta) ** 2) ** 21 * ( 4.48723494867742e87 * cos(theta) ** 24 - 9.45402172393106e87 * cos(theta) ** 22 + 8.46464735747316e87 * cos(theta) ** 20 - 4.22121521763753e87 * cos(theta) ** 18 + 1.29169185659709e87 * cos(theta) ** 16 - 2.52037435433578e86 * cos(theta) ** 14 + 3.15914691796909e85 * cos(theta) ** 12 - 2.50304557726242e84 * cos(theta) ** 10 + 1.20338729676078e83 * cos(theta) ** 8 - 3.25554051297602e81 * cos(theta) ** 6 + 4.3215139552779e79 * cos(theta) ** 4 - 2.12359408121764e77 * cos(theta) ** 2 + 1.62354287554866e74 ) * cos(42 * phi) ) # @torch.jit.script def Yl66_m43(theta, phi): return ( 6.15631198648028e-77 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 1.07693638768258e89 * cos(theta) ** 23 - 2.07988477926483e89 * cos(theta) ** 21 + 1.69292947149463e89 * cos(theta) ** 19 - 7.59818739174756e88 * cos(theta) ** 17 + 2.06670697055534e88 * cos(theta) ** 15 - 3.52852409607009e87 * cos(theta) ** 13 + 3.7909763015629e86 * cos(theta) ** 11 - 2.50304557726242e85 * cos(theta) ** 9 + 9.62709837408623e83 * cos(theta) ** 7 - 1.95332430778561e82 * cos(theta) ** 5 + 1.72860558211116e80 * cos(theta) ** 3 - 4.24718816243529e77 * cos(theta) ) * cos(43 * phi) ) # @torch.jit.script def Yl66_m44(theta, phi): return ( 1.22394065310672e-78 * (1.0 - cos(theta) ** 2) ** 22 * ( 2.47695369166994e90 * cos(theta) ** 22 - 4.36775803645615e90 * cos(theta) ** 20 + 3.2165659958398e90 * cos(theta) ** 18 - 1.29169185659709e90 * cos(theta) ** 16 + 3.100060455833e89 * cos(theta) ** 14 - 4.58708132489111e88 * cos(theta) ** 12 + 4.17007393171919e87 * cos(theta) ** 10 - 2.25274101953618e86 * cos(theta) ** 8 + 6.73896886186036e84 * cos(theta) ** 6 - 9.76662153892806e82 * cos(theta) ** 4 + 5.18581674633348e80 * cos(theta) ** 2 - 4.24718816243529e77 ) * cos(44 * phi) ) # @torch.jit.script def Yl66_m45(theta, phi): return ( 2.47678055999563e-80 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 5.44929812167386e91 * cos(theta) ** 21 - 8.7355160729123e91 * cos(theta) ** 19 + 5.78981879251164e91 * cos(theta) ** 17 - 2.06670697055534e91 * cos(theta) ** 15 + 4.34008463816621e90 * cos(theta) ** 13 - 5.50449758986933e89 * cos(theta) ** 11 + 4.17007393171919e88 * cos(theta) ** 9 - 1.80219281562894e87 * cos(theta) ** 7 + 4.04338131711622e85 * cos(theta) ** 5 - 3.90664861557123e83 * cos(theta) ** 3 + 1.0371633492667e81 * cos(theta) ) * cos(45 * phi) ) # @torch.jit.script def Yl66_m46(theta, phi): return ( 5.10703543941824e-82 * (1.0 - cos(theta) ** 2) ** 23 * ( 1.14435260555151e93 * cos(theta) ** 20 - 1.65974805385334e93 * cos(theta) ** 18 + 9.84269194726979e92 * cos(theta) ** 16 - 3.100060455833e92 * cos(theta) ** 14 + 5.64211002961607e91 * cos(theta) ** 12 - 6.05494734885627e90 * cos(theta) ** 10 + 3.75306653854727e89 * cos(theta) ** 8 - 1.26153497094026e88 * cos(theta) ** 6 + 2.02169065855811e86 * cos(theta) ** 4 - 1.17199458467137e84 * cos(theta) ** 2 + 1.0371633492667e81 ) * cos(46 * phi) ) # @torch.jit.script def Yl66_m47(theta, phi): return ( 1.07427297867911e-83 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 2.28870521110302e94 * cos(theta) ** 19 - 2.98754649693601e94 * cos(theta) ** 17 + 1.57483071156317e94 * cos(theta) ** 15 - 4.34008463816621e93 * cos(theta) ** 13 + 6.77053203553928e92 * cos(theta) ** 11 - 6.05494734885627e91 * cos(theta) ** 9 + 3.00245323083782e90 * cos(theta) ** 7 - 7.56920982564156e88 * cos(theta) ** 5 + 8.08676263423244e86 * cos(theta) ** 3 - 2.34398916934274e84 * cos(theta) ) * cos(47 * phi) ) # @torch.jit.script def Yl66_m48(theta, phi): return ( 2.30826372124878e-85 * (1.0 - cos(theta) ** 2) ** 24 * ( 4.34853990109574e95 * cos(theta) ** 18 - 5.07882904479121e95 * cos(theta) ** 16 + 2.36224606734475e95 * cos(theta) ** 14 - 5.64211002961607e94 * cos(theta) ** 12 + 7.44758523909321e93 * cos(theta) ** 10 - 5.44945261397064e92 * cos(theta) ** 8 + 2.10171726158647e91 * cos(theta) ** 6 - 3.78460491282078e89 * cos(theta) ** 4 + 2.42602879026973e87 * cos(theta) ** 2 - 2.34398916934274e84 ) * cos(48 * phi) ) # @torch.jit.script def Yl66_m49(theta, phi): return ( 5.07341341746446e-87 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 7.82737182197234e96 * cos(theta) ** 17 - 8.12612647166594e96 * cos(theta) ** 15 + 3.30714449428265e96 * cos(theta) ** 13 - 6.77053203553928e95 * cos(theta) ** 11 + 7.44758523909321e94 * cos(theta) ** 9 - 4.35956209117651e93 * cos(theta) ** 7 + 1.26103035695188e92 * cos(theta) ** 5 - 1.51384196512831e90 * cos(theta) ** 3 + 4.85205758053946e87 * cos(theta) ) * cos(49 * phi) ) # @torch.jit.script def Yl66_m50(theta, phi): return ( 1.14247524295103e-88 * (1.0 - cos(theta) ** 2) ** 25 * ( 1.3306532097353e98 * cos(theta) ** 16 - 1.21891897074989e98 * cos(theta) ** 14 + 4.29928784256744e97 * cos(theta) ** 12 - 7.44758523909321e96 * cos(theta) ** 10 + 6.70282671518389e95 * cos(theta) ** 8 - 3.05169346382356e94 * cos(theta) ** 6 + 6.30515178475942e92 * cos(theta) ** 4 - 4.54152589538494e90 * cos(theta) ** 2 + 4.85205758053946e87 ) * cos(50 * phi) ) # @torch.jit.script def Yl66_m51(theta, phi): return ( 2.64054683936417e-90 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 2.12904513557648e99 * cos(theta) ** 15 - 1.70648655904985e99 * cos(theta) ** 13 + 5.15914541108093e98 * cos(theta) ** 11 - 7.44758523909321e97 * cos(theta) ** 9 + 5.36226137214711e96 * cos(theta) ** 7 - 1.83101607829414e95 * cos(theta) ** 5 + 2.52206071390377e93 * cos(theta) ** 3 - 9.08305179076987e90 * cos(theta) ) * cos(51 * phi) ) # @torch.jit.script def Yl66_m52(theta, phi): return ( 6.27635127858387e-92 * (1.0 - cos(theta) ** 2) ** 26 * ( 3.19356770336471e100 * cos(theta) ** 14 - 2.2184325267648e100 * cos(theta) ** 12 + 5.67505995218903e99 * cos(theta) ** 10 - 6.70282671518389e98 * cos(theta) ** 8 + 3.75358296050298e97 * cos(theta) ** 6 - 9.15508039147068e95 * cos(theta) ** 4 + 7.5661821417113e93 * cos(theta) ** 2 - 9.08305179076987e90 ) * cos(52 * phi) ) # @torch.jit.script def Yl66_m53(theta, phi): return ( 1.53769337733501e-93 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 4.4709947847106e101 * cos(theta) ** 13 - 2.66211903211776e101 * cos(theta) ** 11 + 5.67505995218903e100 * cos(theta) ** 9 - 5.36226137214711e99 * cos(theta) ** 7 + 2.25214977630179e98 * cos(theta) ** 5 - 3.66203215658827e96 * cos(theta) ** 3 + 1.51323642834226e94 * cos(theta) ) * cos(53 * phi) ) # @torch.jit.script def Yl66_m54(theta, phi): return ( 3.89320654432752e-95 * (1.0 - cos(theta) ** 2) ** 27 * ( 5.81229322012378e102 * cos(theta) ** 12 - 2.92833093532954e102 * cos(theta) ** 10 + 5.10755395697012e101 * cos(theta) ** 8 - 3.75358296050298e100 * cos(theta) ** 6 + 1.12607488815089e99 * cos(theta) ** 4 - 1.09860964697648e97 * cos(theta) ** 2 + 1.51323642834226e94 ) * cos(54 * phi) ) # @torch.jit.script def Yl66_m55(theta, phi): return ( 1.02170174835378e-96 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 6.97475186414853e103 * cos(theta) ** 11 - 2.92833093532954e103 * cos(theta) ** 9 + 4.0860431655761e102 * cos(theta) ** 7 - 2.25214977630179e101 * cos(theta) ** 5 + 4.50429955260357e99 * cos(theta) ** 3 - 2.19721929395296e97 * cos(theta) ) * cos(55 * phi) ) # @torch.jit.script def Yl66_m56(theta, phi): return ( 2.78899591805326e-98 * (1.0 - cos(theta) ** 2) ** 28 * ( 7.67222705056339e104 * cos(theta) ** 10 - 2.63549784179658e104 * cos(theta) ** 8 + 2.86023021590327e103 * cos(theta) ** 6 - 1.12607488815089e102 * cos(theta) ** 4 + 1.35128986578107e100 * cos(theta) ** 2 - 2.19721929395296e97 ) * cos(56 * phi) ) # @torch.jit.script def Yl66_m57(theta, phi): return ( 7.95234701302649e-100 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 7.67222705056339e105 * cos(theta) ** 9 - 2.10839827343727e105 * cos(theta) ** 7 + 1.71613812954196e104 * cos(theta) ** 5 - 4.50429955260357e102 * cos(theta) ** 3 + 2.70257973156214e100 * cos(theta) ) * cos(57 * phi) ) # @torch.jit.script def Yl66_m58(theta, phi): return ( 2.38047281182724e-101 * (1.0 - cos(theta) ** 2) ** 29 * ( 6.90500434550705e106 * cos(theta) ** 8 - 1.47587879140609e106 * cos(theta) ** 6 + 8.58069064770981e104 * cos(theta) ** 4 - 1.35128986578107e103 * cos(theta) ** 2 + 2.70257973156214e100 ) * cos(58 * phi) ) # @torch.jit.script def Yl66_m59(theta, phi): return ( 7.52771599347949e-103 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 5.52400347640564e107 * cos(theta) ** 7 - 8.85527274843652e106 * cos(theta) ** 5 + 3.43227625908392e105 * cos(theta) ** 3 - 2.70257973156214e103 * cos(theta) ) * cos(59 * phi) ) # @torch.jit.script def Yl66_m60(theta, phi): return ( 2.53471382182656e-104 * (1.0 - cos(theta) ** 2) ** 30 * ( 3.86680243348395e108 * cos(theta) ** 6 - 4.42763637421826e107 * cos(theta) ** 4 + 1.02968287772518e106 * cos(theta) ** 2 - 2.70257973156214e103 ) * cos(60 * phi) ) # @torch.jit.script def Yl66_m61(theta, phi): return ( 9.18229935818876e-106 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 2.32008146009037e109 * cos(theta) ** 5 - 1.7710545496873e108 * cos(theta) ** 3 + 2.05936575545035e106 * cos(theta) ) * cos(61 * phi) ) # @torch.jit.script def Yl66_m62(theta, phi): return ( 3.62962251617235e-107 * (1.0 - cos(theta) ** 2) ** 31 * ( 1.16004073004518e110 * cos(theta) ** 4 - 5.31316364906191e108 * cos(theta) ** 2 + 2.05936575545035e106 ) * cos(62 * phi) ) # @torch.jit.script def Yl66_m63(theta, phi): return ( 1.59785221699192e-108 * (1.0 - cos(theta) ** 2) ** 31.5 * (4.64016292018074e110 * cos(theta) ** 3 - 1.06263272981238e109 * cos(theta)) * cos(63 * phi) ) # @torch.jit.script def Yl66_m64(theta, phi): return ( 8.09103921464814e-110 * (1.0 - cos(theta) ** 2) ** 32 * (1.39204887605422e111 * cos(theta) ** 2 - 1.06263272981238e109) * cos(64 * phi) ) # @torch.jit.script def Yl66_m65(theta, phi): return ( 13.9167600751205 * (1.0 - cos(theta) ** 2) ** 32.5 * cos(65 * phi) * cos(theta) ) # @torch.jit.script def Yl66_m66(theta, phi): return 1.21129848618741 * (1.0 - cos(theta) ** 2) ** 33 * cos(66 * phi) # @torch.jit.script def Yl67_m_minus_67(theta, phi): return 1.21580985556888 * (1.0 - cos(theta) ** 2) ** 33.5 * sin(67 * phi) # @torch.jit.script def Yl67_m_minus_66(theta, phi): return 14.0740165928703 * (1.0 - cos(theta) ** 2) ** 33 * sin(66 * phi) * cos(theta) # @torch.jit.script def Yl67_m_minus_65(theta, phi): return ( 6.19901598722085e-112 * (1.0 - cos(theta) ** 2) ** 32.5 * (1.85142500515211e113 * cos(theta) ** 2 - 1.39204887605422e111) * sin(65 * phi) ) # @torch.jit.script def Yl67_m_minus_64(theta, phi): return ( 1.23358860594157e-110 * (1.0 - cos(theta) ** 2) ** 32 * (6.17141668384038e112 * cos(theta) ** 3 - 1.39204887605422e111 * cos(theta)) * sin(64 * phi) ) # @torch.jit.script def Yl67_m_minus_63(theta, phi): return ( 2.82381338746639e-109 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 1.5428541709601e112 * cos(theta) ** 4 - 6.96024438027111e110 * cos(theta) ** 2 + 2.65658182453096e108 ) * sin(63 * phi) ) # @torch.jit.script def Yl67_m_minus_62(theta, phi): return ( 7.19933978271784e-108 * (1.0 - cos(theta) ** 2) ** 31 * ( 3.08570834192019e111 * cos(theta) ** 5 - 2.32008146009037e110 * cos(theta) ** 3 + 2.65658182453096e108 * cos(theta) ) * sin(62 * phi) ) # @torch.jit.script def Yl67_m_minus_61(theta, phi): return ( 2.00291791693111e-106 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 5.14284723653365e110 * cos(theta) ** 6 - 5.80020365022592e109 * cos(theta) ** 4 + 1.32829091226548e108 * cos(theta) ** 2 - 3.43227625908392e105 ) * sin(61 * phi) ) # @torch.jit.script def Yl67_m_minus_60(theta, phi): return ( 5.99538609518972e-105 * (1.0 - cos(theta) ** 2) ** 30 * ( 7.3469246236195e109 * cos(theta) ** 7 - 1.16004073004518e109 * cos(theta) ** 5 + 4.42763637421826e107 * cos(theta) ** 3 - 3.43227625908392e105 * cos(theta) ) * sin(60 * phi) ) # @torch.jit.script def Yl67_m_minus_59(theta, phi): return ( 1.91101462321146e-103 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 9.18365577952438e108 * cos(theta) ** 8 - 1.93340121674197e108 * cos(theta) ** 6 + 1.10690909355457e107 * cos(theta) ** 4 - 1.71613812954196e105 * cos(theta) ** 2 + 3.37822466445268e102 ) * sin(59 * phi) ) # @torch.jit.script def Yl67_m_minus_58(theta, phi): return ( 6.43532578305497e-102 * (1.0 - cos(theta) ** 2) ** 29 * ( 1.02040619772493e108 * cos(theta) ** 9 - 2.76200173820282e107 * cos(theta) ** 7 + 2.21381818710913e106 * cos(theta) ** 5 - 5.72046043180654e104 * cos(theta) ** 3 + 3.37822466445268e102 * cos(theta) ) * sin(58 * phi) ) # @torch.jit.script def Yl67_m_minus_57(theta, phi): return ( 2.2752312501714e-100 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 1.02040619772493e107 * cos(theta) ** 10 - 3.45250217275352e106 * cos(theta) ** 8 + 3.68969697851522e105 * cos(theta) ** 6 - 1.43011510795163e104 * cos(theta) ** 4 + 1.68911233222634e102 * cos(theta) ** 2 - 2.70257973156214e99 ) * sin(57 * phi) ) # @torch.jit.script def Yl67_m_minus_56(theta, phi): return ( 8.40296837894555e-99 * (1.0 - cos(theta) ** 2) ** 28 * ( 9.27641997931755e105 * cos(theta) ** 11 - 3.83611352528169e105 * cos(theta) ** 9 + 5.27099568359317e104 * cos(theta) ** 7 - 2.86023021590327e103 * cos(theta) ** 5 + 5.63037444075447e101 * cos(theta) ** 3 - 2.70257973156214e99 * cos(theta) ) * sin(56 * phi) ) # @torch.jit.script def Yl67_m_minus_55(theta, phi): return ( 3.22831502961648e-97 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 7.73034998276463e104 * cos(theta) ** 12 - 3.83611352528169e104 * cos(theta) ** 10 + 6.58874460449146e103 * cos(theta) ** 8 - 4.76705035983878e102 * cos(theta) ** 6 + 1.40759361018862e101 * cos(theta) ** 4 - 1.35128986578107e99 * cos(theta) ** 2 + 1.83101607829414e96 ) * sin(55 * phi) ) # @torch.jit.script def Yl67_m_minus_54(theta, phi): return ( 1.28566404778581e-95 * (1.0 - cos(theta) ** 2) ** 27 * ( 5.9464230636651e103 * cos(theta) ** 13 - 3.48737593207427e103 * cos(theta) ** 11 + 7.32082733832384e102 * cos(theta) ** 9 - 6.81007194262683e101 * cos(theta) ** 7 + 2.81518722037723e100 * cos(theta) ** 5 - 4.50429955260357e98 * cos(theta) ** 3 + 1.83101607829414e96 * cos(theta) ) * sin(54 * phi) ) # @torch.jit.script def Yl67_m_minus_53(theta, phi): return ( 5.29156581943822e-94 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 4.24744504547507e102 * cos(theta) ** 14 - 2.90614661006189e102 * cos(theta) ** 12 + 7.32082733832384e101 * cos(theta) ** 10 - 8.51258992828354e100 * cos(theta) ** 8 + 4.69197870062872e99 * cos(theta) ** 6 - 1.12607488815089e98 * cos(theta) ** 4 + 9.15508039147068e95 * cos(theta) ** 2 - 1.08088316310161e93 ) * sin(53 * phi) ) # @torch.jit.script def Yl67_m_minus_52(theta, phi): return ( 2.24502124441183e-92 * (1.0 - cos(theta) ** 2) ** 26 * ( 2.83163003031671e101 * cos(theta) ** 15 - 2.2354973923553e101 * cos(theta) ** 13 + 6.6552975802944e100 * cos(theta) ** 11 - 9.45843325364838e99 * cos(theta) ** 9 + 6.70282671518389e98 * cos(theta) ** 7 - 2.25214977630179e97 * cos(theta) ** 5 + 3.05169346382356e95 * cos(theta) ** 3 - 1.08088316310161e93 * cos(theta) ) * sin(52 * phi) ) # @torch.jit.script def Yl67_m_minus_51(theta, phi): return ( 9.79611617861195e-91 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 1.76976876894795e100 * cos(theta) ** 16 - 1.59678385168236e100 * cos(theta) ** 14 + 5.546081316912e99 * cos(theta) ** 12 - 9.45843325364838e98 * cos(theta) ** 10 + 8.37853339397986e97 * cos(theta) ** 8 - 3.75358296050298e96 * cos(theta) ** 6 + 7.6292336595589e94 * cos(theta) ** 4 - 5.40441581550807e92 * cos(theta) ** 2 + 5.67690736923117e89 ) * sin(51 * phi) ) # @torch.jit.script def Yl67_m_minus_50(theta, phi): return ( 4.38752285148277e-89 * (1.0 - cos(theta) ** 2) ** 25 * ( 1.04104045232232e99 * cos(theta) ** 17 - 1.06452256778824e99 * cos(theta) ** 15 + 4.26621639762462e98 * cos(theta) ** 13 - 8.59857568513489e97 * cos(theta) ** 11 + 9.30948154886651e96 * cos(theta) ** 9 - 5.36226137214711e95 * cos(theta) ** 7 + 1.52584673191178e94 * cos(theta) ** 5 - 1.80147193850269e92 * cos(theta) ** 3 + 5.67690736923117e89 * cos(theta) ) * sin(50 * phi) ) # @torch.jit.script def Yl67_m_minus_49(theta, phi): return ( 2.01348581724404e-87 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 5.78355806845734e97 * cos(theta) ** 18 - 6.65326604867649e97 * cos(theta) ** 16 + 3.04729742687473e97 * cos(theta) ** 14 - 7.16547973761241e96 * cos(theta) ** 12 + 9.30948154886651e95 * cos(theta) ** 10 - 6.70282671518389e94 * cos(theta) ** 8 + 2.54307788651963e93 * cos(theta) ** 6 - 4.50367984625673e91 * cos(theta) ** 4 + 2.83845368461559e89 * cos(theta) ** 2 - 2.69558754474415e86 ) * sin(49 * phi) ) # @torch.jit.script def Yl67_m_minus_48(theta, phi): return ( 9.45266724278357e-86 * (1.0 - cos(theta) ** 2) ** 24 * ( 3.04397793076702e96 * cos(theta) ** 19 - 3.91368591098617e96 * cos(theta) ** 17 + 2.03153161791648e96 * cos(theta) ** 15 - 5.51190749047108e95 * cos(theta) ** 13 + 8.4631650444241e94 * cos(theta) ** 11 - 7.44758523909321e93 * cos(theta) ** 9 + 3.63296840931376e92 * cos(theta) ** 7 - 9.00735969251346e90 * cos(theta) ** 5 + 9.46151228205195e88 * cos(theta) ** 3 - 2.69558754474415e86 * cos(theta) ) * sin(48 * phi) ) # @torch.jit.script def Yl67_m_minus_47(theta, phi): return ( 4.5333399542327e-84 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 1.52198896538351e95 * cos(theta) ** 20 - 2.17426995054787e95 * cos(theta) ** 18 + 1.2697072611978e95 * cos(theta) ** 16 - 3.93707677890792e94 * cos(theta) ** 14 + 7.05263753702009e93 * cos(theta) ** 12 - 7.44758523909321e92 * cos(theta) ** 10 + 4.5412105116422e91 * cos(theta) ** 8 - 1.50122661541891e90 * cos(theta) ** 6 + 2.36537807051299e88 * cos(theta) ** 4 - 1.34779377237207e86 * cos(theta) ** 2 + 1.17199458467137e83 ) * sin(47 * phi) ) # @torch.jit.script def Yl67_m_minus_46(theta, phi): return ( 2.21809611402884e-82 * (1.0 - cos(theta) ** 2) ** 23 * ( 7.24756650182624e93 * cos(theta) ** 21 - 1.14435260555151e94 * cos(theta) ** 19 + 7.46886624234002e93 * cos(theta) ** 17 - 2.62471785260528e93 * cos(theta) ** 15 + 5.42510579770776e92 * cos(theta) ** 13 - 6.77053203553928e91 * cos(theta) ** 11 + 5.04578945738022e90 * cos(theta) ** 9 - 2.14460945059844e89 * cos(theta) ** 7 + 4.73075614102598e87 * cos(theta) ** 5 - 4.49264590790691e85 * cos(theta) ** 3 + 1.17199458467137e83 * cos(theta) ) * sin(46 * phi) ) # @torch.jit.script def Yl67_m_minus_45(theta, phi): return ( 1.10593836277071e-80 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 3.29434840992102e92 * cos(theta) ** 22 - 5.72176302775756e92 * cos(theta) ** 20 + 4.14937013463334e92 * cos(theta) ** 18 - 1.6404486578783e92 * cos(theta) ** 16 + 3.87507556979126e91 * cos(theta) ** 14 - 5.64211002961607e90 * cos(theta) ** 12 + 5.04578945738022e89 * cos(theta) ** 10 - 2.68076181324805e88 * cos(theta) ** 8 + 7.88459356837663e86 * cos(theta) ** 6 - 1.12316147697673e85 * cos(theta) ** 4 + 5.85997292335684e82 * cos(theta) ** 2 - 4.71437886030317e79 ) * sin(45 * phi) ) # @torch.jit.script def Yl67_m_minus_44(theta, phi): return ( 5.61311386838957e-79 * (1.0 - cos(theta) ** 2) ** 22 * ( 1.43232539561783e91 * cos(theta) ** 23 - 2.72464906083693e91 * cos(theta) ** 21 + 2.18387901822807e91 * cos(theta) ** 19 - 9.6496979875194e90 * cos(theta) ** 17 + 2.58338371319417e90 * cos(theta) ** 15 - 4.34008463816621e89 * cos(theta) ** 13 + 4.58708132489111e88 * cos(theta) ** 11 - 2.97862423694228e87 * cos(theta) ** 9 + 1.12637050976809e86 * cos(theta) ** 7 - 2.24632295395345e84 * cos(theta) ** 5 + 1.95332430778561e82 * cos(theta) ** 3 - 4.71437886030317e79 * cos(theta) ) * sin(44 * phi) ) # @torch.jit.script def Yl67_m_minus_43(theta, phi): return ( 2.8971498754101e-77 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 5.96802248174097e89 * cos(theta) ** 24 - 1.23847684583497e90 * cos(theta) ** 22 + 1.09193950911404e90 * cos(theta) ** 20 - 5.36094332639967e89 * cos(theta) ** 18 + 1.61461482074636e89 * cos(theta) ** 16 - 3.100060455833e88 * cos(theta) ** 14 + 3.82256777074259e87 * cos(theta) ** 12 - 2.97862423694228e86 * cos(theta) ** 10 + 1.40796313721011e85 * cos(theta) ** 8 - 3.74387158992242e83 * cos(theta) ** 6 + 4.88331076946403e81 * cos(theta) ** 4 - 2.35718943015158e79 * cos(theta) ** 2 + 1.76966173434804e76 ) * sin(43 * phi) ) # @torch.jit.script def Yl67_m_minus_42(theta, phi): return ( 1.51927821190258e-75 * (1.0 - cos(theta) ** 2) ** 21 * ( 2.38720899269639e88 * cos(theta) ** 25 - 5.38468193841291e88 * cos(theta) ** 23 + 5.19971194816208e88 * cos(theta) ** 21 - 2.82154911915772e88 * cos(theta) ** 19 + 9.49773423968445e87 * cos(theta) ** 17 - 2.06670697055534e87 * cos(theta) ** 15 + 2.94043674672507e86 * cos(theta) ** 13 - 2.70784021540207e85 * cos(theta) ** 11 + 1.56440348578901e84 * cos(theta) ** 9 - 5.34838798560346e82 * cos(theta) ** 7 + 9.76662153892806e80 * cos(theta) ** 5 - 7.85729810050528e78 * cos(theta) ** 3 + 1.76966173434804e76 * cos(theta) ) * sin(42 * phi) ) # @torch.jit.script def Yl67_m_minus_41(theta, phi): return ( 8.08792718324593e-74 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 9.18157304883227e86 * cos(theta) ** 26 - 2.24361747433871e87 * cos(theta) ** 24 + 2.36350543098277e87 * cos(theta) ** 22 - 1.41077455957886e87 * cos(theta) ** 20 + 5.27651902204692e86 * cos(theta) ** 18 - 1.29169185659709e86 * cos(theta) ** 16 + 2.10031196194648e85 * cos(theta) ** 14 - 2.25653351283506e84 * cos(theta) ** 12 + 1.56440348578901e83 * cos(theta) ** 10 - 6.68548498200433e81 * cos(theta) ** 8 + 1.62777025648801e80 * cos(theta) ** 6 - 1.96432452512632e78 * cos(theta) ** 4 + 8.84830867174018e75 * cos(theta) ** 2 - 6.24439567518714e72 ) * sin(41 * phi) ) # @torch.jit.script def Yl67_m_minus_40(theta, phi): return ( 4.36748067895281e-72 * (1.0 - cos(theta) ** 2) ** 20 * ( 3.40058261067862e85 * cos(theta) ** 27 - 8.97446989735485e85 * cos(theta) ** 25 + 1.02761105694903e86 * cos(theta) ** 23 - 6.71797409323267e85 * cos(theta) ** 21 + 2.77711527476154e85 * cos(theta) ** 19 - 7.59818739174756e84 * cos(theta) ** 17 + 1.40020797463099e84 * cos(theta) ** 15 - 1.73579500987312e83 * cos(theta) ** 13 + 1.42218498708092e82 * cos(theta) ** 11 - 7.42831664667148e80 * cos(theta) ** 9 + 2.32538608069716e79 * cos(theta) ** 7 - 3.92864905025264e77 * cos(theta) ** 5 + 2.94943622391339e75 * cos(theta) ** 3 - 6.24439567518714e72 * cos(theta) ) * sin(40 * phi) ) # @torch.jit.script def Yl67_m_minus_39(theta, phi): return ( 2.3905723769247e-70 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 1.21449378952808e84 * cos(theta) ** 28 - 3.45171919129033e84 * cos(theta) ** 26 + 4.28171273728762e84 * cos(theta) ** 24 - 3.05362458783303e84 * cos(theta) ** 22 + 1.38855763738077e84 * cos(theta) ** 20 - 4.22121521763753e83 * cos(theta) ** 18 + 8.75129984144367e82 * cos(theta) ** 16 - 1.2398535784808e82 * cos(theta) ** 14 + 1.18515415590077e81 * cos(theta) ** 12 - 7.42831664667148e79 * cos(theta) ** 10 + 2.90673260087145e78 * cos(theta) ** 8 - 6.54774841708773e76 * cos(theta) ** 6 + 7.37359055978348e74 * cos(theta) ** 4 - 3.12219783759357e72 * cos(theta) ** 2 + 2.08424421735218e69 ) * sin(39 * phi) ) # @torch.jit.script def Yl67_m_minus_38(theta, phi): return ( 1.3254209426954e-68 * (1.0 - cos(theta) ** 2) ** 19 * ( 4.18790961906234e82 * cos(theta) ** 29 - 1.27841451529271e83 * cos(theta) ** 27 + 1.71268509491505e83 * cos(theta) ** 25 - 1.32766286427523e83 * cos(theta) ** 23 + 6.6121792256227e82 * cos(theta) ** 21 - 2.22169221980923e82 * cos(theta) ** 19 + 5.14782343614333e81 * cos(theta) ** 17 - 8.26569052320535e80 * cos(theta) ** 15 + 9.1165704300059e79 * cos(theta) ** 13 - 6.75301513333771e78 * cos(theta) ** 11 + 3.22970288985716e77 * cos(theta) ** 9 - 9.35392631012533e75 * cos(theta) ** 7 + 1.4747181119567e74 * cos(theta) ** 5 - 1.04073261253119e72 * cos(theta) ** 3 + 2.08424421735218e69 * cos(theta) ) * sin(38 * phi) ) # @torch.jit.script def Yl67_m_minus_37(theta, phi): return ( 7.43890659123167e-67 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 1.39596987302078e81 * cos(theta) ** 30 - 4.56576612604541e81 * cos(theta) ** 28 + 6.58725036505787e81 * cos(theta) ** 26 - 5.53192860114679e81 * cos(theta) ** 24 + 3.00553601164668e81 * cos(theta) ** 22 - 1.11084610990461e81 * cos(theta) ** 20 + 2.85990190896852e80 * cos(theta) ** 18 - 5.16605657700335e79 * cos(theta) ** 16 + 6.51183602143279e78 * cos(theta) ** 14 - 5.62751261111476e77 * cos(theta) ** 12 + 3.22970288985716e76 * cos(theta) ** 10 - 1.16924078876567e75 * cos(theta) ** 8 + 2.45786351992783e73 * cos(theta) ** 6 - 2.60183153132798e71 * cos(theta) ** 4 + 1.04212210867609e69 * cos(theta) ** 2 - 6.61664830905455e65 ) * sin(37 * phi) ) # @torch.jit.script def Yl67_m_minus_36(theta, phi): return ( 4.22383186247248e-65 * (1.0 - cos(theta) ** 2) ** 18 * ( 4.50312862264767e79 * cos(theta) ** 31 - 1.57440211242945e80 * cos(theta) ** 29 + 2.43972235742884e80 * cos(theta) ** 27 - 2.21277144045872e80 * cos(theta) ** 25 + 1.30675478767247e80 * cos(theta) ** 23 - 5.28974338049816e79 * cos(theta) ** 21 + 1.50521153103606e79 * cos(theta) ** 19 - 3.03885681000197e78 * cos(theta) ** 17 + 4.34122401428853e77 * cos(theta) ** 15 - 4.32885585470366e76 * cos(theta) ** 13 + 2.93609353623379e75 * cos(theta) ** 11 - 1.29915643196185e74 * cos(theta) ** 9 + 3.5112335998969e72 * cos(theta) ** 7 - 5.20366306265595e70 * cos(theta) ** 5 + 3.47374036225364e68 * cos(theta) ** 3 - 6.61664830905455e65 * cos(theta) ) * sin(36 * phi) ) # @torch.jit.script def Yl67_m_minus_35(theta, phi): return ( 2.42493567885078e-63 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 1.4072276945774e78 * cos(theta) ** 32 - 5.2480070414315e78 * cos(theta) ** 30 + 8.71329413367444e78 * cos(theta) ** 28 - 8.51065938637968e78 * cos(theta) ** 26 + 5.44481161530196e78 * cos(theta) ** 24 - 2.40442880931735e78 * cos(theta) ** 22 + 7.52605765518031e77 * cos(theta) ** 20 - 1.68825378333443e77 * cos(theta) ** 18 + 2.71326500893033e76 * cos(theta) ** 16 - 3.0920398962169e75 * cos(theta) ** 14 + 2.44674461352815e74 * cos(theta) ** 12 - 1.29915643196185e73 * cos(theta) ** 10 + 4.38904199987112e71 * cos(theta) ** 8 - 8.67277177109325e69 * cos(theta) ** 6 + 8.6843509056341e67 * cos(theta) ** 4 - 3.30832415452728e65 * cos(theta) ** 2 + 2.00747824910636e62 ) * sin(35 * phi) ) # @torch.jit.script def Yl67_m_minus_34(theta, phi): return ( 1.40688072396819e-61 * (1.0 - cos(theta) ** 2) ** 17 * ( 4.26432634720424e76 * cos(theta) ** 33 - 1.69290549723597e77 * cos(theta) ** 31 + 3.00458418402567e77 * cos(theta) ** 29 - 3.15209606902951e77 * cos(theta) ** 27 + 2.17792464612078e77 * cos(theta) ** 25 - 1.04540383013798e77 * cos(theta) ** 23 + 3.58383697865729e76 * cos(theta) ** 21 - 8.88554622807593e75 * cos(theta) ** 19 + 1.59603824054725e75 * cos(theta) ** 17 - 2.06135993081127e74 * cos(theta) ** 15 + 1.8821112411755e73 * cos(theta) ** 13 - 1.1810513017835e72 * cos(theta) ** 11 + 4.87671333319013e70 * cos(theta) ** 9 - 1.23896739587046e69 * cos(theta) ** 7 + 1.73687018112682e67 * cos(theta) ** 5 - 1.10277471817576e65 * cos(theta) ** 3 + 2.00747824910636e62 * cos(theta) ) * sin(34 * phi) ) # @torch.jit.script def Yl67_m_minus_33(theta, phi): return ( 8.24436905872075e-60 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 1.25421363153066e75 * cos(theta) ** 34 - 5.2903296788624e75 * cos(theta) ** 32 + 1.00152806134189e76 * cos(theta) ** 30 - 1.12574859608197e76 * cos(theta) ** 28 + 8.37663325431071e75 * cos(theta) ** 26 - 4.35584929224157e75 * cos(theta) ** 24 + 1.62901680848059e75 * cos(theta) ** 22 - 4.44277311403796e74 * cos(theta) ** 20 + 8.8668791141514e73 * cos(theta) ** 18 - 1.28834995675704e73 * cos(theta) ** 16 + 1.34436517226822e72 * cos(theta) ** 14 - 9.84209418152918e70 * cos(theta) ** 12 + 4.87671333319013e69 * cos(theta) ** 10 - 1.54870924483808e68 * cos(theta) ** 8 + 2.89478363521137e66 * cos(theta) ** 6 - 2.7569367954394e64 * cos(theta) ** 4 + 1.00373912455318e62 * cos(theta) ** 2 - 5.84588890246464e58 ) * sin(33 * phi) ) # @torch.jit.script def Yl67_m_minus_32(theta, phi): return ( 4.87743451127099e-58 * (1.0 - cos(theta) ** 2) ** 16 * ( 3.58346751865902e73 * cos(theta) ** 35 - 1.60313020571588e74 * cos(theta) ** 33 + 3.23073568174803e74 * cos(theta) ** 31 - 3.88189171062748e74 * cos(theta) ** 29 + 3.10245676085582e74 * cos(theta) ** 27 - 1.74233971689663e74 * cos(theta) ** 25 + 7.08268177600255e73 * cos(theta) ** 23 - 2.11560624477998e73 * cos(theta) ** 21 + 4.66677848113232e72 * cos(theta) ** 19 - 7.57852915739436e71 * cos(theta) ** 17 + 8.96243448178811e70 * cos(theta) ** 15 - 7.57084167809937e69 * cos(theta) ** 13 + 4.43337575744558e68 * cos(theta) ** 11 - 1.72078804982009e67 * cos(theta) ** 9 + 4.13540519315909e65 * cos(theta) ** 7 - 5.51387359087879e63 * cos(theta) ** 5 + 3.34579708184393e61 * cos(theta) ** 3 - 5.84588890246464e58 * cos(theta) ) * sin(32 * phi) ) # @torch.jit.script def Yl67_m_minus_31(theta, phi): return ( 2.91179163841494e-56 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 9.95407644071951e71 * cos(theta) ** 36 - 4.71508884034082e72 * cos(theta) ** 34 + 1.00960490054626e73 * cos(theta) ** 32 - 1.29396390354249e73 * cos(theta) ** 30 + 1.10802027173422e73 * cos(theta) ** 28 - 6.70130660344857e72 * cos(theta) ** 26 + 2.95111740666773e72 * cos(theta) ** 24 - 9.6163920217272e71 * cos(theta) ** 22 + 2.33338924056616e71 * cos(theta) ** 20 - 4.2102939763302e70 * cos(theta) ** 18 + 5.60152155111757e69 * cos(theta) ** 16 - 5.40774405578526e68 * cos(theta) ** 14 + 3.69447979787131e67 * cos(theta) ** 12 - 1.72078804982009e66 * cos(theta) ** 10 + 5.16925649144887e64 * cos(theta) ** 8 - 9.18978931813132e62 * cos(theta) ** 6 + 8.36449270460982e60 * cos(theta) ** 4 - 2.92294445123232e58 * cos(theta) ** 2 + 1.6402606348105e55 ) * sin(31 * phi) ) # @torch.jit.script def Yl67_m_minus_30(theta, phi): return ( 1.75337251484502e-54 * (1.0 - cos(theta) ** 2) ** 15 * ( 2.69029092992419e70 * cos(theta) ** 37 - 1.34716824009738e71 * cos(theta) ** 35 + 3.05940878953412e71 * cos(theta) ** 33 - 4.17407710820159e71 * cos(theta) ** 31 + 3.82075955770421e71 * cos(theta) ** 29 - 2.48196540868465e71 * cos(theta) ** 27 + 1.18044696266709e71 * cos(theta) ** 25 - 4.18104000944661e70 * cos(theta) ** 23 + 1.11113773360293e70 * cos(theta) ** 21 - 2.21594419806853e69 * cos(theta) ** 19 + 3.29501267712798e68 * cos(theta) ** 17 - 3.60516270385684e67 * cos(theta) ** 15 + 2.84190753682409e66 * cos(theta) ** 13 - 1.56435277256372e65 * cos(theta) ** 11 + 5.74361832383208e63 * cos(theta) ** 9 - 1.31282704544733e62 * cos(theta) ** 7 + 1.67289854092196e60 * cos(theta) ** 5 - 9.7431481707744e57 * cos(theta) ** 3 + 1.6402606348105e55 * cos(theta) ) * sin(30 * phi) ) # @torch.jit.script def Yl67_m_minus_29(theta, phi): return ( 1.06451518251504e-52 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 7.07971297348471e68 * cos(theta) ** 38 - 3.74213400027049e69 * cos(theta) ** 36 + 8.99826114568859e69 * cos(theta) ** 34 - 1.304399096313e70 * cos(theta) ** 32 + 1.27358651923474e70 * cos(theta) ** 30 - 8.86416217387377e69 * cos(theta) ** 28 + 4.54018062564266e69 * cos(theta) ** 26 - 1.74210000393609e69 * cos(theta) ** 24 + 5.05062606183151e68 * cos(theta) ** 22 - 1.10797209903426e68 * cos(theta) ** 20 + 1.83056259840443e67 * cos(theta) ** 18 - 2.25322668991053e66 * cos(theta) ** 16 + 2.02993395487435e65 * cos(theta) ** 14 - 1.30362731046977e64 * cos(theta) ** 12 + 5.74361832383208e62 * cos(theta) ** 10 - 1.64103380680916e61 * cos(theta) ** 8 + 2.78816423486994e59 * cos(theta) ** 6 - 2.4357870426936e57 * cos(theta) ** 4 + 8.20130317405252e54 * cos(theta) ** 2 - 4.44997459254071e51 ) * sin(29 * phi) ) # @torch.jit.script def Yl67_m_minus_28(theta, phi): return ( 6.51358042579195e-51 * (1.0 - cos(theta) ** 2) ** 14 * ( 1.81531101884223e67 * cos(theta) ** 39 - 1.01138756764067e68 * cos(theta) ** 37 + 2.57093175591102e68 * cos(theta) ** 35 - 3.95272453428181e68 * cos(theta) ** 33 + 4.10834361043463e68 * cos(theta) ** 31 - 3.05660764616337e68 * cos(theta) ** 29 + 1.68154837986765e68 * cos(theta) ** 27 - 6.96840001574434e67 * cos(theta) ** 25 + 2.19592437470935e67 * cos(theta) ** 23 - 5.27605761444887e66 * cos(theta) ** 21 + 9.63453999160229e65 * cos(theta) ** 19 - 1.32542746465325e65 * cos(theta) ** 17 + 1.35328930324957e64 * cos(theta) ** 15 - 1.0027902388229e63 * cos(theta) ** 13 + 5.22147120348371e61 * cos(theta) ** 11 - 1.82337089645463e60 * cos(theta) ** 9 + 3.98309176409991e58 * cos(theta) ** 7 - 4.8715740853872e56 * cos(theta) ** 5 + 2.73376772468417e54 * cos(theta) ** 3 - 4.44997459254071e51 * cos(theta) ) * sin(28 * phi) ) # @torch.jit.script def Yl67_m_minus_27(theta, phi): return ( 4.01524063862165e-49 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 4.53827754710559e65 * cos(theta) ** 40 - 2.66154623063335e66 * cos(theta) ** 38 + 7.14147709975285e66 * cos(theta) ** 36 - 1.16256603949465e67 * cos(theta) ** 34 + 1.28385737826082e67 * cos(theta) ** 32 - 1.01886921538779e67 * cos(theta) ** 30 + 6.00552992809876e66 * cos(theta) ** 28 - 2.68015385220936e66 * cos(theta) ** 26 + 9.1496848946223e65 * cos(theta) ** 24 - 2.39820800656767e65 * cos(theta) ** 22 + 4.81726999580114e64 * cos(theta) ** 20 - 7.36348591474028e63 * cos(theta) ** 18 + 8.45805814530978e62 * cos(theta) ** 16 - 7.16278742016354e61 * cos(theta) ** 14 + 4.35122600290309e60 * cos(theta) ** 12 - 1.82337089645463e59 * cos(theta) ** 10 + 4.97886470512489e57 * cos(theta) ** 8 - 8.119290142312e55 * cos(theta) ** 6 + 6.83441931171044e53 * cos(theta) ** 4 - 2.22498729627035e51 * cos(theta) ** 2 + 1.17104594540545e48 ) * sin(27 * phi) ) # @torch.jit.script def Yl67_m_minus_26(theta, phi): return ( 2.49268519002688e-47 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.10689696270868e64 * cos(theta) ** 41 - 6.82447751444449e64 * cos(theta) ** 39 + 1.93012894587915e65 * cos(theta) ** 37 - 3.321617255699e65 * cos(theta) ** 35 + 3.89047690382068e65 * cos(theta) ** 33 - 3.28667488834771e65 * cos(theta) ** 31 + 2.07087238899957e65 * cos(theta) ** 29 - 9.92649574892357e64 * cos(theta) ** 27 + 3.65987395784892e64 * cos(theta) ** 25 - 1.04269913329029e64 * cos(theta) ** 23 + 2.29393809323864e63 * cos(theta) ** 21 - 3.87551890249489e62 * cos(theta) ** 19 + 4.97532832077046e61 * cos(theta) ** 17 - 4.77519161344236e60 * cos(theta) ** 15 + 3.34709692531007e59 * cos(theta) ** 13 - 1.65760990586784e58 * cos(theta) ** 11 + 5.53207189458321e56 * cos(theta) ** 9 - 1.15989859175886e55 * cos(theta) ** 7 + 1.36688386234209e53 * cos(theta) ** 5 - 7.41662432090118e50 * cos(theta) ** 3 + 1.17104594540545e48 * cos(theta) ) * sin(26 * phi) ) # @torch.jit.script def Yl67_m_minus_25(theta, phi): return ( 1.55787838926532e-45 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 2.63546895883019e62 * cos(theta) ** 42 - 1.70611937861112e63 * cos(theta) ** 40 + 5.07928669968197e63 * cos(theta) ** 38 - 9.22671459916388e63 * cos(theta) ** 36 + 1.14425791288843e64 * cos(theta) ** 34 - 1.02708590260866e64 * cos(theta) ** 32 + 6.90290796333191e63 * cos(theta) ** 30 - 3.54517705318699e63 * cos(theta) ** 28 + 1.40764382994189e63 * cos(theta) ** 26 - 4.34457972204288e62 * cos(theta) ** 24 + 1.04269913329029e62 * cos(theta) ** 22 - 1.93775945124744e61 * cos(theta) ** 20 + 2.76407128931692e60 * cos(theta) ** 18 - 2.98449475840148e59 * cos(theta) ** 16 + 2.39078351807862e58 * cos(theta) ** 14 - 1.3813415882232e57 * cos(theta) ** 12 + 5.53207189458321e55 * cos(theta) ** 10 - 1.44987323969857e54 * cos(theta) ** 8 + 2.27813977057014e52 * cos(theta) ** 6 - 1.85415608022529e50 * cos(theta) ** 4 + 5.85522972702724e47 * cos(theta) ** 2 - 2.99806949668574e44 ) * sin(25 * phi) ) # @torch.jit.script def Yl67_m_minus_24(theta, phi): return ( 9.79854732071393e-44 * (1.0 - cos(theta) ** 2) ** 12 * ( 6.12899757867486e60 * cos(theta) ** 43 - 4.1612667771003e61 * cos(theta) ** 41 + 1.30238120504666e62 * cos(theta) ** 39 - 2.49370664842267e62 * cos(theta) ** 37 + 3.26930832253838e62 * cos(theta) ** 35 - 3.11238152305654e62 * cos(theta) ** 33 + 2.22674450430062e62 * cos(theta) ** 31 - 1.22247484592655e62 * cos(theta) ** 29 + 5.21349566645145e61 * cos(theta) ** 27 - 1.73783188881715e61 * cos(theta) ** 25 + 4.53347449256648e60 * cos(theta) ** 23 - 9.22742595832116e59 * cos(theta) ** 21 + 1.45477436279838e59 * cos(theta) ** 19 - 1.75558515200087e58 * cos(theta) ** 17 + 1.59385567871908e57 * cos(theta) ** 15 - 1.06257045247939e56 * cos(theta) ** 13 + 5.02915626780292e54 * cos(theta) ** 11 - 1.61097026633175e53 * cos(theta) ** 9 + 3.25448538652878e51 * cos(theta) ** 7 - 3.70831216045059e49 * cos(theta) ** 5 + 1.95174324234241e47 * cos(theta) ** 3 - 2.99806949668574e44 * cos(theta) ) * sin(24 * phi) ) # @torch.jit.script def Yl67_m_minus_23(theta, phi): return ( 6.20024325735262e-42 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.39295399515338e59 * cos(theta) ** 44 - 9.907778040715e59 * cos(theta) ** 42 + 3.25595301261665e60 * cos(theta) ** 40 - 6.56238591690177e60 * cos(theta) ** 38 + 9.08141200705107e60 * cos(theta) ** 36 - 9.15406330310748e60 * cos(theta) ** 34 + 6.95857657593942e60 * cos(theta) ** 32 - 4.07491615308849e60 * cos(theta) ** 30 + 1.86196273801838e60 * cos(theta) ** 28 - 6.68396880314289e59 * cos(theta) ** 26 + 1.88894770523603e59 * cos(theta) ** 24 - 4.19428452650962e58 * cos(theta) ** 22 + 7.2738718139919e57 * cos(theta) ** 20 - 9.75325084444927e56 * cos(theta) ** 18 + 9.96159799199425e55 * cos(theta) ** 16 - 7.58978894628133e54 * cos(theta) ** 14 + 4.19096355650243e53 * cos(theta) ** 12 - 1.61097026633175e52 * cos(theta) ** 10 + 4.06810673316097e50 * cos(theta) ** 8 - 6.18052026741765e48 * cos(theta) ** 6 + 4.87935810585604e46 * cos(theta) ** 4 - 1.49903474834287e44 * cos(theta) ** 2 + 7.48768605565868e40 ) * sin(23 * phi) ) # @torch.jit.script def Yl67_m_minus_22(theta, phi): return ( 3.94581064705218e-40 * (1.0 - cos(theta) ** 2) ** 11 * ( 3.09545332256306e57 * cos(theta) ** 45 - 2.30413442807325e58 * cos(theta) ** 43 + 7.94134881126011e58 * cos(theta) ** 41 - 1.68266305561584e59 * cos(theta) ** 39 + 2.45443567758137e59 * cos(theta) ** 37 - 2.61544665803071e59 * cos(theta) ** 35 + 2.10865956846649e59 * cos(theta) ** 33 - 1.31448908164145e59 * cos(theta) ** 31 + 6.42056116558061e58 * cos(theta) ** 29 - 2.47554400116403e58 * cos(theta) ** 27 + 7.55579082094414e57 * cos(theta) ** 25 - 1.82360196804766e57 * cos(theta) ** 23 + 3.46374848285329e56 * cos(theta) ** 21 - 5.1332899181312e55 * cos(theta) ** 19 + 5.8597635247025e54 * cos(theta) ** 17 - 5.05985929752089e53 * cos(theta) ** 15 + 3.22381812038649e52 * cos(theta) ** 13 - 1.46451842393795e51 * cos(theta) ** 11 + 4.52011859240108e49 * cos(theta) ** 9 - 8.8293146677395e47 * cos(theta) ** 7 + 9.75871621171208e45 * cos(theta) ** 5 - 4.99678249447623e43 * cos(theta) ** 3 + 7.48768605565868e40 * cos(theta) ) * sin(22 * phi) ) # @torch.jit.script def Yl67_m_minus_21(theta, phi): return ( 2.52470220592105e-38 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 6.72924635339796e55 * cos(theta) ** 46 - 5.23666915471194e56 * cos(theta) ** 44 + 1.89079733601431e57 * cos(theta) ** 42 - 4.20665763903959e57 * cos(theta) ** 40 + 6.45904125679308e57 * cos(theta) ** 38 - 7.26512960564085e57 * cos(theta) ** 36 + 6.20193990725439e57 * cos(theta) ** 34 - 4.10777838012953e57 * cos(theta) ** 32 + 2.14018705519354e57 * cos(theta) ** 30 - 8.84122857558583e56 * cos(theta) ** 28 + 2.90607339267082e56 * cos(theta) ** 26 - 7.59834153353191e55 * cos(theta) ** 24 + 1.57443112856968e55 * cos(theta) ** 22 - 2.5666449590656e54 * cos(theta) ** 20 + 3.25542418039028e53 * cos(theta) ** 18 - 3.16241206095056e52 * cos(theta) ** 16 + 2.30272722884749e51 * cos(theta) ** 14 - 1.22043201994829e50 * cos(theta) ** 12 + 4.52011859240108e48 * cos(theta) ** 10 - 1.10366433346744e47 * cos(theta) ** 8 + 1.62645270195201e45 * cos(theta) ** 6 - 1.24919562361906e43 * cos(theta) ** 4 + 3.74384302782934e40 * cos(theta) ** 2 - 1.82894139122098e37 ) * sin(21 * phi) ) # @torch.jit.script def Yl67_m_minus_20(theta, phi): return ( 1.6236799377161e-36 * (1.0 - cos(theta) ** 2) ** 10 * ( 1.43175454327616e54 * cos(theta) ** 47 - 1.16370425660265e55 * cos(theta) ** 45 + 4.39720310701003e55 * cos(theta) ** 43 - 1.02601405830234e56 * cos(theta) ** 41 + 1.65616442481874e56 * cos(theta) ** 39 - 1.9635485420651e56 * cos(theta) ** 37 + 1.77198283064411e56 * cos(theta) ** 35 - 1.24478132731198e56 * cos(theta) ** 33 + 6.90382921030173e55 * cos(theta) ** 31 - 3.0486995088227e55 * cos(theta) ** 29 + 1.07632347876697e55 * cos(theta) ** 27 - 3.03933661341277e54 * cos(theta) ** 25 + 6.84535273291163e53 * cos(theta) ** 23 - 1.22221188526933e53 * cos(theta) ** 21 + 1.71338114757383e52 * cos(theta) ** 19 - 1.86024238879444e51 * cos(theta) ** 17 + 1.53515148589833e50 * cos(theta) ** 15 - 9.38793861498686e48 * cos(theta) ** 13 + 4.10919872036462e47 * cos(theta) ** 11 - 1.22629370385271e46 * cos(theta) ** 9 + 2.32350385993145e44 * cos(theta) ** 7 - 2.49839124723811e42 * cos(theta) ** 5 + 1.24794767594311e40 * cos(theta) ** 3 - 1.82894139122098e37 * cos(theta) ) * sin(20 * phi) ) # @torch.jit.script def Yl67_m_minus_19(theta, phi): return ( 1.04925408703669e-34 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 2.98282196515867e52 * cos(theta) ** 48 - 2.52979186217968e53 * cos(theta) ** 46 + 9.99364342502279e53 * cos(theta) ** 44 - 2.44289061500557e54 * cos(theta) ** 42 + 4.14041106204684e54 * cos(theta) ** 40 - 5.16723300543446e54 * cos(theta) ** 38 + 4.92217452956697e54 * cos(theta) ** 36 - 3.66112155091758e54 * cos(theta) ** 34 + 2.15744662821929e54 * cos(theta) ** 32 - 1.01623316960757e54 * cos(theta) ** 30 + 3.84401242416775e53 * cos(theta) ** 28 - 1.16897562054337e53 * cos(theta) ** 26 + 2.85223030537985e52 * cos(theta) ** 24 - 5.55550856940605e51 * cos(theta) ** 22 + 8.56690573786915e50 * cos(theta) ** 20 - 1.03346799377469e50 * cos(theta) ** 18 + 9.59469678686455e48 * cos(theta) ** 16 - 6.70567043927633e47 * cos(theta) ** 14 + 3.42433226697052e46 * cos(theta) ** 12 - 1.22629370385271e45 * cos(theta) ** 10 + 2.90437982491431e43 * cos(theta) ** 8 - 4.16398541206352e41 * cos(theta) ** 6 + 3.11986918985779e39 * cos(theta) ** 4 - 9.14470695610489e36 * cos(theta) ** 2 + 4.37964892533759e33 ) * sin(19 * phi) ) # @torch.jit.script def Yl67_m_minus_18(theta, phi): return ( 6.81126747561255e-33 * (1.0 - cos(theta) ** 2) ** 9 * ( 6.08739176562994e50 * cos(theta) ** 49 - 5.38253587697805e51 * cos(theta) ** 47 + 2.22080965000506e52 * cos(theta) ** 45 - 5.68114096512924e52 * cos(theta) ** 43 + 1.00985635659679e53 * cos(theta) ** 41 - 1.32493153985499e53 * cos(theta) ** 39 + 1.33031744042351e53 * cos(theta) ** 37 - 1.0460347288336e53 * cos(theta) ** 35 + 6.53771705520997e52 * cos(theta) ** 33 - 3.27817151486312e52 * cos(theta) ** 31 + 1.32552152557509e52 * cos(theta) ** 29 - 4.32953933534582e51 * cos(theta) ** 27 + 1.14089212215194e51 * cos(theta) ** 25 - 2.41543850843742e50 * cos(theta) ** 23 + 4.07947892279483e49 * cos(theta) ** 21 - 5.43930523039311e48 * cos(theta) ** 19 + 5.64393928639091e47 * cos(theta) ** 17 - 4.47044695951755e46 * cos(theta) ** 15 + 2.63410174382347e45 * cos(theta) ** 13 - 1.11481245804792e44 * cos(theta) ** 11 + 3.22708869434923e42 * cos(theta) ** 9 - 5.94855058866218e40 * cos(theta) ** 7 + 6.23973837971557e38 * cos(theta) ** 5 - 3.04823565203496e36 * cos(theta) ** 3 + 4.37964892533759e33 * cos(theta) ) * sin(18 * phi) ) # @torch.jit.script def Yl67_m_minus_17(theta, phi): return ( 4.44040313094919e-31 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.21747835312599e49 * cos(theta) ** 50 - 1.12136164103709e50 * cos(theta) ** 48 + 4.8278470652284e50 * cos(theta) ** 46 - 1.29116840116574e51 * cos(theta) ** 44 + 2.40441989665903e51 * cos(theta) ** 42 - 3.31232884963748e51 * cos(theta) ** 40 + 3.50083536953554e51 * cos(theta) ** 38 - 2.90565202453776e51 * cos(theta) ** 36 + 1.9228579574147e51 * cos(theta) ** 34 - 1.02442859839472e51 * cos(theta) ** 32 + 4.41840508525029e50 * cos(theta) ** 30 - 1.54626404833779e50 * cos(theta) ** 28 + 4.3880466236613e49 * cos(theta) ** 26 - 1.00643271184892e49 * cos(theta) ** 24 + 1.85430860127038e48 * cos(theta) ** 22 - 2.71965261519656e47 * cos(theta) ** 20 + 3.13552182577273e46 * cos(theta) ** 18 - 2.79402934969847e45 * cos(theta) ** 16 + 1.8815012455882e44 * cos(theta) ** 14 - 9.29010381706597e42 * cos(theta) ** 12 + 3.22708869434923e41 * cos(theta) ** 10 - 7.43568823582772e39 * cos(theta) ** 8 + 1.03995639661926e38 * cos(theta) ** 6 - 7.62058913008741e35 * cos(theta) ** 4 + 2.1898244626688e33 * cos(theta) ** 2 - 1.0305056294912e30 ) * sin(17 * phi) ) # @torch.jit.script def Yl67_m_minus_16(theta, phi): return ( 2.90634476570711e-29 * (1.0 - cos(theta) ** 2) ** 8 * ( 2.38721245710978e47 * cos(theta) ** 51 - 2.28849314497366e48 * cos(theta) ** 49 + 1.02720150324009e49 * cos(theta) ** 47 - 2.86926311370163e49 * cos(theta) ** 45 + 5.59167417827681e49 * cos(theta) ** 43 - 8.07885085277433e49 * cos(theta) ** 41 + 8.97650094752703e49 * cos(theta) ** 39 - 7.8531135798318e49 * cos(theta) ** 37 + 5.49387987832771e49 * cos(theta) ** 35 - 3.10432908604462e49 * cos(theta) ** 33 + 1.42529196298397e49 * cos(theta) ** 31 - 5.33194499426825e48 * cos(theta) ** 29 + 1.62520245320789e48 * cos(theta) ** 27 - 4.02573084739569e47 * cos(theta) ** 25 + 8.06221130987121e46 * cos(theta) ** 23 - 1.29507267390312e46 * cos(theta) ** 21 + 1.65027464514354e45 * cos(theta) ** 19 - 1.64354667629322e44 * cos(theta) ** 17 + 1.25433416372546e43 * cos(theta) ** 15 - 7.14623370543536e41 * cos(theta) ** 13 + 2.93371699486294e40 * cos(theta) ** 11 - 8.26187581758636e38 * cos(theta) ** 9 + 1.48565199517037e37 * cos(theta) ** 7 - 1.52411782601748e35 * cos(theta) ** 5 + 7.29941487556265e32 * cos(theta) ** 3 - 1.0305056294912e30 * cos(theta) ) * sin(16 * phi) ) # @torch.jit.script def Yl67_m_minus_15(theta, phi): return ( 1.9093601283182e-27 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 4.59079318674957e45 * cos(theta) ** 52 - 4.57698628994732e46 * cos(theta) ** 50 + 2.14000313175018e47 * cos(theta) ** 48 - 6.23752850804703e47 * cos(theta) ** 46 + 1.27083504051746e48 * cos(theta) ** 44 - 1.92353591732722e48 * cos(theta) ** 42 + 2.24412523688176e48 * cos(theta) ** 40 - 2.06660883679784e48 * cos(theta) ** 38 + 1.52607774397992e48 * cos(theta) ** 36 - 9.13037966483712e47 * cos(theta) ** 34 + 4.45403738432489e47 * cos(theta) ** 32 - 1.77731499808942e47 * cos(theta) ** 30 + 5.80429447574247e46 * cos(theta) ** 28 - 1.54835801822911e46 * cos(theta) ** 26 + 3.35925471244634e45 * cos(theta) ** 24 - 5.88669397228692e44 * cos(theta) ** 22 + 8.25137322571771e43 * cos(theta) ** 20 - 9.13081486829566e42 * cos(theta) ** 18 + 7.83958852328415e41 * cos(theta) ** 16 - 5.10445264673954e40 * cos(theta) ** 14 + 2.44476416238578e39 * cos(theta) ** 12 - 8.26187581758636e37 * cos(theta) ** 10 + 1.85706499396297e36 * cos(theta) ** 8 - 2.5401963766958e34 * cos(theta) ** 6 + 1.82485371889066e32 * cos(theta) ** 4 - 5.15252814745599e29 * cos(theta) ** 2 + 2.38764047611492e26 ) * sin(15 * phi) ) # @torch.jit.script def Yl67_m_minus_14(theta, phi): return ( 1.25873036862192e-25 * (1.0 - cos(theta) ** 2) ** 7 * ( 8.66187393726335e43 * cos(theta) ** 53 - 8.97448292146533e44 * cos(theta) ** 51 + 4.3673533301024e45 * cos(theta) ** 49 - 1.32713372511639e46 * cos(theta) ** 47 + 2.82407786781657e46 * cos(theta) ** 45 - 4.47333934262145e46 * cos(theta) ** 43 + 5.47347618751648e46 * cos(theta) ** 41 - 5.29899701743036e46 * cos(theta) ** 39 + 4.12453444318897e46 * cos(theta) ** 37 - 2.60867990423918e46 * cos(theta) ** 35 + 1.34970829828027e46 * cos(theta) ** 33 - 5.73327418738522e45 * cos(theta) ** 31 + 2.0014808537043e45 * cos(theta) ** 29 - 5.73465932677449e44 * cos(theta) ** 27 + 1.34370188497854e44 * cos(theta) ** 25 - 2.55943216186388e43 * cos(theta) ** 23 + 3.92922534557986e42 * cos(theta) ** 21 - 4.80569203594508e41 * cos(theta) ** 19 + 4.61152266075538e40 * cos(theta) ** 17 - 3.4029684311597e39 * cos(theta) ** 15 + 1.88058781721983e38 * cos(theta) ** 13 - 7.51079619780578e36 * cos(theta) ** 11 + 2.06340554884774e35 * cos(theta) ** 9 - 3.62885196670829e33 * cos(theta) ** 7 + 3.64970743778133e31 * cos(theta) ** 5 - 1.71750938248533e29 * cos(theta) ** 3 + 2.38764047611492e26 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl67_m_minus_13(theta, phi): return ( 8.32476724254649e-24 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.60405072912284e42 * cos(theta) ** 54 - 1.72586210028179e43 * cos(theta) ** 52 + 8.73470666020481e43 * cos(theta) ** 50 - 2.76486192732581e44 * cos(theta) ** 48 + 6.13929971264471e44 * cos(theta) ** 46 - 1.01666803241396e45 * cos(theta) ** 44 + 1.30320861607535e45 * cos(theta) ** 42 - 1.32474925435759e45 * cos(theta) ** 40 + 1.0854038008392e45 * cos(theta) ** 38 - 7.24633306733105e44 * cos(theta) ** 36 + 3.96973028905962e44 * cos(theta) ** 34 - 1.79164818355788e44 * cos(theta) ** 32 + 6.671602845681e43 * cos(theta) ** 30 - 2.04809261670518e43 * cos(theta) ** 28 + 5.16808417299437e42 * cos(theta) ** 26 - 1.06643006744328e42 * cos(theta) ** 24 + 1.78601152071812e41 * cos(theta) ** 22 - 2.40284601797254e40 * cos(theta) ** 20 + 2.56195703375299e39 * cos(theta) ** 18 - 2.12685526947481e38 * cos(theta) ** 16 + 1.34327701229988e37 * cos(theta) ** 14 - 6.25899683150482e35 * cos(theta) ** 12 + 2.06340554884774e34 * cos(theta) ** 10 - 4.53606495838536e32 * cos(theta) ** 8 + 6.08284572963554e30 * cos(theta) ** 6 - 4.29377345621333e28 * cos(theta) ** 4 + 1.19382023805746e26 * cos(theta) ** 2 - 5.45871165092574e22 ) * sin(13 * phi) ) # @torch.jit.script def Yl67_m_minus_12(theta, phi): return ( 5.52202588211365e-22 * (1.0 - cos(theta) ** 2) ** 6 * ( 2.91645587113244e40 * cos(theta) ** 55 - 3.25634358543735e41 * cos(theta) ** 53 + 1.71268758043232e42 * cos(theta) ** 51 - 5.64257536188941e42 * cos(theta) ** 49 + 1.30623398141377e43 * cos(theta) ** 47 - 2.25926229425326e43 * cos(theta) ** 45 + 3.03071771180315e43 * cos(theta) ** 43 - 3.23109574233559e43 * cos(theta) ** 41 + 2.78308666881847e43 * cos(theta) ** 39 - 1.95846839657596e43 * cos(theta) ** 37 + 1.13420865401703e43 * cos(theta) ** 35 - 5.42923691987236e42 * cos(theta) ** 33 + 2.15212995021968e42 * cos(theta) ** 31 - 7.06238833346612e41 * cos(theta) ** 29 + 1.91410524925717e41 * cos(theta) ** 27 - 4.26572026977313e40 * cos(theta) ** 25 + 7.76526748138312e39 * cos(theta) ** 23 - 1.14421238951073e39 * cos(theta) ** 21 + 1.34839843881736e38 * cos(theta) ** 19 - 1.25109133498518e37 * cos(theta) ** 17 + 8.9551800819992e35 * cos(theta) ** 15 - 4.8146129473114e34 * cos(theta) ** 13 + 1.87582322622522e33 * cos(theta) ** 11 - 5.04007217598374e31 * cos(theta) ** 9 + 8.68977961376506e29 * cos(theta) ** 7 - 8.58754691242665e27 * cos(theta) ** 5 + 3.97940079352486e25 * cos(theta) ** 3 - 5.45871165092574e22 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl67_m_minus_11(theta, phi): return ( 3.6728737220908e-20 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 5.2079569127365e38 * cos(theta) ** 56 - 6.03026589895805e39 * cos(theta) ** 54 + 3.29362996236984e40 * cos(theta) ** 52 - 1.12851507237788e41 * cos(theta) ** 50 + 2.72132079461202e41 * cos(theta) ** 48 - 4.91143977011577e41 * cos(theta) ** 46 + 6.88799479955261e41 * cos(theta) ** 44 - 7.69308510079902e41 * cos(theta) ** 42 + 6.95771667204617e41 * cos(theta) ** 40 - 5.15386420151568e41 * cos(theta) ** 38 + 3.15057959449176e41 * cos(theta) ** 36 - 1.59683438819775e41 * cos(theta) ** 34 + 6.72540609443649e40 * cos(theta) ** 32 - 2.35412944448871e40 * cos(theta) ** 30 + 6.83609017591848e39 * cos(theta) ** 28 - 1.64066164222043e39 * cos(theta) ** 26 + 3.23552811724297e38 * cos(theta) ** 24 - 5.20096540686697e37 * cos(theta) ** 22 + 6.74199219408682e36 * cos(theta) ** 20 - 6.95050741658435e35 * cos(theta) ** 18 + 5.5969875512495e34 * cos(theta) ** 16 - 3.43900924807957e33 * cos(theta) ** 14 + 1.56318602185435e32 * cos(theta) ** 12 - 5.04007217598374e30 * cos(theta) ** 10 + 1.08622245172063e29 * cos(theta) ** 8 - 1.43125781873778e27 * cos(theta) ** 6 + 9.94850198381215e24 * cos(theta) ** 4 - 2.72935582546287e22 * cos(theta) ** 2 + 1.2338859970447e19 ) * sin(11 * phi) ) # @torch.jit.script def Yl67_m_minus_10(theta, phi): return ( 2.44901094584075e-18 * (1.0 - cos(theta) ** 2) ** 5 * ( 9.13676651357281e36 * cos(theta) ** 57 - 1.09641198162874e38 * cos(theta) ** 55 + 6.21439615541479e38 * cos(theta) ** 53 - 2.21277465172134e39 * cos(theta) ** 51 + 5.55371590737147e39 * cos(theta) ** 49 - 1.04498718513102e40 * cos(theta) ** 47 + 1.53066551101169e40 * cos(theta) ** 45 - 1.78908955832535e40 * cos(theta) ** 43 + 1.69700406635272e40 * cos(theta) ** 41 - 1.32150364141428e40 * cos(theta) ** 39 + 8.51507998511286e39 * cos(theta) ** 37 - 4.5623839662793e39 * cos(theta) ** 35 + 2.03800184679894e39 * cos(theta) ** 33 - 7.59396594996357e38 * cos(theta) ** 31 + 2.35727247445465e38 * cos(theta) ** 29 - 6.07652460081642e37 * cos(theta) ** 27 + 1.29421124689719e37 * cos(theta) ** 25 - 2.26128930733347e36 * cos(theta) ** 23 + 3.21047247337467e35 * cos(theta) ** 21 - 3.65816179820229e34 * cos(theta) ** 19 + 3.29234561838206e33 * cos(theta) ** 17 - 2.29267283205305e32 * cos(theta) ** 15 + 1.20245078604181e31 * cos(theta) ** 13 - 4.58188379634885e29 * cos(theta) ** 11 + 1.20691383524515e28 * cos(theta) ** 9 - 2.04465402676825e26 * cos(theta) ** 7 + 1.98970039676243e24 * cos(theta) ** 5 - 9.09785275154289e21 * cos(theta) ** 3 + 1.2338859970447e19 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl67_m_minus_9(theta, phi): return ( 1.63662840929083e-16 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1.57530457130566e35 * cos(theta) ** 58 - 1.95787853862274e36 * cos(theta) ** 56 + 1.15081410285459e37 * cos(theta) ** 54 - 4.25533586869488e37 * cos(theta) ** 52 + 1.11074318147429e38 * cos(theta) ** 50 - 2.17705663568962e38 * cos(theta) ** 48 + 3.32753371959063e38 * cos(theta) ** 46 - 4.06611263255762e38 * cos(theta) ** 44 + 4.04048587226839e38 * cos(theta) ** 42 - 3.30375910353569e38 * cos(theta) ** 40 + 2.24081052239812e38 * cos(theta) ** 38 - 1.26732887952203e38 * cos(theta) ** 36 + 5.9941230788204e37 * cos(theta) ** 34 - 2.37311435936362e37 * cos(theta) ** 32 + 7.85757491484882e36 * cos(theta) ** 30 - 2.17018735743444e36 * cos(theta) ** 28 + 4.97773556498918e35 * cos(theta) ** 26 - 9.42203878055611e34 * cos(theta) ** 24 + 1.45930566971576e34 * cos(theta) ** 22 - 1.82908089910114e33 * cos(theta) ** 20 + 1.82908089910114e32 * cos(theta) ** 18 - 1.43292052003315e31 * cos(theta) ** 16 + 8.58893418601291e29 * cos(theta) ** 14 - 3.81823649695738e28 * cos(theta) ** 12 + 1.20691383524515e27 * cos(theta) ** 10 - 2.55581753346031e25 * cos(theta) ** 8 + 3.31616732793738e23 * cos(theta) ** 6 - 2.27446318788572e21 * cos(theta) ** 4 + 6.16942998522348e18 * cos(theta) ** 2 - 2.76284370139878e15 ) * sin(9 * phi) ) # @torch.jit.script def Yl67_m_minus_8(theta, phi): return ( 1.09593018183818e-14 * (1.0 - cos(theta) ** 2) ** 4 * ( 2.67000774797569e33 * cos(theta) ** 59 - 3.43487462916271e34 * cos(theta) ** 57 + 2.09238927791744e35 * cos(theta) ** 55 - 8.0289356013111e35 * cos(theta) ** 53 + 2.17792780681234e36 * cos(theta) ** 51 - 4.44297272589717e36 * cos(theta) ** 49 + 7.07985897785241e36 * cos(theta) ** 47 - 9.03580585012804e36 * cos(theta) ** 45 + 9.39647877271719e36 * cos(theta) ** 43 - 8.05794903301388e36 * cos(theta) ** 41 + 5.74566800614903e36 * cos(theta) ** 39 - 3.42521318789737e36 * cos(theta) ** 37 + 1.71260659394869e36 * cos(theta) ** 35 - 7.1912556344352e35 * cos(theta) ** 33 + 2.5347015854351e35 * cos(theta) ** 31 - 7.4834046808084e34 * cos(theta) ** 29 + 1.84360576481081e34 * cos(theta) ** 27 - 3.76881551222244e33 * cos(theta) ** 25 + 6.34480725963374e32 * cos(theta) ** 23 - 8.70990904333878e31 * cos(theta) ** 21 + 9.62674157421655e30 * cos(theta) ** 19 - 8.42894423548914e29 * cos(theta) ** 17 + 5.72595612400861e28 * cos(theta) ** 15 - 2.93710499765952e27 * cos(theta) ** 13 + 1.09719439567741e26 * cos(theta) ** 11 - 2.83979725940035e24 * cos(theta) ** 9 + 4.73738189705341e22 * cos(theta) ** 7 - 4.54892637577145e20 * cos(theta) ** 5 + 2.05647666174116e18 * cos(theta) ** 3 - 2.76284370139878e15 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl67_m_minus_7(theta, phi): return ( 7.35172315555162e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 4.45001291329281e31 * cos(theta) ** 60 - 5.92219763648743e32 * cos(theta) ** 58 + 3.73640942485257e33 * cos(theta) ** 56 - 1.48683992616872e34 * cos(theta) ** 54 + 4.18832270540835e34 * cos(theta) ** 52 - 8.88594545179435e34 * cos(theta) ** 50 + 1.47497062038592e35 * cos(theta) ** 48 - 1.96430561959305e35 * cos(theta) ** 46 + 2.13556335743572e35 * cos(theta) ** 44 - 1.91855929357473e35 * cos(theta) ** 42 + 1.43641700153726e35 * cos(theta) ** 40 - 9.0137189155194e34 * cos(theta) ** 38 + 4.75724053874635e34 * cos(theta) ** 36 - 2.11507518659859e34 * cos(theta) ** 34 + 7.9209424544847e33 * cos(theta) ** 32 - 2.49446822693613e33 * cos(theta) ** 30 + 6.58430630289574e32 * cos(theta) ** 28 - 1.44954442777786e32 * cos(theta) ** 26 + 2.64366969151406e31 * cos(theta) ** 24 - 3.95904956515399e30 * cos(theta) ** 22 + 4.81337078710827e29 * cos(theta) ** 20 - 4.68274679749397e28 * cos(theta) ** 18 + 3.57872257750538e27 * cos(theta) ** 16 - 2.09793214118537e26 * cos(theta) ** 14 + 9.14328663064506e24 * cos(theta) ** 12 - 2.83979725940035e23 * cos(theta) ** 10 + 5.92172737131676e21 * cos(theta) ** 8 - 7.58154395961908e19 * cos(theta) ** 6 + 5.1411916543529e17 * cos(theta) ** 4 - 1.38142185069939e15 * cos(theta) ** 2 + 613965266977.507 ) * sin(7 * phi) ) # @torch.jit.script def Yl67_m_minus_6(theta, phi): return ( 4.93935137207726e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 7.2951031365456e29 * cos(theta) ** 61 - 1.00376231126906e31 * cos(theta) ** 59 + 6.55510425412731e31 * cos(theta) ** 57 - 2.70334532030677e32 * cos(theta) ** 55 + 7.90249567058179e32 * cos(theta) ** 53 - 1.74234224544987e33 * cos(theta) ** 51 + 3.01014412323657e33 * cos(theta) ** 49 - 4.17937365870862e33 * cos(theta) ** 47 + 4.74569634985717e33 * cos(theta) ** 45 - 4.46176579901101e33 * cos(theta) ** 43 + 3.50345610131038e33 * cos(theta) ** 41 - 2.31120997833831e33 * cos(theta) ** 39 + 1.28574068614766e33 * cos(theta) ** 37 - 6.04307196171025e32 * cos(theta) ** 35 + 2.40028559226809e32 * cos(theta) ** 33 - 8.04667169979398e31 * cos(theta) ** 31 + 2.27045044927439e31 * cos(theta) ** 29 - 5.36868306584394e30 * cos(theta) ** 27 + 1.05746787660562e30 * cos(theta) ** 25 - 1.72132589789304e29 * cos(theta) ** 23 + 2.29208132719442e28 * cos(theta) ** 21 - 2.4646035776284e27 * cos(theta) ** 19 + 2.10513092794434e26 * cos(theta) ** 17 - 1.39862142745691e25 * cos(theta) ** 15 + 7.03329740818851e23 * cos(theta) ** 13 - 2.58163387218213e22 * cos(theta) ** 11 + 6.57969707924084e20 * cos(theta) ** 9 - 1.08307770851701e19 * cos(theta) ** 7 + 1.02823833087058e17 * cos(theta) ** 5 - 460473950233130.0 * cos(theta) ** 3 + 613965266977.507 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl67_m_minus_5(theta, phi): return ( 3.32297593863068e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.17662953815252e28 * cos(theta) ** 62 - 1.67293718544843e29 * cos(theta) ** 60 + 1.13019038864264e30 * cos(theta) ** 58 - 4.82740235769065e30 * cos(theta) ** 56 + 1.46342512418181e31 * cos(theta) ** 54 - 3.35065816432668e31 * cos(theta) ** 52 + 6.02028824647314e31 * cos(theta) ** 50 - 8.70702845564296e31 * cos(theta) ** 48 + 1.03167311953417e32 * cos(theta) ** 46 - 1.01403768159341e32 * cos(theta) ** 44 + 8.34156214597711e31 * cos(theta) ** 42 - 5.77802494584577e31 * cos(theta) ** 40 + 3.38352812144121e31 * cos(theta) ** 38 - 1.67863110047507e31 * cos(theta) ** 36 + 7.05966350667086e30 * cos(theta) ** 34 - 2.51458490618562e30 * cos(theta) ** 32 + 7.56816816424798e29 * cos(theta) ** 30 - 1.91738680922998e29 * cos(theta) ** 28 + 4.06718414079086e28 * cos(theta) ** 26 - 7.172191241221e27 * cos(theta) ** 24 + 1.04185514872473e27 * cos(theta) ** 22 - 1.2323017888142e26 * cos(theta) ** 20 + 1.1695171821913e25 * cos(theta) ** 18 - 8.74138392160571e23 * cos(theta) ** 16 + 5.02378386299179e22 * cos(theta) ** 14 - 2.15136156015178e21 * cos(theta) ** 12 + 6.57969707924084e19 * cos(theta) ** 10 - 1.35384713564626e18 * cos(theta) ** 8 + 1.71373055145097e16 * cos(theta) ** 6 - 115118487558283.0 * cos(theta) ** 4 + 306982633488.754 * cos(theta) ** 2 - 135652953.375499 ) * sin(5 * phi) ) # @torch.jit.script def Yl67_m_minus_4(theta, phi): return ( 2.23801874403292e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 1.86766593357542e26 * cos(theta) ** 63 - 2.74251997614496e27 * cos(theta) ** 61 + 1.91557692990278e28 * cos(theta) ** 59 - 8.46912694331694e28 * cos(theta) ** 57 + 2.66077295305784e29 * cos(theta) ** 55 - 6.32199653646543e29 * cos(theta) ** 53 + 1.18044867577905e30 * cos(theta) ** 51 - 1.77694458278428e30 * cos(theta) ** 49 + 2.19504919049823e30 * cos(theta) ** 47 - 2.25341707020758e30 * cos(theta) ** 45 + 1.93989817348305e30 * cos(theta) ** 43 - 1.40927437703555e30 * cos(theta) ** 41 + 8.67571313190055e29 * cos(theta) ** 39 - 4.53684081209478e29 * cos(theta) ** 37 + 2.01704671619167e29 * cos(theta) ** 35 - 7.61995426116854e28 * cos(theta) ** 33 + 2.44134456911225e28 * cos(theta) ** 31 - 6.61167865251716e27 * cos(theta) ** 29 + 1.50636449658921e27 * cos(theta) ** 27 - 2.8688764964884e26 * cos(theta) ** 25 + 4.52980499445537e25 * cos(theta) ** 23 - 5.8681037562581e24 * cos(theta) ** 21 + 6.15535359048053e23 * cos(theta) ** 19 - 5.14199054212101e22 * cos(theta) ** 17 + 3.34918924199453e21 * cos(theta) ** 15 - 1.65489350780906e20 * cos(theta) ** 13 + 5.98154279930986e18 * cos(theta) ** 11 - 1.50427459516252e17 * cos(theta) ** 9 + 2.44818650207281e15 * cos(theta) ** 7 - 23023697511656.5 * cos(theta) ** 5 + 102327544496.251 * cos(theta) ** 3 - 135652953.375499 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl67_m_minus_3(theta, phi): return ( 1.5086304905918e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 2.9182280212116e24 * cos(theta) ** 64 - 4.42341931636284e25 * cos(theta) ** 62 + 3.19262821650463e26 * cos(theta) ** 60 - 1.46019430057189e27 * cos(theta) ** 58 + 4.75138027331757e27 * cos(theta) ** 56 - 1.17074009934545e28 * cos(theta) ** 54 + 2.2700936072674e28 * cos(theta) ** 52 - 3.55388916556856e28 * cos(theta) ** 50 + 4.5730191468713e28 * cos(theta) ** 48 - 4.89873276132083e28 * cos(theta) ** 46 + 4.40885948518875e28 * cos(theta) ** 44 - 3.35541518341798e28 * cos(theta) ** 42 + 2.16892828297514e28 * cos(theta) ** 40 - 1.19390547686705e28 * cos(theta) ** 38 + 5.60290754497687e27 * cos(theta) ** 36 - 2.24116301799075e27 * cos(theta) ** 34 + 7.62920177847579e26 * cos(theta) ** 32 - 2.20389288417239e26 * cos(theta) ** 30 + 5.37987320210431e25 * cos(theta) ** 28 - 1.10341403711092e25 * cos(theta) ** 26 + 1.88741874768974e24 * cos(theta) ** 24 - 2.66731988920823e23 * cos(theta) ** 22 + 3.07767679524026e22 * cos(theta) ** 20 - 2.85666141228945e21 * cos(theta) ** 18 + 2.09324327624658e20 * cos(theta) ** 16 - 1.18206679129219e19 * cos(theta) ** 14 + 4.98461899942488e17 * cos(theta) ** 12 - 1.50427459516252e16 * cos(theta) ** 10 + 306023312759101.0 * cos(theta) ** 8 - 3837282918609.42 * cos(theta) ** 6 + 25581886124.0628 * cos(theta) ** 4 - 67826476.6877494 * cos(theta) ** 2 + 29853.2027674953 ) * sin(3 * phi) ) # @torch.jit.script def Yl67_m_minus_2(theta, phi): return ( 0.0010176269014232 * (1.0 - cos(theta) ** 2) * ( 4.48958157109476e22 * cos(theta) ** 65 - 7.02130050216324e23 * cos(theta) ** 63 + 5.23381674836825e24 * cos(theta) ** 61 - 2.47490559418964e25 * cos(theta) ** 59 + 8.33575486546942e25 * cos(theta) ** 57 - 2.12861836244627e26 * cos(theta) ** 55 + 4.28319548541018e26 * cos(theta) ** 53 - 6.9684101285658e26 * cos(theta) ** 51 + 9.33269213647205e26 * cos(theta) ** 49 - 1.04228356623847e27 * cos(theta) ** 47 + 9.79746552264166e26 * cos(theta) ** 45 - 7.80329112422787e26 * cos(theta) ** 43 + 5.29006898286619e26 * cos(theta) ** 41 - 3.06129609453089e26 * cos(theta) ** 39 + 1.51429933648023e26 * cos(theta) ** 37 - 6.40332290854499e25 * cos(theta) ** 35 + 2.31187932681084e25 * cos(theta) ** 33 - 7.10933188442706e24 * cos(theta) ** 31 + 1.8551286903808e24 * cos(theta) ** 29 - 4.08671865596638e23 * cos(theta) ** 27 + 7.54967499075894e22 * cos(theta) ** 25 - 1.15970429965575e22 * cos(theta) ** 23 + 1.46556037868584e21 * cos(theta) ** 21 - 1.50350600646813e20 * cos(theta) ** 19 + 1.23131957426269e19 * cos(theta) ** 17 - 7.88044527528124e17 * cos(theta) ** 15 + 3.83432230724991e16 * cos(theta) ** 13 - 1.36752235923865e15 * cos(theta) ** 11 + 34002590306566.8 * cos(theta) ** 9 - 548183274087.06 * cos(theta) ** 7 + 5116377224.81256 * cos(theta) ** 5 - 22608825.5625831 * cos(theta) ** 3 + 29853.2027674953 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl67_m_minus_1(theta, phi): return ( 0.068672853303309 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 6.80239631984055e20 * cos(theta) ** 66 - 1.09707820346301e22 * cos(theta) ** 64 + 8.44163991672298e22 * cos(theta) ** 62 - 4.12484265698273e23 * cos(theta) ** 60 + 1.43719911473611e24 * cos(theta) ** 58 - 3.80110421865406e24 * cos(theta) ** 56 + 7.93184349150034e24 * cos(theta) ** 54 - 1.34007887087804e25 * cos(theta) ** 52 + 1.86653842729441e25 * cos(theta) ** 50 - 2.17142409633015e25 * cos(theta) ** 48 + 2.12988380926993e25 * cos(theta) ** 46 - 1.77347525550633e25 * cos(theta) ** 44 + 1.25954023401576e25 * cos(theta) ** 42 - 7.65324023632723e24 * cos(theta) ** 40 + 3.98499825389536e24 * cos(theta) ** 38 - 1.77870080792916e24 * cos(theta) ** 36 + 6.79964507885542e23 * cos(theta) ** 34 - 2.22166621388346e23 * cos(theta) ** 32 + 6.18376230126933e22 * cos(theta) ** 30 - 1.45954237713085e22 * cos(theta) ** 28 + 2.9037211502919e21 * cos(theta) ** 26 - 4.83210124856563e20 * cos(theta) ** 24 + 6.66163808493564e19 * cos(theta) ** 22 - 7.51753003234066e18 * cos(theta) ** 20 + 6.84066430145941e17 * cos(theta) ** 18 - 4.92527829705077e16 * cos(theta) ** 16 + 2.73880164803565e15 * cos(theta) ** 14 - 113960196603221.0 * cos(theta) ** 12 + 3400259030656.68 * cos(theta) ** 10 - 68522909260.8825 * cos(theta) ** 8 + 852729537.46876 * cos(theta) ** 6 - 5652206.39064578 * cos(theta) ** 4 + 14926.6013837477 * cos(theta) ** 2 - 6.55538049352115 ) * sin(phi) ) # @torch.jit.script def Yl67_m0(theta, phi): return ( 1.04543961615921e20 * cos(theta) ** 67 - 1.73794510626166e21 * cos(theta) ** 65 + 1.37974267978025e22 * cos(theta) ** 63 - 6.96288747703055e22 * cos(theta) ** 61 + 2.50828426830037e23 * cos(theta) ** 59 - 6.8666790128991e23 * cos(theta) ** 57 + 1.48498911986273e24 * cos(theta) ** 55 - 2.60355235300609e24 * cos(theta) ** 53 + 3.76858733449831e24 * cos(theta) ** 51 - 4.56310432239824e24 * cos(theta) ** 49 + 4.66627015925246e24 * cos(theta) ** 47 - 4.05811588266445e24 * cos(theta) ** 45 + 3.01616721008844e24 * cos(theta) ** 43 - 1.92208820798155e24 * cos(theta) ** 41 + 1.0521444129138e24 * cos(theta) ** 39 - 4.95008895218493e23 * cos(theta) ** 37 + 2.00046070519124e23 * cos(theta) ** 35 - 6.9322895724449e22 * cos(theta) ** 33 + 2.05401172516886e22 * cos(theta) ** 31 - 5.18239529139186e21 * cos(theta) ** 29 + 1.10739604647637e21 * cos(theta) ** 27 - 1.99025095910499e20 * cos(theta) ** 25 + 2.98239404461287e19 * cos(theta) ** 23 - 3.68610499895973e18 * cos(theta) ** 21 + 3.707289510448e17 * cos(theta) ** 19 - 2.98327767664286e16 * cos(theta) ** 17 + 1.8801008527499e15 * cos(theta) ** 15 - 90265473040118.8 * cos(theta) ** 13 + 3182959718412.87 * cos(theta) ** 11 - 78398022621.0066 * cos(theta) ** 9 + 1254368361.93611 * cos(theta) ** 7 - 11640183.650313 * cos(theta) ** 5 + 51233.2026862366 * cos(theta) ** 3 - 67.5009258053183 * cos(theta) ) # @torch.jit.script def Yl67_m1(theta, phi): return ( 0.068672853303309 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 6.80239631984055e20 * cos(theta) ** 66 - 1.09707820346301e22 * cos(theta) ** 64 + 8.44163991672298e22 * cos(theta) ** 62 - 4.12484265698273e23 * cos(theta) ** 60 + 1.43719911473611e24 * cos(theta) ** 58 - 3.80110421865406e24 * cos(theta) ** 56 + 7.93184349150034e24 * cos(theta) ** 54 - 1.34007887087804e25 * cos(theta) ** 52 + 1.86653842729441e25 * cos(theta) ** 50 - 2.17142409633015e25 * cos(theta) ** 48 + 2.12988380926993e25 * cos(theta) ** 46 - 1.77347525550633e25 * cos(theta) ** 44 + 1.25954023401576e25 * cos(theta) ** 42 - 7.65324023632723e24 * cos(theta) ** 40 + 3.98499825389536e24 * cos(theta) ** 38 - 1.77870080792916e24 * cos(theta) ** 36 + 6.79964507885542e23 * cos(theta) ** 34 - 2.22166621388346e23 * cos(theta) ** 32 + 6.18376230126933e22 * cos(theta) ** 30 - 1.45954237713085e22 * cos(theta) ** 28 + 2.9037211502919e21 * cos(theta) ** 26 - 4.83210124856563e20 * cos(theta) ** 24 + 6.66163808493564e19 * cos(theta) ** 22 - 7.51753003234066e18 * cos(theta) ** 20 + 6.84066430145941e17 * cos(theta) ** 18 - 4.92527829705077e16 * cos(theta) ** 16 + 2.73880164803565e15 * cos(theta) ** 14 - 113960196603221.0 * cos(theta) ** 12 + 3400259030656.68 * cos(theta) ** 10 - 68522909260.8825 * cos(theta) ** 8 + 852729537.46876 * cos(theta) ** 6 - 5652206.39064578 * cos(theta) ** 4 + 14926.6013837477 * cos(theta) ** 2 - 6.55538049352115 ) * cos(phi) ) # @torch.jit.script def Yl67_m2(theta, phi): return ( 0.0010176269014232 * (1.0 - cos(theta) ** 2) * ( 4.48958157109476e22 * cos(theta) ** 65 - 7.02130050216324e23 * cos(theta) ** 63 + 5.23381674836825e24 * cos(theta) ** 61 - 2.47490559418964e25 * cos(theta) ** 59 + 8.33575486546942e25 * cos(theta) ** 57 - 2.12861836244627e26 * cos(theta) ** 55 + 4.28319548541018e26 * cos(theta) ** 53 - 6.9684101285658e26 * cos(theta) ** 51 + 9.33269213647205e26 * cos(theta) ** 49 - 1.04228356623847e27 * cos(theta) ** 47 + 9.79746552264166e26 * cos(theta) ** 45 - 7.80329112422787e26 * cos(theta) ** 43 + 5.29006898286619e26 * cos(theta) ** 41 - 3.06129609453089e26 * cos(theta) ** 39 + 1.51429933648023e26 * cos(theta) ** 37 - 6.40332290854499e25 * cos(theta) ** 35 + 2.31187932681084e25 * cos(theta) ** 33 - 7.10933188442706e24 * cos(theta) ** 31 + 1.8551286903808e24 * cos(theta) ** 29 - 4.08671865596638e23 * cos(theta) ** 27 + 7.54967499075894e22 * cos(theta) ** 25 - 1.15970429965575e22 * cos(theta) ** 23 + 1.46556037868584e21 * cos(theta) ** 21 - 1.50350600646813e20 * cos(theta) ** 19 + 1.23131957426269e19 * cos(theta) ** 17 - 7.88044527528124e17 * cos(theta) ** 15 + 3.83432230724991e16 * cos(theta) ** 13 - 1.36752235923865e15 * cos(theta) ** 11 + 34002590306566.8 * cos(theta) ** 9 - 548183274087.06 * cos(theta) ** 7 + 5116377224.81256 * cos(theta) ** 5 - 22608825.5625831 * cos(theta) ** 3 + 29853.2027674953 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl67_m3(theta, phi): return ( 1.5086304905918e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 2.9182280212116e24 * cos(theta) ** 64 - 4.42341931636284e25 * cos(theta) ** 62 + 3.19262821650463e26 * cos(theta) ** 60 - 1.46019430057189e27 * cos(theta) ** 58 + 4.75138027331757e27 * cos(theta) ** 56 - 1.17074009934545e28 * cos(theta) ** 54 + 2.2700936072674e28 * cos(theta) ** 52 - 3.55388916556856e28 * cos(theta) ** 50 + 4.5730191468713e28 * cos(theta) ** 48 - 4.89873276132083e28 * cos(theta) ** 46 + 4.40885948518875e28 * cos(theta) ** 44 - 3.35541518341798e28 * cos(theta) ** 42 + 2.16892828297514e28 * cos(theta) ** 40 - 1.19390547686705e28 * cos(theta) ** 38 + 5.60290754497687e27 * cos(theta) ** 36 - 2.24116301799075e27 * cos(theta) ** 34 + 7.62920177847579e26 * cos(theta) ** 32 - 2.20389288417239e26 * cos(theta) ** 30 + 5.37987320210431e25 * cos(theta) ** 28 - 1.10341403711092e25 * cos(theta) ** 26 + 1.88741874768974e24 * cos(theta) ** 24 - 2.66731988920823e23 * cos(theta) ** 22 + 3.07767679524026e22 * cos(theta) ** 20 - 2.85666141228945e21 * cos(theta) ** 18 + 2.09324327624658e20 * cos(theta) ** 16 - 1.18206679129219e19 * cos(theta) ** 14 + 4.98461899942488e17 * cos(theta) ** 12 - 1.50427459516252e16 * cos(theta) ** 10 + 306023312759101.0 * cos(theta) ** 8 - 3837282918609.42 * cos(theta) ** 6 + 25581886124.0628 * cos(theta) ** 4 - 67826476.6877494 * cos(theta) ** 2 + 29853.2027674953 ) * cos(3 * phi) ) # @torch.jit.script def Yl67_m4(theta, phi): return ( 2.23801874403292e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 1.86766593357542e26 * cos(theta) ** 63 - 2.74251997614496e27 * cos(theta) ** 61 + 1.91557692990278e28 * cos(theta) ** 59 - 8.46912694331694e28 * cos(theta) ** 57 + 2.66077295305784e29 * cos(theta) ** 55 - 6.32199653646543e29 * cos(theta) ** 53 + 1.18044867577905e30 * cos(theta) ** 51 - 1.77694458278428e30 * cos(theta) ** 49 + 2.19504919049823e30 * cos(theta) ** 47 - 2.25341707020758e30 * cos(theta) ** 45 + 1.93989817348305e30 * cos(theta) ** 43 - 1.40927437703555e30 * cos(theta) ** 41 + 8.67571313190055e29 * cos(theta) ** 39 - 4.53684081209478e29 * cos(theta) ** 37 + 2.01704671619167e29 * cos(theta) ** 35 - 7.61995426116854e28 * cos(theta) ** 33 + 2.44134456911225e28 * cos(theta) ** 31 - 6.61167865251716e27 * cos(theta) ** 29 + 1.50636449658921e27 * cos(theta) ** 27 - 2.8688764964884e26 * cos(theta) ** 25 + 4.52980499445537e25 * cos(theta) ** 23 - 5.8681037562581e24 * cos(theta) ** 21 + 6.15535359048053e23 * cos(theta) ** 19 - 5.14199054212101e22 * cos(theta) ** 17 + 3.34918924199453e21 * cos(theta) ** 15 - 1.65489350780906e20 * cos(theta) ** 13 + 5.98154279930986e18 * cos(theta) ** 11 - 1.50427459516252e17 * cos(theta) ** 9 + 2.44818650207281e15 * cos(theta) ** 7 - 23023697511656.5 * cos(theta) ** 5 + 102327544496.251 * cos(theta) ** 3 - 135652953.375499 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl67_m5(theta, phi): return ( 3.32297593863068e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.17662953815252e28 * cos(theta) ** 62 - 1.67293718544843e29 * cos(theta) ** 60 + 1.13019038864264e30 * cos(theta) ** 58 - 4.82740235769065e30 * cos(theta) ** 56 + 1.46342512418181e31 * cos(theta) ** 54 - 3.35065816432668e31 * cos(theta) ** 52 + 6.02028824647314e31 * cos(theta) ** 50 - 8.70702845564296e31 * cos(theta) ** 48 + 1.03167311953417e32 * cos(theta) ** 46 - 1.01403768159341e32 * cos(theta) ** 44 + 8.34156214597711e31 * cos(theta) ** 42 - 5.77802494584577e31 * cos(theta) ** 40 + 3.38352812144121e31 * cos(theta) ** 38 - 1.67863110047507e31 * cos(theta) ** 36 + 7.05966350667086e30 * cos(theta) ** 34 - 2.51458490618562e30 * cos(theta) ** 32 + 7.56816816424798e29 * cos(theta) ** 30 - 1.91738680922998e29 * cos(theta) ** 28 + 4.06718414079086e28 * cos(theta) ** 26 - 7.172191241221e27 * cos(theta) ** 24 + 1.04185514872473e27 * cos(theta) ** 22 - 1.2323017888142e26 * cos(theta) ** 20 + 1.1695171821913e25 * cos(theta) ** 18 - 8.74138392160571e23 * cos(theta) ** 16 + 5.02378386299179e22 * cos(theta) ** 14 - 2.15136156015178e21 * cos(theta) ** 12 + 6.57969707924084e19 * cos(theta) ** 10 - 1.35384713564626e18 * cos(theta) ** 8 + 1.71373055145097e16 * cos(theta) ** 6 - 115118487558283.0 * cos(theta) ** 4 + 306982633488.754 * cos(theta) ** 2 - 135652953.375499 ) * cos(5 * phi) ) # @torch.jit.script def Yl67_m6(theta, phi): return ( 4.93935137207726e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 7.2951031365456e29 * cos(theta) ** 61 - 1.00376231126906e31 * cos(theta) ** 59 + 6.55510425412731e31 * cos(theta) ** 57 - 2.70334532030677e32 * cos(theta) ** 55 + 7.90249567058179e32 * cos(theta) ** 53 - 1.74234224544987e33 * cos(theta) ** 51 + 3.01014412323657e33 * cos(theta) ** 49 - 4.17937365870862e33 * cos(theta) ** 47 + 4.74569634985717e33 * cos(theta) ** 45 - 4.46176579901101e33 * cos(theta) ** 43 + 3.50345610131038e33 * cos(theta) ** 41 - 2.31120997833831e33 * cos(theta) ** 39 + 1.28574068614766e33 * cos(theta) ** 37 - 6.04307196171025e32 * cos(theta) ** 35 + 2.40028559226809e32 * cos(theta) ** 33 - 8.04667169979398e31 * cos(theta) ** 31 + 2.27045044927439e31 * cos(theta) ** 29 - 5.36868306584394e30 * cos(theta) ** 27 + 1.05746787660562e30 * cos(theta) ** 25 - 1.72132589789304e29 * cos(theta) ** 23 + 2.29208132719442e28 * cos(theta) ** 21 - 2.4646035776284e27 * cos(theta) ** 19 + 2.10513092794434e26 * cos(theta) ** 17 - 1.39862142745691e25 * cos(theta) ** 15 + 7.03329740818851e23 * cos(theta) ** 13 - 2.58163387218213e22 * cos(theta) ** 11 + 6.57969707924084e20 * cos(theta) ** 9 - 1.08307770851701e19 * cos(theta) ** 7 + 1.02823833087058e17 * cos(theta) ** 5 - 460473950233130.0 * cos(theta) ** 3 + 613965266977.507 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl67_m7(theta, phi): return ( 7.35172315555162e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 4.45001291329281e31 * cos(theta) ** 60 - 5.92219763648743e32 * cos(theta) ** 58 + 3.73640942485257e33 * cos(theta) ** 56 - 1.48683992616872e34 * cos(theta) ** 54 + 4.18832270540835e34 * cos(theta) ** 52 - 8.88594545179435e34 * cos(theta) ** 50 + 1.47497062038592e35 * cos(theta) ** 48 - 1.96430561959305e35 * cos(theta) ** 46 + 2.13556335743572e35 * cos(theta) ** 44 - 1.91855929357473e35 * cos(theta) ** 42 + 1.43641700153726e35 * cos(theta) ** 40 - 9.0137189155194e34 * cos(theta) ** 38 + 4.75724053874635e34 * cos(theta) ** 36 - 2.11507518659859e34 * cos(theta) ** 34 + 7.9209424544847e33 * cos(theta) ** 32 - 2.49446822693613e33 * cos(theta) ** 30 + 6.58430630289574e32 * cos(theta) ** 28 - 1.44954442777786e32 * cos(theta) ** 26 + 2.64366969151406e31 * cos(theta) ** 24 - 3.95904956515399e30 * cos(theta) ** 22 + 4.81337078710827e29 * cos(theta) ** 20 - 4.68274679749397e28 * cos(theta) ** 18 + 3.57872257750538e27 * cos(theta) ** 16 - 2.09793214118537e26 * cos(theta) ** 14 + 9.14328663064506e24 * cos(theta) ** 12 - 2.83979725940035e23 * cos(theta) ** 10 + 5.92172737131676e21 * cos(theta) ** 8 - 7.58154395961908e19 * cos(theta) ** 6 + 5.1411916543529e17 * cos(theta) ** 4 - 1.38142185069939e15 * cos(theta) ** 2 + 613965266977.507 ) * cos(7 * phi) ) # @torch.jit.script def Yl67_m8(theta, phi): return ( 1.09593018183818e-14 * (1.0 - cos(theta) ** 2) ** 4 * ( 2.67000774797569e33 * cos(theta) ** 59 - 3.43487462916271e34 * cos(theta) ** 57 + 2.09238927791744e35 * cos(theta) ** 55 - 8.0289356013111e35 * cos(theta) ** 53 + 2.17792780681234e36 * cos(theta) ** 51 - 4.44297272589717e36 * cos(theta) ** 49 + 7.07985897785241e36 * cos(theta) ** 47 - 9.03580585012804e36 * cos(theta) ** 45 + 9.39647877271719e36 * cos(theta) ** 43 - 8.05794903301388e36 * cos(theta) ** 41 + 5.74566800614903e36 * cos(theta) ** 39 - 3.42521318789737e36 * cos(theta) ** 37 + 1.71260659394869e36 * cos(theta) ** 35 - 7.1912556344352e35 * cos(theta) ** 33 + 2.5347015854351e35 * cos(theta) ** 31 - 7.4834046808084e34 * cos(theta) ** 29 + 1.84360576481081e34 * cos(theta) ** 27 - 3.76881551222244e33 * cos(theta) ** 25 + 6.34480725963374e32 * cos(theta) ** 23 - 8.70990904333878e31 * cos(theta) ** 21 + 9.62674157421655e30 * cos(theta) ** 19 - 8.42894423548914e29 * cos(theta) ** 17 + 5.72595612400861e28 * cos(theta) ** 15 - 2.93710499765952e27 * cos(theta) ** 13 + 1.09719439567741e26 * cos(theta) ** 11 - 2.83979725940035e24 * cos(theta) ** 9 + 4.73738189705341e22 * cos(theta) ** 7 - 4.54892637577145e20 * cos(theta) ** 5 + 2.05647666174116e18 * cos(theta) ** 3 - 2.76284370139878e15 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl67_m9(theta, phi): return ( 1.63662840929083e-16 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1.57530457130566e35 * cos(theta) ** 58 - 1.95787853862274e36 * cos(theta) ** 56 + 1.15081410285459e37 * cos(theta) ** 54 - 4.25533586869488e37 * cos(theta) ** 52 + 1.11074318147429e38 * cos(theta) ** 50 - 2.17705663568962e38 * cos(theta) ** 48 + 3.32753371959063e38 * cos(theta) ** 46 - 4.06611263255762e38 * cos(theta) ** 44 + 4.04048587226839e38 * cos(theta) ** 42 - 3.30375910353569e38 * cos(theta) ** 40 + 2.24081052239812e38 * cos(theta) ** 38 - 1.26732887952203e38 * cos(theta) ** 36 + 5.9941230788204e37 * cos(theta) ** 34 - 2.37311435936362e37 * cos(theta) ** 32 + 7.85757491484882e36 * cos(theta) ** 30 - 2.17018735743444e36 * cos(theta) ** 28 + 4.97773556498918e35 * cos(theta) ** 26 - 9.42203878055611e34 * cos(theta) ** 24 + 1.45930566971576e34 * cos(theta) ** 22 - 1.82908089910114e33 * cos(theta) ** 20 + 1.82908089910114e32 * cos(theta) ** 18 - 1.43292052003315e31 * cos(theta) ** 16 + 8.58893418601291e29 * cos(theta) ** 14 - 3.81823649695738e28 * cos(theta) ** 12 + 1.20691383524515e27 * cos(theta) ** 10 - 2.55581753346031e25 * cos(theta) ** 8 + 3.31616732793738e23 * cos(theta) ** 6 - 2.27446318788572e21 * cos(theta) ** 4 + 6.16942998522348e18 * cos(theta) ** 2 - 2.76284370139878e15 ) * cos(9 * phi) ) # @torch.jit.script def Yl67_m10(theta, phi): return ( 2.44901094584075e-18 * (1.0 - cos(theta) ** 2) ** 5 * ( 9.13676651357281e36 * cos(theta) ** 57 - 1.09641198162874e38 * cos(theta) ** 55 + 6.21439615541479e38 * cos(theta) ** 53 - 2.21277465172134e39 * cos(theta) ** 51 + 5.55371590737147e39 * cos(theta) ** 49 - 1.04498718513102e40 * cos(theta) ** 47 + 1.53066551101169e40 * cos(theta) ** 45 - 1.78908955832535e40 * cos(theta) ** 43 + 1.69700406635272e40 * cos(theta) ** 41 - 1.32150364141428e40 * cos(theta) ** 39 + 8.51507998511286e39 * cos(theta) ** 37 - 4.5623839662793e39 * cos(theta) ** 35 + 2.03800184679894e39 * cos(theta) ** 33 - 7.59396594996357e38 * cos(theta) ** 31 + 2.35727247445465e38 * cos(theta) ** 29 - 6.07652460081642e37 * cos(theta) ** 27 + 1.29421124689719e37 * cos(theta) ** 25 - 2.26128930733347e36 * cos(theta) ** 23 + 3.21047247337467e35 * cos(theta) ** 21 - 3.65816179820229e34 * cos(theta) ** 19 + 3.29234561838206e33 * cos(theta) ** 17 - 2.29267283205305e32 * cos(theta) ** 15 + 1.20245078604181e31 * cos(theta) ** 13 - 4.58188379634885e29 * cos(theta) ** 11 + 1.20691383524515e28 * cos(theta) ** 9 - 2.04465402676825e26 * cos(theta) ** 7 + 1.98970039676243e24 * cos(theta) ** 5 - 9.09785275154289e21 * cos(theta) ** 3 + 1.2338859970447e19 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl67_m11(theta, phi): return ( 3.6728737220908e-20 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 5.2079569127365e38 * cos(theta) ** 56 - 6.03026589895805e39 * cos(theta) ** 54 + 3.29362996236984e40 * cos(theta) ** 52 - 1.12851507237788e41 * cos(theta) ** 50 + 2.72132079461202e41 * cos(theta) ** 48 - 4.91143977011577e41 * cos(theta) ** 46 + 6.88799479955261e41 * cos(theta) ** 44 - 7.69308510079902e41 * cos(theta) ** 42 + 6.95771667204617e41 * cos(theta) ** 40 - 5.15386420151568e41 * cos(theta) ** 38 + 3.15057959449176e41 * cos(theta) ** 36 - 1.59683438819775e41 * cos(theta) ** 34 + 6.72540609443649e40 * cos(theta) ** 32 - 2.35412944448871e40 * cos(theta) ** 30 + 6.83609017591848e39 * cos(theta) ** 28 - 1.64066164222043e39 * cos(theta) ** 26 + 3.23552811724297e38 * cos(theta) ** 24 - 5.20096540686697e37 * cos(theta) ** 22 + 6.74199219408682e36 * cos(theta) ** 20 - 6.95050741658435e35 * cos(theta) ** 18 + 5.5969875512495e34 * cos(theta) ** 16 - 3.43900924807957e33 * cos(theta) ** 14 + 1.56318602185435e32 * cos(theta) ** 12 - 5.04007217598374e30 * cos(theta) ** 10 + 1.08622245172063e29 * cos(theta) ** 8 - 1.43125781873778e27 * cos(theta) ** 6 + 9.94850198381215e24 * cos(theta) ** 4 - 2.72935582546287e22 * cos(theta) ** 2 + 1.2338859970447e19 ) * cos(11 * phi) ) # @torch.jit.script def Yl67_m12(theta, phi): return ( 5.52202588211365e-22 * (1.0 - cos(theta) ** 2) ** 6 * ( 2.91645587113244e40 * cos(theta) ** 55 - 3.25634358543735e41 * cos(theta) ** 53 + 1.71268758043232e42 * cos(theta) ** 51 - 5.64257536188941e42 * cos(theta) ** 49 + 1.30623398141377e43 * cos(theta) ** 47 - 2.25926229425326e43 * cos(theta) ** 45 + 3.03071771180315e43 * cos(theta) ** 43 - 3.23109574233559e43 * cos(theta) ** 41 + 2.78308666881847e43 * cos(theta) ** 39 - 1.95846839657596e43 * cos(theta) ** 37 + 1.13420865401703e43 * cos(theta) ** 35 - 5.42923691987236e42 * cos(theta) ** 33 + 2.15212995021968e42 * cos(theta) ** 31 - 7.06238833346612e41 * cos(theta) ** 29 + 1.91410524925717e41 * cos(theta) ** 27 - 4.26572026977313e40 * cos(theta) ** 25 + 7.76526748138312e39 * cos(theta) ** 23 - 1.14421238951073e39 * cos(theta) ** 21 + 1.34839843881736e38 * cos(theta) ** 19 - 1.25109133498518e37 * cos(theta) ** 17 + 8.9551800819992e35 * cos(theta) ** 15 - 4.8146129473114e34 * cos(theta) ** 13 + 1.87582322622522e33 * cos(theta) ** 11 - 5.04007217598374e31 * cos(theta) ** 9 + 8.68977961376506e29 * cos(theta) ** 7 - 8.58754691242665e27 * cos(theta) ** 5 + 3.97940079352486e25 * cos(theta) ** 3 - 5.45871165092574e22 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl67_m13(theta, phi): return ( 8.32476724254649e-24 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.60405072912284e42 * cos(theta) ** 54 - 1.72586210028179e43 * cos(theta) ** 52 + 8.73470666020481e43 * cos(theta) ** 50 - 2.76486192732581e44 * cos(theta) ** 48 + 6.13929971264471e44 * cos(theta) ** 46 - 1.01666803241396e45 * cos(theta) ** 44 + 1.30320861607535e45 * cos(theta) ** 42 - 1.32474925435759e45 * cos(theta) ** 40 + 1.0854038008392e45 * cos(theta) ** 38 - 7.24633306733105e44 * cos(theta) ** 36 + 3.96973028905962e44 * cos(theta) ** 34 - 1.79164818355788e44 * cos(theta) ** 32 + 6.671602845681e43 * cos(theta) ** 30 - 2.04809261670518e43 * cos(theta) ** 28 + 5.16808417299437e42 * cos(theta) ** 26 - 1.06643006744328e42 * cos(theta) ** 24 + 1.78601152071812e41 * cos(theta) ** 22 - 2.40284601797254e40 * cos(theta) ** 20 + 2.56195703375299e39 * cos(theta) ** 18 - 2.12685526947481e38 * cos(theta) ** 16 + 1.34327701229988e37 * cos(theta) ** 14 - 6.25899683150482e35 * cos(theta) ** 12 + 2.06340554884774e34 * cos(theta) ** 10 - 4.53606495838536e32 * cos(theta) ** 8 + 6.08284572963554e30 * cos(theta) ** 6 - 4.29377345621333e28 * cos(theta) ** 4 + 1.19382023805746e26 * cos(theta) ** 2 - 5.45871165092574e22 ) * cos(13 * phi) ) # @torch.jit.script def Yl67_m14(theta, phi): return ( 1.25873036862192e-25 * (1.0 - cos(theta) ** 2) ** 7 * ( 8.66187393726335e43 * cos(theta) ** 53 - 8.97448292146533e44 * cos(theta) ** 51 + 4.3673533301024e45 * cos(theta) ** 49 - 1.32713372511639e46 * cos(theta) ** 47 + 2.82407786781657e46 * cos(theta) ** 45 - 4.47333934262145e46 * cos(theta) ** 43 + 5.47347618751648e46 * cos(theta) ** 41 - 5.29899701743036e46 * cos(theta) ** 39 + 4.12453444318897e46 * cos(theta) ** 37 - 2.60867990423918e46 * cos(theta) ** 35 + 1.34970829828027e46 * cos(theta) ** 33 - 5.73327418738522e45 * cos(theta) ** 31 + 2.0014808537043e45 * cos(theta) ** 29 - 5.73465932677449e44 * cos(theta) ** 27 + 1.34370188497854e44 * cos(theta) ** 25 - 2.55943216186388e43 * cos(theta) ** 23 + 3.92922534557986e42 * cos(theta) ** 21 - 4.80569203594508e41 * cos(theta) ** 19 + 4.61152266075538e40 * cos(theta) ** 17 - 3.4029684311597e39 * cos(theta) ** 15 + 1.88058781721983e38 * cos(theta) ** 13 - 7.51079619780578e36 * cos(theta) ** 11 + 2.06340554884774e35 * cos(theta) ** 9 - 3.62885196670829e33 * cos(theta) ** 7 + 3.64970743778133e31 * cos(theta) ** 5 - 1.71750938248533e29 * cos(theta) ** 3 + 2.38764047611492e26 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl67_m15(theta, phi): return ( 1.9093601283182e-27 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 4.59079318674957e45 * cos(theta) ** 52 - 4.57698628994732e46 * cos(theta) ** 50 + 2.14000313175018e47 * cos(theta) ** 48 - 6.23752850804703e47 * cos(theta) ** 46 + 1.27083504051746e48 * cos(theta) ** 44 - 1.92353591732722e48 * cos(theta) ** 42 + 2.24412523688176e48 * cos(theta) ** 40 - 2.06660883679784e48 * cos(theta) ** 38 + 1.52607774397992e48 * cos(theta) ** 36 - 9.13037966483712e47 * cos(theta) ** 34 + 4.45403738432489e47 * cos(theta) ** 32 - 1.77731499808942e47 * cos(theta) ** 30 + 5.80429447574247e46 * cos(theta) ** 28 - 1.54835801822911e46 * cos(theta) ** 26 + 3.35925471244634e45 * cos(theta) ** 24 - 5.88669397228692e44 * cos(theta) ** 22 + 8.25137322571771e43 * cos(theta) ** 20 - 9.13081486829566e42 * cos(theta) ** 18 + 7.83958852328415e41 * cos(theta) ** 16 - 5.10445264673954e40 * cos(theta) ** 14 + 2.44476416238578e39 * cos(theta) ** 12 - 8.26187581758636e37 * cos(theta) ** 10 + 1.85706499396297e36 * cos(theta) ** 8 - 2.5401963766958e34 * cos(theta) ** 6 + 1.82485371889066e32 * cos(theta) ** 4 - 5.15252814745599e29 * cos(theta) ** 2 + 2.38764047611492e26 ) * cos(15 * phi) ) # @torch.jit.script def Yl67_m16(theta, phi): return ( 2.90634476570711e-29 * (1.0 - cos(theta) ** 2) ** 8 * ( 2.38721245710978e47 * cos(theta) ** 51 - 2.28849314497366e48 * cos(theta) ** 49 + 1.02720150324009e49 * cos(theta) ** 47 - 2.86926311370163e49 * cos(theta) ** 45 + 5.59167417827681e49 * cos(theta) ** 43 - 8.07885085277433e49 * cos(theta) ** 41 + 8.97650094752703e49 * cos(theta) ** 39 - 7.8531135798318e49 * cos(theta) ** 37 + 5.49387987832771e49 * cos(theta) ** 35 - 3.10432908604462e49 * cos(theta) ** 33 + 1.42529196298397e49 * cos(theta) ** 31 - 5.33194499426825e48 * cos(theta) ** 29 + 1.62520245320789e48 * cos(theta) ** 27 - 4.02573084739569e47 * cos(theta) ** 25 + 8.06221130987121e46 * cos(theta) ** 23 - 1.29507267390312e46 * cos(theta) ** 21 + 1.65027464514354e45 * cos(theta) ** 19 - 1.64354667629322e44 * cos(theta) ** 17 + 1.25433416372546e43 * cos(theta) ** 15 - 7.14623370543536e41 * cos(theta) ** 13 + 2.93371699486294e40 * cos(theta) ** 11 - 8.26187581758636e38 * cos(theta) ** 9 + 1.48565199517037e37 * cos(theta) ** 7 - 1.52411782601748e35 * cos(theta) ** 5 + 7.29941487556265e32 * cos(theta) ** 3 - 1.0305056294912e30 * cos(theta) ) * cos(16 * phi) ) # @torch.jit.script def Yl67_m17(theta, phi): return ( 4.44040313094919e-31 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.21747835312599e49 * cos(theta) ** 50 - 1.12136164103709e50 * cos(theta) ** 48 + 4.8278470652284e50 * cos(theta) ** 46 - 1.29116840116574e51 * cos(theta) ** 44 + 2.40441989665903e51 * cos(theta) ** 42 - 3.31232884963748e51 * cos(theta) ** 40 + 3.50083536953554e51 * cos(theta) ** 38 - 2.90565202453776e51 * cos(theta) ** 36 + 1.9228579574147e51 * cos(theta) ** 34 - 1.02442859839472e51 * cos(theta) ** 32 + 4.41840508525029e50 * cos(theta) ** 30 - 1.54626404833779e50 * cos(theta) ** 28 + 4.3880466236613e49 * cos(theta) ** 26 - 1.00643271184892e49 * cos(theta) ** 24 + 1.85430860127038e48 * cos(theta) ** 22 - 2.71965261519656e47 * cos(theta) ** 20 + 3.13552182577273e46 * cos(theta) ** 18 - 2.79402934969847e45 * cos(theta) ** 16 + 1.8815012455882e44 * cos(theta) ** 14 - 9.29010381706597e42 * cos(theta) ** 12 + 3.22708869434923e41 * cos(theta) ** 10 - 7.43568823582772e39 * cos(theta) ** 8 + 1.03995639661926e38 * cos(theta) ** 6 - 7.62058913008741e35 * cos(theta) ** 4 + 2.1898244626688e33 * cos(theta) ** 2 - 1.0305056294912e30 ) * cos(17 * phi) ) # @torch.jit.script def Yl67_m18(theta, phi): return ( 6.81126747561255e-33 * (1.0 - cos(theta) ** 2) ** 9 * ( 6.08739176562994e50 * cos(theta) ** 49 - 5.38253587697805e51 * cos(theta) ** 47 + 2.22080965000506e52 * cos(theta) ** 45 - 5.68114096512924e52 * cos(theta) ** 43 + 1.00985635659679e53 * cos(theta) ** 41 - 1.32493153985499e53 * cos(theta) ** 39 + 1.33031744042351e53 * cos(theta) ** 37 - 1.0460347288336e53 * cos(theta) ** 35 + 6.53771705520997e52 * cos(theta) ** 33 - 3.27817151486312e52 * cos(theta) ** 31 + 1.32552152557509e52 * cos(theta) ** 29 - 4.32953933534582e51 * cos(theta) ** 27 + 1.14089212215194e51 * cos(theta) ** 25 - 2.41543850843742e50 * cos(theta) ** 23 + 4.07947892279483e49 * cos(theta) ** 21 - 5.43930523039311e48 * cos(theta) ** 19 + 5.64393928639091e47 * cos(theta) ** 17 - 4.47044695951755e46 * cos(theta) ** 15 + 2.63410174382347e45 * cos(theta) ** 13 - 1.11481245804792e44 * cos(theta) ** 11 + 3.22708869434923e42 * cos(theta) ** 9 - 5.94855058866218e40 * cos(theta) ** 7 + 6.23973837971557e38 * cos(theta) ** 5 - 3.04823565203496e36 * cos(theta) ** 3 + 4.37964892533759e33 * cos(theta) ) * cos(18 * phi) ) # @torch.jit.script def Yl67_m19(theta, phi): return ( 1.04925408703669e-34 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 2.98282196515867e52 * cos(theta) ** 48 - 2.52979186217968e53 * cos(theta) ** 46 + 9.99364342502279e53 * cos(theta) ** 44 - 2.44289061500557e54 * cos(theta) ** 42 + 4.14041106204684e54 * cos(theta) ** 40 - 5.16723300543446e54 * cos(theta) ** 38 + 4.92217452956697e54 * cos(theta) ** 36 - 3.66112155091758e54 * cos(theta) ** 34 + 2.15744662821929e54 * cos(theta) ** 32 - 1.01623316960757e54 * cos(theta) ** 30 + 3.84401242416775e53 * cos(theta) ** 28 - 1.16897562054337e53 * cos(theta) ** 26 + 2.85223030537985e52 * cos(theta) ** 24 - 5.55550856940605e51 * cos(theta) ** 22 + 8.56690573786915e50 * cos(theta) ** 20 - 1.03346799377469e50 * cos(theta) ** 18 + 9.59469678686455e48 * cos(theta) ** 16 - 6.70567043927633e47 * cos(theta) ** 14 + 3.42433226697052e46 * cos(theta) ** 12 - 1.22629370385271e45 * cos(theta) ** 10 + 2.90437982491431e43 * cos(theta) ** 8 - 4.16398541206352e41 * cos(theta) ** 6 + 3.11986918985779e39 * cos(theta) ** 4 - 9.14470695610489e36 * cos(theta) ** 2 + 4.37964892533759e33 ) * cos(19 * phi) ) # @torch.jit.script def Yl67_m20(theta, phi): return ( 1.6236799377161e-36 * (1.0 - cos(theta) ** 2) ** 10 * ( 1.43175454327616e54 * cos(theta) ** 47 - 1.16370425660265e55 * cos(theta) ** 45 + 4.39720310701003e55 * cos(theta) ** 43 - 1.02601405830234e56 * cos(theta) ** 41 + 1.65616442481874e56 * cos(theta) ** 39 - 1.9635485420651e56 * cos(theta) ** 37 + 1.77198283064411e56 * cos(theta) ** 35 - 1.24478132731198e56 * cos(theta) ** 33 + 6.90382921030173e55 * cos(theta) ** 31 - 3.0486995088227e55 * cos(theta) ** 29 + 1.07632347876697e55 * cos(theta) ** 27 - 3.03933661341277e54 * cos(theta) ** 25 + 6.84535273291163e53 * cos(theta) ** 23 - 1.22221188526933e53 * cos(theta) ** 21 + 1.71338114757383e52 * cos(theta) ** 19 - 1.86024238879444e51 * cos(theta) ** 17 + 1.53515148589833e50 * cos(theta) ** 15 - 9.38793861498686e48 * cos(theta) ** 13 + 4.10919872036462e47 * cos(theta) ** 11 - 1.22629370385271e46 * cos(theta) ** 9 + 2.32350385993145e44 * cos(theta) ** 7 - 2.49839124723811e42 * cos(theta) ** 5 + 1.24794767594311e40 * cos(theta) ** 3 - 1.82894139122098e37 * cos(theta) ) * cos(20 * phi) ) # @torch.jit.script def Yl67_m21(theta, phi): return ( 2.52470220592105e-38 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 6.72924635339796e55 * cos(theta) ** 46 - 5.23666915471194e56 * cos(theta) ** 44 + 1.89079733601431e57 * cos(theta) ** 42 - 4.20665763903959e57 * cos(theta) ** 40 + 6.45904125679308e57 * cos(theta) ** 38 - 7.26512960564085e57 * cos(theta) ** 36 + 6.20193990725439e57 * cos(theta) ** 34 - 4.10777838012953e57 * cos(theta) ** 32 + 2.14018705519354e57 * cos(theta) ** 30 - 8.84122857558583e56 * cos(theta) ** 28 + 2.90607339267082e56 * cos(theta) ** 26 - 7.59834153353191e55 * cos(theta) ** 24 + 1.57443112856968e55 * cos(theta) ** 22 - 2.5666449590656e54 * cos(theta) ** 20 + 3.25542418039028e53 * cos(theta) ** 18 - 3.16241206095056e52 * cos(theta) ** 16 + 2.30272722884749e51 * cos(theta) ** 14 - 1.22043201994829e50 * cos(theta) ** 12 + 4.52011859240108e48 * cos(theta) ** 10 - 1.10366433346744e47 * cos(theta) ** 8 + 1.62645270195201e45 * cos(theta) ** 6 - 1.24919562361906e43 * cos(theta) ** 4 + 3.74384302782934e40 * cos(theta) ** 2 - 1.82894139122098e37 ) * cos(21 * phi) ) # @torch.jit.script def Yl67_m22(theta, phi): return ( 3.94581064705218e-40 * (1.0 - cos(theta) ** 2) ** 11 * ( 3.09545332256306e57 * cos(theta) ** 45 - 2.30413442807325e58 * cos(theta) ** 43 + 7.94134881126011e58 * cos(theta) ** 41 - 1.68266305561584e59 * cos(theta) ** 39 + 2.45443567758137e59 * cos(theta) ** 37 - 2.61544665803071e59 * cos(theta) ** 35 + 2.10865956846649e59 * cos(theta) ** 33 - 1.31448908164145e59 * cos(theta) ** 31 + 6.42056116558061e58 * cos(theta) ** 29 - 2.47554400116403e58 * cos(theta) ** 27 + 7.55579082094414e57 * cos(theta) ** 25 - 1.82360196804766e57 * cos(theta) ** 23 + 3.46374848285329e56 * cos(theta) ** 21 - 5.1332899181312e55 * cos(theta) ** 19 + 5.8597635247025e54 * cos(theta) ** 17 - 5.05985929752089e53 * cos(theta) ** 15 + 3.22381812038649e52 * cos(theta) ** 13 - 1.46451842393795e51 * cos(theta) ** 11 + 4.52011859240108e49 * cos(theta) ** 9 - 8.8293146677395e47 * cos(theta) ** 7 + 9.75871621171208e45 * cos(theta) ** 5 - 4.99678249447623e43 * cos(theta) ** 3 + 7.48768605565868e40 * cos(theta) ) * cos(22 * phi) ) # @torch.jit.script def Yl67_m23(theta, phi): return ( 6.20024325735262e-42 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.39295399515338e59 * cos(theta) ** 44 - 9.907778040715e59 * cos(theta) ** 42 + 3.25595301261665e60 * cos(theta) ** 40 - 6.56238591690177e60 * cos(theta) ** 38 + 9.08141200705107e60 * cos(theta) ** 36 - 9.15406330310748e60 * cos(theta) ** 34 + 6.95857657593942e60 * cos(theta) ** 32 - 4.07491615308849e60 * cos(theta) ** 30 + 1.86196273801838e60 * cos(theta) ** 28 - 6.68396880314289e59 * cos(theta) ** 26 + 1.88894770523603e59 * cos(theta) ** 24 - 4.19428452650962e58 * cos(theta) ** 22 + 7.2738718139919e57 * cos(theta) ** 20 - 9.75325084444927e56 * cos(theta) ** 18 + 9.96159799199425e55 * cos(theta) ** 16 - 7.58978894628133e54 * cos(theta) ** 14 + 4.19096355650243e53 * cos(theta) ** 12 - 1.61097026633175e52 * cos(theta) ** 10 + 4.06810673316097e50 * cos(theta) ** 8 - 6.18052026741765e48 * cos(theta) ** 6 + 4.87935810585604e46 * cos(theta) ** 4 - 1.49903474834287e44 * cos(theta) ** 2 + 7.48768605565868e40 ) * cos(23 * phi) ) # @torch.jit.script def Yl67_m24(theta, phi): return ( 9.79854732071393e-44 * (1.0 - cos(theta) ** 2) ** 12 * ( 6.12899757867486e60 * cos(theta) ** 43 - 4.1612667771003e61 * cos(theta) ** 41 + 1.30238120504666e62 * cos(theta) ** 39 - 2.49370664842267e62 * cos(theta) ** 37 + 3.26930832253838e62 * cos(theta) ** 35 - 3.11238152305654e62 * cos(theta) ** 33 + 2.22674450430062e62 * cos(theta) ** 31 - 1.22247484592655e62 * cos(theta) ** 29 + 5.21349566645145e61 * cos(theta) ** 27 - 1.73783188881715e61 * cos(theta) ** 25 + 4.53347449256648e60 * cos(theta) ** 23 - 9.22742595832116e59 * cos(theta) ** 21 + 1.45477436279838e59 * cos(theta) ** 19 - 1.75558515200087e58 * cos(theta) ** 17 + 1.59385567871908e57 * cos(theta) ** 15 - 1.06257045247939e56 * cos(theta) ** 13 + 5.02915626780292e54 * cos(theta) ** 11 - 1.61097026633175e53 * cos(theta) ** 9 + 3.25448538652878e51 * cos(theta) ** 7 - 3.70831216045059e49 * cos(theta) ** 5 + 1.95174324234241e47 * cos(theta) ** 3 - 2.99806949668574e44 * cos(theta) ) * cos(24 * phi) ) # @torch.jit.script def Yl67_m25(theta, phi): return ( 1.55787838926532e-45 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 2.63546895883019e62 * cos(theta) ** 42 - 1.70611937861112e63 * cos(theta) ** 40 + 5.07928669968197e63 * cos(theta) ** 38 - 9.22671459916388e63 * cos(theta) ** 36 + 1.14425791288843e64 * cos(theta) ** 34 - 1.02708590260866e64 * cos(theta) ** 32 + 6.90290796333191e63 * cos(theta) ** 30 - 3.54517705318699e63 * cos(theta) ** 28 + 1.40764382994189e63 * cos(theta) ** 26 - 4.34457972204288e62 * cos(theta) ** 24 + 1.04269913329029e62 * cos(theta) ** 22 - 1.93775945124744e61 * cos(theta) ** 20 + 2.76407128931692e60 * cos(theta) ** 18 - 2.98449475840148e59 * cos(theta) ** 16 + 2.39078351807862e58 * cos(theta) ** 14 - 1.3813415882232e57 * cos(theta) ** 12 + 5.53207189458321e55 * cos(theta) ** 10 - 1.44987323969857e54 * cos(theta) ** 8 + 2.27813977057014e52 * cos(theta) ** 6 - 1.85415608022529e50 * cos(theta) ** 4 + 5.85522972702724e47 * cos(theta) ** 2 - 2.99806949668574e44 ) * cos(25 * phi) ) # @torch.jit.script def Yl67_m26(theta, phi): return ( 2.49268519002688e-47 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.10689696270868e64 * cos(theta) ** 41 - 6.82447751444449e64 * cos(theta) ** 39 + 1.93012894587915e65 * cos(theta) ** 37 - 3.321617255699e65 * cos(theta) ** 35 + 3.89047690382068e65 * cos(theta) ** 33 - 3.28667488834771e65 * cos(theta) ** 31 + 2.07087238899957e65 * cos(theta) ** 29 - 9.92649574892357e64 * cos(theta) ** 27 + 3.65987395784892e64 * cos(theta) ** 25 - 1.04269913329029e64 * cos(theta) ** 23 + 2.29393809323864e63 * cos(theta) ** 21 - 3.87551890249489e62 * cos(theta) ** 19 + 4.97532832077046e61 * cos(theta) ** 17 - 4.77519161344236e60 * cos(theta) ** 15 + 3.34709692531007e59 * cos(theta) ** 13 - 1.65760990586784e58 * cos(theta) ** 11 + 5.53207189458321e56 * cos(theta) ** 9 - 1.15989859175886e55 * cos(theta) ** 7 + 1.36688386234209e53 * cos(theta) ** 5 - 7.41662432090118e50 * cos(theta) ** 3 + 1.17104594540545e48 * cos(theta) ) * cos(26 * phi) ) # @torch.jit.script def Yl67_m27(theta, phi): return ( 4.01524063862165e-49 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 4.53827754710559e65 * cos(theta) ** 40 - 2.66154623063335e66 * cos(theta) ** 38 + 7.14147709975285e66 * cos(theta) ** 36 - 1.16256603949465e67 * cos(theta) ** 34 + 1.28385737826082e67 * cos(theta) ** 32 - 1.01886921538779e67 * cos(theta) ** 30 + 6.00552992809876e66 * cos(theta) ** 28 - 2.68015385220936e66 * cos(theta) ** 26 + 9.1496848946223e65 * cos(theta) ** 24 - 2.39820800656767e65 * cos(theta) ** 22 + 4.81726999580114e64 * cos(theta) ** 20 - 7.36348591474028e63 * cos(theta) ** 18 + 8.45805814530978e62 * cos(theta) ** 16 - 7.16278742016354e61 * cos(theta) ** 14 + 4.35122600290309e60 * cos(theta) ** 12 - 1.82337089645463e59 * cos(theta) ** 10 + 4.97886470512489e57 * cos(theta) ** 8 - 8.119290142312e55 * cos(theta) ** 6 + 6.83441931171044e53 * cos(theta) ** 4 - 2.22498729627035e51 * cos(theta) ** 2 + 1.17104594540545e48 ) * cos(27 * phi) ) # @torch.jit.script def Yl67_m28(theta, phi): return ( 6.51358042579195e-51 * (1.0 - cos(theta) ** 2) ** 14 * ( 1.81531101884223e67 * cos(theta) ** 39 - 1.01138756764067e68 * cos(theta) ** 37 + 2.57093175591102e68 * cos(theta) ** 35 - 3.95272453428181e68 * cos(theta) ** 33 + 4.10834361043463e68 * cos(theta) ** 31 - 3.05660764616337e68 * cos(theta) ** 29 + 1.68154837986765e68 * cos(theta) ** 27 - 6.96840001574434e67 * cos(theta) ** 25 + 2.19592437470935e67 * cos(theta) ** 23 - 5.27605761444887e66 * cos(theta) ** 21 + 9.63453999160229e65 * cos(theta) ** 19 - 1.32542746465325e65 * cos(theta) ** 17 + 1.35328930324957e64 * cos(theta) ** 15 - 1.0027902388229e63 * cos(theta) ** 13 + 5.22147120348371e61 * cos(theta) ** 11 - 1.82337089645463e60 * cos(theta) ** 9 + 3.98309176409991e58 * cos(theta) ** 7 - 4.8715740853872e56 * cos(theta) ** 5 + 2.73376772468417e54 * cos(theta) ** 3 - 4.44997459254071e51 * cos(theta) ) * cos(28 * phi) ) # @torch.jit.script def Yl67_m29(theta, phi): return ( 1.06451518251504e-52 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 7.07971297348471e68 * cos(theta) ** 38 - 3.74213400027049e69 * cos(theta) ** 36 + 8.99826114568859e69 * cos(theta) ** 34 - 1.304399096313e70 * cos(theta) ** 32 + 1.27358651923474e70 * cos(theta) ** 30 - 8.86416217387377e69 * cos(theta) ** 28 + 4.54018062564266e69 * cos(theta) ** 26 - 1.74210000393609e69 * cos(theta) ** 24 + 5.05062606183151e68 * cos(theta) ** 22 - 1.10797209903426e68 * cos(theta) ** 20 + 1.83056259840443e67 * cos(theta) ** 18 - 2.25322668991053e66 * cos(theta) ** 16 + 2.02993395487435e65 * cos(theta) ** 14 - 1.30362731046977e64 * cos(theta) ** 12 + 5.74361832383208e62 * cos(theta) ** 10 - 1.64103380680916e61 * cos(theta) ** 8 + 2.78816423486994e59 * cos(theta) ** 6 - 2.4357870426936e57 * cos(theta) ** 4 + 8.20130317405252e54 * cos(theta) ** 2 - 4.44997459254071e51 ) * cos(29 * phi) ) # @torch.jit.script def Yl67_m30(theta, phi): return ( 1.75337251484502e-54 * (1.0 - cos(theta) ** 2) ** 15 * ( 2.69029092992419e70 * cos(theta) ** 37 - 1.34716824009738e71 * cos(theta) ** 35 + 3.05940878953412e71 * cos(theta) ** 33 - 4.17407710820159e71 * cos(theta) ** 31 + 3.82075955770421e71 * cos(theta) ** 29 - 2.48196540868465e71 * cos(theta) ** 27 + 1.18044696266709e71 * cos(theta) ** 25 - 4.18104000944661e70 * cos(theta) ** 23 + 1.11113773360293e70 * cos(theta) ** 21 - 2.21594419806853e69 * cos(theta) ** 19 + 3.29501267712798e68 * cos(theta) ** 17 - 3.60516270385684e67 * cos(theta) ** 15 + 2.84190753682409e66 * cos(theta) ** 13 - 1.56435277256372e65 * cos(theta) ** 11 + 5.74361832383208e63 * cos(theta) ** 9 - 1.31282704544733e62 * cos(theta) ** 7 + 1.67289854092196e60 * cos(theta) ** 5 - 9.7431481707744e57 * cos(theta) ** 3 + 1.6402606348105e55 * cos(theta) ) * cos(30 * phi) ) # @torch.jit.script def Yl67_m31(theta, phi): return ( 2.91179163841494e-56 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 9.95407644071951e71 * cos(theta) ** 36 - 4.71508884034082e72 * cos(theta) ** 34 + 1.00960490054626e73 * cos(theta) ** 32 - 1.29396390354249e73 * cos(theta) ** 30 + 1.10802027173422e73 * cos(theta) ** 28 - 6.70130660344857e72 * cos(theta) ** 26 + 2.95111740666773e72 * cos(theta) ** 24 - 9.6163920217272e71 * cos(theta) ** 22 + 2.33338924056616e71 * cos(theta) ** 20 - 4.2102939763302e70 * cos(theta) ** 18 + 5.60152155111757e69 * cos(theta) ** 16 - 5.40774405578526e68 * cos(theta) ** 14 + 3.69447979787131e67 * cos(theta) ** 12 - 1.72078804982009e66 * cos(theta) ** 10 + 5.16925649144887e64 * cos(theta) ** 8 - 9.18978931813132e62 * cos(theta) ** 6 + 8.36449270460982e60 * cos(theta) ** 4 - 2.92294445123232e58 * cos(theta) ** 2 + 1.6402606348105e55 ) * cos(31 * phi) ) # @torch.jit.script def Yl67_m32(theta, phi): return ( 4.87743451127099e-58 * (1.0 - cos(theta) ** 2) ** 16 * ( 3.58346751865902e73 * cos(theta) ** 35 - 1.60313020571588e74 * cos(theta) ** 33 + 3.23073568174803e74 * cos(theta) ** 31 - 3.88189171062748e74 * cos(theta) ** 29 + 3.10245676085582e74 * cos(theta) ** 27 - 1.74233971689663e74 * cos(theta) ** 25 + 7.08268177600255e73 * cos(theta) ** 23 - 2.11560624477998e73 * cos(theta) ** 21 + 4.66677848113232e72 * cos(theta) ** 19 - 7.57852915739436e71 * cos(theta) ** 17 + 8.96243448178811e70 * cos(theta) ** 15 - 7.57084167809937e69 * cos(theta) ** 13 + 4.43337575744558e68 * cos(theta) ** 11 - 1.72078804982009e67 * cos(theta) ** 9 + 4.13540519315909e65 * cos(theta) ** 7 - 5.51387359087879e63 * cos(theta) ** 5 + 3.34579708184393e61 * cos(theta) ** 3 - 5.84588890246464e58 * cos(theta) ) * cos(32 * phi) ) # @torch.jit.script def Yl67_m33(theta, phi): return ( 8.24436905872075e-60 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 1.25421363153066e75 * cos(theta) ** 34 - 5.2903296788624e75 * cos(theta) ** 32 + 1.00152806134189e76 * cos(theta) ** 30 - 1.12574859608197e76 * cos(theta) ** 28 + 8.37663325431071e75 * cos(theta) ** 26 - 4.35584929224157e75 * cos(theta) ** 24 + 1.62901680848059e75 * cos(theta) ** 22 - 4.44277311403796e74 * cos(theta) ** 20 + 8.8668791141514e73 * cos(theta) ** 18 - 1.28834995675704e73 * cos(theta) ** 16 + 1.34436517226822e72 * cos(theta) ** 14 - 9.84209418152918e70 * cos(theta) ** 12 + 4.87671333319013e69 * cos(theta) ** 10 - 1.54870924483808e68 * cos(theta) ** 8 + 2.89478363521137e66 * cos(theta) ** 6 - 2.7569367954394e64 * cos(theta) ** 4 + 1.00373912455318e62 * cos(theta) ** 2 - 5.84588890246464e58 ) * cos(33 * phi) ) # @torch.jit.script def Yl67_m34(theta, phi): return ( 1.40688072396819e-61 * (1.0 - cos(theta) ** 2) ** 17 * ( 4.26432634720424e76 * cos(theta) ** 33 - 1.69290549723597e77 * cos(theta) ** 31 + 3.00458418402567e77 * cos(theta) ** 29 - 3.15209606902951e77 * cos(theta) ** 27 + 2.17792464612078e77 * cos(theta) ** 25 - 1.04540383013798e77 * cos(theta) ** 23 + 3.58383697865729e76 * cos(theta) ** 21 - 8.88554622807593e75 * cos(theta) ** 19 + 1.59603824054725e75 * cos(theta) ** 17 - 2.06135993081127e74 * cos(theta) ** 15 + 1.8821112411755e73 * cos(theta) ** 13 - 1.1810513017835e72 * cos(theta) ** 11 + 4.87671333319013e70 * cos(theta) ** 9 - 1.23896739587046e69 * cos(theta) ** 7 + 1.73687018112682e67 * cos(theta) ** 5 - 1.10277471817576e65 * cos(theta) ** 3 + 2.00747824910636e62 * cos(theta) ) * cos(34 * phi) ) # @torch.jit.script def Yl67_m35(theta, phi): return ( 2.42493567885078e-63 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 1.4072276945774e78 * cos(theta) ** 32 - 5.2480070414315e78 * cos(theta) ** 30 + 8.71329413367444e78 * cos(theta) ** 28 - 8.51065938637968e78 * cos(theta) ** 26 + 5.44481161530196e78 * cos(theta) ** 24 - 2.40442880931735e78 * cos(theta) ** 22 + 7.52605765518031e77 * cos(theta) ** 20 - 1.68825378333443e77 * cos(theta) ** 18 + 2.71326500893033e76 * cos(theta) ** 16 - 3.0920398962169e75 * cos(theta) ** 14 + 2.44674461352815e74 * cos(theta) ** 12 - 1.29915643196185e73 * cos(theta) ** 10 + 4.38904199987112e71 * cos(theta) ** 8 - 8.67277177109325e69 * cos(theta) ** 6 + 8.6843509056341e67 * cos(theta) ** 4 - 3.30832415452728e65 * cos(theta) ** 2 + 2.00747824910636e62 ) * cos(35 * phi) ) # @torch.jit.script def Yl67_m36(theta, phi): return ( 4.22383186247248e-65 * (1.0 - cos(theta) ** 2) ** 18 * ( 4.50312862264767e79 * cos(theta) ** 31 - 1.57440211242945e80 * cos(theta) ** 29 + 2.43972235742884e80 * cos(theta) ** 27 - 2.21277144045872e80 * cos(theta) ** 25 + 1.30675478767247e80 * cos(theta) ** 23 - 5.28974338049816e79 * cos(theta) ** 21 + 1.50521153103606e79 * cos(theta) ** 19 - 3.03885681000197e78 * cos(theta) ** 17 + 4.34122401428853e77 * cos(theta) ** 15 - 4.32885585470366e76 * cos(theta) ** 13 + 2.93609353623379e75 * cos(theta) ** 11 - 1.29915643196185e74 * cos(theta) ** 9 + 3.5112335998969e72 * cos(theta) ** 7 - 5.20366306265595e70 * cos(theta) ** 5 + 3.47374036225364e68 * cos(theta) ** 3 - 6.61664830905455e65 * cos(theta) ) * cos(36 * phi) ) # @torch.jit.script def Yl67_m37(theta, phi): return ( 7.43890659123167e-67 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 1.39596987302078e81 * cos(theta) ** 30 - 4.56576612604541e81 * cos(theta) ** 28 + 6.58725036505787e81 * cos(theta) ** 26 - 5.53192860114679e81 * cos(theta) ** 24 + 3.00553601164668e81 * cos(theta) ** 22 - 1.11084610990461e81 * cos(theta) ** 20 + 2.85990190896852e80 * cos(theta) ** 18 - 5.16605657700335e79 * cos(theta) ** 16 + 6.51183602143279e78 * cos(theta) ** 14 - 5.62751261111476e77 * cos(theta) ** 12 + 3.22970288985716e76 * cos(theta) ** 10 - 1.16924078876567e75 * cos(theta) ** 8 + 2.45786351992783e73 * cos(theta) ** 6 - 2.60183153132798e71 * cos(theta) ** 4 + 1.04212210867609e69 * cos(theta) ** 2 - 6.61664830905455e65 ) * cos(37 * phi) ) # @torch.jit.script def Yl67_m38(theta, phi): return ( 1.3254209426954e-68 * (1.0 - cos(theta) ** 2) ** 19 * ( 4.18790961906234e82 * cos(theta) ** 29 - 1.27841451529271e83 * cos(theta) ** 27 + 1.71268509491505e83 * cos(theta) ** 25 - 1.32766286427523e83 * cos(theta) ** 23 + 6.6121792256227e82 * cos(theta) ** 21 - 2.22169221980923e82 * cos(theta) ** 19 + 5.14782343614333e81 * cos(theta) ** 17 - 8.26569052320535e80 * cos(theta) ** 15 + 9.1165704300059e79 * cos(theta) ** 13 - 6.75301513333771e78 * cos(theta) ** 11 + 3.22970288985716e77 * cos(theta) ** 9 - 9.35392631012533e75 * cos(theta) ** 7 + 1.4747181119567e74 * cos(theta) ** 5 - 1.04073261253119e72 * cos(theta) ** 3 + 2.08424421735218e69 * cos(theta) ) * cos(38 * phi) ) # @torch.jit.script def Yl67_m39(theta, phi): return ( 2.3905723769247e-70 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 1.21449378952808e84 * cos(theta) ** 28 - 3.45171919129033e84 * cos(theta) ** 26 + 4.28171273728762e84 * cos(theta) ** 24 - 3.05362458783303e84 * cos(theta) ** 22 + 1.38855763738077e84 * cos(theta) ** 20 - 4.22121521763753e83 * cos(theta) ** 18 + 8.75129984144367e82 * cos(theta) ** 16 - 1.2398535784808e82 * cos(theta) ** 14 + 1.18515415590077e81 * cos(theta) ** 12 - 7.42831664667148e79 * cos(theta) ** 10 + 2.90673260087145e78 * cos(theta) ** 8 - 6.54774841708773e76 * cos(theta) ** 6 + 7.37359055978348e74 * cos(theta) ** 4 - 3.12219783759357e72 * cos(theta) ** 2 + 2.08424421735218e69 ) * cos(39 * phi) ) # @torch.jit.script def Yl67_m40(theta, phi): return ( 4.36748067895281e-72 * (1.0 - cos(theta) ** 2) ** 20 * ( 3.40058261067862e85 * cos(theta) ** 27 - 8.97446989735485e85 * cos(theta) ** 25 + 1.02761105694903e86 * cos(theta) ** 23 - 6.71797409323267e85 * cos(theta) ** 21 + 2.77711527476154e85 * cos(theta) ** 19 - 7.59818739174756e84 * cos(theta) ** 17 + 1.40020797463099e84 * cos(theta) ** 15 - 1.73579500987312e83 * cos(theta) ** 13 + 1.42218498708092e82 * cos(theta) ** 11 - 7.42831664667148e80 * cos(theta) ** 9 + 2.32538608069716e79 * cos(theta) ** 7 - 3.92864905025264e77 * cos(theta) ** 5 + 2.94943622391339e75 * cos(theta) ** 3 - 6.24439567518714e72 * cos(theta) ) * cos(40 * phi) ) # @torch.jit.script def Yl67_m41(theta, phi): return ( 8.08792718324593e-74 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 9.18157304883227e86 * cos(theta) ** 26 - 2.24361747433871e87 * cos(theta) ** 24 + 2.36350543098277e87 * cos(theta) ** 22 - 1.41077455957886e87 * cos(theta) ** 20 + 5.27651902204692e86 * cos(theta) ** 18 - 1.29169185659709e86 * cos(theta) ** 16 + 2.10031196194648e85 * cos(theta) ** 14 - 2.25653351283506e84 * cos(theta) ** 12 + 1.56440348578901e83 * cos(theta) ** 10 - 6.68548498200433e81 * cos(theta) ** 8 + 1.62777025648801e80 * cos(theta) ** 6 - 1.96432452512632e78 * cos(theta) ** 4 + 8.84830867174018e75 * cos(theta) ** 2 - 6.24439567518714e72 ) * cos(41 * phi) ) # @torch.jit.script def Yl67_m42(theta, phi): return ( 1.51927821190258e-75 * (1.0 - cos(theta) ** 2) ** 21 * ( 2.38720899269639e88 * cos(theta) ** 25 - 5.38468193841291e88 * cos(theta) ** 23 + 5.19971194816208e88 * cos(theta) ** 21 - 2.82154911915772e88 * cos(theta) ** 19 + 9.49773423968445e87 * cos(theta) ** 17 - 2.06670697055534e87 * cos(theta) ** 15 + 2.94043674672507e86 * cos(theta) ** 13 - 2.70784021540207e85 * cos(theta) ** 11 + 1.56440348578901e84 * cos(theta) ** 9 - 5.34838798560346e82 * cos(theta) ** 7 + 9.76662153892806e80 * cos(theta) ** 5 - 7.85729810050528e78 * cos(theta) ** 3 + 1.76966173434804e76 * cos(theta) ) * cos(42 * phi) ) # @torch.jit.script def Yl67_m43(theta, phi): return ( 2.8971498754101e-77 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 5.96802248174097e89 * cos(theta) ** 24 - 1.23847684583497e90 * cos(theta) ** 22 + 1.09193950911404e90 * cos(theta) ** 20 - 5.36094332639967e89 * cos(theta) ** 18 + 1.61461482074636e89 * cos(theta) ** 16 - 3.100060455833e88 * cos(theta) ** 14 + 3.82256777074259e87 * cos(theta) ** 12 - 2.97862423694228e86 * cos(theta) ** 10 + 1.40796313721011e85 * cos(theta) ** 8 - 3.74387158992242e83 * cos(theta) ** 6 + 4.88331076946403e81 * cos(theta) ** 4 - 2.35718943015158e79 * cos(theta) ** 2 + 1.76966173434804e76 ) * cos(43 * phi) ) # @torch.jit.script def Yl67_m44(theta, phi): return ( 5.61311386838957e-79 * (1.0 - cos(theta) ** 2) ** 22 * ( 1.43232539561783e91 * cos(theta) ** 23 - 2.72464906083693e91 * cos(theta) ** 21 + 2.18387901822807e91 * cos(theta) ** 19 - 9.6496979875194e90 * cos(theta) ** 17 + 2.58338371319417e90 * cos(theta) ** 15 - 4.34008463816621e89 * cos(theta) ** 13 + 4.58708132489111e88 * cos(theta) ** 11 - 2.97862423694228e87 * cos(theta) ** 9 + 1.12637050976809e86 * cos(theta) ** 7 - 2.24632295395345e84 * cos(theta) ** 5 + 1.95332430778561e82 * cos(theta) ** 3 - 4.71437886030317e79 * cos(theta) ) * cos(44 * phi) ) # @torch.jit.script def Yl67_m45(theta, phi): return ( 1.10593836277071e-80 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 3.29434840992102e92 * cos(theta) ** 22 - 5.72176302775756e92 * cos(theta) ** 20 + 4.14937013463334e92 * cos(theta) ** 18 - 1.6404486578783e92 * cos(theta) ** 16 + 3.87507556979126e91 * cos(theta) ** 14 - 5.64211002961607e90 * cos(theta) ** 12 + 5.04578945738022e89 * cos(theta) ** 10 - 2.68076181324805e88 * cos(theta) ** 8 + 7.88459356837663e86 * cos(theta) ** 6 - 1.12316147697673e85 * cos(theta) ** 4 + 5.85997292335684e82 * cos(theta) ** 2 - 4.71437886030317e79 ) * cos(45 * phi) ) # @torch.jit.script def Yl67_m46(theta, phi): return ( 2.21809611402884e-82 * (1.0 - cos(theta) ** 2) ** 23 * ( 7.24756650182624e93 * cos(theta) ** 21 - 1.14435260555151e94 * cos(theta) ** 19 + 7.46886624234002e93 * cos(theta) ** 17 - 2.62471785260528e93 * cos(theta) ** 15 + 5.42510579770776e92 * cos(theta) ** 13 - 6.77053203553928e91 * cos(theta) ** 11 + 5.04578945738022e90 * cos(theta) ** 9 - 2.14460945059844e89 * cos(theta) ** 7 + 4.73075614102598e87 * cos(theta) ** 5 - 4.49264590790691e85 * cos(theta) ** 3 + 1.17199458467137e83 * cos(theta) ) * cos(46 * phi) ) # @torch.jit.script def Yl67_m47(theta, phi): return ( 4.5333399542327e-84 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 1.52198896538351e95 * cos(theta) ** 20 - 2.17426995054787e95 * cos(theta) ** 18 + 1.2697072611978e95 * cos(theta) ** 16 - 3.93707677890792e94 * cos(theta) ** 14 + 7.05263753702009e93 * cos(theta) ** 12 - 7.44758523909321e92 * cos(theta) ** 10 + 4.5412105116422e91 * cos(theta) ** 8 - 1.50122661541891e90 * cos(theta) ** 6 + 2.36537807051299e88 * cos(theta) ** 4 - 1.34779377237207e86 * cos(theta) ** 2 + 1.17199458467137e83 ) * cos(47 * phi) ) # @torch.jit.script def Yl67_m48(theta, phi): return ( 9.45266724278357e-86 * (1.0 - cos(theta) ** 2) ** 24 * ( 3.04397793076702e96 * cos(theta) ** 19 - 3.91368591098617e96 * cos(theta) ** 17 + 2.03153161791648e96 * cos(theta) ** 15 - 5.51190749047108e95 * cos(theta) ** 13 + 8.4631650444241e94 * cos(theta) ** 11 - 7.44758523909321e93 * cos(theta) ** 9 + 3.63296840931376e92 * cos(theta) ** 7 - 9.00735969251346e90 * cos(theta) ** 5 + 9.46151228205195e88 * cos(theta) ** 3 - 2.69558754474415e86 * cos(theta) ) * cos(48 * phi) ) # @torch.jit.script def Yl67_m49(theta, phi): return ( 2.01348581724404e-87 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 5.78355806845734e97 * cos(theta) ** 18 - 6.65326604867649e97 * cos(theta) ** 16 + 3.04729742687473e97 * cos(theta) ** 14 - 7.16547973761241e96 * cos(theta) ** 12 + 9.30948154886651e95 * cos(theta) ** 10 - 6.70282671518389e94 * cos(theta) ** 8 + 2.54307788651963e93 * cos(theta) ** 6 - 4.50367984625673e91 * cos(theta) ** 4 + 2.83845368461559e89 * cos(theta) ** 2 - 2.69558754474415e86 ) * cos(49 * phi) ) # @torch.jit.script def Yl67_m50(theta, phi): return ( 4.38752285148277e-89 * (1.0 - cos(theta) ** 2) ** 25 * ( 1.04104045232232e99 * cos(theta) ** 17 - 1.06452256778824e99 * cos(theta) ** 15 + 4.26621639762462e98 * cos(theta) ** 13 - 8.59857568513489e97 * cos(theta) ** 11 + 9.30948154886651e96 * cos(theta) ** 9 - 5.36226137214711e95 * cos(theta) ** 7 + 1.52584673191178e94 * cos(theta) ** 5 - 1.80147193850269e92 * cos(theta) ** 3 + 5.67690736923117e89 * cos(theta) ) * cos(50 * phi) ) # @torch.jit.script def Yl67_m51(theta, phi): return ( 9.79611617861195e-91 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 1.76976876894795e100 * cos(theta) ** 16 - 1.59678385168236e100 * cos(theta) ** 14 + 5.546081316912e99 * cos(theta) ** 12 - 9.45843325364838e98 * cos(theta) ** 10 + 8.37853339397986e97 * cos(theta) ** 8 - 3.75358296050298e96 * cos(theta) ** 6 + 7.6292336595589e94 * cos(theta) ** 4 - 5.40441581550807e92 * cos(theta) ** 2 + 5.67690736923117e89 ) * cos(51 * phi) ) # @torch.jit.script def Yl67_m52(theta, phi): return ( 2.24502124441183e-92 * (1.0 - cos(theta) ** 2) ** 26 * ( 2.83163003031671e101 * cos(theta) ** 15 - 2.2354973923553e101 * cos(theta) ** 13 + 6.6552975802944e100 * cos(theta) ** 11 - 9.45843325364838e99 * cos(theta) ** 9 + 6.70282671518389e98 * cos(theta) ** 7 - 2.25214977630179e97 * cos(theta) ** 5 + 3.05169346382356e95 * cos(theta) ** 3 - 1.08088316310161e93 * cos(theta) ) * cos(52 * phi) ) # @torch.jit.script def Yl67_m53(theta, phi): return ( 5.29156581943822e-94 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 4.24744504547507e102 * cos(theta) ** 14 - 2.90614661006189e102 * cos(theta) ** 12 + 7.32082733832384e101 * cos(theta) ** 10 - 8.51258992828354e100 * cos(theta) ** 8 + 4.69197870062872e99 * cos(theta) ** 6 - 1.12607488815089e98 * cos(theta) ** 4 + 9.15508039147068e95 * cos(theta) ** 2 - 1.08088316310161e93 ) * cos(53 * phi) ) # @torch.jit.script def Yl67_m54(theta, phi): return ( 1.28566404778581e-95 * (1.0 - cos(theta) ** 2) ** 27 * ( 5.9464230636651e103 * cos(theta) ** 13 - 3.48737593207427e103 * cos(theta) ** 11 + 7.32082733832384e102 * cos(theta) ** 9 - 6.81007194262683e101 * cos(theta) ** 7 + 2.81518722037723e100 * cos(theta) ** 5 - 4.50429955260357e98 * cos(theta) ** 3 + 1.83101607829414e96 * cos(theta) ) * cos(54 * phi) ) # @torch.jit.script def Yl67_m55(theta, phi): return ( 3.22831502961648e-97 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 7.73034998276463e104 * cos(theta) ** 12 - 3.83611352528169e104 * cos(theta) ** 10 + 6.58874460449146e103 * cos(theta) ** 8 - 4.76705035983878e102 * cos(theta) ** 6 + 1.40759361018862e101 * cos(theta) ** 4 - 1.35128986578107e99 * cos(theta) ** 2 + 1.83101607829414e96 ) * cos(55 * phi) ) # @torch.jit.script def Yl67_m56(theta, phi): return ( 8.40296837894555e-99 * (1.0 - cos(theta) ** 2) ** 28 * ( 9.27641997931755e105 * cos(theta) ** 11 - 3.83611352528169e105 * cos(theta) ** 9 + 5.27099568359317e104 * cos(theta) ** 7 - 2.86023021590327e103 * cos(theta) ** 5 + 5.63037444075447e101 * cos(theta) ** 3 - 2.70257973156214e99 * cos(theta) ) * cos(56 * phi) ) # @torch.jit.script def Yl67_m57(theta, phi): return ( 2.2752312501714e-100 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 1.02040619772493e107 * cos(theta) ** 10 - 3.45250217275352e106 * cos(theta) ** 8 + 3.68969697851522e105 * cos(theta) ** 6 - 1.43011510795163e104 * cos(theta) ** 4 + 1.68911233222634e102 * cos(theta) ** 2 - 2.70257973156214e99 ) * cos(57 * phi) ) # @torch.jit.script def Yl67_m58(theta, phi): return ( 6.43532578305497e-102 * (1.0 - cos(theta) ** 2) ** 29 * ( 1.02040619772493e108 * cos(theta) ** 9 - 2.76200173820282e107 * cos(theta) ** 7 + 2.21381818710913e106 * cos(theta) ** 5 - 5.72046043180654e104 * cos(theta) ** 3 + 3.37822466445268e102 * cos(theta) ) * cos(58 * phi) ) # @torch.jit.script def Yl67_m59(theta, phi): return ( 1.91101462321146e-103 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 9.18365577952438e108 * cos(theta) ** 8 - 1.93340121674197e108 * cos(theta) ** 6 + 1.10690909355457e107 * cos(theta) ** 4 - 1.71613812954196e105 * cos(theta) ** 2 + 3.37822466445268e102 ) * cos(59 * phi) ) # @torch.jit.script def Yl67_m60(theta, phi): return ( 5.99538609518972e-105 * (1.0 - cos(theta) ** 2) ** 30 * ( 7.3469246236195e109 * cos(theta) ** 7 - 1.16004073004518e109 * cos(theta) ** 5 + 4.42763637421826e107 * cos(theta) ** 3 - 3.43227625908392e105 * cos(theta) ) * cos(60 * phi) ) # @torch.jit.script def Yl67_m61(theta, phi): return ( 2.00291791693111e-106 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 5.14284723653365e110 * cos(theta) ** 6 - 5.80020365022592e109 * cos(theta) ** 4 + 1.32829091226548e108 * cos(theta) ** 2 - 3.43227625908392e105 ) * cos(61 * phi) ) # @torch.jit.script def Yl67_m62(theta, phi): return ( 7.19933978271784e-108 * (1.0 - cos(theta) ** 2) ** 31 * ( 3.08570834192019e111 * cos(theta) ** 5 - 2.32008146009037e110 * cos(theta) ** 3 + 2.65658182453096e108 * cos(theta) ) * cos(62 * phi) ) # @torch.jit.script def Yl67_m63(theta, phi): return ( 2.82381338746639e-109 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 1.5428541709601e112 * cos(theta) ** 4 - 6.96024438027111e110 * cos(theta) ** 2 + 2.65658182453096e108 ) * cos(63 * phi) ) # @torch.jit.script def Yl67_m64(theta, phi): return ( 1.23358860594157e-110 * (1.0 - cos(theta) ** 2) ** 32 * (6.17141668384038e112 * cos(theta) ** 3 - 1.39204887605422e111 * cos(theta)) * cos(64 * phi) ) # @torch.jit.script def Yl67_m65(theta, phi): return ( 6.19901598722085e-112 * (1.0 - cos(theta) ** 2) ** 32.5 * (1.85142500515211e113 * cos(theta) ** 2 - 1.39204887605422e111) * cos(65 * phi) ) # @torch.jit.script def Yl67_m66(theta, phi): return 14.0740165928703 * (1.0 - cos(theta) ** 2) ** 33 * cos(66 * phi) * cos(theta) # @torch.jit.script def Yl67_m67(theta, phi): return 1.21580985556888 * (1.0 - cos(theta) ** 2) ** 33.5 * cos(67 * phi) # @torch.jit.script def Yl68_m_minus_68(theta, phi): return 1.22027155810609 * (1.0 - cos(theta) ** 2) ** 34 * sin(68 * phi) # @torch.jit.script def Yl68_m_minus_67(theta, phi): return ( 14.2306895079291 * (1.0 - cos(theta) ** 2) ** 33.5 * sin(67 * phi) * cos(theta) ) # @torch.jit.script def Yl68_m_minus_66(theta, phi): return ( 4.6777600020732e-114 * (1.0 - cos(theta) ** 2) ** 33 * (2.49942375695535e115 * cos(theta) ** 2 - 1.85142500515211e113) * sin(66 * phi) ) # @torch.jit.script def Yl68_m_minus_65(theta, phi): return ( 9.37887964101915e-113 * (1.0 - cos(theta) ** 2) ** 32.5 * (8.33141252318451e114 * cos(theta) ** 3 - 1.85142500515211e113 * cos(theta)) * sin(65 * phi) ) # @torch.jit.script def Yl68_m_minus_64(theta, phi): return ( 2.16325033055874e-111 * (1.0 - cos(theta) ** 2) ** 32 * ( 2.08285313079613e114 * cos(theta) ** 4 - 9.25712502576057e112 * cos(theta) ** 2 + 3.48012219013555e110 ) * sin(64 * phi) ) # @torch.jit.script def Yl68_m_minus_63(theta, phi): return ( 5.55749072438024e-110 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 4.16570626159226e113 * cos(theta) ** 5 - 3.08570834192019e112 * cos(theta) ** 3 + 3.48012219013555e110 * cos(theta) ) * sin(63 * phi) ) # @torch.jit.script def Yl68_m_minus_62(theta, phi): return ( 1.55808095672644e-108 * (1.0 - cos(theta) ** 2) ** 31 * ( 6.94284376932043e112 * cos(theta) ** 6 - 7.71427085480048e111 * cos(theta) ** 4 + 1.74006109506778e110 * cos(theta) ** 2 - 4.42763637421826e107 ) * sin(62 * phi) ) # @torch.jit.script def Yl68_m_minus_61(theta, phi): return ( 4.70013915072667e-107 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 9.91834824188633e111 * cos(theta) ** 7 - 1.54285417096009e111 * cos(theta) ** 5 + 5.80020365022592e109 * cos(theta) ** 3 - 4.42763637421826e107 * cos(theta) ) * sin(61 * phi) ) # @torch.jit.script def Yl68_m_minus_60(theta, phi): return ( 1.50990827182819e-105 * (1.0 - cos(theta) ** 2) ** 30 * ( 1.23979353023579e111 * cos(theta) ** 8 - 2.57142361826683e110 * cos(theta) ** 6 + 1.45005091255648e109 * cos(theta) ** 4 - 2.21381818710913e107 * cos(theta) ** 2 + 4.2903453238549e104 ) * sin(60 * phi) ) # @torch.jit.script def Yl68_m_minus_59(theta, phi): return ( 5.12479861430099e-104 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 1.37754836692866e110 * cos(theta) ** 9 - 3.67346231180975e109 * cos(theta) ** 7 + 2.90010182511296e108 * cos(theta) ** 5 - 7.37939395703043e106 * cos(theta) ** 3 + 4.2903453238549e104 * cos(theta) ) * sin(59 * phi) ) # @torch.jit.script def Yl68_m_minus_58(theta, phi): return ( 1.82632752438246e-102 * (1.0 - cos(theta) ** 2) ** 29 * ( 1.37754836692866e109 * cos(theta) ** 10 - 4.59182788976219e108 * cos(theta) ** 8 + 4.83350304185493e107 * cos(theta) ** 6 - 1.84484848925761e106 * cos(theta) ** 4 + 2.14517266192745e104 * cos(theta) ** 2 - 3.37822466445268e101 ) * sin(58 * phi) ) # @torch.jit.script def Yl68_m_minus_57(theta, phi): return ( 6.79923856448301e-101 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 1.25231669720787e108 * cos(theta) ** 11 - 5.10203098862465e107 * cos(theta) ** 9 + 6.90500434550705e106 * cos(theta) ** 7 - 3.68969697851522e105 * cos(theta) ** 5 + 7.15057553975817e103 * cos(theta) ** 3 - 3.37822466445268e101 * cos(theta) ) * sin(57 * phi) ) # @torch.jit.script def Yl68_m_minus_56(theta, phi): return ( 2.63333377271339e-99 * (1.0 - cos(theta) ** 2) ** 28 * ( 1.04359724767322e107 * cos(theta) ** 12 - 5.10203098862465e106 * cos(theta) ** 10 + 8.63125543188381e105 * cos(theta) ** 8 - 6.14949496419203e104 * cos(theta) ** 6 + 1.78764388493954e103 * cos(theta) ** 4 - 1.68911233222634e101 * cos(theta) ** 2 + 2.25214977630179e98 ) * sin(56 * phi) ) # @torch.jit.script def Yl68_m_minus_55(theta, phi): return ( 1.05727613113712e-97 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 8.02767113594788e105 * cos(theta) ** 13 - 4.63820998965878e105 * cos(theta) ** 11 + 9.59028381320424e104 * cos(theta) ** 9 - 8.78499280598861e103 * cos(theta) ** 7 + 3.57528776987909e102 * cos(theta) ** 5 - 5.63037444075447e100 * cos(theta) ** 3 + 2.25214977630179e98 * cos(theta) ) * sin(55 * phi) ) # @torch.jit.script def Yl68_m_minus_54(theta, phi): return ( 4.38737747599552e-96 * (1.0 - cos(theta) ** 2) ** 27 * ( 5.73405081139134e104 * cos(theta) ** 14 - 3.86517499138231e104 * cos(theta) ** 12 + 9.59028381320424e103 * cos(theta) ** 10 - 1.09812410074858e103 * cos(theta) ** 8 + 5.95881294979848e101 * cos(theta) ** 6 - 1.40759361018862e100 * cos(theta) ** 4 + 1.12607488815089e98 * cos(theta) ** 2 - 1.30786862735295e95 ) * sin(54 * phi) ) # @torch.jit.script def Yl68_m_minus_53(theta, phi): return ( 1.87685424164684e-94 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 3.82270054092756e103 * cos(theta) ** 15 - 2.97321153183255e103 * cos(theta) ** 13 + 8.71843983018567e102 * cos(theta) ** 11 - 1.22013788972064e102 * cos(theta) ** 9 + 8.51258992828354e100 * cos(theta) ** 7 - 2.81518722037723e99 * cos(theta) ** 5 + 3.75358296050298e97 * cos(theta) ** 3 - 1.30786862735295e95 * cos(theta) ) * sin(53 * phi) ) # @torch.jit.script def Yl68_m_minus_52(theta, phi): return ( 8.25815866324608e-93 * (1.0 - cos(theta) ** 2) ** 26 * ( 2.38918783807973e102 * cos(theta) ** 16 - 2.12372252273753e102 * cos(theta) ** 14 + 7.26536652515472e101 * cos(theta) ** 12 - 1.22013788972064e101 * cos(theta) ** 10 + 1.06407374103544e100 * cos(theta) ** 8 - 4.69197870062872e98 * cos(theta) ** 6 + 9.38395740125744e96 * cos(theta) ** 4 - 6.53934313676477e94 * cos(theta) ** 2 + 6.75551976938509e91 ) * sin(52 * phi) ) # @torch.jit.script def Yl68_m_minus_51(theta, phi): return ( 3.72990960205454e-91 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 1.40540461063513e101 * cos(theta) ** 17 - 1.41581501515836e101 * cos(theta) ** 15 + 5.58874348088825e100 * cos(theta) ** 13 - 1.1092162633824e100 * cos(theta) ** 11 + 1.18230415670605e99 * cos(theta) ** 9 - 6.70282671518389e97 * cos(theta) ** 7 + 1.87679148025149e96 * cos(theta) ** 5 - 2.17978104558826e94 * cos(theta) ** 3 + 6.75551976938509e91 * cos(theta) ) * sin(51 * phi) ) # @torch.jit.script def Yl68_m_minus_50(theta, phi): return ( 1.72626728289121e-89 * (1.0 - cos(theta) ** 2) ** 25 * ( 7.80780339241741e99 * cos(theta) ** 18 - 8.84884384473973e99 * cos(theta) ** 16 + 3.99195962920589e99 * cos(theta) ** 14 - 9.24346886152e98 * cos(theta) ** 12 + 1.18230415670605e98 * cos(theta) ** 10 - 8.37853339397986e96 * cos(theta) ** 8 + 3.12798580041915e95 * cos(theta) ** 6 - 5.44945261397064e93 * cos(theta) ** 4 + 3.37775988469255e91 * cos(theta) ** 2 - 3.15383742735065e88 ) * sin(50 * phi) ) # @torch.jit.script def Yl68_m_minus_49(theta, phi): return ( 8.17383456958882e-88 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 4.10937020653548e98 * cos(theta) ** 19 - 5.2052022616116e98 * cos(theta) ** 17 + 2.66130641947059e98 * cos(theta) ** 15 - 7.1103606627077e97 * cos(theta) ** 13 + 1.07482196064186e97 * cos(theta) ** 11 - 9.30948154886651e95 * cos(theta) ** 9 + 4.46855114345593e94 * cos(theta) ** 7 - 1.08989052279413e93 * cos(theta) ** 5 + 1.12591996156418e91 * cos(theta) ** 3 - 3.15383742735065e88 * cos(theta) ) * sin(49 * phi) ) # @torch.jit.script def Yl68_m_minus_48(theta, phi): return ( 3.95397366551868e-86 * (1.0 - cos(theta) ** 2) ** 24 * ( 2.05468510326774e97 * cos(theta) ** 20 - 2.89177903422867e97 * cos(theta) ** 18 + 1.66331651216912e97 * cos(theta) ** 16 - 5.07882904479121e96 * cos(theta) ** 14 + 8.95684967201551e95 * cos(theta) ** 12 - 9.30948154886651e94 * cos(theta) ** 10 + 5.58568892931991e93 * cos(theta) ** 8 - 1.81648420465688e92 * cos(theta) ** 6 + 2.81479990391046e90 * cos(theta) ** 4 - 1.57691871367533e88 * cos(theta) ** 2 + 1.34779377237207e85 ) * sin(48 * phi) ) # @torch.jit.script def Yl68_m_minus_47(theta, phi): return ( 1.95151733974338e-84 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 9.78421477746542e95 * cos(theta) ** 21 - 1.52198896538351e96 * cos(theta) ** 19 + 9.78421477746542e95 * cos(theta) ** 17 - 3.38588602986081e95 * cos(theta) ** 15 + 6.88988436308885e94 * cos(theta) ** 13 - 8.4631650444241e93 * cos(theta) ** 11 + 6.20632103257767e92 * cos(theta) ** 9 - 2.59497743522412e91 * cos(theta) ** 7 + 5.62959980782091e89 * cos(theta) ** 5 - 5.25639571225108e87 * cos(theta) ** 3 + 1.34779377237207e85 * cos(theta) ) * sin(47 * phi) ) # @torch.jit.script def Yl68_m_minus_46(theta, phi): return ( 9.81595762833013e-83 * (1.0 - cos(theta) ** 2) ** 23 * ( 4.44737035339337e94 * cos(theta) ** 22 - 7.60994482691755e94 * cos(theta) ** 20 + 5.43567487636968e94 * cos(theta) ** 18 - 2.116178768663e94 * cos(theta) ** 16 + 4.92134597363489e93 * cos(theta) ** 14 - 7.05263753702008e92 * cos(theta) ** 12 + 6.20632103257767e91 * cos(theta) ** 10 - 3.24372179403014e90 * cos(theta) ** 8 + 9.38266634636818e88 * cos(theta) ** 6 - 1.31409892806277e87 * cos(theta) ** 4 + 6.73896886186036e84 * cos(theta) ** 2 - 5.32724811214258e81 ) * sin(46 * phi) ) # @torch.jit.script def Yl68_m_minus_45(theta, phi): return ( 5.02630708722213e-81 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 1.93363928408408e93 * cos(theta) ** 23 - 3.62378325091312e93 * cos(theta) ** 21 + 2.86088151387878e93 * cos(theta) ** 19 - 1.24481104039e93 * cos(theta) ** 17 + 3.2808973157566e92 * cos(theta) ** 15 - 5.42510579770776e91 * cos(theta) ** 13 + 5.64211002961607e90 * cos(theta) ** 11 - 3.60413532670016e89 * cos(theta) ** 9 + 1.34038090662403e88 * cos(theta) ** 7 - 2.62819785612554e86 * cos(theta) ** 5 + 2.24632295395345e84 * cos(theta) ** 3 - 5.32724811214258e81 * cos(theta) ) * sin(45 * phi) ) # @torch.jit.script def Yl68_m_minus_44(theta, phi): return ( 2.61754321988924e-79 * (1.0 - cos(theta) ** 2) ** 22 * ( 8.05683035035031e91 * cos(theta) ** 24 - 1.64717420496051e92 * cos(theta) ** 22 + 1.43044075693939e92 * cos(theta) ** 20 - 6.91561689105557e91 * cos(theta) ** 18 + 2.05056082234787e91 * cos(theta) ** 16 - 3.87507556979126e90 * cos(theta) ** 14 + 4.70175835801339e89 * cos(theta) ** 12 - 3.60413532670016e88 * cos(theta) ** 10 + 1.67547613328003e87 * cos(theta) ** 8 - 4.38032976020924e85 * cos(theta) ** 6 + 5.61580738488364e83 * cos(theta) ** 4 - 2.66362405607129e81 * cos(theta) ** 2 + 1.96432452512632e78 ) * sin(44 * phi) ) # @torch.jit.script def Yl68_m_minus_43(theta, phi): return ( 1.38507368115804e-77 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 3.22273214014013e90 * cos(theta) ** 25 - 7.16162697808917e90 * cos(theta) ** 23 + 6.81162265209233e90 * cos(theta) ** 21 - 3.63979836371346e90 * cos(theta) ** 19 + 1.20621224843993e90 * cos(theta) ** 17 - 2.58338371319417e89 * cos(theta) ** 15 + 3.61673719847184e88 * cos(theta) ** 13 - 3.27648666063651e87 * cos(theta) ** 11 + 1.86164014808893e86 * cos(theta) ** 9 - 6.25761394315605e84 * cos(theta) ** 7 + 1.12316147697673e83 * cos(theta) ** 5 - 8.87874685357097e80 * cos(theta) ** 3 + 1.96432452512632e78 * cos(theta) ) * sin(43 * phi) ) # @torch.jit.script def Yl68_m_minus_42(theta, phi): return ( 7.44082414054722e-76 * (1.0 - cos(theta) ** 2) ** 21 * ( 1.23951236159236e89 * cos(theta) ** 26 - 2.98401124087049e89 * cos(theta) ** 24 + 3.09619211458742e89 * cos(theta) ** 22 - 1.81989918185673e89 * cos(theta) ** 20 + 6.70117915799958e88 * cos(theta) ** 18 - 1.61461482074636e88 * cos(theta) ** 16 + 2.58338371319417e87 * cos(theta) ** 14 - 2.73040555053042e86 * cos(theta) ** 12 + 1.86164014808893e85 * cos(theta) ** 10 - 7.82201742894506e83 * cos(theta) ** 8 + 1.87193579496121e82 * cos(theta) ** 6 - 2.21968671339274e80 * cos(theta) ** 4 + 9.8216226256316e77 * cos(theta) ** 2 - 6.80639128595399e74 ) * sin(42 * phi) ) # @torch.jit.script def Yl68_m_minus_41(theta, phi): return ( 4.05507849190289e-74 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 4.59078652441613e87 * cos(theta) ** 27 - 1.19360449634819e88 * cos(theta) ** 25 + 1.34617048460323e88 * cos(theta) ** 23 - 8.66618658027014e87 * cos(theta) ** 21 + 3.52693639894715e87 * cos(theta) ** 19 - 9.49773423968445e86 * cos(theta) ** 17 + 1.72225580879611e86 * cos(theta) ** 15 - 2.10031196194648e85 * cos(theta) ** 13 + 1.6924001346263e84 * cos(theta) ** 11 - 8.69113047660563e82 * cos(theta) ** 9 + 2.67419399280173e81 * cos(theta) ** 7 - 4.43937342678548e79 * cos(theta) ** 5 + 3.27387420854387e77 * cos(theta) ** 3 - 6.80639128595399e74 * cos(theta) ) * sin(41 * phi) ) # @torch.jit.script def Yl68_m_minus_40(theta, phi): return ( 2.24022443358709e-72 * (1.0 - cos(theta) ** 2) ** 20 * ( 1.6395666158629e86 * cos(theta) ** 28 - 4.59078652441613e86 * cos(theta) ** 26 + 5.60904368584678e86 * cos(theta) ** 24 - 3.93917571830461e86 * cos(theta) ** 22 + 1.76346819947357e86 * cos(theta) ** 20 - 5.27651902204692e85 * cos(theta) ** 18 + 1.07640988049757e85 * cos(theta) ** 16 - 1.50022282996177e84 * cos(theta) ** 14 + 1.41033344552191e83 * cos(theta) ** 12 - 8.69113047660563e81 * cos(theta) ** 10 + 3.34274249100216e80 * cos(theta) ** 8 - 7.39895571130914e78 * cos(theta) ** 6 + 8.18468552135967e76 * cos(theta) ** 4 - 3.40319564297699e74 * cos(theta) ** 2 + 2.23014131256684e71 ) * sin(40 * phi) ) # @torch.jit.script def Yl68_m_minus_39(theta, phi): return ( 1.25372534736348e-70 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 5.65367798573415e84 * cos(theta) ** 29 - 1.70029130533931e85 * cos(theta) ** 27 + 2.24361747433871e85 * cos(theta) ** 25 - 1.71268509491505e85 * cos(theta) ** 23 + 8.39746761654083e84 * cos(theta) ** 21 - 2.77711527476153e84 * cos(theta) ** 19 + 6.3318228264563e83 * cos(theta) ** 17 - 1.00014855330785e83 * cos(theta) ** 15 + 1.0848718811707e82 * cos(theta) ** 13 - 7.90102770600512e80 * cos(theta) ** 11 + 3.71415832333574e79 * cos(theta) ** 9 - 1.05699367304416e78 * cos(theta) ** 7 + 1.63693710427193e76 * cos(theta) ** 5 - 1.134398547659e74 * cos(theta) ** 3 + 2.23014131256684e71 * cos(theta) ) * sin(39 * phi) ) # @torch.jit.script def Yl68_m_minus_38(theta, phi): return ( 7.10321438621669e-69 * (1.0 - cos(theta) ** 2) ** 19 * ( 1.88455932857805e83 * cos(theta) ** 30 - 6.07246894764039e83 * cos(theta) ** 28 + 8.62929797822582e83 * cos(theta) ** 26 - 7.13618789547936e83 * cos(theta) ** 24 + 3.81703073479129e83 * cos(theta) ** 22 - 1.38855763738077e83 * cos(theta) ** 20 + 3.51767934803128e82 * cos(theta) ** 18 - 6.25092845817405e81 * cos(theta) ** 16 + 7.74908486550502e80 * cos(theta) ** 14 - 6.58418975500426e79 * cos(theta) ** 12 + 3.71415832333574e78 * cos(theta) ** 10 - 1.3212420913052e77 * cos(theta) ** 8 + 2.72822850711989e75 * cos(theta) ** 6 - 2.83599636914749e73 * cos(theta) ** 4 + 1.11507065628342e71 * cos(theta) ** 2 - 6.94748072450728e67 ) * sin(38 * phi) ) # @torch.jit.script def Yl68_m_minus_37(theta, phi): return ( 4.07182122728887e-67 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 6.07922364057436e81 * cos(theta) ** 31 - 2.09395480953117e82 * cos(theta) ** 29 + 3.19603628823178e82 * cos(theta) ** 27 - 2.85447515819175e82 * cos(theta) ** 25 + 1.65957858034404e82 * cos(theta) ** 23 - 6.6121792256227e81 * cos(theta) ** 21 + 1.85141018317436e81 * cos(theta) ** 19 - 3.67701674010238e80 * cos(theta) ** 17 + 5.16605657700335e79 * cos(theta) ** 15 - 5.06476135000328e78 * cos(theta) ** 13 + 3.37650756666885e77 * cos(theta) ** 11 - 1.46804676811689e76 * cos(theta) ** 9 + 3.89746929588556e74 * cos(theta) ** 7 - 5.67199273829499e72 * cos(theta) ** 5 + 3.71690218761139e70 * cos(theta) ** 3 - 6.94748072450728e67 * cos(theta) ) * sin(37 * phi) ) # @torch.jit.script def Yl68_m_minus_36(theta, phi): return ( 2.36025181791098e-65 * (1.0 - cos(theta) ** 2) ** 18 * ( 1.89975738767949e80 * cos(theta) ** 32 - 6.97984936510389e80 * cos(theta) ** 30 + 1.14144153151135e81 * cos(theta) ** 28 - 1.09787506084298e81 * cos(theta) ** 26 + 6.91491075143349e80 * cos(theta) ** 24 - 3.00553601164668e80 * cos(theta) ** 22 + 9.25705091587178e79 * cos(theta) ** 20 - 2.04278707783466e79 * cos(theta) ** 18 + 3.22878536062709e78 * cos(theta) ** 16 - 3.61768667857377e77 * cos(theta) ** 14 + 2.81375630555738e76 * cos(theta) ** 12 - 1.46804676811689e75 * cos(theta) ** 10 + 4.87183661985694e73 * cos(theta) ** 8 - 9.45332123049165e71 * cos(theta) ** 6 + 9.29225546902849e69 * cos(theta) ** 4 - 3.47374036225364e67 * cos(theta) ** 2 + 2.06770259657955e64 ) * sin(36 * phi) ) # @torch.jit.script def Yl68_m_minus_35(theta, phi): return ( 1.3827127910757e-63 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 5.75684056872572e78 * cos(theta) ** 33 - 2.25156431132384e79 * cos(theta) ** 31 + 3.93600528107362e79 * cos(theta) ** 29 - 4.06620392904807e79 * cos(theta) ** 27 + 2.7659643005734e79 * cos(theta) ** 25 - 1.30675478767247e79 * cos(theta) ** 23 + 4.40811948374847e78 * cos(theta) ** 21 - 1.07515109359719e78 * cos(theta) ** 19 + 1.89928550625123e77 * cos(theta) ** 17 - 2.41179111904918e76 * cos(theta) ** 15 + 2.16442792735183e75 * cos(theta) ** 13 - 1.33458797101536e74 * cos(theta) ** 11 + 5.41315179984105e72 * cos(theta) ** 9 - 1.35047446149881e71 * cos(theta) ** 7 + 1.8584510938057e69 * cos(theta) ** 5 - 1.15791345408455e67 * cos(theta) ** 3 + 2.06770259657955e64 * cos(theta) ) * sin(35 * phi) ) # @torch.jit.script def Yl68_m_minus_34(theta, phi): return ( 8.18257606652113e-62 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.69318840256639e77 * cos(theta) ** 34 - 7.03613847288699e77 * cos(theta) ** 32 + 1.31200176035787e78 * cos(theta) ** 30 - 1.45221568894574e78 * cos(theta) ** 28 + 1.06383242329746e78 * cos(theta) ** 26 - 5.44481161530196e77 * cos(theta) ** 24 + 2.00369067443112e77 * cos(theta) ** 22 - 5.37575546798594e76 * cos(theta) ** 20 + 1.05515861458402e76 * cos(theta) ** 18 - 1.50736944940574e75 * cos(theta) ** 16 + 1.54601994810845e74 * cos(theta) ** 14 - 1.1121566425128e73 * cos(theta) ** 12 + 5.41315179984105e71 * cos(theta) ** 10 - 1.68809307687351e70 * cos(theta) ** 8 + 3.09741848967616e68 * cos(theta) ** 6 - 2.89478363521137e66 * cos(theta) ** 4 + 1.03385129828977e64 * cos(theta) ** 2 - 5.90434779148928e60 ) * sin(34 * phi) ) # @torch.jit.script def Yl68_m_minus_33(theta, phi): return ( 4.88904640365914e-60 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 4.83768115018968e75 * cos(theta) ** 35 - 2.13216317360212e76 * cos(theta) ** 33 + 4.23226374308992e76 * cos(theta) ** 31 - 5.00764030670945e76 * cos(theta) ** 29 + 3.94012008628689e76 * cos(theta) ** 27 - 2.17792464612078e76 * cos(theta) ** 25 + 8.71169858448314e75 * cos(theta) ** 23 - 2.55988355618378e75 * cos(theta) ** 21 + 5.55346639254746e74 * cos(theta) ** 19 - 8.8668791141514e73 * cos(theta) ** 17 + 1.03067996540563e73 * cos(theta) ** 15 - 8.55505109625229e71 * cos(theta) ** 13 + 4.92104709076459e70 * cos(theta) ** 11 - 1.8756589743039e69 * cos(theta) ** 9 + 4.42488355668023e67 * cos(theta) ** 7 - 5.78956727042273e65 * cos(theta) ** 5 + 3.44617099429925e63 * cos(theta) ** 3 - 5.90434779148928e60 * cos(theta) ) * sin(33 * phi) ) # @torch.jit.script def Yl68_m_minus_32(theta, phi): return ( 2.94805849575977e-58 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.34380031949713e74 * cos(theta) ** 36 - 6.27106815765329e74 * cos(theta) ** 34 + 1.3225824197156e75 * cos(theta) ** 32 - 1.66921343556982e75 * cos(theta) ** 30 + 1.40718574510246e75 * cos(theta) ** 28 - 8.37663325431071e74 * cos(theta) ** 26 + 3.62987441020131e74 * cos(theta) ** 24 - 1.16358343462899e74 * cos(theta) ** 22 + 2.77673319627373e73 * cos(theta) ** 20 - 4.92604395230633e72 * cos(theta) ** 18 + 6.4417497837852e71 * cos(theta) ** 16 - 6.11075078303735e70 * cos(theta) ** 14 + 4.10087257563716e69 * cos(theta) ** 12 - 1.8756589743039e68 * cos(theta) ** 10 + 5.53110444585029e66 * cos(theta) ** 8 - 9.64927878403789e64 * cos(theta) ** 6 + 8.61542748574811e62 * cos(theta) ** 4 - 2.95217389574464e60 * cos(theta) ** 2 + 1.6238580284624e57 ) * sin(32 * phi) ) # @torch.jit.script def Yl68_m_minus_31(theta, phi): return ( 1.79323397551348e-56 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 3.63189275539766e72 * cos(theta) ** 37 - 1.79173375932951e73 * cos(theta) ** 35 + 4.0078255142897e73 * cos(theta) ** 33 - 5.38455946958005e73 * cos(theta) ** 31 + 4.85236463828435e73 * cos(theta) ** 29 - 3.10245676085582e73 * cos(theta) ** 27 + 1.45194976408052e73 * cos(theta) ** 25 - 5.05905841143039e72 * cos(theta) ** 23 + 1.32225390298749e72 * cos(theta) ** 21 - 2.59265471174018e71 * cos(theta) ** 19 + 3.78926457869718e70 * cos(theta) ** 17 - 4.07383385535823e69 * cos(theta) ** 15 + 3.15451736587474e68 * cos(theta) ** 13 - 1.70514452209445e67 * cos(theta) ** 11 + 6.14567160650032e65 * cos(theta) ** 9 - 1.3784683977197e64 * cos(theta) ** 7 + 1.72308549714962e62 * cos(theta) ** 5 - 9.84057965248214e59 * cos(theta) ** 3 + 1.6238580284624e57 * cos(theta) ) * sin(31 * phi) ) # @torch.jit.script def Yl68_m_minus_30(theta, phi): return ( 1.09988265729126e-54 * (1.0 - cos(theta) ** 2) ** 15 * ( 9.55761251420436e70 * cos(theta) ** 38 - 4.97703822035975e71 * cos(theta) ** 36 + 1.1787722100852e72 * cos(theta) ** 34 - 1.68267483424377e72 * cos(theta) ** 32 + 1.61745487942812e72 * cos(theta) ** 30 - 1.10802027173422e72 * cos(theta) ** 28 + 5.58442216954047e71 * cos(theta) ** 26 - 2.10794100476266e71 * cos(theta) ** 24 + 6.0102450135795e70 * cos(theta) ** 22 - 1.29632735587009e70 * cos(theta) ** 20 + 2.1051469881651e69 * cos(theta) ** 18 - 2.5461461595989e68 * cos(theta) ** 16 + 2.25322668991053e67 * cos(theta) ** 14 - 1.42095376841204e66 * cos(theta) ** 12 + 6.14567160650032e64 * cos(theta) ** 10 - 1.72308549714962e63 * cos(theta) ** 8 + 2.87180916191604e61 * cos(theta) ** 6 - 2.46014491312054e59 * cos(theta) ** 4 + 8.119290142312e56 * cos(theta) ** 2 - 4.31647535476449e53 ) * sin(30 * phi) ) # @torch.jit.script def Yl68_m_minus_29(theta, phi): return ( 6.79973042715234e-53 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 2.45066987543702e69 * cos(theta) ** 39 - 1.3451454649621e70 * cos(theta) ** 37 + 3.36792060024344e70 * cos(theta) ** 35 - 5.09901464922353e70 * cos(theta) ** 33 + 5.21759638525199e70 * cos(theta) ** 31 - 3.82075955770421e70 * cos(theta) ** 29 + 2.06830450723721e70 * cos(theta) ** 27 - 8.43176401905066e69 * cos(theta) ** 25 + 2.61315000590413e69 * cos(theta) ** 23 - 6.17298740890518e68 * cos(theta) ** 21 + 1.10797209903426e68 * cos(theta) ** 19 - 1.49773303505817e67 * cos(theta) ** 17 + 1.50215112660702e66 * cos(theta) ** 15 - 1.09304136031696e65 * cos(theta) ** 13 + 5.58697418772756e63 * cos(theta) ** 11 - 1.91453944127736e62 * cos(theta) ** 9 + 4.10258451702291e60 * cos(theta) ** 7 - 4.92028982624107e58 * cos(theta) ** 5 + 2.70643004743733e56 * cos(theta) ** 3 - 4.31647535476449e53 * cos(theta) ) * sin(29 * phi) ) # @torch.jit.script def Yl68_m_minus_28(theta, phi): return ( 4.23552801267956e-51 * (1.0 - cos(theta) ** 2) ** 14 * ( 6.12667468859254e67 * cos(theta) ** 40 - 3.53985648674236e68 * cos(theta) ** 38 + 9.35533500067623e68 * cos(theta) ** 36 - 1.4997101909481e69 * cos(theta) ** 34 + 1.63049887039125e69 * cos(theta) ** 32 - 1.27358651923474e69 * cos(theta) ** 30 + 7.38680181156147e68 * cos(theta) ** 28 - 3.24298616117333e68 * cos(theta) ** 26 + 1.08881250246005e68 * cos(theta) ** 24 - 2.80590336768417e67 * cos(theta) ** 22 + 5.53986049517131e66 * cos(theta) ** 20 - 8.32073908365652e65 * cos(theta) ** 18 + 9.38844454129386e64 * cos(theta) ** 16 - 7.80743828797826e63 * cos(theta) ** 14 + 4.6558118231063e62 * cos(theta) ** 12 - 1.91453944127736e61 * cos(theta) ** 10 + 5.12823064627864e59 * cos(theta) ** 8 - 8.20048304373512e57 * cos(theta) ** 6 + 6.76607511859333e55 * cos(theta) ** 4 - 2.15823767738224e53 * cos(theta) ** 2 + 1.11249364813518e50 ) * sin(28 * phi) ) # @torch.jit.script def Yl68_m_minus_27(theta, phi): return ( 2.65726644395734e-49 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.49431089965672e66 * cos(theta) ** 41 - 9.07655509421117e66 * cos(theta) ** 39 + 2.52846891910168e67 * cos(theta) ** 37 - 4.28488625985171e67 * cos(theta) ** 35 + 4.94090566785226e67 * cos(theta) ** 33 - 4.10834361043463e67 * cos(theta) ** 31 + 2.54717303846947e67 * cos(theta) ** 29 - 1.20110598561975e67 * cos(theta) ** 27 + 4.35525000984022e66 * cos(theta) ** 25 - 1.21995798594964e66 * cos(theta) ** 23 + 2.63802880722444e65 * cos(theta) ** 21 - 4.37933635981922e64 * cos(theta) ** 19 + 5.52261443605521e63 * cos(theta) ** 17 - 5.20495885865218e62 * cos(theta) ** 15 + 3.58139371008177e61 * cos(theta) ** 13 - 1.74049040116124e60 * cos(theta) ** 11 + 5.69803405142071e58 * cos(theta) ** 9 - 1.17149757767645e57 * cos(theta) ** 7 + 1.35321502371867e55 * cos(theta) ** 5 - 7.19412559127414e52 * cos(theta) ** 3 + 1.11249364813518e50 * cos(theta) ) * sin(27 * phi) ) # @torch.jit.script def Yl68_m_minus_26(theta, phi): return ( 1.67850079437529e-47 * (1.0 - cos(theta) ** 2) ** 13 * ( 3.55788309442076e64 * cos(theta) ** 42 - 2.26913877355279e65 * cos(theta) ** 40 + 6.65386557658338e65 * cos(theta) ** 38 - 1.19024618329214e66 * cos(theta) ** 36 + 1.45320754936831e66 * cos(theta) ** 34 - 1.28385737826082e66 * cos(theta) ** 32 + 8.49057679489824e65 * cos(theta) ** 30 - 4.28966423435626e65 * cos(theta) ** 28 + 1.67509615763085e65 * cos(theta) ** 26 - 5.08315827479017e64 * cos(theta) ** 24 + 1.19910400328383e64 * cos(theta) ** 22 - 2.18966817990961e63 * cos(theta) ** 20 + 3.06811913114179e62 * cos(theta) ** 18 - 3.25309928665761e61 * cos(theta) ** 16 + 2.55813836434412e60 * cos(theta) ** 14 - 1.45040866763436e59 * cos(theta) ** 12 + 5.69803405142071e57 * cos(theta) ** 10 - 1.46437197209556e56 * cos(theta) ** 8 + 2.25535837286444e54 * cos(theta) ** 6 - 1.79853139781854e52 * cos(theta) ** 4 + 5.56246824067588e49 * cos(theta) ** 2 - 2.78820463191774e46 ) * sin(26 * phi) ) # @torch.jit.script def Yl68_m_minus_25(theta, phi): return ( 1.06713583921524e-45 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 8.27414673121106e62 * cos(theta) ** 43 - 5.5344848135434e63 * cos(theta) ** 41 + 1.70611937861112e64 * cos(theta) ** 39 - 3.21688157646525e64 * cos(theta) ** 37 + 4.15202156962375e64 * cos(theta) ** 35 - 3.89047690382068e64 * cos(theta) ** 33 + 2.73889574028976e64 * cos(theta) ** 31 - 1.47919456357112e64 * cos(theta) ** 29 + 6.20405984307723e63 * cos(theta) ** 27 - 2.03326330991607e63 * cos(theta) ** 25 + 5.21349566645145e62 * cos(theta) ** 23 - 1.04269913329029e62 * cos(theta) ** 21 + 1.6147995427062e61 * cos(theta) ** 19 - 1.91358781568095e60 * cos(theta) ** 17 + 1.70542557622942e59 * cos(theta) ** 15 - 1.11569897510336e58 * cos(theta) ** 13 + 5.18003095583701e56 * cos(theta) ** 11 - 1.62707996899506e55 * cos(theta) ** 9 + 3.22194053266349e53 * cos(theta) ** 7 - 3.59706279563707e51 * cos(theta) ** 5 + 1.85415608022529e49 * cos(theta) ** 3 - 2.78820463191774e46 * cos(theta) ) * sin(25 * phi) ) # @torch.jit.script def Yl68_m_minus_24(theta, phi): return ( 6.82633375692216e-44 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.88048789345706e61 * cos(theta) ** 44 - 1.31773447941509e62 * cos(theta) ** 42 + 4.26529844652781e62 * cos(theta) ** 40 - 8.46547783280328e62 * cos(theta) ** 38 + 1.15333932489549e63 * cos(theta) ** 36 - 1.14425791288843e63 * cos(theta) ** 34 + 8.55904918840549e62 * cos(theta) ** 32 - 4.93064854523708e62 * cos(theta) ** 30 + 2.21573565824187e62 * cos(theta) ** 28 - 7.82024349967718e61 * cos(theta) ** 26 + 2.17228986102144e61 * cos(theta) ** 24 - 4.73954151495587e60 * cos(theta) ** 22 + 8.07399771353101e59 * cos(theta) ** 20 - 1.06310434204497e59 * cos(theta) ** 18 + 1.06589098514338e58 * cos(theta) ** 16 - 7.9692783935954e56 * cos(theta) ** 14 + 4.31669246319751e55 * cos(theta) ** 12 - 1.62707996899506e54 * cos(theta) ** 10 + 4.02742566582936e52 * cos(theta) ** 8 - 5.99510465939512e50 * cos(theta) ** 6 + 4.63539020056324e48 * cos(theta) ** 4 - 1.39410231595887e46 * cos(theta) ** 2 + 6.8137943106494e42 ) * sin(24 * phi) ) # @torch.jit.script def Yl68_m_minus_23(theta, phi): return ( 4.39225644517833e-42 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 4.17886198546013e59 * cos(theta) ** 45 - 3.06449878933743e60 * cos(theta) ** 43 + 1.04031669427507e61 * cos(theta) ** 41 - 2.17063534174443e61 * cos(theta) ** 39 + 3.11713331052834e61 * cos(theta) ** 37 - 3.26930832253838e61 * cos(theta) ** 35 + 2.59365126921378e61 * cos(theta) ** 33 - 1.59053178878615e61 * cos(theta) ** 31 + 7.64046778704092e60 * cos(theta) ** 29 - 2.89638648136192e60 * cos(theta) ** 27 + 8.68915944408576e59 * cos(theta) ** 25 - 2.06067022389386e59 * cos(theta) ** 23 + 3.84476081596715e58 * cos(theta) ** 21 - 5.595286010763e57 * cos(theta) ** 19 + 6.26994697143167e56 * cos(theta) ** 17 - 5.31285226239693e55 * cos(theta) ** 15 + 3.32053266399808e54 * cos(theta) ** 13 - 1.47916360817733e53 * cos(theta) ** 11 + 4.47491740647707e51 * cos(theta) ** 9 - 8.56443522770731e49 * cos(theta) ** 7 + 9.27078040112647e47 * cos(theta) ** 5 - 4.64700771986289e45 * cos(theta) ** 3 + 6.8137943106494e42 * cos(theta) ) * sin(23 * phi) ) # @torch.jit.script def Yl68_m_minus_22(theta, phi): return ( 2.84175937094191e-40 * (1.0 - cos(theta) ** 2) ** 11 * ( 9.08448257708724e57 * cos(theta) ** 46 - 6.96476997576688e58 * cos(theta) ** 44 + 2.47694451017875e59 * cos(theta) ** 42 - 5.42658835436108e59 * cos(theta) ** 40 + 8.20298239612721e59 * cos(theta) ** 38 - 9.08141200705107e59 * cos(theta) ** 36 + 7.6283860859229e59 * cos(theta) ** 34 - 4.97041183995673e59 * cos(theta) ** 32 + 2.54682259568031e59 * cos(theta) ** 30 - 1.03442374334354e59 * cos(theta) ** 28 + 3.34198440157144e58 * cos(theta) ** 26 - 8.58612593289106e57 * cos(theta) ** 24 + 1.74761855271234e57 * cos(theta) ** 22 - 2.7976430053815e56 * cos(theta) ** 20 + 3.4833038730176e55 * cos(theta) ** 18 - 3.32053266399808e54 * cos(theta) ** 16 + 2.37180904571292e53 * cos(theta) ** 14 - 1.23263634014777e52 * cos(theta) ** 12 + 4.47491740647707e50 * cos(theta) ** 10 - 1.07055440346341e49 * cos(theta) ** 8 + 1.54513006685441e47 * cos(theta) ** 6 - 1.16175192996572e45 * cos(theta) ** 4 + 3.4068971553247e42 * cos(theta) ** 2 - 1.62775783818667e39 ) * sin(22 * phi) ) # @torch.jit.script def Yl68_m_minus_21(theta, phi): return ( 1.84823625230872e-38 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.93286863342282e56 * cos(theta) ** 47 - 1.54772666128153e57 * cos(theta) ** 45 + 5.76033607018314e57 * cos(theta) ** 43 - 1.32355813521002e58 * cos(theta) ** 41 + 2.1033288195198e58 * cos(theta) ** 39 - 2.45443567758137e58 * cos(theta) ** 37 + 2.17953888169226e58 * cos(theta) ** 35 - 1.50618540604749e58 * cos(theta) ** 33 + 8.21555676025906e57 * cos(theta) ** 31 - 3.56697842532256e57 * cos(theta) ** 29 + 1.23777200058202e57 * cos(theta) ** 27 - 3.43445037315643e56 * cos(theta) ** 25 + 7.59834153353191e55 * cos(theta) ** 23 - 1.33221095494357e55 * cos(theta) ** 21 + 1.833317827904e54 * cos(theta) ** 19 - 1.95325450823417e53 * cos(theta) ** 17 + 1.58120603047528e52 * cos(theta) ** 15 - 9.48181800113673e50 * cos(theta) ** 13 + 4.06810673316097e49 * cos(theta) ** 11 - 1.18950489273713e48 * cos(theta) ** 9 + 2.20732866693487e46 * cos(theta) ** 7 - 2.32350385993145e44 * cos(theta) ** 5 + 1.13563238510823e42 * cos(theta) ** 3 - 1.62775783818667e39 * cos(theta) ) * sin(21 * phi) ) # @torch.jit.script def Yl68_m_minus_20(theta, phi): return ( 1.2080171682495e-36 * (1.0 - cos(theta) ** 2) ** 10 * ( 4.0268096529642e54 * cos(theta) ** 48 - 3.36462317669898e55 * cos(theta) ** 46 + 1.30916728867799e56 * cos(theta) ** 44 - 3.15132889335719e56 * cos(theta) ** 42 + 5.25832204879949e56 * cos(theta) ** 40 - 6.45904125679308e56 * cos(theta) ** 38 + 6.05427467136738e56 * cos(theta) ** 36 - 4.42995707661028e56 * cos(theta) ** 34 + 2.56736148758096e56 * cos(theta) ** 32 - 1.18899280844085e56 * cos(theta) ** 30 + 4.42061428779292e55 * cos(theta) ** 28 - 1.32094245121401e55 * cos(theta) ** 26 + 3.16597563897163e54 * cos(theta) ** 24 - 6.0555043406526e53 * cos(theta) ** 22 + 9.16658913951999e52 * cos(theta) ** 20 - 1.08514139346343e52 * cos(theta) ** 18 + 9.88253769047048e50 * cos(theta) ** 16 - 6.77272714366909e49 * cos(theta) ** 14 + 3.39008894430081e48 * cos(theta) ** 12 - 1.18950489273713e47 * cos(theta) ** 10 + 2.75916083366859e45 * cos(theta) ** 8 - 3.87250643321908e43 * cos(theta) ** 6 + 2.83908096277058e41 * cos(theta) ** 4 - 8.13878919093335e38 * cos(theta) ** 2 + 3.81029456504371e35 ) * sin(20 * phi) ) # @torch.jit.script def Yl68_m_minus_19(theta, phi): return ( 7.93254386973263e-35 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 8.21797888360041e52 * cos(theta) ** 49 - 7.1587727163808e53 * cos(theta) ** 47 + 2.90926064150663e54 * cos(theta) ** 45 - 7.32867184501671e54 * cos(theta) ** 43 + 1.28251757287793e55 * cos(theta) ** 41 - 1.65616442481874e55 * cos(theta) ** 39 + 1.63629045172091e55 * cos(theta) ** 37 - 1.26570202188865e55 * cos(theta) ** 35 + 7.77988329569987e54 * cos(theta) ** 33 - 3.83546067238985e54 * cos(theta) ** 31 + 1.52434975441135e54 * cos(theta) ** 29 - 4.89237944894078e53 * cos(theta) ** 27 + 1.26639025558865e53 * cos(theta) ** 25 - 2.63282797419678e52 * cos(theta) ** 23 + 4.36504244739047e51 * cos(theta) ** 21 - 5.71127049191277e50 * cos(theta) ** 19 + 5.81325746498264e49 * cos(theta) ** 17 - 4.51515142911273e48 * cos(theta) ** 15 + 2.60776072638524e47 * cos(theta) ** 13 - 1.08136808430648e46 * cos(theta) ** 11 + 3.06573425963177e44 * cos(theta) ** 9 - 5.53215204745582e42 * cos(theta) ** 7 + 5.67816192554117e40 * cos(theta) ** 5 - 2.71292973031112e38 * cos(theta) ** 3 + 3.81029456504371e35 * cos(theta) ) * sin(19 * phi) ) # @torch.jit.script def Yl68_m_minus_18(theta, phi): return ( 5.23187200977587e-33 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.64359577672008e51 * cos(theta) ** 50 - 1.49141098257933e52 * cos(theta) ** 48 + 6.32447965544921e52 * cos(theta) ** 46 - 1.6656072375038e53 * cos(theta) ** 44 + 3.05361326875696e53 * cos(theta) ** 42 - 4.14041106204684e53 * cos(theta) ** 40 + 4.30602750452872e53 * cos(theta) ** 38 - 3.5158389496907e53 * cos(theta) ** 36 + 2.28820096932349e53 * cos(theta) ** 34 - 1.19858146012183e53 * cos(theta) ** 32 + 5.08116584803783e52 * cos(theta) ** 30 - 1.74727837462171e52 * cos(theta) ** 28 + 4.87073175226405e51 * cos(theta) ** 26 - 1.09701165591533e51 * cos(theta) ** 24 + 1.98411020335931e50 * cos(theta) ** 22 - 2.85563524595638e49 * cos(theta) ** 20 + 3.22958748054591e48 * cos(theta) ** 18 - 2.82196964319546e47 * cos(theta) ** 16 + 1.86268623313231e46 * cos(theta) ** 14 - 9.01140070255399e44 * cos(theta) ** 12 + 3.06573425963177e43 * cos(theta) ** 10 - 6.91519005931978e41 * cos(theta) ** 8 + 9.46360320923528e39 * cos(theta) ** 6 - 6.78232432577779e37 * cos(theta) ** 4 + 1.90514728252185e35 * cos(theta) ** 2 - 8.75929785067518e31 ) * sin(18 * phi) ) # @torch.jit.script def Yl68_m_minus_17(theta, phi): return ( 3.46490574202534e-31 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 3.2227368170982e49 * cos(theta) ** 51 - 3.04369588281497e50 * cos(theta) ** 49 + 1.34563396924451e51 * cos(theta) ** 47 - 3.70134941667511e51 * cos(theta) ** 45 + 7.10142620641154e51 * cos(theta) ** 43 - 1.00985635659679e52 * cos(theta) ** 41 + 1.10410961654583e52 * cos(theta) ** 39 - 9.50226743159647e51 * cos(theta) ** 37 + 6.53771705520997e51 * cos(theta) ** 35 - 3.63206503067221e51 * cos(theta) ** 33 + 1.63908575743156e51 * cos(theta) ** 31 - 6.02509784352312e50 * cos(theta) ** 29 + 1.80397472306076e50 * cos(theta) ** 27 - 4.3880466236613e49 * cos(theta) ** 25 + 8.6265661015622e48 * cos(theta) ** 23 - 1.35982630759828e48 * cos(theta) ** 21 + 1.69978288449785e47 * cos(theta) ** 19 - 1.65998214305615e46 * cos(theta) ** 17 + 1.24179082208821e45 * cos(theta) ** 15 - 6.9318466942723e43 * cos(theta) ** 13 + 2.78703114511979e42 * cos(theta) ** 11 - 7.68354451035531e40 * cos(theta) ** 9 + 1.35194331560504e39 * cos(theta) ** 7 - 1.35646486515556e37 * cos(theta) ** 5 + 6.35049094173951e34 * cos(theta) ** 3 - 8.75929785067518e31 * cos(theta) ) * sin(17 * phi) ) # @torch.jit.script def Yl68_m_minus_16(theta, phi): return ( 2.303576075604e-29 * (1.0 - cos(theta) ** 2) ** 8 * ( 6.19757080211193e47 * cos(theta) ** 52 - 6.08739176562993e48 * cos(theta) ** 50 + 2.80340410259273e49 * cos(theta) ** 48 - 8.04641177538067e49 * cos(theta) ** 46 + 1.61396050145717e50 * cos(theta) ** 44 - 2.40441989665903e50 * cos(theta) ** 42 + 2.76027404136456e50 * cos(theta) ** 40 - 2.50059669252539e50 * cos(theta) ** 38 + 1.8160325153361e50 * cos(theta) ** 36 - 1.06825442078594e50 * cos(theta) ** 34 + 5.12214299197362e49 * cos(theta) ** 32 - 2.00836594784104e49 * cos(theta) ** 30 + 6.44276686807414e48 * cos(theta) ** 28 - 1.68771023986973e48 * cos(theta) ** 26 + 3.59440254231758e47 * cos(theta) ** 24 - 6.18102867090126e46 * cos(theta) ** 22 + 8.49891442248924e45 * cos(theta) ** 20 - 9.22212301697861e44 * cos(theta) ** 18 + 7.76119263805131e43 * cos(theta) ** 16 - 4.95131906733736e42 * cos(theta) ** 14 + 2.32252595426649e41 * cos(theta) ** 12 - 7.68354451035531e39 * cos(theta) ** 10 + 1.6899291445063e38 * cos(theta) ** 8 - 2.26077477525926e36 * cos(theta) ** 6 + 1.58762273543488e34 * cos(theta) ** 4 - 4.37964892533759e31 * cos(theta) ** 2 + 1.98174159517538e28 ) * sin(16 * phi) ) # @torch.jit.script def Yl68_m_minus_15(theta, phi): return ( 1.53702218920533e-27 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.16935298153055e46 * cos(theta) ** 53 - 1.19360622855489e47 * cos(theta) ** 51 + 5.72123286243415e47 * cos(theta) ** 49 - 1.71200250540014e48 * cos(theta) ** 47 + 3.58657889212704e48 * cos(theta) ** 45 - 5.59167417827681e48 * cos(theta) ** 43 + 6.73237571064528e48 * cos(theta) ** 41 - 6.41178639109074e48 * cos(theta) ** 39 + 4.90819598739487e48 * cos(theta) ** 37 - 3.05215548795984e48 * cos(theta) ** 35 + 1.55216454302231e48 * cos(theta) ** 33 - 6.4785998317453e47 * cos(theta) ** 31 + 2.22164374761177e47 * cos(theta) ** 29 - 6.25077866618419e46 * cos(theta) ** 27 + 1.43776101692703e46 * cos(theta) ** 25 - 2.68740376995707e45 * cos(theta) ** 23 + 4.04710210594726e44 * cos(theta) ** 21 - 4.85374895630453e43 * cos(theta) ** 19 + 4.56540743414783e42 * cos(theta) ** 17 - 3.3008793782249e41 * cos(theta) ** 15 + 1.78655842635884e40 * cos(theta) ** 13 - 6.98504046395937e38 * cos(theta) ** 11 + 1.87769904945144e37 * cos(theta) ** 9 - 3.22967825037038e35 * cos(theta) ** 7 + 3.17524547086975e33 * cos(theta) ** 5 - 1.45988297511253e31 * cos(theta) ** 3 + 1.98174159517538e28 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl68_m_minus_14(theta, phi): return ( 1.02900163147154e-25 * (1.0 - cos(theta) ** 2) ** 7 * ( 2.16546848431584e44 * cos(theta) ** 54 - 2.29539659337479e45 * cos(theta) ** 52 + 1.14424657248683e46 * cos(theta) ** 50 - 3.5666718862503e46 * cos(theta) ** 48 + 7.79691063505879e46 * cos(theta) ** 46 - 1.27083504051746e47 * cos(theta) ** 44 + 1.60294659777268e47 * cos(theta) ** 42 - 1.60294659777268e47 * cos(theta) ** 40 + 1.29163052299865e47 * cos(theta) ** 38 - 8.47820968877733e46 * cos(theta) ** 36 + 4.56518983241856e46 * cos(theta) ** 34 - 2.0245624474204e46 * cos(theta) ** 32 + 7.4054791587059e45 * cos(theta) ** 30 - 2.23242095220864e45 * cos(theta) ** 28 + 5.52985006510397e44 * cos(theta) ** 26 - 1.11975157081545e44 * cos(theta) ** 24 + 1.83959186633966e43 * cos(theta) ** 22 - 2.42687447815227e42 * cos(theta) ** 20 + 2.53633746341546e41 * cos(theta) ** 18 - 2.06304961139057e40 * cos(theta) ** 16 + 1.27611316168489e39 * cos(theta) ** 14 - 5.82086705329948e37 * cos(theta) ** 12 + 1.87769904945144e36 * cos(theta) ** 10 - 4.03709781296297e34 * cos(theta) ** 8 + 5.29207578478292e32 * cos(theta) ** 6 - 3.64970743778133e30 * cos(theta) ** 4 + 9.9087079758769e27 * cos(theta) ** 2 - 4.42155643724985e24 ) * sin(14 * phi) ) # @torch.jit.script def Yl68_m_minus_13(theta, phi): return ( 6.9104182598781e-24 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 3.93721542602879e42 * cos(theta) ** 55 - 4.33093696863167e43 * cos(theta) ** 53 + 2.24362073036633e44 * cos(theta) ** 51 - 7.27892221683734e44 * cos(theta) ** 49 + 1.65891715639549e45 * cos(theta) ** 47 - 2.82407786781657e45 * cos(theta) ** 45 + 3.72778278551787e45 * cos(theta) ** 43 - 3.90962584822606e45 * cos(theta) ** 41 + 3.31187313589398e45 * cos(theta) ** 39 - 2.29140802399387e45 * cos(theta) ** 37 + 1.30433995211959e45 * cos(theta) ** 35 - 6.13503771945577e44 * cos(theta) ** 33 + 2.38886424474384e44 * cos(theta) ** 31 - 7.69800328347807e43 * cos(theta) ** 29 + 2.04809261670518e43 * cos(theta) ** 27 - 4.47900628326178e42 * cos(theta) ** 25 + 7.99822550582462e41 * cos(theta) ** 23 - 1.15565451340584e41 * cos(theta) ** 21 + 1.33491445442919e40 * cos(theta) ** 19 - 1.21355859493563e39 * cos(theta) ** 17 + 8.50742107789924e37 * cos(theta) ** 15 - 4.4775900409996e36 * cos(theta) ** 13 + 1.70699913586495e35 * cos(theta) ** 11 - 4.48566423662553e33 * cos(theta) ** 9 + 7.5601082639756e31 * cos(theta) ** 7 - 7.29941487556265e29 * cos(theta) ** 5 + 3.30290265862563e27 * cos(theta) ** 3 - 4.42155643724985e24 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl68_m_minus_12(theta, phi): return ( 4.65415515499867e-22 * (1.0 - cos(theta) ** 2) ** 6 * ( 7.03074183219428e40 * cos(theta) ** 56 - 8.02025364561421e41 * cos(theta) ** 54 + 4.31465525070449e42 * cos(theta) ** 52 - 1.45578444336747e43 * cos(theta) ** 50 + 3.45607740915726e43 * cos(theta) ** 48 - 6.13929971264472e43 * cos(theta) ** 46 + 8.47223360344971e43 * cos(theta) ** 44 - 9.30863297196681e43 * cos(theta) ** 42 + 8.27968283973494e43 * cos(theta) ** 40 - 6.03002111577335e43 * cos(theta) ** 38 + 3.62316653366552e43 * cos(theta) ** 36 - 1.80442285866346e43 * cos(theta) ** 34 + 7.4652007648245e42 * cos(theta) ** 32 - 2.56600109449269e42 * cos(theta) ** 30 + 7.31461648823277e41 * cos(theta) ** 28 - 1.72269472433146e41 * cos(theta) ** 26 + 3.33259396076026e40 * cos(theta) ** 24 - 5.25297506093564e39 * cos(theta) ** 22 + 6.67457227214595e38 * cos(theta) ** 20 - 6.74199219408681e37 * cos(theta) ** 18 + 5.31713817368702e36 * cos(theta) ** 16 - 3.198278600714e35 * cos(theta) ** 14 + 1.42249927988746e34 * cos(theta) ** 12 - 4.48566423662553e32 * cos(theta) ** 10 + 9.45013532996951e30 * cos(theta) ** 8 - 1.21656914592711e29 * cos(theta) ** 6 + 8.25725664656409e26 * cos(theta) ** 4 - 2.21077821862492e24 * cos(theta) ** 2 + 9.7476993766531e20 ) * sin(12 * phi) ) # @torch.jit.script def Yl68_m_minus_11(theta, phi): return ( 3.14284728459738e-20 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.23346347933233e39 * cos(theta) ** 57 - 1.45822793556622e40 * cos(theta) ** 55 + 8.14085896359337e40 * cos(theta) ** 53 - 2.85447930072053e41 * cos(theta) ** 51 + 7.05321920236176e41 * cos(theta) ** 49 - 1.30623398141377e42 * cos(theta) ** 47 + 1.88271857854438e42 * cos(theta) ** 45 - 2.16479836557368e42 * cos(theta) ** 43 + 2.01943483895974e42 * cos(theta) ** 41 - 1.5461592604547e42 * cos(theta) ** 39 + 9.79234198287979e41 * cos(theta) ** 37 - 5.15549388189561e41 * cos(theta) ** 35 + 2.26218204994682e41 * cos(theta) ** 33 - 8.27742288546029e40 * cos(theta) ** 31 + 2.52228154766647e40 * cos(theta) ** 29 - 6.38035083085724e39 * cos(theta) ** 27 + 1.3330375843041e39 * cos(theta) ** 25 - 2.2839022004068e38 * cos(theta) ** 23 + 3.17836774864093e37 * cos(theta) ** 21 - 3.54841694425622e36 * cos(theta) ** 19 + 3.12772833746296e35 * cos(theta) ** 17 - 2.13218573380933e34 * cos(theta) ** 15 + 1.09423021529804e33 * cos(theta) ** 13 - 4.07787657875048e31 * cos(theta) ** 11 + 1.05001503666328e30 * cos(theta) ** 9 - 1.73795592275301e28 * cos(theta) ** 7 + 1.65145132931282e26 * cos(theta) ** 5 - 7.36926072874974e23 * cos(theta) ** 3 + 9.7476993766531e20 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl68_m_minus_10(theta, phi): return ( 2.12740816128001e-18 * (1.0 - cos(theta) ** 2) ** 5 * ( 2.12666117126264e37 * cos(theta) ** 58 - 2.60397845636825e38 * cos(theta) ** 56 + 1.50756647473951e39 * cos(theta) ** 54 - 5.4893832706164e39 * cos(theta) ** 52 + 1.41064384047235e40 * cos(theta) ** 50 - 2.72132079461202e40 * cos(theta) ** 48 + 4.09286647509648e40 * cos(theta) ** 46 - 4.91999628539472e40 * cos(theta) ** 44 + 4.80817818799939e40 * cos(theta) ** 42 - 3.86539815113676e40 * cos(theta) ** 40 + 2.57693210075784e40 * cos(theta) ** 38 - 1.43208163385989e40 * cos(theta) ** 36 + 6.65347661749064e39 * cos(theta) ** 34 - 2.58669465170634e39 * cos(theta) ** 32 + 8.40760515888824e38 * cos(theta) ** 30 - 2.27869672530616e38 * cos(theta) ** 28 + 5.12706763193886e37 * cos(theta) ** 26 - 9.51625916836167e36 * cos(theta) ** 24 + 1.4447126130186e36 * cos(theta) ** 22 - 1.77420847212811e35 * cos(theta) ** 20 + 1.73762685414609e34 * cos(theta) ** 18 - 1.33261608363083e33 * cos(theta) ** 16 + 7.81593010927175e31 * cos(theta) ** 14 - 3.39823048229206e30 * cos(theta) ** 12 + 1.05001503666328e29 * cos(theta) ** 10 - 2.17244490344127e27 * cos(theta) ** 8 + 2.75241888218803e25 * cos(theta) ** 6 - 1.84231518218744e23 * cos(theta) ** 4 + 4.87384968832655e20 * cos(theta) ** 2 - 2.12738965007706e17 ) * sin(10 * phi) ) # @torch.jit.script def Yl68_m_minus_9(theta, phi): return ( 1.44319205099325e-16 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 3.60451045976718e35 * cos(theta) ** 59 - 4.5683832567864e36 * cos(theta) ** 57 + 2.74102995407184e37 * cos(theta) ** 55 - 1.03573269256913e38 * cos(theta) ** 53 + 2.76596831465167e38 * cos(theta) ** 51 - 5.55371590737147e38 * cos(theta) ** 49 + 8.70822654275846e38 * cos(theta) ** 47 - 1.09333250786549e39 * cos(theta) ** 45 + 1.11818097395335e39 * cos(theta) ** 43 - 9.42780036862625e38 * cos(theta) ** 41 + 6.60751820707139e38 * cos(theta) ** 39 - 3.87049090232403e38 * cos(theta) ** 37 + 1.90099331928304e38 * cos(theta) ** 35 - 7.83846864153437e37 * cos(theta) ** 33 + 2.71213069641556e37 * cos(theta) ** 31 - 7.85757491484882e36 * cos(theta) ** 29 + 1.89891393775513e36 * cos(theta) ** 27 - 3.80650366734467e35 * cos(theta) ** 25 + 6.28135918703741e34 * cos(theta) ** 23 - 8.44861177203862e33 * cos(theta) ** 21 + 9.14540449550572e32 * cos(theta) ** 19 - 7.8389181390049e31 * cos(theta) ** 17 + 5.21062007284783e30 * cos(theta) ** 15 - 2.61402344791697e29 * cos(theta) ** 13 + 9.54559124239344e27 * cos(theta) ** 11 - 2.4138276704903e26 * cos(theta) ** 9 + 3.93202697455433e24 * cos(theta) ** 7 - 3.68463036437487e22 * cos(theta) ** 5 + 1.62461656277552e20 * cos(theta) ** 3 - 2.12738965007706e17 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl68_m_minus_8(theta, phi): return ( 9.80946034588623e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 6.0075174329453e33 * cos(theta) ** 60 - 7.87652285652828e34 * cos(theta) ** 58 + 4.89469634655686e35 * cos(theta) ** 56 - 1.91802350475765e36 * cos(theta) ** 54 + 5.3191698358686e36 * cos(theta) ** 52 - 1.11074318147429e37 * cos(theta) ** 50 + 1.81421386307468e37 * cos(theta) ** 48 - 2.37680979970759e37 * cos(theta) ** 46 + 2.54132039534851e37 * cos(theta) ** 44 - 2.24471437348244e37 * cos(theta) ** 42 + 1.65187955176785e37 * cos(theta) ** 40 - 1.01855023745369e37 * cos(theta) ** 38 + 5.28053699800845e36 * cos(theta) ** 36 - 2.30543195339246e36 * cos(theta) ** 34 + 8.47540842629863e35 * cos(theta) ** 32 - 2.61919163828294e35 * cos(theta) ** 30 + 6.78183549198261e34 * cos(theta) ** 28 - 1.46403987205564e34 * cos(theta) ** 26 + 2.61723299459892e33 * cos(theta) ** 24 - 3.84027807819937e32 * cos(theta) ** 22 + 4.57270224775286e31 * cos(theta) ** 20 - 4.35495452166939e30 * cos(theta) ** 18 + 3.2566375455299e29 * cos(theta) ** 16 - 1.86715960565498e28 * cos(theta) ** 14 + 7.9546593686612e26 * cos(theta) ** 12 - 2.4138276704903e25 * cos(theta) ** 10 + 4.91503371819291e23 * cos(theta) ** 8 - 6.14105060729145e21 * cos(theta) ** 6 + 4.06154140693879e19 * cos(theta) ** 4 - 1.06369482503853e17 * cos(theta) ** 2 + 46047395023313.0 ) * sin(8 * phi) ) # @torch.jit.script def Yl68_m_minus_7(theta, phi): return ( 6.67908283313328e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 9.84838923433656e31 * cos(theta) ** 61 - 1.33500387398784e33 * cos(theta) ** 59 + 8.58718657290677e33 * cos(theta) ** 57 - 3.48731546319573e34 * cos(theta) ** 55 + 1.00361695016389e35 * cos(theta) ** 53 - 2.17792780681234e35 * cos(theta) ** 51 + 3.70247727158098e35 * cos(theta) ** 49 - 5.05704212703743e35 * cos(theta) ** 47 + 5.64737865633003e35 * cos(theta) ** 45 - 5.22026598484288e35 * cos(theta) ** 43 + 4.02897451650694e35 * cos(theta) ** 41 - 2.61166727552229e35 * cos(theta) ** 39 + 1.4271721616239e35 * cos(theta) ** 37 - 6.58694843826417e34 * cos(theta) ** 35 + 2.56830558372686e34 * cos(theta) ** 33 - 8.44900528478368e33 * cos(theta) ** 31 + 2.33856396275263e33 * cos(theta) ** 29 - 5.42236989650238e32 * cos(theta) ** 27 + 1.04689319783957e32 * cos(theta) ** 25 - 1.66968612095625e31 * cos(theta) ** 23 + 2.17747726083469e30 * cos(theta) ** 21 - 2.29208132719442e29 * cos(theta) ** 19 + 1.91566914442935e28 * cos(theta) ** 17 - 1.24477307043665e27 * cos(theta) ** 15 + 6.118968745124e25 * cos(theta) ** 13 - 2.19438879135481e24 * cos(theta) ** 11 + 5.4611485757699e22 * cos(theta) ** 9 - 8.77292943898779e20 * cos(theta) ** 7 + 8.12308281387758e18 * cos(theta) ** 5 - 3.5456494167951e16 * cos(theta) ** 3 + 46047395023313.0 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl68_m_minus_6(theta, phi): return ( 4.55452726237454e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.5884498765059e30 * cos(theta) ** 62 - 2.22500645664641e31 * cos(theta) ** 60 + 1.48054940912186e32 * cos(theta) ** 58 - 6.22734904142094e32 * cos(theta) ** 56 + 1.8585499077109e33 * cos(theta) ** 54 - 4.18832270540835e33 * cos(theta) ** 52 + 7.40495454316196e33 * cos(theta) ** 50 - 1.0535504431328e34 * cos(theta) ** 48 + 1.22769101224566e34 * cos(theta) ** 46 - 1.18642408746429e34 * cos(theta) ** 44 + 9.59279646787367e33 * cos(theta) ** 42 - 6.52916818880572e33 * cos(theta) ** 40 + 3.75571621479975e33 * cos(theta) ** 38 - 1.82970789951783e33 * cos(theta) ** 36 + 7.55383995213781e32 * cos(theta) ** 34 - 2.6403141514949e32 * cos(theta) ** 32 + 7.79521320917542e31 * cos(theta) ** 30 - 1.93656067732228e31 * cos(theta) ** 28 + 4.02651229938295e30 * cos(theta) ** 26 - 6.95702550398437e29 * cos(theta) ** 24 + 9.89762391288498e28 * cos(theta) ** 22 - 1.14604066359721e28 * cos(theta) ** 20 + 1.06426063579408e27 * cos(theta) ** 18 - 7.77983169022909e25 * cos(theta) ** 16 + 4.37069196080286e24 * cos(theta) ** 14 - 1.82865732612901e23 * cos(theta) ** 12 + 5.4611485757699e21 * cos(theta) ** 10 - 1.09661617987347e20 * cos(theta) ** 8 + 1.35384713564626e18 * cos(theta) ** 6 - 8.86412354198776e15 * cos(theta) ** 4 + 23023697511656.5 * cos(theta) ** 2 - 9902665596.41141 ) * sin(6 * phi) ) # @torch.jit.script def Yl68_m_minus_5(theta, phi): return ( 3.10977838498613e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 2.52134901032682e28 * cos(theta) ** 63 - 3.6475515682728e29 * cos(theta) ** 61 + 2.50940577817264e30 * cos(theta) ** 59 - 1.09251737568788e31 * cos(theta) ** 57 + 3.37918165038346e31 * cos(theta) ** 55 - 7.90249567058179e31 * cos(theta) ** 53 + 1.45195187120823e32 * cos(theta) ** 51 - 2.15010294516898e32 * cos(theta) ** 49 + 2.61210853669289e32 * cos(theta) ** 47 - 2.63649797214287e32 * cos(theta) ** 45 + 2.23088289950551e32 * cos(theta) ** 43 - 1.59248004605017e32 * cos(theta) ** 41 + 9.63004157640961e31 * cos(theta) ** 39 - 4.94515648518331e31 * cos(theta) ** 37 + 2.15823998632509e31 * cos(theta) ** 35 - 8.00095197422697e30 * cos(theta) ** 33 + 2.51458490618562e30 * cos(theta) ** 31 - 6.67779543904233e29 * cos(theta) ** 29 + 1.49130085162332e29 * cos(theta) ** 27 - 2.78281020159375e28 * cos(theta) ** 25 + 4.3033147447326e27 * cos(theta) ** 23 - 5.45733649332004e26 * cos(theta) ** 21 + 5.60137176733728e25 * cos(theta) ** 19 - 4.5763715824877e24 * cos(theta) ** 17 + 2.91379464053524e23 * cos(theta) ** 15 - 1.4066594816377e22 * cos(theta) ** 13 + 4.96468052342718e20 * cos(theta) ** 11 - 1.21846242208164e19 * cos(theta) ** 9 + 1.93406733663752e17 * cos(theta) ** 7 - 1.77282470839755e15 * cos(theta) ** 5 + 7674565837218.84 * cos(theta) ** 3 - 9902665596.41141 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl68_m_minus_4(theta, phi): return ( 2.12559665347432e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 3.93960782863566e26 * cos(theta) ** 64 - 5.88314769076258e27 * cos(theta) ** 62 + 4.18234296362107e28 * cos(theta) ** 60 - 1.88365064773773e29 * cos(theta) ** 58 + 6.03425294711332e29 * cos(theta) ** 56 - 1.46342512418181e30 * cos(theta) ** 54 + 2.7922151369389e30 * cos(theta) ** 52 - 4.30020589033795e30 * cos(theta) ** 50 + 5.44189278477685e30 * cos(theta) ** 48 - 5.73151733074537e30 * cos(theta) ** 46 + 5.07018840796706e30 * cos(theta) ** 44 - 3.79161915726232e30 * cos(theta) ** 42 + 2.4075103941024e30 * cos(theta) ** 40 - 1.30135696978508e30 * cos(theta) ** 38 + 5.99511107312525e29 * cos(theta) ** 36 - 2.35322116889029e29 * cos(theta) ** 34 + 7.85807783183006e28 * cos(theta) ** 32 - 2.22593181301411e28 * cos(theta) ** 30 + 5.32607447008327e27 * cos(theta) ** 28 - 1.07031161599759e27 * cos(theta) ** 26 + 1.79304781030525e26 * cos(theta) ** 24 - 2.48060749696365e25 * cos(theta) ** 22 + 2.80068588366864e24 * cos(theta) ** 20 - 2.54242865693761e23 * cos(theta) ** 18 + 1.82112165033452e22 * cos(theta) ** 16 - 1.00475677259836e21 * cos(theta) ** 14 + 4.13723376952265e19 * cos(theta) ** 12 - 1.21846242208164e18 * cos(theta) ** 10 + 2.4175841707969e16 * cos(theta) ** 8 - 295470784732925.0 * cos(theta) ** 6 + 1918641459304.71 * cos(theta) ** 4 - 4951332798.2057 * cos(theta) ** 2 + 2119577.39649217 ) * sin(4 * phi) ) # @torch.jit.script def Yl68_m_minus_3(theta, phi): return ( 1.45413184077863e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 6.06093512097793e24 * cos(theta) ** 65 - 9.33832966787711e25 * cos(theta) ** 63 + 6.8562999403624e26 * cos(theta) ** 61 - 3.19262821650463e27 * cos(theta) ** 59 + 1.05864086791462e28 * cos(theta) ** 57 - 2.66077295305784e28 * cos(theta) ** 55 + 5.26833044705452e28 * cos(theta) ** 53 - 8.43177625556462e28 * cos(theta) ** 51 + 1.11059036424017e29 * cos(theta) ** 49 - 1.21947177249901e29 * cos(theta) ** 47 + 1.12670853510379e29 * cos(theta) ** 45 - 8.81771897037749e28 * cos(theta) ** 43 + 5.87197657098147e28 * cos(theta) ** 41 - 3.33681274303867e28 * cos(theta) ** 39 + 1.62030029003385e28 * cos(theta) ** 37 - 6.72348905397224e27 * cos(theta) ** 35 + 2.38123570661517e27 * cos(theta) ** 33 - 7.18042520327133e26 * cos(theta) ** 31 + 1.83657740347699e26 * cos(theta) ** 29 - 3.96411709628739e25 * cos(theta) ** 27 + 7.172191241221e24 * cos(theta) ** 25 - 1.07852499867985e24 * cos(theta) ** 23 + 1.33365994460411e23 * cos(theta) ** 21 - 1.33812034575664e22 * cos(theta) ** 19 + 1.07124802960854e21 * cos(theta) ** 17 - 6.69837848398905e19 * cos(theta) ** 15 + 3.18248751501742e18 * cos(theta) ** 13 - 1.10769311098331e17 * cos(theta) ** 11 + 2.68620463421878e15 * cos(theta) ** 9 - 42210112104703.6 * cos(theta) ** 7 + 383728291860.942 * cos(theta) ** 5 - 1650444266.06857 * cos(theta) ** 3 + 2119577.39649217 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl68_m_minus_2(theta, phi): return ( 0.000995416708568641 * (1.0 - cos(theta) ** 2) * ( 9.18323503178475e22 * cos(theta) ** 66 - 1.4591140106058e24 * cos(theta) ** 64 + 1.10585482909071e25 * cos(theta) ** 62 - 5.32104702750772e25 * cos(theta) ** 60 + 1.82524287571486e26 * cos(theta) ** 58 - 4.75138027331757e26 * cos(theta) ** 56 + 9.75616749454542e26 * cos(theta) ** 54 - 1.62149543376243e27 * cos(theta) ** 52 + 2.22118072848035e27 * cos(theta) ** 50 - 2.54056619270628e27 * cos(theta) ** 48 + 2.44936638066041e27 * cos(theta) ** 46 - 2.00402703872216e27 * cos(theta) ** 44 + 1.39808965975749e27 * cos(theta) ** 42 - 8.34203185759668e26 * cos(theta) ** 40 + 4.26394813166803e26 * cos(theta) ** 38 - 1.86763584832562e26 * cos(theta) ** 36 + 7.00363443122109e25 * cos(theta) ** 34 - 2.24388287602229e25 * cos(theta) ** 32 + 6.12192467825663e24 * cos(theta) ** 30 - 1.41575610581692e24 * cos(theta) ** 28 + 2.75853509277731e23 * cos(theta) ** 26 - 4.49385416116604e22 * cos(theta) ** 24 + 6.06209065729143e21 * cos(theta) ** 22 - 6.69060172878318e20 * cos(theta) ** 20 + 5.95137794226969e19 * cos(theta) ** 18 - 4.18648655249316e18 * cos(theta) ** 16 + 2.27320536786959e17 * cos(theta) ** 14 - 9.23077592486089e15 * cos(theta) ** 12 + 268620463421878.0 * cos(theta) ** 10 - 5276264013087.95 * cos(theta) ** 8 + 63954715310.157 * cos(theta) ** 6 - 412611066.517142 * cos(theta) ** 4 + 1059788.69824608 * cos(theta) ** 2 - 452.321254052959 ) * sin(2 * phi) ) # @torch.jit.script def Yl68_m_minus_1(theta, phi): return ( 0.0681696944920679 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 1.37063209429623e21 * cos(theta) ** 67 - 2.24479078554738e22 * cos(theta) ** 65 + 1.75532512554081e23 * cos(theta) ** 63 - 8.72302791394708e23 * cos(theta) ** 61 + 3.09363199273705e24 * cos(theta) ** 59 - 8.33575486546943e24 * cos(theta) ** 57 + 1.77384863537189e25 * cos(theta) ** 55 - 3.05942534672156e25 * cos(theta) ** 53 + 4.35525633035362e25 * cos(theta) ** 51 - 5.1848289647067e25 * cos(theta) ** 49 + 5.21141783119237e25 * cos(theta) ** 47 - 4.45339341938257e25 * cos(theta) ** 45 + 3.25137130176161e25 * cos(theta) ** 43 - 2.034641916487e25 * cos(theta) ** 41 + 1.09332003376103e25 * cos(theta) ** 39 - 5.04766445493412e24 * cos(theta) ** 37 + 2.00103840892031e24 * cos(theta) ** 35 - 6.79964507885542e23 * cos(theta) ** 33 + 1.97481441234085e23 * cos(theta) ** 31 - 4.88191760626526e22 * cos(theta) ** 29 + 1.0216796639916e22 * cos(theta) ** 27 - 1.79754166446642e21 * cos(theta) ** 25 + 2.63569159012671e20 * cos(theta) ** 23 - 3.18600082323009e19 * cos(theta) ** 21 + 3.13230418014194e18 * cos(theta) ** 19 - 2.46263914852539e17 * cos(theta) ** 17 + 1.51547024524639e16 * cos(theta) ** 15 - 710059686527761.0 * cos(theta) ** 13 + 24420042129261.6 * cos(theta) ** 11 - 586251557009.772 * cos(theta) ** 9 + 9136387901.451 * cos(theta) ** 7 - 82522213.3034284 * cos(theta) ** 5 + 353262.899415361 * cos(theta) ** 3 - 452.321254052959 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl68_m0(theta, phi): return ( 2.09082270908381e20 * cos(theta) ** 68 - 3.52806972688365e21 * cos(theta) ** 66 + 2.84500359555091e22 * cos(theta) ** 64 - 1.45942169176352e23 * cos(theta) ** 62 + 5.34838453318763e23 * cos(theta) ** 60 - 1.490809547046e24 * cos(theta) ** 58 + 3.28574424168939e24 * cos(theta) ** 56 - 5.87694092009484e24 * cos(theta) ** 54 + 8.68791576100796e24 * cos(theta) ** 52 - 1.07564671326765e25 * cos(theta) ** 50 + 1.12621130235288e25 * cos(theta) ** 48 - 1.00424217316526e25 * cos(theta) ** 46 + 7.66512278190298e24 * cos(theta) ** 44 - 5.02509088820528e24 * cos(theta) ** 42 + 2.83525770297821e24 * cos(theta) ** 40 - 1.37788224817633e24 * cos(theta) ** 38 + 5.76578107421403e23 * cos(theta) ** 36 - 2.07449576056815e23 * cos(theta) ** 34 + 6.40149681891493e22 * cos(theta) ** 32 - 1.68800766729495e22 * cos(theta) ** 30 + 3.78496564573868e21 * cos(theta) ** 28 - 7.17151385508382e20 * cos(theta) ** 26 + 1.13917008939503e20 * cos(theta) ** 24 - 1.50220231568576e19 * cos(theta) ** 22 + 1.62457272904218e18 * cos(theta) ** 20 - 1.41916698169202e17 * cos(theta) ** 18 + 9.82500218094477e15 * cos(theta) ** 16 - 526104534454874.0 * cos(theta) ** 14 + 21109132555288.2 * cos(theta) ** 12 - 608119925206.905 * cos(theta) ** 10 + 11846492049.4852 * cos(theta) ** 8 - 142667431.133585 * cos(theta) ** 6 + 916100.799231066 * cos(theta) ** 4 - 2345.96875603346 * cos(theta) ** 2 + 0.999986682026197 ) # @torch.jit.script def Yl68_m1(theta, phi): return ( 0.0681696944920679 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 1.37063209429623e21 * cos(theta) ** 67 - 2.24479078554738e22 * cos(theta) ** 65 + 1.75532512554081e23 * cos(theta) ** 63 - 8.72302791394708e23 * cos(theta) ** 61 + 3.09363199273705e24 * cos(theta) ** 59 - 8.33575486546943e24 * cos(theta) ** 57 + 1.77384863537189e25 * cos(theta) ** 55 - 3.05942534672156e25 * cos(theta) ** 53 + 4.35525633035362e25 * cos(theta) ** 51 - 5.1848289647067e25 * cos(theta) ** 49 + 5.21141783119237e25 * cos(theta) ** 47 - 4.45339341938257e25 * cos(theta) ** 45 + 3.25137130176161e25 * cos(theta) ** 43 - 2.034641916487e25 * cos(theta) ** 41 + 1.09332003376103e25 * cos(theta) ** 39 - 5.04766445493412e24 * cos(theta) ** 37 + 2.00103840892031e24 * cos(theta) ** 35 - 6.79964507885542e23 * cos(theta) ** 33 + 1.97481441234085e23 * cos(theta) ** 31 - 4.88191760626526e22 * cos(theta) ** 29 + 1.0216796639916e22 * cos(theta) ** 27 - 1.79754166446642e21 * cos(theta) ** 25 + 2.63569159012671e20 * cos(theta) ** 23 - 3.18600082323009e19 * cos(theta) ** 21 + 3.13230418014194e18 * cos(theta) ** 19 - 2.46263914852539e17 * cos(theta) ** 17 + 1.51547024524639e16 * cos(theta) ** 15 - 710059686527761.0 * cos(theta) ** 13 + 24420042129261.6 * cos(theta) ** 11 - 586251557009.772 * cos(theta) ** 9 + 9136387901.451 * cos(theta) ** 7 - 82522213.3034284 * cos(theta) ** 5 + 353262.899415361 * cos(theta) ** 3 - 452.321254052959 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl68_m2(theta, phi): return ( 0.000995416708568641 * (1.0 - cos(theta) ** 2) * ( 9.18323503178475e22 * cos(theta) ** 66 - 1.4591140106058e24 * cos(theta) ** 64 + 1.10585482909071e25 * cos(theta) ** 62 - 5.32104702750772e25 * cos(theta) ** 60 + 1.82524287571486e26 * cos(theta) ** 58 - 4.75138027331757e26 * cos(theta) ** 56 + 9.75616749454542e26 * cos(theta) ** 54 - 1.62149543376243e27 * cos(theta) ** 52 + 2.22118072848035e27 * cos(theta) ** 50 - 2.54056619270628e27 * cos(theta) ** 48 + 2.44936638066041e27 * cos(theta) ** 46 - 2.00402703872216e27 * cos(theta) ** 44 + 1.39808965975749e27 * cos(theta) ** 42 - 8.34203185759668e26 * cos(theta) ** 40 + 4.26394813166803e26 * cos(theta) ** 38 - 1.86763584832562e26 * cos(theta) ** 36 + 7.00363443122109e25 * cos(theta) ** 34 - 2.24388287602229e25 * cos(theta) ** 32 + 6.12192467825663e24 * cos(theta) ** 30 - 1.41575610581692e24 * cos(theta) ** 28 + 2.75853509277731e23 * cos(theta) ** 26 - 4.49385416116604e22 * cos(theta) ** 24 + 6.06209065729143e21 * cos(theta) ** 22 - 6.69060172878318e20 * cos(theta) ** 20 + 5.95137794226969e19 * cos(theta) ** 18 - 4.18648655249316e18 * cos(theta) ** 16 + 2.27320536786959e17 * cos(theta) ** 14 - 9.23077592486089e15 * cos(theta) ** 12 + 268620463421878.0 * cos(theta) ** 10 - 5276264013087.95 * cos(theta) ** 8 + 63954715310.157 * cos(theta) ** 6 - 412611066.517142 * cos(theta) ** 4 + 1059788.69824608 * cos(theta) ** 2 - 452.321254052959 ) * cos(2 * phi) ) # @torch.jit.script def Yl68_m3(theta, phi): return ( 1.45413184077863e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 6.06093512097793e24 * cos(theta) ** 65 - 9.33832966787711e25 * cos(theta) ** 63 + 6.8562999403624e26 * cos(theta) ** 61 - 3.19262821650463e27 * cos(theta) ** 59 + 1.05864086791462e28 * cos(theta) ** 57 - 2.66077295305784e28 * cos(theta) ** 55 + 5.26833044705452e28 * cos(theta) ** 53 - 8.43177625556462e28 * cos(theta) ** 51 + 1.11059036424017e29 * cos(theta) ** 49 - 1.21947177249901e29 * cos(theta) ** 47 + 1.12670853510379e29 * cos(theta) ** 45 - 8.81771897037749e28 * cos(theta) ** 43 + 5.87197657098147e28 * cos(theta) ** 41 - 3.33681274303867e28 * cos(theta) ** 39 + 1.62030029003385e28 * cos(theta) ** 37 - 6.72348905397224e27 * cos(theta) ** 35 + 2.38123570661517e27 * cos(theta) ** 33 - 7.18042520327133e26 * cos(theta) ** 31 + 1.83657740347699e26 * cos(theta) ** 29 - 3.96411709628739e25 * cos(theta) ** 27 + 7.172191241221e24 * cos(theta) ** 25 - 1.07852499867985e24 * cos(theta) ** 23 + 1.33365994460411e23 * cos(theta) ** 21 - 1.33812034575664e22 * cos(theta) ** 19 + 1.07124802960854e21 * cos(theta) ** 17 - 6.69837848398905e19 * cos(theta) ** 15 + 3.18248751501742e18 * cos(theta) ** 13 - 1.10769311098331e17 * cos(theta) ** 11 + 2.68620463421878e15 * cos(theta) ** 9 - 42210112104703.6 * cos(theta) ** 7 + 383728291860.942 * cos(theta) ** 5 - 1650444266.06857 * cos(theta) ** 3 + 2119577.39649217 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl68_m4(theta, phi): return ( 2.12559665347432e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 3.93960782863566e26 * cos(theta) ** 64 - 5.88314769076258e27 * cos(theta) ** 62 + 4.18234296362107e28 * cos(theta) ** 60 - 1.88365064773773e29 * cos(theta) ** 58 + 6.03425294711332e29 * cos(theta) ** 56 - 1.46342512418181e30 * cos(theta) ** 54 + 2.7922151369389e30 * cos(theta) ** 52 - 4.30020589033795e30 * cos(theta) ** 50 + 5.44189278477685e30 * cos(theta) ** 48 - 5.73151733074537e30 * cos(theta) ** 46 + 5.07018840796706e30 * cos(theta) ** 44 - 3.79161915726232e30 * cos(theta) ** 42 + 2.4075103941024e30 * cos(theta) ** 40 - 1.30135696978508e30 * cos(theta) ** 38 + 5.99511107312525e29 * cos(theta) ** 36 - 2.35322116889029e29 * cos(theta) ** 34 + 7.85807783183006e28 * cos(theta) ** 32 - 2.22593181301411e28 * cos(theta) ** 30 + 5.32607447008327e27 * cos(theta) ** 28 - 1.07031161599759e27 * cos(theta) ** 26 + 1.79304781030525e26 * cos(theta) ** 24 - 2.48060749696365e25 * cos(theta) ** 22 + 2.80068588366864e24 * cos(theta) ** 20 - 2.54242865693761e23 * cos(theta) ** 18 + 1.82112165033452e22 * cos(theta) ** 16 - 1.00475677259836e21 * cos(theta) ** 14 + 4.13723376952265e19 * cos(theta) ** 12 - 1.21846242208164e18 * cos(theta) ** 10 + 2.4175841707969e16 * cos(theta) ** 8 - 295470784732925.0 * cos(theta) ** 6 + 1918641459304.71 * cos(theta) ** 4 - 4951332798.2057 * cos(theta) ** 2 + 2119577.39649217 ) * cos(4 * phi) ) # @torch.jit.script def Yl68_m5(theta, phi): return ( 3.10977838498613e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 2.52134901032682e28 * cos(theta) ** 63 - 3.6475515682728e29 * cos(theta) ** 61 + 2.50940577817264e30 * cos(theta) ** 59 - 1.09251737568788e31 * cos(theta) ** 57 + 3.37918165038346e31 * cos(theta) ** 55 - 7.90249567058179e31 * cos(theta) ** 53 + 1.45195187120823e32 * cos(theta) ** 51 - 2.15010294516898e32 * cos(theta) ** 49 + 2.61210853669289e32 * cos(theta) ** 47 - 2.63649797214287e32 * cos(theta) ** 45 + 2.23088289950551e32 * cos(theta) ** 43 - 1.59248004605017e32 * cos(theta) ** 41 + 9.63004157640961e31 * cos(theta) ** 39 - 4.94515648518331e31 * cos(theta) ** 37 + 2.15823998632509e31 * cos(theta) ** 35 - 8.00095197422697e30 * cos(theta) ** 33 + 2.51458490618562e30 * cos(theta) ** 31 - 6.67779543904233e29 * cos(theta) ** 29 + 1.49130085162332e29 * cos(theta) ** 27 - 2.78281020159375e28 * cos(theta) ** 25 + 4.3033147447326e27 * cos(theta) ** 23 - 5.45733649332004e26 * cos(theta) ** 21 + 5.60137176733728e25 * cos(theta) ** 19 - 4.5763715824877e24 * cos(theta) ** 17 + 2.91379464053524e23 * cos(theta) ** 15 - 1.4066594816377e22 * cos(theta) ** 13 + 4.96468052342718e20 * cos(theta) ** 11 - 1.21846242208164e19 * cos(theta) ** 9 + 1.93406733663752e17 * cos(theta) ** 7 - 1.77282470839755e15 * cos(theta) ** 5 + 7674565837218.84 * cos(theta) ** 3 - 9902665596.41141 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl68_m6(theta, phi): return ( 4.55452726237454e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.5884498765059e30 * cos(theta) ** 62 - 2.22500645664641e31 * cos(theta) ** 60 + 1.48054940912186e32 * cos(theta) ** 58 - 6.22734904142094e32 * cos(theta) ** 56 + 1.8585499077109e33 * cos(theta) ** 54 - 4.18832270540835e33 * cos(theta) ** 52 + 7.40495454316196e33 * cos(theta) ** 50 - 1.0535504431328e34 * cos(theta) ** 48 + 1.22769101224566e34 * cos(theta) ** 46 - 1.18642408746429e34 * cos(theta) ** 44 + 9.59279646787367e33 * cos(theta) ** 42 - 6.52916818880572e33 * cos(theta) ** 40 + 3.75571621479975e33 * cos(theta) ** 38 - 1.82970789951783e33 * cos(theta) ** 36 + 7.55383995213781e32 * cos(theta) ** 34 - 2.6403141514949e32 * cos(theta) ** 32 + 7.79521320917542e31 * cos(theta) ** 30 - 1.93656067732228e31 * cos(theta) ** 28 + 4.02651229938295e30 * cos(theta) ** 26 - 6.95702550398437e29 * cos(theta) ** 24 + 9.89762391288498e28 * cos(theta) ** 22 - 1.14604066359721e28 * cos(theta) ** 20 + 1.06426063579408e27 * cos(theta) ** 18 - 7.77983169022909e25 * cos(theta) ** 16 + 4.37069196080286e24 * cos(theta) ** 14 - 1.82865732612901e23 * cos(theta) ** 12 + 5.4611485757699e21 * cos(theta) ** 10 - 1.09661617987347e20 * cos(theta) ** 8 + 1.35384713564626e18 * cos(theta) ** 6 - 8.86412354198776e15 * cos(theta) ** 4 + 23023697511656.5 * cos(theta) ** 2 - 9902665596.41141 ) * cos(6 * phi) ) # @torch.jit.script def Yl68_m7(theta, phi): return ( 6.67908283313328e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 9.84838923433656e31 * cos(theta) ** 61 - 1.33500387398784e33 * cos(theta) ** 59 + 8.58718657290677e33 * cos(theta) ** 57 - 3.48731546319573e34 * cos(theta) ** 55 + 1.00361695016389e35 * cos(theta) ** 53 - 2.17792780681234e35 * cos(theta) ** 51 + 3.70247727158098e35 * cos(theta) ** 49 - 5.05704212703743e35 * cos(theta) ** 47 + 5.64737865633003e35 * cos(theta) ** 45 - 5.22026598484288e35 * cos(theta) ** 43 + 4.02897451650694e35 * cos(theta) ** 41 - 2.61166727552229e35 * cos(theta) ** 39 + 1.4271721616239e35 * cos(theta) ** 37 - 6.58694843826417e34 * cos(theta) ** 35 + 2.56830558372686e34 * cos(theta) ** 33 - 8.44900528478368e33 * cos(theta) ** 31 + 2.33856396275263e33 * cos(theta) ** 29 - 5.42236989650238e32 * cos(theta) ** 27 + 1.04689319783957e32 * cos(theta) ** 25 - 1.66968612095625e31 * cos(theta) ** 23 + 2.17747726083469e30 * cos(theta) ** 21 - 2.29208132719442e29 * cos(theta) ** 19 + 1.91566914442935e28 * cos(theta) ** 17 - 1.24477307043665e27 * cos(theta) ** 15 + 6.118968745124e25 * cos(theta) ** 13 - 2.19438879135481e24 * cos(theta) ** 11 + 5.4611485757699e22 * cos(theta) ** 9 - 8.77292943898779e20 * cos(theta) ** 7 + 8.12308281387758e18 * cos(theta) ** 5 - 3.5456494167951e16 * cos(theta) ** 3 + 46047395023313.0 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl68_m8(theta, phi): return ( 9.80946034588623e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 6.0075174329453e33 * cos(theta) ** 60 - 7.87652285652828e34 * cos(theta) ** 58 + 4.89469634655686e35 * cos(theta) ** 56 - 1.91802350475765e36 * cos(theta) ** 54 + 5.3191698358686e36 * cos(theta) ** 52 - 1.11074318147429e37 * cos(theta) ** 50 + 1.81421386307468e37 * cos(theta) ** 48 - 2.37680979970759e37 * cos(theta) ** 46 + 2.54132039534851e37 * cos(theta) ** 44 - 2.24471437348244e37 * cos(theta) ** 42 + 1.65187955176785e37 * cos(theta) ** 40 - 1.01855023745369e37 * cos(theta) ** 38 + 5.28053699800845e36 * cos(theta) ** 36 - 2.30543195339246e36 * cos(theta) ** 34 + 8.47540842629863e35 * cos(theta) ** 32 - 2.61919163828294e35 * cos(theta) ** 30 + 6.78183549198261e34 * cos(theta) ** 28 - 1.46403987205564e34 * cos(theta) ** 26 + 2.61723299459892e33 * cos(theta) ** 24 - 3.84027807819937e32 * cos(theta) ** 22 + 4.57270224775286e31 * cos(theta) ** 20 - 4.35495452166939e30 * cos(theta) ** 18 + 3.2566375455299e29 * cos(theta) ** 16 - 1.86715960565498e28 * cos(theta) ** 14 + 7.9546593686612e26 * cos(theta) ** 12 - 2.4138276704903e25 * cos(theta) ** 10 + 4.91503371819291e23 * cos(theta) ** 8 - 6.14105060729145e21 * cos(theta) ** 6 + 4.06154140693879e19 * cos(theta) ** 4 - 1.06369482503853e17 * cos(theta) ** 2 + 46047395023313.0 ) * cos(8 * phi) ) # @torch.jit.script def Yl68_m9(theta, phi): return ( 1.44319205099325e-16 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 3.60451045976718e35 * cos(theta) ** 59 - 4.5683832567864e36 * cos(theta) ** 57 + 2.74102995407184e37 * cos(theta) ** 55 - 1.03573269256913e38 * cos(theta) ** 53 + 2.76596831465167e38 * cos(theta) ** 51 - 5.55371590737147e38 * cos(theta) ** 49 + 8.70822654275846e38 * cos(theta) ** 47 - 1.09333250786549e39 * cos(theta) ** 45 + 1.11818097395335e39 * cos(theta) ** 43 - 9.42780036862625e38 * cos(theta) ** 41 + 6.60751820707139e38 * cos(theta) ** 39 - 3.87049090232403e38 * cos(theta) ** 37 + 1.90099331928304e38 * cos(theta) ** 35 - 7.83846864153437e37 * cos(theta) ** 33 + 2.71213069641556e37 * cos(theta) ** 31 - 7.85757491484882e36 * cos(theta) ** 29 + 1.89891393775513e36 * cos(theta) ** 27 - 3.80650366734467e35 * cos(theta) ** 25 + 6.28135918703741e34 * cos(theta) ** 23 - 8.44861177203862e33 * cos(theta) ** 21 + 9.14540449550572e32 * cos(theta) ** 19 - 7.8389181390049e31 * cos(theta) ** 17 + 5.21062007284783e30 * cos(theta) ** 15 - 2.61402344791697e29 * cos(theta) ** 13 + 9.54559124239344e27 * cos(theta) ** 11 - 2.4138276704903e26 * cos(theta) ** 9 + 3.93202697455433e24 * cos(theta) ** 7 - 3.68463036437487e22 * cos(theta) ** 5 + 1.62461656277552e20 * cos(theta) ** 3 - 2.12738965007706e17 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl68_m10(theta, phi): return ( 2.12740816128001e-18 * (1.0 - cos(theta) ** 2) ** 5 * ( 2.12666117126264e37 * cos(theta) ** 58 - 2.60397845636825e38 * cos(theta) ** 56 + 1.50756647473951e39 * cos(theta) ** 54 - 5.4893832706164e39 * cos(theta) ** 52 + 1.41064384047235e40 * cos(theta) ** 50 - 2.72132079461202e40 * cos(theta) ** 48 + 4.09286647509648e40 * cos(theta) ** 46 - 4.91999628539472e40 * cos(theta) ** 44 + 4.80817818799939e40 * cos(theta) ** 42 - 3.86539815113676e40 * cos(theta) ** 40 + 2.57693210075784e40 * cos(theta) ** 38 - 1.43208163385989e40 * cos(theta) ** 36 + 6.65347661749064e39 * cos(theta) ** 34 - 2.58669465170634e39 * cos(theta) ** 32 + 8.40760515888824e38 * cos(theta) ** 30 - 2.27869672530616e38 * cos(theta) ** 28 + 5.12706763193886e37 * cos(theta) ** 26 - 9.51625916836167e36 * cos(theta) ** 24 + 1.4447126130186e36 * cos(theta) ** 22 - 1.77420847212811e35 * cos(theta) ** 20 + 1.73762685414609e34 * cos(theta) ** 18 - 1.33261608363083e33 * cos(theta) ** 16 + 7.81593010927175e31 * cos(theta) ** 14 - 3.39823048229206e30 * cos(theta) ** 12 + 1.05001503666328e29 * cos(theta) ** 10 - 2.17244490344127e27 * cos(theta) ** 8 + 2.75241888218803e25 * cos(theta) ** 6 - 1.84231518218744e23 * cos(theta) ** 4 + 4.87384968832655e20 * cos(theta) ** 2 - 2.12738965007706e17 ) * cos(10 * phi) ) # @torch.jit.script def Yl68_m11(theta, phi): return ( 3.14284728459738e-20 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.23346347933233e39 * cos(theta) ** 57 - 1.45822793556622e40 * cos(theta) ** 55 + 8.14085896359337e40 * cos(theta) ** 53 - 2.85447930072053e41 * cos(theta) ** 51 + 7.05321920236176e41 * cos(theta) ** 49 - 1.30623398141377e42 * cos(theta) ** 47 + 1.88271857854438e42 * cos(theta) ** 45 - 2.16479836557368e42 * cos(theta) ** 43 + 2.01943483895974e42 * cos(theta) ** 41 - 1.5461592604547e42 * cos(theta) ** 39 + 9.79234198287979e41 * cos(theta) ** 37 - 5.15549388189561e41 * cos(theta) ** 35 + 2.26218204994682e41 * cos(theta) ** 33 - 8.27742288546029e40 * cos(theta) ** 31 + 2.52228154766647e40 * cos(theta) ** 29 - 6.38035083085724e39 * cos(theta) ** 27 + 1.3330375843041e39 * cos(theta) ** 25 - 2.2839022004068e38 * cos(theta) ** 23 + 3.17836774864093e37 * cos(theta) ** 21 - 3.54841694425622e36 * cos(theta) ** 19 + 3.12772833746296e35 * cos(theta) ** 17 - 2.13218573380933e34 * cos(theta) ** 15 + 1.09423021529804e33 * cos(theta) ** 13 - 4.07787657875048e31 * cos(theta) ** 11 + 1.05001503666328e30 * cos(theta) ** 9 - 1.73795592275301e28 * cos(theta) ** 7 + 1.65145132931282e26 * cos(theta) ** 5 - 7.36926072874974e23 * cos(theta) ** 3 + 9.7476993766531e20 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl68_m12(theta, phi): return ( 4.65415515499867e-22 * (1.0 - cos(theta) ** 2) ** 6 * ( 7.03074183219428e40 * cos(theta) ** 56 - 8.02025364561421e41 * cos(theta) ** 54 + 4.31465525070449e42 * cos(theta) ** 52 - 1.45578444336747e43 * cos(theta) ** 50 + 3.45607740915726e43 * cos(theta) ** 48 - 6.13929971264472e43 * cos(theta) ** 46 + 8.47223360344971e43 * cos(theta) ** 44 - 9.30863297196681e43 * cos(theta) ** 42 + 8.27968283973494e43 * cos(theta) ** 40 - 6.03002111577335e43 * cos(theta) ** 38 + 3.62316653366552e43 * cos(theta) ** 36 - 1.80442285866346e43 * cos(theta) ** 34 + 7.4652007648245e42 * cos(theta) ** 32 - 2.56600109449269e42 * cos(theta) ** 30 + 7.31461648823277e41 * cos(theta) ** 28 - 1.72269472433146e41 * cos(theta) ** 26 + 3.33259396076026e40 * cos(theta) ** 24 - 5.25297506093564e39 * cos(theta) ** 22 + 6.67457227214595e38 * cos(theta) ** 20 - 6.74199219408681e37 * cos(theta) ** 18 + 5.31713817368702e36 * cos(theta) ** 16 - 3.198278600714e35 * cos(theta) ** 14 + 1.42249927988746e34 * cos(theta) ** 12 - 4.48566423662553e32 * cos(theta) ** 10 + 9.45013532996951e30 * cos(theta) ** 8 - 1.21656914592711e29 * cos(theta) ** 6 + 8.25725664656409e26 * cos(theta) ** 4 - 2.21077821862492e24 * cos(theta) ** 2 + 9.7476993766531e20 ) * cos(12 * phi) ) # @torch.jit.script def Yl68_m13(theta, phi): return ( 6.9104182598781e-24 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 3.93721542602879e42 * cos(theta) ** 55 - 4.33093696863167e43 * cos(theta) ** 53 + 2.24362073036633e44 * cos(theta) ** 51 - 7.27892221683734e44 * cos(theta) ** 49 + 1.65891715639549e45 * cos(theta) ** 47 - 2.82407786781657e45 * cos(theta) ** 45 + 3.72778278551787e45 * cos(theta) ** 43 - 3.90962584822606e45 * cos(theta) ** 41 + 3.31187313589398e45 * cos(theta) ** 39 - 2.29140802399387e45 * cos(theta) ** 37 + 1.30433995211959e45 * cos(theta) ** 35 - 6.13503771945577e44 * cos(theta) ** 33 + 2.38886424474384e44 * cos(theta) ** 31 - 7.69800328347807e43 * cos(theta) ** 29 + 2.04809261670518e43 * cos(theta) ** 27 - 4.47900628326178e42 * cos(theta) ** 25 + 7.99822550582462e41 * cos(theta) ** 23 - 1.15565451340584e41 * cos(theta) ** 21 + 1.33491445442919e40 * cos(theta) ** 19 - 1.21355859493563e39 * cos(theta) ** 17 + 8.50742107789924e37 * cos(theta) ** 15 - 4.4775900409996e36 * cos(theta) ** 13 + 1.70699913586495e35 * cos(theta) ** 11 - 4.48566423662553e33 * cos(theta) ** 9 + 7.5601082639756e31 * cos(theta) ** 7 - 7.29941487556265e29 * cos(theta) ** 5 + 3.30290265862563e27 * cos(theta) ** 3 - 4.42155643724985e24 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl68_m14(theta, phi): return ( 1.02900163147154e-25 * (1.0 - cos(theta) ** 2) ** 7 * ( 2.16546848431584e44 * cos(theta) ** 54 - 2.29539659337479e45 * cos(theta) ** 52 + 1.14424657248683e46 * cos(theta) ** 50 - 3.5666718862503e46 * cos(theta) ** 48 + 7.79691063505879e46 * cos(theta) ** 46 - 1.27083504051746e47 * cos(theta) ** 44 + 1.60294659777268e47 * cos(theta) ** 42 - 1.60294659777268e47 * cos(theta) ** 40 + 1.29163052299865e47 * cos(theta) ** 38 - 8.47820968877733e46 * cos(theta) ** 36 + 4.56518983241856e46 * cos(theta) ** 34 - 2.0245624474204e46 * cos(theta) ** 32 + 7.4054791587059e45 * cos(theta) ** 30 - 2.23242095220864e45 * cos(theta) ** 28 + 5.52985006510397e44 * cos(theta) ** 26 - 1.11975157081545e44 * cos(theta) ** 24 + 1.83959186633966e43 * cos(theta) ** 22 - 2.42687447815227e42 * cos(theta) ** 20 + 2.53633746341546e41 * cos(theta) ** 18 - 2.06304961139057e40 * cos(theta) ** 16 + 1.27611316168489e39 * cos(theta) ** 14 - 5.82086705329948e37 * cos(theta) ** 12 + 1.87769904945144e36 * cos(theta) ** 10 - 4.03709781296297e34 * cos(theta) ** 8 + 5.29207578478292e32 * cos(theta) ** 6 - 3.64970743778133e30 * cos(theta) ** 4 + 9.9087079758769e27 * cos(theta) ** 2 - 4.42155643724985e24 ) * cos(14 * phi) ) # @torch.jit.script def Yl68_m15(theta, phi): return ( 1.53702218920533e-27 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.16935298153055e46 * cos(theta) ** 53 - 1.19360622855489e47 * cos(theta) ** 51 + 5.72123286243415e47 * cos(theta) ** 49 - 1.71200250540014e48 * cos(theta) ** 47 + 3.58657889212704e48 * cos(theta) ** 45 - 5.59167417827681e48 * cos(theta) ** 43 + 6.73237571064528e48 * cos(theta) ** 41 - 6.41178639109074e48 * cos(theta) ** 39 + 4.90819598739487e48 * cos(theta) ** 37 - 3.05215548795984e48 * cos(theta) ** 35 + 1.55216454302231e48 * cos(theta) ** 33 - 6.4785998317453e47 * cos(theta) ** 31 + 2.22164374761177e47 * cos(theta) ** 29 - 6.25077866618419e46 * cos(theta) ** 27 + 1.43776101692703e46 * cos(theta) ** 25 - 2.68740376995707e45 * cos(theta) ** 23 + 4.04710210594726e44 * cos(theta) ** 21 - 4.85374895630453e43 * cos(theta) ** 19 + 4.56540743414783e42 * cos(theta) ** 17 - 3.3008793782249e41 * cos(theta) ** 15 + 1.78655842635884e40 * cos(theta) ** 13 - 6.98504046395937e38 * cos(theta) ** 11 + 1.87769904945144e37 * cos(theta) ** 9 - 3.22967825037038e35 * cos(theta) ** 7 + 3.17524547086975e33 * cos(theta) ** 5 - 1.45988297511253e31 * cos(theta) ** 3 + 1.98174159517538e28 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl68_m16(theta, phi): return ( 2.303576075604e-29 * (1.0 - cos(theta) ** 2) ** 8 * ( 6.19757080211193e47 * cos(theta) ** 52 - 6.08739176562993e48 * cos(theta) ** 50 + 2.80340410259273e49 * cos(theta) ** 48 - 8.04641177538067e49 * cos(theta) ** 46 + 1.61396050145717e50 * cos(theta) ** 44 - 2.40441989665903e50 * cos(theta) ** 42 + 2.76027404136456e50 * cos(theta) ** 40 - 2.50059669252539e50 * cos(theta) ** 38 + 1.8160325153361e50 * cos(theta) ** 36 - 1.06825442078594e50 * cos(theta) ** 34 + 5.12214299197362e49 * cos(theta) ** 32 - 2.00836594784104e49 * cos(theta) ** 30 + 6.44276686807414e48 * cos(theta) ** 28 - 1.68771023986973e48 * cos(theta) ** 26 + 3.59440254231758e47 * cos(theta) ** 24 - 6.18102867090126e46 * cos(theta) ** 22 + 8.49891442248924e45 * cos(theta) ** 20 - 9.22212301697861e44 * cos(theta) ** 18 + 7.76119263805131e43 * cos(theta) ** 16 - 4.95131906733736e42 * cos(theta) ** 14 + 2.32252595426649e41 * cos(theta) ** 12 - 7.68354451035531e39 * cos(theta) ** 10 + 1.6899291445063e38 * cos(theta) ** 8 - 2.26077477525926e36 * cos(theta) ** 6 + 1.58762273543488e34 * cos(theta) ** 4 - 4.37964892533759e31 * cos(theta) ** 2 + 1.98174159517538e28 ) * cos(16 * phi) ) # @torch.jit.script def Yl68_m17(theta, phi): return ( 3.46490574202534e-31 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 3.2227368170982e49 * cos(theta) ** 51 - 3.04369588281497e50 * cos(theta) ** 49 + 1.34563396924451e51 * cos(theta) ** 47 - 3.70134941667511e51 * cos(theta) ** 45 + 7.10142620641154e51 * cos(theta) ** 43 - 1.00985635659679e52 * cos(theta) ** 41 + 1.10410961654583e52 * cos(theta) ** 39 - 9.50226743159647e51 * cos(theta) ** 37 + 6.53771705520997e51 * cos(theta) ** 35 - 3.63206503067221e51 * cos(theta) ** 33 + 1.63908575743156e51 * cos(theta) ** 31 - 6.02509784352312e50 * cos(theta) ** 29 + 1.80397472306076e50 * cos(theta) ** 27 - 4.3880466236613e49 * cos(theta) ** 25 + 8.6265661015622e48 * cos(theta) ** 23 - 1.35982630759828e48 * cos(theta) ** 21 + 1.69978288449785e47 * cos(theta) ** 19 - 1.65998214305615e46 * cos(theta) ** 17 + 1.24179082208821e45 * cos(theta) ** 15 - 6.9318466942723e43 * cos(theta) ** 13 + 2.78703114511979e42 * cos(theta) ** 11 - 7.68354451035531e40 * cos(theta) ** 9 + 1.35194331560504e39 * cos(theta) ** 7 - 1.35646486515556e37 * cos(theta) ** 5 + 6.35049094173951e34 * cos(theta) ** 3 - 8.75929785067518e31 * cos(theta) ) * cos(17 * phi) ) # @torch.jit.script def Yl68_m18(theta, phi): return ( 5.23187200977587e-33 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.64359577672008e51 * cos(theta) ** 50 - 1.49141098257933e52 * cos(theta) ** 48 + 6.32447965544921e52 * cos(theta) ** 46 - 1.6656072375038e53 * cos(theta) ** 44 + 3.05361326875696e53 * cos(theta) ** 42 - 4.14041106204684e53 * cos(theta) ** 40 + 4.30602750452872e53 * cos(theta) ** 38 - 3.5158389496907e53 * cos(theta) ** 36 + 2.28820096932349e53 * cos(theta) ** 34 - 1.19858146012183e53 * cos(theta) ** 32 + 5.08116584803783e52 * cos(theta) ** 30 - 1.74727837462171e52 * cos(theta) ** 28 + 4.87073175226405e51 * cos(theta) ** 26 - 1.09701165591533e51 * cos(theta) ** 24 + 1.98411020335931e50 * cos(theta) ** 22 - 2.85563524595638e49 * cos(theta) ** 20 + 3.22958748054591e48 * cos(theta) ** 18 - 2.82196964319546e47 * cos(theta) ** 16 + 1.86268623313231e46 * cos(theta) ** 14 - 9.01140070255399e44 * cos(theta) ** 12 + 3.06573425963177e43 * cos(theta) ** 10 - 6.91519005931978e41 * cos(theta) ** 8 + 9.46360320923528e39 * cos(theta) ** 6 - 6.78232432577779e37 * cos(theta) ** 4 + 1.90514728252185e35 * cos(theta) ** 2 - 8.75929785067518e31 ) * cos(18 * phi) ) # @torch.jit.script def Yl68_m19(theta, phi): return ( 7.93254386973263e-35 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 8.21797888360041e52 * cos(theta) ** 49 - 7.1587727163808e53 * cos(theta) ** 47 + 2.90926064150663e54 * cos(theta) ** 45 - 7.32867184501671e54 * cos(theta) ** 43 + 1.28251757287793e55 * cos(theta) ** 41 - 1.65616442481874e55 * cos(theta) ** 39 + 1.63629045172091e55 * cos(theta) ** 37 - 1.26570202188865e55 * cos(theta) ** 35 + 7.77988329569987e54 * cos(theta) ** 33 - 3.83546067238985e54 * cos(theta) ** 31 + 1.52434975441135e54 * cos(theta) ** 29 - 4.89237944894078e53 * cos(theta) ** 27 + 1.26639025558865e53 * cos(theta) ** 25 - 2.63282797419678e52 * cos(theta) ** 23 + 4.36504244739047e51 * cos(theta) ** 21 - 5.71127049191277e50 * cos(theta) ** 19 + 5.81325746498264e49 * cos(theta) ** 17 - 4.51515142911273e48 * cos(theta) ** 15 + 2.60776072638524e47 * cos(theta) ** 13 - 1.08136808430648e46 * cos(theta) ** 11 + 3.06573425963177e44 * cos(theta) ** 9 - 5.53215204745582e42 * cos(theta) ** 7 + 5.67816192554117e40 * cos(theta) ** 5 - 2.71292973031112e38 * cos(theta) ** 3 + 3.81029456504371e35 * cos(theta) ) * cos(19 * phi) ) # @torch.jit.script def Yl68_m20(theta, phi): return ( 1.2080171682495e-36 * (1.0 - cos(theta) ** 2) ** 10 * ( 4.0268096529642e54 * cos(theta) ** 48 - 3.36462317669898e55 * cos(theta) ** 46 + 1.30916728867799e56 * cos(theta) ** 44 - 3.15132889335719e56 * cos(theta) ** 42 + 5.25832204879949e56 * cos(theta) ** 40 - 6.45904125679308e56 * cos(theta) ** 38 + 6.05427467136738e56 * cos(theta) ** 36 - 4.42995707661028e56 * cos(theta) ** 34 + 2.56736148758096e56 * cos(theta) ** 32 - 1.18899280844085e56 * cos(theta) ** 30 + 4.42061428779292e55 * cos(theta) ** 28 - 1.32094245121401e55 * cos(theta) ** 26 + 3.16597563897163e54 * cos(theta) ** 24 - 6.0555043406526e53 * cos(theta) ** 22 + 9.16658913951999e52 * cos(theta) ** 20 - 1.08514139346343e52 * cos(theta) ** 18 + 9.88253769047048e50 * cos(theta) ** 16 - 6.77272714366909e49 * cos(theta) ** 14 + 3.39008894430081e48 * cos(theta) ** 12 - 1.18950489273713e47 * cos(theta) ** 10 + 2.75916083366859e45 * cos(theta) ** 8 - 3.87250643321908e43 * cos(theta) ** 6 + 2.83908096277058e41 * cos(theta) ** 4 - 8.13878919093335e38 * cos(theta) ** 2 + 3.81029456504371e35 ) * cos(20 * phi) ) # @torch.jit.script def Yl68_m21(theta, phi): return ( 1.84823625230872e-38 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.93286863342282e56 * cos(theta) ** 47 - 1.54772666128153e57 * cos(theta) ** 45 + 5.76033607018314e57 * cos(theta) ** 43 - 1.32355813521002e58 * cos(theta) ** 41 + 2.1033288195198e58 * cos(theta) ** 39 - 2.45443567758137e58 * cos(theta) ** 37 + 2.17953888169226e58 * cos(theta) ** 35 - 1.50618540604749e58 * cos(theta) ** 33 + 8.21555676025906e57 * cos(theta) ** 31 - 3.56697842532256e57 * cos(theta) ** 29 + 1.23777200058202e57 * cos(theta) ** 27 - 3.43445037315643e56 * cos(theta) ** 25 + 7.59834153353191e55 * cos(theta) ** 23 - 1.33221095494357e55 * cos(theta) ** 21 + 1.833317827904e54 * cos(theta) ** 19 - 1.95325450823417e53 * cos(theta) ** 17 + 1.58120603047528e52 * cos(theta) ** 15 - 9.48181800113673e50 * cos(theta) ** 13 + 4.06810673316097e49 * cos(theta) ** 11 - 1.18950489273713e48 * cos(theta) ** 9 + 2.20732866693487e46 * cos(theta) ** 7 - 2.32350385993145e44 * cos(theta) ** 5 + 1.13563238510823e42 * cos(theta) ** 3 - 1.62775783818667e39 * cos(theta) ) * cos(21 * phi) ) # @torch.jit.script def Yl68_m22(theta, phi): return ( 2.84175937094191e-40 * (1.0 - cos(theta) ** 2) ** 11 * ( 9.08448257708724e57 * cos(theta) ** 46 - 6.96476997576688e58 * cos(theta) ** 44 + 2.47694451017875e59 * cos(theta) ** 42 - 5.42658835436108e59 * cos(theta) ** 40 + 8.20298239612721e59 * cos(theta) ** 38 - 9.08141200705107e59 * cos(theta) ** 36 + 7.6283860859229e59 * cos(theta) ** 34 - 4.97041183995673e59 * cos(theta) ** 32 + 2.54682259568031e59 * cos(theta) ** 30 - 1.03442374334354e59 * cos(theta) ** 28 + 3.34198440157144e58 * cos(theta) ** 26 - 8.58612593289106e57 * cos(theta) ** 24 + 1.74761855271234e57 * cos(theta) ** 22 - 2.7976430053815e56 * cos(theta) ** 20 + 3.4833038730176e55 * cos(theta) ** 18 - 3.32053266399808e54 * cos(theta) ** 16 + 2.37180904571292e53 * cos(theta) ** 14 - 1.23263634014777e52 * cos(theta) ** 12 + 4.47491740647707e50 * cos(theta) ** 10 - 1.07055440346341e49 * cos(theta) ** 8 + 1.54513006685441e47 * cos(theta) ** 6 - 1.16175192996572e45 * cos(theta) ** 4 + 3.4068971553247e42 * cos(theta) ** 2 - 1.62775783818667e39 ) * cos(22 * phi) ) # @torch.jit.script def Yl68_m23(theta, phi): return ( 4.39225644517833e-42 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 4.17886198546013e59 * cos(theta) ** 45 - 3.06449878933743e60 * cos(theta) ** 43 + 1.04031669427507e61 * cos(theta) ** 41 - 2.17063534174443e61 * cos(theta) ** 39 + 3.11713331052834e61 * cos(theta) ** 37 - 3.26930832253838e61 * cos(theta) ** 35 + 2.59365126921378e61 * cos(theta) ** 33 - 1.59053178878615e61 * cos(theta) ** 31 + 7.64046778704092e60 * cos(theta) ** 29 - 2.89638648136192e60 * cos(theta) ** 27 + 8.68915944408576e59 * cos(theta) ** 25 - 2.06067022389386e59 * cos(theta) ** 23 + 3.84476081596715e58 * cos(theta) ** 21 - 5.595286010763e57 * cos(theta) ** 19 + 6.26994697143167e56 * cos(theta) ** 17 - 5.31285226239693e55 * cos(theta) ** 15 + 3.32053266399808e54 * cos(theta) ** 13 - 1.47916360817733e53 * cos(theta) ** 11 + 4.47491740647707e51 * cos(theta) ** 9 - 8.56443522770731e49 * cos(theta) ** 7 + 9.27078040112647e47 * cos(theta) ** 5 - 4.64700771986289e45 * cos(theta) ** 3 + 6.8137943106494e42 * cos(theta) ) * cos(23 * phi) ) # @torch.jit.script def Yl68_m24(theta, phi): return ( 6.82633375692216e-44 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.88048789345706e61 * cos(theta) ** 44 - 1.31773447941509e62 * cos(theta) ** 42 + 4.26529844652781e62 * cos(theta) ** 40 - 8.46547783280328e62 * cos(theta) ** 38 + 1.15333932489549e63 * cos(theta) ** 36 - 1.14425791288843e63 * cos(theta) ** 34 + 8.55904918840549e62 * cos(theta) ** 32 - 4.93064854523708e62 * cos(theta) ** 30 + 2.21573565824187e62 * cos(theta) ** 28 - 7.82024349967718e61 * cos(theta) ** 26 + 2.17228986102144e61 * cos(theta) ** 24 - 4.73954151495587e60 * cos(theta) ** 22 + 8.07399771353101e59 * cos(theta) ** 20 - 1.06310434204497e59 * cos(theta) ** 18 + 1.06589098514338e58 * cos(theta) ** 16 - 7.9692783935954e56 * cos(theta) ** 14 + 4.31669246319751e55 * cos(theta) ** 12 - 1.62707996899506e54 * cos(theta) ** 10 + 4.02742566582936e52 * cos(theta) ** 8 - 5.99510465939512e50 * cos(theta) ** 6 + 4.63539020056324e48 * cos(theta) ** 4 - 1.39410231595887e46 * cos(theta) ** 2 + 6.8137943106494e42 ) * cos(24 * phi) ) # @torch.jit.script def Yl68_m25(theta, phi): return ( 1.06713583921524e-45 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 8.27414673121106e62 * cos(theta) ** 43 - 5.5344848135434e63 * cos(theta) ** 41 + 1.70611937861112e64 * cos(theta) ** 39 - 3.21688157646525e64 * cos(theta) ** 37 + 4.15202156962375e64 * cos(theta) ** 35 - 3.89047690382068e64 * cos(theta) ** 33 + 2.73889574028976e64 * cos(theta) ** 31 - 1.47919456357112e64 * cos(theta) ** 29 + 6.20405984307723e63 * cos(theta) ** 27 - 2.03326330991607e63 * cos(theta) ** 25 + 5.21349566645145e62 * cos(theta) ** 23 - 1.04269913329029e62 * cos(theta) ** 21 + 1.6147995427062e61 * cos(theta) ** 19 - 1.91358781568095e60 * cos(theta) ** 17 + 1.70542557622942e59 * cos(theta) ** 15 - 1.11569897510336e58 * cos(theta) ** 13 + 5.18003095583701e56 * cos(theta) ** 11 - 1.62707996899506e55 * cos(theta) ** 9 + 3.22194053266349e53 * cos(theta) ** 7 - 3.59706279563707e51 * cos(theta) ** 5 + 1.85415608022529e49 * cos(theta) ** 3 - 2.78820463191774e46 * cos(theta) ) * cos(25 * phi) ) # @torch.jit.script def Yl68_m26(theta, phi): return ( 1.67850079437529e-47 * (1.0 - cos(theta) ** 2) ** 13 * ( 3.55788309442076e64 * cos(theta) ** 42 - 2.26913877355279e65 * cos(theta) ** 40 + 6.65386557658338e65 * cos(theta) ** 38 - 1.19024618329214e66 * cos(theta) ** 36 + 1.45320754936831e66 * cos(theta) ** 34 - 1.28385737826082e66 * cos(theta) ** 32 + 8.49057679489824e65 * cos(theta) ** 30 - 4.28966423435626e65 * cos(theta) ** 28 + 1.67509615763085e65 * cos(theta) ** 26 - 5.08315827479017e64 * cos(theta) ** 24 + 1.19910400328383e64 * cos(theta) ** 22 - 2.18966817990961e63 * cos(theta) ** 20 + 3.06811913114179e62 * cos(theta) ** 18 - 3.25309928665761e61 * cos(theta) ** 16 + 2.55813836434412e60 * cos(theta) ** 14 - 1.45040866763436e59 * cos(theta) ** 12 + 5.69803405142071e57 * cos(theta) ** 10 - 1.46437197209556e56 * cos(theta) ** 8 + 2.25535837286444e54 * cos(theta) ** 6 - 1.79853139781854e52 * cos(theta) ** 4 + 5.56246824067588e49 * cos(theta) ** 2 - 2.78820463191774e46 ) * cos(26 * phi) ) # @torch.jit.script def Yl68_m27(theta, phi): return ( 2.65726644395734e-49 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.49431089965672e66 * cos(theta) ** 41 - 9.07655509421117e66 * cos(theta) ** 39 + 2.52846891910168e67 * cos(theta) ** 37 - 4.28488625985171e67 * cos(theta) ** 35 + 4.94090566785226e67 * cos(theta) ** 33 - 4.10834361043463e67 * cos(theta) ** 31 + 2.54717303846947e67 * cos(theta) ** 29 - 1.20110598561975e67 * cos(theta) ** 27 + 4.35525000984022e66 * cos(theta) ** 25 - 1.21995798594964e66 * cos(theta) ** 23 + 2.63802880722444e65 * cos(theta) ** 21 - 4.37933635981922e64 * cos(theta) ** 19 + 5.52261443605521e63 * cos(theta) ** 17 - 5.20495885865218e62 * cos(theta) ** 15 + 3.58139371008177e61 * cos(theta) ** 13 - 1.74049040116124e60 * cos(theta) ** 11 + 5.69803405142071e58 * cos(theta) ** 9 - 1.17149757767645e57 * cos(theta) ** 7 + 1.35321502371867e55 * cos(theta) ** 5 - 7.19412559127414e52 * cos(theta) ** 3 + 1.11249364813518e50 * cos(theta) ) * cos(27 * phi) ) # @torch.jit.script def Yl68_m28(theta, phi): return ( 4.23552801267956e-51 * (1.0 - cos(theta) ** 2) ** 14 * ( 6.12667468859254e67 * cos(theta) ** 40 - 3.53985648674236e68 * cos(theta) ** 38 + 9.35533500067623e68 * cos(theta) ** 36 - 1.4997101909481e69 * cos(theta) ** 34 + 1.63049887039125e69 * cos(theta) ** 32 - 1.27358651923474e69 * cos(theta) ** 30 + 7.38680181156147e68 * cos(theta) ** 28 - 3.24298616117333e68 * cos(theta) ** 26 + 1.08881250246005e68 * cos(theta) ** 24 - 2.80590336768417e67 * cos(theta) ** 22 + 5.53986049517131e66 * cos(theta) ** 20 - 8.32073908365652e65 * cos(theta) ** 18 + 9.38844454129386e64 * cos(theta) ** 16 - 7.80743828797826e63 * cos(theta) ** 14 + 4.6558118231063e62 * cos(theta) ** 12 - 1.91453944127736e61 * cos(theta) ** 10 + 5.12823064627864e59 * cos(theta) ** 8 - 8.20048304373512e57 * cos(theta) ** 6 + 6.76607511859333e55 * cos(theta) ** 4 - 2.15823767738224e53 * cos(theta) ** 2 + 1.11249364813518e50 ) * cos(28 * phi) ) # @torch.jit.script def Yl68_m29(theta, phi): return ( 6.79973042715234e-53 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 2.45066987543702e69 * cos(theta) ** 39 - 1.3451454649621e70 * cos(theta) ** 37 + 3.36792060024344e70 * cos(theta) ** 35 - 5.09901464922353e70 * cos(theta) ** 33 + 5.21759638525199e70 * cos(theta) ** 31 - 3.82075955770421e70 * cos(theta) ** 29 + 2.06830450723721e70 * cos(theta) ** 27 - 8.43176401905066e69 * cos(theta) ** 25 + 2.61315000590413e69 * cos(theta) ** 23 - 6.17298740890518e68 * cos(theta) ** 21 + 1.10797209903426e68 * cos(theta) ** 19 - 1.49773303505817e67 * cos(theta) ** 17 + 1.50215112660702e66 * cos(theta) ** 15 - 1.09304136031696e65 * cos(theta) ** 13 + 5.58697418772756e63 * cos(theta) ** 11 - 1.91453944127736e62 * cos(theta) ** 9 + 4.10258451702291e60 * cos(theta) ** 7 - 4.92028982624107e58 * cos(theta) ** 5 + 2.70643004743733e56 * cos(theta) ** 3 - 4.31647535476449e53 * cos(theta) ) * cos(29 * phi) ) # @torch.jit.script def Yl68_m30(theta, phi): return ( 1.09988265729126e-54 * (1.0 - cos(theta) ** 2) ** 15 * ( 9.55761251420436e70 * cos(theta) ** 38 - 4.97703822035975e71 * cos(theta) ** 36 + 1.1787722100852e72 * cos(theta) ** 34 - 1.68267483424377e72 * cos(theta) ** 32 + 1.61745487942812e72 * cos(theta) ** 30 - 1.10802027173422e72 * cos(theta) ** 28 + 5.58442216954047e71 * cos(theta) ** 26 - 2.10794100476266e71 * cos(theta) ** 24 + 6.0102450135795e70 * cos(theta) ** 22 - 1.29632735587009e70 * cos(theta) ** 20 + 2.1051469881651e69 * cos(theta) ** 18 - 2.5461461595989e68 * cos(theta) ** 16 + 2.25322668991053e67 * cos(theta) ** 14 - 1.42095376841204e66 * cos(theta) ** 12 + 6.14567160650032e64 * cos(theta) ** 10 - 1.72308549714962e63 * cos(theta) ** 8 + 2.87180916191604e61 * cos(theta) ** 6 - 2.46014491312054e59 * cos(theta) ** 4 + 8.119290142312e56 * cos(theta) ** 2 - 4.31647535476449e53 ) * cos(30 * phi) ) # @torch.jit.script def Yl68_m31(theta, phi): return ( 1.79323397551348e-56 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 3.63189275539766e72 * cos(theta) ** 37 - 1.79173375932951e73 * cos(theta) ** 35 + 4.0078255142897e73 * cos(theta) ** 33 - 5.38455946958005e73 * cos(theta) ** 31 + 4.85236463828435e73 * cos(theta) ** 29 - 3.10245676085582e73 * cos(theta) ** 27 + 1.45194976408052e73 * cos(theta) ** 25 - 5.05905841143039e72 * cos(theta) ** 23 + 1.32225390298749e72 * cos(theta) ** 21 - 2.59265471174018e71 * cos(theta) ** 19 + 3.78926457869718e70 * cos(theta) ** 17 - 4.07383385535823e69 * cos(theta) ** 15 + 3.15451736587474e68 * cos(theta) ** 13 - 1.70514452209445e67 * cos(theta) ** 11 + 6.14567160650032e65 * cos(theta) ** 9 - 1.3784683977197e64 * cos(theta) ** 7 + 1.72308549714962e62 * cos(theta) ** 5 - 9.84057965248214e59 * cos(theta) ** 3 + 1.6238580284624e57 * cos(theta) ) * cos(31 * phi) ) # @torch.jit.script def Yl68_m32(theta, phi): return ( 2.94805849575977e-58 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.34380031949713e74 * cos(theta) ** 36 - 6.27106815765329e74 * cos(theta) ** 34 + 1.3225824197156e75 * cos(theta) ** 32 - 1.66921343556982e75 * cos(theta) ** 30 + 1.40718574510246e75 * cos(theta) ** 28 - 8.37663325431071e74 * cos(theta) ** 26 + 3.62987441020131e74 * cos(theta) ** 24 - 1.16358343462899e74 * cos(theta) ** 22 + 2.77673319627373e73 * cos(theta) ** 20 - 4.92604395230633e72 * cos(theta) ** 18 + 6.4417497837852e71 * cos(theta) ** 16 - 6.11075078303735e70 * cos(theta) ** 14 + 4.10087257563716e69 * cos(theta) ** 12 - 1.8756589743039e68 * cos(theta) ** 10 + 5.53110444585029e66 * cos(theta) ** 8 - 9.64927878403789e64 * cos(theta) ** 6 + 8.61542748574811e62 * cos(theta) ** 4 - 2.95217389574464e60 * cos(theta) ** 2 + 1.6238580284624e57 ) * cos(32 * phi) ) # @torch.jit.script def Yl68_m33(theta, phi): return ( 4.88904640365914e-60 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 4.83768115018968e75 * cos(theta) ** 35 - 2.13216317360212e76 * cos(theta) ** 33 + 4.23226374308992e76 * cos(theta) ** 31 - 5.00764030670945e76 * cos(theta) ** 29 + 3.94012008628689e76 * cos(theta) ** 27 - 2.17792464612078e76 * cos(theta) ** 25 + 8.71169858448314e75 * cos(theta) ** 23 - 2.55988355618378e75 * cos(theta) ** 21 + 5.55346639254746e74 * cos(theta) ** 19 - 8.8668791141514e73 * cos(theta) ** 17 + 1.03067996540563e73 * cos(theta) ** 15 - 8.55505109625229e71 * cos(theta) ** 13 + 4.92104709076459e70 * cos(theta) ** 11 - 1.8756589743039e69 * cos(theta) ** 9 + 4.42488355668023e67 * cos(theta) ** 7 - 5.78956727042273e65 * cos(theta) ** 5 + 3.44617099429925e63 * cos(theta) ** 3 - 5.90434779148928e60 * cos(theta) ) * cos(33 * phi) ) # @torch.jit.script def Yl68_m34(theta, phi): return ( 8.18257606652113e-62 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.69318840256639e77 * cos(theta) ** 34 - 7.03613847288699e77 * cos(theta) ** 32 + 1.31200176035787e78 * cos(theta) ** 30 - 1.45221568894574e78 * cos(theta) ** 28 + 1.06383242329746e78 * cos(theta) ** 26 - 5.44481161530196e77 * cos(theta) ** 24 + 2.00369067443112e77 * cos(theta) ** 22 - 5.37575546798594e76 * cos(theta) ** 20 + 1.05515861458402e76 * cos(theta) ** 18 - 1.50736944940574e75 * cos(theta) ** 16 + 1.54601994810845e74 * cos(theta) ** 14 - 1.1121566425128e73 * cos(theta) ** 12 + 5.41315179984105e71 * cos(theta) ** 10 - 1.68809307687351e70 * cos(theta) ** 8 + 3.09741848967616e68 * cos(theta) ** 6 - 2.89478363521137e66 * cos(theta) ** 4 + 1.03385129828977e64 * cos(theta) ** 2 - 5.90434779148928e60 ) * cos(34 * phi) ) # @torch.jit.script def Yl68_m35(theta, phi): return ( 1.3827127910757e-63 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 5.75684056872572e78 * cos(theta) ** 33 - 2.25156431132384e79 * cos(theta) ** 31 + 3.93600528107362e79 * cos(theta) ** 29 - 4.06620392904807e79 * cos(theta) ** 27 + 2.7659643005734e79 * cos(theta) ** 25 - 1.30675478767247e79 * cos(theta) ** 23 + 4.40811948374847e78 * cos(theta) ** 21 - 1.07515109359719e78 * cos(theta) ** 19 + 1.89928550625123e77 * cos(theta) ** 17 - 2.41179111904918e76 * cos(theta) ** 15 + 2.16442792735183e75 * cos(theta) ** 13 - 1.33458797101536e74 * cos(theta) ** 11 + 5.41315179984105e72 * cos(theta) ** 9 - 1.35047446149881e71 * cos(theta) ** 7 + 1.8584510938057e69 * cos(theta) ** 5 - 1.15791345408455e67 * cos(theta) ** 3 + 2.06770259657955e64 * cos(theta) ) * cos(35 * phi) ) # @torch.jit.script def Yl68_m36(theta, phi): return ( 2.36025181791098e-65 * (1.0 - cos(theta) ** 2) ** 18 * ( 1.89975738767949e80 * cos(theta) ** 32 - 6.97984936510389e80 * cos(theta) ** 30 + 1.14144153151135e81 * cos(theta) ** 28 - 1.09787506084298e81 * cos(theta) ** 26 + 6.91491075143349e80 * cos(theta) ** 24 - 3.00553601164668e80 * cos(theta) ** 22 + 9.25705091587178e79 * cos(theta) ** 20 - 2.04278707783466e79 * cos(theta) ** 18 + 3.22878536062709e78 * cos(theta) ** 16 - 3.61768667857377e77 * cos(theta) ** 14 + 2.81375630555738e76 * cos(theta) ** 12 - 1.46804676811689e75 * cos(theta) ** 10 + 4.87183661985694e73 * cos(theta) ** 8 - 9.45332123049165e71 * cos(theta) ** 6 + 9.29225546902849e69 * cos(theta) ** 4 - 3.47374036225364e67 * cos(theta) ** 2 + 2.06770259657955e64 ) * cos(36 * phi) ) # @torch.jit.script def Yl68_m37(theta, phi): return ( 4.07182122728887e-67 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 6.07922364057436e81 * cos(theta) ** 31 - 2.09395480953117e82 * cos(theta) ** 29 + 3.19603628823178e82 * cos(theta) ** 27 - 2.85447515819175e82 * cos(theta) ** 25 + 1.65957858034404e82 * cos(theta) ** 23 - 6.6121792256227e81 * cos(theta) ** 21 + 1.85141018317436e81 * cos(theta) ** 19 - 3.67701674010238e80 * cos(theta) ** 17 + 5.16605657700335e79 * cos(theta) ** 15 - 5.06476135000328e78 * cos(theta) ** 13 + 3.37650756666885e77 * cos(theta) ** 11 - 1.46804676811689e76 * cos(theta) ** 9 + 3.89746929588556e74 * cos(theta) ** 7 - 5.67199273829499e72 * cos(theta) ** 5 + 3.71690218761139e70 * cos(theta) ** 3 - 6.94748072450728e67 * cos(theta) ) * cos(37 * phi) ) # @torch.jit.script def Yl68_m38(theta, phi): return ( 7.10321438621669e-69 * (1.0 - cos(theta) ** 2) ** 19 * ( 1.88455932857805e83 * cos(theta) ** 30 - 6.07246894764039e83 * cos(theta) ** 28 + 8.62929797822582e83 * cos(theta) ** 26 - 7.13618789547936e83 * cos(theta) ** 24 + 3.81703073479129e83 * cos(theta) ** 22 - 1.38855763738077e83 * cos(theta) ** 20 + 3.51767934803128e82 * cos(theta) ** 18 - 6.25092845817405e81 * cos(theta) ** 16 + 7.74908486550502e80 * cos(theta) ** 14 - 6.58418975500426e79 * cos(theta) ** 12 + 3.71415832333574e78 * cos(theta) ** 10 - 1.3212420913052e77 * cos(theta) ** 8 + 2.72822850711989e75 * cos(theta) ** 6 - 2.83599636914749e73 * cos(theta) ** 4 + 1.11507065628342e71 * cos(theta) ** 2 - 6.94748072450728e67 ) * cos(38 * phi) ) # @torch.jit.script def Yl68_m39(theta, phi): return ( 1.25372534736348e-70 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 5.65367798573415e84 * cos(theta) ** 29 - 1.70029130533931e85 * cos(theta) ** 27 + 2.24361747433871e85 * cos(theta) ** 25 - 1.71268509491505e85 * cos(theta) ** 23 + 8.39746761654083e84 * cos(theta) ** 21 - 2.77711527476153e84 * cos(theta) ** 19 + 6.3318228264563e83 * cos(theta) ** 17 - 1.00014855330785e83 * cos(theta) ** 15 + 1.0848718811707e82 * cos(theta) ** 13 - 7.90102770600512e80 * cos(theta) ** 11 + 3.71415832333574e79 * cos(theta) ** 9 - 1.05699367304416e78 * cos(theta) ** 7 + 1.63693710427193e76 * cos(theta) ** 5 - 1.134398547659e74 * cos(theta) ** 3 + 2.23014131256684e71 * cos(theta) ) * cos(39 * phi) ) # @torch.jit.script def Yl68_m40(theta, phi): return ( 2.24022443358709e-72 * (1.0 - cos(theta) ** 2) ** 20 * ( 1.6395666158629e86 * cos(theta) ** 28 - 4.59078652441613e86 * cos(theta) ** 26 + 5.60904368584678e86 * cos(theta) ** 24 - 3.93917571830461e86 * cos(theta) ** 22 + 1.76346819947357e86 * cos(theta) ** 20 - 5.27651902204692e85 * cos(theta) ** 18 + 1.07640988049757e85 * cos(theta) ** 16 - 1.50022282996177e84 * cos(theta) ** 14 + 1.41033344552191e83 * cos(theta) ** 12 - 8.69113047660563e81 * cos(theta) ** 10 + 3.34274249100216e80 * cos(theta) ** 8 - 7.39895571130914e78 * cos(theta) ** 6 + 8.18468552135967e76 * cos(theta) ** 4 - 3.40319564297699e74 * cos(theta) ** 2 + 2.23014131256684e71 ) * cos(40 * phi) ) # @torch.jit.script def Yl68_m41(theta, phi): return ( 4.05507849190289e-74 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 4.59078652441613e87 * cos(theta) ** 27 - 1.19360449634819e88 * cos(theta) ** 25 + 1.34617048460323e88 * cos(theta) ** 23 - 8.66618658027014e87 * cos(theta) ** 21 + 3.52693639894715e87 * cos(theta) ** 19 - 9.49773423968445e86 * cos(theta) ** 17 + 1.72225580879611e86 * cos(theta) ** 15 - 2.10031196194648e85 * cos(theta) ** 13 + 1.6924001346263e84 * cos(theta) ** 11 - 8.69113047660563e82 * cos(theta) ** 9 + 2.67419399280173e81 * cos(theta) ** 7 - 4.43937342678548e79 * cos(theta) ** 5 + 3.27387420854387e77 * cos(theta) ** 3 - 6.80639128595399e74 * cos(theta) ) * cos(41 * phi) ) # @torch.jit.script def Yl68_m42(theta, phi): return ( 7.44082414054722e-76 * (1.0 - cos(theta) ** 2) ** 21 * ( 1.23951236159236e89 * cos(theta) ** 26 - 2.98401124087049e89 * cos(theta) ** 24 + 3.09619211458742e89 * cos(theta) ** 22 - 1.81989918185673e89 * cos(theta) ** 20 + 6.70117915799958e88 * cos(theta) ** 18 - 1.61461482074636e88 * cos(theta) ** 16 + 2.58338371319417e87 * cos(theta) ** 14 - 2.73040555053042e86 * cos(theta) ** 12 + 1.86164014808893e85 * cos(theta) ** 10 - 7.82201742894506e83 * cos(theta) ** 8 + 1.87193579496121e82 * cos(theta) ** 6 - 2.21968671339274e80 * cos(theta) ** 4 + 9.8216226256316e77 * cos(theta) ** 2 - 6.80639128595399e74 ) * cos(42 * phi) ) # @torch.jit.script def Yl68_m43(theta, phi): return ( 1.38507368115804e-77 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 3.22273214014013e90 * cos(theta) ** 25 - 7.16162697808917e90 * cos(theta) ** 23 + 6.81162265209233e90 * cos(theta) ** 21 - 3.63979836371346e90 * cos(theta) ** 19 + 1.20621224843993e90 * cos(theta) ** 17 - 2.58338371319417e89 * cos(theta) ** 15 + 3.61673719847184e88 * cos(theta) ** 13 - 3.27648666063651e87 * cos(theta) ** 11 + 1.86164014808893e86 * cos(theta) ** 9 - 6.25761394315605e84 * cos(theta) ** 7 + 1.12316147697673e83 * cos(theta) ** 5 - 8.87874685357097e80 * cos(theta) ** 3 + 1.96432452512632e78 * cos(theta) ) * cos(43 * phi) ) # @torch.jit.script def Yl68_m44(theta, phi): return ( 2.61754321988924e-79 * (1.0 - cos(theta) ** 2) ** 22 * ( 8.05683035035031e91 * cos(theta) ** 24 - 1.64717420496051e92 * cos(theta) ** 22 + 1.43044075693939e92 * cos(theta) ** 20 - 6.91561689105557e91 * cos(theta) ** 18 + 2.05056082234787e91 * cos(theta) ** 16 - 3.87507556979126e90 * cos(theta) ** 14 + 4.70175835801339e89 * cos(theta) ** 12 - 3.60413532670016e88 * cos(theta) ** 10 + 1.67547613328003e87 * cos(theta) ** 8 - 4.38032976020924e85 * cos(theta) ** 6 + 5.61580738488364e83 * cos(theta) ** 4 - 2.66362405607129e81 * cos(theta) ** 2 + 1.96432452512632e78 ) * cos(44 * phi) ) # @torch.jit.script def Yl68_m45(theta, phi): return ( 5.02630708722213e-81 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 1.93363928408408e93 * cos(theta) ** 23 - 3.62378325091312e93 * cos(theta) ** 21 + 2.86088151387878e93 * cos(theta) ** 19 - 1.24481104039e93 * cos(theta) ** 17 + 3.2808973157566e92 * cos(theta) ** 15 - 5.42510579770776e91 * cos(theta) ** 13 + 5.64211002961607e90 * cos(theta) ** 11 - 3.60413532670016e89 * cos(theta) ** 9 + 1.34038090662403e88 * cos(theta) ** 7 - 2.62819785612554e86 * cos(theta) ** 5 + 2.24632295395345e84 * cos(theta) ** 3 - 5.32724811214258e81 * cos(theta) ) * cos(45 * phi) ) # @torch.jit.script def Yl68_m46(theta, phi): return ( 9.81595762833013e-83 * (1.0 - cos(theta) ** 2) ** 23 * ( 4.44737035339337e94 * cos(theta) ** 22 - 7.60994482691755e94 * cos(theta) ** 20 + 5.43567487636968e94 * cos(theta) ** 18 - 2.116178768663e94 * cos(theta) ** 16 + 4.92134597363489e93 * cos(theta) ** 14 - 7.05263753702008e92 * cos(theta) ** 12 + 6.20632103257767e91 * cos(theta) ** 10 - 3.24372179403014e90 * cos(theta) ** 8 + 9.38266634636818e88 * cos(theta) ** 6 - 1.31409892806277e87 * cos(theta) ** 4 + 6.73896886186036e84 * cos(theta) ** 2 - 5.32724811214258e81 ) * cos(46 * phi) ) # @torch.jit.script def Yl68_m47(theta, phi): return ( 1.95151733974338e-84 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 9.78421477746542e95 * cos(theta) ** 21 - 1.52198896538351e96 * cos(theta) ** 19 + 9.78421477746542e95 * cos(theta) ** 17 - 3.38588602986081e95 * cos(theta) ** 15 + 6.88988436308885e94 * cos(theta) ** 13 - 8.4631650444241e93 * cos(theta) ** 11 + 6.20632103257767e92 * cos(theta) ** 9 - 2.59497743522412e91 * cos(theta) ** 7 + 5.62959980782091e89 * cos(theta) ** 5 - 5.25639571225108e87 * cos(theta) ** 3 + 1.34779377237207e85 * cos(theta) ) * cos(47 * phi) ) # @torch.jit.script def Yl68_m48(theta, phi): return ( 3.95397366551868e-86 * (1.0 - cos(theta) ** 2) ** 24 * ( 2.05468510326774e97 * cos(theta) ** 20 - 2.89177903422867e97 * cos(theta) ** 18 + 1.66331651216912e97 * cos(theta) ** 16 - 5.07882904479121e96 * cos(theta) ** 14 + 8.95684967201551e95 * cos(theta) ** 12 - 9.30948154886651e94 * cos(theta) ** 10 + 5.58568892931991e93 * cos(theta) ** 8 - 1.81648420465688e92 * cos(theta) ** 6 + 2.81479990391046e90 * cos(theta) ** 4 - 1.57691871367533e88 * cos(theta) ** 2 + 1.34779377237207e85 ) * cos(48 * phi) ) # @torch.jit.script def Yl68_m49(theta, phi): return ( 8.17383456958882e-88 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 4.10937020653548e98 * cos(theta) ** 19 - 5.2052022616116e98 * cos(theta) ** 17 + 2.66130641947059e98 * cos(theta) ** 15 - 7.1103606627077e97 * cos(theta) ** 13 + 1.07482196064186e97 * cos(theta) ** 11 - 9.30948154886651e95 * cos(theta) ** 9 + 4.46855114345593e94 * cos(theta) ** 7 - 1.08989052279413e93 * cos(theta) ** 5 + 1.12591996156418e91 * cos(theta) ** 3 - 3.15383742735065e88 * cos(theta) ) * cos(49 * phi) ) # @torch.jit.script def Yl68_m50(theta, phi): return ( 1.72626728289121e-89 * (1.0 - cos(theta) ** 2) ** 25 * ( 7.80780339241741e99 * cos(theta) ** 18 - 8.84884384473973e99 * cos(theta) ** 16 + 3.99195962920589e99 * cos(theta) ** 14 - 9.24346886152e98 * cos(theta) ** 12 + 1.18230415670605e98 * cos(theta) ** 10 - 8.37853339397986e96 * cos(theta) ** 8 + 3.12798580041915e95 * cos(theta) ** 6 - 5.44945261397064e93 * cos(theta) ** 4 + 3.37775988469255e91 * cos(theta) ** 2 - 3.15383742735065e88 ) * cos(50 * phi) ) # @torch.jit.script def Yl68_m51(theta, phi): return ( 3.72990960205454e-91 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 1.40540461063513e101 * cos(theta) ** 17 - 1.41581501515836e101 * cos(theta) ** 15 + 5.58874348088825e100 * cos(theta) ** 13 - 1.1092162633824e100 * cos(theta) ** 11 + 1.18230415670605e99 * cos(theta) ** 9 - 6.70282671518389e97 * cos(theta) ** 7 + 1.87679148025149e96 * cos(theta) ** 5 - 2.17978104558826e94 * cos(theta) ** 3 + 6.75551976938509e91 * cos(theta) ) * cos(51 * phi) ) # @torch.jit.script def Yl68_m52(theta, phi): return ( 8.25815866324608e-93 * (1.0 - cos(theta) ** 2) ** 26 * ( 2.38918783807973e102 * cos(theta) ** 16 - 2.12372252273753e102 * cos(theta) ** 14 + 7.26536652515472e101 * cos(theta) ** 12 - 1.22013788972064e101 * cos(theta) ** 10 + 1.06407374103544e100 * cos(theta) ** 8 - 4.69197870062872e98 * cos(theta) ** 6 + 9.38395740125744e96 * cos(theta) ** 4 - 6.53934313676477e94 * cos(theta) ** 2 + 6.75551976938509e91 ) * cos(52 * phi) ) # @torch.jit.script def Yl68_m53(theta, phi): return ( 1.87685424164684e-94 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 3.82270054092756e103 * cos(theta) ** 15 - 2.97321153183255e103 * cos(theta) ** 13 + 8.71843983018567e102 * cos(theta) ** 11 - 1.22013788972064e102 * cos(theta) ** 9 + 8.51258992828354e100 * cos(theta) ** 7 - 2.81518722037723e99 * cos(theta) ** 5 + 3.75358296050298e97 * cos(theta) ** 3 - 1.30786862735295e95 * cos(theta) ) * cos(53 * phi) ) # @torch.jit.script def Yl68_m54(theta, phi): return ( 4.38737747599552e-96 * (1.0 - cos(theta) ** 2) ** 27 * ( 5.73405081139134e104 * cos(theta) ** 14 - 3.86517499138231e104 * cos(theta) ** 12 + 9.59028381320424e103 * cos(theta) ** 10 - 1.09812410074858e103 * cos(theta) ** 8 + 5.95881294979848e101 * cos(theta) ** 6 - 1.40759361018862e100 * cos(theta) ** 4 + 1.12607488815089e98 * cos(theta) ** 2 - 1.30786862735295e95 ) * cos(54 * phi) ) # @torch.jit.script def Yl68_m55(theta, phi): return ( 1.05727613113712e-97 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 8.02767113594788e105 * cos(theta) ** 13 - 4.63820998965878e105 * cos(theta) ** 11 + 9.59028381320424e104 * cos(theta) ** 9 - 8.78499280598861e103 * cos(theta) ** 7 + 3.57528776987909e102 * cos(theta) ** 5 - 5.63037444075447e100 * cos(theta) ** 3 + 2.25214977630179e98 * cos(theta) ) * cos(55 * phi) ) # @torch.jit.script def Yl68_m56(theta, phi): return ( 2.63333377271339e-99 * (1.0 - cos(theta) ** 2) ** 28 * ( 1.04359724767322e107 * cos(theta) ** 12 - 5.10203098862465e106 * cos(theta) ** 10 + 8.63125543188381e105 * cos(theta) ** 8 - 6.14949496419203e104 * cos(theta) ** 6 + 1.78764388493954e103 * cos(theta) ** 4 - 1.68911233222634e101 * cos(theta) ** 2 + 2.25214977630179e98 ) * cos(56 * phi) ) # @torch.jit.script def Yl68_m57(theta, phi): return ( 6.79923856448301e-101 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 1.25231669720787e108 * cos(theta) ** 11 - 5.10203098862465e107 * cos(theta) ** 9 + 6.90500434550705e106 * cos(theta) ** 7 - 3.68969697851522e105 * cos(theta) ** 5 + 7.15057553975817e103 * cos(theta) ** 3 - 3.37822466445268e101 * cos(theta) ) * cos(57 * phi) ) # @torch.jit.script def Yl68_m58(theta, phi): return ( 1.82632752438246e-102 * (1.0 - cos(theta) ** 2) ** 29 * ( 1.37754836692866e109 * cos(theta) ** 10 - 4.59182788976219e108 * cos(theta) ** 8 + 4.83350304185493e107 * cos(theta) ** 6 - 1.84484848925761e106 * cos(theta) ** 4 + 2.14517266192745e104 * cos(theta) ** 2 - 3.37822466445268e101 ) * cos(58 * phi) ) # @torch.jit.script def Yl68_m59(theta, phi): return ( 5.12479861430099e-104 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 1.37754836692866e110 * cos(theta) ** 9 - 3.67346231180975e109 * cos(theta) ** 7 + 2.90010182511296e108 * cos(theta) ** 5 - 7.37939395703043e106 * cos(theta) ** 3 + 4.2903453238549e104 * cos(theta) ) * cos(59 * phi) ) # @torch.jit.script def Yl68_m60(theta, phi): return ( 1.50990827182819e-105 * (1.0 - cos(theta) ** 2) ** 30 * ( 1.23979353023579e111 * cos(theta) ** 8 - 2.57142361826683e110 * cos(theta) ** 6 + 1.45005091255648e109 * cos(theta) ** 4 - 2.21381818710913e107 * cos(theta) ** 2 + 4.2903453238549e104 ) * cos(60 * phi) ) # @torch.jit.script def Yl68_m61(theta, phi): return ( 4.70013915072667e-107 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 9.91834824188633e111 * cos(theta) ** 7 - 1.54285417096009e111 * cos(theta) ** 5 + 5.80020365022592e109 * cos(theta) ** 3 - 4.42763637421826e107 * cos(theta) ) * cos(61 * phi) ) # @torch.jit.script def Yl68_m62(theta, phi): return ( 1.55808095672644e-108 * (1.0 - cos(theta) ** 2) ** 31 * ( 6.94284376932043e112 * cos(theta) ** 6 - 7.71427085480048e111 * cos(theta) ** 4 + 1.74006109506778e110 * cos(theta) ** 2 - 4.42763637421826e107 ) * cos(62 * phi) ) # @torch.jit.script def Yl68_m63(theta, phi): return ( 5.55749072438024e-110 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 4.16570626159226e113 * cos(theta) ** 5 - 3.08570834192019e112 * cos(theta) ** 3 + 3.48012219013555e110 * cos(theta) ) * cos(63 * phi) ) # @torch.jit.script def Yl68_m64(theta, phi): return ( 2.16325033055874e-111 * (1.0 - cos(theta) ** 2) ** 32 * ( 2.08285313079613e114 * cos(theta) ** 4 - 9.25712502576057e112 * cos(theta) ** 2 + 3.48012219013555e110 ) * cos(64 * phi) ) # @torch.jit.script def Yl68_m65(theta, phi): return ( 9.37887964101915e-113 * (1.0 - cos(theta) ** 2) ** 32.5 * (8.33141252318451e114 * cos(theta) ** 3 - 1.85142500515211e113 * cos(theta)) * cos(65 * phi) ) # @torch.jit.script def Yl68_m66(theta, phi): return ( 4.6777600020732e-114 * (1.0 - cos(theta) ** 2) ** 33 * (2.49942375695535e115 * cos(theta) ** 2 - 1.85142500515211e113) * cos(66 * phi) ) # @torch.jit.script def Yl68_m67(theta, phi): return ( 14.2306895079291 * (1.0 - cos(theta) ** 2) ** 33.5 * cos(67 * phi) * cos(theta) ) # @torch.jit.script def Yl68_m68(theta, phi): return 1.22027155810609 * (1.0 - cos(theta) ** 2) ** 34 * cos(68 * phi) # @torch.jit.script def Yl69_m_minus_69(theta, phi): return 1.22468485120279 * (1.0 - cos(theta) ** 2) ** 34.5 * sin(69 * phi) # @torch.jit.script def Yl69_m_minus_68(theta, phi): return 14.3867894923659 * (1.0 - cos(theta) ** 2) ** 34 * sin(68 * phi) * cos(theta) # @torch.jit.script def Yl69_m_minus_67(theta, phi): return ( 3.47735247384222e-116 * (1.0 - cos(theta) ** 2) ** 33.5 * (3.42421054702884e117 * cos(theta) ** 2 - 2.49942375695535e115) * sin(67 * phi) ) # @torch.jit.script def Yl69_m_minus_66(theta, phi): return ( 7.02390769639901e-115 * (1.0 - cos(theta) ** 2) ** 33 * (1.14140351567628e117 * cos(theta) ** 3 - 2.49942375695535e115 * cos(theta)) * sin(66 * phi) ) # @torch.jit.script def Yl69_m_minus_65(theta, phi): return ( 1.63220865200709e-113 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 2.8535087891907e116 * cos(theta) ** 4 - 1.24971187847768e115 * cos(theta) ** 2 + 4.62856251288029e112 ) * sin(65 * phi) ) # @torch.jit.script def Yl69_m_minus_64(theta, phi): return ( 4.22486734237911e-112 * (1.0 - cos(theta) ** 2) ** 32 * ( 5.70701757838139e115 * cos(theta) ** 5 - 4.16570626159226e114 * cos(theta) ** 3 + 4.62856251288029e112 * cos(theta) ) * sin(64 * phi) ) # @torch.jit.script def Yl69_m_minus_63(theta, phi): return ( 1.19347828804884e-110 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 9.51169596396899e114 * cos(theta) ** 6 - 1.04142656539806e114 * cos(theta) ** 4 + 2.31428125644014e112 * cos(theta) ** 2 - 5.80020365022592e109 ) * sin(63 * phi) ) # @torch.jit.script def Yl69_m_minus_62(theta, phi): return ( 3.6278599088397e-109 * (1.0 - cos(theta) ** 2) ** 31 * ( 1.35881370913843e114 * cos(theta) ** 7 - 2.08285313079613e113 * cos(theta) ** 5 + 7.71427085480048e111 * cos(theta) ** 3 - 5.80020365022592e109 * cos(theta) ) * sin(62 * phi) ) # @torch.jit.script def Yl69_m_minus_61(theta, phi): return ( 1.17444085245015e-107 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 1.69851713642303e113 * cos(theta) ** 8 - 3.47142188466021e112 * cos(theta) ** 6 + 1.92856771370012e111 * cos(theta) ** 4 - 2.90010182511296e109 * cos(theta) ** 2 + 5.53454546777283e106 ) * sin(61 * phi) ) # @torch.jit.script def Yl69_m_minus_60(theta, phi): return ( 4.01720579458844e-106 * (1.0 - cos(theta) ** 2) ** 30 * ( 1.88724126269226e112 * cos(theta) ** 9 - 4.95917412094316e111 * cos(theta) ** 7 + 3.85713542740024e110 * cos(theta) ** 5 - 9.66700608370987e108 * cos(theta) ** 3 + 5.53454546777283e106 * cos(theta) ) * sin(60 * phi) ) # @torch.jit.script def Yl69_m_minus_59(theta, phi): return ( 1.4428425309415e-104 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 1.88724126269226e111 * cos(theta) ** 10 - 6.19896765117895e110 * cos(theta) ** 8 + 6.42855904566706e109 * cos(theta) ** 6 - 2.41675152092747e108 * cos(theta) ** 4 + 2.76727273388641e106 * cos(theta) ** 2 - 4.2903453238549e103 ) * sin(59 * phi) ) # @torch.jit.script def Yl69_m_minus_58(theta, phi): return ( 5.41402507685722e-103 * (1.0 - cos(theta) ** 2) ** 29 * ( 1.71567387517478e110 * cos(theta) ** 11 - 6.88774183464328e109 * cos(theta) ** 9 + 9.18365577952438e108 * cos(theta) ** 7 - 4.83350304185493e107 * cos(theta) ** 5 + 9.22424244628804e105 * cos(theta) ** 3 - 4.2903453238549e103 * cos(theta) ) * sin(58 * phi) ) # @torch.jit.script def Yl69_m_minus_57(theta, phi): return ( 2.11355107153923e-101 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 1.42972822931232e109 * cos(theta) ** 12 - 6.88774183464328e108 * cos(theta) ** 10 + 1.14795697244055e108 * cos(theta) ** 8 - 8.05583840309156e106 * cos(theta) ** 6 + 2.30606061157201e105 * cos(theta) ** 4 - 2.14517266192745e103 * cos(theta) ** 2 + 2.81518722037723e100 ) * sin(57 * phi) ) # @torch.jit.script def Yl69_m_minus_56(theta, phi): return ( 8.55400884978709e-100 * (1.0 - cos(theta) ** 2) ** 28 * ( 1.09979094562486e108 * cos(theta) ** 13 - 6.26158348603935e107 * cos(theta) ** 11 + 1.27550774715616e107 * cos(theta) ** 9 - 1.15083405758451e106 * cos(theta) ** 7 + 4.61212122314402e104 * cos(theta) ** 5 - 7.15057553975817e102 * cos(theta) ** 3 + 2.81518722037723e100 * cos(theta) ) * sin(56 * phi) ) # @torch.jit.script def Yl69_m_minus_55(theta, phi): return ( 3.57839863561779e-98 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 7.85564961160614e106 * cos(theta) ** 14 - 5.21798623836612e106 * cos(theta) ** 12 + 1.27550774715616e106 * cos(theta) ** 10 - 1.43854257198064e105 * cos(theta) ** 8 + 7.68686870524004e103 * cos(theta) ** 6 - 1.78764388493954e102 * cos(theta) ** 4 + 1.40759361018862e100 * cos(theta) ** 2 - 1.60867841164413e97 ) * sin(55 * phi) ) # @torch.jit.script def Yl69_m_minus_54(theta, phi): return ( 1.54328164764011e-96 * (1.0 - cos(theta) ** 2) ** 27 * ( 5.23709974107076e105 * cos(theta) ** 15 - 4.01383556797394e105 * cos(theta) ** 13 + 1.15955249741469e105 * cos(theta) ** 11 - 1.59838063553404e104 * cos(theta) ** 9 + 1.09812410074858e103 * cos(theta) ** 7 - 3.57528776987909e101 * cos(theta) ** 5 + 4.69197870062872e99 * cos(theta) ** 3 - 1.60867841164413e97 * cos(theta) ) * sin(54 * phi) ) # @torch.jit.script def Yl69_m_minus_53(theta, phi): return ( 6.84632858112973e-95 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 3.27318733816923e104 * cos(theta) ** 16 - 2.86702540569567e104 * cos(theta) ** 14 + 9.66293747845578e103 * cos(theta) ** 12 - 1.59838063553404e103 * cos(theta) ** 10 + 1.37265512593572e102 * cos(theta) ** 8 - 5.95881294979848e100 * cos(theta) ** 6 + 1.17299467515718e99 * cos(theta) ** 4 - 8.04339205822067e96 * cos(theta) ** 2 + 8.17417892095596e93 ) * sin(53 * phi) ) # @torch.jit.script def Yl69_m_minus_52(theta, phi): return ( 3.11789951721678e-93 * (1.0 - cos(theta) ** 2) ** 26 * ( 1.92540431657013e103 * cos(theta) ** 17 - 1.91135027046378e103 * cos(theta) ** 15 + 7.43302882958137e102 * cos(theta) ** 13 - 1.45307330503094e102 * cos(theta) ** 11 + 1.5251723621508e101 * cos(theta) ** 9 - 8.51258992828354e99 * cos(theta) ** 7 + 2.34598935031436e98 * cos(theta) ** 5 - 2.68113068607356e96 * cos(theta) ** 3 + 8.17417892095596e93 * cos(theta) ) * sin(52 * phi) ) # @torch.jit.script def Yl69_m_minus_51(theta, phi): return ( 1.45509400851028e-91 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 1.06966906476118e102 * cos(theta) ** 18 - 1.19459391903986e102 * cos(theta) ** 16 + 5.30930630684384e101 * cos(theta) ** 14 - 1.21089442085912e101 * cos(theta) ** 12 + 1.5251723621508e100 * cos(theta) ** 10 - 1.06407374103544e99 * cos(theta) ** 8 + 3.90998225052394e97 * cos(theta) ** 6 - 6.70282671518389e95 * cos(theta) ** 4 + 4.08708946047798e93 * cos(theta) ** 2 - 3.75306653854727e90 ) * sin(51 * phi) ) # @torch.jit.script def Yl69_m_minus_50(theta, phi): return ( 6.94797866131853e-90 * (1.0 - cos(theta) ** 2) ** 25 * ( 5.6298371829536e100 * cos(theta) ** 19 - 7.02702305317567e100 * cos(theta) ** 17 + 3.53953753789589e100 * cos(theta) ** 15 - 9.31457246814708e99 * cos(theta) ** 13 + 1.386520329228e99 * cos(theta) ** 11 - 1.18230415670605e98 * cos(theta) ** 9 + 5.58568892931991e96 * cos(theta) ** 7 - 1.34056534303678e95 * cos(theta) ** 5 + 1.36236315349266e93 * cos(theta) ** 3 - 3.75306653854727e90 * cos(theta) ) * sin(50 * phi) ) # @torch.jit.script def Yl69_m_minus_49(theta, phi): return ( 3.38958832010567e-88 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 2.8149185914768e99 * cos(theta) ** 20 - 3.9039016962087e99 * cos(theta) ** 18 + 2.21221096118493e99 * cos(theta) ** 16 - 6.65326604867649e98 * cos(theta) ** 14 + 1.15543360769e98 * cos(theta) ** 12 - 1.18230415670605e97 * cos(theta) ** 10 + 6.98211116164988e95 * cos(theta) ** 8 - 2.23427557172796e94 * cos(theta) ** 6 + 3.40590788373165e92 * cos(theta) ** 4 - 1.87653326927364e90 * cos(theta) ** 2 + 1.57691871367533e87 ) * sin(49 * phi) ) # @torch.jit.script def Yl69_m_minus_48(theta, phi): return ( 1.68732058755698e-86 * (1.0 - cos(theta) ** 2) ** 24 * ( 1.34043742451276e98 * cos(theta) ** 21 - 2.05468510326774e98 * cos(theta) ** 19 + 1.3013005654029e98 * cos(theta) ** 17 - 4.43551069911766e97 * cos(theta) ** 15 + 8.88795082838462e96 * cos(theta) ** 13 - 1.07482196064186e96 * cos(theta) ** 11 + 7.75790129072209e94 * cos(theta) ** 9 - 3.19182224532566e93 * cos(theta) ** 7 + 6.8118157674633e91 * cos(theta) ** 5 - 6.25511089757879e89 * cos(theta) ** 3 + 1.57691871367533e87 * cos(theta) ) * sin(48 * phi) ) # @torch.jit.script def Yl69_m_minus_47(theta, phi): return ( 8.56055411150962e-85 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 6.09289738414892e96 * cos(theta) ** 22 - 1.02734255163387e97 * cos(theta) ** 20 + 7.22944758557167e96 * cos(theta) ** 18 - 2.77219418694854e96 * cos(theta) ** 16 + 6.34853630598901e95 * cos(theta) ** 14 - 8.95684967201551e94 * cos(theta) ** 12 + 7.75790129072209e93 * cos(theta) ** 10 - 3.98977780665708e92 * cos(theta) ** 8 + 1.13530262791055e91 * cos(theta) ** 6 - 1.5637777243947e89 * cos(theta) ** 4 + 7.88459356837663e86 * cos(theta) ** 2 - 6.12633532896397e83 ) * sin(47 * phi) ) # @torch.jit.script def Yl69_m_minus_46(theta, phi): return ( 4.42175615909734e-83 * (1.0 - cos(theta) ** 2) ** 23 * ( 2.64908581919518e95 * cos(theta) ** 23 - 4.89210738873271e95 * cos(theta) ** 21 + 3.80497241345878e95 * cos(theta) ** 19 - 1.6307024629109e95 * cos(theta) ** 17 + 4.23235753732601e94 * cos(theta) ** 15 - 6.88988436308885e93 * cos(theta) ** 13 + 7.05263753702008e92 * cos(theta) ** 11 - 4.4330864518412e91 * cos(theta) ** 9 + 1.62186089701507e90 * cos(theta) ** 7 - 3.12755544878939e88 * cos(theta) ** 5 + 2.62819785612554e86 * cos(theta) ** 3 - 6.12633532896397e83 * cos(theta) ) * sin(46 * phi) ) # @torch.jit.script def Yl69_m_minus_45(theta, phi): return ( 2.32300064537706e-81 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 1.10378575799799e94 * cos(theta) ** 24 - 2.22368517669669e94 * cos(theta) ** 22 + 1.90248620672939e94 * cos(theta) ** 20 - 9.0594581272828e93 * cos(theta) ** 18 + 2.64522346082876e93 * cos(theta) ** 16 - 4.92134597363489e92 * cos(theta) ** 14 + 5.87719794751674e91 * cos(theta) ** 12 - 4.4330864518412e90 * cos(theta) ** 10 + 2.02732612126884e89 * cos(theta) ** 8 - 5.21259241464899e87 * cos(theta) ** 6 + 6.57049464031385e85 * cos(theta) ** 4 - 3.06316766448198e83 * cos(theta) ** 2 + 2.21968671339274e80 ) * sin(45 * phi) ) # @torch.jit.script def Yl69_m_minus_44(theta, phi): return ( 1.2401429835105e-79 * (1.0 - cos(theta) ** 2) ** 22 * ( 4.41514303199197e92 * cos(theta) ** 25 - 9.66819642042038e92 * cos(theta) ** 23 + 9.0594581272828e92 * cos(theta) ** 21 - 4.76813585646463e92 * cos(theta) ** 19 + 1.5560138004875e92 * cos(theta) ** 17 - 3.2808973157566e91 * cos(theta) ** 15 + 4.5209214980898e90 * cos(theta) ** 13 - 4.03007859258291e89 * cos(theta) ** 11 + 2.2525845791876e88 * cos(theta) ** 9 - 7.4465605923557e86 * cos(theta) ** 7 + 1.31409892806277e85 * cos(theta) ** 5 - 1.02105588816066e83 * cos(theta) ** 3 + 2.21968671339274e80 * cos(theta) ) * sin(44 * phi) ) # @torch.jit.script def Yl69_m_minus_43(theta, phi): return ( 6.72198681361313e-78 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 1.69813193538153e91 * cos(theta) ** 26 - 4.02841517517516e91 * cos(theta) ** 24 + 4.11793551240127e91 * cos(theta) ** 22 - 2.38406792823232e91 * cos(theta) ** 20 + 8.64452111381946e90 * cos(theta) ** 18 - 2.05056082234787e90 * cos(theta) ** 16 + 3.22922964149271e89 * cos(theta) ** 14 - 3.35839882715242e88 * cos(theta) ** 12 + 2.2525845791876e87 * cos(theta) ** 10 - 9.30820074044463e85 * cos(theta) ** 8 + 2.19016488010462e84 * cos(theta) ** 6 - 2.55263972040165e82 * cos(theta) ** 4 + 1.10984335669637e80 * cos(theta) ** 2 - 7.55509432740892e76 ) * sin(43 * phi) ) # @torch.jit.script def Yl69_m_minus_42(theta, phi): return ( 3.69648160726526e-76 * (1.0 - cos(theta) ** 2) ** 21 * ( 6.2893775384501e89 * cos(theta) ** 27 - 1.61136607007006e90 * cos(theta) ** 25 + 1.79040674452229e90 * cos(theta) ** 23 - 1.13527044201539e90 * cos(theta) ** 21 + 4.54974795464182e89 * cos(theta) ** 19 - 1.20621224843993e89 * cos(theta) ** 17 + 2.15281976099514e88 * cos(theta) ** 15 - 2.58338371319417e87 * cos(theta) ** 13 + 2.04780416289782e86 * cos(theta) ** 11 - 1.03424452671607e85 * cos(theta) ** 9 + 3.12880697157803e83 * cos(theta) ** 7 - 5.10527944080331e81 * cos(theta) ** 5 + 3.69947785565457e79 * cos(theta) ** 3 - 7.55509432740892e76 * cos(theta) ) * sin(42 * phi) ) # @torch.jit.script def Yl69_m_minus_41(theta, phi): return ( 2.06076777575783e-74 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 2.24620626373218e88 * cos(theta) ** 28 - 6.19756180796178e88 * cos(theta) ** 26 + 7.46002810217622e88 * cos(theta) ** 24 - 5.16032019097904e88 * cos(theta) ** 22 + 2.27487397732091e88 * cos(theta) ** 20 - 6.70117915799958e87 * cos(theta) ** 18 + 1.34551235062196e87 * cos(theta) ** 16 - 1.84527408085298e86 * cos(theta) ** 14 + 1.70650346908152e85 * cos(theta) ** 12 - 1.03424452671607e84 * cos(theta) ** 10 + 3.91100871447253e82 * cos(theta) ** 8 - 8.50879906800551e80 * cos(theta) ** 6 + 9.24869463913642e78 * cos(theta) ** 4 - 3.77754716370446e76 * cos(theta) ** 2 + 2.43085403069785e73 ) * sin(41 * phi) ) # @torch.jit.script def Yl69_m_minus_40(theta, phi): return ( 1.16392339110742e-72 * (1.0 - cos(theta) ** 2) ** 20 * ( 7.74553884045579e86 * cos(theta) ** 29 - 2.29539326220807e87 * cos(theta) ** 27 + 2.98401124087049e87 * cos(theta) ** 25 - 2.24361747433871e87 * cos(theta) ** 23 + 1.08327332253377e87 * cos(theta) ** 21 - 3.52693639894715e86 * cos(theta) ** 19 + 7.91477853307038e85 * cos(theta) ** 17 - 1.23018272056865e85 * cos(theta) ** 15 + 1.31269497621655e84 * cos(theta) ** 13 - 9.40222297014609e82 * cos(theta) ** 11 + 4.34556523830281e81 * cos(theta) ** 9 - 1.21554272400079e80 * cos(theta) ** 7 + 1.84973892782728e78 * cos(theta) ** 5 - 1.25918238790149e76 * cos(theta) ** 3 + 2.43085403069785e73 * cos(theta) ) * sin(40 * phi) ) # @torch.jit.script def Yl69_m_minus_39(theta, phi): return ( 6.65576948924773e-71 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 2.58184628015193e85 * cos(theta) ** 30 - 8.19783307931452e85 * cos(theta) ** 28 + 1.14769663110403e86 * cos(theta) ** 26 - 9.34840614307797e85 * cos(theta) ** 24 + 4.92396964788076e85 * cos(theta) ** 22 - 1.76346819947357e85 * cos(theta) ** 20 + 4.3970991850391e84 * cos(theta) ** 18 - 7.68864200355408e83 * cos(theta) ** 16 + 9.37639268726107e82 * cos(theta) ** 14 - 7.83518580845507e81 * cos(theta) ** 12 + 4.34556523830281e80 * cos(theta) ** 10 - 1.51942840500098e79 * cos(theta) ** 8 + 3.08289821304547e77 * cos(theta) ** 6 - 3.14795596975372e75 * cos(theta) ** 4 + 1.21542701534893e73 * cos(theta) ** 2 - 7.43380437522279e69 ) * sin(39 * phi) ) # @torch.jit.script def Yl69_m_minus_38(theta, phi): return ( 3.85115498999865e-69 * (1.0 - cos(theta) ** 2) ** 19 * ( 8.32853638758687e83 * cos(theta) ** 31 - 2.82683899286708e84 * cos(theta) ** 29 + 4.25072826334827e84 * cos(theta) ** 27 - 3.73936245723119e84 * cos(theta) ** 25 + 2.14085636864381e84 * cos(theta) ** 23 - 8.39746761654083e83 * cos(theta) ** 21 + 2.31426272896795e83 * cos(theta) ** 19 - 4.52273059032593e82 * cos(theta) ** 17 + 6.25092845817405e81 * cos(theta) ** 15 - 6.0270660065039e80 * cos(theta) ** 13 + 3.95051385300256e79 * cos(theta) ** 11 - 1.68825378333443e78 * cos(theta) ** 9 + 4.40414030435068e76 * cos(theta) ** 7 - 6.29591193950744e74 * cos(theta) ** 5 + 4.05142338449642e72 * cos(theta) ** 3 - 7.43380437522279e69 * cos(theta) ) * sin(38 * phi) ) # @torch.jit.script def Yl69_m_minus_37(theta, phi): return ( 2.25350162298453e-67 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 2.6026676211209e82 * cos(theta) ** 32 - 9.42279664289026e82 * cos(theta) ** 30 + 1.5181172369101e83 * cos(theta) ** 28 - 1.4382163297043e83 * cos(theta) ** 26 + 8.9202348693492e82 * cos(theta) ** 24 - 3.81703073479129e82 * cos(theta) ** 22 + 1.15713136448397e82 * cos(theta) ** 20 - 2.51262810573663e81 * cos(theta) ** 18 + 3.90683028635878e80 * cos(theta) ** 16 - 4.30504714750279e79 * cos(theta) ** 14 + 3.29209487750213e78 * cos(theta) ** 12 - 1.68825378333443e77 * cos(theta) ** 10 + 5.50517538043835e75 * cos(theta) ** 8 - 1.04931865658457e74 * cos(theta) ** 6 + 1.0128558461241e72 * cos(theta) ** 4 - 3.71690218761139e69 * cos(theta) ** 2 + 2.17108772640852e66 ) * sin(37 * phi) ) # @torch.jit.script def Yl69_m_minus_36(theta, phi): return ( 1.3328085735637e-65 * (1.0 - cos(theta) ** 2) ** 18 * ( 7.88687157915424e80 * cos(theta) ** 33 - 3.03961182028718e81 * cos(theta) ** 31 + 5.23488702382792e81 * cos(theta) ** 29 - 5.32672714705297e81 * cos(theta) ** 27 + 3.56809394773968e81 * cos(theta) ** 25 - 1.65957858034404e81 * cos(theta) ** 23 + 5.51014935468559e80 * cos(theta) ** 21 - 1.32243584512454e80 * cos(theta) ** 19 + 2.29813546256399e79 * cos(theta) ** 17 - 2.87003143166853e78 * cos(theta) ** 15 + 2.53238067500164e77 * cos(theta) ** 13 - 1.53477616666766e76 * cos(theta) ** 11 + 6.11686153382039e74 * cos(theta) ** 9 - 1.49902665226368e73 * cos(theta) ** 7 + 2.02571169224821e71 * cos(theta) ** 5 - 1.23896739587046e69 * cos(theta) ** 3 + 2.17108772640852e66 * cos(theta) ) * sin(36 * phi) ) # @torch.jit.script def Yl69_m_minus_35(theta, phi): return ( 7.96346151917664e-64 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 2.31966811151595e79 * cos(theta) ** 34 - 9.49878693839744e79 * cos(theta) ** 32 + 1.74496234127597e80 * cos(theta) ** 30 - 1.90240255251892e80 * cos(theta) ** 28 + 1.37234382605372e80 * cos(theta) ** 26 - 6.91491075143349e79 * cos(theta) ** 24 + 2.5046133430389e79 * cos(theta) ** 22 - 6.6121792256227e78 * cos(theta) ** 20 + 1.27674192364666e78 * cos(theta) ** 18 - 1.79376964479283e77 * cos(theta) ** 16 + 1.80884333928689e76 * cos(theta) ** 14 - 1.27898013888972e75 * cos(theta) ** 12 + 6.11686153382039e73 * cos(theta) ** 10 - 1.87378331532959e72 * cos(theta) ** 8 + 3.37618615374702e70 * cos(theta) ** 6 - 3.09741848967616e68 * cos(theta) ** 4 + 1.08554386320426e66 * cos(theta) ** 2 - 6.08147822523396e62 ) * sin(35 * phi) ) # @torch.jit.script def Yl69_m_minus_34(theta, phi): return ( 4.80454845430205e-62 * (1.0 - cos(theta) ** 2) ** 17 * ( 6.62762317575986e77 * cos(theta) ** 35 - 2.87842028436286e78 * cos(theta) ** 33 + 5.62891077830959e78 * cos(theta) ** 31 - 6.56000880178937e78 * cos(theta) ** 29 + 5.08275491131009e78 * cos(theta) ** 27 - 2.7659643005734e78 * cos(theta) ** 25 + 1.08896232306039e78 * cos(theta) ** 23 - 3.14865677410605e77 * cos(theta) ** 21 + 6.71969433498242e76 * cos(theta) ** 19 - 1.05515861458402e76 * cos(theta) ** 17 + 1.20589555952459e75 * cos(theta) ** 15 - 9.83830876069013e73 * cos(theta) ** 13 + 5.56078321256399e72 * cos(theta) ** 11 - 2.08198146147733e71 * cos(theta) ** 9 + 4.82312307678145e69 * cos(theta) ** 7 - 6.19483697935232e67 * cos(theta) ** 5 + 3.61847954401421e65 * cos(theta) ** 3 - 6.08147822523396e62 * cos(theta) ) * sin(34 * phi) ) # @torch.jit.script def Yl69_m_minus_33(theta, phi): return ( 2.92565047691658e-60 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 1.84100643771107e76 * cos(theta) ** 36 - 8.46594201283194e76 * cos(theta) ** 34 + 1.75903461822175e77 * cos(theta) ** 32 - 2.18666960059646e77 * cos(theta) ** 30 + 1.81526961118217e77 * cos(theta) ** 28 - 1.06383242329746e77 * cos(theta) ** 26 + 4.53734301275163e76 * cos(theta) ** 24 - 1.43120762459366e76 * cos(theta) ** 22 + 3.35984716749121e75 * cos(theta) ** 20 - 5.86199230324454e74 * cos(theta) ** 18 + 7.53684724702869e73 * cos(theta) ** 16 - 7.02736340049295e72 * cos(theta) ** 14 + 4.63398601046999e71 * cos(theta) ** 12 - 2.08198146147733e70 * cos(theta) ** 10 + 6.02890384597682e68 * cos(theta) ** 8 - 1.03247282989205e67 * cos(theta) ** 6 + 9.04619886003552e64 * cos(theta) ** 4 - 3.04073911261698e62 * cos(theta) ** 2 + 1.64009660874702e59 ) * sin(33 * phi) ) # @torch.jit.script def Yl69_m_minus_32(theta, phi): return ( 1.79731164551872e-58 * (1.0 - cos(theta) ** 2) ** 16 * ( 4.97569307489479e74 * cos(theta) ** 37 - 2.41884057509484e75 * cos(theta) ** 35 + 5.3304079340053e75 * cos(theta) ** 33 - 7.05377290514987e75 * cos(theta) ** 31 + 6.25955038338681e75 * cos(theta) ** 29 - 3.94012008628689e75 * cos(theta) ** 27 + 1.81493720510065e75 * cos(theta) ** 25 - 6.22264184605939e74 * cos(theta) ** 23 + 1.59992722261486e74 * cos(theta) ** 21 - 3.08525910697081e73 * cos(theta) ** 19 + 4.4334395570757e72 * cos(theta) ** 17 - 4.68490893366197e71 * cos(theta) ** 15 + 3.56460462343845e70 * cos(theta) ** 13 - 1.89271041952484e69 * cos(theta) ** 11 + 6.69878205108535e67 * cos(theta) ** 9 - 1.47496118556008e66 * cos(theta) ** 7 + 1.8092397720071e64 * cos(theta) ** 5 - 1.01357970420566e62 * cos(theta) ** 3 + 1.64009660874702e59 * cos(theta) ) * sin(32 * phi) ) # @torch.jit.script def Yl69_m_minus_31(theta, phi): return ( 1.11346321367111e-56 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 1.309392914446e73 * cos(theta) ** 38 - 6.71900159748567e73 * cos(theta) ** 36 + 1.56776703941332e74 * cos(theta) ** 34 - 2.20430403285933e74 * cos(theta) ** 32 + 2.08651679446227e74 * cos(theta) ** 30 - 1.40718574510246e74 * cos(theta) ** 28 + 6.98052771192559e73 * cos(theta) ** 26 - 2.59276743585808e73 * cos(theta) ** 24 + 7.27239646643119e72 * cos(theta) ** 22 - 1.5426295534854e72 * cos(theta) ** 20 + 2.46302197615317e71 * cos(theta) ** 18 - 2.92806808353873e70 * cos(theta) ** 16 + 2.5461461595989e69 * cos(theta) ** 14 - 1.57725868293737e68 * cos(theta) ** 12 + 6.69878205108535e66 * cos(theta) ** 10 - 1.8437014819501e65 * cos(theta) ** 8 + 3.01539962001184e63 * cos(theta) ** 6 - 2.53394926051415e61 * cos(theta) ** 4 + 8.20048304373512e58 * cos(theta) ** 2 - 4.27331060121684e55 ) * sin(31 * phi) ) # @torch.jit.script def Yl69_m_minus_30(theta, phi): return ( 6.95357554066631e-55 * (1.0 - cos(theta) ** 2) ** 15 * ( 3.35741772934871e71 * cos(theta) ** 39 - 1.81594637769883e72 * cos(theta) ** 37 + 4.47933439832378e72 * cos(theta) ** 35 - 6.67970919048283e72 * cos(theta) ** 33 + 6.73069933697506e72 * cos(theta) ** 31 - 4.85236463828435e72 * cos(theta) ** 29 + 2.58538063404652e72 * cos(theta) ** 27 - 1.03710697434323e72 * cos(theta) ** 25 + 3.161911507144e71 * cos(theta) ** 23 - 7.34585501659716e70 * cos(theta) ** 21 + 1.29632735587009e70 * cos(theta) ** 19 - 1.7223929903169e69 * cos(theta) ** 17 + 1.69743077306593e68 * cos(theta) ** 15 - 1.21327590995182e67 * cos(theta) ** 13 + 6.08980186462304e65 * cos(theta) ** 11 - 2.04855720216677e64 * cos(theta) ** 9 + 4.30771374287406e62 * cos(theta) ** 7 - 5.0678985210283e60 * cos(theta) ** 5 + 2.73349434791171e58 * cos(theta) ** 3 - 4.27331060121684e55 * cos(theta) ) * sin(30 * phi) ) # @torch.jit.script def Yl69_m_minus_29(theta, phi): return ( 4.37578293208222e-53 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 8.39354432337178e69 * cos(theta) ** 40 - 4.77880625710218e70 * cos(theta) ** 38 + 1.24425955508994e71 * cos(theta) ** 36 - 1.96462035014201e71 * cos(theta) ** 34 + 2.10334354280471e71 * cos(theta) ** 32 - 1.61745487942812e71 * cos(theta) ** 30 + 9.23350226445184e70 * cos(theta) ** 28 - 3.9888729782432e70 * cos(theta) ** 26 + 1.31746312797667e70 * cos(theta) ** 24 - 3.33902500754417e69 * cos(theta) ** 22 + 6.48163677935044e68 * cos(theta) ** 20 - 9.568849946205e67 * cos(theta) ** 18 + 1.06089423316621e67 * cos(theta) ** 16 - 8.66625649965587e65 * cos(theta) ** 14 + 5.07483488718587e64 * cos(theta) ** 12 - 2.04855720216677e63 * cos(theta) ** 10 + 5.38464217859257e61 * cos(theta) ** 8 - 8.44649753504717e59 * cos(theta) ** 6 + 6.83373586977926e57 * cos(theta) ** 4 - 2.13665530060842e55 * cos(theta) ** 2 + 1.07911883869112e52 ) * sin(29 * phi) ) # @torch.jit.script def Yl69_m_minus_28(theta, phi): return ( 2.77370798116249e-51 * (1.0 - cos(theta) ** 2) ** 14 * ( 2.0472059325297e68 * cos(theta) ** 41 - 1.22533493771851e69 * cos(theta) ** 39 + 3.36286366240524e69 * cos(theta) ** 37 - 5.61320100040574e69 * cos(theta) ** 35 + 6.37376831152942e69 * cos(theta) ** 33 - 5.21759638525199e69 * cos(theta) ** 31 + 3.18396629808684e69 * cos(theta) ** 29 - 1.47736036231229e69 * cos(theta) ** 27 + 5.26985251190666e68 * cos(theta) ** 25 - 1.45175000328007e68 * cos(theta) ** 23 + 3.08649370445259e67 * cos(theta) ** 21 - 5.0362368137921e66 * cos(theta) ** 19 + 6.24055431274239e65 * cos(theta) ** 17 - 5.77750433310391e64 * cos(theta) ** 15 + 3.90371914398913e63 * cos(theta) ** 13 - 1.86232472924252e62 * cos(theta) ** 11 + 5.98293575399175e60 * cos(theta) ** 9 - 1.20664250500674e59 * cos(theta) ** 7 + 1.36674717395585e57 * cos(theta) ** 5 - 7.1221843353614e54 * cos(theta) ** 3 + 1.07911883869112e52 * cos(theta) ) * sin(28 * phi) ) # @torch.jit.script def Yl69_m_minus_27(theta, phi): return ( 1.7703993786841e-49 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 4.87429983935643e66 * cos(theta) ** 42 - 3.06333734429627e67 * cos(theta) ** 40 + 8.84964121685589e67 * cos(theta) ** 38 - 1.5592225001127e68 * cos(theta) ** 36 + 1.87463773868512e68 * cos(theta) ** 34 - 1.63049887039125e68 * cos(theta) ** 32 + 1.06132209936228e68 * cos(theta) ** 30 - 5.2762870082582e67 * cos(theta) ** 28 + 2.02686635073333e67 * cos(theta) ** 26 - 6.0489583470003e66 * cos(theta) ** 24 + 1.40295168384209e66 * cos(theta) ** 22 - 2.51811840689605e65 * cos(theta) ** 20 + 3.46697461819022e64 * cos(theta) ** 18 - 3.61094020818995e63 * cos(theta) ** 16 + 2.78837081713509e62 * cos(theta) ** 14 - 1.55193727436877e61 * cos(theta) ** 12 + 5.98293575399175e59 * cos(theta) ** 10 - 1.50830313125842e58 * cos(theta) ** 8 + 2.27791195659309e56 * cos(theta) ** 6 - 1.78054608384035e54 * cos(theta) ** 4 + 5.39559419345561e51 * cos(theta) ** 2 - 2.64879440032185e48 ) * sin(27 * phi) ) # @torch.jit.script def Yl69_m_minus_26(theta, phi): return ( 1.13747298988002e-47 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.13355810217591e65 * cos(theta) ** 43 - 7.47155449828359e65 * cos(theta) ** 41 + 2.26913877355279e66 * cos(theta) ** 39 - 4.21411486516947e66 * cos(theta) ** 37 + 5.35610782481463e66 * cos(theta) ** 35 - 4.94090566785226e66 * cos(theta) ** 33 + 3.4236196753622e66 * cos(theta) ** 31 - 1.81940931319248e66 * cos(theta) ** 29 + 7.50691241012345e65 * cos(theta) ** 27 - 2.41958333880012e65 * cos(theta) ** 25 + 6.0997899297482e64 * cos(theta) ** 23 - 1.19910400328383e64 * cos(theta) ** 21 + 1.82472348325801e63 * cos(theta) ** 19 - 2.12408247540585e62 * cos(theta) ** 17 + 1.85891387809006e61 * cos(theta) ** 15 - 1.19379790336059e60 * cos(theta) ** 13 + 5.43903250362886e58 * cos(theta) ** 11 - 1.67589236806491e57 * cos(theta) ** 9 + 3.25415993799013e55 * cos(theta) ** 7 - 3.5610921676807e53 * cos(theta) ** 5 + 1.79853139781854e51 * cos(theta) ** 3 - 2.64879440032185e48 * cos(theta) ) * sin(26 * phi) ) # @torch.jit.script def Yl69_m_minus_25(theta, phi): return ( 7.35409496492504e-46 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 2.57626841403617e63 * cos(theta) ** 44 - 1.77894154721038e64 * cos(theta) ** 42 + 5.67284693388198e64 * cos(theta) ** 40 - 1.10897759609723e65 * cos(theta) ** 38 + 1.48780772911518e65 * cos(theta) ** 36 - 1.45320754936831e65 * cos(theta) ** 34 + 1.06988114855069e65 * cos(theta) ** 32 - 6.0646977106416e64 * cos(theta) ** 30 + 2.68104014647266e64 * cos(theta) ** 28 - 9.30608976461584e63 * cos(theta) ** 26 + 2.54157913739508e63 * cos(theta) ** 24 - 5.45047274219925e62 * cos(theta) ** 22 + 9.12361741629004e61 * cos(theta) ** 20 - 1.18004581966992e61 * cos(theta) ** 18 + 1.16182117380629e60 * cos(theta) ** 16 - 8.52712788114708e58 * cos(theta) ** 14 + 4.53252708635738e57 * cos(theta) ** 12 - 1.67589236806491e56 * cos(theta) ** 10 + 4.06769992248766e54 * cos(theta) ** 8 - 5.93515361280117e52 * cos(theta) ** 6 + 4.49632849454634e50 * cos(theta) ** 4 - 1.32439720016092e48 * cos(theta) ** 2 + 6.33682870890395e44 ) * sin(25 * phi) ) # @torch.jit.script def Yl69_m_minus_24(theta, phi): return ( 4.78298938892577e-44 * (1.0 - cos(theta) ** 2) ** 12 * ( 5.72504092008038e61 * cos(theta) ** 45 - 4.13707336560553e62 * cos(theta) ** 43 + 1.38362120338585e63 * cos(theta) ** 41 - 2.8435322976852e63 * cos(theta) ** 39 + 4.02110197058156e63 * cos(theta) ** 37 - 4.15202156962375e63 * cos(theta) ** 35 + 3.24206408651723e63 * cos(theta) ** 33 - 1.95635410020697e63 * cos(theta) ** 31 + 9.24496602231952e62 * cos(theta) ** 29 - 3.44669991282068e62 * cos(theta) ** 27 + 1.01663165495803e62 * cos(theta) ** 25 - 2.36977075747793e61 * cos(theta) ** 23 + 4.34457972204288e60 * cos(theta) ** 21 - 6.21076747194693e59 * cos(theta) ** 19 + 6.83424219886052e58 * cos(theta) ** 17 - 5.68475192076472e57 * cos(theta) ** 15 + 3.48655929719799e56 * cos(theta) ** 13 - 1.52353851642265e55 * cos(theta) ** 11 + 4.51966658054184e53 * cos(theta) ** 9 - 8.47879087543024e51 * cos(theta) ** 7 + 8.99265698909268e49 * cos(theta) ** 5 - 4.41465733386975e47 * cos(theta) ** 3 + 6.33682870890395e44 * cos(theta) ) * sin(24 * phi) ) # @torch.jit.script def Yl69_m_minus_23(theta, phi): return ( 3.12838220973394e-42 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.24457411306095e60 * cos(theta) ** 46 - 9.40243946728529e60 * cos(theta) ** 44 + 3.29433619853774e61 * cos(theta) ** 42 - 7.10883074421301e61 * cos(theta) ** 40 + 1.05818472910041e62 * cos(theta) ** 38 - 1.15333932489549e62 * cos(theta) ** 36 + 9.53548260740362e61 * cos(theta) ** 34 - 6.11360656314678e61 * cos(theta) ** 32 + 3.08165534077317e61 * cos(theta) ** 30 - 1.23096425457882e61 * cos(theta) ** 28 + 3.91012174983859e60 * cos(theta) ** 26 - 9.87404482282472e59 * cos(theta) ** 24 + 1.97480896456494e59 * cos(theta) ** 22 - 3.10538373597347e58 * cos(theta) ** 20 + 3.79680122158918e57 * cos(theta) ** 18 - 3.55296995047795e56 * cos(theta) ** 16 + 2.49039949799856e55 * cos(theta) ** 14 - 1.26961543035221e54 * cos(theta) ** 12 + 4.51966658054184e52 * cos(theta) ** 10 - 1.05984885942878e51 * cos(theta) ** 8 + 1.49877616484878e49 * cos(theta) ** 6 - 1.10366433346744e47 * cos(theta) ** 4 + 3.16841435445197e44 * cos(theta) ** 2 - 1.48125963274987e41 ) * sin(23 * phi) ) # @torch.jit.script def Yl69_m_minus_22(theta, phi): return ( 2.05713432186081e-40 * (1.0 - cos(theta) ** 2) ** 11 * ( 2.64803002778926e58 * cos(theta) ** 47 - 2.08943099273007e59 * cos(theta) ** 45 + 7.66124697334357e59 * cos(theta) ** 43 - 1.73386115712512e60 * cos(theta) ** 41 + 2.71329417718054e60 * cos(theta) ** 39 - 3.11713331052834e60 * cos(theta) ** 37 + 2.72442360211532e60 * cos(theta) ** 35 - 1.85260804943842e60 * cos(theta) ** 33 + 9.94082367991346e59 * cos(theta) ** 31 - 4.24470432613385e59 * cos(theta) ** 29 + 1.44819324068096e59 * cos(theta) ** 27 - 3.94961792912989e58 * cos(theta) ** 25 + 8.58612593289106e57 * cos(theta) ** 23 - 1.47875415998737e57 * cos(theta) ** 21 + 1.99831643241536e56 * cos(theta) ** 19 - 2.08998232381056e55 * cos(theta) ** 17 + 1.66026633199904e54 * cos(theta) ** 15 - 9.76627254117083e52 * cos(theta) ** 13 + 4.10878780049258e51 * cos(theta) ** 11 - 1.17760984380976e50 * cos(theta) ** 9 + 2.14110880692683e48 * cos(theta) ** 7 - 2.20732866693487e46 * cos(theta) ** 5 + 1.05613811815066e44 * cos(theta) ** 3 - 1.48125963274987e41 * cos(theta) ) * sin(22 * phi) ) # @torch.jit.script def Yl69_m_minus_21(theta, phi): return ( 1.35957748834704e-38 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 5.51672922456096e56 * cos(theta) ** 48 - 4.54224128854362e57 * cos(theta) ** 46 + 1.74119249394172e58 * cos(theta) ** 44 - 4.12824085029791e58 * cos(theta) ** 42 + 6.78323544295135e58 * cos(theta) ** 40 - 8.20298239612721e58 * cos(theta) ** 38 + 7.56784333920922e58 * cos(theta) ** 36 - 5.44884720423064e58 * cos(theta) ** 34 + 3.10650739997296e58 * cos(theta) ** 32 - 1.41490144204462e58 * cos(theta) ** 30 + 5.17211871671771e57 * cos(theta) ** 28 - 1.51908381889611e57 * cos(theta) ** 26 + 3.57755247203794e56 * cos(theta) ** 24 - 6.72160981812439e55 * cos(theta) ** 22 + 9.99158216207679e54 * cos(theta) ** 20 - 1.16110129100587e54 * cos(theta) ** 18 + 1.0376664574994e53 * cos(theta) ** 16 - 6.97590895797916e51 * cos(theta) ** 14 + 3.42398983374382e50 * cos(theta) ** 12 - 1.17760984380976e49 * cos(theta) ** 10 + 2.67638600865854e47 * cos(theta) ** 8 - 3.67888111155812e45 * cos(theta) ** 6 + 2.64034529537664e43 * cos(theta) ** 4 - 7.40629816374935e40 * cos(theta) ** 2 + 3.3911621628889e37 ) * sin(21 * phi) ) # @torch.jit.script def Yl69_m_minus_20(theta, phi): return ( 9.02865918920212e-37 * (1.0 - cos(theta) ** 2) ** 10 * ( 1.12586310705326e55 * cos(theta) ** 49 - 9.66434316711409e55 * cos(theta) ** 47 + 3.86931665320382e56 * cos(theta) ** 45 - 9.6005601169719e56 * cos(theta) ** 43 + 1.65444766901252e57 * cos(theta) ** 41 - 2.1033288195198e57 * cos(theta) ** 39 + 2.04536306465114e57 * cos(theta) ** 37 - 1.55681348692304e57 * cos(theta) ** 35 + 9.41365878779684e56 * cos(theta) ** 33 - 4.56419820014392e56 * cos(theta) ** 31 + 1.78348921266128e56 * cos(theta) ** 29 - 5.62623636628189e55 * cos(theta) ** 27 + 1.43102098881518e55 * cos(theta) ** 25 - 2.92243905135843e54 * cos(theta) ** 23 + 4.75789626765561e53 * cos(theta) ** 21 - 6.11105942634666e52 * cos(theta) ** 19 + 6.10392033823177e51 * cos(theta) ** 17 - 4.65060597198611e50 * cos(theta) ** 15 + 2.63383833364909e49 * cos(theta) ** 13 - 1.07055440346341e48 * cos(theta) ** 11 + 2.97376223184282e46 * cos(theta) ** 9 - 5.25554444508303e44 * cos(theta) ** 7 + 5.28069059075329e42 * cos(theta) ** 5 - 2.46876605458312e40 * cos(theta) ** 3 + 3.3911621628889e37 * cos(theta) ) * sin(20 * phi) ) # @torch.jit.script def Yl69_m_minus_19(theta, phi): return ( 6.02286689259109e-35 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 2.25172621410651e53 * cos(theta) ** 50 - 2.0134048264821e54 * cos(theta) ** 48 + 8.41155794174744e54 * cos(theta) ** 46 - 2.18194548112998e55 * cos(theta) ** 44 + 3.93916111669648e55 * cos(theta) ** 42 - 5.25832204879949e55 * cos(theta) ** 40 + 5.3825343806609e55 * cos(theta) ** 38 - 4.32448190811956e55 * cos(theta) ** 36 + 2.76872317288142e55 * cos(theta) ** 34 - 1.42631193754498e55 * cos(theta) ** 32 + 5.94496404220427e54 * cos(theta) ** 30 - 2.00937013081496e54 * cos(theta) ** 28 + 5.50392688005837e53 * cos(theta) ** 26 - 1.21768293806601e53 * cos(theta) ** 24 + 2.16268012166164e52 * cos(theta) ** 22 - 3.05552971317333e51 * cos(theta) ** 20 + 3.39106685457321e50 * cos(theta) ** 18 - 2.90662873249132e49 * cos(theta) ** 16 + 1.88131309546364e48 * cos(theta) ** 14 - 8.92128669552845e46 * cos(theta) ** 12 + 2.97376223184282e45 * cos(theta) ** 10 - 6.56943055635379e43 * cos(theta) ** 8 + 8.80115098458881e41 * cos(theta) ** 6 - 6.17191513645779e39 * cos(theta) ** 4 + 1.69558108144445e37 * cos(theta) ** 2 - 7.62058913008741e33 ) * sin(19 * phi) ) # @torch.jit.script def Yl69_m_minus_18(theta, phi): return ( 4.03487132532308e-33 * (1.0 - cos(theta) ** 2) ** 9 * ( 4.41514943942454e51 * cos(theta) ** 51 - 4.10898944180021e52 * cos(theta) ** 49 + 1.7896931790952e53 * cos(theta) ** 47 - 4.84876773584439e53 * cos(theta) ** 45 + 9.16083980627089e53 * cos(theta) ** 43 - 1.28251757287792e54 * cos(theta) ** 41 + 1.38013702068228e54 * cos(theta) ** 39 - 1.16877889408637e54 * cos(theta) ** 37 + 7.91063763680406e53 * cos(theta) ** 35 - 4.32215738649992e53 * cos(theta) ** 33 + 1.91773033619492e53 * cos(theta) ** 31 - 6.92886252005159e52 * cos(theta) ** 29 + 2.03849143705866e52 * cos(theta) ** 27 - 4.87073175226405e51 * cos(theta) ** 25 + 9.4029570507028e50 * cos(theta) ** 23 - 1.45501414913016e50 * cos(theta) ** 21 + 1.78477202872274e49 * cos(theta) ** 19 - 1.70978160734783e48 * cos(theta) ** 17 + 1.25420873030909e47 * cos(theta) ** 15 - 6.86252822732958e45 * cos(theta) ** 13 + 2.7034202107662e44 * cos(theta) ** 11 - 7.29936728483755e42 * cos(theta) ** 9 + 1.25730728351269e41 * cos(theta) ** 7 - 1.23438302729156e39 * cos(theta) ** 5 + 5.65193693814816e36 * cos(theta) ** 3 - 7.62058913008741e33 * cos(theta) ) * sin(18 * phi) ) # @torch.jit.script def Yl69_m_minus_17(theta, phi): return ( 2.71388216826562e-31 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 8.49067199889334e49 * cos(theta) ** 52 - 8.21797888360041e50 * cos(theta) ** 50 + 3.72852745644834e51 * cos(theta) ** 48 - 1.05407994257487e52 * cos(theta) ** 46 + 2.08200904687975e52 * cos(theta) ** 44 - 3.05361326875696e52 * cos(theta) ** 42 + 3.4503425517057e52 * cos(theta) ** 40 - 3.07573393180623e52 * cos(theta) ** 38 + 2.19739934355668e52 * cos(theta) ** 36 - 1.27122276073527e52 * cos(theta) ** 34 + 5.99290730060914e51 * cos(theta) ** 32 - 2.3096208400172e51 * cos(theta) ** 30 + 7.28032656092378e50 * cos(theta) ** 28 - 1.8733583662554e50 * cos(theta) ** 26 + 3.91789877112616e49 * cos(theta) ** 24 - 6.61370067786435e48 * cos(theta) ** 22 + 8.9238601436137e47 * cos(theta) ** 20 - 9.49878670748797e46 * cos(theta) ** 18 + 7.83880456443182e45 * cos(theta) ** 16 - 4.90180587666398e44 * cos(theta) ** 14 + 2.2528501756385e43 * cos(theta) ** 12 - 7.29936728483755e41 * cos(theta) ** 10 + 1.57163410439086e40 * cos(theta) ** 8 - 2.05730504548593e38 * cos(theta) ** 6 + 1.41298423453704e36 * cos(theta) ** 4 - 3.8102945650437e33 * cos(theta) ** 2 + 1.68448035589907e30 ) * sin(17 * phi) ) # @torch.jit.script def Yl69_m_minus_16(theta, phi): return ( 1.83222222934563e-29 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.60201358469686e48 * cos(theta) ** 53 - 1.6113684085491e49 * cos(theta) ** 51 + 7.60923970703742e49 * cos(theta) ** 49 - 2.24272328207419e50 * cos(theta) ** 47 + 4.62668677084388e50 * cos(theta) ** 45 - 7.10142620641154e50 * cos(theta) ** 43 + 8.41546963830659e50 * cos(theta) ** 41 - 7.88649726104161e50 * cos(theta) ** 39 + 5.9389171447478e50 * cos(theta) ** 37 - 3.63206503067221e50 * cos(theta) ** 35 + 1.8160325153361e50 * cos(theta) ** 33 - 7.45038980650709e49 * cos(theta) ** 31 + 2.5104574348013e49 * cos(theta) ** 29 - 6.93836431946446e48 * cos(theta) ** 27 + 1.56715950845047e48 * cos(theta) ** 25 - 2.87552203385407e47 * cos(theta) ** 23 + 4.24945721124462e46 * cos(theta) ** 21 - 4.99936142499367e45 * cos(theta) ** 19 + 4.61106150848931e44 * cos(theta) ** 17 - 3.26787058444266e43 * cos(theta) ** 15 + 1.73296167356807e42 * cos(theta) ** 13 - 6.63578844076141e40 * cos(theta) ** 11 + 1.74626011598984e39 * cos(theta) ** 9 - 2.93900720783704e37 * cos(theta) ** 7 + 2.82596846907408e35 * cos(theta) ** 5 - 1.2700981883479e33 * cos(theta) ** 3 + 1.68448035589907e30 * cos(theta) ) * sin(16 * phi) ) # @torch.jit.script def Yl69_m_minus_15(theta, phi): return ( 1.24132210914335e-27 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 2.9666918235127e46 * cos(theta) ** 54 - 3.09878540105596e47 * cos(theta) ** 52 + 1.52184794140748e48 * cos(theta) ** 50 - 4.67234017098789e48 * cos(theta) ** 48 + 1.00580147192258e49 * cos(theta) ** 46 - 1.61396050145717e49 * cos(theta) ** 44 + 2.00368324721586e49 * cos(theta) ** 42 - 1.9716243152604e49 * cos(theta) ** 40 + 1.56287293282837e49 * cos(theta) ** 38 - 1.0089069529645e49 * cos(theta) ** 36 + 5.34127210392971e48 * cos(theta) ** 34 - 2.32824681453347e48 * cos(theta) ** 32 + 8.36819144933767e47 * cos(theta) ** 30 - 2.47798725695159e47 * cos(theta) ** 28 + 6.02753657096333e46 * cos(theta) ** 26 - 1.19813418077253e46 * cos(theta) ** 24 + 1.93157145965664e45 * cos(theta) ** 22 - 2.49968071249683e44 * cos(theta) ** 20 + 2.56170083804961e43 * cos(theta) ** 18 - 2.04241911527666e42 * cos(theta) ** 16 + 1.23782976683434e41 * cos(theta) ** 14 - 5.5298237006345e39 * cos(theta) ** 12 + 1.74626011598984e38 * cos(theta) ** 10 - 3.67375900979631e36 * cos(theta) ** 8 + 4.7099474484568e34 * cos(theta) ** 6 - 3.17524547086975e32 * cos(theta) ** 4 + 8.42240177949537e29 * cos(theta) ** 2 - 3.66989184291737e26 ) * sin(15 * phi) ) # @torch.jit.script def Yl69_m_minus_14(theta, phi): return ( 8.43733860488851e-26 * (1.0 - cos(theta) ** 2) ** 7 * ( 5.39398513365945e44 * cos(theta) ** 55 - 5.84676490765276e45 * cos(theta) ** 53 + 2.98401557138722e46 * cos(theta) ** 51 - 9.53538810405692e46 * cos(theta) ** 49 + 2.14000313175018e47 * cos(theta) ** 47 - 3.58657889212704e47 * cos(theta) ** 45 + 4.65972848189734e47 * cos(theta) ** 43 - 4.80883979331805e47 * cos(theta) ** 41 + 4.00736649443171e47 * cos(theta) ** 39 - 2.72677554855271e47 * cos(theta) ** 37 + 1.52607774397992e47 * cos(theta) ** 35 - 7.05529337737414e46 * cos(theta) ** 33 + 2.69941659656054e46 * cos(theta) ** 31 - 8.54478364466066e45 * cos(theta) ** 29 + 2.23242095220864e45 * cos(theta) ** 27 - 4.79253672309011e44 * cos(theta) ** 25 + 8.39813678111585e43 * cos(theta) ** 23 - 1.19032414880802e43 * cos(theta) ** 21 + 1.34826359897348e42 * cos(theta) ** 19 - 1.20142300898627e41 * cos(theta) ** 17 + 8.25219844556226e39 * cos(theta) ** 15 - 4.25371053894962e38 * cos(theta) ** 13 + 1.5875091963544e37 * cos(theta) ** 11 - 4.08195445532923e35 * cos(theta) ** 9 + 6.72849635493829e33 * cos(theta) ** 7 - 6.35049094173951e31 * cos(theta) ** 5 + 2.80746725983179e29 * cos(theta) ** 3 - 3.66989184291737e26 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl69_m_minus_13(theta, phi): return ( 5.75226040218542e-24 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 9.63211631010616e42 * cos(theta) ** 56 - 1.08273424215792e44 * cos(theta) ** 54 + 5.73849148343697e44 * cos(theta) ** 52 - 1.90707762081138e45 * cos(theta) ** 50 + 4.45833985781287e45 * cos(theta) ** 48 - 7.79691063505879e45 * cos(theta) ** 46 + 1.05902920043121e46 * cos(theta) ** 44 - 1.14496185555192e46 * cos(theta) ** 42 + 1.00184162360793e46 * cos(theta) ** 40 - 7.17572512777028e45 * cos(theta) ** 38 + 4.23910484438866e45 * cos(theta) ** 36 - 2.07508628746298e45 * cos(theta) ** 34 + 8.43567686425169e44 * cos(theta) ** 32 - 2.84826121488689e44 * cos(theta) ** 30 + 7.97293197217372e43 * cos(theta) ** 28 - 1.84328335503466e43 * cos(theta) ** 26 + 3.49922365879827e42 * cos(theta) ** 24 - 5.41056431276371e41 * cos(theta) ** 22 + 6.74131799486741e40 * cos(theta) ** 20 - 6.67457227214595e39 * cos(theta) ** 18 + 5.15762402847641e38 * cos(theta) ** 16 - 3.0383646706783e37 * cos(theta) ** 14 + 1.32292433029534e36 * cos(theta) ** 12 - 4.08195445532923e34 * cos(theta) ** 10 + 8.41062044367286e32 * cos(theta) ** 8 - 1.05841515695658e31 * cos(theta) ** 6 + 7.01866814957947e28 * cos(theta) ** 4 - 1.83494592145869e26 * cos(theta) ** 2 + 7.89563649508901e22 ) * sin(13 * phi) ) # @torch.jit.script def Yl69_m_minus_12(theta, phi): return ( 3.93262822752531e-22 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.68984496668529e41 * cos(theta) ** 57 - 1.9686077130144e42 * cos(theta) ** 55 + 1.08273424215792e43 * cos(theta) ** 53 - 3.73936788394389e43 * cos(theta) ** 51 + 9.09865277104668e43 * cos(theta) ** 49 - 1.65891715639549e44 * cos(theta) ** 47 + 2.35339822318047e44 * cos(theta) ** 45 - 2.66270198965562e44 * cos(theta) ** 43 + 2.44351615514129e44 * cos(theta) ** 41 - 1.8399295199411e44 * cos(theta) ** 39 + 1.14570401199694e44 * cos(theta) ** 37 - 5.92881796417995e43 * cos(theta) ** 35 + 2.55626571643991e43 * cos(theta) ** 33 - 9.18793940286092e42 * cos(theta) ** 31 + 2.74928688695645e42 * cos(theta) ** 29 - 6.82697538901725e41 * cos(theta) ** 27 + 1.39968946351931e41 * cos(theta) ** 25 - 2.352419266419e40 * cos(theta) ** 23 + 3.21015142612734e39 * cos(theta) ** 21 - 3.51293277481366e38 * cos(theta) ** 19 + 3.03389648733907e37 * cos(theta) ** 17 - 2.02557644711887e36 * cos(theta) ** 15 + 1.01763410022718e35 * cos(theta) ** 13 - 3.71086768666293e33 * cos(theta) ** 11 + 9.34513382630318e31 * cos(theta) ** 9 - 1.51202165279512e30 * cos(theta) ** 7 + 1.40373362991589e28 * cos(theta) ** 5 - 6.11648640486229e25 * cos(theta) ** 3 + 7.89563649508901e22 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl69_m_minus_11(theta, phi): return ( 2.69550038614936e-20 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 2.91352580462981e39 * cos(theta) ** 58 - 3.51537091609714e40 * cos(theta) ** 56 + 2.00506341140355e41 * cos(theta) ** 54 - 7.19109208450748e41 * cos(theta) ** 52 + 1.81973055420934e42 * cos(theta) ** 50 - 3.45607740915726e42 * cos(theta) ** 48 + 5.1160830938706e42 * cos(theta) ** 46 - 6.05159543103551e42 * cos(theta) ** 44 + 5.81789560747926e42 * cos(theta) ** 42 - 4.59982379985275e42 * cos(theta) ** 40 + 3.01501055788667e42 * cos(theta) ** 38 - 1.64689387893887e42 * cos(theta) ** 36 + 7.51842857776443e41 * cos(theta) ** 34 - 2.87123106339404e41 * cos(theta) ** 32 + 9.16428962318818e40 * cos(theta) ** 30 - 2.43820549607759e40 * cos(theta) ** 28 + 5.3834210135358e39 * cos(theta) ** 26 - 9.80174694341252e38 * cos(theta) ** 24 + 1.45915973914879e38 * cos(theta) ** 22 - 1.75646638740683e37 * cos(theta) ** 20 + 1.6854980485217e36 * cos(theta) ** 18 - 1.26598527944929e35 * cos(theta) ** 16 + 7.26881500162273e33 * cos(theta) ** 14 - 3.09238973888578e32 * cos(theta) ** 12 + 9.34513382630318e30 * cos(theta) ** 10 - 1.8900270659939e29 * cos(theta) ** 8 + 2.33955604985982e27 * cos(theta) ** 6 - 1.52912160121557e25 * cos(theta) ** 4 + 3.9478182475445e22 * cos(theta) ** 2 - 1.68063782356088e19 ) * sin(11 * phi) ) # @torch.jit.script def Yl69_m_minus_10(theta, phi): return ( 1.85186957979692e-18 * (1.0 - cos(theta) ** 2) ** 5 * ( 4.93817932988104e37 * cos(theta) ** 59 - 6.16731739666165e38 * cos(theta) ** 57 + 3.64556983891555e39 * cos(theta) ** 55 - 1.35680982726556e40 * cos(theta) ** 53 + 3.56809912590066e40 * cos(theta) ** 51 - 7.05321920236176e40 * cos(theta) ** 49 + 1.08852831784481e41 * cos(theta) ** 47 - 1.34479898467456e41 * cos(theta) ** 45 + 1.35299897848355e41 * cos(theta) ** 43 - 1.12190824386652e41 * cos(theta) ** 41 + 7.73079630227352e40 * cos(theta) ** 39 - 4.45106453767263e40 * cos(theta) ** 37 + 2.14812245078984e40 * cos(theta) ** 35 - 8.70070019210315e39 * cos(theta) ** 33 + 2.95622245909296e39 * cos(theta) ** 31 - 8.40760515888824e38 * cos(theta) ** 29 + 1.99385963464289e38 * cos(theta) ** 27 - 3.92069877736501e37 * cos(theta) ** 25 + 6.34417277890778e36 * cos(theta) ** 23 - 8.36412565431823e35 * cos(theta) ** 21 + 8.87104236064055e34 * cos(theta) ** 19 - 7.44697223205466e33 * cos(theta) ** 17 + 4.84587666774848e32 * cos(theta) ** 15 - 2.37876133760445e31 * cos(theta) ** 13 + 8.49557620573016e29 * cos(theta) ** 11 - 2.10003007332656e28 * cos(theta) ** 9 + 3.34222292837118e26 * cos(theta) ** 7 - 3.05824320243114e24 * cos(theta) ** 5 + 1.31593941584817e22 * cos(theta) ** 3 - 1.68063782356088e19 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl69_m_minus_9(theta, phi): return ( 1.27496883327931e-16 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 8.23029888313506e35 * cos(theta) ** 60 - 1.06333058563132e37 * cos(theta) ** 58 + 6.50994614092063e37 * cos(theta) ** 56 - 2.51261079123252e38 * cos(theta) ** 54 + 6.8617290882705e38 * cos(theta) ** 52 - 1.41064384047235e39 * cos(theta) ** 50 + 2.26776732884335e39 * cos(theta) ** 48 - 2.92347605364034e39 * cos(theta) ** 46 + 3.0749976783717e39 * cos(theta) ** 44 - 2.6712101044441e39 * cos(theta) ** 42 + 1.93269907556838e39 * cos(theta) ** 40 - 1.17133277307175e39 * cos(theta) ** 38 + 5.96700680774954e38 * cos(theta) ** 36 - 2.55902946826563e38 * cos(theta) ** 34 + 9.2381951846655e37 * cos(theta) ** 32 - 2.80253505296275e37 * cos(theta) ** 30 + 7.12092726658174e36 * cos(theta) ** 28 - 1.50796106821731e36 * cos(theta) ** 26 + 2.64340532454491e35 * cos(theta) ** 24 - 3.80187529741738e34 * cos(theta) ** 22 + 4.43552118032027e33 * cos(theta) ** 20 - 4.13720679558592e32 * cos(theta) ** 18 + 3.0286729173428e31 * cos(theta) ** 16 - 1.69911524114603e30 * cos(theta) ** 14 + 7.07964683810847e28 * cos(theta) ** 12 - 2.10003007332656e27 * cos(theta) ** 10 + 4.17777866046397e25 * cos(theta) ** 8 - 5.09707200405191e23 * cos(theta) ** 6 + 3.28984853962042e21 * cos(theta) ** 4 - 8.4031891178044e18 * cos(theta) ** 2 + 3.5456494167951e15 ) * sin(9 * phi) ) # @torch.jit.script def Yl69_m_minus_8(theta, phi): return ( 8.7945128414917e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.34922932510411e34 * cos(theta) ** 61 - 1.80225522988359e35 * cos(theta) ** 59 + 1.1420958141966e36 * cos(theta) ** 57 - 4.5683832567864e36 * cos(theta) ** 55 + 1.29466586571141e37 * cos(theta) ** 53 - 2.76596831465167e37 * cos(theta) ** 51 + 4.62809658947622e37 * cos(theta) ** 49 - 6.22016181625604e37 * cos(theta) ** 47 + 6.83332817415933e37 * cos(theta) ** 45 - 6.21211652196303e37 * cos(theta) ** 43 + 4.71390018431312e37 * cos(theta) ** 41 - 3.00341736685063e37 * cos(theta) ** 39 + 1.61270454263501e37 * cos(theta) ** 37 - 7.31151276647323e36 * cos(theta) ** 35 + 2.79945308626227e36 * cos(theta) ** 33 - 9.04043565471854e35 * cos(theta) ** 31 + 2.45549216089026e35 * cos(theta) ** 29 - 5.58504099339745e34 * cos(theta) ** 27 + 1.05736212981796e34 * cos(theta) ** 25 - 1.65298925974669e33 * cos(theta) ** 23 + 2.11215294300965e32 * cos(theta) ** 21 - 2.17747726083469e31 * cos(theta) ** 19 + 1.7815723043193e30 * cos(theta) ** 17 - 1.13274349409735e29 * cos(theta) ** 15 + 5.44588218316036e27 * cos(theta) ** 13 - 1.90911824847869e26 * cos(theta) ** 11 + 4.64197628940441e24 * cos(theta) ** 9 - 7.28153143435986e22 * cos(theta) ** 7 + 6.57969707924084e20 * cos(theta) ** 5 - 2.80106303926813e18 * cos(theta) ** 3 + 3.5456494167951e15 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl69_m_minus_7(theta, phi): return ( 6.07649289897455e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 2.17617633081308e32 * cos(theta) ** 62 - 3.00375871647265e33 * cos(theta) ** 60 + 1.96913071413207e34 * cos(theta) ** 58 - 8.15782724426144e34 * cos(theta) ** 56 + 2.39752938094706e35 * cos(theta) ** 54 - 5.3191698358686e35 * cos(theta) ** 52 + 9.25619317895245e35 * cos(theta) ** 50 - 1.29586704505334e36 * cos(theta) ** 48 + 1.48550612481725e36 * cos(theta) ** 46 - 1.41184466408251e36 * cos(theta) ** 44 + 1.12235718674122e36 * cos(theta) ** 42 - 7.50854341712657e35 * cos(theta) ** 40 + 4.24395932272372e35 * cos(theta) ** 38 - 2.03097576846479e35 * cos(theta) ** 36 + 8.23368554783022e34 * cos(theta) ** 34 - 2.82513614209954e34 * cos(theta) ** 32 + 8.18497386963419e33 * cos(theta) ** 30 - 1.99465749764195e33 * cos(theta) ** 28 + 4.06677742237678e32 * cos(theta) ** 26 - 6.88745524894452e31 * cos(theta) ** 24 + 9.60069519549843e30 * cos(theta) ** 22 - 1.08873863041735e30 * cos(theta) ** 20 + 9.89762391288498e28 * cos(theta) ** 18 - 7.07964683810847e27 * cos(theta) ** 16 + 3.88991584511454e26 * cos(theta) ** 14 - 1.59093187373224e25 * cos(theta) ** 12 + 4.64197628940441e23 * cos(theta) ** 10 - 9.10191429294983e21 * cos(theta) ** 8 + 1.09661617987347e20 * cos(theta) ** 6 - 7.00265759817033e17 * cos(theta) ** 4 + 1.77282470839755e15 * cos(theta) ** 2 - 742699919730.855 ) * sin(7 * phi) ) # @torch.jit.script def Yl69_m_minus_6(theta, phi): return ( 4.2046520828098e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 3.45424814414774e30 * cos(theta) ** 63 - 4.92419461716828e31 * cos(theta) ** 61 + 3.33750968496961e32 * cos(theta) ** 59 - 1.43119776215113e33 * cos(theta) ** 57 + 4.35914432899466e33 * cos(theta) ** 55 - 1.00361695016389e34 * cos(theta) ** 53 + 1.81493983901028e34 * cos(theta) ** 51 - 2.64462662255784e34 * cos(theta) ** 49 + 3.1606513293984e34 * cos(theta) ** 47 - 3.13743258685002e34 * cos(theta) ** 45 + 2.61013299242144e34 * cos(theta) ** 43 - 1.8313520529577e34 * cos(theta) ** 41 + 1.08819469813429e34 * cos(theta) ** 39 - 5.48912369855348e33 * cos(theta) ** 37 + 2.35248158509435e33 * cos(theta) ** 35 - 8.56101861242286e32 * cos(theta) ** 33 + 2.6403141514949e32 * cos(theta) ** 31 - 6.8781293022136e31 * cos(theta) ** 29 + 1.50621386013955e31 * cos(theta) ** 27 - 2.75498209957781e30 * cos(theta) ** 25 + 4.17421530239062e29 * cos(theta) ** 23 - 5.18446966865403e28 * cos(theta) ** 21 + 5.20927574362367e27 * cos(theta) ** 19 - 4.1644981400638e26 * cos(theta) ** 17 + 2.59327723007636e25 * cos(theta) ** 15 - 1.2237937490248e24 * cos(theta) ** 13 + 4.2199784449131e22 * cos(theta) ** 11 - 1.01132381032776e21 * cos(theta) ** 9 + 1.56659454267639e19 * cos(theta) ** 7 - 1.40053151963407e17 * cos(theta) ** 5 + 590941569465851.0 * cos(theta) ** 3 - 742699919730.855 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl69_m_minus_5(theta, phi): return ( 2.91306841423075e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 5.39726272523085e28 * cos(theta) ** 64 - 7.94224938252948e29 * cos(theta) ** 62 + 5.56251614161602e30 * cos(theta) ** 60 - 2.46758234853643e31 * cos(theta) ** 58 + 7.78418630177618e31 * cos(theta) ** 56 - 1.8585499077109e32 * cos(theta) ** 54 + 3.49026892117362e32 * cos(theta) ** 52 - 5.28925324511568e32 * cos(theta) ** 50 + 6.58469026957999e32 * cos(theta) ** 48 - 6.82050562358699e32 * cos(theta) ** 46 + 5.93212043732146e32 * cos(theta) ** 44 - 4.36036203085167e32 * cos(theta) ** 42 + 2.72048674533572e32 * cos(theta) ** 40 - 1.44450623646144e32 * cos(theta) ** 38 + 6.53467106970652e31 * cos(theta) ** 36 - 2.51794665071261e31 * cos(theta) ** 34 + 8.25098172342156e30 * cos(theta) ** 32 - 2.29270976740453e30 * cos(theta) ** 30 + 5.3793352147841e29 * cos(theta) ** 28 - 1.05960849983762e29 * cos(theta) ** 26 + 1.73925637599609e28 * cos(theta) ** 24 - 2.35657712211547e27 * cos(theta) ** 22 + 2.60463787181184e26 * cos(theta) ** 20 - 2.31361007781322e25 * cos(theta) ** 18 + 1.62079826879773e24 * cos(theta) ** 16 - 8.74138392160572e22 * cos(theta) ** 14 + 3.51664870409425e21 * cos(theta) ** 12 - 1.01132381032776e20 * cos(theta) ** 10 + 1.95824317834549e18 * cos(theta) ** 8 - 2.33421919939011e16 * cos(theta) ** 6 + 147735392366463.0 * cos(theta) ** 4 - 371349959865.428 * cos(theta) ** 2 + 154729149.943928 ) * sin(5 * phi) ) # @torch.jit.script def Yl69_m_minus_4(theta, phi): return ( 2.02033423196773e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 8.30348111573977e26 * cos(theta) ** 65 - 1.26067450516341e28 * cos(theta) ** 63 + 9.118878920682e28 * cos(theta) ** 61 - 4.18234296362107e29 * cos(theta) ** 59 + 1.36564671960986e30 * cos(theta) ** 57 - 3.37918165038346e30 * cos(theta) ** 55 + 6.58541305881816e30 * cos(theta) ** 53 - 1.03710847943445e31 * cos(theta) ** 51 + 1.34381434073061e31 * cos(theta) ** 49 - 1.45117140927383e31 * cos(theta) ** 47 + 1.31824898607143e31 * cos(theta) ** 45 - 1.01403768159341e31 * cos(theta) ** 43 + 6.63533352520906e30 * cos(theta) ** 41 - 3.70386214477293e30 * cos(theta) ** 39 + 1.7661273161369e30 * cos(theta) ** 37 - 7.1941332877503e29 * cos(theta) ** 35 + 2.50029749194593e29 * cos(theta) ** 33 - 7.39583795936947e28 * cos(theta) ** 31 + 1.85494317751176e28 * cos(theta) ** 29 - 3.92447592532451e27 * cos(theta) ** 27 + 6.95702550398437e26 * cos(theta) ** 25 - 1.02459874874586e26 * cos(theta) ** 23 + 1.24030374848183e25 * cos(theta) ** 21 - 1.21768951463854e24 * cos(theta) ** 19 + 9.53410746351604e22 * cos(theta) ** 17 - 5.82758928107048e21 * cos(theta) ** 15 + 2.70511438776481e20 * cos(theta) ** 13 - 9.19385282116145e18 * cos(theta) ** 11 + 2.17582575371721e17 * cos(theta) ** 9 - 3.33459885627159e15 * cos(theta) ** 7 + 29547078473292.5 * cos(theta) ** 5 - 123783319955.143 * cos(theta) ** 3 + 154729149.943928 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl69_m_minus_3(theta, phi): return ( 1.40235065051115e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 1.25810319935451e25 * cos(theta) ** 66 - 1.96980391431783e26 * cos(theta) ** 64 + 1.47078692269064e27 * cos(theta) ** 62 - 6.97057160603511e27 * cos(theta) ** 60 + 2.35456330967217e28 * cos(theta) ** 58 - 6.03425294711332e28 * cos(theta) ** 56 + 1.21952093681818e29 * cos(theta) ** 54 - 1.99443938352778e29 * cos(theta) ** 52 + 2.68762868146122e29 * cos(theta) ** 50 - 3.02327376932047e29 * cos(theta) ** 48 + 2.86575866537268e29 * cos(theta) ** 46 - 2.30463109453048e29 * cos(theta) ** 44 + 1.57984131552597e29 * cos(theta) ** 42 - 9.25965536193232e28 * cos(theta) ** 40 + 4.64770346351815e28 * cos(theta) ** 38 - 1.99837035770842e28 * cos(theta) ** 36 + 7.35381615278214e27 * cos(theta) ** 34 - 2.31119936230296e27 * cos(theta) ** 32 + 6.1831439250392e26 * cos(theta) ** 30 - 1.40159854475876e26 * cos(theta) ** 28 + 2.67577903999399e25 * cos(theta) ** 26 - 4.26916145310774e24 * cos(theta) ** 24 + 5.63774431128103e23 * cos(theta) ** 22 - 6.0884475731927e22 * cos(theta) ** 20 + 5.29672636862002e21 * cos(theta) ** 18 - 3.64224330066905e20 * cos(theta) ** 16 + 1.93222456268915e19 * cos(theta) ** 14 - 7.66154401763454e17 * cos(theta) ** 12 + 2.17582575371721e16 * cos(theta) ** 10 - 416824857033948.0 * cos(theta) ** 8 + 4924513078882.09 * cos(theta) ** 6 - 30945829988.7856 * cos(theta) ** 4 + 77364574.9719641 * cos(theta) ** 2 - 32114.8090377601 ) * sin(3 * phi) ) # @torch.jit.script def Yl69_m_minus_2(theta, phi): return ( 0.000974002944650333 * (1.0 - cos(theta) ** 2) * ( 1.87776596918584e23 * cos(theta) ** 67 - 3.03046756048897e24 * cos(theta) ** 65 + 2.33458241696928e25 * cos(theta) ** 63 - 1.14271665672707e26 * cos(theta) ** 61 + 3.99078527063079e26 * cos(theta) ** 59 - 1.05864086791462e27 * cos(theta) ** 57 + 2.21731079421487e27 * cos(theta) ** 55 - 3.76309317646752e27 * cos(theta) ** 53 + 5.26986015972789e27 * cos(theta) ** 51 - 6.16994646800097e27 * cos(theta) ** 49 + 6.09735886249507e27 * cos(theta) ** 47 - 5.12140243228996e27 * cos(theta) ** 45 + 3.67404957099062e27 * cos(theta) ** 43 - 2.25845252730057e27 * cos(theta) ** 41 + 1.19171883679953e27 * cos(theta) ** 39 - 5.4010009667795e26 * cos(theta) ** 37 + 2.10109032936633e26 * cos(theta) ** 35 - 7.00363443122109e25 * cos(theta) ** 33 + 1.99456255646426e25 * cos(theta) ** 31 - 4.8330984302026e24 * cos(theta) ** 29 + 9.91029274071847e23 * cos(theta) ** 27 - 1.70766458124309e23 * cos(theta) ** 25 + 2.45119317881784e22 * cos(theta) ** 23 - 2.89926074913938e21 * cos(theta) ** 21 + 2.78775072032633e20 * cos(theta) ** 19 - 2.14249605921709e19 * cos(theta) ** 17 + 1.28814970845943e18 * cos(theta) ** 15 - 5.89349539818041e16 * cos(theta) ** 13 + 1.97802341247019e15 * cos(theta) ** 11 - 46313873003772.0 * cos(theta) ** 9 + 703501868411.727 * cos(theta) ** 7 - 6189165997.75713 * cos(theta) ** 5 + 25788191.6573214 * cos(theta) ** 3 - 32114.8090377601 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl69_m_minus_1(theta, phi): return ( 0.06767743658202 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 2.76142054292035e21 * cos(theta) ** 68 - 4.59161751589237e22 * cos(theta) ** 66 + 3.6477850265145e23 * cos(theta) ** 64 - 1.84309138181785e24 * cos(theta) ** 62 + 6.65130878438465e24 * cos(theta) ** 60 - 1.82524287571486e25 * cos(theta) ** 58 + 3.95948356109798e25 * cos(theta) ** 56 - 6.96869106753244e25 * cos(theta) ** 54 + 1.01343464610152e26 * cos(theta) ** 52 - 1.23398929360019e26 * cos(theta) ** 50 + 1.27028309635314e26 * cos(theta) ** 48 - 1.11334835484564e26 * cos(theta) ** 46 + 8.35011266134232e25 * cos(theta) ** 44 - 5.3772679221442e25 * cos(theta) ** 42 + 2.97929709199882e25 * cos(theta) ** 40 - 1.42131604388934e25 * cos(theta) ** 38 + 5.83636202601757e24 * cos(theta) ** 36 - 2.05989247977091e24 * cos(theta) ** 34 + 6.23300798895081e23 * cos(theta) ** 32 - 1.61103281006753e23 * cos(theta) ** 30 + 3.53939026454231e22 * cos(theta) ** 28 - 6.56794069708882e21 * cos(theta) ** 26 + 1.0213304911741e21 * cos(theta) ** 24 - 1.31784579506335e20 * cos(theta) ** 22 + 1.39387536016316e19 * cos(theta) ** 20 - 1.19027558845394e18 * cos(theta) ** 18 + 8.05093567787146e16 * cos(theta) ** 16 - 4.20963957012887e15 * cos(theta) ** 14 + 164835284372516.0 * cos(theta) ** 12 - 4631387300377.2 * cos(theta) ** 10 + 87937733551.4659 * cos(theta) ** 8 - 1031527666.29285 * cos(theta) ** 6 + 6447047.91433034 * cos(theta) ** 4 - 16057.4045188801 * cos(theta) ** 2 + 6.65178314783764 ) * sin(phi) ) # @torch.jit.script def Yl69_m0(theta, phi): return ( 4.18153562767418e20 * cos(theta) ** 69 - 7.16049823541871e21 * cos(theta) ** 67 + 5.86365244389288e22 * cos(theta) ** 65 - 3.05674112363338e23 * cos(theta) ** 63 + 1.13927775085038e24 * cos(theta) ** 61 - 3.23236943264526e24 * cos(theta) ** 59 + 7.25798438222578e24 * cos(theta) ** 57 - 1.32385635131798e25 * cos(theta) ** 55 + 1.99789296921464e25 * cos(theta) ** 53 - 2.52809597022752e25 * cos(theta) ** 51 + 2.7086742538152e25 * cos(theta) ** 49 - 2.47505899183114e25 * cos(theta) ** 47 + 1.93879621026773e25 * cos(theta) ** 45 - 1.30660874619813e25 * cos(theta) ** 43 + 7.59245622790804e24 * cos(theta) ** 41 - 3.80783737424134e24 * cos(theta) ** 39 + 1.64813521864067e24 * cos(theta) ** 37 - 6.14934484938201e23 * cos(theta) ** 35 + 1.97349524562152e23 * cos(theta) ** 33 - 5.42994001921919e22 * cos(theta) ** 31 + 1.27521318633178e22 * cos(theta) ** 29 - 2.54166202086746e21 * cos(theta) ** 27 + 4.26853286758124e20 * cos(theta) ** 25 - 5.98672211441969e19 * cos(theta) ** 23 + 6.93516801716201e18 * cos(theta) ** 21 - 6.54555183642257e17 * cos(theta) ** 19 + 4.94822884185791e16 * cos(theta) ** 17 - 2.93228375813802e15 * cos(theta) ** 15 + 132482699915874.0 * cos(theta) ** 13 - 4399170112149.09 * cos(theta) ** 11 + 102090445640.591 * cos(theta) ** 9 - 1539696708.44628 * cos(theta) ** 7 + 13472346.1989049 * cos(theta) ** 5 - 55925.0568655248 * cos(theta) ** 3 + 69.5008991700805 * cos(theta) ) # @torch.jit.script def Yl69_m1(theta, phi): return ( 0.06767743658202 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 2.76142054292035e21 * cos(theta) ** 68 - 4.59161751589237e22 * cos(theta) ** 66 + 3.6477850265145e23 * cos(theta) ** 64 - 1.84309138181785e24 * cos(theta) ** 62 + 6.65130878438465e24 * cos(theta) ** 60 - 1.82524287571486e25 * cos(theta) ** 58 + 3.95948356109798e25 * cos(theta) ** 56 - 6.96869106753244e25 * cos(theta) ** 54 + 1.01343464610152e26 * cos(theta) ** 52 - 1.23398929360019e26 * cos(theta) ** 50 + 1.27028309635314e26 * cos(theta) ** 48 - 1.11334835484564e26 * cos(theta) ** 46 + 8.35011266134232e25 * cos(theta) ** 44 - 5.3772679221442e25 * cos(theta) ** 42 + 2.97929709199882e25 * cos(theta) ** 40 - 1.42131604388934e25 * cos(theta) ** 38 + 5.83636202601757e24 * cos(theta) ** 36 - 2.05989247977091e24 * cos(theta) ** 34 + 6.23300798895081e23 * cos(theta) ** 32 - 1.61103281006753e23 * cos(theta) ** 30 + 3.53939026454231e22 * cos(theta) ** 28 - 6.56794069708882e21 * cos(theta) ** 26 + 1.0213304911741e21 * cos(theta) ** 24 - 1.31784579506335e20 * cos(theta) ** 22 + 1.39387536016316e19 * cos(theta) ** 20 - 1.19027558845394e18 * cos(theta) ** 18 + 8.05093567787146e16 * cos(theta) ** 16 - 4.20963957012887e15 * cos(theta) ** 14 + 164835284372516.0 * cos(theta) ** 12 - 4631387300377.2 * cos(theta) ** 10 + 87937733551.4659 * cos(theta) ** 8 - 1031527666.29285 * cos(theta) ** 6 + 6447047.91433034 * cos(theta) ** 4 - 16057.4045188801 * cos(theta) ** 2 + 6.65178314783764 ) * cos(phi) ) # @torch.jit.script def Yl69_m2(theta, phi): return ( 0.000974002944650333 * (1.0 - cos(theta) ** 2) * ( 1.87776596918584e23 * cos(theta) ** 67 - 3.03046756048897e24 * cos(theta) ** 65 + 2.33458241696928e25 * cos(theta) ** 63 - 1.14271665672707e26 * cos(theta) ** 61 + 3.99078527063079e26 * cos(theta) ** 59 - 1.05864086791462e27 * cos(theta) ** 57 + 2.21731079421487e27 * cos(theta) ** 55 - 3.76309317646752e27 * cos(theta) ** 53 + 5.26986015972789e27 * cos(theta) ** 51 - 6.16994646800097e27 * cos(theta) ** 49 + 6.09735886249507e27 * cos(theta) ** 47 - 5.12140243228996e27 * cos(theta) ** 45 + 3.67404957099062e27 * cos(theta) ** 43 - 2.25845252730057e27 * cos(theta) ** 41 + 1.19171883679953e27 * cos(theta) ** 39 - 5.4010009667795e26 * cos(theta) ** 37 + 2.10109032936633e26 * cos(theta) ** 35 - 7.00363443122109e25 * cos(theta) ** 33 + 1.99456255646426e25 * cos(theta) ** 31 - 4.8330984302026e24 * cos(theta) ** 29 + 9.91029274071847e23 * cos(theta) ** 27 - 1.70766458124309e23 * cos(theta) ** 25 + 2.45119317881784e22 * cos(theta) ** 23 - 2.89926074913938e21 * cos(theta) ** 21 + 2.78775072032633e20 * cos(theta) ** 19 - 2.14249605921709e19 * cos(theta) ** 17 + 1.28814970845943e18 * cos(theta) ** 15 - 5.89349539818041e16 * cos(theta) ** 13 + 1.97802341247019e15 * cos(theta) ** 11 - 46313873003772.0 * cos(theta) ** 9 + 703501868411.727 * cos(theta) ** 7 - 6189165997.75713 * cos(theta) ** 5 + 25788191.6573214 * cos(theta) ** 3 - 32114.8090377601 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl69_m3(theta, phi): return ( 1.40235065051115e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 1.25810319935451e25 * cos(theta) ** 66 - 1.96980391431783e26 * cos(theta) ** 64 + 1.47078692269064e27 * cos(theta) ** 62 - 6.97057160603511e27 * cos(theta) ** 60 + 2.35456330967217e28 * cos(theta) ** 58 - 6.03425294711332e28 * cos(theta) ** 56 + 1.21952093681818e29 * cos(theta) ** 54 - 1.99443938352778e29 * cos(theta) ** 52 + 2.68762868146122e29 * cos(theta) ** 50 - 3.02327376932047e29 * cos(theta) ** 48 + 2.86575866537268e29 * cos(theta) ** 46 - 2.30463109453048e29 * cos(theta) ** 44 + 1.57984131552597e29 * cos(theta) ** 42 - 9.25965536193232e28 * cos(theta) ** 40 + 4.64770346351815e28 * cos(theta) ** 38 - 1.99837035770842e28 * cos(theta) ** 36 + 7.35381615278214e27 * cos(theta) ** 34 - 2.31119936230296e27 * cos(theta) ** 32 + 6.1831439250392e26 * cos(theta) ** 30 - 1.40159854475876e26 * cos(theta) ** 28 + 2.67577903999399e25 * cos(theta) ** 26 - 4.26916145310774e24 * cos(theta) ** 24 + 5.63774431128103e23 * cos(theta) ** 22 - 6.0884475731927e22 * cos(theta) ** 20 + 5.29672636862002e21 * cos(theta) ** 18 - 3.64224330066905e20 * cos(theta) ** 16 + 1.93222456268915e19 * cos(theta) ** 14 - 7.66154401763454e17 * cos(theta) ** 12 + 2.17582575371721e16 * cos(theta) ** 10 - 416824857033948.0 * cos(theta) ** 8 + 4924513078882.09 * cos(theta) ** 6 - 30945829988.7856 * cos(theta) ** 4 + 77364574.9719641 * cos(theta) ** 2 - 32114.8090377601 ) * cos(3 * phi) ) # @torch.jit.script def Yl69_m4(theta, phi): return ( 2.02033423196773e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 8.30348111573977e26 * cos(theta) ** 65 - 1.26067450516341e28 * cos(theta) ** 63 + 9.118878920682e28 * cos(theta) ** 61 - 4.18234296362107e29 * cos(theta) ** 59 + 1.36564671960986e30 * cos(theta) ** 57 - 3.37918165038346e30 * cos(theta) ** 55 + 6.58541305881816e30 * cos(theta) ** 53 - 1.03710847943445e31 * cos(theta) ** 51 + 1.34381434073061e31 * cos(theta) ** 49 - 1.45117140927383e31 * cos(theta) ** 47 + 1.31824898607143e31 * cos(theta) ** 45 - 1.01403768159341e31 * cos(theta) ** 43 + 6.63533352520906e30 * cos(theta) ** 41 - 3.70386214477293e30 * cos(theta) ** 39 + 1.7661273161369e30 * cos(theta) ** 37 - 7.1941332877503e29 * cos(theta) ** 35 + 2.50029749194593e29 * cos(theta) ** 33 - 7.39583795936947e28 * cos(theta) ** 31 + 1.85494317751176e28 * cos(theta) ** 29 - 3.92447592532451e27 * cos(theta) ** 27 + 6.95702550398437e26 * cos(theta) ** 25 - 1.02459874874586e26 * cos(theta) ** 23 + 1.24030374848183e25 * cos(theta) ** 21 - 1.21768951463854e24 * cos(theta) ** 19 + 9.53410746351604e22 * cos(theta) ** 17 - 5.82758928107048e21 * cos(theta) ** 15 + 2.70511438776481e20 * cos(theta) ** 13 - 9.19385282116145e18 * cos(theta) ** 11 + 2.17582575371721e17 * cos(theta) ** 9 - 3.33459885627159e15 * cos(theta) ** 7 + 29547078473292.5 * cos(theta) ** 5 - 123783319955.143 * cos(theta) ** 3 + 154729149.943928 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl69_m5(theta, phi): return ( 2.91306841423075e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 5.39726272523085e28 * cos(theta) ** 64 - 7.94224938252948e29 * cos(theta) ** 62 + 5.56251614161602e30 * cos(theta) ** 60 - 2.46758234853643e31 * cos(theta) ** 58 + 7.78418630177618e31 * cos(theta) ** 56 - 1.8585499077109e32 * cos(theta) ** 54 + 3.49026892117362e32 * cos(theta) ** 52 - 5.28925324511568e32 * cos(theta) ** 50 + 6.58469026957999e32 * cos(theta) ** 48 - 6.82050562358699e32 * cos(theta) ** 46 + 5.93212043732146e32 * cos(theta) ** 44 - 4.36036203085167e32 * cos(theta) ** 42 + 2.72048674533572e32 * cos(theta) ** 40 - 1.44450623646144e32 * cos(theta) ** 38 + 6.53467106970652e31 * cos(theta) ** 36 - 2.51794665071261e31 * cos(theta) ** 34 + 8.25098172342156e30 * cos(theta) ** 32 - 2.29270976740453e30 * cos(theta) ** 30 + 5.3793352147841e29 * cos(theta) ** 28 - 1.05960849983762e29 * cos(theta) ** 26 + 1.73925637599609e28 * cos(theta) ** 24 - 2.35657712211547e27 * cos(theta) ** 22 + 2.60463787181184e26 * cos(theta) ** 20 - 2.31361007781322e25 * cos(theta) ** 18 + 1.62079826879773e24 * cos(theta) ** 16 - 8.74138392160572e22 * cos(theta) ** 14 + 3.51664870409425e21 * cos(theta) ** 12 - 1.01132381032776e20 * cos(theta) ** 10 + 1.95824317834549e18 * cos(theta) ** 8 - 2.33421919939011e16 * cos(theta) ** 6 + 147735392366463.0 * cos(theta) ** 4 - 371349959865.428 * cos(theta) ** 2 + 154729149.943928 ) * cos(5 * phi) ) # @torch.jit.script def Yl69_m6(theta, phi): return ( 4.2046520828098e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 3.45424814414774e30 * cos(theta) ** 63 - 4.92419461716828e31 * cos(theta) ** 61 + 3.33750968496961e32 * cos(theta) ** 59 - 1.43119776215113e33 * cos(theta) ** 57 + 4.35914432899466e33 * cos(theta) ** 55 - 1.00361695016389e34 * cos(theta) ** 53 + 1.81493983901028e34 * cos(theta) ** 51 - 2.64462662255784e34 * cos(theta) ** 49 + 3.1606513293984e34 * cos(theta) ** 47 - 3.13743258685002e34 * cos(theta) ** 45 + 2.61013299242144e34 * cos(theta) ** 43 - 1.8313520529577e34 * cos(theta) ** 41 + 1.08819469813429e34 * cos(theta) ** 39 - 5.48912369855348e33 * cos(theta) ** 37 + 2.35248158509435e33 * cos(theta) ** 35 - 8.56101861242286e32 * cos(theta) ** 33 + 2.6403141514949e32 * cos(theta) ** 31 - 6.8781293022136e31 * cos(theta) ** 29 + 1.50621386013955e31 * cos(theta) ** 27 - 2.75498209957781e30 * cos(theta) ** 25 + 4.17421530239062e29 * cos(theta) ** 23 - 5.18446966865403e28 * cos(theta) ** 21 + 5.20927574362367e27 * cos(theta) ** 19 - 4.1644981400638e26 * cos(theta) ** 17 + 2.59327723007636e25 * cos(theta) ** 15 - 1.2237937490248e24 * cos(theta) ** 13 + 4.2199784449131e22 * cos(theta) ** 11 - 1.01132381032776e21 * cos(theta) ** 9 + 1.56659454267639e19 * cos(theta) ** 7 - 1.40053151963407e17 * cos(theta) ** 5 + 590941569465851.0 * cos(theta) ** 3 - 742699919730.855 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl69_m7(theta, phi): return ( 6.07649289897455e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 2.17617633081308e32 * cos(theta) ** 62 - 3.00375871647265e33 * cos(theta) ** 60 + 1.96913071413207e34 * cos(theta) ** 58 - 8.15782724426144e34 * cos(theta) ** 56 + 2.39752938094706e35 * cos(theta) ** 54 - 5.3191698358686e35 * cos(theta) ** 52 + 9.25619317895245e35 * cos(theta) ** 50 - 1.29586704505334e36 * cos(theta) ** 48 + 1.48550612481725e36 * cos(theta) ** 46 - 1.41184466408251e36 * cos(theta) ** 44 + 1.12235718674122e36 * cos(theta) ** 42 - 7.50854341712657e35 * cos(theta) ** 40 + 4.24395932272372e35 * cos(theta) ** 38 - 2.03097576846479e35 * cos(theta) ** 36 + 8.23368554783022e34 * cos(theta) ** 34 - 2.82513614209954e34 * cos(theta) ** 32 + 8.18497386963419e33 * cos(theta) ** 30 - 1.99465749764195e33 * cos(theta) ** 28 + 4.06677742237678e32 * cos(theta) ** 26 - 6.88745524894452e31 * cos(theta) ** 24 + 9.60069519549843e30 * cos(theta) ** 22 - 1.08873863041735e30 * cos(theta) ** 20 + 9.89762391288498e28 * cos(theta) ** 18 - 7.07964683810847e27 * cos(theta) ** 16 + 3.88991584511454e26 * cos(theta) ** 14 - 1.59093187373224e25 * cos(theta) ** 12 + 4.64197628940441e23 * cos(theta) ** 10 - 9.10191429294983e21 * cos(theta) ** 8 + 1.09661617987347e20 * cos(theta) ** 6 - 7.00265759817033e17 * cos(theta) ** 4 + 1.77282470839755e15 * cos(theta) ** 2 - 742699919730.855 ) * cos(7 * phi) ) # @torch.jit.script def Yl69_m8(theta, phi): return ( 8.7945128414917e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.34922932510411e34 * cos(theta) ** 61 - 1.80225522988359e35 * cos(theta) ** 59 + 1.1420958141966e36 * cos(theta) ** 57 - 4.5683832567864e36 * cos(theta) ** 55 + 1.29466586571141e37 * cos(theta) ** 53 - 2.76596831465167e37 * cos(theta) ** 51 + 4.62809658947622e37 * cos(theta) ** 49 - 6.22016181625604e37 * cos(theta) ** 47 + 6.83332817415933e37 * cos(theta) ** 45 - 6.21211652196303e37 * cos(theta) ** 43 + 4.71390018431312e37 * cos(theta) ** 41 - 3.00341736685063e37 * cos(theta) ** 39 + 1.61270454263501e37 * cos(theta) ** 37 - 7.31151276647323e36 * cos(theta) ** 35 + 2.79945308626227e36 * cos(theta) ** 33 - 9.04043565471854e35 * cos(theta) ** 31 + 2.45549216089026e35 * cos(theta) ** 29 - 5.58504099339745e34 * cos(theta) ** 27 + 1.05736212981796e34 * cos(theta) ** 25 - 1.65298925974669e33 * cos(theta) ** 23 + 2.11215294300965e32 * cos(theta) ** 21 - 2.17747726083469e31 * cos(theta) ** 19 + 1.7815723043193e30 * cos(theta) ** 17 - 1.13274349409735e29 * cos(theta) ** 15 + 5.44588218316036e27 * cos(theta) ** 13 - 1.90911824847869e26 * cos(theta) ** 11 + 4.64197628940441e24 * cos(theta) ** 9 - 7.28153143435986e22 * cos(theta) ** 7 + 6.57969707924084e20 * cos(theta) ** 5 - 2.80106303926813e18 * cos(theta) ** 3 + 3.5456494167951e15 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl69_m9(theta, phi): return ( 1.27496883327931e-16 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 8.23029888313506e35 * cos(theta) ** 60 - 1.06333058563132e37 * cos(theta) ** 58 + 6.50994614092063e37 * cos(theta) ** 56 - 2.51261079123252e38 * cos(theta) ** 54 + 6.8617290882705e38 * cos(theta) ** 52 - 1.41064384047235e39 * cos(theta) ** 50 + 2.26776732884335e39 * cos(theta) ** 48 - 2.92347605364034e39 * cos(theta) ** 46 + 3.0749976783717e39 * cos(theta) ** 44 - 2.6712101044441e39 * cos(theta) ** 42 + 1.93269907556838e39 * cos(theta) ** 40 - 1.17133277307175e39 * cos(theta) ** 38 + 5.96700680774954e38 * cos(theta) ** 36 - 2.55902946826563e38 * cos(theta) ** 34 + 9.2381951846655e37 * cos(theta) ** 32 - 2.80253505296275e37 * cos(theta) ** 30 + 7.12092726658174e36 * cos(theta) ** 28 - 1.50796106821731e36 * cos(theta) ** 26 + 2.64340532454491e35 * cos(theta) ** 24 - 3.80187529741738e34 * cos(theta) ** 22 + 4.43552118032027e33 * cos(theta) ** 20 - 4.13720679558592e32 * cos(theta) ** 18 + 3.0286729173428e31 * cos(theta) ** 16 - 1.69911524114603e30 * cos(theta) ** 14 + 7.07964683810847e28 * cos(theta) ** 12 - 2.10003007332656e27 * cos(theta) ** 10 + 4.17777866046397e25 * cos(theta) ** 8 - 5.09707200405191e23 * cos(theta) ** 6 + 3.28984853962042e21 * cos(theta) ** 4 - 8.4031891178044e18 * cos(theta) ** 2 + 3.5456494167951e15 ) * cos(9 * phi) ) # @torch.jit.script def Yl69_m10(theta, phi): return ( 1.85186957979692e-18 * (1.0 - cos(theta) ** 2) ** 5 * ( 4.93817932988104e37 * cos(theta) ** 59 - 6.16731739666165e38 * cos(theta) ** 57 + 3.64556983891555e39 * cos(theta) ** 55 - 1.35680982726556e40 * cos(theta) ** 53 + 3.56809912590066e40 * cos(theta) ** 51 - 7.05321920236176e40 * cos(theta) ** 49 + 1.08852831784481e41 * cos(theta) ** 47 - 1.34479898467456e41 * cos(theta) ** 45 + 1.35299897848355e41 * cos(theta) ** 43 - 1.12190824386652e41 * cos(theta) ** 41 + 7.73079630227352e40 * cos(theta) ** 39 - 4.45106453767263e40 * cos(theta) ** 37 + 2.14812245078984e40 * cos(theta) ** 35 - 8.70070019210315e39 * cos(theta) ** 33 + 2.95622245909296e39 * cos(theta) ** 31 - 8.40760515888824e38 * cos(theta) ** 29 + 1.99385963464289e38 * cos(theta) ** 27 - 3.92069877736501e37 * cos(theta) ** 25 + 6.34417277890778e36 * cos(theta) ** 23 - 8.36412565431823e35 * cos(theta) ** 21 + 8.87104236064055e34 * cos(theta) ** 19 - 7.44697223205466e33 * cos(theta) ** 17 + 4.84587666774848e32 * cos(theta) ** 15 - 2.37876133760445e31 * cos(theta) ** 13 + 8.49557620573016e29 * cos(theta) ** 11 - 2.10003007332656e28 * cos(theta) ** 9 + 3.34222292837118e26 * cos(theta) ** 7 - 3.05824320243114e24 * cos(theta) ** 5 + 1.31593941584817e22 * cos(theta) ** 3 - 1.68063782356088e19 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl69_m11(theta, phi): return ( 2.69550038614936e-20 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 2.91352580462981e39 * cos(theta) ** 58 - 3.51537091609714e40 * cos(theta) ** 56 + 2.00506341140355e41 * cos(theta) ** 54 - 7.19109208450748e41 * cos(theta) ** 52 + 1.81973055420934e42 * cos(theta) ** 50 - 3.45607740915726e42 * cos(theta) ** 48 + 5.1160830938706e42 * cos(theta) ** 46 - 6.05159543103551e42 * cos(theta) ** 44 + 5.81789560747926e42 * cos(theta) ** 42 - 4.59982379985275e42 * cos(theta) ** 40 + 3.01501055788667e42 * cos(theta) ** 38 - 1.64689387893887e42 * cos(theta) ** 36 + 7.51842857776443e41 * cos(theta) ** 34 - 2.87123106339404e41 * cos(theta) ** 32 + 9.16428962318818e40 * cos(theta) ** 30 - 2.43820549607759e40 * cos(theta) ** 28 + 5.3834210135358e39 * cos(theta) ** 26 - 9.80174694341252e38 * cos(theta) ** 24 + 1.45915973914879e38 * cos(theta) ** 22 - 1.75646638740683e37 * cos(theta) ** 20 + 1.6854980485217e36 * cos(theta) ** 18 - 1.26598527944929e35 * cos(theta) ** 16 + 7.26881500162273e33 * cos(theta) ** 14 - 3.09238973888578e32 * cos(theta) ** 12 + 9.34513382630318e30 * cos(theta) ** 10 - 1.8900270659939e29 * cos(theta) ** 8 + 2.33955604985982e27 * cos(theta) ** 6 - 1.52912160121557e25 * cos(theta) ** 4 + 3.9478182475445e22 * cos(theta) ** 2 - 1.68063782356088e19 ) * cos(11 * phi) ) # @torch.jit.script def Yl69_m12(theta, phi): return ( 3.93262822752531e-22 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.68984496668529e41 * cos(theta) ** 57 - 1.9686077130144e42 * cos(theta) ** 55 + 1.08273424215792e43 * cos(theta) ** 53 - 3.73936788394389e43 * cos(theta) ** 51 + 9.09865277104668e43 * cos(theta) ** 49 - 1.65891715639549e44 * cos(theta) ** 47 + 2.35339822318047e44 * cos(theta) ** 45 - 2.66270198965562e44 * cos(theta) ** 43 + 2.44351615514129e44 * cos(theta) ** 41 - 1.8399295199411e44 * cos(theta) ** 39 + 1.14570401199694e44 * cos(theta) ** 37 - 5.92881796417995e43 * cos(theta) ** 35 + 2.55626571643991e43 * cos(theta) ** 33 - 9.18793940286092e42 * cos(theta) ** 31 + 2.74928688695645e42 * cos(theta) ** 29 - 6.82697538901725e41 * cos(theta) ** 27 + 1.39968946351931e41 * cos(theta) ** 25 - 2.352419266419e40 * cos(theta) ** 23 + 3.21015142612734e39 * cos(theta) ** 21 - 3.51293277481366e38 * cos(theta) ** 19 + 3.03389648733907e37 * cos(theta) ** 17 - 2.02557644711887e36 * cos(theta) ** 15 + 1.01763410022718e35 * cos(theta) ** 13 - 3.71086768666293e33 * cos(theta) ** 11 + 9.34513382630318e31 * cos(theta) ** 9 - 1.51202165279512e30 * cos(theta) ** 7 + 1.40373362991589e28 * cos(theta) ** 5 - 6.11648640486229e25 * cos(theta) ** 3 + 7.89563649508901e22 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl69_m13(theta, phi): return ( 5.75226040218542e-24 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 9.63211631010616e42 * cos(theta) ** 56 - 1.08273424215792e44 * cos(theta) ** 54 + 5.73849148343697e44 * cos(theta) ** 52 - 1.90707762081138e45 * cos(theta) ** 50 + 4.45833985781287e45 * cos(theta) ** 48 - 7.79691063505879e45 * cos(theta) ** 46 + 1.05902920043121e46 * cos(theta) ** 44 - 1.14496185555192e46 * cos(theta) ** 42 + 1.00184162360793e46 * cos(theta) ** 40 - 7.17572512777028e45 * cos(theta) ** 38 + 4.23910484438866e45 * cos(theta) ** 36 - 2.07508628746298e45 * cos(theta) ** 34 + 8.43567686425169e44 * cos(theta) ** 32 - 2.84826121488689e44 * cos(theta) ** 30 + 7.97293197217372e43 * cos(theta) ** 28 - 1.84328335503466e43 * cos(theta) ** 26 + 3.49922365879827e42 * cos(theta) ** 24 - 5.41056431276371e41 * cos(theta) ** 22 + 6.74131799486741e40 * cos(theta) ** 20 - 6.67457227214595e39 * cos(theta) ** 18 + 5.15762402847641e38 * cos(theta) ** 16 - 3.0383646706783e37 * cos(theta) ** 14 + 1.32292433029534e36 * cos(theta) ** 12 - 4.08195445532923e34 * cos(theta) ** 10 + 8.41062044367286e32 * cos(theta) ** 8 - 1.05841515695658e31 * cos(theta) ** 6 + 7.01866814957947e28 * cos(theta) ** 4 - 1.83494592145869e26 * cos(theta) ** 2 + 7.89563649508901e22 ) * cos(13 * phi) ) # @torch.jit.script def Yl69_m14(theta, phi): return ( 8.43733860488851e-26 * (1.0 - cos(theta) ** 2) ** 7 * ( 5.39398513365945e44 * cos(theta) ** 55 - 5.84676490765276e45 * cos(theta) ** 53 + 2.98401557138722e46 * cos(theta) ** 51 - 9.53538810405692e46 * cos(theta) ** 49 + 2.14000313175018e47 * cos(theta) ** 47 - 3.58657889212704e47 * cos(theta) ** 45 + 4.65972848189734e47 * cos(theta) ** 43 - 4.80883979331805e47 * cos(theta) ** 41 + 4.00736649443171e47 * cos(theta) ** 39 - 2.72677554855271e47 * cos(theta) ** 37 + 1.52607774397992e47 * cos(theta) ** 35 - 7.05529337737414e46 * cos(theta) ** 33 + 2.69941659656054e46 * cos(theta) ** 31 - 8.54478364466066e45 * cos(theta) ** 29 + 2.23242095220864e45 * cos(theta) ** 27 - 4.79253672309011e44 * cos(theta) ** 25 + 8.39813678111585e43 * cos(theta) ** 23 - 1.19032414880802e43 * cos(theta) ** 21 + 1.34826359897348e42 * cos(theta) ** 19 - 1.20142300898627e41 * cos(theta) ** 17 + 8.25219844556226e39 * cos(theta) ** 15 - 4.25371053894962e38 * cos(theta) ** 13 + 1.5875091963544e37 * cos(theta) ** 11 - 4.08195445532923e35 * cos(theta) ** 9 + 6.72849635493829e33 * cos(theta) ** 7 - 6.35049094173951e31 * cos(theta) ** 5 + 2.80746725983179e29 * cos(theta) ** 3 - 3.66989184291737e26 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl69_m15(theta, phi): return ( 1.24132210914335e-27 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 2.9666918235127e46 * cos(theta) ** 54 - 3.09878540105596e47 * cos(theta) ** 52 + 1.52184794140748e48 * cos(theta) ** 50 - 4.67234017098789e48 * cos(theta) ** 48 + 1.00580147192258e49 * cos(theta) ** 46 - 1.61396050145717e49 * cos(theta) ** 44 + 2.00368324721586e49 * cos(theta) ** 42 - 1.9716243152604e49 * cos(theta) ** 40 + 1.56287293282837e49 * cos(theta) ** 38 - 1.0089069529645e49 * cos(theta) ** 36 + 5.34127210392971e48 * cos(theta) ** 34 - 2.32824681453347e48 * cos(theta) ** 32 + 8.36819144933767e47 * cos(theta) ** 30 - 2.47798725695159e47 * cos(theta) ** 28 + 6.02753657096333e46 * cos(theta) ** 26 - 1.19813418077253e46 * cos(theta) ** 24 + 1.93157145965664e45 * cos(theta) ** 22 - 2.49968071249683e44 * cos(theta) ** 20 + 2.56170083804961e43 * cos(theta) ** 18 - 2.04241911527666e42 * cos(theta) ** 16 + 1.23782976683434e41 * cos(theta) ** 14 - 5.5298237006345e39 * cos(theta) ** 12 + 1.74626011598984e38 * cos(theta) ** 10 - 3.67375900979631e36 * cos(theta) ** 8 + 4.7099474484568e34 * cos(theta) ** 6 - 3.17524547086975e32 * cos(theta) ** 4 + 8.42240177949537e29 * cos(theta) ** 2 - 3.66989184291737e26 ) * cos(15 * phi) ) # @torch.jit.script def Yl69_m16(theta, phi): return ( 1.83222222934563e-29 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.60201358469686e48 * cos(theta) ** 53 - 1.6113684085491e49 * cos(theta) ** 51 + 7.60923970703742e49 * cos(theta) ** 49 - 2.24272328207419e50 * cos(theta) ** 47 + 4.62668677084388e50 * cos(theta) ** 45 - 7.10142620641154e50 * cos(theta) ** 43 + 8.41546963830659e50 * cos(theta) ** 41 - 7.88649726104161e50 * cos(theta) ** 39 + 5.9389171447478e50 * cos(theta) ** 37 - 3.63206503067221e50 * cos(theta) ** 35 + 1.8160325153361e50 * cos(theta) ** 33 - 7.45038980650709e49 * cos(theta) ** 31 + 2.5104574348013e49 * cos(theta) ** 29 - 6.93836431946446e48 * cos(theta) ** 27 + 1.56715950845047e48 * cos(theta) ** 25 - 2.87552203385407e47 * cos(theta) ** 23 + 4.24945721124462e46 * cos(theta) ** 21 - 4.99936142499367e45 * cos(theta) ** 19 + 4.61106150848931e44 * cos(theta) ** 17 - 3.26787058444266e43 * cos(theta) ** 15 + 1.73296167356807e42 * cos(theta) ** 13 - 6.63578844076141e40 * cos(theta) ** 11 + 1.74626011598984e39 * cos(theta) ** 9 - 2.93900720783704e37 * cos(theta) ** 7 + 2.82596846907408e35 * cos(theta) ** 5 - 1.2700981883479e33 * cos(theta) ** 3 + 1.68448035589907e30 * cos(theta) ) * cos(16 * phi) ) # @torch.jit.script def Yl69_m17(theta, phi): return ( 2.71388216826562e-31 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 8.49067199889334e49 * cos(theta) ** 52 - 8.21797888360041e50 * cos(theta) ** 50 + 3.72852745644834e51 * cos(theta) ** 48 - 1.05407994257487e52 * cos(theta) ** 46 + 2.08200904687975e52 * cos(theta) ** 44 - 3.05361326875696e52 * cos(theta) ** 42 + 3.4503425517057e52 * cos(theta) ** 40 - 3.07573393180623e52 * cos(theta) ** 38 + 2.19739934355668e52 * cos(theta) ** 36 - 1.27122276073527e52 * cos(theta) ** 34 + 5.99290730060914e51 * cos(theta) ** 32 - 2.3096208400172e51 * cos(theta) ** 30 + 7.28032656092378e50 * cos(theta) ** 28 - 1.8733583662554e50 * cos(theta) ** 26 + 3.91789877112616e49 * cos(theta) ** 24 - 6.61370067786435e48 * cos(theta) ** 22 + 8.9238601436137e47 * cos(theta) ** 20 - 9.49878670748797e46 * cos(theta) ** 18 + 7.83880456443182e45 * cos(theta) ** 16 - 4.90180587666398e44 * cos(theta) ** 14 + 2.2528501756385e43 * cos(theta) ** 12 - 7.29936728483755e41 * cos(theta) ** 10 + 1.57163410439086e40 * cos(theta) ** 8 - 2.05730504548593e38 * cos(theta) ** 6 + 1.41298423453704e36 * cos(theta) ** 4 - 3.8102945650437e33 * cos(theta) ** 2 + 1.68448035589907e30 ) * cos(17 * phi) ) # @torch.jit.script def Yl69_m18(theta, phi): return ( 4.03487132532308e-33 * (1.0 - cos(theta) ** 2) ** 9 * ( 4.41514943942454e51 * cos(theta) ** 51 - 4.10898944180021e52 * cos(theta) ** 49 + 1.7896931790952e53 * cos(theta) ** 47 - 4.84876773584439e53 * cos(theta) ** 45 + 9.16083980627089e53 * cos(theta) ** 43 - 1.28251757287792e54 * cos(theta) ** 41 + 1.38013702068228e54 * cos(theta) ** 39 - 1.16877889408637e54 * cos(theta) ** 37 + 7.91063763680406e53 * cos(theta) ** 35 - 4.32215738649992e53 * cos(theta) ** 33 + 1.91773033619492e53 * cos(theta) ** 31 - 6.92886252005159e52 * cos(theta) ** 29 + 2.03849143705866e52 * cos(theta) ** 27 - 4.87073175226405e51 * cos(theta) ** 25 + 9.4029570507028e50 * cos(theta) ** 23 - 1.45501414913016e50 * cos(theta) ** 21 + 1.78477202872274e49 * cos(theta) ** 19 - 1.70978160734783e48 * cos(theta) ** 17 + 1.25420873030909e47 * cos(theta) ** 15 - 6.86252822732958e45 * cos(theta) ** 13 + 2.7034202107662e44 * cos(theta) ** 11 - 7.29936728483755e42 * cos(theta) ** 9 + 1.25730728351269e41 * cos(theta) ** 7 - 1.23438302729156e39 * cos(theta) ** 5 + 5.65193693814816e36 * cos(theta) ** 3 - 7.62058913008741e33 * cos(theta) ) * cos(18 * phi) ) # @torch.jit.script def Yl69_m19(theta, phi): return ( 6.02286689259109e-35 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 2.25172621410651e53 * cos(theta) ** 50 - 2.0134048264821e54 * cos(theta) ** 48 + 8.41155794174744e54 * cos(theta) ** 46 - 2.18194548112998e55 * cos(theta) ** 44 + 3.93916111669648e55 * cos(theta) ** 42 - 5.25832204879949e55 * cos(theta) ** 40 + 5.3825343806609e55 * cos(theta) ** 38 - 4.32448190811956e55 * cos(theta) ** 36 + 2.76872317288142e55 * cos(theta) ** 34 - 1.42631193754498e55 * cos(theta) ** 32 + 5.94496404220427e54 * cos(theta) ** 30 - 2.00937013081496e54 * cos(theta) ** 28 + 5.50392688005837e53 * cos(theta) ** 26 - 1.21768293806601e53 * cos(theta) ** 24 + 2.16268012166164e52 * cos(theta) ** 22 - 3.05552971317333e51 * cos(theta) ** 20 + 3.39106685457321e50 * cos(theta) ** 18 - 2.90662873249132e49 * cos(theta) ** 16 + 1.88131309546364e48 * cos(theta) ** 14 - 8.92128669552845e46 * cos(theta) ** 12 + 2.97376223184282e45 * cos(theta) ** 10 - 6.56943055635379e43 * cos(theta) ** 8 + 8.80115098458881e41 * cos(theta) ** 6 - 6.17191513645779e39 * cos(theta) ** 4 + 1.69558108144445e37 * cos(theta) ** 2 - 7.62058913008741e33 ) * cos(19 * phi) ) # @torch.jit.script def Yl69_m20(theta, phi): return ( 9.02865918920212e-37 * (1.0 - cos(theta) ** 2) ** 10 * ( 1.12586310705326e55 * cos(theta) ** 49 - 9.66434316711409e55 * cos(theta) ** 47 + 3.86931665320382e56 * cos(theta) ** 45 - 9.6005601169719e56 * cos(theta) ** 43 + 1.65444766901252e57 * cos(theta) ** 41 - 2.1033288195198e57 * cos(theta) ** 39 + 2.04536306465114e57 * cos(theta) ** 37 - 1.55681348692304e57 * cos(theta) ** 35 + 9.41365878779684e56 * cos(theta) ** 33 - 4.56419820014392e56 * cos(theta) ** 31 + 1.78348921266128e56 * cos(theta) ** 29 - 5.62623636628189e55 * cos(theta) ** 27 + 1.43102098881518e55 * cos(theta) ** 25 - 2.92243905135843e54 * cos(theta) ** 23 + 4.75789626765561e53 * cos(theta) ** 21 - 6.11105942634666e52 * cos(theta) ** 19 + 6.10392033823177e51 * cos(theta) ** 17 - 4.65060597198611e50 * cos(theta) ** 15 + 2.63383833364909e49 * cos(theta) ** 13 - 1.07055440346341e48 * cos(theta) ** 11 + 2.97376223184282e46 * cos(theta) ** 9 - 5.25554444508303e44 * cos(theta) ** 7 + 5.28069059075329e42 * cos(theta) ** 5 - 2.46876605458312e40 * cos(theta) ** 3 + 3.3911621628889e37 * cos(theta) ) * cos(20 * phi) ) # @torch.jit.script def Yl69_m21(theta, phi): return ( 1.35957748834704e-38 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 5.51672922456096e56 * cos(theta) ** 48 - 4.54224128854362e57 * cos(theta) ** 46 + 1.74119249394172e58 * cos(theta) ** 44 - 4.12824085029791e58 * cos(theta) ** 42 + 6.78323544295135e58 * cos(theta) ** 40 - 8.20298239612721e58 * cos(theta) ** 38 + 7.56784333920922e58 * cos(theta) ** 36 - 5.44884720423064e58 * cos(theta) ** 34 + 3.10650739997296e58 * cos(theta) ** 32 - 1.41490144204462e58 * cos(theta) ** 30 + 5.17211871671771e57 * cos(theta) ** 28 - 1.51908381889611e57 * cos(theta) ** 26 + 3.57755247203794e56 * cos(theta) ** 24 - 6.72160981812439e55 * cos(theta) ** 22 + 9.99158216207679e54 * cos(theta) ** 20 - 1.16110129100587e54 * cos(theta) ** 18 + 1.0376664574994e53 * cos(theta) ** 16 - 6.97590895797916e51 * cos(theta) ** 14 + 3.42398983374382e50 * cos(theta) ** 12 - 1.17760984380976e49 * cos(theta) ** 10 + 2.67638600865854e47 * cos(theta) ** 8 - 3.67888111155812e45 * cos(theta) ** 6 + 2.64034529537664e43 * cos(theta) ** 4 - 7.40629816374935e40 * cos(theta) ** 2 + 3.3911621628889e37 ) * cos(21 * phi) ) # @torch.jit.script def Yl69_m22(theta, phi): return ( 2.05713432186081e-40 * (1.0 - cos(theta) ** 2) ** 11 * ( 2.64803002778926e58 * cos(theta) ** 47 - 2.08943099273007e59 * cos(theta) ** 45 + 7.66124697334357e59 * cos(theta) ** 43 - 1.73386115712512e60 * cos(theta) ** 41 + 2.71329417718054e60 * cos(theta) ** 39 - 3.11713331052834e60 * cos(theta) ** 37 + 2.72442360211532e60 * cos(theta) ** 35 - 1.85260804943842e60 * cos(theta) ** 33 + 9.94082367991346e59 * cos(theta) ** 31 - 4.24470432613385e59 * cos(theta) ** 29 + 1.44819324068096e59 * cos(theta) ** 27 - 3.94961792912989e58 * cos(theta) ** 25 + 8.58612593289106e57 * cos(theta) ** 23 - 1.47875415998737e57 * cos(theta) ** 21 + 1.99831643241536e56 * cos(theta) ** 19 - 2.08998232381056e55 * cos(theta) ** 17 + 1.66026633199904e54 * cos(theta) ** 15 - 9.76627254117083e52 * cos(theta) ** 13 + 4.10878780049258e51 * cos(theta) ** 11 - 1.17760984380976e50 * cos(theta) ** 9 + 2.14110880692683e48 * cos(theta) ** 7 - 2.20732866693487e46 * cos(theta) ** 5 + 1.05613811815066e44 * cos(theta) ** 3 - 1.48125963274987e41 * cos(theta) ) * cos(22 * phi) ) # @torch.jit.script def Yl69_m23(theta, phi): return ( 3.12838220973394e-42 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.24457411306095e60 * cos(theta) ** 46 - 9.40243946728529e60 * cos(theta) ** 44 + 3.29433619853774e61 * cos(theta) ** 42 - 7.10883074421301e61 * cos(theta) ** 40 + 1.05818472910041e62 * cos(theta) ** 38 - 1.15333932489549e62 * cos(theta) ** 36 + 9.53548260740362e61 * cos(theta) ** 34 - 6.11360656314678e61 * cos(theta) ** 32 + 3.08165534077317e61 * cos(theta) ** 30 - 1.23096425457882e61 * cos(theta) ** 28 + 3.91012174983859e60 * cos(theta) ** 26 - 9.87404482282472e59 * cos(theta) ** 24 + 1.97480896456494e59 * cos(theta) ** 22 - 3.10538373597347e58 * cos(theta) ** 20 + 3.79680122158918e57 * cos(theta) ** 18 - 3.55296995047795e56 * cos(theta) ** 16 + 2.49039949799856e55 * cos(theta) ** 14 - 1.26961543035221e54 * cos(theta) ** 12 + 4.51966658054184e52 * cos(theta) ** 10 - 1.05984885942878e51 * cos(theta) ** 8 + 1.49877616484878e49 * cos(theta) ** 6 - 1.10366433346744e47 * cos(theta) ** 4 + 3.16841435445197e44 * cos(theta) ** 2 - 1.48125963274987e41 ) * cos(23 * phi) ) # @torch.jit.script def Yl69_m24(theta, phi): return ( 4.78298938892577e-44 * (1.0 - cos(theta) ** 2) ** 12 * ( 5.72504092008038e61 * cos(theta) ** 45 - 4.13707336560553e62 * cos(theta) ** 43 + 1.38362120338585e63 * cos(theta) ** 41 - 2.8435322976852e63 * cos(theta) ** 39 + 4.02110197058156e63 * cos(theta) ** 37 - 4.15202156962375e63 * cos(theta) ** 35 + 3.24206408651723e63 * cos(theta) ** 33 - 1.95635410020697e63 * cos(theta) ** 31 + 9.24496602231952e62 * cos(theta) ** 29 - 3.44669991282068e62 * cos(theta) ** 27 + 1.01663165495803e62 * cos(theta) ** 25 - 2.36977075747793e61 * cos(theta) ** 23 + 4.34457972204288e60 * cos(theta) ** 21 - 6.21076747194693e59 * cos(theta) ** 19 + 6.83424219886052e58 * cos(theta) ** 17 - 5.68475192076472e57 * cos(theta) ** 15 + 3.48655929719799e56 * cos(theta) ** 13 - 1.52353851642265e55 * cos(theta) ** 11 + 4.51966658054184e53 * cos(theta) ** 9 - 8.47879087543024e51 * cos(theta) ** 7 + 8.99265698909268e49 * cos(theta) ** 5 - 4.41465733386975e47 * cos(theta) ** 3 + 6.33682870890395e44 * cos(theta) ) * cos(24 * phi) ) # @torch.jit.script def Yl69_m25(theta, phi): return ( 7.35409496492504e-46 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 2.57626841403617e63 * cos(theta) ** 44 - 1.77894154721038e64 * cos(theta) ** 42 + 5.67284693388198e64 * cos(theta) ** 40 - 1.10897759609723e65 * cos(theta) ** 38 + 1.48780772911518e65 * cos(theta) ** 36 - 1.45320754936831e65 * cos(theta) ** 34 + 1.06988114855069e65 * cos(theta) ** 32 - 6.0646977106416e64 * cos(theta) ** 30 + 2.68104014647266e64 * cos(theta) ** 28 - 9.30608976461584e63 * cos(theta) ** 26 + 2.54157913739508e63 * cos(theta) ** 24 - 5.45047274219925e62 * cos(theta) ** 22 + 9.12361741629004e61 * cos(theta) ** 20 - 1.18004581966992e61 * cos(theta) ** 18 + 1.16182117380629e60 * cos(theta) ** 16 - 8.52712788114708e58 * cos(theta) ** 14 + 4.53252708635738e57 * cos(theta) ** 12 - 1.67589236806491e56 * cos(theta) ** 10 + 4.06769992248766e54 * cos(theta) ** 8 - 5.93515361280117e52 * cos(theta) ** 6 + 4.49632849454634e50 * cos(theta) ** 4 - 1.32439720016092e48 * cos(theta) ** 2 + 6.33682870890395e44 ) * cos(25 * phi) ) # @torch.jit.script def Yl69_m26(theta, phi): return ( 1.13747298988002e-47 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.13355810217591e65 * cos(theta) ** 43 - 7.47155449828359e65 * cos(theta) ** 41 + 2.26913877355279e66 * cos(theta) ** 39 - 4.21411486516947e66 * cos(theta) ** 37 + 5.35610782481463e66 * cos(theta) ** 35 - 4.94090566785226e66 * cos(theta) ** 33 + 3.4236196753622e66 * cos(theta) ** 31 - 1.81940931319248e66 * cos(theta) ** 29 + 7.50691241012345e65 * cos(theta) ** 27 - 2.41958333880012e65 * cos(theta) ** 25 + 6.0997899297482e64 * cos(theta) ** 23 - 1.19910400328383e64 * cos(theta) ** 21 + 1.82472348325801e63 * cos(theta) ** 19 - 2.12408247540585e62 * cos(theta) ** 17 + 1.85891387809006e61 * cos(theta) ** 15 - 1.19379790336059e60 * cos(theta) ** 13 + 5.43903250362886e58 * cos(theta) ** 11 - 1.67589236806491e57 * cos(theta) ** 9 + 3.25415993799013e55 * cos(theta) ** 7 - 3.5610921676807e53 * cos(theta) ** 5 + 1.79853139781854e51 * cos(theta) ** 3 - 2.64879440032185e48 * cos(theta) ) * cos(26 * phi) ) # @torch.jit.script def Yl69_m27(theta, phi): return ( 1.7703993786841e-49 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 4.87429983935643e66 * cos(theta) ** 42 - 3.06333734429627e67 * cos(theta) ** 40 + 8.84964121685589e67 * cos(theta) ** 38 - 1.5592225001127e68 * cos(theta) ** 36 + 1.87463773868512e68 * cos(theta) ** 34 - 1.63049887039125e68 * cos(theta) ** 32 + 1.06132209936228e68 * cos(theta) ** 30 - 5.2762870082582e67 * cos(theta) ** 28 + 2.02686635073333e67 * cos(theta) ** 26 - 6.0489583470003e66 * cos(theta) ** 24 + 1.40295168384209e66 * cos(theta) ** 22 - 2.51811840689605e65 * cos(theta) ** 20 + 3.46697461819022e64 * cos(theta) ** 18 - 3.61094020818995e63 * cos(theta) ** 16 + 2.78837081713509e62 * cos(theta) ** 14 - 1.55193727436877e61 * cos(theta) ** 12 + 5.98293575399175e59 * cos(theta) ** 10 - 1.50830313125842e58 * cos(theta) ** 8 + 2.27791195659309e56 * cos(theta) ** 6 - 1.78054608384035e54 * cos(theta) ** 4 + 5.39559419345561e51 * cos(theta) ** 2 - 2.64879440032185e48 ) * cos(27 * phi) ) # @torch.jit.script def Yl69_m28(theta, phi): return ( 2.77370798116249e-51 * (1.0 - cos(theta) ** 2) ** 14 * ( 2.0472059325297e68 * cos(theta) ** 41 - 1.22533493771851e69 * cos(theta) ** 39 + 3.36286366240524e69 * cos(theta) ** 37 - 5.61320100040574e69 * cos(theta) ** 35 + 6.37376831152942e69 * cos(theta) ** 33 - 5.21759638525199e69 * cos(theta) ** 31 + 3.18396629808684e69 * cos(theta) ** 29 - 1.47736036231229e69 * cos(theta) ** 27 + 5.26985251190666e68 * cos(theta) ** 25 - 1.45175000328007e68 * cos(theta) ** 23 + 3.08649370445259e67 * cos(theta) ** 21 - 5.0362368137921e66 * cos(theta) ** 19 + 6.24055431274239e65 * cos(theta) ** 17 - 5.77750433310391e64 * cos(theta) ** 15 + 3.90371914398913e63 * cos(theta) ** 13 - 1.86232472924252e62 * cos(theta) ** 11 + 5.98293575399175e60 * cos(theta) ** 9 - 1.20664250500674e59 * cos(theta) ** 7 + 1.36674717395585e57 * cos(theta) ** 5 - 7.1221843353614e54 * cos(theta) ** 3 + 1.07911883869112e52 * cos(theta) ) * cos(28 * phi) ) # @torch.jit.script def Yl69_m29(theta, phi): return ( 4.37578293208222e-53 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 8.39354432337178e69 * cos(theta) ** 40 - 4.77880625710218e70 * cos(theta) ** 38 + 1.24425955508994e71 * cos(theta) ** 36 - 1.96462035014201e71 * cos(theta) ** 34 + 2.10334354280471e71 * cos(theta) ** 32 - 1.61745487942812e71 * cos(theta) ** 30 + 9.23350226445184e70 * cos(theta) ** 28 - 3.9888729782432e70 * cos(theta) ** 26 + 1.31746312797667e70 * cos(theta) ** 24 - 3.33902500754417e69 * cos(theta) ** 22 + 6.48163677935044e68 * cos(theta) ** 20 - 9.568849946205e67 * cos(theta) ** 18 + 1.06089423316621e67 * cos(theta) ** 16 - 8.66625649965587e65 * cos(theta) ** 14 + 5.07483488718587e64 * cos(theta) ** 12 - 2.04855720216677e63 * cos(theta) ** 10 + 5.38464217859257e61 * cos(theta) ** 8 - 8.44649753504717e59 * cos(theta) ** 6 + 6.83373586977926e57 * cos(theta) ** 4 - 2.13665530060842e55 * cos(theta) ** 2 + 1.07911883869112e52 ) * cos(29 * phi) ) # @torch.jit.script def Yl69_m30(theta, phi): return ( 6.95357554066631e-55 * (1.0 - cos(theta) ** 2) ** 15 * ( 3.35741772934871e71 * cos(theta) ** 39 - 1.81594637769883e72 * cos(theta) ** 37 + 4.47933439832378e72 * cos(theta) ** 35 - 6.67970919048283e72 * cos(theta) ** 33 + 6.73069933697506e72 * cos(theta) ** 31 - 4.85236463828435e72 * cos(theta) ** 29 + 2.58538063404652e72 * cos(theta) ** 27 - 1.03710697434323e72 * cos(theta) ** 25 + 3.161911507144e71 * cos(theta) ** 23 - 7.34585501659716e70 * cos(theta) ** 21 + 1.29632735587009e70 * cos(theta) ** 19 - 1.7223929903169e69 * cos(theta) ** 17 + 1.69743077306593e68 * cos(theta) ** 15 - 1.21327590995182e67 * cos(theta) ** 13 + 6.08980186462304e65 * cos(theta) ** 11 - 2.04855720216677e64 * cos(theta) ** 9 + 4.30771374287406e62 * cos(theta) ** 7 - 5.0678985210283e60 * cos(theta) ** 5 + 2.73349434791171e58 * cos(theta) ** 3 - 4.27331060121684e55 * cos(theta) ) * cos(30 * phi) ) # @torch.jit.script def Yl69_m31(theta, phi): return ( 1.11346321367111e-56 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 1.309392914446e73 * cos(theta) ** 38 - 6.71900159748567e73 * cos(theta) ** 36 + 1.56776703941332e74 * cos(theta) ** 34 - 2.20430403285933e74 * cos(theta) ** 32 + 2.08651679446227e74 * cos(theta) ** 30 - 1.40718574510246e74 * cos(theta) ** 28 + 6.98052771192559e73 * cos(theta) ** 26 - 2.59276743585808e73 * cos(theta) ** 24 + 7.27239646643119e72 * cos(theta) ** 22 - 1.5426295534854e72 * cos(theta) ** 20 + 2.46302197615317e71 * cos(theta) ** 18 - 2.92806808353873e70 * cos(theta) ** 16 + 2.5461461595989e69 * cos(theta) ** 14 - 1.57725868293737e68 * cos(theta) ** 12 + 6.69878205108535e66 * cos(theta) ** 10 - 1.8437014819501e65 * cos(theta) ** 8 + 3.01539962001184e63 * cos(theta) ** 6 - 2.53394926051415e61 * cos(theta) ** 4 + 8.20048304373512e58 * cos(theta) ** 2 - 4.27331060121684e55 ) * cos(31 * phi) ) # @torch.jit.script def Yl69_m32(theta, phi): return ( 1.79731164551872e-58 * (1.0 - cos(theta) ** 2) ** 16 * ( 4.97569307489479e74 * cos(theta) ** 37 - 2.41884057509484e75 * cos(theta) ** 35 + 5.3304079340053e75 * cos(theta) ** 33 - 7.05377290514987e75 * cos(theta) ** 31 + 6.25955038338681e75 * cos(theta) ** 29 - 3.94012008628689e75 * cos(theta) ** 27 + 1.81493720510065e75 * cos(theta) ** 25 - 6.22264184605939e74 * cos(theta) ** 23 + 1.59992722261486e74 * cos(theta) ** 21 - 3.08525910697081e73 * cos(theta) ** 19 + 4.4334395570757e72 * cos(theta) ** 17 - 4.68490893366197e71 * cos(theta) ** 15 + 3.56460462343845e70 * cos(theta) ** 13 - 1.89271041952484e69 * cos(theta) ** 11 + 6.69878205108535e67 * cos(theta) ** 9 - 1.47496118556008e66 * cos(theta) ** 7 + 1.8092397720071e64 * cos(theta) ** 5 - 1.01357970420566e62 * cos(theta) ** 3 + 1.64009660874702e59 * cos(theta) ) * cos(32 * phi) ) # @torch.jit.script def Yl69_m33(theta, phi): return ( 2.92565047691658e-60 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 1.84100643771107e76 * cos(theta) ** 36 - 8.46594201283194e76 * cos(theta) ** 34 + 1.75903461822175e77 * cos(theta) ** 32 - 2.18666960059646e77 * cos(theta) ** 30 + 1.81526961118217e77 * cos(theta) ** 28 - 1.06383242329746e77 * cos(theta) ** 26 + 4.53734301275163e76 * cos(theta) ** 24 - 1.43120762459366e76 * cos(theta) ** 22 + 3.35984716749121e75 * cos(theta) ** 20 - 5.86199230324454e74 * cos(theta) ** 18 + 7.53684724702869e73 * cos(theta) ** 16 - 7.02736340049295e72 * cos(theta) ** 14 + 4.63398601046999e71 * cos(theta) ** 12 - 2.08198146147733e70 * cos(theta) ** 10 + 6.02890384597682e68 * cos(theta) ** 8 - 1.03247282989205e67 * cos(theta) ** 6 + 9.04619886003552e64 * cos(theta) ** 4 - 3.04073911261698e62 * cos(theta) ** 2 + 1.64009660874702e59 ) * cos(33 * phi) ) # @torch.jit.script def Yl69_m34(theta, phi): return ( 4.80454845430205e-62 * (1.0 - cos(theta) ** 2) ** 17 * ( 6.62762317575986e77 * cos(theta) ** 35 - 2.87842028436286e78 * cos(theta) ** 33 + 5.62891077830959e78 * cos(theta) ** 31 - 6.56000880178937e78 * cos(theta) ** 29 + 5.08275491131009e78 * cos(theta) ** 27 - 2.7659643005734e78 * cos(theta) ** 25 + 1.08896232306039e78 * cos(theta) ** 23 - 3.14865677410605e77 * cos(theta) ** 21 + 6.71969433498242e76 * cos(theta) ** 19 - 1.05515861458402e76 * cos(theta) ** 17 + 1.20589555952459e75 * cos(theta) ** 15 - 9.83830876069013e73 * cos(theta) ** 13 + 5.56078321256399e72 * cos(theta) ** 11 - 2.08198146147733e71 * cos(theta) ** 9 + 4.82312307678145e69 * cos(theta) ** 7 - 6.19483697935232e67 * cos(theta) ** 5 + 3.61847954401421e65 * cos(theta) ** 3 - 6.08147822523396e62 * cos(theta) ) * cos(34 * phi) ) # @torch.jit.script def Yl69_m35(theta, phi): return ( 7.96346151917664e-64 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 2.31966811151595e79 * cos(theta) ** 34 - 9.49878693839744e79 * cos(theta) ** 32 + 1.74496234127597e80 * cos(theta) ** 30 - 1.90240255251892e80 * cos(theta) ** 28 + 1.37234382605372e80 * cos(theta) ** 26 - 6.91491075143349e79 * cos(theta) ** 24 + 2.5046133430389e79 * cos(theta) ** 22 - 6.6121792256227e78 * cos(theta) ** 20 + 1.27674192364666e78 * cos(theta) ** 18 - 1.79376964479283e77 * cos(theta) ** 16 + 1.80884333928689e76 * cos(theta) ** 14 - 1.27898013888972e75 * cos(theta) ** 12 + 6.11686153382039e73 * cos(theta) ** 10 - 1.87378331532959e72 * cos(theta) ** 8 + 3.37618615374702e70 * cos(theta) ** 6 - 3.09741848967616e68 * cos(theta) ** 4 + 1.08554386320426e66 * cos(theta) ** 2 - 6.08147822523396e62 ) * cos(35 * phi) ) # @torch.jit.script def Yl69_m36(theta, phi): return ( 1.3328085735637e-65 * (1.0 - cos(theta) ** 2) ** 18 * ( 7.88687157915424e80 * cos(theta) ** 33 - 3.03961182028718e81 * cos(theta) ** 31 + 5.23488702382792e81 * cos(theta) ** 29 - 5.32672714705297e81 * cos(theta) ** 27 + 3.56809394773968e81 * cos(theta) ** 25 - 1.65957858034404e81 * cos(theta) ** 23 + 5.51014935468559e80 * cos(theta) ** 21 - 1.32243584512454e80 * cos(theta) ** 19 + 2.29813546256399e79 * cos(theta) ** 17 - 2.87003143166853e78 * cos(theta) ** 15 + 2.53238067500164e77 * cos(theta) ** 13 - 1.53477616666766e76 * cos(theta) ** 11 + 6.11686153382039e74 * cos(theta) ** 9 - 1.49902665226368e73 * cos(theta) ** 7 + 2.02571169224821e71 * cos(theta) ** 5 - 1.23896739587046e69 * cos(theta) ** 3 + 2.17108772640852e66 * cos(theta) ) * cos(36 * phi) ) # @torch.jit.script def Yl69_m37(theta, phi): return ( 2.25350162298453e-67 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 2.6026676211209e82 * cos(theta) ** 32 - 9.42279664289026e82 * cos(theta) ** 30 + 1.5181172369101e83 * cos(theta) ** 28 - 1.4382163297043e83 * cos(theta) ** 26 + 8.9202348693492e82 * cos(theta) ** 24 - 3.81703073479129e82 * cos(theta) ** 22 + 1.15713136448397e82 * cos(theta) ** 20 - 2.51262810573663e81 * cos(theta) ** 18 + 3.90683028635878e80 * cos(theta) ** 16 - 4.30504714750279e79 * cos(theta) ** 14 + 3.29209487750213e78 * cos(theta) ** 12 - 1.68825378333443e77 * cos(theta) ** 10 + 5.50517538043835e75 * cos(theta) ** 8 - 1.04931865658457e74 * cos(theta) ** 6 + 1.0128558461241e72 * cos(theta) ** 4 - 3.71690218761139e69 * cos(theta) ** 2 + 2.17108772640852e66 ) * cos(37 * phi) ) # @torch.jit.script def Yl69_m38(theta, phi): return ( 3.85115498999865e-69 * (1.0 - cos(theta) ** 2) ** 19 * ( 8.32853638758687e83 * cos(theta) ** 31 - 2.82683899286708e84 * cos(theta) ** 29 + 4.25072826334827e84 * cos(theta) ** 27 - 3.73936245723119e84 * cos(theta) ** 25 + 2.14085636864381e84 * cos(theta) ** 23 - 8.39746761654083e83 * cos(theta) ** 21 + 2.31426272896795e83 * cos(theta) ** 19 - 4.52273059032593e82 * cos(theta) ** 17 + 6.25092845817405e81 * cos(theta) ** 15 - 6.0270660065039e80 * cos(theta) ** 13 + 3.95051385300256e79 * cos(theta) ** 11 - 1.68825378333443e78 * cos(theta) ** 9 + 4.40414030435068e76 * cos(theta) ** 7 - 6.29591193950744e74 * cos(theta) ** 5 + 4.05142338449642e72 * cos(theta) ** 3 - 7.43380437522279e69 * cos(theta) ) * cos(38 * phi) ) # @torch.jit.script def Yl69_m39(theta, phi): return ( 6.65576948924773e-71 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 2.58184628015193e85 * cos(theta) ** 30 - 8.19783307931452e85 * cos(theta) ** 28 + 1.14769663110403e86 * cos(theta) ** 26 - 9.34840614307797e85 * cos(theta) ** 24 + 4.92396964788076e85 * cos(theta) ** 22 - 1.76346819947357e85 * cos(theta) ** 20 + 4.3970991850391e84 * cos(theta) ** 18 - 7.68864200355408e83 * cos(theta) ** 16 + 9.37639268726107e82 * cos(theta) ** 14 - 7.83518580845507e81 * cos(theta) ** 12 + 4.34556523830281e80 * cos(theta) ** 10 - 1.51942840500098e79 * cos(theta) ** 8 + 3.08289821304547e77 * cos(theta) ** 6 - 3.14795596975372e75 * cos(theta) ** 4 + 1.21542701534893e73 * cos(theta) ** 2 - 7.43380437522279e69 ) * cos(39 * phi) ) # @torch.jit.script def Yl69_m40(theta, phi): return ( 1.16392339110742e-72 * (1.0 - cos(theta) ** 2) ** 20 * ( 7.74553884045579e86 * cos(theta) ** 29 - 2.29539326220807e87 * cos(theta) ** 27 + 2.98401124087049e87 * cos(theta) ** 25 - 2.24361747433871e87 * cos(theta) ** 23 + 1.08327332253377e87 * cos(theta) ** 21 - 3.52693639894715e86 * cos(theta) ** 19 + 7.91477853307038e85 * cos(theta) ** 17 - 1.23018272056865e85 * cos(theta) ** 15 + 1.31269497621655e84 * cos(theta) ** 13 - 9.40222297014609e82 * cos(theta) ** 11 + 4.34556523830281e81 * cos(theta) ** 9 - 1.21554272400079e80 * cos(theta) ** 7 + 1.84973892782728e78 * cos(theta) ** 5 - 1.25918238790149e76 * cos(theta) ** 3 + 2.43085403069785e73 * cos(theta) ) * cos(40 * phi) ) # @torch.jit.script def Yl69_m41(theta, phi): return ( 2.06076777575783e-74 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 2.24620626373218e88 * cos(theta) ** 28 - 6.19756180796178e88 * cos(theta) ** 26 + 7.46002810217622e88 * cos(theta) ** 24 - 5.16032019097904e88 * cos(theta) ** 22 + 2.27487397732091e88 * cos(theta) ** 20 - 6.70117915799958e87 * cos(theta) ** 18 + 1.34551235062196e87 * cos(theta) ** 16 - 1.84527408085298e86 * cos(theta) ** 14 + 1.70650346908152e85 * cos(theta) ** 12 - 1.03424452671607e84 * cos(theta) ** 10 + 3.91100871447253e82 * cos(theta) ** 8 - 8.50879906800551e80 * cos(theta) ** 6 + 9.24869463913642e78 * cos(theta) ** 4 - 3.77754716370446e76 * cos(theta) ** 2 + 2.43085403069785e73 ) * cos(41 * phi) ) # @torch.jit.script def Yl69_m42(theta, phi): return ( 3.69648160726526e-76 * (1.0 - cos(theta) ** 2) ** 21 * ( 6.2893775384501e89 * cos(theta) ** 27 - 1.61136607007006e90 * cos(theta) ** 25 + 1.79040674452229e90 * cos(theta) ** 23 - 1.13527044201539e90 * cos(theta) ** 21 + 4.54974795464182e89 * cos(theta) ** 19 - 1.20621224843993e89 * cos(theta) ** 17 + 2.15281976099514e88 * cos(theta) ** 15 - 2.58338371319417e87 * cos(theta) ** 13 + 2.04780416289782e86 * cos(theta) ** 11 - 1.03424452671607e85 * cos(theta) ** 9 + 3.12880697157803e83 * cos(theta) ** 7 - 5.10527944080331e81 * cos(theta) ** 5 + 3.69947785565457e79 * cos(theta) ** 3 - 7.55509432740892e76 * cos(theta) ) * cos(42 * phi) ) # @torch.jit.script def Yl69_m43(theta, phi): return ( 6.72198681361313e-78 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 1.69813193538153e91 * cos(theta) ** 26 - 4.02841517517516e91 * cos(theta) ** 24 + 4.11793551240127e91 * cos(theta) ** 22 - 2.38406792823232e91 * cos(theta) ** 20 + 8.64452111381946e90 * cos(theta) ** 18 - 2.05056082234787e90 * cos(theta) ** 16 + 3.22922964149271e89 * cos(theta) ** 14 - 3.35839882715242e88 * cos(theta) ** 12 + 2.2525845791876e87 * cos(theta) ** 10 - 9.30820074044463e85 * cos(theta) ** 8 + 2.19016488010462e84 * cos(theta) ** 6 - 2.55263972040165e82 * cos(theta) ** 4 + 1.10984335669637e80 * cos(theta) ** 2 - 7.55509432740892e76 ) * cos(43 * phi) ) # @torch.jit.script def Yl69_m44(theta, phi): return ( 1.2401429835105e-79 * (1.0 - cos(theta) ** 2) ** 22 * ( 4.41514303199197e92 * cos(theta) ** 25 - 9.66819642042038e92 * cos(theta) ** 23 + 9.0594581272828e92 * cos(theta) ** 21 - 4.76813585646463e92 * cos(theta) ** 19 + 1.5560138004875e92 * cos(theta) ** 17 - 3.2808973157566e91 * cos(theta) ** 15 + 4.5209214980898e90 * cos(theta) ** 13 - 4.03007859258291e89 * cos(theta) ** 11 + 2.2525845791876e88 * cos(theta) ** 9 - 7.4465605923557e86 * cos(theta) ** 7 + 1.31409892806277e85 * cos(theta) ** 5 - 1.02105588816066e83 * cos(theta) ** 3 + 2.21968671339274e80 * cos(theta) ) * cos(44 * phi) ) # @torch.jit.script def Yl69_m45(theta, phi): return ( 2.32300064537706e-81 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 1.10378575799799e94 * cos(theta) ** 24 - 2.22368517669669e94 * cos(theta) ** 22 + 1.90248620672939e94 * cos(theta) ** 20 - 9.0594581272828e93 * cos(theta) ** 18 + 2.64522346082876e93 * cos(theta) ** 16 - 4.92134597363489e92 * cos(theta) ** 14 + 5.87719794751674e91 * cos(theta) ** 12 - 4.4330864518412e90 * cos(theta) ** 10 + 2.02732612126884e89 * cos(theta) ** 8 - 5.21259241464899e87 * cos(theta) ** 6 + 6.57049464031385e85 * cos(theta) ** 4 - 3.06316766448198e83 * cos(theta) ** 2 + 2.21968671339274e80 ) * cos(45 * phi) ) # @torch.jit.script def Yl69_m46(theta, phi): return ( 4.42175615909734e-83 * (1.0 - cos(theta) ** 2) ** 23 * ( 2.64908581919518e95 * cos(theta) ** 23 - 4.89210738873271e95 * cos(theta) ** 21 + 3.80497241345878e95 * cos(theta) ** 19 - 1.6307024629109e95 * cos(theta) ** 17 + 4.23235753732601e94 * cos(theta) ** 15 - 6.88988436308885e93 * cos(theta) ** 13 + 7.05263753702008e92 * cos(theta) ** 11 - 4.4330864518412e91 * cos(theta) ** 9 + 1.62186089701507e90 * cos(theta) ** 7 - 3.12755544878939e88 * cos(theta) ** 5 + 2.62819785612554e86 * cos(theta) ** 3 - 6.12633532896397e83 * cos(theta) ) * cos(46 * phi) ) # @torch.jit.script def Yl69_m47(theta, phi): return ( 8.56055411150962e-85 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 6.09289738414892e96 * cos(theta) ** 22 - 1.02734255163387e97 * cos(theta) ** 20 + 7.22944758557167e96 * cos(theta) ** 18 - 2.77219418694854e96 * cos(theta) ** 16 + 6.34853630598901e95 * cos(theta) ** 14 - 8.95684967201551e94 * cos(theta) ** 12 + 7.75790129072209e93 * cos(theta) ** 10 - 3.98977780665708e92 * cos(theta) ** 8 + 1.13530262791055e91 * cos(theta) ** 6 - 1.5637777243947e89 * cos(theta) ** 4 + 7.88459356837663e86 * cos(theta) ** 2 - 6.12633532896397e83 ) * cos(47 * phi) ) # @torch.jit.script def Yl69_m48(theta, phi): return ( 1.68732058755698e-86 * (1.0 - cos(theta) ** 2) ** 24 * ( 1.34043742451276e98 * cos(theta) ** 21 - 2.05468510326774e98 * cos(theta) ** 19 + 1.3013005654029e98 * cos(theta) ** 17 - 4.43551069911766e97 * cos(theta) ** 15 + 8.88795082838462e96 * cos(theta) ** 13 - 1.07482196064186e96 * cos(theta) ** 11 + 7.75790129072209e94 * cos(theta) ** 9 - 3.19182224532566e93 * cos(theta) ** 7 + 6.8118157674633e91 * cos(theta) ** 5 - 6.25511089757879e89 * cos(theta) ** 3 + 1.57691871367533e87 * cos(theta) ) * cos(48 * phi) ) # @torch.jit.script def Yl69_m49(theta, phi): return ( 3.38958832010567e-88 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 2.8149185914768e99 * cos(theta) ** 20 - 3.9039016962087e99 * cos(theta) ** 18 + 2.21221096118493e99 * cos(theta) ** 16 - 6.65326604867649e98 * cos(theta) ** 14 + 1.15543360769e98 * cos(theta) ** 12 - 1.18230415670605e97 * cos(theta) ** 10 + 6.98211116164988e95 * cos(theta) ** 8 - 2.23427557172796e94 * cos(theta) ** 6 + 3.40590788373165e92 * cos(theta) ** 4 - 1.87653326927364e90 * cos(theta) ** 2 + 1.57691871367533e87 ) * cos(49 * phi) ) # @torch.jit.script def Yl69_m50(theta, phi): return ( 6.94797866131853e-90 * (1.0 - cos(theta) ** 2) ** 25 * ( 5.6298371829536e100 * cos(theta) ** 19 - 7.02702305317567e100 * cos(theta) ** 17 + 3.53953753789589e100 * cos(theta) ** 15 - 9.31457246814708e99 * cos(theta) ** 13 + 1.386520329228e99 * cos(theta) ** 11 - 1.18230415670605e98 * cos(theta) ** 9 + 5.58568892931991e96 * cos(theta) ** 7 - 1.34056534303678e95 * cos(theta) ** 5 + 1.36236315349266e93 * cos(theta) ** 3 - 3.75306653854727e90 * cos(theta) ) * cos(50 * phi) ) # @torch.jit.script def Yl69_m51(theta, phi): return ( 1.45509400851028e-91 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 1.06966906476118e102 * cos(theta) ** 18 - 1.19459391903986e102 * cos(theta) ** 16 + 5.30930630684384e101 * cos(theta) ** 14 - 1.21089442085912e101 * cos(theta) ** 12 + 1.5251723621508e100 * cos(theta) ** 10 - 1.06407374103544e99 * cos(theta) ** 8 + 3.90998225052394e97 * cos(theta) ** 6 - 6.70282671518389e95 * cos(theta) ** 4 + 4.08708946047798e93 * cos(theta) ** 2 - 3.75306653854727e90 ) * cos(51 * phi) ) # @torch.jit.script def Yl69_m52(theta, phi): return ( 3.11789951721678e-93 * (1.0 - cos(theta) ** 2) ** 26 * ( 1.92540431657013e103 * cos(theta) ** 17 - 1.91135027046378e103 * cos(theta) ** 15 + 7.43302882958137e102 * cos(theta) ** 13 - 1.45307330503094e102 * cos(theta) ** 11 + 1.5251723621508e101 * cos(theta) ** 9 - 8.51258992828354e99 * cos(theta) ** 7 + 2.34598935031436e98 * cos(theta) ** 5 - 2.68113068607356e96 * cos(theta) ** 3 + 8.17417892095596e93 * cos(theta) ) * cos(52 * phi) ) # @torch.jit.script def Yl69_m53(theta, phi): return ( 6.84632858112973e-95 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 3.27318733816923e104 * cos(theta) ** 16 - 2.86702540569567e104 * cos(theta) ** 14 + 9.66293747845578e103 * cos(theta) ** 12 - 1.59838063553404e103 * cos(theta) ** 10 + 1.37265512593572e102 * cos(theta) ** 8 - 5.95881294979848e100 * cos(theta) ** 6 + 1.17299467515718e99 * cos(theta) ** 4 - 8.04339205822067e96 * cos(theta) ** 2 + 8.17417892095596e93 ) * cos(53 * phi) ) # @torch.jit.script def Yl69_m54(theta, phi): return ( 1.54328164764011e-96 * (1.0 - cos(theta) ** 2) ** 27 * ( 5.23709974107076e105 * cos(theta) ** 15 - 4.01383556797394e105 * cos(theta) ** 13 + 1.15955249741469e105 * cos(theta) ** 11 - 1.59838063553404e104 * cos(theta) ** 9 + 1.09812410074858e103 * cos(theta) ** 7 - 3.57528776987909e101 * cos(theta) ** 5 + 4.69197870062872e99 * cos(theta) ** 3 - 1.60867841164413e97 * cos(theta) ) * cos(54 * phi) ) # @torch.jit.script def Yl69_m55(theta, phi): return ( 3.57839863561779e-98 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 7.85564961160614e106 * cos(theta) ** 14 - 5.21798623836612e106 * cos(theta) ** 12 + 1.27550774715616e106 * cos(theta) ** 10 - 1.43854257198064e105 * cos(theta) ** 8 + 7.68686870524004e103 * cos(theta) ** 6 - 1.78764388493954e102 * cos(theta) ** 4 + 1.40759361018862e100 * cos(theta) ** 2 - 1.60867841164413e97 ) * cos(55 * phi) ) # @torch.jit.script def Yl69_m56(theta, phi): return ( 8.55400884978709e-100 * (1.0 - cos(theta) ** 2) ** 28 * ( 1.09979094562486e108 * cos(theta) ** 13 - 6.26158348603935e107 * cos(theta) ** 11 + 1.27550774715616e107 * cos(theta) ** 9 - 1.15083405758451e106 * cos(theta) ** 7 + 4.61212122314402e104 * cos(theta) ** 5 - 7.15057553975817e102 * cos(theta) ** 3 + 2.81518722037723e100 * cos(theta) ) * cos(56 * phi) ) # @torch.jit.script def Yl69_m57(theta, phi): return ( 2.11355107153923e-101 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 1.42972822931232e109 * cos(theta) ** 12 - 6.88774183464328e108 * cos(theta) ** 10 + 1.14795697244055e108 * cos(theta) ** 8 - 8.05583840309156e106 * cos(theta) ** 6 + 2.30606061157201e105 * cos(theta) ** 4 - 2.14517266192745e103 * cos(theta) ** 2 + 2.81518722037723e100 ) * cos(57 * phi) ) # @torch.jit.script def Yl69_m58(theta, phi): return ( 5.41402507685722e-103 * (1.0 - cos(theta) ** 2) ** 29 * ( 1.71567387517478e110 * cos(theta) ** 11 - 6.88774183464328e109 * cos(theta) ** 9 + 9.18365577952438e108 * cos(theta) ** 7 - 4.83350304185493e107 * cos(theta) ** 5 + 9.22424244628804e105 * cos(theta) ** 3 - 4.2903453238549e103 * cos(theta) ) * cos(58 * phi) ) # @torch.jit.script def Yl69_m59(theta, phi): return ( 1.4428425309415e-104 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 1.88724126269226e111 * cos(theta) ** 10 - 6.19896765117895e110 * cos(theta) ** 8 + 6.42855904566706e109 * cos(theta) ** 6 - 2.41675152092747e108 * cos(theta) ** 4 + 2.76727273388641e106 * cos(theta) ** 2 - 4.2903453238549e103 ) * cos(59 * phi) ) # @torch.jit.script def Yl69_m60(theta, phi): return ( 4.01720579458844e-106 * (1.0 - cos(theta) ** 2) ** 30 * ( 1.88724126269226e112 * cos(theta) ** 9 - 4.95917412094316e111 * cos(theta) ** 7 + 3.85713542740024e110 * cos(theta) ** 5 - 9.66700608370987e108 * cos(theta) ** 3 + 5.53454546777283e106 * cos(theta) ) * cos(60 * phi) ) # @torch.jit.script def Yl69_m61(theta, phi): return ( 1.17444085245015e-107 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 1.69851713642303e113 * cos(theta) ** 8 - 3.47142188466021e112 * cos(theta) ** 6 + 1.92856771370012e111 * cos(theta) ** 4 - 2.90010182511296e109 * cos(theta) ** 2 + 5.53454546777283e106 ) * cos(61 * phi) ) # @torch.jit.script def Yl69_m62(theta, phi): return ( 3.6278599088397e-109 * (1.0 - cos(theta) ** 2) ** 31 * ( 1.35881370913843e114 * cos(theta) ** 7 - 2.08285313079613e113 * cos(theta) ** 5 + 7.71427085480048e111 * cos(theta) ** 3 - 5.80020365022592e109 * cos(theta) ) * cos(62 * phi) ) # @torch.jit.script def Yl69_m63(theta, phi): return ( 1.19347828804884e-110 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 9.51169596396899e114 * cos(theta) ** 6 - 1.04142656539806e114 * cos(theta) ** 4 + 2.31428125644014e112 * cos(theta) ** 2 - 5.80020365022592e109 ) * cos(63 * phi) ) # @torch.jit.script def Yl69_m64(theta, phi): return ( 4.22486734237911e-112 * (1.0 - cos(theta) ** 2) ** 32 * ( 5.70701757838139e115 * cos(theta) ** 5 - 4.16570626159226e114 * cos(theta) ** 3 + 4.62856251288029e112 * cos(theta) ) * cos(64 * phi) ) # @torch.jit.script def Yl69_m65(theta, phi): return ( 1.63220865200709e-113 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 2.8535087891907e116 * cos(theta) ** 4 - 1.24971187847768e115 * cos(theta) ** 2 + 4.62856251288029e112 ) * cos(65 * phi) ) # @torch.jit.script def Yl69_m66(theta, phi): return ( 7.02390769639901e-115 * (1.0 - cos(theta) ** 2) ** 33 * (1.14140351567628e117 * cos(theta) ** 3 - 2.49942375695535e115 * cos(theta)) * cos(66 * phi) ) # @torch.jit.script def Yl69_m67(theta, phi): return ( 3.47735247384222e-116 * (1.0 - cos(theta) ** 2) ** 33.5 * (3.42421054702884e117 * cos(theta) ** 2 - 2.49942375695535e115) * cos(67 * phi) ) # @torch.jit.script def Yl69_m68(theta, phi): return 14.3867894923659 * (1.0 - cos(theta) ** 2) ** 34 * cos(68 * phi) * cos(theta) # @torch.jit.script def Yl69_m69(theta, phi): return 1.22468485120279 * (1.0 - cos(theta) ** 2) ** 34.5 * cos(69 * phi) # @torch.jit.script def Yl70_m_minus_70(theta, phi): return 1.22905094295194 * (1.0 - cos(theta) ** 2) ** 35 * sin(70 * phi) # @torch.jit.script def Yl70_m_minus_69(theta, phi): return ( 14.542326871995 * (1.0 - cos(theta) ** 2) ** 34.5 * sin(69 * phi) * cos(theta) ) # @torch.jit.script def Yl70_m_minus_68(theta, phi): return ( 2.54712960481231e-118 * (1.0 - cos(theta) ** 2) ** 34 * (4.75965266037008e119 * cos(theta) ** 2 - 3.42421054702884e117) * sin(68 * phi) ) # @torch.jit.script def Yl70_m_minus_67(theta, phi): return ( 5.18264204688737e-117 * (1.0 - cos(theta) ** 2) ** 33.5 * (1.58655088679003e119 * cos(theta) ** 3 - 3.42421054702884e117 * cos(theta)) * sin(67 * phi) ) # @torch.jit.script def Yl70_m_minus_66(theta, phi): return ( 1.21322539806989e-115 * (1.0 - cos(theta) ** 2) ** 33 * ( 3.96637721697507e118 * cos(theta) ** 4 - 1.71210527351442e117 * cos(theta) ** 2 + 6.24855939238839e114 ) * sin(66 * phi) ) # @torch.jit.script def Yl70_m_minus_65(theta, phi): return ( 3.16370477326006e-114 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 7.93275443395014e117 * cos(theta) ** 5 - 5.70701757838139e116 * cos(theta) ** 3 + 6.24855939238839e114 * cos(theta) ) * sin(65 * phi) ) # @torch.jit.script def Yl70_m_minus_64(theta, phi): return ( 9.00406163506351e-113 * (1.0 - cos(theta) ** 2) ** 32 * ( 1.32212573899169e117 * cos(theta) ** 6 - 1.42675439459535e116 * cos(theta) ** 4 + 3.12427969619419e114 * cos(theta) ** 2 - 7.71427085480048e111 ) * sin(64 * phi) ) # @torch.jit.script def Yl70_m_minus_63(theta, phi): return ( 2.75765465786572e-111 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 1.88875105570241e116 * cos(theta) ** 7 - 2.8535087891907e115 * cos(theta) ** 5 + 1.04142656539806e114 * cos(theta) ** 3 - 7.71427085480048e111 * cos(theta) ) * sin(63 * phi) ) # @torch.jit.script def Yl70_m_minus_62(theta, phi): return ( 8.99519727500161e-110 * (1.0 - cos(theta) ** 2) ** 31 * ( 2.36093881962802e115 * cos(theta) ** 8 - 4.75584798198449e114 * cos(theta) ** 6 + 2.60356641349516e113 * cos(theta) ** 4 - 3.85713542740024e111 * cos(theta) ** 2 + 7.2502545627824e108 ) * sin(62 * phi) ) # @torch.jit.script def Yl70_m_minus_61(theta, phi): return ( 3.10040845585289e-108 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 2.62326535514224e114 * cos(theta) ** 9 - 6.79406854569213e113 * cos(theta) ** 7 + 5.20713282699032e112 * cos(theta) ** 5 - 1.28571180913341e111 * cos(theta) ** 3 + 7.2502545627824e108 * cos(theta) ) * sin(61 * phi) ) # @torch.jit.script def Yl70_m_minus_60(theta, phi): return ( 1.12215942258632e-106 * (1.0 - cos(theta) ** 2) ** 30 * ( 2.62326535514224e113 * cos(theta) ** 10 - 8.49258568211517e112 * cos(theta) ** 8 + 8.67855471165054e111 * cos(theta) ** 6 - 3.21427952283353e110 * cos(theta) ** 4 + 3.6251272813912e108 * cos(theta) ** 2 - 5.53454546777283e105 ) * sin(60 * phi) ) # @torch.jit.script def Yl70_m_minus_59(theta, phi): return ( 4.24348409997014e-105 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 2.38478668649295e112 * cos(theta) ** 11 - 9.4362063134613e111 * cos(theta) ** 9 + 1.23979353023579e111 * cos(theta) ** 7 - 6.42855904566706e109 * cos(theta) ** 5 + 1.20837576046373e108 * cos(theta) ** 3 - 5.53454546777283e105 * cos(theta) ) * sin(59 * phi) ) # @torch.jit.script def Yl70_m_minus_58(theta, phi): return ( 1.66958316686443e-103 * (1.0 - cos(theta) ** 2) ** 29 * ( 1.98732223874412e111 * cos(theta) ** 12 - 9.4362063134613e110 * cos(theta) ** 10 + 1.54974191279474e110 * cos(theta) ** 8 - 1.07142650761118e109 * cos(theta) ** 6 + 3.02093940115933e107 * cos(theta) ** 4 - 2.76727273388641e105 * cos(theta) ** 2 + 3.57528776987909e102 ) * sin(58 * phi) ) # @torch.jit.script def Yl70_m_minus_57(theta, phi): return ( 6.81058971792623e-102 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 1.52870941441855e110 * cos(theta) ** 13 - 8.5783693758739e109 * cos(theta) ** 11 + 1.72193545866082e109 * cos(theta) ** 9 - 1.5306092965874e108 * cos(theta) ** 7 + 6.04187880231867e106 * cos(theta) ** 5 - 9.22424244628804e104 * cos(theta) ** 3 + 3.57528776987909e102 * cos(theta) ) * sin(57 * phi) ) # @torch.jit.script def Yl70_m_minus_56(theta, phi): return ( 2.87177623153215e-100 * (1.0 - cos(theta) ** 2) ** 28 * ( 1.09193529601325e109 * cos(theta) ** 14 - 7.14864114656159e108 * cos(theta) ** 12 + 1.72193545866082e108 * cos(theta) ** 10 - 1.91326162073424e107 * cos(theta) ** 8 + 1.00697980038644e106 * cos(theta) ** 6 - 2.30606061157201e104 * cos(theta) ** 4 + 1.78764388493954e102 * cos(theta) ** 2 - 2.01084801455517e99 ) * sin(56 * phi) ) # @torch.jit.script def Yl70_m_minus_55(theta, phi): return ( 1.24847973905654e-98 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 7.27956864008836e107 * cos(theta) ** 15 - 5.4989547281243e107 * cos(theta) ** 13 + 1.56539587150984e107 * cos(theta) ** 11 - 2.12584624526027e106 * cos(theta) ** 9 + 1.43854257198064e105 * cos(theta) ** 7 - 4.61212122314402e103 * cos(theta) ** 5 + 5.95881294979848e101 * cos(theta) ** 3 - 2.01084801455517e99 * cos(theta) ) * sin(55 * phi) ) # @torch.jit.script def Yl70_m_minus_54(theta, phi): return ( 5.58337113012323e-97 * (1.0 - cos(theta) ** 2) ** 27 * ( 4.54973040005522e106 * cos(theta) ** 16 - 3.92782480580307e106 * cos(theta) ** 14 + 1.30449655959153e106 * cos(theta) ** 12 - 2.12584624526027e105 * cos(theta) ** 10 + 1.79817821497579e104 * cos(theta) ** 8 - 7.68686870524004e102 * cos(theta) ** 6 + 1.48970323744962e101 * cos(theta) ** 4 - 1.00542400727758e99 * cos(theta) ** 2 + 1.00542400727758e96 ) * sin(54 * phi) ) # @torch.jit.script def Yl70_m_minus_53(theta, phi): return ( 2.5634910168844e-95 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 2.67631200003248e105 * cos(theta) ** 17 - 2.61854987053538e105 * cos(theta) ** 15 + 1.00345889199349e105 * cos(theta) ** 13 - 1.93258749569116e104 * cos(theta) ** 11 + 1.99797579441755e103 * cos(theta) ** 9 - 1.09812410074858e102 * cos(theta) ** 7 + 2.97940647489924e100 * cos(theta) ** 5 - 3.35141335759194e98 * cos(theta) ** 3 + 1.00542400727758e96 * cos(theta) ) * sin(53 * phi) ) # @torch.jit.script def Yl70_m_minus_52(theta, phi): return ( 1.20620356626626e-93 * (1.0 - cos(theta) ** 2) ** 26 * ( 1.48684000001805e104 * cos(theta) ** 18 - 1.63659366908461e104 * cos(theta) ** 16 + 7.16756351423918e103 * cos(theta) ** 14 - 1.61048957974263e103 * cos(theta) ** 12 + 1.99797579441755e102 * cos(theta) ** 10 - 1.37265512593572e101 * cos(theta) ** 8 + 4.9656774581654e99 * cos(theta) ** 6 - 8.37853339397986e97 * cos(theta) ** 4 + 5.02712003638792e95 * cos(theta) ** 2 - 4.5412105116422e92 ) * sin(52 * phi) ) # @torch.jit.script def Yl70_m_minus_51(theta, phi): return ( 5.80734094599917e-92 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 7.82547368430551e102 * cos(theta) ** 19 - 9.62702158285066e102 * cos(theta) ** 17 + 4.77837567615945e102 * cos(theta) ** 15 - 1.23883813826356e102 * cos(theta) ** 13 + 1.81634163128868e101 * cos(theta) ** 11 - 1.5251723621508e100 * cos(theta) ** 9 + 7.09382494023628e98 * cos(theta) ** 7 - 1.67570667879597e97 * cos(theta) ** 5 + 1.67570667879597e95 * cos(theta) ** 3 - 4.5412105116422e92 * cos(theta) ) * sin(51 * phi) ) # @torch.jit.script def Yl70_m_minus_50(theta, phi): return ( 2.85683400722986e-90 * (1.0 - cos(theta) ** 2) ** 25 * ( 3.91273684215275e101 * cos(theta) ** 20 - 5.34834532380592e101 * cos(theta) ** 18 + 2.98648479759966e101 * cos(theta) ** 16 - 8.84884384473973e100 * cos(theta) ** 14 + 1.5136180260739e100 * cos(theta) ** 12 - 1.5251723621508e99 * cos(theta) ** 10 + 8.86728117529535e97 * cos(theta) ** 8 - 2.79284446465995e96 * cos(theta) ** 6 + 4.18926669698993e94 * cos(theta) ** 4 - 2.2706052558211e92 * cos(theta) ** 2 + 1.87653326927364e89 ) * sin(50 * phi) ) # @torch.jit.script def Yl70_m_minus_49(theta, phi): return ( 1.43411928977543e-88 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.86320802007274e100 * cos(theta) ** 21 - 2.8149185914768e100 * cos(theta) ** 19 + 1.75675576329392e100 * cos(theta) ** 17 - 5.89922922982649e99 * cos(theta) ** 15 + 1.16432155851839e99 * cos(theta) ** 13 - 1.386520329228e98 * cos(theta) ** 11 + 9.85253463921706e96 * cos(theta) ** 9 - 3.98977780665708e95 * cos(theta) ** 7 + 8.37853339397986e93 * cos(theta) ** 5 - 7.56868418607034e91 * cos(theta) ** 3 + 1.87653326927364e89 * cos(theta) ) * sin(49 * phi) ) # @torch.jit.script def Yl70_m_minus_48(theta, phi): return ( 7.33787143759487e-87 * (1.0 - cos(theta) ** 2) ** 24 * ( 8.469127363967e98 * cos(theta) ** 22 - 1.4074592957384e99 * cos(theta) ** 20 + 9.75975424052176e98 * cos(theta) ** 18 - 3.68701826864155e98 * cos(theta) ** 16 + 8.31658256084561e97 * cos(theta) ** 14 - 1.15543360769e97 * cos(theta) ** 12 + 9.85253463921706e95 * cos(theta) ** 10 - 4.98722225832135e94 * cos(theta) ** 8 + 1.39642223232998e93 * cos(theta) ** 6 - 1.89217104651758e91 * cos(theta) ** 4 + 9.38266634636818e88 * cos(theta) ** 2 - 7.16781233488784e85 ) * sin(48 * phi) ) # @torch.jit.script def Yl70_m_minus_47(theta, phi): return ( 3.822742281856e-85 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 3.68222928868131e97 * cos(theta) ** 23 - 6.70218712256381e97 * cos(theta) ** 21 + 5.13671275816935e97 * cos(theta) ** 19 - 2.1688342756715e97 * cos(theta) ** 17 + 5.54438837389707e96 * cos(theta) ** 15 - 8.88795082838462e95 * cos(theta) ** 13 + 8.95684967201551e94 * cos(theta) ** 11 - 5.5413580648015e93 * cos(theta) ** 9 + 1.99488890332854e92 * cos(theta) ** 7 - 3.78434209303517e90 * cos(theta) ** 5 + 3.12755544878939e88 * cos(theta) ** 3 - 7.16781233488784e85 * cos(theta) ) * sin(47 * phi) ) # @torch.jit.script def Yl70_m_minus_46(theta, phi): return ( 2.02569274121716e-83 * (1.0 - cos(theta) ** 2) ** 23 * ( 1.53426220361721e96 * cos(theta) ** 24 - 3.04644869207446e96 * cos(theta) ** 22 + 2.56835637908467e96 * cos(theta) ** 20 - 1.20490793092861e96 * cos(theta) ** 18 + 3.46524273368567e95 * cos(theta) ** 16 - 6.34853630598901e94 * cos(theta) ** 14 + 7.46404139334626e93 * cos(theta) ** 12 - 5.5413580648015e92 * cos(theta) ** 10 + 2.49361112916067e91 * cos(theta) ** 8 - 6.30723682172528e89 * cos(theta) ** 6 + 7.81888862197349e87 * cos(theta) ** 4 - 3.58390616744392e85 * cos(theta) ** 2 + 2.55263972040165e82 ) * sin(46 * phi) ) # @torch.jit.script def Yl70_m_minus_45(theta, phi): return ( 1.09086892600705e-81 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 6.13704881446884e94 * cos(theta) ** 25 - 1.32454290959759e95 * cos(theta) ** 23 + 1.22302684718318e95 * cos(theta) ** 21 - 6.34162068909796e94 * cos(theta) ** 19 + 2.03837807863863e94 * cos(theta) ** 17 - 4.23235753732601e93 * cos(theta) ** 15 + 5.74157030257404e92 * cos(theta) ** 13 - 5.03759824072863e91 * cos(theta) ** 11 + 2.77067903240075e90 * cos(theta) ** 9 - 9.0103383167504e88 * cos(theta) ** 7 + 1.5637777243947e87 * cos(theta) ** 5 - 1.19463538914797e85 * cos(theta) ** 3 + 2.55263972040165e82 * cos(theta) ) * sin(45 * phi) ) # @torch.jit.script def Yl70_m_minus_44(theta, phi): return ( 5.96496864287317e-80 * (1.0 - cos(theta) ** 2) ** 22 * ( 2.36040339018032e93 * cos(theta) ** 26 - 5.51892878998997e93 * cos(theta) ** 24 + 5.55921294174172e93 * cos(theta) ** 22 - 3.17081034454898e93 * cos(theta) ** 20 + 1.13243226591035e93 * cos(theta) ** 18 - 2.64522346082876e92 * cos(theta) ** 16 + 4.10112164469575e91 * cos(theta) ** 14 - 4.19799853394053e90 * cos(theta) ** 12 + 2.77067903240075e89 * cos(theta) ** 10 - 1.1262922895938e88 * cos(theta) ** 8 + 2.6062962073245e86 * cos(theta) ** 6 - 2.98658847286993e84 * cos(theta) ** 4 + 1.27631986020083e82 * cos(theta) ** 2 - 8.53725658997208e78 ) * sin(44 * phi) ) # @torch.jit.script def Yl70_m_minus_43(theta, phi): return ( 3.30934826064584e-78 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 8.74223477844564e91 * cos(theta) ** 27 - 2.20757151599599e92 * cos(theta) ** 25 + 2.41704910510509e92 * cos(theta) ** 23 - 1.50990968788047e92 * cos(theta) ** 21 + 5.96016982058079e91 * cos(theta) ** 19 - 1.5560138004875e91 * cos(theta) ** 17 + 2.73408109646383e90 * cos(theta) ** 15 - 3.22922964149271e89 * cos(theta) ** 13 + 2.51879912036432e88 * cos(theta) ** 11 - 1.25143587732644e87 * cos(theta) ** 9 + 3.72328029617785e85 * cos(theta) ** 7 - 5.97317694573987e83 * cos(theta) ** 5 + 4.25439953400276e81 * cos(theta) ** 3 - 8.53725658997208e78 * cos(theta) ) * sin(43 * phi) ) # @torch.jit.script def Yl70_m_minus_42(theta, phi): return ( 1.86149001125438e-76 * (1.0 - cos(theta) ** 2) ** 21 * ( 3.12222670658773e90 * cos(theta) ** 28 - 8.49065967690764e90 * cos(theta) ** 26 + 1.00710379379379e91 * cos(theta) ** 24 - 6.86322585400212e90 * cos(theta) ** 22 + 2.98008491029039e90 * cos(theta) ** 20 - 8.64452111381946e89 * cos(theta) ** 18 + 1.70880068528989e89 * cos(theta) ** 16 - 2.30659260106622e88 * cos(theta) ** 14 + 2.09899926697026e87 * cos(theta) ** 12 - 1.25143587732644e86 * cos(theta) ** 10 + 4.65410037022231e84 * cos(theta) ** 8 - 9.95529490956645e82 * cos(theta) ** 6 + 1.06359988350069e81 * cos(theta) ** 4 - 4.26862829498604e78 * cos(theta) ** 2 + 2.69824797407462e75 ) * sin(42 * phi) ) # @torch.jit.script def Yl70_m_minus_41(theta, phi): return ( 1.06088600525106e-74 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 1.07662989882336e89 * cos(theta) ** 29 - 3.14468876922505e89 * cos(theta) ** 27 + 4.02841517517516e89 * cos(theta) ** 25 - 2.98401124087049e89 * cos(theta) ** 23 + 1.41908805251924e89 * cos(theta) ** 21 - 4.54974795464182e88 * cos(theta) ** 19 + 1.00517687369994e88 * cos(theta) ** 17 - 1.53772840071082e87 * cos(theta) ** 15 + 1.61461482074636e86 * cos(theta) ** 13 - 1.13766897938768e85 * cos(theta) ** 11 + 5.17122263358035e83 * cos(theta) ** 9 - 1.42218498708092e82 * cos(theta) ** 7 + 2.12719976700138e80 * cos(theta) ** 5 - 1.42287609832868e78 * cos(theta) ** 3 + 2.69824797407462e75 * cos(theta) ) * sin(41 * phi) ) # @torch.jit.script def Yl70_m_minus_40(theta, phi): return ( 6.1219649269969e-73 * (1.0 - cos(theta) ** 2) ** 20 * ( 3.58876632941118e87 * cos(theta) ** 30 - 1.12310313186609e88 * cos(theta) ** 28 + 1.54939045199045e88 * cos(theta) ** 26 - 1.24333801702937e88 * cos(theta) ** 24 + 6.4504002387238e87 * cos(theta) ** 22 - 2.27487397732091e87 * cos(theta) ** 20 + 5.58431596499965e86 * cos(theta) ** 18 - 9.6108025044426e85 * cos(theta) ** 16 + 1.15329630053311e85 * cos(theta) ** 14 - 9.48057482823064e83 * cos(theta) ** 12 + 5.17122263358035e82 * cos(theta) ** 10 - 1.77773123385115e81 * cos(theta) ** 8 + 3.5453329450023e79 * cos(theta) ** 6 - 3.5571902458217e77 * cos(theta) ** 4 + 1.34912398703731e75 * cos(theta) ** 2 - 8.10284676899284e71 ) * sin(40 * phi) ) # @torch.jit.script def Yl70_m_minus_39(theta, phi): return ( 3.57493398645019e-71 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 1.15766655787458e86 * cos(theta) ** 31 - 3.8727694202279e86 * cos(theta) ** 29 + 5.73848315552017e86 * cos(theta) ** 27 - 4.97335206811748e86 * cos(theta) ** 25 + 2.80452184292339e86 * cos(theta) ** 23 - 1.08327332253377e86 * cos(theta) ** 21 + 2.93911366578929e85 * cos(theta) ** 19 - 5.65341323790741e84 * cos(theta) ** 17 + 7.68864200355408e83 * cos(theta) ** 15 - 7.29274986786972e82 * cos(theta) ** 13 + 4.70111148507304e81 * cos(theta) ** 11 - 1.97525692650128e80 * cos(theta) ** 9 + 5.06476135000328e78 * cos(theta) ** 7 - 7.1143804916434e76 * cos(theta) ** 5 + 4.49707995679103e74 * cos(theta) ** 3 - 8.10284676899284e71 * cos(theta) ) * sin(39 * phi) ) # @torch.jit.script def Yl70_m_minus_38(theta, phi): return ( 2.11133071047807e-69 * (1.0 - cos(theta) ** 2) ** 19 * ( 3.61770799335805e84 * cos(theta) ** 32 - 1.29092314007597e85 * cos(theta) ** 30 + 2.04945826982863e85 * cos(theta) ** 28 - 1.91282771850672e85 * cos(theta) ** 26 + 1.16855076788475e85 * cos(theta) ** 24 - 4.92396964788076e84 * cos(theta) ** 22 + 1.46955683289465e84 * cos(theta) ** 20 - 3.14078513217078e83 * cos(theta) ** 18 + 4.8054012522213e82 * cos(theta) ** 16 - 5.20910704847837e81 * cos(theta) ** 14 + 3.91759290422754e80 * cos(theta) ** 12 - 1.97525692650128e79 * cos(theta) ** 10 + 6.3309516875041e77 * cos(theta) ** 8 - 1.18573008194057e76 * cos(theta) ** 6 + 1.12426998919776e74 * cos(theta) ** 4 - 4.05142338449642e71 * cos(theta) ** 2 + 2.32306386725712e68 ) * sin(38 * phi) ) # @torch.jit.script def Yl70_m_minus_37(theta, phi): return ( 1.26044851950185e-67 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 1.09627514950244e83 * cos(theta) ** 33 - 4.16426819379344e83 * cos(theta) ** 31 + 7.06709748216769e83 * cos(theta) ** 29 - 7.08454710558045e83 * cos(theta) ** 27 + 4.67420307153898e83 * cos(theta) ** 25 - 2.14085636864381e83 * cos(theta) ** 23 + 6.99788968045069e82 * cos(theta) ** 21 - 1.65304480640568e82 * cos(theta) ** 19 + 2.82670661895371e81 * cos(theta) ** 17 - 3.47273803231892e80 * cos(theta) ** 15 + 3.01353300325195e79 * cos(theta) ** 13 - 1.79568811500116e78 * cos(theta) ** 11 + 7.03439076389344e76 * cos(theta) ** 9 - 1.69390011705795e75 * cos(theta) ** 7 + 2.24853997839551e73 * cos(theta) ** 5 - 1.35047446149881e71 * cos(theta) ** 3 + 2.32306386725712e68 * cos(theta) ) * sin(37 * phi) ) # @torch.jit.script def Yl70_m_minus_36(theta, phi): return ( 7.60250054324482e-66 * (1.0 - cos(theta) ** 2) ** 18 * ( 3.22433867500717e81 * cos(theta) ** 34 - 1.30133381056045e82 * cos(theta) ** 32 + 2.35569916072256e82 * cos(theta) ** 30 - 2.53019539485016e82 * cos(theta) ** 28 + 1.79777041213038e82 * cos(theta) ** 26 - 8.9202348693492e81 * cos(theta) ** 24 + 3.18085894565941e81 * cos(theta) ** 22 - 8.26522403202838e80 * cos(theta) ** 20 + 1.57039256608539e80 * cos(theta) ** 18 - 2.17046127019932e79 * cos(theta) ** 16 + 2.15252357375139e78 * cos(theta) ** 14 - 1.49640676250097e77 * cos(theta) ** 12 + 7.03439076389344e75 * cos(theta) ** 10 - 2.11737514632244e74 * cos(theta) ** 8 + 3.74756663065919e72 * cos(theta) ** 6 - 3.37618615374702e70 * cos(theta) ** 4 + 1.16153193362856e68 * cos(theta) ** 2 - 6.38555213649566e64 ) * sin(36 * phi) ) # @torch.jit.script def Yl70_m_minus_35(theta, phi): return ( 4.63066554430613e-64 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 9.21239621430621e79 * cos(theta) ** 35 - 3.94343578957712e80 * cos(theta) ** 33 + 7.59902955071795e80 * cos(theta) ** 31 - 8.72481170637987e80 * cos(theta) ** 29 + 6.65840893381621e80 * cos(theta) ** 27 - 3.56809394773968e80 * cos(theta) ** 25 + 1.3829821502867e80 * cos(theta) ** 23 - 3.93582096763256e79 * cos(theta) ** 21 + 8.26522403202838e78 * cos(theta) ** 19 - 1.27674192364666e78 * cos(theta) ** 17 + 1.43501571583426e77 * cos(theta) ** 15 - 1.15108212500075e76 * cos(theta) ** 13 + 6.39490069444858e74 * cos(theta) ** 11 - 2.35263905146938e73 * cos(theta) ** 9 + 5.35366661522741e71 * cos(theta) ** 7 - 6.75237230749403e69 * cos(theta) ** 5 + 3.8717731120952e67 * cos(theta) ** 3 - 6.38555213649566e64 * cos(theta) ) * sin(35 * phi) ) # @torch.jit.script def Yl70_m_minus_34(theta, phi): return ( 2.84701211076783e-62 * (1.0 - cos(theta) ** 2) ** 17 * ( 2.55899894841839e78 * cos(theta) ** 36 - 1.15983405575798e79 * cos(theta) ** 34 + 2.37469673459936e79 * cos(theta) ** 32 - 2.90827056879329e79 * cos(theta) ** 30 + 2.37800319064865e79 * cos(theta) ** 28 - 1.37234382605372e79 * cos(theta) ** 26 + 5.76242562619458e78 * cos(theta) ** 24 - 1.78900953074207e78 * cos(theta) ** 22 + 4.13261201601419e77 * cos(theta) ** 20 - 7.09301068692589e76 * cos(theta) ** 18 + 8.96884822396414e75 * cos(theta) ** 16 - 8.22201517857675e74 * cos(theta) ** 14 + 5.32908391204049e73 * cos(theta) ** 12 - 2.35263905146938e72 * cos(theta) ** 10 + 6.69208326903426e70 * cos(theta) ** 8 - 1.12539538458234e69 * cos(theta) ** 6 + 9.67943278023801e66 * cos(theta) ** 4 - 3.19277606824783e64 * cos(theta) ** 2 + 1.68929950700943e61 ) * sin(34 * phi) ) # @torch.jit.script def Yl70_m_minus_33(theta, phi): return ( 1.7660656608883e-60 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 6.91621337410376e76 * cos(theta) ** 37 - 3.31381158787993e77 * cos(theta) ** 35 + 7.19605071090715e77 * cos(theta) ** 33 - 9.38151796384932e77 * cos(theta) ** 31 + 8.20001100223672e77 * cos(theta) ** 29 - 5.08275491131009e77 * cos(theta) ** 27 + 2.30497025047783e77 * cos(theta) ** 25 - 7.77830230757423e76 * cos(theta) ** 23 + 1.96791048381628e76 * cos(theta) ** 21 - 3.73316351943468e75 * cos(theta) ** 19 + 5.27579307292008e74 * cos(theta) ** 17 - 5.4813434523845e73 * cos(theta) ** 15 + 4.09929531695422e72 * cos(theta) ** 13 - 2.13876277406307e71 * cos(theta) ** 11 + 7.43564807670474e69 * cos(theta) ** 9 - 1.60770769226048e68 * cos(theta) ** 7 + 1.9358865560476e66 * cos(theta) ** 5 - 1.06425868941594e64 * cos(theta) ** 3 + 1.68929950700943e61 * cos(theta) ) * sin(33 * phi) ) # @torch.jit.script def Yl70_m_minus_32(theta, phi): return ( 1.10488545620251e-58 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.82005615107994e75 * cos(theta) ** 38 - 9.20503218855536e75 * cos(theta) ** 36 + 2.11648550320799e76 * cos(theta) ** 34 - 2.93172436370291e76 * cos(theta) ** 32 + 2.73333700074557e76 * cos(theta) ** 30 - 1.81526961118217e76 * cos(theta) ** 28 + 8.8652701941455e75 * cos(theta) ** 26 - 3.2409592948226e75 * cos(theta) ** 24 + 8.94504765371037e74 * cos(theta) ** 22 - 1.86658175971734e74 * cos(theta) ** 20 + 2.93099615162227e73 * cos(theta) ** 18 - 3.42583965774031e72 * cos(theta) ** 16 + 2.92806808353873e71 * cos(theta) ** 14 - 1.78230231171923e70 * cos(theta) ** 12 + 7.43564807670474e68 * cos(theta) ** 10 - 2.0096346153256e67 * cos(theta) ** 8 + 3.22647759341267e65 * cos(theta) ** 6 - 2.66064672353986e63 * cos(theta) ** 4 + 8.44649753504717e60 * cos(theta) ** 2 - 4.31604370722901e57 ) * sin(32 * phi) ) # @torch.jit.script def Yl70_m_minus_31(theta, phi): return ( 6.96866594416903e-57 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 4.66681064379471e73 * cos(theta) ** 39 - 2.4878465374474e74 * cos(theta) ** 37 + 6.0471014377371e74 * cos(theta) ** 35 - 8.88401322334216e74 * cos(theta) ** 33 + 8.81721613143733e74 * cos(theta) ** 31 - 6.25955038338681e74 * cos(theta) ** 29 + 3.28343340523907e74 * cos(theta) ** 27 - 1.29638371792904e74 * cos(theta) ** 25 + 3.88915115378712e73 * cos(theta) ** 23 - 8.88848457008257e72 * cos(theta) ** 21 + 1.5426295534854e72 * cos(theta) ** 19 - 2.01519979867077e71 * cos(theta) ** 17 + 1.95204538902582e70 * cos(theta) ** 15 - 1.37100177824556e69 * cos(theta) ** 13 + 6.75968006973158e67 * cos(theta) ** 11 - 2.23292735036178e66 * cos(theta) ** 9 + 4.60925370487524e64 * cos(theta) ** 7 - 5.32129344707972e62 * cos(theta) ** 5 + 2.81549917834906e60 * cos(theta) ** 3 - 4.31604370722901e57 * cos(theta) ) * sin(31 * phi) ) # @torch.jit.script def Yl70_m_minus_30(theta, phi): return ( 4.42935336553025e-55 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.16670266094868e72 * cos(theta) ** 40 - 6.54696457222999e72 * cos(theta) ** 38 + 1.67975039937142e73 * cos(theta) ** 36 - 2.61294506568887e73 * cos(theta) ** 34 + 2.75538004107417e73 * cos(theta) ** 32 - 2.08651679446227e73 * cos(theta) ** 30 + 1.17265478758538e73 * cos(theta) ** 28 - 4.98609122280399e72 * cos(theta) ** 26 + 1.6204796474113e72 * cos(theta) ** 24 - 4.04022025912844e71 * cos(theta) ** 22 + 7.71314776742702e70 * cos(theta) ** 20 - 1.11955544370598e70 * cos(theta) ** 18 + 1.22002836814114e69 * cos(theta) ** 16 - 9.79286984461114e67 * cos(theta) ** 14 + 5.63306672477632e66 * cos(theta) ** 12 - 2.23292735036178e65 * cos(theta) ** 10 + 5.76156713109405e63 * cos(theta) ** 8 - 8.86882241179953e61 * cos(theta) ** 6 + 7.03874794587264e59 * cos(theta) ** 4 - 2.1580218536145e57 * cos(theta) ** 2 + 1.06832765030421e54 ) * sin(30 * phi) ) # @torch.jit.script def Yl70_m_minus_29(theta, phi): return ( 2.83616998909815e-53 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 2.84561624621629e70 * cos(theta) ** 41 - 1.67870886467436e71 * cos(theta) ** 39 + 4.53986594424707e71 * cos(theta) ** 37 - 7.46555733053963e71 * cos(theta) ** 35 + 8.34963648810353e71 * cos(theta) ** 33 - 6.73069933697506e71 * cos(theta) ** 31 + 4.04363719857029e71 * cos(theta) ** 29 - 1.84670045289037e71 * cos(theta) ** 27 + 6.48191858964519e70 * cos(theta) ** 25 - 1.75661750396889e70 * cos(theta) ** 23 + 3.67292750829858e69 * cos(theta) ** 21 - 5.89239707213676e68 * cos(theta) ** 19 + 7.17663745965375e67 * cos(theta) ** 17 - 6.52857989640742e66 * cos(theta) ** 15 + 4.33312824982794e65 * cos(theta) ** 13 - 2.02993395487435e64 * cos(theta) ** 11 + 6.40174125677117e62 * cos(theta) ** 9 - 1.26697463025708e61 * cos(theta) ** 7 + 1.40774958917453e59 * cos(theta) ** 5 - 7.19340617871501e56 * cos(theta) ** 3 + 1.06832765030421e54 * cos(theta) ) * sin(29 * phi) ) # @torch.jit.script def Yl70_m_minus_28(theta, phi): return ( 1.82883489525325e-51 * (1.0 - cos(theta) ** 2) ** 14 * ( 6.77527677670544e68 * cos(theta) ** 42 - 4.19677216168589e69 * cos(theta) ** 40 + 1.19470156427555e70 * cos(theta) ** 38 - 2.0737659251499e70 * cos(theta) ** 36 + 2.45577543767751e70 * cos(theta) ** 34 - 2.10334354280471e70 * cos(theta) ** 32 + 1.3478790661901e70 * cos(theta) ** 30 - 6.59535876032274e69 * cos(theta) ** 28 + 2.493045611402e69 * cos(theta) ** 26 - 7.31923959987036e68 * cos(theta) ** 24 + 1.66951250377208e68 * cos(theta) ** 22 - 2.94619853606838e67 * cos(theta) ** 20 + 3.98702081091875e66 * cos(theta) ** 18 - 4.08036243525464e65 * cos(theta) ** 16 + 3.09509160701995e64 * cos(theta) ** 14 - 1.69161162906196e63 * cos(theta) ** 12 + 6.40174125677117e61 * cos(theta) ** 10 - 1.58371828782134e60 * cos(theta) ** 8 + 2.34624931529088e58 * cos(theta) ** 6 - 1.79835154467875e56 * cos(theta) ** 4 + 5.34163825152105e53 * cos(theta) ** 2 - 2.56933056831219e50 ) * sin(28 * phi) ) # @torch.jit.script def Yl70_m_minus_27(theta, phi): return ( 1.187194197688e-49 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.57564576202452e67 * cos(theta) ** 43 - 1.02360296626485e68 * cos(theta) ** 41 + 3.06333734429627e68 * cos(theta) ** 39 - 5.6047727706754e68 * cos(theta) ** 37 + 7.01650125050717e68 * cos(theta) ** 35 - 6.37376831152941e68 * cos(theta) ** 33 + 4.34799698770999e68 * cos(theta) ** 31 - 2.2742616414906e68 * cos(theta) ** 29 + 9.23350226445184e67 * cos(theta) ** 27 - 2.92769583994815e67 * cos(theta) ** 25 + 7.25875001640036e66 * cos(theta) ** 23 - 1.40295168384209e66 * cos(theta) ** 21 + 2.09843200574671e65 * cos(theta) ** 19 - 2.40021319720861e64 * cos(theta) ** 17 + 2.06339440467997e63 * cos(theta) ** 15 - 1.30123971466304e62 * cos(theta) ** 13 + 5.81976477888288e60 * cos(theta) ** 11 - 1.75968698646816e59 * cos(theta) ** 9 + 3.35178473612983e57 * cos(theta) ** 7 - 3.59670308935751e55 * cos(theta) ** 5 + 1.78054608384035e53 * cos(theta) ** 3 - 2.56933056831219e50 * cos(theta) ) * sin(27 * phi) ) # @torch.jit.script def Yl70_m_minus_26(theta, phi): return ( 7.75593160683268e-48 * (1.0 - cos(theta) ** 2) ** 13 * ( 3.58101309551028e65 * cos(theta) ** 44 - 2.43714991967822e66 * cos(theta) ** 42 + 7.65834336074068e66 * cos(theta) ** 40 - 1.47494020280932e67 * cos(theta) ** 38 + 1.94902812514088e67 * cos(theta) ** 36 - 1.87463773868512e67 * cos(theta) ** 34 + 1.35874905865937e67 * cos(theta) ** 32 - 7.580872138302e66 * cos(theta) ** 30 + 3.29767938016137e66 * cos(theta) ** 28 - 1.12603686151852e66 * cos(theta) ** 26 + 3.02447917350015e65 * cos(theta) ** 24 - 6.37705310837312e64 * cos(theta) ** 22 + 1.04921600287336e64 * cos(theta) ** 20 - 1.33345177622701e63 * cos(theta) ** 18 + 1.28962150292498e62 * cos(theta) ** 16 - 9.29456939045031e60 * cos(theta) ** 14 + 4.8498039824024e59 * cos(theta) ** 12 - 1.75968698646816e58 * cos(theta) ** 10 + 4.18973092016229e56 * cos(theta) ** 8 - 5.99450514892918e54 * cos(theta) ** 6 + 4.45136520960088e52 * cos(theta) ** 4 - 1.2846652841561e50 * cos(theta) ** 2 + 6.01998727345875e46 ) * sin(26 * phi) ) # @torch.jit.script def Yl70_m_minus_25(theta, phi): return ( 5.09771843463546e-46 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 7.95780687891173e63 * cos(theta) ** 45 - 5.66779051087957e64 * cos(theta) ** 43 + 1.8678886245709e65 * cos(theta) ** 41 - 3.78189795592132e65 * cos(theta) ** 39 + 5.26764358146184e65 * cos(theta) ** 37 - 5.35610782481463e65 * cos(theta) ** 35 + 4.11742138987688e65 * cos(theta) ** 33 - 2.44544262525871e65 * cos(theta) ** 31 + 1.1371308207453e65 * cos(theta) ** 29 - 4.17050689451303e64 * cos(theta) ** 27 + 1.20979166940006e64 * cos(theta) ** 25 - 2.77263178624918e63 * cos(theta) ** 23 + 4.99626668034931e62 * cos(theta) ** 21 - 7.01816724330003e61 * cos(theta) ** 19 + 7.58600884073518e60 * cos(theta) ** 17 - 6.19637959363354e59 * cos(theta) ** 15 + 3.73061844800185e58 * cos(theta) ** 13 - 1.59971544224378e57 * cos(theta) ** 11 + 4.6552565779581e55 * cos(theta) ** 9 - 8.56357878418454e53 * cos(theta) ** 7 + 8.90273041920175e51 * cos(theta) ** 5 - 4.28221761385366e49 * cos(theta) ** 3 + 6.01998727345875e46 * cos(theta) ) * sin(25 * phi) ) # @torch.jit.script def Yl70_m_minus_24(theta, phi): return ( 3.36989650069038e-44 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.72995801715472e62 * cos(theta) ** 46 - 1.28813420701809e63 * cos(theta) ** 44 + 4.44735386802594e63 * cos(theta) ** 42 - 9.4547448898033e63 * cos(theta) ** 40 + 1.38622199512154e64 * cos(theta) ** 38 - 1.48780772911518e64 * cos(theta) ** 36 + 1.21100629114026e64 * cos(theta) ** 34 - 7.64200820393347e63 * cos(theta) ** 32 + 3.790436069151e63 * cos(theta) ** 30 - 1.48946674804037e63 * cos(theta) ** 28 + 4.65304488230792e62 * cos(theta) ** 26 - 1.15526324427049e62 * cos(theta) ** 24 + 2.27103030924969e61 * cos(theta) ** 22 - 3.50908362165002e60 * cos(theta) ** 20 + 4.21444935596399e59 * cos(theta) ** 18 - 3.87273724602096e58 * cos(theta) ** 16 + 2.66472746285846e57 * cos(theta) ** 14 - 1.33309620186982e56 * cos(theta) ** 12 + 4.6552565779581e54 * cos(theta) ** 10 - 1.07044734802307e53 * cos(theta) ** 8 + 1.48378840320029e51 * cos(theta) ** 6 - 1.07055440346341e49 * cos(theta) ** 4 + 3.00999363672937e46 * cos(theta) ** 2 - 1.37757145845738e43 ) * sin(24 * phi) ) # @torch.jit.script def Yl70_m_minus_23(theta, phi): return ( 2.23990406748289e-42 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 3.68076173862707e60 * cos(theta) ** 47 - 2.86252046004019e61 * cos(theta) ** 45 + 1.03426834140138e62 * cos(theta) ** 43 - 2.30603533897642e62 * cos(theta) ** 41 + 3.5544153721065e62 * cos(theta) ** 39 - 4.02110197058156e62 * cos(theta) ** 37 + 3.46001797468646e62 * cos(theta) ** 35 - 2.31576006179802e62 * cos(theta) ** 33 + 1.22272131262936e62 * cos(theta) ** 31 - 5.13609223462195e61 * cos(theta) ** 29 + 1.72334995641034e61 * cos(theta) ** 27 - 4.62105297708197e60 * cos(theta) ** 25 + 9.87404482282472e59 * cos(theta) ** 23 - 1.67099220078572e59 * cos(theta) ** 21 + 2.21813123998105e58 * cos(theta) ** 19 - 2.27808073295351e57 * cos(theta) ** 17 + 1.77648497523897e56 * cos(theta) ** 15 - 1.02545861682294e55 * cos(theta) ** 13 + 4.23205143450736e53 * cos(theta) ** 11 - 1.18938594224785e52 * cos(theta) ** 9 + 2.11969771885756e50 * cos(theta) ** 7 - 2.14110880692683e48 * cos(theta) ** 5 + 1.00333121224312e46 * cos(theta) ** 3 - 1.37757145845738e43 * cos(theta) ) * sin(23 * phi) ) # @torch.jit.script def Yl70_m_minus_22(theta, phi): return ( 1.49655096517071e-40 * (1.0 - cos(theta) ** 2) ** 11 * ( 7.66825362213973e58 * cos(theta) ** 48 - 6.22287056530476e59 * cos(theta) ** 46 + 2.35060986682132e60 * cos(theta) ** 44 - 5.49056033089623e60 * cos(theta) ** 42 + 8.88603843026626e60 * cos(theta) ** 40 - 1.05818472910041e61 * cos(theta) ** 38 + 9.61116104079571e60 * cos(theta) ** 36 - 6.8110590052883e60 * cos(theta) ** 34 + 3.82100410196674e60 * cos(theta) ** 32 - 1.71203074487398e60 * cos(theta) ** 30 + 6.15482127289408e59 * cos(theta) ** 28 - 1.77732806810845e59 * cos(theta) ** 26 + 4.11418534284363e58 * cos(theta) ** 24 - 7.59541909448056e57 * cos(theta) ** 22 + 1.10906561999052e57 * cos(theta) ** 20 - 1.26560040719639e56 * cos(theta) ** 18 + 1.11030310952436e55 * cos(theta) ** 16 - 7.32470440587812e53 * cos(theta) ** 14 + 3.52670952875613e52 * cos(theta) ** 12 - 1.18938594224785e51 * cos(theta) ** 10 + 2.64962214857195e49 * cos(theta) ** 8 - 3.56851467821138e47 * cos(theta) ** 6 + 2.50832803060781e45 * cos(theta) ** 4 - 6.8878572922869e42 * cos(theta) ** 2 + 3.0859575682289e39 ) * sin(22 * phi) ) # @torch.jit.script def Yl70_m_minus_21(theta, phi): return ( 1.00480888130137e-38 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.56494971880403e57 * cos(theta) ** 49 - 1.32401501389463e58 * cos(theta) ** 47 + 5.22357748182516e58 * cos(theta) ** 45 - 1.27687449555726e59 * cos(theta) ** 43 + 2.16732644640641e59 * cos(theta) ** 41 - 2.71329417718054e59 * cos(theta) ** 39 + 2.59761109210695e59 * cos(theta) ** 37 - 1.9460168586538e59 * cos(theta) ** 35 + 1.15788003089901e59 * cos(theta) ** 33 - 5.52267982217414e58 * cos(theta) ** 31 + 2.12235216306692e58 * cos(theta) ** 29 - 6.58269654854982e57 * cos(theta) ** 27 + 1.64567413713745e57 * cos(theta) ** 25 - 3.30235612803502e56 * cos(theta) ** 23 + 5.28126485709773e55 * cos(theta) ** 21 - 6.66105477471786e54 * cos(theta) ** 19 + 6.53119476190799e53 * cos(theta) ** 17 - 4.88313627058542e52 * cos(theta) ** 15 + 2.71285348365856e51 * cos(theta) ** 13 - 1.08125994749805e50 * cos(theta) ** 11 + 2.94402460952439e48 * cos(theta) ** 9 - 5.09787811173054e46 * cos(theta) ** 7 + 5.01665606121562e44 * cos(theta) ** 5 - 2.2959524307623e42 * cos(theta) ** 3 + 3.0859575682289e39 * cos(theta) ) * sin(21 * phi) ) # @torch.jit.script def Yl70_m_minus_20(theta, phi): return ( 6.77780645942075e-37 * (1.0 - cos(theta) ** 2) ** 10 * ( 3.12989943760805e55 * cos(theta) ** 50 - 2.75836461228048e56 * cos(theta) ** 48 + 1.13556032213591e57 * cos(theta) ** 46 - 2.90198748990287e57 * cos(theta) ** 44 + 5.16030106287239e57 * cos(theta) ** 42 - 6.78323544295135e57 * cos(theta) ** 40 + 6.83581866343934e57 * cos(theta) ** 38 - 5.40560238514944e57 * cos(theta) ** 36 + 3.40552950264415e57 * cos(theta) ** 34 - 1.72583744442942e57 * cos(theta) ** 32 + 7.07450721022308e56 * cos(theta) ** 30 - 2.35096305305351e56 * cos(theta) ** 28 + 6.32951591206713e55 * cos(theta) ** 26 - 1.37598172001459e55 * cos(theta) ** 24 + 2.40057493504442e54 * cos(theta) ** 22 - 3.33052738735893e53 * cos(theta) ** 20 + 3.62844153439333e52 * cos(theta) ** 18 - 3.05196016911589e51 * cos(theta) ** 16 + 1.93775248832755e50 * cos(theta) ** 14 - 9.01049956248373e48 * cos(theta) ** 12 + 2.94402460952439e47 * cos(theta) ** 10 - 6.37234763966318e45 * cos(theta) ** 8 + 8.36109343535937e43 * cos(theta) ** 6 - 5.73988107690575e41 * cos(theta) ** 4 + 1.54297878411445e39 * cos(theta) ** 2 - 6.78232432577779e35 ) * sin(20 * phi) ) # @torch.jit.script def Yl70_m_minus_19(theta, phi): return ( 4.59193261320621e-35 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 6.1370577208001e53 * cos(theta) ** 51 - 5.62931553526628e54 * cos(theta) ** 49 + 2.41608579177852e55 * cos(theta) ** 47 - 6.44886108867304e55 * cos(theta) ** 45 + 1.20007001462149e56 * cos(theta) ** 43 - 1.65444766901252e56 * cos(theta) ** 41 + 1.7527740162665e56 * cos(theta) ** 39 - 1.46097361760796e56 * cos(theta) ** 37 + 9.730084293269e55 * cos(theta) ** 35 - 5.22981043766491e55 * cos(theta) ** 33 + 2.28209910007196e55 * cos(theta) ** 31 - 8.10676914846036e54 * cos(theta) ** 29 + 2.34426515261746e54 * cos(theta) ** 27 - 5.50392688005837e53 * cos(theta) ** 25 + 1.04372823262801e53 * cos(theta) ** 23 - 1.58596542255187e52 * cos(theta) ** 21 + 1.90970607073333e51 * cos(theta) ** 19 - 1.79527068771523e50 * cos(theta) ** 17 + 1.29183499221836e49 * cos(theta) ** 15 - 6.93115350960287e47 * cos(theta) ** 13 + 2.67638600865854e46 * cos(theta) ** 11 - 7.08038626629242e44 * cos(theta) ** 9 + 1.19444191933705e43 * cos(theta) ** 7 - 1.14797621538115e41 * cos(theta) ** 5 + 5.14326261371483e38 * cos(theta) ** 3 - 6.78232432577779e35 * cos(theta) ) * sin(19 * phi) ) # @torch.jit.script def Yl70_m_minus_18(theta, phi): return ( 3.12386445344419e-33 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.18020340784617e52 * cos(theta) ** 52 - 1.12586310705326e53 * cos(theta) ** 50 + 5.03351206620525e53 * cos(theta) ** 48 - 1.40192632362457e54 * cos(theta) ** 46 + 2.72743185141247e54 * cos(theta) ** 44 - 3.93916111669648e54 * cos(theta) ** 42 + 4.38193504066624e54 * cos(theta) ** 40 - 3.84466741475778e54 * cos(theta) ** 38 + 2.70280119257472e54 * cos(theta) ** 36 - 1.53817954048968e54 * cos(theta) ** 34 + 7.13155968772488e53 * cos(theta) ** 32 - 2.70225638282012e53 * cos(theta) ** 30 + 8.37237554506234e52 * cos(theta) ** 28 - 2.11689495386861e52 * cos(theta) ** 26 + 4.34886763595004e51 * cos(theta) ** 24 - 7.20893373887214e50 * cos(theta) ** 22 + 9.54853035366666e49 * cos(theta) ** 20 - 9.97372604286237e48 * cos(theta) ** 18 + 8.07396870136477e47 * cos(theta) ** 16 - 4.95082393543062e46 * cos(theta) ** 14 + 2.23032167388211e45 * cos(theta) ** 12 - 7.08038626629242e43 * cos(theta) ** 10 + 1.49305239917132e42 * cos(theta) ** 8 - 1.91329369230192e40 * cos(theta) ** 6 + 1.28581565342871e38 * cos(theta) ** 4 - 3.3911621628889e35 * cos(theta) ** 2 + 1.46549790963219e32 ) * sin(18 * phi) ) # @torch.jit.script def Yl70_m_minus_17(theta, phi): return ( 2.1333958805615e-31 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 2.22679888272863e50 * cos(theta) ** 53 - 2.20757471971227e51 * cos(theta) ** 51 + 1.02724736045005e52 * cos(theta) ** 49 - 2.98282196515867e52 * cos(theta) ** 47 + 6.06095966980549e52 * cos(theta) ** 45 - 9.16083980627089e52 * cos(theta) ** 43 + 1.06876464406494e53 * cos(theta) ** 41 - 9.85812157630201e52 * cos(theta) ** 39 + 7.30486808803979e52 * cos(theta) ** 37 - 4.39479868711337e52 * cos(theta) ** 35 + 2.16107869324996e52 * cos(theta) ** 33 - 8.71695607361329e51 * cos(theta) ** 31 + 2.8870260500215e51 * cos(theta) ** 29 - 7.84035168099484e50 * cos(theta) ** 27 + 1.73954705438002e50 * cos(theta) ** 25 - 3.13431901690093e49 * cos(theta) ** 23 + 4.54691921603174e48 * cos(theta) ** 21 - 5.24932949624335e47 * cos(theta) ** 19 + 4.74939335374399e46 * cos(theta) ** 17 - 3.30054929028708e45 * cos(theta) ** 15 + 1.71563205683239e44 * cos(theta) ** 13 - 6.43671478753856e42 * cos(theta) ** 11 + 1.65894711019035e41 * cos(theta) ** 9 - 2.73327670328845e39 * cos(theta) ** 7 + 2.57163130685741e37 * cos(theta) ** 5 - 1.13038738762963e35 * cos(theta) ** 3 + 1.46549790963219e32 * cos(theta) ) * sin(17 * phi) ) # @torch.jit.script def Yl70_m_minus_16(theta, phi): return ( 1.4622713074207e-29 * (1.0 - cos(theta) ** 2) ** 8 * ( 4.12370163468265e48 * cos(theta) ** 54 - 4.24533599944667e49 * cos(theta) ** 52 + 2.0544947209001e50 * cos(theta) ** 50 - 6.21421242741389e50 * cos(theta) ** 48 + 1.31759992821858e51 * cos(theta) ** 46 - 2.08200904687975e51 * cos(theta) ** 44 + 2.54467772396414e51 * cos(theta) ** 42 - 2.4645303940755e51 * cos(theta) ** 40 + 1.92233370737889e51 * cos(theta) ** 38 - 1.22077741308705e51 * cos(theta) ** 36 + 6.35611380367636e50 * cos(theta) ** 34 - 2.72404877300415e50 * cos(theta) ** 32 + 9.62342016673832e49 * cos(theta) ** 30 - 2.8001256003553e49 * cos(theta) ** 28 + 6.6905655937693e48 * cos(theta) ** 26 - 1.30596625704205e48 * cos(theta) ** 24 + 2.06678146183261e47 * cos(theta) ** 22 - 2.62466474812168e46 * cos(theta) ** 20 + 2.6385518631911e45 * cos(theta) ** 18 - 2.06284330642943e44 * cos(theta) ** 16 + 1.225451469166e43 * cos(theta) ** 14 - 5.36392898961547e41 * cos(theta) ** 12 + 1.65894711019035e40 * cos(theta) ** 10 - 3.41659587911056e38 * cos(theta) ** 8 + 4.28605217809569e36 * cos(theta) ** 6 - 2.82596846907408e34 * cos(theta) ** 4 + 7.32748954816097e31 * cos(theta) ** 2 - 3.11940806647977e28 ) * sin(16 * phi) ) # @torch.jit.script def Yl70_m_minus_15(theta, phi): return ( 1.00567702523587e-27 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 7.49763933578663e46 * cos(theta) ** 55 - 8.01006792348428e47 * cos(theta) ** 53 + 4.02842102137275e48 * cos(theta) ** 51 - 1.26820661783957e49 * cos(theta) ** 49 + 2.80340410259273e49 * cos(theta) ** 47 - 4.62668677084388e49 * cos(theta) ** 45 + 5.91785517200962e49 * cos(theta) ** 43 - 6.01104974164757e49 * cos(theta) ** 41 + 4.92906078815101e49 * cos(theta) ** 39 - 3.29939841374878e49 * cos(theta) ** 37 + 1.8160325153361e49 * cos(theta) ** 35 - 8.25469325152774e48 * cos(theta) ** 33 + 3.10432908604462e48 * cos(theta) ** 31 - 9.65560551846655e47 * cos(theta) ** 29 + 2.47798725695159e47 * cos(theta) ** 27 - 5.22386502816822e46 * cos(theta) ** 25 + 8.98600635579396e45 * cos(theta) ** 23 - 1.24984035624842e45 * cos(theta) ** 21 + 1.38871150694269e44 * cos(theta) ** 19 - 1.21343723907613e43 * cos(theta) ** 17 + 8.16967646110664e41 * cos(theta) ** 15 - 4.12609922278113e40 * cos(theta) ** 13 + 1.50813373653668e39 * cos(theta) ** 11 - 3.79621764345618e37 * cos(theta) ** 9 + 6.12293168299384e35 * cos(theta) ** 7 - 5.65193693814816e33 * cos(theta) ** 5 + 2.44249651605366e31 * cos(theta) ** 3 - 3.11940806647977e28 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl70_m_minus_14(theta, phi): return ( 6.93844268438917e-26 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.33886416710476e45 * cos(theta) ** 56 - 1.48334591175635e46 * cos(theta) ** 54 + 7.74696350263991e46 * cos(theta) ** 52 - 2.53641323567914e47 * cos(theta) ** 50 + 5.84042521373486e47 * cos(theta) ** 48 - 1.00580147192258e48 * cos(theta) ** 46 + 1.34496708454764e48 * cos(theta) ** 44 - 1.4312023194399e48 * cos(theta) ** 42 + 1.23226519703775e48 * cos(theta) ** 40 - 8.68262740460204e47 * cos(theta) ** 38 + 5.04453476482251e47 * cos(theta) ** 36 - 2.42785095633169e47 * cos(theta) ** 34 + 9.70102839388944e46 * cos(theta) ** 32 - 3.21853517282218e46 * cos(theta) ** 30 + 8.84995448911283e45 * cos(theta) ** 28 - 2.00917885698778e45 * cos(theta) ** 26 + 3.74416931491415e44 * cos(theta) ** 24 - 5.6810925284019e43 * cos(theta) ** 22 + 6.94355753471343e42 * cos(theta) ** 20 - 6.74131799486741e41 * cos(theta) ** 18 + 5.10604778819165e40 * cos(theta) ** 16 - 2.94721373055795e39 * cos(theta) ** 14 + 1.25677811378057e38 * cos(theta) ** 12 - 3.79621764345618e36 * cos(theta) ** 10 + 7.6536646037423e34 * cos(theta) ** 8 - 9.4198948969136e32 * cos(theta) ** 6 + 6.10624129013414e30 * cos(theta) ** 4 - 1.55970403323988e28 * cos(theta) ** 2 + 6.55337829092388e24 ) * sin(14 * phi) ) # @torch.jit.script def Yl70_m_minus_13(theta, phi): return ( 4.80108147403523e-24 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 2.34888450369255e43 * cos(theta) ** 57 - 2.69699256682972e44 * cos(theta) ** 55 + 1.46169122691319e45 * cos(theta) ** 53 - 4.97335928564537e45 * cos(theta) ** 51 + 1.19192351300711e46 * cos(theta) ** 49 - 2.14000313175018e46 * cos(theta) ** 47 + 2.9888157434392e46 * cos(theta) ** 45 - 3.32837748706953e46 * cos(theta) ** 43 + 3.00552487082378e46 * cos(theta) ** 41 - 2.22631471912873e46 * cos(theta) ** 39 + 1.36338777427635e46 * cos(theta) ** 37 - 6.93671701809054e45 * cos(theta) ** 35 + 2.93970557390589e45 * cos(theta) ** 33 - 1.03823715252328e45 * cos(theta) ** 31 + 3.05170844452166e44 * cos(theta) ** 29 - 7.4414031740288e43 * cos(theta) ** 27 + 1.49766772596566e43 * cos(theta) ** 25 - 2.47004022973995e42 * cos(theta) ** 23 + 3.30645596891116e41 * cos(theta) ** 21 - 3.54806210256179e40 * cos(theta) ** 19 + 3.00355752246568e39 * cos(theta) ** 17 - 1.9648091537053e38 * cos(theta) ** 15 + 9.66752395215823e36 * cos(theta) ** 13 - 3.45110694859653e35 * cos(theta) ** 11 + 8.50407178193589e33 * cos(theta) ** 9 - 1.34569927098766e32 * cos(theta) ** 7 + 1.22124825802683e30 * cos(theta) ** 5 - 5.19901344413294e27 * cos(theta) ** 3 + 6.55337829092388e24 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl70_m_minus_12(theta, phi): return ( 3.33113412074688e-22 * (1.0 - cos(theta) ** 2) ** 6 * ( 4.04980086843544e41 * cos(theta) ** 58 - 4.81605815505308e42 * cos(theta) ** 56 + 2.7068356053948e43 * cos(theta) ** 54 - 9.56415247239495e43 * cos(theta) ** 52 + 2.38384702601423e44 * cos(theta) ** 50 - 4.45833985781287e44 * cos(theta) ** 48 + 6.49742552921566e44 * cos(theta) ** 46 - 7.56449428879438e44 * cos(theta) ** 44 + 7.15601159719948e44 * cos(theta) ** 42 - 5.56578679782182e44 * cos(theta) ** 40 + 3.58786256388514e44 * cos(theta) ** 38 - 1.92686583835848e44 * cos(theta) ** 36 + 8.64619286442909e43 * cos(theta) ** 34 - 3.24449110163526e43 * cos(theta) ** 32 + 1.01723614817389e43 * cos(theta) ** 30 - 2.65764399072457e42 * cos(theta) ** 28 + 5.7602604844833e41 * cos(theta) ** 26 - 1.02918342905831e41 * cos(theta) ** 24 + 1.50293453132325e40 * cos(theta) ** 22 - 1.7740310512809e39 * cos(theta) ** 20 + 1.66864306803649e38 * cos(theta) ** 18 - 1.22800572106581e37 * cos(theta) ** 16 + 6.90537425154159e35 * cos(theta) ** 14 - 2.87592245716377e34 * cos(theta) ** 12 + 8.50407178193589e32 * cos(theta) ** 10 - 1.68212408873457e31 * cos(theta) ** 8 + 2.03541376337805e29 * cos(theta) ** 6 - 1.29975336103324e27 * cos(theta) ** 4 + 3.27668914546194e24 * cos(theta) ** 2 - 1.36131663708431e21 ) * sin(12 * phi) ) # @torch.jit.script def Yl70_m_minus_11(theta, phi): return ( 2.31699475653475e-20 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 6.86406926853464e39 * cos(theta) ** 59 - 8.44922483342645e40 * cos(theta) ** 57 + 4.92151928253599e41 * cos(theta) ** 55 - 1.8045570702632e42 * cos(theta) ** 53 + 4.67420985492986e42 * cos(theta) ** 51 - 9.09865277104668e42 * cos(theta) ** 49 + 1.38243096366291e43 * cos(theta) ** 47 - 1.6809987308432e43 * cos(theta) ** 45 + 1.66418874353476e43 * cos(theta) ** 43 - 1.35750897507849e43 * cos(theta) ** 41 + 9.19964759970549e42 * cos(theta) ** 39 - 5.20774550907698e42 * cos(theta) ** 37 + 2.47034081840831e42 * cos(theta) ** 35 - 9.83179121707656e41 * cos(theta) ** 33 + 3.28140692959319e41 * cos(theta) ** 31 - 9.16428962318818e40 * cos(theta) ** 29 + 2.13342980906789e40 * cos(theta) ** 27 - 4.11673371623326e39 * cos(theta) ** 25 + 6.53449796227501e38 * cos(theta) ** 23 - 8.44776691086141e37 * cos(theta) ** 21 + 8.78233193703414e36 * cos(theta) ** 19 - 7.22356306509302e35 * cos(theta) ** 17 + 4.60358283436106e34 * cos(theta) ** 15 - 2.21224804397213e33 * cos(theta) ** 13 + 7.73097434721445e31 * cos(theta) ** 11 - 1.86902676526064e30 * cos(theta) ** 9 + 2.90773394768293e28 * cos(theta) ** 7 - 2.59950672206647e26 * cos(theta) ** 5 + 1.09222971515398e24 * cos(theta) ** 3 - 1.36131663708431e21 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl70_m_minus_10(theta, phi): return ( 1.61526277895562e-18 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.14401154475577e38 * cos(theta) ** 60 - 1.45676290231491e39 * cos(theta) ** 58 + 8.78842729024284e39 * cos(theta) ** 56 - 3.34177235233925e40 * cos(theta) ** 54 + 8.98886510563435e40 * cos(theta) ** 52 - 1.81973055420933e41 * cos(theta) ** 50 + 2.88006450763105e41 * cos(theta) ** 48 - 3.65434506705043e41 * cos(theta) ** 46 + 3.78224714439719e41 * cos(theta) ** 44 - 3.23216422637736e41 * cos(theta) ** 42 + 2.29991189992637e41 * cos(theta) ** 40 - 1.37045934449394e41 * cos(theta) ** 38 + 6.86205782891198e40 * cos(theta) ** 36 - 2.89170329914016e40 * cos(theta) ** 34 + 1.02543966549787e40 * cos(theta) ** 32 - 3.05476320772939e39 * cos(theta) ** 30 + 7.61939217524247e38 * cos(theta) ** 28 - 1.58335912162818e38 * cos(theta) ** 26 + 2.72270748428126e37 * cos(theta) ** 24 - 3.83989405039155e36 * cos(theta) ** 22 + 4.39116596851707e35 * cos(theta) ** 20 - 4.01309059171834e34 * cos(theta) ** 18 + 2.87723927147566e33 * cos(theta) ** 16 - 1.58017717426581e32 * cos(theta) ** 14 + 6.44247862267871e30 * cos(theta) ** 12 - 1.86902676526064e29 * cos(theta) ** 10 + 3.63466743460366e27 * cos(theta) ** 8 - 4.33251120344412e25 * cos(theta) ** 6 + 2.73057428788495e23 * cos(theta) ** 4 - 6.80658318542156e20 * cos(theta) ** 2 + 2.80106303926813e17 ) * sin(10 * phi) ) # @torch.jit.script def Yl70_m_minus_9(theta, phi): return ( 1.12837406758519e-16 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1.87542876189471e36 * cos(theta) ** 61 - 2.46908966494052e37 * cos(theta) ** 59 + 1.54182934916541e38 * cos(theta) ** 57 - 6.07594973152592e38 * cos(theta) ** 55 + 1.69601228408195e39 * cos(theta) ** 53 - 3.56809912590066e39 * cos(theta) ** 51 + 5.8776826686348e39 * cos(theta) ** 49 - 7.77520227032005e39 * cos(theta) ** 47 + 8.40499365421598e39 * cos(theta) ** 45 - 7.51666099157527e39 * cos(theta) ** 43 + 5.60954121933262e39 * cos(theta) ** 41 - 3.51399831921524e39 * cos(theta) ** 39 + 1.85461022403026e39 * cos(theta) ** 37 - 8.26200942611475e38 * cos(theta) ** 35 + 3.10739292575112e38 * cos(theta) ** 33 - 9.85407486364321e37 * cos(theta) ** 31 + 2.62737661215258e37 * cos(theta) ** 29 - 5.86429304306732e36 * cos(theta) ** 27 + 1.0890829937125e36 * cos(theta) ** 25 - 1.66951915234415e35 * cos(theta) ** 23 + 2.09103141357956e34 * cos(theta) ** 21 - 2.11215294300965e33 * cos(theta) ** 19 + 1.69249368910333e32 * cos(theta) ** 17 - 1.05345144951054e31 * cos(theta) ** 15 + 4.95575278667593e29 * cos(theta) ** 13 - 1.69911524114603e28 * cos(theta) ** 11 + 4.03851937178184e26 * cos(theta) ** 9 - 6.18930171920588e24 * cos(theta) ** 7 + 5.4611485757699e22 * cos(theta) ** 5 - 2.26886106180719e20 * cos(theta) ** 3 + 2.80106303926813e17 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl70_m_minus_8(theta, phi): return ( 7.89700634562307e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 3.02488509983018e34 * cos(theta) ** 62 - 4.11514944156753e35 * cos(theta) ** 60 + 2.6583264640783e36 * cos(theta) ** 58 - 1.08499102348677e37 * cos(theta) ** 56 + 3.14076348904065e37 * cos(theta) ** 54 - 6.86172908827049e37 * cos(theta) ** 52 + 1.17553653372696e38 * cos(theta) ** 50 - 1.61983380631668e38 * cos(theta) ** 48 + 1.82717253352521e38 * cos(theta) ** 46 - 1.70833204353983e38 * cos(theta) ** 44 + 1.33560505222205e38 * cos(theta) ** 42 - 8.78499579803809e37 * cos(theta) ** 40 + 4.88055322113227e37 * cos(theta) ** 38 - 2.29500261836521e37 * cos(theta) ** 36 + 9.13939095809154e36 * cos(theta) ** 34 - 3.0793983948885e36 * cos(theta) ** 32 + 8.75792204050858e35 * cos(theta) ** 30 - 2.09439037252404e35 * cos(theta) ** 28 + 4.18878074504809e34 * cos(theta) ** 26 - 6.95632980143397e33 * cos(theta) ** 24 + 9.50468824354344e32 * cos(theta) ** 22 - 1.05607647150483e32 * cos(theta) ** 20 + 9.40274271724073e30 * cos(theta) ** 18 - 6.58407155944088e29 * cos(theta) ** 16 + 3.53982341905423e28 * cos(theta) ** 14 - 1.41592936762169e27 * cos(theta) ** 12 + 4.03851937178184e25 * cos(theta) ** 10 - 7.73662714900736e23 * cos(theta) ** 8 + 9.10191429294983e21 * cos(theta) ** 6 - 5.67215265451797e19 * cos(theta) ** 4 + 1.40053151963407e17 * cos(theta) ** 2 - 57187893819275.9 ) * sin(8 * phi) ) # @torch.jit.script def Yl70_m_minus_7(theta, phi): return ( 5.53579581560677e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 4.80140492036536e32 * cos(theta) ** 63 - 6.74614662552054e33 * cos(theta) ** 61 + 4.50563807470897e34 * cos(theta) ** 59 - 1.903493023661e35 * cos(theta) ** 57 + 5.71047907098301e35 * cos(theta) ** 55 - 1.29466586571141e36 * cos(theta) ** 53 + 2.30497359554306e36 * cos(theta) ** 51 - 3.3057832781973e36 * cos(theta) ** 49 + 3.88760113516003e36 * cos(theta) ** 47 - 3.79629343008852e36 * cos(theta) ** 45 + 3.10605826098152e36 * cos(theta) ** 43 - 2.14268190196051e36 * cos(theta) ** 41 + 1.25142390285443e36 * cos(theta) ** 39 - 6.20270977936543e35 * cos(theta) ** 37 + 2.61125455945473e35 * cos(theta) ** 35 - 9.33151028754091e34 * cos(theta) ** 33 + 2.82513614209954e34 * cos(theta) ** 31 - 7.22203576732428e33 * cos(theta) ** 29 + 1.55140027594374e33 * cos(theta) ** 27 - 2.78253192057359e32 * cos(theta) ** 25 + 4.13247314936671e31 * cos(theta) ** 23 - 5.02893557859441e30 * cos(theta) ** 21 + 4.94881195644249e29 * cos(theta) ** 19 - 3.87298327025934e28 * cos(theta) ** 17 + 2.35988227936949e27 * cos(theta) ** 15 - 1.08917643663207e26 * cos(theta) ** 13 + 3.6713812470744e24 * cos(theta) ** 11 - 8.59625238778595e22 * cos(theta) ** 9 + 1.3002734704214e21 * cos(theta) ** 7 - 1.13443053090359e19 * cos(theta) ** 5 + 4.66843839878022e16 * cos(theta) ** 3 - 57187893819275.9 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl70_m_minus_6(theta, phi): return ( 3.8861128910259e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 7.50219518807088e30 * cos(theta) ** 64 - 1.08808816540654e32 * cos(theta) ** 62 + 7.50939679118163e32 * cos(theta) ** 60 - 3.28188452355345e33 * cos(theta) ** 58 + 1.01972840553268e34 * cos(theta) ** 56 - 2.39752938094706e34 * cos(theta) ** 54 + 4.4326415298905e34 * cos(theta) ** 52 - 6.6115665563946e34 * cos(theta) ** 50 + 8.09916903158339e34 * cos(theta) ** 48 - 8.25281180454026e34 * cos(theta) ** 46 + 7.05922332041253e34 * cos(theta) ** 44 - 5.10162357609645e34 * cos(theta) ** 42 + 3.12855975713607e34 * cos(theta) ** 40 - 1.63229204720143e34 * cos(theta) ** 38 + 7.25348488737424e33 * cos(theta) ** 36 - 2.74456184927674e33 * cos(theta) ** 34 + 8.82855044406107e32 * cos(theta) ** 32 - 2.40734525577476e32 * cos(theta) ** 30 + 5.54071527122763e31 * cos(theta) ** 28 - 1.070204584836e31 * cos(theta) ** 26 + 1.72186381223613e30 * cos(theta) ** 24 - 2.28587980845201e29 * cos(theta) ** 22 + 2.47440597822124e28 * cos(theta) ** 20 - 2.1516573723663e27 * cos(theta) ** 18 + 1.47492642460593e26 * cos(theta) ** 16 - 7.77983169022909e24 * cos(theta) ** 14 + 3.059484372562e23 * cos(theta) ** 12 - 8.59625238778595e21 * cos(theta) ** 10 + 1.62534183802676e20 * cos(theta) ** 8 - 1.89071755150599e18 * cos(theta) ** 6 + 1.16710959969506e16 * cos(theta) ** 4 - 28593946909637.9 * cos(theta) ** 2 + 11604686245.7946 ) * sin(6 * phi) ) # @torch.jit.script def Yl70_m_minus_5(theta, phi): return ( 2.73135963587515e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.15418387508783e29 * cos(theta) ** 65 - 1.72712407207387e30 * cos(theta) ** 63 + 1.23104865429207e31 * cos(theta) ** 61 - 5.56251614161602e31 * cos(theta) ** 59 + 1.78899720268891e32 * cos(theta) ** 57 - 4.35914432899466e32 * cos(theta) ** 55 + 8.36347458469906e32 * cos(theta) ** 53 - 1.29638559929306e33 * cos(theta) ** 51 + 1.65289163909865e33 * cos(theta) ** 49 - 1.75591740522133e33 * cos(theta) ** 47 + 1.56871629342501e33 * cos(theta) ** 45 - 1.18642408746429e33 * cos(theta) ** 43 + 7.63063355399042e32 * cos(theta) ** 41 - 4.18536422359341e32 * cos(theta) ** 39 + 1.96040132091196e32 * cos(theta) ** 37 - 7.84160528364783e31 * cos(theta) ** 35 + 2.67531831638214e31 * cos(theta) ** 33 - 7.76562985733794e30 * cos(theta) ** 31 + 1.91059147283711e30 * cos(theta) ** 29 - 3.96372068457776e29 * cos(theta) ** 27 + 6.88745524894452e28 * cos(theta) ** 25 - 9.93860786283481e27 * cos(theta) ** 23 + 1.17828856105774e27 * cos(theta) ** 21 - 1.13245124861384e26 * cos(theta) ** 19 + 8.67603779179959e24 * cos(theta) ** 17 - 5.18655446015272e23 * cos(theta) ** 15 + 2.35344951735538e22 * cos(theta) ** 13 - 7.81477489798723e20 * cos(theta) ** 11 + 1.80593537558528e19 * cos(theta) ** 9 - 2.70102507357998e17 * cos(theta) ** 7 + 2.33421919939011e15 * cos(theta) ** 5 - 9531315636545.98 * cos(theta) ** 3 + 11604686245.7946 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl70_m_minus_4(theta, phi): return ( 1.92168184227816e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 1.74876344710277e27 * cos(theta) ** 66 - 2.69863136261542e28 * cos(theta) ** 64 + 1.98556234563237e29 * cos(theta) ** 62 - 9.2708602360267e29 * cos(theta) ** 60 + 3.08447793567054e30 * cos(theta) ** 58 - 7.78418630177618e30 * cos(theta) ** 56 + 1.54879158975908e31 * cos(theta) ** 54 - 2.49304922940973e31 * cos(theta) ** 52 + 3.3057832781973e31 * cos(theta) ** 50 - 3.65816126087777e31 * cos(theta) ** 48 + 3.41025281179349e31 * cos(theta) ** 46 - 2.69641838060066e31 * cos(theta) ** 44 + 1.81681751285486e31 * cos(theta) ** 42 - 1.04634105589835e31 * cos(theta) ** 40 + 5.15895084450515e30 * cos(theta) ** 38 - 2.17822368990217e30 * cos(theta) ** 36 + 7.86858328347689e29 * cos(theta) ** 34 - 2.42675933041811e29 * cos(theta) ** 32 + 6.36863824279037e28 * cos(theta) ** 30 - 1.41561453020634e28 * cos(theta) ** 28 + 2.64902124959405e27 * cos(theta) ** 26 - 4.1410866095145e26 * cos(theta) ** 24 + 5.35585709571698e25 * cos(theta) ** 22 - 5.66225624306921e24 * cos(theta) ** 20 + 4.82002099544422e23 * cos(theta) ** 18 - 3.24159653759545e22 * cos(theta) ** 16 + 1.68103536953956e21 * cos(theta) ** 14 - 6.51231241498936e19 * cos(theta) ** 12 + 1.80593537558528e18 * cos(theta) ** 10 - 3.37628134197498e16 * cos(theta) ** 8 + 389036533231685.0 * cos(theta) ** 6 - 2382828909136.49 * cos(theta) ** 4 + 5802343122.89731 * cos(theta) ** 2 - 2344381.05975649 ) * sin(4 * phi) ) # @torch.jit.script def Yl70_m_minus_3(theta, phi): return ( 1.35311512253704e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 2.61009469716831e25 * cos(theta) ** 67 - 4.15174055786988e26 * cos(theta) ** 65 + 3.15168626290852e27 * cos(theta) ** 63 - 1.519813153447e28 * cos(theta) ** 61 + 5.22792870452633e28 * cos(theta) ** 59 - 1.36564671960986e29 * cos(theta) ** 57 + 2.81598470865288e29 * cos(theta) ** 55 - 4.7038664705844e29 * cos(theta) ** 53 + 6.4819279964653e29 * cos(theta) ** 51 - 7.46563522628117e29 * cos(theta) ** 49 + 7.25585704636914e29 * cos(theta) ** 47 - 5.99204084577925e29 * cos(theta) ** 45 + 4.22515700663921e29 * cos(theta) ** 43 - 2.55205135584964e29 * cos(theta) ** 41 + 1.32280790884747e29 * cos(theta) ** 39 - 5.88709105378966e28 * cos(theta) ** 37 + 2.24816665242197e28 * cos(theta) ** 35 - 7.35381615278214e27 * cos(theta) ** 33 + 2.05439943315819e27 * cos(theta) ** 31 - 4.88142941450463e26 * cos(theta) ** 29 + 9.81118981331129e25 * cos(theta) ** 27 - 1.6564346438058e25 * cos(theta) ** 25 + 2.32863351987695e24 * cos(theta) ** 23 - 2.69631249669962e23 * cos(theta) ** 21 + 2.53685315549696e22 * cos(theta) ** 19 - 1.90682149270321e21 * cos(theta) ** 17 + 1.12069024635971e20 * cos(theta) ** 15 - 5.00947108845335e18 * cos(theta) ** 13 + 1.64175943235026e17 * cos(theta) ** 11 - 3.75142371330553e15 * cos(theta) ** 9 + 55576647604526.4 * cos(theta) ** 7 - 476565781827.299 * cos(theta) ** 5 + 1934114374.2991 * cos(theta) ** 3 - 2344381.05975649 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl70_m_minus_2(theta, phi): return ( 0.000953346187643187 * (1.0 - cos(theta) ** 2) * ( 3.83837455465928e23 * cos(theta) ** 68 - 6.29051599677255e24 * cos(theta) ** 66 + 4.92450978579457e25 * cos(theta) ** 64 - 2.45131153781774e26 * cos(theta) ** 62 + 8.71321450754389e26 * cos(theta) ** 60 - 2.35456330967217e27 * cos(theta) ** 58 + 5.02854412259443e27 * cos(theta) ** 56 - 8.71086383441555e27 * cos(theta) ** 54 + 1.24652461470487e28 * cos(theta) ** 52 - 1.49312704525623e28 * cos(theta) ** 50 + 1.51163688466024e28 * cos(theta) ** 48 - 1.3026175751694e28 * cos(theta) ** 46 + 9.60262956054367e27 * cos(theta) ** 44 - 6.07631275202295e27 * cos(theta) ** 42 + 3.30701977211869e27 * cos(theta) ** 40 - 1.54923448783938e27 * cos(theta) ** 38 + 6.2449073678388e26 * cos(theta) ** 36 - 2.16288710375945e26 * cos(theta) ** 34 + 6.41999822861933e25 * cos(theta) ** 32 - 1.62714313816821e25 * cos(theta) ** 30 + 3.50399636189689e24 * cos(theta) ** 28 - 6.37090247617616e23 * cos(theta) ** 26 + 9.70263966615395e22 * cos(theta) ** 24 - 1.22559658940892e22 * cos(theta) ** 22 + 1.26842657774848e21 * cos(theta) ** 20 - 1.059345273724e20 * cos(theta) ** 18 + 7.00431403974817e18 * cos(theta) ** 16 - 3.57819363460954e17 * cos(theta) ** 14 + 1.36813286029188e16 * cos(theta) ** 12 - 375142371330553.0 * cos(theta) ** 10 + 6947080950565.8 * cos(theta) ** 8 - 79427630304.5498 * cos(theta) ** 6 + 483528593.574776 * cos(theta) ** 4 - 1172190.52987824 * cos(theta) ** 2 + 472.276603496472 ) * sin(2 * phi) ) # @torch.jit.script def Yl70_m_minus_1(theta, phi): return ( 0.0671956915356721 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 5.56286167341925e21 * cos(theta) ** 69 - 9.38882984592918e22 * cos(theta) ** 67 + 7.57616890122241e23 * cos(theta) ** 65 - 3.8909706949488e24 * cos(theta) ** 63 + 1.42839582090883e25 * cos(theta) ** 61 - 3.99078527063079e25 * cos(theta) ** 59 + 8.82200723262181e25 * cos(theta) ** 57 - 1.58379342443919e26 * cos(theta) ** 55 + 2.3519332352922e26 * cos(theta) ** 53 - 2.92770008873771e26 * cos(theta) ** 51 + 3.08497323400048e26 * cos(theta) ** 49 - 2.77152675567958e26 * cos(theta) ** 47 + 2.13391768012082e26 * cos(theta) ** 45 - 1.41309598884255e26 * cos(theta) ** 43 + 8.06590188321631e25 * cos(theta) ** 41 - 3.97239612266509e25 * cos(theta) ** 39 + 1.6878128021186e25 * cos(theta) ** 37 - 6.17967743931272e24 * cos(theta) ** 35 + 1.94545400867252e24 * cos(theta) ** 33 - 5.24884883280068e23 * cos(theta) ** 31 + 1.20827460755065e23 * cos(theta) ** 29 - 2.35959350969487e22 * cos(theta) ** 27 + 3.88105586646158e21 * cos(theta) ** 25 - 5.32868082351704e20 * cos(theta) ** 23 + 6.04012656070704e19 * cos(theta) ** 21 - 5.57550144065265e18 * cos(theta) ** 19 + 4.12018472926363e17 * cos(theta) ** 17 - 2.38546242307302e16 * cos(theta) ** 15 + 1.05240989253222e15 * cos(theta) ** 13 - 34103851939141.2 * cos(theta) ** 11 + 771897883396.2 * cos(theta) ** 9 - 11346804329.2214 * cos(theta) ** 7 + 96705718.7149551 * cos(theta) ** 5 - 390730.176626081 * cos(theta) ** 3 + 472.276603496472 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl70_m0(theta, phi): return ( 8.3628579089726e20 * cos(theta) ** 70 - 1.45297135612725e22 * cos(theta) ** 68 + 1.20798129534959e23 * cos(theta) ** 66 - 6.39782686055525e23 * cos(theta) ** 64 + 2.42443965242094e24 * cos(theta) ** 62 - 6.999412798058e24 * cos(theta) ** 60 + 1.60064091118381e25 * cos(theta) ** 58 - 2.97621982698181e25 * cos(theta) ** 56 + 4.583378533552e25 * cos(theta) ** 54 - 5.92485517751843e25 * cos(theta) ** 52 + 6.4928578226359e25 * cos(theta) ** 50 - 6.07620384471274e25 * cos(theta) ** 48 + 4.88173642224784e25 * cos(theta) ** 46 - 3.37966367694082e25 * cos(theta) ** 44 + 2.02096197116688e25 * cos(theta) ** 42 - 1.04507402833315e25 * cos(theta) ** 40 + 4.67406962213219e24 * cos(theta) ** 38 - 1.80641613213795e24 * cos(theta) ** 36 + 6.0213871071265e23 * cos(theta) ** 34 - 1.72611045840468e23 * cos(theta) ** 32 + 4.23837023449863e22 * cos(theta) ** 30 - 8.86816282831603e21 * cos(theta) ** 28 + 1.57083671466891e21 * cos(theta) ** 26 - 2.33648481586909e20 * cos(theta) ** 24 + 2.88920165403167e19 * cos(theta) ** 22 - 2.93365091024754e18 * cos(theta) ** 20 + 2.40878856070455e17 * cos(theta) ** 18 - 1.56894274068879e16 * cos(theta) ** 16 + 791063566733843.0 * cos(theta) ** 14 - 29907264051840.4 * cos(theta) ** 12 + 812296060667.269 * cos(theta) ** 10 - 14925815732.9633 * cos(theta) ** 8 + 169611542.420037 * cos(theta) ** 6 - 1027948.74193962 * cos(theta) ** 4 + 2484.9687556961 * cos(theta) ** 2 - 0.999987426839477 ) # @torch.jit.script def Yl70_m1(theta, phi): return ( 0.0671956915356721 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 5.56286167341925e21 * cos(theta) ** 69 - 9.38882984592918e22 * cos(theta) ** 67 + 7.57616890122241e23 * cos(theta) ** 65 - 3.8909706949488e24 * cos(theta) ** 63 + 1.42839582090883e25 * cos(theta) ** 61 - 3.99078527063079e25 * cos(theta) ** 59 + 8.82200723262181e25 * cos(theta) ** 57 - 1.58379342443919e26 * cos(theta) ** 55 + 2.3519332352922e26 * cos(theta) ** 53 - 2.92770008873771e26 * cos(theta) ** 51 + 3.08497323400048e26 * cos(theta) ** 49 - 2.77152675567958e26 * cos(theta) ** 47 + 2.13391768012082e26 * cos(theta) ** 45 - 1.41309598884255e26 * cos(theta) ** 43 + 8.06590188321631e25 * cos(theta) ** 41 - 3.97239612266509e25 * cos(theta) ** 39 + 1.6878128021186e25 * cos(theta) ** 37 - 6.17967743931272e24 * cos(theta) ** 35 + 1.94545400867252e24 * cos(theta) ** 33 - 5.24884883280068e23 * cos(theta) ** 31 + 1.20827460755065e23 * cos(theta) ** 29 - 2.35959350969487e22 * cos(theta) ** 27 + 3.88105586646158e21 * cos(theta) ** 25 - 5.32868082351704e20 * cos(theta) ** 23 + 6.04012656070704e19 * cos(theta) ** 21 - 5.57550144065265e18 * cos(theta) ** 19 + 4.12018472926363e17 * cos(theta) ** 17 - 2.38546242307302e16 * cos(theta) ** 15 + 1.05240989253222e15 * cos(theta) ** 13 - 34103851939141.2 * cos(theta) ** 11 + 771897883396.2 * cos(theta) ** 9 - 11346804329.2214 * cos(theta) ** 7 + 96705718.7149551 * cos(theta) ** 5 - 390730.176626081 * cos(theta) ** 3 + 472.276603496472 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl70_m2(theta, phi): return ( 0.000953346187643187 * (1.0 - cos(theta) ** 2) * ( 3.83837455465928e23 * cos(theta) ** 68 - 6.29051599677255e24 * cos(theta) ** 66 + 4.92450978579457e25 * cos(theta) ** 64 - 2.45131153781774e26 * cos(theta) ** 62 + 8.71321450754389e26 * cos(theta) ** 60 - 2.35456330967217e27 * cos(theta) ** 58 + 5.02854412259443e27 * cos(theta) ** 56 - 8.71086383441555e27 * cos(theta) ** 54 + 1.24652461470487e28 * cos(theta) ** 52 - 1.49312704525623e28 * cos(theta) ** 50 + 1.51163688466024e28 * cos(theta) ** 48 - 1.3026175751694e28 * cos(theta) ** 46 + 9.60262956054367e27 * cos(theta) ** 44 - 6.07631275202295e27 * cos(theta) ** 42 + 3.30701977211869e27 * cos(theta) ** 40 - 1.54923448783938e27 * cos(theta) ** 38 + 6.2449073678388e26 * cos(theta) ** 36 - 2.16288710375945e26 * cos(theta) ** 34 + 6.41999822861933e25 * cos(theta) ** 32 - 1.62714313816821e25 * cos(theta) ** 30 + 3.50399636189689e24 * cos(theta) ** 28 - 6.37090247617616e23 * cos(theta) ** 26 + 9.70263966615395e22 * cos(theta) ** 24 - 1.22559658940892e22 * cos(theta) ** 22 + 1.26842657774848e21 * cos(theta) ** 20 - 1.059345273724e20 * cos(theta) ** 18 + 7.00431403974817e18 * cos(theta) ** 16 - 3.57819363460954e17 * cos(theta) ** 14 + 1.36813286029188e16 * cos(theta) ** 12 - 375142371330553.0 * cos(theta) ** 10 + 6947080950565.8 * cos(theta) ** 8 - 79427630304.5498 * cos(theta) ** 6 + 483528593.574776 * cos(theta) ** 4 - 1172190.52987824 * cos(theta) ** 2 + 472.276603496472 ) * cos(2 * phi) ) # @torch.jit.script def Yl70_m3(theta, phi): return ( 1.35311512253704e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 2.61009469716831e25 * cos(theta) ** 67 - 4.15174055786988e26 * cos(theta) ** 65 + 3.15168626290852e27 * cos(theta) ** 63 - 1.519813153447e28 * cos(theta) ** 61 + 5.22792870452633e28 * cos(theta) ** 59 - 1.36564671960986e29 * cos(theta) ** 57 + 2.81598470865288e29 * cos(theta) ** 55 - 4.7038664705844e29 * cos(theta) ** 53 + 6.4819279964653e29 * cos(theta) ** 51 - 7.46563522628117e29 * cos(theta) ** 49 + 7.25585704636914e29 * cos(theta) ** 47 - 5.99204084577925e29 * cos(theta) ** 45 + 4.22515700663921e29 * cos(theta) ** 43 - 2.55205135584964e29 * cos(theta) ** 41 + 1.32280790884747e29 * cos(theta) ** 39 - 5.88709105378966e28 * cos(theta) ** 37 + 2.24816665242197e28 * cos(theta) ** 35 - 7.35381615278214e27 * cos(theta) ** 33 + 2.05439943315819e27 * cos(theta) ** 31 - 4.88142941450463e26 * cos(theta) ** 29 + 9.81118981331129e25 * cos(theta) ** 27 - 1.6564346438058e25 * cos(theta) ** 25 + 2.32863351987695e24 * cos(theta) ** 23 - 2.69631249669962e23 * cos(theta) ** 21 + 2.53685315549696e22 * cos(theta) ** 19 - 1.90682149270321e21 * cos(theta) ** 17 + 1.12069024635971e20 * cos(theta) ** 15 - 5.00947108845335e18 * cos(theta) ** 13 + 1.64175943235026e17 * cos(theta) ** 11 - 3.75142371330553e15 * cos(theta) ** 9 + 55576647604526.4 * cos(theta) ** 7 - 476565781827.299 * cos(theta) ** 5 + 1934114374.2991 * cos(theta) ** 3 - 2344381.05975649 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl70_m4(theta, phi): return ( 1.92168184227816e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 1.74876344710277e27 * cos(theta) ** 66 - 2.69863136261542e28 * cos(theta) ** 64 + 1.98556234563237e29 * cos(theta) ** 62 - 9.2708602360267e29 * cos(theta) ** 60 + 3.08447793567054e30 * cos(theta) ** 58 - 7.78418630177618e30 * cos(theta) ** 56 + 1.54879158975908e31 * cos(theta) ** 54 - 2.49304922940973e31 * cos(theta) ** 52 + 3.3057832781973e31 * cos(theta) ** 50 - 3.65816126087777e31 * cos(theta) ** 48 + 3.41025281179349e31 * cos(theta) ** 46 - 2.69641838060066e31 * cos(theta) ** 44 + 1.81681751285486e31 * cos(theta) ** 42 - 1.04634105589835e31 * cos(theta) ** 40 + 5.15895084450515e30 * cos(theta) ** 38 - 2.17822368990217e30 * cos(theta) ** 36 + 7.86858328347689e29 * cos(theta) ** 34 - 2.42675933041811e29 * cos(theta) ** 32 + 6.36863824279037e28 * cos(theta) ** 30 - 1.41561453020634e28 * cos(theta) ** 28 + 2.64902124959405e27 * cos(theta) ** 26 - 4.1410866095145e26 * cos(theta) ** 24 + 5.35585709571698e25 * cos(theta) ** 22 - 5.66225624306921e24 * cos(theta) ** 20 + 4.82002099544422e23 * cos(theta) ** 18 - 3.24159653759545e22 * cos(theta) ** 16 + 1.68103536953956e21 * cos(theta) ** 14 - 6.51231241498936e19 * cos(theta) ** 12 + 1.80593537558528e18 * cos(theta) ** 10 - 3.37628134197498e16 * cos(theta) ** 8 + 389036533231685.0 * cos(theta) ** 6 - 2382828909136.49 * cos(theta) ** 4 + 5802343122.89731 * cos(theta) ** 2 - 2344381.05975649 ) * cos(4 * phi) ) # @torch.jit.script def Yl70_m5(theta, phi): return ( 2.73135963587515e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.15418387508783e29 * cos(theta) ** 65 - 1.72712407207387e30 * cos(theta) ** 63 + 1.23104865429207e31 * cos(theta) ** 61 - 5.56251614161602e31 * cos(theta) ** 59 + 1.78899720268891e32 * cos(theta) ** 57 - 4.35914432899466e32 * cos(theta) ** 55 + 8.36347458469906e32 * cos(theta) ** 53 - 1.29638559929306e33 * cos(theta) ** 51 + 1.65289163909865e33 * cos(theta) ** 49 - 1.75591740522133e33 * cos(theta) ** 47 + 1.56871629342501e33 * cos(theta) ** 45 - 1.18642408746429e33 * cos(theta) ** 43 + 7.63063355399042e32 * cos(theta) ** 41 - 4.18536422359341e32 * cos(theta) ** 39 + 1.96040132091196e32 * cos(theta) ** 37 - 7.84160528364783e31 * cos(theta) ** 35 + 2.67531831638214e31 * cos(theta) ** 33 - 7.76562985733794e30 * cos(theta) ** 31 + 1.91059147283711e30 * cos(theta) ** 29 - 3.96372068457776e29 * cos(theta) ** 27 + 6.88745524894452e28 * cos(theta) ** 25 - 9.93860786283481e27 * cos(theta) ** 23 + 1.17828856105774e27 * cos(theta) ** 21 - 1.13245124861384e26 * cos(theta) ** 19 + 8.67603779179959e24 * cos(theta) ** 17 - 5.18655446015272e23 * cos(theta) ** 15 + 2.35344951735538e22 * cos(theta) ** 13 - 7.81477489798723e20 * cos(theta) ** 11 + 1.80593537558528e19 * cos(theta) ** 9 - 2.70102507357998e17 * cos(theta) ** 7 + 2.33421919939011e15 * cos(theta) ** 5 - 9531315636545.98 * cos(theta) ** 3 + 11604686245.7946 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl70_m6(theta, phi): return ( 3.8861128910259e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 7.50219518807088e30 * cos(theta) ** 64 - 1.08808816540654e32 * cos(theta) ** 62 + 7.50939679118163e32 * cos(theta) ** 60 - 3.28188452355345e33 * cos(theta) ** 58 + 1.01972840553268e34 * cos(theta) ** 56 - 2.39752938094706e34 * cos(theta) ** 54 + 4.4326415298905e34 * cos(theta) ** 52 - 6.6115665563946e34 * cos(theta) ** 50 + 8.09916903158339e34 * cos(theta) ** 48 - 8.25281180454026e34 * cos(theta) ** 46 + 7.05922332041253e34 * cos(theta) ** 44 - 5.10162357609645e34 * cos(theta) ** 42 + 3.12855975713607e34 * cos(theta) ** 40 - 1.63229204720143e34 * cos(theta) ** 38 + 7.25348488737424e33 * cos(theta) ** 36 - 2.74456184927674e33 * cos(theta) ** 34 + 8.82855044406107e32 * cos(theta) ** 32 - 2.40734525577476e32 * cos(theta) ** 30 + 5.54071527122763e31 * cos(theta) ** 28 - 1.070204584836e31 * cos(theta) ** 26 + 1.72186381223613e30 * cos(theta) ** 24 - 2.28587980845201e29 * cos(theta) ** 22 + 2.47440597822124e28 * cos(theta) ** 20 - 2.1516573723663e27 * cos(theta) ** 18 + 1.47492642460593e26 * cos(theta) ** 16 - 7.77983169022909e24 * cos(theta) ** 14 + 3.059484372562e23 * cos(theta) ** 12 - 8.59625238778595e21 * cos(theta) ** 10 + 1.62534183802676e20 * cos(theta) ** 8 - 1.89071755150599e18 * cos(theta) ** 6 + 1.16710959969506e16 * cos(theta) ** 4 - 28593946909637.9 * cos(theta) ** 2 + 11604686245.7946 ) * cos(6 * phi) ) # @torch.jit.script def Yl70_m7(theta, phi): return ( 5.53579581560677e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 4.80140492036536e32 * cos(theta) ** 63 - 6.74614662552054e33 * cos(theta) ** 61 + 4.50563807470897e34 * cos(theta) ** 59 - 1.903493023661e35 * cos(theta) ** 57 + 5.71047907098301e35 * cos(theta) ** 55 - 1.29466586571141e36 * cos(theta) ** 53 + 2.30497359554306e36 * cos(theta) ** 51 - 3.3057832781973e36 * cos(theta) ** 49 + 3.88760113516003e36 * cos(theta) ** 47 - 3.79629343008852e36 * cos(theta) ** 45 + 3.10605826098152e36 * cos(theta) ** 43 - 2.14268190196051e36 * cos(theta) ** 41 + 1.25142390285443e36 * cos(theta) ** 39 - 6.20270977936543e35 * cos(theta) ** 37 + 2.61125455945473e35 * cos(theta) ** 35 - 9.33151028754091e34 * cos(theta) ** 33 + 2.82513614209954e34 * cos(theta) ** 31 - 7.22203576732428e33 * cos(theta) ** 29 + 1.55140027594374e33 * cos(theta) ** 27 - 2.78253192057359e32 * cos(theta) ** 25 + 4.13247314936671e31 * cos(theta) ** 23 - 5.02893557859441e30 * cos(theta) ** 21 + 4.94881195644249e29 * cos(theta) ** 19 - 3.87298327025934e28 * cos(theta) ** 17 + 2.35988227936949e27 * cos(theta) ** 15 - 1.08917643663207e26 * cos(theta) ** 13 + 3.6713812470744e24 * cos(theta) ** 11 - 8.59625238778595e22 * cos(theta) ** 9 + 1.3002734704214e21 * cos(theta) ** 7 - 1.13443053090359e19 * cos(theta) ** 5 + 4.66843839878022e16 * cos(theta) ** 3 - 57187893819275.9 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl70_m8(theta, phi): return ( 7.89700634562307e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 3.02488509983018e34 * cos(theta) ** 62 - 4.11514944156753e35 * cos(theta) ** 60 + 2.6583264640783e36 * cos(theta) ** 58 - 1.08499102348677e37 * cos(theta) ** 56 + 3.14076348904065e37 * cos(theta) ** 54 - 6.86172908827049e37 * cos(theta) ** 52 + 1.17553653372696e38 * cos(theta) ** 50 - 1.61983380631668e38 * cos(theta) ** 48 + 1.82717253352521e38 * cos(theta) ** 46 - 1.70833204353983e38 * cos(theta) ** 44 + 1.33560505222205e38 * cos(theta) ** 42 - 8.78499579803809e37 * cos(theta) ** 40 + 4.88055322113227e37 * cos(theta) ** 38 - 2.29500261836521e37 * cos(theta) ** 36 + 9.13939095809154e36 * cos(theta) ** 34 - 3.0793983948885e36 * cos(theta) ** 32 + 8.75792204050858e35 * cos(theta) ** 30 - 2.09439037252404e35 * cos(theta) ** 28 + 4.18878074504809e34 * cos(theta) ** 26 - 6.95632980143397e33 * cos(theta) ** 24 + 9.50468824354344e32 * cos(theta) ** 22 - 1.05607647150483e32 * cos(theta) ** 20 + 9.40274271724073e30 * cos(theta) ** 18 - 6.58407155944088e29 * cos(theta) ** 16 + 3.53982341905423e28 * cos(theta) ** 14 - 1.41592936762169e27 * cos(theta) ** 12 + 4.03851937178184e25 * cos(theta) ** 10 - 7.73662714900736e23 * cos(theta) ** 8 + 9.10191429294983e21 * cos(theta) ** 6 - 5.67215265451797e19 * cos(theta) ** 4 + 1.40053151963407e17 * cos(theta) ** 2 - 57187893819275.9 ) * cos(8 * phi) ) # @torch.jit.script def Yl70_m9(theta, phi): return ( 1.12837406758519e-16 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1.87542876189471e36 * cos(theta) ** 61 - 2.46908966494052e37 * cos(theta) ** 59 + 1.54182934916541e38 * cos(theta) ** 57 - 6.07594973152592e38 * cos(theta) ** 55 + 1.69601228408195e39 * cos(theta) ** 53 - 3.56809912590066e39 * cos(theta) ** 51 + 5.8776826686348e39 * cos(theta) ** 49 - 7.77520227032005e39 * cos(theta) ** 47 + 8.40499365421598e39 * cos(theta) ** 45 - 7.51666099157527e39 * cos(theta) ** 43 + 5.60954121933262e39 * cos(theta) ** 41 - 3.51399831921524e39 * cos(theta) ** 39 + 1.85461022403026e39 * cos(theta) ** 37 - 8.26200942611475e38 * cos(theta) ** 35 + 3.10739292575112e38 * cos(theta) ** 33 - 9.85407486364321e37 * cos(theta) ** 31 + 2.62737661215258e37 * cos(theta) ** 29 - 5.86429304306732e36 * cos(theta) ** 27 + 1.0890829937125e36 * cos(theta) ** 25 - 1.66951915234415e35 * cos(theta) ** 23 + 2.09103141357956e34 * cos(theta) ** 21 - 2.11215294300965e33 * cos(theta) ** 19 + 1.69249368910333e32 * cos(theta) ** 17 - 1.05345144951054e31 * cos(theta) ** 15 + 4.95575278667593e29 * cos(theta) ** 13 - 1.69911524114603e28 * cos(theta) ** 11 + 4.03851937178184e26 * cos(theta) ** 9 - 6.18930171920588e24 * cos(theta) ** 7 + 5.4611485757699e22 * cos(theta) ** 5 - 2.26886106180719e20 * cos(theta) ** 3 + 2.80106303926813e17 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl70_m10(theta, phi): return ( 1.61526277895562e-18 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.14401154475577e38 * cos(theta) ** 60 - 1.45676290231491e39 * cos(theta) ** 58 + 8.78842729024284e39 * cos(theta) ** 56 - 3.34177235233925e40 * cos(theta) ** 54 + 8.98886510563435e40 * cos(theta) ** 52 - 1.81973055420933e41 * cos(theta) ** 50 + 2.88006450763105e41 * cos(theta) ** 48 - 3.65434506705043e41 * cos(theta) ** 46 + 3.78224714439719e41 * cos(theta) ** 44 - 3.23216422637736e41 * cos(theta) ** 42 + 2.29991189992637e41 * cos(theta) ** 40 - 1.37045934449394e41 * cos(theta) ** 38 + 6.86205782891198e40 * cos(theta) ** 36 - 2.89170329914016e40 * cos(theta) ** 34 + 1.02543966549787e40 * cos(theta) ** 32 - 3.05476320772939e39 * cos(theta) ** 30 + 7.61939217524247e38 * cos(theta) ** 28 - 1.58335912162818e38 * cos(theta) ** 26 + 2.72270748428126e37 * cos(theta) ** 24 - 3.83989405039155e36 * cos(theta) ** 22 + 4.39116596851707e35 * cos(theta) ** 20 - 4.01309059171834e34 * cos(theta) ** 18 + 2.87723927147566e33 * cos(theta) ** 16 - 1.58017717426581e32 * cos(theta) ** 14 + 6.44247862267871e30 * cos(theta) ** 12 - 1.86902676526064e29 * cos(theta) ** 10 + 3.63466743460366e27 * cos(theta) ** 8 - 4.33251120344412e25 * cos(theta) ** 6 + 2.73057428788495e23 * cos(theta) ** 4 - 6.80658318542156e20 * cos(theta) ** 2 + 2.80106303926813e17 ) * cos(10 * phi) ) # @torch.jit.script def Yl70_m11(theta, phi): return ( 2.31699475653475e-20 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 6.86406926853464e39 * cos(theta) ** 59 - 8.44922483342645e40 * cos(theta) ** 57 + 4.92151928253599e41 * cos(theta) ** 55 - 1.8045570702632e42 * cos(theta) ** 53 + 4.67420985492986e42 * cos(theta) ** 51 - 9.09865277104668e42 * cos(theta) ** 49 + 1.38243096366291e43 * cos(theta) ** 47 - 1.6809987308432e43 * cos(theta) ** 45 + 1.66418874353476e43 * cos(theta) ** 43 - 1.35750897507849e43 * cos(theta) ** 41 + 9.19964759970549e42 * cos(theta) ** 39 - 5.20774550907698e42 * cos(theta) ** 37 + 2.47034081840831e42 * cos(theta) ** 35 - 9.83179121707656e41 * cos(theta) ** 33 + 3.28140692959319e41 * cos(theta) ** 31 - 9.16428962318818e40 * cos(theta) ** 29 + 2.13342980906789e40 * cos(theta) ** 27 - 4.11673371623326e39 * cos(theta) ** 25 + 6.53449796227501e38 * cos(theta) ** 23 - 8.44776691086141e37 * cos(theta) ** 21 + 8.78233193703414e36 * cos(theta) ** 19 - 7.22356306509302e35 * cos(theta) ** 17 + 4.60358283436106e34 * cos(theta) ** 15 - 2.21224804397213e33 * cos(theta) ** 13 + 7.73097434721445e31 * cos(theta) ** 11 - 1.86902676526064e30 * cos(theta) ** 9 + 2.90773394768293e28 * cos(theta) ** 7 - 2.59950672206647e26 * cos(theta) ** 5 + 1.09222971515398e24 * cos(theta) ** 3 - 1.36131663708431e21 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl70_m12(theta, phi): return ( 3.33113412074688e-22 * (1.0 - cos(theta) ** 2) ** 6 * ( 4.04980086843544e41 * cos(theta) ** 58 - 4.81605815505308e42 * cos(theta) ** 56 + 2.7068356053948e43 * cos(theta) ** 54 - 9.56415247239495e43 * cos(theta) ** 52 + 2.38384702601423e44 * cos(theta) ** 50 - 4.45833985781287e44 * cos(theta) ** 48 + 6.49742552921566e44 * cos(theta) ** 46 - 7.56449428879438e44 * cos(theta) ** 44 + 7.15601159719948e44 * cos(theta) ** 42 - 5.56578679782182e44 * cos(theta) ** 40 + 3.58786256388514e44 * cos(theta) ** 38 - 1.92686583835848e44 * cos(theta) ** 36 + 8.64619286442909e43 * cos(theta) ** 34 - 3.24449110163526e43 * cos(theta) ** 32 + 1.01723614817389e43 * cos(theta) ** 30 - 2.65764399072457e42 * cos(theta) ** 28 + 5.7602604844833e41 * cos(theta) ** 26 - 1.02918342905831e41 * cos(theta) ** 24 + 1.50293453132325e40 * cos(theta) ** 22 - 1.7740310512809e39 * cos(theta) ** 20 + 1.66864306803649e38 * cos(theta) ** 18 - 1.22800572106581e37 * cos(theta) ** 16 + 6.90537425154159e35 * cos(theta) ** 14 - 2.87592245716377e34 * cos(theta) ** 12 + 8.50407178193589e32 * cos(theta) ** 10 - 1.68212408873457e31 * cos(theta) ** 8 + 2.03541376337805e29 * cos(theta) ** 6 - 1.29975336103324e27 * cos(theta) ** 4 + 3.27668914546194e24 * cos(theta) ** 2 - 1.36131663708431e21 ) * cos(12 * phi) ) # @torch.jit.script def Yl70_m13(theta, phi): return ( 4.80108147403523e-24 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 2.34888450369255e43 * cos(theta) ** 57 - 2.69699256682972e44 * cos(theta) ** 55 + 1.46169122691319e45 * cos(theta) ** 53 - 4.97335928564537e45 * cos(theta) ** 51 + 1.19192351300711e46 * cos(theta) ** 49 - 2.14000313175018e46 * cos(theta) ** 47 + 2.9888157434392e46 * cos(theta) ** 45 - 3.32837748706953e46 * cos(theta) ** 43 + 3.00552487082378e46 * cos(theta) ** 41 - 2.22631471912873e46 * cos(theta) ** 39 + 1.36338777427635e46 * cos(theta) ** 37 - 6.93671701809054e45 * cos(theta) ** 35 + 2.93970557390589e45 * cos(theta) ** 33 - 1.03823715252328e45 * cos(theta) ** 31 + 3.05170844452166e44 * cos(theta) ** 29 - 7.4414031740288e43 * cos(theta) ** 27 + 1.49766772596566e43 * cos(theta) ** 25 - 2.47004022973995e42 * cos(theta) ** 23 + 3.30645596891116e41 * cos(theta) ** 21 - 3.54806210256179e40 * cos(theta) ** 19 + 3.00355752246568e39 * cos(theta) ** 17 - 1.9648091537053e38 * cos(theta) ** 15 + 9.66752395215823e36 * cos(theta) ** 13 - 3.45110694859653e35 * cos(theta) ** 11 + 8.50407178193589e33 * cos(theta) ** 9 - 1.34569927098766e32 * cos(theta) ** 7 + 1.22124825802683e30 * cos(theta) ** 5 - 5.19901344413294e27 * cos(theta) ** 3 + 6.55337829092388e24 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl70_m14(theta, phi): return ( 6.93844268438917e-26 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.33886416710476e45 * cos(theta) ** 56 - 1.48334591175635e46 * cos(theta) ** 54 + 7.74696350263991e46 * cos(theta) ** 52 - 2.53641323567914e47 * cos(theta) ** 50 + 5.84042521373486e47 * cos(theta) ** 48 - 1.00580147192258e48 * cos(theta) ** 46 + 1.34496708454764e48 * cos(theta) ** 44 - 1.4312023194399e48 * cos(theta) ** 42 + 1.23226519703775e48 * cos(theta) ** 40 - 8.68262740460204e47 * cos(theta) ** 38 + 5.04453476482251e47 * cos(theta) ** 36 - 2.42785095633169e47 * cos(theta) ** 34 + 9.70102839388944e46 * cos(theta) ** 32 - 3.21853517282218e46 * cos(theta) ** 30 + 8.84995448911283e45 * cos(theta) ** 28 - 2.00917885698778e45 * cos(theta) ** 26 + 3.74416931491415e44 * cos(theta) ** 24 - 5.6810925284019e43 * cos(theta) ** 22 + 6.94355753471343e42 * cos(theta) ** 20 - 6.74131799486741e41 * cos(theta) ** 18 + 5.10604778819165e40 * cos(theta) ** 16 - 2.94721373055795e39 * cos(theta) ** 14 + 1.25677811378057e38 * cos(theta) ** 12 - 3.79621764345618e36 * cos(theta) ** 10 + 7.6536646037423e34 * cos(theta) ** 8 - 9.4198948969136e32 * cos(theta) ** 6 + 6.10624129013414e30 * cos(theta) ** 4 - 1.55970403323988e28 * cos(theta) ** 2 + 6.55337829092388e24 ) * cos(14 * phi) ) # @torch.jit.script def Yl70_m15(theta, phi): return ( 1.00567702523587e-27 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 7.49763933578663e46 * cos(theta) ** 55 - 8.01006792348428e47 * cos(theta) ** 53 + 4.02842102137275e48 * cos(theta) ** 51 - 1.26820661783957e49 * cos(theta) ** 49 + 2.80340410259273e49 * cos(theta) ** 47 - 4.62668677084388e49 * cos(theta) ** 45 + 5.91785517200962e49 * cos(theta) ** 43 - 6.01104974164757e49 * cos(theta) ** 41 + 4.92906078815101e49 * cos(theta) ** 39 - 3.29939841374878e49 * cos(theta) ** 37 + 1.8160325153361e49 * cos(theta) ** 35 - 8.25469325152774e48 * cos(theta) ** 33 + 3.10432908604462e48 * cos(theta) ** 31 - 9.65560551846655e47 * cos(theta) ** 29 + 2.47798725695159e47 * cos(theta) ** 27 - 5.22386502816822e46 * cos(theta) ** 25 + 8.98600635579396e45 * cos(theta) ** 23 - 1.24984035624842e45 * cos(theta) ** 21 + 1.38871150694269e44 * cos(theta) ** 19 - 1.21343723907613e43 * cos(theta) ** 17 + 8.16967646110664e41 * cos(theta) ** 15 - 4.12609922278113e40 * cos(theta) ** 13 + 1.50813373653668e39 * cos(theta) ** 11 - 3.79621764345618e37 * cos(theta) ** 9 + 6.12293168299384e35 * cos(theta) ** 7 - 5.65193693814816e33 * cos(theta) ** 5 + 2.44249651605366e31 * cos(theta) ** 3 - 3.11940806647977e28 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl70_m16(theta, phi): return ( 1.4622713074207e-29 * (1.0 - cos(theta) ** 2) ** 8 * ( 4.12370163468265e48 * cos(theta) ** 54 - 4.24533599944667e49 * cos(theta) ** 52 + 2.0544947209001e50 * cos(theta) ** 50 - 6.21421242741389e50 * cos(theta) ** 48 + 1.31759992821858e51 * cos(theta) ** 46 - 2.08200904687975e51 * cos(theta) ** 44 + 2.54467772396414e51 * cos(theta) ** 42 - 2.4645303940755e51 * cos(theta) ** 40 + 1.92233370737889e51 * cos(theta) ** 38 - 1.22077741308705e51 * cos(theta) ** 36 + 6.35611380367636e50 * cos(theta) ** 34 - 2.72404877300415e50 * cos(theta) ** 32 + 9.62342016673832e49 * cos(theta) ** 30 - 2.8001256003553e49 * cos(theta) ** 28 + 6.6905655937693e48 * cos(theta) ** 26 - 1.30596625704205e48 * cos(theta) ** 24 + 2.06678146183261e47 * cos(theta) ** 22 - 2.62466474812168e46 * cos(theta) ** 20 + 2.6385518631911e45 * cos(theta) ** 18 - 2.06284330642943e44 * cos(theta) ** 16 + 1.225451469166e43 * cos(theta) ** 14 - 5.36392898961547e41 * cos(theta) ** 12 + 1.65894711019035e40 * cos(theta) ** 10 - 3.41659587911056e38 * cos(theta) ** 8 + 4.28605217809569e36 * cos(theta) ** 6 - 2.82596846907408e34 * cos(theta) ** 4 + 7.32748954816097e31 * cos(theta) ** 2 - 3.11940806647977e28 ) * cos(16 * phi) ) # @torch.jit.script def Yl70_m17(theta, phi): return ( 2.1333958805615e-31 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 2.22679888272863e50 * cos(theta) ** 53 - 2.20757471971227e51 * cos(theta) ** 51 + 1.02724736045005e52 * cos(theta) ** 49 - 2.98282196515867e52 * cos(theta) ** 47 + 6.06095966980549e52 * cos(theta) ** 45 - 9.16083980627089e52 * cos(theta) ** 43 + 1.06876464406494e53 * cos(theta) ** 41 - 9.85812157630201e52 * cos(theta) ** 39 + 7.30486808803979e52 * cos(theta) ** 37 - 4.39479868711337e52 * cos(theta) ** 35 + 2.16107869324996e52 * cos(theta) ** 33 - 8.71695607361329e51 * cos(theta) ** 31 + 2.8870260500215e51 * cos(theta) ** 29 - 7.84035168099484e50 * cos(theta) ** 27 + 1.73954705438002e50 * cos(theta) ** 25 - 3.13431901690093e49 * cos(theta) ** 23 + 4.54691921603174e48 * cos(theta) ** 21 - 5.24932949624335e47 * cos(theta) ** 19 + 4.74939335374399e46 * cos(theta) ** 17 - 3.30054929028708e45 * cos(theta) ** 15 + 1.71563205683239e44 * cos(theta) ** 13 - 6.43671478753856e42 * cos(theta) ** 11 + 1.65894711019035e41 * cos(theta) ** 9 - 2.73327670328845e39 * cos(theta) ** 7 + 2.57163130685741e37 * cos(theta) ** 5 - 1.13038738762963e35 * cos(theta) ** 3 + 1.46549790963219e32 * cos(theta) ) * cos(17 * phi) ) # @torch.jit.script def Yl70_m18(theta, phi): return ( 3.12386445344419e-33 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.18020340784617e52 * cos(theta) ** 52 - 1.12586310705326e53 * cos(theta) ** 50 + 5.03351206620525e53 * cos(theta) ** 48 - 1.40192632362457e54 * cos(theta) ** 46 + 2.72743185141247e54 * cos(theta) ** 44 - 3.93916111669648e54 * cos(theta) ** 42 + 4.38193504066624e54 * cos(theta) ** 40 - 3.84466741475778e54 * cos(theta) ** 38 + 2.70280119257472e54 * cos(theta) ** 36 - 1.53817954048968e54 * cos(theta) ** 34 + 7.13155968772488e53 * cos(theta) ** 32 - 2.70225638282012e53 * cos(theta) ** 30 + 8.37237554506234e52 * cos(theta) ** 28 - 2.11689495386861e52 * cos(theta) ** 26 + 4.34886763595004e51 * cos(theta) ** 24 - 7.20893373887214e50 * cos(theta) ** 22 + 9.54853035366666e49 * cos(theta) ** 20 - 9.97372604286237e48 * cos(theta) ** 18 + 8.07396870136477e47 * cos(theta) ** 16 - 4.95082393543062e46 * cos(theta) ** 14 + 2.23032167388211e45 * cos(theta) ** 12 - 7.08038626629242e43 * cos(theta) ** 10 + 1.49305239917132e42 * cos(theta) ** 8 - 1.91329369230192e40 * cos(theta) ** 6 + 1.28581565342871e38 * cos(theta) ** 4 - 3.3911621628889e35 * cos(theta) ** 2 + 1.46549790963219e32 ) * cos(18 * phi) ) # @torch.jit.script def Yl70_m19(theta, phi): return ( 4.59193261320621e-35 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 6.1370577208001e53 * cos(theta) ** 51 - 5.62931553526628e54 * cos(theta) ** 49 + 2.41608579177852e55 * cos(theta) ** 47 - 6.44886108867304e55 * cos(theta) ** 45 + 1.20007001462149e56 * cos(theta) ** 43 - 1.65444766901252e56 * cos(theta) ** 41 + 1.7527740162665e56 * cos(theta) ** 39 - 1.46097361760796e56 * cos(theta) ** 37 + 9.730084293269e55 * cos(theta) ** 35 - 5.22981043766491e55 * cos(theta) ** 33 + 2.28209910007196e55 * cos(theta) ** 31 - 8.10676914846036e54 * cos(theta) ** 29 + 2.34426515261746e54 * cos(theta) ** 27 - 5.50392688005837e53 * cos(theta) ** 25 + 1.04372823262801e53 * cos(theta) ** 23 - 1.58596542255187e52 * cos(theta) ** 21 + 1.90970607073333e51 * cos(theta) ** 19 - 1.79527068771523e50 * cos(theta) ** 17 + 1.29183499221836e49 * cos(theta) ** 15 - 6.93115350960287e47 * cos(theta) ** 13 + 2.67638600865854e46 * cos(theta) ** 11 - 7.08038626629242e44 * cos(theta) ** 9 + 1.19444191933705e43 * cos(theta) ** 7 - 1.14797621538115e41 * cos(theta) ** 5 + 5.14326261371483e38 * cos(theta) ** 3 - 6.78232432577779e35 * cos(theta) ) * cos(19 * phi) ) # @torch.jit.script def Yl70_m20(theta, phi): return ( 6.77780645942075e-37 * (1.0 - cos(theta) ** 2) ** 10 * ( 3.12989943760805e55 * cos(theta) ** 50 - 2.75836461228048e56 * cos(theta) ** 48 + 1.13556032213591e57 * cos(theta) ** 46 - 2.90198748990287e57 * cos(theta) ** 44 + 5.16030106287239e57 * cos(theta) ** 42 - 6.78323544295135e57 * cos(theta) ** 40 + 6.83581866343934e57 * cos(theta) ** 38 - 5.40560238514944e57 * cos(theta) ** 36 + 3.40552950264415e57 * cos(theta) ** 34 - 1.72583744442942e57 * cos(theta) ** 32 + 7.07450721022308e56 * cos(theta) ** 30 - 2.35096305305351e56 * cos(theta) ** 28 + 6.32951591206713e55 * cos(theta) ** 26 - 1.37598172001459e55 * cos(theta) ** 24 + 2.40057493504442e54 * cos(theta) ** 22 - 3.33052738735893e53 * cos(theta) ** 20 + 3.62844153439333e52 * cos(theta) ** 18 - 3.05196016911589e51 * cos(theta) ** 16 + 1.93775248832755e50 * cos(theta) ** 14 - 9.01049956248373e48 * cos(theta) ** 12 + 2.94402460952439e47 * cos(theta) ** 10 - 6.37234763966318e45 * cos(theta) ** 8 + 8.36109343535937e43 * cos(theta) ** 6 - 5.73988107690575e41 * cos(theta) ** 4 + 1.54297878411445e39 * cos(theta) ** 2 - 6.78232432577779e35 ) * cos(20 * phi) ) # @torch.jit.script def Yl70_m21(theta, phi): return ( 1.00480888130137e-38 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.56494971880403e57 * cos(theta) ** 49 - 1.32401501389463e58 * cos(theta) ** 47 + 5.22357748182516e58 * cos(theta) ** 45 - 1.27687449555726e59 * cos(theta) ** 43 + 2.16732644640641e59 * cos(theta) ** 41 - 2.71329417718054e59 * cos(theta) ** 39 + 2.59761109210695e59 * cos(theta) ** 37 - 1.9460168586538e59 * cos(theta) ** 35 + 1.15788003089901e59 * cos(theta) ** 33 - 5.52267982217414e58 * cos(theta) ** 31 + 2.12235216306692e58 * cos(theta) ** 29 - 6.58269654854982e57 * cos(theta) ** 27 + 1.64567413713745e57 * cos(theta) ** 25 - 3.30235612803502e56 * cos(theta) ** 23 + 5.28126485709773e55 * cos(theta) ** 21 - 6.66105477471786e54 * cos(theta) ** 19 + 6.53119476190799e53 * cos(theta) ** 17 - 4.88313627058542e52 * cos(theta) ** 15 + 2.71285348365856e51 * cos(theta) ** 13 - 1.08125994749805e50 * cos(theta) ** 11 + 2.94402460952439e48 * cos(theta) ** 9 - 5.09787811173054e46 * cos(theta) ** 7 + 5.01665606121562e44 * cos(theta) ** 5 - 2.2959524307623e42 * cos(theta) ** 3 + 3.0859575682289e39 * cos(theta) ) * cos(21 * phi) ) # @torch.jit.script def Yl70_m22(theta, phi): return ( 1.49655096517071e-40 * (1.0 - cos(theta) ** 2) ** 11 * ( 7.66825362213973e58 * cos(theta) ** 48 - 6.22287056530476e59 * cos(theta) ** 46 + 2.35060986682132e60 * cos(theta) ** 44 - 5.49056033089623e60 * cos(theta) ** 42 + 8.88603843026626e60 * cos(theta) ** 40 - 1.05818472910041e61 * cos(theta) ** 38 + 9.61116104079571e60 * cos(theta) ** 36 - 6.8110590052883e60 * cos(theta) ** 34 + 3.82100410196674e60 * cos(theta) ** 32 - 1.71203074487398e60 * cos(theta) ** 30 + 6.15482127289408e59 * cos(theta) ** 28 - 1.77732806810845e59 * cos(theta) ** 26 + 4.11418534284363e58 * cos(theta) ** 24 - 7.59541909448056e57 * cos(theta) ** 22 + 1.10906561999052e57 * cos(theta) ** 20 - 1.26560040719639e56 * cos(theta) ** 18 + 1.11030310952436e55 * cos(theta) ** 16 - 7.32470440587812e53 * cos(theta) ** 14 + 3.52670952875613e52 * cos(theta) ** 12 - 1.18938594224785e51 * cos(theta) ** 10 + 2.64962214857195e49 * cos(theta) ** 8 - 3.56851467821138e47 * cos(theta) ** 6 + 2.50832803060781e45 * cos(theta) ** 4 - 6.8878572922869e42 * cos(theta) ** 2 + 3.0859575682289e39 ) * cos(22 * phi) ) # @torch.jit.script def Yl70_m23(theta, phi): return ( 2.23990406748289e-42 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 3.68076173862707e60 * cos(theta) ** 47 - 2.86252046004019e61 * cos(theta) ** 45 + 1.03426834140138e62 * cos(theta) ** 43 - 2.30603533897642e62 * cos(theta) ** 41 + 3.5544153721065e62 * cos(theta) ** 39 - 4.02110197058156e62 * cos(theta) ** 37 + 3.46001797468646e62 * cos(theta) ** 35 - 2.31576006179802e62 * cos(theta) ** 33 + 1.22272131262936e62 * cos(theta) ** 31 - 5.13609223462195e61 * cos(theta) ** 29 + 1.72334995641034e61 * cos(theta) ** 27 - 4.62105297708197e60 * cos(theta) ** 25 + 9.87404482282472e59 * cos(theta) ** 23 - 1.67099220078572e59 * cos(theta) ** 21 + 2.21813123998105e58 * cos(theta) ** 19 - 2.27808073295351e57 * cos(theta) ** 17 + 1.77648497523897e56 * cos(theta) ** 15 - 1.02545861682294e55 * cos(theta) ** 13 + 4.23205143450736e53 * cos(theta) ** 11 - 1.18938594224785e52 * cos(theta) ** 9 + 2.11969771885756e50 * cos(theta) ** 7 - 2.14110880692683e48 * cos(theta) ** 5 + 1.00333121224312e46 * cos(theta) ** 3 - 1.37757145845738e43 * cos(theta) ) * cos(23 * phi) ) # @torch.jit.script def Yl70_m24(theta, phi): return ( 3.36989650069038e-44 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.72995801715472e62 * cos(theta) ** 46 - 1.28813420701809e63 * cos(theta) ** 44 + 4.44735386802594e63 * cos(theta) ** 42 - 9.4547448898033e63 * cos(theta) ** 40 + 1.38622199512154e64 * cos(theta) ** 38 - 1.48780772911518e64 * cos(theta) ** 36 + 1.21100629114026e64 * cos(theta) ** 34 - 7.64200820393347e63 * cos(theta) ** 32 + 3.790436069151e63 * cos(theta) ** 30 - 1.48946674804037e63 * cos(theta) ** 28 + 4.65304488230792e62 * cos(theta) ** 26 - 1.15526324427049e62 * cos(theta) ** 24 + 2.27103030924969e61 * cos(theta) ** 22 - 3.50908362165002e60 * cos(theta) ** 20 + 4.21444935596399e59 * cos(theta) ** 18 - 3.87273724602096e58 * cos(theta) ** 16 + 2.66472746285846e57 * cos(theta) ** 14 - 1.33309620186982e56 * cos(theta) ** 12 + 4.6552565779581e54 * cos(theta) ** 10 - 1.07044734802307e53 * cos(theta) ** 8 + 1.48378840320029e51 * cos(theta) ** 6 - 1.07055440346341e49 * cos(theta) ** 4 + 3.00999363672937e46 * cos(theta) ** 2 - 1.37757145845738e43 ) * cos(24 * phi) ) # @torch.jit.script def Yl70_m25(theta, phi): return ( 5.09771843463546e-46 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 7.95780687891173e63 * cos(theta) ** 45 - 5.66779051087957e64 * cos(theta) ** 43 + 1.8678886245709e65 * cos(theta) ** 41 - 3.78189795592132e65 * cos(theta) ** 39 + 5.26764358146184e65 * cos(theta) ** 37 - 5.35610782481463e65 * cos(theta) ** 35 + 4.11742138987688e65 * cos(theta) ** 33 - 2.44544262525871e65 * cos(theta) ** 31 + 1.1371308207453e65 * cos(theta) ** 29 - 4.17050689451303e64 * cos(theta) ** 27 + 1.20979166940006e64 * cos(theta) ** 25 - 2.77263178624918e63 * cos(theta) ** 23 + 4.99626668034931e62 * cos(theta) ** 21 - 7.01816724330003e61 * cos(theta) ** 19 + 7.58600884073518e60 * cos(theta) ** 17 - 6.19637959363354e59 * cos(theta) ** 15 + 3.73061844800185e58 * cos(theta) ** 13 - 1.59971544224378e57 * cos(theta) ** 11 + 4.6552565779581e55 * cos(theta) ** 9 - 8.56357878418454e53 * cos(theta) ** 7 + 8.90273041920175e51 * cos(theta) ** 5 - 4.28221761385366e49 * cos(theta) ** 3 + 6.01998727345875e46 * cos(theta) ) * cos(25 * phi) ) # @torch.jit.script def Yl70_m26(theta, phi): return ( 7.75593160683268e-48 * (1.0 - cos(theta) ** 2) ** 13 * ( 3.58101309551028e65 * cos(theta) ** 44 - 2.43714991967822e66 * cos(theta) ** 42 + 7.65834336074068e66 * cos(theta) ** 40 - 1.47494020280932e67 * cos(theta) ** 38 + 1.94902812514088e67 * cos(theta) ** 36 - 1.87463773868512e67 * cos(theta) ** 34 + 1.35874905865937e67 * cos(theta) ** 32 - 7.580872138302e66 * cos(theta) ** 30 + 3.29767938016137e66 * cos(theta) ** 28 - 1.12603686151852e66 * cos(theta) ** 26 + 3.02447917350015e65 * cos(theta) ** 24 - 6.37705310837312e64 * cos(theta) ** 22 + 1.04921600287336e64 * cos(theta) ** 20 - 1.33345177622701e63 * cos(theta) ** 18 + 1.28962150292498e62 * cos(theta) ** 16 - 9.29456939045031e60 * cos(theta) ** 14 + 4.8498039824024e59 * cos(theta) ** 12 - 1.75968698646816e58 * cos(theta) ** 10 + 4.18973092016229e56 * cos(theta) ** 8 - 5.99450514892918e54 * cos(theta) ** 6 + 4.45136520960088e52 * cos(theta) ** 4 - 1.2846652841561e50 * cos(theta) ** 2 + 6.01998727345875e46 ) * cos(26 * phi) ) # @torch.jit.script def Yl70_m27(theta, phi): return ( 1.187194197688e-49 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.57564576202452e67 * cos(theta) ** 43 - 1.02360296626485e68 * cos(theta) ** 41 + 3.06333734429627e68 * cos(theta) ** 39 - 5.6047727706754e68 * cos(theta) ** 37 + 7.01650125050717e68 * cos(theta) ** 35 - 6.37376831152941e68 * cos(theta) ** 33 + 4.34799698770999e68 * cos(theta) ** 31 - 2.2742616414906e68 * cos(theta) ** 29 + 9.23350226445184e67 * cos(theta) ** 27 - 2.92769583994815e67 * cos(theta) ** 25 + 7.25875001640036e66 * cos(theta) ** 23 - 1.40295168384209e66 * cos(theta) ** 21 + 2.09843200574671e65 * cos(theta) ** 19 - 2.40021319720861e64 * cos(theta) ** 17 + 2.06339440467997e63 * cos(theta) ** 15 - 1.30123971466304e62 * cos(theta) ** 13 + 5.81976477888288e60 * cos(theta) ** 11 - 1.75968698646816e59 * cos(theta) ** 9 + 3.35178473612983e57 * cos(theta) ** 7 - 3.59670308935751e55 * cos(theta) ** 5 + 1.78054608384035e53 * cos(theta) ** 3 - 2.56933056831219e50 * cos(theta) ) * cos(27 * phi) ) # @torch.jit.script def Yl70_m28(theta, phi): return ( 1.82883489525325e-51 * (1.0 - cos(theta) ** 2) ** 14 * ( 6.77527677670544e68 * cos(theta) ** 42 - 4.19677216168589e69 * cos(theta) ** 40 + 1.19470156427555e70 * cos(theta) ** 38 - 2.0737659251499e70 * cos(theta) ** 36 + 2.45577543767751e70 * cos(theta) ** 34 - 2.10334354280471e70 * cos(theta) ** 32 + 1.3478790661901e70 * cos(theta) ** 30 - 6.59535876032274e69 * cos(theta) ** 28 + 2.493045611402e69 * cos(theta) ** 26 - 7.31923959987036e68 * cos(theta) ** 24 + 1.66951250377208e68 * cos(theta) ** 22 - 2.94619853606838e67 * cos(theta) ** 20 + 3.98702081091875e66 * cos(theta) ** 18 - 4.08036243525464e65 * cos(theta) ** 16 + 3.09509160701995e64 * cos(theta) ** 14 - 1.69161162906196e63 * cos(theta) ** 12 + 6.40174125677117e61 * cos(theta) ** 10 - 1.58371828782134e60 * cos(theta) ** 8 + 2.34624931529088e58 * cos(theta) ** 6 - 1.79835154467875e56 * cos(theta) ** 4 + 5.34163825152105e53 * cos(theta) ** 2 - 2.56933056831219e50 ) * cos(28 * phi) ) # @torch.jit.script def Yl70_m29(theta, phi): return ( 2.83616998909815e-53 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 2.84561624621629e70 * cos(theta) ** 41 - 1.67870886467436e71 * cos(theta) ** 39 + 4.53986594424707e71 * cos(theta) ** 37 - 7.46555733053963e71 * cos(theta) ** 35 + 8.34963648810353e71 * cos(theta) ** 33 - 6.73069933697506e71 * cos(theta) ** 31 + 4.04363719857029e71 * cos(theta) ** 29 - 1.84670045289037e71 * cos(theta) ** 27 + 6.48191858964519e70 * cos(theta) ** 25 - 1.75661750396889e70 * cos(theta) ** 23 + 3.67292750829858e69 * cos(theta) ** 21 - 5.89239707213676e68 * cos(theta) ** 19 + 7.17663745965375e67 * cos(theta) ** 17 - 6.52857989640742e66 * cos(theta) ** 15 + 4.33312824982794e65 * cos(theta) ** 13 - 2.02993395487435e64 * cos(theta) ** 11 + 6.40174125677117e62 * cos(theta) ** 9 - 1.26697463025708e61 * cos(theta) ** 7 + 1.40774958917453e59 * cos(theta) ** 5 - 7.19340617871501e56 * cos(theta) ** 3 + 1.06832765030421e54 * cos(theta) ) * cos(29 * phi) ) # @torch.jit.script def Yl70_m30(theta, phi): return ( 4.42935336553025e-55 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.16670266094868e72 * cos(theta) ** 40 - 6.54696457222999e72 * cos(theta) ** 38 + 1.67975039937142e73 * cos(theta) ** 36 - 2.61294506568887e73 * cos(theta) ** 34 + 2.75538004107417e73 * cos(theta) ** 32 - 2.08651679446227e73 * cos(theta) ** 30 + 1.17265478758538e73 * cos(theta) ** 28 - 4.98609122280399e72 * cos(theta) ** 26 + 1.6204796474113e72 * cos(theta) ** 24 - 4.04022025912844e71 * cos(theta) ** 22 + 7.71314776742702e70 * cos(theta) ** 20 - 1.11955544370598e70 * cos(theta) ** 18 + 1.22002836814114e69 * cos(theta) ** 16 - 9.79286984461114e67 * cos(theta) ** 14 + 5.63306672477632e66 * cos(theta) ** 12 - 2.23292735036178e65 * cos(theta) ** 10 + 5.76156713109405e63 * cos(theta) ** 8 - 8.86882241179953e61 * cos(theta) ** 6 + 7.03874794587264e59 * cos(theta) ** 4 - 2.1580218536145e57 * cos(theta) ** 2 + 1.06832765030421e54 ) * cos(30 * phi) ) # @torch.jit.script def Yl70_m31(theta, phi): return ( 6.96866594416903e-57 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 4.66681064379471e73 * cos(theta) ** 39 - 2.4878465374474e74 * cos(theta) ** 37 + 6.0471014377371e74 * cos(theta) ** 35 - 8.88401322334216e74 * cos(theta) ** 33 + 8.81721613143733e74 * cos(theta) ** 31 - 6.25955038338681e74 * cos(theta) ** 29 + 3.28343340523907e74 * cos(theta) ** 27 - 1.29638371792904e74 * cos(theta) ** 25 + 3.88915115378712e73 * cos(theta) ** 23 - 8.88848457008257e72 * cos(theta) ** 21 + 1.5426295534854e72 * cos(theta) ** 19 - 2.01519979867077e71 * cos(theta) ** 17 + 1.95204538902582e70 * cos(theta) ** 15 - 1.37100177824556e69 * cos(theta) ** 13 + 6.75968006973158e67 * cos(theta) ** 11 - 2.23292735036178e66 * cos(theta) ** 9 + 4.60925370487524e64 * cos(theta) ** 7 - 5.32129344707972e62 * cos(theta) ** 5 + 2.81549917834906e60 * cos(theta) ** 3 - 4.31604370722901e57 * cos(theta) ) * cos(31 * phi) ) # @torch.jit.script def Yl70_m32(theta, phi): return ( 1.10488545620251e-58 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.82005615107994e75 * cos(theta) ** 38 - 9.20503218855536e75 * cos(theta) ** 36 + 2.11648550320799e76 * cos(theta) ** 34 - 2.93172436370291e76 * cos(theta) ** 32 + 2.73333700074557e76 * cos(theta) ** 30 - 1.81526961118217e76 * cos(theta) ** 28 + 8.8652701941455e75 * cos(theta) ** 26 - 3.2409592948226e75 * cos(theta) ** 24 + 8.94504765371037e74 * cos(theta) ** 22 - 1.86658175971734e74 * cos(theta) ** 20 + 2.93099615162227e73 * cos(theta) ** 18 - 3.42583965774031e72 * cos(theta) ** 16 + 2.92806808353873e71 * cos(theta) ** 14 - 1.78230231171923e70 * cos(theta) ** 12 + 7.43564807670474e68 * cos(theta) ** 10 - 2.0096346153256e67 * cos(theta) ** 8 + 3.22647759341267e65 * cos(theta) ** 6 - 2.66064672353986e63 * cos(theta) ** 4 + 8.44649753504717e60 * cos(theta) ** 2 - 4.31604370722901e57 ) * cos(32 * phi) ) # @torch.jit.script def Yl70_m33(theta, phi): return ( 1.7660656608883e-60 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 6.91621337410376e76 * cos(theta) ** 37 - 3.31381158787993e77 * cos(theta) ** 35 + 7.19605071090715e77 * cos(theta) ** 33 - 9.38151796384932e77 * cos(theta) ** 31 + 8.20001100223672e77 * cos(theta) ** 29 - 5.08275491131009e77 * cos(theta) ** 27 + 2.30497025047783e77 * cos(theta) ** 25 - 7.77830230757423e76 * cos(theta) ** 23 + 1.96791048381628e76 * cos(theta) ** 21 - 3.73316351943468e75 * cos(theta) ** 19 + 5.27579307292008e74 * cos(theta) ** 17 - 5.4813434523845e73 * cos(theta) ** 15 + 4.09929531695422e72 * cos(theta) ** 13 - 2.13876277406307e71 * cos(theta) ** 11 + 7.43564807670474e69 * cos(theta) ** 9 - 1.60770769226048e68 * cos(theta) ** 7 + 1.9358865560476e66 * cos(theta) ** 5 - 1.06425868941594e64 * cos(theta) ** 3 + 1.68929950700943e61 * cos(theta) ) * cos(33 * phi) ) # @torch.jit.script def Yl70_m34(theta, phi): return ( 2.84701211076783e-62 * (1.0 - cos(theta) ** 2) ** 17 * ( 2.55899894841839e78 * cos(theta) ** 36 - 1.15983405575798e79 * cos(theta) ** 34 + 2.37469673459936e79 * cos(theta) ** 32 - 2.90827056879329e79 * cos(theta) ** 30 + 2.37800319064865e79 * cos(theta) ** 28 - 1.37234382605372e79 * cos(theta) ** 26 + 5.76242562619458e78 * cos(theta) ** 24 - 1.78900953074207e78 * cos(theta) ** 22 + 4.13261201601419e77 * cos(theta) ** 20 - 7.09301068692589e76 * cos(theta) ** 18 + 8.96884822396414e75 * cos(theta) ** 16 - 8.22201517857675e74 * cos(theta) ** 14 + 5.32908391204049e73 * cos(theta) ** 12 - 2.35263905146938e72 * cos(theta) ** 10 + 6.69208326903426e70 * cos(theta) ** 8 - 1.12539538458234e69 * cos(theta) ** 6 + 9.67943278023801e66 * cos(theta) ** 4 - 3.19277606824783e64 * cos(theta) ** 2 + 1.68929950700943e61 ) * cos(34 * phi) ) # @torch.jit.script def Yl70_m35(theta, phi): return ( 4.63066554430613e-64 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 9.21239621430621e79 * cos(theta) ** 35 - 3.94343578957712e80 * cos(theta) ** 33 + 7.59902955071795e80 * cos(theta) ** 31 - 8.72481170637987e80 * cos(theta) ** 29 + 6.65840893381621e80 * cos(theta) ** 27 - 3.56809394773968e80 * cos(theta) ** 25 + 1.3829821502867e80 * cos(theta) ** 23 - 3.93582096763256e79 * cos(theta) ** 21 + 8.26522403202838e78 * cos(theta) ** 19 - 1.27674192364666e78 * cos(theta) ** 17 + 1.43501571583426e77 * cos(theta) ** 15 - 1.15108212500075e76 * cos(theta) ** 13 + 6.39490069444858e74 * cos(theta) ** 11 - 2.35263905146938e73 * cos(theta) ** 9 + 5.35366661522741e71 * cos(theta) ** 7 - 6.75237230749403e69 * cos(theta) ** 5 + 3.8717731120952e67 * cos(theta) ** 3 - 6.38555213649566e64 * cos(theta) ) * cos(35 * phi) ) # @torch.jit.script def Yl70_m36(theta, phi): return ( 7.60250054324482e-66 * (1.0 - cos(theta) ** 2) ** 18 * ( 3.22433867500717e81 * cos(theta) ** 34 - 1.30133381056045e82 * cos(theta) ** 32 + 2.35569916072256e82 * cos(theta) ** 30 - 2.53019539485016e82 * cos(theta) ** 28 + 1.79777041213038e82 * cos(theta) ** 26 - 8.9202348693492e81 * cos(theta) ** 24 + 3.18085894565941e81 * cos(theta) ** 22 - 8.26522403202838e80 * cos(theta) ** 20 + 1.57039256608539e80 * cos(theta) ** 18 - 2.17046127019932e79 * cos(theta) ** 16 + 2.15252357375139e78 * cos(theta) ** 14 - 1.49640676250097e77 * cos(theta) ** 12 + 7.03439076389344e75 * cos(theta) ** 10 - 2.11737514632244e74 * cos(theta) ** 8 + 3.74756663065919e72 * cos(theta) ** 6 - 3.37618615374702e70 * cos(theta) ** 4 + 1.16153193362856e68 * cos(theta) ** 2 - 6.38555213649566e64 ) * cos(36 * phi) ) # @torch.jit.script def Yl70_m37(theta, phi): return ( 1.26044851950185e-67 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 1.09627514950244e83 * cos(theta) ** 33 - 4.16426819379344e83 * cos(theta) ** 31 + 7.06709748216769e83 * cos(theta) ** 29 - 7.08454710558045e83 * cos(theta) ** 27 + 4.67420307153898e83 * cos(theta) ** 25 - 2.14085636864381e83 * cos(theta) ** 23 + 6.99788968045069e82 * cos(theta) ** 21 - 1.65304480640568e82 * cos(theta) ** 19 + 2.82670661895371e81 * cos(theta) ** 17 - 3.47273803231892e80 * cos(theta) ** 15 + 3.01353300325195e79 * cos(theta) ** 13 - 1.79568811500116e78 * cos(theta) ** 11 + 7.03439076389344e76 * cos(theta) ** 9 - 1.69390011705795e75 * cos(theta) ** 7 + 2.24853997839551e73 * cos(theta) ** 5 - 1.35047446149881e71 * cos(theta) ** 3 + 2.32306386725712e68 * cos(theta) ) * cos(37 * phi) ) # @torch.jit.script def Yl70_m38(theta, phi): return ( 2.11133071047807e-69 * (1.0 - cos(theta) ** 2) ** 19 * ( 3.61770799335805e84 * cos(theta) ** 32 - 1.29092314007597e85 * cos(theta) ** 30 + 2.04945826982863e85 * cos(theta) ** 28 - 1.91282771850672e85 * cos(theta) ** 26 + 1.16855076788475e85 * cos(theta) ** 24 - 4.92396964788076e84 * cos(theta) ** 22 + 1.46955683289465e84 * cos(theta) ** 20 - 3.14078513217078e83 * cos(theta) ** 18 + 4.8054012522213e82 * cos(theta) ** 16 - 5.20910704847837e81 * cos(theta) ** 14 + 3.91759290422754e80 * cos(theta) ** 12 - 1.97525692650128e79 * cos(theta) ** 10 + 6.3309516875041e77 * cos(theta) ** 8 - 1.18573008194057e76 * cos(theta) ** 6 + 1.12426998919776e74 * cos(theta) ** 4 - 4.05142338449642e71 * cos(theta) ** 2 + 2.32306386725712e68 ) * cos(38 * phi) ) # @torch.jit.script def Yl70_m39(theta, phi): return ( 3.57493398645019e-71 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 1.15766655787458e86 * cos(theta) ** 31 - 3.8727694202279e86 * cos(theta) ** 29 + 5.73848315552017e86 * cos(theta) ** 27 - 4.97335206811748e86 * cos(theta) ** 25 + 2.80452184292339e86 * cos(theta) ** 23 - 1.08327332253377e86 * cos(theta) ** 21 + 2.93911366578929e85 * cos(theta) ** 19 - 5.65341323790741e84 * cos(theta) ** 17 + 7.68864200355408e83 * cos(theta) ** 15 - 7.29274986786972e82 * cos(theta) ** 13 + 4.70111148507304e81 * cos(theta) ** 11 - 1.97525692650128e80 * cos(theta) ** 9 + 5.06476135000328e78 * cos(theta) ** 7 - 7.1143804916434e76 * cos(theta) ** 5 + 4.49707995679103e74 * cos(theta) ** 3 - 8.10284676899284e71 * cos(theta) ) * cos(39 * phi) ) # @torch.jit.script def Yl70_m40(theta, phi): return ( 6.1219649269969e-73 * (1.0 - cos(theta) ** 2) ** 20 * ( 3.58876632941118e87 * cos(theta) ** 30 - 1.12310313186609e88 * cos(theta) ** 28 + 1.54939045199045e88 * cos(theta) ** 26 - 1.24333801702937e88 * cos(theta) ** 24 + 6.4504002387238e87 * cos(theta) ** 22 - 2.27487397732091e87 * cos(theta) ** 20 + 5.58431596499965e86 * cos(theta) ** 18 - 9.6108025044426e85 * cos(theta) ** 16 + 1.15329630053311e85 * cos(theta) ** 14 - 9.48057482823064e83 * cos(theta) ** 12 + 5.17122263358035e82 * cos(theta) ** 10 - 1.77773123385115e81 * cos(theta) ** 8 + 3.5453329450023e79 * cos(theta) ** 6 - 3.5571902458217e77 * cos(theta) ** 4 + 1.34912398703731e75 * cos(theta) ** 2 - 8.10284676899284e71 ) * cos(40 * phi) ) # @torch.jit.script def Yl70_m41(theta, phi): return ( 1.06088600525106e-74 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 1.07662989882336e89 * cos(theta) ** 29 - 3.14468876922505e89 * cos(theta) ** 27 + 4.02841517517516e89 * cos(theta) ** 25 - 2.98401124087049e89 * cos(theta) ** 23 + 1.41908805251924e89 * cos(theta) ** 21 - 4.54974795464182e88 * cos(theta) ** 19 + 1.00517687369994e88 * cos(theta) ** 17 - 1.53772840071082e87 * cos(theta) ** 15 + 1.61461482074636e86 * cos(theta) ** 13 - 1.13766897938768e85 * cos(theta) ** 11 + 5.17122263358035e83 * cos(theta) ** 9 - 1.42218498708092e82 * cos(theta) ** 7 + 2.12719976700138e80 * cos(theta) ** 5 - 1.42287609832868e78 * cos(theta) ** 3 + 2.69824797407462e75 * cos(theta) ) * cos(41 * phi) ) # @torch.jit.script def Yl70_m42(theta, phi): return ( 1.86149001125438e-76 * (1.0 - cos(theta) ** 2) ** 21 * ( 3.12222670658773e90 * cos(theta) ** 28 - 8.49065967690764e90 * cos(theta) ** 26 + 1.00710379379379e91 * cos(theta) ** 24 - 6.86322585400212e90 * cos(theta) ** 22 + 2.98008491029039e90 * cos(theta) ** 20 - 8.64452111381946e89 * cos(theta) ** 18 + 1.70880068528989e89 * cos(theta) ** 16 - 2.30659260106622e88 * cos(theta) ** 14 + 2.09899926697026e87 * cos(theta) ** 12 - 1.25143587732644e86 * cos(theta) ** 10 + 4.65410037022231e84 * cos(theta) ** 8 - 9.95529490956645e82 * cos(theta) ** 6 + 1.06359988350069e81 * cos(theta) ** 4 - 4.26862829498604e78 * cos(theta) ** 2 + 2.69824797407462e75 ) * cos(42 * phi) ) # @torch.jit.script def Yl70_m43(theta, phi): return ( 3.30934826064584e-78 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 8.74223477844564e91 * cos(theta) ** 27 - 2.20757151599599e92 * cos(theta) ** 25 + 2.41704910510509e92 * cos(theta) ** 23 - 1.50990968788047e92 * cos(theta) ** 21 + 5.96016982058079e91 * cos(theta) ** 19 - 1.5560138004875e91 * cos(theta) ** 17 + 2.73408109646383e90 * cos(theta) ** 15 - 3.22922964149271e89 * cos(theta) ** 13 + 2.51879912036432e88 * cos(theta) ** 11 - 1.25143587732644e87 * cos(theta) ** 9 + 3.72328029617785e85 * cos(theta) ** 7 - 5.97317694573987e83 * cos(theta) ** 5 + 4.25439953400276e81 * cos(theta) ** 3 - 8.53725658997208e78 * cos(theta) ) * cos(43 * phi) ) # @torch.jit.script def Yl70_m44(theta, phi): return ( 5.96496864287317e-80 * (1.0 - cos(theta) ** 2) ** 22 * ( 2.36040339018032e93 * cos(theta) ** 26 - 5.51892878998997e93 * cos(theta) ** 24 + 5.55921294174172e93 * cos(theta) ** 22 - 3.17081034454898e93 * cos(theta) ** 20 + 1.13243226591035e93 * cos(theta) ** 18 - 2.64522346082876e92 * cos(theta) ** 16 + 4.10112164469575e91 * cos(theta) ** 14 - 4.19799853394053e90 * cos(theta) ** 12 + 2.77067903240075e89 * cos(theta) ** 10 - 1.1262922895938e88 * cos(theta) ** 8 + 2.6062962073245e86 * cos(theta) ** 6 - 2.98658847286993e84 * cos(theta) ** 4 + 1.27631986020083e82 * cos(theta) ** 2 - 8.53725658997208e78 ) * cos(44 * phi) ) # @torch.jit.script def Yl70_m45(theta, phi): return ( 1.09086892600705e-81 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 6.13704881446884e94 * cos(theta) ** 25 - 1.32454290959759e95 * cos(theta) ** 23 + 1.22302684718318e95 * cos(theta) ** 21 - 6.34162068909796e94 * cos(theta) ** 19 + 2.03837807863863e94 * cos(theta) ** 17 - 4.23235753732601e93 * cos(theta) ** 15 + 5.74157030257404e92 * cos(theta) ** 13 - 5.03759824072863e91 * cos(theta) ** 11 + 2.77067903240075e90 * cos(theta) ** 9 - 9.0103383167504e88 * cos(theta) ** 7 + 1.5637777243947e87 * cos(theta) ** 5 - 1.19463538914797e85 * cos(theta) ** 3 + 2.55263972040165e82 * cos(theta) ) * cos(45 * phi) ) # @torch.jit.script def Yl70_m46(theta, phi): return ( 2.02569274121716e-83 * (1.0 - cos(theta) ** 2) ** 23 * ( 1.53426220361721e96 * cos(theta) ** 24 - 3.04644869207446e96 * cos(theta) ** 22 + 2.56835637908467e96 * cos(theta) ** 20 - 1.20490793092861e96 * cos(theta) ** 18 + 3.46524273368567e95 * cos(theta) ** 16 - 6.34853630598901e94 * cos(theta) ** 14 + 7.46404139334626e93 * cos(theta) ** 12 - 5.5413580648015e92 * cos(theta) ** 10 + 2.49361112916067e91 * cos(theta) ** 8 - 6.30723682172528e89 * cos(theta) ** 6 + 7.81888862197349e87 * cos(theta) ** 4 - 3.58390616744392e85 * cos(theta) ** 2 + 2.55263972040165e82 ) * cos(46 * phi) ) # @torch.jit.script def Yl70_m47(theta, phi): return ( 3.822742281856e-85 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 3.68222928868131e97 * cos(theta) ** 23 - 6.70218712256381e97 * cos(theta) ** 21 + 5.13671275816935e97 * cos(theta) ** 19 - 2.1688342756715e97 * cos(theta) ** 17 + 5.54438837389707e96 * cos(theta) ** 15 - 8.88795082838462e95 * cos(theta) ** 13 + 8.95684967201551e94 * cos(theta) ** 11 - 5.5413580648015e93 * cos(theta) ** 9 + 1.99488890332854e92 * cos(theta) ** 7 - 3.78434209303517e90 * cos(theta) ** 5 + 3.12755544878939e88 * cos(theta) ** 3 - 7.16781233488784e85 * cos(theta) ) * cos(47 * phi) ) # @torch.jit.script def Yl70_m48(theta, phi): return ( 7.33787143759487e-87 * (1.0 - cos(theta) ** 2) ** 24 * ( 8.469127363967e98 * cos(theta) ** 22 - 1.4074592957384e99 * cos(theta) ** 20 + 9.75975424052176e98 * cos(theta) ** 18 - 3.68701826864155e98 * cos(theta) ** 16 + 8.31658256084561e97 * cos(theta) ** 14 - 1.15543360769e97 * cos(theta) ** 12 + 9.85253463921706e95 * cos(theta) ** 10 - 4.98722225832135e94 * cos(theta) ** 8 + 1.39642223232998e93 * cos(theta) ** 6 - 1.89217104651758e91 * cos(theta) ** 4 + 9.38266634636818e88 * cos(theta) ** 2 - 7.16781233488784e85 ) * cos(48 * phi) ) # @torch.jit.script def Yl70_m49(theta, phi): return ( 1.43411928977543e-88 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.86320802007274e100 * cos(theta) ** 21 - 2.8149185914768e100 * cos(theta) ** 19 + 1.75675576329392e100 * cos(theta) ** 17 - 5.89922922982649e99 * cos(theta) ** 15 + 1.16432155851839e99 * cos(theta) ** 13 - 1.386520329228e98 * cos(theta) ** 11 + 9.85253463921706e96 * cos(theta) ** 9 - 3.98977780665708e95 * cos(theta) ** 7 + 8.37853339397986e93 * cos(theta) ** 5 - 7.56868418607034e91 * cos(theta) ** 3 + 1.87653326927364e89 * cos(theta) ) * cos(49 * phi) ) # @torch.jit.script def Yl70_m50(theta, phi): return ( 2.85683400722986e-90 * (1.0 - cos(theta) ** 2) ** 25 * ( 3.91273684215275e101 * cos(theta) ** 20 - 5.34834532380592e101 * cos(theta) ** 18 + 2.98648479759966e101 * cos(theta) ** 16 - 8.84884384473973e100 * cos(theta) ** 14 + 1.5136180260739e100 * cos(theta) ** 12 - 1.5251723621508e99 * cos(theta) ** 10 + 8.86728117529535e97 * cos(theta) ** 8 - 2.79284446465995e96 * cos(theta) ** 6 + 4.18926669698993e94 * cos(theta) ** 4 - 2.2706052558211e92 * cos(theta) ** 2 + 1.87653326927364e89 ) * cos(50 * phi) ) # @torch.jit.script def Yl70_m51(theta, phi): return ( 5.80734094599917e-92 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 7.82547368430551e102 * cos(theta) ** 19 - 9.62702158285066e102 * cos(theta) ** 17 + 4.77837567615945e102 * cos(theta) ** 15 - 1.23883813826356e102 * cos(theta) ** 13 + 1.81634163128868e101 * cos(theta) ** 11 - 1.5251723621508e100 * cos(theta) ** 9 + 7.09382494023628e98 * cos(theta) ** 7 - 1.67570667879597e97 * cos(theta) ** 5 + 1.67570667879597e95 * cos(theta) ** 3 - 4.5412105116422e92 * cos(theta) ) * cos(51 * phi) ) # @torch.jit.script def Yl70_m52(theta, phi): return ( 1.20620356626626e-93 * (1.0 - cos(theta) ** 2) ** 26 * ( 1.48684000001805e104 * cos(theta) ** 18 - 1.63659366908461e104 * cos(theta) ** 16 + 7.16756351423918e103 * cos(theta) ** 14 - 1.61048957974263e103 * cos(theta) ** 12 + 1.99797579441755e102 * cos(theta) ** 10 - 1.37265512593572e101 * cos(theta) ** 8 + 4.9656774581654e99 * cos(theta) ** 6 - 8.37853339397986e97 * cos(theta) ** 4 + 5.02712003638792e95 * cos(theta) ** 2 - 4.5412105116422e92 ) * cos(52 * phi) ) # @torch.jit.script def Yl70_m53(theta, phi): return ( 2.5634910168844e-95 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 2.67631200003248e105 * cos(theta) ** 17 - 2.61854987053538e105 * cos(theta) ** 15 + 1.00345889199349e105 * cos(theta) ** 13 - 1.93258749569116e104 * cos(theta) ** 11 + 1.99797579441755e103 * cos(theta) ** 9 - 1.09812410074858e102 * cos(theta) ** 7 + 2.97940647489924e100 * cos(theta) ** 5 - 3.35141335759194e98 * cos(theta) ** 3 + 1.00542400727758e96 * cos(theta) ) * cos(53 * phi) ) # @torch.jit.script def Yl70_m54(theta, phi): return ( 5.58337113012323e-97 * (1.0 - cos(theta) ** 2) ** 27 * ( 4.54973040005522e106 * cos(theta) ** 16 - 3.92782480580307e106 * cos(theta) ** 14 + 1.30449655959153e106 * cos(theta) ** 12 - 2.12584624526027e105 * cos(theta) ** 10 + 1.79817821497579e104 * cos(theta) ** 8 - 7.68686870524004e102 * cos(theta) ** 6 + 1.48970323744962e101 * cos(theta) ** 4 - 1.00542400727758e99 * cos(theta) ** 2 + 1.00542400727758e96 ) * cos(54 * phi) ) # @torch.jit.script def Yl70_m55(theta, phi): return ( 1.24847973905654e-98 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 7.27956864008836e107 * cos(theta) ** 15 - 5.4989547281243e107 * cos(theta) ** 13 + 1.56539587150984e107 * cos(theta) ** 11 - 2.12584624526027e106 * cos(theta) ** 9 + 1.43854257198064e105 * cos(theta) ** 7 - 4.61212122314402e103 * cos(theta) ** 5 + 5.95881294979848e101 * cos(theta) ** 3 - 2.01084801455517e99 * cos(theta) ) * cos(55 * phi) ) # @torch.jit.script def Yl70_m56(theta, phi): return ( 2.87177623153215e-100 * (1.0 - cos(theta) ** 2) ** 28 * ( 1.09193529601325e109 * cos(theta) ** 14 - 7.14864114656159e108 * cos(theta) ** 12 + 1.72193545866082e108 * cos(theta) ** 10 - 1.91326162073424e107 * cos(theta) ** 8 + 1.00697980038644e106 * cos(theta) ** 6 - 2.30606061157201e104 * cos(theta) ** 4 + 1.78764388493954e102 * cos(theta) ** 2 - 2.01084801455517e99 ) * cos(56 * phi) ) # @torch.jit.script def Yl70_m57(theta, phi): return ( 6.81058971792623e-102 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 1.52870941441855e110 * cos(theta) ** 13 - 8.5783693758739e109 * cos(theta) ** 11 + 1.72193545866082e109 * cos(theta) ** 9 - 1.5306092965874e108 * cos(theta) ** 7 + 6.04187880231867e106 * cos(theta) ** 5 - 9.22424244628804e104 * cos(theta) ** 3 + 3.57528776987909e102 * cos(theta) ) * cos(57 * phi) ) # @torch.jit.script def Yl70_m58(theta, phi): return ( 1.66958316686443e-103 * (1.0 - cos(theta) ** 2) ** 29 * ( 1.98732223874412e111 * cos(theta) ** 12 - 9.4362063134613e110 * cos(theta) ** 10 + 1.54974191279474e110 * cos(theta) ** 8 - 1.07142650761118e109 * cos(theta) ** 6 + 3.02093940115933e107 * cos(theta) ** 4 - 2.76727273388641e105 * cos(theta) ** 2 + 3.57528776987909e102 ) * cos(58 * phi) ) # @torch.jit.script def Yl70_m59(theta, phi): return ( 4.24348409997014e-105 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 2.38478668649295e112 * cos(theta) ** 11 - 9.4362063134613e111 * cos(theta) ** 9 + 1.23979353023579e111 * cos(theta) ** 7 - 6.42855904566706e109 * cos(theta) ** 5 + 1.20837576046373e108 * cos(theta) ** 3 - 5.53454546777283e105 * cos(theta) ) * cos(59 * phi) ) # @torch.jit.script def Yl70_m60(theta, phi): return ( 1.12215942258632e-106 * (1.0 - cos(theta) ** 2) ** 30 * ( 2.62326535514224e113 * cos(theta) ** 10 - 8.49258568211517e112 * cos(theta) ** 8 + 8.67855471165054e111 * cos(theta) ** 6 - 3.21427952283353e110 * cos(theta) ** 4 + 3.6251272813912e108 * cos(theta) ** 2 - 5.53454546777283e105 ) * cos(60 * phi) ) # @torch.jit.script def Yl70_m61(theta, phi): return ( 3.10040845585289e-108 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 2.62326535514224e114 * cos(theta) ** 9 - 6.79406854569213e113 * cos(theta) ** 7 + 5.20713282699032e112 * cos(theta) ** 5 - 1.28571180913341e111 * cos(theta) ** 3 + 7.2502545627824e108 * cos(theta) ) * cos(61 * phi) ) # @torch.jit.script def Yl70_m62(theta, phi): return ( 8.99519727500161e-110 * (1.0 - cos(theta) ** 2) ** 31 * ( 2.36093881962802e115 * cos(theta) ** 8 - 4.75584798198449e114 * cos(theta) ** 6 + 2.60356641349516e113 * cos(theta) ** 4 - 3.85713542740024e111 * cos(theta) ** 2 + 7.2502545627824e108 ) * cos(62 * phi) ) # @torch.jit.script def Yl70_m63(theta, phi): return ( 2.75765465786572e-111 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 1.88875105570241e116 * cos(theta) ** 7 - 2.8535087891907e115 * cos(theta) ** 5 + 1.04142656539806e114 * cos(theta) ** 3 - 7.71427085480048e111 * cos(theta) ) * cos(63 * phi) ) # @torch.jit.script def Yl70_m64(theta, phi): return ( 9.00406163506351e-113 * (1.0 - cos(theta) ** 2) ** 32 * ( 1.32212573899169e117 * cos(theta) ** 6 - 1.42675439459535e116 * cos(theta) ** 4 + 3.12427969619419e114 * cos(theta) ** 2 - 7.71427085480048e111 ) * cos(64 * phi) ) # @torch.jit.script def Yl70_m65(theta, phi): return ( 3.16370477326006e-114 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 7.93275443395014e117 * cos(theta) ** 5 - 5.70701757838139e116 * cos(theta) ** 3 + 6.24855939238839e114 * cos(theta) ) * cos(65 * phi) ) # @torch.jit.script def Yl70_m66(theta, phi): return ( 1.21322539806989e-115 * (1.0 - cos(theta) ** 2) ** 33 * ( 3.96637721697507e118 * cos(theta) ** 4 - 1.71210527351442e117 * cos(theta) ** 2 + 6.24855939238839e114 ) * cos(66 * phi) ) # @torch.jit.script def Yl70_m67(theta, phi): return ( 5.18264204688737e-117 * (1.0 - cos(theta) ** 2) ** 33.5 * (1.58655088679003e119 * cos(theta) ** 3 - 3.42421054702884e117 * cos(theta)) * cos(67 * phi) ) # @torch.jit.script def Yl70_m68(theta, phi): return ( 2.54712960481231e-118 * (1.0 - cos(theta) ** 2) ** 34 * (4.75965266037008e119 * cos(theta) ** 2 - 3.42421054702884e117) * cos(68 * phi) ) # @torch.jit.script def Yl70_m69(theta, phi): return ( 14.542326871995 * (1.0 - cos(theta) ** 2) ** 34.5 * cos(69 * phi) * cos(theta) ) # @torch.jit.script def Yl70_m70(theta, phi): return 1.22905094295194 * (1.0 - cos(theta) ** 2) ** 35 * cos(70 * phi) # @torch.jit.script def Yl71_m_minus_71(theta, phi): return 1.23337099473571 * (1.0 - cos(theta) ** 2) ** 35.5 * sin(71 * phi) # @torch.jit.script def Yl71_m_minus_70(theta, phi): return 14.697311642374 * (1.0 - cos(theta) ** 2) ** 35 * sin(70 * phi) * cos(theta) # @torch.jit.script def Yl71_m_minus_69(theta, phi): return ( 1.83881521262701e-120 * (1.0 - cos(theta) ** 2) ** 34.5 * (6.71111025112181e121 * cos(theta) ** 2 - 4.75965266037008e119) * sin(69 * phi) ) # @torch.jit.script def Yl71_m_minus_68(theta, phi): return ( 3.76844979029729e-119 * (1.0 - cos(theta) ** 2) ** 34 * (2.23703675037394e121 * cos(theta) ** 3 - 4.75965266037008e119 * cos(theta)) * sin(68 * phi) ) # @torch.jit.script def Yl71_m_minus_67(theta, phi): return ( 8.88587355583423e-118 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 5.59259187593484e120 * cos(theta) ** 4 - 2.37982633018504e119 * cos(theta) ** 2 + 8.56052636757209e116 ) * sin(67 * phi) ) # @torch.jit.script def Yl71_m_minus_66(theta, phi): return ( 2.33412803219294e-116 * (1.0 - cos(theta) ** 2) ** 33 * ( 1.11851837518697e120 * cos(theta) ** 5 - 7.93275443395013e118 * cos(theta) ** 3 + 8.56052636757209e116 * cos(theta) ) * sin(66 * phi) ) # @torch.jit.script def Yl71_m_minus_65(theta, phi): return ( 6.69207166525422e-115 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 1.86419729197828e119 * cos(theta) ** 6 - 1.98318860848753e118 * cos(theta) ** 4 + 4.28026318378604e116 * cos(theta) ** 2 - 1.04142656539806e114 ) * sin(65 * phi) ) # @torch.jit.script def Yl71_m_minus_64(theta, phi): return ( 2.06480506732716e-113 * (1.0 - cos(theta) ** 2) ** 32 * ( 2.6631389885404e118 * cos(theta) ** 7 - 3.96637721697507e117 * cos(theta) ** 5 + 1.42675439459535e116 * cos(theta) ** 3 - 1.04142656539806e114 * cos(theta) ) * sin(64 * phi) ) # @torch.jit.script def Yl71_m_minus_63(theta, phi): return ( 6.78564187335636e-112 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 3.3289237356755e117 * cos(theta) ** 8 - 6.61062869495845e116 * cos(theta) ** 6 + 3.56688598648837e115 * cos(theta) ** 4 - 5.20713282699032e113 * cos(theta) ** 2 + 9.64283856850059e110 ) * sin(63 * phi) ) # @torch.jit.script def Yl71_m_minus_62(theta, phi): return ( 2.35648450820151e-110 * (1.0 - cos(theta) ** 2) ** 31 * ( 3.69880415075056e116 * cos(theta) ** 9 - 9.44375527851207e115 * cos(theta) ** 7 + 7.13377197297674e114 * cos(theta) ** 5 - 1.73571094233011e113 * cos(theta) ** 3 + 9.64283856850059e110 * cos(theta) ) * sin(62 * phi) ) # @torch.jit.script def Yl71_m_minus_61(theta, phi): return ( 8.59390224853277e-109 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 3.69880415075056e115 * cos(theta) ** 10 - 1.18046940981401e115 * cos(theta) ** 8 + 1.18896199549612e114 * cos(theta) ** 6 - 4.33927735582527e112 * cos(theta) ** 4 + 4.8214192842503e110 * cos(theta) ** 2 - 7.2502545627824e107 ) * sin(61 * phi) ) # @torch.jit.script def Yl71_m_minus_60(theta, phi): return ( 3.27471657254262e-107 * (1.0 - cos(theta) ** 2) ** 30 * ( 3.36254922795505e114 * cos(theta) ** 11 - 1.31163267757112e114 * cos(theta) ** 9 + 1.69851713642303e113 * cos(theta) ** 7 - 8.67855471165054e111 * cos(theta) ** 5 + 1.60713976141677e110 * cos(theta) ** 3 - 7.2502545627824e107 * cos(theta) ) * sin(60 * phi) ) # @torch.jit.script def Yl71_m_minus_59(theta, phi): return ( 1.29837453329626e-105 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 2.80212435662921e113 * cos(theta) ** 12 - 1.31163267757112e113 * cos(theta) ** 10 + 2.12314642052879e112 * cos(theta) ** 8 - 1.44642578527509e111 * cos(theta) ** 6 + 4.01784940354191e109 * cos(theta) ** 4 - 3.6251272813912e107 * cos(theta) ** 2 + 4.61212122314402e104 ) * sin(59 * phi) ) # @torch.jit.script def Yl71_m_minus_58(theta, phi): return ( 5.33756701552661e-104 * (1.0 - cos(theta) ** 2) ** 29 * ( 2.15548027433016e112 * cos(theta) ** 13 - 1.19239334324647e112 * cos(theta) ** 11 + 2.35905157836532e111 * cos(theta) ** 9 - 2.06632255039298e110 * cos(theta) ** 7 + 8.03569880708383e108 * cos(theta) ** 5 - 1.20837576046373e107 * cos(theta) ** 3 + 4.61212122314402e104 * cos(theta) ) * sin(58 * phi) ) # @torch.jit.script def Yl71_m_minus_57(theta, phi): return ( 2.26830898890119e-102 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 1.53962876737869e111 * cos(theta) ** 14 - 9.93661119372061e110 * cos(theta) ** 12 + 2.35905157836532e110 * cos(theta) ** 10 - 2.58290318799123e109 * cos(theta) ** 8 + 1.33928313451397e108 * cos(theta) ** 6 - 3.02093940115933e106 * cos(theta) ** 4 + 2.30606061157201e104 * cos(theta) ** 2 - 2.55377697848506e101 ) * sin(57 * phi) ) # @torch.jit.script def Yl71_m_minus_56(theta, phi): return ( 9.93923200490332e-101 * (1.0 - cos(theta) ** 2) ** 28 * ( 1.02641917825246e110 * cos(theta) ** 15 - 7.64354707209277e109 * cos(theta) ** 13 + 2.14459234396848e109 * cos(theta) ** 11 - 2.86989243110137e108 * cos(theta) ** 9 + 1.91326162073424e107 * cos(theta) ** 7 - 6.04187880231867e105 * cos(theta) ** 5 + 7.68686870524004e103 * cos(theta) ** 3 - 2.55377697848506e101 * cos(theta) ) * sin(56 * phi) ) # @torch.jit.script def Yl71_m_minus_55(theta, phi): return ( 4.48037824681915e-99 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 6.41511986407786e108 * cos(theta) ** 16 - 5.45967648006627e108 * cos(theta) ** 14 + 1.7871602866404e108 * cos(theta) ** 12 - 2.86989243110137e107 * cos(theta) ** 10 + 2.39157702591781e106 * cos(theta) ** 8 - 1.00697980038644e105 * cos(theta) ** 6 + 1.92171717631001e103 * cos(theta) ** 4 - 1.27688848924253e101 * cos(theta) ** 2 + 1.25678000909698e98 ) * sin(55 * phi) ) # @torch.jit.script def Yl71_m_minus_54(theta, phi): return ( 2.07359727383235e-97 * (1.0 - cos(theta) ** 2) ** 27 * ( 3.7735999200458e107 * cos(theta) ** 17 - 3.63978432004418e107 * cos(theta) ** 15 + 1.37473868203107e107 * cos(theta) ** 13 - 2.60899311918306e106 * cos(theta) ** 11 + 2.65730780657534e105 * cos(theta) ** 9 - 1.43854257198064e104 * cos(theta) ** 7 + 3.84343435262002e102 * cos(theta) ** 5 - 4.25629496414177e100 * cos(theta) ** 3 + 1.25678000909698e98 * cos(theta) ) * sin(54 * phi) ) # @torch.jit.script def Yl71_m_minus_53(theta, phi): return ( 9.83593550283913e-96 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 2.09644440002545e106 * cos(theta) ** 18 - 2.27486520002761e106 * cos(theta) ** 16 + 9.81956201450768e105 * cos(theta) ** 14 - 2.17416093265255e105 * cos(theta) ** 12 + 2.65730780657534e104 * cos(theta) ** 10 - 1.79817821497579e103 * cos(theta) ** 8 + 6.40572392103336e101 * cos(theta) ** 6 - 1.06407374103544e100 * cos(theta) ** 4 + 6.2839000454849e97 * cos(theta) ** 2 - 5.58568892931991e94 ) * sin(53 * phi) ) # @torch.jit.script def Yl71_m_minus_52(theta, phi): return ( 4.77422975694428e-94 * (1.0 - cos(theta) ** 2) ** 26 * ( 1.10339178948708e105 * cos(theta) ** 19 - 1.33815600001624e105 * cos(theta) ** 17 + 6.54637467633845e104 * cos(theta) ** 15 - 1.67243148665581e104 * cos(theta) ** 13 + 2.41573436961395e103 * cos(theta) ** 11 - 1.99797579441755e102 * cos(theta) ** 9 + 9.15103417290481e100 * cos(theta) ** 7 - 2.12814748207088e99 * cos(theta) ** 5 + 2.09463334849497e97 * cos(theta) ** 3 - 5.58568892931991e94 * cos(theta) ) * sin(52 * phi) ) # @torch.jit.script def Yl71_m_minus_51(theta, phi): return ( 2.36794095448655e-92 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 5.51695894743538e103 * cos(theta) ** 20 - 7.43420000009023e103 * cos(theta) ** 18 + 4.09148417271153e103 * cos(theta) ** 16 - 1.19459391903986e103 * cos(theta) ** 14 + 2.01311197467829e102 * cos(theta) ** 12 - 1.99797579441755e101 * cos(theta) ** 10 + 1.1438792716131e100 * cos(theta) ** 8 - 3.54691247011814e98 * cos(theta) ** 6 + 5.23658337123741e96 * cos(theta) ** 4 - 2.79284446465995e94 * cos(theta) ** 2 + 2.2706052558211e91 ) * sin(51 * phi) ) # @torch.jit.script def Yl71_m_minus_50(theta, phi): return ( 1.19856179900749e-90 * (1.0 - cos(theta) ** 2) ** 25 * ( 2.62712330830256e102 * cos(theta) ** 21 - 3.91273684215275e102 * cos(theta) ** 19 + 2.40675539571267e102 * cos(theta) ** 17 - 7.96395946026575e101 * cos(theta) ** 15 + 1.54854767282945e101 * cos(theta) ** 13 - 1.81634163128868e100 * cos(theta) ** 11 + 1.270976968459e99 * cos(theta) ** 9 - 5.06701781445449e97 * cos(theta) ** 7 + 1.04731667424748e96 * cos(theta) ** 5 - 9.30948154886651e93 * cos(theta) ** 3 + 2.2706052558211e91 * cos(theta) ) * sin(50 * phi) ) # @torch.jit.script def Yl71_m_minus_49(theta, phi): return ( 6.18392846630575e-89 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.19414695831935e101 * cos(theta) ** 22 - 1.95636842107638e101 * cos(theta) ** 20 + 1.33708633095148e101 * cos(theta) ** 18 - 4.9774746626661e100 * cos(theta) ** 16 + 1.10610548059247e100 * cos(theta) ** 14 - 1.5136180260739e99 * cos(theta) ** 12 + 1.270976968459e98 * cos(theta) ** 10 - 6.33377226806811e96 * cos(theta) ** 8 + 1.74552779041247e95 * cos(theta) ** 6 - 2.32737038721663e93 * cos(theta) ** 4 + 1.13530262791055e91 * cos(theta) ** 2 - 8.52969667851653e87 ) * sin(49 * phi) ) # @torch.jit.script def Yl71_m_minus_48(theta, phi): return ( 3.24877023999585e-87 * (1.0 - cos(theta) ** 2) ** 24 * ( 5.19194329704064e99 * cos(theta) ** 23 - 9.3160401003637e99 * cos(theta) ** 21 + 7.037296478692e99 * cos(theta) ** 19 - 2.92792627215653e99 * cos(theta) ** 17 + 7.37403653728311e98 * cos(theta) ** 15 - 1.16432155851839e98 * cos(theta) ** 13 + 1.15543360769e97 * cos(theta) ** 11 - 7.0375247422979e95 * cos(theta) ** 9 + 2.49361112916067e94 * cos(theta) ** 7 - 4.65474077443326e92 * cos(theta) ** 5 + 3.78434209303517e90 * cos(theta) ** 3 - 8.52969667851653e87 * cos(theta) ) * sin(48 * phi) ) # @torch.jit.script def Yl71_m_minus_47(theta, phi): return ( 1.73619339517346e-85 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 2.16330970710027e98 * cos(theta) ** 24 - 4.2345636819835e98 * cos(theta) ** 22 + 3.518648239346e98 * cos(theta) ** 20 - 1.62662570675363e98 * cos(theta) ** 18 + 4.60877283580194e97 * cos(theta) ** 16 - 8.31658256084561e96 * cos(theta) ** 14 + 9.62861339741667e95 * cos(theta) ** 12 - 7.0375247422979e94 * cos(theta) ** 10 + 3.11701391145084e93 * cos(theta) ** 8 - 7.75790129072209e91 * cos(theta) ** 6 + 9.46085523258792e89 * cos(theta) ** 4 - 4.26484833925827e87 * cos(theta) ** 2 + 2.98658847286993e84 ) * sin(47 * phi) ) # @torch.jit.script def Yl71_m_minus_46(theta, phi): return ( 9.42994387102045e-84 * (1.0 - cos(theta) ** 2) ** 23 * ( 8.65323882840107e96 * cos(theta) ** 25 - 1.84111464434065e97 * cos(theta) ** 23 + 1.67554678064095e97 * cos(theta) ** 21 - 8.56118793028224e96 * cos(theta) ** 19 + 2.71104284458938e96 * cos(theta) ** 17 - 5.54438837389707e95 * cos(theta) ** 15 + 7.40662569032052e94 * cos(theta) ** 13 - 6.39774976572536e93 * cos(theta) ** 11 + 3.46334879050093e92 * cos(theta) ** 9 - 1.1082716129603e91 * cos(theta) ** 7 + 1.89217104651758e89 * cos(theta) ** 5 - 1.42161611308609e87 * cos(theta) ** 3 + 2.98658847286993e84 * cos(theta) ) * sin(46 * phi) ) # @torch.jit.script def Yl71_m_minus_45(theta, phi): return ( 5.20102226077753e-82 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 3.32816878015426e95 * cos(theta) ** 26 - 7.67131101808605e95 * cos(theta) ** 24 + 7.61612173018615e95 * cos(theta) ** 22 - 4.28059396514112e95 * cos(theta) ** 20 + 1.50613491366077e95 * cos(theta) ** 18 - 3.46524273368567e94 * cos(theta) ** 16 + 5.29044692165751e93 * cos(theta) ** 14 - 5.33145813810447e92 * cos(theta) ** 12 + 3.46334879050093e91 * cos(theta) ** 10 - 1.38533951620037e90 * cos(theta) ** 8 + 3.15361841086264e88 * cos(theta) ** 6 - 3.55404028271522e86 * cos(theta) ** 4 + 1.49329423643497e84 * cos(theta) ** 2 - 9.8178450784679e80 ) * sin(45 * phi) ) # @torch.jit.script def Yl71_m_minus_44(theta, phi): return ( 2.9107143653895e-80 * (1.0 - cos(theta) ** 2) ** 22 * ( 1.23265510376084e94 * cos(theta) ** 27 - 3.06852440723442e94 * cos(theta) ** 25 + 3.31135727399398e94 * cos(theta) ** 23 - 2.03837807863863e94 * cos(theta) ** 21 + 7.92702586137245e93 * cos(theta) ** 19 - 2.03837807863863e93 * cos(theta) ** 17 + 3.52696461443834e92 * cos(theta) ** 15 - 4.10112164469575e91 * cos(theta) ** 13 + 3.1484989004554e90 * cos(theta) ** 11 - 1.53926612911153e89 * cos(theta) ** 9 + 4.5051691583752e87 * cos(theta) ** 7 - 7.10808056543044e85 * cos(theta) ** 5 + 4.97764745478322e83 * cos(theta) ** 3 - 9.8178450784679e80 * cos(theta) ) * sin(44 * phi) ) # @torch.jit.script def Yl71_m_minus_43(theta, phi): return ( 1.65168614259395e-78 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 4.4023396562887e92 * cos(theta) ** 28 - 1.18020169509016e93 * cos(theta) ** 26 + 1.37973219749749e93 * cos(theta) ** 24 - 9.26535490290286e92 * cos(theta) ** 22 + 3.96351293068622e92 * cos(theta) ** 20 - 1.13243226591035e92 * cos(theta) ** 18 + 2.20435288402396e91 * cos(theta) ** 16 - 2.9293726033541e90 * cos(theta) ** 14 + 2.62374908371283e89 * cos(theta) ** 12 - 1.53926612911153e88 * cos(theta) ** 10 + 5.631461447969e86 * cos(theta) ** 8 - 1.18468009423841e85 * cos(theta) ** 6 + 1.24441186369581e83 * cos(theta) ** 4 - 4.90892253923395e80 * cos(theta) ** 2 + 3.04902021070432e77 ) * sin(43 * phi) ) # @torch.jit.script def Yl71_m_minus_42(theta, phi): return ( 9.49683625092251e-77 * (1.0 - cos(theta) ** 2) ** 21 * ( 1.51804815734093e91 * cos(theta) ** 29 - 4.37111738922282e91 * cos(theta) ** 27 + 5.51892878998997e91 * cos(theta) ** 25 - 4.02841517517516e91 * cos(theta) ** 23 + 1.88738710985058e91 * cos(theta) ** 21 - 5.96016982058079e90 * cos(theta) ** 19 + 1.29667816707292e90 * cos(theta) ** 17 - 1.95291506890274e89 * cos(theta) ** 15 + 2.01826852593295e88 * cos(theta) ** 13 - 1.39933284464684e87 * cos(theta) ** 11 + 6.25717938663222e85 * cos(theta) ** 9 - 1.6924001346263e84 * cos(theta) ** 7 + 2.48882372739161e82 * cos(theta) ** 5 - 1.63630751307798e80 * cos(theta) ** 3 + 3.04902021070432e77 * cos(theta) ) * sin(42 * phi) ) # @torch.jit.script def Yl71_m_minus_41(theta, phi): return ( 5.529410066666e-75 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 5.06016052446977e89 * cos(theta) ** 30 - 1.56111335329386e90 * cos(theta) ** 28 + 2.12266491922691e90 * cos(theta) ** 26 - 1.67850632298965e90 * cos(theta) ** 24 + 8.57903231750265e89 * cos(theta) ** 22 - 2.98008491029039e89 * cos(theta) ** 20 + 7.20376759484955e88 * cos(theta) ** 18 - 1.22057191806421e88 * cos(theta) ** 16 + 1.44162037566639e87 * cos(theta) ** 14 - 1.16611070387237e86 * cos(theta) ** 12 + 6.25717938663222e84 * cos(theta) ** 10 - 2.11550016828287e83 * cos(theta) ** 8 + 4.14803954565269e81 * cos(theta) ** 6 - 4.09076878269496e79 * cos(theta) ** 4 + 1.52451010535216e77 * cos(theta) ** 2 - 8.99415991358205e73 ) * sin(41 * phi) ) # @torch.jit.script def Yl71_m_minus_40(theta, phi): return ( 3.25813186319286e-73 * (1.0 - cos(theta) ** 2) ** 20 * ( 1.63230984660315e88 * cos(theta) ** 31 - 5.38314949411678e88 * cos(theta) ** 29 + 7.86172192306263e88 * cos(theta) ** 27 - 6.7140252919586e88 * cos(theta) ** 25 + 3.73001405108811e88 * cos(theta) ** 23 - 1.41908805251924e88 * cos(theta) ** 21 + 3.79145662886819e87 * cos(theta) ** 19 - 7.17983481214241e86 * cos(theta) ** 17 + 9.6108025044426e85 * cos(theta) ** 15 - 8.97008233747976e84 * cos(theta) ** 13 + 5.68834489693838e83 * cos(theta) ** 11 - 2.35055574253652e82 * cos(theta) ** 9 + 5.92577077950384e80 * cos(theta) ** 7 - 8.18153756538991e78 * cos(theta) ** 5 + 5.08170035117386e76 * cos(theta) ** 3 - 8.99415991358205e73 * cos(theta) ) * sin(40 * phi) ) # @torch.jit.script def Yl71_m_minus_39(theta, phi): return ( 1.94180285665687e-71 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 5.10096827063485e86 * cos(theta) ** 32 - 1.79438316470559e87 * cos(theta) ** 30 + 2.80775782966522e87 * cos(theta) ** 28 - 2.58231741998407e87 * cos(theta) ** 26 + 1.55417252128671e87 * cos(theta) ** 24 - 6.4504002387238e86 * cos(theta) ** 22 + 1.89572831443409e86 * cos(theta) ** 20 - 3.9887971178569e85 * cos(theta) ** 18 + 6.00675156527662e84 * cos(theta) ** 16 - 6.4072016696284e83 * cos(theta) ** 14 + 4.74028741411532e82 * cos(theta) ** 12 - 2.35055574253652e81 * cos(theta) ** 10 + 7.4072134743798e79 * cos(theta) ** 8 - 1.36358959423165e78 * cos(theta) ** 6 + 1.27042508779346e76 * cos(theta) ** 4 - 4.49707995679103e73 * cos(theta) ** 2 + 2.53213961531026e70 ) * sin(39 * phi) ) # @torch.jit.script def Yl71_m_minus_38(theta, phi): return ( 1.16992614950083e-69 * (1.0 - cos(theta) ** 2) ** 19 * ( 1.54574796079844e85 * cos(theta) ** 33 - 5.78833278937288e85 * cos(theta) ** 31 + 9.68192355056974e85 * cos(theta) ** 29 - 9.56413859253361e85 * cos(theta) ** 27 + 6.21669008514685e85 * cos(theta) ** 25 - 2.80452184292339e85 * cos(theta) ** 23 + 9.02727768778139e84 * cos(theta) ** 21 - 2.09936690413521e84 * cos(theta) ** 19 + 3.53338327369213e83 * cos(theta) ** 17 - 4.27146777975227e82 * cos(theta) ** 15 + 3.64637493393486e81 * cos(theta) ** 13 - 2.13686885685138e80 * cos(theta) ** 11 + 8.23023719375533e78 * cos(theta) ** 9 - 1.94798513461665e77 * cos(theta) ** 7 + 2.54085017558693e75 * cos(theta) ** 5 - 1.49902665226368e73 * cos(theta) ** 3 + 2.53213961531026e70 * cos(theta) ) * sin(38 * phi) ) # @torch.jit.script def Yl71_m_minus_37(theta, phi): return ( 7.12215064831495e-68 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 4.54631753176011e83 * cos(theta) ** 34 - 1.80885399667902e84 * cos(theta) ** 32 + 3.22730785018991e84 * cos(theta) ** 30 - 3.41576378304772e84 * cos(theta) ** 28 + 2.3910346481334e84 * cos(theta) ** 26 - 1.16855076788475e84 * cos(theta) ** 24 + 4.10330803990063e83 * cos(theta) ** 22 - 1.0496834520676e83 * cos(theta) ** 20 + 1.96299070760674e82 * cos(theta) ** 18 - 2.66966736234517e81 * cos(theta) ** 16 + 2.60455352423919e80 * cos(theta) ** 14 - 1.78072404737615e79 * cos(theta) ** 12 + 8.23023719375533e77 * cos(theta) ** 10 - 2.43498141827081e76 * cos(theta) ** 8 + 4.23475029264488e74 * cos(theta) ** 6 - 3.74756663065919e72 * cos(theta) ** 4 + 1.26606980765513e70 * cos(theta) ** 2 - 6.83254078605036e66 ) * sin(37 * phi) ) # @torch.jit.script def Yl71_m_minus_36(theta, phi): return ( 4.37881962246183e-66 * (1.0 - cos(theta) ** 2) ** 18 * ( 1.29894786621718e82 * cos(theta) ** 35 - 5.48137574751219e82 * cos(theta) ** 33 + 1.04106704844836e83 * cos(theta) ** 31 - 1.17784958036128e83 * cos(theta) ** 29 + 8.85568388197557e82 * cos(theta) ** 27 - 4.67420307153898e82 * cos(theta) ** 25 + 1.78404697386984e82 * cos(theta) ** 23 - 4.99849262889335e81 * cos(theta) ** 21 + 1.03315300400355e81 * cos(theta) ** 19 - 1.57039256608539e80 * cos(theta) ** 17 + 1.73636901615946e79 * cos(theta) ** 15 - 1.36978772875089e78 * cos(theta) ** 13 + 7.48203381250485e76 * cos(theta) ** 11 - 2.70553490918979e75 * cos(theta) ** 9 + 6.04964327520698e73 * cos(theta) ** 7 - 7.49513326131838e71 * cos(theta) ** 5 + 4.22023269218377e69 * cos(theta) ** 3 - 6.83254078605036e66 * cos(theta) ) * sin(36 * phi) ) # @torch.jit.script def Yl71_m_minus_35(theta, phi): return ( 2.71769174252509e-64 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 3.60818851726993e80 * cos(theta) ** 36 - 1.61216933750359e81 * cos(theta) ** 34 + 3.25333452640112e81 * cos(theta) ** 32 - 3.92616526787094e81 * cos(theta) ** 30 + 3.1627442435627e81 * cos(theta) ** 28 - 1.79777041213038e81 * cos(theta) ** 26 + 7.433529057791e80 * cos(theta) ** 24 - 2.27204210404243e80 * cos(theta) ** 22 + 5.16576502001774e79 * cos(theta) ** 20 - 8.72440314491884e78 * cos(theta) ** 18 + 1.08523063509966e78 * cos(theta) ** 16 - 9.78419806250634e76 * cos(theta) ** 14 + 6.23502817708737e75 * cos(theta) ** 12 - 2.70553490918979e74 * cos(theta) ** 10 + 7.56205409400872e72 * cos(theta) ** 8 - 1.2491888768864e71 * cos(theta) ** 6 + 1.05505817304594e69 * cos(theta) ** 4 - 3.41627039302518e66 * cos(theta) ** 2 + 1.77376448235991e63 ) * sin(35 * phi) ) # @torch.jit.script def Yl71_m_minus_34(theta, phi): return ( 1.70197818592895e-62 * (1.0 - cos(theta) ** 2) ** 17 * ( 9.7518608574863e78 * cos(theta) ** 37 - 4.6061981071531e79 * cos(theta) ** 35 + 9.85858947394279e79 * cos(theta) ** 33 - 1.26650492511966e80 * cos(theta) ** 31 + 1.09060146329748e80 * cos(theta) ** 29 - 6.65840893381621e79 * cos(theta) ** 27 + 2.9734116231164e79 * cos(theta) ** 25 - 9.87844393061927e78 * cos(theta) ** 23 + 2.45988810477035e78 * cos(theta) ** 21 - 4.59179112890465e77 * cos(theta) ** 19 + 6.3837096182333e76 * cos(theta) ** 17 - 6.52279870833756e75 * cos(theta) ** 15 + 4.79617552083644e74 * cos(theta) ** 13 - 2.45957719017253e73 * cos(theta) ** 11 + 8.40228232667635e71 * cos(theta) ** 9 - 1.78455553840914e70 * cos(theta) ** 7 + 2.11011634609189e68 * cos(theta) ** 5 - 1.13875679767506e66 * cos(theta) ** 3 + 1.77376448235991e63 * cos(theta) ) * sin(34 * phi) ) # @torch.jit.script def Yl71_m_minus_33(theta, phi): return ( 1.07507914518226e-60 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 2.56627917302271e77 * cos(theta) ** 38 - 1.2794994742092e78 * cos(theta) ** 36 + 2.89958513939494e78 * cos(theta) ** 34 - 3.95782789099893e78 * cos(theta) ** 32 + 3.63533821099161e78 * cos(theta) ** 30 - 2.37800319064865e78 * cos(theta) ** 28 + 1.14361985504477e78 * cos(theta) ** 26 - 4.1160183044247e77 * cos(theta) ** 24 + 1.1181309567138e77 * cos(theta) ** 22 - 2.29589556445233e76 * cos(theta) ** 20 + 3.54650534346294e75 * cos(theta) ** 18 - 4.07674919271097e74 * cos(theta) ** 16 + 3.42583965774031e73 * cos(theta) ** 14 - 2.04964765847711e72 * cos(theta) ** 12 + 8.40228232667635e70 * cos(theta) ** 10 - 2.23069442301142e69 * cos(theta) ** 8 + 3.51686057681981e67 * cos(theta) ** 6 - 2.84689199418765e65 * cos(theta) ** 4 + 8.86882241179953e62 * cos(theta) ** 2 - 4.44552501844588e59 ) * sin(33 * phi) ) # @torch.jit.script def Yl71_m_minus_32(theta, phi): return ( 6.84682788089054e-59 * (1.0 - cos(theta) ** 2) ** 16 * ( 6.58020300775054e75 * cos(theta) ** 39 - 3.45810668705188e76 * cos(theta) ** 37 + 8.28452896969983e76 * cos(theta) ** 35 - 1.19934178515119e77 * cos(theta) ** 33 + 1.17268974548117e77 * cos(theta) ** 31 - 8.20001100223672e76 * cos(theta) ** 29 + 4.23562909275841e76 * cos(theta) ** 27 - 1.64640732176988e76 * cos(theta) ** 25 + 4.86143894223389e75 * cos(theta) ** 23 - 1.09328360212016e75 * cos(theta) ** 21 + 1.86658175971734e74 * cos(theta) ** 19 - 2.39808776041822e73 * cos(theta) ** 17 + 2.28389310516021e72 * cos(theta) ** 15 - 1.57665204498239e71 * cos(theta) ** 13 + 7.63843847879669e69 * cos(theta) ** 11 - 2.47854935890158e68 * cos(theta) ** 9 + 5.02408653831401e66 * cos(theta) ** 7 - 5.6937839883753e64 * cos(theta) ** 5 + 2.95627413726651e62 * cos(theta) ** 3 - 4.44552501844588e59 * cos(theta) ) * sin(32 * phi) ) # @torch.jit.script def Yl71_m_minus_31(theta, phi): return ( 4.39478889556512e-57 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 1.64505075193764e74 * cos(theta) ** 40 - 9.10028075539968e74 * cos(theta) ** 38 + 2.30125804713884e75 * cos(theta) ** 36 - 3.52747583867998e75 * cos(theta) ** 34 + 3.66465545462864e75 * cos(theta) ** 32 - 2.73333700074557e75 * cos(theta) ** 30 + 1.51272467598515e75 * cos(theta) ** 28 - 6.33233585296107e74 * cos(theta) ** 26 + 2.02559955926412e74 * cos(theta) ** 24 - 4.96947091872798e73 * cos(theta) ** 22 + 9.3329087985867e72 * cos(theta) ** 20 - 1.33227097801012e72 * cos(theta) ** 18 + 1.42743319072513e71 * cos(theta) ** 16 - 1.12618003213028e70 * cos(theta) ** 14 + 6.36536539899724e68 * cos(theta) ** 12 - 2.47854935890158e67 * cos(theta) ** 10 + 6.28010817289252e65 * cos(theta) ** 8 - 9.4896399806255e63 * cos(theta) ** 6 + 7.39068534316627e61 * cos(theta) ** 4 - 2.22276250922294e59 * cos(theta) ** 2 + 1.07901092680725e56 ) * sin(31 * phi) ) # @torch.jit.script def Yl71_m_minus_30(theta, phi): return ( 2.84203899663231e-55 * (1.0 - cos(theta) ** 2) ** 15 * ( 4.01231890716496e72 * cos(theta) ** 41 - 2.33340532189735e73 * cos(theta) ** 39 + 6.21961634361849e73 * cos(theta) ** 37 - 1.00785023962285e74 * cos(theta) ** 35 + 1.11050165291777e74 * cos(theta) ** 33 - 8.81721613143733e73 * cos(theta) ** 31 + 5.21629198615567e73 * cos(theta) ** 29 - 2.34530957517077e73 * cos(theta) ** 27 + 8.10239823705649e72 * cos(theta) ** 25 - 2.16063952988173e72 * cos(theta) ** 23 + 4.44424228504128e71 * cos(theta) ** 21 - 7.01195251584275e70 * cos(theta) ** 19 + 8.39666582779489e69 * cos(theta) ** 17 - 7.50786688086854e68 * cos(theta) ** 15 + 4.89643492230557e67 * cos(theta) ** 13 - 2.25322668991053e66 * cos(theta) ** 11 + 6.97789796988057e64 * cos(theta) ** 9 - 1.35566285437507e63 * cos(theta) ** 7 + 1.47813706863325e61 * cos(theta) ** 5 - 7.40920836407647e58 * cos(theta) ** 3 + 1.07901092680725e56 * cos(theta) ) * sin(30 * phi) ) # @torch.jit.script def Yl71_m_minus_29(theta, phi): return ( 1.85103812934372e-53 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 9.55314025515468e70 * cos(theta) ** 42 - 5.83351330474339e71 * cos(theta) ** 40 + 1.6367411430575e72 * cos(theta) ** 38 - 2.79958399895236e72 * cos(theta) ** 36 + 3.26618133211109e72 * cos(theta) ** 34 - 2.75538004107417e72 * cos(theta) ** 32 + 1.73876399538522e72 * cos(theta) ** 30 - 8.37610562560988e71 * cos(theta) ** 28 + 3.1163070142525e71 * cos(theta) ** 26 - 9.00266470784055e70 * cos(theta) ** 24 + 2.02011012956422e70 * cos(theta) ** 22 - 3.50597625792137e69 * cos(theta) ** 20 + 4.66481434877494e68 * cos(theta) ** 18 - 4.69241680054284e67 * cos(theta) ** 16 + 3.49745351593255e66 * cos(theta) ** 14 - 1.87768890825877e65 * cos(theta) ** 12 + 6.97789796988057e63 * cos(theta) ** 10 - 1.69457856796884e62 * cos(theta) ** 8 + 2.46356178105542e60 * cos(theta) ** 6 - 1.85230209101912e58 * cos(theta) ** 4 + 5.39505463403626e55 * cos(theta) ** 2 - 2.54363726262907e52 ) * sin(29 * phi) ) # @torch.jit.script def Yl71_m_minus_28(theta, phi): return ( 1.21380687393104e-51 * (1.0 - cos(theta) ** 2) ** 14 * ( 2.22166052445458e69 * cos(theta) ** 43 - 1.42280812310814e70 * cos(theta) ** 41 + 4.19677216168589e70 * cos(theta) ** 39 - 7.56644324041179e70 * cos(theta) ** 37 + 9.33194666317454e70 * cos(theta) ** 35 - 8.34963648810353e70 * cos(theta) ** 33 + 5.60891611414588e70 * cos(theta) ** 31 - 2.88831228469306e70 * cos(theta) ** 29 + 1.15418778305648e70 * cos(theta) ** 27 - 3.60106588313622e69 * cos(theta) ** 25 + 8.78308751984444e68 * cos(theta) ** 23 - 1.66951250377208e68 * cos(theta) ** 21 + 2.45516544672365e67 * cos(theta) ** 19 - 2.7602451767899e66 * cos(theta) ** 17 + 2.33163567728837e65 * cos(theta) ** 15 - 1.44437608327598e64 * cos(theta) ** 13 + 6.34354360898234e62 * cos(theta) ** 11 - 1.88286507552093e61 * cos(theta) ** 9 + 3.51937397293632e59 * cos(theta) ** 7 - 3.70460418203823e57 * cos(theta) ** 5 + 1.79835154467875e55 * cos(theta) ** 3 - 2.54363726262907e52 * cos(theta) ) * sin(28 * phi) ) # @torch.jit.script def Yl71_m_minus_27(theta, phi): return ( 8.01112536794487e-50 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 5.04922846466949e67 * cos(theta) ** 44 - 3.38763838835272e68 * cos(theta) ** 42 + 1.04919304042147e69 * cos(theta) ** 40 - 1.99116927379258e69 * cos(theta) ** 38 + 2.59220740643737e69 * cos(theta) ** 36 - 2.45577543767751e69 * cos(theta) ** 34 + 1.75278628567059e69 * cos(theta) ** 32 - 9.62770761564355e68 * cos(theta) ** 30 + 4.12209922520171e68 * cos(theta) ** 28 - 1.38502533966778e68 * cos(theta) ** 26 + 3.65961979993518e67 * cos(theta) ** 24 - 7.58869319896401e66 * cos(theta) ** 22 + 1.22758272336183e66 * cos(theta) ** 20 - 1.53346954266106e65 * cos(theta) ** 18 + 1.45727229830523e64 * cos(theta) ** 16 - 1.03169720233998e63 * cos(theta) ** 14 + 5.28628634081862e61 * cos(theta) ** 12 - 1.88286507552093e60 * cos(theta) ** 10 + 4.3992174661704e58 * cos(theta) ** 8 - 6.17434030339705e56 * cos(theta) ** 6 + 4.49587886169688e54 * cos(theta) ** 4 - 1.27181863131454e52 * cos(theta) ** 2 + 5.83938765525499e48 ) * sin(27 * phi) ) # @torch.jit.script def Yl71_m_minus_26(theta, phi): return ( 5.32001458461065e-48 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.12205076992655e66 * cos(theta) ** 45 - 7.87822881012261e66 * cos(theta) ** 43 + 2.55900741566213e67 * cos(theta) ** 41 - 5.10556224049378e67 * cos(theta) ** 39 + 7.00596596334425e67 * cos(theta) ** 37 - 7.01650125050717e67 * cos(theta) ** 35 + 5.31147359294118e67 * cos(theta) ** 33 - 3.10571213407856e67 * cos(theta) ** 31 + 1.42141352593163e67 * cos(theta) ** 29 - 5.12972348025102e66 * cos(theta) ** 27 + 1.46384791997407e66 * cos(theta) ** 25 - 3.29943182563653e65 * cos(theta) ** 23 + 5.84563201600869e64 * cos(theta) ** 21 - 8.07089232979504e63 * cos(theta) ** 19 + 8.57218999003076e62 * cos(theta) ** 17 - 6.87798134893323e61 * cos(theta) ** 15 + 4.06637410832201e60 * cos(theta) ** 13 - 1.71169552320085e59 * cos(theta) ** 11 + 4.888019406856e57 * cos(theta) ** 9 - 8.82048614771008e55 * cos(theta) ** 7 + 8.99175772339377e53 * cos(theta) ** 5 - 4.23939543771512e51 * cos(theta) ** 3 + 5.83938765525499e48 * cos(theta) ) * sin(26 * phi) ) # @torch.jit.script def Yl71_m_minus_25(theta, phi): return ( 3.55367417211057e-46 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 2.43924080418816e64 * cos(theta) ** 46 - 1.79050654775514e65 * cos(theta) ** 44 + 6.09287479919554e65 * cos(theta) ** 42 - 1.27639056012345e66 * cos(theta) ** 40 + 1.84367525351164e66 * cos(theta) ** 38 - 1.94902812514088e66 * cos(theta) ** 36 + 1.56219811557094e66 * cos(theta) ** 34 - 9.70535041899551e65 * cos(theta) ** 32 + 4.73804508643875e65 * cos(theta) ** 30 - 1.83204410008965e65 * cos(theta) ** 28 + 5.63018430759259e64 * cos(theta) ** 26 - 1.37476326068189e64 * cos(theta) ** 24 + 2.65710546182213e63 * cos(theta) ** 22 - 4.03544616489752e62 * cos(theta) ** 20 + 4.76232777223931e61 * cos(theta) ** 18 - 4.29873834308327e60 * cos(theta) ** 16 + 2.90455293451572e59 * cos(theta) ** 14 - 1.42641293600071e58 * cos(theta) ** 12 + 4.888019406856e56 * cos(theta) ** 10 - 1.10256076846376e55 * cos(theta) ** 8 + 1.49862628723229e53 * cos(theta) ** 6 - 1.05984885942878e51 * cos(theta) ** 4 + 2.91969382762749e48 * cos(theta) ** 2 - 1.30869288553451e45 ) * sin(25 * phi) ) # @torch.jit.script def Yl71_m_minus_24(theta, phi): return ( 2.38705349224361e-44 * (1.0 - cos(theta) ** 2) ** 12 * ( 5.18987405146417e62 * cos(theta) ** 47 - 3.97890343945586e63 * cos(theta) ** 45 + 1.41694762771989e64 * cos(theta) ** 43 - 3.11314770761816e64 * cos(theta) ** 41 + 4.72737244490165e64 * cos(theta) ** 39 - 5.26764358146184e64 * cos(theta) ** 37 + 4.46342318734553e64 * cos(theta) ** 35 - 2.94101527848349e64 * cos(theta) ** 33 + 1.52840164078669e64 * cos(theta) ** 31 - 6.317393448585e63 * cos(theta) ** 29 + 2.08525344725651e63 * cos(theta) ** 27 - 5.49905304272754e62 * cos(theta) ** 25 + 1.15526324427049e62 * cos(theta) ** 23 - 1.92164103090358e61 * cos(theta) ** 21 + 2.50648830117858e60 * cos(theta) ** 19 - 2.52866961357839e59 * cos(theta) ** 17 + 1.93636862301048e58 * cos(theta) ** 15 - 1.09724072000054e57 * cos(theta) ** 13 + 4.44365400623273e55 * cos(theta) ** 11 - 1.22506752051529e54 * cos(theta) ** 9 + 2.14089469604614e52 * cos(theta) ** 7 - 2.11969771885756e50 * cos(theta) ** 5 + 9.73231275875831e47 * cos(theta) ** 3 - 1.30869288553451e45 * cos(theta) ) * sin(24 * phi) ) # @torch.jit.script def Yl71_m_minus_23(theta, phi): return ( 1.61192404130082e-42 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.0812237607217e61 * cos(theta) ** 48 - 8.64979008577362e61 * cos(theta) ** 46 + 3.22033551754521e62 * cos(theta) ** 44 - 7.41225644670991e62 * cos(theta) ** 42 + 1.18184311122541e63 * cos(theta) ** 40 - 1.38622199512154e63 * cos(theta) ** 38 + 1.23983977426265e63 * cos(theta) ** 36 - 8.65004493671614e62 * cos(theta) ** 34 + 4.77625512745842e62 * cos(theta) ** 32 - 2.105797816195e62 * cos(theta) ** 30 + 7.44733374020183e61 * cos(theta) ** 28 - 2.11502040104906e61 * cos(theta) ** 26 + 4.81359685112705e60 * cos(theta) ** 24 - 8.73473195865264e59 * cos(theta) ** 22 + 1.25324415058929e59 * cos(theta) ** 20 - 1.404816451988e58 * cos(theta) ** 18 + 1.21023038938155e57 * cos(theta) ** 16 - 7.83743371428959e55 * cos(theta) ** 14 + 3.70304500519394e54 * cos(theta) ** 12 - 1.22506752051529e53 * cos(theta) ** 10 + 2.67611837005767e51 * cos(theta) ** 8 - 3.53282953142927e49 * cos(theta) ** 6 + 2.43307818968958e47 * cos(theta) ** 4 - 6.54346442767255e44 * cos(theta) ** 2 + 2.86994053845287e41 ) * sin(23 * phi) ) # @torch.jit.script def Yl71_m_minus_22(theta, phi): return ( 1.09397283893788e-40 * (1.0 - cos(theta) ** 2) ** 11 * ( 2.20657910351368e59 * cos(theta) ** 49 - 1.84038086931354e60 * cos(theta) ** 47 + 7.15630115010047e60 * cos(theta) ** 45 - 1.7237805690023e61 * cos(theta) ** 43 + 2.88254417372052e61 * cos(theta) ** 41 - 3.55441537210651e61 * cos(theta) ** 39 + 3.35091830881796e61 * cos(theta) ** 37 - 2.47144141049033e61 * cos(theta) ** 35 + 1.44735003862376e61 * cos(theta) ** 33 - 6.7928961812742e60 * cos(theta) ** 31 + 2.56804611731098e60 * cos(theta) ** 29 - 7.83340889277428e59 * cos(theta) ** 27 + 1.92543874045082e59 * cos(theta) ** 25 - 3.79770954724028e58 * cos(theta) ** 23 + 5.96782928852044e57 * cos(theta) ** 21 - 7.39377079993683e56 * cos(theta) ** 19 + 7.11900229047971e55 * cos(theta) ** 17 - 5.2249558095264e54 * cos(theta) ** 15 + 2.84849615784149e53 * cos(theta) ** 13 - 1.11369774592299e52 * cos(theta) ** 11 + 2.97346485561963e50 * cos(theta) ** 9 - 5.04689933061324e48 * cos(theta) ** 7 + 4.86615637937915e46 * cos(theta) ** 5 - 2.18115480922418e44 * cos(theta) ** 3 + 2.86994053845287e41 * cos(theta) ) * sin(22 * phi) ) # @torch.jit.script def Yl71_m_minus_21(theta, phi): return ( 7.45990017450111e-39 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 4.41315820702735e57 * cos(theta) ** 50 - 3.83412681106987e58 * cos(theta) ** 48 + 1.55571764132619e59 * cos(theta) ** 46 - 3.91768311136887e59 * cos(theta) ** 44 + 6.86320041362028e59 * cos(theta) ** 42 - 8.88603843026626e59 * cos(theta) ** 40 + 8.81820607583675e59 * cos(theta) ** 38 - 6.86511502913979e59 * cos(theta) ** 36 + 4.25691187830519e59 * cos(theta) ** 34 - 2.12278005664819e59 * cos(theta) ** 32 + 8.56015372436992e58 * cos(theta) ** 30 - 2.79764603313367e58 * cos(theta) ** 28 + 7.40553361711854e57 * cos(theta) ** 26 - 1.58237897801678e57 * cos(theta) ** 24 + 2.7126496766002e56 * cos(theta) ** 22 - 3.69688539996841e55 * cos(theta) ** 20 + 3.95500127248873e54 * cos(theta) ** 18 - 3.265597380954e53 * cos(theta) ** 16 + 2.03464011274392e52 * cos(theta) ** 14 - 9.28081454935825e50 * cos(theta) ** 12 + 2.97346485561963e49 * cos(theta) ** 10 - 6.30862416326655e47 * cos(theta) ** 8 + 8.11026063229859e45 * cos(theta) ** 6 - 5.45288702306046e43 * cos(theta) ** 4 + 1.43497026922644e41 * cos(theta) ** 2 - 6.17191513645779e37 ) * sin(21 * phi) ) # @torch.jit.script def Yl71_m_minus_20(theta, phi): return ( 5.10989548815476e-37 * (1.0 - cos(theta) ** 2) ** 10 * ( 8.65325138632815e55 * cos(theta) ** 51 - 7.82474859402013e56 * cos(theta) ** 49 + 3.31003753473657e57 * cos(theta) ** 47 - 8.70596246970861e57 * cos(theta) ** 45 + 1.59609311944658e58 * cos(theta) ** 43 - 2.16732644640641e58 * cos(theta) ** 41 + 2.26107848098378e58 * cos(theta) ** 39 - 1.85543649436211e58 * cos(theta) ** 37 + 1.21626053665862e58 * cos(theta) ** 35 - 6.43266683832784e57 * cos(theta) ** 33 + 2.76133991108707e57 * cos(theta) ** 31 - 9.64705528666783e56 * cos(theta) ** 29 + 2.74279022856242e56 * cos(theta) ** 27 - 6.32951591206713e55 * cos(theta) ** 25 + 1.17941290286965e55 * cos(theta) ** 23 - 1.76042161903258e54 * cos(theta) ** 21 + 2.08157961709933e53 * cos(theta) ** 19 - 1.92093963585529e52 * cos(theta) ** 17 + 1.35642674182928e51 * cos(theta) ** 15 - 7.13908811489096e49 * cos(theta) ** 13 + 2.70314986874512e48 * cos(theta) ** 11 - 7.0095824036295e46 * cos(theta) ** 9 + 1.15860866175694e45 * cos(theta) ** 7 - 1.09057740461209e43 * cos(theta) ** 5 + 4.78323423075479e40 * cos(theta) ** 3 - 6.17191513645779e37 * cos(theta) ) * sin(20 * phi) ) # @torch.jit.script def Yl71_m_minus_19(theta, phi): return ( 3.51507329866901e-35 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.66408680506311e54 * cos(theta) ** 52 - 1.56494971880403e55 * cos(theta) ** 50 + 6.8959115307012e55 * cos(theta) ** 48 - 1.89260053689318e56 * cos(theta) ** 46 + 3.62748436237859e56 * cos(theta) ** 44 - 5.16030106287239e56 * cos(theta) ** 42 + 5.65269620245945e56 * cos(theta) ** 40 - 4.88272761674239e56 * cos(theta) ** 38 + 3.3785014907184e56 * cos(theta) ** 36 - 1.89196083480231e56 * cos(theta) ** 34 + 8.6291872221471e55 * cos(theta) ** 32 - 3.21568509555594e55 * cos(theta) ** 30 + 9.79567938772294e54 * cos(theta) ** 28 - 2.4344291969489e54 * cos(theta) ** 26 + 4.91422042862355e53 * cos(theta) ** 24 - 8.00191645014808e52 * cos(theta) ** 22 + 1.04078980854967e52 * cos(theta) ** 20 - 1.06718868658627e51 * cos(theta) ** 18 + 8.47766713643301e49 * cos(theta) ** 16 - 5.09934865349354e48 * cos(theta) ** 14 + 2.25262489062093e47 * cos(theta) ** 12 - 7.0095824036295e45 * cos(theta) ** 10 + 1.44826082719618e44 * cos(theta) ** 8 - 1.81762900768682e42 * cos(theta) ** 6 + 1.1958085576887e40 * cos(theta) ** 4 - 3.0859575682289e37 * cos(theta) ** 2 + 1.30429313957265e34 ) * sin(19 * phi) ) # @torch.jit.script def Yl71_m_minus_18(theta, phi): return ( 2.42769193282891e-33 * (1.0 - cos(theta) ** 2) ** 9 * ( 3.13978642464737e52 * cos(theta) ** 53 - 3.06852886040005e53 * cos(theta) ** 51 + 1.40732888381657e54 * cos(theta) ** 49 - 4.0268096529642e54 * cos(theta) ** 47 + 8.0610763608413e54 * cos(theta) ** 45 - 1.20007001462149e55 * cos(theta) ** 43 + 1.37870639084377e55 * cos(theta) ** 41 - 1.25198144019036e55 * cos(theta) ** 39 + 9.13108511004974e54 * cos(theta) ** 37 - 5.40560238514944e54 * cos(theta) ** 35 + 2.61490521883245e54 * cos(theta) ** 33 - 1.03731777275998e54 * cos(theta) ** 31 + 3.37782047852515e53 * cos(theta) ** 29 - 9.01640443314406e52 * cos(theta) ** 27 + 1.96568817144942e52 * cos(theta) ** 25 - 3.47909410876003e51 * cos(theta) ** 23 + 4.9561419454746e50 * cos(theta) ** 21 - 5.61678256098039e49 * cos(theta) ** 19 + 4.98686302143118e48 * cos(theta) ** 17 - 3.39956576899569e47 * cos(theta) ** 15 + 1.73278837740072e46 * cos(theta) ** 13 - 6.37234763966318e44 * cos(theta) ** 11 + 1.60917869688464e43 * cos(theta) ** 9 - 2.59661286812403e41 * cos(theta) ** 7 + 2.39161711537739e39 * cos(theta) ** 5 - 1.02865252274297e37 * cos(theta) ** 3 + 1.30429313957265e34 * cos(theta) ) * sin(18 * phi) ) # @torch.jit.script def Yl71_m_minus_17(theta, phi): return ( 1.68300520225555e-31 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 5.81441930490253e50 * cos(theta) ** 54 - 5.90101703923087e51 * cos(theta) ** 52 + 2.81465776763314e52 * cos(theta) ** 50 - 8.38918677700875e52 * cos(theta) ** 48 + 1.75240790453072e53 * cos(theta) ** 46 - 2.72743185141247e53 * cos(theta) ** 44 + 3.28263426391374e53 * cos(theta) ** 42 - 3.12995360047589e53 * cos(theta) ** 40 + 2.40291713422362e53 * cos(theta) ** 38 - 1.50155621809707e53 * cos(theta) ** 36 + 7.6908977024484e52 * cos(theta) ** 34 - 3.24161803987494e52 * cos(theta) ** 32 + 1.12594015950838e52 * cos(theta) ** 30 - 3.22014444040859e51 * cos(theta) ** 28 + 7.56033912095931e50 * cos(theta) ** 26 - 1.44962254531668e50 * cos(theta) ** 24 + 2.25279179339754e49 * cos(theta) ** 22 - 2.80839128049019e48 * cos(theta) ** 20 + 2.77047945635066e47 * cos(theta) ** 18 - 2.12472860562231e46 * cos(theta) ** 16 + 1.23770598385766e45 * cos(theta) ** 14 - 5.31028969971931e43 * cos(theta) ** 12 + 1.60917869688464e42 * cos(theta) ** 10 - 3.24576608515504e40 * cos(theta) ** 8 + 3.98602852562899e38 * cos(theta) ** 6 - 2.57163130685741e36 * cos(theta) ** 4 + 6.52146569786326e33 * cos(theta) ** 2 - 2.7138850178374e30 ) * sin(17 * phi) ) # @torch.jit.script def Yl71_m_minus_16(theta, phi): return ( 1.17086854566878e-29 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.05716714634592e49 * cos(theta) ** 55 - 1.11339944136432e50 * cos(theta) ** 53 + 5.51893679928067e50 * cos(theta) ** 51 - 1.71207893408342e51 * cos(theta) ** 49 + 3.72852745644834e51 * cos(theta) ** 47 - 6.06095966980549e51 * cos(theta) ** 45 + 7.63403317189241e51 * cos(theta) ** 43 - 7.63403317189241e51 * cos(theta) ** 41 + 6.16132598518876e51 * cos(theta) ** 39 - 4.05826004891099e51 * cos(theta) ** 37 + 2.19739934355668e51 * cos(theta) ** 35 - 9.82308496931801e50 * cos(theta) ** 33 + 3.63206503067221e50 * cos(theta) ** 31 - 1.11039463462365e50 * cos(theta) ** 29 + 2.8001256003553e49 * cos(theta) ** 27 - 5.79849018126672e48 * cos(theta) ** 25 + 9.79474692781541e47 * cos(theta) ** 23 - 1.33732918118581e47 * cos(theta) ** 21 + 1.45814708228982e46 * cos(theta) ** 19 - 1.24984035624842e45 * cos(theta) ** 17 + 8.25137322571771e43 * cos(theta) ** 15 - 4.08483823055332e42 * cos(theta) ** 13 + 1.46288972444058e41 * cos(theta) ** 11 - 3.60640676128337e39 * cos(theta) ** 9 + 5.69432646518427e37 * cos(theta) ** 7 - 5.14326261371483e35 * cos(theta) ** 5 + 2.17382189928775e33 * cos(theta) ** 3 - 2.7138850178374e30 * cos(theta) ) * sin(16 * phi) ) # @torch.jit.script def Yl71_m_minus_15(theta, phi): return ( 8.17262889945722e-28 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.88779847561771e47 * cos(theta) ** 56 - 2.06185081734132e48 * cos(theta) ** 54 + 1.06133399986167e49 * cos(theta) ** 52 - 3.42415786816684e49 * cos(theta) ** 50 + 7.76776553426737e49 * cos(theta) ** 48 - 1.31759992821858e50 * cos(theta) ** 46 + 1.73500753906646e50 * cos(theta) ** 44 - 1.81762694568867e50 * cos(theta) ** 42 + 1.54033149629719e50 * cos(theta) ** 40 - 1.06796317076605e50 * cos(theta) ** 38 + 6.10388706543523e49 * cos(theta) ** 36 - 2.88914263803471e49 * cos(theta) ** 34 + 1.13502032208506e49 * cos(theta) ** 32 - 3.70131544874551e48 * cos(theta) ** 30 + 1.00004485726975e48 * cos(theta) ** 28 - 2.23018853125643e47 * cos(theta) ** 26 + 4.08114455325642e46 * cos(theta) ** 24 - 6.07876900539003e45 * cos(theta) ** 22 + 7.2907354114491e44 * cos(theta) ** 20 - 6.94355753471343e43 * cos(theta) ** 18 + 5.15710826607357e42 * cos(theta) ** 16 - 2.91774159325237e41 * cos(theta) ** 14 + 1.21907477036715e40 * cos(theta) ** 12 - 3.60640676128337e38 * cos(theta) ** 10 + 7.11790808148034e36 * cos(theta) ** 8 - 8.57210435619138e34 * cos(theta) ** 6 + 5.43455474821939e32 * cos(theta) ** 4 - 1.3569425089187e30 * cos(theta) ** 2 + 5.5703715472853e26 ) * sin(15 * phi) ) # @torch.jit.script def Yl71_m_minus_14(theta, phi): return ( 5.72200762892404e-26 * (1.0 - cos(theta) ** 2) ** 7 * ( 3.3119271502065e45 * cos(theta) ** 57 - 3.74881966789332e46 * cos(theta) ** 55 + 2.00251698087107e47 * cos(theta) ** 53 - 6.71403503562125e47 * cos(theta) ** 51 + 1.58525827229946e48 * cos(theta) ** 49 - 2.80340410259273e48 * cos(theta) ** 47 + 3.85557230903657e48 * cos(theta) ** 45 - 4.2270394085783e48 * cos(theta) ** 43 + 3.75690608852973e48 * cos(theta) ** 41 - 2.73836710452834e48 * cos(theta) ** 39 + 1.64969920687439e48 * cos(theta) ** 37 - 8.25469325152774e47 * cos(theta) ** 35 + 3.43945552146989e47 * cos(theta) ** 33 - 1.19397272540178e47 * cos(theta) ** 31 + 3.44843054230948e46 * cos(theta) ** 29 - 8.25995752317197e45 * cos(theta) ** 27 + 1.63245782130257e45 * cos(theta) ** 25 - 2.64294304582175e44 * cos(theta) ** 23 + 3.47177876735671e43 * cos(theta) ** 21 - 3.65450396563865e42 * cos(theta) ** 19 + 3.03359309769033e41 * cos(theta) ** 17 - 1.94516106216825e40 * cos(theta) ** 15 + 9.37749823359348e38 * cos(theta) ** 13 - 3.2785516011667e37 * cos(theta) ** 11 + 7.90878675720038e35 * cos(theta) ** 9 - 1.22458633659877e34 * cos(theta) ** 7 + 1.08691094964388e32 * cos(theta) ** 5 - 4.52314169639566e29 * cos(theta) ** 3 + 5.5703715472853e26 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl71_m_minus_13(theta, phi): return ( 4.0176480748809e-24 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 5.71021922449397e43 * cos(theta) ** 58 - 6.69432083552378e44 * cos(theta) ** 56 + 3.70836477939087e45 * cos(theta) ** 54 - 1.29116058377332e46 * cos(theta) ** 52 + 3.17051654459892e46 * cos(theta) ** 50 - 5.84042521373486e46 * cos(theta) ** 48 + 8.3816789326882e46 * cos(theta) ** 46 - 9.60690774676886e46 * cos(theta) ** 44 + 8.94501449649936e46 * cos(theta) ** 42 - 6.84591776132084e46 * cos(theta) ** 40 + 4.34131370230102e46 * cos(theta) ** 38 - 2.29297034764659e46 * cos(theta) ** 36 + 1.0116045651382e46 * cos(theta) ** 34 - 3.73116476688055e45 * cos(theta) ** 32 + 1.14947684743649e45 * cos(theta) ** 30 - 2.94998482970428e44 * cos(theta) ** 28 + 6.2786839280868e43 * cos(theta) ** 26 - 1.1012262690924e43 * cos(theta) ** 24 + 1.57808125788942e42 * cos(theta) ** 22 - 1.82725198281932e41 * cos(theta) ** 20 + 1.68532949871685e40 * cos(theta) ** 18 - 1.21572566385515e39 * cos(theta) ** 16 + 6.69821302399534e37 * cos(theta) ** 14 - 2.73212633430559e36 * cos(theta) ** 12 + 7.90878675720038e34 * cos(theta) ** 10 - 1.53073292074846e33 * cos(theta) ** 8 + 1.81151824940646e31 * cos(theta) ** 6 - 1.13078542409892e29 * cos(theta) ** 4 + 2.78518577364265e26 * cos(theta) ** 2 - 1.12989280877998e23 ) * sin(13 * phi) ) # @torch.jit.script def Yl71_m_minus_12(theta, phi): return ( 2.82837858925591e-22 * (1.0 - cos(theta) ** 2) ** 6 * ( 9.67833766863384e41 * cos(theta) ** 59 - 1.17444225184628e43 * cos(theta) ** 57 + 6.74248141707431e43 * cos(theta) ** 55 - 2.43615204485532e44 * cos(theta) ** 53 + 6.21669910705671e44 * cos(theta) ** 51 - 1.19192351300711e45 * cos(theta) ** 49 + 1.78333594312515e45 * cos(theta) ** 47 - 2.13486838817086e45 * cos(theta) ** 45 + 2.08023592941846e45 * cos(theta) ** 43 - 1.66973603934655e45 * cos(theta) ** 41 + 1.11315735956436e45 * cos(theta) ** 39 - 6.19721715580161e44 * cos(theta) ** 37 + 2.89029875753772e44 * cos(theta) ** 35 - 1.1306559899638e44 * cos(theta) ** 33 + 3.7079898304403e43 * cos(theta) ** 31 - 1.01723614817389e43 * cos(theta) ** 29 + 2.325438491884e42 * cos(theta) ** 27 - 4.40490507636959e41 * cos(theta) ** 25 + 6.86122286038876e40 * cos(theta) ** 23 - 8.70119991818725e39 * cos(theta) ** 21 + 8.87015525640448e38 * cos(theta) ** 19 - 7.15132743444209e37 * cos(theta) ** 17 + 4.46547534933023e36 * cos(theta) ** 15 - 2.10163564177353e35 * cos(theta) ** 13 + 7.18980614290944e33 * cos(theta) ** 11 - 1.70081435638718e32 * cos(theta) ** 9 + 2.5878832134378e30 * cos(theta) ** 7 - 2.26157084819783e28 * cos(theta) ** 5 + 9.28395257880883e25 * cos(theta) ** 3 - 1.12989280877998e23 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl71_m_minus_11(theta, phi): return ( 1.99596174091397e-20 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.61305627810564e40 * cos(theta) ** 60 - 2.02490043421772e41 * cos(theta) ** 58 + 1.20401453876327e42 * cos(theta) ** 56 - 4.51139267565799e42 * cos(theta) ** 54 + 1.19551905904937e43 * cos(theta) ** 52 - 2.38384702601423e43 * cos(theta) ** 50 + 3.71528321484406e43 * cos(theta) ** 48 - 4.64101823515404e43 * cos(theta) ** 46 + 4.72780893049649e43 * cos(theta) ** 44 - 3.97556199844416e43 * cos(theta) ** 42 + 2.78289339891091e43 * cos(theta) ** 40 - 1.63084661994779e43 * cos(theta) ** 38 + 8.02860765982701e42 * cos(theta) ** 36 - 3.32545879401119e42 * cos(theta) ** 34 + 1.15874682201259e42 * cos(theta) ** 32 - 3.39078716057963e41 * cos(theta) ** 30 + 8.30513747101429e40 * cos(theta) ** 28 - 1.69419426014215e40 * cos(theta) ** 26 + 2.85884285849532e39 * cos(theta) ** 24 - 3.9550908719033e38 * cos(theta) ** 22 + 4.43507762820224e37 * cos(theta) ** 20 - 3.97295968580116e36 * cos(theta) ** 18 + 2.79092209333139e35 * cos(theta) ** 16 - 1.50116831555252e34 * cos(theta) ** 14 + 5.9915051190912e32 * cos(theta) ** 12 - 1.70081435638718e31 * cos(theta) ** 10 + 3.23485401679725e29 * cos(theta) ** 8 - 3.76928474699638e27 * cos(theta) ** 6 + 2.32098814470221e25 * cos(theta) ** 4 - 5.6494640438999e22 * cos(theta) ** 2 + 2.26886106180719e19 ) * sin(11 * phi) ) # @torch.jit.script def Yl71_m_minus_10(theta, phi): return ( 1.41164032538405e-18 * (1.0 - cos(theta) ** 2) ** 5 * ( 2.64435455427154e38 * cos(theta) ** 61 - 3.43203463426732e39 * cos(theta) ** 59 + 2.11230620835661e40 * cos(theta) ** 57 - 8.20253213755999e40 * cos(theta) ** 55 + 2.255696337829e41 * cos(theta) ** 53 - 4.67420985492986e41 * cos(theta) ** 51 + 7.5822106425389e41 * cos(theta) ** 49 - 9.87450688330647e41 * cos(theta) ** 47 + 1.050624206777e42 * cos(theta) ** 45 - 9.24549301963758e41 * cos(theta) ** 43 + 6.78754487539247e41 * cos(theta) ** 41 - 4.18165799986613e41 * cos(theta) ** 39 + 2.16989396211541e41 * cos(theta) ** 37 - 9.50131084003197e40 * cos(theta) ** 35 + 3.51135400609877e40 * cos(theta) ** 33 - 1.0938023098644e40 * cos(theta) ** 31 + 2.86384050724631e39 * cos(theta) ** 29 - 6.27479355608203e38 * cos(theta) ** 27 + 1.14353714339813e38 * cos(theta) ** 25 - 1.71960472691448e37 * cos(theta) ** 23 + 2.11194172771535e36 * cos(theta) ** 21 - 2.09103141357956e35 * cos(theta) ** 19 + 1.64171887843023e34 * cos(theta) ** 17 - 1.00077887703501e33 * cos(theta) ** 15 + 4.60885009160861e31 * cos(theta) ** 13 - 1.54619486944289e30 * cos(theta) ** 11 + 3.59428224088584e28 * cos(theta) ** 9 - 5.38469249570912e26 * cos(theta) ** 7 + 4.64197628940441e24 * cos(theta) ** 5 - 1.88315468129997e22 * cos(theta) ** 3 + 2.26886106180719e19 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl71_m_minus_9(theta, phi): return ( 1.0003740333612e-16 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 4.26508799076055e36 * cos(theta) ** 62 - 5.72005772377887e37 * cos(theta) ** 60 + 3.64190725578726e38 * cos(theta) ** 58 - 1.46473788170714e39 * cos(theta) ** 56 + 4.17721544042407e39 * cos(theta) ** 54 - 8.98886510563435e39 * cos(theta) ** 52 + 1.51644212850778e40 * cos(theta) ** 50 - 2.05718893402218e40 * cos(theta) ** 48 + 2.28396566690652e40 * cos(theta) ** 46 - 2.10124841355399e40 * cos(theta) ** 44 + 1.61608211318868e40 * cos(theta) ** 42 - 1.04541449996653e40 * cos(theta) ** 40 + 5.71024726872476e39 * cos(theta) ** 38 - 2.63925301111999e39 * cos(theta) ** 36 + 1.03275117826434e39 * cos(theta) ** 34 - 3.41813221832624e38 * cos(theta) ** 32 + 9.54613502415435e37 * cos(theta) ** 30 - 2.24099769860073e37 * cos(theta) ** 28 + 4.39821978230049e36 * cos(theta) ** 26 - 7.16501969547699e35 * cos(theta) ** 24 + 9.59973512597888e34 * cos(theta) ** 22 - 1.04551570678978e34 * cos(theta) ** 20 + 9.12066043572351e32 * cos(theta) ** 18 - 6.25486798146883e31 * cos(theta) ** 16 + 3.29203577972044e30 * cos(theta) ** 14 - 1.28849572453574e29 * cos(theta) ** 12 + 3.59428224088584e27 * cos(theta) ** 10 - 6.7308656196364e25 * cos(theta) ** 8 + 7.73662714900736e23 * cos(theta) ** 6 - 4.70788670324991e21 * cos(theta) ** 4 + 1.13443053090359e19 * cos(theta) ** 2 - 4.51784361172279e15 ) * sin(9 * phi) ) # @torch.jit.script def Yl71_m_minus_8(theta, phi): return ( 7.1019511131672e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 6.76998093771516e34 * cos(theta) ** 63 - 9.37714380947355e35 * cos(theta) ** 61 + 6.1727241623513e36 * cos(theta) ** 59 - 2.56971558194235e37 * cos(theta) ** 57 + 7.5949371644074e37 * cos(theta) ** 55 - 1.69601228408195e38 * cos(theta) ** 53 + 2.97341593825055e38 * cos(theta) ** 51 - 4.19834476331057e38 * cos(theta) ** 49 + 4.85950141895003e38 * cos(theta) ** 47 - 4.66944091900888e38 * cos(theta) ** 45 + 3.75833049578763e38 * cos(theta) ** 43 - 2.54979146333301e38 * cos(theta) ** 41 + 1.46416596633968e38 * cos(theta) ** 39 - 7.13311624627025e37 * cos(theta) ** 37 + 2.95071765218384e37 * cos(theta) ** 35 - 1.03579764191704e37 * cos(theta) ** 33 + 3.0793983948885e36 * cos(theta) ** 31 - 7.72757827103698e35 * cos(theta) ** 29 + 1.62897028974092e35 * cos(theta) ** 27 - 2.8660078781908e34 * cos(theta) ** 25 + 4.17379788086038e33 * cos(theta) ** 23 - 4.97864622280847e32 * cos(theta) ** 21 + 4.80034759774921e31 * cos(theta) ** 19 - 3.67933410674637e30 * cos(theta) ** 17 + 2.19469051981363e29 * cos(theta) ** 15 - 9.91150557335186e27 * cos(theta) ** 13 + 3.26752930989622e26 * cos(theta) ** 11 - 7.47873957737378e24 * cos(theta) ** 9 + 1.10523244985819e23 * cos(theta) ** 7 - 9.41577340649983e20 * cos(theta) ** 5 + 3.78143510301198e18 * cos(theta) ** 3 - 4.51784361172279e15 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl71_m_minus_7(theta, phi): return ( 5.04988177888807e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.05780952151799e33 * cos(theta) ** 64 - 1.51244254991509e34 * cos(theta) ** 62 + 1.02878736039188e35 * cos(theta) ** 60 - 4.43054410679716e35 * cos(theta) ** 58 + 1.35623877935846e36 * cos(theta) ** 56 - 3.14076348904065e36 * cos(theta) ** 54 + 5.71810757355875e36 * cos(theta) ** 52 - 8.39668952662115e36 * cos(theta) ** 50 + 1.01239612894792e37 * cos(theta) ** 48 - 1.01509585195845e37 * cos(theta) ** 46 + 8.54166021769917e36 * cos(theta) ** 44 - 6.07093205555478e36 * cos(theta) ** 42 + 3.66041491584921e36 * cos(theta) ** 40 - 1.87713585428164e36 * cos(theta) ** 38 + 8.19643792273289e35 * cos(theta) ** 36 - 3.04646365269718e35 * cos(theta) ** 34 + 9.62311998402657e34 * cos(theta) ** 32 - 2.57585942367899e34 * cos(theta) ** 30 + 5.81775103478901e33 * cos(theta) ** 28 - 1.10231072238108e33 * cos(theta) ** 26 + 1.73908245035849e32 * cos(theta) ** 24 - 2.26302101036749e31 * cos(theta) ** 22 + 2.40017379887461e30 * cos(theta) ** 20 - 2.04407450374798e29 * cos(theta) ** 18 + 1.37168157488352e28 * cos(theta) ** 16 - 7.07964683810847e26 * cos(theta) ** 14 + 2.72294109158018e25 * cos(theta) ** 12 - 7.47873957737378e23 * cos(theta) ** 10 + 1.38154056232274e22 * cos(theta) ** 8 - 1.56929556774997e20 * cos(theta) ** 6 + 9.45358775752995e17 * cos(theta) ** 4 - 2.2589218058614e15 * cos(theta) ** 2 + 893560840926.185 ) * sin(7 * phi) ) # @torch.jit.script def Yl71_m_minus_6(theta, phi): return ( 3.59571441194071e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.62739926387384e31 * cos(theta) ** 65 - 2.40070246018268e32 * cos(theta) ** 63 + 1.68653665638014e33 * cos(theta) ** 61 - 7.50939679118163e33 * cos(theta) ** 59 + 2.37936627957625e34 * cos(theta) ** 57 - 5.710479070983e34 * cos(theta) ** 55 + 1.07888822142618e35 * cos(theta) ** 53 - 1.64640971110219e35 * cos(theta) ** 51 + 2.06611454887331e35 * cos(theta) ** 49 - 2.15977840842224e35 * cos(theta) ** 47 + 1.89814671504426e35 * cos(theta) ** 45 - 1.41184466408251e35 * cos(theta) ** 43 + 8.92784125816879e34 * cos(theta) ** 41 - 4.81316885713242e34 * cos(theta) ** 39 + 2.21525349263051e34 * cos(theta) ** 37 - 8.70418186484909e33 * cos(theta) ** 35 + 2.91609696485654e33 * cos(theta) ** 33 - 8.3092239473516e32 * cos(theta) ** 31 + 2.00612104647897e32 * cos(theta) ** 29 - 4.08263230511509e31 * cos(theta) ** 27 + 6.95632980143397e30 * cos(theta) ** 25 - 9.83922178420646e29 * cos(theta) ** 23 + 1.142939904226e29 * cos(theta) ** 21 - 1.07582868618315e28 * cos(theta) ** 19 + 8.06871514637362e26 * cos(theta) ** 17 - 4.71976455873898e25 * cos(theta) ** 15 + 2.09457007044629e24 * cos(theta) ** 13 - 6.79885416124889e22 * cos(theta) ** 11 + 1.53504506924749e21 * cos(theta) ** 9 - 2.24185081107139e19 * cos(theta) ** 7 + 1.89071755150599e17 * cos(theta) ** 5 - 752973935287132.0 * cos(theta) ** 3 + 893560840926.185 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl71_m_minus_5(theta, phi): return ( 2.56331820022474e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 2.4657564604149e29 * cos(theta) ** 66 - 3.75109759403544e30 * cos(theta) ** 64 + 2.72022041351635e31 * cos(theta) ** 62 - 1.2515661318636e32 * cos(theta) ** 60 + 4.10235565444181e32 * cos(theta) ** 58 - 1.01972840553268e33 * cos(theta) ** 56 + 1.99794115078922e33 * cos(theta) ** 54 - 3.16617252135036e33 * cos(theta) ** 52 + 4.13222909774663e33 * cos(theta) ** 50 - 4.49953835087966e33 * cos(theta) ** 48 + 4.12640590227013e33 * cos(theta) ** 46 - 3.20873787291479e33 * cos(theta) ** 44 + 2.12567649004019e33 * cos(theta) ** 42 - 1.2032922142831e33 * cos(theta) ** 40 + 5.82961445429082e32 * cos(theta) ** 38 - 2.41782829579141e32 * cos(theta) ** 36 + 8.57675577898981e31 * cos(theta) ** 34 - 2.59663248354737e31 * cos(theta) ** 32 + 6.68707015492989e30 * cos(theta) ** 30 - 1.45808296611253e30 * cos(theta) ** 28 + 2.67551146208999e29 * cos(theta) ** 26 - 4.09967574341936e28 * cos(theta) ** 24 + 5.19518138284547e27 * cos(theta) ** 22 - 5.37914343091575e26 * cos(theta) ** 20 + 4.48261952576312e25 * cos(theta) ** 18 - 2.94985284921186e24 * cos(theta) ** 16 + 1.49612147889021e23 * cos(theta) ** 14 - 5.66571180104074e21 * cos(theta) ** 12 + 1.53504506924749e20 * cos(theta) ** 10 - 2.80231351383923e18 * cos(theta) ** 8 + 3.15119591917665e16 * cos(theta) ** 6 - 188243483821783.0 * cos(theta) ** 4 + 446780420463.093 * cos(theta) ** 2 - 175828579.481737 ) * sin(5 * phi) ) # @torch.jit.script def Yl71_m_minus_4(theta, phi): return ( 1.82913903779927e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 3.68023352300732e27 * cos(theta) ** 67 - 5.77091937543914e28 * cos(theta) ** 65 + 4.31781018018468e29 * cos(theta) ** 63 - 2.05174775715345e30 * cos(theta) ** 61 + 6.95314517702002e30 * cos(theta) ** 59 - 1.78899720268891e31 * cos(theta) ** 57 + 3.63262027416222e31 * cos(theta) ** 55 - 5.97391041764218e31 * cos(theta) ** 53 + 8.10240999558162e31 * cos(theta) ** 51 - 9.18273132832584e31 * cos(theta) ** 49 + 8.77958702610666e31 * cos(theta) ** 47 - 7.13052860647731e31 * cos(theta) ** 45 + 4.94343369776788e31 * cos(theta) ** 43 - 2.93485905922709e31 * cos(theta) ** 41 + 1.49477293699765e31 * cos(theta) ** 39 - 6.53467106970652e30 * cos(theta) ** 37 + 2.45050165113995e30 * cos(theta) ** 35 - 7.86858328347689e29 * cos(theta) ** 33 + 2.15711940481609e29 * cos(theta) ** 31 - 5.02787229693977e28 * cos(theta) ** 29 + 9.9093017114444e27 * cos(theta) ** 27 - 1.63987029736774e27 * cos(theta) ** 25 + 2.25877451428064e26 * cos(theta) ** 23 - 2.56149687186464e25 * cos(theta) ** 21 + 2.35927343461217e24 * cos(theta) ** 19 - 1.73520755835992e23 * cos(theta) ** 17 + 9.97414319260139e21 * cos(theta) ** 15 - 4.35823984695442e20 * cos(theta) ** 13 + 1.39549551749772e19 * cos(theta) ** 11 - 3.11368168204359e17 * cos(theta) ** 9 + 4.50170845596664e15 * cos(theta) ** 7 - 37648696764356.6 * cos(theta) ** 5 + 148926806821.031 * cos(theta) ** 3 - 175828579.481737 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl71_m_minus_3(theta, phi): return ( 1.30626655242972e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 5.41210812206959e25 * cos(theta) ** 68 - 8.74381723551385e26 * cos(theta) ** 66 + 6.74657840653856e27 * cos(theta) ** 64 - 3.30927057605395e28 * cos(theta) ** 62 + 1.15885752950334e29 * cos(theta) ** 60 - 3.08447793567054e29 * cos(theta) ** 58 + 6.48682191814682e29 * cos(theta) ** 56 - 1.10627970697077e30 * cos(theta) ** 54 + 1.55815576838108e30 * cos(theta) ** 52 - 1.83654626566517e30 * cos(theta) ** 50 + 1.82908063043889e30 * cos(theta) ** 48 - 1.55011491445159e30 * cos(theta) ** 46 + 1.12350765858361e30 * cos(theta) ** 44 - 6.98775966482639e29 * cos(theta) ** 42 + 3.73693234249411e29 * cos(theta) ** 40 - 1.71965028150172e29 * cos(theta) ** 38 + 6.80694903094429e28 * cos(theta) ** 36 - 2.31428920102262e28 * cos(theta) ** 34 + 6.7409981400503e27 * cos(theta) ** 32 - 1.67595743231326e27 * cos(theta) ** 30 + 3.53903632551586e26 * cos(theta) ** 28 - 6.3071934514144e25 * cos(theta) ** 26 + 9.41156047616933e24 * cos(theta) ** 24 - 1.16431675993847e24 * cos(theta) ** 22 + 1.17963671730609e23 * cos(theta) ** 20 - 9.64004199088844e21 * cos(theta) ** 18 + 6.23383949537587e20 * cos(theta) ** 16 - 3.1130284621103e19 * cos(theta) ** 14 + 1.1629129312481e18 * cos(theta) ** 12 - 3.11368168204359e16 * cos(theta) ** 10 + 562713556995830.0 * cos(theta) ** 8 - 6274782794059.44 * cos(theta) ** 6 + 37231701705.2577 * cos(theta) ** 4 - 87914289.7408683 * cos(theta) ** 2 + 34476.1920552425 ) * sin(3 * phi) ) # @torch.jit.script def Yl71_m_minus_2(theta, phi): return ( 0.000933409489689217 * (1.0 - cos(theta) ** 2) * ( 7.84363495952114e23 * cos(theta) ** 69 - 1.30504734858416e25 * cos(theta) ** 67 + 1.03793513946747e26 * cos(theta) ** 65 - 5.25281043818087e26 * cos(theta) ** 63 + 1.89976644180875e27 * cos(theta) ** 61 - 5.22792870452633e27 * cos(theta) ** 59 + 1.13803893300821e28 * cos(theta) ** 57 - 2.01141764903777e28 * cos(theta) ** 55 + 2.93991654411525e28 * cos(theta) ** 53 - 3.60107110914739e28 * cos(theta) ** 51 + 3.73281761314059e28 * cos(theta) ** 49 - 3.2981168392587e28 * cos(theta) ** 47 + 2.49668368574135e28 * cos(theta) ** 45 - 1.62506038716893e28 * cos(theta) ** 43 + 9.11446912803443e27 * cos(theta) ** 41 - 4.40935969615825e27 * cos(theta) ** 39 + 1.83971595430927e27 * cos(theta) ** 37 - 6.61225486006461e26 * cos(theta) ** 35 + 2.04272670910615e26 * cos(theta) ** 33 - 5.4063142977847e25 * cos(theta) ** 31 + 1.22035735362616e25 * cos(theta) ** 29 - 2.33599757459793e24 * cos(theta) ** 27 + 3.76462419046773e23 * cos(theta) ** 25 - 5.06224678234119e22 * cos(theta) ** 23 + 5.61731770145755e21 * cos(theta) ** 21 - 5.07370631099391e20 * cos(theta) ** 19 + 3.66696440904463e19 * cos(theta) ** 17 - 2.07535230807353e18 * cos(theta) ** 15 + 8.94548408652384e16 * cos(theta) ** 13 - 2.83061971094872e15 * cos(theta) ** 11 + 62523728555092.2 * cos(theta) ** 9 - 896397542008.491 * cos(theta) ** 7 + 7446340341.05155 * cos(theta) ** 5 - 29304763.2469561 * cos(theta) ** 3 + 34476.1920552425 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl71_m_minus_1(theta, phi): return ( 0.0667240903835191 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 1.12051927993159e22 * cos(theta) ** 70 - 1.91918727732964e23 * cos(theta) ** 68 + 1.57262899919314e24 * cos(theta) ** 66 - 8.20751630965762e24 * cos(theta) ** 64 + 3.06413942227218e25 * cos(theta) ** 62 - 8.71321450754389e25 * cos(theta) ** 60 + 1.96213609139347e26 * cos(theta) ** 58 - 3.59181723042459e26 * cos(theta) ** 56 + 5.44428989650972e26 * cos(theta) ** 54 - 6.92513674836036e26 * cos(theta) ** 52 + 7.46563522628117e26 * cos(theta) ** 50 - 6.87107674845562e26 * cos(theta) ** 48 + 5.42757322987251e26 * cos(theta) ** 46 - 3.69331906174756e26 * cos(theta) ** 44 + 2.17011169715105e26 * cos(theta) ** 42 - 1.10233992403956e26 * cos(theta) ** 40 + 4.84135777449808e25 * cos(theta) ** 38 - 1.83673746112906e25 * cos(theta) ** 36 + 6.00801973266515e24 * cos(theta) ** 34 - 1.68947321805772e24 * cos(theta) ** 32 + 4.06785784542053e23 * cos(theta) ** 30 - 8.34284848070688e22 * cos(theta) ** 28 + 1.44793238094913e22 * cos(theta) ** 26 - 2.10926949264216e21 * cos(theta) ** 24 + 2.55332622793525e20 * cos(theta) ** 22 - 2.53685315549696e19 * cos(theta) ** 20 + 2.03720244946924e18 * cos(theta) ** 18 - 1.29709519254596e17 * cos(theta) ** 16 + 6.38963149037417e15 * cos(theta) ** 14 - 235884975912393.0 * cos(theta) ** 12 + 6252372855509.22 * cos(theta) ** 10 - 112049692751.061 * cos(theta) ** 8 + 1241056723.50859 * cos(theta) ** 6 - 7326190.81173902 * cos(theta) ** 4 + 17238.0960276212 * cos(theta) ** 2 - 6.74680862137817 ) * sin(phi) ) # @torch.jit.script def Yl71_m0(theta, phi): return ( 1.6725301070792e21 * cos(theta) ** 71 - 2.94768603978143e22 * cos(theta) ** 69 + 2.48750771558533e23 * cos(theta) ** 67 - 1.33817020904116e24 * cos(theta) ** 65 + 5.15443339778818e24 * cos(theta) ** 63 - 1.5137757031399e25 * cos(theta) ** 61 + 3.52443961418068e25 * cos(theta) ** 59 - 6.67809100760037e25 * cos(theta) ** 57 + 1.04903870552463e26 * cos(theta) ** 55 - 1.38473109129251e26 * cos(theta) ** 53 + 1.55134914130169e26 * cos(theta) ** 51 - 1.48607825331303e26 * cos(theta) ** 49 + 1.2238291497872e26 * cos(theta) ** 47 - 8.69795733675193e25 * cos(theta) ** 45 + 5.34843339340647e25 * cos(theta) ** 43 - 2.84934239188557e25 * cos(theta) ** 41 + 1.31557475301023e25 * cos(theta) ** 39 - 5.26087907167069e24 * cos(theta) ** 37 + 1.81918248272725e24 * cos(theta) ** 35 - 5.42563196602864e23 * cos(theta) ** 33 + 1.3906474165355e23 * cos(theta) ** 31 - 3.04880268123058e22 * cos(theta) ** 29 + 5.68325935986967e21 * cos(theta) ** 27 - 8.94138966971875e20 * cos(theta) ** 25 + 1.17649864075247e20 * cos(theta) ** 23 - 1.28023292950699e19 * cos(theta) ** 21 + 1.13630141672218e18 * cos(theta) ** 19 - 8.0860400440904e16 * cos(theta) ** 17 + 4.51437375203733e15 * cos(theta) ** 15 - 192295839336276.0 * cos(theta) ** 13 + 6023725087642.38 * cos(theta) ** 11 - 131941409725.341 * cos(theta) ** 9 + 1878912480.26593 * cos(theta) ** 7 - 15528202.3162473 * cos(theta) ** 5 + 60894.9110441072 * cos(theta) ** 3 - 71.5008740243921 * cos(theta) ) # @torch.jit.script def Yl71_m1(theta, phi): return ( 0.0667240903835191 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 1.12051927993159e22 * cos(theta) ** 70 - 1.91918727732964e23 * cos(theta) ** 68 + 1.57262899919314e24 * cos(theta) ** 66 - 8.20751630965762e24 * cos(theta) ** 64 + 3.06413942227218e25 * cos(theta) ** 62 - 8.71321450754389e25 * cos(theta) ** 60 + 1.96213609139347e26 * cos(theta) ** 58 - 3.59181723042459e26 * cos(theta) ** 56 + 5.44428989650972e26 * cos(theta) ** 54 - 6.92513674836036e26 * cos(theta) ** 52 + 7.46563522628117e26 * cos(theta) ** 50 - 6.87107674845562e26 * cos(theta) ** 48 + 5.42757322987251e26 * cos(theta) ** 46 - 3.69331906174756e26 * cos(theta) ** 44 + 2.17011169715105e26 * cos(theta) ** 42 - 1.10233992403956e26 * cos(theta) ** 40 + 4.84135777449808e25 * cos(theta) ** 38 - 1.83673746112906e25 * cos(theta) ** 36 + 6.00801973266515e24 * cos(theta) ** 34 - 1.68947321805772e24 * cos(theta) ** 32 + 4.06785784542053e23 * cos(theta) ** 30 - 8.34284848070688e22 * cos(theta) ** 28 + 1.44793238094913e22 * cos(theta) ** 26 - 2.10926949264216e21 * cos(theta) ** 24 + 2.55332622793525e20 * cos(theta) ** 22 - 2.53685315549696e19 * cos(theta) ** 20 + 2.03720244946924e18 * cos(theta) ** 18 - 1.29709519254596e17 * cos(theta) ** 16 + 6.38963149037417e15 * cos(theta) ** 14 - 235884975912393.0 * cos(theta) ** 12 + 6252372855509.22 * cos(theta) ** 10 - 112049692751.061 * cos(theta) ** 8 + 1241056723.50859 * cos(theta) ** 6 - 7326190.81173902 * cos(theta) ** 4 + 17238.0960276212 * cos(theta) ** 2 - 6.74680862137817 ) * cos(phi) ) # @torch.jit.script def Yl71_m2(theta, phi): return ( 0.000933409489689217 * (1.0 - cos(theta) ** 2) * ( 7.84363495952114e23 * cos(theta) ** 69 - 1.30504734858416e25 * cos(theta) ** 67 + 1.03793513946747e26 * cos(theta) ** 65 - 5.25281043818087e26 * cos(theta) ** 63 + 1.89976644180875e27 * cos(theta) ** 61 - 5.22792870452633e27 * cos(theta) ** 59 + 1.13803893300821e28 * cos(theta) ** 57 - 2.01141764903777e28 * cos(theta) ** 55 + 2.93991654411525e28 * cos(theta) ** 53 - 3.60107110914739e28 * cos(theta) ** 51 + 3.73281761314059e28 * cos(theta) ** 49 - 3.2981168392587e28 * cos(theta) ** 47 + 2.49668368574135e28 * cos(theta) ** 45 - 1.62506038716893e28 * cos(theta) ** 43 + 9.11446912803443e27 * cos(theta) ** 41 - 4.40935969615825e27 * cos(theta) ** 39 + 1.83971595430927e27 * cos(theta) ** 37 - 6.61225486006461e26 * cos(theta) ** 35 + 2.04272670910615e26 * cos(theta) ** 33 - 5.4063142977847e25 * cos(theta) ** 31 + 1.22035735362616e25 * cos(theta) ** 29 - 2.33599757459793e24 * cos(theta) ** 27 + 3.76462419046773e23 * cos(theta) ** 25 - 5.06224678234119e22 * cos(theta) ** 23 + 5.61731770145755e21 * cos(theta) ** 21 - 5.07370631099391e20 * cos(theta) ** 19 + 3.66696440904463e19 * cos(theta) ** 17 - 2.07535230807353e18 * cos(theta) ** 15 + 8.94548408652384e16 * cos(theta) ** 13 - 2.83061971094872e15 * cos(theta) ** 11 + 62523728555092.2 * cos(theta) ** 9 - 896397542008.491 * cos(theta) ** 7 + 7446340341.05155 * cos(theta) ** 5 - 29304763.2469561 * cos(theta) ** 3 + 34476.1920552425 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl71_m3(theta, phi): return ( 1.30626655242972e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 5.41210812206959e25 * cos(theta) ** 68 - 8.74381723551385e26 * cos(theta) ** 66 + 6.74657840653856e27 * cos(theta) ** 64 - 3.30927057605395e28 * cos(theta) ** 62 + 1.15885752950334e29 * cos(theta) ** 60 - 3.08447793567054e29 * cos(theta) ** 58 + 6.48682191814682e29 * cos(theta) ** 56 - 1.10627970697077e30 * cos(theta) ** 54 + 1.55815576838108e30 * cos(theta) ** 52 - 1.83654626566517e30 * cos(theta) ** 50 + 1.82908063043889e30 * cos(theta) ** 48 - 1.55011491445159e30 * cos(theta) ** 46 + 1.12350765858361e30 * cos(theta) ** 44 - 6.98775966482639e29 * cos(theta) ** 42 + 3.73693234249411e29 * cos(theta) ** 40 - 1.71965028150172e29 * cos(theta) ** 38 + 6.80694903094429e28 * cos(theta) ** 36 - 2.31428920102262e28 * cos(theta) ** 34 + 6.7409981400503e27 * cos(theta) ** 32 - 1.67595743231326e27 * cos(theta) ** 30 + 3.53903632551586e26 * cos(theta) ** 28 - 6.3071934514144e25 * cos(theta) ** 26 + 9.41156047616933e24 * cos(theta) ** 24 - 1.16431675993847e24 * cos(theta) ** 22 + 1.17963671730609e23 * cos(theta) ** 20 - 9.64004199088844e21 * cos(theta) ** 18 + 6.23383949537587e20 * cos(theta) ** 16 - 3.1130284621103e19 * cos(theta) ** 14 + 1.1629129312481e18 * cos(theta) ** 12 - 3.11368168204359e16 * cos(theta) ** 10 + 562713556995830.0 * cos(theta) ** 8 - 6274782794059.44 * cos(theta) ** 6 + 37231701705.2577 * cos(theta) ** 4 - 87914289.7408683 * cos(theta) ** 2 + 34476.1920552425 ) * cos(3 * phi) ) # @torch.jit.script def Yl71_m4(theta, phi): return ( 1.82913903779927e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 3.68023352300732e27 * cos(theta) ** 67 - 5.77091937543914e28 * cos(theta) ** 65 + 4.31781018018468e29 * cos(theta) ** 63 - 2.05174775715345e30 * cos(theta) ** 61 + 6.95314517702002e30 * cos(theta) ** 59 - 1.78899720268891e31 * cos(theta) ** 57 + 3.63262027416222e31 * cos(theta) ** 55 - 5.97391041764218e31 * cos(theta) ** 53 + 8.10240999558162e31 * cos(theta) ** 51 - 9.18273132832584e31 * cos(theta) ** 49 + 8.77958702610666e31 * cos(theta) ** 47 - 7.13052860647731e31 * cos(theta) ** 45 + 4.94343369776788e31 * cos(theta) ** 43 - 2.93485905922709e31 * cos(theta) ** 41 + 1.49477293699765e31 * cos(theta) ** 39 - 6.53467106970652e30 * cos(theta) ** 37 + 2.45050165113995e30 * cos(theta) ** 35 - 7.86858328347689e29 * cos(theta) ** 33 + 2.15711940481609e29 * cos(theta) ** 31 - 5.02787229693977e28 * cos(theta) ** 29 + 9.9093017114444e27 * cos(theta) ** 27 - 1.63987029736774e27 * cos(theta) ** 25 + 2.25877451428064e26 * cos(theta) ** 23 - 2.56149687186464e25 * cos(theta) ** 21 + 2.35927343461217e24 * cos(theta) ** 19 - 1.73520755835992e23 * cos(theta) ** 17 + 9.97414319260139e21 * cos(theta) ** 15 - 4.35823984695442e20 * cos(theta) ** 13 + 1.39549551749772e19 * cos(theta) ** 11 - 3.11368168204359e17 * cos(theta) ** 9 + 4.50170845596664e15 * cos(theta) ** 7 - 37648696764356.6 * cos(theta) ** 5 + 148926806821.031 * cos(theta) ** 3 - 175828579.481737 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl71_m5(theta, phi): return ( 2.56331820022474e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 2.4657564604149e29 * cos(theta) ** 66 - 3.75109759403544e30 * cos(theta) ** 64 + 2.72022041351635e31 * cos(theta) ** 62 - 1.2515661318636e32 * cos(theta) ** 60 + 4.10235565444181e32 * cos(theta) ** 58 - 1.01972840553268e33 * cos(theta) ** 56 + 1.99794115078922e33 * cos(theta) ** 54 - 3.16617252135036e33 * cos(theta) ** 52 + 4.13222909774663e33 * cos(theta) ** 50 - 4.49953835087966e33 * cos(theta) ** 48 + 4.12640590227013e33 * cos(theta) ** 46 - 3.20873787291479e33 * cos(theta) ** 44 + 2.12567649004019e33 * cos(theta) ** 42 - 1.2032922142831e33 * cos(theta) ** 40 + 5.82961445429082e32 * cos(theta) ** 38 - 2.41782829579141e32 * cos(theta) ** 36 + 8.57675577898981e31 * cos(theta) ** 34 - 2.59663248354737e31 * cos(theta) ** 32 + 6.68707015492989e30 * cos(theta) ** 30 - 1.45808296611253e30 * cos(theta) ** 28 + 2.67551146208999e29 * cos(theta) ** 26 - 4.09967574341936e28 * cos(theta) ** 24 + 5.19518138284547e27 * cos(theta) ** 22 - 5.37914343091575e26 * cos(theta) ** 20 + 4.48261952576312e25 * cos(theta) ** 18 - 2.94985284921186e24 * cos(theta) ** 16 + 1.49612147889021e23 * cos(theta) ** 14 - 5.66571180104074e21 * cos(theta) ** 12 + 1.53504506924749e20 * cos(theta) ** 10 - 2.80231351383923e18 * cos(theta) ** 8 + 3.15119591917665e16 * cos(theta) ** 6 - 188243483821783.0 * cos(theta) ** 4 + 446780420463.093 * cos(theta) ** 2 - 175828579.481737 ) * cos(5 * phi) ) # @torch.jit.script def Yl71_m6(theta, phi): return ( 3.59571441194071e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.62739926387384e31 * cos(theta) ** 65 - 2.40070246018268e32 * cos(theta) ** 63 + 1.68653665638014e33 * cos(theta) ** 61 - 7.50939679118163e33 * cos(theta) ** 59 + 2.37936627957625e34 * cos(theta) ** 57 - 5.710479070983e34 * cos(theta) ** 55 + 1.07888822142618e35 * cos(theta) ** 53 - 1.64640971110219e35 * cos(theta) ** 51 + 2.06611454887331e35 * cos(theta) ** 49 - 2.15977840842224e35 * cos(theta) ** 47 + 1.89814671504426e35 * cos(theta) ** 45 - 1.41184466408251e35 * cos(theta) ** 43 + 8.92784125816879e34 * cos(theta) ** 41 - 4.81316885713242e34 * cos(theta) ** 39 + 2.21525349263051e34 * cos(theta) ** 37 - 8.70418186484909e33 * cos(theta) ** 35 + 2.91609696485654e33 * cos(theta) ** 33 - 8.3092239473516e32 * cos(theta) ** 31 + 2.00612104647897e32 * cos(theta) ** 29 - 4.08263230511509e31 * cos(theta) ** 27 + 6.95632980143397e30 * cos(theta) ** 25 - 9.83922178420646e29 * cos(theta) ** 23 + 1.142939904226e29 * cos(theta) ** 21 - 1.07582868618315e28 * cos(theta) ** 19 + 8.06871514637362e26 * cos(theta) ** 17 - 4.71976455873898e25 * cos(theta) ** 15 + 2.09457007044629e24 * cos(theta) ** 13 - 6.79885416124889e22 * cos(theta) ** 11 + 1.53504506924749e21 * cos(theta) ** 9 - 2.24185081107139e19 * cos(theta) ** 7 + 1.89071755150599e17 * cos(theta) ** 5 - 752973935287132.0 * cos(theta) ** 3 + 893560840926.185 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl71_m7(theta, phi): return ( 5.04988177888807e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.05780952151799e33 * cos(theta) ** 64 - 1.51244254991509e34 * cos(theta) ** 62 + 1.02878736039188e35 * cos(theta) ** 60 - 4.43054410679716e35 * cos(theta) ** 58 + 1.35623877935846e36 * cos(theta) ** 56 - 3.14076348904065e36 * cos(theta) ** 54 + 5.71810757355875e36 * cos(theta) ** 52 - 8.39668952662115e36 * cos(theta) ** 50 + 1.01239612894792e37 * cos(theta) ** 48 - 1.01509585195845e37 * cos(theta) ** 46 + 8.54166021769917e36 * cos(theta) ** 44 - 6.07093205555478e36 * cos(theta) ** 42 + 3.66041491584921e36 * cos(theta) ** 40 - 1.87713585428164e36 * cos(theta) ** 38 + 8.19643792273289e35 * cos(theta) ** 36 - 3.04646365269718e35 * cos(theta) ** 34 + 9.62311998402657e34 * cos(theta) ** 32 - 2.57585942367899e34 * cos(theta) ** 30 + 5.81775103478901e33 * cos(theta) ** 28 - 1.10231072238108e33 * cos(theta) ** 26 + 1.73908245035849e32 * cos(theta) ** 24 - 2.26302101036749e31 * cos(theta) ** 22 + 2.40017379887461e30 * cos(theta) ** 20 - 2.04407450374798e29 * cos(theta) ** 18 + 1.37168157488352e28 * cos(theta) ** 16 - 7.07964683810847e26 * cos(theta) ** 14 + 2.72294109158018e25 * cos(theta) ** 12 - 7.47873957737378e23 * cos(theta) ** 10 + 1.38154056232274e22 * cos(theta) ** 8 - 1.56929556774997e20 * cos(theta) ** 6 + 9.45358775752995e17 * cos(theta) ** 4 - 2.2589218058614e15 * cos(theta) ** 2 + 893560840926.185 ) * cos(7 * phi) ) # @torch.jit.script def Yl71_m8(theta, phi): return ( 7.1019511131672e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 6.76998093771516e34 * cos(theta) ** 63 - 9.37714380947355e35 * cos(theta) ** 61 + 6.1727241623513e36 * cos(theta) ** 59 - 2.56971558194235e37 * cos(theta) ** 57 + 7.5949371644074e37 * cos(theta) ** 55 - 1.69601228408195e38 * cos(theta) ** 53 + 2.97341593825055e38 * cos(theta) ** 51 - 4.19834476331057e38 * cos(theta) ** 49 + 4.85950141895003e38 * cos(theta) ** 47 - 4.66944091900888e38 * cos(theta) ** 45 + 3.75833049578763e38 * cos(theta) ** 43 - 2.54979146333301e38 * cos(theta) ** 41 + 1.46416596633968e38 * cos(theta) ** 39 - 7.13311624627025e37 * cos(theta) ** 37 + 2.95071765218384e37 * cos(theta) ** 35 - 1.03579764191704e37 * cos(theta) ** 33 + 3.0793983948885e36 * cos(theta) ** 31 - 7.72757827103698e35 * cos(theta) ** 29 + 1.62897028974092e35 * cos(theta) ** 27 - 2.8660078781908e34 * cos(theta) ** 25 + 4.17379788086038e33 * cos(theta) ** 23 - 4.97864622280847e32 * cos(theta) ** 21 + 4.80034759774921e31 * cos(theta) ** 19 - 3.67933410674637e30 * cos(theta) ** 17 + 2.19469051981363e29 * cos(theta) ** 15 - 9.91150557335186e27 * cos(theta) ** 13 + 3.26752930989622e26 * cos(theta) ** 11 - 7.47873957737378e24 * cos(theta) ** 9 + 1.10523244985819e23 * cos(theta) ** 7 - 9.41577340649983e20 * cos(theta) ** 5 + 3.78143510301198e18 * cos(theta) ** 3 - 4.51784361172279e15 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl71_m9(theta, phi): return ( 1.0003740333612e-16 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 4.26508799076055e36 * cos(theta) ** 62 - 5.72005772377887e37 * cos(theta) ** 60 + 3.64190725578726e38 * cos(theta) ** 58 - 1.46473788170714e39 * cos(theta) ** 56 + 4.17721544042407e39 * cos(theta) ** 54 - 8.98886510563435e39 * cos(theta) ** 52 + 1.51644212850778e40 * cos(theta) ** 50 - 2.05718893402218e40 * cos(theta) ** 48 + 2.28396566690652e40 * cos(theta) ** 46 - 2.10124841355399e40 * cos(theta) ** 44 + 1.61608211318868e40 * cos(theta) ** 42 - 1.04541449996653e40 * cos(theta) ** 40 + 5.71024726872476e39 * cos(theta) ** 38 - 2.63925301111999e39 * cos(theta) ** 36 + 1.03275117826434e39 * cos(theta) ** 34 - 3.41813221832624e38 * cos(theta) ** 32 + 9.54613502415435e37 * cos(theta) ** 30 - 2.24099769860073e37 * cos(theta) ** 28 + 4.39821978230049e36 * cos(theta) ** 26 - 7.16501969547699e35 * cos(theta) ** 24 + 9.59973512597888e34 * cos(theta) ** 22 - 1.04551570678978e34 * cos(theta) ** 20 + 9.12066043572351e32 * cos(theta) ** 18 - 6.25486798146883e31 * cos(theta) ** 16 + 3.29203577972044e30 * cos(theta) ** 14 - 1.28849572453574e29 * cos(theta) ** 12 + 3.59428224088584e27 * cos(theta) ** 10 - 6.7308656196364e25 * cos(theta) ** 8 + 7.73662714900736e23 * cos(theta) ** 6 - 4.70788670324991e21 * cos(theta) ** 4 + 1.13443053090359e19 * cos(theta) ** 2 - 4.51784361172279e15 ) * cos(9 * phi) ) # @torch.jit.script def Yl71_m10(theta, phi): return ( 1.41164032538405e-18 * (1.0 - cos(theta) ** 2) ** 5 * ( 2.64435455427154e38 * cos(theta) ** 61 - 3.43203463426732e39 * cos(theta) ** 59 + 2.11230620835661e40 * cos(theta) ** 57 - 8.20253213755999e40 * cos(theta) ** 55 + 2.255696337829e41 * cos(theta) ** 53 - 4.67420985492986e41 * cos(theta) ** 51 + 7.5822106425389e41 * cos(theta) ** 49 - 9.87450688330647e41 * cos(theta) ** 47 + 1.050624206777e42 * cos(theta) ** 45 - 9.24549301963758e41 * cos(theta) ** 43 + 6.78754487539247e41 * cos(theta) ** 41 - 4.18165799986613e41 * cos(theta) ** 39 + 2.16989396211541e41 * cos(theta) ** 37 - 9.50131084003197e40 * cos(theta) ** 35 + 3.51135400609877e40 * cos(theta) ** 33 - 1.0938023098644e40 * cos(theta) ** 31 + 2.86384050724631e39 * cos(theta) ** 29 - 6.27479355608203e38 * cos(theta) ** 27 + 1.14353714339813e38 * cos(theta) ** 25 - 1.71960472691448e37 * cos(theta) ** 23 + 2.11194172771535e36 * cos(theta) ** 21 - 2.09103141357956e35 * cos(theta) ** 19 + 1.64171887843023e34 * cos(theta) ** 17 - 1.00077887703501e33 * cos(theta) ** 15 + 4.60885009160861e31 * cos(theta) ** 13 - 1.54619486944289e30 * cos(theta) ** 11 + 3.59428224088584e28 * cos(theta) ** 9 - 5.38469249570912e26 * cos(theta) ** 7 + 4.64197628940441e24 * cos(theta) ** 5 - 1.88315468129997e22 * cos(theta) ** 3 + 2.26886106180719e19 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl71_m11(theta, phi): return ( 1.99596174091397e-20 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.61305627810564e40 * cos(theta) ** 60 - 2.02490043421772e41 * cos(theta) ** 58 + 1.20401453876327e42 * cos(theta) ** 56 - 4.51139267565799e42 * cos(theta) ** 54 + 1.19551905904937e43 * cos(theta) ** 52 - 2.38384702601423e43 * cos(theta) ** 50 + 3.71528321484406e43 * cos(theta) ** 48 - 4.64101823515404e43 * cos(theta) ** 46 + 4.72780893049649e43 * cos(theta) ** 44 - 3.97556199844416e43 * cos(theta) ** 42 + 2.78289339891091e43 * cos(theta) ** 40 - 1.63084661994779e43 * cos(theta) ** 38 + 8.02860765982701e42 * cos(theta) ** 36 - 3.32545879401119e42 * cos(theta) ** 34 + 1.15874682201259e42 * cos(theta) ** 32 - 3.39078716057963e41 * cos(theta) ** 30 + 8.30513747101429e40 * cos(theta) ** 28 - 1.69419426014215e40 * cos(theta) ** 26 + 2.85884285849532e39 * cos(theta) ** 24 - 3.9550908719033e38 * cos(theta) ** 22 + 4.43507762820224e37 * cos(theta) ** 20 - 3.97295968580116e36 * cos(theta) ** 18 + 2.79092209333139e35 * cos(theta) ** 16 - 1.50116831555252e34 * cos(theta) ** 14 + 5.9915051190912e32 * cos(theta) ** 12 - 1.70081435638718e31 * cos(theta) ** 10 + 3.23485401679725e29 * cos(theta) ** 8 - 3.76928474699638e27 * cos(theta) ** 6 + 2.32098814470221e25 * cos(theta) ** 4 - 5.6494640438999e22 * cos(theta) ** 2 + 2.26886106180719e19 ) * cos(11 * phi) ) # @torch.jit.script def Yl71_m12(theta, phi): return ( 2.82837858925591e-22 * (1.0 - cos(theta) ** 2) ** 6 * ( 9.67833766863384e41 * cos(theta) ** 59 - 1.17444225184628e43 * cos(theta) ** 57 + 6.74248141707431e43 * cos(theta) ** 55 - 2.43615204485532e44 * cos(theta) ** 53 + 6.21669910705671e44 * cos(theta) ** 51 - 1.19192351300711e45 * cos(theta) ** 49 + 1.78333594312515e45 * cos(theta) ** 47 - 2.13486838817086e45 * cos(theta) ** 45 + 2.08023592941846e45 * cos(theta) ** 43 - 1.66973603934655e45 * cos(theta) ** 41 + 1.11315735956436e45 * cos(theta) ** 39 - 6.19721715580161e44 * cos(theta) ** 37 + 2.89029875753772e44 * cos(theta) ** 35 - 1.1306559899638e44 * cos(theta) ** 33 + 3.7079898304403e43 * cos(theta) ** 31 - 1.01723614817389e43 * cos(theta) ** 29 + 2.325438491884e42 * cos(theta) ** 27 - 4.40490507636959e41 * cos(theta) ** 25 + 6.86122286038876e40 * cos(theta) ** 23 - 8.70119991818725e39 * cos(theta) ** 21 + 8.87015525640448e38 * cos(theta) ** 19 - 7.15132743444209e37 * cos(theta) ** 17 + 4.46547534933023e36 * cos(theta) ** 15 - 2.10163564177353e35 * cos(theta) ** 13 + 7.18980614290944e33 * cos(theta) ** 11 - 1.70081435638718e32 * cos(theta) ** 9 + 2.5878832134378e30 * cos(theta) ** 7 - 2.26157084819783e28 * cos(theta) ** 5 + 9.28395257880883e25 * cos(theta) ** 3 - 1.12989280877998e23 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl71_m13(theta, phi): return ( 4.0176480748809e-24 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 5.71021922449397e43 * cos(theta) ** 58 - 6.69432083552378e44 * cos(theta) ** 56 + 3.70836477939087e45 * cos(theta) ** 54 - 1.29116058377332e46 * cos(theta) ** 52 + 3.17051654459892e46 * cos(theta) ** 50 - 5.84042521373486e46 * cos(theta) ** 48 + 8.3816789326882e46 * cos(theta) ** 46 - 9.60690774676886e46 * cos(theta) ** 44 + 8.94501449649936e46 * cos(theta) ** 42 - 6.84591776132084e46 * cos(theta) ** 40 + 4.34131370230102e46 * cos(theta) ** 38 - 2.29297034764659e46 * cos(theta) ** 36 + 1.0116045651382e46 * cos(theta) ** 34 - 3.73116476688055e45 * cos(theta) ** 32 + 1.14947684743649e45 * cos(theta) ** 30 - 2.94998482970428e44 * cos(theta) ** 28 + 6.2786839280868e43 * cos(theta) ** 26 - 1.1012262690924e43 * cos(theta) ** 24 + 1.57808125788942e42 * cos(theta) ** 22 - 1.82725198281932e41 * cos(theta) ** 20 + 1.68532949871685e40 * cos(theta) ** 18 - 1.21572566385515e39 * cos(theta) ** 16 + 6.69821302399534e37 * cos(theta) ** 14 - 2.73212633430559e36 * cos(theta) ** 12 + 7.90878675720038e34 * cos(theta) ** 10 - 1.53073292074846e33 * cos(theta) ** 8 + 1.81151824940646e31 * cos(theta) ** 6 - 1.13078542409892e29 * cos(theta) ** 4 + 2.78518577364265e26 * cos(theta) ** 2 - 1.12989280877998e23 ) * cos(13 * phi) ) # @torch.jit.script def Yl71_m14(theta, phi): return ( 5.72200762892404e-26 * (1.0 - cos(theta) ** 2) ** 7 * ( 3.3119271502065e45 * cos(theta) ** 57 - 3.74881966789332e46 * cos(theta) ** 55 + 2.00251698087107e47 * cos(theta) ** 53 - 6.71403503562125e47 * cos(theta) ** 51 + 1.58525827229946e48 * cos(theta) ** 49 - 2.80340410259273e48 * cos(theta) ** 47 + 3.85557230903657e48 * cos(theta) ** 45 - 4.2270394085783e48 * cos(theta) ** 43 + 3.75690608852973e48 * cos(theta) ** 41 - 2.73836710452834e48 * cos(theta) ** 39 + 1.64969920687439e48 * cos(theta) ** 37 - 8.25469325152774e47 * cos(theta) ** 35 + 3.43945552146989e47 * cos(theta) ** 33 - 1.19397272540178e47 * cos(theta) ** 31 + 3.44843054230948e46 * cos(theta) ** 29 - 8.25995752317197e45 * cos(theta) ** 27 + 1.63245782130257e45 * cos(theta) ** 25 - 2.64294304582175e44 * cos(theta) ** 23 + 3.47177876735671e43 * cos(theta) ** 21 - 3.65450396563865e42 * cos(theta) ** 19 + 3.03359309769033e41 * cos(theta) ** 17 - 1.94516106216825e40 * cos(theta) ** 15 + 9.37749823359348e38 * cos(theta) ** 13 - 3.2785516011667e37 * cos(theta) ** 11 + 7.90878675720038e35 * cos(theta) ** 9 - 1.22458633659877e34 * cos(theta) ** 7 + 1.08691094964388e32 * cos(theta) ** 5 - 4.52314169639566e29 * cos(theta) ** 3 + 5.5703715472853e26 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl71_m15(theta, phi): return ( 8.17262889945722e-28 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.88779847561771e47 * cos(theta) ** 56 - 2.06185081734132e48 * cos(theta) ** 54 + 1.06133399986167e49 * cos(theta) ** 52 - 3.42415786816684e49 * cos(theta) ** 50 + 7.76776553426737e49 * cos(theta) ** 48 - 1.31759992821858e50 * cos(theta) ** 46 + 1.73500753906646e50 * cos(theta) ** 44 - 1.81762694568867e50 * cos(theta) ** 42 + 1.54033149629719e50 * cos(theta) ** 40 - 1.06796317076605e50 * cos(theta) ** 38 + 6.10388706543523e49 * cos(theta) ** 36 - 2.88914263803471e49 * cos(theta) ** 34 + 1.13502032208506e49 * cos(theta) ** 32 - 3.70131544874551e48 * cos(theta) ** 30 + 1.00004485726975e48 * cos(theta) ** 28 - 2.23018853125643e47 * cos(theta) ** 26 + 4.08114455325642e46 * cos(theta) ** 24 - 6.07876900539003e45 * cos(theta) ** 22 + 7.2907354114491e44 * cos(theta) ** 20 - 6.94355753471343e43 * cos(theta) ** 18 + 5.15710826607357e42 * cos(theta) ** 16 - 2.91774159325237e41 * cos(theta) ** 14 + 1.21907477036715e40 * cos(theta) ** 12 - 3.60640676128337e38 * cos(theta) ** 10 + 7.11790808148034e36 * cos(theta) ** 8 - 8.57210435619138e34 * cos(theta) ** 6 + 5.43455474821939e32 * cos(theta) ** 4 - 1.3569425089187e30 * cos(theta) ** 2 + 5.5703715472853e26 ) * cos(15 * phi) ) # @torch.jit.script def Yl71_m16(theta, phi): return ( 1.17086854566878e-29 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.05716714634592e49 * cos(theta) ** 55 - 1.11339944136432e50 * cos(theta) ** 53 + 5.51893679928067e50 * cos(theta) ** 51 - 1.71207893408342e51 * cos(theta) ** 49 + 3.72852745644834e51 * cos(theta) ** 47 - 6.06095966980549e51 * cos(theta) ** 45 + 7.63403317189241e51 * cos(theta) ** 43 - 7.63403317189241e51 * cos(theta) ** 41 + 6.16132598518876e51 * cos(theta) ** 39 - 4.05826004891099e51 * cos(theta) ** 37 + 2.19739934355668e51 * cos(theta) ** 35 - 9.82308496931801e50 * cos(theta) ** 33 + 3.63206503067221e50 * cos(theta) ** 31 - 1.11039463462365e50 * cos(theta) ** 29 + 2.8001256003553e49 * cos(theta) ** 27 - 5.79849018126672e48 * cos(theta) ** 25 + 9.79474692781541e47 * cos(theta) ** 23 - 1.33732918118581e47 * cos(theta) ** 21 + 1.45814708228982e46 * cos(theta) ** 19 - 1.24984035624842e45 * cos(theta) ** 17 + 8.25137322571771e43 * cos(theta) ** 15 - 4.08483823055332e42 * cos(theta) ** 13 + 1.46288972444058e41 * cos(theta) ** 11 - 3.60640676128337e39 * cos(theta) ** 9 + 5.69432646518427e37 * cos(theta) ** 7 - 5.14326261371483e35 * cos(theta) ** 5 + 2.17382189928775e33 * cos(theta) ** 3 - 2.7138850178374e30 * cos(theta) ) * cos(16 * phi) ) # @torch.jit.script def Yl71_m17(theta, phi): return ( 1.68300520225555e-31 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 5.81441930490253e50 * cos(theta) ** 54 - 5.90101703923087e51 * cos(theta) ** 52 + 2.81465776763314e52 * cos(theta) ** 50 - 8.38918677700875e52 * cos(theta) ** 48 + 1.75240790453072e53 * cos(theta) ** 46 - 2.72743185141247e53 * cos(theta) ** 44 + 3.28263426391374e53 * cos(theta) ** 42 - 3.12995360047589e53 * cos(theta) ** 40 + 2.40291713422362e53 * cos(theta) ** 38 - 1.50155621809707e53 * cos(theta) ** 36 + 7.6908977024484e52 * cos(theta) ** 34 - 3.24161803987494e52 * cos(theta) ** 32 + 1.12594015950838e52 * cos(theta) ** 30 - 3.22014444040859e51 * cos(theta) ** 28 + 7.56033912095931e50 * cos(theta) ** 26 - 1.44962254531668e50 * cos(theta) ** 24 + 2.25279179339754e49 * cos(theta) ** 22 - 2.80839128049019e48 * cos(theta) ** 20 + 2.77047945635066e47 * cos(theta) ** 18 - 2.12472860562231e46 * cos(theta) ** 16 + 1.23770598385766e45 * cos(theta) ** 14 - 5.31028969971931e43 * cos(theta) ** 12 + 1.60917869688464e42 * cos(theta) ** 10 - 3.24576608515504e40 * cos(theta) ** 8 + 3.98602852562899e38 * cos(theta) ** 6 - 2.57163130685741e36 * cos(theta) ** 4 + 6.52146569786326e33 * cos(theta) ** 2 - 2.7138850178374e30 ) * cos(17 * phi) ) # @torch.jit.script def Yl71_m18(theta, phi): return ( 2.42769193282891e-33 * (1.0 - cos(theta) ** 2) ** 9 * ( 3.13978642464737e52 * cos(theta) ** 53 - 3.06852886040005e53 * cos(theta) ** 51 + 1.40732888381657e54 * cos(theta) ** 49 - 4.0268096529642e54 * cos(theta) ** 47 + 8.0610763608413e54 * cos(theta) ** 45 - 1.20007001462149e55 * cos(theta) ** 43 + 1.37870639084377e55 * cos(theta) ** 41 - 1.25198144019036e55 * cos(theta) ** 39 + 9.13108511004974e54 * cos(theta) ** 37 - 5.40560238514944e54 * cos(theta) ** 35 + 2.61490521883245e54 * cos(theta) ** 33 - 1.03731777275998e54 * cos(theta) ** 31 + 3.37782047852515e53 * cos(theta) ** 29 - 9.01640443314406e52 * cos(theta) ** 27 + 1.96568817144942e52 * cos(theta) ** 25 - 3.47909410876003e51 * cos(theta) ** 23 + 4.9561419454746e50 * cos(theta) ** 21 - 5.61678256098039e49 * cos(theta) ** 19 + 4.98686302143118e48 * cos(theta) ** 17 - 3.39956576899569e47 * cos(theta) ** 15 + 1.73278837740072e46 * cos(theta) ** 13 - 6.37234763966318e44 * cos(theta) ** 11 + 1.60917869688464e43 * cos(theta) ** 9 - 2.59661286812403e41 * cos(theta) ** 7 + 2.39161711537739e39 * cos(theta) ** 5 - 1.02865252274297e37 * cos(theta) ** 3 + 1.30429313957265e34 * cos(theta) ) * cos(18 * phi) ) # @torch.jit.script def Yl71_m19(theta, phi): return ( 3.51507329866901e-35 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.66408680506311e54 * cos(theta) ** 52 - 1.56494971880403e55 * cos(theta) ** 50 + 6.8959115307012e55 * cos(theta) ** 48 - 1.89260053689318e56 * cos(theta) ** 46 + 3.62748436237859e56 * cos(theta) ** 44 - 5.16030106287239e56 * cos(theta) ** 42 + 5.65269620245945e56 * cos(theta) ** 40 - 4.88272761674239e56 * cos(theta) ** 38 + 3.3785014907184e56 * cos(theta) ** 36 - 1.89196083480231e56 * cos(theta) ** 34 + 8.6291872221471e55 * cos(theta) ** 32 - 3.21568509555594e55 * cos(theta) ** 30 + 9.79567938772294e54 * cos(theta) ** 28 - 2.4344291969489e54 * cos(theta) ** 26 + 4.91422042862355e53 * cos(theta) ** 24 - 8.00191645014808e52 * cos(theta) ** 22 + 1.04078980854967e52 * cos(theta) ** 20 - 1.06718868658627e51 * cos(theta) ** 18 + 8.47766713643301e49 * cos(theta) ** 16 - 5.09934865349354e48 * cos(theta) ** 14 + 2.25262489062093e47 * cos(theta) ** 12 - 7.0095824036295e45 * cos(theta) ** 10 + 1.44826082719618e44 * cos(theta) ** 8 - 1.81762900768682e42 * cos(theta) ** 6 + 1.1958085576887e40 * cos(theta) ** 4 - 3.0859575682289e37 * cos(theta) ** 2 + 1.30429313957265e34 ) * cos(19 * phi) ) # @torch.jit.script def Yl71_m20(theta, phi): return ( 5.10989548815476e-37 * (1.0 - cos(theta) ** 2) ** 10 * ( 8.65325138632815e55 * cos(theta) ** 51 - 7.82474859402013e56 * cos(theta) ** 49 + 3.31003753473657e57 * cos(theta) ** 47 - 8.70596246970861e57 * cos(theta) ** 45 + 1.59609311944658e58 * cos(theta) ** 43 - 2.16732644640641e58 * cos(theta) ** 41 + 2.26107848098378e58 * cos(theta) ** 39 - 1.85543649436211e58 * cos(theta) ** 37 + 1.21626053665862e58 * cos(theta) ** 35 - 6.43266683832784e57 * cos(theta) ** 33 + 2.76133991108707e57 * cos(theta) ** 31 - 9.64705528666783e56 * cos(theta) ** 29 + 2.74279022856242e56 * cos(theta) ** 27 - 6.32951591206713e55 * cos(theta) ** 25 + 1.17941290286965e55 * cos(theta) ** 23 - 1.76042161903258e54 * cos(theta) ** 21 + 2.08157961709933e53 * cos(theta) ** 19 - 1.92093963585529e52 * cos(theta) ** 17 + 1.35642674182928e51 * cos(theta) ** 15 - 7.13908811489096e49 * cos(theta) ** 13 + 2.70314986874512e48 * cos(theta) ** 11 - 7.0095824036295e46 * cos(theta) ** 9 + 1.15860866175694e45 * cos(theta) ** 7 - 1.09057740461209e43 * cos(theta) ** 5 + 4.78323423075479e40 * cos(theta) ** 3 - 6.17191513645779e37 * cos(theta) ) * cos(20 * phi) ) # @torch.jit.script def Yl71_m21(theta, phi): return ( 7.45990017450111e-39 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 4.41315820702735e57 * cos(theta) ** 50 - 3.83412681106987e58 * cos(theta) ** 48 + 1.55571764132619e59 * cos(theta) ** 46 - 3.91768311136887e59 * cos(theta) ** 44 + 6.86320041362028e59 * cos(theta) ** 42 - 8.88603843026626e59 * cos(theta) ** 40 + 8.81820607583675e59 * cos(theta) ** 38 - 6.86511502913979e59 * cos(theta) ** 36 + 4.25691187830519e59 * cos(theta) ** 34 - 2.12278005664819e59 * cos(theta) ** 32 + 8.56015372436992e58 * cos(theta) ** 30 - 2.79764603313367e58 * cos(theta) ** 28 + 7.40553361711854e57 * cos(theta) ** 26 - 1.58237897801678e57 * cos(theta) ** 24 + 2.7126496766002e56 * cos(theta) ** 22 - 3.69688539996841e55 * cos(theta) ** 20 + 3.95500127248873e54 * cos(theta) ** 18 - 3.265597380954e53 * cos(theta) ** 16 + 2.03464011274392e52 * cos(theta) ** 14 - 9.28081454935825e50 * cos(theta) ** 12 + 2.97346485561963e49 * cos(theta) ** 10 - 6.30862416326655e47 * cos(theta) ** 8 + 8.11026063229859e45 * cos(theta) ** 6 - 5.45288702306046e43 * cos(theta) ** 4 + 1.43497026922644e41 * cos(theta) ** 2 - 6.17191513645779e37 ) * cos(21 * phi) ) # @torch.jit.script def Yl71_m22(theta, phi): return ( 1.09397283893788e-40 * (1.0 - cos(theta) ** 2) ** 11 * ( 2.20657910351368e59 * cos(theta) ** 49 - 1.84038086931354e60 * cos(theta) ** 47 + 7.15630115010047e60 * cos(theta) ** 45 - 1.7237805690023e61 * cos(theta) ** 43 + 2.88254417372052e61 * cos(theta) ** 41 - 3.55441537210651e61 * cos(theta) ** 39 + 3.35091830881796e61 * cos(theta) ** 37 - 2.47144141049033e61 * cos(theta) ** 35 + 1.44735003862376e61 * cos(theta) ** 33 - 6.7928961812742e60 * cos(theta) ** 31 + 2.56804611731098e60 * cos(theta) ** 29 - 7.83340889277428e59 * cos(theta) ** 27 + 1.92543874045082e59 * cos(theta) ** 25 - 3.79770954724028e58 * cos(theta) ** 23 + 5.96782928852044e57 * cos(theta) ** 21 - 7.39377079993683e56 * cos(theta) ** 19 + 7.11900229047971e55 * cos(theta) ** 17 - 5.2249558095264e54 * cos(theta) ** 15 + 2.84849615784149e53 * cos(theta) ** 13 - 1.11369774592299e52 * cos(theta) ** 11 + 2.97346485561963e50 * cos(theta) ** 9 - 5.04689933061324e48 * cos(theta) ** 7 + 4.86615637937915e46 * cos(theta) ** 5 - 2.18115480922418e44 * cos(theta) ** 3 + 2.86994053845287e41 * cos(theta) ) * cos(22 * phi) ) # @torch.jit.script def Yl71_m23(theta, phi): return ( 1.61192404130082e-42 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.0812237607217e61 * cos(theta) ** 48 - 8.64979008577362e61 * cos(theta) ** 46 + 3.22033551754521e62 * cos(theta) ** 44 - 7.41225644670991e62 * cos(theta) ** 42 + 1.18184311122541e63 * cos(theta) ** 40 - 1.38622199512154e63 * cos(theta) ** 38 + 1.23983977426265e63 * cos(theta) ** 36 - 8.65004493671614e62 * cos(theta) ** 34 + 4.77625512745842e62 * cos(theta) ** 32 - 2.105797816195e62 * cos(theta) ** 30 + 7.44733374020183e61 * cos(theta) ** 28 - 2.11502040104906e61 * cos(theta) ** 26 + 4.81359685112705e60 * cos(theta) ** 24 - 8.73473195865264e59 * cos(theta) ** 22 + 1.25324415058929e59 * cos(theta) ** 20 - 1.404816451988e58 * cos(theta) ** 18 + 1.21023038938155e57 * cos(theta) ** 16 - 7.83743371428959e55 * cos(theta) ** 14 + 3.70304500519394e54 * cos(theta) ** 12 - 1.22506752051529e53 * cos(theta) ** 10 + 2.67611837005767e51 * cos(theta) ** 8 - 3.53282953142927e49 * cos(theta) ** 6 + 2.43307818968958e47 * cos(theta) ** 4 - 6.54346442767255e44 * cos(theta) ** 2 + 2.86994053845287e41 ) * cos(23 * phi) ) # @torch.jit.script def Yl71_m24(theta, phi): return ( 2.38705349224361e-44 * (1.0 - cos(theta) ** 2) ** 12 * ( 5.18987405146417e62 * cos(theta) ** 47 - 3.97890343945586e63 * cos(theta) ** 45 + 1.41694762771989e64 * cos(theta) ** 43 - 3.11314770761816e64 * cos(theta) ** 41 + 4.72737244490165e64 * cos(theta) ** 39 - 5.26764358146184e64 * cos(theta) ** 37 + 4.46342318734553e64 * cos(theta) ** 35 - 2.94101527848349e64 * cos(theta) ** 33 + 1.52840164078669e64 * cos(theta) ** 31 - 6.317393448585e63 * cos(theta) ** 29 + 2.08525344725651e63 * cos(theta) ** 27 - 5.49905304272754e62 * cos(theta) ** 25 + 1.15526324427049e62 * cos(theta) ** 23 - 1.92164103090358e61 * cos(theta) ** 21 + 2.50648830117858e60 * cos(theta) ** 19 - 2.52866961357839e59 * cos(theta) ** 17 + 1.93636862301048e58 * cos(theta) ** 15 - 1.09724072000054e57 * cos(theta) ** 13 + 4.44365400623273e55 * cos(theta) ** 11 - 1.22506752051529e54 * cos(theta) ** 9 + 2.14089469604614e52 * cos(theta) ** 7 - 2.11969771885756e50 * cos(theta) ** 5 + 9.73231275875831e47 * cos(theta) ** 3 - 1.30869288553451e45 * cos(theta) ) * cos(24 * phi) ) # @torch.jit.script def Yl71_m25(theta, phi): return ( 3.55367417211057e-46 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 2.43924080418816e64 * cos(theta) ** 46 - 1.79050654775514e65 * cos(theta) ** 44 + 6.09287479919554e65 * cos(theta) ** 42 - 1.27639056012345e66 * cos(theta) ** 40 + 1.84367525351164e66 * cos(theta) ** 38 - 1.94902812514088e66 * cos(theta) ** 36 + 1.56219811557094e66 * cos(theta) ** 34 - 9.70535041899551e65 * cos(theta) ** 32 + 4.73804508643875e65 * cos(theta) ** 30 - 1.83204410008965e65 * cos(theta) ** 28 + 5.63018430759259e64 * cos(theta) ** 26 - 1.37476326068189e64 * cos(theta) ** 24 + 2.65710546182213e63 * cos(theta) ** 22 - 4.03544616489752e62 * cos(theta) ** 20 + 4.76232777223931e61 * cos(theta) ** 18 - 4.29873834308327e60 * cos(theta) ** 16 + 2.90455293451572e59 * cos(theta) ** 14 - 1.42641293600071e58 * cos(theta) ** 12 + 4.888019406856e56 * cos(theta) ** 10 - 1.10256076846376e55 * cos(theta) ** 8 + 1.49862628723229e53 * cos(theta) ** 6 - 1.05984885942878e51 * cos(theta) ** 4 + 2.91969382762749e48 * cos(theta) ** 2 - 1.30869288553451e45 ) * cos(25 * phi) ) # @torch.jit.script def Yl71_m26(theta, phi): return ( 5.32001458461065e-48 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.12205076992655e66 * cos(theta) ** 45 - 7.87822881012261e66 * cos(theta) ** 43 + 2.55900741566213e67 * cos(theta) ** 41 - 5.10556224049378e67 * cos(theta) ** 39 + 7.00596596334425e67 * cos(theta) ** 37 - 7.01650125050717e67 * cos(theta) ** 35 + 5.31147359294118e67 * cos(theta) ** 33 - 3.10571213407856e67 * cos(theta) ** 31 + 1.42141352593163e67 * cos(theta) ** 29 - 5.12972348025102e66 * cos(theta) ** 27 + 1.46384791997407e66 * cos(theta) ** 25 - 3.29943182563653e65 * cos(theta) ** 23 + 5.84563201600869e64 * cos(theta) ** 21 - 8.07089232979504e63 * cos(theta) ** 19 + 8.57218999003076e62 * cos(theta) ** 17 - 6.87798134893323e61 * cos(theta) ** 15 + 4.06637410832201e60 * cos(theta) ** 13 - 1.71169552320085e59 * cos(theta) ** 11 + 4.888019406856e57 * cos(theta) ** 9 - 8.82048614771008e55 * cos(theta) ** 7 + 8.99175772339377e53 * cos(theta) ** 5 - 4.23939543771512e51 * cos(theta) ** 3 + 5.83938765525499e48 * cos(theta) ) * cos(26 * phi) ) # @torch.jit.script def Yl71_m27(theta, phi): return ( 8.01112536794487e-50 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 5.04922846466949e67 * cos(theta) ** 44 - 3.38763838835272e68 * cos(theta) ** 42 + 1.04919304042147e69 * cos(theta) ** 40 - 1.99116927379258e69 * cos(theta) ** 38 + 2.59220740643737e69 * cos(theta) ** 36 - 2.45577543767751e69 * cos(theta) ** 34 + 1.75278628567059e69 * cos(theta) ** 32 - 9.62770761564355e68 * cos(theta) ** 30 + 4.12209922520171e68 * cos(theta) ** 28 - 1.38502533966778e68 * cos(theta) ** 26 + 3.65961979993518e67 * cos(theta) ** 24 - 7.58869319896401e66 * cos(theta) ** 22 + 1.22758272336183e66 * cos(theta) ** 20 - 1.53346954266106e65 * cos(theta) ** 18 + 1.45727229830523e64 * cos(theta) ** 16 - 1.03169720233998e63 * cos(theta) ** 14 + 5.28628634081862e61 * cos(theta) ** 12 - 1.88286507552093e60 * cos(theta) ** 10 + 4.3992174661704e58 * cos(theta) ** 8 - 6.17434030339705e56 * cos(theta) ** 6 + 4.49587886169688e54 * cos(theta) ** 4 - 1.27181863131454e52 * cos(theta) ** 2 + 5.83938765525499e48 ) * cos(27 * phi) ) # @torch.jit.script def Yl71_m28(theta, phi): return ( 1.21380687393104e-51 * (1.0 - cos(theta) ** 2) ** 14 * ( 2.22166052445458e69 * cos(theta) ** 43 - 1.42280812310814e70 * cos(theta) ** 41 + 4.19677216168589e70 * cos(theta) ** 39 - 7.56644324041179e70 * cos(theta) ** 37 + 9.33194666317454e70 * cos(theta) ** 35 - 8.34963648810353e70 * cos(theta) ** 33 + 5.60891611414588e70 * cos(theta) ** 31 - 2.88831228469306e70 * cos(theta) ** 29 + 1.15418778305648e70 * cos(theta) ** 27 - 3.60106588313622e69 * cos(theta) ** 25 + 8.78308751984444e68 * cos(theta) ** 23 - 1.66951250377208e68 * cos(theta) ** 21 + 2.45516544672365e67 * cos(theta) ** 19 - 2.7602451767899e66 * cos(theta) ** 17 + 2.33163567728837e65 * cos(theta) ** 15 - 1.44437608327598e64 * cos(theta) ** 13 + 6.34354360898234e62 * cos(theta) ** 11 - 1.88286507552093e61 * cos(theta) ** 9 + 3.51937397293632e59 * cos(theta) ** 7 - 3.70460418203823e57 * cos(theta) ** 5 + 1.79835154467875e55 * cos(theta) ** 3 - 2.54363726262907e52 * cos(theta) ) * cos(28 * phi) ) # @torch.jit.script def Yl71_m29(theta, phi): return ( 1.85103812934372e-53 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 9.55314025515468e70 * cos(theta) ** 42 - 5.83351330474339e71 * cos(theta) ** 40 + 1.6367411430575e72 * cos(theta) ** 38 - 2.79958399895236e72 * cos(theta) ** 36 + 3.26618133211109e72 * cos(theta) ** 34 - 2.75538004107417e72 * cos(theta) ** 32 + 1.73876399538522e72 * cos(theta) ** 30 - 8.37610562560988e71 * cos(theta) ** 28 + 3.1163070142525e71 * cos(theta) ** 26 - 9.00266470784055e70 * cos(theta) ** 24 + 2.02011012956422e70 * cos(theta) ** 22 - 3.50597625792137e69 * cos(theta) ** 20 + 4.66481434877494e68 * cos(theta) ** 18 - 4.69241680054284e67 * cos(theta) ** 16 + 3.49745351593255e66 * cos(theta) ** 14 - 1.87768890825877e65 * cos(theta) ** 12 + 6.97789796988057e63 * cos(theta) ** 10 - 1.69457856796884e62 * cos(theta) ** 8 + 2.46356178105542e60 * cos(theta) ** 6 - 1.85230209101912e58 * cos(theta) ** 4 + 5.39505463403626e55 * cos(theta) ** 2 - 2.54363726262907e52 ) * cos(29 * phi) ) # @torch.jit.script def Yl71_m30(theta, phi): return ( 2.84203899663231e-55 * (1.0 - cos(theta) ** 2) ** 15 * ( 4.01231890716496e72 * cos(theta) ** 41 - 2.33340532189735e73 * cos(theta) ** 39 + 6.21961634361849e73 * cos(theta) ** 37 - 1.00785023962285e74 * cos(theta) ** 35 + 1.11050165291777e74 * cos(theta) ** 33 - 8.81721613143733e73 * cos(theta) ** 31 + 5.21629198615567e73 * cos(theta) ** 29 - 2.34530957517077e73 * cos(theta) ** 27 + 8.10239823705649e72 * cos(theta) ** 25 - 2.16063952988173e72 * cos(theta) ** 23 + 4.44424228504128e71 * cos(theta) ** 21 - 7.01195251584275e70 * cos(theta) ** 19 + 8.39666582779489e69 * cos(theta) ** 17 - 7.50786688086854e68 * cos(theta) ** 15 + 4.89643492230557e67 * cos(theta) ** 13 - 2.25322668991053e66 * cos(theta) ** 11 + 6.97789796988057e64 * cos(theta) ** 9 - 1.35566285437507e63 * cos(theta) ** 7 + 1.47813706863325e61 * cos(theta) ** 5 - 7.40920836407647e58 * cos(theta) ** 3 + 1.07901092680725e56 * cos(theta) ) * cos(30 * phi) ) # @torch.jit.script def Yl71_m31(theta, phi): return ( 4.39478889556512e-57 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 1.64505075193764e74 * cos(theta) ** 40 - 9.10028075539968e74 * cos(theta) ** 38 + 2.30125804713884e75 * cos(theta) ** 36 - 3.52747583867998e75 * cos(theta) ** 34 + 3.66465545462864e75 * cos(theta) ** 32 - 2.73333700074557e75 * cos(theta) ** 30 + 1.51272467598515e75 * cos(theta) ** 28 - 6.33233585296107e74 * cos(theta) ** 26 + 2.02559955926412e74 * cos(theta) ** 24 - 4.96947091872798e73 * cos(theta) ** 22 + 9.3329087985867e72 * cos(theta) ** 20 - 1.33227097801012e72 * cos(theta) ** 18 + 1.42743319072513e71 * cos(theta) ** 16 - 1.12618003213028e70 * cos(theta) ** 14 + 6.36536539899724e68 * cos(theta) ** 12 - 2.47854935890158e67 * cos(theta) ** 10 + 6.28010817289252e65 * cos(theta) ** 8 - 9.4896399806255e63 * cos(theta) ** 6 + 7.39068534316627e61 * cos(theta) ** 4 - 2.22276250922294e59 * cos(theta) ** 2 + 1.07901092680725e56 ) * cos(31 * phi) ) # @torch.jit.script def Yl71_m32(theta, phi): return ( 6.84682788089054e-59 * (1.0 - cos(theta) ** 2) ** 16 * ( 6.58020300775054e75 * cos(theta) ** 39 - 3.45810668705188e76 * cos(theta) ** 37 + 8.28452896969983e76 * cos(theta) ** 35 - 1.19934178515119e77 * cos(theta) ** 33 + 1.17268974548117e77 * cos(theta) ** 31 - 8.20001100223672e76 * cos(theta) ** 29 + 4.23562909275841e76 * cos(theta) ** 27 - 1.64640732176988e76 * cos(theta) ** 25 + 4.86143894223389e75 * cos(theta) ** 23 - 1.09328360212016e75 * cos(theta) ** 21 + 1.86658175971734e74 * cos(theta) ** 19 - 2.39808776041822e73 * cos(theta) ** 17 + 2.28389310516021e72 * cos(theta) ** 15 - 1.57665204498239e71 * cos(theta) ** 13 + 7.63843847879669e69 * cos(theta) ** 11 - 2.47854935890158e68 * cos(theta) ** 9 + 5.02408653831401e66 * cos(theta) ** 7 - 5.6937839883753e64 * cos(theta) ** 5 + 2.95627413726651e62 * cos(theta) ** 3 - 4.44552501844588e59 * cos(theta) ) * cos(32 * phi) ) # @torch.jit.script def Yl71_m33(theta, phi): return ( 1.07507914518226e-60 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 2.56627917302271e77 * cos(theta) ** 38 - 1.2794994742092e78 * cos(theta) ** 36 + 2.89958513939494e78 * cos(theta) ** 34 - 3.95782789099893e78 * cos(theta) ** 32 + 3.63533821099161e78 * cos(theta) ** 30 - 2.37800319064865e78 * cos(theta) ** 28 + 1.14361985504477e78 * cos(theta) ** 26 - 4.1160183044247e77 * cos(theta) ** 24 + 1.1181309567138e77 * cos(theta) ** 22 - 2.29589556445233e76 * cos(theta) ** 20 + 3.54650534346294e75 * cos(theta) ** 18 - 4.07674919271097e74 * cos(theta) ** 16 + 3.42583965774031e73 * cos(theta) ** 14 - 2.04964765847711e72 * cos(theta) ** 12 + 8.40228232667635e70 * cos(theta) ** 10 - 2.23069442301142e69 * cos(theta) ** 8 + 3.51686057681981e67 * cos(theta) ** 6 - 2.84689199418765e65 * cos(theta) ** 4 + 8.86882241179953e62 * cos(theta) ** 2 - 4.44552501844588e59 ) * cos(33 * phi) ) # @torch.jit.script def Yl71_m34(theta, phi): return ( 1.70197818592895e-62 * (1.0 - cos(theta) ** 2) ** 17 * ( 9.7518608574863e78 * cos(theta) ** 37 - 4.6061981071531e79 * cos(theta) ** 35 + 9.85858947394279e79 * cos(theta) ** 33 - 1.26650492511966e80 * cos(theta) ** 31 + 1.09060146329748e80 * cos(theta) ** 29 - 6.65840893381621e79 * cos(theta) ** 27 + 2.9734116231164e79 * cos(theta) ** 25 - 9.87844393061927e78 * cos(theta) ** 23 + 2.45988810477035e78 * cos(theta) ** 21 - 4.59179112890465e77 * cos(theta) ** 19 + 6.3837096182333e76 * cos(theta) ** 17 - 6.52279870833756e75 * cos(theta) ** 15 + 4.79617552083644e74 * cos(theta) ** 13 - 2.45957719017253e73 * cos(theta) ** 11 + 8.40228232667635e71 * cos(theta) ** 9 - 1.78455553840914e70 * cos(theta) ** 7 + 2.11011634609189e68 * cos(theta) ** 5 - 1.13875679767506e66 * cos(theta) ** 3 + 1.77376448235991e63 * cos(theta) ) * cos(34 * phi) ) # @torch.jit.script def Yl71_m35(theta, phi): return ( 2.71769174252509e-64 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 3.60818851726993e80 * cos(theta) ** 36 - 1.61216933750359e81 * cos(theta) ** 34 + 3.25333452640112e81 * cos(theta) ** 32 - 3.92616526787094e81 * cos(theta) ** 30 + 3.1627442435627e81 * cos(theta) ** 28 - 1.79777041213038e81 * cos(theta) ** 26 + 7.433529057791e80 * cos(theta) ** 24 - 2.27204210404243e80 * cos(theta) ** 22 + 5.16576502001774e79 * cos(theta) ** 20 - 8.72440314491884e78 * cos(theta) ** 18 + 1.08523063509966e78 * cos(theta) ** 16 - 9.78419806250634e76 * cos(theta) ** 14 + 6.23502817708737e75 * cos(theta) ** 12 - 2.70553490918979e74 * cos(theta) ** 10 + 7.56205409400872e72 * cos(theta) ** 8 - 1.2491888768864e71 * cos(theta) ** 6 + 1.05505817304594e69 * cos(theta) ** 4 - 3.41627039302518e66 * cos(theta) ** 2 + 1.77376448235991e63 ) * cos(35 * phi) ) # @torch.jit.script def Yl71_m36(theta, phi): return ( 4.37881962246183e-66 * (1.0 - cos(theta) ** 2) ** 18 * ( 1.29894786621718e82 * cos(theta) ** 35 - 5.48137574751219e82 * cos(theta) ** 33 + 1.04106704844836e83 * cos(theta) ** 31 - 1.17784958036128e83 * cos(theta) ** 29 + 8.85568388197557e82 * cos(theta) ** 27 - 4.67420307153898e82 * cos(theta) ** 25 + 1.78404697386984e82 * cos(theta) ** 23 - 4.99849262889335e81 * cos(theta) ** 21 + 1.03315300400355e81 * cos(theta) ** 19 - 1.57039256608539e80 * cos(theta) ** 17 + 1.73636901615946e79 * cos(theta) ** 15 - 1.36978772875089e78 * cos(theta) ** 13 + 7.48203381250485e76 * cos(theta) ** 11 - 2.70553490918979e75 * cos(theta) ** 9 + 6.04964327520698e73 * cos(theta) ** 7 - 7.49513326131838e71 * cos(theta) ** 5 + 4.22023269218377e69 * cos(theta) ** 3 - 6.83254078605036e66 * cos(theta) ) * cos(36 * phi) ) # @torch.jit.script def Yl71_m37(theta, phi): return ( 7.12215064831495e-68 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 4.54631753176011e83 * cos(theta) ** 34 - 1.80885399667902e84 * cos(theta) ** 32 + 3.22730785018991e84 * cos(theta) ** 30 - 3.41576378304772e84 * cos(theta) ** 28 + 2.3910346481334e84 * cos(theta) ** 26 - 1.16855076788475e84 * cos(theta) ** 24 + 4.10330803990063e83 * cos(theta) ** 22 - 1.0496834520676e83 * cos(theta) ** 20 + 1.96299070760674e82 * cos(theta) ** 18 - 2.66966736234517e81 * cos(theta) ** 16 + 2.60455352423919e80 * cos(theta) ** 14 - 1.78072404737615e79 * cos(theta) ** 12 + 8.23023719375533e77 * cos(theta) ** 10 - 2.43498141827081e76 * cos(theta) ** 8 + 4.23475029264488e74 * cos(theta) ** 6 - 3.74756663065919e72 * cos(theta) ** 4 + 1.26606980765513e70 * cos(theta) ** 2 - 6.83254078605036e66 ) * cos(37 * phi) ) # @torch.jit.script def Yl71_m38(theta, phi): return ( 1.16992614950083e-69 * (1.0 - cos(theta) ** 2) ** 19 * ( 1.54574796079844e85 * cos(theta) ** 33 - 5.78833278937288e85 * cos(theta) ** 31 + 9.68192355056974e85 * cos(theta) ** 29 - 9.56413859253361e85 * cos(theta) ** 27 + 6.21669008514685e85 * cos(theta) ** 25 - 2.80452184292339e85 * cos(theta) ** 23 + 9.02727768778139e84 * cos(theta) ** 21 - 2.09936690413521e84 * cos(theta) ** 19 + 3.53338327369213e83 * cos(theta) ** 17 - 4.27146777975227e82 * cos(theta) ** 15 + 3.64637493393486e81 * cos(theta) ** 13 - 2.13686885685138e80 * cos(theta) ** 11 + 8.23023719375533e78 * cos(theta) ** 9 - 1.94798513461665e77 * cos(theta) ** 7 + 2.54085017558693e75 * cos(theta) ** 5 - 1.49902665226368e73 * cos(theta) ** 3 + 2.53213961531026e70 * cos(theta) ) * cos(38 * phi) ) # @torch.jit.script def Yl71_m39(theta, phi): return ( 1.94180285665687e-71 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 5.10096827063485e86 * cos(theta) ** 32 - 1.79438316470559e87 * cos(theta) ** 30 + 2.80775782966522e87 * cos(theta) ** 28 - 2.58231741998407e87 * cos(theta) ** 26 + 1.55417252128671e87 * cos(theta) ** 24 - 6.4504002387238e86 * cos(theta) ** 22 + 1.89572831443409e86 * cos(theta) ** 20 - 3.9887971178569e85 * cos(theta) ** 18 + 6.00675156527662e84 * cos(theta) ** 16 - 6.4072016696284e83 * cos(theta) ** 14 + 4.74028741411532e82 * cos(theta) ** 12 - 2.35055574253652e81 * cos(theta) ** 10 + 7.4072134743798e79 * cos(theta) ** 8 - 1.36358959423165e78 * cos(theta) ** 6 + 1.27042508779346e76 * cos(theta) ** 4 - 4.49707995679103e73 * cos(theta) ** 2 + 2.53213961531026e70 ) * cos(39 * phi) ) # @torch.jit.script def Yl71_m40(theta, phi): return ( 3.25813186319286e-73 * (1.0 - cos(theta) ** 2) ** 20 * ( 1.63230984660315e88 * cos(theta) ** 31 - 5.38314949411678e88 * cos(theta) ** 29 + 7.86172192306263e88 * cos(theta) ** 27 - 6.7140252919586e88 * cos(theta) ** 25 + 3.73001405108811e88 * cos(theta) ** 23 - 1.41908805251924e88 * cos(theta) ** 21 + 3.79145662886819e87 * cos(theta) ** 19 - 7.17983481214241e86 * cos(theta) ** 17 + 9.6108025044426e85 * cos(theta) ** 15 - 8.97008233747976e84 * cos(theta) ** 13 + 5.68834489693838e83 * cos(theta) ** 11 - 2.35055574253652e82 * cos(theta) ** 9 + 5.92577077950384e80 * cos(theta) ** 7 - 8.18153756538991e78 * cos(theta) ** 5 + 5.08170035117386e76 * cos(theta) ** 3 - 8.99415991358205e73 * cos(theta) ) * cos(40 * phi) ) # @torch.jit.script def Yl71_m41(theta, phi): return ( 5.529410066666e-75 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 5.06016052446977e89 * cos(theta) ** 30 - 1.56111335329386e90 * cos(theta) ** 28 + 2.12266491922691e90 * cos(theta) ** 26 - 1.67850632298965e90 * cos(theta) ** 24 + 8.57903231750265e89 * cos(theta) ** 22 - 2.98008491029039e89 * cos(theta) ** 20 + 7.20376759484955e88 * cos(theta) ** 18 - 1.22057191806421e88 * cos(theta) ** 16 + 1.44162037566639e87 * cos(theta) ** 14 - 1.16611070387237e86 * cos(theta) ** 12 + 6.25717938663222e84 * cos(theta) ** 10 - 2.11550016828287e83 * cos(theta) ** 8 + 4.14803954565269e81 * cos(theta) ** 6 - 4.09076878269496e79 * cos(theta) ** 4 + 1.52451010535216e77 * cos(theta) ** 2 - 8.99415991358205e73 ) * cos(41 * phi) ) # @torch.jit.script def Yl71_m42(theta, phi): return ( 9.49683625092251e-77 * (1.0 - cos(theta) ** 2) ** 21 * ( 1.51804815734093e91 * cos(theta) ** 29 - 4.37111738922282e91 * cos(theta) ** 27 + 5.51892878998997e91 * cos(theta) ** 25 - 4.02841517517516e91 * cos(theta) ** 23 + 1.88738710985058e91 * cos(theta) ** 21 - 5.96016982058079e90 * cos(theta) ** 19 + 1.29667816707292e90 * cos(theta) ** 17 - 1.95291506890274e89 * cos(theta) ** 15 + 2.01826852593295e88 * cos(theta) ** 13 - 1.39933284464684e87 * cos(theta) ** 11 + 6.25717938663222e85 * cos(theta) ** 9 - 1.6924001346263e84 * cos(theta) ** 7 + 2.48882372739161e82 * cos(theta) ** 5 - 1.63630751307798e80 * cos(theta) ** 3 + 3.04902021070432e77 * cos(theta) ) * cos(42 * phi) ) # @torch.jit.script def Yl71_m43(theta, phi): return ( 1.65168614259395e-78 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 4.4023396562887e92 * cos(theta) ** 28 - 1.18020169509016e93 * cos(theta) ** 26 + 1.37973219749749e93 * cos(theta) ** 24 - 9.26535490290286e92 * cos(theta) ** 22 + 3.96351293068622e92 * cos(theta) ** 20 - 1.13243226591035e92 * cos(theta) ** 18 + 2.20435288402396e91 * cos(theta) ** 16 - 2.9293726033541e90 * cos(theta) ** 14 + 2.62374908371283e89 * cos(theta) ** 12 - 1.53926612911153e88 * cos(theta) ** 10 + 5.631461447969e86 * cos(theta) ** 8 - 1.18468009423841e85 * cos(theta) ** 6 + 1.24441186369581e83 * cos(theta) ** 4 - 4.90892253923395e80 * cos(theta) ** 2 + 3.04902021070432e77 ) * cos(43 * phi) ) # @torch.jit.script def Yl71_m44(theta, phi): return ( 2.9107143653895e-80 * (1.0 - cos(theta) ** 2) ** 22 * ( 1.23265510376084e94 * cos(theta) ** 27 - 3.06852440723442e94 * cos(theta) ** 25 + 3.31135727399398e94 * cos(theta) ** 23 - 2.03837807863863e94 * cos(theta) ** 21 + 7.92702586137245e93 * cos(theta) ** 19 - 2.03837807863863e93 * cos(theta) ** 17 + 3.52696461443834e92 * cos(theta) ** 15 - 4.10112164469575e91 * cos(theta) ** 13 + 3.1484989004554e90 * cos(theta) ** 11 - 1.53926612911153e89 * cos(theta) ** 9 + 4.5051691583752e87 * cos(theta) ** 7 - 7.10808056543044e85 * cos(theta) ** 5 + 4.97764745478322e83 * cos(theta) ** 3 - 9.8178450784679e80 * cos(theta) ) * cos(44 * phi) ) # @torch.jit.script def Yl71_m45(theta, phi): return ( 5.20102226077753e-82 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 3.32816878015426e95 * cos(theta) ** 26 - 7.67131101808605e95 * cos(theta) ** 24 + 7.61612173018615e95 * cos(theta) ** 22 - 4.28059396514112e95 * cos(theta) ** 20 + 1.50613491366077e95 * cos(theta) ** 18 - 3.46524273368567e94 * cos(theta) ** 16 + 5.29044692165751e93 * cos(theta) ** 14 - 5.33145813810447e92 * cos(theta) ** 12 + 3.46334879050093e91 * cos(theta) ** 10 - 1.38533951620037e90 * cos(theta) ** 8 + 3.15361841086264e88 * cos(theta) ** 6 - 3.55404028271522e86 * cos(theta) ** 4 + 1.49329423643497e84 * cos(theta) ** 2 - 9.8178450784679e80 ) * cos(45 * phi) ) # @torch.jit.script def Yl71_m46(theta, phi): return ( 9.42994387102045e-84 * (1.0 - cos(theta) ** 2) ** 23 * ( 8.65323882840107e96 * cos(theta) ** 25 - 1.84111464434065e97 * cos(theta) ** 23 + 1.67554678064095e97 * cos(theta) ** 21 - 8.56118793028224e96 * cos(theta) ** 19 + 2.71104284458938e96 * cos(theta) ** 17 - 5.54438837389707e95 * cos(theta) ** 15 + 7.40662569032052e94 * cos(theta) ** 13 - 6.39774976572536e93 * cos(theta) ** 11 + 3.46334879050093e92 * cos(theta) ** 9 - 1.1082716129603e91 * cos(theta) ** 7 + 1.89217104651758e89 * cos(theta) ** 5 - 1.42161611308609e87 * cos(theta) ** 3 + 2.98658847286993e84 * cos(theta) ) * cos(46 * phi) ) # @torch.jit.script def Yl71_m47(theta, phi): return ( 1.73619339517346e-85 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 2.16330970710027e98 * cos(theta) ** 24 - 4.2345636819835e98 * cos(theta) ** 22 + 3.518648239346e98 * cos(theta) ** 20 - 1.62662570675363e98 * cos(theta) ** 18 + 4.60877283580194e97 * cos(theta) ** 16 - 8.31658256084561e96 * cos(theta) ** 14 + 9.62861339741667e95 * cos(theta) ** 12 - 7.0375247422979e94 * cos(theta) ** 10 + 3.11701391145084e93 * cos(theta) ** 8 - 7.75790129072209e91 * cos(theta) ** 6 + 9.46085523258792e89 * cos(theta) ** 4 - 4.26484833925827e87 * cos(theta) ** 2 + 2.98658847286993e84 ) * cos(47 * phi) ) # @torch.jit.script def Yl71_m48(theta, phi): return ( 3.24877023999585e-87 * (1.0 - cos(theta) ** 2) ** 24 * ( 5.19194329704064e99 * cos(theta) ** 23 - 9.3160401003637e99 * cos(theta) ** 21 + 7.037296478692e99 * cos(theta) ** 19 - 2.92792627215653e99 * cos(theta) ** 17 + 7.37403653728311e98 * cos(theta) ** 15 - 1.16432155851839e98 * cos(theta) ** 13 + 1.15543360769e97 * cos(theta) ** 11 - 7.0375247422979e95 * cos(theta) ** 9 + 2.49361112916067e94 * cos(theta) ** 7 - 4.65474077443326e92 * cos(theta) ** 5 + 3.78434209303517e90 * cos(theta) ** 3 - 8.52969667851653e87 * cos(theta) ) * cos(48 * phi) ) # @torch.jit.script def Yl71_m49(theta, phi): return ( 6.18392846630575e-89 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.19414695831935e101 * cos(theta) ** 22 - 1.95636842107638e101 * cos(theta) ** 20 + 1.33708633095148e101 * cos(theta) ** 18 - 4.9774746626661e100 * cos(theta) ** 16 + 1.10610548059247e100 * cos(theta) ** 14 - 1.5136180260739e99 * cos(theta) ** 12 + 1.270976968459e98 * cos(theta) ** 10 - 6.33377226806811e96 * cos(theta) ** 8 + 1.74552779041247e95 * cos(theta) ** 6 - 2.32737038721663e93 * cos(theta) ** 4 + 1.13530262791055e91 * cos(theta) ** 2 - 8.52969667851653e87 ) * cos(49 * phi) ) # @torch.jit.script def Yl71_m50(theta, phi): return ( 1.19856179900749e-90 * (1.0 - cos(theta) ** 2) ** 25 * ( 2.62712330830256e102 * cos(theta) ** 21 - 3.91273684215275e102 * cos(theta) ** 19 + 2.40675539571267e102 * cos(theta) ** 17 - 7.96395946026575e101 * cos(theta) ** 15 + 1.54854767282945e101 * cos(theta) ** 13 - 1.81634163128868e100 * cos(theta) ** 11 + 1.270976968459e99 * cos(theta) ** 9 - 5.06701781445449e97 * cos(theta) ** 7 + 1.04731667424748e96 * cos(theta) ** 5 - 9.30948154886651e93 * cos(theta) ** 3 + 2.2706052558211e91 * cos(theta) ) * cos(50 * phi) ) # @torch.jit.script def Yl71_m51(theta, phi): return ( 2.36794095448655e-92 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 5.51695894743538e103 * cos(theta) ** 20 - 7.43420000009023e103 * cos(theta) ** 18 + 4.09148417271153e103 * cos(theta) ** 16 - 1.19459391903986e103 * cos(theta) ** 14 + 2.01311197467829e102 * cos(theta) ** 12 - 1.99797579441755e101 * cos(theta) ** 10 + 1.1438792716131e100 * cos(theta) ** 8 - 3.54691247011814e98 * cos(theta) ** 6 + 5.23658337123741e96 * cos(theta) ** 4 - 2.79284446465995e94 * cos(theta) ** 2 + 2.2706052558211e91 ) * cos(51 * phi) ) # @torch.jit.script def Yl71_m52(theta, phi): return ( 4.77422975694428e-94 * (1.0 - cos(theta) ** 2) ** 26 * ( 1.10339178948708e105 * cos(theta) ** 19 - 1.33815600001624e105 * cos(theta) ** 17 + 6.54637467633845e104 * cos(theta) ** 15 - 1.67243148665581e104 * cos(theta) ** 13 + 2.41573436961395e103 * cos(theta) ** 11 - 1.99797579441755e102 * cos(theta) ** 9 + 9.15103417290481e100 * cos(theta) ** 7 - 2.12814748207088e99 * cos(theta) ** 5 + 2.09463334849497e97 * cos(theta) ** 3 - 5.58568892931991e94 * cos(theta) ) * cos(52 * phi) ) # @torch.jit.script def Yl71_m53(theta, phi): return ( 9.83593550283913e-96 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 2.09644440002545e106 * cos(theta) ** 18 - 2.27486520002761e106 * cos(theta) ** 16 + 9.81956201450768e105 * cos(theta) ** 14 - 2.17416093265255e105 * cos(theta) ** 12 + 2.65730780657534e104 * cos(theta) ** 10 - 1.79817821497579e103 * cos(theta) ** 8 + 6.40572392103336e101 * cos(theta) ** 6 - 1.06407374103544e100 * cos(theta) ** 4 + 6.2839000454849e97 * cos(theta) ** 2 - 5.58568892931991e94 ) * cos(53 * phi) ) # @torch.jit.script def Yl71_m54(theta, phi): return ( 2.07359727383235e-97 * (1.0 - cos(theta) ** 2) ** 27 * ( 3.7735999200458e107 * cos(theta) ** 17 - 3.63978432004418e107 * cos(theta) ** 15 + 1.37473868203107e107 * cos(theta) ** 13 - 2.60899311918306e106 * cos(theta) ** 11 + 2.65730780657534e105 * cos(theta) ** 9 - 1.43854257198064e104 * cos(theta) ** 7 + 3.84343435262002e102 * cos(theta) ** 5 - 4.25629496414177e100 * cos(theta) ** 3 + 1.25678000909698e98 * cos(theta) ) * cos(54 * phi) ) # @torch.jit.script def Yl71_m55(theta, phi): return ( 4.48037824681915e-99 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 6.41511986407786e108 * cos(theta) ** 16 - 5.45967648006627e108 * cos(theta) ** 14 + 1.7871602866404e108 * cos(theta) ** 12 - 2.86989243110137e107 * cos(theta) ** 10 + 2.39157702591781e106 * cos(theta) ** 8 - 1.00697980038644e105 * cos(theta) ** 6 + 1.92171717631001e103 * cos(theta) ** 4 - 1.27688848924253e101 * cos(theta) ** 2 + 1.25678000909698e98 ) * cos(55 * phi) ) # @torch.jit.script def Yl71_m56(theta, phi): return ( 9.93923200490332e-101 * (1.0 - cos(theta) ** 2) ** 28 * ( 1.02641917825246e110 * cos(theta) ** 15 - 7.64354707209277e109 * cos(theta) ** 13 + 2.14459234396848e109 * cos(theta) ** 11 - 2.86989243110137e108 * cos(theta) ** 9 + 1.91326162073424e107 * cos(theta) ** 7 - 6.04187880231867e105 * cos(theta) ** 5 + 7.68686870524004e103 * cos(theta) ** 3 - 2.55377697848506e101 * cos(theta) ) * cos(56 * phi) ) # @torch.jit.script def Yl71_m57(theta, phi): return ( 2.26830898890119e-102 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 1.53962876737869e111 * cos(theta) ** 14 - 9.93661119372061e110 * cos(theta) ** 12 + 2.35905157836532e110 * cos(theta) ** 10 - 2.58290318799123e109 * cos(theta) ** 8 + 1.33928313451397e108 * cos(theta) ** 6 - 3.02093940115933e106 * cos(theta) ** 4 + 2.30606061157201e104 * cos(theta) ** 2 - 2.55377697848506e101 ) * cos(57 * phi) ) # @torch.jit.script def Yl71_m58(theta, phi): return ( 5.33756701552661e-104 * (1.0 - cos(theta) ** 2) ** 29 * ( 2.15548027433016e112 * cos(theta) ** 13 - 1.19239334324647e112 * cos(theta) ** 11 + 2.35905157836532e111 * cos(theta) ** 9 - 2.06632255039298e110 * cos(theta) ** 7 + 8.03569880708383e108 * cos(theta) ** 5 - 1.20837576046373e107 * cos(theta) ** 3 + 4.61212122314402e104 * cos(theta) ) * cos(58 * phi) ) # @torch.jit.script def Yl71_m59(theta, phi): return ( 1.29837453329626e-105 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 2.80212435662921e113 * cos(theta) ** 12 - 1.31163267757112e113 * cos(theta) ** 10 + 2.12314642052879e112 * cos(theta) ** 8 - 1.44642578527509e111 * cos(theta) ** 6 + 4.01784940354191e109 * cos(theta) ** 4 - 3.6251272813912e107 * cos(theta) ** 2 + 4.61212122314402e104 ) * cos(59 * phi) ) # @torch.jit.script def Yl71_m60(theta, phi): return ( 3.27471657254262e-107 * (1.0 - cos(theta) ** 2) ** 30 * ( 3.36254922795505e114 * cos(theta) ** 11 - 1.31163267757112e114 * cos(theta) ** 9 + 1.69851713642303e113 * cos(theta) ** 7 - 8.67855471165054e111 * cos(theta) ** 5 + 1.60713976141677e110 * cos(theta) ** 3 - 7.2502545627824e107 * cos(theta) ) * cos(60 * phi) ) # @torch.jit.script def Yl71_m61(theta, phi): return ( 8.59390224853277e-109 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 3.69880415075056e115 * cos(theta) ** 10 - 1.18046940981401e115 * cos(theta) ** 8 + 1.18896199549612e114 * cos(theta) ** 6 - 4.33927735582527e112 * cos(theta) ** 4 + 4.8214192842503e110 * cos(theta) ** 2 - 7.2502545627824e107 ) * cos(61 * phi) ) # @torch.jit.script def Yl71_m62(theta, phi): return ( 2.35648450820151e-110 * (1.0 - cos(theta) ** 2) ** 31 * ( 3.69880415075056e116 * cos(theta) ** 9 - 9.44375527851207e115 * cos(theta) ** 7 + 7.13377197297674e114 * cos(theta) ** 5 - 1.73571094233011e113 * cos(theta) ** 3 + 9.64283856850059e110 * cos(theta) ) * cos(62 * phi) ) # @torch.jit.script def Yl71_m63(theta, phi): return ( 6.78564187335636e-112 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 3.3289237356755e117 * cos(theta) ** 8 - 6.61062869495845e116 * cos(theta) ** 6 + 3.56688598648837e115 * cos(theta) ** 4 - 5.20713282699032e113 * cos(theta) ** 2 + 9.64283856850059e110 ) * cos(63 * phi) ) # @torch.jit.script def Yl71_m64(theta, phi): return ( 2.06480506732716e-113 * (1.0 - cos(theta) ** 2) ** 32 * ( 2.6631389885404e118 * cos(theta) ** 7 - 3.96637721697507e117 * cos(theta) ** 5 + 1.42675439459535e116 * cos(theta) ** 3 - 1.04142656539806e114 * cos(theta) ) * cos(64 * phi) ) # @torch.jit.script def Yl71_m65(theta, phi): return ( 6.69207166525422e-115 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 1.86419729197828e119 * cos(theta) ** 6 - 1.98318860848753e118 * cos(theta) ** 4 + 4.28026318378604e116 * cos(theta) ** 2 - 1.04142656539806e114 ) * cos(65 * phi) ) # @torch.jit.script def Yl71_m66(theta, phi): return ( 2.33412803219294e-116 * (1.0 - cos(theta) ** 2) ** 33 * ( 1.11851837518697e120 * cos(theta) ** 5 - 7.93275443395013e118 * cos(theta) ** 3 + 8.56052636757209e116 * cos(theta) ) * cos(66 * phi) ) # @torch.jit.script def Yl71_m67(theta, phi): return ( 8.88587355583423e-118 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 5.59259187593484e120 * cos(theta) ** 4 - 2.37982633018504e119 * cos(theta) ** 2 + 8.56052636757209e116 ) * cos(67 * phi) ) # @torch.jit.script def Yl71_m68(theta, phi): return ( 3.76844979029729e-119 * (1.0 - cos(theta) ** 2) ** 34 * (2.23703675037394e121 * cos(theta) ** 3 - 4.75965266037008e119 * cos(theta)) * cos(68 * phi) ) # @torch.jit.script def Yl71_m69(theta, phi): return ( 1.83881521262701e-120 * (1.0 - cos(theta) ** 2) ** 34.5 * (6.71111025112181e121 * cos(theta) ** 2 - 4.75965266037008e119) * cos(69 * phi) ) # @torch.jit.script def Yl71_m70(theta, phi): return 14.697311642374 * (1.0 - cos(theta) ** 2) ** 35 * cos(70 * phi) * cos(theta) # @torch.jit.script def Yl71_m71(theta, phi): return 1.23337099473571 * (1.0 - cos(theta) ** 2) ** 35.5 * cos(71 * phi) # @torch.jit.script def Yl72_m_minus_72(theta, phi): return 1.2376461236541 * (1.0 - cos(theta) ** 2) ** 36 * sin(72 * phi) # @torch.jit.script def Yl72_m_minus_71(theta, phi): return ( 14.8517534838492 * (1.0 - cos(theta) ** 2) ** 35.5 * sin(71 * phi) * cos(theta) ) # @torch.jit.script def Yl72_m_minus_70(theta, phi): return ( 1.30858019143794e-122 * (1.0 - cos(theta) ** 2) ** 35 * (9.59688765910419e123 * cos(theta) ** 2 - 6.71111025112181e121) * sin(70 * phi) ) # @torch.jit.script def Yl72_m_minus_69(theta, phi): return ( 2.70087908285898e-121 * (1.0 - cos(theta) ** 2) ** 34.5 * (3.19896255303473e123 * cos(theta) ** 3 - 6.71111025112181e121 * cos(theta)) * sin(69 * phi) ) # @torch.jit.script def Yl72_m_minus_68(theta, phi): return ( 6.41423243311855e-120 * (1.0 - cos(theta) ** 2) ** 34 * ( 7.99740638258683e122 * cos(theta) ** 4 - 3.35555512556091e121 * cos(theta) ** 2 + 1.18991316509252e119 ) * sin(68 * phi) ) # @torch.jit.script def Yl72_m_minus_67(theta, phi): return ( 1.69704638693964e-118 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 1.59948127651737e122 * cos(theta) ** 5 - 1.11851837518697e121 * cos(theta) ** 3 + 1.18991316509252e119 * cos(theta) ) * sin(67 * phi) ) # @torch.jit.script def Yl72_m_minus_66(theta, phi): return ( 4.90091013025169e-117 * (1.0 - cos(theta) ** 2) ** 33 * ( 2.66580212752894e121 * cos(theta) ** 6 - 2.79629593796742e120 * cos(theta) ** 4 + 5.9495658254626e118 * cos(theta) ** 2 - 1.42675439459535e116 ) * sin(66 * phi) ) # @torch.jit.script def Yl72_m_minus_65(theta, phi): return ( 1.52322935965797e-115 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 3.80828875361278e120 * cos(theta) ** 7 - 5.59259187593485e119 * cos(theta) ** 5 + 1.98318860848753e118 * cos(theta) ** 3 - 1.42675439459535e116 * cos(theta) ) * sin(65 * phi) ) # @torch.jit.script def Yl72_m_minus_64(theta, phi): return ( 5.0427864713945e-114 * (1.0 - cos(theta) ** 2) ** 32 * ( 4.76036094201597e119 * cos(theta) ** 8 - 9.32098645989141e118 * cos(theta) ** 6 + 4.95797152121883e117 * cos(theta) ** 4 - 7.13377197297674e115 * cos(theta) ** 2 + 1.30178320674758e113 ) * sin(64 * phi) ) # @torch.jit.script def Yl72_m_minus_63(theta, phi): return ( 1.76425471984068e-112 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 5.2892899355733e118 * cos(theta) ** 9 - 1.3315694942702e118 * cos(theta) ** 7 + 9.91594304243767e116 * cos(theta) ** 5 - 2.37792399099225e115 * cos(theta) ** 3 + 1.30178320674758e113 * cos(theta) ) * sin(63 * phi) ) # @torch.jit.script def Yl72_m_minus_62(theta, phi): return ( 6.48228575985983e-111 * (1.0 - cos(theta) ** 2) ** 31 * ( 5.2892899355733e117 * cos(theta) ** 10 - 1.66446186783775e117 * cos(theta) ** 8 + 1.65265717373961e116 * cos(theta) ** 6 - 5.94480997748062e114 * cos(theta) ** 4 + 6.5089160337379e112 * cos(theta) ** 2 - 9.64283856850059e109 ) * sin(62 * phi) ) # @torch.jit.script def Yl72_m_minus_61(theta, phi): return ( 2.488725020231e-109 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 4.80844539597573e116 * cos(theta) ** 11 - 1.84940207537528e116 * cos(theta) ** 9 + 2.36093881962802e115 * cos(theta) ** 7 - 1.18896199549612e114 * cos(theta) ** 5 + 2.16963867791263e112 * cos(theta) ** 3 - 9.64283856850059e109 * cos(theta) ) * sin(61 * phi) ) # @torch.jit.script def Yl72_m_minus_60(theta, phi): return ( 9.94244866882035e-108 * (1.0 - cos(theta) ** 2) ** 30 * ( 4.00703782997977e115 * cos(theta) ** 12 - 1.84940207537528e115 * cos(theta) ** 10 + 2.95117352453502e114 * cos(theta) ** 8 - 1.98160332582687e113 * cos(theta) ** 6 + 5.42409669478158e111 * cos(theta) ** 4 - 4.8214192842503e109 * cos(theta) ** 2 + 6.04187880231867e106 ) * sin(60 * phi) ) # @torch.jit.script def Yl72_m_minus_59(theta, phi): return ( 4.11862260923638e-106 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 3.08233679229213e114 * cos(theta) ** 13 - 1.68127461397753e114 * cos(theta) ** 11 + 3.2790816939278e113 * cos(theta) ** 9 - 2.83086189403839e112 * cos(theta) ** 7 + 1.08481933895632e111 * cos(theta) ** 5 - 1.60713976141677e109 * cos(theta) ** 3 + 6.04187880231867e106 * cos(theta) ) * sin(59 * phi) ) # @torch.jit.script def Yl72_m_minus_58(theta, phi): return ( 1.76380944917166e-104 * (1.0 - cos(theta) ** 2) ** 29 * ( 2.20166913735152e113 * cos(theta) ** 14 - 1.40106217831461e113 * cos(theta) ** 12 + 3.2790816939278e112 * cos(theta) ** 10 - 3.53857736754799e111 * cos(theta) ** 8 + 1.80803223159386e110 * cos(theta) ** 6 - 4.01784940354191e108 * cos(theta) ** 4 + 3.02093940115933e106 * cos(theta) ** 2 - 3.29437230224573e103 ) * sin(58 * phi) ) # @torch.jit.script def Yl72_m_minus_57(theta, phi): return ( 7.78877163442675e-103 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 1.46777942490102e112 * cos(theta) ** 15 - 1.07774013716508e112 * cos(theta) ** 13 + 2.98098335811618e111 * cos(theta) ** 11 - 3.93175263060887e110 * cos(theta) ** 9 + 2.58290318799123e109 * cos(theta) ** 7 - 8.03569880708383e107 * cos(theta) ** 5 + 1.00697980038644e106 * cos(theta) ** 3 - 3.29437230224573e103 * cos(theta) ) * sin(57 * phi) ) # @torch.jit.script def Yl72_m_minus_56(theta, phi): return ( 3.53853761906228e-101 * (1.0 - cos(theta) ** 2) ** 28 * ( 9.17362140563135e110 * cos(theta) ** 16 - 7.69814383689344e110 * cos(theta) ** 14 + 2.48415279843015e110 * cos(theta) ** 12 - 3.93175263060887e109 * cos(theta) ** 10 + 3.22862898498904e108 * cos(theta) ** 8 - 1.33928313451397e107 * cos(theta) ** 6 + 2.51744950096611e105 * cos(theta) ** 4 - 1.64718615112286e103 * cos(theta) ** 2 + 1.59611061155316e100 ) * sin(56 * phi) ) # @torch.jit.script def Yl72_m_minus_55(theta, phi): return ( 1.65064341078821e-99 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 5.3962478856655e109 * cos(theta) ** 17 - 5.13209589126229e109 * cos(theta) ** 15 + 1.91088676802319e109 * cos(theta) ** 13 - 3.57432057328079e108 * cos(theta) ** 11 + 3.58736553887671e107 * cos(theta) ** 9 - 1.91326162073424e106 * cos(theta) ** 7 + 5.03489900193222e104 * cos(theta) ** 5 - 5.49062050374288e102 * cos(theta) ** 3 + 1.59611061155316e100 * cos(theta) ) * sin(55 * phi) ) # @torch.jit.script def Yl72_m_minus_54(theta, phi): return ( 7.89207812217828e-98 * (1.0 - cos(theta) ** 2) ** 27 * ( 2.99791549203639e108 * cos(theta) ** 18 - 3.20755993203893e108 * cos(theta) ** 16 + 1.36491912001657e108 * cos(theta) ** 14 - 2.97860047773399e107 * cos(theta) ** 12 + 3.58736553887671e106 * cos(theta) ** 10 - 2.39157702591781e105 * cos(theta) ** 8 + 8.39149833655371e103 * cos(theta) ** 6 - 1.37265512593572e102 * cos(theta) ** 4 + 7.98055305776582e99 * cos(theta) ** 2 - 6.98211116164988e96 ) * sin(54 * phi) ) # @torch.jit.script def Yl72_m_minus_53(theta, phi): return ( 3.86147696646292e-96 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 1.57785025896652e107 * cos(theta) ** 19 - 1.8867999600229e107 * cos(theta) ** 17 + 9.09946080011045e106 * cos(theta) ** 15 - 2.29123113671846e106 * cos(theta) ** 13 + 3.26124139897883e105 * cos(theta) ** 11 - 2.65730780657534e104 * cos(theta) ** 9 + 1.19878547665053e103 * cos(theta) ** 7 - 2.74531025187144e101 * cos(theta) ** 5 + 2.66018435258861e99 * cos(theta) ** 3 - 6.98211116164988e96 * cos(theta) ) * sin(53 * phi) ) # @torch.jit.script def Yl72_m_minus_52(theta, phi): return ( 1.93073848323146e-94 * (1.0 - cos(theta) ** 2) ** 26 * ( 7.8892512948326e105 * cos(theta) ** 20 - 1.04822220001272e106 * cos(theta) ** 18 + 5.68716300006903e105 * cos(theta) ** 16 - 1.63659366908461e105 * cos(theta) ** 14 + 2.71770116581569e104 * cos(theta) ** 12 - 2.65730780657534e103 * cos(theta) ** 10 + 1.49848184581316e102 * cos(theta) ** 8 - 4.5755170864524e100 * cos(theta) ** 6 + 6.65046088147151e98 * cos(theta) ** 4 - 3.49105558082494e96 * cos(theta) ** 2 + 2.79284446465995e93 ) * sin(52 * phi) ) # @torch.jit.script def Yl72_m_minus_51(theta, phi): return ( 9.85244327058163e-93 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 3.75678633087267e104 * cos(theta) ** 21 - 5.51695894743538e104 * cos(theta) ** 19 + 3.34539000004061e104 * cos(theta) ** 17 - 1.09106244605641e104 * cos(theta) ** 15 + 2.09053935831976e103 * cos(theta) ** 13 - 2.41573436961395e102 * cos(theta) ** 11 + 1.66497982868129e101 * cos(theta) ** 9 - 6.53645298064629e99 * cos(theta) ** 7 + 1.3300921762943e98 * cos(theta) ** 5 - 1.16368519360831e96 * cos(theta) ** 3 + 2.79284446465995e93 * cos(theta) ) * sin(51 * phi) ) # @torch.jit.script def Yl72_m_minus_50(theta, phi): return ( 5.12516485110946e-91 * (1.0 - cos(theta) ** 2) ** 25 * ( 1.70763015039667e103 * cos(theta) ** 22 - 2.75847947371769e103 * cos(theta) ** 20 + 1.85855000002256e103 * cos(theta) ** 18 - 6.81914028785255e102 * cos(theta) ** 16 + 1.49324239879983e102 * cos(theta) ** 14 - 2.01311197467829e101 * cos(theta) ** 12 + 1.66497982868129e100 * cos(theta) ** 10 - 8.17056622580786e98 * cos(theta) ** 8 + 2.21682029382384e97 * cos(theta) ** 6 - 2.90921298402079e95 * cos(theta) ** 4 + 1.39642223232998e93 * cos(theta) ** 2 - 1.0320932981005e90 ) * sin(50 * phi) ) # @torch.jit.script def Yl72_m_minus_49(theta, phi): return ( 2.71488646524013e-89 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 7.42447891476812e101 * cos(theta) ** 23 - 1.31356165415128e102 * cos(theta) ** 21 + 9.78184210538189e101 * cos(theta) ** 19 - 4.01125899285444e101 * cos(theta) ** 17 + 9.95494932533219e100 * cos(theta) ** 15 - 1.54854767282945e100 * cos(theta) ** 13 + 1.5136180260739e99 * cos(theta) ** 11 - 9.07840691756429e97 * cos(theta) ** 9 + 3.16688613403405e96 * cos(theta) ** 7 - 5.81842596804157e94 * cos(theta) ** 5 + 4.65474077443326e92 * cos(theta) ** 3 - 1.0320932981005e90 * cos(theta) ) * sin(49 * phi) ) # @torch.jit.script def Yl72_m_minus_48(theta, phi): return ( 1.46301904087385e-87 * (1.0 - cos(theta) ** 2) ** 24 * ( 3.09353288115338e100 * cos(theta) ** 24 - 5.97073479159674e100 * cos(theta) ** 22 + 4.89092105269094e100 * cos(theta) ** 20 - 2.22847721825247e100 * cos(theta) ** 18 + 6.22184332833262e99 * cos(theta) ** 16 - 1.10610548059247e99 * cos(theta) ** 14 + 1.26134835506158e98 * cos(theta) ** 12 - 9.07840691756429e96 * cos(theta) ** 10 + 3.95860766754257e95 * cos(theta) ** 8 - 9.69737661340262e93 * cos(theta) ** 6 + 1.16368519360831e92 * cos(theta) ** 4 - 5.1604664905025e89 * cos(theta) ** 2 + 3.55404028271522e86 ) * sin(48 * phi) ) # @torch.jit.script def Yl72_m_minus_47(theta, phi): return ( 8.01328530746178e-86 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 1.23741315246135e99 * cos(theta) ** 25 - 2.59597164852032e99 * cos(theta) ** 23 + 2.32901002509093e99 * cos(theta) ** 21 - 1.17288274644867e99 * cos(theta) ** 19 + 3.65990784019566e98 * cos(theta) ** 17 - 7.37403653728311e97 * cos(theta) ** 15 + 9.70267965431988e96 * cos(theta) ** 13 - 8.25309719778572e95 * cos(theta) ** 11 + 4.39845296393619e94 * cos(theta) ** 9 - 1.38533951620037e93 * cos(theta) ** 7 + 2.32737038721663e91 * cos(theta) ** 5 - 1.72015549683417e89 * cos(theta) ** 3 + 3.55404028271522e86 * cos(theta) ) * sin(47 * phi) ) # @torch.jit.script def Yl72_m_minus_46(theta, phi): return ( 4.45728865959693e-84 * (1.0 - cos(theta) ** 2) ** 23 * ( 4.75928135562059e97 * cos(theta) ** 26 - 1.08165485355013e98 * cos(theta) ** 24 + 1.05864092049588e98 * cos(theta) ** 22 - 5.86441373224334e97 * cos(theta) ** 20 + 2.03328213344203e97 * cos(theta) ** 18 - 4.60877283580194e96 * cos(theta) ** 16 + 6.93048546737134e95 * cos(theta) ** 14 - 6.87758099815477e94 * cos(theta) ** 12 + 4.39845296393619e93 * cos(theta) ** 10 - 1.73167439525047e92 * cos(theta) ** 8 + 3.87895064536105e90 * cos(theta) ** 6 - 4.30038874208542e88 * cos(theta) ** 4 + 1.77702014135761e86 * cos(theta) ** 2 - 1.14868787418074e83 ) * sin(46 * phi) ) # @torch.jit.script def Yl72_m_minus_45(theta, phi): return ( 2.51590157027613e-82 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 1.762696798378e96 * cos(theta) ** 27 - 4.32661941420053e96 * cos(theta) ** 25 + 4.60278661085163e96 * cos(theta) ** 23 - 2.79257796773492e96 * cos(theta) ** 21 + 1.07014849128528e96 * cos(theta) ** 19 - 2.71104284458938e95 * cos(theta) ** 17 + 4.62032364491423e94 * cos(theta) ** 15 - 5.29044692165751e93 * cos(theta) ** 13 + 3.99859360357835e92 * cos(theta) ** 11 - 1.92408266138941e91 * cos(theta) ** 9 + 5.5413580648015e89 * cos(theta) ** 7 - 8.60077748417084e87 * cos(theta) ** 5 + 5.92340047119204e85 * cos(theta) ** 3 - 1.14868787418074e83 * cos(theta) ) * sin(45 * phi) ) # @torch.jit.script def Yl72_m_minus_44(theta, phi): return ( 1.44001028087571e-80 * (1.0 - cos(theta) ** 2) ** 22 * ( 6.29534570849284e94 * cos(theta) ** 28 - 1.66408439007713e95 * cos(theta) ** 26 + 1.91782775452151e95 * cos(theta) ** 24 - 1.26935362169769e95 * cos(theta) ** 22 + 5.3507424564264e94 * cos(theta) ** 20 - 1.50613491366077e94 * cos(theta) ** 18 + 2.88770227807139e93 * cos(theta) ** 16 - 3.77889065832679e92 * cos(theta) ** 14 + 3.33216133631529e91 * cos(theta) ** 12 - 1.92408266138941e90 * cos(theta) ** 10 + 6.92669758100187e88 * cos(theta) ** 8 - 1.43346291402847e87 * cos(theta) ** 6 + 1.48085011779801e85 * cos(theta) ** 4 - 5.74343937090372e82 * cos(theta) ** 2 + 3.50637324230996e79 ) * sin(44 * phi) ) # @torch.jit.script def Yl72_m_minus_43(theta, phi): return ( 8.35205962907912e-79 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 2.17080886499753e93 * cos(theta) ** 29 - 6.16327551880418e93 * cos(theta) ** 27 + 7.67131101808605e93 * cos(theta) ** 25 - 5.51892878998997e93 * cos(theta) ** 23 + 2.54797259829829e93 * cos(theta) ** 21 - 7.92702586137245e92 * cos(theta) ** 19 + 1.69864839886552e92 * cos(theta) ** 17 - 2.51926043888453e91 * cos(theta) ** 15 + 2.56320102793484e90 * cos(theta) ** 13 - 1.74916605580855e89 * cos(theta) ** 11 + 7.69633064555763e87 * cos(theta) ** 9 - 2.04780416289782e86 * cos(theta) ** 7 + 2.96170023559602e84 * cos(theta) ** 5 - 1.91447979030124e82 * cos(theta) ** 3 + 3.50637324230996e79 * cos(theta) ) * sin(43 * phi) ) # @torch.jit.script def Yl72_m_minus_42(theta, phi): return ( 4.90572426013266e-77 * (1.0 - cos(theta) ** 2) ** 21 * ( 7.23602954999177e91 * cos(theta) ** 30 - 2.20116982814435e92 * cos(theta) ** 28 + 2.9505042377254e92 * cos(theta) ** 26 - 2.29955366249582e92 * cos(theta) ** 24 + 1.15816936286286e92 * cos(theta) ** 22 - 3.96351293068622e91 * cos(theta) ** 20 + 9.43693554925291e90 * cos(theta) ** 18 - 1.57453777430283e90 * cos(theta) ** 16 + 1.83085787709631e89 * cos(theta) ** 14 - 1.45763837984046e88 * cos(theta) ** 12 + 7.69633064555763e86 * cos(theta) ** 10 - 2.55975520362227e85 * cos(theta) ** 8 + 4.9361670593267e83 * cos(theta) ** 6 - 4.7861994757531e81 * cos(theta) ** 4 + 1.75318662115498e79 * cos(theta) ** 2 - 1.01634007023477e76 ) * sin(42 * phi) ) # @torch.jit.script def Yl72_m_minus_41(theta, phi): return ( 2.91632826076128e-75 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 2.33420308064251e90 * cos(theta) ** 31 - 7.59024078670465e90 * cos(theta) ** 29 + 1.09277934730571e91 * cos(theta) ** 27 - 9.19821464998327e90 * cos(theta) ** 25 + 5.03551896896895e90 * cos(theta) ** 23 - 1.88738710985058e90 * cos(theta) ** 21 + 4.96680818381732e89 * cos(theta) ** 19 - 9.26198690766371e88 * cos(theta) ** 17 + 1.22057191806421e88 * cos(theta) ** 15 - 1.12126029218497e87 * cos(theta) ** 13 + 6.99666422323421e85 * cos(theta) ** 11 - 2.84417244846919e84 * cos(theta) ** 9 + 7.05166722760957e82 * cos(theta) ** 7 - 9.5723989515062e80 * cos(theta) ** 5 + 5.84395540384994e78 * cos(theta) ** 3 - 1.01634007023477e76 * cos(theta) ) * sin(41 * phi) ) # @torch.jit.script def Yl72_m_minus_40(theta, phi): return ( 1.75368108322596e-73 * (1.0 - cos(theta) ** 2) ** 20 * ( 7.29438462700783e88 * cos(theta) ** 32 - 2.53008026223488e89 * cos(theta) ** 30 + 3.90278338323466e89 * cos(theta) ** 28 - 3.53777486537818e89 * cos(theta) ** 26 + 2.09813290373706e89 * cos(theta) ** 24 - 8.57903231750265e88 * cos(theta) ** 22 + 2.48340409190866e88 * cos(theta) ** 20 - 5.14554828203539e87 * cos(theta) ** 18 + 7.62857448790131e86 * cos(theta) ** 16 - 8.0090020870355e85 * cos(theta) ** 14 + 5.83055351936184e84 * cos(theta) ** 12 - 2.84417244846919e83 * cos(theta) ** 10 + 8.81458403451196e81 * cos(theta) ** 8 - 1.59539982525103e80 * cos(theta) ** 6 + 1.46098885096248e78 * cos(theta) ** 4 - 5.08170035117386e75 * cos(theta) ** 2 + 2.81067497299439e72 ) * sin(40 * phi) ) # @torch.jit.script def Yl72_m_minus_39(theta, phi): return ( 1.06614579560172e-71 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 2.21041958394177e87 * cos(theta) ** 33 - 8.16154923301576e87 * cos(theta) ** 31 + 1.34578737352919e88 * cos(theta) ** 29 - 1.3102869871771e88 * cos(theta) ** 27 + 8.39253161494824e87 * cos(theta) ** 25 - 3.73001405108811e87 * cos(theta) ** 23 + 1.18257337709936e87 * cos(theta) ** 21 - 2.70818330633442e86 * cos(theta) ** 19 + 4.48739675758901e85 * cos(theta) ** 17 - 5.33933472469033e84 * cos(theta) ** 15 + 4.48504116873988e83 * cos(theta) ** 13 - 2.58561131679017e82 * cos(theta) ** 11 + 9.79398226056884e80 * cos(theta) ** 9 - 2.27914260750148e79 * cos(theta) ** 7 + 2.92197770192497e77 * cos(theta) ** 5 - 1.69390011705795e75 * cos(theta) ** 3 + 2.81067497299439e72 * cos(theta) ) * sin(39 * phi) ) # @torch.jit.script def Yl72_m_minus_38(theta, phi): return ( 6.54964176129246e-70 * (1.0 - cos(theta) ** 2) ** 19 * ( 6.50123407041696e85 * cos(theta) ** 34 - 2.55048413531742e86 * cos(theta) ** 32 + 4.48595791176398e86 * cos(theta) ** 30 - 4.67959638277537e86 * cos(theta) ** 28 + 3.22789677498009e86 * cos(theta) ** 26 - 1.55417252128671e86 * cos(theta) ** 24 + 5.37533353226983e85 * cos(theta) ** 22 - 1.35409165316721e85 * cos(theta) ** 20 + 2.49299819866056e84 * cos(theta) ** 18 - 3.33708420293146e83 * cos(theta) ** 16 + 3.2036008348142e82 * cos(theta) ** 14 - 2.15467609732515e81 * cos(theta) ** 12 + 9.79398226056884e79 * cos(theta) ** 10 - 2.84892825937684e78 * cos(theta) ** 8 + 4.86996283654161e76 * cos(theta) ** 6 - 4.23475029264488e74 * cos(theta) ** 4 + 1.4053374864972e72 * cos(theta) ** 2 - 7.44746945679489e68 ) * sin(38 * phi) ) # @torch.jit.script def Yl72_m_minus_37(theta, phi): return ( 4.06394583778961e-68 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 1.85749544869056e84 * cos(theta) ** 35 - 7.72873980399219e84 * cos(theta) ** 33 + 1.44708319734322e85 * cos(theta) ** 31 - 1.61365392509496e85 * cos(theta) ** 29 + 1.1955173240667e85 * cos(theta) ** 27 - 6.21669008514685e84 * cos(theta) ** 25 + 2.33710153576949e84 * cos(theta) ** 23 - 6.44805549127242e83 * cos(theta) ** 21 + 1.3121043150845e83 * cos(theta) ** 19 - 1.96299070760674e82 * cos(theta) ** 17 + 2.13573388987613e81 * cos(theta) ** 15 - 1.65744315178857e80 * cos(theta) ** 13 + 8.90362023688077e78 * cos(theta) ** 11 - 3.16547584375205e77 * cos(theta) ** 9 + 6.95708976648802e75 * cos(theta) ** 7 - 8.46950058528977e73 * cos(theta) ** 5 + 4.68445828832399e71 * cos(theta) ** 3 - 7.44746945679489e68 * cos(theta) ) * sin(37 * phi) ) # @torch.jit.script def Yl72_m_minus_36(theta, phi): return ( 2.54573041092809e-66 * (1.0 - cos(theta) ** 2) ** 18 * ( 5.159709579696e82 * cos(theta) ** 36 - 2.27315876588006e83 * cos(theta) ** 34 + 4.52213499169756e83 * cos(theta) ** 32 - 5.37884641698319e83 * cos(theta) ** 30 + 4.26970472880965e83 * cos(theta) ** 28 - 2.3910346481334e83 * cos(theta) ** 26 + 9.73792306570621e82 * cos(theta) ** 24 - 2.93093431421474e82 * cos(theta) ** 22 + 6.56052157542253e81 * cos(theta) ** 20 - 1.09055039311486e81 * cos(theta) ** 18 + 1.33483368117258e80 * cos(theta) ** 16 - 1.18388796556327e79 * cos(theta) ** 14 + 7.41968353073397e77 * cos(theta) ** 12 - 3.16547584375205e76 * cos(theta) ** 10 + 8.69636220811003e74 * cos(theta) ** 8 - 1.41158343088163e73 * cos(theta) ** 6 + 1.171114572081e71 * cos(theta) ** 4 - 3.72373472839744e68 * cos(theta) ** 2 + 1.8979279961251e65 ) * sin(36 * phi) ) # @torch.jit.script def Yl72_m_minus_35(theta, phi): return ( 1.60925604945875e-64 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 1.39451610262054e81 * cos(theta) ** 37 - 6.49473933108588e81 * cos(theta) ** 35 + 1.37034393687805e82 * cos(theta) ** 33 - 1.73511174741393e82 * cos(theta) ** 31 + 1.4723119754516e82 * cos(theta) ** 29 - 8.85568388197557e81 * cos(theta) ** 27 + 3.89516922628249e81 * cos(theta) ** 25 - 1.27431926704989e81 * cos(theta) ** 23 + 3.12405789305835e80 * cos(theta) ** 21 - 5.73973891113082e79 * cos(theta) ** 19 + 7.85196283042696e78 * cos(theta) ** 17 - 7.89258643708844e77 * cos(theta) ** 15 + 5.70744886979536e76 * cos(theta) ** 13 - 2.87770531250186e75 * cos(theta) ** 11 + 9.66262467567781e73 * cos(theta) ** 9 - 2.01654775840232e72 * cos(theta) ** 7 + 2.34222914416199e70 * cos(theta) ** 5 - 1.24124490946581e68 * cos(theta) ** 3 + 1.8979279961251e65 * cos(theta) ) * sin(35 * phi) ) # @torch.jit.script def Yl72_m_minus_34(theta, phi): return ( 1.0261452462024e-62 * (1.0 - cos(theta) ** 2) ** 17 * ( 3.66977921742248e79 * cos(theta) ** 38 - 1.80409425863497e80 * cos(theta) ** 36 + 4.03042334375897e80 * cos(theta) ** 34 - 5.42222421066854e80 * cos(theta) ** 32 + 4.90770658483868e80 * cos(theta) ** 30 - 3.1627442435627e80 * cos(theta) ** 28 + 1.49814201010865e80 * cos(theta) ** 26 - 5.30966361270786e79 * cos(theta) ** 24 + 1.42002631502652e79 * cos(theta) ** 22 - 2.86986945556541e78 * cos(theta) ** 20 + 4.36220157245942e77 * cos(theta) ** 18 - 4.93286652318028e76 * cos(theta) ** 16 + 4.07674919271097e75 * cos(theta) ** 14 - 2.39808776041822e74 * cos(theta) ** 12 + 9.66262467567781e72 * cos(theta) ** 10 - 2.52068469800291e71 * cos(theta) ** 8 + 3.90371524026999e69 * cos(theta) ** 6 - 3.10311227366454e67 * cos(theta) ** 4 + 9.4896399806255e64 * cos(theta) ** 2 - 4.66780126936817e61 ) * sin(34 * phi) ) # @torch.jit.script def Yl72_m_minus_33(theta, phi): return ( 6.59772293302761e-61 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 9.40969030108327e77 * cos(theta) ** 39 - 4.87593042874315e78 * cos(theta) ** 37 + 1.15154952678828e79 * cos(theta) ** 35 - 1.64309824565713e79 * cos(theta) ** 33 + 1.58313115639957e79 * cos(theta) ** 31 - 1.09060146329748e79 * cos(theta) ** 29 + 5.54867411151351e78 * cos(theta) ** 27 - 2.12386544508314e78 * cos(theta) ** 25 + 6.17402745663705e77 * cos(theta) ** 23 - 1.36660450265019e77 * cos(theta) ** 21 + 2.29589556445233e76 * cos(theta) ** 19 - 2.90168619010605e75 * cos(theta) ** 17 + 2.71783279514065e74 * cos(theta) ** 15 - 1.8446828926294e73 * cos(theta) ** 13 + 8.78420425061619e71 * cos(theta) ** 11 - 2.80076077555878e70 * cos(theta) ** 9 + 5.57673605752855e68 * cos(theta) ** 7 - 6.20622454732907e66 * cos(theta) ** 5 + 3.16321332687517e64 * cos(theta) ** 3 - 4.66780126936817e61 * cos(theta) ) * sin(33 * phi) ) # @torch.jit.script def Yl72_m_minus_32(theta, phi): return ( 4.27581315288909e-59 * (1.0 - cos(theta) ** 2) ** 16 * ( 2.35242257527082e76 * cos(theta) ** 40 - 1.28313958651136e77 * cos(theta) ** 38 + 3.19874868552299e77 * cos(theta) ** 36 - 4.83264189899157e77 * cos(theta) ** 34 + 4.94728486374867e77 * cos(theta) ** 32 - 3.63533821099161e77 * cos(theta) ** 30 + 1.98166932554054e77 * cos(theta) ** 28 - 8.16871325031978e76 * cos(theta) ** 26 + 2.57251144026544e76 * cos(theta) ** 24 - 6.21183864840998e75 * cos(theta) ** 22 + 1.14794778222616e75 * cos(theta) ** 20 - 1.61204788339225e74 * cos(theta) ** 18 + 1.69864549696291e73 * cos(theta) ** 16 - 1.31763063759243e72 * cos(theta) ** 14 + 7.32017020884682e70 * cos(theta) ** 12 - 2.80076077555878e69 * cos(theta) ** 10 + 6.97092007191069e67 * cos(theta) ** 8 - 1.03437075788818e66 * cos(theta) ** 6 + 7.90803331718791e63 * cos(theta) ** 4 - 2.33390063468409e61 * cos(theta) ** 2 + 1.11138125461147e58 ) * sin(32 * phi) ) # @torch.jit.script def Yl72_m_minus_31(theta, phi): return ( 2.79207652289367e-57 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 5.7376160372459e74 * cos(theta) ** 41 - 3.29010150387527e75 * cos(theta) ** 39 + 8.6452667176297e75 * cos(theta) ** 37 - 1.3807548282833e76 * cos(theta) ** 35 + 1.49917723143899e76 * cos(theta) ** 33 - 1.17268974548117e76 * cos(theta) ** 31 + 6.83334250186393e75 * cos(theta) ** 29 - 3.02544935197029e75 * cos(theta) ** 27 + 1.02900457610617e75 * cos(theta) ** 25 - 2.70079941235216e74 * cos(theta) ** 23 + 5.46641801060078e73 * cos(theta) ** 21 - 8.48446254416972e72 * cos(theta) ** 19 + 9.99203233507592e71 * cos(theta) ** 17 - 8.78420425061619e70 * cos(theta) ** 15 + 5.6309001606514e69 * cos(theta) ** 13 - 2.5461461595989e68 * cos(theta) ** 11 + 7.74546674656744e66 * cos(theta) ** 9 - 1.47767251126883e65 * cos(theta) ** 7 + 1.58160666343758e63 * cos(theta) ** 5 - 7.77966878228029e60 * cos(theta) ** 3 + 1.11138125461147e58 * cos(theta) ) * sin(31 * phi) ) # @torch.jit.script def Yl72_m_minus_30(theta, phi): return ( 1.83641391319431e-55 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.36609905648712e73 * cos(theta) ** 42 - 8.22525375968818e73 * cos(theta) ** 40 + 2.27507018884992e74 * cos(theta) ** 38 - 3.83543007856473e74 * cos(theta) ** 36 + 4.40934479834997e74 * cos(theta) ** 34 - 3.66465545462864e74 * cos(theta) ** 32 + 2.27778083395464e74 * cos(theta) ** 30 - 1.08051762570368e74 * cos(theta) ** 28 + 3.95770990810067e73 * cos(theta) ** 26 - 1.12533308848007e73 * cos(theta) ** 24 + 2.48473545936399e72 * cos(theta) ** 22 - 4.24223127208486e71 * cos(theta) ** 20 + 5.55112907504217e70 * cos(theta) ** 18 - 5.49012765663512e69 * cos(theta) ** 16 + 4.02207154332243e68 * cos(theta) ** 14 - 2.12178846633241e67 * cos(theta) ** 12 + 7.74546674656744e65 * cos(theta) ** 10 - 1.84709063908603e64 * cos(theta) ** 8 + 2.6360111057293e62 * cos(theta) ** 6 - 1.94491719557007e60 * cos(theta) ** 4 + 5.55690627305735e57 * cos(theta) ** 2 - 2.56907363525536e54 ) * sin(30 * phi) ) # @torch.jit.script def Yl72_m_minus_29(theta, phi): return ( 1.21619968926472e-53 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 3.17697454997004e71 * cos(theta) ** 43 - 2.00615945358248e72 * cos(theta) ** 41 + 5.83351330474339e72 * cos(theta) ** 39 - 1.03660272393641e73 * cos(theta) ** 37 + 1.25981279952856e73 * cos(theta) ** 35 - 1.11050165291777e73 * cos(theta) ** 33 + 7.34768010953111e72 * cos(theta) ** 31 - 3.72592284725405e72 * cos(theta) ** 29 + 1.46581848448173e72 * cos(theta) ** 27 - 4.50133235392027e71 * cos(theta) ** 25 + 1.08031976494087e71 * cos(theta) ** 23 - 2.02011012956422e70 * cos(theta) ** 21 + 2.92164688160114e69 * cos(theta) ** 19 - 3.22948685684419e68 * cos(theta) ** 17 + 2.68138102888162e67 * cos(theta) ** 15 - 1.63214497410186e66 * cos(theta) ** 13 + 7.0413334059704e64 * cos(theta) ** 11 - 2.05232293231782e63 * cos(theta) ** 9 + 3.76573015104186e61 * cos(theta) ** 7 - 3.88983439114014e59 * cos(theta) ** 5 + 1.85230209101912e57 * cos(theta) ** 3 - 2.56907363525536e54 * cos(theta) ) * sin(29 * phi) ) # @torch.jit.script def Yl72_m_minus_28(theta, phi): return ( 8.10759251839952e-52 * (1.0 - cos(theta) ** 2) ** 14 * ( 7.22039670447737e69 * cos(theta) ** 44 - 4.77657012757734e70 * cos(theta) ** 42 + 1.45837832618585e71 * cos(theta) ** 40 - 2.72790190509583e71 * cos(theta) ** 38 + 3.49947999869045e71 * cos(theta) ** 36 - 3.26618133211109e71 * cos(theta) ** 34 + 2.29615003422847e71 * cos(theta) ** 32 - 1.24197428241802e71 * cos(theta) ** 30 + 5.23506601600618e70 * cos(theta) ** 28 - 1.73128167458472e70 * cos(theta) ** 26 + 4.50133235392027e69 * cos(theta) ** 24 - 9.18231877074646e68 * cos(theta) ** 22 + 1.46082344080057e68 * cos(theta) ** 20 - 1.79415936491344e67 * cos(theta) ** 18 + 1.67586314305101e66 * cos(theta) ** 16 - 1.16581783864418e65 * cos(theta) ** 14 + 5.86777783830866e63 * cos(theta) ** 12 - 2.05232293231782e62 * cos(theta) ** 10 + 4.70716268880233e60 * cos(theta) ** 8 - 6.48305731856691e58 * cos(theta) ** 6 + 4.63075522754779e56 * cos(theta) ** 4 - 1.28453681762768e54 * cos(theta) ** 2 + 5.78099377870244e50 ) * sin(28 * phi) ) # @torch.jit.script def Yl72_m_minus_27(theta, phi): return ( 5.43873840150301e-50 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.60453260099497e68 * cos(theta) ** 45 - 1.11083026222729e69 * cos(theta) ** 43 + 3.55702030777036e69 * cos(theta) ** 41 - 6.99462026947648e69 * cos(theta) ** 39 + 9.45805405051473e69 * cos(theta) ** 37 - 9.33194666317454e69 * cos(theta) ** 35 + 6.95803040675294e69 * cos(theta) ** 33 - 4.00636865296135e69 * cos(theta) ** 31 + 1.80519517793316e69 * cos(theta) ** 29 - 6.41215435031378e68 * cos(theta) ** 27 + 1.80053294156811e68 * cos(theta) ** 25 - 3.9923125090202e67 * cos(theta) ** 23 + 6.95630209905034e66 * cos(theta) ** 21 - 9.4429440258602e65 * cos(theta) ** 19 + 9.85801848853537e64 * cos(theta) ** 17 - 7.77211892429455e63 * cos(theta) ** 15 + 4.51367526023743e62 * cos(theta) ** 13 - 1.86574812028892e61 * cos(theta) ** 11 + 5.23018076533592e59 * cos(theta) ** 9 - 9.26151045509558e57 * cos(theta) ** 7 + 9.26151045509558e55 * cos(theta) ** 5 - 4.28178939209227e53 * cos(theta) ** 3 + 5.78099377870244e50 * cos(theta) ) * sin(27 * phi) ) # @torch.jit.script def Yl72_m_minus_26(theta, phi): return ( 3.67024185267844e-48 * (1.0 - cos(theta) ** 2) ** 13 * ( 3.48811434998907e66 * cos(theta) ** 46 - 2.52461423233475e67 * cos(theta) ** 44 + 8.4690959708818e67 * cos(theta) ** 42 - 1.74865506736912e68 * cos(theta) ** 40 + 2.48896159224072e68 * cos(theta) ** 38 - 2.59220740643737e68 * cos(theta) ** 36 + 2.04647953139792e68 * cos(theta) ** 34 - 1.25199020405042e68 * cos(theta) ** 32 + 6.01731725977722e67 * cos(theta) ** 30 - 2.29005512511206e67 * cos(theta) ** 28 + 6.92512669833888e66 * cos(theta) ** 26 - 1.66346354542508e66 * cos(theta) ** 24 + 3.16195549956834e65 * cos(theta) ** 22 - 4.7214720129301e64 * cos(theta) ** 20 + 5.47667693807521e63 * cos(theta) ** 18 - 4.85757432768409e62 * cos(theta) ** 16 + 3.22405375731245e61 * cos(theta) ** 14 - 1.55479010024077e60 * cos(theta) ** 12 + 5.23018076533592e58 * cos(theta) ** 10 - 1.15768880688695e57 * cos(theta) ** 8 + 1.54358507584926e55 * cos(theta) ** 6 - 1.07044734802307e53 * cos(theta) ** 4 + 2.89049688935122e50 * cos(theta) ** 2 - 1.26943209896848e47 ) * sin(26 * phi) ) # @torch.jit.script def Yl72_m_minus_25(theta, phi): return ( 2.4909020501506e-46 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 7.42151989359376e64 * cos(theta) ** 47 - 5.61025384963277e65 * cos(theta) ** 45 + 1.96955720253065e66 * cos(theta) ** 43 - 4.26501235943688e66 * cos(theta) ** 41 + 6.38195280061723e66 * cos(theta) ** 39 - 7.00596596334425e66 * cos(theta) ** 37 + 5.84708437542264e66 * cos(theta) ** 35 - 3.7939097092437e66 * cos(theta) ** 33 + 1.9410700837991e66 * cos(theta) ** 31 - 7.89674181073125e65 * cos(theta) ** 29 + 2.56486174012551e65 * cos(theta) ** 27 - 6.65385418170033e64 * cos(theta) ** 25 + 1.37476326068189e64 * cos(theta) ** 23 - 2.24832000615719e63 * cos(theta) ** 21 + 2.88246154635537e62 * cos(theta) ** 19 - 2.85739666334359e61 * cos(theta) ** 17 + 2.14936917154164e60 * cos(theta) ** 15 - 1.19599238480059e59 * cos(theta) ** 13 + 4.75470978666902e57 * cos(theta) ** 11 - 1.28632089654105e56 * cos(theta) ** 9 + 2.20512153692752e54 * cos(theta) ** 7 - 2.14089469604614e52 * cos(theta) ** 5 + 9.63498963117073e49 * cos(theta) ** 3 - 1.26943209896848e47 * cos(theta) ) * sin(25 * phi) ) # @torch.jit.script def Yl72_m_minus_24(theta, phi): return ( 1.69966423499341e-44 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.54614997783203e63 * cos(theta) ** 48 - 1.21962040209408e64 * cos(theta) ** 46 + 4.47626636938785e64 * cos(theta) ** 44 - 1.01547913319926e65 * cos(theta) ** 42 + 1.59548820015431e65 * cos(theta) ** 40 - 1.84367525351164e65 * cos(theta) ** 38 + 1.62419010428407e65 * cos(theta) ** 36 - 1.11585579683638e65 * cos(theta) ** 34 + 6.06584401187219e64 * cos(theta) ** 32 - 2.63224727024375e64 * cos(theta) ** 30 + 9.16022050044826e63 * cos(theta) ** 28 - 2.55917468526936e63 * cos(theta) ** 26 + 5.72818025284119e62 * cos(theta) ** 24 - 1.02196363916236e62 * cos(theta) ** 22 + 1.44123077317769e61 * cos(theta) ** 20 - 1.58744259074644e60 * cos(theta) ** 18 + 1.34335573221352e59 * cos(theta) ** 16 - 8.54280274857566e57 * cos(theta) ** 14 + 3.96225815555752e56 * cos(theta) ** 12 - 1.28632089654105e55 * cos(theta) ** 10 + 2.7564019211594e53 * cos(theta) ** 8 - 3.56815782674356e51 * cos(theta) ** 6 + 2.40874740779268e49 * cos(theta) ** 4 - 6.34716049484238e46 * cos(theta) ** 2 + 2.72644351153023e43 ) * sin(24 * phi) ) # @torch.jit.script def Yl72_m_minus_23(theta, phi): return ( 1.1657268307417e-42 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 3.15540811802456e61 * cos(theta) ** 49 - 2.59493702573208e62 * cos(theta) ** 47 + 9.94725859863966e62 * cos(theta) ** 45 - 2.36157937953316e63 * cos(theta) ** 43 + 3.8914346345227e63 * cos(theta) ** 41 - 4.72737244490165e63 * cos(theta) ** 39 + 4.38970298455153e63 * cos(theta) ** 37 - 3.18815941953252e63 * cos(theta) ** 35 + 1.83813454905218e63 * cos(theta) ** 33 - 8.49112022659275e62 * cos(theta) ** 31 + 3.1586967242925e62 * cos(theta) ** 29 - 9.47842476025688e61 * cos(theta) ** 27 + 2.29127210113648e61 * cos(theta) ** 25 - 4.44332017027113e60 * cos(theta) ** 23 + 6.8630036817985e59 * cos(theta) ** 21 - 8.35496100392861e58 * cos(theta) ** 19 + 7.90209254243248e57 * cos(theta) ** 17 - 5.69520183238377e56 * cos(theta) ** 15 + 3.0478908888904e55 * cos(theta) ** 13 - 1.16938263321914e54 * cos(theta) ** 11 + 3.06266880128822e52 * cos(theta) ** 9 - 5.09736832391937e50 * cos(theta) ** 7 + 4.81749481558536e48 * cos(theta) ** 5 - 2.11572016494746e46 * cos(theta) ** 3 + 2.72644351153023e43 * cos(theta) ) * sin(23 * phi) ) # @torch.jit.script def Yl72_m_minus_22(theta, phi): return ( 8.03421773328159e-41 * (1.0 - cos(theta) ** 2) ** 11 * ( 6.31081623604912e59 * cos(theta) ** 50 - 5.40611880360851e60 * cos(theta) ** 48 + 2.1624475214434e61 * cos(theta) ** 46 - 5.36722586257535e61 * cos(theta) ** 44 + 9.26532055838738e61 * cos(theta) ** 42 - 1.18184311122541e62 * cos(theta) ** 40 + 1.15518499593461e62 * cos(theta) ** 38 - 8.85599838759033e61 * cos(theta) ** 36 + 5.40627808544759e61 * cos(theta) ** 34 - 2.65347507081023e61 * cos(theta) ** 32 + 1.0528989080975e61 * cos(theta) ** 30 - 3.38515170009174e60 * cos(theta) ** 28 + 8.81258500437107e59 * cos(theta) ** 26 - 1.85138340427964e59 * cos(theta) ** 24 + 3.11954712809023e58 * cos(theta) ** 22 - 4.17748050196431e57 * cos(theta) ** 20 + 4.39005141246249e56 * cos(theta) ** 18 - 3.55950114523986e55 * cos(theta) ** 16 + 2.177064920636e54 * cos(theta) ** 14 - 9.74485527682616e52 * cos(theta) ** 12 + 3.06266880128822e51 * cos(theta) ** 10 - 6.37171040489921e49 * cos(theta) ** 8 + 8.0291580259756e47 * cos(theta) ** 6 - 5.28930041236865e45 * cos(theta) ** 4 + 1.36322175576512e43 * cos(theta) ** 2 - 5.73988107690575e39 ) * sin(22 * phi) ) # @torch.jit.script def Yl72_m_minus_21(theta, phi): return ( 5.56278931907556e-39 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.23741494824492e58 * cos(theta) ** 51 - 1.10328955175684e59 * cos(theta) ** 49 + 4.60095217328384e59 * cos(theta) ** 47 - 1.19271685835008e60 * cos(theta) ** 45 + 2.15472571125288e60 * cos(theta) ** 43 - 2.88254417372052e60 * cos(theta) ** 41 + 2.96201281008875e60 * cos(theta) ** 39 - 2.39351307772712e60 * cos(theta) ** 37 + 1.54465088155645e60 * cos(theta) ** 35 - 8.0408335479098e59 * cos(theta) ** 33 + 3.3964480906371e59 * cos(theta) ** 31 - 1.16729368968681e59 * cos(theta) ** 29 + 3.26392037198928e58 * cos(theta) ** 27 - 7.40553361711854e57 * cos(theta) ** 25 + 1.3563248383001e57 * cos(theta) ** 23 - 1.98927642950681e56 * cos(theta) ** 21 + 2.31055337498026e55 * cos(theta) ** 19 - 2.09382420308227e54 * cos(theta) ** 17 + 1.45137661375733e53 * cos(theta) ** 15 - 7.49604252063551e51 * cos(theta) ** 13 + 2.78424436480747e50 * cos(theta) ** 11 - 7.07967822766579e48 * cos(theta) ** 9 + 1.14702257513937e47 * cos(theta) ** 7 - 1.05786008247373e45 * cos(theta) ** 5 + 4.54407251921705e42 * cos(theta) ** 3 - 5.73988107690575e39 * cos(theta) ) * sin(21 * phi) ) # @torch.jit.script def Yl72_m_minus_20(theta, phi): return ( 3.86843904618807e-37 * (1.0 - cos(theta) ** 2) ** 10 * ( 2.37964413124024e56 * cos(theta) ** 52 - 2.20657910351368e57 * cos(theta) ** 50 + 9.58531702767466e57 * cos(theta) ** 48 - 2.59286273554365e58 * cos(theta) ** 46 + 4.89710388921109e58 * cos(theta) ** 44 - 6.86320041362028e58 * cos(theta) ** 42 + 7.40503202522188e58 * cos(theta) ** 40 - 6.29871862559768e58 * cos(theta) ** 38 + 4.29069689321237e58 * cos(theta) ** 36 - 2.36495104350288e58 * cos(theta) ** 34 + 1.06139002832409e58 * cos(theta) ** 32 - 3.89097896562269e57 * cos(theta) ** 30 + 1.16568584713903e57 * cos(theta) ** 28 - 2.84828216043021e56 * cos(theta) ** 26 + 5.65135349291708e55 * cos(theta) ** 24 - 9.04216558866733e54 * cos(theta) ** 22 + 1.15527668749013e54 * cos(theta) ** 20 - 1.16323566837904e53 * cos(theta) ** 18 + 9.07110383598332e51 * cos(theta) ** 16 - 5.35431608616822e50 * cos(theta) ** 14 + 2.32020363733956e49 * cos(theta) ** 12 - 7.07967822766579e47 * cos(theta) ** 10 + 1.43377821892422e46 * cos(theta) ** 8 - 1.76310013745622e44 * cos(theta) ** 6 + 1.13601812980426e42 * cos(theta) ** 4 - 2.86994053845287e39 * cos(theta) ** 2 + 1.18690675701111e36 ) * sin(20 * phi) ) # @torch.jit.script def Yl72_m_minus_19(theta, phi): return ( 2.70126758225203e-35 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 4.48989458724574e54 * cos(theta) ** 53 - 4.32662569316407e55 * cos(theta) ** 51 + 1.95618714850503e56 * cos(theta) ** 49 - 5.51672922456096e56 * cos(theta) ** 47 + 1.08824530871358e57 * cos(theta) ** 45 - 1.59609311944658e57 * cos(theta) ** 43 + 1.80610537200534e57 * cos(theta) ** 41 - 1.61505605784556e57 * cos(theta) ** 39 + 1.15964780897632e57 * cos(theta) ** 37 - 6.75700298143681e56 * cos(theta) ** 35 + 3.21633341916392e56 * cos(theta) ** 33 - 1.25515450503958e56 * cos(theta) ** 31 + 4.01960636944493e55 * cos(theta) ** 29 - 1.05491931867786e55 * cos(theta) ** 27 + 2.26054139716683e54 * cos(theta) ** 25 - 3.93137634289884e53 * cos(theta) ** 23 + 5.5013175594768e52 * cos(theta) ** 21 - 6.12229299146862e51 * cos(theta) ** 19 + 5.33594343293137e50 * cos(theta) ** 17 - 3.56954405744548e49 * cos(theta) ** 15 + 1.78477202872274e48 * cos(theta) ** 13 - 6.43607111605981e46 * cos(theta) ** 11 + 1.59308690991579e45 * cos(theta) ** 9 - 2.51871448208031e43 * cos(theta) ** 7 + 2.27203625960852e41 * cos(theta) ** 5 - 9.56646846150958e38 * cos(theta) ** 3 + 1.18690675701111e36 * cos(theta) ) * sin(19 * phi) ) # @torch.jit.script def Yl72_m_minus_18(theta, phi): return ( 1.89358664843331e-33 * (1.0 - cos(theta) ** 2) ** 9 * ( 8.31461960601062e52 * cos(theta) ** 54 - 8.32043402531553e53 * cos(theta) ** 52 + 3.91237429701007e54 * cos(theta) ** 50 - 1.1493185884502e55 * cos(theta) ** 48 + 2.36575067111647e55 * cos(theta) ** 46 - 3.62748436237859e55 * cos(theta) ** 44 + 4.30025088572699e55 * cos(theta) ** 42 - 4.0376401446139e55 * cos(theta) ** 40 + 3.05170476046399e55 * cos(theta) ** 38 - 1.87694527262133e55 * cos(theta) ** 36 + 9.45980417401153e54 * cos(theta) ** 34 - 3.92235782824868e54 * cos(theta) ** 32 + 1.33986878981498e54 * cos(theta) ** 30 - 3.76756899527805e53 * cos(theta) ** 28 + 8.6943899891032e52 * cos(theta) ** 26 - 1.63807347620785e52 * cos(theta) ** 24 + 2.50059889067127e51 * cos(theta) ** 22 - 3.06114649573431e50 * cos(theta) ** 20 + 2.9644130182952e49 * cos(theta) ** 18 - 2.23096503590342e48 * cos(theta) ** 16 + 1.27483716337339e47 * cos(theta) ** 14 - 5.36339259671651e45 * cos(theta) ** 12 + 1.59308690991579e44 * cos(theta) ** 10 - 3.14839310260038e42 * cos(theta) ** 8 + 3.78672709934754e40 * cos(theta) ** 6 - 2.39161711537739e38 * cos(theta) ** 4 + 5.93453378505557e35 * cos(theta) ** 2 - 2.41535766587528e32 ) * sin(18 * phi) ) # @torch.jit.script def Yl72_m_minus_17(theta, phi): return ( 1.33225629876043e-31 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.51174901927466e51 * cos(theta) ** 55 - 1.56989321232368e52 * cos(theta) ** 53 + 7.67132215100013e52 * cos(theta) ** 51 - 2.34554813969428e53 * cos(theta) ** 49 + 5.03351206620525e53 * cos(theta) ** 47 - 8.0610763608413e53 * cos(theta) ** 45 + 1.00005834551791e54 * cos(theta) ** 43 - 9.84790279174121e53 * cos(theta) ** 41 + 7.82488400118972e53 * cos(theta) ** 39 - 5.07282506113874e53 * cos(theta) ** 37 + 2.70280119257472e53 * cos(theta) ** 35 - 1.18859328128748e53 * cos(theta) ** 33 + 4.32215738649993e52 * cos(theta) ** 31 - 1.29916172250967e52 * cos(theta) ** 29 + 3.22014444040859e51 * cos(theta) ** 27 - 6.5522939048314e50 * cos(theta) ** 25 + 1.08721690898751e50 * cos(theta) ** 23 - 1.45768880749253e49 * cos(theta) ** 21 + 1.56021737805011e48 * cos(theta) ** 19 - 1.31233237406084e47 * cos(theta) ** 17 + 8.49891442248924e45 * cos(theta) ** 15 - 4.12568661285885e44 * cos(theta) ** 13 + 1.44826082719618e43 * cos(theta) ** 11 - 3.49821455844487e41 * cos(theta) ** 9 + 5.40961014192506e39 * cos(theta) ** 7 - 4.78323423075479e37 * cos(theta) ** 5 + 1.97817792835186e35 * cos(theta) ** 3 - 2.41535766587528e32 * cos(theta) ) * sin(17 * phi) ) # @torch.jit.script def Yl72_m_minus_16(theta, phi): return ( 9.40538979437044e-30 * (1.0 - cos(theta) ** 2) ** 8 * ( 2.69955182013332e49 * cos(theta) ** 56 - 2.90720965245127e50 * cos(theta) ** 54 + 1.47525425980772e51 * cos(theta) ** 52 - 4.69109627938857e51 * cos(theta) ** 50 + 1.04864834712609e52 * cos(theta) ** 48 - 1.75240790453072e52 * cos(theta) ** 46 + 2.27285987617706e52 * cos(theta) ** 44 - 2.34473875993838e52 * cos(theta) ** 42 + 1.95622100029743e52 * cos(theta) ** 40 - 1.33495396345756e52 * cos(theta) ** 38 + 7.50778109048534e51 * cos(theta) ** 36 - 3.495862592022e51 * cos(theta) ** 34 + 1.35067418328123e51 * cos(theta) ** 32 - 4.33053907503225e50 * cos(theta) ** 30 + 1.15005158586021e50 * cos(theta) ** 28 - 2.52011304031977e49 * cos(theta) ** 26 + 4.53007045411463e48 * cos(theta) ** 24 - 6.62585821587513e47 * cos(theta) ** 22 + 7.80108689025054e46 * cos(theta) ** 20 - 7.2907354114491e45 * cos(theta) ** 18 + 5.31182151405577e44 * cos(theta) ** 16 - 2.9469190091849e43 * cos(theta) ** 14 + 1.20688402266348e42 * cos(theta) ** 12 - 3.49821455844487e40 * cos(theta) ** 10 + 6.76201267740632e38 * cos(theta) ** 8 - 7.97205705125798e36 * cos(theta) ** 6 + 4.94544482087964e34 * cos(theta) ** 4 - 1.20767883293764e32 * cos(theta) ** 2 + 4.84622324613821e28 ) * sin(16 * phi) ) # @torch.jit.script def Yl72_m_minus_15(theta, phi): return ( 6.66124738795357e-28 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 4.7360558247953e47 * cos(theta) ** 57 - 5.28583573172958e48 * cos(theta) ** 55 + 2.78349860341079e49 * cos(theta) ** 53 - 9.19822799880112e49 * cos(theta) ** 51 + 2.14009866760427e50 * cos(theta) ** 49 - 3.72852745644834e50 * cos(theta) ** 47 + 5.05079972483791e50 * cos(theta) ** 45 - 5.45288083706601e50 * cos(theta) ** 43 + 4.77127073243276e50 * cos(theta) ** 41 - 3.42295888066042e50 * cos(theta) ** 39 + 2.0291300244555e50 * cos(theta) ** 37 - 9.98817883434857e49 * cos(theta) ** 35 + 4.09295207054917e49 * cos(theta) ** 33 - 1.39694808872008e49 * cos(theta) ** 31 + 3.9656951236559e48 * cos(theta) ** 29 - 9.33375200118433e47 * cos(theta) ** 27 + 1.81202818164585e47 * cos(theta) ** 25 - 2.88080791994571e46 * cos(theta) ** 23 + 3.71480328107168e45 * cos(theta) ** 21 - 3.83722916392058e44 * cos(theta) ** 19 + 3.12460089062104e43 * cos(theta) ** 17 - 1.96461267278993e42 * cos(theta) ** 15 + 9.28372325125754e40 * cos(theta) ** 13 - 3.1801950531317e39 * cos(theta) ** 11 + 7.51334741934036e37 * cos(theta) ** 9 - 1.13886529303685e36 * cos(theta) ** 7 + 9.89088964175928e33 * cos(theta) ** 5 - 4.02559610979214e31 * cos(theta) ** 3 + 4.84622324613821e28 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl72_m_minus_14(theta, phi): return ( 4.73183057377072e-26 * (1.0 - cos(theta) ** 2) ** 7 * ( 8.16561349102637e45 * cos(theta) ** 58 - 9.43899237808853e46 * cos(theta) ** 56 + 5.15462704335331e47 * cos(theta) ** 54 - 1.76888999976945e48 * cos(theta) ** 52 + 4.28019733520855e48 * cos(theta) ** 50 - 7.76776553426737e48 * cos(theta) ** 48 + 1.09799994018215e49 * cos(theta) ** 46 - 1.23929109933318e49 * cos(theta) ** 44 + 1.13601684105542e49 * cos(theta) ** 42 - 8.55739720165105e48 * cos(theta) ** 40 + 5.33981585383026e48 * cos(theta) ** 38 - 2.77449412065238e48 * cos(theta) ** 36 + 1.20380943251446e48 * cos(theta) ** 34 - 4.36546277725025e47 * cos(theta) ** 32 + 1.32189837455197e47 * cos(theta) ** 30 - 3.33348285756583e46 * cos(theta) ** 28 + 6.96933916017635e45 * cos(theta) ** 26 - 1.20033663331071e45 * cos(theta) ** 24 + 1.68854694594167e44 * cos(theta) ** 22 - 1.91861458196029e43 * cos(theta) ** 20 + 1.73588938367836e42 * cos(theta) ** 18 - 1.22788292049371e41 * cos(theta) ** 16 + 6.63123089375539e39 * cos(theta) ** 14 - 2.65016254427642e38 * cos(theta) ** 12 + 7.51334741934036e36 * cos(theta) ** 10 - 1.42358161629607e35 * cos(theta) ** 8 + 1.64848160695988e33 * cos(theta) ** 6 - 1.00639902744803e31 * cos(theta) ** 4 + 2.4231116230691e28 * cos(theta) ** 2 - 9.60408887462982e24 ) * sin(14 * phi) ) # @torch.jit.script def Yl72_m_minus_13(theta, phi): return ( 3.3705782770497e-24 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.38400228661464e44 * cos(theta) ** 59 - 1.65596357510325e45 * cos(theta) ** 57 + 9.37204916973329e45 * cos(theta) ** 55 - 3.33752830145178e46 * cos(theta) ** 53 + 8.39254379452656e46 * cos(theta) ** 51 - 1.58525827229946e47 * cos(theta) ** 49 + 2.33617008549394e47 * cos(theta) ** 47 - 2.75398022074041e47 * cos(theta) ** 45 + 2.64189963036144e47 * cos(theta) ** 43 - 2.08717004918318e47 * cos(theta) ** 41 + 1.36918355226417e47 * cos(theta) ** 39 - 7.49863275851995e46 * cos(theta) ** 37 + 3.43945552146989e46 * cos(theta) ** 35 - 1.32286750825765e46 * cos(theta) ** 33 + 4.26418830500635e45 * cos(theta) ** 31 - 1.14947684743649e45 * cos(theta) ** 29 + 2.58123672599124e44 * cos(theta) ** 27 - 4.80134653324285e43 * cos(theta) ** 25 + 7.34150846061598e42 * cos(theta) ** 23 - 9.13625991409662e41 * cos(theta) ** 21 + 9.13625991409662e40 * cos(theta) ** 19 - 7.22284070878651e39 * cos(theta) ** 17 + 4.42082059583693e38 * cos(theta) ** 15 - 2.03858657252032e37 * cos(theta) ** 13 + 6.83031583576396e35 * cos(theta) ** 11 - 1.58175735144008e34 * cos(theta) ** 9 + 2.3549737242284e32 * cos(theta) ** 7 - 2.01279805489607e30 * cos(theta) ** 5 + 8.07703874356368e27 * cos(theta) ** 3 - 9.60408887462982e24 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl72_m_minus_12(theta, phi): return ( 2.40707435283517e-22 * (1.0 - cos(theta) ** 2) ** 6 * ( 2.30667047769107e42 * cos(theta) ** 60 - 2.85510961224698e43 * cos(theta) ** 58 + 1.67358020888094e44 * cos(theta) ** 56 - 6.18060796565145e44 * cos(theta) ** 54 + 1.61395072971665e45 * cos(theta) ** 52 - 3.17051654459892e45 * cos(theta) ** 50 + 4.86702101144572e45 * cos(theta) ** 48 - 5.98691352334871e45 * cos(theta) ** 46 + 6.00431734173054e45 * cos(theta) ** 44 - 4.9694524980552e45 * cos(theta) ** 42 + 3.42295888066042e45 * cos(theta) ** 40 - 1.97332441013683e45 * cos(theta) ** 38 + 9.55404311519414e44 * cos(theta) ** 36 - 3.89078678899309e44 * cos(theta) ** 34 + 1.33255884531448e44 * cos(theta) ** 32 - 3.83158949145498e43 * cos(theta) ** 30 + 9.21870259282586e42 * cos(theta) ** 28 - 1.84667174355494e42 * cos(theta) ** 26 + 3.05896185858999e41 * cos(theta) ** 24 - 4.15284541549846e40 * cos(theta) ** 22 + 4.56812995704831e39 * cos(theta) ** 20 - 4.01268928265917e38 * cos(theta) ** 18 + 2.76301287239808e37 * cos(theta) ** 16 - 1.45613326608594e36 * cos(theta) ** 14 + 5.69192986313664e34 * cos(theta) ** 12 - 1.58175735144008e33 * cos(theta) ** 10 + 2.9437171552855e31 * cos(theta) ** 8 - 3.35466342482678e29 * cos(theta) ** 6 + 2.01925968589092e27 * cos(theta) ** 4 - 4.80204443731491e24 * cos(theta) ** 2 + 1.88315468129997e21 ) * sin(12 * phi) ) # @torch.jit.script def Yl72_m_minus_11(theta, phi): return ( 1.72303486792792e-20 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 3.7814270126083e40 * cos(theta) ** 61 - 4.83916883431692e41 * cos(theta) ** 59 + 2.93610562961569e42 * cos(theta) ** 57 - 1.12374690284572e43 * cos(theta) ** 55 + 3.04519005606915e43 * cos(theta) ** 53 - 6.21669910705671e43 * cos(theta) ** 51 + 9.93269594172595e43 * cos(theta) ** 49 - 1.27381138794653e44 * cos(theta) ** 47 + 1.33429274260679e44 * cos(theta) ** 45 - 1.1556866274547e44 * cos(theta) ** 43 + 8.34868019673273e43 * cos(theta) ** 41 - 5.05980617983802e43 * cos(theta) ** 39 + 2.58217381491734e43 * cos(theta) ** 37 - 1.11165336828374e43 * cos(theta) ** 35 + 4.03805710701359e42 * cos(theta) ** 33 - 1.23599661014677e42 * cos(theta) ** 31 + 3.1788629630434e41 * cos(theta) ** 29 - 6.83952497612941e40 * cos(theta) ** 27 + 1.223584743436e40 * cos(theta) ** 25 - 1.8055849632602e39 * cos(theta) ** 23 + 2.17529997954681e38 * cos(theta) ** 21 - 2.11194172771535e37 * cos(theta) ** 19 + 1.62530168964593e36 * cos(theta) ** 17 - 9.70755510723963e34 * cos(theta) ** 15 + 4.37840758702818e33 * cos(theta) ** 13 - 1.43796122858189e32 * cos(theta) ** 11 + 3.27079683920611e30 * cos(theta) ** 9 - 4.79237632118112e28 * cos(theta) ** 7 + 4.03851937178184e26 * cos(theta) ** 5 - 1.60068147910497e24 * cos(theta) ** 3 + 1.88315468129997e21 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl72_m_minus_10(theta, phi): return ( 1.23602984418932e-18 * (1.0 - cos(theta) ** 2) ** 5 * ( 6.09907582678759e38 * cos(theta) ** 62 - 8.0652813905282e39 * cos(theta) ** 60 + 5.0622510855443e40 * cos(theta) ** 58 - 2.00669089793878e41 * cos(theta) ** 56 + 5.63924084457249e41 * cos(theta) ** 54 - 1.19551905904937e42 * cos(theta) ** 52 + 1.98653918834519e42 * cos(theta) ** 50 - 2.65377372488861e42 * cos(theta) ** 48 + 2.90063639697128e42 * cos(theta) ** 46 - 2.62656051694249e42 * cos(theta) ** 44 + 1.98778099922208e42 * cos(theta) ** 42 - 1.2649515449595e42 * cos(theta) ** 40 + 6.79519424978246e41 * cos(theta) ** 38 - 3.08792602301039e41 * cos(theta) ** 36 + 1.187663855004e41 * cos(theta) ** 34 - 3.86248940670865e40 * cos(theta) ** 32 + 1.05962098768113e40 * cos(theta) ** 30 - 2.44268749147479e39 * cos(theta) ** 28 + 4.70609516706152e38 * cos(theta) ** 26 - 7.52327068025084e37 * cos(theta) ** 24 + 9.88772717975824e36 * cos(theta) ** 22 - 1.05597086385768e36 * cos(theta) ** 20 + 9.02945383136627e34 * cos(theta) ** 18 - 6.06722194202477e33 * cos(theta) ** 16 + 3.12743399073442e32 * cos(theta) ** 14 - 1.19830102381824e31 * cos(theta) ** 12 + 3.27079683920611e29 * cos(theta) ** 10 - 5.9904704014764e27 * cos(theta) ** 8 + 6.7308656196364e25 * cos(theta) ** 6 - 4.00170369776243e23 * cos(theta) ** 4 + 9.41577340649983e20 * cos(theta) ** 2 - 3.65945332549546e17 ) * sin(10 * phi) ) # @torch.jit.script def Yl72_m_minus_9(theta, phi): return ( 8.88395106999359e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 9.68107274093268e36 * cos(theta) ** 63 - 1.32217727713577e38 * cos(theta) ** 61 + 8.5800865856683e38 * cos(theta) ** 59 - 3.52051034726102e39 * cos(theta) ** 57 + 1.025316517195e40 * cos(theta) ** 55 - 2.255696337829e40 * cos(theta) ** 53 + 3.89517487910822e40 * cos(theta) ** 51 - 5.41586474467064e40 * cos(theta) ** 49 + 6.17156680206654e40 * cos(theta) ** 47 - 5.8368011487611e40 * cos(theta) ** 45 + 4.62274650981879e40 * cos(theta) ** 43 - 3.08524767063294e40 * cos(theta) ** 41 + 1.74235749994422e40 * cos(theta) ** 39 - 8.34574600813619e39 * cos(theta) ** 37 + 3.39332530001142e39 * cos(theta) ** 35 - 1.17045133536626e39 * cos(theta) ** 33 + 3.41813221832624e38 * cos(theta) ** 31 - 8.42306031543031e37 * cos(theta) ** 29 + 1.74299821002279e37 * cos(theta) ** 27 - 3.00930827210033e36 * cos(theta) ** 25 + 4.29901181728619e35 * cos(theta) ** 23 - 5.02843268503655e34 * cos(theta) ** 21 + 4.75234412177172e33 * cos(theta) ** 19 - 3.56895408354398e32 * cos(theta) ** 17 + 2.08495599382294e31 * cos(theta) ** 15 - 9.21770018321723e29 * cos(theta) ** 13 + 2.97345167200556e28 * cos(theta) ** 11 - 6.65607822386266e26 * cos(theta) ** 9 + 9.61552231376629e24 * cos(theta) ** 7 - 8.00340739552485e22 * cos(theta) ** 5 + 3.13859113549994e20 * cos(theta) ** 3 - 3.65945332549546e17 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl72_m_minus_8(theta, phi): return ( 6.39644477039539e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.51266761577073e35 * cos(theta) ** 64 - 2.13254399538028e36 * cos(theta) ** 62 + 1.43001443094472e37 * cos(theta) ** 60 - 6.06984542631211e37 * cos(theta) ** 58 + 1.83092235213393e38 * cos(theta) ** 56 - 4.17721544042407e38 * cos(theta) ** 54 + 7.49072092136196e38 * cos(theta) ** 52 - 1.08317294893413e39 * cos(theta) ** 50 + 1.28574308376386e39 * cos(theta) ** 48 - 1.26886981494806e39 * cos(theta) ** 46 + 1.050624206777e39 * cos(theta) ** 44 - 7.34582778722128e38 * cos(theta) ** 42 + 4.35589374986055e38 * cos(theta) ** 40 - 2.19624894950952e38 * cos(theta) ** 38 + 9.42590361114282e37 * cos(theta) ** 36 - 3.44250392754781e37 * cos(theta) ** 34 + 1.06816631822695e37 * cos(theta) ** 32 - 2.8076867718101e36 * cos(theta) ** 30 + 6.22499360722424e35 * cos(theta) ** 28 - 1.15742625850013e35 * cos(theta) ** 26 + 1.79125492386925e34 * cos(theta) ** 24 - 2.28565122047116e33 * cos(theta) ** 22 + 2.37617206088586e32 * cos(theta) ** 20 - 1.98275226863554e31 * cos(theta) ** 18 + 1.30309749613934e30 * cos(theta) ** 16 - 6.58407155944088e28 * cos(theta) ** 14 + 2.47787639333796e27 * cos(theta) ** 12 - 6.65607822386266e25 * cos(theta) ** 10 + 1.20194028922079e24 * cos(theta) ** 8 - 1.33390123258748e22 * cos(theta) ** 6 + 7.84647783874985e19 * cos(theta) ** 4 - 1.82972666274773e17 * cos(theta) ** 2 + 70591306433168.6 ) * sin(8 * phi) ) # @torch.jit.script def Yl72_m_minus_7(theta, phi): return ( 4.61254192006681e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 2.32718094733959e33 * cos(theta) ** 65 - 3.38499046885758e34 * cos(theta) ** 63 + 2.34428595236839e35 * cos(theta) ** 61 - 1.02878736039188e36 * cos(theta) ** 59 + 3.21214447742794e36 * cos(theta) ** 57 - 7.5949371644074e36 * cos(theta) ** 55 + 1.41334357006829e37 * cos(theta) ** 53 - 2.12386852732182e37 * cos(theta) ** 51 + 2.62396547706911e37 * cos(theta) ** 49 - 2.6997230105278e37 * cos(theta) ** 47 + 2.33472045950444e37 * cos(theta) ** 45 - 1.70833204353983e37 * cos(theta) ** 43 + 1.06241310972209e37 * cos(theta) ** 41 - 5.63140756284493e36 * cos(theta) ** 39 + 2.54754151652509e36 * cos(theta) ** 37 - 9.83572550727947e35 * cos(theta) ** 35 + 3.23686763099075e35 * cos(theta) ** 33 - 9.05705410261324e34 * cos(theta) ** 31 + 2.1465495197325e34 * cos(theta) ** 29 - 4.28676392037085e33 * cos(theta) ** 27 + 7.16501969547699e32 * cos(theta) ** 25 - 9.93761400204853e31 * cos(theta) ** 23 + 1.13151050518374e31 * cos(theta) ** 21 - 1.04355382559766e30 * cos(theta) ** 19 + 7.66527938905494e28 * cos(theta) ** 17 - 4.38938103962725e27 * cos(theta) ** 15 + 1.90605876410613e26 * cos(theta) ** 13 - 6.05098020351151e24 * cos(theta) ** 11 + 1.33548921024532e23 * cos(theta) ** 9 - 1.90557318941068e21 * cos(theta) ** 7 + 1.56929556774997e19 * cos(theta) ** 5 - 6.09908887582577e16 * cos(theta) ** 3 + 70591306433168.6 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl72_m_minus_6(theta, phi): return ( 3.33062578228543e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 3.52603173839331e31 * cos(theta) ** 66 - 5.28904760758997e32 * cos(theta) ** 64 + 3.78110637478772e33 * cos(theta) ** 62 - 1.71464560065314e34 * cos(theta) ** 60 + 5.53818013349645e34 * cos(theta) ** 58 - 1.35623877935846e35 * cos(theta) ** 56 + 2.61730290753388e35 * cos(theta) ** 54 - 4.08436255254196e35 * cos(theta) ** 52 + 5.24793095413822e35 * cos(theta) ** 50 - 5.62442293859958e35 * cos(theta) ** 48 + 5.07547925979226e35 * cos(theta) ** 46 - 3.88257282622689e35 * cos(theta) ** 44 + 2.52955502314782e35 * cos(theta) ** 42 - 1.40785189071123e35 * cos(theta) ** 40 + 6.70405662243444e34 * cos(theta) ** 38 - 2.7321459742443e34 * cos(theta) ** 36 + 9.52019891467869e33 * cos(theta) ** 34 - 2.83032940706664e33 * cos(theta) ** 32 + 7.15516506577499e32 * cos(theta) ** 30 - 1.53098711441816e32 * cos(theta) ** 28 + 2.75577680595269e31 * cos(theta) ** 26 - 4.14067250085355e30 * cos(theta) ** 24 + 5.14322956901701e29 * cos(theta) ** 22 - 5.21776912798827e28 * cos(theta) ** 20 + 4.25848854947497e27 * cos(theta) ** 18 - 2.74336314976703e26 * cos(theta) ** 16 + 1.36147054579009e25 * cos(theta) ** 14 - 5.04248350292626e23 * cos(theta) ** 12 + 1.33548921024532e22 * cos(theta) ** 10 - 2.38196648676335e20 * cos(theta) ** 8 + 2.61549261291662e18 * cos(theta) ** 6 - 1.52477221895644e16 * cos(theta) ** 4 + 35295653216584.3 * cos(theta) ** 2 - 13538800620.0937 ) * sin(6 * phi) ) # @torch.jit.script def Yl72_m_minus_5(theta, phi): return ( 2.40774529174265e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 5.26273393790047e29 * cos(theta) ** 67 - 8.13699631936918e30 * cos(theta) ** 65 + 6.0017561504567e31 * cos(theta) ** 63 - 2.81089442730023e32 * cos(theta) ** 61 + 9.38674598897703e32 * cos(theta) ** 59 - 2.37936627957625e33 * cos(theta) ** 57 + 4.7587325591525e33 * cos(theta) ** 55 - 7.70634443875842e33 * cos(theta) ** 53 + 1.02900606943887e34 * cos(theta) ** 51 - 1.14784141604073e34 * cos(theta) ** 49 + 1.07988920421112e34 * cos(theta) ** 47 - 8.62793961383754e33 * cos(theta) ** 45 + 5.88268610034378e33 * cos(theta) ** 43 - 3.43378509929569e33 * cos(theta) ** 41 + 1.71898887754729e33 * cos(theta) ** 39 - 7.38417830876837e32 * cos(theta) ** 37 + 2.72005683276534e32 * cos(theta) ** 35 - 8.57675577898981e31 * cos(theta) ** 33 + 2.30811776315322e31 * cos(theta) ** 31 - 5.27926591178676e30 * cos(theta) ** 29 + 1.02065807627877e30 * cos(theta) ** 27 - 1.65626900034142e29 * cos(theta) ** 25 + 2.23618676913783e28 * cos(theta) ** 23 - 2.4846519657087e27 * cos(theta) ** 21 + 2.24130976288156e26 * cos(theta) ** 19 - 1.61374302927472e25 * cos(theta) ** 17 + 9.07647030526727e23 * cos(theta) ** 15 - 3.87883346378943e22 * cos(theta) ** 13 + 1.21408110022302e21 * cos(theta) ** 11 - 2.64662942973705e19 * cos(theta) ** 9 + 3.73641801845231e17 * cos(theta) ** 7 - 3.04954443791289e15 * cos(theta) ** 5 + 11765217738861.4 * cos(theta) ** 3 - 13538800620.0937 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl72_m_minus_4(theta, phi): return ( 1.74224955082683e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 7.73931461455951e27 * cos(theta) ** 68 - 1.23287823020745e29 * cos(theta) ** 66 + 9.3777439850886e29 * cos(theta) ** 64 - 4.53370068919391e30 * cos(theta) ** 62 + 1.56445766482951e31 * cos(theta) ** 60 - 4.10235565444181e31 * cos(theta) ** 58 + 8.49773671277233e31 * cos(theta) ** 56 - 1.4271008219923e32 * cos(theta) ** 54 + 1.97885782584397e32 * cos(theta) ** 52 - 2.29568283208146e32 * cos(theta) ** 50 + 2.24976917543983e32 * cos(theta) ** 48 - 1.87563904648642e32 * cos(theta) ** 46 + 1.33697411371449e32 * cos(theta) ** 44 - 8.17567880784688e31 * cos(theta) ** 42 + 4.29747219386823e31 * cos(theta) ** 40 - 1.94320481809694e31 * cos(theta) ** 38 + 7.55571342434817e30 * cos(theta) ** 36 - 2.52257522911465e30 * cos(theta) ** 34 + 7.21286800985382e29 * cos(theta) ** 32 - 1.75975530392892e29 * cos(theta) ** 30 + 3.64520741528133e28 * cos(theta) ** 28 - 6.37026538592854e27 * cos(theta) ** 26 + 9.31744487140763e26 * cos(theta) ** 24 - 1.12938725714032e26 * cos(theta) ** 22 + 1.12065488144078e25 * cos(theta) ** 20 - 8.96523905152625e23 * cos(theta) ** 18 + 5.67279394079204e22 * cos(theta) ** 16 - 2.77059533127816e21 * cos(theta) ** 14 + 1.01173425018585e20 * cos(theta) ** 12 - 2.64662942973705e18 * cos(theta) ** 10 + 4.67052252306539e16 * cos(theta) ** 8 - 508257406318814.0 * cos(theta) ** 6 + 2941304434715.36 * cos(theta) ** 4 - 6769400310.04686 * cos(theta) ** 2 + 2585714.40414319 ) * sin(4 * phi) ) # @torch.jit.script def Yl72_m_minus_3(theta, phi): return ( 1.2616581652784e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 1.12163979921152e26 * cos(theta) ** 69 - 1.84011676150366e27 * cos(theta) ** 67 + 1.44272984385978e28 * cos(theta) ** 65 - 7.1963503003078e28 * cos(theta) ** 63 + 2.56468469644181e29 * cos(theta) ** 61 - 6.95314517702002e29 * cos(theta) ** 59 + 1.49083100224076e30 * cos(theta) ** 57 - 2.59472876725873e30 * cos(theta) ** 55 + 3.73369401102636e30 * cos(theta) ** 53 - 4.50133888643424e30 * cos(theta) ** 51 + 4.59136566416292e30 * cos(theta) ** 49 - 3.99072137550303e30 * cos(theta) ** 47 + 2.97105358603221e30 * cos(theta) ** 45 - 1.90132065298765e30 * cos(theta) ** 43 + 1.04816394972396e30 * cos(theta) ** 41 - 4.98257645665882e29 * cos(theta) ** 39 + 2.04208470928329e29 * cos(theta) ** 37 - 7.20735779747043e28 * cos(theta) ** 35 + 2.18571757874358e28 * cos(theta) ** 33 - 5.67663001267393e27 * cos(theta) ** 31 + 1.25696807423494e27 * cos(theta) ** 29 - 2.3593575503439e26 * cos(theta) ** 27 + 3.72697794856305e25 * cos(theta) ** 25 - 4.91037937887095e24 * cos(theta) ** 23 + 5.33645181638467e23 * cos(theta) ** 21 - 4.71854686922434e22 * cos(theta) ** 19 + 3.33693761223061e21 * cos(theta) ** 17 - 1.84706355418544e20 * cos(theta) ** 15 + 7.78257115527574e18 * cos(theta) ** 13 - 2.40602675430641e17 * cos(theta) ** 11 + 5.18946947007266e15 * cos(theta) ** 9 - 72608200902687.8 * cos(theta) ** 7 + 588260886943.072 * cos(theta) ** 5 - 2256466770.01562 * cos(theta) ** 3 + 2585714.40414319 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl72_m_minus_2(theta, phi): return ( 0.000914158189897769 * (1.0 - cos(theta) ** 2) * ( 1.60234257030218e24 * cos(theta) ** 70 - 2.70605406103479e25 * cos(theta) ** 68 + 2.18595430887846e26 * cos(theta) ** 66 - 1.12442973442309e27 * cos(theta) ** 64 + 4.13658822006744e27 * cos(theta) ** 62 - 1.15885752950334e28 * cos(theta) ** 60 + 2.57039827972545e28 * cos(theta) ** 58 - 4.63344422724773e28 * cos(theta) ** 56 + 6.91424816856734e28 * cos(theta) ** 54 - 8.65642093545045e28 * cos(theta) ** 52 + 9.18273132832584e28 * cos(theta) ** 50 - 8.3140028656313e28 * cos(theta) ** 48 + 6.45881214354829e28 * cos(theta) ** 46 - 4.32118330224465e28 * cos(theta) ** 44 + 2.49562845172371e28 * cos(theta) ** 42 - 1.2456441141647e28 * cos(theta) ** 40 + 5.37390712969286e27 * cos(theta) ** 38 - 2.00204383263067e27 * cos(theta) ** 36 + 6.42858111395171e26 * cos(theta) ** 34 - 1.7739468789606e26 * cos(theta) ** 32 + 4.18989358078314e25 * cos(theta) ** 30 - 8.42627696551395e24 * cos(theta) ** 28 + 1.43345305713964e24 * cos(theta) ** 26 - 2.0459914078629e23 * cos(theta) ** 24 + 2.42565991653849e22 * cos(theta) ** 22 - 2.35927343461217e21 * cos(theta) ** 20 + 1.85385422901701e20 * cos(theta) ** 18 - 1.1544147213659e19 * cos(theta) ** 16 + 5.55897939662553e17 * cos(theta) ** 14 - 2.00502229525534e16 * cos(theta) ** 12 + 518946947007266.0 * cos(theta) ** 10 - 9076025112835.97 * cos(theta) ** 8 + 98043481157.1787 * cos(theta) ** 6 - 564116692.503905 * cos(theta) ** 4 + 1292857.20207159 * cos(theta) ** 2 - 492.517029360607 ) * sin(2 * phi) ) # @torch.jit.script def Yl72_m_minus_1(theta, phi): return ( 0.0662622820359346 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 2.25682052155236e22 * cos(theta) ** 71 - 3.92181747976057e23 * cos(theta) ** 69 + 3.26261837146039e24 * cos(theta) ** 67 - 1.72989189911245e25 * cos(theta) ** 65 + 6.56601304772609e25 * cos(theta) ** 63 - 1.89976644180875e26 * cos(theta) ** 61 + 4.35660725377194e26 * cos(theta) ** 59 - 8.12884952148724e26 * cos(theta) ** 57 + 1.25713603064861e27 * cos(theta) ** 55 - 1.63328696895292e27 * cos(theta) ** 53 + 1.80053555457369e27 * cos(theta) ** 51 - 1.69673527870027e27 * cos(theta) ** 49 + 1.37421534969112e27 * cos(theta) ** 47 - 9.60262956054367e26 * cos(theta) ** 45 + 5.80378709703189e26 * cos(theta) ** 43 - 3.03815637601148e26 * cos(theta) ** 41 + 1.37792490504945e26 * cos(theta) ** 39 - 5.4109292773802e25 * cos(theta) ** 37 + 1.83673746112906e25 * cos(theta) ** 35 - 5.37559660291092e24 * cos(theta) ** 33 + 1.35157857444617e24 * cos(theta) ** 31 - 2.90561274672895e23 * cos(theta) ** 29 + 5.30908539681347e22 * cos(theta) ** 27 - 8.18396563145159e21 * cos(theta) ** 25 + 1.05463474632108e21 * cos(theta) ** 23 - 1.12346354029151e20 * cos(theta) ** 21 + 9.75712752114214e18 * cos(theta) ** 19 - 6.79067483156413e17 * cos(theta) ** 17 + 3.70598626441702e16 * cos(theta) ** 15 - 1.54232484250411e15 * cos(theta) ** 13 + 47176995182478.7 * cos(theta) ** 11 - 1008447234759.55 * cos(theta) ** 9 + 14006211593.8827 * cos(theta) ** 7 - 112823338.500781 * cos(theta) ** 5 + 430952.400690531 * cos(theta) ** 3 - 492.517029360607 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl72_m0(theta, phi): return ( 3.34497955490531e21 * cos(theta) ** 72 - 5.9788585610755e22 * cos(theta) ** 70 + 5.12019270389977e23 * cos(theta) ** 68 - 2.79707409579944e24 * cos(theta) ** 66 + 1.09484013421347e25 * cos(theta) ** 64 - 3.26992253418422e25 * cos(theta) ** 62 + 7.74865101772226e25 * cos(theta) ** 60 - 1.49565019644148e26 * cos(theta) ** 58 + 2.39564900650947e26 * cos(theta) ** 56 - 3.22773356957531e26 * cos(theta) ** 54 + 3.69510939044982e26 * cos(theta) ** 52 - 3.62137106558496e26 * cos(theta) ** 50 + 3.05522007943635e26 * cos(theta) ** 48 - 2.2277234968353e26 * cos(theta) ** 46 + 1.40762748426406e26 * cos(theta) ** 44 - 7.7195107252974e25 * cos(theta) ** 42 + 3.67616080446961e25 * cos(theta) ** 40 - 1.51955772521796e25 * cos(theta) ** 38 + 5.44469460157099e24 * cos(theta) ** 36 - 1.68723935021629e24 * cos(theta) ** 34 + 4.50733940700639e23 * cos(theta) ** 32 - 1.033583146498e23 * cos(theta) ** 30 + 2.02344135340517e22 * cos(theta) ** 28 - 3.3590726024908e21 * cos(theta) ** 26 + 4.68942695794462e20 * cos(theta) ** 24 - 5.44960774902196e19 * cos(theta) ** 22 + 5.2062009512989e18 * cos(theta) ** 20 - 4.02595922159866e17 * cos(theta) ** 18 + 2.47179679335712e16 * cos(theta) ** 16 - 1.17564651289281e15 * cos(theta) ** 14 + 41954444185586.4 * cos(theta) ** 12 - 1076173072774.47 * cos(theta) ** 10 + 18683560291.2234 * cos(theta) ** 8 - 200667314.21337 * cos(theta) ** 6 + 1149736.33048149 * cos(theta) ** 4 - 2627.96875538626 * cos(theta) ** 2 + 0.999988110877574 ) # @torch.jit.script def Yl72_m1(theta, phi): return ( 0.0662622820359346 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 2.25682052155236e22 * cos(theta) ** 71 - 3.92181747976057e23 * cos(theta) ** 69 + 3.26261837146039e24 * cos(theta) ** 67 - 1.72989189911245e25 * cos(theta) ** 65 + 6.56601304772609e25 * cos(theta) ** 63 - 1.89976644180875e26 * cos(theta) ** 61 + 4.35660725377194e26 * cos(theta) ** 59 - 8.12884952148724e26 * cos(theta) ** 57 + 1.25713603064861e27 * cos(theta) ** 55 - 1.63328696895292e27 * cos(theta) ** 53 + 1.80053555457369e27 * cos(theta) ** 51 - 1.69673527870027e27 * cos(theta) ** 49 + 1.37421534969112e27 * cos(theta) ** 47 - 9.60262956054367e26 * cos(theta) ** 45 + 5.80378709703189e26 * cos(theta) ** 43 - 3.03815637601148e26 * cos(theta) ** 41 + 1.37792490504945e26 * cos(theta) ** 39 - 5.4109292773802e25 * cos(theta) ** 37 + 1.83673746112906e25 * cos(theta) ** 35 - 5.37559660291092e24 * cos(theta) ** 33 + 1.35157857444617e24 * cos(theta) ** 31 - 2.90561274672895e23 * cos(theta) ** 29 + 5.30908539681347e22 * cos(theta) ** 27 - 8.18396563145159e21 * cos(theta) ** 25 + 1.05463474632108e21 * cos(theta) ** 23 - 1.12346354029151e20 * cos(theta) ** 21 + 9.75712752114214e18 * cos(theta) ** 19 - 6.79067483156413e17 * cos(theta) ** 17 + 3.70598626441702e16 * cos(theta) ** 15 - 1.54232484250411e15 * cos(theta) ** 13 + 47176995182478.7 * cos(theta) ** 11 - 1008447234759.55 * cos(theta) ** 9 + 14006211593.8827 * cos(theta) ** 7 - 112823338.500781 * cos(theta) ** 5 + 430952.400690531 * cos(theta) ** 3 - 492.517029360607 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl72_m2(theta, phi): return ( 0.000914158189897769 * (1.0 - cos(theta) ** 2) * ( 1.60234257030218e24 * cos(theta) ** 70 - 2.70605406103479e25 * cos(theta) ** 68 + 2.18595430887846e26 * cos(theta) ** 66 - 1.12442973442309e27 * cos(theta) ** 64 + 4.13658822006744e27 * cos(theta) ** 62 - 1.15885752950334e28 * cos(theta) ** 60 + 2.57039827972545e28 * cos(theta) ** 58 - 4.63344422724773e28 * cos(theta) ** 56 + 6.91424816856734e28 * cos(theta) ** 54 - 8.65642093545045e28 * cos(theta) ** 52 + 9.18273132832584e28 * cos(theta) ** 50 - 8.3140028656313e28 * cos(theta) ** 48 + 6.45881214354829e28 * cos(theta) ** 46 - 4.32118330224465e28 * cos(theta) ** 44 + 2.49562845172371e28 * cos(theta) ** 42 - 1.2456441141647e28 * cos(theta) ** 40 + 5.37390712969286e27 * cos(theta) ** 38 - 2.00204383263067e27 * cos(theta) ** 36 + 6.42858111395171e26 * cos(theta) ** 34 - 1.7739468789606e26 * cos(theta) ** 32 + 4.18989358078314e25 * cos(theta) ** 30 - 8.42627696551395e24 * cos(theta) ** 28 + 1.43345305713964e24 * cos(theta) ** 26 - 2.0459914078629e23 * cos(theta) ** 24 + 2.42565991653849e22 * cos(theta) ** 22 - 2.35927343461217e21 * cos(theta) ** 20 + 1.85385422901701e20 * cos(theta) ** 18 - 1.1544147213659e19 * cos(theta) ** 16 + 5.55897939662553e17 * cos(theta) ** 14 - 2.00502229525534e16 * cos(theta) ** 12 + 518946947007266.0 * cos(theta) ** 10 - 9076025112835.97 * cos(theta) ** 8 + 98043481157.1787 * cos(theta) ** 6 - 564116692.503905 * cos(theta) ** 4 + 1292857.20207159 * cos(theta) ** 2 - 492.517029360607 ) * cos(2 * phi) ) # @torch.jit.script def Yl72_m3(theta, phi): return ( 1.2616581652784e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 1.12163979921152e26 * cos(theta) ** 69 - 1.84011676150366e27 * cos(theta) ** 67 + 1.44272984385978e28 * cos(theta) ** 65 - 7.1963503003078e28 * cos(theta) ** 63 + 2.56468469644181e29 * cos(theta) ** 61 - 6.95314517702002e29 * cos(theta) ** 59 + 1.49083100224076e30 * cos(theta) ** 57 - 2.59472876725873e30 * cos(theta) ** 55 + 3.73369401102636e30 * cos(theta) ** 53 - 4.50133888643424e30 * cos(theta) ** 51 + 4.59136566416292e30 * cos(theta) ** 49 - 3.99072137550303e30 * cos(theta) ** 47 + 2.97105358603221e30 * cos(theta) ** 45 - 1.90132065298765e30 * cos(theta) ** 43 + 1.04816394972396e30 * cos(theta) ** 41 - 4.98257645665882e29 * cos(theta) ** 39 + 2.04208470928329e29 * cos(theta) ** 37 - 7.20735779747043e28 * cos(theta) ** 35 + 2.18571757874358e28 * cos(theta) ** 33 - 5.67663001267393e27 * cos(theta) ** 31 + 1.25696807423494e27 * cos(theta) ** 29 - 2.3593575503439e26 * cos(theta) ** 27 + 3.72697794856305e25 * cos(theta) ** 25 - 4.91037937887095e24 * cos(theta) ** 23 + 5.33645181638467e23 * cos(theta) ** 21 - 4.71854686922434e22 * cos(theta) ** 19 + 3.33693761223061e21 * cos(theta) ** 17 - 1.84706355418544e20 * cos(theta) ** 15 + 7.78257115527574e18 * cos(theta) ** 13 - 2.40602675430641e17 * cos(theta) ** 11 + 5.18946947007266e15 * cos(theta) ** 9 - 72608200902687.8 * cos(theta) ** 7 + 588260886943.072 * cos(theta) ** 5 - 2256466770.01562 * cos(theta) ** 3 + 2585714.40414319 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl72_m4(theta, phi): return ( 1.74224955082683e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 7.73931461455951e27 * cos(theta) ** 68 - 1.23287823020745e29 * cos(theta) ** 66 + 9.3777439850886e29 * cos(theta) ** 64 - 4.53370068919391e30 * cos(theta) ** 62 + 1.56445766482951e31 * cos(theta) ** 60 - 4.10235565444181e31 * cos(theta) ** 58 + 8.49773671277233e31 * cos(theta) ** 56 - 1.4271008219923e32 * cos(theta) ** 54 + 1.97885782584397e32 * cos(theta) ** 52 - 2.29568283208146e32 * cos(theta) ** 50 + 2.24976917543983e32 * cos(theta) ** 48 - 1.87563904648642e32 * cos(theta) ** 46 + 1.33697411371449e32 * cos(theta) ** 44 - 8.17567880784688e31 * cos(theta) ** 42 + 4.29747219386823e31 * cos(theta) ** 40 - 1.94320481809694e31 * cos(theta) ** 38 + 7.55571342434817e30 * cos(theta) ** 36 - 2.52257522911465e30 * cos(theta) ** 34 + 7.21286800985382e29 * cos(theta) ** 32 - 1.75975530392892e29 * cos(theta) ** 30 + 3.64520741528133e28 * cos(theta) ** 28 - 6.37026538592854e27 * cos(theta) ** 26 + 9.31744487140763e26 * cos(theta) ** 24 - 1.12938725714032e26 * cos(theta) ** 22 + 1.12065488144078e25 * cos(theta) ** 20 - 8.96523905152625e23 * cos(theta) ** 18 + 5.67279394079204e22 * cos(theta) ** 16 - 2.77059533127816e21 * cos(theta) ** 14 + 1.01173425018585e20 * cos(theta) ** 12 - 2.64662942973705e18 * cos(theta) ** 10 + 4.67052252306539e16 * cos(theta) ** 8 - 508257406318814.0 * cos(theta) ** 6 + 2941304434715.36 * cos(theta) ** 4 - 6769400310.04686 * cos(theta) ** 2 + 2585714.40414319 ) * cos(4 * phi) ) # @torch.jit.script def Yl72_m5(theta, phi): return ( 2.40774529174265e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 5.26273393790047e29 * cos(theta) ** 67 - 8.13699631936918e30 * cos(theta) ** 65 + 6.0017561504567e31 * cos(theta) ** 63 - 2.81089442730023e32 * cos(theta) ** 61 + 9.38674598897703e32 * cos(theta) ** 59 - 2.37936627957625e33 * cos(theta) ** 57 + 4.7587325591525e33 * cos(theta) ** 55 - 7.70634443875842e33 * cos(theta) ** 53 + 1.02900606943887e34 * cos(theta) ** 51 - 1.14784141604073e34 * cos(theta) ** 49 + 1.07988920421112e34 * cos(theta) ** 47 - 8.62793961383754e33 * cos(theta) ** 45 + 5.88268610034378e33 * cos(theta) ** 43 - 3.43378509929569e33 * cos(theta) ** 41 + 1.71898887754729e33 * cos(theta) ** 39 - 7.38417830876837e32 * cos(theta) ** 37 + 2.72005683276534e32 * cos(theta) ** 35 - 8.57675577898981e31 * cos(theta) ** 33 + 2.30811776315322e31 * cos(theta) ** 31 - 5.27926591178676e30 * cos(theta) ** 29 + 1.02065807627877e30 * cos(theta) ** 27 - 1.65626900034142e29 * cos(theta) ** 25 + 2.23618676913783e28 * cos(theta) ** 23 - 2.4846519657087e27 * cos(theta) ** 21 + 2.24130976288156e26 * cos(theta) ** 19 - 1.61374302927472e25 * cos(theta) ** 17 + 9.07647030526727e23 * cos(theta) ** 15 - 3.87883346378943e22 * cos(theta) ** 13 + 1.21408110022302e21 * cos(theta) ** 11 - 2.64662942973705e19 * cos(theta) ** 9 + 3.73641801845231e17 * cos(theta) ** 7 - 3.04954443791289e15 * cos(theta) ** 5 + 11765217738861.4 * cos(theta) ** 3 - 13538800620.0937 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl72_m6(theta, phi): return ( 3.33062578228543e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 3.52603173839331e31 * cos(theta) ** 66 - 5.28904760758997e32 * cos(theta) ** 64 + 3.78110637478772e33 * cos(theta) ** 62 - 1.71464560065314e34 * cos(theta) ** 60 + 5.53818013349645e34 * cos(theta) ** 58 - 1.35623877935846e35 * cos(theta) ** 56 + 2.61730290753388e35 * cos(theta) ** 54 - 4.08436255254196e35 * cos(theta) ** 52 + 5.24793095413822e35 * cos(theta) ** 50 - 5.62442293859958e35 * cos(theta) ** 48 + 5.07547925979226e35 * cos(theta) ** 46 - 3.88257282622689e35 * cos(theta) ** 44 + 2.52955502314782e35 * cos(theta) ** 42 - 1.40785189071123e35 * cos(theta) ** 40 + 6.70405662243444e34 * cos(theta) ** 38 - 2.7321459742443e34 * cos(theta) ** 36 + 9.52019891467869e33 * cos(theta) ** 34 - 2.83032940706664e33 * cos(theta) ** 32 + 7.15516506577499e32 * cos(theta) ** 30 - 1.53098711441816e32 * cos(theta) ** 28 + 2.75577680595269e31 * cos(theta) ** 26 - 4.14067250085355e30 * cos(theta) ** 24 + 5.14322956901701e29 * cos(theta) ** 22 - 5.21776912798827e28 * cos(theta) ** 20 + 4.25848854947497e27 * cos(theta) ** 18 - 2.74336314976703e26 * cos(theta) ** 16 + 1.36147054579009e25 * cos(theta) ** 14 - 5.04248350292626e23 * cos(theta) ** 12 + 1.33548921024532e22 * cos(theta) ** 10 - 2.38196648676335e20 * cos(theta) ** 8 + 2.61549261291662e18 * cos(theta) ** 6 - 1.52477221895644e16 * cos(theta) ** 4 + 35295653216584.3 * cos(theta) ** 2 - 13538800620.0937 ) * cos(6 * phi) ) # @torch.jit.script def Yl72_m7(theta, phi): return ( 4.61254192006681e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 2.32718094733959e33 * cos(theta) ** 65 - 3.38499046885758e34 * cos(theta) ** 63 + 2.34428595236839e35 * cos(theta) ** 61 - 1.02878736039188e36 * cos(theta) ** 59 + 3.21214447742794e36 * cos(theta) ** 57 - 7.5949371644074e36 * cos(theta) ** 55 + 1.41334357006829e37 * cos(theta) ** 53 - 2.12386852732182e37 * cos(theta) ** 51 + 2.62396547706911e37 * cos(theta) ** 49 - 2.6997230105278e37 * cos(theta) ** 47 + 2.33472045950444e37 * cos(theta) ** 45 - 1.70833204353983e37 * cos(theta) ** 43 + 1.06241310972209e37 * cos(theta) ** 41 - 5.63140756284493e36 * cos(theta) ** 39 + 2.54754151652509e36 * cos(theta) ** 37 - 9.83572550727947e35 * cos(theta) ** 35 + 3.23686763099075e35 * cos(theta) ** 33 - 9.05705410261324e34 * cos(theta) ** 31 + 2.1465495197325e34 * cos(theta) ** 29 - 4.28676392037085e33 * cos(theta) ** 27 + 7.16501969547699e32 * cos(theta) ** 25 - 9.93761400204853e31 * cos(theta) ** 23 + 1.13151050518374e31 * cos(theta) ** 21 - 1.04355382559766e30 * cos(theta) ** 19 + 7.66527938905494e28 * cos(theta) ** 17 - 4.38938103962725e27 * cos(theta) ** 15 + 1.90605876410613e26 * cos(theta) ** 13 - 6.05098020351151e24 * cos(theta) ** 11 + 1.33548921024532e23 * cos(theta) ** 9 - 1.90557318941068e21 * cos(theta) ** 7 + 1.56929556774997e19 * cos(theta) ** 5 - 6.09908887582577e16 * cos(theta) ** 3 + 70591306433168.6 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl72_m8(theta, phi): return ( 6.39644477039539e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.51266761577073e35 * cos(theta) ** 64 - 2.13254399538028e36 * cos(theta) ** 62 + 1.43001443094472e37 * cos(theta) ** 60 - 6.06984542631211e37 * cos(theta) ** 58 + 1.83092235213393e38 * cos(theta) ** 56 - 4.17721544042407e38 * cos(theta) ** 54 + 7.49072092136196e38 * cos(theta) ** 52 - 1.08317294893413e39 * cos(theta) ** 50 + 1.28574308376386e39 * cos(theta) ** 48 - 1.26886981494806e39 * cos(theta) ** 46 + 1.050624206777e39 * cos(theta) ** 44 - 7.34582778722128e38 * cos(theta) ** 42 + 4.35589374986055e38 * cos(theta) ** 40 - 2.19624894950952e38 * cos(theta) ** 38 + 9.42590361114282e37 * cos(theta) ** 36 - 3.44250392754781e37 * cos(theta) ** 34 + 1.06816631822695e37 * cos(theta) ** 32 - 2.8076867718101e36 * cos(theta) ** 30 + 6.22499360722424e35 * cos(theta) ** 28 - 1.15742625850013e35 * cos(theta) ** 26 + 1.79125492386925e34 * cos(theta) ** 24 - 2.28565122047116e33 * cos(theta) ** 22 + 2.37617206088586e32 * cos(theta) ** 20 - 1.98275226863554e31 * cos(theta) ** 18 + 1.30309749613934e30 * cos(theta) ** 16 - 6.58407155944088e28 * cos(theta) ** 14 + 2.47787639333796e27 * cos(theta) ** 12 - 6.65607822386266e25 * cos(theta) ** 10 + 1.20194028922079e24 * cos(theta) ** 8 - 1.33390123258748e22 * cos(theta) ** 6 + 7.84647783874985e19 * cos(theta) ** 4 - 1.82972666274773e17 * cos(theta) ** 2 + 70591306433168.6 ) * cos(8 * phi) ) # @torch.jit.script def Yl72_m9(theta, phi): return ( 8.88395106999359e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 9.68107274093268e36 * cos(theta) ** 63 - 1.32217727713577e38 * cos(theta) ** 61 + 8.5800865856683e38 * cos(theta) ** 59 - 3.52051034726102e39 * cos(theta) ** 57 + 1.025316517195e40 * cos(theta) ** 55 - 2.255696337829e40 * cos(theta) ** 53 + 3.89517487910822e40 * cos(theta) ** 51 - 5.41586474467064e40 * cos(theta) ** 49 + 6.17156680206654e40 * cos(theta) ** 47 - 5.8368011487611e40 * cos(theta) ** 45 + 4.62274650981879e40 * cos(theta) ** 43 - 3.08524767063294e40 * cos(theta) ** 41 + 1.74235749994422e40 * cos(theta) ** 39 - 8.34574600813619e39 * cos(theta) ** 37 + 3.39332530001142e39 * cos(theta) ** 35 - 1.17045133536626e39 * cos(theta) ** 33 + 3.41813221832624e38 * cos(theta) ** 31 - 8.42306031543031e37 * cos(theta) ** 29 + 1.74299821002279e37 * cos(theta) ** 27 - 3.00930827210033e36 * cos(theta) ** 25 + 4.29901181728619e35 * cos(theta) ** 23 - 5.02843268503655e34 * cos(theta) ** 21 + 4.75234412177172e33 * cos(theta) ** 19 - 3.56895408354398e32 * cos(theta) ** 17 + 2.08495599382294e31 * cos(theta) ** 15 - 9.21770018321723e29 * cos(theta) ** 13 + 2.97345167200556e28 * cos(theta) ** 11 - 6.65607822386266e26 * cos(theta) ** 9 + 9.61552231376629e24 * cos(theta) ** 7 - 8.00340739552485e22 * cos(theta) ** 5 + 3.13859113549994e20 * cos(theta) ** 3 - 3.65945332549546e17 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl72_m10(theta, phi): return ( 1.23602984418932e-18 * (1.0 - cos(theta) ** 2) ** 5 * ( 6.09907582678759e38 * cos(theta) ** 62 - 8.0652813905282e39 * cos(theta) ** 60 + 5.0622510855443e40 * cos(theta) ** 58 - 2.00669089793878e41 * cos(theta) ** 56 + 5.63924084457249e41 * cos(theta) ** 54 - 1.19551905904937e42 * cos(theta) ** 52 + 1.98653918834519e42 * cos(theta) ** 50 - 2.65377372488861e42 * cos(theta) ** 48 + 2.90063639697128e42 * cos(theta) ** 46 - 2.62656051694249e42 * cos(theta) ** 44 + 1.98778099922208e42 * cos(theta) ** 42 - 1.2649515449595e42 * cos(theta) ** 40 + 6.79519424978246e41 * cos(theta) ** 38 - 3.08792602301039e41 * cos(theta) ** 36 + 1.187663855004e41 * cos(theta) ** 34 - 3.86248940670865e40 * cos(theta) ** 32 + 1.05962098768113e40 * cos(theta) ** 30 - 2.44268749147479e39 * cos(theta) ** 28 + 4.70609516706152e38 * cos(theta) ** 26 - 7.52327068025084e37 * cos(theta) ** 24 + 9.88772717975824e36 * cos(theta) ** 22 - 1.05597086385768e36 * cos(theta) ** 20 + 9.02945383136627e34 * cos(theta) ** 18 - 6.06722194202477e33 * cos(theta) ** 16 + 3.12743399073442e32 * cos(theta) ** 14 - 1.19830102381824e31 * cos(theta) ** 12 + 3.27079683920611e29 * cos(theta) ** 10 - 5.9904704014764e27 * cos(theta) ** 8 + 6.7308656196364e25 * cos(theta) ** 6 - 4.00170369776243e23 * cos(theta) ** 4 + 9.41577340649983e20 * cos(theta) ** 2 - 3.65945332549546e17 ) * cos(10 * phi) ) # @torch.jit.script def Yl72_m11(theta, phi): return ( 1.72303486792792e-20 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 3.7814270126083e40 * cos(theta) ** 61 - 4.83916883431692e41 * cos(theta) ** 59 + 2.93610562961569e42 * cos(theta) ** 57 - 1.12374690284572e43 * cos(theta) ** 55 + 3.04519005606915e43 * cos(theta) ** 53 - 6.21669910705671e43 * cos(theta) ** 51 + 9.93269594172595e43 * cos(theta) ** 49 - 1.27381138794653e44 * cos(theta) ** 47 + 1.33429274260679e44 * cos(theta) ** 45 - 1.1556866274547e44 * cos(theta) ** 43 + 8.34868019673273e43 * cos(theta) ** 41 - 5.05980617983802e43 * cos(theta) ** 39 + 2.58217381491734e43 * cos(theta) ** 37 - 1.11165336828374e43 * cos(theta) ** 35 + 4.03805710701359e42 * cos(theta) ** 33 - 1.23599661014677e42 * cos(theta) ** 31 + 3.1788629630434e41 * cos(theta) ** 29 - 6.83952497612941e40 * cos(theta) ** 27 + 1.223584743436e40 * cos(theta) ** 25 - 1.8055849632602e39 * cos(theta) ** 23 + 2.17529997954681e38 * cos(theta) ** 21 - 2.11194172771535e37 * cos(theta) ** 19 + 1.62530168964593e36 * cos(theta) ** 17 - 9.70755510723963e34 * cos(theta) ** 15 + 4.37840758702818e33 * cos(theta) ** 13 - 1.43796122858189e32 * cos(theta) ** 11 + 3.27079683920611e30 * cos(theta) ** 9 - 4.79237632118112e28 * cos(theta) ** 7 + 4.03851937178184e26 * cos(theta) ** 5 - 1.60068147910497e24 * cos(theta) ** 3 + 1.88315468129997e21 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl72_m12(theta, phi): return ( 2.40707435283517e-22 * (1.0 - cos(theta) ** 2) ** 6 * ( 2.30667047769107e42 * cos(theta) ** 60 - 2.85510961224698e43 * cos(theta) ** 58 + 1.67358020888094e44 * cos(theta) ** 56 - 6.18060796565145e44 * cos(theta) ** 54 + 1.61395072971665e45 * cos(theta) ** 52 - 3.17051654459892e45 * cos(theta) ** 50 + 4.86702101144572e45 * cos(theta) ** 48 - 5.98691352334871e45 * cos(theta) ** 46 + 6.00431734173054e45 * cos(theta) ** 44 - 4.9694524980552e45 * cos(theta) ** 42 + 3.42295888066042e45 * cos(theta) ** 40 - 1.97332441013683e45 * cos(theta) ** 38 + 9.55404311519414e44 * cos(theta) ** 36 - 3.89078678899309e44 * cos(theta) ** 34 + 1.33255884531448e44 * cos(theta) ** 32 - 3.83158949145498e43 * cos(theta) ** 30 + 9.21870259282586e42 * cos(theta) ** 28 - 1.84667174355494e42 * cos(theta) ** 26 + 3.05896185858999e41 * cos(theta) ** 24 - 4.15284541549846e40 * cos(theta) ** 22 + 4.56812995704831e39 * cos(theta) ** 20 - 4.01268928265917e38 * cos(theta) ** 18 + 2.76301287239808e37 * cos(theta) ** 16 - 1.45613326608594e36 * cos(theta) ** 14 + 5.69192986313664e34 * cos(theta) ** 12 - 1.58175735144008e33 * cos(theta) ** 10 + 2.9437171552855e31 * cos(theta) ** 8 - 3.35466342482678e29 * cos(theta) ** 6 + 2.01925968589092e27 * cos(theta) ** 4 - 4.80204443731491e24 * cos(theta) ** 2 + 1.88315468129997e21 ) * cos(12 * phi) ) # @torch.jit.script def Yl72_m13(theta, phi): return ( 3.3705782770497e-24 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.38400228661464e44 * cos(theta) ** 59 - 1.65596357510325e45 * cos(theta) ** 57 + 9.37204916973329e45 * cos(theta) ** 55 - 3.33752830145178e46 * cos(theta) ** 53 + 8.39254379452656e46 * cos(theta) ** 51 - 1.58525827229946e47 * cos(theta) ** 49 + 2.33617008549394e47 * cos(theta) ** 47 - 2.75398022074041e47 * cos(theta) ** 45 + 2.64189963036144e47 * cos(theta) ** 43 - 2.08717004918318e47 * cos(theta) ** 41 + 1.36918355226417e47 * cos(theta) ** 39 - 7.49863275851995e46 * cos(theta) ** 37 + 3.43945552146989e46 * cos(theta) ** 35 - 1.32286750825765e46 * cos(theta) ** 33 + 4.26418830500635e45 * cos(theta) ** 31 - 1.14947684743649e45 * cos(theta) ** 29 + 2.58123672599124e44 * cos(theta) ** 27 - 4.80134653324285e43 * cos(theta) ** 25 + 7.34150846061598e42 * cos(theta) ** 23 - 9.13625991409662e41 * cos(theta) ** 21 + 9.13625991409662e40 * cos(theta) ** 19 - 7.22284070878651e39 * cos(theta) ** 17 + 4.42082059583693e38 * cos(theta) ** 15 - 2.03858657252032e37 * cos(theta) ** 13 + 6.83031583576396e35 * cos(theta) ** 11 - 1.58175735144008e34 * cos(theta) ** 9 + 2.3549737242284e32 * cos(theta) ** 7 - 2.01279805489607e30 * cos(theta) ** 5 + 8.07703874356368e27 * cos(theta) ** 3 - 9.60408887462982e24 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl72_m14(theta, phi): return ( 4.73183057377072e-26 * (1.0 - cos(theta) ** 2) ** 7 * ( 8.16561349102637e45 * cos(theta) ** 58 - 9.43899237808853e46 * cos(theta) ** 56 + 5.15462704335331e47 * cos(theta) ** 54 - 1.76888999976945e48 * cos(theta) ** 52 + 4.28019733520855e48 * cos(theta) ** 50 - 7.76776553426737e48 * cos(theta) ** 48 + 1.09799994018215e49 * cos(theta) ** 46 - 1.23929109933318e49 * cos(theta) ** 44 + 1.13601684105542e49 * cos(theta) ** 42 - 8.55739720165105e48 * cos(theta) ** 40 + 5.33981585383026e48 * cos(theta) ** 38 - 2.77449412065238e48 * cos(theta) ** 36 + 1.20380943251446e48 * cos(theta) ** 34 - 4.36546277725025e47 * cos(theta) ** 32 + 1.32189837455197e47 * cos(theta) ** 30 - 3.33348285756583e46 * cos(theta) ** 28 + 6.96933916017635e45 * cos(theta) ** 26 - 1.20033663331071e45 * cos(theta) ** 24 + 1.68854694594167e44 * cos(theta) ** 22 - 1.91861458196029e43 * cos(theta) ** 20 + 1.73588938367836e42 * cos(theta) ** 18 - 1.22788292049371e41 * cos(theta) ** 16 + 6.63123089375539e39 * cos(theta) ** 14 - 2.65016254427642e38 * cos(theta) ** 12 + 7.51334741934036e36 * cos(theta) ** 10 - 1.42358161629607e35 * cos(theta) ** 8 + 1.64848160695988e33 * cos(theta) ** 6 - 1.00639902744803e31 * cos(theta) ** 4 + 2.4231116230691e28 * cos(theta) ** 2 - 9.60408887462982e24 ) * cos(14 * phi) ) # @torch.jit.script def Yl72_m15(theta, phi): return ( 6.66124738795357e-28 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 4.7360558247953e47 * cos(theta) ** 57 - 5.28583573172958e48 * cos(theta) ** 55 + 2.78349860341079e49 * cos(theta) ** 53 - 9.19822799880112e49 * cos(theta) ** 51 + 2.14009866760427e50 * cos(theta) ** 49 - 3.72852745644834e50 * cos(theta) ** 47 + 5.05079972483791e50 * cos(theta) ** 45 - 5.45288083706601e50 * cos(theta) ** 43 + 4.77127073243276e50 * cos(theta) ** 41 - 3.42295888066042e50 * cos(theta) ** 39 + 2.0291300244555e50 * cos(theta) ** 37 - 9.98817883434857e49 * cos(theta) ** 35 + 4.09295207054917e49 * cos(theta) ** 33 - 1.39694808872008e49 * cos(theta) ** 31 + 3.9656951236559e48 * cos(theta) ** 29 - 9.33375200118433e47 * cos(theta) ** 27 + 1.81202818164585e47 * cos(theta) ** 25 - 2.88080791994571e46 * cos(theta) ** 23 + 3.71480328107168e45 * cos(theta) ** 21 - 3.83722916392058e44 * cos(theta) ** 19 + 3.12460089062104e43 * cos(theta) ** 17 - 1.96461267278993e42 * cos(theta) ** 15 + 9.28372325125754e40 * cos(theta) ** 13 - 3.1801950531317e39 * cos(theta) ** 11 + 7.51334741934036e37 * cos(theta) ** 9 - 1.13886529303685e36 * cos(theta) ** 7 + 9.89088964175928e33 * cos(theta) ** 5 - 4.02559610979214e31 * cos(theta) ** 3 + 4.84622324613821e28 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl72_m16(theta, phi): return ( 9.40538979437044e-30 * (1.0 - cos(theta) ** 2) ** 8 * ( 2.69955182013332e49 * cos(theta) ** 56 - 2.90720965245127e50 * cos(theta) ** 54 + 1.47525425980772e51 * cos(theta) ** 52 - 4.69109627938857e51 * cos(theta) ** 50 + 1.04864834712609e52 * cos(theta) ** 48 - 1.75240790453072e52 * cos(theta) ** 46 + 2.27285987617706e52 * cos(theta) ** 44 - 2.34473875993838e52 * cos(theta) ** 42 + 1.95622100029743e52 * cos(theta) ** 40 - 1.33495396345756e52 * cos(theta) ** 38 + 7.50778109048534e51 * cos(theta) ** 36 - 3.495862592022e51 * cos(theta) ** 34 + 1.35067418328123e51 * cos(theta) ** 32 - 4.33053907503225e50 * cos(theta) ** 30 + 1.15005158586021e50 * cos(theta) ** 28 - 2.52011304031977e49 * cos(theta) ** 26 + 4.53007045411463e48 * cos(theta) ** 24 - 6.62585821587513e47 * cos(theta) ** 22 + 7.80108689025054e46 * cos(theta) ** 20 - 7.2907354114491e45 * cos(theta) ** 18 + 5.31182151405577e44 * cos(theta) ** 16 - 2.9469190091849e43 * cos(theta) ** 14 + 1.20688402266348e42 * cos(theta) ** 12 - 3.49821455844487e40 * cos(theta) ** 10 + 6.76201267740632e38 * cos(theta) ** 8 - 7.97205705125798e36 * cos(theta) ** 6 + 4.94544482087964e34 * cos(theta) ** 4 - 1.20767883293764e32 * cos(theta) ** 2 + 4.84622324613821e28 ) * cos(16 * phi) ) # @torch.jit.script def Yl72_m17(theta, phi): return ( 1.33225629876043e-31 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.51174901927466e51 * cos(theta) ** 55 - 1.56989321232368e52 * cos(theta) ** 53 + 7.67132215100013e52 * cos(theta) ** 51 - 2.34554813969428e53 * cos(theta) ** 49 + 5.03351206620525e53 * cos(theta) ** 47 - 8.0610763608413e53 * cos(theta) ** 45 + 1.00005834551791e54 * cos(theta) ** 43 - 9.84790279174121e53 * cos(theta) ** 41 + 7.82488400118972e53 * cos(theta) ** 39 - 5.07282506113874e53 * cos(theta) ** 37 + 2.70280119257472e53 * cos(theta) ** 35 - 1.18859328128748e53 * cos(theta) ** 33 + 4.32215738649993e52 * cos(theta) ** 31 - 1.29916172250967e52 * cos(theta) ** 29 + 3.22014444040859e51 * cos(theta) ** 27 - 6.5522939048314e50 * cos(theta) ** 25 + 1.08721690898751e50 * cos(theta) ** 23 - 1.45768880749253e49 * cos(theta) ** 21 + 1.56021737805011e48 * cos(theta) ** 19 - 1.31233237406084e47 * cos(theta) ** 17 + 8.49891442248924e45 * cos(theta) ** 15 - 4.12568661285885e44 * cos(theta) ** 13 + 1.44826082719618e43 * cos(theta) ** 11 - 3.49821455844487e41 * cos(theta) ** 9 + 5.40961014192506e39 * cos(theta) ** 7 - 4.78323423075479e37 * cos(theta) ** 5 + 1.97817792835186e35 * cos(theta) ** 3 - 2.41535766587528e32 * cos(theta) ) * cos(17 * phi) ) # @torch.jit.script def Yl72_m18(theta, phi): return ( 1.89358664843331e-33 * (1.0 - cos(theta) ** 2) ** 9 * ( 8.31461960601062e52 * cos(theta) ** 54 - 8.32043402531553e53 * cos(theta) ** 52 + 3.91237429701007e54 * cos(theta) ** 50 - 1.1493185884502e55 * cos(theta) ** 48 + 2.36575067111647e55 * cos(theta) ** 46 - 3.62748436237859e55 * cos(theta) ** 44 + 4.30025088572699e55 * cos(theta) ** 42 - 4.0376401446139e55 * cos(theta) ** 40 + 3.05170476046399e55 * cos(theta) ** 38 - 1.87694527262133e55 * cos(theta) ** 36 + 9.45980417401153e54 * cos(theta) ** 34 - 3.92235782824868e54 * cos(theta) ** 32 + 1.33986878981498e54 * cos(theta) ** 30 - 3.76756899527805e53 * cos(theta) ** 28 + 8.6943899891032e52 * cos(theta) ** 26 - 1.63807347620785e52 * cos(theta) ** 24 + 2.50059889067127e51 * cos(theta) ** 22 - 3.06114649573431e50 * cos(theta) ** 20 + 2.9644130182952e49 * cos(theta) ** 18 - 2.23096503590342e48 * cos(theta) ** 16 + 1.27483716337339e47 * cos(theta) ** 14 - 5.36339259671651e45 * cos(theta) ** 12 + 1.59308690991579e44 * cos(theta) ** 10 - 3.14839310260038e42 * cos(theta) ** 8 + 3.78672709934754e40 * cos(theta) ** 6 - 2.39161711537739e38 * cos(theta) ** 4 + 5.93453378505557e35 * cos(theta) ** 2 - 2.41535766587528e32 ) * cos(18 * phi) ) # @torch.jit.script def Yl72_m19(theta, phi): return ( 2.70126758225203e-35 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 4.48989458724574e54 * cos(theta) ** 53 - 4.32662569316407e55 * cos(theta) ** 51 + 1.95618714850503e56 * cos(theta) ** 49 - 5.51672922456096e56 * cos(theta) ** 47 + 1.08824530871358e57 * cos(theta) ** 45 - 1.59609311944658e57 * cos(theta) ** 43 + 1.80610537200534e57 * cos(theta) ** 41 - 1.61505605784556e57 * cos(theta) ** 39 + 1.15964780897632e57 * cos(theta) ** 37 - 6.75700298143681e56 * cos(theta) ** 35 + 3.21633341916392e56 * cos(theta) ** 33 - 1.25515450503958e56 * cos(theta) ** 31 + 4.01960636944493e55 * cos(theta) ** 29 - 1.05491931867786e55 * cos(theta) ** 27 + 2.26054139716683e54 * cos(theta) ** 25 - 3.93137634289884e53 * cos(theta) ** 23 + 5.5013175594768e52 * cos(theta) ** 21 - 6.12229299146862e51 * cos(theta) ** 19 + 5.33594343293137e50 * cos(theta) ** 17 - 3.56954405744548e49 * cos(theta) ** 15 + 1.78477202872274e48 * cos(theta) ** 13 - 6.43607111605981e46 * cos(theta) ** 11 + 1.59308690991579e45 * cos(theta) ** 9 - 2.51871448208031e43 * cos(theta) ** 7 + 2.27203625960852e41 * cos(theta) ** 5 - 9.56646846150958e38 * cos(theta) ** 3 + 1.18690675701111e36 * cos(theta) ) * cos(19 * phi) ) # @torch.jit.script def Yl72_m20(theta, phi): return ( 3.86843904618807e-37 * (1.0 - cos(theta) ** 2) ** 10 * ( 2.37964413124024e56 * cos(theta) ** 52 - 2.20657910351368e57 * cos(theta) ** 50 + 9.58531702767466e57 * cos(theta) ** 48 - 2.59286273554365e58 * cos(theta) ** 46 + 4.89710388921109e58 * cos(theta) ** 44 - 6.86320041362028e58 * cos(theta) ** 42 + 7.40503202522188e58 * cos(theta) ** 40 - 6.29871862559768e58 * cos(theta) ** 38 + 4.29069689321237e58 * cos(theta) ** 36 - 2.36495104350288e58 * cos(theta) ** 34 + 1.06139002832409e58 * cos(theta) ** 32 - 3.89097896562269e57 * cos(theta) ** 30 + 1.16568584713903e57 * cos(theta) ** 28 - 2.84828216043021e56 * cos(theta) ** 26 + 5.65135349291708e55 * cos(theta) ** 24 - 9.04216558866733e54 * cos(theta) ** 22 + 1.15527668749013e54 * cos(theta) ** 20 - 1.16323566837904e53 * cos(theta) ** 18 + 9.07110383598332e51 * cos(theta) ** 16 - 5.35431608616822e50 * cos(theta) ** 14 + 2.32020363733956e49 * cos(theta) ** 12 - 7.07967822766579e47 * cos(theta) ** 10 + 1.43377821892422e46 * cos(theta) ** 8 - 1.76310013745622e44 * cos(theta) ** 6 + 1.13601812980426e42 * cos(theta) ** 4 - 2.86994053845287e39 * cos(theta) ** 2 + 1.18690675701111e36 ) * cos(20 * phi) ) # @torch.jit.script def Yl72_m21(theta, phi): return ( 5.56278931907556e-39 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.23741494824492e58 * cos(theta) ** 51 - 1.10328955175684e59 * cos(theta) ** 49 + 4.60095217328384e59 * cos(theta) ** 47 - 1.19271685835008e60 * cos(theta) ** 45 + 2.15472571125288e60 * cos(theta) ** 43 - 2.88254417372052e60 * cos(theta) ** 41 + 2.96201281008875e60 * cos(theta) ** 39 - 2.39351307772712e60 * cos(theta) ** 37 + 1.54465088155645e60 * cos(theta) ** 35 - 8.0408335479098e59 * cos(theta) ** 33 + 3.3964480906371e59 * cos(theta) ** 31 - 1.16729368968681e59 * cos(theta) ** 29 + 3.26392037198928e58 * cos(theta) ** 27 - 7.40553361711854e57 * cos(theta) ** 25 + 1.3563248383001e57 * cos(theta) ** 23 - 1.98927642950681e56 * cos(theta) ** 21 + 2.31055337498026e55 * cos(theta) ** 19 - 2.09382420308227e54 * cos(theta) ** 17 + 1.45137661375733e53 * cos(theta) ** 15 - 7.49604252063551e51 * cos(theta) ** 13 + 2.78424436480747e50 * cos(theta) ** 11 - 7.07967822766579e48 * cos(theta) ** 9 + 1.14702257513937e47 * cos(theta) ** 7 - 1.05786008247373e45 * cos(theta) ** 5 + 4.54407251921705e42 * cos(theta) ** 3 - 5.73988107690575e39 * cos(theta) ) * cos(21 * phi) ) # @torch.jit.script def Yl72_m22(theta, phi): return ( 8.03421773328159e-41 * (1.0 - cos(theta) ** 2) ** 11 * ( 6.31081623604912e59 * cos(theta) ** 50 - 5.40611880360851e60 * cos(theta) ** 48 + 2.1624475214434e61 * cos(theta) ** 46 - 5.36722586257535e61 * cos(theta) ** 44 + 9.26532055838738e61 * cos(theta) ** 42 - 1.18184311122541e62 * cos(theta) ** 40 + 1.15518499593461e62 * cos(theta) ** 38 - 8.85599838759033e61 * cos(theta) ** 36 + 5.40627808544759e61 * cos(theta) ** 34 - 2.65347507081023e61 * cos(theta) ** 32 + 1.0528989080975e61 * cos(theta) ** 30 - 3.38515170009174e60 * cos(theta) ** 28 + 8.81258500437107e59 * cos(theta) ** 26 - 1.85138340427964e59 * cos(theta) ** 24 + 3.11954712809023e58 * cos(theta) ** 22 - 4.17748050196431e57 * cos(theta) ** 20 + 4.39005141246249e56 * cos(theta) ** 18 - 3.55950114523986e55 * cos(theta) ** 16 + 2.177064920636e54 * cos(theta) ** 14 - 9.74485527682616e52 * cos(theta) ** 12 + 3.06266880128822e51 * cos(theta) ** 10 - 6.37171040489921e49 * cos(theta) ** 8 + 8.0291580259756e47 * cos(theta) ** 6 - 5.28930041236865e45 * cos(theta) ** 4 + 1.36322175576512e43 * cos(theta) ** 2 - 5.73988107690575e39 ) * cos(22 * phi) ) # @torch.jit.script def Yl72_m23(theta, phi): return ( 1.1657268307417e-42 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 3.15540811802456e61 * cos(theta) ** 49 - 2.59493702573208e62 * cos(theta) ** 47 + 9.94725859863966e62 * cos(theta) ** 45 - 2.36157937953316e63 * cos(theta) ** 43 + 3.8914346345227e63 * cos(theta) ** 41 - 4.72737244490165e63 * cos(theta) ** 39 + 4.38970298455153e63 * cos(theta) ** 37 - 3.18815941953252e63 * cos(theta) ** 35 + 1.83813454905218e63 * cos(theta) ** 33 - 8.49112022659275e62 * cos(theta) ** 31 + 3.1586967242925e62 * cos(theta) ** 29 - 9.47842476025688e61 * cos(theta) ** 27 + 2.29127210113648e61 * cos(theta) ** 25 - 4.44332017027113e60 * cos(theta) ** 23 + 6.8630036817985e59 * cos(theta) ** 21 - 8.35496100392861e58 * cos(theta) ** 19 + 7.90209254243248e57 * cos(theta) ** 17 - 5.69520183238377e56 * cos(theta) ** 15 + 3.0478908888904e55 * cos(theta) ** 13 - 1.16938263321914e54 * cos(theta) ** 11 + 3.06266880128822e52 * cos(theta) ** 9 - 5.09736832391937e50 * cos(theta) ** 7 + 4.81749481558536e48 * cos(theta) ** 5 - 2.11572016494746e46 * cos(theta) ** 3 + 2.72644351153023e43 * cos(theta) ) * cos(23 * phi) ) # @torch.jit.script def Yl72_m24(theta, phi): return ( 1.69966423499341e-44 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.54614997783203e63 * cos(theta) ** 48 - 1.21962040209408e64 * cos(theta) ** 46 + 4.47626636938785e64 * cos(theta) ** 44 - 1.01547913319926e65 * cos(theta) ** 42 + 1.59548820015431e65 * cos(theta) ** 40 - 1.84367525351164e65 * cos(theta) ** 38 + 1.62419010428407e65 * cos(theta) ** 36 - 1.11585579683638e65 * cos(theta) ** 34 + 6.06584401187219e64 * cos(theta) ** 32 - 2.63224727024375e64 * cos(theta) ** 30 + 9.16022050044826e63 * cos(theta) ** 28 - 2.55917468526936e63 * cos(theta) ** 26 + 5.72818025284119e62 * cos(theta) ** 24 - 1.02196363916236e62 * cos(theta) ** 22 + 1.44123077317769e61 * cos(theta) ** 20 - 1.58744259074644e60 * cos(theta) ** 18 + 1.34335573221352e59 * cos(theta) ** 16 - 8.54280274857566e57 * cos(theta) ** 14 + 3.96225815555752e56 * cos(theta) ** 12 - 1.28632089654105e55 * cos(theta) ** 10 + 2.7564019211594e53 * cos(theta) ** 8 - 3.56815782674356e51 * cos(theta) ** 6 + 2.40874740779268e49 * cos(theta) ** 4 - 6.34716049484238e46 * cos(theta) ** 2 + 2.72644351153023e43 ) * cos(24 * phi) ) # @torch.jit.script def Yl72_m25(theta, phi): return ( 2.4909020501506e-46 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 7.42151989359376e64 * cos(theta) ** 47 - 5.61025384963277e65 * cos(theta) ** 45 + 1.96955720253065e66 * cos(theta) ** 43 - 4.26501235943688e66 * cos(theta) ** 41 + 6.38195280061723e66 * cos(theta) ** 39 - 7.00596596334425e66 * cos(theta) ** 37 + 5.84708437542264e66 * cos(theta) ** 35 - 3.7939097092437e66 * cos(theta) ** 33 + 1.9410700837991e66 * cos(theta) ** 31 - 7.89674181073125e65 * cos(theta) ** 29 + 2.56486174012551e65 * cos(theta) ** 27 - 6.65385418170033e64 * cos(theta) ** 25 + 1.37476326068189e64 * cos(theta) ** 23 - 2.24832000615719e63 * cos(theta) ** 21 + 2.88246154635537e62 * cos(theta) ** 19 - 2.85739666334359e61 * cos(theta) ** 17 + 2.14936917154164e60 * cos(theta) ** 15 - 1.19599238480059e59 * cos(theta) ** 13 + 4.75470978666902e57 * cos(theta) ** 11 - 1.28632089654105e56 * cos(theta) ** 9 + 2.20512153692752e54 * cos(theta) ** 7 - 2.14089469604614e52 * cos(theta) ** 5 + 9.63498963117073e49 * cos(theta) ** 3 - 1.26943209896848e47 * cos(theta) ) * cos(25 * phi) ) # @torch.jit.script def Yl72_m26(theta, phi): return ( 3.67024185267844e-48 * (1.0 - cos(theta) ** 2) ** 13 * ( 3.48811434998907e66 * cos(theta) ** 46 - 2.52461423233475e67 * cos(theta) ** 44 + 8.4690959708818e67 * cos(theta) ** 42 - 1.74865506736912e68 * cos(theta) ** 40 + 2.48896159224072e68 * cos(theta) ** 38 - 2.59220740643737e68 * cos(theta) ** 36 + 2.04647953139792e68 * cos(theta) ** 34 - 1.25199020405042e68 * cos(theta) ** 32 + 6.01731725977722e67 * cos(theta) ** 30 - 2.29005512511206e67 * cos(theta) ** 28 + 6.92512669833888e66 * cos(theta) ** 26 - 1.66346354542508e66 * cos(theta) ** 24 + 3.16195549956834e65 * cos(theta) ** 22 - 4.7214720129301e64 * cos(theta) ** 20 + 5.47667693807521e63 * cos(theta) ** 18 - 4.85757432768409e62 * cos(theta) ** 16 + 3.22405375731245e61 * cos(theta) ** 14 - 1.55479010024077e60 * cos(theta) ** 12 + 5.23018076533592e58 * cos(theta) ** 10 - 1.15768880688695e57 * cos(theta) ** 8 + 1.54358507584926e55 * cos(theta) ** 6 - 1.07044734802307e53 * cos(theta) ** 4 + 2.89049688935122e50 * cos(theta) ** 2 - 1.26943209896848e47 ) * cos(26 * phi) ) # @torch.jit.script def Yl72_m27(theta, phi): return ( 5.43873840150301e-50 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.60453260099497e68 * cos(theta) ** 45 - 1.11083026222729e69 * cos(theta) ** 43 + 3.55702030777036e69 * cos(theta) ** 41 - 6.99462026947648e69 * cos(theta) ** 39 + 9.45805405051473e69 * cos(theta) ** 37 - 9.33194666317454e69 * cos(theta) ** 35 + 6.95803040675294e69 * cos(theta) ** 33 - 4.00636865296135e69 * cos(theta) ** 31 + 1.80519517793316e69 * cos(theta) ** 29 - 6.41215435031378e68 * cos(theta) ** 27 + 1.80053294156811e68 * cos(theta) ** 25 - 3.9923125090202e67 * cos(theta) ** 23 + 6.95630209905034e66 * cos(theta) ** 21 - 9.4429440258602e65 * cos(theta) ** 19 + 9.85801848853537e64 * cos(theta) ** 17 - 7.77211892429455e63 * cos(theta) ** 15 + 4.51367526023743e62 * cos(theta) ** 13 - 1.86574812028892e61 * cos(theta) ** 11 + 5.23018076533592e59 * cos(theta) ** 9 - 9.26151045509558e57 * cos(theta) ** 7 + 9.26151045509558e55 * cos(theta) ** 5 - 4.28178939209227e53 * cos(theta) ** 3 + 5.78099377870244e50 * cos(theta) ) * cos(27 * phi) ) # @torch.jit.script def Yl72_m28(theta, phi): return ( 8.10759251839952e-52 * (1.0 - cos(theta) ** 2) ** 14 * ( 7.22039670447737e69 * cos(theta) ** 44 - 4.77657012757734e70 * cos(theta) ** 42 + 1.45837832618585e71 * cos(theta) ** 40 - 2.72790190509583e71 * cos(theta) ** 38 + 3.49947999869045e71 * cos(theta) ** 36 - 3.26618133211109e71 * cos(theta) ** 34 + 2.29615003422847e71 * cos(theta) ** 32 - 1.24197428241802e71 * cos(theta) ** 30 + 5.23506601600618e70 * cos(theta) ** 28 - 1.73128167458472e70 * cos(theta) ** 26 + 4.50133235392027e69 * cos(theta) ** 24 - 9.18231877074646e68 * cos(theta) ** 22 + 1.46082344080057e68 * cos(theta) ** 20 - 1.79415936491344e67 * cos(theta) ** 18 + 1.67586314305101e66 * cos(theta) ** 16 - 1.16581783864418e65 * cos(theta) ** 14 + 5.86777783830866e63 * cos(theta) ** 12 - 2.05232293231782e62 * cos(theta) ** 10 + 4.70716268880233e60 * cos(theta) ** 8 - 6.48305731856691e58 * cos(theta) ** 6 + 4.63075522754779e56 * cos(theta) ** 4 - 1.28453681762768e54 * cos(theta) ** 2 + 5.78099377870244e50 ) * cos(28 * phi) ) # @torch.jit.script def Yl72_m29(theta, phi): return ( 1.21619968926472e-53 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 3.17697454997004e71 * cos(theta) ** 43 - 2.00615945358248e72 * cos(theta) ** 41 + 5.83351330474339e72 * cos(theta) ** 39 - 1.03660272393641e73 * cos(theta) ** 37 + 1.25981279952856e73 * cos(theta) ** 35 - 1.11050165291777e73 * cos(theta) ** 33 + 7.34768010953111e72 * cos(theta) ** 31 - 3.72592284725405e72 * cos(theta) ** 29 + 1.46581848448173e72 * cos(theta) ** 27 - 4.50133235392027e71 * cos(theta) ** 25 + 1.08031976494087e71 * cos(theta) ** 23 - 2.02011012956422e70 * cos(theta) ** 21 + 2.92164688160114e69 * cos(theta) ** 19 - 3.22948685684419e68 * cos(theta) ** 17 + 2.68138102888162e67 * cos(theta) ** 15 - 1.63214497410186e66 * cos(theta) ** 13 + 7.0413334059704e64 * cos(theta) ** 11 - 2.05232293231782e63 * cos(theta) ** 9 + 3.76573015104186e61 * cos(theta) ** 7 - 3.88983439114014e59 * cos(theta) ** 5 + 1.85230209101912e57 * cos(theta) ** 3 - 2.56907363525536e54 * cos(theta) ) * cos(29 * phi) ) # @torch.jit.script def Yl72_m30(theta, phi): return ( 1.83641391319431e-55 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.36609905648712e73 * cos(theta) ** 42 - 8.22525375968818e73 * cos(theta) ** 40 + 2.27507018884992e74 * cos(theta) ** 38 - 3.83543007856473e74 * cos(theta) ** 36 + 4.40934479834997e74 * cos(theta) ** 34 - 3.66465545462864e74 * cos(theta) ** 32 + 2.27778083395464e74 * cos(theta) ** 30 - 1.08051762570368e74 * cos(theta) ** 28 + 3.95770990810067e73 * cos(theta) ** 26 - 1.12533308848007e73 * cos(theta) ** 24 + 2.48473545936399e72 * cos(theta) ** 22 - 4.24223127208486e71 * cos(theta) ** 20 + 5.55112907504217e70 * cos(theta) ** 18 - 5.49012765663512e69 * cos(theta) ** 16 + 4.02207154332243e68 * cos(theta) ** 14 - 2.12178846633241e67 * cos(theta) ** 12 + 7.74546674656744e65 * cos(theta) ** 10 - 1.84709063908603e64 * cos(theta) ** 8 + 2.6360111057293e62 * cos(theta) ** 6 - 1.94491719557007e60 * cos(theta) ** 4 + 5.55690627305735e57 * cos(theta) ** 2 - 2.56907363525536e54 ) * cos(30 * phi) ) # @torch.jit.script def Yl72_m31(theta, phi): return ( 2.79207652289367e-57 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 5.7376160372459e74 * cos(theta) ** 41 - 3.29010150387527e75 * cos(theta) ** 39 + 8.6452667176297e75 * cos(theta) ** 37 - 1.3807548282833e76 * cos(theta) ** 35 + 1.49917723143899e76 * cos(theta) ** 33 - 1.17268974548117e76 * cos(theta) ** 31 + 6.83334250186393e75 * cos(theta) ** 29 - 3.02544935197029e75 * cos(theta) ** 27 + 1.02900457610617e75 * cos(theta) ** 25 - 2.70079941235216e74 * cos(theta) ** 23 + 5.46641801060078e73 * cos(theta) ** 21 - 8.48446254416972e72 * cos(theta) ** 19 + 9.99203233507592e71 * cos(theta) ** 17 - 8.78420425061619e70 * cos(theta) ** 15 + 5.6309001606514e69 * cos(theta) ** 13 - 2.5461461595989e68 * cos(theta) ** 11 + 7.74546674656744e66 * cos(theta) ** 9 - 1.47767251126883e65 * cos(theta) ** 7 + 1.58160666343758e63 * cos(theta) ** 5 - 7.77966878228029e60 * cos(theta) ** 3 + 1.11138125461147e58 * cos(theta) ) * cos(31 * phi) ) # @torch.jit.script def Yl72_m32(theta, phi): return ( 4.27581315288909e-59 * (1.0 - cos(theta) ** 2) ** 16 * ( 2.35242257527082e76 * cos(theta) ** 40 - 1.28313958651136e77 * cos(theta) ** 38 + 3.19874868552299e77 * cos(theta) ** 36 - 4.83264189899157e77 * cos(theta) ** 34 + 4.94728486374867e77 * cos(theta) ** 32 - 3.63533821099161e77 * cos(theta) ** 30 + 1.98166932554054e77 * cos(theta) ** 28 - 8.16871325031978e76 * cos(theta) ** 26 + 2.57251144026544e76 * cos(theta) ** 24 - 6.21183864840998e75 * cos(theta) ** 22 + 1.14794778222616e75 * cos(theta) ** 20 - 1.61204788339225e74 * cos(theta) ** 18 + 1.69864549696291e73 * cos(theta) ** 16 - 1.31763063759243e72 * cos(theta) ** 14 + 7.32017020884682e70 * cos(theta) ** 12 - 2.80076077555878e69 * cos(theta) ** 10 + 6.97092007191069e67 * cos(theta) ** 8 - 1.03437075788818e66 * cos(theta) ** 6 + 7.90803331718791e63 * cos(theta) ** 4 - 2.33390063468409e61 * cos(theta) ** 2 + 1.11138125461147e58 ) * cos(32 * phi) ) # @torch.jit.script def Yl72_m33(theta, phi): return ( 6.59772293302761e-61 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 9.40969030108327e77 * cos(theta) ** 39 - 4.87593042874315e78 * cos(theta) ** 37 + 1.15154952678828e79 * cos(theta) ** 35 - 1.64309824565713e79 * cos(theta) ** 33 + 1.58313115639957e79 * cos(theta) ** 31 - 1.09060146329748e79 * cos(theta) ** 29 + 5.54867411151351e78 * cos(theta) ** 27 - 2.12386544508314e78 * cos(theta) ** 25 + 6.17402745663705e77 * cos(theta) ** 23 - 1.36660450265019e77 * cos(theta) ** 21 + 2.29589556445233e76 * cos(theta) ** 19 - 2.90168619010605e75 * cos(theta) ** 17 + 2.71783279514065e74 * cos(theta) ** 15 - 1.8446828926294e73 * cos(theta) ** 13 + 8.78420425061619e71 * cos(theta) ** 11 - 2.80076077555878e70 * cos(theta) ** 9 + 5.57673605752855e68 * cos(theta) ** 7 - 6.20622454732907e66 * cos(theta) ** 5 + 3.16321332687517e64 * cos(theta) ** 3 - 4.66780126936817e61 * cos(theta) ) * cos(33 * phi) ) # @torch.jit.script def Yl72_m34(theta, phi): return ( 1.0261452462024e-62 * (1.0 - cos(theta) ** 2) ** 17 * ( 3.66977921742248e79 * cos(theta) ** 38 - 1.80409425863497e80 * cos(theta) ** 36 + 4.03042334375897e80 * cos(theta) ** 34 - 5.42222421066854e80 * cos(theta) ** 32 + 4.90770658483868e80 * cos(theta) ** 30 - 3.1627442435627e80 * cos(theta) ** 28 + 1.49814201010865e80 * cos(theta) ** 26 - 5.30966361270786e79 * cos(theta) ** 24 + 1.42002631502652e79 * cos(theta) ** 22 - 2.86986945556541e78 * cos(theta) ** 20 + 4.36220157245942e77 * cos(theta) ** 18 - 4.93286652318028e76 * cos(theta) ** 16 + 4.07674919271097e75 * cos(theta) ** 14 - 2.39808776041822e74 * cos(theta) ** 12 + 9.66262467567781e72 * cos(theta) ** 10 - 2.52068469800291e71 * cos(theta) ** 8 + 3.90371524026999e69 * cos(theta) ** 6 - 3.10311227366454e67 * cos(theta) ** 4 + 9.4896399806255e64 * cos(theta) ** 2 - 4.66780126936817e61 ) * cos(34 * phi) ) # @torch.jit.script def Yl72_m35(theta, phi): return ( 1.60925604945875e-64 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 1.39451610262054e81 * cos(theta) ** 37 - 6.49473933108588e81 * cos(theta) ** 35 + 1.37034393687805e82 * cos(theta) ** 33 - 1.73511174741393e82 * cos(theta) ** 31 + 1.4723119754516e82 * cos(theta) ** 29 - 8.85568388197557e81 * cos(theta) ** 27 + 3.89516922628249e81 * cos(theta) ** 25 - 1.27431926704989e81 * cos(theta) ** 23 + 3.12405789305835e80 * cos(theta) ** 21 - 5.73973891113082e79 * cos(theta) ** 19 + 7.85196283042696e78 * cos(theta) ** 17 - 7.89258643708844e77 * cos(theta) ** 15 + 5.70744886979536e76 * cos(theta) ** 13 - 2.87770531250186e75 * cos(theta) ** 11 + 9.66262467567781e73 * cos(theta) ** 9 - 2.01654775840232e72 * cos(theta) ** 7 + 2.34222914416199e70 * cos(theta) ** 5 - 1.24124490946581e68 * cos(theta) ** 3 + 1.8979279961251e65 * cos(theta) ) * cos(35 * phi) ) # @torch.jit.script def Yl72_m36(theta, phi): return ( 2.54573041092809e-66 * (1.0 - cos(theta) ** 2) ** 18 * ( 5.159709579696e82 * cos(theta) ** 36 - 2.27315876588006e83 * cos(theta) ** 34 + 4.52213499169756e83 * cos(theta) ** 32 - 5.37884641698319e83 * cos(theta) ** 30 + 4.26970472880965e83 * cos(theta) ** 28 - 2.3910346481334e83 * cos(theta) ** 26 + 9.73792306570621e82 * cos(theta) ** 24 - 2.93093431421474e82 * cos(theta) ** 22 + 6.56052157542253e81 * cos(theta) ** 20 - 1.09055039311486e81 * cos(theta) ** 18 + 1.33483368117258e80 * cos(theta) ** 16 - 1.18388796556327e79 * cos(theta) ** 14 + 7.41968353073397e77 * cos(theta) ** 12 - 3.16547584375205e76 * cos(theta) ** 10 + 8.69636220811003e74 * cos(theta) ** 8 - 1.41158343088163e73 * cos(theta) ** 6 + 1.171114572081e71 * cos(theta) ** 4 - 3.72373472839744e68 * cos(theta) ** 2 + 1.8979279961251e65 ) * cos(36 * phi) ) # @torch.jit.script def Yl72_m37(theta, phi): return ( 4.06394583778961e-68 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 1.85749544869056e84 * cos(theta) ** 35 - 7.72873980399219e84 * cos(theta) ** 33 + 1.44708319734322e85 * cos(theta) ** 31 - 1.61365392509496e85 * cos(theta) ** 29 + 1.1955173240667e85 * cos(theta) ** 27 - 6.21669008514685e84 * cos(theta) ** 25 + 2.33710153576949e84 * cos(theta) ** 23 - 6.44805549127242e83 * cos(theta) ** 21 + 1.3121043150845e83 * cos(theta) ** 19 - 1.96299070760674e82 * cos(theta) ** 17 + 2.13573388987613e81 * cos(theta) ** 15 - 1.65744315178857e80 * cos(theta) ** 13 + 8.90362023688077e78 * cos(theta) ** 11 - 3.16547584375205e77 * cos(theta) ** 9 + 6.95708976648802e75 * cos(theta) ** 7 - 8.46950058528977e73 * cos(theta) ** 5 + 4.68445828832399e71 * cos(theta) ** 3 - 7.44746945679489e68 * cos(theta) ) * cos(37 * phi) ) # @torch.jit.script def Yl72_m38(theta, phi): return ( 6.54964176129246e-70 * (1.0 - cos(theta) ** 2) ** 19 * ( 6.50123407041696e85 * cos(theta) ** 34 - 2.55048413531742e86 * cos(theta) ** 32 + 4.48595791176398e86 * cos(theta) ** 30 - 4.67959638277537e86 * cos(theta) ** 28 + 3.22789677498009e86 * cos(theta) ** 26 - 1.55417252128671e86 * cos(theta) ** 24 + 5.37533353226983e85 * cos(theta) ** 22 - 1.35409165316721e85 * cos(theta) ** 20 + 2.49299819866056e84 * cos(theta) ** 18 - 3.33708420293146e83 * cos(theta) ** 16 + 3.2036008348142e82 * cos(theta) ** 14 - 2.15467609732515e81 * cos(theta) ** 12 + 9.79398226056884e79 * cos(theta) ** 10 - 2.84892825937684e78 * cos(theta) ** 8 + 4.86996283654161e76 * cos(theta) ** 6 - 4.23475029264488e74 * cos(theta) ** 4 + 1.4053374864972e72 * cos(theta) ** 2 - 7.44746945679489e68 ) * cos(38 * phi) ) # @torch.jit.script def Yl72_m39(theta, phi): return ( 1.06614579560172e-71 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 2.21041958394177e87 * cos(theta) ** 33 - 8.16154923301576e87 * cos(theta) ** 31 + 1.34578737352919e88 * cos(theta) ** 29 - 1.3102869871771e88 * cos(theta) ** 27 + 8.39253161494824e87 * cos(theta) ** 25 - 3.73001405108811e87 * cos(theta) ** 23 + 1.18257337709936e87 * cos(theta) ** 21 - 2.70818330633442e86 * cos(theta) ** 19 + 4.48739675758901e85 * cos(theta) ** 17 - 5.33933472469033e84 * cos(theta) ** 15 + 4.48504116873988e83 * cos(theta) ** 13 - 2.58561131679017e82 * cos(theta) ** 11 + 9.79398226056884e80 * cos(theta) ** 9 - 2.27914260750148e79 * cos(theta) ** 7 + 2.92197770192497e77 * cos(theta) ** 5 - 1.69390011705795e75 * cos(theta) ** 3 + 2.81067497299439e72 * cos(theta) ) * cos(39 * phi) ) # @torch.jit.script def Yl72_m40(theta, phi): return ( 1.75368108322596e-73 * (1.0 - cos(theta) ** 2) ** 20 * ( 7.29438462700783e88 * cos(theta) ** 32 - 2.53008026223488e89 * cos(theta) ** 30 + 3.90278338323466e89 * cos(theta) ** 28 - 3.53777486537818e89 * cos(theta) ** 26 + 2.09813290373706e89 * cos(theta) ** 24 - 8.57903231750265e88 * cos(theta) ** 22 + 2.48340409190866e88 * cos(theta) ** 20 - 5.14554828203539e87 * cos(theta) ** 18 + 7.62857448790131e86 * cos(theta) ** 16 - 8.0090020870355e85 * cos(theta) ** 14 + 5.83055351936184e84 * cos(theta) ** 12 - 2.84417244846919e83 * cos(theta) ** 10 + 8.81458403451196e81 * cos(theta) ** 8 - 1.59539982525103e80 * cos(theta) ** 6 + 1.46098885096248e78 * cos(theta) ** 4 - 5.08170035117386e75 * cos(theta) ** 2 + 2.81067497299439e72 ) * cos(40 * phi) ) # @torch.jit.script def Yl72_m41(theta, phi): return ( 2.91632826076128e-75 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 2.33420308064251e90 * cos(theta) ** 31 - 7.59024078670465e90 * cos(theta) ** 29 + 1.09277934730571e91 * cos(theta) ** 27 - 9.19821464998327e90 * cos(theta) ** 25 + 5.03551896896895e90 * cos(theta) ** 23 - 1.88738710985058e90 * cos(theta) ** 21 + 4.96680818381732e89 * cos(theta) ** 19 - 9.26198690766371e88 * cos(theta) ** 17 + 1.22057191806421e88 * cos(theta) ** 15 - 1.12126029218497e87 * cos(theta) ** 13 + 6.99666422323421e85 * cos(theta) ** 11 - 2.84417244846919e84 * cos(theta) ** 9 + 7.05166722760957e82 * cos(theta) ** 7 - 9.5723989515062e80 * cos(theta) ** 5 + 5.84395540384994e78 * cos(theta) ** 3 - 1.01634007023477e76 * cos(theta) ) * cos(41 * phi) ) # @torch.jit.script def Yl72_m42(theta, phi): return ( 4.90572426013266e-77 * (1.0 - cos(theta) ** 2) ** 21 * ( 7.23602954999177e91 * cos(theta) ** 30 - 2.20116982814435e92 * cos(theta) ** 28 + 2.9505042377254e92 * cos(theta) ** 26 - 2.29955366249582e92 * cos(theta) ** 24 + 1.15816936286286e92 * cos(theta) ** 22 - 3.96351293068622e91 * cos(theta) ** 20 + 9.43693554925291e90 * cos(theta) ** 18 - 1.57453777430283e90 * cos(theta) ** 16 + 1.83085787709631e89 * cos(theta) ** 14 - 1.45763837984046e88 * cos(theta) ** 12 + 7.69633064555763e86 * cos(theta) ** 10 - 2.55975520362227e85 * cos(theta) ** 8 + 4.9361670593267e83 * cos(theta) ** 6 - 4.7861994757531e81 * cos(theta) ** 4 + 1.75318662115498e79 * cos(theta) ** 2 - 1.01634007023477e76 ) * cos(42 * phi) ) # @torch.jit.script def Yl72_m43(theta, phi): return ( 8.35205962907912e-79 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 2.17080886499753e93 * cos(theta) ** 29 - 6.16327551880418e93 * cos(theta) ** 27 + 7.67131101808605e93 * cos(theta) ** 25 - 5.51892878998997e93 * cos(theta) ** 23 + 2.54797259829829e93 * cos(theta) ** 21 - 7.92702586137245e92 * cos(theta) ** 19 + 1.69864839886552e92 * cos(theta) ** 17 - 2.51926043888453e91 * cos(theta) ** 15 + 2.56320102793484e90 * cos(theta) ** 13 - 1.74916605580855e89 * cos(theta) ** 11 + 7.69633064555763e87 * cos(theta) ** 9 - 2.04780416289782e86 * cos(theta) ** 7 + 2.96170023559602e84 * cos(theta) ** 5 - 1.91447979030124e82 * cos(theta) ** 3 + 3.50637324230996e79 * cos(theta) ) * cos(43 * phi) ) # @torch.jit.script def Yl72_m44(theta, phi): return ( 1.44001028087571e-80 * (1.0 - cos(theta) ** 2) ** 22 * ( 6.29534570849284e94 * cos(theta) ** 28 - 1.66408439007713e95 * cos(theta) ** 26 + 1.91782775452151e95 * cos(theta) ** 24 - 1.26935362169769e95 * cos(theta) ** 22 + 5.3507424564264e94 * cos(theta) ** 20 - 1.50613491366077e94 * cos(theta) ** 18 + 2.88770227807139e93 * cos(theta) ** 16 - 3.77889065832679e92 * cos(theta) ** 14 + 3.33216133631529e91 * cos(theta) ** 12 - 1.92408266138941e90 * cos(theta) ** 10 + 6.92669758100187e88 * cos(theta) ** 8 - 1.43346291402847e87 * cos(theta) ** 6 + 1.48085011779801e85 * cos(theta) ** 4 - 5.74343937090372e82 * cos(theta) ** 2 + 3.50637324230996e79 ) * cos(44 * phi) ) # @torch.jit.script def Yl72_m45(theta, phi): return ( 2.51590157027613e-82 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 1.762696798378e96 * cos(theta) ** 27 - 4.32661941420053e96 * cos(theta) ** 25 + 4.60278661085163e96 * cos(theta) ** 23 - 2.79257796773492e96 * cos(theta) ** 21 + 1.07014849128528e96 * cos(theta) ** 19 - 2.71104284458938e95 * cos(theta) ** 17 + 4.62032364491423e94 * cos(theta) ** 15 - 5.29044692165751e93 * cos(theta) ** 13 + 3.99859360357835e92 * cos(theta) ** 11 - 1.92408266138941e91 * cos(theta) ** 9 + 5.5413580648015e89 * cos(theta) ** 7 - 8.60077748417084e87 * cos(theta) ** 5 + 5.92340047119204e85 * cos(theta) ** 3 - 1.14868787418074e83 * cos(theta) ) * cos(45 * phi) ) # @torch.jit.script def Yl72_m46(theta, phi): return ( 4.45728865959693e-84 * (1.0 - cos(theta) ** 2) ** 23 * ( 4.75928135562059e97 * cos(theta) ** 26 - 1.08165485355013e98 * cos(theta) ** 24 + 1.05864092049588e98 * cos(theta) ** 22 - 5.86441373224334e97 * cos(theta) ** 20 + 2.03328213344203e97 * cos(theta) ** 18 - 4.60877283580194e96 * cos(theta) ** 16 + 6.93048546737134e95 * cos(theta) ** 14 - 6.87758099815477e94 * cos(theta) ** 12 + 4.39845296393619e93 * cos(theta) ** 10 - 1.73167439525047e92 * cos(theta) ** 8 + 3.87895064536105e90 * cos(theta) ** 6 - 4.30038874208542e88 * cos(theta) ** 4 + 1.77702014135761e86 * cos(theta) ** 2 - 1.14868787418074e83 ) * cos(46 * phi) ) # @torch.jit.script def Yl72_m47(theta, phi): return ( 8.01328530746178e-86 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 1.23741315246135e99 * cos(theta) ** 25 - 2.59597164852032e99 * cos(theta) ** 23 + 2.32901002509093e99 * cos(theta) ** 21 - 1.17288274644867e99 * cos(theta) ** 19 + 3.65990784019566e98 * cos(theta) ** 17 - 7.37403653728311e97 * cos(theta) ** 15 + 9.70267965431988e96 * cos(theta) ** 13 - 8.25309719778572e95 * cos(theta) ** 11 + 4.39845296393619e94 * cos(theta) ** 9 - 1.38533951620037e93 * cos(theta) ** 7 + 2.32737038721663e91 * cos(theta) ** 5 - 1.72015549683417e89 * cos(theta) ** 3 + 3.55404028271522e86 * cos(theta) ) * cos(47 * phi) ) # @torch.jit.script def Yl72_m48(theta, phi): return ( 1.46301904087385e-87 * (1.0 - cos(theta) ** 2) ** 24 * ( 3.09353288115338e100 * cos(theta) ** 24 - 5.97073479159674e100 * cos(theta) ** 22 + 4.89092105269094e100 * cos(theta) ** 20 - 2.22847721825247e100 * cos(theta) ** 18 + 6.22184332833262e99 * cos(theta) ** 16 - 1.10610548059247e99 * cos(theta) ** 14 + 1.26134835506158e98 * cos(theta) ** 12 - 9.07840691756429e96 * cos(theta) ** 10 + 3.95860766754257e95 * cos(theta) ** 8 - 9.69737661340262e93 * cos(theta) ** 6 + 1.16368519360831e92 * cos(theta) ** 4 - 5.1604664905025e89 * cos(theta) ** 2 + 3.55404028271522e86 ) * cos(48 * phi) ) # @torch.jit.script def Yl72_m49(theta, phi): return ( 2.71488646524013e-89 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 7.42447891476812e101 * cos(theta) ** 23 - 1.31356165415128e102 * cos(theta) ** 21 + 9.78184210538189e101 * cos(theta) ** 19 - 4.01125899285444e101 * cos(theta) ** 17 + 9.95494932533219e100 * cos(theta) ** 15 - 1.54854767282945e100 * cos(theta) ** 13 + 1.5136180260739e99 * cos(theta) ** 11 - 9.07840691756429e97 * cos(theta) ** 9 + 3.16688613403405e96 * cos(theta) ** 7 - 5.81842596804157e94 * cos(theta) ** 5 + 4.65474077443326e92 * cos(theta) ** 3 - 1.0320932981005e90 * cos(theta) ) * cos(49 * phi) ) # @torch.jit.script def Yl72_m50(theta, phi): return ( 5.12516485110946e-91 * (1.0 - cos(theta) ** 2) ** 25 * ( 1.70763015039667e103 * cos(theta) ** 22 - 2.75847947371769e103 * cos(theta) ** 20 + 1.85855000002256e103 * cos(theta) ** 18 - 6.81914028785255e102 * cos(theta) ** 16 + 1.49324239879983e102 * cos(theta) ** 14 - 2.01311197467829e101 * cos(theta) ** 12 + 1.66497982868129e100 * cos(theta) ** 10 - 8.17056622580786e98 * cos(theta) ** 8 + 2.21682029382384e97 * cos(theta) ** 6 - 2.90921298402079e95 * cos(theta) ** 4 + 1.39642223232998e93 * cos(theta) ** 2 - 1.0320932981005e90 ) * cos(50 * phi) ) # @torch.jit.script def Yl72_m51(theta, phi): return ( 9.85244327058163e-93 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 3.75678633087267e104 * cos(theta) ** 21 - 5.51695894743538e104 * cos(theta) ** 19 + 3.34539000004061e104 * cos(theta) ** 17 - 1.09106244605641e104 * cos(theta) ** 15 + 2.09053935831976e103 * cos(theta) ** 13 - 2.41573436961395e102 * cos(theta) ** 11 + 1.66497982868129e101 * cos(theta) ** 9 - 6.53645298064629e99 * cos(theta) ** 7 + 1.3300921762943e98 * cos(theta) ** 5 - 1.16368519360831e96 * cos(theta) ** 3 + 2.79284446465995e93 * cos(theta) ) * cos(51 * phi) ) # @torch.jit.script def Yl72_m52(theta, phi): return ( 1.93073848323146e-94 * (1.0 - cos(theta) ** 2) ** 26 * ( 7.8892512948326e105 * cos(theta) ** 20 - 1.04822220001272e106 * cos(theta) ** 18 + 5.68716300006903e105 * cos(theta) ** 16 - 1.63659366908461e105 * cos(theta) ** 14 + 2.71770116581569e104 * cos(theta) ** 12 - 2.65730780657534e103 * cos(theta) ** 10 + 1.49848184581316e102 * cos(theta) ** 8 - 4.5755170864524e100 * cos(theta) ** 6 + 6.65046088147151e98 * cos(theta) ** 4 - 3.49105558082494e96 * cos(theta) ** 2 + 2.79284446465995e93 ) * cos(52 * phi) ) # @torch.jit.script def Yl72_m53(theta, phi): return ( 3.86147696646292e-96 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 1.57785025896652e107 * cos(theta) ** 19 - 1.8867999600229e107 * cos(theta) ** 17 + 9.09946080011045e106 * cos(theta) ** 15 - 2.29123113671846e106 * cos(theta) ** 13 + 3.26124139897883e105 * cos(theta) ** 11 - 2.65730780657534e104 * cos(theta) ** 9 + 1.19878547665053e103 * cos(theta) ** 7 - 2.74531025187144e101 * cos(theta) ** 5 + 2.66018435258861e99 * cos(theta) ** 3 - 6.98211116164988e96 * cos(theta) ) * cos(53 * phi) ) # @torch.jit.script def Yl72_m54(theta, phi): return ( 7.89207812217828e-98 * (1.0 - cos(theta) ** 2) ** 27 * ( 2.99791549203639e108 * cos(theta) ** 18 - 3.20755993203893e108 * cos(theta) ** 16 + 1.36491912001657e108 * cos(theta) ** 14 - 2.97860047773399e107 * cos(theta) ** 12 + 3.58736553887671e106 * cos(theta) ** 10 - 2.39157702591781e105 * cos(theta) ** 8 + 8.39149833655371e103 * cos(theta) ** 6 - 1.37265512593572e102 * cos(theta) ** 4 + 7.98055305776582e99 * cos(theta) ** 2 - 6.98211116164988e96 ) * cos(54 * phi) ) # @torch.jit.script def Yl72_m55(theta, phi): return ( 1.65064341078821e-99 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 5.3962478856655e109 * cos(theta) ** 17 - 5.13209589126229e109 * cos(theta) ** 15 + 1.91088676802319e109 * cos(theta) ** 13 - 3.57432057328079e108 * cos(theta) ** 11 + 3.58736553887671e107 * cos(theta) ** 9 - 1.91326162073424e106 * cos(theta) ** 7 + 5.03489900193222e104 * cos(theta) ** 5 - 5.49062050374288e102 * cos(theta) ** 3 + 1.59611061155316e100 * cos(theta) ) * cos(55 * phi) ) # @torch.jit.script def Yl72_m56(theta, phi): return ( 3.53853761906228e-101 * (1.0 - cos(theta) ** 2) ** 28 * ( 9.17362140563135e110 * cos(theta) ** 16 - 7.69814383689344e110 * cos(theta) ** 14 + 2.48415279843015e110 * cos(theta) ** 12 - 3.93175263060887e109 * cos(theta) ** 10 + 3.22862898498904e108 * cos(theta) ** 8 - 1.33928313451397e107 * cos(theta) ** 6 + 2.51744950096611e105 * cos(theta) ** 4 - 1.64718615112286e103 * cos(theta) ** 2 + 1.59611061155316e100 ) * cos(56 * phi) ) # @torch.jit.script def Yl72_m57(theta, phi): return ( 7.78877163442675e-103 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 1.46777942490102e112 * cos(theta) ** 15 - 1.07774013716508e112 * cos(theta) ** 13 + 2.98098335811618e111 * cos(theta) ** 11 - 3.93175263060887e110 * cos(theta) ** 9 + 2.58290318799123e109 * cos(theta) ** 7 - 8.03569880708383e107 * cos(theta) ** 5 + 1.00697980038644e106 * cos(theta) ** 3 - 3.29437230224573e103 * cos(theta) ) * cos(57 * phi) ) # @torch.jit.script def Yl72_m58(theta, phi): return ( 1.76380944917166e-104 * (1.0 - cos(theta) ** 2) ** 29 * ( 2.20166913735152e113 * cos(theta) ** 14 - 1.40106217831461e113 * cos(theta) ** 12 + 3.2790816939278e112 * cos(theta) ** 10 - 3.53857736754799e111 * cos(theta) ** 8 + 1.80803223159386e110 * cos(theta) ** 6 - 4.01784940354191e108 * cos(theta) ** 4 + 3.02093940115933e106 * cos(theta) ** 2 - 3.29437230224573e103 ) * cos(58 * phi) ) # @torch.jit.script def Yl72_m59(theta, phi): return ( 4.11862260923638e-106 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 3.08233679229213e114 * cos(theta) ** 13 - 1.68127461397753e114 * cos(theta) ** 11 + 3.2790816939278e113 * cos(theta) ** 9 - 2.83086189403839e112 * cos(theta) ** 7 + 1.08481933895632e111 * cos(theta) ** 5 - 1.60713976141677e109 * cos(theta) ** 3 + 6.04187880231867e106 * cos(theta) ) * cos(59 * phi) ) # @torch.jit.script def Yl72_m60(theta, phi): return ( 9.94244866882035e-108 * (1.0 - cos(theta) ** 2) ** 30 * ( 4.00703782997977e115 * cos(theta) ** 12 - 1.84940207537528e115 * cos(theta) ** 10 + 2.95117352453502e114 * cos(theta) ** 8 - 1.98160332582687e113 * cos(theta) ** 6 + 5.42409669478158e111 * cos(theta) ** 4 - 4.8214192842503e109 * cos(theta) ** 2 + 6.04187880231867e106 ) * cos(60 * phi) ) # @torch.jit.script def Yl72_m61(theta, phi): return ( 2.488725020231e-109 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 4.80844539597573e116 * cos(theta) ** 11 - 1.84940207537528e116 * cos(theta) ** 9 + 2.36093881962802e115 * cos(theta) ** 7 - 1.18896199549612e114 * cos(theta) ** 5 + 2.16963867791263e112 * cos(theta) ** 3 - 9.64283856850059e109 * cos(theta) ) * cos(61 * phi) ) # @torch.jit.script def Yl72_m62(theta, phi): return ( 6.48228575985983e-111 * (1.0 - cos(theta) ** 2) ** 31 * ( 5.2892899355733e117 * cos(theta) ** 10 - 1.66446186783775e117 * cos(theta) ** 8 + 1.65265717373961e116 * cos(theta) ** 6 - 5.94480997748062e114 * cos(theta) ** 4 + 6.5089160337379e112 * cos(theta) ** 2 - 9.64283856850059e109 ) * cos(62 * phi) ) # @torch.jit.script def Yl72_m63(theta, phi): return ( 1.76425471984068e-112 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 5.2892899355733e118 * cos(theta) ** 9 - 1.3315694942702e118 * cos(theta) ** 7 + 9.91594304243767e116 * cos(theta) ** 5 - 2.37792399099225e115 * cos(theta) ** 3 + 1.30178320674758e113 * cos(theta) ) * cos(63 * phi) ) # @torch.jit.script def Yl72_m64(theta, phi): return ( 5.0427864713945e-114 * (1.0 - cos(theta) ** 2) ** 32 * ( 4.76036094201597e119 * cos(theta) ** 8 - 9.32098645989141e118 * cos(theta) ** 6 + 4.95797152121883e117 * cos(theta) ** 4 - 7.13377197297674e115 * cos(theta) ** 2 + 1.30178320674758e113 ) * cos(64 * phi) ) # @torch.jit.script def Yl72_m65(theta, phi): return ( 1.52322935965797e-115 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 3.80828875361278e120 * cos(theta) ** 7 - 5.59259187593485e119 * cos(theta) ** 5 + 1.98318860848753e118 * cos(theta) ** 3 - 1.42675439459535e116 * cos(theta) ) * cos(65 * phi) ) # @torch.jit.script def Yl72_m66(theta, phi): return ( 4.90091013025169e-117 * (1.0 - cos(theta) ** 2) ** 33 * ( 2.66580212752894e121 * cos(theta) ** 6 - 2.79629593796742e120 * cos(theta) ** 4 + 5.9495658254626e118 * cos(theta) ** 2 - 1.42675439459535e116 ) * cos(66 * phi) ) # @torch.jit.script def Yl72_m67(theta, phi): return ( 1.69704638693964e-118 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 1.59948127651737e122 * cos(theta) ** 5 - 1.11851837518697e121 * cos(theta) ** 3 + 1.18991316509252e119 * cos(theta) ) * cos(67 * phi) ) # @torch.jit.script def Yl72_m68(theta, phi): return ( 6.41423243311855e-120 * (1.0 - cos(theta) ** 2) ** 34 * ( 7.99740638258683e122 * cos(theta) ** 4 - 3.35555512556091e121 * cos(theta) ** 2 + 1.18991316509252e119 ) * cos(68 * phi) ) # @torch.jit.script def Yl72_m69(theta, phi): return ( 2.70087908285898e-121 * (1.0 - cos(theta) ** 2) ** 34.5 * (3.19896255303473e123 * cos(theta) ** 3 - 6.71111025112181e121 * cos(theta)) * cos(69 * phi) ) # @torch.jit.script def Yl72_m70(theta, phi): return ( 1.30858019143794e-122 * (1.0 - cos(theta) ** 2) ** 35 * (9.59688765910419e123 * cos(theta) ** 2 - 6.71111025112181e121) * cos(70 * phi) ) # @torch.jit.script def Yl72_m71(theta, phi): return ( 14.8517534838492 * (1.0 - cos(theta) ** 2) ** 35.5 * cos(71 * phi) * cos(theta) ) # @torch.jit.script def Yl72_m72(theta, phi): return 1.2376461236541 * (1.0 - cos(theta) ** 2) ** 36 * cos(72 * phi) # @torch.jit.script def Yl73_m_minus_73(theta, phi): return 1.24187740479589 * (1.0 - cos(theta) ** 2) ** 36.5 * sin(73 * phi) # @torch.jit.script def Yl73_m_minus_72(theta, phi): return 15.005661775717 * (1.0 - cos(theta) ** 2) ** 36 * sin(72 * phi) * cos(theta) # @torch.jit.script def Yl73_m_minus_71(theta, phi): return ( 9.18175591389851e-125 * (1.0 - cos(theta) ** 2) ** 35.5 * (1.39154871057011e126 * cos(theta) ** 2 - 9.59688765910419e123) * sin(71 * phi) ) # @torch.jit.script def Yl73_m_minus_70(theta, phi): return ( 1.90839212946819e-123 * (1.0 - cos(theta) ** 2) ** 35 * (4.63849570190036e125 * cos(theta) ** 3 - 9.59688765910419e123 * cos(theta)) * sin(70 * phi) ) # @torch.jit.script def Yl73_m_minus_69(theta, phi): return ( 4.56421013685262e-122 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 1.15962392547509e125 * cos(theta) ** 4 - 4.7984438295521e123 * cos(theta) ** 2 + 1.67777756278045e121 ) * sin(69 * phi) ) # @torch.jit.script def Yl73_m_minus_68(theta, phi): return ( 1.21617145432201e-120 * (1.0 - cos(theta) ** 2) ** 34 * ( 2.31924785095018e124 * cos(theta) ** 5 - 1.59948127651737e123 * cos(theta) ** 3 + 1.67777756278045e121 * cos(theta) ) * sin(68 * phi) ) # @torch.jit.script def Yl73_m_minus_67(theta, phi): return ( 3.53736591736893e-119 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 3.86541308491697e123 * cos(theta) ** 6 - 3.99870319129341e122 * cos(theta) ** 4 + 8.38888781390227e120 * cos(theta) ** 2 - 1.98318860848753e118 ) * sin(67 * phi) ) # @torch.jit.script def Yl73_m_minus_66(theta, phi): return ( 1.1073706913539e-117 * (1.0 - cos(theta) ** 2) ** 33 * ( 5.52201869273852e122 * cos(theta) ** 7 - 7.99740638258683e121 * cos(theta) ** 5 + 2.79629593796742e120 * cos(theta) ** 3 - 1.98318860848753e118 * cos(theta) ) * sin(66 * phi) ) # @torch.jit.script def Yl73_m_minus_65(theta, phi): return ( 3.69271183692067e-116 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 6.90252336592316e121 * cos(theta) ** 8 - 1.33290106376447e121 * cos(theta) ** 6 + 6.99073984491856e119 * cos(theta) ** 4 - 9.91594304243767e117 * cos(theta) ** 2 + 1.78344299324419e115 ) * sin(65 * phi) ) # @torch.jit.script def Yl73_m_minus_64(theta, phi): return ( 1.30138625789899e-114 * (1.0 - cos(theta) ** 2) ** 32 * ( 7.66947040658128e120 * cos(theta) ** 9 - 1.90414437680639e120 * cos(theta) ** 7 + 1.39814796898371e119 * cos(theta) ** 5 - 3.30531434747922e117 * cos(theta) ** 3 + 1.78344299324419e115 * cos(theta) ) * sin(64 * phi) ) # @torch.jit.script def Yl73_m_minus_63(theta, phi): return ( 4.81688746326942e-113 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 7.66947040658128e119 * cos(theta) ** 10 - 2.38018047100798e119 * cos(theta) ** 8 + 2.33024661497285e118 * cos(theta) ** 6 - 8.26328586869806e116 * cos(theta) ** 4 + 8.91721496622093e114 * cos(theta) ** 2 - 1.30178320674758e112 ) * sin(63 * phi) ) # @torch.jit.script def Yl73_m_minus_62(theta, phi): return ( 1.86308340208827e-111 * (1.0 - cos(theta) ** 2) ** 31 * ( 6.9722458241648e118 * cos(theta) ** 11 - 2.64464496778665e118 * cos(theta) ** 9 + 3.3289237356755e117 * cos(theta) ** 7 - 1.65265717373961e116 * cos(theta) ** 5 + 2.97240498874031e114 * cos(theta) ** 3 - 1.30178320674758e112 * cos(theta) ) * sin(62 * phi) ) # @torch.jit.script def Yl73_m_minus_61(theta, phi): return ( 7.49876604267769e-110 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 5.81020485347067e117 * cos(theta) ** 12 - 2.64464496778665e117 * cos(theta) ** 10 + 4.16115466959438e116 * cos(theta) ** 8 - 2.75442862289935e115 * cos(theta) ** 6 + 7.43101247185077e113 * cos(theta) ** 4 - 6.5089160337379e111 * cos(theta) ** 2 + 8.03569880708383e108 ) * sin(61 * phi) ) # @torch.jit.script def Yl73_m_minus_60(theta, phi): return ( 3.12978049306378e-108 * (1.0 - cos(theta) ** 2) ** 30 * ( 4.46938834882359e116 * cos(theta) ** 13 - 2.40422269798786e116 * cos(theta) ** 11 + 4.6235051884382e115 * cos(theta) ** 9 - 3.93489803271336e114 * cos(theta) ** 7 + 1.48620249437015e113 * cos(theta) ** 5 - 2.16963867791263e111 * cos(theta) ** 3 + 8.03569880708383e108 * cos(theta) ) * sin(60 * phi) ) # @torch.jit.script def Yl73_m_minus_59(theta, phi): return ( 1.3505283888363e-106 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 3.19242024915971e115 * cos(theta) ** 14 - 2.00351891498989e115 * cos(theta) ** 12 + 4.6235051884382e114 * cos(theta) ** 10 - 4.9186225408917e113 * cos(theta) ** 8 + 2.47700415728359e112 * cos(theta) ** 6 - 5.42409669478158e110 * cos(theta) ** 4 + 4.01784940354191e108 * cos(theta) ** 2 - 4.31562771594191e105 ) * sin(59 * phi) ) # @torch.jit.script def Yl73_m_minus_58(theta, phi): return ( 6.00947195644053e-105 * (1.0 - cos(theta) ** 2) ** 29 * ( 2.12828016610647e114 * cos(theta) ** 15 - 1.54116839614607e114 * cos(theta) ** 13 + 4.20318653494382e113 * cos(theta) ** 11 - 5.46513615654633e112 * cos(theta) ** 9 + 3.53857736754799e111 * cos(theta) ** 7 - 1.08481933895632e110 * cos(theta) ** 5 + 1.33928313451397e108 * cos(theta) ** 3 - 4.31562771594191e105 * cos(theta) ) * sin(58 * phi) ) # @torch.jit.script def Yl73_m_minus_57(theta, phi): return ( 2.75126201400801e-103 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 1.33017510381655e113 * cos(theta) ** 16 - 1.10083456867576e113 * cos(theta) ** 14 + 3.50265544578651e112 * cos(theta) ** 12 - 5.46513615654633e111 * cos(theta) ** 10 + 4.42322170943498e110 * cos(theta) ** 8 - 1.80803223159386e109 * cos(theta) ** 6 + 3.34820783628493e107 * cos(theta) ** 4 - 2.15781385797095e105 * cos(theta) ** 2 + 2.05898268890358e102 ) * sin(57 * phi) ) # @torch.jit.script def Yl73_m_minus_56(theta, phi): return ( 1.29338580091513e-101 * (1.0 - cos(theta) ** 2) ** 28 * ( 7.82455943421497e111 * cos(theta) ** 17 - 7.33889712450508e111 * cos(theta) ** 15 + 2.6943503429127e111 * cos(theta) ** 13 - 4.9683055968603e110 * cos(theta) ** 11 + 4.91469078826109e109 * cos(theta) ** 9 - 2.58290318799123e108 * cos(theta) ** 7 + 6.69641567256986e106 * cos(theta) ** 5 - 7.19271285990318e104 * cos(theta) ** 3 + 2.05898268890358e102 * cos(theta) ) * sin(56 * phi) ) # @torch.jit.script def Yl73_m_minus_55(theta, phi): return ( 6.23245564707892e-100 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 4.34697746345276e110 * cos(theta) ** 18 - 4.58681070281567e110 * cos(theta) ** 16 + 1.92453595922336e110 * cos(theta) ** 14 - 4.14025466405025e109 * cos(theta) ** 12 + 4.91469078826109e108 * cos(theta) ** 10 - 3.22862898498904e107 * cos(theta) ** 8 + 1.11606927876164e106 * cos(theta) ** 6 - 1.79817821497579e104 * cos(theta) ** 4 + 1.02949134445179e102 * cos(theta) ** 2 - 8.86728117529535e98 ) * sin(55 * phi) ) # @torch.jit.script def Yl73_m_minus_54(theta, phi): return ( 3.07355494909891e-98 * (1.0 - cos(theta) ** 2) ** 27 * ( 2.28788287550145e109 * cos(theta) ** 19 - 2.69812394283275e109 * cos(theta) ** 17 + 1.28302397281557e109 * cos(theta) ** 15 - 3.18481128003866e108 * cos(theta) ** 13 + 4.46790071660099e107 * cos(theta) ** 11 - 3.58736553887671e106 * cos(theta) ** 9 + 1.5943846839452e105 * cos(theta) ** 7 - 3.59635642995159e103 * cos(theta) ** 5 + 3.4316378148393e101 * cos(theta) ** 3 - 8.86728117529535e98 * cos(theta) ) * sin(54 * phi) ) # @torch.jit.script def Yl73_m_minus_53(theta, phi): return ( 1.54902290699109e-96 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 1.14394143775073e108 * cos(theta) ** 20 - 1.49895774601819e108 * cos(theta) ** 18 + 8.01889983009733e107 * cos(theta) ** 16 - 2.27486520002761e107 * cos(theta) ** 14 + 3.72325059716749e106 * cos(theta) ** 12 - 3.58736553887671e105 * cos(theta) ** 10 + 1.99298085493151e104 * cos(theta) ** 8 - 5.99392738325265e102 * cos(theta) ** 6 + 8.57909453709825e100 * cos(theta) ** 4 - 4.43364058764768e98 * cos(theta) ** 2 + 3.49105558082494e95 ) * sin(53 * phi) ) # @torch.jit.script def Yl73_m_minus_52(theta, phi): return ( 7.96806301622279e-95 * (1.0 - cos(theta) ** 2) ** 26 * ( 5.44734017976537e106 * cos(theta) ** 21 - 7.8892512948326e106 * cos(theta) ** 19 + 4.71699990005725e106 * cos(theta) ** 17 - 1.51657680001841e106 * cos(theta) ** 15 + 2.86403892089807e105 * cos(theta) ** 13 - 3.26124139897883e104 * cos(theta) ** 11 + 2.21442317214612e103 * cos(theta) ** 9 - 8.56275340464664e101 * cos(theta) ** 7 + 1.71581890741965e100 * cos(theta) ** 5 - 1.47788019588256e98 * cos(theta) ** 3 + 3.49105558082494e95 * cos(theta) ) * sin(52 * phi) ) # @torch.jit.script def Yl73_m_minus_51(theta, phi): return ( 4.1784874970959e-93 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 2.47606371807517e105 * cos(theta) ** 22 - 3.9446256474163e105 * cos(theta) ** 20 + 2.62055550003181e105 * cos(theta) ** 18 - 9.47860500011505e104 * cos(theta) ** 16 + 2.04574208635577e104 * cos(theta) ** 14 - 2.71770116581569e103 * cos(theta) ** 12 + 2.21442317214612e102 * cos(theta) ** 10 - 1.07034417558083e101 * cos(theta) ** 8 + 2.85969817903275e99 * cos(theta) ** 6 - 3.6947004897064e97 * cos(theta) ** 4 + 1.74552779041247e95 * cos(theta) ** 2 - 1.26947475666362e92 ) * sin(51 * phi) ) # @torch.jit.script def Yl73_m_minus_50(theta, phi): return ( 2.23148446423405e-91 * (1.0 - cos(theta) ** 2) ** 25 * ( 1.07654944264138e104 * cos(theta) ** 23 - 1.87839316543633e104 * cos(theta) ** 21 + 1.37923973685885e104 * cos(theta) ** 19 - 5.57565000006768e103 * cos(theta) ** 17 + 1.36382805757051e103 * cos(theta) ** 15 - 2.09053935831976e102 * cos(theta) ** 13 + 2.01311197467829e101 * cos(theta) ** 11 - 1.18927130620092e100 * cos(theta) ** 9 + 4.08528311290393e98 * cos(theta) ** 7 - 7.38940097941279e96 * cos(theta) ** 5 + 5.81842596804157e94 * cos(theta) ** 3 - 1.26947475666362e92 * cos(theta) ) * sin(50 * phi) ) # @torch.jit.script def Yl73_m_minus_49(theta, phi): return ( 1.21241707520457e-89 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 4.4856226776724e102 * cos(theta) ** 24 - 8.53815075198333e102 * cos(theta) ** 22 + 6.89619868429423e102 * cos(theta) ** 20 - 3.09758333337093e102 * cos(theta) ** 18 + 8.52392535981569e101 * cos(theta) ** 16 - 1.49324239879983e101 * cos(theta) ** 14 + 1.67759331223191e100 * cos(theta) ** 12 - 1.18927130620092e99 * cos(theta) ** 10 + 5.10660389112991e97 * cos(theta) ** 8 - 1.23156682990213e96 * cos(theta) ** 6 + 1.45460649201039e94 * cos(theta) ** 4 - 6.34737378331808e91 * cos(theta) ** 2 + 4.30038874208542e88 ) * sin(49 * phi) ) # @torch.jit.script def Yl73_m_minus_48(theta, phi): return ( 6.69579214951838e-88 * (1.0 - cos(theta) ** 2) ** 24 * ( 1.79424907106896e101 * cos(theta) ** 25 - 3.71223945738406e101 * cos(theta) ** 23 + 3.2839041353782e101 * cos(theta) ** 21 - 1.63030701756365e101 * cos(theta) ** 19 + 5.01407374106805e100 * cos(theta) ** 17 - 9.95494932533219e99 * cos(theta) ** 15 + 1.29045639402454e99 * cos(theta) ** 13 - 1.08115573290993e98 * cos(theta) ** 11 + 5.67400432347768e96 * cos(theta) ** 9 - 1.75938118557447e95 * cos(theta) ** 7 + 2.90921298402078e93 * cos(theta) ** 5 - 2.11579126110603e91 * cos(theta) ** 3 + 4.30038874208542e88 * cos(theta) ) * sin(48 * phi) ) # @torch.jit.script def Yl73_m_minus_47(theta, phi): return ( 3.75561723122912e-86 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 6.90095796564985e99 * cos(theta) ** 26 - 1.54676644057669e100 * cos(theta) ** 24 + 1.49268369789918e100 * cos(theta) ** 22 - 8.15153508781824e99 * cos(theta) ** 20 + 2.78559652281559e99 * cos(theta) ** 18 - 6.22184332833262e98 * cos(theta) ** 16 + 9.21754567160388e97 * cos(theta) ** 14 - 9.00963110758274e96 * cos(theta) ** 12 + 5.67400432347768e95 * cos(theta) ** 10 - 2.19922648196809e94 * cos(theta) ** 8 + 4.84868830670131e92 * cos(theta) ** 6 - 5.28947815276506e90 * cos(theta) ** 4 + 2.15019437104271e88 * cos(theta) ** 2 - 1.36693857027509e85 ) * sin(47 * phi) ) # @torch.jit.script def Yl73_m_minus_46(theta, phi): return ( 2.13773480468267e-84 * (1.0 - cos(theta) ** 2) ** 23 * ( 2.55591035764809e98 * cos(theta) ** 27 - 6.18706576230676e98 * cos(theta) ** 25 + 6.4899291213008e98 * cos(theta) ** 23 - 3.88168337515154e98 * cos(theta) ** 21 + 1.46610343306083e98 * cos(theta) ** 19 - 3.65990784019566e97 * cos(theta) ** 17 + 6.14503044773592e96 * cos(theta) ** 15 - 6.93048546737134e95 * cos(theta) ** 13 + 5.15818574861607e94 * cos(theta) ** 11 - 2.44358497996455e93 * cos(theta) ** 9 + 6.92669758100187e91 * cos(theta) ** 7 - 1.05789563055301e90 * cos(theta) ** 5 + 7.16731457014236e87 * cos(theta) ** 3 - 1.36693857027509e85 * cos(theta) ) * sin(46 * phi) ) # @torch.jit.script def Yl73_m_minus_45(theta, phi): return ( 1.23397489589721e-82 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 9.12825127731462e96 * cos(theta) ** 28 - 2.37964067781029e97 * cos(theta) ** 26 + 2.70413713387533e97 * cos(theta) ** 24 - 1.76440153415979e97 * cos(theta) ** 22 + 7.33051716530417e96 * cos(theta) ** 20 - 2.03328213344203e96 * cos(theta) ** 18 + 3.84064402983495e95 * cos(theta) ** 16 - 4.9503467624081e94 * cos(theta) ** 14 + 4.29848812384673e93 * cos(theta) ** 12 - 2.44358497996455e92 * cos(theta) ** 10 + 8.65837197625234e90 * cos(theta) ** 8 - 1.76315938425502e89 * cos(theta) ** 6 + 1.79182864253559e87 * cos(theta) ** 4 - 6.83469285137543e84 * cos(theta) ** 2 + 4.10245669350266e81 ) * sin(45 * phi) ) # @torch.jit.script def Yl73_m_minus_44(theta, phi): return ( 7.21848946633358e-81 * (1.0 - cos(theta) ** 2) ** 22 * ( 3.14767285424642e95 * cos(theta) ** 29 - 8.81348399188998e95 * cos(theta) ** 27 + 1.08165485355013e96 * cos(theta) ** 25 - 7.67131101808605e95 * cos(theta) ** 23 + 3.49072245966865e95 * cos(theta) ** 21 - 1.07014849128528e95 * cos(theta) ** 19 + 2.25920237049115e94 * cos(theta) ** 17 - 3.30023117493873e93 * cos(theta) ** 15 + 3.30652932603595e92 * cos(theta) ** 13 - 2.22144089087686e91 * cos(theta) ** 11 + 9.62041330694704e89 * cos(theta) ** 9 - 2.51879912036432e88 * cos(theta) ** 7 + 3.58365728507118e86 * cos(theta) ** 5 - 2.27823095045848e84 * cos(theta) ** 3 + 4.10245669350266e81 * cos(theta) ) * sin(44 * phi) ) # @torch.jit.script def Yl73_m_minus_43(theta, phi): return ( 4.27661234525935e-79 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 1.04922428474881e94 * cos(theta) ** 30 - 3.14767285424642e94 * cos(theta) ** 28 + 4.16021097519282e94 * cos(theta) ** 26 - 3.19637959086919e94 * cos(theta) ** 24 + 1.58669202712212e94 * cos(theta) ** 22 - 5.3507424564264e93 * cos(theta) ** 20 + 1.25511242805064e93 * cos(theta) ** 18 - 2.06264448433671e92 * cos(theta) ** 16 + 2.36180666145425e91 * cos(theta) ** 14 - 1.85120074239739e90 * cos(theta) ** 12 + 9.62041330694704e88 * cos(theta) ** 10 - 3.14849890045539e87 * cos(theta) ** 8 + 5.9727621417853e85 * cos(theta) ** 6 - 5.69557737614619e83 * cos(theta) ** 4 + 2.05122834675133e81 * cos(theta) ** 2 - 1.16879108076999e78 ) * sin(43 * phi) ) # @torch.jit.script def Yl73_m_minus_42(theta, phi): return ( 2.56454147350442e-77 * (1.0 - cos(theta) ** 2) ** 21 * ( 3.38459446693163e92 * cos(theta) ** 31 - 1.08540443249877e93 * cos(theta) ** 29 + 1.54081887970104e93 * cos(theta) ** 27 - 1.27855183634768e93 * cos(theta) ** 25 + 6.89866098748746e92 * cos(theta) ** 23 - 2.54797259829829e92 * cos(theta) ** 21 + 6.60585488447704e91 * cos(theta) ** 19 - 1.21332028490395e91 * cos(theta) ** 17 + 1.57453777430283e90 * cos(theta) ** 15 - 1.42400057107491e89 * cos(theta) ** 13 + 8.74583027904276e87 * cos(theta) ** 11 - 3.49833211161711e86 * cos(theta) ** 9 + 8.53251734540758e84 * cos(theta) ** 7 - 1.13911547522924e83 * cos(theta) ** 5 + 6.83742782250443e80 * cos(theta) ** 3 - 1.16879108076999e78 * cos(theta) ) * sin(42 * phi) ) # @torch.jit.script def Yl73_m_minus_41(theta, phi): return ( 1.55572788517508e-75 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 1.05768577091614e91 * cos(theta) ** 32 - 3.61801477499588e91 * cos(theta) ** 30 + 5.50292457036087e91 * cos(theta) ** 28 - 4.91750706287567e91 * cos(theta) ** 26 + 2.87444207811977e91 * cos(theta) ** 24 - 1.15816936286286e91 * cos(theta) ** 22 + 3.30292744223852e90 * cos(theta) ** 20 - 6.74066824946637e89 * cos(theta) ** 18 + 9.84086108939269e88 * cos(theta) ** 16 - 1.01714326505351e88 * cos(theta) ** 14 + 7.2881918992023e86 * cos(theta) ** 12 - 3.49833211161711e85 * cos(theta) ** 10 + 1.06656466817595e84 * cos(theta) ** 8 - 1.89852579204873e82 * cos(theta) ** 6 + 1.70935695562611e80 * cos(theta) ** 4 - 5.84395540384994e77 * cos(theta) ** 2 + 3.17606271948366e74 ) * sin(41 * phi) ) # @torch.jit.script def Yl73_m_minus_40(theta, phi): return ( 9.54207952634015e-74 * (1.0 - cos(theta) ** 2) ** 20 * ( 3.20510839671556e89 * cos(theta) ** 33 - 1.16710154032125e90 * cos(theta) ** 31 + 1.89756019667616e90 * cos(theta) ** 29 - 1.82129891217618e90 * cos(theta) ** 27 + 1.14977683124791e90 * cos(theta) ** 25 - 5.03551896896895e89 * cos(theta) ** 23 + 1.57282259154215e89 * cos(theta) ** 21 - 3.54772013129809e88 * cos(theta) ** 19 + 5.78874181728982e87 * cos(theta) ** 17 - 6.78095510035672e86 * cos(theta) ** 15 + 5.60630146092485e85 * cos(theta) ** 13 - 3.18030191965191e84 * cos(theta) ** 11 + 1.18507185352883e83 * cos(theta) ** 9 - 2.71217970292676e81 * cos(theta) ** 7 + 3.41871391125221e79 * cos(theta) ** 5 - 1.94798513461665e77 * cos(theta) ** 3 + 3.17606271948366e74 * cos(theta) ) * sin(40 * phi) ) # @torch.jit.script def Yl73_m_minus_39(theta, phi): return ( 5.91455006100594e-72 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 9.42678940210459e87 * cos(theta) ** 34 - 3.64719231350392e88 * cos(theta) ** 32 + 6.32520065558721e88 * cos(theta) ** 30 - 6.50463897205777e88 * cos(theta) ** 28 + 4.42221858172273e88 * cos(theta) ** 26 - 2.09813290373706e88 * cos(theta) ** 24 + 7.14919359791887e87 * cos(theta) ** 22 - 1.77386006564904e87 * cos(theta) ** 20 + 3.21596767627212e86 * cos(theta) ** 18 - 4.23809693772295e85 * cos(theta) ** 16 + 4.00450104351775e84 * cos(theta) ** 14 - 2.65025159970993e83 * cos(theta) ** 12 + 1.18507185352883e82 * cos(theta) ** 10 - 3.39022462865845e80 * cos(theta) ** 8 + 5.69785651875369e78 * cos(theta) ** 6 - 4.86996283654161e76 * cos(theta) ** 4 + 1.58803135974183e74 * cos(theta) ** 2 - 8.26669109704233e70 ) * sin(39 * phi) ) # @torch.jit.script def Yl73_m_minus_38(theta, phi): return ( 3.70309407796574e-70 * (1.0 - cos(theta) ** 2) ** 19 * ( 2.69336840060131e86 * cos(theta) ** 35 - 1.10520979197088e87 * cos(theta) ** 33 + 2.04038730825394e87 * cos(theta) ** 31 - 2.24297895588199e87 * cos(theta) ** 29 + 1.63785873397138e87 * cos(theta) ** 27 - 8.39253161494824e86 * cos(theta) ** 25 + 3.10834504257342e86 * cos(theta) ** 23 - 8.44695269356688e85 * cos(theta) ** 21 + 1.69261456645901e85 * cos(theta) ** 19 - 2.49299819866056e84 * cos(theta) ** 17 + 2.66966736234517e83 * cos(theta) ** 15 - 2.03865507669994e82 * cos(theta) ** 13 + 1.07733804866257e81 * cos(theta) ** 11 - 3.76691625406494e79 * cos(theta) ** 9 + 8.13979502679098e77 * cos(theta) ** 7 - 9.73992567308323e75 * cos(theta) ** 5 + 5.2934378658061e73 * cos(theta) ** 3 - 8.26669109704233e70 * cos(theta) ) * sin(38 * phi) ) # @torch.jit.script def Yl73_m_minus_37(theta, phi): return ( 2.34087102118119e-68 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 7.4815788905592e84 * cos(theta) ** 36 - 3.25061703520848e85 * cos(theta) ** 34 + 6.37621033829356e85 * cos(theta) ** 32 - 7.47659651960663e85 * cos(theta) ** 30 + 5.84949547846922e85 * cos(theta) ** 28 - 3.22789677498009e85 * cos(theta) ** 26 + 1.29514376773893e85 * cos(theta) ** 24 - 3.83952395162131e84 * cos(theta) ** 22 + 8.46307283229506e83 * cos(theta) ** 20 - 1.38499899925587e83 * cos(theta) ** 18 + 1.66854210146573e82 * cos(theta) ** 16 - 1.45618219764282e81 * cos(theta) ** 14 + 8.9778170721881e79 * cos(theta) ** 12 - 3.76691625406494e78 * cos(theta) ** 10 + 1.01747437834887e77 * cos(theta) ** 8 - 1.62332094551387e75 * cos(theta) ** 6 + 1.32335946645153e73 * cos(theta) ** 4 - 4.13334554852116e70 * cos(theta) ** 2 + 2.06874151577636e67 ) * sin(37 * phi) ) # @torch.jit.script def Yl73_m_minus_36(theta, phi): return ( 1.49339498964172e-66 * (1.0 - cos(theta) ** 2) ** 18 * ( 2.02204834879978e83 * cos(theta) ** 37 - 9.2874772434528e83 * cos(theta) ** 35 + 1.93218495099805e84 * cos(theta) ** 33 - 2.41180532890537e84 * cos(theta) ** 31 + 2.0170674063687e84 * cos(theta) ** 29 - 1.1955173240667e84 * cos(theta) ** 27 + 5.18057507095571e83 * cos(theta) ** 25 - 1.66935823983535e83 * cos(theta) ** 23 + 4.03003468204527e82 * cos(theta) ** 21 - 7.28946841713614e81 * cos(theta) ** 19 + 9.8149535380337e80 * cos(theta) ** 17 - 9.70788131761879e79 * cos(theta) ** 15 + 6.90601313245239e78 * cos(theta) ** 13 - 3.42446932187722e77 * cos(theta) ** 11 + 1.1305270870543e76 * cos(theta) ** 9 - 2.31902992216267e74 * cos(theta) ** 7 + 2.64671893290305e72 * cos(theta) ** 5 - 1.37778184950705e70 * cos(theta) ** 3 + 2.06874151577636e67 * cos(theta) ) * sin(36 * phi) ) # @torch.jit.script def Yl73_m_minus_35(theta, phi): return ( 9.61124697469081e-65 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 5.32117986526259e81 * cos(theta) ** 38 - 2.579854789848e82 * cos(theta) ** 36 + 5.68289691470014e82 * cos(theta) ** 34 - 7.53689165282927e82 * cos(theta) ** 32 + 6.72355802122899e82 * cos(theta) ** 30 - 4.26970472880965e82 * cos(theta) ** 28 + 1.9925288734445e82 * cos(theta) ** 26 - 6.9556593326473e81 * cos(theta) ** 24 + 1.83183394638421e81 * cos(theta) ** 22 - 3.64473420856807e80 * cos(theta) ** 20 + 5.45275196557428e79 * cos(theta) ** 18 - 6.06742582351174e78 * cos(theta) ** 16 + 4.93286652318028e77 * cos(theta) ** 14 - 2.85372443489768e76 * cos(theta) ** 12 + 1.1305270870543e75 * cos(theta) ** 10 - 2.89878740270334e73 * cos(theta) ** 8 + 4.41119822150509e71 * cos(theta) ** 6 - 3.44445462376764e69 * cos(theta) ** 4 + 1.03437075788818e67 * cos(theta) ** 2 - 4.99454735822395e63 ) * sin(35 * phi) ) # @torch.jit.script def Yl73_m_minus_34(theta, phi): return ( 6.23769188191126e-63 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.36440509365707e80 * cos(theta) ** 39 - 6.97258051310271e80 * cos(theta) ** 37 + 1.62368483277147e81 * cos(theta) ** 35 - 2.28390656146341e81 * cos(theta) ** 33 + 2.16888968426741e81 * cos(theta) ** 31 - 1.4723119754516e81 * cos(theta) ** 29 + 7.37973656831297e80 * cos(theta) ** 27 - 2.78226373305892e80 * cos(theta) ** 25 + 7.96449541906179e79 * cos(theta) ** 23 - 1.73558771836575e79 * cos(theta) ** 21 + 2.86986945556541e78 * cos(theta) ** 19 - 3.56907401383044e77 * cos(theta) ** 17 + 3.28857768212018e76 * cos(theta) ** 15 - 2.19517264222899e75 * cos(theta) ** 13 + 1.02775189732209e74 * cos(theta) ** 11 - 3.2208748918926e72 * cos(theta) ** 9 + 6.30171174500727e70 * cos(theta) ** 7 - 6.88890924753527e68 * cos(theta) ** 5 + 3.44790252629393e66 * cos(theta) ** 3 - 4.99454735822395e63 * cos(theta) ) * sin(34 * phi) ) # @torch.jit.script def Yl73_m_minus_33(theta, phi): return ( 4.08080462725762e-61 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 3.41101273414269e78 * cos(theta) ** 40 - 1.83488960871124e79 * cos(theta) ** 38 + 4.51023564658741e79 * cos(theta) ** 36 - 6.71737223959828e79 * cos(theta) ** 34 + 6.77778026333567e79 * cos(theta) ** 32 - 4.90770658483868e79 * cos(theta) ** 30 + 2.63562020296892e79 * cos(theta) ** 28 - 1.07010143579189e79 * cos(theta) ** 26 + 3.31853975794241e78 * cos(theta) ** 24 - 7.88903508348067e77 * cos(theta) ** 22 + 1.4349347277827e77 * cos(theta) ** 20 - 1.98281889657246e76 * cos(theta) ** 18 + 2.05536105132512e75 * cos(theta) ** 16 - 1.56798045873499e74 * cos(theta) ** 14 + 8.56459914435078e72 * cos(theta) ** 12 - 3.2208748918926e71 * cos(theta) ** 10 + 7.87713968125908e69 * cos(theta) ** 8 - 1.14815154125588e68 * cos(theta) ** 6 + 8.61975631573483e65 * cos(theta) ** 4 - 2.49727367911197e63 * cos(theta) ** 2 + 1.16695031734204e60 ) * sin(33 * phi) ) # @torch.jit.script def Yl73_m_minus_32(theta, phi): return ( 2.69023775900592e-59 * (1.0 - cos(theta) ** 2) ** 16 * ( 8.31954325400655e76 * cos(theta) ** 41 - 4.70484515054164e77 * cos(theta) ** 39 + 1.21898260718579e78 * cos(theta) ** 37 - 1.91924921131379e78 * cos(theta) ** 35 + 2.05387280707142e78 * cos(theta) ** 33 - 1.58313115639957e78 * cos(theta) ** 31 + 9.08834552747903e77 * cos(theta) ** 29 - 3.96333865108108e77 * cos(theta) ** 27 + 1.32741590317696e77 * cos(theta) ** 25 - 3.43001525368725e76 * cos(theta) ** 23 + 6.83302251325097e75 * cos(theta) ** 21 - 1.04358889293288e75 * cos(theta) ** 19 + 1.20903591254419e74 * cos(theta) ** 17 - 1.04532030582333e73 * cos(theta) ** 15 + 6.58815318796214e71 * cos(theta) ** 13 - 2.92806808353873e70 * cos(theta) ** 11 + 8.7523774236212e68 * cos(theta) ** 9 - 1.6402164875084e67 * cos(theta) ** 7 + 1.72395126314697e65 * cos(theta) ** 5 - 8.32424559703991e62 * cos(theta) ** 3 + 1.16695031734204e60 * cos(theta) ) * sin(32 * phi) ) # @torch.jit.script def Yl73_m_minus_31(theta, phi): return ( 1.78652854082763e-57 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 1.98084363190632e75 * cos(theta) ** 42 - 1.17621128763541e76 * cos(theta) ** 40 + 3.20784896627839e76 * cos(theta) ** 38 - 5.33124780920498e76 * cos(theta) ** 36 + 6.04080237373946e76 * cos(theta) ** 34 - 4.94728486374867e76 * cos(theta) ** 32 + 3.02944850915968e76 * cos(theta) ** 30 - 1.41547808967181e76 * cos(theta) ** 28 + 5.10544578144986e75 * cos(theta) ** 26 - 1.42917302236969e75 * cos(theta) ** 24 + 3.10591932420499e74 * cos(theta) ** 22 - 5.21794446466438e73 * cos(theta) ** 20 + 6.71686618080103e72 * cos(theta) ** 18 - 6.53325191139579e71 * cos(theta) ** 16 + 4.70582370568724e70 * cos(theta) ** 14 - 2.44005673628227e69 * cos(theta) ** 12 + 8.7523774236212e67 * cos(theta) ** 10 - 2.0502706093855e66 * cos(theta) ** 8 + 2.87325210524494e64 * cos(theta) ** 6 - 2.08106139925998e62 * cos(theta) ** 4 + 5.83475158671022e59 * cos(theta) ** 2 - 2.64614584431302e56 ) * sin(31 * phi) ) # @torch.jit.script def Yl73_m_minus_30(theta, phi): return ( 1.19470548102875e-55 * (1.0 - cos(theta) ** 2) ** 15 * ( 4.60661309745656e73 * cos(theta) ** 43 - 2.86880801862295e74 * cos(theta) ** 41 + 8.22525375968818e74 * cos(theta) ** 39 - 1.44087778627162e75 * cos(theta) ** 37 + 1.72594353535413e75 * cos(theta) ** 35 - 1.49917723143899e75 * cos(theta) ** 33 + 9.77241454567638e74 * cos(theta) ** 31 - 4.88095892990281e74 * cos(theta) ** 29 + 1.89090584498143e74 * cos(theta) ** 27 - 5.71669208947875e73 * cos(theta) ** 25 + 1.35039970617608e73 * cos(theta) ** 23 - 2.48473545936399e72 * cos(theta) ** 21 + 3.53519272673738e71 * cos(theta) ** 19 - 3.84308935964458e70 * cos(theta) ** 17 + 3.1372158037915e69 * cos(theta) ** 15 - 1.87696672021713e68 * cos(theta) ** 13 + 7.95670674874655e66 * cos(theta) ** 11 - 2.27807845487278e65 * cos(theta) ** 9 + 4.10464586463563e63 * cos(theta) ** 7 - 4.16212279851995e61 * cos(theta) ** 5 + 1.94491719557007e59 * cos(theta) ** 3 - 2.64614584431302e56 * cos(theta) ) * sin(30 * phi) ) # @torch.jit.script def Yl73_m_minus_29(theta, phi): return ( 8.04277291533547e-54 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 1.04695752214922e72 * cos(theta) ** 44 - 6.83049528243559e72 * cos(theta) ** 42 + 2.05631343992204e73 * cos(theta) ** 40 - 3.7917836480832e73 * cos(theta) ** 38 + 4.79428759820592e73 * cos(theta) ** 36 - 4.40934479834997e73 * cos(theta) ** 34 + 3.05387954552387e73 * cos(theta) ** 32 - 1.6269863099676e73 * cos(theta) ** 30 + 6.75323516064797e72 * cos(theta) ** 28 - 2.19872772672259e72 * cos(theta) ** 26 + 5.62666544240034e71 * cos(theta) ** 24 - 1.12942520880181e71 * cos(theta) ** 22 + 1.76759636336869e70 * cos(theta) ** 20 - 2.13504964424699e69 * cos(theta) ** 18 + 1.96075987736968e68 * cos(theta) ** 16 - 1.34069051444081e67 * cos(theta) ** 14 + 6.63058895728879e65 * cos(theta) ** 12 - 2.27807845487278e64 * cos(theta) ** 10 + 5.13080733079454e62 * cos(theta) ** 8 - 6.93687133086659e60 * cos(theta) ** 6 + 4.86229298892518e58 * cos(theta) ** 4 - 1.32307292215651e56 * cos(theta) ** 2 + 5.83880371648946e52 ) * sin(29 * phi) ) # @torch.jit.script def Yl73_m_minus_28(theta, phi): return ( 5.44894155235245e-52 * (1.0 - cos(theta) ** 2) ** 14 * ( 2.32657227144271e70 * cos(theta) ** 45 - 1.58848727498502e71 * cos(theta) ** 43 + 5.01539863395621e71 * cos(theta) ** 41 - 9.72252217457231e71 * cos(theta) ** 39 + 1.29575340492052e72 * cos(theta) ** 37 - 1.25981279952856e72 * cos(theta) ** 35 + 9.25418044098142e71 * cos(theta) ** 33 - 5.24834293537936e71 * cos(theta) ** 31 + 2.32870177953378e71 * cos(theta) ** 29 - 8.1434360248985e70 * cos(theta) ** 27 + 2.25066617696014e70 * cos(theta) ** 25 - 4.91054438609484e69 * cos(theta) ** 23 + 8.41712553985092e68 * cos(theta) ** 21 - 1.12371033907736e68 * cos(theta) ** 19 + 1.15338816315864e67 * cos(theta) ** 17 - 8.93793676293873e65 * cos(theta) ** 15 + 5.1004530440683e64 * cos(theta) ** 13 - 2.0709804135207e63 * cos(theta) ** 11 + 5.70089703421615e61 * cos(theta) ** 9 - 9.90981618695227e59 * cos(theta) ** 7 + 9.72458597785036e57 * cos(theta) ** 5 - 4.41024307385504e55 * cos(theta) ** 3 + 5.83880371648946e52 * cos(theta) ) * sin(28 * phi) ) # @torch.jit.script def Yl73_m_minus_27(theta, phi): return ( 3.7140842604102e-50 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 5.05776580748415e68 * cos(theta) ** 46 - 3.61019835223869e69 * cos(theta) ** 44 + 1.19414253189433e70 * cos(theta) ** 42 - 2.43063054364308e70 * cos(theta) ** 40 + 3.40987738136979e70 * cos(theta) ** 38 - 3.49947999869045e70 * cos(theta) ** 36 + 2.72181777675924e70 * cos(theta) ** 34 - 1.64010716730605e70 * cos(theta) ** 32 + 7.76233926511261e69 * cos(theta) ** 30 - 2.90837000889232e69 * cos(theta) ** 28 + 8.6564083729236e68 * cos(theta) ** 26 - 2.04606016087285e68 * cos(theta) ** 24 + 3.82596615447769e67 * cos(theta) ** 22 - 5.61855169538682e66 * cos(theta) ** 20 + 6.40771201754799e65 * cos(theta) ** 18 - 5.58621047683671e64 * cos(theta) ** 16 + 3.64318074576307e63 * cos(theta) ** 14 - 1.72581701126725e62 * cos(theta) ** 12 + 5.70089703421615e60 * cos(theta) ** 10 - 1.23872702336903e59 * cos(theta) ** 8 + 1.62076432964173e57 * cos(theta) ** 6 - 1.10256076846376e55 * cos(theta) ** 4 + 2.91940185824473e52 * cos(theta) ** 2 - 1.25673777797879e49 ) * sin(27 * phi) ) # @torch.jit.script def Yl73_m_minus_26(theta, phi): return ( 2.54624788461583e-48 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.0761203845711e67 * cos(theta) ** 47 - 8.02266300497486e67 * cos(theta) ** 45 + 2.77707565556822e68 * cos(theta) ** 43 - 5.92836717961726e68 * cos(theta) ** 41 + 8.7432753368456e68 * cos(theta) ** 39 - 9.45805405051473e68 * cos(theta) ** 37 + 7.77662221931211e68 * cos(theta) ** 35 - 4.97002171910925e68 * cos(theta) ** 33 + 2.50398040810084e68 * cos(theta) ** 31 - 1.00288620996287e68 * cos(theta) ** 29 + 3.20607717515689e67 * cos(theta) ** 27 - 8.18424064349141e66 * cos(theta) ** 25 + 1.66346354542508e66 * cos(theta) ** 23 - 2.67550080732706e65 * cos(theta) ** 21 + 3.37248000923578e64 * cos(theta) ** 19 - 3.28600616284512e63 * cos(theta) ** 17 + 2.42878716384205e62 * cos(theta) ** 15 - 1.32755154712866e61 * cos(theta) ** 13 + 5.18263366746923e59 * cos(theta) ** 11 - 1.37636335929893e58 * cos(theta) ** 9 + 2.3153776137739e56 * cos(theta) ** 7 - 2.20512153692752e54 * cos(theta) ** 5 + 9.73133952748243e51 * cos(theta) ** 3 - 1.25673777797879e49 * cos(theta) ) * sin(26 * phi) ) # @torch.jit.script def Yl73_m_minus_25(theta, phi): return ( 1.75524965841487e-46 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 2.24191746785645e65 * cos(theta) ** 48 - 1.74405717499453e66 * cos(theta) ** 46 + 6.31153558083686e66 * cos(theta) ** 44 - 1.41151599514697e67 * cos(theta) ** 42 + 2.1858188342114e67 * cos(theta) ** 40 - 2.48896159224072e67 * cos(theta) ** 38 + 2.16017283869781e67 * cos(theta) ** 36 - 1.46177109385566e67 * cos(theta) ** 34 + 7.82493877531513e66 * cos(theta) ** 32 - 3.34295403320956e66 * cos(theta) ** 30 + 1.14502756255603e66 * cos(theta) ** 28 - 3.14778486288131e65 * cos(theta) ** 26 + 6.93109810593784e64 * cos(theta) ** 24 - 1.21613673060321e64 * cos(theta) ** 22 + 1.68624000461789e63 * cos(theta) ** 20 - 1.8255589793584e62 * cos(theta) ** 18 + 1.51799197740128e61 * cos(theta) ** 16 - 9.48251105091898e59 * cos(theta) ** 14 + 4.31886138955769e58 * cos(theta) ** 12 - 1.37636335929893e57 * cos(theta) ** 10 + 2.89422201721737e55 * cos(theta) ** 8 - 3.67520256154587e53 * cos(theta) ** 6 + 2.43283488187061e51 * cos(theta) ** 4 - 6.28368888989395e48 * cos(theta) ** 2 + 2.64465020618432e45 ) * sin(25 * phi) ) # @torch.jit.script def Yl73_m_minus_24(theta, phi): return ( 1.21632595741771e-44 * (1.0 - cos(theta) ** 2) ** 12 * ( 4.57534177113561e63 * cos(theta) ** 49 - 3.71075994679688e64 * cos(theta) ** 47 + 1.40256346240819e65 * cos(theta) ** 45 - 3.28259533755109e65 * cos(theta) ** 43 + 5.3312654492961e65 * cos(theta) ** 41 - 6.38195280061723e65 * cos(theta) ** 39 + 5.83830496945354e65 * cos(theta) ** 37 - 4.1764888395876e65 * cos(theta) ** 35 + 2.37119356827731e65 * cos(theta) ** 33 - 1.07837226877728e65 * cos(theta) ** 31 + 3.94837090536563e64 * cos(theta) ** 29 - 1.1658462455116e64 * cos(theta) ** 27 + 2.77243924237514e63 * cos(theta) ** 25 - 5.28755100262264e62 * cos(theta) ** 23 + 8.02971430770425e61 * cos(theta) ** 21 - 9.6082051545179e60 * cos(theta) ** 19 + 8.9293645729487e59 * cos(theta) ** 17 - 6.32167403394599e58 * cos(theta) ** 15 + 3.32220106889053e57 * cos(theta) ** 13 - 1.25123941754448e56 * cos(theta) ** 11 + 3.21580224135263e54 * cos(theta) ** 9 - 5.25028937363695e52 * cos(theta) ** 7 + 4.86566976374122e50 * cos(theta) ** 5 - 2.09456296329798e48 * cos(theta) ** 3 + 2.64465020618432e45 * cos(theta) ) * sin(24 * phi) ) # @torch.jit.script def Yl73_m_minus_23(theta, phi): return ( 8.47073010326583e-43 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 9.15068354227122e61 * cos(theta) ** 50 - 7.73074988916017e62 * cos(theta) ** 48 + 3.0490510052352e63 * cos(theta) ** 46 - 7.46044394897974e63 * cos(theta) ** 44 + 1.26934891649907e64 * cos(theta) ** 42 - 1.59548820015431e64 * cos(theta) ** 40 + 1.53639604459304e64 * cos(theta) ** 38 - 1.16013578877433e64 * cos(theta) ** 36 + 6.97409873022739e63 * cos(theta) ** 34 - 3.369913339929e63 * cos(theta) ** 32 + 1.31612363512188e63 * cos(theta) ** 30 - 4.16373659111284e62 * cos(theta) ** 28 + 1.0663227855289e62 * cos(theta) ** 26 - 2.20314625109277e61 * cos(theta) ** 24 + 3.64987013986557e60 * cos(theta) ** 22 - 4.80410257725895e59 * cos(theta) ** 20 + 4.96075809608261e58 * cos(theta) ** 18 - 3.95104627121624e57 * cos(theta) ** 16 + 2.37300076349324e56 * cos(theta) ** 14 - 1.0426995146204e55 * cos(theta) ** 12 + 3.21580224135263e53 * cos(theta) ** 10 - 6.56286171704619e51 * cos(theta) ** 8 + 8.10944960623536e49 * cos(theta) ** 6 - 5.23640740824496e47 * cos(theta) ** 4 + 1.32232510309216e45 * cos(theta) ** 2 - 5.45288702306046e41 ) * sin(23 * phi) ) # @torch.jit.script def Yl73_m_minus_22(theta, phi): return ( 5.92709036956332e-41 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.79425167495514e60 * cos(theta) ** 51 - 1.57770405901228e61 * cos(theta) ** 49 + 6.48734256433021e61 * cos(theta) ** 47 - 1.65787643310661e62 * cos(theta) ** 45 + 2.95197422441645e62 * cos(theta) ** 43 - 3.8914346345227e62 * cos(theta) ** 41 + 3.93947703741804e62 * cos(theta) ** 39 - 3.13550213182252e62 * cos(theta) ** 37 + 1.99259963720783e62 * cos(theta) ** 35 - 1.02118586058454e62 * cos(theta) ** 33 + 4.24556011329637e61 * cos(theta) ** 31 - 1.43577123831477e61 * cos(theta) ** 29 + 3.94934365010703e60 * cos(theta) ** 27 - 8.81258500437107e59 * cos(theta) ** 25 + 1.58690006081112e59 * cos(theta) ** 23 - 2.28766789393283e58 * cos(theta) ** 21 + 2.61092531372769e57 * cos(theta) ** 19 - 2.32414486542132e56 * cos(theta) ** 17 + 1.58200050899549e55 * cos(theta) ** 15 - 8.02076549707999e53 * cos(theta) ** 13 + 2.92345658304785e52 * cos(theta) ** 11 - 7.29206857449577e50 * cos(theta) ** 9 + 1.15849280089077e49 * cos(theta) ** 7 - 1.04728148164899e47 * cos(theta) ** 5 + 4.40775034364054e44 * cos(theta) ** 3 - 5.45288702306046e41 * cos(theta) ) * sin(22 * phi) ) # @torch.jit.script def Yl73_m_minus_21(theta, phi): return ( 4.16586338266047e-39 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 3.45048399029835e58 * cos(theta) ** 52 - 3.15540811802456e59 * cos(theta) ** 50 + 1.35152970090213e60 * cos(theta) ** 48 - 3.60407920240567e60 * cos(theta) ** 46 + 6.70903232821919e60 * cos(theta) ** 44 - 9.26532055838738e60 * cos(theta) ** 42 + 9.84869259354511e60 * cos(theta) ** 40 - 8.25132139953296e60 * cos(theta) ** 38 + 5.53499899224396e60 * cos(theta) ** 36 - 3.00348782524866e60 * cos(theta) ** 34 + 1.32673753540512e60 * cos(theta) ** 32 - 4.78590412771591e59 * cos(theta) ** 30 + 1.41047987503823e59 * cos(theta) ** 28 - 3.38945577091195e58 * cos(theta) ** 26 + 6.61208358671299e57 * cos(theta) ** 24 - 1.03984904269674e57 * cos(theta) ** 22 + 1.30546265686385e56 * cos(theta) ** 20 - 1.29119159190073e55 * cos(theta) ** 18 + 9.88750318122182e53 * cos(theta) ** 16 - 5.72911821219999e52 * cos(theta) ** 14 + 2.43621381920654e51 * cos(theta) ** 12 - 7.29206857449577e49 * cos(theta) ** 10 + 1.44811600111346e48 * cos(theta) ** 8 - 1.74546913608165e46 * cos(theta) ** 6 + 1.10193758591013e44 * cos(theta) ** 4 - 2.72644351153023e41 * cos(theta) ** 2 + 1.10382328402034e38 ) * sin(21 * phi) ) # @torch.jit.script def Yl73_m_minus_20(theta, phi): return ( 2.940403188271e-37 * (1.0 - cos(theta) ** 2) ** 10 * ( 6.51034715150632e56 * cos(theta) ** 53 - 6.18707474122462e57 * cos(theta) ** 51 + 2.7582238793921e58 * cos(theta) ** 49 - 7.66825362213973e58 * cos(theta) ** 47 + 1.4908960729376e59 * cos(theta) ** 45 - 2.15472571125288e59 * cos(theta) ** 43 + 2.4021201447671e59 * cos(theta) ** 41 - 2.11572343577768e59 * cos(theta) ** 39 + 1.49594567357945e59 * cos(theta) ** 37 - 8.58139378642474e58 * cos(theta) ** 35 + 4.0204167739549e58 * cos(theta) ** 33 - 1.54384004119868e58 * cos(theta) ** 31 + 4.86372370702837e57 * cos(theta) ** 29 - 1.25535398922665e57 * cos(theta) ** 27 + 2.64483343468519e56 * cos(theta) ** 25 - 4.52108279433366e55 * cos(theta) ** 23 + 6.21648884220879e54 * cos(theta) ** 21 - 6.79574522053017e53 * cos(theta) ** 19 + 5.81617834189519e52 * cos(theta) ** 17 - 3.81941214146666e51 * cos(theta) ** 15 + 1.87401063015888e50 * cos(theta) ** 13 - 6.62915324954161e48 * cos(theta) ** 11 + 1.60901777901495e47 * cos(theta) ** 9 - 2.4935273372595e45 * cos(theta) ** 7 + 2.20387517182027e43 * cos(theta) ** 5 - 9.0881450384341e40 * cos(theta) ** 3 + 1.10382328402034e38 * cos(theta) ) * sin(20 * phi) ) # @torch.jit.script def Yl73_m_minus_19(theta, phi): return ( 2.08374820714938e-35 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.20561984287154e55 * cos(theta) ** 54 - 1.18982206562012e56 * cos(theta) ** 52 + 5.51644775878419e56 * cos(theta) ** 50 - 1.59755283794578e57 * cos(theta) ** 48 + 3.24107841942956e57 * cos(theta) ** 46 - 4.89710388921109e57 * cos(theta) ** 44 + 5.7193336780169e57 * cos(theta) ** 42 - 5.2893085894442e57 * cos(theta) ** 40 + 3.93669914099855e57 * cos(theta) ** 38 - 2.3837204962291e57 * cos(theta) ** 36 + 1.18247552175144e57 * cos(theta) ** 34 - 4.82450012874588e56 * cos(theta) ** 32 + 1.62124123567612e56 * cos(theta) ** 30 - 4.48340710438088e55 * cos(theta) ** 28 + 1.01724362872507e55 * cos(theta) ** 26 - 1.88378449763903e54 * cos(theta) ** 24 + 2.82567674645854e53 * cos(theta) ** 22 - 3.39787261026508e52 * cos(theta) ** 20 + 3.23121018994177e51 * cos(theta) ** 18 - 2.38713258841666e50 * cos(theta) ** 16 + 1.33857902154205e49 * cos(theta) ** 14 - 5.524294374618e47 * cos(theta) ** 12 + 1.60901777901495e46 * cos(theta) ** 10 - 3.11690917157438e44 * cos(theta) ** 8 + 3.67312528636712e42 * cos(theta) ** 6 - 2.27203625960853e40 * cos(theta) ** 4 + 5.51911642010168e37 * cos(theta) ** 2 - 2.19797547594651e34 ) * sin(19 * phi) ) # @torch.jit.script def Yl73_m_minus_18(theta, phi): return ( 1.48224671864839e-33 * (1.0 - cos(theta) ** 2) ** 9 * ( 2.19203607794826e53 * cos(theta) ** 55 - 2.24494729362287e54 * cos(theta) ** 53 + 1.08165642329102e55 * cos(theta) ** 51 - 3.26031191417506e55 * cos(theta) ** 49 + 6.8959115307012e55 * cos(theta) ** 47 - 1.08824530871358e56 * cos(theta) ** 45 + 1.33007759953881e56 * cos(theta) ** 43 - 1.2900752657181e56 * cos(theta) ** 41 + 1.00941003615347e56 * cos(theta) ** 39 - 6.4424878276462e55 * cos(theta) ** 37 + 3.3785014907184e55 * cos(theta) ** 35 - 1.4619697359836e55 * cos(theta) ** 33 + 5.22981043766491e54 * cos(theta) ** 31 - 1.54600244978651e54 * cos(theta) ** 29 + 3.76756899527805e53 * cos(theta) ** 27 - 7.53513799055611e52 * cos(theta) ** 25 + 1.22855510715589e52 * cos(theta) ** 23 - 1.61803457631671e51 * cos(theta) ** 21 + 1.70063694207462e50 * cos(theta) ** 19 - 1.4041956402451e49 * cos(theta) ** 17 + 8.9238601436137e47 * cos(theta) ** 15 - 4.24945721124462e46 * cos(theta) ** 13 + 1.46274343546814e45 * cos(theta) ** 11 - 3.46323241286042e43 * cos(theta) ** 9 + 5.24732183766731e41 * cos(theta) ** 7 - 4.54407251921705e39 * cos(theta) ** 5 + 1.83970547336723e37 * cos(theta) ** 3 - 2.19797547594651e34 * cos(theta) ) * sin(18 * phi) ) # @torch.jit.script def Yl73_m_minus_17(theta, phi): return ( 1.05812069192858e-31 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 3.91435013919331e51 * cos(theta) ** 56 - 4.15730980300531e52 * cos(theta) ** 54 + 2.08010850632888e53 * cos(theta) ** 52 - 6.52062382835011e53 * cos(theta) ** 50 + 1.43664823556275e54 * cos(theta) ** 48 - 2.36575067111647e54 * cos(theta) ** 46 + 3.02290363531549e54 * cos(theta) ** 44 - 3.07160777551928e54 * cos(theta) ** 42 + 2.52352509038368e54 * cos(theta) ** 40 - 1.69539153359111e54 * cos(theta) ** 38 + 9.38472636310667e53 * cos(theta) ** 36 - 4.29991098818706e53 * cos(theta) ** 34 + 1.63431576177028e53 * cos(theta) ** 32 - 5.15334149928837e52 * cos(theta) ** 30 + 1.34556035545645e52 * cos(theta) ** 28 - 2.89812999636773e51 * cos(theta) ** 26 + 5.11897961314953e50 * cos(theta) ** 24 - 7.3547026196214e49 * cos(theta) ** 22 + 8.50318471037309e48 * cos(theta) ** 20 - 7.80108689025054e47 * cos(theta) ** 18 + 5.57741258975856e46 * cos(theta) ** 16 - 3.03532657946044e45 * cos(theta) ** 14 + 1.21895286289012e44 * cos(theta) ** 12 - 3.46323241286042e42 * cos(theta) ** 10 + 6.55915229708413e40 * cos(theta) ** 8 - 7.57345419869508e38 * cos(theta) ** 6 + 4.59926368341807e36 * cos(theta) ** 4 - 1.09898773797325e34 * cos(theta) ** 2 + 4.313138689063e30 ) * sin(17 * phi) ) # @torch.jit.script def Yl73_m_minus_16(theta, phi): return ( 7.57868558212204e-30 * (1.0 - cos(theta) ** 2) ** 8 * ( 6.86728094595318e49 * cos(theta) ** 57 - 7.55874509637329e50 * cos(theta) ** 55 + 3.92473303080921e51 * cos(theta) ** 53 - 1.27855369183336e52 * cos(theta) ** 51 + 2.93193517461786e52 * cos(theta) ** 49 - 5.03351206620525e52 * cos(theta) ** 47 + 6.71756363403442e52 * cos(theta) ** 45 - 7.14327389655647e52 * cos(theta) ** 43 + 6.15493924483826e52 * cos(theta) ** 41 - 4.34715777843873e52 * cos(theta) ** 39 + 2.53641253056937e52 * cos(theta) ** 37 - 1.22854599662487e52 * cos(theta) ** 35 + 4.9524720053645e51 * cos(theta) ** 33 - 1.66236822557689e51 * cos(theta) ** 31 + 4.63986329467741e50 * cos(theta) ** 29 - 1.0733814801362e50 * cos(theta) ** 27 + 2.04759184525981e49 * cos(theta) ** 25 - 3.19769679113974e48 * cos(theta) ** 23 + 4.04913557636814e47 * cos(theta) ** 21 - 4.10583520539502e46 * cos(theta) ** 19 + 3.2808309351521e45 * cos(theta) ** 17 - 2.02355105297363e44 * cos(theta) ** 15 + 9.37656048377012e42 * cos(theta) ** 13 - 3.14839310260038e41 * cos(theta) ** 11 + 7.28794699676015e39 * cos(theta) ** 9 - 1.08192202838501e38 * cos(theta) ** 7 + 9.19852736683613e35 * cos(theta) ** 5 - 3.66329245991085e33 * cos(theta) ** 3 + 4.313138689063e30 * cos(theta) ) * sin(16 * phi) ) # @torch.jit.script def Yl73_m_minus_15(theta, phi): return ( 5.44506276123659e-28 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.18401395619882e48 * cos(theta) ** 58 - 1.34977591006666e49 * cos(theta) ** 56 + 7.26802413112817e49 * cos(theta) ** 54 - 2.45875709967953e50 * cos(theta) ** 52 + 5.86387034923571e50 * cos(theta) ** 50 - 1.04864834712609e51 * cos(theta) ** 48 + 1.46033992044226e51 * cos(theta) ** 46 - 1.62347134012647e51 * cos(theta) ** 44 + 1.46546172496149e51 * cos(theta) ** 42 - 1.08678944460968e51 * cos(theta) ** 40 + 6.67476981728782e50 * cos(theta) ** 38 - 3.41262776840243e50 * cos(theta) ** 36 + 1.4566094133425e50 * cos(theta) ** 34 - 5.19490070492779e49 * cos(theta) ** 32 + 1.5466210982258e49 * cos(theta) ** 30 - 3.83350528620071e48 * cos(theta) ** 28 + 7.87535325099928e47 * cos(theta) ** 26 - 1.33237366297489e47 * cos(theta) ** 24 + 1.84051617107643e46 * cos(theta) ** 22 - 2.05291760269751e45 * cos(theta) ** 20 + 1.82268385286227e44 * cos(theta) ** 18 - 1.26471940810852e43 * cos(theta) ** 16 + 6.69754320269294e41 * cos(theta) ** 14 - 2.62366091883365e40 * cos(theta) ** 12 + 7.28794699676015e38 * cos(theta) ** 10 - 1.35240253548126e37 * cos(theta) ** 8 + 1.53308789447269e35 * cos(theta) ** 6 - 9.15823114977711e32 * cos(theta) ** 4 + 2.1565693445315e30 * cos(theta) ** 2 - 8.35555732092795e26 ) * sin(15 * phi) ) # @torch.jit.script def Yl73_m_minus_14(theta, phi): return ( 3.92346905679142e-26 * (1.0 - cos(theta) ** 2) ** 7 * ( 2.00680331559123e46 * cos(theta) ** 59 - 2.36802791239765e47 * cos(theta) ** 57 + 1.32145893293239e48 * cos(theta) ** 55 - 4.63916433901798e48 * cos(theta) ** 53 + 1.14977849985014e49 * cos(theta) ** 51 - 2.14009866760427e49 * cos(theta) ** 49 + 3.10710621370695e49 * cos(theta) ** 47 - 3.60771408916993e49 * cos(theta) ** 45 + 3.40805052316625e49 * cos(theta) ** 43 - 2.65070596246264e49 * cos(theta) ** 41 + 1.71147944033021e49 * cos(theta) ** 39 - 9.22331829297953e48 * cos(theta) ** 37 + 4.16174118097857e48 * cos(theta) ** 35 - 1.5742123348266e48 * cos(theta) ** 33 + 4.98910031685743e47 * cos(theta) ** 31 - 1.32189837455197e47 * cos(theta) ** 29 + 2.9167975003701e46 * cos(theta) ** 27 - 5.32949465189956e45 * cos(theta) ** 25 + 8.00224422207141e44 * cos(theta) ** 23 - 9.77579810808338e43 * cos(theta) ** 21 + 9.59307290980145e42 * cos(theta) ** 19 - 7.4395259300501e41 * cos(theta) ** 17 + 4.46502880179529e40 * cos(theta) ** 15 - 2.01820070679512e39 * cos(theta) ** 13 + 6.62540636069105e37 * cos(theta) ** 11 - 1.50266948386807e36 * cos(theta) ** 9 + 2.19012556353241e34 * cos(theta) ** 7 - 1.83164622995542e32 * cos(theta) ** 5 + 7.18856448177168e29 * cos(theta) ** 3 - 8.35555732092795e26 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl73_m_minus_13(theta, phi): return ( 2.83468942345913e-24 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 3.34467219265205e44 * cos(theta) ** 60 - 4.08280674551319e45 * cos(theta) ** 58 + 2.35974809452213e46 * cos(theta) ** 56 - 8.59104507225552e46 * cos(theta) ** 54 + 2.21111249971181e47 * cos(theta) ** 52 - 4.28019733520855e47 * cos(theta) ** 50 + 6.4731379452228e47 * cos(theta) ** 48 - 7.84285671558681e47 * cos(theta) ** 46 + 7.7455693708324e47 * cos(theta) ** 44 - 6.3112046725301e47 * cos(theta) ** 42 + 4.27869860082553e47 * cos(theta) ** 40 - 2.4271890244683e47 * cos(theta) ** 38 + 1.15603921693849e47 * cos(theta) ** 36 - 4.63003627890178e46 * cos(theta) ** 34 + 1.55909384901795e46 * cos(theta) ** 32 - 4.40632791517323e45 * cos(theta) ** 30 + 1.04171339298932e45 * cos(theta) ** 28 - 2.04980563534599e44 * cos(theta) ** 26 + 3.33426842586309e43 * cos(theta) ** 24 - 4.44354459458335e42 * cos(theta) ** 22 + 4.79653645490072e41 * cos(theta) ** 20 - 4.13306996113895e40 * cos(theta) ** 18 + 2.79064300112206e39 * cos(theta) ** 16 - 1.44157193342508e38 * cos(theta) ** 14 + 5.52117196724254e36 * cos(theta) ** 12 - 1.50266948386807e35 * cos(theta) ** 10 + 2.73765695441552e33 * cos(theta) ** 8 - 3.05274371659237e31 * cos(theta) ** 6 + 1.79714112044292e29 * cos(theta) ** 4 - 4.17777866046397e26 * cos(theta) ** 2 + 1.60068147910497e23 ) * sin(13 * phi) ) # @torch.jit.script def Yl73_m_minus_12(theta, phi): return ( 2.05314502197758e-22 * (1.0 - cos(theta) ** 2) ** 6 * ( 5.48306916828204e42 * cos(theta) ** 61 - 6.9200114330732e43 * cos(theta) ** 59 + 4.13990893775813e44 * cos(theta) ** 57 - 1.56200819495555e45 * cos(theta) ** 55 + 4.17191037681473e45 * cos(theta) ** 53 - 8.39254379452656e45 * cos(theta) ** 51 + 1.32104856024955e46 * cos(theta) ** 49 - 1.66869291820996e46 * cos(theta) ** 47 + 1.72123763796275e46 * cos(theta) ** 45 - 1.46772201686747e46 * cos(theta) ** 43 + 1.04358502459159e46 * cos(theta) ** 41 - 6.22356160120076e45 * cos(theta) ** 39 + 3.12443031604998e45 * cos(theta) ** 37 - 1.32286750825765e45 * cos(theta) ** 35 + 4.7245268152059e44 * cos(theta) ** 33 - 1.42139610166878e44 * cos(theta) ** 31 + 3.59211514823904e43 * cos(theta) ** 29 - 7.59187272350365e42 * cos(theta) ** 27 + 1.33370737034524e42 * cos(theta) ** 25 - 1.93197591068842e41 * cos(theta) ** 23 + 2.28406497852415e40 * cos(theta) ** 21 - 2.17529997954681e39 * cos(theta) ** 19 + 1.64155470654239e38 * cos(theta) ** 17 - 9.61047955616723e36 * cos(theta) ** 15 + 4.24705535941734e35 * cos(theta) ** 13 - 1.36606316715279e34 * cos(theta) ** 11 + 3.04184106046168e32 * cos(theta) ** 9 - 4.36106245227482e30 * cos(theta) ** 7 + 3.59428224088584e28 * cos(theta) ** 5 - 1.39259288682132e26 * cos(theta) ** 3 + 1.60068147910497e23 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl73_m_minus_11(theta, phi): return ( 1.4904758171906e-20 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 8.843659948842e40 * cos(theta) ** 62 - 1.15333523884553e42 * cos(theta) ** 60 + 7.13777403061746e42 * cos(theta) ** 58 - 2.78930034813491e43 * cos(theta) ** 56 + 7.72575995706431e43 * cos(theta) ** 54 - 1.61395072971665e44 * cos(theta) ** 52 + 2.6420971204991e44 * cos(theta) ** 50 - 3.47644357960408e44 * cos(theta) ** 48 + 3.74182095209295e44 * cos(theta) ** 46 - 3.33573185651697e44 * cos(theta) ** 44 + 2.4847262490276e44 * cos(theta) ** 42 - 1.55589040030019e44 * cos(theta) ** 40 + 8.22218504223678e43 * cos(theta) ** 38 - 3.67463196738236e43 * cos(theta) ** 36 + 1.38956671035468e43 * cos(theta) ** 34 - 4.44186281771494e42 * cos(theta) ** 32 + 1.19737171607968e42 * cos(theta) ** 30 - 2.71138311553702e41 * cos(theta) ** 28 + 5.12964373209706e40 * cos(theta) ** 26 - 8.0498996278684e39 * cos(theta) ** 24 + 1.03821135387462e39 * cos(theta) ** 22 - 1.08764998977341e38 * cos(theta) ** 20 + 9.11974836967993e36 * cos(theta) ** 18 - 6.00654972260452e35 * cos(theta) ** 16 + 3.03361097101238e34 * cos(theta) ** 14 - 1.13838597262733e33 * cos(theta) ** 12 + 3.04184106046168e31 * cos(theta) ** 10 - 5.45132806534352e29 * cos(theta) ** 8 + 5.9904704014764e27 * cos(theta) ** 6 - 3.48148221705331e25 * cos(theta) ** 4 + 8.00340739552485e22 * cos(theta) ** 2 - 3.03734626016123e19 ) * sin(11 * phi) ) # @torch.jit.script def Yl73_m_minus_10(theta, phi): return ( 1.08426353398728e-18 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.40375554743524e39 * cos(theta) ** 63 - 1.89071350630415e40 * cos(theta) ** 61 + 1.20979220857923e41 * cos(theta) ** 59 - 4.89350938269282e41 * cos(theta) ** 57 + 1.40468362855715e42 * cos(theta) ** 55 - 3.04519005606915e42 * cos(theta) ** 53 + 5.18058258921393e42 * cos(theta) ** 51 - 7.09478281551854e42 * cos(theta) ** 49 + 7.96132117466584e42 * cos(theta) ** 47 - 7.41273745892659e42 * cos(theta) ** 45 + 5.77843313727349e42 * cos(theta) ** 43 - 3.79485463487851e42 * cos(theta) ** 41 + 2.10825257493251e42 * cos(theta) ** 39 - 9.93143774968206e41 * cos(theta) ** 37 + 3.97019060101336e41 * cos(theta) ** 35 - 1.3460190356712e41 * cos(theta) ** 33 + 3.86248940670865e40 * cos(theta) ** 31 - 9.34959695012765e39 * cos(theta) ** 29 + 1.89986804892484e39 * cos(theta) ** 27 - 3.21995985114736e38 * cos(theta) ** 25 + 4.5139624081505e37 * cos(theta) ** 23 - 5.17928566558765e36 * cos(theta) ** 21 + 4.79986756298944e35 * cos(theta) ** 19 - 3.53326454270854e34 * cos(theta) ** 17 + 2.02240731400826e33 * cos(theta) ** 15 - 8.75681517405636e31 * cos(theta) ** 13 + 2.76531005496517e30 * cos(theta) ** 11 - 6.05703118371502e28 * cos(theta) ** 9 + 8.55781485925199e26 * cos(theta) ** 7 - 6.96296443410662e24 * cos(theta) ** 5 + 2.66780246517495e22 * cos(theta) ** 3 - 3.03734626016123e19 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl73_m_minus_9(theta, phi): return ( 7.90248872694352e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 2.19336804286756e37 * cos(theta) ** 64 - 3.04953791339379e38 * cos(theta) ** 62 + 2.01632034763205e39 * cos(theta) ** 60 - 8.43708514257383e39 * cos(theta) ** 58 + 2.50836362242348e40 * cos(theta) ** 56 - 5.63924084457249e40 * cos(theta) ** 54 + 9.9626588254114e40 * cos(theta) ** 52 - 1.41895656310371e41 * cos(theta) ** 50 + 1.65860857805538e41 * cos(theta) ** 48 - 1.61146466498404e41 * cos(theta) ** 46 + 1.31328025847125e41 * cos(theta) ** 44 - 9.03536817828218e40 * cos(theta) ** 42 + 5.27063143733127e40 * cos(theta) ** 40 - 2.61353624991633e40 * cos(theta) ** 38 + 1.10283072250371e40 * cos(theta) ** 36 - 3.95887951667999e39 * cos(theta) ** 34 + 1.20702793959645e39 * cos(theta) ** 32 - 3.11653231670922e38 * cos(theta) ** 30 + 6.78524303187442e37 * cos(theta) ** 28 - 1.23844609659514e37 * cos(theta) ** 26 + 1.88081767006271e36 * cos(theta) ** 24 - 2.3542207570853e35 * cos(theta) ** 22 + 2.39993378149472e34 * cos(theta) ** 20 - 1.96292474594919e33 * cos(theta) ** 18 + 1.26400457125516e32 * cos(theta) ** 16 - 6.25486798146883e30 * cos(theta) ** 14 + 2.30442504580431e29 * cos(theta) ** 12 - 6.05703118371502e27 * cos(theta) ** 10 + 1.0697268574065e26 * cos(theta) ** 8 - 1.1604940723511e24 * cos(theta) ** 6 + 6.66950616293738e21 * cos(theta) ** 4 - 1.51867313008062e19 * cos(theta) ** 2 + 5.71789582108666e15 ) * sin(9 * phi) ) # @torch.jit.script def Yl73_m_minus_8(theta, phi): return ( 5.76935801162982e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 3.3744123736424e35 * cos(theta) ** 65 - 4.84053637046634e36 * cos(theta) ** 63 + 3.30544319283943e37 * cos(theta) ** 61 - 1.43001443094472e38 * cos(theta) ** 59 + 4.40063793407628e38 * cos(theta) ** 57 - 1.025316517195e39 * cos(theta) ** 55 + 1.87974694819083e39 * cos(theta) ** 53 - 2.78226777079158e39 * cos(theta) ** 51 + 3.38491546541915e39 * cos(theta) ** 49 - 3.4286482233703e39 * cos(theta) ** 47 + 2.91840057438055e39 * cos(theta) ** 45 - 2.10124841355399e39 * cos(theta) ** 43 + 1.28551986276372e39 * cos(theta) ** 41 - 6.70137499978547e38 * cos(theta) ** 39 + 2.98062357433435e38 * cos(theta) ** 37 - 1.13110843333714e38 * cos(theta) ** 35 + 3.65766042301955e37 * cos(theta) ** 33 - 1.00533300539007e37 * cos(theta) ** 31 + 2.33973897650842e36 * cos(theta) ** 29 - 4.58683739479681e35 * cos(theta) ** 27 + 7.52327068025084e34 * cos(theta) ** 25 - 1.023574242211e34 * cos(theta) ** 23 + 1.14282561023558e33 * cos(theta) ** 21 - 1.03311828734168e32 * cos(theta) ** 19 + 7.43532100738329e30 * cos(theta) ** 17 - 4.16991198764589e29 * cos(theta) ** 15 + 1.7726346506187e28 * cos(theta) ** 13 - 5.50639198519548e26 * cos(theta) ** 11 + 1.18858539711833e25 * cos(theta) ** 9 - 1.65784867478729e23 * cos(theta) ** 7 + 1.33390123258748e21 * cos(theta) ** 5 - 5.06224376693539e18 * cos(theta) ** 3 + 5.71789582108666e15 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl73_m_minus_7(theta, phi): return ( 4.21834374509173e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 5.1127460206703e33 * cos(theta) ** 66 - 7.56333807885366e34 * cos(theta) ** 64 + 5.33135998845069e35 * cos(theta) ** 62 - 2.38335738490786e36 * cos(theta) ** 60 + 7.58730678289014e36 * cos(theta) ** 58 - 1.83092235213393e37 * cos(theta) ** 56 + 3.48101286702006e37 * cos(theta) ** 54 - 5.35051494382997e37 * cos(theta) ** 52 + 6.7698309308383e37 * cos(theta) ** 50 - 7.14301713202146e37 * cos(theta) ** 48 + 6.34434907474032e37 * cos(theta) ** 46 - 4.77556457625908e37 * cos(theta) ** 44 + 3.06076157800887e37 * cos(theta) ** 42 - 1.67534374994637e37 * cos(theta) ** 40 + 7.8437462482483e36 * cos(theta) ** 38 - 3.14196787038094e36 * cos(theta) ** 36 + 1.07578247735869e36 * cos(theta) ** 34 - 3.14166564184397e35 * cos(theta) ** 32 + 7.79912992169473e34 * cos(theta) ** 30 - 1.63815621242743e34 * cos(theta) ** 28 + 2.89356564625032e33 * cos(theta) ** 26 - 4.26489267587916e32 * cos(theta) ** 24 + 5.19466186470718e31 * cos(theta) ** 22 - 5.16559143670839e30 * cos(theta) ** 20 + 4.13073389299072e29 * cos(theta) ** 18 - 2.60619499227868e28 * cos(theta) ** 16 + 1.26616760758478e27 * cos(theta) ** 14 - 4.5886599876629e25 * cos(theta) ** 12 + 1.18858539711833e24 * cos(theta) ** 10 - 2.07231084348411e22 * cos(theta) ** 8 + 2.22316872097913e20 * cos(theta) ** 6 - 1.26556094173385e18 * cos(theta) ** 4 + 2.85894791054333e15 * cos(theta) ** 2 - 1069565248987.4 ) * sin(7 * phi) ) # @torch.jit.script def Yl73_m_minus_6(theta, phi): return ( 3.08833470306255e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 7.63096420995568e31 * cos(theta) ** 67 - 1.16359047366979e33 * cos(theta) ** 65 + 8.46247617214395e33 * cos(theta) ** 63 - 3.90714325394731e34 * cos(theta) ** 61 + 1.28598420048985e35 * cos(theta) ** 59 - 3.21214447742794e35 * cos(theta) ** 57 + 6.32911430367283e35 * cos(theta) ** 55 - 1.00953112147735e36 * cos(theta) ** 53 + 1.32741782957614e36 * cos(theta) ** 51 - 1.45775859837173e36 * cos(theta) ** 49 + 1.3498615052639e36 * cos(theta) ** 47 - 1.06123657250202e36 * cos(theta) ** 45 + 7.11805018141597e35 * cos(theta) ** 43 - 4.08620426816187e35 * cos(theta) ** 41 + 2.01121698673033e35 * cos(theta) ** 39 - 8.49180505508363e34 * cos(theta) ** 37 + 3.07366422102483e34 * cos(theta) ** 35 - 9.52019891467869e33 * cos(theta) ** 33 + 2.51584836183701e33 * cos(theta) ** 31 - 5.64881452561183e32 * cos(theta) ** 29 + 1.07169098009271e32 * cos(theta) ** 27 - 1.70595707035166e31 * cos(theta) ** 25 + 2.25854863682921e30 * cos(theta) ** 23 - 2.45980544605162e29 * cos(theta) ** 21 + 2.17407046999511e28 * cos(theta) ** 19 - 1.53305587781099e27 * cos(theta) ** 17 + 8.44111738389856e25 * cos(theta) ** 15 - 3.52973845204838e24 * cos(theta) ** 13 + 1.08053217919848e23 * cos(theta) ** 11 - 2.30256760387124e21 * cos(theta) ** 9 + 3.17595531568447e19 * cos(theta) ** 7 - 2.5311218834677e17 * cos(theta) ** 5 + 952982636847777.0 * cos(theta) ** 3 - 1069565248987.4 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl73_m_minus_5(theta, phi): return ( 2.26356183859179e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.12220061911113e30 * cos(theta) ** 68 - 1.76301586919666e31 * cos(theta) ** 66 + 1.32226190189749e32 * cos(theta) ** 64 - 6.30184395797954e32 * cos(theta) ** 62 + 2.14330700081642e33 * cos(theta) ** 60 - 5.53818013349645e33 * cos(theta) ** 58 + 1.13019898279872e34 * cos(theta) ** 56 - 1.86950207680991e34 * cos(theta) ** 54 + 2.55272659533873e34 * cos(theta) ** 52 - 2.91551719674345e34 * cos(theta) ** 50 + 2.81221146929979e34 * cos(theta) ** 48 - 2.3070360271783e34 * cos(theta) ** 46 + 1.61773867759454e34 * cos(theta) ** 44 - 9.72905778133779e33 * cos(theta) ** 42 + 5.02804246682583e33 * cos(theta) ** 40 - 2.23468554081148e33 * cos(theta) ** 38 + 8.53795616951343e32 * cos(theta) ** 36 - 2.80005850431726e32 * cos(theta) ** 34 + 7.86202613074066e31 * cos(theta) ** 32 - 1.88293817520394e31 * cos(theta) ** 30 + 3.8274677860454e30 * cos(theta) ** 28 - 6.5613733475064e29 * cos(theta) ** 26 + 9.41061932012171e28 * cos(theta) ** 24 - 1.11809338456892e28 * cos(theta) ** 22 + 1.08703523499756e27 * cos(theta) ** 20 - 8.51697709894993e25 * cos(theta) ** 18 + 5.2756983649366e24 * cos(theta) ** 16 - 2.52124175146313e23 * cos(theta) ** 14 + 9.00443482665403e21 * cos(theta) ** 12 - 2.30256760387124e20 * cos(theta) ** 10 + 3.96994414460558e18 * cos(theta) ** 8 - 4.21853647244616e16 * cos(theta) ** 6 + 238245659211944.0 * cos(theta) ** 4 - 534782624493.702 * cos(theta) ** 2 + 199100009.119025 ) * sin(5 * phi) ) # @torch.jit.script def Yl73_m_minus_4(theta, phi): return ( 1.66059685188635e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 1.62637770885671e28 * cos(theta) ** 69 - 2.63136696895023e29 * cos(theta) ** 67 + 2.0342490798423e30 * cos(theta) ** 65 - 1.00029269174278e31 * cos(theta) ** 63 + 3.51361803412528e31 * cos(theta) ** 61 - 9.38674598897703e31 * cos(theta) ** 59 + 1.98280523298021e32 * cos(theta) ** 57 - 3.39909468510893e32 * cos(theta) ** 55 + 4.81646527422401e32 * cos(theta) ** 53 - 5.71670038577148e32 * cos(theta) ** 51 + 5.73920708020365e32 * cos(theta) ** 49 - 4.90858729186872e32 * cos(theta) ** 47 + 3.59497483909898e32 * cos(theta) ** 45 - 2.2625715770553e32 * cos(theta) ** 43 + 1.22635182117703e32 * cos(theta) ** 41 - 5.72996292515764e31 * cos(theta) ** 39 + 2.30755572149012e31 * cos(theta) ** 37 - 8.00016715519218e30 * cos(theta) ** 35 + 2.3824321608305e30 * cos(theta) ** 33 - 6.07399411356111e29 * cos(theta) ** 31 + 1.31981647794669e29 * cos(theta) ** 29 - 2.43013827685422e28 * cos(theta) ** 27 + 3.76424772804868e27 * cos(theta) ** 25 - 4.86127558508224e26 * cos(theta) ** 23 + 5.17635826189313e25 * cos(theta) ** 21 - 4.48261952576312e24 * cos(theta) ** 19 + 3.10335197937447e23 * cos(theta) ** 17 - 1.68082783430875e22 * cos(theta) ** 15 + 6.92648832819541e20 * cos(theta) ** 13 - 2.09324327624658e19 * cos(theta) ** 11 + 4.41104904956176e17 * cos(theta) ** 9 - 6.02648067492308e15 * cos(theta) ** 7 + 47649131842388.8 * cos(theta) ** 5 - 178260874831.234 * cos(theta) ** 3 + 199100009.119025 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl73_m_minus_3(theta, phi): return ( 1.21915407005133e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 2.32339672693816e26 * cos(theta) ** 70 - 3.86965730727976e27 * cos(theta) ** 68 + 3.08219557551863e28 * cos(theta) ** 66 - 1.5629573308481e29 * cos(theta) ** 64 + 5.66712586149239e29 * cos(theta) ** 62 - 1.56445766482951e30 * cos(theta) ** 60 + 3.41862971203484e30 * cos(theta) ** 58 - 6.06981193769452e30 * cos(theta) ** 56 + 8.91938013745187e30 * cos(theta) ** 54 - 1.09936545880221e31 * cos(theta) ** 52 + 1.14784141604073e31 * cos(theta) ** 50 - 1.02262235247265e31 * cos(theta) ** 48 + 7.81516269369342e30 * cos(theta) ** 46 - 5.14220812967113e30 * cos(theta) ** 44 + 2.91988528851674e30 * cos(theta) ** 42 - 1.43249073128941e30 * cos(theta) ** 40 + 6.07251505655294e29 * cos(theta) ** 38 - 2.22226865422005e29 * cos(theta) ** 36 + 7.00715341420736e28 * cos(theta) ** 34 - 1.89812316048785e28 * cos(theta) ** 32 + 4.3993882598223e27 * cos(theta) ** 30 - 8.67906527447936e26 * cos(theta) ** 28 + 1.44778758771103e26 * cos(theta) ** 26 - 2.02553149378427e25 * cos(theta) ** 24 + 2.35289011904233e24 * cos(theta) ** 22 - 2.24130976288156e23 * cos(theta) ** 20 + 1.72408443298582e22 * cos(theta) ** 18 - 1.05051739644297e21 * cos(theta) ** 16 + 4.94749166299672e19 * cos(theta) ** 14 - 1.74436939687215e18 * cos(theta) ** 12 + 4.41104904956176e16 * cos(theta) ** 10 - 753310084365385.0 * cos(theta) ** 8 + 7941521973731.47 * cos(theta) ** 6 - 44565218707.8085 * cos(theta) ** 4 + 99550004.5595126 * cos(theta) ** 2 - 36938.7772020455 ) * sin(3 * phi) ) # @torch.jit.script def Yl73_m_minus_2(theta, phi): return ( 0.000895559743659608 * (1.0 - cos(theta) ** 2) * ( 3.27238975625092e24 * cos(theta) ** 71 - 5.60819899605762e25 * cos(theta) ** 69 + 4.60029190375915e26 * cos(theta) ** 67 - 2.40454973976631e27 * cos(theta) ** 65 + 8.99543787538475e27 * cos(theta) ** 63 - 2.56468469644181e28 * cos(theta) ** 61 + 5.79428764751669e28 * cos(theta) ** 59 - 1.06487928731483e29 * cos(theta) ** 57 + 1.6217054795367e29 * cos(theta) ** 55 - 2.0742744505702e29 * cos(theta) ** 53 + 2.25066944321712e29 * cos(theta) ** 51 - 2.08698439280133e29 * cos(theta) ** 49 + 1.66280057312626e29 * cos(theta) ** 47 - 1.1427129177047e29 * cos(theta) ** 45 + 6.79043090352731e28 * cos(theta) ** 43 - 3.4938798324132e28 * cos(theta) ** 41 + 1.55705514270588e28 * cos(theta) ** 39 - 6.00613149789202e27 * cos(theta) ** 37 + 2.00204383263067e27 * cos(theta) ** 35 - 5.75188836511469e26 * cos(theta) ** 33 + 1.41915750316848e26 * cos(theta) ** 31 - 2.99278112913082e25 * cos(theta) ** 29 + 5.3621762507816e24 * cos(theta) ** 27 - 8.10212597513707e23 * cos(theta) ** 25 + 1.02299570393145e23 * cos(theta) ** 23 - 1.06729036327693e22 * cos(theta) ** 21 + 9.07412859466219e20 * cos(theta) ** 19 - 6.17951409672336e19 * cos(theta) ** 17 + 3.29832777533115e18 * cos(theta) ** 15 - 1.34182261297858e17 * cos(theta) ** 13 + 4.01004459051069e15 * cos(theta) ** 11 - 83701120485042.8 * cos(theta) ** 9 + 1134503139104.5 * cos(theta) ** 7 - 8913043741.5617 * cos(theta) ** 5 + 33183334.8531709 * cos(theta) ** 3 - 36938.7772020455 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl73_m_minus_1(theta, phi): return ( 0.0658099321843123 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 4.54498577257073e22 * cos(theta) ** 72 - 8.01171285151088e23 * cos(theta) ** 70 + 6.76513515258699e24 * cos(theta) ** 68 - 3.6432571814641e25 * cos(theta) ** 66 + 1.40553716802887e26 * cos(theta) ** 64 - 4.13658822006744e26 * cos(theta) ** 62 + 9.65714607919448e26 * cos(theta) ** 60 - 1.83599877123246e27 * cos(theta) ** 58 + 2.89590264202983e27 * cos(theta) ** 56 - 3.84124898253741e27 * cos(theta) ** 54 + 4.32821046772523e27 * cos(theta) ** 52 - 4.17396878560265e27 * cos(theta) ** 50 + 3.46416786067971e27 * cos(theta) ** 48 - 2.48415851674934e27 * cos(theta) ** 46 + 1.54327975080166e27 * cos(theta) ** 44 - 8.31876150574571e26 * cos(theta) ** 42 + 3.8926378567647e26 * cos(theta) ** 40 - 1.5805609204979e26 * cos(theta) ** 38 + 5.56123286841854e25 * cos(theta) ** 36 - 1.69173187209255e25 * cos(theta) ** 34 + 4.43486719740151e24 * cos(theta) ** 32 - 9.97593709710272e23 * cos(theta) ** 30 + 1.91506294670772e23 * cos(theta) ** 28 - 3.11620229812964e22 * cos(theta) ** 26 + 4.26248209971437e21 * cos(theta) ** 24 - 4.85131983307697e20 * cos(theta) ** 22 + 4.5370642973311e19 * cos(theta) ** 20 - 3.43306338706853e18 * cos(theta) ** 18 + 2.06145485958197e17 * cos(theta) ** 16 - 9.58444723556126e15 * cos(theta) ** 14 + 334170382542557.0 * cos(theta) ** 12 - 8370112048504.28 * cos(theta) ** 10 + 141812892388.062 * cos(theta) ** 8 - 1485507290.26028 * cos(theta) ** 6 + 8295833.71329272 * cos(theta) ** 4 - 18469.3886010228 * cos(theta) ** 2 + 6.84051429667509 ) * sin(phi) ) # @torch.jit.script def Yl73_m0(theta, phi): return ( 6.68980218455322e21 * cos(theta) ** 73 - 1.21246897524178e23 * cos(theta) ** 71 + 1.05349139981672e24 * cos(theta) ** 69 - 5.84276790536651e24 * cos(theta) ** 67 + 2.32344601416643e25 * cos(theta) ** 65 - 7.05513534228639e25 * cos(theta) ** 63 + 1.70107152141794e26 * cos(theta) ** 61 - 3.34367441911368e26 * cos(theta) ** 59 + 5.4589951632667e26 * cos(theta) ** 57 - 7.50435510815991e26 * cos(theta) ** 55 + 8.77477742962005e26 * cos(theta) ** 53 - 8.7939223985574e26 * cos(theta) ** 51 + 7.59637605566442e26 * cos(theta) ** 49 - 5.67917243576692e26 * cos(theta) ** 47 + 3.6849852359328e26 * cos(theta) ** 45 - 2.07870962026978e26 * cos(theta) ** 43 + 1.02014934081718e26 * cos(theta) ** 41 - 4.35461977860535e25 * cos(theta) ** 39 + 1.61500162960289e25 * cos(theta) ** 37 - 5.19358322218987e24 * cos(theta) ** 35 + 1.4440102884126e24 * cos(theta) ** 33 - 3.45776613279753e23 * cos(theta) ** 31 + 7.09559246138946e22 * cos(theta) ** 29 - 1.24012507073789e22 * cos(theta) ** 27 + 1.83200294540825e21 * cos(theta) ** 25 - 2.26639539638134e20 * cos(theta) ** 23 + 2.32144953556469e19 * cos(theta) ** 21 - 1.9414751193492e18 * cos(theta) ** 19 + 1.30295229752242e17 * cos(theta) ** 17 - 6.86561458593761e15 * cos(theta) ** 15 + 276202885641168.0 * cos(theta) ** 13 - 8176024698296.44 * cos(theta) ** 11 + 169307740363.819 * cos(theta) ** 9 - 2280238927.45885 * cos(theta) ** 7 + 17827631.2273402 * cos(theta) ** 5 - 66150.7652220415 * cos(theta) ** 3 + 73.5008502467128 * cos(theta) ) # @torch.jit.script def Yl73_m1(theta, phi): return ( 0.0658099321843123 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 4.54498577257073e22 * cos(theta) ** 72 - 8.01171285151088e23 * cos(theta) ** 70 + 6.76513515258699e24 * cos(theta) ** 68 - 3.6432571814641e25 * cos(theta) ** 66 + 1.40553716802887e26 * cos(theta) ** 64 - 4.13658822006744e26 * cos(theta) ** 62 + 9.65714607919448e26 * cos(theta) ** 60 - 1.83599877123246e27 * cos(theta) ** 58 + 2.89590264202983e27 * cos(theta) ** 56 - 3.84124898253741e27 * cos(theta) ** 54 + 4.32821046772523e27 * cos(theta) ** 52 - 4.17396878560265e27 * cos(theta) ** 50 + 3.46416786067971e27 * cos(theta) ** 48 - 2.48415851674934e27 * cos(theta) ** 46 + 1.54327975080166e27 * cos(theta) ** 44 - 8.31876150574571e26 * cos(theta) ** 42 + 3.8926378567647e26 * cos(theta) ** 40 - 1.5805609204979e26 * cos(theta) ** 38 + 5.56123286841854e25 * cos(theta) ** 36 - 1.69173187209255e25 * cos(theta) ** 34 + 4.43486719740151e24 * cos(theta) ** 32 - 9.97593709710272e23 * cos(theta) ** 30 + 1.91506294670772e23 * cos(theta) ** 28 - 3.11620229812964e22 * cos(theta) ** 26 + 4.26248209971437e21 * cos(theta) ** 24 - 4.85131983307697e20 * cos(theta) ** 22 + 4.5370642973311e19 * cos(theta) ** 20 - 3.43306338706853e18 * cos(theta) ** 18 + 2.06145485958197e17 * cos(theta) ** 16 - 9.58444723556126e15 * cos(theta) ** 14 + 334170382542557.0 * cos(theta) ** 12 - 8370112048504.28 * cos(theta) ** 10 + 141812892388.062 * cos(theta) ** 8 - 1485507290.26028 * cos(theta) ** 6 + 8295833.71329272 * cos(theta) ** 4 - 18469.3886010228 * cos(theta) ** 2 + 6.84051429667509 ) * cos(phi) ) # @torch.jit.script def Yl73_m2(theta, phi): return ( 0.000895559743659608 * (1.0 - cos(theta) ** 2) * ( 3.27238975625092e24 * cos(theta) ** 71 - 5.60819899605762e25 * cos(theta) ** 69 + 4.60029190375915e26 * cos(theta) ** 67 - 2.40454973976631e27 * cos(theta) ** 65 + 8.99543787538475e27 * cos(theta) ** 63 - 2.56468469644181e28 * cos(theta) ** 61 + 5.79428764751669e28 * cos(theta) ** 59 - 1.06487928731483e29 * cos(theta) ** 57 + 1.6217054795367e29 * cos(theta) ** 55 - 2.0742744505702e29 * cos(theta) ** 53 + 2.25066944321712e29 * cos(theta) ** 51 - 2.08698439280133e29 * cos(theta) ** 49 + 1.66280057312626e29 * cos(theta) ** 47 - 1.1427129177047e29 * cos(theta) ** 45 + 6.79043090352731e28 * cos(theta) ** 43 - 3.4938798324132e28 * cos(theta) ** 41 + 1.55705514270588e28 * cos(theta) ** 39 - 6.00613149789202e27 * cos(theta) ** 37 + 2.00204383263067e27 * cos(theta) ** 35 - 5.75188836511469e26 * cos(theta) ** 33 + 1.41915750316848e26 * cos(theta) ** 31 - 2.99278112913082e25 * cos(theta) ** 29 + 5.3621762507816e24 * cos(theta) ** 27 - 8.10212597513707e23 * cos(theta) ** 25 + 1.02299570393145e23 * cos(theta) ** 23 - 1.06729036327693e22 * cos(theta) ** 21 + 9.07412859466219e20 * cos(theta) ** 19 - 6.17951409672336e19 * cos(theta) ** 17 + 3.29832777533115e18 * cos(theta) ** 15 - 1.34182261297858e17 * cos(theta) ** 13 + 4.01004459051069e15 * cos(theta) ** 11 - 83701120485042.8 * cos(theta) ** 9 + 1134503139104.5 * cos(theta) ** 7 - 8913043741.5617 * cos(theta) ** 5 + 33183334.8531709 * cos(theta) ** 3 - 36938.7772020455 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl73_m3(theta, phi): return ( 1.21915407005133e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 2.32339672693816e26 * cos(theta) ** 70 - 3.86965730727976e27 * cos(theta) ** 68 + 3.08219557551863e28 * cos(theta) ** 66 - 1.5629573308481e29 * cos(theta) ** 64 + 5.66712586149239e29 * cos(theta) ** 62 - 1.56445766482951e30 * cos(theta) ** 60 + 3.41862971203484e30 * cos(theta) ** 58 - 6.06981193769452e30 * cos(theta) ** 56 + 8.91938013745187e30 * cos(theta) ** 54 - 1.09936545880221e31 * cos(theta) ** 52 + 1.14784141604073e31 * cos(theta) ** 50 - 1.02262235247265e31 * cos(theta) ** 48 + 7.81516269369342e30 * cos(theta) ** 46 - 5.14220812967113e30 * cos(theta) ** 44 + 2.91988528851674e30 * cos(theta) ** 42 - 1.43249073128941e30 * cos(theta) ** 40 + 6.07251505655294e29 * cos(theta) ** 38 - 2.22226865422005e29 * cos(theta) ** 36 + 7.00715341420736e28 * cos(theta) ** 34 - 1.89812316048785e28 * cos(theta) ** 32 + 4.3993882598223e27 * cos(theta) ** 30 - 8.67906527447936e26 * cos(theta) ** 28 + 1.44778758771103e26 * cos(theta) ** 26 - 2.02553149378427e25 * cos(theta) ** 24 + 2.35289011904233e24 * cos(theta) ** 22 - 2.24130976288156e23 * cos(theta) ** 20 + 1.72408443298582e22 * cos(theta) ** 18 - 1.05051739644297e21 * cos(theta) ** 16 + 4.94749166299672e19 * cos(theta) ** 14 - 1.74436939687215e18 * cos(theta) ** 12 + 4.41104904956176e16 * cos(theta) ** 10 - 753310084365385.0 * cos(theta) ** 8 + 7941521973731.47 * cos(theta) ** 6 - 44565218707.8085 * cos(theta) ** 4 + 99550004.5595126 * cos(theta) ** 2 - 36938.7772020455 ) * cos(3 * phi) ) # @torch.jit.script def Yl73_m4(theta, phi): return ( 1.66059685188635e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 1.62637770885671e28 * cos(theta) ** 69 - 2.63136696895023e29 * cos(theta) ** 67 + 2.0342490798423e30 * cos(theta) ** 65 - 1.00029269174278e31 * cos(theta) ** 63 + 3.51361803412528e31 * cos(theta) ** 61 - 9.38674598897703e31 * cos(theta) ** 59 + 1.98280523298021e32 * cos(theta) ** 57 - 3.39909468510893e32 * cos(theta) ** 55 + 4.81646527422401e32 * cos(theta) ** 53 - 5.71670038577148e32 * cos(theta) ** 51 + 5.73920708020365e32 * cos(theta) ** 49 - 4.90858729186872e32 * cos(theta) ** 47 + 3.59497483909898e32 * cos(theta) ** 45 - 2.2625715770553e32 * cos(theta) ** 43 + 1.22635182117703e32 * cos(theta) ** 41 - 5.72996292515764e31 * cos(theta) ** 39 + 2.30755572149012e31 * cos(theta) ** 37 - 8.00016715519218e30 * cos(theta) ** 35 + 2.3824321608305e30 * cos(theta) ** 33 - 6.07399411356111e29 * cos(theta) ** 31 + 1.31981647794669e29 * cos(theta) ** 29 - 2.43013827685422e28 * cos(theta) ** 27 + 3.76424772804868e27 * cos(theta) ** 25 - 4.86127558508224e26 * cos(theta) ** 23 + 5.17635826189313e25 * cos(theta) ** 21 - 4.48261952576312e24 * cos(theta) ** 19 + 3.10335197937447e23 * cos(theta) ** 17 - 1.68082783430875e22 * cos(theta) ** 15 + 6.92648832819541e20 * cos(theta) ** 13 - 2.09324327624658e19 * cos(theta) ** 11 + 4.41104904956176e17 * cos(theta) ** 9 - 6.02648067492308e15 * cos(theta) ** 7 + 47649131842388.8 * cos(theta) ** 5 - 178260874831.234 * cos(theta) ** 3 + 199100009.119025 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl73_m5(theta, phi): return ( 2.26356183859179e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.12220061911113e30 * cos(theta) ** 68 - 1.76301586919666e31 * cos(theta) ** 66 + 1.32226190189749e32 * cos(theta) ** 64 - 6.30184395797954e32 * cos(theta) ** 62 + 2.14330700081642e33 * cos(theta) ** 60 - 5.53818013349645e33 * cos(theta) ** 58 + 1.13019898279872e34 * cos(theta) ** 56 - 1.86950207680991e34 * cos(theta) ** 54 + 2.55272659533873e34 * cos(theta) ** 52 - 2.91551719674345e34 * cos(theta) ** 50 + 2.81221146929979e34 * cos(theta) ** 48 - 2.3070360271783e34 * cos(theta) ** 46 + 1.61773867759454e34 * cos(theta) ** 44 - 9.72905778133779e33 * cos(theta) ** 42 + 5.02804246682583e33 * cos(theta) ** 40 - 2.23468554081148e33 * cos(theta) ** 38 + 8.53795616951343e32 * cos(theta) ** 36 - 2.80005850431726e32 * cos(theta) ** 34 + 7.86202613074066e31 * cos(theta) ** 32 - 1.88293817520394e31 * cos(theta) ** 30 + 3.8274677860454e30 * cos(theta) ** 28 - 6.5613733475064e29 * cos(theta) ** 26 + 9.41061932012171e28 * cos(theta) ** 24 - 1.11809338456892e28 * cos(theta) ** 22 + 1.08703523499756e27 * cos(theta) ** 20 - 8.51697709894993e25 * cos(theta) ** 18 + 5.2756983649366e24 * cos(theta) ** 16 - 2.52124175146313e23 * cos(theta) ** 14 + 9.00443482665403e21 * cos(theta) ** 12 - 2.30256760387124e20 * cos(theta) ** 10 + 3.96994414460558e18 * cos(theta) ** 8 - 4.21853647244616e16 * cos(theta) ** 6 + 238245659211944.0 * cos(theta) ** 4 - 534782624493.702 * cos(theta) ** 2 + 199100009.119025 ) * cos(5 * phi) ) # @torch.jit.script def Yl73_m6(theta, phi): return ( 3.08833470306255e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 7.63096420995568e31 * cos(theta) ** 67 - 1.16359047366979e33 * cos(theta) ** 65 + 8.46247617214395e33 * cos(theta) ** 63 - 3.90714325394731e34 * cos(theta) ** 61 + 1.28598420048985e35 * cos(theta) ** 59 - 3.21214447742794e35 * cos(theta) ** 57 + 6.32911430367283e35 * cos(theta) ** 55 - 1.00953112147735e36 * cos(theta) ** 53 + 1.32741782957614e36 * cos(theta) ** 51 - 1.45775859837173e36 * cos(theta) ** 49 + 1.3498615052639e36 * cos(theta) ** 47 - 1.06123657250202e36 * cos(theta) ** 45 + 7.11805018141597e35 * cos(theta) ** 43 - 4.08620426816187e35 * cos(theta) ** 41 + 2.01121698673033e35 * cos(theta) ** 39 - 8.49180505508363e34 * cos(theta) ** 37 + 3.07366422102483e34 * cos(theta) ** 35 - 9.52019891467869e33 * cos(theta) ** 33 + 2.51584836183701e33 * cos(theta) ** 31 - 5.64881452561183e32 * cos(theta) ** 29 + 1.07169098009271e32 * cos(theta) ** 27 - 1.70595707035166e31 * cos(theta) ** 25 + 2.25854863682921e30 * cos(theta) ** 23 - 2.45980544605162e29 * cos(theta) ** 21 + 2.17407046999511e28 * cos(theta) ** 19 - 1.53305587781099e27 * cos(theta) ** 17 + 8.44111738389856e25 * cos(theta) ** 15 - 3.52973845204838e24 * cos(theta) ** 13 + 1.08053217919848e23 * cos(theta) ** 11 - 2.30256760387124e21 * cos(theta) ** 9 + 3.17595531568447e19 * cos(theta) ** 7 - 2.5311218834677e17 * cos(theta) ** 5 + 952982636847777.0 * cos(theta) ** 3 - 1069565248987.4 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl73_m7(theta, phi): return ( 4.21834374509173e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 5.1127460206703e33 * cos(theta) ** 66 - 7.56333807885366e34 * cos(theta) ** 64 + 5.33135998845069e35 * cos(theta) ** 62 - 2.38335738490786e36 * cos(theta) ** 60 + 7.58730678289014e36 * cos(theta) ** 58 - 1.83092235213393e37 * cos(theta) ** 56 + 3.48101286702006e37 * cos(theta) ** 54 - 5.35051494382997e37 * cos(theta) ** 52 + 6.7698309308383e37 * cos(theta) ** 50 - 7.14301713202146e37 * cos(theta) ** 48 + 6.34434907474032e37 * cos(theta) ** 46 - 4.77556457625908e37 * cos(theta) ** 44 + 3.06076157800887e37 * cos(theta) ** 42 - 1.67534374994637e37 * cos(theta) ** 40 + 7.8437462482483e36 * cos(theta) ** 38 - 3.14196787038094e36 * cos(theta) ** 36 + 1.07578247735869e36 * cos(theta) ** 34 - 3.14166564184397e35 * cos(theta) ** 32 + 7.79912992169473e34 * cos(theta) ** 30 - 1.63815621242743e34 * cos(theta) ** 28 + 2.89356564625032e33 * cos(theta) ** 26 - 4.26489267587916e32 * cos(theta) ** 24 + 5.19466186470718e31 * cos(theta) ** 22 - 5.16559143670839e30 * cos(theta) ** 20 + 4.13073389299072e29 * cos(theta) ** 18 - 2.60619499227868e28 * cos(theta) ** 16 + 1.26616760758478e27 * cos(theta) ** 14 - 4.5886599876629e25 * cos(theta) ** 12 + 1.18858539711833e24 * cos(theta) ** 10 - 2.07231084348411e22 * cos(theta) ** 8 + 2.22316872097913e20 * cos(theta) ** 6 - 1.26556094173385e18 * cos(theta) ** 4 + 2.85894791054333e15 * cos(theta) ** 2 - 1069565248987.4 ) * cos(7 * phi) ) # @torch.jit.script def Yl73_m8(theta, phi): return ( 5.76935801162982e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 3.3744123736424e35 * cos(theta) ** 65 - 4.84053637046634e36 * cos(theta) ** 63 + 3.30544319283943e37 * cos(theta) ** 61 - 1.43001443094472e38 * cos(theta) ** 59 + 4.40063793407628e38 * cos(theta) ** 57 - 1.025316517195e39 * cos(theta) ** 55 + 1.87974694819083e39 * cos(theta) ** 53 - 2.78226777079158e39 * cos(theta) ** 51 + 3.38491546541915e39 * cos(theta) ** 49 - 3.4286482233703e39 * cos(theta) ** 47 + 2.91840057438055e39 * cos(theta) ** 45 - 2.10124841355399e39 * cos(theta) ** 43 + 1.28551986276372e39 * cos(theta) ** 41 - 6.70137499978547e38 * cos(theta) ** 39 + 2.98062357433435e38 * cos(theta) ** 37 - 1.13110843333714e38 * cos(theta) ** 35 + 3.65766042301955e37 * cos(theta) ** 33 - 1.00533300539007e37 * cos(theta) ** 31 + 2.33973897650842e36 * cos(theta) ** 29 - 4.58683739479681e35 * cos(theta) ** 27 + 7.52327068025084e34 * cos(theta) ** 25 - 1.023574242211e34 * cos(theta) ** 23 + 1.14282561023558e33 * cos(theta) ** 21 - 1.03311828734168e32 * cos(theta) ** 19 + 7.43532100738329e30 * cos(theta) ** 17 - 4.16991198764589e29 * cos(theta) ** 15 + 1.7726346506187e28 * cos(theta) ** 13 - 5.50639198519548e26 * cos(theta) ** 11 + 1.18858539711833e25 * cos(theta) ** 9 - 1.65784867478729e23 * cos(theta) ** 7 + 1.33390123258748e21 * cos(theta) ** 5 - 5.06224376693539e18 * cos(theta) ** 3 + 5.71789582108666e15 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl73_m9(theta, phi): return ( 7.90248872694352e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 2.19336804286756e37 * cos(theta) ** 64 - 3.04953791339379e38 * cos(theta) ** 62 + 2.01632034763205e39 * cos(theta) ** 60 - 8.43708514257383e39 * cos(theta) ** 58 + 2.50836362242348e40 * cos(theta) ** 56 - 5.63924084457249e40 * cos(theta) ** 54 + 9.9626588254114e40 * cos(theta) ** 52 - 1.41895656310371e41 * cos(theta) ** 50 + 1.65860857805538e41 * cos(theta) ** 48 - 1.61146466498404e41 * cos(theta) ** 46 + 1.31328025847125e41 * cos(theta) ** 44 - 9.03536817828218e40 * cos(theta) ** 42 + 5.27063143733127e40 * cos(theta) ** 40 - 2.61353624991633e40 * cos(theta) ** 38 + 1.10283072250371e40 * cos(theta) ** 36 - 3.95887951667999e39 * cos(theta) ** 34 + 1.20702793959645e39 * cos(theta) ** 32 - 3.11653231670922e38 * cos(theta) ** 30 + 6.78524303187442e37 * cos(theta) ** 28 - 1.23844609659514e37 * cos(theta) ** 26 + 1.88081767006271e36 * cos(theta) ** 24 - 2.3542207570853e35 * cos(theta) ** 22 + 2.39993378149472e34 * cos(theta) ** 20 - 1.96292474594919e33 * cos(theta) ** 18 + 1.26400457125516e32 * cos(theta) ** 16 - 6.25486798146883e30 * cos(theta) ** 14 + 2.30442504580431e29 * cos(theta) ** 12 - 6.05703118371502e27 * cos(theta) ** 10 + 1.0697268574065e26 * cos(theta) ** 8 - 1.1604940723511e24 * cos(theta) ** 6 + 6.66950616293738e21 * cos(theta) ** 4 - 1.51867313008062e19 * cos(theta) ** 2 + 5.71789582108666e15 ) * cos(9 * phi) ) # @torch.jit.script def Yl73_m10(theta, phi): return ( 1.08426353398728e-18 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.40375554743524e39 * cos(theta) ** 63 - 1.89071350630415e40 * cos(theta) ** 61 + 1.20979220857923e41 * cos(theta) ** 59 - 4.89350938269282e41 * cos(theta) ** 57 + 1.40468362855715e42 * cos(theta) ** 55 - 3.04519005606915e42 * cos(theta) ** 53 + 5.18058258921393e42 * cos(theta) ** 51 - 7.09478281551854e42 * cos(theta) ** 49 + 7.96132117466584e42 * cos(theta) ** 47 - 7.41273745892659e42 * cos(theta) ** 45 + 5.77843313727349e42 * cos(theta) ** 43 - 3.79485463487851e42 * cos(theta) ** 41 + 2.10825257493251e42 * cos(theta) ** 39 - 9.93143774968206e41 * cos(theta) ** 37 + 3.97019060101336e41 * cos(theta) ** 35 - 1.3460190356712e41 * cos(theta) ** 33 + 3.86248940670865e40 * cos(theta) ** 31 - 9.34959695012765e39 * cos(theta) ** 29 + 1.89986804892484e39 * cos(theta) ** 27 - 3.21995985114736e38 * cos(theta) ** 25 + 4.5139624081505e37 * cos(theta) ** 23 - 5.17928566558765e36 * cos(theta) ** 21 + 4.79986756298944e35 * cos(theta) ** 19 - 3.53326454270854e34 * cos(theta) ** 17 + 2.02240731400826e33 * cos(theta) ** 15 - 8.75681517405636e31 * cos(theta) ** 13 + 2.76531005496517e30 * cos(theta) ** 11 - 6.05703118371502e28 * cos(theta) ** 9 + 8.55781485925199e26 * cos(theta) ** 7 - 6.96296443410662e24 * cos(theta) ** 5 + 2.66780246517495e22 * cos(theta) ** 3 - 3.03734626016123e19 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl73_m11(theta, phi): return ( 1.4904758171906e-20 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 8.843659948842e40 * cos(theta) ** 62 - 1.15333523884553e42 * cos(theta) ** 60 + 7.13777403061746e42 * cos(theta) ** 58 - 2.78930034813491e43 * cos(theta) ** 56 + 7.72575995706431e43 * cos(theta) ** 54 - 1.61395072971665e44 * cos(theta) ** 52 + 2.6420971204991e44 * cos(theta) ** 50 - 3.47644357960408e44 * cos(theta) ** 48 + 3.74182095209295e44 * cos(theta) ** 46 - 3.33573185651697e44 * cos(theta) ** 44 + 2.4847262490276e44 * cos(theta) ** 42 - 1.55589040030019e44 * cos(theta) ** 40 + 8.22218504223678e43 * cos(theta) ** 38 - 3.67463196738236e43 * cos(theta) ** 36 + 1.38956671035468e43 * cos(theta) ** 34 - 4.44186281771494e42 * cos(theta) ** 32 + 1.19737171607968e42 * cos(theta) ** 30 - 2.71138311553702e41 * cos(theta) ** 28 + 5.12964373209706e40 * cos(theta) ** 26 - 8.0498996278684e39 * cos(theta) ** 24 + 1.03821135387462e39 * cos(theta) ** 22 - 1.08764998977341e38 * cos(theta) ** 20 + 9.11974836967993e36 * cos(theta) ** 18 - 6.00654972260452e35 * cos(theta) ** 16 + 3.03361097101238e34 * cos(theta) ** 14 - 1.13838597262733e33 * cos(theta) ** 12 + 3.04184106046168e31 * cos(theta) ** 10 - 5.45132806534352e29 * cos(theta) ** 8 + 5.9904704014764e27 * cos(theta) ** 6 - 3.48148221705331e25 * cos(theta) ** 4 + 8.00340739552485e22 * cos(theta) ** 2 - 3.03734626016123e19 ) * cos(11 * phi) ) # @torch.jit.script def Yl73_m12(theta, phi): return ( 2.05314502197758e-22 * (1.0 - cos(theta) ** 2) ** 6 * ( 5.48306916828204e42 * cos(theta) ** 61 - 6.9200114330732e43 * cos(theta) ** 59 + 4.13990893775813e44 * cos(theta) ** 57 - 1.56200819495555e45 * cos(theta) ** 55 + 4.17191037681473e45 * cos(theta) ** 53 - 8.39254379452656e45 * cos(theta) ** 51 + 1.32104856024955e46 * cos(theta) ** 49 - 1.66869291820996e46 * cos(theta) ** 47 + 1.72123763796275e46 * cos(theta) ** 45 - 1.46772201686747e46 * cos(theta) ** 43 + 1.04358502459159e46 * cos(theta) ** 41 - 6.22356160120076e45 * cos(theta) ** 39 + 3.12443031604998e45 * cos(theta) ** 37 - 1.32286750825765e45 * cos(theta) ** 35 + 4.7245268152059e44 * cos(theta) ** 33 - 1.42139610166878e44 * cos(theta) ** 31 + 3.59211514823904e43 * cos(theta) ** 29 - 7.59187272350365e42 * cos(theta) ** 27 + 1.33370737034524e42 * cos(theta) ** 25 - 1.93197591068842e41 * cos(theta) ** 23 + 2.28406497852415e40 * cos(theta) ** 21 - 2.17529997954681e39 * cos(theta) ** 19 + 1.64155470654239e38 * cos(theta) ** 17 - 9.61047955616723e36 * cos(theta) ** 15 + 4.24705535941734e35 * cos(theta) ** 13 - 1.36606316715279e34 * cos(theta) ** 11 + 3.04184106046168e32 * cos(theta) ** 9 - 4.36106245227482e30 * cos(theta) ** 7 + 3.59428224088584e28 * cos(theta) ** 5 - 1.39259288682132e26 * cos(theta) ** 3 + 1.60068147910497e23 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl73_m13(theta, phi): return ( 2.83468942345913e-24 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 3.34467219265205e44 * cos(theta) ** 60 - 4.08280674551319e45 * cos(theta) ** 58 + 2.35974809452213e46 * cos(theta) ** 56 - 8.59104507225552e46 * cos(theta) ** 54 + 2.21111249971181e47 * cos(theta) ** 52 - 4.28019733520855e47 * cos(theta) ** 50 + 6.4731379452228e47 * cos(theta) ** 48 - 7.84285671558681e47 * cos(theta) ** 46 + 7.7455693708324e47 * cos(theta) ** 44 - 6.3112046725301e47 * cos(theta) ** 42 + 4.27869860082553e47 * cos(theta) ** 40 - 2.4271890244683e47 * cos(theta) ** 38 + 1.15603921693849e47 * cos(theta) ** 36 - 4.63003627890178e46 * cos(theta) ** 34 + 1.55909384901795e46 * cos(theta) ** 32 - 4.40632791517323e45 * cos(theta) ** 30 + 1.04171339298932e45 * cos(theta) ** 28 - 2.04980563534599e44 * cos(theta) ** 26 + 3.33426842586309e43 * cos(theta) ** 24 - 4.44354459458335e42 * cos(theta) ** 22 + 4.79653645490072e41 * cos(theta) ** 20 - 4.13306996113895e40 * cos(theta) ** 18 + 2.79064300112206e39 * cos(theta) ** 16 - 1.44157193342508e38 * cos(theta) ** 14 + 5.52117196724254e36 * cos(theta) ** 12 - 1.50266948386807e35 * cos(theta) ** 10 + 2.73765695441552e33 * cos(theta) ** 8 - 3.05274371659237e31 * cos(theta) ** 6 + 1.79714112044292e29 * cos(theta) ** 4 - 4.17777866046397e26 * cos(theta) ** 2 + 1.60068147910497e23 ) * cos(13 * phi) ) # @torch.jit.script def Yl73_m14(theta, phi): return ( 3.92346905679142e-26 * (1.0 - cos(theta) ** 2) ** 7 * ( 2.00680331559123e46 * cos(theta) ** 59 - 2.36802791239765e47 * cos(theta) ** 57 + 1.32145893293239e48 * cos(theta) ** 55 - 4.63916433901798e48 * cos(theta) ** 53 + 1.14977849985014e49 * cos(theta) ** 51 - 2.14009866760427e49 * cos(theta) ** 49 + 3.10710621370695e49 * cos(theta) ** 47 - 3.60771408916993e49 * cos(theta) ** 45 + 3.40805052316625e49 * cos(theta) ** 43 - 2.65070596246264e49 * cos(theta) ** 41 + 1.71147944033021e49 * cos(theta) ** 39 - 9.22331829297953e48 * cos(theta) ** 37 + 4.16174118097857e48 * cos(theta) ** 35 - 1.5742123348266e48 * cos(theta) ** 33 + 4.98910031685743e47 * cos(theta) ** 31 - 1.32189837455197e47 * cos(theta) ** 29 + 2.9167975003701e46 * cos(theta) ** 27 - 5.32949465189956e45 * cos(theta) ** 25 + 8.00224422207141e44 * cos(theta) ** 23 - 9.77579810808338e43 * cos(theta) ** 21 + 9.59307290980145e42 * cos(theta) ** 19 - 7.4395259300501e41 * cos(theta) ** 17 + 4.46502880179529e40 * cos(theta) ** 15 - 2.01820070679512e39 * cos(theta) ** 13 + 6.62540636069105e37 * cos(theta) ** 11 - 1.50266948386807e36 * cos(theta) ** 9 + 2.19012556353241e34 * cos(theta) ** 7 - 1.83164622995542e32 * cos(theta) ** 5 + 7.18856448177168e29 * cos(theta) ** 3 - 8.35555732092795e26 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl73_m15(theta, phi): return ( 5.44506276123659e-28 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.18401395619882e48 * cos(theta) ** 58 - 1.34977591006666e49 * cos(theta) ** 56 + 7.26802413112817e49 * cos(theta) ** 54 - 2.45875709967953e50 * cos(theta) ** 52 + 5.86387034923571e50 * cos(theta) ** 50 - 1.04864834712609e51 * cos(theta) ** 48 + 1.46033992044226e51 * cos(theta) ** 46 - 1.62347134012647e51 * cos(theta) ** 44 + 1.46546172496149e51 * cos(theta) ** 42 - 1.08678944460968e51 * cos(theta) ** 40 + 6.67476981728782e50 * cos(theta) ** 38 - 3.41262776840243e50 * cos(theta) ** 36 + 1.4566094133425e50 * cos(theta) ** 34 - 5.19490070492779e49 * cos(theta) ** 32 + 1.5466210982258e49 * cos(theta) ** 30 - 3.83350528620071e48 * cos(theta) ** 28 + 7.87535325099928e47 * cos(theta) ** 26 - 1.33237366297489e47 * cos(theta) ** 24 + 1.84051617107643e46 * cos(theta) ** 22 - 2.05291760269751e45 * cos(theta) ** 20 + 1.82268385286227e44 * cos(theta) ** 18 - 1.26471940810852e43 * cos(theta) ** 16 + 6.69754320269294e41 * cos(theta) ** 14 - 2.62366091883365e40 * cos(theta) ** 12 + 7.28794699676015e38 * cos(theta) ** 10 - 1.35240253548126e37 * cos(theta) ** 8 + 1.53308789447269e35 * cos(theta) ** 6 - 9.15823114977711e32 * cos(theta) ** 4 + 2.1565693445315e30 * cos(theta) ** 2 - 8.35555732092795e26 ) * cos(15 * phi) ) # @torch.jit.script def Yl73_m16(theta, phi): return ( 7.57868558212204e-30 * (1.0 - cos(theta) ** 2) ** 8 * ( 6.86728094595318e49 * cos(theta) ** 57 - 7.55874509637329e50 * cos(theta) ** 55 + 3.92473303080921e51 * cos(theta) ** 53 - 1.27855369183336e52 * cos(theta) ** 51 + 2.93193517461786e52 * cos(theta) ** 49 - 5.03351206620525e52 * cos(theta) ** 47 + 6.71756363403442e52 * cos(theta) ** 45 - 7.14327389655647e52 * cos(theta) ** 43 + 6.15493924483826e52 * cos(theta) ** 41 - 4.34715777843873e52 * cos(theta) ** 39 + 2.53641253056937e52 * cos(theta) ** 37 - 1.22854599662487e52 * cos(theta) ** 35 + 4.9524720053645e51 * cos(theta) ** 33 - 1.66236822557689e51 * cos(theta) ** 31 + 4.63986329467741e50 * cos(theta) ** 29 - 1.0733814801362e50 * cos(theta) ** 27 + 2.04759184525981e49 * cos(theta) ** 25 - 3.19769679113974e48 * cos(theta) ** 23 + 4.04913557636814e47 * cos(theta) ** 21 - 4.10583520539502e46 * cos(theta) ** 19 + 3.2808309351521e45 * cos(theta) ** 17 - 2.02355105297363e44 * cos(theta) ** 15 + 9.37656048377012e42 * cos(theta) ** 13 - 3.14839310260038e41 * cos(theta) ** 11 + 7.28794699676015e39 * cos(theta) ** 9 - 1.08192202838501e38 * cos(theta) ** 7 + 9.19852736683613e35 * cos(theta) ** 5 - 3.66329245991085e33 * cos(theta) ** 3 + 4.313138689063e30 * cos(theta) ) * cos(16 * phi) ) # @torch.jit.script def Yl73_m17(theta, phi): return ( 1.05812069192858e-31 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 3.91435013919331e51 * cos(theta) ** 56 - 4.15730980300531e52 * cos(theta) ** 54 + 2.08010850632888e53 * cos(theta) ** 52 - 6.52062382835011e53 * cos(theta) ** 50 + 1.43664823556275e54 * cos(theta) ** 48 - 2.36575067111647e54 * cos(theta) ** 46 + 3.02290363531549e54 * cos(theta) ** 44 - 3.07160777551928e54 * cos(theta) ** 42 + 2.52352509038368e54 * cos(theta) ** 40 - 1.69539153359111e54 * cos(theta) ** 38 + 9.38472636310667e53 * cos(theta) ** 36 - 4.29991098818706e53 * cos(theta) ** 34 + 1.63431576177028e53 * cos(theta) ** 32 - 5.15334149928837e52 * cos(theta) ** 30 + 1.34556035545645e52 * cos(theta) ** 28 - 2.89812999636773e51 * cos(theta) ** 26 + 5.11897961314953e50 * cos(theta) ** 24 - 7.3547026196214e49 * cos(theta) ** 22 + 8.50318471037309e48 * cos(theta) ** 20 - 7.80108689025054e47 * cos(theta) ** 18 + 5.57741258975856e46 * cos(theta) ** 16 - 3.03532657946044e45 * cos(theta) ** 14 + 1.21895286289012e44 * cos(theta) ** 12 - 3.46323241286042e42 * cos(theta) ** 10 + 6.55915229708413e40 * cos(theta) ** 8 - 7.57345419869508e38 * cos(theta) ** 6 + 4.59926368341807e36 * cos(theta) ** 4 - 1.09898773797325e34 * cos(theta) ** 2 + 4.313138689063e30 ) * cos(17 * phi) ) # @torch.jit.script def Yl73_m18(theta, phi): return ( 1.48224671864839e-33 * (1.0 - cos(theta) ** 2) ** 9 * ( 2.19203607794826e53 * cos(theta) ** 55 - 2.24494729362287e54 * cos(theta) ** 53 + 1.08165642329102e55 * cos(theta) ** 51 - 3.26031191417506e55 * cos(theta) ** 49 + 6.8959115307012e55 * cos(theta) ** 47 - 1.08824530871358e56 * cos(theta) ** 45 + 1.33007759953881e56 * cos(theta) ** 43 - 1.2900752657181e56 * cos(theta) ** 41 + 1.00941003615347e56 * cos(theta) ** 39 - 6.4424878276462e55 * cos(theta) ** 37 + 3.3785014907184e55 * cos(theta) ** 35 - 1.4619697359836e55 * cos(theta) ** 33 + 5.22981043766491e54 * cos(theta) ** 31 - 1.54600244978651e54 * cos(theta) ** 29 + 3.76756899527805e53 * cos(theta) ** 27 - 7.53513799055611e52 * cos(theta) ** 25 + 1.22855510715589e52 * cos(theta) ** 23 - 1.61803457631671e51 * cos(theta) ** 21 + 1.70063694207462e50 * cos(theta) ** 19 - 1.4041956402451e49 * cos(theta) ** 17 + 8.9238601436137e47 * cos(theta) ** 15 - 4.24945721124462e46 * cos(theta) ** 13 + 1.46274343546814e45 * cos(theta) ** 11 - 3.46323241286042e43 * cos(theta) ** 9 + 5.24732183766731e41 * cos(theta) ** 7 - 4.54407251921705e39 * cos(theta) ** 5 + 1.83970547336723e37 * cos(theta) ** 3 - 2.19797547594651e34 * cos(theta) ) * cos(18 * phi) ) # @torch.jit.script def Yl73_m19(theta, phi): return ( 2.08374820714938e-35 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.20561984287154e55 * cos(theta) ** 54 - 1.18982206562012e56 * cos(theta) ** 52 + 5.51644775878419e56 * cos(theta) ** 50 - 1.59755283794578e57 * cos(theta) ** 48 + 3.24107841942956e57 * cos(theta) ** 46 - 4.89710388921109e57 * cos(theta) ** 44 + 5.7193336780169e57 * cos(theta) ** 42 - 5.2893085894442e57 * cos(theta) ** 40 + 3.93669914099855e57 * cos(theta) ** 38 - 2.3837204962291e57 * cos(theta) ** 36 + 1.18247552175144e57 * cos(theta) ** 34 - 4.82450012874588e56 * cos(theta) ** 32 + 1.62124123567612e56 * cos(theta) ** 30 - 4.48340710438088e55 * cos(theta) ** 28 + 1.01724362872507e55 * cos(theta) ** 26 - 1.88378449763903e54 * cos(theta) ** 24 + 2.82567674645854e53 * cos(theta) ** 22 - 3.39787261026508e52 * cos(theta) ** 20 + 3.23121018994177e51 * cos(theta) ** 18 - 2.38713258841666e50 * cos(theta) ** 16 + 1.33857902154205e49 * cos(theta) ** 14 - 5.524294374618e47 * cos(theta) ** 12 + 1.60901777901495e46 * cos(theta) ** 10 - 3.11690917157438e44 * cos(theta) ** 8 + 3.67312528636712e42 * cos(theta) ** 6 - 2.27203625960853e40 * cos(theta) ** 4 + 5.51911642010168e37 * cos(theta) ** 2 - 2.19797547594651e34 ) * cos(19 * phi) ) # @torch.jit.script def Yl73_m20(theta, phi): return ( 2.940403188271e-37 * (1.0 - cos(theta) ** 2) ** 10 * ( 6.51034715150632e56 * cos(theta) ** 53 - 6.18707474122462e57 * cos(theta) ** 51 + 2.7582238793921e58 * cos(theta) ** 49 - 7.66825362213973e58 * cos(theta) ** 47 + 1.4908960729376e59 * cos(theta) ** 45 - 2.15472571125288e59 * cos(theta) ** 43 + 2.4021201447671e59 * cos(theta) ** 41 - 2.11572343577768e59 * cos(theta) ** 39 + 1.49594567357945e59 * cos(theta) ** 37 - 8.58139378642474e58 * cos(theta) ** 35 + 4.0204167739549e58 * cos(theta) ** 33 - 1.54384004119868e58 * cos(theta) ** 31 + 4.86372370702837e57 * cos(theta) ** 29 - 1.25535398922665e57 * cos(theta) ** 27 + 2.64483343468519e56 * cos(theta) ** 25 - 4.52108279433366e55 * cos(theta) ** 23 + 6.21648884220879e54 * cos(theta) ** 21 - 6.79574522053017e53 * cos(theta) ** 19 + 5.81617834189519e52 * cos(theta) ** 17 - 3.81941214146666e51 * cos(theta) ** 15 + 1.87401063015888e50 * cos(theta) ** 13 - 6.62915324954161e48 * cos(theta) ** 11 + 1.60901777901495e47 * cos(theta) ** 9 - 2.4935273372595e45 * cos(theta) ** 7 + 2.20387517182027e43 * cos(theta) ** 5 - 9.0881450384341e40 * cos(theta) ** 3 + 1.10382328402034e38 * cos(theta) ) * cos(20 * phi) ) # @torch.jit.script def Yl73_m21(theta, phi): return ( 4.16586338266047e-39 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 3.45048399029835e58 * cos(theta) ** 52 - 3.15540811802456e59 * cos(theta) ** 50 + 1.35152970090213e60 * cos(theta) ** 48 - 3.60407920240567e60 * cos(theta) ** 46 + 6.70903232821919e60 * cos(theta) ** 44 - 9.26532055838738e60 * cos(theta) ** 42 + 9.84869259354511e60 * cos(theta) ** 40 - 8.25132139953296e60 * cos(theta) ** 38 + 5.53499899224396e60 * cos(theta) ** 36 - 3.00348782524866e60 * cos(theta) ** 34 + 1.32673753540512e60 * cos(theta) ** 32 - 4.78590412771591e59 * cos(theta) ** 30 + 1.41047987503823e59 * cos(theta) ** 28 - 3.38945577091195e58 * cos(theta) ** 26 + 6.61208358671299e57 * cos(theta) ** 24 - 1.03984904269674e57 * cos(theta) ** 22 + 1.30546265686385e56 * cos(theta) ** 20 - 1.29119159190073e55 * cos(theta) ** 18 + 9.88750318122182e53 * cos(theta) ** 16 - 5.72911821219999e52 * cos(theta) ** 14 + 2.43621381920654e51 * cos(theta) ** 12 - 7.29206857449577e49 * cos(theta) ** 10 + 1.44811600111346e48 * cos(theta) ** 8 - 1.74546913608165e46 * cos(theta) ** 6 + 1.10193758591013e44 * cos(theta) ** 4 - 2.72644351153023e41 * cos(theta) ** 2 + 1.10382328402034e38 ) * cos(21 * phi) ) # @torch.jit.script def Yl73_m22(theta, phi): return ( 5.92709036956332e-41 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.79425167495514e60 * cos(theta) ** 51 - 1.57770405901228e61 * cos(theta) ** 49 + 6.48734256433021e61 * cos(theta) ** 47 - 1.65787643310661e62 * cos(theta) ** 45 + 2.95197422441645e62 * cos(theta) ** 43 - 3.8914346345227e62 * cos(theta) ** 41 + 3.93947703741804e62 * cos(theta) ** 39 - 3.13550213182252e62 * cos(theta) ** 37 + 1.99259963720783e62 * cos(theta) ** 35 - 1.02118586058454e62 * cos(theta) ** 33 + 4.24556011329637e61 * cos(theta) ** 31 - 1.43577123831477e61 * cos(theta) ** 29 + 3.94934365010703e60 * cos(theta) ** 27 - 8.81258500437107e59 * cos(theta) ** 25 + 1.58690006081112e59 * cos(theta) ** 23 - 2.28766789393283e58 * cos(theta) ** 21 + 2.61092531372769e57 * cos(theta) ** 19 - 2.32414486542132e56 * cos(theta) ** 17 + 1.58200050899549e55 * cos(theta) ** 15 - 8.02076549707999e53 * cos(theta) ** 13 + 2.92345658304785e52 * cos(theta) ** 11 - 7.29206857449577e50 * cos(theta) ** 9 + 1.15849280089077e49 * cos(theta) ** 7 - 1.04728148164899e47 * cos(theta) ** 5 + 4.40775034364054e44 * cos(theta) ** 3 - 5.45288702306046e41 * cos(theta) ) * cos(22 * phi) ) # @torch.jit.script def Yl73_m23(theta, phi): return ( 8.47073010326583e-43 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 9.15068354227122e61 * cos(theta) ** 50 - 7.73074988916017e62 * cos(theta) ** 48 + 3.0490510052352e63 * cos(theta) ** 46 - 7.46044394897974e63 * cos(theta) ** 44 + 1.26934891649907e64 * cos(theta) ** 42 - 1.59548820015431e64 * cos(theta) ** 40 + 1.53639604459304e64 * cos(theta) ** 38 - 1.16013578877433e64 * cos(theta) ** 36 + 6.97409873022739e63 * cos(theta) ** 34 - 3.369913339929e63 * cos(theta) ** 32 + 1.31612363512188e63 * cos(theta) ** 30 - 4.16373659111284e62 * cos(theta) ** 28 + 1.0663227855289e62 * cos(theta) ** 26 - 2.20314625109277e61 * cos(theta) ** 24 + 3.64987013986557e60 * cos(theta) ** 22 - 4.80410257725895e59 * cos(theta) ** 20 + 4.96075809608261e58 * cos(theta) ** 18 - 3.95104627121624e57 * cos(theta) ** 16 + 2.37300076349324e56 * cos(theta) ** 14 - 1.0426995146204e55 * cos(theta) ** 12 + 3.21580224135263e53 * cos(theta) ** 10 - 6.56286171704619e51 * cos(theta) ** 8 + 8.10944960623536e49 * cos(theta) ** 6 - 5.23640740824496e47 * cos(theta) ** 4 + 1.32232510309216e45 * cos(theta) ** 2 - 5.45288702306046e41 ) * cos(23 * phi) ) # @torch.jit.script def Yl73_m24(theta, phi): return ( 1.21632595741771e-44 * (1.0 - cos(theta) ** 2) ** 12 * ( 4.57534177113561e63 * cos(theta) ** 49 - 3.71075994679688e64 * cos(theta) ** 47 + 1.40256346240819e65 * cos(theta) ** 45 - 3.28259533755109e65 * cos(theta) ** 43 + 5.3312654492961e65 * cos(theta) ** 41 - 6.38195280061723e65 * cos(theta) ** 39 + 5.83830496945354e65 * cos(theta) ** 37 - 4.1764888395876e65 * cos(theta) ** 35 + 2.37119356827731e65 * cos(theta) ** 33 - 1.07837226877728e65 * cos(theta) ** 31 + 3.94837090536563e64 * cos(theta) ** 29 - 1.1658462455116e64 * cos(theta) ** 27 + 2.77243924237514e63 * cos(theta) ** 25 - 5.28755100262264e62 * cos(theta) ** 23 + 8.02971430770425e61 * cos(theta) ** 21 - 9.6082051545179e60 * cos(theta) ** 19 + 8.9293645729487e59 * cos(theta) ** 17 - 6.32167403394599e58 * cos(theta) ** 15 + 3.32220106889053e57 * cos(theta) ** 13 - 1.25123941754448e56 * cos(theta) ** 11 + 3.21580224135263e54 * cos(theta) ** 9 - 5.25028937363695e52 * cos(theta) ** 7 + 4.86566976374122e50 * cos(theta) ** 5 - 2.09456296329798e48 * cos(theta) ** 3 + 2.64465020618432e45 * cos(theta) ) * cos(24 * phi) ) # @torch.jit.script def Yl73_m25(theta, phi): return ( 1.75524965841487e-46 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 2.24191746785645e65 * cos(theta) ** 48 - 1.74405717499453e66 * cos(theta) ** 46 + 6.31153558083686e66 * cos(theta) ** 44 - 1.41151599514697e67 * cos(theta) ** 42 + 2.1858188342114e67 * cos(theta) ** 40 - 2.48896159224072e67 * cos(theta) ** 38 + 2.16017283869781e67 * cos(theta) ** 36 - 1.46177109385566e67 * cos(theta) ** 34 + 7.82493877531513e66 * cos(theta) ** 32 - 3.34295403320956e66 * cos(theta) ** 30 + 1.14502756255603e66 * cos(theta) ** 28 - 3.14778486288131e65 * cos(theta) ** 26 + 6.93109810593784e64 * cos(theta) ** 24 - 1.21613673060321e64 * cos(theta) ** 22 + 1.68624000461789e63 * cos(theta) ** 20 - 1.8255589793584e62 * cos(theta) ** 18 + 1.51799197740128e61 * cos(theta) ** 16 - 9.48251105091898e59 * cos(theta) ** 14 + 4.31886138955769e58 * cos(theta) ** 12 - 1.37636335929893e57 * cos(theta) ** 10 + 2.89422201721737e55 * cos(theta) ** 8 - 3.67520256154587e53 * cos(theta) ** 6 + 2.43283488187061e51 * cos(theta) ** 4 - 6.28368888989395e48 * cos(theta) ** 2 + 2.64465020618432e45 ) * cos(25 * phi) ) # @torch.jit.script def Yl73_m26(theta, phi): return ( 2.54624788461583e-48 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.0761203845711e67 * cos(theta) ** 47 - 8.02266300497486e67 * cos(theta) ** 45 + 2.77707565556822e68 * cos(theta) ** 43 - 5.92836717961726e68 * cos(theta) ** 41 + 8.7432753368456e68 * cos(theta) ** 39 - 9.45805405051473e68 * cos(theta) ** 37 + 7.77662221931211e68 * cos(theta) ** 35 - 4.97002171910925e68 * cos(theta) ** 33 + 2.50398040810084e68 * cos(theta) ** 31 - 1.00288620996287e68 * cos(theta) ** 29 + 3.20607717515689e67 * cos(theta) ** 27 - 8.18424064349141e66 * cos(theta) ** 25 + 1.66346354542508e66 * cos(theta) ** 23 - 2.67550080732706e65 * cos(theta) ** 21 + 3.37248000923578e64 * cos(theta) ** 19 - 3.28600616284512e63 * cos(theta) ** 17 + 2.42878716384205e62 * cos(theta) ** 15 - 1.32755154712866e61 * cos(theta) ** 13 + 5.18263366746923e59 * cos(theta) ** 11 - 1.37636335929893e58 * cos(theta) ** 9 + 2.3153776137739e56 * cos(theta) ** 7 - 2.20512153692752e54 * cos(theta) ** 5 + 9.73133952748243e51 * cos(theta) ** 3 - 1.25673777797879e49 * cos(theta) ) * cos(26 * phi) ) # @torch.jit.script def Yl73_m27(theta, phi): return ( 3.7140842604102e-50 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 5.05776580748415e68 * cos(theta) ** 46 - 3.61019835223869e69 * cos(theta) ** 44 + 1.19414253189433e70 * cos(theta) ** 42 - 2.43063054364308e70 * cos(theta) ** 40 + 3.40987738136979e70 * cos(theta) ** 38 - 3.49947999869045e70 * cos(theta) ** 36 + 2.72181777675924e70 * cos(theta) ** 34 - 1.64010716730605e70 * cos(theta) ** 32 + 7.76233926511261e69 * cos(theta) ** 30 - 2.90837000889232e69 * cos(theta) ** 28 + 8.6564083729236e68 * cos(theta) ** 26 - 2.04606016087285e68 * cos(theta) ** 24 + 3.82596615447769e67 * cos(theta) ** 22 - 5.61855169538682e66 * cos(theta) ** 20 + 6.40771201754799e65 * cos(theta) ** 18 - 5.58621047683671e64 * cos(theta) ** 16 + 3.64318074576307e63 * cos(theta) ** 14 - 1.72581701126725e62 * cos(theta) ** 12 + 5.70089703421615e60 * cos(theta) ** 10 - 1.23872702336903e59 * cos(theta) ** 8 + 1.62076432964173e57 * cos(theta) ** 6 - 1.10256076846376e55 * cos(theta) ** 4 + 2.91940185824473e52 * cos(theta) ** 2 - 1.25673777797879e49 ) * cos(27 * phi) ) # @torch.jit.script def Yl73_m28(theta, phi): return ( 5.44894155235245e-52 * (1.0 - cos(theta) ** 2) ** 14 * ( 2.32657227144271e70 * cos(theta) ** 45 - 1.58848727498502e71 * cos(theta) ** 43 + 5.01539863395621e71 * cos(theta) ** 41 - 9.72252217457231e71 * cos(theta) ** 39 + 1.29575340492052e72 * cos(theta) ** 37 - 1.25981279952856e72 * cos(theta) ** 35 + 9.25418044098142e71 * cos(theta) ** 33 - 5.24834293537936e71 * cos(theta) ** 31 + 2.32870177953378e71 * cos(theta) ** 29 - 8.1434360248985e70 * cos(theta) ** 27 + 2.25066617696014e70 * cos(theta) ** 25 - 4.91054438609484e69 * cos(theta) ** 23 + 8.41712553985092e68 * cos(theta) ** 21 - 1.12371033907736e68 * cos(theta) ** 19 + 1.15338816315864e67 * cos(theta) ** 17 - 8.93793676293873e65 * cos(theta) ** 15 + 5.1004530440683e64 * cos(theta) ** 13 - 2.0709804135207e63 * cos(theta) ** 11 + 5.70089703421615e61 * cos(theta) ** 9 - 9.90981618695227e59 * cos(theta) ** 7 + 9.72458597785036e57 * cos(theta) ** 5 - 4.41024307385504e55 * cos(theta) ** 3 + 5.83880371648946e52 * cos(theta) ) * cos(28 * phi) ) # @torch.jit.script def Yl73_m29(theta, phi): return ( 8.04277291533547e-54 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 1.04695752214922e72 * cos(theta) ** 44 - 6.83049528243559e72 * cos(theta) ** 42 + 2.05631343992204e73 * cos(theta) ** 40 - 3.7917836480832e73 * cos(theta) ** 38 + 4.79428759820592e73 * cos(theta) ** 36 - 4.40934479834997e73 * cos(theta) ** 34 + 3.05387954552387e73 * cos(theta) ** 32 - 1.6269863099676e73 * cos(theta) ** 30 + 6.75323516064797e72 * cos(theta) ** 28 - 2.19872772672259e72 * cos(theta) ** 26 + 5.62666544240034e71 * cos(theta) ** 24 - 1.12942520880181e71 * cos(theta) ** 22 + 1.76759636336869e70 * cos(theta) ** 20 - 2.13504964424699e69 * cos(theta) ** 18 + 1.96075987736968e68 * cos(theta) ** 16 - 1.34069051444081e67 * cos(theta) ** 14 + 6.63058895728879e65 * cos(theta) ** 12 - 2.27807845487278e64 * cos(theta) ** 10 + 5.13080733079454e62 * cos(theta) ** 8 - 6.93687133086659e60 * cos(theta) ** 6 + 4.86229298892518e58 * cos(theta) ** 4 - 1.32307292215651e56 * cos(theta) ** 2 + 5.83880371648946e52 ) * cos(29 * phi) ) # @torch.jit.script def Yl73_m30(theta, phi): return ( 1.19470548102875e-55 * (1.0 - cos(theta) ** 2) ** 15 * ( 4.60661309745656e73 * cos(theta) ** 43 - 2.86880801862295e74 * cos(theta) ** 41 + 8.22525375968818e74 * cos(theta) ** 39 - 1.44087778627162e75 * cos(theta) ** 37 + 1.72594353535413e75 * cos(theta) ** 35 - 1.49917723143899e75 * cos(theta) ** 33 + 9.77241454567638e74 * cos(theta) ** 31 - 4.88095892990281e74 * cos(theta) ** 29 + 1.89090584498143e74 * cos(theta) ** 27 - 5.71669208947875e73 * cos(theta) ** 25 + 1.35039970617608e73 * cos(theta) ** 23 - 2.48473545936399e72 * cos(theta) ** 21 + 3.53519272673738e71 * cos(theta) ** 19 - 3.84308935964458e70 * cos(theta) ** 17 + 3.1372158037915e69 * cos(theta) ** 15 - 1.87696672021713e68 * cos(theta) ** 13 + 7.95670674874655e66 * cos(theta) ** 11 - 2.27807845487278e65 * cos(theta) ** 9 + 4.10464586463563e63 * cos(theta) ** 7 - 4.16212279851995e61 * cos(theta) ** 5 + 1.94491719557007e59 * cos(theta) ** 3 - 2.64614584431302e56 * cos(theta) ) * cos(30 * phi) ) # @torch.jit.script def Yl73_m31(theta, phi): return ( 1.78652854082763e-57 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 1.98084363190632e75 * cos(theta) ** 42 - 1.17621128763541e76 * cos(theta) ** 40 + 3.20784896627839e76 * cos(theta) ** 38 - 5.33124780920498e76 * cos(theta) ** 36 + 6.04080237373946e76 * cos(theta) ** 34 - 4.94728486374867e76 * cos(theta) ** 32 + 3.02944850915968e76 * cos(theta) ** 30 - 1.41547808967181e76 * cos(theta) ** 28 + 5.10544578144986e75 * cos(theta) ** 26 - 1.42917302236969e75 * cos(theta) ** 24 + 3.10591932420499e74 * cos(theta) ** 22 - 5.21794446466438e73 * cos(theta) ** 20 + 6.71686618080103e72 * cos(theta) ** 18 - 6.53325191139579e71 * cos(theta) ** 16 + 4.70582370568724e70 * cos(theta) ** 14 - 2.44005673628227e69 * cos(theta) ** 12 + 8.7523774236212e67 * cos(theta) ** 10 - 2.0502706093855e66 * cos(theta) ** 8 + 2.87325210524494e64 * cos(theta) ** 6 - 2.08106139925998e62 * cos(theta) ** 4 + 5.83475158671022e59 * cos(theta) ** 2 - 2.64614584431302e56 ) * cos(31 * phi) ) # @torch.jit.script def Yl73_m32(theta, phi): return ( 2.69023775900592e-59 * (1.0 - cos(theta) ** 2) ** 16 * ( 8.31954325400655e76 * cos(theta) ** 41 - 4.70484515054164e77 * cos(theta) ** 39 + 1.21898260718579e78 * cos(theta) ** 37 - 1.91924921131379e78 * cos(theta) ** 35 + 2.05387280707142e78 * cos(theta) ** 33 - 1.58313115639957e78 * cos(theta) ** 31 + 9.08834552747903e77 * cos(theta) ** 29 - 3.96333865108108e77 * cos(theta) ** 27 + 1.32741590317696e77 * cos(theta) ** 25 - 3.43001525368725e76 * cos(theta) ** 23 + 6.83302251325097e75 * cos(theta) ** 21 - 1.04358889293288e75 * cos(theta) ** 19 + 1.20903591254419e74 * cos(theta) ** 17 - 1.04532030582333e73 * cos(theta) ** 15 + 6.58815318796214e71 * cos(theta) ** 13 - 2.92806808353873e70 * cos(theta) ** 11 + 8.7523774236212e68 * cos(theta) ** 9 - 1.6402164875084e67 * cos(theta) ** 7 + 1.72395126314697e65 * cos(theta) ** 5 - 8.32424559703991e62 * cos(theta) ** 3 + 1.16695031734204e60 * cos(theta) ) * cos(32 * phi) ) # @torch.jit.script def Yl73_m33(theta, phi): return ( 4.08080462725762e-61 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 3.41101273414269e78 * cos(theta) ** 40 - 1.83488960871124e79 * cos(theta) ** 38 + 4.51023564658741e79 * cos(theta) ** 36 - 6.71737223959828e79 * cos(theta) ** 34 + 6.77778026333567e79 * cos(theta) ** 32 - 4.90770658483868e79 * cos(theta) ** 30 + 2.63562020296892e79 * cos(theta) ** 28 - 1.07010143579189e79 * cos(theta) ** 26 + 3.31853975794241e78 * cos(theta) ** 24 - 7.88903508348067e77 * cos(theta) ** 22 + 1.4349347277827e77 * cos(theta) ** 20 - 1.98281889657246e76 * cos(theta) ** 18 + 2.05536105132512e75 * cos(theta) ** 16 - 1.56798045873499e74 * cos(theta) ** 14 + 8.56459914435078e72 * cos(theta) ** 12 - 3.2208748918926e71 * cos(theta) ** 10 + 7.87713968125908e69 * cos(theta) ** 8 - 1.14815154125588e68 * cos(theta) ** 6 + 8.61975631573483e65 * cos(theta) ** 4 - 2.49727367911197e63 * cos(theta) ** 2 + 1.16695031734204e60 ) * cos(33 * phi) ) # @torch.jit.script def Yl73_m34(theta, phi): return ( 6.23769188191126e-63 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.36440509365707e80 * cos(theta) ** 39 - 6.97258051310271e80 * cos(theta) ** 37 + 1.62368483277147e81 * cos(theta) ** 35 - 2.28390656146341e81 * cos(theta) ** 33 + 2.16888968426741e81 * cos(theta) ** 31 - 1.4723119754516e81 * cos(theta) ** 29 + 7.37973656831297e80 * cos(theta) ** 27 - 2.78226373305892e80 * cos(theta) ** 25 + 7.96449541906179e79 * cos(theta) ** 23 - 1.73558771836575e79 * cos(theta) ** 21 + 2.86986945556541e78 * cos(theta) ** 19 - 3.56907401383044e77 * cos(theta) ** 17 + 3.28857768212018e76 * cos(theta) ** 15 - 2.19517264222899e75 * cos(theta) ** 13 + 1.02775189732209e74 * cos(theta) ** 11 - 3.2208748918926e72 * cos(theta) ** 9 + 6.30171174500727e70 * cos(theta) ** 7 - 6.88890924753527e68 * cos(theta) ** 5 + 3.44790252629393e66 * cos(theta) ** 3 - 4.99454735822395e63 * cos(theta) ) * cos(34 * phi) ) # @torch.jit.script def Yl73_m35(theta, phi): return ( 9.61124697469081e-65 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 5.32117986526259e81 * cos(theta) ** 38 - 2.579854789848e82 * cos(theta) ** 36 + 5.68289691470014e82 * cos(theta) ** 34 - 7.53689165282927e82 * cos(theta) ** 32 + 6.72355802122899e82 * cos(theta) ** 30 - 4.26970472880965e82 * cos(theta) ** 28 + 1.9925288734445e82 * cos(theta) ** 26 - 6.9556593326473e81 * cos(theta) ** 24 + 1.83183394638421e81 * cos(theta) ** 22 - 3.64473420856807e80 * cos(theta) ** 20 + 5.45275196557428e79 * cos(theta) ** 18 - 6.06742582351174e78 * cos(theta) ** 16 + 4.93286652318028e77 * cos(theta) ** 14 - 2.85372443489768e76 * cos(theta) ** 12 + 1.1305270870543e75 * cos(theta) ** 10 - 2.89878740270334e73 * cos(theta) ** 8 + 4.41119822150509e71 * cos(theta) ** 6 - 3.44445462376764e69 * cos(theta) ** 4 + 1.03437075788818e67 * cos(theta) ** 2 - 4.99454735822395e63 ) * cos(35 * phi) ) # @torch.jit.script def Yl73_m36(theta, phi): return ( 1.49339498964172e-66 * (1.0 - cos(theta) ** 2) ** 18 * ( 2.02204834879978e83 * cos(theta) ** 37 - 9.2874772434528e83 * cos(theta) ** 35 + 1.93218495099805e84 * cos(theta) ** 33 - 2.41180532890537e84 * cos(theta) ** 31 + 2.0170674063687e84 * cos(theta) ** 29 - 1.1955173240667e84 * cos(theta) ** 27 + 5.18057507095571e83 * cos(theta) ** 25 - 1.66935823983535e83 * cos(theta) ** 23 + 4.03003468204527e82 * cos(theta) ** 21 - 7.28946841713614e81 * cos(theta) ** 19 + 9.8149535380337e80 * cos(theta) ** 17 - 9.70788131761879e79 * cos(theta) ** 15 + 6.90601313245239e78 * cos(theta) ** 13 - 3.42446932187722e77 * cos(theta) ** 11 + 1.1305270870543e76 * cos(theta) ** 9 - 2.31902992216267e74 * cos(theta) ** 7 + 2.64671893290305e72 * cos(theta) ** 5 - 1.37778184950705e70 * cos(theta) ** 3 + 2.06874151577636e67 * cos(theta) ) * cos(36 * phi) ) # @torch.jit.script def Yl73_m37(theta, phi): return ( 2.34087102118119e-68 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 7.4815788905592e84 * cos(theta) ** 36 - 3.25061703520848e85 * cos(theta) ** 34 + 6.37621033829356e85 * cos(theta) ** 32 - 7.47659651960663e85 * cos(theta) ** 30 + 5.84949547846922e85 * cos(theta) ** 28 - 3.22789677498009e85 * cos(theta) ** 26 + 1.29514376773893e85 * cos(theta) ** 24 - 3.83952395162131e84 * cos(theta) ** 22 + 8.46307283229506e83 * cos(theta) ** 20 - 1.38499899925587e83 * cos(theta) ** 18 + 1.66854210146573e82 * cos(theta) ** 16 - 1.45618219764282e81 * cos(theta) ** 14 + 8.9778170721881e79 * cos(theta) ** 12 - 3.76691625406494e78 * cos(theta) ** 10 + 1.01747437834887e77 * cos(theta) ** 8 - 1.62332094551387e75 * cos(theta) ** 6 + 1.32335946645153e73 * cos(theta) ** 4 - 4.13334554852116e70 * cos(theta) ** 2 + 2.06874151577636e67 ) * cos(37 * phi) ) # @torch.jit.script def Yl73_m38(theta, phi): return ( 3.70309407796574e-70 * (1.0 - cos(theta) ** 2) ** 19 * ( 2.69336840060131e86 * cos(theta) ** 35 - 1.10520979197088e87 * cos(theta) ** 33 + 2.04038730825394e87 * cos(theta) ** 31 - 2.24297895588199e87 * cos(theta) ** 29 + 1.63785873397138e87 * cos(theta) ** 27 - 8.39253161494824e86 * cos(theta) ** 25 + 3.10834504257342e86 * cos(theta) ** 23 - 8.44695269356688e85 * cos(theta) ** 21 + 1.69261456645901e85 * cos(theta) ** 19 - 2.49299819866056e84 * cos(theta) ** 17 + 2.66966736234517e83 * cos(theta) ** 15 - 2.03865507669994e82 * cos(theta) ** 13 + 1.07733804866257e81 * cos(theta) ** 11 - 3.76691625406494e79 * cos(theta) ** 9 + 8.13979502679098e77 * cos(theta) ** 7 - 9.73992567308323e75 * cos(theta) ** 5 + 5.2934378658061e73 * cos(theta) ** 3 - 8.26669109704233e70 * cos(theta) ) * cos(38 * phi) ) # @torch.jit.script def Yl73_m39(theta, phi): return ( 5.91455006100594e-72 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 9.42678940210459e87 * cos(theta) ** 34 - 3.64719231350392e88 * cos(theta) ** 32 + 6.32520065558721e88 * cos(theta) ** 30 - 6.50463897205777e88 * cos(theta) ** 28 + 4.42221858172273e88 * cos(theta) ** 26 - 2.09813290373706e88 * cos(theta) ** 24 + 7.14919359791887e87 * cos(theta) ** 22 - 1.77386006564904e87 * cos(theta) ** 20 + 3.21596767627212e86 * cos(theta) ** 18 - 4.23809693772295e85 * cos(theta) ** 16 + 4.00450104351775e84 * cos(theta) ** 14 - 2.65025159970993e83 * cos(theta) ** 12 + 1.18507185352883e82 * cos(theta) ** 10 - 3.39022462865845e80 * cos(theta) ** 8 + 5.69785651875369e78 * cos(theta) ** 6 - 4.86996283654161e76 * cos(theta) ** 4 + 1.58803135974183e74 * cos(theta) ** 2 - 8.26669109704233e70 ) * cos(39 * phi) ) # @torch.jit.script def Yl73_m40(theta, phi): return ( 9.54207952634015e-74 * (1.0 - cos(theta) ** 2) ** 20 * ( 3.20510839671556e89 * cos(theta) ** 33 - 1.16710154032125e90 * cos(theta) ** 31 + 1.89756019667616e90 * cos(theta) ** 29 - 1.82129891217618e90 * cos(theta) ** 27 + 1.14977683124791e90 * cos(theta) ** 25 - 5.03551896896895e89 * cos(theta) ** 23 + 1.57282259154215e89 * cos(theta) ** 21 - 3.54772013129809e88 * cos(theta) ** 19 + 5.78874181728982e87 * cos(theta) ** 17 - 6.78095510035672e86 * cos(theta) ** 15 + 5.60630146092485e85 * cos(theta) ** 13 - 3.18030191965191e84 * cos(theta) ** 11 + 1.18507185352883e83 * cos(theta) ** 9 - 2.71217970292676e81 * cos(theta) ** 7 + 3.41871391125221e79 * cos(theta) ** 5 - 1.94798513461665e77 * cos(theta) ** 3 + 3.17606271948366e74 * cos(theta) ) * cos(40 * phi) ) # @torch.jit.script def Yl73_m41(theta, phi): return ( 1.55572788517508e-75 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 1.05768577091614e91 * cos(theta) ** 32 - 3.61801477499588e91 * cos(theta) ** 30 + 5.50292457036087e91 * cos(theta) ** 28 - 4.91750706287567e91 * cos(theta) ** 26 + 2.87444207811977e91 * cos(theta) ** 24 - 1.15816936286286e91 * cos(theta) ** 22 + 3.30292744223852e90 * cos(theta) ** 20 - 6.74066824946637e89 * cos(theta) ** 18 + 9.84086108939269e88 * cos(theta) ** 16 - 1.01714326505351e88 * cos(theta) ** 14 + 7.2881918992023e86 * cos(theta) ** 12 - 3.49833211161711e85 * cos(theta) ** 10 + 1.06656466817595e84 * cos(theta) ** 8 - 1.89852579204873e82 * cos(theta) ** 6 + 1.70935695562611e80 * cos(theta) ** 4 - 5.84395540384994e77 * cos(theta) ** 2 + 3.17606271948366e74 ) * cos(41 * phi) ) # @torch.jit.script def Yl73_m42(theta, phi): return ( 2.56454147350442e-77 * (1.0 - cos(theta) ** 2) ** 21 * ( 3.38459446693163e92 * cos(theta) ** 31 - 1.08540443249877e93 * cos(theta) ** 29 + 1.54081887970104e93 * cos(theta) ** 27 - 1.27855183634768e93 * cos(theta) ** 25 + 6.89866098748746e92 * cos(theta) ** 23 - 2.54797259829829e92 * cos(theta) ** 21 + 6.60585488447704e91 * cos(theta) ** 19 - 1.21332028490395e91 * cos(theta) ** 17 + 1.57453777430283e90 * cos(theta) ** 15 - 1.42400057107491e89 * cos(theta) ** 13 + 8.74583027904276e87 * cos(theta) ** 11 - 3.49833211161711e86 * cos(theta) ** 9 + 8.53251734540758e84 * cos(theta) ** 7 - 1.13911547522924e83 * cos(theta) ** 5 + 6.83742782250443e80 * cos(theta) ** 3 - 1.16879108076999e78 * cos(theta) ) * cos(42 * phi) ) # @torch.jit.script def Yl73_m43(theta, phi): return ( 4.27661234525935e-79 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 1.04922428474881e94 * cos(theta) ** 30 - 3.14767285424642e94 * cos(theta) ** 28 + 4.16021097519282e94 * cos(theta) ** 26 - 3.19637959086919e94 * cos(theta) ** 24 + 1.58669202712212e94 * cos(theta) ** 22 - 5.3507424564264e93 * cos(theta) ** 20 + 1.25511242805064e93 * cos(theta) ** 18 - 2.06264448433671e92 * cos(theta) ** 16 + 2.36180666145425e91 * cos(theta) ** 14 - 1.85120074239739e90 * cos(theta) ** 12 + 9.62041330694704e88 * cos(theta) ** 10 - 3.14849890045539e87 * cos(theta) ** 8 + 5.9727621417853e85 * cos(theta) ** 6 - 5.69557737614619e83 * cos(theta) ** 4 + 2.05122834675133e81 * cos(theta) ** 2 - 1.16879108076999e78 ) * cos(43 * phi) ) # @torch.jit.script def Yl73_m44(theta, phi): return ( 7.21848946633358e-81 * (1.0 - cos(theta) ** 2) ** 22 * ( 3.14767285424642e95 * cos(theta) ** 29 - 8.81348399188998e95 * cos(theta) ** 27 + 1.08165485355013e96 * cos(theta) ** 25 - 7.67131101808605e95 * cos(theta) ** 23 + 3.49072245966865e95 * cos(theta) ** 21 - 1.07014849128528e95 * cos(theta) ** 19 + 2.25920237049115e94 * cos(theta) ** 17 - 3.30023117493873e93 * cos(theta) ** 15 + 3.30652932603595e92 * cos(theta) ** 13 - 2.22144089087686e91 * cos(theta) ** 11 + 9.62041330694704e89 * cos(theta) ** 9 - 2.51879912036432e88 * cos(theta) ** 7 + 3.58365728507118e86 * cos(theta) ** 5 - 2.27823095045848e84 * cos(theta) ** 3 + 4.10245669350266e81 * cos(theta) ) * cos(44 * phi) ) # @torch.jit.script def Yl73_m45(theta, phi): return ( 1.23397489589721e-82 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 9.12825127731462e96 * cos(theta) ** 28 - 2.37964067781029e97 * cos(theta) ** 26 + 2.70413713387533e97 * cos(theta) ** 24 - 1.76440153415979e97 * cos(theta) ** 22 + 7.33051716530417e96 * cos(theta) ** 20 - 2.03328213344203e96 * cos(theta) ** 18 + 3.84064402983495e95 * cos(theta) ** 16 - 4.9503467624081e94 * cos(theta) ** 14 + 4.29848812384673e93 * cos(theta) ** 12 - 2.44358497996455e92 * cos(theta) ** 10 + 8.65837197625234e90 * cos(theta) ** 8 - 1.76315938425502e89 * cos(theta) ** 6 + 1.79182864253559e87 * cos(theta) ** 4 - 6.83469285137543e84 * cos(theta) ** 2 + 4.10245669350266e81 ) * cos(45 * phi) ) # @torch.jit.script def Yl73_m46(theta, phi): return ( 2.13773480468267e-84 * (1.0 - cos(theta) ** 2) ** 23 * ( 2.55591035764809e98 * cos(theta) ** 27 - 6.18706576230676e98 * cos(theta) ** 25 + 6.4899291213008e98 * cos(theta) ** 23 - 3.88168337515154e98 * cos(theta) ** 21 + 1.46610343306083e98 * cos(theta) ** 19 - 3.65990784019566e97 * cos(theta) ** 17 + 6.14503044773592e96 * cos(theta) ** 15 - 6.93048546737134e95 * cos(theta) ** 13 + 5.15818574861607e94 * cos(theta) ** 11 - 2.44358497996455e93 * cos(theta) ** 9 + 6.92669758100187e91 * cos(theta) ** 7 - 1.05789563055301e90 * cos(theta) ** 5 + 7.16731457014236e87 * cos(theta) ** 3 - 1.36693857027509e85 * cos(theta) ) * cos(46 * phi) ) # @torch.jit.script def Yl73_m47(theta, phi): return ( 3.75561723122912e-86 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 6.90095796564985e99 * cos(theta) ** 26 - 1.54676644057669e100 * cos(theta) ** 24 + 1.49268369789918e100 * cos(theta) ** 22 - 8.15153508781824e99 * cos(theta) ** 20 + 2.78559652281559e99 * cos(theta) ** 18 - 6.22184332833262e98 * cos(theta) ** 16 + 9.21754567160388e97 * cos(theta) ** 14 - 9.00963110758274e96 * cos(theta) ** 12 + 5.67400432347768e95 * cos(theta) ** 10 - 2.19922648196809e94 * cos(theta) ** 8 + 4.84868830670131e92 * cos(theta) ** 6 - 5.28947815276506e90 * cos(theta) ** 4 + 2.15019437104271e88 * cos(theta) ** 2 - 1.36693857027509e85 ) * cos(47 * phi) ) # @torch.jit.script def Yl73_m48(theta, phi): return ( 6.69579214951838e-88 * (1.0 - cos(theta) ** 2) ** 24 * ( 1.79424907106896e101 * cos(theta) ** 25 - 3.71223945738406e101 * cos(theta) ** 23 + 3.2839041353782e101 * cos(theta) ** 21 - 1.63030701756365e101 * cos(theta) ** 19 + 5.01407374106805e100 * cos(theta) ** 17 - 9.95494932533219e99 * cos(theta) ** 15 + 1.29045639402454e99 * cos(theta) ** 13 - 1.08115573290993e98 * cos(theta) ** 11 + 5.67400432347768e96 * cos(theta) ** 9 - 1.75938118557447e95 * cos(theta) ** 7 + 2.90921298402078e93 * cos(theta) ** 5 - 2.11579126110603e91 * cos(theta) ** 3 + 4.30038874208542e88 * cos(theta) ) * cos(48 * phi) ) # @torch.jit.script def Yl73_m49(theta, phi): return ( 1.21241707520457e-89 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 4.4856226776724e102 * cos(theta) ** 24 - 8.53815075198333e102 * cos(theta) ** 22 + 6.89619868429423e102 * cos(theta) ** 20 - 3.09758333337093e102 * cos(theta) ** 18 + 8.52392535981569e101 * cos(theta) ** 16 - 1.49324239879983e101 * cos(theta) ** 14 + 1.67759331223191e100 * cos(theta) ** 12 - 1.18927130620092e99 * cos(theta) ** 10 + 5.10660389112991e97 * cos(theta) ** 8 - 1.23156682990213e96 * cos(theta) ** 6 + 1.45460649201039e94 * cos(theta) ** 4 - 6.34737378331808e91 * cos(theta) ** 2 + 4.30038874208542e88 ) * cos(49 * phi) ) # @torch.jit.script def Yl73_m50(theta, phi): return ( 2.23148446423405e-91 * (1.0 - cos(theta) ** 2) ** 25 * ( 1.07654944264138e104 * cos(theta) ** 23 - 1.87839316543633e104 * cos(theta) ** 21 + 1.37923973685885e104 * cos(theta) ** 19 - 5.57565000006768e103 * cos(theta) ** 17 + 1.36382805757051e103 * cos(theta) ** 15 - 2.09053935831976e102 * cos(theta) ** 13 + 2.01311197467829e101 * cos(theta) ** 11 - 1.18927130620092e100 * cos(theta) ** 9 + 4.08528311290393e98 * cos(theta) ** 7 - 7.38940097941279e96 * cos(theta) ** 5 + 5.81842596804157e94 * cos(theta) ** 3 - 1.26947475666362e92 * cos(theta) ) * cos(50 * phi) ) # @torch.jit.script def Yl73_m51(theta, phi): return ( 4.1784874970959e-93 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 2.47606371807517e105 * cos(theta) ** 22 - 3.9446256474163e105 * cos(theta) ** 20 + 2.62055550003181e105 * cos(theta) ** 18 - 9.47860500011505e104 * cos(theta) ** 16 + 2.04574208635577e104 * cos(theta) ** 14 - 2.71770116581569e103 * cos(theta) ** 12 + 2.21442317214612e102 * cos(theta) ** 10 - 1.07034417558083e101 * cos(theta) ** 8 + 2.85969817903275e99 * cos(theta) ** 6 - 3.6947004897064e97 * cos(theta) ** 4 + 1.74552779041247e95 * cos(theta) ** 2 - 1.26947475666362e92 ) * cos(51 * phi) ) # @torch.jit.script def Yl73_m52(theta, phi): return ( 7.96806301622279e-95 * (1.0 - cos(theta) ** 2) ** 26 * ( 5.44734017976537e106 * cos(theta) ** 21 - 7.8892512948326e106 * cos(theta) ** 19 + 4.71699990005725e106 * cos(theta) ** 17 - 1.51657680001841e106 * cos(theta) ** 15 + 2.86403892089807e105 * cos(theta) ** 13 - 3.26124139897883e104 * cos(theta) ** 11 + 2.21442317214612e103 * cos(theta) ** 9 - 8.56275340464664e101 * cos(theta) ** 7 + 1.71581890741965e100 * cos(theta) ** 5 - 1.47788019588256e98 * cos(theta) ** 3 + 3.49105558082494e95 * cos(theta) ) * cos(52 * phi) ) # @torch.jit.script def Yl73_m53(theta, phi): return ( 1.54902290699109e-96 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 1.14394143775073e108 * cos(theta) ** 20 - 1.49895774601819e108 * cos(theta) ** 18 + 8.01889983009733e107 * cos(theta) ** 16 - 2.27486520002761e107 * cos(theta) ** 14 + 3.72325059716749e106 * cos(theta) ** 12 - 3.58736553887671e105 * cos(theta) ** 10 + 1.99298085493151e104 * cos(theta) ** 8 - 5.99392738325265e102 * cos(theta) ** 6 + 8.57909453709825e100 * cos(theta) ** 4 - 4.43364058764768e98 * cos(theta) ** 2 + 3.49105558082494e95 ) * cos(53 * phi) ) # @torch.jit.script def Yl73_m54(theta, phi): return ( 3.07355494909891e-98 * (1.0 - cos(theta) ** 2) ** 27 * ( 2.28788287550145e109 * cos(theta) ** 19 - 2.69812394283275e109 * cos(theta) ** 17 + 1.28302397281557e109 * cos(theta) ** 15 - 3.18481128003866e108 * cos(theta) ** 13 + 4.46790071660099e107 * cos(theta) ** 11 - 3.58736553887671e106 * cos(theta) ** 9 + 1.5943846839452e105 * cos(theta) ** 7 - 3.59635642995159e103 * cos(theta) ** 5 + 3.4316378148393e101 * cos(theta) ** 3 - 8.86728117529535e98 * cos(theta) ) * cos(54 * phi) ) # @torch.jit.script def Yl73_m55(theta, phi): return ( 6.23245564707892e-100 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 4.34697746345276e110 * cos(theta) ** 18 - 4.58681070281567e110 * cos(theta) ** 16 + 1.92453595922336e110 * cos(theta) ** 14 - 4.14025466405025e109 * cos(theta) ** 12 + 4.91469078826109e108 * cos(theta) ** 10 - 3.22862898498904e107 * cos(theta) ** 8 + 1.11606927876164e106 * cos(theta) ** 6 - 1.79817821497579e104 * cos(theta) ** 4 + 1.02949134445179e102 * cos(theta) ** 2 - 8.86728117529535e98 ) * cos(55 * phi) ) # @torch.jit.script def Yl73_m56(theta, phi): return ( 1.29338580091513e-101 * (1.0 - cos(theta) ** 2) ** 28 * ( 7.82455943421497e111 * cos(theta) ** 17 - 7.33889712450508e111 * cos(theta) ** 15 + 2.6943503429127e111 * cos(theta) ** 13 - 4.9683055968603e110 * cos(theta) ** 11 + 4.91469078826109e109 * cos(theta) ** 9 - 2.58290318799123e108 * cos(theta) ** 7 + 6.69641567256986e106 * cos(theta) ** 5 - 7.19271285990318e104 * cos(theta) ** 3 + 2.05898268890358e102 * cos(theta) ) * cos(56 * phi) ) # @torch.jit.script def Yl73_m57(theta, phi): return ( 2.75126201400801e-103 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 1.33017510381655e113 * cos(theta) ** 16 - 1.10083456867576e113 * cos(theta) ** 14 + 3.50265544578651e112 * cos(theta) ** 12 - 5.46513615654633e111 * cos(theta) ** 10 + 4.42322170943498e110 * cos(theta) ** 8 - 1.80803223159386e109 * cos(theta) ** 6 + 3.34820783628493e107 * cos(theta) ** 4 - 2.15781385797095e105 * cos(theta) ** 2 + 2.05898268890358e102 ) * cos(57 * phi) ) # @torch.jit.script def Yl73_m58(theta, phi): return ( 6.00947195644053e-105 * (1.0 - cos(theta) ** 2) ** 29 * ( 2.12828016610647e114 * cos(theta) ** 15 - 1.54116839614607e114 * cos(theta) ** 13 + 4.20318653494382e113 * cos(theta) ** 11 - 5.46513615654633e112 * cos(theta) ** 9 + 3.53857736754799e111 * cos(theta) ** 7 - 1.08481933895632e110 * cos(theta) ** 5 + 1.33928313451397e108 * cos(theta) ** 3 - 4.31562771594191e105 * cos(theta) ) * cos(58 * phi) ) # @torch.jit.script def Yl73_m59(theta, phi): return ( 1.3505283888363e-106 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 3.19242024915971e115 * cos(theta) ** 14 - 2.00351891498989e115 * cos(theta) ** 12 + 4.6235051884382e114 * cos(theta) ** 10 - 4.9186225408917e113 * cos(theta) ** 8 + 2.47700415728359e112 * cos(theta) ** 6 - 5.42409669478158e110 * cos(theta) ** 4 + 4.01784940354191e108 * cos(theta) ** 2 - 4.31562771594191e105 ) * cos(59 * phi) ) # @torch.jit.script def Yl73_m60(theta, phi): return ( 3.12978049306378e-108 * (1.0 - cos(theta) ** 2) ** 30 * ( 4.46938834882359e116 * cos(theta) ** 13 - 2.40422269798786e116 * cos(theta) ** 11 + 4.6235051884382e115 * cos(theta) ** 9 - 3.93489803271336e114 * cos(theta) ** 7 + 1.48620249437015e113 * cos(theta) ** 5 - 2.16963867791263e111 * cos(theta) ** 3 + 8.03569880708383e108 * cos(theta) ) * cos(60 * phi) ) # @torch.jit.script def Yl73_m61(theta, phi): return ( 7.49876604267769e-110 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 5.81020485347067e117 * cos(theta) ** 12 - 2.64464496778665e117 * cos(theta) ** 10 + 4.16115466959438e116 * cos(theta) ** 8 - 2.75442862289935e115 * cos(theta) ** 6 + 7.43101247185077e113 * cos(theta) ** 4 - 6.5089160337379e111 * cos(theta) ** 2 + 8.03569880708383e108 ) * cos(61 * phi) ) # @torch.jit.script def Yl73_m62(theta, phi): return ( 1.86308340208827e-111 * (1.0 - cos(theta) ** 2) ** 31 * ( 6.9722458241648e118 * cos(theta) ** 11 - 2.64464496778665e118 * cos(theta) ** 9 + 3.3289237356755e117 * cos(theta) ** 7 - 1.65265717373961e116 * cos(theta) ** 5 + 2.97240498874031e114 * cos(theta) ** 3 - 1.30178320674758e112 * cos(theta) ) * cos(62 * phi) ) # @torch.jit.script def Yl73_m63(theta, phi): return ( 4.81688746326942e-113 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 7.66947040658128e119 * cos(theta) ** 10 - 2.38018047100798e119 * cos(theta) ** 8 + 2.33024661497285e118 * cos(theta) ** 6 - 8.26328586869806e116 * cos(theta) ** 4 + 8.91721496622093e114 * cos(theta) ** 2 - 1.30178320674758e112 ) * cos(63 * phi) ) # @torch.jit.script def Yl73_m64(theta, phi): return ( 1.30138625789899e-114 * (1.0 - cos(theta) ** 2) ** 32 * ( 7.66947040658128e120 * cos(theta) ** 9 - 1.90414437680639e120 * cos(theta) ** 7 + 1.39814796898371e119 * cos(theta) ** 5 - 3.30531434747922e117 * cos(theta) ** 3 + 1.78344299324419e115 * cos(theta) ) * cos(64 * phi) ) # @torch.jit.script def Yl73_m65(theta, phi): return ( 3.69271183692067e-116 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 6.90252336592316e121 * cos(theta) ** 8 - 1.33290106376447e121 * cos(theta) ** 6 + 6.99073984491856e119 * cos(theta) ** 4 - 9.91594304243767e117 * cos(theta) ** 2 + 1.78344299324419e115 ) * cos(65 * phi) ) # @torch.jit.script def Yl73_m66(theta, phi): return ( 1.1073706913539e-117 * (1.0 - cos(theta) ** 2) ** 33 * ( 5.52201869273852e122 * cos(theta) ** 7 - 7.99740638258683e121 * cos(theta) ** 5 + 2.79629593796742e120 * cos(theta) ** 3 - 1.98318860848753e118 * cos(theta) ) * cos(66 * phi) ) # @torch.jit.script def Yl73_m67(theta, phi): return ( 3.53736591736893e-119 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 3.86541308491697e123 * cos(theta) ** 6 - 3.99870319129341e122 * cos(theta) ** 4 + 8.38888781390227e120 * cos(theta) ** 2 - 1.98318860848753e118 ) * cos(67 * phi) ) # @torch.jit.script def Yl73_m68(theta, phi): return ( 1.21617145432201e-120 * (1.0 - cos(theta) ** 2) ** 34 * ( 2.31924785095018e124 * cos(theta) ** 5 - 1.59948127651737e123 * cos(theta) ** 3 + 1.67777756278045e121 * cos(theta) ) * cos(68 * phi) ) # @torch.jit.script def Yl73_m69(theta, phi): return ( 4.56421013685262e-122 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 1.15962392547509e125 * cos(theta) ** 4 - 4.7984438295521e123 * cos(theta) ** 2 + 1.67777756278045e121 ) * cos(69 * phi) ) # @torch.jit.script def Yl73_m70(theta, phi): return ( 1.90839212946819e-123 * (1.0 - cos(theta) ** 2) ** 35 * (4.63849570190036e125 * cos(theta) ** 3 - 9.59688765910419e123 * cos(theta)) * cos(70 * phi) ) # @torch.jit.script def Yl73_m71(theta, phi): return ( 9.18175591389851e-125 * (1.0 - cos(theta) ** 2) ** 35.5 * (1.39154871057011e126 * cos(theta) ** 2 - 9.59688765910419e123) * cos(71 * phi) ) # @torch.jit.script def Yl73_m72(theta, phi): return 15.005661775717 * (1.0 - cos(theta) ** 2) ** 36 * cos(72 * phi) * cos(theta) # @torch.jit.script def Yl73_m73(theta, phi): return 1.24187740479589 * (1.0 - cos(theta) ** 2) ** 36.5 * cos(73 * phi) # @torch.jit.script def Yl74_m_minus_74(theta, phi): return 1.24606587336403 * (1.0 - cos(theta) ** 2) ** 37 * sin(74 * phi) # @torch.jit.script def Yl74_m_minus_73(theta, phi): return ( 15.159045609564 * (1.0 - cos(theta) ** 2) ** 36.5 * sin(73 * phi) * cos(theta) ) # @torch.jit.script def Yl74_m_minus_72(theta, phi): return ( 6.35330611770864e-127 * (1.0 - cos(theta) ** 2) ** 36 * (2.04557660453806e128 * cos(theta) ** 2 - 1.39154871057011e126) * sin(72 * phi) ) # @torch.jit.script def Yl74_m_minus_71(theta, phi): return ( 1.32964846474125e-125 * (1.0 - cos(theta) ** 2) ** 35.5 * (6.81858868179353e127 * cos(theta) ** 3 - 1.39154871057011e126 * cos(theta)) * sin(71 * phi) ) # @torch.jit.script def Yl74_m_minus_70(theta, phi): return ( 3.20221754894554e-124 * (1.0 - cos(theta) ** 2) ** 35 * ( 1.70464717044838e127 * cos(theta) ** 4 - 6.95774355285054e125 * cos(theta) ** 2 + 2.39922191477605e123 ) * sin(70 * phi) ) # @torch.jit.script def Yl74_m_minus_69(theta, phi): return ( 8.59245134182199e-123 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 3.40929434089676e126 * cos(theta) ** 5 - 2.31924785095018e125 * cos(theta) ** 3 + 2.39922191477605e123 * cos(theta) ) * sin(69 * phi) ) # @torch.jit.script def Yl74_m_minus_68(theta, phi): return ( 2.51686965917654e-121 * (1.0 - cos(theta) ** 2) ** 34 * ( 5.68215723482794e125 * cos(theta) ** 6 - 5.79811962737545e124 * cos(theta) ** 4 + 1.19961095738802e123 * cos(theta) ** 2 - 2.79629593796742e120 ) * sin(68 * phi) ) # @torch.jit.script def Yl74_m_minus_67(theta, phi): return ( 7.93512765114446e-120 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 8.11736747832563e124 * cos(theta) ** 7 - 1.15962392547509e124 * cos(theta) ** 5 + 3.99870319129341e122 * cos(theta) ** 3 - 2.79629593796742e120 * cos(theta) ) * sin(67 * phi) ) # @torch.jit.script def Yl74_m_minus_66(theta, phi): return ( 2.66506906003338e-118 * (1.0 - cos(theta) ** 2) ** 33 * ( 1.0146709347907e124 * cos(theta) ** 8 - 1.93270654245848e123 * cos(theta) ** 6 + 9.99675797823354e121 * cos(theta) ** 4 - 1.39814796898371e120 * cos(theta) ** 2 + 2.47898576060942e117 ) * sin(66 * phi) ) # @torch.jit.script def Yl74_m_minus_65(theta, phi): return ( 9.46005671197665e-117 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 1.12741214976745e123 * cos(theta) ** 9 - 2.76100934636926e122 * cos(theta) ** 7 + 1.99935159564671e121 * cos(theta) ** 5 - 4.6604932299457e119 * cos(theta) ** 3 + 2.47898576060942e117 * cos(theta) ) * sin(65 * phi) ) # @torch.jit.script def Yl74_m_minus_64(theta, phi): return ( 3.52696491989079e-115 * (1.0 - cos(theta) ** 2) ** 32 * ( 1.12741214976745e122 * cos(theta) ** 10 - 3.45126168296158e121 * cos(theta) ** 8 + 3.33225265941118e120 * cos(theta) ** 6 - 1.16512330748643e119 * cos(theta) ** 4 + 1.23949288030471e117 * cos(theta) ** 2 - 1.78344299324418e114 ) * sin(64 * phi) ) # @torch.jit.script def Yl74_m_minus_63(theta, phi): return ( 1.37415912422983e-113 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 1.02492013615223e121 * cos(theta) ** 11 - 3.83473520329064e120 * cos(theta) ** 9 + 4.76036094201597e119 * cos(theta) ** 7 - 2.33024661497285e118 * cos(theta) ** 5 + 4.13164293434903e116 * cos(theta) ** 3 - 1.78344299324418e114 * cos(theta) ) * sin(63 * phi) ) # @torch.jit.script def Yl74_m_minus_62(theta, phi): return ( 5.57170266890608e-112 * (1.0 - cos(theta) ** 2) ** 31 * ( 8.54100113460188e119 * cos(theta) ** 12 - 3.83473520329064e119 * cos(theta) ** 10 + 5.95045117751996e118 * cos(theta) ** 8 - 3.88374435828809e117 * cos(theta) ** 6 + 1.03291073358726e116 * cos(theta) ** 4 - 8.91721496622092e113 * cos(theta) ** 2 + 1.08481933895632e111 ) * sin(62 * phi) ) # @torch.jit.script def Yl74_m_minus_61(theta, phi): return ( 2.34276681031359e-110 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 6.57000087277068e118 * cos(theta) ** 13 - 3.4861229120824e118 * cos(theta) ** 11 + 6.61161241946662e117 * cos(theta) ** 9 - 5.54820622612584e116 * cos(theta) ** 7 + 2.06582146717451e115 * cos(theta) ** 5 - 2.97240498874031e113 * cos(theta) ** 3 + 1.08481933895632e111 * cos(theta) ) * sin(61 * phi) ) # @torch.jit.script def Yl74_m_minus_60(theta, phi): return ( 1.01849749430168e-108 * (1.0 - cos(theta) ** 2) ** 30 * ( 4.69285776626477e117 * cos(theta) ** 14 - 2.90510242673533e117 * cos(theta) ** 12 + 6.61161241946662e116 * cos(theta) ** 10 - 6.9352577826573e115 * cos(theta) ** 8 + 3.44303577862419e114 * cos(theta) ** 6 - 7.43101247185077e112 * cos(theta) ** 4 + 5.42409669478158e110 * cos(theta) ** 2 - 5.73978486220273e107 ) * sin(60 * phi) ) # @torch.jit.script def Yl74_m_minus_59(theta, phi): return ( 4.56623221404321e-107 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 3.12857184417651e116 * cos(theta) ** 15 - 2.2346941744118e116 * cos(theta) ** 13 + 6.01055674496966e115 * cos(theta) ** 11 - 7.70584198073033e114 * cos(theta) ** 9 + 4.9186225408917e113 * cos(theta) ** 7 - 1.48620249437015e112 * cos(theta) ** 5 + 1.80803223159386e110 * cos(theta) ** 3 - 5.73978486220273e107 * cos(theta) ) * sin(59 * phi) ) # @torch.jit.script def Yl74_m_minus_58(theta, phi): return ( 2.10641435321022e-105 * (1.0 - cos(theta) ** 2) ** 29 * ( 1.95535740261032e115 * cos(theta) ** 16 - 1.59621012457985e115 * cos(theta) ** 14 + 5.00879728747472e114 * cos(theta) ** 12 - 7.70584198073033e113 * cos(theta) ** 10 + 6.14827817611463e112 * cos(theta) ** 8 - 2.47700415728359e111 * cos(theta) ** 6 + 4.52008057898465e109 * cos(theta) ** 4 - 2.86989243110137e107 * cos(theta) ** 2 + 2.69726732246369e104 ) * sin(58 * phi) ) # @torch.jit.script def Yl74_m_minus_57(theta, phi): return ( 9.97826955093323e-104 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 1.1502102368296e114 * cos(theta) ** 17 - 1.06414008305324e114 * cos(theta) ** 15 + 3.85292099036517e113 * cos(theta) ** 13 - 7.00531089157303e112 * cos(theta) ** 11 + 6.83142019568292e111 * cos(theta) ** 9 - 3.53857736754799e110 * cos(theta) ** 7 + 9.04016115796931e108 * cos(theta) ** 5 - 9.56630810367122e106 * cos(theta) ** 3 + 2.69726732246369e104 * cos(theta) ) * sin(57 * phi) ) # @torch.jit.script def Yl74_m_minus_56(theta, phi): return ( 4.84537207548491e-102 * (1.0 - cos(theta) ** 2) ** 28 * ( 6.39005687127556e112 * cos(theta) ** 18 - 6.65087551908273e112 * cos(theta) ** 16 + 2.7520864216894e112 * cos(theta) ** 14 - 5.83775907631086e111 * cos(theta) ** 12 + 6.83142019568292e110 * cos(theta) ** 10 - 4.42322170943498e109 * cos(theta) ** 8 + 1.50669352632822e108 * cos(theta) ** 6 - 2.39157702591781e106 * cos(theta) ** 4 + 1.34863366123185e104 * cos(theta) ** 2 - 1.1438792716131e101 ) * sin(56 * phi) ) # @torch.jit.script def Yl74_m_minus_55(theta, phi): return ( 2.40810604953822e-100 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 3.36318782698714e111 * cos(theta) ** 19 - 3.91227971710749e111 * cos(theta) ** 17 + 1.83472428112627e111 * cos(theta) ** 15 - 4.49058390485451e110 * cos(theta) ** 13 + 6.21038199607538e109 * cos(theta) ** 11 - 4.91469078826109e108 * cos(theta) ** 9 + 2.15241932332603e107 * cos(theta) ** 7 - 4.78315405183561e105 * cos(theta) ** 5 + 4.49544553743949e103 * cos(theta) ** 3 - 1.1438792716131e101 * cos(theta) ) * sin(55 * phi) ) # @torch.jit.script def Yl74_m_minus_54(theta, phi): return ( 1.22316617203969e-98 * (1.0 - cos(theta) ** 2) ** 27 * ( 1.68159391349357e110 * cos(theta) ** 20 - 2.17348873172638e110 * cos(theta) ** 18 + 1.14670267570392e110 * cos(theta) ** 16 - 3.20755993203893e109 * cos(theta) ** 14 + 5.17531833006282e108 * cos(theta) ** 12 - 4.91469078826109e107 * cos(theta) ** 10 + 2.69052415415753e106 * cos(theta) ** 8 - 7.97192341972602e104 * cos(theta) ** 6 + 1.12386138435987e103 * cos(theta) ** 4 - 5.7193963580655e100 * cos(theta) ** 2 + 4.43364058764768e97 ) * sin(54 * phi) ) # @torch.jit.script def Yl74_m_minus_53(theta, phi): return ( 6.34161823364269e-97 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 8.00759006425509e108 * cos(theta) ** 21 - 1.14394143775073e109 * cos(theta) ** 19 + 6.74530985708187e108 * cos(theta) ** 17 - 2.13837328802595e108 * cos(theta) ** 15 + 3.98101410004832e107 * cos(theta) ** 13 - 4.46790071660099e106 * cos(theta) ** 11 + 2.98947128239726e105 * cos(theta) ** 9 - 1.138846202818e104 * cos(theta) ** 7 + 2.24772276871974e102 * cos(theta) ** 5 - 1.9064654526885e100 * cos(theta) ** 3 + 4.43364058764768e97 * cos(theta) ) * sin(53 * phi) ) # @torch.jit.script def Yl74_m_minus_52(theta, phi): return ( 3.35207166344377e-95 * (1.0 - cos(theta) ** 2) ** 26 * ( 3.63981366557049e107 * cos(theta) ** 22 - 5.71970718875363e107 * cos(theta) ** 20 + 3.74739436504548e107 * cos(theta) ** 18 - 1.33648330501622e107 * cos(theta) ** 16 + 2.84358150003451e106 * cos(theta) ** 14 - 3.72325059716749e105 * cos(theta) ** 12 + 2.98947128239726e104 * cos(theta) ** 10 - 1.4235577535225e103 * cos(theta) ** 8 + 3.7462046145329e101 * cos(theta) ** 6 - 4.76616363172125e99 * cos(theta) ** 4 + 2.21682029382384e97 * cos(theta) ** 2 - 1.58684344582952e94 ) * sin(52 * phi) ) # @torch.jit.script def Yl74_m_minus_51(theta, phi): return ( 1.80452326385747e-93 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 1.58252768068282e106 * cos(theta) ** 23 - 2.72367008988268e106 * cos(theta) ** 21 + 1.97231282370815e106 * cos(theta) ** 19 - 7.86166650009542e105 * cos(theta) ** 17 + 1.89572100002301e105 * cos(theta) ** 15 - 2.86403892089807e104 * cos(theta) ** 13 + 2.71770116581569e103 * cos(theta) ** 11 - 1.58173083724723e102 * cos(theta) ** 9 + 5.35172087790415e100 * cos(theta) ** 7 - 9.5323272634425e98 * cos(theta) ** 5 + 7.38940097941279e96 * cos(theta) ** 3 - 1.58684344582952e94 * cos(theta) ) * sin(51 * phi) ) # @torch.jit.script def Yl74_m_minus_50(theta, phi): return ( 9.88378097157581e-92 * (1.0 - cos(theta) ** 2) ** 25 * ( 6.59386533617843e104 * cos(theta) ** 24 - 1.23803185903758e105 * cos(theta) ** 22 + 9.86156411854075e104 * cos(theta) ** 20 - 4.36759250005301e104 * cos(theta) ** 18 + 1.18482562501438e104 * cos(theta) ** 16 - 2.04574208635577e103 * cos(theta) ** 14 + 2.26475097151307e102 * cos(theta) ** 12 - 1.58173083724723e101 * cos(theta) ** 10 + 6.68965109738019e99 * cos(theta) ** 8 - 1.58872121057375e98 * cos(theta) ** 6 + 1.8473502448532e96 * cos(theta) ** 4 - 7.9342172291476e93 * cos(theta) ** 2 + 5.28947815276506e90 ) * sin(50 * phi) ) # @torch.jit.script def Yl74_m_minus_49(theta, phi): return ( 5.50305634635573e-90 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 2.63754613447137e103 * cos(theta) ** 25 - 5.38274721320688e103 * cos(theta) ** 23 + 4.69598291359083e103 * cos(theta) ** 21 - 2.29873289476474e103 * cos(theta) ** 19 + 6.96956250008459e102 * cos(theta) ** 17 - 1.36382805757051e102 * cos(theta) ** 15 + 1.74211613193313e101 * cos(theta) ** 13 - 1.43793712477021e100 * cos(theta) ** 11 + 7.43294566375576e98 * cos(theta) ** 9 - 2.26960172939107e97 * cos(theta) ** 7 + 3.6947004897064e95 * cos(theta) ** 5 - 2.64473907638253e93 * cos(theta) ** 3 + 5.28947815276506e90 * cos(theta) ) * sin(49 * phi) ) # @torch.jit.script def Yl74_m_minus_48(theta, phi): return ( 3.11202580364349e-88 * (1.0 - cos(theta) ** 2) ** 24 * ( 1.01444082095053e102 * cos(theta) ** 26 - 2.2428113388362e102 * cos(theta) ** 24 + 2.13453768799583e102 * cos(theta) ** 22 - 1.14936644738237e102 * cos(theta) ** 20 + 3.87197916671366e101 * cos(theta) ** 18 - 8.52392535981569e100 * cos(theta) ** 16 + 1.24436866566652e100 * cos(theta) ** 14 - 1.1982809373085e99 * cos(theta) ** 12 + 7.43294566375576e97 * cos(theta) ** 10 - 2.83700216173884e96 * cos(theta) ** 8 + 6.15783414951066e94 * cos(theta) ** 6 - 6.61184769095633e92 * cos(theta) ** 4 + 2.64473907638253e90 * cos(theta) ** 2 - 1.65399567003285e87 ) * sin(48 * phi) ) # @torch.jit.script def Yl74_m_minus_47(theta, phi): return ( 1.78609677679504e-86 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 3.7571882257427e100 * cos(theta) ** 27 - 8.97124535534481e100 * cos(theta) ** 25 + 9.28059864346014e100 * cos(theta) ** 23 - 5.47317355896367e100 * cos(theta) ** 21 + 2.03788377195456e100 * cos(theta) ** 19 - 5.01407374106805e99 * cos(theta) ** 17 + 8.29579110444349e98 * cos(theta) ** 15 - 9.21754567160388e97 * cos(theta) ** 13 + 6.75722333068706e96 * cos(theta) ** 11 - 3.15222462415427e95 * cos(theta) ** 9 + 8.79690592787237e93 * cos(theta) ** 7 - 1.32236953819127e92 * cos(theta) ** 5 + 8.81579692127511e89 * cos(theta) ** 3 - 1.65399567003285e87 * cos(theta) ) * sin(47 * phi) ) # @torch.jit.script def Yl74_m_minus_46(theta, phi): return ( 1.03962493555662e-84 * (1.0 - cos(theta) ** 2) ** 23 * ( 1.34185293776525e99 * cos(theta) ** 28 - 3.45047898282493e99 * cos(theta) ** 26 + 3.86691610144173e99 * cos(theta) ** 24 - 2.48780616316531e99 * cos(theta) ** 22 + 1.01894188597728e99 * cos(theta) ** 20 - 2.78559652281558e98 * cos(theta) ** 18 + 5.18486944027718e97 * cos(theta) ** 16 - 6.58396119400277e96 * cos(theta) ** 14 + 5.63101944223921e95 * cos(theta) ** 12 - 3.15222462415427e94 * cos(theta) ** 10 + 1.09961324098405e93 * cos(theta) ** 8 - 2.20394923031878e91 * cos(theta) ** 6 + 2.20394923031878e89 * cos(theta) ** 4 - 8.26997835016427e86 * cos(theta) ** 2 + 4.88192346526816e83 ) * sin(46 * phi) ) # @torch.jit.script def Yl74_m_minus_45(theta, phi): return ( 6.13290601841919e-83 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 4.62707909574224e97 * cos(theta) ** 29 - 1.27795517882405e98 * cos(theta) ** 27 + 1.54676644057669e98 * cos(theta) ** 25 - 1.08165485355013e98 * cos(theta) ** 23 + 4.85210421893943e97 * cos(theta) ** 21 - 1.46610343306083e97 * cos(theta) ** 19 + 3.04992320016305e96 * cos(theta) ** 17 - 4.38930746266852e95 * cos(theta) ** 15 + 4.33155341710709e94 * cos(theta) ** 13 - 2.86565874923115e93 * cos(theta) ** 11 + 1.22179248998227e92 * cos(theta) ** 9 - 3.1484989004554e90 * cos(theta) ** 7 + 4.40789846063755e88 * cos(theta) ** 5 - 2.75665945005475e86 * cos(theta) ** 3 + 4.88192346526816e83 * cos(theta) ) * sin(45 * phi) ) # @torch.jit.script def Yl74_m_minus_44(theta, phi): return ( 3.66437926999678e-81 * (1.0 - cos(theta) ** 2) ** 22 * ( 1.54235969858075e96 * cos(theta) ** 30 - 4.56412563865731e96 * cos(theta) ** 28 + 5.94910169452573e96 * cos(theta) ** 26 - 4.50689522312556e96 * cos(theta) ** 24 + 2.20550191769974e96 * cos(theta) ** 22 - 7.33051716530417e95 * cos(theta) ** 20 + 1.69440177786836e95 * cos(theta) ** 18 - 2.74331716416782e94 * cos(theta) ** 16 + 3.09396672650506e93 * cos(theta) ** 14 - 2.38804895769263e92 * cos(theta) ** 12 + 1.22179248998227e91 * cos(theta) ** 10 - 3.93562362556924e89 * cos(theta) ** 8 + 7.34649743439592e87 * cos(theta) ** 6 - 6.89164862513689e85 * cos(theta) ** 4 + 2.44096173263408e83 * cos(theta) ** 2 - 1.36748556450089e80 ) * sin(44 * phi) ) # @torch.jit.script def Yl74_m_minus_43(theta, phi): return ( 2.21626796076129e-79 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 4.9753538663895e94 * cos(theta) ** 31 - 1.57383642712321e95 * cos(theta) ** 29 + 2.20337099797249e95 * cos(theta) ** 27 - 1.80275808925022e95 * cos(theta) ** 25 + 9.58913877260756e94 * cos(theta) ** 23 - 3.49072245966865e94 * cos(theta) ** 21 + 8.917904094044e93 * cos(theta) ** 19 - 1.61371597892225e93 * cos(theta) ** 17 + 2.06264448433671e92 * cos(theta) ** 15 - 1.83696073668664e91 * cos(theta) ** 13 + 1.11072044543843e90 * cos(theta) ** 11 - 4.37291513952138e88 * cos(theta) ** 9 + 1.04949963348513e87 * cos(theta) ** 7 - 1.37832972502738e85 * cos(theta) ** 5 + 8.13653910878027e82 * cos(theta) ** 3 - 1.36748556450089e80 * cos(theta) ) * sin(43 * phi) ) # @torch.jit.script def Yl74_m_minus_42(theta, phi): return ( 1.35609522951268e-77 * (1.0 - cos(theta) ** 2) ** 21 * ( 1.55479808324672e93 * cos(theta) ** 32 - 5.24612142374403e93 * cos(theta) ** 30 + 7.86918213561605e93 * cos(theta) ** 28 - 6.9336849586547e93 * cos(theta) ** 26 + 3.99547448858649e93 * cos(theta) ** 24 - 1.58669202712212e93 * cos(theta) ** 22 + 4.458952047022e92 * cos(theta) ** 20 - 8.96508877179027e91 * cos(theta) ** 18 + 1.28915280271044e91 * cos(theta) ** 16 - 1.31211481191903e90 * cos(theta) ** 14 + 9.25600371198692e88 * cos(theta) ** 12 - 4.37291513952138e87 * cos(theta) ** 10 + 1.31187454185641e86 * cos(theta) ** 8 - 2.29721620837896e84 * cos(theta) ** 6 + 2.03413477719507e82 * cos(theta) ** 4 - 6.83742782250443e79 * cos(theta) ** 2 + 3.65247212740621e76 ) * sin(42 * phi) ) # @torch.jit.script def Yl74_m_minus_41(theta, phi): return ( 8.39027417390453e-76 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 4.71150934317188e91 * cos(theta) ** 33 - 1.69229723346582e92 * cos(theta) ** 31 + 2.71351108124691e92 * cos(theta) ** 29 - 2.56803146616841e92 * cos(theta) ** 27 + 1.59818979543459e92 * cos(theta) ** 25 - 6.89866098748746e91 * cos(theta) ** 23 + 2.12331049858191e91 * cos(theta) ** 21 - 4.71846777462646e90 * cos(theta) ** 19 + 7.58325178064966e89 * cos(theta) ** 17 - 8.74743207946017e88 * cos(theta) ** 15 + 7.12000285537456e87 * cos(theta) ** 13 - 3.97537739956489e86 * cos(theta) ** 11 + 1.45763837984046e85 * cos(theta) ** 9 - 3.28173744054138e83 * cos(theta) ** 7 + 4.06826955439013e81 * cos(theta) ** 5 - 2.27914260750148e79 * cos(theta) ** 3 + 3.65247212740621e76 * cos(theta) ) * sin(41 * phi) ) # @torch.jit.script def Yl74_m_minus_40(theta, phi): return ( 5.24643783713255e-74 * (1.0 - cos(theta) ** 2) ** 20 * ( 1.38573804210938e90 * cos(theta) ** 34 - 5.28842885458068e90 * cos(theta) ** 32 + 9.04503693748971e90 * cos(theta) ** 30 - 9.17154095060146e90 * cos(theta) ** 28 + 6.14688382859459e90 * cos(theta) ** 26 - 2.87444207811977e90 * cos(theta) ** 24 + 9.65141135719048e89 * cos(theta) ** 22 - 2.35923388731323e89 * cos(theta) ** 20 + 4.21291765591648e88 * cos(theta) ** 18 - 5.46714504966261e87 * cos(theta) ** 16 + 5.08571632526754e86 * cos(theta) ** 14 - 3.31281449963741e85 * cos(theta) ** 12 + 1.45763837984046e84 * cos(theta) ** 10 - 4.10217180067672e82 * cos(theta) ** 8 + 6.78044925731689e80 * cos(theta) ** 6 - 5.69785651875369e78 * cos(theta) ** 4 + 1.82623606370311e76 * cos(theta) ** 2 - 9.34136093965783e72 ) * sin(40 * phi) ) # @torch.jit.script def Yl74_m_minus_39(theta, phi): return ( 3.31398836473207e-72 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 3.95925154888393e88 * cos(theta) ** 35 - 1.60255419835778e89 * cos(theta) ** 33 + 2.91775385080313e89 * cos(theta) ** 31 - 3.16260032779361e89 * cos(theta) ** 29 + 2.27662364022022e89 * cos(theta) ** 27 - 1.14977683124791e89 * cos(theta) ** 25 + 4.19626580747412e88 * cos(theta) ** 23 - 1.12344470824439e88 * cos(theta) ** 21 + 2.21732508206131e87 * cos(theta) ** 19 - 3.21596767627212e86 * cos(theta) ** 17 + 3.39047755017836e85 * cos(theta) ** 15 - 2.54831884587493e84 * cos(theta) ** 13 + 1.32512579985496e83 * cos(theta) ** 11 - 4.55796866741858e81 * cos(theta) ** 9 + 9.68635608188127e79 * cos(theta) ** 7 - 1.13957130375074e78 * cos(theta) ** 5 + 6.08745354567702e75 * cos(theta) ** 3 - 9.34136093965783e72 * cos(theta) ) * sin(39 * phi) ) # @torch.jit.script def Yl74_m_minus_38(theta, phi): return ( 2.11369077232848e-70 * (1.0 - cos(theta) ** 2) ** 19 * ( 1.0997920969122e87 * cos(theta) ** 36 - 4.7133947010523e87 * cos(theta) ** 34 + 9.11798078375979e87 * cos(theta) ** 32 - 1.05420010926454e88 * cos(theta) ** 30 + 8.13079871507221e87 * cos(theta) ** 28 - 4.42221858172273e87 * cos(theta) ** 26 + 1.74844408644755e87 * cos(theta) ** 24 - 5.10656685565634e86 * cos(theta) ** 22 + 1.10866254103065e86 * cos(theta) ** 20 - 1.78664870904007e85 * cos(theta) ** 18 + 2.11904846886148e84 * cos(theta) ** 16 - 1.82022774705352e83 * cos(theta) ** 14 + 1.10427149987914e82 * cos(theta) ** 12 - 4.55796866741858e80 * cos(theta) ** 10 + 1.21079451023516e79 * cos(theta) ** 8 - 1.89928550625123e77 * cos(theta) ** 6 + 1.52186338641925e75 * cos(theta) ** 4 - 4.67068046982891e72 * cos(theta) ** 2 + 2.29630308251176e69 ) * sin(38 * phi) ) # @torch.jit.script def Yl74_m_minus_37(theta, phi): return ( 1.36066534806227e-68 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 2.97241107273568e85 * cos(theta) ** 37 - 1.34668420030066e86 * cos(theta) ** 35 + 2.76302447992721e86 * cos(theta) ** 33 - 3.40064551375657e86 * cos(theta) ** 31 + 2.80372369485249e86 * cos(theta) ** 29 - 1.63785873397138e86 * cos(theta) ** 27 + 6.9937763457902e85 * cos(theta) ** 25 - 2.22024645898102e85 * cos(theta) ** 23 + 5.2793454334793e84 * cos(theta) ** 21 - 9.40341425810562e83 * cos(theta) ** 19 + 1.24649909933028e83 * cos(theta) ** 17 - 1.21348516470235e82 * cos(theta) ** 15 + 8.49439615291644e80 * cos(theta) ** 13 - 4.14360787947143e79 * cos(theta) ** 11 + 1.34532723359462e78 * cos(theta) ** 9 - 2.71326500893033e76 * cos(theta) ** 7 + 3.04372677283851e74 * cos(theta) ** 5 - 1.55689348994297e72 * cos(theta) ** 3 + 2.29630308251176e69 * cos(theta) ) * sin(37 * phi) ) # @torch.jit.script def Yl74_m_minus_36(theta, phi): return ( 8.83699506561061e-67 * (1.0 - cos(theta) ** 2) ** 18 * ( 7.82213440193601e83 * cos(theta) ** 38 - 3.7407894452796e84 * cos(theta) ** 36 + 8.1265425880212e84 * cos(theta) ** 34 - 1.06270172304893e85 * cos(theta) ** 32 + 9.34574564950829e84 * cos(theta) ** 30 - 5.84949547846922e84 * cos(theta) ** 28 + 2.68991397915008e84 * cos(theta) ** 26 - 9.2510269124209e83 * cos(theta) ** 24 + 2.39970246976332e83 * cos(theta) ** 22 - 4.70170712905281e82 * cos(theta) ** 20 + 6.92499499627933e81 * cos(theta) ** 18 - 7.58428227938968e80 * cos(theta) ** 16 + 6.06742582351174e79 * cos(theta) ** 14 - 3.45300656622619e78 * cos(theta) ** 12 + 1.34532723359462e77 * cos(theta) ** 10 - 3.39158126116291e75 * cos(theta) ** 8 + 5.07287795473085e73 * cos(theta) ** 6 - 3.89223372485743e71 * cos(theta) ** 4 + 1.14815154125588e69 * cos(theta) ** 2 - 5.4440566204641e65 ) * sin(36 * phi) ) # @torch.jit.script def Yl74_m_minus_35(theta, phi): return ( 5.78806312057407e-65 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 2.0056754876759e82 * cos(theta) ** 39 - 1.01102417439989e83 * cos(theta) ** 37 + 2.3218693108632e83 * cos(theta) ** 35 - 3.22030825166341e83 * cos(theta) ** 33 + 3.01475666113171e83 * cos(theta) ** 31 - 2.0170674063687e83 * cos(theta) ** 29 + 9.96264436722251e82 * cos(theta) ** 27 - 3.70041076496836e82 * cos(theta) ** 25 + 1.04334889989709e82 * cos(theta) ** 23 - 2.23890815669181e81 * cos(theta) ** 21 + 3.64473420856807e80 * cos(theta) ** 19 - 4.46134251728805e79 * cos(theta) ** 17 + 4.04495054900783e78 * cos(theta) ** 15 - 2.65615889709707e77 * cos(theta) ** 13 + 1.22302475781329e76 * cos(theta) ** 11 - 3.76842362351435e74 * cos(theta) ** 9 + 7.24696850675836e72 * cos(theta) ** 7 - 7.78446744971486e70 * cos(theta) ** 5 + 3.82717180418626e68 * cos(theta) ** 3 - 5.4440566204641e65 * cos(theta) ) * sin(35 * phi) ) # @torch.jit.script def Yl74_m_minus_34(theta, phi): return ( 3.82187521563157e-63 * (1.0 - cos(theta) ** 2) ** 17 * ( 5.01418871918975e80 * cos(theta) ** 40 - 2.6605899326313e81 * cos(theta) ** 38 + 6.44963697462e81 * cos(theta) ** 36 - 9.47149485783357e81 * cos(theta) ** 34 + 9.42111456603658e81 * cos(theta) ** 32 - 6.72355802122899e81 * cos(theta) ** 30 + 3.55808727400804e81 * cos(theta) ** 28 - 1.42323490960322e81 * cos(theta) ** 26 + 4.34728708290456e80 * cos(theta) ** 24 - 1.01768552576901e80 * cos(theta) ** 22 + 1.82236710428403e79 * cos(theta) ** 20 - 2.47852362071558e78 * cos(theta) ** 18 + 2.52809409312989e77 * cos(theta) ** 16 - 1.89725635506934e76 * cos(theta) ** 14 + 1.01918729817774e75 * cos(theta) ** 12 - 3.76842362351435e73 * cos(theta) ** 10 + 9.05871063344794e71 * cos(theta) ** 8 - 1.29741124161914e70 * cos(theta) ** 6 + 9.56792951046566e67 * cos(theta) ** 4 - 2.72202831023205e65 * cos(theta) ** 2 + 1.24863683955599e62 ) * sin(34 * phi) ) # @torch.jit.script def Yl74_m_minus_33(theta, phi): return ( 2.5431987961142e-61 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 1.22297285833896e79 * cos(theta) ** 41 - 6.82202546828537e79 * cos(theta) ** 39 + 1.74314512827568e80 * cos(theta) ** 37 - 2.70614138795245e80 * cos(theta) ** 35 + 2.85488320182927e80 * cos(theta) ** 33 - 2.16888968426741e80 * cos(theta) ** 31 + 1.22692664620967e80 * cos(theta) ** 29 - 5.27124040593784e79 * cos(theta) ** 27 + 1.73891483316182e79 * cos(theta) ** 25 - 4.42471967725655e78 * cos(theta) ** 23 + 8.67793859182874e77 * cos(theta) ** 21 - 1.3044861161661e77 * cos(theta) ** 19 + 1.48711417242935e76 * cos(theta) ** 17 - 1.26483757004622e75 * cos(theta) ** 15 + 7.83990229367495e73 * cos(theta) ** 13 - 3.42583965774031e72 * cos(theta) ** 11 + 1.00652340371644e71 * cos(theta) ** 9 - 1.85344463088449e69 * cos(theta) ** 7 + 1.91358590209313e67 * cos(theta) ** 5 - 9.0734277007735e64 * cos(theta) ** 3 + 1.24863683955599e62 * cos(theta) ) * sin(33 * phi) ) # @torch.jit.script def Yl74_m_minus_32(theta, phi): return ( 1.70489188407376e-59 * (1.0 - cos(theta) ** 2) ** 16 * ( 2.91184013890229e77 * cos(theta) ** 42 - 1.70550636707134e78 * cos(theta) ** 40 + 4.5872240217781e78 * cos(theta) ** 38 - 7.51705941097902e78 * cos(theta) ** 36 + 8.39671529949785e78 * cos(theta) ** 34 - 6.77778026333567e78 * cos(theta) ** 32 + 4.08975548736556e78 * cos(theta) ** 30 - 1.88258585926351e78 * cos(theta) ** 28 + 6.68813397369932e77 * cos(theta) ** 26 - 1.8436331988569e77 * cos(theta) ** 24 + 3.94451754174034e76 * cos(theta) ** 22 - 6.52243058083048e75 * cos(theta) ** 20 + 8.26174540238527e74 * cos(theta) ** 18 - 7.90523481278891e73 * cos(theta) ** 16 + 5.59993020976782e72 * cos(theta) ** 14 - 2.85486638145026e71 * cos(theta) ** 12 + 1.00652340371644e70 * cos(theta) ** 10 - 2.31680578860561e68 * cos(theta) ** 8 + 3.18930983682189e66 * cos(theta) ** 6 - 2.26835692519338e64 * cos(theta) ** 4 + 6.24318419777993e61 * cos(theta) ** 2 - 2.77845313652867e58 ) * sin(32 * phi) ) # @torch.jit.script def Yl74_m_minus_31(theta, phi): return ( 1.15102300503607e-57 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 6.77172125326115e75 * cos(theta) ** 43 - 4.15977162700328e76 * cos(theta) ** 41 + 1.17621128763541e77 * cos(theta) ** 39 - 2.03163767864298e77 * cos(theta) ** 37 + 2.39906151414224e77 * cos(theta) ** 35 - 2.05387280707142e77 * cos(theta) ** 33 + 1.31927596366631e77 * cos(theta) ** 31 - 6.49167537677074e76 * cos(theta) ** 29 + 2.47708665692568e76 * cos(theta) ** 27 - 7.37453279542758e75 * cos(theta) ** 25 + 1.71500762684362e75 * cos(theta) ** 23 - 3.10591932420499e74 * cos(theta) ** 21 + 4.34828705388698e73 * cos(theta) ** 19 - 4.65013812516994e72 * cos(theta) ** 17 + 3.73328680651188e71 * cos(theta) ** 15 - 2.19605106265405e70 * cos(theta) ** 13 + 9.15021276105853e68 * cos(theta) ** 11 - 2.57422865400624e67 * cos(theta) ** 9 + 4.55615690974555e65 * cos(theta) ** 7 - 4.53671385038675e63 * cos(theta) ** 5 + 2.08106139925998e61 * cos(theta) ** 3 - 2.77845313652867e58 * cos(theta) ) * sin(31 * phi) ) # @torch.jit.script def Yl74_m_minus_30(theta, phi): return ( 7.82357034002052e-56 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.53902755755935e74 * cos(theta) ** 44 - 9.90421815953161e74 * cos(theta) ** 42 + 2.94052821908852e75 * cos(theta) ** 40 - 5.34641494379731e75 * cos(theta) ** 38 + 6.66405976150623e75 * cos(theta) ** 36 - 6.04080237373946e75 * cos(theta) ** 34 + 4.12273738645722e75 * cos(theta) ** 32 - 2.16389179225691e75 * cos(theta) ** 30 + 8.84673806044884e74 * cos(theta) ** 28 - 2.83635876747215e74 * cos(theta) ** 26 + 7.14586511184843e73 * cos(theta) ** 24 - 1.41178151100227e73 * cos(theta) ** 22 + 2.17414352694349e72 * cos(theta) ** 20 - 2.58341006953886e71 * cos(theta) ** 18 + 2.33330425406992e70 * cos(theta) ** 16 - 1.56860790189575e69 * cos(theta) ** 14 + 7.62517730088211e67 * cos(theta) ** 12 - 2.57422865400624e66 * cos(theta) ** 10 + 5.69519613718194e64 * cos(theta) ** 8 - 7.56118975064458e62 * cos(theta) ** 6 + 5.20265349814994e60 * cos(theta) ** 4 - 1.38922656826434e58 * cos(theta) ** 2 + 6.01396782798414e54 ) * sin(30 * phi) ) # @torch.jit.script def Yl74_m_minus_29(theta, phi): return ( 5.35214558293554e-54 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 3.42006123902078e72 * cos(theta) ** 45 - 2.30330654872828e73 * cos(theta) ** 43 + 7.17202004655737e73 * cos(theta) ** 41 - 1.3708756266147e74 * cos(theta) ** 39 + 1.80109723283952e74 * cos(theta) ** 37 - 1.72594353535413e74 * cos(theta) ** 35 + 1.24931435953249e74 * cos(theta) ** 33 - 6.98029610405455e73 * cos(theta) ** 31 + 3.05059933118926e73 * cos(theta) ** 29 - 1.05050324721191e73 * cos(theta) ** 27 + 2.85834604473937e72 * cos(theta) ** 25 - 6.13818048261855e71 * cos(theta) ** 23 + 1.03530644140166e71 * cos(theta) ** 21 - 1.35968951028361e70 * cos(theta) ** 19 + 1.37253191415878e69 * cos(theta) ** 17 - 1.04573860126383e68 * cos(theta) ** 15 + 5.86552100067854e66 * cos(theta) ** 13 - 2.3402078672784e65 * cos(theta) ** 11 + 6.32799570797993e63 * cos(theta) ** 9 - 1.0801699643778e62 * cos(theta) ** 7 + 1.04053069962999e60 * cos(theta) ** 5 - 4.63075522754779e57 * cos(theta) ** 3 + 6.01396782798414e54 * cos(theta) ) * sin(29 * phi) ) # @torch.jit.script def Yl74_m_minus_28(theta, phi): return ( 3.68404941024624e-52 * (1.0 - cos(theta) ** 2) ** 14 * ( 7.4349157370017e70 * cos(theta) ** 46 - 5.23478761074609e71 * cos(theta) ** 44 + 1.7076238206089e72 * cos(theta) ** 42 - 3.42718906653674e72 * cos(theta) ** 40 + 4.739729560104e72 * cos(theta) ** 38 - 4.79428759820592e72 * cos(theta) ** 36 + 3.67445399862497e72 * cos(theta) ** 34 - 2.18134253251705e72 * cos(theta) ** 32 + 1.01686644372975e72 * cos(theta) ** 30 - 3.75179731147109e71 * cos(theta) ** 28 + 1.0993638633613e71 * cos(theta) ** 26 - 2.55757520109106e70 * cos(theta) ** 24 + 4.70593837000756e69 * cos(theta) ** 22 - 6.79844755141805e68 * cos(theta) ** 20 + 7.62517730088211e67 * cos(theta) ** 18 - 6.53586625789895e66 * cos(theta) ** 16 + 4.18965785762753e65 * cos(theta) ** 14 - 1.950173222732e64 * cos(theta) ** 12 + 6.32799570797993e62 * cos(theta) ** 10 - 1.35021245547225e61 * cos(theta) ** 8 + 1.73421783271665e59 * cos(theta) ** 6 - 1.15768880688695e57 * cos(theta) ** 4 + 3.00698391399207e54 * cos(theta) ** 2 - 1.26930515575858e51 ) * sin(28 * phi) ) # @torch.jit.script def Yl74_m_minus_27(theta, phi): return ( 2.55078856344285e-50 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.58189696531951e69 * cos(theta) ** 47 - 1.16328613572135e70 * cos(theta) ** 45 + 3.97121818746255e70 * cos(theta) ** 43 - 8.35899772326034e70 * cos(theta) ** 41 + 1.21531527182154e71 * cos(theta) ** 39 - 1.29575340492052e71 * cos(theta) ** 37 + 1.04984399960714e71 * cos(theta) ** 35 - 6.6101288864153e70 * cos(theta) ** 33 + 3.2802143346121e70 * cos(theta) ** 31 - 1.2937232108521e70 * cos(theta) ** 29 + 4.07171801244925e69 * cos(theta) ** 27 - 1.02303008043643e69 * cos(theta) ** 25 + 2.04606016087285e68 * cos(theta) ** 23 - 3.23735597686574e67 * cos(theta) ** 21 + 4.01325121099058e66 * cos(theta) ** 19 - 3.84462721052879e65 * cos(theta) ** 17 + 2.79310523841835e64 * cos(theta) ** 15 - 1.50013324825538e63 * cos(theta) ** 13 + 5.75272337089085e61 * cos(theta) ** 11 - 1.50023606163583e60 * cos(theta) ** 9 + 2.47745404673807e58 * cos(theta) ** 7 - 2.3153776137739e56 * cos(theta) ** 5 + 1.00232797133069e54 * cos(theta) ** 3 - 1.26930515575858e51 * cos(theta) ) * sin(27 * phi) ) # @torch.jit.script def Yl74_m_minus_26(theta, phi): return ( 1.77605236657185e-48 * (1.0 - cos(theta) ** 2) ** 13 * ( 3.29561867774898e67 * cos(theta) ** 48 - 2.52888290374207e68 * cos(theta) ** 46 + 9.02549588059671e68 * cos(theta) ** 44 - 1.99023755315722e69 * cos(theta) ** 42 + 3.03828817955385e69 * cos(theta) ** 40 - 3.40987738136979e69 * cos(theta) ** 38 + 2.91623333224204e69 * cos(theta) ** 36 - 1.94415555482803e69 * cos(theta) ** 34 + 1.02506697956628e69 * cos(theta) ** 32 - 4.31241070284034e68 * cos(theta) ** 30 + 1.45418500444616e68 * cos(theta) ** 28 - 3.93473107860164e67 * cos(theta) ** 26 + 8.52525067030355e66 * cos(theta) ** 24 - 1.47152544402988e66 * cos(theta) ** 22 + 2.00662560549529e65 * cos(theta) ** 20 - 2.13590400584933e64 * cos(theta) ** 18 + 1.74569077401147e63 * cos(theta) ** 16 - 1.07152374875384e62 * cos(theta) ** 14 + 4.79393614240904e60 * cos(theta) ** 12 - 1.50023606163583e59 * cos(theta) ** 10 + 3.09681755842258e57 * cos(theta) ** 8 - 3.85896268962316e55 * cos(theta) ** 6 + 2.50581992832673e53 * cos(theta) ** 4 - 6.34652577879289e50 * cos(theta) ** 2 + 2.61820370412248e47 ) * sin(26 * phi) ) # @torch.jit.script def Yl74_m_minus_25(theta, phi): return ( 1.2432366566003e-46 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 6.72575240356935e65 * cos(theta) ** 49 - 5.38060192285548e66 * cos(theta) ** 47 + 2.00566575124371e67 * cos(theta) ** 45 - 4.62845942594703e67 * cos(theta) ** 43 + 7.41045897452158e67 * cos(theta) ** 41 - 8.7432753368456e67 * cos(theta) ** 39 + 7.88171170876228e67 * cos(theta) ** 37 - 5.55473015665151e67 * cos(theta) ** 35 + 3.10626357444328e67 * cos(theta) ** 33 - 1.39110022672269e67 * cos(theta) ** 31 + 5.01443104981435e66 * cos(theta) ** 29 - 1.4573078068895e66 * cos(theta) ** 27 + 3.41010026812142e65 * cos(theta) ** 25 - 6.39793671317339e64 * cos(theta) ** 23 + 9.55536002616806e63 * cos(theta) ** 21 - 1.12416000307859e63 * cos(theta) ** 19 + 1.0268769258891e62 * cos(theta) ** 17 - 7.14349165835896e60 * cos(theta) ** 15 + 3.68764318646849e59 * cos(theta) ** 13 - 1.36385096512348e58 * cos(theta) ** 11 + 3.44090839824732e56 * cos(theta) ** 9 - 5.5128038423188e54 * cos(theta) ** 7 + 5.01163985665345e52 * cos(theta) ** 5 - 2.11550859293096e50 * cos(theta) ** 3 + 2.61820370412248e47 * cos(theta) ) * sin(25 * phi) ) # @torch.jit.script def Yl74_m_minus_24(theta, phi): return ( 8.74694521096234e-45 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.34515048071387e64 * cos(theta) ** 50 - 1.12095873392822e65 * cos(theta) ** 48 + 4.36014293748634e65 * cos(theta) ** 46 - 1.05192259680614e66 * cos(theta) ** 44 + 1.76439499393371e66 * cos(theta) ** 42 - 2.1858188342114e66 * cos(theta) ** 40 + 2.0741346602006e66 * cos(theta) ** 38 - 1.54298059906986e66 * cos(theta) ** 36 + 9.13606933659788e65 * cos(theta) ** 34 - 4.34718820850841e65 * cos(theta) ** 32 + 1.67147701660478e65 * cos(theta) ** 30 - 5.20467073889105e64 * cos(theta) ** 28 + 1.31157702620055e64 * cos(theta) ** 26 - 2.66580696382225e63 * cos(theta) ** 24 + 4.34334546644003e62 * cos(theta) ** 22 - 5.62080001539297e61 * cos(theta) ** 20 + 5.70487181049501e60 * cos(theta) ** 18 - 4.46468228647435e59 * cos(theta) ** 16 + 2.63403084747749e58 * cos(theta) ** 14 - 1.13654247093623e57 * cos(theta) ** 12 + 3.44090839824732e55 * cos(theta) ** 10 - 6.8910048028985e53 * cos(theta) ** 8 + 8.35273309442242e51 * cos(theta) ** 6 - 5.28877148232741e49 * cos(theta) ** 4 + 1.30910185206124e47 * cos(theta) ** 2 - 5.28930041236865e43 ) * sin(24 * phi) ) # @torch.jit.script def Yl74_m_minus_23(theta, phi): return ( 6.18378714475877e-43 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 2.63754996218406e62 * cos(theta) ** 51 - 2.28767088556781e63 * cos(theta) ** 49 + 9.2768998669922e63 * cos(theta) ** 47 - 2.33760577068032e64 * cos(theta) ** 45 + 4.10324417193886e64 * cos(theta) ** 43 - 5.3312654492961e64 * cos(theta) ** 41 + 5.31829400051436e64 * cos(theta) ** 39 - 4.17021783532396e64 * cos(theta) ** 37 + 2.61030552474225e64 * cos(theta) ** 35 - 1.31732976015406e64 * cos(theta) ** 33 + 5.39186134388639e63 * cos(theta) ** 31 - 1.79471404789347e63 * cos(theta) ** 29 + 4.85769268963165e62 * cos(theta) ** 27 - 1.0663227855289e62 * cos(theta) ** 25 + 1.88841107236523e61 * cos(theta) ** 23 - 2.67657143590142e60 * cos(theta) ** 21 + 3.00256411078684e59 * cos(theta) ** 19 - 2.62628369792609e58 * cos(theta) ** 17 + 1.756020564985e57 * cos(theta) ** 15 - 8.74263439181719e55 * cos(theta) ** 13 + 3.1280985438612e54 * cos(theta) ** 11 - 7.65667200322055e52 * cos(theta) ** 9 + 1.19324758491749e51 * cos(theta) ** 7 - 1.05775429646548e49 * cos(theta) ** 5 + 4.36367284020413e46 * cos(theta) ** 3 - 5.28930041236865e43 * cos(theta) ) * sin(23 * phi) ) # @torch.jit.script def Yl74_m_minus_22(theta, phi): return ( 4.39179511236912e-41 * (1.0 - cos(theta) ** 2) ** 11 * ( 5.07221146573857e60 * cos(theta) ** 52 - 4.57534177113561e61 * cos(theta) ** 50 + 1.93268747229004e62 * cos(theta) ** 48 - 5.081751675392e62 * cos(theta) ** 46 + 9.32555493622468e62 * cos(theta) ** 44 - 1.26934891649907e63 * cos(theta) ** 42 + 1.32957350012859e63 * cos(theta) ** 40 - 1.09742574613788e63 * cos(theta) ** 38 + 7.25084867983959e62 * cos(theta) ** 36 - 3.87449929457077e62 * cos(theta) ** 34 + 1.6849566699645e62 * cos(theta) ** 32 - 5.98238015964489e61 * cos(theta) ** 30 + 1.73489024629702e61 * cos(theta) ** 28 - 4.10124148280346e60 * cos(theta) ** 26 + 7.86837946818845e59 * cos(theta) ** 24 - 1.21662337995519e59 * cos(theta) ** 22 + 1.50128205539342e58 * cos(theta) ** 20 - 1.45904649884783e57 * cos(theta) ** 18 + 1.09751285311562e56 * cos(theta) ** 16 - 6.24473885129799e54 * cos(theta) ** 14 + 2.606748786551e53 * cos(theta) ** 12 - 7.65667200322055e51 * cos(theta) ** 10 + 1.49155948114686e50 * cos(theta) ** 8 - 1.76292382744247e48 * cos(theta) ** 6 + 1.09091821005103e46 * cos(theta) ** 4 - 2.64465020618432e43 * cos(theta) ** 2 + 1.04863211981932e40 ) * sin(22 * phi) ) # @torch.jit.script def Yl74_m_minus_21(theta, phi): return ( 3.13267702778855e-39 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 9.57021031271429e58 * cos(theta) ** 53 - 8.97125837477571e59 * cos(theta) ** 51 + 3.9442601475307e60 * cos(theta) ** 49 - 1.0812237607217e61 * cos(theta) ** 47 + 2.07234554138326e61 * cos(theta) ** 45 - 2.95197422441645e61 * cos(theta) ** 43 + 3.24286219543558e61 * cos(theta) ** 41 - 2.81391216958432e61 * cos(theta) ** 39 + 1.95968883238908e61 * cos(theta) ** 37 - 1.10699979844879e61 * cos(theta) ** 35 + 5.10592930292272e60 * cos(theta) ** 33 - 1.92980005149835e60 * cos(theta) ** 31 + 5.98238015964489e59 * cos(theta) ** 29 - 1.51897832696424e59 * cos(theta) ** 27 + 3.14735178727538e58 * cos(theta) ** 25 - 5.28966686937039e57 * cos(theta) ** 23 + 7.14896216854011e56 * cos(theta) ** 21 - 7.67919209919909e55 * cos(theta) ** 19 + 6.45595795950366e54 * cos(theta) ** 17 - 4.16315923419866e53 * cos(theta) ** 15 + 2.00519137427e52 * cos(theta) ** 13 - 6.96061091201868e50 * cos(theta) ** 11 + 1.6572883123854e49 * cos(theta) ** 9 - 2.5184626106321e47 * cos(theta) ** 7 + 2.18183642010207e45 * cos(theta) ** 5 - 8.81550068728108e42 * cos(theta) ** 3 + 1.04863211981932e40 * cos(theta) ) * sin(21 * phi) ) # @torch.jit.script def Yl74_m_minus_20(theta, phi): return ( 2.24374916822329e-37 * (1.0 - cos(theta) ** 2) ** 10 * ( 1.77226116902116e57 * cos(theta) ** 54 - 1.72524199514917e58 * cos(theta) ** 52 + 7.8885202950614e58 * cos(theta) ** 50 - 2.25254950150355e59 * cos(theta) ** 48 + 4.50509900300709e59 * cos(theta) ** 46 - 6.70903232821919e59 * cos(theta) ** 44 + 7.72110046532282e59 * cos(theta) ** 42 - 7.03478042396079e59 * cos(theta) ** 40 + 5.1570758747081e59 * cos(theta) ** 38 - 3.07499944013553e59 * cos(theta) ** 36 + 1.50174391262433e59 * cos(theta) ** 34 - 6.03062516093235e58 * cos(theta) ** 32 + 1.99412671988163e58 * cos(theta) ** 30 - 5.42492259630087e57 * cos(theta) ** 28 + 1.21051991818284e57 * cos(theta) ** 26 - 2.20402786223766e56 * cos(theta) ** 24 + 3.24952825842732e55 * cos(theta) ** 22 - 3.83959604959955e54 * cos(theta) ** 20 + 3.58664331083537e53 * cos(theta) ** 18 - 2.60197452137416e52 * cos(theta) ** 16 + 1.43227955305e51 * cos(theta) ** 14 - 5.8005090933489e49 * cos(theta) ** 12 + 1.6572883123854e48 * cos(theta) ** 10 - 3.14807826329012e46 * cos(theta) ** 8 + 3.63639403350344e44 * cos(theta) ** 6 - 2.20387517182027e42 * cos(theta) ** 4 + 5.2431605990966e39 * cos(theta) ** 2 - 2.04411719263025e36 ) * sin(20 * phi) ) # @torch.jit.script def Yl74_m_minus_19(theta, phi): return ( 1.6133165035292e-35 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 3.22229303458393e55 * cos(theta) ** 55 - 3.25517357575316e56 * cos(theta) ** 53 + 1.54676868530616e57 * cos(theta) ** 51 - 4.59703979898683e57 * cos(theta) ** 49 + 9.58531702767466e57 * cos(theta) ** 47 - 1.4908960729376e58 * cos(theta) ** 45 + 1.7956047593774e58 * cos(theta) ** 43 - 1.71580010340507e58 * cos(theta) ** 41 + 1.32232714736105e58 * cos(theta) ** 39 - 8.3108092976636e57 * cos(theta) ** 37 + 4.29069689321237e57 * cos(theta) ** 35 - 1.8274621699795e57 * cos(theta) ** 33 + 6.43266683832784e56 * cos(theta) ** 31 - 1.87066296424168e56 * cos(theta) ** 29 + 4.48340710438088e55 * cos(theta) ** 27 - 8.81611144895065e54 * cos(theta) ** 25 + 1.41283837322927e54 * cos(theta) ** 23 - 1.82837907123788e53 * cos(theta) ** 21 + 1.88770700570283e52 * cos(theta) ** 19 - 1.53057324786716e51 * cos(theta) ** 17 + 9.54853035366666e49 * cos(theta) ** 15 - 4.46193007180685e48 * cos(theta) ** 13 + 1.50662573853218e47 * cos(theta) ** 11 - 3.49786473698903e45 * cos(theta) ** 9 + 5.19484861929063e43 * cos(theta) ** 7 - 4.40775034364054e41 * cos(theta) ** 5 + 1.74772019969887e39 * cos(theta) ** 3 - 2.04411719263025e36 * cos(theta) ) * sin(19 * phi) ) # @torch.jit.script def Yl74_m_minus_18(theta, phi): return ( 1.16427363845596e-33 * (1.0 - cos(theta) ** 2) ** 9 * ( 5.75409470461417e53 * cos(theta) ** 56 - 6.0280992143577e54 * cos(theta) ** 54 + 2.9745551640503e55 * cos(theta) ** 52 - 9.19407959797366e55 * cos(theta) ** 50 + 1.99694104743222e56 * cos(theta) ** 48 - 3.24107841942956e56 * cos(theta) ** 46 + 4.08091990767591e56 * cos(theta) ** 44 - 4.08523834144064e56 * cos(theta) ** 42 + 3.30581786840263e56 * cos(theta) ** 40 - 2.18705507833253e56 * cos(theta) ** 38 + 1.19186024811455e56 * cos(theta) ** 36 - 5.37488873523382e55 * cos(theta) ** 34 + 2.01020838697745e55 * cos(theta) ** 32 - 6.23554321413893e54 * cos(theta) ** 30 + 1.60121682299317e54 * cos(theta) ** 28 - 3.39081209575025e53 * cos(theta) ** 26 + 5.88682655512196e52 * cos(theta) ** 24 - 8.31081396017218e51 * cos(theta) ** 22 + 9.43853502851413e50 * cos(theta) ** 20 - 8.50318471037309e49 * cos(theta) ** 18 + 5.96783147104166e48 * cos(theta) ** 16 - 3.18709290843346e47 * cos(theta) ** 14 + 1.25552144877682e46 * cos(theta) ** 12 - 3.49786473698903e44 * cos(theta) ** 10 + 6.49356077411329e42 * cos(theta) ** 8 - 7.34625057273423e40 * cos(theta) ** 6 + 4.36930049924716e38 * cos(theta) ** 4 - 1.02205859631513e36 * cos(theta) ** 2 + 3.92495620704733e32 ) * sin(18 * phi) ) # @torch.jit.script def Yl74_m_minus_17(theta, phi): return ( 8.43114203633594e-32 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.00949029905512e52 * cos(theta) ** 57 - 1.09601803897413e53 * cos(theta) ** 55 + 5.61236823405717e53 * cos(theta) ** 53 - 1.80276070548503e54 * cos(theta) ** 51 + 4.07538989271882e54 * cos(theta) ** 49 - 6.8959115307012e54 * cos(theta) ** 47 + 9.06871090594646e54 * cos(theta) ** 45 - 9.5005542824201e54 * cos(theta) ** 43 + 8.06297041073812e54 * cos(theta) ** 41 - 5.60783353418597e54 * cos(theta) ** 39 + 3.2212439138231e54 * cos(theta) ** 37 - 1.53568249578109e54 * cos(theta) ** 35 + 6.09154056659833e53 * cos(theta) ** 33 - 2.01146555294804e53 * cos(theta) ** 31 + 5.52143732066611e52 * cos(theta) ** 29 - 1.25585633175935e52 * cos(theta) ** 27 + 2.35473062204878e51 * cos(theta) ** 25 - 3.6133973739879e50 * cos(theta) ** 23 + 4.49454048976863e49 * cos(theta) ** 21 - 4.47536037388057e48 * cos(theta) ** 19 + 3.51048910061274e47 * cos(theta) ** 17 - 2.12472860562231e46 * cos(theta) ** 15 + 9.65785729828322e44 * cos(theta) ** 13 - 3.17987703362639e43 * cos(theta) ** 11 + 7.21506752679255e41 * cos(theta) ** 9 - 1.04946436753346e40 * cos(theta) ** 7 + 8.73860099849433e37 * cos(theta) ** 5 - 3.40686198771709e35 * cos(theta) ** 3 + 3.92495620704733e32 * cos(theta) ) * sin(17 * phi) ) # @torch.jit.script def Yl74_m_minus_16(theta, phi): return ( 6.12521163358953e-30 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.74050051561227e50 * cos(theta) ** 58 - 1.95717506959666e51 * cos(theta) ** 56 + 1.03932745075133e52 * cos(theta) ** 54 - 3.46684751054814e52 * cos(theta) ** 52 + 8.15077978543764e52 * cos(theta) ** 50 - 1.43664823556275e53 * cos(theta) ** 48 + 1.97145889259706e53 * cos(theta) ** 46 - 2.15921688236821e53 * cos(theta) ** 44 + 1.91975485969955e53 * cos(theta) ** 42 - 1.40195838354649e53 * cos(theta) ** 40 + 8.47695766795553e52 * cos(theta) ** 38 - 4.26578471050303e52 * cos(theta) ** 36 + 1.79162957841127e52 * cos(theta) ** 34 - 6.28582985296263e51 * cos(theta) ** 32 + 1.8404791068887e51 * cos(theta) ** 30 - 4.48520118485483e50 * cos(theta) ** 28 + 9.05665623864917e49 * cos(theta) ** 26 - 1.50558223916163e49 * cos(theta) ** 24 + 2.04297294989483e48 * cos(theta) ** 22 - 2.23768018694029e47 * cos(theta) ** 20 + 1.95027172256263e46 * cos(theta) ** 18 - 1.32795537851394e45 * cos(theta) ** 16 + 6.89846949877373e43 * cos(theta) ** 14 - 2.64989752802199e42 * cos(theta) ** 12 + 7.21506752679255e40 * cos(theta) ** 10 - 1.31183045941683e39 * cos(theta) ** 8 + 1.45643349974905e37 * cos(theta) ** 6 - 8.51715496929272e34 * cos(theta) ** 4 + 1.96247810352367e32 * cos(theta) ** 2 - 7.43644601562587e28 ) * sin(16 * phi) ) # @torch.jit.script def Yl74_m_minus_15(theta, phi): return ( 4.46342620890884e-28 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 2.9500008739191e48 * cos(theta) ** 59 - 3.43364047297659e49 * cos(theta) ** 57 + 1.88968627409332e50 * cos(theta) ** 55 - 6.54122171801535e50 * cos(theta) ** 53 + 1.59819211479169e51 * cos(theta) ** 51 - 2.93193517461786e51 * cos(theta) ** 49 + 4.19459338850438e51 * cos(theta) ** 47 - 4.79825973859601e51 * cos(theta) ** 45 + 4.46454618534779e51 * cos(theta) ** 43 - 3.41941069157681e51 * cos(theta) ** 41 + 2.17357888921937e51 * cos(theta) ** 39 - 1.15291478662244e51 * cos(theta) ** 37 + 5.11894165260364e50 * cos(theta) ** 35 - 1.90479692514019e50 * cos(theta) ** 33 + 5.93702937706034e49 * cos(theta) ** 31 - 1.5466210982258e49 * cos(theta) ** 29 + 3.35431712542562e48 * cos(theta) ** 27 - 6.02232895664651e47 * cos(theta) ** 25 + 8.88249108649927e46 * cos(theta) ** 23 - 1.06556199378109e46 * cos(theta) ** 21 + 1.02645880134875e45 * cos(theta) ** 19 - 7.81150222655261e43 * cos(theta) ** 17 + 4.59897966584915e42 * cos(theta) ** 15 - 2.03838271386307e41 * cos(theta) ** 13 + 6.55915229708413e39 * cos(theta) ** 11 - 1.45758939935203e38 * cos(theta) ** 9 + 2.08061928535579e36 * cos(theta) ** 7 - 1.70343099385854e34 * cos(theta) ** 5 + 6.54159367841222e31 * cos(theta) ** 3 - 7.43644601562587e28 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl74_m_minus_14(theta, phi): return ( 3.26166225427279e-26 * (1.0 - cos(theta) ** 2) ** 7 * ( 4.91666812319851e46 * cos(theta) ** 60 - 5.92006978099412e47 * cos(theta) ** 58 + 3.37443977516665e48 * cos(theta) ** 56 - 1.21133735518803e49 * cos(theta) ** 54 + 3.07344637459941e49 * cos(theta) ** 52 - 5.86387034923571e49 * cos(theta) ** 50 + 8.73873622605079e49 * cos(theta) ** 48 - 1.04309994317305e50 * cos(theta) ** 46 + 1.01466958757904e50 * cos(theta) ** 44 - 8.14145402756383e49 * cos(theta) ** 42 + 5.43394722304842e49 * cos(theta) ** 40 - 3.03398628058537e49 * cos(theta) ** 38 + 1.42192823683434e49 * cos(theta) ** 36 - 5.60234389747115e48 * cos(theta) ** 34 + 1.85532168033136e48 * cos(theta) ** 32 - 5.15540366075267e47 * cos(theta) ** 30 + 1.19797040193772e47 * cos(theta) ** 28 - 2.31628036794096e46 * cos(theta) ** 26 + 3.70103795270803e45 * cos(theta) ** 24 - 4.84346360809586e44 * cos(theta) ** 22 + 5.13229400674377e43 * cos(theta) ** 20 - 4.33972345919589e42 * cos(theta) ** 18 + 2.87436229115572e41 * cos(theta) ** 16 - 1.45598765275934e40 * cos(theta) ** 14 + 5.46596024757011e38 * cos(theta) ** 12 - 1.45758939935203e37 * cos(theta) ** 10 + 2.60077410669474e35 * cos(theta) ** 8 - 2.83905165643091e33 * cos(theta) ** 6 + 1.63539841960306e31 * cos(theta) ** 4 - 3.71822300781294e28 * cos(theta) ** 2 + 1.39259288682132e25 ) * sin(14 * phi) ) # @torch.jit.script def Yl74_m_minus_13(theta, phi): return ( 2.38971022234848e-24 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 8.0601116773746e44 * cos(theta) ** 61 - 1.00340165779561e46 * cos(theta) ** 59 + 5.92006978099412e46 * cos(theta) ** 57 - 2.20243155488732e47 * cos(theta) ** 55 + 5.79895542377247e47 * cos(theta) ** 53 - 1.14977849985014e48 * cos(theta) ** 51 + 1.7834155563369e48 * cos(theta) ** 49 - 2.21936158121925e48 * cos(theta) ** 47 + 2.25482130573121e48 * cos(theta) ** 45 - 1.89336140175903e48 * cos(theta) ** 43 + 1.32535298123132e48 * cos(theta) ** 41 - 7.77945200150096e47 * cos(theta) ** 39 + 3.84304928874147e47 * cos(theta) ** 37 - 1.60066968499176e47 * cos(theta) ** 35 + 5.62218691009502e46 * cos(theta) ** 33 - 1.66303343895248e46 * cos(theta) ** 31 + 4.1309324204749e45 * cos(theta) ** 29 - 8.57881617755912e44 * cos(theta) ** 27 + 1.48041518108321e44 * cos(theta) ** 25 - 2.10585374265037e43 * cos(theta) ** 23 + 2.44394952702085e42 * cos(theta) ** 21 - 2.28406497852415e41 * cos(theta) ** 19 + 1.69080134773866e40 * cos(theta) ** 17 - 9.7065843517289e38 * cos(theta) ** 15 + 4.20458480582316e37 * cos(theta) ** 13 - 1.32508127213821e36 * cos(theta) ** 11 + 2.8897490074386e34 * cos(theta) ** 9 - 4.05578808061558e32 * cos(theta) ** 7 + 3.27079683920611e30 * cos(theta) ** 5 - 1.23940766927098e28 * cos(theta) ** 3 + 1.39259288682132e25 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl74_m_minus_12(theta, phi): return ( 1.75509533709773e-22 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.30001801247977e43 * cos(theta) ** 62 - 1.67233609632602e44 * cos(theta) ** 60 + 1.0207016863783e45 * cos(theta) ** 58 - 3.93291349087022e45 * cos(theta) ** 56 + 1.07388063403194e46 * cos(theta) ** 54 - 2.21111249971181e46 * cos(theta) ** 52 + 3.56683111267379e46 * cos(theta) ** 50 - 4.62366996087343e46 * cos(theta) ** 48 + 4.90178544724176e46 * cos(theta) ** 46 - 4.30309409490689e46 * cos(theta) ** 44 + 3.15560233626505e46 * cos(theta) ** 42 - 1.94486300037524e46 * cos(theta) ** 40 + 1.01132876019512e46 * cos(theta) ** 38 - 4.44630468053266e45 * cos(theta) ** 36 + 1.65358438532206e45 * cos(theta) ** 34 - 5.19697949672649e44 * cos(theta) ** 32 + 1.37697747349163e44 * cos(theta) ** 30 - 3.06386292055683e43 * cos(theta) ** 28 + 5.69390454262774e42 * cos(theta) ** 26 - 8.77439059437655e41 * cos(theta) ** 24 + 1.11088614864584e41 * cos(theta) ** 22 - 1.14203248926208e40 * cos(theta) ** 20 + 9.39334082077033e38 * cos(theta) ** 18 - 6.06661521983056e37 * cos(theta) ** 16 + 3.00327486130226e36 * cos(theta) ** 14 - 1.10423439344851e35 * cos(theta) ** 12 + 2.8897490074386e33 * cos(theta) ** 10 - 5.06973510076947e31 * cos(theta) ** 8 + 5.45132806534352e29 * cos(theta) ** 6 - 3.09851917317745e27 * cos(theta) ** 4 + 6.96296443410662e24 * cos(theta) ** 2 - 2.58174432113705e21 ) * sin(12 * phi) ) # @torch.jit.script def Yl74_m_minus_11(theta, phi): return ( 1.29187416345375e-20 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 2.0635206547298e41 * cos(theta) ** 63 - 2.74153458414102e42 * cos(theta) ** 61 + 1.7300028582683e43 * cos(theta) ** 59 - 6.89984822959688e43 * cos(theta) ** 57 + 1.95251024369444e44 * cos(theta) ** 55 - 4.17191037681473e44 * cos(theta) ** 53 + 6.9937864954388e44 * cos(theta) ** 51 - 9.43606114463966e44 * cos(theta) ** 49 + 1.04293307388123e45 * cos(theta) ** 47 - 9.5624313220153e44 * cos(theta) ** 45 + 7.33861008433733e44 * cos(theta) ** 43 - 4.74356829359814e44 * cos(theta) ** 41 + 2.59315066716698e44 * cos(theta) ** 39 - 1.20170396771153e44 * cos(theta) ** 37 + 4.7245268152059e43 * cos(theta) ** 35 - 1.5748422717353e43 * cos(theta) ** 33 + 4.44186281771494e42 * cos(theta) ** 31 - 1.05650445536442e42 * cos(theta) ** 29 + 2.10885353430657e41 * cos(theta) ** 27 - 3.50975623775062e40 * cos(theta) ** 25 + 4.82993977672104e39 * cos(theta) ** 23 - 5.43824994886703e38 * cos(theta) ** 21 + 4.94386358987912e37 * cos(theta) ** 19 - 3.56859718813563e36 * cos(theta) ** 17 + 2.00218324086817e35 * cos(theta) ** 15 - 8.49411071883467e33 * cos(theta) ** 13 + 2.62704455221691e32 * cos(theta) ** 11 - 5.63303900085497e30 * cos(theta) ** 9 + 7.78761152191932e28 * cos(theta) ** 7 - 6.19703834635489e26 * cos(theta) ** 5 + 2.32098814470221e24 * cos(theta) ** 3 - 2.58174432113705e21 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl74_m_minus_10(theta, phi): return ( 9.52839302655195e-19 * (1.0 - cos(theta) ** 2) ** 5 * ( 3.22425102301531e39 * cos(theta) ** 64 - 4.421829974421e40 * cos(theta) ** 62 + 2.88333809711383e41 * cos(theta) ** 60 - 1.18962900510291e42 * cos(theta) ** 58 + 3.48662543516864e42 * cos(theta) ** 56 - 7.72575995706431e42 * cos(theta) ** 54 + 1.34495894143054e43 * cos(theta) ** 52 - 1.88721222892793e43 * cos(theta) ** 50 + 2.17277723725255e43 * cos(theta) ** 48 - 2.07878941782941e43 * cos(theta) ** 46 + 1.66786592825848e43 * cos(theta) ** 44 - 1.12942102228527e43 * cos(theta) ** 42 + 6.48287666791746e42 * cos(theta) ** 40 - 3.16237886239876e42 * cos(theta) ** 38 + 1.31236855977942e42 * cos(theta) ** 36 - 4.63188903451558e41 * cos(theta) ** 34 + 1.38808213053592e41 * cos(theta) ** 32 - 3.52168151788141e40 * cos(theta) ** 30 + 7.53161976538061e39 * cos(theta) ** 28 - 1.3499062452887e39 * cos(theta) ** 26 + 2.0124749069671e38 * cos(theta) ** 24 - 2.47193179493956e37 * cos(theta) ** 22 + 2.47193179493956e36 * cos(theta) ** 20 - 1.98255399340868e35 * cos(theta) ** 18 + 1.25136452554261e34 * cos(theta) ** 16 - 6.06722194202477e32 * cos(theta) ** 14 + 2.18920379351409e31 * cos(theta) ** 12 - 5.63303900085497e29 * cos(theta) ** 10 + 9.73451440239914e27 * cos(theta) ** 8 - 1.03283972439248e26 * cos(theta) ** 6 + 5.80247036175552e23 * cos(theta) ** 4 - 1.29087216056852e21 * cos(theta) ** 2 + 4.74585353150193e17 ) * sin(10 * phi) ) # @torch.jit.script def Yl74_m_minus_9(theta, phi): return ( 7.04070233875644e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 4.96038618925433e37 * cos(theta) ** 65 - 7.01877773717619e38 * cos(theta) ** 63 + 4.72678376576038e39 * cos(theta) ** 61 - 2.01632034763205e40 * cos(theta) ** 59 + 6.11688672836603e40 * cos(theta) ** 57 - 1.40468362855715e41 * cos(theta) ** 55 + 2.53765838005762e41 * cos(theta) ** 53 - 3.70041613515281e41 * cos(theta) ** 51 + 4.43423925969909e41 * cos(theta) ** 49 - 4.42295620814769e41 * cos(theta) ** 47 + 3.7063687294633e41 * cos(theta) ** 45 - 2.62656051694249e41 * cos(theta) ** 43 + 1.58118943119938e41 * cos(theta) ** 41 - 8.10866374974042e40 * cos(theta) ** 39 + 3.54694205345788e40 * cos(theta) ** 37 - 1.32339686700445e40 * cos(theta) ** 35 + 4.20630948647249e39 * cos(theta) ** 33 - 1.13602629609078e39 * cos(theta) ** 31 + 2.59711026392435e38 * cos(theta) ** 29 - 4.99965276032852e37 * cos(theta) ** 27 + 8.0498996278684e36 * cos(theta) ** 25 - 1.07475295432155e36 * cos(theta) ** 23 + 1.17711037854265e35 * cos(theta) ** 21 - 1.0434494702151e34 * cos(theta) ** 19 + 7.36096779730946e32 * cos(theta) ** 17 - 4.04481462801651e31 * cos(theta) ** 15 + 1.68400291808776e30 * cos(theta) ** 13 - 5.12094454623179e28 * cos(theta) ** 11 + 1.08161271137768e27 * cos(theta) ** 9 - 1.47548532056069e25 * cos(theta) ** 7 + 1.1604940723511e23 * cos(theta) ** 5 - 4.30290720189508e20 * cos(theta) ** 3 + 4.74585353150193e17 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl74_m_minus_8(theta, phi): return ( 5.21107109008342e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 7.51573665038535e35 * cos(theta) ** 66 - 1.09668402143378e37 * cos(theta) ** 64 + 7.62384478348449e37 * cos(theta) ** 62 - 3.36053391272008e38 * cos(theta) ** 60 + 1.05463564282173e39 * cos(theta) ** 58 - 2.50836362242348e39 * cos(theta) ** 56 + 4.69936737047708e39 * cos(theta) ** 54 - 7.11618487529386e39 * cos(theta) ** 52 + 8.86847851939817e39 * cos(theta) ** 50 - 9.21449210030769e39 * cos(theta) ** 48 + 8.05732332492021e39 * cos(theta) ** 46 - 5.96945572032385e39 * cos(theta) ** 44 + 3.76473674095091e39 * cos(theta) ** 42 - 2.0271659374351e39 * cos(theta) ** 40 + 9.33405803541547e38 * cos(theta) ** 38 - 3.6761024083457e38 * cos(theta) ** 36 + 1.2371498489625e38 * cos(theta) ** 34 - 3.55008217528368e37 * cos(theta) ** 32 + 8.65703421308116e36 * cos(theta) ** 30 - 1.7855902715459e36 * cos(theta) ** 28 + 3.09611524148784e35 * cos(theta) ** 26 - 4.47813730967312e34 * cos(theta) ** 24 + 5.3505017206484e33 * cos(theta) ** 22 - 5.21724735107548e32 * cos(theta) ** 20 + 4.08942655406081e31 * cos(theta) ** 18 - 2.52800914251032e30 * cos(theta) ** 16 + 1.20285922720554e29 * cos(theta) ** 14 - 4.26745378852649e27 * cos(theta) ** 12 + 1.08161271137768e26 * cos(theta) ** 10 - 1.84435665070086e24 * cos(theta) ** 8 + 1.93415678725184e22 * cos(theta) ** 6 - 1.07572680047377e20 * cos(theta) ** 4 + 2.37292676575096e17 * cos(theta) ** 2 - 86634785167979.7 ) * sin(8 * phi) ) # @torch.jit.script def Yl74_m_minus_7(theta, phi): return ( 3.86252519617713e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.12175173886348e34 * cos(theta) ** 67 - 1.6872061868212e35 * cos(theta) ** 65 + 1.21013409261659e36 * cos(theta) ** 63 - 5.50907198806571e36 * cos(theta) ** 61 + 1.7875180386809e37 * cos(theta) ** 59 - 4.40063793407628e37 * cos(theta) ** 57 + 8.54430430995832e37 * cos(theta) ** 55 - 1.34267639156488e38 * cos(theta) ** 53 + 1.73891735674474e38 * cos(theta) ** 51 - 1.88050859189953e38 * cos(theta) ** 49 + 1.71432411168515e38 * cos(theta) ** 47 - 1.32654571562752e38 * cos(theta) ** 45 + 8.75520172314165e37 * cos(theta) ** 43 - 4.94430716447586e37 * cos(theta) ** 41 + 2.3933482142091e37 * cos(theta) ** 39 - 9.93541191444784e36 * cos(theta) ** 37 + 3.53471385417856e36 * cos(theta) ** 35 - 1.07578247735869e36 * cos(theta) ** 33 + 2.79259168163908e35 * cos(theta) ** 31 - 6.1572078329169e34 * cos(theta) ** 29 + 1.1467093486992e34 * cos(theta) ** 27 - 1.79125492386925e33 * cos(theta) ** 25 + 2.32630509593409e32 * cos(theta) ** 23 - 2.48440350051213e31 * cos(theta) ** 21 + 2.15232976529516e30 * cos(theta) ** 19 - 1.48706420147666e29 * cos(theta) ** 17 + 8.01906151470363e27 * cos(theta) ** 15 - 3.28265676040499e26 * cos(theta) ** 13 + 9.83284283070621e24 * cos(theta) ** 11 - 2.0492851674454e23 * cos(theta) ** 9 + 2.76308112464548e21 * cos(theta) ** 7 - 2.15145360094754e19 * cos(theta) ** 5 + 7.90975588583655e16 * cos(theta) ** 3 - 86634785167979.7 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl74_m_minus_6(theta, phi): return ( 2.86660788578062e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.64963491009336e32 * cos(theta) ** 68 - 2.55637301033515e33 * cos(theta) ** 66 + 1.89083451971341e34 * cos(theta) ** 64 - 8.88559998075115e34 * cos(theta) ** 62 + 2.97919673113483e35 * cos(theta) ** 60 - 7.58730678289014e35 * cos(theta) ** 58 + 1.52576862677827e36 * cos(theta) ** 56 - 2.48643776215718e36 * cos(theta) ** 54 + 3.34407183989373e36 * cos(theta) ** 52 - 3.76101718379906e36 * cos(theta) ** 50 + 3.57150856601073e36 * cos(theta) ** 48 - 2.88379503397287e36 * cos(theta) ** 46 + 1.98981857344128e36 * cos(theta) ** 44 - 1.17721599154187e36 * cos(theta) ** 42 + 5.98337053552274e35 * cos(theta) ** 40 - 2.61458208274943e35 * cos(theta) ** 38 + 9.81864959494044e34 * cos(theta) ** 36 - 3.16406610987851e34 * cos(theta) ** 34 + 8.72684900512213e33 * cos(theta) ** 32 - 2.0524026109723e33 * cos(theta) ** 30 + 4.09539053106858e32 * cos(theta) ** 28 - 6.88944201488172e31 * cos(theta) ** 26 + 9.69293789972536e30 * cos(theta) ** 24 - 1.12927431841461e30 * cos(theta) ** 22 + 1.07616488264758e29 * cos(theta) ** 20 - 8.26146778598144e27 * cos(theta) ** 18 + 5.01191344668977e26 * cos(theta) ** 16 - 2.34475482886071e25 * cos(theta) ** 14 + 8.19403569225517e23 * cos(theta) ** 12 - 2.0492851674454e22 * cos(theta) ** 10 + 3.45385140580686e20 * cos(theta) ** 8 - 3.58575600157923e18 * cos(theta) ** 6 + 1.97743897145914e16 * cos(theta) ** 4 - 43317392583989.9 * cos(theta) ** 2 + 15728900720.403 ) * sin(6 * phi) ) # @torch.jit.script def Yl74_m_minus_5(theta, phi): return ( 2.12979513228208e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 2.39077523201936e30 * cos(theta) ** 69 - 3.81548210497784e31 * cos(theta) ** 67 + 2.90897618417448e32 * cos(theta) ** 65 - 1.41041269535733e33 * cos(theta) ** 63 + 4.88392906743414e33 * cos(theta) ** 61 - 1.28598420048985e34 * cos(theta) ** 59 + 2.67678706452328e34 * cos(theta) ** 57 - 4.52079593119488e34 * cos(theta) ** 55 + 6.30956950923345e34 * cos(theta) ** 53 - 7.37454349764521e34 * cos(theta) ** 51 + 7.28879299185864e34 * cos(theta) ** 49 - 6.1357341148359e34 * cos(theta) ** 47 + 4.42181905209174e34 * cos(theta) ** 45 - 2.73771160823691e34 * cos(theta) ** 43 + 1.45935866720067e34 * cos(theta) ** 41 - 6.70405662243444e33 * cos(theta) ** 39 + 2.65368907971363e33 * cos(theta) ** 37 - 9.04018888536716e32 * cos(theta) ** 35 + 2.64449969852186e32 * cos(theta) ** 33 - 6.62065358378161e31 * cos(theta) ** 31 + 1.41220363140296e31 * cos(theta) ** 29 - 2.55164519069693e30 * cos(theta) ** 27 + 3.87717515989015e29 * cos(theta) ** 25 - 4.90988834093307e28 * cos(theta) ** 23 + 5.1245946792742e27 * cos(theta) ** 21 - 4.34814093999023e26 * cos(theta) ** 19 + 2.94818438040575e25 * cos(theta) ** 17 - 1.56316988590714e24 * cos(theta) ** 15 + 6.30310437865782e22 * cos(theta) ** 13 - 1.86298651585946e21 * cos(theta) ** 11 + 3.83761267311873e19 * cos(theta) ** 9 - 5.12250857368462e17 * cos(theta) ** 7 + 3.95487794291827e15 * cos(theta) ** 5 - 14439130861329.9 * cos(theta) ** 3 + 15728900720.403 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl74_m_minus_4(theta, phi): return ( 1.58380020833984e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 3.41539318859909e28 * cos(theta) ** 70 - 5.61100309555565e29 * cos(theta) ** 68 + 4.40753967299164e30 * cos(theta) ** 66 - 2.20376983649582e31 * cos(theta) ** 64 + 7.87730494747442e31 * cos(theta) ** 62 - 2.14330700081642e32 * cos(theta) ** 60 + 4.61515011124704e32 * cos(theta) ** 58 - 8.07284987713371e32 * cos(theta) ** 56 + 1.1684387980062e33 * cos(theta) ** 54 - 1.41818144185485e33 * cos(theta) ** 52 + 1.45775859837173e33 * cos(theta) ** 50 - 1.27827794059081e33 * cos(theta) ** 48 + 9.61265011324291e32 * cos(theta) ** 46 - 6.22207183690207e32 * cos(theta) ** 44 + 3.47466349333492e32 * cos(theta) ** 42 - 1.67601415560861e32 * cos(theta) ** 40 + 6.98339231503588e31 * cos(theta) ** 38 - 2.51116357926866e31 * cos(theta) ** 36 + 7.77794028977017e30 * cos(theta) ** 34 - 2.06895424493175e30 * cos(theta) ** 32 + 4.70734543800986e29 * cos(theta) ** 30 - 9.11301853820333e28 * cos(theta) ** 28 + 1.49122121534236e28 * cos(theta) ** 26 - 2.04578680872211e27 * cos(theta) ** 24 + 2.32936121785191e26 * cos(theta) ** 22 - 2.17407046999511e25 * cos(theta) ** 20 + 1.63788021133653e24 * cos(theta) ** 18 - 9.76981178691963e22 * cos(theta) ** 16 + 4.50221741332702e21 * cos(theta) ** 14 - 1.55248876321621e20 * cos(theta) ** 12 + 3.83761267311873e18 * cos(theta) ** 10 - 6.40313571710578e16 * cos(theta) ** 8 + 659146323819712.0 * cos(theta) ** 6 - 3609782715332.49 * cos(theta) ** 4 + 7864450360.2015 * cos(theta) ** 2 - 2844285.8445575 ) * sin(4 * phi) ) # @torch.jit.script def Yl74_m_minus_3(theta, phi): return ( 1.17862831831977e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 4.81041294168886e26 * cos(theta) ** 71 - 8.13188854428354e27 * cos(theta) ** 69 + 6.57841742237558e28 * cos(theta) ** 67 - 3.39041513307049e29 * cos(theta) ** 65 + 1.25036586467848e30 * cos(theta) ** 63 - 3.51361803412528e30 * cos(theta) ** 61 + 7.82228832414753e30 * cos(theta) ** 59 - 1.41628945212872e31 * cos(theta) ** 57 + 2.12443417819308e31 * cos(theta) ** 55 - 2.67581404123556e31 * cos(theta) ** 53 + 2.85835019288574e31 * cos(theta) ** 51 - 2.60873049100166e31 * cos(theta) ** 49 + 2.0452447049453e31 * cos(theta) ** 47 - 1.38268263042268e31 * cos(theta) ** 45 + 8.0806127751975e30 * cos(theta) ** 43 - 4.08783940392344e30 * cos(theta) ** 41 + 1.79061341411176e30 * cos(theta) ** 39 - 6.78692859261799e29 * cos(theta) ** 37 + 2.22226865422005e29 * cos(theta) ** 35 - 6.26955831797501e28 * cos(theta) ** 33 + 1.51849852839028e28 * cos(theta) ** 31 - 3.14242018558736e27 * cos(theta) ** 29 + 5.52304153830505e26 * cos(theta) ** 27 - 8.18314723488844e25 * cos(theta) ** 25 + 1.01276574689213e25 * cos(theta) ** 23 - 1.03527165237863e24 * cos(theta) ** 21 + 8.62042216492908e22 * cos(theta) ** 19 - 5.74694810995272e21 * cos(theta) ** 17 + 3.00147827555134e20 * cos(theta) ** 15 - 1.19422212555093e19 * cos(theta) ** 13 + 3.4887387937443e17 * cos(theta) ** 11 - 7.11459524122864e15 * cos(theta) ** 9 + 94163760545673.2 * cos(theta) ** 7 - 721956543066.498 * cos(theta) ** 5 + 2621483453.4005 * cos(theta) ** 3 - 2844285.8445575 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl74_m_minus_2(theta, phi): return ( 0.000877583566816282 * (1.0 - cos(theta) ** 2) * ( 6.68112908567897e24 * cos(theta) ** 72 - 1.16169836346908e26 * cos(theta) ** 70 + 9.67414326819939e26 * cos(theta) ** 68 - 5.13699262586438e27 * cos(theta) ** 66 + 1.95369666356012e28 * cos(theta) ** 64 - 5.66712586149239e28 * cos(theta) ** 62 + 1.30371472069125e29 * cos(theta) ** 60 - 2.44187836573917e29 * cos(theta) ** 58 + 3.79363246105908e29 * cos(theta) ** 56 - 4.95521118747326e29 * cos(theta) ** 54 + 5.49682729401104e29 * cos(theta) ** 52 - 5.21746098200332e29 * cos(theta) ** 50 + 4.26092646863604e29 * cos(theta) ** 48 - 3.0058318052667e29 * cos(theta) ** 46 + 1.83650290345398e29 * cos(theta) ** 44 - 9.73295096172248e28 * cos(theta) ** 42 + 4.47653353527941e28 * cos(theta) ** 40 - 1.78603384016263e28 * cos(theta) ** 38 + 6.17296848394458e27 * cos(theta) ** 36 - 1.84398774058088e27 * cos(theta) ** 34 + 4.74530790121962e26 * cos(theta) ** 32 - 1.04747339519579e26 * cos(theta) ** 30 + 1.97251483510895e25 * cos(theta) ** 28 - 3.14736432111094e24 * cos(theta) ** 26 + 4.21985727871723e23 * cos(theta) ** 24 - 4.70578023808466e22 * cos(theta) ** 22 + 4.31021108246454e21 * cos(theta) ** 20 - 3.19274894997373e20 * cos(theta) ** 18 + 1.87592392221959e19 * cos(theta) ** 16 - 8.53015803964952e17 * cos(theta) ** 14 + 2.90728232812025e16 * cos(theta) ** 12 - 711459524122864.0 * cos(theta) ** 10 + 11770470068209.1 * cos(theta) ** 8 - 120326090511.083 * cos(theta) ** 6 + 655370863.350125 * cos(theta) ** 4 - 1422142.92227875 * cos(theta) ** 2 + 513.038572250632 ) * sin(2 * phi) ) # @torch.jit.script def Yl74_m_minus_1(theta, phi): return ( 0.0653667222836417 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 9.15223162421776e22 * cos(theta) ** 73 - 1.63619487812546e24 * cos(theta) ** 71 + 1.4020497490144e25 * cos(theta) ** 69 - 7.66715317293192e25 * cos(theta) ** 67 + 3.00568717470788e26 * cos(theta) ** 65 - 8.99543787538475e26 * cos(theta) ** 63 + 2.13723724703484e27 * cos(theta) ** 61 - 4.13877689108335e27 * cos(theta) ** 59 + 6.65549554571768e27 * cos(theta) ** 57 - 9.00947488631502e27 * cos(theta) ** 55 + 1.0371372252851e28 * cos(theta) ** 53 - 1.02303156509869e28 * cos(theta) ** 51 + 8.69576830333886e27 * cos(theta) ** 49 - 6.39538681971639e27 * cos(theta) ** 47 + 4.08111756323106e27 * cos(theta) ** 45 - 2.26347696784244e27 * cos(theta) ** 43 + 1.09183744762912e27 * cos(theta) ** 41 - 4.57957394913494e26 * cos(theta) ** 39 + 1.66836986052556e26 * cos(theta) ** 37 - 5.26853640165967e25 * cos(theta) ** 35 + 1.43797209127867e25 * cos(theta) ** 33 - 3.37894643611544e24 * cos(theta) ** 31 + 6.80177529347913e23 * cos(theta) ** 29 - 1.16569048930035e23 * cos(theta) ** 27 + 1.68794291148689e22 * cos(theta) ** 25 - 2.0459914078629e21 * cos(theta) ** 23 + 2.05248146784026e20 * cos(theta) ** 21 - 1.6803941841967e19 * cos(theta) ** 19 + 1.10348466012917e18 * cos(theta) ** 17 - 5.68677202643301e16 * cos(theta) ** 15 + 2.23637102163096e15 * cos(theta) ** 13 - 64678138556624.0 * cos(theta) ** 11 + 1307830007578.79 * cos(theta) ** 9 - 17189441501.5833 * cos(theta) ** 7 + 131074172.670025 * cos(theta) ** 5 - 474047.640759584 * cos(theta) ** 3 + 513.038572250632 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl74_m0(theta, phi): return ( 1.33792989509846e22 * cos(theta) ** 74 - 2.45833241269452e23 * cos(theta) ** 72 + 2.16672332649904e24 * cos(theta) ** 70 - 1.21972886561659e25 * cos(theta) ** 68 + 4.92649353878474e25 * cos(theta) ** 66 - 1.52047894110694e26 * cos(theta) ** 64 + 3.72905784096302e26 * cos(theta) ** 62 - 7.46206177487943e26 * cos(theta) ** 60 + 1.24133922382863e27 * cos(theta) ** 58 - 1.74040181254344e27 * cos(theta) ** 56 + 2.07768898551698e27 * cos(theta) ** 54 - 2.12825550341789e27 * cos(theta) ** 52 + 1.88137786502142e27 * cos(theta) ** 50 - 1.44133075963179e27 * cos(theta) ** 48 + 9.59752713615504e26 * cos(theta) ** 46 - 5.56495270919914e26 * cos(theta) ** 44 + 2.81220366608033e26 * cos(theta) ** 42 - 1.23852038695405e26 * cos(theta) ** 40 + 4.7494882095583e25 * cos(theta) ** 38 - 1.58316273651943e25 * cos(theta) ** 36 + 4.57519506425341e24 * cos(theta) ** 34 - 1.14227166490706e24 * cos(theta) ** 32 + 2.4526698952117e23 * cos(theta) ** 30 - 4.50363615203498e22 * cos(theta) ** 28 + 7.02299696975753e21 * cos(theta) ** 26 - 9.22211723301493e20 * cos(theta) ** 24 + 1.00924042676928e20 * cos(theta) ** 22 - 9.08906583172333e18 * cos(theta) ** 20 + 6.6318068664648e17 * cos(theta) ** 18 - 3.84488992258095e16 * cos(theta) ** 16 + 1.72804041464313e15 * cos(theta) ** 14 - 58306146730635.7 * cos(theta) ** 12 + 1414781501552.19 * cos(theta) ** 10 - 23243945808.634 * cos(theta) ** 8 + 236321889.121914 * cos(theta) ** 6 - 1282035.56485668 * cos(theta) ** 4 + 2774.96875510103 * cos(theta) ** 2 - 0.999988740576949 ) # @torch.jit.script def Yl74_m1(theta, phi): return ( 0.0653667222836417 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 9.15223162421776e22 * cos(theta) ** 73 - 1.63619487812546e24 * cos(theta) ** 71 + 1.4020497490144e25 * cos(theta) ** 69 - 7.66715317293192e25 * cos(theta) ** 67 + 3.00568717470788e26 * cos(theta) ** 65 - 8.99543787538475e26 * cos(theta) ** 63 + 2.13723724703484e27 * cos(theta) ** 61 - 4.13877689108335e27 * cos(theta) ** 59 + 6.65549554571768e27 * cos(theta) ** 57 - 9.00947488631502e27 * cos(theta) ** 55 + 1.0371372252851e28 * cos(theta) ** 53 - 1.02303156509869e28 * cos(theta) ** 51 + 8.69576830333886e27 * cos(theta) ** 49 - 6.39538681971639e27 * cos(theta) ** 47 + 4.08111756323106e27 * cos(theta) ** 45 - 2.26347696784244e27 * cos(theta) ** 43 + 1.09183744762912e27 * cos(theta) ** 41 - 4.57957394913494e26 * cos(theta) ** 39 + 1.66836986052556e26 * cos(theta) ** 37 - 5.26853640165967e25 * cos(theta) ** 35 + 1.43797209127867e25 * cos(theta) ** 33 - 3.37894643611544e24 * cos(theta) ** 31 + 6.80177529347913e23 * cos(theta) ** 29 - 1.16569048930035e23 * cos(theta) ** 27 + 1.68794291148689e22 * cos(theta) ** 25 - 2.0459914078629e21 * cos(theta) ** 23 + 2.05248146784026e20 * cos(theta) ** 21 - 1.6803941841967e19 * cos(theta) ** 19 + 1.10348466012917e18 * cos(theta) ** 17 - 5.68677202643301e16 * cos(theta) ** 15 + 2.23637102163096e15 * cos(theta) ** 13 - 64678138556624.0 * cos(theta) ** 11 + 1307830007578.79 * cos(theta) ** 9 - 17189441501.5833 * cos(theta) ** 7 + 131074172.670025 * cos(theta) ** 5 - 474047.640759584 * cos(theta) ** 3 + 513.038572250632 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl74_m2(theta, phi): return ( 0.000877583566816282 * (1.0 - cos(theta) ** 2) * ( 6.68112908567897e24 * cos(theta) ** 72 - 1.16169836346908e26 * cos(theta) ** 70 + 9.67414326819939e26 * cos(theta) ** 68 - 5.13699262586438e27 * cos(theta) ** 66 + 1.95369666356012e28 * cos(theta) ** 64 - 5.66712586149239e28 * cos(theta) ** 62 + 1.30371472069125e29 * cos(theta) ** 60 - 2.44187836573917e29 * cos(theta) ** 58 + 3.79363246105908e29 * cos(theta) ** 56 - 4.95521118747326e29 * cos(theta) ** 54 + 5.49682729401104e29 * cos(theta) ** 52 - 5.21746098200332e29 * cos(theta) ** 50 + 4.26092646863604e29 * cos(theta) ** 48 - 3.0058318052667e29 * cos(theta) ** 46 + 1.83650290345398e29 * cos(theta) ** 44 - 9.73295096172248e28 * cos(theta) ** 42 + 4.47653353527941e28 * cos(theta) ** 40 - 1.78603384016263e28 * cos(theta) ** 38 + 6.17296848394458e27 * cos(theta) ** 36 - 1.84398774058088e27 * cos(theta) ** 34 + 4.74530790121962e26 * cos(theta) ** 32 - 1.04747339519579e26 * cos(theta) ** 30 + 1.97251483510895e25 * cos(theta) ** 28 - 3.14736432111094e24 * cos(theta) ** 26 + 4.21985727871723e23 * cos(theta) ** 24 - 4.70578023808466e22 * cos(theta) ** 22 + 4.31021108246454e21 * cos(theta) ** 20 - 3.19274894997373e20 * cos(theta) ** 18 + 1.87592392221959e19 * cos(theta) ** 16 - 8.53015803964952e17 * cos(theta) ** 14 + 2.90728232812025e16 * cos(theta) ** 12 - 711459524122864.0 * cos(theta) ** 10 + 11770470068209.1 * cos(theta) ** 8 - 120326090511.083 * cos(theta) ** 6 + 655370863.350125 * cos(theta) ** 4 - 1422142.92227875 * cos(theta) ** 2 + 513.038572250632 ) * cos(2 * phi) ) # @torch.jit.script def Yl74_m3(theta, phi): return ( 1.17862831831977e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 4.81041294168886e26 * cos(theta) ** 71 - 8.13188854428354e27 * cos(theta) ** 69 + 6.57841742237558e28 * cos(theta) ** 67 - 3.39041513307049e29 * cos(theta) ** 65 + 1.25036586467848e30 * cos(theta) ** 63 - 3.51361803412528e30 * cos(theta) ** 61 + 7.82228832414753e30 * cos(theta) ** 59 - 1.41628945212872e31 * cos(theta) ** 57 + 2.12443417819308e31 * cos(theta) ** 55 - 2.67581404123556e31 * cos(theta) ** 53 + 2.85835019288574e31 * cos(theta) ** 51 - 2.60873049100166e31 * cos(theta) ** 49 + 2.0452447049453e31 * cos(theta) ** 47 - 1.38268263042268e31 * cos(theta) ** 45 + 8.0806127751975e30 * cos(theta) ** 43 - 4.08783940392344e30 * cos(theta) ** 41 + 1.79061341411176e30 * cos(theta) ** 39 - 6.78692859261799e29 * cos(theta) ** 37 + 2.22226865422005e29 * cos(theta) ** 35 - 6.26955831797501e28 * cos(theta) ** 33 + 1.51849852839028e28 * cos(theta) ** 31 - 3.14242018558736e27 * cos(theta) ** 29 + 5.52304153830505e26 * cos(theta) ** 27 - 8.18314723488844e25 * cos(theta) ** 25 + 1.01276574689213e25 * cos(theta) ** 23 - 1.03527165237863e24 * cos(theta) ** 21 + 8.62042216492908e22 * cos(theta) ** 19 - 5.74694810995272e21 * cos(theta) ** 17 + 3.00147827555134e20 * cos(theta) ** 15 - 1.19422212555093e19 * cos(theta) ** 13 + 3.4887387937443e17 * cos(theta) ** 11 - 7.11459524122864e15 * cos(theta) ** 9 + 94163760545673.2 * cos(theta) ** 7 - 721956543066.498 * cos(theta) ** 5 + 2621483453.4005 * cos(theta) ** 3 - 2844285.8445575 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl74_m4(theta, phi): return ( 1.58380020833984e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 3.41539318859909e28 * cos(theta) ** 70 - 5.61100309555565e29 * cos(theta) ** 68 + 4.40753967299164e30 * cos(theta) ** 66 - 2.20376983649582e31 * cos(theta) ** 64 + 7.87730494747442e31 * cos(theta) ** 62 - 2.14330700081642e32 * cos(theta) ** 60 + 4.61515011124704e32 * cos(theta) ** 58 - 8.07284987713371e32 * cos(theta) ** 56 + 1.1684387980062e33 * cos(theta) ** 54 - 1.41818144185485e33 * cos(theta) ** 52 + 1.45775859837173e33 * cos(theta) ** 50 - 1.27827794059081e33 * cos(theta) ** 48 + 9.61265011324291e32 * cos(theta) ** 46 - 6.22207183690207e32 * cos(theta) ** 44 + 3.47466349333492e32 * cos(theta) ** 42 - 1.67601415560861e32 * cos(theta) ** 40 + 6.98339231503588e31 * cos(theta) ** 38 - 2.51116357926866e31 * cos(theta) ** 36 + 7.77794028977017e30 * cos(theta) ** 34 - 2.06895424493175e30 * cos(theta) ** 32 + 4.70734543800986e29 * cos(theta) ** 30 - 9.11301853820333e28 * cos(theta) ** 28 + 1.49122121534236e28 * cos(theta) ** 26 - 2.04578680872211e27 * cos(theta) ** 24 + 2.32936121785191e26 * cos(theta) ** 22 - 2.17407046999511e25 * cos(theta) ** 20 + 1.63788021133653e24 * cos(theta) ** 18 - 9.76981178691963e22 * cos(theta) ** 16 + 4.50221741332702e21 * cos(theta) ** 14 - 1.55248876321621e20 * cos(theta) ** 12 + 3.83761267311873e18 * cos(theta) ** 10 - 6.40313571710578e16 * cos(theta) ** 8 + 659146323819712.0 * cos(theta) ** 6 - 3609782715332.49 * cos(theta) ** 4 + 7864450360.2015 * cos(theta) ** 2 - 2844285.8445575 ) * cos(4 * phi) ) # @torch.jit.script def Yl74_m5(theta, phi): return ( 2.12979513228208e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 2.39077523201936e30 * cos(theta) ** 69 - 3.81548210497784e31 * cos(theta) ** 67 + 2.90897618417448e32 * cos(theta) ** 65 - 1.41041269535733e33 * cos(theta) ** 63 + 4.88392906743414e33 * cos(theta) ** 61 - 1.28598420048985e34 * cos(theta) ** 59 + 2.67678706452328e34 * cos(theta) ** 57 - 4.52079593119488e34 * cos(theta) ** 55 + 6.30956950923345e34 * cos(theta) ** 53 - 7.37454349764521e34 * cos(theta) ** 51 + 7.28879299185864e34 * cos(theta) ** 49 - 6.1357341148359e34 * cos(theta) ** 47 + 4.42181905209174e34 * cos(theta) ** 45 - 2.73771160823691e34 * cos(theta) ** 43 + 1.45935866720067e34 * cos(theta) ** 41 - 6.70405662243444e33 * cos(theta) ** 39 + 2.65368907971363e33 * cos(theta) ** 37 - 9.04018888536716e32 * cos(theta) ** 35 + 2.64449969852186e32 * cos(theta) ** 33 - 6.62065358378161e31 * cos(theta) ** 31 + 1.41220363140296e31 * cos(theta) ** 29 - 2.55164519069693e30 * cos(theta) ** 27 + 3.87717515989015e29 * cos(theta) ** 25 - 4.90988834093307e28 * cos(theta) ** 23 + 5.1245946792742e27 * cos(theta) ** 21 - 4.34814093999023e26 * cos(theta) ** 19 + 2.94818438040575e25 * cos(theta) ** 17 - 1.56316988590714e24 * cos(theta) ** 15 + 6.30310437865782e22 * cos(theta) ** 13 - 1.86298651585946e21 * cos(theta) ** 11 + 3.83761267311873e19 * cos(theta) ** 9 - 5.12250857368462e17 * cos(theta) ** 7 + 3.95487794291827e15 * cos(theta) ** 5 - 14439130861329.9 * cos(theta) ** 3 + 15728900720.403 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl74_m6(theta, phi): return ( 2.86660788578062e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.64963491009336e32 * cos(theta) ** 68 - 2.55637301033515e33 * cos(theta) ** 66 + 1.89083451971341e34 * cos(theta) ** 64 - 8.88559998075115e34 * cos(theta) ** 62 + 2.97919673113483e35 * cos(theta) ** 60 - 7.58730678289014e35 * cos(theta) ** 58 + 1.52576862677827e36 * cos(theta) ** 56 - 2.48643776215718e36 * cos(theta) ** 54 + 3.34407183989373e36 * cos(theta) ** 52 - 3.76101718379906e36 * cos(theta) ** 50 + 3.57150856601073e36 * cos(theta) ** 48 - 2.88379503397287e36 * cos(theta) ** 46 + 1.98981857344128e36 * cos(theta) ** 44 - 1.17721599154187e36 * cos(theta) ** 42 + 5.98337053552274e35 * cos(theta) ** 40 - 2.61458208274943e35 * cos(theta) ** 38 + 9.81864959494044e34 * cos(theta) ** 36 - 3.16406610987851e34 * cos(theta) ** 34 + 8.72684900512213e33 * cos(theta) ** 32 - 2.0524026109723e33 * cos(theta) ** 30 + 4.09539053106858e32 * cos(theta) ** 28 - 6.88944201488172e31 * cos(theta) ** 26 + 9.69293789972536e30 * cos(theta) ** 24 - 1.12927431841461e30 * cos(theta) ** 22 + 1.07616488264758e29 * cos(theta) ** 20 - 8.26146778598144e27 * cos(theta) ** 18 + 5.01191344668977e26 * cos(theta) ** 16 - 2.34475482886071e25 * cos(theta) ** 14 + 8.19403569225517e23 * cos(theta) ** 12 - 2.0492851674454e22 * cos(theta) ** 10 + 3.45385140580686e20 * cos(theta) ** 8 - 3.58575600157923e18 * cos(theta) ** 6 + 1.97743897145914e16 * cos(theta) ** 4 - 43317392583989.9 * cos(theta) ** 2 + 15728900720.403 ) * cos(6 * phi) ) # @torch.jit.script def Yl74_m7(theta, phi): return ( 3.86252519617713e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.12175173886348e34 * cos(theta) ** 67 - 1.6872061868212e35 * cos(theta) ** 65 + 1.21013409261659e36 * cos(theta) ** 63 - 5.50907198806571e36 * cos(theta) ** 61 + 1.7875180386809e37 * cos(theta) ** 59 - 4.40063793407628e37 * cos(theta) ** 57 + 8.54430430995832e37 * cos(theta) ** 55 - 1.34267639156488e38 * cos(theta) ** 53 + 1.73891735674474e38 * cos(theta) ** 51 - 1.88050859189953e38 * cos(theta) ** 49 + 1.71432411168515e38 * cos(theta) ** 47 - 1.32654571562752e38 * cos(theta) ** 45 + 8.75520172314165e37 * cos(theta) ** 43 - 4.94430716447586e37 * cos(theta) ** 41 + 2.3933482142091e37 * cos(theta) ** 39 - 9.93541191444784e36 * cos(theta) ** 37 + 3.53471385417856e36 * cos(theta) ** 35 - 1.07578247735869e36 * cos(theta) ** 33 + 2.79259168163908e35 * cos(theta) ** 31 - 6.1572078329169e34 * cos(theta) ** 29 + 1.1467093486992e34 * cos(theta) ** 27 - 1.79125492386925e33 * cos(theta) ** 25 + 2.32630509593409e32 * cos(theta) ** 23 - 2.48440350051213e31 * cos(theta) ** 21 + 2.15232976529516e30 * cos(theta) ** 19 - 1.48706420147666e29 * cos(theta) ** 17 + 8.01906151470363e27 * cos(theta) ** 15 - 3.28265676040499e26 * cos(theta) ** 13 + 9.83284283070621e24 * cos(theta) ** 11 - 2.0492851674454e23 * cos(theta) ** 9 + 2.76308112464548e21 * cos(theta) ** 7 - 2.15145360094754e19 * cos(theta) ** 5 + 7.90975588583655e16 * cos(theta) ** 3 - 86634785167979.7 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl74_m8(theta, phi): return ( 5.21107109008342e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 7.51573665038535e35 * cos(theta) ** 66 - 1.09668402143378e37 * cos(theta) ** 64 + 7.62384478348449e37 * cos(theta) ** 62 - 3.36053391272008e38 * cos(theta) ** 60 + 1.05463564282173e39 * cos(theta) ** 58 - 2.50836362242348e39 * cos(theta) ** 56 + 4.69936737047708e39 * cos(theta) ** 54 - 7.11618487529386e39 * cos(theta) ** 52 + 8.86847851939817e39 * cos(theta) ** 50 - 9.21449210030769e39 * cos(theta) ** 48 + 8.05732332492021e39 * cos(theta) ** 46 - 5.96945572032385e39 * cos(theta) ** 44 + 3.76473674095091e39 * cos(theta) ** 42 - 2.0271659374351e39 * cos(theta) ** 40 + 9.33405803541547e38 * cos(theta) ** 38 - 3.6761024083457e38 * cos(theta) ** 36 + 1.2371498489625e38 * cos(theta) ** 34 - 3.55008217528368e37 * cos(theta) ** 32 + 8.65703421308116e36 * cos(theta) ** 30 - 1.7855902715459e36 * cos(theta) ** 28 + 3.09611524148784e35 * cos(theta) ** 26 - 4.47813730967312e34 * cos(theta) ** 24 + 5.3505017206484e33 * cos(theta) ** 22 - 5.21724735107548e32 * cos(theta) ** 20 + 4.08942655406081e31 * cos(theta) ** 18 - 2.52800914251032e30 * cos(theta) ** 16 + 1.20285922720554e29 * cos(theta) ** 14 - 4.26745378852649e27 * cos(theta) ** 12 + 1.08161271137768e26 * cos(theta) ** 10 - 1.84435665070086e24 * cos(theta) ** 8 + 1.93415678725184e22 * cos(theta) ** 6 - 1.07572680047377e20 * cos(theta) ** 4 + 2.37292676575096e17 * cos(theta) ** 2 - 86634785167979.7 ) * cos(8 * phi) ) # @torch.jit.script def Yl74_m9(theta, phi): return ( 7.04070233875644e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 4.96038618925433e37 * cos(theta) ** 65 - 7.01877773717619e38 * cos(theta) ** 63 + 4.72678376576038e39 * cos(theta) ** 61 - 2.01632034763205e40 * cos(theta) ** 59 + 6.11688672836603e40 * cos(theta) ** 57 - 1.40468362855715e41 * cos(theta) ** 55 + 2.53765838005762e41 * cos(theta) ** 53 - 3.70041613515281e41 * cos(theta) ** 51 + 4.43423925969909e41 * cos(theta) ** 49 - 4.42295620814769e41 * cos(theta) ** 47 + 3.7063687294633e41 * cos(theta) ** 45 - 2.62656051694249e41 * cos(theta) ** 43 + 1.58118943119938e41 * cos(theta) ** 41 - 8.10866374974042e40 * cos(theta) ** 39 + 3.54694205345788e40 * cos(theta) ** 37 - 1.32339686700445e40 * cos(theta) ** 35 + 4.20630948647249e39 * cos(theta) ** 33 - 1.13602629609078e39 * cos(theta) ** 31 + 2.59711026392435e38 * cos(theta) ** 29 - 4.99965276032852e37 * cos(theta) ** 27 + 8.0498996278684e36 * cos(theta) ** 25 - 1.07475295432155e36 * cos(theta) ** 23 + 1.17711037854265e35 * cos(theta) ** 21 - 1.0434494702151e34 * cos(theta) ** 19 + 7.36096779730946e32 * cos(theta) ** 17 - 4.04481462801651e31 * cos(theta) ** 15 + 1.68400291808776e30 * cos(theta) ** 13 - 5.12094454623179e28 * cos(theta) ** 11 + 1.08161271137768e27 * cos(theta) ** 9 - 1.47548532056069e25 * cos(theta) ** 7 + 1.1604940723511e23 * cos(theta) ** 5 - 4.30290720189508e20 * cos(theta) ** 3 + 4.74585353150193e17 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl74_m10(theta, phi): return ( 9.52839302655195e-19 * (1.0 - cos(theta) ** 2) ** 5 * ( 3.22425102301531e39 * cos(theta) ** 64 - 4.421829974421e40 * cos(theta) ** 62 + 2.88333809711383e41 * cos(theta) ** 60 - 1.18962900510291e42 * cos(theta) ** 58 + 3.48662543516864e42 * cos(theta) ** 56 - 7.72575995706431e42 * cos(theta) ** 54 + 1.34495894143054e43 * cos(theta) ** 52 - 1.88721222892793e43 * cos(theta) ** 50 + 2.17277723725255e43 * cos(theta) ** 48 - 2.07878941782941e43 * cos(theta) ** 46 + 1.66786592825848e43 * cos(theta) ** 44 - 1.12942102228527e43 * cos(theta) ** 42 + 6.48287666791746e42 * cos(theta) ** 40 - 3.16237886239876e42 * cos(theta) ** 38 + 1.31236855977942e42 * cos(theta) ** 36 - 4.63188903451558e41 * cos(theta) ** 34 + 1.38808213053592e41 * cos(theta) ** 32 - 3.52168151788141e40 * cos(theta) ** 30 + 7.53161976538061e39 * cos(theta) ** 28 - 1.3499062452887e39 * cos(theta) ** 26 + 2.0124749069671e38 * cos(theta) ** 24 - 2.47193179493956e37 * cos(theta) ** 22 + 2.47193179493956e36 * cos(theta) ** 20 - 1.98255399340868e35 * cos(theta) ** 18 + 1.25136452554261e34 * cos(theta) ** 16 - 6.06722194202477e32 * cos(theta) ** 14 + 2.18920379351409e31 * cos(theta) ** 12 - 5.63303900085497e29 * cos(theta) ** 10 + 9.73451440239914e27 * cos(theta) ** 8 - 1.03283972439248e26 * cos(theta) ** 6 + 5.80247036175552e23 * cos(theta) ** 4 - 1.29087216056852e21 * cos(theta) ** 2 + 4.74585353150193e17 ) * cos(10 * phi) ) # @torch.jit.script def Yl74_m11(theta, phi): return ( 1.29187416345375e-20 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 2.0635206547298e41 * cos(theta) ** 63 - 2.74153458414102e42 * cos(theta) ** 61 + 1.7300028582683e43 * cos(theta) ** 59 - 6.89984822959688e43 * cos(theta) ** 57 + 1.95251024369444e44 * cos(theta) ** 55 - 4.17191037681473e44 * cos(theta) ** 53 + 6.9937864954388e44 * cos(theta) ** 51 - 9.43606114463966e44 * cos(theta) ** 49 + 1.04293307388123e45 * cos(theta) ** 47 - 9.5624313220153e44 * cos(theta) ** 45 + 7.33861008433733e44 * cos(theta) ** 43 - 4.74356829359814e44 * cos(theta) ** 41 + 2.59315066716698e44 * cos(theta) ** 39 - 1.20170396771153e44 * cos(theta) ** 37 + 4.7245268152059e43 * cos(theta) ** 35 - 1.5748422717353e43 * cos(theta) ** 33 + 4.44186281771494e42 * cos(theta) ** 31 - 1.05650445536442e42 * cos(theta) ** 29 + 2.10885353430657e41 * cos(theta) ** 27 - 3.50975623775062e40 * cos(theta) ** 25 + 4.82993977672104e39 * cos(theta) ** 23 - 5.43824994886703e38 * cos(theta) ** 21 + 4.94386358987912e37 * cos(theta) ** 19 - 3.56859718813563e36 * cos(theta) ** 17 + 2.00218324086817e35 * cos(theta) ** 15 - 8.49411071883467e33 * cos(theta) ** 13 + 2.62704455221691e32 * cos(theta) ** 11 - 5.63303900085497e30 * cos(theta) ** 9 + 7.78761152191932e28 * cos(theta) ** 7 - 6.19703834635489e26 * cos(theta) ** 5 + 2.32098814470221e24 * cos(theta) ** 3 - 2.58174432113705e21 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl74_m12(theta, phi): return ( 1.75509533709773e-22 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.30001801247977e43 * cos(theta) ** 62 - 1.67233609632602e44 * cos(theta) ** 60 + 1.0207016863783e45 * cos(theta) ** 58 - 3.93291349087022e45 * cos(theta) ** 56 + 1.07388063403194e46 * cos(theta) ** 54 - 2.21111249971181e46 * cos(theta) ** 52 + 3.56683111267379e46 * cos(theta) ** 50 - 4.62366996087343e46 * cos(theta) ** 48 + 4.90178544724176e46 * cos(theta) ** 46 - 4.30309409490689e46 * cos(theta) ** 44 + 3.15560233626505e46 * cos(theta) ** 42 - 1.94486300037524e46 * cos(theta) ** 40 + 1.01132876019512e46 * cos(theta) ** 38 - 4.44630468053266e45 * cos(theta) ** 36 + 1.65358438532206e45 * cos(theta) ** 34 - 5.19697949672649e44 * cos(theta) ** 32 + 1.37697747349163e44 * cos(theta) ** 30 - 3.06386292055683e43 * cos(theta) ** 28 + 5.69390454262774e42 * cos(theta) ** 26 - 8.77439059437655e41 * cos(theta) ** 24 + 1.11088614864584e41 * cos(theta) ** 22 - 1.14203248926208e40 * cos(theta) ** 20 + 9.39334082077033e38 * cos(theta) ** 18 - 6.06661521983056e37 * cos(theta) ** 16 + 3.00327486130226e36 * cos(theta) ** 14 - 1.10423439344851e35 * cos(theta) ** 12 + 2.8897490074386e33 * cos(theta) ** 10 - 5.06973510076947e31 * cos(theta) ** 8 + 5.45132806534352e29 * cos(theta) ** 6 - 3.09851917317745e27 * cos(theta) ** 4 + 6.96296443410662e24 * cos(theta) ** 2 - 2.58174432113705e21 ) * cos(12 * phi) ) # @torch.jit.script def Yl74_m13(theta, phi): return ( 2.38971022234848e-24 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 8.0601116773746e44 * cos(theta) ** 61 - 1.00340165779561e46 * cos(theta) ** 59 + 5.92006978099412e46 * cos(theta) ** 57 - 2.20243155488732e47 * cos(theta) ** 55 + 5.79895542377247e47 * cos(theta) ** 53 - 1.14977849985014e48 * cos(theta) ** 51 + 1.7834155563369e48 * cos(theta) ** 49 - 2.21936158121925e48 * cos(theta) ** 47 + 2.25482130573121e48 * cos(theta) ** 45 - 1.89336140175903e48 * cos(theta) ** 43 + 1.32535298123132e48 * cos(theta) ** 41 - 7.77945200150096e47 * cos(theta) ** 39 + 3.84304928874147e47 * cos(theta) ** 37 - 1.60066968499176e47 * cos(theta) ** 35 + 5.62218691009502e46 * cos(theta) ** 33 - 1.66303343895248e46 * cos(theta) ** 31 + 4.1309324204749e45 * cos(theta) ** 29 - 8.57881617755912e44 * cos(theta) ** 27 + 1.48041518108321e44 * cos(theta) ** 25 - 2.10585374265037e43 * cos(theta) ** 23 + 2.44394952702085e42 * cos(theta) ** 21 - 2.28406497852415e41 * cos(theta) ** 19 + 1.69080134773866e40 * cos(theta) ** 17 - 9.7065843517289e38 * cos(theta) ** 15 + 4.20458480582316e37 * cos(theta) ** 13 - 1.32508127213821e36 * cos(theta) ** 11 + 2.8897490074386e34 * cos(theta) ** 9 - 4.05578808061558e32 * cos(theta) ** 7 + 3.27079683920611e30 * cos(theta) ** 5 - 1.23940766927098e28 * cos(theta) ** 3 + 1.39259288682132e25 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl74_m14(theta, phi): return ( 3.26166225427279e-26 * (1.0 - cos(theta) ** 2) ** 7 * ( 4.91666812319851e46 * cos(theta) ** 60 - 5.92006978099412e47 * cos(theta) ** 58 + 3.37443977516665e48 * cos(theta) ** 56 - 1.21133735518803e49 * cos(theta) ** 54 + 3.07344637459941e49 * cos(theta) ** 52 - 5.86387034923571e49 * cos(theta) ** 50 + 8.73873622605079e49 * cos(theta) ** 48 - 1.04309994317305e50 * cos(theta) ** 46 + 1.01466958757904e50 * cos(theta) ** 44 - 8.14145402756383e49 * cos(theta) ** 42 + 5.43394722304842e49 * cos(theta) ** 40 - 3.03398628058537e49 * cos(theta) ** 38 + 1.42192823683434e49 * cos(theta) ** 36 - 5.60234389747115e48 * cos(theta) ** 34 + 1.85532168033136e48 * cos(theta) ** 32 - 5.15540366075267e47 * cos(theta) ** 30 + 1.19797040193772e47 * cos(theta) ** 28 - 2.31628036794096e46 * cos(theta) ** 26 + 3.70103795270803e45 * cos(theta) ** 24 - 4.84346360809586e44 * cos(theta) ** 22 + 5.13229400674377e43 * cos(theta) ** 20 - 4.33972345919589e42 * cos(theta) ** 18 + 2.87436229115572e41 * cos(theta) ** 16 - 1.45598765275934e40 * cos(theta) ** 14 + 5.46596024757011e38 * cos(theta) ** 12 - 1.45758939935203e37 * cos(theta) ** 10 + 2.60077410669474e35 * cos(theta) ** 8 - 2.83905165643091e33 * cos(theta) ** 6 + 1.63539841960306e31 * cos(theta) ** 4 - 3.71822300781294e28 * cos(theta) ** 2 + 1.39259288682132e25 ) * cos(14 * phi) ) # @torch.jit.script def Yl74_m15(theta, phi): return ( 4.46342620890884e-28 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 2.9500008739191e48 * cos(theta) ** 59 - 3.43364047297659e49 * cos(theta) ** 57 + 1.88968627409332e50 * cos(theta) ** 55 - 6.54122171801535e50 * cos(theta) ** 53 + 1.59819211479169e51 * cos(theta) ** 51 - 2.93193517461786e51 * cos(theta) ** 49 + 4.19459338850438e51 * cos(theta) ** 47 - 4.79825973859601e51 * cos(theta) ** 45 + 4.46454618534779e51 * cos(theta) ** 43 - 3.41941069157681e51 * cos(theta) ** 41 + 2.17357888921937e51 * cos(theta) ** 39 - 1.15291478662244e51 * cos(theta) ** 37 + 5.11894165260364e50 * cos(theta) ** 35 - 1.90479692514019e50 * cos(theta) ** 33 + 5.93702937706034e49 * cos(theta) ** 31 - 1.5466210982258e49 * cos(theta) ** 29 + 3.35431712542562e48 * cos(theta) ** 27 - 6.02232895664651e47 * cos(theta) ** 25 + 8.88249108649927e46 * cos(theta) ** 23 - 1.06556199378109e46 * cos(theta) ** 21 + 1.02645880134875e45 * cos(theta) ** 19 - 7.81150222655261e43 * cos(theta) ** 17 + 4.59897966584915e42 * cos(theta) ** 15 - 2.03838271386307e41 * cos(theta) ** 13 + 6.55915229708413e39 * cos(theta) ** 11 - 1.45758939935203e38 * cos(theta) ** 9 + 2.08061928535579e36 * cos(theta) ** 7 - 1.70343099385854e34 * cos(theta) ** 5 + 6.54159367841222e31 * cos(theta) ** 3 - 7.43644601562587e28 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl74_m16(theta, phi): return ( 6.12521163358953e-30 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.74050051561227e50 * cos(theta) ** 58 - 1.95717506959666e51 * cos(theta) ** 56 + 1.03932745075133e52 * cos(theta) ** 54 - 3.46684751054814e52 * cos(theta) ** 52 + 8.15077978543764e52 * cos(theta) ** 50 - 1.43664823556275e53 * cos(theta) ** 48 + 1.97145889259706e53 * cos(theta) ** 46 - 2.15921688236821e53 * cos(theta) ** 44 + 1.91975485969955e53 * cos(theta) ** 42 - 1.40195838354649e53 * cos(theta) ** 40 + 8.47695766795553e52 * cos(theta) ** 38 - 4.26578471050303e52 * cos(theta) ** 36 + 1.79162957841127e52 * cos(theta) ** 34 - 6.28582985296263e51 * cos(theta) ** 32 + 1.8404791068887e51 * cos(theta) ** 30 - 4.48520118485483e50 * cos(theta) ** 28 + 9.05665623864917e49 * cos(theta) ** 26 - 1.50558223916163e49 * cos(theta) ** 24 + 2.04297294989483e48 * cos(theta) ** 22 - 2.23768018694029e47 * cos(theta) ** 20 + 1.95027172256263e46 * cos(theta) ** 18 - 1.32795537851394e45 * cos(theta) ** 16 + 6.89846949877373e43 * cos(theta) ** 14 - 2.64989752802199e42 * cos(theta) ** 12 + 7.21506752679255e40 * cos(theta) ** 10 - 1.31183045941683e39 * cos(theta) ** 8 + 1.45643349974905e37 * cos(theta) ** 6 - 8.51715496929272e34 * cos(theta) ** 4 + 1.96247810352367e32 * cos(theta) ** 2 - 7.43644601562587e28 ) * cos(16 * phi) ) # @torch.jit.script def Yl74_m17(theta, phi): return ( 8.43114203633594e-32 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.00949029905512e52 * cos(theta) ** 57 - 1.09601803897413e53 * cos(theta) ** 55 + 5.61236823405717e53 * cos(theta) ** 53 - 1.80276070548503e54 * cos(theta) ** 51 + 4.07538989271882e54 * cos(theta) ** 49 - 6.8959115307012e54 * cos(theta) ** 47 + 9.06871090594646e54 * cos(theta) ** 45 - 9.5005542824201e54 * cos(theta) ** 43 + 8.06297041073812e54 * cos(theta) ** 41 - 5.60783353418597e54 * cos(theta) ** 39 + 3.2212439138231e54 * cos(theta) ** 37 - 1.53568249578109e54 * cos(theta) ** 35 + 6.09154056659833e53 * cos(theta) ** 33 - 2.01146555294804e53 * cos(theta) ** 31 + 5.52143732066611e52 * cos(theta) ** 29 - 1.25585633175935e52 * cos(theta) ** 27 + 2.35473062204878e51 * cos(theta) ** 25 - 3.6133973739879e50 * cos(theta) ** 23 + 4.49454048976863e49 * cos(theta) ** 21 - 4.47536037388057e48 * cos(theta) ** 19 + 3.51048910061274e47 * cos(theta) ** 17 - 2.12472860562231e46 * cos(theta) ** 15 + 9.65785729828322e44 * cos(theta) ** 13 - 3.17987703362639e43 * cos(theta) ** 11 + 7.21506752679255e41 * cos(theta) ** 9 - 1.04946436753346e40 * cos(theta) ** 7 + 8.73860099849433e37 * cos(theta) ** 5 - 3.40686198771709e35 * cos(theta) ** 3 + 3.92495620704733e32 * cos(theta) ) * cos(17 * phi) ) # @torch.jit.script def Yl74_m18(theta, phi): return ( 1.16427363845596e-33 * (1.0 - cos(theta) ** 2) ** 9 * ( 5.75409470461417e53 * cos(theta) ** 56 - 6.0280992143577e54 * cos(theta) ** 54 + 2.9745551640503e55 * cos(theta) ** 52 - 9.19407959797366e55 * cos(theta) ** 50 + 1.99694104743222e56 * cos(theta) ** 48 - 3.24107841942956e56 * cos(theta) ** 46 + 4.08091990767591e56 * cos(theta) ** 44 - 4.08523834144064e56 * cos(theta) ** 42 + 3.30581786840263e56 * cos(theta) ** 40 - 2.18705507833253e56 * cos(theta) ** 38 + 1.19186024811455e56 * cos(theta) ** 36 - 5.37488873523382e55 * cos(theta) ** 34 + 2.01020838697745e55 * cos(theta) ** 32 - 6.23554321413893e54 * cos(theta) ** 30 + 1.60121682299317e54 * cos(theta) ** 28 - 3.39081209575025e53 * cos(theta) ** 26 + 5.88682655512196e52 * cos(theta) ** 24 - 8.31081396017218e51 * cos(theta) ** 22 + 9.43853502851413e50 * cos(theta) ** 20 - 8.50318471037309e49 * cos(theta) ** 18 + 5.96783147104166e48 * cos(theta) ** 16 - 3.18709290843346e47 * cos(theta) ** 14 + 1.25552144877682e46 * cos(theta) ** 12 - 3.49786473698903e44 * cos(theta) ** 10 + 6.49356077411329e42 * cos(theta) ** 8 - 7.34625057273423e40 * cos(theta) ** 6 + 4.36930049924716e38 * cos(theta) ** 4 - 1.02205859631513e36 * cos(theta) ** 2 + 3.92495620704733e32 ) * cos(18 * phi) ) # @torch.jit.script def Yl74_m19(theta, phi): return ( 1.6133165035292e-35 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 3.22229303458393e55 * cos(theta) ** 55 - 3.25517357575316e56 * cos(theta) ** 53 + 1.54676868530616e57 * cos(theta) ** 51 - 4.59703979898683e57 * cos(theta) ** 49 + 9.58531702767466e57 * cos(theta) ** 47 - 1.4908960729376e58 * cos(theta) ** 45 + 1.7956047593774e58 * cos(theta) ** 43 - 1.71580010340507e58 * cos(theta) ** 41 + 1.32232714736105e58 * cos(theta) ** 39 - 8.3108092976636e57 * cos(theta) ** 37 + 4.29069689321237e57 * cos(theta) ** 35 - 1.8274621699795e57 * cos(theta) ** 33 + 6.43266683832784e56 * cos(theta) ** 31 - 1.87066296424168e56 * cos(theta) ** 29 + 4.48340710438088e55 * cos(theta) ** 27 - 8.81611144895065e54 * cos(theta) ** 25 + 1.41283837322927e54 * cos(theta) ** 23 - 1.82837907123788e53 * cos(theta) ** 21 + 1.88770700570283e52 * cos(theta) ** 19 - 1.53057324786716e51 * cos(theta) ** 17 + 9.54853035366666e49 * cos(theta) ** 15 - 4.46193007180685e48 * cos(theta) ** 13 + 1.50662573853218e47 * cos(theta) ** 11 - 3.49786473698903e45 * cos(theta) ** 9 + 5.19484861929063e43 * cos(theta) ** 7 - 4.40775034364054e41 * cos(theta) ** 5 + 1.74772019969887e39 * cos(theta) ** 3 - 2.04411719263025e36 * cos(theta) ) * cos(19 * phi) ) # @torch.jit.script def Yl74_m20(theta, phi): return ( 2.24374916822329e-37 * (1.0 - cos(theta) ** 2) ** 10 * ( 1.77226116902116e57 * cos(theta) ** 54 - 1.72524199514917e58 * cos(theta) ** 52 + 7.8885202950614e58 * cos(theta) ** 50 - 2.25254950150355e59 * cos(theta) ** 48 + 4.50509900300709e59 * cos(theta) ** 46 - 6.70903232821919e59 * cos(theta) ** 44 + 7.72110046532282e59 * cos(theta) ** 42 - 7.03478042396079e59 * cos(theta) ** 40 + 5.1570758747081e59 * cos(theta) ** 38 - 3.07499944013553e59 * cos(theta) ** 36 + 1.50174391262433e59 * cos(theta) ** 34 - 6.03062516093235e58 * cos(theta) ** 32 + 1.99412671988163e58 * cos(theta) ** 30 - 5.42492259630087e57 * cos(theta) ** 28 + 1.21051991818284e57 * cos(theta) ** 26 - 2.20402786223766e56 * cos(theta) ** 24 + 3.24952825842732e55 * cos(theta) ** 22 - 3.83959604959955e54 * cos(theta) ** 20 + 3.58664331083537e53 * cos(theta) ** 18 - 2.60197452137416e52 * cos(theta) ** 16 + 1.43227955305e51 * cos(theta) ** 14 - 5.8005090933489e49 * cos(theta) ** 12 + 1.6572883123854e48 * cos(theta) ** 10 - 3.14807826329012e46 * cos(theta) ** 8 + 3.63639403350344e44 * cos(theta) ** 6 - 2.20387517182027e42 * cos(theta) ** 4 + 5.2431605990966e39 * cos(theta) ** 2 - 2.04411719263025e36 ) * cos(20 * phi) ) # @torch.jit.script def Yl74_m21(theta, phi): return ( 3.13267702778855e-39 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 9.57021031271429e58 * cos(theta) ** 53 - 8.97125837477571e59 * cos(theta) ** 51 + 3.9442601475307e60 * cos(theta) ** 49 - 1.0812237607217e61 * cos(theta) ** 47 + 2.07234554138326e61 * cos(theta) ** 45 - 2.95197422441645e61 * cos(theta) ** 43 + 3.24286219543558e61 * cos(theta) ** 41 - 2.81391216958432e61 * cos(theta) ** 39 + 1.95968883238908e61 * cos(theta) ** 37 - 1.10699979844879e61 * cos(theta) ** 35 + 5.10592930292272e60 * cos(theta) ** 33 - 1.92980005149835e60 * cos(theta) ** 31 + 5.98238015964489e59 * cos(theta) ** 29 - 1.51897832696424e59 * cos(theta) ** 27 + 3.14735178727538e58 * cos(theta) ** 25 - 5.28966686937039e57 * cos(theta) ** 23 + 7.14896216854011e56 * cos(theta) ** 21 - 7.67919209919909e55 * cos(theta) ** 19 + 6.45595795950366e54 * cos(theta) ** 17 - 4.16315923419866e53 * cos(theta) ** 15 + 2.00519137427e52 * cos(theta) ** 13 - 6.96061091201868e50 * cos(theta) ** 11 + 1.6572883123854e49 * cos(theta) ** 9 - 2.5184626106321e47 * cos(theta) ** 7 + 2.18183642010207e45 * cos(theta) ** 5 - 8.81550068728108e42 * cos(theta) ** 3 + 1.04863211981932e40 * cos(theta) ) * cos(21 * phi) ) # @torch.jit.script def Yl74_m22(theta, phi): return ( 4.39179511236912e-41 * (1.0 - cos(theta) ** 2) ** 11 * ( 5.07221146573857e60 * cos(theta) ** 52 - 4.57534177113561e61 * cos(theta) ** 50 + 1.93268747229004e62 * cos(theta) ** 48 - 5.081751675392e62 * cos(theta) ** 46 + 9.32555493622468e62 * cos(theta) ** 44 - 1.26934891649907e63 * cos(theta) ** 42 + 1.32957350012859e63 * cos(theta) ** 40 - 1.09742574613788e63 * cos(theta) ** 38 + 7.25084867983959e62 * cos(theta) ** 36 - 3.87449929457077e62 * cos(theta) ** 34 + 1.6849566699645e62 * cos(theta) ** 32 - 5.98238015964489e61 * cos(theta) ** 30 + 1.73489024629702e61 * cos(theta) ** 28 - 4.10124148280346e60 * cos(theta) ** 26 + 7.86837946818845e59 * cos(theta) ** 24 - 1.21662337995519e59 * cos(theta) ** 22 + 1.50128205539342e58 * cos(theta) ** 20 - 1.45904649884783e57 * cos(theta) ** 18 + 1.09751285311562e56 * cos(theta) ** 16 - 6.24473885129799e54 * cos(theta) ** 14 + 2.606748786551e53 * cos(theta) ** 12 - 7.65667200322055e51 * cos(theta) ** 10 + 1.49155948114686e50 * cos(theta) ** 8 - 1.76292382744247e48 * cos(theta) ** 6 + 1.09091821005103e46 * cos(theta) ** 4 - 2.64465020618432e43 * cos(theta) ** 2 + 1.04863211981932e40 ) * cos(22 * phi) ) # @torch.jit.script def Yl74_m23(theta, phi): return ( 6.18378714475877e-43 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 2.63754996218406e62 * cos(theta) ** 51 - 2.28767088556781e63 * cos(theta) ** 49 + 9.2768998669922e63 * cos(theta) ** 47 - 2.33760577068032e64 * cos(theta) ** 45 + 4.10324417193886e64 * cos(theta) ** 43 - 5.3312654492961e64 * cos(theta) ** 41 + 5.31829400051436e64 * cos(theta) ** 39 - 4.17021783532396e64 * cos(theta) ** 37 + 2.61030552474225e64 * cos(theta) ** 35 - 1.31732976015406e64 * cos(theta) ** 33 + 5.39186134388639e63 * cos(theta) ** 31 - 1.79471404789347e63 * cos(theta) ** 29 + 4.85769268963165e62 * cos(theta) ** 27 - 1.0663227855289e62 * cos(theta) ** 25 + 1.88841107236523e61 * cos(theta) ** 23 - 2.67657143590142e60 * cos(theta) ** 21 + 3.00256411078684e59 * cos(theta) ** 19 - 2.62628369792609e58 * cos(theta) ** 17 + 1.756020564985e57 * cos(theta) ** 15 - 8.74263439181719e55 * cos(theta) ** 13 + 3.1280985438612e54 * cos(theta) ** 11 - 7.65667200322055e52 * cos(theta) ** 9 + 1.19324758491749e51 * cos(theta) ** 7 - 1.05775429646548e49 * cos(theta) ** 5 + 4.36367284020413e46 * cos(theta) ** 3 - 5.28930041236865e43 * cos(theta) ) * cos(23 * phi) ) # @torch.jit.script def Yl74_m24(theta, phi): return ( 8.74694521096234e-45 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.34515048071387e64 * cos(theta) ** 50 - 1.12095873392822e65 * cos(theta) ** 48 + 4.36014293748634e65 * cos(theta) ** 46 - 1.05192259680614e66 * cos(theta) ** 44 + 1.76439499393371e66 * cos(theta) ** 42 - 2.1858188342114e66 * cos(theta) ** 40 + 2.0741346602006e66 * cos(theta) ** 38 - 1.54298059906986e66 * cos(theta) ** 36 + 9.13606933659788e65 * cos(theta) ** 34 - 4.34718820850841e65 * cos(theta) ** 32 + 1.67147701660478e65 * cos(theta) ** 30 - 5.20467073889105e64 * cos(theta) ** 28 + 1.31157702620055e64 * cos(theta) ** 26 - 2.66580696382225e63 * cos(theta) ** 24 + 4.34334546644003e62 * cos(theta) ** 22 - 5.62080001539297e61 * cos(theta) ** 20 + 5.70487181049501e60 * cos(theta) ** 18 - 4.46468228647435e59 * cos(theta) ** 16 + 2.63403084747749e58 * cos(theta) ** 14 - 1.13654247093623e57 * cos(theta) ** 12 + 3.44090839824732e55 * cos(theta) ** 10 - 6.8910048028985e53 * cos(theta) ** 8 + 8.35273309442242e51 * cos(theta) ** 6 - 5.28877148232741e49 * cos(theta) ** 4 + 1.30910185206124e47 * cos(theta) ** 2 - 5.28930041236865e43 ) * cos(24 * phi) ) # @torch.jit.script def Yl74_m25(theta, phi): return ( 1.2432366566003e-46 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 6.72575240356935e65 * cos(theta) ** 49 - 5.38060192285548e66 * cos(theta) ** 47 + 2.00566575124371e67 * cos(theta) ** 45 - 4.62845942594703e67 * cos(theta) ** 43 + 7.41045897452158e67 * cos(theta) ** 41 - 8.7432753368456e67 * cos(theta) ** 39 + 7.88171170876228e67 * cos(theta) ** 37 - 5.55473015665151e67 * cos(theta) ** 35 + 3.10626357444328e67 * cos(theta) ** 33 - 1.39110022672269e67 * cos(theta) ** 31 + 5.01443104981435e66 * cos(theta) ** 29 - 1.4573078068895e66 * cos(theta) ** 27 + 3.41010026812142e65 * cos(theta) ** 25 - 6.39793671317339e64 * cos(theta) ** 23 + 9.55536002616806e63 * cos(theta) ** 21 - 1.12416000307859e63 * cos(theta) ** 19 + 1.0268769258891e62 * cos(theta) ** 17 - 7.14349165835896e60 * cos(theta) ** 15 + 3.68764318646849e59 * cos(theta) ** 13 - 1.36385096512348e58 * cos(theta) ** 11 + 3.44090839824732e56 * cos(theta) ** 9 - 5.5128038423188e54 * cos(theta) ** 7 + 5.01163985665345e52 * cos(theta) ** 5 - 2.11550859293096e50 * cos(theta) ** 3 + 2.61820370412248e47 * cos(theta) ) * cos(25 * phi) ) # @torch.jit.script def Yl74_m26(theta, phi): return ( 1.77605236657185e-48 * (1.0 - cos(theta) ** 2) ** 13 * ( 3.29561867774898e67 * cos(theta) ** 48 - 2.52888290374207e68 * cos(theta) ** 46 + 9.02549588059671e68 * cos(theta) ** 44 - 1.99023755315722e69 * cos(theta) ** 42 + 3.03828817955385e69 * cos(theta) ** 40 - 3.40987738136979e69 * cos(theta) ** 38 + 2.91623333224204e69 * cos(theta) ** 36 - 1.94415555482803e69 * cos(theta) ** 34 + 1.02506697956628e69 * cos(theta) ** 32 - 4.31241070284034e68 * cos(theta) ** 30 + 1.45418500444616e68 * cos(theta) ** 28 - 3.93473107860164e67 * cos(theta) ** 26 + 8.52525067030355e66 * cos(theta) ** 24 - 1.47152544402988e66 * cos(theta) ** 22 + 2.00662560549529e65 * cos(theta) ** 20 - 2.13590400584933e64 * cos(theta) ** 18 + 1.74569077401147e63 * cos(theta) ** 16 - 1.07152374875384e62 * cos(theta) ** 14 + 4.79393614240904e60 * cos(theta) ** 12 - 1.50023606163583e59 * cos(theta) ** 10 + 3.09681755842258e57 * cos(theta) ** 8 - 3.85896268962316e55 * cos(theta) ** 6 + 2.50581992832673e53 * cos(theta) ** 4 - 6.34652577879289e50 * cos(theta) ** 2 + 2.61820370412248e47 ) * cos(26 * phi) ) # @torch.jit.script def Yl74_m27(theta, phi): return ( 2.55078856344285e-50 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.58189696531951e69 * cos(theta) ** 47 - 1.16328613572135e70 * cos(theta) ** 45 + 3.97121818746255e70 * cos(theta) ** 43 - 8.35899772326034e70 * cos(theta) ** 41 + 1.21531527182154e71 * cos(theta) ** 39 - 1.29575340492052e71 * cos(theta) ** 37 + 1.04984399960714e71 * cos(theta) ** 35 - 6.6101288864153e70 * cos(theta) ** 33 + 3.2802143346121e70 * cos(theta) ** 31 - 1.2937232108521e70 * cos(theta) ** 29 + 4.07171801244925e69 * cos(theta) ** 27 - 1.02303008043643e69 * cos(theta) ** 25 + 2.04606016087285e68 * cos(theta) ** 23 - 3.23735597686574e67 * cos(theta) ** 21 + 4.01325121099058e66 * cos(theta) ** 19 - 3.84462721052879e65 * cos(theta) ** 17 + 2.79310523841835e64 * cos(theta) ** 15 - 1.50013324825538e63 * cos(theta) ** 13 + 5.75272337089085e61 * cos(theta) ** 11 - 1.50023606163583e60 * cos(theta) ** 9 + 2.47745404673807e58 * cos(theta) ** 7 - 2.3153776137739e56 * cos(theta) ** 5 + 1.00232797133069e54 * cos(theta) ** 3 - 1.26930515575858e51 * cos(theta) ) * cos(27 * phi) ) # @torch.jit.script def Yl74_m28(theta, phi): return ( 3.68404941024624e-52 * (1.0 - cos(theta) ** 2) ** 14 * ( 7.4349157370017e70 * cos(theta) ** 46 - 5.23478761074609e71 * cos(theta) ** 44 + 1.7076238206089e72 * cos(theta) ** 42 - 3.42718906653674e72 * cos(theta) ** 40 + 4.739729560104e72 * cos(theta) ** 38 - 4.79428759820592e72 * cos(theta) ** 36 + 3.67445399862497e72 * cos(theta) ** 34 - 2.18134253251705e72 * cos(theta) ** 32 + 1.01686644372975e72 * cos(theta) ** 30 - 3.75179731147109e71 * cos(theta) ** 28 + 1.0993638633613e71 * cos(theta) ** 26 - 2.55757520109106e70 * cos(theta) ** 24 + 4.70593837000756e69 * cos(theta) ** 22 - 6.79844755141805e68 * cos(theta) ** 20 + 7.62517730088211e67 * cos(theta) ** 18 - 6.53586625789895e66 * cos(theta) ** 16 + 4.18965785762753e65 * cos(theta) ** 14 - 1.950173222732e64 * cos(theta) ** 12 + 6.32799570797993e62 * cos(theta) ** 10 - 1.35021245547225e61 * cos(theta) ** 8 + 1.73421783271665e59 * cos(theta) ** 6 - 1.15768880688695e57 * cos(theta) ** 4 + 3.00698391399207e54 * cos(theta) ** 2 - 1.26930515575858e51 ) * cos(28 * phi) ) # @torch.jit.script def Yl74_m29(theta, phi): return ( 5.35214558293554e-54 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 3.42006123902078e72 * cos(theta) ** 45 - 2.30330654872828e73 * cos(theta) ** 43 + 7.17202004655737e73 * cos(theta) ** 41 - 1.3708756266147e74 * cos(theta) ** 39 + 1.80109723283952e74 * cos(theta) ** 37 - 1.72594353535413e74 * cos(theta) ** 35 + 1.24931435953249e74 * cos(theta) ** 33 - 6.98029610405455e73 * cos(theta) ** 31 + 3.05059933118926e73 * cos(theta) ** 29 - 1.05050324721191e73 * cos(theta) ** 27 + 2.85834604473937e72 * cos(theta) ** 25 - 6.13818048261855e71 * cos(theta) ** 23 + 1.03530644140166e71 * cos(theta) ** 21 - 1.35968951028361e70 * cos(theta) ** 19 + 1.37253191415878e69 * cos(theta) ** 17 - 1.04573860126383e68 * cos(theta) ** 15 + 5.86552100067854e66 * cos(theta) ** 13 - 2.3402078672784e65 * cos(theta) ** 11 + 6.32799570797993e63 * cos(theta) ** 9 - 1.0801699643778e62 * cos(theta) ** 7 + 1.04053069962999e60 * cos(theta) ** 5 - 4.63075522754779e57 * cos(theta) ** 3 + 6.01396782798414e54 * cos(theta) ) * cos(29 * phi) ) # @torch.jit.script def Yl74_m30(theta, phi): return ( 7.82357034002052e-56 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.53902755755935e74 * cos(theta) ** 44 - 9.90421815953161e74 * cos(theta) ** 42 + 2.94052821908852e75 * cos(theta) ** 40 - 5.34641494379731e75 * cos(theta) ** 38 + 6.66405976150623e75 * cos(theta) ** 36 - 6.04080237373946e75 * cos(theta) ** 34 + 4.12273738645722e75 * cos(theta) ** 32 - 2.16389179225691e75 * cos(theta) ** 30 + 8.84673806044884e74 * cos(theta) ** 28 - 2.83635876747215e74 * cos(theta) ** 26 + 7.14586511184843e73 * cos(theta) ** 24 - 1.41178151100227e73 * cos(theta) ** 22 + 2.17414352694349e72 * cos(theta) ** 20 - 2.58341006953886e71 * cos(theta) ** 18 + 2.33330425406992e70 * cos(theta) ** 16 - 1.56860790189575e69 * cos(theta) ** 14 + 7.62517730088211e67 * cos(theta) ** 12 - 2.57422865400624e66 * cos(theta) ** 10 + 5.69519613718194e64 * cos(theta) ** 8 - 7.56118975064458e62 * cos(theta) ** 6 + 5.20265349814994e60 * cos(theta) ** 4 - 1.38922656826434e58 * cos(theta) ** 2 + 6.01396782798414e54 ) * cos(30 * phi) ) # @torch.jit.script def Yl74_m31(theta, phi): return ( 1.15102300503607e-57 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 6.77172125326115e75 * cos(theta) ** 43 - 4.15977162700328e76 * cos(theta) ** 41 + 1.17621128763541e77 * cos(theta) ** 39 - 2.03163767864298e77 * cos(theta) ** 37 + 2.39906151414224e77 * cos(theta) ** 35 - 2.05387280707142e77 * cos(theta) ** 33 + 1.31927596366631e77 * cos(theta) ** 31 - 6.49167537677074e76 * cos(theta) ** 29 + 2.47708665692568e76 * cos(theta) ** 27 - 7.37453279542758e75 * cos(theta) ** 25 + 1.71500762684362e75 * cos(theta) ** 23 - 3.10591932420499e74 * cos(theta) ** 21 + 4.34828705388698e73 * cos(theta) ** 19 - 4.65013812516994e72 * cos(theta) ** 17 + 3.73328680651188e71 * cos(theta) ** 15 - 2.19605106265405e70 * cos(theta) ** 13 + 9.15021276105853e68 * cos(theta) ** 11 - 2.57422865400624e67 * cos(theta) ** 9 + 4.55615690974555e65 * cos(theta) ** 7 - 4.53671385038675e63 * cos(theta) ** 5 + 2.08106139925998e61 * cos(theta) ** 3 - 2.77845313652867e58 * cos(theta) ) * cos(31 * phi) ) # @torch.jit.script def Yl74_m32(theta, phi): return ( 1.70489188407376e-59 * (1.0 - cos(theta) ** 2) ** 16 * ( 2.91184013890229e77 * cos(theta) ** 42 - 1.70550636707134e78 * cos(theta) ** 40 + 4.5872240217781e78 * cos(theta) ** 38 - 7.51705941097902e78 * cos(theta) ** 36 + 8.39671529949785e78 * cos(theta) ** 34 - 6.77778026333567e78 * cos(theta) ** 32 + 4.08975548736556e78 * cos(theta) ** 30 - 1.88258585926351e78 * cos(theta) ** 28 + 6.68813397369932e77 * cos(theta) ** 26 - 1.8436331988569e77 * cos(theta) ** 24 + 3.94451754174034e76 * cos(theta) ** 22 - 6.52243058083048e75 * cos(theta) ** 20 + 8.26174540238527e74 * cos(theta) ** 18 - 7.90523481278891e73 * cos(theta) ** 16 + 5.59993020976782e72 * cos(theta) ** 14 - 2.85486638145026e71 * cos(theta) ** 12 + 1.00652340371644e70 * cos(theta) ** 10 - 2.31680578860561e68 * cos(theta) ** 8 + 3.18930983682189e66 * cos(theta) ** 6 - 2.26835692519338e64 * cos(theta) ** 4 + 6.24318419777993e61 * cos(theta) ** 2 - 2.77845313652867e58 ) * cos(32 * phi) ) # @torch.jit.script def Yl74_m33(theta, phi): return ( 2.5431987961142e-61 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 1.22297285833896e79 * cos(theta) ** 41 - 6.82202546828537e79 * cos(theta) ** 39 + 1.74314512827568e80 * cos(theta) ** 37 - 2.70614138795245e80 * cos(theta) ** 35 + 2.85488320182927e80 * cos(theta) ** 33 - 2.16888968426741e80 * cos(theta) ** 31 + 1.22692664620967e80 * cos(theta) ** 29 - 5.27124040593784e79 * cos(theta) ** 27 + 1.73891483316182e79 * cos(theta) ** 25 - 4.42471967725655e78 * cos(theta) ** 23 + 8.67793859182874e77 * cos(theta) ** 21 - 1.3044861161661e77 * cos(theta) ** 19 + 1.48711417242935e76 * cos(theta) ** 17 - 1.26483757004622e75 * cos(theta) ** 15 + 7.83990229367495e73 * cos(theta) ** 13 - 3.42583965774031e72 * cos(theta) ** 11 + 1.00652340371644e71 * cos(theta) ** 9 - 1.85344463088449e69 * cos(theta) ** 7 + 1.91358590209313e67 * cos(theta) ** 5 - 9.0734277007735e64 * cos(theta) ** 3 + 1.24863683955599e62 * cos(theta) ) * cos(33 * phi) ) # @torch.jit.script def Yl74_m34(theta, phi): return ( 3.82187521563157e-63 * (1.0 - cos(theta) ** 2) ** 17 * ( 5.01418871918975e80 * cos(theta) ** 40 - 2.6605899326313e81 * cos(theta) ** 38 + 6.44963697462e81 * cos(theta) ** 36 - 9.47149485783357e81 * cos(theta) ** 34 + 9.42111456603658e81 * cos(theta) ** 32 - 6.72355802122899e81 * cos(theta) ** 30 + 3.55808727400804e81 * cos(theta) ** 28 - 1.42323490960322e81 * cos(theta) ** 26 + 4.34728708290456e80 * cos(theta) ** 24 - 1.01768552576901e80 * cos(theta) ** 22 + 1.82236710428403e79 * cos(theta) ** 20 - 2.47852362071558e78 * cos(theta) ** 18 + 2.52809409312989e77 * cos(theta) ** 16 - 1.89725635506934e76 * cos(theta) ** 14 + 1.01918729817774e75 * cos(theta) ** 12 - 3.76842362351435e73 * cos(theta) ** 10 + 9.05871063344794e71 * cos(theta) ** 8 - 1.29741124161914e70 * cos(theta) ** 6 + 9.56792951046566e67 * cos(theta) ** 4 - 2.72202831023205e65 * cos(theta) ** 2 + 1.24863683955599e62 ) * cos(34 * phi) ) # @torch.jit.script def Yl74_m35(theta, phi): return ( 5.78806312057407e-65 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 2.0056754876759e82 * cos(theta) ** 39 - 1.01102417439989e83 * cos(theta) ** 37 + 2.3218693108632e83 * cos(theta) ** 35 - 3.22030825166341e83 * cos(theta) ** 33 + 3.01475666113171e83 * cos(theta) ** 31 - 2.0170674063687e83 * cos(theta) ** 29 + 9.96264436722251e82 * cos(theta) ** 27 - 3.70041076496836e82 * cos(theta) ** 25 + 1.04334889989709e82 * cos(theta) ** 23 - 2.23890815669181e81 * cos(theta) ** 21 + 3.64473420856807e80 * cos(theta) ** 19 - 4.46134251728805e79 * cos(theta) ** 17 + 4.04495054900783e78 * cos(theta) ** 15 - 2.65615889709707e77 * cos(theta) ** 13 + 1.22302475781329e76 * cos(theta) ** 11 - 3.76842362351435e74 * cos(theta) ** 9 + 7.24696850675836e72 * cos(theta) ** 7 - 7.78446744971486e70 * cos(theta) ** 5 + 3.82717180418626e68 * cos(theta) ** 3 - 5.4440566204641e65 * cos(theta) ) * cos(35 * phi) ) # @torch.jit.script def Yl74_m36(theta, phi): return ( 8.83699506561061e-67 * (1.0 - cos(theta) ** 2) ** 18 * ( 7.82213440193601e83 * cos(theta) ** 38 - 3.7407894452796e84 * cos(theta) ** 36 + 8.1265425880212e84 * cos(theta) ** 34 - 1.06270172304893e85 * cos(theta) ** 32 + 9.34574564950829e84 * cos(theta) ** 30 - 5.84949547846922e84 * cos(theta) ** 28 + 2.68991397915008e84 * cos(theta) ** 26 - 9.2510269124209e83 * cos(theta) ** 24 + 2.39970246976332e83 * cos(theta) ** 22 - 4.70170712905281e82 * cos(theta) ** 20 + 6.92499499627933e81 * cos(theta) ** 18 - 7.58428227938968e80 * cos(theta) ** 16 + 6.06742582351174e79 * cos(theta) ** 14 - 3.45300656622619e78 * cos(theta) ** 12 + 1.34532723359462e77 * cos(theta) ** 10 - 3.39158126116291e75 * cos(theta) ** 8 + 5.07287795473085e73 * cos(theta) ** 6 - 3.89223372485743e71 * cos(theta) ** 4 + 1.14815154125588e69 * cos(theta) ** 2 - 5.4440566204641e65 ) * cos(36 * phi) ) # @torch.jit.script def Yl74_m37(theta, phi): return ( 1.36066534806227e-68 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 2.97241107273568e85 * cos(theta) ** 37 - 1.34668420030066e86 * cos(theta) ** 35 + 2.76302447992721e86 * cos(theta) ** 33 - 3.40064551375657e86 * cos(theta) ** 31 + 2.80372369485249e86 * cos(theta) ** 29 - 1.63785873397138e86 * cos(theta) ** 27 + 6.9937763457902e85 * cos(theta) ** 25 - 2.22024645898102e85 * cos(theta) ** 23 + 5.2793454334793e84 * cos(theta) ** 21 - 9.40341425810562e83 * cos(theta) ** 19 + 1.24649909933028e83 * cos(theta) ** 17 - 1.21348516470235e82 * cos(theta) ** 15 + 8.49439615291644e80 * cos(theta) ** 13 - 4.14360787947143e79 * cos(theta) ** 11 + 1.34532723359462e78 * cos(theta) ** 9 - 2.71326500893033e76 * cos(theta) ** 7 + 3.04372677283851e74 * cos(theta) ** 5 - 1.55689348994297e72 * cos(theta) ** 3 + 2.29630308251176e69 * cos(theta) ) * cos(37 * phi) ) # @torch.jit.script def Yl74_m38(theta, phi): return ( 2.11369077232848e-70 * (1.0 - cos(theta) ** 2) ** 19 * ( 1.0997920969122e87 * cos(theta) ** 36 - 4.7133947010523e87 * cos(theta) ** 34 + 9.11798078375979e87 * cos(theta) ** 32 - 1.05420010926454e88 * cos(theta) ** 30 + 8.13079871507221e87 * cos(theta) ** 28 - 4.42221858172273e87 * cos(theta) ** 26 + 1.74844408644755e87 * cos(theta) ** 24 - 5.10656685565634e86 * cos(theta) ** 22 + 1.10866254103065e86 * cos(theta) ** 20 - 1.78664870904007e85 * cos(theta) ** 18 + 2.11904846886148e84 * cos(theta) ** 16 - 1.82022774705352e83 * cos(theta) ** 14 + 1.10427149987914e82 * cos(theta) ** 12 - 4.55796866741858e80 * cos(theta) ** 10 + 1.21079451023516e79 * cos(theta) ** 8 - 1.89928550625123e77 * cos(theta) ** 6 + 1.52186338641925e75 * cos(theta) ** 4 - 4.67068046982891e72 * cos(theta) ** 2 + 2.29630308251176e69 ) * cos(38 * phi) ) # @torch.jit.script def Yl74_m39(theta, phi): return ( 3.31398836473207e-72 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 3.95925154888393e88 * cos(theta) ** 35 - 1.60255419835778e89 * cos(theta) ** 33 + 2.91775385080313e89 * cos(theta) ** 31 - 3.16260032779361e89 * cos(theta) ** 29 + 2.27662364022022e89 * cos(theta) ** 27 - 1.14977683124791e89 * cos(theta) ** 25 + 4.19626580747412e88 * cos(theta) ** 23 - 1.12344470824439e88 * cos(theta) ** 21 + 2.21732508206131e87 * cos(theta) ** 19 - 3.21596767627212e86 * cos(theta) ** 17 + 3.39047755017836e85 * cos(theta) ** 15 - 2.54831884587493e84 * cos(theta) ** 13 + 1.32512579985496e83 * cos(theta) ** 11 - 4.55796866741858e81 * cos(theta) ** 9 + 9.68635608188127e79 * cos(theta) ** 7 - 1.13957130375074e78 * cos(theta) ** 5 + 6.08745354567702e75 * cos(theta) ** 3 - 9.34136093965783e72 * cos(theta) ) * cos(39 * phi) ) # @torch.jit.script def Yl74_m40(theta, phi): return ( 5.24643783713255e-74 * (1.0 - cos(theta) ** 2) ** 20 * ( 1.38573804210938e90 * cos(theta) ** 34 - 5.28842885458068e90 * cos(theta) ** 32 + 9.04503693748971e90 * cos(theta) ** 30 - 9.17154095060146e90 * cos(theta) ** 28 + 6.14688382859459e90 * cos(theta) ** 26 - 2.87444207811977e90 * cos(theta) ** 24 + 9.65141135719048e89 * cos(theta) ** 22 - 2.35923388731323e89 * cos(theta) ** 20 + 4.21291765591648e88 * cos(theta) ** 18 - 5.46714504966261e87 * cos(theta) ** 16 + 5.08571632526754e86 * cos(theta) ** 14 - 3.31281449963741e85 * cos(theta) ** 12 + 1.45763837984046e84 * cos(theta) ** 10 - 4.10217180067672e82 * cos(theta) ** 8 + 6.78044925731689e80 * cos(theta) ** 6 - 5.69785651875369e78 * cos(theta) ** 4 + 1.82623606370311e76 * cos(theta) ** 2 - 9.34136093965783e72 ) * cos(40 * phi) ) # @torch.jit.script def Yl74_m41(theta, phi): return ( 8.39027417390453e-76 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 4.71150934317188e91 * cos(theta) ** 33 - 1.69229723346582e92 * cos(theta) ** 31 + 2.71351108124691e92 * cos(theta) ** 29 - 2.56803146616841e92 * cos(theta) ** 27 + 1.59818979543459e92 * cos(theta) ** 25 - 6.89866098748746e91 * cos(theta) ** 23 + 2.12331049858191e91 * cos(theta) ** 21 - 4.71846777462646e90 * cos(theta) ** 19 + 7.58325178064966e89 * cos(theta) ** 17 - 8.74743207946017e88 * cos(theta) ** 15 + 7.12000285537456e87 * cos(theta) ** 13 - 3.97537739956489e86 * cos(theta) ** 11 + 1.45763837984046e85 * cos(theta) ** 9 - 3.28173744054138e83 * cos(theta) ** 7 + 4.06826955439013e81 * cos(theta) ** 5 - 2.27914260750148e79 * cos(theta) ** 3 + 3.65247212740621e76 * cos(theta) ) * cos(41 * phi) ) # @torch.jit.script def Yl74_m42(theta, phi): return ( 1.35609522951268e-77 * (1.0 - cos(theta) ** 2) ** 21 * ( 1.55479808324672e93 * cos(theta) ** 32 - 5.24612142374403e93 * cos(theta) ** 30 + 7.86918213561605e93 * cos(theta) ** 28 - 6.9336849586547e93 * cos(theta) ** 26 + 3.99547448858649e93 * cos(theta) ** 24 - 1.58669202712212e93 * cos(theta) ** 22 + 4.458952047022e92 * cos(theta) ** 20 - 8.96508877179027e91 * cos(theta) ** 18 + 1.28915280271044e91 * cos(theta) ** 16 - 1.31211481191903e90 * cos(theta) ** 14 + 9.25600371198692e88 * cos(theta) ** 12 - 4.37291513952138e87 * cos(theta) ** 10 + 1.31187454185641e86 * cos(theta) ** 8 - 2.29721620837896e84 * cos(theta) ** 6 + 2.03413477719507e82 * cos(theta) ** 4 - 6.83742782250443e79 * cos(theta) ** 2 + 3.65247212740621e76 ) * cos(42 * phi) ) # @torch.jit.script def Yl74_m43(theta, phi): return ( 2.21626796076129e-79 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 4.9753538663895e94 * cos(theta) ** 31 - 1.57383642712321e95 * cos(theta) ** 29 + 2.20337099797249e95 * cos(theta) ** 27 - 1.80275808925022e95 * cos(theta) ** 25 + 9.58913877260756e94 * cos(theta) ** 23 - 3.49072245966865e94 * cos(theta) ** 21 + 8.917904094044e93 * cos(theta) ** 19 - 1.61371597892225e93 * cos(theta) ** 17 + 2.06264448433671e92 * cos(theta) ** 15 - 1.83696073668664e91 * cos(theta) ** 13 + 1.11072044543843e90 * cos(theta) ** 11 - 4.37291513952138e88 * cos(theta) ** 9 + 1.04949963348513e87 * cos(theta) ** 7 - 1.37832972502738e85 * cos(theta) ** 5 + 8.13653910878027e82 * cos(theta) ** 3 - 1.36748556450089e80 * cos(theta) ) * cos(43 * phi) ) # @torch.jit.script def Yl74_m44(theta, phi): return ( 3.66437926999678e-81 * (1.0 - cos(theta) ** 2) ** 22 * ( 1.54235969858075e96 * cos(theta) ** 30 - 4.56412563865731e96 * cos(theta) ** 28 + 5.94910169452573e96 * cos(theta) ** 26 - 4.50689522312556e96 * cos(theta) ** 24 + 2.20550191769974e96 * cos(theta) ** 22 - 7.33051716530417e95 * cos(theta) ** 20 + 1.69440177786836e95 * cos(theta) ** 18 - 2.74331716416782e94 * cos(theta) ** 16 + 3.09396672650506e93 * cos(theta) ** 14 - 2.38804895769263e92 * cos(theta) ** 12 + 1.22179248998227e91 * cos(theta) ** 10 - 3.93562362556924e89 * cos(theta) ** 8 + 7.34649743439592e87 * cos(theta) ** 6 - 6.89164862513689e85 * cos(theta) ** 4 + 2.44096173263408e83 * cos(theta) ** 2 - 1.36748556450089e80 ) * cos(44 * phi) ) # @torch.jit.script def Yl74_m45(theta, phi): return ( 6.13290601841919e-83 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 4.62707909574224e97 * cos(theta) ** 29 - 1.27795517882405e98 * cos(theta) ** 27 + 1.54676644057669e98 * cos(theta) ** 25 - 1.08165485355013e98 * cos(theta) ** 23 + 4.85210421893943e97 * cos(theta) ** 21 - 1.46610343306083e97 * cos(theta) ** 19 + 3.04992320016305e96 * cos(theta) ** 17 - 4.38930746266852e95 * cos(theta) ** 15 + 4.33155341710709e94 * cos(theta) ** 13 - 2.86565874923115e93 * cos(theta) ** 11 + 1.22179248998227e92 * cos(theta) ** 9 - 3.1484989004554e90 * cos(theta) ** 7 + 4.40789846063755e88 * cos(theta) ** 5 - 2.75665945005475e86 * cos(theta) ** 3 + 4.88192346526816e83 * cos(theta) ) * cos(45 * phi) ) # @torch.jit.script def Yl74_m46(theta, phi): return ( 1.03962493555662e-84 * (1.0 - cos(theta) ** 2) ** 23 * ( 1.34185293776525e99 * cos(theta) ** 28 - 3.45047898282493e99 * cos(theta) ** 26 + 3.86691610144173e99 * cos(theta) ** 24 - 2.48780616316531e99 * cos(theta) ** 22 + 1.01894188597728e99 * cos(theta) ** 20 - 2.78559652281558e98 * cos(theta) ** 18 + 5.18486944027718e97 * cos(theta) ** 16 - 6.58396119400277e96 * cos(theta) ** 14 + 5.63101944223921e95 * cos(theta) ** 12 - 3.15222462415427e94 * cos(theta) ** 10 + 1.09961324098405e93 * cos(theta) ** 8 - 2.20394923031878e91 * cos(theta) ** 6 + 2.20394923031878e89 * cos(theta) ** 4 - 8.26997835016427e86 * cos(theta) ** 2 + 4.88192346526816e83 ) * cos(46 * phi) ) # @torch.jit.script def Yl74_m47(theta, phi): return ( 1.78609677679504e-86 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 3.7571882257427e100 * cos(theta) ** 27 - 8.97124535534481e100 * cos(theta) ** 25 + 9.28059864346014e100 * cos(theta) ** 23 - 5.47317355896367e100 * cos(theta) ** 21 + 2.03788377195456e100 * cos(theta) ** 19 - 5.01407374106805e99 * cos(theta) ** 17 + 8.29579110444349e98 * cos(theta) ** 15 - 9.21754567160388e97 * cos(theta) ** 13 + 6.75722333068706e96 * cos(theta) ** 11 - 3.15222462415427e95 * cos(theta) ** 9 + 8.79690592787237e93 * cos(theta) ** 7 - 1.32236953819127e92 * cos(theta) ** 5 + 8.81579692127511e89 * cos(theta) ** 3 - 1.65399567003285e87 * cos(theta) ) * cos(47 * phi) ) # @torch.jit.script def Yl74_m48(theta, phi): return ( 3.11202580364349e-88 * (1.0 - cos(theta) ** 2) ** 24 * ( 1.01444082095053e102 * cos(theta) ** 26 - 2.2428113388362e102 * cos(theta) ** 24 + 2.13453768799583e102 * cos(theta) ** 22 - 1.14936644738237e102 * cos(theta) ** 20 + 3.87197916671366e101 * cos(theta) ** 18 - 8.52392535981569e100 * cos(theta) ** 16 + 1.24436866566652e100 * cos(theta) ** 14 - 1.1982809373085e99 * cos(theta) ** 12 + 7.43294566375576e97 * cos(theta) ** 10 - 2.83700216173884e96 * cos(theta) ** 8 + 6.15783414951066e94 * cos(theta) ** 6 - 6.61184769095633e92 * cos(theta) ** 4 + 2.64473907638253e90 * cos(theta) ** 2 - 1.65399567003285e87 ) * cos(48 * phi) ) # @torch.jit.script def Yl74_m49(theta, phi): return ( 5.50305634635573e-90 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 2.63754613447137e103 * cos(theta) ** 25 - 5.38274721320688e103 * cos(theta) ** 23 + 4.69598291359083e103 * cos(theta) ** 21 - 2.29873289476474e103 * cos(theta) ** 19 + 6.96956250008459e102 * cos(theta) ** 17 - 1.36382805757051e102 * cos(theta) ** 15 + 1.74211613193313e101 * cos(theta) ** 13 - 1.43793712477021e100 * cos(theta) ** 11 + 7.43294566375576e98 * cos(theta) ** 9 - 2.26960172939107e97 * cos(theta) ** 7 + 3.6947004897064e95 * cos(theta) ** 5 - 2.64473907638253e93 * cos(theta) ** 3 + 5.28947815276506e90 * cos(theta) ) * cos(49 * phi) ) # @torch.jit.script def Yl74_m50(theta, phi): return ( 9.88378097157581e-92 * (1.0 - cos(theta) ** 2) ** 25 * ( 6.59386533617843e104 * cos(theta) ** 24 - 1.23803185903758e105 * cos(theta) ** 22 + 9.86156411854075e104 * cos(theta) ** 20 - 4.36759250005301e104 * cos(theta) ** 18 + 1.18482562501438e104 * cos(theta) ** 16 - 2.04574208635577e103 * cos(theta) ** 14 + 2.26475097151307e102 * cos(theta) ** 12 - 1.58173083724723e101 * cos(theta) ** 10 + 6.68965109738019e99 * cos(theta) ** 8 - 1.58872121057375e98 * cos(theta) ** 6 + 1.8473502448532e96 * cos(theta) ** 4 - 7.9342172291476e93 * cos(theta) ** 2 + 5.28947815276506e90 ) * cos(50 * phi) ) # @torch.jit.script def Yl74_m51(theta, phi): return ( 1.80452326385747e-93 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 1.58252768068282e106 * cos(theta) ** 23 - 2.72367008988268e106 * cos(theta) ** 21 + 1.97231282370815e106 * cos(theta) ** 19 - 7.86166650009542e105 * cos(theta) ** 17 + 1.89572100002301e105 * cos(theta) ** 15 - 2.86403892089807e104 * cos(theta) ** 13 + 2.71770116581569e103 * cos(theta) ** 11 - 1.58173083724723e102 * cos(theta) ** 9 + 5.35172087790415e100 * cos(theta) ** 7 - 9.5323272634425e98 * cos(theta) ** 5 + 7.38940097941279e96 * cos(theta) ** 3 - 1.58684344582952e94 * cos(theta) ) * cos(51 * phi) ) # @torch.jit.script def Yl74_m52(theta, phi): return ( 3.35207166344377e-95 * (1.0 - cos(theta) ** 2) ** 26 * ( 3.63981366557049e107 * cos(theta) ** 22 - 5.71970718875363e107 * cos(theta) ** 20 + 3.74739436504548e107 * cos(theta) ** 18 - 1.33648330501622e107 * cos(theta) ** 16 + 2.84358150003451e106 * cos(theta) ** 14 - 3.72325059716749e105 * cos(theta) ** 12 + 2.98947128239726e104 * cos(theta) ** 10 - 1.4235577535225e103 * cos(theta) ** 8 + 3.7462046145329e101 * cos(theta) ** 6 - 4.76616363172125e99 * cos(theta) ** 4 + 2.21682029382384e97 * cos(theta) ** 2 - 1.58684344582952e94 ) * cos(52 * phi) ) # @torch.jit.script def Yl74_m53(theta, phi): return ( 6.34161823364269e-97 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 8.00759006425509e108 * cos(theta) ** 21 - 1.14394143775073e109 * cos(theta) ** 19 + 6.74530985708187e108 * cos(theta) ** 17 - 2.13837328802595e108 * cos(theta) ** 15 + 3.98101410004832e107 * cos(theta) ** 13 - 4.46790071660099e106 * cos(theta) ** 11 + 2.98947128239726e105 * cos(theta) ** 9 - 1.138846202818e104 * cos(theta) ** 7 + 2.24772276871974e102 * cos(theta) ** 5 - 1.9064654526885e100 * cos(theta) ** 3 + 4.43364058764768e97 * cos(theta) ) * cos(53 * phi) ) # @torch.jit.script def Yl74_m54(theta, phi): return ( 1.22316617203969e-98 * (1.0 - cos(theta) ** 2) ** 27 * ( 1.68159391349357e110 * cos(theta) ** 20 - 2.17348873172638e110 * cos(theta) ** 18 + 1.14670267570392e110 * cos(theta) ** 16 - 3.20755993203893e109 * cos(theta) ** 14 + 5.17531833006282e108 * cos(theta) ** 12 - 4.91469078826109e107 * cos(theta) ** 10 + 2.69052415415753e106 * cos(theta) ** 8 - 7.97192341972602e104 * cos(theta) ** 6 + 1.12386138435987e103 * cos(theta) ** 4 - 5.7193963580655e100 * cos(theta) ** 2 + 4.43364058764768e97 ) * cos(54 * phi) ) # @torch.jit.script def Yl74_m55(theta, phi): return ( 2.40810604953822e-100 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 3.36318782698714e111 * cos(theta) ** 19 - 3.91227971710749e111 * cos(theta) ** 17 + 1.83472428112627e111 * cos(theta) ** 15 - 4.49058390485451e110 * cos(theta) ** 13 + 6.21038199607538e109 * cos(theta) ** 11 - 4.91469078826109e108 * cos(theta) ** 9 + 2.15241932332603e107 * cos(theta) ** 7 - 4.78315405183561e105 * cos(theta) ** 5 + 4.49544553743949e103 * cos(theta) ** 3 - 1.1438792716131e101 * cos(theta) ) * cos(55 * phi) ) # @torch.jit.script def Yl74_m56(theta, phi): return ( 4.84537207548491e-102 * (1.0 - cos(theta) ** 2) ** 28 * ( 6.39005687127556e112 * cos(theta) ** 18 - 6.65087551908273e112 * cos(theta) ** 16 + 2.7520864216894e112 * cos(theta) ** 14 - 5.83775907631086e111 * cos(theta) ** 12 + 6.83142019568292e110 * cos(theta) ** 10 - 4.42322170943498e109 * cos(theta) ** 8 + 1.50669352632822e108 * cos(theta) ** 6 - 2.39157702591781e106 * cos(theta) ** 4 + 1.34863366123185e104 * cos(theta) ** 2 - 1.1438792716131e101 ) * cos(56 * phi) ) # @torch.jit.script def Yl74_m57(theta, phi): return ( 9.97826955093323e-104 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 1.1502102368296e114 * cos(theta) ** 17 - 1.06414008305324e114 * cos(theta) ** 15 + 3.85292099036517e113 * cos(theta) ** 13 - 7.00531089157303e112 * cos(theta) ** 11 + 6.83142019568292e111 * cos(theta) ** 9 - 3.53857736754799e110 * cos(theta) ** 7 + 9.04016115796931e108 * cos(theta) ** 5 - 9.56630810367122e106 * cos(theta) ** 3 + 2.69726732246369e104 * cos(theta) ) * cos(57 * phi) ) # @torch.jit.script def Yl74_m58(theta, phi): return ( 2.10641435321022e-105 * (1.0 - cos(theta) ** 2) ** 29 * ( 1.95535740261032e115 * cos(theta) ** 16 - 1.59621012457985e115 * cos(theta) ** 14 + 5.00879728747472e114 * cos(theta) ** 12 - 7.70584198073033e113 * cos(theta) ** 10 + 6.14827817611463e112 * cos(theta) ** 8 - 2.47700415728359e111 * cos(theta) ** 6 + 4.52008057898465e109 * cos(theta) ** 4 - 2.86989243110137e107 * cos(theta) ** 2 + 2.69726732246369e104 ) * cos(58 * phi) ) # @torch.jit.script def Yl74_m59(theta, phi): return ( 4.56623221404321e-107 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 3.12857184417651e116 * cos(theta) ** 15 - 2.2346941744118e116 * cos(theta) ** 13 + 6.01055674496966e115 * cos(theta) ** 11 - 7.70584198073033e114 * cos(theta) ** 9 + 4.9186225408917e113 * cos(theta) ** 7 - 1.48620249437015e112 * cos(theta) ** 5 + 1.80803223159386e110 * cos(theta) ** 3 - 5.73978486220273e107 * cos(theta) ) * cos(59 * phi) ) # @torch.jit.script def Yl74_m60(theta, phi): return ( 1.01849749430168e-108 * (1.0 - cos(theta) ** 2) ** 30 * ( 4.69285776626477e117 * cos(theta) ** 14 - 2.90510242673533e117 * cos(theta) ** 12 + 6.61161241946662e116 * cos(theta) ** 10 - 6.9352577826573e115 * cos(theta) ** 8 + 3.44303577862419e114 * cos(theta) ** 6 - 7.43101247185077e112 * cos(theta) ** 4 + 5.42409669478158e110 * cos(theta) ** 2 - 5.73978486220273e107 ) * cos(60 * phi) ) # @torch.jit.script def Yl74_m61(theta, phi): return ( 2.34276681031359e-110 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 6.57000087277068e118 * cos(theta) ** 13 - 3.4861229120824e118 * cos(theta) ** 11 + 6.61161241946662e117 * cos(theta) ** 9 - 5.54820622612584e116 * cos(theta) ** 7 + 2.06582146717451e115 * cos(theta) ** 5 - 2.97240498874031e113 * cos(theta) ** 3 + 1.08481933895632e111 * cos(theta) ) * cos(61 * phi) ) # @torch.jit.script def Yl74_m62(theta, phi): return ( 5.57170266890608e-112 * (1.0 - cos(theta) ** 2) ** 31 * ( 8.54100113460188e119 * cos(theta) ** 12 - 3.83473520329064e119 * cos(theta) ** 10 + 5.95045117751996e118 * cos(theta) ** 8 - 3.88374435828809e117 * cos(theta) ** 6 + 1.03291073358726e116 * cos(theta) ** 4 - 8.91721496622092e113 * cos(theta) ** 2 + 1.08481933895632e111 ) * cos(62 * phi) ) # @torch.jit.script def Yl74_m63(theta, phi): return ( 1.37415912422983e-113 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 1.02492013615223e121 * cos(theta) ** 11 - 3.83473520329064e120 * cos(theta) ** 9 + 4.76036094201597e119 * cos(theta) ** 7 - 2.33024661497285e118 * cos(theta) ** 5 + 4.13164293434903e116 * cos(theta) ** 3 - 1.78344299324418e114 * cos(theta) ) * cos(63 * phi) ) # @torch.jit.script def Yl74_m64(theta, phi): return ( 3.52696491989079e-115 * (1.0 - cos(theta) ** 2) ** 32 * ( 1.12741214976745e122 * cos(theta) ** 10 - 3.45126168296158e121 * cos(theta) ** 8 + 3.33225265941118e120 * cos(theta) ** 6 - 1.16512330748643e119 * cos(theta) ** 4 + 1.23949288030471e117 * cos(theta) ** 2 - 1.78344299324418e114 ) * cos(64 * phi) ) # @torch.jit.script def Yl74_m65(theta, phi): return ( 9.46005671197665e-117 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 1.12741214976745e123 * cos(theta) ** 9 - 2.76100934636926e122 * cos(theta) ** 7 + 1.99935159564671e121 * cos(theta) ** 5 - 4.6604932299457e119 * cos(theta) ** 3 + 2.47898576060942e117 * cos(theta) ) * cos(65 * phi) ) # @torch.jit.script def Yl74_m66(theta, phi): return ( 2.66506906003338e-118 * (1.0 - cos(theta) ** 2) ** 33 * ( 1.0146709347907e124 * cos(theta) ** 8 - 1.93270654245848e123 * cos(theta) ** 6 + 9.99675797823354e121 * cos(theta) ** 4 - 1.39814796898371e120 * cos(theta) ** 2 + 2.47898576060942e117 ) * cos(66 * phi) ) # @torch.jit.script def Yl74_m67(theta, phi): return ( 7.93512765114446e-120 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 8.11736747832563e124 * cos(theta) ** 7 - 1.15962392547509e124 * cos(theta) ** 5 + 3.99870319129341e122 * cos(theta) ** 3 - 2.79629593796742e120 * cos(theta) ) * cos(67 * phi) ) # @torch.jit.script def Yl74_m68(theta, phi): return ( 2.51686965917654e-121 * (1.0 - cos(theta) ** 2) ** 34 * ( 5.68215723482794e125 * cos(theta) ** 6 - 5.79811962737545e124 * cos(theta) ** 4 + 1.19961095738802e123 * cos(theta) ** 2 - 2.79629593796742e120 ) * cos(68 * phi) ) # @torch.jit.script def Yl74_m69(theta, phi): return ( 8.59245134182199e-123 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 3.40929434089676e126 * cos(theta) ** 5 - 2.31924785095018e125 * cos(theta) ** 3 + 2.39922191477605e123 * cos(theta) ) * cos(69 * phi) ) # @torch.jit.script def Yl74_m70(theta, phi): return ( 3.20221754894554e-124 * (1.0 - cos(theta) ** 2) ** 35 * ( 1.70464717044838e127 * cos(theta) ** 4 - 6.95774355285054e125 * cos(theta) ** 2 + 2.39922191477605e123 ) * cos(70 * phi) ) # @torch.jit.script def Yl74_m71(theta, phi): return ( 1.32964846474125e-125 * (1.0 - cos(theta) ** 2) ** 35.5 * (6.81858868179353e127 * cos(theta) ** 3 - 1.39154871057011e126 * cos(theta)) * cos(71 * phi) ) # @torch.jit.script def Yl74_m72(theta, phi): return ( 6.35330611770864e-127 * (1.0 - cos(theta) ** 2) ** 36 * (2.04557660453806e128 * cos(theta) ** 2 - 1.39154871057011e126) * cos(72 * phi) ) # @torch.jit.script def Yl74_m73(theta, phi): return ( 15.159045609564 * (1.0 - cos(theta) ** 2) ** 36.5 * cos(73 * phi) * cos(theta) ) # @torch.jit.script def Yl74_m74(theta, phi): return 1.24606587336403 * (1.0 - cos(theta) ** 2) ** 37 * cos(74 * phi) # @torch.jit.script def Yl75_m_minus_75(theta, phi): return 1.25021252666665 * (1.0 - cos(theta) ** 2) ** 37.5 * sin(75 * phi) # @torch.jit.script def Yl75_m_minus_74(theta, phi): return 15.311913801845 * (1.0 - cos(theta) ** 2) ** 37 * sin(74 * phi) * cos(theta) # @torch.jit.script def Yl75_m_minus_73(theta, phi): return ( 4.33616296245739e-129 * (1.0 - cos(theta) ** 2) ** 36.5 * (3.04790914076171e130 * cos(theta) ** 2 - 2.04557660453806e128) * sin(73 * phi) ) # @torch.jit.script def Yl75_m_minus_72(theta, phi): return ( 9.13686231767905e-128 * (1.0 - cos(theta) ** 2) ** 36 * (1.01596971358724e130 * cos(theta) ** 3 - 2.04557660453806e128 * cos(theta)) * sin(72 * phi) ) # @torch.jit.script def Yl75_m_minus_71(theta, phi): return ( 2.21557136583743e-126 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 2.53992428396809e129 * cos(theta) ** 4 - 1.02278830226903e128 * cos(theta) ** 2 + 3.47887177642527e125 ) * sin(71 * phi) ) # @torch.jit.script def Yl75_m_minus_70(theta, phi): return ( 5.98614419162843e-125 * (1.0 - cos(theta) ** 2) ** 35 * ( 5.07984856793618e128 * cos(theta) ** 5 - 3.40929434089676e127 * cos(theta) ** 3 + 3.47887177642527e125 * cos(theta) ) * sin(70 * phi) ) # @torch.jit.script def Yl75_m_minus_69(theta, phi): return ( 1.7656588681334e-123 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 8.46641427989363e127 * cos(theta) ** 6 - 8.52323585224191e126 * cos(theta) ** 4 + 1.73943588821264e125 * cos(theta) ** 2 - 3.99870319129341e122 ) * sin(69 * phi) ) # @torch.jit.script def Yl75_m_minus_68(theta, phi): return ( 5.60579311830811e-122 * (1.0 - cos(theta) ** 2) ** 34 * ( 1.20948775427052e127 * cos(theta) ** 7 - 1.70464717044838e126 * cos(theta) ** 5 + 5.79811962737545e124 * cos(theta) ** 3 - 3.99870319129341e122 * cos(theta) ) * sin(68 * phi) ) # @torch.jit.script def Yl75_m_minus_67(theta, phi): return ( 1.89605127723776e-120 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 1.51185969283815e126 * cos(theta) ** 8 - 2.84107861741397e125 * cos(theta) ** 6 + 1.44952990684386e124 * cos(theta) ** 4 - 1.99935159564671e122 * cos(theta) ** 2 + 3.49536992245928e119 ) * sin(67 * phi) ) # @torch.jit.script def Yl75_m_minus_66(theta, phi): return ( 6.77821757535069e-119 * (1.0 - cos(theta) ** 2) ** 33 * ( 1.6798441031535e125 * cos(theta) ** 9 - 4.05868373916282e124 * cos(theta) ** 7 + 2.89905981368773e123 * cos(theta) ** 5 - 6.66450531882236e121 * cos(theta) ** 3 + 3.49536992245928e119 * cos(theta) ) * sin(66 * phi) ) # @torch.jit.script def Yl75_m_minus_65(theta, phi): return ( 2.54521844314586e-117 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 1.6798441031535e124 * cos(theta) ** 10 - 5.07335467395352e123 * cos(theta) ** 8 + 4.83176635614621e122 * cos(theta) ** 6 - 1.66612632970559e121 * cos(theta) ** 4 + 1.74768496122964e119 * cos(theta) ** 2 - 2.47898576060942e116 ) * sin(65 * phi) ) # @torch.jit.script def Yl75_m_minus_64(theta, phi): return ( 9.98815841981289e-116 * (1.0 - cos(theta) ** 2) ** 32 * ( 1.52713100286682e123 * cos(theta) ** 11 - 5.63706074883724e122 * cos(theta) ** 9 + 6.90252336592316e121 * cos(theta) ** 7 - 3.33225265941118e120 * cos(theta) ** 5 + 5.82561653743213e118 * cos(theta) ** 3 - 2.47898576060942e116 * cos(theta) ) * sin(64 * phi) ) # @torch.jit.script def Yl75_m_minus_63(theta, phi): return ( 4.07927933312929e-114 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 1.27260916905568e122 * cos(theta) ** 12 - 5.63706074883724e121 * cos(theta) ** 10 + 8.62815420740394e120 * cos(theta) ** 8 - 5.55375443235196e119 * cos(theta) ** 6 + 1.45640413435803e118 * cos(theta) ** 4 - 1.23949288030471e116 * cos(theta) ** 2 + 1.48620249437015e113 ) * sin(63 * phi) ) # @torch.jit.script def Yl75_m_minus_62(theta, phi): return ( 1.72780475345411e-112 * (1.0 - cos(theta) ** 2) ** 31 * ( 9.78930130042831e120 * cos(theta) ** 13 - 5.12460068076113e120 * cos(theta) ** 11 + 9.5868380082266e119 * cos(theta) ** 9 - 7.93393490335995e118 * cos(theta) ** 7 + 2.91280826871606e117 * cos(theta) ** 5 - 4.13164293434903e115 * cos(theta) ** 3 + 1.48620249437015e113 * cos(theta) ) * sin(62 * phi) ) # @torch.jit.script def Yl75_m_minus_61(theta, phi): return ( 7.56691692322602e-111 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 6.99235807173451e119 * cos(theta) ** 14 - 4.27050056730094e119 * cos(theta) ** 12 + 9.5868380082266e118 * cos(theta) ** 10 - 9.91741862919994e117 * cos(theta) ** 8 + 4.85468044786011e116 * cos(theta) ** 6 - 1.03291073358726e115 * cos(theta) ** 4 + 7.43101247185077e112 * cos(theta) ** 2 - 7.74870956397369e109 ) * sin(61 * phi) ) # @torch.jit.script def Yl75_m_minus_60(theta, phi): return ( 3.41770087507565e-109 * (1.0 - cos(theta) ** 2) ** 30 * ( 4.66157204782301e118 * cos(theta) ** 15 - 3.28500043638534e118 * cos(theta) ** 13 + 8.715307280206e117 * cos(theta) ** 11 - 1.10193540324444e117 * cos(theta) ** 9 + 6.9352577826573e115 * cos(theta) ** 7 - 2.06582146717451e114 * cos(theta) ** 5 + 2.47700415728359e112 * cos(theta) ** 3 - 7.74870956397369e109 * cos(theta) ) * sin(60 * phi) ) # @torch.jit.script def Yl75_m_minus_59(theta, phi): return ( 1.58840382857838e-107 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 2.91348252988938e117 * cos(theta) ** 16 - 2.34642888313239e117 * cos(theta) ** 14 + 7.26275606683834e116 * cos(theta) ** 12 - 1.10193540324444e116 * cos(theta) ** 10 + 8.66907222832162e114 * cos(theta) ** 8 - 3.44303577862419e113 * cos(theta) ** 6 + 6.19251039320898e111 * cos(theta) ** 4 - 3.87435478198685e109 * cos(theta) ** 2 + 3.58736553887671e106 ) * sin(59 * phi) ) # @torch.jit.script def Yl75_m_minus_58(theta, phi): return ( 7.58119705203574e-106 * (1.0 - cos(theta) ** 2) ** 29 * ( 1.71381325287611e116 * cos(theta) ** 17 - 1.56428592208826e116 * cos(theta) ** 15 + 5.58673543602949e115 * cos(theta) ** 13 - 1.00175945749494e115 * cos(theta) ** 11 + 9.63230247591291e113 * cos(theta) ** 9 - 4.9186225408917e112 * cos(theta) ** 7 + 1.2385020786418e111 * cos(theta) ** 5 - 1.29145159399562e109 * cos(theta) ** 3 + 3.58736553887671e106 * cos(theta) ) * sin(58 * phi) ) # @torch.jit.script def Yl75_m_minus_57(theta, phi): return ( 3.70936746208647e-104 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 9.52118473820058e114 * cos(theta) ** 18 - 9.77678701305161e114 * cos(theta) ** 16 + 3.99052531144964e114 * cos(theta) ** 14 - 8.34799547912452e113 * cos(theta) ** 12 + 9.63230247591291e112 * cos(theta) ** 10 - 6.14827817611463e111 * cos(theta) ** 8 + 2.06417013106966e110 * cos(theta) ** 6 - 3.22862898498904e108 * cos(theta) ** 4 + 1.79368276943835e106 * cos(theta) ** 2 - 1.49848184581316e103 ) * sin(57 * phi) ) # @torch.jit.script def Yl75_m_minus_56(theta, phi): return ( 1.85764885480854e-102 * (1.0 - cos(theta) ** 2) ** 28 * ( 5.01114986221083e113 * cos(theta) ** 19 - 5.751051184148e113 * cos(theta) ** 17 + 2.66035020763309e113 * cos(theta) ** 15 - 6.42153498394194e112 * cos(theta) ** 13 + 8.75663861446629e111 * cos(theta) ** 11 - 6.83142019568292e110 * cos(theta) ** 9 + 2.94881447295665e109 * cos(theta) ** 7 - 6.45725796997808e107 * cos(theta) ** 5 + 5.97894256479452e105 * cos(theta) ** 3 - 1.49848184581316e103 * cos(theta) ) * sin(56 * phi) ) # @torch.jit.script def Yl75_m_minus_55(theta, phi): return ( 9.5085494590717e-101 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 2.50557493110542e112 * cos(theta) ** 20 - 3.19502843563778e112 * cos(theta) ** 18 + 1.66271887977068e112 * cos(theta) ** 16 - 4.58681070281567e111 * cos(theta) ** 14 + 7.29719884538857e110 * cos(theta) ** 12 - 6.83142019568292e109 * cos(theta) ** 10 + 3.68601809119582e108 * cos(theta) ** 8 - 1.07620966166301e107 * cos(theta) ** 6 + 1.49473564119863e105 * cos(theta) ** 4 - 7.49240922906581e102 * cos(theta) ** 2 + 5.7193963580655e99 ) * sin(55 * phi) ) # @torch.jit.script def Yl75_m_minus_54(theta, phi): return ( 4.96816022272453e-99 * (1.0 - cos(theta) ** 2) ** 27 * ( 1.19313091957401e111 * cos(theta) ** 21 - 1.68159391349357e111 * cos(theta) ** 19 + 9.78069929276872e110 * cos(theta) ** 17 - 3.05787380187712e110 * cos(theta) ** 15 + 5.61322988106813e109 * cos(theta) ** 13 - 6.21038199607538e108 * cos(theta) ** 11 + 4.09557565688424e107 * cos(theta) ** 9 - 1.5374423738043e106 * cos(theta) ** 7 + 2.98947128239726e104 * cos(theta) ** 5 - 2.49746974302194e102 * cos(theta) ** 3 + 5.7193963580655e99 * cos(theta) ) * sin(54 * phi) ) # @torch.jit.script def Yl75_m_minus_53(theta, phi): return ( 2.64668215326668e-97 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 5.42332236170004e109 * cos(theta) ** 22 - 8.40796956746784e109 * cos(theta) ** 20 + 5.43372182931595e109 * cos(theta) ** 18 - 1.9111711261732e109 * cos(theta) ** 16 + 4.00944991504867e108 * cos(theta) ** 14 - 5.17531833006282e107 * cos(theta) ** 12 + 4.09557565688424e106 * cos(theta) ** 10 - 1.92180296725538e105 * cos(theta) ** 8 + 4.98245213732876e103 * cos(theta) ** 6 - 6.24367435755484e101 * cos(theta) ** 4 + 2.85969817903275e99 * cos(theta) ** 2 - 2.01529117620349e96 ) * sin(53 * phi) ) # @torch.jit.script def Yl75_m_minus_52(theta, phi): return ( 1.43605373791225e-95 * (1.0 - cos(theta) ** 2) ** 26 * ( 2.35796624421741e108 * cos(theta) ** 23 - 4.00379503212754e108 * cos(theta) ** 21 + 2.85985359437682e108 * cos(theta) ** 19 - 1.12421830951365e108 * cos(theta) ** 17 + 2.67296661003244e107 * cos(theta) ** 15 - 3.98101410004832e106 * cos(theta) ** 13 + 3.72325059716749e105 * cos(theta) ** 11 - 2.13533663028376e104 * cos(theta) ** 9 + 7.11778876761252e102 * cos(theta) ** 7 - 1.24873487151097e101 * cos(theta) ** 5 + 9.5323272634425e98 * cos(theta) ** 3 - 2.01529117620349e96 * cos(theta) ) * sin(52 * phi) ) # @torch.jit.script def Yl75_m_minus_51(theta, phi): return ( 7.92826527731477e-94 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 9.82485935090586e106 * cos(theta) ** 24 - 1.81990683278525e107 * cos(theta) ** 22 + 1.42992679718841e107 * cos(theta) ** 20 - 6.24565727507581e106 * cos(theta) ** 18 + 1.67060413127028e106 * cos(theta) ** 16 - 2.84358150003451e105 * cos(theta) ** 14 + 3.10270883097291e104 * cos(theta) ** 12 - 2.13533663028376e103 * cos(theta) ** 10 + 8.89723595951565e101 * cos(theta) ** 8 - 2.08122478585161e100 * cos(theta) ** 6 + 2.38308181586063e98 * cos(theta) ** 4 - 1.00764558810174e96 * cos(theta) ** 2 + 6.61184769095633e92 ) * sin(51 * phi) ) # @torch.jit.script def Yl75_m_minus_50(theta, phi): return ( 4.44972785087522e-92 * (1.0 - cos(theta) ** 2) ** 25 * ( 3.92994374036235e105 * cos(theta) ** 25 - 7.91263840341412e105 * cos(theta) ** 23 + 6.80917522470671e105 * cos(theta) ** 21 - 3.28718803951358e105 * cos(theta) ** 19 + 9.82708312511928e104 * cos(theta) ** 17 - 1.89572100002301e104 * cos(theta) ** 15 + 2.38669910074839e103 * cos(theta) ** 13 - 1.94121511843978e102 * cos(theta) ** 11 + 9.88581773279516e100 * cos(theta) ** 9 - 2.9731782655023e99 * cos(theta) ** 7 + 4.76616363172125e97 * cos(theta) ** 5 - 3.35881862700582e95 * cos(theta) ** 3 + 6.61184769095633e92 * cos(theta) ) * sin(50 * phi) ) # @torch.jit.script def Yl75_m_minus_49(theta, phi): return ( 2.53673517197357e-90 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.51151682321629e104 * cos(theta) ** 26 - 3.29693266808922e104 * cos(theta) ** 24 + 3.09507964759396e104 * cos(theta) ** 22 - 1.64359401975679e104 * cos(theta) ** 20 + 5.45949062506627e103 * cos(theta) ** 18 - 1.18482562501438e103 * cos(theta) ** 16 + 1.70478507196314e102 * cos(theta) ** 14 - 1.61767926536648e101 * cos(theta) ** 12 + 9.88581773279516e99 * cos(theta) ** 10 - 3.71647283187788e98 * cos(theta) ** 8 + 7.94360605286875e96 * cos(theta) ** 6 - 8.39704656751454e94 * cos(theta) ** 4 + 3.30592384547817e92 * cos(theta) ** 2 - 2.03441467414041e89 ) * sin(49 * phi) ) # @torch.jit.script def Yl75_m_minus_48(theta, phi): return ( 1.46780328429843e-88 * (1.0 - cos(theta) ** 2) ** 24 * ( 5.59821045635662e102 * cos(theta) ** 27 - 1.31877306723569e103 * cos(theta) ** 25 + 1.34568680330172e103 * cos(theta) ** 23 - 7.82663818931805e102 * cos(theta) ** 21 + 2.87341611845593e102 * cos(theta) ** 19 - 6.96956250008459e101 * cos(theta) ** 17 + 1.13652338130876e101 * cos(theta) ** 15 - 1.24436866566652e100 * cos(theta) ** 13 + 8.98710702981379e98 * cos(theta) ** 11 - 4.12941425764209e97 * cos(theta) ** 9 + 1.13480086469554e96 * cos(theta) ** 7 - 1.67940931350291e94 * cos(theta) ** 5 + 1.10197461515939e92 * cos(theta) ** 3 - 2.03441467414041e89 * cos(theta) ) * sin(48 * phi) ) # @torch.jit.script def Yl75_m_minus_47(theta, phi): return ( 8.61389208310165e-87 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 1.99936087727022e101 * cos(theta) ** 28 - 5.07220410475264e101 * cos(theta) ** 26 + 5.6070283470905e101 * cos(theta) ** 24 - 3.55756281332639e101 * cos(theta) ** 22 + 1.43670805922796e101 * cos(theta) ** 20 - 3.87197916671366e100 * cos(theta) ** 18 + 7.10327113317974e99 * cos(theta) ** 16 - 8.88834761190374e98 * cos(theta) ** 14 + 7.48925585817816e97 * cos(theta) ** 12 - 4.12941425764209e96 * cos(theta) ** 10 + 1.41850108086942e95 * cos(theta) ** 8 - 2.79901552250485e93 * cos(theta) ** 6 + 2.75493653789847e91 * cos(theta) ** 4 - 1.0172073370702e89 * cos(theta) ** 2 + 5.90712739297447e85 ) * sin(47 * phi) ) # @torch.jit.script def Yl75_m_minus_46(theta, phi): return ( 5.12363685351293e-85 * (1.0 - cos(theta) ** 2) ** 23 * ( 6.89434785265593e99 * cos(theta) ** 29 - 1.87859411287135e100 * cos(theta) ** 27 + 2.2428113388362e100 * cos(theta) ** 25 - 1.54676644057669e100 * cos(theta) ** 23 + 6.84146694870459e99 * cos(theta) ** 21 - 2.03788377195456e99 * cos(theta) ** 19 + 4.17839478422338e98 * cos(theta) ** 17 - 5.9255650746025e97 * cos(theta) ** 15 + 5.76096604475243e96 * cos(theta) ** 13 - 3.75401296149281e95 * cos(theta) ** 11 + 1.57611231207713e94 * cos(theta) ** 9 - 3.99859360357835e92 * cos(theta) ** 7 + 5.50987307579694e90 * cos(theta) ** 5 - 3.39069112356735e88 * cos(theta) ** 3 + 5.90712739297447e85 * cos(theta) ) * sin(46 * phi) ) # @torch.jit.script def Yl75_m_minus_45(theta, phi): return ( 3.08696462924721e-83 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 2.29811595088531e98 * cos(theta) ** 30 - 6.70926468882624e98 * cos(theta) ** 28 + 8.62619745706231e98 * cos(theta) ** 26 - 6.44486016906954e98 * cos(theta) ** 24 + 3.10975770395663e98 * cos(theta) ** 22 - 1.01894188597728e98 * cos(theta) ** 20 + 2.32133043567965e97 * cos(theta) ** 18 - 3.70347817162656e96 * cos(theta) ** 16 + 4.11497574625173e95 * cos(theta) ** 14 - 3.12834413457734e94 * cos(theta) ** 12 + 1.57611231207713e93 * cos(theta) ** 10 - 4.99824200447294e91 * cos(theta) ** 8 + 9.1831217929949e89 * cos(theta) ** 6 - 8.47672780891837e87 * cos(theta) ** 4 + 2.95356369648724e85 * cos(theta) ** 2 - 1.62730782175605e82 ) * sin(45 * phi) ) # @torch.jit.script def Yl75_m_minus_44(theta, phi): return ( 1.88279537695074e-81 * (1.0 - cos(theta) ** 2) ** 22 * ( 7.41327726092036e96 * cos(theta) ** 31 - 2.31353954787112e97 * cos(theta) ** 29 + 3.19488794706012e97 * cos(theta) ** 27 - 2.57794406762782e97 * cos(theta) ** 25 + 1.35206856693767e97 * cos(theta) ** 23 - 4.85210421893943e96 * cos(theta) ** 21 + 1.22175286088403e96 * cos(theta) ** 19 - 2.17851657154504e95 * cos(theta) ** 17 + 2.74331716416782e94 * cos(theta) ** 15 - 2.40641856505949e93 * cos(theta) ** 13 + 1.43282937461558e92 * cos(theta) ** 11 - 5.55360222719216e90 * cos(theta) ** 9 + 1.31187454185641e89 * cos(theta) ** 7 - 1.69534556178367e87 * cos(theta) ** 5 + 9.84521232162413e84 * cos(theta) ** 3 - 1.62730782175605e82 * cos(theta) ) * sin(44 * phi) ) # @torch.jit.script def Yl75_m_minus_43(theta, phi): return ( 1.16185409527301e-79 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 2.31664914403761e95 * cos(theta) ** 32 - 7.71179849290373e95 * cos(theta) ** 30 + 1.14103140966433e96 * cos(theta) ** 28 - 9.91516949087622e95 * cos(theta) ** 26 + 5.63361902890694e95 * cos(theta) ** 24 - 2.20550191769974e95 * cos(theta) ** 22 + 6.10876430442014e94 * cos(theta) ** 20 - 1.21028698419169e94 * cos(theta) ** 18 + 1.71457322760489e93 * cos(theta) ** 16 - 1.71887040361392e92 * cos(theta) ** 14 + 1.19402447884631e91 * cos(theta) ** 12 - 5.55360222719216e89 * cos(theta) ** 10 + 1.63984317732052e88 * cos(theta) ** 8 - 2.82557593630612e86 * cos(theta) ** 6 + 2.46130308040603e84 * cos(theta) ** 4 - 8.13653910878027e81 * cos(theta) ** 2 + 4.27339238906527e78 ) * sin(43 * phi) ) # @torch.jit.script def Yl75_m_minus_42(theta, phi): return ( 7.25019298454061e-78 * (1.0 - cos(theta) ** 2) ** 21 * ( 7.0201489213261e93 * cos(theta) ** 33 - 2.48767693319475e94 * cos(theta) ** 31 + 3.93459106780802e94 * cos(theta) ** 29 - 3.67228499662082e94 * cos(theta) ** 27 + 2.25344761156278e94 * cos(theta) ** 25 - 9.58913877260756e93 * cos(theta) ** 23 + 2.90893538305721e93 * cos(theta) ** 21 - 6.36993149574572e92 * cos(theta) ** 19 + 1.00857248682641e92 * cos(theta) ** 17 - 1.14591360240928e91 * cos(theta) ** 15 + 9.18480368343318e89 * cos(theta) ** 13 - 5.04872929744741e88 * cos(theta) ** 11 + 1.82204797480058e87 * cos(theta) ** 9 - 4.03653705186589e85 * cos(theta) ** 7 + 4.92260616081206e83 * cos(theta) ** 5 - 2.71217970292676e81 * cos(theta) ** 3 + 4.27339238906527e78 * cos(theta) ) * sin(42 * phi) ) # @torch.jit.script def Yl75_m_minus_41(theta, phi): return ( 4.57279735708286e-76 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 2.06474968274297e92 * cos(theta) ** 34 - 7.7739904162336e92 * cos(theta) ** 32 + 1.31153035593601e93 * cos(theta) ** 30 - 1.31153035593601e93 * cos(theta) ** 28 + 8.66710619831838e92 * cos(theta) ** 26 - 3.99547448858649e92 * cos(theta) ** 24 + 1.3222433559351e92 * cos(theta) ** 22 - 3.18496574787286e91 * cos(theta) ** 20 + 5.60318048236892e90 * cos(theta) ** 18 - 7.16196001505801e89 * cos(theta) ** 16 + 6.56057405959513e88 * cos(theta) ** 14 - 4.20727441453951e87 * cos(theta) ** 12 + 1.82204797480058e86 * cos(theta) ** 10 - 5.04567131483236e84 * cos(theta) ** 8 + 8.20434360135344e82 * cos(theta) ** 6 - 6.78044925731689e80 * cos(theta) ** 4 + 2.13669619453263e78 * cos(theta) ** 2 - 1.07425650806065e75 ) * sin(41 * phi) ) # @torch.jit.script def Yl75_m_minus_40(theta, phi): return ( 2.91370093207783e-74 * (1.0 - cos(theta) ** 2) ** 20 * ( 5.89928480783706e90 * cos(theta) ** 35 - 2.35575467158594e91 * cos(theta) ** 33 + 4.23074308366454e91 * cos(theta) ** 31 - 4.52251846874486e91 * cos(theta) ** 29 + 3.21003933271051e91 * cos(theta) ** 27 - 1.59818979543459e91 * cos(theta) ** 25 + 5.74888415623955e90 * cos(theta) ** 23 - 1.51665035612993e90 * cos(theta) ** 21 + 2.94904235914154e89 * cos(theta) ** 19 - 4.21291765591648e88 * cos(theta) ** 17 + 4.37371603973009e87 * cos(theta) ** 15 - 3.23636493426116e86 * cos(theta) ** 13 + 1.65640724981871e85 * cos(theta) ** 11 - 5.60630146092485e83 * cos(theta) ** 9 + 1.17204908590763e82 * cos(theta) ** 7 - 1.35608985146338e80 * cos(theta) ** 5 + 7.12232064844211e77 * cos(theta) ** 3 - 1.07425650806065e75 * cos(theta) ) * sin(40 * phi) ) # @torch.jit.script def Yl75_m_minus_39(theta, phi): return ( 1.87475768896644e-72 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 1.63869022439918e89 * cos(theta) ** 36 - 6.92869021054688e89 * cos(theta) ** 34 + 1.32210721364517e90 * cos(theta) ** 32 - 1.50750615624829e90 * cos(theta) ** 30 + 1.14644261882518e90 * cos(theta) ** 28 - 6.14688382859459e89 * cos(theta) ** 26 + 2.39536839843314e89 * cos(theta) ** 24 - 6.89386525513606e88 * cos(theta) ** 22 + 1.47452117957077e88 * cos(theta) ** 20 - 2.34050980884249e87 * cos(theta) ** 18 + 2.7335725248313e86 * cos(theta) ** 16 - 2.31168923875797e85 * cos(theta) ** 14 + 1.38033937484892e84 * cos(theta) ** 12 - 5.60630146092485e82 * cos(theta) ** 10 + 1.46506135738454e81 * cos(theta) ** 8 - 2.26014975243896e79 * cos(theta) ** 6 + 1.78058016211053e77 * cos(theta) ** 4 - 5.37128254030325e74 * cos(theta) ** 2 + 2.59482248323829e71 ) * sin(39 * phi) ) # @torch.jit.script def Yl75_m_minus_38(theta, phi): return ( 1.21758259444216e-70 * (1.0 - cos(theta) ** 2) ** 19 * ( 4.42889249837617e87 * cos(theta) ** 37 - 1.97962577444196e88 * cos(theta) ** 35 + 4.00638549589445e88 * cos(theta) ** 33 - 4.86292308467189e88 * cos(theta) ** 31 + 3.95325040974201e88 * cos(theta) ** 29 - 2.27662364022022e88 * cos(theta) ** 27 + 9.58147359373258e87 * cos(theta) ** 25 - 2.99733271962437e87 * cos(theta) ** 23 + 7.02152942652747e86 * cos(theta) ** 21 - 1.23184726781184e86 * cos(theta) ** 19 + 1.60798383813606e85 * cos(theta) ** 17 - 1.54112615917198e84 * cos(theta) ** 15 + 1.06179951911455e83 * cos(theta) ** 13 - 5.09663769174986e81 * cos(theta) ** 11 + 1.62784595264949e80 * cos(theta) ** 9 - 3.22878536062709e78 * cos(theta) ** 7 + 3.56116032422106e76 * cos(theta) ** 5 - 1.79042751343442e74 * cos(theta) ** 3 + 2.59482248323829e71 * cos(theta) ) * sin(38 * phi) ) # @torch.jit.script def Yl75_m_minus_37(theta, phi): return ( 7.97865067865162e-69 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 1.16549802588847e86 * cos(theta) ** 38 - 5.49896048456101e86 * cos(theta) ** 36 + 1.17834867526307e87 * cos(theta) ** 34 - 1.51966346395996e87 * cos(theta) ** 32 + 1.31775013658067e87 * cos(theta) ** 30 - 8.13079871507221e86 * cos(theta) ** 28 + 3.68518215143561e86 * cos(theta) ** 26 - 1.24888863317682e86 * cos(theta) ** 24 + 3.19160428478521e85 * cos(theta) ** 22 - 6.15923633905918e84 * cos(theta) ** 20 + 8.93324354520034e83 * cos(theta) ** 18 - 9.63203849482489e82 * cos(theta) ** 16 + 7.58428227938968e81 * cos(theta) ** 14 - 4.24719807645822e80 * cos(theta) ** 12 + 1.62784595264949e79 * cos(theta) ** 10 - 4.03598170078386e77 * cos(theta) ** 8 + 5.93526720703509e75 * cos(theta) ** 6 - 4.47606878358604e73 * cos(theta) ** 4 + 1.29741124161914e71 * cos(theta) ** 2 - 6.04290284871515e67 ) * sin(37 * phi) ) # @torch.jit.script def Yl75_m_minus_36(theta, phi): return ( 5.27315777817911e-67 * (1.0 - cos(theta) ** 2) ** 18 * ( 2.98845647663709e84 * cos(theta) ** 39 - 1.48620553636784e85 * cos(theta) ** 37 + 3.36671050075164e85 * cos(theta) ** 35 - 4.60504079987868e85 * cos(theta) ** 33 + 4.25080689219571e85 * cos(theta) ** 31 - 2.80372369485249e85 * cos(theta) ** 29 + 1.36488227830948e85 * cos(theta) ** 27 - 4.99555453270729e84 * cos(theta) ** 25 + 1.38765403686314e84 * cos(theta) ** 23 - 2.93296968526628e83 * cos(theta) ** 21 + 4.70170712905281e82 * cos(theta) ** 19 - 5.66590499695582e81 * cos(theta) ** 17 + 5.05618818625978e80 * cos(theta) ** 15 - 3.2670754434294e79 * cos(theta) ** 13 + 1.47985995695408e78 * cos(theta) ** 11 - 4.48442411198207e76 * cos(theta) ** 9 + 8.47895315290728e74 * cos(theta) ** 7 - 8.95213756717209e72 * cos(theta) ** 5 + 4.32470413873048e70 * cos(theta) ** 3 - 6.04290284871515e67 * cos(theta) ) * sin(36 * phi) ) # @torch.jit.script def Yl75_m_minus_35(theta, phi): return ( 3.51368035987702e-65 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 7.47114119159273e82 * cos(theta) ** 40 - 3.911067200968e83 * cos(theta) ** 38 + 9.351973613199e83 * cos(theta) ** 36 - 1.3544237646702e84 * cos(theta) ** 34 + 1.32837715381116e84 * cos(theta) ** 32 - 9.34574564950829e83 * cos(theta) ** 30 + 4.87457956539101e83 * cos(theta) ** 28 - 1.92136712796434e83 * cos(theta) ** 26 + 5.78189182026307e82 * cos(theta) ** 24 - 1.3331680387574e82 * cos(theta) ** 22 + 2.35085356452641e81 * cos(theta) ** 20 - 3.14772499830879e80 * cos(theta) ** 18 + 3.16011761641237e79 * cos(theta) ** 16 - 2.33362531673528e78 * cos(theta) ** 14 + 1.23321663079507e77 * cos(theta) ** 12 - 4.48442411198207e75 * cos(theta) ** 10 + 1.05986914411341e74 * cos(theta) ** 8 - 1.49202292786201e72 * cos(theta) ** 6 + 1.08117603468262e70 * cos(theta) ** 4 - 3.02145142435758e67 * cos(theta) ** 2 + 1.36101415511602e64 ) * sin(35 * phi) ) # @torch.jit.script def Yl75_m_minus_34(theta, phi): return ( 2.35966593012546e-63 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.82222955892506e81 * cos(theta) ** 41 - 1.00283774383795e82 * cos(theta) ** 39 + 2.52756043599973e82 * cos(theta) ** 37 - 3.869782184772e82 * cos(theta) ** 35 + 4.02538531457927e82 * cos(theta) ** 33 - 3.01475666113171e82 * cos(theta) ** 31 + 1.68088950530725e82 * cos(theta) ** 29 - 7.11617454801608e81 * cos(theta) ** 27 + 2.31275672810523e81 * cos(theta) ** 25 - 5.79638277720608e80 * cos(theta) ** 23 + 1.11945407834591e80 * cos(theta) ** 21 - 1.65669736753094e79 * cos(theta) ** 19 + 1.85889271553669e78 * cos(theta) ** 17 - 1.55575021115686e77 * cos(theta) ** 15 + 9.48628177534669e75 * cos(theta) ** 13 - 4.07674919271097e74 * cos(theta) ** 11 + 1.17763238234823e73 * cos(theta) ** 9 - 2.13146132551716e71 * cos(theta) ** 7 + 2.16235206936524e69 * cos(theta) ** 5 - 1.00715047478586e67 * cos(theta) ** 3 + 1.36101415511602e64 * cos(theta) ) * sin(34 * phi) ) # @torch.jit.script def Yl75_m_minus_33(theta, phi): return ( 1.59657166064091e-61 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 4.33864180696442e79 * cos(theta) ** 42 - 2.50709435959487e80 * cos(theta) ** 40 + 6.65147483157824e80 * cos(theta) ** 38 - 1.07493949577e81 * cos(theta) ** 36 + 1.1839368572292e81 * cos(theta) ** 34 - 9.42111456603658e80 * cos(theta) ** 32 + 5.60296501769082e80 * cos(theta) ** 30 - 2.54149091000574e80 * cos(theta) ** 28 + 8.8952181850201e79 * cos(theta) ** 26 - 2.41515949050253e79 * cos(theta) ** 24 + 5.08842762884503e78 * cos(theta) ** 22 - 8.2834868376547e77 * cos(theta) ** 20 + 1.03271817529816e77 * cos(theta) ** 18 - 9.72343881973035e75 * cos(theta) ** 16 + 6.77591555381906e74 * cos(theta) ** 14 - 3.39729099392581e73 * cos(theta) ** 12 + 1.17763238234823e72 * cos(theta) ** 10 - 2.66432665689645e70 * cos(theta) ** 8 + 3.60392011560873e68 * cos(theta) ** 6 - 2.51787618696465e66 * cos(theta) ** 4 + 6.80507077558012e63 * cos(theta) ** 2 - 2.97294485608568e60 ) * sin(33 * phi) ) # @torch.jit.script def Yl75_m_minus_32(theta, phi): return ( 1.08801409539383e-59 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.00898646673591e78 * cos(theta) ** 43 - 6.11486429169482e78 * cos(theta) ** 41 + 1.70550636707134e79 * cos(theta) ** 39 - 2.90524188045946e79 * cos(theta) ** 37 + 3.38267673494056e79 * cos(theta) ** 35 - 2.85488320182927e79 * cos(theta) ** 33 + 1.80740807022285e79 * cos(theta) ** 31 - 8.76376175864049e78 * cos(theta) ** 29 + 3.29452525371115e78 * cos(theta) ** 27 - 9.66063796201013e77 * cos(theta) ** 25 + 2.21235983862827e77 * cos(theta) ** 23 - 3.94451754174034e76 * cos(theta) ** 21 + 5.43535881735873e75 * cos(theta) ** 19 - 5.71966989395903e74 * cos(theta) ** 17 + 4.51727703587938e73 * cos(theta) ** 15 - 2.61330076455832e72 * cos(theta) ** 13 + 1.07057489304385e71 * cos(theta) ** 11 - 2.96036295210717e69 * cos(theta) ** 9 + 5.14845730801247e67 * cos(theta) ** 7 - 5.03575237392929e65 * cos(theta) ** 5 + 2.26835692519338e63 * cos(theta) ** 3 - 2.97294485608568e60 * cos(theta) ) * sin(32 * phi) ) # @torch.jit.script def Yl75_m_minus_31(theta, phi): return ( 7.46539426602489e-58 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 2.29315106076343e76 * cos(theta) ** 44 - 1.45592006945115e77 * cos(theta) ** 42 + 4.26376591767836e77 * cos(theta) ** 40 - 7.64537336963016e77 * cos(theta) ** 38 + 9.39632426372378e77 * cos(theta) ** 36 - 8.39671529949785e77 * cos(theta) ** 34 + 5.64815021944639e77 * cos(theta) ** 32 - 2.92125391954683e77 * cos(theta) ** 30 + 1.1766161620397e77 * cos(theta) ** 28 - 3.71562998538851e76 * cos(theta) ** 26 + 9.21816599428448e75 * cos(theta) ** 24 - 1.79296251897288e75 * cos(theta) ** 22 + 2.71767940867936e74 * cos(theta) ** 20 - 3.1775943855328e73 * cos(theta) ** 18 + 2.82329814742461e72 * cos(theta) ** 16 - 1.86664340325594e71 * cos(theta) ** 14 + 8.92145744203207e69 * cos(theta) ** 12 - 2.96036295210717e68 * cos(theta) ** 10 + 6.43557163501559e66 * cos(theta) ** 8 - 8.39292062321549e64 * cos(theta) ** 6 + 5.67089231298344e62 * cos(theta) ** 4 - 1.48647242804284e60 * cos(theta) ** 2 + 6.31466621938335e56 ) * sin(31 * phi) ) # @torch.jit.script def Yl75_m_minus_30(theta, phi): return ( 5.15598848020563e-56 * (1.0 - cos(theta) ** 2) ** 15 * ( 5.09589124614096e74 * cos(theta) ** 45 - 3.38586062663057e75 * cos(theta) ** 43 + 1.03994290675082e76 * cos(theta) ** 41 - 1.96035214605902e76 * cos(theta) ** 39 + 2.53954709830372e76 * cos(theta) ** 37 - 2.39906151414224e76 * cos(theta) ** 35 + 1.71156067255951e76 * cos(theta) ** 33 - 9.42339974047365e75 * cos(theta) ** 31 + 4.05729711048171e75 * cos(theta) ** 29 - 1.3761592538476e75 * cos(theta) ** 27 + 3.68726639771379e74 * cos(theta) ** 25 - 7.79548921292556e73 * cos(theta) ** 23 + 1.29413305175208e73 * cos(theta) ** 21 - 1.67241809764884e72 * cos(theta) ** 19 + 1.66076361613212e71 * cos(theta) ** 17 - 1.24442893550396e70 * cos(theta) ** 15 + 6.8626595707939e68 * cos(theta) ** 13 - 2.69123904737016e67 * cos(theta) ** 11 + 7.15063515001732e65 * cos(theta) ** 9 - 1.19898866045936e64 * cos(theta) ** 7 + 1.13417846259669e62 * cos(theta) ** 5 - 4.95490809347614e59 * cos(theta) ** 3 + 6.31466621938335e56 * cos(theta) ) * sin(30 * phi) ) # @torch.jit.script def Yl75_m_minus_29(theta, phi): return ( 3.58331925893721e-54 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 1.10780244481325e73 * cos(theta) ** 46 - 7.69513778779676e73 * cos(theta) ** 44 + 2.4760545398829e74 * cos(theta) ** 42 - 4.90088036514754e74 * cos(theta) ** 40 + 6.68301867974664e74 * cos(theta) ** 38 - 6.66405976150623e74 * cos(theta) ** 36 + 5.03400197811621e74 * cos(theta) ** 34 - 2.94481241889802e74 * cos(theta) ** 32 + 1.35243237016057e74 * cos(theta) ** 30 - 4.91485447802713e73 * cos(theta) ** 28 + 1.41817938373607e73 * cos(theta) ** 26 - 3.24812050538565e72 * cos(theta) ** 24 + 5.88242296250945e71 * cos(theta) ** 22 - 8.3620904882442e70 * cos(theta) ** 20 + 9.22646453406735e69 * cos(theta) ** 18 - 7.77768084689975e68 * cos(theta) ** 16 + 4.90189969342421e67 * cos(theta) ** 14 - 2.2426992061418e66 * cos(theta) ** 12 + 7.15063515001732e64 * cos(theta) ** 10 - 1.49873582557419e63 * cos(theta) ** 8 + 1.89029743766115e61 * cos(theta) ** 6 - 1.23872702336903e59 * cos(theta) ** 4 + 3.15733310969168e56 * cos(theta) ** 2 - 1.30738431043134e53 ) * sin(29 * phi) ) # @torch.jit.script def Yl75_m_minus_28(theta, phi): return ( 2.50525018198317e-52 * (1.0 - cos(theta) ** 2) ** 14 * ( 2.35702647832607e71 * cos(theta) ** 47 - 1.71003061951039e72 * cos(theta) ** 45 + 5.7582663718207e72 * cos(theta) ** 43 - 1.19533667442623e73 * cos(theta) ** 41 + 1.71359453326837e73 * cos(theta) ** 39 - 1.80109723283952e73 * cos(theta) ** 37 + 1.43828627946178e73 * cos(theta) ** 35 - 8.92367399666065e72 * cos(theta) ** 33 + 4.3626850650341e72 * cos(theta) ** 31 - 1.69477740621625e72 * cos(theta) ** 29 + 5.25251623605953e71 * cos(theta) ** 27 - 1.29924820215426e71 * cos(theta) ** 25 + 2.55757520109106e70 * cos(theta) ** 23 - 3.98194785154486e69 * cos(theta) ** 21 + 4.85603396529861e68 * cos(theta) ** 19 - 4.57510638052927e67 * cos(theta) ** 17 + 3.26793312894947e66 * cos(theta) ** 15 - 1.72515323549369e65 * cos(theta) ** 13 + 6.50057740910666e63 * cos(theta) ** 11 - 1.66526202841577e62 * cos(theta) ** 9 + 2.70042491094449e60 * cos(theta) ** 7 - 2.47745404673807e58 * cos(theta) ** 5 + 1.05244436989723e56 * cos(theta) ** 3 - 1.30738431043134e53 * cos(theta) ) * sin(28 * phi) ) # @torch.jit.script def Yl75_m_minus_27(theta, phi): return ( 1.76153117420814e-50 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 4.91047182984598e69 * cos(theta) ** 48 - 3.71745786850085e70 * cos(theta) ** 46 + 1.30869690268652e71 * cos(theta) ** 44 - 2.84603970101483e71 * cos(theta) ** 42 + 4.28398633317092e71 * cos(theta) ** 40 - 4.739729560104e71 * cos(theta) ** 38 + 3.9952396651716e71 * cos(theta) ** 36 - 2.62460999901784e71 * cos(theta) ** 34 + 1.36333908282316e71 * cos(theta) ** 32 - 5.64925802072084e70 * cos(theta) ** 30 + 1.87589865573555e70 * cos(theta) ** 28 - 4.99710846982408e69 * cos(theta) ** 26 + 1.06565633378794e69 * cos(theta) ** 24 - 1.80997629615675e68 * cos(theta) ** 22 + 2.4280169826493e67 * cos(theta) ** 20 - 2.5417257669607e66 * cos(theta) ** 18 + 2.04245820559342e65 * cos(theta) ** 16 - 1.23225231106692e64 * cos(theta) ** 14 + 5.41714784092221e62 * cos(theta) ** 12 - 1.66526202841577e61 * cos(theta) ** 10 + 3.37553113868062e59 * cos(theta) ** 8 - 4.12909007789678e57 * cos(theta) ** 6 + 2.63111092474306e55 * cos(theta) ** 4 - 6.53692155215668e52 * cos(theta) ** 2 + 2.6443857411637e49 ) * sin(27 * phi) ) # @torch.jit.script def Yl75_m_minus_26(theta, phi): return ( 1.24534149550957e-48 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.00213710813183e68 * cos(theta) ** 49 - 7.90948482659755e68 * cos(theta) ** 47 + 2.90821533930339e69 * cos(theta) ** 45 - 6.61869697910426e69 * cos(theta) ** 43 + 1.04487471540754e70 * cos(theta) ** 41 - 1.21531527182154e70 * cos(theta) ** 39 + 1.07979450410043e70 * cos(theta) ** 37 - 7.49888571147954e69 * cos(theta) ** 35 + 4.13133055400956e69 * cos(theta) ** 33 - 1.82234129700672e69 * cos(theta) ** 31 + 6.46861605426051e68 * cos(theta) ** 29 - 1.85078091474966e68 * cos(theta) ** 27 + 4.26262533515177e67 * cos(theta) ** 25 - 7.86946215720327e66 * cos(theta) ** 23 + 1.15619856316633e66 * cos(theta) ** 21 - 1.33775040366353e65 * cos(theta) ** 19 + 1.20144600329025e64 * cos(theta) ** 17 - 8.21501540711281e62 * cos(theta) ** 15 + 4.1670368007094e61 * cos(theta) ** 13 - 1.51387457128706e60 * cos(theta) ** 11 + 3.75059015408958e58 * cos(theta) ** 9 - 5.89870011128111e56 * cos(theta) ** 7 + 5.26222184948613e54 * cos(theta) ** 5 - 2.17897385071889e52 * cos(theta) ** 3 + 2.6443857411637e49 * cos(theta) ) * sin(26 * phi) ) # @torch.jit.script def Yl75_m_minus_25(theta, phi): return ( 8.84981410777198e-47 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 2.00427421626367e66 * cos(theta) ** 50 - 1.64780933887449e67 * cos(theta) ** 48 + 6.32220725935519e67 * cos(theta) ** 46 - 1.50424931343279e68 * cos(theta) ** 44 + 2.48779694144653e68 * cos(theta) ** 42 - 3.03828817955385e68 * cos(theta) ** 40 + 2.84156448447482e68 * cos(theta) ** 38 - 2.08302380874432e68 * cos(theta) ** 36 + 1.21509722176752e68 * cos(theta) ** 34 - 5.69481655314601e67 * cos(theta) ** 32 + 2.15620535142017e67 * cos(theta) ** 30 - 6.60993183839164e66 * cos(theta) ** 28 + 1.63947128275068e66 * cos(theta) ** 26 - 3.27894256550136e65 * cos(theta) ** 24 + 5.25544801439243e64 * cos(theta) ** 22 - 6.68875201831764e63 * cos(theta) ** 20 + 6.67470001827916e62 * cos(theta) ** 18 - 5.13438462944551e61 * cos(theta) ** 16 + 2.97645485764957e60 * cos(theta) ** 14 - 1.26156214273922e59 * cos(theta) ** 12 + 3.75059015408958e57 * cos(theta) ** 10 - 7.37337513910139e55 * cos(theta) ** 8 + 8.77036974914354e53 * cos(theta) ** 6 - 5.44743462679723e51 * cos(theta) ** 4 + 1.32219287058185e49 * cos(theta) ** 2 - 5.23640740824496e45 ) * sin(25 * phi) ) # @torch.jit.script def Yl75_m_minus_24(theta, phi): return ( 6.32003140565624e-45 * (1.0 - cos(theta) ** 2) ** 12 * ( 3.92994944365425e64 * cos(theta) ** 51 - 3.36287620178467e65 * cos(theta) ** 49 + 1.34515048071387e66 * cos(theta) ** 47 - 3.34277625207286e66 * cos(theta) ** 45 + 5.78557428243379e66 * cos(theta) ** 43 - 7.41045897452158e66 * cos(theta) ** 41 + 7.28606278070467e66 * cos(theta) ** 39 - 5.62979407768734e66 * cos(theta) ** 37 + 3.47170634790719e66 * cos(theta) ** 35 - 1.72570198580182e66 * cos(theta) ** 33 + 6.95550113361345e65 * cos(theta) ** 31 - 2.2792868408247e65 * cos(theta) ** 29 + 6.07211586203956e64 * cos(theta) ** 27 - 1.31157702620055e64 * cos(theta) ** 25 + 2.28497739756193e63 * cos(theta) ** 23 - 3.18512000872269e62 * cos(theta) ** 21 + 3.51300000962061e61 * cos(theta) ** 19 - 3.020226252615e60 * cos(theta) ** 17 + 1.98430323843305e59 * cos(theta) ** 15 - 9.70432417491708e57 * cos(theta) ** 13 + 3.4096274128087e56 * cos(theta) ** 11 - 8.19263904344599e54 * cos(theta) ** 9 + 1.25290996416336e53 * cos(theta) ** 7 - 1.08948692535945e51 * cos(theta) ** 5 + 4.40730956860617e48 * cos(theta) ** 3 - 5.23640740824496e45 * cos(theta) ) * sin(24 * phi) ) # @torch.jit.script def Yl75_m_minus_23(theta, phi): return ( 4.53459500720562e-43 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 7.55759508395047e62 * cos(theta) ** 52 - 6.72575240356935e63 * cos(theta) ** 50 + 2.80239683482056e64 * cos(theta) ** 48 - 7.26690489581056e64 * cos(theta) ** 46 + 1.31490324600768e65 * cos(theta) ** 44 - 1.76439499393371e65 * cos(theta) ** 42 + 1.82151569517617e65 * cos(theta) ** 40 - 1.48152475728614e65 * cos(theta) ** 38 + 9.64362874418665e64 * cos(theta) ** 36 - 5.07559407588771e64 * cos(theta) ** 34 + 2.1735941042542e64 * cos(theta) ** 32 - 7.59762280274901e63 * cos(theta) ** 30 + 2.16861280787127e63 * cos(theta) ** 28 - 5.04452702384825e62 * cos(theta) ** 26 + 9.52073915650803e61 * cos(theta) ** 24 - 1.44778182214668e61 * cos(theta) ** 22 + 1.7565000048103e60 * cos(theta) ** 20 - 1.677903473675e59 * cos(theta) ** 18 + 1.24018952402065e58 * cos(theta) ** 16 - 6.93166012494077e56 * cos(theta) ** 14 + 2.84135617734059e55 * cos(theta) ** 12 - 8.19263904344599e53 * cos(theta) ** 10 + 1.5661374552042e52 * cos(theta) ** 8 - 1.81581154226574e50 * cos(theta) ** 6 + 1.10182739215154e48 * cos(theta) ** 4 - 2.61820370412248e45 * cos(theta) ** 2 + 1.01717315622474e42 ) * sin(23 * phi) ) # @torch.jit.script def Yl75_m_minus_22(theta, phi): return ( 3.26805591233487e-41 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.42596133659443e61 * cos(theta) ** 53 - 1.31877498109203e62 * cos(theta) ** 51 + 5.71917721391951e62 * cos(theta) ** 49 - 1.54614997783203e63 * cos(theta) ** 47 + 2.9220072133504e63 * cos(theta) ** 45 - 4.10324417193886e63 * cos(theta) ** 43 + 4.44272120774675e63 * cos(theta) ** 41 - 3.79878142893883e63 * cos(theta) ** 39 + 2.60638614707747e63 * cos(theta) ** 37 - 1.45016973596792e63 * cos(theta) ** 35 + 6.58664880077031e62 * cos(theta) ** 33 - 2.45084606540291e62 * cos(theta) ** 31 + 7.47797519955611e61 * cos(theta) ** 29 - 1.86834334216602e61 * cos(theta) ** 27 + 3.80829566260321e60 * cos(theta) ** 25 - 6.29470357455076e59 * cos(theta) ** 23 + 8.36428573719193e58 * cos(theta) ** 21 - 8.83107091407896e57 * cos(theta) ** 19 + 7.29523249423914e56 * cos(theta) ** 17 - 4.62110674996052e55 * cos(theta) ** 15 + 2.1856585979543e54 * cos(theta) ** 13 - 7.44785367585999e52 * cos(theta) ** 11 + 1.74015272800467e51 * cos(theta) ** 9 - 2.59401648895106e49 * cos(theta) ** 7 + 2.20365478430309e47 * cos(theta) ** 5 - 8.72734568040827e44 * cos(theta) ** 3 + 1.01717315622474e42 * cos(theta) ) * sin(22 * phi) ) # @torch.jit.script def Yl75_m_minus_21(theta, phi): return ( 2.36522371709142e-39 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 2.64066914184154e59 * cos(theta) ** 54 - 2.53610573286929e60 * cos(theta) ** 52 + 1.1438354427839e61 * cos(theta) ** 50 - 3.22114578715007e61 * cos(theta) ** 48 + 6.35218959424e61 * cos(theta) ** 46 - 9.32555493622468e61 * cos(theta) ** 44 + 1.05779076374923e62 * cos(theta) ** 42 - 9.49695357234707e61 * cos(theta) ** 40 + 6.85891091336177e61 * cos(theta) ** 38 - 4.02824926657755e61 * cos(theta) ** 36 + 1.93724964728539e61 * cos(theta) ** 34 - 7.65889395438408e60 * cos(theta) ** 32 + 2.49265839985204e60 * cos(theta) ** 30 - 6.67265479345007e59 * cos(theta) ** 28 + 1.46472910100123e59 * cos(theta) ** 26 - 2.62279315606282e58 * cos(theta) ** 24 + 3.80194806235997e57 * cos(theta) ** 22 - 4.41553545703948e56 * cos(theta) ** 20 + 4.05290694124397e55 * cos(theta) ** 18 - 2.88819171872532e54 * cos(theta) ** 16 + 1.5611847128245e53 * cos(theta) ** 14 - 6.20654472988333e51 * cos(theta) ** 12 + 1.74015272800467e50 * cos(theta) ** 10 - 3.24252061118883e48 * cos(theta) ** 8 + 3.67275797383848e46 * cos(theta) ** 6 - 2.18183642010207e44 * cos(theta) ** 4 + 5.0858657811237e41 * cos(theta) ** 2 - 1.94191133299874e38 ) * sin(21 * phi) ) # @torch.jit.script def Yl75_m_minus_20(theta, phi): return ( 1.71865690189719e-37 * (1.0 - cos(theta) ** 2) ** 10 * ( 4.80121662153006e57 * cos(theta) ** 55 - 4.78510515635714e58 * cos(theta) ** 53 + 2.24281459369393e59 * cos(theta) ** 51 - 6.57376691255116e59 * cos(theta) ** 49 + 1.35152970090213e60 * cos(theta) ** 47 - 2.07234554138326e60 * cos(theta) ** 45 + 2.45997852034704e60 * cos(theta) ** 43 - 2.31633013959685e60 * cos(theta) ** 41 + 1.7586951059902e60 * cos(theta) ** 39 - 1.08871601799393e60 * cos(theta) ** 37 + 5.53499899224396e59 * cos(theta) ** 35 - 2.32087695587396e59 * cos(theta) ** 33 + 8.0408335479098e58 * cos(theta) ** 31 - 2.30091544601727e58 * cos(theta) ** 29 + 5.42492259630087e57 * cos(theta) ** 27 - 1.04911726242513e57 * cos(theta) ** 25 + 1.65302089667825e56 * cos(theta) ** 23 - 2.10263593192356e55 * cos(theta) ** 21 + 2.13310891644419e54 * cos(theta) ** 19 - 1.69893630513254e53 * cos(theta) ** 17 + 1.04078980854967e52 * cos(theta) ** 15 - 4.77426517683333e50 * cos(theta) ** 13 + 1.58195702545879e49 * cos(theta) ** 11 - 3.6028006790987e47 * cos(theta) ** 9 + 5.24679710548354e45 * cos(theta) ** 7 - 4.36367284020413e43 * cos(theta) ** 5 + 1.6952885937079e41 * cos(theta) ** 3 - 1.94191133299874e38 * cos(theta) ) * sin(20 * phi) ) # @torch.jit.script def Yl75_m_minus_19(theta, phi): return ( 1.25355964465416e-35 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 8.57360110987511e55 * cos(theta) ** 56 - 8.86130584510582e56 * cos(theta) ** 54 + 4.31310498787294e57 * cos(theta) ** 52 - 1.31475338251023e58 * cos(theta) ** 50 + 2.81568687687943e58 * cos(theta) ** 48 - 4.50509900300709e58 * cos(theta) ** 46 + 5.590860273516e58 * cos(theta) ** 44 - 5.51507176094487e58 * cos(theta) ** 42 + 4.39673776497549e58 * cos(theta) ** 40 - 2.86504215261561e58 * cos(theta) ** 38 + 1.53749972006777e58 * cos(theta) ** 36 - 6.82610869374695e57 * cos(theta) ** 34 + 2.51276048372181e57 * cos(theta) ** 32 - 7.66971815339088e56 * cos(theta) ** 30 + 1.93747235582174e56 * cos(theta) ** 28 - 4.0350663939428e55 * cos(theta) ** 26 + 6.88758706949269e54 * cos(theta) ** 24 - 9.557436054198e53 * cos(theta) ** 22 + 1.0665544582221e53 * cos(theta) ** 20 - 9.43853502851413e51 * cos(theta) ** 18 + 6.50493630343541e50 * cos(theta) ** 16 - 3.41018941202381e49 * cos(theta) ** 14 + 1.31829752121566e48 * cos(theta) ** 12 - 3.6028006790987e46 * cos(theta) ** 10 + 6.55849638185443e44 * cos(theta) ** 8 - 7.27278806700689e42 * cos(theta) ** 6 + 4.23822148426975e40 * cos(theta) ** 4 - 9.7095566649937e37 * cos(theta) ** 2 + 3.65020927255402e34 ) * sin(19 * phi) ) # @torch.jit.script def Yl75_m_minus_18(theta, phi): return ( 9.17585109498617e-34 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.50414054559213e54 * cos(theta) ** 57 - 1.61114651729197e55 * cos(theta) ** 55 + 8.1379339393829e55 * cos(theta) ** 53 - 2.57794780884359e56 * cos(theta) ** 51 + 5.74629974873353e56 * cos(theta) ** 49 - 9.58531702767466e56 * cos(theta) ** 47 + 1.24241339411467e57 * cos(theta) ** 45 - 1.28257482812671e57 * cos(theta) ** 43 + 1.07237506462817e57 * cos(theta) ** 41 - 7.34626192978362e56 * cos(theta) ** 39 + 4.1554046488318e56 * cos(theta) ** 37 - 1.95031676964199e56 * cos(theta) ** 35 + 7.61442570824791e55 * cos(theta) ** 33 - 2.47410263012609e55 * cos(theta) ** 31 + 6.680939158006e54 * cos(theta) ** 29 - 1.49446903479363e54 * cos(theta) ** 27 + 2.75503482779708e53 * cos(theta) ** 25 - 4.15540698008609e52 * cos(theta) ** 23 + 5.07883075343855e51 * cos(theta) ** 21 - 4.96765001500743e50 * cos(theta) ** 19 + 3.82643311966789e49 * cos(theta) ** 17 - 2.27345960801587e48 * cos(theta) ** 15 + 1.01407501631974e47 * cos(theta) ** 13 - 3.27527334463518e45 * cos(theta) ** 11 + 7.28721820206047e43 * cos(theta) ** 9 - 1.03896972385813e42 * cos(theta) ** 7 + 8.4764429685395e39 * cos(theta) ** 5 - 3.23651888833123e37 * cos(theta) ** 3 + 3.65020927255402e34 * cos(theta) ) * sin(18 * phi) ) # @torch.jit.script def Yl75_m_minus_17(theta, phi): return ( 6.73909887487811e-32 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 2.59334576826228e52 * cos(theta) ** 58 - 2.87704735230709e53 * cos(theta) ** 56 + 1.50702480358943e54 * cos(theta) ** 54 - 4.95759194008383e54 * cos(theta) ** 52 + 1.14925994974671e55 * cos(theta) ** 50 - 1.99694104743222e55 * cos(theta) ** 48 + 2.70089868285797e55 * cos(theta) ** 46 - 2.91494279119708e55 * cos(theta) ** 44 + 2.5532739634004e55 * cos(theta) ** 42 - 1.8365654824459e55 * cos(theta) ** 40 + 1.09352753916626e55 * cos(theta) ** 38 - 5.41754658233885e54 * cos(theta) ** 36 + 2.23953697301409e54 * cos(theta) ** 34 - 7.73157071914404e53 * cos(theta) ** 32 + 2.22697971933533e53 * cos(theta) ** 30 - 5.33738940997724e52 * cos(theta) ** 28 + 1.05962877992195e52 * cos(theta) ** 26 - 1.73141957503587e51 * cos(theta) ** 24 + 2.30855943338116e50 * cos(theta) ** 22 - 2.48382500750372e49 * cos(theta) ** 20 + 2.12579617759327e48 * cos(theta) ** 18 - 1.42091225500992e47 * cos(theta) ** 16 + 7.24339297371242e45 * cos(theta) ** 14 - 2.72939445386265e44 * cos(theta) ** 12 + 7.28721820206047e42 * cos(theta) ** 10 - 1.29871215482266e41 * cos(theta) ** 8 + 1.41274049475658e39 * cos(theta) ** 6 - 8.09129722082808e36 * cos(theta) ** 4 + 1.82510463627701e34 * cos(theta) ** 2 - 6.76716587421954e30 ) * sin(17 * phi) ) # @torch.jit.script def Yl75_m_minus_16(theta, phi): return ( 4.96502852345423e-30 * (1.0 - cos(theta) ** 2) ** 8 * ( 4.39550130213947e50 * cos(theta) ** 59 - 5.04745149527559e51 * cos(theta) ** 57 + 2.74004509743532e52 * cos(theta) ** 55 - 9.35394705676195e52 * cos(theta) ** 53 + 2.25345088185629e53 * cos(theta) ** 51 - 4.07538989271882e53 * cos(theta) ** 49 + 5.746592942251e53 * cos(theta) ** 47 - 6.47765064710462e53 * cos(theta) ** 45 + 5.93784642651257e53 * cos(theta) ** 43 - 4.47942800596562e53 * cos(theta) ** 41 + 2.80391676709298e53 * cos(theta) ** 39 - 1.4642017790105e53 * cos(theta) ** 37 + 6.39867706575455e52 * cos(theta) ** 35 - 2.34290021792244e52 * cos(theta) ** 33 + 7.18380554624301e51 * cos(theta) ** 31 - 1.8404791068887e51 * cos(theta) ** 29 + 3.92455103674797e50 * cos(theta) ** 27 - 6.92567830014348e49 * cos(theta) ** 25 + 1.00372149277442e49 * cos(theta) ** 23 - 1.18277381309701e48 * cos(theta) ** 21 + 1.11884009347014e47 * cos(theta) ** 19 - 8.35830738241129e45 * cos(theta) ** 17 + 4.82892864914161e44 * cos(theta) ** 15 - 2.09953419527896e43 * cos(theta) ** 13 + 6.62474382005498e41 * cos(theta) ** 11 - 1.44301350535851e40 * cos(theta) ** 9 + 2.01820070679512e38 * cos(theta) ** 7 - 1.61825944416562e36 * cos(theta) ** 5 + 6.08368212092337e33 * cos(theta) ** 3 - 6.76716587421954e30 * cos(theta) ) * sin(16 * phi) ) # @torch.jit.script def Yl75_m_minus_15(theta, phi): return ( 3.66874958239696e-28 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 7.32583550356578e48 * cos(theta) ** 60 - 8.70250257806136e49 * cos(theta) ** 58 + 4.89293767399164e50 * cos(theta) ** 56 - 1.73221241791888e51 * cos(theta) ** 54 + 4.33355938818517e51 * cos(theta) ** 52 - 8.15077978543764e51 * cos(theta) ** 50 + 1.19720686296896e52 * cos(theta) ** 48 - 1.40818492328361e52 * cos(theta) ** 46 + 1.34951055148013e52 * cos(theta) ** 44 - 1.06653047761086e52 * cos(theta) ** 42 + 7.00979191773246e51 * cos(theta) ** 40 - 3.85316257634342e51 * cos(theta) ** 38 + 1.77741029604293e51 * cos(theta) ** 36 - 6.89088299388952e50 * cos(theta) ** 34 + 2.24493923320094e50 * cos(theta) ** 32 - 6.13493035629568e49 * cos(theta) ** 30 + 1.40162537026713e49 * cos(theta) ** 28 - 2.66372242313211e48 * cos(theta) ** 26 + 4.18217288656007e47 * cos(theta) ** 24 - 5.3762446049864e46 * cos(theta) ** 22 + 5.59420046735071e45 * cos(theta) ** 20 - 4.64350410133961e44 * cos(theta) ** 18 + 3.01808040571351e43 * cos(theta) ** 16 - 1.49966728234212e42 * cos(theta) ** 14 + 5.52061985004581e40 * cos(theta) ** 12 - 1.44301350535851e39 * cos(theta) ** 10 + 2.5227508834939e37 * cos(theta) ** 8 - 2.69709907360936e35 * cos(theta) ** 6 + 1.52092053023084e33 * cos(theta) ** 4 - 3.38358293710977e30 * cos(theta) ** 2 + 1.23940766927098e27 ) * sin(15 * phi) ) # @torch.jit.script def Yl75_m_minus_14(theta, phi): return ( 2.71834291445864e-26 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.20095663992882e47 * cos(theta) ** 61 - 1.47500043695955e48 * cos(theta) ** 59 + 8.58410118244148e48 * cos(theta) ** 57 - 3.14947712348887e49 * cos(theta) ** 55 + 8.17652714751919e49 * cos(theta) ** 53 - 1.59819211479169e50 * cos(theta) ** 51 + 2.44327931218155e50 * cos(theta) ** 49 - 2.99613813464598e50 * cos(theta) ** 47 + 2.99891233662251e50 * cos(theta) ** 45 - 2.48030343630433e50 * cos(theta) ** 43 + 1.7097053457884e50 * cos(theta) ** 41 - 9.87990404190621e49 * cos(theta) ** 39 + 4.80381161092684e49 * cos(theta) ** 37 - 1.96882371253986e49 * cos(theta) ** 35 + 6.80284616121497e48 * cos(theta) ** 33 - 1.97900979235345e48 * cos(theta) ** 31 + 4.83319093195563e47 * cos(theta) ** 29 - 9.86563860419299e46 * cos(theta) ** 27 + 1.67286915462403e46 * cos(theta) ** 25 - 2.33749765434191e45 * cos(theta) ** 23 + 2.66390498445272e44 * cos(theta) ** 21 - 2.44394952702084e43 * cos(theta) ** 19 + 1.77534141512559e42 * cos(theta) ** 17 - 9.99778188228077e40 * cos(theta) ** 15 + 4.24663065388139e39 * cos(theta) ** 13 - 1.31183045941683e38 * cos(theta) ** 11 + 2.80305653721544e36 * cos(theta) ** 9 - 3.8529986765848e34 * cos(theta) ** 7 + 3.04184106046168e32 * cos(theta) ** 5 - 1.12786097903659e30 * cos(theta) ** 3 + 1.23940766927098e27 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl75_m_minus_13(theta, phi): return ( 2.01927323784677e-24 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.93702683859486e45 * cos(theta) ** 62 - 2.45833406159925e46 * cos(theta) ** 60 + 1.48001744524853e47 * cos(theta) ** 58 - 5.62406629194442e47 * cos(theta) ** 56 + 1.51417169398503e48 * cos(theta) ** 54 - 3.07344637459941e48 * cos(theta) ** 52 + 4.88655862436309e48 * cos(theta) ** 50 - 6.24195444717913e48 * cos(theta) ** 48 + 6.51937464483154e48 * cos(theta) ** 46 - 5.63705326432802e48 * cos(theta) ** 44 + 4.07072701378192e48 * cos(theta) ** 42 - 2.46997601047655e48 * cos(theta) ** 40 + 1.26416095024391e48 * cos(theta) ** 38 - 5.46895475705517e47 * cos(theta) ** 36 + 2.0008371062397e47 * cos(theta) ** 34 - 6.18440560110452e46 * cos(theta) ** 32 + 1.61106364398521e46 * cos(theta) ** 30 - 3.52344235864035e45 * cos(theta) ** 28 + 6.43411213316934e44 * cos(theta) ** 26 - 9.73957355975797e43 * cos(theta) ** 24 + 1.21086590202396e43 * cos(theta) ** 22 - 1.22197476351042e42 * cos(theta) ** 20 + 9.86300786180885e40 * cos(theta) ** 18 - 6.24861367642548e39 * cos(theta) ** 16 + 3.03330760991528e38 * cos(theta) ** 14 - 1.09319204951402e37 * cos(theta) ** 12 + 2.80305653721544e35 * cos(theta) ** 10 - 4.816248345731e33 * cos(theta) ** 8 + 5.06973510076947e31 * cos(theta) ** 6 - 2.81965244759148e29 * cos(theta) ** 4 + 6.19703834635489e26 * cos(theta) ** 2 - 2.24611755938923e23 ) * sin(13 * phi) ) # @torch.jit.script def Yl75_m_minus_12(theta, phi): return ( 1.5035113130257e-22 * (1.0 - cos(theta) ** 2) ** 6 * ( 3.0746457755474e43 * cos(theta) ** 63 - 4.0300558386873e44 * cos(theta) ** 61 + 2.50850414448903e45 * cos(theta) ** 59 - 9.86678296832354e45 * cos(theta) ** 57 + 2.75303944360915e46 * cos(theta) ** 55 - 5.79895542377247e46 * cos(theta) ** 53 + 9.58148749875116e46 * cos(theta) ** 51 - 1.27386825452635e47 * cos(theta) ** 49 + 1.38710098826203e47 * cos(theta) ** 47 - 1.25267850318401e47 * cos(theta) ** 45 + 9.46680700879515e46 * cos(theta) ** 43 - 6.02433173286964e46 * cos(theta) ** 41 + 3.24143833395873e46 * cos(theta) ** 39 - 1.47809588028518e46 * cos(theta) ** 37 + 5.71667744639913e45 * cos(theta) ** 35 - 1.87406230336501e45 * cos(theta) ** 33 + 5.19697949672649e44 * cos(theta) ** 31 - 1.21498012366909e44 * cos(theta) ** 29 + 2.38300449376642e43 * cos(theta) ** 27 - 3.89582942390319e42 * cos(theta) ** 25 + 5.26463435662593e41 * cos(theta) ** 23 - 5.81892744528773e40 * cos(theta) ** 21 + 5.19105676937308e39 * cos(theta) ** 19 - 3.6756551037797e38 * cos(theta) ** 17 + 2.02220507327685e37 * cos(theta) ** 15 - 8.40916961164633e35 * cos(theta) ** 13 + 2.5482332156504e34 * cos(theta) ** 11 - 5.35138705081222e32 * cos(theta) ** 9 + 7.24247871538496e30 * cos(theta) ** 7 - 5.63930489518295e28 * cos(theta) ** 5 + 2.06567944878496e26 * cos(theta) ** 3 - 2.24611755938923e23 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl75_m_minus_11(theta, phi): return ( 1.12190559417584e-20 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 4.80413402429282e41 * cos(theta) ** 64 - 6.50009006239887e42 * cos(theta) ** 62 + 4.18084024081506e43 * cos(theta) ** 60 - 1.70116947729716e44 * cos(theta) ** 58 + 4.91614186358778e44 * cos(theta) ** 56 - 1.07388063403194e45 * cos(theta) ** 54 + 1.84259374975984e45 * cos(theta) ** 52 - 2.54773650905271e45 * cos(theta) ** 50 + 2.88979372554589e45 * cos(theta) ** 48 - 2.72321413735653e45 * cos(theta) ** 46 + 2.15154704745344e45 * cos(theta) ** 44 - 1.4343646983023e45 * cos(theta) ** 42 + 8.10359583489683e44 * cos(theta) ** 40 - 3.88972600075048e44 * cos(theta) ** 38 + 1.58796595733309e44 * cos(theta) ** 36 - 5.51194795107355e43 * cos(theta) ** 34 + 1.62405609272703e43 * cos(theta) ** 32 - 4.04993374556363e42 * cos(theta) ** 30 + 8.51073033488008e41 * cos(theta) ** 28 - 1.49839593227046e41 * cos(theta) ** 26 + 2.19359764859414e40 * cos(theta) ** 24 - 2.64496702058533e39 * cos(theta) ** 22 + 2.59552838468654e38 * cos(theta) ** 20 - 2.04203061321094e37 * cos(theta) ** 18 + 1.26387817079803e36 * cos(theta) ** 16 - 6.00654972260452e34 * cos(theta) ** 14 + 2.12352767970867e33 * cos(theta) ** 12 - 5.35138705081222e31 * cos(theta) ** 10 + 9.0530983942312e29 * cos(theta) ** 8 - 9.39884149197159e27 * cos(theta) ** 6 + 5.16419862196241e25 * cos(theta) ** 4 - 1.12305877969462e23 * cos(theta) ** 2 + 4.03397550177664e19 ) * sin(11 * phi) ) # @torch.jit.script def Yl75_m_minus_10(theta, phi): return ( 8.38807331092106e-19 * (1.0 - cos(theta) ** 2) ** 5 * ( 7.39097542198895e39 * cos(theta) ** 65 - 1.0317603273649e41 * cos(theta) ** 63 + 6.85383646035255e41 * cos(theta) ** 61 - 2.88333809711383e42 * cos(theta) ** 59 + 8.6248102869961e42 * cos(theta) ** 57 - 1.95251024369444e43 * cos(theta) ** 55 + 3.47659198067894e43 * cos(theta) ** 53 - 4.99556178245629e43 * cos(theta) ** 51 + 5.89753821539979e43 * cos(theta) ** 49 - 5.79407263267347e43 * cos(theta) ** 47 + 4.78121566100765e43 * cos(theta) ** 45 - 3.33573185651697e43 * cos(theta) ** 43 + 1.97648678899923e43 * cos(theta) ** 41 - 9.97365641218071e42 * cos(theta) ** 39 + 4.29179988468403e42 * cos(theta) ** 37 - 1.5748422717353e42 * cos(theta) ** 35 + 4.92138209917281e41 * cos(theta) ** 33 - 1.3064302405044e41 * cos(theta) ** 31 + 2.93473459823451e40 * cos(theta) ** 29 - 5.54961456396466e39 * cos(theta) ** 27 + 8.77439059437655e38 * cos(theta) ** 25 - 1.14998566112406e38 * cos(theta) ** 23 + 1.23596589746978e37 * cos(theta) ** 21 - 1.07475295432155e36 * cos(theta) ** 19 + 7.43457747528255e34 * cos(theta) ** 17 - 4.00436648173635e33 * cos(theta) ** 15 + 1.63348283054513e32 * cos(theta) ** 13 - 4.8648973189202e30 * cos(theta) ** 11 + 1.00589982158124e29 * cos(theta) ** 9 - 1.34269164171023e27 * cos(theta) ** 7 + 1.03283972439248e25 * cos(theta) ** 5 - 3.74352926564872e22 * cos(theta) ** 3 + 4.03397550177664e19 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl75_m_minus_9(theta, phi): return ( 6.28266131036249e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1.11984476090742e38 * cos(theta) ** 66 - 1.61212551150766e39 * cos(theta) ** 64 + 1.10545749360525e40 * cos(theta) ** 62 - 4.80556349518972e40 * cos(theta) ** 60 + 1.48703625637864e41 * cos(theta) ** 58 - 3.48662543516863e41 * cos(theta) ** 56 + 6.43813329755359e41 * cos(theta) ** 54 - 9.60684958164671e41 * cos(theta) ** 52 + 1.17950764307996e42 * cos(theta) ** 50 - 1.20709846514031e42 * cos(theta) ** 48 + 1.03939470891471e42 * cos(theta) ** 46 - 7.58120876481129e41 * cos(theta) ** 44 + 4.70592092618863e41 * cos(theta) ** 42 - 2.49341410304518e41 * cos(theta) ** 40 + 1.12942102228527e41 * cos(theta) ** 38 - 4.37456186593138e40 * cos(theta) ** 36 + 1.44746532328612e40 * cos(theta) ** 34 - 4.08259450157624e39 * cos(theta) ** 32 + 9.78244866078171e38 * cos(theta) ** 30 - 1.98200520141595e38 * cos(theta) ** 28 + 3.37476561322175e37 * cos(theta) ** 26 - 4.79160692135024e36 * cos(theta) ** 24 + 5.61802680668082e35 * cos(theta) ** 22 - 5.37376477160774e34 * cos(theta) ** 20 + 4.13032081960142e33 * cos(theta) ** 18 - 2.50272905108522e32 * cos(theta) ** 16 + 1.16677345038938e31 * cos(theta) ** 14 - 4.05408109910017e29 * cos(theta) ** 12 + 1.00589982158124e28 * cos(theta) ** 10 - 1.67836455213778e26 * cos(theta) ** 8 + 1.72139954065414e24 * cos(theta) ** 6 - 9.3588231641218e21 * cos(theta) ** 4 + 2.01698775088832e19 * cos(theta) ** 2 - 7.19068716894232e15 ) * sin(9 * phi) ) # @torch.jit.script def Yl75_m_minus_8(theta, phi): return ( 4.71325234754096e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.67141009090659e36 * cos(theta) ** 67 - 2.48019309462716e37 * cos(theta) ** 65 + 1.75469443429405e38 * cos(theta) ** 63 - 7.87797294293397e38 * cos(theta) ** 61 + 2.52040043454006e39 * cos(theta) ** 59 - 6.11688672836603e39 * cos(theta) ** 57 + 1.17056969046429e40 * cos(theta) ** 55 - 1.81261312861259e40 * cos(theta) ** 53 + 2.3127600844705e40 * cos(theta) ** 51 - 2.46346625538838e40 * cos(theta) ** 49 + 2.21147810407384e40 * cos(theta) ** 47 - 1.68471305884695e40 * cos(theta) ** 45 + 1.09440021539271e40 * cos(theta) ** 43 - 6.08149781230531e39 * cos(theta) ** 41 + 2.89595133919301e39 * cos(theta) ** 39 - 1.18231401781929e39 * cos(theta) ** 37 + 4.13561520938891e38 * cos(theta) ** 35 - 1.2371498489625e38 * cos(theta) ** 33 + 3.15562860025216e37 * cos(theta) ** 31 - 6.83450069453775e36 * cos(theta) ** 29 + 1.24991319008213e36 * cos(theta) ** 27 - 1.91664276854009e35 * cos(theta) ** 25 + 2.44262035073079e34 * cos(theta) ** 23 - 2.5589356055275e33 * cos(theta) ** 21 + 2.17385306294812e32 * cos(theta) ** 19 - 1.47219355946189e31 * cos(theta) ** 17 + 7.77848966926252e29 * cos(theta) ** 15 - 3.11852392238474e28 * cos(theta) ** 13 + 9.14454383255677e26 * cos(theta) ** 11 - 1.86484950237531e25 * cos(theta) ** 9 + 2.45914220093448e23 * cos(theta) ** 7 - 1.87176463282436e21 * cos(theta) ** 5 + 6.72329250296106e18 * cos(theta) ** 3 - 7.19068716894232e15 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl75_m_minus_7(theta, phi): return ( 3.54090434735807e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 2.45795601603911e34 * cos(theta) ** 68 - 3.75786832519267e35 * cos(theta) ** 66 + 2.74171005358445e36 * cos(theta) ** 64 - 1.27064079724741e37 * cos(theta) ** 62 + 4.20066739090011e37 * cos(theta) ** 60 - 1.05463564282173e38 * cos(theta) ** 58 + 2.09030301868623e38 * cos(theta) ** 56 - 3.3566909789122e38 * cos(theta) ** 54 + 4.44761554705866e38 * cos(theta) ** 52 - 4.92693251077676e38 * cos(theta) ** 50 + 4.60724605015384e38 * cos(theta) ** 48 - 3.66241969314555e38 * cos(theta) ** 46 + 2.4872732168016e38 * cos(theta) ** 44 - 1.4479756695965e38 * cos(theta) ** 42 + 7.23987834798251e37 * cos(theta) ** 40 - 3.11135267847182e37 * cos(theta) ** 38 + 1.14878200260803e37 * cos(theta) ** 36 - 3.63867602636028e36 * cos(theta) ** 34 + 9.86133937578801e35 * cos(theta) ** 32 - 2.27816689817925e35 * cos(theta) ** 30 + 4.46397567886475e34 * cos(theta) ** 28 - 7.37170295592344e33 * cos(theta) ** 26 + 1.01775847947116e33 * cos(theta) ** 24 - 1.16315254796704e32 * cos(theta) ** 22 + 1.08692653147406e31 * cos(theta) ** 20 - 8.17885310812162e29 * cos(theta) ** 18 + 4.86155604328908e28 * cos(theta) ** 16 - 2.22751708741767e27 * cos(theta) ** 14 + 7.62045319379731e25 * cos(theta) ** 12 - 1.86484950237531e24 * cos(theta) ** 10 + 3.0739277511681e22 * cos(theta) ** 8 - 3.11960772137393e20 * cos(theta) ** 6 + 1.68082312574027e18 * cos(theta) ** 4 - 3.59534358447116e15 * cos(theta) ** 2 + 1274040958352.64 ) * sin(7 * phi) ) # @torch.jit.script def Yl75_m_minus_6(theta, phi): return ( 2.6634568581566e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 3.56225509570885e32 * cos(theta) ** 69 - 5.60875869431742e33 * cos(theta) ** 67 + 4.218015467053e34 * cos(theta) ** 65 - 2.01689015436098e35 * cos(theta) ** 63 + 6.88633998508214e35 * cos(theta) ** 61 - 1.7875180386809e36 * cos(theta) ** 59 + 3.6671982783969e36 * cos(theta) ** 57 - 6.10307450711309e36 * cos(theta) ** 55 + 8.39172744728049e36 * cos(theta) ** 53 - 9.66065198191522e36 * cos(theta) ** 51 + 9.40254295949764e36 * cos(theta) ** 49 - 7.7923823258416e36 * cos(theta) ** 47 + 5.52727381511468e36 * cos(theta) ** 45 - 3.3673852781314e36 * cos(theta) ** 43 + 1.76582398731281e36 * cos(theta) ** 41 - 7.97782738069699e35 * cos(theta) ** 39 + 3.10481622326495e35 * cos(theta) ** 37 - 1.03962172181722e35 * cos(theta) ** 35 + 2.9882846593297e34 * cos(theta) ** 33 - 7.34892547799759e33 * cos(theta) ** 31 + 1.53930195822922e33 * cos(theta) ** 29 - 2.73026035404572e32 * cos(theta) ** 27 + 4.07103391788465e31 * cos(theta) ** 25 - 5.05718499116106e30 * cos(theta) ** 23 + 5.17584062606694e29 * cos(theta) ** 21 - 4.30465953059033e28 * cos(theta) ** 19 + 2.85973884899357e27 * cos(theta) ** 17 - 1.48501139161178e26 * cos(theta) ** 15 + 5.86188707215178e24 * cos(theta) ** 13 - 1.6953177294321e23 * cos(theta) ** 11 + 3.41547527907567e21 * cos(theta) ** 9 - 4.45658245910562e19 * cos(theta) ** 7 + 3.36164625148053e17 * cos(theta) ** 5 - 1.19844786149039e15 * cos(theta) ** 3 + 1274040958352.64 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl75_m_minus_5(theta, phi): return ( 2.0055670970559e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 5.08893585101264e30 * cos(theta) ** 70 - 8.2481745504668e31 * cos(theta) ** 68 + 6.39093252583788e32 * cos(theta) ** 66 - 3.15139086618902e33 * cos(theta) ** 64 + 1.11069999759389e34 * cos(theta) ** 62 - 2.97919673113483e34 * cos(theta) ** 60 + 6.32275565240844e34 * cos(theta) ** 58 - 1.08983473341305e35 * cos(theta) ** 56 + 1.55402360134824e35 * cos(theta) ** 54 - 1.85781768882985e35 * cos(theta) ** 52 + 1.88050859189953e35 * cos(theta) ** 50 - 1.62341298455033e35 * cos(theta) ** 48 + 1.20158126415536e35 * cos(theta) ** 46 - 7.65314835938955e34 * cos(theta) ** 44 + 4.20434282693526e34 * cos(theta) ** 42 - 1.99445684517425e34 * cos(theta) ** 40 + 8.17056900859198e33 * cos(theta) ** 38 - 2.88783811615895e33 * cos(theta) ** 36 + 8.78907252744029e32 * cos(theta) ** 34 - 2.29653921187425e32 * cos(theta) ** 32 + 5.13100652743075e31 * cos(theta) ** 30 - 9.75092983587756e30 * cos(theta) ** 28 + 1.56578227610948e30 * cos(theta) ** 26 - 2.10716041298377e29 * cos(theta) ** 24 + 2.35265483003043e28 * cos(theta) ** 22 - 2.15232976529516e27 * cos(theta) ** 20 + 1.58874380499643e26 * cos(theta) ** 18 - 9.28132119757365e24 * cos(theta) ** 16 + 4.18706219439413e23 * cos(theta) ** 14 - 1.41276477452675e22 * cos(theta) ** 12 + 3.41547527907567e20 * cos(theta) ** 10 - 5.57072807388202e18 * cos(theta) ** 8 + 5.60274375246755e16 * cos(theta) ** 6 - 299611965372596.0 * cos(theta) ** 4 + 637020479176.321 * cos(theta) ** 2 - 224698581.720043 ) * sin(5 * phi) ) # @torch.jit.script def Yl75_m_minus_4(theta, phi): return ( 1.51151118033925e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 7.1675152831164e28 * cos(theta) ** 71 - 1.19538761600968e30 * cos(theta) ** 69 + 9.5387052624446e30 * cos(theta) ** 67 - 4.84829364029081e31 * cos(theta) ** 65 + 1.76301586919666e32 * cos(theta) ** 63 - 4.88392906743414e32 * cos(theta) ** 61 + 1.07165350040821e33 * cos(theta) ** 59 - 1.91199076037377e33 * cos(theta) ** 57 + 2.8254974569968e33 * cos(theta) ** 55 - 3.50531639401859e33 * cos(theta) ** 53 + 3.6872717488226e33 * cos(theta) ** 51 - 3.31308772357211e33 * cos(theta) ** 49 + 2.55655588118163e33 * cos(theta) ** 47 - 1.7006996354199e33 * cos(theta) ** 45 + 9.77754145798897e32 * cos(theta) ** 43 - 4.86452889066889e32 * cos(theta) ** 41 + 2.09501769451076e32 * cos(theta) ** 39 - 7.80496788151069e31 * cos(theta) ** 37 + 2.51116357926866e31 * cos(theta) ** 35 - 6.95920973295226e30 * cos(theta) ** 33 + 1.6551633959454e30 * cos(theta) ** 31 - 3.36238959857847e29 * cos(theta) ** 29 + 5.7991936152203e28 * cos(theta) ** 27 - 8.4286416519351e27 * cos(theta) ** 25 + 1.02289340436106e27 * cos(theta) ** 23 - 1.02491893585484e26 * cos(theta) ** 21 + 8.36180949998121e24 * cos(theta) ** 19 - 5.45960070445509e23 * cos(theta) ** 17 + 2.79137479626275e22 * cos(theta) ** 15 - 1.08674213425135e21 * cos(theta) ** 13 + 3.10497752643243e19 * cos(theta) ** 11 - 6.18969785986892e17 * cos(theta) ** 9 + 8.00391964638222e15 * cos(theta) ** 7 - 59922393074519.3 * cos(theta) ** 5 + 212340159725.44 * cos(theta) ** 3 - 224698581.720043 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl75_m_minus_3(theta, phi): return ( 1.13996405569108e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 9.95488233766166e26 * cos(theta) ** 72 - 1.70769659429954e28 * cos(theta) ** 70 + 1.40275077388891e29 * cos(theta) ** 68 - 7.34589945498607e29 * cos(theta) ** 66 + 2.75471229561978e30 * cos(theta) ** 64 - 7.87730494747442e30 * cos(theta) ** 62 + 1.78608916734702e31 * cos(theta) ** 60 - 3.29653579374789e31 * cos(theta) ** 58 + 5.04553117320857e31 * cos(theta) ** 56 - 6.49132665558997e31 * cos(theta) ** 54 + 7.09090720927424e31 * cos(theta) ** 52 - 6.62617544714421e31 * cos(theta) ** 50 + 5.32615808579505e31 * cos(theta) ** 48 - 3.69717312047804e31 * cos(theta) ** 46 + 2.22216851317931e31 * cos(theta) ** 44 - 1.15822116444497e31 * cos(theta) ** 42 + 5.23754423627691e30 * cos(theta) ** 40 - 2.05393891618702e30 * cos(theta) ** 38 + 6.97545438685738e29 * cos(theta) ** 36 - 2.04682639204478e29 * cos(theta) ** 34 + 5.17238561232938e28 * cos(theta) ** 32 - 1.12079653285949e28 * cos(theta) ** 30 + 2.07114057686439e27 * cos(theta) ** 28 - 3.24178525074427e26 * cos(theta) ** 26 + 4.2620558515044e25 * cos(theta) ** 24 - 4.65872243570382e24 * cos(theta) ** 22 + 4.1809047499906e23 * cos(theta) ** 20 - 3.03311150247505e22 * cos(theta) ** 18 + 1.74460924766422e21 * cos(theta) ** 16 - 7.76244381608106e19 * cos(theta) ** 14 + 2.58748127202702e18 * cos(theta) ** 12 - 6.18969785986892e16 * cos(theta) ** 10 + 1.00048995579778e15 * cos(theta) ** 8 - 9987065512419.88 * cos(theta) ** 6 + 53085039931.3601 * cos(theta) ** 4 - 112349290.860021 * cos(theta) ** 2 + 39503.9700632987 ) * sin(3 * phi) ) # @torch.jit.script def Yl75_m_minus_2(theta, phi): return ( 0.000860200893212514 * (1.0 - cos(theta) ** 2) * ( 1.36368251200845e25 * cos(theta) ** 73 - 2.40520647084443e26 * cos(theta) ** 71 + 2.03297213607089e27 * cos(theta) ** 69 - 1.09640290372926e28 * cos(theta) ** 67 + 4.23801891633812e28 * cos(theta) ** 65 - 1.25036586467848e29 * cos(theta) ** 63 + 2.92801502843774e29 * cos(theta) ** 61 - 5.58734880296252e29 * cos(theta) ** 59 + 8.85180907580451e29 * cos(theta) ** 57 - 1.18024121010727e30 * cos(theta) ** 55 + 1.33790702061778e30 * cos(theta) ** 53 - 1.29925008767534e30 * cos(theta) ** 51 + 1.08697103791736e30 * cos(theta) ** 49 - 7.86632578825116e29 * cos(theta) ** 47 + 4.93815225150958e29 * cos(theta) ** 45 - 2.6935375917325e29 * cos(theta) ** 43 + 1.27744981372608e29 * cos(theta) ** 41 - 5.26651004150519e28 * cos(theta) ** 39 + 1.88525794239389e28 * cos(theta) ** 37 - 5.84807540584223e27 * cos(theta) ** 35 + 1.56738957949375e27 * cos(theta) ** 33 - 3.61547268664352e26 * cos(theta) ** 31 + 7.14186405815308e25 * cos(theta) ** 29 - 1.20066120397936e25 * cos(theta) ** 27 + 1.70482234060176e24 * cos(theta) ** 25 - 2.02553149378427e23 * cos(theta) ** 23 + 1.99090702380505e22 * cos(theta) ** 21 - 1.59637447498687e21 * cos(theta) ** 19 + 1.02624073392013e20 * cos(theta) ** 17 - 5.17496254405404e18 * cos(theta) ** 15 + 1.99037020925155e17 * cos(theta) ** 13 - 5.62699805442629e15 * cos(theta) ** 11 + 111165550644198.0 * cos(theta) ** 9 - 1426723644631.41 * cos(theta) ** 7 + 10617007986.272 * cos(theta) ** 5 - 37449763.6200071 * cos(theta) ** 3 + 39503.9700632987 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl75_m_minus_1(theta, phi): return ( 0.0649323486094812 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 1.84281420541682e23 * cos(theta) ** 74 - 3.34056454283948e24 * cos(theta) ** 72 + 2.90424590867269e25 * cos(theta) ** 70 - 1.61235721136656e26 * cos(theta) ** 68 + 6.42124078233048e26 * cos(theta) ** 66 - 1.95369666356012e27 * cos(theta) ** 64 + 4.72260488457699e27 * cos(theta) ** 62 - 9.31224800493753e27 * cos(theta) ** 60 + 1.52617397858698e28 * cos(theta) ** 58 - 2.10757358947726e28 * cos(theta) ** 56 + 2.47760559373663e28 * cos(theta) ** 54 - 2.49855786091411e28 * cos(theta) ** 52 + 2.17394207583472e28 * cos(theta) ** 50 - 1.63881787255232e28 * cos(theta) ** 48 + 1.07351135902382e28 * cos(theta) ** 46 - 6.12167634484659e27 * cos(theta) ** 44 + 3.04154717553827e27 * cos(theta) ** 42 - 1.3166275103763e27 * cos(theta) ** 40 + 4.96120511156286e26 * cos(theta) ** 38 - 1.62446539051173e26 * cos(theta) ** 36 + 4.60996935145221e25 * cos(theta) ** 34 - 1.1298352145761e25 * cos(theta) ** 32 + 2.38062135271769e24 * cos(theta) ** 30 - 4.28807572849771e23 * cos(theta) ** 28 + 6.55700900231446e22 * cos(theta) ** 26 - 8.43971455743445e21 * cos(theta) ** 24 + 9.04957738093205e20 * cos(theta) ** 22 - 7.98187237493434e19 * cos(theta) ** 20 + 5.70133741066738e18 * cos(theta) ** 18 - 3.23435159003378e17 * cos(theta) ** 16 + 1.42169300660825e16 * cos(theta) ** 14 - 468916504535524.0 * cos(theta) ** 12 + 11116555064419.8 * cos(theta) ** 10 - 178340455578.926 * cos(theta) ** 8 + 1769501331.04534 * cos(theta) ** 6 - 9362440.90500178 * cos(theta) ** 4 + 19751.9850316493 * cos(theta) ** 2 - 6.93295367906259 ) * sin(phi) ) # @torch.jit.script def Yl75_m0(theta, phi): return ( 2.67580032598531e22 * cos(theta) ** 75 - 4.98345362725453e23 * cos(theta) ** 73 + 4.45459732395405e24 * cos(theta) ** 71 - 2.54475272414386e25 * cos(theta) ** 69 + 1.04370452637089e26 * cos(theta) ** 67 - 3.27323504653339e26 * cos(theta) ** 65 + 8.16346390502333e26 * cos(theta) ** 63 - 1.66248644489161e27 * cos(theta) ** 61 + 2.81699092051079e27 * cos(theta) ** 59 - 4.02662611946028e27 * cos(theta) ** 57 + 4.90572159286917e27 * cos(theta) ** 55 - 5.13389469021192e27 * cos(theta) ** 53 + 4.64206488393178e27 * cos(theta) ** 51 - 3.6422355243157e27 * cos(theta) ** 49 + 2.48738035806926e27 * cos(theta) ** 47 - 1.48146455486109e27 * cos(theta) ** 45 + 7.70299322117896e26 * cos(theta) ** 43 - 3.49713568563328e26 * cos(theta) ** 41 + 1.38533877401898e26 * cos(theta) ** 39 - 4.78125771564074e25 * cos(theta) ** 37 + 1.43437731469222e25 * cos(theta) ** 35 - 3.72850372320608e24 * cos(theta) ** 33 + 8.36299900532204e23 * cos(theta) ** 31 - 1.6102668892235e23 * cos(theta) ** 29 + 2.64469400090915e22 * cos(theta) ** 27 - 3.67638651215489e21 * cos(theta) ** 25 + 4.28483276474929e20 * cos(theta) ** 23 - 4.13922370936071e19 * cos(theta) ** 21 + 3.26780819160056e18 * cos(theta) ** 19 - 2.07191398132627e17 * cos(theta) ** 17 + 1.03216227641162e16 * cos(theta) ** 15 - 392812754705402.0 * cos(theta) ** 13 + 11005529765453.1 * cos(theta) ** 11 - 215794701283.394 * cos(theta) ** 9 + 2752873581.21976 * cos(theta) ** 7 - 20391656.1571834 * cos(theta) ** 5 + 71700.6193993792 * cos(theta) ** 3 - 75.500827728374 * cos(theta) ) # @torch.jit.script def Yl75_m1(theta, phi): return ( 0.0649323486094812 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 1.84281420541682e23 * cos(theta) ** 74 - 3.34056454283948e24 * cos(theta) ** 72 + 2.90424590867269e25 * cos(theta) ** 70 - 1.61235721136656e26 * cos(theta) ** 68 + 6.42124078233048e26 * cos(theta) ** 66 - 1.95369666356012e27 * cos(theta) ** 64 + 4.72260488457699e27 * cos(theta) ** 62 - 9.31224800493753e27 * cos(theta) ** 60 + 1.52617397858698e28 * cos(theta) ** 58 - 2.10757358947726e28 * cos(theta) ** 56 + 2.47760559373663e28 * cos(theta) ** 54 - 2.49855786091411e28 * cos(theta) ** 52 + 2.17394207583472e28 * cos(theta) ** 50 - 1.63881787255232e28 * cos(theta) ** 48 + 1.07351135902382e28 * cos(theta) ** 46 - 6.12167634484659e27 * cos(theta) ** 44 + 3.04154717553827e27 * cos(theta) ** 42 - 1.3166275103763e27 * cos(theta) ** 40 + 4.96120511156286e26 * cos(theta) ** 38 - 1.62446539051173e26 * cos(theta) ** 36 + 4.60996935145221e25 * cos(theta) ** 34 - 1.1298352145761e25 * cos(theta) ** 32 + 2.38062135271769e24 * cos(theta) ** 30 - 4.28807572849771e23 * cos(theta) ** 28 + 6.55700900231446e22 * cos(theta) ** 26 - 8.43971455743445e21 * cos(theta) ** 24 + 9.04957738093205e20 * cos(theta) ** 22 - 7.98187237493434e19 * cos(theta) ** 20 + 5.70133741066738e18 * cos(theta) ** 18 - 3.23435159003378e17 * cos(theta) ** 16 + 1.42169300660825e16 * cos(theta) ** 14 - 468916504535524.0 * cos(theta) ** 12 + 11116555064419.8 * cos(theta) ** 10 - 178340455578.926 * cos(theta) ** 8 + 1769501331.04534 * cos(theta) ** 6 - 9362440.90500178 * cos(theta) ** 4 + 19751.9850316493 * cos(theta) ** 2 - 6.93295367906259 ) * cos(phi) ) # @torch.jit.script def Yl75_m2(theta, phi): return ( 0.000860200893212514 * (1.0 - cos(theta) ** 2) * ( 1.36368251200845e25 * cos(theta) ** 73 - 2.40520647084443e26 * cos(theta) ** 71 + 2.03297213607089e27 * cos(theta) ** 69 - 1.09640290372926e28 * cos(theta) ** 67 + 4.23801891633812e28 * cos(theta) ** 65 - 1.25036586467848e29 * cos(theta) ** 63 + 2.92801502843774e29 * cos(theta) ** 61 - 5.58734880296252e29 * cos(theta) ** 59 + 8.85180907580451e29 * cos(theta) ** 57 - 1.18024121010727e30 * cos(theta) ** 55 + 1.33790702061778e30 * cos(theta) ** 53 - 1.29925008767534e30 * cos(theta) ** 51 + 1.08697103791736e30 * cos(theta) ** 49 - 7.86632578825116e29 * cos(theta) ** 47 + 4.93815225150958e29 * cos(theta) ** 45 - 2.6935375917325e29 * cos(theta) ** 43 + 1.27744981372608e29 * cos(theta) ** 41 - 5.26651004150519e28 * cos(theta) ** 39 + 1.88525794239389e28 * cos(theta) ** 37 - 5.84807540584223e27 * cos(theta) ** 35 + 1.56738957949375e27 * cos(theta) ** 33 - 3.61547268664352e26 * cos(theta) ** 31 + 7.14186405815308e25 * cos(theta) ** 29 - 1.20066120397936e25 * cos(theta) ** 27 + 1.70482234060176e24 * cos(theta) ** 25 - 2.02553149378427e23 * cos(theta) ** 23 + 1.99090702380505e22 * cos(theta) ** 21 - 1.59637447498687e21 * cos(theta) ** 19 + 1.02624073392013e20 * cos(theta) ** 17 - 5.17496254405404e18 * cos(theta) ** 15 + 1.99037020925155e17 * cos(theta) ** 13 - 5.62699805442629e15 * cos(theta) ** 11 + 111165550644198.0 * cos(theta) ** 9 - 1426723644631.41 * cos(theta) ** 7 + 10617007986.272 * cos(theta) ** 5 - 37449763.6200071 * cos(theta) ** 3 + 39503.9700632987 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl75_m3(theta, phi): return ( 1.13996405569108e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 9.95488233766166e26 * cos(theta) ** 72 - 1.70769659429954e28 * cos(theta) ** 70 + 1.40275077388891e29 * cos(theta) ** 68 - 7.34589945498607e29 * cos(theta) ** 66 + 2.75471229561978e30 * cos(theta) ** 64 - 7.87730494747442e30 * cos(theta) ** 62 + 1.78608916734702e31 * cos(theta) ** 60 - 3.29653579374789e31 * cos(theta) ** 58 + 5.04553117320857e31 * cos(theta) ** 56 - 6.49132665558997e31 * cos(theta) ** 54 + 7.09090720927424e31 * cos(theta) ** 52 - 6.62617544714421e31 * cos(theta) ** 50 + 5.32615808579505e31 * cos(theta) ** 48 - 3.69717312047804e31 * cos(theta) ** 46 + 2.22216851317931e31 * cos(theta) ** 44 - 1.15822116444497e31 * cos(theta) ** 42 + 5.23754423627691e30 * cos(theta) ** 40 - 2.05393891618702e30 * cos(theta) ** 38 + 6.97545438685738e29 * cos(theta) ** 36 - 2.04682639204478e29 * cos(theta) ** 34 + 5.17238561232938e28 * cos(theta) ** 32 - 1.12079653285949e28 * cos(theta) ** 30 + 2.07114057686439e27 * cos(theta) ** 28 - 3.24178525074427e26 * cos(theta) ** 26 + 4.2620558515044e25 * cos(theta) ** 24 - 4.65872243570382e24 * cos(theta) ** 22 + 4.1809047499906e23 * cos(theta) ** 20 - 3.03311150247505e22 * cos(theta) ** 18 + 1.74460924766422e21 * cos(theta) ** 16 - 7.76244381608106e19 * cos(theta) ** 14 + 2.58748127202702e18 * cos(theta) ** 12 - 6.18969785986892e16 * cos(theta) ** 10 + 1.00048995579778e15 * cos(theta) ** 8 - 9987065512419.88 * cos(theta) ** 6 + 53085039931.3601 * cos(theta) ** 4 - 112349290.860021 * cos(theta) ** 2 + 39503.9700632987 ) * cos(3 * phi) ) # @torch.jit.script def Yl75_m4(theta, phi): return ( 1.51151118033925e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 7.1675152831164e28 * cos(theta) ** 71 - 1.19538761600968e30 * cos(theta) ** 69 + 9.5387052624446e30 * cos(theta) ** 67 - 4.84829364029081e31 * cos(theta) ** 65 + 1.76301586919666e32 * cos(theta) ** 63 - 4.88392906743414e32 * cos(theta) ** 61 + 1.07165350040821e33 * cos(theta) ** 59 - 1.91199076037377e33 * cos(theta) ** 57 + 2.8254974569968e33 * cos(theta) ** 55 - 3.50531639401859e33 * cos(theta) ** 53 + 3.6872717488226e33 * cos(theta) ** 51 - 3.31308772357211e33 * cos(theta) ** 49 + 2.55655588118163e33 * cos(theta) ** 47 - 1.7006996354199e33 * cos(theta) ** 45 + 9.77754145798897e32 * cos(theta) ** 43 - 4.86452889066889e32 * cos(theta) ** 41 + 2.09501769451076e32 * cos(theta) ** 39 - 7.80496788151069e31 * cos(theta) ** 37 + 2.51116357926866e31 * cos(theta) ** 35 - 6.95920973295226e30 * cos(theta) ** 33 + 1.6551633959454e30 * cos(theta) ** 31 - 3.36238959857847e29 * cos(theta) ** 29 + 5.7991936152203e28 * cos(theta) ** 27 - 8.4286416519351e27 * cos(theta) ** 25 + 1.02289340436106e27 * cos(theta) ** 23 - 1.02491893585484e26 * cos(theta) ** 21 + 8.36180949998121e24 * cos(theta) ** 19 - 5.45960070445509e23 * cos(theta) ** 17 + 2.79137479626275e22 * cos(theta) ** 15 - 1.08674213425135e21 * cos(theta) ** 13 + 3.10497752643243e19 * cos(theta) ** 11 - 6.18969785986892e17 * cos(theta) ** 9 + 8.00391964638222e15 * cos(theta) ** 7 - 59922393074519.3 * cos(theta) ** 5 + 212340159725.44 * cos(theta) ** 3 - 224698581.720043 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl75_m5(theta, phi): return ( 2.0055670970559e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 5.08893585101264e30 * cos(theta) ** 70 - 8.2481745504668e31 * cos(theta) ** 68 + 6.39093252583788e32 * cos(theta) ** 66 - 3.15139086618902e33 * cos(theta) ** 64 + 1.11069999759389e34 * cos(theta) ** 62 - 2.97919673113483e34 * cos(theta) ** 60 + 6.32275565240844e34 * cos(theta) ** 58 - 1.08983473341305e35 * cos(theta) ** 56 + 1.55402360134824e35 * cos(theta) ** 54 - 1.85781768882985e35 * cos(theta) ** 52 + 1.88050859189953e35 * cos(theta) ** 50 - 1.62341298455033e35 * cos(theta) ** 48 + 1.20158126415536e35 * cos(theta) ** 46 - 7.65314835938955e34 * cos(theta) ** 44 + 4.20434282693526e34 * cos(theta) ** 42 - 1.99445684517425e34 * cos(theta) ** 40 + 8.17056900859198e33 * cos(theta) ** 38 - 2.88783811615895e33 * cos(theta) ** 36 + 8.78907252744029e32 * cos(theta) ** 34 - 2.29653921187425e32 * cos(theta) ** 32 + 5.13100652743075e31 * cos(theta) ** 30 - 9.75092983587756e30 * cos(theta) ** 28 + 1.56578227610948e30 * cos(theta) ** 26 - 2.10716041298377e29 * cos(theta) ** 24 + 2.35265483003043e28 * cos(theta) ** 22 - 2.15232976529516e27 * cos(theta) ** 20 + 1.58874380499643e26 * cos(theta) ** 18 - 9.28132119757365e24 * cos(theta) ** 16 + 4.18706219439413e23 * cos(theta) ** 14 - 1.41276477452675e22 * cos(theta) ** 12 + 3.41547527907567e20 * cos(theta) ** 10 - 5.57072807388202e18 * cos(theta) ** 8 + 5.60274375246755e16 * cos(theta) ** 6 - 299611965372596.0 * cos(theta) ** 4 + 637020479176.321 * cos(theta) ** 2 - 224698581.720043 ) * cos(5 * phi) ) # @torch.jit.script def Yl75_m6(theta, phi): return ( 2.6634568581566e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 3.56225509570885e32 * cos(theta) ** 69 - 5.60875869431742e33 * cos(theta) ** 67 + 4.218015467053e34 * cos(theta) ** 65 - 2.01689015436098e35 * cos(theta) ** 63 + 6.88633998508214e35 * cos(theta) ** 61 - 1.7875180386809e36 * cos(theta) ** 59 + 3.6671982783969e36 * cos(theta) ** 57 - 6.10307450711309e36 * cos(theta) ** 55 + 8.39172744728049e36 * cos(theta) ** 53 - 9.66065198191522e36 * cos(theta) ** 51 + 9.40254295949764e36 * cos(theta) ** 49 - 7.7923823258416e36 * cos(theta) ** 47 + 5.52727381511468e36 * cos(theta) ** 45 - 3.3673852781314e36 * cos(theta) ** 43 + 1.76582398731281e36 * cos(theta) ** 41 - 7.97782738069699e35 * cos(theta) ** 39 + 3.10481622326495e35 * cos(theta) ** 37 - 1.03962172181722e35 * cos(theta) ** 35 + 2.9882846593297e34 * cos(theta) ** 33 - 7.34892547799759e33 * cos(theta) ** 31 + 1.53930195822922e33 * cos(theta) ** 29 - 2.73026035404572e32 * cos(theta) ** 27 + 4.07103391788465e31 * cos(theta) ** 25 - 5.05718499116106e30 * cos(theta) ** 23 + 5.17584062606694e29 * cos(theta) ** 21 - 4.30465953059033e28 * cos(theta) ** 19 + 2.85973884899357e27 * cos(theta) ** 17 - 1.48501139161178e26 * cos(theta) ** 15 + 5.86188707215178e24 * cos(theta) ** 13 - 1.6953177294321e23 * cos(theta) ** 11 + 3.41547527907567e21 * cos(theta) ** 9 - 4.45658245910562e19 * cos(theta) ** 7 + 3.36164625148053e17 * cos(theta) ** 5 - 1.19844786149039e15 * cos(theta) ** 3 + 1274040958352.64 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl75_m7(theta, phi): return ( 3.54090434735807e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 2.45795601603911e34 * cos(theta) ** 68 - 3.75786832519267e35 * cos(theta) ** 66 + 2.74171005358445e36 * cos(theta) ** 64 - 1.27064079724741e37 * cos(theta) ** 62 + 4.20066739090011e37 * cos(theta) ** 60 - 1.05463564282173e38 * cos(theta) ** 58 + 2.09030301868623e38 * cos(theta) ** 56 - 3.3566909789122e38 * cos(theta) ** 54 + 4.44761554705866e38 * cos(theta) ** 52 - 4.92693251077676e38 * cos(theta) ** 50 + 4.60724605015384e38 * cos(theta) ** 48 - 3.66241969314555e38 * cos(theta) ** 46 + 2.4872732168016e38 * cos(theta) ** 44 - 1.4479756695965e38 * cos(theta) ** 42 + 7.23987834798251e37 * cos(theta) ** 40 - 3.11135267847182e37 * cos(theta) ** 38 + 1.14878200260803e37 * cos(theta) ** 36 - 3.63867602636028e36 * cos(theta) ** 34 + 9.86133937578801e35 * cos(theta) ** 32 - 2.27816689817925e35 * cos(theta) ** 30 + 4.46397567886475e34 * cos(theta) ** 28 - 7.37170295592344e33 * cos(theta) ** 26 + 1.01775847947116e33 * cos(theta) ** 24 - 1.16315254796704e32 * cos(theta) ** 22 + 1.08692653147406e31 * cos(theta) ** 20 - 8.17885310812162e29 * cos(theta) ** 18 + 4.86155604328908e28 * cos(theta) ** 16 - 2.22751708741767e27 * cos(theta) ** 14 + 7.62045319379731e25 * cos(theta) ** 12 - 1.86484950237531e24 * cos(theta) ** 10 + 3.0739277511681e22 * cos(theta) ** 8 - 3.11960772137393e20 * cos(theta) ** 6 + 1.68082312574027e18 * cos(theta) ** 4 - 3.59534358447116e15 * cos(theta) ** 2 + 1274040958352.64 ) * cos(7 * phi) ) # @torch.jit.script def Yl75_m8(theta, phi): return ( 4.71325234754096e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.67141009090659e36 * cos(theta) ** 67 - 2.48019309462716e37 * cos(theta) ** 65 + 1.75469443429405e38 * cos(theta) ** 63 - 7.87797294293397e38 * cos(theta) ** 61 + 2.52040043454006e39 * cos(theta) ** 59 - 6.11688672836603e39 * cos(theta) ** 57 + 1.17056969046429e40 * cos(theta) ** 55 - 1.81261312861259e40 * cos(theta) ** 53 + 2.3127600844705e40 * cos(theta) ** 51 - 2.46346625538838e40 * cos(theta) ** 49 + 2.21147810407384e40 * cos(theta) ** 47 - 1.68471305884695e40 * cos(theta) ** 45 + 1.09440021539271e40 * cos(theta) ** 43 - 6.08149781230531e39 * cos(theta) ** 41 + 2.89595133919301e39 * cos(theta) ** 39 - 1.18231401781929e39 * cos(theta) ** 37 + 4.13561520938891e38 * cos(theta) ** 35 - 1.2371498489625e38 * cos(theta) ** 33 + 3.15562860025216e37 * cos(theta) ** 31 - 6.83450069453775e36 * cos(theta) ** 29 + 1.24991319008213e36 * cos(theta) ** 27 - 1.91664276854009e35 * cos(theta) ** 25 + 2.44262035073079e34 * cos(theta) ** 23 - 2.5589356055275e33 * cos(theta) ** 21 + 2.17385306294812e32 * cos(theta) ** 19 - 1.47219355946189e31 * cos(theta) ** 17 + 7.77848966926252e29 * cos(theta) ** 15 - 3.11852392238474e28 * cos(theta) ** 13 + 9.14454383255677e26 * cos(theta) ** 11 - 1.86484950237531e25 * cos(theta) ** 9 + 2.45914220093448e23 * cos(theta) ** 7 - 1.87176463282436e21 * cos(theta) ** 5 + 6.72329250296106e18 * cos(theta) ** 3 - 7.19068716894232e15 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl75_m9(theta, phi): return ( 6.28266131036249e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1.11984476090742e38 * cos(theta) ** 66 - 1.61212551150766e39 * cos(theta) ** 64 + 1.10545749360525e40 * cos(theta) ** 62 - 4.80556349518972e40 * cos(theta) ** 60 + 1.48703625637864e41 * cos(theta) ** 58 - 3.48662543516863e41 * cos(theta) ** 56 + 6.43813329755359e41 * cos(theta) ** 54 - 9.60684958164671e41 * cos(theta) ** 52 + 1.17950764307996e42 * cos(theta) ** 50 - 1.20709846514031e42 * cos(theta) ** 48 + 1.03939470891471e42 * cos(theta) ** 46 - 7.58120876481129e41 * cos(theta) ** 44 + 4.70592092618863e41 * cos(theta) ** 42 - 2.49341410304518e41 * cos(theta) ** 40 + 1.12942102228527e41 * cos(theta) ** 38 - 4.37456186593138e40 * cos(theta) ** 36 + 1.44746532328612e40 * cos(theta) ** 34 - 4.08259450157624e39 * cos(theta) ** 32 + 9.78244866078171e38 * cos(theta) ** 30 - 1.98200520141595e38 * cos(theta) ** 28 + 3.37476561322175e37 * cos(theta) ** 26 - 4.79160692135024e36 * cos(theta) ** 24 + 5.61802680668082e35 * cos(theta) ** 22 - 5.37376477160774e34 * cos(theta) ** 20 + 4.13032081960142e33 * cos(theta) ** 18 - 2.50272905108522e32 * cos(theta) ** 16 + 1.16677345038938e31 * cos(theta) ** 14 - 4.05408109910017e29 * cos(theta) ** 12 + 1.00589982158124e28 * cos(theta) ** 10 - 1.67836455213778e26 * cos(theta) ** 8 + 1.72139954065414e24 * cos(theta) ** 6 - 9.3588231641218e21 * cos(theta) ** 4 + 2.01698775088832e19 * cos(theta) ** 2 - 7.19068716894232e15 ) * cos(9 * phi) ) # @torch.jit.script def Yl75_m10(theta, phi): return ( 8.38807331092106e-19 * (1.0 - cos(theta) ** 2) ** 5 * ( 7.39097542198895e39 * cos(theta) ** 65 - 1.0317603273649e41 * cos(theta) ** 63 + 6.85383646035255e41 * cos(theta) ** 61 - 2.88333809711383e42 * cos(theta) ** 59 + 8.6248102869961e42 * cos(theta) ** 57 - 1.95251024369444e43 * cos(theta) ** 55 + 3.47659198067894e43 * cos(theta) ** 53 - 4.99556178245629e43 * cos(theta) ** 51 + 5.89753821539979e43 * cos(theta) ** 49 - 5.79407263267347e43 * cos(theta) ** 47 + 4.78121566100765e43 * cos(theta) ** 45 - 3.33573185651697e43 * cos(theta) ** 43 + 1.97648678899923e43 * cos(theta) ** 41 - 9.97365641218071e42 * cos(theta) ** 39 + 4.29179988468403e42 * cos(theta) ** 37 - 1.5748422717353e42 * cos(theta) ** 35 + 4.92138209917281e41 * cos(theta) ** 33 - 1.3064302405044e41 * cos(theta) ** 31 + 2.93473459823451e40 * cos(theta) ** 29 - 5.54961456396466e39 * cos(theta) ** 27 + 8.77439059437655e38 * cos(theta) ** 25 - 1.14998566112406e38 * cos(theta) ** 23 + 1.23596589746978e37 * cos(theta) ** 21 - 1.07475295432155e36 * cos(theta) ** 19 + 7.43457747528255e34 * cos(theta) ** 17 - 4.00436648173635e33 * cos(theta) ** 15 + 1.63348283054513e32 * cos(theta) ** 13 - 4.8648973189202e30 * cos(theta) ** 11 + 1.00589982158124e29 * cos(theta) ** 9 - 1.34269164171023e27 * cos(theta) ** 7 + 1.03283972439248e25 * cos(theta) ** 5 - 3.74352926564872e22 * cos(theta) ** 3 + 4.03397550177664e19 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl75_m11(theta, phi): return ( 1.12190559417584e-20 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 4.80413402429282e41 * cos(theta) ** 64 - 6.50009006239887e42 * cos(theta) ** 62 + 4.18084024081506e43 * cos(theta) ** 60 - 1.70116947729716e44 * cos(theta) ** 58 + 4.91614186358778e44 * cos(theta) ** 56 - 1.07388063403194e45 * cos(theta) ** 54 + 1.84259374975984e45 * cos(theta) ** 52 - 2.54773650905271e45 * cos(theta) ** 50 + 2.88979372554589e45 * cos(theta) ** 48 - 2.72321413735653e45 * cos(theta) ** 46 + 2.15154704745344e45 * cos(theta) ** 44 - 1.4343646983023e45 * cos(theta) ** 42 + 8.10359583489683e44 * cos(theta) ** 40 - 3.88972600075048e44 * cos(theta) ** 38 + 1.58796595733309e44 * cos(theta) ** 36 - 5.51194795107355e43 * cos(theta) ** 34 + 1.62405609272703e43 * cos(theta) ** 32 - 4.04993374556363e42 * cos(theta) ** 30 + 8.51073033488008e41 * cos(theta) ** 28 - 1.49839593227046e41 * cos(theta) ** 26 + 2.19359764859414e40 * cos(theta) ** 24 - 2.64496702058533e39 * cos(theta) ** 22 + 2.59552838468654e38 * cos(theta) ** 20 - 2.04203061321094e37 * cos(theta) ** 18 + 1.26387817079803e36 * cos(theta) ** 16 - 6.00654972260452e34 * cos(theta) ** 14 + 2.12352767970867e33 * cos(theta) ** 12 - 5.35138705081222e31 * cos(theta) ** 10 + 9.0530983942312e29 * cos(theta) ** 8 - 9.39884149197159e27 * cos(theta) ** 6 + 5.16419862196241e25 * cos(theta) ** 4 - 1.12305877969462e23 * cos(theta) ** 2 + 4.03397550177664e19 ) * cos(11 * phi) ) # @torch.jit.script def Yl75_m12(theta, phi): return ( 1.5035113130257e-22 * (1.0 - cos(theta) ** 2) ** 6 * ( 3.0746457755474e43 * cos(theta) ** 63 - 4.0300558386873e44 * cos(theta) ** 61 + 2.50850414448903e45 * cos(theta) ** 59 - 9.86678296832354e45 * cos(theta) ** 57 + 2.75303944360915e46 * cos(theta) ** 55 - 5.79895542377247e46 * cos(theta) ** 53 + 9.58148749875116e46 * cos(theta) ** 51 - 1.27386825452635e47 * cos(theta) ** 49 + 1.38710098826203e47 * cos(theta) ** 47 - 1.25267850318401e47 * cos(theta) ** 45 + 9.46680700879515e46 * cos(theta) ** 43 - 6.02433173286964e46 * cos(theta) ** 41 + 3.24143833395873e46 * cos(theta) ** 39 - 1.47809588028518e46 * cos(theta) ** 37 + 5.71667744639913e45 * cos(theta) ** 35 - 1.87406230336501e45 * cos(theta) ** 33 + 5.19697949672649e44 * cos(theta) ** 31 - 1.21498012366909e44 * cos(theta) ** 29 + 2.38300449376642e43 * cos(theta) ** 27 - 3.89582942390319e42 * cos(theta) ** 25 + 5.26463435662593e41 * cos(theta) ** 23 - 5.81892744528773e40 * cos(theta) ** 21 + 5.19105676937308e39 * cos(theta) ** 19 - 3.6756551037797e38 * cos(theta) ** 17 + 2.02220507327685e37 * cos(theta) ** 15 - 8.40916961164633e35 * cos(theta) ** 13 + 2.5482332156504e34 * cos(theta) ** 11 - 5.35138705081222e32 * cos(theta) ** 9 + 7.24247871538496e30 * cos(theta) ** 7 - 5.63930489518295e28 * cos(theta) ** 5 + 2.06567944878496e26 * cos(theta) ** 3 - 2.24611755938923e23 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl75_m13(theta, phi): return ( 2.01927323784677e-24 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.93702683859486e45 * cos(theta) ** 62 - 2.45833406159925e46 * cos(theta) ** 60 + 1.48001744524853e47 * cos(theta) ** 58 - 5.62406629194442e47 * cos(theta) ** 56 + 1.51417169398503e48 * cos(theta) ** 54 - 3.07344637459941e48 * cos(theta) ** 52 + 4.88655862436309e48 * cos(theta) ** 50 - 6.24195444717913e48 * cos(theta) ** 48 + 6.51937464483154e48 * cos(theta) ** 46 - 5.63705326432802e48 * cos(theta) ** 44 + 4.07072701378192e48 * cos(theta) ** 42 - 2.46997601047655e48 * cos(theta) ** 40 + 1.26416095024391e48 * cos(theta) ** 38 - 5.46895475705517e47 * cos(theta) ** 36 + 2.0008371062397e47 * cos(theta) ** 34 - 6.18440560110452e46 * cos(theta) ** 32 + 1.61106364398521e46 * cos(theta) ** 30 - 3.52344235864035e45 * cos(theta) ** 28 + 6.43411213316934e44 * cos(theta) ** 26 - 9.73957355975797e43 * cos(theta) ** 24 + 1.21086590202396e43 * cos(theta) ** 22 - 1.22197476351042e42 * cos(theta) ** 20 + 9.86300786180885e40 * cos(theta) ** 18 - 6.24861367642548e39 * cos(theta) ** 16 + 3.03330760991528e38 * cos(theta) ** 14 - 1.09319204951402e37 * cos(theta) ** 12 + 2.80305653721544e35 * cos(theta) ** 10 - 4.816248345731e33 * cos(theta) ** 8 + 5.06973510076947e31 * cos(theta) ** 6 - 2.81965244759148e29 * cos(theta) ** 4 + 6.19703834635489e26 * cos(theta) ** 2 - 2.24611755938923e23 ) * cos(13 * phi) ) # @torch.jit.script def Yl75_m14(theta, phi): return ( 2.71834291445864e-26 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.20095663992882e47 * cos(theta) ** 61 - 1.47500043695955e48 * cos(theta) ** 59 + 8.58410118244148e48 * cos(theta) ** 57 - 3.14947712348887e49 * cos(theta) ** 55 + 8.17652714751919e49 * cos(theta) ** 53 - 1.59819211479169e50 * cos(theta) ** 51 + 2.44327931218155e50 * cos(theta) ** 49 - 2.99613813464598e50 * cos(theta) ** 47 + 2.99891233662251e50 * cos(theta) ** 45 - 2.48030343630433e50 * cos(theta) ** 43 + 1.7097053457884e50 * cos(theta) ** 41 - 9.87990404190621e49 * cos(theta) ** 39 + 4.80381161092684e49 * cos(theta) ** 37 - 1.96882371253986e49 * cos(theta) ** 35 + 6.80284616121497e48 * cos(theta) ** 33 - 1.97900979235345e48 * cos(theta) ** 31 + 4.83319093195563e47 * cos(theta) ** 29 - 9.86563860419299e46 * cos(theta) ** 27 + 1.67286915462403e46 * cos(theta) ** 25 - 2.33749765434191e45 * cos(theta) ** 23 + 2.66390498445272e44 * cos(theta) ** 21 - 2.44394952702084e43 * cos(theta) ** 19 + 1.77534141512559e42 * cos(theta) ** 17 - 9.99778188228077e40 * cos(theta) ** 15 + 4.24663065388139e39 * cos(theta) ** 13 - 1.31183045941683e38 * cos(theta) ** 11 + 2.80305653721544e36 * cos(theta) ** 9 - 3.8529986765848e34 * cos(theta) ** 7 + 3.04184106046168e32 * cos(theta) ** 5 - 1.12786097903659e30 * cos(theta) ** 3 + 1.23940766927098e27 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl75_m15(theta, phi): return ( 3.66874958239696e-28 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 7.32583550356578e48 * cos(theta) ** 60 - 8.70250257806136e49 * cos(theta) ** 58 + 4.89293767399164e50 * cos(theta) ** 56 - 1.73221241791888e51 * cos(theta) ** 54 + 4.33355938818517e51 * cos(theta) ** 52 - 8.15077978543764e51 * cos(theta) ** 50 + 1.19720686296896e52 * cos(theta) ** 48 - 1.40818492328361e52 * cos(theta) ** 46 + 1.34951055148013e52 * cos(theta) ** 44 - 1.06653047761086e52 * cos(theta) ** 42 + 7.00979191773246e51 * cos(theta) ** 40 - 3.85316257634342e51 * cos(theta) ** 38 + 1.77741029604293e51 * cos(theta) ** 36 - 6.89088299388952e50 * cos(theta) ** 34 + 2.24493923320094e50 * cos(theta) ** 32 - 6.13493035629568e49 * cos(theta) ** 30 + 1.40162537026713e49 * cos(theta) ** 28 - 2.66372242313211e48 * cos(theta) ** 26 + 4.18217288656007e47 * cos(theta) ** 24 - 5.3762446049864e46 * cos(theta) ** 22 + 5.59420046735071e45 * cos(theta) ** 20 - 4.64350410133961e44 * cos(theta) ** 18 + 3.01808040571351e43 * cos(theta) ** 16 - 1.49966728234212e42 * cos(theta) ** 14 + 5.52061985004581e40 * cos(theta) ** 12 - 1.44301350535851e39 * cos(theta) ** 10 + 2.5227508834939e37 * cos(theta) ** 8 - 2.69709907360936e35 * cos(theta) ** 6 + 1.52092053023084e33 * cos(theta) ** 4 - 3.38358293710977e30 * cos(theta) ** 2 + 1.23940766927098e27 ) * cos(15 * phi) ) # @torch.jit.script def Yl75_m16(theta, phi): return ( 4.96502852345423e-30 * (1.0 - cos(theta) ** 2) ** 8 * ( 4.39550130213947e50 * cos(theta) ** 59 - 5.04745149527559e51 * cos(theta) ** 57 + 2.74004509743532e52 * cos(theta) ** 55 - 9.35394705676195e52 * cos(theta) ** 53 + 2.25345088185629e53 * cos(theta) ** 51 - 4.07538989271882e53 * cos(theta) ** 49 + 5.746592942251e53 * cos(theta) ** 47 - 6.47765064710462e53 * cos(theta) ** 45 + 5.93784642651257e53 * cos(theta) ** 43 - 4.47942800596562e53 * cos(theta) ** 41 + 2.80391676709298e53 * cos(theta) ** 39 - 1.4642017790105e53 * cos(theta) ** 37 + 6.39867706575455e52 * cos(theta) ** 35 - 2.34290021792244e52 * cos(theta) ** 33 + 7.18380554624301e51 * cos(theta) ** 31 - 1.8404791068887e51 * cos(theta) ** 29 + 3.92455103674797e50 * cos(theta) ** 27 - 6.92567830014348e49 * cos(theta) ** 25 + 1.00372149277442e49 * cos(theta) ** 23 - 1.18277381309701e48 * cos(theta) ** 21 + 1.11884009347014e47 * cos(theta) ** 19 - 8.35830738241129e45 * cos(theta) ** 17 + 4.82892864914161e44 * cos(theta) ** 15 - 2.09953419527896e43 * cos(theta) ** 13 + 6.62474382005498e41 * cos(theta) ** 11 - 1.44301350535851e40 * cos(theta) ** 9 + 2.01820070679512e38 * cos(theta) ** 7 - 1.61825944416562e36 * cos(theta) ** 5 + 6.08368212092337e33 * cos(theta) ** 3 - 6.76716587421954e30 * cos(theta) ) * cos(16 * phi) ) # @torch.jit.script def Yl75_m17(theta, phi): return ( 6.73909887487811e-32 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 2.59334576826228e52 * cos(theta) ** 58 - 2.87704735230709e53 * cos(theta) ** 56 + 1.50702480358943e54 * cos(theta) ** 54 - 4.95759194008383e54 * cos(theta) ** 52 + 1.14925994974671e55 * cos(theta) ** 50 - 1.99694104743222e55 * cos(theta) ** 48 + 2.70089868285797e55 * cos(theta) ** 46 - 2.91494279119708e55 * cos(theta) ** 44 + 2.5532739634004e55 * cos(theta) ** 42 - 1.8365654824459e55 * cos(theta) ** 40 + 1.09352753916626e55 * cos(theta) ** 38 - 5.41754658233885e54 * cos(theta) ** 36 + 2.23953697301409e54 * cos(theta) ** 34 - 7.73157071914404e53 * cos(theta) ** 32 + 2.22697971933533e53 * cos(theta) ** 30 - 5.33738940997724e52 * cos(theta) ** 28 + 1.05962877992195e52 * cos(theta) ** 26 - 1.73141957503587e51 * cos(theta) ** 24 + 2.30855943338116e50 * cos(theta) ** 22 - 2.48382500750372e49 * cos(theta) ** 20 + 2.12579617759327e48 * cos(theta) ** 18 - 1.42091225500992e47 * cos(theta) ** 16 + 7.24339297371242e45 * cos(theta) ** 14 - 2.72939445386265e44 * cos(theta) ** 12 + 7.28721820206047e42 * cos(theta) ** 10 - 1.29871215482266e41 * cos(theta) ** 8 + 1.41274049475658e39 * cos(theta) ** 6 - 8.09129722082808e36 * cos(theta) ** 4 + 1.82510463627701e34 * cos(theta) ** 2 - 6.76716587421954e30 ) * cos(17 * phi) ) # @torch.jit.script def Yl75_m18(theta, phi): return ( 9.17585109498617e-34 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.50414054559213e54 * cos(theta) ** 57 - 1.61114651729197e55 * cos(theta) ** 55 + 8.1379339393829e55 * cos(theta) ** 53 - 2.57794780884359e56 * cos(theta) ** 51 + 5.74629974873353e56 * cos(theta) ** 49 - 9.58531702767466e56 * cos(theta) ** 47 + 1.24241339411467e57 * cos(theta) ** 45 - 1.28257482812671e57 * cos(theta) ** 43 + 1.07237506462817e57 * cos(theta) ** 41 - 7.34626192978362e56 * cos(theta) ** 39 + 4.1554046488318e56 * cos(theta) ** 37 - 1.95031676964199e56 * cos(theta) ** 35 + 7.61442570824791e55 * cos(theta) ** 33 - 2.47410263012609e55 * cos(theta) ** 31 + 6.680939158006e54 * cos(theta) ** 29 - 1.49446903479363e54 * cos(theta) ** 27 + 2.75503482779708e53 * cos(theta) ** 25 - 4.15540698008609e52 * cos(theta) ** 23 + 5.07883075343855e51 * cos(theta) ** 21 - 4.96765001500743e50 * cos(theta) ** 19 + 3.82643311966789e49 * cos(theta) ** 17 - 2.27345960801587e48 * cos(theta) ** 15 + 1.01407501631974e47 * cos(theta) ** 13 - 3.27527334463518e45 * cos(theta) ** 11 + 7.28721820206047e43 * cos(theta) ** 9 - 1.03896972385813e42 * cos(theta) ** 7 + 8.4764429685395e39 * cos(theta) ** 5 - 3.23651888833123e37 * cos(theta) ** 3 + 3.65020927255402e34 * cos(theta) ) * cos(18 * phi) ) # @torch.jit.script def Yl75_m19(theta, phi): return ( 1.25355964465416e-35 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 8.57360110987511e55 * cos(theta) ** 56 - 8.86130584510582e56 * cos(theta) ** 54 + 4.31310498787294e57 * cos(theta) ** 52 - 1.31475338251023e58 * cos(theta) ** 50 + 2.81568687687943e58 * cos(theta) ** 48 - 4.50509900300709e58 * cos(theta) ** 46 + 5.590860273516e58 * cos(theta) ** 44 - 5.51507176094487e58 * cos(theta) ** 42 + 4.39673776497549e58 * cos(theta) ** 40 - 2.86504215261561e58 * cos(theta) ** 38 + 1.53749972006777e58 * cos(theta) ** 36 - 6.82610869374695e57 * cos(theta) ** 34 + 2.51276048372181e57 * cos(theta) ** 32 - 7.66971815339088e56 * cos(theta) ** 30 + 1.93747235582174e56 * cos(theta) ** 28 - 4.0350663939428e55 * cos(theta) ** 26 + 6.88758706949269e54 * cos(theta) ** 24 - 9.557436054198e53 * cos(theta) ** 22 + 1.0665544582221e53 * cos(theta) ** 20 - 9.43853502851413e51 * cos(theta) ** 18 + 6.50493630343541e50 * cos(theta) ** 16 - 3.41018941202381e49 * cos(theta) ** 14 + 1.31829752121566e48 * cos(theta) ** 12 - 3.6028006790987e46 * cos(theta) ** 10 + 6.55849638185443e44 * cos(theta) ** 8 - 7.27278806700689e42 * cos(theta) ** 6 + 4.23822148426975e40 * cos(theta) ** 4 - 9.7095566649937e37 * cos(theta) ** 2 + 3.65020927255402e34 ) * cos(19 * phi) ) # @torch.jit.script def Yl75_m20(theta, phi): return ( 1.71865690189719e-37 * (1.0 - cos(theta) ** 2) ** 10 * ( 4.80121662153006e57 * cos(theta) ** 55 - 4.78510515635714e58 * cos(theta) ** 53 + 2.24281459369393e59 * cos(theta) ** 51 - 6.57376691255116e59 * cos(theta) ** 49 + 1.35152970090213e60 * cos(theta) ** 47 - 2.07234554138326e60 * cos(theta) ** 45 + 2.45997852034704e60 * cos(theta) ** 43 - 2.31633013959685e60 * cos(theta) ** 41 + 1.7586951059902e60 * cos(theta) ** 39 - 1.08871601799393e60 * cos(theta) ** 37 + 5.53499899224396e59 * cos(theta) ** 35 - 2.32087695587396e59 * cos(theta) ** 33 + 8.0408335479098e58 * cos(theta) ** 31 - 2.30091544601727e58 * cos(theta) ** 29 + 5.42492259630087e57 * cos(theta) ** 27 - 1.04911726242513e57 * cos(theta) ** 25 + 1.65302089667825e56 * cos(theta) ** 23 - 2.10263593192356e55 * cos(theta) ** 21 + 2.13310891644419e54 * cos(theta) ** 19 - 1.69893630513254e53 * cos(theta) ** 17 + 1.04078980854967e52 * cos(theta) ** 15 - 4.77426517683333e50 * cos(theta) ** 13 + 1.58195702545879e49 * cos(theta) ** 11 - 3.6028006790987e47 * cos(theta) ** 9 + 5.24679710548354e45 * cos(theta) ** 7 - 4.36367284020413e43 * cos(theta) ** 5 + 1.6952885937079e41 * cos(theta) ** 3 - 1.94191133299874e38 * cos(theta) ) * cos(20 * phi) ) # @torch.jit.script def Yl75_m21(theta, phi): return ( 2.36522371709142e-39 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 2.64066914184154e59 * cos(theta) ** 54 - 2.53610573286929e60 * cos(theta) ** 52 + 1.1438354427839e61 * cos(theta) ** 50 - 3.22114578715007e61 * cos(theta) ** 48 + 6.35218959424e61 * cos(theta) ** 46 - 9.32555493622468e61 * cos(theta) ** 44 + 1.05779076374923e62 * cos(theta) ** 42 - 9.49695357234707e61 * cos(theta) ** 40 + 6.85891091336177e61 * cos(theta) ** 38 - 4.02824926657755e61 * cos(theta) ** 36 + 1.93724964728539e61 * cos(theta) ** 34 - 7.65889395438408e60 * cos(theta) ** 32 + 2.49265839985204e60 * cos(theta) ** 30 - 6.67265479345007e59 * cos(theta) ** 28 + 1.46472910100123e59 * cos(theta) ** 26 - 2.62279315606282e58 * cos(theta) ** 24 + 3.80194806235997e57 * cos(theta) ** 22 - 4.41553545703948e56 * cos(theta) ** 20 + 4.05290694124397e55 * cos(theta) ** 18 - 2.88819171872532e54 * cos(theta) ** 16 + 1.5611847128245e53 * cos(theta) ** 14 - 6.20654472988333e51 * cos(theta) ** 12 + 1.74015272800467e50 * cos(theta) ** 10 - 3.24252061118883e48 * cos(theta) ** 8 + 3.67275797383848e46 * cos(theta) ** 6 - 2.18183642010207e44 * cos(theta) ** 4 + 5.0858657811237e41 * cos(theta) ** 2 - 1.94191133299874e38 ) * cos(21 * phi) ) # @torch.jit.script def Yl75_m22(theta, phi): return ( 3.26805591233487e-41 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.42596133659443e61 * cos(theta) ** 53 - 1.31877498109203e62 * cos(theta) ** 51 + 5.71917721391951e62 * cos(theta) ** 49 - 1.54614997783203e63 * cos(theta) ** 47 + 2.9220072133504e63 * cos(theta) ** 45 - 4.10324417193886e63 * cos(theta) ** 43 + 4.44272120774675e63 * cos(theta) ** 41 - 3.79878142893883e63 * cos(theta) ** 39 + 2.60638614707747e63 * cos(theta) ** 37 - 1.45016973596792e63 * cos(theta) ** 35 + 6.58664880077031e62 * cos(theta) ** 33 - 2.45084606540291e62 * cos(theta) ** 31 + 7.47797519955611e61 * cos(theta) ** 29 - 1.86834334216602e61 * cos(theta) ** 27 + 3.80829566260321e60 * cos(theta) ** 25 - 6.29470357455076e59 * cos(theta) ** 23 + 8.36428573719193e58 * cos(theta) ** 21 - 8.83107091407896e57 * cos(theta) ** 19 + 7.29523249423914e56 * cos(theta) ** 17 - 4.62110674996052e55 * cos(theta) ** 15 + 2.1856585979543e54 * cos(theta) ** 13 - 7.44785367585999e52 * cos(theta) ** 11 + 1.74015272800467e51 * cos(theta) ** 9 - 2.59401648895106e49 * cos(theta) ** 7 + 2.20365478430309e47 * cos(theta) ** 5 - 8.72734568040827e44 * cos(theta) ** 3 + 1.01717315622474e42 * cos(theta) ) * cos(22 * phi) ) # @torch.jit.script def Yl75_m23(theta, phi): return ( 4.53459500720562e-43 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 7.55759508395047e62 * cos(theta) ** 52 - 6.72575240356935e63 * cos(theta) ** 50 + 2.80239683482056e64 * cos(theta) ** 48 - 7.26690489581056e64 * cos(theta) ** 46 + 1.31490324600768e65 * cos(theta) ** 44 - 1.76439499393371e65 * cos(theta) ** 42 + 1.82151569517617e65 * cos(theta) ** 40 - 1.48152475728614e65 * cos(theta) ** 38 + 9.64362874418665e64 * cos(theta) ** 36 - 5.07559407588771e64 * cos(theta) ** 34 + 2.1735941042542e64 * cos(theta) ** 32 - 7.59762280274901e63 * cos(theta) ** 30 + 2.16861280787127e63 * cos(theta) ** 28 - 5.04452702384825e62 * cos(theta) ** 26 + 9.52073915650803e61 * cos(theta) ** 24 - 1.44778182214668e61 * cos(theta) ** 22 + 1.7565000048103e60 * cos(theta) ** 20 - 1.677903473675e59 * cos(theta) ** 18 + 1.24018952402065e58 * cos(theta) ** 16 - 6.93166012494077e56 * cos(theta) ** 14 + 2.84135617734059e55 * cos(theta) ** 12 - 8.19263904344599e53 * cos(theta) ** 10 + 1.5661374552042e52 * cos(theta) ** 8 - 1.81581154226574e50 * cos(theta) ** 6 + 1.10182739215154e48 * cos(theta) ** 4 - 2.61820370412248e45 * cos(theta) ** 2 + 1.01717315622474e42 ) * cos(23 * phi) ) # @torch.jit.script def Yl75_m24(theta, phi): return ( 6.32003140565624e-45 * (1.0 - cos(theta) ** 2) ** 12 * ( 3.92994944365425e64 * cos(theta) ** 51 - 3.36287620178467e65 * cos(theta) ** 49 + 1.34515048071387e66 * cos(theta) ** 47 - 3.34277625207286e66 * cos(theta) ** 45 + 5.78557428243379e66 * cos(theta) ** 43 - 7.41045897452158e66 * cos(theta) ** 41 + 7.28606278070467e66 * cos(theta) ** 39 - 5.62979407768734e66 * cos(theta) ** 37 + 3.47170634790719e66 * cos(theta) ** 35 - 1.72570198580182e66 * cos(theta) ** 33 + 6.95550113361345e65 * cos(theta) ** 31 - 2.2792868408247e65 * cos(theta) ** 29 + 6.07211586203956e64 * cos(theta) ** 27 - 1.31157702620055e64 * cos(theta) ** 25 + 2.28497739756193e63 * cos(theta) ** 23 - 3.18512000872269e62 * cos(theta) ** 21 + 3.51300000962061e61 * cos(theta) ** 19 - 3.020226252615e60 * cos(theta) ** 17 + 1.98430323843305e59 * cos(theta) ** 15 - 9.70432417491708e57 * cos(theta) ** 13 + 3.4096274128087e56 * cos(theta) ** 11 - 8.19263904344599e54 * cos(theta) ** 9 + 1.25290996416336e53 * cos(theta) ** 7 - 1.08948692535945e51 * cos(theta) ** 5 + 4.40730956860617e48 * cos(theta) ** 3 - 5.23640740824496e45 * cos(theta) ) * cos(24 * phi) ) # @torch.jit.script def Yl75_m25(theta, phi): return ( 8.84981410777198e-47 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 2.00427421626367e66 * cos(theta) ** 50 - 1.64780933887449e67 * cos(theta) ** 48 + 6.32220725935519e67 * cos(theta) ** 46 - 1.50424931343279e68 * cos(theta) ** 44 + 2.48779694144653e68 * cos(theta) ** 42 - 3.03828817955385e68 * cos(theta) ** 40 + 2.84156448447482e68 * cos(theta) ** 38 - 2.08302380874432e68 * cos(theta) ** 36 + 1.21509722176752e68 * cos(theta) ** 34 - 5.69481655314601e67 * cos(theta) ** 32 + 2.15620535142017e67 * cos(theta) ** 30 - 6.60993183839164e66 * cos(theta) ** 28 + 1.63947128275068e66 * cos(theta) ** 26 - 3.27894256550136e65 * cos(theta) ** 24 + 5.25544801439243e64 * cos(theta) ** 22 - 6.68875201831764e63 * cos(theta) ** 20 + 6.67470001827916e62 * cos(theta) ** 18 - 5.13438462944551e61 * cos(theta) ** 16 + 2.97645485764957e60 * cos(theta) ** 14 - 1.26156214273922e59 * cos(theta) ** 12 + 3.75059015408958e57 * cos(theta) ** 10 - 7.37337513910139e55 * cos(theta) ** 8 + 8.77036974914354e53 * cos(theta) ** 6 - 5.44743462679723e51 * cos(theta) ** 4 + 1.32219287058185e49 * cos(theta) ** 2 - 5.23640740824496e45 ) * cos(25 * phi) ) # @torch.jit.script def Yl75_m26(theta, phi): return ( 1.24534149550957e-48 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.00213710813183e68 * cos(theta) ** 49 - 7.90948482659755e68 * cos(theta) ** 47 + 2.90821533930339e69 * cos(theta) ** 45 - 6.61869697910426e69 * cos(theta) ** 43 + 1.04487471540754e70 * cos(theta) ** 41 - 1.21531527182154e70 * cos(theta) ** 39 + 1.07979450410043e70 * cos(theta) ** 37 - 7.49888571147954e69 * cos(theta) ** 35 + 4.13133055400956e69 * cos(theta) ** 33 - 1.82234129700672e69 * cos(theta) ** 31 + 6.46861605426051e68 * cos(theta) ** 29 - 1.85078091474966e68 * cos(theta) ** 27 + 4.26262533515177e67 * cos(theta) ** 25 - 7.86946215720327e66 * cos(theta) ** 23 + 1.15619856316633e66 * cos(theta) ** 21 - 1.33775040366353e65 * cos(theta) ** 19 + 1.20144600329025e64 * cos(theta) ** 17 - 8.21501540711281e62 * cos(theta) ** 15 + 4.1670368007094e61 * cos(theta) ** 13 - 1.51387457128706e60 * cos(theta) ** 11 + 3.75059015408958e58 * cos(theta) ** 9 - 5.89870011128111e56 * cos(theta) ** 7 + 5.26222184948613e54 * cos(theta) ** 5 - 2.17897385071889e52 * cos(theta) ** 3 + 2.6443857411637e49 * cos(theta) ) * cos(26 * phi) ) # @torch.jit.script def Yl75_m27(theta, phi): return ( 1.76153117420814e-50 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 4.91047182984598e69 * cos(theta) ** 48 - 3.71745786850085e70 * cos(theta) ** 46 + 1.30869690268652e71 * cos(theta) ** 44 - 2.84603970101483e71 * cos(theta) ** 42 + 4.28398633317092e71 * cos(theta) ** 40 - 4.739729560104e71 * cos(theta) ** 38 + 3.9952396651716e71 * cos(theta) ** 36 - 2.62460999901784e71 * cos(theta) ** 34 + 1.36333908282316e71 * cos(theta) ** 32 - 5.64925802072084e70 * cos(theta) ** 30 + 1.87589865573555e70 * cos(theta) ** 28 - 4.99710846982408e69 * cos(theta) ** 26 + 1.06565633378794e69 * cos(theta) ** 24 - 1.80997629615675e68 * cos(theta) ** 22 + 2.4280169826493e67 * cos(theta) ** 20 - 2.5417257669607e66 * cos(theta) ** 18 + 2.04245820559342e65 * cos(theta) ** 16 - 1.23225231106692e64 * cos(theta) ** 14 + 5.41714784092221e62 * cos(theta) ** 12 - 1.66526202841577e61 * cos(theta) ** 10 + 3.37553113868062e59 * cos(theta) ** 8 - 4.12909007789678e57 * cos(theta) ** 6 + 2.63111092474306e55 * cos(theta) ** 4 - 6.53692155215668e52 * cos(theta) ** 2 + 2.6443857411637e49 ) * cos(27 * phi) ) # @torch.jit.script def Yl75_m28(theta, phi): return ( 2.50525018198317e-52 * (1.0 - cos(theta) ** 2) ** 14 * ( 2.35702647832607e71 * cos(theta) ** 47 - 1.71003061951039e72 * cos(theta) ** 45 + 5.7582663718207e72 * cos(theta) ** 43 - 1.19533667442623e73 * cos(theta) ** 41 + 1.71359453326837e73 * cos(theta) ** 39 - 1.80109723283952e73 * cos(theta) ** 37 + 1.43828627946178e73 * cos(theta) ** 35 - 8.92367399666065e72 * cos(theta) ** 33 + 4.3626850650341e72 * cos(theta) ** 31 - 1.69477740621625e72 * cos(theta) ** 29 + 5.25251623605953e71 * cos(theta) ** 27 - 1.29924820215426e71 * cos(theta) ** 25 + 2.55757520109106e70 * cos(theta) ** 23 - 3.98194785154486e69 * cos(theta) ** 21 + 4.85603396529861e68 * cos(theta) ** 19 - 4.57510638052927e67 * cos(theta) ** 17 + 3.26793312894947e66 * cos(theta) ** 15 - 1.72515323549369e65 * cos(theta) ** 13 + 6.50057740910666e63 * cos(theta) ** 11 - 1.66526202841577e62 * cos(theta) ** 9 + 2.70042491094449e60 * cos(theta) ** 7 - 2.47745404673807e58 * cos(theta) ** 5 + 1.05244436989723e56 * cos(theta) ** 3 - 1.30738431043134e53 * cos(theta) ) * cos(28 * phi) ) # @torch.jit.script def Yl75_m29(theta, phi): return ( 3.58331925893721e-54 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 1.10780244481325e73 * cos(theta) ** 46 - 7.69513778779676e73 * cos(theta) ** 44 + 2.4760545398829e74 * cos(theta) ** 42 - 4.90088036514754e74 * cos(theta) ** 40 + 6.68301867974664e74 * cos(theta) ** 38 - 6.66405976150623e74 * cos(theta) ** 36 + 5.03400197811621e74 * cos(theta) ** 34 - 2.94481241889802e74 * cos(theta) ** 32 + 1.35243237016057e74 * cos(theta) ** 30 - 4.91485447802713e73 * cos(theta) ** 28 + 1.41817938373607e73 * cos(theta) ** 26 - 3.24812050538565e72 * cos(theta) ** 24 + 5.88242296250945e71 * cos(theta) ** 22 - 8.3620904882442e70 * cos(theta) ** 20 + 9.22646453406735e69 * cos(theta) ** 18 - 7.77768084689975e68 * cos(theta) ** 16 + 4.90189969342421e67 * cos(theta) ** 14 - 2.2426992061418e66 * cos(theta) ** 12 + 7.15063515001732e64 * cos(theta) ** 10 - 1.49873582557419e63 * cos(theta) ** 8 + 1.89029743766115e61 * cos(theta) ** 6 - 1.23872702336903e59 * cos(theta) ** 4 + 3.15733310969168e56 * cos(theta) ** 2 - 1.30738431043134e53 ) * cos(29 * phi) ) # @torch.jit.script def Yl75_m30(theta, phi): return ( 5.15598848020563e-56 * (1.0 - cos(theta) ** 2) ** 15 * ( 5.09589124614096e74 * cos(theta) ** 45 - 3.38586062663057e75 * cos(theta) ** 43 + 1.03994290675082e76 * cos(theta) ** 41 - 1.96035214605902e76 * cos(theta) ** 39 + 2.53954709830372e76 * cos(theta) ** 37 - 2.39906151414224e76 * cos(theta) ** 35 + 1.71156067255951e76 * cos(theta) ** 33 - 9.42339974047365e75 * cos(theta) ** 31 + 4.05729711048171e75 * cos(theta) ** 29 - 1.3761592538476e75 * cos(theta) ** 27 + 3.68726639771379e74 * cos(theta) ** 25 - 7.79548921292556e73 * cos(theta) ** 23 + 1.29413305175208e73 * cos(theta) ** 21 - 1.67241809764884e72 * cos(theta) ** 19 + 1.66076361613212e71 * cos(theta) ** 17 - 1.24442893550396e70 * cos(theta) ** 15 + 6.8626595707939e68 * cos(theta) ** 13 - 2.69123904737016e67 * cos(theta) ** 11 + 7.15063515001732e65 * cos(theta) ** 9 - 1.19898866045936e64 * cos(theta) ** 7 + 1.13417846259669e62 * cos(theta) ** 5 - 4.95490809347614e59 * cos(theta) ** 3 + 6.31466621938335e56 * cos(theta) ) * cos(30 * phi) ) # @torch.jit.script def Yl75_m31(theta, phi): return ( 7.46539426602489e-58 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 2.29315106076343e76 * cos(theta) ** 44 - 1.45592006945115e77 * cos(theta) ** 42 + 4.26376591767836e77 * cos(theta) ** 40 - 7.64537336963016e77 * cos(theta) ** 38 + 9.39632426372378e77 * cos(theta) ** 36 - 8.39671529949785e77 * cos(theta) ** 34 + 5.64815021944639e77 * cos(theta) ** 32 - 2.92125391954683e77 * cos(theta) ** 30 + 1.1766161620397e77 * cos(theta) ** 28 - 3.71562998538851e76 * cos(theta) ** 26 + 9.21816599428448e75 * cos(theta) ** 24 - 1.79296251897288e75 * cos(theta) ** 22 + 2.71767940867936e74 * cos(theta) ** 20 - 3.1775943855328e73 * cos(theta) ** 18 + 2.82329814742461e72 * cos(theta) ** 16 - 1.86664340325594e71 * cos(theta) ** 14 + 8.92145744203207e69 * cos(theta) ** 12 - 2.96036295210717e68 * cos(theta) ** 10 + 6.43557163501559e66 * cos(theta) ** 8 - 8.39292062321549e64 * cos(theta) ** 6 + 5.67089231298344e62 * cos(theta) ** 4 - 1.48647242804284e60 * cos(theta) ** 2 + 6.31466621938335e56 ) * cos(31 * phi) ) # @torch.jit.script def Yl75_m32(theta, phi): return ( 1.08801409539383e-59 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.00898646673591e78 * cos(theta) ** 43 - 6.11486429169482e78 * cos(theta) ** 41 + 1.70550636707134e79 * cos(theta) ** 39 - 2.90524188045946e79 * cos(theta) ** 37 + 3.38267673494056e79 * cos(theta) ** 35 - 2.85488320182927e79 * cos(theta) ** 33 + 1.80740807022285e79 * cos(theta) ** 31 - 8.76376175864049e78 * cos(theta) ** 29 + 3.29452525371115e78 * cos(theta) ** 27 - 9.66063796201013e77 * cos(theta) ** 25 + 2.21235983862827e77 * cos(theta) ** 23 - 3.94451754174034e76 * cos(theta) ** 21 + 5.43535881735873e75 * cos(theta) ** 19 - 5.71966989395903e74 * cos(theta) ** 17 + 4.51727703587938e73 * cos(theta) ** 15 - 2.61330076455832e72 * cos(theta) ** 13 + 1.07057489304385e71 * cos(theta) ** 11 - 2.96036295210717e69 * cos(theta) ** 9 + 5.14845730801247e67 * cos(theta) ** 7 - 5.03575237392929e65 * cos(theta) ** 5 + 2.26835692519338e63 * cos(theta) ** 3 - 2.97294485608568e60 * cos(theta) ) * cos(32 * phi) ) # @torch.jit.script def Yl75_m33(theta, phi): return ( 1.59657166064091e-61 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 4.33864180696442e79 * cos(theta) ** 42 - 2.50709435959487e80 * cos(theta) ** 40 + 6.65147483157824e80 * cos(theta) ** 38 - 1.07493949577e81 * cos(theta) ** 36 + 1.1839368572292e81 * cos(theta) ** 34 - 9.42111456603658e80 * cos(theta) ** 32 + 5.60296501769082e80 * cos(theta) ** 30 - 2.54149091000574e80 * cos(theta) ** 28 + 8.8952181850201e79 * cos(theta) ** 26 - 2.41515949050253e79 * cos(theta) ** 24 + 5.08842762884503e78 * cos(theta) ** 22 - 8.2834868376547e77 * cos(theta) ** 20 + 1.03271817529816e77 * cos(theta) ** 18 - 9.72343881973035e75 * cos(theta) ** 16 + 6.77591555381906e74 * cos(theta) ** 14 - 3.39729099392581e73 * cos(theta) ** 12 + 1.17763238234823e72 * cos(theta) ** 10 - 2.66432665689645e70 * cos(theta) ** 8 + 3.60392011560873e68 * cos(theta) ** 6 - 2.51787618696465e66 * cos(theta) ** 4 + 6.80507077558012e63 * cos(theta) ** 2 - 2.97294485608568e60 ) * cos(33 * phi) ) # @torch.jit.script def Yl75_m34(theta, phi): return ( 2.35966593012546e-63 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.82222955892506e81 * cos(theta) ** 41 - 1.00283774383795e82 * cos(theta) ** 39 + 2.52756043599973e82 * cos(theta) ** 37 - 3.869782184772e82 * cos(theta) ** 35 + 4.02538531457927e82 * cos(theta) ** 33 - 3.01475666113171e82 * cos(theta) ** 31 + 1.68088950530725e82 * cos(theta) ** 29 - 7.11617454801608e81 * cos(theta) ** 27 + 2.31275672810523e81 * cos(theta) ** 25 - 5.79638277720608e80 * cos(theta) ** 23 + 1.11945407834591e80 * cos(theta) ** 21 - 1.65669736753094e79 * cos(theta) ** 19 + 1.85889271553669e78 * cos(theta) ** 17 - 1.55575021115686e77 * cos(theta) ** 15 + 9.48628177534669e75 * cos(theta) ** 13 - 4.07674919271097e74 * cos(theta) ** 11 + 1.17763238234823e73 * cos(theta) ** 9 - 2.13146132551716e71 * cos(theta) ** 7 + 2.16235206936524e69 * cos(theta) ** 5 - 1.00715047478586e67 * cos(theta) ** 3 + 1.36101415511602e64 * cos(theta) ) * cos(34 * phi) ) # @torch.jit.script def Yl75_m35(theta, phi): return ( 3.51368035987702e-65 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 7.47114119159273e82 * cos(theta) ** 40 - 3.911067200968e83 * cos(theta) ** 38 + 9.351973613199e83 * cos(theta) ** 36 - 1.3544237646702e84 * cos(theta) ** 34 + 1.32837715381116e84 * cos(theta) ** 32 - 9.34574564950829e83 * cos(theta) ** 30 + 4.87457956539101e83 * cos(theta) ** 28 - 1.92136712796434e83 * cos(theta) ** 26 + 5.78189182026307e82 * cos(theta) ** 24 - 1.3331680387574e82 * cos(theta) ** 22 + 2.35085356452641e81 * cos(theta) ** 20 - 3.14772499830879e80 * cos(theta) ** 18 + 3.16011761641237e79 * cos(theta) ** 16 - 2.33362531673528e78 * cos(theta) ** 14 + 1.23321663079507e77 * cos(theta) ** 12 - 4.48442411198207e75 * cos(theta) ** 10 + 1.05986914411341e74 * cos(theta) ** 8 - 1.49202292786201e72 * cos(theta) ** 6 + 1.08117603468262e70 * cos(theta) ** 4 - 3.02145142435758e67 * cos(theta) ** 2 + 1.36101415511602e64 ) * cos(35 * phi) ) # @torch.jit.script def Yl75_m36(theta, phi): return ( 5.27315777817911e-67 * (1.0 - cos(theta) ** 2) ** 18 * ( 2.98845647663709e84 * cos(theta) ** 39 - 1.48620553636784e85 * cos(theta) ** 37 + 3.36671050075164e85 * cos(theta) ** 35 - 4.60504079987868e85 * cos(theta) ** 33 + 4.25080689219571e85 * cos(theta) ** 31 - 2.80372369485249e85 * cos(theta) ** 29 + 1.36488227830948e85 * cos(theta) ** 27 - 4.99555453270729e84 * cos(theta) ** 25 + 1.38765403686314e84 * cos(theta) ** 23 - 2.93296968526628e83 * cos(theta) ** 21 + 4.70170712905281e82 * cos(theta) ** 19 - 5.66590499695582e81 * cos(theta) ** 17 + 5.05618818625978e80 * cos(theta) ** 15 - 3.2670754434294e79 * cos(theta) ** 13 + 1.47985995695408e78 * cos(theta) ** 11 - 4.48442411198207e76 * cos(theta) ** 9 + 8.47895315290728e74 * cos(theta) ** 7 - 8.95213756717209e72 * cos(theta) ** 5 + 4.32470413873048e70 * cos(theta) ** 3 - 6.04290284871515e67 * cos(theta) ) * cos(36 * phi) ) # @torch.jit.script def Yl75_m37(theta, phi): return ( 7.97865067865162e-69 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 1.16549802588847e86 * cos(theta) ** 38 - 5.49896048456101e86 * cos(theta) ** 36 + 1.17834867526307e87 * cos(theta) ** 34 - 1.51966346395996e87 * cos(theta) ** 32 + 1.31775013658067e87 * cos(theta) ** 30 - 8.13079871507221e86 * cos(theta) ** 28 + 3.68518215143561e86 * cos(theta) ** 26 - 1.24888863317682e86 * cos(theta) ** 24 + 3.19160428478521e85 * cos(theta) ** 22 - 6.15923633905918e84 * cos(theta) ** 20 + 8.93324354520034e83 * cos(theta) ** 18 - 9.63203849482489e82 * cos(theta) ** 16 + 7.58428227938968e81 * cos(theta) ** 14 - 4.24719807645822e80 * cos(theta) ** 12 + 1.62784595264949e79 * cos(theta) ** 10 - 4.03598170078386e77 * cos(theta) ** 8 + 5.93526720703509e75 * cos(theta) ** 6 - 4.47606878358604e73 * cos(theta) ** 4 + 1.29741124161914e71 * cos(theta) ** 2 - 6.04290284871515e67 ) * cos(37 * phi) ) # @torch.jit.script def Yl75_m38(theta, phi): return ( 1.21758259444216e-70 * (1.0 - cos(theta) ** 2) ** 19 * ( 4.42889249837617e87 * cos(theta) ** 37 - 1.97962577444196e88 * cos(theta) ** 35 + 4.00638549589445e88 * cos(theta) ** 33 - 4.86292308467189e88 * cos(theta) ** 31 + 3.95325040974201e88 * cos(theta) ** 29 - 2.27662364022022e88 * cos(theta) ** 27 + 9.58147359373258e87 * cos(theta) ** 25 - 2.99733271962437e87 * cos(theta) ** 23 + 7.02152942652747e86 * cos(theta) ** 21 - 1.23184726781184e86 * cos(theta) ** 19 + 1.60798383813606e85 * cos(theta) ** 17 - 1.54112615917198e84 * cos(theta) ** 15 + 1.06179951911455e83 * cos(theta) ** 13 - 5.09663769174986e81 * cos(theta) ** 11 + 1.62784595264949e80 * cos(theta) ** 9 - 3.22878536062709e78 * cos(theta) ** 7 + 3.56116032422106e76 * cos(theta) ** 5 - 1.79042751343442e74 * cos(theta) ** 3 + 2.59482248323829e71 * cos(theta) ) * cos(38 * phi) ) # @torch.jit.script def Yl75_m39(theta, phi): return ( 1.87475768896644e-72 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 1.63869022439918e89 * cos(theta) ** 36 - 6.92869021054688e89 * cos(theta) ** 34 + 1.32210721364517e90 * cos(theta) ** 32 - 1.50750615624829e90 * cos(theta) ** 30 + 1.14644261882518e90 * cos(theta) ** 28 - 6.14688382859459e89 * cos(theta) ** 26 + 2.39536839843314e89 * cos(theta) ** 24 - 6.89386525513606e88 * cos(theta) ** 22 + 1.47452117957077e88 * cos(theta) ** 20 - 2.34050980884249e87 * cos(theta) ** 18 + 2.7335725248313e86 * cos(theta) ** 16 - 2.31168923875797e85 * cos(theta) ** 14 + 1.38033937484892e84 * cos(theta) ** 12 - 5.60630146092485e82 * cos(theta) ** 10 + 1.46506135738454e81 * cos(theta) ** 8 - 2.26014975243896e79 * cos(theta) ** 6 + 1.78058016211053e77 * cos(theta) ** 4 - 5.37128254030325e74 * cos(theta) ** 2 + 2.59482248323829e71 ) * cos(39 * phi) ) # @torch.jit.script def Yl75_m40(theta, phi): return ( 2.91370093207783e-74 * (1.0 - cos(theta) ** 2) ** 20 * ( 5.89928480783706e90 * cos(theta) ** 35 - 2.35575467158594e91 * cos(theta) ** 33 + 4.23074308366454e91 * cos(theta) ** 31 - 4.52251846874486e91 * cos(theta) ** 29 + 3.21003933271051e91 * cos(theta) ** 27 - 1.59818979543459e91 * cos(theta) ** 25 + 5.74888415623955e90 * cos(theta) ** 23 - 1.51665035612993e90 * cos(theta) ** 21 + 2.94904235914154e89 * cos(theta) ** 19 - 4.21291765591648e88 * cos(theta) ** 17 + 4.37371603973009e87 * cos(theta) ** 15 - 3.23636493426116e86 * cos(theta) ** 13 + 1.65640724981871e85 * cos(theta) ** 11 - 5.60630146092485e83 * cos(theta) ** 9 + 1.17204908590763e82 * cos(theta) ** 7 - 1.35608985146338e80 * cos(theta) ** 5 + 7.12232064844211e77 * cos(theta) ** 3 - 1.07425650806065e75 * cos(theta) ) * cos(40 * phi) ) # @torch.jit.script def Yl75_m41(theta, phi): return ( 4.57279735708286e-76 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 2.06474968274297e92 * cos(theta) ** 34 - 7.7739904162336e92 * cos(theta) ** 32 + 1.31153035593601e93 * cos(theta) ** 30 - 1.31153035593601e93 * cos(theta) ** 28 + 8.66710619831838e92 * cos(theta) ** 26 - 3.99547448858649e92 * cos(theta) ** 24 + 1.3222433559351e92 * cos(theta) ** 22 - 3.18496574787286e91 * cos(theta) ** 20 + 5.60318048236892e90 * cos(theta) ** 18 - 7.16196001505801e89 * cos(theta) ** 16 + 6.56057405959513e88 * cos(theta) ** 14 - 4.20727441453951e87 * cos(theta) ** 12 + 1.82204797480058e86 * cos(theta) ** 10 - 5.04567131483236e84 * cos(theta) ** 8 + 8.20434360135344e82 * cos(theta) ** 6 - 6.78044925731689e80 * cos(theta) ** 4 + 2.13669619453263e78 * cos(theta) ** 2 - 1.07425650806065e75 ) * cos(41 * phi) ) # @torch.jit.script def Yl75_m42(theta, phi): return ( 7.25019298454061e-78 * (1.0 - cos(theta) ** 2) ** 21 * ( 7.0201489213261e93 * cos(theta) ** 33 - 2.48767693319475e94 * cos(theta) ** 31 + 3.93459106780802e94 * cos(theta) ** 29 - 3.67228499662082e94 * cos(theta) ** 27 + 2.25344761156278e94 * cos(theta) ** 25 - 9.58913877260756e93 * cos(theta) ** 23 + 2.90893538305721e93 * cos(theta) ** 21 - 6.36993149574572e92 * cos(theta) ** 19 + 1.00857248682641e92 * cos(theta) ** 17 - 1.14591360240928e91 * cos(theta) ** 15 + 9.18480368343318e89 * cos(theta) ** 13 - 5.04872929744741e88 * cos(theta) ** 11 + 1.82204797480058e87 * cos(theta) ** 9 - 4.03653705186589e85 * cos(theta) ** 7 + 4.92260616081206e83 * cos(theta) ** 5 - 2.71217970292676e81 * cos(theta) ** 3 + 4.27339238906527e78 * cos(theta) ) * cos(42 * phi) ) # @torch.jit.script def Yl75_m43(theta, phi): return ( 1.16185409527301e-79 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 2.31664914403761e95 * cos(theta) ** 32 - 7.71179849290373e95 * cos(theta) ** 30 + 1.14103140966433e96 * cos(theta) ** 28 - 9.91516949087622e95 * cos(theta) ** 26 + 5.63361902890694e95 * cos(theta) ** 24 - 2.20550191769974e95 * cos(theta) ** 22 + 6.10876430442014e94 * cos(theta) ** 20 - 1.21028698419169e94 * cos(theta) ** 18 + 1.71457322760489e93 * cos(theta) ** 16 - 1.71887040361392e92 * cos(theta) ** 14 + 1.19402447884631e91 * cos(theta) ** 12 - 5.55360222719216e89 * cos(theta) ** 10 + 1.63984317732052e88 * cos(theta) ** 8 - 2.82557593630612e86 * cos(theta) ** 6 + 2.46130308040603e84 * cos(theta) ** 4 - 8.13653910878027e81 * cos(theta) ** 2 + 4.27339238906527e78 ) * cos(43 * phi) ) # @torch.jit.script def Yl75_m44(theta, phi): return ( 1.88279537695074e-81 * (1.0 - cos(theta) ** 2) ** 22 * ( 7.41327726092036e96 * cos(theta) ** 31 - 2.31353954787112e97 * cos(theta) ** 29 + 3.19488794706012e97 * cos(theta) ** 27 - 2.57794406762782e97 * cos(theta) ** 25 + 1.35206856693767e97 * cos(theta) ** 23 - 4.85210421893943e96 * cos(theta) ** 21 + 1.22175286088403e96 * cos(theta) ** 19 - 2.17851657154504e95 * cos(theta) ** 17 + 2.74331716416782e94 * cos(theta) ** 15 - 2.40641856505949e93 * cos(theta) ** 13 + 1.43282937461558e92 * cos(theta) ** 11 - 5.55360222719216e90 * cos(theta) ** 9 + 1.31187454185641e89 * cos(theta) ** 7 - 1.69534556178367e87 * cos(theta) ** 5 + 9.84521232162413e84 * cos(theta) ** 3 - 1.62730782175605e82 * cos(theta) ) * cos(44 * phi) ) # @torch.jit.script def Yl75_m45(theta, phi): return ( 3.08696462924721e-83 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 2.29811595088531e98 * cos(theta) ** 30 - 6.70926468882624e98 * cos(theta) ** 28 + 8.62619745706231e98 * cos(theta) ** 26 - 6.44486016906954e98 * cos(theta) ** 24 + 3.10975770395663e98 * cos(theta) ** 22 - 1.01894188597728e98 * cos(theta) ** 20 + 2.32133043567965e97 * cos(theta) ** 18 - 3.70347817162656e96 * cos(theta) ** 16 + 4.11497574625173e95 * cos(theta) ** 14 - 3.12834413457734e94 * cos(theta) ** 12 + 1.57611231207713e93 * cos(theta) ** 10 - 4.99824200447294e91 * cos(theta) ** 8 + 9.1831217929949e89 * cos(theta) ** 6 - 8.47672780891837e87 * cos(theta) ** 4 + 2.95356369648724e85 * cos(theta) ** 2 - 1.62730782175605e82 ) * cos(45 * phi) ) # @torch.jit.script def Yl75_m46(theta, phi): return ( 5.12363685351293e-85 * (1.0 - cos(theta) ** 2) ** 23 * ( 6.89434785265593e99 * cos(theta) ** 29 - 1.87859411287135e100 * cos(theta) ** 27 + 2.2428113388362e100 * cos(theta) ** 25 - 1.54676644057669e100 * cos(theta) ** 23 + 6.84146694870459e99 * cos(theta) ** 21 - 2.03788377195456e99 * cos(theta) ** 19 + 4.17839478422338e98 * cos(theta) ** 17 - 5.9255650746025e97 * cos(theta) ** 15 + 5.76096604475243e96 * cos(theta) ** 13 - 3.75401296149281e95 * cos(theta) ** 11 + 1.57611231207713e94 * cos(theta) ** 9 - 3.99859360357835e92 * cos(theta) ** 7 + 5.50987307579694e90 * cos(theta) ** 5 - 3.39069112356735e88 * cos(theta) ** 3 + 5.90712739297447e85 * cos(theta) ) * cos(46 * phi) ) # @torch.jit.script def Yl75_m47(theta, phi): return ( 8.61389208310165e-87 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 1.99936087727022e101 * cos(theta) ** 28 - 5.07220410475264e101 * cos(theta) ** 26 + 5.6070283470905e101 * cos(theta) ** 24 - 3.55756281332639e101 * cos(theta) ** 22 + 1.43670805922796e101 * cos(theta) ** 20 - 3.87197916671366e100 * cos(theta) ** 18 + 7.10327113317974e99 * cos(theta) ** 16 - 8.88834761190374e98 * cos(theta) ** 14 + 7.48925585817816e97 * cos(theta) ** 12 - 4.12941425764209e96 * cos(theta) ** 10 + 1.41850108086942e95 * cos(theta) ** 8 - 2.79901552250485e93 * cos(theta) ** 6 + 2.75493653789847e91 * cos(theta) ** 4 - 1.0172073370702e89 * cos(theta) ** 2 + 5.90712739297447e85 ) * cos(47 * phi) ) # @torch.jit.script def Yl75_m48(theta, phi): return ( 1.46780328429843e-88 * (1.0 - cos(theta) ** 2) ** 24 * ( 5.59821045635662e102 * cos(theta) ** 27 - 1.31877306723569e103 * cos(theta) ** 25 + 1.34568680330172e103 * cos(theta) ** 23 - 7.82663818931805e102 * cos(theta) ** 21 + 2.87341611845593e102 * cos(theta) ** 19 - 6.96956250008459e101 * cos(theta) ** 17 + 1.13652338130876e101 * cos(theta) ** 15 - 1.24436866566652e100 * cos(theta) ** 13 + 8.98710702981379e98 * cos(theta) ** 11 - 4.12941425764209e97 * cos(theta) ** 9 + 1.13480086469554e96 * cos(theta) ** 7 - 1.67940931350291e94 * cos(theta) ** 5 + 1.10197461515939e92 * cos(theta) ** 3 - 2.03441467414041e89 * cos(theta) ) * cos(48 * phi) ) # @torch.jit.script def Yl75_m49(theta, phi): return ( 2.53673517197357e-90 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.51151682321629e104 * cos(theta) ** 26 - 3.29693266808922e104 * cos(theta) ** 24 + 3.09507964759396e104 * cos(theta) ** 22 - 1.64359401975679e104 * cos(theta) ** 20 + 5.45949062506627e103 * cos(theta) ** 18 - 1.18482562501438e103 * cos(theta) ** 16 + 1.70478507196314e102 * cos(theta) ** 14 - 1.61767926536648e101 * cos(theta) ** 12 + 9.88581773279516e99 * cos(theta) ** 10 - 3.71647283187788e98 * cos(theta) ** 8 + 7.94360605286875e96 * cos(theta) ** 6 - 8.39704656751454e94 * cos(theta) ** 4 + 3.30592384547817e92 * cos(theta) ** 2 - 2.03441467414041e89 ) * cos(49 * phi) ) # @torch.jit.script def Yl75_m50(theta, phi): return ( 4.44972785087522e-92 * (1.0 - cos(theta) ** 2) ** 25 * ( 3.92994374036235e105 * cos(theta) ** 25 - 7.91263840341412e105 * cos(theta) ** 23 + 6.80917522470671e105 * cos(theta) ** 21 - 3.28718803951358e105 * cos(theta) ** 19 + 9.82708312511928e104 * cos(theta) ** 17 - 1.89572100002301e104 * cos(theta) ** 15 + 2.38669910074839e103 * cos(theta) ** 13 - 1.94121511843978e102 * cos(theta) ** 11 + 9.88581773279516e100 * cos(theta) ** 9 - 2.9731782655023e99 * cos(theta) ** 7 + 4.76616363172125e97 * cos(theta) ** 5 - 3.35881862700582e95 * cos(theta) ** 3 + 6.61184769095633e92 * cos(theta) ) * cos(50 * phi) ) # @torch.jit.script def Yl75_m51(theta, phi): return ( 7.92826527731477e-94 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 9.82485935090586e106 * cos(theta) ** 24 - 1.81990683278525e107 * cos(theta) ** 22 + 1.42992679718841e107 * cos(theta) ** 20 - 6.24565727507581e106 * cos(theta) ** 18 + 1.67060413127028e106 * cos(theta) ** 16 - 2.84358150003451e105 * cos(theta) ** 14 + 3.10270883097291e104 * cos(theta) ** 12 - 2.13533663028376e103 * cos(theta) ** 10 + 8.89723595951565e101 * cos(theta) ** 8 - 2.08122478585161e100 * cos(theta) ** 6 + 2.38308181586063e98 * cos(theta) ** 4 - 1.00764558810174e96 * cos(theta) ** 2 + 6.61184769095633e92 ) * cos(51 * phi) ) # @torch.jit.script def Yl75_m52(theta, phi): return ( 1.43605373791225e-95 * (1.0 - cos(theta) ** 2) ** 26 * ( 2.35796624421741e108 * cos(theta) ** 23 - 4.00379503212754e108 * cos(theta) ** 21 + 2.85985359437682e108 * cos(theta) ** 19 - 1.12421830951365e108 * cos(theta) ** 17 + 2.67296661003244e107 * cos(theta) ** 15 - 3.98101410004832e106 * cos(theta) ** 13 + 3.72325059716749e105 * cos(theta) ** 11 - 2.13533663028376e104 * cos(theta) ** 9 + 7.11778876761252e102 * cos(theta) ** 7 - 1.24873487151097e101 * cos(theta) ** 5 + 9.5323272634425e98 * cos(theta) ** 3 - 2.01529117620349e96 * cos(theta) ) * cos(52 * phi) ) # @torch.jit.script def Yl75_m53(theta, phi): return ( 2.64668215326668e-97 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 5.42332236170004e109 * cos(theta) ** 22 - 8.40796956746784e109 * cos(theta) ** 20 + 5.43372182931595e109 * cos(theta) ** 18 - 1.9111711261732e109 * cos(theta) ** 16 + 4.00944991504867e108 * cos(theta) ** 14 - 5.17531833006282e107 * cos(theta) ** 12 + 4.09557565688424e106 * cos(theta) ** 10 - 1.92180296725538e105 * cos(theta) ** 8 + 4.98245213732876e103 * cos(theta) ** 6 - 6.24367435755484e101 * cos(theta) ** 4 + 2.85969817903275e99 * cos(theta) ** 2 - 2.01529117620349e96 ) * cos(53 * phi) ) # @torch.jit.script def Yl75_m54(theta, phi): return ( 4.96816022272453e-99 * (1.0 - cos(theta) ** 2) ** 27 * ( 1.19313091957401e111 * cos(theta) ** 21 - 1.68159391349357e111 * cos(theta) ** 19 + 9.78069929276872e110 * cos(theta) ** 17 - 3.05787380187712e110 * cos(theta) ** 15 + 5.61322988106813e109 * cos(theta) ** 13 - 6.21038199607538e108 * cos(theta) ** 11 + 4.09557565688424e107 * cos(theta) ** 9 - 1.5374423738043e106 * cos(theta) ** 7 + 2.98947128239726e104 * cos(theta) ** 5 - 2.49746974302194e102 * cos(theta) ** 3 + 5.7193963580655e99 * cos(theta) ) * cos(54 * phi) ) # @torch.jit.script def Yl75_m55(theta, phi): return ( 9.5085494590717e-101 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 2.50557493110542e112 * cos(theta) ** 20 - 3.19502843563778e112 * cos(theta) ** 18 + 1.66271887977068e112 * cos(theta) ** 16 - 4.58681070281567e111 * cos(theta) ** 14 + 7.29719884538857e110 * cos(theta) ** 12 - 6.83142019568292e109 * cos(theta) ** 10 + 3.68601809119582e108 * cos(theta) ** 8 - 1.07620966166301e107 * cos(theta) ** 6 + 1.49473564119863e105 * cos(theta) ** 4 - 7.49240922906581e102 * cos(theta) ** 2 + 5.7193963580655e99 ) * cos(55 * phi) ) # @torch.jit.script def Yl75_m56(theta, phi): return ( 1.85764885480854e-102 * (1.0 - cos(theta) ** 2) ** 28 * ( 5.01114986221083e113 * cos(theta) ** 19 - 5.751051184148e113 * cos(theta) ** 17 + 2.66035020763309e113 * cos(theta) ** 15 - 6.42153498394194e112 * cos(theta) ** 13 + 8.75663861446629e111 * cos(theta) ** 11 - 6.83142019568292e110 * cos(theta) ** 9 + 2.94881447295665e109 * cos(theta) ** 7 - 6.45725796997808e107 * cos(theta) ** 5 + 5.97894256479452e105 * cos(theta) ** 3 - 1.49848184581316e103 * cos(theta) ) * cos(56 * phi) ) # @torch.jit.script def Yl75_m57(theta, phi): return ( 3.70936746208647e-104 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 9.52118473820058e114 * cos(theta) ** 18 - 9.77678701305161e114 * cos(theta) ** 16 + 3.99052531144964e114 * cos(theta) ** 14 - 8.34799547912452e113 * cos(theta) ** 12 + 9.63230247591291e112 * cos(theta) ** 10 - 6.14827817611463e111 * cos(theta) ** 8 + 2.06417013106966e110 * cos(theta) ** 6 - 3.22862898498904e108 * cos(theta) ** 4 + 1.79368276943835e106 * cos(theta) ** 2 - 1.49848184581316e103 ) * cos(57 * phi) ) # @torch.jit.script def Yl75_m58(theta, phi): return ( 7.58119705203574e-106 * (1.0 - cos(theta) ** 2) ** 29 * ( 1.71381325287611e116 * cos(theta) ** 17 - 1.56428592208826e116 * cos(theta) ** 15 + 5.58673543602949e115 * cos(theta) ** 13 - 1.00175945749494e115 * cos(theta) ** 11 + 9.63230247591291e113 * cos(theta) ** 9 - 4.9186225408917e112 * cos(theta) ** 7 + 1.2385020786418e111 * cos(theta) ** 5 - 1.29145159399562e109 * cos(theta) ** 3 + 3.58736553887671e106 * cos(theta) ) * cos(58 * phi) ) # @torch.jit.script def Yl75_m59(theta, phi): return ( 1.58840382857838e-107 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 2.91348252988938e117 * cos(theta) ** 16 - 2.34642888313239e117 * cos(theta) ** 14 + 7.26275606683834e116 * cos(theta) ** 12 - 1.10193540324444e116 * cos(theta) ** 10 + 8.66907222832162e114 * cos(theta) ** 8 - 3.44303577862419e113 * cos(theta) ** 6 + 6.19251039320898e111 * cos(theta) ** 4 - 3.87435478198685e109 * cos(theta) ** 2 + 3.58736553887671e106 ) * cos(59 * phi) ) # @torch.jit.script def Yl75_m60(theta, phi): return ( 3.41770087507565e-109 * (1.0 - cos(theta) ** 2) ** 30 * ( 4.66157204782301e118 * cos(theta) ** 15 - 3.28500043638534e118 * cos(theta) ** 13 + 8.715307280206e117 * cos(theta) ** 11 - 1.10193540324444e117 * cos(theta) ** 9 + 6.9352577826573e115 * cos(theta) ** 7 - 2.06582146717451e114 * cos(theta) ** 5 + 2.47700415728359e112 * cos(theta) ** 3 - 7.74870956397369e109 * cos(theta) ) * cos(60 * phi) ) # @torch.jit.script def Yl75_m61(theta, phi): return ( 7.56691692322602e-111 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 6.99235807173451e119 * cos(theta) ** 14 - 4.27050056730094e119 * cos(theta) ** 12 + 9.5868380082266e118 * cos(theta) ** 10 - 9.91741862919994e117 * cos(theta) ** 8 + 4.85468044786011e116 * cos(theta) ** 6 - 1.03291073358726e115 * cos(theta) ** 4 + 7.43101247185077e112 * cos(theta) ** 2 - 7.74870956397369e109 ) * cos(61 * phi) ) # @torch.jit.script def Yl75_m62(theta, phi): return ( 1.72780475345411e-112 * (1.0 - cos(theta) ** 2) ** 31 * ( 9.78930130042831e120 * cos(theta) ** 13 - 5.12460068076113e120 * cos(theta) ** 11 + 9.5868380082266e119 * cos(theta) ** 9 - 7.93393490335995e118 * cos(theta) ** 7 + 2.91280826871606e117 * cos(theta) ** 5 - 4.13164293434903e115 * cos(theta) ** 3 + 1.48620249437015e113 * cos(theta) ) * cos(62 * phi) ) # @torch.jit.script def Yl75_m63(theta, phi): return ( 4.07927933312929e-114 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 1.27260916905568e122 * cos(theta) ** 12 - 5.63706074883724e121 * cos(theta) ** 10 + 8.62815420740394e120 * cos(theta) ** 8 - 5.55375443235196e119 * cos(theta) ** 6 + 1.45640413435803e118 * cos(theta) ** 4 - 1.23949288030471e116 * cos(theta) ** 2 + 1.48620249437015e113 ) * cos(63 * phi) ) # @torch.jit.script def Yl75_m64(theta, phi): return ( 9.98815841981289e-116 * (1.0 - cos(theta) ** 2) ** 32 * ( 1.52713100286682e123 * cos(theta) ** 11 - 5.63706074883724e122 * cos(theta) ** 9 + 6.90252336592316e121 * cos(theta) ** 7 - 3.33225265941118e120 * cos(theta) ** 5 + 5.82561653743213e118 * cos(theta) ** 3 - 2.47898576060942e116 * cos(theta) ) * cos(64 * phi) ) # @torch.jit.script def Yl75_m65(theta, phi): return ( 2.54521844314586e-117 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 1.6798441031535e124 * cos(theta) ** 10 - 5.07335467395352e123 * cos(theta) ** 8 + 4.83176635614621e122 * cos(theta) ** 6 - 1.66612632970559e121 * cos(theta) ** 4 + 1.74768496122964e119 * cos(theta) ** 2 - 2.47898576060942e116 ) * cos(65 * phi) ) # @torch.jit.script def Yl75_m66(theta, phi): return ( 6.77821757535069e-119 * (1.0 - cos(theta) ** 2) ** 33 * ( 1.6798441031535e125 * cos(theta) ** 9 - 4.05868373916282e124 * cos(theta) ** 7 + 2.89905981368773e123 * cos(theta) ** 5 - 6.66450531882236e121 * cos(theta) ** 3 + 3.49536992245928e119 * cos(theta) ) * cos(66 * phi) ) # @torch.jit.script def Yl75_m67(theta, phi): return ( 1.89605127723776e-120 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 1.51185969283815e126 * cos(theta) ** 8 - 2.84107861741397e125 * cos(theta) ** 6 + 1.44952990684386e124 * cos(theta) ** 4 - 1.99935159564671e122 * cos(theta) ** 2 + 3.49536992245928e119 ) * cos(67 * phi) ) # @torch.jit.script def Yl75_m68(theta, phi): return ( 5.60579311830811e-122 * (1.0 - cos(theta) ** 2) ** 34 * ( 1.20948775427052e127 * cos(theta) ** 7 - 1.70464717044838e126 * cos(theta) ** 5 + 5.79811962737545e124 * cos(theta) ** 3 - 3.99870319129341e122 * cos(theta) ) * cos(68 * phi) ) # @torch.jit.script def Yl75_m69(theta, phi): return ( 1.7656588681334e-123 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 8.46641427989363e127 * cos(theta) ** 6 - 8.52323585224191e126 * cos(theta) ** 4 + 1.73943588821264e125 * cos(theta) ** 2 - 3.99870319129341e122 ) * cos(69 * phi) ) # @torch.jit.script def Yl75_m70(theta, phi): return ( 5.98614419162843e-125 * (1.0 - cos(theta) ** 2) ** 35 * ( 5.07984856793618e128 * cos(theta) ** 5 - 3.40929434089676e127 * cos(theta) ** 3 + 3.47887177642527e125 * cos(theta) ) * cos(70 * phi) ) # @torch.jit.script def Yl75_m71(theta, phi): return ( 2.21557136583743e-126 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 2.53992428396809e129 * cos(theta) ** 4 - 1.02278830226903e128 * cos(theta) ** 2 + 3.47887177642527e125 ) * cos(71 * phi) ) # @torch.jit.script def Yl75_m72(theta, phi): return ( 9.13686231767905e-128 * (1.0 - cos(theta) ** 2) ** 36 * (1.01596971358724e130 * cos(theta) ** 3 - 2.04557660453806e128 * cos(theta)) * cos(72 * phi) ) # @torch.jit.script def Yl75_m73(theta, phi): return ( 4.33616296245739e-129 * (1.0 - cos(theta) ** 2) ** 36.5 * (3.04790914076171e130 * cos(theta) ** 2 - 2.04557660453806e128) * cos(73 * phi) ) # @torch.jit.script def Yl75_m74(theta, phi): return 15.311913801845 * (1.0 - cos(theta) ** 2) ** 37 * cos(74 * phi) * cos(theta) # @torch.jit.script def Yl75_m75(theta, phi): return 1.25021252666665 * (1.0 - cos(theta) ** 2) ** 37.5 * cos(75 * phi) # @torch.jit.script def Yl76_m_minus_76(theta, phi): return 1.25431832598384 * (1.0 - cos(theta) ** 2) ** 38 * sin(76 * phi) # @torch.jit.script def Yl76_m_minus_75(theta, phi): return ( 15.4642749057508 * (1.0 - cos(theta) ** 2) ** 37.5 * sin(75 * phi) * cos(theta) ) # @torch.jit.script def Yl76_m_minus_74(theta, phi): return ( 2.91960483102034e-131 * (1.0 - cos(theta) ** 2) ** 37 * (4.60234280255018e132 * cos(theta) ** 2 - 3.04790914076171e130) * sin(74 * phi) ) # @torch.jit.script def Yl76_m_minus_73(theta, phi): return ( 6.19341712319846e-130 * (1.0 - cos(theta) ** 2) ** 36.5 * (1.53411426751673e132 * cos(theta) ** 3 - 3.04790914076171e130 * cos(theta)) * sin(73 * phi) ) # @torch.jit.script def Yl76_m_minus_72(theta, phi): return ( 1.51200581131519e-128 * (1.0 - cos(theta) ** 2) ** 36 * ( 3.83528566879182e131 * cos(theta) ** 4 - 1.52395457038085e130 * cos(theta) ** 2 + 5.11394151134515e127 ) * sin(72 * phi) ) # @torch.jit.script def Yl76_m_minus_71(theta, phi): return ( 4.11310049032803e-127 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 7.67057133758363e130 * cos(theta) ** 5 - 5.07984856793618e129 * cos(theta) ** 3 + 5.11394151134515e127 * cos(theta) ) * sin(71 * phi) ) # @torch.jit.script def Yl76_m_minus_70(theta, phi): return ( 1.22152852433332e-125 * (1.0 - cos(theta) ** 2) ** 35 * ( 1.27842855626394e130 * cos(theta) ** 6 - 1.26996214198404e129 * cos(theta) ** 4 + 2.55697075567257e127 * cos(theta) ** 2 - 5.79811962737545e124 ) * sin(70 * phi) ) # @torch.jit.script def Yl76_m_minus_69(theta, phi): return ( 3.90507213550102e-124 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 1.82632650894848e129 * cos(theta) ** 7 - 2.53992428396809e128 * cos(theta) ** 5 + 8.52323585224191e126 * cos(theta) ** 3 - 5.79811962737545e124 * cos(theta) ) * sin(69 * phi) ) # @torch.jit.script def Yl76_m_minus_68(theta, phi): return ( 1.3300196436452e-122 * (1.0 - cos(theta) ** 2) ** 34 * ( 2.2829081361856e128 * cos(theta) ** 8 - 4.23320713994682e127 * cos(theta) ** 6 + 2.13080896306048e126 * cos(theta) ** 4 - 2.89905981368773e124 * cos(theta) ** 2 + 4.99837898911677e121 ) * sin(68 * phi) ) # @torch.jit.script def Yl76_m_minus_67(theta, phi): return ( 4.78807071712273e-121 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 2.53656459576178e127 * cos(theta) ** 9 - 6.04743877135259e126 * cos(theta) ** 7 + 4.26161792612096e125 * cos(theta) ** 5 - 9.66353271229242e123 * cos(theta) ** 3 + 4.99837898911677e121 * cos(theta) ) * sin(67 * phi) ) # @torch.jit.script def Yl76_m_minus_66(theta, phi): return ( 1.81062525953883e-119 * (1.0 - cos(theta) ** 2) ** 33 * ( 2.53656459576178e126 * cos(theta) ** 10 - 7.55929846419074e125 * cos(theta) ** 8 + 7.10269654353493e124 * cos(theta) ** 6 - 2.4158831780731e123 * cos(theta) ** 4 + 2.49918949455838e121 * cos(theta) ** 2 - 3.49536992245928e118 ) * sin(66 * phi) ) # @torch.jit.script def Yl76_m_minus_65(theta, phi): return ( 7.15597952988258e-118 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 2.30596781432889e125 * cos(theta) ** 11 - 8.39922051576749e124 * cos(theta) ** 9 + 1.0146709347907e124 * cos(theta) ** 7 - 4.83176635614621e122 * cos(theta) ** 5 + 8.33063164852795e120 * cos(theta) ** 3 - 3.49536992245928e118 * cos(theta) ) * sin(65 * phi) ) # @torch.jit.script def Yl76_m_minus_64(theta, phi): return ( 2.94353543906491e-116 * (1.0 - cos(theta) ** 2) ** 32 * ( 1.92163984527408e124 * cos(theta) ** 12 - 8.39922051576749e123 * cos(theta) ** 10 + 1.26833866848838e123 * cos(theta) ** 8 - 8.05294392691035e121 * cos(theta) ** 6 + 2.08265791213199e120 * cos(theta) ** 4 - 1.74768496122964e118 * cos(theta) ** 2 + 2.06582146717451e115 ) * sin(64 * phi) ) # @torch.jit.script def Yl76_m_minus_63(theta, phi): return ( 1.25575513550519e-114 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 1.47818449636468e123 * cos(theta) ** 13 - 7.63565501433408e122 * cos(theta) ** 11 + 1.40926518720931e122 * cos(theta) ** 9 - 1.15042056098719e121 * cos(theta) ** 7 + 4.16531582426397e119 * cos(theta) ** 5 - 5.82561653743213e117 * cos(theta) ** 3 + 2.06582146717451e115 * cos(theta) ) * sin(63 * phi) ) # @torch.jit.script def Yl76_m_minus_62(theta, phi): return ( 5.539574161284e-113 * (1.0 - cos(theta) ** 2) ** 31 * ( 1.05584606883191e122 * cos(theta) ** 14 - 6.3630458452784e121 * cos(theta) ** 12 + 1.40926518720931e121 * cos(theta) ** 10 - 1.43802570123399e120 * cos(theta) ** 8 + 6.94219304043996e118 * cos(theta) ** 6 - 1.45640413435803e117 * cos(theta) ** 4 + 1.03291073358726e115 * cos(theta) ** 2 - 1.0615732102644e112 ) * sin(62 * phi) ) # @torch.jit.script def Yl76_m_minus_61(theta, phi): return ( 2.52035405268617e-111 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 7.03897379221274e120 * cos(theta) ** 15 - 4.89465065021416e120 * cos(theta) ** 13 + 1.28115017019028e120 * cos(theta) ** 11 - 1.59780633470443e119 * cos(theta) ** 9 + 9.91741862919994e117 * cos(theta) ** 7 - 2.91280826871606e116 * cos(theta) ** 5 + 3.44303577862419e114 * cos(theta) ** 3 - 1.0615732102644e112 * cos(theta) ) * sin(61 * phi) ) # @torch.jit.script def Yl76_m_minus_60(theta, phi): return ( 1.17999951421831e-109 * (1.0 - cos(theta) ** 2) ** 30 * ( 4.39935862013296e119 * cos(theta) ** 16 - 3.49617903586725e119 * cos(theta) ** 14 + 1.06762514182524e119 * cos(theta) ** 12 - 1.59780633470443e118 * cos(theta) ** 10 + 1.23967732864999e117 * cos(theta) ** 8 - 4.85468044786011e115 * cos(theta) ** 6 + 8.60758944656048e113 * cos(theta) ** 4 - 5.30786605132198e111 * cos(theta) ** 2 + 4.84294347748356e108 ) * sin(60 * phi) ) # @torch.jit.script def Yl76_m_minus_59(theta, phi): return ( 5.67382247644406e-108 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 2.58785801184292e118 * cos(theta) ** 17 - 2.3307860239115e118 * cos(theta) ** 15 + 8.21250109096335e117 * cos(theta) ** 13 - 1.45255121336767e117 * cos(theta) ** 11 + 1.37741925405555e116 * cos(theta) ** 9 - 6.9352577826573e114 * cos(theta) ** 7 + 1.7215178893121e113 * cos(theta) ** 5 - 1.76928868377399e111 * cos(theta) ** 3 + 4.84294347748356e108 * cos(theta) ) * sin(59 * phi) ) # @torch.jit.script def Yl76_m_minus_58(theta, phi): return ( 2.79691250186541e-106 * (1.0 - cos(theta) ** 2) ** 29 * ( 1.43769889546829e117 * cos(theta) ** 18 - 1.45674126494469e117 * cos(theta) ** 16 + 5.86607220783096e116 * cos(theta) ** 14 - 1.21045934447306e116 * cos(theta) ** 12 + 1.37741925405555e115 * cos(theta) ** 10 - 8.66907222832162e113 * cos(theta) ** 8 + 2.86919648218683e112 * cos(theta) ** 6 - 4.42322170943498e110 * cos(theta) ** 4 + 2.42147173874178e108 * cos(theta) ** 2 - 1.9929808549315e105 ) * sin(58 * phi) ) # @torch.jit.script def Yl76_m_minus_57(theta, phi): return ( 1.41126340407132e-104 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 7.56683629193836e115 * cos(theta) ** 19 - 8.56906626438053e115 * cos(theta) ** 17 + 3.91071480522064e115 * cos(theta) ** 15 - 9.31122572671582e114 * cos(theta) ** 13 + 1.25219932186868e114 * cos(theta) ** 11 - 9.63230247591291e112 * cos(theta) ** 9 + 4.09885211740975e111 * cos(theta) ** 7 - 8.84644341886996e109 * cos(theta) ** 5 + 8.0715724624726e107 * cos(theta) ** 3 - 1.9929808549315e105 * cos(theta) ) * sin(57 * phi) ) # @torch.jit.script def Yl76_m_minus_56(theta, phi): return ( 7.27861751466912e-103 * (1.0 - cos(theta) ** 2) ** 28 * ( 3.78341814596918e114 * cos(theta) ** 20 - 4.76059236910029e114 * cos(theta) ** 18 + 2.4441967532629e114 * cos(theta) ** 16 - 6.65087551908273e113 * cos(theta) ** 14 + 1.04349943489057e113 * cos(theta) ** 12 - 9.63230247591291e111 * cos(theta) ** 10 + 5.12356514676219e110 * cos(theta) ** 8 - 1.47440723647833e109 * cos(theta) ** 6 + 2.01789311561815e107 * cos(theta) ** 4 - 9.96490427465752e104 * cos(theta) ** 2 + 7.49240922906581e101 ) * sin(56 * phi) ) # @torch.jit.script def Yl76_m_minus_55(theta, phi): return ( 3.83217656884021e-101 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 1.80162768855675e113 * cos(theta) ** 21 - 2.50557493110542e113 * cos(theta) ** 19 + 1.437762796037e113 * cos(theta) ** 17 - 4.43391701272182e112 * cos(theta) ** 15 + 8.02691872992743e111 * cos(theta) ** 13 - 8.75663861446628e110 * cos(theta) ** 11 + 5.6928501630691e109 * cos(theta) ** 9 - 2.1062960521119e108 * cos(theta) ** 7 + 4.0357862312363e106 * cos(theta) ** 5 - 3.32163475821918e104 * cos(theta) ** 3 + 7.49240922906581e101 * cos(theta) ) * sin(55 * phi) ) # @torch.jit.script def Yl76_m_minus_54(theta, phi): return ( 2.05727571434266e-99 * (1.0 - cos(theta) ** 2) ** 27 * ( 8.18921676616706e111 * cos(theta) ** 22 - 1.25278746555271e112 * cos(theta) ** 20 + 7.98757108909445e111 * cos(theta) ** 18 - 2.77119813295114e111 * cos(theta) ** 16 + 5.73351337851959e110 * cos(theta) ** 14 - 7.29719884538857e109 * cos(theta) ** 12 + 5.6928501630691e108 * cos(theta) ** 10 - 2.63287006513987e107 * cos(theta) ** 8 + 6.72631038539383e105 * cos(theta) ** 6 - 8.30408689554794e103 * cos(theta) ** 4 + 3.7462046145329e101 * cos(theta) ** 2 - 2.5997256173025e98 ) * sin(54 * phi) ) # @torch.jit.script def Yl76_m_minus_53(theta, phi): return ( 1.12493672092363e-97 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 3.56052902876829e110 * cos(theta) ** 23 - 5.96565459787004e110 * cos(theta) ** 21 + 4.20398478373392e110 * cos(theta) ** 19 - 1.63011654879479e110 * cos(theta) ** 17 + 3.82234225234639e109 * cos(theta) ** 15 - 5.61322988106813e108 * cos(theta) ** 13 + 5.17531833006282e107 * cos(theta) ** 11 - 2.92541118348874e106 * cos(theta) ** 9 + 9.6090148362769e104 * cos(theta) ** 7 - 1.66081737910959e103 * cos(theta) ** 5 + 1.24873487151097e101 * cos(theta) ** 3 - 2.5997256173025e98 * cos(theta) ) * sin(53 * phi) ) # @torch.jit.script def Yl76_m_minus_52(theta, phi): return ( 6.2593403888518e-96 * (1.0 - cos(theta) ** 2) ** 26 * ( 1.48355376198679e109 * cos(theta) ** 24 - 2.71166118085002e109 * cos(theta) ** 22 + 2.10199239186696e109 * cos(theta) ** 20 - 9.05620304885992e108 * cos(theta) ** 18 + 2.3889639077165e108 * cos(theta) ** 16 - 4.00944991504867e107 * cos(theta) ** 14 + 4.31276527505235e106 * cos(theta) ** 12 - 2.92541118348875e105 * cos(theta) ** 10 + 1.20112685453461e104 * cos(theta) ** 8 - 2.76802896518265e102 * cos(theta) ** 6 + 3.12183717877742e100 * cos(theta) ** 4 - 1.29986280865125e98 * cos(theta) ** 2 + 8.39704656751454e94 ) * sin(52 * phi) ) # @torch.jit.script def Yl76_m_minus_51(theta, phi): return ( 3.54081762776956e-94 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 5.93421504794714e107 * cos(theta) ** 25 - 1.1789831221087e108 * cos(theta) ** 23 + 1.00094875803189e108 * cos(theta) ** 21 - 4.7664226572947e107 * cos(theta) ** 19 + 1.40527288689206e107 * cos(theta) ** 17 - 2.67296661003244e106 * cos(theta) ** 15 + 3.31751175004027e105 * cos(theta) ** 13 - 2.6594647122625e104 * cos(theta) ** 11 + 1.33458539392735e103 * cos(theta) ** 9 - 3.95432709311807e101 * cos(theta) ** 7 + 6.24367435755484e99 * cos(theta) ** 5 - 4.3328760288375e97 * cos(theta) ** 3 + 8.39704656751454e94 * cos(theta) ) * sin(51 * phi) ) # @torch.jit.script def Yl76_m_minus_50(theta, phi): return ( 2.03466115213945e-92 * (1.0 - cos(theta) ** 2) ** 25 * ( 2.28239040305659e106 * cos(theta) ** 26 - 4.91242967545293e106 * cos(theta) ** 24 + 4.54976708196312e106 * cos(theta) ** 22 - 2.38321132864735e106 * cos(theta) ** 20 + 7.80707159384476e105 * cos(theta) ** 18 - 1.67060413127028e105 * cos(theta) ** 16 + 2.36965125002876e104 * cos(theta) ** 14 - 2.21622059355208e103 * cos(theta) ** 12 + 1.33458539392735e102 * cos(theta) ** 10 - 4.94290886639758e100 * cos(theta) ** 8 + 1.04061239292581e99 * cos(theta) ** 6 - 1.08321900720938e97 * cos(theta) ** 4 + 4.19852328375727e94 * cos(theta) ** 2 - 2.54301834267551e91 ) * sin(50 * phi) ) # @torch.jit.script def Yl76_m_minus_49(theta, phi): return ( 1.18675002025256e-90 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 8.45329778909849e104 * cos(theta) ** 27 - 1.96497187018117e105 * cos(theta) ** 25 + 1.97815960085353e105 * cos(theta) ** 23 - 1.13486253745112e105 * cos(theta) ** 21 + 4.10898504939198e104 * cos(theta) ** 19 - 9.82708312511928e103 * cos(theta) ** 17 + 1.57976750001917e103 * cos(theta) ** 15 - 1.70478507196314e102 * cos(theta) ** 13 + 1.21325944902486e101 * cos(theta) ** 11 - 5.49212096266398e99 * cos(theta) ** 9 + 1.48658913275115e98 * cos(theta) ** 7 - 2.16643801441875e96 * cos(theta) ** 5 + 1.39950776125242e94 * cos(theta) ** 3 - 2.54301834267551e91 * cos(theta) ) * sin(49 * phi) ) # @torch.jit.script def Yl76_m_minus_48(theta, phi): return ( 7.02090780240922e-89 * (1.0 - cos(theta) ** 2) ** 24 * ( 3.01903492467803e103 * cos(theta) ** 28 - 7.55758411608143e103 * cos(theta) ** 26 + 8.24233167022304e103 * cos(theta) ** 24 - 5.15846607932326e103 * cos(theta) ** 22 + 2.05449252469599e103 * cos(theta) ** 20 - 5.45949062506626e102 * cos(theta) ** 18 + 9.87354687511984e101 * cos(theta) ** 16 - 1.21770362283081e101 * cos(theta) ** 14 + 1.01104954085405e100 * cos(theta) ** 12 - 5.49212096266398e98 * cos(theta) ** 10 + 1.85823641593894e97 * cos(theta) ** 8 - 3.61073002403125e95 * cos(theta) ** 6 + 3.49876940313106e93 * cos(theta) ** 4 - 1.27150917133776e91 * cos(theta) ** 2 + 7.2657666933586e87 ) * sin(48 * phi) ) # @torch.jit.script def Yl76_m_minus_47(theta, phi): return ( 4.21020372839927e-87 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 1.04104652575105e102 * cos(theta) ** 29 - 2.79910522817831e102 * cos(theta) ** 27 + 3.29693266808922e102 * cos(theta) ** 25 - 2.2428113388362e102 * cos(theta) ** 23 + 9.78329773664757e101 * cos(theta) ** 21 - 2.87341611845593e101 * cos(theta) ** 19 + 5.8079687500705e100 * cos(theta) ** 17 - 8.11802415220542e99 * cos(theta) ** 15 + 7.77730416041578e98 * cos(theta) ** 13 - 4.99283723878544e97 * cos(theta) ** 11 + 2.06470712882105e96 * cos(theta) ** 9 - 5.15818574861607e94 * cos(theta) ** 7 + 6.99753880626212e92 * cos(theta) ** 5 - 4.23836390445919e90 * cos(theta) ** 3 + 7.2657666933586e87 * cos(theta) ) * sin(47 * phi) ) # @torch.jit.script def Yl76_m_minus_46(theta, phi): return ( 2.55750384073561e-85 * (1.0 - cos(theta) ** 2) ** 23 * ( 3.47015508583682e100 * cos(theta) ** 30 - 9.9968043863511e100 * cos(theta) ** 28 + 1.26805102618816e101 * cos(theta) ** 26 - 9.34504724515084e100 * cos(theta) ** 24 + 4.44695351665799e100 * cos(theta) ** 22 - 1.43670805922796e100 * cos(theta) ** 20 + 3.22664930559472e99 * cos(theta) ** 18 - 5.07376509512839e98 * cos(theta) ** 16 + 5.55521725743984e97 * cos(theta) ** 14 - 4.16069769898786e96 * cos(theta) ** 12 + 2.06470712882105e95 * cos(theta) ** 10 - 6.44773218577009e93 * cos(theta) ** 8 + 1.16625646771035e92 * cos(theta) ** 6 - 1.0595909761148e90 * cos(theta) ** 4 + 3.6328833466793e87 * cos(theta) ** 2 - 1.96904246432483e84 ) * sin(46 * phi) ) # @torch.jit.script def Yl76_m_minus_45(theta, phi): return ( 1.57281287940801e-83 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 1.11940486639897e99 * cos(theta) ** 31 - 3.44717392632797e99 * cos(theta) ** 29 + 4.69648528217837e99 * cos(theta) ** 27 - 3.73801889806034e99 * cos(theta) ** 25 + 1.93345805072086e99 * cos(theta) ** 23 - 6.84146694870459e98 * cos(theta) ** 21 + 1.6982364766288e98 * cos(theta) ** 19 - 2.9845677030167e97 * cos(theta) ** 17 + 3.70347817162656e96 * cos(theta) ** 15 - 3.20053669152913e95 * cos(theta) ** 13 + 1.8770064807464e94 * cos(theta) ** 11 - 7.16414687307788e92 * cos(theta) ** 9 + 1.66608066815765e91 * cos(theta) ** 7 - 2.11918195222959e89 * cos(theta) ** 5 + 1.21096111555977e87 * cos(theta) ** 3 - 1.96904246432483e84 * cos(theta) ) * sin(45 * phi) ) # @torch.jit.script def Yl76_m_minus_44(theta, phi): return ( 9.78689054258913e-82 * (1.0 - cos(theta) ** 2) ** 22 * ( 3.49814020749679e97 * cos(theta) ** 32 - 1.14905797544266e98 * cos(theta) ** 30 + 1.67731617220656e98 * cos(theta) ** 28 - 1.43769957617705e98 * cos(theta) ** 26 + 8.05607521133693e97 * cos(theta) ** 24 - 3.10975770395663e97 * cos(theta) ** 22 + 8.491182383144e96 * cos(theta) ** 20 - 1.65809316834261e96 * cos(theta) ** 18 + 2.3146738572666e95 * cos(theta) ** 16 - 2.28609763680652e94 * cos(theta) ** 14 + 1.56417206728867e93 * cos(theta) ** 12 - 7.16414687307788e91 * cos(theta) ** 10 + 2.08260083519706e90 * cos(theta) ** 8 - 3.53196992038265e88 * cos(theta) ** 6 + 3.02740278889942e86 * cos(theta) ** 4 - 9.84521232162413e83 * cos(theta) ** 2 + 5.08533694298767e80 ) * sin(44 * phi) ) # @torch.jit.script def Yl76_m_minus_43(theta, phi): return ( 6.15874643828416e-80 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 1.06004248712024e96 * cos(theta) ** 33 - 3.70663863046018e96 * cos(theta) ** 31 + 5.7838488696778e96 * cos(theta) ** 29 - 5.32481324510019e96 * cos(theta) ** 27 + 3.22243008453477e96 * cos(theta) ** 25 - 1.35206856693767e96 * cos(theta) ** 23 + 4.04342018244952e95 * cos(theta) ** 21 - 8.72680614917163e94 * cos(theta) ** 19 + 1.36157285721565e94 * cos(theta) ** 17 - 1.52406509120435e93 * cos(theta) ** 15 + 1.20320928252975e92 * cos(theta) ** 13 - 6.51286079370716e90 * cos(theta) ** 11 + 2.31400092799673e89 * cos(theta) ** 9 - 5.04567131483236e87 * cos(theta) ** 7 + 6.05480557779884e85 * cos(theta) ** 5 - 3.28173744054138e83 * cos(theta) ** 3 + 5.08533694298767e80 * cos(theta) ) * sin(43 * phi) ) # @torch.jit.script def Yl76_m_minus_42(theta, phi): return ( 3.91746624769251e-78 * (1.0 - cos(theta) ** 2) ** 21 * ( 3.11777202094188e94 * cos(theta) ** 34 - 1.15832457201881e95 * cos(theta) ** 32 + 1.92794962322593e95 * cos(theta) ** 30 - 1.90171901610721e95 * cos(theta) ** 28 + 1.23939618635953e95 * cos(theta) ** 26 - 5.63361902890694e94 * cos(theta) ** 24 + 1.83791826474978e94 * cos(theta) ** 22 - 4.36340307458582e93 * cos(theta) ** 20 + 7.56429365119804e92 * cos(theta) ** 18 - 9.52540682002716e91 * cos(theta) ** 16 + 8.59435201806962e90 * cos(theta) ** 14 - 5.42738399475597e89 * cos(theta) ** 12 + 2.31400092799673e88 * cos(theta) ** 10 - 6.30708914354046e86 * cos(theta) ** 8 + 1.00913426296647e85 * cos(theta) ** 6 - 8.20434360135344e82 * cos(theta) ** 4 + 2.54266847149383e80 * cos(theta) ** 2 - 1.25688011443096e77 ) * sin(42 * phi) ) # @torch.jit.script def Yl76_m_minus_41(theta, phi): return ( 2.51756266340037e-76 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 8.90792005983395e92 * cos(theta) ** 35 - 3.51007446066305e93 * cos(theta) ** 33 + 6.21919233298688e93 * cos(theta) ** 31 - 6.55765177968004e93 * cos(theta) ** 29 + 4.59035624577603e93 * cos(theta) ** 27 - 2.25344761156278e93 * cos(theta) ** 25 + 7.99094897717297e92 * cos(theta) ** 23 - 2.07781098789801e92 * cos(theta) ** 21 + 3.98120718484107e91 * cos(theta) ** 19 - 5.60318048236892e90 * cos(theta) ** 17 + 5.72956801204641e89 * cos(theta) ** 15 - 4.1749107651969e88 * cos(theta) ** 13 + 2.10363720726976e87 * cos(theta) ** 11 - 7.00787682615606e85 * cos(theta) ** 9 + 1.44162037566639e84 * cos(theta) ** 7 - 1.64086872027069e82 * cos(theta) ** 5 + 8.47556157164611e79 * cos(theta) ** 3 - 1.25688011443096e77 * cos(theta) ) * sin(41 * phi) ) # @torch.jit.script def Yl76_m_minus_40(theta, phi): return ( 1.63389622897507e-74 * (1.0 - cos(theta) ** 2) ** 20 * ( 2.47442223884277e91 * cos(theta) ** 36 - 1.03237484137148e92 * cos(theta) ** 34 + 1.9434976040584e92 * cos(theta) ** 32 - 2.18588392656001e92 * cos(theta) ** 30 + 1.63941294492001e92 * cos(theta) ** 28 - 8.66710619831838e91 * cos(theta) ** 26 + 3.32956207382207e91 * cos(theta) ** 24 - 9.4445953995364e90 * cos(theta) ** 22 + 1.99060359242054e90 * cos(theta) ** 20 - 3.11287804576051e89 * cos(theta) ** 18 + 3.58098000752901e88 * cos(theta) ** 16 - 2.98207911799779e87 * cos(theta) ** 14 + 1.75303100605813e86 * cos(theta) ** 12 - 7.00787682615606e84 * cos(theta) ** 10 + 1.80202546958299e83 * cos(theta) ** 8 - 2.73478120045115e81 * cos(theta) ** 6 + 2.11889039291153e79 * cos(theta) ** 4 - 6.2844005721548e76 * cos(theta) ** 2 + 2.98404585572403e73 ) * sin(40 * phi) ) # @torch.jit.script def Yl76_m_minus_39(theta, phi): return ( 1.07042027630539e-72 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 6.68762767254801e89 * cos(theta) ** 37 - 2.94964240391853e90 * cos(theta) ** 35 + 5.88938667896485e90 * cos(theta) ** 33 - 7.05123847277424e90 * cos(theta) ** 31 + 5.65314808593107e90 * cos(theta) ** 29 - 3.21003933271051e90 * cos(theta) ** 27 + 1.33182482952883e90 * cos(theta) ** 25 - 4.10634582588539e89 * cos(theta) ** 23 + 9.47906472581208e88 * cos(theta) ** 21 - 1.63835686618974e88 * cos(theta) ** 19 + 2.10645882795824e87 * cos(theta) ** 17 - 1.98805274533186e86 * cos(theta) ** 15 + 1.34848538927548e85 * cos(theta) ** 13 - 6.37079711468733e83 * cos(theta) ** 11 + 2.00225052175887e82 * cos(theta) ** 9 - 3.90683028635878e80 * cos(theta) ** 7 + 4.23778078582306e78 * cos(theta) ** 5 - 2.09480019071827e76 * cos(theta) ** 3 + 2.98404585572403e73 * cos(theta) ) * sin(39 * phi) ) # @torch.jit.script def Yl76_m_minus_38(theta, phi): return ( 7.07611765860017e-71 * (1.0 - cos(theta) ** 2) ** 19 * ( 1.75990201909158e88 * cos(theta) ** 38 - 8.19345112199591e88 * cos(theta) ** 36 + 1.73217255263672e89 * cos(theta) ** 34 - 2.20351202274195e89 * cos(theta) ** 32 + 1.88438269531036e89 * cos(theta) ** 30 - 1.14644261882518e89 * cos(theta) ** 28 + 5.12240319049549e88 * cos(theta) ** 26 - 1.71097742745225e88 * cos(theta) ** 24 + 4.30866578446004e87 * cos(theta) ** 22 - 8.19178433094871e86 * cos(theta) ** 20 + 1.17025490442124e86 * cos(theta) ** 18 - 1.24253296583241e85 * cos(theta) ** 16 + 9.63203849482489e83 * cos(theta) ** 14 - 5.30899759557277e82 * cos(theta) ** 12 + 2.00225052175887e81 * cos(theta) ** 10 - 4.88353785794848e79 * cos(theta) ** 8 + 7.06296797637176e77 * cos(theta) ** 6 - 5.23700047679567e75 * cos(theta) ** 4 + 1.49202292786201e73 * cos(theta) ** 2 - 6.82848021904812e69 ) * sin(38 * phi) ) # @torch.jit.script def Yl76_m_minus_37(theta, phi): return ( 4.71823724723755e-69 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 4.51256927972201e86 * cos(theta) ** 39 - 2.21444624918808e87 * cos(theta) ** 37 + 4.94906443610491e87 * cos(theta) ** 35 - 6.67730915982409e87 * cos(theta) ** 33 + 6.07865385583986e87 * cos(theta) ** 31 - 3.95325040974201e87 * cos(theta) ** 29 + 1.89718636685018e87 * cos(theta) ** 27 - 6.84390970980898e86 * cos(theta) ** 25 + 1.87333294976523e86 * cos(theta) ** 23 - 3.90084968140415e85 * cos(theta) ** 21 + 6.15923633905918e84 * cos(theta) ** 19 - 7.309017446073e83 * cos(theta) ** 17 + 6.42135899654993e82 * cos(theta) ** 15 - 4.08384430428675e81 * cos(theta) ** 13 + 1.82022774705352e80 * cos(theta) ** 11 - 5.4261531754983e78 * cos(theta) ** 9 + 1.00899542519597e77 * cos(theta) ** 7 - 1.04740009535913e75 * cos(theta) ** 5 + 4.97340975954005e72 * cos(theta) ** 3 - 6.82848021904812e69 * cos(theta) ) * sin(37 * phi) ) # @torch.jit.script def Yl76_m_minus_36(theta, phi): return ( 3.17211550073312e-67 * (1.0 - cos(theta) ** 2) ** 18 * ( 1.1281423199305e85 * cos(theta) ** 40 - 5.82749012944233e85 * cos(theta) ** 38 + 1.37474012114025e86 * cos(theta) ** 36 - 1.96391445877179e86 * cos(theta) ** 34 + 1.89957932994996e86 * cos(theta) ** 32 - 1.31775013658067e86 * cos(theta) ** 30 + 6.77566559589351e85 * cos(theta) ** 28 - 2.63227296531115e85 * cos(theta) ** 26 + 7.80555395735514e84 * cos(theta) ** 24 - 1.77311349154734e84 * cos(theta) ** 22 + 3.07961816952959e83 * cos(theta) ** 20 - 4.06056524781834e82 * cos(theta) ** 18 + 4.0133493728437e81 * cos(theta) ** 16 - 2.91703164591911e80 * cos(theta) ** 14 + 1.51685645587794e79 * cos(theta) ** 12 - 5.42615317549831e77 * cos(theta) ** 10 + 1.26124428149496e76 * cos(theta) ** 8 - 1.74566682559856e74 * cos(theta) ** 6 + 1.24335243988501e72 * cos(theta) ** 4 - 3.41424010952406e69 * cos(theta) ** 2 + 1.51072571217879e66 ) * sin(36 * phi) ) # @torch.jit.script def Yl76_m_minus_35(theta, phi): return ( 2.14956178129312e-65 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 2.75156663397683e83 * cos(theta) ** 41 - 1.49422823831855e84 * cos(theta) ** 39 + 3.7155138409196e84 * cos(theta) ** 37 - 5.6111841679194e84 * cos(theta) ** 35 + 5.75630099984835e84 * cos(theta) ** 33 - 4.25080689219571e84 * cos(theta) ** 31 + 2.33643641237707e84 * cos(theta) ** 29 - 9.74915913078203e83 * cos(theta) ** 27 + 3.12222158294206e83 * cos(theta) ** 25 - 7.70918909368409e82 * cos(theta) ** 23 + 1.46648484263314e82 * cos(theta) ** 21 - 2.13713960411491e81 * cos(theta) ** 19 + 2.36079374873159e80 * cos(theta) ** 17 - 1.94468776394607e79 * cos(theta) ** 15 + 1.16681265836764e78 * cos(theta) ** 13 - 4.93286652318028e76 * cos(theta) ** 11 + 1.4013825349944e75 * cos(theta) ** 9 - 2.49380975085508e73 * cos(theta) ** 7 + 2.48670487977002e71 * cos(theta) ** 5 - 1.13808003650802e69 * cos(theta) ** 3 + 1.51072571217879e66 * cos(theta) ) * sin(35 * phi) ) # @torch.jit.script def Yl76_m_minus_34(theta, phi): return ( 1.46769585064961e-63 * (1.0 - cos(theta) ** 2) ** 17 * ( 6.55134912851627e81 * cos(theta) ** 42 - 3.73557059579636e82 * cos(theta) ** 40 + 9.77766800242001e82 * cos(theta) ** 38 - 1.5586622688665e83 * cos(theta) ** 36 + 1.69302970583775e83 * cos(theta) ** 34 - 1.32837715381116e83 * cos(theta) ** 32 + 7.78812137459024e82 * cos(theta) ** 30 - 3.48184254670787e82 * cos(theta) ** 28 + 1.20085445497771e82 * cos(theta) ** 26 - 3.21216212236837e81 * cos(theta) ** 24 + 6.66584019378699e80 * cos(theta) ** 22 - 1.06856980205746e80 * cos(theta) ** 20 + 1.31155208262866e79 * cos(theta) ** 18 - 1.21542985246629e78 * cos(theta) ** 16 + 8.33437613119745e76 * cos(theta) ** 14 - 4.11072210265023e75 * cos(theta) ** 12 + 1.4013825349944e74 * cos(theta) ** 10 - 3.11726218856885e72 * cos(theta) ** 8 + 4.14450813295004e70 * cos(theta) ** 6 - 2.84520009127005e68 * cos(theta) ** 4 + 7.55362856089394e65 * cos(theta) ** 2 - 3.24050989313339e62 ) * sin(34 * phi) ) # @torch.jit.script def Yl76_m_minus_33(theta, phi): return ( 1.00940775459507e-61 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 1.52356956477123e80 * cos(theta) ** 43 - 9.11114779462528e80 * cos(theta) ** 41 + 2.50709435959487e81 * cos(theta) ** 39 - 4.21260072666622e81 * cos(theta) ** 37 + 4.837227730965e81 * cos(theta) ** 35 - 4.02538531457927e81 * cos(theta) ** 33 + 2.51229721760976e81 * cos(theta) ** 31 - 1.20063536093375e81 * cos(theta) ** 29 + 4.44760909251005e80 * cos(theta) ** 27 - 1.28486484894735e80 * cos(theta) ** 25 + 2.89819138860304e79 * cos(theta) ** 23 - 5.08842762884503e78 * cos(theta) ** 21 + 6.90290569804559e77 * cos(theta) ** 19 - 7.14958736744879e76 * cos(theta) ** 17 + 5.55625075413163e75 * cos(theta) ** 15 - 3.16209392511556e74 * cos(theta) ** 13 + 1.27398412272218e73 * cos(theta) ** 11 - 3.46362465396539e71 * cos(theta) ** 9 + 5.92072590421434e69 * cos(theta) ** 7 - 5.6904001825401e67 * cos(theta) ** 5 + 2.51787618696465e65 * cos(theta) ** 3 - 3.24050989313339e62 * cos(theta) ) * sin(33 * phi) ) # @torch.jit.script def Yl76_m_minus_32(theta, phi): return ( 6.99046754953901e-60 * (1.0 - cos(theta) ** 2) ** 16 * ( 3.46265810175279e78 * cos(theta) ** 44 - 2.16932090348221e79 * cos(theta) ** 42 + 6.26773589898719e79 * cos(theta) ** 40 - 1.10857913859637e80 * cos(theta) ** 38 + 1.3436743697125e80 * cos(theta) ** 36 - 1.1839368572292e80 * cos(theta) ** 34 + 7.85092880503049e79 * cos(theta) ** 32 - 4.00211786977916e79 * cos(theta) ** 30 + 1.58843181875359e79 * cos(theta) ** 28 - 4.94178788056672e78 * cos(theta) ** 26 + 1.20757974525127e78 * cos(theta) ** 24 - 2.31292164947501e77 * cos(theta) ** 22 + 3.45145284902279e76 * cos(theta) ** 20 - 3.97199298191599e75 * cos(theta) ** 18 + 3.47265672133227e74 * cos(theta) ** 16 - 2.25863851793969e73 * cos(theta) ** 14 + 1.06165343560182e72 * cos(theta) ** 12 - 3.46362465396539e70 * cos(theta) ** 10 + 7.40090738026793e68 * cos(theta) ** 8 - 9.4840003042335e66 * cos(theta) ** 6 + 6.29469046741162e64 * cos(theta) ** 4 - 1.6202549465667e62 * cos(theta) ** 2 + 6.75669285474019e58 ) * sin(32 * phi) ) # @torch.jit.script def Yl76_m_minus_31(theta, phi): return ( 4.87331359228223e-58 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 7.69479578167286e76 * cos(theta) ** 45 - 5.04493233367955e77 * cos(theta) ** 43 + 1.5287160729237e78 * cos(theta) ** 41 - 2.84251061178557e78 * cos(theta) ** 39 + 3.63155235057433e78 * cos(theta) ** 37 - 3.38267673494056e78 * cos(theta) ** 35 + 2.37906933485772e78 * cos(theta) ** 33 - 1.29100576444489e78 * cos(theta) ** 31 + 5.47735109915031e77 * cos(theta) ** 29 - 1.8302918076173e77 * cos(theta) ** 27 + 4.83031898100507e76 * cos(theta) ** 25 - 1.0056181084674e76 * cos(theta) ** 23 + 1.64354897572514e75 * cos(theta) ** 21 - 2.09052262206105e74 * cos(theta) ** 19 + 2.04273924784251e73 * cos(theta) ** 17 - 1.50575901195979e72 * cos(theta) ** 15 + 8.16656488924474e70 * cos(theta) ** 13 - 3.14874968542308e69 * cos(theta) ** 11 + 8.22323042251992e67 * cos(theta) ** 9 - 1.35485718631907e66 * cos(theta) ** 7 + 1.25893809348232e64 * cos(theta) ** 5 - 5.40084982188899e61 * cos(theta) ** 3 + 6.75669285474019e58 * cos(theta) ) * sin(31 * phi) ) # @torch.jit.script def Yl76_m_minus_30(theta, phi): return ( 3.41896900227033e-56 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.67278169166801e75 * cos(theta) ** 46 - 1.14657553038172e76 * cos(theta) ** 44 + 3.63980017362787e76 * cos(theta) ** 42 - 7.10627652946393e76 * cos(theta) ** 40 + 9.5567167120377e76 * cos(theta) ** 38 - 9.39632426372378e76 * cos(theta) ** 36 + 6.99726274958154e76 * cos(theta) ** 34 - 4.03439301389028e76 * cos(theta) ** 32 + 1.82578369971677e76 * cos(theta) ** 30 - 6.53675645577609e75 * cos(theta) ** 28 + 1.85781499269426e75 * cos(theta) ** 26 - 4.19007545194749e74 * cos(theta) ** 24 + 7.470677162387e73 * cos(theta) ** 22 - 1.04526131103052e73 * cos(theta) ** 20 + 1.13485513769028e72 * cos(theta) ** 18 - 9.4109938247487e70 * cos(theta) ** 16 + 5.83326063517481e69 * cos(theta) ** 14 - 2.6239580711859e68 * cos(theta) ** 12 + 8.22323042251992e66 * cos(theta) ** 10 - 1.69357148289884e65 * cos(theta) ** 8 + 2.09823015580387e63 * cos(theta) ** 6 - 1.35021245547225e61 * cos(theta) ** 4 + 3.37834642737009e58 * cos(theta) ** 2 - 1.3727535259529e55 ) * sin(30 * phi) ) # @torch.jit.script def Yl76_m_minus_29(theta, phi): return ( 2.4132206055339e-54 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 3.55910998227237e73 * cos(theta) ** 47 - 2.54794562307048e74 * cos(theta) ** 45 + 8.46465156657643e74 * cos(theta) ** 43 - 1.73323817791803e75 * cos(theta) ** 41 + 2.45044018257377e75 * cos(theta) ** 39 - 2.53954709830372e75 * cos(theta) ** 37 + 1.99921792845187e75 * cos(theta) ** 35 - 1.22254333754251e75 * cos(theta) ** 33 + 5.88962483779603e74 * cos(theta) ** 31 - 2.25405395026762e74 * cos(theta) ** 29 + 6.88079626923799e73 * cos(theta) ** 27 - 1.676030180779e73 * cos(theta) ** 25 + 3.24812050538565e72 * cos(theta) ** 23 - 4.97743481443107e71 * cos(theta) ** 21 + 5.97292177731729e70 * cos(theta) ** 19 - 5.53587872044041e69 * cos(theta) ** 17 + 3.88884042344988e68 * cos(theta) ** 15 - 2.01842928552762e67 * cos(theta) ** 13 + 7.47566402047265e65 * cos(theta) ** 11 - 1.88174609210982e64 * cos(theta) ** 9 + 2.99747165114839e62 * cos(theta) ** 7 - 2.70042491094449e60 * cos(theta) ** 5 + 1.12611547579003e58 * cos(theta) ** 3 - 1.3727535259529e55 * cos(theta) ) * sin(29 * phi) ) # @torch.jit.script def Yl76_m_minus_28(theta, phi): return ( 1.71321667638702e-52 * (1.0 - cos(theta) ** 2) ** 14 * ( 7.41481246306743e71 * cos(theta) ** 48 - 5.53901222406627e72 * cos(theta) ** 46 + 1.92378444694919e73 * cos(theta) ** 44 - 4.1267575664715e73 * cos(theta) ** 42 + 6.12610045643442e73 * cos(theta) ** 40 - 6.68301867974664e73 * cos(theta) ** 38 + 5.55338313458852e73 * cos(theta) ** 36 - 3.59571569865444e73 * cos(theta) ** 34 + 1.84050776181126e73 * cos(theta) ** 32 - 7.51351316755872e72 * cos(theta) ** 30 + 2.45742723901357e72 * cos(theta) ** 28 - 6.44626992607306e71 * cos(theta) ** 26 + 1.35338354391069e71 * cos(theta) ** 24 - 2.26247037019594e70 * cos(theta) ** 22 + 2.98646088865864e69 * cos(theta) ** 20 - 3.07548817802245e68 * cos(theta) ** 18 + 2.43052526465617e67 * cos(theta) ** 16 - 1.4417352039483e66 * cos(theta) ** 14 + 6.22972001706055e64 * cos(theta) ** 12 - 1.88174609210982e63 * cos(theta) ** 10 + 3.74683956393549e61 * cos(theta) ** 8 - 4.50070818490749e59 * cos(theta) ** 6 + 2.81528868947508e57 * cos(theta) ** 4 - 6.86376762976451e54 * cos(theta) ** 2 + 2.72371731339862e51 ) * sin(28 * phi) ) # @torch.jit.script def Yl76_m_minus_27(theta, phi): return ( 1.2230015369474e-50 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.51322703327907e70 * cos(theta) ** 49 - 1.17851323916304e71 * cos(theta) ** 47 + 4.27507654877598e71 * cos(theta) ** 45 - 9.59711061970117e71 * cos(theta) ** 43 + 1.49417084303279e72 * cos(theta) ** 41 - 1.71359453326837e72 * cos(theta) ** 39 + 1.5009143606996e72 * cos(theta) ** 37 - 1.0273473424727e72 * cos(theta) ** 35 + 5.57729624791291e71 * cos(theta) ** 33 - 2.42371392501894e71 * cos(theta) ** 31 + 8.47388703108126e70 * cos(theta) ** 29 - 2.38750738002706e70 * cos(theta) ** 27 + 5.41353417564275e69 * cos(theta) ** 25 - 9.83682769650409e68 * cos(theta) ** 23 + 1.42212423269459e68 * cos(theta) ** 21 - 1.61867798843287e67 * cos(theta) ** 19 + 1.4297207439154e66 * cos(theta) ** 17 - 9.61156802632198e64 * cos(theta) ** 15 + 4.7920923208158e63 * cos(theta) ** 13 - 1.71067826555438e62 * cos(theta) ** 11 + 4.16315507103943e60 * cos(theta) ** 9 - 6.42958312129641e58 * cos(theta) ** 7 + 5.63057737895015e56 * cos(theta) ** 5 - 2.28792254325484e54 * cos(theta) ** 3 + 2.72371731339862e51 * cos(theta) ) * sin(27 * phi) ) # @torch.jit.script def Yl76_m_minus_26(theta, phi): return ( 8.77668713740263e-49 * (1.0 - cos(theta) ** 2) ** 13 * ( 3.02645406655813e68 * cos(theta) ** 50 - 2.45523591492299e69 * cos(theta) ** 48 + 9.29364467125212e69 * cos(theta) ** 46 - 2.18116150447754e70 * cos(theta) ** 44 + 3.55754962626854e70 * cos(theta) ** 42 - 4.28398633317092e70 * cos(theta) ** 40 + 3.94977463342e70 * cos(theta) ** 38 - 2.85374261797971e70 * cos(theta) ** 36 + 1.64038124938615e70 * cos(theta) ** 34 - 7.57410601568419e69 * cos(theta) ** 32 + 2.82462901036042e69 * cos(theta) ** 30 - 8.52681207152521e68 * cos(theta) ** 28 + 2.08212852909337e68 * cos(theta) ** 26 - 4.09867820687671e67 * cos(theta) ** 24 + 6.46420105770269e66 * cos(theta) ** 22 - 8.09338994216434e65 * cos(theta) ** 20 + 7.9428930217522e64 * cos(theta) ** 18 - 6.00723001645124e63 * cos(theta) ** 16 + 3.422923086297e62 * cos(theta) ** 14 - 1.42556522129532e61 * cos(theta) ** 12 + 4.16315507103943e59 * cos(theta) ** 10 - 8.03697890162052e57 * cos(theta) ** 8 + 9.38429563158359e55 * cos(theta) ** 6 - 5.71980635813709e53 * cos(theta) ** 4 + 1.36185865669931e51 * cos(theta) ** 2 - 5.28877148232741e47 ) * sin(26 * phi) ) # @torch.jit.script def Yl76_m_minus_25(theta, phi): return ( 6.33017609103435e-47 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 5.93422365991791e66 * cos(theta) ** 51 - 5.01068554065916e67 * cos(theta) ** 49 + 1.97737120664939e68 * cos(theta) ** 47 - 4.84702556550564e68 * cos(theta) ** 45 + 8.27337122388032e68 * cos(theta) ** 43 - 1.04487471540754e69 * cos(theta) ** 41 + 1.01276272651795e69 * cos(theta) ** 39 - 7.71281788643166e68 * cos(theta) ** 37 + 4.68680356967471e68 * cos(theta) ** 35 - 2.29518364111642e68 * cos(theta) ** 33 + 9.11170648503362e67 * cos(theta) ** 31 - 2.94028002466387e67 * cos(theta) ** 29 + 7.71158714479025e66 * cos(theta) ** 27 - 1.63947128275068e66 * cos(theta) ** 25 + 2.81052219900117e65 * cos(theta) ** 23 - 3.85399521055445e64 * cos(theta) ** 21 + 4.18047001144852e63 * cos(theta) ** 19 - 3.53366471555955e62 * cos(theta) ** 17 + 2.281948724198e61 * cos(theta) ** 15 - 1.09658863176563e60 * cos(theta) ** 13 + 3.78468642821766e58 * cos(theta) ** 11 - 8.92997655735613e56 * cos(theta) ** 9 + 1.3406136616548e55 * cos(theta) ** 7 - 1.14396127162742e53 * cos(theta) ** 5 + 4.53952885566436e50 * cos(theta) ** 3 - 5.28877148232741e47 * cos(theta) ) * sin(25 * phi) ) # @torch.jit.script def Yl76_m_minus_24(theta, phi): return ( 4.58752189435731e-45 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.14119685767652e65 * cos(theta) ** 52 - 1.00213710813183e66 * cos(theta) ** 50 + 4.11952334718622e66 * cos(theta) ** 48 - 1.05370120989253e67 * cos(theta) ** 46 + 1.88031164179098e67 * cos(theta) ** 44 - 2.48779694144653e67 * cos(theta) ** 42 + 2.53190681629487e67 * cos(theta) ** 40 - 2.02968891748202e67 * cos(theta) ** 38 + 1.3018898804652e67 * cos(theta) ** 36 - 6.75054012093065e66 * cos(theta) ** 34 + 2.84740827657301e66 * cos(theta) ** 32 - 9.80093341554622e65 * cos(theta) ** 30 + 2.75413826599652e65 * cos(theta) ** 28 - 6.30565877981032e64 * cos(theta) ** 26 + 1.17105091625049e64 * cos(theta) ** 24 - 1.75181600479748e63 * cos(theta) ** 22 + 2.09023500572426e62 * cos(theta) ** 20 - 1.96314706419975e61 * cos(theta) ** 18 + 1.42621795262375e60 * cos(theta) ** 16 - 7.83277594118307e58 * cos(theta) ** 14 + 3.15390535684805e57 * cos(theta) ** 12 - 8.92997655735613e55 * cos(theta) ** 10 + 1.6757670770685e54 * cos(theta) ** 8 - 1.90660211937903e52 * cos(theta) ** 6 + 1.13488221391609e50 * cos(theta) ** 4 - 2.6443857411637e47 * cos(theta) ** 2 + 1.00700142466249e44 ) * sin(24 * phi) ) # @torch.jit.script def Yl76_m_minus_23(theta, phi): return ( 3.33976635104016e-43 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 2.15320161825759e63 * cos(theta) ** 53 - 1.96497472182712e64 * cos(theta) ** 51 + 8.40719050446168e64 * cos(theta) ** 49 - 2.24191746785645e65 * cos(theta) ** 47 + 4.17847031509107e65 * cos(theta) ** 45 - 5.78557428243379e65 * cos(theta) ** 43 + 6.17538247876798e65 * cos(theta) ** 41 - 5.20433055764619e65 * cos(theta) ** 39 + 3.51862129855459e65 * cos(theta) ** 37 - 1.92872574883733e65 * cos(theta) ** 35 + 8.62850992900911e64 * cos(theta) ** 33 - 3.16159142436975e64 * cos(theta) ** 31 + 9.49702850343626e63 * cos(theta) ** 29 - 2.33542917770752e63 * cos(theta) ** 27 + 4.68420366500195e62 * cos(theta) ** 25 - 7.61659132520642e61 * cos(theta) ** 23 + 9.95350002725839e60 * cos(theta) ** 21 - 1.03323529694724e60 * cos(theta) ** 19 + 8.38951736837501e58 * cos(theta) ** 17 - 5.22185062745538e57 * cos(theta) ** 15 + 2.42608104372927e56 * cos(theta) ** 13 - 8.11816050668739e54 * cos(theta) ** 11 + 1.861963418965e53 * cos(theta) ** 9 - 2.72371731339862e51 * cos(theta) ** 7 + 2.26976442783218e49 * cos(theta) ** 5 - 8.81461913721235e46 * cos(theta) ** 3 + 1.00700142466249e44 * cos(theta) ) * sin(23 * phi) ) # @torch.jit.script def Yl76_m_minus_22(theta, phi): return ( 2.4419151088525e-41 * (1.0 - cos(theta) ** 2) ** 11 * ( 3.98741040418072e61 * cos(theta) ** 54 - 3.77879754197524e62 * cos(theta) ** 52 + 1.68143810089234e63 * cos(theta) ** 50 - 4.6706613913676e63 * cos(theta) ** 48 + 9.0836311197632e63 * cos(theta) ** 46 - 1.31490324600768e64 * cos(theta) ** 44 + 1.47032916161142e64 * cos(theta) ** 42 - 1.30108263941155e64 * cos(theta) ** 40 + 9.25952973303839e63 * cos(theta) ** 38 - 5.35757152454814e63 * cos(theta) ** 36 + 2.53779703794386e63 * cos(theta) ** 34 - 9.87997320115547e62 * cos(theta) ** 32 + 3.16567616781209e62 * cos(theta) ** 30 - 8.34081849181259e61 * cos(theta) ** 28 + 1.80161679423152e61 * cos(theta) ** 26 - 3.17357971883601e60 * cos(theta) ** 24 + 4.52431819420836e59 * cos(theta) ** 22 - 5.16617648473619e58 * cos(theta) ** 20 + 4.66084298243056e57 * cos(theta) ** 18 - 3.26365664215961e56 * cos(theta) ** 16 + 1.73291503123519e55 * cos(theta) ** 14 - 6.76513375557283e53 * cos(theta) ** 12 + 1.861963418965e52 * cos(theta) ** 10 - 3.40464664174827e50 * cos(theta) ** 8 + 3.78294071305363e48 * cos(theta) ** 6 - 2.20365478430309e46 * cos(theta) ** 4 + 5.03500712331246e43 * cos(theta) ** 2 - 1.88365399300878e40 ) * sin(22 * phi) ) # @torch.jit.script def Yl76_m_minus_21(theta, phi): return ( 1.79277152085142e-39 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 7.2498370985104e59 * cos(theta) ** 55 - 7.12980668297214e60 * cos(theta) ** 53 + 3.29693745273007e61 * cos(theta) ** 51 - 9.53196202319919e61 * cos(theta) ** 49 + 1.93268747229004e62 * cos(theta) ** 47 - 2.9220072133504e62 * cos(theta) ** 45 + 3.41937014328238e62 * cos(theta) ** 43 - 3.17337229124768e62 * cos(theta) ** 41 + 2.37423839308677e62 * cos(theta) ** 39 - 1.44799230393193e62 * cos(theta) ** 37 + 7.25084867983959e61 * cos(theta) ** 35 - 2.99393127307741e61 * cos(theta) ** 33 + 1.02118586058454e61 * cos(theta) ** 31 - 2.87614430752158e60 * cos(theta) ** 29 + 6.67265479345007e59 * cos(theta) ** 27 - 1.2694318875344e59 * cos(theta) ** 25 + 1.96709486704711e58 * cos(theta) ** 23 - 2.46008404035057e57 * cos(theta) ** 21 + 2.45307525391082e56 * cos(theta) ** 19 - 1.91979802479977e55 * cos(theta) ** 17 + 1.15527668749013e54 * cos(theta) ** 15 - 5.20394904274833e52 * cos(theta) ** 13 + 1.69269401724091e51 * cos(theta) ** 11 - 3.78294071305363e49 * cos(theta) ** 9 + 5.40420101864805e47 * cos(theta) ** 7 - 4.40730956860617e45 * cos(theta) ** 5 + 1.67833570777082e43 * cos(theta) ** 3 - 1.88365399300878e40 * cos(theta) ) * sin(21 * phi) ) # @torch.jit.script def Yl76_m_minus_20(theta, phi): return ( 1.32131031447958e-37 * (1.0 - cos(theta) ** 2) ** 10 * ( 1.29461376759114e58 * cos(theta) ** 56 - 1.32033457092077e59 * cos(theta) ** 54 + 6.34026433217322e59 * cos(theta) ** 52 - 1.90639240463984e60 * cos(theta) ** 50 + 4.02643223393759e60 * cos(theta) ** 48 - 6.35218959424e60 * cos(theta) ** 46 + 7.77129578018723e60 * cos(theta) ** 44 - 7.55564831249447e60 * cos(theta) ** 42 + 5.93559598271692e60 * cos(theta) ** 40 - 3.81050606297876e60 * cos(theta) ** 38 + 2.01412463328877e60 * cos(theta) ** 36 - 8.80568021493357e59 * cos(theta) ** 34 + 3.1912058143267e59 * cos(theta) ** 32 - 9.58714769173861e58 * cos(theta) ** 30 + 2.38309099766074e58 * cos(theta) ** 28 - 4.88243033667078e57 * cos(theta) ** 26 + 8.1962286126963e56 * cos(theta) ** 24 - 1.11822001834117e56 * cos(theta) ** 22 + 1.22653762695541e55 * cos(theta) ** 20 - 1.0665544582221e54 * cos(theta) ** 18 + 7.22047929681331e52 * cos(theta) ** 16 - 3.71710645910595e51 * cos(theta) ** 14 + 1.41057834770076e50 * cos(theta) ** 12 - 3.78294071305363e48 * cos(theta) ** 10 + 6.75525127331006e46 * cos(theta) ** 8 - 7.34551594767696e44 * cos(theta) ** 6 + 4.19583926942705e42 * cos(theta) ** 4 - 9.41826996504389e39 * cos(theta) ** 2 + 3.46769880892632e36 ) * sin(20 * phi) ) # @torch.jit.script def Yl76_m_minus_19(theta, phi): return ( 9.77412456581428e-36 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 2.27125222384411e56 * cos(theta) ** 57 - 2.40060831076503e57 * cos(theta) ** 55 + 1.19627628908929e58 * cos(theta) ** 53 - 3.73802432282321e58 * cos(theta) ** 51 + 8.21720864068895e58 * cos(theta) ** 49 - 1.35152970090213e59 * cos(theta) ** 47 + 1.72695461781939e59 * cos(theta) ** 45 - 1.7571275145336e59 * cos(theta) ** 43 + 1.44770633724803e59 * cos(theta) ** 41 - 9.77052836661221e58 * cos(theta) ** 39 + 5.44358008996966e58 * cos(theta) ** 37 - 2.51590863283816e58 * cos(theta) ** 35 + 9.67032064947485e57 * cos(theta) ** 33 - 3.09262828765761e57 * cos(theta) ** 31 + 8.21755516434738e56 * cos(theta) ** 29 - 1.80830753210029e56 * cos(theta) ** 27 + 3.27849144507852e55 * cos(theta) ** 25 - 4.86182616670072e54 * cos(theta) ** 23 + 5.84065536645434e53 * cos(theta) ** 21 - 5.6134445169584e52 * cos(theta) ** 19 + 4.24734076283136e51 * cos(theta) ** 17 - 2.4780709727373e50 * cos(theta) ** 15 + 1.08506026746212e49 * cos(theta) ** 13 - 3.43903701186694e47 * cos(theta) ** 11 + 7.50583474812229e45 * cos(theta) ** 9 - 1.04935942109671e44 * cos(theta) ** 7 + 8.3916785388541e41 * cos(theta) ** 5 - 3.1394233216813e39 * cos(theta) ** 3 + 3.46769880892632e36 * cos(theta) ) * sin(19 * phi) ) # @torch.jit.script def Yl76_m_minus_18(theta, phi): return ( 7.25527150260126e-34 * (1.0 - cos(theta) ** 2) ** 9 * ( 3.91595211007605e54 * cos(theta) ** 58 - 4.28680055493756e55 * cos(theta) ** 56 + 2.21532646127646e56 * cos(theta) ** 54 - 7.18850831312156e56 * cos(theta) ** 52 + 1.64344172813779e57 * cos(theta) ** 50 - 2.81568687687943e57 * cos(theta) ** 48 + 3.75424916917258e57 * cos(theta) ** 46 - 3.99347162394e57 * cos(theta) ** 44 + 3.44691985059054e57 * cos(theta) ** 42 - 2.44263209165305e57 * cos(theta) ** 40 + 1.43252107630781e57 * cos(theta) ** 38 - 6.98863509121712e56 * cos(theta) ** 36 + 2.8442119557279e56 * cos(theta) ** 34 - 9.66446339893005e55 * cos(theta) ** 32 + 2.73918505478246e55 * cos(theta) ** 30 - 6.45824118607246e54 * cos(theta) ** 28 + 1.26095824810712e54 * cos(theta) ** 26 - 2.02576090279197e53 * cos(theta) ** 24 + 2.65484334838833e52 * cos(theta) ** 22 - 2.8067222584792e51 * cos(theta) ** 20 + 2.35963375712853e50 * cos(theta) ** 18 - 1.54879435796081e49 * cos(theta) ** 16 + 7.75043048187229e47 * cos(theta) ** 14 - 2.86586417655578e46 * cos(theta) ** 12 + 7.50583474812229e44 * cos(theta) ** 10 - 1.31169927637089e43 * cos(theta) ** 8 + 1.39861308980902e41 * cos(theta) ** 6 - 7.84855830420324e38 * cos(theta) ** 4 + 1.73384940446316e36 * cos(theta) ** 2 - 6.29346426302417e32 ) * sin(18 * phi) ) # @torch.jit.script def Yl76_m_minus_17(theta, phi): return ( 5.40310741648762e-32 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 6.63720696623059e52 * cos(theta) ** 59 - 7.52070272796063e53 * cos(theta) ** 57 + 4.02786629322992e54 * cos(theta) ** 55 - 1.35632232323048e55 * cos(theta) ** 53 + 3.22243476105449e55 * cos(theta) ** 51 - 5.74629974873353e55 * cos(theta) ** 49 + 7.98776418972889e55 * cos(theta) ** 47 - 8.87438138653333e55 * cos(theta) ** 45 + 8.01609267579196e55 * cos(theta) ** 43 - 5.95763924793427e55 * cos(theta) ** 41 + 3.67313096489181e55 * cos(theta) ** 39 - 1.88882029492355e55 * cos(theta) ** 37 + 8.12631987350828e54 * cos(theta) ** 35 - 2.92862527240304e54 * cos(theta) ** 33 + 8.8360808218789e53 * cos(theta) ** 31 - 2.22697971933533e53 * cos(theta) ** 29 + 4.67021573373009e52 * cos(theta) ** 27 - 8.10304361116787e51 * cos(theta) ** 25 + 1.15427971669058e51 * cos(theta) ** 23 - 1.33653440879962e50 * cos(theta) ** 21 + 1.24191250375186e49 * cos(theta) ** 19 - 9.11055504682831e47 * cos(theta) ** 17 + 5.16695365458152e46 * cos(theta) ** 15 - 2.20451090504291e45 * cos(theta) ** 13 + 6.82348613465663e43 * cos(theta) ** 11 - 1.45744364041209e42 * cos(theta) ** 9 + 1.99801869972717e40 * cos(theta) ** 7 - 1.56971166084065e38 * cos(theta) ** 5 + 5.7794980148772e35 * cos(theta) ** 3 - 6.29346426302417e32 * cos(theta) ) * sin(17 * phi) ) # @torch.jit.script def Yl76_m_minus_16(theta, phi): return ( 4.03608869114515e-30 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.10620116103843e51 * cos(theta) ** 60 - 1.29667288413114e52 * cos(theta) ** 58 + 7.19261838076771e52 * cos(theta) ** 56 - 2.51170800598238e53 * cos(theta) ** 54 + 6.19698992510479e53 * cos(theta) ** 52 - 1.14925994974671e54 * cos(theta) ** 50 + 1.66411753952685e54 * cos(theta) ** 48 - 1.92921334489855e54 * cos(theta) ** 46 + 1.82183924449817e54 * cos(theta) ** 44 - 1.41848553522245e54 * cos(theta) ** 42 + 9.18282741222952e53 * cos(theta) ** 40 - 4.97057972348302e53 * cos(theta) ** 38 + 2.25731107597452e53 * cos(theta) ** 36 - 8.6136037423619e52 * cos(theta) ** 34 + 2.76127525683716e52 * cos(theta) ** 32 - 7.42326573111777e51 * cos(theta) ** 30 + 1.66793419061789e51 * cos(theta) ** 28 - 3.11655523506457e50 * cos(theta) ** 26 + 4.80949881954408e49 * cos(theta) ** 24 - 6.07515640363463e48 * cos(theta) ** 22 + 6.20956251875929e47 * cos(theta) ** 20 - 5.06141947046017e46 * cos(theta) ** 18 + 3.22934603411345e45 * cos(theta) ** 16 - 1.57465064645922e44 * cos(theta) ** 14 + 5.68623844554719e42 * cos(theta) ** 12 - 1.45744364041209e41 * cos(theta) ** 10 + 2.49752337465896e39 * cos(theta) ** 8 - 2.61618610140108e37 * cos(theta) ** 6 + 1.4448745037193e35 * cos(theta) ** 4 - 3.14673213151209e32 * cos(theta) ** 2 + 1.12786097903659e29 ) * sin(16 * phi) ) # @torch.jit.script def Yl76_m_minus_15(theta, phi): return ( 3.0235665514537e-28 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.81344452629251e49 * cos(theta) ** 61 - 2.19775065106973e50 * cos(theta) ** 59 + 1.2618628738189e51 * cos(theta) ** 57 - 4.56674182905887e51 * cos(theta) ** 55 + 1.16924338209524e52 * cos(theta) ** 53 - 2.25345088185629e52 * cos(theta) ** 51 + 3.39615824393235e52 * cos(theta) ** 49 - 4.104709244465e52 * cos(theta) ** 47 + 4.04853165444039e52 * cos(theta) ** 45 - 3.29880357028476e52 * cos(theta) ** 43 + 2.23971400298281e52 * cos(theta) ** 41 - 1.2745076214059e52 * cos(theta) ** 39 + 6.10084074587709e51 * cos(theta) ** 37 - 2.46102964067483e51 * cos(theta) ** 35 + 8.36750077829441e50 * cos(theta) ** 33 - 2.39460184874767e50 * cos(theta) ** 31 + 5.7514972090272e49 * cos(theta) ** 29 - 1.15427971669058e49 * cos(theta) ** 27 + 1.92379952781763e48 * cos(theta) ** 25 - 2.64137234940636e47 * cos(theta) ** 23 + 2.95693453274252e46 * cos(theta) ** 21 - 2.66390498445272e45 * cos(theta) ** 19 + 1.89961531418438e44 * cos(theta) ** 17 - 1.04976709763948e43 * cos(theta) ** 15 + 4.37402957349784e41 * cos(theta) ** 13 - 1.324948764011e40 * cos(theta) ** 11 + 2.77502597184329e38 * cos(theta) ** 9 - 3.73740871628726e36 * cos(theta) ** 7 + 2.8897490074386e34 * cos(theta) ** 5 - 1.04891071050403e32 * cos(theta) ** 3 + 1.12786097903659e29 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl76_m_minus_14(theta, phi): return ( 2.27109903718475e-26 * (1.0 - cos(theta) ** 2) ** 7 * ( 2.92491052627824e47 * cos(theta) ** 62 - 3.66291775178289e48 * cos(theta) ** 60 + 2.17562564451534e49 * cos(theta) ** 58 - 8.1548961233194e49 * cos(theta) ** 56 + 2.1652655223986e50 * cos(theta) ** 54 - 4.33355938818517e50 * cos(theta) ** 52 + 6.7923164878647e50 * cos(theta) ** 50 - 8.55147759263541e50 * cos(theta) ** 48 + 8.80115577052258e50 * cos(theta) ** 46 - 7.49728084155627e50 * cos(theta) ** 44 + 5.33265238805431e50 * cos(theta) ** 42 - 3.18626905351475e50 * cos(theta) ** 40 + 1.60548440680976e50 * cos(theta) ** 38 - 6.83619344631896e49 * cos(theta) ** 36 + 2.46102964067483e49 * cos(theta) ** 34 - 7.48313077733647e48 * cos(theta) ** 32 + 1.9171657363424e48 * cos(theta) ** 30 - 4.12242755960922e47 * cos(theta) ** 28 + 7.39922895314475e46 * cos(theta) ** 26 - 1.10057181225265e46 * cos(theta) ** 24 + 1.3440611512466e45 * cos(theta) ** 22 - 1.33195249222636e44 * cos(theta) ** 20 + 1.05534184121355e43 * cos(theta) ** 18 - 6.56104436024676e41 * cos(theta) ** 16 + 3.12430683821274e40 * cos(theta) ** 14 - 1.10412397000916e39 * cos(theta) ** 12 + 2.77502597184329e37 * cos(theta) ** 10 - 4.67176089535907e35 * cos(theta) ** 8 + 4.816248345731e33 * cos(theta) ** 6 - 2.62227677626007e31 * cos(theta) ** 4 + 5.63930489518295e28 * cos(theta) ** 2 - 1.99904462785642e25 ) * sin(14 * phi) ) # @torch.jit.script def Yl76_m_minus_13(theta, phi): return ( 1.71012400264125e-24 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 4.64271512107658e45 * cos(theta) ** 63 - 6.00478319964408e46 * cos(theta) ** 61 + 3.68750109239888e47 * cos(theta) ** 59 - 1.43068353040691e48 * cos(theta) ** 57 + 3.93684640436109e48 * cos(theta) ** 55 - 8.17652714751919e48 * cos(theta) ** 53 + 1.33182676232641e49 * cos(theta) ** 51 - 1.7451995087011e49 * cos(theta) ** 49 + 1.87258633415374e49 * cos(theta) ** 47 - 1.66606240923473e49 * cos(theta) ** 45 + 1.24015171815216e49 * cos(theta) ** 43 - 7.77138793540184e48 * cos(theta) ** 41 + 4.11662668412759e48 * cos(theta) ** 39 - 1.84761985035648e48 * cos(theta) ** 37 + 7.03151325907093e47 * cos(theta) ** 35 - 2.26761538707166e47 * cos(theta) ** 33 + 6.18440560110452e46 * cos(theta) ** 31 - 1.42152674469283e46 * cos(theta) ** 29 + 2.74045516783139e45 * cos(theta) ** 27 - 4.4022872490106e44 * cos(theta) ** 25 + 5.84374413585478e43 * cos(theta) ** 23 - 6.34263091536362e42 * cos(theta) ** 21 + 5.55443074322919e41 * cos(theta) ** 19 - 3.85943785896868e40 * cos(theta) ** 17 + 2.08287122547516e39 * cos(theta) ** 15 - 8.49326130776279e37 * cos(theta) ** 13 + 2.5227508834939e36 * cos(theta) ** 11 - 5.19084543928786e34 * cos(theta) ** 9 + 6.88035477961571e32 * cos(theta) ** 7 - 5.24455355252015e30 * cos(theta) ** 5 + 1.87976829839432e28 * cos(theta) ** 3 - 1.99904462785642e25 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl76_m_minus_12(theta, phi): return ( 1.29066220595158e-22 * (1.0 - cos(theta) ** 2) ** 6 * ( 7.25424237668215e43 * cos(theta) ** 64 - 9.68513419297432e44 * cos(theta) ** 62 + 6.14583515399813e45 * cos(theta) ** 60 - 2.46669574208088e46 * cos(theta) ** 58 + 7.03008286493052e46 * cos(theta) ** 56 - 1.51417169398503e47 * cos(theta) ** 54 + 2.56120531216618e47 * cos(theta) ** 52 - 3.49039901740221e47 * cos(theta) ** 50 + 3.90122152948696e47 * cos(theta) ** 48 - 3.62187480268419e47 * cos(theta) ** 46 + 2.81852663216401e47 * cos(theta) ** 44 - 1.85033046080996e47 * cos(theta) ** 42 + 1.0291566710319e47 * cos(theta) ** 40 - 4.8621575009381e46 * cos(theta) ** 38 + 1.9531981275197e46 * cos(theta) ** 36 - 6.66945702079899e45 * cos(theta) ** 34 + 1.93262675034516e45 * cos(theta) ** 32 - 4.73842248230944e44 * cos(theta) ** 30 + 9.7873398851121e43 * cos(theta) ** 28 - 1.69318740346562e43 * cos(theta) ** 26 + 2.43489338993949e42 * cos(theta) ** 24 - 2.88301405243801e41 * cos(theta) ** 22 + 2.7772153716146e40 * cos(theta) ** 20 - 2.14413214387149e39 * cos(theta) ** 18 + 1.30179451592198e38 * cos(theta) ** 16 - 6.06661521983056e36 * cos(theta) ** 14 + 2.10229240291158e35 * cos(theta) ** 12 - 5.19084543928786e33 * cos(theta) ** 10 + 8.60044347451964e31 * cos(theta) ** 8 - 8.74092258753358e29 * cos(theta) ** 6 + 4.69942074598579e27 * cos(theta) ** 4 - 9.99522313928208e24 * cos(theta) ** 2 + 3.50955868654568e21 ) * sin(12 * phi) ) # @torch.jit.script def Yl76_m_minus_11(theta, phi): return ( 9.76136623576158e-21 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.11603728872033e42 * cos(theta) ** 65 - 1.5373228877737e43 * cos(theta) ** 63 + 1.00751395967183e44 * cos(theta) ** 61 - 4.18084024081506e44 * cos(theta) ** 59 + 1.23334787104044e45 * cos(theta) ** 57 - 2.75303944360915e45 * cos(theta) ** 55 + 4.83246285314373e45 * cos(theta) ** 53 - 6.84391964196512e45 * cos(theta) ** 51 + 7.96167659078971e45 * cos(theta) ** 49 - 7.70611660145572e45 * cos(theta) ** 47 + 6.26339251592002e45 * cos(theta) ** 45 - 4.30309409490689e45 * cos(theta) ** 43 + 2.51013822202902e45 * cos(theta) ** 41 - 1.24670705152259e45 * cos(theta) ** 39 + 5.27891385816136e44 * cos(theta) ** 37 - 1.90555914879971e44 * cos(theta) ** 35 + 5.85644469801564e43 * cos(theta) ** 33 - 1.52852338139014e43 * cos(theta) ** 31 + 3.37494478796969e42 * cos(theta) ** 29 - 6.27106445728006e41 * cos(theta) ** 27 + 9.73957355975797e40 * cos(theta) ** 25 - 1.25348437062522e40 * cos(theta) ** 23 + 1.32248351029266e39 * cos(theta) ** 21 - 1.12849060203763e38 * cos(theta) ** 19 + 7.65761479954103e36 * cos(theta) ** 17 - 4.04441014655371e35 * cos(theta) ** 15 + 1.61714800223968e34 * cos(theta) ** 13 - 4.7189503993526e32 * cos(theta) ** 11 + 9.55604830502183e30 * cos(theta) ** 9 - 1.24870322679051e29 * cos(theta) ** 7 + 9.39884149197159e26 * cos(theta) ** 5 - 3.33174104642736e24 * cos(theta) ** 3 + 3.50955868654568e21 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl76_m_minus_10(theta, phi): return ( 7.39677147726305e-19 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.6909655889702e40 * cos(theta) ** 66 - 2.40206701214641e41 * cos(theta) ** 64 + 1.62502251559972e42 * cos(theta) ** 62 - 6.96806706802509e42 * cos(theta) ** 60 + 2.12646184662145e43 * cos(theta) ** 58 - 4.91614186358778e43 * cos(theta) ** 56 + 8.9490052835995e43 * cos(theta) ** 54 - 1.3161383926856e44 * cos(theta) ** 52 + 1.59233531815794e44 * cos(theta) ** 50 - 1.60544095863661e44 * cos(theta) ** 48 + 1.36160706867827e44 * cos(theta) ** 46 - 9.77975930660656e43 * cos(theta) ** 44 + 5.97651957625957e43 * cos(theta) ** 42 - 3.11676762880647e43 * cos(theta) ** 40 + 1.38918785741088e43 * cos(theta) ** 38 - 5.29321985777698e42 * cos(theta) ** 36 + 1.72248373471048e42 * cos(theta) ** 34 - 4.7766355668442e41 * cos(theta) ** 32 + 1.1249815959899e41 * cos(theta) ** 30 - 2.23966587760002e40 * cos(theta) ** 28 + 3.74598983067614e39 * cos(theta) ** 26 - 5.22285154427176e38 * cos(theta) ** 24 + 6.01128868314848e37 * cos(theta) ** 22 - 5.64245301018813e36 * cos(theta) ** 20 + 4.25423044418946e35 * cos(theta) ** 18 - 2.52775634159607e34 * cos(theta) ** 16 + 1.15510571588548e33 * cos(theta) ** 14 - 3.93245866612716e31 * cos(theta) ** 12 + 9.55604830502183e29 * cos(theta) ** 10 - 1.56087903348814e28 * cos(theta) ** 8 + 1.56647358199526e26 * cos(theta) ** 6 - 8.3293526160684e23 * cos(theta) ** 4 + 1.75477934327284e21 * cos(theta) ** 2 - 6.11208409360097e17 ) * sin(10 * phi) ) # @torch.jit.script def Yl76_m_minus_9(theta, phi): return ( 5.61472937361047e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 2.52382923726895e38 * cos(theta) ** 67 - 3.69548771099448e39 * cos(theta) ** 65 + 2.57940081841225e40 * cos(theta) ** 63 - 1.14230607672543e41 * cos(theta) ** 61 + 3.60417262139229e41 * cos(theta) ** 59 - 8.6248102869961e41 * cos(theta) ** 57 + 1.62709186974536e42 * cos(theta) ** 55 - 2.48327998619924e42 * cos(theta) ** 53 + 3.12222611403518e42 * cos(theta) ** 51 - 3.27641011966655e42 * cos(theta) ** 49 + 2.89703631633674e42 * cos(theta) ** 47 - 2.17327984591257e42 * cos(theta) ** 45 + 1.38988827354874e42 * cos(theta) ** 43 - 7.60187226538164e41 * cos(theta) ** 41 + 3.5620201472074e41 * cos(theta) ** 39 - 1.43059996156134e41 * cos(theta) ** 37 + 4.92138209917281e40 * cos(theta) ** 35 - 1.44746532328612e40 * cos(theta) ** 33 + 3.62897289028999e39 * cos(theta) ** 31 - 7.72298578482766e38 * cos(theta) ** 29 + 1.38740364099116e38 * cos(theta) ** 27 - 2.0891406177087e37 * cos(theta) ** 25 + 2.61360377528195e36 * cos(theta) ** 23 - 2.68688238580387e35 * cos(theta) ** 21 + 2.23906865483656e34 * cos(theta) ** 19 - 1.48691549505651e33 * cos(theta) ** 17 + 7.7007047725699e31 * cos(theta) ** 15 - 3.0249682047132e30 * cos(theta) ** 13 + 8.68731664092893e28 * cos(theta) ** 11 - 1.73431003720904e27 * cos(theta) ** 9 + 2.23781940285038e25 * cos(theta) ** 7 - 1.66587052321368e23 * cos(theta) ** 5 + 5.84926447757613e20 * cos(theta) ** 3 - 6.11208409360097e17 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl76_m_minus_8(theta, phi): return ( 4.26867162858366e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 3.71151358421905e36 * cos(theta) ** 68 - 5.59922380453708e37 * cos(theta) ** 66 + 4.03031377876914e38 * cos(theta) ** 64 - 1.84242915600875e39 * cos(theta) ** 62 + 6.00695436898715e39 * cos(theta) ** 60 - 1.48703625637864e40 * cos(theta) ** 58 + 2.90552119597386e40 * cos(theta) ** 56 - 4.59866664110971e40 * cos(theta) ** 54 + 6.00428098852919e40 * cos(theta) ** 52 - 6.55282023933309e40 * cos(theta) ** 50 + 6.03549232570153e40 * cos(theta) ** 48 - 4.72452140415776e40 * cos(theta) ** 46 + 3.15883698533804e40 * cos(theta) ** 44 - 1.80996958699563e40 * cos(theta) ** 42 + 8.90505036801849e39 * cos(theta) ** 40 - 3.76473674095091e39 * cos(theta) ** 38 + 1.36705058310356e39 * cos(theta) ** 36 - 4.25725095084153e38 * cos(theta) ** 34 + 1.13405402821562e38 * cos(theta) ** 32 - 2.57432859494255e37 * cos(theta) ** 30 + 4.95501300353987e36 * cos(theta) ** 28 - 8.03515622195655e35 * cos(theta) ** 26 + 1.08900157303414e35 * cos(theta) ** 24 - 1.2213101753654e34 * cos(theta) ** 22 + 1.11953432741828e33 * cos(theta) ** 20 - 8.26064163920284e31 * cos(theta) ** 18 + 4.81294048285618e30 * cos(theta) ** 16 - 2.16069157479514e29 * cos(theta) ** 14 + 7.23943053410744e27 * cos(theta) ** 12 - 1.73431003720904e26 * cos(theta) ** 10 + 2.79727425356297e24 * cos(theta) ** 8 - 2.7764508720228e22 * cos(theta) ** 6 + 1.46231611939403e20 * cos(theta) ** 4 - 3.05604204680048e17 * cos(theta) ** 2 + 105745399543269.0 ) * sin(8 * phi) ) # @torch.jit.script def Yl76_m_minus_7(theta, phi): return ( 3.24980225724004e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 5.37900519452036e34 * cos(theta) ** 69 - 8.35705045453296e35 * cos(theta) ** 67 + 6.20048273656791e36 * cos(theta) ** 65 - 2.92449072382341e37 * cos(theta) ** 63 + 9.84746617866746e37 * cos(theta) ** 61 - 2.52040043454006e38 * cos(theta) ** 59 + 5.09740560697169e38 * cos(theta) ** 57 - 8.36121207474493e38 * cos(theta) ** 55 + 1.13288320538287e39 * cos(theta) ** 53 - 1.28486671359472e39 * cos(theta) ** 51 + 1.23173312769419e39 * cos(theta) ** 49 - 1.00521732003357e39 * cos(theta) ** 47 + 7.01963774519564e38 * cos(theta) ** 45 - 4.20923159766425e38 * cos(theta) ** 43 + 2.17196350439475e38 * cos(theta) ** 41 - 9.65317113064335e37 * cos(theta) ** 39 + 3.69473130568529e37 * cos(theta) ** 37 - 1.21635741452615e37 * cos(theta) ** 35 + 3.43652735822916e36 * cos(theta) ** 33 - 8.30428579013727e35 * cos(theta) ** 31 + 1.70862517363444e35 * cos(theta) ** 29 - 2.97598378590983e34 * cos(theta) ** 27 + 4.35600629213658e33 * cos(theta) ** 25 - 5.31004424071911e32 * cos(theta) ** 23 + 5.33111584484895e31 * cos(theta) ** 21 - 4.34770612589623e30 * cos(theta) ** 19 + 2.83114146050364e29 * cos(theta) ** 17 - 1.44046104986343e28 * cos(theta) ** 15 + 5.56879271854419e26 * cos(theta) ** 13 - 1.57664548837186e25 * cos(theta) ** 11 + 3.10808250395886e23 * cos(theta) ** 9 - 3.966358388604e21 * cos(theta) ** 7 + 2.92463223878806e19 * cos(theta) ** 5 - 1.01868068226683e17 * cos(theta) ** 3 + 105745399543269.0 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl76_m_minus_6(theta, phi): return ( 2.47710834385285e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 7.68429313502909e32 * cos(theta) ** 70 - 1.22897800801955e34 * cos(theta) ** 68 + 9.39467081298168e34 * cos(theta) ** 66 - 4.56951675597408e35 * cos(theta) ** 64 + 1.58830099655927e36 * cos(theta) ** 62 - 4.20066739090011e36 * cos(theta) ** 60 + 8.78863035684774e36 * cos(theta) ** 58 - 1.49307358477588e37 * cos(theta) ** 56 + 2.09793186182012e37 * cos(theta) ** 54 - 2.4708975261437e37 * cos(theta) ** 52 + 2.46346625538838e37 * cos(theta) ** 50 - 2.09420275006993e37 * cos(theta) ** 48 + 1.52600820547731e37 * cos(theta) ** 46 - 9.56643544923694e36 * cos(theta) ** 44 + 5.17134167713037e36 * cos(theta) ** 42 - 2.41329278266084e36 * cos(theta) ** 40 + 9.72297712022445e35 * cos(theta) ** 38 - 3.37877059590598e35 * cos(theta) ** 36 + 1.01074334065563e35 * cos(theta) ** 34 - 2.5950893094179e34 * cos(theta) ** 32 + 5.69541724544813e33 * cos(theta) ** 30 - 1.06285135211065e33 * cos(theta) ** 28 + 1.67538703543715e32 * cos(theta) ** 26 - 2.21251843363296e31 * cos(theta) ** 24 + 2.42323447493134e30 * cos(theta) ** 22 - 2.17385306294812e29 * cos(theta) ** 20 + 1.57285636694647e28 * cos(theta) ** 18 - 9.00288156164644e26 * cos(theta) ** 16 + 3.97770908467442e25 * cos(theta) ** 14 - 1.31387124030988e24 * cos(theta) ** 12 + 3.10808250395886e22 * cos(theta) ** 10 - 4.957947985755e20 * cos(theta) ** 8 + 4.87438706464677e18 * cos(theta) ** 6 - 2.54670170566707e16 * cos(theta) ** 4 + 52872699771634.7 * cos(theta) ** 2 - 18200585119.3235 ) * sin(6 * phi) ) # @torch.jit.script def Yl76_m_minus_5(theta, phi): return ( 1.8900839870258e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.08229480775058e31 * cos(theta) ** 71 - 1.78112754785442e32 * cos(theta) ** 69 + 1.40218967357936e33 * cos(theta) ** 67 - 7.03002577842167e33 * cos(theta) ** 65 + 2.52111269295122e34 * cos(theta) ** 63 - 6.88633998508214e34 * cos(theta) ** 61 + 1.48959836556741e35 * cos(theta) ** 59 - 2.61942734171207e35 * cos(theta) ** 57 + 3.81442156694568e35 * cos(theta) ** 55 - 4.66207080404472e35 * cos(theta) ** 53 + 4.83032599095761e35 * cos(theta) ** 51 - 4.27388316340802e35 * cos(theta) ** 49 + 3.24682596910066e35 * cos(theta) ** 47 - 2.12587454427488e35 * cos(theta) ** 45 + 1.20263759933264e35 * cos(theta) ** 43 - 5.88607995770936e34 * cos(theta) ** 41 + 2.49307105646781e34 * cos(theta) ** 39 - 9.1318124213675e33 * cos(theta) ** 37 + 2.88783811615895e33 * cos(theta) ** 35 - 7.86390699823605e32 * cos(theta) ** 33 + 1.8372313694994e32 * cos(theta) ** 31 - 3.66500466245053e31 * cos(theta) ** 29 + 6.20513716828572e30 * cos(theta) ** 27 - 8.85007373453185e29 * cos(theta) ** 25 + 1.05358020649189e29 * cos(theta) ** 23 - 1.03516812521339e28 * cos(theta) ** 21 + 8.2781914049814e26 * cos(theta) ** 19 - 5.29581268332143e25 * cos(theta) ** 17 + 2.65180605644961e24 * cos(theta) ** 15 - 1.01067018485375e23 * cos(theta) ** 13 + 2.82552954905351e21 * cos(theta) ** 11 - 5.50883109528334e19 * cos(theta) ** 9 + 6.96341009235253e17 * cos(theta) ** 7 - 5.09340341133414e15 * cos(theta) ** 5 + 17624233257211.6 * cos(theta) ** 3 - 18200585119.3235 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl76_m_minus_4(theta, phi): return ( 1.44341050057709e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 1.50318723298691e29 * cos(theta) ** 72 - 2.54446792550632e30 * cos(theta) ** 70 + 2.0620436376167e31 * cos(theta) ** 68 - 1.06515542097298e32 * cos(theta) ** 66 + 3.93923858273628e32 * cos(theta) ** 64 - 1.11069999759389e33 * cos(theta) ** 62 + 2.48266394261236e33 * cos(theta) ** 60 - 4.5162540374346e33 * cos(theta) ** 58 + 6.81146708383157e33 * cos(theta) ** 56 - 8.63346445193466e33 * cos(theta) ** 54 + 9.28908844414925e33 * cos(theta) ** 52 - 8.54776632681604e33 * cos(theta) ** 50 + 6.76422076895972e33 * cos(theta) ** 48 - 4.62146640059755e33 * cos(theta) ** 46 + 2.73326727121055e33 * cos(theta) ** 44 - 1.40144760897842e33 * cos(theta) ** 42 + 6.23267764116952e32 * cos(theta) ** 40 - 2.40310853193882e32 * cos(theta) ** 38 + 8.02177254488598e31 * cos(theta) ** 36 - 2.3129138230106e31 * cos(theta) ** 34 + 5.74134802968561e30 * cos(theta) ** 32 - 1.22166822081684e30 * cos(theta) ** 30 + 2.2161204172449e29 * cos(theta) ** 28 - 3.40387451328148e28 * cos(theta) ** 26 + 4.38991752704953e27 * cos(theta) ** 24 - 4.70530966006086e26 * cos(theta) ** 22 + 4.1390957024907e25 * cos(theta) ** 20 - 2.9421181574008e24 * cos(theta) ** 18 + 1.65737878528101e23 * cos(theta) ** 16 - 7.21907274895539e21 * cos(theta) ** 14 + 2.35460795754459e20 * cos(theta) ** 12 - 5.50883109528334e18 * cos(theta) ** 10 + 8.70426261544066e16 * cos(theta) ** 8 - 848900568555690.0 * cos(theta) ** 6 + 4406058314302.89 * cos(theta) ** 4 - 9100292559.66173 * cos(theta) ** 2 + 3120813.63500059 ) * sin(4 * phi) ) # @torch.jit.script def Yl76_m_minus_3(theta, phi): return ( 1.10305275573515e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 2.05916059313275e27 * cos(theta) ** 73 - 3.5837576415582e28 * cos(theta) ** 71 + 2.9884690400242e29 * cos(theta) ** 69 - 1.58978421040743e30 * cos(theta) ** 67 + 6.06036705036351e30 * cos(theta) ** 65 - 1.76301586919666e31 * cos(theta) ** 63 + 4.06994088952845e31 * cos(theta) ** 61 - 7.65466786005865e31 * cos(theta) ** 59 + 1.19499422523361e32 * cos(theta) ** 57 - 1.56972080944267e32 * cos(theta) ** 55 + 1.75265819700929e32 * cos(theta) ** 53 - 1.67603261310118e32 * cos(theta) ** 51 + 1.38045321815504e32 * cos(theta) ** 49 - 9.83290723531395e31 * cos(theta) ** 47 + 6.07392726935679e31 * cos(theta) ** 45 - 3.25918048599632e31 * cos(theta) ** 43 + 1.52016527833403e31 * cos(theta) ** 41 - 6.16181674856107e30 * cos(theta) ** 39 + 2.16804663375297e30 * cos(theta) ** 37 - 6.60832520860172e29 * cos(theta) ** 35 + 1.73980243323806e29 * cos(theta) ** 33 - 3.94086522844143e28 * cos(theta) ** 31 + 7.6417945422238e27 * cos(theta) ** 29 - 1.26069426417833e27 * cos(theta) ** 27 + 1.75596701081981e26 * cos(theta) ** 25 - 2.04578680872211e25 * cos(theta) ** 23 + 1.970997953567e24 * cos(theta) ** 21 - 1.54848324073726e23 * cos(theta) ** 19 + 9.74928697224122e21 * cos(theta) ** 17 - 4.81271516597026e20 * cos(theta) ** 15 + 1.81123689041891e19 * cos(theta) ** 13 - 5.0080282684394e17 * cos(theta) ** 11 + 9.67140290604518e15 * cos(theta) ** 9 - 121271509793670.0 * cos(theta) ** 7 + 881211662860.578 * cos(theta) ** 5 - 3033430853.22058 * cos(theta) ** 3 + 3120813.63500059 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl76_m_minus_2(theta, phi): return ( 0.000843384644322593 * (1.0 - cos(theta) ** 2) * ( 2.7826494501794e25 * cos(theta) ** 74 - 4.97744116883083e26 * cos(theta) ** 72 + 4.26924148574886e27 * cos(theta) ** 70 - 2.33791795648152e28 * cos(theta) ** 68 + 9.18237431873259e28 * cos(theta) ** 66 - 2.75471229561978e29 * cos(theta) ** 64 + 6.56442078956202e29 * cos(theta) ** 62 - 1.27577797667644e30 * cos(theta) ** 60 + 2.06033487109243e30 * cos(theta) ** 58 - 2.80307287400476e30 * cos(theta) ** 56 + 3.24566332779499e30 * cos(theta) ** 54 - 3.2231396405792e30 * cos(theta) ** 52 + 2.76090643631009e30 * cos(theta) ** 50 - 2.04852234069041e30 * cos(theta) ** 48 + 1.3204189715993e30 * cos(theta) ** 46 - 7.40722837726437e29 * cos(theta) ** 44 + 3.61944113889055e29 * cos(theta) ** 42 - 1.54045418714027e29 * cos(theta) ** 40 + 5.70538587829729e28 * cos(theta) ** 38 - 1.83564589127826e28 * cos(theta) ** 36 + 5.11706598011195e27 * cos(theta) ** 34 - 1.23152038388795e27 * cos(theta) ** 32 + 2.54726484740793e26 * cos(theta) ** 30 - 4.50247951492259e25 * cos(theta) ** 28 + 6.75371927238389e24 * cos(theta) ** 26 - 8.5241117030088e23 * cos(theta) ** 24 + 8.95908160712273e22 * cos(theta) ** 22 - 7.74241620368631e21 * cos(theta) ** 20 + 5.41627054013401e20 * cos(theta) ** 18 - 3.00794697873141e19 * cos(theta) ** 16 + 1.29374063601351e18 * cos(theta) ** 14 - 4.17335689036616e16 * cos(theta) ** 12 + 967140290604518.0 * cos(theta) ** 10 - 15158938724208.8 * cos(theta) ** 8 + 146868610476.763 * cos(theta) ** 6 - 758357713.305144 * cos(theta) ** 4 + 1560406.8175003 * cos(theta) ** 2 - 533.83743328782 ) * sin(2 * phi) ) # @torch.jit.script def Yl76_m_minus_1(theta, phi): return ( 0.0645065213829812 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 3.71019926690586e23 * cos(theta) ** 75 - 6.81841256004223e24 * cos(theta) ** 73 + 6.01301617711107e25 * cos(theta) ** 71 - 3.38828689345148e26 * cos(theta) ** 69 + 1.37050362966158e27 * cos(theta) ** 67 - 4.23801891633812e27 * cos(theta) ** 65 + 1.04197155389873e28 * cos(theta) ** 63 - 2.09143930602695e28 * cos(theta) ** 61 + 3.49209300185157e28 * cos(theta) ** 59 - 4.91767170878028e28 * cos(theta) ** 57 + 5.90120605053634e28 * cos(theta) ** 55 - 6.08139554826264e28 * cos(theta) ** 53 + 5.41354203198057e28 * cos(theta) ** 51 - 4.18065783814368e28 * cos(theta) ** 49 + 2.80940206723256e28 * cos(theta) ** 47 - 1.64605075050319e28 * cos(theta) ** 45 + 8.41730497416406e27 * cos(theta) ** 43 - 3.75720533448846e27 * cos(theta) ** 41 + 1.46291945597366e27 * cos(theta) ** 39 - 4.96120511156286e26 * cos(theta) ** 37 + 1.46201885146056e26 * cos(theta) ** 35 - 3.7318799511756e25 * cos(theta) ** 33 + 8.21698337873527e24 * cos(theta) ** 31 - 1.55257914307676e24 * cos(theta) ** 29 + 2.50137750829033e23 * cos(theta) ** 27 - 3.40964468120352e22 * cos(theta) ** 25 + 3.89525287266205e21 * cos(theta) ** 23 - 3.68686485889824e20 * cos(theta) ** 21 + 2.85066870533369e19 * cos(theta) ** 19 - 1.76938057572436e18 * cos(theta) ** 17 + 8.6249375734234e16 * cos(theta) ** 15 - 3.2102745310509e15 * cos(theta) ** 13 + 87921844600410.8 * cos(theta) ** 11 - 1684326524912.08 * cos(theta) ** 9 + 20981230068.109 * cos(theta) ** 7 - 151671542.661029 * cos(theta) ** 5 + 520135.605833432 * cos(theta) ** 3 - 533.83743328782 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl76_m0(theta, phi): return ( 5.35148483526008e22 * cos(theta) ** 76 - 1.01004846228419e24 * cos(theta) ** 74 + 9.15483522358923e24 * cos(theta) ** 72 - 5.30606776224355e25 * cos(theta) ** 70 + 2.20933683548589e26 * cos(theta) ** 68 - 7.03897805767394e26 * cos(theta) ** 66 + 1.78470542951662e27 * cos(theta) ** 64 - 3.69780693309918e27 * cos(theta) ** 62 + 6.38006652417021e27 * cos(theta) ** 60 - 9.29441789940845e27 * cos(theta) ** 58 + 1.15516336749791e28 * cos(theta) ** 56 - 1.23452573625731e28 * cos(theta) ** 54 + 1.14121855851693e28 * cos(theta) ** 52 - 9.16569235974226e27 * cos(theta) ** 50 + 6.41598465181958e27 * cos(theta) ** 48 - 3.92261825867344e27 * cos(theta) ** 46 + 2.09706089758626e27 * cos(theta) ** 44 - 9.80632530458035e26 * cos(theta) ** 42 + 4.00913869289823e26 * cos(theta) ** 40 - 1.4311799452909e26 * cos(theta) ** 38 + 4.45185620150223e25 * cos(theta) ** 36 - 1.20320437878439e25 * cos(theta) ** 34 + 2.81483593201852e24 * cos(theta) ** 32 - 5.67313540138637e23 * cos(theta) ** 30 + 9.79291230001219e22 * cos(theta) ** 28 - 1.43756149491441e22 * cos(theta) ** 26 + 1.77916026598318e21 * cos(theta) ** 24 - 1.83706783917455e20 * cos(theta) ** 22 + 1.56245460548351e19 * cos(theta) ** 20 - 1.07755490033346e18 * cos(theta) ** 18 + 5.9091720340867e16 * cos(theta) ** 16 - 2.51364992587878e15 * cos(theta) ** 14 + 80316763783345.8 * cos(theta) ** 12 - 1846362385824.04 * cos(theta) ** 10 + 28749587322.5197 * cos(theta) ** 8 - 277104456.120672 * cos(theta) ** 6 + 1425434.44506518 * cos(theta) ** 4 - 2925.96875483787 * cos(theta) ** 2 + 0.999989321544044 ) # @torch.jit.script def Yl76_m1(theta, phi): return ( 0.0645065213829812 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 3.71019926690586e23 * cos(theta) ** 75 - 6.81841256004223e24 * cos(theta) ** 73 + 6.01301617711107e25 * cos(theta) ** 71 - 3.38828689345148e26 * cos(theta) ** 69 + 1.37050362966158e27 * cos(theta) ** 67 - 4.23801891633812e27 * cos(theta) ** 65 + 1.04197155389873e28 * cos(theta) ** 63 - 2.09143930602695e28 * cos(theta) ** 61 + 3.49209300185157e28 * cos(theta) ** 59 - 4.91767170878028e28 * cos(theta) ** 57 + 5.90120605053634e28 * cos(theta) ** 55 - 6.08139554826264e28 * cos(theta) ** 53 + 5.41354203198057e28 * cos(theta) ** 51 - 4.18065783814368e28 * cos(theta) ** 49 + 2.80940206723256e28 * cos(theta) ** 47 - 1.64605075050319e28 * cos(theta) ** 45 + 8.41730497416406e27 * cos(theta) ** 43 - 3.75720533448846e27 * cos(theta) ** 41 + 1.46291945597366e27 * cos(theta) ** 39 - 4.96120511156286e26 * cos(theta) ** 37 + 1.46201885146056e26 * cos(theta) ** 35 - 3.7318799511756e25 * cos(theta) ** 33 + 8.21698337873527e24 * cos(theta) ** 31 - 1.55257914307676e24 * cos(theta) ** 29 + 2.50137750829033e23 * cos(theta) ** 27 - 3.40964468120352e22 * cos(theta) ** 25 + 3.89525287266205e21 * cos(theta) ** 23 - 3.68686485889824e20 * cos(theta) ** 21 + 2.85066870533369e19 * cos(theta) ** 19 - 1.76938057572436e18 * cos(theta) ** 17 + 8.6249375734234e16 * cos(theta) ** 15 - 3.2102745310509e15 * cos(theta) ** 13 + 87921844600410.8 * cos(theta) ** 11 - 1684326524912.08 * cos(theta) ** 9 + 20981230068.109 * cos(theta) ** 7 - 151671542.661029 * cos(theta) ** 5 + 520135.605833432 * cos(theta) ** 3 - 533.83743328782 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl76_m2(theta, phi): return ( 0.000843384644322593 * (1.0 - cos(theta) ** 2) * ( 2.7826494501794e25 * cos(theta) ** 74 - 4.97744116883083e26 * cos(theta) ** 72 + 4.26924148574886e27 * cos(theta) ** 70 - 2.33791795648152e28 * cos(theta) ** 68 + 9.18237431873259e28 * cos(theta) ** 66 - 2.75471229561978e29 * cos(theta) ** 64 + 6.56442078956202e29 * cos(theta) ** 62 - 1.27577797667644e30 * cos(theta) ** 60 + 2.06033487109243e30 * cos(theta) ** 58 - 2.80307287400476e30 * cos(theta) ** 56 + 3.24566332779499e30 * cos(theta) ** 54 - 3.2231396405792e30 * cos(theta) ** 52 + 2.76090643631009e30 * cos(theta) ** 50 - 2.04852234069041e30 * cos(theta) ** 48 + 1.3204189715993e30 * cos(theta) ** 46 - 7.40722837726437e29 * cos(theta) ** 44 + 3.61944113889055e29 * cos(theta) ** 42 - 1.54045418714027e29 * cos(theta) ** 40 + 5.70538587829729e28 * cos(theta) ** 38 - 1.83564589127826e28 * cos(theta) ** 36 + 5.11706598011195e27 * cos(theta) ** 34 - 1.23152038388795e27 * cos(theta) ** 32 + 2.54726484740793e26 * cos(theta) ** 30 - 4.50247951492259e25 * cos(theta) ** 28 + 6.75371927238389e24 * cos(theta) ** 26 - 8.5241117030088e23 * cos(theta) ** 24 + 8.95908160712273e22 * cos(theta) ** 22 - 7.74241620368631e21 * cos(theta) ** 20 + 5.41627054013401e20 * cos(theta) ** 18 - 3.00794697873141e19 * cos(theta) ** 16 + 1.29374063601351e18 * cos(theta) ** 14 - 4.17335689036616e16 * cos(theta) ** 12 + 967140290604518.0 * cos(theta) ** 10 - 15158938724208.8 * cos(theta) ** 8 + 146868610476.763 * cos(theta) ** 6 - 758357713.305144 * cos(theta) ** 4 + 1560406.8175003 * cos(theta) ** 2 - 533.83743328782 ) * cos(2 * phi) ) # @torch.jit.script def Yl76_m3(theta, phi): return ( 1.10305275573515e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 2.05916059313275e27 * cos(theta) ** 73 - 3.5837576415582e28 * cos(theta) ** 71 + 2.9884690400242e29 * cos(theta) ** 69 - 1.58978421040743e30 * cos(theta) ** 67 + 6.06036705036351e30 * cos(theta) ** 65 - 1.76301586919666e31 * cos(theta) ** 63 + 4.06994088952845e31 * cos(theta) ** 61 - 7.65466786005865e31 * cos(theta) ** 59 + 1.19499422523361e32 * cos(theta) ** 57 - 1.56972080944267e32 * cos(theta) ** 55 + 1.75265819700929e32 * cos(theta) ** 53 - 1.67603261310118e32 * cos(theta) ** 51 + 1.38045321815504e32 * cos(theta) ** 49 - 9.83290723531395e31 * cos(theta) ** 47 + 6.07392726935679e31 * cos(theta) ** 45 - 3.25918048599632e31 * cos(theta) ** 43 + 1.52016527833403e31 * cos(theta) ** 41 - 6.16181674856107e30 * cos(theta) ** 39 + 2.16804663375297e30 * cos(theta) ** 37 - 6.60832520860172e29 * cos(theta) ** 35 + 1.73980243323806e29 * cos(theta) ** 33 - 3.94086522844143e28 * cos(theta) ** 31 + 7.6417945422238e27 * cos(theta) ** 29 - 1.26069426417833e27 * cos(theta) ** 27 + 1.75596701081981e26 * cos(theta) ** 25 - 2.04578680872211e25 * cos(theta) ** 23 + 1.970997953567e24 * cos(theta) ** 21 - 1.54848324073726e23 * cos(theta) ** 19 + 9.74928697224122e21 * cos(theta) ** 17 - 4.81271516597026e20 * cos(theta) ** 15 + 1.81123689041891e19 * cos(theta) ** 13 - 5.0080282684394e17 * cos(theta) ** 11 + 9.67140290604518e15 * cos(theta) ** 9 - 121271509793670.0 * cos(theta) ** 7 + 881211662860.578 * cos(theta) ** 5 - 3033430853.22058 * cos(theta) ** 3 + 3120813.63500059 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl76_m4(theta, phi): return ( 1.44341050057709e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 1.50318723298691e29 * cos(theta) ** 72 - 2.54446792550632e30 * cos(theta) ** 70 + 2.0620436376167e31 * cos(theta) ** 68 - 1.06515542097298e32 * cos(theta) ** 66 + 3.93923858273628e32 * cos(theta) ** 64 - 1.11069999759389e33 * cos(theta) ** 62 + 2.48266394261236e33 * cos(theta) ** 60 - 4.5162540374346e33 * cos(theta) ** 58 + 6.81146708383157e33 * cos(theta) ** 56 - 8.63346445193466e33 * cos(theta) ** 54 + 9.28908844414925e33 * cos(theta) ** 52 - 8.54776632681604e33 * cos(theta) ** 50 + 6.76422076895972e33 * cos(theta) ** 48 - 4.62146640059755e33 * cos(theta) ** 46 + 2.73326727121055e33 * cos(theta) ** 44 - 1.40144760897842e33 * cos(theta) ** 42 + 6.23267764116952e32 * cos(theta) ** 40 - 2.40310853193882e32 * cos(theta) ** 38 + 8.02177254488598e31 * cos(theta) ** 36 - 2.3129138230106e31 * cos(theta) ** 34 + 5.74134802968561e30 * cos(theta) ** 32 - 1.22166822081684e30 * cos(theta) ** 30 + 2.2161204172449e29 * cos(theta) ** 28 - 3.40387451328148e28 * cos(theta) ** 26 + 4.38991752704953e27 * cos(theta) ** 24 - 4.70530966006086e26 * cos(theta) ** 22 + 4.1390957024907e25 * cos(theta) ** 20 - 2.9421181574008e24 * cos(theta) ** 18 + 1.65737878528101e23 * cos(theta) ** 16 - 7.21907274895539e21 * cos(theta) ** 14 + 2.35460795754459e20 * cos(theta) ** 12 - 5.50883109528334e18 * cos(theta) ** 10 + 8.70426261544066e16 * cos(theta) ** 8 - 848900568555690.0 * cos(theta) ** 6 + 4406058314302.89 * cos(theta) ** 4 - 9100292559.66173 * cos(theta) ** 2 + 3120813.63500059 ) * cos(4 * phi) ) # @torch.jit.script def Yl76_m5(theta, phi): return ( 1.8900839870258e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.08229480775058e31 * cos(theta) ** 71 - 1.78112754785442e32 * cos(theta) ** 69 + 1.40218967357936e33 * cos(theta) ** 67 - 7.03002577842167e33 * cos(theta) ** 65 + 2.52111269295122e34 * cos(theta) ** 63 - 6.88633998508214e34 * cos(theta) ** 61 + 1.48959836556741e35 * cos(theta) ** 59 - 2.61942734171207e35 * cos(theta) ** 57 + 3.81442156694568e35 * cos(theta) ** 55 - 4.66207080404472e35 * cos(theta) ** 53 + 4.83032599095761e35 * cos(theta) ** 51 - 4.27388316340802e35 * cos(theta) ** 49 + 3.24682596910066e35 * cos(theta) ** 47 - 2.12587454427488e35 * cos(theta) ** 45 + 1.20263759933264e35 * cos(theta) ** 43 - 5.88607995770936e34 * cos(theta) ** 41 + 2.49307105646781e34 * cos(theta) ** 39 - 9.1318124213675e33 * cos(theta) ** 37 + 2.88783811615895e33 * cos(theta) ** 35 - 7.86390699823605e32 * cos(theta) ** 33 + 1.8372313694994e32 * cos(theta) ** 31 - 3.66500466245053e31 * cos(theta) ** 29 + 6.20513716828572e30 * cos(theta) ** 27 - 8.85007373453185e29 * cos(theta) ** 25 + 1.05358020649189e29 * cos(theta) ** 23 - 1.03516812521339e28 * cos(theta) ** 21 + 8.2781914049814e26 * cos(theta) ** 19 - 5.29581268332143e25 * cos(theta) ** 17 + 2.65180605644961e24 * cos(theta) ** 15 - 1.01067018485375e23 * cos(theta) ** 13 + 2.82552954905351e21 * cos(theta) ** 11 - 5.50883109528334e19 * cos(theta) ** 9 + 6.96341009235253e17 * cos(theta) ** 7 - 5.09340341133414e15 * cos(theta) ** 5 + 17624233257211.6 * cos(theta) ** 3 - 18200585119.3235 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl76_m6(theta, phi): return ( 2.47710834385285e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 7.68429313502909e32 * cos(theta) ** 70 - 1.22897800801955e34 * cos(theta) ** 68 + 9.39467081298168e34 * cos(theta) ** 66 - 4.56951675597408e35 * cos(theta) ** 64 + 1.58830099655927e36 * cos(theta) ** 62 - 4.20066739090011e36 * cos(theta) ** 60 + 8.78863035684774e36 * cos(theta) ** 58 - 1.49307358477588e37 * cos(theta) ** 56 + 2.09793186182012e37 * cos(theta) ** 54 - 2.4708975261437e37 * cos(theta) ** 52 + 2.46346625538838e37 * cos(theta) ** 50 - 2.09420275006993e37 * cos(theta) ** 48 + 1.52600820547731e37 * cos(theta) ** 46 - 9.56643544923694e36 * cos(theta) ** 44 + 5.17134167713037e36 * cos(theta) ** 42 - 2.41329278266084e36 * cos(theta) ** 40 + 9.72297712022445e35 * cos(theta) ** 38 - 3.37877059590598e35 * cos(theta) ** 36 + 1.01074334065563e35 * cos(theta) ** 34 - 2.5950893094179e34 * cos(theta) ** 32 + 5.69541724544813e33 * cos(theta) ** 30 - 1.06285135211065e33 * cos(theta) ** 28 + 1.67538703543715e32 * cos(theta) ** 26 - 2.21251843363296e31 * cos(theta) ** 24 + 2.42323447493134e30 * cos(theta) ** 22 - 2.17385306294812e29 * cos(theta) ** 20 + 1.57285636694647e28 * cos(theta) ** 18 - 9.00288156164644e26 * cos(theta) ** 16 + 3.97770908467442e25 * cos(theta) ** 14 - 1.31387124030988e24 * cos(theta) ** 12 + 3.10808250395886e22 * cos(theta) ** 10 - 4.957947985755e20 * cos(theta) ** 8 + 4.87438706464677e18 * cos(theta) ** 6 - 2.54670170566707e16 * cos(theta) ** 4 + 52872699771634.7 * cos(theta) ** 2 - 18200585119.3235 ) * cos(6 * phi) ) # @torch.jit.script def Yl76_m7(theta, phi): return ( 3.24980225724004e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 5.37900519452036e34 * cos(theta) ** 69 - 8.35705045453296e35 * cos(theta) ** 67 + 6.20048273656791e36 * cos(theta) ** 65 - 2.92449072382341e37 * cos(theta) ** 63 + 9.84746617866746e37 * cos(theta) ** 61 - 2.52040043454006e38 * cos(theta) ** 59 + 5.09740560697169e38 * cos(theta) ** 57 - 8.36121207474493e38 * cos(theta) ** 55 + 1.13288320538287e39 * cos(theta) ** 53 - 1.28486671359472e39 * cos(theta) ** 51 + 1.23173312769419e39 * cos(theta) ** 49 - 1.00521732003357e39 * cos(theta) ** 47 + 7.01963774519564e38 * cos(theta) ** 45 - 4.20923159766425e38 * cos(theta) ** 43 + 2.17196350439475e38 * cos(theta) ** 41 - 9.65317113064335e37 * cos(theta) ** 39 + 3.69473130568529e37 * cos(theta) ** 37 - 1.21635741452615e37 * cos(theta) ** 35 + 3.43652735822916e36 * cos(theta) ** 33 - 8.30428579013727e35 * cos(theta) ** 31 + 1.70862517363444e35 * cos(theta) ** 29 - 2.97598378590983e34 * cos(theta) ** 27 + 4.35600629213658e33 * cos(theta) ** 25 - 5.31004424071911e32 * cos(theta) ** 23 + 5.33111584484895e31 * cos(theta) ** 21 - 4.34770612589623e30 * cos(theta) ** 19 + 2.83114146050364e29 * cos(theta) ** 17 - 1.44046104986343e28 * cos(theta) ** 15 + 5.56879271854419e26 * cos(theta) ** 13 - 1.57664548837186e25 * cos(theta) ** 11 + 3.10808250395886e23 * cos(theta) ** 9 - 3.966358388604e21 * cos(theta) ** 7 + 2.92463223878806e19 * cos(theta) ** 5 - 1.01868068226683e17 * cos(theta) ** 3 + 105745399543269.0 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl76_m8(theta, phi): return ( 4.26867162858366e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 3.71151358421905e36 * cos(theta) ** 68 - 5.59922380453708e37 * cos(theta) ** 66 + 4.03031377876914e38 * cos(theta) ** 64 - 1.84242915600875e39 * cos(theta) ** 62 + 6.00695436898715e39 * cos(theta) ** 60 - 1.48703625637864e40 * cos(theta) ** 58 + 2.90552119597386e40 * cos(theta) ** 56 - 4.59866664110971e40 * cos(theta) ** 54 + 6.00428098852919e40 * cos(theta) ** 52 - 6.55282023933309e40 * cos(theta) ** 50 + 6.03549232570153e40 * cos(theta) ** 48 - 4.72452140415776e40 * cos(theta) ** 46 + 3.15883698533804e40 * cos(theta) ** 44 - 1.80996958699563e40 * cos(theta) ** 42 + 8.90505036801849e39 * cos(theta) ** 40 - 3.76473674095091e39 * cos(theta) ** 38 + 1.36705058310356e39 * cos(theta) ** 36 - 4.25725095084153e38 * cos(theta) ** 34 + 1.13405402821562e38 * cos(theta) ** 32 - 2.57432859494255e37 * cos(theta) ** 30 + 4.95501300353987e36 * cos(theta) ** 28 - 8.03515622195655e35 * cos(theta) ** 26 + 1.08900157303414e35 * cos(theta) ** 24 - 1.2213101753654e34 * cos(theta) ** 22 + 1.11953432741828e33 * cos(theta) ** 20 - 8.26064163920284e31 * cos(theta) ** 18 + 4.81294048285618e30 * cos(theta) ** 16 - 2.16069157479514e29 * cos(theta) ** 14 + 7.23943053410744e27 * cos(theta) ** 12 - 1.73431003720904e26 * cos(theta) ** 10 + 2.79727425356297e24 * cos(theta) ** 8 - 2.7764508720228e22 * cos(theta) ** 6 + 1.46231611939403e20 * cos(theta) ** 4 - 3.05604204680048e17 * cos(theta) ** 2 + 105745399543269.0 ) * cos(8 * phi) ) # @torch.jit.script def Yl76_m9(theta, phi): return ( 5.61472937361047e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 2.52382923726895e38 * cos(theta) ** 67 - 3.69548771099448e39 * cos(theta) ** 65 + 2.57940081841225e40 * cos(theta) ** 63 - 1.14230607672543e41 * cos(theta) ** 61 + 3.60417262139229e41 * cos(theta) ** 59 - 8.6248102869961e41 * cos(theta) ** 57 + 1.62709186974536e42 * cos(theta) ** 55 - 2.48327998619924e42 * cos(theta) ** 53 + 3.12222611403518e42 * cos(theta) ** 51 - 3.27641011966655e42 * cos(theta) ** 49 + 2.89703631633674e42 * cos(theta) ** 47 - 2.17327984591257e42 * cos(theta) ** 45 + 1.38988827354874e42 * cos(theta) ** 43 - 7.60187226538164e41 * cos(theta) ** 41 + 3.5620201472074e41 * cos(theta) ** 39 - 1.43059996156134e41 * cos(theta) ** 37 + 4.92138209917281e40 * cos(theta) ** 35 - 1.44746532328612e40 * cos(theta) ** 33 + 3.62897289028999e39 * cos(theta) ** 31 - 7.72298578482766e38 * cos(theta) ** 29 + 1.38740364099116e38 * cos(theta) ** 27 - 2.0891406177087e37 * cos(theta) ** 25 + 2.61360377528195e36 * cos(theta) ** 23 - 2.68688238580387e35 * cos(theta) ** 21 + 2.23906865483656e34 * cos(theta) ** 19 - 1.48691549505651e33 * cos(theta) ** 17 + 7.7007047725699e31 * cos(theta) ** 15 - 3.0249682047132e30 * cos(theta) ** 13 + 8.68731664092893e28 * cos(theta) ** 11 - 1.73431003720904e27 * cos(theta) ** 9 + 2.23781940285038e25 * cos(theta) ** 7 - 1.66587052321368e23 * cos(theta) ** 5 + 5.84926447757613e20 * cos(theta) ** 3 - 6.11208409360097e17 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl76_m10(theta, phi): return ( 7.39677147726305e-19 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.6909655889702e40 * cos(theta) ** 66 - 2.40206701214641e41 * cos(theta) ** 64 + 1.62502251559972e42 * cos(theta) ** 62 - 6.96806706802509e42 * cos(theta) ** 60 + 2.12646184662145e43 * cos(theta) ** 58 - 4.91614186358778e43 * cos(theta) ** 56 + 8.9490052835995e43 * cos(theta) ** 54 - 1.3161383926856e44 * cos(theta) ** 52 + 1.59233531815794e44 * cos(theta) ** 50 - 1.60544095863661e44 * cos(theta) ** 48 + 1.36160706867827e44 * cos(theta) ** 46 - 9.77975930660656e43 * cos(theta) ** 44 + 5.97651957625957e43 * cos(theta) ** 42 - 3.11676762880647e43 * cos(theta) ** 40 + 1.38918785741088e43 * cos(theta) ** 38 - 5.29321985777698e42 * cos(theta) ** 36 + 1.72248373471048e42 * cos(theta) ** 34 - 4.7766355668442e41 * cos(theta) ** 32 + 1.1249815959899e41 * cos(theta) ** 30 - 2.23966587760002e40 * cos(theta) ** 28 + 3.74598983067614e39 * cos(theta) ** 26 - 5.22285154427176e38 * cos(theta) ** 24 + 6.01128868314848e37 * cos(theta) ** 22 - 5.64245301018813e36 * cos(theta) ** 20 + 4.25423044418946e35 * cos(theta) ** 18 - 2.52775634159607e34 * cos(theta) ** 16 + 1.15510571588548e33 * cos(theta) ** 14 - 3.93245866612716e31 * cos(theta) ** 12 + 9.55604830502183e29 * cos(theta) ** 10 - 1.56087903348814e28 * cos(theta) ** 8 + 1.56647358199526e26 * cos(theta) ** 6 - 8.3293526160684e23 * cos(theta) ** 4 + 1.75477934327284e21 * cos(theta) ** 2 - 6.11208409360097e17 ) * cos(10 * phi) ) # @torch.jit.script def Yl76_m11(theta, phi): return ( 9.76136623576158e-21 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.11603728872033e42 * cos(theta) ** 65 - 1.5373228877737e43 * cos(theta) ** 63 + 1.00751395967183e44 * cos(theta) ** 61 - 4.18084024081506e44 * cos(theta) ** 59 + 1.23334787104044e45 * cos(theta) ** 57 - 2.75303944360915e45 * cos(theta) ** 55 + 4.83246285314373e45 * cos(theta) ** 53 - 6.84391964196512e45 * cos(theta) ** 51 + 7.96167659078971e45 * cos(theta) ** 49 - 7.70611660145572e45 * cos(theta) ** 47 + 6.26339251592002e45 * cos(theta) ** 45 - 4.30309409490689e45 * cos(theta) ** 43 + 2.51013822202902e45 * cos(theta) ** 41 - 1.24670705152259e45 * cos(theta) ** 39 + 5.27891385816136e44 * cos(theta) ** 37 - 1.90555914879971e44 * cos(theta) ** 35 + 5.85644469801564e43 * cos(theta) ** 33 - 1.52852338139014e43 * cos(theta) ** 31 + 3.37494478796969e42 * cos(theta) ** 29 - 6.27106445728006e41 * cos(theta) ** 27 + 9.73957355975797e40 * cos(theta) ** 25 - 1.25348437062522e40 * cos(theta) ** 23 + 1.32248351029266e39 * cos(theta) ** 21 - 1.12849060203763e38 * cos(theta) ** 19 + 7.65761479954103e36 * cos(theta) ** 17 - 4.04441014655371e35 * cos(theta) ** 15 + 1.61714800223968e34 * cos(theta) ** 13 - 4.7189503993526e32 * cos(theta) ** 11 + 9.55604830502183e30 * cos(theta) ** 9 - 1.24870322679051e29 * cos(theta) ** 7 + 9.39884149197159e26 * cos(theta) ** 5 - 3.33174104642736e24 * cos(theta) ** 3 + 3.50955868654568e21 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl76_m12(theta, phi): return ( 1.29066220595158e-22 * (1.0 - cos(theta) ** 2) ** 6 * ( 7.25424237668215e43 * cos(theta) ** 64 - 9.68513419297432e44 * cos(theta) ** 62 + 6.14583515399813e45 * cos(theta) ** 60 - 2.46669574208088e46 * cos(theta) ** 58 + 7.03008286493052e46 * cos(theta) ** 56 - 1.51417169398503e47 * cos(theta) ** 54 + 2.56120531216618e47 * cos(theta) ** 52 - 3.49039901740221e47 * cos(theta) ** 50 + 3.90122152948696e47 * cos(theta) ** 48 - 3.62187480268419e47 * cos(theta) ** 46 + 2.81852663216401e47 * cos(theta) ** 44 - 1.85033046080996e47 * cos(theta) ** 42 + 1.0291566710319e47 * cos(theta) ** 40 - 4.8621575009381e46 * cos(theta) ** 38 + 1.9531981275197e46 * cos(theta) ** 36 - 6.66945702079899e45 * cos(theta) ** 34 + 1.93262675034516e45 * cos(theta) ** 32 - 4.73842248230944e44 * cos(theta) ** 30 + 9.7873398851121e43 * cos(theta) ** 28 - 1.69318740346562e43 * cos(theta) ** 26 + 2.43489338993949e42 * cos(theta) ** 24 - 2.88301405243801e41 * cos(theta) ** 22 + 2.7772153716146e40 * cos(theta) ** 20 - 2.14413214387149e39 * cos(theta) ** 18 + 1.30179451592198e38 * cos(theta) ** 16 - 6.06661521983056e36 * cos(theta) ** 14 + 2.10229240291158e35 * cos(theta) ** 12 - 5.19084543928786e33 * cos(theta) ** 10 + 8.60044347451964e31 * cos(theta) ** 8 - 8.74092258753358e29 * cos(theta) ** 6 + 4.69942074598579e27 * cos(theta) ** 4 - 9.99522313928208e24 * cos(theta) ** 2 + 3.50955868654568e21 ) * cos(12 * phi) ) # @torch.jit.script def Yl76_m13(theta, phi): return ( 1.71012400264125e-24 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 4.64271512107658e45 * cos(theta) ** 63 - 6.00478319964408e46 * cos(theta) ** 61 + 3.68750109239888e47 * cos(theta) ** 59 - 1.43068353040691e48 * cos(theta) ** 57 + 3.93684640436109e48 * cos(theta) ** 55 - 8.17652714751919e48 * cos(theta) ** 53 + 1.33182676232641e49 * cos(theta) ** 51 - 1.7451995087011e49 * cos(theta) ** 49 + 1.87258633415374e49 * cos(theta) ** 47 - 1.66606240923473e49 * cos(theta) ** 45 + 1.24015171815216e49 * cos(theta) ** 43 - 7.77138793540184e48 * cos(theta) ** 41 + 4.11662668412759e48 * cos(theta) ** 39 - 1.84761985035648e48 * cos(theta) ** 37 + 7.03151325907093e47 * cos(theta) ** 35 - 2.26761538707166e47 * cos(theta) ** 33 + 6.18440560110452e46 * cos(theta) ** 31 - 1.42152674469283e46 * cos(theta) ** 29 + 2.74045516783139e45 * cos(theta) ** 27 - 4.4022872490106e44 * cos(theta) ** 25 + 5.84374413585478e43 * cos(theta) ** 23 - 6.34263091536362e42 * cos(theta) ** 21 + 5.55443074322919e41 * cos(theta) ** 19 - 3.85943785896868e40 * cos(theta) ** 17 + 2.08287122547516e39 * cos(theta) ** 15 - 8.49326130776279e37 * cos(theta) ** 13 + 2.5227508834939e36 * cos(theta) ** 11 - 5.19084543928786e34 * cos(theta) ** 9 + 6.88035477961571e32 * cos(theta) ** 7 - 5.24455355252015e30 * cos(theta) ** 5 + 1.87976829839432e28 * cos(theta) ** 3 - 1.99904462785642e25 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl76_m14(theta, phi): return ( 2.27109903718475e-26 * (1.0 - cos(theta) ** 2) ** 7 * ( 2.92491052627824e47 * cos(theta) ** 62 - 3.66291775178289e48 * cos(theta) ** 60 + 2.17562564451534e49 * cos(theta) ** 58 - 8.1548961233194e49 * cos(theta) ** 56 + 2.1652655223986e50 * cos(theta) ** 54 - 4.33355938818517e50 * cos(theta) ** 52 + 6.7923164878647e50 * cos(theta) ** 50 - 8.55147759263541e50 * cos(theta) ** 48 + 8.80115577052258e50 * cos(theta) ** 46 - 7.49728084155627e50 * cos(theta) ** 44 + 5.33265238805431e50 * cos(theta) ** 42 - 3.18626905351475e50 * cos(theta) ** 40 + 1.60548440680976e50 * cos(theta) ** 38 - 6.83619344631896e49 * cos(theta) ** 36 + 2.46102964067483e49 * cos(theta) ** 34 - 7.48313077733647e48 * cos(theta) ** 32 + 1.9171657363424e48 * cos(theta) ** 30 - 4.12242755960922e47 * cos(theta) ** 28 + 7.39922895314475e46 * cos(theta) ** 26 - 1.10057181225265e46 * cos(theta) ** 24 + 1.3440611512466e45 * cos(theta) ** 22 - 1.33195249222636e44 * cos(theta) ** 20 + 1.05534184121355e43 * cos(theta) ** 18 - 6.56104436024676e41 * cos(theta) ** 16 + 3.12430683821274e40 * cos(theta) ** 14 - 1.10412397000916e39 * cos(theta) ** 12 + 2.77502597184329e37 * cos(theta) ** 10 - 4.67176089535907e35 * cos(theta) ** 8 + 4.816248345731e33 * cos(theta) ** 6 - 2.62227677626007e31 * cos(theta) ** 4 + 5.63930489518295e28 * cos(theta) ** 2 - 1.99904462785642e25 ) * cos(14 * phi) ) # @torch.jit.script def Yl76_m15(theta, phi): return ( 3.0235665514537e-28 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.81344452629251e49 * cos(theta) ** 61 - 2.19775065106973e50 * cos(theta) ** 59 + 1.2618628738189e51 * cos(theta) ** 57 - 4.56674182905887e51 * cos(theta) ** 55 + 1.16924338209524e52 * cos(theta) ** 53 - 2.25345088185629e52 * cos(theta) ** 51 + 3.39615824393235e52 * cos(theta) ** 49 - 4.104709244465e52 * cos(theta) ** 47 + 4.04853165444039e52 * cos(theta) ** 45 - 3.29880357028476e52 * cos(theta) ** 43 + 2.23971400298281e52 * cos(theta) ** 41 - 1.2745076214059e52 * cos(theta) ** 39 + 6.10084074587709e51 * cos(theta) ** 37 - 2.46102964067483e51 * cos(theta) ** 35 + 8.36750077829441e50 * cos(theta) ** 33 - 2.39460184874767e50 * cos(theta) ** 31 + 5.7514972090272e49 * cos(theta) ** 29 - 1.15427971669058e49 * cos(theta) ** 27 + 1.92379952781763e48 * cos(theta) ** 25 - 2.64137234940636e47 * cos(theta) ** 23 + 2.95693453274252e46 * cos(theta) ** 21 - 2.66390498445272e45 * cos(theta) ** 19 + 1.89961531418438e44 * cos(theta) ** 17 - 1.04976709763948e43 * cos(theta) ** 15 + 4.37402957349784e41 * cos(theta) ** 13 - 1.324948764011e40 * cos(theta) ** 11 + 2.77502597184329e38 * cos(theta) ** 9 - 3.73740871628726e36 * cos(theta) ** 7 + 2.8897490074386e34 * cos(theta) ** 5 - 1.04891071050403e32 * cos(theta) ** 3 + 1.12786097903659e29 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl76_m16(theta, phi): return ( 4.03608869114515e-30 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.10620116103843e51 * cos(theta) ** 60 - 1.29667288413114e52 * cos(theta) ** 58 + 7.19261838076771e52 * cos(theta) ** 56 - 2.51170800598238e53 * cos(theta) ** 54 + 6.19698992510479e53 * cos(theta) ** 52 - 1.14925994974671e54 * cos(theta) ** 50 + 1.66411753952685e54 * cos(theta) ** 48 - 1.92921334489855e54 * cos(theta) ** 46 + 1.82183924449817e54 * cos(theta) ** 44 - 1.41848553522245e54 * cos(theta) ** 42 + 9.18282741222952e53 * cos(theta) ** 40 - 4.97057972348302e53 * cos(theta) ** 38 + 2.25731107597452e53 * cos(theta) ** 36 - 8.6136037423619e52 * cos(theta) ** 34 + 2.76127525683716e52 * cos(theta) ** 32 - 7.42326573111777e51 * cos(theta) ** 30 + 1.66793419061789e51 * cos(theta) ** 28 - 3.11655523506457e50 * cos(theta) ** 26 + 4.80949881954408e49 * cos(theta) ** 24 - 6.07515640363463e48 * cos(theta) ** 22 + 6.20956251875929e47 * cos(theta) ** 20 - 5.06141947046017e46 * cos(theta) ** 18 + 3.22934603411345e45 * cos(theta) ** 16 - 1.57465064645922e44 * cos(theta) ** 14 + 5.68623844554719e42 * cos(theta) ** 12 - 1.45744364041209e41 * cos(theta) ** 10 + 2.49752337465896e39 * cos(theta) ** 8 - 2.61618610140108e37 * cos(theta) ** 6 + 1.4448745037193e35 * cos(theta) ** 4 - 3.14673213151209e32 * cos(theta) ** 2 + 1.12786097903659e29 ) * cos(16 * phi) ) # @torch.jit.script def Yl76_m17(theta, phi): return ( 5.40310741648762e-32 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 6.63720696623059e52 * cos(theta) ** 59 - 7.52070272796063e53 * cos(theta) ** 57 + 4.02786629322992e54 * cos(theta) ** 55 - 1.35632232323048e55 * cos(theta) ** 53 + 3.22243476105449e55 * cos(theta) ** 51 - 5.74629974873353e55 * cos(theta) ** 49 + 7.98776418972889e55 * cos(theta) ** 47 - 8.87438138653333e55 * cos(theta) ** 45 + 8.01609267579196e55 * cos(theta) ** 43 - 5.95763924793427e55 * cos(theta) ** 41 + 3.67313096489181e55 * cos(theta) ** 39 - 1.88882029492355e55 * cos(theta) ** 37 + 8.12631987350828e54 * cos(theta) ** 35 - 2.92862527240304e54 * cos(theta) ** 33 + 8.8360808218789e53 * cos(theta) ** 31 - 2.22697971933533e53 * cos(theta) ** 29 + 4.67021573373009e52 * cos(theta) ** 27 - 8.10304361116787e51 * cos(theta) ** 25 + 1.15427971669058e51 * cos(theta) ** 23 - 1.33653440879962e50 * cos(theta) ** 21 + 1.24191250375186e49 * cos(theta) ** 19 - 9.11055504682831e47 * cos(theta) ** 17 + 5.16695365458152e46 * cos(theta) ** 15 - 2.20451090504291e45 * cos(theta) ** 13 + 6.82348613465663e43 * cos(theta) ** 11 - 1.45744364041209e42 * cos(theta) ** 9 + 1.99801869972717e40 * cos(theta) ** 7 - 1.56971166084065e38 * cos(theta) ** 5 + 5.7794980148772e35 * cos(theta) ** 3 - 6.29346426302417e32 * cos(theta) ) * cos(17 * phi) ) # @torch.jit.script def Yl76_m18(theta, phi): return ( 7.25527150260126e-34 * (1.0 - cos(theta) ** 2) ** 9 * ( 3.91595211007605e54 * cos(theta) ** 58 - 4.28680055493756e55 * cos(theta) ** 56 + 2.21532646127646e56 * cos(theta) ** 54 - 7.18850831312156e56 * cos(theta) ** 52 + 1.64344172813779e57 * cos(theta) ** 50 - 2.81568687687943e57 * cos(theta) ** 48 + 3.75424916917258e57 * cos(theta) ** 46 - 3.99347162394e57 * cos(theta) ** 44 + 3.44691985059054e57 * cos(theta) ** 42 - 2.44263209165305e57 * cos(theta) ** 40 + 1.43252107630781e57 * cos(theta) ** 38 - 6.98863509121712e56 * cos(theta) ** 36 + 2.8442119557279e56 * cos(theta) ** 34 - 9.66446339893005e55 * cos(theta) ** 32 + 2.73918505478246e55 * cos(theta) ** 30 - 6.45824118607246e54 * cos(theta) ** 28 + 1.26095824810712e54 * cos(theta) ** 26 - 2.02576090279197e53 * cos(theta) ** 24 + 2.65484334838833e52 * cos(theta) ** 22 - 2.8067222584792e51 * cos(theta) ** 20 + 2.35963375712853e50 * cos(theta) ** 18 - 1.54879435796081e49 * cos(theta) ** 16 + 7.75043048187229e47 * cos(theta) ** 14 - 2.86586417655578e46 * cos(theta) ** 12 + 7.50583474812229e44 * cos(theta) ** 10 - 1.31169927637089e43 * cos(theta) ** 8 + 1.39861308980902e41 * cos(theta) ** 6 - 7.84855830420324e38 * cos(theta) ** 4 + 1.73384940446316e36 * cos(theta) ** 2 - 6.29346426302417e32 ) * cos(18 * phi) ) # @torch.jit.script def Yl76_m19(theta, phi): return ( 9.77412456581428e-36 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 2.27125222384411e56 * cos(theta) ** 57 - 2.40060831076503e57 * cos(theta) ** 55 + 1.19627628908929e58 * cos(theta) ** 53 - 3.73802432282321e58 * cos(theta) ** 51 + 8.21720864068895e58 * cos(theta) ** 49 - 1.35152970090213e59 * cos(theta) ** 47 + 1.72695461781939e59 * cos(theta) ** 45 - 1.7571275145336e59 * cos(theta) ** 43 + 1.44770633724803e59 * cos(theta) ** 41 - 9.77052836661221e58 * cos(theta) ** 39 + 5.44358008996966e58 * cos(theta) ** 37 - 2.51590863283816e58 * cos(theta) ** 35 + 9.67032064947485e57 * cos(theta) ** 33 - 3.09262828765761e57 * cos(theta) ** 31 + 8.21755516434738e56 * cos(theta) ** 29 - 1.80830753210029e56 * cos(theta) ** 27 + 3.27849144507852e55 * cos(theta) ** 25 - 4.86182616670072e54 * cos(theta) ** 23 + 5.84065536645434e53 * cos(theta) ** 21 - 5.6134445169584e52 * cos(theta) ** 19 + 4.24734076283136e51 * cos(theta) ** 17 - 2.4780709727373e50 * cos(theta) ** 15 + 1.08506026746212e49 * cos(theta) ** 13 - 3.43903701186694e47 * cos(theta) ** 11 + 7.50583474812229e45 * cos(theta) ** 9 - 1.04935942109671e44 * cos(theta) ** 7 + 8.3916785388541e41 * cos(theta) ** 5 - 3.1394233216813e39 * cos(theta) ** 3 + 3.46769880892632e36 * cos(theta) ) * cos(19 * phi) ) # @torch.jit.script def Yl76_m20(theta, phi): return ( 1.32131031447958e-37 * (1.0 - cos(theta) ** 2) ** 10 * ( 1.29461376759114e58 * cos(theta) ** 56 - 1.32033457092077e59 * cos(theta) ** 54 + 6.34026433217322e59 * cos(theta) ** 52 - 1.90639240463984e60 * cos(theta) ** 50 + 4.02643223393759e60 * cos(theta) ** 48 - 6.35218959424e60 * cos(theta) ** 46 + 7.77129578018723e60 * cos(theta) ** 44 - 7.55564831249447e60 * cos(theta) ** 42 + 5.93559598271692e60 * cos(theta) ** 40 - 3.81050606297876e60 * cos(theta) ** 38 + 2.01412463328877e60 * cos(theta) ** 36 - 8.80568021493357e59 * cos(theta) ** 34 + 3.1912058143267e59 * cos(theta) ** 32 - 9.58714769173861e58 * cos(theta) ** 30 + 2.38309099766074e58 * cos(theta) ** 28 - 4.88243033667078e57 * cos(theta) ** 26 + 8.1962286126963e56 * cos(theta) ** 24 - 1.11822001834117e56 * cos(theta) ** 22 + 1.22653762695541e55 * cos(theta) ** 20 - 1.0665544582221e54 * cos(theta) ** 18 + 7.22047929681331e52 * cos(theta) ** 16 - 3.71710645910595e51 * cos(theta) ** 14 + 1.41057834770076e50 * cos(theta) ** 12 - 3.78294071305363e48 * cos(theta) ** 10 + 6.75525127331006e46 * cos(theta) ** 8 - 7.34551594767696e44 * cos(theta) ** 6 + 4.19583926942705e42 * cos(theta) ** 4 - 9.41826996504389e39 * cos(theta) ** 2 + 3.46769880892632e36 ) * cos(20 * phi) ) # @torch.jit.script def Yl76_m21(theta, phi): return ( 1.79277152085142e-39 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 7.2498370985104e59 * cos(theta) ** 55 - 7.12980668297214e60 * cos(theta) ** 53 + 3.29693745273007e61 * cos(theta) ** 51 - 9.53196202319919e61 * cos(theta) ** 49 + 1.93268747229004e62 * cos(theta) ** 47 - 2.9220072133504e62 * cos(theta) ** 45 + 3.41937014328238e62 * cos(theta) ** 43 - 3.17337229124768e62 * cos(theta) ** 41 + 2.37423839308677e62 * cos(theta) ** 39 - 1.44799230393193e62 * cos(theta) ** 37 + 7.25084867983959e61 * cos(theta) ** 35 - 2.99393127307741e61 * cos(theta) ** 33 + 1.02118586058454e61 * cos(theta) ** 31 - 2.87614430752158e60 * cos(theta) ** 29 + 6.67265479345007e59 * cos(theta) ** 27 - 1.2694318875344e59 * cos(theta) ** 25 + 1.96709486704711e58 * cos(theta) ** 23 - 2.46008404035057e57 * cos(theta) ** 21 + 2.45307525391082e56 * cos(theta) ** 19 - 1.91979802479977e55 * cos(theta) ** 17 + 1.15527668749013e54 * cos(theta) ** 15 - 5.20394904274833e52 * cos(theta) ** 13 + 1.69269401724091e51 * cos(theta) ** 11 - 3.78294071305363e49 * cos(theta) ** 9 + 5.40420101864805e47 * cos(theta) ** 7 - 4.40730956860617e45 * cos(theta) ** 5 + 1.67833570777082e43 * cos(theta) ** 3 - 1.88365399300878e40 * cos(theta) ) * cos(21 * phi) ) # @torch.jit.script def Yl76_m22(theta, phi): return ( 2.4419151088525e-41 * (1.0 - cos(theta) ** 2) ** 11 * ( 3.98741040418072e61 * cos(theta) ** 54 - 3.77879754197524e62 * cos(theta) ** 52 + 1.68143810089234e63 * cos(theta) ** 50 - 4.6706613913676e63 * cos(theta) ** 48 + 9.0836311197632e63 * cos(theta) ** 46 - 1.31490324600768e64 * cos(theta) ** 44 + 1.47032916161142e64 * cos(theta) ** 42 - 1.30108263941155e64 * cos(theta) ** 40 + 9.25952973303839e63 * cos(theta) ** 38 - 5.35757152454814e63 * cos(theta) ** 36 + 2.53779703794386e63 * cos(theta) ** 34 - 9.87997320115547e62 * cos(theta) ** 32 + 3.16567616781209e62 * cos(theta) ** 30 - 8.34081849181259e61 * cos(theta) ** 28 + 1.80161679423152e61 * cos(theta) ** 26 - 3.17357971883601e60 * cos(theta) ** 24 + 4.52431819420836e59 * cos(theta) ** 22 - 5.16617648473619e58 * cos(theta) ** 20 + 4.66084298243056e57 * cos(theta) ** 18 - 3.26365664215961e56 * cos(theta) ** 16 + 1.73291503123519e55 * cos(theta) ** 14 - 6.76513375557283e53 * cos(theta) ** 12 + 1.861963418965e52 * cos(theta) ** 10 - 3.40464664174827e50 * cos(theta) ** 8 + 3.78294071305363e48 * cos(theta) ** 6 - 2.20365478430309e46 * cos(theta) ** 4 + 5.03500712331246e43 * cos(theta) ** 2 - 1.88365399300878e40 ) * cos(22 * phi) ) # @torch.jit.script def Yl76_m23(theta, phi): return ( 3.33976635104016e-43 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 2.15320161825759e63 * cos(theta) ** 53 - 1.96497472182712e64 * cos(theta) ** 51 + 8.40719050446168e64 * cos(theta) ** 49 - 2.24191746785645e65 * cos(theta) ** 47 + 4.17847031509107e65 * cos(theta) ** 45 - 5.78557428243379e65 * cos(theta) ** 43 + 6.17538247876798e65 * cos(theta) ** 41 - 5.20433055764619e65 * cos(theta) ** 39 + 3.51862129855459e65 * cos(theta) ** 37 - 1.92872574883733e65 * cos(theta) ** 35 + 8.62850992900911e64 * cos(theta) ** 33 - 3.16159142436975e64 * cos(theta) ** 31 + 9.49702850343626e63 * cos(theta) ** 29 - 2.33542917770752e63 * cos(theta) ** 27 + 4.68420366500195e62 * cos(theta) ** 25 - 7.61659132520642e61 * cos(theta) ** 23 + 9.95350002725839e60 * cos(theta) ** 21 - 1.03323529694724e60 * cos(theta) ** 19 + 8.38951736837501e58 * cos(theta) ** 17 - 5.22185062745538e57 * cos(theta) ** 15 + 2.42608104372927e56 * cos(theta) ** 13 - 8.11816050668739e54 * cos(theta) ** 11 + 1.861963418965e53 * cos(theta) ** 9 - 2.72371731339862e51 * cos(theta) ** 7 + 2.26976442783218e49 * cos(theta) ** 5 - 8.81461913721235e46 * cos(theta) ** 3 + 1.00700142466249e44 * cos(theta) ) * cos(23 * phi) ) # @torch.jit.script def Yl76_m24(theta, phi): return ( 4.58752189435731e-45 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.14119685767652e65 * cos(theta) ** 52 - 1.00213710813183e66 * cos(theta) ** 50 + 4.11952334718622e66 * cos(theta) ** 48 - 1.05370120989253e67 * cos(theta) ** 46 + 1.88031164179098e67 * cos(theta) ** 44 - 2.48779694144653e67 * cos(theta) ** 42 + 2.53190681629487e67 * cos(theta) ** 40 - 2.02968891748202e67 * cos(theta) ** 38 + 1.3018898804652e67 * cos(theta) ** 36 - 6.75054012093065e66 * cos(theta) ** 34 + 2.84740827657301e66 * cos(theta) ** 32 - 9.80093341554622e65 * cos(theta) ** 30 + 2.75413826599652e65 * cos(theta) ** 28 - 6.30565877981032e64 * cos(theta) ** 26 + 1.17105091625049e64 * cos(theta) ** 24 - 1.75181600479748e63 * cos(theta) ** 22 + 2.09023500572426e62 * cos(theta) ** 20 - 1.96314706419975e61 * cos(theta) ** 18 + 1.42621795262375e60 * cos(theta) ** 16 - 7.83277594118307e58 * cos(theta) ** 14 + 3.15390535684805e57 * cos(theta) ** 12 - 8.92997655735613e55 * cos(theta) ** 10 + 1.6757670770685e54 * cos(theta) ** 8 - 1.90660211937903e52 * cos(theta) ** 6 + 1.13488221391609e50 * cos(theta) ** 4 - 2.6443857411637e47 * cos(theta) ** 2 + 1.00700142466249e44 ) * cos(24 * phi) ) # @torch.jit.script def Yl76_m25(theta, phi): return ( 6.33017609103435e-47 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 5.93422365991791e66 * cos(theta) ** 51 - 5.01068554065916e67 * cos(theta) ** 49 + 1.97737120664939e68 * cos(theta) ** 47 - 4.84702556550564e68 * cos(theta) ** 45 + 8.27337122388032e68 * cos(theta) ** 43 - 1.04487471540754e69 * cos(theta) ** 41 + 1.01276272651795e69 * cos(theta) ** 39 - 7.71281788643166e68 * cos(theta) ** 37 + 4.68680356967471e68 * cos(theta) ** 35 - 2.29518364111642e68 * cos(theta) ** 33 + 9.11170648503362e67 * cos(theta) ** 31 - 2.94028002466387e67 * cos(theta) ** 29 + 7.71158714479025e66 * cos(theta) ** 27 - 1.63947128275068e66 * cos(theta) ** 25 + 2.81052219900117e65 * cos(theta) ** 23 - 3.85399521055445e64 * cos(theta) ** 21 + 4.18047001144852e63 * cos(theta) ** 19 - 3.53366471555955e62 * cos(theta) ** 17 + 2.281948724198e61 * cos(theta) ** 15 - 1.09658863176563e60 * cos(theta) ** 13 + 3.78468642821766e58 * cos(theta) ** 11 - 8.92997655735613e56 * cos(theta) ** 9 + 1.3406136616548e55 * cos(theta) ** 7 - 1.14396127162742e53 * cos(theta) ** 5 + 4.53952885566436e50 * cos(theta) ** 3 - 5.28877148232741e47 * cos(theta) ) * cos(25 * phi) ) # @torch.jit.script def Yl76_m26(theta, phi): return ( 8.77668713740263e-49 * (1.0 - cos(theta) ** 2) ** 13 * ( 3.02645406655813e68 * cos(theta) ** 50 - 2.45523591492299e69 * cos(theta) ** 48 + 9.29364467125212e69 * cos(theta) ** 46 - 2.18116150447754e70 * cos(theta) ** 44 + 3.55754962626854e70 * cos(theta) ** 42 - 4.28398633317092e70 * cos(theta) ** 40 + 3.94977463342e70 * cos(theta) ** 38 - 2.85374261797971e70 * cos(theta) ** 36 + 1.64038124938615e70 * cos(theta) ** 34 - 7.57410601568419e69 * cos(theta) ** 32 + 2.82462901036042e69 * cos(theta) ** 30 - 8.52681207152521e68 * cos(theta) ** 28 + 2.08212852909337e68 * cos(theta) ** 26 - 4.09867820687671e67 * cos(theta) ** 24 + 6.46420105770269e66 * cos(theta) ** 22 - 8.09338994216434e65 * cos(theta) ** 20 + 7.9428930217522e64 * cos(theta) ** 18 - 6.00723001645124e63 * cos(theta) ** 16 + 3.422923086297e62 * cos(theta) ** 14 - 1.42556522129532e61 * cos(theta) ** 12 + 4.16315507103943e59 * cos(theta) ** 10 - 8.03697890162052e57 * cos(theta) ** 8 + 9.38429563158359e55 * cos(theta) ** 6 - 5.71980635813709e53 * cos(theta) ** 4 + 1.36185865669931e51 * cos(theta) ** 2 - 5.28877148232741e47 ) * cos(26 * phi) ) # @torch.jit.script def Yl76_m27(theta, phi): return ( 1.2230015369474e-50 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.51322703327907e70 * cos(theta) ** 49 - 1.17851323916304e71 * cos(theta) ** 47 + 4.27507654877598e71 * cos(theta) ** 45 - 9.59711061970117e71 * cos(theta) ** 43 + 1.49417084303279e72 * cos(theta) ** 41 - 1.71359453326837e72 * cos(theta) ** 39 + 1.5009143606996e72 * cos(theta) ** 37 - 1.0273473424727e72 * cos(theta) ** 35 + 5.57729624791291e71 * cos(theta) ** 33 - 2.42371392501894e71 * cos(theta) ** 31 + 8.47388703108126e70 * cos(theta) ** 29 - 2.38750738002706e70 * cos(theta) ** 27 + 5.41353417564275e69 * cos(theta) ** 25 - 9.83682769650409e68 * cos(theta) ** 23 + 1.42212423269459e68 * cos(theta) ** 21 - 1.61867798843287e67 * cos(theta) ** 19 + 1.4297207439154e66 * cos(theta) ** 17 - 9.61156802632198e64 * cos(theta) ** 15 + 4.7920923208158e63 * cos(theta) ** 13 - 1.71067826555438e62 * cos(theta) ** 11 + 4.16315507103943e60 * cos(theta) ** 9 - 6.42958312129641e58 * cos(theta) ** 7 + 5.63057737895015e56 * cos(theta) ** 5 - 2.28792254325484e54 * cos(theta) ** 3 + 2.72371731339862e51 * cos(theta) ) * cos(27 * phi) ) # @torch.jit.script def Yl76_m28(theta, phi): return ( 1.71321667638702e-52 * (1.0 - cos(theta) ** 2) ** 14 * ( 7.41481246306743e71 * cos(theta) ** 48 - 5.53901222406627e72 * cos(theta) ** 46 + 1.92378444694919e73 * cos(theta) ** 44 - 4.1267575664715e73 * cos(theta) ** 42 + 6.12610045643442e73 * cos(theta) ** 40 - 6.68301867974664e73 * cos(theta) ** 38 + 5.55338313458852e73 * cos(theta) ** 36 - 3.59571569865444e73 * cos(theta) ** 34 + 1.84050776181126e73 * cos(theta) ** 32 - 7.51351316755872e72 * cos(theta) ** 30 + 2.45742723901357e72 * cos(theta) ** 28 - 6.44626992607306e71 * cos(theta) ** 26 + 1.35338354391069e71 * cos(theta) ** 24 - 2.26247037019594e70 * cos(theta) ** 22 + 2.98646088865864e69 * cos(theta) ** 20 - 3.07548817802245e68 * cos(theta) ** 18 + 2.43052526465617e67 * cos(theta) ** 16 - 1.4417352039483e66 * cos(theta) ** 14 + 6.22972001706055e64 * cos(theta) ** 12 - 1.88174609210982e63 * cos(theta) ** 10 + 3.74683956393549e61 * cos(theta) ** 8 - 4.50070818490749e59 * cos(theta) ** 6 + 2.81528868947508e57 * cos(theta) ** 4 - 6.86376762976451e54 * cos(theta) ** 2 + 2.72371731339862e51 ) * cos(28 * phi) ) # @torch.jit.script def Yl76_m29(theta, phi): return ( 2.4132206055339e-54 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 3.55910998227237e73 * cos(theta) ** 47 - 2.54794562307048e74 * cos(theta) ** 45 + 8.46465156657643e74 * cos(theta) ** 43 - 1.73323817791803e75 * cos(theta) ** 41 + 2.45044018257377e75 * cos(theta) ** 39 - 2.53954709830372e75 * cos(theta) ** 37 + 1.99921792845187e75 * cos(theta) ** 35 - 1.22254333754251e75 * cos(theta) ** 33 + 5.88962483779603e74 * cos(theta) ** 31 - 2.25405395026762e74 * cos(theta) ** 29 + 6.88079626923799e73 * cos(theta) ** 27 - 1.676030180779e73 * cos(theta) ** 25 + 3.24812050538565e72 * cos(theta) ** 23 - 4.97743481443107e71 * cos(theta) ** 21 + 5.97292177731729e70 * cos(theta) ** 19 - 5.53587872044041e69 * cos(theta) ** 17 + 3.88884042344988e68 * cos(theta) ** 15 - 2.01842928552762e67 * cos(theta) ** 13 + 7.47566402047265e65 * cos(theta) ** 11 - 1.88174609210982e64 * cos(theta) ** 9 + 2.99747165114839e62 * cos(theta) ** 7 - 2.70042491094449e60 * cos(theta) ** 5 + 1.12611547579003e58 * cos(theta) ** 3 - 1.3727535259529e55 * cos(theta) ) * cos(29 * phi) ) # @torch.jit.script def Yl76_m30(theta, phi): return ( 3.41896900227033e-56 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.67278169166801e75 * cos(theta) ** 46 - 1.14657553038172e76 * cos(theta) ** 44 + 3.63980017362787e76 * cos(theta) ** 42 - 7.10627652946393e76 * cos(theta) ** 40 + 9.5567167120377e76 * cos(theta) ** 38 - 9.39632426372378e76 * cos(theta) ** 36 + 6.99726274958154e76 * cos(theta) ** 34 - 4.03439301389028e76 * cos(theta) ** 32 + 1.82578369971677e76 * cos(theta) ** 30 - 6.53675645577609e75 * cos(theta) ** 28 + 1.85781499269426e75 * cos(theta) ** 26 - 4.19007545194749e74 * cos(theta) ** 24 + 7.470677162387e73 * cos(theta) ** 22 - 1.04526131103052e73 * cos(theta) ** 20 + 1.13485513769028e72 * cos(theta) ** 18 - 9.4109938247487e70 * cos(theta) ** 16 + 5.83326063517481e69 * cos(theta) ** 14 - 2.6239580711859e68 * cos(theta) ** 12 + 8.22323042251992e66 * cos(theta) ** 10 - 1.69357148289884e65 * cos(theta) ** 8 + 2.09823015580387e63 * cos(theta) ** 6 - 1.35021245547225e61 * cos(theta) ** 4 + 3.37834642737009e58 * cos(theta) ** 2 - 1.3727535259529e55 ) * cos(30 * phi) ) # @torch.jit.script def Yl76_m31(theta, phi): return ( 4.87331359228223e-58 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 7.69479578167286e76 * cos(theta) ** 45 - 5.04493233367955e77 * cos(theta) ** 43 + 1.5287160729237e78 * cos(theta) ** 41 - 2.84251061178557e78 * cos(theta) ** 39 + 3.63155235057433e78 * cos(theta) ** 37 - 3.38267673494056e78 * cos(theta) ** 35 + 2.37906933485772e78 * cos(theta) ** 33 - 1.29100576444489e78 * cos(theta) ** 31 + 5.47735109915031e77 * cos(theta) ** 29 - 1.8302918076173e77 * cos(theta) ** 27 + 4.83031898100507e76 * cos(theta) ** 25 - 1.0056181084674e76 * cos(theta) ** 23 + 1.64354897572514e75 * cos(theta) ** 21 - 2.09052262206105e74 * cos(theta) ** 19 + 2.04273924784251e73 * cos(theta) ** 17 - 1.50575901195979e72 * cos(theta) ** 15 + 8.16656488924474e70 * cos(theta) ** 13 - 3.14874968542308e69 * cos(theta) ** 11 + 8.22323042251992e67 * cos(theta) ** 9 - 1.35485718631907e66 * cos(theta) ** 7 + 1.25893809348232e64 * cos(theta) ** 5 - 5.40084982188899e61 * cos(theta) ** 3 + 6.75669285474019e58 * cos(theta) ) * cos(31 * phi) ) # @torch.jit.script def Yl76_m32(theta, phi): return ( 6.99046754953901e-60 * (1.0 - cos(theta) ** 2) ** 16 * ( 3.46265810175279e78 * cos(theta) ** 44 - 2.16932090348221e79 * cos(theta) ** 42 + 6.26773589898719e79 * cos(theta) ** 40 - 1.10857913859637e80 * cos(theta) ** 38 + 1.3436743697125e80 * cos(theta) ** 36 - 1.1839368572292e80 * cos(theta) ** 34 + 7.85092880503049e79 * cos(theta) ** 32 - 4.00211786977916e79 * cos(theta) ** 30 + 1.58843181875359e79 * cos(theta) ** 28 - 4.94178788056672e78 * cos(theta) ** 26 + 1.20757974525127e78 * cos(theta) ** 24 - 2.31292164947501e77 * cos(theta) ** 22 + 3.45145284902279e76 * cos(theta) ** 20 - 3.97199298191599e75 * cos(theta) ** 18 + 3.47265672133227e74 * cos(theta) ** 16 - 2.25863851793969e73 * cos(theta) ** 14 + 1.06165343560182e72 * cos(theta) ** 12 - 3.46362465396539e70 * cos(theta) ** 10 + 7.40090738026793e68 * cos(theta) ** 8 - 9.4840003042335e66 * cos(theta) ** 6 + 6.29469046741162e64 * cos(theta) ** 4 - 1.6202549465667e62 * cos(theta) ** 2 + 6.75669285474019e58 ) * cos(32 * phi) ) # @torch.jit.script def Yl76_m33(theta, phi): return ( 1.00940775459507e-61 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 1.52356956477123e80 * cos(theta) ** 43 - 9.11114779462528e80 * cos(theta) ** 41 + 2.50709435959487e81 * cos(theta) ** 39 - 4.21260072666622e81 * cos(theta) ** 37 + 4.837227730965e81 * cos(theta) ** 35 - 4.02538531457927e81 * cos(theta) ** 33 + 2.51229721760976e81 * cos(theta) ** 31 - 1.20063536093375e81 * cos(theta) ** 29 + 4.44760909251005e80 * cos(theta) ** 27 - 1.28486484894735e80 * cos(theta) ** 25 + 2.89819138860304e79 * cos(theta) ** 23 - 5.08842762884503e78 * cos(theta) ** 21 + 6.90290569804559e77 * cos(theta) ** 19 - 7.14958736744879e76 * cos(theta) ** 17 + 5.55625075413163e75 * cos(theta) ** 15 - 3.16209392511556e74 * cos(theta) ** 13 + 1.27398412272218e73 * cos(theta) ** 11 - 3.46362465396539e71 * cos(theta) ** 9 + 5.92072590421434e69 * cos(theta) ** 7 - 5.6904001825401e67 * cos(theta) ** 5 + 2.51787618696465e65 * cos(theta) ** 3 - 3.24050989313339e62 * cos(theta) ) * cos(33 * phi) ) # @torch.jit.script def Yl76_m34(theta, phi): return ( 1.46769585064961e-63 * (1.0 - cos(theta) ** 2) ** 17 * ( 6.55134912851627e81 * cos(theta) ** 42 - 3.73557059579636e82 * cos(theta) ** 40 + 9.77766800242001e82 * cos(theta) ** 38 - 1.5586622688665e83 * cos(theta) ** 36 + 1.69302970583775e83 * cos(theta) ** 34 - 1.32837715381116e83 * cos(theta) ** 32 + 7.78812137459024e82 * cos(theta) ** 30 - 3.48184254670787e82 * cos(theta) ** 28 + 1.20085445497771e82 * cos(theta) ** 26 - 3.21216212236837e81 * cos(theta) ** 24 + 6.66584019378699e80 * cos(theta) ** 22 - 1.06856980205746e80 * cos(theta) ** 20 + 1.31155208262866e79 * cos(theta) ** 18 - 1.21542985246629e78 * cos(theta) ** 16 + 8.33437613119745e76 * cos(theta) ** 14 - 4.11072210265023e75 * cos(theta) ** 12 + 1.4013825349944e74 * cos(theta) ** 10 - 3.11726218856885e72 * cos(theta) ** 8 + 4.14450813295004e70 * cos(theta) ** 6 - 2.84520009127005e68 * cos(theta) ** 4 + 7.55362856089394e65 * cos(theta) ** 2 - 3.24050989313339e62 ) * cos(34 * phi) ) # @torch.jit.script def Yl76_m35(theta, phi): return ( 2.14956178129312e-65 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 2.75156663397683e83 * cos(theta) ** 41 - 1.49422823831855e84 * cos(theta) ** 39 + 3.7155138409196e84 * cos(theta) ** 37 - 5.6111841679194e84 * cos(theta) ** 35 + 5.75630099984835e84 * cos(theta) ** 33 - 4.25080689219571e84 * cos(theta) ** 31 + 2.33643641237707e84 * cos(theta) ** 29 - 9.74915913078203e83 * cos(theta) ** 27 + 3.12222158294206e83 * cos(theta) ** 25 - 7.70918909368409e82 * cos(theta) ** 23 + 1.46648484263314e82 * cos(theta) ** 21 - 2.13713960411491e81 * cos(theta) ** 19 + 2.36079374873159e80 * cos(theta) ** 17 - 1.94468776394607e79 * cos(theta) ** 15 + 1.16681265836764e78 * cos(theta) ** 13 - 4.93286652318028e76 * cos(theta) ** 11 + 1.4013825349944e75 * cos(theta) ** 9 - 2.49380975085508e73 * cos(theta) ** 7 + 2.48670487977002e71 * cos(theta) ** 5 - 1.13808003650802e69 * cos(theta) ** 3 + 1.51072571217879e66 * cos(theta) ) * cos(35 * phi) ) # @torch.jit.script def Yl76_m36(theta, phi): return ( 3.17211550073312e-67 * (1.0 - cos(theta) ** 2) ** 18 * ( 1.1281423199305e85 * cos(theta) ** 40 - 5.82749012944233e85 * cos(theta) ** 38 + 1.37474012114025e86 * cos(theta) ** 36 - 1.96391445877179e86 * cos(theta) ** 34 + 1.89957932994996e86 * cos(theta) ** 32 - 1.31775013658067e86 * cos(theta) ** 30 + 6.77566559589351e85 * cos(theta) ** 28 - 2.63227296531115e85 * cos(theta) ** 26 + 7.80555395735514e84 * cos(theta) ** 24 - 1.77311349154734e84 * cos(theta) ** 22 + 3.07961816952959e83 * cos(theta) ** 20 - 4.06056524781834e82 * cos(theta) ** 18 + 4.0133493728437e81 * cos(theta) ** 16 - 2.91703164591911e80 * cos(theta) ** 14 + 1.51685645587794e79 * cos(theta) ** 12 - 5.42615317549831e77 * cos(theta) ** 10 + 1.26124428149496e76 * cos(theta) ** 8 - 1.74566682559856e74 * cos(theta) ** 6 + 1.24335243988501e72 * cos(theta) ** 4 - 3.41424010952406e69 * cos(theta) ** 2 + 1.51072571217879e66 ) * cos(36 * phi) ) # @torch.jit.script def Yl76_m37(theta, phi): return ( 4.71823724723755e-69 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 4.51256927972201e86 * cos(theta) ** 39 - 2.21444624918808e87 * cos(theta) ** 37 + 4.94906443610491e87 * cos(theta) ** 35 - 6.67730915982409e87 * cos(theta) ** 33 + 6.07865385583986e87 * cos(theta) ** 31 - 3.95325040974201e87 * cos(theta) ** 29 + 1.89718636685018e87 * cos(theta) ** 27 - 6.84390970980898e86 * cos(theta) ** 25 + 1.87333294976523e86 * cos(theta) ** 23 - 3.90084968140415e85 * cos(theta) ** 21 + 6.15923633905918e84 * cos(theta) ** 19 - 7.309017446073e83 * cos(theta) ** 17 + 6.42135899654993e82 * cos(theta) ** 15 - 4.08384430428675e81 * cos(theta) ** 13 + 1.82022774705352e80 * cos(theta) ** 11 - 5.4261531754983e78 * cos(theta) ** 9 + 1.00899542519597e77 * cos(theta) ** 7 - 1.04740009535913e75 * cos(theta) ** 5 + 4.97340975954005e72 * cos(theta) ** 3 - 6.82848021904812e69 * cos(theta) ) * cos(37 * phi) ) # @torch.jit.script def Yl76_m38(theta, phi): return ( 7.07611765860017e-71 * (1.0 - cos(theta) ** 2) ** 19 * ( 1.75990201909158e88 * cos(theta) ** 38 - 8.19345112199591e88 * cos(theta) ** 36 + 1.73217255263672e89 * cos(theta) ** 34 - 2.20351202274195e89 * cos(theta) ** 32 + 1.88438269531036e89 * cos(theta) ** 30 - 1.14644261882518e89 * cos(theta) ** 28 + 5.12240319049549e88 * cos(theta) ** 26 - 1.71097742745225e88 * cos(theta) ** 24 + 4.30866578446004e87 * cos(theta) ** 22 - 8.19178433094871e86 * cos(theta) ** 20 + 1.17025490442124e86 * cos(theta) ** 18 - 1.24253296583241e85 * cos(theta) ** 16 + 9.63203849482489e83 * cos(theta) ** 14 - 5.30899759557277e82 * cos(theta) ** 12 + 2.00225052175887e81 * cos(theta) ** 10 - 4.88353785794848e79 * cos(theta) ** 8 + 7.06296797637176e77 * cos(theta) ** 6 - 5.23700047679567e75 * cos(theta) ** 4 + 1.49202292786201e73 * cos(theta) ** 2 - 6.82848021904812e69 ) * cos(38 * phi) ) # @torch.jit.script def Yl76_m39(theta, phi): return ( 1.07042027630539e-72 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 6.68762767254801e89 * cos(theta) ** 37 - 2.94964240391853e90 * cos(theta) ** 35 + 5.88938667896485e90 * cos(theta) ** 33 - 7.05123847277424e90 * cos(theta) ** 31 + 5.65314808593107e90 * cos(theta) ** 29 - 3.21003933271051e90 * cos(theta) ** 27 + 1.33182482952883e90 * cos(theta) ** 25 - 4.10634582588539e89 * cos(theta) ** 23 + 9.47906472581208e88 * cos(theta) ** 21 - 1.63835686618974e88 * cos(theta) ** 19 + 2.10645882795824e87 * cos(theta) ** 17 - 1.98805274533186e86 * cos(theta) ** 15 + 1.34848538927548e85 * cos(theta) ** 13 - 6.37079711468733e83 * cos(theta) ** 11 + 2.00225052175887e82 * cos(theta) ** 9 - 3.90683028635878e80 * cos(theta) ** 7 + 4.23778078582306e78 * cos(theta) ** 5 - 2.09480019071827e76 * cos(theta) ** 3 + 2.98404585572403e73 * cos(theta) ) * cos(39 * phi) ) # @torch.jit.script def Yl76_m40(theta, phi): return ( 1.63389622897507e-74 * (1.0 - cos(theta) ** 2) ** 20 * ( 2.47442223884277e91 * cos(theta) ** 36 - 1.03237484137148e92 * cos(theta) ** 34 + 1.9434976040584e92 * cos(theta) ** 32 - 2.18588392656001e92 * cos(theta) ** 30 + 1.63941294492001e92 * cos(theta) ** 28 - 8.66710619831838e91 * cos(theta) ** 26 + 3.32956207382207e91 * cos(theta) ** 24 - 9.4445953995364e90 * cos(theta) ** 22 + 1.99060359242054e90 * cos(theta) ** 20 - 3.11287804576051e89 * cos(theta) ** 18 + 3.58098000752901e88 * cos(theta) ** 16 - 2.98207911799779e87 * cos(theta) ** 14 + 1.75303100605813e86 * cos(theta) ** 12 - 7.00787682615606e84 * cos(theta) ** 10 + 1.80202546958299e83 * cos(theta) ** 8 - 2.73478120045115e81 * cos(theta) ** 6 + 2.11889039291153e79 * cos(theta) ** 4 - 6.2844005721548e76 * cos(theta) ** 2 + 2.98404585572403e73 ) * cos(40 * phi) ) # @torch.jit.script def Yl76_m41(theta, phi): return ( 2.51756266340037e-76 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 8.90792005983395e92 * cos(theta) ** 35 - 3.51007446066305e93 * cos(theta) ** 33 + 6.21919233298688e93 * cos(theta) ** 31 - 6.55765177968004e93 * cos(theta) ** 29 + 4.59035624577603e93 * cos(theta) ** 27 - 2.25344761156278e93 * cos(theta) ** 25 + 7.99094897717297e92 * cos(theta) ** 23 - 2.07781098789801e92 * cos(theta) ** 21 + 3.98120718484107e91 * cos(theta) ** 19 - 5.60318048236892e90 * cos(theta) ** 17 + 5.72956801204641e89 * cos(theta) ** 15 - 4.1749107651969e88 * cos(theta) ** 13 + 2.10363720726976e87 * cos(theta) ** 11 - 7.00787682615606e85 * cos(theta) ** 9 + 1.44162037566639e84 * cos(theta) ** 7 - 1.64086872027069e82 * cos(theta) ** 5 + 8.47556157164611e79 * cos(theta) ** 3 - 1.25688011443096e77 * cos(theta) ) * cos(41 * phi) ) # @torch.jit.script def Yl76_m42(theta, phi): return ( 3.91746624769251e-78 * (1.0 - cos(theta) ** 2) ** 21 * ( 3.11777202094188e94 * cos(theta) ** 34 - 1.15832457201881e95 * cos(theta) ** 32 + 1.92794962322593e95 * cos(theta) ** 30 - 1.90171901610721e95 * cos(theta) ** 28 + 1.23939618635953e95 * cos(theta) ** 26 - 5.63361902890694e94 * cos(theta) ** 24 + 1.83791826474978e94 * cos(theta) ** 22 - 4.36340307458582e93 * cos(theta) ** 20 + 7.56429365119804e92 * cos(theta) ** 18 - 9.52540682002716e91 * cos(theta) ** 16 + 8.59435201806962e90 * cos(theta) ** 14 - 5.42738399475597e89 * cos(theta) ** 12 + 2.31400092799673e88 * cos(theta) ** 10 - 6.30708914354046e86 * cos(theta) ** 8 + 1.00913426296647e85 * cos(theta) ** 6 - 8.20434360135344e82 * cos(theta) ** 4 + 2.54266847149383e80 * cos(theta) ** 2 - 1.25688011443096e77 ) * cos(42 * phi) ) # @torch.jit.script def Yl76_m43(theta, phi): return ( 6.15874643828416e-80 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 1.06004248712024e96 * cos(theta) ** 33 - 3.70663863046018e96 * cos(theta) ** 31 + 5.7838488696778e96 * cos(theta) ** 29 - 5.32481324510019e96 * cos(theta) ** 27 + 3.22243008453477e96 * cos(theta) ** 25 - 1.35206856693767e96 * cos(theta) ** 23 + 4.04342018244952e95 * cos(theta) ** 21 - 8.72680614917163e94 * cos(theta) ** 19 + 1.36157285721565e94 * cos(theta) ** 17 - 1.52406509120435e93 * cos(theta) ** 15 + 1.20320928252975e92 * cos(theta) ** 13 - 6.51286079370716e90 * cos(theta) ** 11 + 2.31400092799673e89 * cos(theta) ** 9 - 5.04567131483236e87 * cos(theta) ** 7 + 6.05480557779884e85 * cos(theta) ** 5 - 3.28173744054138e83 * cos(theta) ** 3 + 5.08533694298767e80 * cos(theta) ) * cos(43 * phi) ) # @torch.jit.script def Yl76_m44(theta, phi): return ( 9.78689054258913e-82 * (1.0 - cos(theta) ** 2) ** 22 * ( 3.49814020749679e97 * cos(theta) ** 32 - 1.14905797544266e98 * cos(theta) ** 30 + 1.67731617220656e98 * cos(theta) ** 28 - 1.43769957617705e98 * cos(theta) ** 26 + 8.05607521133693e97 * cos(theta) ** 24 - 3.10975770395663e97 * cos(theta) ** 22 + 8.491182383144e96 * cos(theta) ** 20 - 1.65809316834261e96 * cos(theta) ** 18 + 2.3146738572666e95 * cos(theta) ** 16 - 2.28609763680652e94 * cos(theta) ** 14 + 1.56417206728867e93 * cos(theta) ** 12 - 7.16414687307788e91 * cos(theta) ** 10 + 2.08260083519706e90 * cos(theta) ** 8 - 3.53196992038265e88 * cos(theta) ** 6 + 3.02740278889942e86 * cos(theta) ** 4 - 9.84521232162413e83 * cos(theta) ** 2 + 5.08533694298767e80 ) * cos(44 * phi) ) # @torch.jit.script def Yl76_m45(theta, phi): return ( 1.57281287940801e-83 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 1.11940486639897e99 * cos(theta) ** 31 - 3.44717392632797e99 * cos(theta) ** 29 + 4.69648528217837e99 * cos(theta) ** 27 - 3.73801889806034e99 * cos(theta) ** 25 + 1.93345805072086e99 * cos(theta) ** 23 - 6.84146694870459e98 * cos(theta) ** 21 + 1.6982364766288e98 * cos(theta) ** 19 - 2.9845677030167e97 * cos(theta) ** 17 + 3.70347817162656e96 * cos(theta) ** 15 - 3.20053669152913e95 * cos(theta) ** 13 + 1.8770064807464e94 * cos(theta) ** 11 - 7.16414687307788e92 * cos(theta) ** 9 + 1.66608066815765e91 * cos(theta) ** 7 - 2.11918195222959e89 * cos(theta) ** 5 + 1.21096111555977e87 * cos(theta) ** 3 - 1.96904246432483e84 * cos(theta) ) * cos(45 * phi) ) # @torch.jit.script def Yl76_m46(theta, phi): return ( 2.55750384073561e-85 * (1.0 - cos(theta) ** 2) ** 23 * ( 3.47015508583682e100 * cos(theta) ** 30 - 9.9968043863511e100 * cos(theta) ** 28 + 1.26805102618816e101 * cos(theta) ** 26 - 9.34504724515084e100 * cos(theta) ** 24 + 4.44695351665799e100 * cos(theta) ** 22 - 1.43670805922796e100 * cos(theta) ** 20 + 3.22664930559472e99 * cos(theta) ** 18 - 5.07376509512839e98 * cos(theta) ** 16 + 5.55521725743984e97 * cos(theta) ** 14 - 4.16069769898786e96 * cos(theta) ** 12 + 2.06470712882105e95 * cos(theta) ** 10 - 6.44773218577009e93 * cos(theta) ** 8 + 1.16625646771035e92 * cos(theta) ** 6 - 1.0595909761148e90 * cos(theta) ** 4 + 3.6328833466793e87 * cos(theta) ** 2 - 1.96904246432483e84 ) * cos(46 * phi) ) # @torch.jit.script def Yl76_m47(theta, phi): return ( 4.21020372839927e-87 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 1.04104652575105e102 * cos(theta) ** 29 - 2.79910522817831e102 * cos(theta) ** 27 + 3.29693266808922e102 * cos(theta) ** 25 - 2.2428113388362e102 * cos(theta) ** 23 + 9.78329773664757e101 * cos(theta) ** 21 - 2.87341611845593e101 * cos(theta) ** 19 + 5.8079687500705e100 * cos(theta) ** 17 - 8.11802415220542e99 * cos(theta) ** 15 + 7.77730416041578e98 * cos(theta) ** 13 - 4.99283723878544e97 * cos(theta) ** 11 + 2.06470712882105e96 * cos(theta) ** 9 - 5.15818574861607e94 * cos(theta) ** 7 + 6.99753880626212e92 * cos(theta) ** 5 - 4.23836390445919e90 * cos(theta) ** 3 + 7.2657666933586e87 * cos(theta) ) * cos(47 * phi) ) # @torch.jit.script def Yl76_m48(theta, phi): return ( 7.02090780240922e-89 * (1.0 - cos(theta) ** 2) ** 24 * ( 3.01903492467803e103 * cos(theta) ** 28 - 7.55758411608143e103 * cos(theta) ** 26 + 8.24233167022304e103 * cos(theta) ** 24 - 5.15846607932326e103 * cos(theta) ** 22 + 2.05449252469599e103 * cos(theta) ** 20 - 5.45949062506626e102 * cos(theta) ** 18 + 9.87354687511984e101 * cos(theta) ** 16 - 1.21770362283081e101 * cos(theta) ** 14 + 1.01104954085405e100 * cos(theta) ** 12 - 5.49212096266398e98 * cos(theta) ** 10 + 1.85823641593894e97 * cos(theta) ** 8 - 3.61073002403125e95 * cos(theta) ** 6 + 3.49876940313106e93 * cos(theta) ** 4 - 1.27150917133776e91 * cos(theta) ** 2 + 7.2657666933586e87 ) * cos(48 * phi) ) # @torch.jit.script def Yl76_m49(theta, phi): return ( 1.18675002025256e-90 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 8.45329778909849e104 * cos(theta) ** 27 - 1.96497187018117e105 * cos(theta) ** 25 + 1.97815960085353e105 * cos(theta) ** 23 - 1.13486253745112e105 * cos(theta) ** 21 + 4.10898504939198e104 * cos(theta) ** 19 - 9.82708312511928e103 * cos(theta) ** 17 + 1.57976750001917e103 * cos(theta) ** 15 - 1.70478507196314e102 * cos(theta) ** 13 + 1.21325944902486e101 * cos(theta) ** 11 - 5.49212096266398e99 * cos(theta) ** 9 + 1.48658913275115e98 * cos(theta) ** 7 - 2.16643801441875e96 * cos(theta) ** 5 + 1.39950776125242e94 * cos(theta) ** 3 - 2.54301834267551e91 * cos(theta) ) * cos(49 * phi) ) # @torch.jit.script def Yl76_m50(theta, phi): return ( 2.03466115213945e-92 * (1.0 - cos(theta) ** 2) ** 25 * ( 2.28239040305659e106 * cos(theta) ** 26 - 4.91242967545293e106 * cos(theta) ** 24 + 4.54976708196312e106 * cos(theta) ** 22 - 2.38321132864735e106 * cos(theta) ** 20 + 7.80707159384476e105 * cos(theta) ** 18 - 1.67060413127028e105 * cos(theta) ** 16 + 2.36965125002876e104 * cos(theta) ** 14 - 2.21622059355208e103 * cos(theta) ** 12 + 1.33458539392735e102 * cos(theta) ** 10 - 4.94290886639758e100 * cos(theta) ** 8 + 1.04061239292581e99 * cos(theta) ** 6 - 1.08321900720938e97 * cos(theta) ** 4 + 4.19852328375727e94 * cos(theta) ** 2 - 2.54301834267551e91 ) * cos(50 * phi) ) # @torch.jit.script def Yl76_m51(theta, phi): return ( 3.54081762776956e-94 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 5.93421504794714e107 * cos(theta) ** 25 - 1.1789831221087e108 * cos(theta) ** 23 + 1.00094875803189e108 * cos(theta) ** 21 - 4.7664226572947e107 * cos(theta) ** 19 + 1.40527288689206e107 * cos(theta) ** 17 - 2.67296661003244e106 * cos(theta) ** 15 + 3.31751175004027e105 * cos(theta) ** 13 - 2.6594647122625e104 * cos(theta) ** 11 + 1.33458539392735e103 * cos(theta) ** 9 - 3.95432709311807e101 * cos(theta) ** 7 + 6.24367435755484e99 * cos(theta) ** 5 - 4.3328760288375e97 * cos(theta) ** 3 + 8.39704656751454e94 * cos(theta) ) * cos(51 * phi) ) # @torch.jit.script def Yl76_m52(theta, phi): return ( 6.2593403888518e-96 * (1.0 - cos(theta) ** 2) ** 26 * ( 1.48355376198679e109 * cos(theta) ** 24 - 2.71166118085002e109 * cos(theta) ** 22 + 2.10199239186696e109 * cos(theta) ** 20 - 9.05620304885992e108 * cos(theta) ** 18 + 2.3889639077165e108 * cos(theta) ** 16 - 4.00944991504867e107 * cos(theta) ** 14 + 4.31276527505235e106 * cos(theta) ** 12 - 2.92541118348875e105 * cos(theta) ** 10 + 1.20112685453461e104 * cos(theta) ** 8 - 2.76802896518265e102 * cos(theta) ** 6 + 3.12183717877742e100 * cos(theta) ** 4 - 1.29986280865125e98 * cos(theta) ** 2 + 8.39704656751454e94 ) * cos(52 * phi) ) # @torch.jit.script def Yl76_m53(theta, phi): return ( 1.12493672092363e-97 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 3.56052902876829e110 * cos(theta) ** 23 - 5.96565459787004e110 * cos(theta) ** 21 + 4.20398478373392e110 * cos(theta) ** 19 - 1.63011654879479e110 * cos(theta) ** 17 + 3.82234225234639e109 * cos(theta) ** 15 - 5.61322988106813e108 * cos(theta) ** 13 + 5.17531833006282e107 * cos(theta) ** 11 - 2.92541118348874e106 * cos(theta) ** 9 + 9.6090148362769e104 * cos(theta) ** 7 - 1.66081737910959e103 * cos(theta) ** 5 + 1.24873487151097e101 * cos(theta) ** 3 - 2.5997256173025e98 * cos(theta) ) * cos(53 * phi) ) # @torch.jit.script def Yl76_m54(theta, phi): return ( 2.05727571434266e-99 * (1.0 - cos(theta) ** 2) ** 27 * ( 8.18921676616706e111 * cos(theta) ** 22 - 1.25278746555271e112 * cos(theta) ** 20 + 7.98757108909445e111 * cos(theta) ** 18 - 2.77119813295114e111 * cos(theta) ** 16 + 5.73351337851959e110 * cos(theta) ** 14 - 7.29719884538857e109 * cos(theta) ** 12 + 5.6928501630691e108 * cos(theta) ** 10 - 2.63287006513987e107 * cos(theta) ** 8 + 6.72631038539383e105 * cos(theta) ** 6 - 8.30408689554794e103 * cos(theta) ** 4 + 3.7462046145329e101 * cos(theta) ** 2 - 2.5997256173025e98 ) * cos(54 * phi) ) # @torch.jit.script def Yl76_m55(theta, phi): return ( 3.83217656884021e-101 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 1.80162768855675e113 * cos(theta) ** 21 - 2.50557493110542e113 * cos(theta) ** 19 + 1.437762796037e113 * cos(theta) ** 17 - 4.43391701272182e112 * cos(theta) ** 15 + 8.02691872992743e111 * cos(theta) ** 13 - 8.75663861446628e110 * cos(theta) ** 11 + 5.6928501630691e109 * cos(theta) ** 9 - 2.1062960521119e108 * cos(theta) ** 7 + 4.0357862312363e106 * cos(theta) ** 5 - 3.32163475821918e104 * cos(theta) ** 3 + 7.49240922906581e101 * cos(theta) ) * cos(55 * phi) ) # @torch.jit.script def Yl76_m56(theta, phi): return ( 7.27861751466912e-103 * (1.0 - cos(theta) ** 2) ** 28 * ( 3.78341814596918e114 * cos(theta) ** 20 - 4.76059236910029e114 * cos(theta) ** 18 + 2.4441967532629e114 * cos(theta) ** 16 - 6.65087551908273e113 * cos(theta) ** 14 + 1.04349943489057e113 * cos(theta) ** 12 - 9.63230247591291e111 * cos(theta) ** 10 + 5.12356514676219e110 * cos(theta) ** 8 - 1.47440723647833e109 * cos(theta) ** 6 + 2.01789311561815e107 * cos(theta) ** 4 - 9.96490427465752e104 * cos(theta) ** 2 + 7.49240922906581e101 ) * cos(56 * phi) ) # @torch.jit.script def Yl76_m57(theta, phi): return ( 1.41126340407132e-104 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 7.56683629193836e115 * cos(theta) ** 19 - 8.56906626438053e115 * cos(theta) ** 17 + 3.91071480522064e115 * cos(theta) ** 15 - 9.31122572671582e114 * cos(theta) ** 13 + 1.25219932186868e114 * cos(theta) ** 11 - 9.63230247591291e112 * cos(theta) ** 9 + 4.09885211740975e111 * cos(theta) ** 7 - 8.84644341886996e109 * cos(theta) ** 5 + 8.0715724624726e107 * cos(theta) ** 3 - 1.9929808549315e105 * cos(theta) ) * cos(57 * phi) ) # @torch.jit.script def Yl76_m58(theta, phi): return ( 2.79691250186541e-106 * (1.0 - cos(theta) ** 2) ** 29 * ( 1.43769889546829e117 * cos(theta) ** 18 - 1.45674126494469e117 * cos(theta) ** 16 + 5.86607220783096e116 * cos(theta) ** 14 - 1.21045934447306e116 * cos(theta) ** 12 + 1.37741925405555e115 * cos(theta) ** 10 - 8.66907222832162e113 * cos(theta) ** 8 + 2.86919648218683e112 * cos(theta) ** 6 - 4.42322170943498e110 * cos(theta) ** 4 + 2.42147173874178e108 * cos(theta) ** 2 - 1.9929808549315e105 ) * cos(58 * phi) ) # @torch.jit.script def Yl76_m59(theta, phi): return ( 5.67382247644406e-108 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 2.58785801184292e118 * cos(theta) ** 17 - 2.3307860239115e118 * cos(theta) ** 15 + 8.21250109096335e117 * cos(theta) ** 13 - 1.45255121336767e117 * cos(theta) ** 11 + 1.37741925405555e116 * cos(theta) ** 9 - 6.9352577826573e114 * cos(theta) ** 7 + 1.7215178893121e113 * cos(theta) ** 5 - 1.76928868377399e111 * cos(theta) ** 3 + 4.84294347748356e108 * cos(theta) ) * cos(59 * phi) ) # @torch.jit.script def Yl76_m60(theta, phi): return ( 1.17999951421831e-109 * (1.0 - cos(theta) ** 2) ** 30 * ( 4.39935862013296e119 * cos(theta) ** 16 - 3.49617903586725e119 * cos(theta) ** 14 + 1.06762514182524e119 * cos(theta) ** 12 - 1.59780633470443e118 * cos(theta) ** 10 + 1.23967732864999e117 * cos(theta) ** 8 - 4.85468044786011e115 * cos(theta) ** 6 + 8.60758944656048e113 * cos(theta) ** 4 - 5.30786605132198e111 * cos(theta) ** 2 + 4.84294347748356e108 ) * cos(60 * phi) ) # @torch.jit.script def Yl76_m61(theta, phi): return ( 2.52035405268617e-111 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 7.03897379221274e120 * cos(theta) ** 15 - 4.89465065021416e120 * cos(theta) ** 13 + 1.28115017019028e120 * cos(theta) ** 11 - 1.59780633470443e119 * cos(theta) ** 9 + 9.91741862919994e117 * cos(theta) ** 7 - 2.91280826871606e116 * cos(theta) ** 5 + 3.44303577862419e114 * cos(theta) ** 3 - 1.0615732102644e112 * cos(theta) ) * cos(61 * phi) ) # @torch.jit.script def Yl76_m62(theta, phi): return ( 5.539574161284e-113 * (1.0 - cos(theta) ** 2) ** 31 * ( 1.05584606883191e122 * cos(theta) ** 14 - 6.3630458452784e121 * cos(theta) ** 12 + 1.40926518720931e121 * cos(theta) ** 10 - 1.43802570123399e120 * cos(theta) ** 8 + 6.94219304043996e118 * cos(theta) ** 6 - 1.45640413435803e117 * cos(theta) ** 4 + 1.03291073358726e115 * cos(theta) ** 2 - 1.0615732102644e112 ) * cos(62 * phi) ) # @torch.jit.script def Yl76_m63(theta, phi): return ( 1.25575513550519e-114 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 1.47818449636468e123 * cos(theta) ** 13 - 7.63565501433408e122 * cos(theta) ** 11 + 1.40926518720931e122 * cos(theta) ** 9 - 1.15042056098719e121 * cos(theta) ** 7 + 4.16531582426397e119 * cos(theta) ** 5 - 5.82561653743213e117 * cos(theta) ** 3 + 2.06582146717451e115 * cos(theta) ) * cos(63 * phi) ) # @torch.jit.script def Yl76_m64(theta, phi): return ( 2.94353543906491e-116 * (1.0 - cos(theta) ** 2) ** 32 * ( 1.92163984527408e124 * cos(theta) ** 12 - 8.39922051576749e123 * cos(theta) ** 10 + 1.26833866848838e123 * cos(theta) ** 8 - 8.05294392691035e121 * cos(theta) ** 6 + 2.08265791213199e120 * cos(theta) ** 4 - 1.74768496122964e118 * cos(theta) ** 2 + 2.06582146717451e115 ) * cos(64 * phi) ) # @torch.jit.script def Yl76_m65(theta, phi): return ( 7.15597952988258e-118 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 2.30596781432889e125 * cos(theta) ** 11 - 8.39922051576749e124 * cos(theta) ** 9 + 1.0146709347907e124 * cos(theta) ** 7 - 4.83176635614621e122 * cos(theta) ** 5 + 8.33063164852795e120 * cos(theta) ** 3 - 3.49536992245928e118 * cos(theta) ) * cos(65 * phi) ) # @torch.jit.script def Yl76_m66(theta, phi): return ( 1.81062525953883e-119 * (1.0 - cos(theta) ** 2) ** 33 * ( 2.53656459576178e126 * cos(theta) ** 10 - 7.55929846419074e125 * cos(theta) ** 8 + 7.10269654353493e124 * cos(theta) ** 6 - 2.4158831780731e123 * cos(theta) ** 4 + 2.49918949455838e121 * cos(theta) ** 2 - 3.49536992245928e118 ) * cos(66 * phi) ) # @torch.jit.script def Yl76_m67(theta, phi): return ( 4.78807071712273e-121 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 2.53656459576178e127 * cos(theta) ** 9 - 6.04743877135259e126 * cos(theta) ** 7 + 4.26161792612096e125 * cos(theta) ** 5 - 9.66353271229242e123 * cos(theta) ** 3 + 4.99837898911677e121 * cos(theta) ) * cos(67 * phi) ) # @torch.jit.script def Yl76_m68(theta, phi): return ( 1.3300196436452e-122 * (1.0 - cos(theta) ** 2) ** 34 * ( 2.2829081361856e128 * cos(theta) ** 8 - 4.23320713994682e127 * cos(theta) ** 6 + 2.13080896306048e126 * cos(theta) ** 4 - 2.89905981368773e124 * cos(theta) ** 2 + 4.99837898911677e121 ) * cos(68 * phi) ) # @torch.jit.script def Yl76_m69(theta, phi): return ( 3.90507213550102e-124 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 1.82632650894848e129 * cos(theta) ** 7 - 2.53992428396809e128 * cos(theta) ** 5 + 8.52323585224191e126 * cos(theta) ** 3 - 5.79811962737545e124 * cos(theta) ) * cos(69 * phi) ) # @torch.jit.script def Yl76_m70(theta, phi): return ( 1.22152852433332e-125 * (1.0 - cos(theta) ** 2) ** 35 * ( 1.27842855626394e130 * cos(theta) ** 6 - 1.26996214198404e129 * cos(theta) ** 4 + 2.55697075567257e127 * cos(theta) ** 2 - 5.79811962737545e124 ) * cos(70 * phi) ) # @torch.jit.script def Yl76_m71(theta, phi): return ( 4.11310049032803e-127 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 7.67057133758363e130 * cos(theta) ** 5 - 5.07984856793618e129 * cos(theta) ** 3 + 5.11394151134515e127 * cos(theta) ) * cos(71 * phi) ) # @torch.jit.script def Yl76_m72(theta, phi): return ( 1.51200581131519e-128 * (1.0 - cos(theta) ** 2) ** 36 * ( 3.83528566879182e131 * cos(theta) ** 4 - 1.52395457038085e130 * cos(theta) ** 2 + 5.11394151134515e127 ) * cos(72 * phi) ) # @torch.jit.script def Yl76_m73(theta, phi): return ( 6.19341712319846e-130 * (1.0 - cos(theta) ** 2) ** 36.5 * (1.53411426751673e132 * cos(theta) ** 3 - 3.04790914076171e130 * cos(theta)) * cos(73 * phi) ) # @torch.jit.script def Yl76_m74(theta, phi): return ( 2.91960483102034e-131 * (1.0 - cos(theta) ** 2) ** 37 * (4.60234280255018e132 * cos(theta) ** 2 - 3.04790914076171e130) * cos(74 * phi) ) # @torch.jit.script def Yl76_m75(theta, phi): return ( 15.4642749057508 * (1.0 - cos(theta) ** 2) ** 37.5 * cos(75 * phi) * cos(theta) ) # @torch.jit.script def Yl76_m76(theta, phi): return 1.25431832598384 * (1.0 - cos(theta) ** 2) ** 38 * cos(76 * phi) # @torch.jit.script def Yl77_m_minus_77(theta, phi): return 1.25838419831944 * (1.0 - cos(theta) ** 2) ** 38.5 * sin(77 * phi) # @torch.jit.script def Yl77_m_minus_76(theta, phi): return 15.6161372224161 * (1.0 - cos(theta) ** 2) ** 38 * sin(76 * phi) * cos(theta) # @torch.jit.script def Yl77_m_minus_75(theta, phi): return ( 1.93969720345593e-133 * (1.0 - cos(theta) ** 2) ** 37.5 * (7.04158448790177e134 * cos(theta) ** 2 - 4.60234280255018e132) * sin(75 * phi) ) # @torch.jit.script def Yl77_m_minus_74(theta, phi): return ( 4.14205976530905e-132 * (1.0 - cos(theta) ** 2) ** 37 * (2.34719482930059e134 * cos(theta) ** 3 - 4.60234280255018e132 * cos(theta)) * sin(74 * phi) ) # @torch.jit.script def Yl77_m_minus_73(theta, phi): return ( 1.01796965062976e-130 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 5.86798707325148e133 * cos(theta) ** 4 - 2.30117140127509e132 * cos(theta) ** 2 + 7.61977285190427e129 ) * sin(73 * phi) ) # @torch.jit.script def Yl77_m_minus_72(theta, phi): return ( 2.78782470252787e-129 * (1.0 - cos(theta) ** 2) ** 36 * ( 1.1735974146503e133 * cos(theta) ** 5 - 7.67057133758363e131 * cos(theta) ** 3 + 7.61977285190427e129 * cos(theta) ) * sin(72 * phi) ) # @torch.jit.script def Yl77_m_minus_71(theta, phi): return ( 8.33554924128577e-128 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 1.95599569108383e132 * cos(theta) ** 6 - 1.91764283439591e131 * cos(theta) ** 4 + 3.80988642595213e129 * cos(theta) ** 2 - 8.52323585224191e126 ) * sin(71 * phi) ) # @torch.jit.script def Yl77_m_minus_70(theta, phi): return ( 2.6829593898425e-126 * (1.0 - cos(theta) ** 2) ** 35 * ( 2.79427955869118e131 * cos(theta) ** 7 - 3.83528566879182e130 * cos(theta) ** 5 + 1.26996214198404e129 * cos(theta) ** 3 - 8.52323585224191e126 * cos(theta) ) * sin(70 * phi) ) # @torch.jit.script def Yl77_m_minus_69(theta, phi): return ( 9.20063410801222e-125 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 3.49284944836398e130 * cos(theta) ** 8 - 6.39214278131969e129 * cos(theta) ** 6 + 3.17490535496011e128 * cos(theta) ** 4 - 4.26161792612096e126 * cos(theta) ** 2 + 7.24764953421931e123 ) * sin(69 * phi) ) # @torch.jit.script def Yl77_m_minus_68(theta, phi): return ( 3.33515054740002e-123 * (1.0 - cos(theta) ** 2) ** 34 * ( 3.88094383151553e129 * cos(theta) ** 9 - 9.13163254474242e128 * cos(theta) ** 7 + 6.34981070992022e127 * cos(theta) ** 5 - 1.42053930870699e126 * cos(theta) ** 3 + 7.24764953421931e123 * cos(theta) ) * sin(68 * phi) ) # @torch.jit.script def Yl77_m_minus_67(theta, phi): return ( 1.26998749214482e-121 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 3.88094383151553e128 * cos(theta) ** 10 - 1.1414540680928e128 * cos(theta) ** 8 + 1.0583017849867e127 * cos(theta) ** 6 - 3.55134827176746e125 * cos(theta) ** 4 + 3.62382476710966e123 * cos(theta) ** 2 - 4.99837898911677e120 ) * sin(67 * phi) ) # @torch.jit.script def Yl77_m_minus_66(theta, phi): return ( 5.05448639986654e-120 * (1.0 - cos(theta) ** 2) ** 33 * ( 3.52813075592321e127 * cos(theta) ** 11 - 1.26828229788089e127 * cos(theta) ** 9 + 1.51185969283815e126 * cos(theta) ** 7 - 7.10269654353493e124 * cos(theta) ** 5 + 1.20794158903655e123 * cos(theta) ** 3 - 4.99837898911677e120 * cos(theta) ) * sin(66 * phi) ) # @torch.jit.script def Yl77_m_minus_65(theta, phi): return ( 2.09380230745894e-118 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 2.94010896326934e126 * cos(theta) ** 12 - 1.26828229788089e126 * cos(theta) ** 10 + 1.88982461604769e125 * cos(theta) ** 8 - 1.18378275725582e124 * cos(theta) ** 6 + 3.01985397259138e122 * cos(theta) ** 4 - 2.49918949455838e120 * cos(theta) ** 2 + 2.91280826871606e117 ) * sin(65 * phi) ) # @torch.jit.script def Yl77_m_minus_64(theta, phi): return ( 8.99604299546297e-117 * (1.0 - cos(theta) ** 2) ** 32 * ( 2.26162227943795e125 * cos(theta) ** 13 - 1.15298390716445e125 * cos(theta) ** 11 + 2.09980512894187e124 * cos(theta) ** 9 - 1.69111822465117e123 * cos(theta) ** 7 + 6.03970794518276e121 * cos(theta) ** 5 - 8.33063164852795e119 * cos(theta) ** 3 + 2.91280826871606e117 * cos(theta) ) * sin(64 * phi) ) # @torch.jit.script def Yl77_m_minus_63(theta, phi): return ( 3.99691669444655e-115 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 1.61544448531282e124 * cos(theta) ** 14 - 9.60819922637039e123 * cos(theta) ** 12 + 2.09980512894187e123 * cos(theta) ** 10 - 2.11389778081397e122 * cos(theta) ** 8 + 1.00661799086379e121 * cos(theta) ** 6 - 2.08265791213199e119 * cos(theta) ** 4 + 1.45640413435803e117 * cos(theta) ** 2 - 1.47558676226751e114 ) * sin(63 * phi) ) # @torch.jit.script def Yl77_m_minus_62(theta, phi): return ( 1.8316173298734e-113 * (1.0 - cos(theta) ** 2) ** 31 * ( 1.07696299020855e123 * cos(theta) ** 15 - 7.39092248182338e122 * cos(theta) ** 13 + 1.90891375358352e122 * cos(theta) ** 11 - 2.34877531201552e121 * cos(theta) ** 9 + 1.43802570123399e120 * cos(theta) ** 7 - 4.16531582426397e118 * cos(theta) ** 5 + 4.85468044786011e116 * cos(theta) ** 3 - 1.47558676226751e114 * cos(theta) ) * sin(62 * phi) ) # @torch.jit.script def Yl77_m_minus_61(theta, phi): return ( 8.63777993690384e-112 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 6.73101868880343e121 * cos(theta) ** 16 - 5.27923034415955e121 * cos(theta) ** 14 + 1.5907614613196e121 * cos(theta) ** 12 - 2.34877531201552e120 * cos(theta) ** 10 + 1.79753212654249e119 * cos(theta) ** 8 - 6.94219304043996e117 * cos(theta) ** 6 + 1.21367011196503e116 * cos(theta) ** 4 - 7.37793381133755e113 * cos(theta) ** 2 + 6.63483256415247e110 ) * sin(61 * phi) ) # @torch.jit.script def Yl77_m_minus_60(theta, phi): return ( 4.18375398764358e-110 * (1.0 - cos(theta) ** 2) ** 30 * ( 3.95942275811967e120 * cos(theta) ** 17 - 3.51948689610637e120 * cos(theta) ** 15 + 1.22366266255354e120 * cos(theta) ** 13 - 2.13525028365047e119 * cos(theta) ** 11 + 1.99725791838054e118 * cos(theta) ** 9 - 9.91741862919994e116 * cos(theta) ** 7 + 2.42734022393005e115 * cos(theta) ** 5 - 2.45931127044585e113 * cos(theta) ** 3 + 6.63483256415247e110 * cos(theta) ) * sin(60 * phi) ) # @torch.jit.script def Yl77_m_minus_59(theta, phi): return ( 2.07760353436883e-108 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 2.19967931006648e119 * cos(theta) ** 18 - 2.19967931006648e119 * cos(theta) ** 16 + 8.74044758966814e118 * cos(theta) ** 14 - 1.77937523637539e118 * cos(theta) ** 12 + 1.99725791838054e117 * cos(theta) ** 10 - 1.23967732864999e116 * cos(theta) ** 8 + 4.04556703988342e114 * cos(theta) ** 6 - 6.14827817611463e112 * cos(theta) ** 4 + 3.31741628207624e110 * cos(theta) ** 2 - 2.69052415415753e107 ) * sin(59 * phi) ) # @torch.jit.script def Yl77_m_minus_58(theta, phi): return ( 1.05610945344318e-106 * (1.0 - cos(theta) ** 2) ** 29 * ( 1.15772595266657e118 * cos(theta) ** 19 - 1.29392900592146e118 * cos(theta) ** 17 + 5.82696505977876e117 * cos(theta) ** 15 - 1.36875018182722e117 * cos(theta) ** 13 + 1.81568901670958e116 * cos(theta) ** 11 - 1.37741925405555e115 * cos(theta) ** 9 + 5.77938148554775e113 * cos(theta) ** 7 - 1.22965563522293e112 * cos(theta) ** 5 + 1.10580542735875e110 * cos(theta) ** 3 - 2.69052415415753e107 * cos(theta) ) * sin(58 * phi) ) # @torch.jit.script def Yl77_m_minus_57(theta, phi): return ( 5.48770569515216e-105 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 5.78862976333285e116 * cos(theta) ** 20 - 7.18849447734144e116 * cos(theta) ** 18 + 3.64185316236172e116 * cos(theta) ** 16 - 9.77678701305161e115 * cos(theta) ** 14 + 1.51307418059132e115 * cos(theta) ** 12 - 1.37741925405555e114 * cos(theta) ** 10 + 7.22422685693468e112 * cos(theta) ** 8 - 2.04942605870488e111 * cos(theta) ** 6 + 2.76451356839686e109 * cos(theta) ** 4 - 1.34526207707877e107 * cos(theta) ** 2 + 9.96490427465753e103 ) * sin(57 * phi) ) # @torch.jit.script def Yl77_m_minus_56(theta, phi): return ( 2.91107140798105e-103 * (1.0 - cos(theta) ** 2) ** 28 * ( 2.75649036349183e115 * cos(theta) ** 21 - 3.78341814596918e115 * cos(theta) ** 19 + 2.14226656609513e115 * cos(theta) ** 17 - 6.51785800870107e114 * cos(theta) ** 15 + 1.16390321583948e114 * cos(theta) ** 13 - 1.25219932186868e113 * cos(theta) ** 11 + 8.02691872992743e111 * cos(theta) ** 9 - 2.92775151243554e110 * cos(theta) ** 7 + 5.52902713679373e108 * cos(theta) ** 5 - 4.48420692359589e106 * cos(theta) ** 3 + 9.96490427465753e103 * cos(theta) ) * sin(56 * phi) ) # @torch.jit.script def Yl77_m_minus_55(theta, phi): return ( 1.57467168985028e-101 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 1.25295016522356e114 * cos(theta) ** 22 - 1.89170907298459e114 * cos(theta) ** 20 + 1.19014809227507e114 * cos(theta) ** 18 - 4.07366125543817e113 * cos(theta) ** 16 + 8.31359439885341e112 * cos(theta) ** 14 - 1.04349943489057e112 * cos(theta) ** 12 + 8.02691872992743e110 * cos(theta) ** 10 - 3.65968939054442e109 * cos(theta) ** 8 + 9.21504522798955e107 * cos(theta) ** 6 - 1.12105173089897e106 * cos(theta) ** 4 + 4.98245213732876e103 * cos(theta) ** 2 - 3.40564055866628e100 ) * sin(55 * phi) ) # @torch.jit.script def Yl77_m_minus_54(theta, phi): return ( 8.67642672184648e-100 * (1.0 - cos(theta) ** 2) ** 27 * ( 5.44760941401548e112 * cos(theta) ** 23 - 9.00813844278376e112 * cos(theta) ** 21 + 6.26393732776354e112 * cos(theta) ** 19 - 2.39627132672834e112 * cos(theta) ** 17 + 5.54239626590227e111 * cos(theta) ** 15 - 8.02691872992743e110 * cos(theta) ** 13 + 7.29719884538857e109 * cos(theta) ** 11 - 4.06632154504936e108 * cos(theta) ** 9 + 1.31643503256994e107 * cos(theta) ** 7 - 2.24210346179794e105 * cos(theta) ** 5 + 1.66081737910959e103 * cos(theta) ** 3 - 3.40564055866628e100 * cos(theta) ) * sin(54 * phi) ) # @torch.jit.script def Yl77_m_minus_53(theta, phi): return ( 4.864992464472e-98 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 2.26983725583978e111 * cos(theta) ** 24 - 4.09460838308353e111 * cos(theta) ** 22 + 3.13196866388177e111 * cos(theta) ** 20 - 1.33126184818241e111 * cos(theta) ** 18 + 3.46399766618892e110 * cos(theta) ** 16 - 5.73351337851959e109 * cos(theta) ** 14 + 6.08099903782381e108 * cos(theta) ** 12 - 4.06632154504936e107 * cos(theta) ** 10 + 1.64554379071242e106 * cos(theta) ** 8 - 3.73683910299657e104 * cos(theta) ** 6 + 4.15204344777397e102 * cos(theta) ** 4 - 1.70282027933314e100 * cos(theta) ** 2 + 1.08321900720938e97 ) * sin(53 * phi) ) # @torch.jit.script def Yl77_m_minus_52(theta, phi): return ( 2.77347242564173e-96 * (1.0 - cos(theta) ** 2) ** 26 * ( 9.07934902335913e109 * cos(theta) ** 25 - 1.78026451438414e110 * cos(theta) ** 23 + 1.49141364946751e110 * cos(theta) ** 21 - 7.0066413062232e109 * cos(theta) ** 19 + 2.03764568599348e109 * cos(theta) ** 17 - 3.82234225234639e108 * cos(theta) ** 15 + 4.67769156755678e107 * cos(theta) ** 13 - 3.69665595004487e106 * cos(theta) ** 11 + 1.82838198968047e105 * cos(theta) ** 9 - 5.33834157570939e103 * cos(theta) ** 7 + 8.30408689554794e101 * cos(theta) ** 5 - 5.67606759777713e99 * cos(theta) ** 3 + 1.08321900720938e97 * cos(theta) ) * sin(52 * phi) ) # @torch.jit.script def Yl77_m_minus_51(theta, phi): return ( 1.60622130287506e-94 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 3.49205731667659e108 * cos(theta) ** 26 - 7.41776880993393e108 * cos(theta) ** 24 + 6.77915295212505e108 * cos(theta) ** 22 - 3.5033206531116e108 * cos(theta) ** 20 + 1.13202538110749e108 * cos(theta) ** 18 - 2.3889639077165e107 * cos(theta) ** 16 + 3.34120826254055e106 * cos(theta) ** 14 - 3.08054662503739e105 * cos(theta) ** 12 + 1.82838198968047e104 * cos(theta) ** 10 - 6.67292696963674e102 * cos(theta) ** 8 + 1.38401448259132e101 * cos(theta) ** 6 - 1.41901689944428e99 * cos(theta) ** 4 + 5.41609503604688e96 * cos(theta) ** 2 - 3.2296332951979e93 ) * sin(51 * phi) ) # @torch.jit.script def Yl77_m_minus_50(theta, phi): return ( 9.4426142544775e-93 * (1.0 - cos(theta) ** 2) ** 25 * ( 1.29335456173207e107 * cos(theta) ** 27 - 2.96710752397357e107 * cos(theta) ** 25 + 2.94745780527176e107 * cos(theta) ** 23 - 1.66824793005314e107 * cos(theta) ** 21 + 5.95802832161837e106 * cos(theta) ** 19 - 1.40527288689206e106 * cos(theta) ** 17 + 2.22747217502704e105 * cos(theta) ** 15 - 2.36965125002876e104 * cos(theta) ** 13 + 1.66216544516406e103 * cos(theta) ** 11 - 7.41436329959637e101 * cos(theta) ** 9 + 1.97716354655903e100 * cos(theta) ** 7 - 2.83803379888856e98 * cos(theta) ** 5 + 1.80536501201563e96 * cos(theta) ** 3 - 3.2296332951979e93 * cos(theta) ) * sin(50 * phi) ) # @torch.jit.script def Yl77_m_minus_49(theta, phi): return ( 5.63083919001166e-91 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 4.61912343475739e105 * cos(theta) ** 28 - 1.1411952015283e106 * cos(theta) ** 26 + 1.22810741886323e106 * cos(theta) ** 24 - 7.5829451366052e105 * cos(theta) ** 22 + 2.97901416080918e105 * cos(theta) ** 20 - 7.80707159384476e104 * cos(theta) ** 18 + 1.3921701093919e104 * cos(theta) ** 16 - 1.69260803573483e103 * cos(theta) ** 14 + 1.38513787097005e102 * cos(theta) ** 12 - 7.41436329959637e100 * cos(theta) ** 10 + 2.47145443319879e99 * cos(theta) ** 8 - 4.73005633148094e97 * cos(theta) ** 6 + 4.51341253003906e95 * cos(theta) ** 4 - 1.61481664759895e93 * cos(theta) ** 2 + 9.08220836669826e89 ) * sin(49 * phi) ) # @torch.jit.script def Yl77_m_minus_48(theta, phi): return ( 3.40374797599205e-89 * (1.0 - cos(theta) ** 2) ** 24 * ( 1.5928011843991e104 * cos(theta) ** 29 - 4.22664889454925e104 * cos(theta) ** 27 + 4.91242967545293e104 * cos(theta) ** 25 - 3.29693266808922e104 * cos(theta) ** 23 + 1.4185781718139e104 * cos(theta) ** 21 - 4.10898504939198e103 * cos(theta) ** 19 + 8.1892359375994e102 * cos(theta) ** 17 - 1.12840535715655e102 * cos(theta) ** 15 + 1.06549066997696e101 * cos(theta) ** 13 - 6.74033027236034e99 * cos(theta) ** 11 + 2.74606048133199e98 * cos(theta) ** 9 - 6.75722333068706e96 * cos(theta) ** 7 + 9.02682506007813e94 * cos(theta) ** 5 - 5.38272215866317e92 * cos(theta) ** 3 + 9.08220836669826e89 * cos(theta) ) * sin(48 * phi) ) # @torch.jit.script def Yl77_m_minus_47(theta, phi): return ( 2.08436143855288e-87 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 5.30933728133033e102 * cos(theta) ** 30 - 1.50951746233902e103 * cos(theta) ** 28 + 1.88939602902036e103 * cos(theta) ** 26 - 1.37372194503717e103 * cos(theta) ** 24 + 6.44808259915408e102 * cos(theta) ** 22 - 2.05449252469599e102 * cos(theta) ** 20 + 4.54957552088855e101 * cos(theta) ** 18 - 7.05253348222846e100 * cos(theta) ** 16 + 7.61064764269258e99 * cos(theta) ** 14 - 5.61694189363362e98 * cos(theta) ** 12 + 2.74606048133199e97 * cos(theta) ** 10 - 8.44652916335882e95 * cos(theta) ** 8 + 1.50447084334635e94 * cos(theta) ** 6 - 1.34568053966579e92 * cos(theta) ** 4 + 4.54110418334913e89 * cos(theta) ** 2 - 2.42192223111953e86 ) * sin(47 * phi) ) # @torch.jit.script def Yl77_m_minus_46(theta, phi): return ( 1.29230409190279e-85 * (1.0 - cos(theta) ** 2) ** 23 * ( 1.71268944559043e101 * cos(theta) ** 31 - 5.20523262875523e101 * cos(theta) ** 29 + 6.99776307044577e101 * cos(theta) ** 27 - 5.49488778014869e101 * cos(theta) ** 25 + 2.80351417354525e101 * cos(theta) ** 23 - 9.78329773664757e100 * cos(theta) ** 21 + 2.39451343204661e100 * cos(theta) ** 19 - 4.14854910719321e99 * cos(theta) ** 17 + 5.07376509512839e98 * cos(theta) ** 15 - 4.32072453356432e97 * cos(theta) ** 13 + 2.49641861939272e96 * cos(theta) ** 11 - 9.38503240373202e94 * cos(theta) ** 9 + 2.14924406192336e93 * cos(theta) ** 7 - 2.69136107933158e91 * cos(theta) ** 5 + 1.51370139444971e89 * cos(theta) ** 3 - 2.42192223111953e86 * cos(theta) ) * sin(46 * phi) ) # @torch.jit.script def Yl77_m_minus_45(theta, phi): return ( 8.10759907270583e-84 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 5.35215451747009e99 * cos(theta) ** 32 - 1.73507754291841e100 * cos(theta) ** 30 + 2.49920109658778e100 * cos(theta) ** 28 - 2.11341837698027e100 * cos(theta) ** 26 + 1.16813090564385e100 * cos(theta) ** 24 - 4.44695351665799e99 * cos(theta) ** 22 + 1.1972567160233e99 * cos(theta) ** 20 - 2.30474950399623e98 * cos(theta) ** 18 + 3.17110318445524e97 * cos(theta) ** 16 - 3.0862318096888e96 * cos(theta) ** 14 + 2.08034884949393e95 * cos(theta) ** 12 - 9.38503240373202e93 * cos(theta) ** 10 + 2.68655507740421e92 * cos(theta) ** 8 - 4.48560179888597e90 * cos(theta) ** 6 + 3.78425348612427e88 * cos(theta) ** 4 - 1.21096111555977e86 * cos(theta) ** 2 + 6.15325770101508e82 ) * sin(45 * phi) ) # @torch.jit.script def Yl77_m_minus_44(theta, phi): return ( 5.14433390368256e-82 * (1.0 - cos(theta) ** 2) ** 22 * ( 1.62186500529397e98 * cos(theta) ** 33 - 5.59702433199487e98 * cos(theta) ** 31 + 8.61793481581992e98 * cos(theta) ** 29 - 7.82747547029728e98 * cos(theta) ** 27 + 4.67252362257542e98 * cos(theta) ** 25 - 1.93345805072086e98 * cos(theta) ** 23 + 5.70122245725383e97 * cos(theta) ** 21 - 1.21302605473486e97 * cos(theta) ** 19 + 1.86535481438544e96 * cos(theta) ** 17 - 2.05748787312587e95 * cos(theta) ** 15 + 1.60026834576456e94 * cos(theta) ** 13 - 8.53184763975639e92 * cos(theta) ** 11 + 2.98506119711578e91 * cos(theta) ** 9 - 6.4080025698371e89 * cos(theta) ** 7 + 7.56850697224855e87 * cos(theta) ** 5 - 4.03653705186589e85 * cos(theta) ** 3 + 6.15325770101508e82 * cos(theta) ) * sin(44 * phi) ) # @torch.jit.script def Yl77_m_minus_43(theta, phi): return ( 3.29959998757342e-80 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 4.77019119204108e96 * cos(theta) ** 34 - 1.7490701037484e97 * cos(theta) ** 32 + 2.87264493860664e97 * cos(theta) ** 30 - 2.7955269536776e97 * cos(theta) ** 28 + 1.79712447022132e97 * cos(theta) ** 26 - 8.05607521133693e96 * cos(theta) ** 24 + 2.59146475329719e96 * cos(theta) ** 22 - 6.06513027367428e95 * cos(theta) ** 20 + 1.03630823021413e95 * cos(theta) ** 18 - 1.28592992070367e94 * cos(theta) ** 16 + 1.14304881840326e93 * cos(theta) ** 14 - 7.10987303313032e91 * cos(theta) ** 12 + 2.98506119711578e90 * cos(theta) ** 10 - 8.01000321229638e88 * cos(theta) ** 8 + 1.26141782870809e87 * cos(theta) ** 6 - 1.00913426296647e85 * cos(theta) ** 4 + 3.07662885050754e82 * cos(theta) ** 2 - 1.49568733617284e79 ) * sin(43 * phi) ) # @torch.jit.script def Yl77_m_minus_42(theta, phi): return ( 2.13838519279332e-78 * (1.0 - cos(theta) ** 2) ** 21 * ( 1.3629117691546e95 * cos(theta) ** 35 - 5.3002124356012e95 * cos(theta) ** 33 + 9.26659657615045e95 * cos(theta) ** 31 - 9.63974811612966e95 * cos(theta) ** 29 + 6.65601655637524e95 * cos(theta) ** 27 - 3.22243008453477e95 * cos(theta) ** 25 + 1.12672380578139e95 * cos(theta) ** 23 - 2.88815727317823e94 * cos(theta) ** 21 + 5.45425384323227e93 * cos(theta) ** 19 - 7.56429365119804e92 * cos(theta) ** 17 + 7.62032545602173e91 * cos(theta) ** 15 - 5.46913310240794e90 * cos(theta) ** 13 + 2.71369199737799e89 * cos(theta) ** 11 - 8.9000035692182e87 * cos(theta) ** 9 + 1.80202546958299e86 * cos(theta) ** 7 - 2.01826852593295e84 * cos(theta) ** 5 + 1.02554295016918e82 * cos(theta) ** 3 - 1.49568733617284e79 * cos(theta) ) * sin(42 * phi) ) # @torch.jit.script def Yl77_m_minus_41(theta, phi): return ( 1.39962170750292e-76 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 3.78586602542943e93 * cos(theta) ** 36 - 1.55888601047094e94 * cos(theta) ** 34 + 2.89581143004702e94 * cos(theta) ** 32 - 3.21324937204322e94 * cos(theta) ** 30 + 2.37714877013401e94 * cos(theta) ** 28 - 1.23939618635953e94 * cos(theta) ** 26 + 4.69468252408912e93 * cos(theta) ** 24 - 1.31279876053556e93 * cos(theta) ** 22 + 2.72712692161614e92 * cos(theta) ** 20 - 4.20238536177669e91 * cos(theta) ** 18 + 4.76270341001358e90 * cos(theta) ** 16 - 3.9065236445771e89 * cos(theta) ** 14 + 2.26140999781499e88 * cos(theta) ** 12 - 8.9000035692182e86 * cos(theta) ** 10 + 2.25253183697873e85 * cos(theta) ** 8 - 3.36378087655491e83 * cos(theta) ** 6 + 2.56385737542295e81 * cos(theta) ** 4 - 7.47843668086422e78 * cos(theta) ** 2 + 3.49133365119711e75 ) * sin(41 * phi) ) # @torch.jit.script def Yl77_m_minus_40(theta, phi): return ( 9.24810038585174e-75 * (1.0 - cos(theta) ** 2) ** 20 * ( 1.02320703389985e92 * cos(theta) ** 37 - 4.45396002991698e92 * cos(theta) ** 35 + 8.77518615165762e92 * cos(theta) ** 33 - 1.03653205549781e93 * cos(theta) ** 31 + 8.19706472460005e92 * cos(theta) ** 29 - 4.59035624577603e92 * cos(theta) ** 27 + 1.87787300963565e92 * cos(theta) ** 25 - 5.70782069798069e91 * cos(theta) ** 23 + 1.29863186743625e91 * cos(theta) ** 21 - 2.21178176935615e90 * cos(theta) ** 19 + 2.80159024118446e89 * cos(theta) ** 17 - 2.60434909638473e88 * cos(theta) ** 15 + 1.73954615216538e87 * cos(theta) ** 13 - 8.09091233565291e85 * cos(theta) ** 11 + 2.50281315219859e84 * cos(theta) ** 9 - 4.8054012522213e82 * cos(theta) ** 7 + 5.1277147508459e80 * cos(theta) ** 5 - 2.49281222695474e78 * cos(theta) ** 3 + 3.49133365119711e75 * cos(theta) ) * sin(40 * phi) ) # @torch.jit.script def Yl77_m_minus_39(theta, phi): return ( 6.16647910788834e-73 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 2.69265008921012e90 * cos(theta) ** 38 - 1.23721111942138e91 * cos(theta) ** 36 + 2.58093710342871e91 * cos(theta) ** 34 - 3.23916267343067e91 * cos(theta) ** 32 + 2.73235490820002e91 * cos(theta) ** 30 - 1.63941294492001e91 * cos(theta) ** 28 + 7.22258849859865e90 * cos(theta) ** 26 - 2.37825862415862e90 * cos(theta) ** 24 + 5.90287212471025e89 * cos(theta) ** 22 - 1.10589088467808e89 * cos(theta) ** 20 + 1.55643902288026e88 * cos(theta) ** 18 - 1.62771818524046e87 * cos(theta) ** 16 + 1.24253296583241e86 * cos(theta) ** 14 - 6.74242694637742e84 * cos(theta) ** 12 + 2.50281315219859e83 * cos(theta) ** 10 - 6.00675156527662e81 * cos(theta) ** 8 + 8.54619125140983e79 * cos(theta) ** 6 - 6.23203056738685e77 * cos(theta) ** 4 + 1.74566682559856e75 * cos(theta) ** 2 - 7.85275225190534e71 ) * sin(39 * phi) ) # @torch.jit.script def Yl77_m_minus_38(theta, phi): return ( 4.14761620447478e-71 * (1.0 - cos(theta) ** 2) ** 19 * ( 6.90423099797467e88 * cos(theta) ** 39 - 3.34381383627401e89 * cos(theta) ** 37 + 7.37410600979632e89 * cos(theta) ** 35 - 9.81564446494141e89 * cos(theta) ** 33 + 8.8140480909678e89 * cos(theta) ** 31 - 5.65314808593107e89 * cos(theta) ** 29 + 2.67503277725876e89 * cos(theta) ** 27 - 9.51303449663449e88 * cos(theta) ** 25 + 2.56646614117837e88 * cos(theta) ** 23 - 5.2661470698956e87 * cos(theta) ** 21 + 8.19178433094871e86 * cos(theta) ** 19 - 9.57481285435564e85 * cos(theta) ** 17 + 8.2835531055494e84 * cos(theta) ** 15 - 5.18648226644417e83 * cos(theta) ** 13 + 2.2752846838169e82 * cos(theta) ** 11 - 6.67416840586292e80 * cos(theta) ** 9 + 1.22088446448712e79 * cos(theta) ** 7 - 1.24640611347737e77 * cos(theta) ** 5 + 5.81888941866186e74 * cos(theta) ** 3 - 7.85275225190534e71 * cos(theta) ) * sin(38 * phi) ) # @torch.jit.script def Yl77_m_minus_37(theta, phi): return ( 2.81305017421055e-69 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 1.72605774949367e87 * cos(theta) ** 40 - 8.79951009545791e87 * cos(theta) ** 38 + 2.04836278049898e88 * cos(theta) ** 36 - 2.88695425439453e88 * cos(theta) ** 34 + 2.75439002842744e88 * cos(theta) ** 32 - 1.88438269531036e88 * cos(theta) ** 30 + 9.55368849020985e87 * cos(theta) ** 28 - 3.6588594217825e87 * cos(theta) ** 26 + 1.06936089215765e87 * cos(theta) ** 24 - 2.39370321358891e86 * cos(theta) ** 22 + 4.09589216547436e85 * cos(theta) ** 20 - 5.31934047464202e84 * cos(theta) ** 18 + 5.17722069096838e83 * cos(theta) ** 16 - 3.70463019031727e82 * cos(theta) ** 14 + 1.89607056984742e81 * cos(theta) ** 12 - 6.67416840586291e79 * cos(theta) ** 10 + 1.5261055806089e78 * cos(theta) ** 8 - 2.07734352246228e76 * cos(theta) ** 6 + 1.45472235466546e74 * cos(theta) ** 4 - 3.92637612595267e71 * cos(theta) ** 2 + 1.70712005476203e68 ) * sin(37 * phi) ) # @torch.jit.script def Yl77_m_minus_36(theta, phi): return ( 1.92318840717684e-67 * (1.0 - cos(theta) ** 2) ** 18 * ( 4.20989694998455e85 * cos(theta) ** 41 - 2.256284639861e86 * cos(theta) ** 39 + 5.53611562297021e86 * cos(theta) ** 37 - 8.24844072684152e86 * cos(theta) ** 35 + 8.34663644978011e86 * cos(theta) ** 33 - 6.07865385583986e86 * cos(theta) ** 31 + 3.29437534145167e86 * cos(theta) ** 29 - 1.3551331191787e86 * cos(theta) ** 27 + 4.27744356863062e85 * cos(theta) ** 25 - 1.04074052764735e85 * cos(theta) ** 23 + 1.95042484070207e84 * cos(theta) ** 21 - 2.79965288139054e83 * cos(theta) ** 19 + 3.04542393586375e82 * cos(theta) ** 17 - 2.46975346021151e81 * cos(theta) ** 15 + 1.45851582295955e80 * cos(theta) ** 13 - 6.06742582351174e78 * cos(theta) ** 11 + 1.69567286734322e77 * cos(theta) ** 9 - 2.96763360351755e75 * cos(theta) ** 7 + 2.90944470933093e73 * cos(theta) ** 5 - 1.30879204198422e71 * cos(theta) ** 3 + 1.70712005476203e68 * cos(theta) ) * sin(36 * phi) ) # @torch.jit.script def Yl77_m_minus_35(theta, phi): return ( 1.32490792965112e-65 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 1.00235641666299e84 * cos(theta) ** 42 - 5.64071159965251e84 * cos(theta) ** 40 + 1.45687253236058e85 * cos(theta) ** 38 - 2.29123353523376e85 * cos(theta) ** 36 + 2.45489307346474e85 * cos(theta) ** 34 - 1.89957932994996e85 * cos(theta) ** 32 + 1.09812511381722e85 * cos(theta) ** 30 - 4.83976113992394e84 * cos(theta) ** 28 + 1.64517060331947e84 * cos(theta) ** 26 - 4.3364188651973e83 * cos(theta) ** 24 + 8.8655674577367e82 * cos(theta) ** 22 - 1.39982644069527e82 * cos(theta) ** 20 + 1.69190218659097e81 * cos(theta) ** 18 - 1.54359591263219e80 * cos(theta) ** 16 + 1.04179701639968e79 * cos(theta) ** 14 - 5.05618818625978e77 * cos(theta) ** 12 + 1.69567286734322e76 * cos(theta) ** 10 - 3.70954200439693e74 * cos(theta) ** 8 + 4.84907451555155e72 * cos(theta) ** 6 - 3.27198010496056e70 * cos(theta) ** 4 + 8.53560027381015e67 * cos(theta) ** 2 - 3.59696598137807e64 ) * sin(35 * phi) ) # @torch.jit.script def Yl77_m_minus_34(theta, phi): return ( 9.19451738929479e-64 * (1.0 - cos(theta) ** 2) ** 17 * ( 2.33106143409998e82 * cos(theta) ** 43 - 1.37578331698842e83 * cos(theta) ** 41 + 3.73557059579636e83 * cos(theta) ** 39 - 6.19252306819934e83 * cos(theta) ** 37 + 7.01398020989925e83 * cos(theta) ** 35 - 5.75630099984835e83 * cos(theta) ** 33 + 3.54233907682976e83 * cos(theta) ** 31 - 1.66888315169791e83 * cos(theta) ** 29 + 6.09322445673877e82 * cos(theta) ** 27 - 1.73456754607892e82 * cos(theta) ** 25 + 3.85459454684204e81 * cos(theta) ** 23 - 6.66584019378699e80 * cos(theta) ** 21 + 8.90474835047881e79 * cos(theta) ** 19 - 9.07997595665996e78 * cos(theta) ** 17 + 6.94531344266454e77 * cos(theta) ** 15 - 3.88937552789214e76 * cos(theta) ** 13 + 1.54152078849384e75 * cos(theta) ** 11 - 4.12171333821881e73 * cos(theta) ** 9 + 6.92724930793078e71 * cos(theta) ** 7 - 6.54396020992112e69 * cos(theta) ** 5 + 2.84520009127005e67 * cos(theta) ** 3 - 3.59696598137807e64 * cos(theta) ) * sin(34 * phi) ) # @torch.jit.script def Yl77_m_minus_33(theta, phi): return ( 6.42564556062396e-62 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 5.29786689568176e80 * cos(theta) ** 44 - 3.27567456425813e81 * cos(theta) ** 42 + 9.33892648949091e81 * cos(theta) ** 40 - 1.62961133373667e82 * cos(theta) ** 38 + 1.94832783608313e82 * cos(theta) ** 36 - 1.69302970583775e82 * cos(theta) ** 34 + 1.1069809615093e82 * cos(theta) ** 32 - 5.56294383899303e81 * cos(theta) ** 30 + 2.17615159169242e81 * cos(theta) ** 28 - 6.67141363876508e80 * cos(theta) ** 26 + 1.60608106118418e80 * cos(theta) ** 24 - 3.02992736081227e79 * cos(theta) ** 22 + 4.4523741752394e78 * cos(theta) ** 20 - 5.04443108703331e77 * cos(theta) ** 18 + 4.34082090166534e76 * cos(theta) ** 16 - 2.77812537706582e75 * cos(theta) ** 14 + 1.2846006570782e74 * cos(theta) ** 12 - 4.12171333821881e72 * cos(theta) ** 10 + 8.65906163491348e70 * cos(theta) ** 8 - 1.09066003498685e69 * cos(theta) ** 6 + 7.11300022817513e66 * cos(theta) ** 4 - 1.79848299068903e64 * cos(theta) ** 2 + 7.3647952116668e60 ) * sin(33 * phi) ) # @torch.jit.script def Yl77_m_minus_32(theta, phi): return ( 4.52084238068851e-60 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.17730375459595e79 * cos(theta) ** 45 - 7.61784782385613e79 * cos(theta) ** 43 + 2.27778694865632e80 * cos(theta) ** 41 - 4.17849059932479e80 * cos(theta) ** 39 + 5.26575090833277e80 * cos(theta) ** 37 - 4.837227730965e80 * cos(theta) ** 35 + 3.35448776214939e80 * cos(theta) ** 33 - 1.7944980125784e80 * cos(theta) ** 31 + 7.50397100583592e79 * cos(theta) ** 29 - 2.47089394028336e79 * cos(theta) ** 27 + 6.42432424473674e78 * cos(theta) ** 25 - 1.31735972209229e78 * cos(theta) ** 23 + 2.12017817868543e77 * cos(theta) ** 21 - 2.65496373001753e76 * cos(theta) ** 19 + 2.55342405980314e75 * cos(theta) ** 17 - 1.85208358471054e74 * cos(theta) ** 15 + 9.88154351598613e72 * cos(theta) ** 13 - 3.74701212565347e71 * cos(theta) ** 11 + 9.62117959434831e69 * cos(theta) ** 9 - 1.55808576426693e68 * cos(theta) ** 7 + 1.42260004563503e66 * cos(theta) ** 5 - 5.99494330229678e63 * cos(theta) ** 3 + 7.3647952116668e60 * cos(theta) ) * sin(32 * phi) ) # @torch.jit.script def Yl77_m_minus_31(theta, phi): return ( 3.20119058128037e-58 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 2.55935598825206e77 * cos(theta) ** 46 - 1.73132905087639e78 * cos(theta) ** 44 + 5.42330225870552e78 * cos(theta) ** 42 - 1.0446226498312e79 * cos(theta) ** 40 + 1.38572392324547e79 * cos(theta) ** 38 - 1.3436743697125e79 * cos(theta) ** 36 + 9.86614047690997e78 * cos(theta) ** 34 - 5.60780628930749e78 * cos(theta) ** 32 + 2.50132366861197e78 * cos(theta) ** 30 - 8.82462121529772e77 * cos(theta) ** 28 + 2.47089394028336e77 * cos(theta) ** 26 - 5.48899884205121e76 * cos(theta) ** 24 + 9.63717353947923e75 * cos(theta) ** 22 - 1.32748186500877e75 * cos(theta) ** 20 + 1.41856892211286e74 * cos(theta) ** 18 - 1.15755224044409e73 * cos(theta) ** 16 + 7.05824536856152e71 * cos(theta) ** 14 - 3.12251010471122e70 * cos(theta) ** 12 + 9.62117959434831e68 * cos(theta) ** 10 - 1.94760720533367e67 * cos(theta) ** 8 + 2.37100007605838e65 * cos(theta) ** 6 - 1.49873582557419e63 * cos(theta) ** 4 + 3.6823976058334e60 * cos(theta) ** 2 - 1.46884627276961e57 ) * sin(31 * phi) ) # @torch.jit.script def Yl77_m_minus_30(theta, phi): return ( 2.28072192287561e-56 * (1.0 - cos(theta) ** 2) ** 15 * ( 5.44543827287672e75 * cos(theta) ** 47 - 3.84739789083643e76 * cos(theta) ** 45 + 1.26123308341989e77 * cos(theta) ** 43 - 2.54786012153951e77 * cos(theta) ** 41 + 3.55313826473197e77 * cos(theta) ** 39 - 3.63155235057433e77 * cos(theta) ** 37 + 2.81889727911713e77 * cos(theta) ** 35 - 1.69933523918409e77 * cos(theta) ** 33 + 8.06878602778056e76 * cos(theta) ** 31 - 3.04297283286128e76 * cos(theta) ** 29 + 9.15145903808652e75 * cos(theta) ** 27 - 2.19559953682049e75 * cos(theta) ** 25 + 4.19007545194749e74 * cos(theta) ** 23 - 6.32134221432746e73 * cos(theta) ** 21 + 7.46615222164661e72 * cos(theta) ** 19 - 6.80913082614171e71 * cos(theta) ** 17 + 4.70549691237435e70 * cos(theta) ** 15 - 2.40193084977786e69 * cos(theta) ** 13 + 8.74652690395301e67 * cos(theta) ** 11 - 2.16400800592629e66 * cos(theta) ** 9 + 3.38714296579768e64 * cos(theta) ** 7 - 2.99747165114839e62 * cos(theta) ** 5 + 1.22746586861113e60 * cos(theta) ** 3 - 1.46884627276961e57 * cos(theta) ) * sin(30 * phi) ) # @torch.jit.script def Yl77_m_minus_29(theta, phi): return ( 1.63449969795033e-54 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 1.13446630684932e74 * cos(theta) ** 48 - 8.36390845834006e74 * cos(theta) ** 46 + 2.86643882595429e75 * cos(theta) ** 44 - 6.06633362271311e75 * cos(theta) ** 42 + 8.88284566182991e75 * cos(theta) ** 40 - 9.5567167120377e75 * cos(theta) ** 38 + 7.83027021976982e75 * cos(theta) ** 36 - 4.99804482112967e75 * cos(theta) ** 34 + 2.52149563368143e75 * cos(theta) ** 32 - 1.01432427762043e75 * cos(theta) ** 30 + 3.26837822788804e74 * cos(theta) ** 28 - 8.44461360315571e73 * cos(theta) ** 26 + 1.74586477164479e73 * cos(theta) ** 24 - 2.87333737014885e72 * cos(theta) ** 22 + 3.7330761108233e71 * cos(theta) ** 20 - 3.78285045896761e70 * cos(theta) ** 18 + 2.94093557023397e69 * cos(theta) ** 16 - 1.71566489269847e68 * cos(theta) ** 14 + 7.28877241996084e66 * cos(theta) ** 12 - 2.16400800592629e65 * cos(theta) ** 10 + 4.2339287072471e63 * cos(theta) ** 8 - 4.99578608524731e61 * cos(theta) ** 6 + 3.06866467152783e59 * cos(theta) ** 4 - 7.34423136384803e56 * cos(theta) ** 2 + 2.85990317906855e53 ) * sin(29 * phi) ) # @torch.jit.script def Yl77_m_minus_28(theta, phi): return ( 1.17797430489561e-52 * (1.0 - cos(theta) ** 2) ** 14 * ( 2.31523736091697e72 * cos(theta) ** 49 - 1.77955499113618e73 * cos(theta) ** 47 + 6.36986405767621e73 * cos(theta) ** 45 - 1.41077526109607e74 * cos(theta) ** 43 + 2.16654772239754e74 * cos(theta) ** 41 - 2.45044018257377e74 * cos(theta) ** 39 + 2.11628924858644e74 * cos(theta) ** 37 - 1.42801280603705e74 * cos(theta) ** 35 + 7.64089585964068e73 * cos(theta) ** 33 - 3.27201379877557e73 * cos(theta) ** 31 + 1.12702697513381e73 * cos(theta) ** 29 - 3.12763466783545e72 * cos(theta) ** 27 + 6.98345908657915e71 * cos(theta) ** 25 - 1.24927711745602e71 * cos(theta) ** 23 + 1.77765529086824e70 * cos(theta) ** 21 - 1.99097392577243e69 * cos(theta) ** 19 + 1.72996210013763e68 * cos(theta) ** 17 - 1.14377659513232e67 * cos(theta) ** 15 + 5.60674801535449e65 * cos(theta) ** 13 - 1.96728000538754e64 * cos(theta) ** 11 + 4.70436523027455e62 * cos(theta) ** 9 - 7.13683726463902e60 * cos(theta) ** 7 + 6.13732934305567e58 * cos(theta) ** 5 - 2.44807712128268e56 * cos(theta) ** 3 + 2.85990317906855e53 * cos(theta) ) * sin(28 * phi) ) # @torch.jit.script def Yl77_m_minus_27(theta, phi): return ( 8.53523472478644e-51 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 4.63047472183395e70 * cos(theta) ** 50 - 3.70740623153372e71 * cos(theta) ** 48 + 1.38475305601657e72 * cos(theta) ** 46 - 3.20630741158198e72 * cos(theta) ** 44 + 5.15844695808938e72 * cos(theta) ** 42 - 6.12610045643442e72 * cos(theta) ** 40 + 5.5691822331222e72 * cos(theta) ** 38 - 3.9667022389918e72 * cos(theta) ** 36 + 2.24732231165902e72 * cos(theta) ** 34 - 1.02250431211737e72 * cos(theta) ** 32 + 3.75675658377936e71 * cos(theta) ** 30 - 1.1170123813698e71 * cos(theta) ** 28 + 2.68594580253044e70 * cos(theta) ** 26 - 5.20532132273342e69 * cos(theta) ** 24 + 8.08025132212836e68 * cos(theta) ** 22 - 9.95486962886214e67 * cos(theta) ** 20 + 9.61090055632016e66 * cos(theta) ** 18 - 7.14860371957698e65 * cos(theta) ** 16 + 4.00482001096749e64 * cos(theta) ** 14 - 1.63940000448962e63 * cos(theta) ** 12 + 4.70436523027455e61 * cos(theta) ** 10 - 8.92104658079878e59 * cos(theta) ** 8 + 1.02288822384261e58 * cos(theta) ** 6 - 6.12019280320669e55 * cos(theta) ** 4 + 1.42995158953427e53 * cos(theta) ** 2 - 5.44743462679723e49 ) * sin(27 * phi) ) # @torch.jit.script def Yl77_m_minus_26(theta, phi): return ( 6.2160890397853e-49 * (1.0 - cos(theta) ** 2) ** 13 * ( 9.0793621996744e68 * cos(theta) ** 51 - 7.56613516639534e69 * cos(theta) ** 49 + 2.94628309790759e70 * cos(theta) ** 47 - 7.12512758129329e70 * cos(theta) ** 45 + 1.19963882746265e71 * cos(theta) ** 43 - 1.49417084303279e71 * cos(theta) ** 41 + 1.42799544439031e71 * cos(theta) ** 39 - 1.072081686214e71 * cos(theta) ** 37 + 6.42092089045436e70 * cos(theta) ** 35 - 3.09849791550717e70 * cos(theta) ** 33 + 1.21185696250947e70 * cos(theta) ** 31 - 3.85176683230967e69 * cos(theta) ** 29 + 9.94794741677942e68 * cos(theta) ** 27 - 2.08212852909337e68 * cos(theta) ** 25 + 3.51315274875146e67 * cos(theta) ** 23 - 4.74041410898197e66 * cos(theta) ** 21 + 5.05836871385271e65 * cos(theta) ** 19 - 4.20506101151587e64 * cos(theta) ** 17 + 2.66988000731166e63 * cos(theta) ** 15 - 1.26107692653047e62 * cos(theta) ** 13 + 4.27669566388596e60 * cos(theta) ** 11 - 9.91227397866531e58 * cos(theta) ** 9 + 1.46126889120373e57 * cos(theta) ** 7 - 1.22403856064134e55 * cos(theta) ** 5 + 4.76650529844758e52 * cos(theta) ** 3 - 5.44743462679723e49 * cos(theta) ) * sin(26 * phi) ) # @torch.jit.script def Yl77_m_minus_25(theta, phi): return ( 4.54922598211044e-47 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 1.74603119224508e67 * cos(theta) ** 52 - 1.51322703327907e68 * cos(theta) ** 50 + 6.13808978730748e68 * cos(theta) ** 48 - 1.54894077854202e69 * cos(theta) ** 46 + 2.72645188059692e69 * cos(theta) ** 44 - 3.55754962626854e69 * cos(theta) ** 42 + 3.56998861097577e69 * cos(theta) ** 40 - 2.8212675953e69 * cos(theta) ** 38 + 1.78358913623732e69 * cos(theta) ** 36 - 9.11322916325638e68 * cos(theta) ** 34 + 3.7870530078421e68 * cos(theta) ** 32 - 1.28392227743656e68 * cos(theta) ** 30 + 3.55283836313551e67 * cos(theta) ** 28 - 8.0081866503591e66 * cos(theta) ** 26 + 1.46381364531311e66 * cos(theta) ** 24 - 2.1547336859009e65 * cos(theta) ** 22 + 2.52918435692636e64 * cos(theta) ** 20 - 2.3361450063977e63 * cos(theta) ** 18 + 1.66867500456979e62 * cos(theta) ** 16 - 9.00769233236054e60 * cos(theta) ** 14 + 3.5639130532383e59 * cos(theta) ** 12 - 9.91227397866531e57 * cos(theta) ** 10 + 1.82658611400466e56 * cos(theta) ** 8 - 2.04006426773556e54 * cos(theta) ** 6 + 1.19162632461189e52 * cos(theta) ** 4 - 2.72371731339862e49 * cos(theta) ** 2 + 1.01707143890912e46 ) * sin(25 * phi) ) # @torch.jit.script def Yl77_m_minus_24(theta, phi): return ( 3.34484141235851e-45 * (1.0 - cos(theta) ** 2) ** 12 * ( 3.29439847593411e65 * cos(theta) ** 53 - 2.96711182995896e66 * cos(theta) ** 51 + 1.25267138516479e67 * cos(theta) ** 49 - 3.29561867774898e67 * cos(theta) ** 47 + 6.05878195688205e67 * cos(theta) ** 45 - 8.27337122388032e67 * cos(theta) ** 43 + 8.70728929506286e67 * cos(theta) ** 41 - 7.23401947512821e67 * cos(theta) ** 39 + 4.82051117901979e67 * cos(theta) ** 37 - 2.6037797609304e67 * cos(theta) ** 35 + 1.14759182055821e67 * cos(theta) ** 33 - 4.14168476592437e66 * cos(theta) ** 31 + 1.22511667694328e66 * cos(theta) ** 29 - 2.96599505568856e65 * cos(theta) ** 27 + 5.85525458125244e64 * cos(theta) ** 25 - 9.3684073300039e63 * cos(theta) ** 23 + 1.20437350329827e63 * cos(theta) ** 21 - 1.22955000336721e62 * cos(theta) ** 19 + 9.81573532099876e60 * cos(theta) ** 17 - 6.00512822157369e59 * cos(theta) ** 15 + 2.74147157941408e58 * cos(theta) ** 13 - 9.01115816242301e56 * cos(theta) ** 11 + 2.02954012667185e55 * cos(theta) ** 9 - 2.91437752533652e53 * cos(theta) ** 7 + 2.38325264922379e51 * cos(theta) ** 5 - 9.07905771132872e48 * cos(theta) ** 3 + 1.01707143890912e46 * cos(theta) ) * sin(24 * phi) ) # @torch.jit.script def Yl77_m_minus_23(theta, phi): return ( 2.47020557967673e-43 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 6.1007379183965e63 * cos(theta) ** 54 - 5.70598428838261e64 * cos(theta) ** 52 + 2.50534277032958e65 * cos(theta) ** 50 - 6.86587224531038e65 * cos(theta) ** 48 + 1.31712651236566e66 * cos(theta) ** 46 - 1.88031164179098e66 * cos(theta) ** 44 + 2.07316411787211e66 * cos(theta) ** 42 - 1.80850486878205e66 * cos(theta) ** 40 + 1.26855557342626e66 * cos(theta) ** 38 - 7.23272155813999e65 * cos(theta) ** 36 + 3.37527006046533e65 * cos(theta) ** 34 - 1.29427648935137e65 * cos(theta) ** 32 + 4.08372225647759e64 * cos(theta) ** 30 - 1.0592839484602e64 * cos(theta) ** 28 + 2.2520209927894e63 * cos(theta) ** 26 - 3.90350305416829e62 * cos(theta) ** 24 + 5.47442501499211e61 * cos(theta) ** 22 - 6.14775001683606e60 * cos(theta) ** 20 + 5.45318628944375e59 * cos(theta) ** 18 - 3.75320513848356e58 * cos(theta) ** 16 + 1.95819398529577e57 * cos(theta) ** 14 - 7.50929846868584e55 * cos(theta) ** 12 + 2.02954012667185e54 * cos(theta) ** 10 - 3.64297190667065e52 * cos(theta) ** 8 + 3.97208774870631e50 * cos(theta) ** 6 - 2.26976442783218e48 * cos(theta) ** 4 + 5.08535719454559e45 * cos(theta) ** 2 - 1.86481745307869e42 ) * sin(23 * phi) ) # @torch.jit.script def Yl77_m_minus_22(theta, phi): return ( 1.83195348828138e-41 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.10922507607209e62 * cos(theta) ** 55 - 1.07660080912879e63 * cos(theta) ** 53 + 4.91243680456781e63 * cos(theta) ** 51 - 1.40119841741028e64 * cos(theta) ** 49 + 2.80239683482056e64 * cos(theta) ** 47 - 4.17847031509107e64 * cos(theta) ** 45 + 4.82131190202816e64 * cos(theta) ** 43 - 4.41098748483427e64 * cos(theta) ** 41 + 3.25270659852887e64 * cos(theta) ** 39 - 1.9547896103081e64 * cos(theta) ** 37 + 9.64362874418665e63 * cos(theta) ** 35 - 3.92204996773141e63 * cos(theta) ** 33 + 1.31732976015406e63 * cos(theta) ** 31 - 3.65270327055241e62 * cos(theta) ** 29 + 8.34081849181259e61 * cos(theta) ** 27 - 1.56140122166732e61 * cos(theta) ** 25 + 2.38018478912701e60 * cos(theta) ** 23 - 2.92750000801717e59 * cos(theta) ** 21 + 2.87009804707566e58 * cos(theta) ** 19 - 2.20776772851974e57 * cos(theta) ** 17 + 1.30546265686385e56 * cos(theta) ** 15 - 5.77638343745064e54 * cos(theta) ** 13 + 1.84503647879259e53 * cos(theta) ** 11 - 4.04774656296739e51 * cos(theta) ** 9 + 5.67441106958045e49 * cos(theta) ** 7 - 4.53952885566436e47 * cos(theta) ** 5 + 1.69511906484853e45 * cos(theta) ** 3 - 1.86481745307869e42 * cos(theta) ) * sin(22 * phi) ) # @torch.jit.script def Yl77_m_minus_21(theta, phi): return ( 1.36403669545239e-39 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.98075906441445e60 * cos(theta) ** 56 - 1.99370520209036e61 * cos(theta) ** 54 + 9.44699385493809e61 * cos(theta) ** 52 - 2.80239683482056e62 * cos(theta) ** 50 + 5.8383267392095e62 * cos(theta) ** 48 - 9.0836311197632e62 * cos(theta) ** 46 + 1.0957527050064e63 * cos(theta) ** 44 - 1.05023511543673e63 * cos(theta) ** 42 + 8.13176649632218e62 * cos(theta) ** 40 - 5.14418318502133e62 * cos(theta) ** 38 + 2.67878576227407e62 * cos(theta) ** 36 - 1.1535441081563e62 * cos(theta) ** 34 + 4.11665550048144e61 * cos(theta) ** 32 - 1.2175677568508e61 * cos(theta) ** 30 + 2.97886374707592e60 * cos(theta) ** 28 - 6.00538931410506e59 * cos(theta) ** 26 + 9.91743662136253e58 * cos(theta) ** 24 - 1.33068182182599e58 * cos(theta) ** 22 + 1.43504902353783e57 * cos(theta) ** 20 - 1.22653762695541e56 * cos(theta) ** 18 + 8.15914160539904e54 * cos(theta) ** 16 - 4.1259881696076e53 * cos(theta) ** 14 + 1.53753039899382e52 * cos(theta) ** 12 - 4.04774656296739e50 * cos(theta) ** 10 + 7.09301383697556e48 * cos(theta) ** 8 - 7.56588142610727e46 * cos(theta) ** 6 + 4.23779766212132e44 * cos(theta) ** 4 - 9.32408726539345e41 * cos(theta) ** 2 + 3.36366784465853e38 ) * sin(21 * phi) ) # @torch.jit.script def Yl77_m_minus_20(theta, phi): return ( 1.01947485751912e-37 * (1.0 - cos(theta) ** 2) ** 10 * ( 3.47501590248149e58 * cos(theta) ** 57 - 3.6249185492552e59 * cos(theta) ** 55 + 1.78245167074304e60 * cos(theta) ** 53 - 5.49489575455012e60 * cos(theta) ** 51 + 1.1914952528999e61 * cos(theta) ** 49 - 1.93268747229004e61 * cos(theta) ** 47 + 2.43500601112533e61 * cos(theta) ** 45 - 2.4424072452017e61 * cos(theta) ** 43 + 1.9833576820298e61 * cos(theta) ** 41 - 1.31902132949265e61 * cos(theta) ** 39 + 7.23996151965965e60 * cos(theta) ** 37 - 3.29584030901799e60 * cos(theta) ** 35 + 1.24747136378226e60 * cos(theta) ** 33 - 3.92763792532517e59 * cos(theta) ** 31 + 1.02719439554342e59 * cos(theta) ** 29 - 2.22421826448336e58 * cos(theta) ** 27 + 3.96697464854501e57 * cos(theta) ** 25 - 5.78557313837386e56 * cos(theta) ** 23 + 6.83356677875157e55 * cos(theta) ** 21 - 6.45546119450216e54 * cos(theta) ** 19 + 4.79949506199943e53 * cos(theta) ** 17 - 2.7506587797384e52 * cos(theta) ** 15 + 1.18271569153371e51 * cos(theta) ** 13 - 3.67976960269763e49 * cos(theta) ** 11 + 7.8811264855284e47 * cos(theta) ** 9 - 1.08084020372961e46 * cos(theta) ** 7 + 8.47559532424264e43 * cos(theta) ** 5 - 3.10802908846448e41 * cos(theta) ** 3 + 3.36366784465853e38 * cos(theta) ) * sin(20 * phi) ) # @torch.jit.script def Yl77_m_minus_19(theta, phi): return ( 7.6467410510944e-36 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 5.99140672841636e56 * cos(theta) ** 58 - 6.47306883795571e57 * cos(theta) ** 56 + 3.30083642730192e58 * cos(theta) ** 54 - 1.05671072202887e59 * cos(theta) ** 52 + 2.3829905057998e59 * cos(theta) ** 50 - 4.02643223393759e59 * cos(theta) ** 48 + 5.29349132853333e59 * cos(theta) ** 46 - 5.55092555727659e59 * cos(theta) ** 44 + 4.72228019530905e59 * cos(theta) ** 42 - 3.29755332373162e59 * cos(theta) ** 40 + 1.90525303148938e59 * cos(theta) ** 38 - 9.15511196949443e58 * cos(theta) ** 36 + 3.66903342288899e58 * cos(theta) ** 34 - 1.22738685166412e58 * cos(theta) ** 32 + 3.42398131847807e57 * cos(theta) ** 30 - 7.94363665886913e56 * cos(theta) ** 28 + 1.52575948020962e56 * cos(theta) ** 26 - 2.41065547432244e55 * cos(theta) ** 24 + 3.10616671761435e54 * cos(theta) ** 22 - 3.22773059725108e53 * cos(theta) ** 20 + 2.66638614555524e52 * cos(theta) ** 18 - 1.7191617373365e51 * cos(theta) ** 16 + 8.44796922524079e49 * cos(theta) ** 14 - 3.06647466891469e48 * cos(theta) ** 12 + 7.8811264855284e46 * cos(theta) ** 10 - 1.35105025466201e45 * cos(theta) ** 8 + 1.41259922070711e43 * cos(theta) ** 6 - 7.77007272116121e40 * cos(theta) ** 4 + 1.68183392232927e38 * cos(theta) ** 2 - 5.97879104987297e34 ) * sin(19 * phi) ) # @torch.jit.script def Yl77_m_minus_18(theta, phi): return ( 5.75490297269134e-34 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.01549266583328e55 * cos(theta) ** 59 - 1.13562611192205e56 * cos(theta) ** 57 + 6.00152077691258e56 * cos(theta) ** 55 - 1.99379381514881e57 * cos(theta) ** 53 + 4.67253040352901e57 * cos(theta) ** 51 - 8.21720864068896e57 * cos(theta) ** 49 + 1.12627475075177e58 * cos(theta) ** 47 - 1.23353901272813e58 * cos(theta) ** 45 + 1.0982046965835e58 * cos(theta) ** 43 - 8.04281298471127e57 * cos(theta) ** 41 + 4.8852641833061e57 * cos(theta) ** 39 - 2.47435458634985e57 * cos(theta) ** 37 + 1.04829526368257e57 * cos(theta) ** 35 - 3.71935409595187e56 * cos(theta) ** 33 + 1.10451010273486e56 * cos(theta) ** 31 - 2.73918505478246e55 * cos(theta) ** 29 + 5.65096103781341e54 * cos(theta) ** 27 - 9.64262189728977e53 * cos(theta) ** 25 + 1.35050726852798e53 * cos(theta) ** 23 - 1.53701457011956e52 * cos(theta) ** 21 + 1.4033611292396e51 * cos(theta) ** 19 - 1.01127161019794e50 * cos(theta) ** 17 + 5.63197948349386e48 * cos(theta) ** 15 - 2.35882666839591e47 * cos(theta) ** 13 + 7.16466044138946e45 * cos(theta) ** 11 - 1.50116694962446e44 * cos(theta) ** 9 + 2.01799888672444e42 * cos(theta) ** 7 - 1.55401454423224e40 * cos(theta) ** 5 + 5.60611307443088e37 * cos(theta) ** 3 - 5.97879104987297e34 * cos(theta) ) * sin(18 * phi) ) # @torch.jit.script def Yl77_m_minus_17(theta, phi): return ( 4.34485646348671e-32 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.6924877763888e53 * cos(theta) ** 60 - 1.95797605503803e54 * cos(theta) ** 58 + 1.07170013873439e55 * cos(theta) ** 56 - 3.69221076879409e55 * cos(theta) ** 54 + 8.98563539140195e55 * cos(theta) ** 52 - 1.64344172813779e56 * cos(theta) ** 50 + 2.34640573073286e56 * cos(theta) ** 48 - 2.68160654940898e56 * cos(theta) ** 46 + 2.4959197649625e56 * cos(theta) ** 44 - 1.9149554725503e56 * cos(theta) ** 42 + 1.22131604582653e56 * cos(theta) ** 40 - 6.51145943776275e55 * cos(theta) ** 38 + 2.91193128800713e55 * cos(theta) ** 36 - 1.09392767527996e55 * cos(theta) ** 34 + 3.45159407104645e54 * cos(theta) ** 32 - 9.13061684927486e53 * cos(theta) ** 30 + 2.01820037064765e53 * cos(theta) ** 28 - 3.70870072972683e52 * cos(theta) ** 26 + 5.62711361886658e51 * cos(theta) ** 24 - 6.98642986417983e50 * cos(theta) ** 22 + 7.016805646198e49 * cos(theta) ** 20 - 5.61817561221079e48 * cos(theta) ** 18 + 3.51998717718366e47 * cos(theta) ** 16 - 1.68487619171137e46 * cos(theta) ** 14 + 5.97055036782455e44 * cos(theta) ** 12 - 1.50116694962446e43 * cos(theta) ** 10 + 2.52249860840555e41 * cos(theta) ** 8 - 2.59002424038707e39 * cos(theta) ** 6 + 1.40152826860772e37 * cos(theta) ** 4 - 2.98939552493648e34 * cos(theta) ** 2 + 1.04891071050403e31 ) * sin(17 * phi) ) # @torch.jit.script def Yl77_m_minus_16(theta, phi): return ( 3.29006348365385e-30 * (1.0 - cos(theta) ** 2) ** 8 * ( 2.77457012522754e51 * cos(theta) ** 61 - 3.3186034831153e52 * cos(theta) ** 59 + 1.88017568199016e53 * cos(theta) ** 57 - 6.71311048871653e53 * cos(theta) ** 55 + 1.6954029040381e54 * cos(theta) ** 53 - 3.22243476105449e54 * cos(theta) ** 51 + 4.78858312394461e54 * cos(theta) ** 49 - 5.70554584980635e54 * cos(theta) ** 47 + 5.54648836658333e54 * cos(theta) ** 45 - 4.45338481988442e54 * cos(theta) ** 43 + 2.97881962396714e54 * cos(theta) ** 41 - 1.66960498404173e54 * cos(theta) ** 39 + 7.87008456218144e53 * cos(theta) ** 37 - 3.12550764365703e53 * cos(theta) ** 35 + 1.0459375972868e53 * cos(theta) ** 33 - 2.94536027395963e52 * cos(theta) ** 31 + 6.95931162292291e51 * cos(theta) ** 29 - 1.37359286286179e51 * cos(theta) ** 27 + 2.25084544754663e50 * cos(theta) ** 25 - 3.03757820181732e49 * cos(theta) ** 23 + 3.34133602199905e48 * cos(theta) ** 21 - 2.95693453274252e47 * cos(theta) ** 19 + 2.07058069246098e46 * cos(theta) ** 17 - 1.12325079447424e45 * cos(theta) ** 15 + 4.59273105217273e43 * cos(theta) ** 13 - 1.36469722693133e42 * cos(theta) ** 11 + 2.80277623156172e40 * cos(theta) ** 9 - 3.70003462912438e38 * cos(theta) ** 7 + 2.80305653721544e36 * cos(theta) ** 5 - 9.96465174978828e33 * cos(theta) ** 3 + 1.04891071050403e31 * cos(theta) ) * sin(16 * phi) ) # @torch.jit.script def Yl77_m_minus_15(theta, phi): return ( 2.49828279445783e-28 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 4.47511310520571e49 * cos(theta) ** 62 - 5.53100580519216e50 * cos(theta) ** 60 + 3.24168221032786e51 * cos(theta) ** 58 - 1.19876973012795e52 * cos(theta) ** 56 + 3.13963500747797e52 * cos(theta) ** 54 - 6.19698992510479e52 * cos(theta) ** 52 + 9.57716624788922e52 * cos(theta) ** 50 - 1.18865538537632e53 * cos(theta) ** 48 + 1.20575834056159e53 * cos(theta) ** 46 - 1.0121329136101e53 * cos(theta) ** 44 + 7.09242767611223e52 * cos(theta) ** 42 - 4.17401246010433e52 * cos(theta) ** 40 + 2.07107488478459e52 * cos(theta) ** 38 - 8.68196567682508e51 * cos(theta) ** 36 + 3.07628705084353e51 * cos(theta) ** 34 - 9.20425085612385e50 * cos(theta) ** 32 + 2.3197705409743e50 * cos(theta) ** 30 - 4.90568879593497e49 * cos(theta) ** 28 + 8.65709787517935e48 * cos(theta) ** 26 - 1.26565758409055e48 * cos(theta) ** 24 + 1.51878910090866e47 * cos(theta) ** 22 - 1.47846726637126e46 * cos(theta) ** 20 + 1.15032260692277e45 * cos(theta) ** 18 - 7.02031746546403e43 * cos(theta) ** 16 + 3.28052218012338e42 * cos(theta) ** 14 - 1.13724768910944e41 * cos(theta) ** 12 + 2.80277623156172e39 * cos(theta) ** 10 - 4.62504328640548e37 * cos(theta) ** 8 + 4.67176089535907e35 * cos(theta) ** 6 - 2.49116293744707e33 * cos(theta) ** 4 + 5.24455355252015e30 * cos(theta) ** 2 - 1.81913061134934e27 ) * sin(15 * phi) ) # @torch.jit.script def Yl77_m_minus_14(theta, phi): return ( 1.90197929732695e-26 * (1.0 - cos(theta) ** 2) ** 7 * ( 7.10335413524717e47 * cos(theta) ** 63 - 9.06722263146256e48 * cos(theta) ** 61 + 5.49437662767433e49 * cos(theta) ** 59 - 2.10310478969816e50 * cos(theta) ** 57 + 5.70842728632358e50 * cos(theta) ** 55 - 1.16924338209524e51 * cos(theta) ** 53 + 1.87787573488024e51 * cos(theta) ** 51 - 2.42582731709454e51 * cos(theta) ** 49 + 2.56544327779062e51 * cos(theta) ** 47 - 2.24918425246688e51 * cos(theta) ** 45 + 1.64940178514238e51 * cos(theta) ** 43 - 1.01805181953764e51 * cos(theta) ** 41 + 5.31044842252459e50 * cos(theta) ** 39 - 2.34647720995273e50 * cos(theta) ** 37 + 8.78939157383867e49 * cos(theta) ** 35 - 2.78916692609814e49 * cos(theta) ** 33 + 7.48313077733647e48 * cos(theta) ** 31 - 1.69161682618447e48 * cos(theta) ** 29 + 3.20633254636272e47 * cos(theta) ** 27 - 5.06263033636219e46 * cos(theta) ** 25 + 6.60343087351591e45 * cos(theta) ** 23 - 7.04032031605362e44 * cos(theta) ** 21 + 6.05432951011982e43 * cos(theta) ** 19 - 4.12959850909649e42 * cos(theta) ** 17 + 2.18701478674892e41 * cos(theta) ** 15 - 8.74805914699567e39 * cos(theta) ** 13 + 2.54797839232884e38 * cos(theta) ** 11 - 5.13893698489498e36 * cos(theta) ** 9 + 6.67394413622724e34 * cos(theta) ** 7 - 4.98232587489414e32 * cos(theta) ** 5 + 1.74818451750672e30 * cos(theta) ** 3 - 1.81913061134934e27 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl77_m_minus_13(theta, phi): return ( 1.45149808960291e-24 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.10989908363237e46 * cos(theta) ** 64 - 1.46245526313912e47 * cos(theta) ** 62 + 9.15729437945722e47 * cos(theta) ** 60 - 3.6260427408589e48 * cos(theta) ** 58 + 1.01936201541493e49 * cos(theta) ** 56 - 2.1652655223986e49 * cos(theta) ** 54 + 3.61129949015431e49 * cos(theta) ** 52 - 4.85165463418907e49 * cos(theta) ** 50 + 5.34467349539713e49 * cos(theta) ** 48 - 4.88953098362365e49 * cos(theta) ** 46 + 3.74864042077813e49 * cos(theta) ** 44 - 2.42393290366105e49 * cos(theta) ** 42 + 1.32761210563115e49 * cos(theta) ** 40 - 6.17494002619138e48 * cos(theta) ** 38 + 2.44149765939963e48 * cos(theta) ** 36 - 8.20343213558276e47 * cos(theta) ** 34 + 2.33847836791765e47 * cos(theta) ** 32 - 5.63872275394824e46 * cos(theta) ** 30 + 1.14511876655812e46 * cos(theta) ** 28 - 1.94716551398546e45 * cos(theta) ** 26 + 2.75142953063163e44 * cos(theta) ** 24 - 3.20014559820619e43 * cos(theta) ** 22 + 3.02716475505991e42 * cos(theta) ** 20 - 2.29422139394249e41 * cos(theta) ** 18 + 1.36688424171807e40 * cos(theta) ** 16 - 6.24861367642548e38 * cos(theta) ** 14 + 2.1233153269407e37 * cos(theta) ** 12 - 5.13893698489498e35 * cos(theta) ** 10 + 8.34243017028405e33 * cos(theta) ** 8 - 8.3038764581569e31 * cos(theta) ** 6 + 4.37046129376679e29 * cos(theta) ** 4 - 9.0956530567467e26 * cos(theta) ** 2 + 3.12350723102565e23 ) * sin(13 * phi) ) # @torch.jit.script def Yl77_m_minus_12(theta, phi): return ( 1.11018256242418e-22 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.70753705174211e44 * cos(theta) ** 65 - 2.32135756053829e45 * cos(theta) ** 63 + 1.50119579991102e46 * cos(theta) ** 61 - 6.14583515399813e46 * cos(theta) ** 59 + 1.78835441300864e47 * cos(theta) ** 57 - 3.93684640436109e47 * cos(theta) ** 55 + 6.81377262293266e47 * cos(theta) ** 53 - 9.51304830233151e47 * cos(theta) ** 51 + 1.09074969293819e48 * cos(theta) ** 49 - 1.04032574119652e48 * cos(theta) ** 47 + 8.33031204617363e47 * cos(theta) ** 45 - 5.63705326432802e47 * cos(theta) ** 43 + 3.23807830641743e47 * cos(theta) ** 41 - 1.58331795543369e47 * cos(theta) ** 39 + 6.5986423227017e46 * cos(theta) ** 37 - 2.34383775302364e46 * cos(theta) ** 35 + 7.08629808459893e45 * cos(theta) ** 33 - 1.81894282385427e45 * cos(theta) ** 31 + 3.94868540192454e44 * cos(theta) ** 29 - 7.21172412587207e43 * cos(theta) ** 27 + 1.10057181225265e43 * cos(theta) ** 25 - 1.391367651394e42 * cos(theta) ** 23 + 1.441507026219e41 * cos(theta) ** 21 - 1.20748494418026e40 * cos(theta) ** 19 + 8.04049553951808e38 * cos(theta) ** 17 - 4.16574245095032e37 * cos(theta) ** 15 + 1.63331948226207e36 * cos(theta) ** 13 - 4.67176089535907e34 * cos(theta) ** 11 + 9.26936685587117e32 * cos(theta) ** 9 - 1.18626806545099e31 * cos(theta) ** 7 + 8.74092258753358e28 * cos(theta) ** 5 - 3.0318843522489e26 * cos(theta) ** 3 + 3.12350723102565e23 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl77_m_minus_11(theta, phi): return ( 8.50866397321199e-21 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 2.5871773511244e42 * cos(theta) ** 66 - 3.62712118834108e43 * cos(theta) ** 64 + 2.42128354824358e44 * cos(theta) ** 62 - 1.02430585899969e45 * cos(theta) ** 60 + 3.0833696776011e45 * cos(theta) ** 58 - 7.03008286493052e45 * cos(theta) ** 56 + 1.26180974498753e46 * cos(theta) ** 54 - 1.82943236583298e46 * cos(theta) ** 52 + 2.18149938587638e46 * cos(theta) ** 50 - 2.16734529415942e46 * cos(theta) ** 48 + 1.81093740134209e46 * cos(theta) ** 46 - 1.28114846916546e46 * cos(theta) ** 44 + 7.70971025337484e45 * cos(theta) ** 42 - 3.95829488858422e45 * cos(theta) ** 40 + 1.73648482176361e45 * cos(theta) ** 38 - 6.51066042506568e44 * cos(theta) ** 36 + 2.08420531899968e44 * cos(theta) ** 34 - 5.68419632454459e43 * cos(theta) ** 32 + 1.31622846730818e43 * cos(theta) ** 30 - 2.57561575924003e42 * cos(theta) ** 28 + 4.23296850866404e41 * cos(theta) ** 26 - 5.79736521414165e40 * cos(theta) ** 24 + 6.55230466463184e39 * cos(theta) ** 22 - 6.0374247209013e38 * cos(theta) ** 20 + 4.46694196639893e37 * cos(theta) ** 18 - 2.60358903184395e36 * cos(theta) ** 16 + 1.16665677304434e35 * cos(theta) ** 14 - 3.89313407946589e33 * cos(theta) ** 12 + 9.26936685587117e31 * cos(theta) ** 10 - 1.48283508181373e30 * cos(theta) ** 8 + 1.4568204312556e28 * cos(theta) ** 6 - 7.57971088062225e25 * cos(theta) ** 4 + 1.56175361551283e23 * cos(theta) ** 2 - 5.31751316143284e19 ) * sin(11 * phi) ) # @torch.jit.script def Yl77_m_minus_10(theta, phi): return ( 6.53341296676457e-19 * (1.0 - cos(theta) ** 2) ** 5 * ( 3.8614587330215e40 * cos(theta) ** 67 - 5.58018644360166e41 * cos(theta) ** 65 + 3.84330721943425e42 * cos(theta) ** 63 - 1.67918993278638e43 * cos(theta) ** 61 + 5.22605030101882e43 * cos(theta) ** 59 - 1.23334787104044e44 * cos(theta) ** 57 + 2.29419953634096e44 * cos(theta) ** 55 - 3.45175918081695e44 * cos(theta) ** 53 + 4.2774497762282e44 * cos(theta) ** 51 - 4.42315366154984e44 * cos(theta) ** 49 + 3.85305830072786e44 * cos(theta) ** 47 - 2.84699659814547e44 * cos(theta) ** 45 + 1.79295587287787e44 * cos(theta) ** 43 - 9.65437777703468e43 * cos(theta) ** 41 + 4.45252518400925e43 * cos(theta) ** 39 - 1.75963795272045e43 * cos(theta) ** 37 + 5.9548723399991e42 * cos(theta) ** 35 - 1.72248373471048e42 * cos(theta) ** 33 + 4.24589828163929e41 * cos(theta) ** 31 - 8.88143365255181e40 * cos(theta) ** 29 + 1.56776611432002e40 * cos(theta) ** 27 - 2.31894608565666e39 * cos(theta) ** 25 + 2.84882811505732e38 * cos(theta) ** 23 - 2.87496415281014e37 * cos(theta) ** 21 + 2.35102208757839e36 * cos(theta) ** 19 - 1.53152295990821e35 * cos(theta) ** 17 + 7.77771182029559e33 * cos(theta) ** 15 - 2.99471852266607e32 * cos(theta) ** 13 + 8.42669714170106e30 * cos(theta) ** 11 - 1.64759453534859e29 * cos(theta) ** 9 + 2.08117204465085e27 * cos(theta) ** 7 - 1.51594217612445e25 * cos(theta) ** 5 + 5.20584538504275e22 * cos(theta) ** 3 - 5.31751316143284e19 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl77_m_minus_9(theta, phi): return ( 5.02520973916716e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 5.67861578385515e38 * cos(theta) ** 68 - 8.454827944851e39 * cos(theta) ** 66 + 6.00516753036602e40 * cos(theta) ** 64 - 2.70837085933286e41 * cos(theta) ** 62 + 8.71008383503137e41 * cos(theta) ** 60 - 2.12646184662145e42 * cos(theta) ** 58 + 4.09678488632315e42 * cos(theta) ** 56 - 6.3921466311425e42 * cos(theta) ** 54 + 8.22586495428499e42 * cos(theta) ** 52 - 8.84630732309968e42 * cos(theta) ** 50 + 8.02720479318304e42 * cos(theta) ** 48 - 6.18912303944667e42 * cos(theta) ** 46 + 4.07489971108607e42 * cos(theta) ** 44 - 2.29866137548445e42 * cos(theta) ** 42 + 1.11313129600231e42 * cos(theta) ** 40 - 4.63062619136962e41 * cos(theta) ** 38 + 1.6541312055553e41 * cos(theta) ** 36 - 5.06612863150142e40 * cos(theta) ** 34 + 1.32684321301228e40 * cos(theta) ** 32 - 2.96047788418394e39 * cos(theta) ** 30 + 5.59916469400005e38 * cos(theta) ** 28 - 8.91902340637177e37 * cos(theta) ** 26 + 1.18701171460722e37 * cos(theta) ** 24 - 1.30680188764097e36 * cos(theta) ** 22 + 1.17551104378919e35 * cos(theta) ** 20 - 8.50846088837892e33 * cos(theta) ** 18 + 4.86106988768475e32 * cos(theta) ** 16 - 2.13908465904719e31 * cos(theta) ** 14 + 7.02224761808422e29 * cos(theta) ** 12 - 1.64759453534859e28 * cos(theta) ** 10 + 2.60146505581356e26 * cos(theta) ** 8 - 2.52657029354075e24 * cos(theta) ** 6 + 1.30146134626069e22 * cos(theta) ** 4 - 2.65875658071642e19 * cos(theta) ** 2 + 8.98835896117789e15 ) * sin(9 * phi) ) # @torch.jit.script def Yl77_m_minus_8(theta, phi): return ( 3.87104271692821e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 8.22987794761615e36 * cos(theta) ** 69 - 1.26191461863448e38 * cos(theta) ** 67 + 9.23871927748619e38 * cos(theta) ** 65 - 4.29900136402042e39 * cos(theta) ** 63 + 1.42788259590678e40 * cos(theta) ** 61 - 3.60417262139229e40 * cos(theta) ** 59 + 7.18734190583008e40 * cos(theta) ** 57 - 1.16220847838955e41 * cos(theta) ** 55 + 1.55204999137453e41 * cos(theta) ** 53 - 1.73457006335288e41 * cos(theta) ** 51 + 1.63820505983327e41 * cos(theta) ** 49 - 1.31683468924397e41 * cos(theta) ** 47 + 9.05533269130237e40 * cos(theta) ** 45 - 5.3457241290336e40 * cos(theta) ** 43 + 2.71495438049344e40 * cos(theta) ** 41 - 1.18734004906913e40 * cos(theta) ** 39 + 4.4706248798792e39 * cos(theta) ** 37 - 1.44746532328612e39 * cos(theta) ** 35 + 4.02073700912811e38 * cos(theta) ** 33 - 9.54992865865786e37 * cos(theta) ** 31 + 1.93074644620692e37 * cos(theta) ** 29 - 3.30334200235991e36 * cos(theta) ** 27 + 4.74804685842887e35 * cos(theta) ** 25 - 5.68174733756945e34 * cos(theta) ** 23 + 5.5976716370914e33 * cos(theta) ** 21 - 4.47813730967312e32 * cos(theta) ** 19 + 2.85945287510867e31 * cos(theta) ** 17 - 1.4260564393648e30 * cos(theta) ** 15 + 5.40172893698786e28 * cos(theta) ** 13 - 1.49781321395326e27 * cos(theta) ** 11 + 2.89051672868174e25 * cos(theta) ** 9 - 3.60938613362964e23 * cos(theta) ** 7 + 2.60292269252138e21 * cos(theta) ** 5 - 8.8625219357214e18 * cos(theta) ** 3 + 8.98835896117789e15 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl77_m_minus_7(theta, phi): return ( 2.9859769207394e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.17569684965945e35 * cos(theta) ** 70 - 1.85575679210953e36 * cos(theta) ** 68 + 1.39980595113427e37 * cos(theta) ** 66 - 6.7171896312819e37 * cos(theta) ** 64 + 2.30303644501094e38 * cos(theta) ** 62 - 6.00695436898715e38 * cos(theta) ** 60 + 1.23919688031553e39 * cos(theta) ** 58 - 2.07537228283847e39 * cos(theta) ** 56 + 2.87416665069357e39 * cos(theta) ** 54 - 3.335711660294e39 * cos(theta) ** 52 + 3.27641011966655e39 * cos(theta) ** 50 - 2.74340560259161e39 * cos(theta) ** 48 + 1.96855058506573e39 * cos(theta) ** 46 - 1.21493730205309e39 * cos(theta) ** 44 + 6.46417709641296e38 * cos(theta) ** 42 - 2.96835012267283e38 * cos(theta) ** 40 + 1.17648023154716e38 * cos(theta) ** 38 - 4.02073700912811e37 * cos(theta) ** 36 + 1.18256970856709e37 * cos(theta) ** 34 - 2.98435270583058e36 * cos(theta) ** 32 + 6.43582148735639e35 * cos(theta) ** 30 - 1.17976500084283e35 * cos(theta) ** 28 + 1.82617186862649e34 * cos(theta) ** 26 - 2.36739472398727e33 * cos(theta) ** 24 + 2.54439619867791e32 * cos(theta) ** 22 - 2.23906865483656e31 * cos(theta) ** 20 + 1.58858493061593e30 * cos(theta) ** 18 - 8.91285274602997e28 * cos(theta) ** 16 + 3.85837781213419e27 * cos(theta) ** 14 - 1.24817767829439e26 * cos(theta) ** 12 + 2.89051672868174e24 * cos(theta) ** 10 - 4.51173266703705e22 * cos(theta) ** 8 + 4.33820448753563e20 * cos(theta) ** 6 - 2.21563048393035e18 * cos(theta) ** 4 + 4.49417948058895e15 * cos(theta) ** 2 - 1510648564903.85 ) * sin(7 * phi) ) # @torch.jit.script def Yl77_m_minus_6(theta, phi): return ( 2.30597855438786e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.65591105585838e33 * cos(theta) ** 71 - 2.68950259726018e34 * cos(theta) ** 69 + 2.08926261363324e35 * cos(theta) ** 67 - 1.03341378942799e36 * cos(theta) ** 65 + 3.65561340477927e36 * cos(theta) ** 63 - 9.84746617866746e36 * cos(theta) ** 61 + 2.10033369545005e37 * cos(theta) ** 59 - 3.64100400497978e37 * cos(theta) ** 57 + 5.22575754671558e37 * cos(theta) ** 55 - 6.29379558546037e37 * cos(theta) ** 53 + 6.42433356797362e37 * cos(theta) ** 51 - 5.5987869440645e37 * cos(theta) ** 49 + 4.18840550013986e37 * cos(theta) ** 47 - 2.69986067122909e37 * cos(theta) ** 45 + 1.5032969991658e37 * cos(theta) ** 43 - 7.23987834798251e36 * cos(theta) ** 41 + 3.01661597832605e36 * cos(theta) ** 39 - 1.08668567814273e36 * cos(theta) ** 37 + 3.37877059590598e35 * cos(theta) ** 35 - 9.04349304797146e34 * cos(theta) ** 33 + 2.07607144753432e34 * cos(theta) ** 31 - 4.06815517532009e33 * cos(theta) ** 29 + 6.76359951343144e32 * cos(theta) ** 27 - 9.46957889594908e31 * cos(theta) ** 25 + 1.10625921681648e31 * cos(theta) ** 23 - 1.06622316896979e30 * cos(theta) ** 21 + 8.36097331903121e28 * cos(theta) ** 19 - 5.24285455648822e27 * cos(theta) ** 17 + 2.57225187475612e26 * cos(theta) ** 15 - 9.60136675611067e24 * cos(theta) ** 13 + 2.62774248061976e23 * cos(theta) ** 11 - 5.01303629670784e21 * cos(theta) ** 9 + 6.19743498219375e19 * cos(theta) ** 7 - 4.4312609678607e17 * cos(theta) ** 5 + 1.49805982686298e15 * cos(theta) ** 3 - 1510648564903.85 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl77_m_minus_5(theta, phi): return ( 1.78262732138665e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 2.29987646646997e31 * cos(theta) ** 72 - 3.84214656751454e32 * cos(theta) ** 70 + 3.07244502004888e33 * cos(theta) ** 68 - 1.56577846883028e34 * cos(theta) ** 66 + 5.71189594496761e34 * cos(theta) ** 64 - 1.58830099655927e35 * cos(theta) ** 62 + 3.50055615908342e35 * cos(theta) ** 60 - 6.2775931120341e35 * cos(theta) ** 58 + 9.33170990484925e35 * cos(theta) ** 56 - 1.16551770101118e36 * cos(theta) ** 54 + 1.23544876307185e36 * cos(theta) ** 52 - 1.1197573888129e36 * cos(theta) ** 50 + 8.72584479195804e35 * cos(theta) ** 48 - 5.86926232875889e35 * cos(theta) ** 46 + 3.41658408901319e35 * cos(theta) ** 44 - 1.72378055904346e35 * cos(theta) ** 42 + 7.54153994581512e34 * cos(theta) ** 40 - 2.85969915300719e34 * cos(theta) ** 38 + 9.3854738775166e33 * cos(theta) ** 36 - 2.65985089646219e33 * cos(theta) ** 34 + 6.48772327354474e32 * cos(theta) ** 32 - 1.3560517251067e32 * cos(theta) ** 30 + 2.41557125479694e31 * cos(theta) ** 28 - 3.64214572921119e30 * cos(theta) ** 26 + 4.60941340340201e29 * cos(theta) ** 24 - 4.84646894986268e28 * cos(theta) ** 22 + 4.18048665951561e27 * cos(theta) ** 20 - 2.91269697582679e26 * cos(theta) ** 18 + 1.60765742172258e25 * cos(theta) ** 16 - 6.85811911150762e23 * cos(theta) ** 14 + 2.18978540051647e22 * cos(theta) ** 12 - 5.01303629670784e20 * cos(theta) ** 10 + 7.74679372774219e18 * cos(theta) ** 8 - 7.3854349464345e16 * cos(theta) ** 6 + 374514956715746.0 * cos(theta) ** 4 - 755324282451.924 * cos(theta) ** 2 + 252785904.435048 ) * sin(5 * phi) ) # @torch.jit.script def Yl77_m_minus_4(theta, phi): return ( 1.37920529144096e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 3.15051570749311e29 * cos(theta) ** 73 - 5.41147403875288e30 * cos(theta) ** 71 + 4.45281886963606e31 * cos(theta) ** 69 - 2.33698278929893e32 * cos(theta) ** 67 + 8.78753222302709e32 * cos(theta) ** 65 - 2.52111269295122e33 * cos(theta) ** 63 + 5.73861665423512e33 * cos(theta) ** 61 - 1.06399883254815e34 * cos(theta) ** 59 + 1.63714208857004e34 * cos(theta) ** 57 - 2.1191230927476e34 * cos(theta) ** 55 + 2.33103540202236e34 * cos(theta) ** 53 - 2.19560272316255e34 * cos(theta) ** 51 + 1.78078465142001e34 * cos(theta) ** 49 - 1.24877921888487e34 * cos(theta) ** 47 + 7.59240908669598e33 * cos(theta) ** 45 - 4.00879199777548e33 * cos(theta) ** 43 + 1.83939998678418e33 * cos(theta) ** 41 - 7.33256193078767e32 * cos(theta) ** 39 + 2.53661456149097e32 * cos(theta) ** 37 - 7.59957398989198e31 * cos(theta) ** 35 + 1.96597674955901e31 * cos(theta) ** 33 - 4.37436040356999e30 * cos(theta) ** 31 + 8.32955605102394e29 * cos(theta) ** 29 - 1.34894286267081e29 * cos(theta) ** 27 + 1.8437653613608e28 * cos(theta) ** 25 - 2.10716041298377e27 * cos(theta) ** 23 + 1.99070793310267e26 * cos(theta) ** 21 - 1.53299840832989e25 * cos(theta) ** 19 + 9.45680836307399e23 * cos(theta) ** 17 - 4.57207940767175e22 * cos(theta) ** 15 + 1.68445030808959e21 * cos(theta) ** 13 - 4.55730572427985e19 * cos(theta) ** 11 + 8.60754858638021e17 * cos(theta) ** 9 - 1.05506213520493e16 * cos(theta) ** 7 + 74902991343149.1 * cos(theta) ** 5 - 251774760817.308 * cos(theta) ** 3 + 252785904.435048 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl77_m_minus_3(theta, phi): return ( 1.06779352743013e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 4.25745365877448e27 * cos(theta) ** 74 - 7.51593616493456e28 * cos(theta) ** 72 + 6.3611698137658e29 * cos(theta) ** 70 - 3.43673939602783e30 * cos(theta) ** 68 + 1.33144427621623e31 * cos(theta) ** 66 - 3.93923858273628e31 * cos(theta) ** 64 + 9.25583331328245e31 * cos(theta) ** 62 - 1.77333138758025e32 * cos(theta) ** 60 + 2.82265877339663e32 * cos(theta) ** 58 - 3.78414837990643e32 * cos(theta) ** 56 + 4.31673222596733e32 * cos(theta) ** 54 - 4.22231292915875e32 * cos(theta) ** 52 + 3.56156930284001e32 * cos(theta) ** 50 - 2.60162337267681e32 * cos(theta) ** 48 + 1.65052371449913e32 * cos(theta) ** 46 - 9.11089090403518e31 * cos(theta) ** 44 + 4.37952377805756e31 * cos(theta) ** 42 - 1.83314048269692e31 * cos(theta) ** 40 + 6.67530147760782e30 * cos(theta) ** 38 - 2.11099277497e30 * cos(theta) ** 36 + 5.78228455752651e29 * cos(theta) ** 34 - 1.36698762611562e29 * cos(theta) ** 32 + 2.77651868367465e28 * cos(theta) ** 30 - 4.81765308096718e27 * cos(theta) ** 28 + 7.09140523600309e26 * cos(theta) ** 26 - 8.77983505409906e25 * cos(theta) ** 24 + 9.04867242319395e24 * cos(theta) ** 22 - 7.66499204164944e23 * cos(theta) ** 20 + 5.25378242392999e22 * cos(theta) ** 18 - 2.85754962979484e21 * cos(theta) ** 16 + 1.20317879149256e20 * cos(theta) ** 14 - 3.79775477023321e18 * cos(theta) ** 12 + 8.60754858638021e16 * cos(theta) ** 10 - 1.31882766900616e15 * cos(theta) ** 8 + 12483831890524.9 * cos(theta) ** 6 - 62943690204.327 * cos(theta) ** 4 + 126392952.217524 * cos(theta) ** 2 - 42173.1572297378 ) * sin(3 * phi) ) # @torch.jit.script def Yl77_m_minus_2(theta, phi): return ( 0.000827109309784994 * (1.0 - cos(theta) ** 2) * ( 5.67660487836597e25 * cos(theta) ** 75 - 1.02958029656638e27 * cos(theta) ** 73 + 8.9593941038955e27 * cos(theta) ** 71 - 4.98078173337367e28 * cos(theta) ** 69 + 1.98723026300929e29 * cos(theta) ** 67 - 6.06036705036351e29 * cos(theta) ** 65 + 1.46917989099721e30 * cos(theta) ** 63 - 2.90710063537747e30 * cos(theta) ** 61 + 4.78416741253666e30 * cos(theta) ** 59 - 6.63885680685338e30 * cos(theta) ** 57 + 7.84860404721333e30 * cos(theta) ** 55 - 7.96662816822406e30 * cos(theta) ** 53 + 6.98346922125493e30 * cos(theta) ** 51 - 5.30943545444248e30 * cos(theta) ** 49 + 3.51175258404069e30 * cos(theta) ** 47 - 2.02464242311893e30 * cos(theta) ** 45 + 1.01849390187385e30 * cos(theta) ** 43 - 4.47107434804126e29 * cos(theta) ** 41 + 1.71161576348919e29 * cos(theta) ** 39 - 5.70538587829729e28 * cos(theta) ** 37 + 1.65208130215043e28 * cos(theta) ** 35 - 4.14238674580492e27 * cos(theta) ** 33 + 8.95651188282144e26 * cos(theta) ** 31 - 1.66125968309213e26 * cos(theta) ** 29 + 2.62644638370485e25 * cos(theta) ** 27 - 3.51193402163962e24 * cos(theta) ** 25 + 3.93420540138868e23 * cos(theta) ** 23 - 3.64999621030926e22 * cos(theta) ** 21 + 2.76514864417368e21 * cos(theta) ** 19 - 1.68091154693814e20 * cos(theta) ** 17 + 8.02119194328377e18 * cos(theta) ** 15 - 2.92134982325631e17 * cos(theta) ** 13 + 7.82504416943656e15 * cos(theta) ** 11 - 146536407667351.0 * cos(theta) ** 9 + 1783404555789.26 * cos(theta) ** 7 - 12588738040.8654 * cos(theta) ** 5 + 42130984.072508 * cos(theta) ** 3 - 42173.1572297378 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl77_m_minus_1(theta, phi): return ( 0.0640889639582307 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 7.46921694521839e23 * cos(theta) ** 76 - 1.3913247250897e25 * cos(theta) ** 74 + 1.24436029220771e26 * cos(theta) ** 72 - 7.1154024762481e26 * cos(theta) ** 70 + 2.9223974456019e27 * cos(theta) ** 68 - 9.18237431873259e27 * cos(theta) ** 66 + 2.29559357968315e28 * cos(theta) ** 64 - 4.6888719925443e28 * cos(theta) ** 62 + 7.97361235422776e28 * cos(theta) ** 60 - 1.14463048394024e29 * cos(theta) ** 58 + 1.40153643700238e29 * cos(theta) ** 56 - 1.47530151263408e29 * cos(theta) ** 54 + 1.34297485024133e29 * cos(theta) ** 52 - 1.0618870908885e29 * cos(theta) ** 50 + 7.31615121675145e28 * cos(theta) ** 48 - 4.40139657199767e28 * cos(theta) ** 46 + 2.31475886789512e28 * cos(theta) ** 44 - 1.0645415114384e28 * cos(theta) ** 42 + 4.27903940872296e27 * cos(theta) ** 40 - 1.50141733639402e27 * cos(theta) ** 38 + 4.58911472819564e26 * cos(theta) ** 36 - 1.2183490428838e26 * cos(theta) ** 34 + 2.7989099633817e25 * cos(theta) ** 32 - 5.53753227697377e24 * cos(theta) ** 30 + 9.38016565608874e23 * cos(theta) ** 28 - 1.35074385447678e23 * cos(theta) ** 26 + 1.63925225057861e22 * cos(theta) ** 24 - 1.65908918650421e21 * cos(theta) ** 22 + 1.38257432208684e20 * cos(theta) ** 20 - 9.33839748298968e18 * cos(theta) ** 18 + 5.01324496455235e17 * cos(theta) ** 16 - 2.08667844518308e16 * cos(theta) ** 14 + 652087014119713.0 * cos(theta) ** 12 - 14653640766735.1 * cos(theta) ** 10 + 222925569473.658 * cos(theta) ** 8 - 2098123006.8109 * cos(theta) ** 6 + 10532746.018127 * cos(theta) ** 4 - 21086.5786148689 * cos(theta) ** 2 + 7.0241767537871 ) * sin(phi) ) # @torch.jit.script def Yl77_m0(theta, phi): return ( 1.07027440194302e23 * cos(theta) ** 77 - 2.04681235299692e24 * cos(theta) ** 75 + 1.88076300647896e25 * cos(theta) ** 73 - 1.10573717696347e26 * cos(theta) ** 71 + 4.67305592645275e26 * cos(theta) ** 69 - 1.5121364418563e27 * cos(theta) ** 67 + 3.89665929247584e27 * cos(theta) ** 65 - 8.21180479062792e27 * cos(theta) ** 63 + 1.44223513993672e28 * cos(theta) ** 61 - 2.1405436383489e28 * cos(theta) ** 59 + 2.7129408631222e28 * cos(theta) ** 57 - 2.95957185067877e28 * cos(theta) ** 55 + 2.7957787520725e28 * cos(theta) ** 53 - 2.29730657147042e28 * cos(theta) ** 51 + 1.64739363252238e28 * cos(theta) ** 49 - 1.03324528631804e28 * cos(theta) ** 47 + 5.67549875259043e27 * cos(theta) ** 45 - 2.73152346381358e27 * cos(theta) ** 43 + 1.15152459749004e27 * cos(theta) ** 41 - 4.24763909105637e26 * cos(theta) ** 39 + 1.36847850716207e26 * cos(theta) ** 37 - 3.8407361389378e25 * cos(theta) ** 35 + 9.35805897898441e24 * cos(theta) ** 33 - 1.97090352648734e24 * cos(theta) ** 31 + 3.56880895567218e23 * cos(theta) ** 29 - 5.51975785143963e22 * cos(theta) ** 27 + 7.23463407712962e21 * cos(theta) ** 25 - 7.95889337417999e20 * cos(theta) ** 23 + 7.26406934945e19 * cos(theta) ** 21 - 5.4228743810327e18 * cos(theta) ** 19 + 3.25372462861962e17 * cos(theta) ** 17 - 1.53488223896035e16 * cos(theta) ** 15 + 553443115009741.0 * cos(theta) ** 13 - 14698182829676.5 * cos(theta) ** 11 + 273292784189.387 * cos(theta) ** 9 - 3307072346.49342 * cos(theta) ** 7 + 23242476.330777 * cos(theta) ** 5 - 77552.4735761663 * cos(theta) ** 3 + 77.5008063719184 * cos(theta) ) # @torch.jit.script def Yl77_m1(theta, phi): return ( 0.0640889639582307 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 7.46921694521839e23 * cos(theta) ** 76 - 1.3913247250897e25 * cos(theta) ** 74 + 1.24436029220771e26 * cos(theta) ** 72 - 7.1154024762481e26 * cos(theta) ** 70 + 2.9223974456019e27 * cos(theta) ** 68 - 9.18237431873259e27 * cos(theta) ** 66 + 2.29559357968315e28 * cos(theta) ** 64 - 4.6888719925443e28 * cos(theta) ** 62 + 7.97361235422776e28 * cos(theta) ** 60 - 1.14463048394024e29 * cos(theta) ** 58 + 1.40153643700238e29 * cos(theta) ** 56 - 1.47530151263408e29 * cos(theta) ** 54 + 1.34297485024133e29 * cos(theta) ** 52 - 1.0618870908885e29 * cos(theta) ** 50 + 7.31615121675145e28 * cos(theta) ** 48 - 4.40139657199767e28 * cos(theta) ** 46 + 2.31475886789512e28 * cos(theta) ** 44 - 1.0645415114384e28 * cos(theta) ** 42 + 4.27903940872296e27 * cos(theta) ** 40 - 1.50141733639402e27 * cos(theta) ** 38 + 4.58911472819564e26 * cos(theta) ** 36 - 1.2183490428838e26 * cos(theta) ** 34 + 2.7989099633817e25 * cos(theta) ** 32 - 5.53753227697377e24 * cos(theta) ** 30 + 9.38016565608874e23 * cos(theta) ** 28 - 1.35074385447678e23 * cos(theta) ** 26 + 1.63925225057861e22 * cos(theta) ** 24 - 1.65908918650421e21 * cos(theta) ** 22 + 1.38257432208684e20 * cos(theta) ** 20 - 9.33839748298968e18 * cos(theta) ** 18 + 5.01324496455235e17 * cos(theta) ** 16 - 2.08667844518308e16 * cos(theta) ** 14 + 652087014119713.0 * cos(theta) ** 12 - 14653640766735.1 * cos(theta) ** 10 + 222925569473.658 * cos(theta) ** 8 - 2098123006.8109 * cos(theta) ** 6 + 10532746.018127 * cos(theta) ** 4 - 21086.5786148689 * cos(theta) ** 2 + 7.0241767537871 ) * cos(phi) ) # @torch.jit.script def Yl77_m2(theta, phi): return ( 0.000827109309784994 * (1.0 - cos(theta) ** 2) * ( 5.67660487836597e25 * cos(theta) ** 75 - 1.02958029656638e27 * cos(theta) ** 73 + 8.9593941038955e27 * cos(theta) ** 71 - 4.98078173337367e28 * cos(theta) ** 69 + 1.98723026300929e29 * cos(theta) ** 67 - 6.06036705036351e29 * cos(theta) ** 65 + 1.46917989099721e30 * cos(theta) ** 63 - 2.90710063537747e30 * cos(theta) ** 61 + 4.78416741253666e30 * cos(theta) ** 59 - 6.63885680685338e30 * cos(theta) ** 57 + 7.84860404721333e30 * cos(theta) ** 55 - 7.96662816822406e30 * cos(theta) ** 53 + 6.98346922125493e30 * cos(theta) ** 51 - 5.30943545444248e30 * cos(theta) ** 49 + 3.51175258404069e30 * cos(theta) ** 47 - 2.02464242311893e30 * cos(theta) ** 45 + 1.01849390187385e30 * cos(theta) ** 43 - 4.47107434804126e29 * cos(theta) ** 41 + 1.71161576348919e29 * cos(theta) ** 39 - 5.70538587829729e28 * cos(theta) ** 37 + 1.65208130215043e28 * cos(theta) ** 35 - 4.14238674580492e27 * cos(theta) ** 33 + 8.95651188282144e26 * cos(theta) ** 31 - 1.66125968309213e26 * cos(theta) ** 29 + 2.62644638370485e25 * cos(theta) ** 27 - 3.51193402163962e24 * cos(theta) ** 25 + 3.93420540138868e23 * cos(theta) ** 23 - 3.64999621030926e22 * cos(theta) ** 21 + 2.76514864417368e21 * cos(theta) ** 19 - 1.68091154693814e20 * cos(theta) ** 17 + 8.02119194328377e18 * cos(theta) ** 15 - 2.92134982325631e17 * cos(theta) ** 13 + 7.82504416943656e15 * cos(theta) ** 11 - 146536407667351.0 * cos(theta) ** 9 + 1783404555789.26 * cos(theta) ** 7 - 12588738040.8654 * cos(theta) ** 5 + 42130984.072508 * cos(theta) ** 3 - 42173.1572297378 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl77_m3(theta, phi): return ( 1.06779352743013e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 4.25745365877448e27 * cos(theta) ** 74 - 7.51593616493456e28 * cos(theta) ** 72 + 6.3611698137658e29 * cos(theta) ** 70 - 3.43673939602783e30 * cos(theta) ** 68 + 1.33144427621623e31 * cos(theta) ** 66 - 3.93923858273628e31 * cos(theta) ** 64 + 9.25583331328245e31 * cos(theta) ** 62 - 1.77333138758025e32 * cos(theta) ** 60 + 2.82265877339663e32 * cos(theta) ** 58 - 3.78414837990643e32 * cos(theta) ** 56 + 4.31673222596733e32 * cos(theta) ** 54 - 4.22231292915875e32 * cos(theta) ** 52 + 3.56156930284001e32 * cos(theta) ** 50 - 2.60162337267681e32 * cos(theta) ** 48 + 1.65052371449913e32 * cos(theta) ** 46 - 9.11089090403518e31 * cos(theta) ** 44 + 4.37952377805756e31 * cos(theta) ** 42 - 1.83314048269692e31 * cos(theta) ** 40 + 6.67530147760782e30 * cos(theta) ** 38 - 2.11099277497e30 * cos(theta) ** 36 + 5.78228455752651e29 * cos(theta) ** 34 - 1.36698762611562e29 * cos(theta) ** 32 + 2.77651868367465e28 * cos(theta) ** 30 - 4.81765308096718e27 * cos(theta) ** 28 + 7.09140523600309e26 * cos(theta) ** 26 - 8.77983505409906e25 * cos(theta) ** 24 + 9.04867242319395e24 * cos(theta) ** 22 - 7.66499204164944e23 * cos(theta) ** 20 + 5.25378242392999e22 * cos(theta) ** 18 - 2.85754962979484e21 * cos(theta) ** 16 + 1.20317879149256e20 * cos(theta) ** 14 - 3.79775477023321e18 * cos(theta) ** 12 + 8.60754858638021e16 * cos(theta) ** 10 - 1.31882766900616e15 * cos(theta) ** 8 + 12483831890524.9 * cos(theta) ** 6 - 62943690204.327 * cos(theta) ** 4 + 126392952.217524 * cos(theta) ** 2 - 42173.1572297378 ) * cos(3 * phi) ) # @torch.jit.script def Yl77_m4(theta, phi): return ( 1.37920529144096e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 3.15051570749311e29 * cos(theta) ** 73 - 5.41147403875288e30 * cos(theta) ** 71 + 4.45281886963606e31 * cos(theta) ** 69 - 2.33698278929893e32 * cos(theta) ** 67 + 8.78753222302709e32 * cos(theta) ** 65 - 2.52111269295122e33 * cos(theta) ** 63 + 5.73861665423512e33 * cos(theta) ** 61 - 1.06399883254815e34 * cos(theta) ** 59 + 1.63714208857004e34 * cos(theta) ** 57 - 2.1191230927476e34 * cos(theta) ** 55 + 2.33103540202236e34 * cos(theta) ** 53 - 2.19560272316255e34 * cos(theta) ** 51 + 1.78078465142001e34 * cos(theta) ** 49 - 1.24877921888487e34 * cos(theta) ** 47 + 7.59240908669598e33 * cos(theta) ** 45 - 4.00879199777548e33 * cos(theta) ** 43 + 1.83939998678418e33 * cos(theta) ** 41 - 7.33256193078767e32 * cos(theta) ** 39 + 2.53661456149097e32 * cos(theta) ** 37 - 7.59957398989198e31 * cos(theta) ** 35 + 1.96597674955901e31 * cos(theta) ** 33 - 4.37436040356999e30 * cos(theta) ** 31 + 8.32955605102394e29 * cos(theta) ** 29 - 1.34894286267081e29 * cos(theta) ** 27 + 1.8437653613608e28 * cos(theta) ** 25 - 2.10716041298377e27 * cos(theta) ** 23 + 1.99070793310267e26 * cos(theta) ** 21 - 1.53299840832989e25 * cos(theta) ** 19 + 9.45680836307399e23 * cos(theta) ** 17 - 4.57207940767175e22 * cos(theta) ** 15 + 1.68445030808959e21 * cos(theta) ** 13 - 4.55730572427985e19 * cos(theta) ** 11 + 8.60754858638021e17 * cos(theta) ** 9 - 1.05506213520493e16 * cos(theta) ** 7 + 74902991343149.1 * cos(theta) ** 5 - 251774760817.308 * cos(theta) ** 3 + 252785904.435048 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl77_m5(theta, phi): return ( 1.78262732138665e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 2.29987646646997e31 * cos(theta) ** 72 - 3.84214656751454e32 * cos(theta) ** 70 + 3.07244502004888e33 * cos(theta) ** 68 - 1.56577846883028e34 * cos(theta) ** 66 + 5.71189594496761e34 * cos(theta) ** 64 - 1.58830099655927e35 * cos(theta) ** 62 + 3.50055615908342e35 * cos(theta) ** 60 - 6.2775931120341e35 * cos(theta) ** 58 + 9.33170990484925e35 * cos(theta) ** 56 - 1.16551770101118e36 * cos(theta) ** 54 + 1.23544876307185e36 * cos(theta) ** 52 - 1.1197573888129e36 * cos(theta) ** 50 + 8.72584479195804e35 * cos(theta) ** 48 - 5.86926232875889e35 * cos(theta) ** 46 + 3.41658408901319e35 * cos(theta) ** 44 - 1.72378055904346e35 * cos(theta) ** 42 + 7.54153994581512e34 * cos(theta) ** 40 - 2.85969915300719e34 * cos(theta) ** 38 + 9.3854738775166e33 * cos(theta) ** 36 - 2.65985089646219e33 * cos(theta) ** 34 + 6.48772327354474e32 * cos(theta) ** 32 - 1.3560517251067e32 * cos(theta) ** 30 + 2.41557125479694e31 * cos(theta) ** 28 - 3.64214572921119e30 * cos(theta) ** 26 + 4.60941340340201e29 * cos(theta) ** 24 - 4.84646894986268e28 * cos(theta) ** 22 + 4.18048665951561e27 * cos(theta) ** 20 - 2.91269697582679e26 * cos(theta) ** 18 + 1.60765742172258e25 * cos(theta) ** 16 - 6.85811911150762e23 * cos(theta) ** 14 + 2.18978540051647e22 * cos(theta) ** 12 - 5.01303629670784e20 * cos(theta) ** 10 + 7.74679372774219e18 * cos(theta) ** 8 - 7.3854349464345e16 * cos(theta) ** 6 + 374514956715746.0 * cos(theta) ** 4 - 755324282451.924 * cos(theta) ** 2 + 252785904.435048 ) * cos(5 * phi) ) # @torch.jit.script def Yl77_m6(theta, phi): return ( 2.30597855438786e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.65591105585838e33 * cos(theta) ** 71 - 2.68950259726018e34 * cos(theta) ** 69 + 2.08926261363324e35 * cos(theta) ** 67 - 1.03341378942799e36 * cos(theta) ** 65 + 3.65561340477927e36 * cos(theta) ** 63 - 9.84746617866746e36 * cos(theta) ** 61 + 2.10033369545005e37 * cos(theta) ** 59 - 3.64100400497978e37 * cos(theta) ** 57 + 5.22575754671558e37 * cos(theta) ** 55 - 6.29379558546037e37 * cos(theta) ** 53 + 6.42433356797362e37 * cos(theta) ** 51 - 5.5987869440645e37 * cos(theta) ** 49 + 4.18840550013986e37 * cos(theta) ** 47 - 2.69986067122909e37 * cos(theta) ** 45 + 1.5032969991658e37 * cos(theta) ** 43 - 7.23987834798251e36 * cos(theta) ** 41 + 3.01661597832605e36 * cos(theta) ** 39 - 1.08668567814273e36 * cos(theta) ** 37 + 3.37877059590598e35 * cos(theta) ** 35 - 9.04349304797146e34 * cos(theta) ** 33 + 2.07607144753432e34 * cos(theta) ** 31 - 4.06815517532009e33 * cos(theta) ** 29 + 6.76359951343144e32 * cos(theta) ** 27 - 9.46957889594908e31 * cos(theta) ** 25 + 1.10625921681648e31 * cos(theta) ** 23 - 1.06622316896979e30 * cos(theta) ** 21 + 8.36097331903121e28 * cos(theta) ** 19 - 5.24285455648822e27 * cos(theta) ** 17 + 2.57225187475612e26 * cos(theta) ** 15 - 9.60136675611067e24 * cos(theta) ** 13 + 2.62774248061976e23 * cos(theta) ** 11 - 5.01303629670784e21 * cos(theta) ** 9 + 6.19743498219375e19 * cos(theta) ** 7 - 4.4312609678607e17 * cos(theta) ** 5 + 1.49805982686298e15 * cos(theta) ** 3 - 1510648564903.85 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl77_m7(theta, phi): return ( 2.9859769207394e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.17569684965945e35 * cos(theta) ** 70 - 1.85575679210953e36 * cos(theta) ** 68 + 1.39980595113427e37 * cos(theta) ** 66 - 6.7171896312819e37 * cos(theta) ** 64 + 2.30303644501094e38 * cos(theta) ** 62 - 6.00695436898715e38 * cos(theta) ** 60 + 1.23919688031553e39 * cos(theta) ** 58 - 2.07537228283847e39 * cos(theta) ** 56 + 2.87416665069357e39 * cos(theta) ** 54 - 3.335711660294e39 * cos(theta) ** 52 + 3.27641011966655e39 * cos(theta) ** 50 - 2.74340560259161e39 * cos(theta) ** 48 + 1.96855058506573e39 * cos(theta) ** 46 - 1.21493730205309e39 * cos(theta) ** 44 + 6.46417709641296e38 * cos(theta) ** 42 - 2.96835012267283e38 * cos(theta) ** 40 + 1.17648023154716e38 * cos(theta) ** 38 - 4.02073700912811e37 * cos(theta) ** 36 + 1.18256970856709e37 * cos(theta) ** 34 - 2.98435270583058e36 * cos(theta) ** 32 + 6.43582148735639e35 * cos(theta) ** 30 - 1.17976500084283e35 * cos(theta) ** 28 + 1.82617186862649e34 * cos(theta) ** 26 - 2.36739472398727e33 * cos(theta) ** 24 + 2.54439619867791e32 * cos(theta) ** 22 - 2.23906865483656e31 * cos(theta) ** 20 + 1.58858493061593e30 * cos(theta) ** 18 - 8.91285274602997e28 * cos(theta) ** 16 + 3.85837781213419e27 * cos(theta) ** 14 - 1.24817767829439e26 * cos(theta) ** 12 + 2.89051672868174e24 * cos(theta) ** 10 - 4.51173266703705e22 * cos(theta) ** 8 + 4.33820448753563e20 * cos(theta) ** 6 - 2.21563048393035e18 * cos(theta) ** 4 + 4.49417948058895e15 * cos(theta) ** 2 - 1510648564903.85 ) * cos(7 * phi) ) # @torch.jit.script def Yl77_m8(theta, phi): return ( 3.87104271692821e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 8.22987794761615e36 * cos(theta) ** 69 - 1.26191461863448e38 * cos(theta) ** 67 + 9.23871927748619e38 * cos(theta) ** 65 - 4.29900136402042e39 * cos(theta) ** 63 + 1.42788259590678e40 * cos(theta) ** 61 - 3.60417262139229e40 * cos(theta) ** 59 + 7.18734190583008e40 * cos(theta) ** 57 - 1.16220847838955e41 * cos(theta) ** 55 + 1.55204999137453e41 * cos(theta) ** 53 - 1.73457006335288e41 * cos(theta) ** 51 + 1.63820505983327e41 * cos(theta) ** 49 - 1.31683468924397e41 * cos(theta) ** 47 + 9.05533269130237e40 * cos(theta) ** 45 - 5.3457241290336e40 * cos(theta) ** 43 + 2.71495438049344e40 * cos(theta) ** 41 - 1.18734004906913e40 * cos(theta) ** 39 + 4.4706248798792e39 * cos(theta) ** 37 - 1.44746532328612e39 * cos(theta) ** 35 + 4.02073700912811e38 * cos(theta) ** 33 - 9.54992865865786e37 * cos(theta) ** 31 + 1.93074644620692e37 * cos(theta) ** 29 - 3.30334200235991e36 * cos(theta) ** 27 + 4.74804685842887e35 * cos(theta) ** 25 - 5.68174733756945e34 * cos(theta) ** 23 + 5.5976716370914e33 * cos(theta) ** 21 - 4.47813730967312e32 * cos(theta) ** 19 + 2.85945287510867e31 * cos(theta) ** 17 - 1.4260564393648e30 * cos(theta) ** 15 + 5.40172893698786e28 * cos(theta) ** 13 - 1.49781321395326e27 * cos(theta) ** 11 + 2.89051672868174e25 * cos(theta) ** 9 - 3.60938613362964e23 * cos(theta) ** 7 + 2.60292269252138e21 * cos(theta) ** 5 - 8.8625219357214e18 * cos(theta) ** 3 + 8.98835896117789e15 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl77_m9(theta, phi): return ( 5.02520973916716e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 5.67861578385515e38 * cos(theta) ** 68 - 8.454827944851e39 * cos(theta) ** 66 + 6.00516753036602e40 * cos(theta) ** 64 - 2.70837085933286e41 * cos(theta) ** 62 + 8.71008383503137e41 * cos(theta) ** 60 - 2.12646184662145e42 * cos(theta) ** 58 + 4.09678488632315e42 * cos(theta) ** 56 - 6.3921466311425e42 * cos(theta) ** 54 + 8.22586495428499e42 * cos(theta) ** 52 - 8.84630732309968e42 * cos(theta) ** 50 + 8.02720479318304e42 * cos(theta) ** 48 - 6.18912303944667e42 * cos(theta) ** 46 + 4.07489971108607e42 * cos(theta) ** 44 - 2.29866137548445e42 * cos(theta) ** 42 + 1.11313129600231e42 * cos(theta) ** 40 - 4.63062619136962e41 * cos(theta) ** 38 + 1.6541312055553e41 * cos(theta) ** 36 - 5.06612863150142e40 * cos(theta) ** 34 + 1.32684321301228e40 * cos(theta) ** 32 - 2.96047788418394e39 * cos(theta) ** 30 + 5.59916469400005e38 * cos(theta) ** 28 - 8.91902340637177e37 * cos(theta) ** 26 + 1.18701171460722e37 * cos(theta) ** 24 - 1.30680188764097e36 * cos(theta) ** 22 + 1.17551104378919e35 * cos(theta) ** 20 - 8.50846088837892e33 * cos(theta) ** 18 + 4.86106988768475e32 * cos(theta) ** 16 - 2.13908465904719e31 * cos(theta) ** 14 + 7.02224761808422e29 * cos(theta) ** 12 - 1.64759453534859e28 * cos(theta) ** 10 + 2.60146505581356e26 * cos(theta) ** 8 - 2.52657029354075e24 * cos(theta) ** 6 + 1.30146134626069e22 * cos(theta) ** 4 - 2.65875658071642e19 * cos(theta) ** 2 + 8.98835896117789e15 ) * cos(9 * phi) ) # @torch.jit.script def Yl77_m10(theta, phi): return ( 6.53341296676457e-19 * (1.0 - cos(theta) ** 2) ** 5 * ( 3.8614587330215e40 * cos(theta) ** 67 - 5.58018644360166e41 * cos(theta) ** 65 + 3.84330721943425e42 * cos(theta) ** 63 - 1.67918993278638e43 * cos(theta) ** 61 + 5.22605030101882e43 * cos(theta) ** 59 - 1.23334787104044e44 * cos(theta) ** 57 + 2.29419953634096e44 * cos(theta) ** 55 - 3.45175918081695e44 * cos(theta) ** 53 + 4.2774497762282e44 * cos(theta) ** 51 - 4.42315366154984e44 * cos(theta) ** 49 + 3.85305830072786e44 * cos(theta) ** 47 - 2.84699659814547e44 * cos(theta) ** 45 + 1.79295587287787e44 * cos(theta) ** 43 - 9.65437777703468e43 * cos(theta) ** 41 + 4.45252518400925e43 * cos(theta) ** 39 - 1.75963795272045e43 * cos(theta) ** 37 + 5.9548723399991e42 * cos(theta) ** 35 - 1.72248373471048e42 * cos(theta) ** 33 + 4.24589828163929e41 * cos(theta) ** 31 - 8.88143365255181e40 * cos(theta) ** 29 + 1.56776611432002e40 * cos(theta) ** 27 - 2.31894608565666e39 * cos(theta) ** 25 + 2.84882811505732e38 * cos(theta) ** 23 - 2.87496415281014e37 * cos(theta) ** 21 + 2.35102208757839e36 * cos(theta) ** 19 - 1.53152295990821e35 * cos(theta) ** 17 + 7.77771182029559e33 * cos(theta) ** 15 - 2.99471852266607e32 * cos(theta) ** 13 + 8.42669714170106e30 * cos(theta) ** 11 - 1.64759453534859e29 * cos(theta) ** 9 + 2.08117204465085e27 * cos(theta) ** 7 - 1.51594217612445e25 * cos(theta) ** 5 + 5.20584538504275e22 * cos(theta) ** 3 - 5.31751316143284e19 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl77_m11(theta, phi): return ( 8.50866397321199e-21 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 2.5871773511244e42 * cos(theta) ** 66 - 3.62712118834108e43 * cos(theta) ** 64 + 2.42128354824358e44 * cos(theta) ** 62 - 1.02430585899969e45 * cos(theta) ** 60 + 3.0833696776011e45 * cos(theta) ** 58 - 7.03008286493052e45 * cos(theta) ** 56 + 1.26180974498753e46 * cos(theta) ** 54 - 1.82943236583298e46 * cos(theta) ** 52 + 2.18149938587638e46 * cos(theta) ** 50 - 2.16734529415942e46 * cos(theta) ** 48 + 1.81093740134209e46 * cos(theta) ** 46 - 1.28114846916546e46 * cos(theta) ** 44 + 7.70971025337484e45 * cos(theta) ** 42 - 3.95829488858422e45 * cos(theta) ** 40 + 1.73648482176361e45 * cos(theta) ** 38 - 6.51066042506568e44 * cos(theta) ** 36 + 2.08420531899968e44 * cos(theta) ** 34 - 5.68419632454459e43 * cos(theta) ** 32 + 1.31622846730818e43 * cos(theta) ** 30 - 2.57561575924003e42 * cos(theta) ** 28 + 4.23296850866404e41 * cos(theta) ** 26 - 5.79736521414165e40 * cos(theta) ** 24 + 6.55230466463184e39 * cos(theta) ** 22 - 6.0374247209013e38 * cos(theta) ** 20 + 4.46694196639893e37 * cos(theta) ** 18 - 2.60358903184395e36 * cos(theta) ** 16 + 1.16665677304434e35 * cos(theta) ** 14 - 3.89313407946589e33 * cos(theta) ** 12 + 9.26936685587117e31 * cos(theta) ** 10 - 1.48283508181373e30 * cos(theta) ** 8 + 1.4568204312556e28 * cos(theta) ** 6 - 7.57971088062225e25 * cos(theta) ** 4 + 1.56175361551283e23 * cos(theta) ** 2 - 5.31751316143284e19 ) * cos(11 * phi) ) # @torch.jit.script def Yl77_m12(theta, phi): return ( 1.11018256242418e-22 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.70753705174211e44 * cos(theta) ** 65 - 2.32135756053829e45 * cos(theta) ** 63 + 1.50119579991102e46 * cos(theta) ** 61 - 6.14583515399813e46 * cos(theta) ** 59 + 1.78835441300864e47 * cos(theta) ** 57 - 3.93684640436109e47 * cos(theta) ** 55 + 6.81377262293266e47 * cos(theta) ** 53 - 9.51304830233151e47 * cos(theta) ** 51 + 1.09074969293819e48 * cos(theta) ** 49 - 1.04032574119652e48 * cos(theta) ** 47 + 8.33031204617363e47 * cos(theta) ** 45 - 5.63705326432802e47 * cos(theta) ** 43 + 3.23807830641743e47 * cos(theta) ** 41 - 1.58331795543369e47 * cos(theta) ** 39 + 6.5986423227017e46 * cos(theta) ** 37 - 2.34383775302364e46 * cos(theta) ** 35 + 7.08629808459893e45 * cos(theta) ** 33 - 1.81894282385427e45 * cos(theta) ** 31 + 3.94868540192454e44 * cos(theta) ** 29 - 7.21172412587207e43 * cos(theta) ** 27 + 1.10057181225265e43 * cos(theta) ** 25 - 1.391367651394e42 * cos(theta) ** 23 + 1.441507026219e41 * cos(theta) ** 21 - 1.20748494418026e40 * cos(theta) ** 19 + 8.04049553951808e38 * cos(theta) ** 17 - 4.16574245095032e37 * cos(theta) ** 15 + 1.63331948226207e36 * cos(theta) ** 13 - 4.67176089535907e34 * cos(theta) ** 11 + 9.26936685587117e32 * cos(theta) ** 9 - 1.18626806545099e31 * cos(theta) ** 7 + 8.74092258753358e28 * cos(theta) ** 5 - 3.0318843522489e26 * cos(theta) ** 3 + 3.12350723102565e23 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl77_m13(theta, phi): return ( 1.45149808960291e-24 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.10989908363237e46 * cos(theta) ** 64 - 1.46245526313912e47 * cos(theta) ** 62 + 9.15729437945722e47 * cos(theta) ** 60 - 3.6260427408589e48 * cos(theta) ** 58 + 1.01936201541493e49 * cos(theta) ** 56 - 2.1652655223986e49 * cos(theta) ** 54 + 3.61129949015431e49 * cos(theta) ** 52 - 4.85165463418907e49 * cos(theta) ** 50 + 5.34467349539713e49 * cos(theta) ** 48 - 4.88953098362365e49 * cos(theta) ** 46 + 3.74864042077813e49 * cos(theta) ** 44 - 2.42393290366105e49 * cos(theta) ** 42 + 1.32761210563115e49 * cos(theta) ** 40 - 6.17494002619138e48 * cos(theta) ** 38 + 2.44149765939963e48 * cos(theta) ** 36 - 8.20343213558276e47 * cos(theta) ** 34 + 2.33847836791765e47 * cos(theta) ** 32 - 5.63872275394824e46 * cos(theta) ** 30 + 1.14511876655812e46 * cos(theta) ** 28 - 1.94716551398546e45 * cos(theta) ** 26 + 2.75142953063163e44 * cos(theta) ** 24 - 3.20014559820619e43 * cos(theta) ** 22 + 3.02716475505991e42 * cos(theta) ** 20 - 2.29422139394249e41 * cos(theta) ** 18 + 1.36688424171807e40 * cos(theta) ** 16 - 6.24861367642548e38 * cos(theta) ** 14 + 2.1233153269407e37 * cos(theta) ** 12 - 5.13893698489498e35 * cos(theta) ** 10 + 8.34243017028405e33 * cos(theta) ** 8 - 8.3038764581569e31 * cos(theta) ** 6 + 4.37046129376679e29 * cos(theta) ** 4 - 9.0956530567467e26 * cos(theta) ** 2 + 3.12350723102565e23 ) * cos(13 * phi) ) # @torch.jit.script def Yl77_m14(theta, phi): return ( 1.90197929732695e-26 * (1.0 - cos(theta) ** 2) ** 7 * ( 7.10335413524717e47 * cos(theta) ** 63 - 9.06722263146256e48 * cos(theta) ** 61 + 5.49437662767433e49 * cos(theta) ** 59 - 2.10310478969816e50 * cos(theta) ** 57 + 5.70842728632358e50 * cos(theta) ** 55 - 1.16924338209524e51 * cos(theta) ** 53 + 1.87787573488024e51 * cos(theta) ** 51 - 2.42582731709454e51 * cos(theta) ** 49 + 2.56544327779062e51 * cos(theta) ** 47 - 2.24918425246688e51 * cos(theta) ** 45 + 1.64940178514238e51 * cos(theta) ** 43 - 1.01805181953764e51 * cos(theta) ** 41 + 5.31044842252459e50 * cos(theta) ** 39 - 2.34647720995273e50 * cos(theta) ** 37 + 8.78939157383867e49 * cos(theta) ** 35 - 2.78916692609814e49 * cos(theta) ** 33 + 7.48313077733647e48 * cos(theta) ** 31 - 1.69161682618447e48 * cos(theta) ** 29 + 3.20633254636272e47 * cos(theta) ** 27 - 5.06263033636219e46 * cos(theta) ** 25 + 6.60343087351591e45 * cos(theta) ** 23 - 7.04032031605362e44 * cos(theta) ** 21 + 6.05432951011982e43 * cos(theta) ** 19 - 4.12959850909649e42 * cos(theta) ** 17 + 2.18701478674892e41 * cos(theta) ** 15 - 8.74805914699567e39 * cos(theta) ** 13 + 2.54797839232884e38 * cos(theta) ** 11 - 5.13893698489498e36 * cos(theta) ** 9 + 6.67394413622724e34 * cos(theta) ** 7 - 4.98232587489414e32 * cos(theta) ** 5 + 1.74818451750672e30 * cos(theta) ** 3 - 1.81913061134934e27 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl77_m15(theta, phi): return ( 2.49828279445783e-28 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 4.47511310520571e49 * cos(theta) ** 62 - 5.53100580519216e50 * cos(theta) ** 60 + 3.24168221032786e51 * cos(theta) ** 58 - 1.19876973012795e52 * cos(theta) ** 56 + 3.13963500747797e52 * cos(theta) ** 54 - 6.19698992510479e52 * cos(theta) ** 52 + 9.57716624788922e52 * cos(theta) ** 50 - 1.18865538537632e53 * cos(theta) ** 48 + 1.20575834056159e53 * cos(theta) ** 46 - 1.0121329136101e53 * cos(theta) ** 44 + 7.09242767611223e52 * cos(theta) ** 42 - 4.17401246010433e52 * cos(theta) ** 40 + 2.07107488478459e52 * cos(theta) ** 38 - 8.68196567682508e51 * cos(theta) ** 36 + 3.07628705084353e51 * cos(theta) ** 34 - 9.20425085612385e50 * cos(theta) ** 32 + 2.3197705409743e50 * cos(theta) ** 30 - 4.90568879593497e49 * cos(theta) ** 28 + 8.65709787517935e48 * cos(theta) ** 26 - 1.26565758409055e48 * cos(theta) ** 24 + 1.51878910090866e47 * cos(theta) ** 22 - 1.47846726637126e46 * cos(theta) ** 20 + 1.15032260692277e45 * cos(theta) ** 18 - 7.02031746546403e43 * cos(theta) ** 16 + 3.28052218012338e42 * cos(theta) ** 14 - 1.13724768910944e41 * cos(theta) ** 12 + 2.80277623156172e39 * cos(theta) ** 10 - 4.62504328640548e37 * cos(theta) ** 8 + 4.67176089535907e35 * cos(theta) ** 6 - 2.49116293744707e33 * cos(theta) ** 4 + 5.24455355252015e30 * cos(theta) ** 2 - 1.81913061134934e27 ) * cos(15 * phi) ) # @torch.jit.script def Yl77_m16(theta, phi): return ( 3.29006348365385e-30 * (1.0 - cos(theta) ** 2) ** 8 * ( 2.77457012522754e51 * cos(theta) ** 61 - 3.3186034831153e52 * cos(theta) ** 59 + 1.88017568199016e53 * cos(theta) ** 57 - 6.71311048871653e53 * cos(theta) ** 55 + 1.6954029040381e54 * cos(theta) ** 53 - 3.22243476105449e54 * cos(theta) ** 51 + 4.78858312394461e54 * cos(theta) ** 49 - 5.70554584980635e54 * cos(theta) ** 47 + 5.54648836658333e54 * cos(theta) ** 45 - 4.45338481988442e54 * cos(theta) ** 43 + 2.97881962396714e54 * cos(theta) ** 41 - 1.66960498404173e54 * cos(theta) ** 39 + 7.87008456218144e53 * cos(theta) ** 37 - 3.12550764365703e53 * cos(theta) ** 35 + 1.0459375972868e53 * cos(theta) ** 33 - 2.94536027395963e52 * cos(theta) ** 31 + 6.95931162292291e51 * cos(theta) ** 29 - 1.37359286286179e51 * cos(theta) ** 27 + 2.25084544754663e50 * cos(theta) ** 25 - 3.03757820181732e49 * cos(theta) ** 23 + 3.34133602199905e48 * cos(theta) ** 21 - 2.95693453274252e47 * cos(theta) ** 19 + 2.07058069246098e46 * cos(theta) ** 17 - 1.12325079447424e45 * cos(theta) ** 15 + 4.59273105217273e43 * cos(theta) ** 13 - 1.36469722693133e42 * cos(theta) ** 11 + 2.80277623156172e40 * cos(theta) ** 9 - 3.70003462912438e38 * cos(theta) ** 7 + 2.80305653721544e36 * cos(theta) ** 5 - 9.96465174978828e33 * cos(theta) ** 3 + 1.04891071050403e31 * cos(theta) ) * cos(16 * phi) ) # @torch.jit.script def Yl77_m17(theta, phi): return ( 4.34485646348671e-32 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.6924877763888e53 * cos(theta) ** 60 - 1.95797605503803e54 * cos(theta) ** 58 + 1.07170013873439e55 * cos(theta) ** 56 - 3.69221076879409e55 * cos(theta) ** 54 + 8.98563539140195e55 * cos(theta) ** 52 - 1.64344172813779e56 * cos(theta) ** 50 + 2.34640573073286e56 * cos(theta) ** 48 - 2.68160654940898e56 * cos(theta) ** 46 + 2.4959197649625e56 * cos(theta) ** 44 - 1.9149554725503e56 * cos(theta) ** 42 + 1.22131604582653e56 * cos(theta) ** 40 - 6.51145943776275e55 * cos(theta) ** 38 + 2.91193128800713e55 * cos(theta) ** 36 - 1.09392767527996e55 * cos(theta) ** 34 + 3.45159407104645e54 * cos(theta) ** 32 - 9.13061684927486e53 * cos(theta) ** 30 + 2.01820037064765e53 * cos(theta) ** 28 - 3.70870072972683e52 * cos(theta) ** 26 + 5.62711361886658e51 * cos(theta) ** 24 - 6.98642986417983e50 * cos(theta) ** 22 + 7.016805646198e49 * cos(theta) ** 20 - 5.61817561221079e48 * cos(theta) ** 18 + 3.51998717718366e47 * cos(theta) ** 16 - 1.68487619171137e46 * cos(theta) ** 14 + 5.97055036782455e44 * cos(theta) ** 12 - 1.50116694962446e43 * cos(theta) ** 10 + 2.52249860840555e41 * cos(theta) ** 8 - 2.59002424038707e39 * cos(theta) ** 6 + 1.40152826860772e37 * cos(theta) ** 4 - 2.98939552493648e34 * cos(theta) ** 2 + 1.04891071050403e31 ) * cos(17 * phi) ) # @torch.jit.script def Yl77_m18(theta, phi): return ( 5.75490297269134e-34 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.01549266583328e55 * cos(theta) ** 59 - 1.13562611192205e56 * cos(theta) ** 57 + 6.00152077691258e56 * cos(theta) ** 55 - 1.99379381514881e57 * cos(theta) ** 53 + 4.67253040352901e57 * cos(theta) ** 51 - 8.21720864068896e57 * cos(theta) ** 49 + 1.12627475075177e58 * cos(theta) ** 47 - 1.23353901272813e58 * cos(theta) ** 45 + 1.0982046965835e58 * cos(theta) ** 43 - 8.04281298471127e57 * cos(theta) ** 41 + 4.8852641833061e57 * cos(theta) ** 39 - 2.47435458634985e57 * cos(theta) ** 37 + 1.04829526368257e57 * cos(theta) ** 35 - 3.71935409595187e56 * cos(theta) ** 33 + 1.10451010273486e56 * cos(theta) ** 31 - 2.73918505478246e55 * cos(theta) ** 29 + 5.65096103781341e54 * cos(theta) ** 27 - 9.64262189728977e53 * cos(theta) ** 25 + 1.35050726852798e53 * cos(theta) ** 23 - 1.53701457011956e52 * cos(theta) ** 21 + 1.4033611292396e51 * cos(theta) ** 19 - 1.01127161019794e50 * cos(theta) ** 17 + 5.63197948349386e48 * cos(theta) ** 15 - 2.35882666839591e47 * cos(theta) ** 13 + 7.16466044138946e45 * cos(theta) ** 11 - 1.50116694962446e44 * cos(theta) ** 9 + 2.01799888672444e42 * cos(theta) ** 7 - 1.55401454423224e40 * cos(theta) ** 5 + 5.60611307443088e37 * cos(theta) ** 3 - 5.97879104987297e34 * cos(theta) ) * cos(18 * phi) ) # @torch.jit.script def Yl77_m19(theta, phi): return ( 7.6467410510944e-36 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 5.99140672841636e56 * cos(theta) ** 58 - 6.47306883795571e57 * cos(theta) ** 56 + 3.30083642730192e58 * cos(theta) ** 54 - 1.05671072202887e59 * cos(theta) ** 52 + 2.3829905057998e59 * cos(theta) ** 50 - 4.02643223393759e59 * cos(theta) ** 48 + 5.29349132853333e59 * cos(theta) ** 46 - 5.55092555727659e59 * cos(theta) ** 44 + 4.72228019530905e59 * cos(theta) ** 42 - 3.29755332373162e59 * cos(theta) ** 40 + 1.90525303148938e59 * cos(theta) ** 38 - 9.15511196949443e58 * cos(theta) ** 36 + 3.66903342288899e58 * cos(theta) ** 34 - 1.22738685166412e58 * cos(theta) ** 32 + 3.42398131847807e57 * cos(theta) ** 30 - 7.94363665886913e56 * cos(theta) ** 28 + 1.52575948020962e56 * cos(theta) ** 26 - 2.41065547432244e55 * cos(theta) ** 24 + 3.10616671761435e54 * cos(theta) ** 22 - 3.22773059725108e53 * cos(theta) ** 20 + 2.66638614555524e52 * cos(theta) ** 18 - 1.7191617373365e51 * cos(theta) ** 16 + 8.44796922524079e49 * cos(theta) ** 14 - 3.06647466891469e48 * cos(theta) ** 12 + 7.8811264855284e46 * cos(theta) ** 10 - 1.35105025466201e45 * cos(theta) ** 8 + 1.41259922070711e43 * cos(theta) ** 6 - 7.77007272116121e40 * cos(theta) ** 4 + 1.68183392232927e38 * cos(theta) ** 2 - 5.97879104987297e34 ) * cos(19 * phi) ) # @torch.jit.script def Yl77_m20(theta, phi): return ( 1.01947485751912e-37 * (1.0 - cos(theta) ** 2) ** 10 * ( 3.47501590248149e58 * cos(theta) ** 57 - 3.6249185492552e59 * cos(theta) ** 55 + 1.78245167074304e60 * cos(theta) ** 53 - 5.49489575455012e60 * cos(theta) ** 51 + 1.1914952528999e61 * cos(theta) ** 49 - 1.93268747229004e61 * cos(theta) ** 47 + 2.43500601112533e61 * cos(theta) ** 45 - 2.4424072452017e61 * cos(theta) ** 43 + 1.9833576820298e61 * cos(theta) ** 41 - 1.31902132949265e61 * cos(theta) ** 39 + 7.23996151965965e60 * cos(theta) ** 37 - 3.29584030901799e60 * cos(theta) ** 35 + 1.24747136378226e60 * cos(theta) ** 33 - 3.92763792532517e59 * cos(theta) ** 31 + 1.02719439554342e59 * cos(theta) ** 29 - 2.22421826448336e58 * cos(theta) ** 27 + 3.96697464854501e57 * cos(theta) ** 25 - 5.78557313837386e56 * cos(theta) ** 23 + 6.83356677875157e55 * cos(theta) ** 21 - 6.45546119450216e54 * cos(theta) ** 19 + 4.79949506199943e53 * cos(theta) ** 17 - 2.7506587797384e52 * cos(theta) ** 15 + 1.18271569153371e51 * cos(theta) ** 13 - 3.67976960269763e49 * cos(theta) ** 11 + 7.8811264855284e47 * cos(theta) ** 9 - 1.08084020372961e46 * cos(theta) ** 7 + 8.47559532424264e43 * cos(theta) ** 5 - 3.10802908846448e41 * cos(theta) ** 3 + 3.36366784465853e38 * cos(theta) ) * cos(20 * phi) ) # @torch.jit.script def Yl77_m21(theta, phi): return ( 1.36403669545239e-39 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.98075906441445e60 * cos(theta) ** 56 - 1.99370520209036e61 * cos(theta) ** 54 + 9.44699385493809e61 * cos(theta) ** 52 - 2.80239683482056e62 * cos(theta) ** 50 + 5.8383267392095e62 * cos(theta) ** 48 - 9.0836311197632e62 * cos(theta) ** 46 + 1.0957527050064e63 * cos(theta) ** 44 - 1.05023511543673e63 * cos(theta) ** 42 + 8.13176649632218e62 * cos(theta) ** 40 - 5.14418318502133e62 * cos(theta) ** 38 + 2.67878576227407e62 * cos(theta) ** 36 - 1.1535441081563e62 * cos(theta) ** 34 + 4.11665550048144e61 * cos(theta) ** 32 - 1.2175677568508e61 * cos(theta) ** 30 + 2.97886374707592e60 * cos(theta) ** 28 - 6.00538931410506e59 * cos(theta) ** 26 + 9.91743662136253e58 * cos(theta) ** 24 - 1.33068182182599e58 * cos(theta) ** 22 + 1.43504902353783e57 * cos(theta) ** 20 - 1.22653762695541e56 * cos(theta) ** 18 + 8.15914160539904e54 * cos(theta) ** 16 - 4.1259881696076e53 * cos(theta) ** 14 + 1.53753039899382e52 * cos(theta) ** 12 - 4.04774656296739e50 * cos(theta) ** 10 + 7.09301383697556e48 * cos(theta) ** 8 - 7.56588142610727e46 * cos(theta) ** 6 + 4.23779766212132e44 * cos(theta) ** 4 - 9.32408726539345e41 * cos(theta) ** 2 + 3.36366784465853e38 ) * cos(21 * phi) ) # @torch.jit.script def Yl77_m22(theta, phi): return ( 1.83195348828138e-41 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.10922507607209e62 * cos(theta) ** 55 - 1.07660080912879e63 * cos(theta) ** 53 + 4.91243680456781e63 * cos(theta) ** 51 - 1.40119841741028e64 * cos(theta) ** 49 + 2.80239683482056e64 * cos(theta) ** 47 - 4.17847031509107e64 * cos(theta) ** 45 + 4.82131190202816e64 * cos(theta) ** 43 - 4.41098748483427e64 * cos(theta) ** 41 + 3.25270659852887e64 * cos(theta) ** 39 - 1.9547896103081e64 * cos(theta) ** 37 + 9.64362874418665e63 * cos(theta) ** 35 - 3.92204996773141e63 * cos(theta) ** 33 + 1.31732976015406e63 * cos(theta) ** 31 - 3.65270327055241e62 * cos(theta) ** 29 + 8.34081849181259e61 * cos(theta) ** 27 - 1.56140122166732e61 * cos(theta) ** 25 + 2.38018478912701e60 * cos(theta) ** 23 - 2.92750000801717e59 * cos(theta) ** 21 + 2.87009804707566e58 * cos(theta) ** 19 - 2.20776772851974e57 * cos(theta) ** 17 + 1.30546265686385e56 * cos(theta) ** 15 - 5.77638343745064e54 * cos(theta) ** 13 + 1.84503647879259e53 * cos(theta) ** 11 - 4.04774656296739e51 * cos(theta) ** 9 + 5.67441106958045e49 * cos(theta) ** 7 - 4.53952885566436e47 * cos(theta) ** 5 + 1.69511906484853e45 * cos(theta) ** 3 - 1.86481745307869e42 * cos(theta) ) * cos(22 * phi) ) # @torch.jit.script def Yl77_m23(theta, phi): return ( 2.47020557967673e-43 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 6.1007379183965e63 * cos(theta) ** 54 - 5.70598428838261e64 * cos(theta) ** 52 + 2.50534277032958e65 * cos(theta) ** 50 - 6.86587224531038e65 * cos(theta) ** 48 + 1.31712651236566e66 * cos(theta) ** 46 - 1.88031164179098e66 * cos(theta) ** 44 + 2.07316411787211e66 * cos(theta) ** 42 - 1.80850486878205e66 * cos(theta) ** 40 + 1.26855557342626e66 * cos(theta) ** 38 - 7.23272155813999e65 * cos(theta) ** 36 + 3.37527006046533e65 * cos(theta) ** 34 - 1.29427648935137e65 * cos(theta) ** 32 + 4.08372225647759e64 * cos(theta) ** 30 - 1.0592839484602e64 * cos(theta) ** 28 + 2.2520209927894e63 * cos(theta) ** 26 - 3.90350305416829e62 * cos(theta) ** 24 + 5.47442501499211e61 * cos(theta) ** 22 - 6.14775001683606e60 * cos(theta) ** 20 + 5.45318628944375e59 * cos(theta) ** 18 - 3.75320513848356e58 * cos(theta) ** 16 + 1.95819398529577e57 * cos(theta) ** 14 - 7.50929846868584e55 * cos(theta) ** 12 + 2.02954012667185e54 * cos(theta) ** 10 - 3.64297190667065e52 * cos(theta) ** 8 + 3.97208774870631e50 * cos(theta) ** 6 - 2.26976442783218e48 * cos(theta) ** 4 + 5.08535719454559e45 * cos(theta) ** 2 - 1.86481745307869e42 ) * cos(23 * phi) ) # @torch.jit.script def Yl77_m24(theta, phi): return ( 3.34484141235851e-45 * (1.0 - cos(theta) ** 2) ** 12 * ( 3.29439847593411e65 * cos(theta) ** 53 - 2.96711182995896e66 * cos(theta) ** 51 + 1.25267138516479e67 * cos(theta) ** 49 - 3.29561867774898e67 * cos(theta) ** 47 + 6.05878195688205e67 * cos(theta) ** 45 - 8.27337122388032e67 * cos(theta) ** 43 + 8.70728929506286e67 * cos(theta) ** 41 - 7.23401947512821e67 * cos(theta) ** 39 + 4.82051117901979e67 * cos(theta) ** 37 - 2.6037797609304e67 * cos(theta) ** 35 + 1.14759182055821e67 * cos(theta) ** 33 - 4.14168476592437e66 * cos(theta) ** 31 + 1.22511667694328e66 * cos(theta) ** 29 - 2.96599505568856e65 * cos(theta) ** 27 + 5.85525458125244e64 * cos(theta) ** 25 - 9.3684073300039e63 * cos(theta) ** 23 + 1.20437350329827e63 * cos(theta) ** 21 - 1.22955000336721e62 * cos(theta) ** 19 + 9.81573532099876e60 * cos(theta) ** 17 - 6.00512822157369e59 * cos(theta) ** 15 + 2.74147157941408e58 * cos(theta) ** 13 - 9.01115816242301e56 * cos(theta) ** 11 + 2.02954012667185e55 * cos(theta) ** 9 - 2.91437752533652e53 * cos(theta) ** 7 + 2.38325264922379e51 * cos(theta) ** 5 - 9.07905771132872e48 * cos(theta) ** 3 + 1.01707143890912e46 * cos(theta) ) * cos(24 * phi) ) # @torch.jit.script def Yl77_m25(theta, phi): return ( 4.54922598211044e-47 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 1.74603119224508e67 * cos(theta) ** 52 - 1.51322703327907e68 * cos(theta) ** 50 + 6.13808978730748e68 * cos(theta) ** 48 - 1.54894077854202e69 * cos(theta) ** 46 + 2.72645188059692e69 * cos(theta) ** 44 - 3.55754962626854e69 * cos(theta) ** 42 + 3.56998861097577e69 * cos(theta) ** 40 - 2.8212675953e69 * cos(theta) ** 38 + 1.78358913623732e69 * cos(theta) ** 36 - 9.11322916325638e68 * cos(theta) ** 34 + 3.7870530078421e68 * cos(theta) ** 32 - 1.28392227743656e68 * cos(theta) ** 30 + 3.55283836313551e67 * cos(theta) ** 28 - 8.0081866503591e66 * cos(theta) ** 26 + 1.46381364531311e66 * cos(theta) ** 24 - 2.1547336859009e65 * cos(theta) ** 22 + 2.52918435692636e64 * cos(theta) ** 20 - 2.3361450063977e63 * cos(theta) ** 18 + 1.66867500456979e62 * cos(theta) ** 16 - 9.00769233236054e60 * cos(theta) ** 14 + 3.5639130532383e59 * cos(theta) ** 12 - 9.91227397866531e57 * cos(theta) ** 10 + 1.82658611400466e56 * cos(theta) ** 8 - 2.04006426773556e54 * cos(theta) ** 6 + 1.19162632461189e52 * cos(theta) ** 4 - 2.72371731339862e49 * cos(theta) ** 2 + 1.01707143890912e46 ) * cos(25 * phi) ) # @torch.jit.script def Yl77_m26(theta, phi): return ( 6.2160890397853e-49 * (1.0 - cos(theta) ** 2) ** 13 * ( 9.0793621996744e68 * cos(theta) ** 51 - 7.56613516639534e69 * cos(theta) ** 49 + 2.94628309790759e70 * cos(theta) ** 47 - 7.12512758129329e70 * cos(theta) ** 45 + 1.19963882746265e71 * cos(theta) ** 43 - 1.49417084303279e71 * cos(theta) ** 41 + 1.42799544439031e71 * cos(theta) ** 39 - 1.072081686214e71 * cos(theta) ** 37 + 6.42092089045436e70 * cos(theta) ** 35 - 3.09849791550717e70 * cos(theta) ** 33 + 1.21185696250947e70 * cos(theta) ** 31 - 3.85176683230967e69 * cos(theta) ** 29 + 9.94794741677942e68 * cos(theta) ** 27 - 2.08212852909337e68 * cos(theta) ** 25 + 3.51315274875146e67 * cos(theta) ** 23 - 4.74041410898197e66 * cos(theta) ** 21 + 5.05836871385271e65 * cos(theta) ** 19 - 4.20506101151587e64 * cos(theta) ** 17 + 2.66988000731166e63 * cos(theta) ** 15 - 1.26107692653047e62 * cos(theta) ** 13 + 4.27669566388596e60 * cos(theta) ** 11 - 9.91227397866531e58 * cos(theta) ** 9 + 1.46126889120373e57 * cos(theta) ** 7 - 1.22403856064134e55 * cos(theta) ** 5 + 4.76650529844758e52 * cos(theta) ** 3 - 5.44743462679723e49 * cos(theta) ) * cos(26 * phi) ) # @torch.jit.script def Yl77_m27(theta, phi): return ( 8.53523472478644e-51 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 4.63047472183395e70 * cos(theta) ** 50 - 3.70740623153372e71 * cos(theta) ** 48 + 1.38475305601657e72 * cos(theta) ** 46 - 3.20630741158198e72 * cos(theta) ** 44 + 5.15844695808938e72 * cos(theta) ** 42 - 6.12610045643442e72 * cos(theta) ** 40 + 5.5691822331222e72 * cos(theta) ** 38 - 3.9667022389918e72 * cos(theta) ** 36 + 2.24732231165902e72 * cos(theta) ** 34 - 1.02250431211737e72 * cos(theta) ** 32 + 3.75675658377936e71 * cos(theta) ** 30 - 1.1170123813698e71 * cos(theta) ** 28 + 2.68594580253044e70 * cos(theta) ** 26 - 5.20532132273342e69 * cos(theta) ** 24 + 8.08025132212836e68 * cos(theta) ** 22 - 9.95486962886214e67 * cos(theta) ** 20 + 9.61090055632016e66 * cos(theta) ** 18 - 7.14860371957698e65 * cos(theta) ** 16 + 4.00482001096749e64 * cos(theta) ** 14 - 1.63940000448962e63 * cos(theta) ** 12 + 4.70436523027455e61 * cos(theta) ** 10 - 8.92104658079878e59 * cos(theta) ** 8 + 1.02288822384261e58 * cos(theta) ** 6 - 6.12019280320669e55 * cos(theta) ** 4 + 1.42995158953427e53 * cos(theta) ** 2 - 5.44743462679723e49 ) * cos(27 * phi) ) # @torch.jit.script def Yl77_m28(theta, phi): return ( 1.17797430489561e-52 * (1.0 - cos(theta) ** 2) ** 14 * ( 2.31523736091697e72 * cos(theta) ** 49 - 1.77955499113618e73 * cos(theta) ** 47 + 6.36986405767621e73 * cos(theta) ** 45 - 1.41077526109607e74 * cos(theta) ** 43 + 2.16654772239754e74 * cos(theta) ** 41 - 2.45044018257377e74 * cos(theta) ** 39 + 2.11628924858644e74 * cos(theta) ** 37 - 1.42801280603705e74 * cos(theta) ** 35 + 7.64089585964068e73 * cos(theta) ** 33 - 3.27201379877557e73 * cos(theta) ** 31 + 1.12702697513381e73 * cos(theta) ** 29 - 3.12763466783545e72 * cos(theta) ** 27 + 6.98345908657915e71 * cos(theta) ** 25 - 1.24927711745602e71 * cos(theta) ** 23 + 1.77765529086824e70 * cos(theta) ** 21 - 1.99097392577243e69 * cos(theta) ** 19 + 1.72996210013763e68 * cos(theta) ** 17 - 1.14377659513232e67 * cos(theta) ** 15 + 5.60674801535449e65 * cos(theta) ** 13 - 1.96728000538754e64 * cos(theta) ** 11 + 4.70436523027455e62 * cos(theta) ** 9 - 7.13683726463902e60 * cos(theta) ** 7 + 6.13732934305567e58 * cos(theta) ** 5 - 2.44807712128268e56 * cos(theta) ** 3 + 2.85990317906855e53 * cos(theta) ) * cos(28 * phi) ) # @torch.jit.script def Yl77_m29(theta, phi): return ( 1.63449969795033e-54 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 1.13446630684932e74 * cos(theta) ** 48 - 8.36390845834006e74 * cos(theta) ** 46 + 2.86643882595429e75 * cos(theta) ** 44 - 6.06633362271311e75 * cos(theta) ** 42 + 8.88284566182991e75 * cos(theta) ** 40 - 9.5567167120377e75 * cos(theta) ** 38 + 7.83027021976982e75 * cos(theta) ** 36 - 4.99804482112967e75 * cos(theta) ** 34 + 2.52149563368143e75 * cos(theta) ** 32 - 1.01432427762043e75 * cos(theta) ** 30 + 3.26837822788804e74 * cos(theta) ** 28 - 8.44461360315571e73 * cos(theta) ** 26 + 1.74586477164479e73 * cos(theta) ** 24 - 2.87333737014885e72 * cos(theta) ** 22 + 3.7330761108233e71 * cos(theta) ** 20 - 3.78285045896761e70 * cos(theta) ** 18 + 2.94093557023397e69 * cos(theta) ** 16 - 1.71566489269847e68 * cos(theta) ** 14 + 7.28877241996084e66 * cos(theta) ** 12 - 2.16400800592629e65 * cos(theta) ** 10 + 4.2339287072471e63 * cos(theta) ** 8 - 4.99578608524731e61 * cos(theta) ** 6 + 3.06866467152783e59 * cos(theta) ** 4 - 7.34423136384803e56 * cos(theta) ** 2 + 2.85990317906855e53 ) * cos(29 * phi) ) # @torch.jit.script def Yl77_m30(theta, phi): return ( 2.28072192287561e-56 * (1.0 - cos(theta) ** 2) ** 15 * ( 5.44543827287672e75 * cos(theta) ** 47 - 3.84739789083643e76 * cos(theta) ** 45 + 1.26123308341989e77 * cos(theta) ** 43 - 2.54786012153951e77 * cos(theta) ** 41 + 3.55313826473197e77 * cos(theta) ** 39 - 3.63155235057433e77 * cos(theta) ** 37 + 2.81889727911713e77 * cos(theta) ** 35 - 1.69933523918409e77 * cos(theta) ** 33 + 8.06878602778056e76 * cos(theta) ** 31 - 3.04297283286128e76 * cos(theta) ** 29 + 9.15145903808652e75 * cos(theta) ** 27 - 2.19559953682049e75 * cos(theta) ** 25 + 4.19007545194749e74 * cos(theta) ** 23 - 6.32134221432746e73 * cos(theta) ** 21 + 7.46615222164661e72 * cos(theta) ** 19 - 6.80913082614171e71 * cos(theta) ** 17 + 4.70549691237435e70 * cos(theta) ** 15 - 2.40193084977786e69 * cos(theta) ** 13 + 8.74652690395301e67 * cos(theta) ** 11 - 2.16400800592629e66 * cos(theta) ** 9 + 3.38714296579768e64 * cos(theta) ** 7 - 2.99747165114839e62 * cos(theta) ** 5 + 1.22746586861113e60 * cos(theta) ** 3 - 1.46884627276961e57 * cos(theta) ) * cos(30 * phi) ) # @torch.jit.script def Yl77_m31(theta, phi): return ( 3.20119058128037e-58 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 2.55935598825206e77 * cos(theta) ** 46 - 1.73132905087639e78 * cos(theta) ** 44 + 5.42330225870552e78 * cos(theta) ** 42 - 1.0446226498312e79 * cos(theta) ** 40 + 1.38572392324547e79 * cos(theta) ** 38 - 1.3436743697125e79 * cos(theta) ** 36 + 9.86614047690997e78 * cos(theta) ** 34 - 5.60780628930749e78 * cos(theta) ** 32 + 2.50132366861197e78 * cos(theta) ** 30 - 8.82462121529772e77 * cos(theta) ** 28 + 2.47089394028336e77 * cos(theta) ** 26 - 5.48899884205121e76 * cos(theta) ** 24 + 9.63717353947923e75 * cos(theta) ** 22 - 1.32748186500877e75 * cos(theta) ** 20 + 1.41856892211286e74 * cos(theta) ** 18 - 1.15755224044409e73 * cos(theta) ** 16 + 7.05824536856152e71 * cos(theta) ** 14 - 3.12251010471122e70 * cos(theta) ** 12 + 9.62117959434831e68 * cos(theta) ** 10 - 1.94760720533367e67 * cos(theta) ** 8 + 2.37100007605838e65 * cos(theta) ** 6 - 1.49873582557419e63 * cos(theta) ** 4 + 3.6823976058334e60 * cos(theta) ** 2 - 1.46884627276961e57 ) * cos(31 * phi) ) # @torch.jit.script def Yl77_m32(theta, phi): return ( 4.52084238068851e-60 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.17730375459595e79 * cos(theta) ** 45 - 7.61784782385613e79 * cos(theta) ** 43 + 2.27778694865632e80 * cos(theta) ** 41 - 4.17849059932479e80 * cos(theta) ** 39 + 5.26575090833277e80 * cos(theta) ** 37 - 4.837227730965e80 * cos(theta) ** 35 + 3.35448776214939e80 * cos(theta) ** 33 - 1.7944980125784e80 * cos(theta) ** 31 + 7.50397100583592e79 * cos(theta) ** 29 - 2.47089394028336e79 * cos(theta) ** 27 + 6.42432424473674e78 * cos(theta) ** 25 - 1.31735972209229e78 * cos(theta) ** 23 + 2.12017817868543e77 * cos(theta) ** 21 - 2.65496373001753e76 * cos(theta) ** 19 + 2.55342405980314e75 * cos(theta) ** 17 - 1.85208358471054e74 * cos(theta) ** 15 + 9.88154351598613e72 * cos(theta) ** 13 - 3.74701212565347e71 * cos(theta) ** 11 + 9.62117959434831e69 * cos(theta) ** 9 - 1.55808576426693e68 * cos(theta) ** 7 + 1.42260004563503e66 * cos(theta) ** 5 - 5.99494330229678e63 * cos(theta) ** 3 + 7.3647952116668e60 * cos(theta) ) * cos(32 * phi) ) # @torch.jit.script def Yl77_m33(theta, phi): return ( 6.42564556062396e-62 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 5.29786689568176e80 * cos(theta) ** 44 - 3.27567456425813e81 * cos(theta) ** 42 + 9.33892648949091e81 * cos(theta) ** 40 - 1.62961133373667e82 * cos(theta) ** 38 + 1.94832783608313e82 * cos(theta) ** 36 - 1.69302970583775e82 * cos(theta) ** 34 + 1.1069809615093e82 * cos(theta) ** 32 - 5.56294383899303e81 * cos(theta) ** 30 + 2.17615159169242e81 * cos(theta) ** 28 - 6.67141363876508e80 * cos(theta) ** 26 + 1.60608106118418e80 * cos(theta) ** 24 - 3.02992736081227e79 * cos(theta) ** 22 + 4.4523741752394e78 * cos(theta) ** 20 - 5.04443108703331e77 * cos(theta) ** 18 + 4.34082090166534e76 * cos(theta) ** 16 - 2.77812537706582e75 * cos(theta) ** 14 + 1.2846006570782e74 * cos(theta) ** 12 - 4.12171333821881e72 * cos(theta) ** 10 + 8.65906163491348e70 * cos(theta) ** 8 - 1.09066003498685e69 * cos(theta) ** 6 + 7.11300022817513e66 * cos(theta) ** 4 - 1.79848299068903e64 * cos(theta) ** 2 + 7.3647952116668e60 ) * cos(33 * phi) ) # @torch.jit.script def Yl77_m34(theta, phi): return ( 9.19451738929479e-64 * (1.0 - cos(theta) ** 2) ** 17 * ( 2.33106143409998e82 * cos(theta) ** 43 - 1.37578331698842e83 * cos(theta) ** 41 + 3.73557059579636e83 * cos(theta) ** 39 - 6.19252306819934e83 * cos(theta) ** 37 + 7.01398020989925e83 * cos(theta) ** 35 - 5.75630099984835e83 * cos(theta) ** 33 + 3.54233907682976e83 * cos(theta) ** 31 - 1.66888315169791e83 * cos(theta) ** 29 + 6.09322445673877e82 * cos(theta) ** 27 - 1.73456754607892e82 * cos(theta) ** 25 + 3.85459454684204e81 * cos(theta) ** 23 - 6.66584019378699e80 * cos(theta) ** 21 + 8.90474835047881e79 * cos(theta) ** 19 - 9.07997595665996e78 * cos(theta) ** 17 + 6.94531344266454e77 * cos(theta) ** 15 - 3.88937552789214e76 * cos(theta) ** 13 + 1.54152078849384e75 * cos(theta) ** 11 - 4.12171333821881e73 * cos(theta) ** 9 + 6.92724930793078e71 * cos(theta) ** 7 - 6.54396020992112e69 * cos(theta) ** 5 + 2.84520009127005e67 * cos(theta) ** 3 - 3.59696598137807e64 * cos(theta) ) * cos(34 * phi) ) # @torch.jit.script def Yl77_m35(theta, phi): return ( 1.32490792965112e-65 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 1.00235641666299e84 * cos(theta) ** 42 - 5.64071159965251e84 * cos(theta) ** 40 + 1.45687253236058e85 * cos(theta) ** 38 - 2.29123353523376e85 * cos(theta) ** 36 + 2.45489307346474e85 * cos(theta) ** 34 - 1.89957932994996e85 * cos(theta) ** 32 + 1.09812511381722e85 * cos(theta) ** 30 - 4.83976113992394e84 * cos(theta) ** 28 + 1.64517060331947e84 * cos(theta) ** 26 - 4.3364188651973e83 * cos(theta) ** 24 + 8.8655674577367e82 * cos(theta) ** 22 - 1.39982644069527e82 * cos(theta) ** 20 + 1.69190218659097e81 * cos(theta) ** 18 - 1.54359591263219e80 * cos(theta) ** 16 + 1.04179701639968e79 * cos(theta) ** 14 - 5.05618818625978e77 * cos(theta) ** 12 + 1.69567286734322e76 * cos(theta) ** 10 - 3.70954200439693e74 * cos(theta) ** 8 + 4.84907451555155e72 * cos(theta) ** 6 - 3.27198010496056e70 * cos(theta) ** 4 + 8.53560027381015e67 * cos(theta) ** 2 - 3.59696598137807e64 ) * cos(35 * phi) ) # @torch.jit.script def Yl77_m36(theta, phi): return ( 1.92318840717684e-67 * (1.0 - cos(theta) ** 2) ** 18 * ( 4.20989694998455e85 * cos(theta) ** 41 - 2.256284639861e86 * cos(theta) ** 39 + 5.53611562297021e86 * cos(theta) ** 37 - 8.24844072684152e86 * cos(theta) ** 35 + 8.34663644978011e86 * cos(theta) ** 33 - 6.07865385583986e86 * cos(theta) ** 31 + 3.29437534145167e86 * cos(theta) ** 29 - 1.3551331191787e86 * cos(theta) ** 27 + 4.27744356863062e85 * cos(theta) ** 25 - 1.04074052764735e85 * cos(theta) ** 23 + 1.95042484070207e84 * cos(theta) ** 21 - 2.79965288139054e83 * cos(theta) ** 19 + 3.04542393586375e82 * cos(theta) ** 17 - 2.46975346021151e81 * cos(theta) ** 15 + 1.45851582295955e80 * cos(theta) ** 13 - 6.06742582351174e78 * cos(theta) ** 11 + 1.69567286734322e77 * cos(theta) ** 9 - 2.96763360351755e75 * cos(theta) ** 7 + 2.90944470933093e73 * cos(theta) ** 5 - 1.30879204198422e71 * cos(theta) ** 3 + 1.70712005476203e68 * cos(theta) ) * cos(36 * phi) ) # @torch.jit.script def Yl77_m37(theta, phi): return ( 2.81305017421055e-69 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 1.72605774949367e87 * cos(theta) ** 40 - 8.79951009545791e87 * cos(theta) ** 38 + 2.04836278049898e88 * cos(theta) ** 36 - 2.88695425439453e88 * cos(theta) ** 34 + 2.75439002842744e88 * cos(theta) ** 32 - 1.88438269531036e88 * cos(theta) ** 30 + 9.55368849020985e87 * cos(theta) ** 28 - 3.6588594217825e87 * cos(theta) ** 26 + 1.06936089215765e87 * cos(theta) ** 24 - 2.39370321358891e86 * cos(theta) ** 22 + 4.09589216547436e85 * cos(theta) ** 20 - 5.31934047464202e84 * cos(theta) ** 18 + 5.17722069096838e83 * cos(theta) ** 16 - 3.70463019031727e82 * cos(theta) ** 14 + 1.89607056984742e81 * cos(theta) ** 12 - 6.67416840586291e79 * cos(theta) ** 10 + 1.5261055806089e78 * cos(theta) ** 8 - 2.07734352246228e76 * cos(theta) ** 6 + 1.45472235466546e74 * cos(theta) ** 4 - 3.92637612595267e71 * cos(theta) ** 2 + 1.70712005476203e68 ) * cos(37 * phi) ) # @torch.jit.script def Yl77_m38(theta, phi): return ( 4.14761620447478e-71 * (1.0 - cos(theta) ** 2) ** 19 * ( 6.90423099797467e88 * cos(theta) ** 39 - 3.34381383627401e89 * cos(theta) ** 37 + 7.37410600979632e89 * cos(theta) ** 35 - 9.81564446494141e89 * cos(theta) ** 33 + 8.8140480909678e89 * cos(theta) ** 31 - 5.65314808593107e89 * cos(theta) ** 29 + 2.67503277725876e89 * cos(theta) ** 27 - 9.51303449663449e88 * cos(theta) ** 25 + 2.56646614117837e88 * cos(theta) ** 23 - 5.2661470698956e87 * cos(theta) ** 21 + 8.19178433094871e86 * cos(theta) ** 19 - 9.57481285435564e85 * cos(theta) ** 17 + 8.2835531055494e84 * cos(theta) ** 15 - 5.18648226644417e83 * cos(theta) ** 13 + 2.2752846838169e82 * cos(theta) ** 11 - 6.67416840586292e80 * cos(theta) ** 9 + 1.22088446448712e79 * cos(theta) ** 7 - 1.24640611347737e77 * cos(theta) ** 5 + 5.81888941866186e74 * cos(theta) ** 3 - 7.85275225190534e71 * cos(theta) ) * cos(38 * phi) ) # @torch.jit.script def Yl77_m39(theta, phi): return ( 6.16647910788834e-73 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 2.69265008921012e90 * cos(theta) ** 38 - 1.23721111942138e91 * cos(theta) ** 36 + 2.58093710342871e91 * cos(theta) ** 34 - 3.23916267343067e91 * cos(theta) ** 32 + 2.73235490820002e91 * cos(theta) ** 30 - 1.63941294492001e91 * cos(theta) ** 28 + 7.22258849859865e90 * cos(theta) ** 26 - 2.37825862415862e90 * cos(theta) ** 24 + 5.90287212471025e89 * cos(theta) ** 22 - 1.10589088467808e89 * cos(theta) ** 20 + 1.55643902288026e88 * cos(theta) ** 18 - 1.62771818524046e87 * cos(theta) ** 16 + 1.24253296583241e86 * cos(theta) ** 14 - 6.74242694637742e84 * cos(theta) ** 12 + 2.50281315219859e83 * cos(theta) ** 10 - 6.00675156527662e81 * cos(theta) ** 8 + 8.54619125140983e79 * cos(theta) ** 6 - 6.23203056738685e77 * cos(theta) ** 4 + 1.74566682559856e75 * cos(theta) ** 2 - 7.85275225190534e71 ) * cos(39 * phi) ) # @torch.jit.script def Yl77_m40(theta, phi): return ( 9.24810038585174e-75 * (1.0 - cos(theta) ** 2) ** 20 * ( 1.02320703389985e92 * cos(theta) ** 37 - 4.45396002991698e92 * cos(theta) ** 35 + 8.77518615165762e92 * cos(theta) ** 33 - 1.03653205549781e93 * cos(theta) ** 31 + 8.19706472460005e92 * cos(theta) ** 29 - 4.59035624577603e92 * cos(theta) ** 27 + 1.87787300963565e92 * cos(theta) ** 25 - 5.70782069798069e91 * cos(theta) ** 23 + 1.29863186743625e91 * cos(theta) ** 21 - 2.21178176935615e90 * cos(theta) ** 19 + 2.80159024118446e89 * cos(theta) ** 17 - 2.60434909638473e88 * cos(theta) ** 15 + 1.73954615216538e87 * cos(theta) ** 13 - 8.09091233565291e85 * cos(theta) ** 11 + 2.50281315219859e84 * cos(theta) ** 9 - 4.8054012522213e82 * cos(theta) ** 7 + 5.1277147508459e80 * cos(theta) ** 5 - 2.49281222695474e78 * cos(theta) ** 3 + 3.49133365119711e75 * cos(theta) ) * cos(40 * phi) ) # @torch.jit.script def Yl77_m41(theta, phi): return ( 1.39962170750292e-76 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 3.78586602542943e93 * cos(theta) ** 36 - 1.55888601047094e94 * cos(theta) ** 34 + 2.89581143004702e94 * cos(theta) ** 32 - 3.21324937204322e94 * cos(theta) ** 30 + 2.37714877013401e94 * cos(theta) ** 28 - 1.23939618635953e94 * cos(theta) ** 26 + 4.69468252408912e93 * cos(theta) ** 24 - 1.31279876053556e93 * cos(theta) ** 22 + 2.72712692161614e92 * cos(theta) ** 20 - 4.20238536177669e91 * cos(theta) ** 18 + 4.76270341001358e90 * cos(theta) ** 16 - 3.9065236445771e89 * cos(theta) ** 14 + 2.26140999781499e88 * cos(theta) ** 12 - 8.9000035692182e86 * cos(theta) ** 10 + 2.25253183697873e85 * cos(theta) ** 8 - 3.36378087655491e83 * cos(theta) ** 6 + 2.56385737542295e81 * cos(theta) ** 4 - 7.47843668086422e78 * cos(theta) ** 2 + 3.49133365119711e75 ) * cos(41 * phi) ) # @torch.jit.script def Yl77_m42(theta, phi): return ( 2.13838519279332e-78 * (1.0 - cos(theta) ** 2) ** 21 * ( 1.3629117691546e95 * cos(theta) ** 35 - 5.3002124356012e95 * cos(theta) ** 33 + 9.26659657615045e95 * cos(theta) ** 31 - 9.63974811612966e95 * cos(theta) ** 29 + 6.65601655637524e95 * cos(theta) ** 27 - 3.22243008453477e95 * cos(theta) ** 25 + 1.12672380578139e95 * cos(theta) ** 23 - 2.88815727317823e94 * cos(theta) ** 21 + 5.45425384323227e93 * cos(theta) ** 19 - 7.56429365119804e92 * cos(theta) ** 17 + 7.62032545602173e91 * cos(theta) ** 15 - 5.46913310240794e90 * cos(theta) ** 13 + 2.71369199737799e89 * cos(theta) ** 11 - 8.9000035692182e87 * cos(theta) ** 9 + 1.80202546958299e86 * cos(theta) ** 7 - 2.01826852593295e84 * cos(theta) ** 5 + 1.02554295016918e82 * cos(theta) ** 3 - 1.49568733617284e79 * cos(theta) ) * cos(42 * phi) ) # @torch.jit.script def Yl77_m43(theta, phi): return ( 3.29959998757342e-80 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 4.77019119204108e96 * cos(theta) ** 34 - 1.7490701037484e97 * cos(theta) ** 32 + 2.87264493860664e97 * cos(theta) ** 30 - 2.7955269536776e97 * cos(theta) ** 28 + 1.79712447022132e97 * cos(theta) ** 26 - 8.05607521133693e96 * cos(theta) ** 24 + 2.59146475329719e96 * cos(theta) ** 22 - 6.06513027367428e95 * cos(theta) ** 20 + 1.03630823021413e95 * cos(theta) ** 18 - 1.28592992070367e94 * cos(theta) ** 16 + 1.14304881840326e93 * cos(theta) ** 14 - 7.10987303313032e91 * cos(theta) ** 12 + 2.98506119711578e90 * cos(theta) ** 10 - 8.01000321229638e88 * cos(theta) ** 8 + 1.26141782870809e87 * cos(theta) ** 6 - 1.00913426296647e85 * cos(theta) ** 4 + 3.07662885050754e82 * cos(theta) ** 2 - 1.49568733617284e79 ) * cos(43 * phi) ) # @torch.jit.script def Yl77_m44(theta, phi): return ( 5.14433390368256e-82 * (1.0 - cos(theta) ** 2) ** 22 * ( 1.62186500529397e98 * cos(theta) ** 33 - 5.59702433199487e98 * cos(theta) ** 31 + 8.61793481581992e98 * cos(theta) ** 29 - 7.82747547029728e98 * cos(theta) ** 27 + 4.67252362257542e98 * cos(theta) ** 25 - 1.93345805072086e98 * cos(theta) ** 23 + 5.70122245725383e97 * cos(theta) ** 21 - 1.21302605473486e97 * cos(theta) ** 19 + 1.86535481438544e96 * cos(theta) ** 17 - 2.05748787312587e95 * cos(theta) ** 15 + 1.60026834576456e94 * cos(theta) ** 13 - 8.53184763975639e92 * cos(theta) ** 11 + 2.98506119711578e91 * cos(theta) ** 9 - 6.4080025698371e89 * cos(theta) ** 7 + 7.56850697224855e87 * cos(theta) ** 5 - 4.03653705186589e85 * cos(theta) ** 3 + 6.15325770101508e82 * cos(theta) ) * cos(44 * phi) ) # @torch.jit.script def Yl77_m45(theta, phi): return ( 8.10759907270583e-84 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 5.35215451747009e99 * cos(theta) ** 32 - 1.73507754291841e100 * cos(theta) ** 30 + 2.49920109658778e100 * cos(theta) ** 28 - 2.11341837698027e100 * cos(theta) ** 26 + 1.16813090564385e100 * cos(theta) ** 24 - 4.44695351665799e99 * cos(theta) ** 22 + 1.1972567160233e99 * cos(theta) ** 20 - 2.30474950399623e98 * cos(theta) ** 18 + 3.17110318445524e97 * cos(theta) ** 16 - 3.0862318096888e96 * cos(theta) ** 14 + 2.08034884949393e95 * cos(theta) ** 12 - 9.38503240373202e93 * cos(theta) ** 10 + 2.68655507740421e92 * cos(theta) ** 8 - 4.48560179888597e90 * cos(theta) ** 6 + 3.78425348612427e88 * cos(theta) ** 4 - 1.21096111555977e86 * cos(theta) ** 2 + 6.15325770101508e82 ) * cos(45 * phi) ) # @torch.jit.script def Yl77_m46(theta, phi): return ( 1.29230409190279e-85 * (1.0 - cos(theta) ** 2) ** 23 * ( 1.71268944559043e101 * cos(theta) ** 31 - 5.20523262875523e101 * cos(theta) ** 29 + 6.99776307044577e101 * cos(theta) ** 27 - 5.49488778014869e101 * cos(theta) ** 25 + 2.80351417354525e101 * cos(theta) ** 23 - 9.78329773664757e100 * cos(theta) ** 21 + 2.39451343204661e100 * cos(theta) ** 19 - 4.14854910719321e99 * cos(theta) ** 17 + 5.07376509512839e98 * cos(theta) ** 15 - 4.32072453356432e97 * cos(theta) ** 13 + 2.49641861939272e96 * cos(theta) ** 11 - 9.38503240373202e94 * cos(theta) ** 9 + 2.14924406192336e93 * cos(theta) ** 7 - 2.69136107933158e91 * cos(theta) ** 5 + 1.51370139444971e89 * cos(theta) ** 3 - 2.42192223111953e86 * cos(theta) ) * cos(46 * phi) ) # @torch.jit.script def Yl77_m47(theta, phi): return ( 2.08436143855288e-87 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 5.30933728133033e102 * cos(theta) ** 30 - 1.50951746233902e103 * cos(theta) ** 28 + 1.88939602902036e103 * cos(theta) ** 26 - 1.37372194503717e103 * cos(theta) ** 24 + 6.44808259915408e102 * cos(theta) ** 22 - 2.05449252469599e102 * cos(theta) ** 20 + 4.54957552088855e101 * cos(theta) ** 18 - 7.05253348222846e100 * cos(theta) ** 16 + 7.61064764269258e99 * cos(theta) ** 14 - 5.61694189363362e98 * cos(theta) ** 12 + 2.74606048133199e97 * cos(theta) ** 10 - 8.44652916335882e95 * cos(theta) ** 8 + 1.50447084334635e94 * cos(theta) ** 6 - 1.34568053966579e92 * cos(theta) ** 4 + 4.54110418334913e89 * cos(theta) ** 2 - 2.42192223111953e86 ) * cos(47 * phi) ) # @torch.jit.script def Yl77_m48(theta, phi): return ( 3.40374797599205e-89 * (1.0 - cos(theta) ** 2) ** 24 * ( 1.5928011843991e104 * cos(theta) ** 29 - 4.22664889454925e104 * cos(theta) ** 27 + 4.91242967545293e104 * cos(theta) ** 25 - 3.29693266808922e104 * cos(theta) ** 23 + 1.4185781718139e104 * cos(theta) ** 21 - 4.10898504939198e103 * cos(theta) ** 19 + 8.1892359375994e102 * cos(theta) ** 17 - 1.12840535715655e102 * cos(theta) ** 15 + 1.06549066997696e101 * cos(theta) ** 13 - 6.74033027236034e99 * cos(theta) ** 11 + 2.74606048133199e98 * cos(theta) ** 9 - 6.75722333068706e96 * cos(theta) ** 7 + 9.02682506007813e94 * cos(theta) ** 5 - 5.38272215866317e92 * cos(theta) ** 3 + 9.08220836669826e89 * cos(theta) ) * cos(48 * phi) ) # @torch.jit.script def Yl77_m49(theta, phi): return ( 5.63083919001166e-91 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 4.61912343475739e105 * cos(theta) ** 28 - 1.1411952015283e106 * cos(theta) ** 26 + 1.22810741886323e106 * cos(theta) ** 24 - 7.5829451366052e105 * cos(theta) ** 22 + 2.97901416080918e105 * cos(theta) ** 20 - 7.80707159384476e104 * cos(theta) ** 18 + 1.3921701093919e104 * cos(theta) ** 16 - 1.69260803573483e103 * cos(theta) ** 14 + 1.38513787097005e102 * cos(theta) ** 12 - 7.41436329959637e100 * cos(theta) ** 10 + 2.47145443319879e99 * cos(theta) ** 8 - 4.73005633148094e97 * cos(theta) ** 6 + 4.51341253003906e95 * cos(theta) ** 4 - 1.61481664759895e93 * cos(theta) ** 2 + 9.08220836669826e89 ) * cos(49 * phi) ) # @torch.jit.script def Yl77_m50(theta, phi): return ( 9.4426142544775e-93 * (1.0 - cos(theta) ** 2) ** 25 * ( 1.29335456173207e107 * cos(theta) ** 27 - 2.96710752397357e107 * cos(theta) ** 25 + 2.94745780527176e107 * cos(theta) ** 23 - 1.66824793005314e107 * cos(theta) ** 21 + 5.95802832161837e106 * cos(theta) ** 19 - 1.40527288689206e106 * cos(theta) ** 17 + 2.22747217502704e105 * cos(theta) ** 15 - 2.36965125002876e104 * cos(theta) ** 13 + 1.66216544516406e103 * cos(theta) ** 11 - 7.41436329959637e101 * cos(theta) ** 9 + 1.97716354655903e100 * cos(theta) ** 7 - 2.83803379888856e98 * cos(theta) ** 5 + 1.80536501201563e96 * cos(theta) ** 3 - 3.2296332951979e93 * cos(theta) ) * cos(50 * phi) ) # @torch.jit.script def Yl77_m51(theta, phi): return ( 1.60622130287506e-94 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 3.49205731667659e108 * cos(theta) ** 26 - 7.41776880993393e108 * cos(theta) ** 24 + 6.77915295212505e108 * cos(theta) ** 22 - 3.5033206531116e108 * cos(theta) ** 20 + 1.13202538110749e108 * cos(theta) ** 18 - 2.3889639077165e107 * cos(theta) ** 16 + 3.34120826254055e106 * cos(theta) ** 14 - 3.08054662503739e105 * cos(theta) ** 12 + 1.82838198968047e104 * cos(theta) ** 10 - 6.67292696963674e102 * cos(theta) ** 8 + 1.38401448259132e101 * cos(theta) ** 6 - 1.41901689944428e99 * cos(theta) ** 4 + 5.41609503604688e96 * cos(theta) ** 2 - 3.2296332951979e93 ) * cos(51 * phi) ) # @torch.jit.script def Yl77_m52(theta, phi): return ( 2.77347242564173e-96 * (1.0 - cos(theta) ** 2) ** 26 * ( 9.07934902335913e109 * cos(theta) ** 25 - 1.78026451438414e110 * cos(theta) ** 23 + 1.49141364946751e110 * cos(theta) ** 21 - 7.0066413062232e109 * cos(theta) ** 19 + 2.03764568599348e109 * cos(theta) ** 17 - 3.82234225234639e108 * cos(theta) ** 15 + 4.67769156755678e107 * cos(theta) ** 13 - 3.69665595004487e106 * cos(theta) ** 11 + 1.82838198968047e105 * cos(theta) ** 9 - 5.33834157570939e103 * cos(theta) ** 7 + 8.30408689554794e101 * cos(theta) ** 5 - 5.67606759777713e99 * cos(theta) ** 3 + 1.08321900720938e97 * cos(theta) ) * cos(52 * phi) ) # @torch.jit.script def Yl77_m53(theta, phi): return ( 4.864992464472e-98 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 2.26983725583978e111 * cos(theta) ** 24 - 4.09460838308353e111 * cos(theta) ** 22 + 3.13196866388177e111 * cos(theta) ** 20 - 1.33126184818241e111 * cos(theta) ** 18 + 3.46399766618892e110 * cos(theta) ** 16 - 5.73351337851959e109 * cos(theta) ** 14 + 6.08099903782381e108 * cos(theta) ** 12 - 4.06632154504936e107 * cos(theta) ** 10 + 1.64554379071242e106 * cos(theta) ** 8 - 3.73683910299657e104 * cos(theta) ** 6 + 4.15204344777397e102 * cos(theta) ** 4 - 1.70282027933314e100 * cos(theta) ** 2 + 1.08321900720938e97 ) * cos(53 * phi) ) # @torch.jit.script def Yl77_m54(theta, phi): return ( 8.67642672184648e-100 * (1.0 - cos(theta) ** 2) ** 27 * ( 5.44760941401548e112 * cos(theta) ** 23 - 9.00813844278376e112 * cos(theta) ** 21 + 6.26393732776354e112 * cos(theta) ** 19 - 2.39627132672834e112 * cos(theta) ** 17 + 5.54239626590227e111 * cos(theta) ** 15 - 8.02691872992743e110 * cos(theta) ** 13 + 7.29719884538857e109 * cos(theta) ** 11 - 4.06632154504936e108 * cos(theta) ** 9 + 1.31643503256994e107 * cos(theta) ** 7 - 2.24210346179794e105 * cos(theta) ** 5 + 1.66081737910959e103 * cos(theta) ** 3 - 3.40564055866628e100 * cos(theta) ) * cos(54 * phi) ) # @torch.jit.script def Yl77_m55(theta, phi): return ( 1.57467168985028e-101 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 1.25295016522356e114 * cos(theta) ** 22 - 1.89170907298459e114 * cos(theta) ** 20 + 1.19014809227507e114 * cos(theta) ** 18 - 4.07366125543817e113 * cos(theta) ** 16 + 8.31359439885341e112 * cos(theta) ** 14 - 1.04349943489057e112 * cos(theta) ** 12 + 8.02691872992743e110 * cos(theta) ** 10 - 3.65968939054442e109 * cos(theta) ** 8 + 9.21504522798955e107 * cos(theta) ** 6 - 1.12105173089897e106 * cos(theta) ** 4 + 4.98245213732876e103 * cos(theta) ** 2 - 3.40564055866628e100 ) * cos(55 * phi) ) # @torch.jit.script def Yl77_m56(theta, phi): return ( 2.91107140798105e-103 * (1.0 - cos(theta) ** 2) ** 28 * ( 2.75649036349183e115 * cos(theta) ** 21 - 3.78341814596918e115 * cos(theta) ** 19 + 2.14226656609513e115 * cos(theta) ** 17 - 6.51785800870107e114 * cos(theta) ** 15 + 1.16390321583948e114 * cos(theta) ** 13 - 1.25219932186868e113 * cos(theta) ** 11 + 8.02691872992743e111 * cos(theta) ** 9 - 2.92775151243554e110 * cos(theta) ** 7 + 5.52902713679373e108 * cos(theta) ** 5 - 4.48420692359589e106 * cos(theta) ** 3 + 9.96490427465753e103 * cos(theta) ) * cos(56 * phi) ) # @torch.jit.script def Yl77_m57(theta, phi): return ( 5.48770569515216e-105 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 5.78862976333285e116 * cos(theta) ** 20 - 7.18849447734144e116 * cos(theta) ** 18 + 3.64185316236172e116 * cos(theta) ** 16 - 9.77678701305161e115 * cos(theta) ** 14 + 1.51307418059132e115 * cos(theta) ** 12 - 1.37741925405555e114 * cos(theta) ** 10 + 7.22422685693468e112 * cos(theta) ** 8 - 2.04942605870488e111 * cos(theta) ** 6 + 2.76451356839686e109 * cos(theta) ** 4 - 1.34526207707877e107 * cos(theta) ** 2 + 9.96490427465753e103 ) * cos(57 * phi) ) # @torch.jit.script def Yl77_m58(theta, phi): return ( 1.05610945344318e-106 * (1.0 - cos(theta) ** 2) ** 29 * ( 1.15772595266657e118 * cos(theta) ** 19 - 1.29392900592146e118 * cos(theta) ** 17 + 5.82696505977876e117 * cos(theta) ** 15 - 1.36875018182722e117 * cos(theta) ** 13 + 1.81568901670958e116 * cos(theta) ** 11 - 1.37741925405555e115 * cos(theta) ** 9 + 5.77938148554775e113 * cos(theta) ** 7 - 1.22965563522293e112 * cos(theta) ** 5 + 1.10580542735875e110 * cos(theta) ** 3 - 2.69052415415753e107 * cos(theta) ) * cos(58 * phi) ) # @torch.jit.script def Yl77_m59(theta, phi): return ( 2.07760353436883e-108 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 2.19967931006648e119 * cos(theta) ** 18 - 2.19967931006648e119 * cos(theta) ** 16 + 8.74044758966814e118 * cos(theta) ** 14 - 1.77937523637539e118 * cos(theta) ** 12 + 1.99725791838054e117 * cos(theta) ** 10 - 1.23967732864999e116 * cos(theta) ** 8 + 4.04556703988342e114 * cos(theta) ** 6 - 6.14827817611463e112 * cos(theta) ** 4 + 3.31741628207624e110 * cos(theta) ** 2 - 2.69052415415753e107 ) * cos(59 * phi) ) # @torch.jit.script def Yl77_m60(theta, phi): return ( 4.18375398764358e-110 * (1.0 - cos(theta) ** 2) ** 30 * ( 3.95942275811967e120 * cos(theta) ** 17 - 3.51948689610637e120 * cos(theta) ** 15 + 1.22366266255354e120 * cos(theta) ** 13 - 2.13525028365047e119 * cos(theta) ** 11 + 1.99725791838054e118 * cos(theta) ** 9 - 9.91741862919994e116 * cos(theta) ** 7 + 2.42734022393005e115 * cos(theta) ** 5 - 2.45931127044585e113 * cos(theta) ** 3 + 6.63483256415247e110 * cos(theta) ) * cos(60 * phi) ) # @torch.jit.script def Yl77_m61(theta, phi): return ( 8.63777993690384e-112 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 6.73101868880343e121 * cos(theta) ** 16 - 5.27923034415955e121 * cos(theta) ** 14 + 1.5907614613196e121 * cos(theta) ** 12 - 2.34877531201552e120 * cos(theta) ** 10 + 1.79753212654249e119 * cos(theta) ** 8 - 6.94219304043996e117 * cos(theta) ** 6 + 1.21367011196503e116 * cos(theta) ** 4 - 7.37793381133755e113 * cos(theta) ** 2 + 6.63483256415247e110 ) * cos(61 * phi) ) # @torch.jit.script def Yl77_m62(theta, phi): return ( 1.8316173298734e-113 * (1.0 - cos(theta) ** 2) ** 31 * ( 1.07696299020855e123 * cos(theta) ** 15 - 7.39092248182338e122 * cos(theta) ** 13 + 1.90891375358352e122 * cos(theta) ** 11 - 2.34877531201552e121 * cos(theta) ** 9 + 1.43802570123399e120 * cos(theta) ** 7 - 4.16531582426397e118 * cos(theta) ** 5 + 4.85468044786011e116 * cos(theta) ** 3 - 1.47558676226751e114 * cos(theta) ) * cos(62 * phi) ) # @torch.jit.script def Yl77_m63(theta, phi): return ( 3.99691669444655e-115 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 1.61544448531282e124 * cos(theta) ** 14 - 9.60819922637039e123 * cos(theta) ** 12 + 2.09980512894187e123 * cos(theta) ** 10 - 2.11389778081397e122 * cos(theta) ** 8 + 1.00661799086379e121 * cos(theta) ** 6 - 2.08265791213199e119 * cos(theta) ** 4 + 1.45640413435803e117 * cos(theta) ** 2 - 1.47558676226751e114 ) * cos(63 * phi) ) # @torch.jit.script def Yl77_m64(theta, phi): return ( 8.99604299546297e-117 * (1.0 - cos(theta) ** 2) ** 32 * ( 2.26162227943795e125 * cos(theta) ** 13 - 1.15298390716445e125 * cos(theta) ** 11 + 2.09980512894187e124 * cos(theta) ** 9 - 1.69111822465117e123 * cos(theta) ** 7 + 6.03970794518276e121 * cos(theta) ** 5 - 8.33063164852795e119 * cos(theta) ** 3 + 2.91280826871606e117 * cos(theta) ) * cos(64 * phi) ) # @torch.jit.script def Yl77_m65(theta, phi): return ( 2.09380230745894e-118 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 2.94010896326934e126 * cos(theta) ** 12 - 1.26828229788089e126 * cos(theta) ** 10 + 1.88982461604769e125 * cos(theta) ** 8 - 1.18378275725582e124 * cos(theta) ** 6 + 3.01985397259138e122 * cos(theta) ** 4 - 2.49918949455838e120 * cos(theta) ** 2 + 2.91280826871606e117 ) * cos(65 * phi) ) # @torch.jit.script def Yl77_m66(theta, phi): return ( 5.05448639986654e-120 * (1.0 - cos(theta) ** 2) ** 33 * ( 3.52813075592321e127 * cos(theta) ** 11 - 1.26828229788089e127 * cos(theta) ** 9 + 1.51185969283815e126 * cos(theta) ** 7 - 7.10269654353493e124 * cos(theta) ** 5 + 1.20794158903655e123 * cos(theta) ** 3 - 4.99837898911677e120 * cos(theta) ) * cos(66 * phi) ) # @torch.jit.script def Yl77_m67(theta, phi): return ( 1.26998749214482e-121 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 3.88094383151553e128 * cos(theta) ** 10 - 1.1414540680928e128 * cos(theta) ** 8 + 1.0583017849867e127 * cos(theta) ** 6 - 3.55134827176746e125 * cos(theta) ** 4 + 3.62382476710966e123 * cos(theta) ** 2 - 4.99837898911677e120 ) * cos(67 * phi) ) # @torch.jit.script def Yl77_m68(theta, phi): return ( 3.33515054740002e-123 * (1.0 - cos(theta) ** 2) ** 34 * ( 3.88094383151553e129 * cos(theta) ** 9 - 9.13163254474242e128 * cos(theta) ** 7 + 6.34981070992022e127 * cos(theta) ** 5 - 1.42053930870699e126 * cos(theta) ** 3 + 7.24764953421931e123 * cos(theta) ) * cos(68 * phi) ) # @torch.jit.script def Yl77_m69(theta, phi): return ( 9.20063410801222e-125 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 3.49284944836398e130 * cos(theta) ** 8 - 6.39214278131969e129 * cos(theta) ** 6 + 3.17490535496011e128 * cos(theta) ** 4 - 4.26161792612096e126 * cos(theta) ** 2 + 7.24764953421931e123 ) * cos(69 * phi) ) # @torch.jit.script def Yl77_m70(theta, phi): return ( 2.6829593898425e-126 * (1.0 - cos(theta) ** 2) ** 35 * ( 2.79427955869118e131 * cos(theta) ** 7 - 3.83528566879182e130 * cos(theta) ** 5 + 1.26996214198404e129 * cos(theta) ** 3 - 8.52323585224191e126 * cos(theta) ) * cos(70 * phi) ) # @torch.jit.script def Yl77_m71(theta, phi): return ( 8.33554924128577e-128 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 1.95599569108383e132 * cos(theta) ** 6 - 1.91764283439591e131 * cos(theta) ** 4 + 3.80988642595213e129 * cos(theta) ** 2 - 8.52323585224191e126 ) * cos(71 * phi) ) # @torch.jit.script def Yl77_m72(theta, phi): return ( 2.78782470252787e-129 * (1.0 - cos(theta) ** 2) ** 36 * ( 1.1735974146503e133 * cos(theta) ** 5 - 7.67057133758363e131 * cos(theta) ** 3 + 7.61977285190427e129 * cos(theta) ) * cos(72 * phi) ) # @torch.jit.script def Yl77_m73(theta, phi): return ( 1.01796965062976e-130 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 5.86798707325148e133 * cos(theta) ** 4 - 2.30117140127509e132 * cos(theta) ** 2 + 7.61977285190427e129 ) * cos(73 * phi) ) # @torch.jit.script def Yl77_m74(theta, phi): return ( 4.14205976530905e-132 * (1.0 - cos(theta) ** 2) ** 37 * (2.34719482930059e134 * cos(theta) ** 3 - 4.60234280255018e132 * cos(theta)) * cos(74 * phi) ) # @torch.jit.script def Yl77_m75(theta, phi): return ( 1.93969720345593e-133 * (1.0 - cos(theta) ** 2) ** 37.5 * (7.04158448790177e134 * cos(theta) ** 2 - 4.60234280255018e132) * cos(75 * phi) ) # @torch.jit.script def Yl77_m76(theta, phi): return 15.6161372224161 * (1.0 - cos(theta) ** 2) ** 38 * cos(76 * phi) * cos(theta) # @torch.jit.script def Yl77_m77(theta, phi): return 1.25838419831944 * (1.0 - cos(theta) ** 2) ** 38.5 * cos(77 * phi) # @torch.jit.script def Yl78_m_minus_78(theta, phi): return 1.26241103804633 * (1.0 - cos(theta) ** 2) ** 39 * sin(78 * phi) # @torch.jit.script def Yl78_m_minus_77(theta, phi): return ( 15.7675088115108 * (1.0 - cos(theta) ** 2) ** 38.5 * sin(77 * phi) * cos(theta) ) # @torch.jit.script def Yl78_m_minus_76(theta, phi): return ( 1.27177956062001e-135 * (1.0 - cos(theta) ** 2) ** 38 * (1.09144559562477e137 * cos(theta) ** 2 - 7.04158448790177e134) * sin(76 * phi) ) # @torch.jit.script def Yl78_m_minus_75(theta, phi): return ( 2.73358654861083e-134 * (1.0 - cos(theta) ** 2) ** 37.5 * (3.63815198541592e136 * cos(theta) ** 3 - 7.04158448790177e134 * cos(theta)) * sin(75 * phi) ) # @torch.jit.script def Yl78_m_minus_74(theta, phi): return ( 6.76251964601404e-133 * (1.0 - cos(theta) ** 2) ** 37 * ( 9.09537996353979e135 * cos(theta) ** 4 - 3.52079224395089e134 * cos(theta) ** 2 + 1.15058570063754e132 ) * sin(74 * phi) ) # @torch.jit.script def Yl78_m_minus_73(theta, phi): return ( 1.86429800975251e-131 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 1.81907599270796e135 * cos(theta) ** 5 - 1.1735974146503e134 * cos(theta) ** 3 + 1.15058570063754e132 * cos(theta) ) * sin(73 * phi) ) # @torch.jit.script def Yl78_m_minus_72(theta, phi): return ( 5.61150604086412e-130 * (1.0 - cos(theta) ** 2) ** 36 * ( 3.03179332117993e134 * cos(theta) ** 6 - 2.93399353662574e133 * cos(theta) ** 4 + 5.75292850318772e131 * cos(theta) ** 2 - 1.26996214198404e129 ) * sin(72 * phi) ) # @torch.jit.script def Yl78_m_minus_71(theta, phi): return ( 1.81833577891948e-128 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 4.33113331597133e133 * cos(theta) ** 7 - 5.86798707325148e132 * cos(theta) ** 5 + 1.91764283439591e131 * cos(theta) ** 3 - 1.26996214198404e129 * cos(theta) ) * sin(71 * phi) ) # @torch.jit.script def Yl78_m_minus_70(theta, phi): return ( 6.27786846456604e-127 * (1.0 - cos(theta) ** 2) ** 35 * ( 5.41391664496416e132 * cos(theta) ** 8 - 9.77997845541913e131 * cos(theta) ** 6 + 4.79410708598977e130 * cos(theta) ** 4 - 6.34981070992022e128 * cos(theta) ** 2 + 1.06540448153024e126 ) * sin(70 * phi) ) # @torch.jit.script def Yl78_m_minus_69(theta, phi): return ( 2.29120698398419e-125 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 6.01546293884907e131 * cos(theta) ** 9 - 1.39713977934559e131 * cos(theta) ** 7 + 9.58821417197954e129 * cos(theta) ** 5 - 2.11660356997341e128 * cos(theta) ** 3 + 1.06540448153024e126 * cos(theta) ) * sin(69 * phi) ) # @torch.jit.script def Yl78_m_minus_68(theta, phi): return ( 8.78462024329062e-124 * (1.0 - cos(theta) ** 2) ** 34 * ( 6.01546293884907e130 * cos(theta) ** 10 - 1.74642472418199e130 * cos(theta) ** 8 + 1.59803569532992e129 * cos(theta) ** 6 - 5.29150892493352e127 * cos(theta) ** 4 + 5.3270224076512e125 * cos(theta) ** 2 - 7.24764953421931e122 ) * sin(68 * phi) ) # @torch.jit.script def Yl78_m_minus_67(theta, phi): return ( 3.52043039736682e-122 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 5.46860267168097e129 * cos(theta) ** 11 - 1.94047191575776e129 * cos(theta) ** 9 + 2.2829081361856e128 * cos(theta) ** 7 - 1.0583017849867e127 * cos(theta) ** 5 + 1.77567413588373e125 * cos(theta) ** 3 - 7.24764953421931e122 * cos(theta) ) * sin(67 * phi) ) # @torch.jit.script def Yl78_m_minus_66(theta, phi): return ( 1.46848794744477e-120 * (1.0 - cos(theta) ** 2) ** 33 * ( 4.55716889306748e128 * cos(theta) ** 12 - 1.94047191575776e128 * cos(theta) ** 10 + 2.85363517023201e127 * cos(theta) ** 8 - 1.76383630831117e126 * cos(theta) ** 6 + 4.43918533970933e124 * cos(theta) ** 4 - 3.62382476710966e122 * cos(theta) ** 2 + 4.16531582426397e119 ) * sin(66 * phi) ) # @torch.jit.script def Yl78_m_minus_65(theta, phi): return ( 6.35365031029558e-119 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 3.50551453312883e127 * cos(theta) ** 13 - 1.7640653779616e127 * cos(theta) ** 11 + 3.17070574470223e126 * cos(theta) ** 9 - 2.51976615473025e125 * cos(theta) ** 7 + 8.87837067941866e123 * cos(theta) ** 5 - 1.20794158903655e122 * cos(theta) ** 3 + 4.16531582426397e119 * cos(theta) ) * sin(65 * phi) ) # @torch.jit.script def Yl78_m_minus_64(theta, phi): return ( 2.84285916421425e-117 * (1.0 - cos(theta) ** 2) ** 32 * ( 2.50393895223488e126 * cos(theta) ** 14 - 1.47005448163467e126 * cos(theta) ** 12 + 3.17070574470223e125 * cos(theta) ** 10 - 3.14970769341281e124 * cos(theta) ** 8 + 1.47972844656978e123 * cos(theta) ** 6 - 3.01985397259138e121 * cos(theta) ** 4 + 2.08265791213199e119 * cos(theta) ** 2 - 2.08057733479719e116 ) * sin(64 * phi) ) # @torch.jit.script def Yl78_m_minus_63(theta, phi): return ( 1.3120341735144e-115 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 1.66929263482325e125 * cos(theta) ** 15 - 1.13081113971898e125 * cos(theta) ** 13 + 2.88245976791112e124 * cos(theta) ** 11 - 3.49967521490312e123 * cos(theta) ** 9 + 2.11389778081397e122 * cos(theta) ** 7 - 6.03970794518276e120 * cos(theta) ** 5 + 6.94219304043996e118 * cos(theta) ** 3 - 2.08057733479719e116 * cos(theta) ) * sin(63 * phi) ) # @torch.jit.script def Yl78_m_minus_62(theta, phi): return ( 6.23181704247764e-114 * (1.0 - cos(theta) ** 2) ** 31 * ( 1.04330789676453e124 * cos(theta) ** 16 - 8.07722242656412e123 * cos(theta) ** 14 + 2.4020498065926e123 * cos(theta) ** 12 - 3.49967521490312e122 * cos(theta) ** 10 + 2.64237222601746e121 * cos(theta) ** 8 - 1.00661799086379e120 * cos(theta) ** 6 + 1.73554826010999e118 * cos(theta) ** 4 - 1.04028866739859e116 * cos(theta) ** 2 + 9.22241726417194e112 ) * sin(62 * phi) ) # @torch.jit.script def Yl78_m_minus_61(theta, phi): return ( 3.04020712927881e-112 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 6.13710527508548e122 * cos(theta) ** 17 - 5.38481495104275e122 * cos(theta) ** 15 + 1.84773062045584e122 * cos(theta) ** 13 - 3.1815229226392e121 * cos(theta) ** 11 + 2.9359691400194e120 * cos(theta) ** 9 - 1.43802570123399e119 * cos(theta) ** 7 + 3.47109652021998e117 * cos(theta) ** 5 - 3.46762889132865e115 * cos(theta) ** 3 + 9.22241726417194e112 * cos(theta) ) * sin(61 * phi) ) # @torch.jit.script def Yl78_m_minus_60(theta, phi): return ( 1.52071148450559e-110 * (1.0 - cos(theta) ** 2) ** 30 * ( 3.40950293060305e121 * cos(theta) ** 18 - 3.36550934440172e121 * cos(theta) ** 16 + 1.31980758603989e121 * cos(theta) ** 14 - 2.65126910219933e120 * cos(theta) ** 12 + 2.9359691400194e119 * cos(theta) ** 10 - 1.79753212654249e118 * cos(theta) ** 8 + 5.7851608670333e116 * cos(theta) ** 6 - 8.66907222832162e114 * cos(theta) ** 4 + 4.61120863208597e112 * cos(theta) ** 2 - 3.68601809119582e109 ) * sin(60 * phi) ) # @torch.jit.script def Yl78_m_minus_59(theta, phi): return ( 7.78687439535216e-109 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 1.79447522663318e120 * cos(theta) ** 19 - 1.97971137905983e120 * cos(theta) ** 17 + 8.79871724026592e119 * cos(theta) ** 15 - 2.03943777092257e119 * cos(theta) ** 13 + 2.66906285456309e118 * cos(theta) ** 11 - 1.99725791838054e117 * cos(theta) ** 9 + 8.26451552433328e115 * cos(theta) ** 7 - 1.73381444566432e114 * cos(theta) ** 5 + 1.53706954402866e112 * cos(theta) ** 3 - 3.68601809119582e109 * cos(theta) ) * sin(59 * phi) ) # @torch.jit.script def Yl78_m_minus_58(theta, phi): return ( 4.07604012745502e-107 * (1.0 - cos(theta) ** 2) ** 29 * ( 8.97237613316591e118 * cos(theta) ** 20 - 1.09983965503324e119 * cos(theta) ** 18 + 5.4991982751662e118 * cos(theta) ** 16 - 1.45674126494469e118 * cos(theta) ** 14 + 2.22421904546924e117 * cos(theta) ** 12 - 1.99725791838054e116 * cos(theta) ** 10 + 1.03306444054166e115 * cos(theta) ** 8 - 2.88969074277387e113 * cos(theta) ** 6 + 3.84267386007164e111 * cos(theta) ** 4 - 1.84300904559791e109 * cos(theta) ** 2 + 1.34526207707877e106 ) * sin(58 * phi) ) # @torch.jit.script def Yl78_m_minus_57(theta, phi): return ( 2.17829930249497e-105 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 4.27256006341234e117 * cos(theta) ** 21 - 5.78862976333285e117 * cos(theta) ** 19 + 3.23482251480365e117 * cos(theta) ** 17 - 9.7116084329646e116 * cos(theta) ** 15 + 1.71093772728403e116 * cos(theta) ** 13 - 1.81568901670958e115 * cos(theta) ** 11 + 1.14784937837962e114 * cos(theta) ** 9 - 4.12812963253411e112 * cos(theta) ** 7 + 7.68534772014328e110 * cos(theta) ** 5 - 6.14336348532636e108 * cos(theta) ** 3 + 1.34526207707877e106 * cos(theta) ) * sin(57 * phi) ) # @torch.jit.script def Yl78_m_minus_56(theta, phi): return ( 1.18712315781526e-103 * (1.0 - cos(theta) ** 2) ** 28 * ( 1.94207275609652e116 * cos(theta) ** 22 - 2.89431488166642e116 * cos(theta) ** 20 + 1.79712361933536e116 * cos(theta) ** 18 - 6.06975527060287e115 * cos(theta) ** 16 + 1.22209837663145e115 * cos(theta) ** 14 - 1.51307418059132e114 * cos(theta) ** 12 + 1.14784937837962e113 * cos(theta) ** 10 - 5.16016204066763e111 * cos(theta) ** 8 + 1.28089128669055e110 * cos(theta) ** 6 - 1.53584087133159e108 * cos(theta) ** 4 + 6.72631038539383e105 * cos(theta) ** 2 - 4.52950194302615e102 ) * sin(56 * phi) ) # @torch.jit.script def Yl78_m_minus_55(theta, phi): return ( 6.59040485068495e-102 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 8.44379459172399e114 * cos(theta) ** 23 - 1.37824518174592e115 * cos(theta) ** 21 + 9.45854536492295e114 * cos(theta) ** 19 - 3.57044427682522e114 * cos(theta) ** 17 + 8.14732251087634e113 * cos(theta) ** 15 - 1.16390321583948e113 * cos(theta) ** 13 + 1.04349943489057e112 * cos(theta) ** 11 - 5.73351337851959e110 * cos(theta) ** 9 + 1.82984469527221e109 * cos(theta) ** 7 - 3.07168174266318e107 * cos(theta) ** 5 + 2.24210346179794e105 * cos(theta) ** 3 - 4.52950194302615e102 * cos(theta) ) * sin(55 * phi) ) # @torch.jit.script def Yl78_m_minus_54(theta, phi): return ( 3.72343293236516e-100 * (1.0 - cos(theta) ** 2) ** 27 * ( 3.51824774655166e113 * cos(theta) ** 24 - 6.2647508261178e113 * cos(theta) ** 22 + 4.72927268246147e113 * cos(theta) ** 20 - 1.98358015379179e113 * cos(theta) ** 18 + 5.09207656929771e112 * cos(theta) ** 16 - 8.31359439885341e111 * cos(theta) ** 14 + 8.69582862408805e110 * cos(theta) ** 12 - 5.73351337851959e109 * cos(theta) ** 10 + 2.28730586909026e108 * cos(theta) ** 8 - 5.1194695711053e106 * cos(theta) ** 6 + 5.60525865449486e104 * cos(theta) ** 4 - 2.26475097151307e102 * cos(theta) ** 2 + 1.41901689944428e99 ) * sin(54 * phi) ) # @torch.jit.script def Yl78_m_minus_53(theta, phi): return ( 2.13894937401544e-98 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 1.40729909862066e112 * cos(theta) ** 25 - 2.72380470700774e112 * cos(theta) ** 23 + 2.25203461069594e112 * cos(theta) ** 21 - 1.04398955462726e112 * cos(theta) ** 19 + 2.99533915841042e111 * cos(theta) ** 17 - 5.54239626590227e110 * cos(theta) ** 15 + 6.68909894160619e109 * cos(theta) ** 13 - 5.21228488956326e108 * cos(theta) ** 11 + 2.54145096565585e107 * cos(theta) ** 9 - 7.31352795872186e105 * cos(theta) ** 7 + 1.12105173089897e104 * cos(theta) ** 5 - 7.54916990504358e101 * cos(theta) ** 3 + 1.41901689944428e99 * cos(theta) ) * sin(53 * phi) ) # @torch.jit.script def Yl78_m_minus_52(theta, phi): return ( 1.24831108583523e-96 * (1.0 - cos(theta) ** 2) ** 26 * ( 5.41268884084871e110 * cos(theta) ** 26 - 1.13491862791989e111 * cos(theta) ** 24 + 1.02365209577088e111 * cos(theta) ** 22 - 5.21994777313629e110 * cos(theta) ** 20 + 1.66407731022801e110 * cos(theta) ** 18 - 3.46399766618892e109 * cos(theta) ** 16 + 4.77792781543299e108 * cos(theta) ** 14 - 4.34357074130272e107 * cos(theta) ** 12 + 2.54145096565585e106 * cos(theta) ** 10 - 9.14190994840233e104 * cos(theta) ** 8 + 1.86841955149829e103 * cos(theta) ** 6 - 1.8872924762609e101 * cos(theta) ** 4 + 7.09508449722141e98 * cos(theta) ** 2 - 4.16622695080529e95 ) * sin(52 * phi) ) # @torch.jit.script def Yl78_m_minus_51(theta, phi): return ( 7.39565060710491e-95 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 2.00469957068471e109 * cos(theta) ** 27 - 4.53967451167956e109 * cos(theta) ** 25 + 4.45066128596036e109 * cos(theta) ** 23 - 2.48568941577918e109 * cos(theta) ** 21 + 8.758301632779e108 * cos(theta) ** 19 - 2.03764568599348e108 * cos(theta) ** 17 + 3.18528521028866e107 * cos(theta) ** 15 - 3.34120826254055e106 * cos(theta) ** 13 + 2.31040996877804e105 * cos(theta) ** 11 - 1.0157677720447e104 * cos(theta) ** 9 + 2.66917078785469e102 * cos(theta) ** 7 - 3.77458495252179e100 * cos(theta) ** 5 + 2.36502816574047e98 * cos(theta) ** 3 - 4.16622695080529e95 * cos(theta) ) * sin(51 * phi) ) # @torch.jit.script def Yl78_m_minus_50(theta, phi): return ( 4.44477986207826e-93 * (1.0 - cos(theta) ** 2) ** 25 * ( 7.15964132387396e107 * cos(theta) ** 28 - 1.74602865833829e108 * cos(theta) ** 26 + 1.85444220248348e108 * cos(theta) ** 24 - 1.12985882535417e108 * cos(theta) ** 22 + 4.3791508163895e107 * cos(theta) ** 20 - 1.13202538110749e107 * cos(theta) ** 18 + 1.99080325643041e106 * cos(theta) ** 16 - 2.38657733038611e105 * cos(theta) ** 14 + 1.92534164064837e104 * cos(theta) ** 12 - 1.0157677720447e103 * cos(theta) ** 10 + 3.33646348481837e101 * cos(theta) ** 8 - 6.29097492086965e99 * cos(theta) ** 6 + 5.91257041435118e97 * cos(theta) ** 4 - 2.08311347540265e95 * cos(theta) ** 2 + 1.15344046257068e92 ) * sin(50 * phi) ) # @torch.jit.script def Yl78_m_minus_49(theta, phi): return ( 2.70803479480809e-91 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 2.46884183581861e106 * cos(theta) ** 29 - 6.46677280866035e106 * cos(theta) ** 27 + 7.41776880993393e106 * cos(theta) ** 25 - 4.91242967545293e106 * cos(theta) ** 23 + 2.08530991256643e106 * cos(theta) ** 21 - 5.95802832161837e105 * cos(theta) ** 19 + 1.17106073907671e105 * cos(theta) ** 17 - 1.59105155359074e104 * cos(theta) ** 15 + 1.48103203126798e103 * cos(theta) ** 13 - 9.23425247313366e101 * cos(theta) ** 11 + 3.70718164979819e100 * cos(theta) ** 9 - 8.98710702981379e98 * cos(theta) ** 7 + 1.18251408287024e97 * cos(theta) ** 5 - 6.94371158467548e94 * cos(theta) ** 3 + 1.15344046257068e92 * cos(theta) ) * sin(49 * phi) ) # @torch.jit.script def Yl78_m_minus_48(theta, phi): return ( 1.67153982405702e-89 * (1.0 - cos(theta) ** 2) ** 24 * ( 8.22947278606202e104 * cos(theta) ** 30 - 2.3095617173787e105 * cos(theta) ** 28 + 2.85298800382074e105 * cos(theta) ** 26 - 2.04684569810539e105 * cos(theta) ** 24 + 9.4786814207565e104 * cos(theta) ** 22 - 2.97901416080918e104 * cos(theta) ** 20 + 6.50589299487063e103 * cos(theta) ** 18 - 9.94407220994213e102 * cos(theta) ** 16 + 1.05788002233427e102 * cos(theta) ** 14 - 7.69521039427805e100 * cos(theta) ** 12 + 3.70718164979819e99 * cos(theta) ** 10 - 1.12338837872672e98 * cos(theta) ** 8 + 1.97085680478372e96 * cos(theta) ** 6 - 1.73592789616887e94 * cos(theta) ** 4 + 5.76720231285339e91 * cos(theta) ** 2 - 3.02740278889942e88 ) * sin(48 * phi) ) # @torch.jit.script def Yl78_m_minus_47(theta, phi): return ( 1.04467895870425e-87 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 2.65466864066517e103 * cos(theta) ** 31 - 7.9640059219955e103 * cos(theta) ** 29 + 1.05666222363731e104 * cos(theta) ** 27 - 8.18738279242155e103 * cos(theta) ** 25 + 4.12116583511152e103 * cos(theta) ** 23 - 1.4185781718139e103 * cos(theta) ** 21 + 3.42415420782665e102 * cos(theta) ** 19 - 5.84945424114243e101 * cos(theta) ** 17 + 7.05253348222846e100 * cos(theta) ** 15 - 5.91939261098312e99 * cos(theta) ** 13 + 3.37016513618017e98 * cos(theta) ** 11 - 1.24820930969636e97 * cos(theta) ** 9 + 2.81550972111961e95 * cos(theta) ** 7 - 3.47185579233774e93 * cos(theta) ** 5 + 1.92240077095113e91 * cos(theta) ** 3 - 3.02740278889942e88 * cos(theta) ) * sin(47 * phi) ) # @torch.jit.script def Yl78_m_minus_46(theta, phi): return ( 6.60712986631682e-86 * (1.0 - cos(theta) ** 2) ** 23 * ( 8.29583950207865e101 * cos(theta) ** 32 - 2.65466864066517e102 * cos(theta) ** 30 + 3.77379365584754e102 * cos(theta) ** 28 - 3.1489933817006e102 * cos(theta) ** 26 + 1.71715243129647e102 * cos(theta) ** 24 - 6.44808259915408e101 * cos(theta) ** 22 + 1.71207710391332e101 * cos(theta) ** 20 - 3.24969680063468e100 * cos(theta) ** 18 + 4.40783342639279e99 * cos(theta) ** 16 - 4.22813757927366e98 * cos(theta) ** 14 + 2.80847094681681e97 * cos(theta) ** 12 - 1.24820930969636e96 * cos(theta) ** 10 + 3.51938715139951e94 * cos(theta) ** 8 - 5.7864263205629e92 * cos(theta) ** 6 + 4.80600192737783e90 * cos(theta) ** 4 - 1.51370139444971e88 * cos(theta) ** 2 + 7.56850697224855e84 ) * sin(46 * phi) ) # @torch.jit.script def Yl78_m_minus_45(theta, phi): return ( 4.22649788202925e-84 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 2.51389075820565e100 * cos(theta) ** 33 - 8.56344722795215e100 * cos(theta) ** 31 + 1.30130815718881e101 * cos(theta) ** 29 - 1.1662938450743e101 * cos(theta) ** 27 + 6.86860972518587e100 * cos(theta) ** 25 - 2.80351417354525e100 * cos(theta) ** 23 + 8.15274811387297e99 * cos(theta) ** 21 - 1.71036673717615e99 * cos(theta) ** 19 + 2.59284319199576e98 * cos(theta) ** 17 - 2.81875838618244e97 * cos(theta) ** 15 + 2.16036226678216e96 * cos(theta) ** 13 - 1.1347357360876e95 * cos(theta) ** 11 + 3.91043016822168e93 * cos(theta) ** 9 - 8.26632331508986e91 * cos(theta) ** 7 + 9.61200385475565e89 * cos(theta) ** 5 - 5.04567131483236e87 * cos(theta) ** 3 + 7.56850697224855e84 * cos(theta) ) * sin(45 * phi) ) # @torch.jit.script def Yl78_m_minus_44(theta, phi): return ( 2.73320791631936e-82 * (1.0 - cos(theta) ** 2) ** 22 * ( 7.39379634766368e98 * cos(theta) ** 34 - 2.67607725873505e99 * cos(theta) ** 32 + 4.33769385729602e99 * cos(theta) ** 30 - 4.16533516097963e99 * cos(theta) ** 28 + 2.64177297122533e99 * cos(theta) ** 26 - 1.16813090564385e99 * cos(theta) ** 24 + 3.70579459721499e98 * cos(theta) ** 22 - 8.55183368588074e97 * cos(theta) ** 20 + 1.44046843999764e97 * cos(theta) ** 18 - 1.76172399136402e96 * cos(theta) ** 16 + 1.5431159048444e95 * cos(theta) ** 14 - 9.45613113406333e93 * cos(theta) ** 12 + 3.91043016822168e92 * cos(theta) ** 10 - 1.03329041438623e91 * cos(theta) ** 8 + 1.60200064245928e89 * cos(theta) ** 6 - 1.26141782870809e87 * cos(theta) ** 4 + 3.78425348612427e84 * cos(theta) ** 2 - 1.80978167676914e81 ) * sin(44 * phi) ) # @torch.jit.script def Yl78_m_minus_43(theta, phi): return ( 1.78602119091733e-80 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 2.11251324218962e97 * cos(theta) ** 35 - 8.10932502646984e97 * cos(theta) ** 33 + 1.39925608299872e98 * cos(theta) ** 31 - 1.43632246930332e98 * cos(theta) ** 29 + 9.7843443378716e97 * cos(theta) ** 27 - 4.67252362257542e97 * cos(theta) ** 25 + 1.61121504226739e97 * cos(theta) ** 23 - 4.07230175518131e96 * cos(theta) ** 21 + 7.58141284209286e95 * cos(theta) ** 19 - 1.03630823021413e95 * cos(theta) ** 17 + 1.02874393656293e94 * cos(theta) ** 15 - 7.27394702620256e92 * cos(theta) ** 13 + 3.55493651656516e91 * cos(theta) ** 11 - 1.14810046042915e90 * cos(theta) ** 9 + 2.28857234637039e88 * cos(theta) ** 7 - 2.52283565741618e86 * cos(theta) ** 5 + 1.26141782870809e84 * cos(theta) ** 3 - 1.80978167676914e81 * cos(theta) ) * sin(43 * phi) ) # @torch.jit.script def Yl78_m_minus_42(theta, phi): return ( 1.17877398600544e-78 * (1.0 - cos(theta) ** 2) ** 21 * ( 5.86809233941562e95 * cos(theta) ** 36 - 2.38509559602054e96 * cos(theta) ** 34 + 4.37267525937099e96 * cos(theta) ** 32 - 4.7877415643444e96 * cos(theta) ** 30 + 3.494408692097e96 * cos(theta) ** 28 - 1.79712447022132e96 * cos(theta) ** 26 + 6.71339600944744e95 * cos(theta) ** 24 - 1.85104625235514e95 * cos(theta) ** 22 + 3.79070642104643e94 * cos(theta) ** 20 - 5.75726794563406e93 * cos(theta) ** 18 + 6.42964960351833e92 * cos(theta) ** 16 - 5.19567644728754e91 * cos(theta) ** 14 + 2.96244709713763e90 * cos(theta) ** 12 - 1.14810046042915e89 * cos(theta) ** 10 + 2.86071543296299e87 * cos(theta) ** 8 - 4.20472609569364e85 * cos(theta) ** 6 + 3.15354457177023e83 * cos(theta) ** 4 - 9.0489083838457e80 * cos(theta) ** 2 + 4.15468704492457e77 ) * sin(42 * phi) ) # @torch.jit.script def Yl78_m_minus_41(theta, phi): return ( 7.85456301061312e-77 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 1.58597090254476e94 * cos(theta) ** 37 - 6.81455884577298e94 * cos(theta) ** 35 + 1.3250531089003e95 * cos(theta) ** 33 - 1.54443276269174e95 * cos(theta) ** 31 + 1.20496851451621e95 * cos(theta) ** 29 - 6.65601655637524e94 * cos(theta) ** 27 + 2.68535840377898e94 * cos(theta) ** 25 - 8.04802718415278e93 * cos(theta) ** 23 + 1.80509829573639e93 * cos(theta) ** 21 - 3.03014102401793e92 * cos(theta) ** 19 + 3.78214682559902e91 * cos(theta) ** 17 - 3.46378429819169e90 * cos(theta) ** 15 + 2.27880545933664e89 * cos(theta) ** 13 - 1.04372769129923e88 * cos(theta) ** 11 + 3.17857270329221e86 * cos(theta) ** 9 - 6.00675156527662e84 * cos(theta) ** 7 + 6.30708914354045e82 * cos(theta) ** 5 - 3.01630279461523e80 * cos(theta) ** 3 + 4.15468704492457e77 * cos(theta) ) * sin(41 * phi) ) # @torch.jit.script def Yl78_m_minus_40(theta, phi): return ( 5.28186512433385e-75 * (1.0 - cos(theta) ** 2) ** 20 * ( 4.17360763827569e92 * cos(theta) ** 38 - 1.89293301271472e93 * cos(theta) ** 36 + 3.89721502617736e93 * cos(theta) ** 34 - 4.82635238341169e93 * cos(theta) ** 32 + 4.01656171505403e93 * cos(theta) ** 30 - 2.37714877013401e93 * cos(theta) ** 28 + 1.03283015529961e93 * cos(theta) ** 26 - 3.35334466006366e92 * cos(theta) ** 24 + 8.20499225334725e91 * cos(theta) ** 22 - 1.51507051200896e91 * cos(theta) ** 20 + 2.10119268088834e90 * cos(theta) ** 18 - 2.16486518636981e89 * cos(theta) ** 16 + 1.62771818524046e88 * cos(theta) ** 14 - 8.69773076082688e86 * cos(theta) ** 12 + 3.17857270329221e85 * cos(theta) ** 10 - 7.50843945659578e83 * cos(theta) ** 8 + 1.05118152392341e82 * cos(theta) ** 6 - 7.54075698653809e79 * cos(theta) ** 4 + 2.07734352246228e77 * cos(theta) ** 2 - 9.18772013472925e73 ) * sin(40 * phi) ) # @torch.jit.script def Yl78_m_minus_39(theta, phi): return ( 3.58311390385504e-73 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 1.07015580468607e91 * cos(theta) ** 39 - 5.11603516949923e91 * cos(theta) ** 37 + 1.11349000747924e92 * cos(theta) ** 35 - 1.46253102527627e92 * cos(theta) ** 33 + 1.29566506937227e92 * cos(theta) ** 31 - 8.19706472460005e91 * cos(theta) ** 29 + 3.82529687148002e91 * cos(theta) ** 27 - 1.34133786402546e91 * cos(theta) ** 25 + 3.56738793623793e90 * cos(theta) ** 23 - 7.21462148575697e89 * cos(theta) ** 21 + 1.10589088467808e89 * cos(theta) ** 19 - 1.2734501096293e88 * cos(theta) ** 17 + 1.08514545682697e87 * cos(theta) ** 15 - 6.69056212371298e85 * cos(theta) ** 13 + 2.88961154844747e84 * cos(theta) ** 11 - 8.34271050732864e82 * cos(theta) ** 9 + 1.50168789131916e81 * cos(theta) ** 7 - 1.50815139730762e79 * cos(theta) ** 5 + 6.92447840820761e76 * cos(theta) ** 3 - 9.18772013472925e73 * cos(theta) ) * sin(39 * phi) ) # @torch.jit.script def Yl78_m_minus_38(theta, phi): return ( 2.45122705110393e-71 * (1.0 - cos(theta) ** 2) ** 19 * ( 2.67538951171518e89 * cos(theta) ** 40 - 1.34632504460506e90 * cos(theta) ** 38 + 3.09302779855346e90 * cos(theta) ** 36 - 4.30156183904785e90 * cos(theta) ** 34 + 4.04895334178833e90 * cos(theta) ** 32 - 2.73235490820002e90 * cos(theta) ** 30 + 1.36617745410001e90 * cos(theta) ** 28 - 5.15899178471332e89 * cos(theta) ** 26 + 1.48641164009914e89 * cos(theta) ** 24 - 3.27937340261681e88 * cos(theta) ** 22 + 5.52945442339038e87 * cos(theta) ** 20 - 7.07472283127389e86 * cos(theta) ** 18 + 6.78215910516858e85 * cos(theta) ** 16 - 4.77897294550927e84 * cos(theta) ** 14 + 2.40800962370622e83 * cos(theta) ** 12 - 8.34271050732864e81 * cos(theta) ** 10 + 1.87710986414895e80 * cos(theta) ** 8 - 2.51358566217936e78 * cos(theta) ** 6 + 1.7311196020519e76 * cos(theta) ** 4 - 4.59386006736462e73 * cos(theta) ** 2 + 1.96318806297633e70 ) * sin(38 * phi) ) # @torch.jit.script def Yl78_m_minus_37(theta, phi): return ( 1.69045830621872e-69 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 6.52534027247606e87 * cos(theta) ** 41 - 3.45211549898734e88 * cos(theta) ** 39 + 8.35953459068502e88 * cos(theta) ** 37 - 1.22901766829939e89 * cos(theta) ** 35 + 1.22695555811768e89 * cos(theta) ** 33 - 8.8140480909678e88 * cos(theta) ** 31 + 4.71095673827589e88 * cos(theta) ** 29 - 1.91073769804197e88 * cos(theta) ** 27 + 5.94564656039656e87 * cos(theta) ** 25 - 1.42581452287687e87 * cos(theta) ** 23 + 2.6330735349478e86 * cos(theta) ** 21 - 3.72353833224941e85 * cos(theta) ** 19 + 3.98950535598152e84 * cos(theta) ** 17 - 3.18598196367285e83 * cos(theta) ** 15 + 1.85231509515863e82 * cos(theta) ** 13 - 7.58428227938968e80 * cos(theta) ** 11 + 2.08567762683216e79 * cos(theta) ** 9 - 3.59083666025623e77 * cos(theta) ** 7 + 3.4622392041038e75 * cos(theta) ** 5 - 1.53128668912154e73 * cos(theta) ** 3 + 1.96318806297633e70 * cos(theta) ) * sin(37 * phi) ) # @torch.jit.script def Yl78_m_minus_36(theta, phi): return ( 1.17483811850223e-67 * (1.0 - cos(theta) ** 2) ** 18 * ( 1.55365244582763e86 * cos(theta) ** 42 - 8.63028874746834e86 * cos(theta) ** 40 + 2.19987752386448e87 * cos(theta) ** 38 - 3.4139379674983e87 * cos(theta) ** 36 + 3.60869281799317e87 * cos(theta) ** 34 - 2.75439002842744e87 * cos(theta) ** 32 + 1.57031891275863e87 * cos(theta) ** 30 - 6.82406320729275e86 * cos(theta) ** 28 + 2.28678713861406e86 * cos(theta) ** 26 - 5.9408938453203e85 * cos(theta) ** 24 + 1.19685160679445e85 * cos(theta) ** 22 - 1.86176916612471e84 * cos(theta) ** 20 + 2.21639186443417e83 * cos(theta) ** 18 - 1.99123872729553e82 * cos(theta) ** 16 + 1.32308221082759e81 * cos(theta) ** 14 - 6.32023523282473e79 * cos(theta) ** 12 + 2.08567762683216e78 * cos(theta) ** 10 - 4.48854582532029e76 * cos(theta) ** 8 + 5.77039867350634e74 * cos(theta) ** 6 - 3.82821672280385e72 * cos(theta) ** 4 + 9.81594031488167e69 * cos(theta) ** 2 - 4.06457155895721e66 ) * sin(36 * phi) ) # @torch.jit.script def Yl78_m_minus_35(theta, phi): return ( 8.22554499846062e-66 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 3.61314522285496e84 * cos(theta) ** 43 - 2.10494847499228e85 * cos(theta) ** 41 + 5.64071159965251e85 * cos(theta) ** 39 - 9.22685937161702e85 * cos(theta) ** 37 + 1.03105509085519e86 * cos(theta) ** 35 - 8.34663644978011e85 * cos(theta) ** 33 + 5.06554487986655e85 * cos(theta) ** 31 - 2.35312524389405e85 * cos(theta) ** 29 + 8.46958199486689e84 * cos(theta) ** 27 - 2.37635753812812e84 * cos(theta) ** 25 + 5.20370263823676e83 * cos(theta) ** 23 - 8.8655674577367e82 * cos(theta) ** 21 + 1.16652203391272e82 * cos(theta) ** 19 - 1.17131689840914e81 * cos(theta) ** 17 + 8.82054807218396e79 * cos(theta) ** 15 - 4.86171940986518e78 * cos(theta) ** 13 + 1.89607056984742e77 * cos(theta) ** 11 - 4.98727313924477e75 * cos(theta) ** 9 + 8.24342667643763e73 * cos(theta) ** 7 - 7.65643344560771e71 * cos(theta) ** 5 + 3.27198010496056e69 * cos(theta) ** 3 - 4.06457155895721e66 * cos(theta) ) * sin(35 * phi) ) # @torch.jit.script def Yl78_m_minus_34(theta, phi): return ( 5.80003003504202e-64 * (1.0 - cos(theta) ** 2) ** 17 * ( 8.21169368830673e82 * cos(theta) ** 44 - 5.01178208331495e83 * cos(theta) ** 42 + 1.41017789991313e84 * cos(theta) ** 40 - 2.42812088726764e84 * cos(theta) ** 38 + 2.86404191904219e84 * cos(theta) ** 36 - 2.45489307346474e84 * cos(theta) ** 34 + 1.5829827749583e84 * cos(theta) ** 32 - 7.84375081298017e83 * cos(theta) ** 30 + 3.02485071245246e83 * cos(theta) ** 28 - 9.13983668510815e82 * cos(theta) ** 26 + 2.16820943259865e82 * cos(theta) ** 24 - 4.02980338988032e81 * cos(theta) ** 22 + 5.83261016956362e80 * cos(theta) ** 20 - 6.50731610227297e79 * cos(theta) ** 18 + 5.51284254511498e78 * cos(theta) ** 16 - 3.47265672133227e77 * cos(theta) ** 14 + 1.58005880820618e76 * cos(theta) ** 12 - 4.98727313924477e74 * cos(theta) ** 10 + 1.0304283345547e73 * cos(theta) ** 8 - 1.27607224093462e71 * cos(theta) ** 6 + 8.17995026240139e68 * cos(theta) ** 4 - 2.03228577947861e66 * cos(theta) ** 2 + 8.17492268495015e62 ) * sin(34 * phi) ) # @torch.jit.script def Yl78_m_minus_33(theta, phi): return ( 4.11761285180192e-62 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 1.82482081962372e81 * cos(theta) ** 45 - 1.16553071704999e82 * cos(theta) ** 43 + 3.43945829247104e82 * cos(theta) ** 41 - 6.22595099299394e82 * cos(theta) ** 39 + 7.74065383524918e82 * cos(theta) ** 37 - 7.01398020989925e82 * cos(theta) ** 35 + 4.79691749987363e82 * cos(theta) ** 33 - 2.53024219773554e82 * cos(theta) ** 31 + 1.04305196981119e82 * cos(theta) ** 29 - 3.3851246981882e81 * cos(theta) ** 27 + 8.6728377303946e80 * cos(theta) ** 25 - 1.75208843038275e80 * cos(theta) ** 23 + 2.77743341407791e79 * cos(theta) ** 21 - 3.42490321172262e78 * cos(theta) ** 19 + 3.24284855594999e77 * cos(theta) ** 17 - 2.31510448088818e76 * cos(theta) ** 15 + 1.21542985246629e75 * cos(theta) ** 13 - 4.5338846720407e73 * cos(theta) ** 11 + 1.14492037172745e72 * cos(theta) ** 9 - 1.82296034419231e70 * cos(theta) ** 7 + 1.63599005248028e68 * cos(theta) ** 5 - 6.77428593159536e65 * cos(theta) ** 3 + 8.17492268495015e62 * cos(theta) ) * sin(33 * phi) ) # @torch.jit.script def Yl78_m_minus_32(theta, phi): return ( 2.94229298269119e-60 * (1.0 - cos(theta) ** 2) ** 16 * ( 3.96700178179069e79 * cos(theta) ** 46 - 2.64893344784088e80 * cos(theta) ** 44 + 8.18918641064534e80 * cos(theta) ** 42 - 1.55648774824848e81 * cos(theta) ** 40 + 2.03701416717084e81 * cos(theta) ** 38 - 1.94832783608313e81 * cos(theta) ** 36 + 1.41085808819813e81 * cos(theta) ** 34 - 7.90700686792356e80 * cos(theta) ** 32 + 3.47683989937064e80 * cos(theta) ** 30 - 1.20897310649579e80 * cos(theta) ** 28 + 3.33570681938254e79 * cos(theta) ** 26 - 7.30036845992811e78 * cos(theta) ** 24 + 1.26246973367178e78 * cos(theta) ** 22 - 1.71245160586131e77 * cos(theta) ** 20 + 1.80158253108333e76 * cos(theta) ** 18 - 1.44694030055511e75 * cos(theta) ** 16 + 8.68164180333067e73 * cos(theta) ** 14 - 3.77823722670058e72 * cos(theta) ** 12 + 1.14492037172745e71 * cos(theta) ** 10 - 2.27870043024039e69 * cos(theta) ** 8 + 2.72665008746713e67 * cos(theta) ** 6 - 1.69357148289884e65 * cos(theta) ** 4 + 4.08746134247508e62 * cos(theta) ** 2 - 1.60104243731887e59 ) * sin(32 * phi) ) # @torch.jit.script def Yl78_m_minus_31(theta, phi): return ( 2.11558845098209e-58 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 8.44042932295892e77 * cos(theta) ** 47 - 5.88651877297974e78 * cos(theta) ** 45 + 1.90446195596403e79 * cos(theta) ** 43 - 3.79631158109386e79 * cos(theta) ** 41 + 5.22311324915599e79 * cos(theta) ** 39 - 5.26575090833277e79 * cos(theta) ** 37 + 4.0310231091375e79 * cos(theta) ** 35 - 2.39606268724956e79 * cos(theta) ** 33 + 1.1215612578615e79 * cos(theta) ** 31 - 4.16887278101996e78 * cos(theta) ** 29 + 1.23544697014168e78 * cos(theta) ** 27 - 2.92014738397124e77 * cos(theta) ** 25 + 5.48899884205121e76 * cos(theta) ** 23 - 8.15453145648242e75 * cos(theta) ** 21 + 9.48201332149119e74 * cos(theta) ** 19 - 8.51141353267713e73 * cos(theta) ** 17 + 5.78776120222045e72 * cos(theta) ** 15 - 2.90633632823122e71 * cos(theta) ** 13 + 1.04083670157041e70 * cos(theta) ** 11 - 2.53188936693377e68 * cos(theta) ** 9 + 3.89521441066733e66 * cos(theta) ** 7 - 3.38714296579768e64 * cos(theta) ** 5 + 1.36248711415836e62 * cos(theta) ** 3 - 1.60104243731887e59 * cos(theta) ) * sin(31 * phi) ) # @torch.jit.script def Yl78_m_minus_30(theta, phi): return ( 1.53025939736489e-56 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.75842277561644e76 * cos(theta) ** 48 - 1.27967799412603e77 * cos(theta) ** 46 + 4.32832262719098e77 * cos(theta) ** 44 - 9.03883709784254e77 * cos(theta) ** 42 + 1.305778312289e78 * cos(theta) ** 40 - 1.38572392324547e78 * cos(theta) ** 38 + 1.11972864142708e78 * cos(theta) ** 36 - 7.04724319779284e77 * cos(theta) ** 34 + 3.50487893081718e77 * cos(theta) ** 32 - 1.38962426033999e77 * cos(theta) ** 30 + 4.41231060764886e76 * cos(theta) ** 28 - 1.12313360921971e76 * cos(theta) ** 26 + 2.28708285085467e75 * cos(theta) ** 24 - 3.70660520749201e74 * cos(theta) ** 22 + 4.7410066607456e73 * cos(theta) ** 20 - 4.72856307370952e72 * cos(theta) ** 18 + 3.61735075138778e71 * cos(theta) ** 16 - 2.07595452016515e70 * cos(theta) ** 14 + 8.6736391797534e68 * cos(theta) ** 12 - 2.53188936693377e67 * cos(theta) ** 10 + 4.86901801333416e65 * cos(theta) ** 8 - 5.64523827632946e63 * cos(theta) ** 6 + 3.4062177853959e61 * cos(theta) ** 4 - 8.00521218659435e58 * cos(theta) ** 2 + 3.06009640160334e55 ) * sin(30 * phi) ) # @torch.jit.script def Yl78_m_minus_29(theta, phi): return ( 1.1132045504982e-54 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 3.58861790942131e74 * cos(theta) ** 49 - 2.72271913643836e75 * cos(theta) ** 47 + 9.61849472709107e75 * cos(theta) ** 45 - 2.10205513903315e76 * cos(theta) ** 43 + 3.18482515192438e76 * cos(theta) ** 41 - 3.55313826473196e76 * cos(theta) ** 39 + 3.0262936254786e76 * cos(theta) ** 37 - 2.01349805651224e76 * cos(theta) ** 35 + 1.06208452449005e76 * cos(theta) ** 33 - 4.48265890432253e75 * cos(theta) ** 31 + 1.52148641643064e75 * cos(theta) ** 29 - 4.15975410822115e74 * cos(theta) ** 27 + 9.14833140341869e73 * cos(theta) ** 25 - 1.61156748151827e73 * cos(theta) ** 23 + 2.25762221940266e72 * cos(theta) ** 21 - 2.48871740721554e71 * cos(theta) ** 19 + 2.12785338316928e70 * cos(theta) ** 17 - 1.3839696801101e69 * cos(theta) ** 15 + 6.67203013827184e67 * cos(theta) ** 13 - 2.30171760630342e66 * cos(theta) ** 11 + 5.41002001481574e64 * cos(theta) ** 9 - 8.06462610904209e62 * cos(theta) ** 7 + 6.81243557079179e60 * cos(theta) ** 5 - 2.66840406219812e58 * cos(theta) ** 3 + 3.06009640160334e55 * cos(theta) ) * sin(29 * phi) ) # @torch.jit.script def Yl78_m_minus_28(theta, phi): return ( 8.14238932143812e-53 * (1.0 - cos(theta) ** 2) ** 14 * ( 7.17723581884262e72 * cos(theta) ** 50 - 5.67233153424658e73 * cos(theta) ** 48 + 2.09097711458502e74 * cos(theta) ** 46 - 4.77739804325715e74 * cos(theta) ** 44 + 7.58291702839139e74 * cos(theta) ** 42 - 8.88284566182991e74 * cos(theta) ** 40 + 7.96393059336475e74 * cos(theta) ** 38 - 5.59305015697844e74 * cos(theta) ** 36 + 3.12377801320604e74 * cos(theta) ** 34 - 1.40083090760079e74 * cos(theta) ** 32 + 5.07162138810214e73 * cos(theta) ** 30 - 1.48562646722184e73 * cos(theta) ** 28 + 3.51858900131488e72 * cos(theta) ** 26 - 6.71486450632611e71 * cos(theta) ** 24 + 1.0261919179103e71 * cos(theta) ** 22 - 1.24435870360777e70 * cos(theta) ** 20 + 1.18214076842738e69 * cos(theta) ** 18 - 8.64981050068814e67 * cos(theta) ** 16 + 4.76573581305132e66 * cos(theta) ** 14 - 1.91809800525285e65 * cos(theta) ** 12 + 5.41002001481574e63 * cos(theta) ** 10 - 1.00807826363026e62 * cos(theta) ** 8 + 1.1354059284653e60 * cos(theta) ** 6 - 6.67101015549529e57 * cos(theta) ** 4 + 1.53004820080167e55 * cos(theta) ** 2 - 5.71980635813709e51 ) * sin(28 * phi) ) # @torch.jit.script def Yl78_m_minus_27(theta, phi): return ( 5.98673293105068e-51 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.40730114094953e71 * cos(theta) ** 51 - 1.15761868045849e72 * cos(theta) ** 49 + 4.44888747784046e72 * cos(theta) ** 47 - 1.0616440096127e73 * cos(theta) ** 45 + 1.76346907637009e73 * cos(theta) ** 43 - 2.16654772239754e73 * cos(theta) ** 41 + 2.04203348547814e73 * cos(theta) ** 39 - 1.51163517756174e73 * cos(theta) ** 37 + 8.92508003773155e72 * cos(theta) ** 35 - 4.24494214424482e72 * cos(theta) ** 33 + 1.63600689938779e72 * cos(theta) ** 31 - 5.12284988697186e71 * cos(theta) ** 29 + 1.3031811115981e71 * cos(theta) ** 27 - 2.68594580253044e70 * cos(theta) ** 25 + 4.46170399091436e69 * cos(theta) ** 23 - 5.92551763622747e68 * cos(theta) ** 21 + 6.22179351803884e67 * cos(theta) ** 19 - 5.0881238239342e66 * cos(theta) ** 17 + 3.17715720870088e65 * cos(theta) ** 15 - 1.47546000404066e64 * cos(theta) ** 13 + 4.91820001346885e62 * cos(theta) ** 11 - 1.12008695958918e61 * cos(theta) ** 9 + 1.62200846923614e59 * cos(theta) ** 7 - 1.33420203109906e57 * cos(theta) ** 5 + 5.10016066933891e54 * cos(theta) ** 3 - 5.71980635813709e51 * cos(theta) ) * sin(27 * phi) ) # @torch.jit.script def Yl78_m_minus_26(theta, phi): return ( 4.42370549070559e-49 * (1.0 - cos(theta) ** 2) ** 13 * ( 2.70634834797987e69 * cos(theta) ** 52 - 2.31523736091697e70 * cos(theta) ** 50 + 9.26851557883429e70 * cos(theta) ** 48 - 2.30792176002761e71 * cos(theta) ** 46 + 4.00788426447748e71 * cos(theta) ** 44 - 5.15844695808938e71 * cos(theta) ** 42 + 5.10508371369535e71 * cos(theta) ** 40 - 3.977987309373e71 * cos(theta) ** 38 + 2.47918889936988e71 * cos(theta) ** 36 - 1.24851239536612e71 * cos(theta) ** 34 + 5.11252156058683e70 * cos(theta) ** 32 - 1.70761662899062e70 * cos(theta) ** 30 + 4.65421825570751e69 * cos(theta) ** 28 - 1.03305607789632e69 * cos(theta) ** 26 + 1.85904332954765e68 * cos(theta) ** 24 - 2.69341710737612e67 * cos(theta) ** 22 + 3.11089675901942e66 * cos(theta) ** 20 - 2.82673545774122e65 * cos(theta) ** 18 + 1.98572325543805e64 * cos(theta) ** 16 - 1.05390000288618e63 * cos(theta) ** 14 + 4.09850001122404e61 * cos(theta) ** 12 - 1.12008695958918e60 * cos(theta) ** 10 + 2.02751058654518e58 * cos(theta) ** 8 - 2.22367005183176e56 * cos(theta) ** 6 + 1.27504016733473e54 * cos(theta) ** 4 - 2.85990317906855e51 * cos(theta) ** 2 + 1.04758358207639e48 ) * sin(26 * phi) ) # @torch.jit.script def Yl78_m_minus_25(theta, phi): return ( 3.28428480068287e-47 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 5.10631763769787e67 * cos(theta) ** 53 - 4.5396810998372e68 * cos(theta) ** 51 + 1.89153379159883e69 * cos(theta) ** 49 - 4.91047182984598e69 * cos(theta) ** 47 + 8.90640947661662e69 * cos(theta) ** 45 - 1.19963882746265e70 * cos(theta) ** 43 + 1.24514236919399e70 * cos(theta) ** 41 - 1.01999674599308e70 * cos(theta) ** 39 + 6.7005105388375e69 * cos(theta) ** 37 - 3.56717827247464e69 * cos(theta) ** 35 + 1.54924895775359e69 * cos(theta) ** 33 - 5.50844073867941e68 * cos(theta) ** 31 + 1.60490284679569e68 * cos(theta) ** 29 - 3.82613362183824e67 * cos(theta) ** 27 + 7.43617331819059e66 * cos(theta) ** 25 - 1.17105091625049e66 * cos(theta) ** 23 + 1.48137940905687e65 * cos(theta) ** 21 - 1.48775550407433e64 * cos(theta) ** 19 + 1.16807250319885e63 * cos(theta) ** 17 - 7.02600001924122e61 * cos(theta) ** 15 + 3.15269231632619e60 * cos(theta) ** 13 - 1.0182608723538e59 * cos(theta) ** 11 + 2.25278954060575e57 * cos(theta) ** 9 - 3.17667150261681e55 * cos(theta) ** 7 + 2.55008033466945e53 * cos(theta) ** 5 - 9.53301059689516e50 * cos(theta) ** 3 + 1.04758358207639e48 * cos(theta) ) * sin(25 * phi) ) # @torch.jit.script def Yl78_m_minus_24(theta, phi): return ( 2.44938076334417e-45 * (1.0 - cos(theta) ** 2) ** 12 * ( 9.45614377351457e65 * cos(theta) ** 54 - 8.73015596122539e66 * cos(theta) ** 52 + 3.78306758319767e67 * cos(theta) ** 50 - 1.02301496455125e68 * cos(theta) ** 48 + 1.93617597317753e68 * cos(theta) ** 46 - 2.72645188059692e68 * cos(theta) ** 44 + 2.96462468855712e68 * cos(theta) ** 42 - 2.54999186498269e68 * cos(theta) ** 40 + 1.7632922470625e68 * cos(theta) ** 38 - 9.90882853465178e67 * cos(theta) ** 36 + 4.55661458162819e67 * cos(theta) ** 34 - 1.72138773083732e67 * cos(theta) ** 32 + 5.34967615598565e66 * cos(theta) ** 30 - 1.36647629351366e66 * cos(theta) ** 28 + 2.86006666084254e65 * cos(theta) ** 26 - 4.87937881771036e64 * cos(theta) ** 24 + 6.7335427684403e63 * cos(theta) ** 22 - 7.43877752037164e62 * cos(theta) ** 20 + 6.48929168443807e61 * cos(theta) ** 18 - 4.39125001202576e60 * cos(theta) ** 16 + 2.25192308309013e59 * cos(theta) ** 14 - 8.485507269615e57 * cos(theta) ** 12 + 2.25278954060575e56 * cos(theta) ** 10 - 3.97083937827101e54 * cos(theta) ** 8 + 4.25013389111576e52 * cos(theta) ** 6 - 2.38325264922379e50 * cos(theta) ** 4 + 5.23791791038195e47 * cos(theta) ** 2 - 1.88346562760948e44 ) * sin(24 * phi) ) # @torch.jit.script def Yl78_m_minus_23(theta, phi): return ( 1.83458455664341e-43 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.71929886791174e64 * cos(theta) ** 55 - 1.64719923796705e65 * cos(theta) ** 53 + 7.41777957489739e65 * cos(theta) ** 51 - 2.08778564194132e66 * cos(theta) ** 49 + 4.11952334718622e66 * cos(theta) ** 47 - 6.05878195688205e66 * cos(theta) ** 45 + 6.89447601990027e66 * cos(theta) ** 43 - 6.21949235361633e66 * cos(theta) ** 41 + 4.52126217195513e66 * cos(theta) ** 39 - 2.6780617661221e66 * cos(theta) ** 37 + 1.3018898804652e66 * cos(theta) ** 35 - 5.21632645708278e65 * cos(theta) ** 33 + 1.72570198580182e65 * cos(theta) ** 31 - 4.71198721901261e64 * cos(theta) ** 29 + 1.0592839484602e64 * cos(theta) ** 27 - 1.95175152708415e63 * cos(theta) ** 25 + 2.92762729062622e62 * cos(theta) ** 23 - 3.54227500970078e61 * cos(theta) ** 21 + 3.41541667602004e60 * cos(theta) ** 19 - 2.58308824236809e59 * cos(theta) ** 17 + 1.50128205539342e58 * cos(theta) ** 15 - 6.52731328431923e56 * cos(theta) ** 13 + 2.04799049145977e55 * cos(theta) ** 11 - 4.41204375363445e53 * cos(theta) ** 9 + 6.07161984445108e51 * cos(theta) ** 7 - 4.76650529844758e49 * cos(theta) ** 5 + 1.74597263679398e47 * cos(theta) ** 3 - 1.88346562760948e44 * cos(theta) ) * sin(23 * phi) ) # @torch.jit.script def Yl78_m_minus_22(theta, phi): return ( 1.37972468276841e-41 * (1.0 - cos(theta) ** 2) ** 11 * ( 3.07017654984239e62 * cos(theta) ** 56 - 3.05036895919825e63 * cos(theta) ** 54 + 1.42649607209565e64 * cos(theta) ** 52 - 4.17557128388264e64 * cos(theta) ** 50 + 8.58234030663797e64 * cos(theta) ** 48 - 1.31712651236566e65 * cos(theta) ** 46 + 1.56692636815915e65 * cos(theta) ** 44 - 1.48083151276579e65 * cos(theta) ** 42 + 1.13031554298878e65 * cos(theta) ** 40 - 7.04753096347922e64 * cos(theta) ** 38 + 3.61636077906999e64 * cos(theta) ** 36 - 1.53421366384788e64 * cos(theta) ** 34 + 5.39281870563069e63 * cos(theta) ** 32 - 1.57066240633754e63 * cos(theta) ** 30 + 3.78315695878642e62 * cos(theta) ** 28 - 7.50673664263133e61 * cos(theta) ** 26 + 1.21984470442759e61 * cos(theta) ** 24 - 1.61012500440945e60 * cos(theta) ** 22 + 1.70770833801002e59 * cos(theta) ** 20 - 1.43504902353783e58 * cos(theta) ** 18 + 9.38301284620889e56 * cos(theta) ** 16 - 4.66236663165659e55 * cos(theta) ** 14 + 1.70665874288314e54 * cos(theta) ** 12 - 4.41204375363445e52 * cos(theta) ** 10 + 7.58952480556385e50 * cos(theta) ** 8 - 7.94417549741263e48 * cos(theta) ** 6 + 4.36493159198496e46 * cos(theta) ** 4 - 9.41732813804738e43 * cos(theta) ** 2 + 3.33003116621195e40 ) * sin(22 * phi) ) # @torch.jit.script def Yl78_m_minus_21(theta, phi): return ( 1.04166929211579e-39 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 5.3862746488463e60 * cos(theta) ** 57 - 5.54612538036045e61 * cos(theta) ** 55 + 2.69150202282198e62 * cos(theta) ** 53 - 8.18739467427968e62 * cos(theta) ** 51 + 1.75149802176285e63 * cos(theta) ** 49 - 2.80239683482056e63 * cos(theta) ** 47 + 3.48205859590923e63 * cos(theta) ** 45 - 3.4437942157344e63 * cos(theta) ** 43 + 2.75686717802142e63 * cos(theta) ** 41 - 1.80705922140493e63 * cos(theta) ** 39 + 9.77394805154052e62 * cos(theta) ** 37 - 4.38346761099393e62 * cos(theta) ** 35 + 1.63418748655476e62 * cos(theta) ** 33 - 5.06665292366947e61 * cos(theta) ** 31 + 1.30453688234015e61 * cos(theta) ** 29 - 2.7802728306042e60 * cos(theta) ** 27 + 4.87937881771036e59 * cos(theta) ** 25 - 7.00054349743237e58 * cos(theta) ** 23 + 8.13194446671437e57 * cos(theta) ** 21 - 7.55288959756753e56 * cos(theta) ** 19 + 5.51941932129935e55 * cos(theta) ** 17 - 3.10824442110439e54 * cos(theta) ** 15 + 1.31281441760242e53 * cos(theta) ** 13 - 4.01094886694041e51 * cos(theta) ** 11 + 8.43280533951539e49 * cos(theta) ** 9 - 1.13488221391609e48 * cos(theta) ** 7 + 8.72986318396992e45 * cos(theta) ** 5 - 3.13910937934913e43 * cos(theta) ** 3 + 3.33003116621195e40 * cos(theta) ) * sin(21 * phi) ) # @torch.jit.script def Yl78_m_minus_20(theta, phi): return ( 7.89335173229645e-38 * (1.0 - cos(theta) ** 2) ** 10 * ( 9.28668042904535e58 * cos(theta) ** 58 - 9.90379532207224e59 * cos(theta) ** 56 + 4.9842630052259e60 * cos(theta) ** 54 - 1.57449897582302e61 * cos(theta) ** 52 + 3.5029960435257e61 * cos(theta) ** 50 - 5.8383267392095e61 * cos(theta) ** 48 + 7.56969259980266e61 * cos(theta) ** 46 - 7.82680503576e61 * cos(theta) ** 44 + 6.56396947147957e61 * cos(theta) ** 42 - 4.51764805351232e61 * cos(theta) ** 40 + 2.57209159251066e61 * cos(theta) ** 38 - 1.21762989194276e61 * cos(theta) ** 36 + 4.80643378398457e60 * cos(theta) ** 34 - 1.58332903864671e60 * cos(theta) ** 32 + 4.34845627446715e59 * cos(theta) ** 30 - 9.92954582358641e58 * cos(theta) ** 28 + 1.87668416065783e58 * cos(theta) ** 26 - 2.91689312393016e57 * cos(theta) ** 24 + 3.69633839396108e56 * cos(theta) ** 22 - 3.77644479878376e55 * cos(theta) ** 20 + 3.06634406738853e54 * cos(theta) ** 18 - 1.94265276319025e53 * cos(theta) ** 16 + 9.37724584001728e51 * cos(theta) ** 14 - 3.34245738911701e50 * cos(theta) ** 12 + 8.43280533951539e48 * cos(theta) ** 10 - 1.41860276739511e47 * cos(theta) ** 8 + 1.45497719732832e45 * cos(theta) ** 6 - 7.84777344837282e42 * cos(theta) ** 4 + 1.66501558310597e40 * cos(theta) ** 2 - 5.79942731837678e36 ) * sin(20 * phi) ) # @torch.jit.script def Yl78_m_minus_19(theta, phi): return ( 6.00206230454399e-36 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.57401363204159e57 * cos(theta) ** 59 - 1.73750795124074e58 * cos(theta) ** 57 + 9.06229637313799e58 * cos(theta) ** 55 - 2.97075278457173e59 * cos(theta) ** 53 + 6.86861969318765e59 * cos(theta) ** 51 - 1.1914952528999e60 * cos(theta) ** 49 + 1.61057289357504e60 * cos(theta) ** 47 - 1.73929000794667e60 * cos(theta) ** 45 + 1.52650452825106e60 * cos(theta) ** 43 - 1.10186537890544e60 * cos(theta) ** 41 + 6.59510664746324e59 * cos(theta) ** 39 - 3.29089159984529e59 * cos(theta) ** 37 + 1.37326679542416e59 * cos(theta) ** 35 - 4.79796678377791e58 * cos(theta) ** 33 + 1.40272783047328e58 * cos(theta) ** 31 - 3.42398131847807e57 * cos(theta) ** 29 + 6.95068207651049e56 * cos(theta) ** 27 - 1.16675724957206e56 * cos(theta) ** 25 + 1.60710364954829e55 * cos(theta) ** 23 - 1.79830704703989e54 * cos(theta) ** 21 + 1.61386529862554e53 * cos(theta) ** 19 - 1.14273691952367e52 * cos(theta) ** 17 + 6.25149722667819e50 * cos(theta) ** 15 - 2.57112106855155e49 * cos(theta) ** 13 + 7.66618667228672e47 * cos(theta) ** 11 - 1.57622529710568e46 * cos(theta) ** 9 + 2.07853885332617e44 * cos(theta) ** 7 - 1.56955468967456e42 * cos(theta) ** 5 + 5.55005194368658e39 * cos(theta) ** 3 - 5.79942731837678e36 * cos(theta) ) * sin(19 * phi) ) # @torch.jit.script def Yl78_m_minus_18(theta, phi): return ( 4.5789087794189e-34 * (1.0 - cos(theta) ** 2) ** 9 * ( 2.62335605340264e55 * cos(theta) ** 60 - 2.99570336420818e56 * cos(theta) ** 58 + 1.61826720948893e57 * cos(theta) ** 56 - 5.5013940455032e57 * cos(theta) ** 54 + 1.32088840253609e58 * cos(theta) ** 52 - 2.3829905057998e58 * cos(theta) ** 50 + 3.35536019494799e58 * cos(theta) ** 48 - 3.78106523466667e58 * cos(theta) ** 46 + 3.46932847329787e58 * cos(theta) ** 44 - 2.62348899739391e58 * cos(theta) ** 42 + 1.64877666186581e58 * cos(theta) ** 40 - 8.66024105222446e57 * cos(theta) ** 38 + 3.81462998728934e57 * cos(theta) ** 36 - 1.41116670111115e57 * cos(theta) ** 34 + 4.38352447022898e56 * cos(theta) ** 32 - 1.14132710615936e56 * cos(theta) ** 30 + 2.4823864558966e55 * cos(theta) ** 28 - 4.48752788296947e54 * cos(theta) ** 26 + 6.69626520645123e53 * cos(theta) ** 24 - 8.1741229410904e52 * cos(theta) ** 22 + 8.0693264931277e51 * cos(theta) ** 20 - 6.34853844179819e50 * cos(theta) ** 18 + 3.90718576667387e49 * cos(theta) ** 16 - 1.83651504896539e48 * cos(theta) ** 14 + 6.38848889357227e46 * cos(theta) ** 12 - 1.57622529710568e45 * cos(theta) ** 10 + 2.59817356665771e43 * cos(theta) ** 8 - 2.61592448279094e41 * cos(theta) ** 6 + 1.38751298592164e39 * cos(theta) ** 4 - 2.89971365918839e36 * cos(theta) ** 2 + 9.96465174978828e32 ) * sin(18 * phi) ) # @torch.jit.script def Yl78_m_minus_17(theta, phi): return ( 3.50398731809295e-32 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 4.30058369410269e53 * cos(theta) ** 61 - 5.0774633291664e54 * cos(theta) ** 59 + 2.83906527980514e55 * cos(theta) ** 57 - 1.00025346281876e56 * cos(theta) ** 55 + 2.49224226893601e56 * cos(theta) ** 53 - 4.67253040352901e56 * cos(theta) ** 51 + 6.8476738672408e56 * cos(theta) ** 49 - 8.04481964822695e56 * cos(theta) ** 47 + 7.70961882955083e56 * cos(theta) ** 45 - 6.10113720324166e56 * cos(theta) ** 43 + 4.02140649235563e56 * cos(theta) ** 41 - 2.2205746287755e56 * cos(theta) ** 39 + 1.03098107764577e56 * cos(theta) ** 37 - 4.03190486031757e55 * cos(theta) ** 35 + 1.32834074855424e55 * cos(theta) ** 33 - 3.68170034244954e54 * cos(theta) ** 31 + 8.55995329619518e53 * cos(theta) ** 29 - 1.66204736406277e53 * cos(theta) ** 27 + 2.67850608258049e52 * cos(theta) ** 25 - 3.55396649612626e51 * cos(theta) ** 23 + 3.8425364252989e50 * cos(theta) ** 21 - 3.34133602199905e49 * cos(theta) ** 19 + 2.29834456863169e48 * cos(theta) ** 17 - 1.22434336597693e47 * cos(theta) ** 15 + 4.91422222582482e45 * cos(theta) ** 13 - 1.43293208827789e44 * cos(theta) ** 11 + 2.88685951850857e42 * cos(theta) ** 9 - 3.73703497541563e40 * cos(theta) ** 7 + 2.77502597184329e38 * cos(theta) ** 5 - 9.66571219729463e35 * cos(theta) ** 3 + 9.96465174978828e32 * cos(theta) ) * sin(17 * phi) ) # @torch.jit.script def Yl78_m_minus_16(theta, phi): return ( 2.68918186012676e-30 * (1.0 - cos(theta) ** 2) ** 8 * ( 6.93642531306886e51 * cos(theta) ** 62 - 8.46243888194401e52 * cos(theta) ** 60 + 4.89494013759506e53 * cos(theta) ** 58 - 1.78616689789065e54 * cos(theta) ** 56 + 4.61526346099262e54 * cos(theta) ** 54 - 8.98563539140195e54 * cos(theta) ** 52 + 1.36953477344816e55 * cos(theta) ** 50 - 1.67600409338061e55 * cos(theta) ** 48 + 1.67600409338061e55 * cos(theta) ** 46 - 1.38662209164583e55 * cos(theta) ** 44 + 9.57477736275151e54 * cos(theta) ** 42 - 5.55143657193876e54 * cos(theta) ** 40 + 2.71310809906781e54 * cos(theta) ** 38 - 1.11997357231044e54 * cos(theta) ** 36 + 3.90688455457129e53 * cos(theta) ** 34 - 1.15053135701548e53 * cos(theta) ** 32 + 2.85331776539839e52 * cos(theta) ** 30 - 5.93588344308131e51 * cos(theta) ** 28 + 1.03019464714634e51 * cos(theta) ** 26 - 1.48081937338594e50 * cos(theta) ** 24 + 1.74660746604496e49 * cos(theta) ** 22 - 1.67066801099952e48 * cos(theta) ** 20 + 1.27685809368427e47 * cos(theta) ** 18 - 7.65214603735579e45 * cos(theta) ** 16 + 3.51015873273201e44 * cos(theta) ** 14 - 1.19411007356491e43 * cos(theta) ** 12 + 2.88685951850857e41 * cos(theta) ** 10 - 4.67129371926953e39 * cos(theta) ** 8 + 4.62504328640548e37 * cos(theta) ** 6 - 2.41642804932366e35 * cos(theta) ** 4 + 4.98232587489414e32 * cos(theta) ** 2 - 1.69179146855489e29 ) * sin(16 * phi) ) # @torch.jit.script def Yl78_m_minus_15(theta, phi): return ( 2.06944731590383e-28 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.10101989096331e50 * cos(theta) ** 63 - 1.38728506261377e51 * cos(theta) ** 61 + 8.29650870778824e51 * cos(theta) ** 59 - 3.13362613665026e52 * cos(theta) ** 57 + 8.39138811089566e52 * cos(theta) ** 55 - 1.6954029040381e53 * cos(theta) ** 53 + 2.68536230087874e53 * cos(theta) ** 51 - 3.42041651710329e53 * cos(theta) ** 49 + 3.56596615612897e53 * cos(theta) ** 47 - 3.08138242587963e53 * cos(theta) ** 45 + 2.22669240994221e53 * cos(theta) ** 43 - 1.35400891998506e53 * cos(theta) ** 41 + 6.95668743350721e52 * cos(theta) ** 39 - 3.02695560083902e52 * cos(theta) ** 37 + 1.11625272987751e52 * cos(theta) ** 35 - 3.48645865762267e51 * cos(theta) ** 33 + 9.20425085612385e50 * cos(theta) ** 31 - 2.04685635968321e50 * cos(theta) ** 29 + 3.81553573017164e49 * cos(theta) ** 27 - 5.92327749354377e48 * cos(theta) ** 25 + 7.59394550454329e47 * cos(theta) ** 23 - 7.95556195714059e46 * cos(theta) ** 21 + 6.720305756233e45 * cos(theta) ** 19 - 4.50126237491517e44 * cos(theta) ** 17 + 2.34010582182134e43 * cos(theta) ** 15 - 9.18546210434546e41 * cos(theta) ** 13 + 2.6244177440987e40 * cos(theta) ** 11 - 5.19032635474393e38 * cos(theta) ** 9 + 6.60720469486497e36 * cos(theta) ** 7 - 4.83285609864731e34 * cos(theta) ** 5 + 1.66077529163138e32 * cos(theta) ** 3 - 1.69179146855489e29 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl78_m_minus_14(theta, phi): return ( 1.59656217462807e-26 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.72034357963017e48 * cos(theta) ** 64 - 2.23755655260286e49 * cos(theta) ** 62 + 1.38275145129804e50 * cos(theta) ** 60 - 5.40280368387976e50 * cos(theta) ** 58 + 1.49846216265994e51 * cos(theta) ** 56 - 3.13963500747797e51 * cos(theta) ** 54 + 5.16415827092066e51 * cos(theta) ** 52 - 6.84083303420659e51 * cos(theta) ** 50 + 7.42909615860201e51 * cos(theta) ** 48 - 6.69865744756441e51 * cos(theta) ** 46 + 5.06066456805048e51 * cos(theta) ** 44 - 3.2238307618692e51 * cos(theta) ** 42 + 1.7391718583768e51 * cos(theta) ** 40 - 7.96567263378688e50 * cos(theta) ** 38 + 3.10070202743753e50 * cos(theta) ** 36 - 1.02542901694784e50 * cos(theta) ** 34 + 2.8763283925387e49 * cos(theta) ** 32 - 6.82285453227737e48 * cos(theta) ** 30 + 1.36269133220416e48 * cos(theta) ** 28 - 2.27818365136299e47 * cos(theta) ** 26 + 3.16414396022637e46 * cos(theta) ** 24 - 3.616164525973e45 * cos(theta) ** 22 + 3.3601528781165e44 * cos(theta) ** 20 - 2.50070131939732e43 * cos(theta) ** 18 + 1.46256613863834e42 * cos(theta) ** 16 - 6.56104436024676e40 * cos(theta) ** 14 + 2.18701478674892e39 * cos(theta) ** 12 - 5.19032635474393e37 * cos(theta) ** 10 + 8.25900586858121e35 * cos(theta) ** 8 - 8.05476016441219e33 * cos(theta) ** 6 + 4.15193822907845e31 * cos(theta) ** 4 - 8.45895734277443e28 * cos(theta) ** 2 + 2.84239158023334e25 ) * sin(14 * phi) ) # @torch.jit.script def Yl78_m_minus_13(theta, phi): return ( 1.23462886930322e-24 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 2.64668243020027e46 * cos(theta) ** 65 - 3.55167706762358e47 * cos(theta) ** 63 + 2.26680565786564e48 * cos(theta) ** 61 - 9.15729437945722e48 * cos(theta) ** 59 + 2.6288809871227e49 * cos(theta) ** 57 - 5.70842728632358e49 * cos(theta) ** 55 + 9.7436948507937e49 * cos(theta) ** 53 - 1.34133981062874e50 * cos(theta) ** 51 + 1.51614207318408e50 * cos(theta) ** 49 - 1.42524626543924e50 * cos(theta) ** 47 + 1.12459212623344e50 * cos(theta) ** 45 - 7.49728084155627e49 * cos(theta) ** 43 + 4.24188258140684e49 * cos(theta) ** 41 - 2.04248016250946e49 * cos(theta) ** 39 + 8.38027574983116e48 * cos(theta) ** 37 - 2.92979719127956e48 * cos(theta) ** 35 + 8.71614664405668e47 * cos(theta) ** 33 - 2.20092081686367e47 * cos(theta) ** 31 + 4.6989356282902e46 * cos(theta) ** 29 - 8.43771722727032e45 * cos(theta) ** 27 + 1.26565758409055e45 * cos(theta) ** 25 - 1.57224544607522e44 * cos(theta) ** 23 + 1.6000727991031e43 * cos(theta) ** 21 - 1.31615858915648e42 * cos(theta) ** 19 + 8.60333022728435e40 * cos(theta) ** 17 - 4.37402957349784e39 * cos(theta) ** 15 + 1.68231906672994e38 * cos(theta) ** 13 - 4.71847850431266e36 * cos(theta) ** 11 + 9.17667318731246e34 * cos(theta) ** 9 - 1.15068002348746e33 * cos(theta) ** 7 + 8.3038764581569e30 * cos(theta) ** 5 - 2.81965244759148e28 * cos(theta) ** 3 + 2.84239158023334e25 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl78_m_minus_12(theta, phi): return ( 9.56817460133919e-23 * (1.0 - cos(theta) ** 2) ** 6 * ( 4.01012489424283e44 * cos(theta) ** 66 - 5.54949541816185e45 * cos(theta) ** 64 + 3.65613815784781e46 * cos(theta) ** 62 - 1.52621572990954e47 * cos(theta) ** 60 + 4.53255342607362e47 * cos(theta) ** 58 - 1.01936201541493e48 * cos(theta) ** 56 + 1.80438793533217e48 * cos(theta) ** 54 - 2.57949963582451e48 * cos(theta) ** 52 + 3.03228414636817e48 * cos(theta) ** 50 - 2.96926305299841e48 * cos(theta) ** 48 + 2.44476549181183e48 * cos(theta) ** 46 - 1.70392746399006e48 * cos(theta) ** 44 + 1.0099720431921e48 * cos(theta) ** 42 - 5.10620040627364e47 * cos(theta) ** 40 + 2.20533572363978e47 * cos(theta) ** 38 - 8.1383255313321e46 * cos(theta) ** 36 + 2.56357254236961e46 * cos(theta) ** 34 - 6.87787755269896e45 * cos(theta) ** 32 + 1.56631187609673e45 * cos(theta) ** 30 - 3.01347043831083e44 * cos(theta) ** 28 + 4.86791378496365e43 * cos(theta) ** 26 - 6.55102269198006e42 * cos(theta) ** 24 + 7.27305817774134e41 * cos(theta) ** 22 - 6.58079294578241e40 * cos(theta) ** 20 + 4.77962790404686e39 * cos(theta) ** 18 - 2.73376848343615e38 * cos(theta) ** 16 + 1.20165647623567e37 * cos(theta) ** 14 - 3.93206542026055e35 * cos(theta) ** 12 + 9.17667318731246e33 * cos(theta) ** 10 - 1.43835002935932e32 * cos(theta) ** 8 + 1.38397940969282e30 * cos(theta) ** 6 - 7.04913111897869e27 * cos(theta) ** 4 + 1.42119579011667e25 * cos(theta) ** 2 - 4.73258671367523e21 ) * sin(12 * phi) ) # @torch.jit.script def Yl78_m_minus_11(theta, phi): return ( 7.42998176421938e-21 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 5.98526103618333e42 * cos(theta) ** 67 - 8.53768525871054e43 * cos(theta) ** 65 + 5.80339390134572e44 * cos(theta) ** 63 - 2.5019929998517e45 * cos(theta) ** 61 + 7.68229394249767e45 * cos(theta) ** 59 - 1.78835441300864e46 * cos(theta) ** 57 + 3.28070533696758e46 * cos(theta) ** 55 - 4.8669804449519e46 * cos(theta) ** 53 + 5.94565518895719e46 * cos(theta) ** 51 - 6.05972051632328e46 * cos(theta) ** 49 + 5.20162870598261e46 * cos(theta) ** 47 - 3.78650547553347e46 * cos(theta) ** 45 + 2.34877219347001e46 * cos(theta) ** 43 - 1.24541473323747e46 * cos(theta) ** 41 + 5.65470698369174e45 * cos(theta) ** 39 - 2.19954744090057e45 * cos(theta) ** 37 + 7.32449297819889e44 * cos(theta) ** 35 - 2.08420531899968e44 * cos(theta) ** 33 + 5.05261895515075e43 * cos(theta) ** 31 - 1.03912773734856e43 * cos(theta) ** 29 + 1.80293103146802e42 * cos(theta) ** 27 - 2.62040907679203e41 * cos(theta) ** 25 + 3.16219920771363e40 * cos(theta) ** 23 - 3.13371092656305e39 * cos(theta) ** 21 + 2.51559363370887e38 * cos(theta) ** 19 - 1.60809910790362e37 * cos(theta) ** 17 + 8.01104317490446e35 * cos(theta) ** 15 - 3.02466570789273e34 * cos(theta) ** 13 + 8.34243017028405e32 * cos(theta) ** 11 - 1.59816669928813e31 * cos(theta) ** 9 + 1.97711344241831e29 * cos(theta) ** 7 - 1.40982622379574e27 * cos(theta) ** 5 + 4.7373193003889e24 * cos(theta) ** 3 - 4.73258671367523e21 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl78_m_minus_10(theta, phi): return ( 5.78012469423161e-19 * (1.0 - cos(theta) ** 2) ** 5 * ( 8.80185446497548e40 * cos(theta) ** 68 - 1.2935886755622e42 * cos(theta) ** 66 + 9.06780297085269e42 * cos(theta) ** 64 - 4.03547258040597e43 * cos(theta) ** 62 + 1.28038232374961e44 * cos(theta) ** 60 - 3.0833696776011e44 * cos(theta) ** 58 + 5.8584023874421e44 * cos(theta) ** 56 - 9.01292674991092e44 * cos(theta) ** 54 + 1.14339522864561e45 * cos(theta) ** 52 - 1.21194410326466e45 * cos(theta) ** 50 + 1.08367264707971e45 * cos(theta) ** 48 - 8.23153364246406e44 * cos(theta) ** 46 + 5.33811862152275e44 * cos(theta) ** 44 - 2.96527317437494e44 * cos(theta) ** 42 + 1.41367674592294e44 * cos(theta) ** 40 - 5.78828273921202e43 * cos(theta) ** 38 + 2.03458138283303e43 * cos(theta) ** 36 - 6.13001564411672e42 * cos(theta) ** 34 + 1.57894342348461e42 * cos(theta) ** 32 - 3.46375912449521e41 * cos(theta) ** 30 + 6.43903939810006e40 * cos(theta) ** 28 - 1.00784964492001e40 * cos(theta) ** 26 + 1.31758300321401e39 * cos(theta) ** 24 - 1.42441405752866e38 * cos(theta) ** 22 + 1.25779681685444e37 * cos(theta) ** 20 - 8.93388393279787e35 * cos(theta) ** 18 + 5.00690198431529e34 * cos(theta) ** 16 - 2.16047550563767e33 * cos(theta) ** 14 + 6.95202514190338e31 * cos(theta) ** 12 - 1.59816669928813e30 * cos(theta) ** 10 + 2.47139180302289e28 * cos(theta) ** 8 - 2.3497103729929e26 * cos(theta) ** 6 + 1.18432982509723e24 * cos(theta) ** 4 - 2.36629335683761e21 * cos(theta) ** 2 + 7.81987229622477e17 ) * sin(10 * phi) ) # @torch.jit.script def Yl78_m_minus_9(theta, phi): return ( 4.50404881714018e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1.2756310818805e39 * cos(theta) ** 69 - 1.93072936651075e40 * cos(theta) ** 67 + 1.39504661090041e41 * cos(theta) ** 65 - 6.40551203239042e41 * cos(theta) ** 63 + 2.09898741598297e42 * cos(theta) ** 61 - 5.22605030101882e42 * cos(theta) ** 59 + 1.0277898925337e43 * cos(theta) ** 57 - 1.63871395452926e43 * cos(theta) ** 55 + 2.15734948801059e43 * cos(theta) ** 53 - 2.37636098679344e43 * cos(theta) ** 51 + 2.21157683077492e43 * cos(theta) ** 49 - 1.75139013669448e43 * cos(theta) ** 47 + 1.18624858256061e43 * cos(theta) ** 45 - 6.89598412645334e42 * cos(theta) ** 43 + 3.44799206322667e42 * cos(theta) ** 41 - 1.48417506133642e42 * cos(theta) ** 39 + 5.49886860225142e41 * cos(theta) ** 37 - 1.75143304117621e41 * cos(theta) ** 35 + 4.78467704086245e40 * cos(theta) ** 33 - 1.11734165306297e40 * cos(theta) ** 31 + 2.22035841313795e39 * cos(theta) ** 29 - 3.7327764626667e38 * cos(theta) ** 27 + 5.27033201285605e37 * cos(theta) ** 25 - 6.1931045979507e36 * cos(theta) ** 23 + 5.98950865168779e35 * cos(theta) ** 21 - 4.70204417515677e34 * cos(theta) ** 19 + 2.94523646136194e33 * cos(theta) ** 17 - 1.44031700375844e32 * cos(theta) ** 15 + 5.34771164761798e30 * cos(theta) ** 13 - 1.45287881753467e29 * cos(theta) ** 11 + 2.74599089224765e27 * cos(theta) ** 9 - 3.35672910427557e25 * cos(theta) ** 7 + 2.36865965019445e23 * cos(theta) ** 5 - 7.88764452279205e20 * cos(theta) ** 3 + 7.81987229622477e17 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl78_m_minus_8(theta, phi): return ( 3.51488997694576e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.82233011697215e37 * cos(theta) ** 70 - 2.83930789192757e38 * cos(theta) ** 68 + 2.11370698621275e39 * cos(theta) ** 66 - 1.000861255061e40 * cos(theta) ** 64 + 3.38546357416608e40 * cos(theta) ** 62 - 8.71008383503137e40 * cos(theta) ** 60 + 1.77205153885121e41 * cos(theta) ** 58 - 2.92627491880225e41 * cos(theta) ** 56 + 3.99509164446406e41 * cos(theta) ** 54 - 4.56992497460278e41 * cos(theta) ** 52 + 4.42315366154984e41 * cos(theta) ** 50 - 3.64872945144684e41 * cos(theta) ** 48 + 2.57880126643611e41 * cos(theta) ** 46 - 1.56726911964849e41 * cos(theta) ** 44 + 8.20950491244446e40 * cos(theta) ** 42 - 3.71043765334104e40 * cos(theta) ** 40 + 1.44707068480301e40 * cos(theta) ** 38 - 4.86509178104501e39 * cos(theta) ** 36 + 1.40725795319484e39 * cos(theta) ** 34 - 3.49169266582178e38 * cos(theta) ** 32 + 7.40119471045984e37 * cos(theta) ** 30 - 1.33313445095239e37 * cos(theta) ** 28 + 2.0270507741754e36 * cos(theta) ** 26 - 2.58046024914613e35 * cos(theta) ** 24 + 2.72250393258536e34 * cos(theta) ** 22 - 2.35102208757839e33 * cos(theta) ** 20 + 1.63624247853441e32 * cos(theta) ** 18 - 9.00198127349027e30 * cos(theta) ** 16 + 3.81979403401285e29 * cos(theta) ** 14 - 1.21073234794556e28 * cos(theta) ** 12 + 2.74599089224765e26 * cos(theta) ** 10 - 4.19591138034446e24 * cos(theta) ** 8 + 3.94776608365742e22 * cos(theta) ** 6 - 1.97191113069801e20 * cos(theta) ** 4 + 3.90993614811238e17 * cos(theta) ** 2 - 128405128016827.0 ) * sin(8 * phi) ) # @torch.jit.script def Yl78_m_minus_7(theta, phi): return ( 2.74656660513642e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 2.56666213658049e35 * cos(theta) ** 71 - 4.11493897380808e36 * cos(theta) ** 69 + 3.15478654658619e37 * cos(theta) ** 67 - 1.5397865462477e38 * cos(theta) ** 65 + 5.37375170502552e38 * cos(theta) ** 63 - 1.42788259590678e39 * cos(theta) ** 61 + 3.00347718449358e39 * cos(theta) ** 59 - 5.13381564702149e39 * cos(theta) ** 57 + 7.26380298993466e39 * cos(theta) ** 55 - 8.62249995208071e39 * cos(theta) ** 53 + 8.67285031676439e39 * cos(theta) ** 51 - 7.44638663560579e39 * cos(theta) ** 49 + 5.48681120518321e39 * cos(theta) ** 47 - 3.48282026588553e39 * cos(theta) ** 45 + 1.90918718894057e39 * cos(theta) ** 43 - 9.04984793497814e38 * cos(theta) ** 41 + 3.71043765334104e38 * cos(theta) ** 39 - 1.31488967055271e38 * cos(theta) ** 37 + 4.02073700912811e37 * cos(theta) ** 35 - 1.05808868661266e37 * cos(theta) ** 33 + 2.38748216466447e36 * cos(theta) ** 31 - 4.5970153481117e35 * cos(theta) ** 29 + 7.5075954599089e34 * cos(theta) ** 27 - 1.03218409965845e34 * cos(theta) ** 25 + 1.18369736199364e33 * cos(theta) ** 23 - 1.11953432741828e32 * cos(theta) ** 21 + 8.61180251860215e30 * cos(theta) ** 19 - 5.2952831020531e29 * cos(theta) ** 17 + 2.54652935600856e28 * cos(theta) ** 15 - 9.31332575342735e26 * cos(theta) ** 13 + 2.49635535658877e25 * cos(theta) ** 11 - 4.66212375593829e23 * cos(theta) ** 9 + 5.63966583379632e21 * cos(theta) ** 7 - 3.94382226139602e19 * cos(theta) ** 5 + 1.30331204937079e17 * cos(theta) ** 3 - 128405128016827.0 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl78_m_minus_6(theta, phi): return ( 2.14865083419056e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 3.56480852302846e33 * cos(theta) ** 72 - 5.87848424829725e34 * cos(theta) ** 70 + 4.63939198027381e35 * cos(theta) ** 68 - 2.33300991855712e36 * cos(theta) ** 66 + 8.39648703910238e36 * cos(theta) ** 64 - 2.30303644501094e37 * cos(theta) ** 62 + 5.00579530748929e37 * cos(theta) ** 60 - 8.85140628796808e37 * cos(theta) ** 58 + 1.29710767677405e38 * cos(theta) ** 56 - 1.59675925038532e38 * cos(theta) ** 54 + 1.667855830147e38 * cos(theta) ** 52 - 1.48927732712116e38 * cos(theta) ** 50 + 1.1430856677465e38 * cos(theta) ** 48 - 7.57134840409897e37 * cos(theta) ** 46 + 4.33906179304675e37 * cos(theta) ** 44 - 2.15472569880432e37 * cos(theta) ** 42 + 9.2760941333526e36 * cos(theta) ** 40 - 3.4602359751387e36 * cos(theta) ** 38 + 1.11687139142448e36 * cos(theta) ** 36 - 3.11202554886077e35 * cos(theta) ** 34 + 7.46088176457645e34 * cos(theta) ** 32 - 1.53233844937057e34 * cos(theta) ** 30 + 2.68128409282461e33 * cos(theta) ** 28 - 3.96993884484019e32 * cos(theta) ** 26 + 4.93207234164015e31 * cos(theta) ** 24 - 5.08879239735582e30 * cos(theta) ** 22 + 4.30590125930107e29 * cos(theta) ** 20 - 2.94182394558506e28 * cos(theta) ** 18 + 1.59158084750535e27 * cos(theta) ** 16 - 6.65237553816239e25 * cos(theta) ** 14 + 2.08029613049064e24 * cos(theta) ** 12 - 4.66212375593829e22 * cos(theta) ** 10 + 7.04958229224539e20 * cos(theta) ** 8 - 6.57303710232671e18 * cos(theta) ** 6 + 3.25828012342699e16 * cos(theta) ** 4 - 64202564008413.5 * cos(theta) ** 2 + 20981230068.109 ) * sin(6 * phi) ) # @torch.jit.script def Yl78_m_minus_5(theta, phi): return ( 1.68254589528387e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 4.88329934661433e31 * cos(theta) ** 73 - 8.27955527929191e32 * cos(theta) ** 71 + 6.72375649315045e33 * cos(theta) ** 69 - 3.4821043560554e34 * cos(theta) ** 67 + 1.29176723678498e35 * cos(theta) ** 65 - 3.65561340477927e35 * cos(theta) ** 63 + 8.20622181555622e35 * cos(theta) ** 61 - 1.50023835389289e36 * cos(theta) ** 59 + 2.27562750311236e36 * cos(theta) ** 57 - 2.90319863706421e36 * cos(theta) ** 55 + 3.14689779273019e36 * cos(theta) ** 53 - 2.92015162180619e36 * cos(theta) ** 51 + 2.33282789336021e36 * cos(theta) ** 49 - 1.61092519236148e36 * cos(theta) ** 47 + 9.6423595401039e35 * cos(theta) ** 45 - 5.01098999721935e35 * cos(theta) ** 43 + 2.26246198374454e35 * cos(theta) ** 41 - 8.87239993625308e34 * cos(theta) ** 39 + 3.01857132817426e34 * cos(theta) ** 37 - 8.89150156817362e33 * cos(theta) ** 35 + 2.26087326199287e33 * cos(theta) ** 33 - 4.94302725603409e32 * cos(theta) ** 31 + 9.24580721663657e31 * cos(theta) ** 29 - 1.47034772031118e31 * cos(theta) ** 27 + 1.97282893665606e30 * cos(theta) ** 25 - 2.21251843363296e29 * cos(theta) ** 23 + 2.05042917109575e28 * cos(theta) ** 21 - 1.54832839241319e27 * cos(theta) ** 19 + 9.36224027944325e25 * cos(theta) ** 17 - 4.43491702544159e24 * cos(theta) ** 15 + 1.60022779268511e23 * cos(theta) ** 13 - 4.23829432358026e21 * cos(theta) ** 11 + 7.83286921360599e19 * cos(theta) ** 9 - 9.39005300332387e17 * cos(theta) ** 7 + 6.51656024685397e15 * cos(theta) ** 5 - 21400854669471.2 * cos(theta) ** 3 + 20981230068.109 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl78_m_minus_4(theta, phi): return ( 1.31862657929992e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 6.59905317110044e29 * cos(theta) ** 74 - 1.14993823323499e31 * cos(theta) ** 72 + 9.60536641878636e31 * cos(theta) ** 70 - 5.12074170008147e32 * cos(theta) ** 68 + 1.95722308603785e33 * cos(theta) ** 66 - 5.71189594496761e33 * cos(theta) ** 64 + 1.32358416379939e34 * cos(theta) ** 62 - 2.50039725648816e34 * cos(theta) ** 60 + 3.92349569502131e34 * cos(theta) ** 58 - 5.18428328047181e34 * cos(theta) ** 56 + 5.8275885050559e34 * cos(theta) ** 54 - 5.61567619578114e34 * cos(theta) ** 52 + 4.66565578672042e34 * cos(theta) ** 50 - 3.35609415075309e34 * cos(theta) ** 48 + 2.09616511741389e34 * cos(theta) ** 46 - 1.1388613630044e34 * cos(theta) ** 44 + 5.3868142470108e33 * cos(theta) ** 42 - 2.21809998406327e33 * cos(theta) ** 40 + 7.94360875835331e32 * cos(theta) ** 38 - 2.46986154671489e32 * cos(theta) ** 36 + 6.64962724115549e31 * cos(theta) ** 34 - 1.54469601751065e31 * cos(theta) ** 32 + 3.08193573887886e30 * cos(theta) ** 30 - 5.25124185825422e29 * cos(theta) ** 28 + 7.5878036025233e28 * cos(theta) ** 26 - 9.21882680680401e27 * cos(theta) ** 24 + 9.32013259588977e26 * cos(theta) ** 22 - 7.74164196206594e25 * cos(theta) ** 20 + 5.20124459969069e24 * cos(theta) ** 18 - 2.771823140901e23 * cos(theta) ** 16 + 1.14301985191794e22 * cos(theta) ** 14 - 3.53191193631688e20 * cos(theta) ** 12 + 7.83286921360599e18 * cos(theta) ** 10 - 1.17375662541548e17 * cos(theta) ** 8 + 1.08609337447566e15 * cos(theta) ** 6 - 5350213667367.79 * cos(theta) ** 4 + 10490615034.0545 * cos(theta) ** 2 - 3416025.73560876 ) * sin(4 * phi) ) # @torch.jit.script def Yl78_m_minus_3(theta, phi): return ( 1.03409248823124e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 8.79873756146726e27 * cos(theta) ** 75 - 1.57525785374656e29 * cos(theta) ** 73 + 1.35286850968822e30 * cos(theta) ** 71 - 7.42136478272677e30 * cos(theta) ** 69 + 2.92122848662366e31 * cos(theta) ** 67 - 8.78753222302709e31 * cos(theta) ** 65 + 2.10092724412602e32 * cos(theta) ** 63 - 4.09901189588223e32 * cos(theta) ** 61 + 6.64999270342595e32 * cos(theta) ** 59 - 9.09523382538913e32 * cos(theta) ** 57 + 1.0595615463738e33 * cos(theta) ** 55 - 1.0595615463738e33 * cos(theta) ** 53 + 9.14834467984396e32 * cos(theta) ** 51 - 6.8491717362308e32 * cos(theta) ** 49 + 4.45992578173168e32 * cos(theta) ** 47 - 2.53080302889866e32 * cos(theta) ** 45 + 1.25274749930484e32 * cos(theta) ** 43 - 5.40999996112993e31 * cos(theta) ** 41 + 2.03682275855213e31 * cos(theta) ** 39 - 6.67530147760782e30 * cos(theta) ** 37 + 1.899893497473e30 * cos(theta) ** 35 - 4.68089702275955e29 * cos(theta) ** 33 + 9.9417281899318e28 * cos(theta) ** 31 - 1.81077305457042e28 * cos(theta) ** 29 + 2.81029763056419e27 * cos(theta) ** 27 - 3.68753072272161e26 * cos(theta) ** 25 + 4.05223156343034e25 * cos(theta) ** 23 - 3.68649617241235e24 * cos(theta) ** 21 + 2.73749715773194e23 * cos(theta) ** 19 - 1.63048420053e22 * cos(theta) ** 17 + 7.62013234611958e20 * cos(theta) ** 15 - 2.71685533562837e19 * cos(theta) ** 13 + 7.12079019418727e17 * cos(theta) ** 11 - 1.30417402823943e16 * cos(theta) ** 9 + 155156196353666.0 * cos(theta) ** 7 - 1070042733473.56 * cos(theta) ** 5 + 3496871678.01817 * cos(theta) ** 3 - 3416025.73560876 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl78_m_minus_2(theta, phi): return ( 0.000811350837805408 * (1.0 - cos(theta) ** 2) * ( 1.15772862650885e26 * cos(theta) ** 76 - 2.12872682938724e27 * cos(theta) ** 74 + 1.87898404123364e28 * cos(theta) ** 72 - 1.06019496896097e29 * cos(theta) ** 70 + 4.29592424503479e29 * cos(theta) ** 68 - 1.33144427621622e30 * cos(theta) ** 66 + 3.2826988189469e30 * cos(theta) ** 64 - 6.61130950948746e30 * cos(theta) ** 62 + 1.10833211723766e31 * cos(theta) ** 60 - 1.56814376299813e31 * cos(theta) ** 58 + 1.89207418995321e31 * cos(theta) ** 56 - 1.96215101180333e31 * cos(theta) ** 54 + 1.75929705381615e31 * cos(theta) ** 52 - 1.36983434724616e31 * cos(theta) ** 50 + 9.29151204527434e30 * cos(theta) ** 48 - 5.50174571499709e30 * cos(theta) ** 46 + 2.84715340751099e30 * cos(theta) ** 44 - 1.28809522884046e30 * cos(theta) ** 42 + 5.09205689638033e29 * cos(theta) ** 40 - 1.75665828358101e29 * cos(theta) ** 38 + 5.27748193742499e28 * cos(theta) ** 36 - 1.37673441845869e28 * cos(theta) ** 34 + 3.10679005935369e27 * cos(theta) ** 32 - 6.03591018190141e26 * cos(theta) ** 30 + 1.0036777252015e26 * cos(theta) ** 28 - 1.41828104720062e25 * cos(theta) ** 26 + 1.68842981809597e24 * cos(theta) ** 24 - 1.67568007836925e23 * cos(theta) ** 22 + 1.36874857886597e22 * cos(theta) ** 20 - 9.05824555849999e20 * cos(theta) ** 18 + 4.76258271632474e19 * cos(theta) ** 16 - 1.94061095402027e18 * cos(theta) ** 14 + 5.93399182848939e16 * cos(theta) ** 12 - 1.30417402823943e15 * cos(theta) ** 10 + 19394524544208.3 * cos(theta) ** 8 - 178340455578.926 * cos(theta) ** 6 + 874217919.504542 * cos(theta) ** 4 - 1708012.86780438 * cos(theta) ** 2 + 554.909963549181 ) * sin(2 * phi) ) # @torch.jit.script def Yl78_m_minus_1(theta, phi): return ( 0.063679412066746 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 1.50354367079071e24 * cos(theta) ** 77 - 2.83830243918299e25 * cos(theta) ** 75 + 2.57395074141594e26 * cos(theta) ** 73 - 1.49323235064925e27 * cos(theta) ** 71 + 6.22597716671709e27 * cos(theta) ** 69 - 1.98723026300929e28 * cos(theta) ** 67 + 5.05030587530292e28 * cos(theta) ** 65 - 1.04941420785515e29 * cos(theta) ** 63 + 1.81693789711092e29 * cos(theta) ** 61 - 2.65787078474259e29 * cos(theta) ** 59 + 3.31942840342669e29 * cos(theta) ** 57 - 3.56754729418788e29 * cos(theta) ** 55 + 3.31942840342669e29 * cos(theta) ** 53 - 2.68594970048267e29 * cos(theta) ** 51 + 1.89622694801517e29 * cos(theta) ** 49 - 1.17058419468023e29 * cos(theta) ** 47 + 6.32700757224665e28 * cos(theta) ** 45 - 2.99557029962897e28 * cos(theta) ** 43 + 1.24196509667813e28 * cos(theta) ** 41 - 4.50425200918207e27 * cos(theta) ** 39 + 1.42634646957432e27 * cos(theta) ** 37 - 3.93352690988198e26 * cos(theta) ** 35 + 9.41451533137481e25 * cos(theta) ** 33 - 1.94706780061336e25 * cos(theta) ** 31 + 3.4609576731086e24 * cos(theta) ** 29 - 5.25289276740969e23 * cos(theta) ** 27 + 6.75371927238389e22 * cos(theta) ** 25 - 7.28556555812718e21 * cos(theta) ** 23 + 6.51785037555225e20 * cos(theta) ** 21 - 4.76749766236841e19 * cos(theta) ** 19 + 2.8015192448969e18 * cos(theta) ** 17 - 1.29374063601351e17 * cos(theta) ** 15 + 4.56460909883799e15 * cos(theta) ** 13 - 118561275294493.0 * cos(theta) ** 11 + 2154947171578.69 * cos(theta) ** 9 - 25477207939.8466 * cos(theta) ** 7 + 174843583.900908 * cos(theta) ** 5 - 569337.62260146 * cos(theta) ** 3 + 554.909963549181 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl78_m0(theta, phi): return ( 2.14050482437434e23 * cos(theta) ** 78 - 4.14705547586848e24 * cos(theta) ** 76 + 3.86245362948535e25 * cos(theta) ** 74 - 2.30297731859601e26 * cos(theta) ** 72 + 9.87652688981778e26 * cos(theta) ** 70 - 3.24514454951156e27 * cos(theta) ** 68 + 8.49705664803141e27 * cos(theta) ** 66 - 1.82079785314959e28 * cos(theta) ** 64 + 3.25419190775671e28 * cos(theta) ** 62 - 4.91900631300395e28 * cos(theta) ** 60 + 6.35521253577882e28 * cos(theta) ** 58 - 7.07418607518007e28 * cos(theta) ** 56 + 6.82596901991059e28 * cos(theta) ** 54 - 5.73573791397067e28 * cos(theta) ** 52 + 4.21128929896186e28 * cos(theta) ** 50 - 2.70804692452928e28 * cos(theta) ** 48 + 1.52733846543451e28 * cos(theta) ** 46 - 7.55999670839177e27 * cos(theta) ** 44 + 3.28363493394794e27 * cos(theta) ** 42 - 1.25042444853126e27 * cos(theta) ** 40 + 4.1680814951042e26 * cos(theta) ** 38 - 1.21331730478603e26 * cos(theta) ** 36 + 3.07477836691551e25 * cos(theta) ** 34 - 6.75656350896828e24 * cos(theta) ** 32 + 1.28106097111937e24 * cos(theta) ** 30 - 2.08322064462402e23 * cos(theta) ** 28 + 2.8844593540948e22 * cos(theta) ** 26 - 3.37090719194825e21 * cos(theta) ** 24 + 3.28985284645586e20 * cos(theta) ** 22 - 2.64700803737828e19 * cos(theta) ** 20 + 1.72828703471434e18 * cos(theta) ** 18 - 8.97887661498452e16 * cos(theta) ** 16 + 3.62051476410666e15 * cos(theta) ** 14 - 109712568609293.0 * cos(theta) ** 12 + 2392937715866.93 * cos(theta) ** 10 - 35363611564.5359 * cos(theta) ** 8 + 323588602.551309 * cos(theta) ** 6 - 1580536.97110701 * cos(theta) ** 4 + 3080.96875459456 * cos(theta) ** 2 - 0.999989858680481 ) # @torch.jit.script def Yl78_m1(theta, phi): return ( 0.063679412066746 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 1.50354367079071e24 * cos(theta) ** 77 - 2.83830243918299e25 * cos(theta) ** 75 + 2.57395074141594e26 * cos(theta) ** 73 - 1.49323235064925e27 * cos(theta) ** 71 + 6.22597716671709e27 * cos(theta) ** 69 - 1.98723026300929e28 * cos(theta) ** 67 + 5.05030587530292e28 * cos(theta) ** 65 - 1.04941420785515e29 * cos(theta) ** 63 + 1.81693789711092e29 * cos(theta) ** 61 - 2.65787078474259e29 * cos(theta) ** 59 + 3.31942840342669e29 * cos(theta) ** 57 - 3.56754729418788e29 * cos(theta) ** 55 + 3.31942840342669e29 * cos(theta) ** 53 - 2.68594970048267e29 * cos(theta) ** 51 + 1.89622694801517e29 * cos(theta) ** 49 - 1.17058419468023e29 * cos(theta) ** 47 + 6.32700757224665e28 * cos(theta) ** 45 - 2.99557029962897e28 * cos(theta) ** 43 + 1.24196509667813e28 * cos(theta) ** 41 - 4.50425200918207e27 * cos(theta) ** 39 + 1.42634646957432e27 * cos(theta) ** 37 - 3.93352690988198e26 * cos(theta) ** 35 + 9.41451533137481e25 * cos(theta) ** 33 - 1.94706780061336e25 * cos(theta) ** 31 + 3.4609576731086e24 * cos(theta) ** 29 - 5.25289276740969e23 * cos(theta) ** 27 + 6.75371927238389e22 * cos(theta) ** 25 - 7.28556555812718e21 * cos(theta) ** 23 + 6.51785037555225e20 * cos(theta) ** 21 - 4.76749766236841e19 * cos(theta) ** 19 + 2.8015192448969e18 * cos(theta) ** 17 - 1.29374063601351e17 * cos(theta) ** 15 + 4.56460909883799e15 * cos(theta) ** 13 - 118561275294493.0 * cos(theta) ** 11 + 2154947171578.69 * cos(theta) ** 9 - 25477207939.8466 * cos(theta) ** 7 + 174843583.900908 * cos(theta) ** 5 - 569337.62260146 * cos(theta) ** 3 + 554.909963549181 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl78_m2(theta, phi): return ( 0.000811350837805408 * (1.0 - cos(theta) ** 2) * ( 1.15772862650885e26 * cos(theta) ** 76 - 2.12872682938724e27 * cos(theta) ** 74 + 1.87898404123364e28 * cos(theta) ** 72 - 1.06019496896097e29 * cos(theta) ** 70 + 4.29592424503479e29 * cos(theta) ** 68 - 1.33144427621622e30 * cos(theta) ** 66 + 3.2826988189469e30 * cos(theta) ** 64 - 6.61130950948746e30 * cos(theta) ** 62 + 1.10833211723766e31 * cos(theta) ** 60 - 1.56814376299813e31 * cos(theta) ** 58 + 1.89207418995321e31 * cos(theta) ** 56 - 1.96215101180333e31 * cos(theta) ** 54 + 1.75929705381615e31 * cos(theta) ** 52 - 1.36983434724616e31 * cos(theta) ** 50 + 9.29151204527434e30 * cos(theta) ** 48 - 5.50174571499709e30 * cos(theta) ** 46 + 2.84715340751099e30 * cos(theta) ** 44 - 1.28809522884046e30 * cos(theta) ** 42 + 5.09205689638033e29 * cos(theta) ** 40 - 1.75665828358101e29 * cos(theta) ** 38 + 5.27748193742499e28 * cos(theta) ** 36 - 1.37673441845869e28 * cos(theta) ** 34 + 3.10679005935369e27 * cos(theta) ** 32 - 6.03591018190141e26 * cos(theta) ** 30 + 1.0036777252015e26 * cos(theta) ** 28 - 1.41828104720062e25 * cos(theta) ** 26 + 1.68842981809597e24 * cos(theta) ** 24 - 1.67568007836925e23 * cos(theta) ** 22 + 1.36874857886597e22 * cos(theta) ** 20 - 9.05824555849999e20 * cos(theta) ** 18 + 4.76258271632474e19 * cos(theta) ** 16 - 1.94061095402027e18 * cos(theta) ** 14 + 5.93399182848939e16 * cos(theta) ** 12 - 1.30417402823943e15 * cos(theta) ** 10 + 19394524544208.3 * cos(theta) ** 8 - 178340455578.926 * cos(theta) ** 6 + 874217919.504542 * cos(theta) ** 4 - 1708012.86780438 * cos(theta) ** 2 + 554.909963549181 ) * cos(2 * phi) ) # @torch.jit.script def Yl78_m3(theta, phi): return ( 1.03409248823124e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 8.79873756146726e27 * cos(theta) ** 75 - 1.57525785374656e29 * cos(theta) ** 73 + 1.35286850968822e30 * cos(theta) ** 71 - 7.42136478272677e30 * cos(theta) ** 69 + 2.92122848662366e31 * cos(theta) ** 67 - 8.78753222302709e31 * cos(theta) ** 65 + 2.10092724412602e32 * cos(theta) ** 63 - 4.09901189588223e32 * cos(theta) ** 61 + 6.64999270342595e32 * cos(theta) ** 59 - 9.09523382538913e32 * cos(theta) ** 57 + 1.0595615463738e33 * cos(theta) ** 55 - 1.0595615463738e33 * cos(theta) ** 53 + 9.14834467984396e32 * cos(theta) ** 51 - 6.8491717362308e32 * cos(theta) ** 49 + 4.45992578173168e32 * cos(theta) ** 47 - 2.53080302889866e32 * cos(theta) ** 45 + 1.25274749930484e32 * cos(theta) ** 43 - 5.40999996112993e31 * cos(theta) ** 41 + 2.03682275855213e31 * cos(theta) ** 39 - 6.67530147760782e30 * cos(theta) ** 37 + 1.899893497473e30 * cos(theta) ** 35 - 4.68089702275955e29 * cos(theta) ** 33 + 9.9417281899318e28 * cos(theta) ** 31 - 1.81077305457042e28 * cos(theta) ** 29 + 2.81029763056419e27 * cos(theta) ** 27 - 3.68753072272161e26 * cos(theta) ** 25 + 4.05223156343034e25 * cos(theta) ** 23 - 3.68649617241235e24 * cos(theta) ** 21 + 2.73749715773194e23 * cos(theta) ** 19 - 1.63048420053e22 * cos(theta) ** 17 + 7.62013234611958e20 * cos(theta) ** 15 - 2.71685533562837e19 * cos(theta) ** 13 + 7.12079019418727e17 * cos(theta) ** 11 - 1.30417402823943e16 * cos(theta) ** 9 + 155156196353666.0 * cos(theta) ** 7 - 1070042733473.56 * cos(theta) ** 5 + 3496871678.01817 * cos(theta) ** 3 - 3416025.73560876 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl78_m4(theta, phi): return ( 1.31862657929992e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 6.59905317110044e29 * cos(theta) ** 74 - 1.14993823323499e31 * cos(theta) ** 72 + 9.60536641878636e31 * cos(theta) ** 70 - 5.12074170008147e32 * cos(theta) ** 68 + 1.95722308603785e33 * cos(theta) ** 66 - 5.71189594496761e33 * cos(theta) ** 64 + 1.32358416379939e34 * cos(theta) ** 62 - 2.50039725648816e34 * cos(theta) ** 60 + 3.92349569502131e34 * cos(theta) ** 58 - 5.18428328047181e34 * cos(theta) ** 56 + 5.8275885050559e34 * cos(theta) ** 54 - 5.61567619578114e34 * cos(theta) ** 52 + 4.66565578672042e34 * cos(theta) ** 50 - 3.35609415075309e34 * cos(theta) ** 48 + 2.09616511741389e34 * cos(theta) ** 46 - 1.1388613630044e34 * cos(theta) ** 44 + 5.3868142470108e33 * cos(theta) ** 42 - 2.21809998406327e33 * cos(theta) ** 40 + 7.94360875835331e32 * cos(theta) ** 38 - 2.46986154671489e32 * cos(theta) ** 36 + 6.64962724115549e31 * cos(theta) ** 34 - 1.54469601751065e31 * cos(theta) ** 32 + 3.08193573887886e30 * cos(theta) ** 30 - 5.25124185825422e29 * cos(theta) ** 28 + 7.5878036025233e28 * cos(theta) ** 26 - 9.21882680680401e27 * cos(theta) ** 24 + 9.32013259588977e26 * cos(theta) ** 22 - 7.74164196206594e25 * cos(theta) ** 20 + 5.20124459969069e24 * cos(theta) ** 18 - 2.771823140901e23 * cos(theta) ** 16 + 1.14301985191794e22 * cos(theta) ** 14 - 3.53191193631688e20 * cos(theta) ** 12 + 7.83286921360599e18 * cos(theta) ** 10 - 1.17375662541548e17 * cos(theta) ** 8 + 1.08609337447566e15 * cos(theta) ** 6 - 5350213667367.79 * cos(theta) ** 4 + 10490615034.0545 * cos(theta) ** 2 - 3416025.73560876 ) * cos(4 * phi) ) # @torch.jit.script def Yl78_m5(theta, phi): return ( 1.68254589528387e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 4.88329934661433e31 * cos(theta) ** 73 - 8.27955527929191e32 * cos(theta) ** 71 + 6.72375649315045e33 * cos(theta) ** 69 - 3.4821043560554e34 * cos(theta) ** 67 + 1.29176723678498e35 * cos(theta) ** 65 - 3.65561340477927e35 * cos(theta) ** 63 + 8.20622181555622e35 * cos(theta) ** 61 - 1.50023835389289e36 * cos(theta) ** 59 + 2.27562750311236e36 * cos(theta) ** 57 - 2.90319863706421e36 * cos(theta) ** 55 + 3.14689779273019e36 * cos(theta) ** 53 - 2.92015162180619e36 * cos(theta) ** 51 + 2.33282789336021e36 * cos(theta) ** 49 - 1.61092519236148e36 * cos(theta) ** 47 + 9.6423595401039e35 * cos(theta) ** 45 - 5.01098999721935e35 * cos(theta) ** 43 + 2.26246198374454e35 * cos(theta) ** 41 - 8.87239993625308e34 * cos(theta) ** 39 + 3.01857132817426e34 * cos(theta) ** 37 - 8.89150156817362e33 * cos(theta) ** 35 + 2.26087326199287e33 * cos(theta) ** 33 - 4.94302725603409e32 * cos(theta) ** 31 + 9.24580721663657e31 * cos(theta) ** 29 - 1.47034772031118e31 * cos(theta) ** 27 + 1.97282893665606e30 * cos(theta) ** 25 - 2.21251843363296e29 * cos(theta) ** 23 + 2.05042917109575e28 * cos(theta) ** 21 - 1.54832839241319e27 * cos(theta) ** 19 + 9.36224027944325e25 * cos(theta) ** 17 - 4.43491702544159e24 * cos(theta) ** 15 + 1.60022779268511e23 * cos(theta) ** 13 - 4.23829432358026e21 * cos(theta) ** 11 + 7.83286921360599e19 * cos(theta) ** 9 - 9.39005300332387e17 * cos(theta) ** 7 + 6.51656024685397e15 * cos(theta) ** 5 - 21400854669471.2 * cos(theta) ** 3 + 20981230068.109 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl78_m6(theta, phi): return ( 2.14865083419056e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 3.56480852302846e33 * cos(theta) ** 72 - 5.87848424829725e34 * cos(theta) ** 70 + 4.63939198027381e35 * cos(theta) ** 68 - 2.33300991855712e36 * cos(theta) ** 66 + 8.39648703910238e36 * cos(theta) ** 64 - 2.30303644501094e37 * cos(theta) ** 62 + 5.00579530748929e37 * cos(theta) ** 60 - 8.85140628796808e37 * cos(theta) ** 58 + 1.29710767677405e38 * cos(theta) ** 56 - 1.59675925038532e38 * cos(theta) ** 54 + 1.667855830147e38 * cos(theta) ** 52 - 1.48927732712116e38 * cos(theta) ** 50 + 1.1430856677465e38 * cos(theta) ** 48 - 7.57134840409897e37 * cos(theta) ** 46 + 4.33906179304675e37 * cos(theta) ** 44 - 2.15472569880432e37 * cos(theta) ** 42 + 9.2760941333526e36 * cos(theta) ** 40 - 3.4602359751387e36 * cos(theta) ** 38 + 1.11687139142448e36 * cos(theta) ** 36 - 3.11202554886077e35 * cos(theta) ** 34 + 7.46088176457645e34 * cos(theta) ** 32 - 1.53233844937057e34 * cos(theta) ** 30 + 2.68128409282461e33 * cos(theta) ** 28 - 3.96993884484019e32 * cos(theta) ** 26 + 4.93207234164015e31 * cos(theta) ** 24 - 5.08879239735582e30 * cos(theta) ** 22 + 4.30590125930107e29 * cos(theta) ** 20 - 2.94182394558506e28 * cos(theta) ** 18 + 1.59158084750535e27 * cos(theta) ** 16 - 6.65237553816239e25 * cos(theta) ** 14 + 2.08029613049064e24 * cos(theta) ** 12 - 4.66212375593829e22 * cos(theta) ** 10 + 7.04958229224539e20 * cos(theta) ** 8 - 6.57303710232671e18 * cos(theta) ** 6 + 3.25828012342699e16 * cos(theta) ** 4 - 64202564008413.5 * cos(theta) ** 2 + 20981230068.109 ) * cos(6 * phi) ) # @torch.jit.script def Yl78_m7(theta, phi): return ( 2.74656660513642e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 2.56666213658049e35 * cos(theta) ** 71 - 4.11493897380808e36 * cos(theta) ** 69 + 3.15478654658619e37 * cos(theta) ** 67 - 1.5397865462477e38 * cos(theta) ** 65 + 5.37375170502552e38 * cos(theta) ** 63 - 1.42788259590678e39 * cos(theta) ** 61 + 3.00347718449358e39 * cos(theta) ** 59 - 5.13381564702149e39 * cos(theta) ** 57 + 7.26380298993466e39 * cos(theta) ** 55 - 8.62249995208071e39 * cos(theta) ** 53 + 8.67285031676439e39 * cos(theta) ** 51 - 7.44638663560579e39 * cos(theta) ** 49 + 5.48681120518321e39 * cos(theta) ** 47 - 3.48282026588553e39 * cos(theta) ** 45 + 1.90918718894057e39 * cos(theta) ** 43 - 9.04984793497814e38 * cos(theta) ** 41 + 3.71043765334104e38 * cos(theta) ** 39 - 1.31488967055271e38 * cos(theta) ** 37 + 4.02073700912811e37 * cos(theta) ** 35 - 1.05808868661266e37 * cos(theta) ** 33 + 2.38748216466447e36 * cos(theta) ** 31 - 4.5970153481117e35 * cos(theta) ** 29 + 7.5075954599089e34 * cos(theta) ** 27 - 1.03218409965845e34 * cos(theta) ** 25 + 1.18369736199364e33 * cos(theta) ** 23 - 1.11953432741828e32 * cos(theta) ** 21 + 8.61180251860215e30 * cos(theta) ** 19 - 5.2952831020531e29 * cos(theta) ** 17 + 2.54652935600856e28 * cos(theta) ** 15 - 9.31332575342735e26 * cos(theta) ** 13 + 2.49635535658877e25 * cos(theta) ** 11 - 4.66212375593829e23 * cos(theta) ** 9 + 5.63966583379632e21 * cos(theta) ** 7 - 3.94382226139602e19 * cos(theta) ** 5 + 1.30331204937079e17 * cos(theta) ** 3 - 128405128016827.0 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl78_m8(theta, phi): return ( 3.51488997694576e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.82233011697215e37 * cos(theta) ** 70 - 2.83930789192757e38 * cos(theta) ** 68 + 2.11370698621275e39 * cos(theta) ** 66 - 1.000861255061e40 * cos(theta) ** 64 + 3.38546357416608e40 * cos(theta) ** 62 - 8.71008383503137e40 * cos(theta) ** 60 + 1.77205153885121e41 * cos(theta) ** 58 - 2.92627491880225e41 * cos(theta) ** 56 + 3.99509164446406e41 * cos(theta) ** 54 - 4.56992497460278e41 * cos(theta) ** 52 + 4.42315366154984e41 * cos(theta) ** 50 - 3.64872945144684e41 * cos(theta) ** 48 + 2.57880126643611e41 * cos(theta) ** 46 - 1.56726911964849e41 * cos(theta) ** 44 + 8.20950491244446e40 * cos(theta) ** 42 - 3.71043765334104e40 * cos(theta) ** 40 + 1.44707068480301e40 * cos(theta) ** 38 - 4.86509178104501e39 * cos(theta) ** 36 + 1.40725795319484e39 * cos(theta) ** 34 - 3.49169266582178e38 * cos(theta) ** 32 + 7.40119471045984e37 * cos(theta) ** 30 - 1.33313445095239e37 * cos(theta) ** 28 + 2.0270507741754e36 * cos(theta) ** 26 - 2.58046024914613e35 * cos(theta) ** 24 + 2.72250393258536e34 * cos(theta) ** 22 - 2.35102208757839e33 * cos(theta) ** 20 + 1.63624247853441e32 * cos(theta) ** 18 - 9.00198127349027e30 * cos(theta) ** 16 + 3.81979403401285e29 * cos(theta) ** 14 - 1.21073234794556e28 * cos(theta) ** 12 + 2.74599089224765e26 * cos(theta) ** 10 - 4.19591138034446e24 * cos(theta) ** 8 + 3.94776608365742e22 * cos(theta) ** 6 - 1.97191113069801e20 * cos(theta) ** 4 + 3.90993614811238e17 * cos(theta) ** 2 - 128405128016827.0 ) * cos(8 * phi) ) # @torch.jit.script def Yl78_m9(theta, phi): return ( 4.50404881714018e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1.2756310818805e39 * cos(theta) ** 69 - 1.93072936651075e40 * cos(theta) ** 67 + 1.39504661090041e41 * cos(theta) ** 65 - 6.40551203239042e41 * cos(theta) ** 63 + 2.09898741598297e42 * cos(theta) ** 61 - 5.22605030101882e42 * cos(theta) ** 59 + 1.0277898925337e43 * cos(theta) ** 57 - 1.63871395452926e43 * cos(theta) ** 55 + 2.15734948801059e43 * cos(theta) ** 53 - 2.37636098679344e43 * cos(theta) ** 51 + 2.21157683077492e43 * cos(theta) ** 49 - 1.75139013669448e43 * cos(theta) ** 47 + 1.18624858256061e43 * cos(theta) ** 45 - 6.89598412645334e42 * cos(theta) ** 43 + 3.44799206322667e42 * cos(theta) ** 41 - 1.48417506133642e42 * cos(theta) ** 39 + 5.49886860225142e41 * cos(theta) ** 37 - 1.75143304117621e41 * cos(theta) ** 35 + 4.78467704086245e40 * cos(theta) ** 33 - 1.11734165306297e40 * cos(theta) ** 31 + 2.22035841313795e39 * cos(theta) ** 29 - 3.7327764626667e38 * cos(theta) ** 27 + 5.27033201285605e37 * cos(theta) ** 25 - 6.1931045979507e36 * cos(theta) ** 23 + 5.98950865168779e35 * cos(theta) ** 21 - 4.70204417515677e34 * cos(theta) ** 19 + 2.94523646136194e33 * cos(theta) ** 17 - 1.44031700375844e32 * cos(theta) ** 15 + 5.34771164761798e30 * cos(theta) ** 13 - 1.45287881753467e29 * cos(theta) ** 11 + 2.74599089224765e27 * cos(theta) ** 9 - 3.35672910427557e25 * cos(theta) ** 7 + 2.36865965019445e23 * cos(theta) ** 5 - 7.88764452279205e20 * cos(theta) ** 3 + 7.81987229622477e17 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl78_m10(theta, phi): return ( 5.78012469423161e-19 * (1.0 - cos(theta) ** 2) ** 5 * ( 8.80185446497548e40 * cos(theta) ** 68 - 1.2935886755622e42 * cos(theta) ** 66 + 9.06780297085269e42 * cos(theta) ** 64 - 4.03547258040597e43 * cos(theta) ** 62 + 1.28038232374961e44 * cos(theta) ** 60 - 3.0833696776011e44 * cos(theta) ** 58 + 5.8584023874421e44 * cos(theta) ** 56 - 9.01292674991092e44 * cos(theta) ** 54 + 1.14339522864561e45 * cos(theta) ** 52 - 1.21194410326466e45 * cos(theta) ** 50 + 1.08367264707971e45 * cos(theta) ** 48 - 8.23153364246406e44 * cos(theta) ** 46 + 5.33811862152275e44 * cos(theta) ** 44 - 2.96527317437494e44 * cos(theta) ** 42 + 1.41367674592294e44 * cos(theta) ** 40 - 5.78828273921202e43 * cos(theta) ** 38 + 2.03458138283303e43 * cos(theta) ** 36 - 6.13001564411672e42 * cos(theta) ** 34 + 1.57894342348461e42 * cos(theta) ** 32 - 3.46375912449521e41 * cos(theta) ** 30 + 6.43903939810006e40 * cos(theta) ** 28 - 1.00784964492001e40 * cos(theta) ** 26 + 1.31758300321401e39 * cos(theta) ** 24 - 1.42441405752866e38 * cos(theta) ** 22 + 1.25779681685444e37 * cos(theta) ** 20 - 8.93388393279787e35 * cos(theta) ** 18 + 5.00690198431529e34 * cos(theta) ** 16 - 2.16047550563767e33 * cos(theta) ** 14 + 6.95202514190338e31 * cos(theta) ** 12 - 1.59816669928813e30 * cos(theta) ** 10 + 2.47139180302289e28 * cos(theta) ** 8 - 2.3497103729929e26 * cos(theta) ** 6 + 1.18432982509723e24 * cos(theta) ** 4 - 2.36629335683761e21 * cos(theta) ** 2 + 7.81987229622477e17 ) * cos(10 * phi) ) # @torch.jit.script def Yl78_m11(theta, phi): return ( 7.42998176421938e-21 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 5.98526103618333e42 * cos(theta) ** 67 - 8.53768525871054e43 * cos(theta) ** 65 + 5.80339390134572e44 * cos(theta) ** 63 - 2.5019929998517e45 * cos(theta) ** 61 + 7.68229394249767e45 * cos(theta) ** 59 - 1.78835441300864e46 * cos(theta) ** 57 + 3.28070533696758e46 * cos(theta) ** 55 - 4.8669804449519e46 * cos(theta) ** 53 + 5.94565518895719e46 * cos(theta) ** 51 - 6.05972051632328e46 * cos(theta) ** 49 + 5.20162870598261e46 * cos(theta) ** 47 - 3.78650547553347e46 * cos(theta) ** 45 + 2.34877219347001e46 * cos(theta) ** 43 - 1.24541473323747e46 * cos(theta) ** 41 + 5.65470698369174e45 * cos(theta) ** 39 - 2.19954744090057e45 * cos(theta) ** 37 + 7.32449297819889e44 * cos(theta) ** 35 - 2.08420531899968e44 * cos(theta) ** 33 + 5.05261895515075e43 * cos(theta) ** 31 - 1.03912773734856e43 * cos(theta) ** 29 + 1.80293103146802e42 * cos(theta) ** 27 - 2.62040907679203e41 * cos(theta) ** 25 + 3.16219920771363e40 * cos(theta) ** 23 - 3.13371092656305e39 * cos(theta) ** 21 + 2.51559363370887e38 * cos(theta) ** 19 - 1.60809910790362e37 * cos(theta) ** 17 + 8.01104317490446e35 * cos(theta) ** 15 - 3.02466570789273e34 * cos(theta) ** 13 + 8.34243017028405e32 * cos(theta) ** 11 - 1.59816669928813e31 * cos(theta) ** 9 + 1.97711344241831e29 * cos(theta) ** 7 - 1.40982622379574e27 * cos(theta) ** 5 + 4.7373193003889e24 * cos(theta) ** 3 - 4.73258671367523e21 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl78_m12(theta, phi): return ( 9.56817460133919e-23 * (1.0 - cos(theta) ** 2) ** 6 * ( 4.01012489424283e44 * cos(theta) ** 66 - 5.54949541816185e45 * cos(theta) ** 64 + 3.65613815784781e46 * cos(theta) ** 62 - 1.52621572990954e47 * cos(theta) ** 60 + 4.53255342607362e47 * cos(theta) ** 58 - 1.01936201541493e48 * cos(theta) ** 56 + 1.80438793533217e48 * cos(theta) ** 54 - 2.57949963582451e48 * cos(theta) ** 52 + 3.03228414636817e48 * cos(theta) ** 50 - 2.96926305299841e48 * cos(theta) ** 48 + 2.44476549181183e48 * cos(theta) ** 46 - 1.70392746399006e48 * cos(theta) ** 44 + 1.0099720431921e48 * cos(theta) ** 42 - 5.10620040627364e47 * cos(theta) ** 40 + 2.20533572363978e47 * cos(theta) ** 38 - 8.1383255313321e46 * cos(theta) ** 36 + 2.56357254236961e46 * cos(theta) ** 34 - 6.87787755269896e45 * cos(theta) ** 32 + 1.56631187609673e45 * cos(theta) ** 30 - 3.01347043831083e44 * cos(theta) ** 28 + 4.86791378496365e43 * cos(theta) ** 26 - 6.55102269198006e42 * cos(theta) ** 24 + 7.27305817774134e41 * cos(theta) ** 22 - 6.58079294578241e40 * cos(theta) ** 20 + 4.77962790404686e39 * cos(theta) ** 18 - 2.73376848343615e38 * cos(theta) ** 16 + 1.20165647623567e37 * cos(theta) ** 14 - 3.93206542026055e35 * cos(theta) ** 12 + 9.17667318731246e33 * cos(theta) ** 10 - 1.43835002935932e32 * cos(theta) ** 8 + 1.38397940969282e30 * cos(theta) ** 6 - 7.04913111897869e27 * cos(theta) ** 4 + 1.42119579011667e25 * cos(theta) ** 2 - 4.73258671367523e21 ) * cos(12 * phi) ) # @torch.jit.script def Yl78_m13(theta, phi): return ( 1.23462886930322e-24 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 2.64668243020027e46 * cos(theta) ** 65 - 3.55167706762358e47 * cos(theta) ** 63 + 2.26680565786564e48 * cos(theta) ** 61 - 9.15729437945722e48 * cos(theta) ** 59 + 2.6288809871227e49 * cos(theta) ** 57 - 5.70842728632358e49 * cos(theta) ** 55 + 9.7436948507937e49 * cos(theta) ** 53 - 1.34133981062874e50 * cos(theta) ** 51 + 1.51614207318408e50 * cos(theta) ** 49 - 1.42524626543924e50 * cos(theta) ** 47 + 1.12459212623344e50 * cos(theta) ** 45 - 7.49728084155627e49 * cos(theta) ** 43 + 4.24188258140684e49 * cos(theta) ** 41 - 2.04248016250946e49 * cos(theta) ** 39 + 8.38027574983116e48 * cos(theta) ** 37 - 2.92979719127956e48 * cos(theta) ** 35 + 8.71614664405668e47 * cos(theta) ** 33 - 2.20092081686367e47 * cos(theta) ** 31 + 4.6989356282902e46 * cos(theta) ** 29 - 8.43771722727032e45 * cos(theta) ** 27 + 1.26565758409055e45 * cos(theta) ** 25 - 1.57224544607522e44 * cos(theta) ** 23 + 1.6000727991031e43 * cos(theta) ** 21 - 1.31615858915648e42 * cos(theta) ** 19 + 8.60333022728435e40 * cos(theta) ** 17 - 4.37402957349784e39 * cos(theta) ** 15 + 1.68231906672994e38 * cos(theta) ** 13 - 4.71847850431266e36 * cos(theta) ** 11 + 9.17667318731246e34 * cos(theta) ** 9 - 1.15068002348746e33 * cos(theta) ** 7 + 8.3038764581569e30 * cos(theta) ** 5 - 2.81965244759148e28 * cos(theta) ** 3 + 2.84239158023334e25 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl78_m14(theta, phi): return ( 1.59656217462807e-26 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.72034357963017e48 * cos(theta) ** 64 - 2.23755655260286e49 * cos(theta) ** 62 + 1.38275145129804e50 * cos(theta) ** 60 - 5.40280368387976e50 * cos(theta) ** 58 + 1.49846216265994e51 * cos(theta) ** 56 - 3.13963500747797e51 * cos(theta) ** 54 + 5.16415827092066e51 * cos(theta) ** 52 - 6.84083303420659e51 * cos(theta) ** 50 + 7.42909615860201e51 * cos(theta) ** 48 - 6.69865744756441e51 * cos(theta) ** 46 + 5.06066456805048e51 * cos(theta) ** 44 - 3.2238307618692e51 * cos(theta) ** 42 + 1.7391718583768e51 * cos(theta) ** 40 - 7.96567263378688e50 * cos(theta) ** 38 + 3.10070202743753e50 * cos(theta) ** 36 - 1.02542901694784e50 * cos(theta) ** 34 + 2.8763283925387e49 * cos(theta) ** 32 - 6.82285453227737e48 * cos(theta) ** 30 + 1.36269133220416e48 * cos(theta) ** 28 - 2.27818365136299e47 * cos(theta) ** 26 + 3.16414396022637e46 * cos(theta) ** 24 - 3.616164525973e45 * cos(theta) ** 22 + 3.3601528781165e44 * cos(theta) ** 20 - 2.50070131939732e43 * cos(theta) ** 18 + 1.46256613863834e42 * cos(theta) ** 16 - 6.56104436024676e40 * cos(theta) ** 14 + 2.18701478674892e39 * cos(theta) ** 12 - 5.19032635474393e37 * cos(theta) ** 10 + 8.25900586858121e35 * cos(theta) ** 8 - 8.05476016441219e33 * cos(theta) ** 6 + 4.15193822907845e31 * cos(theta) ** 4 - 8.45895734277443e28 * cos(theta) ** 2 + 2.84239158023334e25 ) * cos(14 * phi) ) # @torch.jit.script def Yl78_m15(theta, phi): return ( 2.06944731590383e-28 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.10101989096331e50 * cos(theta) ** 63 - 1.38728506261377e51 * cos(theta) ** 61 + 8.29650870778824e51 * cos(theta) ** 59 - 3.13362613665026e52 * cos(theta) ** 57 + 8.39138811089566e52 * cos(theta) ** 55 - 1.6954029040381e53 * cos(theta) ** 53 + 2.68536230087874e53 * cos(theta) ** 51 - 3.42041651710329e53 * cos(theta) ** 49 + 3.56596615612897e53 * cos(theta) ** 47 - 3.08138242587963e53 * cos(theta) ** 45 + 2.22669240994221e53 * cos(theta) ** 43 - 1.35400891998506e53 * cos(theta) ** 41 + 6.95668743350721e52 * cos(theta) ** 39 - 3.02695560083902e52 * cos(theta) ** 37 + 1.11625272987751e52 * cos(theta) ** 35 - 3.48645865762267e51 * cos(theta) ** 33 + 9.20425085612385e50 * cos(theta) ** 31 - 2.04685635968321e50 * cos(theta) ** 29 + 3.81553573017164e49 * cos(theta) ** 27 - 5.92327749354377e48 * cos(theta) ** 25 + 7.59394550454329e47 * cos(theta) ** 23 - 7.95556195714059e46 * cos(theta) ** 21 + 6.720305756233e45 * cos(theta) ** 19 - 4.50126237491517e44 * cos(theta) ** 17 + 2.34010582182134e43 * cos(theta) ** 15 - 9.18546210434546e41 * cos(theta) ** 13 + 2.6244177440987e40 * cos(theta) ** 11 - 5.19032635474393e38 * cos(theta) ** 9 + 6.60720469486497e36 * cos(theta) ** 7 - 4.83285609864731e34 * cos(theta) ** 5 + 1.66077529163138e32 * cos(theta) ** 3 - 1.69179146855489e29 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl78_m16(theta, phi): return ( 2.68918186012676e-30 * (1.0 - cos(theta) ** 2) ** 8 * ( 6.93642531306886e51 * cos(theta) ** 62 - 8.46243888194401e52 * cos(theta) ** 60 + 4.89494013759506e53 * cos(theta) ** 58 - 1.78616689789065e54 * cos(theta) ** 56 + 4.61526346099262e54 * cos(theta) ** 54 - 8.98563539140195e54 * cos(theta) ** 52 + 1.36953477344816e55 * cos(theta) ** 50 - 1.67600409338061e55 * cos(theta) ** 48 + 1.67600409338061e55 * cos(theta) ** 46 - 1.38662209164583e55 * cos(theta) ** 44 + 9.57477736275151e54 * cos(theta) ** 42 - 5.55143657193876e54 * cos(theta) ** 40 + 2.71310809906781e54 * cos(theta) ** 38 - 1.11997357231044e54 * cos(theta) ** 36 + 3.90688455457129e53 * cos(theta) ** 34 - 1.15053135701548e53 * cos(theta) ** 32 + 2.85331776539839e52 * cos(theta) ** 30 - 5.93588344308131e51 * cos(theta) ** 28 + 1.03019464714634e51 * cos(theta) ** 26 - 1.48081937338594e50 * cos(theta) ** 24 + 1.74660746604496e49 * cos(theta) ** 22 - 1.67066801099952e48 * cos(theta) ** 20 + 1.27685809368427e47 * cos(theta) ** 18 - 7.65214603735579e45 * cos(theta) ** 16 + 3.51015873273201e44 * cos(theta) ** 14 - 1.19411007356491e43 * cos(theta) ** 12 + 2.88685951850857e41 * cos(theta) ** 10 - 4.67129371926953e39 * cos(theta) ** 8 + 4.62504328640548e37 * cos(theta) ** 6 - 2.41642804932366e35 * cos(theta) ** 4 + 4.98232587489414e32 * cos(theta) ** 2 - 1.69179146855489e29 ) * cos(16 * phi) ) # @torch.jit.script def Yl78_m17(theta, phi): return ( 3.50398731809295e-32 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 4.30058369410269e53 * cos(theta) ** 61 - 5.0774633291664e54 * cos(theta) ** 59 + 2.83906527980514e55 * cos(theta) ** 57 - 1.00025346281876e56 * cos(theta) ** 55 + 2.49224226893601e56 * cos(theta) ** 53 - 4.67253040352901e56 * cos(theta) ** 51 + 6.8476738672408e56 * cos(theta) ** 49 - 8.04481964822695e56 * cos(theta) ** 47 + 7.70961882955083e56 * cos(theta) ** 45 - 6.10113720324166e56 * cos(theta) ** 43 + 4.02140649235563e56 * cos(theta) ** 41 - 2.2205746287755e56 * cos(theta) ** 39 + 1.03098107764577e56 * cos(theta) ** 37 - 4.03190486031757e55 * cos(theta) ** 35 + 1.32834074855424e55 * cos(theta) ** 33 - 3.68170034244954e54 * cos(theta) ** 31 + 8.55995329619518e53 * cos(theta) ** 29 - 1.66204736406277e53 * cos(theta) ** 27 + 2.67850608258049e52 * cos(theta) ** 25 - 3.55396649612626e51 * cos(theta) ** 23 + 3.8425364252989e50 * cos(theta) ** 21 - 3.34133602199905e49 * cos(theta) ** 19 + 2.29834456863169e48 * cos(theta) ** 17 - 1.22434336597693e47 * cos(theta) ** 15 + 4.91422222582482e45 * cos(theta) ** 13 - 1.43293208827789e44 * cos(theta) ** 11 + 2.88685951850857e42 * cos(theta) ** 9 - 3.73703497541563e40 * cos(theta) ** 7 + 2.77502597184329e38 * cos(theta) ** 5 - 9.66571219729463e35 * cos(theta) ** 3 + 9.96465174978828e32 * cos(theta) ) * cos(17 * phi) ) # @torch.jit.script def Yl78_m18(theta, phi): return ( 4.5789087794189e-34 * (1.0 - cos(theta) ** 2) ** 9 * ( 2.62335605340264e55 * cos(theta) ** 60 - 2.99570336420818e56 * cos(theta) ** 58 + 1.61826720948893e57 * cos(theta) ** 56 - 5.5013940455032e57 * cos(theta) ** 54 + 1.32088840253609e58 * cos(theta) ** 52 - 2.3829905057998e58 * cos(theta) ** 50 + 3.35536019494799e58 * cos(theta) ** 48 - 3.78106523466667e58 * cos(theta) ** 46 + 3.46932847329787e58 * cos(theta) ** 44 - 2.62348899739391e58 * cos(theta) ** 42 + 1.64877666186581e58 * cos(theta) ** 40 - 8.66024105222446e57 * cos(theta) ** 38 + 3.81462998728934e57 * cos(theta) ** 36 - 1.41116670111115e57 * cos(theta) ** 34 + 4.38352447022898e56 * cos(theta) ** 32 - 1.14132710615936e56 * cos(theta) ** 30 + 2.4823864558966e55 * cos(theta) ** 28 - 4.48752788296947e54 * cos(theta) ** 26 + 6.69626520645123e53 * cos(theta) ** 24 - 8.1741229410904e52 * cos(theta) ** 22 + 8.0693264931277e51 * cos(theta) ** 20 - 6.34853844179819e50 * cos(theta) ** 18 + 3.90718576667387e49 * cos(theta) ** 16 - 1.83651504896539e48 * cos(theta) ** 14 + 6.38848889357227e46 * cos(theta) ** 12 - 1.57622529710568e45 * cos(theta) ** 10 + 2.59817356665771e43 * cos(theta) ** 8 - 2.61592448279094e41 * cos(theta) ** 6 + 1.38751298592164e39 * cos(theta) ** 4 - 2.89971365918839e36 * cos(theta) ** 2 + 9.96465174978828e32 ) * cos(18 * phi) ) # @torch.jit.script def Yl78_m19(theta, phi): return ( 6.00206230454399e-36 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.57401363204159e57 * cos(theta) ** 59 - 1.73750795124074e58 * cos(theta) ** 57 + 9.06229637313799e58 * cos(theta) ** 55 - 2.97075278457173e59 * cos(theta) ** 53 + 6.86861969318765e59 * cos(theta) ** 51 - 1.1914952528999e60 * cos(theta) ** 49 + 1.61057289357504e60 * cos(theta) ** 47 - 1.73929000794667e60 * cos(theta) ** 45 + 1.52650452825106e60 * cos(theta) ** 43 - 1.10186537890544e60 * cos(theta) ** 41 + 6.59510664746324e59 * cos(theta) ** 39 - 3.29089159984529e59 * cos(theta) ** 37 + 1.37326679542416e59 * cos(theta) ** 35 - 4.79796678377791e58 * cos(theta) ** 33 + 1.40272783047328e58 * cos(theta) ** 31 - 3.42398131847807e57 * cos(theta) ** 29 + 6.95068207651049e56 * cos(theta) ** 27 - 1.16675724957206e56 * cos(theta) ** 25 + 1.60710364954829e55 * cos(theta) ** 23 - 1.79830704703989e54 * cos(theta) ** 21 + 1.61386529862554e53 * cos(theta) ** 19 - 1.14273691952367e52 * cos(theta) ** 17 + 6.25149722667819e50 * cos(theta) ** 15 - 2.57112106855155e49 * cos(theta) ** 13 + 7.66618667228672e47 * cos(theta) ** 11 - 1.57622529710568e46 * cos(theta) ** 9 + 2.07853885332617e44 * cos(theta) ** 7 - 1.56955468967456e42 * cos(theta) ** 5 + 5.55005194368658e39 * cos(theta) ** 3 - 5.79942731837678e36 * cos(theta) ) * cos(19 * phi) ) # @torch.jit.script def Yl78_m20(theta, phi): return ( 7.89335173229645e-38 * (1.0 - cos(theta) ** 2) ** 10 * ( 9.28668042904535e58 * cos(theta) ** 58 - 9.90379532207224e59 * cos(theta) ** 56 + 4.9842630052259e60 * cos(theta) ** 54 - 1.57449897582302e61 * cos(theta) ** 52 + 3.5029960435257e61 * cos(theta) ** 50 - 5.8383267392095e61 * cos(theta) ** 48 + 7.56969259980266e61 * cos(theta) ** 46 - 7.82680503576e61 * cos(theta) ** 44 + 6.56396947147957e61 * cos(theta) ** 42 - 4.51764805351232e61 * cos(theta) ** 40 + 2.57209159251066e61 * cos(theta) ** 38 - 1.21762989194276e61 * cos(theta) ** 36 + 4.80643378398457e60 * cos(theta) ** 34 - 1.58332903864671e60 * cos(theta) ** 32 + 4.34845627446715e59 * cos(theta) ** 30 - 9.92954582358641e58 * cos(theta) ** 28 + 1.87668416065783e58 * cos(theta) ** 26 - 2.91689312393016e57 * cos(theta) ** 24 + 3.69633839396108e56 * cos(theta) ** 22 - 3.77644479878376e55 * cos(theta) ** 20 + 3.06634406738853e54 * cos(theta) ** 18 - 1.94265276319025e53 * cos(theta) ** 16 + 9.37724584001728e51 * cos(theta) ** 14 - 3.34245738911701e50 * cos(theta) ** 12 + 8.43280533951539e48 * cos(theta) ** 10 - 1.41860276739511e47 * cos(theta) ** 8 + 1.45497719732832e45 * cos(theta) ** 6 - 7.84777344837282e42 * cos(theta) ** 4 + 1.66501558310597e40 * cos(theta) ** 2 - 5.79942731837678e36 ) * cos(20 * phi) ) # @torch.jit.script def Yl78_m21(theta, phi): return ( 1.04166929211579e-39 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 5.3862746488463e60 * cos(theta) ** 57 - 5.54612538036045e61 * cos(theta) ** 55 + 2.69150202282198e62 * cos(theta) ** 53 - 8.18739467427968e62 * cos(theta) ** 51 + 1.75149802176285e63 * cos(theta) ** 49 - 2.80239683482056e63 * cos(theta) ** 47 + 3.48205859590923e63 * cos(theta) ** 45 - 3.4437942157344e63 * cos(theta) ** 43 + 2.75686717802142e63 * cos(theta) ** 41 - 1.80705922140493e63 * cos(theta) ** 39 + 9.77394805154052e62 * cos(theta) ** 37 - 4.38346761099393e62 * cos(theta) ** 35 + 1.63418748655476e62 * cos(theta) ** 33 - 5.06665292366947e61 * cos(theta) ** 31 + 1.30453688234015e61 * cos(theta) ** 29 - 2.7802728306042e60 * cos(theta) ** 27 + 4.87937881771036e59 * cos(theta) ** 25 - 7.00054349743237e58 * cos(theta) ** 23 + 8.13194446671437e57 * cos(theta) ** 21 - 7.55288959756753e56 * cos(theta) ** 19 + 5.51941932129935e55 * cos(theta) ** 17 - 3.10824442110439e54 * cos(theta) ** 15 + 1.31281441760242e53 * cos(theta) ** 13 - 4.01094886694041e51 * cos(theta) ** 11 + 8.43280533951539e49 * cos(theta) ** 9 - 1.13488221391609e48 * cos(theta) ** 7 + 8.72986318396992e45 * cos(theta) ** 5 - 3.13910937934913e43 * cos(theta) ** 3 + 3.33003116621195e40 * cos(theta) ) * cos(21 * phi) ) # @torch.jit.script def Yl78_m22(theta, phi): return ( 1.37972468276841e-41 * (1.0 - cos(theta) ** 2) ** 11 * ( 3.07017654984239e62 * cos(theta) ** 56 - 3.05036895919825e63 * cos(theta) ** 54 + 1.42649607209565e64 * cos(theta) ** 52 - 4.17557128388264e64 * cos(theta) ** 50 + 8.58234030663797e64 * cos(theta) ** 48 - 1.31712651236566e65 * cos(theta) ** 46 + 1.56692636815915e65 * cos(theta) ** 44 - 1.48083151276579e65 * cos(theta) ** 42 + 1.13031554298878e65 * cos(theta) ** 40 - 7.04753096347922e64 * cos(theta) ** 38 + 3.61636077906999e64 * cos(theta) ** 36 - 1.53421366384788e64 * cos(theta) ** 34 + 5.39281870563069e63 * cos(theta) ** 32 - 1.57066240633754e63 * cos(theta) ** 30 + 3.78315695878642e62 * cos(theta) ** 28 - 7.50673664263133e61 * cos(theta) ** 26 + 1.21984470442759e61 * cos(theta) ** 24 - 1.61012500440945e60 * cos(theta) ** 22 + 1.70770833801002e59 * cos(theta) ** 20 - 1.43504902353783e58 * cos(theta) ** 18 + 9.38301284620889e56 * cos(theta) ** 16 - 4.66236663165659e55 * cos(theta) ** 14 + 1.70665874288314e54 * cos(theta) ** 12 - 4.41204375363445e52 * cos(theta) ** 10 + 7.58952480556385e50 * cos(theta) ** 8 - 7.94417549741263e48 * cos(theta) ** 6 + 4.36493159198496e46 * cos(theta) ** 4 - 9.41732813804738e43 * cos(theta) ** 2 + 3.33003116621195e40 ) * cos(22 * phi) ) # @torch.jit.script def Yl78_m23(theta, phi): return ( 1.83458455664341e-43 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.71929886791174e64 * cos(theta) ** 55 - 1.64719923796705e65 * cos(theta) ** 53 + 7.41777957489739e65 * cos(theta) ** 51 - 2.08778564194132e66 * cos(theta) ** 49 + 4.11952334718622e66 * cos(theta) ** 47 - 6.05878195688205e66 * cos(theta) ** 45 + 6.89447601990027e66 * cos(theta) ** 43 - 6.21949235361633e66 * cos(theta) ** 41 + 4.52126217195513e66 * cos(theta) ** 39 - 2.6780617661221e66 * cos(theta) ** 37 + 1.3018898804652e66 * cos(theta) ** 35 - 5.21632645708278e65 * cos(theta) ** 33 + 1.72570198580182e65 * cos(theta) ** 31 - 4.71198721901261e64 * cos(theta) ** 29 + 1.0592839484602e64 * cos(theta) ** 27 - 1.95175152708415e63 * cos(theta) ** 25 + 2.92762729062622e62 * cos(theta) ** 23 - 3.54227500970078e61 * cos(theta) ** 21 + 3.41541667602004e60 * cos(theta) ** 19 - 2.58308824236809e59 * cos(theta) ** 17 + 1.50128205539342e58 * cos(theta) ** 15 - 6.52731328431923e56 * cos(theta) ** 13 + 2.04799049145977e55 * cos(theta) ** 11 - 4.41204375363445e53 * cos(theta) ** 9 + 6.07161984445108e51 * cos(theta) ** 7 - 4.76650529844758e49 * cos(theta) ** 5 + 1.74597263679398e47 * cos(theta) ** 3 - 1.88346562760948e44 * cos(theta) ) * cos(23 * phi) ) # @torch.jit.script def Yl78_m24(theta, phi): return ( 2.44938076334417e-45 * (1.0 - cos(theta) ** 2) ** 12 * ( 9.45614377351457e65 * cos(theta) ** 54 - 8.73015596122539e66 * cos(theta) ** 52 + 3.78306758319767e67 * cos(theta) ** 50 - 1.02301496455125e68 * cos(theta) ** 48 + 1.93617597317753e68 * cos(theta) ** 46 - 2.72645188059692e68 * cos(theta) ** 44 + 2.96462468855712e68 * cos(theta) ** 42 - 2.54999186498269e68 * cos(theta) ** 40 + 1.7632922470625e68 * cos(theta) ** 38 - 9.90882853465178e67 * cos(theta) ** 36 + 4.55661458162819e67 * cos(theta) ** 34 - 1.72138773083732e67 * cos(theta) ** 32 + 5.34967615598565e66 * cos(theta) ** 30 - 1.36647629351366e66 * cos(theta) ** 28 + 2.86006666084254e65 * cos(theta) ** 26 - 4.87937881771036e64 * cos(theta) ** 24 + 6.7335427684403e63 * cos(theta) ** 22 - 7.43877752037164e62 * cos(theta) ** 20 + 6.48929168443807e61 * cos(theta) ** 18 - 4.39125001202576e60 * cos(theta) ** 16 + 2.25192308309013e59 * cos(theta) ** 14 - 8.485507269615e57 * cos(theta) ** 12 + 2.25278954060575e56 * cos(theta) ** 10 - 3.97083937827101e54 * cos(theta) ** 8 + 4.25013389111576e52 * cos(theta) ** 6 - 2.38325264922379e50 * cos(theta) ** 4 + 5.23791791038195e47 * cos(theta) ** 2 - 1.88346562760948e44 ) * cos(24 * phi) ) # @torch.jit.script def Yl78_m25(theta, phi): return ( 3.28428480068287e-47 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 5.10631763769787e67 * cos(theta) ** 53 - 4.5396810998372e68 * cos(theta) ** 51 + 1.89153379159883e69 * cos(theta) ** 49 - 4.91047182984598e69 * cos(theta) ** 47 + 8.90640947661662e69 * cos(theta) ** 45 - 1.19963882746265e70 * cos(theta) ** 43 + 1.24514236919399e70 * cos(theta) ** 41 - 1.01999674599308e70 * cos(theta) ** 39 + 6.7005105388375e69 * cos(theta) ** 37 - 3.56717827247464e69 * cos(theta) ** 35 + 1.54924895775359e69 * cos(theta) ** 33 - 5.50844073867941e68 * cos(theta) ** 31 + 1.60490284679569e68 * cos(theta) ** 29 - 3.82613362183824e67 * cos(theta) ** 27 + 7.43617331819059e66 * cos(theta) ** 25 - 1.17105091625049e66 * cos(theta) ** 23 + 1.48137940905687e65 * cos(theta) ** 21 - 1.48775550407433e64 * cos(theta) ** 19 + 1.16807250319885e63 * cos(theta) ** 17 - 7.02600001924122e61 * cos(theta) ** 15 + 3.15269231632619e60 * cos(theta) ** 13 - 1.0182608723538e59 * cos(theta) ** 11 + 2.25278954060575e57 * cos(theta) ** 9 - 3.17667150261681e55 * cos(theta) ** 7 + 2.55008033466945e53 * cos(theta) ** 5 - 9.53301059689516e50 * cos(theta) ** 3 + 1.04758358207639e48 * cos(theta) ) * cos(25 * phi) ) # @torch.jit.script def Yl78_m26(theta, phi): return ( 4.42370549070559e-49 * (1.0 - cos(theta) ** 2) ** 13 * ( 2.70634834797987e69 * cos(theta) ** 52 - 2.31523736091697e70 * cos(theta) ** 50 + 9.26851557883429e70 * cos(theta) ** 48 - 2.30792176002761e71 * cos(theta) ** 46 + 4.00788426447748e71 * cos(theta) ** 44 - 5.15844695808938e71 * cos(theta) ** 42 + 5.10508371369535e71 * cos(theta) ** 40 - 3.977987309373e71 * cos(theta) ** 38 + 2.47918889936988e71 * cos(theta) ** 36 - 1.24851239536612e71 * cos(theta) ** 34 + 5.11252156058683e70 * cos(theta) ** 32 - 1.70761662899062e70 * cos(theta) ** 30 + 4.65421825570751e69 * cos(theta) ** 28 - 1.03305607789632e69 * cos(theta) ** 26 + 1.85904332954765e68 * cos(theta) ** 24 - 2.69341710737612e67 * cos(theta) ** 22 + 3.11089675901942e66 * cos(theta) ** 20 - 2.82673545774122e65 * cos(theta) ** 18 + 1.98572325543805e64 * cos(theta) ** 16 - 1.05390000288618e63 * cos(theta) ** 14 + 4.09850001122404e61 * cos(theta) ** 12 - 1.12008695958918e60 * cos(theta) ** 10 + 2.02751058654518e58 * cos(theta) ** 8 - 2.22367005183176e56 * cos(theta) ** 6 + 1.27504016733473e54 * cos(theta) ** 4 - 2.85990317906855e51 * cos(theta) ** 2 + 1.04758358207639e48 ) * cos(26 * phi) ) # @torch.jit.script def Yl78_m27(theta, phi): return ( 5.98673293105068e-51 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.40730114094953e71 * cos(theta) ** 51 - 1.15761868045849e72 * cos(theta) ** 49 + 4.44888747784046e72 * cos(theta) ** 47 - 1.0616440096127e73 * cos(theta) ** 45 + 1.76346907637009e73 * cos(theta) ** 43 - 2.16654772239754e73 * cos(theta) ** 41 + 2.04203348547814e73 * cos(theta) ** 39 - 1.51163517756174e73 * cos(theta) ** 37 + 8.92508003773155e72 * cos(theta) ** 35 - 4.24494214424482e72 * cos(theta) ** 33 + 1.63600689938779e72 * cos(theta) ** 31 - 5.12284988697186e71 * cos(theta) ** 29 + 1.3031811115981e71 * cos(theta) ** 27 - 2.68594580253044e70 * cos(theta) ** 25 + 4.46170399091436e69 * cos(theta) ** 23 - 5.92551763622747e68 * cos(theta) ** 21 + 6.22179351803884e67 * cos(theta) ** 19 - 5.0881238239342e66 * cos(theta) ** 17 + 3.17715720870088e65 * cos(theta) ** 15 - 1.47546000404066e64 * cos(theta) ** 13 + 4.91820001346885e62 * cos(theta) ** 11 - 1.12008695958918e61 * cos(theta) ** 9 + 1.62200846923614e59 * cos(theta) ** 7 - 1.33420203109906e57 * cos(theta) ** 5 + 5.10016066933891e54 * cos(theta) ** 3 - 5.71980635813709e51 * cos(theta) ) * cos(27 * phi) ) # @torch.jit.script def Yl78_m28(theta, phi): return ( 8.14238932143812e-53 * (1.0 - cos(theta) ** 2) ** 14 * ( 7.17723581884262e72 * cos(theta) ** 50 - 5.67233153424658e73 * cos(theta) ** 48 + 2.09097711458502e74 * cos(theta) ** 46 - 4.77739804325715e74 * cos(theta) ** 44 + 7.58291702839139e74 * cos(theta) ** 42 - 8.88284566182991e74 * cos(theta) ** 40 + 7.96393059336475e74 * cos(theta) ** 38 - 5.59305015697844e74 * cos(theta) ** 36 + 3.12377801320604e74 * cos(theta) ** 34 - 1.40083090760079e74 * cos(theta) ** 32 + 5.07162138810214e73 * cos(theta) ** 30 - 1.48562646722184e73 * cos(theta) ** 28 + 3.51858900131488e72 * cos(theta) ** 26 - 6.71486450632611e71 * cos(theta) ** 24 + 1.0261919179103e71 * cos(theta) ** 22 - 1.24435870360777e70 * cos(theta) ** 20 + 1.18214076842738e69 * cos(theta) ** 18 - 8.64981050068814e67 * cos(theta) ** 16 + 4.76573581305132e66 * cos(theta) ** 14 - 1.91809800525285e65 * cos(theta) ** 12 + 5.41002001481574e63 * cos(theta) ** 10 - 1.00807826363026e62 * cos(theta) ** 8 + 1.1354059284653e60 * cos(theta) ** 6 - 6.67101015549529e57 * cos(theta) ** 4 + 1.53004820080167e55 * cos(theta) ** 2 - 5.71980635813709e51 ) * cos(28 * phi) ) # @torch.jit.script def Yl78_m29(theta, phi): return ( 1.1132045504982e-54 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 3.58861790942131e74 * cos(theta) ** 49 - 2.72271913643836e75 * cos(theta) ** 47 + 9.61849472709107e75 * cos(theta) ** 45 - 2.10205513903315e76 * cos(theta) ** 43 + 3.18482515192438e76 * cos(theta) ** 41 - 3.55313826473196e76 * cos(theta) ** 39 + 3.0262936254786e76 * cos(theta) ** 37 - 2.01349805651224e76 * cos(theta) ** 35 + 1.06208452449005e76 * cos(theta) ** 33 - 4.48265890432253e75 * cos(theta) ** 31 + 1.52148641643064e75 * cos(theta) ** 29 - 4.15975410822115e74 * cos(theta) ** 27 + 9.14833140341869e73 * cos(theta) ** 25 - 1.61156748151827e73 * cos(theta) ** 23 + 2.25762221940266e72 * cos(theta) ** 21 - 2.48871740721554e71 * cos(theta) ** 19 + 2.12785338316928e70 * cos(theta) ** 17 - 1.3839696801101e69 * cos(theta) ** 15 + 6.67203013827184e67 * cos(theta) ** 13 - 2.30171760630342e66 * cos(theta) ** 11 + 5.41002001481574e64 * cos(theta) ** 9 - 8.06462610904209e62 * cos(theta) ** 7 + 6.81243557079179e60 * cos(theta) ** 5 - 2.66840406219812e58 * cos(theta) ** 3 + 3.06009640160334e55 * cos(theta) ) * cos(29 * phi) ) # @torch.jit.script def Yl78_m30(theta, phi): return ( 1.53025939736489e-56 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.75842277561644e76 * cos(theta) ** 48 - 1.27967799412603e77 * cos(theta) ** 46 + 4.32832262719098e77 * cos(theta) ** 44 - 9.03883709784254e77 * cos(theta) ** 42 + 1.305778312289e78 * cos(theta) ** 40 - 1.38572392324547e78 * cos(theta) ** 38 + 1.11972864142708e78 * cos(theta) ** 36 - 7.04724319779284e77 * cos(theta) ** 34 + 3.50487893081718e77 * cos(theta) ** 32 - 1.38962426033999e77 * cos(theta) ** 30 + 4.41231060764886e76 * cos(theta) ** 28 - 1.12313360921971e76 * cos(theta) ** 26 + 2.28708285085467e75 * cos(theta) ** 24 - 3.70660520749201e74 * cos(theta) ** 22 + 4.7410066607456e73 * cos(theta) ** 20 - 4.72856307370952e72 * cos(theta) ** 18 + 3.61735075138778e71 * cos(theta) ** 16 - 2.07595452016515e70 * cos(theta) ** 14 + 8.6736391797534e68 * cos(theta) ** 12 - 2.53188936693377e67 * cos(theta) ** 10 + 4.86901801333416e65 * cos(theta) ** 8 - 5.64523827632946e63 * cos(theta) ** 6 + 3.4062177853959e61 * cos(theta) ** 4 - 8.00521218659435e58 * cos(theta) ** 2 + 3.06009640160334e55 ) * cos(30 * phi) ) # @torch.jit.script def Yl78_m31(theta, phi): return ( 2.11558845098209e-58 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 8.44042932295892e77 * cos(theta) ** 47 - 5.88651877297974e78 * cos(theta) ** 45 + 1.90446195596403e79 * cos(theta) ** 43 - 3.79631158109386e79 * cos(theta) ** 41 + 5.22311324915599e79 * cos(theta) ** 39 - 5.26575090833277e79 * cos(theta) ** 37 + 4.0310231091375e79 * cos(theta) ** 35 - 2.39606268724956e79 * cos(theta) ** 33 + 1.1215612578615e79 * cos(theta) ** 31 - 4.16887278101996e78 * cos(theta) ** 29 + 1.23544697014168e78 * cos(theta) ** 27 - 2.92014738397124e77 * cos(theta) ** 25 + 5.48899884205121e76 * cos(theta) ** 23 - 8.15453145648242e75 * cos(theta) ** 21 + 9.48201332149119e74 * cos(theta) ** 19 - 8.51141353267713e73 * cos(theta) ** 17 + 5.78776120222045e72 * cos(theta) ** 15 - 2.90633632823122e71 * cos(theta) ** 13 + 1.04083670157041e70 * cos(theta) ** 11 - 2.53188936693377e68 * cos(theta) ** 9 + 3.89521441066733e66 * cos(theta) ** 7 - 3.38714296579768e64 * cos(theta) ** 5 + 1.36248711415836e62 * cos(theta) ** 3 - 1.60104243731887e59 * cos(theta) ) * cos(31 * phi) ) # @torch.jit.script def Yl78_m32(theta, phi): return ( 2.94229298269119e-60 * (1.0 - cos(theta) ** 2) ** 16 * ( 3.96700178179069e79 * cos(theta) ** 46 - 2.64893344784088e80 * cos(theta) ** 44 + 8.18918641064534e80 * cos(theta) ** 42 - 1.55648774824848e81 * cos(theta) ** 40 + 2.03701416717084e81 * cos(theta) ** 38 - 1.94832783608313e81 * cos(theta) ** 36 + 1.41085808819813e81 * cos(theta) ** 34 - 7.90700686792356e80 * cos(theta) ** 32 + 3.47683989937064e80 * cos(theta) ** 30 - 1.20897310649579e80 * cos(theta) ** 28 + 3.33570681938254e79 * cos(theta) ** 26 - 7.30036845992811e78 * cos(theta) ** 24 + 1.26246973367178e78 * cos(theta) ** 22 - 1.71245160586131e77 * cos(theta) ** 20 + 1.80158253108333e76 * cos(theta) ** 18 - 1.44694030055511e75 * cos(theta) ** 16 + 8.68164180333067e73 * cos(theta) ** 14 - 3.77823722670058e72 * cos(theta) ** 12 + 1.14492037172745e71 * cos(theta) ** 10 - 2.27870043024039e69 * cos(theta) ** 8 + 2.72665008746713e67 * cos(theta) ** 6 - 1.69357148289884e65 * cos(theta) ** 4 + 4.08746134247508e62 * cos(theta) ** 2 - 1.60104243731887e59 ) * cos(32 * phi) ) # @torch.jit.script def Yl78_m33(theta, phi): return ( 4.11761285180192e-62 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 1.82482081962372e81 * cos(theta) ** 45 - 1.16553071704999e82 * cos(theta) ** 43 + 3.43945829247104e82 * cos(theta) ** 41 - 6.22595099299394e82 * cos(theta) ** 39 + 7.74065383524918e82 * cos(theta) ** 37 - 7.01398020989925e82 * cos(theta) ** 35 + 4.79691749987363e82 * cos(theta) ** 33 - 2.53024219773554e82 * cos(theta) ** 31 + 1.04305196981119e82 * cos(theta) ** 29 - 3.3851246981882e81 * cos(theta) ** 27 + 8.6728377303946e80 * cos(theta) ** 25 - 1.75208843038275e80 * cos(theta) ** 23 + 2.77743341407791e79 * cos(theta) ** 21 - 3.42490321172262e78 * cos(theta) ** 19 + 3.24284855594999e77 * cos(theta) ** 17 - 2.31510448088818e76 * cos(theta) ** 15 + 1.21542985246629e75 * cos(theta) ** 13 - 4.5338846720407e73 * cos(theta) ** 11 + 1.14492037172745e72 * cos(theta) ** 9 - 1.82296034419231e70 * cos(theta) ** 7 + 1.63599005248028e68 * cos(theta) ** 5 - 6.77428593159536e65 * cos(theta) ** 3 + 8.17492268495015e62 * cos(theta) ) * cos(33 * phi) ) # @torch.jit.script def Yl78_m34(theta, phi): return ( 5.80003003504202e-64 * (1.0 - cos(theta) ** 2) ** 17 * ( 8.21169368830673e82 * cos(theta) ** 44 - 5.01178208331495e83 * cos(theta) ** 42 + 1.41017789991313e84 * cos(theta) ** 40 - 2.42812088726764e84 * cos(theta) ** 38 + 2.86404191904219e84 * cos(theta) ** 36 - 2.45489307346474e84 * cos(theta) ** 34 + 1.5829827749583e84 * cos(theta) ** 32 - 7.84375081298017e83 * cos(theta) ** 30 + 3.02485071245246e83 * cos(theta) ** 28 - 9.13983668510815e82 * cos(theta) ** 26 + 2.16820943259865e82 * cos(theta) ** 24 - 4.02980338988032e81 * cos(theta) ** 22 + 5.83261016956362e80 * cos(theta) ** 20 - 6.50731610227297e79 * cos(theta) ** 18 + 5.51284254511498e78 * cos(theta) ** 16 - 3.47265672133227e77 * cos(theta) ** 14 + 1.58005880820618e76 * cos(theta) ** 12 - 4.98727313924477e74 * cos(theta) ** 10 + 1.0304283345547e73 * cos(theta) ** 8 - 1.27607224093462e71 * cos(theta) ** 6 + 8.17995026240139e68 * cos(theta) ** 4 - 2.03228577947861e66 * cos(theta) ** 2 + 8.17492268495015e62 ) * cos(34 * phi) ) # @torch.jit.script def Yl78_m35(theta, phi): return ( 8.22554499846062e-66 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 3.61314522285496e84 * cos(theta) ** 43 - 2.10494847499228e85 * cos(theta) ** 41 + 5.64071159965251e85 * cos(theta) ** 39 - 9.22685937161702e85 * cos(theta) ** 37 + 1.03105509085519e86 * cos(theta) ** 35 - 8.34663644978011e85 * cos(theta) ** 33 + 5.06554487986655e85 * cos(theta) ** 31 - 2.35312524389405e85 * cos(theta) ** 29 + 8.46958199486689e84 * cos(theta) ** 27 - 2.37635753812812e84 * cos(theta) ** 25 + 5.20370263823676e83 * cos(theta) ** 23 - 8.8655674577367e82 * cos(theta) ** 21 + 1.16652203391272e82 * cos(theta) ** 19 - 1.17131689840914e81 * cos(theta) ** 17 + 8.82054807218396e79 * cos(theta) ** 15 - 4.86171940986518e78 * cos(theta) ** 13 + 1.89607056984742e77 * cos(theta) ** 11 - 4.98727313924477e75 * cos(theta) ** 9 + 8.24342667643763e73 * cos(theta) ** 7 - 7.65643344560771e71 * cos(theta) ** 5 + 3.27198010496056e69 * cos(theta) ** 3 - 4.06457155895721e66 * cos(theta) ) * cos(35 * phi) ) # @torch.jit.script def Yl78_m36(theta, phi): return ( 1.17483811850223e-67 * (1.0 - cos(theta) ** 2) ** 18 * ( 1.55365244582763e86 * cos(theta) ** 42 - 8.63028874746834e86 * cos(theta) ** 40 + 2.19987752386448e87 * cos(theta) ** 38 - 3.4139379674983e87 * cos(theta) ** 36 + 3.60869281799317e87 * cos(theta) ** 34 - 2.75439002842744e87 * cos(theta) ** 32 + 1.57031891275863e87 * cos(theta) ** 30 - 6.82406320729275e86 * cos(theta) ** 28 + 2.28678713861406e86 * cos(theta) ** 26 - 5.9408938453203e85 * cos(theta) ** 24 + 1.19685160679445e85 * cos(theta) ** 22 - 1.86176916612471e84 * cos(theta) ** 20 + 2.21639186443417e83 * cos(theta) ** 18 - 1.99123872729553e82 * cos(theta) ** 16 + 1.32308221082759e81 * cos(theta) ** 14 - 6.32023523282473e79 * cos(theta) ** 12 + 2.08567762683216e78 * cos(theta) ** 10 - 4.48854582532029e76 * cos(theta) ** 8 + 5.77039867350634e74 * cos(theta) ** 6 - 3.82821672280385e72 * cos(theta) ** 4 + 9.81594031488167e69 * cos(theta) ** 2 - 4.06457155895721e66 ) * cos(36 * phi) ) # @torch.jit.script def Yl78_m37(theta, phi): return ( 1.69045830621872e-69 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 6.52534027247606e87 * cos(theta) ** 41 - 3.45211549898734e88 * cos(theta) ** 39 + 8.35953459068502e88 * cos(theta) ** 37 - 1.22901766829939e89 * cos(theta) ** 35 + 1.22695555811768e89 * cos(theta) ** 33 - 8.8140480909678e88 * cos(theta) ** 31 + 4.71095673827589e88 * cos(theta) ** 29 - 1.91073769804197e88 * cos(theta) ** 27 + 5.94564656039656e87 * cos(theta) ** 25 - 1.42581452287687e87 * cos(theta) ** 23 + 2.6330735349478e86 * cos(theta) ** 21 - 3.72353833224941e85 * cos(theta) ** 19 + 3.98950535598152e84 * cos(theta) ** 17 - 3.18598196367285e83 * cos(theta) ** 15 + 1.85231509515863e82 * cos(theta) ** 13 - 7.58428227938968e80 * cos(theta) ** 11 + 2.08567762683216e79 * cos(theta) ** 9 - 3.59083666025623e77 * cos(theta) ** 7 + 3.4622392041038e75 * cos(theta) ** 5 - 1.53128668912154e73 * cos(theta) ** 3 + 1.96318806297633e70 * cos(theta) ) * cos(37 * phi) ) # @torch.jit.script def Yl78_m38(theta, phi): return ( 2.45122705110393e-71 * (1.0 - cos(theta) ** 2) ** 19 * ( 2.67538951171518e89 * cos(theta) ** 40 - 1.34632504460506e90 * cos(theta) ** 38 + 3.09302779855346e90 * cos(theta) ** 36 - 4.30156183904785e90 * cos(theta) ** 34 + 4.04895334178833e90 * cos(theta) ** 32 - 2.73235490820002e90 * cos(theta) ** 30 + 1.36617745410001e90 * cos(theta) ** 28 - 5.15899178471332e89 * cos(theta) ** 26 + 1.48641164009914e89 * cos(theta) ** 24 - 3.27937340261681e88 * cos(theta) ** 22 + 5.52945442339038e87 * cos(theta) ** 20 - 7.07472283127389e86 * cos(theta) ** 18 + 6.78215910516858e85 * cos(theta) ** 16 - 4.77897294550927e84 * cos(theta) ** 14 + 2.40800962370622e83 * cos(theta) ** 12 - 8.34271050732864e81 * cos(theta) ** 10 + 1.87710986414895e80 * cos(theta) ** 8 - 2.51358566217936e78 * cos(theta) ** 6 + 1.7311196020519e76 * cos(theta) ** 4 - 4.59386006736462e73 * cos(theta) ** 2 + 1.96318806297633e70 ) * cos(38 * phi) ) # @torch.jit.script def Yl78_m39(theta, phi): return ( 3.58311390385504e-73 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 1.07015580468607e91 * cos(theta) ** 39 - 5.11603516949923e91 * cos(theta) ** 37 + 1.11349000747924e92 * cos(theta) ** 35 - 1.46253102527627e92 * cos(theta) ** 33 + 1.29566506937227e92 * cos(theta) ** 31 - 8.19706472460005e91 * cos(theta) ** 29 + 3.82529687148002e91 * cos(theta) ** 27 - 1.34133786402546e91 * cos(theta) ** 25 + 3.56738793623793e90 * cos(theta) ** 23 - 7.21462148575697e89 * cos(theta) ** 21 + 1.10589088467808e89 * cos(theta) ** 19 - 1.2734501096293e88 * cos(theta) ** 17 + 1.08514545682697e87 * cos(theta) ** 15 - 6.69056212371298e85 * cos(theta) ** 13 + 2.88961154844747e84 * cos(theta) ** 11 - 8.34271050732864e82 * cos(theta) ** 9 + 1.50168789131916e81 * cos(theta) ** 7 - 1.50815139730762e79 * cos(theta) ** 5 + 6.92447840820761e76 * cos(theta) ** 3 - 9.18772013472925e73 * cos(theta) ) * cos(39 * phi) ) # @torch.jit.script def Yl78_m40(theta, phi): return ( 5.28186512433385e-75 * (1.0 - cos(theta) ** 2) ** 20 * ( 4.17360763827569e92 * cos(theta) ** 38 - 1.89293301271472e93 * cos(theta) ** 36 + 3.89721502617736e93 * cos(theta) ** 34 - 4.82635238341169e93 * cos(theta) ** 32 + 4.01656171505403e93 * cos(theta) ** 30 - 2.37714877013401e93 * cos(theta) ** 28 + 1.03283015529961e93 * cos(theta) ** 26 - 3.35334466006366e92 * cos(theta) ** 24 + 8.20499225334725e91 * cos(theta) ** 22 - 1.51507051200896e91 * cos(theta) ** 20 + 2.10119268088834e90 * cos(theta) ** 18 - 2.16486518636981e89 * cos(theta) ** 16 + 1.62771818524046e88 * cos(theta) ** 14 - 8.69773076082688e86 * cos(theta) ** 12 + 3.17857270329221e85 * cos(theta) ** 10 - 7.50843945659578e83 * cos(theta) ** 8 + 1.05118152392341e82 * cos(theta) ** 6 - 7.54075698653809e79 * cos(theta) ** 4 + 2.07734352246228e77 * cos(theta) ** 2 - 9.18772013472925e73 ) * cos(40 * phi) ) # @torch.jit.script def Yl78_m41(theta, phi): return ( 7.85456301061312e-77 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 1.58597090254476e94 * cos(theta) ** 37 - 6.81455884577298e94 * cos(theta) ** 35 + 1.3250531089003e95 * cos(theta) ** 33 - 1.54443276269174e95 * cos(theta) ** 31 + 1.20496851451621e95 * cos(theta) ** 29 - 6.65601655637524e94 * cos(theta) ** 27 + 2.68535840377898e94 * cos(theta) ** 25 - 8.04802718415278e93 * cos(theta) ** 23 + 1.80509829573639e93 * cos(theta) ** 21 - 3.03014102401793e92 * cos(theta) ** 19 + 3.78214682559902e91 * cos(theta) ** 17 - 3.46378429819169e90 * cos(theta) ** 15 + 2.27880545933664e89 * cos(theta) ** 13 - 1.04372769129923e88 * cos(theta) ** 11 + 3.17857270329221e86 * cos(theta) ** 9 - 6.00675156527662e84 * cos(theta) ** 7 + 6.30708914354045e82 * cos(theta) ** 5 - 3.01630279461523e80 * cos(theta) ** 3 + 4.15468704492457e77 * cos(theta) ) * cos(41 * phi) ) # @torch.jit.script def Yl78_m42(theta, phi): return ( 1.17877398600544e-78 * (1.0 - cos(theta) ** 2) ** 21 * ( 5.86809233941562e95 * cos(theta) ** 36 - 2.38509559602054e96 * cos(theta) ** 34 + 4.37267525937099e96 * cos(theta) ** 32 - 4.7877415643444e96 * cos(theta) ** 30 + 3.494408692097e96 * cos(theta) ** 28 - 1.79712447022132e96 * cos(theta) ** 26 + 6.71339600944744e95 * cos(theta) ** 24 - 1.85104625235514e95 * cos(theta) ** 22 + 3.79070642104643e94 * cos(theta) ** 20 - 5.75726794563406e93 * cos(theta) ** 18 + 6.42964960351833e92 * cos(theta) ** 16 - 5.19567644728754e91 * cos(theta) ** 14 + 2.96244709713763e90 * cos(theta) ** 12 - 1.14810046042915e89 * cos(theta) ** 10 + 2.86071543296299e87 * cos(theta) ** 8 - 4.20472609569364e85 * cos(theta) ** 6 + 3.15354457177023e83 * cos(theta) ** 4 - 9.0489083838457e80 * cos(theta) ** 2 + 4.15468704492457e77 ) * cos(42 * phi) ) # @torch.jit.script def Yl78_m43(theta, phi): return ( 1.78602119091733e-80 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 2.11251324218962e97 * cos(theta) ** 35 - 8.10932502646984e97 * cos(theta) ** 33 + 1.39925608299872e98 * cos(theta) ** 31 - 1.43632246930332e98 * cos(theta) ** 29 + 9.7843443378716e97 * cos(theta) ** 27 - 4.67252362257542e97 * cos(theta) ** 25 + 1.61121504226739e97 * cos(theta) ** 23 - 4.07230175518131e96 * cos(theta) ** 21 + 7.58141284209286e95 * cos(theta) ** 19 - 1.03630823021413e95 * cos(theta) ** 17 + 1.02874393656293e94 * cos(theta) ** 15 - 7.27394702620256e92 * cos(theta) ** 13 + 3.55493651656516e91 * cos(theta) ** 11 - 1.14810046042915e90 * cos(theta) ** 9 + 2.28857234637039e88 * cos(theta) ** 7 - 2.52283565741618e86 * cos(theta) ** 5 + 1.26141782870809e84 * cos(theta) ** 3 - 1.80978167676914e81 * cos(theta) ) * cos(43 * phi) ) # @torch.jit.script def Yl78_m44(theta, phi): return ( 2.73320791631936e-82 * (1.0 - cos(theta) ** 2) ** 22 * ( 7.39379634766368e98 * cos(theta) ** 34 - 2.67607725873505e99 * cos(theta) ** 32 + 4.33769385729602e99 * cos(theta) ** 30 - 4.16533516097963e99 * cos(theta) ** 28 + 2.64177297122533e99 * cos(theta) ** 26 - 1.16813090564385e99 * cos(theta) ** 24 + 3.70579459721499e98 * cos(theta) ** 22 - 8.55183368588074e97 * cos(theta) ** 20 + 1.44046843999764e97 * cos(theta) ** 18 - 1.76172399136402e96 * cos(theta) ** 16 + 1.5431159048444e95 * cos(theta) ** 14 - 9.45613113406333e93 * cos(theta) ** 12 + 3.91043016822168e92 * cos(theta) ** 10 - 1.03329041438623e91 * cos(theta) ** 8 + 1.60200064245928e89 * cos(theta) ** 6 - 1.26141782870809e87 * cos(theta) ** 4 + 3.78425348612427e84 * cos(theta) ** 2 - 1.80978167676914e81 ) * cos(44 * phi) ) # @torch.jit.script def Yl78_m45(theta, phi): return ( 4.22649788202925e-84 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 2.51389075820565e100 * cos(theta) ** 33 - 8.56344722795215e100 * cos(theta) ** 31 + 1.30130815718881e101 * cos(theta) ** 29 - 1.1662938450743e101 * cos(theta) ** 27 + 6.86860972518587e100 * cos(theta) ** 25 - 2.80351417354525e100 * cos(theta) ** 23 + 8.15274811387297e99 * cos(theta) ** 21 - 1.71036673717615e99 * cos(theta) ** 19 + 2.59284319199576e98 * cos(theta) ** 17 - 2.81875838618244e97 * cos(theta) ** 15 + 2.16036226678216e96 * cos(theta) ** 13 - 1.1347357360876e95 * cos(theta) ** 11 + 3.91043016822168e93 * cos(theta) ** 9 - 8.26632331508986e91 * cos(theta) ** 7 + 9.61200385475565e89 * cos(theta) ** 5 - 5.04567131483236e87 * cos(theta) ** 3 + 7.56850697224855e84 * cos(theta) ) * cos(45 * phi) ) # @torch.jit.script def Yl78_m46(theta, phi): return ( 6.60712986631682e-86 * (1.0 - cos(theta) ** 2) ** 23 * ( 8.29583950207865e101 * cos(theta) ** 32 - 2.65466864066517e102 * cos(theta) ** 30 + 3.77379365584754e102 * cos(theta) ** 28 - 3.1489933817006e102 * cos(theta) ** 26 + 1.71715243129647e102 * cos(theta) ** 24 - 6.44808259915408e101 * cos(theta) ** 22 + 1.71207710391332e101 * cos(theta) ** 20 - 3.24969680063468e100 * cos(theta) ** 18 + 4.40783342639279e99 * cos(theta) ** 16 - 4.22813757927366e98 * cos(theta) ** 14 + 2.80847094681681e97 * cos(theta) ** 12 - 1.24820930969636e96 * cos(theta) ** 10 + 3.51938715139951e94 * cos(theta) ** 8 - 5.7864263205629e92 * cos(theta) ** 6 + 4.80600192737783e90 * cos(theta) ** 4 - 1.51370139444971e88 * cos(theta) ** 2 + 7.56850697224855e84 ) * cos(46 * phi) ) # @torch.jit.script def Yl78_m47(theta, phi): return ( 1.04467895870425e-87 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 2.65466864066517e103 * cos(theta) ** 31 - 7.9640059219955e103 * cos(theta) ** 29 + 1.05666222363731e104 * cos(theta) ** 27 - 8.18738279242155e103 * cos(theta) ** 25 + 4.12116583511152e103 * cos(theta) ** 23 - 1.4185781718139e103 * cos(theta) ** 21 + 3.42415420782665e102 * cos(theta) ** 19 - 5.84945424114243e101 * cos(theta) ** 17 + 7.05253348222846e100 * cos(theta) ** 15 - 5.91939261098312e99 * cos(theta) ** 13 + 3.37016513618017e98 * cos(theta) ** 11 - 1.24820930969636e97 * cos(theta) ** 9 + 2.81550972111961e95 * cos(theta) ** 7 - 3.47185579233774e93 * cos(theta) ** 5 + 1.92240077095113e91 * cos(theta) ** 3 - 3.02740278889942e88 * cos(theta) ) * cos(47 * phi) ) # @torch.jit.script def Yl78_m48(theta, phi): return ( 1.67153982405702e-89 * (1.0 - cos(theta) ** 2) ** 24 * ( 8.22947278606202e104 * cos(theta) ** 30 - 2.3095617173787e105 * cos(theta) ** 28 + 2.85298800382074e105 * cos(theta) ** 26 - 2.04684569810539e105 * cos(theta) ** 24 + 9.4786814207565e104 * cos(theta) ** 22 - 2.97901416080918e104 * cos(theta) ** 20 + 6.50589299487063e103 * cos(theta) ** 18 - 9.94407220994213e102 * cos(theta) ** 16 + 1.05788002233427e102 * cos(theta) ** 14 - 7.69521039427805e100 * cos(theta) ** 12 + 3.70718164979819e99 * cos(theta) ** 10 - 1.12338837872672e98 * cos(theta) ** 8 + 1.97085680478372e96 * cos(theta) ** 6 - 1.73592789616887e94 * cos(theta) ** 4 + 5.76720231285339e91 * cos(theta) ** 2 - 3.02740278889942e88 ) * cos(48 * phi) ) # @torch.jit.script def Yl78_m49(theta, phi): return ( 2.70803479480809e-91 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 2.46884183581861e106 * cos(theta) ** 29 - 6.46677280866035e106 * cos(theta) ** 27 + 7.41776880993393e106 * cos(theta) ** 25 - 4.91242967545293e106 * cos(theta) ** 23 + 2.08530991256643e106 * cos(theta) ** 21 - 5.95802832161837e105 * cos(theta) ** 19 + 1.17106073907671e105 * cos(theta) ** 17 - 1.59105155359074e104 * cos(theta) ** 15 + 1.48103203126798e103 * cos(theta) ** 13 - 9.23425247313366e101 * cos(theta) ** 11 + 3.70718164979819e100 * cos(theta) ** 9 - 8.98710702981379e98 * cos(theta) ** 7 + 1.18251408287024e97 * cos(theta) ** 5 - 6.94371158467548e94 * cos(theta) ** 3 + 1.15344046257068e92 * cos(theta) ) * cos(49 * phi) ) # @torch.jit.script def Yl78_m50(theta, phi): return ( 4.44477986207826e-93 * (1.0 - cos(theta) ** 2) ** 25 * ( 7.15964132387396e107 * cos(theta) ** 28 - 1.74602865833829e108 * cos(theta) ** 26 + 1.85444220248348e108 * cos(theta) ** 24 - 1.12985882535417e108 * cos(theta) ** 22 + 4.3791508163895e107 * cos(theta) ** 20 - 1.13202538110749e107 * cos(theta) ** 18 + 1.99080325643041e106 * cos(theta) ** 16 - 2.38657733038611e105 * cos(theta) ** 14 + 1.92534164064837e104 * cos(theta) ** 12 - 1.0157677720447e103 * cos(theta) ** 10 + 3.33646348481837e101 * cos(theta) ** 8 - 6.29097492086965e99 * cos(theta) ** 6 + 5.91257041435118e97 * cos(theta) ** 4 - 2.08311347540265e95 * cos(theta) ** 2 + 1.15344046257068e92 ) * cos(50 * phi) ) # @torch.jit.script def Yl78_m51(theta, phi): return ( 7.39565060710491e-95 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 2.00469957068471e109 * cos(theta) ** 27 - 4.53967451167956e109 * cos(theta) ** 25 + 4.45066128596036e109 * cos(theta) ** 23 - 2.48568941577918e109 * cos(theta) ** 21 + 8.758301632779e108 * cos(theta) ** 19 - 2.03764568599348e108 * cos(theta) ** 17 + 3.18528521028866e107 * cos(theta) ** 15 - 3.34120826254055e106 * cos(theta) ** 13 + 2.31040996877804e105 * cos(theta) ** 11 - 1.0157677720447e104 * cos(theta) ** 9 + 2.66917078785469e102 * cos(theta) ** 7 - 3.77458495252179e100 * cos(theta) ** 5 + 2.36502816574047e98 * cos(theta) ** 3 - 4.16622695080529e95 * cos(theta) ) * cos(51 * phi) ) # @torch.jit.script def Yl78_m52(theta, phi): return ( 1.24831108583523e-96 * (1.0 - cos(theta) ** 2) ** 26 * ( 5.41268884084871e110 * cos(theta) ** 26 - 1.13491862791989e111 * cos(theta) ** 24 + 1.02365209577088e111 * cos(theta) ** 22 - 5.21994777313629e110 * cos(theta) ** 20 + 1.66407731022801e110 * cos(theta) ** 18 - 3.46399766618892e109 * cos(theta) ** 16 + 4.77792781543299e108 * cos(theta) ** 14 - 4.34357074130272e107 * cos(theta) ** 12 + 2.54145096565585e106 * cos(theta) ** 10 - 9.14190994840233e104 * cos(theta) ** 8 + 1.86841955149829e103 * cos(theta) ** 6 - 1.8872924762609e101 * cos(theta) ** 4 + 7.09508449722141e98 * cos(theta) ** 2 - 4.16622695080529e95 ) * cos(52 * phi) ) # @torch.jit.script def Yl78_m53(theta, phi): return ( 2.13894937401544e-98 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 1.40729909862066e112 * cos(theta) ** 25 - 2.72380470700774e112 * cos(theta) ** 23 + 2.25203461069594e112 * cos(theta) ** 21 - 1.04398955462726e112 * cos(theta) ** 19 + 2.99533915841042e111 * cos(theta) ** 17 - 5.54239626590227e110 * cos(theta) ** 15 + 6.68909894160619e109 * cos(theta) ** 13 - 5.21228488956326e108 * cos(theta) ** 11 + 2.54145096565585e107 * cos(theta) ** 9 - 7.31352795872186e105 * cos(theta) ** 7 + 1.12105173089897e104 * cos(theta) ** 5 - 7.54916990504358e101 * cos(theta) ** 3 + 1.41901689944428e99 * cos(theta) ) * cos(53 * phi) ) # @torch.jit.script def Yl78_m54(theta, phi): return ( 3.72343293236516e-100 * (1.0 - cos(theta) ** 2) ** 27 * ( 3.51824774655166e113 * cos(theta) ** 24 - 6.2647508261178e113 * cos(theta) ** 22 + 4.72927268246147e113 * cos(theta) ** 20 - 1.98358015379179e113 * cos(theta) ** 18 + 5.09207656929771e112 * cos(theta) ** 16 - 8.31359439885341e111 * cos(theta) ** 14 + 8.69582862408805e110 * cos(theta) ** 12 - 5.73351337851959e109 * cos(theta) ** 10 + 2.28730586909026e108 * cos(theta) ** 8 - 5.1194695711053e106 * cos(theta) ** 6 + 5.60525865449486e104 * cos(theta) ** 4 - 2.26475097151307e102 * cos(theta) ** 2 + 1.41901689944428e99 ) * cos(54 * phi) ) # @torch.jit.script def Yl78_m55(theta, phi): return ( 6.59040485068495e-102 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 8.44379459172399e114 * cos(theta) ** 23 - 1.37824518174592e115 * cos(theta) ** 21 + 9.45854536492295e114 * cos(theta) ** 19 - 3.57044427682522e114 * cos(theta) ** 17 + 8.14732251087634e113 * cos(theta) ** 15 - 1.16390321583948e113 * cos(theta) ** 13 + 1.04349943489057e112 * cos(theta) ** 11 - 5.73351337851959e110 * cos(theta) ** 9 + 1.82984469527221e109 * cos(theta) ** 7 - 3.07168174266318e107 * cos(theta) ** 5 + 2.24210346179794e105 * cos(theta) ** 3 - 4.52950194302615e102 * cos(theta) ) * cos(55 * phi) ) # @torch.jit.script def Yl78_m56(theta, phi): return ( 1.18712315781526e-103 * (1.0 - cos(theta) ** 2) ** 28 * ( 1.94207275609652e116 * cos(theta) ** 22 - 2.89431488166642e116 * cos(theta) ** 20 + 1.79712361933536e116 * cos(theta) ** 18 - 6.06975527060287e115 * cos(theta) ** 16 + 1.22209837663145e115 * cos(theta) ** 14 - 1.51307418059132e114 * cos(theta) ** 12 + 1.14784937837962e113 * cos(theta) ** 10 - 5.16016204066763e111 * cos(theta) ** 8 + 1.28089128669055e110 * cos(theta) ** 6 - 1.53584087133159e108 * cos(theta) ** 4 + 6.72631038539383e105 * cos(theta) ** 2 - 4.52950194302615e102 ) * cos(56 * phi) ) # @torch.jit.script def Yl78_m57(theta, phi): return ( 2.17829930249497e-105 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 4.27256006341234e117 * cos(theta) ** 21 - 5.78862976333285e117 * cos(theta) ** 19 + 3.23482251480365e117 * cos(theta) ** 17 - 9.7116084329646e116 * cos(theta) ** 15 + 1.71093772728403e116 * cos(theta) ** 13 - 1.81568901670958e115 * cos(theta) ** 11 + 1.14784937837962e114 * cos(theta) ** 9 - 4.12812963253411e112 * cos(theta) ** 7 + 7.68534772014328e110 * cos(theta) ** 5 - 6.14336348532636e108 * cos(theta) ** 3 + 1.34526207707877e106 * cos(theta) ) * cos(57 * phi) ) # @torch.jit.script def Yl78_m58(theta, phi): return ( 4.07604012745502e-107 * (1.0 - cos(theta) ** 2) ** 29 * ( 8.97237613316591e118 * cos(theta) ** 20 - 1.09983965503324e119 * cos(theta) ** 18 + 5.4991982751662e118 * cos(theta) ** 16 - 1.45674126494469e118 * cos(theta) ** 14 + 2.22421904546924e117 * cos(theta) ** 12 - 1.99725791838054e116 * cos(theta) ** 10 + 1.03306444054166e115 * cos(theta) ** 8 - 2.88969074277387e113 * cos(theta) ** 6 + 3.84267386007164e111 * cos(theta) ** 4 - 1.84300904559791e109 * cos(theta) ** 2 + 1.34526207707877e106 ) * cos(58 * phi) ) # @torch.jit.script def Yl78_m59(theta, phi): return ( 7.78687439535216e-109 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 1.79447522663318e120 * cos(theta) ** 19 - 1.97971137905983e120 * cos(theta) ** 17 + 8.79871724026592e119 * cos(theta) ** 15 - 2.03943777092257e119 * cos(theta) ** 13 + 2.66906285456309e118 * cos(theta) ** 11 - 1.99725791838054e117 * cos(theta) ** 9 + 8.26451552433328e115 * cos(theta) ** 7 - 1.73381444566432e114 * cos(theta) ** 5 + 1.53706954402866e112 * cos(theta) ** 3 - 3.68601809119582e109 * cos(theta) ) * cos(59 * phi) ) # @torch.jit.script def Yl78_m60(theta, phi): return ( 1.52071148450559e-110 * (1.0 - cos(theta) ** 2) ** 30 * ( 3.40950293060305e121 * cos(theta) ** 18 - 3.36550934440172e121 * cos(theta) ** 16 + 1.31980758603989e121 * cos(theta) ** 14 - 2.65126910219933e120 * cos(theta) ** 12 + 2.9359691400194e119 * cos(theta) ** 10 - 1.79753212654249e118 * cos(theta) ** 8 + 5.7851608670333e116 * cos(theta) ** 6 - 8.66907222832162e114 * cos(theta) ** 4 + 4.61120863208597e112 * cos(theta) ** 2 - 3.68601809119582e109 ) * cos(60 * phi) ) # @torch.jit.script def Yl78_m61(theta, phi): return ( 3.04020712927881e-112 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 6.13710527508548e122 * cos(theta) ** 17 - 5.38481495104275e122 * cos(theta) ** 15 + 1.84773062045584e122 * cos(theta) ** 13 - 3.1815229226392e121 * cos(theta) ** 11 + 2.9359691400194e120 * cos(theta) ** 9 - 1.43802570123399e119 * cos(theta) ** 7 + 3.47109652021998e117 * cos(theta) ** 5 - 3.46762889132865e115 * cos(theta) ** 3 + 9.22241726417194e112 * cos(theta) ) * cos(61 * phi) ) # @torch.jit.script def Yl78_m62(theta, phi): return ( 6.23181704247764e-114 * (1.0 - cos(theta) ** 2) ** 31 * ( 1.04330789676453e124 * cos(theta) ** 16 - 8.07722242656412e123 * cos(theta) ** 14 + 2.4020498065926e123 * cos(theta) ** 12 - 3.49967521490312e122 * cos(theta) ** 10 + 2.64237222601746e121 * cos(theta) ** 8 - 1.00661799086379e120 * cos(theta) ** 6 + 1.73554826010999e118 * cos(theta) ** 4 - 1.04028866739859e116 * cos(theta) ** 2 + 9.22241726417194e112 ) * cos(62 * phi) ) # @torch.jit.script def Yl78_m63(theta, phi): return ( 1.3120341735144e-115 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 1.66929263482325e125 * cos(theta) ** 15 - 1.13081113971898e125 * cos(theta) ** 13 + 2.88245976791112e124 * cos(theta) ** 11 - 3.49967521490312e123 * cos(theta) ** 9 + 2.11389778081397e122 * cos(theta) ** 7 - 6.03970794518276e120 * cos(theta) ** 5 + 6.94219304043996e118 * cos(theta) ** 3 - 2.08057733479719e116 * cos(theta) ) * cos(63 * phi) ) # @torch.jit.script def Yl78_m64(theta, phi): return ( 2.84285916421425e-117 * (1.0 - cos(theta) ** 2) ** 32 * ( 2.50393895223488e126 * cos(theta) ** 14 - 1.47005448163467e126 * cos(theta) ** 12 + 3.17070574470223e125 * cos(theta) ** 10 - 3.14970769341281e124 * cos(theta) ** 8 + 1.47972844656978e123 * cos(theta) ** 6 - 3.01985397259138e121 * cos(theta) ** 4 + 2.08265791213199e119 * cos(theta) ** 2 - 2.08057733479719e116 ) * cos(64 * phi) ) # @torch.jit.script def Yl78_m65(theta, phi): return ( 6.35365031029558e-119 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 3.50551453312883e127 * cos(theta) ** 13 - 1.7640653779616e127 * cos(theta) ** 11 + 3.17070574470223e126 * cos(theta) ** 9 - 2.51976615473025e125 * cos(theta) ** 7 + 8.87837067941866e123 * cos(theta) ** 5 - 1.20794158903655e122 * cos(theta) ** 3 + 4.16531582426397e119 * cos(theta) ) * cos(65 * phi) ) # @torch.jit.script def Yl78_m66(theta, phi): return ( 1.46848794744477e-120 * (1.0 - cos(theta) ** 2) ** 33 * ( 4.55716889306748e128 * cos(theta) ** 12 - 1.94047191575776e128 * cos(theta) ** 10 + 2.85363517023201e127 * cos(theta) ** 8 - 1.76383630831117e126 * cos(theta) ** 6 + 4.43918533970933e124 * cos(theta) ** 4 - 3.62382476710966e122 * cos(theta) ** 2 + 4.16531582426397e119 ) * cos(66 * phi) ) # @torch.jit.script def Yl78_m67(theta, phi): return ( 3.52043039736682e-122 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 5.46860267168097e129 * cos(theta) ** 11 - 1.94047191575776e129 * cos(theta) ** 9 + 2.2829081361856e128 * cos(theta) ** 7 - 1.0583017849867e127 * cos(theta) ** 5 + 1.77567413588373e125 * cos(theta) ** 3 - 7.24764953421931e122 * cos(theta) ) * cos(67 * phi) ) # @torch.jit.script def Yl78_m68(theta, phi): return ( 8.78462024329062e-124 * (1.0 - cos(theta) ** 2) ** 34 * ( 6.01546293884907e130 * cos(theta) ** 10 - 1.74642472418199e130 * cos(theta) ** 8 + 1.59803569532992e129 * cos(theta) ** 6 - 5.29150892493352e127 * cos(theta) ** 4 + 5.3270224076512e125 * cos(theta) ** 2 - 7.24764953421931e122 ) * cos(68 * phi) ) # @torch.jit.script def Yl78_m69(theta, phi): return ( 2.29120698398419e-125 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 6.01546293884907e131 * cos(theta) ** 9 - 1.39713977934559e131 * cos(theta) ** 7 + 9.58821417197954e129 * cos(theta) ** 5 - 2.11660356997341e128 * cos(theta) ** 3 + 1.06540448153024e126 * cos(theta) ) * cos(69 * phi) ) # @torch.jit.script def Yl78_m70(theta, phi): return ( 6.27786846456604e-127 * (1.0 - cos(theta) ** 2) ** 35 * ( 5.41391664496416e132 * cos(theta) ** 8 - 9.77997845541913e131 * cos(theta) ** 6 + 4.79410708598977e130 * cos(theta) ** 4 - 6.34981070992022e128 * cos(theta) ** 2 + 1.06540448153024e126 ) * cos(70 * phi) ) # @torch.jit.script def Yl78_m71(theta, phi): return ( 1.81833577891948e-128 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 4.33113331597133e133 * cos(theta) ** 7 - 5.86798707325148e132 * cos(theta) ** 5 + 1.91764283439591e131 * cos(theta) ** 3 - 1.26996214198404e129 * cos(theta) ) * cos(71 * phi) ) # @torch.jit.script def Yl78_m72(theta, phi): return ( 5.61150604086412e-130 * (1.0 - cos(theta) ** 2) ** 36 * ( 3.03179332117993e134 * cos(theta) ** 6 - 2.93399353662574e133 * cos(theta) ** 4 + 5.75292850318772e131 * cos(theta) ** 2 - 1.26996214198404e129 ) * cos(72 * phi) ) # @torch.jit.script def Yl78_m73(theta, phi): return ( 1.86429800975251e-131 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 1.81907599270796e135 * cos(theta) ** 5 - 1.1735974146503e134 * cos(theta) ** 3 + 1.15058570063754e132 * cos(theta) ) * cos(73 * phi) ) # @torch.jit.script def Yl78_m74(theta, phi): return ( 6.76251964601404e-133 * (1.0 - cos(theta) ** 2) ** 37 * ( 9.09537996353979e135 * cos(theta) ** 4 - 3.52079224395089e134 * cos(theta) ** 2 + 1.15058570063754e132 ) * cos(74 * phi) ) # @torch.jit.script def Yl78_m75(theta, phi): return ( 2.73358654861083e-134 * (1.0 - cos(theta) ** 2) ** 37.5 * (3.63815198541592e136 * cos(theta) ** 3 - 7.04158448790177e134 * cos(theta)) * cos(75 * phi) ) # @torch.jit.script def Yl78_m76(theta, phi): return ( 1.27177956062001e-135 * (1.0 - cos(theta) ** 2) ** 38 * (1.09144559562477e137 * cos(theta) ** 2 - 7.04158448790177e134) * cos(76 * phi) ) # @torch.jit.script def Yl78_m77(theta, phi): return ( 15.7675088115108 * (1.0 - cos(theta) ** 2) ** 38.5 * cos(77 * phi) * cos(theta) ) # @torch.jit.script def Yl78_m78(theta, phi): return 1.26241103804633 * (1.0 - cos(theta) ** 2) ** 39 * cos(78 * phi) # @torch.jit.script def Yl79_m_minus_79(theta, phi): return 1.26639970845295 * (1.0 - cos(theta) ** 2) ** 39.5 * sin(79 * phi) # @torch.jit.script def Yl79_m_minus_78(theta, phi): return 15.9183975012566 * (1.0 - cos(theta) ** 2) ** 39 * sin(78 * phi) * cos(theta) # @torch.jit.script def Yl79_m_minus_77(theta, phi): return ( 8.23061767764012e-138 * (1.0 - cos(theta) ** 2) ** 38.5 * (1.7135695851309e139 * cos(theta) ** 2 - 1.09144559562477e137) * sin(77 * phi) ) # @torch.jit.script def Yl79_m_minus_76(theta, phi): return ( 1.78055484392831e-136 * (1.0 - cos(theta) ** 2) ** 38 * (5.71189861710299e138 * cos(theta) ** 3 - 1.09144559562477e137 * cos(theta)) * sin(76 * phi) ) # @torch.jit.script def Yl79_m_minus_75(theta, phi): return ( 4.43354580712399e-135 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 1.42797465427575e138 * cos(theta) ** 4 - 5.45722797812387e136 * cos(theta) ** 2 + 1.76039612197544e134 ) * sin(75 * phi) ) # @torch.jit.script def Yl79_m_minus_74(theta, phi): return ( 1.23025903314616e-133 * (1.0 - cos(theta) ** 2) ** 37 * ( 2.85594930855149e137 * cos(theta) ** 5 - 1.81907599270796e136 * cos(theta) ** 3 + 1.76039612197544e134 * cos(theta) ) * sin(74 * phi) ) # @torch.jit.script def Yl79_m_minus_73(theta, phi): return ( 3.72750215421727e-132 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 4.75991551425249e136 * cos(theta) ** 6 - 4.5476899817699e135 * cos(theta) ** 4 + 8.80198060987722e133 * cos(theta) ** 2 - 1.91764283439591e131 ) * sin(73 * phi) ) # @torch.jit.script def Yl79_m_minus_72(theta, phi): return ( 1.21587440706328e-130 * (1.0 - cos(theta) ** 2) ** 36 * ( 6.79987930607499e135 * cos(theta) ** 7 - 9.09537996353979e134 * cos(theta) ** 5 + 2.93399353662574e133 * cos(theta) ** 3 - 1.91764283439591e131 * cos(theta) ) * sin(72 * phi) ) # @torch.jit.script def Yl79_m_minus_71(theta, phi): return ( 4.22592888379797e-129 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 8.49984913259373e134 * cos(theta) ** 8 - 1.51589666058997e134 * cos(theta) ** 6 + 7.33498384156435e132 * cos(theta) ** 4 - 9.58821417197954e130 * cos(theta) ** 2 + 1.58745267748006e128 ) * sin(71 * phi) ) # @torch.jit.script def Yl79_m_minus_70(theta, phi): return ( 1.55270541818914e-127 * (1.0 - cos(theta) ** 2) ** 35 * ( 9.44427681399304e133 * cos(theta) ** 9 - 2.16556665798566e133 * cos(theta) ** 7 + 1.46699676831287e132 * cos(theta) ** 5 - 3.19607139065985e130 * cos(theta) ** 3 + 1.58745267748006e128 * cos(theta) ) * sin(70 * phi) ) # @torch.jit.script def Yl79_m_minus_69(theta, phi): return ( 5.99352336472808e-126 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 9.44427681399304e132 * cos(theta) ** 10 - 2.70695832248208e132 * cos(theta) ** 8 + 2.44499461385478e131 * cos(theta) ** 6 - 7.99017847664962e129 * cos(theta) ** 4 + 7.93726338740028e127 * cos(theta) ** 2 - 1.06540448153024e125 ) * sin(69 * phi) ) # @torch.jit.script def Yl79_m_minus_68(theta, phi): return ( 2.41829569620271e-124 * (1.0 - cos(theta) ** 2) ** 34 * ( 8.58570619453912e131 * cos(theta) ** 11 - 3.00773146942453e131 * cos(theta) ** 9 + 3.49284944836398e130 * cos(theta) ** 7 - 1.59803569532992e129 * cos(theta) ** 5 + 2.64575446246676e127 * cos(theta) ** 3 - 1.06540448153024e125 * cos(theta) ) * sin(68 * phi) ) # @torch.jit.script def Yl79_m_minus_67(theta, phi): return ( 1.01568419240514e-122 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 7.15475516211594e130 * cos(theta) ** 12 - 3.00773146942453e130 * cos(theta) ** 10 + 4.36606181045497e129 * cos(theta) ** 8 - 2.66339282554987e128 * cos(theta) ** 6 + 6.6143861561669e126 * cos(theta) ** 4 - 5.32702240765119e124 * cos(theta) ** 2 + 6.03970794518276e121 ) * sin(67 * phi) ) # @torch.jit.script def Yl79_m_minus_66(theta, phi): return ( 4.42493400038439e-121 * (1.0 - cos(theta) ** 2) ** 33 * ( 5.50365781701226e129 * cos(theta) ** 13 - 2.73430133584049e129 * cos(theta) ** 11 + 4.85117978939441e128 * cos(theta) ** 9 - 3.80484689364267e127 * cos(theta) ** 7 + 1.32287723123338e126 * cos(theta) ** 5 - 1.77567413588373e124 * cos(theta) ** 3 + 6.03970794518276e121 * cos(theta) ) * sin(66 * phi) ) # @torch.jit.script def Yl79_m_minus_65(theta, phi): return ( 1.99367708124331e-119 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 3.93118415500876e128 * cos(theta) ** 14 - 2.27858444653374e128 * cos(theta) ** 12 + 4.85117978939441e127 * cos(theta) ** 10 - 4.75605861705334e126 * cos(theta) ** 8 + 2.20479538538897e125 * cos(theta) ** 6 - 4.43918533970933e123 * cos(theta) ** 4 + 3.01985397259138e121 * cos(theta) ** 2 - 2.97522558875998e118 ) * sin(65 * phi) ) # @torch.jit.script def Yl79_m_minus_64(theta, phi): return ( 9.26577376004489e-118 * (1.0 - cos(theta) ** 2) ** 32 * ( 2.6207894366725e127 * cos(theta) ** 15 - 1.75275726656441e127 * cos(theta) ** 13 + 4.41016344490401e126 * cos(theta) ** 11 - 5.28450957450371e125 * cos(theta) ** 9 + 3.14970769341281e124 * cos(theta) ** 7 - 8.87837067941866e122 * cos(theta) ** 5 + 1.00661799086379e121 * cos(theta) ** 3 - 2.97522558875998e118 * cos(theta) ) * sin(64 * phi) ) # @torch.jit.script def Yl79_m_minus_63(theta, phi): return ( 4.43210154436816e-116 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 1.63799339792032e126 * cos(theta) ** 16 - 1.25196947611744e126 * cos(theta) ** 14 + 3.67513620408667e125 * cos(theta) ** 12 - 5.28450957450371e124 * cos(theta) ** 10 + 3.93713461676601e123 * cos(theta) ** 8 - 1.47972844656978e122 * cos(theta) ** 6 + 2.51654497715948e120 * cos(theta) ** 4 - 1.48761279437999e118 * cos(theta) ** 2 + 1.30036083424824e115 ) * sin(63 * phi) ) # @torch.jit.script def Yl79_m_minus_62(theta, phi): return ( 2.17760113832657e-114 * (1.0 - cos(theta) ** 2) ** 31 * ( 9.63525528188421e124 * cos(theta) ** 17 - 8.34646317411626e124 * cos(theta) ** 15 + 2.82702784929744e124 * cos(theta) ** 13 - 4.80409961318519e123 * cos(theta) ** 11 + 4.3745940186289e122 * cos(theta) ** 9 - 2.11389778081397e121 * cos(theta) ** 7 + 5.03308995431897e119 * cos(theta) ** 5 - 4.95870931459997e117 * cos(theta) ** 3 + 1.30036083424824e115 * cos(theta) ) * sin(62 * phi) ) # @torch.jit.script def Yl79_m_minus_61(theta, phi): return ( 1.09704424566073e-112 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 5.35291960104678e123 * cos(theta) ** 18 - 5.21653948382266e123 * cos(theta) ** 16 + 2.01930560664103e123 * cos(theta) ** 14 - 4.003416344321e122 * cos(theta) ** 12 + 4.3745940186289e121 * cos(theta) ** 10 - 2.64237222601746e120 * cos(theta) ** 8 + 8.38848325719828e118 * cos(theta) ** 6 - 1.23967732864999e117 * cos(theta) ** 4 + 6.50180417124122e114 * cos(theta) ** 2 - 5.12356514676219e111 ) * sin(61 * phi) ) # @torch.jit.script def Yl79_m_minus_60(theta, phi): return ( 5.6580263030966e-111 * (1.0 - cos(theta) ** 2) ** 30 * ( 2.8173261058141e122 * cos(theta) ** 19 - 3.06855263754274e122 * cos(theta) ** 17 + 1.34620373776069e122 * cos(theta) ** 15 - 3.07955103409307e121 * cos(theta) ** 13 + 3.976903653299e120 * cos(theta) ** 11 - 2.9359691400194e119 * cos(theta) ** 9 + 1.19835475102833e118 * cos(theta) ** 7 - 2.47935465729998e116 * cos(theta) ** 5 + 2.16726805708041e114 * cos(theta) ** 3 - 5.12356514676219e111 * cos(theta) ) * sin(60 * phi) ) # @torch.jit.script def Yl79_m_minus_59(theta, phi): return ( 2.98323427469855e-109 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 1.40866305290705e121 * cos(theta) ** 20 - 1.70475146530152e121 * cos(theta) ** 18 + 8.41377336100429e120 * cos(theta) ** 16 - 2.19967931006648e120 * cos(theta) ** 14 + 3.31408637774917e119 * cos(theta) ** 12 - 2.9359691400194e118 * cos(theta) ** 10 + 1.49794343878541e117 * cos(theta) ** 8 - 4.13225776216664e115 * cos(theta) ** 6 + 5.41817014270101e113 * cos(theta) ** 4 - 2.56178257338109e111 * cos(theta) ** 2 + 1.84300904559791e108 ) * sin(59 * phi) ) # @torch.jit.script def Yl79_m_minus_58(theta, phi): return ( 1.60596675451142e-107 * (1.0 - cos(theta) ** 2) ** 29 * ( 6.70791929955737e119 * cos(theta) ** 21 - 8.97237613316591e119 * cos(theta) ** 19 + 4.94927844764958e119 * cos(theta) ** 17 - 1.46645287337765e119 * cos(theta) ** 15 + 2.54929721365321e118 * cos(theta) ** 13 - 2.66906285456309e117 * cos(theta) ** 11 + 1.66438159865045e116 * cos(theta) ** 9 - 5.90322537452377e114 * cos(theta) ** 7 + 1.0836340285402e113 * cos(theta) ** 5 - 8.53927524460365e110 * cos(theta) ** 3 + 1.84300904559791e108 * cos(theta) ) * sin(58 * phi) ) # @torch.jit.script def Yl79_m_minus_57(theta, phi): return ( 8.81674285596453e-106 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 3.04905422707153e118 * cos(theta) ** 22 - 4.48618806658295e118 * cos(theta) ** 20 + 2.7495991375831e118 * cos(theta) ** 18 - 9.16533045861034e117 * cos(theta) ** 16 + 1.82092658118086e117 * cos(theta) ** 14 - 2.22421904546924e116 * cos(theta) ** 12 + 1.66438159865045e115 * cos(theta) ** 10 - 7.37903171815471e113 * cos(theta) ** 8 + 1.80605671423367e112 * cos(theta) ** 6 - 2.13481881115091e110 * cos(theta) ** 4 + 9.21504522798955e107 * cos(theta) ** 2 - 6.1148276230853e104 ) * sin(57 * phi) ) # @torch.jit.script def Yl79_m_minus_56(theta, phi): return ( 4.9310743043671e-104 * (1.0 - cos(theta) ** 2) ** 28 * ( 1.32567575090067e117 * cos(theta) ** 23 - 2.13628003170617e117 * cos(theta) ** 21 + 1.44715744083321e117 * cos(theta) ** 19 - 5.39137085800608e116 * cos(theta) ** 17 + 1.21395105412057e116 * cos(theta) ** 15 - 1.71093772728403e115 * cos(theta) ** 13 + 1.51307418059132e114 * cos(theta) ** 11 - 8.19892413128302e112 * cos(theta) ** 9 + 2.58008102033382e111 * cos(theta) ** 7 - 4.26963762230182e109 * cos(theta) ** 5 + 3.07168174266318e107 * cos(theta) ** 3 - 6.1148276230853e104 * cos(theta) ) * sin(56 * phi) ) # @torch.jit.script def Yl79_m_minus_55(theta, phi): return ( 2.80681670039947e-102 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 5.52364896208611e115 * cos(theta) ** 24 - 9.71036378048259e115 * cos(theta) ** 22 + 7.23578720416606e115 * cos(theta) ** 20 - 2.9952060322256e115 * cos(theta) ** 18 + 7.58719408825359e114 * cos(theta) ** 16 - 1.22209837663145e114 * cos(theta) ** 14 + 1.26089515049277e113 * cos(theta) ** 12 - 8.19892413128302e111 * cos(theta) ** 10 + 3.22510127541727e110 * cos(theta) ** 8 - 7.11606270383637e108 * cos(theta) ** 6 + 7.67920435665796e106 * cos(theta) ** 4 - 3.05741381154265e104 * cos(theta) ** 2 + 1.8872924762609e101 ) * sin(55 * phi) ) # @torch.jit.script def Yl79_m_minus_54(theta, phi): return ( 1.62456261699261e-100 * (1.0 - cos(theta) ** 2) ** 27 * ( 2.20945958483444e114 * cos(theta) ** 25 - 4.22189729586199e114 * cos(theta) ** 23 + 3.44561295436479e114 * cos(theta) ** 21 - 1.57642422748716e114 * cos(theta) ** 19 + 4.46305534603152e113 * cos(theta) ** 17 - 8.14732251087634e112 * cos(theta) ** 15 + 9.69919346532898e111 * cos(theta) ** 13 - 7.45356739207547e110 * cos(theta) ** 11 + 3.58344586157474e109 * cos(theta) ** 9 - 1.01658038626234e108 * cos(theta) ** 7 + 1.53584087133159e106 * cos(theta) ** 5 - 1.01913793718088e104 * cos(theta) ** 3 + 1.8872924762609e101 * cos(theta) ) * sin(54 * phi) ) # @torch.jit.script def Yl79_m_minus_53(theta, phi): return ( 9.55320175784028e-99 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 8.49792148013247e112 * cos(theta) ** 26 - 1.75912387327583e113 * cos(theta) ** 24 + 1.56618770652945e113 * cos(theta) ** 22 - 7.88212113743579e112 * cos(theta) ** 20 + 2.47947519223974e112 * cos(theta) ** 18 - 5.09207656929771e111 * cos(theta) ** 16 + 6.92799533237784e110 * cos(theta) ** 14 - 6.21130616006289e109 * cos(theta) ** 12 + 3.58344586157474e108 * cos(theta) ** 10 - 1.27072548282792e107 * cos(theta) ** 8 + 2.55973478555265e105 * cos(theta) ** 6 - 2.54784484295221e103 * cos(theta) ** 4 + 9.43646238130448e100 * cos(theta) ** 2 - 5.45775730555493e97 ) * sin(53 * phi) ) # @torch.jit.script def Yl79_m_minus_52(theta, phi): return ( 5.70318943991758e-97 * (1.0 - cos(theta) ** 2) ** 26 * ( 3.14737832597499e111 * cos(theta) ** 27 - 7.03649549310332e111 * cos(theta) ** 25 + 6.80951176751934e111 * cos(theta) ** 23 - 3.75339101782657e111 * cos(theta) ** 21 + 1.30498694328407e111 * cos(theta) ** 19 - 2.99533915841042e110 * cos(theta) ** 17 + 4.61866355491856e109 * cos(theta) ** 15 - 4.77792781543299e108 * cos(theta) ** 13 + 3.25767805597704e107 * cos(theta) ** 11 - 1.41191720314214e106 * cos(theta) ** 9 + 3.65676397936093e104 * cos(theta) ** 7 - 5.09568968590442e102 * cos(theta) ** 5 + 3.14548746043483e100 * cos(theta) ** 3 - 5.45775730555493e97 * cos(theta) ) * sin(52 * phi) ) # @torch.jit.script def Yl79_m_minus_51(theta, phi): return ( 3.45408054887072e-95 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 1.12406368784821e110 * cos(theta) ** 28 - 2.70634442042436e110 * cos(theta) ** 26 + 2.83729656979973e110 * cos(theta) ** 24 - 1.7060868262848e110 * cos(theta) ** 22 + 6.52493471642036e109 * cos(theta) ** 20 - 1.66407731022801e109 * cos(theta) ** 18 + 2.8866647218241e108 * cos(theta) ** 16 - 3.41280558245214e107 * cos(theta) ** 14 + 2.7147317133142e106 * cos(theta) ** 12 - 1.41191720314214e105 * cos(theta) ** 10 + 4.57095497420116e103 * cos(theta) ** 8 - 8.49281614317403e101 * cos(theta) ** 6 + 7.86371865108706e99 * cos(theta) ** 4 - 2.72887865277747e97 * cos(theta) ** 2 + 1.48793819671618e94 ) * sin(51 * phi) ) # @torch.jit.script def Yl79_m_minus_50(theta, phi): return ( 2.12081670805348e-93 * (1.0 - cos(theta) ** 2) ** 25 * ( 3.87608168223521e108 * cos(theta) ** 29 - 1.00234978534235e109 * cos(theta) ** 27 + 1.13491862791989e109 * cos(theta) ** 25 - 7.41776880993393e108 * cos(theta) ** 23 + 3.10711176972398e108 * cos(theta) ** 21 - 8.758301632779e107 * cos(theta) ** 19 + 1.69803807166124e107 * cos(theta) ** 17 - 2.27520372163476e106 * cos(theta) ** 15 + 2.08825516408785e105 * cos(theta) ** 13 - 1.28356109376558e104 * cos(theta) ** 11 + 5.07883886022352e102 * cos(theta) ** 9 - 1.21325944902486e101 * cos(theta) ** 7 + 1.57274373021741e99 * cos(theta) ** 5 - 9.09626217592488e96 * cos(theta) ** 3 + 1.48793819671618e94 * cos(theta) ) * sin(50 * phi) ) # @torch.jit.script def Yl79_m_minus_49(theta, phi): return ( 1.31934573863126e-91 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.29202722741174e107 * cos(theta) ** 30 - 3.57982066193698e107 * cos(theta) ** 28 + 4.36507164584573e107 * cos(theta) ** 26 - 3.09073700413914e107 * cos(theta) ** 24 + 1.41232353169272e107 * cos(theta) ** 22 - 4.3791508163895e106 * cos(theta) ** 20 + 9.43354484256242e105 * cos(theta) ** 18 - 1.42200232602172e105 * cos(theta) ** 16 + 1.49161083149132e104 * cos(theta) ** 14 - 1.06963424480465e103 * cos(theta) ** 12 + 5.07883886022352e101 * cos(theta) ** 10 - 1.51657431128108e100 * cos(theta) ** 8 + 2.62123955036235e98 * cos(theta) ** 6 - 2.27406554398122e96 * cos(theta) ** 4 + 7.43969098358088e93 * cos(theta) ** 2 - 3.84480154190226e90 ) * sin(49 * phi) ) # @torch.jit.script def Yl79_m_minus_48(theta, phi): return ( 8.31083098762117e-90 * (1.0 - cos(theta) ** 2) ** 24 * ( 4.16782976584431e105 * cos(theta) ** 31 - 1.2344209179093e106 * cos(theta) ** 29 + 1.61669320216509e106 * cos(theta) ** 27 - 1.23629480165565e106 * cos(theta) ** 25 + 6.14053709431616e105 * cos(theta) ** 23 - 2.08530991256643e105 * cos(theta) ** 21 + 4.96502360134864e104 * cos(theta) ** 19 - 8.36471956483367e103 * cos(theta) ** 17 + 9.94407220994213e102 * cos(theta) ** 15 - 8.22795572926653e101 * cos(theta) ** 13 + 4.61712623656683e100 * cos(theta) ** 11 - 1.68508256809008e99 * cos(theta) ** 9 + 3.74462792908908e97 * cos(theta) ** 7 - 4.54813108796244e95 * cos(theta) ** 5 + 2.47989699452696e93 * cos(theta) ** 3 - 3.84480154190226e90 * cos(theta) ) * sin(48 * phi) ) # @torch.jit.script def Yl79_m_minus_47(theta, phi): return ( 5.29811401508428e-88 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 1.30244680182635e104 * cos(theta) ** 32 - 4.11473639303101e104 * cos(theta) ** 30 + 5.77390429344674e104 * cos(theta) ** 28 - 4.7549800063679e104 * cos(theta) ** 26 + 2.55855712263174e104 * cos(theta) ** 24 - 9.4786814207565e103 * cos(theta) ** 22 + 2.48251180067432e103 * cos(theta) ** 20 - 4.6470664249076e102 * cos(theta) ** 18 + 6.21504513121383e101 * cos(theta) ** 16 - 5.87711123519038e100 * cos(theta) ** 14 + 3.84760519713903e99 * cos(theta) ** 12 - 1.68508256809008e98 * cos(theta) ** 10 + 4.68078491136135e96 * cos(theta) ** 8 - 7.5802184799374e94 * cos(theta) ** 6 + 6.1997424863174e92 * cos(theta) ** 4 - 1.92240077095113e90 * cos(theta) ** 2 + 9.46063371531068e86 ) * sin(47 * phi) ) # @torch.jit.script def Yl79_m_minus_46(theta, phi): return ( 3.41635932509725e-86 * (1.0 - cos(theta) ** 2) ** 23 * ( 3.94680849038287e102 * cos(theta) ** 33 - 1.32733432033258e103 * cos(theta) ** 31 + 1.99100148049888e103 * cos(theta) ** 29 - 1.76110370606219e103 * cos(theta) ** 27 + 1.02342284905269e103 * cos(theta) ** 25 - 4.12116583511152e102 * cos(theta) ** 23 + 1.18214847651158e102 * cos(theta) ** 21 - 2.44582443416189e101 * cos(theta) ** 19 + 3.65590890071402e100 * cos(theta) ** 17 - 3.91807415679359e99 * cos(theta) ** 15 + 2.95969630549156e98 * cos(theta) ** 13 - 1.53189324371826e97 * cos(theta) ** 11 + 5.20087212373483e95 * cos(theta) ** 9 - 1.08288835427677e94 * cos(theta) ** 7 + 1.23994849726348e92 * cos(theta) ** 5 - 6.4080025698371e89 * cos(theta) ** 3 + 9.46063371531068e86 * cos(theta) ) * sin(46 * phi) ) # @torch.jit.script def Yl79_m_minus_45(theta, phi): return ( 2.22719379292105e-84 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 1.1608260265832e101 * cos(theta) ** 34 - 4.14791975103932e101 * cos(theta) ** 32 + 6.63667160166292e101 * cos(theta) ** 30 - 6.28965609307924e101 * cos(theta) ** 28 + 3.93624172712575e101 * cos(theta) ** 26 - 1.71715243129647e101 * cos(theta) ** 24 + 5.37340216596173e100 * cos(theta) ** 22 - 1.22291221708095e100 * cos(theta) ** 20 + 2.03106050039668e99 * cos(theta) ** 18 - 2.44879634799599e98 * cos(theta) ** 16 + 2.11406878963683e97 * cos(theta) ** 14 - 1.27657770309855e96 * cos(theta) ** 12 + 5.20087212373483e94 * cos(theta) ** 10 - 1.35361044284596e93 * cos(theta) ** 8 + 2.06658082877247e91 * cos(theta) ** 6 - 1.60200064245928e89 * cos(theta) ** 4 + 4.73031685765534e86 * cos(theta) ** 2 - 2.22603146242604e83 ) * sin(45 * phi) ) # @torch.jit.script def Yl79_m_minus_44(theta, phi): return ( 1.46724579092669e-82 * (1.0 - cos(theta) ** 2) ** 22 * ( 3.31664579023771e99 * cos(theta) ** 35 - 1.25694537910283e100 * cos(theta) ** 33 + 2.14086180698804e100 * cos(theta) ** 31 - 2.16884692864801e100 * cos(theta) ** 29 + 1.45786730634287e100 * cos(theta) ** 27 - 6.86860972518587e99 * cos(theta) ** 25 + 2.33626181128771e99 * cos(theta) ** 23 - 5.82339150990927e98 * cos(theta) ** 21 + 1.06897921073509e98 * cos(theta) ** 19 - 1.44046843999764e97 * cos(theta) ** 17 + 1.40937919309122e96 * cos(theta) ** 15 - 9.81982848537345e94 * cos(theta) ** 13 + 4.72806556703166e93 * cos(theta) ** 11 - 1.50401160316218e92 * cos(theta) ** 9 + 2.95225832681781e90 * cos(theta) ** 7 - 3.20400128491855e88 * cos(theta) ** 5 + 1.57677228588511e86 * cos(theta) ** 3 - 2.22603146242604e83 * cos(theta) ) * sin(44 * phi) ) # @torch.jit.script def Yl79_m_minus_43(theta, phi): return ( 9.76352580488884e-81 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 9.21290497288252e97 * cos(theta) ** 36 - 3.69689817383184e98 * cos(theta) ** 34 + 6.69019314683762e98 * cos(theta) ** 32 - 7.22948976216004e98 * cos(theta) ** 30 + 5.20666895122453e98 * cos(theta) ** 28 - 2.64177297122533e98 * cos(theta) ** 26 + 9.73442421369879e97 * cos(theta) ** 24 - 2.64699614086785e97 * cos(theta) ** 22 + 5.34489605367546e96 * cos(theta) ** 20 - 8.00260244443135e95 * cos(theta) ** 18 + 8.80861995682012e94 * cos(theta) ** 16 - 7.01416320383818e93 * cos(theta) ** 14 + 3.94005463919305e92 * cos(theta) ** 12 - 1.50401160316218e91 * cos(theta) ** 10 + 3.69032290852226e89 * cos(theta) ** 8 - 5.34000214153092e87 * cos(theta) ** 6 + 3.94193071471278e85 * cos(theta) ** 4 - 1.11301573121302e83 * cos(theta) ** 2 + 5.02717132435872e79 ) * sin(43 * phi) ) # @torch.jit.script def Yl79_m_minus_42(theta, phi): return ( 6.55975253152346e-79 * (1.0 - cos(theta) ** 2) ** 21 * ( 2.48997431699528e96 * cos(theta) ** 37 - 1.05625662109481e97 * cos(theta) ** 35 + 2.02733125661746e97 * cos(theta) ** 33 - 2.33209347166453e97 * cos(theta) ** 31 + 1.79540308662915e97 * cos(theta) ** 29 - 9.78434433787161e96 * cos(theta) ** 27 + 3.89376968547952e96 * cos(theta) ** 25 - 1.15086788733385e96 * cos(theta) ** 23 + 2.54518859698832e95 * cos(theta) ** 21 - 4.21189602338492e94 * cos(theta) ** 19 + 5.18154115107066e93 * cos(theta) ** 17 - 4.67610880255879e92 * cos(theta) ** 15 + 3.03081126091773e91 * cos(theta) ** 13 - 1.36728327560198e90 * cos(theta) ** 11 + 4.10035878724696e88 * cos(theta) ** 9 - 7.62857448790131e86 * cos(theta) ** 7 + 7.88386142942557e84 * cos(theta) ** 5 - 3.71005243737674e82 * cos(theta) ** 3 + 5.02717132435872e79 * cos(theta) ) * sin(42 * phi) ) # @torch.jit.script def Yl79_m_minus_41(theta, phi): return ( 4.44807333974679e-77 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 6.55256399209283e94 * cos(theta) ** 38 - 2.93404616970781e95 * cos(theta) ** 36 + 5.96273899005135e95 * cos(theta) ** 34 - 7.28779209895165e95 * cos(theta) ** 32 + 5.9846769554305e95 * cos(theta) ** 30 - 3.494408692097e95 * cos(theta) ** 28 + 1.49760372518443e95 * cos(theta) ** 26 - 4.79528286389103e94 * cos(theta) ** 24 + 1.15690390772196e94 * cos(theta) ** 22 - 2.10594801169246e93 * cos(theta) ** 20 + 2.87863397281703e92 * cos(theta) ** 18 - 2.92256800159924e91 * cos(theta) ** 16 + 2.16486518636981e90 * cos(theta) ** 14 - 1.13940272966832e89 * cos(theta) ** 12 + 4.10035878724696e87 * cos(theta) ** 10 - 9.53571810987664e85 * cos(theta) ** 8 + 1.31397690490426e84 * cos(theta) ** 6 - 9.27513109344185e81 * cos(theta) ** 4 + 2.51358566217936e79 * cos(theta) ** 2 - 1.09333869603278e76 ) * sin(41 * phi) ) # @torch.jit.script def Yl79_m_minus_40(theta, phi): return ( 3.04295034661076e-75 * (1.0 - cos(theta) ** 2) ** 20 * ( 1.68014461335714e93 * cos(theta) ** 39 - 7.92985451272381e93 * cos(theta) ** 37 + 1.70363971144324e94 * cos(theta) ** 35 - 2.20842184816717e94 * cos(theta) ** 33 + 1.93054095336468e94 * cos(theta) ** 31 - 1.20496851451621e94 * cos(theta) ** 29 + 5.54668046364603e93 * cos(theta) ** 27 - 1.91811314555641e93 * cos(theta) ** 25 + 5.03001699009549e92 * cos(theta) ** 23 - 1.00283238652022e92 * cos(theta) ** 21 + 1.51507051200896e91 * cos(theta) ** 19 - 1.71915764799955e90 * cos(theta) ** 17 + 1.44324345757987e89 * cos(theta) ** 15 - 8.76463638206401e87 * cos(theta) ** 13 + 3.72759889749723e86 * cos(theta) ** 11 - 1.05952423443074e85 * cos(theta) ** 9 + 1.87710986414895e83 * cos(theta) ** 7 - 1.85502621868837e81 * cos(theta) ** 5 + 8.37861887393121e78 * cos(theta) ** 3 - 1.09333869603278e76 * cos(theta) ) * sin(40 * phi) ) # @torch.jit.script def Yl79_m_minus_39(theta, phi): return ( 2.09941522393326e-73 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 4.20036153339284e91 * cos(theta) ** 40 - 2.08680381913784e92 * cos(theta) ** 38 + 4.73233253178679e92 * cos(theta) ** 36 - 6.49535837696226e92 * cos(theta) ** 34 + 6.03294047926461e92 * cos(theta) ** 32 - 4.01656171505403e92 * cos(theta) ** 30 + 1.98095730844501e92 * cos(theta) ** 28 - 7.37735825214005e91 * cos(theta) ** 26 + 2.09584041253979e91 * cos(theta) ** 24 - 4.55832902963736e90 * cos(theta) ** 22 + 7.57535256004482e89 * cos(theta) ** 20 - 9.55087582221975e88 * cos(theta) ** 18 + 9.0202716098742e87 * cos(theta) ** 16 - 6.26045455861715e86 * cos(theta) ** 14 + 3.10633241458103e85 * cos(theta) ** 12 - 1.05952423443074e84 * cos(theta) ** 10 + 2.34638733018618e82 * cos(theta) ** 8 - 3.09171036448062e80 * cos(theta) ** 6 + 2.0946547184828e78 * cos(theta) ** 4 - 5.4666934801639e75 * cos(theta) ** 2 + 2.29693003368231e72 ) * sin(39 * phi) ) # @torch.jit.script def Yl79_m_minus_38(theta, phi): return ( 1.46026364875154e-71 * (1.0 - cos(theta) ** 2) ** 19 * ( 1.02447842277874e90 * cos(theta) ** 41 - 5.35077902343037e90 * cos(theta) ** 39 + 1.27900879237481e91 * cos(theta) ** 37 - 1.85581667913207e91 * cos(theta) ** 35 + 1.82816378159534e91 * cos(theta) ** 33 - 1.29566506937227e91 * cos(theta) ** 31 + 6.83088727050004e90 * cos(theta) ** 29 - 2.73235490820002e90 * cos(theta) ** 27 + 8.38336165015914e89 * cos(theta) ** 25 - 1.98188218679885e89 * cos(theta) ** 23 + 3.60731074287849e88 * cos(theta) ** 21 - 5.02677674853671e87 * cos(theta) ** 19 + 5.30604212345541e86 * cos(theta) ** 17 - 4.17363637241143e85 * cos(theta) ** 15 + 2.38948647275464e84 * cos(theta) ** 13 - 9.63203849482489e82 * cos(theta) ** 11 + 2.6070970335402e81 * cos(theta) ** 9 - 4.41672909211516e79 * cos(theta) ** 7 + 4.1893094369656e77 * cos(theta) ** 5 - 1.82223116005463e75 * cos(theta) ** 3 + 2.29693003368231e72 * cos(theta) ) * sin(38 * phi) ) # @torch.jit.script def Yl79_m_minus_37(theta, phi): return ( 1.02364377621677e-69 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 2.43923433994938e88 * cos(theta) ** 42 - 1.33769475585759e89 * cos(theta) ** 40 + 3.36581261151265e89 * cos(theta) ** 38 - 5.15504633092243e89 * cos(theta) ** 36 + 5.37695229880982e89 * cos(theta) ** 34 - 4.04895334178833e89 * cos(theta) ** 32 + 2.27696242350001e89 * cos(theta) ** 30 - 9.75841038642863e88 * cos(theta) ** 28 + 3.22436986544582e88 * cos(theta) ** 26 - 8.25784244499522e87 * cos(theta) ** 24 + 1.6396867013084e87 * cos(theta) ** 22 - 2.51338837426835e86 * cos(theta) ** 20 + 2.94780117969745e85 * cos(theta) ** 18 - 2.60852273275714e84 * cos(theta) ** 16 + 1.7067760519676e83 * cos(theta) ** 14 - 8.02669874568741e81 * cos(theta) ** 12 + 2.6070970335402e80 * cos(theta) ** 10 - 5.52091136514396e78 * cos(theta) ** 8 + 6.98218239494267e76 * cos(theta) ** 6 - 4.55557790013658e74 * cos(theta) ** 4 + 1.14846501684116e72 * cos(theta) ** 2 - 4.6742572928008e68 ) * sin(37 * phi) ) # @torch.jit.script def Yl79_m_minus_36(theta, phi): return ( 7.22956343354814e-68 * (1.0 - cos(theta) ** 2) ** 18 * ( 5.67263799988229e86 * cos(theta) ** 43 - 3.26267013623803e87 * cos(theta) ** 41 + 8.63028874746834e87 * cos(theta) ** 39 - 1.39325576511417e88 * cos(theta) ** 37 + 1.53627208537423e88 * cos(theta) ** 35 - 1.22695555811768e88 * cos(theta) ** 33 + 7.3450400758065e87 * cos(theta) ** 31 - 3.36496909876849e87 * cos(theta) ** 29 + 1.19421106127623e87 * cos(theta) ** 27 - 3.30313697799809e86 * cos(theta) ** 25 + 7.12907261438436e85 * cos(theta) ** 23 - 1.19685160679445e85 * cos(theta) ** 21 + 1.55147430510392e84 * cos(theta) ** 19 - 1.53442513691597e83 * cos(theta) ** 17 + 1.13785070131173e82 * cos(theta) ** 15 - 6.17438365052878e80 * cos(theta) ** 13 + 2.37008821230927e79 * cos(theta) ** 11 - 6.13434596127106e77 * cos(theta) ** 9 + 9.97454627848953e75 * cos(theta) ** 7 - 9.11115580027317e73 * cos(theta) ** 5 + 3.82821672280385e71 * cos(theta) ** 3 - 4.6742572928008e68 * cos(theta) ) * sin(36 * phi) ) # @torch.jit.script def Yl79_m_minus_35(theta, phi): return ( 5.14265429953116e-66 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 1.28923590906416e85 * cos(theta) ** 44 - 7.76826222913817e85 * cos(theta) ** 42 + 2.15757218686708e86 * cos(theta) ** 40 - 3.66646253977413e86 * cos(theta) ** 38 + 4.26742245937287e86 * cos(theta) ** 36 - 3.60869281799317e86 * cos(theta) ** 34 + 2.29532502368953e86 * cos(theta) ** 32 - 1.12165636625616e86 * cos(theta) ** 30 + 4.26503950455797e85 * cos(theta) ** 28 - 1.27043729923003e85 * cos(theta) ** 26 + 2.97044692266015e84 * cos(theta) ** 24 - 5.44023457633843e83 * cos(theta) ** 22 + 7.75737152551961e82 * cos(theta) ** 20 - 8.5245840939776e81 * cos(theta) ** 18 + 7.11156688319832e80 * cos(theta) ** 16 - 4.41027403609198e79 * cos(theta) ** 14 + 1.97507351025773e78 * cos(theta) ** 12 - 6.13434596127106e76 * cos(theta) ** 10 + 1.24681828481119e75 * cos(theta) ** 8 - 1.51852596671219e73 * cos(theta) ** 6 + 9.57054180700963e70 * cos(theta) ** 4 - 2.3371286464004e68 * cos(theta) ** 2 + 9.23766263399367e64 ) * sin(35 * phi) ) # @torch.jit.script def Yl79_m_minus_34(theta, phi): return ( 3.68337565752144e-64 * (1.0 - cos(theta) ** 2) ** 17 * ( 2.86496868680924e83 * cos(theta) ** 45 - 1.80657261142748e84 * cos(theta) ** 43 + 5.26237118748069e84 * cos(theta) ** 41 - 9.40118599942085e84 * cos(theta) ** 39 + 1.15335742145213e85 * cos(theta) ** 37 - 1.03105509085519e85 * cos(theta) ** 35 + 6.95553037481676e84 * cos(theta) ** 33 - 3.61824634276182e84 * cos(theta) ** 31 + 1.47070327743378e84 * cos(theta) ** 29 - 4.7053233304816e83 * cos(theta) ** 27 + 1.18817876906406e83 * cos(theta) ** 25 - 2.36531938101671e82 * cos(theta) ** 23 + 3.69398644072362e81 * cos(theta) ** 21 - 4.48662320735663e80 * cos(theta) ** 19 + 4.18327463717548e79 * cos(theta) ** 17 - 2.94018269072799e78 * cos(theta) ** 15 + 1.51928731558287e77 * cos(theta) ** 13 - 5.57667814661006e75 * cos(theta) ** 11 + 1.38535364979021e74 * cos(theta) ** 9 - 2.16932280958885e72 * cos(theta) ** 7 + 1.91410836140193e70 * cos(theta) ** 5 - 7.79042882133466e67 * cos(theta) ** 3 + 9.23766263399367e64 * cos(theta) ) * sin(34 * phi) ) # @torch.jit.script def Yl79_m_minus_33(theta, phi): return ( 2.6556091185738e-62 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 6.22819279741139e81 * cos(theta) ** 46 - 4.10584684415337e82 * cos(theta) ** 44 + 1.25294552082874e83 * cos(theta) ** 42 - 2.35029649985521e83 * cos(theta) ** 40 + 3.03515110908455e83 * cos(theta) ** 38 - 2.86404191904219e83 * cos(theta) ** 36 + 2.04574422788728e83 * cos(theta) ** 34 - 1.13070198211307e83 * cos(theta) ** 32 + 4.90234425811261e82 * cos(theta) ** 30 - 1.68047261802914e82 * cos(theta) ** 28 + 4.56991834255408e81 * cos(theta) ** 26 - 9.85549742090295e80 * cos(theta) ** 24 + 1.67908474578347e80 * cos(theta) ** 22 - 2.24331160367831e79 * cos(theta) ** 20 + 2.32404146509749e78 * cos(theta) ** 18 - 1.83761418170499e77 * cos(theta) ** 16 + 1.08520522541633e76 * cos(theta) ** 14 - 4.64723178884171e74 * cos(theta) ** 12 + 1.38535364979021e73 * cos(theta) ** 10 - 2.71165351198606e71 * cos(theta) ** 8 + 3.19018060233654e69 * cos(theta) ** 6 - 1.94760720533367e67 * cos(theta) ** 4 + 4.61883131699684e64 * cos(theta) ** 2 - 1.77715710542395e61 ) * sin(33 * phi) ) # @torch.jit.script def Yl79_m_minus_32(theta, phi): return ( 1.92673546544391e-60 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.32514740370455e80 * cos(theta) ** 47 - 9.12410409811859e80 * cos(theta) ** 45 + 2.91382679262497e81 * cos(theta) ** 43 - 5.73243048745174e81 * cos(theta) ** 41 + 7.78243874124242e81 * cos(theta) ** 39 - 7.74065383524918e81 * cos(theta) ** 37 + 5.84498350824938e81 * cos(theta) ** 35 - 3.42636964276688e81 * cos(theta) ** 33 + 1.58140137358471e81 * cos(theta) ** 31 - 5.79473316561774e80 * cos(theta) ** 29 + 1.6925623490941e80 * cos(theta) ** 27 - 3.94219896836118e79 * cos(theta) ** 25 + 7.30036845992811e78 * cos(theta) ** 23 - 1.0682436207992e78 * cos(theta) ** 21 + 1.22317971847236e77 * cos(theta) ** 19 - 1.08094951865e76 * cos(theta) ** 17 + 7.23470150277556e74 * cos(theta) ** 15 - 3.5747936837244e73 * cos(theta) ** 13 + 1.25941240890019e72 * cos(theta) ** 11 - 3.01294834665118e70 * cos(theta) ** 9 + 4.55740086048078e68 * cos(theta) ** 7 - 3.89521441066733e66 * cos(theta) ** 5 + 1.53961043899895e64 * cos(theta) ** 3 - 1.77715710542395e61 * cos(theta) ) * sin(32 * phi) ) # @torch.jit.script def Yl79_m_minus_31(theta, phi): return ( 1.40638491539987e-58 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 2.76072375771781e78 * cos(theta) ** 48 - 1.98350089089535e79 * cos(theta) ** 46 + 6.6223336196022e79 * cos(theta) ** 44 - 1.36486440177422e80 * cos(theta) ** 42 + 1.94560968531061e80 * cos(theta) ** 40 - 2.03701416717084e80 * cos(theta) ** 38 + 1.62360653006927e80 * cos(theta) ** 36 - 1.00775577728438e80 * cos(theta) ** 34 + 4.94187929245223e79 * cos(theta) ** 32 - 1.93157772187258e79 * cos(theta) ** 30 + 6.04486553247894e78 * cos(theta) ** 28 - 1.51623037244661e78 * cos(theta) ** 26 + 3.04182019163671e77 * cos(theta) ** 24 - 4.85565282181453e76 * cos(theta) ** 22 + 6.11589859236182e75 * cos(theta) ** 20 - 6.00527510361109e74 * cos(theta) ** 18 + 4.52168843923473e73 * cos(theta) ** 16 - 2.55342405980314e72 * cos(theta) ** 14 + 1.04951034075016e71 * cos(theta) ** 12 - 3.01294834665118e69 * cos(theta) ** 10 + 5.69675107560097e67 * cos(theta) ** 8 - 6.49202401777888e65 * cos(theta) ** 6 + 3.84902609749736e63 * cos(theta) ** 4 - 8.88578552711973e60 * cos(theta) ** 2 + 3.33550507774765e57 ) * sin(31 * phi) ) # @torch.jit.script def Yl79_m_minus_30(theta, phi): return ( 1.03252026024309e-56 * (1.0 - cos(theta) ** 2) ** 15 * ( 5.63413011779145e76 * cos(theta) ** 49 - 4.22021466147946e77 * cos(theta) ** 47 + 1.47162969324493e78 * cos(theta) ** 45 - 3.17410325994005e78 * cos(theta) ** 43 + 4.74538947636733e78 * cos(theta) ** 41 - 5.22311324915599e78 * cos(theta) ** 39 + 4.38812575694398e78 * cos(theta) ** 37 - 2.8793022208125e78 * cos(theta) ** 35 + 1.49753917953098e78 * cos(theta) ** 33 - 6.23089587700832e77 * cos(theta) ** 31 + 2.08443639050998e77 * cos(theta) ** 29 - 5.61566804609855e76 * cos(theta) ** 27 + 1.21672807665469e76 * cos(theta) ** 25 - 2.11115340078893e75 * cos(theta) ** 23 + 2.91233266302944e74 * cos(theta) ** 21 - 3.16067110716373e73 * cos(theta) ** 19 + 2.6598167289616e72 * cos(theta) ** 17 - 1.70228270653543e71 * cos(theta) ** 15 + 8.07315646730893e69 * cos(theta) ** 13 - 2.73904395150107e68 * cos(theta) ** 11 + 6.32972341733441e66 * cos(theta) ** 9 - 9.27432002539841e64 * cos(theta) ** 7 + 7.69805219499472e62 * cos(theta) ** 5 - 2.96192850903991e60 * cos(theta) ** 3 + 3.33550507774765e57 * cos(theta) ) * sin(30 * phi) ) # @torch.jit.script def Yl79_m_minus_29(theta, phi): return ( 7.62248947429769e-55 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 1.12682602355829e75 * cos(theta) ** 50 - 8.79211387808221e75 * cos(theta) ** 48 + 3.19919498531507e76 * cos(theta) ** 46 - 7.2138710453183e76 * cos(theta) ** 44 + 1.12985463723032e77 * cos(theta) ** 42 - 1.305778312289e77 * cos(theta) ** 40 + 1.15476993603789e77 * cos(theta) ** 38 - 7.99806172447917e76 * cos(theta) ** 36 + 4.40452699862052e76 * cos(theta) ** 34 - 1.9471549615651e76 * cos(theta) ** 32 + 6.94812130169993e75 * cos(theta) ** 30 - 2.00559573074948e75 * cos(theta) ** 28 + 4.67972337174879e74 * cos(theta) ** 26 - 8.7964725032872e73 * cos(theta) ** 24 + 1.32378757410429e73 * cos(theta) ** 22 - 1.58033555358187e72 * cos(theta) ** 20 + 1.47767596053422e71 * cos(theta) ** 18 - 1.06392669158464e70 * cos(theta) ** 16 + 5.76654033379209e68 * cos(theta) ** 14 - 2.28253662625089e67 * cos(theta) ** 12 + 6.32972341733441e65 * cos(theta) ** 10 - 1.1592900031748e64 * cos(theta) ** 8 + 1.28300869916579e62 * cos(theta) ** 6 - 7.40482127259977e59 * cos(theta) ** 4 + 1.66775253887382e57 * cos(theta) ** 2 - 6.12019280320669e53 ) * sin(29 * phi) ) # @torch.jit.script def Yl79_m_minus_28(theta, phi): return ( 5.65709926188388e-53 * (1.0 - cos(theta) ** 2) ** 14 * ( 2.20946279129077e73 * cos(theta) ** 51 - 1.79430895471065e74 * cos(theta) ** 49 + 6.8067978410959e74 * cos(theta) ** 47 - 1.60308245451518e75 * cos(theta) ** 45 + 2.62756892379143e75 * cos(theta) ** 43 - 3.18482515192438e75 * cos(theta) ** 41 + 2.9609485539433e75 * cos(theta) ** 39 - 2.16163830391329e75 * cos(theta) ** 37 + 1.25843628532015e75 * cos(theta) ** 35 - 5.9004695805003e74 * cos(theta) ** 33 + 2.24132945216127e74 * cos(theta) ** 31 - 6.91584734741201e73 * cos(theta) ** 29 + 1.73323087842548e73 * cos(theta) ** 27 - 3.51858900131488e72 * cos(theta) ** 25 + 5.75559814827952e71 * cos(theta) ** 23 - 7.52540739800888e70 * cos(theta) ** 21 + 7.77724189754855e69 * cos(theta) ** 19 - 6.25839230343907e68 * cos(theta) ** 17 + 3.84436022252806e67 * cos(theta) ** 15 - 1.75579740480838e66 * cos(theta) ** 13 + 5.75429401575856e64 * cos(theta) ** 11 - 1.28810000352756e63 * cos(theta) ** 9 + 1.83286957023684e61 * cos(theta) ** 7 - 1.48096425451995e59 * cos(theta) ** 5 + 5.55917512957941e56 * cos(theta) ** 3 - 6.12019280320669e53 * cos(theta) ) * sin(28 * phi) ) # @torch.jit.script def Yl79_m_minus_27(theta, phi): return ( 4.21975619835083e-51 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 4.2489669063284e71 * cos(theta) ** 52 - 3.58861790942131e72 * cos(theta) ** 50 + 1.41808288356165e73 * cos(theta) ** 48 - 3.48496185764169e73 * cos(theta) ** 46 + 5.97174755407144e73 * cos(theta) ** 44 - 7.58291702839139e73 * cos(theta) ** 42 + 7.40237138485826e73 * cos(theta) ** 40 - 5.68852185240339e73 * cos(theta) ** 38 + 3.49565634811153e73 * cos(theta) ** 36 - 1.73543222955891e73 * cos(theta) ** 34 + 7.00415453800396e72 * cos(theta) ** 32 - 2.30528244913733e72 * cos(theta) ** 30 + 6.19011028009099e71 * cos(theta) ** 28 - 1.35330346204418e71 * cos(theta) ** 26 + 2.39816589511647e70 * cos(theta) ** 24 - 3.42063972636767e69 * cos(theta) ** 22 + 3.88862094877427e68 * cos(theta) ** 20 - 3.4768846130217e67 * cos(theta) ** 18 + 2.40272513908004e66 * cos(theta) ** 16 - 1.25414100343456e65 * cos(theta) ** 14 + 4.79524501313213e63 * cos(theta) ** 12 - 1.28810000352756e62 * cos(theta) ** 10 + 2.29108696279605e60 * cos(theta) ** 8 - 2.46827375753326e58 * cos(theta) ** 6 + 1.38979378239485e56 * cos(theta) ** 4 - 3.06009640160334e53 * cos(theta) ** 2 + 1.09996276118021e50 ) * sin(27 * phi) ) # @torch.jit.script def Yl79_m_minus_26(theta, phi): return ( 3.16284731617631e-49 * (1.0 - cos(theta) ** 2) ** 13 * ( 8.01691869118565e69 * cos(theta) ** 53 - 7.03650570474766e70 * cos(theta) ** 51 + 2.89404670114622e71 * cos(theta) ** 49 - 7.41481246306743e71 * cos(theta) ** 47 + 1.32705501201588e72 * cos(theta) ** 45 - 1.76346907637009e72 * cos(theta) ** 43 + 1.80545643533128e72 * cos(theta) ** 41 - 1.4585953467701e72 * cos(theta) ** 39 + 9.44771985976088e71 * cos(theta) ** 37 - 4.95837779873975e71 * cos(theta) ** 35 + 2.12247107212241e71 * cos(theta) ** 33 - 7.43639499721721e70 * cos(theta) ** 31 + 2.13452078623827e70 * cos(theta) ** 29 - 5.01223504460809e69 * cos(theta) ** 27 + 9.59266358046587e68 * cos(theta) ** 25 - 1.48723466363812e68 * cos(theta) ** 23 + 1.85172426132108e67 * cos(theta) ** 21 - 1.82993927001142e66 * cos(theta) ** 19 + 1.41336772887061e65 * cos(theta) ** 17 - 8.36094002289705e63 * cos(theta) ** 15 + 3.68865001010164e62 * cos(theta) ** 13 - 1.17100000320687e61 * cos(theta) ** 11 + 2.5456521808845e59 * cos(theta) ** 9 - 3.52610536790465e57 * cos(theta) ** 7 + 2.7795875647897e55 * cos(theta) ** 5 - 1.02003213386778e53 * cos(theta) ** 3 + 1.09996276118021e50 * cos(theta) ) * sin(26 * phi) ) # @torch.jit.script def Yl79_m_minus_25(theta, phi): return ( 2.38160512752777e-47 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 1.48461457244179e68 * cos(theta) ** 54 - 1.35317417398994e69 * cos(theta) ** 52 + 5.78809340229243e69 * cos(theta) ** 50 - 1.54475259647238e70 * cos(theta) ** 48 + 2.88490220003451e70 * cos(theta) ** 46 - 4.00788426447748e70 * cos(theta) ** 44 + 4.29870579840782e70 * cos(theta) ** 42 - 3.64648836692525e70 * cos(theta) ** 40 + 2.48624206835813e70 * cos(theta) ** 38 - 1.3773271663166e70 * cos(theta) ** 36 + 6.24256197683062e69 * cos(theta) ** 34 - 2.32387343663038e69 * cos(theta) ** 32 + 7.11506928746091e68 * cos(theta) ** 30 - 1.79008394450289e68 * cos(theta) ** 28 + 3.68948599248687e67 * cos(theta) ** 26 - 6.19681109849216e66 * cos(theta) ** 24 + 8.41692846055038e65 * cos(theta) ** 22 - 9.14969635005712e64 * cos(theta) ** 20 + 7.85204293817006e63 * cos(theta) ** 18 - 5.22558751431065e62 * cos(theta) ** 16 + 2.63475000721546e61 * cos(theta) ** 14 - 9.75833336005725e59 * cos(theta) ** 12 + 2.5456521808845e58 * cos(theta) ** 10 - 4.40763170988082e56 * cos(theta) ** 8 + 4.63264594131617e54 * cos(theta) ** 6 - 2.55008033466945e52 * cos(theta) ** 4 + 5.49981380590105e49 * cos(theta) ** 2 - 1.93996959643776e46 ) * sin(25 * phi) ) # @torch.jit.script def Yl79_m_minus_24(theta, phi): return ( 1.80122419108307e-45 * (1.0 - cos(theta) ** 2) ** 12 * ( 2.69929922262143e66 * cos(theta) ** 55 - 2.55315881884893e67 * cos(theta) ** 53 + 1.1349202749593e68 * cos(theta) ** 51 - 3.15255631933139e68 * cos(theta) ** 49 + 6.13808978730748e68 * cos(theta) ** 47 - 8.90640947661662e68 * cos(theta) ** 45 + 9.99699022885539e68 * cos(theta) ** 43 - 8.89387406567135e68 * cos(theta) ** 41 + 6.37497966245673e68 * cos(theta) ** 39 - 3.72250585490972e68 * cos(theta) ** 37 + 1.78358913623732e68 * cos(theta) ** 35 - 7.04204071706175e67 * cos(theta) ** 33 + 2.29518364111642e67 * cos(theta) ** 31 - 6.17270325690652e66 * cos(theta) ** 29 + 1.36647629351366e66 * cos(theta) ** 27 - 2.47872443939686e65 * cos(theta) ** 25 + 3.65953411328277e64 * cos(theta) ** 23 - 4.35699826193196e63 * cos(theta) ** 21 + 4.13265417798424e62 * cos(theta) ** 19 - 3.07387500841803e61 * cos(theta) ** 17 + 1.7565000048103e60 * cos(theta) ** 15 - 7.50641027696711e58 * cos(theta) ** 13 + 2.31422925534954e57 * cos(theta) ** 11 - 4.89736856653424e55 * cos(theta) ** 9 + 6.61806563045168e53 * cos(theta) ** 7 - 5.10016066933891e51 * cos(theta) ** 5 + 1.83327126863368e49 * cos(theta) ** 3 - 1.93996959643776e46 * cos(theta) ) * sin(24 * phi) ) # @torch.jit.script def Yl79_m_minus_23(theta, phi): return ( 1.36798204400421e-43 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 4.82017718325256e64 * cos(theta) ** 56 - 4.72807188675729e65 * cos(theta) ** 54 + 2.18253899030635e66 * cos(theta) ** 52 - 6.30511263866278e66 * cos(theta) ** 50 + 1.27876870568906e67 * cos(theta) ** 48 - 1.93617597317753e67 * cos(theta) ** 46 + 2.27204323383077e67 * cos(theta) ** 44 - 2.11758906325508e67 * cos(theta) ** 42 + 1.59374491561418e67 * cos(theta) ** 40 - 9.79606803923612e66 * cos(theta) ** 38 + 4.95441426732589e66 * cos(theta) ** 36 - 2.07118844619463e66 * cos(theta) ** 34 + 7.17244887848882e65 * cos(theta) ** 32 - 2.05756775230217e65 * cos(theta) ** 30 + 4.88027247683449e64 * cos(theta) ** 28 - 9.53355553614179e63 * cos(theta) ** 26 + 1.52480588053449e63 * cos(theta) ** 24 - 1.98045375542362e62 * cos(theta) ** 22 + 2.06632708899212e61 * cos(theta) ** 20 - 1.70770833801002e60 * cos(theta) ** 18 + 1.09781250300644e59 * cos(theta) ** 16 - 5.36172162640508e57 * cos(theta) ** 14 + 1.92852437945795e56 * cos(theta) ** 12 - 4.89736856653424e54 * cos(theta) ** 10 + 8.2725820380646e52 * cos(theta) ** 8 - 8.50026778223151e50 * cos(theta) ** 6 + 4.58317817158421e48 * cos(theta) ** 4 - 9.6998479821888e45 * cos(theta) ** 2 + 3.36333147787406e42 ) * sin(23 * phi) ) # @torch.jit.script def Yl79_m_minus_22(theta, phi): return ( 1.04308070205435e-41 * (1.0 - cos(theta) ** 2) ** 11 * ( 8.4564511986887e62 * cos(theta) ** 57 - 8.5964943395587e63 * cos(theta) ** 55 + 4.11799809491764e64 * cos(theta) ** 53 - 1.23629659581623e65 * cos(theta) ** 51 + 2.60973205242665e65 * cos(theta) ** 49 - 4.11952334718623e65 * cos(theta) ** 47 + 5.04898496406838e65 * cos(theta) ** 45 - 4.92462572850019e65 * cos(theta) ** 43 + 3.8871827210102e65 * cos(theta) ** 41 - 2.51181231775285e65 * cos(theta) ** 39 + 1.33903088306105e65 * cos(theta) ** 37 - 5.91768127484181e64 * cos(theta) ** 35 + 2.17346935711782e64 * cos(theta) ** 33 - 6.63731533000701e63 * cos(theta) ** 31 + 1.68285257821879e63 * cos(theta) ** 29 - 3.53094649486733e62 * cos(theta) ** 27 + 6.09922352213795e61 * cos(theta) ** 25 - 8.61066850184182e60 * cos(theta) ** 23 + 9.83965280472439e59 * cos(theta) ** 21 - 8.98793862110536e58 * cos(theta) ** 19 + 6.45772060592024e57 * cos(theta) ** 17 - 3.57448108427005e56 * cos(theta) ** 15 + 1.48348029189073e55 * cos(theta) ** 13 - 4.45215324230386e53 * cos(theta) ** 11 + 9.19175782007178e51 * cos(theta) ** 9 - 1.21432396889022e50 * cos(theta) ** 7 + 9.16635634316842e47 * cos(theta) ** 5 - 3.2332826607296e45 * cos(theta) ** 3 + 3.36333147787406e42 * cos(theta) ) * sin(22 * phi) ) # @torch.jit.script def Yl79_m_minus_21(theta, phi): return ( 7.98348648282659e-40 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.45800882736012e61 * cos(theta) ** 58 - 1.5350882749212e62 * cos(theta) ** 56 + 7.62592239799562e62 * cos(theta) ** 54 - 2.37749345349275e63 * cos(theta) ** 52 + 5.2194641048533e63 * cos(theta) ** 50 - 8.58234030663797e63 * cos(theta) ** 48 + 1.09760542697139e64 * cos(theta) ** 46 - 1.11923312011368e64 * cos(theta) ** 44 + 9.2551969547862e63 * cos(theta) ** 42 - 6.27953079438213e63 * cos(theta) ** 40 + 3.52376548173961e63 * cos(theta) ** 38 - 1.64380035412272e63 * cos(theta) ** 36 + 6.39255693269948e62 * cos(theta) ** 34 - 2.07416104062719e62 * cos(theta) ** 32 + 5.60950859406263e61 * cos(theta) ** 30 - 1.26105231959547e61 * cos(theta) ** 28 + 2.34585520082229e60 * cos(theta) ** 26 - 3.58777854243409e59 * cos(theta) ** 24 + 4.4725694566929e58 * cos(theta) ** 22 - 4.49396931055268e57 * cos(theta) ** 20 + 3.58762255884458e56 * cos(theta) ** 18 - 2.23405067766878e55 * cos(theta) ** 16 + 1.05962877992195e54 * cos(theta) ** 14 - 3.71012770191988e52 * cos(theta) ** 12 + 9.19175782007178e50 * cos(theta) ** 10 - 1.51790496111277e49 * cos(theta) ** 8 + 1.52772605719474e47 * cos(theta) ** 6 - 8.083206651824e44 * cos(theta) ** 4 + 1.68166573893703e42 * cos(theta) ** 2 - 5.74143304519301e38 ) * sin(21 * phi) ) # @torch.jit.script def Yl79_m_minus_20(theta, phi): return ( 6.132232325073e-38 * (1.0 - cos(theta) ** 2) ** 10 * ( 2.47120140230529e59 * cos(theta) ** 59 - 2.69313732442315e60 * cos(theta) ** 57 + 1.38653134509011e61 * cos(theta) ** 55 - 4.48583670470331e61 * cos(theta) ** 53 + 1.02342433428496e62 * cos(theta) ** 51 - 1.75149802176285e62 * cos(theta) ** 49 + 2.3353306956838e62 * cos(theta) ** 47 - 2.48718471136373e62 * cos(theta) ** 45 + 2.152371384834e62 * cos(theta) ** 43 - 1.53159287667857e62 * cos(theta) ** 41 + 9.03529610702464e61 * cos(theta) ** 39 - 4.44270365979115e61 * cos(theta) ** 37 + 1.82644483791414e61 * cos(theta) ** 35 - 6.28533648674906e60 * cos(theta) ** 33 + 1.80951890131053e60 * cos(theta) ** 31 - 4.34845627446715e59 * cos(theta) ** 29 + 8.68835259563811e58 * cos(theta) ** 27 - 1.43511141697364e58 * cos(theta) ** 25 + 1.94459541595344e57 * cos(theta) ** 23 - 2.13998538597747e56 * cos(theta) ** 21 + 1.88822239939188e55 * cos(theta) ** 19 - 1.31414745745223e54 * cos(theta) ** 17 + 7.06419186614635e52 * cos(theta) ** 15 - 2.85394438609222e51 * cos(theta) ** 13 + 8.35614347279252e49 * cos(theta) ** 11 - 1.68656106790308e48 * cos(theta) ** 9 + 2.18246579599248e46 * cos(theta) ** 7 - 1.6166413303648e44 * cos(theta) ** 5 + 5.60555246312344e41 * cos(theta) ** 3 - 5.74143304519301e38 * cos(theta) ) * sin(20 * phi) ) # @torch.jit.script def Yl79_m_minus_19(theta, phi): return ( 4.72619702651827e-36 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 4.11866900384215e57 * cos(theta) ** 60 - 4.64334021452268e58 * cos(theta) ** 58 + 2.47594883051806e59 * cos(theta) ** 56 - 8.30710500870983e59 * cos(theta) ** 54 + 1.96812371977877e60 * cos(theta) ** 52 - 3.5029960435257e60 * cos(theta) ** 50 + 4.86527228267459e60 * cos(theta) ** 48 - 5.40692328557333e60 * cos(theta) ** 46 + 4.89175314735e60 * cos(theta) ** 44 - 3.64664970637754e60 * cos(theta) ** 42 + 2.25882402675616e60 * cos(theta) ** 40 - 1.1691325420503e60 * cos(theta) ** 38 + 5.07345788309483e59 * cos(theta) ** 36 - 1.84862837845561e59 * cos(theta) ** 34 + 5.65474656659539e58 * cos(theta) ** 32 - 1.44948542482238e58 * cos(theta) ** 30 + 3.10298306987075e57 * cos(theta) ** 28 - 5.51965929605245e56 * cos(theta) ** 26 + 8.10248089980599e55 * cos(theta) ** 24 - 9.72720629989757e54 * cos(theta) ** 22 + 9.44111199695941e53 * cos(theta) ** 20 - 7.30081920806792e52 * cos(theta) ** 18 + 4.41511991634147e51 * cos(theta) ** 16 - 2.03853170435158e50 * cos(theta) ** 14 + 6.96345289399377e48 * cos(theta) ** 12 - 1.68656106790308e47 * cos(theta) ** 10 + 2.7280822449906e45 * cos(theta) ** 8 - 2.69440221727467e43 * cos(theta) ** 6 + 1.40138811578086e41 * cos(theta) ** 4 - 2.8707165225965e38 * cos(theta) ** 2 + 9.66571219729463e34 ) * sin(19 * phi) ) # @torch.jit.script def Yl79_m_minus_18(theta, phi): return ( 3.65417866773758e-34 * (1.0 - cos(theta) ** 2) ** 9 * ( 6.75191639974123e55 * cos(theta) ** 61 - 7.87006816020793e56 * cos(theta) ** 59 + 4.34376987810186e57 * cos(theta) ** 57 - 1.51038272885633e58 * cos(theta) ** 55 + 3.71344098071466e58 * cos(theta) ** 53 - 6.86861969318765e58 * cos(theta) ** 51 + 9.92912710749915e58 * cos(theta) ** 49 - 1.15040920969645e59 * cos(theta) ** 47 + 1.08705625496667e59 * cos(theta) ** 45 - 8.48058071250591e58 * cos(theta) ** 43 + 5.50932689452722e58 * cos(theta) ** 41 - 2.99777574884693e58 * cos(theta) ** 39 + 1.37120483326887e58 * cos(theta) ** 37 - 5.28179536701602e57 * cos(theta) ** 35 + 1.71355956563497e57 * cos(theta) ** 33 - 4.67575943491092e56 * cos(theta) ** 31 + 1.0699941620244e56 * cos(theta) ** 29 - 2.0443182577972e55 * cos(theta) ** 27 + 3.24099235992239e54 * cos(theta) ** 25 - 4.22922013039025e53 * cos(theta) ** 23 + 4.49576761759972e52 * cos(theta) ** 21 - 3.84253642529891e51 * cos(theta) ** 19 + 2.59712936255381e50 * cos(theta) ** 17 - 1.35902113623439e49 * cos(theta) ** 15 + 5.35650222614905e47 * cos(theta) ** 13 - 1.53323733445734e46 * cos(theta) ** 11 + 3.031202494434e44 * cos(theta) ** 9 - 3.8491460246781e42 * cos(theta) ** 7 + 2.80277623156172e40 * cos(theta) ** 5 - 9.56905507532168e37 * cos(theta) ** 3 + 9.66571219729463e34 * cos(theta) ) * sin(18 * phi) ) # @torch.jit.script def Yl79_m_minus_17(theta, phi): return ( 2.83381496782678e-32 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.08901877415181e54 * cos(theta) ** 62 - 1.31167802670132e55 * cos(theta) ** 60 + 7.48925841052045e55 * cos(theta) ** 58 - 2.69711201581488e56 * cos(theta) ** 56 + 6.876742556879e56 * cos(theta) ** 54 - 1.32088840253609e57 * cos(theta) ** 52 + 1.98582542149983e57 * cos(theta) ** 50 - 2.39668585353428e57 * cos(theta) ** 48 + 2.36316577166667e57 * cos(theta) ** 46 - 1.92740470738771e57 * cos(theta) ** 44 + 1.31174449869696e57 * cos(theta) ** 42 - 7.49443937211732e56 * cos(theta) ** 40 + 3.60843377176019e56 * cos(theta) ** 38 - 1.46716537972667e56 * cos(theta) ** 36 + 5.03988107539696e55 * cos(theta) ** 34 - 1.46117482340966e55 * cos(theta) ** 32 + 3.56664720674799e54 * cos(theta) ** 30 - 7.30113663499001e53 * cos(theta) ** 28 + 1.24653552304707e53 * cos(theta) ** 26 - 1.76217505432927e52 * cos(theta) ** 24 + 2.0435307352726e51 * cos(theta) ** 22 - 1.92126821264945e50 * cos(theta) ** 20 + 1.44284964586323e49 * cos(theta) ** 18 - 8.49388210146493e47 * cos(theta) ** 16 + 3.8260730186779e46 * cos(theta) ** 14 - 1.27769777871445e45 * cos(theta) ** 12 + 3.031202494434e43 * cos(theta) ** 10 - 4.81143253084762e41 * cos(theta) ** 8 + 4.67129371926953e39 * cos(theta) ** 6 - 2.39226376883042e37 * cos(theta) ** 4 + 4.83285609864731e34 * cos(theta) ** 2 - 1.60720189512714e31 ) * sin(17 * phi) ) # @torch.jit.script def Yl79_m_minus_16(theta, phi): return ( 2.20382639925029e-30 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.7286012288124e52 * cos(theta) ** 63 - 2.15029184705135e53 * cos(theta) ** 61 + 1.2693658322916e54 * cos(theta) ** 59 - 4.73177546634189e54 * cos(theta) ** 57 + 1.25031682852345e55 * cos(theta) ** 55 - 2.49224226893601e55 * cos(theta) ** 53 + 3.89377533627418e55 * cos(theta) ** 51 - 4.89119561945771e55 * cos(theta) ** 49 + 5.02801228014184e55 * cos(theta) ** 47 - 4.28312157197268e55 * cos(theta) ** 45 + 3.05056860162083e55 * cos(theta) ** 43 - 1.82791204197983e55 * cos(theta) ** 41 + 9.25239428656459e54 * cos(theta) ** 39 - 3.96531183709911e54 * cos(theta) ** 37 + 1.43996602154199e54 * cos(theta) ** 35 - 4.42780249518079e53 * cos(theta) ** 33 + 1.15053135701548e53 * cos(theta) ** 31 - 2.51763332241035e52 * cos(theta) ** 29 + 4.61679823350768e51 * cos(theta) ** 27 - 7.04870021731708e50 * cos(theta) ** 25 + 8.88491624031565e49 * cos(theta) ** 23 - 9.14889625071168e48 * cos(theta) ** 21 + 7.59394550454329e47 * cos(theta) ** 19 - 4.99640123615584e46 * cos(theta) ** 17 + 2.55071534578526e45 * cos(theta) ** 15 - 9.82844445164964e43 * cos(theta) ** 13 + 2.75563863130364e42 * cos(theta) ** 11 - 5.34603614538624e40 * cos(theta) ** 9 + 6.67327674181362e38 * cos(theta) ** 7 - 4.78452753766084e36 * cos(theta) ** 5 + 1.61095203288244e34 * cos(theta) ** 3 - 1.60720189512714e31 * cos(theta) ) * sin(16 * phi) ) # @torch.jit.script def Yl79_m_minus_15(theta, phi): return ( 1.71841941481227e-28 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 2.70093942001937e50 * cos(theta) ** 64 - 3.46821265653443e51 * cos(theta) ** 62 + 2.115609720486e52 * cos(theta) ** 60 - 8.15823356265844e52 * cos(theta) ** 58 + 2.23270862236331e53 * cos(theta) ** 56 - 4.61526346099262e53 * cos(theta) ** 54 + 7.48802949283496e53 * cos(theta) ** 52 - 9.78239123891542e53 * cos(theta) ** 50 + 1.04750255836288e54 * cos(theta) ** 48 - 9.31113385211452e53 * cos(theta) ** 46 + 6.93311045822916e53 * cos(theta) ** 44 - 4.35217152852341e53 * cos(theta) ** 42 + 2.31309857164115e53 * cos(theta) ** 40 - 1.04350311502608e53 * cos(theta) ** 38 + 3.99990561539441e52 * cos(theta) ** 36 - 1.30229485152376e52 * cos(theta) ** 34 + 3.59541049067338e51 * cos(theta) ** 32 - 8.39211107470116e50 * cos(theta) ** 30 + 1.64885651196703e50 * cos(theta) ** 28 - 2.71103854512195e49 * cos(theta) ** 26 + 3.70204843346485e48 * cos(theta) ** 24 - 4.15858920486894e47 * cos(theta) ** 22 + 3.79697275227165e46 * cos(theta) ** 20 - 2.77577846453102e45 * cos(theta) ** 18 + 1.59419709111579e44 * cos(theta) ** 16 - 7.02031746546403e42 * cos(theta) ** 14 + 2.29636552608636e41 * cos(theta) ** 12 - 5.34603614538624e39 * cos(theta) ** 10 + 8.34159592726703e37 * cos(theta) ** 8 - 7.97421256276807e35 * cos(theta) ** 6 + 4.02738008220609e33 * cos(theta) ** 4 - 8.03600947563571e30 * cos(theta) ** 2 + 2.64342416961701e27 ) * sin(15 * phi) ) # @torch.jit.script def Yl79_m_minus_14(theta, phi): return ( 1.34322812256872e-26 * (1.0 - cos(theta) ** 2) ** 7 * ( 4.15529141541442e48 * cos(theta) ** 65 - 5.50509945481655e49 * cos(theta) ** 63 + 3.46821265653443e50 * cos(theta) ** 61 - 1.38275145129804e51 * cos(theta) ** 59 + 3.91703267081283e51 * cos(theta) ** 57 - 8.39138811089566e51 * cos(theta) ** 55 + 1.41283575336509e52 * cos(theta) ** 53 - 1.9181159291991e52 * cos(theta) ** 51 + 2.13776032318956e52 * cos(theta) ** 49 - 1.98109230896054e52 * cos(theta) ** 47 + 1.54069121293981e52 * cos(theta) ** 45 - 1.0121329136101e52 * cos(theta) ** 43 + 5.64170383327109e51 * cos(theta) ** 41 - 2.67564901288739e51 * cos(theta) ** 39 + 1.08105557172822e51 * cos(theta) ** 37 - 3.72084243292504e50 * cos(theta) ** 35 + 1.08951833050708e50 * cos(theta) ** 33 - 2.70713260474231e49 * cos(theta) ** 31 + 5.68571211023114e48 * cos(theta) ** 29 - 1.00408835004517e48 * cos(theta) ** 27 + 1.48081937338594e47 * cos(theta) ** 25 - 1.8080822629865e46 * cos(theta) ** 23 + 1.8080822629865e45 * cos(theta) ** 21 - 1.4609360339637e44 * cos(theta) ** 19 + 9.37762994773994e42 * cos(theta) ** 17 - 4.68021164364269e41 * cos(theta) ** 15 + 1.76643502006643e40 * cos(theta) ** 13 - 4.86003285944204e38 * cos(theta) ** 11 + 9.26843991918558e36 * cos(theta) ** 9 - 1.13917322325258e35 * cos(theta) ** 7 + 8.05476016441219e32 * cos(theta) ** 5 - 2.6786698252119e30 * cos(theta) ** 3 + 2.64342416961701e27 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl79_m_minus_13(theta, phi): return ( 1.05235729970741e-24 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 6.29589608396124e46 * cos(theta) ** 66 - 8.60171789815087e47 * cos(theta) ** 64 + 5.59389138150714e48 * cos(theta) ** 62 - 2.3045857521634e49 * cos(theta) ** 60 + 6.7535046048497e49 * cos(theta) ** 58 - 1.49846216265994e50 * cos(theta) ** 56 + 2.61636250623164e50 * cos(theta) ** 54 - 3.68868447922904e50 * cos(theta) ** 52 + 4.27552064637912e50 * cos(theta) ** 50 - 4.12727564366779e50 * cos(theta) ** 48 + 3.3493287237822e50 * cos(theta) ** 46 - 2.30030207638658e50 * cos(theta) ** 44 + 1.3432628174455e50 * cos(theta) ** 42 - 6.68912253221847e49 * cos(theta) ** 40 + 2.84488308349532e49 * cos(theta) ** 38 - 1.03356734247918e49 * cos(theta) ** 36 + 3.20446567796201e48 * cos(theta) ** 34 - 8.45978938981972e47 * cos(theta) ** 32 + 1.89523737007705e47 * cos(theta) ** 30 - 3.58602982158989e46 * cos(theta) ** 28 + 5.69545912840747e45 * cos(theta) ** 26 - 7.53367609577707e44 * cos(theta) ** 24 + 8.21855574084772e43 * cos(theta) ** 22 - 7.30468016981848e42 * cos(theta) ** 20 + 5.20979441541108e41 * cos(theta) ** 18 - 2.92513227727668e40 * cos(theta) ** 16 + 1.26173930004745e39 * cos(theta) ** 14 - 4.05002738286837e37 * cos(theta) ** 12 + 9.26843991918558e35 * cos(theta) ** 10 - 1.42396652906573e34 * cos(theta) ** 8 + 1.34246002740203e32 * cos(theta) ** 6 - 6.69667456302976e29 * cos(theta) ** 4 + 1.3217120848085e27 * cos(theta) ** 2 - 4.30665390944446e23 ) * sin(13 * phi) ) # @torch.jit.script def Yl79_m_minus_12(theta, phi): return ( 8.26217772916405e-23 * (1.0 - cos(theta) ** 2) ** 6 * ( 9.39685982680782e44 * cos(theta) ** 67 - 1.32334121510013e46 * cos(theta) ** 65 + 8.87919266905896e46 * cos(theta) ** 63 - 3.77800942977607e47 * cos(theta) ** 61 + 1.14466179743215e48 * cos(theta) ** 59 - 2.6288809871227e48 * cos(theta) ** 57 + 4.75702273860298e48 * cos(theta) ** 55 - 6.95978203628121e48 * cos(theta) ** 53 + 8.38337381642964e48 * cos(theta) ** 51 - 8.42301151768936e48 * cos(theta) ** 49 + 7.12623132719618e48 * cos(theta) ** 47 - 5.11178239197018e48 * cos(theta) ** 45 + 3.12386701731511e48 * cos(theta) ** 43 - 1.63149330054109e48 * cos(theta) ** 41 + 7.29457200896235e47 * cos(theta) ** 39 - 2.79342524994372e47 * cos(theta) ** 37 + 9.15561622274861e46 * cos(theta) ** 35 - 2.56357254236961e46 * cos(theta) ** 33 + 6.11366893573241e45 * cos(theta) ** 31 - 1.23656200744479e45 * cos(theta) ** 29 + 2.10942930681758e44 * cos(theta) ** 27 - 3.01347043831083e43 * cos(theta) ** 25 + 3.5732851047164e42 * cos(theta) ** 23 - 3.47841912848499e41 * cos(theta) ** 21 + 2.74199706074267e40 * cos(theta) ** 19 - 1.72066604545687e39 * cos(theta) ** 17 + 8.41159533364969e37 * cos(theta) ** 15 - 3.11540567912951e36 * cos(theta) ** 13 + 8.42585447198689e34 * cos(theta) ** 11 - 1.58218503229525e33 * cos(theta) ** 9 + 1.91780003914576e31 * cos(theta) ** 7 - 1.33933491260595e29 * cos(theta) ** 5 + 4.40570694936168e26 * cos(theta) ** 3 - 4.30665390944446e23 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl79_m_minus_11(theta, phi): return ( 6.49934641456728e-21 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.38189115100115e43 * cos(theta) ** 68 - 2.00506244712141e44 * cos(theta) ** 66 + 1.38737385454046e45 * cos(theta) ** 64 - 6.09356359641301e45 * cos(theta) ** 62 + 1.90776966238692e46 * cos(theta) ** 60 - 4.53255342607362e46 * cos(theta) ** 58 + 8.49468346179104e46 * cos(theta) ** 56 - 1.28884852523726e47 * cos(theta) ** 54 + 1.61218727239032e47 * cos(theta) ** 52 - 1.68460230353787e47 * cos(theta) ** 50 + 1.4846315264992e47 * cos(theta) ** 48 - 1.11125704173265e47 * cos(theta) ** 46 + 7.09969776662525e46 * cos(theta) ** 44 - 3.88450785843117e46 * cos(theta) ** 42 + 1.82364300224059e46 * cos(theta) ** 40 - 7.35111907879927e45 * cos(theta) ** 38 + 2.54322672854128e45 * cos(theta) ** 36 - 7.53991924226356e44 * cos(theta) ** 34 + 1.91052154241638e44 * cos(theta) ** 32 - 4.1218733581493e43 * cos(theta) ** 30 + 7.53367609577707e42 * cos(theta) ** 28 - 1.15902709165801e42 * cos(theta) ** 26 + 1.48886879363183e41 * cos(theta) ** 24 - 1.58109960385681e40 * cos(theta) ** 22 + 1.37099853037134e39 * cos(theta) ** 20 - 9.55925580809372e37 * cos(theta) ** 18 + 5.25724708353105e36 * cos(theta) ** 16 - 2.2252897708068e35 * cos(theta) ** 14 + 7.02154539332241e33 * cos(theta) ** 12 - 1.58218503229525e32 * cos(theta) ** 10 + 2.3972500489322e30 * cos(theta) ** 8 - 2.23222485434325e28 * cos(theta) ** 6 + 1.10142673734042e26 * cos(theta) ** 4 - 2.15332695472223e23 * cos(theta) ** 2 + 6.95968634364004e19 ) * sin(11 * phi) ) # @torch.jit.script def Yl79_m_minus_10(theta, phi): return ( 5.12171591071553e-19 * (1.0 - cos(theta) ** 2) ** 5 * ( 2.00274079855239e41 * cos(theta) ** 69 - 2.99263051809166e42 * cos(theta) ** 67 + 2.13442131467763e43 * cos(theta) ** 65 - 9.67232316890954e43 * cos(theta) ** 63 + 3.12749124981462e44 * cos(theta) ** 61 - 7.68229394249767e44 * cos(theta) ** 59 + 1.49029534417387e45 * cos(theta) ** 57 - 2.34336095497684e45 * cos(theta) ** 55 + 3.04186277809494e45 * cos(theta) ** 53 - 3.30314177164289e45 * cos(theta) ** 51 + 3.02986025816164e45 * cos(theta) ** 49 - 2.36437668453755e45 * cos(theta) ** 47 + 1.57771061480561e45 * cos(theta) ** 45 - 9.03373920565388e44 * cos(theta) ** 43 + 4.44790976156241e44 * cos(theta) ** 41 - 1.88490232789725e44 * cos(theta) ** 39 + 6.87358575281427e43 * cos(theta) ** 37 - 2.15426264064673e43 * cos(theta) ** 35 + 5.78945921944357e42 * cos(theta) ** 33 - 1.32963656714493e42 * cos(theta) ** 31 + 2.5978193433714e41 * cos(theta) ** 29 - 4.29269293206671e40 * cos(theta) ** 27 + 5.95547517452733e39 * cos(theta) ** 25 - 6.87434610372528e38 * cos(theta) ** 23 + 6.5285644303397e37 * cos(theta) ** 21 - 5.03118726741775e36 * cos(theta) ** 19 + 3.09249828443003e35 * cos(theta) ** 17 - 1.4835265138712e34 * cos(theta) ** 15 + 5.40118876409416e32 * cos(theta) ** 13 - 1.43835002935932e31 * cos(theta) ** 11 + 2.66361116548022e29 * cos(theta) ** 9 - 3.18889264906179e27 * cos(theta) ** 7 + 2.20285347468084e25 * cos(theta) ** 5 - 7.17775651574076e22 * cos(theta) ** 3 + 6.95968634364004e19 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl79_m_minus_9(theta, phi): return ( 4.04258824530248e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 2.86105828364627e39 * cos(theta) ** 70 - 4.40092723248774e40 * cos(theta) ** 68 + 3.23397168890551e41 * cos(theta) ** 66 - 1.51130049514212e42 * cos(theta) ** 64 + 5.04434072550746e42 * cos(theta) ** 62 - 1.28038232374961e43 * cos(theta) ** 60 + 2.56947473133425e43 * cos(theta) ** 58 - 4.18457313388721e43 * cos(theta) ** 56 + 5.63307921869433e43 * cos(theta) ** 54 - 6.35219571469786e43 * cos(theta) ** 52 + 6.05972051632328e43 * cos(theta) ** 50 - 4.92578475945323e43 * cos(theta) ** 48 + 3.42980568436003e43 * cos(theta) ** 46 - 2.05312254673952e43 * cos(theta) ** 44 + 1.05902613370534e43 * cos(theta) ** 42 - 4.71225581974312e42 * cos(theta) ** 40 + 1.80883835600376e42 * cos(theta) ** 38 - 5.98406289068537e41 * cos(theta) ** 36 + 1.70278212336576e41 * cos(theta) ** 34 - 4.15511427232792e40 * cos(theta) ** 32 + 8.65939781123802e39 * cos(theta) ** 30 - 1.53310461859525e39 * cos(theta) ** 28 + 2.2905673748182e38 * cos(theta) ** 26 - 2.8643108765522e37 * cos(theta) ** 24 + 2.96752928651804e36 * cos(theta) ** 22 - 2.51559363370887e35 * cos(theta) ** 20 + 1.71805460246113e34 * cos(theta) ** 18 - 9.27204071169498e32 * cos(theta) ** 16 + 3.85799197435297e31 * cos(theta) ** 14 - 1.1986250244661e30 * cos(theta) ** 12 + 2.66361116548022e28 * cos(theta) ** 10 - 3.98611581132724e26 * cos(theta) ** 8 + 3.6714224578014e24 * cos(theta) ** 6 - 1.79443912893519e22 * cos(theta) ** 4 + 3.47984317182002e19 * cos(theta) ** 2 - 1.1171246137464e16 ) * sin(9 * phi) ) # @torch.jit.script def Yl79_m_minus_8(theta, phi): return ( 3.19543523197027e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 4.02965955443137e37 * cos(theta) ** 71 - 6.37815540940252e38 * cos(theta) ** 69 + 4.82682341627687e39 * cos(theta) ** 67 - 2.32507768483402e40 * cos(theta) ** 65 + 8.00689004048803e40 * cos(theta) ** 63 - 2.09898741598297e41 * cos(theta) ** 61 + 4.35504191751568e41 * cos(theta) ** 59 - 7.34135637524073e41 * cos(theta) ** 57 + 1.02419622158079e42 * cos(theta) ** 55 - 1.19852749333922e42 * cos(theta) ** 53 + 1.18818049339672e42 * cos(theta) ** 51 - 1.00526219580678e42 * cos(theta) ** 49 + 7.29745890289367e41 * cos(theta) ** 47 - 4.56249454831004e41 * cos(theta) ** 45 + 2.46285147373334e41 * cos(theta) ** 43 - 1.14933068774222e41 * cos(theta) ** 41 + 4.6380470666763e40 * cos(theta) ** 39 - 1.61731429477983e40 * cos(theta) ** 37 + 4.86509178104501e39 * cos(theta) ** 35 - 1.25912553706907e39 * cos(theta) ** 33 + 2.79335413265742e38 * cos(theta) ** 31 - 5.28656765032846e37 * cos(theta) ** 29 + 8.48358286969705e36 * cos(theta) ** 27 - 1.14572435062088e36 * cos(theta) ** 25 + 1.29023012457306e35 * cos(theta) ** 23 - 1.19790173033756e34 * cos(theta) ** 21 + 9.04239264453226e32 * cos(theta) ** 19 - 5.45414159511469e31 * cos(theta) ** 17 + 2.57199464956865e30 * cos(theta) ** 15 - 9.22019249589307e28 * cos(theta) ** 13 + 2.42146469589111e27 * cos(theta) ** 11 - 4.42901756814137e25 * cos(theta) ** 9 + 5.24488922543057e23 * cos(theta) ** 7 - 3.58887825787038e21 * cos(theta) ** 5 + 1.15994772394001e19 * cos(theta) ** 3 - 1.1171246137464e16 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl79_m_minus_7(theta, phi): return ( 2.52904113844031e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 5.59674938115468e35 * cos(theta) ** 72 - 9.11165058486074e36 * cos(theta) ** 70 + 7.09826972981893e37 * cos(theta) ** 68 - 3.52284497702125e38 * cos(theta) ** 66 + 1.25107656882625e39 * cos(theta) ** 64 - 3.38546357416608e39 * cos(theta) ** 62 + 7.25840319585947e39 * cos(theta) ** 60 - 1.26575109917944e40 * cos(theta) ** 58 + 1.8289218242514e40 * cos(theta) ** 56 - 2.21949535803559e40 * cos(theta) ** 54 + 2.28496248730139e40 * cos(theta) ** 52 - 2.01052439161356e40 * cos(theta) ** 50 + 1.52030393810285e40 * cos(theta) ** 48 - 9.91846640936965e39 * cos(theta) ** 46 + 5.59738971303031e39 * cos(theta) ** 44 - 2.73650163748149e39 * cos(theta) ** 42 + 1.15951176666907e39 * cos(theta) ** 40 - 4.2560902494206e38 * cos(theta) ** 38 + 1.35141438362362e38 * cos(theta) ** 36 - 3.70331040314431e37 * cos(theta) ** 34 + 8.72923166455445e36 * cos(theta) ** 32 - 1.76218921677615e36 * cos(theta) ** 30 + 3.0298510248918e35 * cos(theta) ** 28 - 4.40663211777261e34 * cos(theta) ** 26 + 5.37595885238776e33 * cos(theta) ** 24 - 5.44500786517072e32 * cos(theta) ** 22 + 4.52119632226613e31 * cos(theta) ** 20 - 3.03007866395261e30 * cos(theta) ** 18 + 1.60749665598041e29 * cos(theta) ** 16 - 6.58585178278077e27 * cos(theta) ** 14 + 2.01788724657593e26 * cos(theta) ** 12 - 4.42901756814137e24 * cos(theta) ** 10 + 6.55611153178822e22 * cos(theta) ** 8 - 5.9814637631173e20 * cos(theta) ** 6 + 2.89986930985002e18 * cos(theta) ** 4 - 5.58562306873198e15 * cos(theta) ** 2 + 1783404555789.26 ) * sin(7 * phi) ) # @torch.jit.script def Yl79_m_minus_6(theta, phi): return ( 2.00385618555223e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 7.66677997418449e33 * cos(theta) ** 73 - 1.28333106829025e35 * cos(theta) ** 71 + 1.02873474345202e36 * cos(theta) ** 69 - 5.25797757764365e36 * cos(theta) ** 67 + 1.92473318280962e37 * cos(theta) ** 65 - 5.37375170502552e37 * cos(theta) ** 63 + 1.18990216325565e38 * cos(theta) ** 61 - 2.14534084606684e38 * cos(theta) ** 59 + 3.20863477938843e38 * cos(theta) ** 57 - 4.03544610551925e38 * cos(theta) ** 55 + 4.31124997604035e38 * cos(theta) ** 53 - 3.94220468943836e38 * cos(theta) ** 51 + 3.10266109816908e38 * cos(theta) ** 49 - 2.11031200199354e38 * cos(theta) ** 47 + 1.2438643806734e38 * cos(theta) ** 45 - 6.36395729646857e37 * cos(theta) ** 43 + 2.82807747968067e37 * cos(theta) ** 41 - 1.09130519215913e37 * cos(theta) ** 39 + 3.65247130709085e36 * cos(theta) ** 37 - 1.05808868661266e36 * cos(theta) ** 35 + 2.64522171653165e35 * cos(theta) ** 33 - 5.6844813444392e34 * cos(theta) ** 31 + 1.04477621547993e34 * cos(theta) ** 29 - 1.63208596954541e33 * cos(theta) ** 27 + 2.1503835409551e32 * cos(theta) ** 25 - 2.36739472398727e31 * cos(theta) ** 23 + 2.15295062965054e30 * cos(theta) ** 21 - 1.59477824418558e29 * cos(theta) ** 19 + 9.45586268223768e27 * cos(theta) ** 17 - 4.39056785518718e26 * cos(theta) ** 15 + 1.55222095890456e25 * cos(theta) ** 13 - 4.02637960740125e23 * cos(theta) ** 11 + 7.28456836865357e21 * cos(theta) ** 9 - 8.54494823302472e19 * cos(theta) ** 7 + 5.79973861970004e17 * cos(theta) ** 5 - 1.86187435624399e15 * cos(theta) ** 3 + 1783404555789.26 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl79_m_minus_5(theta, phi): return ( 1.58924872697274e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.03605134786277e32 * cos(theta) ** 74 - 1.78240426151423e33 * cos(theta) ** 72 + 1.46962106207431e34 * cos(theta) ** 70 - 7.73231996712302e34 * cos(theta) ** 68 + 2.9162623981964e35 * cos(theta) ** 66 - 8.39648703910238e35 * cos(theta) ** 64 + 1.91919703750912e36 * cos(theta) ** 62 - 3.57556807677807e36 * cos(theta) ** 60 + 5.53212892998005e36 * cos(theta) ** 58 - 7.20615375985581e36 * cos(theta) ** 56 + 7.98379625192658e36 * cos(theta) ** 54 - 7.58116286430454e36 * cos(theta) ** 52 + 6.20532219633816e36 * cos(theta) ** 50 - 4.39648333748655e36 * cos(theta) ** 48 + 2.70405300146392e36 * cos(theta) ** 46 - 1.44635393101558e36 * cos(theta) ** 44 + 6.7335178087635e35 * cos(theta) ** 42 - 2.72826298039782e35 * cos(theta) ** 40 + 9.6117665976075e34 * cos(theta) ** 38 - 2.93913524059072e34 * cos(theta) ** 36 + 7.78006387215192e33 * cos(theta) ** 34 - 1.77640042013725e33 * cos(theta) ** 32 + 3.48258738493311e32 * cos(theta) ** 30 - 5.82887846266219e31 * cos(theta) ** 28 + 8.2707059267504e30 * cos(theta) ** 26 - 9.86414468328029e29 * cos(theta) ** 24 + 9.78613922568426e28 * cos(theta) ** 22 - 7.97389122092792e27 * cos(theta) ** 20 + 5.2532570456876e26 * cos(theta) ** 18 - 2.74410490949199e25 * cos(theta) ** 16 + 1.1087292563604e24 * cos(theta) ** 14 - 3.35531633950104e22 * cos(theta) ** 12 + 7.28456836865357e20 * cos(theta) ** 10 - 1.06811852912809e19 * cos(theta) ** 8 + 9.66623103283339e16 * cos(theta) ** 6 - 465468589060998.0 * cos(theta) ** 4 + 891702277894.632 * cos(theta) ** 2 - 283530136.055527 ) * sin(5 * phi) ) # @torch.jit.script def Yl79_m_minus_4(theta, phi): return ( 1.26142707089876e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 1.38140179715036e30 * cos(theta) ** 75 - 2.44164967330716e31 * cos(theta) ** 73 + 2.06988881982298e32 * cos(theta) ** 71 - 1.12062608219174e33 * cos(theta) ** 69 + 4.35263044506925e33 * cos(theta) ** 67 - 1.29176723678498e34 * cos(theta) ** 65 + 3.04634450398272e34 * cos(theta) ** 63 - 5.86158701111158e34 * cos(theta) ** 61 + 9.37648971183059e34 * cos(theta) ** 59 - 1.26423750172909e35 * cos(theta) ** 57 + 1.45159931853211e35 * cos(theta) ** 55 - 1.43040808760463e35 * cos(theta) ** 53 + 1.21672984241925e35 * cos(theta) ** 51 - 8.97241497446234e34 * cos(theta) ** 49 + 5.75330425843387e34 * cos(theta) ** 47 - 3.2141198467013e34 * cos(theta) ** 45 + 1.56593437413105e34 * cos(theta) ** 43 - 6.65429995218981e33 * cos(theta) ** 41 + 2.46455553784808e33 * cos(theta) ** 39 - 7.94360875835331e32 * cos(theta) ** 37 + 2.22287539204341e32 * cos(theta) ** 35 - 5.38303157617349e31 * cos(theta) ** 33 + 1.12341528546229e31 * cos(theta) ** 31 - 2.00995809057317e30 * cos(theta) ** 29 + 3.06322441731496e29 * cos(theta) ** 27 - 3.94565787331212e28 * cos(theta) ** 25 + 4.25484314160185e27 * cos(theta) ** 23 - 3.79709105758472e26 * cos(theta) ** 21 + 2.76487212930926e25 * cos(theta) ** 19 - 1.6141793585247e24 * cos(theta) ** 17 + 7.39152837573599e22 * cos(theta) ** 15 - 2.58101256884695e21 * cos(theta) ** 13 + 6.62233488059416e19 * cos(theta) ** 11 - 1.18679836569788e18 * cos(theta) ** 9 + 1.38089014754763e16 * cos(theta) ** 7 - 93093717812199.6 * cos(theta) ** 5 + 297234092631.544 * cos(theta) ** 3 - 283530136.055527 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl79_m_minus_3(theta, phi): return ( 1.00186219580228e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 1.81763394361889e28 * cos(theta) ** 76 - 3.29952658555022e29 * cos(theta) ** 74 + 2.87484558308747e30 * cos(theta) ** 72 - 1.60089440313106e31 * cos(theta) ** 70 + 6.40092712510184e31 * cos(theta) ** 68 - 1.95722308603785e32 * cos(theta) ** 66 + 4.759913287473e32 * cos(theta) ** 64 - 9.45417259856707e32 * cos(theta) ** 62 + 1.5627482853051e33 * cos(theta) ** 60 - 2.1797198305674e33 * cos(theta) ** 58 + 2.5921416402359e33 * cos(theta) ** 56 - 2.6489038659345e33 * cos(theta) ** 54 + 2.33986508157547e33 * cos(theta) ** 52 - 1.79448299489247e33 * cos(theta) ** 50 + 1.19860505384039e33 * cos(theta) ** 48 - 6.9872170580463e32 * cos(theta) ** 46 + 3.55894175938874e32 * cos(theta) ** 44 - 1.58435713147376e32 * cos(theta) ** 42 + 6.1613888446202e31 * cos(theta) ** 40 - 2.0904233574614e31 * cos(theta) ** 38 + 6.17465386678724e30 * cos(theta) ** 36 - 1.5832445812275e30 * cos(theta) ** 34 + 3.51067276706967e29 * cos(theta) ** 32 - 6.69986030191056e28 * cos(theta) ** 30 + 1.09400872046963e28 * cos(theta) ** 28 - 1.51756072050466e27 * cos(theta) ** 26 + 1.77285130900077e26 * cos(theta) ** 24 - 1.72595048072033e25 * cos(theta) ** 22 + 1.38243606465463e24 * cos(theta) ** 20 - 8.96766310291499e22 * cos(theta) ** 18 + 4.61970523483499e21 * cos(theta) ** 16 - 1.84358040631925e20 * cos(theta) ** 14 + 5.51861240049513e18 * cos(theta) ** 12 - 1.18679836569788e17 * cos(theta) ** 10 + 1.72611268443453e15 * cos(theta) ** 8 - 15515619635366.6 * cos(theta) ** 6 + 74308523157.886 * cos(theta) ** 4 - 141765068.027763 * cos(theta) ** 2 + 44947.7070474837 ) * sin(3 * phi) ) # @torch.jit.script def Yl79_m_minus_2(theta, phi): return ( 0.000796086534499313 * (1.0 - cos(theta) ** 2) * ( 2.36056356314142e26 * cos(theta) ** 77 - 4.39936878073363e27 * cos(theta) ** 75 + 3.93814463436639e28 * cos(theta) ** 73 - 2.25478084948037e29 * cos(theta) ** 71 + 9.27670597840846e29 * cos(theta) ** 69 - 2.92122848662366e30 * cos(theta) ** 67 + 7.32294351918924e30 * cos(theta) ** 65 - 1.50066231723287e31 * cos(theta) ** 63 + 2.56188243492639e31 * cos(theta) ** 61 - 3.6944403907922e31 * cos(theta) ** 59 + 4.54761691269457e31 * cos(theta) ** 57 - 4.81618884715363e31 * cos(theta) ** 55 + 4.4148397765575e31 * cos(theta) ** 53 - 3.51859410763229e31 * cos(theta) ** 51 + 2.44613276293957e31 * cos(theta) ** 49 - 1.48664192724389e31 * cos(theta) ** 47 + 7.90875946530831e30 * cos(theta) ** 45 - 3.68455146854364e30 * cos(theta) ** 43 + 1.50277776698054e30 * cos(theta) ** 41 - 5.36005989092666e29 * cos(theta) ** 39 + 1.66882536940196e29 * cos(theta) ** 37 - 4.52355594636428e28 * cos(theta) ** 35 + 1.06384023244535e28 * cos(theta) ** 33 - 2.16124525868083e27 * cos(theta) ** 31 + 3.77244386368838e26 * cos(theta) ** 29 - 5.62059526112837e25 * cos(theta) ** 27 + 7.09140523600309e24 * cos(theta) ** 25 - 7.50413252487099e23 * cos(theta) ** 23 + 6.58302887930777e22 * cos(theta) ** 21 - 4.71982268574473e21 * cos(theta) ** 19 + 2.71747366755e20 * cos(theta) ** 17 - 1.22905360421284e19 * cos(theta) ** 15 + 4.24508646191933e17 * cos(theta) ** 13 - 1.07890760517989e16 * cos(theta) ** 11 + 191790298270504.0 * cos(theta) ** 9 - 2216517090766.66 * cos(theta) ** 7 + 14861704631.5772 * cos(theta) ** 5 - 47255022.6759212 * cos(theta) ** 3 + 44947.7070474837 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl79_m_minus_1(theta, phi): return ( 0.0632776131144143 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 3.026363542489e24 * cos(theta) ** 78 - 5.78864313254425e25 * cos(theta) ** 76 + 5.3218170734681e26 * cos(theta) ** 74 - 3.13164006872273e27 * cos(theta) ** 72 + 1.32524371120121e28 * cos(theta) ** 70 - 4.29592424503479e28 * cos(theta) ** 68 + 1.10953689684685e29 * cos(theta) ** 66 - 2.34478487067636e29 * cos(theta) ** 64 + 4.13206844342966e29 * cos(theta) ** 62 - 6.15740065132033e29 * cos(theta) ** 60 + 7.84071881499063e29 * cos(theta) ** 58 - 8.60033722706006e29 * cos(theta) ** 56 + 8.17562921584722e29 * cos(theta) ** 54 - 6.7665271300621e29 * cos(theta) ** 52 + 4.89226552587914e29 * cos(theta) ** 50 - 3.09717068175811e29 * cos(theta) ** 48 + 1.71929553593659e29 * cos(theta) ** 46 - 8.37398061032645e28 * cos(theta) ** 44 + 3.57804230233461e28 * cos(theta) ** 42 - 1.34001497273166e28 * cos(theta) ** 40 + 4.39164570895252e27 * cos(theta) ** 38 - 1.25654331843452e27 * cos(theta) ** 36 + 3.12894186013339e26 * cos(theta) ** 34 - 6.75389143337758e25 * cos(theta) ** 32 + 1.25748128789613e25 * cos(theta) ** 30 - 2.00735545040299e24 * cos(theta) ** 28 + 2.72746355230888e23 * cos(theta) ** 26 - 3.12672188536291e22 * cos(theta) ** 24 + 2.9922858542308e21 * cos(theta) ** 22 - 2.35991134287237e20 * cos(theta) ** 20 + 1.50970759308333e19 * cos(theta) ** 18 - 7.68158502633022e17 * cos(theta) ** 16 + 3.03220461565667e16 * cos(theta) ** 14 - 899089670983241.0 * cos(theta) ** 12 + 19179029827050.4 * cos(theta) ** 10 - 277064636345.832 * cos(theta) ** 8 + 2476950771.92953 * cos(theta) ** 6 - 11813755.6689803 * cos(theta) ** 4 + 22473.8535237418 * cos(theta) ** 2 - 7.11423030191258 ) * sin(phi) ) # @torch.jit.script def Yl79_m0(theta, phi): return ( 4.28092390422614e23 * cos(theta) ** 79 - 8.40097232415333e24 * cos(theta) ** 77 + 7.92943387757182e25 * cos(theta) ** 75 - 4.79393878219211e26 * cos(theta) ** 73 + 2.08583958933789e27 * cos(theta) ** 71 - 6.95746493893243e27 * cos(theta) ** 69 + 1.8505910143691e28 * cos(theta) ** 67 - 4.03118889928087e28 * cos(theta) ** 65 + 7.32943436232886e28 * cos(theta) ** 63 - 1.12800514654281e29 * cos(theta) ** 61 + 1.48507152386571e29 * cos(theta) ** 59 - 1.68610310373871e29 * cos(theta) ** 57 + 1.66112379849814e29 * cos(theta) ** 55 - 1.42670262624045e29 * cos(theta) ** 53 + 1.07197176606289e29 * cos(theta) ** 51 - 7.06337985390275e28 * cos(theta) ** 49 + 4.08786156899096e28 * cos(theta) ** 47 - 2.07951922639023e28 * cos(theta) ** 45 + 9.29866320743597e27 * cos(theta) ** 43 - 3.65232400013688e27 * cos(theta) ** 41 + 1.2583637311396e27 * cos(theta) ** 39 - 3.7950652208972e26 * cos(theta) ** 37 + 9.99017168821159e25 * cos(theta) ** 35 - 2.28709201788607e25 * cos(theta) ** 33 + 4.53297517058501e24 * cos(theta) ** 31 - 7.73516863971386e23 * cos(theta) ** 29 + 1.12885638667284e23 * cos(theta) ** 27 - 1.39763171683303e22 * cos(theta) ** 25 + 1.4538471395628e21 * cos(theta) ** 23 - 1.25579831447384e20 * cos(theta) ** 21 + 8.87938202153219e18 * cos(theta) ** 19 - 5.04946566572e17 * cos(theta) ** 17 + 2.25897148203263e16 * cos(theta) ** 15 - 772864143412924.0 * cos(theta) ** 13 + 19483970002006.5 * cos(theta) ** 11 - 344018731977.643 * cos(theta) ** 9 + 3954238298.59359 * cos(theta) ** 7 - 26403498.973121 * cos(theta) ** 5 + 83714.3277524445 * cos(theta) ** 3 - 79.5007860896908 * cos(theta) ) # @torch.jit.script def Yl79_m1(theta, phi): return ( 0.0632776131144143 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 3.026363542489e24 * cos(theta) ** 78 - 5.78864313254425e25 * cos(theta) ** 76 + 5.3218170734681e26 * cos(theta) ** 74 - 3.13164006872273e27 * cos(theta) ** 72 + 1.32524371120121e28 * cos(theta) ** 70 - 4.29592424503479e28 * cos(theta) ** 68 + 1.10953689684685e29 * cos(theta) ** 66 - 2.34478487067636e29 * cos(theta) ** 64 + 4.13206844342966e29 * cos(theta) ** 62 - 6.15740065132033e29 * cos(theta) ** 60 + 7.84071881499063e29 * cos(theta) ** 58 - 8.60033722706006e29 * cos(theta) ** 56 + 8.17562921584722e29 * cos(theta) ** 54 - 6.7665271300621e29 * cos(theta) ** 52 + 4.89226552587914e29 * cos(theta) ** 50 - 3.09717068175811e29 * cos(theta) ** 48 + 1.71929553593659e29 * cos(theta) ** 46 - 8.37398061032645e28 * cos(theta) ** 44 + 3.57804230233461e28 * cos(theta) ** 42 - 1.34001497273166e28 * cos(theta) ** 40 + 4.39164570895252e27 * cos(theta) ** 38 - 1.25654331843452e27 * cos(theta) ** 36 + 3.12894186013339e26 * cos(theta) ** 34 - 6.75389143337758e25 * cos(theta) ** 32 + 1.25748128789613e25 * cos(theta) ** 30 - 2.00735545040299e24 * cos(theta) ** 28 + 2.72746355230888e23 * cos(theta) ** 26 - 3.12672188536291e22 * cos(theta) ** 24 + 2.9922858542308e21 * cos(theta) ** 22 - 2.35991134287237e20 * cos(theta) ** 20 + 1.50970759308333e19 * cos(theta) ** 18 - 7.68158502633022e17 * cos(theta) ** 16 + 3.03220461565667e16 * cos(theta) ** 14 - 899089670983241.0 * cos(theta) ** 12 + 19179029827050.4 * cos(theta) ** 10 - 277064636345.832 * cos(theta) ** 8 + 2476950771.92953 * cos(theta) ** 6 - 11813755.6689803 * cos(theta) ** 4 + 22473.8535237418 * cos(theta) ** 2 - 7.11423030191258 ) * cos(phi) ) # @torch.jit.script def Yl79_m2(theta, phi): return ( 0.000796086534499313 * (1.0 - cos(theta) ** 2) * ( 2.36056356314142e26 * cos(theta) ** 77 - 4.39936878073363e27 * cos(theta) ** 75 + 3.93814463436639e28 * cos(theta) ** 73 - 2.25478084948037e29 * cos(theta) ** 71 + 9.27670597840846e29 * cos(theta) ** 69 - 2.92122848662366e30 * cos(theta) ** 67 + 7.32294351918924e30 * cos(theta) ** 65 - 1.50066231723287e31 * cos(theta) ** 63 + 2.56188243492639e31 * cos(theta) ** 61 - 3.6944403907922e31 * cos(theta) ** 59 + 4.54761691269457e31 * cos(theta) ** 57 - 4.81618884715363e31 * cos(theta) ** 55 + 4.4148397765575e31 * cos(theta) ** 53 - 3.51859410763229e31 * cos(theta) ** 51 + 2.44613276293957e31 * cos(theta) ** 49 - 1.48664192724389e31 * cos(theta) ** 47 + 7.90875946530831e30 * cos(theta) ** 45 - 3.68455146854364e30 * cos(theta) ** 43 + 1.50277776698054e30 * cos(theta) ** 41 - 5.36005989092666e29 * cos(theta) ** 39 + 1.66882536940196e29 * cos(theta) ** 37 - 4.52355594636428e28 * cos(theta) ** 35 + 1.06384023244535e28 * cos(theta) ** 33 - 2.16124525868083e27 * cos(theta) ** 31 + 3.77244386368838e26 * cos(theta) ** 29 - 5.62059526112837e25 * cos(theta) ** 27 + 7.09140523600309e24 * cos(theta) ** 25 - 7.50413252487099e23 * cos(theta) ** 23 + 6.58302887930777e22 * cos(theta) ** 21 - 4.71982268574473e21 * cos(theta) ** 19 + 2.71747366755e20 * cos(theta) ** 17 - 1.22905360421284e19 * cos(theta) ** 15 + 4.24508646191933e17 * cos(theta) ** 13 - 1.07890760517989e16 * cos(theta) ** 11 + 191790298270504.0 * cos(theta) ** 9 - 2216517090766.66 * cos(theta) ** 7 + 14861704631.5772 * cos(theta) ** 5 - 47255022.6759212 * cos(theta) ** 3 + 44947.7070474837 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl79_m3(theta, phi): return ( 1.00186219580228e-5 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 1.81763394361889e28 * cos(theta) ** 76 - 3.29952658555022e29 * cos(theta) ** 74 + 2.87484558308747e30 * cos(theta) ** 72 - 1.60089440313106e31 * cos(theta) ** 70 + 6.40092712510184e31 * cos(theta) ** 68 - 1.95722308603785e32 * cos(theta) ** 66 + 4.759913287473e32 * cos(theta) ** 64 - 9.45417259856707e32 * cos(theta) ** 62 + 1.5627482853051e33 * cos(theta) ** 60 - 2.1797198305674e33 * cos(theta) ** 58 + 2.5921416402359e33 * cos(theta) ** 56 - 2.6489038659345e33 * cos(theta) ** 54 + 2.33986508157547e33 * cos(theta) ** 52 - 1.79448299489247e33 * cos(theta) ** 50 + 1.19860505384039e33 * cos(theta) ** 48 - 6.9872170580463e32 * cos(theta) ** 46 + 3.55894175938874e32 * cos(theta) ** 44 - 1.58435713147376e32 * cos(theta) ** 42 + 6.1613888446202e31 * cos(theta) ** 40 - 2.0904233574614e31 * cos(theta) ** 38 + 6.17465386678724e30 * cos(theta) ** 36 - 1.5832445812275e30 * cos(theta) ** 34 + 3.51067276706967e29 * cos(theta) ** 32 - 6.69986030191056e28 * cos(theta) ** 30 + 1.09400872046963e28 * cos(theta) ** 28 - 1.51756072050466e27 * cos(theta) ** 26 + 1.77285130900077e26 * cos(theta) ** 24 - 1.72595048072033e25 * cos(theta) ** 22 + 1.38243606465463e24 * cos(theta) ** 20 - 8.96766310291499e22 * cos(theta) ** 18 + 4.61970523483499e21 * cos(theta) ** 16 - 1.84358040631925e20 * cos(theta) ** 14 + 5.51861240049513e18 * cos(theta) ** 12 - 1.18679836569788e17 * cos(theta) ** 10 + 1.72611268443453e15 * cos(theta) ** 8 - 15515619635366.6 * cos(theta) ** 6 + 74308523157.886 * cos(theta) ** 4 - 141765068.027763 * cos(theta) ** 2 + 44947.7070474837 ) * cos(3 * phi) ) # @torch.jit.script def Yl79_m4(theta, phi): return ( 1.26142707089876e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 1.38140179715036e30 * cos(theta) ** 75 - 2.44164967330716e31 * cos(theta) ** 73 + 2.06988881982298e32 * cos(theta) ** 71 - 1.12062608219174e33 * cos(theta) ** 69 + 4.35263044506925e33 * cos(theta) ** 67 - 1.29176723678498e34 * cos(theta) ** 65 + 3.04634450398272e34 * cos(theta) ** 63 - 5.86158701111158e34 * cos(theta) ** 61 + 9.37648971183059e34 * cos(theta) ** 59 - 1.26423750172909e35 * cos(theta) ** 57 + 1.45159931853211e35 * cos(theta) ** 55 - 1.43040808760463e35 * cos(theta) ** 53 + 1.21672984241925e35 * cos(theta) ** 51 - 8.97241497446234e34 * cos(theta) ** 49 + 5.75330425843387e34 * cos(theta) ** 47 - 3.2141198467013e34 * cos(theta) ** 45 + 1.56593437413105e34 * cos(theta) ** 43 - 6.65429995218981e33 * cos(theta) ** 41 + 2.46455553784808e33 * cos(theta) ** 39 - 7.94360875835331e32 * cos(theta) ** 37 + 2.22287539204341e32 * cos(theta) ** 35 - 5.38303157617349e31 * cos(theta) ** 33 + 1.12341528546229e31 * cos(theta) ** 31 - 2.00995809057317e30 * cos(theta) ** 29 + 3.06322441731496e29 * cos(theta) ** 27 - 3.94565787331212e28 * cos(theta) ** 25 + 4.25484314160185e27 * cos(theta) ** 23 - 3.79709105758472e26 * cos(theta) ** 21 + 2.76487212930926e25 * cos(theta) ** 19 - 1.6141793585247e24 * cos(theta) ** 17 + 7.39152837573599e22 * cos(theta) ** 15 - 2.58101256884695e21 * cos(theta) ** 13 + 6.62233488059416e19 * cos(theta) ** 11 - 1.18679836569788e18 * cos(theta) ** 9 + 1.38089014754763e16 * cos(theta) ** 7 - 93093717812199.6 * cos(theta) ** 5 + 297234092631.544 * cos(theta) ** 3 - 283530136.055527 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl79_m5(theta, phi): return ( 1.58924872697274e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.03605134786277e32 * cos(theta) ** 74 - 1.78240426151423e33 * cos(theta) ** 72 + 1.46962106207431e34 * cos(theta) ** 70 - 7.73231996712302e34 * cos(theta) ** 68 + 2.9162623981964e35 * cos(theta) ** 66 - 8.39648703910238e35 * cos(theta) ** 64 + 1.91919703750912e36 * cos(theta) ** 62 - 3.57556807677807e36 * cos(theta) ** 60 + 5.53212892998005e36 * cos(theta) ** 58 - 7.20615375985581e36 * cos(theta) ** 56 + 7.98379625192658e36 * cos(theta) ** 54 - 7.58116286430454e36 * cos(theta) ** 52 + 6.20532219633816e36 * cos(theta) ** 50 - 4.39648333748655e36 * cos(theta) ** 48 + 2.70405300146392e36 * cos(theta) ** 46 - 1.44635393101558e36 * cos(theta) ** 44 + 6.7335178087635e35 * cos(theta) ** 42 - 2.72826298039782e35 * cos(theta) ** 40 + 9.6117665976075e34 * cos(theta) ** 38 - 2.93913524059072e34 * cos(theta) ** 36 + 7.78006387215192e33 * cos(theta) ** 34 - 1.77640042013725e33 * cos(theta) ** 32 + 3.48258738493311e32 * cos(theta) ** 30 - 5.82887846266219e31 * cos(theta) ** 28 + 8.2707059267504e30 * cos(theta) ** 26 - 9.86414468328029e29 * cos(theta) ** 24 + 9.78613922568426e28 * cos(theta) ** 22 - 7.97389122092792e27 * cos(theta) ** 20 + 5.2532570456876e26 * cos(theta) ** 18 - 2.74410490949199e25 * cos(theta) ** 16 + 1.1087292563604e24 * cos(theta) ** 14 - 3.35531633950104e22 * cos(theta) ** 12 + 7.28456836865357e20 * cos(theta) ** 10 - 1.06811852912809e19 * cos(theta) ** 8 + 9.66623103283339e16 * cos(theta) ** 6 - 465468589060998.0 * cos(theta) ** 4 + 891702277894.632 * cos(theta) ** 2 - 283530136.055527 ) * cos(5 * phi) ) # @torch.jit.script def Yl79_m6(theta, phi): return ( 2.00385618555223e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 7.66677997418449e33 * cos(theta) ** 73 - 1.28333106829025e35 * cos(theta) ** 71 + 1.02873474345202e36 * cos(theta) ** 69 - 5.25797757764365e36 * cos(theta) ** 67 + 1.92473318280962e37 * cos(theta) ** 65 - 5.37375170502552e37 * cos(theta) ** 63 + 1.18990216325565e38 * cos(theta) ** 61 - 2.14534084606684e38 * cos(theta) ** 59 + 3.20863477938843e38 * cos(theta) ** 57 - 4.03544610551925e38 * cos(theta) ** 55 + 4.31124997604035e38 * cos(theta) ** 53 - 3.94220468943836e38 * cos(theta) ** 51 + 3.10266109816908e38 * cos(theta) ** 49 - 2.11031200199354e38 * cos(theta) ** 47 + 1.2438643806734e38 * cos(theta) ** 45 - 6.36395729646857e37 * cos(theta) ** 43 + 2.82807747968067e37 * cos(theta) ** 41 - 1.09130519215913e37 * cos(theta) ** 39 + 3.65247130709085e36 * cos(theta) ** 37 - 1.05808868661266e36 * cos(theta) ** 35 + 2.64522171653165e35 * cos(theta) ** 33 - 5.6844813444392e34 * cos(theta) ** 31 + 1.04477621547993e34 * cos(theta) ** 29 - 1.63208596954541e33 * cos(theta) ** 27 + 2.1503835409551e32 * cos(theta) ** 25 - 2.36739472398727e31 * cos(theta) ** 23 + 2.15295062965054e30 * cos(theta) ** 21 - 1.59477824418558e29 * cos(theta) ** 19 + 9.45586268223768e27 * cos(theta) ** 17 - 4.39056785518718e26 * cos(theta) ** 15 + 1.55222095890456e25 * cos(theta) ** 13 - 4.02637960740125e23 * cos(theta) ** 11 + 7.28456836865357e21 * cos(theta) ** 9 - 8.54494823302472e19 * cos(theta) ** 7 + 5.79973861970004e17 * cos(theta) ** 5 - 1.86187435624399e15 * cos(theta) ** 3 + 1783404555789.26 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl79_m7(theta, phi): return ( 2.52904113844031e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 5.59674938115468e35 * cos(theta) ** 72 - 9.11165058486074e36 * cos(theta) ** 70 + 7.09826972981893e37 * cos(theta) ** 68 - 3.52284497702125e38 * cos(theta) ** 66 + 1.25107656882625e39 * cos(theta) ** 64 - 3.38546357416608e39 * cos(theta) ** 62 + 7.25840319585947e39 * cos(theta) ** 60 - 1.26575109917944e40 * cos(theta) ** 58 + 1.8289218242514e40 * cos(theta) ** 56 - 2.21949535803559e40 * cos(theta) ** 54 + 2.28496248730139e40 * cos(theta) ** 52 - 2.01052439161356e40 * cos(theta) ** 50 + 1.52030393810285e40 * cos(theta) ** 48 - 9.91846640936965e39 * cos(theta) ** 46 + 5.59738971303031e39 * cos(theta) ** 44 - 2.73650163748149e39 * cos(theta) ** 42 + 1.15951176666907e39 * cos(theta) ** 40 - 4.2560902494206e38 * cos(theta) ** 38 + 1.35141438362362e38 * cos(theta) ** 36 - 3.70331040314431e37 * cos(theta) ** 34 + 8.72923166455445e36 * cos(theta) ** 32 - 1.76218921677615e36 * cos(theta) ** 30 + 3.0298510248918e35 * cos(theta) ** 28 - 4.40663211777261e34 * cos(theta) ** 26 + 5.37595885238776e33 * cos(theta) ** 24 - 5.44500786517072e32 * cos(theta) ** 22 + 4.52119632226613e31 * cos(theta) ** 20 - 3.03007866395261e30 * cos(theta) ** 18 + 1.60749665598041e29 * cos(theta) ** 16 - 6.58585178278077e27 * cos(theta) ** 14 + 2.01788724657593e26 * cos(theta) ** 12 - 4.42901756814137e24 * cos(theta) ** 10 + 6.55611153178822e22 * cos(theta) ** 8 - 5.9814637631173e20 * cos(theta) ** 6 + 2.89986930985002e18 * cos(theta) ** 4 - 5.58562306873198e15 * cos(theta) ** 2 + 1783404555789.26 ) * cos(7 * phi) ) # @torch.jit.script def Yl79_m8(theta, phi): return ( 3.19543523197027e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 4.02965955443137e37 * cos(theta) ** 71 - 6.37815540940252e38 * cos(theta) ** 69 + 4.82682341627687e39 * cos(theta) ** 67 - 2.32507768483402e40 * cos(theta) ** 65 + 8.00689004048803e40 * cos(theta) ** 63 - 2.09898741598297e41 * cos(theta) ** 61 + 4.35504191751568e41 * cos(theta) ** 59 - 7.34135637524073e41 * cos(theta) ** 57 + 1.02419622158079e42 * cos(theta) ** 55 - 1.19852749333922e42 * cos(theta) ** 53 + 1.18818049339672e42 * cos(theta) ** 51 - 1.00526219580678e42 * cos(theta) ** 49 + 7.29745890289367e41 * cos(theta) ** 47 - 4.56249454831004e41 * cos(theta) ** 45 + 2.46285147373334e41 * cos(theta) ** 43 - 1.14933068774222e41 * cos(theta) ** 41 + 4.6380470666763e40 * cos(theta) ** 39 - 1.61731429477983e40 * cos(theta) ** 37 + 4.86509178104501e39 * cos(theta) ** 35 - 1.25912553706907e39 * cos(theta) ** 33 + 2.79335413265742e38 * cos(theta) ** 31 - 5.28656765032846e37 * cos(theta) ** 29 + 8.48358286969705e36 * cos(theta) ** 27 - 1.14572435062088e36 * cos(theta) ** 25 + 1.29023012457306e35 * cos(theta) ** 23 - 1.19790173033756e34 * cos(theta) ** 21 + 9.04239264453226e32 * cos(theta) ** 19 - 5.45414159511469e31 * cos(theta) ** 17 + 2.57199464956865e30 * cos(theta) ** 15 - 9.22019249589307e28 * cos(theta) ** 13 + 2.42146469589111e27 * cos(theta) ** 11 - 4.42901756814137e25 * cos(theta) ** 9 + 5.24488922543057e23 * cos(theta) ** 7 - 3.58887825787038e21 * cos(theta) ** 5 + 1.15994772394001e19 * cos(theta) ** 3 - 1.1171246137464e16 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl79_m9(theta, phi): return ( 4.04258824530248e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 2.86105828364627e39 * cos(theta) ** 70 - 4.40092723248774e40 * cos(theta) ** 68 + 3.23397168890551e41 * cos(theta) ** 66 - 1.51130049514212e42 * cos(theta) ** 64 + 5.04434072550746e42 * cos(theta) ** 62 - 1.28038232374961e43 * cos(theta) ** 60 + 2.56947473133425e43 * cos(theta) ** 58 - 4.18457313388721e43 * cos(theta) ** 56 + 5.63307921869433e43 * cos(theta) ** 54 - 6.35219571469786e43 * cos(theta) ** 52 + 6.05972051632328e43 * cos(theta) ** 50 - 4.92578475945323e43 * cos(theta) ** 48 + 3.42980568436003e43 * cos(theta) ** 46 - 2.05312254673952e43 * cos(theta) ** 44 + 1.05902613370534e43 * cos(theta) ** 42 - 4.71225581974312e42 * cos(theta) ** 40 + 1.80883835600376e42 * cos(theta) ** 38 - 5.98406289068537e41 * cos(theta) ** 36 + 1.70278212336576e41 * cos(theta) ** 34 - 4.15511427232792e40 * cos(theta) ** 32 + 8.65939781123802e39 * cos(theta) ** 30 - 1.53310461859525e39 * cos(theta) ** 28 + 2.2905673748182e38 * cos(theta) ** 26 - 2.8643108765522e37 * cos(theta) ** 24 + 2.96752928651804e36 * cos(theta) ** 22 - 2.51559363370887e35 * cos(theta) ** 20 + 1.71805460246113e34 * cos(theta) ** 18 - 9.27204071169498e32 * cos(theta) ** 16 + 3.85799197435297e31 * cos(theta) ** 14 - 1.1986250244661e30 * cos(theta) ** 12 + 2.66361116548022e28 * cos(theta) ** 10 - 3.98611581132724e26 * cos(theta) ** 8 + 3.6714224578014e24 * cos(theta) ** 6 - 1.79443912893519e22 * cos(theta) ** 4 + 3.47984317182002e19 * cos(theta) ** 2 - 1.1171246137464e16 ) * cos(9 * phi) ) # @torch.jit.script def Yl79_m10(theta, phi): return ( 5.12171591071553e-19 * (1.0 - cos(theta) ** 2) ** 5 * ( 2.00274079855239e41 * cos(theta) ** 69 - 2.99263051809166e42 * cos(theta) ** 67 + 2.13442131467763e43 * cos(theta) ** 65 - 9.67232316890954e43 * cos(theta) ** 63 + 3.12749124981462e44 * cos(theta) ** 61 - 7.68229394249767e44 * cos(theta) ** 59 + 1.49029534417387e45 * cos(theta) ** 57 - 2.34336095497684e45 * cos(theta) ** 55 + 3.04186277809494e45 * cos(theta) ** 53 - 3.30314177164289e45 * cos(theta) ** 51 + 3.02986025816164e45 * cos(theta) ** 49 - 2.36437668453755e45 * cos(theta) ** 47 + 1.57771061480561e45 * cos(theta) ** 45 - 9.03373920565388e44 * cos(theta) ** 43 + 4.44790976156241e44 * cos(theta) ** 41 - 1.88490232789725e44 * cos(theta) ** 39 + 6.87358575281427e43 * cos(theta) ** 37 - 2.15426264064673e43 * cos(theta) ** 35 + 5.78945921944357e42 * cos(theta) ** 33 - 1.32963656714493e42 * cos(theta) ** 31 + 2.5978193433714e41 * cos(theta) ** 29 - 4.29269293206671e40 * cos(theta) ** 27 + 5.95547517452733e39 * cos(theta) ** 25 - 6.87434610372528e38 * cos(theta) ** 23 + 6.5285644303397e37 * cos(theta) ** 21 - 5.03118726741775e36 * cos(theta) ** 19 + 3.09249828443003e35 * cos(theta) ** 17 - 1.4835265138712e34 * cos(theta) ** 15 + 5.40118876409416e32 * cos(theta) ** 13 - 1.43835002935932e31 * cos(theta) ** 11 + 2.66361116548022e29 * cos(theta) ** 9 - 3.18889264906179e27 * cos(theta) ** 7 + 2.20285347468084e25 * cos(theta) ** 5 - 7.17775651574076e22 * cos(theta) ** 3 + 6.95968634364004e19 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl79_m11(theta, phi): return ( 6.49934641456728e-21 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.38189115100115e43 * cos(theta) ** 68 - 2.00506244712141e44 * cos(theta) ** 66 + 1.38737385454046e45 * cos(theta) ** 64 - 6.09356359641301e45 * cos(theta) ** 62 + 1.90776966238692e46 * cos(theta) ** 60 - 4.53255342607362e46 * cos(theta) ** 58 + 8.49468346179104e46 * cos(theta) ** 56 - 1.28884852523726e47 * cos(theta) ** 54 + 1.61218727239032e47 * cos(theta) ** 52 - 1.68460230353787e47 * cos(theta) ** 50 + 1.4846315264992e47 * cos(theta) ** 48 - 1.11125704173265e47 * cos(theta) ** 46 + 7.09969776662525e46 * cos(theta) ** 44 - 3.88450785843117e46 * cos(theta) ** 42 + 1.82364300224059e46 * cos(theta) ** 40 - 7.35111907879927e45 * cos(theta) ** 38 + 2.54322672854128e45 * cos(theta) ** 36 - 7.53991924226356e44 * cos(theta) ** 34 + 1.91052154241638e44 * cos(theta) ** 32 - 4.1218733581493e43 * cos(theta) ** 30 + 7.53367609577707e42 * cos(theta) ** 28 - 1.15902709165801e42 * cos(theta) ** 26 + 1.48886879363183e41 * cos(theta) ** 24 - 1.58109960385681e40 * cos(theta) ** 22 + 1.37099853037134e39 * cos(theta) ** 20 - 9.55925580809372e37 * cos(theta) ** 18 + 5.25724708353105e36 * cos(theta) ** 16 - 2.2252897708068e35 * cos(theta) ** 14 + 7.02154539332241e33 * cos(theta) ** 12 - 1.58218503229525e32 * cos(theta) ** 10 + 2.3972500489322e30 * cos(theta) ** 8 - 2.23222485434325e28 * cos(theta) ** 6 + 1.10142673734042e26 * cos(theta) ** 4 - 2.15332695472223e23 * cos(theta) ** 2 + 6.95968634364004e19 ) * cos(11 * phi) ) # @torch.jit.script def Yl79_m12(theta, phi): return ( 8.26217772916405e-23 * (1.0 - cos(theta) ** 2) ** 6 * ( 9.39685982680782e44 * cos(theta) ** 67 - 1.32334121510013e46 * cos(theta) ** 65 + 8.87919266905896e46 * cos(theta) ** 63 - 3.77800942977607e47 * cos(theta) ** 61 + 1.14466179743215e48 * cos(theta) ** 59 - 2.6288809871227e48 * cos(theta) ** 57 + 4.75702273860298e48 * cos(theta) ** 55 - 6.95978203628121e48 * cos(theta) ** 53 + 8.38337381642964e48 * cos(theta) ** 51 - 8.42301151768936e48 * cos(theta) ** 49 + 7.12623132719618e48 * cos(theta) ** 47 - 5.11178239197018e48 * cos(theta) ** 45 + 3.12386701731511e48 * cos(theta) ** 43 - 1.63149330054109e48 * cos(theta) ** 41 + 7.29457200896235e47 * cos(theta) ** 39 - 2.79342524994372e47 * cos(theta) ** 37 + 9.15561622274861e46 * cos(theta) ** 35 - 2.56357254236961e46 * cos(theta) ** 33 + 6.11366893573241e45 * cos(theta) ** 31 - 1.23656200744479e45 * cos(theta) ** 29 + 2.10942930681758e44 * cos(theta) ** 27 - 3.01347043831083e43 * cos(theta) ** 25 + 3.5732851047164e42 * cos(theta) ** 23 - 3.47841912848499e41 * cos(theta) ** 21 + 2.74199706074267e40 * cos(theta) ** 19 - 1.72066604545687e39 * cos(theta) ** 17 + 8.41159533364969e37 * cos(theta) ** 15 - 3.11540567912951e36 * cos(theta) ** 13 + 8.42585447198689e34 * cos(theta) ** 11 - 1.58218503229525e33 * cos(theta) ** 9 + 1.91780003914576e31 * cos(theta) ** 7 - 1.33933491260595e29 * cos(theta) ** 5 + 4.40570694936168e26 * cos(theta) ** 3 - 4.30665390944446e23 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl79_m13(theta, phi): return ( 1.05235729970741e-24 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 6.29589608396124e46 * cos(theta) ** 66 - 8.60171789815087e47 * cos(theta) ** 64 + 5.59389138150714e48 * cos(theta) ** 62 - 2.3045857521634e49 * cos(theta) ** 60 + 6.7535046048497e49 * cos(theta) ** 58 - 1.49846216265994e50 * cos(theta) ** 56 + 2.61636250623164e50 * cos(theta) ** 54 - 3.68868447922904e50 * cos(theta) ** 52 + 4.27552064637912e50 * cos(theta) ** 50 - 4.12727564366779e50 * cos(theta) ** 48 + 3.3493287237822e50 * cos(theta) ** 46 - 2.30030207638658e50 * cos(theta) ** 44 + 1.3432628174455e50 * cos(theta) ** 42 - 6.68912253221847e49 * cos(theta) ** 40 + 2.84488308349532e49 * cos(theta) ** 38 - 1.03356734247918e49 * cos(theta) ** 36 + 3.20446567796201e48 * cos(theta) ** 34 - 8.45978938981972e47 * cos(theta) ** 32 + 1.89523737007705e47 * cos(theta) ** 30 - 3.58602982158989e46 * cos(theta) ** 28 + 5.69545912840747e45 * cos(theta) ** 26 - 7.53367609577707e44 * cos(theta) ** 24 + 8.21855574084772e43 * cos(theta) ** 22 - 7.30468016981848e42 * cos(theta) ** 20 + 5.20979441541108e41 * cos(theta) ** 18 - 2.92513227727668e40 * cos(theta) ** 16 + 1.26173930004745e39 * cos(theta) ** 14 - 4.05002738286837e37 * cos(theta) ** 12 + 9.26843991918558e35 * cos(theta) ** 10 - 1.42396652906573e34 * cos(theta) ** 8 + 1.34246002740203e32 * cos(theta) ** 6 - 6.69667456302976e29 * cos(theta) ** 4 + 1.3217120848085e27 * cos(theta) ** 2 - 4.30665390944446e23 ) * cos(13 * phi) ) # @torch.jit.script def Yl79_m14(theta, phi): return ( 1.34322812256872e-26 * (1.0 - cos(theta) ** 2) ** 7 * ( 4.15529141541442e48 * cos(theta) ** 65 - 5.50509945481655e49 * cos(theta) ** 63 + 3.46821265653443e50 * cos(theta) ** 61 - 1.38275145129804e51 * cos(theta) ** 59 + 3.91703267081283e51 * cos(theta) ** 57 - 8.39138811089566e51 * cos(theta) ** 55 + 1.41283575336509e52 * cos(theta) ** 53 - 1.9181159291991e52 * cos(theta) ** 51 + 2.13776032318956e52 * cos(theta) ** 49 - 1.98109230896054e52 * cos(theta) ** 47 + 1.54069121293981e52 * cos(theta) ** 45 - 1.0121329136101e52 * cos(theta) ** 43 + 5.64170383327109e51 * cos(theta) ** 41 - 2.67564901288739e51 * cos(theta) ** 39 + 1.08105557172822e51 * cos(theta) ** 37 - 3.72084243292504e50 * cos(theta) ** 35 + 1.08951833050708e50 * cos(theta) ** 33 - 2.70713260474231e49 * cos(theta) ** 31 + 5.68571211023114e48 * cos(theta) ** 29 - 1.00408835004517e48 * cos(theta) ** 27 + 1.48081937338594e47 * cos(theta) ** 25 - 1.8080822629865e46 * cos(theta) ** 23 + 1.8080822629865e45 * cos(theta) ** 21 - 1.4609360339637e44 * cos(theta) ** 19 + 9.37762994773994e42 * cos(theta) ** 17 - 4.68021164364269e41 * cos(theta) ** 15 + 1.76643502006643e40 * cos(theta) ** 13 - 4.86003285944204e38 * cos(theta) ** 11 + 9.26843991918558e36 * cos(theta) ** 9 - 1.13917322325258e35 * cos(theta) ** 7 + 8.05476016441219e32 * cos(theta) ** 5 - 2.6786698252119e30 * cos(theta) ** 3 + 2.64342416961701e27 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl79_m15(theta, phi): return ( 1.71841941481227e-28 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 2.70093942001937e50 * cos(theta) ** 64 - 3.46821265653443e51 * cos(theta) ** 62 + 2.115609720486e52 * cos(theta) ** 60 - 8.15823356265844e52 * cos(theta) ** 58 + 2.23270862236331e53 * cos(theta) ** 56 - 4.61526346099262e53 * cos(theta) ** 54 + 7.48802949283496e53 * cos(theta) ** 52 - 9.78239123891542e53 * cos(theta) ** 50 + 1.04750255836288e54 * cos(theta) ** 48 - 9.31113385211452e53 * cos(theta) ** 46 + 6.93311045822916e53 * cos(theta) ** 44 - 4.35217152852341e53 * cos(theta) ** 42 + 2.31309857164115e53 * cos(theta) ** 40 - 1.04350311502608e53 * cos(theta) ** 38 + 3.99990561539441e52 * cos(theta) ** 36 - 1.30229485152376e52 * cos(theta) ** 34 + 3.59541049067338e51 * cos(theta) ** 32 - 8.39211107470116e50 * cos(theta) ** 30 + 1.64885651196703e50 * cos(theta) ** 28 - 2.71103854512195e49 * cos(theta) ** 26 + 3.70204843346485e48 * cos(theta) ** 24 - 4.15858920486894e47 * cos(theta) ** 22 + 3.79697275227165e46 * cos(theta) ** 20 - 2.77577846453102e45 * cos(theta) ** 18 + 1.59419709111579e44 * cos(theta) ** 16 - 7.02031746546403e42 * cos(theta) ** 14 + 2.29636552608636e41 * cos(theta) ** 12 - 5.34603614538624e39 * cos(theta) ** 10 + 8.34159592726703e37 * cos(theta) ** 8 - 7.97421256276807e35 * cos(theta) ** 6 + 4.02738008220609e33 * cos(theta) ** 4 - 8.03600947563571e30 * cos(theta) ** 2 + 2.64342416961701e27 ) * cos(15 * phi) ) # @torch.jit.script def Yl79_m16(theta, phi): return ( 2.20382639925029e-30 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.7286012288124e52 * cos(theta) ** 63 - 2.15029184705135e53 * cos(theta) ** 61 + 1.2693658322916e54 * cos(theta) ** 59 - 4.73177546634189e54 * cos(theta) ** 57 + 1.25031682852345e55 * cos(theta) ** 55 - 2.49224226893601e55 * cos(theta) ** 53 + 3.89377533627418e55 * cos(theta) ** 51 - 4.89119561945771e55 * cos(theta) ** 49 + 5.02801228014184e55 * cos(theta) ** 47 - 4.28312157197268e55 * cos(theta) ** 45 + 3.05056860162083e55 * cos(theta) ** 43 - 1.82791204197983e55 * cos(theta) ** 41 + 9.25239428656459e54 * cos(theta) ** 39 - 3.96531183709911e54 * cos(theta) ** 37 + 1.43996602154199e54 * cos(theta) ** 35 - 4.42780249518079e53 * cos(theta) ** 33 + 1.15053135701548e53 * cos(theta) ** 31 - 2.51763332241035e52 * cos(theta) ** 29 + 4.61679823350768e51 * cos(theta) ** 27 - 7.04870021731708e50 * cos(theta) ** 25 + 8.88491624031565e49 * cos(theta) ** 23 - 9.14889625071168e48 * cos(theta) ** 21 + 7.59394550454329e47 * cos(theta) ** 19 - 4.99640123615584e46 * cos(theta) ** 17 + 2.55071534578526e45 * cos(theta) ** 15 - 9.82844445164964e43 * cos(theta) ** 13 + 2.75563863130364e42 * cos(theta) ** 11 - 5.34603614538624e40 * cos(theta) ** 9 + 6.67327674181362e38 * cos(theta) ** 7 - 4.78452753766084e36 * cos(theta) ** 5 + 1.61095203288244e34 * cos(theta) ** 3 - 1.60720189512714e31 * cos(theta) ) * cos(16 * phi) ) # @torch.jit.script def Yl79_m17(theta, phi): return ( 2.83381496782678e-32 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.08901877415181e54 * cos(theta) ** 62 - 1.31167802670132e55 * cos(theta) ** 60 + 7.48925841052045e55 * cos(theta) ** 58 - 2.69711201581488e56 * cos(theta) ** 56 + 6.876742556879e56 * cos(theta) ** 54 - 1.32088840253609e57 * cos(theta) ** 52 + 1.98582542149983e57 * cos(theta) ** 50 - 2.39668585353428e57 * cos(theta) ** 48 + 2.36316577166667e57 * cos(theta) ** 46 - 1.92740470738771e57 * cos(theta) ** 44 + 1.31174449869696e57 * cos(theta) ** 42 - 7.49443937211732e56 * cos(theta) ** 40 + 3.60843377176019e56 * cos(theta) ** 38 - 1.46716537972667e56 * cos(theta) ** 36 + 5.03988107539696e55 * cos(theta) ** 34 - 1.46117482340966e55 * cos(theta) ** 32 + 3.56664720674799e54 * cos(theta) ** 30 - 7.30113663499001e53 * cos(theta) ** 28 + 1.24653552304707e53 * cos(theta) ** 26 - 1.76217505432927e52 * cos(theta) ** 24 + 2.0435307352726e51 * cos(theta) ** 22 - 1.92126821264945e50 * cos(theta) ** 20 + 1.44284964586323e49 * cos(theta) ** 18 - 8.49388210146493e47 * cos(theta) ** 16 + 3.8260730186779e46 * cos(theta) ** 14 - 1.27769777871445e45 * cos(theta) ** 12 + 3.031202494434e43 * cos(theta) ** 10 - 4.81143253084762e41 * cos(theta) ** 8 + 4.67129371926953e39 * cos(theta) ** 6 - 2.39226376883042e37 * cos(theta) ** 4 + 4.83285609864731e34 * cos(theta) ** 2 - 1.60720189512714e31 ) * cos(17 * phi) ) # @torch.jit.script def Yl79_m18(theta, phi): return ( 3.65417866773758e-34 * (1.0 - cos(theta) ** 2) ** 9 * ( 6.75191639974123e55 * cos(theta) ** 61 - 7.87006816020793e56 * cos(theta) ** 59 + 4.34376987810186e57 * cos(theta) ** 57 - 1.51038272885633e58 * cos(theta) ** 55 + 3.71344098071466e58 * cos(theta) ** 53 - 6.86861969318765e58 * cos(theta) ** 51 + 9.92912710749915e58 * cos(theta) ** 49 - 1.15040920969645e59 * cos(theta) ** 47 + 1.08705625496667e59 * cos(theta) ** 45 - 8.48058071250591e58 * cos(theta) ** 43 + 5.50932689452722e58 * cos(theta) ** 41 - 2.99777574884693e58 * cos(theta) ** 39 + 1.37120483326887e58 * cos(theta) ** 37 - 5.28179536701602e57 * cos(theta) ** 35 + 1.71355956563497e57 * cos(theta) ** 33 - 4.67575943491092e56 * cos(theta) ** 31 + 1.0699941620244e56 * cos(theta) ** 29 - 2.0443182577972e55 * cos(theta) ** 27 + 3.24099235992239e54 * cos(theta) ** 25 - 4.22922013039025e53 * cos(theta) ** 23 + 4.49576761759972e52 * cos(theta) ** 21 - 3.84253642529891e51 * cos(theta) ** 19 + 2.59712936255381e50 * cos(theta) ** 17 - 1.35902113623439e49 * cos(theta) ** 15 + 5.35650222614905e47 * cos(theta) ** 13 - 1.53323733445734e46 * cos(theta) ** 11 + 3.031202494434e44 * cos(theta) ** 9 - 3.8491460246781e42 * cos(theta) ** 7 + 2.80277623156172e40 * cos(theta) ** 5 - 9.56905507532168e37 * cos(theta) ** 3 + 9.66571219729463e34 * cos(theta) ) * cos(18 * phi) ) # @torch.jit.script def Yl79_m19(theta, phi): return ( 4.72619702651827e-36 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 4.11866900384215e57 * cos(theta) ** 60 - 4.64334021452268e58 * cos(theta) ** 58 + 2.47594883051806e59 * cos(theta) ** 56 - 8.30710500870983e59 * cos(theta) ** 54 + 1.96812371977877e60 * cos(theta) ** 52 - 3.5029960435257e60 * cos(theta) ** 50 + 4.86527228267459e60 * cos(theta) ** 48 - 5.40692328557333e60 * cos(theta) ** 46 + 4.89175314735e60 * cos(theta) ** 44 - 3.64664970637754e60 * cos(theta) ** 42 + 2.25882402675616e60 * cos(theta) ** 40 - 1.1691325420503e60 * cos(theta) ** 38 + 5.07345788309483e59 * cos(theta) ** 36 - 1.84862837845561e59 * cos(theta) ** 34 + 5.65474656659539e58 * cos(theta) ** 32 - 1.44948542482238e58 * cos(theta) ** 30 + 3.10298306987075e57 * cos(theta) ** 28 - 5.51965929605245e56 * cos(theta) ** 26 + 8.10248089980599e55 * cos(theta) ** 24 - 9.72720629989757e54 * cos(theta) ** 22 + 9.44111199695941e53 * cos(theta) ** 20 - 7.30081920806792e52 * cos(theta) ** 18 + 4.41511991634147e51 * cos(theta) ** 16 - 2.03853170435158e50 * cos(theta) ** 14 + 6.96345289399377e48 * cos(theta) ** 12 - 1.68656106790308e47 * cos(theta) ** 10 + 2.7280822449906e45 * cos(theta) ** 8 - 2.69440221727467e43 * cos(theta) ** 6 + 1.40138811578086e41 * cos(theta) ** 4 - 2.8707165225965e38 * cos(theta) ** 2 + 9.66571219729463e34 ) * cos(19 * phi) ) # @torch.jit.script def Yl79_m20(theta, phi): return ( 6.132232325073e-38 * (1.0 - cos(theta) ** 2) ** 10 * ( 2.47120140230529e59 * cos(theta) ** 59 - 2.69313732442315e60 * cos(theta) ** 57 + 1.38653134509011e61 * cos(theta) ** 55 - 4.48583670470331e61 * cos(theta) ** 53 + 1.02342433428496e62 * cos(theta) ** 51 - 1.75149802176285e62 * cos(theta) ** 49 + 2.3353306956838e62 * cos(theta) ** 47 - 2.48718471136373e62 * cos(theta) ** 45 + 2.152371384834e62 * cos(theta) ** 43 - 1.53159287667857e62 * cos(theta) ** 41 + 9.03529610702464e61 * cos(theta) ** 39 - 4.44270365979115e61 * cos(theta) ** 37 + 1.82644483791414e61 * cos(theta) ** 35 - 6.28533648674906e60 * cos(theta) ** 33 + 1.80951890131053e60 * cos(theta) ** 31 - 4.34845627446715e59 * cos(theta) ** 29 + 8.68835259563811e58 * cos(theta) ** 27 - 1.43511141697364e58 * cos(theta) ** 25 + 1.94459541595344e57 * cos(theta) ** 23 - 2.13998538597747e56 * cos(theta) ** 21 + 1.88822239939188e55 * cos(theta) ** 19 - 1.31414745745223e54 * cos(theta) ** 17 + 7.06419186614635e52 * cos(theta) ** 15 - 2.85394438609222e51 * cos(theta) ** 13 + 8.35614347279252e49 * cos(theta) ** 11 - 1.68656106790308e48 * cos(theta) ** 9 + 2.18246579599248e46 * cos(theta) ** 7 - 1.6166413303648e44 * cos(theta) ** 5 + 5.60555246312344e41 * cos(theta) ** 3 - 5.74143304519301e38 * cos(theta) ) * cos(20 * phi) ) # @torch.jit.script def Yl79_m21(theta, phi): return ( 7.98348648282659e-40 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.45800882736012e61 * cos(theta) ** 58 - 1.5350882749212e62 * cos(theta) ** 56 + 7.62592239799562e62 * cos(theta) ** 54 - 2.37749345349275e63 * cos(theta) ** 52 + 5.2194641048533e63 * cos(theta) ** 50 - 8.58234030663797e63 * cos(theta) ** 48 + 1.09760542697139e64 * cos(theta) ** 46 - 1.11923312011368e64 * cos(theta) ** 44 + 9.2551969547862e63 * cos(theta) ** 42 - 6.27953079438213e63 * cos(theta) ** 40 + 3.52376548173961e63 * cos(theta) ** 38 - 1.64380035412272e63 * cos(theta) ** 36 + 6.39255693269948e62 * cos(theta) ** 34 - 2.07416104062719e62 * cos(theta) ** 32 + 5.60950859406263e61 * cos(theta) ** 30 - 1.26105231959547e61 * cos(theta) ** 28 + 2.34585520082229e60 * cos(theta) ** 26 - 3.58777854243409e59 * cos(theta) ** 24 + 4.4725694566929e58 * cos(theta) ** 22 - 4.49396931055268e57 * cos(theta) ** 20 + 3.58762255884458e56 * cos(theta) ** 18 - 2.23405067766878e55 * cos(theta) ** 16 + 1.05962877992195e54 * cos(theta) ** 14 - 3.71012770191988e52 * cos(theta) ** 12 + 9.19175782007178e50 * cos(theta) ** 10 - 1.51790496111277e49 * cos(theta) ** 8 + 1.52772605719474e47 * cos(theta) ** 6 - 8.083206651824e44 * cos(theta) ** 4 + 1.68166573893703e42 * cos(theta) ** 2 - 5.74143304519301e38 ) * cos(21 * phi) ) # @torch.jit.script def Yl79_m22(theta, phi): return ( 1.04308070205435e-41 * (1.0 - cos(theta) ** 2) ** 11 * ( 8.4564511986887e62 * cos(theta) ** 57 - 8.5964943395587e63 * cos(theta) ** 55 + 4.11799809491764e64 * cos(theta) ** 53 - 1.23629659581623e65 * cos(theta) ** 51 + 2.60973205242665e65 * cos(theta) ** 49 - 4.11952334718623e65 * cos(theta) ** 47 + 5.04898496406838e65 * cos(theta) ** 45 - 4.92462572850019e65 * cos(theta) ** 43 + 3.8871827210102e65 * cos(theta) ** 41 - 2.51181231775285e65 * cos(theta) ** 39 + 1.33903088306105e65 * cos(theta) ** 37 - 5.91768127484181e64 * cos(theta) ** 35 + 2.17346935711782e64 * cos(theta) ** 33 - 6.63731533000701e63 * cos(theta) ** 31 + 1.68285257821879e63 * cos(theta) ** 29 - 3.53094649486733e62 * cos(theta) ** 27 + 6.09922352213795e61 * cos(theta) ** 25 - 8.61066850184182e60 * cos(theta) ** 23 + 9.83965280472439e59 * cos(theta) ** 21 - 8.98793862110536e58 * cos(theta) ** 19 + 6.45772060592024e57 * cos(theta) ** 17 - 3.57448108427005e56 * cos(theta) ** 15 + 1.48348029189073e55 * cos(theta) ** 13 - 4.45215324230386e53 * cos(theta) ** 11 + 9.19175782007178e51 * cos(theta) ** 9 - 1.21432396889022e50 * cos(theta) ** 7 + 9.16635634316842e47 * cos(theta) ** 5 - 3.2332826607296e45 * cos(theta) ** 3 + 3.36333147787406e42 * cos(theta) ) * cos(22 * phi) ) # @torch.jit.script def Yl79_m23(theta, phi): return ( 1.36798204400421e-43 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 4.82017718325256e64 * cos(theta) ** 56 - 4.72807188675729e65 * cos(theta) ** 54 + 2.18253899030635e66 * cos(theta) ** 52 - 6.30511263866278e66 * cos(theta) ** 50 + 1.27876870568906e67 * cos(theta) ** 48 - 1.93617597317753e67 * cos(theta) ** 46 + 2.27204323383077e67 * cos(theta) ** 44 - 2.11758906325508e67 * cos(theta) ** 42 + 1.59374491561418e67 * cos(theta) ** 40 - 9.79606803923612e66 * cos(theta) ** 38 + 4.95441426732589e66 * cos(theta) ** 36 - 2.07118844619463e66 * cos(theta) ** 34 + 7.17244887848882e65 * cos(theta) ** 32 - 2.05756775230217e65 * cos(theta) ** 30 + 4.88027247683449e64 * cos(theta) ** 28 - 9.53355553614179e63 * cos(theta) ** 26 + 1.52480588053449e63 * cos(theta) ** 24 - 1.98045375542362e62 * cos(theta) ** 22 + 2.06632708899212e61 * cos(theta) ** 20 - 1.70770833801002e60 * cos(theta) ** 18 + 1.09781250300644e59 * cos(theta) ** 16 - 5.36172162640508e57 * cos(theta) ** 14 + 1.92852437945795e56 * cos(theta) ** 12 - 4.89736856653424e54 * cos(theta) ** 10 + 8.2725820380646e52 * cos(theta) ** 8 - 8.50026778223151e50 * cos(theta) ** 6 + 4.58317817158421e48 * cos(theta) ** 4 - 9.6998479821888e45 * cos(theta) ** 2 + 3.36333147787406e42 ) * cos(23 * phi) ) # @torch.jit.script def Yl79_m24(theta, phi): return ( 1.80122419108307e-45 * (1.0 - cos(theta) ** 2) ** 12 * ( 2.69929922262143e66 * cos(theta) ** 55 - 2.55315881884893e67 * cos(theta) ** 53 + 1.1349202749593e68 * cos(theta) ** 51 - 3.15255631933139e68 * cos(theta) ** 49 + 6.13808978730748e68 * cos(theta) ** 47 - 8.90640947661662e68 * cos(theta) ** 45 + 9.99699022885539e68 * cos(theta) ** 43 - 8.89387406567135e68 * cos(theta) ** 41 + 6.37497966245673e68 * cos(theta) ** 39 - 3.72250585490972e68 * cos(theta) ** 37 + 1.78358913623732e68 * cos(theta) ** 35 - 7.04204071706175e67 * cos(theta) ** 33 + 2.29518364111642e67 * cos(theta) ** 31 - 6.17270325690652e66 * cos(theta) ** 29 + 1.36647629351366e66 * cos(theta) ** 27 - 2.47872443939686e65 * cos(theta) ** 25 + 3.65953411328277e64 * cos(theta) ** 23 - 4.35699826193196e63 * cos(theta) ** 21 + 4.13265417798424e62 * cos(theta) ** 19 - 3.07387500841803e61 * cos(theta) ** 17 + 1.7565000048103e60 * cos(theta) ** 15 - 7.50641027696711e58 * cos(theta) ** 13 + 2.31422925534954e57 * cos(theta) ** 11 - 4.89736856653424e55 * cos(theta) ** 9 + 6.61806563045168e53 * cos(theta) ** 7 - 5.10016066933891e51 * cos(theta) ** 5 + 1.83327126863368e49 * cos(theta) ** 3 - 1.93996959643776e46 * cos(theta) ) * cos(24 * phi) ) # @torch.jit.script def Yl79_m25(theta, phi): return ( 2.38160512752777e-47 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 1.48461457244179e68 * cos(theta) ** 54 - 1.35317417398994e69 * cos(theta) ** 52 + 5.78809340229243e69 * cos(theta) ** 50 - 1.54475259647238e70 * cos(theta) ** 48 + 2.88490220003451e70 * cos(theta) ** 46 - 4.00788426447748e70 * cos(theta) ** 44 + 4.29870579840782e70 * cos(theta) ** 42 - 3.64648836692525e70 * cos(theta) ** 40 + 2.48624206835813e70 * cos(theta) ** 38 - 1.3773271663166e70 * cos(theta) ** 36 + 6.24256197683062e69 * cos(theta) ** 34 - 2.32387343663038e69 * cos(theta) ** 32 + 7.11506928746091e68 * cos(theta) ** 30 - 1.79008394450289e68 * cos(theta) ** 28 + 3.68948599248687e67 * cos(theta) ** 26 - 6.19681109849216e66 * cos(theta) ** 24 + 8.41692846055038e65 * cos(theta) ** 22 - 9.14969635005712e64 * cos(theta) ** 20 + 7.85204293817006e63 * cos(theta) ** 18 - 5.22558751431065e62 * cos(theta) ** 16 + 2.63475000721546e61 * cos(theta) ** 14 - 9.75833336005725e59 * cos(theta) ** 12 + 2.5456521808845e58 * cos(theta) ** 10 - 4.40763170988082e56 * cos(theta) ** 8 + 4.63264594131617e54 * cos(theta) ** 6 - 2.55008033466945e52 * cos(theta) ** 4 + 5.49981380590105e49 * cos(theta) ** 2 - 1.93996959643776e46 ) * cos(25 * phi) ) # @torch.jit.script def Yl79_m26(theta, phi): return ( 3.16284731617631e-49 * (1.0 - cos(theta) ** 2) ** 13 * ( 8.01691869118565e69 * cos(theta) ** 53 - 7.03650570474766e70 * cos(theta) ** 51 + 2.89404670114622e71 * cos(theta) ** 49 - 7.41481246306743e71 * cos(theta) ** 47 + 1.32705501201588e72 * cos(theta) ** 45 - 1.76346907637009e72 * cos(theta) ** 43 + 1.80545643533128e72 * cos(theta) ** 41 - 1.4585953467701e72 * cos(theta) ** 39 + 9.44771985976088e71 * cos(theta) ** 37 - 4.95837779873975e71 * cos(theta) ** 35 + 2.12247107212241e71 * cos(theta) ** 33 - 7.43639499721721e70 * cos(theta) ** 31 + 2.13452078623827e70 * cos(theta) ** 29 - 5.01223504460809e69 * cos(theta) ** 27 + 9.59266358046587e68 * cos(theta) ** 25 - 1.48723466363812e68 * cos(theta) ** 23 + 1.85172426132108e67 * cos(theta) ** 21 - 1.82993927001142e66 * cos(theta) ** 19 + 1.41336772887061e65 * cos(theta) ** 17 - 8.36094002289705e63 * cos(theta) ** 15 + 3.68865001010164e62 * cos(theta) ** 13 - 1.17100000320687e61 * cos(theta) ** 11 + 2.5456521808845e59 * cos(theta) ** 9 - 3.52610536790465e57 * cos(theta) ** 7 + 2.7795875647897e55 * cos(theta) ** 5 - 1.02003213386778e53 * cos(theta) ** 3 + 1.09996276118021e50 * cos(theta) ) * cos(26 * phi) ) # @torch.jit.script def Yl79_m27(theta, phi): return ( 4.21975619835083e-51 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 4.2489669063284e71 * cos(theta) ** 52 - 3.58861790942131e72 * cos(theta) ** 50 + 1.41808288356165e73 * cos(theta) ** 48 - 3.48496185764169e73 * cos(theta) ** 46 + 5.97174755407144e73 * cos(theta) ** 44 - 7.58291702839139e73 * cos(theta) ** 42 + 7.40237138485826e73 * cos(theta) ** 40 - 5.68852185240339e73 * cos(theta) ** 38 + 3.49565634811153e73 * cos(theta) ** 36 - 1.73543222955891e73 * cos(theta) ** 34 + 7.00415453800396e72 * cos(theta) ** 32 - 2.30528244913733e72 * cos(theta) ** 30 + 6.19011028009099e71 * cos(theta) ** 28 - 1.35330346204418e71 * cos(theta) ** 26 + 2.39816589511647e70 * cos(theta) ** 24 - 3.42063972636767e69 * cos(theta) ** 22 + 3.88862094877427e68 * cos(theta) ** 20 - 3.4768846130217e67 * cos(theta) ** 18 + 2.40272513908004e66 * cos(theta) ** 16 - 1.25414100343456e65 * cos(theta) ** 14 + 4.79524501313213e63 * cos(theta) ** 12 - 1.28810000352756e62 * cos(theta) ** 10 + 2.29108696279605e60 * cos(theta) ** 8 - 2.46827375753326e58 * cos(theta) ** 6 + 1.38979378239485e56 * cos(theta) ** 4 - 3.06009640160334e53 * cos(theta) ** 2 + 1.09996276118021e50 ) * cos(27 * phi) ) # @torch.jit.script def Yl79_m28(theta, phi): return ( 5.65709926188388e-53 * (1.0 - cos(theta) ** 2) ** 14 * ( 2.20946279129077e73 * cos(theta) ** 51 - 1.79430895471065e74 * cos(theta) ** 49 + 6.8067978410959e74 * cos(theta) ** 47 - 1.60308245451518e75 * cos(theta) ** 45 + 2.62756892379143e75 * cos(theta) ** 43 - 3.18482515192438e75 * cos(theta) ** 41 + 2.9609485539433e75 * cos(theta) ** 39 - 2.16163830391329e75 * cos(theta) ** 37 + 1.25843628532015e75 * cos(theta) ** 35 - 5.9004695805003e74 * cos(theta) ** 33 + 2.24132945216127e74 * cos(theta) ** 31 - 6.91584734741201e73 * cos(theta) ** 29 + 1.73323087842548e73 * cos(theta) ** 27 - 3.51858900131488e72 * cos(theta) ** 25 + 5.75559814827952e71 * cos(theta) ** 23 - 7.52540739800888e70 * cos(theta) ** 21 + 7.77724189754855e69 * cos(theta) ** 19 - 6.25839230343907e68 * cos(theta) ** 17 + 3.84436022252806e67 * cos(theta) ** 15 - 1.75579740480838e66 * cos(theta) ** 13 + 5.75429401575856e64 * cos(theta) ** 11 - 1.28810000352756e63 * cos(theta) ** 9 + 1.83286957023684e61 * cos(theta) ** 7 - 1.48096425451995e59 * cos(theta) ** 5 + 5.55917512957941e56 * cos(theta) ** 3 - 6.12019280320669e53 * cos(theta) ) * cos(28 * phi) ) # @torch.jit.script def Yl79_m29(theta, phi): return ( 7.62248947429769e-55 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 1.12682602355829e75 * cos(theta) ** 50 - 8.79211387808221e75 * cos(theta) ** 48 + 3.19919498531507e76 * cos(theta) ** 46 - 7.2138710453183e76 * cos(theta) ** 44 + 1.12985463723032e77 * cos(theta) ** 42 - 1.305778312289e77 * cos(theta) ** 40 + 1.15476993603789e77 * cos(theta) ** 38 - 7.99806172447917e76 * cos(theta) ** 36 + 4.40452699862052e76 * cos(theta) ** 34 - 1.9471549615651e76 * cos(theta) ** 32 + 6.94812130169993e75 * cos(theta) ** 30 - 2.00559573074948e75 * cos(theta) ** 28 + 4.67972337174879e74 * cos(theta) ** 26 - 8.7964725032872e73 * cos(theta) ** 24 + 1.32378757410429e73 * cos(theta) ** 22 - 1.58033555358187e72 * cos(theta) ** 20 + 1.47767596053422e71 * cos(theta) ** 18 - 1.06392669158464e70 * cos(theta) ** 16 + 5.76654033379209e68 * cos(theta) ** 14 - 2.28253662625089e67 * cos(theta) ** 12 + 6.32972341733441e65 * cos(theta) ** 10 - 1.1592900031748e64 * cos(theta) ** 8 + 1.28300869916579e62 * cos(theta) ** 6 - 7.40482127259977e59 * cos(theta) ** 4 + 1.66775253887382e57 * cos(theta) ** 2 - 6.12019280320669e53 ) * cos(29 * phi) ) # @torch.jit.script def Yl79_m30(theta, phi): return ( 1.03252026024309e-56 * (1.0 - cos(theta) ** 2) ** 15 * ( 5.63413011779145e76 * cos(theta) ** 49 - 4.22021466147946e77 * cos(theta) ** 47 + 1.47162969324493e78 * cos(theta) ** 45 - 3.17410325994005e78 * cos(theta) ** 43 + 4.74538947636733e78 * cos(theta) ** 41 - 5.22311324915599e78 * cos(theta) ** 39 + 4.38812575694398e78 * cos(theta) ** 37 - 2.8793022208125e78 * cos(theta) ** 35 + 1.49753917953098e78 * cos(theta) ** 33 - 6.23089587700832e77 * cos(theta) ** 31 + 2.08443639050998e77 * cos(theta) ** 29 - 5.61566804609855e76 * cos(theta) ** 27 + 1.21672807665469e76 * cos(theta) ** 25 - 2.11115340078893e75 * cos(theta) ** 23 + 2.91233266302944e74 * cos(theta) ** 21 - 3.16067110716373e73 * cos(theta) ** 19 + 2.6598167289616e72 * cos(theta) ** 17 - 1.70228270653543e71 * cos(theta) ** 15 + 8.07315646730893e69 * cos(theta) ** 13 - 2.73904395150107e68 * cos(theta) ** 11 + 6.32972341733441e66 * cos(theta) ** 9 - 9.27432002539841e64 * cos(theta) ** 7 + 7.69805219499472e62 * cos(theta) ** 5 - 2.96192850903991e60 * cos(theta) ** 3 + 3.33550507774765e57 * cos(theta) ) * cos(30 * phi) ) # @torch.jit.script def Yl79_m31(theta, phi): return ( 1.40638491539987e-58 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 2.76072375771781e78 * cos(theta) ** 48 - 1.98350089089535e79 * cos(theta) ** 46 + 6.6223336196022e79 * cos(theta) ** 44 - 1.36486440177422e80 * cos(theta) ** 42 + 1.94560968531061e80 * cos(theta) ** 40 - 2.03701416717084e80 * cos(theta) ** 38 + 1.62360653006927e80 * cos(theta) ** 36 - 1.00775577728438e80 * cos(theta) ** 34 + 4.94187929245223e79 * cos(theta) ** 32 - 1.93157772187258e79 * cos(theta) ** 30 + 6.04486553247894e78 * cos(theta) ** 28 - 1.51623037244661e78 * cos(theta) ** 26 + 3.04182019163671e77 * cos(theta) ** 24 - 4.85565282181453e76 * cos(theta) ** 22 + 6.11589859236182e75 * cos(theta) ** 20 - 6.00527510361109e74 * cos(theta) ** 18 + 4.52168843923473e73 * cos(theta) ** 16 - 2.55342405980314e72 * cos(theta) ** 14 + 1.04951034075016e71 * cos(theta) ** 12 - 3.01294834665118e69 * cos(theta) ** 10 + 5.69675107560097e67 * cos(theta) ** 8 - 6.49202401777888e65 * cos(theta) ** 6 + 3.84902609749736e63 * cos(theta) ** 4 - 8.88578552711973e60 * cos(theta) ** 2 + 3.33550507774765e57 ) * cos(31 * phi) ) # @torch.jit.script def Yl79_m32(theta, phi): return ( 1.92673546544391e-60 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.32514740370455e80 * cos(theta) ** 47 - 9.12410409811859e80 * cos(theta) ** 45 + 2.91382679262497e81 * cos(theta) ** 43 - 5.73243048745174e81 * cos(theta) ** 41 + 7.78243874124242e81 * cos(theta) ** 39 - 7.74065383524918e81 * cos(theta) ** 37 + 5.84498350824938e81 * cos(theta) ** 35 - 3.42636964276688e81 * cos(theta) ** 33 + 1.58140137358471e81 * cos(theta) ** 31 - 5.79473316561774e80 * cos(theta) ** 29 + 1.6925623490941e80 * cos(theta) ** 27 - 3.94219896836118e79 * cos(theta) ** 25 + 7.30036845992811e78 * cos(theta) ** 23 - 1.0682436207992e78 * cos(theta) ** 21 + 1.22317971847236e77 * cos(theta) ** 19 - 1.08094951865e76 * cos(theta) ** 17 + 7.23470150277556e74 * cos(theta) ** 15 - 3.5747936837244e73 * cos(theta) ** 13 + 1.25941240890019e72 * cos(theta) ** 11 - 3.01294834665118e70 * cos(theta) ** 9 + 4.55740086048078e68 * cos(theta) ** 7 - 3.89521441066733e66 * cos(theta) ** 5 + 1.53961043899895e64 * cos(theta) ** 3 - 1.77715710542395e61 * cos(theta) ) * cos(32 * phi) ) # @torch.jit.script def Yl79_m33(theta, phi): return ( 2.6556091185738e-62 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 6.22819279741139e81 * cos(theta) ** 46 - 4.10584684415337e82 * cos(theta) ** 44 + 1.25294552082874e83 * cos(theta) ** 42 - 2.35029649985521e83 * cos(theta) ** 40 + 3.03515110908455e83 * cos(theta) ** 38 - 2.86404191904219e83 * cos(theta) ** 36 + 2.04574422788728e83 * cos(theta) ** 34 - 1.13070198211307e83 * cos(theta) ** 32 + 4.90234425811261e82 * cos(theta) ** 30 - 1.68047261802914e82 * cos(theta) ** 28 + 4.56991834255408e81 * cos(theta) ** 26 - 9.85549742090295e80 * cos(theta) ** 24 + 1.67908474578347e80 * cos(theta) ** 22 - 2.24331160367831e79 * cos(theta) ** 20 + 2.32404146509749e78 * cos(theta) ** 18 - 1.83761418170499e77 * cos(theta) ** 16 + 1.08520522541633e76 * cos(theta) ** 14 - 4.64723178884171e74 * cos(theta) ** 12 + 1.38535364979021e73 * cos(theta) ** 10 - 2.71165351198606e71 * cos(theta) ** 8 + 3.19018060233654e69 * cos(theta) ** 6 - 1.94760720533367e67 * cos(theta) ** 4 + 4.61883131699684e64 * cos(theta) ** 2 - 1.77715710542395e61 ) * cos(33 * phi) ) # @torch.jit.script def Yl79_m34(theta, phi): return ( 3.68337565752144e-64 * (1.0 - cos(theta) ** 2) ** 17 * ( 2.86496868680924e83 * cos(theta) ** 45 - 1.80657261142748e84 * cos(theta) ** 43 + 5.26237118748069e84 * cos(theta) ** 41 - 9.40118599942085e84 * cos(theta) ** 39 + 1.15335742145213e85 * cos(theta) ** 37 - 1.03105509085519e85 * cos(theta) ** 35 + 6.95553037481676e84 * cos(theta) ** 33 - 3.61824634276182e84 * cos(theta) ** 31 + 1.47070327743378e84 * cos(theta) ** 29 - 4.7053233304816e83 * cos(theta) ** 27 + 1.18817876906406e83 * cos(theta) ** 25 - 2.36531938101671e82 * cos(theta) ** 23 + 3.69398644072362e81 * cos(theta) ** 21 - 4.48662320735663e80 * cos(theta) ** 19 + 4.18327463717548e79 * cos(theta) ** 17 - 2.94018269072799e78 * cos(theta) ** 15 + 1.51928731558287e77 * cos(theta) ** 13 - 5.57667814661006e75 * cos(theta) ** 11 + 1.38535364979021e74 * cos(theta) ** 9 - 2.16932280958885e72 * cos(theta) ** 7 + 1.91410836140193e70 * cos(theta) ** 5 - 7.79042882133466e67 * cos(theta) ** 3 + 9.23766263399367e64 * cos(theta) ) * cos(34 * phi) ) # @torch.jit.script def Yl79_m35(theta, phi): return ( 5.14265429953116e-66 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 1.28923590906416e85 * cos(theta) ** 44 - 7.76826222913817e85 * cos(theta) ** 42 + 2.15757218686708e86 * cos(theta) ** 40 - 3.66646253977413e86 * cos(theta) ** 38 + 4.26742245937287e86 * cos(theta) ** 36 - 3.60869281799317e86 * cos(theta) ** 34 + 2.29532502368953e86 * cos(theta) ** 32 - 1.12165636625616e86 * cos(theta) ** 30 + 4.26503950455797e85 * cos(theta) ** 28 - 1.27043729923003e85 * cos(theta) ** 26 + 2.97044692266015e84 * cos(theta) ** 24 - 5.44023457633843e83 * cos(theta) ** 22 + 7.75737152551961e82 * cos(theta) ** 20 - 8.5245840939776e81 * cos(theta) ** 18 + 7.11156688319832e80 * cos(theta) ** 16 - 4.41027403609198e79 * cos(theta) ** 14 + 1.97507351025773e78 * cos(theta) ** 12 - 6.13434596127106e76 * cos(theta) ** 10 + 1.24681828481119e75 * cos(theta) ** 8 - 1.51852596671219e73 * cos(theta) ** 6 + 9.57054180700963e70 * cos(theta) ** 4 - 2.3371286464004e68 * cos(theta) ** 2 + 9.23766263399367e64 ) * cos(35 * phi) ) # @torch.jit.script def Yl79_m36(theta, phi): return ( 7.22956343354814e-68 * (1.0 - cos(theta) ** 2) ** 18 * ( 5.67263799988229e86 * cos(theta) ** 43 - 3.26267013623803e87 * cos(theta) ** 41 + 8.63028874746834e87 * cos(theta) ** 39 - 1.39325576511417e88 * cos(theta) ** 37 + 1.53627208537423e88 * cos(theta) ** 35 - 1.22695555811768e88 * cos(theta) ** 33 + 7.3450400758065e87 * cos(theta) ** 31 - 3.36496909876849e87 * cos(theta) ** 29 + 1.19421106127623e87 * cos(theta) ** 27 - 3.30313697799809e86 * cos(theta) ** 25 + 7.12907261438436e85 * cos(theta) ** 23 - 1.19685160679445e85 * cos(theta) ** 21 + 1.55147430510392e84 * cos(theta) ** 19 - 1.53442513691597e83 * cos(theta) ** 17 + 1.13785070131173e82 * cos(theta) ** 15 - 6.17438365052878e80 * cos(theta) ** 13 + 2.37008821230927e79 * cos(theta) ** 11 - 6.13434596127106e77 * cos(theta) ** 9 + 9.97454627848953e75 * cos(theta) ** 7 - 9.11115580027317e73 * cos(theta) ** 5 + 3.82821672280385e71 * cos(theta) ** 3 - 4.6742572928008e68 * cos(theta) ) * cos(36 * phi) ) # @torch.jit.script def Yl79_m37(theta, phi): return ( 1.02364377621677e-69 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 2.43923433994938e88 * cos(theta) ** 42 - 1.33769475585759e89 * cos(theta) ** 40 + 3.36581261151265e89 * cos(theta) ** 38 - 5.15504633092243e89 * cos(theta) ** 36 + 5.37695229880982e89 * cos(theta) ** 34 - 4.04895334178833e89 * cos(theta) ** 32 + 2.27696242350001e89 * cos(theta) ** 30 - 9.75841038642863e88 * cos(theta) ** 28 + 3.22436986544582e88 * cos(theta) ** 26 - 8.25784244499522e87 * cos(theta) ** 24 + 1.6396867013084e87 * cos(theta) ** 22 - 2.51338837426835e86 * cos(theta) ** 20 + 2.94780117969745e85 * cos(theta) ** 18 - 2.60852273275714e84 * cos(theta) ** 16 + 1.7067760519676e83 * cos(theta) ** 14 - 8.02669874568741e81 * cos(theta) ** 12 + 2.6070970335402e80 * cos(theta) ** 10 - 5.52091136514396e78 * cos(theta) ** 8 + 6.98218239494267e76 * cos(theta) ** 6 - 4.55557790013658e74 * cos(theta) ** 4 + 1.14846501684116e72 * cos(theta) ** 2 - 4.6742572928008e68 ) * cos(37 * phi) ) # @torch.jit.script def Yl79_m38(theta, phi): return ( 1.46026364875154e-71 * (1.0 - cos(theta) ** 2) ** 19 * ( 1.02447842277874e90 * cos(theta) ** 41 - 5.35077902343037e90 * cos(theta) ** 39 + 1.27900879237481e91 * cos(theta) ** 37 - 1.85581667913207e91 * cos(theta) ** 35 + 1.82816378159534e91 * cos(theta) ** 33 - 1.29566506937227e91 * cos(theta) ** 31 + 6.83088727050004e90 * cos(theta) ** 29 - 2.73235490820002e90 * cos(theta) ** 27 + 8.38336165015914e89 * cos(theta) ** 25 - 1.98188218679885e89 * cos(theta) ** 23 + 3.60731074287849e88 * cos(theta) ** 21 - 5.02677674853671e87 * cos(theta) ** 19 + 5.30604212345541e86 * cos(theta) ** 17 - 4.17363637241143e85 * cos(theta) ** 15 + 2.38948647275464e84 * cos(theta) ** 13 - 9.63203849482489e82 * cos(theta) ** 11 + 2.6070970335402e81 * cos(theta) ** 9 - 4.41672909211516e79 * cos(theta) ** 7 + 4.1893094369656e77 * cos(theta) ** 5 - 1.82223116005463e75 * cos(theta) ** 3 + 2.29693003368231e72 * cos(theta) ) * cos(38 * phi) ) # @torch.jit.script def Yl79_m39(theta, phi): return ( 2.09941522393326e-73 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 4.20036153339284e91 * cos(theta) ** 40 - 2.08680381913784e92 * cos(theta) ** 38 + 4.73233253178679e92 * cos(theta) ** 36 - 6.49535837696226e92 * cos(theta) ** 34 + 6.03294047926461e92 * cos(theta) ** 32 - 4.01656171505403e92 * cos(theta) ** 30 + 1.98095730844501e92 * cos(theta) ** 28 - 7.37735825214005e91 * cos(theta) ** 26 + 2.09584041253979e91 * cos(theta) ** 24 - 4.55832902963736e90 * cos(theta) ** 22 + 7.57535256004482e89 * cos(theta) ** 20 - 9.55087582221975e88 * cos(theta) ** 18 + 9.0202716098742e87 * cos(theta) ** 16 - 6.26045455861715e86 * cos(theta) ** 14 + 3.10633241458103e85 * cos(theta) ** 12 - 1.05952423443074e84 * cos(theta) ** 10 + 2.34638733018618e82 * cos(theta) ** 8 - 3.09171036448062e80 * cos(theta) ** 6 + 2.0946547184828e78 * cos(theta) ** 4 - 5.4666934801639e75 * cos(theta) ** 2 + 2.29693003368231e72 ) * cos(39 * phi) ) # @torch.jit.script def Yl79_m40(theta, phi): return ( 3.04295034661076e-75 * (1.0 - cos(theta) ** 2) ** 20 * ( 1.68014461335714e93 * cos(theta) ** 39 - 7.92985451272381e93 * cos(theta) ** 37 + 1.70363971144324e94 * cos(theta) ** 35 - 2.20842184816717e94 * cos(theta) ** 33 + 1.93054095336468e94 * cos(theta) ** 31 - 1.20496851451621e94 * cos(theta) ** 29 + 5.54668046364603e93 * cos(theta) ** 27 - 1.91811314555641e93 * cos(theta) ** 25 + 5.03001699009549e92 * cos(theta) ** 23 - 1.00283238652022e92 * cos(theta) ** 21 + 1.51507051200896e91 * cos(theta) ** 19 - 1.71915764799955e90 * cos(theta) ** 17 + 1.44324345757987e89 * cos(theta) ** 15 - 8.76463638206401e87 * cos(theta) ** 13 + 3.72759889749723e86 * cos(theta) ** 11 - 1.05952423443074e85 * cos(theta) ** 9 + 1.87710986414895e83 * cos(theta) ** 7 - 1.85502621868837e81 * cos(theta) ** 5 + 8.37861887393121e78 * cos(theta) ** 3 - 1.09333869603278e76 * cos(theta) ) * cos(40 * phi) ) # @torch.jit.script def Yl79_m41(theta, phi): return ( 4.44807333974679e-77 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 6.55256399209283e94 * cos(theta) ** 38 - 2.93404616970781e95 * cos(theta) ** 36 + 5.96273899005135e95 * cos(theta) ** 34 - 7.28779209895165e95 * cos(theta) ** 32 + 5.9846769554305e95 * cos(theta) ** 30 - 3.494408692097e95 * cos(theta) ** 28 + 1.49760372518443e95 * cos(theta) ** 26 - 4.79528286389103e94 * cos(theta) ** 24 + 1.15690390772196e94 * cos(theta) ** 22 - 2.10594801169246e93 * cos(theta) ** 20 + 2.87863397281703e92 * cos(theta) ** 18 - 2.92256800159924e91 * cos(theta) ** 16 + 2.16486518636981e90 * cos(theta) ** 14 - 1.13940272966832e89 * cos(theta) ** 12 + 4.10035878724696e87 * cos(theta) ** 10 - 9.53571810987664e85 * cos(theta) ** 8 + 1.31397690490426e84 * cos(theta) ** 6 - 9.27513109344185e81 * cos(theta) ** 4 + 2.51358566217936e79 * cos(theta) ** 2 - 1.09333869603278e76 ) * cos(41 * phi) ) # @torch.jit.script def Yl79_m42(theta, phi): return ( 6.55975253152346e-79 * (1.0 - cos(theta) ** 2) ** 21 * ( 2.48997431699528e96 * cos(theta) ** 37 - 1.05625662109481e97 * cos(theta) ** 35 + 2.02733125661746e97 * cos(theta) ** 33 - 2.33209347166453e97 * cos(theta) ** 31 + 1.79540308662915e97 * cos(theta) ** 29 - 9.78434433787161e96 * cos(theta) ** 27 + 3.89376968547952e96 * cos(theta) ** 25 - 1.15086788733385e96 * cos(theta) ** 23 + 2.54518859698832e95 * cos(theta) ** 21 - 4.21189602338492e94 * cos(theta) ** 19 + 5.18154115107066e93 * cos(theta) ** 17 - 4.67610880255879e92 * cos(theta) ** 15 + 3.03081126091773e91 * cos(theta) ** 13 - 1.36728327560198e90 * cos(theta) ** 11 + 4.10035878724696e88 * cos(theta) ** 9 - 7.62857448790131e86 * cos(theta) ** 7 + 7.88386142942557e84 * cos(theta) ** 5 - 3.71005243737674e82 * cos(theta) ** 3 + 5.02717132435872e79 * cos(theta) ) * cos(42 * phi) ) # @torch.jit.script def Yl79_m43(theta, phi): return ( 9.76352580488884e-81 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 9.21290497288252e97 * cos(theta) ** 36 - 3.69689817383184e98 * cos(theta) ** 34 + 6.69019314683762e98 * cos(theta) ** 32 - 7.22948976216004e98 * cos(theta) ** 30 + 5.20666895122453e98 * cos(theta) ** 28 - 2.64177297122533e98 * cos(theta) ** 26 + 9.73442421369879e97 * cos(theta) ** 24 - 2.64699614086785e97 * cos(theta) ** 22 + 5.34489605367546e96 * cos(theta) ** 20 - 8.00260244443135e95 * cos(theta) ** 18 + 8.80861995682012e94 * cos(theta) ** 16 - 7.01416320383818e93 * cos(theta) ** 14 + 3.94005463919305e92 * cos(theta) ** 12 - 1.50401160316218e91 * cos(theta) ** 10 + 3.69032290852226e89 * cos(theta) ** 8 - 5.34000214153092e87 * cos(theta) ** 6 + 3.94193071471278e85 * cos(theta) ** 4 - 1.11301573121302e83 * cos(theta) ** 2 + 5.02717132435872e79 ) * cos(43 * phi) ) # @torch.jit.script def Yl79_m44(theta, phi): return ( 1.46724579092669e-82 * (1.0 - cos(theta) ** 2) ** 22 * ( 3.31664579023771e99 * cos(theta) ** 35 - 1.25694537910283e100 * cos(theta) ** 33 + 2.14086180698804e100 * cos(theta) ** 31 - 2.16884692864801e100 * cos(theta) ** 29 + 1.45786730634287e100 * cos(theta) ** 27 - 6.86860972518587e99 * cos(theta) ** 25 + 2.33626181128771e99 * cos(theta) ** 23 - 5.82339150990927e98 * cos(theta) ** 21 + 1.06897921073509e98 * cos(theta) ** 19 - 1.44046843999764e97 * cos(theta) ** 17 + 1.40937919309122e96 * cos(theta) ** 15 - 9.81982848537345e94 * cos(theta) ** 13 + 4.72806556703166e93 * cos(theta) ** 11 - 1.50401160316218e92 * cos(theta) ** 9 + 2.95225832681781e90 * cos(theta) ** 7 - 3.20400128491855e88 * cos(theta) ** 5 + 1.57677228588511e86 * cos(theta) ** 3 - 2.22603146242604e83 * cos(theta) ) * cos(44 * phi) ) # @torch.jit.script def Yl79_m45(theta, phi): return ( 2.22719379292105e-84 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 1.1608260265832e101 * cos(theta) ** 34 - 4.14791975103932e101 * cos(theta) ** 32 + 6.63667160166292e101 * cos(theta) ** 30 - 6.28965609307924e101 * cos(theta) ** 28 + 3.93624172712575e101 * cos(theta) ** 26 - 1.71715243129647e101 * cos(theta) ** 24 + 5.37340216596173e100 * cos(theta) ** 22 - 1.22291221708095e100 * cos(theta) ** 20 + 2.03106050039668e99 * cos(theta) ** 18 - 2.44879634799599e98 * cos(theta) ** 16 + 2.11406878963683e97 * cos(theta) ** 14 - 1.27657770309855e96 * cos(theta) ** 12 + 5.20087212373483e94 * cos(theta) ** 10 - 1.35361044284596e93 * cos(theta) ** 8 + 2.06658082877247e91 * cos(theta) ** 6 - 1.60200064245928e89 * cos(theta) ** 4 + 4.73031685765534e86 * cos(theta) ** 2 - 2.22603146242604e83 ) * cos(45 * phi) ) # @torch.jit.script def Yl79_m46(theta, phi): return ( 3.41635932509725e-86 * (1.0 - cos(theta) ** 2) ** 23 * ( 3.94680849038287e102 * cos(theta) ** 33 - 1.32733432033258e103 * cos(theta) ** 31 + 1.99100148049888e103 * cos(theta) ** 29 - 1.76110370606219e103 * cos(theta) ** 27 + 1.02342284905269e103 * cos(theta) ** 25 - 4.12116583511152e102 * cos(theta) ** 23 + 1.18214847651158e102 * cos(theta) ** 21 - 2.44582443416189e101 * cos(theta) ** 19 + 3.65590890071402e100 * cos(theta) ** 17 - 3.91807415679359e99 * cos(theta) ** 15 + 2.95969630549156e98 * cos(theta) ** 13 - 1.53189324371826e97 * cos(theta) ** 11 + 5.20087212373483e95 * cos(theta) ** 9 - 1.08288835427677e94 * cos(theta) ** 7 + 1.23994849726348e92 * cos(theta) ** 5 - 6.4080025698371e89 * cos(theta) ** 3 + 9.46063371531068e86 * cos(theta) ) * cos(46 * phi) ) # @torch.jit.script def Yl79_m47(theta, phi): return ( 5.29811401508428e-88 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 1.30244680182635e104 * cos(theta) ** 32 - 4.11473639303101e104 * cos(theta) ** 30 + 5.77390429344674e104 * cos(theta) ** 28 - 4.7549800063679e104 * cos(theta) ** 26 + 2.55855712263174e104 * cos(theta) ** 24 - 9.4786814207565e103 * cos(theta) ** 22 + 2.48251180067432e103 * cos(theta) ** 20 - 4.6470664249076e102 * cos(theta) ** 18 + 6.21504513121383e101 * cos(theta) ** 16 - 5.87711123519038e100 * cos(theta) ** 14 + 3.84760519713903e99 * cos(theta) ** 12 - 1.68508256809008e98 * cos(theta) ** 10 + 4.68078491136135e96 * cos(theta) ** 8 - 7.5802184799374e94 * cos(theta) ** 6 + 6.1997424863174e92 * cos(theta) ** 4 - 1.92240077095113e90 * cos(theta) ** 2 + 9.46063371531068e86 ) * cos(47 * phi) ) # @torch.jit.script def Yl79_m48(theta, phi): return ( 8.31083098762117e-90 * (1.0 - cos(theta) ** 2) ** 24 * ( 4.16782976584431e105 * cos(theta) ** 31 - 1.2344209179093e106 * cos(theta) ** 29 + 1.61669320216509e106 * cos(theta) ** 27 - 1.23629480165565e106 * cos(theta) ** 25 + 6.14053709431616e105 * cos(theta) ** 23 - 2.08530991256643e105 * cos(theta) ** 21 + 4.96502360134864e104 * cos(theta) ** 19 - 8.36471956483367e103 * cos(theta) ** 17 + 9.94407220994213e102 * cos(theta) ** 15 - 8.22795572926653e101 * cos(theta) ** 13 + 4.61712623656683e100 * cos(theta) ** 11 - 1.68508256809008e99 * cos(theta) ** 9 + 3.74462792908908e97 * cos(theta) ** 7 - 4.54813108796244e95 * cos(theta) ** 5 + 2.47989699452696e93 * cos(theta) ** 3 - 3.84480154190226e90 * cos(theta) ) * cos(48 * phi) ) # @torch.jit.script def Yl79_m49(theta, phi): return ( 1.31934573863126e-91 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.29202722741174e107 * cos(theta) ** 30 - 3.57982066193698e107 * cos(theta) ** 28 + 4.36507164584573e107 * cos(theta) ** 26 - 3.09073700413914e107 * cos(theta) ** 24 + 1.41232353169272e107 * cos(theta) ** 22 - 4.3791508163895e106 * cos(theta) ** 20 + 9.43354484256242e105 * cos(theta) ** 18 - 1.42200232602172e105 * cos(theta) ** 16 + 1.49161083149132e104 * cos(theta) ** 14 - 1.06963424480465e103 * cos(theta) ** 12 + 5.07883886022352e101 * cos(theta) ** 10 - 1.51657431128108e100 * cos(theta) ** 8 + 2.62123955036235e98 * cos(theta) ** 6 - 2.27406554398122e96 * cos(theta) ** 4 + 7.43969098358088e93 * cos(theta) ** 2 - 3.84480154190226e90 ) * cos(49 * phi) ) # @torch.jit.script def Yl79_m50(theta, phi): return ( 2.12081670805348e-93 * (1.0 - cos(theta) ** 2) ** 25 * ( 3.87608168223521e108 * cos(theta) ** 29 - 1.00234978534235e109 * cos(theta) ** 27 + 1.13491862791989e109 * cos(theta) ** 25 - 7.41776880993393e108 * cos(theta) ** 23 + 3.10711176972398e108 * cos(theta) ** 21 - 8.758301632779e107 * cos(theta) ** 19 + 1.69803807166124e107 * cos(theta) ** 17 - 2.27520372163476e106 * cos(theta) ** 15 + 2.08825516408785e105 * cos(theta) ** 13 - 1.28356109376558e104 * cos(theta) ** 11 + 5.07883886022352e102 * cos(theta) ** 9 - 1.21325944902486e101 * cos(theta) ** 7 + 1.57274373021741e99 * cos(theta) ** 5 - 9.09626217592488e96 * cos(theta) ** 3 + 1.48793819671618e94 * cos(theta) ) * cos(50 * phi) ) # @torch.jit.script def Yl79_m51(theta, phi): return ( 3.45408054887072e-95 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 1.12406368784821e110 * cos(theta) ** 28 - 2.70634442042436e110 * cos(theta) ** 26 + 2.83729656979973e110 * cos(theta) ** 24 - 1.7060868262848e110 * cos(theta) ** 22 + 6.52493471642036e109 * cos(theta) ** 20 - 1.66407731022801e109 * cos(theta) ** 18 + 2.8866647218241e108 * cos(theta) ** 16 - 3.41280558245214e107 * cos(theta) ** 14 + 2.7147317133142e106 * cos(theta) ** 12 - 1.41191720314214e105 * cos(theta) ** 10 + 4.57095497420116e103 * cos(theta) ** 8 - 8.49281614317403e101 * cos(theta) ** 6 + 7.86371865108706e99 * cos(theta) ** 4 - 2.72887865277747e97 * cos(theta) ** 2 + 1.48793819671618e94 ) * cos(51 * phi) ) # @torch.jit.script def Yl79_m52(theta, phi): return ( 5.70318943991758e-97 * (1.0 - cos(theta) ** 2) ** 26 * ( 3.14737832597499e111 * cos(theta) ** 27 - 7.03649549310332e111 * cos(theta) ** 25 + 6.80951176751934e111 * cos(theta) ** 23 - 3.75339101782657e111 * cos(theta) ** 21 + 1.30498694328407e111 * cos(theta) ** 19 - 2.99533915841042e110 * cos(theta) ** 17 + 4.61866355491856e109 * cos(theta) ** 15 - 4.77792781543299e108 * cos(theta) ** 13 + 3.25767805597704e107 * cos(theta) ** 11 - 1.41191720314214e106 * cos(theta) ** 9 + 3.65676397936093e104 * cos(theta) ** 7 - 5.09568968590442e102 * cos(theta) ** 5 + 3.14548746043483e100 * cos(theta) ** 3 - 5.45775730555493e97 * cos(theta) ) * cos(52 * phi) ) # @torch.jit.script def Yl79_m53(theta, phi): return ( 9.55320175784028e-99 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 8.49792148013247e112 * cos(theta) ** 26 - 1.75912387327583e113 * cos(theta) ** 24 + 1.56618770652945e113 * cos(theta) ** 22 - 7.88212113743579e112 * cos(theta) ** 20 + 2.47947519223974e112 * cos(theta) ** 18 - 5.09207656929771e111 * cos(theta) ** 16 + 6.92799533237784e110 * cos(theta) ** 14 - 6.21130616006289e109 * cos(theta) ** 12 + 3.58344586157474e108 * cos(theta) ** 10 - 1.27072548282792e107 * cos(theta) ** 8 + 2.55973478555265e105 * cos(theta) ** 6 - 2.54784484295221e103 * cos(theta) ** 4 + 9.43646238130448e100 * cos(theta) ** 2 - 5.45775730555493e97 ) * cos(53 * phi) ) # @torch.jit.script def Yl79_m54(theta, phi): return ( 1.62456261699261e-100 * (1.0 - cos(theta) ** 2) ** 27 * ( 2.20945958483444e114 * cos(theta) ** 25 - 4.22189729586199e114 * cos(theta) ** 23 + 3.44561295436479e114 * cos(theta) ** 21 - 1.57642422748716e114 * cos(theta) ** 19 + 4.46305534603152e113 * cos(theta) ** 17 - 8.14732251087634e112 * cos(theta) ** 15 + 9.69919346532898e111 * cos(theta) ** 13 - 7.45356739207547e110 * cos(theta) ** 11 + 3.58344586157474e109 * cos(theta) ** 9 - 1.01658038626234e108 * cos(theta) ** 7 + 1.53584087133159e106 * cos(theta) ** 5 - 1.01913793718088e104 * cos(theta) ** 3 + 1.8872924762609e101 * cos(theta) ) * cos(54 * phi) ) # @torch.jit.script def Yl79_m55(theta, phi): return ( 2.80681670039947e-102 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 5.52364896208611e115 * cos(theta) ** 24 - 9.71036378048259e115 * cos(theta) ** 22 + 7.23578720416606e115 * cos(theta) ** 20 - 2.9952060322256e115 * cos(theta) ** 18 + 7.58719408825359e114 * cos(theta) ** 16 - 1.22209837663145e114 * cos(theta) ** 14 + 1.26089515049277e113 * cos(theta) ** 12 - 8.19892413128302e111 * cos(theta) ** 10 + 3.22510127541727e110 * cos(theta) ** 8 - 7.11606270383637e108 * cos(theta) ** 6 + 7.67920435665796e106 * cos(theta) ** 4 - 3.05741381154265e104 * cos(theta) ** 2 + 1.8872924762609e101 ) * cos(55 * phi) ) # @torch.jit.script def Yl79_m56(theta, phi): return ( 4.9310743043671e-104 * (1.0 - cos(theta) ** 2) ** 28 * ( 1.32567575090067e117 * cos(theta) ** 23 - 2.13628003170617e117 * cos(theta) ** 21 + 1.44715744083321e117 * cos(theta) ** 19 - 5.39137085800608e116 * cos(theta) ** 17 + 1.21395105412057e116 * cos(theta) ** 15 - 1.71093772728403e115 * cos(theta) ** 13 + 1.51307418059132e114 * cos(theta) ** 11 - 8.19892413128302e112 * cos(theta) ** 9 + 2.58008102033382e111 * cos(theta) ** 7 - 4.26963762230182e109 * cos(theta) ** 5 + 3.07168174266318e107 * cos(theta) ** 3 - 6.1148276230853e104 * cos(theta) ) * cos(56 * phi) ) # @torch.jit.script def Yl79_m57(theta, phi): return ( 8.81674285596453e-106 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 3.04905422707153e118 * cos(theta) ** 22 - 4.48618806658295e118 * cos(theta) ** 20 + 2.7495991375831e118 * cos(theta) ** 18 - 9.16533045861034e117 * cos(theta) ** 16 + 1.82092658118086e117 * cos(theta) ** 14 - 2.22421904546924e116 * cos(theta) ** 12 + 1.66438159865045e115 * cos(theta) ** 10 - 7.37903171815471e113 * cos(theta) ** 8 + 1.80605671423367e112 * cos(theta) ** 6 - 2.13481881115091e110 * cos(theta) ** 4 + 9.21504522798955e107 * cos(theta) ** 2 - 6.1148276230853e104 ) * cos(57 * phi) ) # @torch.jit.script def Yl79_m58(theta, phi): return ( 1.60596675451142e-107 * (1.0 - cos(theta) ** 2) ** 29 * ( 6.70791929955737e119 * cos(theta) ** 21 - 8.97237613316591e119 * cos(theta) ** 19 + 4.94927844764958e119 * cos(theta) ** 17 - 1.46645287337765e119 * cos(theta) ** 15 + 2.54929721365321e118 * cos(theta) ** 13 - 2.66906285456309e117 * cos(theta) ** 11 + 1.66438159865045e116 * cos(theta) ** 9 - 5.90322537452377e114 * cos(theta) ** 7 + 1.0836340285402e113 * cos(theta) ** 5 - 8.53927524460365e110 * cos(theta) ** 3 + 1.84300904559791e108 * cos(theta) ) * cos(58 * phi) ) # @torch.jit.script def Yl79_m59(theta, phi): return ( 2.98323427469855e-109 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 1.40866305290705e121 * cos(theta) ** 20 - 1.70475146530152e121 * cos(theta) ** 18 + 8.41377336100429e120 * cos(theta) ** 16 - 2.19967931006648e120 * cos(theta) ** 14 + 3.31408637774917e119 * cos(theta) ** 12 - 2.9359691400194e118 * cos(theta) ** 10 + 1.49794343878541e117 * cos(theta) ** 8 - 4.13225776216664e115 * cos(theta) ** 6 + 5.41817014270101e113 * cos(theta) ** 4 - 2.56178257338109e111 * cos(theta) ** 2 + 1.84300904559791e108 ) * cos(59 * phi) ) # @torch.jit.script def Yl79_m60(theta, phi): return ( 5.6580263030966e-111 * (1.0 - cos(theta) ** 2) ** 30 * ( 2.8173261058141e122 * cos(theta) ** 19 - 3.06855263754274e122 * cos(theta) ** 17 + 1.34620373776069e122 * cos(theta) ** 15 - 3.07955103409307e121 * cos(theta) ** 13 + 3.976903653299e120 * cos(theta) ** 11 - 2.9359691400194e119 * cos(theta) ** 9 + 1.19835475102833e118 * cos(theta) ** 7 - 2.47935465729998e116 * cos(theta) ** 5 + 2.16726805708041e114 * cos(theta) ** 3 - 5.12356514676219e111 * cos(theta) ) * cos(60 * phi) ) # @torch.jit.script def Yl79_m61(theta, phi): return ( 1.09704424566073e-112 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 5.35291960104678e123 * cos(theta) ** 18 - 5.21653948382266e123 * cos(theta) ** 16 + 2.01930560664103e123 * cos(theta) ** 14 - 4.003416344321e122 * cos(theta) ** 12 + 4.3745940186289e121 * cos(theta) ** 10 - 2.64237222601746e120 * cos(theta) ** 8 + 8.38848325719828e118 * cos(theta) ** 6 - 1.23967732864999e117 * cos(theta) ** 4 + 6.50180417124122e114 * cos(theta) ** 2 - 5.12356514676219e111 ) * cos(61 * phi) ) # @torch.jit.script def Yl79_m62(theta, phi): return ( 2.17760113832657e-114 * (1.0 - cos(theta) ** 2) ** 31 * ( 9.63525528188421e124 * cos(theta) ** 17 - 8.34646317411626e124 * cos(theta) ** 15 + 2.82702784929744e124 * cos(theta) ** 13 - 4.80409961318519e123 * cos(theta) ** 11 + 4.3745940186289e122 * cos(theta) ** 9 - 2.11389778081397e121 * cos(theta) ** 7 + 5.03308995431897e119 * cos(theta) ** 5 - 4.95870931459997e117 * cos(theta) ** 3 + 1.30036083424824e115 * cos(theta) ) * cos(62 * phi) ) # @torch.jit.script def Yl79_m63(theta, phi): return ( 4.43210154436816e-116 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 1.63799339792032e126 * cos(theta) ** 16 - 1.25196947611744e126 * cos(theta) ** 14 + 3.67513620408667e125 * cos(theta) ** 12 - 5.28450957450371e124 * cos(theta) ** 10 + 3.93713461676601e123 * cos(theta) ** 8 - 1.47972844656978e122 * cos(theta) ** 6 + 2.51654497715948e120 * cos(theta) ** 4 - 1.48761279437999e118 * cos(theta) ** 2 + 1.30036083424824e115 ) * cos(63 * phi) ) # @torch.jit.script def Yl79_m64(theta, phi): return ( 9.26577376004489e-118 * (1.0 - cos(theta) ** 2) ** 32 * ( 2.6207894366725e127 * cos(theta) ** 15 - 1.75275726656441e127 * cos(theta) ** 13 + 4.41016344490401e126 * cos(theta) ** 11 - 5.28450957450371e125 * cos(theta) ** 9 + 3.14970769341281e124 * cos(theta) ** 7 - 8.87837067941866e122 * cos(theta) ** 5 + 1.00661799086379e121 * cos(theta) ** 3 - 2.97522558875998e118 * cos(theta) ) * cos(64 * phi) ) # @torch.jit.script def Yl79_m65(theta, phi): return ( 1.99367708124331e-119 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 3.93118415500876e128 * cos(theta) ** 14 - 2.27858444653374e128 * cos(theta) ** 12 + 4.85117978939441e127 * cos(theta) ** 10 - 4.75605861705334e126 * cos(theta) ** 8 + 2.20479538538897e125 * cos(theta) ** 6 - 4.43918533970933e123 * cos(theta) ** 4 + 3.01985397259138e121 * cos(theta) ** 2 - 2.97522558875998e118 ) * cos(65 * phi) ) # @torch.jit.script def Yl79_m66(theta, phi): return ( 4.42493400038439e-121 * (1.0 - cos(theta) ** 2) ** 33 * ( 5.50365781701226e129 * cos(theta) ** 13 - 2.73430133584049e129 * cos(theta) ** 11 + 4.85117978939441e128 * cos(theta) ** 9 - 3.80484689364267e127 * cos(theta) ** 7 + 1.32287723123338e126 * cos(theta) ** 5 - 1.77567413588373e124 * cos(theta) ** 3 + 6.03970794518276e121 * cos(theta) ) * cos(66 * phi) ) # @torch.jit.script def Yl79_m67(theta, phi): return ( 1.01568419240514e-122 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 7.15475516211594e130 * cos(theta) ** 12 - 3.00773146942453e130 * cos(theta) ** 10 + 4.36606181045497e129 * cos(theta) ** 8 - 2.66339282554987e128 * cos(theta) ** 6 + 6.6143861561669e126 * cos(theta) ** 4 - 5.32702240765119e124 * cos(theta) ** 2 + 6.03970794518276e121 ) * cos(67 * phi) ) # @torch.jit.script def Yl79_m68(theta, phi): return ( 2.41829569620271e-124 * (1.0 - cos(theta) ** 2) ** 34 * ( 8.58570619453912e131 * cos(theta) ** 11 - 3.00773146942453e131 * cos(theta) ** 9 + 3.49284944836398e130 * cos(theta) ** 7 - 1.59803569532992e129 * cos(theta) ** 5 + 2.64575446246676e127 * cos(theta) ** 3 - 1.06540448153024e125 * cos(theta) ) * cos(68 * phi) ) # @torch.jit.script def Yl79_m69(theta, phi): return ( 5.99352336472808e-126 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 9.44427681399304e132 * cos(theta) ** 10 - 2.70695832248208e132 * cos(theta) ** 8 + 2.44499461385478e131 * cos(theta) ** 6 - 7.99017847664962e129 * cos(theta) ** 4 + 7.93726338740028e127 * cos(theta) ** 2 - 1.06540448153024e125 ) * cos(69 * phi) ) # @torch.jit.script def Yl79_m70(theta, phi): return ( 1.55270541818914e-127 * (1.0 - cos(theta) ** 2) ** 35 * ( 9.44427681399304e133 * cos(theta) ** 9 - 2.16556665798566e133 * cos(theta) ** 7 + 1.46699676831287e132 * cos(theta) ** 5 - 3.19607139065985e130 * cos(theta) ** 3 + 1.58745267748006e128 * cos(theta) ) * cos(70 * phi) ) # @torch.jit.script def Yl79_m71(theta, phi): return ( 4.22592888379797e-129 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 8.49984913259373e134 * cos(theta) ** 8 - 1.51589666058997e134 * cos(theta) ** 6 + 7.33498384156435e132 * cos(theta) ** 4 - 9.58821417197954e130 * cos(theta) ** 2 + 1.58745267748006e128 ) * cos(71 * phi) ) # @torch.jit.script def Yl79_m72(theta, phi): return ( 1.21587440706328e-130 * (1.0 - cos(theta) ** 2) ** 36 * ( 6.79987930607499e135 * cos(theta) ** 7 - 9.09537996353979e134 * cos(theta) ** 5 + 2.93399353662574e133 * cos(theta) ** 3 - 1.91764283439591e131 * cos(theta) ) * cos(72 * phi) ) # @torch.jit.script def Yl79_m73(theta, phi): return ( 3.72750215421727e-132 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 4.75991551425249e136 * cos(theta) ** 6 - 4.5476899817699e135 * cos(theta) ** 4 + 8.80198060987722e133 * cos(theta) ** 2 - 1.91764283439591e131 ) * cos(73 * phi) ) # @torch.jit.script def Yl79_m74(theta, phi): return ( 1.23025903314616e-133 * (1.0 - cos(theta) ** 2) ** 37 * ( 2.85594930855149e137 * cos(theta) ** 5 - 1.81907599270796e136 * cos(theta) ** 3 + 1.76039612197544e134 * cos(theta) ) * cos(74 * phi) ) # @torch.jit.script def Yl79_m75(theta, phi): return ( 4.43354580712399e-135 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 1.42797465427575e138 * cos(theta) ** 4 - 5.45722797812387e136 * cos(theta) ** 2 + 1.76039612197544e134 ) * cos(75 * phi) ) # @torch.jit.script def Yl79_m76(theta, phi): return ( 1.78055484392831e-136 * (1.0 - cos(theta) ** 2) ** 38 * (5.71189861710299e138 * cos(theta) ** 3 - 1.09144559562477e137 * cos(theta)) * cos(76 * phi) ) # @torch.jit.script def Yl79_m77(theta, phi): return ( 8.23061767764012e-138 * (1.0 - cos(theta) ** 2) ** 38.5 * (1.7135695851309e139 * cos(theta) ** 2 - 1.09144559562477e137) * cos(77 * phi) ) # @torch.jit.script def Yl79_m78(theta, phi): return 15.9183975012566 * (1.0 - cos(theta) ** 2) ** 39 * cos(78 * phi) * cos(theta) # @torch.jit.script def Yl79_m79(theta, phi): return 1.26639970845295 * (1.0 - cos(theta) ** 2) ** 39.5 * cos(79 * phi) # @torch.jit.script def Yl80_m_minus_80(theta, phi): return 1.27035104319811 * (1.0 - cos(theta) ** 2) ** 40 * sin(80 * phi) # @torch.jit.script def Yl80_m_minus_79(theta, phi): return ( 16.0688108979079 * (1.0 - cos(theta) ** 2) ** 39.5 * sin(79 * phi) * cos(theta) ) # @torch.jit.script def Yl80_m_minus_78(theta, phi): return ( 5.2585793883761e-140 * (1.0 - cos(theta) ** 2) ** 39 * (2.72457564035813e141 * cos(theta) ** 2 - 1.7135695851309e139) * sin(78 * phi) ) # @torch.jit.script def Yl80_m_minus_77(theta, phi): return ( 1.1448737705593e-138 * (1.0 - cos(theta) ** 2) ** 38.5 * (9.08191880119375e140 * cos(theta) ** 3 - 1.7135695851309e139 * cos(theta)) * sin(77 * phi) ) # @torch.jit.script def Yl80_m_minus_76(theta, phi): return ( 2.86904544565473e-137 * (1.0 - cos(theta) ** 2) ** 38 * ( 2.27047970029844e140 * cos(theta) ** 4 - 8.56784792565448e138 * cos(theta) ** 2 + 2.72861398906194e136 ) * sin(76 * phi) ) # @torch.jit.script def Yl80_m_minus_75(theta, phi): return ( 8.01280785992094e-136 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 4.54095940059688e139 * cos(theta) ** 5 - 2.85594930855149e138 * cos(theta) ** 3 + 2.72861398906194e136 * cos(theta) ) * sin(75 * phi) ) # @torch.jit.script def Yl80_m_minus_74(theta, phi): return ( 2.44357798144463e-134 * (1.0 - cos(theta) ** 2) ** 37 * ( 7.56826566766146e138 * cos(theta) ** 6 - 7.13987327137874e137 * cos(theta) ** 4 + 1.36430699453097e136 * cos(theta) ** 2 - 2.93399353662574e133 ) * sin(74 * phi) ) # @torch.jit.script def Yl80_m_minus_73(theta, phi): return ( 8.02297767216779e-133 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 1.08118080966592e138 * cos(theta) ** 7 - 1.42797465427575e137 * cos(theta) ** 5 + 4.5476899817699e135 * cos(theta) ** 3 - 2.93399353662574e133 * cos(theta) ) * sin(73 * phi) ) # @torch.jit.script def Yl80_m_minus_72(theta, phi): return ( 2.8068958115897e-131 * (1.0 - cos(theta) ** 2) ** 36 * ( 1.3514760120824e137 * cos(theta) ** 8 - 2.37995775712625e136 * cos(theta) ** 6 + 1.13692249544247e135 * cos(theta) ** 4 - 1.46699676831287e133 * cos(theta) ** 2 + 2.39705354299488e130 ) * sin(72 * phi) ) # @torch.jit.script def Yl80_m_minus_71(theta, phi): return ( 1.03817207075031e-129 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 1.50164001342489e136 * cos(theta) ** 9 - 3.39993965303749e135 * cos(theta) ** 7 + 2.27384499088495e134 * cos(theta) ** 5 - 4.88998922770956e132 * cos(theta) ** 3 + 2.39705354299488e130 * cos(theta) ) * sin(71 * phi) ) # @torch.jit.script def Yl80_m_minus_70(theta, phi): return ( 4.03420362055988e-128 * (1.0 - cos(theta) ** 2) ** 35 * ( 1.50164001342489e135 * cos(theta) ** 10 - 4.24992456629687e134 * cos(theta) ** 8 + 3.78974165147491e133 * cos(theta) ** 6 - 1.22249730692739e132 * cos(theta) ** 4 + 1.19852677149744e130 * cos(theta) ** 2 - 1.58745267748006e127 ) * sin(70 * phi) ) # @torch.jit.script def Yl80_m_minus_69(theta, phi): return ( 1.63870125727749e-126 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 1.36512728493172e134 * cos(theta) ** 11 - 4.72213840699652e133 * cos(theta) ** 9 + 5.41391664496416e132 * cos(theta) ** 7 - 2.44499461385478e131 * cos(theta) ** 5 + 3.99508923832481e129 * cos(theta) ** 3 - 1.58745267748006e127 * cos(theta) ) * sin(69 * phi) ) # @torch.jit.script def Yl80_m_minus_68(theta, phi): return ( 6.92920713888528e-125 * (1.0 - cos(theta) ** 2) ** 34 * ( 1.13760607077643e133 * cos(theta) ** 12 - 4.72213840699652e132 * cos(theta) ** 10 + 6.7673958062052e131 * cos(theta) ** 8 - 4.0749910230913e130 * cos(theta) ** 6 + 9.98772309581202e128 * cos(theta) ** 4 - 7.93726338740028e126 * cos(theta) ** 2 + 8.87837067941866e123 ) * sin(68 * phi) ) # @torch.jit.script def Yl80_m_minus_67(theta, phi): return ( 3.03938753480969e-123 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 8.75081592904949e131 * cos(theta) ** 13 - 4.29285309726956e131 * cos(theta) ** 11 + 7.51932867356133e130 * cos(theta) ** 9 - 5.82141574727329e129 * cos(theta) ** 7 + 1.9975446191624e128 * cos(theta) ** 5 - 2.64575446246676e126 * cos(theta) ** 3 + 8.87837067941866e123 * cos(theta) ) * sin(67 * phi) ) # @torch.jit.script def Yl80_m_minus_66(theta, phi): return ( 1.37882377465523e-121 * (1.0 - cos(theta) ** 2) ** 33 * ( 6.25058280646392e130 * cos(theta) ** 14 - 3.57737758105797e130 * cos(theta) ** 12 + 7.51932867356133e129 * cos(theta) ** 10 - 7.27676968409161e128 * cos(theta) ** 8 + 3.32924103193734e127 * cos(theta) ** 6 - 6.6143861561669e125 * cos(theta) ** 4 + 4.43918533970933e123 * cos(theta) ** 2 - 4.31407710370197e120 ) * sin(66 * phi) ) # @torch.jit.script def Yl80_m_minus_65(theta, phi): return ( 6.45254171114326e-120 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 4.16705520430928e129 * cos(theta) ** 15 - 2.75182890850613e129 * cos(theta) ** 13 + 6.83575333960121e128 * cos(theta) ** 11 - 8.08529964899068e127 * cos(theta) ** 9 + 4.75605861705334e126 * cos(theta) ** 7 - 1.32287723123338e125 * cos(theta) ** 5 + 1.47972844656978e123 * cos(theta) ** 3 - 4.31407710370197e120 * cos(theta) ) * sin(65 * phi) ) # @torch.jit.script def Yl80_m_minus_64(theta, phi): return ( 3.10795565153335e-118 * (1.0 - cos(theta) ** 2) ** 32 * ( 2.6044095026933e128 * cos(theta) ** 16 - 1.96559207750438e128 * cos(theta) ** 14 + 5.69646111633434e127 * cos(theta) ** 12 - 8.08529964899068e126 * cos(theta) ** 10 + 5.94507327131668e125 * cos(theta) ** 8 - 2.20479538538897e124 * cos(theta) ** 6 + 3.69932111642444e122 * cos(theta) ** 4 - 2.15703855185099e120 * cos(theta) ** 2 + 1.85951599297499e117 ) * sin(64 * phi) ) # @torch.jit.script def Yl80_m_minus_63(theta, phi): return ( 1.53773153172088e-116 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 1.53200558981959e127 * cos(theta) ** 17 - 1.31039471833625e127 * cos(theta) ** 15 + 4.38189316641103e126 * cos(theta) ** 13 - 7.35027240817335e125 * cos(theta) ** 11 + 6.60563696812964e124 * cos(theta) ** 9 - 3.14970769341281e123 * cos(theta) ** 7 + 7.39864223284888e121 * cos(theta) ** 5 - 7.19012850616995e119 * cos(theta) ** 3 + 1.85951599297499e117 * cos(theta) ) * sin(63 * phi) ) # @torch.jit.script def Yl80_m_minus_62(theta, phi): return ( 7.80161996679641e-115 * (1.0 - cos(theta) ** 2) ** 31 * ( 8.51114216566438e125 * cos(theta) ** 18 - 8.18996698960158e125 * cos(theta) ** 16 + 3.1299236902936e125 * cos(theta) ** 14 - 6.12522700681112e124 * cos(theta) ** 12 + 6.60563696812964e123 * cos(theta) ** 10 - 3.93713461676601e122 * cos(theta) ** 8 + 1.23310703880815e121 * cos(theta) ** 6 - 1.79753212654249e119 * cos(theta) ** 4 + 9.29757996487494e116 * cos(theta) ** 2 - 7.22422685693469e113 ) * sin(62 * phi) ) # @torch.jit.script def Yl80_m_minus_61(theta, phi): return ( 4.05233894854369e-113 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 4.47954850824441e124 * cos(theta) ** 19 - 4.8176276409421e124 * cos(theta) ** 17 + 2.08661579352906e124 * cos(theta) ** 15 - 4.7117130821624e123 * cos(theta) ** 13 + 6.00512451648149e122 * cos(theta) ** 11 - 4.3745940186289e121 * cos(theta) ** 9 + 1.76158148401164e120 * cos(theta) ** 7 - 3.59506425308498e118 * cos(theta) ** 5 + 3.09919332162498e116 * cos(theta) ** 3 - 7.22422685693469e113 * cos(theta) ) * sin(61 * phi) ) # @torch.jit.script def Yl80_m_minus_60(theta, phi): return ( 2.1519407912383e-111 * (1.0 - cos(theta) ** 2) ** 30 * ( 2.23977425412221e123 * cos(theta) ** 20 - 2.67645980052339e123 * cos(theta) ** 18 + 1.30413487095567e123 * cos(theta) ** 16 - 3.36550934440172e122 * cos(theta) ** 14 + 5.00427043040124e121 * cos(theta) ** 12 - 4.3745940186289e120 * cos(theta) ** 10 + 2.20197685501455e119 * cos(theta) ** 8 - 5.99177375514163e117 * cos(theta) ** 6 + 7.74798330406245e115 * cos(theta) ** 4 - 3.61211342846734e113 * cos(theta) ** 2 + 2.56178257338109e110 ) * sin(60 * phi) ) # @torch.jit.script def Yl80_m_minus_59(theta, phi): return ( 1.16682031850865e-109 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 1.06655916862962e122 * cos(theta) ** 21 - 1.40866305290705e122 * cos(theta) ** 19 + 7.67138159385685e121 * cos(theta) ** 17 - 2.24367289626781e121 * cos(theta) ** 15 + 3.84943879261634e120 * cos(theta) ** 13 - 3.976903653299e119 * cos(theta) ** 11 + 2.44664095001616e118 * cos(theta) ** 9 - 8.55967679305947e116 * cos(theta) ** 7 + 1.54959666081249e115 * cos(theta) ** 5 - 1.20403780948911e113 * cos(theta) ** 3 + 2.56178257338109e110 * cos(theta) ) * sin(59 * phi) ) # @torch.jit.script def Yl80_m_minus_58(theta, phi): return ( 6.45242141144206e-108 * (1.0 - cos(theta) ** 2) ** 29 * ( 4.84799622104374e120 * cos(theta) ** 22 - 7.04331526453524e120 * cos(theta) ** 20 + 4.26187866325381e120 * cos(theta) ** 18 - 1.40229556016738e120 * cos(theta) ** 16 + 2.7495991375831e119 * cos(theta) ** 14 - 3.31408637774917e118 * cos(theta) ** 12 + 2.44664095001616e117 * cos(theta) ** 10 - 1.06995959913243e116 * cos(theta) ** 8 + 2.58266110135415e114 * cos(theta) ** 6 - 3.01009452372279e112 * cos(theta) ** 4 + 1.28089128669055e110 * cos(theta) ** 2 - 8.37731384362686e106 ) * sin(58 * phi) ) # @torch.jit.script def Yl80_m_minus_57(theta, phi): return ( 3.63518221459163e-106 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 2.10782444393206e119 * cos(theta) ** 23 - 3.35395964977869e119 * cos(theta) ** 21 + 2.24309403329148e119 * cos(theta) ** 19 - 8.2487974127493e118 * cos(theta) ** 17 + 1.83306609172207e118 * cos(theta) ** 15 - 2.54929721365321e117 * cos(theta) ** 13 + 2.22421904546924e116 * cos(theta) ** 11 - 1.18884399903604e115 * cos(theta) ** 9 + 3.68951585907736e113 * cos(theta) ** 7 - 6.02018904744557e111 * cos(theta) ** 5 + 4.26963762230182e109 * cos(theta) ** 3 - 8.37731384362686e106 * cos(theta) ) * sin(57 * phi) ) # @torch.jit.script def Yl80_m_minus_56(theta, phi): return ( 2.0844529143887e-104 * (1.0 - cos(theta) ** 2) ** 28 * ( 8.78260184971691e117 * cos(theta) ** 24 - 1.52452711353577e118 * cos(theta) ** 22 + 1.12154701664574e118 * cos(theta) ** 20 - 4.58266522930517e117 * cos(theta) ** 18 + 1.14566630732629e117 * cos(theta) ** 16 - 1.82092658118086e116 * cos(theta) ** 14 + 1.85351587122437e115 * cos(theta) ** 12 - 1.18884399903604e114 * cos(theta) ** 10 + 4.6118948238467e112 * cos(theta) ** 8 - 1.00336484124093e111 * cos(theta) ** 6 + 1.06740940557546e109 * cos(theta) ** 4 - 4.18865692181343e106 * cos(theta) ** 2 + 2.54784484295221e103 ) * sin(56 * phi) ) # @torch.jit.script def Yl80_m_minus_55(theta, phi): return ( 1.21543446708706e-102 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 3.51304073988677e116 * cos(theta) ** 25 - 6.62837875450333e116 * cos(theta) ** 23 + 5.34070007926542e116 * cos(theta) ** 21 - 2.41192906805535e116 * cos(theta) ** 19 + 6.7392135725076e115 * cos(theta) ** 17 - 1.21395105412057e115 * cos(theta) ** 15 + 1.42578143940336e114 * cos(theta) ** 13 - 1.08076727185094e113 * cos(theta) ** 11 + 5.12432758205188e111 * cos(theta) ** 9 - 1.4333783446299e110 * cos(theta) ** 7 + 2.13481881115091e108 * cos(theta) ** 5 - 1.39621897393781e106 * cos(theta) ** 3 + 2.54784484295221e103 * cos(theta) ) * sin(55 * phi) ) # @torch.jit.script def Yl80_m_minus_54(theta, phi): return ( 7.20087224763713e-101 * (1.0 - cos(theta) ** 2) ** 27 * ( 1.35116951534106e115 * cos(theta) ** 26 - 2.76182448104305e115 * cos(theta) ** 24 + 2.42759094512065e115 * cos(theta) ** 22 - 1.20596453402768e115 * cos(theta) ** 20 + 3.744007540282e114 * cos(theta) ** 18 - 7.58719408825359e113 * cos(theta) ** 16 + 1.01841531385954e113 * cos(theta) ** 14 - 9.00639393209119e111 * cos(theta) ** 12 + 5.12432758205188e110 * cos(theta) ** 10 - 1.79172293078737e109 * cos(theta) ** 8 + 3.55803135191819e107 * cos(theta) ** 6 - 3.49054743484453e105 * cos(theta) ** 4 + 1.2739224214761e103 * cos(theta) ** 2 - 7.25881721638806e99 ) * sin(54 * phi) ) # @torch.jit.script def Yl80_m_minus_53(theta, phi): return ( 4.33131118896724e-99 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 5.00433153830024e113 * cos(theta) ** 27 - 1.10472979241722e114 * cos(theta) ** 25 + 1.0554743239655e114 * cos(theta) ** 23 - 5.74268825727465e113 * cos(theta) ** 21 + 1.97053028435895e113 * cos(theta) ** 19 - 4.46305534603152e112 * cos(theta) ** 17 + 6.78943542573028e111 * cos(theta) ** 15 - 6.92799533237784e110 * cos(theta) ** 13 + 4.65847962004717e109 * cos(theta) ** 11 - 1.99080325643041e108 * cos(theta) ** 9 + 5.08290193131169e106 * cos(theta) ** 7 - 6.98109486968905e104 * cos(theta) ** 5 + 4.24640807158701e102 * cos(theta) ** 3 - 7.25881721638806e99 * cos(theta) ) * sin(53 * phi) ) # @torch.jit.script def Yl80_m_minus_52(theta, phi): return ( 2.64316468720293e-97 * (1.0 - cos(theta) ** 2) ** 26 * ( 1.78726126367866e112 * cos(theta) ** 28 - 4.24896074006624e112 * cos(theta) ** 26 + 4.39780968318958e112 * cos(theta) ** 24 - 2.61031284421575e112 * cos(theta) ** 22 + 9.85265142179474e111 * cos(theta) ** 20 - 2.47947519223974e111 * cos(theta) ** 18 + 4.24339714108143e110 * cos(theta) ** 16 - 4.9485680945556e109 * cos(theta) ** 14 + 3.88206635003931e108 * cos(theta) ** 12 - 1.99080325643041e107 * cos(theta) ** 10 + 6.35362741413962e105 * cos(theta) ** 8 - 1.16351581161484e104 * cos(theta) ** 6 + 1.06160201789675e102 * cos(theta) ** 4 - 3.62940860819403e99 * cos(theta) ** 2 + 1.94919903769819e96 ) * sin(52 * phi) ) # @torch.jit.script def Yl80_m_minus_51(theta, phi): return ( 1.63534801463645e-95 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 6.16296987475398e110 * cos(theta) ** 29 - 1.5736891629875e111 * cos(theta) ** 27 + 1.75912387327583e111 * cos(theta) ** 25 - 1.13491862791989e111 * cos(theta) ** 23 + 4.69173877228321e110 * cos(theta) ** 21 - 1.30498694328407e110 * cos(theta) ** 19 + 2.49611596534202e109 * cos(theta) ** 17 - 3.2990453963704e108 * cos(theta) ** 15 + 2.98620488464562e107 * cos(theta) ** 13 - 1.80982114220947e106 * cos(theta) ** 11 + 7.05958601571069e104 * cos(theta) ** 9 - 1.66216544516406e103 * cos(theta) ** 7 + 2.12320403579351e101 * cos(theta) ** 5 - 1.20980286939801e99 * cos(theta) ** 3 + 1.94919903769819e96 * cos(theta) ) * sin(51 * phi) ) # @torch.jit.script def Yl80_m_minus_50(theta, phi): return ( 1.02519496179377e-93 * (1.0 - cos(theta) ** 2) ** 25 * ( 2.05432329158466e109 * cos(theta) ** 30 - 5.62031843924105e109 * cos(theta) ** 28 + 6.76586105106089e109 * cos(theta) ** 26 - 4.72882761633288e109 * cos(theta) ** 24 + 2.132608532856e109 * cos(theta) ** 22 - 6.52493471642036e108 * cos(theta) ** 20 + 1.38673109185668e108 * cos(theta) ** 18 - 2.0619033727315e107 * cos(theta) ** 16 + 2.13300348903259e106 * cos(theta) ** 14 - 1.50818428517456e105 * cos(theta) ** 12 + 7.05958601571069e103 * cos(theta) ** 10 - 2.07770680645507e102 * cos(theta) ** 8 + 3.53867339298918e100 * cos(theta) ** 6 - 3.02450717349502e98 * cos(theta) ** 4 + 9.74599518849095e95 * cos(theta) ** 2 - 4.95979398905392e92 ) * sin(50 * phi) ) # @torch.jit.script def Yl80_m_minus_49(theta, phi): return ( 6.50817146366008e-92 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 6.62684932769246e107 * cos(theta) ** 31 - 1.93804084111761e108 * cos(theta) ** 29 + 2.50587446335588e108 * cos(theta) ** 27 - 1.89153104653315e108 * cos(theta) ** 25 + 9.27221101241741e107 * cos(theta) ** 23 - 3.10711176972398e107 * cos(theta) ** 21 + 7.2985846939825e106 * cos(theta) ** 19 - 1.21288433690088e106 * cos(theta) ** 17 + 1.42200232602172e105 * cos(theta) ** 15 - 1.16014175782658e104 * cos(theta) ** 13 + 6.4178054688279e102 * cos(theta) ** 11 - 2.30856311828342e101 * cos(theta) ** 9 + 5.05524770427025e99 * cos(theta) ** 7 - 6.04901434699005e97 * cos(theta) ** 5 + 3.24866506283032e95 * cos(theta) ** 3 - 4.95979398905392e92 * cos(theta) ) * sin(49 * phi) ) # @torch.jit.script def Yl80_m_minus_48(theta, phi): return ( 4.18146851075132e-90 * (1.0 - cos(theta) ** 2) ** 24 * ( 2.07089041490389e106 * cos(theta) ** 32 - 6.46013613705868e106 * cos(theta) ** 30 + 8.94955165484244e106 * cos(theta) ** 28 - 7.27511940974289e106 * cos(theta) ** 26 + 3.86342125517392e106 * cos(theta) ** 24 - 1.41232353169272e106 * cos(theta) ** 22 + 3.64929234699125e105 * cos(theta) ** 20 - 6.73824631611601e104 * cos(theta) ** 18 + 8.88751453763577e103 * cos(theta) ** 16 - 8.28672684161844e102 * cos(theta) ** 14 + 5.34817122402325e101 * cos(theta) ** 12 - 2.30856311828342e100 * cos(theta) ** 10 + 6.31905963033782e98 * cos(theta) ** 8 - 1.00816905783167e97 * cos(theta) ** 6 + 8.12166265707579e94 * cos(theta) ** 4 - 2.47989699452696e92 * cos(theta) ** 2 + 1.20150048184446e89 ) * sin(48 * phi) ) # @torch.jit.script def Yl80_m_minus_47(theta, phi): return ( 2.71763286152957e-88 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 6.27542549970877e104 * cos(theta) ** 33 - 2.08391488292216e105 * cos(theta) ** 31 + 3.08605229477326e105 * cos(theta) ** 29 - 2.69448867027514e105 * cos(theta) ** 27 + 1.54536850206957e105 * cos(theta) ** 25 - 6.14053709431616e104 * cos(theta) ** 23 + 1.73775826047202e104 * cos(theta) ** 21 - 3.54644542953474e103 * cos(theta) ** 19 + 5.22794972802104e102 * cos(theta) ** 17 - 5.52448456107896e101 * cos(theta) ** 15 + 4.11397786463327e100 * cos(theta) ** 13 - 2.09869374389401e99 * cos(theta) ** 11 + 7.02117736704202e97 * cos(theta) ** 9 - 1.44024151118811e96 * cos(theta) ** 7 + 1.62433253141516e94 * cos(theta) ** 5 - 8.26632331508986e91 * cos(theta) ** 3 + 1.20150048184446e89 * cos(theta) ) * sin(47 * phi) ) # @torch.jit.script def Yl80_m_minus_46(theta, phi): return ( 1.78579706299295e-86 * (1.0 - cos(theta) ** 2) ** 23 * ( 1.84571338226728e103 * cos(theta) ** 34 - 6.51223400913174e103 * cos(theta) ** 32 + 1.02868409825775e104 * cos(theta) ** 30 - 9.62317382241123e103 * cos(theta) ** 28 + 5.94372500795988e103 * cos(theta) ** 26 - 2.55855712263174e103 * cos(theta) ** 24 + 7.89890118396375e102 * cos(theta) ** 22 - 1.77322271476737e102 * cos(theta) ** 20 + 2.90441651556725e101 * cos(theta) ** 18 - 3.45280285067435e100 * cos(theta) ** 16 + 2.93855561759519e99 * cos(theta) ** 14 - 1.74891145324501e98 * cos(theta) ** 12 + 7.02117736704202e96 * cos(theta) ** 10 - 1.80030188898513e95 * cos(theta) ** 8 + 2.70722088569193e93 * cos(theta) ** 6 - 2.06658082877247e91 * cos(theta) ** 4 + 6.00750240922228e88 * cos(theta) ** 2 - 2.78253932803255e85 ) * sin(46 * phi) ) # @torch.jit.script def Yl80_m_minus_45(theta, phi): return ( 1.18590909315835e-84 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 5.27346680647795e101 * cos(theta) ** 35 - 1.97340424519144e102 * cos(theta) ** 33 + 3.31833580083146e102 * cos(theta) ** 31 - 3.31833580083146e102 * cos(theta) ** 29 + 2.20137963257773e102 * cos(theta) ** 27 - 1.02342284905269e102 * cos(theta) ** 25 + 3.43430486259293e101 * cos(theta) ** 23 - 8.44391768936844e100 * cos(theta) ** 21 + 1.52864027135118e100 * cos(theta) ** 19 - 2.03106050039668e99 * cos(theta) ** 17 + 1.95903707839679e98 * cos(theta) ** 15 - 1.34531650249616e97 * cos(theta) ** 13 + 6.38288851549275e95 * cos(theta) ** 11 - 2.0003354322057e94 * cos(theta) ** 9 + 3.86745840813133e92 * cos(theta) ** 7 - 4.13316165754493e90 * cos(theta) ** 5 + 2.00250080307409e88 * cos(theta) ** 3 - 2.78253932803255e85 * cos(theta) ) * sin(45 * phi) ) # @torch.jit.script def Yl80_m_minus_44(theta, phi): return ( 7.95532004231161e-83 * (1.0 - cos(theta) ** 2) ** 22 * ( 1.46485189068832e100 * cos(theta) ** 36 - 5.80413013291599e100 * cos(theta) ** 34 + 1.03697993775983e101 * cos(theta) ** 32 - 1.10611193361049e101 * cos(theta) ** 30 + 7.86207011634904e100 * cos(theta) ** 28 - 3.93624172712575e100 * cos(theta) ** 26 + 1.43096035941372e100 * cos(theta) ** 24 - 3.83814440425838e99 * cos(theta) ** 22 + 7.64320135675591e98 * cos(theta) ** 20 - 1.12836694466482e98 * cos(theta) ** 18 + 1.224398173998e97 * cos(theta) ** 16 - 9.60940358925831e95 * cos(theta) ** 14 + 5.31907376291062e94 * cos(theta) ** 12 - 2.0003354322057e93 * cos(theta) ** 10 + 4.83432301016416e91 * cos(theta) ** 8 - 6.88860276257489e89 * cos(theta) ** 6 + 5.00625200768524e87 * cos(theta) ** 4 - 1.39126966401628e85 * cos(theta) ** 2 + 6.18342072896123e81 ) * sin(44 * phi) ) # @torch.jit.script def Yl80_m_minus_43(theta, phi): return ( 5.38851828134669e-81 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 3.95905916402249e98 * cos(theta) ** 37 - 1.65832289511885e99 * cos(theta) ** 35 + 3.14236344775706e99 * cos(theta) ** 33 - 3.56810301164673e99 * cos(theta) ** 31 + 2.71105866081002e99 * cos(theta) ** 29 - 1.45786730634287e99 * cos(theta) ** 27 + 5.72384143765489e98 * cos(theta) ** 25 - 1.66875843663408e98 * cos(theta) ** 23 + 3.63961969369329e97 * cos(theta) ** 21 - 5.93877339297274e96 * cos(theta) ** 19 + 7.20234219998821e95 * cos(theta) ** 17 - 6.40626905950554e94 * cos(theta) ** 15 + 4.09159520223894e93 * cos(theta) ** 13 - 1.81848675655064e92 * cos(theta) ** 11 + 5.37147001129351e90 * cos(theta) ** 9 - 9.84086108939269e88 * cos(theta) ** 7 + 1.00125040153705e87 * cos(theta) ** 5 - 4.63756554672092e84 * cos(theta) ** 3 + 6.18342072896123e81 * cos(theta) ) * sin(43 * phi) ) # @torch.jit.script def Yl80_m_minus_42(theta, phi): return ( 3.68394989380334e-79 * (1.0 - cos(theta) ** 2) ** 21 * ( 1.04185767474276e97 * cos(theta) ** 38 - 4.60645248644126e97 * cos(theta) ** 36 + 9.2422454345796e97 * cos(theta) ** 34 - 1.1150321911396e98 * cos(theta) ** 32 + 9.03686220270005e97 * cos(theta) ** 30 - 5.20666895122453e97 * cos(theta) ** 28 + 2.20147747602111e97 * cos(theta) ** 26 - 6.95316015264199e96 * cos(theta) ** 24 + 1.65437258804241e96 * cos(theta) ** 22 - 2.96938669648637e95 * cos(theta) ** 20 + 4.00130122221567e94 * cos(theta) ** 18 - 4.00391816219096e93 * cos(theta) ** 16 + 2.92256800159924e92 * cos(theta) ** 14 - 1.51540563045887e91 * cos(theta) ** 12 + 5.37147001129351e89 * cos(theta) ** 10 - 1.23010763617409e88 * cos(theta) ** 8 + 1.66875066922841e86 * cos(theta) ** 6 - 1.15939138668023e84 * cos(theta) ** 4 + 3.09171036448062e81 * cos(theta) ** 2 - 1.32293982219966e78 ) * sin(42 * phi) ) # @torch.jit.script def Yl80_m_minus_41(theta, phi): return ( 2.54112444185276e-77 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 2.67142993523785e95 * cos(theta) ** 39 - 1.24498715849764e96 * cos(theta) ** 37 + 2.64064155273703e96 * cos(theta) ** 35 - 3.37888542769577e96 * cos(theta) ** 33 + 2.91511683958066e96 * cos(theta) ** 31 - 1.79540308662915e96 * cos(theta) ** 29 + 8.15362028155967e95 * cos(theta) ** 27 - 2.7812640610568e95 * cos(theta) ** 25 + 7.19292429583655e94 * cos(theta) ** 23 - 1.41399366499351e94 * cos(theta) ** 21 + 2.10594801169246e93 * cos(theta) ** 19 - 2.35524597775939e92 * cos(theta) ** 17 + 1.94837866773283e91 * cos(theta) ** 15 - 1.16569663881451e90 * cos(theta) ** 13 + 4.88315455572137e88 * cos(theta) ** 11 - 1.36678626241565e87 * cos(theta) ** 9 + 2.38392952746916e85 * cos(theta) ** 7 - 2.31878277336046e83 * cos(theta) ** 5 + 1.03057012149354e81 * cos(theta) ** 3 - 1.32293982219966e78 * cos(theta) ) * sin(41 * phi) ) # @torch.jit.script def Yl80_m_minus_40(theta, phi): return ( 1.76786303191934e-75 * (1.0 - cos(theta) ** 2) ** 20 * ( 6.67857483809462e93 * cos(theta) ** 40 - 3.27628199604642e94 * cos(theta) ** 38 + 7.33511542426952e94 * cos(theta) ** 36 - 9.93789831675226e94 * cos(theta) ** 34 + 9.10974012368957e94 * cos(theta) ** 32 - 5.9846769554305e94 * cos(theta) ** 30 + 2.91200724341417e94 * cos(theta) ** 28 - 1.06971694656031e94 * cos(theta) ** 26 + 2.99705178993189e93 * cos(theta) ** 24 - 6.42724393178868e92 * cos(theta) ** 22 + 1.05297400584623e92 * cos(theta) ** 20 - 1.30846998764411e91 * cos(theta) ** 18 + 1.21773666733302e90 * cos(theta) ** 16 - 8.3264045629608e88 * cos(theta) ** 14 + 4.06929546310114e87 * cos(theta) ** 12 - 1.36678626241565e86 * cos(theta) ** 10 + 2.97991190933645e84 * cos(theta) ** 8 - 3.86463795560077e82 * cos(theta) ** 6 + 2.57642530373385e80 * cos(theta) ** 4 - 6.61469911099832e77 * cos(theta) ** 2 + 2.73334674008195e74 ) * sin(40 * phi) ) # @torch.jit.script def Yl80_m_minus_39(theta, phi): return ( 1.24002706914668e-73 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 1.6289206922182e92 * cos(theta) ** 41 - 8.40072306678568e92 * cos(theta) ** 39 + 1.98246362818095e93 * cos(theta) ** 37 - 2.83939951907207e93 * cos(theta) ** 35 + 2.76052731020896e93 * cos(theta) ** 33 - 1.93054095336468e93 * cos(theta) ** 31 + 1.00414042876351e93 * cos(theta) ** 29 - 3.96191461689002e92 * cos(theta) ** 27 + 1.19882071597276e92 * cos(theta) ** 25 - 2.79445388338638e91 * cos(theta) ** 23 + 5.01416193260109e90 * cos(theta) ** 21 - 6.88668414549529e89 * cos(theta) ** 19 + 7.16315686666481e88 * cos(theta) ** 17 - 5.5509363753072e87 * cos(theta) ** 15 + 3.13022727930857e86 * cos(theta) ** 13 - 1.24253296583241e85 * cos(theta) ** 11 + 3.31101323259606e83 * cos(theta) ** 9 - 5.52091136514396e81 * cos(theta) ** 7 + 5.15285060746769e79 * cos(theta) ** 5 - 2.20489970366611e77 * cos(theta) ** 3 + 2.73334674008195e74 * cos(theta) ) * sin(39 * phi) ) # @torch.jit.script def Yl80_m_minus_38(theta, phi): return ( 8.7665616559847e-72 * (1.0 - cos(theta) ** 2) ** 19 * ( 3.87838260051952e90 * cos(theta) ** 42 - 2.10018076669642e91 * cos(theta) ** 40 + 5.21700954784461e91 * cos(theta) ** 38 - 7.88722088631131e91 * cos(theta) ** 36 + 8.11919797120282e91 * cos(theta) ** 34 - 6.03294047926461e91 * cos(theta) ** 32 + 3.34713476254502e91 * cos(theta) ** 30 - 1.41496950603215e91 * cos(theta) ** 28 + 4.61084890758753e90 * cos(theta) ** 26 - 1.16435578474433e90 * cos(theta) ** 24 + 2.27916451481868e89 * cos(theta) ** 22 - 3.44334207274765e88 * cos(theta) ** 20 + 3.97953159259156e87 * cos(theta) ** 18 - 3.469335234567e86 * cos(theta) ** 16 + 2.23587662807755e85 * cos(theta) ** 14 - 1.03544413819368e84 * cos(theta) ** 12 + 3.31101323259606e82 * cos(theta) ** 10 - 6.90113920642995e80 * cos(theta) ** 8 + 8.58808434577949e78 * cos(theta) ** 6 - 5.51224925916527e76 * cos(theta) ** 4 + 1.36667337004098e74 * cos(theta) ** 2 - 5.46888103257693e70 ) * sin(38 * phi) ) # @torch.jit.script def Yl80_m_minus_37(theta, phi): return ( 6.2445985377985e-70 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 9.01949441981284e88 * cos(theta) ** 43 - 5.12239211389371e89 * cos(theta) ** 41 + 1.33769475585759e90 * cos(theta) ** 39 - 2.13168132062468e90 * cos(theta) ** 37 + 2.31977084891509e90 * cos(theta) ** 35 - 1.82816378159534e90 * cos(theta) ** 33 + 1.07972089114356e90 * cos(theta) ** 31 - 4.87920519321432e89 * cos(theta) ** 29 + 1.70772181762501e89 * cos(theta) ** 27 - 4.6574231389773e88 * cos(theta) ** 25 + 9.90941093399426e87 * cos(theta) ** 23 - 1.6396867013084e87 * cos(theta) ** 21 + 2.0944903118903e86 * cos(theta) ** 19 - 2.04078543209824e85 * cos(theta) ** 17 + 1.49058441871837e84 * cos(theta) ** 15 - 7.96495490918212e82 * cos(theta) ** 13 + 3.01001202963278e81 * cos(theta) ** 11 - 7.66793245158883e79 * cos(theta) ** 9 + 1.22686919225421e78 * cos(theta) ** 7 - 1.10244985183305e76 * cos(theta) ** 5 + 4.55557790013658e73 * cos(theta) ** 3 - 5.46888103257693e70 * cos(theta) ) * sin(37 * phi) ) # @torch.jit.script def Yl80_m_minus_36(theta, phi): return ( 4.48047225305905e-68 * (1.0 - cos(theta) ** 2) ** 18 * ( 2.04988509541201e87 * cos(theta) ** 44 - 1.21961716997469e88 * cos(theta) ** 42 + 3.34423688964398e88 * cos(theta) ** 40 - 5.60968768585442e88 * cos(theta) ** 38 + 6.44380791365303e88 * cos(theta) ** 36 - 5.37695229880982e88 * cos(theta) ** 34 + 3.37412778482361e88 * cos(theta) ** 32 - 1.62640173107144e88 * cos(theta) ** 30 + 6.0990064915179e87 * cos(theta) ** 28 - 1.79131659191435e87 * cos(theta) ** 26 + 4.12892122249761e86 * cos(theta) ** 24 - 7.45312136958365e85 * cos(theta) ** 22 + 1.04724515594515e85 * cos(theta) ** 20 - 1.13376968449902e84 * cos(theta) ** 18 + 9.3161526169898e82 * cos(theta) ** 16 - 5.68925350655866e81 * cos(theta) ** 14 + 2.50834335802731e80 * cos(theta) ** 12 - 7.66793245158883e78 * cos(theta) ** 10 + 1.53358649031777e77 * cos(theta) ** 8 - 1.83741641972176e75 * cos(theta) ** 6 + 1.13889447503415e73 * cos(theta) ** 4 - 2.73444051628847e70 * cos(theta) ** 2 + 1.06233120290927e67 ) * sin(36 * phi) ) # @torch.jit.script def Yl80_m_minus_35(theta, phi): return ( 3.23712182357191e-66 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 4.55530021202669e85 * cos(theta) ** 45 - 2.83631899994114e86 * cos(theta) ** 43 + 8.15667534059508e86 * cos(theta) ** 41 - 1.43838145791139e87 * cos(theta) ** 39 + 1.74156970639271e87 * cos(theta) ** 37 - 1.53627208537423e87 * cos(theta) ** 35 + 1.02246296509806e87 * cos(theta) ** 33 - 5.24645719700464e86 * cos(theta) ** 31 + 2.10310568673031e86 * cos(theta) ** 29 - 6.63450589597906e85 * cos(theta) ** 27 + 1.65156848899904e85 * cos(theta) ** 25 - 3.24048755199289e84 * cos(theta) ** 23 + 4.98688169497689e83 * cos(theta) ** 21 - 5.96720886578432e82 * cos(theta) ** 19 + 5.48008977469988e81 * cos(theta) ** 17 - 3.7928356710391e80 * cos(theta) ** 15 + 1.92949489079024e79 * cos(theta) ** 13 - 6.97084768326257e77 * cos(theta) ** 11 + 1.70398498924196e76 * cos(theta) ** 9 - 2.62488059960251e74 * cos(theta) ** 7 + 2.27778895006829e72 * cos(theta) ** 5 - 9.11480172096155e69 * cos(theta) ** 3 + 1.06233120290927e67 * cos(theta) ) * sin(35 * phi) ) # @torch.jit.script def Yl80_m_minus_34(theta, phi): return ( 2.35443594596275e-64 * (1.0 - cos(theta) ** 2) ** 17 * ( 9.9028265478841e83 * cos(theta) ** 46 - 6.44617954532078e84 * cos(theta) ** 44 + 1.94206555728454e85 * cos(theta) ** 42 - 3.59595364477847e85 * cos(theta) ** 40 + 4.58307817471766e85 * cos(theta) ** 38 - 4.26742245937287e85 * cos(theta) ** 36 + 3.0072440149943e85 * cos(theta) ** 34 - 1.63951787406395e85 * cos(theta) ** 32 + 7.01035228910103e84 * cos(theta) ** 30 - 2.36946639142109e84 * cos(theta) ** 28 + 6.35218649615017e83 * cos(theta) ** 26 - 1.3502031466637e83 * cos(theta) ** 24 + 2.26676440680768e82 * cos(theta) ** 22 - 2.98360443289216e81 * cos(theta) ** 20 + 3.04449431927771e80 * cos(theta) ** 18 - 2.37052229439944e79 * cos(theta) ** 16 + 1.37821063627874e78 * cos(theta) ** 14 - 5.80903973605214e76 * cos(theta) ** 12 + 1.70398498924196e75 * cos(theta) ** 10 - 3.28110074950314e73 * cos(theta) ** 8 + 3.79631491678049e71 * cos(theta) ** 6 - 2.27870043024039e69 * cos(theta) ** 4 + 5.31165601454636e66 * cos(theta) ** 2 - 2.00818752912906e63 ) * sin(34 * phi) ) # @torch.jit.script def Yl80_m_minus_33(theta, phi): return ( 1.72340851470193e-62 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 2.10698437189023e82 * cos(theta) ** 47 - 1.43248434340462e83 * cos(theta) ** 45 + 4.5164315285687e83 * cos(theta) ** 43 - 8.77061864580116e83 * cos(theta) ** 41 + 1.17514824992761e84 * cos(theta) ** 39 - 1.15335742145213e84 * cos(theta) ** 37 + 8.59212575712658e83 * cos(theta) ** 35 - 4.96823598201197e83 * cos(theta) ** 33 + 2.26140396422614e83 * cos(theta) ** 31 - 8.17057376352101e82 * cos(theta) ** 29 + 2.3526616652408e82 * cos(theta) ** 27 - 5.40081258665482e81 * cos(theta) ** 25 + 9.85549742090295e80 * cos(theta) ** 23 - 1.42076401566293e80 * cos(theta) ** 21 + 1.6023654311988e79 * cos(theta) ** 19 - 1.39442487905849e78 * cos(theta) ** 17 + 9.18807090852496e76 * cos(theta) ** 15 - 4.46849210465549e75 * cos(theta) ** 13 + 1.54907726294724e74 * cos(theta) ** 11 - 3.64566749944793e72 * cos(theta) ** 9 + 5.42330702397212e70 * cos(theta) ** 7 - 4.55740086048078e68 * cos(theta) ** 5 + 1.77055200484879e66 * cos(theta) ** 3 - 2.00818752912906e63 * cos(theta) ) * sin(33 * phi) ) # @torch.jit.script def Yl80_m_minus_32(theta, phi): return ( 1.26925263804963e-60 * (1.0 - cos(theta) ** 2) ** 16 * ( 4.38955077477132e80 * cos(theta) ** 48 - 3.11409639870569e81 * cos(theta) ** 46 + 1.02646171103834e82 * cos(theta) ** 44 - 2.08824253471456e82 * cos(theta) ** 42 + 2.93787062481901e82 * cos(theta) ** 40 - 3.03515110908455e82 * cos(theta) ** 38 + 2.38670159920183e82 * cos(theta) ** 36 - 1.46124587706234e82 * cos(theta) ** 34 + 7.06688738820668e81 * cos(theta) ** 32 - 2.72352458784034e81 * cos(theta) ** 30 + 8.40236309014572e80 * cos(theta) ** 28 - 2.07723561025185e80 * cos(theta) ** 26 + 4.10645725870956e79 * cos(theta) ** 24 - 6.45801825301333e78 * cos(theta) ** 22 + 8.01182715599398e77 * cos(theta) ** 20 - 7.7468048836583e76 * cos(theta) ** 18 + 5.7425443178281e75 * cos(theta) ** 16 - 3.19178007475392e74 * cos(theta) ** 14 + 1.2908977191227e73 * cos(theta) ** 12 - 3.64566749944793e71 * cos(theta) ** 10 + 6.77913377996516e69 * cos(theta) ** 8 - 7.59566810080129e67 * cos(theta) ** 6 + 4.42638001212197e65 * cos(theta) ** 4 - 1.00409376456453e63 * cos(theta) ** 2 + 3.70241063629989e59 ) * sin(32 * phi) ) # @torch.jit.script def Yl80_m_minus_31(theta, phi): return ( 9.40275512733762e-59 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 8.95826688728841e78 * cos(theta) ** 49 - 6.62573701852275e79 * cos(theta) ** 47 + 2.28102602452965e80 * cos(theta) ** 45 - 4.85637798770828e80 * cos(theta) ** 43 + 7.16553810931467e80 * cos(theta) ** 41 - 7.78243874124242e80 * cos(theta) ** 39 + 6.45054486270765e80 * cos(theta) ** 37 - 4.17498822017813e80 * cos(theta) ** 35 + 2.1414810267293e80 * cos(theta) ** 33 - 8.78556318658173e79 * cos(theta) ** 31 + 2.89736658280887e79 * cos(theta) ** 29 - 7.69346522315501e78 * cos(theta) ** 27 + 1.64258290348383e78 * cos(theta) ** 25 - 2.80783402304927e77 * cos(theta) ** 23 + 3.81515578856856e76 * cos(theta) ** 21 - 4.07726572824121e75 * cos(theta) ** 19 + 3.37796724578124e74 * cos(theta) ** 17 - 2.12785338316928e73 * cos(theta) ** 15 + 9.92998245478999e71 * cos(theta) ** 13 - 3.3142431813163e70 * cos(theta) ** 11 + 7.53237086662795e68 * cos(theta) ** 9 - 1.08509544297161e67 * cos(theta) ** 7 + 8.85276002424393e64 * cos(theta) ** 5 - 3.3469792152151e62 * cos(theta) ** 3 + 3.70241063629989e59 * cos(theta) ) * sin(31 * phi) ) # @torch.jit.script def Yl80_m_minus_30(theta, phi): return ( 7.00489480374217e-57 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.79165337745768e77 * cos(theta) ** 50 - 1.38036187885891e78 * cos(theta) ** 48 + 4.95875222723836e78 * cos(theta) ** 46 - 1.1037222699337e79 * cos(theta) ** 44 + 1.70608050221778e79 * cos(theta) ** 42 - 1.94560968531061e79 * cos(theta) ** 40 + 1.6975118059757e79 * cos(theta) ** 38 - 1.15971895004948e79 * cos(theta) ** 36 + 6.29847360802735e78 * cos(theta) ** 34 - 2.74548849580679e78 * cos(theta) ** 32 + 9.6578886093629e77 * cos(theta) ** 30 - 2.74766615112679e77 * cos(theta) ** 28 + 6.31762655186087e76 * cos(theta) ** 26 - 1.1699308429372e76 * cos(theta) ** 24 + 1.73416172207662e75 * cos(theta) ** 22 - 2.03863286412061e74 * cos(theta) ** 20 + 1.87664846987846e73 * cos(theta) ** 18 - 1.3299083644808e72 * cos(theta) ** 16 + 7.09284461056428e70 * cos(theta) ** 14 - 2.76186931776358e69 * cos(theta) ** 12 + 7.53237086662795e67 * cos(theta) ** 10 - 1.35636930371452e66 * cos(theta) ** 8 + 1.47546000404066e64 * cos(theta) ** 6 - 8.36744803803774e61 * cos(theta) ** 4 + 1.85120531814994e59 * cos(theta) ** 2 - 6.67101015549529e55 ) * sin(30 * phi) ) # @torch.jit.script def Yl80_m_minus_29(theta, phi): return ( 5.24666153183604e-55 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 3.51304583815232e75 * cos(theta) ** 51 - 2.81706505889573e76 * cos(theta) ** 49 + 1.05505366536986e77 * cos(theta) ** 47 - 2.45271615540822e77 * cos(theta) ** 45 + 3.96762907492507e77 * cos(theta) ** 43 - 4.74538947636733e77 * cos(theta) ** 41 + 4.35259437429666e77 * cos(theta) ** 39 - 3.13437554067427e77 * cos(theta) ** 37 + 1.79956388800781e77 * cos(theta) ** 35 - 8.31966210850543e76 * cos(theta) ** 33 + 3.11544793850416e76 * cos(theta) ** 31 - 9.47471086595445e75 * cos(theta) ** 29 + 2.33986168587439e75 * cos(theta) ** 27 - 4.67972337174879e74 * cos(theta) ** 25 + 7.53983357424617e73 * cos(theta) ** 23 - 9.70777554343146e72 * cos(theta) ** 21 + 9.87709720988666e71 * cos(theta) ** 19 - 7.82299037929883e70 * cos(theta) ** 17 + 4.72856307370952e69 * cos(theta) ** 15 - 2.12451485981814e68 * cos(theta) ** 13 + 6.84760987875268e66 * cos(theta) ** 11 - 1.50707700412724e65 * cos(theta) ** 9 + 2.10780000577237e63 * cos(theta) ** 7 - 1.67348960760755e61 * cos(theta) ** 5 + 6.17068439383314e58 * cos(theta) ** 3 - 6.67101015549529e55 * cos(theta) ) * sin(29 * phi) ) # @torch.jit.script def Yl80_m_minus_28(theta, phi): return ( 3.95000794401284e-53 * (1.0 - cos(theta) ** 2) ** 14 * ( 6.75585738106215e73 * cos(theta) ** 52 - 5.63413011779145e74 * cos(theta) ** 50 + 2.19802846952055e75 * cos(theta) ** 48 - 5.33199164219179e75 * cos(theta) ** 46 + 9.01733880664788e75 * cos(theta) ** 44 - 1.12985463723032e76 * cos(theta) ** 42 + 1.08814859357416e76 * cos(theta) ** 40 - 8.24835668598492e75 * cos(theta) ** 38 + 4.99878857779948e75 * cos(theta) ** 36 - 2.44695944367807e75 * cos(theta) ** 34 + 9.7357748078255e74 * cos(theta) ** 32 - 3.15823695531815e74 * cos(theta) ** 30 + 8.35664887812284e73 * cos(theta) ** 28 - 1.79989360451877e73 * cos(theta) ** 26 + 3.14159732260257e72 * cos(theta) ** 24 - 4.4126252470143e71 * cos(theta) ** 22 + 4.93854860494333e70 * cos(theta) ** 20 - 4.34610576627713e69 * cos(theta) ** 18 + 2.95535192106845e68 * cos(theta) ** 16 - 1.51751061415581e67 * cos(theta) ** 14 + 5.70634156562724e65 * cos(theta) ** 12 - 1.50707700412724e64 * cos(theta) ** 10 + 2.63475000721546e62 * cos(theta) ** 8 - 2.78914934601258e60 * cos(theta) ** 6 + 1.54267109845829e58 * cos(theta) ** 4 - 3.33550507774765e55 * cos(theta) ** 2 + 1.17696015446282e52 ) * sin(28 * phi) ) # @torch.jit.script def Yl80_m_minus_27(theta, phi): return ( 2.98846230067311e-51 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.27469007189852e72 * cos(theta) ** 53 - 1.10473139564538e73 * cos(theta) ** 51 + 4.48577238677664e73 * cos(theta) ** 49 - 1.13446630684932e74 * cos(theta) ** 47 + 2.00385306814397e74 * cos(theta) ** 45 - 2.62756892379143e74 * cos(theta) ** 43 + 2.65402095993699e74 * cos(theta) ** 41 - 2.11496325281665e74 * cos(theta) ** 39 + 1.35102393994581e74 * cos(theta) ** 37 - 6.99131269622305e73 * cos(theta) ** 35 + 2.95023479025015e73 * cos(theta) ** 33 - 1.01878611461876e73 * cos(theta) ** 31 + 2.88160306142167e72 * cos(theta) ** 29 - 6.66627260932876e71 * cos(theta) ** 27 + 1.25663892904103e71 * cos(theta) ** 25 - 1.91853271609317e70 * cos(theta) ** 23 + 2.35168981187778e69 * cos(theta) ** 21 - 2.28742408751428e68 * cos(theta) ** 19 + 1.73844230651085e67 * cos(theta) ** 17 - 1.01167374277054e66 * cos(theta) ** 15 + 4.38949351202095e64 * cos(theta) ** 13 - 1.37007000375204e63 * cos(theta) ** 11 + 2.92750000801717e61 * cos(theta) ** 9 - 3.98449906573226e59 * cos(theta) ** 7 + 3.08534219691657e57 * cos(theta) ** 5 - 1.11183502591588e55 * cos(theta) ** 3 + 1.17696015446282e52 * cos(theta) ) * sin(27 * phi) ) # @torch.jit.script def Yl80_m_minus_26(theta, phi): return ( 2.27162453320221e-49 * (1.0 - cos(theta) ** 2) ** 13 * ( 2.36053717018244e70 * cos(theta) ** 54 - 2.1244834531642e71 * cos(theta) ** 52 + 8.97154477355327e71 * cos(theta) ** 50 - 2.36347147260274e72 * cos(theta) ** 48 + 4.35620232205211e72 * cos(theta) ** 46 - 5.97174755407144e72 * cos(theta) ** 44 + 6.31909752365949e72 * cos(theta) ** 42 - 5.28740813204162e72 * cos(theta) ** 40 + 3.55532615775212e72 * cos(theta) ** 38 - 1.9420313045064e72 * cos(theta) ** 36 + 8.67716114779457e71 * cos(theta) ** 34 - 3.18370660818362e71 * cos(theta) ** 32 + 9.60534353807223e70 * cos(theta) ** 30 - 2.38081164618884e70 * cos(theta) ** 28 + 4.8332266501578e69 * cos(theta) ** 26 - 7.99388631705489e68 * cos(theta) ** 24 + 1.0689499144899e68 * cos(theta) ** 22 - 1.14371204375714e67 * cos(theta) ** 20 + 9.65801281394918e65 * cos(theta) ** 18 - 6.32296089231589e64 * cos(theta) ** 16 + 3.13535250858639e63 * cos(theta) ** 14 - 1.1417250031267e62 * cos(theta) ** 12 + 2.92750000801717e60 * cos(theta) ** 10 - 4.98062383216532e58 * cos(theta) ** 8 + 5.14223699486095e56 * cos(theta) ** 6 - 2.7795875647897e54 * cos(theta) ** 4 + 5.88480077231412e51 * cos(theta) ** 2 - 2.03696807625965e48 ) * sin(26 * phi) ) # @torch.jit.script def Yl80_m_minus_25(theta, phi): return ( 1.73448611570411e-47 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 4.29188576396808e68 * cos(theta) ** 55 - 4.00845934559283e69 * cos(theta) ** 53 + 1.75912642618692e70 * cos(theta) ** 51 - 4.82341116857703e70 * cos(theta) ** 49 + 9.26851557883429e70 * cos(theta) ** 47 - 1.32705501201588e71 * cos(theta) ** 45 + 1.46955756364174e71 * cos(theta) ** 43 - 1.28961173952234e71 * cos(theta) ** 41 + 9.11622091731313e70 * cos(theta) ** 39 - 5.24873325542271e70 * cos(theta) ** 37 + 2.47918889936988e70 * cos(theta) ** 35 - 9.6475957823746e69 * cos(theta) ** 33 + 3.09849791550717e69 * cos(theta) ** 31 - 8.20969533168567e68 * cos(theta) ** 29 + 1.79008394450289e68 * cos(theta) ** 27 - 3.19755452682196e67 * cos(theta) ** 25 + 4.64760832386912e66 * cos(theta) ** 23 - 5.44624782741495e65 * cos(theta) ** 21 + 5.08316463892062e64 * cos(theta) ** 19 - 3.71938876018582e63 * cos(theta) ** 17 + 2.09023500572426e62 * cos(theta) ** 15 - 8.78250002405152e60 * cos(theta) ** 13 + 2.66136364365198e59 * cos(theta) ** 11 - 5.53402648018369e57 * cos(theta) ** 9 + 7.34605284980136e55 * cos(theta) ** 7 - 5.55917512957941e53 * cos(theta) ** 5 + 1.96160025743804e51 * cos(theta) ** 3 - 2.03696807625965e48 * cos(theta) ) * sin(25 * phi) ) # @torch.jit.script def Yl80_m_minus_24(theta, phi): return ( 1.33002403975092e-45 * (1.0 - cos(theta) ** 2) ** 12 * ( 7.66408172137157e66 * cos(theta) ** 56 - 7.42307286220894e67 * cos(theta) ** 54 + 3.38293543497484e68 * cos(theta) ** 52 - 9.64682233715406e68 * cos(theta) ** 50 + 1.93094074559048e69 * cos(theta) ** 48 - 2.88490220003451e69 * cos(theta) ** 46 + 3.33990355373123e69 * cos(theta) ** 44 - 3.07050414171987e69 * cos(theta) ** 42 + 2.27905522932828e69 * cos(theta) ** 40 - 1.38124559353229e69 * cos(theta) ** 38 + 6.88663583158299e68 * cos(theta) ** 36 - 2.83752817128665e68 * cos(theta) ** 34 + 9.68280598595991e67 * cos(theta) ** 32 - 2.73656511056189e67 * cos(theta) ** 30 + 6.39315694465318e66 * cos(theta) ** 28 - 1.22982866416229e66 * cos(theta) ** 26 + 1.9365034682788e65 * cos(theta) ** 24 - 2.47556719427952e64 * cos(theta) ** 22 + 2.54158231946031e63 * cos(theta) ** 20 - 2.06632708899212e62 * cos(theta) ** 18 + 1.30639687857766e61 * cos(theta) ** 16 - 6.27321430289394e59 * cos(theta) ** 14 + 2.21780303637665e58 * cos(theta) ** 12 - 5.53402648018369e56 * cos(theta) ** 10 + 9.1825660622517e54 * cos(theta) ** 8 - 9.26529188263235e52 * cos(theta) ** 6 + 4.9040006435951e50 * cos(theta) ** 4 - 1.01848403812982e48 * cos(theta) ** 2 + 3.46423142221029e44 ) * sin(24 * phi) ) # @torch.jit.script def Yl80_m_minus_23(theta, phi): return ( 1.02403214176887e-43 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.3445757405915e65 * cos(theta) ** 57 - 1.34964961131072e66 * cos(theta) ** 55 + 6.38289704712234e66 * cos(theta) ** 53 - 1.89153379159883e67 * cos(theta) ** 51 + 3.94069539916424e67 * cos(theta) ** 49 - 6.13808978730747e67 * cos(theta) ** 47 + 7.42200789718052e67 * cos(theta) ** 45 - 7.14070730632528e67 * cos(theta) ** 43 + 5.55867129104459e67 * cos(theta) ** 41 - 3.54165536803152e67 * cos(theta) ** 39 + 1.86125292745486e67 * cos(theta) ** 37 - 8.10722334653328e66 * cos(theta) ** 35 + 2.93418363210906e66 * cos(theta) ** 33 - 8.82762938890932e65 * cos(theta) ** 31 + 2.20453687746661e65 * cos(theta) ** 29 - 4.55492097837885e64 * cos(theta) ** 27 + 7.7460138731152e63 * cos(theta) ** 25 - 1.07633356273023e63 * cos(theta) ** 23 + 1.2102772949811e62 * cos(theta) ** 21 - 1.08754057315375e61 * cos(theta) ** 19 + 7.68468752104508e59 * cos(theta) ** 17 - 4.18214286859596e58 * cos(theta) ** 15 + 1.70600233567434e57 * cos(theta) ** 13 - 5.03093316380336e55 * cos(theta) ** 11 + 1.02028511802797e54 * cos(theta) ** 9 - 1.32361312609034e52 * cos(theta) ** 7 + 9.80800128719021e49 * cos(theta) ** 5 - 3.39494679376608e47 * cos(theta) ** 3 + 3.46423142221029e44 * cos(theta) ) * sin(23 * phi) ) # @torch.jit.script def Yl80_m_minus_22(theta, phi): return ( 7.91491394567412e-42 * (1.0 - cos(theta) ** 2) ** 11 * ( 2.31823403550259e63 * cos(theta) ** 58 - 2.41008859162628e64 * cos(theta) ** 56 + 1.18201797168932e65 * cos(theta) ** 54 - 3.63756498384391e65 * cos(theta) ** 52 + 7.88139079832848e65 * cos(theta) ** 50 - 1.27876870568906e66 * cos(theta) ** 48 + 1.61347997764794e66 * cos(theta) ** 46 - 1.62288802416484e66 * cos(theta) ** 44 + 1.32349316453443e66 * cos(theta) ** 42 - 8.8541384200788e65 * cos(theta) ** 40 + 4.89803401961806e65 * cos(theta) ** 38 - 2.25200648514813e65 * cos(theta) ** 36 + 8.6299518591443e64 * cos(theta) ** 34 - 2.75863418403416e64 * cos(theta) ** 32 + 7.34845625822204e63 * cos(theta) ** 30 - 1.62675749227816e63 * cos(theta) ** 28 + 2.97923610504431e62 * cos(theta) ** 26 - 4.48472317804261e61 * cos(theta) ** 24 + 5.50126043173227e60 * cos(theta) ** 22 - 5.43770286576874e59 * cos(theta) ** 20 + 4.26927084502505e58 * cos(theta) ** 18 - 2.61383929287248e57 * cos(theta) ** 16 + 1.21857309691025e56 * cos(theta) ** 14 - 4.19244430316946e54 * cos(theta) ** 12 + 1.02028511802797e53 * cos(theta) ** 10 - 1.65451640761292e51 * cos(theta) ** 8 + 1.63466688119837e49 * cos(theta) ** 6 - 8.4873669844152e46 * cos(theta) ** 4 + 1.73211571110514e44 * cos(theta) ** 2 - 5.79884737564494e40 ) * sin(22 * phi) ) # @torch.jit.script def Yl80_m_minus_21(theta, phi): return ( 6.14005539172387e-40 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 3.92921022966541e61 * cos(theta) ** 59 - 4.22822559934435e62 * cos(theta) ** 57 + 2.14912358488968e63 * cos(theta) ** 55 - 6.86333015819606e63 * cos(theta) ** 53 + 1.54537074477029e64 * cos(theta) ** 51 - 2.60973205242665e64 * cos(theta) ** 49 + 3.43293612265519e64 * cos(theta) ** 47 - 3.60641783147741e64 * cos(theta) ** 45 + 3.07789108031262e64 * cos(theta) ** 43 - 2.15954595611678e64 * cos(theta) ** 41 + 1.25590615887643e64 * cos(theta) ** 39 - 6.08650401391387e63 * cos(theta) ** 37 + 2.46570053118409e63 * cos(theta) ** 35 - 8.35949752737625e62 * cos(theta) ** 33 + 2.37046976071679e62 * cos(theta) ** 31 - 5.60950859406263e61 * cos(theta) ** 29 + 1.10342077964604e61 * cos(theta) ** 27 - 1.79388927121705e60 * cos(theta) ** 25 + 2.39185236162273e59 * cos(theta) ** 23 - 2.58938231703273e58 * cos(theta) ** 21 + 2.24698465527634e57 * cos(theta) ** 19 - 1.5375525252191e56 * cos(theta) ** 17 + 8.1238206460683e54 * cos(theta) ** 15 - 3.2249571562842e53 * cos(theta) ** 13 + 9.2753192547997e51 * cos(theta) ** 11 - 1.83835156401436e50 * cos(theta) ** 9 + 2.33523840171195e48 * cos(theta) ** 7 - 1.69747339688304e46 * cos(theta) ** 5 + 5.77371903701714e43 * cos(theta) ** 3 - 5.79884737564494e40 * cos(theta) ) * sin(21 * phi) ) # @torch.jit.script def Yl80_m_minus_20(theta, phi): return ( 4.77978763224299e-38 * (1.0 - cos(theta) ** 2) ** 10 * ( 6.54868371610901e59 * cos(theta) ** 60 - 7.2900441368006e60 * cos(theta) ** 58 + 3.83772068730299e61 * cos(theta) ** 56 - 1.2709870663326e62 * cos(theta) ** 54 + 2.97186681686594e62 * cos(theta) ** 52 - 5.2194641048533e62 * cos(theta) ** 50 + 7.15195025553164e62 * cos(theta) ** 48 - 7.84003876408133e62 * cos(theta) ** 46 + 6.9952070007105e62 * cos(theta) ** 44 - 5.14177608599233e62 * cos(theta) ** 42 + 3.13976539719106e62 * cos(theta) ** 40 - 1.60171158260891e62 * cos(theta) ** 38 + 6.84916814217802e61 * cos(theta) ** 36 - 2.45867574334596e61 * cos(theta) ** 34 + 7.40771800223996e60 * cos(theta) ** 32 - 1.86983619802088e60 * cos(theta) ** 30 + 3.94078849873586e59 * cos(theta) ** 28 - 6.89957412006556e58 * cos(theta) ** 26 + 9.96605150676136e57 * cos(theta) ** 24 - 1.17699196228761e57 * cos(theta) ** 22 + 1.12349232763817e56 * cos(theta) ** 20 - 8.54195847343947e54 * cos(theta) ** 18 + 5.07738790379269e53 * cos(theta) ** 16 - 2.30354082591729e52 * cos(theta) ** 14 + 7.72943271233308e50 * cos(theta) ** 12 - 1.83835156401436e49 * cos(theta) ** 10 + 2.91904800213994e47 * cos(theta) ** 8 - 2.8291223281384e45 * cos(theta) ** 6 + 1.44342975925429e43 * cos(theta) ** 4 - 2.89942368782247e40 * cos(theta) ** 2 + 9.56905507532168e36 ) * sin(20 * phi) ) # @torch.jit.script def Yl80_m_minus_19(theta, phi): return ( 3.73313348056284e-36 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.07355470755885e58 * cos(theta) ** 61 - 1.23560070115264e59 * cos(theta) ** 59 + 6.73284331105788e59 * cos(theta) ** 57 - 2.31088557515019e60 * cos(theta) ** 55 + 5.60729588087913e60 * cos(theta) ** 53 - 1.02342433428496e61 * cos(theta) ** 51 + 1.45958168480238e61 * cos(theta) ** 49 - 1.66809335405986e61 * cos(theta) ** 47 + 1.55449044460233e61 * cos(theta) ** 45 - 1.19576188046333e61 * cos(theta) ** 43 + 7.65796438339284e60 * cos(theta) ** 41 - 4.10695277592029e60 * cos(theta) ** 39 + 1.85112652491298e60 * cos(theta) ** 37 - 7.0247878381313e59 * cos(theta) ** 35 + 2.24476303098181e59 * cos(theta) ** 33 - 6.03172967103508e58 * cos(theta) ** 31 + 1.35889258577099e58 * cos(theta) ** 29 - 2.5553978222465e57 * cos(theta) ** 27 + 3.98642060270454e56 * cos(theta) ** 25 - 5.1173563577722e55 * cos(theta) ** 23 + 5.34996346494367e54 * cos(theta) ** 21 - 4.49576761759972e53 * cos(theta) ** 19 + 2.98669876693688e52 * cos(theta) ** 17 - 1.53569388394486e51 * cos(theta) ** 15 + 5.94571747102545e49 * cos(theta) ** 13 - 1.6712286945585e48 * cos(theta) ** 11 + 3.24338666904438e46 * cos(theta) ** 9 - 4.041603325912e44 * cos(theta) ** 7 + 2.88685951850857e42 * cos(theta) ** 5 - 9.6647456260749e39 * cos(theta) ** 3 + 9.56905507532168e36 * cos(theta) ) * sin(19 * phi) ) # @torch.jit.script def Yl80_m_minus_18(theta, phi): return ( 2.92473795258218e-34 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.73153985090138e56 * cos(theta) ** 62 - 2.05933450192107e57 * cos(theta) ** 60 + 1.16083505363067e58 * cos(theta) ** 58 - 4.12658138419677e58 * cos(theta) ** 56 + 1.03838812608873e59 * cos(theta) ** 54 - 1.96812371977877e59 * cos(theta) ** 52 + 2.91916336960475e59 * cos(theta) ** 50 - 3.4751944876247e59 * cos(theta) ** 48 + 3.37932705348333e59 * cos(theta) ** 46 - 2.71764063741667e59 * cos(theta) ** 44 + 1.82332485318877e59 * cos(theta) ** 42 - 1.02673819398007e59 * cos(theta) ** 40 + 4.87138559187626e58 * cos(theta) ** 38 - 1.95132995503647e58 * cos(theta) ** 36 + 6.60224420877002e57 * cos(theta) ** 34 - 1.88491552219846e57 * cos(theta) ** 32 + 4.52964195256995e56 * cos(theta) ** 30 - 9.12642079373751e55 * cos(theta) ** 28 + 1.5332386933479e55 * cos(theta) ** 26 - 2.13223181573842e54 * cos(theta) ** 24 + 2.43180157497439e53 * cos(theta) ** 22 - 2.24788380879986e52 * cos(theta) ** 20 + 1.65927709274271e51 * cos(theta) ** 18 - 9.59808677465537e49 * cos(theta) ** 16 + 4.24694105073246e48 * cos(theta) ** 14 - 1.39269057879875e47 * cos(theta) ** 12 + 3.24338666904438e45 * cos(theta) ** 10 - 5.05200415739e43 * cos(theta) ** 8 + 4.81143253084762e41 * cos(theta) ** 6 - 2.41618640651872e39 * cos(theta) ** 4 + 4.78452753766084e36 * cos(theta) ** 2 - 1.55898583827333e33 ) * sin(18 * phi) ) # @torch.jit.script def Yl80_m_minus_17(theta, phi): return ( 2.29810714657801e-32 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 2.74847595381171e54 * cos(theta) ** 63 - 3.37595819987061e55 * cos(theta) ** 61 + 1.96751704005198e56 * cos(theta) ** 59 - 7.2396164635031e56 * cos(theta) ** 57 + 1.88797841107042e57 * cos(theta) ** 55 - 3.71344098071466e57 * cos(theta) ** 53 + 5.72384974432304e57 * cos(theta) ** 51 - 7.09223364821368e57 * cos(theta) ** 49 + 7.19005756060284e57 * cos(theta) ** 47 - 6.03920141648148e57 * cos(theta) ** 45 + 4.24029035625295e57 * cos(theta) ** 43 - 2.50423949751237e57 * cos(theta) ** 41 + 1.24907322868622e57 * cos(theta) ** 39 - 5.27386474334182e56 * cos(theta) ** 37 + 1.88635548822001e56 * cos(theta) ** 35 - 5.71186521878322e55 * cos(theta) ** 33 + 1.46117482340966e55 * cos(theta) ** 31 - 3.14704165301294e54 * cos(theta) ** 29 + 5.67866182721445e53 * cos(theta) ** 27 - 8.52892726295367e52 * cos(theta) ** 25 + 1.05730503259756e52 * cos(theta) ** 23 - 1.07042086133327e51 * cos(theta) ** 21 + 8.73303733022478e49 * cos(theta) ** 19 - 5.6459333968561e48 * cos(theta) ** 17 + 2.83129403382164e47 * cos(theta) ** 15 - 1.07130044522981e46 * cos(theta) ** 13 + 2.94853333549489e44 * cos(theta) ** 11 - 5.61333795265556e42 * cos(theta) ** 9 + 6.87347504406803e40 * cos(theta) ** 7 - 4.83237281303745e38 * cos(theta) ** 5 + 1.59484251255361e36 * cos(theta) ** 3 - 1.55898583827333e33 * cos(theta) ) * sin(17 * phi) ) # @torch.jit.script def Yl80_m_minus_16(theta, phi): return ( 1.81069843999506e-30 * (1.0 - cos(theta) ** 2) ** 8 * ( 4.2944936778308e52 * cos(theta) ** 64 - 5.44509387075905e53 * cos(theta) ** 62 + 3.2791950667533e54 * cos(theta) ** 60 - 1.24820973508674e55 * cos(theta) ** 58 + 3.3713900197686e55 * cos(theta) ** 56 - 6.876742556879e55 * cos(theta) ** 54 + 1.10074033544674e56 * cos(theta) ** 52 - 1.41844672964274e56 * cos(theta) ** 50 + 1.49792865845892e56 * cos(theta) ** 48 - 1.31286987314815e56 * cos(theta) ** 46 + 9.63702353693853e55 * cos(theta) ** 44 - 5.96247499407708e55 * cos(theta) ** 42 + 3.12268307171555e55 * cos(theta) ** 40 - 1.38785914298469e55 * cos(theta) ** 38 + 5.23987635616668e54 * cos(theta) ** 36 - 1.67996035846565e54 * cos(theta) ** 34 + 4.56617132315519e53 * cos(theta) ** 32 - 1.04901388433765e53 * cos(theta) ** 30 + 2.02809350971945e52 * cos(theta) ** 28 - 3.28035663959757e51 * cos(theta) ** 26 + 4.40543763582318e50 * cos(theta) ** 24 - 4.86554936969667e49 * cos(theta) ** 22 + 4.36651866511239e48 * cos(theta) ** 20 - 3.13662966492005e47 * cos(theta) ** 18 + 1.76955877113853e46 * cos(theta) ** 16 - 7.65214603735579e44 * cos(theta) ** 14 + 2.45711111291241e43 * cos(theta) ** 12 - 5.61333795265556e41 * cos(theta) ** 10 + 8.59184380508504e39 * cos(theta) ** 8 - 8.05395468839575e37 * cos(theta) ** 6 + 3.98710628138403e35 * cos(theta) ** 4 - 7.79492919136664e32 * cos(theta) ** 2 + 2.51125296113616e29 ) * sin(16 * phi) ) # @torch.jit.script def Yl80_m_minus_15(theta, phi): return ( 1.43033716183798e-28 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 6.60691335050892e50 * cos(theta) ** 65 - 8.64300614406199e51 * cos(theta) ** 63 + 5.37572961762836e52 * cos(theta) ** 61 - 2.115609720486e53 * cos(theta) ** 59 + 5.91471933292737e53 * cos(theta) ** 57 - 1.25031682852345e54 * cos(theta) ** 55 + 2.07686855744668e54 * cos(theta) ** 53 - 2.7812680973387e54 * cos(theta) ** 51 + 3.05699726216107e54 * cos(theta) ** 49 - 2.79334015563436e54 * cos(theta) ** 47 + 2.14156078598634e54 * cos(theta) ** 45 - 1.38662209164583e54 * cos(theta) ** 43 + 7.61630017491598e53 * cos(theta) ** 41 - 3.55861318714023e53 * cos(theta) ** 39 + 1.41618279896397e53 * cos(theta) ** 37 - 4.7998867384733e52 * cos(theta) ** 35 + 1.383688279744e52 * cos(theta) ** 33 - 3.38391575592789e51 * cos(theta) ** 31 + 6.9934258955843e50 * cos(theta) ** 29 - 1.21494690355465e50 * cos(theta) ** 27 + 1.76217505432927e49 * cos(theta) ** 25 - 2.1154562476942e48 * cos(theta) ** 23 + 2.07929460243447e47 * cos(theta) ** 21 - 1.65085771837898e46 * cos(theta) ** 19 + 1.04091692419913e45 * cos(theta) ** 17 - 5.10143069157053e43 * cos(theta) ** 15 + 1.89008547147108e42 * cos(theta) ** 13 - 5.10303450241414e40 * cos(theta) ** 11 + 9.54649311676115e38 * cos(theta) ** 9 - 1.15056495548511e37 * cos(theta) ** 7 + 7.97421256276807e34 * cos(theta) ** 5 - 2.59830973045555e32 * cos(theta) ** 3 + 2.51125296113616e29 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl80_m_minus_14(theta, phi): return ( 1.13258861756036e-26 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.00104747734984e49 * cos(theta) ** 66 - 1.35046971000969e50 * cos(theta) ** 64 + 8.67053164133607e50 * cos(theta) ** 62 - 3.52601620081e51 * cos(theta) ** 60 + 1.0197791953323e52 * cos(theta) ** 58 - 2.23270862236331e52 * cos(theta) ** 56 + 3.84605288416051e52 * cos(theta) ** 54 - 5.34859249488211e52 * cos(theta) ** 52 + 6.11399452432214e52 * cos(theta) ** 50 - 5.81945865757158e52 * cos(theta) ** 48 + 4.65556692605726e52 * cos(theta) ** 46 - 3.15141384464962e52 * cos(theta) ** 44 + 1.81340480355142e52 * cos(theta) ** 42 - 8.89653296785057e51 * cos(theta) ** 40 + 3.72679683937886e51 * cos(theta) ** 38 - 1.33330187179814e51 * cos(theta) ** 36 + 4.06967141101176e50 * cos(theta) ** 34 - 1.05747367372746e50 * cos(theta) ** 32 + 2.33114196519477e49 * cos(theta) ** 30 - 4.33909608412376e48 * cos(theta) ** 28 + 6.77759636280489e47 * cos(theta) ** 26 - 8.81440103205918e46 * cos(theta) ** 24 + 9.45133910197488e45 * cos(theta) ** 22 - 8.25428859189488e44 * cos(theta) ** 20 + 5.7828718011063e43 * cos(theta) ** 18 - 3.18839418223158e42 * cos(theta) ** 16 + 1.35006105105077e41 * cos(theta) ** 14 - 4.25252875201179e39 * cos(theta) ** 12 + 9.54649311676115e37 * cos(theta) ** 10 - 1.43820619435638e36 * cos(theta) ** 8 + 1.32903542712801e34 * cos(theta) ** 6 - 6.49577432613886e31 * cos(theta) ** 4 + 1.25562648056808e29 * cos(theta) ** 2 - 4.00518813578335e25 ) * sin(14 * phi) ) # @torch.jit.script def Yl80_m_minus_13(theta, phi): return ( 8.988216418622e-25 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.49410071246244e47 * cos(theta) ** 67 - 2.07764570770721e48 * cos(theta) ** 65 + 1.37627486370414e49 * cos(theta) ** 63 - 5.78035442755738e49 * cos(theta) ** 61 + 1.72843931412255e50 * cos(theta) ** 59 - 3.91703267081283e50 * cos(theta) ** 57 + 6.99282342574639e50 * cos(theta) ** 55 - 1.00916839526078e51 * cos(theta) ** 53 + 1.19882245574944e51 * cos(theta) ** 51 - 1.1876446239942e51 * cos(theta) ** 49 + 9.90546154480269e50 * cos(theta) ** 47 - 7.00314187699915e50 * cos(theta) ** 45 + 4.2172204733754e50 * cos(theta) ** 43 - 2.16988608971965e50 * cos(theta) ** 41 + 9.55588933174068e49 * cos(theta) ** 39 - 3.6035185724274e49 * cos(theta) ** 37 + 1.16276326028907e49 * cos(theta) ** 35 - 3.20446567796201e48 * cos(theta) ** 33 + 7.51981279095086e47 * cos(theta) ** 31 - 1.49624002900819e47 * cos(theta) ** 29 + 2.51022087511292e46 * cos(theta) ** 27 - 3.52576041282367e45 * cos(theta) ** 25 + 4.10927787042386e44 * cos(theta) ** 23 - 3.93061361518804e43 * cos(theta) ** 21 + 3.04361673742437e42 * cos(theta) ** 19 - 1.87552598954799e41 * cos(theta) ** 17 + 9.00040700700516e39 * cos(theta) ** 15 - 3.27117596308599e38 * cos(theta) ** 13 + 8.6786301061465e36 * cos(theta) ** 11 - 1.5980068826182e35 * cos(theta) ** 9 + 1.8986220387543e33 * cos(theta) ** 7 - 1.29915486522777e31 * cos(theta) ** 5 + 4.1854216018936e28 * cos(theta) ** 3 - 4.00518813578335e25 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl80_m_minus_12(theta, phi): return ( 7.14775160081563e-23 * (1.0 - cos(theta) ** 2) ** 6 * ( 2.19720693009183e45 * cos(theta) ** 68 - 3.14794804198062e46 * cos(theta) ** 66 + 2.15042947453772e47 * cos(theta) ** 64 - 9.32315230251191e47 * cos(theta) ** 62 + 2.88073219020425e48 * cos(theta) ** 60 - 6.7535046048497e48 * cos(theta) ** 58 + 1.24871846888328e49 * cos(theta) ** 56 - 1.86883036159403e49 * cos(theta) ** 54 + 2.30542779951815e49 * cos(theta) ** 52 - 2.3752892479884e49 * cos(theta) ** 50 + 2.06363782183389e49 * cos(theta) ** 48 - 1.52242214717373e49 * cos(theta) ** 46 + 9.5845919849441e48 * cos(theta) ** 44 - 5.16639545171345e48 * cos(theta) ** 42 + 2.38897233293517e48 * cos(theta) ** 40 - 9.48294361165105e47 * cos(theta) ** 38 + 3.22989794524743e47 * cos(theta) ** 36 - 9.42489905282946e46 * cos(theta) ** 34 + 2.34994149717214e46 * cos(theta) ** 32 - 4.98746676336065e45 * cos(theta) ** 30 + 8.96507455397472e44 * cos(theta) ** 28 - 1.35606169723987e44 * cos(theta) ** 26 + 1.71219911267661e43 * cos(theta) ** 24 - 1.7866425523582e42 * cos(theta) ** 22 + 1.52180836871218e41 * cos(theta) ** 20 - 1.04195888308222e40 * cos(theta) ** 18 + 5.62525437937823e38 * cos(theta) ** 16 - 2.33655425934713e37 * cos(theta) ** 14 + 7.23219175512208e35 * cos(theta) ** 12 - 1.5980068826182e34 * cos(theta) ** 10 + 2.37327754844288e32 * cos(theta) ** 8 - 2.16525810871295e30 * cos(theta) ** 6 + 1.0463554004734e28 * cos(theta) ** 4 - 2.00259406789167e25 * cos(theta) ** 2 + 6.33331457271244e21 ) * sin(12 * phi) ) # @torch.jit.script def Yl80_m_minus_11(theta, phi): return ( 5.69492370894745e-21 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 3.1843578696983e43 * cos(theta) ** 69 - 4.69842991340391e44 * cos(theta) ** 67 + 3.30835303775033e45 * cos(theta) ** 65 - 1.47986544484316e46 * cos(theta) ** 63 + 4.72251178722008e46 * cos(theta) ** 61 - 1.14466179743215e47 * cos(theta) ** 59 + 2.19073415593558e47 * cos(theta) ** 57 - 3.39787338471642e47 * cos(theta) ** 55 + 4.34986377267576e47 * cos(theta) ** 53 - 4.65742989801647e47 * cos(theta) ** 51 + 4.21150575884468e47 * cos(theta) ** 49 - 3.23919605781644e47 * cos(theta) ** 47 + 2.12990932998758e47 * cos(theta) ** 45 - 1.20148731435197e47 * cos(theta) ** 43 + 5.82676178764675e46 * cos(theta) ** 41 - 2.43152400298745e46 * cos(theta) ** 39 + 8.72945390607413e45 * cos(theta) ** 37 - 2.69282830080842e45 * cos(theta) ** 35 + 7.12103483991559e44 * cos(theta) ** 33 - 1.60886024624537e44 * cos(theta) ** 31 + 3.09140501861197e43 * cos(theta) ** 29 - 5.02245073051805e42 * cos(theta) ** 27 + 6.84879645070643e41 * cos(theta) ** 25 - 7.76801109720956e40 * cos(theta) ** 23 + 7.24670651767706e39 * cos(theta) ** 21 - 5.48399412148534e38 * cos(theta) ** 19 + 3.30897316434013e37 * cos(theta) ** 17 - 1.55770283956476e36 * cos(theta) ** 15 + 5.56322442701699e34 * cos(theta) ** 13 - 1.45273352965291e33 * cos(theta) ** 11 + 2.63697505382542e31 * cos(theta) ** 9 - 3.09322586958993e29 * cos(theta) ** 7 + 2.0927108009468e27 * cos(theta) ** 5 - 6.67531355963891e24 * cos(theta) ** 3 + 6.33331457271244e21 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl80_m_minus_10(theta, phi): return ( 4.54524844252942e-19 * (1.0 - cos(theta) ** 2) ** 5 * ( 4.54908267099757e41 * cos(theta) ** 70 - 6.90945575500575e42 * cos(theta) ** 68 + 5.01265611780353e43 * cos(theta) ** 66 - 2.31228975756744e44 * cos(theta) ** 64 + 7.61695449551626e44 * cos(theta) ** 62 - 1.90776966238692e45 * cos(theta) ** 60 + 3.77712785506135e45 * cos(theta) ** 58 - 6.06763104413646e45 * cos(theta) ** 56 + 8.05530328273289e45 * cos(theta) ** 54 - 8.95659595772398e45 * cos(theta) ** 52 + 8.42301151768936e45 * cos(theta) ** 50 - 6.74832512045092e45 * cos(theta) ** 48 + 4.63023767388604e45 * cos(theta) ** 46 - 2.73065298716356e45 * cos(theta) ** 44 + 1.38732423515399e45 * cos(theta) ** 42 - 6.07881000746862e44 * cos(theta) ** 40 + 2.29722471212477e44 * cos(theta) ** 38 - 7.48007861335671e43 * cos(theta) ** 36 + 2.09442201173988e43 * cos(theta) ** 34 - 5.02768826951678e42 * cos(theta) ** 32 + 1.03046833953732e42 * cos(theta) ** 30 - 1.79373240375645e41 * cos(theta) ** 28 + 2.63415248104094e40 * cos(theta) ** 26 - 3.23667129050398e39 * cos(theta) ** 24 + 3.29395750803503e38 * cos(theta) ** 22 - 2.74199706074267e37 * cos(theta) ** 20 + 1.83831842463341e36 * cos(theta) ** 18 - 9.73564274727973e34 * cos(theta) ** 16 + 3.97373173358356e33 * cos(theta) ** 14 - 1.21061127471076e32 * cos(theta) ** 12 + 2.63697505382542e30 * cos(theta) ** 10 - 3.86653233698742e28 * cos(theta) ** 8 + 3.48785133491133e26 * cos(theta) ** 6 - 1.66882838990973e24 * cos(theta) ** 4 + 3.16665728635622e21 * cos(theta) ** 2 - 9.94240906234292e17 ) * sin(10 * phi) ) # @torch.jit.script def Yl80_m_minus_9(theta, phi): return ( 3.63335686319938e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 6.40715869154588e39 * cos(theta) ** 71 - 1.0013703992762e41 * cos(theta) ** 69 + 7.48157629522916e41 * cos(theta) ** 67 - 3.55736885779606e42 * cos(theta) ** 65 + 1.20904039611369e43 * cos(theta) ** 63 - 3.12749124981462e43 * cos(theta) ** 61 + 6.40191161874806e43 * cos(theta) ** 59 - 1.06449667440991e44 * cos(theta) ** 57 + 1.46460059686052e44 * cos(theta) ** 55 - 1.6899237656083e44 * cos(theta) ** 53 + 1.65157088582144e44 * cos(theta) ** 51 - 1.37720920825529e44 * cos(theta) ** 49 + 9.85156951890646e43 * cos(theta) ** 47 - 6.06811774925236e43 * cos(theta) ** 45 + 3.22633543059067e43 * cos(theta) ** 43 - 1.48263658718747e43 * cos(theta) ** 41 + 5.8903197746789e42 * cos(theta) ** 39 - 2.02164286847479e42 * cos(theta) ** 37 + 5.98406289068537e41 * cos(theta) ** 35 - 1.52354189985357e41 * cos(theta) ** 33 + 3.32409141786234e40 * cos(theta) ** 31 - 6.1852841508843e39 * cos(theta) ** 29 + 9.75612030015161e38 * cos(theta) ** 27 - 1.29466851620159e38 * cos(theta) ** 25 + 1.4321554382761e37 * cos(theta) ** 23 - 1.30571288606794e36 * cos(theta) ** 21 + 9.67536012964951e34 * cos(theta) ** 19 - 5.72684867487043e33 * cos(theta) ** 17 + 2.64915448905571e32 * cos(theta) ** 15 - 9.31239442085201e30 * cos(theta) ** 13 + 2.3972500489322e29 * cos(theta) ** 11 - 4.29614704109713e27 * cos(theta) ** 9 + 4.98264476415904e25 * cos(theta) ** 7 - 3.33765677981946e23 * cos(theta) ** 5 + 1.05555242878541e21 * cos(theta) ** 3 - 9.94240906234292e17 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl80_m_minus_8(theta, phi): return ( 2.90850160163363e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 8.89883151603594e37 * cos(theta) ** 72 - 1.43052914182314e39 * cos(theta) ** 70 + 1.10023180812193e40 * cos(theta) ** 68 - 5.38995281484251e40 * cos(theta) ** 66 + 1.88912561892764e41 * cos(theta) ** 64 - 5.04434072550746e41 * cos(theta) ** 62 + 1.06698526979134e42 * cos(theta) ** 60 - 1.83533909381018e42 * cos(theta) ** 58 + 2.61535820867951e42 * cos(theta) ** 56 - 3.12948845483018e42 * cos(theta) ** 54 + 3.17609785734893e42 * cos(theta) ** 52 - 2.75441841651058e42 * cos(theta) ** 50 + 2.05241031643885e42 * cos(theta) ** 48 - 1.31915603244616e42 * cos(theta) ** 46 + 7.33258052406971e41 * cos(theta) ** 44 - 3.53008711235112e41 * cos(theta) ** 42 + 1.47257994366972e41 * cos(theta) ** 40 - 5.32011281177575e40 * cos(theta) ** 38 + 1.66223969185705e40 * cos(theta) ** 36 - 4.48100558780462e39 * cos(theta) ** 34 + 1.03877856808198e39 * cos(theta) ** 32 - 2.0617613836281e38 * cos(theta) ** 30 + 3.48432867862558e37 * cos(theta) ** 28 - 4.97949429308305e36 * cos(theta) ** 26 + 5.96731432615041e35 * cos(theta) ** 24 - 5.93505857303609e34 * cos(theta) ** 22 + 4.83768006482476e33 * cos(theta) ** 20 - 3.18158259715024e32 * cos(theta) ** 18 + 1.65572155565982e31 * cos(theta) ** 16 - 6.65171030060858e29 * cos(theta) ** 14 + 1.99770837411017e28 * cos(theta) ** 12 - 4.29614704109713e26 * cos(theta) ** 10 + 6.22830595519881e24 * cos(theta) ** 8 - 5.56276129969909e22 * cos(theta) ** 6 + 2.63888107196352e20 * cos(theta) ** 4 - 4.97120453117146e17 * cos(theta) ** 2 + 155156196353666.0 ) * sin(8 * phi) ) # @torch.jit.script def Yl80_m_minus_7(theta, phi): return ( 2.33115995127995e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.21901801589533e36 * cos(theta) ** 73 - 2.01482977721569e37 * cos(theta) ** 71 + 1.59453885235063e38 * cos(theta) ** 69 - 8.04470569379479e38 * cos(theta) ** 67 + 2.90634710604253e39 * cos(theta) ** 65 - 8.00689004048803e39 * cos(theta) ** 63 + 1.74915617998581e40 * cos(theta) ** 61 - 3.11074422679692e40 * cos(theta) ** 59 + 4.58834773452545e40 * cos(theta) ** 57 - 5.68997900878215e40 * cos(theta) ** 55 + 5.99263746669609e40 * cos(theta) ** 53 - 5.40082042453055e40 * cos(theta) ** 51 + 4.18859248252826e40 * cos(theta) ** 49 - 2.80671496265141e40 * cos(theta) ** 47 + 1.62946233868216e40 * cos(theta) ** 45 - 8.20950491244446e39 * cos(theta) ** 43 + 3.59165839919445e39 * cos(theta) ** 41 - 1.36413149019891e39 * cos(theta) ** 39 + 4.49253970772175e38 * cos(theta) ** 37 - 1.28028731080132e38 * cos(theta) ** 35 + 3.14781384267267e37 * cos(theta) ** 33 - 6.65084317299387e36 * cos(theta) ** 31 + 1.20149264780192e36 * cos(theta) ** 29 - 1.84425714558632e35 * cos(theta) ** 27 + 2.38692573046017e34 * cos(theta) ** 25 - 2.58046024914612e33 * cos(theta) ** 23 + 2.30365717372607e32 * cos(theta) ** 21 - 1.67451715639486e31 * cos(theta) ** 19 + 9.73953856270481e29 * cos(theta) ** 17 - 4.43447353373905e28 * cos(theta) ** 15 + 1.53669874931551e27 * cos(theta) ** 13 - 3.90558821917921e25 * cos(theta) ** 11 + 6.92033995022089e23 * cos(theta) ** 9 - 7.94680185671299e21 * cos(theta) ** 7 + 5.27776214392703e19 * cos(theta) ** 5 - 1.65706817705715e17 * cos(theta) ** 3 + 155156196353666.0 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl80_m_minus_6(theta, phi): return ( 1.87045627196658e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.6473216431018e34 * cos(theta) ** 74 - 2.79837469057734e35 * cos(theta) ** 72 + 2.27791264621519e36 * cos(theta) ** 70 - 1.18304495496982e37 * cos(theta) ** 68 + 4.40355622127656e37 * cos(theta) ** 66 - 1.25107656882625e38 * cos(theta) ** 64 + 2.8212196451384e38 * cos(theta) ** 62 - 5.1845737113282e38 * cos(theta) ** 60 + 7.91094436987147e38 * cos(theta) ** 58 - 1.01606768013967e39 * cos(theta) ** 56 + 1.10974767901779e39 * cos(theta) ** 54 - 1.03861931240972e39 * cos(theta) ** 52 + 8.37718496505651e38 * cos(theta) ** 50 - 5.84732283885711e38 * cos(theta) ** 48 + 3.54230943191773e38 * cos(theta) ** 46 - 1.8657965710101e38 * cos(theta) ** 44 + 8.55156761712964e37 * cos(theta) ** 42 - 3.41032872549728e37 * cos(theta) ** 40 + 1.18224729150572e37 * cos(theta) ** 38 - 3.55635364111478e36 * cos(theta) ** 36 + 9.25827600786078e35 * cos(theta) ** 34 - 2.07838849156058e35 * cos(theta) ** 32 + 4.00497549267308e34 * cos(theta) ** 30 - 6.58663266280827e33 * cos(theta) ** 28 + 9.18048357869294e32 * cos(theta) ** 26 - 1.07519177047755e32 * cos(theta) ** 24 + 1.04711689714822e31 * cos(theta) ** 22 - 8.37258578197431e29 * cos(theta) ** 20 + 5.41085475705823e28 * cos(theta) ** 18 - 2.77154595858691e27 * cos(theta) ** 16 + 1.09764196379679e26 * cos(theta) ** 14 - 3.25465684931601e24 * cos(theta) ** 12 + 6.9203399502209e22 * cos(theta) ** 10 - 9.93350232089124e20 * cos(theta) ** 8 + 8.79627023987839e18 * cos(theta) ** 6 - 4.14267044264288e16 * cos(theta) ** 4 + 77578098176833.0 * cos(theta) ** 2 - 24100061564.7198 ) * sin(6 * phi) ) # @torch.jit.script def Yl80_m_minus_5(theta, phi): return ( 1.50219882144266e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 2.19642885746907e32 * cos(theta) ** 75 - 3.83338998709225e33 * cos(theta) ** 73 + 3.20832767072561e34 * cos(theta) ** 71 - 1.71455790575337e35 * cos(theta) ** 69 + 6.57247197205457e35 * cos(theta) ** 67 - 1.92473318280962e36 * cos(theta) ** 65 + 4.4781264208546e36 * cos(theta) ** 63 - 8.4993011661118e36 * cos(theta) ** 61 + 1.34083802879177e37 * cos(theta) ** 59 - 1.78257487743802e37 * cos(theta) ** 57 + 2.01772305275963e37 * cos(theta) ** 55 - 1.95965908001834e37 * cos(theta) ** 53 + 1.64258528726598e37 * cos(theta) ** 51 - 1.19333119160349e37 * cos(theta) ** 49 + 7.53682857854837e36 * cos(theta) ** 47 - 4.14621460224468e36 * cos(theta) ** 45 + 1.98873665514643e36 * cos(theta) ** 43 - 8.31787494023726e35 * cos(theta) ** 41 + 3.03140331155314e35 * cos(theta) ** 39 - 9.6117665976075e34 * cos(theta) ** 37 + 2.64522171653165e34 * cos(theta) ** 35 - 6.29814694412298e33 * cos(theta) ** 33 + 1.29192757828164e33 * cos(theta) ** 31 - 2.27125264234768e32 * cos(theta) ** 29 + 3.40017910321961e31 * cos(theta) ** 27 - 4.30076708191021e30 * cos(theta) ** 25 + 4.55268216151398e29 * cos(theta) ** 23 - 3.98694561046396e28 * cos(theta) ** 21 + 2.84781829318854e27 * cos(theta) ** 19 - 1.63032115210995e26 * cos(theta) ** 17 + 7.31761309197863e24 * cos(theta) ** 15 - 2.50358219178155e23 * cos(theta) ** 13 + 6.29121813656445e21 * cos(theta) ** 11 - 1.10372248009903e20 * cos(theta) ** 9 + 1.25661003426834e18 * cos(theta) ** 7 - 8.28534088528577e15 * cos(theta) ** 5 + 25859366058944.3 * cos(theta) ** 3 - 24100061564.7198 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl80_m_minus_4(theta, phi): return ( 1.20737916134363e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 2.89003797035404e30 * cos(theta) ** 76 - 5.18025673931385e31 * cos(theta) ** 74 + 4.45601065378557e32 * cos(theta) ** 72 - 2.44936843679052e33 * cos(theta) ** 70 + 9.66539995890378e33 * cos(theta) ** 68 - 2.9162623981964e34 * cos(theta) ** 66 + 6.99707253258532e34 * cos(theta) ** 64 - 1.37085502679223e35 * cos(theta) ** 62 + 2.23473004798629e35 * cos(theta) ** 60 - 3.07340496110003e35 * cos(theta) ** 58 + 3.6030768799279e35 * cos(theta) ** 56 - 3.62899829633026e35 * cos(theta) ** 54 + 3.15881786012689e35 * cos(theta) ** 52 - 2.38666238320698e35 * cos(theta) ** 50 + 1.57017262053091e35 * cos(theta) ** 48 - 9.01351000487973e34 * cos(theta) ** 46 + 4.5198560344237e34 * cos(theta) ** 44 - 1.98044641434221e34 * cos(theta) ** 42 + 7.57850827888284e33 * cos(theta) ** 40 - 2.52941226252829e33 * cos(theta) ** 38 + 7.34783810147681e32 * cos(theta) ** 36 - 1.85239616003617e32 * cos(theta) ** 34 + 4.03727368213012e31 * cos(theta) ** 32 - 7.57084214115893e30 * cos(theta) ** 30 + 1.21434967972129e30 * cos(theta) ** 28 - 1.65414118535008e29 * cos(theta) ** 26 + 1.89695090063083e28 * cos(theta) ** 24 - 1.81224800475634e27 * cos(theta) ** 22 + 1.42390914659427e26 * cos(theta) ** 20 - 9.05733973394414e24 * cos(theta) ** 18 + 4.57350818248664e23 * cos(theta) ** 16 - 1.78827299412968e22 * cos(theta) ** 14 + 5.24268178047037e20 * cos(theta) ** 12 - 1.10372248009903e19 * cos(theta) ** 10 + 1.57076254283543e17 * cos(theta) ** 8 - 1.38089014754763e15 * cos(theta) ** 6 + 6464841514736.08 * cos(theta) ** 4 - 12050030782.3599 * cos(theta) ** 2 + 3730659.68494114 ) * sin(4 * phi) ) # @torch.jit.script def Yl80_m_minus_3(theta, phi): return ( 9.71021132264824e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 3.75329606539486e28 * cos(theta) ** 77 - 6.9070089857518e29 * cos(theta) ** 75 + 6.10412418326791e30 * cos(theta) ** 73 - 3.44981469970496e31 * cos(theta) ** 71 + 1.40078260273968e32 * cos(theta) ** 69 - 4.35263044506925e32 * cos(theta) ** 67 + 1.07647269732082e33 * cos(theta) ** 65 - 2.17596035998766e33 * cos(theta) ** 63 + 3.66349188194474e33 * cos(theta) ** 61 - 5.209160951017e33 * cos(theta) ** 59 + 6.32118750864545e33 * cos(theta) ** 57 - 6.59817872060048e33 * cos(theta) ** 55 + 5.96003369835262e33 * cos(theta) ** 53 - 4.67973016315095e33 * cos(theta) ** 51 + 3.20443391945084e33 * cos(theta) ** 49 - 1.91776808614462e33 * cos(theta) ** 47 + 1.00441245209416e33 * cos(theta) ** 45 - 4.60568933567955e32 * cos(theta) ** 43 + 1.84841665338606e32 * cos(theta) ** 41 - 6.48567246802126e31 * cos(theta) ** 39 + 1.98590218958833e31 * cos(theta) ** 37 - 5.2925604572462e30 * cos(theta) ** 35 + 1.22341626731216e30 * cos(theta) ** 33 - 2.44220714230933e29 * cos(theta) ** 31 + 4.1874126886941e28 * cos(theta) ** 29 - 6.12644883462993e27 * cos(theta) ** 27 + 7.5878036025233e26 * cos(theta) ** 25 - 7.87933915111454e25 * cos(theta) ** 23 + 6.780519745687e24 * cos(theta) ** 21 - 4.76702091260218e23 * cos(theta) ** 19 + 2.6902989308745e22 * cos(theta) ** 17 - 1.19218199608645e21 * cos(theta) ** 15 + 4.03283213882337e19 * cos(theta) ** 13 - 1.0033840728173e18 * cos(theta) ** 11 + 1.74529171426159e16 * cos(theta) ** 9 - 197270021078233.0 * cos(theta) ** 7 + 1292968302947.22 * cos(theta) ** 5 - 4016676927.4533 * cos(theta) ** 3 + 3730659.68494114 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl80_m_minus_2(theta, phi): return ( 0.000781294971343069 * (1.0 - cos(theta) ** 2) * ( 4.81191803255751e26 * cos(theta) ** 78 - 9.08816971809447e27 * cos(theta) ** 76 + 8.24881646387556e28 * cos(theta) ** 74 - 4.79140930514578e29 * cos(theta) ** 72 + 2.00111800391383e30 * cos(theta) ** 70 - 6.40092712510184e30 * cos(theta) ** 68 + 1.63101923836488e31 * cos(theta) ** 66 - 3.39993806248072e31 * cos(theta) ** 64 + 5.90885787410442e31 * cos(theta) ** 62 - 8.68193491836166e31 * cos(theta) ** 60 + 1.0898599152837e32 * cos(theta) ** 58 - 1.17824620010723e32 * cos(theta) ** 56 + 1.10370994413937e32 * cos(theta) ** 54 - 8.99948108298259e31 * cos(theta) ** 52 + 6.40886783890167e31 * cos(theta) ** 50 - 3.99535017946797e31 * cos(theta) ** 48 + 2.18350533063947e31 * cos(theta) ** 46 - 1.04674757629081e31 * cos(theta) ** 44 + 4.40099203187157e30 * cos(theta) ** 42 - 1.62141811700531e30 * cos(theta) ** 40 + 5.22605839365349e29 * cos(theta) ** 38 - 1.47015568256839e29 * cos(theta) ** 36 + 3.5982831391534e28 * cos(theta) ** 34 - 7.63189731971667e27 * cos(theta) ** 32 + 1.3958042295647e27 * cos(theta) ** 30 - 2.18801744093926e26 * cos(theta) ** 28 + 2.9183860009705e25 * cos(theta) ** 26 - 3.28305797963106e24 * cos(theta) ** 24 + 3.08205442985773e23 * cos(theta) ** 22 - 2.38351045630109e22 * cos(theta) ** 20 + 1.4946105171525e21 * cos(theta) ** 18 - 7.45113747554031e19 * cos(theta) ** 16 + 2.88059438487383e18 * cos(theta) ** 14 - 8.36153394014414e16 * cos(theta) ** 12 + 1.74529171426159e15 * cos(theta) ** 10 - 24658752634779.1 * cos(theta) ** 8 + 215494717157.869 * cos(theta) ** 6 - 1004169231.86332 * cos(theta) ** 4 + 1865329.84247057 * cos(theta) ** 2 - 576.252654454919 ) * sin(2 * phi) ) # @torch.jit.script def Yl80_m_minus_1(theta, phi): return ( 0.06288332552664 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 6.09103548425002e24 * cos(theta) ** 79 - 1.18028178157071e26 * cos(theta) ** 77 + 1.09984219518341e27 * cos(theta) ** 75 - 6.56357439061066e27 * cos(theta) ** 73 + 2.81847606185046e28 * cos(theta) ** 71 - 9.27670597840846e28 * cos(theta) ** 69 + 2.43435707218638e29 * cos(theta) ** 67 - 5.23067394227803e29 * cos(theta) ** 65 + 9.37913948270543e29 * cos(theta) ** 63 - 1.42326801940355e30 * cos(theta) ** 61 + 1.8472201953961e30 * cos(theta) ** 59 - 2.06709859667935e30 * cos(theta) ** 57 + 2.00674535298068e30 * cos(theta) ** 55 - 1.69801529867596e30 * cos(theta) ** 53 + 1.25664075272582e30 * cos(theta) ** 51 - 8.15377587646524e29 * cos(theta) ** 49 + 4.64575602263717e29 * cos(theta) ** 47 - 2.32610572509068e29 * cos(theta) ** 45 + 1.0234865190399e29 * cos(theta) ** 43 - 3.9546783341593e28 * cos(theta) ** 41 + 1.34001497273166e28 * cos(theta) ** 39 - 3.97339373667132e27 * cos(theta) ** 37 + 1.02808089690097e27 * cos(theta) ** 35 - 2.3126961574899e26 * cos(theta) ** 33 + 4.50259428891839e25 * cos(theta) ** 31 - 7.54488772737676e24 * cos(theta) ** 29 + 1.08088370406315e24 * cos(theta) ** 27 - 1.31322319185242e23 * cos(theta) ** 25 + 1.34002366515553e22 * cos(theta) ** 23 - 1.13500497919099e21 * cos(theta) ** 21 + 7.86637114290788e19 * cos(theta) ** 19 - 4.38302204443548e18 * cos(theta) ** 17 + 1.92039625658255e17 * cos(theta) ** 15 - 6.43194918472626e15 * cos(theta) ** 13 + 158662883114690.0 * cos(theta) ** 11 - 2739861403864.34 * cos(theta) ** 9 + 30784959593.9814 * cos(theta) ** 7 - 200833846.372665 * cos(theta) ** 5 + 621776.614156857 * cos(theta) ** 3 - 576.252654454919 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl80_m0(theta, phi): return ( 8.56168058322919e23 * cos(theta) ** 80 - 1.70156670710718e25 * cos(theta) ** 78 + 1.62732637625569e26 * cos(theta) ** 76 - 9.97393585447038e26 * cos(theta) ** 74 + 4.40189554622949e27 * cos(theta) ** 72 - 1.49023112796855e28 * cos(theta) ** 70 + 4.02562435575398e28 * cos(theta) ** 68 - 8.91192641633388e28 * cos(theta) ** 66 + 1.64793811750312e29 * cos(theta) ** 64 - 2.58138558266223e29 * cos(theta) ** 62 + 3.46198591263424e29 * cos(theta) ** 60 - 4.00766191325219e29 * cos(theta) ** 58 + 4.02960166825174e29 * cos(theta) ** 56 - 3.53594676302432e29 * cos(theta) ** 54 + 2.71747573463362e29 * cos(theta) ** 52 - 1.83377751863826e29 * cos(theta) ** 50 + 1.08836117264141e29 * cos(theta) ** 48 - 5.68629644622284e28 * cos(theta) ** 46 + 2.61569636526251e28 * cos(theta) ** 44 - 1.05881418978962e28 * cos(theta) ** 42 + 3.76710337772256e27 * cos(theta) ** 40 - 1.17580657648003e27 * cos(theta) ** 38 + 3.21131322169954e26 * cos(theta) ** 36 - 7.64887459232782e25 * cos(theta) ** 34 + 1.58223401412091e25 * cos(theta) ** 32 - 2.82806512073503e24 * cos(theta) ** 30 + 4.34089035822067e23 * cos(theta) ** 28 - 5.67966962757845e22 * cos(theta) ** 26 + 6.27854635701699e21 * cos(theta) ** 24 - 5.80140205737091e20 * cos(theta) ** 22 + 4.42285107344119e19 * cos(theta) ** 20 - 2.73816130320569e18 * cos(theta) ** 18 + 1.34967358051054e17 * cos(theta) ** 16 - 5.16621466224128e15 * cos(theta) ** 14 + 148679802107513.0 * cos(theta) ** 12 - 3080962932212.21 * cos(theta) ** 10 + 43271951295.1152 * cos(theta) ** 8 - 376394730.122158 * cos(theta) ** 6 + 1747963.14298216 * cos(theta) ** 4 - 3239.96875436915 * cos(theta) ** 2 + 0.999990356286776 ) # @torch.jit.script def Yl80_m1(theta, phi): return ( 0.06288332552664 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 6.09103548425002e24 * cos(theta) ** 79 - 1.18028178157071e26 * cos(theta) ** 77 + 1.09984219518341e27 * cos(theta) ** 75 - 6.56357439061066e27 * cos(theta) ** 73 + 2.81847606185046e28 * cos(theta) ** 71 - 9.27670597840846e28 * cos(theta) ** 69 + 2.43435707218638e29 * cos(theta) ** 67 - 5.23067394227803e29 * cos(theta) ** 65 + 9.37913948270543e29 * cos(theta) ** 63 - 1.42326801940355e30 * cos(theta) ** 61 + 1.8472201953961e30 * cos(theta) ** 59 - 2.06709859667935e30 * cos(theta) ** 57 + 2.00674535298068e30 * cos(theta) ** 55 - 1.69801529867596e30 * cos(theta) ** 53 + 1.25664075272582e30 * cos(theta) ** 51 - 8.15377587646524e29 * cos(theta) ** 49 + 4.64575602263717e29 * cos(theta) ** 47 - 2.32610572509068e29 * cos(theta) ** 45 + 1.0234865190399e29 * cos(theta) ** 43 - 3.9546783341593e28 * cos(theta) ** 41 + 1.34001497273166e28 * cos(theta) ** 39 - 3.97339373667132e27 * cos(theta) ** 37 + 1.02808089690097e27 * cos(theta) ** 35 - 2.3126961574899e26 * cos(theta) ** 33 + 4.50259428891839e25 * cos(theta) ** 31 - 7.54488772737676e24 * cos(theta) ** 29 + 1.08088370406315e24 * cos(theta) ** 27 - 1.31322319185242e23 * cos(theta) ** 25 + 1.34002366515553e22 * cos(theta) ** 23 - 1.13500497919099e21 * cos(theta) ** 21 + 7.86637114290788e19 * cos(theta) ** 19 - 4.38302204443548e18 * cos(theta) ** 17 + 1.92039625658255e17 * cos(theta) ** 15 - 6.43194918472626e15 * cos(theta) ** 13 + 158662883114690.0 * cos(theta) ** 11 - 2739861403864.34 * cos(theta) ** 9 + 30784959593.9814 * cos(theta) ** 7 - 200833846.372665 * cos(theta) ** 5 + 621776.614156857 * cos(theta) ** 3 - 576.252654454919 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl80_m2(theta, phi): return ( 0.000781294971343069 * (1.0 - cos(theta) ** 2) * ( 4.81191803255751e26 * cos(theta) ** 78 - 9.08816971809447e27 * cos(theta) ** 76 + 8.24881646387556e28 * cos(theta) ** 74 - 4.79140930514578e29 * cos(theta) ** 72 + 2.00111800391383e30 * cos(theta) ** 70 - 6.40092712510184e30 * cos(theta) ** 68 + 1.63101923836488e31 * cos(theta) ** 66 - 3.39993806248072e31 * cos(theta) ** 64 + 5.90885787410442e31 * cos(theta) ** 62 - 8.68193491836166e31 * cos(theta) ** 60 + 1.0898599152837e32 * cos(theta) ** 58 - 1.17824620010723e32 * cos(theta) ** 56 + 1.10370994413937e32 * cos(theta) ** 54 - 8.99948108298259e31 * cos(theta) ** 52 + 6.40886783890167e31 * cos(theta) ** 50 - 3.99535017946797e31 * cos(theta) ** 48 + 2.18350533063947e31 * cos(theta) ** 46 - 1.04674757629081e31 * cos(theta) ** 44 + 4.40099203187157e30 * cos(theta) ** 42 - 1.62141811700531e30 * cos(theta) ** 40 + 5.22605839365349e29 * cos(theta) ** 38 - 1.47015568256839e29 * cos(theta) ** 36 + 3.5982831391534e28 * cos(theta) ** 34 - 7.63189731971667e27 * cos(theta) ** 32 + 1.3958042295647e27 * cos(theta) ** 30 - 2.18801744093926e26 * cos(theta) ** 28 + 2.9183860009705e25 * cos(theta) ** 26 - 3.28305797963106e24 * cos(theta) ** 24 + 3.08205442985773e23 * cos(theta) ** 22 - 2.38351045630109e22 * cos(theta) ** 20 + 1.4946105171525e21 * cos(theta) ** 18 - 7.45113747554031e19 * cos(theta) ** 16 + 2.88059438487383e18 * cos(theta) ** 14 - 8.36153394014414e16 * cos(theta) ** 12 + 1.74529171426159e15 * cos(theta) ** 10 - 24658752634779.1 * cos(theta) ** 8 + 215494717157.869 * cos(theta) ** 6 - 1004169231.86332 * cos(theta) ** 4 + 1865329.84247057 * cos(theta) ** 2 - 576.252654454919 ) * cos(2 * phi) ) # @torch.jit.script def Yl80_m3(theta, phi): return ( 9.71021132264824e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 3.75329606539486e28 * cos(theta) ** 77 - 6.9070089857518e29 * cos(theta) ** 75 + 6.10412418326791e30 * cos(theta) ** 73 - 3.44981469970496e31 * cos(theta) ** 71 + 1.40078260273968e32 * cos(theta) ** 69 - 4.35263044506925e32 * cos(theta) ** 67 + 1.07647269732082e33 * cos(theta) ** 65 - 2.17596035998766e33 * cos(theta) ** 63 + 3.66349188194474e33 * cos(theta) ** 61 - 5.209160951017e33 * cos(theta) ** 59 + 6.32118750864545e33 * cos(theta) ** 57 - 6.59817872060048e33 * cos(theta) ** 55 + 5.96003369835262e33 * cos(theta) ** 53 - 4.67973016315095e33 * cos(theta) ** 51 + 3.20443391945084e33 * cos(theta) ** 49 - 1.91776808614462e33 * cos(theta) ** 47 + 1.00441245209416e33 * cos(theta) ** 45 - 4.60568933567955e32 * cos(theta) ** 43 + 1.84841665338606e32 * cos(theta) ** 41 - 6.48567246802126e31 * cos(theta) ** 39 + 1.98590218958833e31 * cos(theta) ** 37 - 5.2925604572462e30 * cos(theta) ** 35 + 1.22341626731216e30 * cos(theta) ** 33 - 2.44220714230933e29 * cos(theta) ** 31 + 4.1874126886941e28 * cos(theta) ** 29 - 6.12644883462993e27 * cos(theta) ** 27 + 7.5878036025233e26 * cos(theta) ** 25 - 7.87933915111454e25 * cos(theta) ** 23 + 6.780519745687e24 * cos(theta) ** 21 - 4.76702091260218e23 * cos(theta) ** 19 + 2.6902989308745e22 * cos(theta) ** 17 - 1.19218199608645e21 * cos(theta) ** 15 + 4.03283213882337e19 * cos(theta) ** 13 - 1.0033840728173e18 * cos(theta) ** 11 + 1.74529171426159e16 * cos(theta) ** 9 - 197270021078233.0 * cos(theta) ** 7 + 1292968302947.22 * cos(theta) ** 5 - 4016676927.4533 * cos(theta) ** 3 + 3730659.68494114 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl80_m4(theta, phi): return ( 1.20737916134363e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 2.89003797035404e30 * cos(theta) ** 76 - 5.18025673931385e31 * cos(theta) ** 74 + 4.45601065378557e32 * cos(theta) ** 72 - 2.44936843679052e33 * cos(theta) ** 70 + 9.66539995890378e33 * cos(theta) ** 68 - 2.9162623981964e34 * cos(theta) ** 66 + 6.99707253258532e34 * cos(theta) ** 64 - 1.37085502679223e35 * cos(theta) ** 62 + 2.23473004798629e35 * cos(theta) ** 60 - 3.07340496110003e35 * cos(theta) ** 58 + 3.6030768799279e35 * cos(theta) ** 56 - 3.62899829633026e35 * cos(theta) ** 54 + 3.15881786012689e35 * cos(theta) ** 52 - 2.38666238320698e35 * cos(theta) ** 50 + 1.57017262053091e35 * cos(theta) ** 48 - 9.01351000487973e34 * cos(theta) ** 46 + 4.5198560344237e34 * cos(theta) ** 44 - 1.98044641434221e34 * cos(theta) ** 42 + 7.57850827888284e33 * cos(theta) ** 40 - 2.52941226252829e33 * cos(theta) ** 38 + 7.34783810147681e32 * cos(theta) ** 36 - 1.85239616003617e32 * cos(theta) ** 34 + 4.03727368213012e31 * cos(theta) ** 32 - 7.57084214115893e30 * cos(theta) ** 30 + 1.21434967972129e30 * cos(theta) ** 28 - 1.65414118535008e29 * cos(theta) ** 26 + 1.89695090063083e28 * cos(theta) ** 24 - 1.81224800475634e27 * cos(theta) ** 22 + 1.42390914659427e26 * cos(theta) ** 20 - 9.05733973394414e24 * cos(theta) ** 18 + 4.57350818248664e23 * cos(theta) ** 16 - 1.78827299412968e22 * cos(theta) ** 14 + 5.24268178047037e20 * cos(theta) ** 12 - 1.10372248009903e19 * cos(theta) ** 10 + 1.57076254283543e17 * cos(theta) ** 8 - 1.38089014754763e15 * cos(theta) ** 6 + 6464841514736.08 * cos(theta) ** 4 - 12050030782.3599 * cos(theta) ** 2 + 3730659.68494114 ) * cos(4 * phi) ) # @torch.jit.script def Yl80_m5(theta, phi): return ( 1.50219882144266e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 2.19642885746907e32 * cos(theta) ** 75 - 3.83338998709225e33 * cos(theta) ** 73 + 3.20832767072561e34 * cos(theta) ** 71 - 1.71455790575337e35 * cos(theta) ** 69 + 6.57247197205457e35 * cos(theta) ** 67 - 1.92473318280962e36 * cos(theta) ** 65 + 4.4781264208546e36 * cos(theta) ** 63 - 8.4993011661118e36 * cos(theta) ** 61 + 1.34083802879177e37 * cos(theta) ** 59 - 1.78257487743802e37 * cos(theta) ** 57 + 2.01772305275963e37 * cos(theta) ** 55 - 1.95965908001834e37 * cos(theta) ** 53 + 1.64258528726598e37 * cos(theta) ** 51 - 1.19333119160349e37 * cos(theta) ** 49 + 7.53682857854837e36 * cos(theta) ** 47 - 4.14621460224468e36 * cos(theta) ** 45 + 1.98873665514643e36 * cos(theta) ** 43 - 8.31787494023726e35 * cos(theta) ** 41 + 3.03140331155314e35 * cos(theta) ** 39 - 9.6117665976075e34 * cos(theta) ** 37 + 2.64522171653165e34 * cos(theta) ** 35 - 6.29814694412298e33 * cos(theta) ** 33 + 1.29192757828164e33 * cos(theta) ** 31 - 2.27125264234768e32 * cos(theta) ** 29 + 3.40017910321961e31 * cos(theta) ** 27 - 4.30076708191021e30 * cos(theta) ** 25 + 4.55268216151398e29 * cos(theta) ** 23 - 3.98694561046396e28 * cos(theta) ** 21 + 2.84781829318854e27 * cos(theta) ** 19 - 1.63032115210995e26 * cos(theta) ** 17 + 7.31761309197863e24 * cos(theta) ** 15 - 2.50358219178155e23 * cos(theta) ** 13 + 6.29121813656445e21 * cos(theta) ** 11 - 1.10372248009903e20 * cos(theta) ** 9 + 1.25661003426834e18 * cos(theta) ** 7 - 8.28534088528577e15 * cos(theta) ** 5 + 25859366058944.3 * cos(theta) ** 3 - 24100061564.7198 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl80_m6(theta, phi): return ( 1.87045627196658e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.6473216431018e34 * cos(theta) ** 74 - 2.79837469057734e35 * cos(theta) ** 72 + 2.27791264621519e36 * cos(theta) ** 70 - 1.18304495496982e37 * cos(theta) ** 68 + 4.40355622127656e37 * cos(theta) ** 66 - 1.25107656882625e38 * cos(theta) ** 64 + 2.8212196451384e38 * cos(theta) ** 62 - 5.1845737113282e38 * cos(theta) ** 60 + 7.91094436987147e38 * cos(theta) ** 58 - 1.01606768013967e39 * cos(theta) ** 56 + 1.10974767901779e39 * cos(theta) ** 54 - 1.03861931240972e39 * cos(theta) ** 52 + 8.37718496505651e38 * cos(theta) ** 50 - 5.84732283885711e38 * cos(theta) ** 48 + 3.54230943191773e38 * cos(theta) ** 46 - 1.8657965710101e38 * cos(theta) ** 44 + 8.55156761712964e37 * cos(theta) ** 42 - 3.41032872549728e37 * cos(theta) ** 40 + 1.18224729150572e37 * cos(theta) ** 38 - 3.55635364111478e36 * cos(theta) ** 36 + 9.25827600786078e35 * cos(theta) ** 34 - 2.07838849156058e35 * cos(theta) ** 32 + 4.00497549267308e34 * cos(theta) ** 30 - 6.58663266280827e33 * cos(theta) ** 28 + 9.18048357869294e32 * cos(theta) ** 26 - 1.07519177047755e32 * cos(theta) ** 24 + 1.04711689714822e31 * cos(theta) ** 22 - 8.37258578197431e29 * cos(theta) ** 20 + 5.41085475705823e28 * cos(theta) ** 18 - 2.77154595858691e27 * cos(theta) ** 16 + 1.09764196379679e26 * cos(theta) ** 14 - 3.25465684931601e24 * cos(theta) ** 12 + 6.9203399502209e22 * cos(theta) ** 10 - 9.93350232089124e20 * cos(theta) ** 8 + 8.79627023987839e18 * cos(theta) ** 6 - 4.14267044264288e16 * cos(theta) ** 4 + 77578098176833.0 * cos(theta) ** 2 - 24100061564.7198 ) * cos(6 * phi) ) # @torch.jit.script def Yl80_m7(theta, phi): return ( 2.33115995127995e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.21901801589533e36 * cos(theta) ** 73 - 2.01482977721569e37 * cos(theta) ** 71 + 1.59453885235063e38 * cos(theta) ** 69 - 8.04470569379479e38 * cos(theta) ** 67 + 2.90634710604253e39 * cos(theta) ** 65 - 8.00689004048803e39 * cos(theta) ** 63 + 1.74915617998581e40 * cos(theta) ** 61 - 3.11074422679692e40 * cos(theta) ** 59 + 4.58834773452545e40 * cos(theta) ** 57 - 5.68997900878215e40 * cos(theta) ** 55 + 5.99263746669609e40 * cos(theta) ** 53 - 5.40082042453055e40 * cos(theta) ** 51 + 4.18859248252826e40 * cos(theta) ** 49 - 2.80671496265141e40 * cos(theta) ** 47 + 1.62946233868216e40 * cos(theta) ** 45 - 8.20950491244446e39 * cos(theta) ** 43 + 3.59165839919445e39 * cos(theta) ** 41 - 1.36413149019891e39 * cos(theta) ** 39 + 4.49253970772175e38 * cos(theta) ** 37 - 1.28028731080132e38 * cos(theta) ** 35 + 3.14781384267267e37 * cos(theta) ** 33 - 6.65084317299387e36 * cos(theta) ** 31 + 1.20149264780192e36 * cos(theta) ** 29 - 1.84425714558632e35 * cos(theta) ** 27 + 2.38692573046017e34 * cos(theta) ** 25 - 2.58046024914612e33 * cos(theta) ** 23 + 2.30365717372607e32 * cos(theta) ** 21 - 1.67451715639486e31 * cos(theta) ** 19 + 9.73953856270481e29 * cos(theta) ** 17 - 4.43447353373905e28 * cos(theta) ** 15 + 1.53669874931551e27 * cos(theta) ** 13 - 3.90558821917921e25 * cos(theta) ** 11 + 6.92033995022089e23 * cos(theta) ** 9 - 7.94680185671299e21 * cos(theta) ** 7 + 5.27776214392703e19 * cos(theta) ** 5 - 1.65706817705715e17 * cos(theta) ** 3 + 155156196353666.0 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl80_m8(theta, phi): return ( 2.90850160163363e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 8.89883151603594e37 * cos(theta) ** 72 - 1.43052914182314e39 * cos(theta) ** 70 + 1.10023180812193e40 * cos(theta) ** 68 - 5.38995281484251e40 * cos(theta) ** 66 + 1.88912561892764e41 * cos(theta) ** 64 - 5.04434072550746e41 * cos(theta) ** 62 + 1.06698526979134e42 * cos(theta) ** 60 - 1.83533909381018e42 * cos(theta) ** 58 + 2.61535820867951e42 * cos(theta) ** 56 - 3.12948845483018e42 * cos(theta) ** 54 + 3.17609785734893e42 * cos(theta) ** 52 - 2.75441841651058e42 * cos(theta) ** 50 + 2.05241031643885e42 * cos(theta) ** 48 - 1.31915603244616e42 * cos(theta) ** 46 + 7.33258052406971e41 * cos(theta) ** 44 - 3.53008711235112e41 * cos(theta) ** 42 + 1.47257994366972e41 * cos(theta) ** 40 - 5.32011281177575e40 * cos(theta) ** 38 + 1.66223969185705e40 * cos(theta) ** 36 - 4.48100558780462e39 * cos(theta) ** 34 + 1.03877856808198e39 * cos(theta) ** 32 - 2.0617613836281e38 * cos(theta) ** 30 + 3.48432867862558e37 * cos(theta) ** 28 - 4.97949429308305e36 * cos(theta) ** 26 + 5.96731432615041e35 * cos(theta) ** 24 - 5.93505857303609e34 * cos(theta) ** 22 + 4.83768006482476e33 * cos(theta) ** 20 - 3.18158259715024e32 * cos(theta) ** 18 + 1.65572155565982e31 * cos(theta) ** 16 - 6.65171030060858e29 * cos(theta) ** 14 + 1.99770837411017e28 * cos(theta) ** 12 - 4.29614704109713e26 * cos(theta) ** 10 + 6.22830595519881e24 * cos(theta) ** 8 - 5.56276129969909e22 * cos(theta) ** 6 + 2.63888107196352e20 * cos(theta) ** 4 - 4.97120453117146e17 * cos(theta) ** 2 + 155156196353666.0 ) * cos(8 * phi) ) # @torch.jit.script def Yl80_m9(theta, phi): return ( 3.63335686319938e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 6.40715869154588e39 * cos(theta) ** 71 - 1.0013703992762e41 * cos(theta) ** 69 + 7.48157629522916e41 * cos(theta) ** 67 - 3.55736885779606e42 * cos(theta) ** 65 + 1.20904039611369e43 * cos(theta) ** 63 - 3.12749124981462e43 * cos(theta) ** 61 + 6.40191161874806e43 * cos(theta) ** 59 - 1.06449667440991e44 * cos(theta) ** 57 + 1.46460059686052e44 * cos(theta) ** 55 - 1.6899237656083e44 * cos(theta) ** 53 + 1.65157088582144e44 * cos(theta) ** 51 - 1.37720920825529e44 * cos(theta) ** 49 + 9.85156951890646e43 * cos(theta) ** 47 - 6.06811774925236e43 * cos(theta) ** 45 + 3.22633543059067e43 * cos(theta) ** 43 - 1.48263658718747e43 * cos(theta) ** 41 + 5.8903197746789e42 * cos(theta) ** 39 - 2.02164286847479e42 * cos(theta) ** 37 + 5.98406289068537e41 * cos(theta) ** 35 - 1.52354189985357e41 * cos(theta) ** 33 + 3.32409141786234e40 * cos(theta) ** 31 - 6.1852841508843e39 * cos(theta) ** 29 + 9.75612030015161e38 * cos(theta) ** 27 - 1.29466851620159e38 * cos(theta) ** 25 + 1.4321554382761e37 * cos(theta) ** 23 - 1.30571288606794e36 * cos(theta) ** 21 + 9.67536012964951e34 * cos(theta) ** 19 - 5.72684867487043e33 * cos(theta) ** 17 + 2.64915448905571e32 * cos(theta) ** 15 - 9.31239442085201e30 * cos(theta) ** 13 + 2.3972500489322e29 * cos(theta) ** 11 - 4.29614704109713e27 * cos(theta) ** 9 + 4.98264476415904e25 * cos(theta) ** 7 - 3.33765677981946e23 * cos(theta) ** 5 + 1.05555242878541e21 * cos(theta) ** 3 - 9.94240906234292e17 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl80_m10(theta, phi): return ( 4.54524844252942e-19 * (1.0 - cos(theta) ** 2) ** 5 * ( 4.54908267099757e41 * cos(theta) ** 70 - 6.90945575500575e42 * cos(theta) ** 68 + 5.01265611780353e43 * cos(theta) ** 66 - 2.31228975756744e44 * cos(theta) ** 64 + 7.61695449551626e44 * cos(theta) ** 62 - 1.90776966238692e45 * cos(theta) ** 60 + 3.77712785506135e45 * cos(theta) ** 58 - 6.06763104413646e45 * cos(theta) ** 56 + 8.05530328273289e45 * cos(theta) ** 54 - 8.95659595772398e45 * cos(theta) ** 52 + 8.42301151768936e45 * cos(theta) ** 50 - 6.74832512045092e45 * cos(theta) ** 48 + 4.63023767388604e45 * cos(theta) ** 46 - 2.73065298716356e45 * cos(theta) ** 44 + 1.38732423515399e45 * cos(theta) ** 42 - 6.07881000746862e44 * cos(theta) ** 40 + 2.29722471212477e44 * cos(theta) ** 38 - 7.48007861335671e43 * cos(theta) ** 36 + 2.09442201173988e43 * cos(theta) ** 34 - 5.02768826951678e42 * cos(theta) ** 32 + 1.03046833953732e42 * cos(theta) ** 30 - 1.79373240375645e41 * cos(theta) ** 28 + 2.63415248104094e40 * cos(theta) ** 26 - 3.23667129050398e39 * cos(theta) ** 24 + 3.29395750803503e38 * cos(theta) ** 22 - 2.74199706074267e37 * cos(theta) ** 20 + 1.83831842463341e36 * cos(theta) ** 18 - 9.73564274727973e34 * cos(theta) ** 16 + 3.97373173358356e33 * cos(theta) ** 14 - 1.21061127471076e32 * cos(theta) ** 12 + 2.63697505382542e30 * cos(theta) ** 10 - 3.86653233698742e28 * cos(theta) ** 8 + 3.48785133491133e26 * cos(theta) ** 6 - 1.66882838990973e24 * cos(theta) ** 4 + 3.16665728635622e21 * cos(theta) ** 2 - 9.94240906234292e17 ) * cos(10 * phi) ) # @torch.jit.script def Yl80_m11(theta, phi): return ( 5.69492370894745e-21 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 3.1843578696983e43 * cos(theta) ** 69 - 4.69842991340391e44 * cos(theta) ** 67 + 3.30835303775033e45 * cos(theta) ** 65 - 1.47986544484316e46 * cos(theta) ** 63 + 4.72251178722008e46 * cos(theta) ** 61 - 1.14466179743215e47 * cos(theta) ** 59 + 2.19073415593558e47 * cos(theta) ** 57 - 3.39787338471642e47 * cos(theta) ** 55 + 4.34986377267576e47 * cos(theta) ** 53 - 4.65742989801647e47 * cos(theta) ** 51 + 4.21150575884468e47 * cos(theta) ** 49 - 3.23919605781644e47 * cos(theta) ** 47 + 2.12990932998758e47 * cos(theta) ** 45 - 1.20148731435197e47 * cos(theta) ** 43 + 5.82676178764675e46 * cos(theta) ** 41 - 2.43152400298745e46 * cos(theta) ** 39 + 8.72945390607413e45 * cos(theta) ** 37 - 2.69282830080842e45 * cos(theta) ** 35 + 7.12103483991559e44 * cos(theta) ** 33 - 1.60886024624537e44 * cos(theta) ** 31 + 3.09140501861197e43 * cos(theta) ** 29 - 5.02245073051805e42 * cos(theta) ** 27 + 6.84879645070643e41 * cos(theta) ** 25 - 7.76801109720956e40 * cos(theta) ** 23 + 7.24670651767706e39 * cos(theta) ** 21 - 5.48399412148534e38 * cos(theta) ** 19 + 3.30897316434013e37 * cos(theta) ** 17 - 1.55770283956476e36 * cos(theta) ** 15 + 5.56322442701699e34 * cos(theta) ** 13 - 1.45273352965291e33 * cos(theta) ** 11 + 2.63697505382542e31 * cos(theta) ** 9 - 3.09322586958993e29 * cos(theta) ** 7 + 2.0927108009468e27 * cos(theta) ** 5 - 6.67531355963891e24 * cos(theta) ** 3 + 6.33331457271244e21 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl80_m12(theta, phi): return ( 7.14775160081563e-23 * (1.0 - cos(theta) ** 2) ** 6 * ( 2.19720693009183e45 * cos(theta) ** 68 - 3.14794804198062e46 * cos(theta) ** 66 + 2.15042947453772e47 * cos(theta) ** 64 - 9.32315230251191e47 * cos(theta) ** 62 + 2.88073219020425e48 * cos(theta) ** 60 - 6.7535046048497e48 * cos(theta) ** 58 + 1.24871846888328e49 * cos(theta) ** 56 - 1.86883036159403e49 * cos(theta) ** 54 + 2.30542779951815e49 * cos(theta) ** 52 - 2.3752892479884e49 * cos(theta) ** 50 + 2.06363782183389e49 * cos(theta) ** 48 - 1.52242214717373e49 * cos(theta) ** 46 + 9.5845919849441e48 * cos(theta) ** 44 - 5.16639545171345e48 * cos(theta) ** 42 + 2.38897233293517e48 * cos(theta) ** 40 - 9.48294361165105e47 * cos(theta) ** 38 + 3.22989794524743e47 * cos(theta) ** 36 - 9.42489905282946e46 * cos(theta) ** 34 + 2.34994149717214e46 * cos(theta) ** 32 - 4.98746676336065e45 * cos(theta) ** 30 + 8.96507455397472e44 * cos(theta) ** 28 - 1.35606169723987e44 * cos(theta) ** 26 + 1.71219911267661e43 * cos(theta) ** 24 - 1.7866425523582e42 * cos(theta) ** 22 + 1.52180836871218e41 * cos(theta) ** 20 - 1.04195888308222e40 * cos(theta) ** 18 + 5.62525437937823e38 * cos(theta) ** 16 - 2.33655425934713e37 * cos(theta) ** 14 + 7.23219175512208e35 * cos(theta) ** 12 - 1.5980068826182e34 * cos(theta) ** 10 + 2.37327754844288e32 * cos(theta) ** 8 - 2.16525810871295e30 * cos(theta) ** 6 + 1.0463554004734e28 * cos(theta) ** 4 - 2.00259406789167e25 * cos(theta) ** 2 + 6.33331457271244e21 ) * cos(12 * phi) ) # @torch.jit.script def Yl80_m13(theta, phi): return ( 8.988216418622e-25 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.49410071246244e47 * cos(theta) ** 67 - 2.07764570770721e48 * cos(theta) ** 65 + 1.37627486370414e49 * cos(theta) ** 63 - 5.78035442755738e49 * cos(theta) ** 61 + 1.72843931412255e50 * cos(theta) ** 59 - 3.91703267081283e50 * cos(theta) ** 57 + 6.99282342574639e50 * cos(theta) ** 55 - 1.00916839526078e51 * cos(theta) ** 53 + 1.19882245574944e51 * cos(theta) ** 51 - 1.1876446239942e51 * cos(theta) ** 49 + 9.90546154480269e50 * cos(theta) ** 47 - 7.00314187699915e50 * cos(theta) ** 45 + 4.2172204733754e50 * cos(theta) ** 43 - 2.16988608971965e50 * cos(theta) ** 41 + 9.55588933174068e49 * cos(theta) ** 39 - 3.6035185724274e49 * cos(theta) ** 37 + 1.16276326028907e49 * cos(theta) ** 35 - 3.20446567796201e48 * cos(theta) ** 33 + 7.51981279095086e47 * cos(theta) ** 31 - 1.49624002900819e47 * cos(theta) ** 29 + 2.51022087511292e46 * cos(theta) ** 27 - 3.52576041282367e45 * cos(theta) ** 25 + 4.10927787042386e44 * cos(theta) ** 23 - 3.93061361518804e43 * cos(theta) ** 21 + 3.04361673742437e42 * cos(theta) ** 19 - 1.87552598954799e41 * cos(theta) ** 17 + 9.00040700700516e39 * cos(theta) ** 15 - 3.27117596308599e38 * cos(theta) ** 13 + 8.6786301061465e36 * cos(theta) ** 11 - 1.5980068826182e35 * cos(theta) ** 9 + 1.8986220387543e33 * cos(theta) ** 7 - 1.29915486522777e31 * cos(theta) ** 5 + 4.1854216018936e28 * cos(theta) ** 3 - 4.00518813578335e25 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl80_m14(theta, phi): return ( 1.13258861756036e-26 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.00104747734984e49 * cos(theta) ** 66 - 1.35046971000969e50 * cos(theta) ** 64 + 8.67053164133607e50 * cos(theta) ** 62 - 3.52601620081e51 * cos(theta) ** 60 + 1.0197791953323e52 * cos(theta) ** 58 - 2.23270862236331e52 * cos(theta) ** 56 + 3.84605288416051e52 * cos(theta) ** 54 - 5.34859249488211e52 * cos(theta) ** 52 + 6.11399452432214e52 * cos(theta) ** 50 - 5.81945865757158e52 * cos(theta) ** 48 + 4.65556692605726e52 * cos(theta) ** 46 - 3.15141384464962e52 * cos(theta) ** 44 + 1.81340480355142e52 * cos(theta) ** 42 - 8.89653296785057e51 * cos(theta) ** 40 + 3.72679683937886e51 * cos(theta) ** 38 - 1.33330187179814e51 * cos(theta) ** 36 + 4.06967141101176e50 * cos(theta) ** 34 - 1.05747367372746e50 * cos(theta) ** 32 + 2.33114196519477e49 * cos(theta) ** 30 - 4.33909608412376e48 * cos(theta) ** 28 + 6.77759636280489e47 * cos(theta) ** 26 - 8.81440103205918e46 * cos(theta) ** 24 + 9.45133910197488e45 * cos(theta) ** 22 - 8.25428859189488e44 * cos(theta) ** 20 + 5.7828718011063e43 * cos(theta) ** 18 - 3.18839418223158e42 * cos(theta) ** 16 + 1.35006105105077e41 * cos(theta) ** 14 - 4.25252875201179e39 * cos(theta) ** 12 + 9.54649311676115e37 * cos(theta) ** 10 - 1.43820619435638e36 * cos(theta) ** 8 + 1.32903542712801e34 * cos(theta) ** 6 - 6.49577432613886e31 * cos(theta) ** 4 + 1.25562648056808e29 * cos(theta) ** 2 - 4.00518813578335e25 ) * cos(14 * phi) ) # @torch.jit.script def Yl80_m15(theta, phi): return ( 1.43033716183798e-28 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 6.60691335050892e50 * cos(theta) ** 65 - 8.64300614406199e51 * cos(theta) ** 63 + 5.37572961762836e52 * cos(theta) ** 61 - 2.115609720486e53 * cos(theta) ** 59 + 5.91471933292737e53 * cos(theta) ** 57 - 1.25031682852345e54 * cos(theta) ** 55 + 2.07686855744668e54 * cos(theta) ** 53 - 2.7812680973387e54 * cos(theta) ** 51 + 3.05699726216107e54 * cos(theta) ** 49 - 2.79334015563436e54 * cos(theta) ** 47 + 2.14156078598634e54 * cos(theta) ** 45 - 1.38662209164583e54 * cos(theta) ** 43 + 7.61630017491598e53 * cos(theta) ** 41 - 3.55861318714023e53 * cos(theta) ** 39 + 1.41618279896397e53 * cos(theta) ** 37 - 4.7998867384733e52 * cos(theta) ** 35 + 1.383688279744e52 * cos(theta) ** 33 - 3.38391575592789e51 * cos(theta) ** 31 + 6.9934258955843e50 * cos(theta) ** 29 - 1.21494690355465e50 * cos(theta) ** 27 + 1.76217505432927e49 * cos(theta) ** 25 - 2.1154562476942e48 * cos(theta) ** 23 + 2.07929460243447e47 * cos(theta) ** 21 - 1.65085771837898e46 * cos(theta) ** 19 + 1.04091692419913e45 * cos(theta) ** 17 - 5.10143069157053e43 * cos(theta) ** 15 + 1.89008547147108e42 * cos(theta) ** 13 - 5.10303450241414e40 * cos(theta) ** 11 + 9.54649311676115e38 * cos(theta) ** 9 - 1.15056495548511e37 * cos(theta) ** 7 + 7.97421256276807e34 * cos(theta) ** 5 - 2.59830973045555e32 * cos(theta) ** 3 + 2.51125296113616e29 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl80_m16(theta, phi): return ( 1.81069843999506e-30 * (1.0 - cos(theta) ** 2) ** 8 * ( 4.2944936778308e52 * cos(theta) ** 64 - 5.44509387075905e53 * cos(theta) ** 62 + 3.2791950667533e54 * cos(theta) ** 60 - 1.24820973508674e55 * cos(theta) ** 58 + 3.3713900197686e55 * cos(theta) ** 56 - 6.876742556879e55 * cos(theta) ** 54 + 1.10074033544674e56 * cos(theta) ** 52 - 1.41844672964274e56 * cos(theta) ** 50 + 1.49792865845892e56 * cos(theta) ** 48 - 1.31286987314815e56 * cos(theta) ** 46 + 9.63702353693853e55 * cos(theta) ** 44 - 5.96247499407708e55 * cos(theta) ** 42 + 3.12268307171555e55 * cos(theta) ** 40 - 1.38785914298469e55 * cos(theta) ** 38 + 5.23987635616668e54 * cos(theta) ** 36 - 1.67996035846565e54 * cos(theta) ** 34 + 4.56617132315519e53 * cos(theta) ** 32 - 1.04901388433765e53 * cos(theta) ** 30 + 2.02809350971945e52 * cos(theta) ** 28 - 3.28035663959757e51 * cos(theta) ** 26 + 4.40543763582318e50 * cos(theta) ** 24 - 4.86554936969667e49 * cos(theta) ** 22 + 4.36651866511239e48 * cos(theta) ** 20 - 3.13662966492005e47 * cos(theta) ** 18 + 1.76955877113853e46 * cos(theta) ** 16 - 7.65214603735579e44 * cos(theta) ** 14 + 2.45711111291241e43 * cos(theta) ** 12 - 5.61333795265556e41 * cos(theta) ** 10 + 8.59184380508504e39 * cos(theta) ** 8 - 8.05395468839575e37 * cos(theta) ** 6 + 3.98710628138403e35 * cos(theta) ** 4 - 7.79492919136664e32 * cos(theta) ** 2 + 2.51125296113616e29 ) * cos(16 * phi) ) # @torch.jit.script def Yl80_m17(theta, phi): return ( 2.29810714657801e-32 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 2.74847595381171e54 * cos(theta) ** 63 - 3.37595819987061e55 * cos(theta) ** 61 + 1.96751704005198e56 * cos(theta) ** 59 - 7.2396164635031e56 * cos(theta) ** 57 + 1.88797841107042e57 * cos(theta) ** 55 - 3.71344098071466e57 * cos(theta) ** 53 + 5.72384974432304e57 * cos(theta) ** 51 - 7.09223364821368e57 * cos(theta) ** 49 + 7.19005756060284e57 * cos(theta) ** 47 - 6.03920141648148e57 * cos(theta) ** 45 + 4.24029035625295e57 * cos(theta) ** 43 - 2.50423949751237e57 * cos(theta) ** 41 + 1.24907322868622e57 * cos(theta) ** 39 - 5.27386474334182e56 * cos(theta) ** 37 + 1.88635548822001e56 * cos(theta) ** 35 - 5.71186521878322e55 * cos(theta) ** 33 + 1.46117482340966e55 * cos(theta) ** 31 - 3.14704165301294e54 * cos(theta) ** 29 + 5.67866182721445e53 * cos(theta) ** 27 - 8.52892726295367e52 * cos(theta) ** 25 + 1.05730503259756e52 * cos(theta) ** 23 - 1.07042086133327e51 * cos(theta) ** 21 + 8.73303733022478e49 * cos(theta) ** 19 - 5.6459333968561e48 * cos(theta) ** 17 + 2.83129403382164e47 * cos(theta) ** 15 - 1.07130044522981e46 * cos(theta) ** 13 + 2.94853333549489e44 * cos(theta) ** 11 - 5.61333795265556e42 * cos(theta) ** 9 + 6.87347504406803e40 * cos(theta) ** 7 - 4.83237281303745e38 * cos(theta) ** 5 + 1.59484251255361e36 * cos(theta) ** 3 - 1.55898583827333e33 * cos(theta) ) * cos(17 * phi) ) # @torch.jit.script def Yl80_m18(theta, phi): return ( 2.92473795258218e-34 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.73153985090138e56 * cos(theta) ** 62 - 2.05933450192107e57 * cos(theta) ** 60 + 1.16083505363067e58 * cos(theta) ** 58 - 4.12658138419677e58 * cos(theta) ** 56 + 1.03838812608873e59 * cos(theta) ** 54 - 1.96812371977877e59 * cos(theta) ** 52 + 2.91916336960475e59 * cos(theta) ** 50 - 3.4751944876247e59 * cos(theta) ** 48 + 3.37932705348333e59 * cos(theta) ** 46 - 2.71764063741667e59 * cos(theta) ** 44 + 1.82332485318877e59 * cos(theta) ** 42 - 1.02673819398007e59 * cos(theta) ** 40 + 4.87138559187626e58 * cos(theta) ** 38 - 1.95132995503647e58 * cos(theta) ** 36 + 6.60224420877002e57 * cos(theta) ** 34 - 1.88491552219846e57 * cos(theta) ** 32 + 4.52964195256995e56 * cos(theta) ** 30 - 9.12642079373751e55 * cos(theta) ** 28 + 1.5332386933479e55 * cos(theta) ** 26 - 2.13223181573842e54 * cos(theta) ** 24 + 2.43180157497439e53 * cos(theta) ** 22 - 2.24788380879986e52 * cos(theta) ** 20 + 1.65927709274271e51 * cos(theta) ** 18 - 9.59808677465537e49 * cos(theta) ** 16 + 4.24694105073246e48 * cos(theta) ** 14 - 1.39269057879875e47 * cos(theta) ** 12 + 3.24338666904438e45 * cos(theta) ** 10 - 5.05200415739e43 * cos(theta) ** 8 + 4.81143253084762e41 * cos(theta) ** 6 - 2.41618640651872e39 * cos(theta) ** 4 + 4.78452753766084e36 * cos(theta) ** 2 - 1.55898583827333e33 ) * cos(18 * phi) ) # @torch.jit.script def Yl80_m19(theta, phi): return ( 3.73313348056284e-36 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.07355470755885e58 * cos(theta) ** 61 - 1.23560070115264e59 * cos(theta) ** 59 + 6.73284331105788e59 * cos(theta) ** 57 - 2.31088557515019e60 * cos(theta) ** 55 + 5.60729588087913e60 * cos(theta) ** 53 - 1.02342433428496e61 * cos(theta) ** 51 + 1.45958168480238e61 * cos(theta) ** 49 - 1.66809335405986e61 * cos(theta) ** 47 + 1.55449044460233e61 * cos(theta) ** 45 - 1.19576188046333e61 * cos(theta) ** 43 + 7.65796438339284e60 * cos(theta) ** 41 - 4.10695277592029e60 * cos(theta) ** 39 + 1.85112652491298e60 * cos(theta) ** 37 - 7.0247878381313e59 * cos(theta) ** 35 + 2.24476303098181e59 * cos(theta) ** 33 - 6.03172967103508e58 * cos(theta) ** 31 + 1.35889258577099e58 * cos(theta) ** 29 - 2.5553978222465e57 * cos(theta) ** 27 + 3.98642060270454e56 * cos(theta) ** 25 - 5.1173563577722e55 * cos(theta) ** 23 + 5.34996346494367e54 * cos(theta) ** 21 - 4.49576761759972e53 * cos(theta) ** 19 + 2.98669876693688e52 * cos(theta) ** 17 - 1.53569388394486e51 * cos(theta) ** 15 + 5.94571747102545e49 * cos(theta) ** 13 - 1.6712286945585e48 * cos(theta) ** 11 + 3.24338666904438e46 * cos(theta) ** 9 - 4.041603325912e44 * cos(theta) ** 7 + 2.88685951850857e42 * cos(theta) ** 5 - 9.6647456260749e39 * cos(theta) ** 3 + 9.56905507532168e36 * cos(theta) ) * cos(19 * phi) ) # @torch.jit.script def Yl80_m20(theta, phi): return ( 4.77978763224299e-38 * (1.0 - cos(theta) ** 2) ** 10 * ( 6.54868371610901e59 * cos(theta) ** 60 - 7.2900441368006e60 * cos(theta) ** 58 + 3.83772068730299e61 * cos(theta) ** 56 - 1.2709870663326e62 * cos(theta) ** 54 + 2.97186681686594e62 * cos(theta) ** 52 - 5.2194641048533e62 * cos(theta) ** 50 + 7.15195025553164e62 * cos(theta) ** 48 - 7.84003876408133e62 * cos(theta) ** 46 + 6.9952070007105e62 * cos(theta) ** 44 - 5.14177608599233e62 * cos(theta) ** 42 + 3.13976539719106e62 * cos(theta) ** 40 - 1.60171158260891e62 * cos(theta) ** 38 + 6.84916814217802e61 * cos(theta) ** 36 - 2.45867574334596e61 * cos(theta) ** 34 + 7.40771800223996e60 * cos(theta) ** 32 - 1.86983619802088e60 * cos(theta) ** 30 + 3.94078849873586e59 * cos(theta) ** 28 - 6.89957412006556e58 * cos(theta) ** 26 + 9.96605150676136e57 * cos(theta) ** 24 - 1.17699196228761e57 * cos(theta) ** 22 + 1.12349232763817e56 * cos(theta) ** 20 - 8.54195847343947e54 * cos(theta) ** 18 + 5.07738790379269e53 * cos(theta) ** 16 - 2.30354082591729e52 * cos(theta) ** 14 + 7.72943271233308e50 * cos(theta) ** 12 - 1.83835156401436e49 * cos(theta) ** 10 + 2.91904800213994e47 * cos(theta) ** 8 - 2.8291223281384e45 * cos(theta) ** 6 + 1.44342975925429e43 * cos(theta) ** 4 - 2.89942368782247e40 * cos(theta) ** 2 + 9.56905507532168e36 ) * cos(20 * phi) ) # @torch.jit.script def Yl80_m21(theta, phi): return ( 6.14005539172387e-40 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 3.92921022966541e61 * cos(theta) ** 59 - 4.22822559934435e62 * cos(theta) ** 57 + 2.14912358488968e63 * cos(theta) ** 55 - 6.86333015819606e63 * cos(theta) ** 53 + 1.54537074477029e64 * cos(theta) ** 51 - 2.60973205242665e64 * cos(theta) ** 49 + 3.43293612265519e64 * cos(theta) ** 47 - 3.60641783147741e64 * cos(theta) ** 45 + 3.07789108031262e64 * cos(theta) ** 43 - 2.15954595611678e64 * cos(theta) ** 41 + 1.25590615887643e64 * cos(theta) ** 39 - 6.08650401391387e63 * cos(theta) ** 37 + 2.46570053118409e63 * cos(theta) ** 35 - 8.35949752737625e62 * cos(theta) ** 33 + 2.37046976071679e62 * cos(theta) ** 31 - 5.60950859406263e61 * cos(theta) ** 29 + 1.10342077964604e61 * cos(theta) ** 27 - 1.79388927121705e60 * cos(theta) ** 25 + 2.39185236162273e59 * cos(theta) ** 23 - 2.58938231703273e58 * cos(theta) ** 21 + 2.24698465527634e57 * cos(theta) ** 19 - 1.5375525252191e56 * cos(theta) ** 17 + 8.1238206460683e54 * cos(theta) ** 15 - 3.2249571562842e53 * cos(theta) ** 13 + 9.2753192547997e51 * cos(theta) ** 11 - 1.83835156401436e50 * cos(theta) ** 9 + 2.33523840171195e48 * cos(theta) ** 7 - 1.69747339688304e46 * cos(theta) ** 5 + 5.77371903701714e43 * cos(theta) ** 3 - 5.79884737564494e40 * cos(theta) ) * cos(21 * phi) ) # @torch.jit.script def Yl80_m22(theta, phi): return ( 7.91491394567412e-42 * (1.0 - cos(theta) ** 2) ** 11 * ( 2.31823403550259e63 * cos(theta) ** 58 - 2.41008859162628e64 * cos(theta) ** 56 + 1.18201797168932e65 * cos(theta) ** 54 - 3.63756498384391e65 * cos(theta) ** 52 + 7.88139079832848e65 * cos(theta) ** 50 - 1.27876870568906e66 * cos(theta) ** 48 + 1.61347997764794e66 * cos(theta) ** 46 - 1.62288802416484e66 * cos(theta) ** 44 + 1.32349316453443e66 * cos(theta) ** 42 - 8.8541384200788e65 * cos(theta) ** 40 + 4.89803401961806e65 * cos(theta) ** 38 - 2.25200648514813e65 * cos(theta) ** 36 + 8.6299518591443e64 * cos(theta) ** 34 - 2.75863418403416e64 * cos(theta) ** 32 + 7.34845625822204e63 * cos(theta) ** 30 - 1.62675749227816e63 * cos(theta) ** 28 + 2.97923610504431e62 * cos(theta) ** 26 - 4.48472317804261e61 * cos(theta) ** 24 + 5.50126043173227e60 * cos(theta) ** 22 - 5.43770286576874e59 * cos(theta) ** 20 + 4.26927084502505e58 * cos(theta) ** 18 - 2.61383929287248e57 * cos(theta) ** 16 + 1.21857309691025e56 * cos(theta) ** 14 - 4.19244430316946e54 * cos(theta) ** 12 + 1.02028511802797e53 * cos(theta) ** 10 - 1.65451640761292e51 * cos(theta) ** 8 + 1.63466688119837e49 * cos(theta) ** 6 - 8.4873669844152e46 * cos(theta) ** 4 + 1.73211571110514e44 * cos(theta) ** 2 - 5.79884737564494e40 ) * cos(22 * phi) ) # @torch.jit.script def Yl80_m23(theta, phi): return ( 1.02403214176887e-43 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.3445757405915e65 * cos(theta) ** 57 - 1.34964961131072e66 * cos(theta) ** 55 + 6.38289704712234e66 * cos(theta) ** 53 - 1.89153379159883e67 * cos(theta) ** 51 + 3.94069539916424e67 * cos(theta) ** 49 - 6.13808978730747e67 * cos(theta) ** 47 + 7.42200789718052e67 * cos(theta) ** 45 - 7.14070730632528e67 * cos(theta) ** 43 + 5.55867129104459e67 * cos(theta) ** 41 - 3.54165536803152e67 * cos(theta) ** 39 + 1.86125292745486e67 * cos(theta) ** 37 - 8.10722334653328e66 * cos(theta) ** 35 + 2.93418363210906e66 * cos(theta) ** 33 - 8.82762938890932e65 * cos(theta) ** 31 + 2.20453687746661e65 * cos(theta) ** 29 - 4.55492097837885e64 * cos(theta) ** 27 + 7.7460138731152e63 * cos(theta) ** 25 - 1.07633356273023e63 * cos(theta) ** 23 + 1.2102772949811e62 * cos(theta) ** 21 - 1.08754057315375e61 * cos(theta) ** 19 + 7.68468752104508e59 * cos(theta) ** 17 - 4.18214286859596e58 * cos(theta) ** 15 + 1.70600233567434e57 * cos(theta) ** 13 - 5.03093316380336e55 * cos(theta) ** 11 + 1.02028511802797e54 * cos(theta) ** 9 - 1.32361312609034e52 * cos(theta) ** 7 + 9.80800128719021e49 * cos(theta) ** 5 - 3.39494679376608e47 * cos(theta) ** 3 + 3.46423142221029e44 * cos(theta) ) * cos(23 * phi) ) # @torch.jit.script def Yl80_m24(theta, phi): return ( 1.33002403975092e-45 * (1.0 - cos(theta) ** 2) ** 12 * ( 7.66408172137157e66 * cos(theta) ** 56 - 7.42307286220894e67 * cos(theta) ** 54 + 3.38293543497484e68 * cos(theta) ** 52 - 9.64682233715406e68 * cos(theta) ** 50 + 1.93094074559048e69 * cos(theta) ** 48 - 2.88490220003451e69 * cos(theta) ** 46 + 3.33990355373123e69 * cos(theta) ** 44 - 3.07050414171987e69 * cos(theta) ** 42 + 2.27905522932828e69 * cos(theta) ** 40 - 1.38124559353229e69 * cos(theta) ** 38 + 6.88663583158299e68 * cos(theta) ** 36 - 2.83752817128665e68 * cos(theta) ** 34 + 9.68280598595991e67 * cos(theta) ** 32 - 2.73656511056189e67 * cos(theta) ** 30 + 6.39315694465318e66 * cos(theta) ** 28 - 1.22982866416229e66 * cos(theta) ** 26 + 1.9365034682788e65 * cos(theta) ** 24 - 2.47556719427952e64 * cos(theta) ** 22 + 2.54158231946031e63 * cos(theta) ** 20 - 2.06632708899212e62 * cos(theta) ** 18 + 1.30639687857766e61 * cos(theta) ** 16 - 6.27321430289394e59 * cos(theta) ** 14 + 2.21780303637665e58 * cos(theta) ** 12 - 5.53402648018369e56 * cos(theta) ** 10 + 9.1825660622517e54 * cos(theta) ** 8 - 9.26529188263235e52 * cos(theta) ** 6 + 4.9040006435951e50 * cos(theta) ** 4 - 1.01848403812982e48 * cos(theta) ** 2 + 3.46423142221029e44 ) * cos(24 * phi) ) # @torch.jit.script def Yl80_m25(theta, phi): return ( 1.73448611570411e-47 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 4.29188576396808e68 * cos(theta) ** 55 - 4.00845934559283e69 * cos(theta) ** 53 + 1.75912642618692e70 * cos(theta) ** 51 - 4.82341116857703e70 * cos(theta) ** 49 + 9.26851557883429e70 * cos(theta) ** 47 - 1.32705501201588e71 * cos(theta) ** 45 + 1.46955756364174e71 * cos(theta) ** 43 - 1.28961173952234e71 * cos(theta) ** 41 + 9.11622091731313e70 * cos(theta) ** 39 - 5.24873325542271e70 * cos(theta) ** 37 + 2.47918889936988e70 * cos(theta) ** 35 - 9.6475957823746e69 * cos(theta) ** 33 + 3.09849791550717e69 * cos(theta) ** 31 - 8.20969533168567e68 * cos(theta) ** 29 + 1.79008394450289e68 * cos(theta) ** 27 - 3.19755452682196e67 * cos(theta) ** 25 + 4.64760832386912e66 * cos(theta) ** 23 - 5.44624782741495e65 * cos(theta) ** 21 + 5.08316463892062e64 * cos(theta) ** 19 - 3.71938876018582e63 * cos(theta) ** 17 + 2.09023500572426e62 * cos(theta) ** 15 - 8.78250002405152e60 * cos(theta) ** 13 + 2.66136364365198e59 * cos(theta) ** 11 - 5.53402648018369e57 * cos(theta) ** 9 + 7.34605284980136e55 * cos(theta) ** 7 - 5.55917512957941e53 * cos(theta) ** 5 + 1.96160025743804e51 * cos(theta) ** 3 - 2.03696807625965e48 * cos(theta) ) * cos(25 * phi) ) # @torch.jit.script def Yl80_m26(theta, phi): return ( 2.27162453320221e-49 * (1.0 - cos(theta) ** 2) ** 13 * ( 2.36053717018244e70 * cos(theta) ** 54 - 2.1244834531642e71 * cos(theta) ** 52 + 8.97154477355327e71 * cos(theta) ** 50 - 2.36347147260274e72 * cos(theta) ** 48 + 4.35620232205211e72 * cos(theta) ** 46 - 5.97174755407144e72 * cos(theta) ** 44 + 6.31909752365949e72 * cos(theta) ** 42 - 5.28740813204162e72 * cos(theta) ** 40 + 3.55532615775212e72 * cos(theta) ** 38 - 1.9420313045064e72 * cos(theta) ** 36 + 8.67716114779457e71 * cos(theta) ** 34 - 3.18370660818362e71 * cos(theta) ** 32 + 9.60534353807223e70 * cos(theta) ** 30 - 2.38081164618884e70 * cos(theta) ** 28 + 4.8332266501578e69 * cos(theta) ** 26 - 7.99388631705489e68 * cos(theta) ** 24 + 1.0689499144899e68 * cos(theta) ** 22 - 1.14371204375714e67 * cos(theta) ** 20 + 9.65801281394918e65 * cos(theta) ** 18 - 6.32296089231589e64 * cos(theta) ** 16 + 3.13535250858639e63 * cos(theta) ** 14 - 1.1417250031267e62 * cos(theta) ** 12 + 2.92750000801717e60 * cos(theta) ** 10 - 4.98062383216532e58 * cos(theta) ** 8 + 5.14223699486095e56 * cos(theta) ** 6 - 2.7795875647897e54 * cos(theta) ** 4 + 5.88480077231412e51 * cos(theta) ** 2 - 2.03696807625965e48 ) * cos(26 * phi) ) # @torch.jit.script def Yl80_m27(theta, phi): return ( 2.98846230067311e-51 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.27469007189852e72 * cos(theta) ** 53 - 1.10473139564538e73 * cos(theta) ** 51 + 4.48577238677664e73 * cos(theta) ** 49 - 1.13446630684932e74 * cos(theta) ** 47 + 2.00385306814397e74 * cos(theta) ** 45 - 2.62756892379143e74 * cos(theta) ** 43 + 2.65402095993699e74 * cos(theta) ** 41 - 2.11496325281665e74 * cos(theta) ** 39 + 1.35102393994581e74 * cos(theta) ** 37 - 6.99131269622305e73 * cos(theta) ** 35 + 2.95023479025015e73 * cos(theta) ** 33 - 1.01878611461876e73 * cos(theta) ** 31 + 2.88160306142167e72 * cos(theta) ** 29 - 6.66627260932876e71 * cos(theta) ** 27 + 1.25663892904103e71 * cos(theta) ** 25 - 1.91853271609317e70 * cos(theta) ** 23 + 2.35168981187778e69 * cos(theta) ** 21 - 2.28742408751428e68 * cos(theta) ** 19 + 1.73844230651085e67 * cos(theta) ** 17 - 1.01167374277054e66 * cos(theta) ** 15 + 4.38949351202095e64 * cos(theta) ** 13 - 1.37007000375204e63 * cos(theta) ** 11 + 2.92750000801717e61 * cos(theta) ** 9 - 3.98449906573226e59 * cos(theta) ** 7 + 3.08534219691657e57 * cos(theta) ** 5 - 1.11183502591588e55 * cos(theta) ** 3 + 1.17696015446282e52 * cos(theta) ) * cos(27 * phi) ) # @torch.jit.script def Yl80_m28(theta, phi): return ( 3.95000794401284e-53 * (1.0 - cos(theta) ** 2) ** 14 * ( 6.75585738106215e73 * cos(theta) ** 52 - 5.63413011779145e74 * cos(theta) ** 50 + 2.19802846952055e75 * cos(theta) ** 48 - 5.33199164219179e75 * cos(theta) ** 46 + 9.01733880664788e75 * cos(theta) ** 44 - 1.12985463723032e76 * cos(theta) ** 42 + 1.08814859357416e76 * cos(theta) ** 40 - 8.24835668598492e75 * cos(theta) ** 38 + 4.99878857779948e75 * cos(theta) ** 36 - 2.44695944367807e75 * cos(theta) ** 34 + 9.7357748078255e74 * cos(theta) ** 32 - 3.15823695531815e74 * cos(theta) ** 30 + 8.35664887812284e73 * cos(theta) ** 28 - 1.79989360451877e73 * cos(theta) ** 26 + 3.14159732260257e72 * cos(theta) ** 24 - 4.4126252470143e71 * cos(theta) ** 22 + 4.93854860494333e70 * cos(theta) ** 20 - 4.34610576627713e69 * cos(theta) ** 18 + 2.95535192106845e68 * cos(theta) ** 16 - 1.51751061415581e67 * cos(theta) ** 14 + 5.70634156562724e65 * cos(theta) ** 12 - 1.50707700412724e64 * cos(theta) ** 10 + 2.63475000721546e62 * cos(theta) ** 8 - 2.78914934601258e60 * cos(theta) ** 6 + 1.54267109845829e58 * cos(theta) ** 4 - 3.33550507774765e55 * cos(theta) ** 2 + 1.17696015446282e52 ) * cos(28 * phi) ) # @torch.jit.script def Yl80_m29(theta, phi): return ( 5.24666153183604e-55 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 3.51304583815232e75 * cos(theta) ** 51 - 2.81706505889573e76 * cos(theta) ** 49 + 1.05505366536986e77 * cos(theta) ** 47 - 2.45271615540822e77 * cos(theta) ** 45 + 3.96762907492507e77 * cos(theta) ** 43 - 4.74538947636733e77 * cos(theta) ** 41 + 4.35259437429666e77 * cos(theta) ** 39 - 3.13437554067427e77 * cos(theta) ** 37 + 1.79956388800781e77 * cos(theta) ** 35 - 8.31966210850543e76 * cos(theta) ** 33 + 3.11544793850416e76 * cos(theta) ** 31 - 9.47471086595445e75 * cos(theta) ** 29 + 2.33986168587439e75 * cos(theta) ** 27 - 4.67972337174879e74 * cos(theta) ** 25 + 7.53983357424617e73 * cos(theta) ** 23 - 9.70777554343146e72 * cos(theta) ** 21 + 9.87709720988666e71 * cos(theta) ** 19 - 7.82299037929883e70 * cos(theta) ** 17 + 4.72856307370952e69 * cos(theta) ** 15 - 2.12451485981814e68 * cos(theta) ** 13 + 6.84760987875268e66 * cos(theta) ** 11 - 1.50707700412724e65 * cos(theta) ** 9 + 2.10780000577237e63 * cos(theta) ** 7 - 1.67348960760755e61 * cos(theta) ** 5 + 6.17068439383314e58 * cos(theta) ** 3 - 6.67101015549529e55 * cos(theta) ) * cos(29 * phi) ) # @torch.jit.script def Yl80_m30(theta, phi): return ( 7.00489480374217e-57 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.79165337745768e77 * cos(theta) ** 50 - 1.38036187885891e78 * cos(theta) ** 48 + 4.95875222723836e78 * cos(theta) ** 46 - 1.1037222699337e79 * cos(theta) ** 44 + 1.70608050221778e79 * cos(theta) ** 42 - 1.94560968531061e79 * cos(theta) ** 40 + 1.6975118059757e79 * cos(theta) ** 38 - 1.15971895004948e79 * cos(theta) ** 36 + 6.29847360802735e78 * cos(theta) ** 34 - 2.74548849580679e78 * cos(theta) ** 32 + 9.6578886093629e77 * cos(theta) ** 30 - 2.74766615112679e77 * cos(theta) ** 28 + 6.31762655186087e76 * cos(theta) ** 26 - 1.1699308429372e76 * cos(theta) ** 24 + 1.73416172207662e75 * cos(theta) ** 22 - 2.03863286412061e74 * cos(theta) ** 20 + 1.87664846987846e73 * cos(theta) ** 18 - 1.3299083644808e72 * cos(theta) ** 16 + 7.09284461056428e70 * cos(theta) ** 14 - 2.76186931776358e69 * cos(theta) ** 12 + 7.53237086662795e67 * cos(theta) ** 10 - 1.35636930371452e66 * cos(theta) ** 8 + 1.47546000404066e64 * cos(theta) ** 6 - 8.36744803803774e61 * cos(theta) ** 4 + 1.85120531814994e59 * cos(theta) ** 2 - 6.67101015549529e55 ) * cos(30 * phi) ) # @torch.jit.script def Yl80_m31(theta, phi): return ( 9.40275512733762e-59 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 8.95826688728841e78 * cos(theta) ** 49 - 6.62573701852275e79 * cos(theta) ** 47 + 2.28102602452965e80 * cos(theta) ** 45 - 4.85637798770828e80 * cos(theta) ** 43 + 7.16553810931467e80 * cos(theta) ** 41 - 7.78243874124242e80 * cos(theta) ** 39 + 6.45054486270765e80 * cos(theta) ** 37 - 4.17498822017813e80 * cos(theta) ** 35 + 2.1414810267293e80 * cos(theta) ** 33 - 8.78556318658173e79 * cos(theta) ** 31 + 2.89736658280887e79 * cos(theta) ** 29 - 7.69346522315501e78 * cos(theta) ** 27 + 1.64258290348383e78 * cos(theta) ** 25 - 2.80783402304927e77 * cos(theta) ** 23 + 3.81515578856856e76 * cos(theta) ** 21 - 4.07726572824121e75 * cos(theta) ** 19 + 3.37796724578124e74 * cos(theta) ** 17 - 2.12785338316928e73 * cos(theta) ** 15 + 9.92998245478999e71 * cos(theta) ** 13 - 3.3142431813163e70 * cos(theta) ** 11 + 7.53237086662795e68 * cos(theta) ** 9 - 1.08509544297161e67 * cos(theta) ** 7 + 8.85276002424393e64 * cos(theta) ** 5 - 3.3469792152151e62 * cos(theta) ** 3 + 3.70241063629989e59 * cos(theta) ) * cos(31 * phi) ) # @torch.jit.script def Yl80_m32(theta, phi): return ( 1.26925263804963e-60 * (1.0 - cos(theta) ** 2) ** 16 * ( 4.38955077477132e80 * cos(theta) ** 48 - 3.11409639870569e81 * cos(theta) ** 46 + 1.02646171103834e82 * cos(theta) ** 44 - 2.08824253471456e82 * cos(theta) ** 42 + 2.93787062481901e82 * cos(theta) ** 40 - 3.03515110908455e82 * cos(theta) ** 38 + 2.38670159920183e82 * cos(theta) ** 36 - 1.46124587706234e82 * cos(theta) ** 34 + 7.06688738820668e81 * cos(theta) ** 32 - 2.72352458784034e81 * cos(theta) ** 30 + 8.40236309014572e80 * cos(theta) ** 28 - 2.07723561025185e80 * cos(theta) ** 26 + 4.10645725870956e79 * cos(theta) ** 24 - 6.45801825301333e78 * cos(theta) ** 22 + 8.01182715599398e77 * cos(theta) ** 20 - 7.7468048836583e76 * cos(theta) ** 18 + 5.7425443178281e75 * cos(theta) ** 16 - 3.19178007475392e74 * cos(theta) ** 14 + 1.2908977191227e73 * cos(theta) ** 12 - 3.64566749944793e71 * cos(theta) ** 10 + 6.77913377996516e69 * cos(theta) ** 8 - 7.59566810080129e67 * cos(theta) ** 6 + 4.42638001212197e65 * cos(theta) ** 4 - 1.00409376456453e63 * cos(theta) ** 2 + 3.70241063629989e59 ) * cos(32 * phi) ) # @torch.jit.script def Yl80_m33(theta, phi): return ( 1.72340851470193e-62 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 2.10698437189023e82 * cos(theta) ** 47 - 1.43248434340462e83 * cos(theta) ** 45 + 4.5164315285687e83 * cos(theta) ** 43 - 8.77061864580116e83 * cos(theta) ** 41 + 1.17514824992761e84 * cos(theta) ** 39 - 1.15335742145213e84 * cos(theta) ** 37 + 8.59212575712658e83 * cos(theta) ** 35 - 4.96823598201197e83 * cos(theta) ** 33 + 2.26140396422614e83 * cos(theta) ** 31 - 8.17057376352101e82 * cos(theta) ** 29 + 2.3526616652408e82 * cos(theta) ** 27 - 5.40081258665482e81 * cos(theta) ** 25 + 9.85549742090295e80 * cos(theta) ** 23 - 1.42076401566293e80 * cos(theta) ** 21 + 1.6023654311988e79 * cos(theta) ** 19 - 1.39442487905849e78 * cos(theta) ** 17 + 9.18807090852496e76 * cos(theta) ** 15 - 4.46849210465549e75 * cos(theta) ** 13 + 1.54907726294724e74 * cos(theta) ** 11 - 3.64566749944793e72 * cos(theta) ** 9 + 5.42330702397212e70 * cos(theta) ** 7 - 4.55740086048078e68 * cos(theta) ** 5 + 1.77055200484879e66 * cos(theta) ** 3 - 2.00818752912906e63 * cos(theta) ) * cos(33 * phi) ) # @torch.jit.script def Yl80_m34(theta, phi): return ( 2.35443594596275e-64 * (1.0 - cos(theta) ** 2) ** 17 * ( 9.9028265478841e83 * cos(theta) ** 46 - 6.44617954532078e84 * cos(theta) ** 44 + 1.94206555728454e85 * cos(theta) ** 42 - 3.59595364477847e85 * cos(theta) ** 40 + 4.58307817471766e85 * cos(theta) ** 38 - 4.26742245937287e85 * cos(theta) ** 36 + 3.0072440149943e85 * cos(theta) ** 34 - 1.63951787406395e85 * cos(theta) ** 32 + 7.01035228910103e84 * cos(theta) ** 30 - 2.36946639142109e84 * cos(theta) ** 28 + 6.35218649615017e83 * cos(theta) ** 26 - 1.3502031466637e83 * cos(theta) ** 24 + 2.26676440680768e82 * cos(theta) ** 22 - 2.98360443289216e81 * cos(theta) ** 20 + 3.04449431927771e80 * cos(theta) ** 18 - 2.37052229439944e79 * cos(theta) ** 16 + 1.37821063627874e78 * cos(theta) ** 14 - 5.80903973605214e76 * cos(theta) ** 12 + 1.70398498924196e75 * cos(theta) ** 10 - 3.28110074950314e73 * cos(theta) ** 8 + 3.79631491678049e71 * cos(theta) ** 6 - 2.27870043024039e69 * cos(theta) ** 4 + 5.31165601454636e66 * cos(theta) ** 2 - 2.00818752912906e63 ) * cos(34 * phi) ) # @torch.jit.script def Yl80_m35(theta, phi): return ( 3.23712182357191e-66 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 4.55530021202669e85 * cos(theta) ** 45 - 2.83631899994114e86 * cos(theta) ** 43 + 8.15667534059508e86 * cos(theta) ** 41 - 1.43838145791139e87 * cos(theta) ** 39 + 1.74156970639271e87 * cos(theta) ** 37 - 1.53627208537423e87 * cos(theta) ** 35 + 1.02246296509806e87 * cos(theta) ** 33 - 5.24645719700464e86 * cos(theta) ** 31 + 2.10310568673031e86 * cos(theta) ** 29 - 6.63450589597906e85 * cos(theta) ** 27 + 1.65156848899904e85 * cos(theta) ** 25 - 3.24048755199289e84 * cos(theta) ** 23 + 4.98688169497689e83 * cos(theta) ** 21 - 5.96720886578432e82 * cos(theta) ** 19 + 5.48008977469988e81 * cos(theta) ** 17 - 3.7928356710391e80 * cos(theta) ** 15 + 1.92949489079024e79 * cos(theta) ** 13 - 6.97084768326257e77 * cos(theta) ** 11 + 1.70398498924196e76 * cos(theta) ** 9 - 2.62488059960251e74 * cos(theta) ** 7 + 2.27778895006829e72 * cos(theta) ** 5 - 9.11480172096155e69 * cos(theta) ** 3 + 1.06233120290927e67 * cos(theta) ) * cos(35 * phi) ) # @torch.jit.script def Yl80_m36(theta, phi): return ( 4.48047225305905e-68 * (1.0 - cos(theta) ** 2) ** 18 * ( 2.04988509541201e87 * cos(theta) ** 44 - 1.21961716997469e88 * cos(theta) ** 42 + 3.34423688964398e88 * cos(theta) ** 40 - 5.60968768585442e88 * cos(theta) ** 38 + 6.44380791365303e88 * cos(theta) ** 36 - 5.37695229880982e88 * cos(theta) ** 34 + 3.37412778482361e88 * cos(theta) ** 32 - 1.62640173107144e88 * cos(theta) ** 30 + 6.0990064915179e87 * cos(theta) ** 28 - 1.79131659191435e87 * cos(theta) ** 26 + 4.12892122249761e86 * cos(theta) ** 24 - 7.45312136958365e85 * cos(theta) ** 22 + 1.04724515594515e85 * cos(theta) ** 20 - 1.13376968449902e84 * cos(theta) ** 18 + 9.3161526169898e82 * cos(theta) ** 16 - 5.68925350655866e81 * cos(theta) ** 14 + 2.50834335802731e80 * cos(theta) ** 12 - 7.66793245158883e78 * cos(theta) ** 10 + 1.53358649031777e77 * cos(theta) ** 8 - 1.83741641972176e75 * cos(theta) ** 6 + 1.13889447503415e73 * cos(theta) ** 4 - 2.73444051628847e70 * cos(theta) ** 2 + 1.06233120290927e67 ) * cos(36 * phi) ) # @torch.jit.script def Yl80_m37(theta, phi): return ( 6.2445985377985e-70 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 9.01949441981284e88 * cos(theta) ** 43 - 5.12239211389371e89 * cos(theta) ** 41 + 1.33769475585759e90 * cos(theta) ** 39 - 2.13168132062468e90 * cos(theta) ** 37 + 2.31977084891509e90 * cos(theta) ** 35 - 1.82816378159534e90 * cos(theta) ** 33 + 1.07972089114356e90 * cos(theta) ** 31 - 4.87920519321432e89 * cos(theta) ** 29 + 1.70772181762501e89 * cos(theta) ** 27 - 4.6574231389773e88 * cos(theta) ** 25 + 9.90941093399426e87 * cos(theta) ** 23 - 1.6396867013084e87 * cos(theta) ** 21 + 2.0944903118903e86 * cos(theta) ** 19 - 2.04078543209824e85 * cos(theta) ** 17 + 1.49058441871837e84 * cos(theta) ** 15 - 7.96495490918212e82 * cos(theta) ** 13 + 3.01001202963278e81 * cos(theta) ** 11 - 7.66793245158883e79 * cos(theta) ** 9 + 1.22686919225421e78 * cos(theta) ** 7 - 1.10244985183305e76 * cos(theta) ** 5 + 4.55557790013658e73 * cos(theta) ** 3 - 5.46888103257693e70 * cos(theta) ) * cos(37 * phi) ) # @torch.jit.script def Yl80_m38(theta, phi): return ( 8.7665616559847e-72 * (1.0 - cos(theta) ** 2) ** 19 * ( 3.87838260051952e90 * cos(theta) ** 42 - 2.10018076669642e91 * cos(theta) ** 40 + 5.21700954784461e91 * cos(theta) ** 38 - 7.88722088631131e91 * cos(theta) ** 36 + 8.11919797120282e91 * cos(theta) ** 34 - 6.03294047926461e91 * cos(theta) ** 32 + 3.34713476254502e91 * cos(theta) ** 30 - 1.41496950603215e91 * cos(theta) ** 28 + 4.61084890758753e90 * cos(theta) ** 26 - 1.16435578474433e90 * cos(theta) ** 24 + 2.27916451481868e89 * cos(theta) ** 22 - 3.44334207274765e88 * cos(theta) ** 20 + 3.97953159259156e87 * cos(theta) ** 18 - 3.469335234567e86 * cos(theta) ** 16 + 2.23587662807755e85 * cos(theta) ** 14 - 1.03544413819368e84 * cos(theta) ** 12 + 3.31101323259606e82 * cos(theta) ** 10 - 6.90113920642995e80 * cos(theta) ** 8 + 8.58808434577949e78 * cos(theta) ** 6 - 5.51224925916527e76 * cos(theta) ** 4 + 1.36667337004098e74 * cos(theta) ** 2 - 5.46888103257693e70 ) * cos(38 * phi) ) # @torch.jit.script def Yl80_m39(theta, phi): return ( 1.24002706914668e-73 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 1.6289206922182e92 * cos(theta) ** 41 - 8.40072306678568e92 * cos(theta) ** 39 + 1.98246362818095e93 * cos(theta) ** 37 - 2.83939951907207e93 * cos(theta) ** 35 + 2.76052731020896e93 * cos(theta) ** 33 - 1.93054095336468e93 * cos(theta) ** 31 + 1.00414042876351e93 * cos(theta) ** 29 - 3.96191461689002e92 * cos(theta) ** 27 + 1.19882071597276e92 * cos(theta) ** 25 - 2.79445388338638e91 * cos(theta) ** 23 + 5.01416193260109e90 * cos(theta) ** 21 - 6.88668414549529e89 * cos(theta) ** 19 + 7.16315686666481e88 * cos(theta) ** 17 - 5.5509363753072e87 * cos(theta) ** 15 + 3.13022727930857e86 * cos(theta) ** 13 - 1.24253296583241e85 * cos(theta) ** 11 + 3.31101323259606e83 * cos(theta) ** 9 - 5.52091136514396e81 * cos(theta) ** 7 + 5.15285060746769e79 * cos(theta) ** 5 - 2.20489970366611e77 * cos(theta) ** 3 + 2.73334674008195e74 * cos(theta) ) * cos(39 * phi) ) # @torch.jit.script def Yl80_m40(theta, phi): return ( 1.76786303191934e-75 * (1.0 - cos(theta) ** 2) ** 20 * ( 6.67857483809462e93 * cos(theta) ** 40 - 3.27628199604642e94 * cos(theta) ** 38 + 7.33511542426952e94 * cos(theta) ** 36 - 9.93789831675226e94 * cos(theta) ** 34 + 9.10974012368957e94 * cos(theta) ** 32 - 5.9846769554305e94 * cos(theta) ** 30 + 2.91200724341417e94 * cos(theta) ** 28 - 1.06971694656031e94 * cos(theta) ** 26 + 2.99705178993189e93 * cos(theta) ** 24 - 6.42724393178868e92 * cos(theta) ** 22 + 1.05297400584623e92 * cos(theta) ** 20 - 1.30846998764411e91 * cos(theta) ** 18 + 1.21773666733302e90 * cos(theta) ** 16 - 8.3264045629608e88 * cos(theta) ** 14 + 4.06929546310114e87 * cos(theta) ** 12 - 1.36678626241565e86 * cos(theta) ** 10 + 2.97991190933645e84 * cos(theta) ** 8 - 3.86463795560077e82 * cos(theta) ** 6 + 2.57642530373385e80 * cos(theta) ** 4 - 6.61469911099832e77 * cos(theta) ** 2 + 2.73334674008195e74 ) * cos(40 * phi) ) # @torch.jit.script def Yl80_m41(theta, phi): return ( 2.54112444185276e-77 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 2.67142993523785e95 * cos(theta) ** 39 - 1.24498715849764e96 * cos(theta) ** 37 + 2.64064155273703e96 * cos(theta) ** 35 - 3.37888542769577e96 * cos(theta) ** 33 + 2.91511683958066e96 * cos(theta) ** 31 - 1.79540308662915e96 * cos(theta) ** 29 + 8.15362028155967e95 * cos(theta) ** 27 - 2.7812640610568e95 * cos(theta) ** 25 + 7.19292429583655e94 * cos(theta) ** 23 - 1.41399366499351e94 * cos(theta) ** 21 + 2.10594801169246e93 * cos(theta) ** 19 - 2.35524597775939e92 * cos(theta) ** 17 + 1.94837866773283e91 * cos(theta) ** 15 - 1.16569663881451e90 * cos(theta) ** 13 + 4.88315455572137e88 * cos(theta) ** 11 - 1.36678626241565e87 * cos(theta) ** 9 + 2.38392952746916e85 * cos(theta) ** 7 - 2.31878277336046e83 * cos(theta) ** 5 + 1.03057012149354e81 * cos(theta) ** 3 - 1.32293982219966e78 * cos(theta) ) * cos(41 * phi) ) # @torch.jit.script def Yl80_m42(theta, phi): return ( 3.68394989380334e-79 * (1.0 - cos(theta) ** 2) ** 21 * ( 1.04185767474276e97 * cos(theta) ** 38 - 4.60645248644126e97 * cos(theta) ** 36 + 9.2422454345796e97 * cos(theta) ** 34 - 1.1150321911396e98 * cos(theta) ** 32 + 9.03686220270005e97 * cos(theta) ** 30 - 5.20666895122453e97 * cos(theta) ** 28 + 2.20147747602111e97 * cos(theta) ** 26 - 6.95316015264199e96 * cos(theta) ** 24 + 1.65437258804241e96 * cos(theta) ** 22 - 2.96938669648637e95 * cos(theta) ** 20 + 4.00130122221567e94 * cos(theta) ** 18 - 4.00391816219096e93 * cos(theta) ** 16 + 2.92256800159924e92 * cos(theta) ** 14 - 1.51540563045887e91 * cos(theta) ** 12 + 5.37147001129351e89 * cos(theta) ** 10 - 1.23010763617409e88 * cos(theta) ** 8 + 1.66875066922841e86 * cos(theta) ** 6 - 1.15939138668023e84 * cos(theta) ** 4 + 3.09171036448062e81 * cos(theta) ** 2 - 1.32293982219966e78 ) * cos(42 * phi) ) # @torch.jit.script def Yl80_m43(theta, phi): return ( 5.38851828134669e-81 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 3.95905916402249e98 * cos(theta) ** 37 - 1.65832289511885e99 * cos(theta) ** 35 + 3.14236344775706e99 * cos(theta) ** 33 - 3.56810301164673e99 * cos(theta) ** 31 + 2.71105866081002e99 * cos(theta) ** 29 - 1.45786730634287e99 * cos(theta) ** 27 + 5.72384143765489e98 * cos(theta) ** 25 - 1.66875843663408e98 * cos(theta) ** 23 + 3.63961969369329e97 * cos(theta) ** 21 - 5.93877339297274e96 * cos(theta) ** 19 + 7.20234219998821e95 * cos(theta) ** 17 - 6.40626905950554e94 * cos(theta) ** 15 + 4.09159520223894e93 * cos(theta) ** 13 - 1.81848675655064e92 * cos(theta) ** 11 + 5.37147001129351e90 * cos(theta) ** 9 - 9.84086108939269e88 * cos(theta) ** 7 + 1.00125040153705e87 * cos(theta) ** 5 - 4.63756554672092e84 * cos(theta) ** 3 + 6.18342072896123e81 * cos(theta) ) * cos(43 * phi) ) # @torch.jit.script def Yl80_m44(theta, phi): return ( 7.95532004231161e-83 * (1.0 - cos(theta) ** 2) ** 22 * ( 1.46485189068832e100 * cos(theta) ** 36 - 5.80413013291599e100 * cos(theta) ** 34 + 1.03697993775983e101 * cos(theta) ** 32 - 1.10611193361049e101 * cos(theta) ** 30 + 7.86207011634904e100 * cos(theta) ** 28 - 3.93624172712575e100 * cos(theta) ** 26 + 1.43096035941372e100 * cos(theta) ** 24 - 3.83814440425838e99 * cos(theta) ** 22 + 7.64320135675591e98 * cos(theta) ** 20 - 1.12836694466482e98 * cos(theta) ** 18 + 1.224398173998e97 * cos(theta) ** 16 - 9.60940358925831e95 * cos(theta) ** 14 + 5.31907376291062e94 * cos(theta) ** 12 - 2.0003354322057e93 * cos(theta) ** 10 + 4.83432301016416e91 * cos(theta) ** 8 - 6.88860276257489e89 * cos(theta) ** 6 + 5.00625200768524e87 * cos(theta) ** 4 - 1.39126966401628e85 * cos(theta) ** 2 + 6.18342072896123e81 ) * cos(44 * phi) ) # @torch.jit.script def Yl80_m45(theta, phi): return ( 1.18590909315835e-84 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 5.27346680647795e101 * cos(theta) ** 35 - 1.97340424519144e102 * cos(theta) ** 33 + 3.31833580083146e102 * cos(theta) ** 31 - 3.31833580083146e102 * cos(theta) ** 29 + 2.20137963257773e102 * cos(theta) ** 27 - 1.02342284905269e102 * cos(theta) ** 25 + 3.43430486259293e101 * cos(theta) ** 23 - 8.44391768936844e100 * cos(theta) ** 21 + 1.52864027135118e100 * cos(theta) ** 19 - 2.03106050039668e99 * cos(theta) ** 17 + 1.95903707839679e98 * cos(theta) ** 15 - 1.34531650249616e97 * cos(theta) ** 13 + 6.38288851549275e95 * cos(theta) ** 11 - 2.0003354322057e94 * cos(theta) ** 9 + 3.86745840813133e92 * cos(theta) ** 7 - 4.13316165754493e90 * cos(theta) ** 5 + 2.00250080307409e88 * cos(theta) ** 3 - 2.78253932803255e85 * cos(theta) ) * cos(45 * phi) ) # @torch.jit.script def Yl80_m46(theta, phi): return ( 1.78579706299295e-86 * (1.0 - cos(theta) ** 2) ** 23 * ( 1.84571338226728e103 * cos(theta) ** 34 - 6.51223400913174e103 * cos(theta) ** 32 + 1.02868409825775e104 * cos(theta) ** 30 - 9.62317382241123e103 * cos(theta) ** 28 + 5.94372500795988e103 * cos(theta) ** 26 - 2.55855712263174e103 * cos(theta) ** 24 + 7.89890118396375e102 * cos(theta) ** 22 - 1.77322271476737e102 * cos(theta) ** 20 + 2.90441651556725e101 * cos(theta) ** 18 - 3.45280285067435e100 * cos(theta) ** 16 + 2.93855561759519e99 * cos(theta) ** 14 - 1.74891145324501e98 * cos(theta) ** 12 + 7.02117736704202e96 * cos(theta) ** 10 - 1.80030188898513e95 * cos(theta) ** 8 + 2.70722088569193e93 * cos(theta) ** 6 - 2.06658082877247e91 * cos(theta) ** 4 + 6.00750240922228e88 * cos(theta) ** 2 - 2.78253932803255e85 ) * cos(46 * phi) ) # @torch.jit.script def Yl80_m47(theta, phi): return ( 2.71763286152957e-88 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 6.27542549970877e104 * cos(theta) ** 33 - 2.08391488292216e105 * cos(theta) ** 31 + 3.08605229477326e105 * cos(theta) ** 29 - 2.69448867027514e105 * cos(theta) ** 27 + 1.54536850206957e105 * cos(theta) ** 25 - 6.14053709431616e104 * cos(theta) ** 23 + 1.73775826047202e104 * cos(theta) ** 21 - 3.54644542953474e103 * cos(theta) ** 19 + 5.22794972802104e102 * cos(theta) ** 17 - 5.52448456107896e101 * cos(theta) ** 15 + 4.11397786463327e100 * cos(theta) ** 13 - 2.09869374389401e99 * cos(theta) ** 11 + 7.02117736704202e97 * cos(theta) ** 9 - 1.44024151118811e96 * cos(theta) ** 7 + 1.62433253141516e94 * cos(theta) ** 5 - 8.26632331508986e91 * cos(theta) ** 3 + 1.20150048184446e89 * cos(theta) ) * cos(47 * phi) ) # @torch.jit.script def Yl80_m48(theta, phi): return ( 4.18146851075132e-90 * (1.0 - cos(theta) ** 2) ** 24 * ( 2.07089041490389e106 * cos(theta) ** 32 - 6.46013613705868e106 * cos(theta) ** 30 + 8.94955165484244e106 * cos(theta) ** 28 - 7.27511940974289e106 * cos(theta) ** 26 + 3.86342125517392e106 * cos(theta) ** 24 - 1.41232353169272e106 * cos(theta) ** 22 + 3.64929234699125e105 * cos(theta) ** 20 - 6.73824631611601e104 * cos(theta) ** 18 + 8.88751453763577e103 * cos(theta) ** 16 - 8.28672684161844e102 * cos(theta) ** 14 + 5.34817122402325e101 * cos(theta) ** 12 - 2.30856311828342e100 * cos(theta) ** 10 + 6.31905963033782e98 * cos(theta) ** 8 - 1.00816905783167e97 * cos(theta) ** 6 + 8.12166265707579e94 * cos(theta) ** 4 - 2.47989699452696e92 * cos(theta) ** 2 + 1.20150048184446e89 ) * cos(48 * phi) ) # @torch.jit.script def Yl80_m49(theta, phi): return ( 6.50817146366008e-92 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 6.62684932769246e107 * cos(theta) ** 31 - 1.93804084111761e108 * cos(theta) ** 29 + 2.50587446335588e108 * cos(theta) ** 27 - 1.89153104653315e108 * cos(theta) ** 25 + 9.27221101241741e107 * cos(theta) ** 23 - 3.10711176972398e107 * cos(theta) ** 21 + 7.2985846939825e106 * cos(theta) ** 19 - 1.21288433690088e106 * cos(theta) ** 17 + 1.42200232602172e105 * cos(theta) ** 15 - 1.16014175782658e104 * cos(theta) ** 13 + 6.4178054688279e102 * cos(theta) ** 11 - 2.30856311828342e101 * cos(theta) ** 9 + 5.05524770427025e99 * cos(theta) ** 7 - 6.04901434699005e97 * cos(theta) ** 5 + 3.24866506283032e95 * cos(theta) ** 3 - 4.95979398905392e92 * cos(theta) ) * cos(49 * phi) ) # @torch.jit.script def Yl80_m50(theta, phi): return ( 1.02519496179377e-93 * (1.0 - cos(theta) ** 2) ** 25 * ( 2.05432329158466e109 * cos(theta) ** 30 - 5.62031843924105e109 * cos(theta) ** 28 + 6.76586105106089e109 * cos(theta) ** 26 - 4.72882761633288e109 * cos(theta) ** 24 + 2.132608532856e109 * cos(theta) ** 22 - 6.52493471642036e108 * cos(theta) ** 20 + 1.38673109185668e108 * cos(theta) ** 18 - 2.0619033727315e107 * cos(theta) ** 16 + 2.13300348903259e106 * cos(theta) ** 14 - 1.50818428517456e105 * cos(theta) ** 12 + 7.05958601571069e103 * cos(theta) ** 10 - 2.07770680645507e102 * cos(theta) ** 8 + 3.53867339298918e100 * cos(theta) ** 6 - 3.02450717349502e98 * cos(theta) ** 4 + 9.74599518849095e95 * cos(theta) ** 2 - 4.95979398905392e92 ) * cos(50 * phi) ) # @torch.jit.script def Yl80_m51(theta, phi): return ( 1.63534801463645e-95 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 6.16296987475398e110 * cos(theta) ** 29 - 1.5736891629875e111 * cos(theta) ** 27 + 1.75912387327583e111 * cos(theta) ** 25 - 1.13491862791989e111 * cos(theta) ** 23 + 4.69173877228321e110 * cos(theta) ** 21 - 1.30498694328407e110 * cos(theta) ** 19 + 2.49611596534202e109 * cos(theta) ** 17 - 3.2990453963704e108 * cos(theta) ** 15 + 2.98620488464562e107 * cos(theta) ** 13 - 1.80982114220947e106 * cos(theta) ** 11 + 7.05958601571069e104 * cos(theta) ** 9 - 1.66216544516406e103 * cos(theta) ** 7 + 2.12320403579351e101 * cos(theta) ** 5 - 1.20980286939801e99 * cos(theta) ** 3 + 1.94919903769819e96 * cos(theta) ) * cos(51 * phi) ) # @torch.jit.script def Yl80_m52(theta, phi): return ( 2.64316468720293e-97 * (1.0 - cos(theta) ** 2) ** 26 * ( 1.78726126367866e112 * cos(theta) ** 28 - 4.24896074006624e112 * cos(theta) ** 26 + 4.39780968318958e112 * cos(theta) ** 24 - 2.61031284421575e112 * cos(theta) ** 22 + 9.85265142179474e111 * cos(theta) ** 20 - 2.47947519223974e111 * cos(theta) ** 18 + 4.24339714108143e110 * cos(theta) ** 16 - 4.9485680945556e109 * cos(theta) ** 14 + 3.88206635003931e108 * cos(theta) ** 12 - 1.99080325643041e107 * cos(theta) ** 10 + 6.35362741413962e105 * cos(theta) ** 8 - 1.16351581161484e104 * cos(theta) ** 6 + 1.06160201789675e102 * cos(theta) ** 4 - 3.62940860819403e99 * cos(theta) ** 2 + 1.94919903769819e96 ) * cos(52 * phi) ) # @torch.jit.script def Yl80_m53(theta, phi): return ( 4.33131118896724e-99 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 5.00433153830024e113 * cos(theta) ** 27 - 1.10472979241722e114 * cos(theta) ** 25 + 1.0554743239655e114 * cos(theta) ** 23 - 5.74268825727465e113 * cos(theta) ** 21 + 1.97053028435895e113 * cos(theta) ** 19 - 4.46305534603152e112 * cos(theta) ** 17 + 6.78943542573028e111 * cos(theta) ** 15 - 6.92799533237784e110 * cos(theta) ** 13 + 4.65847962004717e109 * cos(theta) ** 11 - 1.99080325643041e108 * cos(theta) ** 9 + 5.08290193131169e106 * cos(theta) ** 7 - 6.98109486968905e104 * cos(theta) ** 5 + 4.24640807158701e102 * cos(theta) ** 3 - 7.25881721638806e99 * cos(theta) ) * cos(53 * phi) ) # @torch.jit.script def Yl80_m54(theta, phi): return ( 7.20087224763713e-101 * (1.0 - cos(theta) ** 2) ** 27 * ( 1.35116951534106e115 * cos(theta) ** 26 - 2.76182448104305e115 * cos(theta) ** 24 + 2.42759094512065e115 * cos(theta) ** 22 - 1.20596453402768e115 * cos(theta) ** 20 + 3.744007540282e114 * cos(theta) ** 18 - 7.58719408825359e113 * cos(theta) ** 16 + 1.01841531385954e113 * cos(theta) ** 14 - 9.00639393209119e111 * cos(theta) ** 12 + 5.12432758205188e110 * cos(theta) ** 10 - 1.79172293078737e109 * cos(theta) ** 8 + 3.55803135191819e107 * cos(theta) ** 6 - 3.49054743484453e105 * cos(theta) ** 4 + 1.2739224214761e103 * cos(theta) ** 2 - 7.25881721638806e99 ) * cos(54 * phi) ) # @torch.jit.script def Yl80_m55(theta, phi): return ( 1.21543446708706e-102 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 3.51304073988677e116 * cos(theta) ** 25 - 6.62837875450333e116 * cos(theta) ** 23 + 5.34070007926542e116 * cos(theta) ** 21 - 2.41192906805535e116 * cos(theta) ** 19 + 6.7392135725076e115 * cos(theta) ** 17 - 1.21395105412057e115 * cos(theta) ** 15 + 1.42578143940336e114 * cos(theta) ** 13 - 1.08076727185094e113 * cos(theta) ** 11 + 5.12432758205188e111 * cos(theta) ** 9 - 1.4333783446299e110 * cos(theta) ** 7 + 2.13481881115091e108 * cos(theta) ** 5 - 1.39621897393781e106 * cos(theta) ** 3 + 2.54784484295221e103 * cos(theta) ) * cos(55 * phi) ) # @torch.jit.script def Yl80_m56(theta, phi): return ( 2.0844529143887e-104 * (1.0 - cos(theta) ** 2) ** 28 * ( 8.78260184971691e117 * cos(theta) ** 24 - 1.52452711353577e118 * cos(theta) ** 22 + 1.12154701664574e118 * cos(theta) ** 20 - 4.58266522930517e117 * cos(theta) ** 18 + 1.14566630732629e117 * cos(theta) ** 16 - 1.82092658118086e116 * cos(theta) ** 14 + 1.85351587122437e115 * cos(theta) ** 12 - 1.18884399903604e114 * cos(theta) ** 10 + 4.6118948238467e112 * cos(theta) ** 8 - 1.00336484124093e111 * cos(theta) ** 6 + 1.06740940557546e109 * cos(theta) ** 4 - 4.18865692181343e106 * cos(theta) ** 2 + 2.54784484295221e103 ) * cos(56 * phi) ) # @torch.jit.script def Yl80_m57(theta, phi): return ( 3.63518221459163e-106 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 2.10782444393206e119 * cos(theta) ** 23 - 3.35395964977869e119 * cos(theta) ** 21 + 2.24309403329148e119 * cos(theta) ** 19 - 8.2487974127493e118 * cos(theta) ** 17 + 1.83306609172207e118 * cos(theta) ** 15 - 2.54929721365321e117 * cos(theta) ** 13 + 2.22421904546924e116 * cos(theta) ** 11 - 1.18884399903604e115 * cos(theta) ** 9 + 3.68951585907736e113 * cos(theta) ** 7 - 6.02018904744557e111 * cos(theta) ** 5 + 4.26963762230182e109 * cos(theta) ** 3 - 8.37731384362686e106 * cos(theta) ) * cos(57 * phi) ) # @torch.jit.script def Yl80_m58(theta, phi): return ( 6.45242141144206e-108 * (1.0 - cos(theta) ** 2) ** 29 * ( 4.84799622104374e120 * cos(theta) ** 22 - 7.04331526453524e120 * cos(theta) ** 20 + 4.26187866325381e120 * cos(theta) ** 18 - 1.40229556016738e120 * cos(theta) ** 16 + 2.7495991375831e119 * cos(theta) ** 14 - 3.31408637774917e118 * cos(theta) ** 12 + 2.44664095001616e117 * cos(theta) ** 10 - 1.06995959913243e116 * cos(theta) ** 8 + 2.58266110135415e114 * cos(theta) ** 6 - 3.01009452372279e112 * cos(theta) ** 4 + 1.28089128669055e110 * cos(theta) ** 2 - 8.37731384362686e106 ) * cos(58 * phi) ) # @torch.jit.script def Yl80_m59(theta, phi): return ( 1.16682031850865e-109 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 1.06655916862962e122 * cos(theta) ** 21 - 1.40866305290705e122 * cos(theta) ** 19 + 7.67138159385685e121 * cos(theta) ** 17 - 2.24367289626781e121 * cos(theta) ** 15 + 3.84943879261634e120 * cos(theta) ** 13 - 3.976903653299e119 * cos(theta) ** 11 + 2.44664095001616e118 * cos(theta) ** 9 - 8.55967679305947e116 * cos(theta) ** 7 + 1.54959666081249e115 * cos(theta) ** 5 - 1.20403780948911e113 * cos(theta) ** 3 + 2.56178257338109e110 * cos(theta) ) * cos(59 * phi) ) # @torch.jit.script def Yl80_m60(theta, phi): return ( 2.1519407912383e-111 * (1.0 - cos(theta) ** 2) ** 30 * ( 2.23977425412221e123 * cos(theta) ** 20 - 2.67645980052339e123 * cos(theta) ** 18 + 1.30413487095567e123 * cos(theta) ** 16 - 3.36550934440172e122 * cos(theta) ** 14 + 5.00427043040124e121 * cos(theta) ** 12 - 4.3745940186289e120 * cos(theta) ** 10 + 2.20197685501455e119 * cos(theta) ** 8 - 5.99177375514163e117 * cos(theta) ** 6 + 7.74798330406245e115 * cos(theta) ** 4 - 3.61211342846734e113 * cos(theta) ** 2 + 2.56178257338109e110 ) * cos(60 * phi) ) # @torch.jit.script def Yl80_m61(theta, phi): return ( 4.05233894854369e-113 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 4.47954850824441e124 * cos(theta) ** 19 - 4.8176276409421e124 * cos(theta) ** 17 + 2.08661579352906e124 * cos(theta) ** 15 - 4.7117130821624e123 * cos(theta) ** 13 + 6.00512451648149e122 * cos(theta) ** 11 - 4.3745940186289e121 * cos(theta) ** 9 + 1.76158148401164e120 * cos(theta) ** 7 - 3.59506425308498e118 * cos(theta) ** 5 + 3.09919332162498e116 * cos(theta) ** 3 - 7.22422685693469e113 * cos(theta) ) * cos(61 * phi) ) # @torch.jit.script def Yl80_m62(theta, phi): return ( 7.80161996679641e-115 * (1.0 - cos(theta) ** 2) ** 31 * ( 8.51114216566438e125 * cos(theta) ** 18 - 8.18996698960158e125 * cos(theta) ** 16 + 3.1299236902936e125 * cos(theta) ** 14 - 6.12522700681112e124 * cos(theta) ** 12 + 6.60563696812964e123 * cos(theta) ** 10 - 3.93713461676601e122 * cos(theta) ** 8 + 1.23310703880815e121 * cos(theta) ** 6 - 1.79753212654249e119 * cos(theta) ** 4 + 9.29757996487494e116 * cos(theta) ** 2 - 7.22422685693469e113 ) * cos(62 * phi) ) # @torch.jit.script def Yl80_m63(theta, phi): return ( 1.53773153172088e-116 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 1.53200558981959e127 * cos(theta) ** 17 - 1.31039471833625e127 * cos(theta) ** 15 + 4.38189316641103e126 * cos(theta) ** 13 - 7.35027240817335e125 * cos(theta) ** 11 + 6.60563696812964e124 * cos(theta) ** 9 - 3.14970769341281e123 * cos(theta) ** 7 + 7.39864223284888e121 * cos(theta) ** 5 - 7.19012850616995e119 * cos(theta) ** 3 + 1.85951599297499e117 * cos(theta) ) * cos(63 * phi) ) # @torch.jit.script def Yl80_m64(theta, phi): return ( 3.10795565153335e-118 * (1.0 - cos(theta) ** 2) ** 32 * ( 2.6044095026933e128 * cos(theta) ** 16 - 1.96559207750438e128 * cos(theta) ** 14 + 5.69646111633434e127 * cos(theta) ** 12 - 8.08529964899068e126 * cos(theta) ** 10 + 5.94507327131668e125 * cos(theta) ** 8 - 2.20479538538897e124 * cos(theta) ** 6 + 3.69932111642444e122 * cos(theta) ** 4 - 2.15703855185099e120 * cos(theta) ** 2 + 1.85951599297499e117 ) * cos(64 * phi) ) # @torch.jit.script def Yl80_m65(theta, phi): return ( 6.45254171114326e-120 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 4.16705520430928e129 * cos(theta) ** 15 - 2.75182890850613e129 * cos(theta) ** 13 + 6.83575333960121e128 * cos(theta) ** 11 - 8.08529964899068e127 * cos(theta) ** 9 + 4.75605861705334e126 * cos(theta) ** 7 - 1.32287723123338e125 * cos(theta) ** 5 + 1.47972844656978e123 * cos(theta) ** 3 - 4.31407710370197e120 * cos(theta) ) * cos(65 * phi) ) # @torch.jit.script def Yl80_m66(theta, phi): return ( 1.37882377465523e-121 * (1.0 - cos(theta) ** 2) ** 33 * ( 6.25058280646392e130 * cos(theta) ** 14 - 3.57737758105797e130 * cos(theta) ** 12 + 7.51932867356133e129 * cos(theta) ** 10 - 7.27676968409161e128 * cos(theta) ** 8 + 3.32924103193734e127 * cos(theta) ** 6 - 6.6143861561669e125 * cos(theta) ** 4 + 4.43918533970933e123 * cos(theta) ** 2 - 4.31407710370197e120 ) * cos(66 * phi) ) # @torch.jit.script def Yl80_m67(theta, phi): return ( 3.03938753480969e-123 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 8.75081592904949e131 * cos(theta) ** 13 - 4.29285309726956e131 * cos(theta) ** 11 + 7.51932867356133e130 * cos(theta) ** 9 - 5.82141574727329e129 * cos(theta) ** 7 + 1.9975446191624e128 * cos(theta) ** 5 - 2.64575446246676e126 * cos(theta) ** 3 + 8.87837067941866e123 * cos(theta) ) * cos(67 * phi) ) # @torch.jit.script def Yl80_m68(theta, phi): return ( 6.92920713888528e-125 * (1.0 - cos(theta) ** 2) ** 34 * ( 1.13760607077643e133 * cos(theta) ** 12 - 4.72213840699652e132 * cos(theta) ** 10 + 6.7673958062052e131 * cos(theta) ** 8 - 4.0749910230913e130 * cos(theta) ** 6 + 9.98772309581202e128 * cos(theta) ** 4 - 7.93726338740028e126 * cos(theta) ** 2 + 8.87837067941866e123 ) * cos(68 * phi) ) # @torch.jit.script def Yl80_m69(theta, phi): return ( 1.63870125727749e-126 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 1.36512728493172e134 * cos(theta) ** 11 - 4.72213840699652e133 * cos(theta) ** 9 + 5.41391664496416e132 * cos(theta) ** 7 - 2.44499461385478e131 * cos(theta) ** 5 + 3.99508923832481e129 * cos(theta) ** 3 - 1.58745267748006e127 * cos(theta) ) * cos(69 * phi) ) # @torch.jit.script def Yl80_m70(theta, phi): return ( 4.03420362055988e-128 * (1.0 - cos(theta) ** 2) ** 35 * ( 1.50164001342489e135 * cos(theta) ** 10 - 4.24992456629687e134 * cos(theta) ** 8 + 3.78974165147491e133 * cos(theta) ** 6 - 1.22249730692739e132 * cos(theta) ** 4 + 1.19852677149744e130 * cos(theta) ** 2 - 1.58745267748006e127 ) * cos(70 * phi) ) # @torch.jit.script def Yl80_m71(theta, phi): return ( 1.03817207075031e-129 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 1.50164001342489e136 * cos(theta) ** 9 - 3.39993965303749e135 * cos(theta) ** 7 + 2.27384499088495e134 * cos(theta) ** 5 - 4.88998922770956e132 * cos(theta) ** 3 + 2.39705354299488e130 * cos(theta) ) * cos(71 * phi) ) # @torch.jit.script def Yl80_m72(theta, phi): return ( 2.8068958115897e-131 * (1.0 - cos(theta) ** 2) ** 36 * ( 1.3514760120824e137 * cos(theta) ** 8 - 2.37995775712625e136 * cos(theta) ** 6 + 1.13692249544247e135 * cos(theta) ** 4 - 1.46699676831287e133 * cos(theta) ** 2 + 2.39705354299488e130 ) * cos(72 * phi) ) # @torch.jit.script def Yl80_m73(theta, phi): return ( 8.02297767216779e-133 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 1.08118080966592e138 * cos(theta) ** 7 - 1.42797465427575e137 * cos(theta) ** 5 + 4.5476899817699e135 * cos(theta) ** 3 - 2.93399353662574e133 * cos(theta) ) * cos(73 * phi) ) # @torch.jit.script def Yl80_m74(theta, phi): return ( 2.44357798144463e-134 * (1.0 - cos(theta) ** 2) ** 37 * ( 7.56826566766146e138 * cos(theta) ** 6 - 7.13987327137874e137 * cos(theta) ** 4 + 1.36430699453097e136 * cos(theta) ** 2 - 2.93399353662574e133 ) * cos(74 * phi) ) # @torch.jit.script def Yl80_m75(theta, phi): return ( 8.01280785992094e-136 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 4.54095940059688e139 * cos(theta) ** 5 - 2.85594930855149e138 * cos(theta) ** 3 + 2.72861398906194e136 * cos(theta) ) * cos(75 * phi) ) # @torch.jit.script def Yl80_m76(theta, phi): return ( 2.86904544565473e-137 * (1.0 - cos(theta) ** 2) ** 38 * ( 2.27047970029844e140 * cos(theta) ** 4 - 8.56784792565448e138 * cos(theta) ** 2 + 2.72861398906194e136 ) * cos(76 * phi) ) # @torch.jit.script def Yl80_m77(theta, phi): return ( 1.1448737705593e-138 * (1.0 - cos(theta) ** 2) ** 38.5 * (9.08191880119375e140 * cos(theta) ** 3 - 1.7135695851309e139 * cos(theta)) * cos(77 * phi) ) # @torch.jit.script def Yl80_m78(theta, phi): return ( 5.2585793883761e-140 * (1.0 - cos(theta) ** 2) ** 39 * (2.72457564035813e141 * cos(theta) ** 2 - 1.7135695851309e139) * cos(78 * phi) ) # @torch.jit.script def Yl80_m79(theta, phi): return ( 16.0688108979079 * (1.0 - cos(theta) ** 2) ** 39.5 * cos(79 * phi) * cos(theta) ) # @torch.jit.script def Yl80_m80(theta, phi): return 1.27035104319811 * (1.0 - cos(theta) ** 2) ** 40 * cos(80 * phi) # @torch.jit.script def Yl81_m_minus_81(theta, phi): return 1.27426584768067 * (1.0 - cos(theta) ** 2) ** 40.5 * sin(81 * phi) # @torch.jit.script def Yl81_m_minus_80(theta, phi): return 16.2187563947297 * (1.0 - cos(theta) ** 2) ** 40 * sin(80 * phi) * cos(theta) # @torch.jit.script def Yl81_m_minus_79(theta, phi): return ( 3.31734580606543e-142 * (1.0 - cos(theta) ** 2) ** 39.5 * (4.38656678097658e143 * cos(theta) ** 2 - 2.72457564035813e141) * sin(79 * phi) ) # @torch.jit.script def Yl81_m_minus_78(theta, phi): return ( 7.26794051610877e-141 * (1.0 - cos(theta) ** 2) ** 39 * (1.46218892699219e143 * cos(theta) ** 3 - 2.72457564035813e141 * cos(theta)) * sin(78 * phi) ) # @torch.jit.script def Yl81_m_minus_77(theta, phi): return ( 1.83290485688326e-139 * (1.0 - cos(theta) ** 2) ** 38.5 * ( 3.65547231748049e142 * cos(theta) ** 4 - 1.36228782017906e141 * cos(theta) ** 2 + 4.28392396282724e138 ) * sin(77 * phi) ) # @torch.jit.script def Yl81_m_minus_76(theta, phi): return ( 5.15173443547425e-138 * (1.0 - cos(theta) ** 2) ** 38 * ( 7.31094463496097e141 * cos(theta) ** 5 - 4.54095940059688e140 * cos(theta) ** 3 + 4.28392396282724e138 * cos(theta) ) * sin(76 * phi) ) # @torch.jit.script def Yl81_m_minus_75(theta, phi): return ( 1.58117128633869e-136 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 1.21849077249349e141 * cos(theta) ** 6 - 1.13523985014922e140 * cos(theta) ** 4 + 2.14196198141362e138 * cos(theta) ** 2 - 4.5476899817699e135 ) * sin(75 * phi) ) # @torch.jit.script def Yl81_m_minus_74(theta, phi): return ( 5.22504744411206e-135 * (1.0 - cos(theta) ** 2) ** 37 * ( 1.74070110356214e140 * cos(theta) ** 7 - 2.27047970029844e139 * cos(theta) ** 5 + 7.13987327137874e137 * cos(theta) ** 3 - 4.5476899817699e135 * cos(theta) ) * sin(74 * phi) ) # @torch.jit.script def Yl81_m_minus_73(theta, phi): return ( 1.83992906883921e-133 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 2.17587637945267e139 * cos(theta) ** 8 - 3.78413283383073e138 * cos(theta) ** 6 + 1.78496831784468e137 * cos(theta) ** 4 - 2.27384499088495e135 * cos(theta) ** 2 + 3.66749192078217e132 ) * sin(73 * phi) ) # @torch.jit.script def Yl81_m_minus_72(theta, phi): return ( 6.84987578281994e-132 * (1.0 - cos(theta) ** 2) ** 36 * ( 2.41764042161408e138 * cos(theta) ** 9 - 5.40590404832961e137 * cos(theta) ** 7 + 3.56993663568937e136 * cos(theta) ** 5 - 7.57948330294983e134 * cos(theta) ** 3 + 3.66749192078217e132 * cos(theta) ) * sin(72 * phi) ) # @torch.jit.script def Yl81_m_minus_71(theta, phi): return ( 2.67934360072195e-130 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 2.41764042161408e137 * cos(theta) ** 10 - 6.75738006041202e136 * cos(theta) ** 8 + 5.94989439281561e135 * cos(theta) ** 6 - 1.89487082573746e134 * cos(theta) ** 4 + 1.83374596039109e132 * cos(theta) ** 2 - 2.39705354299488e129 ) * sin(71 * phi) ) # @torch.jit.script def Yl81_m_minus_70(theta, phi): return ( 1.0955861865951e-128 * (1.0 - cos(theta) ** 2) ** 35 * ( 2.19785492874007e136 * cos(theta) ** 11 - 7.50820006712446e135 * cos(theta) ** 9 + 8.49984913259373e134 * cos(theta) ** 7 - 3.78974165147491e133 * cos(theta) ** 5 + 6.11248653463696e131 * cos(theta) ** 3 - 2.39705354299488e129 * cos(theta) ) * sin(70 * phi) ) # @torch.jit.script def Yl81_m_minus_69(theta, phi): return ( 4.66364672243888e-127 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 1.83154577395006e135 * cos(theta) ** 12 - 7.50820006712446e134 * cos(theta) ** 10 + 1.06248114157422e134 * cos(theta) ** 8 - 6.31623608579152e132 * cos(theta) ** 6 + 1.52812163365924e131 * cos(theta) ** 4 - 1.19852677149744e129 * cos(theta) ** 2 + 1.32287723123338e126 ) * sin(69 * phi) ) # @torch.jit.script def Yl81_m_minus_68(theta, phi): return ( 2.05941063088069e-125 * (1.0 - cos(theta) ** 2) ** 34 * ( 1.40888136457697e134 * cos(theta) ** 13 - 6.8256364246586e133 * cos(theta) ** 11 + 1.18053460174913e133 * cos(theta) ** 9 - 9.0231944082736e131 * cos(theta) ** 7 + 3.05624326731848e130 * cos(theta) ** 5 - 3.99508923832481e128 * cos(theta) ** 3 + 1.32287723123338e126 * cos(theta) ) * sin(68 * phi) ) # @torch.jit.script def Yl81_m_minus_67(theta, phi): return ( 9.40589448047078e-124 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 1.00634383184069e133 * cos(theta) ** 14 - 5.68803035388217e132 * cos(theta) ** 12 + 1.18053460174913e132 * cos(theta) ** 10 - 1.1278993010342e131 * cos(theta) ** 8 + 5.09373877886413e129 * cos(theta) ** 6 - 9.98772309581202e127 * cos(theta) ** 4 + 6.6143861561669e125 * cos(theta) ** 2 - 6.3416933424419e122 ) * sin(67 * phi) ) # @torch.jit.script def Yl81_m_minus_66(theta, phi): return ( 4.43176363506231e-122 * (1.0 - cos(theta) ** 2) ** 33 * ( 6.70895887893794e131 * cos(theta) ** 15 - 4.37540796452475e131 * cos(theta) ** 13 + 1.07321327431739e131 * cos(theta) ** 11 - 1.25322144559356e130 * cos(theta) ** 9 + 7.27676968409161e128 * cos(theta) ** 7 - 1.9975446191624e127 * cos(theta) ** 5 + 2.20479538538897e125 * cos(theta) ** 3 - 6.3416933424419e122 * cos(theta) ) * sin(66 * phi) ) # @torch.jit.script def Yl81_m_minus_65(theta, phi): return ( 2.14929113925793e-120 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 4.19309929933622e130 * cos(theta) ** 16 - 3.12529140323196e130 * cos(theta) ** 14 + 8.94344395264492e129 * cos(theta) ** 12 - 1.25322144559356e129 * cos(theta) ** 10 + 9.09596210511452e127 * cos(theta) ** 8 - 3.32924103193734e126 * cos(theta) ** 6 + 5.51198846347242e124 * cos(theta) ** 4 - 3.17084667122095e122 * cos(theta) ** 2 + 2.69629818981373e119 ) * sin(65 * phi) ) # @torch.jit.script def Yl81_m_minus_64(theta, phi): return ( 1.0707698566923e-118 * (1.0 - cos(theta) ** 2) ** 32 * ( 2.46652899960954e129 * cos(theta) ** 17 - 2.08352760215464e129 * cos(theta) ** 15 + 6.87957227126532e128 * cos(theta) ** 13 - 1.13929222326687e128 * cos(theta) ** 11 + 1.01066245612384e127 * cos(theta) ** 9 - 4.75605861705334e125 * cos(theta) ** 7 + 1.10239769269448e124 * cos(theta) ** 5 - 1.05694889040698e122 * cos(theta) ** 3 + 2.69629818981373e119 * cos(theta) ) * sin(64 * phi) ) # @torch.jit.script def Yl81_m_minus_63(theta, phi): return ( 5.47036607958023e-117 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 1.37029388867197e128 * cos(theta) ** 18 - 1.30220475134665e128 * cos(theta) ** 16 + 4.91398019376095e127 * cos(theta) ** 14 - 9.49410186055724e126 * cos(theta) ** 12 + 1.01066245612384e126 * cos(theta) ** 10 - 5.94507327131668e124 * cos(theta) ** 8 + 1.83732948782414e123 * cos(theta) ** 6 - 2.64237222601746e121 * cos(theta) ** 4 + 1.34814909490687e119 * cos(theta) ** 2 - 1.03306444054166e116 ) * sin(63 * phi) ) # @torch.jit.script def Yl81_m_minus_62(theta, phi): return ( 2.86137275100756e-115 * (1.0 - cos(theta) ** 2) ** 31 * ( 7.2120730982735e126 * cos(theta) ** 19 - 7.66002794909794e126 * cos(theta) ** 17 + 3.27598679584063e126 * cos(theta) ** 15 - 7.30315527735172e125 * cos(theta) ** 13 + 9.18784051021668e124 * cos(theta) ** 11 - 6.60563696812964e123 * cos(theta) ** 9 + 2.62475641117734e122 * cos(theta) ** 7 - 5.28474445203492e120 * cos(theta) ** 5 + 4.49383031635622e118 * cos(theta) ** 3 - 1.03306444054166e116 * cos(theta) ) * sin(62 * phi) ) # @torch.jit.script def Yl81_m_minus_61(theta, phi): return ( 1.53023261296433e-113 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 3.60603654913675e125 * cos(theta) ** 20 - 4.25557108283219e125 * cos(theta) ** 18 + 2.04749174740039e125 * cos(theta) ** 16 - 5.21653948382266e124 * cos(theta) ** 14 + 7.6565337585139e123 * cos(theta) ** 12 - 6.60563696812964e122 * cos(theta) ** 10 + 3.28094551397168e121 * cos(theta) ** 8 - 8.80790742005819e119 * cos(theta) ** 6 + 1.12345757908906e118 * cos(theta) ** 4 - 5.1653222027083e115 * cos(theta) ** 2 + 3.61211342846734e112 ) * sin(61 * phi) ) # @torch.jit.script def Yl81_m_minus_60(theta, phi): return ( 8.35624708588904e-112 * (1.0 - cos(theta) ** 2) ** 30 * ( 1.71716026149369e124 * cos(theta) ** 21 - 2.23977425412221e124 * cos(theta) ** 19 + 1.20440691023553e124 * cos(theta) ** 17 - 3.47769298921511e123 * cos(theta) ** 15 + 5.889641352703e122 * cos(theta) ** 13 - 6.00512451648149e121 * cos(theta) ** 11 + 3.64549501552409e120 * cos(theta) ** 9 - 1.25827248857974e119 * cos(theta) ** 7 + 2.24691515817811e117 * cos(theta) ** 5 - 1.72177406756943e115 * cos(theta) ** 3 + 3.61211342846734e112 * cos(theta) ) * sin(60 * phi) ) # @torch.jit.script def Yl81_m_minus_59(theta, phi): return ( 4.6540620574725e-110 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 7.80527391588041e122 * cos(theta) ** 22 - 1.1198871270611e123 * cos(theta) ** 20 + 6.69114950130848e122 * cos(theta) ** 18 - 2.17355811825944e122 * cos(theta) ** 16 + 4.20688668050214e121 * cos(theta) ** 14 - 5.00427043040124e120 * cos(theta) ** 12 + 3.64549501552409e119 * cos(theta) ** 10 - 1.57284061072468e118 * cos(theta) ** 8 + 3.74485859696352e116 * cos(theta) ** 6 - 4.30443516892358e114 * cos(theta) ** 4 + 1.80605671423367e112 * cos(theta) ** 2 - 1.16444662426413e109 ) * sin(59 * phi) ) # @torch.jit.script def Yl81_m_minus_58(theta, phi): return ( 2.6409495546881e-108 * (1.0 - cos(theta) ** 2) ** 29 * ( 3.39359735473062e121 * cos(theta) ** 23 - 5.33279584314811e121 * cos(theta) ** 21 + 3.52165763226762e121 * cos(theta) ** 19 - 1.27856359897614e121 * cos(theta) ** 17 + 2.80459112033476e120 * cos(theta) ** 15 - 3.84943879261634e119 * cos(theta) ** 13 + 3.31408637774917e118 * cos(theta) ** 11 - 1.74760067858297e117 * cos(theta) ** 9 + 5.34979799566217e115 * cos(theta) ** 7 - 8.60887033784717e113 * cos(theta) ** 5 + 6.02018904744557e111 * cos(theta) ** 3 - 1.16444662426413e109 * cos(theta) ) * sin(58 * phi) ) # @torch.jit.script def Yl81_m_minus_57(theta, phi): return ( 1.52536271555845e-106 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 1.41399889780442e120 * cos(theta) ** 24 - 2.42399811052187e120 * cos(theta) ** 22 + 1.76082881613381e120 * cos(theta) ** 20 - 7.10313110542301e119 * cos(theta) ** 18 + 1.75286945020923e119 * cos(theta) ** 16 - 2.7495991375831e118 * cos(theta) ** 14 + 2.76173864812431e117 * cos(theta) ** 12 - 1.74760067858297e116 * cos(theta) ** 10 + 6.68724749457771e114 * cos(theta) ** 8 - 1.43481172297453e113 * cos(theta) ** 6 + 1.50504726186139e111 * cos(theta) ** 4 - 5.82223312132067e108 * cos(theta) ** 2 + 3.49054743484453e105 ) * sin(57 * phi) ) # @torch.jit.script def Yl81_m_minus_56(theta, phi): return ( 8.95947731642572e-105 * (1.0 - cos(theta) ** 2) ** 28 * ( 5.65599559121769e118 * cos(theta) ** 25 - 1.05391222196603e119 * cos(theta) ** 23 + 8.38489912444671e118 * cos(theta) ** 21 - 3.7384900554858e118 * cos(theta) ** 19 + 1.03109967659366e118 * cos(theta) ** 17 - 1.83306609172207e117 * cos(theta) ** 15 + 2.12441434471101e116 * cos(theta) ** 13 - 1.58872788962089e115 * cos(theta) ** 11 + 7.43027499397523e113 * cos(theta) ** 9 - 2.04973103282075e112 * cos(theta) ** 7 + 3.01009452372279e110 * cos(theta) ** 5 - 1.94074437377356e108 * cos(theta) ** 3 + 3.49054743484453e105 * cos(theta) ) * sin(56 * phi) ) # @torch.jit.script def Yl81_m_minus_55(theta, phi): return ( 5.34723944420852e-103 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 2.17538291969911e117 * cos(theta) ** 26 - 4.39130092485846e117 * cos(theta) ** 24 + 3.81131778383941e117 * cos(theta) ** 22 - 1.8692450277429e117 * cos(theta) ** 20 + 5.72833153663146e116 * cos(theta) ** 18 - 1.14566630732629e116 * cos(theta) ** 16 + 1.51743881765072e115 * cos(theta) ** 14 - 1.32393990801741e114 * cos(theta) ** 12 + 7.43027499397523e112 * cos(theta) ** 10 - 2.56216379102594e111 * cos(theta) ** 8 + 5.01682420620464e109 * cos(theta) ** 6 - 4.85186093443389e107 * cos(theta) ** 4 + 1.74527371742226e105 * cos(theta) ** 2 - 9.79940324212388e101 ) * sin(55 * phi) ) # @torch.jit.script def Yl81_m_minus_54(theta, phi): return ( 3.24026827040331e-101 * (1.0 - cos(theta) ** 2) ** 27 * ( 8.05697377666338e115 * cos(theta) ** 27 - 1.75652036994338e116 * cos(theta) ** 25 + 1.65709468862583e116 * cos(theta) ** 23 - 8.9011667987757e115 * cos(theta) ** 21 + 3.01491133506919e115 * cos(theta) ** 19 - 6.7392135725076e114 * cos(theta) ** 17 + 1.01162587843381e114 * cos(theta) ** 15 - 1.01841531385954e113 * cos(theta) ** 13 + 6.75479544906839e111 * cos(theta) ** 11 - 2.84684865669549e110 * cos(theta) ** 9 + 7.16689172314949e108 * cos(theta) ** 7 - 9.70372186886778e106 * cos(theta) ** 5 + 5.81757905807421e104 * cos(theta) ** 3 - 9.79940324212388e101 * cos(theta) ) * sin(54 * phi) ) # @torch.jit.script def Yl81_m_minus_53(theta, phi): return ( 1.99217216611943e-99 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 2.87749063452264e114 * cos(theta) ** 28 - 6.75584757670532e114 * cos(theta) ** 26 + 6.90456120260764e114 * cos(theta) ** 24 - 4.04598490853441e114 * cos(theta) ** 22 + 1.5074556675346e114 * cos(theta) ** 20 - 3.744007540282e113 * cos(theta) ** 18 + 6.32266174021133e112 * cos(theta) ** 16 - 7.27439509899673e111 * cos(theta) ** 14 + 5.62899620755699e110 * cos(theta) ** 12 - 2.84684865669549e109 * cos(theta) ** 10 + 8.95861465393686e107 * cos(theta) ** 8 - 1.61728697814463e106 * cos(theta) ** 6 + 1.45439476451855e104 * cos(theta) ** 4 - 4.89970162106194e101 * cos(theta) ** 2 + 2.59243472013859e98 ) * sin(53 * phi) ) # @torch.jit.script def Yl81_m_minus_52(theta, phi): return ( 1.24187609143365e-97 * (1.0 - cos(theta) ** 2) ** 26 * ( 9.92238149835392e112 * cos(theta) ** 29 - 2.50216576915012e113 * cos(theta) ** 27 + 2.76182448104305e113 * cos(theta) ** 25 - 1.75912387327583e113 * cos(theta) ** 23 + 7.17836032159331e112 * cos(theta) ** 21 - 1.97053028435895e112 * cos(theta) ** 19 + 3.7192127883596e111 * cos(theta) ** 17 - 4.84959673266449e110 * cos(theta) ** 15 + 4.32999708273615e109 * cos(theta) ** 13 - 2.58804423335954e108 * cos(theta) ** 11 + 9.95401628215207e106 * cos(theta) ** 9 - 2.31040996877804e105 * cos(theta) ** 7 + 2.9087895290371e103 * cos(theta) ** 5 - 1.63323387368731e101 * cos(theta) ** 3 + 2.59243472013859e98 * cos(theta) ) * sin(52 * phi) ) # @torch.jit.script def Yl81_m_minus_51(theta, phi): return ( 7.84449000485907e-96 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 3.3074604994513e111 * cos(theta) ** 30 - 8.93630631839328e111 * cos(theta) ** 28 + 1.06224018501656e112 * cos(theta) ** 26 - 7.32968280531596e111 * cos(theta) ** 24 + 3.26289105526969e111 * cos(theta) ** 22 - 9.85265142179474e110 * cos(theta) ** 20 + 2.06622932686645e110 * cos(theta) ** 18 - 3.0309979579153e109 * cos(theta) ** 16 + 3.09285505909725e108 * cos(theta) ** 14 - 2.15670352779961e107 * cos(theta) ** 12 + 9.95401628215207e105 * cos(theta) ** 10 - 2.88801246097255e104 * cos(theta) ** 8 + 4.84798254839517e102 * cos(theta) ** 6 - 4.08308468421828e100 * cos(theta) ** 4 + 1.2962173600693e98 * cos(theta) ** 2 - 6.49733012566063e94 ) * sin(51 * phi) ) # @torch.jit.script def Yl81_m_minus_50(theta, phi): return ( 5.01802160120378e-94 * (1.0 - cos(theta) ** 2) ** 25 * ( 1.06692274175849e110 * cos(theta) ** 31 - 3.08148493737699e110 * cos(theta) ** 29 + 3.93422290746874e110 * cos(theta) ** 27 - 2.93187312212638e110 * cos(theta) ** 25 + 1.41864828489986e110 * cos(theta) ** 23 - 4.69173877228321e109 * cos(theta) ** 21 + 1.08748911940339e109 * cos(theta) ** 19 - 1.7829399752443e108 * cos(theta) ** 17 + 2.0619033727315e107 * cos(theta) ** 15 - 1.65900271369201e106 * cos(theta) ** 13 + 9.04910571104733e104 * cos(theta) ** 11 - 3.20890273441395e103 * cos(theta) ** 9 + 6.92568935485025e101 * cos(theta) ** 7 - 8.16616936843656e99 * cos(theta) ** 5 + 4.32072453356432e97 * cos(theta) ** 3 - 6.49733012566063e94 * cos(theta) ) * sin(50 * phi) ) # @torch.jit.script def Yl81_m_minus_49(theta, phi): return ( 3.24895101520936e-92 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 3.33413356799527e108 * cos(theta) ** 32 - 1.02716164579233e109 * cos(theta) ** 30 + 1.40507960981026e109 * cos(theta) ** 28 - 1.12764350851015e109 * cos(theta) ** 26 + 5.9110345204161e108 * cos(theta) ** 24 - 2.132608532856e108 * cos(theta) ** 22 + 5.43744559701696e107 * cos(theta) ** 20 - 9.90522208469054e106 * cos(theta) ** 18 + 1.28868960795719e106 * cos(theta) ** 16 - 1.18500193835144e105 * cos(theta) ** 14 + 7.54092142587278e103 * cos(theta) ** 12 - 3.20890273441395e102 * cos(theta) ** 10 + 8.65711169356281e100 * cos(theta) ** 8 - 1.36102822807276e99 * cos(theta) ** 6 + 1.08018113339108e97 * cos(theta) ** 4 - 3.24866506283032e94 * cos(theta) ** 2 + 1.54993562157935e91 ) * sin(49 * phi) ) # @torch.jit.script def Yl81_m_minus_48(theta, phi): return ( 2.12800091117688e-90 * (1.0 - cos(theta) ** 2) ** 24 * ( 1.01034350545311e107 * cos(theta) ** 33 - 3.31342466384623e107 * cos(theta) ** 31 + 4.84510210279401e107 * cos(theta) ** 29 - 4.17645743892647e107 * cos(theta) ** 27 + 2.36441380816644e107 * cos(theta) ** 25 - 9.27221101241741e106 * cos(theta) ** 23 + 2.58925980810332e106 * cos(theta) ** 21 - 5.21327478141607e105 * cos(theta) ** 19 + 7.58052710563051e104 * cos(theta) ** 17 - 7.90001292234291e103 * cos(theta) ** 15 + 5.80070878913291e102 * cos(theta) ** 13 - 2.91718430401268e101 * cos(theta) ** 11 + 9.61901299284757e99 * cos(theta) ** 9 - 1.94432604010394e98 * cos(theta) ** 7 + 2.16036226678216e96 * cos(theta) ** 5 - 1.08288835427677e94 * cos(theta) ** 3 + 1.54993562157935e91 * cos(theta) ) * sin(48 * phi) ) # @torch.jit.script def Yl81_m_minus_47(theta, phi): return ( 1.40930866855969e-88 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 2.97159854545033e105 * cos(theta) ** 34 - 1.03544520745195e106 * cos(theta) ** 32 + 1.61503403426467e106 * cos(theta) ** 30 - 1.49159194247374e106 * cos(theta) ** 28 + 9.09389926217861e105 * cos(theta) ** 26 - 3.86342125517392e105 * cos(theta) ** 24 + 1.1769362764106e105 * cos(theta) ** 22 - 2.60663739070804e104 * cos(theta) ** 20 + 4.21140394757251e103 * cos(theta) ** 18 - 4.93750807646432e102 * cos(theta) ** 16 + 4.14336342080922e101 * cos(theta) ** 14 - 2.43098692001057e100 * cos(theta) ** 12 + 9.61901299284757e98 * cos(theta) ** 10 - 2.43040755012993e97 * cos(theta) ** 8 + 3.60060377797027e95 * cos(theta) ** 6 - 2.70722088569193e93 * cos(theta) ** 4 + 7.74967810789675e90 * cos(theta) ** 2 - 3.53382494660134e87 ) * sin(47 * phi) ) # @torch.jit.script def Yl81_m_minus_46(theta, phi): return ( 9.43289782425483e-87 * (1.0 - cos(theta) ** 2) ** 23 * ( 8.49028155842951e103 * cos(theta) ** 35 - 3.13771274985438e104 * cos(theta) ** 33 + 5.20978720730539e104 * cos(theta) ** 31 - 5.14342049128876e104 * cos(theta) ** 29 + 3.36811083784393e104 * cos(theta) ** 27 - 1.54536850206957e104 * cos(theta) ** 25 + 5.11711424526347e103 * cos(theta) ** 23 - 1.24125590033716e103 * cos(theta) ** 21 + 2.21652839345921e102 * cos(theta) ** 19 - 2.90441651556725e101 * cos(theta) ** 17 + 2.76224228053948e100 * cos(theta) ** 15 - 1.86998993846967e99 * cos(theta) ** 13 + 8.74455726622506e97 * cos(theta) ** 11 - 2.7004528334777e96 * cos(theta) ** 9 + 5.14371968281467e94 * cos(theta) ** 7 - 5.41444177138386e92 * cos(theta) ** 5 + 2.58322603596558e90 * cos(theta) ** 3 - 3.53382494660134e87 * cos(theta) ) * sin(46 * phi) ) # @torch.jit.script def Yl81_m_minus_45(theta, phi): return ( 6.37820158470133e-85 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 2.3584115440082e102 * cos(theta) ** 36 - 9.22856691133642e102 * cos(theta) ** 34 + 1.62805850228293e103 * cos(theta) ** 32 - 1.71447349709625e103 * cos(theta) ** 30 + 1.2028967278014e103 * cos(theta) ** 28 - 5.94372500795988e102 * cos(theta) ** 26 + 2.13213093552645e102 * cos(theta) ** 24 - 5.64207227425982e101 * cos(theta) ** 22 + 1.10826419672961e101 * cos(theta) ** 20 - 1.61356473087069e100 * cos(theta) ** 18 + 1.72640142533717e99 * cos(theta) ** 16 - 1.3357070989069e98 * cos(theta) ** 14 + 7.28713105518755e96 * cos(theta) ** 12 - 2.7004528334777e95 * cos(theta) ** 10 + 6.42964960351833e93 * cos(theta) ** 8 - 9.0240696189731e91 * cos(theta) ** 6 + 6.45806508991396e89 * cos(theta) ** 4 - 1.76691247330067e87 * cos(theta) ** 2 + 7.72927591120154e83 ) * sin(45 * phi) ) # @torch.jit.script def Yl81_m_minus_44(theta, phi): return ( 4.35496205875107e-83 * (1.0 - cos(theta) ** 2) ** 22 * ( 6.37408525407621e100 * cos(theta) ** 37 - 2.63673340323898e101 * cos(theta) ** 35 + 4.93351061297859e101 * cos(theta) ** 33 - 5.53055966805243e101 * cos(theta) ** 31 + 4.14791975103932e101 * cos(theta) ** 29 - 2.20137963257773e101 * cos(theta) ** 27 + 8.52852374210578e100 * cos(theta) ** 25 - 2.4530749018521e100 * cos(theta) ** 23 + 5.27744855585527e99 * cos(theta) ** 21 - 8.49244595195101e98 * cos(theta) ** 19 + 1.01553025019834e98 * cos(theta) ** 17 - 8.9047139927127e96 * cos(theta) ** 15 + 5.60548542706735e95 * cos(theta) ** 13 - 2.45495712134336e94 * cos(theta) ** 11 + 7.14405511502037e92 * cos(theta) ** 9 - 1.28915280271044e91 * cos(theta) ** 7 + 1.29161301798279e89 * cos(theta) ** 5 - 5.88970824433557e86 * cos(theta) ** 3 + 7.72927591120154e83 * cos(theta) ) * sin(44 * phi) ) # @torch.jit.script def Yl81_m_minus_43(theta, phi): return ( 3.0014504665664e-81 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 1.67739085633584e99 * cos(theta) ** 38 - 7.3242594534416e99 * cos(theta) ** 36 + 1.451032533229e100 * cos(theta) ** 34 - 1.72829989626638e100 * cos(theta) ** 32 + 1.38263991701311e100 * cos(theta) ** 30 - 7.86207011634904e99 * cos(theta) ** 28 + 3.28020143927146e99 * cos(theta) ** 26 - 1.02211454243837e99 * cos(theta) ** 24 + 2.39884025266149e98 * cos(theta) ** 22 - 4.24622297597551e97 * cos(theta) ** 20 + 5.6418347233241e96 * cos(theta) ** 18 - 5.56544624544544e95 * cos(theta) ** 16 + 4.00391816219096e94 * cos(theta) ** 14 - 2.04579760111947e93 * cos(theta) ** 12 + 7.14405511502037e91 * cos(theta) ** 10 - 1.61144100338805e90 * cos(theta) ** 8 + 2.15268836330465e88 * cos(theta) ** 6 - 1.47242706108389e86 * cos(theta) ** 4 + 3.86463795560077e83 * cos(theta) ** 2 - 1.62721598130559e80 ) * sin(43 * phi) ) # @torch.jit.script def Yl81_m_minus_42(theta, phi): return ( 2.08724931218398e-79 * (1.0 - cos(theta) ** 2) ** 21 * ( 4.30100219573293e97 * cos(theta) ** 39 - 1.97952958201124e98 * cos(theta) ** 37 + 4.14580723779713e98 * cos(theta) ** 35 - 5.23727241292844e98 * cos(theta) ** 33 + 4.46012876455841e98 * cos(theta) ** 31 - 2.71105866081002e98 * cos(theta) ** 29 + 1.21488942195239e98 * cos(theta) ** 27 - 4.08845816975349e97 * cos(theta) ** 25 + 1.0429740228963e97 * cos(theta) ** 23 - 2.02201094094072e96 * cos(theta) ** 21 + 2.96938669648637e95 * cos(theta) ** 19 - 3.27379190908555e94 * cos(theta) ** 17 + 2.66927877479397e93 * cos(theta) ** 15 - 1.57369046239959e92 * cos(theta) ** 13 + 6.49459555910943e90 * cos(theta) ** 11 - 1.7904900037645e89 * cos(theta) ** 9 + 3.07526909043522e87 * cos(theta) ** 7 - 2.94485412216779e85 * cos(theta) ** 5 + 1.28821265186692e83 * cos(theta) ** 3 - 1.62721598130559e80 * cos(theta) ) * sin(42 * phi) ) # @torch.jit.script def Yl81_m_minus_41(theta, phi): return ( 1.46405326681666e-77 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 1.07525054893323e96 * cos(theta) ** 40 - 5.2092883737138e96 * cos(theta) ** 38 + 1.15161312161031e97 * cos(theta) ** 36 - 1.5403742390966e97 * cos(theta) ** 34 + 1.3937902389245e97 * cos(theta) ** 32 - 9.03686220270005e96 * cos(theta) ** 30 + 4.33889079268711e96 * cos(theta) ** 28 - 1.57248391144365e96 * cos(theta) ** 26 + 4.34572509540125e95 * cos(theta) ** 24 - 9.19095882245781e94 * cos(theta) ** 22 + 1.48469334824318e94 * cos(theta) ** 20 - 1.81877328282531e93 * cos(theta) ** 18 + 1.66829923424623e92 * cos(theta) ** 16 - 1.12406461599971e91 * cos(theta) ** 14 + 5.41216296592452e89 * cos(theta) ** 12 - 1.7904900037645e88 * cos(theta) ** 10 + 3.84408636304402e86 * cos(theta) ** 8 - 4.90809020361298e84 * cos(theta) ** 6 + 3.22053162966731e82 * cos(theta) ** 4 - 8.13607990652794e79 * cos(theta) ** 2 + 3.30734955549916e76 ) * sin(41 * phi) ) # @torch.jit.script def Yl81_m_minus_40(theta, phi): return ( 1.03544902068228e-75 * (1.0 - cos(theta) ** 2) ** 20 * ( 2.6225623144713e94 * cos(theta) ** 41 - 1.33571496761892e95 * cos(theta) ** 39 + 3.11246789624409e95 * cos(theta) ** 37 - 4.40106925456171e95 * cos(theta) ** 35 + 4.22360678461971e95 * cos(theta) ** 33 - 2.91511683958066e95 * cos(theta) ** 31 + 1.49616923885762e95 * cos(theta) ** 29 - 5.82401448682834e94 * cos(theta) ** 27 + 1.7382900381605e94 * cos(theta) ** 25 - 3.99606905324253e93 * cos(theta) ** 23 + 7.06996832496754e92 * cos(theta) ** 21 - 9.57249096223845e91 * cos(theta) ** 19 + 9.81352490733079e90 * cos(theta) ** 17 - 7.49376410666472e89 * cos(theta) ** 15 + 4.1632022814804e88 * cos(theta) ** 13 - 1.62771818524046e87 * cos(theta) ** 11 + 4.27120707004891e85 * cos(theta) ** 9 - 7.01155743373282e83 * cos(theta) ** 7 + 6.44106325933462e81 * cos(theta) ** 5 - 2.71202663550931e79 * cos(theta) ** 3 + 3.30734955549916e76 * cos(theta) ) * sin(40 * phi) ) # @torch.jit.script def Yl81_m_minus_39(theta, phi): return ( 7.38152427040842e-74 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 6.24419598683643e92 * cos(theta) ** 42 - 3.33928741904731e93 * cos(theta) ** 40 + 8.19070499011604e93 * cos(theta) ** 38 - 1.22251923737825e94 * cos(theta) ** 36 + 1.24223728959403e94 * cos(theta) ** 34 - 9.10974012368957e93 * cos(theta) ** 32 + 4.98723079619208e93 * cos(theta) ** 30 - 2.08000517386726e93 * cos(theta) ** 28 + 6.68573091600192e92 * cos(theta) ** 26 - 1.66502877218439e92 * cos(theta) ** 24 + 3.21362196589434e91 * cos(theta) ** 22 - 4.78624548111923e90 * cos(theta) ** 20 + 5.45195828185044e89 * cos(theta) ** 18 - 4.68360256666545e88 * cos(theta) ** 16 + 2.97371591534314e87 * cos(theta) ** 14 - 1.35643182103372e86 * cos(theta) ** 12 + 4.27120707004891e84 * cos(theta) ** 10 - 8.76444679216603e82 * cos(theta) ** 8 + 1.07351054322244e81 * cos(theta) ** 6 - 6.78006658877328e78 * cos(theta) ** 4 + 1.65367477774958e76 * cos(theta) ** 2 - 6.50796842876655e72 ) * sin(39 * phi) ) # @torch.jit.script def Yl81_m_minus_38(theta, phi): return ( 5.30238066213549e-72 * (1.0 - cos(theta) ** 2) ** 19 * ( 1.45213860158987e91 * cos(theta) ** 43 - 8.14460346109099e91 * cos(theta) ** 41 + 2.10018076669642e92 * cos(theta) ** 39 - 3.30410604696825e92 * cos(theta) ** 37 + 3.54924939884009e92 * cos(theta) ** 35 - 2.76052731020896e92 * cos(theta) ** 33 + 1.6087841278039e92 * cos(theta) ** 31 - 7.17243163402505e91 * cos(theta) ** 29 + 2.47619663555627e91 * cos(theta) ** 27 - 6.66011508873754e90 * cos(theta) ** 25 + 1.39722694169319e90 * cos(theta) ** 23 - 2.27916451481868e89 * cos(theta) ** 21 + 2.8694517272897e88 * cos(theta) ** 19 - 2.75506033333262e87 * cos(theta) ** 17 + 1.98247727689543e86 * cos(theta) ** 15 - 1.04340909310286e85 * cos(theta) ** 13 + 3.88291551822628e83 * cos(theta) ** 11 - 9.73827421351781e81 * cos(theta) ** 9 + 1.53358649031777e80 * cos(theta) ** 7 - 1.35601331775466e78 * cos(theta) ** 5 + 5.51224925916527e75 * cos(theta) ** 3 - 6.50796842876655e72 * cos(theta) ) * sin(38 * phi) ) # @torch.jit.script def Yl81_m_minus_37(theta, phi): return ( 3.83681378532868e-70 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 3.30031500361333e89 * cos(theta) ** 44 - 1.93919130025976e90 * cos(theta) ** 42 + 5.25045191674105e90 * cos(theta) ** 40 - 8.69501591307435e90 * cos(theta) ** 38 + 9.85902610788914e90 * cos(theta) ** 36 - 8.11919797120282e90 * cos(theta) ** 34 + 5.02745039938718e90 * cos(theta) ** 32 - 2.39081054467501e90 * cos(theta) ** 30 + 8.84355941270095e89 * cos(theta) ** 28 - 2.56158272643752e89 * cos(theta) ** 26 + 5.82177892372163e88 * cos(theta) ** 24 - 1.03598387037213e88 * cos(theta) ** 22 + 1.43472586364485e87 * cos(theta) ** 20 - 1.53058907407368e86 * cos(theta) ** 18 + 1.23904829805964e85 * cos(theta) ** 16 - 7.45292209359184e83 * cos(theta) ** 14 + 3.23576293185524e82 * cos(theta) ** 12 - 9.73827421351781e80 * cos(theta) ** 10 + 1.91698311289721e79 * cos(theta) ** 8 - 2.26002219625776e77 * cos(theta) ** 6 + 1.37806231479132e75 * cos(theta) ** 4 - 3.25398421438327e72 * cos(theta) ** 2 + 1.24292750740385e69 ) * sin(37 * phi) ) # @torch.jit.script def Yl81_m_minus_36(theta, phi): return ( 2.79587649089978e-68 * (1.0 - cos(theta) ** 2) ** 18 * ( 7.33403334136297e87 * cos(theta) ** 45 - 4.50974720990642e88 * cos(theta) ** 43 + 1.28059802847343e89 * cos(theta) ** 41 - 2.22949125976265e89 * cos(theta) ** 39 + 2.66460165078085e89 * cos(theta) ** 37 - 2.31977084891509e89 * cos(theta) ** 35 + 1.52346981799611e89 * cos(theta) ** 33 - 7.71229207959682e88 * cos(theta) ** 31 + 3.04950324575895e88 * cos(theta) ** 29 - 9.48734343125006e87 * cos(theta) ** 27 + 2.32871156948865e87 * cos(theta) ** 25 - 4.50427769727012e86 * cos(theta) ** 23 + 6.83202792211834e85 * cos(theta) ** 21 - 8.05573196880883e84 * cos(theta) ** 19 + 7.28851940035084e83 * cos(theta) ** 17 - 4.96861472906123e82 * cos(theta) ** 15 + 2.48904840911941e81 * cos(theta) ** 13 - 8.85297655774346e79 * cos(theta) ** 11 + 2.12998123655245e78 * cos(theta) ** 9 - 3.22860313751109e76 * cos(theta) ** 7 + 2.75612462958263e74 * cos(theta) ** 5 - 1.08466140479442e72 * cos(theta) ** 3 + 1.24292750740385e69 * cos(theta) ) * sin(36 * phi) ) # @torch.jit.script def Yl81_m_minus_35(theta, phi): return ( 2.05111414227571e-66 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 1.59435507420934e86 * cos(theta) ** 46 - 1.024942547706e87 * cos(theta) ** 44 + 3.04904292493673e87 * cos(theta) ** 42 - 5.57372814940663e87 * cos(theta) ** 40 + 7.01210960731802e87 * cos(theta) ** 38 - 6.44380791365303e87 * cos(theta) ** 36 + 4.48079358234151e87 * cos(theta) ** 34 - 2.41009127487401e87 * cos(theta) ** 32 + 1.01650108191965e87 * cos(theta) ** 30 - 3.38833693973216e86 * cos(theta) ** 28 + 8.95658295957173e85 * cos(theta) ** 26 - 1.87678237386255e85 * cos(theta) ** 24 + 3.10546723732652e84 * cos(theta) ** 22 - 4.02786598440441e83 * cos(theta) ** 20 + 4.04917744463936e82 * cos(theta) ** 18 - 3.10538420566327e81 * cos(theta) ** 16 + 1.77789172079958e80 * cos(theta) ** 14 - 7.37748046478622e78 * cos(theta) ** 12 + 2.12998123655245e77 * cos(theta) ** 10 - 4.03575392188886e75 * cos(theta) ** 8 + 4.59354104930439e73 * cos(theta) ** 6 - 2.71165351198606e71 * cos(theta) ** 4 + 6.21463753701924e68 * cos(theta) ** 2 - 2.30941565849842e65 ) * sin(35 * phi) ) # @torch.jit.script def Yl81_m_minus_34(theta, phi): return ( 1.51449468182479e-64 * (1.0 - cos(theta) ** 2) ** 17 * ( 3.39224483874328e84 * cos(theta) ** 47 - 2.27765010601334e85 * cos(theta) ** 45 + 7.09079749985286e85 * cos(theta) ** 43 - 1.35944589009918e86 * cos(theta) ** 41 + 1.79797682238924e86 * cos(theta) ** 39 - 1.74156970639271e86 * cos(theta) ** 37 + 1.28022673781186e86 * cos(theta) ** 35 - 7.3033068935576e85 * cos(theta) ** 33 + 3.2790357481279e85 * cos(theta) ** 31 - 1.1683920481835e85 * cos(theta) ** 29 + 3.31725294798953e84 * cos(theta) ** 27 - 7.5071294954502e83 * cos(theta) ** 25 + 1.3502031466637e83 * cos(theta) ** 23 - 1.91803142114496e82 * cos(theta) ** 21 + 2.1311460234944e81 * cos(theta) ** 19 - 1.82669659156663e80 * cos(theta) ** 17 + 1.18526114719972e79 * cos(theta) ** 15 - 5.67498497291248e77 * cos(theta) ** 13 + 1.93634657868405e76 * cos(theta) ** 11 - 4.48417102432095e74 * cos(theta) ** 9 + 6.56220149900627e72 * cos(theta) ** 7 - 5.42330702397212e70 * cos(theta) ** 5 + 2.07154584567308e68 * cos(theta) ** 3 - 2.30941565849842e65 * cos(theta) ) * sin(34 * phi) ) # @torch.jit.script def Yl81_m_minus_33(theta, phi): return ( 1.12521960789178e-62 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 7.06717674738183e82 * cos(theta) ** 48 - 4.95141327394205e83 * cos(theta) ** 46 + 1.6115448863302e84 * cos(theta) ** 44 - 3.23677592880757e84 * cos(theta) ** 42 + 4.49494205597309e84 * cos(theta) ** 40 - 4.58307817471766e84 * cos(theta) ** 38 + 3.55618538281073e84 * cos(theta) ** 36 - 2.14803143928165e84 * cos(theta) ** 34 + 1.02469867128997e84 * cos(theta) ** 32 - 3.89464016061168e83 * cos(theta) ** 30 + 1.18473319571055e83 * cos(theta) ** 28 - 2.88735749825008e82 * cos(theta) ** 26 + 5.6258464444321e81 * cos(theta) ** 24 - 8.718324641568e80 * cos(theta) ** 22 + 1.0655730117472e80 * cos(theta) ** 20 - 1.01483143975924e79 * cos(theta) ** 18 + 7.40788216999825e77 * cos(theta) ** 16 - 4.05356069493748e76 * cos(theta) ** 14 + 1.61362214890337e75 * cos(theta) ** 12 - 4.48417102432095e73 * cos(theta) ** 10 + 8.20275187375784e71 * cos(theta) ** 8 - 9.03884503995354e69 * cos(theta) ** 6 + 5.1788646141827e67 * cos(theta) ** 4 - 1.15470782924921e65 * cos(theta) ** 2 + 4.18372401901887e61 ) * sin(33 * phi) ) # @torch.jit.script def Yl81_m_minus_32(theta, phi): return ( 8.40984046292634e-61 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.44228096885343e81 * cos(theta) ** 49 - 1.05349218594512e82 * cos(theta) ** 47 + 3.58121085851155e82 * cos(theta) ** 45 - 7.52738588094784e82 * cos(theta) ** 43 + 1.09632733072514e83 * cos(theta) ** 41 - 1.17514824992761e83 * cos(theta) ** 39 + 9.61131184543439e82 * cos(theta) ** 37 - 6.13723268366185e82 * cos(theta) ** 35 + 3.10514748875748e82 * cos(theta) ** 33 - 1.25633553568119e82 * cos(theta) ** 31 + 4.08528688176051e81 * cos(theta) ** 29 - 1.06939166601855e81 * cos(theta) ** 27 + 2.25033857777284e80 * cos(theta) ** 25 - 3.79057593111652e79 * cos(theta) ** 23 + 5.07415719879619e78 * cos(theta) ** 21 - 5.34121810399599e77 * cos(theta) ** 19 + 4.35757774705779e76 * cos(theta) ** 17 - 2.70237379662499e75 * cos(theta) ** 15 + 1.24124780684875e74 * cos(theta) ** 13 - 4.07651911301905e72 * cos(theta) ** 11 + 9.11416874861982e70 * cos(theta) ** 9 - 1.29126357713622e69 * cos(theta) ** 7 + 1.03577292283654e67 * cos(theta) ** 5 - 3.84902609749736e64 * cos(theta) ** 3 + 4.18372401901887e61 * cos(theta) ) * sin(32 * phi) ) # @torch.jit.script def Yl81_m_minus_31(theta, phi): return ( 6.32138120870022e-59 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 2.88456193770687e79 * cos(theta) ** 50 - 2.19477538738566e80 * cos(theta) ** 48 + 7.78524099676423e80 * cos(theta) ** 46 - 1.71076951839724e81 * cos(theta) ** 44 + 2.6103031683932e81 * cos(theta) ** 42 - 2.93787062481901e81 * cos(theta) ** 40 + 2.52929259090379e81 * cos(theta) ** 38 - 1.70478685657274e81 * cos(theta) ** 36 + 9.13278673163965e80 * cos(theta) ** 34 - 3.92604854900371e80 * cos(theta) ** 32 + 1.36176229392017e80 * cos(theta) ** 30 - 3.81925595006624e79 * cos(theta) ** 28 + 8.65514837604939e78 * cos(theta) ** 26 - 1.57940663796522e78 * cos(theta) ** 24 + 2.3064350903619e77 * cos(theta) ** 22 - 2.67060905199799e76 * cos(theta) ** 20 + 2.42087652614322e75 * cos(theta) ** 18 - 1.68898362289062e74 * cos(theta) ** 16 + 8.86605576320534e72 * cos(theta) ** 14 - 3.39709926084921e71 * cos(theta) ** 12 + 9.11416874861982e69 * cos(theta) ** 10 - 1.61407947142028e68 * cos(theta) ** 8 + 1.72628820472757e66 * cos(theta) ** 6 - 9.62256524374341e63 * cos(theta) ** 4 + 2.09186200950944e61 * cos(theta) ** 2 - 7.40482127259977e57 ) * sin(31 * phi) ) # @torch.jit.script def Yl81_m_minus_30(theta, phi): return ( 4.77755923587731e-57 * (1.0 - cos(theta) ** 2) ** 15 * ( 5.65600379942523e77 * cos(theta) ** 51 - 4.47913344364421e78 * cos(theta) ** 49 + 1.65643425463069e79 * cos(theta) ** 47 - 3.80171004088275e79 * cos(theta) ** 45 + 6.07047248463535e79 * cos(theta) ** 43 - 7.16553810931467e79 * cos(theta) ** 41 + 6.48536561770202e79 * cos(theta) ** 39 - 4.60753204479118e79 * cos(theta) ** 37 + 2.60936763761133e79 * cos(theta) ** 35 - 1.18971168151628e79 * cos(theta) ** 33 + 4.39278159329087e78 * cos(theta) ** 31 - 1.31698481036767e78 * cos(theta) ** 29 + 3.20561050964792e77 * cos(theta) ** 27 - 6.31762655186087e76 * cos(theta) ** 25 + 1.00279786537474e76 * cos(theta) ** 23 - 1.27171859618952e75 * cos(theta) ** 21 + 1.27414554007538e74 * cos(theta) ** 19 - 9.93519778170952e72 * cos(theta) ** 17 + 5.9107038421369e71 * cos(theta) ** 15 - 2.61315327757631e70 * cos(theta) ** 13 + 8.28560795329075e68 * cos(theta) ** 11 - 1.79342163491142e67 * cos(theta) ** 9 + 2.46612600675367e65 * cos(theta) ** 7 - 1.92451304874868e63 * cos(theta) ** 5 + 6.97287336503145e60 * cos(theta) ** 3 - 7.40482127259977e57 * cos(theta) ) * sin(30 * phi) ) # @torch.jit.script def Yl81_m_minus_29(theta, phi): return ( 3.6296875490925e-55 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 1.08769303835101e76 * cos(theta) ** 52 - 8.95826688728841e76 * cos(theta) ** 50 + 3.45090469714727e77 * cos(theta) ** 48 - 8.26458704539727e77 * cos(theta) ** 46 + 1.37965283741713e78 * cos(theta) ** 44 - 1.70608050221778e78 * cos(theta) ** 42 + 1.6213414044255e78 * cos(theta) ** 40 - 1.21250843283978e78 * cos(theta) ** 38 + 7.24824343780925e77 * cos(theta) ** 36 - 3.49915200445964e77 * cos(theta) ** 34 + 1.3727442479034e77 * cos(theta) ** 32 - 4.38994936789223e76 * cos(theta) ** 30 + 1.14486089630283e76 * cos(theta) ** 28 - 2.42985636610033e75 * cos(theta) ** 26 + 4.17832443906142e74 * cos(theta) ** 24 - 5.78053907358873e73 * cos(theta) ** 22 + 6.37072770037689e72 * cos(theta) ** 20 - 5.51955432317195e71 * cos(theta) ** 18 + 3.69418990133556e70 * cos(theta) ** 16 - 1.86653805541165e69 * cos(theta) ** 14 + 6.90467329440895e67 * cos(theta) ** 12 - 1.79342163491142e66 * cos(theta) ** 10 + 3.08265750844208e64 * cos(theta) ** 8 - 3.20752174791447e62 * cos(theta) ** 6 + 1.74321834125786e60 * cos(theta) ** 4 - 3.70241063629989e57 * cos(theta) ** 2 + 1.28288656836448e54 ) * sin(29 * phi) ) # @torch.jit.script def Yl81_m_minus_28(theta, phi): return ( 2.77142748118251e-53 * (1.0 - cos(theta) ** 2) ** 14 * ( 2.05225101575662e74 * cos(theta) ** 53 - 1.75652291907616e75 * cos(theta) ** 51 + 7.04266264723932e75 * cos(theta) ** 49 - 1.75842277561644e76 * cos(theta) ** 47 + 3.06589519426028e76 * cos(theta) ** 45 - 3.96762907492507e76 * cos(theta) ** 43 + 3.95449123030611e76 * cos(theta) ** 41 - 3.10899598164047e76 * cos(theta) ** 39 + 1.95898471292142e76 * cos(theta) ** 37 - 9.99757715559896e75 * cos(theta) ** 35 + 4.15983105425271e75 * cos(theta) ** 33 - 1.41611269932007e75 * cos(theta) ** 31 + 3.94779619414769e74 * cos(theta) ** 29 - 8.99946802259383e73 * cos(theta) ** 27 + 1.67132977562457e73 * cos(theta) ** 25 - 2.51327785808206e72 * cos(theta) ** 23 + 3.03367985732233e71 * cos(theta) ** 21 - 2.90502859114313e70 * cos(theta) ** 19 + 2.17305288313856e69 * cos(theta) ** 17 - 1.24435870360777e68 * cos(theta) ** 15 + 5.31128714954535e66 * cos(theta) ** 13 - 1.63038330446492e65 * cos(theta) ** 11 + 3.42517500938009e63 * cos(theta) ** 9 - 4.5821739255921e61 * cos(theta) ** 7 + 3.48643668251573e59 * cos(theta) ** 5 - 1.23413687876663e57 * cos(theta) ** 3 + 1.28288656836448e54 * cos(theta) ) * sin(28 * phi) ) # @torch.jit.script def Yl81_m_minus_27(theta, phi): return ( 2.12624667732623e-51 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 3.80046484399373e72 * cos(theta) ** 54 - 3.37792869053108e73 * cos(theta) ** 52 + 1.40853252944786e74 * cos(theta) ** 50 - 3.66338078253425e74 * cos(theta) ** 48 + 6.66498955273974e74 * cos(theta) ** 46 - 9.01733880664788e74 * cos(theta) ** 44 + 9.41545531025264e74 * cos(theta) ** 42 - 7.77248995410117e74 * cos(theta) ** 40 + 5.15522292874057e74 * cos(theta) ** 38 - 2.77710476544416e74 * cos(theta) ** 36 + 1.22347972183903e74 * cos(theta) ** 34 - 4.42535218537523e73 * cos(theta) ** 32 + 1.3159320647159e73 * cos(theta) ** 30 - 3.21409572235494e72 * cos(theta) ** 28 + 6.42819144470988e71 * cos(theta) ** 26 - 1.04719910753419e71 * cos(theta) ** 24 + 1.37894538969197e70 * cos(theta) ** 22 - 1.45251429557157e69 * cos(theta) ** 20 + 1.20725160174365e68 * cos(theta) ** 18 - 7.77724189754855e66 * cos(theta) ** 16 + 3.79377653538954e65 * cos(theta) ** 14 - 1.35865275372077e64 * cos(theta) ** 12 + 3.42517500938009e62 * cos(theta) ** 10 - 5.72771740699012e60 * cos(theta) ** 8 + 5.81072780419288e58 * cos(theta) ** 6 - 3.08534219691657e56 * cos(theta) ** 4 + 6.4144328418224e53 * cos(theta) ** 2 - 2.17955584159782e50 ) * sin(27 * phi) ) # @torch.jit.script def Yl81_m_minus_26(theta, phi): return ( 1.63872798539216e-49 * (1.0 - cos(theta) ** 2) ** 13 * ( 6.90993607998861e70 * cos(theta) ** 55 - 6.3734503594926e71 * cos(theta) ** 53 + 2.76182848911346e72 * cos(theta) ** 51 - 7.47628731129439e72 * cos(theta) ** 49 + 1.41808288356165e73 * cos(theta) ** 47 - 2.00385306814397e73 * cos(theta) ** 45 + 2.1896407698262e73 * cos(theta) ** 43 - 1.89572925709785e73 * cos(theta) ** 41 + 1.3218520330104e73 * cos(theta) ** 39 - 7.50568855525448e72 * cos(theta) ** 37 + 3.49565634811153e72 * cos(theta) ** 35 - 1.34101581375007e72 * cos(theta) ** 33 + 4.24494214424482e71 * cos(theta) ** 31 - 1.10830886977756e71 * cos(theta) ** 29 + 2.38081164618884e70 * cos(theta) ** 27 - 4.18879643013676e69 * cos(theta) ** 25 + 5.99541473779117e68 * cos(theta) ** 23 - 6.91673474081699e67 * cos(theta) ** 21 + 6.35395579865077e66 * cos(theta) ** 19 - 4.57484817502856e65 * cos(theta) ** 17 + 2.52918435692636e64 * cos(theta) ** 15 - 1.04511750286213e63 * cos(theta) ** 13 + 3.11379546307281e61 * cos(theta) ** 11 - 6.36413045221125e59 * cos(theta) ** 9 + 8.30103972027554e57 * cos(theta) ** 7 - 6.17068439383314e55 * cos(theta) ** 5 + 2.13814428060747e53 * cos(theta) ** 3 - 2.17955584159782e50 * cos(theta) ) * sin(26 * phi) ) # @torch.jit.script def Yl81_m_minus_25(theta, phi): return ( 1.26850672151801e-47 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 1.23391715714082e69 * cos(theta) ** 56 - 1.18026858509122e70 * cos(theta) ** 54 + 5.3112086329105e70 * cos(theta) ** 52 - 1.49525746225888e71 * cos(theta) ** 50 + 2.95433934075343e71 * cos(theta) ** 48 - 4.35620232205212e71 * cos(theta) ** 46 + 4.97645629505954e71 * cos(theta) ** 44 - 4.51364108832821e71 * cos(theta) ** 42 + 3.30463008252601e71 * cos(theta) ** 40 - 1.97518119875118e71 * cos(theta) ** 38 + 9.71015652253201e70 * cos(theta) ** 36 - 3.94416415808844e70 * cos(theta) ** 34 + 1.32654442007651e70 * cos(theta) ** 32 - 3.69436289925855e69 * cos(theta) ** 30 + 8.50289873638873e68 * cos(theta) ** 28 - 1.6110755500526e68 * cos(theta) ** 26 + 2.49808947407965e67 * cos(theta) ** 24 - 3.14397033673499e66 * cos(theta) ** 22 + 3.17697789932539e65 * cos(theta) ** 20 - 2.54158231946031e64 * cos(theta) ** 18 + 1.58074022307897e63 * cos(theta) ** 16 - 7.46512502044379e61 * cos(theta) ** 14 + 2.59482955256068e60 * cos(theta) ** 12 - 6.36413045221125e58 * cos(theta) ** 10 + 1.03762996503444e57 * cos(theta) ** 8 - 1.02844739897219e55 * cos(theta) ** 6 + 5.34536070151866e52 * cos(theta) ** 4 - 1.08977792079891e50 * cos(theta) ** 2 + 3.6374429933208e46 ) * sin(25 * phi) ) # @torch.jit.script def Yl81_m_minus_24(theta, phi): return ( 9.86014117846434e-46 * (1.0 - cos(theta) ** 2) ** 12 * ( 2.16476694235232e67 * cos(theta) ** 57 - 2.14594288198404e68 * cos(theta) ** 55 + 1.00211483639821e69 * cos(theta) ** 53 - 2.93187737697819e69 * cos(theta) ** 51 + 6.02926396072128e69 * cos(theta) ** 49 - 9.26851557883429e69 * cos(theta) ** 47 + 1.1058791766799e70 * cos(theta) ** 45 - 1.04968397402982e70 * cos(theta) ** 43 + 8.06007337201466e69 * cos(theta) ** 41 - 5.06456717628507e69 * cos(theta) ** 39 + 2.62436662771136e69 * cos(theta) ** 37 - 1.12690404516813e69 * cos(theta) ** 35 + 4.01983157598942e68 * cos(theta) ** 33 - 1.19172996750276e68 * cos(theta) ** 31 + 2.93203404703059e67 * cos(theta) ** 29 - 5.9669464816763e66 * cos(theta) ** 27 + 9.99235789631861e65 * cos(theta) ** 25 - 1.36694362466739e65 * cos(theta) ** 23 + 1.51284661872637e64 * cos(theta) ** 21 - 1.33767490497911e63 * cos(theta) ** 19 + 9.29847190046455e61 * cos(theta) ** 17 - 4.9767500136292e60 * cos(theta) ** 15 + 1.99602273273898e59 * cos(theta) ** 13 - 5.78557313837386e57 * cos(theta) ** 11 + 1.1529221833716e56 * cos(theta) ** 9 - 1.46921056996027e54 * cos(theta) ** 7 + 1.06907214030373e52 * cos(theta) ** 5 - 3.63259306932971e49 * cos(theta) ** 3 + 3.6374429933208e46 * cos(theta) ) * sin(24 * phi) ) # @torch.jit.script def Yl81_m_minus_23(theta, phi): return ( 7.69470154665417e-44 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 3.73235679715917e65 * cos(theta) ** 58 - 3.83204086068578e66 * cos(theta) ** 56 + 1.85576821555223e67 * cos(theta) ** 54 - 5.63822572495806e67 * cos(theta) ** 52 + 1.20585279214426e68 * cos(theta) ** 50 - 1.93094074559048e68 * cos(theta) ** 48 + 2.40408516669543e68 * cos(theta) ** 46 - 2.38564539552231e68 * cos(theta) ** 44 + 1.91906508857492e68 * cos(theta) ** 42 - 1.26614179407127e68 * cos(theta) ** 40 + 6.90622796766146e67 * cos(theta) ** 38 - 3.1302890143559e67 * cos(theta) ** 36 + 1.18230340470277e67 * cos(theta) ** 34 - 3.72415614844612e66 * cos(theta) ** 32 + 9.77344682343532e65 * cos(theta) ** 30 - 2.13105231488439e65 * cos(theta) ** 28 + 3.84321457550716e64 * cos(theta) ** 26 - 5.69559843611412e63 * cos(theta) ** 24 + 6.87657553966534e62 * cos(theta) ** 22 - 6.68837452489555e61 * cos(theta) ** 20 + 5.1658177224803e60 * cos(theta) ** 18 - 3.11046875851825e59 * cos(theta) ** 16 + 1.42573052338499e58 * cos(theta) ** 14 - 4.82131094864488e56 * cos(theta) ** 12 + 1.1529221833716e55 * cos(theta) ** 10 - 1.83651321245034e53 * cos(theta) ** 8 + 1.78178690050622e51 * cos(theta) ** 6 - 9.08148267332427e48 * cos(theta) ** 4 + 1.8187214966604e46 * cos(theta) ** 2 - 5.97281279691429e42 ) * sin(23 * phi) ) # @torch.jit.script def Yl81_m_minus_22(theta, phi): return ( 6.02746163894733e-42 * (1.0 - cos(theta) ** 2) ** 11 * ( 6.32602846976131e63 * cos(theta) ** 59 - 6.72287870295751e64 * cos(theta) ** 57 + 3.37412402827679e65 * cos(theta) ** 55 - 1.06381617452039e66 * cos(theta) ** 53 + 2.36441723949854e66 * cos(theta) ** 51 - 3.94069539916424e66 * cos(theta) ** 49 + 5.11507482275623e66 * cos(theta) ** 47 - 5.3014342122718e66 * cos(theta) ** 45 + 4.4629420664533e66 * cos(theta) ** 43 - 3.08815071724699e66 * cos(theta) ** 41 + 1.77082768401576e66 * cos(theta) ** 39 - 8.46024057934028e65 * cos(theta) ** 37 + 3.3780097277222e65 * cos(theta) ** 35 - 1.12853216619579e65 * cos(theta) ** 33 + 3.15272478175333e64 * cos(theta) ** 31 - 7.34845625822204e63 * cos(theta) ** 29 + 1.42341280574339e63 * cos(theta) ** 27 - 2.27823937444565e62 * cos(theta) ** 25 + 2.98981545202841e61 * cos(theta) ** 23 - 3.18494024995026e60 * cos(theta) ** 21 + 2.71885143288437e59 * cos(theta) ** 19 - 1.82968750501073e58 * cos(theta) ** 17 + 9.50487015589992e56 * cos(theta) ** 15 - 3.70870072972683e55 * cos(theta) ** 13 + 1.04811107579237e54 * cos(theta) ** 11 - 2.04057023605593e52 * cos(theta) ** 9 + 2.54540985786603e50 * cos(theta) ** 7 - 1.81629653466485e48 * cos(theta) ** 5 + 6.062404988868e45 * cos(theta) ** 3 - 5.97281279691429e42 * cos(theta) ) * sin(22 * phi) ) # @torch.jit.script def Yl81_m_minus_21(theta, phi): return ( 4.73836697333064e-40 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.05433807829355e62 * cos(theta) ** 60 - 1.1591170177513e63 * cos(theta) ** 58 + 6.0252214790657e63 * cos(theta) ** 56 - 1.97002995281554e64 * cos(theta) ** 54 + 4.54695622980489e64 * cos(theta) ** 52 - 7.88139079832848e64 * cos(theta) ** 50 + 1.06564058807421e65 * cos(theta) ** 48 - 1.15248569831996e65 * cos(theta) ** 46 + 1.01430501510302e65 * cos(theta) ** 44 - 7.35273980296904e64 * cos(theta) ** 42 + 4.4270692100394e64 * cos(theta) ** 40 - 2.22637909982639e64 * cos(theta) ** 38 + 9.38336035478389e63 * cos(theta) ** 36 - 3.31921225351704e63 * cos(theta) ** 34 + 9.85226494297915e62 * cos(theta) ** 32 - 2.44948541940735e62 * cos(theta) ** 30 + 5.08361716336926e61 * cos(theta) ** 28 - 8.76245913248326e60 * cos(theta) ** 26 + 1.24575643834517e60 * cos(theta) ** 24 - 1.44770011361376e59 * cos(theta) ** 22 + 1.35942571644219e58 * cos(theta) ** 20 - 1.0164930583393e57 * cos(theta) ** 18 + 5.94054384743745e55 * cos(theta) ** 16 - 2.64907194980488e54 * cos(theta) ** 14 + 8.73425896493638e52 * cos(theta) ** 12 - 2.04057023605593e51 * cos(theta) ** 10 + 3.18176232233254e49 * cos(theta) ** 8 - 3.02716089110809e47 * cos(theta) ** 6 + 1.515601247217e45 * cos(theta) ** 4 - 2.98640639845714e42 * cos(theta) ** 2 + 9.6647456260749e38 ) * sin(21 * phi) ) # @torch.jit.script def Yl81_m_minus_20(theta, phi): return ( 3.73760752933104e-38 * (1.0 - cos(theta) ** 2) ** 10 * ( 1.72842307916976e60 * cos(theta) ** 61 - 1.9646051148327e61 * cos(theta) ** 59 + 1.05705639983609e62 * cos(theta) ** 57 - 3.58187264148279e62 * cos(theta) ** 55 + 8.57916269774508e62 * cos(theta) ** 53 - 1.54537074477029e63 * cos(theta) ** 51 + 2.17477671035554e63 * cos(theta) ** 49 - 2.45209723046799e63 * cos(theta) ** 47 + 2.25401114467338e63 * cos(theta) ** 45 - 1.70993948906257e63 * cos(theta) ** 43 + 1.07977297805839e63 * cos(theta) ** 41 - 5.7086643585292e62 * cos(theta) ** 39 + 2.53604333913078e62 * cos(theta) ** 37 - 9.48346358147726e61 * cos(theta) ** 35 + 2.9855348312058e61 * cos(theta) ** 33 - 7.90156586905596e60 * cos(theta) ** 31 + 1.75297143564457e60 * cos(theta) ** 29 - 3.24535523425306e59 * cos(theta) ** 27 + 4.98302575338068e58 * cos(theta) ** 25 - 6.29434832005981e57 * cos(theta) ** 23 + 6.47345579258184e56 * cos(theta) ** 21 - 5.34996346494367e55 * cos(theta) ** 19 + 3.49443755731615e54 * cos(theta) ** 17 - 1.76604796653659e53 * cos(theta) ** 15 + 6.71866074225876e51 * cos(theta) ** 13 - 1.85506385095994e50 * cos(theta) ** 11 + 3.53529146925837e48 * cos(theta) ** 9 - 4.32451555872584e46 * cos(theta) ** 7 + 3.031202494434e44 * cos(theta) ** 5 - 9.95468799485715e41 * cos(theta) ** 3 + 9.6647456260749e38 * cos(theta) ) * sin(20 * phi) ) # @torch.jit.script def Yl81_m_minus_19(theta, phi): return ( 2.95767348250648e-36 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 2.78777915995122e58 * cos(theta) ** 62 - 3.27434185805451e59 * cos(theta) ** 60 + 1.82251103420015e60 * cos(theta) ** 58 - 6.39620114550499e60 * cos(theta) ** 56 + 1.58873383291575e61 * cos(theta) ** 54 - 2.97186681686594e61 * cos(theta) ** 52 + 4.34955342071108e61 * cos(theta) ** 50 - 5.10853589680831e61 * cos(theta) ** 48 + 4.90002422755083e61 * cos(theta) ** 46 - 3.88622611150583e61 * cos(theta) ** 44 + 2.57088804299617e61 * cos(theta) ** 42 - 1.4271660896323e61 * cos(theta) ** 40 + 6.67379826087047e60 * cos(theta) ** 38 - 2.63429543929924e60 * cos(theta) ** 36 + 8.78098479766413e59 * cos(theta) ** 34 - 2.46923933407999e59 * cos(theta) ** 32 + 5.84323811881524e58 * cos(theta) ** 30 - 1.15905544080466e58 * cos(theta) ** 28 + 1.91654836668488e57 * cos(theta) ** 26 - 2.62264513335825e56 * cos(theta) ** 24 + 2.94247990571902e55 * cos(theta) ** 22 - 2.67498173247183e54 * cos(theta) ** 20 + 1.94135419850897e53 * cos(theta) ** 18 - 1.10377997908537e52 * cos(theta) ** 16 + 4.79904338732768e50 * cos(theta) ** 14 - 1.54588654246662e49 * cos(theta) ** 12 + 3.53529146925838e47 * cos(theta) ** 10 - 5.4056444484073e45 * cos(theta) ** 8 + 5.05200415739e43 * cos(theta) ** 6 - 2.48867199871429e41 * cos(theta) ** 4 + 4.83237281303745e38 * cos(theta) ** 2 - 1.54339597989059e35 ) * sin(19 * phi) ) # @torch.jit.script def Yl81_m_minus_18(theta, phi): return ( 2.34758054821275e-34 * (1.0 - cos(theta) ** 2) ** 9 * ( 4.42504628563686e56 * cos(theta) ** 63 - 5.36777353779427e57 * cos(theta) ** 61 + 3.08900175288161e58 * cos(theta) ** 59 - 1.12214055184298e59 * cos(theta) ** 57 + 2.88860696893774e59 * cos(theta) ** 55 - 5.60729588087913e59 * cos(theta) ** 53 + 8.52853611904133e59 * cos(theta) ** 51 - 1.04255834628741e60 * cos(theta) ** 49 + 1.04255834628741e60 * cos(theta) ** 47 - 8.63605802556852e59 * cos(theta) ** 45 + 5.97880940231667e59 * cos(theta) ** 43 - 3.4808929015422e59 * cos(theta) ** 41 + 1.71123032330012e59 * cos(theta) ** 39 - 7.11971740351145e58 * cos(theta) ** 37 + 2.50885279933261e58 * cos(theta) ** 35 - 7.48254343660602e57 * cos(theta) ** 33 + 1.88491552219846e57 * cos(theta) ** 31 - 3.99674289932643e56 * cos(theta) ** 29 + 7.09832728401807e55 * cos(theta) ** 27 - 1.0490580533433e55 * cos(theta) ** 25 + 1.27933908944305e54 * cos(theta) ** 23 - 1.27380082498659e53 * cos(theta) ** 21 + 1.0217653676363e52 * cos(theta) ** 19 - 6.49282340638451e50 * cos(theta) ** 17 + 3.19936225821846e49 * cos(theta) ** 15 - 1.18914349420509e48 * cos(theta) ** 13 + 3.21390133568943e46 * cos(theta) ** 11 - 6.00627160934145e44 * cos(theta) ** 9 + 7.21714879627143e42 * cos(theta) ** 7 - 4.97734399742857e40 * cos(theta) ** 5 + 1.61079093767915e38 * cos(theta) ** 3 - 1.54339597989059e35 * cos(theta) ) * sin(18 * phi) ) # @torch.jit.script def Yl81_m_minus_17(theta, phi): return ( 1.86865052245405e-32 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 6.91413482130759e54 * cos(theta) ** 64 - 8.65769925450689e55 * cos(theta) ** 62 + 5.14833625480268e56 * cos(theta) ** 60 - 1.93472508938445e57 * cos(theta) ** 58 + 5.15822673024596e57 * cos(theta) ** 56 - 1.03838812608873e58 * cos(theta) ** 54 + 1.64010309981564e58 * cos(theta) ** 52 - 2.08511669257482e58 * cos(theta) ** 50 + 2.17199655476544e58 * cos(theta) ** 48 - 1.87740391860185e58 * cos(theta) ** 46 + 1.35882031870833e58 * cos(theta) ** 44 - 8.28784024176714e57 * cos(theta) ** 42 + 4.2780758082503e57 * cos(theta) ** 40 - 1.87360984302933e57 * cos(theta) ** 38 + 6.96903555370169e56 * cos(theta) ** 36 - 2.20074806959001e56 * cos(theta) ** 34 + 5.8903610068702e55 * cos(theta) ** 32 - 1.33224763310881e55 * cos(theta) ** 30 + 2.53511688714931e54 * cos(theta) ** 28 - 4.03483866670501e53 * cos(theta) ** 26 + 5.33057953934604e52 * cos(theta) ** 24 - 5.79000374993903e51 * cos(theta) ** 22 + 5.1088268381815e50 * cos(theta) ** 20 - 3.60712411465806e49 * cos(theta) ** 18 + 1.99960141138653e48 * cos(theta) ** 16 - 8.49388210146493e46 * cos(theta) ** 14 + 2.67825111307453e45 * cos(theta) ** 12 - 6.00627160934145e43 * cos(theta) ** 10 + 9.02143599533929e41 * cos(theta) ** 8 - 8.29557332904762e39 * cos(theta) ** 6 + 4.02697734419787e37 * cos(theta) ** 4 - 7.71697989945297e34 * cos(theta) ** 2 + 2.43591537230207e31 ) * sin(17 * phi) ) # @torch.jit.script def Yl81_m_minus_16(theta, phi): return ( 1.49141258266054e-30 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.06371304943194e53 * cos(theta) ** 65 - 1.37423797690586e54 * cos(theta) ** 63 + 8.43989549967653e54 * cos(theta) ** 61 - 3.2791950667533e55 * cos(theta) ** 59 + 9.04952057937887e55 * cos(theta) ** 57 - 1.88797841107042e56 * cos(theta) ** 55 + 3.09453415059555e56 * cos(theta) ** 53 - 4.08846410308789e56 * cos(theta) ** 51 + 4.43264603013355e56 * cos(theta) ** 49 - 3.99447642255713e56 * cos(theta) ** 47 + 3.01960070824074e56 * cos(theta) ** 45 - 1.92740470738771e56 * cos(theta) ** 43 + 1.04343312396349e56 * cos(theta) ** 41 - 4.80412780263931e55 * cos(theta) ** 39 + 1.88352312262208e55 * cos(theta) ** 37 - 6.28785162740002e54 * cos(theta) ** 35 + 1.78495788086976e54 * cos(theta) ** 33 - 4.29757301002842e53 * cos(theta) ** 31 + 8.74178236948038e52 * cos(theta) ** 29 - 1.49438469137222e52 * cos(theta) ** 27 + 2.13223181573842e51 * cos(theta) ** 25 - 2.5173929347561e50 * cos(theta) ** 23 + 2.43277468484833e49 * cos(theta) ** 21 - 1.89848637613582e48 * cos(theta) ** 19 + 1.17623612434502e47 * cos(theta) ** 17 - 5.66258806764329e45 * cos(theta) ** 15 + 2.06019316390348e44 * cos(theta) ** 13 - 5.46024691758313e42 * cos(theta) ** 11 + 1.00238177725992e41 * cos(theta) ** 9 - 1.18508190414966e39 * cos(theta) ** 7 + 8.05395468839575e36 * cos(theta) ** 5 - 2.57232663315099e34 * cos(theta) ** 3 + 2.43591537230207e31 * cos(theta) ) * sin(16 * phi) ) # @torch.jit.script def Yl81_m_minus_15(theta, phi): return ( 1.19331647813896e-28 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.61168643853324e51 * cos(theta) ** 66 - 2.1472468389154e52 * cos(theta) ** 64 + 1.36127346768976e53 * cos(theta) ** 62 - 5.4653251112555e53 * cos(theta) ** 60 + 1.56026216885843e54 * cos(theta) ** 58 - 3.3713900197686e54 * cos(theta) ** 56 + 5.73061879739916e54 * cos(theta) ** 54 - 7.86243096747671e54 * cos(theta) ** 52 + 8.8652920602671e54 * cos(theta) ** 50 - 8.32182588032736e54 * cos(theta) ** 48 + 6.56434936574074e54 * cos(theta) ** 46 - 4.38046524406297e54 * cos(theta) ** 44 + 2.48436458086545e54 * cos(theta) ** 42 - 1.20103195065983e54 * cos(theta) ** 40 + 4.95663979637389e53 * cos(theta) ** 38 - 1.74662545205556e53 * cos(theta) ** 36 + 5.24987612020517e52 * cos(theta) ** 34 - 1.34299156563388e52 * cos(theta) ** 32 + 2.91392745649346e51 * cos(theta) ** 30 - 5.33708818347223e50 * cos(theta) ** 28 + 8.20089159899391e49 * cos(theta) ** 26 - 1.04891372281504e49 * cos(theta) ** 24 + 1.10580667493106e48 * cos(theta) ** 22 - 9.49243188067911e46 * cos(theta) ** 20 + 6.53464513525011e45 * cos(theta) ** 18 - 3.53911754227705e44 * cos(theta) ** 16 + 1.47156654564534e43 * cos(theta) ** 14 - 4.55020576465261e41 * cos(theta) ** 12 + 1.00238177725992e40 * cos(theta) ** 10 - 1.48135238018708e38 * cos(theta) ** 8 + 1.34232578139929e36 * cos(theta) ** 6 - 6.43081658287747e33 * cos(theta) ** 4 + 1.21795768615104e31 * cos(theta) ** 2 - 3.80492872899418e27 ) * sin(15 * phi) ) # @torch.jit.script def Yl81_m_minus_14(theta, phi): return ( 9.57036839611255e-27 * (1.0 - cos(theta) ** 2) ** 7 * ( 2.40550214706453e49 * cos(theta) ** 67 - 3.30345667525446e50 * cos(theta) ** 65 + 2.1607515360155e51 * cos(theta) ** 63 - 8.95954936271394e51 * cos(theta) ** 61 + 2.6445121506075e52 * cos(theta) ** 59 - 5.91471933292737e52 * cos(theta) ** 57 + 1.04193069043621e53 * cos(theta) ** 55 - 1.48347754103334e53 * cos(theta) ** 53 + 1.73829256083669e53 * cos(theta) ** 51 - 1.69833181231171e53 * cos(theta) ** 49 + 1.39667007781718e53 * cos(theta) ** 47 - 9.73436720902882e52 * cos(theta) ** 45 + 5.7775920485243e52 * cos(theta) ** 43 - 2.92934622112153e52 * cos(theta) ** 41 + 1.27093328112151e52 * cos(theta) ** 39 - 4.72060932987989e51 * cos(theta) ** 37 + 1.49996460577291e51 * cos(theta) ** 35 - 4.06967141101176e50 * cos(theta) ** 33 + 9.39976598868858e49 * cos(theta) ** 31 - 1.84037523568008e49 * cos(theta) ** 29 + 3.03736725888663e48 * cos(theta) ** 27 - 4.19565489126017e47 * cos(theta) ** 25 + 4.80785510839591e46 * cos(theta) ** 23 - 4.52020565746624e45 * cos(theta) ** 21 + 3.43928691328953e44 * cos(theta) ** 19 - 2.08183384839827e43 * cos(theta) ** 17 + 9.81044363763563e41 * cos(theta) ** 15 - 3.50015828050201e40 * cos(theta) ** 13 + 9.11256161145383e38 * cos(theta) ** 11 - 1.64594708909675e37 * cos(theta) ** 9 + 1.91760825914184e35 * cos(theta) ** 7 - 1.28616331657549e33 * cos(theta) ** 5 + 4.05985895383679e30 * cos(theta) ** 3 - 3.80492872899418e27 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl81_m_minus_13(theta, phi): return ( 7.69209987580128e-25 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 3.53750315744784e47 * cos(theta) ** 68 - 5.00523738674919e48 * cos(theta) ** 66 + 3.37617427502421e49 * cos(theta) ** 64 - 1.44508860688935e50 * cos(theta) ** 62 + 4.4075202510125e50 * cos(theta) ** 60 - 1.0197791953323e51 * cos(theta) ** 58 + 1.86059051863609e51 * cos(theta) ** 56 - 2.74718063154322e51 * cos(theta) ** 54 + 3.34287030930132e51 * cos(theta) ** 52 - 3.39666362462341e51 * cos(theta) ** 50 + 2.90972932878579e51 * cos(theta) ** 48 - 2.11616678457148e51 * cos(theta) ** 46 + 1.31308910193734e51 * cos(theta) ** 44 - 6.97463385981316e50 * cos(theta) ** 42 + 3.17733320280377e50 * cos(theta) ** 40 - 1.24226561312629e50 * cos(theta) ** 38 + 4.16656834936918e49 * cos(theta) ** 36 - 1.19696217970934e49 * cos(theta) ** 34 + 2.93742687146518e48 * cos(theta) ** 32 - 6.1345841189336e47 * cos(theta) ** 30 + 1.08477402103094e47 * cos(theta) ** 28 - 1.61371341971545e46 * cos(theta) ** 26 + 2.00327296183163e45 * cos(theta) ** 24 - 2.05463893521193e44 * cos(theta) ** 22 + 1.71964345664477e43 * cos(theta) ** 20 - 1.15657436022126e42 * cos(theta) ** 18 + 6.13152727352227e40 * cos(theta) ** 16 - 2.50011305750143e39 * cos(theta) ** 14 + 7.59380134287819e37 * cos(theta) ** 12 - 1.64594708909675e36 * cos(theta) ** 10 + 2.39701032392731e34 * cos(theta) ** 8 - 2.14360552762582e32 * cos(theta) ** 6 + 1.0149647384592e30 * cos(theta) ** 4 - 1.90246436449709e27 * cos(theta) ** 2 + 5.88998255262257e23 ) * sin(13 * phi) ) # @torch.jit.script def Yl81_m_minus_12(theta, phi): return ( 6.19488696941658e-23 * (1.0 - cos(theta) ** 2) ** 6 * ( 5.12681617021427e45 * cos(theta) ** 69 - 7.47050356231222e46 * cos(theta) ** 67 + 5.19411426926802e47 * cos(theta) ** 65 - 2.2937914395069e48 * cos(theta) ** 63 + 7.22544303444673e48 * cos(theta) ** 61 - 1.72843931412255e49 * cos(theta) ** 59 + 3.26419389234402e49 * cos(theta) ** 57 - 4.99487387553313e49 * cos(theta) ** 55 + 6.30730247037985e49 * cos(theta) ** 53 - 6.66012475416355e49 * cos(theta) ** 51 + 5.938223119971e49 * cos(theta) ** 49 - 4.50248252036486e49 * cos(theta) ** 47 + 2.91797578208298e49 * cos(theta) ** 45 - 1.62200787437515e49 * cos(theta) ** 43 + 7.74959317757018e48 * cos(theta) ** 41 - 3.18529644391356e48 * cos(theta) ** 39 + 1.12609955388356e48 * cos(theta) ** 37 - 3.41989194202669e47 * cos(theta) ** 35 + 8.90129354989448e46 * cos(theta) ** 33 - 1.97889810288181e46 * cos(theta) ** 31 + 3.74060007252049e45 * cos(theta) ** 29 - 5.97671636931648e44 * cos(theta) ** 27 + 8.01309184732652e43 * cos(theta) ** 25 - 8.933212761791e42 * cos(theta) ** 23 + 8.18877836497508e41 * cos(theta) ** 21 - 6.08723347484873e40 * cos(theta) ** 19 + 3.60678074913075e39 * cos(theta) ** 17 - 1.66674203833429e38 * cos(theta) ** 15 + 5.84138564836784e36 * cos(theta) ** 13 - 1.4963155355425e35 * cos(theta) ** 11 + 2.66334480436367e33 * cos(theta) ** 9 - 3.06229361089404e31 * cos(theta) ** 7 + 2.02992947691839e29 * cos(theta) ** 5 - 6.34154788165697e26 * cos(theta) ** 3 + 5.88998255262257e23 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl81_m_minus_11(theta, phi): return ( 4.99831797618605e-21 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 7.32402310030609e43 * cos(theta) ** 70 - 1.09860346504591e45 * cos(theta) ** 68 + 7.86987010495155e45 * cos(theta) ** 66 - 3.58404912422953e46 * cos(theta) ** 64 + 1.16539403781399e47 * cos(theta) ** 62 - 2.88073219020425e47 * cos(theta) ** 60 + 5.62792050404142e47 * cos(theta) ** 58 - 8.9194176348806e47 * cos(theta) ** 56 + 1.16801897599627e48 * cos(theta) ** 54 - 1.28079322195453e48 * cos(theta) ** 52 + 1.1876446239942e48 * cos(theta) ** 50 - 9.38017191742679e47 * cos(theta) ** 48 + 6.34342561322387e47 * cos(theta) ** 46 - 3.68638153267081e47 * cos(theta) ** 44 + 1.84514123275481e47 * cos(theta) ** 42 - 7.9632411097839e46 * cos(theta) ** 40 + 2.96341987864095e46 * cos(theta) ** 38 - 9.49969983896302e45 * cos(theta) ** 36 + 2.61802751467485e45 * cos(theta) ** 34 - 6.18405657150564e44 * cos(theta) ** 32 + 1.24686669084016e44 * cos(theta) ** 30 - 2.13454156047017e43 * cos(theta) ** 28 + 3.08195840281789e42 * cos(theta) ** 26 - 3.72217198407958e41 * cos(theta) ** 24 + 3.72217198407958e40 * cos(theta) ** 22 - 3.04361673742437e39 * cos(theta) ** 20 + 2.00376708285041e38 * cos(theta) ** 18 - 1.04171377395893e37 * cos(theta) ** 16 + 4.17241832026274e35 * cos(theta) ** 14 - 1.24692961295208e34 * cos(theta) ** 12 + 2.66334480436367e32 * cos(theta) ** 10 - 3.82786701361754e30 * cos(theta) ** 8 + 3.38321579486399e28 * cos(theta) ** 6 - 1.58538697041424e26 * cos(theta) ** 4 + 2.94499127631128e23 * cos(theta) ** 2 - 9.04759224673206e19 ) * sin(11 * phi) ) # @torch.jit.script def Yl81_m_minus_10(theta, phi): return ( 4.03968004531094e-19 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.03155254933889e42 * cos(theta) ** 71 - 1.59217893484915e43 * cos(theta) ** 69 + 1.17460747835098e44 * cos(theta) ** 67 - 5.51392172958389e44 * cos(theta) ** 65 + 1.84983180605395e45 * cos(theta) ** 63 - 4.72251178722008e45 * cos(theta) ** 61 + 9.5388483119346e45 * cos(theta) ** 59 - 1.56481011138256e46 * cos(theta) ** 57 + 2.12367086544776e46 * cos(theta) ** 55 - 2.41659098481987e46 * cos(theta) ** 53 + 2.32871494900823e46 * cos(theta) ** 51 - 1.91432079947485e46 * cos(theta) ** 49 + 1.34966502409018e46 * cos(theta) ** 47 - 8.19195896149068e45 * cos(theta) ** 45 + 4.29102612268559e45 * cos(theta) ** 43 - 1.94225392921558e45 * cos(theta) ** 41 + 7.59851250933578e44 * cos(theta) ** 39 - 2.56748644296298e44 * cos(theta) ** 37 + 7.48007861335671e43 * cos(theta) ** 35 - 1.87395653681989e43 * cos(theta) ** 33 + 4.02215061561343e42 * cos(theta) ** 31 - 7.36048813955231e41 * cos(theta) ** 29 + 1.14146607511774e41 * cos(theta) ** 27 - 1.48886879363183e40 * cos(theta) ** 25 + 1.61833564525199e39 * cos(theta) ** 23 - 1.44934130353541e38 * cos(theta) ** 21 + 1.0546142541318e37 * cos(theta) ** 19 - 6.12772808211136e35 * cos(theta) ** 17 + 2.78161221350849e34 * cos(theta) ** 15 - 9.59176625347757e32 * cos(theta) ** 13 + 2.42122254942152e31 * cos(theta) ** 11 - 4.25318557068616e29 * cos(theta) ** 9 + 4.83316542123427e27 * cos(theta) ** 7 - 3.17077394082848e25 * cos(theta) ** 5 + 9.81663758770428e22 * cos(theta) ** 3 - 9.04759224673206e19 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl81_m_minus_9(theta, phi): return ( 3.26989579984291e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1.43271187408179e40 * cos(theta) ** 72 - 2.27454133549879e41 * cos(theta) ** 70 + 1.72736393875144e42 * cos(theta) ** 68 - 8.35442686300589e42 * cos(theta) ** 66 + 2.8903621969593e43 * cos(theta) ** 64 - 7.61695449551626e43 * cos(theta) ** 62 + 1.5898080519891e44 * cos(theta) ** 60 - 2.69794846790097e44 * cos(theta) ** 58 + 3.79226940258529e44 * cos(theta) ** 56 - 4.47516849040716e44 * cos(theta) ** 54 + 4.47829797886199e44 * cos(theta) ** 52 - 3.82864159894971e44 * cos(theta) ** 50 + 2.81180213352122e44 * cos(theta) ** 48 - 1.78086064380232e44 * cos(theta) ** 46 + 9.75233209701271e43 * cos(theta) ** 44 - 4.62441411717996e43 * cos(theta) ** 42 + 1.89962812733394e43 * cos(theta) ** 40 - 6.75654327095521e42 * cos(theta) ** 38 + 2.07779961482131e42 * cos(theta) ** 36 - 5.51163687299968e41 * cos(theta) ** 34 + 1.2569220673792e41 * cos(theta) ** 32 - 2.45349604651744e40 * cos(theta) ** 30 + 4.07666455399192e39 * cos(theta) ** 28 - 5.72641843704551e38 * cos(theta) ** 26 + 6.74306518854997e37 * cos(theta) ** 24 - 6.58791501607006e36 * cos(theta) ** 22 + 5.27307127065899e35 * cos(theta) ** 20 - 3.40429337895075e34 * cos(theta) ** 18 + 1.73850763344281e33 * cos(theta) ** 16 - 6.85126160962683e31 * cos(theta) ** 14 + 2.01768545785127e30 * cos(theta) ** 12 - 4.25318557068616e28 * cos(theta) ** 10 + 6.04145677654284e26 * cos(theta) ** 8 - 5.28462323471414e24 * cos(theta) ** 6 + 2.45415939692607e22 * cos(theta) ** 4 - 4.52379612336603e19 * cos(theta) ** 2 + 1.38089014754763e16 ) * sin(9 * phi) ) # @torch.jit.script def Yl81_m_minus_8(theta, phi): return ( 2.65043158409768e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.96261900559149e38 * cos(theta) ** 73 - 3.20357934577294e39 * cos(theta) ** 71 + 2.50342599819049e40 * cos(theta) ** 69 - 1.24692938253819e41 * cos(theta) ** 67 + 4.44671107224507e41 * cos(theta) ** 65 - 1.20904039611369e42 * cos(theta) ** 63 + 2.60624270817885e42 * cos(theta) ** 61 - 4.57279401339147e42 * cos(theta) ** 59 + 6.65310421506191e42 * cos(theta) ** 57 - 8.13666998255847e42 * cos(theta) ** 55 + 8.44961882804149e42 * cos(theta) ** 53 - 7.50714039009747e42 * cos(theta) ** 51 + 5.73837170106371e42 * cos(theta) ** 49 - 3.78906519957941e42 * cos(theta) ** 47 + 2.16718491044727e42 * cos(theta) ** 45 - 1.07544514353022e42 * cos(theta) ** 43 + 4.63323933496084e41 * cos(theta) ** 41 - 1.73244699255262e41 * cos(theta) ** 39 + 5.61567463465218e40 * cos(theta) ** 37 - 1.57475339228562e40 * cos(theta) ** 35 + 3.80885474963393e39 * cos(theta) ** 33 - 7.9145033758627e38 * cos(theta) ** 31 + 1.40574639792825e38 * cos(theta) ** 29 - 2.12089571742426e37 * cos(theta) ** 27 + 2.69722607541999e36 * cos(theta) ** 25 - 2.8643108765522e35 * cos(theta) ** 23 + 2.51098631936142e34 * cos(theta) ** 21 - 1.7917333573425e33 * cos(theta) ** 19 + 1.02265154908401e32 * cos(theta) ** 17 - 4.56750773975122e30 * cos(theta) ** 15 + 1.55206573680867e29 * cos(theta) ** 13 - 3.86653233698742e27 * cos(theta) ** 11 + 6.71272975171427e25 * cos(theta) ** 9 - 7.54946176387734e23 * cos(theta) ** 7 + 4.90831879385214e21 * cos(theta) ** 5 - 1.50793204112201e19 * cos(theta) ** 3 + 1.38089014754763e16 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl81_m_minus_7(theta, phi): return ( 2.1509358664297e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 2.6521878453939e36 * cos(theta) ** 74 - 4.44941575801797e37 * cos(theta) ** 72 + 3.57632285455784e38 * cos(theta) ** 70 - 1.83371968020322e39 * cos(theta) ** 68 + 6.73744101855314e39 * cos(theta) ** 66 - 1.88912561892764e40 * cos(theta) ** 64 + 4.20361727125622e40 * cos(theta) ** 62 - 7.62132335565245e40 * cos(theta) ** 60 + 1.14708693363136e41 * cos(theta) ** 58 - 1.45297678259973e41 * cos(theta) ** 56 + 1.56474422741509e41 * cos(theta) ** 54 - 1.44368084424951e41 * cos(theta) ** 52 + 1.14767434021274e41 * cos(theta) ** 50 - 7.8938858324571e40 * cos(theta) ** 48 + 4.71127154445059e40 * cos(theta) ** 46 - 2.44419350802324e40 * cos(theta) ** 44 + 1.10315222260972e40 * cos(theta) ** 42 - 4.33111748138154e39 * cos(theta) ** 40 + 1.47780911438215e39 * cos(theta) ** 38 - 4.37431497857118e38 * cos(theta) ** 36 + 1.12025139695115e38 * cos(theta) ** 34 - 2.47328230495709e37 * cos(theta) ** 32 + 4.6858213264275e36 * cos(theta) ** 30 - 7.57462756222951e35 * cos(theta) ** 28 + 1.0373946443923e35 * cos(theta) ** 26 - 1.19346286523008e34 * cos(theta) ** 24 + 1.14135741789156e33 * cos(theta) ** 22 - 8.95866678671251e31 * cos(theta) ** 20 + 5.68139749491114e30 * cos(theta) ** 18 - 2.85469233734451e29 * cos(theta) ** 16 + 1.10861838343476e28 * cos(theta) ** 14 - 3.22211028082285e26 * cos(theta) ** 12 + 6.71272975171427e24 * cos(theta) ** 10 - 9.43682720484668e22 * cos(theta) ** 8 + 8.1805313230869e20 * cos(theta) ** 6 - 3.76983010280502e18 * cos(theta) ** 4 + 6.90445073773814e15 * cos(theta) ** 2 - 2096705356130.62 ) * sin(7 * phi) ) # @torch.jit.script def Yl81_m_minus_6(theta, phi): return ( 1.74742855847838e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 3.53625046052521e34 * cos(theta) ** 75 - 6.09509007947667e35 * cos(theta) ** 73 + 5.03707444303921e36 * cos(theta) ** 71 - 2.65756475391772e37 * cos(theta) ** 69 + 1.00558821172435e38 * cos(theta) ** 67 - 2.90634710604253e38 * cos(theta) ** 65 + 6.67240836707336e38 * cos(theta) ** 63 - 1.24939727141843e39 * cos(theta) ** 61 + 1.94421514174807e39 * cos(theta) ** 59 - 2.54908207473636e39 * cos(theta) ** 57 + 2.84498950439107e39 * cos(theta) ** 55 - 2.7239261212255e39 * cos(theta) ** 53 + 2.2503418435544e39 * cos(theta) ** 51 - 1.61099710866471e39 * cos(theta) ** 49 + 1.00239820094693e39 * cos(theta) ** 47 - 5.43154112894053e38 * cos(theta) ** 45 + 2.56547028513889e38 * cos(theta) ** 43 - 1.05637011741013e38 * cos(theta) ** 41 + 3.78925413944142e37 * cos(theta) ** 39 - 1.18224729150572e37 * cos(theta) ** 37 + 3.2007182770033e36 * cos(theta) ** 35 - 7.49479486350635e35 * cos(theta) ** 33 + 1.51155526658952e35 * cos(theta) ** 31 - 2.61194053869983e34 * cos(theta) ** 29 + 3.84220238663816e33 * cos(theta) ** 27 - 4.77385146092033e32 * cos(theta) ** 25 + 4.96242355605024e31 * cos(theta) ** 23 - 4.26603180319643e30 * cos(theta) ** 21 + 2.99020920784797e29 * cos(theta) ** 19 - 1.67923078667324e28 * cos(theta) ** 17 + 7.39078922289842e26 * cos(theta) ** 15 - 2.47854636986373e25 * cos(theta) ** 13 + 6.10248159246752e23 * cos(theta) ** 11 - 1.04853635609408e22 * cos(theta) ** 9 + 1.16864733186956e20 * cos(theta) ** 7 - 7.53966020561005e17 * cos(theta) ** 5 + 2.30148357924605e15 * cos(theta) ** 3 - 2096705356130.62 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl81_m_minus_5(theta, phi): return ( 1.42090764727727e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 4.65296113227001e32 * cos(theta) ** 76 - 8.23660821550902e33 * cos(theta) ** 74 + 6.99593672644335e34 * cos(theta) ** 72 - 3.79652107702531e35 * cos(theta) ** 70 + 1.47880619371228e36 * cos(theta) ** 68 - 4.40355622127656e36 * cos(theta) ** 66 + 1.04256380735521e37 * cos(theta) ** 64 - 2.01515688938457e37 * cos(theta) ** 62 + 3.24035856958012e37 * cos(theta) ** 60 - 4.39496909437304e37 * cos(theta) ** 58 + 5.08033840069835e37 * cos(theta) ** 56 - 5.04430763189907e37 * cos(theta) ** 54 + 4.32758046837384e37 * cos(theta) ** 52 - 3.22199421732943e37 * cos(theta) ** 50 + 2.08832958530611e37 * cos(theta) ** 48 - 1.18076981063924e37 * cos(theta) ** 46 + 5.83061428440658e36 * cos(theta) ** 44 - 2.5151669462146e36 * cos(theta) ** 42 + 9.47313534860355e35 * cos(theta) ** 40 - 3.1111770829098e35 * cos(theta) ** 38 + 8.89088410278694e34 * cos(theta) ** 36 - 2.20435143044304e34 * cos(theta) ** 34 + 4.72361020809224e33 * cos(theta) ** 32 - 8.70646846233277e32 * cos(theta) ** 30 + 1.37221513808506e32 * cos(theta) ** 28 - 1.83609671573859e31 * cos(theta) ** 26 + 2.0676764816876e30 * cos(theta) ** 24 - 1.93910536508929e29 * cos(theta) ** 22 + 1.49510460392398e28 * cos(theta) ** 20 - 9.32905992596246e26 * cos(theta) ** 18 + 4.61924326431151e25 * cos(theta) ** 16 - 1.77039026418838e24 * cos(theta) ** 14 + 5.08540132705626e22 * cos(theta) ** 12 - 1.04853635609407e21 * cos(theta) ** 10 + 1.46080916483695e19 * cos(theta) ** 8 - 1.25661003426834e17 * cos(theta) ** 6 + 575370894811512.0 * cos(theta) ** 4 - 1048352678065.31 * cos(theta) ** 2 + 317106073.219997 ) * sin(5 * phi) ) # @torch.jit.script def Yl81_m_minus_4(theta, phi): return ( 1.15627314704298e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 6.04280666528572e30 * cos(theta) ** 77 - 1.09821442873454e32 * cos(theta) ** 75 + 9.58347496773062e32 * cos(theta) ** 73 - 5.34721278454269e33 * cos(theta) ** 71 + 2.14319738219171e34 * cos(theta) ** 69 - 6.57247197205457e34 * cos(theta) ** 67 + 1.60394431900802e35 * cos(theta) ** 65 - 3.19866172918186e35 * cos(theta) ** 63 + 5.31206322881987e35 * cos(theta) ** 61 - 7.4491001599543e35 * cos(theta) ** 59 + 8.91287438719008e35 * cos(theta) ** 57 - 9.17146842163467e35 * cos(theta) ** 55 + 8.16524616674309e35 * cos(theta) ** 53 - 6.31763572025378e35 * cos(theta) ** 51 + 4.26189711286961e35 * cos(theta) ** 49 - 2.51227619284946e35 * cos(theta) ** 47 + 1.29569206320146e35 * cos(theta) ** 45 - 5.84922545631303e34 * cos(theta) ** 43 + 2.31052081673257e34 * cos(theta) ** 41 - 7.97737713566615e33 * cos(theta) ** 39 + 2.40294164940188e33 * cos(theta) ** 37 - 6.29814694412298e32 * cos(theta) ** 35 + 1.43139703275522e32 * cos(theta) ** 33 - 2.80853821365573e31 * cos(theta) ** 31 + 4.73177633822433e30 * cos(theta) ** 29 - 6.80035820643922e29 * cos(theta) ** 27 + 8.2707059267504e28 * cos(theta) ** 25 - 8.43089289169256e27 * cos(theta) ** 23 + 7.11954573297135e26 * cos(theta) ** 21 - 4.91003153998024e25 * cos(theta) ** 19 + 2.71720192018324e24 * cos(theta) ** 17 - 1.18026017612559e23 * cos(theta) ** 15 + 3.91184717465866e21 * cos(theta) ** 13 - 9.53214869176432e19 * cos(theta) ** 11 + 1.62312129426327e18 * cos(theta) ** 9 - 1.79515719181192e16 * cos(theta) ** 7 + 115074178962302.0 * cos(theta) ** 5 - 349450892688.437 * cos(theta) ** 3 + 317106073.219997 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl81_m_minus_3(theta, phi): return ( 9.414932355305e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 7.74718803241759e28 * cos(theta) ** 78 - 1.44501898517702e30 * cos(theta) ** 76 + 1.29506418482846e31 * cos(theta) ** 74 - 7.42668442297596e31 * cos(theta) ** 72 + 3.06171054598815e32 * cos(theta) ** 70 - 9.66539995890378e32 * cos(theta) ** 68 + 2.43021866516366e33 * cos(theta) ** 66 - 4.99790895184666e33 * cos(theta) ** 64 + 8.56784391745141e33 * cos(theta) ** 62 - 1.24151669332572e34 * cos(theta) ** 60 + 1.53670248055001e34 * cos(theta) ** 58 - 1.63776221814905e34 * cos(theta) ** 56 + 1.51208262347094e34 * cos(theta) ** 54 - 1.21492994620265e34 * cos(theta) ** 52 + 8.52379422573923e33 * cos(theta) ** 50 - 5.23390873510303e33 * cos(theta) ** 48 + 2.81672187652492e33 * cos(theta) ** 46 - 1.32936942188932e33 * cos(theta) ** 44 + 5.50124003983946e32 * cos(theta) ** 42 - 1.99434428391654e32 * cos(theta) ** 40 + 6.32353065632073e31 * cos(theta) ** 38 - 1.74948526225638e31 * cos(theta) ** 36 + 4.20999127280948e30 * cos(theta) ** 34 - 8.77668191767417e29 * cos(theta) ** 32 + 1.57725877940811e29 * cos(theta) ** 30 - 2.42869935944258e28 * cos(theta) ** 28 + 3.18104074105785e27 * cos(theta) ** 26 - 3.51287203820523e26 * cos(theta) ** 24 + 3.23615715135062e25 * cos(theta) ** 22 - 2.45501576999012e24 * cos(theta) ** 20 + 1.50955662232402e23 * cos(theta) ** 18 - 7.37662610078491e21 * cos(theta) ** 16 + 2.79417655332762e20 * cos(theta) ** 14 - 7.94345724313693e18 * cos(theta) ** 12 + 1.62312129426327e17 * cos(theta) ** 10 - 2.2439464897649e15 * cos(theta) ** 8 + 19179029827050.4 * cos(theta) ** 6 - 87362723172.1093 * cos(theta) ** 4 + 158553036.609999 * cos(theta) ** 2 - 47828.9703197583 ) * sin(3 * phi) ) # @torch.jit.script def Yl81_m_minus_2(theta, phi): return ( 0.000766955899989024 * (1.0 - cos(theta) ** 2) * ( 9.80656712964252e26 * cos(theta) ** 79 - 1.87664803269743e28 * cos(theta) ** 77 + 1.72675224643795e29 * cos(theta) ** 75 - 1.01735403054465e30 * cos(theta) ** 73 + 4.3122683746312e30 * cos(theta) ** 71 - 1.40078260273968e31 * cos(theta) ** 69 + 3.62719203755771e31 * cos(theta) ** 67 - 7.6890906951487e31 * cos(theta) ** 65 + 1.35997522499229e32 * cos(theta) ** 63 - 2.03527326774708e32 * cos(theta) ** 61 + 2.6045804755085e32 * cos(theta) ** 59 - 2.87326704938429e32 * cos(theta) ** 57 + 2.74924113358353e32 * cos(theta) ** 55 - 2.29232065321255e32 * cos(theta) ** 53 + 1.67133220112534e32 * cos(theta) ** 51 - 1.06814463981695e32 * cos(theta) ** 49 + 5.99302526920195e31 * cos(theta) ** 47 - 2.95415427086516e31 * cos(theta) ** 45 + 1.27935814879987e31 * cos(theta) ** 43 - 4.86425435101594e30 * cos(theta) ** 41 + 1.62141811700531e30 * cos(theta) ** 39 - 4.72833854663887e29 * cos(theta) ** 37 + 1.20285464937414e29 * cos(theta) ** 35 - 2.65960058111338e28 * cos(theta) ** 33 + 5.08793154647778e27 * cos(theta) ** 31 - 8.3748253773882e26 * cos(theta) ** 29 + 1.17816323742883e26 * cos(theta) ** 27 - 1.40514881528209e25 * cos(theta) ** 25 + 1.40702484841331e24 * cos(theta) ** 23 - 1.16905512856672e23 * cos(theta) ** 21 + 7.94503485433696e21 * cos(theta) ** 19 - 4.33919182399112e20 * cos(theta) ** 17 + 1.86278436888508e19 * cos(theta) ** 15 - 6.11035172548995e17 * cos(theta) ** 13 + 1.47556481296661e16 * cos(theta) ** 11 - 249327387751655.0 * cos(theta) ** 9 + 2739861403864.34 * cos(theta) ** 7 - 17472544634.4218 * cos(theta) ** 5 + 52851012.2033329 * cos(theta) ** 3 - 47828.9703197583 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl81_m_minus_1(theta, phi): return ( 0.0624963181378371 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 1.22582089120532e25 * cos(theta) ** 80 - 2.40595901627876e26 * cos(theta) ** 78 + 2.27204242952362e27 * cos(theta) ** 76 - 1.37480274397926e28 * cos(theta) ** 74 + 5.98926163143222e28 * cos(theta) ** 72 - 2.00111800391383e29 * cos(theta) ** 70 + 5.33410593758487e29 * cos(theta) ** 68 - 1.1650137416892e30 * cos(theta) ** 66 + 2.12496128905045e30 * cos(theta) ** 64 - 3.2826988189469e30 * cos(theta) ** 62 + 4.34096745918083e30 * cos(theta) ** 60 - 4.95390870583499e30 * cos(theta) ** 58 + 4.90935916711345e30 * cos(theta) ** 56 - 4.2450382466899e30 * cos(theta) ** 54 + 3.2141003867795e30 * cos(theta) ** 52 - 2.13628927963389e30 * cos(theta) ** 50 + 1.24854693108374e30 * cos(theta) ** 48 - 6.42207450188079e29 * cos(theta) ** 46 + 2.90763215636335e29 * cos(theta) ** 44 - 1.15815579786094e29 * cos(theta) ** 42 + 4.05354529251329e28 * cos(theta) ** 40 - 1.24429961753655e28 * cos(theta) ** 38 + 3.34126291492816e27 * cos(theta) ** 36 - 7.82235465033348e26 * cos(theta) ** 34 + 1.58997860827431e26 * cos(theta) ** 32 - 2.7916084591294e25 * cos(theta) ** 30 + 4.20772584796011e24 * cos(theta) ** 28 - 5.40441852031574e23 * cos(theta) ** 26 + 5.86260353505546e22 * cos(theta) ** 24 - 5.31388694803057e21 * cos(theta) ** 22 + 3.97251742716848e20 * cos(theta) ** 20 - 2.41066212443951e19 * cos(theta) ** 18 + 1.16424023055317e18 * cos(theta) ** 16 - 4.36453694677853e16 * cos(theta) ** 14 + 1.22963734413884e15 * cos(theta) ** 12 - 24932738775165.5 * cos(theta) ** 10 + 342482675483.043 * cos(theta) ** 8 - 2912090772.40364 * cos(theta) ** 6 + 13212753.0508332 * cos(theta) ** 4 - 23914.4851598791 * cos(theta) ** 2 + 7.20315818068649 ) * sin(phi) ) # @torch.jit.script def Yl81_m0(theta, phi): return ( 1.71230349295226e24 * cos(theta) ** 81 - 3.44587783674864e25 * cos(theta) ** 79 + 3.33860050786873e26 * cos(theta) ** 77 - 2.07404354268024e27 * cos(theta) ** 75 + 9.28301746925428e27 * cos(theta) ** 73 - 3.18898953061441e28 * cos(theta) ** 71 + 8.74684214522827e28 * cos(theta) ** 69 - 1.96741051512038e29 * cos(theta) ** 67 + 3.69893252460132e29 * cos(theta) ** 65 - 5.89561659093544e29 * cos(theta) ** 63 + 8.05184559587196e29 * cos(theta) ** 61 - 9.50024335296305e29 * cos(theta) ** 59 + 9.74515370318932e29 * cos(theta) ** 57 - 8.73288338590126e29 * cos(theta) ** 55 + 6.86155123177956e29 * cos(theta) ** 53 - 4.73945744230187e29 * cos(theta) ** 51 + 2.88301919796512e29 * cos(theta) ** 49 - 1.54602397483218e29 * cos(theta) ** 47 + 7.31081328431142e28 * cos(theta) ** 45 - 3.04745480061824e28 * cos(theta) ** 43 + 1.1186388963245e28 * cos(theta) ** 41 - 3.60993268392794e27 * cos(theta) ** 39 + 1.02175711183751e27 * cos(theta) ** 37 - 2.5287634206012e26 * cos(theta) ** 35 + 5.45150085238301e25 * cos(theta) ** 33 - 1.0188999823215e25 * cos(theta) ** 31 + 1.64167876569472e24 * cos(theta) ** 29 - 2.26476921125401e23 * cos(theta) ** 27 + 2.65331773414606e22 * cos(theta) ** 25 - 2.61410614201582e21 * cos(theta) ** 23 + 2.14035227809062e20 * cos(theta) ** 21 - 1.43556045480368e19 * cos(theta) ** 19 + 7.74876381854257e17 * cos(theta) ** 17 - 3.29219581168944e16 * cos(theta) ** 15 + 1.07021845271638e15 * cos(theta) ** 13 - 25645787807028.5 * cos(theta) ** 11 + 430561150606.4 * cos(theta) ** 9 - 4707015311.82217 * cos(theta) ** 7 + 29899371.3092152 * cos(theta) ** 5 - 90194.1819282511 * cos(theta) ** 3 + 81.5007668026365 * cos(theta) ) # @torch.jit.script def Yl81_m1(theta, phi): return ( 0.0624963181378371 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 1.22582089120532e25 * cos(theta) ** 80 - 2.40595901627876e26 * cos(theta) ** 78 + 2.27204242952362e27 * cos(theta) ** 76 - 1.37480274397926e28 * cos(theta) ** 74 + 5.98926163143222e28 * cos(theta) ** 72 - 2.00111800391383e29 * cos(theta) ** 70 + 5.33410593758487e29 * cos(theta) ** 68 - 1.1650137416892e30 * cos(theta) ** 66 + 2.12496128905045e30 * cos(theta) ** 64 - 3.2826988189469e30 * cos(theta) ** 62 + 4.34096745918083e30 * cos(theta) ** 60 - 4.95390870583499e30 * cos(theta) ** 58 + 4.90935916711345e30 * cos(theta) ** 56 - 4.2450382466899e30 * cos(theta) ** 54 + 3.2141003867795e30 * cos(theta) ** 52 - 2.13628927963389e30 * cos(theta) ** 50 + 1.24854693108374e30 * cos(theta) ** 48 - 6.42207450188079e29 * cos(theta) ** 46 + 2.90763215636335e29 * cos(theta) ** 44 - 1.15815579786094e29 * cos(theta) ** 42 + 4.05354529251329e28 * cos(theta) ** 40 - 1.24429961753655e28 * cos(theta) ** 38 + 3.34126291492816e27 * cos(theta) ** 36 - 7.82235465033348e26 * cos(theta) ** 34 + 1.58997860827431e26 * cos(theta) ** 32 - 2.7916084591294e25 * cos(theta) ** 30 + 4.20772584796011e24 * cos(theta) ** 28 - 5.40441852031574e23 * cos(theta) ** 26 + 5.86260353505546e22 * cos(theta) ** 24 - 5.31388694803057e21 * cos(theta) ** 22 + 3.97251742716848e20 * cos(theta) ** 20 - 2.41066212443951e19 * cos(theta) ** 18 + 1.16424023055317e18 * cos(theta) ** 16 - 4.36453694677853e16 * cos(theta) ** 14 + 1.22963734413884e15 * cos(theta) ** 12 - 24932738775165.5 * cos(theta) ** 10 + 342482675483.043 * cos(theta) ** 8 - 2912090772.40364 * cos(theta) ** 6 + 13212753.0508332 * cos(theta) ** 4 - 23914.4851598791 * cos(theta) ** 2 + 7.20315818068649 ) * cos(phi) ) # @torch.jit.script def Yl81_m2(theta, phi): return ( 0.000766955899989024 * (1.0 - cos(theta) ** 2) * ( 9.80656712964252e26 * cos(theta) ** 79 - 1.87664803269743e28 * cos(theta) ** 77 + 1.72675224643795e29 * cos(theta) ** 75 - 1.01735403054465e30 * cos(theta) ** 73 + 4.3122683746312e30 * cos(theta) ** 71 - 1.40078260273968e31 * cos(theta) ** 69 + 3.62719203755771e31 * cos(theta) ** 67 - 7.6890906951487e31 * cos(theta) ** 65 + 1.35997522499229e32 * cos(theta) ** 63 - 2.03527326774708e32 * cos(theta) ** 61 + 2.6045804755085e32 * cos(theta) ** 59 - 2.87326704938429e32 * cos(theta) ** 57 + 2.74924113358353e32 * cos(theta) ** 55 - 2.29232065321255e32 * cos(theta) ** 53 + 1.67133220112534e32 * cos(theta) ** 51 - 1.06814463981695e32 * cos(theta) ** 49 + 5.99302526920195e31 * cos(theta) ** 47 - 2.95415427086516e31 * cos(theta) ** 45 + 1.27935814879987e31 * cos(theta) ** 43 - 4.86425435101594e30 * cos(theta) ** 41 + 1.62141811700531e30 * cos(theta) ** 39 - 4.72833854663887e29 * cos(theta) ** 37 + 1.20285464937414e29 * cos(theta) ** 35 - 2.65960058111338e28 * cos(theta) ** 33 + 5.08793154647778e27 * cos(theta) ** 31 - 8.3748253773882e26 * cos(theta) ** 29 + 1.17816323742883e26 * cos(theta) ** 27 - 1.40514881528209e25 * cos(theta) ** 25 + 1.40702484841331e24 * cos(theta) ** 23 - 1.16905512856672e23 * cos(theta) ** 21 + 7.94503485433696e21 * cos(theta) ** 19 - 4.33919182399112e20 * cos(theta) ** 17 + 1.86278436888508e19 * cos(theta) ** 15 - 6.11035172548995e17 * cos(theta) ** 13 + 1.47556481296661e16 * cos(theta) ** 11 - 249327387751655.0 * cos(theta) ** 9 + 2739861403864.34 * cos(theta) ** 7 - 17472544634.4218 * cos(theta) ** 5 + 52851012.2033329 * cos(theta) ** 3 - 47828.9703197583 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl81_m3(theta, phi): return ( 9.414932355305e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 7.74718803241759e28 * cos(theta) ** 78 - 1.44501898517702e30 * cos(theta) ** 76 + 1.29506418482846e31 * cos(theta) ** 74 - 7.42668442297596e31 * cos(theta) ** 72 + 3.06171054598815e32 * cos(theta) ** 70 - 9.66539995890378e32 * cos(theta) ** 68 + 2.43021866516366e33 * cos(theta) ** 66 - 4.99790895184666e33 * cos(theta) ** 64 + 8.56784391745141e33 * cos(theta) ** 62 - 1.24151669332572e34 * cos(theta) ** 60 + 1.53670248055001e34 * cos(theta) ** 58 - 1.63776221814905e34 * cos(theta) ** 56 + 1.51208262347094e34 * cos(theta) ** 54 - 1.21492994620265e34 * cos(theta) ** 52 + 8.52379422573923e33 * cos(theta) ** 50 - 5.23390873510303e33 * cos(theta) ** 48 + 2.81672187652492e33 * cos(theta) ** 46 - 1.32936942188932e33 * cos(theta) ** 44 + 5.50124003983946e32 * cos(theta) ** 42 - 1.99434428391654e32 * cos(theta) ** 40 + 6.32353065632073e31 * cos(theta) ** 38 - 1.74948526225638e31 * cos(theta) ** 36 + 4.20999127280948e30 * cos(theta) ** 34 - 8.77668191767417e29 * cos(theta) ** 32 + 1.57725877940811e29 * cos(theta) ** 30 - 2.42869935944258e28 * cos(theta) ** 28 + 3.18104074105785e27 * cos(theta) ** 26 - 3.51287203820523e26 * cos(theta) ** 24 + 3.23615715135062e25 * cos(theta) ** 22 - 2.45501576999012e24 * cos(theta) ** 20 + 1.50955662232402e23 * cos(theta) ** 18 - 7.37662610078491e21 * cos(theta) ** 16 + 2.79417655332762e20 * cos(theta) ** 14 - 7.94345724313693e18 * cos(theta) ** 12 + 1.62312129426327e17 * cos(theta) ** 10 - 2.2439464897649e15 * cos(theta) ** 8 + 19179029827050.4 * cos(theta) ** 6 - 87362723172.1093 * cos(theta) ** 4 + 158553036.609999 * cos(theta) ** 2 - 47828.9703197583 ) * cos(3 * phi) ) # @torch.jit.script def Yl81_m4(theta, phi): return ( 1.15627314704298e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 6.04280666528572e30 * cos(theta) ** 77 - 1.09821442873454e32 * cos(theta) ** 75 + 9.58347496773062e32 * cos(theta) ** 73 - 5.34721278454269e33 * cos(theta) ** 71 + 2.14319738219171e34 * cos(theta) ** 69 - 6.57247197205457e34 * cos(theta) ** 67 + 1.60394431900802e35 * cos(theta) ** 65 - 3.19866172918186e35 * cos(theta) ** 63 + 5.31206322881987e35 * cos(theta) ** 61 - 7.4491001599543e35 * cos(theta) ** 59 + 8.91287438719008e35 * cos(theta) ** 57 - 9.17146842163467e35 * cos(theta) ** 55 + 8.16524616674309e35 * cos(theta) ** 53 - 6.31763572025378e35 * cos(theta) ** 51 + 4.26189711286961e35 * cos(theta) ** 49 - 2.51227619284946e35 * cos(theta) ** 47 + 1.29569206320146e35 * cos(theta) ** 45 - 5.84922545631303e34 * cos(theta) ** 43 + 2.31052081673257e34 * cos(theta) ** 41 - 7.97737713566615e33 * cos(theta) ** 39 + 2.40294164940188e33 * cos(theta) ** 37 - 6.29814694412298e32 * cos(theta) ** 35 + 1.43139703275522e32 * cos(theta) ** 33 - 2.80853821365573e31 * cos(theta) ** 31 + 4.73177633822433e30 * cos(theta) ** 29 - 6.80035820643922e29 * cos(theta) ** 27 + 8.2707059267504e28 * cos(theta) ** 25 - 8.43089289169256e27 * cos(theta) ** 23 + 7.11954573297135e26 * cos(theta) ** 21 - 4.91003153998024e25 * cos(theta) ** 19 + 2.71720192018324e24 * cos(theta) ** 17 - 1.18026017612559e23 * cos(theta) ** 15 + 3.91184717465866e21 * cos(theta) ** 13 - 9.53214869176432e19 * cos(theta) ** 11 + 1.62312129426327e18 * cos(theta) ** 9 - 1.79515719181192e16 * cos(theta) ** 7 + 115074178962302.0 * cos(theta) ** 5 - 349450892688.437 * cos(theta) ** 3 + 317106073.219997 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl81_m5(theta, phi): return ( 1.42090764727727e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 4.65296113227001e32 * cos(theta) ** 76 - 8.23660821550902e33 * cos(theta) ** 74 + 6.99593672644335e34 * cos(theta) ** 72 - 3.79652107702531e35 * cos(theta) ** 70 + 1.47880619371228e36 * cos(theta) ** 68 - 4.40355622127656e36 * cos(theta) ** 66 + 1.04256380735521e37 * cos(theta) ** 64 - 2.01515688938457e37 * cos(theta) ** 62 + 3.24035856958012e37 * cos(theta) ** 60 - 4.39496909437304e37 * cos(theta) ** 58 + 5.08033840069835e37 * cos(theta) ** 56 - 5.04430763189907e37 * cos(theta) ** 54 + 4.32758046837384e37 * cos(theta) ** 52 - 3.22199421732943e37 * cos(theta) ** 50 + 2.08832958530611e37 * cos(theta) ** 48 - 1.18076981063924e37 * cos(theta) ** 46 + 5.83061428440658e36 * cos(theta) ** 44 - 2.5151669462146e36 * cos(theta) ** 42 + 9.47313534860355e35 * cos(theta) ** 40 - 3.1111770829098e35 * cos(theta) ** 38 + 8.89088410278694e34 * cos(theta) ** 36 - 2.20435143044304e34 * cos(theta) ** 34 + 4.72361020809224e33 * cos(theta) ** 32 - 8.70646846233277e32 * cos(theta) ** 30 + 1.37221513808506e32 * cos(theta) ** 28 - 1.83609671573859e31 * cos(theta) ** 26 + 2.0676764816876e30 * cos(theta) ** 24 - 1.93910536508929e29 * cos(theta) ** 22 + 1.49510460392398e28 * cos(theta) ** 20 - 9.32905992596246e26 * cos(theta) ** 18 + 4.61924326431151e25 * cos(theta) ** 16 - 1.77039026418838e24 * cos(theta) ** 14 + 5.08540132705626e22 * cos(theta) ** 12 - 1.04853635609407e21 * cos(theta) ** 10 + 1.46080916483695e19 * cos(theta) ** 8 - 1.25661003426834e17 * cos(theta) ** 6 + 575370894811512.0 * cos(theta) ** 4 - 1048352678065.31 * cos(theta) ** 2 + 317106073.219997 ) * cos(5 * phi) ) # @torch.jit.script def Yl81_m6(theta, phi): return ( 1.74742855847838e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 3.53625046052521e34 * cos(theta) ** 75 - 6.09509007947667e35 * cos(theta) ** 73 + 5.03707444303921e36 * cos(theta) ** 71 - 2.65756475391772e37 * cos(theta) ** 69 + 1.00558821172435e38 * cos(theta) ** 67 - 2.90634710604253e38 * cos(theta) ** 65 + 6.67240836707336e38 * cos(theta) ** 63 - 1.24939727141843e39 * cos(theta) ** 61 + 1.94421514174807e39 * cos(theta) ** 59 - 2.54908207473636e39 * cos(theta) ** 57 + 2.84498950439107e39 * cos(theta) ** 55 - 2.7239261212255e39 * cos(theta) ** 53 + 2.2503418435544e39 * cos(theta) ** 51 - 1.61099710866471e39 * cos(theta) ** 49 + 1.00239820094693e39 * cos(theta) ** 47 - 5.43154112894053e38 * cos(theta) ** 45 + 2.56547028513889e38 * cos(theta) ** 43 - 1.05637011741013e38 * cos(theta) ** 41 + 3.78925413944142e37 * cos(theta) ** 39 - 1.18224729150572e37 * cos(theta) ** 37 + 3.2007182770033e36 * cos(theta) ** 35 - 7.49479486350635e35 * cos(theta) ** 33 + 1.51155526658952e35 * cos(theta) ** 31 - 2.61194053869983e34 * cos(theta) ** 29 + 3.84220238663816e33 * cos(theta) ** 27 - 4.77385146092033e32 * cos(theta) ** 25 + 4.96242355605024e31 * cos(theta) ** 23 - 4.26603180319643e30 * cos(theta) ** 21 + 2.99020920784797e29 * cos(theta) ** 19 - 1.67923078667324e28 * cos(theta) ** 17 + 7.39078922289842e26 * cos(theta) ** 15 - 2.47854636986373e25 * cos(theta) ** 13 + 6.10248159246752e23 * cos(theta) ** 11 - 1.04853635609408e22 * cos(theta) ** 9 + 1.16864733186956e20 * cos(theta) ** 7 - 7.53966020561005e17 * cos(theta) ** 5 + 2.30148357924605e15 * cos(theta) ** 3 - 2096705356130.62 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl81_m7(theta, phi): return ( 2.1509358664297e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 2.6521878453939e36 * cos(theta) ** 74 - 4.44941575801797e37 * cos(theta) ** 72 + 3.57632285455784e38 * cos(theta) ** 70 - 1.83371968020322e39 * cos(theta) ** 68 + 6.73744101855314e39 * cos(theta) ** 66 - 1.88912561892764e40 * cos(theta) ** 64 + 4.20361727125622e40 * cos(theta) ** 62 - 7.62132335565245e40 * cos(theta) ** 60 + 1.14708693363136e41 * cos(theta) ** 58 - 1.45297678259973e41 * cos(theta) ** 56 + 1.56474422741509e41 * cos(theta) ** 54 - 1.44368084424951e41 * cos(theta) ** 52 + 1.14767434021274e41 * cos(theta) ** 50 - 7.8938858324571e40 * cos(theta) ** 48 + 4.71127154445059e40 * cos(theta) ** 46 - 2.44419350802324e40 * cos(theta) ** 44 + 1.10315222260972e40 * cos(theta) ** 42 - 4.33111748138154e39 * cos(theta) ** 40 + 1.47780911438215e39 * cos(theta) ** 38 - 4.37431497857118e38 * cos(theta) ** 36 + 1.12025139695115e38 * cos(theta) ** 34 - 2.47328230495709e37 * cos(theta) ** 32 + 4.6858213264275e36 * cos(theta) ** 30 - 7.57462756222951e35 * cos(theta) ** 28 + 1.0373946443923e35 * cos(theta) ** 26 - 1.19346286523008e34 * cos(theta) ** 24 + 1.14135741789156e33 * cos(theta) ** 22 - 8.95866678671251e31 * cos(theta) ** 20 + 5.68139749491114e30 * cos(theta) ** 18 - 2.85469233734451e29 * cos(theta) ** 16 + 1.10861838343476e28 * cos(theta) ** 14 - 3.22211028082285e26 * cos(theta) ** 12 + 6.71272975171427e24 * cos(theta) ** 10 - 9.43682720484668e22 * cos(theta) ** 8 + 8.1805313230869e20 * cos(theta) ** 6 - 3.76983010280502e18 * cos(theta) ** 4 + 6.90445073773814e15 * cos(theta) ** 2 - 2096705356130.62 ) * cos(7 * phi) ) # @torch.jit.script def Yl81_m8(theta, phi): return ( 2.65043158409768e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.96261900559149e38 * cos(theta) ** 73 - 3.20357934577294e39 * cos(theta) ** 71 + 2.50342599819049e40 * cos(theta) ** 69 - 1.24692938253819e41 * cos(theta) ** 67 + 4.44671107224507e41 * cos(theta) ** 65 - 1.20904039611369e42 * cos(theta) ** 63 + 2.60624270817885e42 * cos(theta) ** 61 - 4.57279401339147e42 * cos(theta) ** 59 + 6.65310421506191e42 * cos(theta) ** 57 - 8.13666998255847e42 * cos(theta) ** 55 + 8.44961882804149e42 * cos(theta) ** 53 - 7.50714039009747e42 * cos(theta) ** 51 + 5.73837170106371e42 * cos(theta) ** 49 - 3.78906519957941e42 * cos(theta) ** 47 + 2.16718491044727e42 * cos(theta) ** 45 - 1.07544514353022e42 * cos(theta) ** 43 + 4.63323933496084e41 * cos(theta) ** 41 - 1.73244699255262e41 * cos(theta) ** 39 + 5.61567463465218e40 * cos(theta) ** 37 - 1.57475339228562e40 * cos(theta) ** 35 + 3.80885474963393e39 * cos(theta) ** 33 - 7.9145033758627e38 * cos(theta) ** 31 + 1.40574639792825e38 * cos(theta) ** 29 - 2.12089571742426e37 * cos(theta) ** 27 + 2.69722607541999e36 * cos(theta) ** 25 - 2.8643108765522e35 * cos(theta) ** 23 + 2.51098631936142e34 * cos(theta) ** 21 - 1.7917333573425e33 * cos(theta) ** 19 + 1.02265154908401e32 * cos(theta) ** 17 - 4.56750773975122e30 * cos(theta) ** 15 + 1.55206573680867e29 * cos(theta) ** 13 - 3.86653233698742e27 * cos(theta) ** 11 + 6.71272975171427e25 * cos(theta) ** 9 - 7.54946176387734e23 * cos(theta) ** 7 + 4.90831879385214e21 * cos(theta) ** 5 - 1.50793204112201e19 * cos(theta) ** 3 + 1.38089014754763e16 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl81_m9(theta, phi): return ( 3.26989579984291e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1.43271187408179e40 * cos(theta) ** 72 - 2.27454133549879e41 * cos(theta) ** 70 + 1.72736393875144e42 * cos(theta) ** 68 - 8.35442686300589e42 * cos(theta) ** 66 + 2.8903621969593e43 * cos(theta) ** 64 - 7.61695449551626e43 * cos(theta) ** 62 + 1.5898080519891e44 * cos(theta) ** 60 - 2.69794846790097e44 * cos(theta) ** 58 + 3.79226940258529e44 * cos(theta) ** 56 - 4.47516849040716e44 * cos(theta) ** 54 + 4.47829797886199e44 * cos(theta) ** 52 - 3.82864159894971e44 * cos(theta) ** 50 + 2.81180213352122e44 * cos(theta) ** 48 - 1.78086064380232e44 * cos(theta) ** 46 + 9.75233209701271e43 * cos(theta) ** 44 - 4.62441411717996e43 * cos(theta) ** 42 + 1.89962812733394e43 * cos(theta) ** 40 - 6.75654327095521e42 * cos(theta) ** 38 + 2.07779961482131e42 * cos(theta) ** 36 - 5.51163687299968e41 * cos(theta) ** 34 + 1.2569220673792e41 * cos(theta) ** 32 - 2.45349604651744e40 * cos(theta) ** 30 + 4.07666455399192e39 * cos(theta) ** 28 - 5.72641843704551e38 * cos(theta) ** 26 + 6.74306518854997e37 * cos(theta) ** 24 - 6.58791501607006e36 * cos(theta) ** 22 + 5.27307127065899e35 * cos(theta) ** 20 - 3.40429337895075e34 * cos(theta) ** 18 + 1.73850763344281e33 * cos(theta) ** 16 - 6.85126160962683e31 * cos(theta) ** 14 + 2.01768545785127e30 * cos(theta) ** 12 - 4.25318557068616e28 * cos(theta) ** 10 + 6.04145677654284e26 * cos(theta) ** 8 - 5.28462323471414e24 * cos(theta) ** 6 + 2.45415939692607e22 * cos(theta) ** 4 - 4.52379612336603e19 * cos(theta) ** 2 + 1.38089014754763e16 ) * cos(9 * phi) ) # @torch.jit.script def Yl81_m10(theta, phi): return ( 4.03968004531094e-19 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.03155254933889e42 * cos(theta) ** 71 - 1.59217893484915e43 * cos(theta) ** 69 + 1.17460747835098e44 * cos(theta) ** 67 - 5.51392172958389e44 * cos(theta) ** 65 + 1.84983180605395e45 * cos(theta) ** 63 - 4.72251178722008e45 * cos(theta) ** 61 + 9.5388483119346e45 * cos(theta) ** 59 - 1.56481011138256e46 * cos(theta) ** 57 + 2.12367086544776e46 * cos(theta) ** 55 - 2.41659098481987e46 * cos(theta) ** 53 + 2.32871494900823e46 * cos(theta) ** 51 - 1.91432079947485e46 * cos(theta) ** 49 + 1.34966502409018e46 * cos(theta) ** 47 - 8.19195896149068e45 * cos(theta) ** 45 + 4.29102612268559e45 * cos(theta) ** 43 - 1.94225392921558e45 * cos(theta) ** 41 + 7.59851250933578e44 * cos(theta) ** 39 - 2.56748644296298e44 * cos(theta) ** 37 + 7.48007861335671e43 * cos(theta) ** 35 - 1.87395653681989e43 * cos(theta) ** 33 + 4.02215061561343e42 * cos(theta) ** 31 - 7.36048813955231e41 * cos(theta) ** 29 + 1.14146607511774e41 * cos(theta) ** 27 - 1.48886879363183e40 * cos(theta) ** 25 + 1.61833564525199e39 * cos(theta) ** 23 - 1.44934130353541e38 * cos(theta) ** 21 + 1.0546142541318e37 * cos(theta) ** 19 - 6.12772808211136e35 * cos(theta) ** 17 + 2.78161221350849e34 * cos(theta) ** 15 - 9.59176625347757e32 * cos(theta) ** 13 + 2.42122254942152e31 * cos(theta) ** 11 - 4.25318557068616e29 * cos(theta) ** 9 + 4.83316542123427e27 * cos(theta) ** 7 - 3.17077394082848e25 * cos(theta) ** 5 + 9.81663758770428e22 * cos(theta) ** 3 - 9.04759224673206e19 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl81_m11(theta, phi): return ( 4.99831797618605e-21 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 7.32402310030609e43 * cos(theta) ** 70 - 1.09860346504591e45 * cos(theta) ** 68 + 7.86987010495155e45 * cos(theta) ** 66 - 3.58404912422953e46 * cos(theta) ** 64 + 1.16539403781399e47 * cos(theta) ** 62 - 2.88073219020425e47 * cos(theta) ** 60 + 5.62792050404142e47 * cos(theta) ** 58 - 8.9194176348806e47 * cos(theta) ** 56 + 1.16801897599627e48 * cos(theta) ** 54 - 1.28079322195453e48 * cos(theta) ** 52 + 1.1876446239942e48 * cos(theta) ** 50 - 9.38017191742679e47 * cos(theta) ** 48 + 6.34342561322387e47 * cos(theta) ** 46 - 3.68638153267081e47 * cos(theta) ** 44 + 1.84514123275481e47 * cos(theta) ** 42 - 7.9632411097839e46 * cos(theta) ** 40 + 2.96341987864095e46 * cos(theta) ** 38 - 9.49969983896302e45 * cos(theta) ** 36 + 2.61802751467485e45 * cos(theta) ** 34 - 6.18405657150564e44 * cos(theta) ** 32 + 1.24686669084016e44 * cos(theta) ** 30 - 2.13454156047017e43 * cos(theta) ** 28 + 3.08195840281789e42 * cos(theta) ** 26 - 3.72217198407958e41 * cos(theta) ** 24 + 3.72217198407958e40 * cos(theta) ** 22 - 3.04361673742437e39 * cos(theta) ** 20 + 2.00376708285041e38 * cos(theta) ** 18 - 1.04171377395893e37 * cos(theta) ** 16 + 4.17241832026274e35 * cos(theta) ** 14 - 1.24692961295208e34 * cos(theta) ** 12 + 2.66334480436367e32 * cos(theta) ** 10 - 3.82786701361754e30 * cos(theta) ** 8 + 3.38321579486399e28 * cos(theta) ** 6 - 1.58538697041424e26 * cos(theta) ** 4 + 2.94499127631128e23 * cos(theta) ** 2 - 9.04759224673206e19 ) * cos(11 * phi) ) # @torch.jit.script def Yl81_m12(theta, phi): return ( 6.19488696941658e-23 * (1.0 - cos(theta) ** 2) ** 6 * ( 5.12681617021427e45 * cos(theta) ** 69 - 7.47050356231222e46 * cos(theta) ** 67 + 5.19411426926802e47 * cos(theta) ** 65 - 2.2937914395069e48 * cos(theta) ** 63 + 7.22544303444673e48 * cos(theta) ** 61 - 1.72843931412255e49 * cos(theta) ** 59 + 3.26419389234402e49 * cos(theta) ** 57 - 4.99487387553313e49 * cos(theta) ** 55 + 6.30730247037985e49 * cos(theta) ** 53 - 6.66012475416355e49 * cos(theta) ** 51 + 5.938223119971e49 * cos(theta) ** 49 - 4.50248252036486e49 * cos(theta) ** 47 + 2.91797578208298e49 * cos(theta) ** 45 - 1.62200787437515e49 * cos(theta) ** 43 + 7.74959317757018e48 * cos(theta) ** 41 - 3.18529644391356e48 * cos(theta) ** 39 + 1.12609955388356e48 * cos(theta) ** 37 - 3.41989194202669e47 * cos(theta) ** 35 + 8.90129354989448e46 * cos(theta) ** 33 - 1.97889810288181e46 * cos(theta) ** 31 + 3.74060007252049e45 * cos(theta) ** 29 - 5.97671636931648e44 * cos(theta) ** 27 + 8.01309184732652e43 * cos(theta) ** 25 - 8.933212761791e42 * cos(theta) ** 23 + 8.18877836497508e41 * cos(theta) ** 21 - 6.08723347484873e40 * cos(theta) ** 19 + 3.60678074913075e39 * cos(theta) ** 17 - 1.66674203833429e38 * cos(theta) ** 15 + 5.84138564836784e36 * cos(theta) ** 13 - 1.4963155355425e35 * cos(theta) ** 11 + 2.66334480436367e33 * cos(theta) ** 9 - 3.06229361089404e31 * cos(theta) ** 7 + 2.02992947691839e29 * cos(theta) ** 5 - 6.34154788165697e26 * cos(theta) ** 3 + 5.88998255262257e23 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl81_m13(theta, phi): return ( 7.69209987580128e-25 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 3.53750315744784e47 * cos(theta) ** 68 - 5.00523738674919e48 * cos(theta) ** 66 + 3.37617427502421e49 * cos(theta) ** 64 - 1.44508860688935e50 * cos(theta) ** 62 + 4.4075202510125e50 * cos(theta) ** 60 - 1.0197791953323e51 * cos(theta) ** 58 + 1.86059051863609e51 * cos(theta) ** 56 - 2.74718063154322e51 * cos(theta) ** 54 + 3.34287030930132e51 * cos(theta) ** 52 - 3.39666362462341e51 * cos(theta) ** 50 + 2.90972932878579e51 * cos(theta) ** 48 - 2.11616678457148e51 * cos(theta) ** 46 + 1.31308910193734e51 * cos(theta) ** 44 - 6.97463385981316e50 * cos(theta) ** 42 + 3.17733320280377e50 * cos(theta) ** 40 - 1.24226561312629e50 * cos(theta) ** 38 + 4.16656834936918e49 * cos(theta) ** 36 - 1.19696217970934e49 * cos(theta) ** 34 + 2.93742687146518e48 * cos(theta) ** 32 - 6.1345841189336e47 * cos(theta) ** 30 + 1.08477402103094e47 * cos(theta) ** 28 - 1.61371341971545e46 * cos(theta) ** 26 + 2.00327296183163e45 * cos(theta) ** 24 - 2.05463893521193e44 * cos(theta) ** 22 + 1.71964345664477e43 * cos(theta) ** 20 - 1.15657436022126e42 * cos(theta) ** 18 + 6.13152727352227e40 * cos(theta) ** 16 - 2.50011305750143e39 * cos(theta) ** 14 + 7.59380134287819e37 * cos(theta) ** 12 - 1.64594708909675e36 * cos(theta) ** 10 + 2.39701032392731e34 * cos(theta) ** 8 - 2.14360552762582e32 * cos(theta) ** 6 + 1.0149647384592e30 * cos(theta) ** 4 - 1.90246436449709e27 * cos(theta) ** 2 + 5.88998255262257e23 ) * cos(13 * phi) ) # @torch.jit.script def Yl81_m14(theta, phi): return ( 9.57036839611255e-27 * (1.0 - cos(theta) ** 2) ** 7 * ( 2.40550214706453e49 * cos(theta) ** 67 - 3.30345667525446e50 * cos(theta) ** 65 + 2.1607515360155e51 * cos(theta) ** 63 - 8.95954936271394e51 * cos(theta) ** 61 + 2.6445121506075e52 * cos(theta) ** 59 - 5.91471933292737e52 * cos(theta) ** 57 + 1.04193069043621e53 * cos(theta) ** 55 - 1.48347754103334e53 * cos(theta) ** 53 + 1.73829256083669e53 * cos(theta) ** 51 - 1.69833181231171e53 * cos(theta) ** 49 + 1.39667007781718e53 * cos(theta) ** 47 - 9.73436720902882e52 * cos(theta) ** 45 + 5.7775920485243e52 * cos(theta) ** 43 - 2.92934622112153e52 * cos(theta) ** 41 + 1.27093328112151e52 * cos(theta) ** 39 - 4.72060932987989e51 * cos(theta) ** 37 + 1.49996460577291e51 * cos(theta) ** 35 - 4.06967141101176e50 * cos(theta) ** 33 + 9.39976598868858e49 * cos(theta) ** 31 - 1.84037523568008e49 * cos(theta) ** 29 + 3.03736725888663e48 * cos(theta) ** 27 - 4.19565489126017e47 * cos(theta) ** 25 + 4.80785510839591e46 * cos(theta) ** 23 - 4.52020565746624e45 * cos(theta) ** 21 + 3.43928691328953e44 * cos(theta) ** 19 - 2.08183384839827e43 * cos(theta) ** 17 + 9.81044363763563e41 * cos(theta) ** 15 - 3.50015828050201e40 * cos(theta) ** 13 + 9.11256161145383e38 * cos(theta) ** 11 - 1.64594708909675e37 * cos(theta) ** 9 + 1.91760825914184e35 * cos(theta) ** 7 - 1.28616331657549e33 * cos(theta) ** 5 + 4.05985895383679e30 * cos(theta) ** 3 - 3.80492872899418e27 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl81_m15(theta, phi): return ( 1.19331647813896e-28 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.61168643853324e51 * cos(theta) ** 66 - 2.1472468389154e52 * cos(theta) ** 64 + 1.36127346768976e53 * cos(theta) ** 62 - 5.4653251112555e53 * cos(theta) ** 60 + 1.56026216885843e54 * cos(theta) ** 58 - 3.3713900197686e54 * cos(theta) ** 56 + 5.73061879739916e54 * cos(theta) ** 54 - 7.86243096747671e54 * cos(theta) ** 52 + 8.8652920602671e54 * cos(theta) ** 50 - 8.32182588032736e54 * cos(theta) ** 48 + 6.56434936574074e54 * cos(theta) ** 46 - 4.38046524406297e54 * cos(theta) ** 44 + 2.48436458086545e54 * cos(theta) ** 42 - 1.20103195065983e54 * cos(theta) ** 40 + 4.95663979637389e53 * cos(theta) ** 38 - 1.74662545205556e53 * cos(theta) ** 36 + 5.24987612020517e52 * cos(theta) ** 34 - 1.34299156563388e52 * cos(theta) ** 32 + 2.91392745649346e51 * cos(theta) ** 30 - 5.33708818347223e50 * cos(theta) ** 28 + 8.20089159899391e49 * cos(theta) ** 26 - 1.04891372281504e49 * cos(theta) ** 24 + 1.10580667493106e48 * cos(theta) ** 22 - 9.49243188067911e46 * cos(theta) ** 20 + 6.53464513525011e45 * cos(theta) ** 18 - 3.53911754227705e44 * cos(theta) ** 16 + 1.47156654564534e43 * cos(theta) ** 14 - 4.55020576465261e41 * cos(theta) ** 12 + 1.00238177725992e40 * cos(theta) ** 10 - 1.48135238018708e38 * cos(theta) ** 8 + 1.34232578139929e36 * cos(theta) ** 6 - 6.43081658287747e33 * cos(theta) ** 4 + 1.21795768615104e31 * cos(theta) ** 2 - 3.80492872899418e27 ) * cos(15 * phi) ) # @torch.jit.script def Yl81_m16(theta, phi): return ( 1.49141258266054e-30 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.06371304943194e53 * cos(theta) ** 65 - 1.37423797690586e54 * cos(theta) ** 63 + 8.43989549967653e54 * cos(theta) ** 61 - 3.2791950667533e55 * cos(theta) ** 59 + 9.04952057937887e55 * cos(theta) ** 57 - 1.88797841107042e56 * cos(theta) ** 55 + 3.09453415059555e56 * cos(theta) ** 53 - 4.08846410308789e56 * cos(theta) ** 51 + 4.43264603013355e56 * cos(theta) ** 49 - 3.99447642255713e56 * cos(theta) ** 47 + 3.01960070824074e56 * cos(theta) ** 45 - 1.92740470738771e56 * cos(theta) ** 43 + 1.04343312396349e56 * cos(theta) ** 41 - 4.80412780263931e55 * cos(theta) ** 39 + 1.88352312262208e55 * cos(theta) ** 37 - 6.28785162740002e54 * cos(theta) ** 35 + 1.78495788086976e54 * cos(theta) ** 33 - 4.29757301002842e53 * cos(theta) ** 31 + 8.74178236948038e52 * cos(theta) ** 29 - 1.49438469137222e52 * cos(theta) ** 27 + 2.13223181573842e51 * cos(theta) ** 25 - 2.5173929347561e50 * cos(theta) ** 23 + 2.43277468484833e49 * cos(theta) ** 21 - 1.89848637613582e48 * cos(theta) ** 19 + 1.17623612434502e47 * cos(theta) ** 17 - 5.66258806764329e45 * cos(theta) ** 15 + 2.06019316390348e44 * cos(theta) ** 13 - 5.46024691758313e42 * cos(theta) ** 11 + 1.00238177725992e41 * cos(theta) ** 9 - 1.18508190414966e39 * cos(theta) ** 7 + 8.05395468839575e36 * cos(theta) ** 5 - 2.57232663315099e34 * cos(theta) ** 3 + 2.43591537230207e31 * cos(theta) ) * cos(16 * phi) ) # @torch.jit.script def Yl81_m17(theta, phi): return ( 1.86865052245405e-32 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 6.91413482130759e54 * cos(theta) ** 64 - 8.65769925450689e55 * cos(theta) ** 62 + 5.14833625480268e56 * cos(theta) ** 60 - 1.93472508938445e57 * cos(theta) ** 58 + 5.15822673024596e57 * cos(theta) ** 56 - 1.03838812608873e58 * cos(theta) ** 54 + 1.64010309981564e58 * cos(theta) ** 52 - 2.08511669257482e58 * cos(theta) ** 50 + 2.17199655476544e58 * cos(theta) ** 48 - 1.87740391860185e58 * cos(theta) ** 46 + 1.35882031870833e58 * cos(theta) ** 44 - 8.28784024176714e57 * cos(theta) ** 42 + 4.2780758082503e57 * cos(theta) ** 40 - 1.87360984302933e57 * cos(theta) ** 38 + 6.96903555370169e56 * cos(theta) ** 36 - 2.20074806959001e56 * cos(theta) ** 34 + 5.8903610068702e55 * cos(theta) ** 32 - 1.33224763310881e55 * cos(theta) ** 30 + 2.53511688714931e54 * cos(theta) ** 28 - 4.03483866670501e53 * cos(theta) ** 26 + 5.33057953934604e52 * cos(theta) ** 24 - 5.79000374993903e51 * cos(theta) ** 22 + 5.1088268381815e50 * cos(theta) ** 20 - 3.60712411465806e49 * cos(theta) ** 18 + 1.99960141138653e48 * cos(theta) ** 16 - 8.49388210146493e46 * cos(theta) ** 14 + 2.67825111307453e45 * cos(theta) ** 12 - 6.00627160934145e43 * cos(theta) ** 10 + 9.02143599533929e41 * cos(theta) ** 8 - 8.29557332904762e39 * cos(theta) ** 6 + 4.02697734419787e37 * cos(theta) ** 4 - 7.71697989945297e34 * cos(theta) ** 2 + 2.43591537230207e31 ) * cos(17 * phi) ) # @torch.jit.script def Yl81_m18(theta, phi): return ( 2.34758054821275e-34 * (1.0 - cos(theta) ** 2) ** 9 * ( 4.42504628563686e56 * cos(theta) ** 63 - 5.36777353779427e57 * cos(theta) ** 61 + 3.08900175288161e58 * cos(theta) ** 59 - 1.12214055184298e59 * cos(theta) ** 57 + 2.88860696893774e59 * cos(theta) ** 55 - 5.60729588087913e59 * cos(theta) ** 53 + 8.52853611904133e59 * cos(theta) ** 51 - 1.04255834628741e60 * cos(theta) ** 49 + 1.04255834628741e60 * cos(theta) ** 47 - 8.63605802556852e59 * cos(theta) ** 45 + 5.97880940231667e59 * cos(theta) ** 43 - 3.4808929015422e59 * cos(theta) ** 41 + 1.71123032330012e59 * cos(theta) ** 39 - 7.11971740351145e58 * cos(theta) ** 37 + 2.50885279933261e58 * cos(theta) ** 35 - 7.48254343660602e57 * cos(theta) ** 33 + 1.88491552219846e57 * cos(theta) ** 31 - 3.99674289932643e56 * cos(theta) ** 29 + 7.09832728401807e55 * cos(theta) ** 27 - 1.0490580533433e55 * cos(theta) ** 25 + 1.27933908944305e54 * cos(theta) ** 23 - 1.27380082498659e53 * cos(theta) ** 21 + 1.0217653676363e52 * cos(theta) ** 19 - 6.49282340638451e50 * cos(theta) ** 17 + 3.19936225821846e49 * cos(theta) ** 15 - 1.18914349420509e48 * cos(theta) ** 13 + 3.21390133568943e46 * cos(theta) ** 11 - 6.00627160934145e44 * cos(theta) ** 9 + 7.21714879627143e42 * cos(theta) ** 7 - 4.97734399742857e40 * cos(theta) ** 5 + 1.61079093767915e38 * cos(theta) ** 3 - 1.54339597989059e35 * cos(theta) ) * cos(18 * phi) ) # @torch.jit.script def Yl81_m19(theta, phi): return ( 2.95767348250648e-36 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 2.78777915995122e58 * cos(theta) ** 62 - 3.27434185805451e59 * cos(theta) ** 60 + 1.82251103420015e60 * cos(theta) ** 58 - 6.39620114550499e60 * cos(theta) ** 56 + 1.58873383291575e61 * cos(theta) ** 54 - 2.97186681686594e61 * cos(theta) ** 52 + 4.34955342071108e61 * cos(theta) ** 50 - 5.10853589680831e61 * cos(theta) ** 48 + 4.90002422755083e61 * cos(theta) ** 46 - 3.88622611150583e61 * cos(theta) ** 44 + 2.57088804299617e61 * cos(theta) ** 42 - 1.4271660896323e61 * cos(theta) ** 40 + 6.67379826087047e60 * cos(theta) ** 38 - 2.63429543929924e60 * cos(theta) ** 36 + 8.78098479766413e59 * cos(theta) ** 34 - 2.46923933407999e59 * cos(theta) ** 32 + 5.84323811881524e58 * cos(theta) ** 30 - 1.15905544080466e58 * cos(theta) ** 28 + 1.91654836668488e57 * cos(theta) ** 26 - 2.62264513335825e56 * cos(theta) ** 24 + 2.94247990571902e55 * cos(theta) ** 22 - 2.67498173247183e54 * cos(theta) ** 20 + 1.94135419850897e53 * cos(theta) ** 18 - 1.10377997908537e52 * cos(theta) ** 16 + 4.79904338732768e50 * cos(theta) ** 14 - 1.54588654246662e49 * cos(theta) ** 12 + 3.53529146925838e47 * cos(theta) ** 10 - 5.4056444484073e45 * cos(theta) ** 8 + 5.05200415739e43 * cos(theta) ** 6 - 2.48867199871429e41 * cos(theta) ** 4 + 4.83237281303745e38 * cos(theta) ** 2 - 1.54339597989059e35 ) * cos(19 * phi) ) # @torch.jit.script def Yl81_m20(theta, phi): return ( 3.73760752933104e-38 * (1.0 - cos(theta) ** 2) ** 10 * ( 1.72842307916976e60 * cos(theta) ** 61 - 1.9646051148327e61 * cos(theta) ** 59 + 1.05705639983609e62 * cos(theta) ** 57 - 3.58187264148279e62 * cos(theta) ** 55 + 8.57916269774508e62 * cos(theta) ** 53 - 1.54537074477029e63 * cos(theta) ** 51 + 2.17477671035554e63 * cos(theta) ** 49 - 2.45209723046799e63 * cos(theta) ** 47 + 2.25401114467338e63 * cos(theta) ** 45 - 1.70993948906257e63 * cos(theta) ** 43 + 1.07977297805839e63 * cos(theta) ** 41 - 5.7086643585292e62 * cos(theta) ** 39 + 2.53604333913078e62 * cos(theta) ** 37 - 9.48346358147726e61 * cos(theta) ** 35 + 2.9855348312058e61 * cos(theta) ** 33 - 7.90156586905596e60 * cos(theta) ** 31 + 1.75297143564457e60 * cos(theta) ** 29 - 3.24535523425306e59 * cos(theta) ** 27 + 4.98302575338068e58 * cos(theta) ** 25 - 6.29434832005981e57 * cos(theta) ** 23 + 6.47345579258184e56 * cos(theta) ** 21 - 5.34996346494367e55 * cos(theta) ** 19 + 3.49443755731615e54 * cos(theta) ** 17 - 1.76604796653659e53 * cos(theta) ** 15 + 6.71866074225876e51 * cos(theta) ** 13 - 1.85506385095994e50 * cos(theta) ** 11 + 3.53529146925837e48 * cos(theta) ** 9 - 4.32451555872584e46 * cos(theta) ** 7 + 3.031202494434e44 * cos(theta) ** 5 - 9.95468799485715e41 * cos(theta) ** 3 + 9.6647456260749e38 * cos(theta) ) * cos(20 * phi) ) # @torch.jit.script def Yl81_m21(theta, phi): return ( 4.73836697333064e-40 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.05433807829355e62 * cos(theta) ** 60 - 1.1591170177513e63 * cos(theta) ** 58 + 6.0252214790657e63 * cos(theta) ** 56 - 1.97002995281554e64 * cos(theta) ** 54 + 4.54695622980489e64 * cos(theta) ** 52 - 7.88139079832848e64 * cos(theta) ** 50 + 1.06564058807421e65 * cos(theta) ** 48 - 1.15248569831996e65 * cos(theta) ** 46 + 1.01430501510302e65 * cos(theta) ** 44 - 7.35273980296904e64 * cos(theta) ** 42 + 4.4270692100394e64 * cos(theta) ** 40 - 2.22637909982639e64 * cos(theta) ** 38 + 9.38336035478389e63 * cos(theta) ** 36 - 3.31921225351704e63 * cos(theta) ** 34 + 9.85226494297915e62 * cos(theta) ** 32 - 2.44948541940735e62 * cos(theta) ** 30 + 5.08361716336926e61 * cos(theta) ** 28 - 8.76245913248326e60 * cos(theta) ** 26 + 1.24575643834517e60 * cos(theta) ** 24 - 1.44770011361376e59 * cos(theta) ** 22 + 1.35942571644219e58 * cos(theta) ** 20 - 1.0164930583393e57 * cos(theta) ** 18 + 5.94054384743745e55 * cos(theta) ** 16 - 2.64907194980488e54 * cos(theta) ** 14 + 8.73425896493638e52 * cos(theta) ** 12 - 2.04057023605593e51 * cos(theta) ** 10 + 3.18176232233254e49 * cos(theta) ** 8 - 3.02716089110809e47 * cos(theta) ** 6 + 1.515601247217e45 * cos(theta) ** 4 - 2.98640639845714e42 * cos(theta) ** 2 + 9.6647456260749e38 ) * cos(21 * phi) ) # @torch.jit.script def Yl81_m22(theta, phi): return ( 6.02746163894733e-42 * (1.0 - cos(theta) ** 2) ** 11 * ( 6.32602846976131e63 * cos(theta) ** 59 - 6.72287870295751e64 * cos(theta) ** 57 + 3.37412402827679e65 * cos(theta) ** 55 - 1.06381617452039e66 * cos(theta) ** 53 + 2.36441723949854e66 * cos(theta) ** 51 - 3.94069539916424e66 * cos(theta) ** 49 + 5.11507482275623e66 * cos(theta) ** 47 - 5.3014342122718e66 * cos(theta) ** 45 + 4.4629420664533e66 * cos(theta) ** 43 - 3.08815071724699e66 * cos(theta) ** 41 + 1.77082768401576e66 * cos(theta) ** 39 - 8.46024057934028e65 * cos(theta) ** 37 + 3.3780097277222e65 * cos(theta) ** 35 - 1.12853216619579e65 * cos(theta) ** 33 + 3.15272478175333e64 * cos(theta) ** 31 - 7.34845625822204e63 * cos(theta) ** 29 + 1.42341280574339e63 * cos(theta) ** 27 - 2.27823937444565e62 * cos(theta) ** 25 + 2.98981545202841e61 * cos(theta) ** 23 - 3.18494024995026e60 * cos(theta) ** 21 + 2.71885143288437e59 * cos(theta) ** 19 - 1.82968750501073e58 * cos(theta) ** 17 + 9.50487015589992e56 * cos(theta) ** 15 - 3.70870072972683e55 * cos(theta) ** 13 + 1.04811107579237e54 * cos(theta) ** 11 - 2.04057023605593e52 * cos(theta) ** 9 + 2.54540985786603e50 * cos(theta) ** 7 - 1.81629653466485e48 * cos(theta) ** 5 + 6.062404988868e45 * cos(theta) ** 3 - 5.97281279691429e42 * cos(theta) ) * cos(22 * phi) ) # @torch.jit.script def Yl81_m23(theta, phi): return ( 7.69470154665417e-44 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 3.73235679715917e65 * cos(theta) ** 58 - 3.83204086068578e66 * cos(theta) ** 56 + 1.85576821555223e67 * cos(theta) ** 54 - 5.63822572495806e67 * cos(theta) ** 52 + 1.20585279214426e68 * cos(theta) ** 50 - 1.93094074559048e68 * cos(theta) ** 48 + 2.40408516669543e68 * cos(theta) ** 46 - 2.38564539552231e68 * cos(theta) ** 44 + 1.91906508857492e68 * cos(theta) ** 42 - 1.26614179407127e68 * cos(theta) ** 40 + 6.90622796766146e67 * cos(theta) ** 38 - 3.1302890143559e67 * cos(theta) ** 36 + 1.18230340470277e67 * cos(theta) ** 34 - 3.72415614844612e66 * cos(theta) ** 32 + 9.77344682343532e65 * cos(theta) ** 30 - 2.13105231488439e65 * cos(theta) ** 28 + 3.84321457550716e64 * cos(theta) ** 26 - 5.69559843611412e63 * cos(theta) ** 24 + 6.87657553966534e62 * cos(theta) ** 22 - 6.68837452489555e61 * cos(theta) ** 20 + 5.1658177224803e60 * cos(theta) ** 18 - 3.11046875851825e59 * cos(theta) ** 16 + 1.42573052338499e58 * cos(theta) ** 14 - 4.82131094864488e56 * cos(theta) ** 12 + 1.1529221833716e55 * cos(theta) ** 10 - 1.83651321245034e53 * cos(theta) ** 8 + 1.78178690050622e51 * cos(theta) ** 6 - 9.08148267332427e48 * cos(theta) ** 4 + 1.8187214966604e46 * cos(theta) ** 2 - 5.97281279691429e42 ) * cos(23 * phi) ) # @torch.jit.script def Yl81_m24(theta, phi): return ( 9.86014117846434e-46 * (1.0 - cos(theta) ** 2) ** 12 * ( 2.16476694235232e67 * cos(theta) ** 57 - 2.14594288198404e68 * cos(theta) ** 55 + 1.00211483639821e69 * cos(theta) ** 53 - 2.93187737697819e69 * cos(theta) ** 51 + 6.02926396072128e69 * cos(theta) ** 49 - 9.26851557883429e69 * cos(theta) ** 47 + 1.1058791766799e70 * cos(theta) ** 45 - 1.04968397402982e70 * cos(theta) ** 43 + 8.06007337201466e69 * cos(theta) ** 41 - 5.06456717628507e69 * cos(theta) ** 39 + 2.62436662771136e69 * cos(theta) ** 37 - 1.12690404516813e69 * cos(theta) ** 35 + 4.01983157598942e68 * cos(theta) ** 33 - 1.19172996750276e68 * cos(theta) ** 31 + 2.93203404703059e67 * cos(theta) ** 29 - 5.9669464816763e66 * cos(theta) ** 27 + 9.99235789631861e65 * cos(theta) ** 25 - 1.36694362466739e65 * cos(theta) ** 23 + 1.51284661872637e64 * cos(theta) ** 21 - 1.33767490497911e63 * cos(theta) ** 19 + 9.29847190046455e61 * cos(theta) ** 17 - 4.9767500136292e60 * cos(theta) ** 15 + 1.99602273273898e59 * cos(theta) ** 13 - 5.78557313837386e57 * cos(theta) ** 11 + 1.1529221833716e56 * cos(theta) ** 9 - 1.46921056996027e54 * cos(theta) ** 7 + 1.06907214030373e52 * cos(theta) ** 5 - 3.63259306932971e49 * cos(theta) ** 3 + 3.6374429933208e46 * cos(theta) ) * cos(24 * phi) ) # @torch.jit.script def Yl81_m25(theta, phi): return ( 1.26850672151801e-47 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 1.23391715714082e69 * cos(theta) ** 56 - 1.18026858509122e70 * cos(theta) ** 54 + 5.3112086329105e70 * cos(theta) ** 52 - 1.49525746225888e71 * cos(theta) ** 50 + 2.95433934075343e71 * cos(theta) ** 48 - 4.35620232205212e71 * cos(theta) ** 46 + 4.97645629505954e71 * cos(theta) ** 44 - 4.51364108832821e71 * cos(theta) ** 42 + 3.30463008252601e71 * cos(theta) ** 40 - 1.97518119875118e71 * cos(theta) ** 38 + 9.71015652253201e70 * cos(theta) ** 36 - 3.94416415808844e70 * cos(theta) ** 34 + 1.32654442007651e70 * cos(theta) ** 32 - 3.69436289925855e69 * cos(theta) ** 30 + 8.50289873638873e68 * cos(theta) ** 28 - 1.6110755500526e68 * cos(theta) ** 26 + 2.49808947407965e67 * cos(theta) ** 24 - 3.14397033673499e66 * cos(theta) ** 22 + 3.17697789932539e65 * cos(theta) ** 20 - 2.54158231946031e64 * cos(theta) ** 18 + 1.58074022307897e63 * cos(theta) ** 16 - 7.46512502044379e61 * cos(theta) ** 14 + 2.59482955256068e60 * cos(theta) ** 12 - 6.36413045221125e58 * cos(theta) ** 10 + 1.03762996503444e57 * cos(theta) ** 8 - 1.02844739897219e55 * cos(theta) ** 6 + 5.34536070151866e52 * cos(theta) ** 4 - 1.08977792079891e50 * cos(theta) ** 2 + 3.6374429933208e46 ) * cos(25 * phi) ) # @torch.jit.script def Yl81_m26(theta, phi): return ( 1.63872798539216e-49 * (1.0 - cos(theta) ** 2) ** 13 * ( 6.90993607998861e70 * cos(theta) ** 55 - 6.3734503594926e71 * cos(theta) ** 53 + 2.76182848911346e72 * cos(theta) ** 51 - 7.47628731129439e72 * cos(theta) ** 49 + 1.41808288356165e73 * cos(theta) ** 47 - 2.00385306814397e73 * cos(theta) ** 45 + 2.1896407698262e73 * cos(theta) ** 43 - 1.89572925709785e73 * cos(theta) ** 41 + 1.3218520330104e73 * cos(theta) ** 39 - 7.50568855525448e72 * cos(theta) ** 37 + 3.49565634811153e72 * cos(theta) ** 35 - 1.34101581375007e72 * cos(theta) ** 33 + 4.24494214424482e71 * cos(theta) ** 31 - 1.10830886977756e71 * cos(theta) ** 29 + 2.38081164618884e70 * cos(theta) ** 27 - 4.18879643013676e69 * cos(theta) ** 25 + 5.99541473779117e68 * cos(theta) ** 23 - 6.91673474081699e67 * cos(theta) ** 21 + 6.35395579865077e66 * cos(theta) ** 19 - 4.57484817502856e65 * cos(theta) ** 17 + 2.52918435692636e64 * cos(theta) ** 15 - 1.04511750286213e63 * cos(theta) ** 13 + 3.11379546307281e61 * cos(theta) ** 11 - 6.36413045221125e59 * cos(theta) ** 9 + 8.30103972027554e57 * cos(theta) ** 7 - 6.17068439383314e55 * cos(theta) ** 5 + 2.13814428060747e53 * cos(theta) ** 3 - 2.17955584159782e50 * cos(theta) ) * cos(26 * phi) ) # @torch.jit.script def Yl81_m27(theta, phi): return ( 2.12624667732623e-51 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 3.80046484399373e72 * cos(theta) ** 54 - 3.37792869053108e73 * cos(theta) ** 52 + 1.40853252944786e74 * cos(theta) ** 50 - 3.66338078253425e74 * cos(theta) ** 48 + 6.66498955273974e74 * cos(theta) ** 46 - 9.01733880664788e74 * cos(theta) ** 44 + 9.41545531025264e74 * cos(theta) ** 42 - 7.77248995410117e74 * cos(theta) ** 40 + 5.15522292874057e74 * cos(theta) ** 38 - 2.77710476544416e74 * cos(theta) ** 36 + 1.22347972183903e74 * cos(theta) ** 34 - 4.42535218537523e73 * cos(theta) ** 32 + 1.3159320647159e73 * cos(theta) ** 30 - 3.21409572235494e72 * cos(theta) ** 28 + 6.42819144470988e71 * cos(theta) ** 26 - 1.04719910753419e71 * cos(theta) ** 24 + 1.37894538969197e70 * cos(theta) ** 22 - 1.45251429557157e69 * cos(theta) ** 20 + 1.20725160174365e68 * cos(theta) ** 18 - 7.77724189754855e66 * cos(theta) ** 16 + 3.79377653538954e65 * cos(theta) ** 14 - 1.35865275372077e64 * cos(theta) ** 12 + 3.42517500938009e62 * cos(theta) ** 10 - 5.72771740699012e60 * cos(theta) ** 8 + 5.81072780419288e58 * cos(theta) ** 6 - 3.08534219691657e56 * cos(theta) ** 4 + 6.4144328418224e53 * cos(theta) ** 2 - 2.17955584159782e50 ) * cos(27 * phi) ) # @torch.jit.script def Yl81_m28(theta, phi): return ( 2.77142748118251e-53 * (1.0 - cos(theta) ** 2) ** 14 * ( 2.05225101575662e74 * cos(theta) ** 53 - 1.75652291907616e75 * cos(theta) ** 51 + 7.04266264723932e75 * cos(theta) ** 49 - 1.75842277561644e76 * cos(theta) ** 47 + 3.06589519426028e76 * cos(theta) ** 45 - 3.96762907492507e76 * cos(theta) ** 43 + 3.95449123030611e76 * cos(theta) ** 41 - 3.10899598164047e76 * cos(theta) ** 39 + 1.95898471292142e76 * cos(theta) ** 37 - 9.99757715559896e75 * cos(theta) ** 35 + 4.15983105425271e75 * cos(theta) ** 33 - 1.41611269932007e75 * cos(theta) ** 31 + 3.94779619414769e74 * cos(theta) ** 29 - 8.99946802259383e73 * cos(theta) ** 27 + 1.67132977562457e73 * cos(theta) ** 25 - 2.51327785808206e72 * cos(theta) ** 23 + 3.03367985732233e71 * cos(theta) ** 21 - 2.90502859114313e70 * cos(theta) ** 19 + 2.17305288313856e69 * cos(theta) ** 17 - 1.24435870360777e68 * cos(theta) ** 15 + 5.31128714954535e66 * cos(theta) ** 13 - 1.63038330446492e65 * cos(theta) ** 11 + 3.42517500938009e63 * cos(theta) ** 9 - 4.5821739255921e61 * cos(theta) ** 7 + 3.48643668251573e59 * cos(theta) ** 5 - 1.23413687876663e57 * cos(theta) ** 3 + 1.28288656836448e54 * cos(theta) ) * cos(28 * phi) ) # @torch.jit.script def Yl81_m29(theta, phi): return ( 3.6296875490925e-55 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 1.08769303835101e76 * cos(theta) ** 52 - 8.95826688728841e76 * cos(theta) ** 50 + 3.45090469714727e77 * cos(theta) ** 48 - 8.26458704539727e77 * cos(theta) ** 46 + 1.37965283741713e78 * cos(theta) ** 44 - 1.70608050221778e78 * cos(theta) ** 42 + 1.6213414044255e78 * cos(theta) ** 40 - 1.21250843283978e78 * cos(theta) ** 38 + 7.24824343780925e77 * cos(theta) ** 36 - 3.49915200445964e77 * cos(theta) ** 34 + 1.3727442479034e77 * cos(theta) ** 32 - 4.38994936789223e76 * cos(theta) ** 30 + 1.14486089630283e76 * cos(theta) ** 28 - 2.42985636610033e75 * cos(theta) ** 26 + 4.17832443906142e74 * cos(theta) ** 24 - 5.78053907358873e73 * cos(theta) ** 22 + 6.37072770037689e72 * cos(theta) ** 20 - 5.51955432317195e71 * cos(theta) ** 18 + 3.69418990133556e70 * cos(theta) ** 16 - 1.86653805541165e69 * cos(theta) ** 14 + 6.90467329440895e67 * cos(theta) ** 12 - 1.79342163491142e66 * cos(theta) ** 10 + 3.08265750844208e64 * cos(theta) ** 8 - 3.20752174791447e62 * cos(theta) ** 6 + 1.74321834125786e60 * cos(theta) ** 4 - 3.70241063629989e57 * cos(theta) ** 2 + 1.28288656836448e54 ) * cos(29 * phi) ) # @torch.jit.script def Yl81_m30(theta, phi): return ( 4.77755923587731e-57 * (1.0 - cos(theta) ** 2) ** 15 * ( 5.65600379942523e77 * cos(theta) ** 51 - 4.47913344364421e78 * cos(theta) ** 49 + 1.65643425463069e79 * cos(theta) ** 47 - 3.80171004088275e79 * cos(theta) ** 45 + 6.07047248463535e79 * cos(theta) ** 43 - 7.16553810931467e79 * cos(theta) ** 41 + 6.48536561770202e79 * cos(theta) ** 39 - 4.60753204479118e79 * cos(theta) ** 37 + 2.60936763761133e79 * cos(theta) ** 35 - 1.18971168151628e79 * cos(theta) ** 33 + 4.39278159329087e78 * cos(theta) ** 31 - 1.31698481036767e78 * cos(theta) ** 29 + 3.20561050964792e77 * cos(theta) ** 27 - 6.31762655186087e76 * cos(theta) ** 25 + 1.00279786537474e76 * cos(theta) ** 23 - 1.27171859618952e75 * cos(theta) ** 21 + 1.27414554007538e74 * cos(theta) ** 19 - 9.93519778170952e72 * cos(theta) ** 17 + 5.9107038421369e71 * cos(theta) ** 15 - 2.61315327757631e70 * cos(theta) ** 13 + 8.28560795329075e68 * cos(theta) ** 11 - 1.79342163491142e67 * cos(theta) ** 9 + 2.46612600675367e65 * cos(theta) ** 7 - 1.92451304874868e63 * cos(theta) ** 5 + 6.97287336503145e60 * cos(theta) ** 3 - 7.40482127259977e57 * cos(theta) ) * cos(30 * phi) ) # @torch.jit.script def Yl81_m31(theta, phi): return ( 6.32138120870022e-59 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 2.88456193770687e79 * cos(theta) ** 50 - 2.19477538738566e80 * cos(theta) ** 48 + 7.78524099676423e80 * cos(theta) ** 46 - 1.71076951839724e81 * cos(theta) ** 44 + 2.6103031683932e81 * cos(theta) ** 42 - 2.93787062481901e81 * cos(theta) ** 40 + 2.52929259090379e81 * cos(theta) ** 38 - 1.70478685657274e81 * cos(theta) ** 36 + 9.13278673163965e80 * cos(theta) ** 34 - 3.92604854900371e80 * cos(theta) ** 32 + 1.36176229392017e80 * cos(theta) ** 30 - 3.81925595006624e79 * cos(theta) ** 28 + 8.65514837604939e78 * cos(theta) ** 26 - 1.57940663796522e78 * cos(theta) ** 24 + 2.3064350903619e77 * cos(theta) ** 22 - 2.67060905199799e76 * cos(theta) ** 20 + 2.42087652614322e75 * cos(theta) ** 18 - 1.68898362289062e74 * cos(theta) ** 16 + 8.86605576320534e72 * cos(theta) ** 14 - 3.39709926084921e71 * cos(theta) ** 12 + 9.11416874861982e69 * cos(theta) ** 10 - 1.61407947142028e68 * cos(theta) ** 8 + 1.72628820472757e66 * cos(theta) ** 6 - 9.62256524374341e63 * cos(theta) ** 4 + 2.09186200950944e61 * cos(theta) ** 2 - 7.40482127259977e57 ) * cos(31 * phi) ) # @torch.jit.script def Yl81_m32(theta, phi): return ( 8.40984046292634e-61 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.44228096885343e81 * cos(theta) ** 49 - 1.05349218594512e82 * cos(theta) ** 47 + 3.58121085851155e82 * cos(theta) ** 45 - 7.52738588094784e82 * cos(theta) ** 43 + 1.09632733072514e83 * cos(theta) ** 41 - 1.17514824992761e83 * cos(theta) ** 39 + 9.61131184543439e82 * cos(theta) ** 37 - 6.13723268366185e82 * cos(theta) ** 35 + 3.10514748875748e82 * cos(theta) ** 33 - 1.25633553568119e82 * cos(theta) ** 31 + 4.08528688176051e81 * cos(theta) ** 29 - 1.06939166601855e81 * cos(theta) ** 27 + 2.25033857777284e80 * cos(theta) ** 25 - 3.79057593111652e79 * cos(theta) ** 23 + 5.07415719879619e78 * cos(theta) ** 21 - 5.34121810399599e77 * cos(theta) ** 19 + 4.35757774705779e76 * cos(theta) ** 17 - 2.70237379662499e75 * cos(theta) ** 15 + 1.24124780684875e74 * cos(theta) ** 13 - 4.07651911301905e72 * cos(theta) ** 11 + 9.11416874861982e70 * cos(theta) ** 9 - 1.29126357713622e69 * cos(theta) ** 7 + 1.03577292283654e67 * cos(theta) ** 5 - 3.84902609749736e64 * cos(theta) ** 3 + 4.18372401901887e61 * cos(theta) ) * cos(32 * phi) ) # @torch.jit.script def Yl81_m33(theta, phi): return ( 1.12521960789178e-62 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 7.06717674738183e82 * cos(theta) ** 48 - 4.95141327394205e83 * cos(theta) ** 46 + 1.6115448863302e84 * cos(theta) ** 44 - 3.23677592880757e84 * cos(theta) ** 42 + 4.49494205597309e84 * cos(theta) ** 40 - 4.58307817471766e84 * cos(theta) ** 38 + 3.55618538281073e84 * cos(theta) ** 36 - 2.14803143928165e84 * cos(theta) ** 34 + 1.02469867128997e84 * cos(theta) ** 32 - 3.89464016061168e83 * cos(theta) ** 30 + 1.18473319571055e83 * cos(theta) ** 28 - 2.88735749825008e82 * cos(theta) ** 26 + 5.6258464444321e81 * cos(theta) ** 24 - 8.718324641568e80 * cos(theta) ** 22 + 1.0655730117472e80 * cos(theta) ** 20 - 1.01483143975924e79 * cos(theta) ** 18 + 7.40788216999825e77 * cos(theta) ** 16 - 4.05356069493748e76 * cos(theta) ** 14 + 1.61362214890337e75 * cos(theta) ** 12 - 4.48417102432095e73 * cos(theta) ** 10 + 8.20275187375784e71 * cos(theta) ** 8 - 9.03884503995354e69 * cos(theta) ** 6 + 5.1788646141827e67 * cos(theta) ** 4 - 1.15470782924921e65 * cos(theta) ** 2 + 4.18372401901887e61 ) * cos(33 * phi) ) # @torch.jit.script def Yl81_m34(theta, phi): return ( 1.51449468182479e-64 * (1.0 - cos(theta) ** 2) ** 17 * ( 3.39224483874328e84 * cos(theta) ** 47 - 2.27765010601334e85 * cos(theta) ** 45 + 7.09079749985286e85 * cos(theta) ** 43 - 1.35944589009918e86 * cos(theta) ** 41 + 1.79797682238924e86 * cos(theta) ** 39 - 1.74156970639271e86 * cos(theta) ** 37 + 1.28022673781186e86 * cos(theta) ** 35 - 7.3033068935576e85 * cos(theta) ** 33 + 3.2790357481279e85 * cos(theta) ** 31 - 1.1683920481835e85 * cos(theta) ** 29 + 3.31725294798953e84 * cos(theta) ** 27 - 7.5071294954502e83 * cos(theta) ** 25 + 1.3502031466637e83 * cos(theta) ** 23 - 1.91803142114496e82 * cos(theta) ** 21 + 2.1311460234944e81 * cos(theta) ** 19 - 1.82669659156663e80 * cos(theta) ** 17 + 1.18526114719972e79 * cos(theta) ** 15 - 5.67498497291248e77 * cos(theta) ** 13 + 1.93634657868405e76 * cos(theta) ** 11 - 4.48417102432095e74 * cos(theta) ** 9 + 6.56220149900627e72 * cos(theta) ** 7 - 5.42330702397212e70 * cos(theta) ** 5 + 2.07154584567308e68 * cos(theta) ** 3 - 2.30941565849842e65 * cos(theta) ) * cos(34 * phi) ) # @torch.jit.script def Yl81_m35(theta, phi): return ( 2.05111414227571e-66 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 1.59435507420934e86 * cos(theta) ** 46 - 1.024942547706e87 * cos(theta) ** 44 + 3.04904292493673e87 * cos(theta) ** 42 - 5.57372814940663e87 * cos(theta) ** 40 + 7.01210960731802e87 * cos(theta) ** 38 - 6.44380791365303e87 * cos(theta) ** 36 + 4.48079358234151e87 * cos(theta) ** 34 - 2.41009127487401e87 * cos(theta) ** 32 + 1.01650108191965e87 * cos(theta) ** 30 - 3.38833693973216e86 * cos(theta) ** 28 + 8.95658295957173e85 * cos(theta) ** 26 - 1.87678237386255e85 * cos(theta) ** 24 + 3.10546723732652e84 * cos(theta) ** 22 - 4.02786598440441e83 * cos(theta) ** 20 + 4.04917744463936e82 * cos(theta) ** 18 - 3.10538420566327e81 * cos(theta) ** 16 + 1.77789172079958e80 * cos(theta) ** 14 - 7.37748046478622e78 * cos(theta) ** 12 + 2.12998123655245e77 * cos(theta) ** 10 - 4.03575392188886e75 * cos(theta) ** 8 + 4.59354104930439e73 * cos(theta) ** 6 - 2.71165351198606e71 * cos(theta) ** 4 + 6.21463753701924e68 * cos(theta) ** 2 - 2.30941565849842e65 ) * cos(35 * phi) ) # @torch.jit.script def Yl81_m36(theta, phi): return ( 2.79587649089978e-68 * (1.0 - cos(theta) ** 2) ** 18 * ( 7.33403334136297e87 * cos(theta) ** 45 - 4.50974720990642e88 * cos(theta) ** 43 + 1.28059802847343e89 * cos(theta) ** 41 - 2.22949125976265e89 * cos(theta) ** 39 + 2.66460165078085e89 * cos(theta) ** 37 - 2.31977084891509e89 * cos(theta) ** 35 + 1.52346981799611e89 * cos(theta) ** 33 - 7.71229207959682e88 * cos(theta) ** 31 + 3.04950324575895e88 * cos(theta) ** 29 - 9.48734343125006e87 * cos(theta) ** 27 + 2.32871156948865e87 * cos(theta) ** 25 - 4.50427769727012e86 * cos(theta) ** 23 + 6.83202792211834e85 * cos(theta) ** 21 - 8.05573196880883e84 * cos(theta) ** 19 + 7.28851940035084e83 * cos(theta) ** 17 - 4.96861472906123e82 * cos(theta) ** 15 + 2.48904840911941e81 * cos(theta) ** 13 - 8.85297655774346e79 * cos(theta) ** 11 + 2.12998123655245e78 * cos(theta) ** 9 - 3.22860313751109e76 * cos(theta) ** 7 + 2.75612462958263e74 * cos(theta) ** 5 - 1.08466140479442e72 * cos(theta) ** 3 + 1.24292750740385e69 * cos(theta) ) * cos(36 * phi) ) # @torch.jit.script def Yl81_m37(theta, phi): return ( 3.83681378532868e-70 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 3.30031500361333e89 * cos(theta) ** 44 - 1.93919130025976e90 * cos(theta) ** 42 + 5.25045191674105e90 * cos(theta) ** 40 - 8.69501591307435e90 * cos(theta) ** 38 + 9.85902610788914e90 * cos(theta) ** 36 - 8.11919797120282e90 * cos(theta) ** 34 + 5.02745039938718e90 * cos(theta) ** 32 - 2.39081054467501e90 * cos(theta) ** 30 + 8.84355941270095e89 * cos(theta) ** 28 - 2.56158272643752e89 * cos(theta) ** 26 + 5.82177892372163e88 * cos(theta) ** 24 - 1.03598387037213e88 * cos(theta) ** 22 + 1.43472586364485e87 * cos(theta) ** 20 - 1.53058907407368e86 * cos(theta) ** 18 + 1.23904829805964e85 * cos(theta) ** 16 - 7.45292209359184e83 * cos(theta) ** 14 + 3.23576293185524e82 * cos(theta) ** 12 - 9.73827421351781e80 * cos(theta) ** 10 + 1.91698311289721e79 * cos(theta) ** 8 - 2.26002219625776e77 * cos(theta) ** 6 + 1.37806231479132e75 * cos(theta) ** 4 - 3.25398421438327e72 * cos(theta) ** 2 + 1.24292750740385e69 ) * cos(37 * phi) ) # @torch.jit.script def Yl81_m38(theta, phi): return ( 5.30238066213549e-72 * (1.0 - cos(theta) ** 2) ** 19 * ( 1.45213860158987e91 * cos(theta) ** 43 - 8.14460346109099e91 * cos(theta) ** 41 + 2.10018076669642e92 * cos(theta) ** 39 - 3.30410604696825e92 * cos(theta) ** 37 + 3.54924939884009e92 * cos(theta) ** 35 - 2.76052731020896e92 * cos(theta) ** 33 + 1.6087841278039e92 * cos(theta) ** 31 - 7.17243163402505e91 * cos(theta) ** 29 + 2.47619663555627e91 * cos(theta) ** 27 - 6.66011508873754e90 * cos(theta) ** 25 + 1.39722694169319e90 * cos(theta) ** 23 - 2.27916451481868e89 * cos(theta) ** 21 + 2.8694517272897e88 * cos(theta) ** 19 - 2.75506033333262e87 * cos(theta) ** 17 + 1.98247727689543e86 * cos(theta) ** 15 - 1.04340909310286e85 * cos(theta) ** 13 + 3.88291551822628e83 * cos(theta) ** 11 - 9.73827421351781e81 * cos(theta) ** 9 + 1.53358649031777e80 * cos(theta) ** 7 - 1.35601331775466e78 * cos(theta) ** 5 + 5.51224925916527e75 * cos(theta) ** 3 - 6.50796842876655e72 * cos(theta) ) * cos(38 * phi) ) # @torch.jit.script def Yl81_m39(theta, phi): return ( 7.38152427040842e-74 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 6.24419598683643e92 * cos(theta) ** 42 - 3.33928741904731e93 * cos(theta) ** 40 + 8.19070499011604e93 * cos(theta) ** 38 - 1.22251923737825e94 * cos(theta) ** 36 + 1.24223728959403e94 * cos(theta) ** 34 - 9.10974012368957e93 * cos(theta) ** 32 + 4.98723079619208e93 * cos(theta) ** 30 - 2.08000517386726e93 * cos(theta) ** 28 + 6.68573091600192e92 * cos(theta) ** 26 - 1.66502877218439e92 * cos(theta) ** 24 + 3.21362196589434e91 * cos(theta) ** 22 - 4.78624548111923e90 * cos(theta) ** 20 + 5.45195828185044e89 * cos(theta) ** 18 - 4.68360256666545e88 * cos(theta) ** 16 + 2.97371591534314e87 * cos(theta) ** 14 - 1.35643182103372e86 * cos(theta) ** 12 + 4.27120707004891e84 * cos(theta) ** 10 - 8.76444679216603e82 * cos(theta) ** 8 + 1.07351054322244e81 * cos(theta) ** 6 - 6.78006658877328e78 * cos(theta) ** 4 + 1.65367477774958e76 * cos(theta) ** 2 - 6.50796842876655e72 ) * cos(39 * phi) ) # @torch.jit.script def Yl81_m40(theta, phi): return ( 1.03544902068228e-75 * (1.0 - cos(theta) ** 2) ** 20 * ( 2.6225623144713e94 * cos(theta) ** 41 - 1.33571496761892e95 * cos(theta) ** 39 + 3.11246789624409e95 * cos(theta) ** 37 - 4.40106925456171e95 * cos(theta) ** 35 + 4.22360678461971e95 * cos(theta) ** 33 - 2.91511683958066e95 * cos(theta) ** 31 + 1.49616923885762e95 * cos(theta) ** 29 - 5.82401448682834e94 * cos(theta) ** 27 + 1.7382900381605e94 * cos(theta) ** 25 - 3.99606905324253e93 * cos(theta) ** 23 + 7.06996832496754e92 * cos(theta) ** 21 - 9.57249096223845e91 * cos(theta) ** 19 + 9.81352490733079e90 * cos(theta) ** 17 - 7.49376410666472e89 * cos(theta) ** 15 + 4.1632022814804e88 * cos(theta) ** 13 - 1.62771818524046e87 * cos(theta) ** 11 + 4.27120707004891e85 * cos(theta) ** 9 - 7.01155743373282e83 * cos(theta) ** 7 + 6.44106325933462e81 * cos(theta) ** 5 - 2.71202663550931e79 * cos(theta) ** 3 + 3.30734955549916e76 * cos(theta) ) * cos(40 * phi) ) # @torch.jit.script def Yl81_m41(theta, phi): return ( 1.46405326681666e-77 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 1.07525054893323e96 * cos(theta) ** 40 - 5.2092883737138e96 * cos(theta) ** 38 + 1.15161312161031e97 * cos(theta) ** 36 - 1.5403742390966e97 * cos(theta) ** 34 + 1.3937902389245e97 * cos(theta) ** 32 - 9.03686220270005e96 * cos(theta) ** 30 + 4.33889079268711e96 * cos(theta) ** 28 - 1.57248391144365e96 * cos(theta) ** 26 + 4.34572509540125e95 * cos(theta) ** 24 - 9.19095882245781e94 * cos(theta) ** 22 + 1.48469334824318e94 * cos(theta) ** 20 - 1.81877328282531e93 * cos(theta) ** 18 + 1.66829923424623e92 * cos(theta) ** 16 - 1.12406461599971e91 * cos(theta) ** 14 + 5.41216296592452e89 * cos(theta) ** 12 - 1.7904900037645e88 * cos(theta) ** 10 + 3.84408636304402e86 * cos(theta) ** 8 - 4.90809020361298e84 * cos(theta) ** 6 + 3.22053162966731e82 * cos(theta) ** 4 - 8.13607990652794e79 * cos(theta) ** 2 + 3.30734955549916e76 ) * cos(41 * phi) ) # @torch.jit.script def Yl81_m42(theta, phi): return ( 2.08724931218398e-79 * (1.0 - cos(theta) ** 2) ** 21 * ( 4.30100219573293e97 * cos(theta) ** 39 - 1.97952958201124e98 * cos(theta) ** 37 + 4.14580723779713e98 * cos(theta) ** 35 - 5.23727241292844e98 * cos(theta) ** 33 + 4.46012876455841e98 * cos(theta) ** 31 - 2.71105866081002e98 * cos(theta) ** 29 + 1.21488942195239e98 * cos(theta) ** 27 - 4.08845816975349e97 * cos(theta) ** 25 + 1.0429740228963e97 * cos(theta) ** 23 - 2.02201094094072e96 * cos(theta) ** 21 + 2.96938669648637e95 * cos(theta) ** 19 - 3.27379190908555e94 * cos(theta) ** 17 + 2.66927877479397e93 * cos(theta) ** 15 - 1.57369046239959e92 * cos(theta) ** 13 + 6.49459555910943e90 * cos(theta) ** 11 - 1.7904900037645e89 * cos(theta) ** 9 + 3.07526909043522e87 * cos(theta) ** 7 - 2.94485412216779e85 * cos(theta) ** 5 + 1.28821265186692e83 * cos(theta) ** 3 - 1.62721598130559e80 * cos(theta) ) * cos(42 * phi) ) # @torch.jit.script def Yl81_m43(theta, phi): return ( 3.0014504665664e-81 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 1.67739085633584e99 * cos(theta) ** 38 - 7.3242594534416e99 * cos(theta) ** 36 + 1.451032533229e100 * cos(theta) ** 34 - 1.72829989626638e100 * cos(theta) ** 32 + 1.38263991701311e100 * cos(theta) ** 30 - 7.86207011634904e99 * cos(theta) ** 28 + 3.28020143927146e99 * cos(theta) ** 26 - 1.02211454243837e99 * cos(theta) ** 24 + 2.39884025266149e98 * cos(theta) ** 22 - 4.24622297597551e97 * cos(theta) ** 20 + 5.6418347233241e96 * cos(theta) ** 18 - 5.56544624544544e95 * cos(theta) ** 16 + 4.00391816219096e94 * cos(theta) ** 14 - 2.04579760111947e93 * cos(theta) ** 12 + 7.14405511502037e91 * cos(theta) ** 10 - 1.61144100338805e90 * cos(theta) ** 8 + 2.15268836330465e88 * cos(theta) ** 6 - 1.47242706108389e86 * cos(theta) ** 4 + 3.86463795560077e83 * cos(theta) ** 2 - 1.62721598130559e80 ) * cos(43 * phi) ) # @torch.jit.script def Yl81_m44(theta, phi): return ( 4.35496205875107e-83 * (1.0 - cos(theta) ** 2) ** 22 * ( 6.37408525407621e100 * cos(theta) ** 37 - 2.63673340323898e101 * cos(theta) ** 35 + 4.93351061297859e101 * cos(theta) ** 33 - 5.53055966805243e101 * cos(theta) ** 31 + 4.14791975103932e101 * cos(theta) ** 29 - 2.20137963257773e101 * cos(theta) ** 27 + 8.52852374210578e100 * cos(theta) ** 25 - 2.4530749018521e100 * cos(theta) ** 23 + 5.27744855585527e99 * cos(theta) ** 21 - 8.49244595195101e98 * cos(theta) ** 19 + 1.01553025019834e98 * cos(theta) ** 17 - 8.9047139927127e96 * cos(theta) ** 15 + 5.60548542706735e95 * cos(theta) ** 13 - 2.45495712134336e94 * cos(theta) ** 11 + 7.14405511502037e92 * cos(theta) ** 9 - 1.28915280271044e91 * cos(theta) ** 7 + 1.29161301798279e89 * cos(theta) ** 5 - 5.88970824433557e86 * cos(theta) ** 3 + 7.72927591120154e83 * cos(theta) ) * cos(44 * phi) ) # @torch.jit.script def Yl81_m45(theta, phi): return ( 6.37820158470133e-85 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 2.3584115440082e102 * cos(theta) ** 36 - 9.22856691133642e102 * cos(theta) ** 34 + 1.62805850228293e103 * cos(theta) ** 32 - 1.71447349709625e103 * cos(theta) ** 30 + 1.2028967278014e103 * cos(theta) ** 28 - 5.94372500795988e102 * cos(theta) ** 26 + 2.13213093552645e102 * cos(theta) ** 24 - 5.64207227425982e101 * cos(theta) ** 22 + 1.10826419672961e101 * cos(theta) ** 20 - 1.61356473087069e100 * cos(theta) ** 18 + 1.72640142533717e99 * cos(theta) ** 16 - 1.3357070989069e98 * cos(theta) ** 14 + 7.28713105518755e96 * cos(theta) ** 12 - 2.7004528334777e95 * cos(theta) ** 10 + 6.42964960351833e93 * cos(theta) ** 8 - 9.0240696189731e91 * cos(theta) ** 6 + 6.45806508991396e89 * cos(theta) ** 4 - 1.76691247330067e87 * cos(theta) ** 2 + 7.72927591120154e83 ) * cos(45 * phi) ) # @torch.jit.script def Yl81_m46(theta, phi): return ( 9.43289782425483e-87 * (1.0 - cos(theta) ** 2) ** 23 * ( 8.49028155842951e103 * cos(theta) ** 35 - 3.13771274985438e104 * cos(theta) ** 33 + 5.20978720730539e104 * cos(theta) ** 31 - 5.14342049128876e104 * cos(theta) ** 29 + 3.36811083784393e104 * cos(theta) ** 27 - 1.54536850206957e104 * cos(theta) ** 25 + 5.11711424526347e103 * cos(theta) ** 23 - 1.24125590033716e103 * cos(theta) ** 21 + 2.21652839345921e102 * cos(theta) ** 19 - 2.90441651556725e101 * cos(theta) ** 17 + 2.76224228053948e100 * cos(theta) ** 15 - 1.86998993846967e99 * cos(theta) ** 13 + 8.74455726622506e97 * cos(theta) ** 11 - 2.7004528334777e96 * cos(theta) ** 9 + 5.14371968281467e94 * cos(theta) ** 7 - 5.41444177138386e92 * cos(theta) ** 5 + 2.58322603596558e90 * cos(theta) ** 3 - 3.53382494660134e87 * cos(theta) ) * cos(46 * phi) ) # @torch.jit.script def Yl81_m47(theta, phi): return ( 1.40930866855969e-88 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 2.97159854545033e105 * cos(theta) ** 34 - 1.03544520745195e106 * cos(theta) ** 32 + 1.61503403426467e106 * cos(theta) ** 30 - 1.49159194247374e106 * cos(theta) ** 28 + 9.09389926217861e105 * cos(theta) ** 26 - 3.86342125517392e105 * cos(theta) ** 24 + 1.1769362764106e105 * cos(theta) ** 22 - 2.60663739070804e104 * cos(theta) ** 20 + 4.21140394757251e103 * cos(theta) ** 18 - 4.93750807646432e102 * cos(theta) ** 16 + 4.14336342080922e101 * cos(theta) ** 14 - 2.43098692001057e100 * cos(theta) ** 12 + 9.61901299284757e98 * cos(theta) ** 10 - 2.43040755012993e97 * cos(theta) ** 8 + 3.60060377797027e95 * cos(theta) ** 6 - 2.70722088569193e93 * cos(theta) ** 4 + 7.74967810789675e90 * cos(theta) ** 2 - 3.53382494660134e87 ) * cos(47 * phi) ) # @torch.jit.script def Yl81_m48(theta, phi): return ( 2.12800091117688e-90 * (1.0 - cos(theta) ** 2) ** 24 * ( 1.01034350545311e107 * cos(theta) ** 33 - 3.31342466384623e107 * cos(theta) ** 31 + 4.84510210279401e107 * cos(theta) ** 29 - 4.17645743892647e107 * cos(theta) ** 27 + 2.36441380816644e107 * cos(theta) ** 25 - 9.27221101241741e106 * cos(theta) ** 23 + 2.58925980810332e106 * cos(theta) ** 21 - 5.21327478141607e105 * cos(theta) ** 19 + 7.58052710563051e104 * cos(theta) ** 17 - 7.90001292234291e103 * cos(theta) ** 15 + 5.80070878913291e102 * cos(theta) ** 13 - 2.91718430401268e101 * cos(theta) ** 11 + 9.61901299284757e99 * cos(theta) ** 9 - 1.94432604010394e98 * cos(theta) ** 7 + 2.16036226678216e96 * cos(theta) ** 5 - 1.08288835427677e94 * cos(theta) ** 3 + 1.54993562157935e91 * cos(theta) ) * cos(48 * phi) ) # @torch.jit.script def Yl81_m49(theta, phi): return ( 3.24895101520936e-92 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 3.33413356799527e108 * cos(theta) ** 32 - 1.02716164579233e109 * cos(theta) ** 30 + 1.40507960981026e109 * cos(theta) ** 28 - 1.12764350851015e109 * cos(theta) ** 26 + 5.9110345204161e108 * cos(theta) ** 24 - 2.132608532856e108 * cos(theta) ** 22 + 5.43744559701696e107 * cos(theta) ** 20 - 9.90522208469054e106 * cos(theta) ** 18 + 1.28868960795719e106 * cos(theta) ** 16 - 1.18500193835144e105 * cos(theta) ** 14 + 7.54092142587278e103 * cos(theta) ** 12 - 3.20890273441395e102 * cos(theta) ** 10 + 8.65711169356281e100 * cos(theta) ** 8 - 1.36102822807276e99 * cos(theta) ** 6 + 1.08018113339108e97 * cos(theta) ** 4 - 3.24866506283032e94 * cos(theta) ** 2 + 1.54993562157935e91 ) * cos(49 * phi) ) # @torch.jit.script def Yl81_m50(theta, phi): return ( 5.01802160120378e-94 * (1.0 - cos(theta) ** 2) ** 25 * ( 1.06692274175849e110 * cos(theta) ** 31 - 3.08148493737699e110 * cos(theta) ** 29 + 3.93422290746874e110 * cos(theta) ** 27 - 2.93187312212638e110 * cos(theta) ** 25 + 1.41864828489986e110 * cos(theta) ** 23 - 4.69173877228321e109 * cos(theta) ** 21 + 1.08748911940339e109 * cos(theta) ** 19 - 1.7829399752443e108 * cos(theta) ** 17 + 2.0619033727315e107 * cos(theta) ** 15 - 1.65900271369201e106 * cos(theta) ** 13 + 9.04910571104733e104 * cos(theta) ** 11 - 3.20890273441395e103 * cos(theta) ** 9 + 6.92568935485025e101 * cos(theta) ** 7 - 8.16616936843656e99 * cos(theta) ** 5 + 4.32072453356432e97 * cos(theta) ** 3 - 6.49733012566063e94 * cos(theta) ) * cos(50 * phi) ) # @torch.jit.script def Yl81_m51(theta, phi): return ( 7.84449000485907e-96 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 3.3074604994513e111 * cos(theta) ** 30 - 8.93630631839328e111 * cos(theta) ** 28 + 1.06224018501656e112 * cos(theta) ** 26 - 7.32968280531596e111 * cos(theta) ** 24 + 3.26289105526969e111 * cos(theta) ** 22 - 9.85265142179474e110 * cos(theta) ** 20 + 2.06622932686645e110 * cos(theta) ** 18 - 3.0309979579153e109 * cos(theta) ** 16 + 3.09285505909725e108 * cos(theta) ** 14 - 2.15670352779961e107 * cos(theta) ** 12 + 9.95401628215207e105 * cos(theta) ** 10 - 2.88801246097255e104 * cos(theta) ** 8 + 4.84798254839517e102 * cos(theta) ** 6 - 4.08308468421828e100 * cos(theta) ** 4 + 1.2962173600693e98 * cos(theta) ** 2 - 6.49733012566063e94 ) * cos(51 * phi) ) # @torch.jit.script def Yl81_m52(theta, phi): return ( 1.24187609143365e-97 * (1.0 - cos(theta) ** 2) ** 26 * ( 9.92238149835392e112 * cos(theta) ** 29 - 2.50216576915012e113 * cos(theta) ** 27 + 2.76182448104305e113 * cos(theta) ** 25 - 1.75912387327583e113 * cos(theta) ** 23 + 7.17836032159331e112 * cos(theta) ** 21 - 1.97053028435895e112 * cos(theta) ** 19 + 3.7192127883596e111 * cos(theta) ** 17 - 4.84959673266449e110 * cos(theta) ** 15 + 4.32999708273615e109 * cos(theta) ** 13 - 2.58804423335954e108 * cos(theta) ** 11 + 9.95401628215207e106 * cos(theta) ** 9 - 2.31040996877804e105 * cos(theta) ** 7 + 2.9087895290371e103 * cos(theta) ** 5 - 1.63323387368731e101 * cos(theta) ** 3 + 2.59243472013859e98 * cos(theta) ) * cos(52 * phi) ) # @torch.jit.script def Yl81_m53(theta, phi): return ( 1.99217216611943e-99 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 2.87749063452264e114 * cos(theta) ** 28 - 6.75584757670532e114 * cos(theta) ** 26 + 6.90456120260764e114 * cos(theta) ** 24 - 4.04598490853441e114 * cos(theta) ** 22 + 1.5074556675346e114 * cos(theta) ** 20 - 3.744007540282e113 * cos(theta) ** 18 + 6.32266174021133e112 * cos(theta) ** 16 - 7.27439509899673e111 * cos(theta) ** 14 + 5.62899620755699e110 * cos(theta) ** 12 - 2.84684865669549e109 * cos(theta) ** 10 + 8.95861465393686e107 * cos(theta) ** 8 - 1.61728697814463e106 * cos(theta) ** 6 + 1.45439476451855e104 * cos(theta) ** 4 - 4.89970162106194e101 * cos(theta) ** 2 + 2.59243472013859e98 ) * cos(53 * phi) ) # @torch.jit.script def Yl81_m54(theta, phi): return ( 3.24026827040331e-101 * (1.0 - cos(theta) ** 2) ** 27 * ( 8.05697377666338e115 * cos(theta) ** 27 - 1.75652036994338e116 * cos(theta) ** 25 + 1.65709468862583e116 * cos(theta) ** 23 - 8.9011667987757e115 * cos(theta) ** 21 + 3.01491133506919e115 * cos(theta) ** 19 - 6.7392135725076e114 * cos(theta) ** 17 + 1.01162587843381e114 * cos(theta) ** 15 - 1.01841531385954e113 * cos(theta) ** 13 + 6.75479544906839e111 * cos(theta) ** 11 - 2.84684865669549e110 * cos(theta) ** 9 + 7.16689172314949e108 * cos(theta) ** 7 - 9.70372186886778e106 * cos(theta) ** 5 + 5.81757905807421e104 * cos(theta) ** 3 - 9.79940324212388e101 * cos(theta) ) * cos(54 * phi) ) # @torch.jit.script def Yl81_m55(theta, phi): return ( 5.34723944420852e-103 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 2.17538291969911e117 * cos(theta) ** 26 - 4.39130092485846e117 * cos(theta) ** 24 + 3.81131778383941e117 * cos(theta) ** 22 - 1.8692450277429e117 * cos(theta) ** 20 + 5.72833153663146e116 * cos(theta) ** 18 - 1.14566630732629e116 * cos(theta) ** 16 + 1.51743881765072e115 * cos(theta) ** 14 - 1.32393990801741e114 * cos(theta) ** 12 + 7.43027499397523e112 * cos(theta) ** 10 - 2.56216379102594e111 * cos(theta) ** 8 + 5.01682420620464e109 * cos(theta) ** 6 - 4.85186093443389e107 * cos(theta) ** 4 + 1.74527371742226e105 * cos(theta) ** 2 - 9.79940324212388e101 ) * cos(55 * phi) ) # @torch.jit.script def Yl81_m56(theta, phi): return ( 8.95947731642572e-105 * (1.0 - cos(theta) ** 2) ** 28 * ( 5.65599559121769e118 * cos(theta) ** 25 - 1.05391222196603e119 * cos(theta) ** 23 + 8.38489912444671e118 * cos(theta) ** 21 - 3.7384900554858e118 * cos(theta) ** 19 + 1.03109967659366e118 * cos(theta) ** 17 - 1.83306609172207e117 * cos(theta) ** 15 + 2.12441434471101e116 * cos(theta) ** 13 - 1.58872788962089e115 * cos(theta) ** 11 + 7.43027499397523e113 * cos(theta) ** 9 - 2.04973103282075e112 * cos(theta) ** 7 + 3.01009452372279e110 * cos(theta) ** 5 - 1.94074437377356e108 * cos(theta) ** 3 + 3.49054743484453e105 * cos(theta) ) * cos(56 * phi) ) # @torch.jit.script def Yl81_m57(theta, phi): return ( 1.52536271555845e-106 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 1.41399889780442e120 * cos(theta) ** 24 - 2.42399811052187e120 * cos(theta) ** 22 + 1.76082881613381e120 * cos(theta) ** 20 - 7.10313110542301e119 * cos(theta) ** 18 + 1.75286945020923e119 * cos(theta) ** 16 - 2.7495991375831e118 * cos(theta) ** 14 + 2.76173864812431e117 * cos(theta) ** 12 - 1.74760067858297e116 * cos(theta) ** 10 + 6.68724749457771e114 * cos(theta) ** 8 - 1.43481172297453e113 * cos(theta) ** 6 + 1.50504726186139e111 * cos(theta) ** 4 - 5.82223312132067e108 * cos(theta) ** 2 + 3.49054743484453e105 ) * cos(57 * phi) ) # @torch.jit.script def Yl81_m58(theta, phi): return ( 2.6409495546881e-108 * (1.0 - cos(theta) ** 2) ** 29 * ( 3.39359735473062e121 * cos(theta) ** 23 - 5.33279584314811e121 * cos(theta) ** 21 + 3.52165763226762e121 * cos(theta) ** 19 - 1.27856359897614e121 * cos(theta) ** 17 + 2.80459112033476e120 * cos(theta) ** 15 - 3.84943879261634e119 * cos(theta) ** 13 + 3.31408637774917e118 * cos(theta) ** 11 - 1.74760067858297e117 * cos(theta) ** 9 + 5.34979799566217e115 * cos(theta) ** 7 - 8.60887033784717e113 * cos(theta) ** 5 + 6.02018904744557e111 * cos(theta) ** 3 - 1.16444662426413e109 * cos(theta) ) * cos(58 * phi) ) # @torch.jit.script def Yl81_m59(theta, phi): return ( 4.6540620574725e-110 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 7.80527391588041e122 * cos(theta) ** 22 - 1.1198871270611e123 * cos(theta) ** 20 + 6.69114950130848e122 * cos(theta) ** 18 - 2.17355811825944e122 * cos(theta) ** 16 + 4.20688668050214e121 * cos(theta) ** 14 - 5.00427043040124e120 * cos(theta) ** 12 + 3.64549501552409e119 * cos(theta) ** 10 - 1.57284061072468e118 * cos(theta) ** 8 + 3.74485859696352e116 * cos(theta) ** 6 - 4.30443516892358e114 * cos(theta) ** 4 + 1.80605671423367e112 * cos(theta) ** 2 - 1.16444662426413e109 ) * cos(59 * phi) ) # @torch.jit.script def Yl81_m60(theta, phi): return ( 8.35624708588904e-112 * (1.0 - cos(theta) ** 2) ** 30 * ( 1.71716026149369e124 * cos(theta) ** 21 - 2.23977425412221e124 * cos(theta) ** 19 + 1.20440691023553e124 * cos(theta) ** 17 - 3.47769298921511e123 * cos(theta) ** 15 + 5.889641352703e122 * cos(theta) ** 13 - 6.00512451648149e121 * cos(theta) ** 11 + 3.64549501552409e120 * cos(theta) ** 9 - 1.25827248857974e119 * cos(theta) ** 7 + 2.24691515817811e117 * cos(theta) ** 5 - 1.72177406756943e115 * cos(theta) ** 3 + 3.61211342846734e112 * cos(theta) ) * cos(60 * phi) ) # @torch.jit.script def Yl81_m61(theta, phi): return ( 1.53023261296433e-113 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 3.60603654913675e125 * cos(theta) ** 20 - 4.25557108283219e125 * cos(theta) ** 18 + 2.04749174740039e125 * cos(theta) ** 16 - 5.21653948382266e124 * cos(theta) ** 14 + 7.6565337585139e123 * cos(theta) ** 12 - 6.60563696812964e122 * cos(theta) ** 10 + 3.28094551397168e121 * cos(theta) ** 8 - 8.80790742005819e119 * cos(theta) ** 6 + 1.12345757908906e118 * cos(theta) ** 4 - 5.1653222027083e115 * cos(theta) ** 2 + 3.61211342846734e112 ) * cos(61 * phi) ) # @torch.jit.script def Yl81_m62(theta, phi): return ( 2.86137275100756e-115 * (1.0 - cos(theta) ** 2) ** 31 * ( 7.2120730982735e126 * cos(theta) ** 19 - 7.66002794909794e126 * cos(theta) ** 17 + 3.27598679584063e126 * cos(theta) ** 15 - 7.30315527735172e125 * cos(theta) ** 13 + 9.18784051021668e124 * cos(theta) ** 11 - 6.60563696812964e123 * cos(theta) ** 9 + 2.62475641117734e122 * cos(theta) ** 7 - 5.28474445203492e120 * cos(theta) ** 5 + 4.49383031635622e118 * cos(theta) ** 3 - 1.03306444054166e116 * cos(theta) ) * cos(62 * phi) ) # @torch.jit.script def Yl81_m63(theta, phi): return ( 5.47036607958023e-117 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 1.37029388867197e128 * cos(theta) ** 18 - 1.30220475134665e128 * cos(theta) ** 16 + 4.91398019376095e127 * cos(theta) ** 14 - 9.49410186055724e126 * cos(theta) ** 12 + 1.01066245612384e126 * cos(theta) ** 10 - 5.94507327131668e124 * cos(theta) ** 8 + 1.83732948782414e123 * cos(theta) ** 6 - 2.64237222601746e121 * cos(theta) ** 4 + 1.34814909490687e119 * cos(theta) ** 2 - 1.03306444054166e116 ) * cos(63 * phi) ) # @torch.jit.script def Yl81_m64(theta, phi): return ( 1.0707698566923e-118 * (1.0 - cos(theta) ** 2) ** 32 * ( 2.46652899960954e129 * cos(theta) ** 17 - 2.08352760215464e129 * cos(theta) ** 15 + 6.87957227126532e128 * cos(theta) ** 13 - 1.13929222326687e128 * cos(theta) ** 11 + 1.01066245612384e127 * cos(theta) ** 9 - 4.75605861705334e125 * cos(theta) ** 7 + 1.10239769269448e124 * cos(theta) ** 5 - 1.05694889040698e122 * cos(theta) ** 3 + 2.69629818981373e119 * cos(theta) ) * cos(64 * phi) ) # @torch.jit.script def Yl81_m65(theta, phi): return ( 2.14929113925793e-120 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 4.19309929933622e130 * cos(theta) ** 16 - 3.12529140323196e130 * cos(theta) ** 14 + 8.94344395264492e129 * cos(theta) ** 12 - 1.25322144559356e129 * cos(theta) ** 10 + 9.09596210511452e127 * cos(theta) ** 8 - 3.32924103193734e126 * cos(theta) ** 6 + 5.51198846347242e124 * cos(theta) ** 4 - 3.17084667122095e122 * cos(theta) ** 2 + 2.69629818981373e119 ) * cos(65 * phi) ) # @torch.jit.script def Yl81_m66(theta, phi): return ( 4.43176363506231e-122 * (1.0 - cos(theta) ** 2) ** 33 * ( 6.70895887893794e131 * cos(theta) ** 15 - 4.37540796452475e131 * cos(theta) ** 13 + 1.07321327431739e131 * cos(theta) ** 11 - 1.25322144559356e130 * cos(theta) ** 9 + 7.27676968409161e128 * cos(theta) ** 7 - 1.9975446191624e127 * cos(theta) ** 5 + 2.20479538538897e125 * cos(theta) ** 3 - 6.3416933424419e122 * cos(theta) ) * cos(66 * phi) ) # @torch.jit.script def Yl81_m67(theta, phi): return ( 9.40589448047078e-124 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 1.00634383184069e133 * cos(theta) ** 14 - 5.68803035388217e132 * cos(theta) ** 12 + 1.18053460174913e132 * cos(theta) ** 10 - 1.1278993010342e131 * cos(theta) ** 8 + 5.09373877886413e129 * cos(theta) ** 6 - 9.98772309581202e127 * cos(theta) ** 4 + 6.6143861561669e125 * cos(theta) ** 2 - 6.3416933424419e122 ) * cos(67 * phi) ) # @torch.jit.script def Yl81_m68(theta, phi): return ( 2.05941063088069e-125 * (1.0 - cos(theta) ** 2) ** 34 * ( 1.40888136457697e134 * cos(theta) ** 13 - 6.8256364246586e133 * cos(theta) ** 11 + 1.18053460174913e133 * cos(theta) ** 9 - 9.0231944082736e131 * cos(theta) ** 7 + 3.05624326731848e130 * cos(theta) ** 5 - 3.99508923832481e128 * cos(theta) ** 3 + 1.32287723123338e126 * cos(theta) ) * cos(68 * phi) ) # @torch.jit.script def Yl81_m69(theta, phi): return ( 4.66364672243888e-127 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 1.83154577395006e135 * cos(theta) ** 12 - 7.50820006712446e134 * cos(theta) ** 10 + 1.06248114157422e134 * cos(theta) ** 8 - 6.31623608579152e132 * cos(theta) ** 6 + 1.52812163365924e131 * cos(theta) ** 4 - 1.19852677149744e129 * cos(theta) ** 2 + 1.32287723123338e126 ) * cos(69 * phi) ) # @torch.jit.script def Yl81_m70(theta, phi): return ( 1.0955861865951e-128 * (1.0 - cos(theta) ** 2) ** 35 * ( 2.19785492874007e136 * cos(theta) ** 11 - 7.50820006712446e135 * cos(theta) ** 9 + 8.49984913259373e134 * cos(theta) ** 7 - 3.78974165147491e133 * cos(theta) ** 5 + 6.11248653463696e131 * cos(theta) ** 3 - 2.39705354299488e129 * cos(theta) ) * cos(70 * phi) ) # @torch.jit.script def Yl81_m71(theta, phi): return ( 2.67934360072195e-130 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 2.41764042161408e137 * cos(theta) ** 10 - 6.75738006041202e136 * cos(theta) ** 8 + 5.94989439281561e135 * cos(theta) ** 6 - 1.89487082573746e134 * cos(theta) ** 4 + 1.83374596039109e132 * cos(theta) ** 2 - 2.39705354299488e129 ) * cos(71 * phi) ) # @torch.jit.script def Yl81_m72(theta, phi): return ( 6.84987578281994e-132 * (1.0 - cos(theta) ** 2) ** 36 * ( 2.41764042161408e138 * cos(theta) ** 9 - 5.40590404832961e137 * cos(theta) ** 7 + 3.56993663568937e136 * cos(theta) ** 5 - 7.57948330294983e134 * cos(theta) ** 3 + 3.66749192078217e132 * cos(theta) ) * cos(72 * phi) ) # @torch.jit.script def Yl81_m73(theta, phi): return ( 1.83992906883921e-133 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 2.17587637945267e139 * cos(theta) ** 8 - 3.78413283383073e138 * cos(theta) ** 6 + 1.78496831784468e137 * cos(theta) ** 4 - 2.27384499088495e135 * cos(theta) ** 2 + 3.66749192078217e132 ) * cos(73 * phi) ) # @torch.jit.script def Yl81_m74(theta, phi): return ( 5.22504744411206e-135 * (1.0 - cos(theta) ** 2) ** 37 * ( 1.74070110356214e140 * cos(theta) ** 7 - 2.27047970029844e139 * cos(theta) ** 5 + 7.13987327137874e137 * cos(theta) ** 3 - 4.5476899817699e135 * cos(theta) ) * cos(74 * phi) ) # @torch.jit.script def Yl81_m75(theta, phi): return ( 1.58117128633869e-136 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 1.21849077249349e141 * cos(theta) ** 6 - 1.13523985014922e140 * cos(theta) ** 4 + 2.14196198141362e138 * cos(theta) ** 2 - 4.5476899817699e135 ) * cos(75 * phi) ) # @torch.jit.script def Yl81_m76(theta, phi): return ( 5.15173443547425e-138 * (1.0 - cos(theta) ** 2) ** 38 * ( 7.31094463496097e141 * cos(theta) ** 5 - 4.54095940059688e140 * cos(theta) ** 3 + 4.28392396282724e138 * cos(theta) ) * cos(76 * phi) ) # @torch.jit.script def Yl81_m77(theta, phi): return ( 1.83290485688326e-139 * (1.0 - cos(theta) ** 2) ** 38.5 * ( 3.65547231748049e142 * cos(theta) ** 4 - 1.36228782017906e141 * cos(theta) ** 2 + 4.28392396282724e138 ) * cos(77 * phi) ) # @torch.jit.script def Yl81_m78(theta, phi): return ( 7.26794051610877e-141 * (1.0 - cos(theta) ** 2) ** 39 * (1.46218892699219e143 * cos(theta) ** 3 - 2.72457564035813e141 * cos(theta)) * cos(78 * phi) ) # @torch.jit.script def Yl81_m79(theta, phi): return ( 3.31734580606543e-142 * (1.0 - cos(theta) ** 2) ** 39.5 * (4.38656678097658e143 * cos(theta) ** 2 - 2.72457564035813e141) * cos(79 * phi) ) # @torch.jit.script def Yl81_m80(theta, phi): return 16.2187563947297 * (1.0 - cos(theta) ** 2) ** 40 * cos(80 * phi) * cos(theta) # @torch.jit.script def Yl81_m81(theta, phi): return 1.27426584768067 * (1.0 - cos(theta) ** 2) ** 40.5 * cos(81 * phi) # @torch.jit.script def Yl82_m_minus_82(theta, phi): return 1.27814490032998 * (1.0 - cos(theta) ** 2) ** 41 * sin(82 * phi) # @torch.jit.script def Yl82_m_minus_81(theta, phi): return ( 16.3682411805081 * (1.0 - cos(theta) ** 2) ** 40.5 * sin(81 * phi) * cos(theta) ) # @torch.jit.script def Yl82_m_minus_80(theta, phi): return ( 2.06665731756785e-144 * (1.0 - cos(theta) ** 2) ** 40 * (7.15010385299183e145 * cos(theta) ** 2 - 4.38656678097658e143) * sin(80 * phi) ) # @torch.jit.script def Yl82_m_minus_79(theta, phi): return ( 4.55603031110722e-143 * (1.0 - cos(theta) ** 2) ** 39.5 * (2.38336795099728e145 * cos(theta) ** 3 - 4.38656678097658e143 * cos(theta)) * sin(79 * phi) ) # @torch.jit.script def Yl82_m_minus_78(theta, phi): return ( 1.15619087758245e-141 * (1.0 - cos(theta) ** 2) ** 39 * ( 5.95841987749319e144 * cos(theta) ** 4 - 2.19328339048829e143 * cos(theta) ** 2 + 6.81143910089531e140 ) * sin(78 * phi) ) # @torch.jit.script def Yl82_m_minus_77(theta, phi): return ( 3.27020163953829e-140 * (1.0 - cos(theta) ** 2) ** 38.5 * ( 1.19168397549864e144 * cos(theta) ** 5 - 7.31094463496097e142 * cos(theta) ** 3 + 6.81143910089531e140 * cos(theta) ) * sin(77 * phi) ) # @torch.jit.script def Yl82_m_minus_76(theta, phi): return ( 1.01006359701407e-138 * (1.0 - cos(theta) ** 2) ** 38 * ( 1.9861399591644e143 * cos(theta) ** 6 - 1.82773615874024e142 * cos(theta) ** 4 + 3.40571955044766e140 * cos(theta) ** 2 - 7.13987327137874e137 ) * sin(76 * phi) ) # @torch.jit.script def Yl82_m_minus_75(theta, phi): return ( 3.35912590986758e-137 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 2.83734279880628e142 * cos(theta) ** 7 - 3.65547231748048e141 * cos(theta) ** 5 + 1.13523985014922e140 * cos(theta) ** 3 - 7.13987327137874e137 * cos(theta) ) * sin(75 * phi) ) # @torch.jit.script def Yl82_m_minus_74(theta, phi): return ( 1.19047725552401e-135 * (1.0 - cos(theta) ** 2) ** 37 * ( 3.54667849850785e141 * cos(theta) ** 8 - 6.09245386246747e140 * cos(theta) ** 6 + 2.83809962537305e139 * cos(theta) ** 4 - 3.56993663568937e137 * cos(theta) ** 2 + 5.68461247721237e134 ) * sin(74 * phi) ) # @torch.jit.script def Yl82_m_minus_73(theta, phi): return ( 4.46071684673175e-134 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 3.94075388723095e140 * cos(theta) ** 9 - 8.70350551781068e139 * cos(theta) ** 7 + 5.67619925074609e138 * cos(theta) ** 5 - 1.18997887856312e137 * cos(theta) ** 3 + 5.68461247721237e134 * cos(theta) ) * sin(73 * phi) ) # @torch.jit.script def Yl82_m_minus_72(theta, phi): return ( 1.75618597874515e-132 * (1.0 - cos(theta) ** 2) ** 36 * ( 3.94075388723095e139 * cos(theta) ** 10 - 1.08793818972633e139 * cos(theta) ** 8 + 9.46033208457683e137 * cos(theta) ** 6 - 2.97494719640781e136 * cos(theta) ** 4 + 2.84230623860618e134 * cos(theta) ** 2 - 3.66749192078217e131 ) * sin(72 * phi) ) # @torch.jit.script def Yl82_m_minus_71(theta, phi): return ( 7.22815086391266e-131 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 3.58250353384631e138 * cos(theta) ** 11 - 1.20882021080704e138 * cos(theta) ** 9 + 1.3514760120824e137 * cos(theta) ** 7 - 5.94989439281561e135 * cos(theta) ** 5 + 9.47435412868728e133 * cos(theta) ** 3 - 3.66749192078217e131 * cos(theta) ) * sin(71 * phi) ) # @torch.jit.script def Yl82_m_minus_70(theta, phi): return ( 3.09715932392054e-129 * (1.0 - cos(theta) ** 2) ** 35 * ( 2.9854196115386e137 * cos(theta) ** 12 - 1.20882021080704e137 * cos(theta) ** 10 + 1.689345015103e136 * cos(theta) ** 8 - 9.91649065469269e134 * cos(theta) ** 6 + 2.36858853217182e133 * cos(theta) ** 4 - 1.83374596039109e131 * cos(theta) ** 2 + 1.9975446191624e128 ) * sin(70 * phi) ) # @torch.jit.script def Yl82_m_minus_69(theta, phi): return ( 1.37675612417123e-127 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 2.29647662426046e136 * cos(theta) ** 13 - 1.09892746437004e136 * cos(theta) ** 11 + 1.87705001678112e135 * cos(theta) ** 9 - 1.41664152209896e134 * cos(theta) ** 7 + 4.73717706434364e132 * cos(theta) ** 5 - 6.11248653463696e130 * cos(theta) ** 3 + 1.9975446191624e128 * cos(theta) ) * sin(69 * phi) ) # @torch.jit.script def Yl82_m_minus_68(theta, phi): return ( 6.33008451553887e-126 * (1.0 - cos(theta) ** 2) ** 34 * ( 1.64034044590033e135 * cos(theta) ** 14 - 9.15772886975029e134 * cos(theta) ** 12 + 1.87705001678112e134 * cos(theta) ** 10 - 1.77080190262369e133 * cos(theta) ** 8 + 7.8952951072394e131 * cos(theta) ** 6 - 1.52812163365924e130 * cos(theta) ** 4 + 9.98772309581202e127 * cos(theta) ** 2 - 9.44912308023843e124 ) * sin(68 * phi) ) # @torch.jit.script def Yl82_m_minus_67(theta, phi): return ( 3.00262272756995e-124 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 1.09356029726688e134 * cos(theta) ** 15 - 7.04440682288484e133 * cos(theta) ** 13 + 1.70640910616465e133 * cos(theta) ** 11 - 1.96755766958188e132 * cos(theta) ** 9 + 1.1278993010342e131 * cos(theta) ** 7 - 3.05624326731848e129 * cos(theta) ** 5 + 3.32924103193734e127 * cos(theta) ** 3 - 9.44912308023843e124 * cos(theta) ) * sin(67 * phi) ) # @torch.jit.script def Yl82_m_minus_66(theta, phi): return ( 1.46606725268595e-122 * (1.0 - cos(theta) ** 2) ** 33 * ( 6.83475185791803e132 * cos(theta) ** 16 - 5.03171915920346e132 * cos(theta) ** 14 + 1.42200758847054e132 * cos(theta) ** 12 - 1.96755766958188e131 * cos(theta) ** 10 + 1.40987412629275e130 * cos(theta) ** 8 - 5.09373877886413e128 * cos(theta) ** 6 + 8.32310257984335e126 * cos(theta) ** 4 - 4.72456154011921e124 * cos(theta) ** 2 + 3.96355833902619e121 ) * sin(66 * phi) ) # @torch.jit.script def Yl82_m_minus_65(theta, phi): return ( 7.35375592777301e-121 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 4.02044226936355e131 * cos(theta) ** 17 - 3.35447943946897e131 * cos(theta) ** 15 + 1.09385199113119e131 * cos(theta) ** 13 - 1.78868879052898e130 * cos(theta) ** 11 + 1.56652680699194e129 * cos(theta) ** 9 - 7.27676968409161e127 * cos(theta) ** 7 + 1.66462051596867e126 * cos(theta) ** 5 - 1.5748538467064e124 * cos(theta) ** 3 + 3.96355833902619e121 * cos(theta) ) * sin(65 * phi) ) # @torch.jit.script def Yl82_m_minus_64(theta, phi): return ( 3.7827194403623e-119 * (1.0 - cos(theta) ** 2) ** 32 * ( 2.2335790385353e130 * cos(theta) ** 18 - 2.09654964966811e130 * cos(theta) ** 16 + 7.8132285080799e129 * cos(theta) ** 14 - 1.49057399210749e129 * cos(theta) ** 12 + 1.56652680699194e128 * cos(theta) ** 10 - 9.09596210511452e126 * cos(theta) ** 8 + 2.77436752661445e125 * cos(theta) ** 6 - 3.93713461676601e123 * cos(theta) ** 4 + 1.98177916951309e121 * cos(theta) ** 2 - 1.49794343878541e118 ) * sin(64 * phi) ) # @torch.jit.script def Yl82_m_minus_63(theta, phi): return ( 1.99231204120009e-117 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 1.17556791501858e129 * cos(theta) ** 19 - 1.23326449980477e129 * cos(theta) ** 17 + 5.2088190053866e128 * cos(theta) ** 15 - 1.14659537854422e128 * cos(theta) ** 13 + 1.42411527908359e127 * cos(theta) ** 11 - 1.01066245612384e126 * cos(theta) ** 9 + 3.96338218087779e124 * cos(theta) ** 7 - 7.87426923353203e122 * cos(theta) ** 5 + 6.60593056504364e120 * cos(theta) ** 3 - 1.49794343878541e118 * cos(theta) ) * sin(63 * phi) ) # @torch.jit.script def Yl82_m_minus_62(theta, phi): return ( 1.07289286891011e-115 * (1.0 - cos(theta) ** 2) ** 31 * ( 5.87783957509291e127 * cos(theta) ** 20 - 6.85146944335983e127 * cos(theta) ** 18 + 3.25551187836663e127 * cos(theta) ** 16 - 8.18996698960158e126 * cos(theta) ** 14 + 1.18676273256966e126 * cos(theta) ** 12 - 1.01066245612384e125 * cos(theta) ** 10 + 4.95422772609723e123 * cos(theta) ** 8 - 1.31237820558867e122 * cos(theta) ** 6 + 1.65148264126091e120 * cos(theta) ** 4 - 7.48971719392703e117 * cos(theta) ** 2 + 5.1653222027083e114 ) * sin(62 * phi) ) # @torch.jit.script def Yl82_m_minus_61(theta, phi): return ( 5.89993534123067e-114 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 2.79897122623472e126 * cos(theta) ** 21 - 3.60603654913675e126 * cos(theta) ** 19 + 1.91500698727449e126 * cos(theta) ** 17 - 5.45997799306772e125 * cos(theta) ** 15 + 9.12894409668965e124 * cos(theta) ** 13 - 9.18784051021668e123 * cos(theta) ** 11 + 5.50469747344137e122 * cos(theta) ** 9 - 1.87482600798382e121 * cos(theta) ** 7 + 3.30296528252182e119 * cos(theta) ** 5 - 2.49657239797568e117 * cos(theta) ** 3 + 5.1653222027083e114 * cos(theta) ) * sin(61 * phi) ) # @torch.jit.script def Yl82_m_minus_60(theta, phi): return ( 3.3092273977258e-112 * (1.0 - cos(theta) ** 2) ** 30 * ( 1.27225964828851e125 * cos(theta) ** 22 - 1.80301827456838e125 * cos(theta) ** 20 + 1.06389277070805e125 * cos(theta) ** 18 - 3.41248624566732e124 * cos(theta) ** 16 + 6.52067435477832e123 * cos(theta) ** 14 - 7.6565337585139e122 * cos(theta) ** 12 + 5.50469747344137e121 * cos(theta) ** 10 - 2.34353250997977e120 * cos(theta) ** 8 + 5.50494213753637e118 * cos(theta) ** 6 - 6.2414309949392e116 * cos(theta) ** 4 + 2.58266110135415e114 * cos(theta) ** 2 - 1.64186974021243e111 ) * sin(60 * phi) ) # @torch.jit.script def Yl82_m_minus_59(theta, phi): return ( 1.89118799111986e-110 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 5.5315636882109e123 * cos(theta) ** 23 - 8.58580130746846e123 * cos(theta) ** 21 + 5.59943563530552e123 * cos(theta) ** 19 - 2.00734485039254e123 * cos(theta) ** 17 + 4.34711623651888e122 * cos(theta) ** 15 - 5.889641352703e121 * cos(theta) ** 13 + 5.00427043040124e120 * cos(theta) ** 11 - 2.60392501108863e119 * cos(theta) ** 9 + 7.86420305362339e117 * cos(theta) ** 7 - 1.24828619898784e116 * cos(theta) ** 5 + 8.60887033784717e113 * cos(theta) ** 3 - 1.64186974021243e111 * cos(theta) ) * sin(59 * phi) ) # @torch.jit.script def Yl82_m_minus_58(theta, phi): return ( 1.10014487173673e-108 * (1.0 - cos(theta) ** 2) ** 29 * ( 2.30481820342121e122 * cos(theta) ** 24 - 3.90263695794021e122 * cos(theta) ** 22 + 2.79971781765276e122 * cos(theta) ** 20 - 1.11519158355141e122 * cos(theta) ** 18 + 2.7169476478243e121 * cos(theta) ** 16 - 4.20688668050215e120 * cos(theta) ** 14 + 4.1702253586677e119 * cos(theta) ** 12 - 2.60392501108863e118 * cos(theta) ** 10 + 9.83025381702923e116 * cos(theta) ** 8 - 2.08047699831307e115 * cos(theta) ** 6 + 2.15221758446179e113 * cos(theta) ** 4 - 8.20934870106214e110 * cos(theta) ** 2 + 4.85186093443389e107 ) * sin(58 * phi) ) # @torch.jit.script def Yl82_m_minus_57(theta, phi): return ( 6.50854483416237e-107 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 9.21927281368484e120 * cos(theta) ** 25 - 1.69679867736531e121 * cos(theta) ** 23 + 1.33319896078703e121 * cos(theta) ** 21 - 5.8694293871127e120 * cos(theta) ** 19 + 1.59820449872018e120 * cos(theta) ** 17 - 2.80459112033476e119 * cos(theta) ** 15 + 3.20786566051362e118 * cos(theta) ** 13 - 2.36720455553512e117 * cos(theta) ** 11 + 1.09225042411436e116 * cos(theta) ** 9 - 2.97210999759009e114 * cos(theta) ** 7 + 4.30443516892358e112 * cos(theta) ** 5 - 2.73644956702071e110 * cos(theta) ** 3 + 4.85186093443389e107 * cos(theta) ) * sin(57 * phi) ) # @torch.jit.script def Yl82_m_minus_56(theta, phi): return ( 3.91271283474653e-105 * (1.0 - cos(theta) ** 2) ** 28 * ( 3.54587415910955e119 * cos(theta) ** 26 - 7.06999448902212e119 * cos(theta) ** 24 + 6.05999527630467e119 * cos(theta) ** 22 - 2.93471469355635e119 * cos(theta) ** 20 + 8.87891388177877e118 * cos(theta) ** 18 - 1.75286945020923e118 * cos(theta) ** 16 + 2.29133261465258e117 * cos(theta) ** 14 - 1.97267046294593e116 * cos(theta) ** 12 + 1.09225042411436e115 * cos(theta) ** 10 - 3.71513749698762e113 * cos(theta) ** 8 + 7.17405861487264e111 * cos(theta) ** 6 - 6.84112391755179e109 * cos(theta) ** 4 + 2.42593046721695e107 * cos(theta) ** 2 - 1.34251824417097e104 ) * sin(56 * phi) ) # @torch.jit.script def Yl82_m_minus_55(theta, phi): return ( 2.38835786170144e-103 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 1.31328672559613e118 * cos(theta) ** 27 - 2.82799779560885e118 * cos(theta) ** 25 + 2.63478055491507e118 * cos(theta) ** 23 - 1.39748318740779e118 * cos(theta) ** 21 + 4.67311256935724e117 * cos(theta) ** 19 - 1.03109967659366e117 * cos(theta) ** 17 + 1.52755507643506e116 * cos(theta) ** 15 - 1.51743881765072e115 * cos(theta) ** 13 + 9.92954931013054e113 * cos(theta) ** 11 - 4.12793055220846e112 * cos(theta) ** 9 + 1.02486551641038e111 * cos(theta) ** 7 - 1.36822478351036e109 * cos(theta) ** 5 + 8.08643489072315e106 * cos(theta) ** 3 - 1.34251824417097e104 * cos(theta) ) * sin(55 * phi) ) # @torch.jit.script def Yl82_m_minus_54(theta, phi): return ( 1.47924019567526e-101 * (1.0 - cos(theta) ** 2) ** 27 * ( 4.6903097342719e116 * cos(theta) ** 28 - 1.08769145984956e117 * cos(theta) ** 26 + 1.09782523121461e117 * cos(theta) ** 24 - 6.35219630639903e116 * cos(theta) ** 22 + 2.33655628467862e116 * cos(theta) ** 20 - 5.72833153663146e115 * cos(theta) ** 18 + 9.5472192277191e114 * cos(theta) ** 16 - 1.08388486975051e114 * cos(theta) ** 14 + 8.27462442510878e112 * cos(theta) ** 12 - 4.12793055220846e111 * cos(theta) ** 10 + 1.28108189551297e110 * cos(theta) ** 8 - 2.28037463918393e108 * cos(theta) ** 6 + 2.02160872268079e106 * cos(theta) ** 4 - 6.71259122085486e103 * cos(theta) ** 2 + 3.4997868721871e100 ) * sin(54 * phi) ) # @torch.jit.script def Yl82_m_minus_53(theta, phi): return ( 9.28981686517097e-100 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 1.61734818423169e115 * cos(theta) ** 29 - 4.02848688833169e115 * cos(theta) ** 27 + 4.39130092485846e115 * cos(theta) ** 25 - 2.76182448104305e115 * cos(theta) ** 23 + 1.11264584984696e115 * cos(theta) ** 21 - 3.01491133506919e114 * cos(theta) ** 19 + 5.616011310423e113 * cos(theta) ** 17 - 7.22589913167009e112 * cos(theta) ** 15 + 6.36509571162214e111 * cos(theta) ** 13 - 3.75266413837133e110 * cos(theta) ** 11 + 1.42342432834775e109 * cos(theta) ** 9 - 3.25767805597704e107 * cos(theta) ** 7 + 4.04321744536157e105 * cos(theta) ** 5 - 2.23753040695162e103 * cos(theta) ** 3 + 3.4997868721871e100 * cos(theta) ) * sin(53 * phi) ) # @torch.jit.script def Yl82_m_minus_52(theta, phi): return ( 5.91200325120919e-98 * (1.0 - cos(theta) ** 2) ** 26 * ( 5.39116061410563e113 * cos(theta) ** 30 - 1.43874531726132e114 * cos(theta) ** 28 + 1.68896189417633e114 * cos(theta) ** 26 - 1.15076020043461e114 * cos(theta) ** 24 + 5.05748113566801e113 * cos(theta) ** 22 - 1.5074556675346e113 * cos(theta) ** 20 + 3.12000628356833e112 * cos(theta) ** 18 - 4.5161869572938e111 * cos(theta) ** 16 + 4.54649693687296e110 * cos(theta) ** 14 - 3.12722011530944e109 * cos(theta) ** 12 + 1.42342432834775e108 * cos(theta) ** 10 - 4.0720975699713e106 * cos(theta) ** 8 + 6.73869574226929e104 * cos(theta) ** 6 - 5.59382601737905e102 * cos(theta) ** 4 + 1.74989343609355e100 * cos(theta) ** 2 - 8.64144906712864e96 ) * sin(52 * phi) ) # @torch.jit.script def Yl82_m_minus_51(theta, phi): return ( 3.81037667777541e-96 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 1.73908406906633e112 * cos(theta) ** 31 - 4.96119074917696e112 * cos(theta) ** 29 + 6.25541442287529e112 * cos(theta) ** 27 - 4.60304080173842e112 * cos(theta) ** 25 + 2.19890484159479e112 * cos(theta) ** 23 - 7.17836032159331e111 * cos(theta) ** 21 + 1.64210857029912e111 * cos(theta) ** 19 - 2.656580563114e110 * cos(theta) ** 17 + 3.0309979579153e109 * cos(theta) ** 15 - 2.40555393485342e108 * cos(theta) ** 13 + 1.29402211667977e107 * cos(theta) ** 11 - 4.52455285552367e105 * cos(theta) ** 9 + 9.62670820324185e103 * cos(theta) ** 7 - 1.11876520347581e102 * cos(theta) ** 5 + 5.83297812031183e99 * cos(theta) ** 3 - 8.64144906712864e96 * cos(theta) ) * sin(51 * phi) ) # @torch.jit.script def Yl82_m_minus_50(theta, phi): return ( 2.48581451712174e-94 * (1.0 - cos(theta) ** 2) ** 25 * ( 5.43463771583229e110 * cos(theta) ** 32 - 1.65373024972565e111 * cos(theta) ** 30 + 2.23407657959832e111 * cos(theta) ** 28 - 1.77040030836093e111 * cos(theta) ** 26 + 9.16210350664495e110 * cos(theta) ** 24 - 3.26289105526969e110 * cos(theta) ** 22 + 8.21054285149561e109 * cos(theta) ** 20 - 1.47587809061889e109 * cos(theta) ** 18 + 1.89437372369707e108 * cos(theta) ** 16 - 1.71825281060958e107 * cos(theta) ** 14 + 1.07835176389981e106 * cos(theta) ** 12 - 4.52455285552367e104 * cos(theta) ** 10 + 1.20333852540523e103 * cos(theta) ** 8 - 1.86460867245968e101 * cos(theta) ** 6 + 1.45824453007796e99 * cos(theta) ** 4 - 4.32072453356432e96 * cos(theta) ** 2 + 2.03041566426895e93 ) * sin(50 * phi) ) # @torch.jit.script def Yl82_m_minus_49(theta, phi): return ( 1.64063758130035e-92 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.64685991388857e109 * cos(theta) ** 33 - 5.33461370879243e109 * cos(theta) ** 31 + 7.70371234344248e109 * cos(theta) ** 29 - 6.55703817911456e109 * cos(theta) ** 27 + 3.66484140265798e109 * cos(theta) ** 25 - 1.41864828489986e109 * cos(theta) ** 23 + 3.90978231023601e108 * cos(theta) ** 21 - 7.76777942430995e107 * cos(theta) ** 19 + 1.11433748452769e107 * cos(theta) ** 17 - 1.14550187373972e106 * cos(theta) ** 15 + 8.29501356846006e104 * cos(theta) ** 13 - 4.11322986865788e103 * cos(theta) ** 11 + 1.33704280600581e102 * cos(theta) ** 9 - 2.6637266749424e100 * cos(theta) ** 7 + 2.91648906015592e98 * cos(theta) ** 5 - 1.44024151118811e96 * cos(theta) ** 3 + 2.03041566426895e93 * cos(theta) ) * sin(49 * phi) ) # @torch.jit.script def Yl82_m_minus_48(theta, phi): return ( 1.09493354649137e-90 * (1.0 - cos(theta) ** 2) ** 24 * ( 4.84370562908403e107 * cos(theta) ** 34 - 1.66706678399763e108 * cos(theta) ** 32 + 2.56790411448083e108 * cos(theta) ** 30 - 2.34179934968377e108 * cos(theta) ** 28 + 1.40955438563768e108 * cos(theta) ** 26 - 5.9110345204161e107 * cos(theta) ** 24 + 1.77717377738e107 * cos(theta) ** 22 - 3.88388971215497e106 * cos(theta) ** 20 + 6.19076380293159e105 * cos(theta) ** 18 - 7.15938671087326e104 * cos(theta) ** 16 + 5.92500969175718e103 * cos(theta) ** 14 - 3.4276915572149e102 * cos(theta) ** 12 + 1.33704280600581e101 * cos(theta) ** 10 - 3.329658343678e99 * cos(theta) ** 8 + 4.86081510025986e97 * cos(theta) ** 6 - 3.60060377797027e95 * cos(theta) ** 4 + 1.01520783213447e93 * cos(theta) ** 2 - 4.55863418111573e89 ) * sin(48 * phi) ) # @torch.jit.script def Yl82_m_minus_47(theta, phi): return ( 7.38573056244701e-89 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 1.38391589402401e106 * cos(theta) ** 35 - 5.05171752726556e106 * cos(theta) ** 33 + 8.28356165961557e106 * cos(theta) ** 31 - 8.07517017132336e106 * cos(theta) ** 29 + 5.22057179865809e106 * cos(theta) ** 27 - 2.36441380816644e106 * cos(theta) ** 25 + 7.72684251034784e105 * cos(theta) ** 23 - 1.84947129150237e105 * cos(theta) ** 21 + 3.25829673838505e104 * cos(theta) ** 19 - 4.21140394757251e103 * cos(theta) ** 17 + 3.95000646117146e102 * cos(theta) ** 15 - 2.63668581324223e101 * cos(theta) ** 13 + 1.21549346000528e100 * cos(theta) ** 11 - 3.69962038186445e98 * cos(theta) ** 9 + 6.9440215717998e96 * cos(theta) ** 7 - 7.20120755594053e94 * cos(theta) ** 5 + 3.38402610711491e92 * cos(theta) ** 3 - 4.55863418111573e89 * cos(theta) ) * sin(47 * phi) ) # @torch.jit.script def Yl82_m_minus_46(theta, phi): return ( 5.0331464317095e-87 * (1.0 - cos(theta) ** 2) ** 23 * ( 3.84421081673336e104 * cos(theta) ** 36 - 1.48579927272516e105 * cos(theta) ** 34 + 2.58861301862987e105 * cos(theta) ** 32 - 2.69172339044112e105 * cos(theta) ** 30 + 1.86448992809218e105 * cos(theta) ** 28 - 9.09389926217861e104 * cos(theta) ** 26 + 3.21951771264493e104 * cos(theta) ** 24 - 8.40668768864713e103 * cos(theta) ** 22 + 1.62914836919252e103 * cos(theta) ** 20 - 2.3396688597625e102 * cos(theta) ** 18 + 2.46875403823216e101 * cos(theta) ** 16 - 1.88334700945874e100 * cos(theta) ** 14 + 1.01291121667107e99 * cos(theta) ** 12 - 3.69962038186445e97 * cos(theta) ** 10 + 8.68002696474975e95 * cos(theta) ** 8 - 1.20020125932342e94 * cos(theta) ** 6 + 8.46006526778728e91 * cos(theta) ** 4 - 2.27931709055787e89 * cos(theta) ** 2 + 9.81618040722595e85 ) * sin(46 * phi) ) # @torch.jit.script def Yl82_m_minus_45(theta, phi): return ( 3.4637410177776e-85 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 1.03897589641442e103 * cos(theta) ** 37 - 4.24514077921475e103 * cos(theta) ** 35 + 7.84428187463596e103 * cos(theta) ** 33 - 8.68297867884232e103 * cos(theta) ** 31 + 6.42927561411095e103 * cos(theta) ** 29 - 3.36811083784393e103 * cos(theta) ** 27 + 1.28780708505797e103 * cos(theta) ** 25 - 3.65508160375962e102 * cos(theta) ** 23 + 7.75784937710725e101 * cos(theta) ** 21 - 1.2314046630329e101 * cos(theta) ** 19 + 1.45220825778362e100 * cos(theta) ** 17 - 1.25556467297249e99 * cos(theta) ** 15 + 7.79162474362361e97 * cos(theta) ** 13 - 3.36329125624041e96 * cos(theta) ** 11 + 9.6444744052775e94 * cos(theta) ** 9 - 1.71457322760489e93 * cos(theta) ** 7 + 1.69201305355746e91 * cos(theta) ** 5 - 7.59772363519289e88 * cos(theta) ** 3 + 9.81618040722595e85 * cos(theta) ) * sin(45 * phi) ) # @torch.jit.script def Yl82_m_minus_44(theta, phi): return ( 2.40624071678879e-83 * (1.0 - cos(theta) ** 2) ** 22 * ( 2.73414709582743e101 * cos(theta) ** 38 - 1.1792057720041e102 * cos(theta) ** 36 + 2.30714172783411e102 * cos(theta) ** 34 - 2.71343083713822e102 * cos(theta) ** 32 + 2.14309187137032e102 * cos(theta) ** 30 - 1.2028967278014e102 * cos(theta) ** 28 + 4.9531041732999e101 * cos(theta) ** 26 - 1.52295066823318e101 * cos(theta) ** 24 + 3.52629517141239e100 * cos(theta) ** 22 - 6.15702331516449e99 * cos(theta) ** 20 + 8.06782365435346e98 * cos(theta) ** 18 - 7.84727920607807e97 * cos(theta) ** 16 + 5.56544624544544e96 * cos(theta) ** 14 - 2.80274271353367e95 * cos(theta) ** 12 + 9.6444744052775e93 * cos(theta) ** 10 - 2.14321653450611e92 * cos(theta) ** 8 + 2.82002175592909e90 * cos(theta) ** 6 - 1.89943090879822e88 * cos(theta) ** 4 + 4.90809020361298e85 * cos(theta) ** 2 - 2.03401997663198e82 ) * sin(44 * phi) ) # @torch.jit.script def Yl82_m_minus_43(theta, phi): return ( 1.68677302617654e-81 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 7.01063357904468e99 * cos(theta) ** 39 - 3.1870426270381e100 * cos(theta) ** 37 + 6.59183350809744e100 * cos(theta) ** 35 - 8.22251768829765e100 * cos(theta) ** 33 + 6.91319958506554e100 * cos(theta) ** 31 - 4.14791975103932e100 * cos(theta) ** 29 + 1.83448302714811e100 * cos(theta) ** 27 - 6.0918026729327e99 * cos(theta) ** 25 + 1.53317181365756e99 * cos(theta) ** 23 - 2.93191586436404e98 * cos(theta) ** 21 + 4.24622297597551e97 * cos(theta) ** 19 - 4.61604659181063e96 * cos(theta) ** 17 + 3.71029749696363e95 * cos(theta) ** 15 - 2.15595593348744e94 * cos(theta) ** 13 + 8.76770400479773e92 * cos(theta) ** 11 - 2.38135170500679e91 * cos(theta) ** 9 + 4.02860250847013e89 * cos(theta) ** 7 - 3.79886181759644e87 * cos(theta) ** 5 + 1.63603006787099e85 * cos(theta) ** 3 - 2.03401997663198e82 * cos(theta) ) * sin(43 * phi) ) # @torch.jit.script def Yl82_m_minus_42(theta, phi): return ( 1.19272864513199e-79 * (1.0 - cos(theta) ** 2) ** 21 * ( 1.75265839476117e98 * cos(theta) ** 40 - 8.38695428167922e98 * cos(theta) ** 38 + 1.8310648633604e99 * cos(theta) ** 36 - 2.41838755538166e99 * cos(theta) ** 34 + 2.16037487033298e99 * cos(theta) ** 32 - 1.38263991701311e99 * cos(theta) ** 30 + 6.55172509695754e98 * cos(theta) ** 28 - 2.34300102805104e98 * cos(theta) ** 26 + 6.38821589023983e97 * cos(theta) ** 24 - 1.33268902925638e97 * cos(theta) ** 22 + 2.12311148798775e96 * cos(theta) ** 20 - 2.56447032878368e95 * cos(theta) ** 18 + 2.31893593560227e94 * cos(theta) ** 16 - 1.5399685239196e93 * cos(theta) ** 14 + 7.30642000399811e91 * cos(theta) ** 12 - 2.38135170500679e90 * cos(theta) ** 10 + 5.03575313558767e88 * cos(theta) ** 8 - 6.33143636266074e86 * cos(theta) ** 6 + 4.09007516967748e84 * cos(theta) ** 4 - 1.01700998831599e82 * cos(theta) ** 2 + 4.06803995326397e78 ) * sin(42 * phi) ) # @torch.jit.script def Yl82_m_minus_41(theta, phi): return ( 8.50441452467428e-78 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 4.27477657258822e96 * cos(theta) ** 41 - 2.15050109786647e97 * cos(theta) ** 39 + 4.94882395502811e97 * cos(theta) ** 37 - 6.90967872966189e97 * cos(theta) ** 35 + 6.54659051616055e97 * cos(theta) ** 33 - 4.46012876455841e97 * cos(theta) ** 31 + 2.25921555067501e97 * cos(theta) ** 29 - 8.67778158537422e96 * cos(theta) ** 27 + 2.55528635609593e96 * cos(theta) ** 25 - 5.79430012720166e95 * cos(theta) ** 23 + 1.01100547047036e95 * cos(theta) ** 21 - 1.34972122567562e94 * cos(theta) ** 19 + 1.36407996211898e93 * cos(theta) ** 17 - 1.02664568261307e92 * cos(theta) ** 15 + 5.62032307999854e90 * cos(theta) ** 13 - 2.16486518636981e89 * cos(theta) ** 11 + 5.59528126176407e87 * cos(theta) ** 9 - 9.04490908951534e85 * cos(theta) ** 7 + 8.18015033935496e83 * cos(theta) ** 5 - 3.39003329438664e81 * cos(theta) ** 3 + 4.06803995326397e78 * cos(theta) ) * sin(41 * phi) ) # @torch.jit.script def Yl82_m_minus_40(theta, phi): return ( 6.11253869567382e-76 * (1.0 - cos(theta) ** 2) ** 20 * ( 1.01780394585434e95 * cos(theta) ** 42 - 5.37625274466616e95 * cos(theta) ** 40 + 1.30232209342845e96 * cos(theta) ** 38 - 1.91935520268386e96 * cos(theta) ** 36 + 1.92546779887075e96 * cos(theta) ** 34 - 1.3937902389245e96 * cos(theta) ** 32 + 7.53071850225004e95 * cos(theta) ** 30 - 3.09920770906222e95 * cos(theta) ** 28 + 9.82802444652282e94 * cos(theta) ** 26 - 2.41429171966736e94 * cos(theta) ** 24 + 4.5954794112289e93 * cos(theta) ** 22 - 6.74860612837811e92 * cos(theta) ** 20 + 7.57822201177211e91 * cos(theta) ** 18 - 6.41653551633167e90 * cos(theta) ** 16 + 4.01451648571325e89 * cos(theta) ** 14 - 1.80405432197484e88 * cos(theta) ** 12 + 5.59528126176407e86 * cos(theta) ** 10 - 1.13061363618942e85 * cos(theta) ** 8 + 1.36335838989249e83 * cos(theta) ** 6 - 8.4750832359666e80 * cos(theta) ** 4 + 2.03401997663198e78 * cos(theta) ** 2 - 7.87464179880752e74 ) * sin(40 * phi) ) # @torch.jit.script def Yl82_m_minus_39(theta, phi): return ( 4.42726751326201e-74 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 2.36698592059148e93 * cos(theta) ** 43 - 1.31128115723565e94 * cos(theta) ** 41 + 3.33928741904731e94 * cos(theta) ** 39 - 5.18744649374016e94 * cos(theta) ** 37 + 5.50133656820214e94 * cos(theta) ** 35 - 4.22360678461971e94 * cos(theta) ** 33 + 2.42926403298388e94 * cos(theta) ** 31 - 1.06869231346973e94 * cos(theta) ** 29 + 3.64000905426771e93 * cos(theta) ** 27 - 9.65716687866943e92 * cos(theta) ** 25 + 1.99803452662126e92 * cos(theta) ** 23 - 3.21362196589434e91 * cos(theta) ** 21 + 3.98853790093269e90 * cos(theta) ** 19 - 3.77443265666569e89 * cos(theta) ** 17 + 2.67634432380883e88 * cos(theta) ** 15 - 1.3877340938268e87 * cos(theta) ** 13 + 5.08661932887643e85 * cos(theta) ** 11 - 1.2562373735438e84 * cos(theta) ** 9 + 1.94765484270356e82 * cos(theta) ** 7 - 1.69501664719332e80 * cos(theta) ** 5 + 6.78006658877328e77 * cos(theta) ** 3 - 7.87464179880752e74 * cos(theta) ) * sin(39 * phi) ) # @torch.jit.script def Yl82_m_minus_38(theta, phi): return ( 3.23038874136438e-72 * (1.0 - cos(theta) ** 2) ** 19 * ( 5.37951345588974e91 * cos(theta) ** 44 - 3.12209799341821e92 * cos(theta) ** 42 + 8.34821854761827e92 * cos(theta) ** 40 - 1.36511749835267e93 * cos(theta) ** 38 + 1.52814904672282e93 * cos(theta) ** 36 - 1.24223728959403e93 * cos(theta) ** 34 + 7.59145010307464e92 * cos(theta) ** 32 - 3.56230771156577e92 * cos(theta) ** 30 + 1.30000323366704e92 * cos(theta) ** 28 - 3.7142949533344e91 * cos(theta) ** 26 + 8.32514386092193e90 * cos(theta) ** 24 - 1.4607372572247e90 * cos(theta) ** 22 + 1.99426895046634e89 * cos(theta) ** 20 - 2.09690703148094e88 * cos(theta) ** 18 + 1.67271520238052e87 * cos(theta) ** 16 - 9.91238638447715e85 * cos(theta) ** 14 + 4.23884944073036e84 * cos(theta) ** 12 - 1.2562373735438e83 * cos(theta) ** 10 + 2.43456855337945e81 * cos(theta) ** 8 - 2.8250277453222e79 * cos(theta) ** 6 + 1.69501664719332e77 * cos(theta) ** 4 - 3.93732089940376e74 * cos(theta) ** 2 + 1.47908373381058e71 ) * sin(38 * phi) ) # @torch.jit.script def Yl82_m_minus_37(theta, phi): return ( 2.37384122615229e-70 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 1.19544743464216e90 * cos(theta) ** 45 - 7.26069300794934e90 * cos(theta) ** 43 + 2.03615086527275e91 * cos(theta) ** 41 - 3.50030127782737e91 * cos(theta) ** 39 + 4.13013255871032e91 * cos(theta) ** 37 - 3.54924939884009e91 * cos(theta) ** 35 + 2.30043942517413e91 * cos(theta) ** 33 - 1.14913151985993e91 * cos(theta) ** 31 + 4.48276977126565e90 * cos(theta) ** 29 - 1.37566479753126e90 * cos(theta) ** 27 + 3.33005754436877e89 * cos(theta) ** 25 - 6.35103155315087e88 * cos(theta) ** 23 + 9.4965188117445e87 * cos(theta) ** 21 - 1.10363527972681e87 * cos(theta) ** 19 + 9.83950119047364e85 * cos(theta) ** 17 - 6.60825758965143e84 * cos(theta) ** 15 + 3.26065341594643e83 * cos(theta) ** 13 - 1.14203397594891e82 * cos(theta) ** 11 + 2.70507617042161e80 * cos(theta) ** 9 - 4.03575392188886e78 * cos(theta) ** 7 + 3.39003329438664e76 * cos(theta) ** 5 - 1.31244029980125e74 * cos(theta) ** 3 + 1.47908373381058e71 * cos(theta) ) * sin(37 * phi) ) # @torch.jit.script def Yl82_m_minus_36(theta, phi): return ( 1.75632168870198e-68 * (1.0 - cos(theta) ** 2) ** 18 * ( 2.59879877096122e88 * cos(theta) ** 46 - 1.65015750180667e89 * cos(theta) ** 44 + 4.8479782506494e89 * cos(theta) ** 42 - 8.75075319456842e89 * cos(theta) ** 40 + 1.08687698913429e90 * cos(theta) ** 38 - 9.85902610788914e89 * cos(theta) ** 36 + 6.76599830933569e89 * cos(theta) ** 34 - 3.59103599956227e89 * cos(theta) ** 32 + 1.49425659042188e89 * cos(theta) ** 30 - 4.91308856261164e88 * cos(theta) ** 28 + 1.28079136321876e88 * cos(theta) ** 26 - 2.64626314714619e87 * cos(theta) ** 24 + 4.31659945988386e86 * cos(theta) ** 22 - 5.51817639863405e85 * cos(theta) ** 20 + 5.46638955026313e84 * cos(theta) ** 18 - 4.13016099353215e83 * cos(theta) ** 16 + 2.32903815424745e82 * cos(theta) ** 14 - 9.51694979957422e80 * cos(theta) ** 12 + 2.70507617042161e79 * cos(theta) ** 10 - 5.04469240236107e77 * cos(theta) ** 8 + 5.6500554906444e75 * cos(theta) ** 6 - 3.28110074950314e73 * cos(theta) ** 4 + 7.3954186690529e70 * cos(theta) ** 2 - 2.70201632044315e67 ) * sin(36 * phi) ) # @torch.jit.script def Yl82_m_minus_35(theta, phi): return ( 1.30795859790518e-66 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 5.52935908715154e86 * cos(theta) ** 47 - 3.66701667068148e87 * cos(theta) ** 45 + 1.12743680247661e88 * cos(theta) ** 43 - 2.13433004745571e88 * cos(theta) ** 41 + 2.78686407470332e88 * cos(theta) ** 39 - 2.66460165078085e88 * cos(theta) ** 37 + 1.93314237409591e88 * cos(theta) ** 35 - 1.08819272714008e88 * cos(theta) ** 33 + 4.82018254974801e87 * cos(theta) ** 31 - 1.69416846986608e87 * cos(theta) ** 29 + 4.74367171562503e86 * cos(theta) ** 27 - 1.05850525885848e86 * cos(theta) ** 25 + 1.87678237386255e85 * cos(theta) ** 23 - 2.62770304696859e84 * cos(theta) ** 21 + 2.87704713171744e83 * cos(theta) ** 19 - 2.42950646678361e82 * cos(theta) ** 17 + 1.55269210283163e81 * cos(theta) ** 15 - 7.3207306150571e79 * cos(theta) ** 13 + 2.45916015492874e78 * cos(theta) ** 11 - 5.60521378040119e76 * cos(theta) ** 9 + 8.07150784377771e74 * cos(theta) ** 7 - 6.56220149900627e72 * cos(theta) ** 5 + 2.46513955635097e70 * cos(theta) ** 3 - 2.70201632044315e67 * cos(theta) ) * sin(35 * phi) ) # @torch.jit.script def Yl82_m_minus_34(theta, phi): return ( 9.80183859108696e-65 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.15194980982324e85 * cos(theta) ** 48 - 7.9717753710467e85 * cos(theta) ** 46 + 2.56235636926501e86 * cos(theta) ** 44 - 5.08173820822788e86 * cos(theta) ** 42 + 6.96716018675829e86 * cos(theta) ** 40 - 7.01210960731802e86 * cos(theta) ** 38 + 5.3698399280442e86 * cos(theta) ** 36 - 3.20056684452965e86 * cos(theta) ** 34 + 1.50630704679625e86 * cos(theta) ** 32 - 5.64722823288694e85 * cos(theta) ** 30 + 1.69416846986608e85 * cos(theta) ** 28 - 4.07117407253261e84 * cos(theta) ** 26 + 7.81992655776062e83 * cos(theta) ** 24 - 1.19441047589482e83 * cos(theta) ** 22 + 1.43852356585872e82 * cos(theta) ** 20 - 1.34972581487979e81 * cos(theta) ** 18 + 9.70432564269771e79 * cos(theta) ** 16 - 5.22909329646935e78 * cos(theta) ** 14 + 2.04930012910728e77 * cos(theta) ** 12 - 5.60521378040119e75 * cos(theta) ** 10 + 1.00893848047221e74 * cos(theta) ** 8 - 1.09370024983438e72 * cos(theta) ** 6 + 6.16284889087741e69 * cos(theta) ** 4 - 1.35100816022157e67 * cos(theta) ** 2 + 4.8112826218717e63 ) * sin(34 * phi) ) # @torch.jit.script def Yl82_m_minus_33(theta, phi): return ( 7.38983227163081e-63 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 2.3509179792311e83 * cos(theta) ** 49 - 1.69612241937164e84 * cos(theta) ** 47 + 5.69412526503336e84 * cos(theta) ** 45 - 1.18179958330881e85 * cos(theta) ** 43 + 1.69930736262397e85 * cos(theta) ** 41 - 1.79797682238924e85 * cos(theta) ** 39 + 1.45130808866059e85 * cos(theta) ** 37 - 9.14447669865615e84 * cos(theta) ** 35 + 4.5645668084735e84 * cos(theta) ** 33 - 1.82168652673772e84 * cos(theta) ** 31 + 5.84196024091752e83 * cos(theta) ** 29 - 1.50784224908615e83 * cos(theta) ** 27 + 3.12797062310425e82 * cos(theta) ** 25 - 5.19308902562963e81 * cos(theta) ** 23 + 6.85011221837485e80 * cos(theta) ** 21 - 7.10382007831466e79 * cos(theta) ** 19 + 5.70842684864571e78 * cos(theta) ** 17 - 3.48606219764624e77 * cos(theta) ** 15 + 1.57638471469791e76 * cos(theta) ** 13 - 5.09564889127381e74 * cos(theta) ** 11 + 1.12104275608024e73 * cos(theta) ** 9 - 1.56242892833483e71 * cos(theta) ** 7 + 1.23256977817548e69 * cos(theta) ** 5 - 4.50336053407191e66 * cos(theta) ** 3 + 4.8112826218717e63 * cos(theta) ) * sin(33 * phi) ) # @torch.jit.script def Yl82_m_minus_32(theta, phi): return ( 5.60361776682089e-61 * (1.0 - cos(theta) ** 2) ** 16 * ( 4.7018359584622e81 * cos(theta) ** 50 - 3.53358837369091e82 * cos(theta) ** 48 + 1.23785331848551e83 * cos(theta) ** 46 - 2.68590814388366e83 * cos(theta) ** 44 + 4.04596991100946e83 * cos(theta) ** 42 - 4.49494205597309e83 * cos(theta) ** 40 + 3.81923181226472e83 * cos(theta) ** 38 - 2.54013241629337e83 * cos(theta) ** 36 + 1.34251964955103e83 * cos(theta) ** 34 - 5.69277039605538e82 * cos(theta) ** 32 + 1.94732008030584e82 * cos(theta) ** 30 - 5.38515088959339e81 * cos(theta) ** 28 + 1.20306562427086e81 * cos(theta) ** 26 - 2.16378709401235e80 * cos(theta) ** 24 + 3.11368737198857e79 * cos(theta) ** 22 - 3.55191003915733e78 * cos(theta) ** 20 + 3.17134824924762e77 * cos(theta) ** 18 - 2.1787888735289e76 * cos(theta) ** 16 + 1.12598908192708e75 * cos(theta) ** 14 - 4.24637407606151e73 * cos(theta) ** 12 + 1.12104275608024e72 * cos(theta) ** 10 - 1.95303616041853e70 * cos(theta) ** 8 + 2.0542829636258e68 * cos(theta) ** 6 - 1.12584013351798e66 * cos(theta) ** 4 + 2.40564131093585e63 * cos(theta) ** 2 - 8.36744803803774e59 ) * sin(32 * phi) ) # @torch.jit.script def Yl82_m_minus_31(theta, phi): return ( 4.27273558149263e-59 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 9.21928619306313e79 * cos(theta) ** 51 - 7.21140484426717e80 * cos(theta) ** 49 + 2.63373046486279e81 * cos(theta) ** 47 - 5.96868476418591e81 * cos(theta) ** 45 + 9.4092323511848e81 * cos(theta) ** 43 - 1.09632733072514e82 * cos(theta) ** 41 + 9.79290208273005e81 * cos(theta) ** 39 - 6.86522274673885e81 * cos(theta) ** 37 + 3.83577042728865e81 * cos(theta) ** 35 - 1.7250819381986e81 * cos(theta) ** 33 + 6.28167767840594e80 * cos(theta) ** 31 - 1.85694858261841e80 * cos(theta) ** 29 + 4.45579860841061e79 * cos(theta) ** 27 - 8.65514837604939e78 * cos(theta) ** 25 + 1.3537771182559e78 * cos(theta) ** 23 - 1.69138573293206e77 * cos(theta) ** 21 + 1.66913065749875e76 * cos(theta) ** 19 - 1.28164051384053e75 * cos(theta) ** 17 + 7.50659387951386e73 * cos(theta) ** 15 - 3.26644159697039e72 * cos(theta) ** 13 + 1.01912977825476e71 * cos(theta) ** 11 - 2.17004017824281e69 * cos(theta) ** 9 + 2.93468994803686e67 * cos(theta) ** 7 - 2.25168026703596e65 * cos(theta) ** 5 + 8.01880436978617e62 * cos(theta) ** 3 - 8.36744803803774e59 * cos(theta) ) * sin(31 * phi) ) # @torch.jit.script def Yl82_m_minus_30(theta, phi): return ( 3.27526851871414e-57 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.77293965251214e78 * cos(theta) ** 52 - 1.44228096885343e79 * cos(theta) ** 50 + 5.48693846846415e79 * cos(theta) ** 48 - 1.29754016612737e80 * cos(theta) ** 46 + 2.13846189799654e80 * cos(theta) ** 44 - 2.6103031683932e80 * cos(theta) ** 42 + 2.44822552068251e80 * cos(theta) ** 40 - 1.80663756493128e80 * cos(theta) ** 38 + 1.06549178535796e80 * cos(theta) ** 36 - 5.07377040646647e79 * cos(theta) ** 34 + 1.96302427450186e79 * cos(theta) ** 32 - 6.18982860872804e78 * cos(theta) ** 30 + 1.59135664586093e78 * cos(theta) ** 28 - 3.32890322155746e77 * cos(theta) ** 26 + 5.64073799273292e76 * cos(theta) ** 24 - 7.68811696787301e75 * cos(theta) ** 22 + 8.34565328749373e74 * cos(theta) ** 20 - 7.12022507689182e73 * cos(theta) ** 18 + 4.69162117469616e72 * cos(theta) ** 16 - 2.33317256926456e71 * cos(theta) ** 14 + 8.49274815212301e69 * cos(theta) ** 12 - 2.17004017824281e68 * cos(theta) ** 10 + 3.66836243504608e66 * cos(theta) ** 8 - 3.75280044505993e64 * cos(theta) ** 6 + 2.00470109244654e62 * cos(theta) ** 4 - 4.18372401901887e59 * cos(theta) ** 2 + 1.42400409088457e56 ) * sin(30 * phi) ) # @torch.jit.script def Yl82_m_minus_29(theta, phi): return ( 2.52344507866567e-55 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 3.34516915568328e76 * cos(theta) ** 53 - 2.82800189971262e77 * cos(theta) ** 51 + 1.11978336091105e78 * cos(theta) ** 49 - 2.76072375771781e78 * cos(theta) ** 47 + 4.75213755110343e78 * cos(theta) ** 45 - 6.07047248463535e78 * cos(theta) ** 43 + 5.97128175776222e78 * cos(theta) ** 41 - 4.6324040126443e78 * cos(theta) ** 39 + 2.87970752799448e78 * cos(theta) ** 37 - 1.44964868756185e78 * cos(theta) ** 35 + 5.94855840758138e77 * cos(theta) ** 33 - 1.9967189060413e77 * cos(theta) ** 31 + 5.48743670986528e76 * cos(theta) ** 29 - 1.23292711909535e76 * cos(theta) ** 27 + 2.25629519709317e75 * cos(theta) ** 25 - 3.34265955124914e74 * cos(theta) ** 23 + 3.97412061309225e73 * cos(theta) ** 21 - 3.74748688257464e72 * cos(theta) ** 19 + 2.75977716158598e71 * cos(theta) ** 17 - 1.55544837950971e70 * cos(theta) ** 15 + 6.53288319394078e68 * cos(theta) ** 13 - 1.97276379840256e67 * cos(theta) ** 11 + 4.07595826116231e65 * cos(theta) ** 9 - 5.36114349294275e63 * cos(theta) ** 7 + 4.00940218489309e61 * cos(theta) ** 5 - 1.39457467300629e59 * cos(theta) ** 3 + 1.42400409088457e56 * cos(theta) ) * sin(29 * phi) ) # @torch.jit.script def Yl82_m_minus_28(theta, phi): return ( 1.95367458241801e-53 * (1.0 - cos(theta) ** 2) ** 14 * ( 6.19475769570978e74 * cos(theta) ** 54 - 5.43846519175503e75 * cos(theta) ** 52 + 2.2395667218221e76 * cos(theta) ** 50 - 5.75150782857878e76 * cos(theta) ** 48 + 1.03307338067466e77 * cos(theta) ** 46 - 1.37965283741713e77 * cos(theta) ** 44 + 1.42173375184815e77 * cos(theta) ** 42 - 1.15810100316107e77 * cos(theta) ** 40 + 7.57817770524864e76 * cos(theta) ** 38 - 4.02680190989403e76 * cos(theta) ** 36 + 1.74957600222982e76 * cos(theta) ** 34 - 6.23974658137907e75 * cos(theta) ** 32 + 1.82914556995509e75 * cos(theta) ** 30 - 4.40331113962627e74 * cos(theta) ** 28 + 8.67805845035833e73 * cos(theta) ** 26 - 1.39277481302047e73 * cos(theta) ** 24 + 1.80641846049648e72 * cos(theta) ** 22 - 1.87374344128732e71 * cos(theta) ** 20 + 1.53320953421443e70 * cos(theta) ** 18 - 9.72155237193569e68 * cos(theta) ** 16 + 4.66634513852913e67 * cos(theta) ** 14 - 1.64396983200213e66 * cos(theta) ** 12 + 4.07595826116231e64 * cos(theta) ** 10 - 6.70142936617844e62 * cos(theta) ** 8 + 6.68233697482181e60 * cos(theta) ** 6 - 3.48643668251573e58 * cos(theta) ** 4 + 7.12002045442286e55 * cos(theta) ** 2 - 2.37571586734163e52 ) * sin(28 * phi) ) # @torch.jit.script def Yl82_m_minus_27(theta, phi): return ( 1.51960220000552e-51 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.12631958103814e73 * cos(theta) ** 55 - 1.02612550787831e74 * cos(theta) ** 53 + 4.3913072976904e74 * cos(theta) ** 51 - 1.17377710787322e75 * cos(theta) ** 49 + 2.19802846952055e75 * cos(theta) ** 47 - 3.06589519426028e75 * cos(theta) ** 45 + 3.30635756243756e75 * cos(theta) ** 43 - 2.82463659307579e75 * cos(theta) ** 41 + 1.94312248852529e75 * cos(theta) ** 39 - 1.0883248405119e75 * cos(theta) ** 37 + 4.99878857779948e74 * cos(theta) ** 35 - 1.8908322973876e74 * cos(theta) ** 33 + 5.90046958050031e73 * cos(theta) ** 31 - 1.51838315159526e73 * cos(theta) ** 29 + 3.21409572235494e72 * cos(theta) ** 27 - 5.57109925208189e71 * cos(theta) ** 25 + 7.85399330650643e70 * cos(theta) ** 23 - 8.92258781565391e69 * cos(theta) ** 21 + 8.06952386428648e68 * cos(theta) ** 19 - 5.7185602187857e67 * cos(theta) ** 17 + 3.11089675901942e66 * cos(theta) ** 15 - 1.26459217846318e65 * cos(theta) ** 13 + 3.70541660105665e63 * cos(theta) ** 11 - 7.44603262908716e61 * cos(theta) ** 9 + 9.54619567831687e59 * cos(theta) ** 7 - 6.97287336503145e57 * cos(theta) ** 5 + 2.37334015147429e55 * cos(theta) ** 3 - 2.37571586734163e52 * cos(theta) ) * sin(27 * phi) ) # @torch.jit.script def Yl82_m_minus_26(theta, phi): return ( 1.18723632548794e-49 * (1.0 - cos(theta) ** 2) ** 13 * ( 2.01128496613954e71 * cos(theta) ** 56 - 1.90023242199687e72 * cos(theta) ** 54 + 8.44482172632769e72 * cos(theta) ** 52 - 2.34755421574644e73 * cos(theta) ** 50 + 4.57922597816782e73 * cos(theta) ** 48 - 6.66498955273974e73 * cos(theta) ** 46 + 7.5144490055399e73 * cos(theta) ** 44 - 6.72532522160903e73 * cos(theta) ** 42 + 4.85780622131323e73 * cos(theta) ** 40 - 2.86401273818921e73 * cos(theta) ** 38 + 1.38855238272208e73 * cos(theta) ** 36 - 5.5612714629047e72 * cos(theta) ** 34 + 1.84389674390635e72 * cos(theta) ** 32 - 5.06127717198421e71 * cos(theta) ** 30 + 1.14789132941248e71 * cos(theta) ** 28 - 2.14273048156996e70 * cos(theta) ** 26 + 3.27249721104435e69 * cos(theta) ** 24 - 4.05572173438814e68 * cos(theta) ** 22 + 4.03476193214324e67 * cos(theta) ** 20 - 3.17697789932539e66 * cos(theta) ** 18 + 1.94431047438714e65 * cos(theta) ** 16 - 9.03280127473699e63 * cos(theta) ** 14 + 3.08784716754721e62 * cos(theta) ** 12 - 7.44603262908716e60 * cos(theta) ** 10 + 1.19327445978961e59 * cos(theta) ** 8 - 1.16214556083858e57 * cos(theta) ** 6 + 5.93335037868572e54 * cos(theta) ** 4 - 1.18785793367081e52 * cos(theta) ** 2 + 3.89206400285326e48 ) * sin(26 * phi) ) # @torch.jit.script def Yl82_m_minus_25(theta, phi): return ( 9.31507769682447e-48 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 3.52857011603428e69 * cos(theta) ** 57 - 3.4549680399943e70 * cos(theta) ** 55 + 1.59336258987315e71 * cos(theta) ** 53 - 4.60304748185576e71 * cos(theta) ** 51 + 9.34535913911799e71 * cos(theta) ** 49 - 1.41808288356165e72 * cos(theta) ** 47 + 1.66987755678664e72 * cos(theta) ** 45 - 1.56402912130443e72 * cos(theta) ** 43 + 1.18483078568615e72 * cos(theta) ** 41 - 7.34362240561335e71 * cos(theta) ** 39 + 3.75284427762724e71 * cos(theta) ** 37 - 1.58893470368706e71 * cos(theta) ** 35 + 5.58756589062529e70 * cos(theta) ** 33 - 1.63267005547878e70 * cos(theta) ** 31 + 3.9582459634913e69 * cos(theta) ** 29 - 7.93603882062948e68 * cos(theta) ** 27 + 1.30899888441774e68 * cos(theta) ** 25 - 1.76335727582093e67 * cos(theta) ** 23 + 1.9213152057825e66 * cos(theta) ** 21 - 1.67209363122389e65 * cos(theta) ** 19 + 1.14371204375714e64 * cos(theta) ** 17 - 6.02186751649133e62 * cos(theta) ** 15 + 2.37526705195939e61 * cos(theta) ** 13 - 6.76912057189742e59 * cos(theta) ** 11 + 1.32586051087734e58 * cos(theta) ** 9 - 1.66020794405511e56 * cos(theta) ** 7 + 1.18667007573714e54 * cos(theta) ** 5 - 3.95952644556938e51 * cos(theta) ** 3 + 3.89206400285326e48 * cos(theta) ) * sin(25 * phi) ) # @torch.jit.script def Yl82_m_minus_24(theta, phi): return ( 7.33824770310885e-46 * (1.0 - cos(theta) ** 2) ** 12 * ( 6.08374157936945e67 * cos(theta) ** 58 - 6.16958578570411e68 * cos(theta) ** 56 + 2.95067146272805e69 * cos(theta) ** 54 - 8.85201438818416e69 * cos(theta) ** 52 + 1.8690718278236e70 * cos(theta) ** 50 - 2.95433934075343e70 * cos(theta) ** 48 + 3.6301686017101e70 * cos(theta) ** 46 - 3.55461163932824e70 * cos(theta) ** 44 + 2.82102568020513e70 * cos(theta) ** 42 - 1.83590560140334e70 * cos(theta) ** 40 + 9.87590599375589e69 * cos(theta) ** 38 - 4.41370751024183e69 * cos(theta) ** 36 + 1.64340173253685e69 * cos(theta) ** 34 - 5.10209392337118e68 * cos(theta) ** 32 + 1.31941532116377e68 * cos(theta) ** 30 - 2.83429957879624e67 * cos(theta) ** 28 + 5.03461109391438e66 * cos(theta) ** 26 - 7.34732198258721e65 * cos(theta) ** 24 + 8.73325093537498e64 * cos(theta) ** 22 - 8.36046815611944e63 * cos(theta) ** 20 + 6.35395579865077e62 * cos(theta) ** 18 - 3.76366719780708e61 * cos(theta) ** 16 + 1.69661932282813e60 * cos(theta) ** 14 - 5.64093380991451e58 * cos(theta) ** 12 + 1.32586051087734e57 * cos(theta) ** 10 - 2.07525993006889e55 * cos(theta) ** 8 + 1.97778345956191e53 * cos(theta) ** 6 - 9.89881611392345e50 * cos(theta) ** 4 + 1.94603200142663e48 * cos(theta) ** 2 - 6.27145343676e44 ) * sin(24 * phi) ) # @torch.jit.script def Yl82_m_minus_23(theta, phi): return ( 5.80325034328649e-44 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.03114264057109e66 * cos(theta) ** 59 - 1.08238347117616e67 * cos(theta) ** 57 + 5.3648572049601e67 * cos(theta) ** 55 - 1.67019139399701e68 * cos(theta) ** 53 + 3.66484672122274e68 * cos(theta) ** 51 - 6.02926396072128e68 * cos(theta) ** 49 + 7.72376298236191e68 * cos(theta) ** 47 - 7.89913697628498e68 * cos(theta) ** 45 + 6.56052483768635e68 * cos(theta) ** 43 - 4.47781854000814e68 * cos(theta) ** 41 + 2.53228358814254e68 * cos(theta) ** 39 - 1.19289392168698e68 * cos(theta) ** 37 + 4.69543352153386e67 * cos(theta) ** 35 - 1.54608906768824e67 * cos(theta) ** 33 + 4.25617845536699e66 * cos(theta) ** 31 - 9.77344682343532e65 * cos(theta) ** 29 + 1.86467077552384e65 * cos(theta) ** 27 - 2.93892879303489e64 * cos(theta) ** 25 + 3.79706562407608e63 * cos(theta) ** 23 - 3.98117531243783e62 * cos(theta) ** 21 + 3.34418726244778e61 * cos(theta) ** 19 - 2.21392188106299e60 * cos(theta) ** 17 + 1.13107954855209e59 * cos(theta) ** 15 - 4.3391798537804e57 * cos(theta) ** 13 + 1.20532773716122e56 * cos(theta) ** 11 - 2.30584436674321e54 * cos(theta) ** 9 + 2.82540494223129e52 * cos(theta) ** 7 - 1.97976322278469e50 * cos(theta) ** 5 + 6.48677333808876e47 * cos(theta) ** 3 - 6.27145343676e44 * cos(theta) ) * sin(23 * phi) ) # @torch.jit.script def Yl82_m_minus_22(theta, phi): return ( 4.60618716125588e-42 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.71857106761849e64 * cos(theta) ** 60 - 1.86617839857959e65 * cos(theta) ** 58 + 9.58010215171446e65 * cos(theta) ** 56 - 3.09294702592039e66 * cos(theta) ** 54 + 7.04778215619758e66 * cos(theta) ** 52 - 1.20585279214426e67 * cos(theta) ** 50 + 1.60911728799206e67 * cos(theta) ** 48 - 1.71720369049673e67 * cos(theta) ** 46 + 1.49102837220144e67 * cos(theta) ** 44 - 1.06614727143051e67 * cos(theta) ** 42 + 6.33070897035634e66 * cos(theta) ** 40 - 3.13919453075521e66 * cos(theta) ** 38 + 1.30428708931496e66 * cos(theta) ** 36 - 4.54732078731834e65 * cos(theta) ** 34 + 1.33005576730219e65 * cos(theta) ** 32 - 3.25781560781177e64 * cos(theta) ** 30 + 6.65953848401373e63 * cos(theta) ** 28 - 1.13035722809034e63 * cos(theta) ** 26 + 1.58211067669837e62 * cos(theta) ** 24 - 1.8096251420172e61 * cos(theta) ** 22 + 1.67209363122389e60 * cos(theta) ** 20 - 1.22995660059055e59 * cos(theta) ** 18 + 7.06924717845056e57 * cos(theta) ** 16 - 3.09941418127171e56 * cos(theta) ** 14 + 1.00443978096768e55 * cos(theta) ** 12 - 2.30584436674321e53 * cos(theta) ** 10 + 3.53175617778912e51 * cos(theta) ** 8 - 3.29960537130782e49 * cos(theta) ** 6 + 1.62169333452219e47 * cos(theta) ** 4 - 3.13572671838e44 * cos(theta) ** 2 + 9.95468799485715e40 ) * sin(22 * phi) ) # @torch.jit.script def Yl82_m_minus_21(theta, phi): return ( 3.66879265268161e-40 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 2.8173296190467e62 * cos(theta) ** 61 - 3.16301423488065e63 * cos(theta) ** 59 + 1.68071967573938e64 * cos(theta) ** 57 - 5.62354004712798e64 * cos(theta) ** 55 + 1.32977021815049e65 * cos(theta) ** 53 - 2.36441723949854e65 * cos(theta) ** 51 + 3.28391283263686e65 * cos(theta) ** 49 - 3.65362487339731e65 * cos(theta) ** 47 + 3.31339638266987e65 * cos(theta) ** 45 - 2.47941225914072e65 * cos(theta) ** 43 + 1.5440753586235e65 * cos(theta) ** 41 - 8.04921674552618e64 * cos(theta) ** 39 + 3.52510024139178e64 * cos(theta) ** 37 - 1.29923451066238e64 * cos(theta) ** 35 + 4.03047202212783e63 * cos(theta) ** 33 - 1.05090826058444e63 * cos(theta) ** 31 + 2.29639258069439e62 * cos(theta) ** 29 - 4.18650825218645e61 * cos(theta) ** 27 + 6.32844270679347e60 * cos(theta) ** 25 - 7.86793540007476e59 * cos(theta) ** 23 + 7.96235062487566e58 * cos(theta) ** 21 - 6.47345579258184e57 * cos(theta) ** 19 + 4.15838069320621e56 * cos(theta) ** 17 - 2.06627612084781e55 * cos(theta) ** 15 + 7.72645985359757e53 * cos(theta) ** 13 - 2.09622215158473e52 * cos(theta) ** 11 + 3.9241735308768e50 * cos(theta) ** 9 - 4.71372195901117e48 * cos(theta) ** 7 + 3.24338666904438e46 * cos(theta) ** 5 - 1.04524223946e44 * cos(theta) ** 3 + 9.95468799485715e40 * cos(theta) ) * sin(21 * phi) ) # @torch.jit.script def Yl82_m_minus_20(theta, phi): return ( 2.93182217107679e-38 * (1.0 - cos(theta) ** 2) ** 10 * ( 4.54408003072049e60 * cos(theta) ** 62 - 5.27169039146776e61 * cos(theta) ** 60 + 2.89779254437824e62 * cos(theta) ** 58 - 1.00420357984428e63 * cos(theta) ** 56 + 2.46253744101942e63 * cos(theta) ** 54 - 4.54695622980489e63 * cos(theta) ** 52 + 6.56782566527373e63 * cos(theta) ** 50 - 7.61171848624439e63 * cos(theta) ** 48 + 7.20303561449972e63 * cos(theta) ** 46 - 5.63502786168346e63 * cos(theta) ** 44 + 3.67636990148452e63 * cos(theta) ** 42 - 2.01230418638154e63 * cos(theta) ** 40 + 9.27657958260996e62 * cos(theta) ** 38 - 3.60898475183996e62 * cos(theta) ** 36 + 1.18543294768466e62 * cos(theta) ** 34 - 3.28408831432638e61 * cos(theta) ** 32 + 7.65464193564796e60 * cos(theta) ** 30 - 1.49518151863802e60 * cos(theta) ** 28 + 2.43401642568979e59 * cos(theta) ** 26 - 3.27830641669782e58 * cos(theta) ** 24 + 3.61925028403439e57 * cos(theta) ** 22 - 3.23672789629092e56 * cos(theta) ** 20 + 2.31021149622567e55 * cos(theta) ** 18 - 1.29142257552988e54 * cos(theta) ** 16 + 5.51889989542684e52 * cos(theta) ** 14 - 1.74685179298728e51 * cos(theta) ** 12 + 3.9241735308768e49 * cos(theta) ** 10 - 5.89215244876396e47 * cos(theta) ** 8 + 5.4056444484073e45 * cos(theta) ** 6 - 2.61310559865e43 * cos(theta) ** 4 + 4.97734399742857e40 * cos(theta) ** 2 - 1.5588299396895e37 ) * sin(20 * phi) ) # @torch.jit.script def Yl82_m_minus_19(theta, phi): return ( 2.35021711904123e-36 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 7.21282544558808e58 * cos(theta) ** 63 - 8.64211539584878e59 * cos(theta) ** 61 + 4.91151278708176e60 * cos(theta) ** 59 - 1.76176066639348e61 * cos(theta) ** 57 + 4.47734080185349e61 * cos(theta) ** 55 - 8.57916269774508e61 * cos(theta) ** 53 + 1.28780895397524e62 * cos(theta) ** 51 - 1.55341193596824e62 * cos(theta) ** 49 + 1.53256076904249e62 * cos(theta) ** 47 - 1.25222841370743e62 * cos(theta) ** 45 + 8.54969744531283e61 * cos(theta) ** 43 - 4.9080589911745e61 * cos(theta) ** 41 + 2.37861014938717e61 * cos(theta) ** 39 - 9.75401284281069e60 * cos(theta) ** 37 + 3.38695127909902e60 * cos(theta) ** 35 - 9.95178277068601e59 * cos(theta) ** 33 + 2.46923933407999e59 * cos(theta) ** 31 - 5.15579834013109e58 * cos(theta) ** 29 + 9.01487565070294e57 * cos(theta) ** 27 - 1.31132256667913e57 * cos(theta) ** 25 + 1.57358708001495e56 * cos(theta) ** 23 - 1.54129899823377e55 * cos(theta) ** 21 + 1.2159007874872e54 * cos(theta) ** 19 - 7.59660338546988e52 * cos(theta) ** 17 + 3.67926659695122e51 * cos(theta) ** 15 - 1.34373214845175e50 * cos(theta) ** 13 + 3.56743048261527e48 * cos(theta) ** 11 - 6.54683605418218e46 * cos(theta) ** 9 + 7.72234921201043e44 * cos(theta) ** 7 - 5.2262111973e42 * cos(theta) ** 5 + 1.65911466580952e40 * cos(theta) ** 3 - 1.5588299396895e37 * cos(theta) ) * sin(19 * phi) ) # @torch.jit.script def Yl82_m_minus_18(theta, phi): return ( 1.88955117831948e-34 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.12700397587314e57 * cos(theta) ** 64 - 1.39388957997561e58 * cos(theta) ** 62 + 8.18585464513627e58 * cos(theta) ** 60 - 3.03751839033358e59 * cos(theta) ** 58 + 7.99525143188123e59 * cos(theta) ** 56 - 1.58873383291575e60 * cos(theta) ** 54 + 2.47655568072162e60 * cos(theta) ** 52 - 3.10682387193649e60 * cos(theta) ** 50 + 3.1928349355052e60 * cos(theta) ** 48 - 2.72223568197268e60 * cos(theta) ** 46 + 1.94311305575292e60 * cos(theta) ** 44 - 1.16858547408917e60 * cos(theta) ** 42 + 5.94652537346792e59 * cos(theta) ** 40 - 2.56684548495018e59 * cos(theta) ** 38 + 9.40819799749728e58 * cos(theta) ** 36 - 2.92699493255471e58 * cos(theta) ** 34 + 7.71637291899996e57 * cos(theta) ** 32 - 1.71859944671036e57 * cos(theta) ** 30 + 3.21959844667962e56 * cos(theta) ** 28 - 5.04354833338126e55 * cos(theta) ** 26 + 6.55661283339563e54 * cos(theta) ** 24 - 7.00590453742623e53 * cos(theta) ** 22 + 6.07950393743598e52 * cos(theta) ** 20 - 4.22033521414993e51 * cos(theta) ** 18 + 2.29954162309452e50 * cos(theta) ** 16 - 9.59808677465537e48 * cos(theta) ** 14 + 2.97285873551272e47 * cos(theta) ** 12 - 6.54683605418218e45 * cos(theta) ** 10 + 9.65293651501304e43 * cos(theta) ** 8 - 8.7103519955e41 * cos(theta) ** 6 + 4.14778666452381e39 * cos(theta) ** 4 - 7.7941496984475e36 * cos(theta) ** 2 + 2.41155621857905e33 ) * sin(18 * phi) ) # @torch.jit.script def Yl82_m_minus_17(theta, phi): return ( 1.52340486282129e-32 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.73385227057406e55 * cos(theta) ** 65 - 2.21252314281843e56 * cos(theta) ** 63 + 1.34194338444857e57 * cos(theta) ** 61 - 5.14833625480268e57 * cos(theta) ** 59 + 1.40267568980372e58 * cos(theta) ** 57 - 2.88860696893774e58 * cos(theta) ** 55 + 4.67274656739928e58 * cos(theta) ** 53 - 6.09181151360095e58 * cos(theta) ** 51 + 6.51598966429632e58 * cos(theta) ** 49 - 5.79199081270784e58 * cos(theta) ** 47 + 4.31802901278426e58 * cos(theta) ** 45 - 2.71764063741667e58 * cos(theta) ** 43 + 1.45037204230925e58 * cos(theta) ** 41 - 6.58165508961585e57 * cos(theta) ** 39 + 2.5427562155398e57 * cos(theta) ** 37 - 8.36284266444202e56 * cos(theta) ** 35 + 2.33829482393938e56 * cos(theta) ** 33 - 5.54386918293666e55 * cos(theta) ** 31 + 1.11020636092401e55 * cos(theta) ** 29 - 1.86798086421528e54 * cos(theta) ** 27 + 2.62264513335825e53 * cos(theta) ** 25 - 3.04604545105488e52 * cos(theta) ** 23 + 2.89500187496952e51 * cos(theta) ** 21 - 2.22122906007891e50 * cos(theta) ** 19 + 1.35267154299677e49 * cos(theta) ** 17 - 6.39872451643691e47 * cos(theta) ** 15 + 2.28681441193286e46 * cos(theta) ** 13 - 5.95166914016562e44 * cos(theta) ** 11 + 1.07254850166812e43 * cos(theta) ** 9 - 1.24433599935714e41 * cos(theta) ** 7 + 8.29557332904762e38 * cos(theta) ** 5 - 2.5980498994825e36 * cos(theta) ** 3 + 2.41155621857905e33 * cos(theta) ) * sin(17 * phi) ) # @torch.jit.script def Yl82_m_minus_16(theta, phi): return ( 1.23141631324363e-30 * (1.0 - cos(theta) ** 2) ** 8 * ( 2.62704889480918e53 * cos(theta) ** 66 - 3.45706741065379e54 * cos(theta) ** 64 + 2.16442481362672e55 * cos(theta) ** 62 - 8.58056042467114e55 * cos(theta) ** 60 + 2.41840636173056e56 * cos(theta) ** 58 - 5.15822673024596e56 * cos(theta) ** 56 + 8.65323438407274e56 * cos(theta) ** 54 - 1.17150221415403e57 * cos(theta) ** 52 + 1.30319793285926e57 * cos(theta) ** 50 - 1.20666475264747e57 * cos(theta) ** 48 + 9.38701959300926e56 * cos(theta) ** 46 - 6.17645599412879e56 * cos(theta) ** 44 + 3.45326676740297e56 * cos(theta) ** 42 - 1.64541377240396e56 * cos(theta) ** 40 + 6.69146372510475e55 * cos(theta) ** 38 - 2.3230118512339e55 * cos(theta) ** 36 + 6.87733771746877e54 * cos(theta) ** 34 - 1.73245911966771e54 * cos(theta) ** 32 + 3.70068786974669e53 * cos(theta) ** 30 - 6.67136022934029e52 * cos(theta) ** 28 + 1.00870966667625e52 * cos(theta) ** 26 - 1.2691856046062e51 * cos(theta) ** 24 + 1.31590994316796e50 * cos(theta) ** 22 - 1.11061453003946e49 * cos(theta) ** 20 + 7.51484190553763e47 * cos(theta) ** 18 - 3.99920282277307e46 * cos(theta) ** 16 + 1.63343886566633e45 * cos(theta) ** 14 - 4.95972428347135e43 * cos(theta) ** 12 + 1.07254850166812e42 * cos(theta) ** 10 - 1.55541999919643e40 * cos(theta) ** 8 + 1.38259555484127e38 * cos(theta) ** 6 - 6.49512474870625e35 * cos(theta) ** 4 + 1.20577810928953e33 * cos(theta) ** 2 - 3.69078086712435e29 ) * sin(16 * phi) ) # @torch.jit.script def Yl82_m_minus_15(theta, phi): return ( 9.97827208108044e-29 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 3.92096849971519e51 * cos(theta) ** 67 - 5.31856524715968e52 * cos(theta) ** 65 + 3.43559494226464e53 * cos(theta) ** 63 - 1.40664924994609e54 * cos(theta) ** 61 + 4.09899383344163e54 * cos(theta) ** 59 - 9.04952057937887e54 * cos(theta) ** 57 + 1.57331534255868e55 * cos(theta) ** 55 - 2.21038153613968e55 * cos(theta) ** 53 + 2.55529006442993e55 * cos(theta) ** 51 - 2.46258112785197e55 * cos(theta) ** 49 + 1.99723821127857e55 * cos(theta) ** 47 - 1.37254577647306e55 * cos(theta) ** 45 + 8.03085294744878e54 * cos(theta) ** 43 - 4.01320432293649e54 * cos(theta) ** 41 + 1.71575992951404e54 * cos(theta) ** 39 - 6.27841040874026e53 * cos(theta) ** 37 + 1.96495363356251e53 * cos(theta) ** 35 - 5.24987612020517e52 * cos(theta) ** 33 + 1.19377028056345e52 * cos(theta) ** 31 - 2.3004690446001e51 * cos(theta) ** 29 + 3.73596172843056e50 * cos(theta) ** 27 - 5.0767424184248e49 * cos(theta) ** 25 + 5.72134757899114e48 * cos(theta) ** 23 - 5.28864061923551e47 * cos(theta) ** 21 + 3.95517995028296e46 * cos(theta) ** 19 - 2.35247224869004e45 * cos(theta) ** 17 + 1.08895924377755e44 * cos(theta) ** 15 - 3.81517252574719e42 * cos(theta) ** 13 + 9.75044092425559e40 * cos(theta) ** 11 - 1.72824444355159e39 * cos(theta) ** 9 + 1.9751365069161e37 * cos(theta) ** 7 - 1.29902494974125e35 * cos(theta) ** 5 + 4.01926036429842e32 * cos(theta) ** 3 - 3.69078086712435e29 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl82_m_minus_14(theta, phi): return ( 8.10392970677783e-27 * (1.0 - cos(theta) ** 2) ** 7 * ( 5.76613014663999e49 * cos(theta) ** 68 - 8.05843219266619e50 * cos(theta) ** 66 + 5.3681170972885e51 * cos(theta) ** 64 - 2.26878911281627e52 * cos(theta) ** 62 + 6.83165638906938e52 * cos(theta) ** 60 - 1.56026216885843e53 * cos(theta) ** 58 + 2.8094916831405e53 * cos(theta) ** 56 - 4.0932991409994e53 * cos(theta) ** 54 + 4.91401935467294e53 * cos(theta) ** 52 - 4.92516225570395e53 * cos(theta) ** 50 + 4.16091294016368e53 * cos(theta) ** 48 - 2.98379516624579e53 * cos(theta) ** 46 + 1.8251938516929e53 * cos(theta) ** 44 - 9.55524838794403e52 * cos(theta) ** 42 + 4.2893998237851e52 * cos(theta) ** 40 - 1.65221326545796e52 * cos(theta) ** 38 + 5.45820453767363e51 * cos(theta) ** 36 - 1.54408121182505e51 * cos(theta) ** 34 + 3.73053212676078e50 * cos(theta) ** 32 - 7.668230148667e49 * cos(theta) ** 30 + 1.33427204586806e49 * cos(theta) ** 28 - 1.95259323785569e48 * cos(theta) ** 26 + 2.38389482457964e47 * cos(theta) ** 24 - 2.40392755419796e46 * cos(theta) ** 22 + 1.97758997514148e45 * cos(theta) ** 20 - 1.30692902705002e44 * cos(theta) ** 18 + 6.80599527360972e42 * cos(theta) ** 16 - 2.72512323267656e41 * cos(theta) ** 14 + 8.12536743687966e39 * cos(theta) ** 12 - 1.72824444355159e38 * cos(theta) ** 10 + 2.46892063364513e36 * cos(theta) ** 8 - 2.16504158290208e34 * cos(theta) ** 6 + 1.00481509107461e32 * cos(theta) ** 4 - 1.84539043356218e29 * cos(theta) ** 2 + 5.59548342499144e25 ) * sin(14 * phi) ) # @torch.jit.script def Yl82_m_minus_13(theta, phi): return ( 6.59562305177026e-25 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 8.35671035744925e47 * cos(theta) ** 69 - 1.20275107353227e49 * cos(theta) ** 67 + 8.25864168813616e49 * cos(theta) ** 65 - 3.60125256002583e50 * cos(theta) ** 63 + 1.11994367033924e51 * cos(theta) ** 61 - 2.6445121506075e51 * cos(theta) ** 59 + 4.92893277743947e51 * cos(theta) ** 57 - 7.44236207454437e51 * cos(theta) ** 55 + 9.27173463145838e51 * cos(theta) ** 53 - 9.65718089353715e51 * cos(theta) ** 51 + 8.49165906155853e51 * cos(theta) ** 49 - 6.34850035371445e51 * cos(theta) ** 47 + 4.05598633709534e51 * cos(theta) ** 45 - 2.22215078789396e51 * cos(theta) ** 43 + 1.04619507897197e51 * cos(theta) ** 41 - 4.23644427040503e50 * cos(theta) ** 39 + 1.47519041558747e50 * cos(theta) ** 37 - 4.41166060521443e49 * cos(theta) ** 35 + 1.1304642808366e49 * cos(theta) ** 33 - 2.47362262860226e48 * cos(theta) ** 31 + 4.6009380892002e47 * cos(theta) ** 29 - 7.23182680687294e46 * cos(theta) ** 27 + 9.53557929831856e45 * cos(theta) ** 25 - 1.04518589312955e45 * cos(theta) ** 23 + 9.41709511972134e43 * cos(theta) ** 21 - 6.87857382657907e42 * cos(theta) ** 19 + 4.00352663153513e41 * cos(theta) ** 17 - 1.81674882178438e40 * cos(theta) ** 15 + 6.25028264375359e38 * cos(theta) ** 13 - 1.57113131231963e37 * cos(theta) ** 11 + 2.74324514849458e35 * cos(theta) ** 9 - 3.09291654700298e33 * cos(theta) ** 7 + 2.00963018214921e31 * cos(theta) ** 5 - 6.15130144520726e28 * cos(theta) ** 3 + 5.59548342499144e25 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl82_m_minus_12(theta, phi): return ( 5.37856782873413e-23 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.19381576534989e46 * cos(theta) ** 70 - 1.76875157872392e47 * cos(theta) ** 68 + 1.2513093466873e48 * cos(theta) ** 66 - 5.62695712504036e48 * cos(theta) ** 64 + 1.80636075861168e49 * cos(theta) ** 62 - 4.4075202510125e49 * cos(theta) ** 60 + 8.49815996110254e49 * cos(theta) ** 58 - 1.32899322759721e50 * cos(theta) ** 56 + 1.71698789471451e50 * cos(theta) ** 54 - 1.85715017183407e50 * cos(theta) ** 52 + 1.69833181231171e50 * cos(theta) ** 50 - 1.32260424035718e50 * cos(theta) ** 48 + 8.81736160238118e49 * cos(theta) ** 46 - 5.050342699759e49 * cos(theta) ** 44 + 2.49094066421899e49 * cos(theta) ** 42 - 1.05911106760126e49 * cos(theta) ** 40 + 3.88208004101965e48 * cos(theta) ** 38 - 1.22546127922623e48 * cos(theta) ** 36 + 3.32489494363706e47 * cos(theta) ** 34 - 7.73007071438205e46 * cos(theta) ** 32 + 1.5336460297334e46 * cos(theta) ** 30 - 2.58279528816891e45 * cos(theta) ** 28 + 3.66753049935329e44 * cos(theta) ** 26 - 4.35494122137311e43 * cos(theta) ** 24 + 4.28049778169152e42 * cos(theta) ** 22 - 3.43928691328953e41 * cos(theta) ** 20 + 2.22418146196396e40 * cos(theta) ** 18 - 1.13546801361523e39 * cos(theta) ** 16 + 4.46448760268113e37 * cos(theta) ** 14 - 1.30927609359969e36 * cos(theta) ** 12 + 2.74324514849458e34 * cos(theta) ** 10 - 3.86614568375372e32 * cos(theta) ** 8 + 3.34938363691535e30 * cos(theta) ** 6 - 1.53782536130181e28 * cos(theta) ** 4 + 2.79774171249572e25 * cos(theta) ** 2 - 8.41426078946081e21 ) * sin(12 * phi) ) # @torch.jit.script def Yl82_m_minus_11(theta, phi): return ( 4.39399694882089e-21 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.68143065542239e44 * cos(theta) ** 71 - 2.56340808510713e45 * cos(theta) ** 69 + 1.86762589057805e46 * cos(theta) ** 67 - 8.6568571154467e46 * cos(theta) ** 65 + 2.86723929938362e47 * cos(theta) ** 63 - 7.22544303444673e47 * cos(theta) ** 61 + 1.44036609510213e48 * cos(theta) ** 59 - 2.33156706596002e48 * cos(theta) ** 57 + 3.12179617220821e48 * cos(theta) ** 55 - 3.50405692798881e48 * cos(theta) ** 53 + 3.33006237708178e48 * cos(theta) ** 51 - 2.69919232725954e48 * cos(theta) ** 49 + 1.87603438348536e48 * cos(theta) ** 47 - 1.12229837772422e48 * cos(theta) ** 45 + 5.79288526562555e47 * cos(theta) ** 43 - 2.58319772585673e47 * cos(theta) ** 41 + 9.95405138722987e46 * cos(theta) ** 39 - 3.31205751142224e46 * cos(theta) ** 37 + 9.49969983896302e45 * cos(theta) ** 35 - 2.34244567102486e45 * cos(theta) ** 33 + 4.94724525720451e44 * cos(theta) ** 31 - 8.9061906488583e43 * cos(theta) ** 29 + 1.35834462939011e43 * cos(theta) ** 27 - 1.74197648854924e42 * cos(theta) ** 25 + 1.86108599203979e41 * cos(theta) ** 23 - 1.63775567299502e40 * cos(theta) ** 21 + 1.17062182208629e39 * cos(theta) ** 19 - 6.67922360950138e37 * cos(theta) ** 17 + 2.97632506845409e36 * cos(theta) ** 15 - 1.00713545661514e35 * cos(theta) ** 13 + 2.49385922590417e33 * cos(theta) ** 11 - 4.29571742639302e31 * cos(theta) ** 9 + 4.78483376702193e29 * cos(theta) ** 7 - 3.07565072260363e27 * cos(theta) ** 5 + 9.32580570831907e24 * cos(theta) ** 3 - 8.41426078946081e21 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl82_m_minus_10(theta, phi): return ( 3.59556772584124e-19 * (1.0 - cos(theta) ** 2) ** 5 * ( 2.33532035475331e42 * cos(theta) ** 72 - 3.66201155015305e43 * cos(theta) ** 70 + 2.74650866261479e44 * cos(theta) ** 68 - 1.31164501749192e45 * cos(theta) ** 66 + 4.48006140528691e45 * cos(theta) ** 64 - 1.16539403781399e46 * cos(theta) ** 62 + 2.40061015850354e46 * cos(theta) ** 60 - 4.01994321717244e46 * cos(theta) ** 58 + 5.57463602180037e46 * cos(theta) ** 56 - 6.48899431109038e46 * cos(theta) ** 54 + 6.40396610977264e46 * cos(theta) ** 52 - 5.39838465451909e46 * cos(theta) ** 50 + 3.90840496559449e46 * cos(theta) ** 48 - 2.43977908200918e46 * cos(theta) ** 46 + 1.31656483309672e46 * cos(theta) ** 44 - 6.15047077584935e45 * cos(theta) ** 42 + 2.48851284680747e45 * cos(theta) ** 40 - 8.71594081953222e44 * cos(theta) ** 38 + 2.63880551082306e44 * cos(theta) ** 36 - 6.8895460912496e43 * cos(theta) ** 34 + 1.54601414287641e43 * cos(theta) ** 32 - 2.9687302162861e42 * cos(theta) ** 30 + 4.85123081925039e41 * cos(theta) ** 28 - 6.69990957134325e40 * cos(theta) ** 26 + 7.75452496683246e39 * cos(theta) ** 24 - 7.44434396815916e38 * cos(theta) ** 22 + 5.85310911043147e37 * cos(theta) ** 20 - 3.71067978305632e36 * cos(theta) ** 18 + 1.86020316778381e35 * cos(theta) ** 16 - 7.19382469010817e33 * cos(theta) ** 14 + 2.07821602158681e32 * cos(theta) ** 12 - 4.29571742639302e30 * cos(theta) ** 10 + 5.98104220877741e28 * cos(theta) ** 8 - 5.12608453767271e26 * cos(theta) ** 6 + 2.33145142707977e24 * cos(theta) ** 4 - 4.20713039473041e21 * cos(theta) ** 2 + 1.25661003426834e18 ) * sin(10 * phi) ) # @torch.jit.script def Yl82_m_minus_9(theta, phi): return ( 2.94661107770915e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 3.19906897911413e40 * cos(theta) ** 73 - 5.15776274669443e41 * cos(theta) ** 71 + 3.98044733712288e42 * cos(theta) ** 69 - 1.95767913058496e43 * cos(theta) ** 67 + 6.89240216197986e43 * cos(theta) ** 65 - 1.84983180605395e44 * cos(theta) ** 63 + 3.93542648935007e44 * cos(theta) ** 61 - 6.81346307995329e44 * cos(theta) ** 59 + 9.780063196141e44 * cos(theta) ** 57 - 1.17981714747098e45 * cos(theta) ** 55 + 1.20829549240993e45 * cos(theta) ** 53 - 1.05850679500374e45 * cos(theta) ** 51 + 7.97633666447856e44 * cos(theta) ** 49 - 5.19101932342379e44 * cos(theta) ** 47 + 2.92569962910381e44 * cos(theta) ** 45 - 1.4303420408952e44 * cos(theta) ** 43 + 6.0695435287987e43 * cos(theta) ** 41 - 2.23485662039288e43 * cos(theta) ** 39 + 7.13190678600827e42 * cos(theta) ** 37 - 1.96844174035703e42 * cos(theta) ** 35 + 4.68489134204973e41 * cos(theta) ** 33 - 9.57654908479387e40 * cos(theta) ** 31 + 1.67283821353462e40 * cos(theta) ** 29 - 2.48144798938639e39 * cos(theta) ** 27 + 3.10180998673299e38 * cos(theta) ** 25 - 3.23667129050398e37 * cos(theta) ** 23 + 2.78719481449118e36 * cos(theta) ** 21 - 1.95298935950333e35 * cos(theta) ** 19 + 1.09423715751989e34 * cos(theta) ** 17 - 4.79588312673878e32 * cos(theta) ** 15 + 1.59862770891293e31 * cos(theta) ** 13 - 3.90519766035729e29 * cos(theta) ** 11 + 6.64560245419713e27 * cos(theta) ** 9 - 7.32297791096102e25 * cos(theta) ** 7 + 4.66290285415953e23 * cos(theta) ** 5 - 1.40237679824347e21 * cos(theta) ** 3 + 1.25661003426834e18 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl82_m_minus_8(theta, phi): return ( 2.41801713026678e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 4.32306618799206e38 * cos(theta) ** 74 - 7.16355937040893e39 * cos(theta) ** 72 + 5.68635333874697e40 * cos(theta) ** 70 - 2.87893989791906e41 * cos(theta) ** 68 + 1.04430335787574e42 * cos(theta) ** 66 - 2.8903621969593e42 * cos(theta) ** 64 + 6.34746207959688e42 * cos(theta) ** 62 - 1.13557717999221e43 * cos(theta) ** 60 + 1.6862177924381e43 * cos(theta) ** 58 - 2.1068163347696e43 * cos(theta) ** 56 + 2.23758424520358e43 * cos(theta) ** 54 - 2.03558999039181e43 * cos(theta) ** 52 + 1.59526733289571e43 * cos(theta) ** 50 - 1.08146235904662e43 * cos(theta) ** 48 + 6.36021658500829e42 * cos(theta) ** 46 - 3.2507773656709e42 * cos(theta) ** 44 + 1.44512941161874e42 * cos(theta) ** 42 - 5.58714155098219e41 * cos(theta) ** 40 + 1.87681757526534e41 * cos(theta) ** 38 - 5.46789372321397e40 * cos(theta) ** 36 + 1.37790921824992e40 * cos(theta) ** 34 - 2.99267158899808e39 * cos(theta) ** 32 + 5.57612737844872e38 * cos(theta) ** 30 - 8.86231424780853e37 * cos(theta) ** 28 + 1.19300384105115e37 * cos(theta) ** 26 - 1.34861303770999e36 * cos(theta) ** 24 + 1.26690673385963e35 * cos(theta) ** 22 - 9.76494679751664e33 * cos(theta) ** 20 + 6.07909531955492e32 * cos(theta) ** 18 - 2.99742695421174e31 * cos(theta) ** 16 + 1.14187693493781e30 * cos(theta) ** 14 - 3.25433138363108e28 * cos(theta) ** 12 + 6.64560245419713e26 * cos(theta) ** 10 - 9.15372238870127e24 * cos(theta) ** 8 + 7.77150475693256e22 * cos(theta) ** 6 - 3.50594199560867e20 * cos(theta) ** 4 + 6.28305017134171e17 * cos(theta) ** 2 - 186606776695625.0 ) * sin(8 * phi) ) # @torch.jit.script def Yl82_m_minus_7(theta, phi): return ( 1.98660379002153e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 5.76408825065609e36 * cos(theta) ** 75 - 9.81309502795744e37 * cos(theta) ** 73 + 8.00894836443235e38 * cos(theta) ** 71 - 4.17237666365081e39 * cos(theta) ** 69 + 1.55866172817274e40 * cos(theta) ** 67 - 4.44671107224507e40 * cos(theta) ** 65 + 1.00753366342808e41 * cos(theta) ** 63 - 1.86160193441347e41 * cos(theta) ** 61 + 2.85799625836967e41 * cos(theta) ** 59 - 3.69616900836773e41 * cos(theta) ** 57 + 4.06833499127924e41 * cos(theta) ** 55 - 3.84073583092795e41 * cos(theta) ** 53 + 3.12797516254061e41 * cos(theta) ** 51 - 2.20706603887066e41 * cos(theta) ** 49 + 1.35323757127836e41 * cos(theta) ** 47 - 7.2239497014909e40 * cos(theta) ** 45 + 3.36076607353195e40 * cos(theta) ** 43 - 1.36271745145907e40 * cos(theta) ** 41 + 4.8123527570906e39 * cos(theta) ** 39 - 1.47780911438215e39 * cos(theta) ** 37 + 3.93688348071406e38 * cos(theta) ** 35 - 9.06870178484268e37 * cos(theta) ** 33 + 1.79875076724152e37 * cos(theta) ** 31 - 3.0559704302788e36 * cos(theta) ** 29 + 4.41853274463388e35 * cos(theta) ** 27 - 5.39445215083997e34 * cos(theta) ** 25 + 5.50829014721577e33 * cos(theta) ** 23 - 4.64997466548411e32 * cos(theta) ** 21 + 3.19952385239733e31 * cos(theta) ** 19 - 1.76319232600691e30 * cos(theta) ** 17 + 7.61251289958537e28 * cos(theta) ** 15 - 2.50333183356237e27 * cos(theta) ** 13 + 6.04145677654284e25 * cos(theta) ** 11 - 1.01708026541125e24 * cos(theta) ** 9 + 1.11021496527608e22 * cos(theta) ** 7 - 7.01188399121734e19 * cos(theta) ** 5 + 2.0943500571139e17 * cos(theta) ** 3 - 186606776695625.0 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl82_m_minus_6(theta, phi): return ( 1.63385329817958e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 7.58432664560011e34 * cos(theta) ** 76 - 1.32609392269695e36 * cos(theta) ** 74 + 1.11235393950449e37 * cos(theta) ** 72 - 5.96053809092974e37 * cos(theta) ** 70 + 2.29214960025403e38 * cos(theta) ** 68 - 6.73744101855314e38 * cos(theta) ** 66 + 1.57427134910637e39 * cos(theta) ** 64 - 3.00258376518301e39 * cos(theta) ** 62 + 4.76332709728278e39 * cos(theta) ** 60 - 6.37270518684091e39 * cos(theta) ** 58 + 7.26488391299863e39 * cos(theta) ** 56 - 7.11247376097768e39 * cos(theta) ** 54 + 6.01533685103964e39 * cos(theta) ** 52 - 4.41413207774132e39 * cos(theta) ** 50 + 2.81924494016325e39 * cos(theta) ** 48 - 1.5704238481502e39 * cos(theta) ** 46 + 7.63810471257261e38 * cos(theta) ** 44 - 3.24456536061684e38 * cos(theta) ** 42 + 1.20308818927265e38 * cos(theta) ** 40 - 3.88897135363725e37 * cos(theta) ** 38 + 1.09357874464279e37 * cos(theta) ** 36 - 2.66726523083608e36 * cos(theta) ** 34 + 5.62109614762976e35 * cos(theta) ** 32 - 1.01865681009293e35 * cos(theta) ** 30 + 1.57804740879782e34 * cos(theta) ** 28 - 2.07478928878461e33 * cos(theta) ** 26 + 2.29512089467324e32 * cos(theta) ** 24 - 2.11362484794732e31 * cos(theta) ** 22 + 1.59976192619866e30 * cos(theta) ** 20 - 9.79551292226059e28 * cos(theta) ** 18 + 4.75782056224086e27 * cos(theta) ** 16 - 1.78809416683026e26 * cos(theta) ** 14 + 5.0345473137857e24 * cos(theta) ** 12 - 1.01708026541125e23 * cos(theta) ** 10 + 1.3877687065951e21 * cos(theta) ** 8 - 1.16864733186956e19 * cos(theta) ** 6 + 5.23587514278476e16 * cos(theta) ** 4 - 93303388347812.7 * cos(theta) ** 2 + 27588228370.1398 ) * sin(6 * phi) ) # @torch.jit.script def Yl82_m_minus_5(theta, phi): return ( 1.34493023764849e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 9.84977486441573e32 * cos(theta) ** 77 - 1.7681252302626e34 * cos(theta) ** 75 + 1.52377251986917e35 * cos(theta) ** 73 - 8.39512407173202e35 * cos(theta) ** 71 + 3.32195594239715e36 * cos(theta) ** 69 - 1.00558821172435e37 * cos(theta) ** 67 + 2.42195592170211e37 * cos(theta) ** 65 - 4.76600597648097e37 * cos(theta) ** 63 + 7.80873294636521e37 * cos(theta) ** 61 - 1.08011952319337e38 * cos(theta) ** 59 + 1.27454103736818e38 * cos(theta) ** 57 - 1.29317704745049e38 * cos(theta) ** 55 + 1.13496921717729e38 * cos(theta) ** 53 - 8.65516093674768e37 * cos(theta) ** 51 + 5.75356110237398e37 * cos(theta) ** 49 - 3.34132733648978e37 * cos(theta) ** 47 + 1.69735660279391e37 * cos(theta) ** 45 - 7.5455008386438e36 * cos(theta) ** 43 + 2.93436143725037e36 * cos(theta) ** 41 - 9.97172141958268e35 * cos(theta) ** 39 + 2.95561822876431e35 * cos(theta) ** 37 - 7.62075780238881e34 * cos(theta) ** 35 + 1.70336246897872e34 * cos(theta) ** 33 - 3.28598970997721e33 * cos(theta) ** 31 + 5.44154278895798e32 * cos(theta) ** 29 - 7.68440477327632e31 * cos(theta) ** 27 + 9.18048357869294e30 * cos(theta) ** 25 - 9.18967325194489e29 * cos(theta) ** 23 + 7.61791393427935e28 * cos(theta) ** 21 - 5.15553311697926e27 * cos(theta) ** 19 + 2.79871797778874e26 * cos(theta) ** 17 - 1.19206277788684e25 * cos(theta) ** 15 + 3.87272870291208e23 * cos(theta) ** 13 - 9.24618423101139e21 * cos(theta) ** 11 + 1.54196522955011e20 * cos(theta) ** 9 - 1.66949618838508e18 * cos(theta) ** 7 + 1.04717502855695e16 * cos(theta) ** 5 - 31101129449270.9 * cos(theta) ** 3 + 27588228370.1398 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl82_m_minus_4(theta, phi): return ( 1.10791562031331e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 1.26279164928407e31 * cos(theta) ** 78 - 2.326480566135e32 * cos(theta) ** 76 + 2.05915205387725e33 * cos(theta) ** 74 - 1.16598945440723e34 * cos(theta) ** 72 + 4.74565134628164e34 * cos(theta) ** 70 - 1.47880619371228e35 * cos(theta) ** 68 + 3.66963018439713e35 * cos(theta) ** 66 - 7.44688433825152e35 * cos(theta) ** 64 + 1.25947305586536e36 * cos(theta) ** 62 - 1.80019920532229e36 * cos(theta) ** 60 + 2.19748454718652e36 * cos(theta) ** 58 - 2.30924472759016e36 * cos(theta) ** 56 + 2.10179484662461e36 * cos(theta) ** 54 - 1.66445402629763e36 * cos(theta) ** 52 + 1.1507122204748e36 * cos(theta) ** 50 - 6.96109861768704e35 * cos(theta) ** 48 + 3.68990565824764e35 * cos(theta) ** 46 - 1.71488655423723e35 * cos(theta) ** 44 + 6.98657485059611e34 * cos(theta) ** 42 - 2.49293035489567e34 * cos(theta) ** 40 + 7.77794270727449e33 * cos(theta) ** 38 - 2.11687716733022e33 * cos(theta) ** 36 + 5.00988961464328e32 * cos(theta) ** 34 - 1.02687178436788e32 * cos(theta) ** 32 + 1.81384759631933e31 * cos(theta) ** 30 - 2.74443027617011e30 * cos(theta) ** 28 + 3.53095522257421e29 * cos(theta) ** 26 - 3.8290305216437e28 * cos(theta) ** 24 + 3.46268815194516e27 * cos(theta) ** 22 - 2.57776655848963e26 * cos(theta) ** 20 + 1.55484332099374e25 * cos(theta) ** 18 - 7.45039236179276e23 * cos(theta) ** 16 + 2.76623478779434e22 * cos(theta) ** 14 - 7.70515352584282e20 * cos(theta) ** 12 + 1.54196522955011e19 * cos(theta) ** 10 - 2.08687023548135e17 * cos(theta) ** 8 + 1.74529171426159e15 * cos(theta) ** 6 - 7775282362317.72 * cos(theta) ** 4 + 13794114185.0699 * cos(theta) ** 2 - 4065462.47717945 ) * sin(4 * phi) ) # @torch.jit.script def Yl82_m_minus_3(theta, phi): return ( 9.13207472903193e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 1.59847044213173e29 * cos(theta) ** 79 - 3.02140333264286e30 * cos(theta) ** 77 + 2.74553607183634e31 * cos(theta) ** 75 - 1.5972458279551e32 * cos(theta) ** 73 + 6.68401598067836e32 * cos(theta) ** 71 - 2.14319738219171e33 * cos(theta) ** 69 + 5.47705997671214e33 * cos(theta) ** 67 - 1.14567451357716e34 * cos(theta) ** 65 + 1.99916358073866e34 * cos(theta) ** 63 - 2.95114623823326e34 * cos(theta) ** 61 + 3.72455007997715e34 * cos(theta) ** 59 - 4.05130653963185e34 * cos(theta) ** 57 + 3.82144517568111e34 * cos(theta) ** 55 - 3.14047929490119e34 * cos(theta) ** 53 + 2.25629847151921e34 * cos(theta) ** 51 - 1.42063237095654e34 * cos(theta) ** 49 + 7.85086310265455e33 * cos(theta) ** 47 - 3.81085900941606e33 * cos(theta) ** 45 + 1.62478484897584e33 * cos(theta) ** 43 - 6.08031793876993e32 * cos(theta) ** 41 + 1.99434428391654e32 * cos(theta) ** 39 - 5.72128964143304e31 * cos(theta) ** 37 + 1.43139703275522e31 * cos(theta) ** 35 - 3.11173267990266e30 * cos(theta) ** 33 + 5.85112127844944e29 * cos(theta) ** 31 - 9.46355267644866e28 * cos(theta) ** 29 + 1.307761193546e28 * cos(theta) ** 27 - 1.53161220865748e27 * cos(theta) ** 25 + 1.50551658780224e26 * cos(theta) ** 23 - 1.22750788499506e25 * cos(theta) ** 21 + 8.18338589996707e23 * cos(theta) ** 19 - 4.38258374223103e22 * cos(theta) ** 17 + 1.84415652519623e21 * cos(theta) ** 15 - 5.92704117372525e19 * cos(theta) ** 13 + 1.40178657231828e18 * cos(theta) ** 11 - 2.31874470609039e16 * cos(theta) ** 9 + 249327387751655.0 * cos(theta) ** 7 - 1555056472463.54 * cos(theta) ** 5 + 4598038061.68996 * cos(theta) ** 3 - 4065462.47717945 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl82_m_minus_2(theta, phi): return ( 0.000753050173776649 * (1.0 - cos(theta) ** 2) * ( 1.99808805266466e27 * cos(theta) ** 80 - 3.8735940162088e28 * cos(theta) ** 78 + 3.61254746294255e29 * cos(theta) ** 76 - 2.15844030804744e30 * cos(theta) ** 74 + 9.28335552871995e30 * cos(theta) ** 72 - 3.06171054598815e31 * cos(theta) ** 70 + 8.05449996575315e31 * cos(theta) ** 68 - 1.7358704751169e32 * cos(theta) ** 66 + 3.12369309490416e32 * cos(theta) ** 64 - 4.759913287473e32 * cos(theta) ** 62 + 6.20758346662859e32 * cos(theta) ** 60 - 6.98501127522734e32 * cos(theta) ** 58 + 6.8240092422877e32 * cos(theta) ** 56 - 5.81570239796517e32 * cos(theta) ** 54 + 4.33903552215232e32 * cos(theta) ** 52 - 2.84126474191308e32 * cos(theta) ** 50 + 1.6355964797197e32 * cos(theta) ** 48 - 8.28447610742622e31 * cos(theta) ** 46 + 3.69269283858146e31 * cos(theta) ** 44 - 1.44769474732617e31 * cos(theta) ** 42 + 4.98586070979134e30 * cos(theta) ** 40 - 1.50560253721922e30 * cos(theta) ** 38 + 3.97610286876451e29 * cos(theta) ** 36 - 9.15215494089017e28 * cos(theta) ** 34 + 1.82847539951545e28 * cos(theta) ** 32 - 3.15451755881622e27 * cos(theta) ** 30 + 4.67057569123573e26 * cos(theta) ** 28 - 5.89081618714416e25 * cos(theta) ** 26 + 6.27298578250934e24 * cos(theta) ** 24 - 5.5795812954321e23 * cos(theta) ** 22 + 4.09169294998354e22 * cos(theta) ** 20 - 2.43476874568391e21 * cos(theta) ** 18 + 1.15259782824764e20 * cos(theta) ** 16 - 4.23360083837518e18 * cos(theta) ** 14 + 1.1681554769319e17 * cos(theta) ** 12 - 2.31874470609039e15 * cos(theta) ** 10 + 31165923468956.9 * cos(theta) ** 8 - 259176078743.924 * cos(theta) ** 6 + 1149509515.42249 * cos(theta) ** 4 - 2032731.23858973 * cos(theta) ** 2 + 597.862128996978 ) * sin(2 * phi) ) # @torch.jit.script def Yl82_m_minus_1(theta, phi): return ( 0.0621163696217606 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 2.46677537366008e25 * cos(theta) ** 81 - 4.90328356482126e26 * cos(theta) ** 79 + 4.69162008174357e27 * cos(theta) ** 77 - 2.87792041072992e28 * cos(theta) ** 75 + 1.27169253818081e29 * cos(theta) ** 73 - 4.3122683746312e29 * cos(theta) ** 71 + 1.1673188356164e30 * cos(theta) ** 69 - 2.59085145539836e30 * cos(theta) ** 67 + 4.80568168446794e30 * cos(theta) ** 65 - 7.55541791662382e30 * cos(theta) ** 63 + 1.01763663387354e31 * cos(theta) ** 61 - 1.18390021614023e31 * cos(theta) ** 59 + 1.19719460391012e31 * cos(theta) ** 57 - 1.05740043599367e31 * cos(theta) ** 55 + 8.1868594757591e30 * cos(theta) ** 53 - 5.57110733708446e30 * cos(theta) ** 51 + 3.33795199942796e30 * cos(theta) ** 49 - 1.76265449094175e30 * cos(theta) ** 47 + 8.20598408573657e29 * cos(theta) ** 45 - 3.36673197052599e29 * cos(theta) ** 43 + 1.21606358775399e29 * cos(theta) ** 41 - 3.86051932620313e28 * cos(theta) ** 39 + 1.07462239696338e28 * cos(theta) ** 37 - 2.61490141168291e27 * cos(theta) ** 35 + 5.54083454398622e26 * cos(theta) ** 33 - 1.01758630929556e26 * cos(theta) ** 31 + 1.61054334180542e25 * cos(theta) ** 29 - 2.18178377301636e24 * cos(theta) ** 27 + 2.50919431300374e23 * cos(theta) ** 25 - 2.42590491105743e22 * cos(theta) ** 23 + 1.94842521427787e21 * cos(theta) ** 21 - 1.28145723457048e20 * cos(theta) ** 19 + 6.77998722498613e18 * cos(theta) ** 17 - 2.82240055891679e17 * cos(theta) ** 15 + 8.98581136101463e15 * cos(theta) ** 13 - 210794973280945.0 * cos(theta) ** 11 + 3462880385439.65 * cos(theta) ** 9 - 37025154106.2749 * cos(theta) ** 7 + 229901903.084498 * cos(theta) ** 5 - 677577.079529909 * cos(theta) ** 3 + 597.862128996978 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl82_m0(theta, phi): return ( 3.42454332144106e24 * cos(theta) ** 82 - 6.97724439908328e25 * cos(theta) ** 80 + 6.84723363388297e26 * cos(theta) ** 78 - 4.31074268397286e27 * cos(theta) ** 76 + 1.95630838365011e28 * cos(theta) ** 74 - 6.81805025063088e28 * cos(theta) ** 72 + 1.89835908939134e29 * cos(theta) ** 70 - 4.33731050225175e29 * cos(theta) ** 68 + 8.28892057393413e29 * cos(theta) ** 66 - 1.34389528579658e30 * cos(theta) ** 64 + 1.86847785942476e30 * cos(theta) ** 62 - 2.24621209928303e30 * cos(theta) ** 60 + 2.34976088400176e30 * cos(theta) ** 58 - 2.14950456073874e30 * cos(theta) ** 56 + 1.72587957431578e30 * cos(theta) ** 54 - 1.21962156584982e30 * cos(theta) ** 52 + 7.59970956915816e29 * cos(theta) ** 50 - 4.18035214289122e29 * cos(theta) ** 48 + 2.03076538207635e29 * cos(theta) ** 46 - 8.71049386841702e28 * cos(theta) ** 44 + 3.296050879809e28 * cos(theta) ** 42 - 1.098683626603e28 * cos(theta) ** 40 + 3.21928335368272e27 * cos(theta) ** 38 - 8.26874752516972e26 * cos(theta) ** 36 + 1.85516771398039e26 * cos(theta) ** 34 - 3.61999682623651e25 * cos(theta) ** 32 + 6.11136291971854e24 * cos(theta) ** 30 - 8.87034658017206e23 * cos(theta) ** 28 + 1.09862090671856e23 * cos(theta) ** 26 - 1.1506664346875e22 * cos(theta) ** 24 + 1.00820297134524e21 * cos(theta) ** 22 - 7.29392065082211e19 * cos(theta) ** 20 + 4.28788652121349e18 * cos(theta) ** 18 - 2.00810112563717e17 * cos(theta) ** 16 + 7.30661416241543e15 * cos(theta) ** 14 - 199970492866106.0 * cos(theta) ** 12 + 3942070647898.16 * cos(theta) ** 10 - 52685826894.9857 * cos(theta) ** 8 + 436192534.90822 * cos(theta) ** 6 - 1928348.96069063 * cos(theta) ** 4 + 3402.96875415993 * cos(theta) ** 2 - 0.999990818148673 ) # @torch.jit.script def Yl82_m1(theta, phi): return ( 0.0621163696217606 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 2.46677537366008e25 * cos(theta) ** 81 - 4.90328356482126e26 * cos(theta) ** 79 + 4.69162008174357e27 * cos(theta) ** 77 - 2.87792041072992e28 * cos(theta) ** 75 + 1.27169253818081e29 * cos(theta) ** 73 - 4.3122683746312e29 * cos(theta) ** 71 + 1.1673188356164e30 * cos(theta) ** 69 - 2.59085145539836e30 * cos(theta) ** 67 + 4.80568168446794e30 * cos(theta) ** 65 - 7.55541791662382e30 * cos(theta) ** 63 + 1.01763663387354e31 * cos(theta) ** 61 - 1.18390021614023e31 * cos(theta) ** 59 + 1.19719460391012e31 * cos(theta) ** 57 - 1.05740043599367e31 * cos(theta) ** 55 + 8.1868594757591e30 * cos(theta) ** 53 - 5.57110733708446e30 * cos(theta) ** 51 + 3.33795199942796e30 * cos(theta) ** 49 - 1.76265449094175e30 * cos(theta) ** 47 + 8.20598408573657e29 * cos(theta) ** 45 - 3.36673197052599e29 * cos(theta) ** 43 + 1.21606358775399e29 * cos(theta) ** 41 - 3.86051932620313e28 * cos(theta) ** 39 + 1.07462239696338e28 * cos(theta) ** 37 - 2.61490141168291e27 * cos(theta) ** 35 + 5.54083454398622e26 * cos(theta) ** 33 - 1.01758630929556e26 * cos(theta) ** 31 + 1.61054334180542e25 * cos(theta) ** 29 - 2.18178377301636e24 * cos(theta) ** 27 + 2.50919431300374e23 * cos(theta) ** 25 - 2.42590491105743e22 * cos(theta) ** 23 + 1.94842521427787e21 * cos(theta) ** 21 - 1.28145723457048e20 * cos(theta) ** 19 + 6.77998722498613e18 * cos(theta) ** 17 - 2.82240055891679e17 * cos(theta) ** 15 + 8.98581136101463e15 * cos(theta) ** 13 - 210794973280945.0 * cos(theta) ** 11 + 3462880385439.65 * cos(theta) ** 9 - 37025154106.2749 * cos(theta) ** 7 + 229901903.084498 * cos(theta) ** 5 - 677577.079529909 * cos(theta) ** 3 + 597.862128996978 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl82_m2(theta, phi): return ( 0.000753050173776649 * (1.0 - cos(theta) ** 2) * ( 1.99808805266466e27 * cos(theta) ** 80 - 3.8735940162088e28 * cos(theta) ** 78 + 3.61254746294255e29 * cos(theta) ** 76 - 2.15844030804744e30 * cos(theta) ** 74 + 9.28335552871995e30 * cos(theta) ** 72 - 3.06171054598815e31 * cos(theta) ** 70 + 8.05449996575315e31 * cos(theta) ** 68 - 1.7358704751169e32 * cos(theta) ** 66 + 3.12369309490416e32 * cos(theta) ** 64 - 4.759913287473e32 * cos(theta) ** 62 + 6.20758346662859e32 * cos(theta) ** 60 - 6.98501127522734e32 * cos(theta) ** 58 + 6.8240092422877e32 * cos(theta) ** 56 - 5.81570239796517e32 * cos(theta) ** 54 + 4.33903552215232e32 * cos(theta) ** 52 - 2.84126474191308e32 * cos(theta) ** 50 + 1.6355964797197e32 * cos(theta) ** 48 - 8.28447610742622e31 * cos(theta) ** 46 + 3.69269283858146e31 * cos(theta) ** 44 - 1.44769474732617e31 * cos(theta) ** 42 + 4.98586070979134e30 * cos(theta) ** 40 - 1.50560253721922e30 * cos(theta) ** 38 + 3.97610286876451e29 * cos(theta) ** 36 - 9.15215494089017e28 * cos(theta) ** 34 + 1.82847539951545e28 * cos(theta) ** 32 - 3.15451755881622e27 * cos(theta) ** 30 + 4.67057569123573e26 * cos(theta) ** 28 - 5.89081618714416e25 * cos(theta) ** 26 + 6.27298578250934e24 * cos(theta) ** 24 - 5.5795812954321e23 * cos(theta) ** 22 + 4.09169294998354e22 * cos(theta) ** 20 - 2.43476874568391e21 * cos(theta) ** 18 + 1.15259782824764e20 * cos(theta) ** 16 - 4.23360083837518e18 * cos(theta) ** 14 + 1.1681554769319e17 * cos(theta) ** 12 - 2.31874470609039e15 * cos(theta) ** 10 + 31165923468956.9 * cos(theta) ** 8 - 259176078743.924 * cos(theta) ** 6 + 1149509515.42249 * cos(theta) ** 4 - 2032731.23858973 * cos(theta) ** 2 + 597.862128996978 ) * cos(2 * phi) ) # @torch.jit.script def Yl82_m3(theta, phi): return ( 9.13207472903193e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 1.59847044213173e29 * cos(theta) ** 79 - 3.02140333264286e30 * cos(theta) ** 77 + 2.74553607183634e31 * cos(theta) ** 75 - 1.5972458279551e32 * cos(theta) ** 73 + 6.68401598067836e32 * cos(theta) ** 71 - 2.14319738219171e33 * cos(theta) ** 69 + 5.47705997671214e33 * cos(theta) ** 67 - 1.14567451357716e34 * cos(theta) ** 65 + 1.99916358073866e34 * cos(theta) ** 63 - 2.95114623823326e34 * cos(theta) ** 61 + 3.72455007997715e34 * cos(theta) ** 59 - 4.05130653963185e34 * cos(theta) ** 57 + 3.82144517568111e34 * cos(theta) ** 55 - 3.14047929490119e34 * cos(theta) ** 53 + 2.25629847151921e34 * cos(theta) ** 51 - 1.42063237095654e34 * cos(theta) ** 49 + 7.85086310265455e33 * cos(theta) ** 47 - 3.81085900941606e33 * cos(theta) ** 45 + 1.62478484897584e33 * cos(theta) ** 43 - 6.08031793876993e32 * cos(theta) ** 41 + 1.99434428391654e32 * cos(theta) ** 39 - 5.72128964143304e31 * cos(theta) ** 37 + 1.43139703275522e31 * cos(theta) ** 35 - 3.11173267990266e30 * cos(theta) ** 33 + 5.85112127844944e29 * cos(theta) ** 31 - 9.46355267644866e28 * cos(theta) ** 29 + 1.307761193546e28 * cos(theta) ** 27 - 1.53161220865748e27 * cos(theta) ** 25 + 1.50551658780224e26 * cos(theta) ** 23 - 1.22750788499506e25 * cos(theta) ** 21 + 8.18338589996707e23 * cos(theta) ** 19 - 4.38258374223103e22 * cos(theta) ** 17 + 1.84415652519623e21 * cos(theta) ** 15 - 5.92704117372525e19 * cos(theta) ** 13 + 1.40178657231828e18 * cos(theta) ** 11 - 2.31874470609039e16 * cos(theta) ** 9 + 249327387751655.0 * cos(theta) ** 7 - 1555056472463.54 * cos(theta) ** 5 + 4598038061.68996 * cos(theta) ** 3 - 4065462.47717945 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl82_m4(theta, phi): return ( 1.10791562031331e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 1.26279164928407e31 * cos(theta) ** 78 - 2.326480566135e32 * cos(theta) ** 76 + 2.05915205387725e33 * cos(theta) ** 74 - 1.16598945440723e34 * cos(theta) ** 72 + 4.74565134628164e34 * cos(theta) ** 70 - 1.47880619371228e35 * cos(theta) ** 68 + 3.66963018439713e35 * cos(theta) ** 66 - 7.44688433825152e35 * cos(theta) ** 64 + 1.25947305586536e36 * cos(theta) ** 62 - 1.80019920532229e36 * cos(theta) ** 60 + 2.19748454718652e36 * cos(theta) ** 58 - 2.30924472759016e36 * cos(theta) ** 56 + 2.10179484662461e36 * cos(theta) ** 54 - 1.66445402629763e36 * cos(theta) ** 52 + 1.1507122204748e36 * cos(theta) ** 50 - 6.96109861768704e35 * cos(theta) ** 48 + 3.68990565824764e35 * cos(theta) ** 46 - 1.71488655423723e35 * cos(theta) ** 44 + 6.98657485059611e34 * cos(theta) ** 42 - 2.49293035489567e34 * cos(theta) ** 40 + 7.77794270727449e33 * cos(theta) ** 38 - 2.11687716733022e33 * cos(theta) ** 36 + 5.00988961464328e32 * cos(theta) ** 34 - 1.02687178436788e32 * cos(theta) ** 32 + 1.81384759631933e31 * cos(theta) ** 30 - 2.74443027617011e30 * cos(theta) ** 28 + 3.53095522257421e29 * cos(theta) ** 26 - 3.8290305216437e28 * cos(theta) ** 24 + 3.46268815194516e27 * cos(theta) ** 22 - 2.57776655848963e26 * cos(theta) ** 20 + 1.55484332099374e25 * cos(theta) ** 18 - 7.45039236179276e23 * cos(theta) ** 16 + 2.76623478779434e22 * cos(theta) ** 14 - 7.70515352584282e20 * cos(theta) ** 12 + 1.54196522955011e19 * cos(theta) ** 10 - 2.08687023548135e17 * cos(theta) ** 8 + 1.74529171426159e15 * cos(theta) ** 6 - 7775282362317.72 * cos(theta) ** 4 + 13794114185.0699 * cos(theta) ** 2 - 4065462.47717945 ) * cos(4 * phi) ) # @torch.jit.script def Yl82_m5(theta, phi): return ( 1.34493023764849e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 9.84977486441573e32 * cos(theta) ** 77 - 1.7681252302626e34 * cos(theta) ** 75 + 1.52377251986917e35 * cos(theta) ** 73 - 8.39512407173202e35 * cos(theta) ** 71 + 3.32195594239715e36 * cos(theta) ** 69 - 1.00558821172435e37 * cos(theta) ** 67 + 2.42195592170211e37 * cos(theta) ** 65 - 4.76600597648097e37 * cos(theta) ** 63 + 7.80873294636521e37 * cos(theta) ** 61 - 1.08011952319337e38 * cos(theta) ** 59 + 1.27454103736818e38 * cos(theta) ** 57 - 1.29317704745049e38 * cos(theta) ** 55 + 1.13496921717729e38 * cos(theta) ** 53 - 8.65516093674768e37 * cos(theta) ** 51 + 5.75356110237398e37 * cos(theta) ** 49 - 3.34132733648978e37 * cos(theta) ** 47 + 1.69735660279391e37 * cos(theta) ** 45 - 7.5455008386438e36 * cos(theta) ** 43 + 2.93436143725037e36 * cos(theta) ** 41 - 9.97172141958268e35 * cos(theta) ** 39 + 2.95561822876431e35 * cos(theta) ** 37 - 7.62075780238881e34 * cos(theta) ** 35 + 1.70336246897872e34 * cos(theta) ** 33 - 3.28598970997721e33 * cos(theta) ** 31 + 5.44154278895798e32 * cos(theta) ** 29 - 7.68440477327632e31 * cos(theta) ** 27 + 9.18048357869294e30 * cos(theta) ** 25 - 9.18967325194489e29 * cos(theta) ** 23 + 7.61791393427935e28 * cos(theta) ** 21 - 5.15553311697926e27 * cos(theta) ** 19 + 2.79871797778874e26 * cos(theta) ** 17 - 1.19206277788684e25 * cos(theta) ** 15 + 3.87272870291208e23 * cos(theta) ** 13 - 9.24618423101139e21 * cos(theta) ** 11 + 1.54196522955011e20 * cos(theta) ** 9 - 1.66949618838508e18 * cos(theta) ** 7 + 1.04717502855695e16 * cos(theta) ** 5 - 31101129449270.9 * cos(theta) ** 3 + 27588228370.1398 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl82_m6(theta, phi): return ( 1.63385329817958e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 7.58432664560011e34 * cos(theta) ** 76 - 1.32609392269695e36 * cos(theta) ** 74 + 1.11235393950449e37 * cos(theta) ** 72 - 5.96053809092974e37 * cos(theta) ** 70 + 2.29214960025403e38 * cos(theta) ** 68 - 6.73744101855314e38 * cos(theta) ** 66 + 1.57427134910637e39 * cos(theta) ** 64 - 3.00258376518301e39 * cos(theta) ** 62 + 4.76332709728278e39 * cos(theta) ** 60 - 6.37270518684091e39 * cos(theta) ** 58 + 7.26488391299863e39 * cos(theta) ** 56 - 7.11247376097768e39 * cos(theta) ** 54 + 6.01533685103964e39 * cos(theta) ** 52 - 4.41413207774132e39 * cos(theta) ** 50 + 2.81924494016325e39 * cos(theta) ** 48 - 1.5704238481502e39 * cos(theta) ** 46 + 7.63810471257261e38 * cos(theta) ** 44 - 3.24456536061684e38 * cos(theta) ** 42 + 1.20308818927265e38 * cos(theta) ** 40 - 3.88897135363725e37 * cos(theta) ** 38 + 1.09357874464279e37 * cos(theta) ** 36 - 2.66726523083608e36 * cos(theta) ** 34 + 5.62109614762976e35 * cos(theta) ** 32 - 1.01865681009293e35 * cos(theta) ** 30 + 1.57804740879782e34 * cos(theta) ** 28 - 2.07478928878461e33 * cos(theta) ** 26 + 2.29512089467324e32 * cos(theta) ** 24 - 2.11362484794732e31 * cos(theta) ** 22 + 1.59976192619866e30 * cos(theta) ** 20 - 9.79551292226059e28 * cos(theta) ** 18 + 4.75782056224086e27 * cos(theta) ** 16 - 1.78809416683026e26 * cos(theta) ** 14 + 5.0345473137857e24 * cos(theta) ** 12 - 1.01708026541125e23 * cos(theta) ** 10 + 1.3877687065951e21 * cos(theta) ** 8 - 1.16864733186956e19 * cos(theta) ** 6 + 5.23587514278476e16 * cos(theta) ** 4 - 93303388347812.7 * cos(theta) ** 2 + 27588228370.1398 ) * cos(6 * phi) ) # @torch.jit.script def Yl82_m7(theta, phi): return ( 1.98660379002153e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 5.76408825065609e36 * cos(theta) ** 75 - 9.81309502795744e37 * cos(theta) ** 73 + 8.00894836443235e38 * cos(theta) ** 71 - 4.17237666365081e39 * cos(theta) ** 69 + 1.55866172817274e40 * cos(theta) ** 67 - 4.44671107224507e40 * cos(theta) ** 65 + 1.00753366342808e41 * cos(theta) ** 63 - 1.86160193441347e41 * cos(theta) ** 61 + 2.85799625836967e41 * cos(theta) ** 59 - 3.69616900836773e41 * cos(theta) ** 57 + 4.06833499127924e41 * cos(theta) ** 55 - 3.84073583092795e41 * cos(theta) ** 53 + 3.12797516254061e41 * cos(theta) ** 51 - 2.20706603887066e41 * cos(theta) ** 49 + 1.35323757127836e41 * cos(theta) ** 47 - 7.2239497014909e40 * cos(theta) ** 45 + 3.36076607353195e40 * cos(theta) ** 43 - 1.36271745145907e40 * cos(theta) ** 41 + 4.8123527570906e39 * cos(theta) ** 39 - 1.47780911438215e39 * cos(theta) ** 37 + 3.93688348071406e38 * cos(theta) ** 35 - 9.06870178484268e37 * cos(theta) ** 33 + 1.79875076724152e37 * cos(theta) ** 31 - 3.0559704302788e36 * cos(theta) ** 29 + 4.41853274463388e35 * cos(theta) ** 27 - 5.39445215083997e34 * cos(theta) ** 25 + 5.50829014721577e33 * cos(theta) ** 23 - 4.64997466548411e32 * cos(theta) ** 21 + 3.19952385239733e31 * cos(theta) ** 19 - 1.76319232600691e30 * cos(theta) ** 17 + 7.61251289958537e28 * cos(theta) ** 15 - 2.50333183356237e27 * cos(theta) ** 13 + 6.04145677654284e25 * cos(theta) ** 11 - 1.01708026541125e24 * cos(theta) ** 9 + 1.11021496527608e22 * cos(theta) ** 7 - 7.01188399121734e19 * cos(theta) ** 5 + 2.0943500571139e17 * cos(theta) ** 3 - 186606776695625.0 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl82_m8(theta, phi): return ( 2.41801713026678e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 4.32306618799206e38 * cos(theta) ** 74 - 7.16355937040893e39 * cos(theta) ** 72 + 5.68635333874697e40 * cos(theta) ** 70 - 2.87893989791906e41 * cos(theta) ** 68 + 1.04430335787574e42 * cos(theta) ** 66 - 2.8903621969593e42 * cos(theta) ** 64 + 6.34746207959688e42 * cos(theta) ** 62 - 1.13557717999221e43 * cos(theta) ** 60 + 1.6862177924381e43 * cos(theta) ** 58 - 2.1068163347696e43 * cos(theta) ** 56 + 2.23758424520358e43 * cos(theta) ** 54 - 2.03558999039181e43 * cos(theta) ** 52 + 1.59526733289571e43 * cos(theta) ** 50 - 1.08146235904662e43 * cos(theta) ** 48 + 6.36021658500829e42 * cos(theta) ** 46 - 3.2507773656709e42 * cos(theta) ** 44 + 1.44512941161874e42 * cos(theta) ** 42 - 5.58714155098219e41 * cos(theta) ** 40 + 1.87681757526534e41 * cos(theta) ** 38 - 5.46789372321397e40 * cos(theta) ** 36 + 1.37790921824992e40 * cos(theta) ** 34 - 2.99267158899808e39 * cos(theta) ** 32 + 5.57612737844872e38 * cos(theta) ** 30 - 8.86231424780853e37 * cos(theta) ** 28 + 1.19300384105115e37 * cos(theta) ** 26 - 1.34861303770999e36 * cos(theta) ** 24 + 1.26690673385963e35 * cos(theta) ** 22 - 9.76494679751664e33 * cos(theta) ** 20 + 6.07909531955492e32 * cos(theta) ** 18 - 2.99742695421174e31 * cos(theta) ** 16 + 1.14187693493781e30 * cos(theta) ** 14 - 3.25433138363108e28 * cos(theta) ** 12 + 6.64560245419713e26 * cos(theta) ** 10 - 9.15372238870127e24 * cos(theta) ** 8 + 7.77150475693256e22 * cos(theta) ** 6 - 3.50594199560867e20 * cos(theta) ** 4 + 6.28305017134171e17 * cos(theta) ** 2 - 186606776695625.0 ) * cos(8 * phi) ) # @torch.jit.script def Yl82_m9(theta, phi): return ( 2.94661107770915e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 3.19906897911413e40 * cos(theta) ** 73 - 5.15776274669443e41 * cos(theta) ** 71 + 3.98044733712288e42 * cos(theta) ** 69 - 1.95767913058496e43 * cos(theta) ** 67 + 6.89240216197986e43 * cos(theta) ** 65 - 1.84983180605395e44 * cos(theta) ** 63 + 3.93542648935007e44 * cos(theta) ** 61 - 6.81346307995329e44 * cos(theta) ** 59 + 9.780063196141e44 * cos(theta) ** 57 - 1.17981714747098e45 * cos(theta) ** 55 + 1.20829549240993e45 * cos(theta) ** 53 - 1.05850679500374e45 * cos(theta) ** 51 + 7.97633666447856e44 * cos(theta) ** 49 - 5.19101932342379e44 * cos(theta) ** 47 + 2.92569962910381e44 * cos(theta) ** 45 - 1.4303420408952e44 * cos(theta) ** 43 + 6.0695435287987e43 * cos(theta) ** 41 - 2.23485662039288e43 * cos(theta) ** 39 + 7.13190678600827e42 * cos(theta) ** 37 - 1.96844174035703e42 * cos(theta) ** 35 + 4.68489134204973e41 * cos(theta) ** 33 - 9.57654908479387e40 * cos(theta) ** 31 + 1.67283821353462e40 * cos(theta) ** 29 - 2.48144798938639e39 * cos(theta) ** 27 + 3.10180998673299e38 * cos(theta) ** 25 - 3.23667129050398e37 * cos(theta) ** 23 + 2.78719481449118e36 * cos(theta) ** 21 - 1.95298935950333e35 * cos(theta) ** 19 + 1.09423715751989e34 * cos(theta) ** 17 - 4.79588312673878e32 * cos(theta) ** 15 + 1.59862770891293e31 * cos(theta) ** 13 - 3.90519766035729e29 * cos(theta) ** 11 + 6.64560245419713e27 * cos(theta) ** 9 - 7.32297791096102e25 * cos(theta) ** 7 + 4.66290285415953e23 * cos(theta) ** 5 - 1.40237679824347e21 * cos(theta) ** 3 + 1.25661003426834e18 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl82_m10(theta, phi): return ( 3.59556772584124e-19 * (1.0 - cos(theta) ** 2) ** 5 * ( 2.33532035475331e42 * cos(theta) ** 72 - 3.66201155015305e43 * cos(theta) ** 70 + 2.74650866261479e44 * cos(theta) ** 68 - 1.31164501749192e45 * cos(theta) ** 66 + 4.48006140528691e45 * cos(theta) ** 64 - 1.16539403781399e46 * cos(theta) ** 62 + 2.40061015850354e46 * cos(theta) ** 60 - 4.01994321717244e46 * cos(theta) ** 58 + 5.57463602180037e46 * cos(theta) ** 56 - 6.48899431109038e46 * cos(theta) ** 54 + 6.40396610977264e46 * cos(theta) ** 52 - 5.39838465451909e46 * cos(theta) ** 50 + 3.90840496559449e46 * cos(theta) ** 48 - 2.43977908200918e46 * cos(theta) ** 46 + 1.31656483309672e46 * cos(theta) ** 44 - 6.15047077584935e45 * cos(theta) ** 42 + 2.48851284680747e45 * cos(theta) ** 40 - 8.71594081953222e44 * cos(theta) ** 38 + 2.63880551082306e44 * cos(theta) ** 36 - 6.8895460912496e43 * cos(theta) ** 34 + 1.54601414287641e43 * cos(theta) ** 32 - 2.9687302162861e42 * cos(theta) ** 30 + 4.85123081925039e41 * cos(theta) ** 28 - 6.69990957134325e40 * cos(theta) ** 26 + 7.75452496683246e39 * cos(theta) ** 24 - 7.44434396815916e38 * cos(theta) ** 22 + 5.85310911043147e37 * cos(theta) ** 20 - 3.71067978305632e36 * cos(theta) ** 18 + 1.86020316778381e35 * cos(theta) ** 16 - 7.19382469010817e33 * cos(theta) ** 14 + 2.07821602158681e32 * cos(theta) ** 12 - 4.29571742639302e30 * cos(theta) ** 10 + 5.98104220877741e28 * cos(theta) ** 8 - 5.12608453767271e26 * cos(theta) ** 6 + 2.33145142707977e24 * cos(theta) ** 4 - 4.20713039473041e21 * cos(theta) ** 2 + 1.25661003426834e18 ) * cos(10 * phi) ) # @torch.jit.script def Yl82_m11(theta, phi): return ( 4.39399694882089e-21 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.68143065542239e44 * cos(theta) ** 71 - 2.56340808510713e45 * cos(theta) ** 69 + 1.86762589057805e46 * cos(theta) ** 67 - 8.6568571154467e46 * cos(theta) ** 65 + 2.86723929938362e47 * cos(theta) ** 63 - 7.22544303444673e47 * cos(theta) ** 61 + 1.44036609510213e48 * cos(theta) ** 59 - 2.33156706596002e48 * cos(theta) ** 57 + 3.12179617220821e48 * cos(theta) ** 55 - 3.50405692798881e48 * cos(theta) ** 53 + 3.33006237708178e48 * cos(theta) ** 51 - 2.69919232725954e48 * cos(theta) ** 49 + 1.87603438348536e48 * cos(theta) ** 47 - 1.12229837772422e48 * cos(theta) ** 45 + 5.79288526562555e47 * cos(theta) ** 43 - 2.58319772585673e47 * cos(theta) ** 41 + 9.95405138722987e46 * cos(theta) ** 39 - 3.31205751142224e46 * cos(theta) ** 37 + 9.49969983896302e45 * cos(theta) ** 35 - 2.34244567102486e45 * cos(theta) ** 33 + 4.94724525720451e44 * cos(theta) ** 31 - 8.9061906488583e43 * cos(theta) ** 29 + 1.35834462939011e43 * cos(theta) ** 27 - 1.74197648854924e42 * cos(theta) ** 25 + 1.86108599203979e41 * cos(theta) ** 23 - 1.63775567299502e40 * cos(theta) ** 21 + 1.17062182208629e39 * cos(theta) ** 19 - 6.67922360950138e37 * cos(theta) ** 17 + 2.97632506845409e36 * cos(theta) ** 15 - 1.00713545661514e35 * cos(theta) ** 13 + 2.49385922590417e33 * cos(theta) ** 11 - 4.29571742639302e31 * cos(theta) ** 9 + 4.78483376702193e29 * cos(theta) ** 7 - 3.07565072260363e27 * cos(theta) ** 5 + 9.32580570831907e24 * cos(theta) ** 3 - 8.41426078946081e21 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl82_m12(theta, phi): return ( 5.37856782873413e-23 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.19381576534989e46 * cos(theta) ** 70 - 1.76875157872392e47 * cos(theta) ** 68 + 1.2513093466873e48 * cos(theta) ** 66 - 5.62695712504036e48 * cos(theta) ** 64 + 1.80636075861168e49 * cos(theta) ** 62 - 4.4075202510125e49 * cos(theta) ** 60 + 8.49815996110254e49 * cos(theta) ** 58 - 1.32899322759721e50 * cos(theta) ** 56 + 1.71698789471451e50 * cos(theta) ** 54 - 1.85715017183407e50 * cos(theta) ** 52 + 1.69833181231171e50 * cos(theta) ** 50 - 1.32260424035718e50 * cos(theta) ** 48 + 8.81736160238118e49 * cos(theta) ** 46 - 5.050342699759e49 * cos(theta) ** 44 + 2.49094066421899e49 * cos(theta) ** 42 - 1.05911106760126e49 * cos(theta) ** 40 + 3.88208004101965e48 * cos(theta) ** 38 - 1.22546127922623e48 * cos(theta) ** 36 + 3.32489494363706e47 * cos(theta) ** 34 - 7.73007071438205e46 * cos(theta) ** 32 + 1.5336460297334e46 * cos(theta) ** 30 - 2.58279528816891e45 * cos(theta) ** 28 + 3.66753049935329e44 * cos(theta) ** 26 - 4.35494122137311e43 * cos(theta) ** 24 + 4.28049778169152e42 * cos(theta) ** 22 - 3.43928691328953e41 * cos(theta) ** 20 + 2.22418146196396e40 * cos(theta) ** 18 - 1.13546801361523e39 * cos(theta) ** 16 + 4.46448760268113e37 * cos(theta) ** 14 - 1.30927609359969e36 * cos(theta) ** 12 + 2.74324514849458e34 * cos(theta) ** 10 - 3.86614568375372e32 * cos(theta) ** 8 + 3.34938363691535e30 * cos(theta) ** 6 - 1.53782536130181e28 * cos(theta) ** 4 + 2.79774171249572e25 * cos(theta) ** 2 - 8.41426078946081e21 ) * cos(12 * phi) ) # @torch.jit.script def Yl82_m13(theta, phi): return ( 6.59562305177026e-25 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 8.35671035744925e47 * cos(theta) ** 69 - 1.20275107353227e49 * cos(theta) ** 67 + 8.25864168813616e49 * cos(theta) ** 65 - 3.60125256002583e50 * cos(theta) ** 63 + 1.11994367033924e51 * cos(theta) ** 61 - 2.6445121506075e51 * cos(theta) ** 59 + 4.92893277743947e51 * cos(theta) ** 57 - 7.44236207454437e51 * cos(theta) ** 55 + 9.27173463145838e51 * cos(theta) ** 53 - 9.65718089353715e51 * cos(theta) ** 51 + 8.49165906155853e51 * cos(theta) ** 49 - 6.34850035371445e51 * cos(theta) ** 47 + 4.05598633709534e51 * cos(theta) ** 45 - 2.22215078789396e51 * cos(theta) ** 43 + 1.04619507897197e51 * cos(theta) ** 41 - 4.23644427040503e50 * cos(theta) ** 39 + 1.47519041558747e50 * cos(theta) ** 37 - 4.41166060521443e49 * cos(theta) ** 35 + 1.1304642808366e49 * cos(theta) ** 33 - 2.47362262860226e48 * cos(theta) ** 31 + 4.6009380892002e47 * cos(theta) ** 29 - 7.23182680687294e46 * cos(theta) ** 27 + 9.53557929831856e45 * cos(theta) ** 25 - 1.04518589312955e45 * cos(theta) ** 23 + 9.41709511972134e43 * cos(theta) ** 21 - 6.87857382657907e42 * cos(theta) ** 19 + 4.00352663153513e41 * cos(theta) ** 17 - 1.81674882178438e40 * cos(theta) ** 15 + 6.25028264375359e38 * cos(theta) ** 13 - 1.57113131231963e37 * cos(theta) ** 11 + 2.74324514849458e35 * cos(theta) ** 9 - 3.09291654700298e33 * cos(theta) ** 7 + 2.00963018214921e31 * cos(theta) ** 5 - 6.15130144520726e28 * cos(theta) ** 3 + 5.59548342499144e25 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl82_m14(theta, phi): return ( 8.10392970677783e-27 * (1.0 - cos(theta) ** 2) ** 7 * ( 5.76613014663999e49 * cos(theta) ** 68 - 8.05843219266619e50 * cos(theta) ** 66 + 5.3681170972885e51 * cos(theta) ** 64 - 2.26878911281627e52 * cos(theta) ** 62 + 6.83165638906938e52 * cos(theta) ** 60 - 1.56026216885843e53 * cos(theta) ** 58 + 2.8094916831405e53 * cos(theta) ** 56 - 4.0932991409994e53 * cos(theta) ** 54 + 4.91401935467294e53 * cos(theta) ** 52 - 4.92516225570395e53 * cos(theta) ** 50 + 4.16091294016368e53 * cos(theta) ** 48 - 2.98379516624579e53 * cos(theta) ** 46 + 1.8251938516929e53 * cos(theta) ** 44 - 9.55524838794403e52 * cos(theta) ** 42 + 4.2893998237851e52 * cos(theta) ** 40 - 1.65221326545796e52 * cos(theta) ** 38 + 5.45820453767363e51 * cos(theta) ** 36 - 1.54408121182505e51 * cos(theta) ** 34 + 3.73053212676078e50 * cos(theta) ** 32 - 7.668230148667e49 * cos(theta) ** 30 + 1.33427204586806e49 * cos(theta) ** 28 - 1.95259323785569e48 * cos(theta) ** 26 + 2.38389482457964e47 * cos(theta) ** 24 - 2.40392755419796e46 * cos(theta) ** 22 + 1.97758997514148e45 * cos(theta) ** 20 - 1.30692902705002e44 * cos(theta) ** 18 + 6.80599527360972e42 * cos(theta) ** 16 - 2.72512323267656e41 * cos(theta) ** 14 + 8.12536743687966e39 * cos(theta) ** 12 - 1.72824444355159e38 * cos(theta) ** 10 + 2.46892063364513e36 * cos(theta) ** 8 - 2.16504158290208e34 * cos(theta) ** 6 + 1.00481509107461e32 * cos(theta) ** 4 - 1.84539043356218e29 * cos(theta) ** 2 + 5.59548342499144e25 ) * cos(14 * phi) ) # @torch.jit.script def Yl82_m15(theta, phi): return ( 9.97827208108044e-29 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 3.92096849971519e51 * cos(theta) ** 67 - 5.31856524715968e52 * cos(theta) ** 65 + 3.43559494226464e53 * cos(theta) ** 63 - 1.40664924994609e54 * cos(theta) ** 61 + 4.09899383344163e54 * cos(theta) ** 59 - 9.04952057937887e54 * cos(theta) ** 57 + 1.57331534255868e55 * cos(theta) ** 55 - 2.21038153613968e55 * cos(theta) ** 53 + 2.55529006442993e55 * cos(theta) ** 51 - 2.46258112785197e55 * cos(theta) ** 49 + 1.99723821127857e55 * cos(theta) ** 47 - 1.37254577647306e55 * cos(theta) ** 45 + 8.03085294744878e54 * cos(theta) ** 43 - 4.01320432293649e54 * cos(theta) ** 41 + 1.71575992951404e54 * cos(theta) ** 39 - 6.27841040874026e53 * cos(theta) ** 37 + 1.96495363356251e53 * cos(theta) ** 35 - 5.24987612020517e52 * cos(theta) ** 33 + 1.19377028056345e52 * cos(theta) ** 31 - 2.3004690446001e51 * cos(theta) ** 29 + 3.73596172843056e50 * cos(theta) ** 27 - 5.0767424184248e49 * cos(theta) ** 25 + 5.72134757899114e48 * cos(theta) ** 23 - 5.28864061923551e47 * cos(theta) ** 21 + 3.95517995028296e46 * cos(theta) ** 19 - 2.35247224869004e45 * cos(theta) ** 17 + 1.08895924377755e44 * cos(theta) ** 15 - 3.81517252574719e42 * cos(theta) ** 13 + 9.75044092425559e40 * cos(theta) ** 11 - 1.72824444355159e39 * cos(theta) ** 9 + 1.9751365069161e37 * cos(theta) ** 7 - 1.29902494974125e35 * cos(theta) ** 5 + 4.01926036429842e32 * cos(theta) ** 3 - 3.69078086712435e29 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl82_m16(theta, phi): return ( 1.23141631324363e-30 * (1.0 - cos(theta) ** 2) ** 8 * ( 2.62704889480918e53 * cos(theta) ** 66 - 3.45706741065379e54 * cos(theta) ** 64 + 2.16442481362672e55 * cos(theta) ** 62 - 8.58056042467114e55 * cos(theta) ** 60 + 2.41840636173056e56 * cos(theta) ** 58 - 5.15822673024596e56 * cos(theta) ** 56 + 8.65323438407274e56 * cos(theta) ** 54 - 1.17150221415403e57 * cos(theta) ** 52 + 1.30319793285926e57 * cos(theta) ** 50 - 1.20666475264747e57 * cos(theta) ** 48 + 9.38701959300926e56 * cos(theta) ** 46 - 6.17645599412879e56 * cos(theta) ** 44 + 3.45326676740297e56 * cos(theta) ** 42 - 1.64541377240396e56 * cos(theta) ** 40 + 6.69146372510475e55 * cos(theta) ** 38 - 2.3230118512339e55 * cos(theta) ** 36 + 6.87733771746877e54 * cos(theta) ** 34 - 1.73245911966771e54 * cos(theta) ** 32 + 3.70068786974669e53 * cos(theta) ** 30 - 6.67136022934029e52 * cos(theta) ** 28 + 1.00870966667625e52 * cos(theta) ** 26 - 1.2691856046062e51 * cos(theta) ** 24 + 1.31590994316796e50 * cos(theta) ** 22 - 1.11061453003946e49 * cos(theta) ** 20 + 7.51484190553763e47 * cos(theta) ** 18 - 3.99920282277307e46 * cos(theta) ** 16 + 1.63343886566633e45 * cos(theta) ** 14 - 4.95972428347135e43 * cos(theta) ** 12 + 1.07254850166812e42 * cos(theta) ** 10 - 1.55541999919643e40 * cos(theta) ** 8 + 1.38259555484127e38 * cos(theta) ** 6 - 6.49512474870625e35 * cos(theta) ** 4 + 1.20577810928953e33 * cos(theta) ** 2 - 3.69078086712435e29 ) * cos(16 * phi) ) # @torch.jit.script def Yl82_m17(theta, phi): return ( 1.52340486282129e-32 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.73385227057406e55 * cos(theta) ** 65 - 2.21252314281843e56 * cos(theta) ** 63 + 1.34194338444857e57 * cos(theta) ** 61 - 5.14833625480268e57 * cos(theta) ** 59 + 1.40267568980372e58 * cos(theta) ** 57 - 2.88860696893774e58 * cos(theta) ** 55 + 4.67274656739928e58 * cos(theta) ** 53 - 6.09181151360095e58 * cos(theta) ** 51 + 6.51598966429632e58 * cos(theta) ** 49 - 5.79199081270784e58 * cos(theta) ** 47 + 4.31802901278426e58 * cos(theta) ** 45 - 2.71764063741667e58 * cos(theta) ** 43 + 1.45037204230925e58 * cos(theta) ** 41 - 6.58165508961585e57 * cos(theta) ** 39 + 2.5427562155398e57 * cos(theta) ** 37 - 8.36284266444202e56 * cos(theta) ** 35 + 2.33829482393938e56 * cos(theta) ** 33 - 5.54386918293666e55 * cos(theta) ** 31 + 1.11020636092401e55 * cos(theta) ** 29 - 1.86798086421528e54 * cos(theta) ** 27 + 2.62264513335825e53 * cos(theta) ** 25 - 3.04604545105488e52 * cos(theta) ** 23 + 2.89500187496952e51 * cos(theta) ** 21 - 2.22122906007891e50 * cos(theta) ** 19 + 1.35267154299677e49 * cos(theta) ** 17 - 6.39872451643691e47 * cos(theta) ** 15 + 2.28681441193286e46 * cos(theta) ** 13 - 5.95166914016562e44 * cos(theta) ** 11 + 1.07254850166812e43 * cos(theta) ** 9 - 1.24433599935714e41 * cos(theta) ** 7 + 8.29557332904762e38 * cos(theta) ** 5 - 2.5980498994825e36 * cos(theta) ** 3 + 2.41155621857905e33 * cos(theta) ) * cos(17 * phi) ) # @torch.jit.script def Yl82_m18(theta, phi): return ( 1.88955117831948e-34 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.12700397587314e57 * cos(theta) ** 64 - 1.39388957997561e58 * cos(theta) ** 62 + 8.18585464513627e58 * cos(theta) ** 60 - 3.03751839033358e59 * cos(theta) ** 58 + 7.99525143188123e59 * cos(theta) ** 56 - 1.58873383291575e60 * cos(theta) ** 54 + 2.47655568072162e60 * cos(theta) ** 52 - 3.10682387193649e60 * cos(theta) ** 50 + 3.1928349355052e60 * cos(theta) ** 48 - 2.72223568197268e60 * cos(theta) ** 46 + 1.94311305575292e60 * cos(theta) ** 44 - 1.16858547408917e60 * cos(theta) ** 42 + 5.94652537346792e59 * cos(theta) ** 40 - 2.56684548495018e59 * cos(theta) ** 38 + 9.40819799749728e58 * cos(theta) ** 36 - 2.92699493255471e58 * cos(theta) ** 34 + 7.71637291899996e57 * cos(theta) ** 32 - 1.71859944671036e57 * cos(theta) ** 30 + 3.21959844667962e56 * cos(theta) ** 28 - 5.04354833338126e55 * cos(theta) ** 26 + 6.55661283339563e54 * cos(theta) ** 24 - 7.00590453742623e53 * cos(theta) ** 22 + 6.07950393743598e52 * cos(theta) ** 20 - 4.22033521414993e51 * cos(theta) ** 18 + 2.29954162309452e50 * cos(theta) ** 16 - 9.59808677465537e48 * cos(theta) ** 14 + 2.97285873551272e47 * cos(theta) ** 12 - 6.54683605418218e45 * cos(theta) ** 10 + 9.65293651501304e43 * cos(theta) ** 8 - 8.7103519955e41 * cos(theta) ** 6 + 4.14778666452381e39 * cos(theta) ** 4 - 7.7941496984475e36 * cos(theta) ** 2 + 2.41155621857905e33 ) * cos(18 * phi) ) # @torch.jit.script def Yl82_m19(theta, phi): return ( 2.35021711904123e-36 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 7.21282544558808e58 * cos(theta) ** 63 - 8.64211539584878e59 * cos(theta) ** 61 + 4.91151278708176e60 * cos(theta) ** 59 - 1.76176066639348e61 * cos(theta) ** 57 + 4.47734080185349e61 * cos(theta) ** 55 - 8.57916269774508e61 * cos(theta) ** 53 + 1.28780895397524e62 * cos(theta) ** 51 - 1.55341193596824e62 * cos(theta) ** 49 + 1.53256076904249e62 * cos(theta) ** 47 - 1.25222841370743e62 * cos(theta) ** 45 + 8.54969744531283e61 * cos(theta) ** 43 - 4.9080589911745e61 * cos(theta) ** 41 + 2.37861014938717e61 * cos(theta) ** 39 - 9.75401284281069e60 * cos(theta) ** 37 + 3.38695127909902e60 * cos(theta) ** 35 - 9.95178277068601e59 * cos(theta) ** 33 + 2.46923933407999e59 * cos(theta) ** 31 - 5.15579834013109e58 * cos(theta) ** 29 + 9.01487565070294e57 * cos(theta) ** 27 - 1.31132256667913e57 * cos(theta) ** 25 + 1.57358708001495e56 * cos(theta) ** 23 - 1.54129899823377e55 * cos(theta) ** 21 + 1.2159007874872e54 * cos(theta) ** 19 - 7.59660338546988e52 * cos(theta) ** 17 + 3.67926659695122e51 * cos(theta) ** 15 - 1.34373214845175e50 * cos(theta) ** 13 + 3.56743048261527e48 * cos(theta) ** 11 - 6.54683605418218e46 * cos(theta) ** 9 + 7.72234921201043e44 * cos(theta) ** 7 - 5.2262111973e42 * cos(theta) ** 5 + 1.65911466580952e40 * cos(theta) ** 3 - 1.5588299396895e37 * cos(theta) ) * cos(19 * phi) ) # @torch.jit.script def Yl82_m20(theta, phi): return ( 2.93182217107679e-38 * (1.0 - cos(theta) ** 2) ** 10 * ( 4.54408003072049e60 * cos(theta) ** 62 - 5.27169039146776e61 * cos(theta) ** 60 + 2.89779254437824e62 * cos(theta) ** 58 - 1.00420357984428e63 * cos(theta) ** 56 + 2.46253744101942e63 * cos(theta) ** 54 - 4.54695622980489e63 * cos(theta) ** 52 + 6.56782566527373e63 * cos(theta) ** 50 - 7.61171848624439e63 * cos(theta) ** 48 + 7.20303561449972e63 * cos(theta) ** 46 - 5.63502786168346e63 * cos(theta) ** 44 + 3.67636990148452e63 * cos(theta) ** 42 - 2.01230418638154e63 * cos(theta) ** 40 + 9.27657958260996e62 * cos(theta) ** 38 - 3.60898475183996e62 * cos(theta) ** 36 + 1.18543294768466e62 * cos(theta) ** 34 - 3.28408831432638e61 * cos(theta) ** 32 + 7.65464193564796e60 * cos(theta) ** 30 - 1.49518151863802e60 * cos(theta) ** 28 + 2.43401642568979e59 * cos(theta) ** 26 - 3.27830641669782e58 * cos(theta) ** 24 + 3.61925028403439e57 * cos(theta) ** 22 - 3.23672789629092e56 * cos(theta) ** 20 + 2.31021149622567e55 * cos(theta) ** 18 - 1.29142257552988e54 * cos(theta) ** 16 + 5.51889989542684e52 * cos(theta) ** 14 - 1.74685179298728e51 * cos(theta) ** 12 + 3.9241735308768e49 * cos(theta) ** 10 - 5.89215244876396e47 * cos(theta) ** 8 + 5.4056444484073e45 * cos(theta) ** 6 - 2.61310559865e43 * cos(theta) ** 4 + 4.97734399742857e40 * cos(theta) ** 2 - 1.5588299396895e37 ) * cos(20 * phi) ) # @torch.jit.script def Yl82_m21(theta, phi): return ( 3.66879265268161e-40 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 2.8173296190467e62 * cos(theta) ** 61 - 3.16301423488065e63 * cos(theta) ** 59 + 1.68071967573938e64 * cos(theta) ** 57 - 5.62354004712798e64 * cos(theta) ** 55 + 1.32977021815049e65 * cos(theta) ** 53 - 2.36441723949854e65 * cos(theta) ** 51 + 3.28391283263686e65 * cos(theta) ** 49 - 3.65362487339731e65 * cos(theta) ** 47 + 3.31339638266987e65 * cos(theta) ** 45 - 2.47941225914072e65 * cos(theta) ** 43 + 1.5440753586235e65 * cos(theta) ** 41 - 8.04921674552618e64 * cos(theta) ** 39 + 3.52510024139178e64 * cos(theta) ** 37 - 1.29923451066238e64 * cos(theta) ** 35 + 4.03047202212783e63 * cos(theta) ** 33 - 1.05090826058444e63 * cos(theta) ** 31 + 2.29639258069439e62 * cos(theta) ** 29 - 4.18650825218645e61 * cos(theta) ** 27 + 6.32844270679347e60 * cos(theta) ** 25 - 7.86793540007476e59 * cos(theta) ** 23 + 7.96235062487566e58 * cos(theta) ** 21 - 6.47345579258184e57 * cos(theta) ** 19 + 4.15838069320621e56 * cos(theta) ** 17 - 2.06627612084781e55 * cos(theta) ** 15 + 7.72645985359757e53 * cos(theta) ** 13 - 2.09622215158473e52 * cos(theta) ** 11 + 3.9241735308768e50 * cos(theta) ** 9 - 4.71372195901117e48 * cos(theta) ** 7 + 3.24338666904438e46 * cos(theta) ** 5 - 1.04524223946e44 * cos(theta) ** 3 + 9.95468799485715e40 * cos(theta) ) * cos(21 * phi) ) # @torch.jit.script def Yl82_m22(theta, phi): return ( 4.60618716125588e-42 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.71857106761849e64 * cos(theta) ** 60 - 1.86617839857959e65 * cos(theta) ** 58 + 9.58010215171446e65 * cos(theta) ** 56 - 3.09294702592039e66 * cos(theta) ** 54 + 7.04778215619758e66 * cos(theta) ** 52 - 1.20585279214426e67 * cos(theta) ** 50 + 1.60911728799206e67 * cos(theta) ** 48 - 1.71720369049673e67 * cos(theta) ** 46 + 1.49102837220144e67 * cos(theta) ** 44 - 1.06614727143051e67 * cos(theta) ** 42 + 6.33070897035634e66 * cos(theta) ** 40 - 3.13919453075521e66 * cos(theta) ** 38 + 1.30428708931496e66 * cos(theta) ** 36 - 4.54732078731834e65 * cos(theta) ** 34 + 1.33005576730219e65 * cos(theta) ** 32 - 3.25781560781177e64 * cos(theta) ** 30 + 6.65953848401373e63 * cos(theta) ** 28 - 1.13035722809034e63 * cos(theta) ** 26 + 1.58211067669837e62 * cos(theta) ** 24 - 1.8096251420172e61 * cos(theta) ** 22 + 1.67209363122389e60 * cos(theta) ** 20 - 1.22995660059055e59 * cos(theta) ** 18 + 7.06924717845056e57 * cos(theta) ** 16 - 3.09941418127171e56 * cos(theta) ** 14 + 1.00443978096768e55 * cos(theta) ** 12 - 2.30584436674321e53 * cos(theta) ** 10 + 3.53175617778912e51 * cos(theta) ** 8 - 3.29960537130782e49 * cos(theta) ** 6 + 1.62169333452219e47 * cos(theta) ** 4 - 3.13572671838e44 * cos(theta) ** 2 + 9.95468799485715e40 ) * cos(22 * phi) ) # @torch.jit.script def Yl82_m23(theta, phi): return ( 5.80325034328649e-44 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.03114264057109e66 * cos(theta) ** 59 - 1.08238347117616e67 * cos(theta) ** 57 + 5.3648572049601e67 * cos(theta) ** 55 - 1.67019139399701e68 * cos(theta) ** 53 + 3.66484672122274e68 * cos(theta) ** 51 - 6.02926396072128e68 * cos(theta) ** 49 + 7.72376298236191e68 * cos(theta) ** 47 - 7.89913697628498e68 * cos(theta) ** 45 + 6.56052483768635e68 * cos(theta) ** 43 - 4.47781854000814e68 * cos(theta) ** 41 + 2.53228358814254e68 * cos(theta) ** 39 - 1.19289392168698e68 * cos(theta) ** 37 + 4.69543352153386e67 * cos(theta) ** 35 - 1.54608906768824e67 * cos(theta) ** 33 + 4.25617845536699e66 * cos(theta) ** 31 - 9.77344682343532e65 * cos(theta) ** 29 + 1.86467077552384e65 * cos(theta) ** 27 - 2.93892879303489e64 * cos(theta) ** 25 + 3.79706562407608e63 * cos(theta) ** 23 - 3.98117531243783e62 * cos(theta) ** 21 + 3.34418726244778e61 * cos(theta) ** 19 - 2.21392188106299e60 * cos(theta) ** 17 + 1.13107954855209e59 * cos(theta) ** 15 - 4.3391798537804e57 * cos(theta) ** 13 + 1.20532773716122e56 * cos(theta) ** 11 - 2.30584436674321e54 * cos(theta) ** 9 + 2.82540494223129e52 * cos(theta) ** 7 - 1.97976322278469e50 * cos(theta) ** 5 + 6.48677333808876e47 * cos(theta) ** 3 - 6.27145343676e44 * cos(theta) ) * cos(23 * phi) ) # @torch.jit.script def Yl82_m24(theta, phi): return ( 7.33824770310885e-46 * (1.0 - cos(theta) ** 2) ** 12 * ( 6.08374157936945e67 * cos(theta) ** 58 - 6.16958578570411e68 * cos(theta) ** 56 + 2.95067146272805e69 * cos(theta) ** 54 - 8.85201438818416e69 * cos(theta) ** 52 + 1.8690718278236e70 * cos(theta) ** 50 - 2.95433934075343e70 * cos(theta) ** 48 + 3.6301686017101e70 * cos(theta) ** 46 - 3.55461163932824e70 * cos(theta) ** 44 + 2.82102568020513e70 * cos(theta) ** 42 - 1.83590560140334e70 * cos(theta) ** 40 + 9.87590599375589e69 * cos(theta) ** 38 - 4.41370751024183e69 * cos(theta) ** 36 + 1.64340173253685e69 * cos(theta) ** 34 - 5.10209392337118e68 * cos(theta) ** 32 + 1.31941532116377e68 * cos(theta) ** 30 - 2.83429957879624e67 * cos(theta) ** 28 + 5.03461109391438e66 * cos(theta) ** 26 - 7.34732198258721e65 * cos(theta) ** 24 + 8.73325093537498e64 * cos(theta) ** 22 - 8.36046815611944e63 * cos(theta) ** 20 + 6.35395579865077e62 * cos(theta) ** 18 - 3.76366719780708e61 * cos(theta) ** 16 + 1.69661932282813e60 * cos(theta) ** 14 - 5.64093380991451e58 * cos(theta) ** 12 + 1.32586051087734e57 * cos(theta) ** 10 - 2.07525993006889e55 * cos(theta) ** 8 + 1.97778345956191e53 * cos(theta) ** 6 - 9.89881611392345e50 * cos(theta) ** 4 + 1.94603200142663e48 * cos(theta) ** 2 - 6.27145343676e44 ) * cos(24 * phi) ) # @torch.jit.script def Yl82_m25(theta, phi): return ( 9.31507769682447e-48 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 3.52857011603428e69 * cos(theta) ** 57 - 3.4549680399943e70 * cos(theta) ** 55 + 1.59336258987315e71 * cos(theta) ** 53 - 4.60304748185576e71 * cos(theta) ** 51 + 9.34535913911799e71 * cos(theta) ** 49 - 1.41808288356165e72 * cos(theta) ** 47 + 1.66987755678664e72 * cos(theta) ** 45 - 1.56402912130443e72 * cos(theta) ** 43 + 1.18483078568615e72 * cos(theta) ** 41 - 7.34362240561335e71 * cos(theta) ** 39 + 3.75284427762724e71 * cos(theta) ** 37 - 1.58893470368706e71 * cos(theta) ** 35 + 5.58756589062529e70 * cos(theta) ** 33 - 1.63267005547878e70 * cos(theta) ** 31 + 3.9582459634913e69 * cos(theta) ** 29 - 7.93603882062948e68 * cos(theta) ** 27 + 1.30899888441774e68 * cos(theta) ** 25 - 1.76335727582093e67 * cos(theta) ** 23 + 1.9213152057825e66 * cos(theta) ** 21 - 1.67209363122389e65 * cos(theta) ** 19 + 1.14371204375714e64 * cos(theta) ** 17 - 6.02186751649133e62 * cos(theta) ** 15 + 2.37526705195939e61 * cos(theta) ** 13 - 6.76912057189742e59 * cos(theta) ** 11 + 1.32586051087734e58 * cos(theta) ** 9 - 1.66020794405511e56 * cos(theta) ** 7 + 1.18667007573714e54 * cos(theta) ** 5 - 3.95952644556938e51 * cos(theta) ** 3 + 3.89206400285326e48 * cos(theta) ) * cos(25 * phi) ) # @torch.jit.script def Yl82_m26(theta, phi): return ( 1.18723632548794e-49 * (1.0 - cos(theta) ** 2) ** 13 * ( 2.01128496613954e71 * cos(theta) ** 56 - 1.90023242199687e72 * cos(theta) ** 54 + 8.44482172632769e72 * cos(theta) ** 52 - 2.34755421574644e73 * cos(theta) ** 50 + 4.57922597816782e73 * cos(theta) ** 48 - 6.66498955273974e73 * cos(theta) ** 46 + 7.5144490055399e73 * cos(theta) ** 44 - 6.72532522160903e73 * cos(theta) ** 42 + 4.85780622131323e73 * cos(theta) ** 40 - 2.86401273818921e73 * cos(theta) ** 38 + 1.38855238272208e73 * cos(theta) ** 36 - 5.5612714629047e72 * cos(theta) ** 34 + 1.84389674390635e72 * cos(theta) ** 32 - 5.06127717198421e71 * cos(theta) ** 30 + 1.14789132941248e71 * cos(theta) ** 28 - 2.14273048156996e70 * cos(theta) ** 26 + 3.27249721104435e69 * cos(theta) ** 24 - 4.05572173438814e68 * cos(theta) ** 22 + 4.03476193214324e67 * cos(theta) ** 20 - 3.17697789932539e66 * cos(theta) ** 18 + 1.94431047438714e65 * cos(theta) ** 16 - 9.03280127473699e63 * cos(theta) ** 14 + 3.08784716754721e62 * cos(theta) ** 12 - 7.44603262908716e60 * cos(theta) ** 10 + 1.19327445978961e59 * cos(theta) ** 8 - 1.16214556083858e57 * cos(theta) ** 6 + 5.93335037868572e54 * cos(theta) ** 4 - 1.18785793367081e52 * cos(theta) ** 2 + 3.89206400285326e48 ) * cos(26 * phi) ) # @torch.jit.script def Yl82_m27(theta, phi): return ( 1.51960220000552e-51 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.12631958103814e73 * cos(theta) ** 55 - 1.02612550787831e74 * cos(theta) ** 53 + 4.3913072976904e74 * cos(theta) ** 51 - 1.17377710787322e75 * cos(theta) ** 49 + 2.19802846952055e75 * cos(theta) ** 47 - 3.06589519426028e75 * cos(theta) ** 45 + 3.30635756243756e75 * cos(theta) ** 43 - 2.82463659307579e75 * cos(theta) ** 41 + 1.94312248852529e75 * cos(theta) ** 39 - 1.0883248405119e75 * cos(theta) ** 37 + 4.99878857779948e74 * cos(theta) ** 35 - 1.8908322973876e74 * cos(theta) ** 33 + 5.90046958050031e73 * cos(theta) ** 31 - 1.51838315159526e73 * cos(theta) ** 29 + 3.21409572235494e72 * cos(theta) ** 27 - 5.57109925208189e71 * cos(theta) ** 25 + 7.85399330650643e70 * cos(theta) ** 23 - 8.92258781565391e69 * cos(theta) ** 21 + 8.06952386428648e68 * cos(theta) ** 19 - 5.7185602187857e67 * cos(theta) ** 17 + 3.11089675901942e66 * cos(theta) ** 15 - 1.26459217846318e65 * cos(theta) ** 13 + 3.70541660105665e63 * cos(theta) ** 11 - 7.44603262908716e61 * cos(theta) ** 9 + 9.54619567831687e59 * cos(theta) ** 7 - 6.97287336503145e57 * cos(theta) ** 5 + 2.37334015147429e55 * cos(theta) ** 3 - 2.37571586734163e52 * cos(theta) ) * cos(27 * phi) ) # @torch.jit.script def Yl82_m28(theta, phi): return ( 1.95367458241801e-53 * (1.0 - cos(theta) ** 2) ** 14 * ( 6.19475769570978e74 * cos(theta) ** 54 - 5.43846519175503e75 * cos(theta) ** 52 + 2.2395667218221e76 * cos(theta) ** 50 - 5.75150782857878e76 * cos(theta) ** 48 + 1.03307338067466e77 * cos(theta) ** 46 - 1.37965283741713e77 * cos(theta) ** 44 + 1.42173375184815e77 * cos(theta) ** 42 - 1.15810100316107e77 * cos(theta) ** 40 + 7.57817770524864e76 * cos(theta) ** 38 - 4.02680190989403e76 * cos(theta) ** 36 + 1.74957600222982e76 * cos(theta) ** 34 - 6.23974658137907e75 * cos(theta) ** 32 + 1.82914556995509e75 * cos(theta) ** 30 - 4.40331113962627e74 * cos(theta) ** 28 + 8.67805845035833e73 * cos(theta) ** 26 - 1.39277481302047e73 * cos(theta) ** 24 + 1.80641846049648e72 * cos(theta) ** 22 - 1.87374344128732e71 * cos(theta) ** 20 + 1.53320953421443e70 * cos(theta) ** 18 - 9.72155237193569e68 * cos(theta) ** 16 + 4.66634513852913e67 * cos(theta) ** 14 - 1.64396983200213e66 * cos(theta) ** 12 + 4.07595826116231e64 * cos(theta) ** 10 - 6.70142936617844e62 * cos(theta) ** 8 + 6.68233697482181e60 * cos(theta) ** 6 - 3.48643668251573e58 * cos(theta) ** 4 + 7.12002045442286e55 * cos(theta) ** 2 - 2.37571586734163e52 ) * cos(28 * phi) ) # @torch.jit.script def Yl82_m29(theta, phi): return ( 2.52344507866567e-55 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 3.34516915568328e76 * cos(theta) ** 53 - 2.82800189971262e77 * cos(theta) ** 51 + 1.11978336091105e78 * cos(theta) ** 49 - 2.76072375771781e78 * cos(theta) ** 47 + 4.75213755110343e78 * cos(theta) ** 45 - 6.07047248463535e78 * cos(theta) ** 43 + 5.97128175776222e78 * cos(theta) ** 41 - 4.6324040126443e78 * cos(theta) ** 39 + 2.87970752799448e78 * cos(theta) ** 37 - 1.44964868756185e78 * cos(theta) ** 35 + 5.94855840758138e77 * cos(theta) ** 33 - 1.9967189060413e77 * cos(theta) ** 31 + 5.48743670986528e76 * cos(theta) ** 29 - 1.23292711909535e76 * cos(theta) ** 27 + 2.25629519709317e75 * cos(theta) ** 25 - 3.34265955124914e74 * cos(theta) ** 23 + 3.97412061309225e73 * cos(theta) ** 21 - 3.74748688257464e72 * cos(theta) ** 19 + 2.75977716158598e71 * cos(theta) ** 17 - 1.55544837950971e70 * cos(theta) ** 15 + 6.53288319394078e68 * cos(theta) ** 13 - 1.97276379840256e67 * cos(theta) ** 11 + 4.07595826116231e65 * cos(theta) ** 9 - 5.36114349294275e63 * cos(theta) ** 7 + 4.00940218489309e61 * cos(theta) ** 5 - 1.39457467300629e59 * cos(theta) ** 3 + 1.42400409088457e56 * cos(theta) ) * cos(29 * phi) ) # @torch.jit.script def Yl82_m30(theta, phi): return ( 3.27526851871414e-57 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.77293965251214e78 * cos(theta) ** 52 - 1.44228096885343e79 * cos(theta) ** 50 + 5.48693846846415e79 * cos(theta) ** 48 - 1.29754016612737e80 * cos(theta) ** 46 + 2.13846189799654e80 * cos(theta) ** 44 - 2.6103031683932e80 * cos(theta) ** 42 + 2.44822552068251e80 * cos(theta) ** 40 - 1.80663756493128e80 * cos(theta) ** 38 + 1.06549178535796e80 * cos(theta) ** 36 - 5.07377040646647e79 * cos(theta) ** 34 + 1.96302427450186e79 * cos(theta) ** 32 - 6.18982860872804e78 * cos(theta) ** 30 + 1.59135664586093e78 * cos(theta) ** 28 - 3.32890322155746e77 * cos(theta) ** 26 + 5.64073799273292e76 * cos(theta) ** 24 - 7.68811696787301e75 * cos(theta) ** 22 + 8.34565328749373e74 * cos(theta) ** 20 - 7.12022507689182e73 * cos(theta) ** 18 + 4.69162117469616e72 * cos(theta) ** 16 - 2.33317256926456e71 * cos(theta) ** 14 + 8.49274815212301e69 * cos(theta) ** 12 - 2.17004017824281e68 * cos(theta) ** 10 + 3.66836243504608e66 * cos(theta) ** 8 - 3.75280044505993e64 * cos(theta) ** 6 + 2.00470109244654e62 * cos(theta) ** 4 - 4.18372401901887e59 * cos(theta) ** 2 + 1.42400409088457e56 ) * cos(30 * phi) ) # @torch.jit.script def Yl82_m31(theta, phi): return ( 4.27273558149263e-59 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 9.21928619306313e79 * cos(theta) ** 51 - 7.21140484426717e80 * cos(theta) ** 49 + 2.63373046486279e81 * cos(theta) ** 47 - 5.96868476418591e81 * cos(theta) ** 45 + 9.4092323511848e81 * cos(theta) ** 43 - 1.09632733072514e82 * cos(theta) ** 41 + 9.79290208273005e81 * cos(theta) ** 39 - 6.86522274673885e81 * cos(theta) ** 37 + 3.83577042728865e81 * cos(theta) ** 35 - 1.7250819381986e81 * cos(theta) ** 33 + 6.28167767840594e80 * cos(theta) ** 31 - 1.85694858261841e80 * cos(theta) ** 29 + 4.45579860841061e79 * cos(theta) ** 27 - 8.65514837604939e78 * cos(theta) ** 25 + 1.3537771182559e78 * cos(theta) ** 23 - 1.69138573293206e77 * cos(theta) ** 21 + 1.66913065749875e76 * cos(theta) ** 19 - 1.28164051384053e75 * cos(theta) ** 17 + 7.50659387951386e73 * cos(theta) ** 15 - 3.26644159697039e72 * cos(theta) ** 13 + 1.01912977825476e71 * cos(theta) ** 11 - 2.17004017824281e69 * cos(theta) ** 9 + 2.93468994803686e67 * cos(theta) ** 7 - 2.25168026703596e65 * cos(theta) ** 5 + 8.01880436978617e62 * cos(theta) ** 3 - 8.36744803803774e59 * cos(theta) ) * cos(31 * phi) ) # @torch.jit.script def Yl82_m32(theta, phi): return ( 5.60361776682089e-61 * (1.0 - cos(theta) ** 2) ** 16 * ( 4.7018359584622e81 * cos(theta) ** 50 - 3.53358837369091e82 * cos(theta) ** 48 + 1.23785331848551e83 * cos(theta) ** 46 - 2.68590814388366e83 * cos(theta) ** 44 + 4.04596991100946e83 * cos(theta) ** 42 - 4.49494205597309e83 * cos(theta) ** 40 + 3.81923181226472e83 * cos(theta) ** 38 - 2.54013241629337e83 * cos(theta) ** 36 + 1.34251964955103e83 * cos(theta) ** 34 - 5.69277039605538e82 * cos(theta) ** 32 + 1.94732008030584e82 * cos(theta) ** 30 - 5.38515088959339e81 * cos(theta) ** 28 + 1.20306562427086e81 * cos(theta) ** 26 - 2.16378709401235e80 * cos(theta) ** 24 + 3.11368737198857e79 * cos(theta) ** 22 - 3.55191003915733e78 * cos(theta) ** 20 + 3.17134824924762e77 * cos(theta) ** 18 - 2.1787888735289e76 * cos(theta) ** 16 + 1.12598908192708e75 * cos(theta) ** 14 - 4.24637407606151e73 * cos(theta) ** 12 + 1.12104275608024e72 * cos(theta) ** 10 - 1.95303616041853e70 * cos(theta) ** 8 + 2.0542829636258e68 * cos(theta) ** 6 - 1.12584013351798e66 * cos(theta) ** 4 + 2.40564131093585e63 * cos(theta) ** 2 - 8.36744803803774e59 ) * cos(32 * phi) ) # @torch.jit.script def Yl82_m33(theta, phi): return ( 7.38983227163081e-63 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 2.3509179792311e83 * cos(theta) ** 49 - 1.69612241937164e84 * cos(theta) ** 47 + 5.69412526503336e84 * cos(theta) ** 45 - 1.18179958330881e85 * cos(theta) ** 43 + 1.69930736262397e85 * cos(theta) ** 41 - 1.79797682238924e85 * cos(theta) ** 39 + 1.45130808866059e85 * cos(theta) ** 37 - 9.14447669865615e84 * cos(theta) ** 35 + 4.5645668084735e84 * cos(theta) ** 33 - 1.82168652673772e84 * cos(theta) ** 31 + 5.84196024091752e83 * cos(theta) ** 29 - 1.50784224908615e83 * cos(theta) ** 27 + 3.12797062310425e82 * cos(theta) ** 25 - 5.19308902562963e81 * cos(theta) ** 23 + 6.85011221837485e80 * cos(theta) ** 21 - 7.10382007831466e79 * cos(theta) ** 19 + 5.70842684864571e78 * cos(theta) ** 17 - 3.48606219764624e77 * cos(theta) ** 15 + 1.57638471469791e76 * cos(theta) ** 13 - 5.09564889127381e74 * cos(theta) ** 11 + 1.12104275608024e73 * cos(theta) ** 9 - 1.56242892833483e71 * cos(theta) ** 7 + 1.23256977817548e69 * cos(theta) ** 5 - 4.50336053407191e66 * cos(theta) ** 3 + 4.8112826218717e63 * cos(theta) ) * cos(33 * phi) ) # @torch.jit.script def Yl82_m34(theta, phi): return ( 9.80183859108696e-65 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.15194980982324e85 * cos(theta) ** 48 - 7.9717753710467e85 * cos(theta) ** 46 + 2.56235636926501e86 * cos(theta) ** 44 - 5.08173820822788e86 * cos(theta) ** 42 + 6.96716018675829e86 * cos(theta) ** 40 - 7.01210960731802e86 * cos(theta) ** 38 + 5.3698399280442e86 * cos(theta) ** 36 - 3.20056684452965e86 * cos(theta) ** 34 + 1.50630704679625e86 * cos(theta) ** 32 - 5.64722823288694e85 * cos(theta) ** 30 + 1.69416846986608e85 * cos(theta) ** 28 - 4.07117407253261e84 * cos(theta) ** 26 + 7.81992655776062e83 * cos(theta) ** 24 - 1.19441047589482e83 * cos(theta) ** 22 + 1.43852356585872e82 * cos(theta) ** 20 - 1.34972581487979e81 * cos(theta) ** 18 + 9.70432564269771e79 * cos(theta) ** 16 - 5.22909329646935e78 * cos(theta) ** 14 + 2.04930012910728e77 * cos(theta) ** 12 - 5.60521378040119e75 * cos(theta) ** 10 + 1.00893848047221e74 * cos(theta) ** 8 - 1.09370024983438e72 * cos(theta) ** 6 + 6.16284889087741e69 * cos(theta) ** 4 - 1.35100816022157e67 * cos(theta) ** 2 + 4.8112826218717e63 ) * cos(34 * phi) ) # @torch.jit.script def Yl82_m35(theta, phi): return ( 1.30795859790518e-66 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 5.52935908715154e86 * cos(theta) ** 47 - 3.66701667068148e87 * cos(theta) ** 45 + 1.12743680247661e88 * cos(theta) ** 43 - 2.13433004745571e88 * cos(theta) ** 41 + 2.78686407470332e88 * cos(theta) ** 39 - 2.66460165078085e88 * cos(theta) ** 37 + 1.93314237409591e88 * cos(theta) ** 35 - 1.08819272714008e88 * cos(theta) ** 33 + 4.82018254974801e87 * cos(theta) ** 31 - 1.69416846986608e87 * cos(theta) ** 29 + 4.74367171562503e86 * cos(theta) ** 27 - 1.05850525885848e86 * cos(theta) ** 25 + 1.87678237386255e85 * cos(theta) ** 23 - 2.62770304696859e84 * cos(theta) ** 21 + 2.87704713171744e83 * cos(theta) ** 19 - 2.42950646678361e82 * cos(theta) ** 17 + 1.55269210283163e81 * cos(theta) ** 15 - 7.3207306150571e79 * cos(theta) ** 13 + 2.45916015492874e78 * cos(theta) ** 11 - 5.60521378040119e76 * cos(theta) ** 9 + 8.07150784377771e74 * cos(theta) ** 7 - 6.56220149900627e72 * cos(theta) ** 5 + 2.46513955635097e70 * cos(theta) ** 3 - 2.70201632044315e67 * cos(theta) ) * cos(35 * phi) ) # @torch.jit.script def Yl82_m36(theta, phi): return ( 1.75632168870198e-68 * (1.0 - cos(theta) ** 2) ** 18 * ( 2.59879877096122e88 * cos(theta) ** 46 - 1.65015750180667e89 * cos(theta) ** 44 + 4.8479782506494e89 * cos(theta) ** 42 - 8.75075319456842e89 * cos(theta) ** 40 + 1.08687698913429e90 * cos(theta) ** 38 - 9.85902610788914e89 * cos(theta) ** 36 + 6.76599830933569e89 * cos(theta) ** 34 - 3.59103599956227e89 * cos(theta) ** 32 + 1.49425659042188e89 * cos(theta) ** 30 - 4.91308856261164e88 * cos(theta) ** 28 + 1.28079136321876e88 * cos(theta) ** 26 - 2.64626314714619e87 * cos(theta) ** 24 + 4.31659945988386e86 * cos(theta) ** 22 - 5.51817639863405e85 * cos(theta) ** 20 + 5.46638955026313e84 * cos(theta) ** 18 - 4.13016099353215e83 * cos(theta) ** 16 + 2.32903815424745e82 * cos(theta) ** 14 - 9.51694979957422e80 * cos(theta) ** 12 + 2.70507617042161e79 * cos(theta) ** 10 - 5.04469240236107e77 * cos(theta) ** 8 + 5.6500554906444e75 * cos(theta) ** 6 - 3.28110074950314e73 * cos(theta) ** 4 + 7.3954186690529e70 * cos(theta) ** 2 - 2.70201632044315e67 ) * cos(36 * phi) ) # @torch.jit.script def Yl82_m37(theta, phi): return ( 2.37384122615229e-70 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 1.19544743464216e90 * cos(theta) ** 45 - 7.26069300794934e90 * cos(theta) ** 43 + 2.03615086527275e91 * cos(theta) ** 41 - 3.50030127782737e91 * cos(theta) ** 39 + 4.13013255871032e91 * cos(theta) ** 37 - 3.54924939884009e91 * cos(theta) ** 35 + 2.30043942517413e91 * cos(theta) ** 33 - 1.14913151985993e91 * cos(theta) ** 31 + 4.48276977126565e90 * cos(theta) ** 29 - 1.37566479753126e90 * cos(theta) ** 27 + 3.33005754436877e89 * cos(theta) ** 25 - 6.35103155315087e88 * cos(theta) ** 23 + 9.4965188117445e87 * cos(theta) ** 21 - 1.10363527972681e87 * cos(theta) ** 19 + 9.83950119047364e85 * cos(theta) ** 17 - 6.60825758965143e84 * cos(theta) ** 15 + 3.26065341594643e83 * cos(theta) ** 13 - 1.14203397594891e82 * cos(theta) ** 11 + 2.70507617042161e80 * cos(theta) ** 9 - 4.03575392188886e78 * cos(theta) ** 7 + 3.39003329438664e76 * cos(theta) ** 5 - 1.31244029980125e74 * cos(theta) ** 3 + 1.47908373381058e71 * cos(theta) ) * cos(37 * phi) ) # @torch.jit.script def Yl82_m38(theta, phi): return ( 3.23038874136438e-72 * (1.0 - cos(theta) ** 2) ** 19 * ( 5.37951345588974e91 * cos(theta) ** 44 - 3.12209799341821e92 * cos(theta) ** 42 + 8.34821854761827e92 * cos(theta) ** 40 - 1.36511749835267e93 * cos(theta) ** 38 + 1.52814904672282e93 * cos(theta) ** 36 - 1.24223728959403e93 * cos(theta) ** 34 + 7.59145010307464e92 * cos(theta) ** 32 - 3.56230771156577e92 * cos(theta) ** 30 + 1.30000323366704e92 * cos(theta) ** 28 - 3.7142949533344e91 * cos(theta) ** 26 + 8.32514386092193e90 * cos(theta) ** 24 - 1.4607372572247e90 * cos(theta) ** 22 + 1.99426895046634e89 * cos(theta) ** 20 - 2.09690703148094e88 * cos(theta) ** 18 + 1.67271520238052e87 * cos(theta) ** 16 - 9.91238638447715e85 * cos(theta) ** 14 + 4.23884944073036e84 * cos(theta) ** 12 - 1.2562373735438e83 * cos(theta) ** 10 + 2.43456855337945e81 * cos(theta) ** 8 - 2.8250277453222e79 * cos(theta) ** 6 + 1.69501664719332e77 * cos(theta) ** 4 - 3.93732089940376e74 * cos(theta) ** 2 + 1.47908373381058e71 ) * cos(38 * phi) ) # @torch.jit.script def Yl82_m39(theta, phi): return ( 4.42726751326201e-74 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 2.36698592059148e93 * cos(theta) ** 43 - 1.31128115723565e94 * cos(theta) ** 41 + 3.33928741904731e94 * cos(theta) ** 39 - 5.18744649374016e94 * cos(theta) ** 37 + 5.50133656820214e94 * cos(theta) ** 35 - 4.22360678461971e94 * cos(theta) ** 33 + 2.42926403298388e94 * cos(theta) ** 31 - 1.06869231346973e94 * cos(theta) ** 29 + 3.64000905426771e93 * cos(theta) ** 27 - 9.65716687866943e92 * cos(theta) ** 25 + 1.99803452662126e92 * cos(theta) ** 23 - 3.21362196589434e91 * cos(theta) ** 21 + 3.98853790093269e90 * cos(theta) ** 19 - 3.77443265666569e89 * cos(theta) ** 17 + 2.67634432380883e88 * cos(theta) ** 15 - 1.3877340938268e87 * cos(theta) ** 13 + 5.08661932887643e85 * cos(theta) ** 11 - 1.2562373735438e84 * cos(theta) ** 9 + 1.94765484270356e82 * cos(theta) ** 7 - 1.69501664719332e80 * cos(theta) ** 5 + 6.78006658877328e77 * cos(theta) ** 3 - 7.87464179880752e74 * cos(theta) ) * cos(39 * phi) ) # @torch.jit.script def Yl82_m40(theta, phi): return ( 6.11253869567382e-76 * (1.0 - cos(theta) ** 2) ** 20 * ( 1.01780394585434e95 * cos(theta) ** 42 - 5.37625274466616e95 * cos(theta) ** 40 + 1.30232209342845e96 * cos(theta) ** 38 - 1.91935520268386e96 * cos(theta) ** 36 + 1.92546779887075e96 * cos(theta) ** 34 - 1.3937902389245e96 * cos(theta) ** 32 + 7.53071850225004e95 * cos(theta) ** 30 - 3.09920770906222e95 * cos(theta) ** 28 + 9.82802444652282e94 * cos(theta) ** 26 - 2.41429171966736e94 * cos(theta) ** 24 + 4.5954794112289e93 * cos(theta) ** 22 - 6.74860612837811e92 * cos(theta) ** 20 + 7.57822201177211e91 * cos(theta) ** 18 - 6.41653551633167e90 * cos(theta) ** 16 + 4.01451648571325e89 * cos(theta) ** 14 - 1.80405432197484e88 * cos(theta) ** 12 + 5.59528126176407e86 * cos(theta) ** 10 - 1.13061363618942e85 * cos(theta) ** 8 + 1.36335838989249e83 * cos(theta) ** 6 - 8.4750832359666e80 * cos(theta) ** 4 + 2.03401997663198e78 * cos(theta) ** 2 - 7.87464179880752e74 ) * cos(40 * phi) ) # @torch.jit.script def Yl82_m41(theta, phi): return ( 8.50441452467428e-78 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 4.27477657258822e96 * cos(theta) ** 41 - 2.15050109786647e97 * cos(theta) ** 39 + 4.94882395502811e97 * cos(theta) ** 37 - 6.90967872966189e97 * cos(theta) ** 35 + 6.54659051616055e97 * cos(theta) ** 33 - 4.46012876455841e97 * cos(theta) ** 31 + 2.25921555067501e97 * cos(theta) ** 29 - 8.67778158537422e96 * cos(theta) ** 27 + 2.55528635609593e96 * cos(theta) ** 25 - 5.79430012720166e95 * cos(theta) ** 23 + 1.01100547047036e95 * cos(theta) ** 21 - 1.34972122567562e94 * cos(theta) ** 19 + 1.36407996211898e93 * cos(theta) ** 17 - 1.02664568261307e92 * cos(theta) ** 15 + 5.62032307999854e90 * cos(theta) ** 13 - 2.16486518636981e89 * cos(theta) ** 11 + 5.59528126176407e87 * cos(theta) ** 9 - 9.04490908951534e85 * cos(theta) ** 7 + 8.18015033935496e83 * cos(theta) ** 5 - 3.39003329438664e81 * cos(theta) ** 3 + 4.06803995326397e78 * cos(theta) ) * cos(41 * phi) ) # @torch.jit.script def Yl82_m42(theta, phi): return ( 1.19272864513199e-79 * (1.0 - cos(theta) ** 2) ** 21 * ( 1.75265839476117e98 * cos(theta) ** 40 - 8.38695428167922e98 * cos(theta) ** 38 + 1.8310648633604e99 * cos(theta) ** 36 - 2.41838755538166e99 * cos(theta) ** 34 + 2.16037487033298e99 * cos(theta) ** 32 - 1.38263991701311e99 * cos(theta) ** 30 + 6.55172509695754e98 * cos(theta) ** 28 - 2.34300102805104e98 * cos(theta) ** 26 + 6.38821589023983e97 * cos(theta) ** 24 - 1.33268902925638e97 * cos(theta) ** 22 + 2.12311148798775e96 * cos(theta) ** 20 - 2.56447032878368e95 * cos(theta) ** 18 + 2.31893593560227e94 * cos(theta) ** 16 - 1.5399685239196e93 * cos(theta) ** 14 + 7.30642000399811e91 * cos(theta) ** 12 - 2.38135170500679e90 * cos(theta) ** 10 + 5.03575313558767e88 * cos(theta) ** 8 - 6.33143636266074e86 * cos(theta) ** 6 + 4.09007516967748e84 * cos(theta) ** 4 - 1.01700998831599e82 * cos(theta) ** 2 + 4.06803995326397e78 ) * cos(42 * phi) ) # @torch.jit.script def Yl82_m43(theta, phi): return ( 1.68677302617654e-81 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 7.01063357904468e99 * cos(theta) ** 39 - 3.1870426270381e100 * cos(theta) ** 37 + 6.59183350809744e100 * cos(theta) ** 35 - 8.22251768829765e100 * cos(theta) ** 33 + 6.91319958506554e100 * cos(theta) ** 31 - 4.14791975103932e100 * cos(theta) ** 29 + 1.83448302714811e100 * cos(theta) ** 27 - 6.0918026729327e99 * cos(theta) ** 25 + 1.53317181365756e99 * cos(theta) ** 23 - 2.93191586436404e98 * cos(theta) ** 21 + 4.24622297597551e97 * cos(theta) ** 19 - 4.61604659181063e96 * cos(theta) ** 17 + 3.71029749696363e95 * cos(theta) ** 15 - 2.15595593348744e94 * cos(theta) ** 13 + 8.76770400479773e92 * cos(theta) ** 11 - 2.38135170500679e91 * cos(theta) ** 9 + 4.02860250847013e89 * cos(theta) ** 7 - 3.79886181759644e87 * cos(theta) ** 5 + 1.63603006787099e85 * cos(theta) ** 3 - 2.03401997663198e82 * cos(theta) ) * cos(43 * phi) ) # @torch.jit.script def Yl82_m44(theta, phi): return ( 2.40624071678879e-83 * (1.0 - cos(theta) ** 2) ** 22 * ( 2.73414709582743e101 * cos(theta) ** 38 - 1.1792057720041e102 * cos(theta) ** 36 + 2.30714172783411e102 * cos(theta) ** 34 - 2.71343083713822e102 * cos(theta) ** 32 + 2.14309187137032e102 * cos(theta) ** 30 - 1.2028967278014e102 * cos(theta) ** 28 + 4.9531041732999e101 * cos(theta) ** 26 - 1.52295066823318e101 * cos(theta) ** 24 + 3.52629517141239e100 * cos(theta) ** 22 - 6.15702331516449e99 * cos(theta) ** 20 + 8.06782365435346e98 * cos(theta) ** 18 - 7.84727920607807e97 * cos(theta) ** 16 + 5.56544624544544e96 * cos(theta) ** 14 - 2.80274271353367e95 * cos(theta) ** 12 + 9.6444744052775e93 * cos(theta) ** 10 - 2.14321653450611e92 * cos(theta) ** 8 + 2.82002175592909e90 * cos(theta) ** 6 - 1.89943090879822e88 * cos(theta) ** 4 + 4.90809020361298e85 * cos(theta) ** 2 - 2.03401997663198e82 ) * cos(44 * phi) ) # @torch.jit.script def Yl82_m45(theta, phi): return ( 3.4637410177776e-85 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 1.03897589641442e103 * cos(theta) ** 37 - 4.24514077921475e103 * cos(theta) ** 35 + 7.84428187463596e103 * cos(theta) ** 33 - 8.68297867884232e103 * cos(theta) ** 31 + 6.42927561411095e103 * cos(theta) ** 29 - 3.36811083784393e103 * cos(theta) ** 27 + 1.28780708505797e103 * cos(theta) ** 25 - 3.65508160375962e102 * cos(theta) ** 23 + 7.75784937710725e101 * cos(theta) ** 21 - 1.2314046630329e101 * cos(theta) ** 19 + 1.45220825778362e100 * cos(theta) ** 17 - 1.25556467297249e99 * cos(theta) ** 15 + 7.79162474362361e97 * cos(theta) ** 13 - 3.36329125624041e96 * cos(theta) ** 11 + 9.6444744052775e94 * cos(theta) ** 9 - 1.71457322760489e93 * cos(theta) ** 7 + 1.69201305355746e91 * cos(theta) ** 5 - 7.59772363519289e88 * cos(theta) ** 3 + 9.81618040722595e85 * cos(theta) ) * cos(45 * phi) ) # @torch.jit.script def Yl82_m46(theta, phi): return ( 5.0331464317095e-87 * (1.0 - cos(theta) ** 2) ** 23 * ( 3.84421081673336e104 * cos(theta) ** 36 - 1.48579927272516e105 * cos(theta) ** 34 + 2.58861301862987e105 * cos(theta) ** 32 - 2.69172339044112e105 * cos(theta) ** 30 + 1.86448992809218e105 * cos(theta) ** 28 - 9.09389926217861e104 * cos(theta) ** 26 + 3.21951771264493e104 * cos(theta) ** 24 - 8.40668768864713e103 * cos(theta) ** 22 + 1.62914836919252e103 * cos(theta) ** 20 - 2.3396688597625e102 * cos(theta) ** 18 + 2.46875403823216e101 * cos(theta) ** 16 - 1.88334700945874e100 * cos(theta) ** 14 + 1.01291121667107e99 * cos(theta) ** 12 - 3.69962038186445e97 * cos(theta) ** 10 + 8.68002696474975e95 * cos(theta) ** 8 - 1.20020125932342e94 * cos(theta) ** 6 + 8.46006526778728e91 * cos(theta) ** 4 - 2.27931709055787e89 * cos(theta) ** 2 + 9.81618040722595e85 ) * cos(46 * phi) ) # @torch.jit.script def Yl82_m47(theta, phi): return ( 7.38573056244701e-89 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 1.38391589402401e106 * cos(theta) ** 35 - 5.05171752726556e106 * cos(theta) ** 33 + 8.28356165961557e106 * cos(theta) ** 31 - 8.07517017132336e106 * cos(theta) ** 29 + 5.22057179865809e106 * cos(theta) ** 27 - 2.36441380816644e106 * cos(theta) ** 25 + 7.72684251034784e105 * cos(theta) ** 23 - 1.84947129150237e105 * cos(theta) ** 21 + 3.25829673838505e104 * cos(theta) ** 19 - 4.21140394757251e103 * cos(theta) ** 17 + 3.95000646117146e102 * cos(theta) ** 15 - 2.63668581324223e101 * cos(theta) ** 13 + 1.21549346000528e100 * cos(theta) ** 11 - 3.69962038186445e98 * cos(theta) ** 9 + 6.9440215717998e96 * cos(theta) ** 7 - 7.20120755594053e94 * cos(theta) ** 5 + 3.38402610711491e92 * cos(theta) ** 3 - 4.55863418111573e89 * cos(theta) ) * cos(47 * phi) ) # @torch.jit.script def Yl82_m48(theta, phi): return ( 1.09493354649137e-90 * (1.0 - cos(theta) ** 2) ** 24 * ( 4.84370562908403e107 * cos(theta) ** 34 - 1.66706678399763e108 * cos(theta) ** 32 + 2.56790411448083e108 * cos(theta) ** 30 - 2.34179934968377e108 * cos(theta) ** 28 + 1.40955438563768e108 * cos(theta) ** 26 - 5.9110345204161e107 * cos(theta) ** 24 + 1.77717377738e107 * cos(theta) ** 22 - 3.88388971215497e106 * cos(theta) ** 20 + 6.19076380293159e105 * cos(theta) ** 18 - 7.15938671087326e104 * cos(theta) ** 16 + 5.92500969175718e103 * cos(theta) ** 14 - 3.4276915572149e102 * cos(theta) ** 12 + 1.33704280600581e101 * cos(theta) ** 10 - 3.329658343678e99 * cos(theta) ** 8 + 4.86081510025986e97 * cos(theta) ** 6 - 3.60060377797027e95 * cos(theta) ** 4 + 1.01520783213447e93 * cos(theta) ** 2 - 4.55863418111573e89 ) * cos(48 * phi) ) # @torch.jit.script def Yl82_m49(theta, phi): return ( 1.64063758130035e-92 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.64685991388857e109 * cos(theta) ** 33 - 5.33461370879243e109 * cos(theta) ** 31 + 7.70371234344248e109 * cos(theta) ** 29 - 6.55703817911456e109 * cos(theta) ** 27 + 3.66484140265798e109 * cos(theta) ** 25 - 1.41864828489986e109 * cos(theta) ** 23 + 3.90978231023601e108 * cos(theta) ** 21 - 7.76777942430995e107 * cos(theta) ** 19 + 1.11433748452769e107 * cos(theta) ** 17 - 1.14550187373972e106 * cos(theta) ** 15 + 8.29501356846006e104 * cos(theta) ** 13 - 4.11322986865788e103 * cos(theta) ** 11 + 1.33704280600581e102 * cos(theta) ** 9 - 2.6637266749424e100 * cos(theta) ** 7 + 2.91648906015592e98 * cos(theta) ** 5 - 1.44024151118811e96 * cos(theta) ** 3 + 2.03041566426895e93 * cos(theta) ) * cos(49 * phi) ) # @torch.jit.script def Yl82_m50(theta, phi): return ( 2.48581451712174e-94 * (1.0 - cos(theta) ** 2) ** 25 * ( 5.43463771583229e110 * cos(theta) ** 32 - 1.65373024972565e111 * cos(theta) ** 30 + 2.23407657959832e111 * cos(theta) ** 28 - 1.77040030836093e111 * cos(theta) ** 26 + 9.16210350664495e110 * cos(theta) ** 24 - 3.26289105526969e110 * cos(theta) ** 22 + 8.21054285149561e109 * cos(theta) ** 20 - 1.47587809061889e109 * cos(theta) ** 18 + 1.89437372369707e108 * cos(theta) ** 16 - 1.71825281060958e107 * cos(theta) ** 14 + 1.07835176389981e106 * cos(theta) ** 12 - 4.52455285552367e104 * cos(theta) ** 10 + 1.20333852540523e103 * cos(theta) ** 8 - 1.86460867245968e101 * cos(theta) ** 6 + 1.45824453007796e99 * cos(theta) ** 4 - 4.32072453356432e96 * cos(theta) ** 2 + 2.03041566426895e93 ) * cos(50 * phi) ) # @torch.jit.script def Yl82_m51(theta, phi): return ( 3.81037667777541e-96 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 1.73908406906633e112 * cos(theta) ** 31 - 4.96119074917696e112 * cos(theta) ** 29 + 6.25541442287529e112 * cos(theta) ** 27 - 4.60304080173842e112 * cos(theta) ** 25 + 2.19890484159479e112 * cos(theta) ** 23 - 7.17836032159331e111 * cos(theta) ** 21 + 1.64210857029912e111 * cos(theta) ** 19 - 2.656580563114e110 * cos(theta) ** 17 + 3.0309979579153e109 * cos(theta) ** 15 - 2.40555393485342e108 * cos(theta) ** 13 + 1.29402211667977e107 * cos(theta) ** 11 - 4.52455285552367e105 * cos(theta) ** 9 + 9.62670820324185e103 * cos(theta) ** 7 - 1.11876520347581e102 * cos(theta) ** 5 + 5.83297812031183e99 * cos(theta) ** 3 - 8.64144906712864e96 * cos(theta) ) * cos(51 * phi) ) # @torch.jit.script def Yl82_m52(theta, phi): return ( 5.91200325120919e-98 * (1.0 - cos(theta) ** 2) ** 26 * ( 5.39116061410563e113 * cos(theta) ** 30 - 1.43874531726132e114 * cos(theta) ** 28 + 1.68896189417633e114 * cos(theta) ** 26 - 1.15076020043461e114 * cos(theta) ** 24 + 5.05748113566801e113 * cos(theta) ** 22 - 1.5074556675346e113 * cos(theta) ** 20 + 3.12000628356833e112 * cos(theta) ** 18 - 4.5161869572938e111 * cos(theta) ** 16 + 4.54649693687296e110 * cos(theta) ** 14 - 3.12722011530944e109 * cos(theta) ** 12 + 1.42342432834775e108 * cos(theta) ** 10 - 4.0720975699713e106 * cos(theta) ** 8 + 6.73869574226929e104 * cos(theta) ** 6 - 5.59382601737905e102 * cos(theta) ** 4 + 1.74989343609355e100 * cos(theta) ** 2 - 8.64144906712864e96 ) * cos(52 * phi) ) # @torch.jit.script def Yl82_m53(theta, phi): return ( 9.28981686517097e-100 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 1.61734818423169e115 * cos(theta) ** 29 - 4.02848688833169e115 * cos(theta) ** 27 + 4.39130092485846e115 * cos(theta) ** 25 - 2.76182448104305e115 * cos(theta) ** 23 + 1.11264584984696e115 * cos(theta) ** 21 - 3.01491133506919e114 * cos(theta) ** 19 + 5.616011310423e113 * cos(theta) ** 17 - 7.22589913167009e112 * cos(theta) ** 15 + 6.36509571162214e111 * cos(theta) ** 13 - 3.75266413837133e110 * cos(theta) ** 11 + 1.42342432834775e109 * cos(theta) ** 9 - 3.25767805597704e107 * cos(theta) ** 7 + 4.04321744536157e105 * cos(theta) ** 5 - 2.23753040695162e103 * cos(theta) ** 3 + 3.4997868721871e100 * cos(theta) ) * cos(53 * phi) ) # @torch.jit.script def Yl82_m54(theta, phi): return ( 1.47924019567526e-101 * (1.0 - cos(theta) ** 2) ** 27 * ( 4.6903097342719e116 * cos(theta) ** 28 - 1.08769145984956e117 * cos(theta) ** 26 + 1.09782523121461e117 * cos(theta) ** 24 - 6.35219630639903e116 * cos(theta) ** 22 + 2.33655628467862e116 * cos(theta) ** 20 - 5.72833153663146e115 * cos(theta) ** 18 + 9.5472192277191e114 * cos(theta) ** 16 - 1.08388486975051e114 * cos(theta) ** 14 + 8.27462442510878e112 * cos(theta) ** 12 - 4.12793055220846e111 * cos(theta) ** 10 + 1.28108189551297e110 * cos(theta) ** 8 - 2.28037463918393e108 * cos(theta) ** 6 + 2.02160872268079e106 * cos(theta) ** 4 - 6.71259122085486e103 * cos(theta) ** 2 + 3.4997868721871e100 ) * cos(54 * phi) ) # @torch.jit.script def Yl82_m55(theta, phi): return ( 2.38835786170144e-103 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 1.31328672559613e118 * cos(theta) ** 27 - 2.82799779560885e118 * cos(theta) ** 25 + 2.63478055491507e118 * cos(theta) ** 23 - 1.39748318740779e118 * cos(theta) ** 21 + 4.67311256935724e117 * cos(theta) ** 19 - 1.03109967659366e117 * cos(theta) ** 17 + 1.52755507643506e116 * cos(theta) ** 15 - 1.51743881765072e115 * cos(theta) ** 13 + 9.92954931013054e113 * cos(theta) ** 11 - 4.12793055220846e112 * cos(theta) ** 9 + 1.02486551641038e111 * cos(theta) ** 7 - 1.36822478351036e109 * cos(theta) ** 5 + 8.08643489072315e106 * cos(theta) ** 3 - 1.34251824417097e104 * cos(theta) ) * cos(55 * phi) ) # @torch.jit.script def Yl82_m56(theta, phi): return ( 3.91271283474653e-105 * (1.0 - cos(theta) ** 2) ** 28 * ( 3.54587415910955e119 * cos(theta) ** 26 - 7.06999448902212e119 * cos(theta) ** 24 + 6.05999527630467e119 * cos(theta) ** 22 - 2.93471469355635e119 * cos(theta) ** 20 + 8.87891388177877e118 * cos(theta) ** 18 - 1.75286945020923e118 * cos(theta) ** 16 + 2.29133261465258e117 * cos(theta) ** 14 - 1.97267046294593e116 * cos(theta) ** 12 + 1.09225042411436e115 * cos(theta) ** 10 - 3.71513749698762e113 * cos(theta) ** 8 + 7.17405861487264e111 * cos(theta) ** 6 - 6.84112391755179e109 * cos(theta) ** 4 + 2.42593046721695e107 * cos(theta) ** 2 - 1.34251824417097e104 ) * cos(56 * phi) ) # @torch.jit.script def Yl82_m57(theta, phi): return ( 6.50854483416237e-107 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 9.21927281368484e120 * cos(theta) ** 25 - 1.69679867736531e121 * cos(theta) ** 23 + 1.33319896078703e121 * cos(theta) ** 21 - 5.8694293871127e120 * cos(theta) ** 19 + 1.59820449872018e120 * cos(theta) ** 17 - 2.80459112033476e119 * cos(theta) ** 15 + 3.20786566051362e118 * cos(theta) ** 13 - 2.36720455553512e117 * cos(theta) ** 11 + 1.09225042411436e116 * cos(theta) ** 9 - 2.97210999759009e114 * cos(theta) ** 7 + 4.30443516892358e112 * cos(theta) ** 5 - 2.73644956702071e110 * cos(theta) ** 3 + 4.85186093443389e107 * cos(theta) ) * cos(57 * phi) ) # @torch.jit.script def Yl82_m58(theta, phi): return ( 1.10014487173673e-108 * (1.0 - cos(theta) ** 2) ** 29 * ( 2.30481820342121e122 * cos(theta) ** 24 - 3.90263695794021e122 * cos(theta) ** 22 + 2.79971781765276e122 * cos(theta) ** 20 - 1.11519158355141e122 * cos(theta) ** 18 + 2.7169476478243e121 * cos(theta) ** 16 - 4.20688668050215e120 * cos(theta) ** 14 + 4.1702253586677e119 * cos(theta) ** 12 - 2.60392501108863e118 * cos(theta) ** 10 + 9.83025381702923e116 * cos(theta) ** 8 - 2.08047699831307e115 * cos(theta) ** 6 + 2.15221758446179e113 * cos(theta) ** 4 - 8.20934870106214e110 * cos(theta) ** 2 + 4.85186093443389e107 ) * cos(58 * phi) ) # @torch.jit.script def Yl82_m59(theta, phi): return ( 1.89118799111986e-110 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 5.5315636882109e123 * cos(theta) ** 23 - 8.58580130746846e123 * cos(theta) ** 21 + 5.59943563530552e123 * cos(theta) ** 19 - 2.00734485039254e123 * cos(theta) ** 17 + 4.34711623651888e122 * cos(theta) ** 15 - 5.889641352703e121 * cos(theta) ** 13 + 5.00427043040124e120 * cos(theta) ** 11 - 2.60392501108863e119 * cos(theta) ** 9 + 7.86420305362339e117 * cos(theta) ** 7 - 1.24828619898784e116 * cos(theta) ** 5 + 8.60887033784717e113 * cos(theta) ** 3 - 1.64186974021243e111 * cos(theta) ) * cos(59 * phi) ) # @torch.jit.script def Yl82_m60(theta, phi): return ( 3.3092273977258e-112 * (1.0 - cos(theta) ** 2) ** 30 * ( 1.27225964828851e125 * cos(theta) ** 22 - 1.80301827456838e125 * cos(theta) ** 20 + 1.06389277070805e125 * cos(theta) ** 18 - 3.41248624566732e124 * cos(theta) ** 16 + 6.52067435477832e123 * cos(theta) ** 14 - 7.6565337585139e122 * cos(theta) ** 12 + 5.50469747344137e121 * cos(theta) ** 10 - 2.34353250997977e120 * cos(theta) ** 8 + 5.50494213753637e118 * cos(theta) ** 6 - 6.2414309949392e116 * cos(theta) ** 4 + 2.58266110135415e114 * cos(theta) ** 2 - 1.64186974021243e111 ) * cos(60 * phi) ) # @torch.jit.script def Yl82_m61(theta, phi): return ( 5.89993534123067e-114 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 2.79897122623472e126 * cos(theta) ** 21 - 3.60603654913675e126 * cos(theta) ** 19 + 1.91500698727449e126 * cos(theta) ** 17 - 5.45997799306772e125 * cos(theta) ** 15 + 9.12894409668965e124 * cos(theta) ** 13 - 9.18784051021668e123 * cos(theta) ** 11 + 5.50469747344137e122 * cos(theta) ** 9 - 1.87482600798382e121 * cos(theta) ** 7 + 3.30296528252182e119 * cos(theta) ** 5 - 2.49657239797568e117 * cos(theta) ** 3 + 5.1653222027083e114 * cos(theta) ) * cos(61 * phi) ) # @torch.jit.script def Yl82_m62(theta, phi): return ( 1.07289286891011e-115 * (1.0 - cos(theta) ** 2) ** 31 * ( 5.87783957509291e127 * cos(theta) ** 20 - 6.85146944335983e127 * cos(theta) ** 18 + 3.25551187836663e127 * cos(theta) ** 16 - 8.18996698960158e126 * cos(theta) ** 14 + 1.18676273256966e126 * cos(theta) ** 12 - 1.01066245612384e125 * cos(theta) ** 10 + 4.95422772609723e123 * cos(theta) ** 8 - 1.31237820558867e122 * cos(theta) ** 6 + 1.65148264126091e120 * cos(theta) ** 4 - 7.48971719392703e117 * cos(theta) ** 2 + 5.1653222027083e114 ) * cos(62 * phi) ) # @torch.jit.script def Yl82_m63(theta, phi): return ( 1.99231204120009e-117 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 1.17556791501858e129 * cos(theta) ** 19 - 1.23326449980477e129 * cos(theta) ** 17 + 5.2088190053866e128 * cos(theta) ** 15 - 1.14659537854422e128 * cos(theta) ** 13 + 1.42411527908359e127 * cos(theta) ** 11 - 1.01066245612384e126 * cos(theta) ** 9 + 3.96338218087779e124 * cos(theta) ** 7 - 7.87426923353203e122 * cos(theta) ** 5 + 6.60593056504364e120 * cos(theta) ** 3 - 1.49794343878541e118 * cos(theta) ) * cos(63 * phi) ) # @torch.jit.script def Yl82_m64(theta, phi): return ( 3.7827194403623e-119 * (1.0 - cos(theta) ** 2) ** 32 * ( 2.2335790385353e130 * cos(theta) ** 18 - 2.09654964966811e130 * cos(theta) ** 16 + 7.8132285080799e129 * cos(theta) ** 14 - 1.49057399210749e129 * cos(theta) ** 12 + 1.56652680699194e128 * cos(theta) ** 10 - 9.09596210511452e126 * cos(theta) ** 8 + 2.77436752661445e125 * cos(theta) ** 6 - 3.93713461676601e123 * cos(theta) ** 4 + 1.98177916951309e121 * cos(theta) ** 2 - 1.49794343878541e118 ) * cos(64 * phi) ) # @torch.jit.script def Yl82_m65(theta, phi): return ( 7.35375592777301e-121 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 4.02044226936355e131 * cos(theta) ** 17 - 3.35447943946897e131 * cos(theta) ** 15 + 1.09385199113119e131 * cos(theta) ** 13 - 1.78868879052898e130 * cos(theta) ** 11 + 1.56652680699194e129 * cos(theta) ** 9 - 7.27676968409161e127 * cos(theta) ** 7 + 1.66462051596867e126 * cos(theta) ** 5 - 1.5748538467064e124 * cos(theta) ** 3 + 3.96355833902619e121 * cos(theta) ) * cos(65 * phi) ) # @torch.jit.script def Yl82_m66(theta, phi): return ( 1.46606725268595e-122 * (1.0 - cos(theta) ** 2) ** 33 * ( 6.83475185791803e132 * cos(theta) ** 16 - 5.03171915920346e132 * cos(theta) ** 14 + 1.42200758847054e132 * cos(theta) ** 12 - 1.96755766958188e131 * cos(theta) ** 10 + 1.40987412629275e130 * cos(theta) ** 8 - 5.09373877886413e128 * cos(theta) ** 6 + 8.32310257984335e126 * cos(theta) ** 4 - 4.72456154011921e124 * cos(theta) ** 2 + 3.96355833902619e121 ) * cos(66 * phi) ) # @torch.jit.script def Yl82_m67(theta, phi): return ( 3.00262272756995e-124 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 1.09356029726688e134 * cos(theta) ** 15 - 7.04440682288484e133 * cos(theta) ** 13 + 1.70640910616465e133 * cos(theta) ** 11 - 1.96755766958188e132 * cos(theta) ** 9 + 1.1278993010342e131 * cos(theta) ** 7 - 3.05624326731848e129 * cos(theta) ** 5 + 3.32924103193734e127 * cos(theta) ** 3 - 9.44912308023843e124 * cos(theta) ) * cos(67 * phi) ) # @torch.jit.script def Yl82_m68(theta, phi): return ( 6.33008451553887e-126 * (1.0 - cos(theta) ** 2) ** 34 * ( 1.64034044590033e135 * cos(theta) ** 14 - 9.15772886975029e134 * cos(theta) ** 12 + 1.87705001678112e134 * cos(theta) ** 10 - 1.77080190262369e133 * cos(theta) ** 8 + 7.8952951072394e131 * cos(theta) ** 6 - 1.52812163365924e130 * cos(theta) ** 4 + 9.98772309581202e127 * cos(theta) ** 2 - 9.44912308023843e124 ) * cos(68 * phi) ) # @torch.jit.script def Yl82_m69(theta, phi): return ( 1.37675612417123e-127 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 2.29647662426046e136 * cos(theta) ** 13 - 1.09892746437004e136 * cos(theta) ** 11 + 1.87705001678112e135 * cos(theta) ** 9 - 1.41664152209896e134 * cos(theta) ** 7 + 4.73717706434364e132 * cos(theta) ** 5 - 6.11248653463696e130 * cos(theta) ** 3 + 1.9975446191624e128 * cos(theta) ) * cos(69 * phi) ) # @torch.jit.script def Yl82_m70(theta, phi): return ( 3.09715932392054e-129 * (1.0 - cos(theta) ** 2) ** 35 * ( 2.9854196115386e137 * cos(theta) ** 12 - 1.20882021080704e137 * cos(theta) ** 10 + 1.689345015103e136 * cos(theta) ** 8 - 9.91649065469269e134 * cos(theta) ** 6 + 2.36858853217182e133 * cos(theta) ** 4 - 1.83374596039109e131 * cos(theta) ** 2 + 1.9975446191624e128 ) * cos(70 * phi) ) # @torch.jit.script def Yl82_m71(theta, phi): return ( 7.22815086391266e-131 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 3.58250353384631e138 * cos(theta) ** 11 - 1.20882021080704e138 * cos(theta) ** 9 + 1.3514760120824e137 * cos(theta) ** 7 - 5.94989439281561e135 * cos(theta) ** 5 + 9.47435412868728e133 * cos(theta) ** 3 - 3.66749192078217e131 * cos(theta) ) * cos(71 * phi) ) # @torch.jit.script def Yl82_m72(theta, phi): return ( 1.75618597874515e-132 * (1.0 - cos(theta) ** 2) ** 36 * ( 3.94075388723095e139 * cos(theta) ** 10 - 1.08793818972633e139 * cos(theta) ** 8 + 9.46033208457683e137 * cos(theta) ** 6 - 2.97494719640781e136 * cos(theta) ** 4 + 2.84230623860618e134 * cos(theta) ** 2 - 3.66749192078217e131 ) * cos(72 * phi) ) # @torch.jit.script def Yl82_m73(theta, phi): return ( 4.46071684673175e-134 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 3.94075388723095e140 * cos(theta) ** 9 - 8.70350551781068e139 * cos(theta) ** 7 + 5.67619925074609e138 * cos(theta) ** 5 - 1.18997887856312e137 * cos(theta) ** 3 + 5.68461247721237e134 * cos(theta) ) * cos(73 * phi) ) # @torch.jit.script def Yl82_m74(theta, phi): return ( 1.19047725552401e-135 * (1.0 - cos(theta) ** 2) ** 37 * ( 3.54667849850785e141 * cos(theta) ** 8 - 6.09245386246747e140 * cos(theta) ** 6 + 2.83809962537305e139 * cos(theta) ** 4 - 3.56993663568937e137 * cos(theta) ** 2 + 5.68461247721237e134 ) * cos(74 * phi) ) # @torch.jit.script def Yl82_m75(theta, phi): return ( 3.35912590986758e-137 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 2.83734279880628e142 * cos(theta) ** 7 - 3.65547231748048e141 * cos(theta) ** 5 + 1.13523985014922e140 * cos(theta) ** 3 - 7.13987327137874e137 * cos(theta) ) * cos(75 * phi) ) # @torch.jit.script def Yl82_m76(theta, phi): return ( 1.01006359701407e-138 * (1.0 - cos(theta) ** 2) ** 38 * ( 1.9861399591644e143 * cos(theta) ** 6 - 1.82773615874024e142 * cos(theta) ** 4 + 3.40571955044766e140 * cos(theta) ** 2 - 7.13987327137874e137 ) * cos(76 * phi) ) # @torch.jit.script def Yl82_m77(theta, phi): return ( 3.27020163953829e-140 * (1.0 - cos(theta) ** 2) ** 38.5 * ( 1.19168397549864e144 * cos(theta) ** 5 - 7.31094463496097e142 * cos(theta) ** 3 + 6.81143910089531e140 * cos(theta) ) * cos(77 * phi) ) # @torch.jit.script def Yl82_m78(theta, phi): return ( 1.15619087758245e-141 * (1.0 - cos(theta) ** 2) ** 39 * ( 5.95841987749319e144 * cos(theta) ** 4 - 2.19328339048829e143 * cos(theta) ** 2 + 6.81143910089531e140 ) * cos(78 * phi) ) # @torch.jit.script def Yl82_m79(theta, phi): return ( 4.55603031110722e-143 * (1.0 - cos(theta) ** 2) ** 39.5 * (2.38336795099728e145 * cos(theta) ** 3 - 4.38656678097658e143 * cos(theta)) * cos(79 * phi) ) # @torch.jit.script def Yl82_m80(theta, phi): return ( 2.06665731756785e-144 * (1.0 - cos(theta) ** 2) ** 40 * (7.15010385299183e145 * cos(theta) ** 2 - 4.38656678097658e143) * cos(80 * phi) ) # @torch.jit.script def Yl82_m81(theta, phi): return ( 16.3682411805081 * (1.0 - cos(theta) ** 2) ** 40.5 * cos(81 * phi) * cos(theta) ) # @torch.jit.script def Yl82_m82(theta, phi): return 1.27814490032998 * (1.0 - cos(theta) ** 2) ** 41 * cos(82 * phi) # @torch.jit.script def Yl83_m_minus_83(theta, phi): return 1.2819889538225 * (1.0 - cos(theta) ** 2) ** 41.5 * sin(83 * phi) # @torch.jit.script def Yl83_m_minus_82(theta, phi): return 16.5172722476201 * (1.0 - cos(theta) ** 2) ** 41 * sin(82 * phi) * cos(theta) # @torch.jit.script def Yl83_m_minus_81(theta, phi): return ( 1.27165413378911e-146 * (1.0 - cos(theta) ** 2) ** 40.5 * (1.17976713574365e148 * cos(theta) ** 2 - 7.15010385299183e145) * sin(81 * phi) ) # @torch.jit.script def Yl83_m_minus_80(theta, phi): return ( 2.82066531886291e-145 * (1.0 - cos(theta) ** 2) ** 40 * (3.93255711914551e147 * cos(theta) ** 3 - 7.15010385299183e145 * cos(theta)) * sin(80 * phi) ) # @torch.jit.script def Yl83_m_minus_79(theta, phi): return ( 7.20236881335263e-144 * (1.0 - cos(theta) ** 2) ** 39.5 * ( 9.83139279786376e146 * cos(theta) ** 4 - 3.57505192649591e145 * cos(theta) ** 2 + 1.09664169524415e143 ) * sin(79 * phi) ) # @torch.jit.script def Yl83_m_minus_78(theta, phi): return ( 2.04983009988826e-142 * (1.0 - cos(theta) ** 2) ** 39 * ( 1.96627855957275e146 * cos(theta) ** 5 - 1.19168397549864e145 * cos(theta) ** 3 + 1.09664169524415e143 * cos(theta) ) * sin(78 * phi) ) # @torch.jit.script def Yl83_m_minus_77(theta, phi): return ( 6.37098275111623e-141 * (1.0 - cos(theta) ** 2) ** 38.5 * ( 3.27713093262125e145 * cos(theta) ** 6 - 2.9792099387466e144 * cos(theta) ** 4 + 5.48320847622073e142 * cos(theta) ** 2 - 1.13523985014922e140 ) * sin(77 * phi) ) # @torch.jit.script def Yl83_m_minus_76(theta, phi): return ( 2.13213863903882e-139 * (1.0 - cos(theta) ** 2) ** 38 * ( 4.68161561803036e144 * cos(theta) ** 7 - 5.95841987749319e143 * cos(theta) ** 5 + 1.82773615874024e142 * cos(theta) ** 3 - 1.13523985014922e140 * cos(theta) ) * sin(76 * phi) ) # @torch.jit.script def Yl83_m_minus_75(theta, phi): return ( 7.60429569649727e-138 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 5.85201952253796e143 * cos(theta) ** 8 - 9.93069979582199e142 * cos(theta) ** 6 + 4.56934039685061e141 * cos(theta) ** 4 - 5.67619925074609e139 * cos(theta) ** 2 + 8.92484158922342e136 ) * sin(75 * phi) ) # @torch.jit.script def Yl83_m_minus_74(theta, phi): return ( 2.86753544254554e-136 * (1.0 - cos(theta) ** 2) ** 37 * ( 6.50224391393106e142 * cos(theta) ** 9 - 1.41867139940314e142 * cos(theta) ** 7 + 9.13868079370121e140 * cos(theta) ** 5 - 1.89206641691537e139 * cos(theta) ** 3 + 8.92484158922342e136 * cos(theta) ) * sin(74 * phi) ) # @torch.jit.script def Yl83_m_minus_73(theta, phi): return ( 1.13621003504546e-134 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 6.50224391393106e141 * cos(theta) ** 10 - 1.77333924925393e141 * cos(theta) ** 8 + 1.52311346561687e140 * cos(theta) ** 6 - 4.73016604228841e138 * cos(theta) ** 4 + 4.46242079461171e136 * cos(theta) ** 2 - 5.68461247721237e133 ) * sin(73 * phi) ) # @torch.jit.script def Yl83_m_minus_72(theta, phi): return ( 4.70670807067363e-133 * (1.0 - cos(theta) ** 2) ** 36 * ( 5.91113083084642e140 * cos(theta) ** 11 - 1.97037694361547e140 * cos(theta) ** 9 + 2.17587637945267e139 * cos(theta) ** 7 - 9.46033208457683e137 * cos(theta) ** 5 + 1.4874735982039e136 * cos(theta) ** 3 - 5.68461247721237e133 * cos(theta) ) * sin(72 * phi) ) # @torch.jit.script def Yl83_m_minus_71(theta, phi): return ( 2.02989575112448e-131 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 4.92594235903868e139 * cos(theta) ** 12 - 1.97037694361547e139 * cos(theta) ** 10 + 2.71984547431584e138 * cos(theta) ** 8 - 1.57672201409614e137 * cos(theta) ** 6 + 3.71868399550976e135 * cos(theta) ** 4 - 2.84230623860618e133 * cos(theta) ** 2 + 3.05624326731848e130 ) * sin(71 * phi) ) # @torch.jit.script def Yl83_m_minus_70(theta, phi): return ( 9.08250762421223e-130 * (1.0 - cos(theta) ** 2) ** 35 * ( 3.78918643002976e138 * cos(theta) ** 13 - 1.79125176692316e138 * cos(theta) ** 11 + 3.0220505270176e137 * cos(theta) ** 9 - 2.25246002013734e136 * cos(theta) ** 7 + 7.43736799101952e134 * cos(theta) ** 5 - 9.47435412868728e132 * cos(theta) ** 3 + 3.05624326731848e130 * cos(theta) ) * sin(70 * phi) ) # @torch.jit.script def Yl83_m_minus_69(theta, phi): return ( 4.20354309650058e-128 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 2.70656173573554e137 * cos(theta) ** 14 - 1.4927098057693e137 * cos(theta) ** 12 + 3.0220505270176e136 * cos(theta) ** 10 - 2.81557502517167e135 * cos(theta) ** 8 + 1.23956133183659e134 * cos(theta) ** 6 - 2.36858853217182e132 * cos(theta) ** 4 + 1.52812163365924e130 * cos(theta) ** 2 - 1.426817585116e127 ) * sin(69 * phi) ) # @torch.jit.script def Yl83_m_minus_68(theta, phi): return ( 2.0071643182917e-126 * (1.0 - cos(theta) ** 2) ** 34 * ( 1.80437449049036e136 * cos(theta) ** 15 - 1.14823831213023e136 * cos(theta) ** 13 + 2.74731866092509e135 * cos(theta) ** 11 - 3.12841669463519e134 * cos(theta) ** 9 + 1.77080190262369e133 * cos(theta) ** 7 - 4.73717706434364e131 * cos(theta) ** 5 + 5.09373877886413e129 * cos(theta) ** 3 - 1.426817585116e127 * cos(theta) ) * sin(68 * phi) ) # @torch.jit.script def Yl83_m_minus_67(theta, phi): return ( 9.86577922878173e-125 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 1.12773405655647e135 * cos(theta) ** 16 - 8.20170222950164e134 * cos(theta) ** 14 + 2.28943221743757e134 * cos(theta) ** 12 - 3.12841669463519e133 * cos(theta) ** 10 + 2.21350237827962e132 * cos(theta) ** 8 - 7.8952951072394e130 * cos(theta) ** 6 + 1.27343469471603e129 * cos(theta) ** 4 - 7.13408792558001e126 * cos(theta) ** 2 + 5.90570192514902e123 ) * sin(67 * phi) ) # @torch.jit.script def Yl83_m_minus_66(theta, phi): return ( 4.98197430209356e-123 * (1.0 - cos(theta) ** 2) ** 33 * ( 6.63372974444985e133 * cos(theta) ** 17 - 5.46780148633442e133 * cos(theta) ** 15 + 1.76110170572121e133 * cos(theta) ** 13 - 2.84401517694108e132 * cos(theta) ** 11 + 2.45944708697735e131 * cos(theta) ** 9 - 1.1278993010342e130 * cos(theta) ** 7 + 2.54686938943207e128 * cos(theta) ** 5 - 2.37802930852667e126 * cos(theta) ** 3 + 5.90570192514902e123 * cos(theta) ) * sin(66 * phi) ) # @torch.jit.script def Yl83_m_minus_65(theta, phi): return ( 2.58006632149456e-121 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 3.68540541358325e132 * cos(theta) ** 18 - 3.41737592895902e132 * cos(theta) ** 16 + 1.25792978980086e132 * cos(theta) ** 14 - 2.3700126474509e131 * cos(theta) ** 12 + 2.45944708697735e130 * cos(theta) ** 10 - 1.40987412629275e129 * cos(theta) ** 8 + 4.24478231572011e127 * cos(theta) ** 6 - 5.94507327131668e125 * cos(theta) ** 4 + 2.95285096257451e123 * cos(theta) ** 2 - 2.20197685501455e120 ) * sin(65 * phi) ) # @torch.jit.script def Yl83_m_minus_64(theta, phi): return ( 1.36816516298103e-119 * (1.0 - cos(theta) ** 2) ** 32 * ( 1.93968705978066e131 * cos(theta) ** 19 - 2.01022113468177e131 * cos(theta) ** 17 + 8.38619859867243e130 * cos(theta) ** 15 - 1.82308665188531e130 * cos(theta) ** 13 + 2.23586098816123e129 * cos(theta) ** 11 - 1.56652680699194e128 * cos(theta) ** 9 + 6.06397473674301e126 * cos(theta) ** 7 - 1.18901465426334e125 * cos(theta) ** 5 + 9.84283654191503e122 * cos(theta) ** 3 - 2.20197685501455e120 * cos(theta) ) * sin(64 * phi) ) # @torch.jit.script def Yl83_m_minus_63(theta, phi): return ( 7.41843324752135e-118 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 9.69843529890329e129 * cos(theta) ** 20 - 1.11678951926765e130 * cos(theta) ** 18 + 5.24137412417027e129 * cos(theta) ** 16 - 1.30220475134665e129 * cos(theta) ** 14 + 1.86321749013436e128 * cos(theta) ** 12 - 1.56652680699194e127 * cos(theta) ** 10 + 7.57996842092876e125 * cos(theta) ** 8 - 1.98169109043889e124 * cos(theta) ** 6 + 2.46070913547876e122 * cos(theta) ** 4 - 1.10098842750727e120 * cos(theta) ** 2 + 7.48971719392703e116 ) * sin(63 * phi) ) # @torch.jit.script def Yl83_m_minus_62(theta, phi): return ( 4.10769574780988e-116 * (1.0 - cos(theta) ** 2) ** 31 * ( 4.61830252328728e128 * cos(theta) ** 21 - 5.87783957509291e128 * cos(theta) ** 19 + 3.08316124951192e128 * cos(theta) ** 17 - 8.68136500897767e127 * cos(theta) ** 15 + 1.43324422318028e127 * cos(theta) ** 13 - 1.42411527908359e126 * cos(theta) ** 11 + 8.42218713436529e124 * cos(theta) ** 9 - 2.83098727205556e123 * cos(theta) ** 7 + 4.92141827095752e121 * cos(theta) ** 5 - 3.66996142502425e119 * cos(theta) ** 3 + 7.48971719392703e116 * cos(theta) ) * sin(62 * phi) ) # @torch.jit.script def Yl83_m_minus_61(theta, phi): return ( 2.32003004931995e-114 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 2.09922841967604e127 * cos(theta) ** 22 - 2.93891978754645e127 * cos(theta) ** 20 + 1.71286736083996e127 * cos(theta) ** 18 - 5.42585313061104e126 * cos(theta) ** 16 + 1.0237458737002e126 * cos(theta) ** 14 - 1.18676273256966e125 * cos(theta) ** 12 + 8.42218713436529e123 * cos(theta) ** 10 - 3.53873409006945e122 * cos(theta) ** 8 + 8.20236378492919e120 * cos(theta) ** 6 - 9.17490356256062e118 * cos(theta) ** 4 + 3.74485859696352e116 * cos(theta) ** 2 - 2.34787372850377e113 ) * sin(61 * phi) ) # @torch.jit.script def Yl83_m_minus_60(theta, phi): return ( 1.33517678946737e-112 * (1.0 - cos(theta) ** 2) ** 30 * ( 9.12708008554799e125 * cos(theta) ** 23 - 1.39948561311736e126 * cos(theta) ** 21 + 9.01509137284188e125 * cos(theta) ** 19 - 3.19167831212414e125 * cos(theta) ** 17 + 6.82497249133465e124 * cos(theta) ** 15 - 9.12894409668965e123 * cos(theta) ** 13 + 7.6565337585139e122 * cos(theta) ** 11 - 3.93192676674383e121 * cos(theta) ** 9 + 1.17176625498988e120 * cos(theta) ** 7 - 1.83498071251212e118 * cos(theta) ** 5 + 1.24828619898784e116 * cos(theta) ** 3 - 2.34787372850377e113 * cos(theta) ) * sin(60 * phi) ) # @torch.jit.script def Yl83_m_minus_59(theta, phi): return ( 7.82190277806005e-111 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 3.802950035645e124 * cos(theta) ** 24 - 6.36129824144254e124 * cos(theta) ** 22 + 4.50754568642094e124 * cos(theta) ** 20 - 1.77315461784675e124 * cos(theta) ** 18 + 4.26560780708415e123 * cos(theta) ** 16 - 6.52067435477833e122 * cos(theta) ** 14 + 6.38044479876159e121 * cos(theta) ** 12 - 3.93192676674383e120 * cos(theta) ** 10 + 1.46470781873736e119 * cos(theta) ** 8 - 3.05830118752021e117 * cos(theta) ** 6 + 3.1207154974696e115 * cos(theta) ** 4 - 1.17393686425189e113 * cos(theta) ** 2 + 6.84112391755179e109 ) * sin(59 * phi) ) # @torch.jit.script def Yl83_m_minus_58(theta, phi): return ( 4.66043644840752e-109 * (1.0 - cos(theta) ** 2) ** 29 * ( 1.521180014258e123 * cos(theta) ** 25 - 2.76578184410545e123 * cos(theta) ** 23 + 2.14645032686711e123 * cos(theta) ** 21 - 9.33239272550919e122 * cos(theta) ** 19 + 2.50918106299068e122 * cos(theta) ** 17 - 4.34711623651888e121 * cos(theta) ** 15 + 4.90803446058584e120 * cos(theta) ** 13 - 3.57447887885803e119 * cos(theta) ** 11 + 1.6274531319304e118 * cos(theta) ** 9 - 4.36900169645744e116 * cos(theta) ** 7 + 6.2414309949392e114 * cos(theta) ** 5 - 3.91312288083962e112 * cos(theta) ** 3 + 6.84112391755179e109 * cos(theta) ) * sin(58 * phi) ) # @torch.jit.script def Yl83_m_minus_57(theta, phi): return ( 2.82177785240865e-107 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 5.85069236253076e121 * cos(theta) ** 26 - 1.1524091017106e122 * cos(theta) ** 24 + 9.75659239485052e121 * cos(theta) ** 22 - 4.6661963627546e121 * cos(theta) ** 20 + 1.39398947943927e121 * cos(theta) ** 18 - 2.7169476478243e120 * cos(theta) ** 16 + 3.50573890041845e119 * cos(theta) ** 14 - 2.97873239904836e118 * cos(theta) ** 12 + 1.6274531319304e117 * cos(theta) ** 10 - 5.4612521205718e115 * cos(theta) ** 8 + 1.04023849915653e114 * cos(theta) ** 6 - 9.78280720209905e111 * cos(theta) ** 4 + 3.42056195877589e109 * cos(theta) ** 2 - 1.86610035939765e106 ) * sin(57 * phi) ) # @torch.jit.script def Yl83_m_minus_56(theta, phi): return ( 1.7348771235664e-105 * (1.0 - cos(theta) ** 2) ** 28 * ( 2.16692309723362e120 * cos(theta) ** 27 - 4.60963640684242e120 * cos(theta) ** 25 + 4.24199669341327e120 * cos(theta) ** 23 - 2.22199826797838e120 * cos(theta) ** 21 + 7.33678673389087e119 * cos(theta) ** 19 - 1.59820449872018e119 * cos(theta) ** 17 + 2.33715926694564e118 * cos(theta) ** 15 - 2.29133261465258e117 * cos(theta) ** 13 + 1.47950284720945e116 * cos(theta) ** 11 - 6.06805791174644e114 * cos(theta) ** 9 + 1.48605499879505e113 * cos(theta) ** 7 - 1.95656144041981e111 * cos(theta) ** 5 + 1.14018731959196e109 * cos(theta) ** 3 - 1.86610035939765e106 * cos(theta) ) * sin(56 * phi) ) # @torch.jit.script def Yl83_m_minus_55(theta, phi): return ( 1.08231863529359e-103 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 7.73901106154863e118 * cos(theta) ** 28 - 1.77293707955478e119 * cos(theta) ** 26 + 1.76749862225553e119 * cos(theta) ** 24 - 1.00999921271744e119 * cos(theta) ** 22 + 3.66839336694544e118 * cos(theta) ** 20 - 8.87891388177877e117 * cos(theta) ** 18 + 1.46072454184102e117 * cos(theta) ** 16 - 1.63666615332327e116 * cos(theta) ** 14 + 1.23291903934121e115 * cos(theta) ** 12 - 6.06805791174644e113 * cos(theta) ** 10 + 1.85756874849381e112 * cos(theta) ** 8 - 3.26093573403302e110 * cos(theta) ** 6 + 2.85046829897991e108 * cos(theta) ** 4 - 9.33050179698825e105 * cos(theta) ** 2 + 4.79470801489633e102 ) * sin(55 * phi) ) # @torch.jit.script def Yl83_m_minus_54(theta, phi): return ( 6.84689516530791e-102 * (1.0 - cos(theta) ** 2) ** 27 * ( 2.66862450398229e117 * cos(theta) ** 29 - 6.56643362798065e117 * cos(theta) ** 27 + 7.06999448902212e117 * cos(theta) ** 25 - 4.39130092485846e117 * cos(theta) ** 23 + 1.74685398425973e117 * cos(theta) ** 21 - 4.67311256935724e116 * cos(theta) ** 19 + 8.59249730494719e115 * cos(theta) ** 17 - 1.09111076888218e115 * cos(theta) ** 15 + 9.48399261031699e113 * cos(theta) ** 13 - 5.51641628340585e112 * cos(theta) ** 11 + 2.06396527610423e111 * cos(theta) ** 9 - 4.65847962004717e109 * cos(theta) ** 7 + 5.70093659795982e107 * cos(theta) ** 5 - 3.11016726566275e105 * cos(theta) ** 3 + 4.79470801489633e102 * cos(theta) ) * sin(54 * phi) ) # @torch.jit.script def Yl83_m_minus_53(theta, phi): return ( 4.3894953091829e-100 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 8.89541501327428e115 * cos(theta) ** 30 - 2.34515486713595e116 * cos(theta) ** 28 + 2.71922864962389e116 * cos(theta) ** 26 - 1.82970871869102e116 * cos(theta) ** 24 + 7.94024538299878e115 * cos(theta) ** 22 - 2.33655628467862e115 * cos(theta) ** 20 + 4.77360961385955e114 * cos(theta) ** 18 - 6.81944230551364e113 * cos(theta) ** 16 + 6.77428043594071e112 * cos(theta) ** 14 - 4.59701356950488e111 * cos(theta) ** 12 + 2.06396527610423e110 * cos(theta) ** 10 - 5.82309952505896e108 * cos(theta) ** 8 + 9.5015609965997e106 * cos(theta) ** 6 - 7.77541816415688e104 * cos(theta) ** 4 + 2.39735400744816e102 * cos(theta) ** 2 - 1.16659562406237e99 ) * sin(53 * phi) ) # @torch.jit.script def Yl83_m_minus_52(theta, phi): return ( 2.85013144953582e-98 * (1.0 - cos(theta) ** 2) ** 26 * ( 2.86948871395945e114 * cos(theta) ** 31 - 8.08674092115844e114 * cos(theta) ** 29 + 1.00712172208292e115 * cos(theta) ** 27 - 7.31883487476409e114 * cos(theta) ** 25 + 3.45228060130382e114 * cos(theta) ** 23 - 1.11264584984696e114 * cos(theta) ** 21 + 2.51242611255766e113 * cos(theta) ** 19 - 4.01143665030214e112 * cos(theta) ** 17 + 4.5161869572938e111 * cos(theta) ** 15 - 3.53616428423452e110 * cos(theta) ** 13 + 1.87633206918566e109 * cos(theta) ** 11 - 6.47011058339884e107 * cos(theta) ** 9 + 1.3573658566571e106 * cos(theta) ** 7 - 1.55508363283138e104 * cos(theta) ** 5 + 7.99118002482721e101 * cos(theta) ** 3 - 1.16659562406237e99 * cos(theta) ) * sin(52 * phi) ) # @torch.jit.script def Yl83_m_minus_51(theta, phi): return ( 1.8732975441188e-96 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 8.96715223112327e112 * cos(theta) ** 32 - 2.69558030705281e113 * cos(theta) ** 30 + 3.59686329315329e113 * cos(theta) ** 28 - 2.81493649029388e113 * cos(theta) ** 26 + 1.43845025054326e113 * cos(theta) ** 24 - 5.05748113566801e112 * cos(theta) ** 22 + 1.25621305627883e112 * cos(theta) ** 20 - 2.22857591683452e111 * cos(theta) ** 18 + 2.82261684830863e110 * cos(theta) ** 16 - 2.52583163159609e109 * cos(theta) ** 14 + 1.56361005765472e108 * cos(theta) ** 12 - 6.47011058339884e106 * cos(theta) ** 10 + 1.69670732082138e105 * cos(theta) ** 8 - 2.59180605471896e103 * cos(theta) ** 6 + 1.9977950062068e101 * cos(theta) ** 4 - 5.83297812031183e98 * cos(theta) ** 2 + 2.7004528334777e95 ) * sin(51 * phi) ) # @torch.jit.script def Yl83_m_minus_50(theta, phi): return ( 1.24570765398148e-94 * (1.0 - cos(theta) ** 2) ** 25 * ( 2.71731885791614e111 * cos(theta) ** 33 - 8.69542034533166e111 * cos(theta) ** 31 + 1.24029768729424e112 * cos(theta) ** 29 - 1.04256907047922e112 * cos(theta) ** 27 + 5.75380100217303e111 * cos(theta) ** 25 - 2.19890484159479e111 * cos(theta) ** 23 + 5.98196693466109e110 * cos(theta) ** 21 - 1.1729346930708e110 * cos(theta) ** 19 + 1.66036285194625e109 * cos(theta) ** 17 - 1.68388775439739e108 * cos(theta) ** 15 + 1.20277696742671e107 * cos(theta) ** 13 - 5.88191871218077e105 * cos(theta) ** 11 + 1.88523035646819e104 * cos(theta) ** 9 - 3.70258007816994e102 * cos(theta) ** 7 + 3.9955900124136e100 * cos(theta) ** 5 - 1.94432604010394e98 * cos(theta) ** 3 + 2.7004528334777e95 * cos(theta) ) * sin(50 * phi) ) # @torch.jit.script def Yl83_m_minus_49(theta, phi): return ( 8.3768629824346e-93 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 7.99211428798866e109 * cos(theta) ** 34 - 2.71731885791614e110 * cos(theta) ** 32 + 4.13432562431413e110 * cos(theta) ** 30 - 3.7234609659972e110 * cos(theta) ** 28 + 2.21300038545117e110 * cos(theta) ** 26 - 9.16210350664495e109 * cos(theta) ** 24 + 2.71907587939141e109 * cos(theta) ** 22 - 5.86467346535401e108 * cos(theta) ** 20 + 9.22423806636806e107 * cos(theta) ** 18 - 1.05242984649837e107 * cos(theta) ** 16 + 8.59126405304792e105 * cos(theta) ** 14 - 4.90159892681731e104 * cos(theta) ** 12 + 1.88523035646819e103 * cos(theta) ** 10 - 4.62822509771243e101 * cos(theta) ** 8 + 6.65931668735601e99 * cos(theta) ** 6 - 4.86081510025986e97 * cos(theta) ** 4 + 1.35022641673885e95 * cos(theta) ** 2 - 5.97181077726161e91 ) * sin(49 * phi) ) # @torch.jit.script def Yl83_m_minus_48(theta, phi): return ( 5.69380251176972e-91 * (1.0 - cos(theta) ** 2) ** 24 * ( 2.28346122513962e108 * cos(theta) ** 35 - 8.23429956944286e108 * cos(theta) ** 33 + 1.33365342719811e109 * cos(theta) ** 31 - 1.28395205724041e109 * cos(theta) ** 29 + 8.1962977238932e108 * cos(theta) ** 27 - 3.66484140265798e108 * cos(theta) ** 25 + 1.18220690408322e108 * cos(theta) ** 23 - 2.79270165016858e107 * cos(theta) ** 21 + 4.85486214019372e106 * cos(theta) ** 19 - 6.19076380293159e105 * cos(theta) ** 17 + 5.72750936869861e104 * cos(theta) ** 15 - 3.77046071293639e103 * cos(theta) ** 13 + 1.71384577860745e102 * cos(theta) ** 11 - 5.14247233079158e100 * cos(theta) ** 9 + 9.51330955336573e98 * cos(theta) ** 7 - 9.72163020051972e96 * cos(theta) ** 5 + 4.50075472246283e94 * cos(theta) ** 3 - 5.97181077726161e91 * cos(theta) ) * sin(48 * phi) ) # @torch.jit.script def Yl83_m_minus_47(theta, phi): return ( 3.91011290495497e-89 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 6.34294784761004e106 * cos(theta) ** 36 - 2.42185281454202e107 * cos(theta) ** 34 + 4.16766695999408e107 * cos(theta) ** 32 - 4.27984019080138e107 * cos(theta) ** 30 + 2.92724918710472e107 * cos(theta) ** 28 - 1.40955438563769e107 * cos(theta) ** 26 + 4.92586210034675e106 * cos(theta) ** 24 - 1.26940984098572e106 * cos(theta) ** 22 + 2.42743107009686e105 * cos(theta) ** 20 - 3.43931322385088e104 * cos(theta) ** 18 + 3.57969335543663e103 * cos(theta) ** 16 - 2.69318622352599e102 * cos(theta) ** 14 + 1.42820481550621e101 * cos(theta) ** 12 - 5.14247233079158e99 * cos(theta) ** 10 + 1.18916369417072e98 * cos(theta) ** 8 - 1.62027170008662e96 * cos(theta) ** 6 + 1.12518868061571e94 * cos(theta) ** 4 - 2.98590538863081e91 * cos(theta) ** 2 + 1.26628727253215e88 ) * sin(47 * phi) ) # @torch.jit.script def Yl83_m_minus_46(theta, phi): return ( 2.71182609860722e-87 * (1.0 - cos(theta) ** 2) ** 23 * ( 1.7143102290838e105 * cos(theta) ** 37 - 6.91957947012005e105 * cos(theta) ** 35 + 1.26292938181639e106 * cos(theta) ** 33 - 1.38059360993593e106 * cos(theta) ** 31 + 1.00939627141542e106 * cos(theta) ** 29 - 5.22057179865809e105 * cos(theta) ** 27 + 1.9703448401387e105 * cos(theta) ** 25 - 5.51917322167703e104 * cos(theta) ** 23 + 1.15591955718898e104 * cos(theta) ** 21 - 1.81016485465836e103 * cos(theta) ** 19 + 2.10570197378625e102 * cos(theta) ** 17 - 1.79545748235066e101 * cos(theta) ** 15 + 1.09861908885093e100 * cos(theta) ** 13 - 4.67497484617417e98 * cos(theta) ** 11 + 1.32129299352302e97 * cos(theta) ** 9 - 2.3146738572666e95 * cos(theta) ** 7 + 2.25037736123142e93 * cos(theta) ** 5 - 9.95301796210268e90 * cos(theta) ** 3 + 1.26628727253215e88 * cos(theta) ) * sin(46 * phi) ) # @torch.jit.script def Yl83_m_minus_45(theta, phi): return ( 1.8986656332305e-85 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 4.51134270811525e103 * cos(theta) ** 38 - 1.92210540836668e104 * cos(theta) ** 36 + 3.71449818181291e104 * cos(theta) ** 34 - 4.31435503104978e104 * cos(theta) ** 32 + 3.3646542380514e104 * cos(theta) ** 30 - 1.86448992809218e104 * cos(theta) ** 28 + 7.57824938514884e103 * cos(theta) ** 26 - 2.2996555090321e103 * cos(theta) ** 24 + 5.25417980540446e102 * cos(theta) ** 22 - 9.05082427329179e101 * cos(theta) ** 20 + 1.16983442988125e101 * cos(theta) ** 18 - 1.12216092646916e100 * cos(theta) ** 16 + 7.84727920607807e98 * cos(theta) ** 14 - 3.89581237181181e97 * cos(theta) ** 12 + 1.32129299352302e96 * cos(theta) ** 10 - 2.89334232158325e94 * cos(theta) ** 8 + 3.75062893538569e92 * cos(theta) ** 6 - 2.48825449052567e90 * cos(theta) ** 4 + 6.33143636266074e87 * cos(theta) ** 2 - 2.58320537032262e84 ) * sin(45 * phi) ) # @torch.jit.script def Yl83_m_minus_44(theta, phi): return ( 1.34148486702454e-83 * (1.0 - cos(theta) ** 2) ** 22 * ( 1.15675454054237e102 * cos(theta) ** 39 - 5.19487948207211e102 * cos(theta) ** 37 + 1.06128519480369e103 * cos(theta) ** 35 - 1.30738031243933e103 * cos(theta) ** 33 + 1.08537233485529e103 * cos(theta) ** 31 - 6.42927561411095e102 * cos(theta) ** 29 + 2.80675903153661e102 * cos(theta) ** 27 - 9.19862203612838e101 * cos(theta) ** 25 + 2.28442600234976e101 * cos(theta) ** 23 - 4.30991632061514e100 * cos(theta) ** 21 + 6.15702331516449e99 * cos(theta) ** 19 - 6.6009466262892e98 * cos(theta) ** 17 + 5.23151947071871e97 * cos(theta) ** 15 - 2.99677874754754e96 * cos(theta) ** 13 + 1.20117544865729e95 * cos(theta) ** 11 - 3.21482480175917e93 * cos(theta) ** 9 + 5.35804133626528e91 * cos(theta) ** 7 - 4.97650898105134e89 * cos(theta) ** 5 + 2.11047878755358e87 * cos(theta) ** 3 - 2.58320537032262e84 * cos(theta) ) * sin(44 * phi) ) # @torch.jit.script def Yl83_m_minus_43(theta, phi): return ( 9.56131516798588e-82 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 2.89188635135593e100 * cos(theta) ** 40 - 1.36707354791371e101 * cos(theta) ** 38 + 2.94801443001025e101 * cos(theta) ** 36 - 3.84523621305684e101 * cos(theta) ** 34 + 3.39178854642278e101 * cos(theta) ** 32 - 2.14309187137032e101 * cos(theta) ** 30 + 1.0024139398345e101 * cos(theta) ** 28 - 3.53793155235707e100 * cos(theta) ** 26 + 9.51844167645735e99 * cos(theta) ** 24 - 1.95905287300688e99 * cos(theta) ** 22 + 3.07851165758224e98 * cos(theta) ** 20 - 3.66719257016067e97 * cos(theta) ** 18 + 3.26969966919919e96 * cos(theta) ** 16 - 2.14055624824825e95 * cos(theta) ** 14 + 1.00097954054774e94 * cos(theta) ** 12 - 3.21482480175917e92 * cos(theta) ** 10 + 6.6975516703316e90 * cos(theta) ** 8 - 8.29418163508557e88 * cos(theta) ** 6 + 5.27619696888395e86 * cos(theta) ** 4 - 1.29160268516131e84 * cos(theta) ** 2 + 5.08504994157996e80 ) * sin(43 * phi) ) # @torch.jit.script def Yl83_m_minus_42(theta, phi): return ( 6.87218488424811e-80 * (1.0 - cos(theta) ** 2) ** 21 * ( 7.05338134477056e98 * cos(theta) ** 41 - 3.50531678952234e99 * cos(theta) ** 39 + 7.96760656759526e99 * cos(theta) ** 37 - 1.09863891801624e100 * cos(theta) ** 35 + 1.02781471103721e100 * cos(theta) ** 33 - 6.91319958506554e99 * cos(theta) ** 31 + 3.45659979253277e99 * cos(theta) ** 29 - 1.31034501939151e99 * cos(theta) ** 27 + 3.80737667058294e98 * cos(theta) ** 25 - 8.51762118698644e97 * cos(theta) ** 23 + 1.46595793218202e97 * cos(theta) ** 21 - 1.93010135271614e96 * cos(theta) ** 19 + 1.92335274658776e95 * cos(theta) ** 17 - 1.42703749883216e94 * cos(theta) ** 15 + 7.699842619598e92 * cos(theta) ** 13 - 2.92256800159924e91 * cos(theta) ** 11 + 7.44172407814622e89 * cos(theta) ** 9 - 1.18488309072651e88 * cos(theta) ** 7 + 1.05523939377679e86 * cos(theta) ** 5 - 4.30534228387103e83 * cos(theta) ** 3 + 5.08504994157996e80 * cos(theta) ) * sin(42 * phi) ) # @torch.jit.script def Yl83_m_minus_41(theta, phi): return ( 4.97937101135538e-78 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 1.67937651065966e97 * cos(theta) ** 42 - 8.76329197380585e97 * cos(theta) ** 40 + 2.0967385704198e98 * cos(theta) ** 38 - 3.05177477226733e98 * cos(theta) ** 36 + 3.02298444422708e98 * cos(theta) ** 34 - 2.16037487033298e98 * cos(theta) ** 32 + 1.15219993084426e98 * cos(theta) ** 30 - 4.67980364068395e97 * cos(theta) ** 28 + 1.4643756425319e97 * cos(theta) ** 26 - 3.54900882791102e96 * cos(theta) ** 24 + 6.66344514628191e95 * cos(theta) ** 22 - 9.6505067635807e94 * cos(theta) ** 20 + 1.06852930365987e94 * cos(theta) ** 18 - 8.91898436770102e92 * cos(theta) ** 16 + 5.49988758542715e91 * cos(theta) ** 14 - 2.43547333466604e90 * cos(theta) ** 12 + 7.44172407814622e88 * cos(theta) ** 10 - 1.48110386340814e87 * cos(theta) ** 8 + 1.75873232296132e85 * cos(theta) ** 6 - 1.07633557096776e83 * cos(theta) ** 4 + 2.54252497078998e80 * cos(theta) ** 2 - 9.68580941253326e76 ) * sin(41 * phi) ) # @torch.jit.script def Yl83_m_minus_40(theta, phi): return ( 3.63596385275829e-76 * (1.0 - cos(theta) ** 2) ** 20 * ( 3.90552676897595e95 * cos(theta) ** 43 - 2.13738828629411e96 * cos(theta) ** 41 + 5.37625274466617e96 * cos(theta) ** 39 - 8.24803992504685e96 * cos(theta) ** 37 + 8.63709841207736e96 * cos(theta) ** 35 - 6.54659051616055e96 * cos(theta) ** 33 + 3.71677397046534e96 * cos(theta) ** 31 - 1.61372539333929e96 * cos(theta) ** 29 + 5.42361349085889e95 * cos(theta) ** 27 - 1.41960353116441e95 * cos(theta) ** 25 + 2.89715006360083e94 * cos(theta) ** 23 - 4.5954794112289e93 * cos(theta) ** 21 + 5.62383844031509e92 * cos(theta) ** 19 - 5.24646139276531e91 * cos(theta) ** 17 + 3.6665917236181e90 * cos(theta) ** 15 - 1.87344102666618e89 * cos(theta) ** 13 + 6.76520370740565e87 * cos(theta) ** 11 - 1.64567095934237e86 * cos(theta) ** 9 + 2.5124747470876e84 * cos(theta) ** 7 - 2.15267114193552e82 * cos(theta) ** 5 + 8.4750832359666e79 * cos(theta) ** 3 - 9.68580941253326e76 * cos(theta) ) * sin(40 * phi) ) # @torch.jit.script def Yl83_m_minus_39(theta, phi): return ( 2.67484395331603e-74 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 8.87619720221806e93 * cos(theta) ** 44 - 5.08901972927169e94 * cos(theta) ** 42 + 1.34406318616654e95 * cos(theta) ** 40 - 2.17053682238075e95 * cos(theta) ** 38 + 2.39919400335482e95 * cos(theta) ** 36 - 1.92546779887075e95 * cos(theta) ** 34 + 1.16149186577042e95 * cos(theta) ** 32 - 5.37908464446432e94 * cos(theta) ** 30 + 1.93700481816389e94 * cos(theta) ** 28 - 5.46001358140157e93 * cos(theta) ** 26 + 1.20714585983368e93 * cos(theta) ** 24 - 2.08885427783132e92 * cos(theta) ** 22 + 2.81191922015755e91 * cos(theta) ** 20 - 2.9147007737585e90 * cos(theta) ** 18 + 2.29161982726131e89 * cos(theta) ** 16 - 1.33817216190442e88 * cos(theta) ** 14 + 5.63766975617138e86 * cos(theta) ** 12 - 1.64567095934237e85 * cos(theta) ** 10 + 3.14059343385949e83 * cos(theta) ** 8 - 3.58778523655919e81 * cos(theta) ** 6 + 2.11877080899165e79 * cos(theta) ** 4 - 4.84290470626663e76 * cos(theta) ** 2 + 1.7896913179108e73 ) * sin(39 * phi) ) # @torch.jit.script def Yl83_m_minus_38(theta, phi): return ( 1.98191316809053e-72 * (1.0 - cos(theta) ** 2) ** 19 * ( 1.97248826715957e92 * cos(theta) ** 45 - 1.18349296029574e93 * cos(theta) ** 43 + 3.27820289308913e93 * cos(theta) ** 41 - 5.56547903174551e93 * cos(theta) ** 39 + 6.4843081171752e93 * cos(theta) ** 37 - 5.50133656820214e93 * cos(theta) ** 35 + 3.51967232051642e93 * cos(theta) ** 33 - 1.73518859498849e93 * cos(theta) ** 31 + 6.67932695918582e92 * cos(theta) ** 29 - 2.02222725237095e92 * cos(theta) ** 27 + 4.82858343933472e91 * cos(theta) ** 25 - 9.08197512100574e90 * cos(theta) ** 23 + 1.33900915245597e90 * cos(theta) ** 21 - 1.53405303882027e89 * cos(theta) ** 19 + 1.34801166309489e88 * cos(theta) ** 17 - 8.92114774602943e86 * cos(theta) ** 15 + 4.33666904320875e85 * cos(theta) ** 13 - 1.49606450849307e84 * cos(theta) ** 11 + 3.48954825984388e82 * cos(theta) ** 9 - 5.12540748079885e80 * cos(theta) ** 7 + 4.2375416179833e78 * cos(theta) ** 5 - 1.61430156875554e76 * cos(theta) ** 3 + 1.7896913179108e73 * cos(theta) ) * sin(38 * phi) ) # @torch.jit.script def Yl83_m_minus_37(theta, phi): return ( 1.47861880142803e-70 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 4.28801797208602e90 * cos(theta) ** 46 - 2.68975672794487e91 * cos(theta) ** 44 + 7.80524498354554e91 * cos(theta) ** 42 - 1.39136975793638e92 * cos(theta) ** 40 + 1.70639687294084e92 * cos(theta) ** 38 - 1.52814904672282e92 * cos(theta) ** 36 + 1.03519774132836e92 * cos(theta) ** 34 - 5.42246435933903e91 * cos(theta) ** 32 + 2.22644231972861e91 * cos(theta) ** 30 - 7.22224018703911e90 * cos(theta) ** 28 + 1.8571474766672e90 * cos(theta) ** 26 - 3.78415630041906e89 * cos(theta) ** 24 + 6.08640523843625e88 * cos(theta) ** 22 - 7.67026519410133e87 * cos(theta) ** 20 + 7.48895368386049e86 * cos(theta) ** 18 - 5.5757173412684e85 * cos(theta) ** 16 + 3.09762074514911e84 * cos(theta) ** 14 - 1.24672042374422e83 * cos(theta) ** 12 + 3.48954825984388e81 * cos(theta) ** 10 - 6.40675935099856e79 * cos(theta) ** 8 + 7.0625693633055e77 * cos(theta) ** 6 - 4.03575392188886e75 * cos(theta) ** 4 + 8.94845658955401e72 * cos(theta) ** 2 - 3.21539942132735e69 ) * sin(37 * phi) ) # @torch.jit.script def Yl83_m_minus_36(theta, phi): return ( 1.11044173543872e-68 * (1.0 - cos(theta) ** 2) ** 18 * ( 9.12344249380005e88 * cos(theta) ** 47 - 5.97723717321082e89 * cos(theta) ** 45 + 1.81517325198733e90 * cos(theta) ** 43 - 3.39358477545458e90 * cos(theta) ** 41 + 4.37537659728421e90 * cos(theta) ** 39 - 4.13013255871032e90 * cos(theta) ** 37 + 2.95770783236674e90 * cos(theta) ** 35 - 1.64317101798152e90 * cos(theta) ** 33 + 7.18207199912454e89 * cos(theta) ** 31 - 2.49042765070314e89 * cos(theta) ** 29 + 6.87832398765629e88 * cos(theta) ** 27 - 1.51366252016762e88 * cos(theta) ** 25 + 2.64626314714619e87 * cos(theta) ** 23 - 3.65250723528635e86 * cos(theta) ** 21 + 3.94155457045289e85 * cos(theta) ** 19 - 3.27983373015788e84 * cos(theta) ** 17 + 2.06508049676607e83 * cos(theta) ** 15 - 9.59015710572479e81 * cos(theta) ** 13 + 3.17231659985807e80 * cos(theta) ** 11 - 7.11862150110951e78 * cos(theta) ** 9 + 1.00893848047221e77 * cos(theta) ** 7 - 8.07150784377771e74 * cos(theta) ** 5 + 2.98281886318467e72 * cos(theta) ** 3 - 3.21539942132735e69 * cos(theta) ) * sin(36 * phi) ) # @torch.jit.script def Yl83_m_minus_35(theta, phi): return ( 8.39247150883301e-67 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 1.90071718620834e87 * cos(theta) ** 48 - 1.29939938548061e88 * cos(theta) ** 46 + 4.12539375451667e88 * cos(theta) ** 44 - 8.07996375108234e88 * cos(theta) ** 42 + 1.09384414932105e89 * cos(theta) ** 40 - 1.08687698913429e89 * cos(theta) ** 38 + 8.21585508990762e88 * cos(theta) ** 36 - 4.83285593523978e88 * cos(theta) ** 34 + 2.24439749972642e88 * cos(theta) ** 32 - 8.3014255023438e87 * cos(theta) ** 30 + 2.45654428130582e87 * cos(theta) ** 28 - 5.82177892372163e86 * cos(theta) ** 26 + 1.10260964464425e86 * cos(theta) ** 24 - 1.66023056149379e85 * cos(theta) ** 22 + 1.97077728522645e84 * cos(theta) ** 20 - 1.82212985008771e83 * cos(theta) ** 18 + 1.2906753104788e82 * cos(theta) ** 16 - 6.85011221837485e80 * cos(theta) ** 14 + 2.6435971665484e79 * cos(theta) ** 12 - 7.11862150110951e77 * cos(theta) ** 10 + 1.26117310059027e76 * cos(theta) ** 8 - 1.34525130729629e74 * cos(theta) ** 6 + 7.45704715796167e71 * cos(theta) ** 4 - 1.60769971066367e69 * cos(theta) ** 2 + 5.62920066758989e65 ) * sin(35 * phi) ) # @torch.jit.script def Yl83_m_minus_34(theta, phi): return ( 6.38159030453734e-65 * (1.0 - cos(theta) ** 2) ** 17 * ( 3.87901466573131e85 * cos(theta) ** 49 - 2.76467954357577e86 * cos(theta) ** 47 + 9.16754167670371e86 * cos(theta) ** 45 - 1.87906133746101e87 * cos(theta) ** 43 + 2.66791255931964e87 * cos(theta) ** 41 - 2.78686407470332e87 * cos(theta) ** 39 + 2.22050137565071e87 * cos(theta) ** 37 - 1.38081598149708e87 * cos(theta) ** 35 + 6.80120454462551e86 * cos(theta) ** 33 - 2.67787919430445e86 * cos(theta) ** 31 + 8.47084234933041e85 * cos(theta) ** 29 - 2.1562144161932e85 * cos(theta) ** 27 + 4.41043857857699e84 * cos(theta) ** 25 - 7.21839374562519e83 * cos(theta) ** 23 + 9.38465373917355e82 * cos(theta) ** 21 - 9.59015710572479e81 * cos(theta) ** 19 + 7.5922077086988e80 * cos(theta) ** 17 - 4.56674147891657e79 * cos(theta) ** 15 + 2.0335362819603e78 * cos(theta) ** 13 - 6.47147409191774e76 * cos(theta) ** 11 + 1.4013034451003e75 * cos(theta) ** 9 - 1.92178758185184e73 * cos(theta) ** 7 + 1.49140943159233e71 * cos(theta) ** 5 - 5.35899903554558e68 * cos(theta) ** 3 + 5.62920066758989e65 * cos(theta) ) * sin(34 * phi) ) # @torch.jit.script def Yl83_m_minus_33(theta, phi): return ( 4.88097802358857e-63 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 7.75802933146262e83 * cos(theta) ** 50 - 5.75974904911619e84 * cos(theta) ** 48 + 1.99294384276168e85 * cos(theta) ** 46 - 4.27059394877502e85 * cos(theta) ** 44 + 6.35217276028485e85 * cos(theta) ** 42 - 6.96716018675829e85 * cos(theta) ** 40 + 5.84342467276502e85 * cos(theta) ** 38 - 3.835599948603e85 * cos(theta) ** 36 + 2.00035427783103e85 * cos(theta) ** 34 - 8.36837248220141e84 * cos(theta) ** 32 + 2.82361411644347e84 * cos(theta) ** 30 - 7.70076577211855e83 * cos(theta) ** 28 + 1.69632253022192e83 * cos(theta) ** 26 - 3.00766406067716e82 * cos(theta) ** 24 + 4.26575169962434e81 * cos(theta) ** 22 - 4.7950785528624e80 * cos(theta) ** 20 + 4.21789317149933e79 * cos(theta) ** 18 - 2.85421342432286e78 * cos(theta) ** 16 + 1.45252591568593e77 * cos(theta) ** 14 - 5.39289507659811e75 * cos(theta) ** 12 + 1.4013034451003e74 * cos(theta) ** 10 - 2.4022344773148e72 * cos(theta) ** 8 + 2.48568238598722e70 * cos(theta) ** 6 - 1.33974975888639e68 * cos(theta) ** 4 + 2.81460033379495e65 * cos(theta) ** 2 - 9.62256524374341e61 ) * sin(33 * phi) ) # @torch.jit.script def Yl83_m_minus_32(theta, phi): return ( 3.75423051100115e-61 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.52118222185542e82 * cos(theta) ** 51 - 1.17545898961555e83 * cos(theta) ** 49 + 4.2403060484291e83 * cos(theta) ** 47 - 9.4902087750556e83 * cos(theta) ** 45 + 1.47724947913601e84 * cos(theta) ** 43 - 1.69930736262397e84 * cos(theta) ** 41 + 1.4983140186577e84 * cos(theta) ** 39 - 1.03664863475757e84 * cos(theta) ** 37 + 5.71529793666009e83 * cos(theta) ** 35 - 2.53587044915194e83 * cos(theta) ** 33 + 9.10843263368861e82 * cos(theta) ** 31 - 2.65543647314433e82 * cos(theta) ** 29 + 6.28267603785896e81 * cos(theta) ** 27 - 1.20306562427086e81 * cos(theta) ** 25 + 1.85467465201058e80 * cos(theta) ** 23 - 2.28337073945828e79 * cos(theta) ** 21 + 2.21994377447333e78 * cos(theta) ** 19 - 1.67894907313109e77 * cos(theta) ** 17 + 9.68350610457288e75 * cos(theta) ** 15 - 4.1483808281524e74 * cos(theta) ** 13 + 1.27391222281845e73 * cos(theta) ** 11 - 2.66914941923866e71 * cos(theta) ** 9 + 3.55097483712461e69 * cos(theta) ** 7 - 2.67949951777279e67 * cos(theta) ** 5 + 9.38200111264982e64 * cos(theta) ** 3 - 9.62256524374341e61 * cos(theta) ) * sin(32 * phi) ) # @torch.jit.script def Yl83_m_minus_31(theta, phi): return ( 2.90316371298274e-59 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 2.92535042664503e80 * cos(theta) ** 52 - 2.3509179792311e81 * cos(theta) ** 50 + 8.83397093422728e81 * cos(theta) ** 48 - 2.06308886414252e82 * cos(theta) ** 46 + 3.35738517985457e82 * cos(theta) ** 44 - 4.04596991100946e82 * cos(theta) ** 42 + 3.74578504664424e82 * cos(theta) ** 40 - 2.72802272304623e82 * cos(theta) ** 38 + 1.58758276018336e82 * cos(theta) ** 36 - 7.45844249750572e81 * cos(theta) ** 34 + 2.84638519802769e81 * cos(theta) ** 32 - 8.8514549104811e80 * cos(theta) ** 30 + 2.24381287066391e80 * cos(theta) ** 28 - 4.62717547796486e79 * cos(theta) ** 26 + 7.7278110500441e78 * cos(theta) ** 24 - 1.03789579066286e78 * cos(theta) ** 22 + 1.10997188723667e77 * cos(theta) ** 20 - 9.32749485072829e75 * cos(theta) ** 18 + 6.05219131535805e74 * cos(theta) ** 16 - 2.963129162966e73 * cos(theta) ** 14 + 1.06159351901538e72 * cos(theta) ** 12 - 2.66914941923866e70 * cos(theta) ** 10 + 4.43871854640576e68 * cos(theta) ** 8 - 4.46583252962131e66 * cos(theta) ** 6 + 2.34550027816246e64 * cos(theta) ** 4 - 4.8112826218717e61 * cos(theta) ** 2 + 1.60912462269957e58 ) * sin(31 * phi) ) # @torch.jit.script def Yl83_m_minus_30(theta, phi): return ( 2.25663794985244e-57 * (1.0 - cos(theta) ** 2) ** 15 * ( 5.51952910687742e78 * cos(theta) ** 53 - 4.60964309653156e79 * cos(theta) ** 51 + 1.80285121106679e80 * cos(theta) ** 49 - 4.38955077477132e80 * cos(theta) ** 47 + 7.46085595523239e80 * cos(theta) ** 45 - 9.4092323511848e80 * cos(theta) ** 43 + 9.1360610893762e80 * cos(theta) ** 41 - 6.99493005909289e80 * cos(theta) ** 39 + 4.29076421671178e80 * cos(theta) ** 37 - 2.13098357071592e80 * cos(theta) ** 35 + 8.625409690993e79 * cos(theta) ** 33 - 2.85530803563906e79 * cos(theta) ** 31 + 7.73728576091005e78 * cos(theta) ** 29 - 1.71376869554254e78 * cos(theta) ** 27 + 3.09112442001764e77 * cos(theta) ** 25 - 4.51259039418633e76 * cos(theta) ** 23 + 5.2855804154127e75 * cos(theta) ** 21 - 4.90920781617278e74 * cos(theta) ** 19 + 3.56011253844591e73 * cos(theta) ** 17 - 1.97541944197733e72 * cos(theta) ** 15 + 8.16610399242598e70 * cos(theta) ** 13 - 2.42649947203515e69 * cos(theta) ** 11 + 4.9319094960064e67 * cos(theta) ** 9 - 6.37976075660188e65 * cos(theta) ** 7 + 4.69100055632491e63 * cos(theta) ** 5 - 1.60376087395723e61 * cos(theta) ** 3 + 1.60912462269957e58 * cos(theta) ) * sin(30 * phi) ) # @torch.jit.script def Yl83_m_minus_29(theta, phi): return ( 1.76277949085046e-55 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 1.02213501979211e77 * cos(theta) ** 54 - 8.8646982625607e77 * cos(theta) ** 52 + 3.60570242213359e78 * cos(theta) ** 50 - 9.14489744744025e78 * cos(theta) ** 48 + 1.62192520765921e79 * cos(theta) ** 46 - 2.13846189799654e79 * cos(theta) ** 44 + 2.17525264032767e79 * cos(theta) ** 42 - 1.74873251477322e79 * cos(theta) ** 40 + 1.12914847808205e79 * cos(theta) ** 38 - 5.91939880754422e78 * cos(theta) ** 36 + 2.53688520323324e78 * cos(theta) ** 34 - 8.92283761137207e77 * cos(theta) ** 32 + 2.57909525363668e77 * cos(theta) ** 30 - 6.12060248408051e76 * cos(theta) ** 28 + 1.18889400769909e76 * cos(theta) ** 26 - 1.88024599757764e75 * cos(theta) ** 24 + 2.40253655246032e74 * cos(theta) ** 22 - 2.45460390808639e73 * cos(theta) ** 20 + 1.97784029913662e72 * cos(theta) ** 18 - 1.23463715123583e71 * cos(theta) ** 16 + 5.83293142316141e69 * cos(theta) ** 14 - 2.02208289336262e68 * cos(theta) ** 12 + 4.9319094960064e66 * cos(theta) ** 10 - 7.97470094575235e64 * cos(theta) ** 8 + 7.81833426054152e62 * cos(theta) ** 6 - 4.00940218489309e60 * cos(theta) ** 4 + 8.04562311349783e57 * cos(theta) ** 2 - 2.63704461274921e54 ) * sin(29 * phi) ) # @torch.jit.script def Yl83_m_minus_28(theta, phi): return ( 1.38352924961911e-53 * (1.0 - cos(theta) ** 2) ** 14 * ( 1.85842730871294e75 * cos(theta) ** 55 - 1.67258457784164e76 * cos(theta) ** 53 + 7.07000474928154e76 * cos(theta) ** 51 - 1.86630560151842e77 * cos(theta) ** 49 + 3.45090469714727e77 * cos(theta) ** 47 - 4.75213755110343e77 * cos(theta) ** 45 + 5.05872707052946e77 * cos(theta) ** 43 - 4.26520125554445e77 * cos(theta) ** 41 + 2.89525250790269e77 * cos(theta) ** 39 - 1.59983751555249e77 * cos(theta) ** 37 + 7.24824343780925e76 * cos(theta) ** 35 - 2.70389018526426e76 * cos(theta) ** 33 + 8.31966210850543e75 * cos(theta) ** 31 - 2.11055258071742e75 * cos(theta) ** 29 + 4.40331113962627e74 * cos(theta) ** 27 - 7.52098399031056e73 * cos(theta) ** 25 + 1.04458110976535e73 * cos(theta) ** 23 - 1.16885900385066e72 * cos(theta) ** 21 + 1.04096857849296e71 * cos(theta) ** 19 - 7.26257147785784e69 * cos(theta) ** 17 + 3.88862094877427e68 * cos(theta) ** 15 - 1.55544837950971e67 * cos(theta) ** 13 + 4.48355408727854e65 * cos(theta) ** 11 - 8.86077882861372e63 * cos(theta) ** 9 + 1.11690489436307e62 * cos(theta) ** 7 - 8.01880436978617e59 * cos(theta) ** 5 + 2.68187437116594e57 * cos(theta) ** 3 - 2.63704461274921e54 * cos(theta) ) * sin(28 * phi) ) # @torch.jit.script def Yl83_m_minus_27(theta, phi): return ( 1.09079678195221e-51 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 3.31862019413024e73 * cos(theta) ** 56 - 3.09737884785489e74 * cos(theta) ** 54 + 1.35961629793876e75 * cos(theta) ** 52 - 3.73261120303684e75 * cos(theta) ** 50 + 7.18938478572347e75 * cos(theta) ** 48 - 1.03307338067466e76 * cos(theta) ** 46 + 1.1497106978476e76 * cos(theta) ** 44 - 1.01552410846296e76 * cos(theta) ** 42 + 7.23813126975672e75 * cos(theta) ** 40 - 4.21009872513814e75 * cos(theta) ** 38 + 2.01340095494701e75 * cos(theta) ** 36 - 7.95261819195372e74 * cos(theta) ** 34 + 2.59989440890795e74 * cos(theta) ** 32 - 7.03517526905806e73 * cos(theta) ** 30 + 1.57261112129509e73 * cos(theta) ** 28 - 2.89268615011944e72 * cos(theta) ** 26 + 4.35242129068898e71 * cos(theta) ** 24 - 5.31299547204847e70 * cos(theta) ** 22 + 5.20484289246478e69 * cos(theta) ** 20 - 4.03476193214324e68 * cos(theta) ** 18 + 2.43038809298392e67 * cos(theta) ** 16 - 1.11103455679265e66 * cos(theta) ** 14 + 3.73629507273212e64 * cos(theta) ** 12 - 8.86077882861372e62 * cos(theta) ** 10 + 1.39613111795384e61 * cos(theta) ** 8 - 1.33646739496436e59 * cos(theta) ** 6 + 6.70468592791486e56 * cos(theta) ** 4 - 1.3185223063746e54 * cos(theta) ** 2 + 4.24234976311005e50 ) * sin(27 * phi) ) # @torch.jit.script def Yl83_m_minus_26(theta, phi): return ( 8.6372923270973e-50 * (1.0 - cos(theta) ** 2) ** 13 * ( 5.82214069145656e71 * cos(theta) ** 57 - 5.63159790519071e72 * cos(theta) ** 55 + 2.56531376969577e73 * cos(theta) ** 53 - 7.31884549615066e73 * cos(theta) ** 51 + 1.46722138484152e74 * cos(theta) ** 49 - 2.19802846952055e74 * cos(theta) ** 47 + 2.55491266188357e74 * cos(theta) ** 45 - 2.36168397316968e74 * cos(theta) ** 43 + 1.76539787067237e74 * cos(theta) ** 41 - 1.07951249362516e74 * cos(theta) ** 39 + 5.4416242025595e73 * cos(theta) ** 37 - 2.27217662627249e73 * cos(theta) ** 35 + 7.87846790578166e72 * cos(theta) ** 33 - 2.2694113771155e72 * cos(theta) ** 31 + 5.42279696998309e71 * cos(theta) ** 29 - 1.07136524078498e71 * cos(theta) ** 27 + 1.74096851627559e70 * cos(theta) ** 25 - 2.30999803132542e69 * cos(theta) ** 23 + 2.47849661545942e68 * cos(theta) ** 21 - 2.12355891165434e67 * cos(theta) ** 19 + 1.42964005469642e66 * cos(theta) ** 17 - 7.40689704528433e64 * cos(theta) ** 15 + 2.87407313287086e63 * cos(theta) ** 13 - 8.05525348055793e61 * cos(theta) ** 11 + 1.55125679772649e60 * cos(theta) ** 9 - 1.90923913566337e58 * cos(theta) ** 7 + 1.34093718558297e56 * cos(theta) ** 5 - 4.39507435458201e53 * cos(theta) ** 3 + 4.24234976311005e50 * cos(theta) ) * sin(26 * phi) ) # @torch.jit.script def Yl83_m_minus_25(theta, phi): return ( 6.86759797962786e-48 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 1.00381736059596e70 * cos(theta) ** 58 - 1.00564248306977e71 * cos(theta) ** 56 + 4.75058105499217e71 * cos(theta) ** 54 - 1.40747028772128e72 * cos(theta) ** 52 + 2.93444276968305e72 * cos(theta) ** 50 - 4.57922597816781e72 * cos(theta) ** 48 + 5.55415796061645e72 * cos(theta) ** 46 - 5.36746357538564e72 * cos(theta) ** 44 + 4.20332826350564e72 * cos(theta) ** 42 - 2.69878123406291e72 * cos(theta) ** 40 + 1.4320063690946e72 * cos(theta) ** 38 - 6.31160173964581e71 * cos(theta) ** 36 + 2.31719644287696e71 * cos(theta) ** 34 - 7.09191055348594e70 * cos(theta) ** 32 + 1.80759898999436e70 * cos(theta) ** 30 - 3.82630443137493e69 * cos(theta) ** 28 + 6.69603275490612e68 * cos(theta) ** 26 - 9.62499179718925e67 * cos(theta) ** 24 + 1.12658937066337e67 * cos(theta) ** 22 - 1.06177945582717e66 * cos(theta) ** 20 + 7.94244474831347e64 * cos(theta) ** 18 - 4.62931065330271e63 * cos(theta) ** 16 + 2.05290938062204e62 * cos(theta) ** 14 - 6.71271123379827e60 * cos(theta) ** 12 + 1.55125679772649e59 * cos(theta) ** 10 - 2.38654891957922e57 * cos(theta) ** 8 + 2.23489530930495e55 * cos(theta) ** 6 - 1.0987685886455e53 * cos(theta) ** 4 + 2.12117488155503e50 * cos(theta) ** 2 - 6.7104551773332e46 ) * sin(25 * phi) ) # @torch.jit.script def Yl83_m_minus_24(theta, phi): return ( 5.4820469133926e-46 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.7013853569423e68 * cos(theta) ** 59 - 1.76428505801714e69 * cos(theta) ** 57 + 8.63742009998576e69 * cos(theta) ** 55 - 2.65560431645525e70 * cos(theta) ** 53 + 5.7538093523197e70 * cos(theta) ** 51 - 9.34535913911799e70 * cos(theta) ** 49 + 1.18173573630137e71 * cos(theta) ** 47 - 1.19276968341903e71 * cos(theta) ** 45 + 9.77518200815266e70 * cos(theta) ** 43 - 6.58239325381197e70 * cos(theta) ** 41 + 3.67181120280668e70 * cos(theta) ** 39 - 1.70583830801238e70 * cos(theta) ** 37 + 6.62056126536274e69 * cos(theta) ** 35 - 2.14906380408665e69 * cos(theta) ** 33 + 5.83096448385278e68 * cos(theta) ** 31 - 1.31941532116377e68 * cos(theta) ** 29 + 2.48001213144671e67 * cos(theta) ** 27 - 3.8499967188757e66 * cos(theta) ** 25 + 4.89821465505814e65 * cos(theta) ** 23 - 5.05609264679604e64 * cos(theta) ** 21 + 4.18023407805972e63 * cos(theta) ** 19 - 2.72312391370748e62 * cos(theta) ** 17 + 1.36860625374803e61 * cos(theta) ** 15 - 5.16362402599867e59 * cos(theta) ** 13 + 1.41023345247863e58 * cos(theta) ** 11 - 2.65172102175469e56 * cos(theta) ** 9 + 3.19270758472136e54 * cos(theta) ** 7 - 2.19753717729101e52 * cos(theta) ** 5 + 7.07058293851675e49 * cos(theta) ** 3 - 6.7104551773332e46 * cos(theta) ) * sin(24 * phi) ) # @torch.jit.script def Yl83_m_minus_23(theta, phi): return ( 4.39248474414302e-44 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 2.83564226157051e66 * cos(theta) ** 60 - 3.04187078968473e67 * cos(theta) ** 58 + 1.54239644642603e68 * cos(theta) ** 56 - 4.91778577121342e68 * cos(theta) ** 54 + 1.10650179852302e69 * cos(theta) ** 52 - 1.8690718278236e69 * cos(theta) ** 50 + 2.46194945062786e69 * cos(theta) ** 48 - 2.59297757265007e69 * cos(theta) ** 46 + 2.22163227458015e69 * cos(theta) ** 44 - 1.56723648900285e69 * cos(theta) ** 42 + 9.17952800701669e68 * cos(theta) ** 40 - 4.48904817897995e68 * cos(theta) ** 38 + 1.83904479593409e68 * cos(theta) ** 36 - 6.3207758943725e67 * cos(theta) ** 34 + 1.82217640120399e67 * cos(theta) ** 32 - 4.39805107054589e66 * cos(theta) ** 30 + 8.85718618373826e65 * cos(theta) ** 28 - 1.48076796879835e65 * cos(theta) ** 26 + 2.04092277294089e64 * cos(theta) ** 24 - 2.29822393036184e63 * cos(theta) ** 22 + 2.09011703902986e62 * cos(theta) ** 20 - 1.51284661872637e61 * cos(theta) ** 18 + 8.55378908592518e59 * cos(theta) ** 16 - 3.68830287571334e58 * cos(theta) ** 14 + 1.17519454373219e57 * cos(theta) ** 12 - 2.65172102175469e55 * cos(theta) ** 10 + 3.9908844809017e53 * cos(theta) ** 8 - 3.66256196215168e51 * cos(theta) ** 6 + 1.76764573462919e49 * cos(theta) ** 4 - 3.3552275886666e46 * cos(theta) ** 2 + 1.04524223946e43 ) * sin(23 * phi) ) # @torch.jit.script def Yl83_m_minus_22(theta, phi): return ( 3.53206032116106e-42 * (1.0 - cos(theta) ** 2) ** 11 * ( 4.64859387142706e64 * cos(theta) ** 61 - 5.15571320285547e65 * cos(theta) ** 59 + 2.7059586779404e66 * cos(theta) ** 57 - 8.9414286749335e66 * cos(theta) ** 55 + 2.08773924249626e67 * cos(theta) ** 53 - 3.66484672122274e67 * cos(theta) ** 51 + 5.0243866339344e67 * cos(theta) ** 49 - 5.51697355882993e67 * cos(theta) ** 47 + 4.93696061017811e67 * cos(theta) ** 45 - 3.64473602093686e67 * cos(theta) ** 43 + 2.23890927000407e67 * cos(theta) ** 41 - 1.15103799461024e67 * cos(theta) ** 39 + 4.97039134036242e66 * cos(theta) ** 37 - 1.80593596982071e66 * cos(theta) ** 35 + 5.52174667031513e65 * cos(theta) ** 33 - 1.418726151789e65 * cos(theta) ** 31 + 3.05420213232354e64 * cos(theta) ** 29 - 5.48432581036425e63 * cos(theta) ** 27 + 8.16369109176357e62 * cos(theta) ** 25 - 9.99227795809495e61 * cos(theta) ** 23 + 9.95293828109457e60 * cos(theta) ** 21 - 7.96235062487566e59 * cos(theta) ** 19 + 5.03164063877952e58 * cos(theta) ** 17 - 2.45886858380889e57 * cos(theta) ** 15 + 9.03995802870916e55 * cos(theta) ** 13 - 2.41065547432244e54 * cos(theta) ** 11 + 4.43431608989078e52 * cos(theta) ** 9 - 5.2322313745024e50 * cos(theta) ** 7 + 3.53529146925837e48 * cos(theta) ** 5 - 1.1184091962222e46 * cos(theta) ** 3 + 1.04524223946e43 * cos(theta) ) * sin(22 * phi) ) # @torch.jit.script def Yl83_m_minus_21(theta, phi): return ( 2.84982771814728e-40 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 7.49773205068881e62 * cos(theta) ** 62 - 8.59285533809244e63 * cos(theta) ** 60 + 4.66544599644896e64 * cos(theta) ** 58 - 1.59668369195241e65 * cos(theta) ** 56 + 3.86618378240049e65 * cos(theta) ** 54 - 7.04778215619758e65 * cos(theta) ** 52 + 1.00487732678688e66 * cos(theta) ** 50 - 1.1493694914229e66 * cos(theta) ** 48 + 1.07325230656046e66 * cos(theta) ** 46 - 8.28349095667468e65 * cos(theta) ** 44 + 5.33073635715255e65 * cos(theta) ** 42 - 2.87759498652561e65 * cos(theta) ** 40 + 1.307997721148e65 * cos(theta) ** 38 - 5.01648880505754e64 * cos(theta) ** 36 + 1.62404313832798e64 * cos(theta) ** 34 - 4.43351922434062e63 * cos(theta) ** 32 + 1.01806737744118e63 * cos(theta) ** 30 - 1.9586877894158e62 * cos(theta) ** 28 + 3.13988118913983e61 * cos(theta) ** 26 - 4.16344914920623e60 * cos(theta) ** 24 + 4.52406285504299e59 * cos(theta) ** 22 - 3.98117531243783e58 * cos(theta) ** 20 + 2.79535591043307e57 * cos(theta) ** 18 - 1.53679286488056e56 * cos(theta) ** 16 + 6.4571128776494e54 * cos(theta) ** 14 - 2.00887956193537e53 * cos(theta) ** 12 + 4.43431608989078e51 * cos(theta) ** 10 - 6.54028921812799e49 * cos(theta) ** 8 + 5.89215244876396e47 * cos(theta) ** 6 - 2.7960229905555e45 * cos(theta) ** 4 + 5.2262111973e42 * cos(theta) ** 2 - 1.60559483788018e39 ) * sin(21 * phi) ) # @torch.jit.script def Yl83_m_minus_20(theta, phi): return ( 2.30677667075696e-38 * (1.0 - cos(theta) ** 2) ** 10 * ( 1.19011619852203e61 * cos(theta) ** 63 - 1.40866480952335e62 * cos(theta) ** 61 + 7.90753558720164e62 * cos(theta) ** 59 - 2.80119945956563e63 * cos(theta) ** 57 + 7.02942505890998e63 * cos(theta) ** 55 - 1.32977021815049e64 * cos(theta) ** 53 + 1.97034769958212e64 * cos(theta) ** 51 - 2.34565202331205e64 * cos(theta) ** 49 + 2.28351554587332e64 * cos(theta) ** 47 - 1.84077576814993e64 * cos(theta) ** 45 + 1.23970612957036e64 * cos(theta) ** 43 - 7.01852435737953e63 * cos(theta) ** 41 + 3.35384031063591e63 * cos(theta) ** 39 - 1.35580778515069e63 * cos(theta) ** 37 + 4.64012325236566e62 * cos(theta) ** 35 - 1.34349067404261e62 * cos(theta) ** 33 + 3.28408831432638e61 * cos(theta) ** 31 - 6.75409582557173e60 * cos(theta) ** 29 + 1.16291895894068e60 * cos(theta) ** 27 - 1.66537965968249e59 * cos(theta) ** 25 + 1.96698385001869e58 * cos(theta) ** 23 - 1.89579776782754e57 * cos(theta) ** 21 + 1.47123995285951e56 * cos(theta) ** 19 - 9.03995802870916e54 * cos(theta) ** 17 + 4.30474191843293e53 * cos(theta) ** 15 - 1.54529197071951e52 * cos(theta) ** 13 + 4.03119644535525e50 * cos(theta) ** 11 - 7.26698802014222e48 * cos(theta) ** 9 + 8.41736064109137e46 * cos(theta) ** 7 - 5.592045981111e44 * cos(theta) ** 5 + 1.7420703991e42 * cos(theta) ** 3 - 1.60559483788018e39 * cos(theta) ) * sin(20 * phi) ) # @torch.jit.script def Yl83_m_minus_19(theta, phi): return ( 1.87289810371175e-36 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.85955656019068e59 * cos(theta) ** 64 - 2.27204001536024e60 * cos(theta) ** 62 + 1.31792259786694e61 * cos(theta) ** 60 - 4.8296542406304e61 * cos(theta) ** 58 + 1.25525447480535e62 * cos(theta) ** 56 - 2.46253744101942e62 * cos(theta) ** 54 + 3.78913019150408e62 * cos(theta) ** 52 - 4.69130404662409e62 * cos(theta) ** 50 + 4.75732405390274e62 * cos(theta) ** 48 - 4.00168645249985e62 * cos(theta) ** 46 + 2.81751393084173e62 * cos(theta) ** 44 - 1.67107722794751e62 * cos(theta) ** 42 + 8.38460077658977e61 * cos(theta) ** 40 - 3.56791522408075e61 * cos(theta) ** 38 + 1.28892312565713e61 * cos(theta) ** 36 - 3.95144315894886e60 * cos(theta) ** 34 + 1.02627759822699e60 * cos(theta) ** 32 - 2.25136527519058e59 * cos(theta) ** 30 + 4.15328199621671e58 * cos(theta) ** 28 - 6.4053063833942e57 * cos(theta) ** 26 + 8.19576604174454e56 * cos(theta) ** 24 - 8.61726258103426e55 * cos(theta) ** 22 + 7.35619976429754e54 * cos(theta) ** 20 - 5.02219890483842e53 * cos(theta) ** 18 + 2.69046369902058e52 * cos(theta) ** 16 - 1.10377997908537e51 * cos(theta) ** 14 + 3.35933037112938e49 * cos(theta) ** 12 - 7.26698802014222e47 * cos(theta) ** 10 + 1.05217008013642e46 * cos(theta) ** 8 - 9.320076635185e43 * cos(theta) ** 6 + 4.35517599775e41 * cos(theta) ** 4 - 8.02797418940092e38 * cos(theta) ** 2 + 2.43567178076484e35 ) * sin(19 * phi) ) # @torch.jit.script def Yl83_m_minus_18(theta, phi): return ( 1.52500375883672e-34 * (1.0 - cos(theta) ** 2) ** 9 * ( 2.86085624644719e57 * cos(theta) ** 65 - 3.60641272279404e58 * cos(theta) ** 63 + 2.1605288489622e59 * cos(theta) ** 61 - 8.18585464513627e59 * cos(theta) ** 59 + 2.20220083299185e60 * cos(theta) ** 57 - 4.47734080185349e60 * cos(theta) ** 55 + 7.1493022481209e60 * cos(theta) ** 53 - 9.19863538553744e60 * cos(theta) ** 51 + 9.70882459980152e60 * cos(theta) ** 49 - 8.51422649468053e60 * cos(theta) ** 47 + 6.26114206853718e60 * cos(theta) ** 45 - 3.88622611150583e60 * cos(theta) ** 43 + 2.04502457965604e60 * cos(theta) ** 41 - 9.14850057456603e59 * cos(theta) ** 39 + 3.48357601528953e59 * cos(theta) ** 37 - 1.12898375969967e59 * cos(theta) ** 35 + 3.10993211583938e58 * cos(theta) ** 33 - 7.26246862964702e57 * cos(theta) ** 31 + 1.43216620559197e57 * cos(theta) ** 29 - 2.37233569755341e56 * cos(theta) ** 27 + 3.27830641669782e55 * cos(theta) ** 25 - 3.7466359047975e54 * cos(theta) ** 23 + 3.50295226871311e53 * cos(theta) ** 21 - 2.64326258149391e52 * cos(theta) ** 19 + 1.58262570530623e51 * cos(theta) ** 17 - 7.35853319390245e49 * cos(theta) ** 15 + 2.58410028548414e48 * cos(theta) ** 13 - 6.60635274558383e46 * cos(theta) ** 11 + 1.16907786681825e45 * cos(theta) ** 9 - 1.33143951931214e43 * cos(theta) ** 7 + 8.7103519955e40 * cos(theta) ** 5 - 2.67599139646697e38 * cos(theta) ** 3 + 2.43567178076484e35 * cos(theta) ) * sin(18 * phi) ) # @torch.jit.script def Yl83_m_minus_17(theta, phi): return ( 1.24509809541783e-32 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 4.33463067643514e55 * cos(theta) ** 66 - 5.63501987936569e56 * cos(theta) ** 64 + 3.48472394993903e57 * cos(theta) ** 62 - 1.36430910752271e58 * cos(theta) ** 60 + 3.79689798791698e58 * cos(theta) ** 58 - 7.99525143188123e58 * cos(theta) ** 56 + 1.32394486076313e59 * cos(theta) ** 54 - 1.76896834337258e59 * cos(theta) ** 52 + 1.9417649199603e59 * cos(theta) ** 50 - 1.77379718639178e59 * cos(theta) ** 48 + 1.36111784098634e59 * cos(theta) ** 46 - 8.83233207160417e58 * cos(theta) ** 44 + 4.86910614203819e58 * cos(theta) ** 42 - 2.28712514364151e58 * cos(theta) ** 40 + 9.16730530339351e57 * cos(theta) ** 38 - 3.13606599916576e57 * cos(theta) ** 36 + 9.14685916423347e56 * cos(theta) ** 34 - 2.26952144676469e56 * cos(theta) ** 32 + 4.77388735197323e55 * cos(theta) ** 30 - 8.47262749126216e54 * cos(theta) ** 28 + 1.26088708334531e54 * cos(theta) ** 26 - 1.56109829366563e53 * cos(theta) ** 24 + 1.59225103123323e52 * cos(theta) ** 22 - 1.32163129074695e51 * cos(theta) ** 20 + 8.79236502947903e49 * cos(theta) ** 18 - 4.59908324618903e48 * cos(theta) ** 16 + 1.84578591820296e47 * cos(theta) ** 14 - 5.50529395465319e45 * cos(theta) ** 12 + 1.16907786681825e44 * cos(theta) ** 10 - 1.66429939914018e42 * cos(theta) ** 8 + 1.45172533258333e40 * cos(theta) ** 6 - 6.68997849116744e37 * cos(theta) ** 4 + 1.21783589038242e35 * cos(theta) ** 2 - 3.65387305845311e31 ) * sin(17 * phi) ) # @torch.jit.script def Yl83_m_minus_16(theta, phi): return ( 1.01915671465815e-30 * (1.0 - cos(theta) ** 2) ** 8 * ( 6.46959802453006e53 * cos(theta) ** 67 - 8.66926135287028e54 * cos(theta) ** 65 + 5.53130785704607e55 * cos(theta) ** 63 - 2.23657230741428e56 * cos(theta) ** 61 + 6.43542031850336e56 * cos(theta) ** 59 - 1.40267568980373e57 * cos(theta) ** 57 + 2.40717247411478e57 * cos(theta) ** 55 - 3.33767611957091e57 * cos(theta) ** 53 + 3.80738219600059e57 * cos(theta) ** 51 - 3.6199942579424e57 * cos(theta) ** 49 + 2.89599540635392e57 * cos(theta) ** 47 - 1.96274046035648e57 * cos(theta) ** 45 + 1.13235026559028e57 * cos(theta) ** 43 - 5.57835400888173e56 * cos(theta) ** 41 + 2.35059110343423e56 * cos(theta) ** 39 - 8.47585405179935e55 * cos(theta) ** 37 + 2.61338833263813e55 * cos(theta) ** 35 - 6.87733771746877e54 * cos(theta) ** 33 + 1.53996366192685e54 * cos(theta) ** 31 - 2.92159568664213e53 * cos(theta) ** 29 + 4.6699521605382e52 * cos(theta) ** 27 - 6.24439317466251e51 * cos(theta) ** 25 + 6.92283057057928e50 * cos(theta) ** 23 - 6.29348233689025e49 * cos(theta) ** 21 + 4.62756054183107e48 * cos(theta) ** 19 - 2.70534308599355e47 * cos(theta) ** 17 + 1.23052394546864e46 * cos(theta) ** 15 - 4.23484150357938e44 * cos(theta) ** 13 + 1.06279806074386e43 * cos(theta) ** 11 - 1.8492215546002e41 * cos(theta) ** 9 + 2.07389333226191e39 * cos(theta) ** 7 - 1.33799569823349e37 * cos(theta) ** 5 + 4.05945296794141e34 * cos(theta) ** 3 - 3.65387305845311e31 * cos(theta) ) * sin(16 * phi) ) # @torch.jit.script def Yl83_m_minus_15(theta, phi): return ( 8.36205507851314e-29 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 9.51411474195598e51 * cos(theta) ** 68 - 1.31352444740459e53 * cos(theta) ** 66 + 8.64266852663449e53 * cos(theta) ** 64 - 3.60737468937787e54 * cos(theta) ** 62 + 1.07257005308389e55 * cos(theta) ** 60 - 2.41840636173056e55 * cos(theta) ** 58 + 4.29852227520496e55 * cos(theta) ** 56 - 6.1808817029091e55 * cos(theta) ** 54 + 7.32188883846268e55 * cos(theta) ** 52 - 7.2399885158848e55 * cos(theta) ** 50 + 6.03332376323733e55 * cos(theta) ** 48 - 4.26682708773148e55 * cos(theta) ** 46 + 2.57352333088699e55 * cos(theta) ** 44 - 1.32817952592422e55 * cos(theta) ** 42 + 5.87647775858558e54 * cos(theta) ** 40 - 2.23048790836825e54 * cos(theta) ** 38 + 7.25941203510592e53 * cos(theta) ** 36 - 2.02274638749081e53 * cos(theta) ** 34 + 4.8123864435214e52 * cos(theta) ** 32 - 9.73865228880708e51 * cos(theta) ** 30 + 1.66784005733507e51 * cos(theta) ** 28 - 2.4016896825625e50 * cos(theta) ** 26 + 2.88451273774137e49 * cos(theta) ** 24 - 2.86067378949557e48 * cos(theta) ** 22 + 2.31378027091553e47 * cos(theta) ** 20 - 1.50296838110753e46 * cos(theta) ** 18 + 7.69077465917898e44 * cos(theta) ** 16 - 3.02488678827099e43 * cos(theta) ** 14 + 8.85665050619883e41 * cos(theta) ** 12 - 1.8492215546002e40 * cos(theta) ** 10 + 2.59236666532738e38 * cos(theta) ** 8 - 2.22999283038915e36 * cos(theta) ** 6 + 1.01486324198535e34 * cos(theta) ** 4 - 1.82693652922656e31 * cos(theta) ** 2 + 5.4276189222417e27 ) * sin(15 * phi) ) # @torch.jit.script def Yl83_m_minus_14(theta, phi): return ( 6.87623336027961e-27 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.37885720897913e50 * cos(theta) ** 69 - 1.9604842498576e51 * cos(theta) ** 67 + 1.32964131178992e52 * cos(theta) ** 65 - 5.72599157044107e52 * cos(theta) ** 63 + 1.75831156243261e53 * cos(theta) ** 61 - 4.09899383344163e53 * cos(theta) ** 59 + 7.54126714948239e53 * cos(theta) ** 57 - 1.1237966732562e54 * cos(theta) ** 55 + 1.3814884600873e54 * cos(theta) ** 53 - 1.41960559134996e54 * cos(theta) ** 51 + 1.23129056392599e54 * cos(theta) ** 49 - 9.07835550581166e53 * cos(theta) ** 47 + 5.71894073530443e53 * cos(theta) ** 45 - 3.08878959517261e53 * cos(theta) ** 43 + 1.43328725819161e53 * cos(theta) ** 41 - 5.71919976504679e52 * cos(theta) ** 39 + 1.96200325273133e52 * cos(theta) ** 37 - 5.7792753928309e51 * cos(theta) ** 35 + 1.45829892227921e51 * cos(theta) ** 33 - 3.14150073832487e50 * cos(theta) ** 31 + 5.75117261150025e49 * cos(theta) ** 29 - 8.89514697245371e48 * cos(theta) ** 27 + 1.15380509509655e48 * cos(theta) ** 25 - 1.24377121282416e47 * cos(theta) ** 23 + 1.1018001290074e46 * cos(theta) ** 21 - 7.91035990056593e44 * cos(theta) ** 19 + 4.52398509363469e43 * cos(theta) ** 17 - 2.01659119218066e42 * cos(theta) ** 15 + 6.81280808169141e40 * cos(theta) ** 13 - 1.681110504182e39 * cos(theta) ** 11 + 2.88040740591931e37 * cos(theta) ** 9 - 3.18570404341306e35 * cos(theta) ** 7 + 2.0297264839707e33 * cos(theta) ** 5 - 6.08978843075518e30 * cos(theta) ** 3 + 5.4276189222417e27 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl83_m_minus_13(theta, phi): return ( 5.66611642730628e-25 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.96979601282732e48 * cos(theta) ** 70 - 2.88306507331999e49 * cos(theta) ** 68 + 2.01460804816655e50 * cos(theta) ** 66 - 8.94686182881417e50 * cos(theta) ** 64 + 2.83598639102034e51 * cos(theta) ** 62 - 6.83165638906938e51 * cos(theta) ** 60 + 1.30021847404869e52 * cos(theta) ** 58 - 2.00677977367179e52 * cos(theta) ** 56 + 2.55831196312463e52 * cos(theta) ** 54 - 2.73001075259608e52 * cos(theta) ** 52 + 2.46258112785197e52 * cos(theta) ** 50 - 1.89132406371076e52 * cos(theta) ** 48 + 1.24324798593575e52 * cos(theta) ** 46 - 7.01997635266502e51 * cos(theta) ** 44 + 3.41258870998001e51 * cos(theta) ** 42 - 1.4297999412617e51 * cos(theta) ** 40 + 5.16316645455613e50 * cos(theta) ** 38 - 1.60535427578636e50 * cos(theta) ** 36 + 4.2891144772918e49 * cos(theta) ** 34 - 9.81718980726521e48 * cos(theta) ** 32 + 1.91705753716675e48 * cos(theta) ** 30 - 3.17683820444776e47 * cos(theta) ** 28 + 4.43771190421749e46 * cos(theta) ** 26 - 5.182380053434e45 * cos(theta) ** 24 + 5.00818240457908e44 * cos(theta) ** 22 - 3.95517995028296e43 * cos(theta) ** 20 + 2.51332505201927e42 * cos(theta) ** 18 - 1.26036949511291e41 * cos(theta) ** 16 + 4.86629148692243e39 * cos(theta) ** 14 - 1.40092542015167e38 * cos(theta) ** 12 + 2.88040740591931e36 * cos(theta) ** 10 - 3.98213005426633e34 * cos(theta) ** 8 + 3.38287747328451e32 * cos(theta) ** 6 - 1.5224471076888e30 * cos(theta) ** 4 + 2.71380946112085e27 * cos(theta) ** 2 - 7.99354774998777e23 ) * sin(13 * phi) ) # @torch.jit.script def Yl83_m_minus_12(theta, phi): return ( 4.67789301402734e-23 * (1.0 - cos(theta) ** 2) ** 6 * ( 2.77436058144694e46 * cos(theta) ** 71 - 4.17835517872463e47 * cos(theta) ** 69 + 3.00687768383067e48 * cos(theta) ** 67 - 1.37644028135603e49 * cos(theta) ** 65 + 4.50156570003229e49 * cos(theta) ** 63 - 1.11994367033924e50 * cos(theta) ** 61 + 2.20376012550625e50 * cos(theta) ** 59 - 3.52066626959962e50 * cos(theta) ** 57 + 4.65147629659023e50 * cos(theta) ** 55 - 5.15096368414354e50 * cos(theta) ** 53 + 4.82859044676857e50 * cos(theta) ** 51 - 3.85984502798115e50 * cos(theta) ** 49 + 2.64520848071435e50 * cos(theta) ** 47 - 1.55999474503667e50 * cos(theta) ** 45 + 7.93625281390701e49 * cos(theta) ** 43 - 3.48731692990658e49 * cos(theta) ** 41 + 1.32388883450157e49 * cos(theta) ** 39 - 4.33879533996314e48 * cos(theta) ** 37 + 1.22546127922623e48 * cos(theta) ** 35 - 2.97490600220158e47 * cos(theta) ** 33 + 6.18405657150564e46 * cos(theta) ** 31 - 1.09546144980957e46 * cos(theta) ** 29 + 1.64359700156203e45 * cos(theta) ** 27 - 2.0729520213736e44 * cos(theta) ** 25 + 2.17747061068656e43 * cos(theta) ** 23 - 1.88341902394427e42 * cos(theta) ** 21 + 1.32280265895751e41 * cos(theta) ** 19 - 7.41393820654653e39 * cos(theta) ** 17 + 3.24419432461496e38 * cos(theta) ** 15 - 1.0776349385782e37 * cos(theta) ** 13 + 2.61855218719938e35 * cos(theta) ** 11 - 4.42458894918481e33 * cos(theta) ** 9 + 4.83268210469215e31 * cos(theta) ** 7 - 3.04489421537759e29 * cos(theta) ** 5 + 9.04603153706949e26 * cos(theta) ** 3 - 7.99354774998777e23 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl83_m_minus_11(theta, phi): return ( 3.8688183217449e-21 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 3.85327858534297e44 * cos(theta) ** 72 - 5.96907882674947e45 * cos(theta) ** 70 + 4.4218789468098e46 * cos(theta) ** 68 - 2.08551557781216e47 * cos(theta) ** 66 + 7.03369640630045e47 * cos(theta) ** 64 - 1.80636075861168e48 * cos(theta) ** 62 + 3.67293354251042e48 * cos(theta) ** 60 - 6.07011425793038e48 * cos(theta) ** 58 + 8.30620767248255e48 * cos(theta) ** 56 - 9.53882163730286e48 * cos(theta) ** 54 + 9.28575085917033e48 * cos(theta) ** 52 - 7.7196900559623e48 * cos(theta) ** 50 + 5.51085100148824e48 * cos(theta) ** 48 - 3.39129292399276e48 * cos(theta) ** 46 + 1.8036938213425e48 * cos(theta) ** 44 - 8.30313554739662e47 * cos(theta) ** 42 + 3.30972208625393e47 * cos(theta) ** 40 - 1.14178824735872e47 * cos(theta) ** 38 + 3.40405910896175e46 * cos(theta) ** 36 - 8.74972353588699e45 * cos(theta) ** 34 + 1.93251767859551e45 * cos(theta) ** 32 - 3.6515381660319e44 * cos(theta) ** 30 + 5.86998929129297e43 * cos(theta) ** 28 - 7.97289238989847e42 * cos(theta) ** 26 + 9.07279421119398e41 * cos(theta) ** 24 - 8.56099556338304e40 * cos(theta) ** 22 + 6.61401329478757e39 * cos(theta) ** 20 - 4.11885455919252e38 * cos(theta) ** 18 + 2.02762145288435e37 * cos(theta) ** 16 - 7.69739241841575e35 * cos(theta) ** 14 + 2.18212682266615e34 * cos(theta) ** 12 - 4.42458894918481e32 * cos(theta) ** 10 + 6.04085263086519e30 * cos(theta) ** 8 - 5.07482369229599e28 * cos(theta) ** 6 + 2.26150788426737e26 * cos(theta) ** 4 - 3.99677387499389e23 * cos(theta) ** 2 + 1.16864733186956e20 ) * sin(11 * phi) ) # @torch.jit.script def Yl83_m_minus_10(theta, phi): return ( 3.20482037294078e-19 * (1.0 - cos(theta) ** 2) ** 5 * ( 5.27846381553831e42 * cos(theta) ** 73 - 8.40715327711193e43 * cos(theta) ** 71 + 6.40852021276783e44 * cos(theta) ** 69 - 3.11270981763009e45 * cos(theta) ** 67 + 1.08210713943084e46 * cos(theta) ** 65 - 2.86723929938362e46 * cos(theta) ** 63 + 6.02120252870561e46 * cos(theta) ** 61 - 1.02883292507295e47 * cos(theta) ** 59 + 1.45722941622501e47 * cos(theta) ** 57 - 1.73433120678234e47 * cos(theta) ** 55 + 1.7520284639944e47 * cos(theta) ** 53 - 1.51366471685535e47 * cos(theta) ** 51 + 1.12466346969148e47 * cos(theta) ** 49 - 7.21551685955907e46 * cos(theta) ** 47 + 4.00820849187223e46 * cos(theta) ** 45 - 1.93096175520852e46 * cos(theta) ** 43 + 8.07249289330227e45 * cos(theta) ** 41 - 2.92766217271467e45 * cos(theta) ** 39 + 9.20015975395067e44 * cos(theta) ** 37 - 2.49992101025343e44 * cos(theta) ** 35 + 5.85611417756216e43 * cos(theta) ** 33 - 1.17791553742965e43 * cos(theta) ** 31 + 2.02413423837689e42 * cos(theta) ** 29 - 2.9529231073698e41 * cos(theta) ** 27 + 3.62911768447759e40 * cos(theta) ** 25 - 3.72217198407958e39 * cos(theta) ** 23 + 3.14953014037503e38 * cos(theta) ** 21 - 2.16781818904869e37 * cos(theta) ** 19 + 1.19271850169668e36 * cos(theta) ** 17 - 5.1315949456105e34 * cos(theta) ** 15 + 1.67855909435857e33 * cos(theta) ** 13 - 4.02235359016801e31 * cos(theta) ** 11 + 6.7120584787391e29 * cos(theta) ** 9 - 7.24974813185141e27 * cos(theta) ** 7 + 4.52301576853475e25 * cos(theta) ** 5 - 1.3322579583313e23 * cos(theta) ** 3 + 1.16864733186956e20 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl83_m_minus_9(theta, phi): return ( 2.65864913578723e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 7.13305921018691e40 * cos(theta) ** 74 - 1.16766017737666e42 * cos(theta) ** 72 + 9.15502887538262e42 * cos(theta) ** 70 - 4.57751443769131e43 * cos(theta) ** 68 + 1.63955627186491e44 * cos(theta) ** 66 - 4.48006140528691e44 * cos(theta) ** 64 + 9.71161698178323e44 * cos(theta) ** 62 - 1.71472154178824e45 * cos(theta) ** 60 + 2.51246451073278e45 * cos(theta) ** 58 - 3.09702001211132e45 * cos(theta) ** 56 + 3.24449715554519e45 * cos(theta) ** 54 - 2.91089368626029e45 * cos(theta) ** 52 + 2.24932693938295e45 * cos(theta) ** 50 - 1.50323267907481e45 * cos(theta) ** 48 + 8.71349672146136e44 * cos(theta) ** 46 - 4.38854944365572e44 * cos(theta) ** 44 + 1.92202211745292e44 * cos(theta) ** 42 - 7.31915543178667e43 * cos(theta) ** 40 + 2.42109467209228e43 * cos(theta) ** 38 - 6.94422502848174e42 * cos(theta) ** 36 + 1.7223865228124e42 * cos(theta) ** 34 - 3.68098605446764e41 * cos(theta) ** 32 + 6.74711412792295e40 * cos(theta) ** 30 - 1.05461539548921e40 * cos(theta) ** 28 + 1.39581449402984e39 * cos(theta) ** 26 - 1.55090499336649e38 * cos(theta) ** 24 + 1.43160460926138e37 * cos(theta) ** 22 - 1.08390909452435e36 * cos(theta) ** 20 + 6.62621389831486e34 * cos(theta) ** 18 - 3.20724684100656e33 * cos(theta) ** 16 + 1.1989707816847e32 * cos(theta) ** 14 - 3.35196132514001e30 * cos(theta) ** 12 + 6.7120584787391e28 * cos(theta) ** 10 - 9.06218516481426e26 * cos(theta) ** 8 + 7.53835961422458e24 * cos(theta) ** 6 - 3.33064489582824e22 * cos(theta) ** 4 + 5.84323665934779e19 * cos(theta) ** 2 - 1.69812166793019e16 ) * sin(9 * phi) ) # @torch.jit.script def Yl83_m_minus_8(theta, phi): return ( 2.20843983544567e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 9.51074561358254e38 * cos(theta) ** 75 - 1.59953448955706e40 * cos(theta) ** 73 + 1.28944068667361e41 * cos(theta) ** 71 - 6.6340788952048e41 * cos(theta) ** 69 + 2.4470989132312e42 * cos(theta) ** 67 - 6.89240216197986e42 * cos(theta) ** 65 + 1.54152650504496e43 * cos(theta) ** 63 - 2.81101892096434e43 * cos(theta) ** 61 + 4.25841442497081e43 * cos(theta) ** 59 - 5.43336844230056e43 * cos(theta) ** 57 + 5.89908573735489e43 * cos(theta) ** 55 - 5.49225223822697e43 * cos(theta) ** 53 + 4.41044497918226e43 * cos(theta) ** 51 - 3.06782179403021e43 * cos(theta) ** 49 + 1.85393547265135e43 * cos(theta) ** 47 - 9.75233209701271e42 * cos(theta) ** 45 + 4.46981887779749e42 * cos(theta) ** 43 - 1.78515986141138e42 * cos(theta) ** 41 + 6.20793505664688e41 * cos(theta) ** 39 - 1.87681757526534e41 * cos(theta) ** 37 + 4.92110435089257e40 * cos(theta) ** 35 - 1.11545031953565e40 * cos(theta) ** 33 + 2.17648842836224e39 * cos(theta) ** 31 - 3.63660481203178e38 * cos(theta) ** 29 + 5.16968331122164e37 * cos(theta) ** 27 - 6.20361997346597e36 * cos(theta) ** 25 + 6.22436786635382e35 * cos(theta) ** 23 - 5.16147187868737e34 * cos(theta) ** 21 + 3.48748099911309e33 * cos(theta) ** 19 - 1.88661578882739e32 * cos(theta) ** 17 + 7.99313854456464e30 * cos(theta) ** 15 - 2.57843178856924e29 * cos(theta) ** 13 + 6.10187134430827e27 * cos(theta) ** 11 - 1.00690946275714e26 * cos(theta) ** 9 + 1.0769085163178e24 * cos(theta) ** 7 - 6.66128979165648e21 * cos(theta) ** 5 + 1.94774555311593e19 * cos(theta) ** 3 - 1.69812166793019e16 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl83_m_minus_7(theta, phi): return ( 1.83659359143261e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.25141389652402e37 * cos(theta) ** 76 - 2.16153309399603e38 * cos(theta) ** 74 + 1.79088984260223e39 * cos(theta) ** 72 - 9.47725556457828e39 * cos(theta) ** 70 + 3.59867487239883e40 * cos(theta) ** 68 - 1.04430335787574e41 * cos(theta) ** 66 + 2.40863516413275e41 * cos(theta) ** 64 - 4.53390148542635e41 * cos(theta) ** 62 + 7.09735737495134e41 * cos(theta) ** 60 - 9.36787662465613e41 * cos(theta) ** 58 + 1.0534081673848e42 * cos(theta) ** 56 - 1.01708374781981e42 * cos(theta) ** 54 + 8.48162495996589e41 * cos(theta) ** 52 - 6.13564358806043e41 * cos(theta) ** 50 + 3.86236556802365e41 * cos(theta) ** 48 - 2.12007219500276e41 * cos(theta) ** 46 + 1.01586792677216e41 * cos(theta) ** 44 - 4.25038062240805e40 * cos(theta) ** 42 + 1.55198376416172e40 * cos(theta) ** 40 - 4.9389936191193e39 * cos(theta) ** 38 + 1.36697343080349e39 * cos(theta) ** 36 - 3.28073623392838e38 * cos(theta) ** 34 + 6.80152633863201e37 * cos(theta) ** 32 - 1.21220160401059e37 * cos(theta) ** 30 + 1.84631546829344e36 * cos(theta) ** 28 - 2.3860076821023e35 * cos(theta) ** 26 + 2.59348661098076e34 * cos(theta) ** 24 - 2.34612358122153e33 * cos(theta) ** 22 + 1.74374049955654e32 * cos(theta) ** 20 - 1.04811988268188e31 * cos(theta) ** 18 + 4.9957115903529e29 * cos(theta) ** 16 - 1.84173699183517e28 * cos(theta) ** 14 + 5.08489278692356e26 * cos(theta) ** 12 - 1.00690946275714e25 * cos(theta) ** 10 + 1.34613564539725e23 * cos(theta) ** 8 - 1.11021496527608e21 * cos(theta) ** 6 + 4.86936388278982e18 * cos(theta) ** 4 - 8.49060833965095e15 * cos(theta) ** 2 + 2455352324942.44 ) * sin(7 * phi) ) # @torch.jit.script def Yl83_m_minus_6(theta, phi): return ( 1.52890211652784e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.6252128526286e35 * cos(theta) ** 77 - 2.88204412532804e36 * cos(theta) ** 75 + 2.45327375698936e37 * cos(theta) ** 73 - 1.33482472740539e38 * cos(theta) ** 71 + 5.21547082956352e38 * cos(theta) ** 69 - 1.55866172817274e39 * cos(theta) ** 67 + 3.70559256020423e39 * cos(theta) ** 65 - 7.19666902448627e39 * cos(theta) ** 63 + 1.16350120900842e40 * cos(theta) ** 61 - 1.58777569909426e40 * cos(theta) ** 59 + 1.84808450418386e40 * cos(theta) ** 57 - 1.8492431778542e40 * cos(theta) ** 55 + 1.60030659621998e40 * cos(theta) ** 53 - 1.20306737020793e40 * cos(theta) ** 51 + 7.88237871025235e39 * cos(theta) ** 49 - 4.5107919042612e39 * cos(theta) ** 47 + 2.25748428171591e39 * cos(theta) ** 45 - 9.88460609862338e38 * cos(theta) ** 43 + 3.78532625405297e38 * cos(theta) ** 41 - 1.266408620287e38 * cos(theta) ** 39 + 3.69452278595538e37 * cos(theta) ** 37 - 9.37353209693823e36 * cos(theta) ** 35 + 2.06106858746425e36 * cos(theta) ** 33 - 3.91032775487288e35 * cos(theta) ** 31 + 6.36660506308084e34 * cos(theta) ** 29 - 8.83706548926776e33 * cos(theta) ** 27 + 1.0373946443923e33 * cos(theta) ** 25 - 1.02005373096588e32 * cos(theta) ** 23 + 8.30352618836449e30 * cos(theta) ** 21 - 5.5164204351678e29 * cos(theta) ** 19 + 2.93865387667818e28 * cos(theta) ** 17 - 1.22782466122345e27 * cos(theta) ** 15 + 3.9114559899412e25 * cos(theta) ** 13 - 9.15372238870127e23 * cos(theta) ** 11 + 1.49570627266361e22 * cos(theta) ** 9 - 1.58602137896583e20 * cos(theta) ** 7 + 9.73872776557964e17 * cos(theta) ** 5 - 2.83020277988365e15 * cos(theta) ** 3 + 2455352324942.44 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl83_m_minus_5(theta, phi): return ( 1.27386083839294e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 2.08360622131871e33 * cos(theta) ** 78 - 3.79216332280006e34 * cos(theta) ** 76 + 3.31523480674238e35 * cos(theta) ** 74 - 1.85392323250749e36 * cos(theta) ** 72 + 7.45067261366217e36 * cos(theta) ** 70 - 2.29214960025403e37 * cos(theta) ** 68 + 5.61453418212761e37 * cos(theta) ** 66 - 1.12447953507598e38 * cos(theta) ** 64 + 1.87661485323938e38 * cos(theta) ** 62 - 2.64629283182377e38 * cos(theta) ** 60 + 3.18635259342045e38 * cos(theta) ** 58 - 3.30221996045392e38 * cos(theta) ** 56 + 2.9635307337407e38 * cos(theta) ** 54 - 2.31359109655371e38 * cos(theta) ** 52 + 1.57647574205047e38 * cos(theta) ** 50 - 9.3974831338775e37 * cos(theta) ** 48 + 4.90757452546936e37 * cos(theta) ** 46 - 2.24650138605077e37 * cos(theta) ** 44 + 9.01268155726899e36 * cos(theta) ** 42 - 3.1660215507175e36 * cos(theta) ** 40 + 9.72242838409312e35 * cos(theta) ** 38 - 2.60375891581618e35 * cos(theta) ** 36 + 6.06196643371837e34 * cos(theta) ** 34 - 1.22197742339777e34 * cos(theta) ** 32 + 2.12220168769361e33 * cos(theta) ** 30 - 3.15609481759563e32 * cos(theta) ** 28 + 3.98997940150886e31 * cos(theta) ** 26 - 4.25022387902451e30 * cos(theta) ** 24 + 3.77433008562022e29 * cos(theta) ** 22 - 2.7582102175839e28 * cos(theta) ** 20 + 1.63258548704343e27 * cos(theta) ** 18 - 7.67390413264654e25 * cos(theta) ** 16 + 2.79389713567228e24 * cos(theta) ** 14 - 7.6281019905844e22 * cos(theta) ** 12 + 1.49570627266361e21 * cos(theta) ** 10 - 1.98252672370728e19 * cos(theta) ** 8 + 1.62312129426327e17 * cos(theta) ** 6 - 707550694970913.0 * cos(theta) ** 4 + 1227676162471.22 * cos(theta) ** 2 - 353695235.514612 ) * sin(5 * phi) ) # @torch.jit.script def Yl83_m_minus_4(theta, phi): return ( 1.06212802525071e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 2.63747622951736e31 * cos(theta) ** 79 - 4.92488743220786e32 * cos(theta) ** 77 + 4.42031307565651e33 * cos(theta) ** 75 - 2.53962086644861e34 * cos(theta) ** 73 + 1.0493905089665e35 * cos(theta) ** 71 - 3.32195594239715e35 * cos(theta) ** 69 + 8.37990176436957e35 * cos(theta) ** 67 - 1.72996851550151e36 * cos(theta) ** 65 + 2.97875373530061e36 * cos(theta) ** 63 - 4.3381849702029e36 * cos(theta) ** 61 + 5.40059761596687e36 * cos(theta) ** 59 - 5.79336835167355e36 * cos(theta) ** 57 + 5.38823769771037e36 * cos(theta) ** 55 - 4.36526621991265e36 * cos(theta) ** 53 + 3.09112890598131e36 * cos(theta) ** 51 - 1.91785370079133e36 * cos(theta) ** 49 + 1.04416479265306e36 * cos(theta) ** 47 - 4.99222530233504e35 * cos(theta) ** 45 + 2.09597245517883e35 * cos(theta) ** 43 - 7.72200378223781e34 * cos(theta) ** 41 + 2.49293035489567e34 * cos(theta) ** 39 - 7.03718625896264e33 * cos(theta) ** 37 + 1.73199040963382e33 * cos(theta) ** 35 - 3.70296188908416e32 * cos(theta) ** 33 + 6.84581189578585e31 * cos(theta) ** 31 - 1.0883085577916e31 * cos(theta) ** 29 + 1.47777014870698e30 * cos(theta) ** 27 - 1.7000895516098e29 * cos(theta) ** 25 + 1.64101308070444e28 * cos(theta) ** 23 - 1.31343343694472e27 * cos(theta) ** 21 + 8.59255519496543e25 * cos(theta) ** 19 - 4.51406125449797e24 * cos(theta) ** 17 + 1.86259809044819e23 * cos(theta) ** 15 - 5.867770761988e21 * cos(theta) ** 13 + 1.35973297514873e20 * cos(theta) ** 11 - 2.20280747078587e18 * cos(theta) ** 9 + 2.31874470609039e16 * cos(theta) ** 7 - 141510138994183.0 * cos(theta) ** 5 + 409225387490.406 * cos(theta) ** 3 - 353695235.514612 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl83_m_minus_3(theta, phi): return ( 8.86097452681129e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 3.2968452868967e29 * cos(theta) ** 80 - 6.31395824642034e30 * cos(theta) ** 78 + 5.81620141533751e31 * cos(theta) ** 76 - 3.43192008979542e32 * cos(theta) ** 74 + 1.45748681800903e33 * cos(theta) ** 72 - 4.74565134628164e33 * cos(theta) ** 70 + 1.23233849476023e34 * cos(theta) ** 68 - 2.62116441742652e34 * cos(theta) ** 66 + 4.6543027114072e34 * cos(theta) ** 64 - 6.99707253258532e34 * cos(theta) ** 62 + 9.00099602661145e34 * cos(theta) ** 60 - 9.98856612357509e34 * cos(theta) ** 58 + 9.62185303162565e34 * cos(theta) ** 56 - 8.08382633317158e34 * cos(theta) ** 54 + 5.94447866534868e34 * cos(theta) ** 52 - 3.83570740158265e34 * cos(theta) ** 50 + 2.1753433180272e34 * cos(theta) ** 48 - 1.08526637007284e34 * cos(theta) ** 46 + 4.76357376177008e33 * cos(theta) ** 44 - 1.83857232910424e33 * cos(theta) ** 42 + 6.23232588723918e32 * cos(theta) ** 40 - 1.85189112077964e32 * cos(theta) ** 38 + 4.81108447120505e31 * cos(theta) ** 36 - 1.08910643796593e31 * cos(theta) ** 34 + 2.13931621743308e30 * cos(theta) ** 32 - 3.62769519263865e29 * cos(theta) ** 30 + 5.27775053109637e28 * cos(theta) ** 28 - 6.53880596773002e27 * cos(theta) ** 26 + 6.83755450293519e26 * cos(theta) ** 24 - 5.97015198611234e25 * cos(theta) ** 22 + 4.29627759748271e24 * cos(theta) ** 20 - 2.50781180805443e23 * cos(theta) ** 18 + 1.16412380653012e22 * cos(theta) ** 16 - 4.19126482999143e20 * cos(theta) ** 14 + 1.13311081262394e19 * cos(theta) ** 12 - 2.20280747078587e17 * cos(theta) ** 10 + 2.89843088261299e15 * cos(theta) ** 8 - 23585023165697.1 * cos(theta) ** 6 + 102306346872.602 * cos(theta) ** 4 - 176847617.757306 * cos(theta) ** 2 + 50818.2809647432 ) * sin(3 * phi) ) # @torch.jit.script def Yl83_m_minus_2(theta, phi): return ( 0.000739559675339581 * (1.0 - cos(theta) ** 2) * ( 4.07017936653913e27 * cos(theta) ** 81 - 7.99235221065866e28 * cos(theta) ** 79 + 7.55350833160715e29 * cos(theta) ** 77 - 4.57589345306057e30 * cos(theta) ** 75 + 1.99655728494388e31 * cos(theta) ** 73 - 6.68401598067836e31 * cos(theta) ** 71 + 1.78599781849309e32 * cos(theta) ** 69 - 3.91218569765153e32 * cos(theta) ** 67 + 7.16046570985723e32 * cos(theta) ** 65 - 1.1106464337437e33 * cos(theta) ** 63 + 1.47557311911663e33 * cos(theta) ** 61 - 1.69297730908052e33 * cos(theta) ** 59 + 1.68804439151327e33 * cos(theta) ** 57 - 1.4697866060312e33 * cos(theta) ** 55 + 1.121599748179e33 * cos(theta) ** 53 - 7.52099490506402e32 * cos(theta) ** 51 + 4.43947615923918e32 * cos(theta) ** 49 - 2.30907738313369e32 * cos(theta) ** 47 + 1.05857194706002e32 * cos(theta) ** 45 - 4.275749602568e31 * cos(theta) ** 43 + 1.52007948469248e31 * cos(theta) ** 41 - 4.74843877122985e30 * cos(theta) ** 39 + 1.30029310032569e30 * cos(theta) ** 37 - 3.11173267990266e29 * cos(theta) ** 35 + 6.48277641646387e28 * cos(theta) ** 33 - 1.17022425568989e28 * cos(theta) ** 31 + 1.81991397624013e27 * cos(theta) ** 29 - 2.42177998804815e26 * cos(theta) ** 27 + 2.73502180117407e25 * cos(theta) ** 25 - 2.59571825483145e24 * cos(theta) ** 23 + 2.04584647499177e23 * cos(theta) ** 21 - 1.31990095160759e22 * cos(theta) ** 19 + 6.84778709723599e20 * cos(theta) ** 17 - 2.79417655332762e19 * cos(theta) ** 15 + 8.71623702018419e17 * cos(theta) ** 13 - 2.00255224616897e16 * cos(theta) ** 11 + 322047875845888.0 * cos(theta) ** 9 - 3369289023671.01 * cos(theta) ** 7 + 20461269374.5203 * cos(theta) ** 5 - 58949205.9191021 * cos(theta) ** 3 + 50818.2809647432 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl83_m_minus_1(theta, phi): return ( 0.0617432679594873 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 4.96363337382821e25 * cos(theta) ** 82 - 9.99044026332332e26 * cos(theta) ** 80 + 9.68398504052199e27 * cos(theta) ** 78 - 6.02091243823759e28 * cos(theta) ** 76 + 2.6980503850593e29 * cos(theta) ** 74 - 9.28335552871995e29 * cos(theta) ** 72 + 2.55142545499013e30 * cos(theta) ** 70 - 5.75321426125225e30 * cos(theta) ** 68 + 1.08491904694806e31 * cos(theta) ** 66 - 1.73538505272453e31 * cos(theta) ** 64 + 2.3799566437365e31 * cos(theta) ** 62 - 2.82162884846754e31 * cos(theta) ** 60 + 2.91042136467806e31 * cos(theta) ** 58 - 2.62461893934142e31 * cos(theta) ** 56 + 2.07703657070185e31 * cos(theta) ** 54 - 1.44634517405077e31 * cos(theta) ** 52 + 8.87895231847836e30 * cos(theta) ** 50 - 4.81057788152852e30 * cos(theta) ** 48 + 2.30124336317395e30 * cos(theta) ** 46 - 9.71761273310909e29 * cos(theta) ** 44 + 3.61923686831543e29 * cos(theta) ** 42 - 1.18710969280746e29 * cos(theta) ** 40 + 3.4218239482255e28 * cos(theta) ** 38 - 8.6437018886185e27 * cos(theta) ** 36 + 1.90669894601879e27 * cos(theta) ** 34 - 3.6569507990309e26 * cos(theta) ** 32 + 6.06637992080043e25 * cos(theta) ** 30 - 8.64921424302912e24 * cos(theta) ** 28 + 1.05193146199003e24 * cos(theta) ** 26 - 1.08154927284644e23 * cos(theta) ** 24 + 9.29930215905349e21 * cos(theta) ** 22 - 6.59950475803796e20 * cos(theta) ** 20 + 3.80432616513111e19 * cos(theta) ** 18 - 1.74636034582976e18 * cos(theta) ** 16 + 6.22588358584585e16 * cos(theta) ** 14 - 1.66879353847415e15 * cos(theta) ** 12 + 32204787584588.8 * cos(theta) ** 10 - 421161127958.877 * cos(theta) ** 8 + 3410211562.42005 * cos(theta) ** 6 - 14737301.4797755 * cos(theta) ** 4 + 25409.1404823716 * cos(theta) ** 2 - 7.29100157313388 ) * sin(phi) ) # @torch.jit.script def Yl83_m0(theta, phi): return ( 6.84896236597723e24 * cos(theta) ** 83 - 1.41254660190427e26 * cos(theta) ** 81 + 1.40388067183124e27 * cos(theta) ** 79 - 8.9551891302527e27 * cos(theta) ** 77 + 4.11995021935839e28 * cos(theta) ** 75 - 1.45641552340376e29 * cos(theta) ** 73 + 4.11554838226354e29 * cos(theta) ** 71 - 9.54914820721279e29 * cos(theta) ** 69 + 1.8544951733544e30 * cos(theta) ** 67 - 3.05763521870737e30 * cos(theta) ** 65 + 4.32644983327302e30 * cos(theta) ** 63 - 5.29752760149354e30 * cos(theta) ** 61 + 5.64946125334102e30 * cos(theta) ** 59 - 5.27344692005809e30 * cos(theta) ** 57 + 4.32498524378865e30 * cos(theta) ** 55 - 3.12535430025603e30 * cos(theta) ** 53 + 1.99386028970038e30 * cos(theta) ** 51 - 1.12435730622202e30 * cos(theta) ** 49 + 5.60748173077647e29 * cos(theta) ** 47 - 2.47314881720496e29 * cos(theta) ** 45 + 9.63943830327918e28 * cos(theta) ** 43 - 3.31596677632804e28 * cos(theta) ** 41 + 1.0048384170691e28 * cos(theta) ** 39 - 2.67547706449229e27 * cos(theta) ** 37 + 6.23903265039169e26 * cos(theta) ** 35 - 1.26913655623352e26 * cos(theta) ** 33 + 2.24115084177693e25 * cos(theta) ** 31 - 3.41571662217722e24 * cos(theta) ** 29 + 4.46197216410538e23 * cos(theta) ** 27 - 4.95461002720971e22 * cos(theta) ** 25 + 4.63047666094365e21 * cos(theta) ** 23 - 3.59911089160904e20 * cos(theta) ** 21 + 2.29312283749363e19 * cos(theta) ** 19 - 1.17648966460069e18 * cos(theta) ** 17 + 4.75349359434622e16 * cos(theta) ** 15 - 1.47015265804522e15 * cos(theta) ** 13 + 33529797464189.3 * cos(theta) ** 11 - 535931084141.358 * cos(theta) ** 9 + 5579386648.08817 * cos(theta) ** 7 - 33756012.5640598 * cos(theta) ** 5 + 97000.03610362 * cos(theta) ** 3 - 83.5007484392712 * cos(theta) ) # @torch.jit.script def Yl83_m1(theta, phi): return ( 0.0617432679594873 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 4.96363337382821e25 * cos(theta) ** 82 - 9.99044026332332e26 * cos(theta) ** 80 + 9.68398504052199e27 * cos(theta) ** 78 - 6.02091243823759e28 * cos(theta) ** 76 + 2.6980503850593e29 * cos(theta) ** 74 - 9.28335552871995e29 * cos(theta) ** 72 + 2.55142545499013e30 * cos(theta) ** 70 - 5.75321426125225e30 * cos(theta) ** 68 + 1.08491904694806e31 * cos(theta) ** 66 - 1.73538505272453e31 * cos(theta) ** 64 + 2.3799566437365e31 * cos(theta) ** 62 - 2.82162884846754e31 * cos(theta) ** 60 + 2.91042136467806e31 * cos(theta) ** 58 - 2.62461893934142e31 * cos(theta) ** 56 + 2.07703657070185e31 * cos(theta) ** 54 - 1.44634517405077e31 * cos(theta) ** 52 + 8.87895231847836e30 * cos(theta) ** 50 - 4.81057788152852e30 * cos(theta) ** 48 + 2.30124336317395e30 * cos(theta) ** 46 - 9.71761273310909e29 * cos(theta) ** 44 + 3.61923686831543e29 * cos(theta) ** 42 - 1.18710969280746e29 * cos(theta) ** 40 + 3.4218239482255e28 * cos(theta) ** 38 - 8.6437018886185e27 * cos(theta) ** 36 + 1.90669894601879e27 * cos(theta) ** 34 - 3.6569507990309e26 * cos(theta) ** 32 + 6.06637992080043e25 * cos(theta) ** 30 - 8.64921424302912e24 * cos(theta) ** 28 + 1.05193146199003e24 * cos(theta) ** 26 - 1.08154927284644e23 * cos(theta) ** 24 + 9.29930215905349e21 * cos(theta) ** 22 - 6.59950475803796e20 * cos(theta) ** 20 + 3.80432616513111e19 * cos(theta) ** 18 - 1.74636034582976e18 * cos(theta) ** 16 + 6.22588358584585e16 * cos(theta) ** 14 - 1.66879353847415e15 * cos(theta) ** 12 + 32204787584588.8 * cos(theta) ** 10 - 421161127958.877 * cos(theta) ** 8 + 3410211562.42005 * cos(theta) ** 6 - 14737301.4797755 * cos(theta) ** 4 + 25409.1404823716 * cos(theta) ** 2 - 7.29100157313388 ) * cos(phi) ) # @torch.jit.script def Yl83_m2(theta, phi): return ( 0.000739559675339581 * (1.0 - cos(theta) ** 2) * ( 4.07017936653913e27 * cos(theta) ** 81 - 7.99235221065866e28 * cos(theta) ** 79 + 7.55350833160715e29 * cos(theta) ** 77 - 4.57589345306057e30 * cos(theta) ** 75 + 1.99655728494388e31 * cos(theta) ** 73 - 6.68401598067836e31 * cos(theta) ** 71 + 1.78599781849309e32 * cos(theta) ** 69 - 3.91218569765153e32 * cos(theta) ** 67 + 7.16046570985723e32 * cos(theta) ** 65 - 1.1106464337437e33 * cos(theta) ** 63 + 1.47557311911663e33 * cos(theta) ** 61 - 1.69297730908052e33 * cos(theta) ** 59 + 1.68804439151327e33 * cos(theta) ** 57 - 1.4697866060312e33 * cos(theta) ** 55 + 1.121599748179e33 * cos(theta) ** 53 - 7.52099490506402e32 * cos(theta) ** 51 + 4.43947615923918e32 * cos(theta) ** 49 - 2.30907738313369e32 * cos(theta) ** 47 + 1.05857194706002e32 * cos(theta) ** 45 - 4.275749602568e31 * cos(theta) ** 43 + 1.52007948469248e31 * cos(theta) ** 41 - 4.74843877122985e30 * cos(theta) ** 39 + 1.30029310032569e30 * cos(theta) ** 37 - 3.11173267990266e29 * cos(theta) ** 35 + 6.48277641646387e28 * cos(theta) ** 33 - 1.17022425568989e28 * cos(theta) ** 31 + 1.81991397624013e27 * cos(theta) ** 29 - 2.42177998804815e26 * cos(theta) ** 27 + 2.73502180117407e25 * cos(theta) ** 25 - 2.59571825483145e24 * cos(theta) ** 23 + 2.04584647499177e23 * cos(theta) ** 21 - 1.31990095160759e22 * cos(theta) ** 19 + 6.84778709723599e20 * cos(theta) ** 17 - 2.79417655332762e19 * cos(theta) ** 15 + 8.71623702018419e17 * cos(theta) ** 13 - 2.00255224616897e16 * cos(theta) ** 11 + 322047875845888.0 * cos(theta) ** 9 - 3369289023671.01 * cos(theta) ** 7 + 20461269374.5203 * cos(theta) ** 5 - 58949205.9191021 * cos(theta) ** 3 + 50818.2809647432 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl83_m3(theta, phi): return ( 8.86097452681129e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 3.2968452868967e29 * cos(theta) ** 80 - 6.31395824642034e30 * cos(theta) ** 78 + 5.81620141533751e31 * cos(theta) ** 76 - 3.43192008979542e32 * cos(theta) ** 74 + 1.45748681800903e33 * cos(theta) ** 72 - 4.74565134628164e33 * cos(theta) ** 70 + 1.23233849476023e34 * cos(theta) ** 68 - 2.62116441742652e34 * cos(theta) ** 66 + 4.6543027114072e34 * cos(theta) ** 64 - 6.99707253258532e34 * cos(theta) ** 62 + 9.00099602661145e34 * cos(theta) ** 60 - 9.98856612357509e34 * cos(theta) ** 58 + 9.62185303162565e34 * cos(theta) ** 56 - 8.08382633317158e34 * cos(theta) ** 54 + 5.94447866534868e34 * cos(theta) ** 52 - 3.83570740158265e34 * cos(theta) ** 50 + 2.1753433180272e34 * cos(theta) ** 48 - 1.08526637007284e34 * cos(theta) ** 46 + 4.76357376177008e33 * cos(theta) ** 44 - 1.83857232910424e33 * cos(theta) ** 42 + 6.23232588723918e32 * cos(theta) ** 40 - 1.85189112077964e32 * cos(theta) ** 38 + 4.81108447120505e31 * cos(theta) ** 36 - 1.08910643796593e31 * cos(theta) ** 34 + 2.13931621743308e30 * cos(theta) ** 32 - 3.62769519263865e29 * cos(theta) ** 30 + 5.27775053109637e28 * cos(theta) ** 28 - 6.53880596773002e27 * cos(theta) ** 26 + 6.83755450293519e26 * cos(theta) ** 24 - 5.97015198611234e25 * cos(theta) ** 22 + 4.29627759748271e24 * cos(theta) ** 20 - 2.50781180805443e23 * cos(theta) ** 18 + 1.16412380653012e22 * cos(theta) ** 16 - 4.19126482999143e20 * cos(theta) ** 14 + 1.13311081262394e19 * cos(theta) ** 12 - 2.20280747078587e17 * cos(theta) ** 10 + 2.89843088261299e15 * cos(theta) ** 8 - 23585023165697.1 * cos(theta) ** 6 + 102306346872.602 * cos(theta) ** 4 - 176847617.757306 * cos(theta) ** 2 + 50818.2809647432 ) * cos(3 * phi) ) # @torch.jit.script def Yl83_m4(theta, phi): return ( 1.06212802525071e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 2.63747622951736e31 * cos(theta) ** 79 - 4.92488743220786e32 * cos(theta) ** 77 + 4.42031307565651e33 * cos(theta) ** 75 - 2.53962086644861e34 * cos(theta) ** 73 + 1.0493905089665e35 * cos(theta) ** 71 - 3.32195594239715e35 * cos(theta) ** 69 + 8.37990176436957e35 * cos(theta) ** 67 - 1.72996851550151e36 * cos(theta) ** 65 + 2.97875373530061e36 * cos(theta) ** 63 - 4.3381849702029e36 * cos(theta) ** 61 + 5.40059761596687e36 * cos(theta) ** 59 - 5.79336835167355e36 * cos(theta) ** 57 + 5.38823769771037e36 * cos(theta) ** 55 - 4.36526621991265e36 * cos(theta) ** 53 + 3.09112890598131e36 * cos(theta) ** 51 - 1.91785370079133e36 * cos(theta) ** 49 + 1.04416479265306e36 * cos(theta) ** 47 - 4.99222530233504e35 * cos(theta) ** 45 + 2.09597245517883e35 * cos(theta) ** 43 - 7.72200378223781e34 * cos(theta) ** 41 + 2.49293035489567e34 * cos(theta) ** 39 - 7.03718625896264e33 * cos(theta) ** 37 + 1.73199040963382e33 * cos(theta) ** 35 - 3.70296188908416e32 * cos(theta) ** 33 + 6.84581189578585e31 * cos(theta) ** 31 - 1.0883085577916e31 * cos(theta) ** 29 + 1.47777014870698e30 * cos(theta) ** 27 - 1.7000895516098e29 * cos(theta) ** 25 + 1.64101308070444e28 * cos(theta) ** 23 - 1.31343343694472e27 * cos(theta) ** 21 + 8.59255519496543e25 * cos(theta) ** 19 - 4.51406125449797e24 * cos(theta) ** 17 + 1.86259809044819e23 * cos(theta) ** 15 - 5.867770761988e21 * cos(theta) ** 13 + 1.35973297514873e20 * cos(theta) ** 11 - 2.20280747078587e18 * cos(theta) ** 9 + 2.31874470609039e16 * cos(theta) ** 7 - 141510138994183.0 * cos(theta) ** 5 + 409225387490.406 * cos(theta) ** 3 - 353695235.514612 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl83_m5(theta, phi): return ( 1.27386083839294e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 2.08360622131871e33 * cos(theta) ** 78 - 3.79216332280006e34 * cos(theta) ** 76 + 3.31523480674238e35 * cos(theta) ** 74 - 1.85392323250749e36 * cos(theta) ** 72 + 7.45067261366217e36 * cos(theta) ** 70 - 2.29214960025403e37 * cos(theta) ** 68 + 5.61453418212761e37 * cos(theta) ** 66 - 1.12447953507598e38 * cos(theta) ** 64 + 1.87661485323938e38 * cos(theta) ** 62 - 2.64629283182377e38 * cos(theta) ** 60 + 3.18635259342045e38 * cos(theta) ** 58 - 3.30221996045392e38 * cos(theta) ** 56 + 2.9635307337407e38 * cos(theta) ** 54 - 2.31359109655371e38 * cos(theta) ** 52 + 1.57647574205047e38 * cos(theta) ** 50 - 9.3974831338775e37 * cos(theta) ** 48 + 4.90757452546936e37 * cos(theta) ** 46 - 2.24650138605077e37 * cos(theta) ** 44 + 9.01268155726899e36 * cos(theta) ** 42 - 3.1660215507175e36 * cos(theta) ** 40 + 9.72242838409312e35 * cos(theta) ** 38 - 2.60375891581618e35 * cos(theta) ** 36 + 6.06196643371837e34 * cos(theta) ** 34 - 1.22197742339777e34 * cos(theta) ** 32 + 2.12220168769361e33 * cos(theta) ** 30 - 3.15609481759563e32 * cos(theta) ** 28 + 3.98997940150886e31 * cos(theta) ** 26 - 4.25022387902451e30 * cos(theta) ** 24 + 3.77433008562022e29 * cos(theta) ** 22 - 2.7582102175839e28 * cos(theta) ** 20 + 1.63258548704343e27 * cos(theta) ** 18 - 7.67390413264654e25 * cos(theta) ** 16 + 2.79389713567228e24 * cos(theta) ** 14 - 7.6281019905844e22 * cos(theta) ** 12 + 1.49570627266361e21 * cos(theta) ** 10 - 1.98252672370728e19 * cos(theta) ** 8 + 1.62312129426327e17 * cos(theta) ** 6 - 707550694970913.0 * cos(theta) ** 4 + 1227676162471.22 * cos(theta) ** 2 - 353695235.514612 ) * cos(5 * phi) ) # @torch.jit.script def Yl83_m6(theta, phi): return ( 1.52890211652784e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.6252128526286e35 * cos(theta) ** 77 - 2.88204412532804e36 * cos(theta) ** 75 + 2.45327375698936e37 * cos(theta) ** 73 - 1.33482472740539e38 * cos(theta) ** 71 + 5.21547082956352e38 * cos(theta) ** 69 - 1.55866172817274e39 * cos(theta) ** 67 + 3.70559256020423e39 * cos(theta) ** 65 - 7.19666902448627e39 * cos(theta) ** 63 + 1.16350120900842e40 * cos(theta) ** 61 - 1.58777569909426e40 * cos(theta) ** 59 + 1.84808450418386e40 * cos(theta) ** 57 - 1.8492431778542e40 * cos(theta) ** 55 + 1.60030659621998e40 * cos(theta) ** 53 - 1.20306737020793e40 * cos(theta) ** 51 + 7.88237871025235e39 * cos(theta) ** 49 - 4.5107919042612e39 * cos(theta) ** 47 + 2.25748428171591e39 * cos(theta) ** 45 - 9.88460609862338e38 * cos(theta) ** 43 + 3.78532625405297e38 * cos(theta) ** 41 - 1.266408620287e38 * cos(theta) ** 39 + 3.69452278595538e37 * cos(theta) ** 37 - 9.37353209693823e36 * cos(theta) ** 35 + 2.06106858746425e36 * cos(theta) ** 33 - 3.91032775487288e35 * cos(theta) ** 31 + 6.36660506308084e34 * cos(theta) ** 29 - 8.83706548926776e33 * cos(theta) ** 27 + 1.0373946443923e33 * cos(theta) ** 25 - 1.02005373096588e32 * cos(theta) ** 23 + 8.30352618836449e30 * cos(theta) ** 21 - 5.5164204351678e29 * cos(theta) ** 19 + 2.93865387667818e28 * cos(theta) ** 17 - 1.22782466122345e27 * cos(theta) ** 15 + 3.9114559899412e25 * cos(theta) ** 13 - 9.15372238870127e23 * cos(theta) ** 11 + 1.49570627266361e22 * cos(theta) ** 9 - 1.58602137896583e20 * cos(theta) ** 7 + 9.73872776557964e17 * cos(theta) ** 5 - 2.83020277988365e15 * cos(theta) ** 3 + 2455352324942.44 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl83_m7(theta, phi): return ( 1.83659359143261e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.25141389652402e37 * cos(theta) ** 76 - 2.16153309399603e38 * cos(theta) ** 74 + 1.79088984260223e39 * cos(theta) ** 72 - 9.47725556457828e39 * cos(theta) ** 70 + 3.59867487239883e40 * cos(theta) ** 68 - 1.04430335787574e41 * cos(theta) ** 66 + 2.40863516413275e41 * cos(theta) ** 64 - 4.53390148542635e41 * cos(theta) ** 62 + 7.09735737495134e41 * cos(theta) ** 60 - 9.36787662465613e41 * cos(theta) ** 58 + 1.0534081673848e42 * cos(theta) ** 56 - 1.01708374781981e42 * cos(theta) ** 54 + 8.48162495996589e41 * cos(theta) ** 52 - 6.13564358806043e41 * cos(theta) ** 50 + 3.86236556802365e41 * cos(theta) ** 48 - 2.12007219500276e41 * cos(theta) ** 46 + 1.01586792677216e41 * cos(theta) ** 44 - 4.25038062240805e40 * cos(theta) ** 42 + 1.55198376416172e40 * cos(theta) ** 40 - 4.9389936191193e39 * cos(theta) ** 38 + 1.36697343080349e39 * cos(theta) ** 36 - 3.28073623392838e38 * cos(theta) ** 34 + 6.80152633863201e37 * cos(theta) ** 32 - 1.21220160401059e37 * cos(theta) ** 30 + 1.84631546829344e36 * cos(theta) ** 28 - 2.3860076821023e35 * cos(theta) ** 26 + 2.59348661098076e34 * cos(theta) ** 24 - 2.34612358122153e33 * cos(theta) ** 22 + 1.74374049955654e32 * cos(theta) ** 20 - 1.04811988268188e31 * cos(theta) ** 18 + 4.9957115903529e29 * cos(theta) ** 16 - 1.84173699183517e28 * cos(theta) ** 14 + 5.08489278692356e26 * cos(theta) ** 12 - 1.00690946275714e25 * cos(theta) ** 10 + 1.34613564539725e23 * cos(theta) ** 8 - 1.11021496527608e21 * cos(theta) ** 6 + 4.86936388278982e18 * cos(theta) ** 4 - 8.49060833965095e15 * cos(theta) ** 2 + 2455352324942.44 ) * cos(7 * phi) ) # @torch.jit.script def Yl83_m8(theta, phi): return ( 2.20843983544567e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 9.51074561358254e38 * cos(theta) ** 75 - 1.59953448955706e40 * cos(theta) ** 73 + 1.28944068667361e41 * cos(theta) ** 71 - 6.6340788952048e41 * cos(theta) ** 69 + 2.4470989132312e42 * cos(theta) ** 67 - 6.89240216197986e42 * cos(theta) ** 65 + 1.54152650504496e43 * cos(theta) ** 63 - 2.81101892096434e43 * cos(theta) ** 61 + 4.25841442497081e43 * cos(theta) ** 59 - 5.43336844230056e43 * cos(theta) ** 57 + 5.89908573735489e43 * cos(theta) ** 55 - 5.49225223822697e43 * cos(theta) ** 53 + 4.41044497918226e43 * cos(theta) ** 51 - 3.06782179403021e43 * cos(theta) ** 49 + 1.85393547265135e43 * cos(theta) ** 47 - 9.75233209701271e42 * cos(theta) ** 45 + 4.46981887779749e42 * cos(theta) ** 43 - 1.78515986141138e42 * cos(theta) ** 41 + 6.20793505664688e41 * cos(theta) ** 39 - 1.87681757526534e41 * cos(theta) ** 37 + 4.92110435089257e40 * cos(theta) ** 35 - 1.11545031953565e40 * cos(theta) ** 33 + 2.17648842836224e39 * cos(theta) ** 31 - 3.63660481203178e38 * cos(theta) ** 29 + 5.16968331122164e37 * cos(theta) ** 27 - 6.20361997346597e36 * cos(theta) ** 25 + 6.22436786635382e35 * cos(theta) ** 23 - 5.16147187868737e34 * cos(theta) ** 21 + 3.48748099911309e33 * cos(theta) ** 19 - 1.88661578882739e32 * cos(theta) ** 17 + 7.99313854456464e30 * cos(theta) ** 15 - 2.57843178856924e29 * cos(theta) ** 13 + 6.10187134430827e27 * cos(theta) ** 11 - 1.00690946275714e26 * cos(theta) ** 9 + 1.0769085163178e24 * cos(theta) ** 7 - 6.66128979165648e21 * cos(theta) ** 5 + 1.94774555311593e19 * cos(theta) ** 3 - 1.69812166793019e16 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl83_m9(theta, phi): return ( 2.65864913578723e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 7.13305921018691e40 * cos(theta) ** 74 - 1.16766017737666e42 * cos(theta) ** 72 + 9.15502887538262e42 * cos(theta) ** 70 - 4.57751443769131e43 * cos(theta) ** 68 + 1.63955627186491e44 * cos(theta) ** 66 - 4.48006140528691e44 * cos(theta) ** 64 + 9.71161698178323e44 * cos(theta) ** 62 - 1.71472154178824e45 * cos(theta) ** 60 + 2.51246451073278e45 * cos(theta) ** 58 - 3.09702001211132e45 * cos(theta) ** 56 + 3.24449715554519e45 * cos(theta) ** 54 - 2.91089368626029e45 * cos(theta) ** 52 + 2.24932693938295e45 * cos(theta) ** 50 - 1.50323267907481e45 * cos(theta) ** 48 + 8.71349672146136e44 * cos(theta) ** 46 - 4.38854944365572e44 * cos(theta) ** 44 + 1.92202211745292e44 * cos(theta) ** 42 - 7.31915543178667e43 * cos(theta) ** 40 + 2.42109467209228e43 * cos(theta) ** 38 - 6.94422502848174e42 * cos(theta) ** 36 + 1.7223865228124e42 * cos(theta) ** 34 - 3.68098605446764e41 * cos(theta) ** 32 + 6.74711412792295e40 * cos(theta) ** 30 - 1.05461539548921e40 * cos(theta) ** 28 + 1.39581449402984e39 * cos(theta) ** 26 - 1.55090499336649e38 * cos(theta) ** 24 + 1.43160460926138e37 * cos(theta) ** 22 - 1.08390909452435e36 * cos(theta) ** 20 + 6.62621389831486e34 * cos(theta) ** 18 - 3.20724684100656e33 * cos(theta) ** 16 + 1.1989707816847e32 * cos(theta) ** 14 - 3.35196132514001e30 * cos(theta) ** 12 + 6.7120584787391e28 * cos(theta) ** 10 - 9.06218516481426e26 * cos(theta) ** 8 + 7.53835961422458e24 * cos(theta) ** 6 - 3.33064489582824e22 * cos(theta) ** 4 + 5.84323665934779e19 * cos(theta) ** 2 - 1.69812166793019e16 ) * cos(9 * phi) ) # @torch.jit.script def Yl83_m10(theta, phi): return ( 3.20482037294078e-19 * (1.0 - cos(theta) ** 2) ** 5 * ( 5.27846381553831e42 * cos(theta) ** 73 - 8.40715327711193e43 * cos(theta) ** 71 + 6.40852021276783e44 * cos(theta) ** 69 - 3.11270981763009e45 * cos(theta) ** 67 + 1.08210713943084e46 * cos(theta) ** 65 - 2.86723929938362e46 * cos(theta) ** 63 + 6.02120252870561e46 * cos(theta) ** 61 - 1.02883292507295e47 * cos(theta) ** 59 + 1.45722941622501e47 * cos(theta) ** 57 - 1.73433120678234e47 * cos(theta) ** 55 + 1.7520284639944e47 * cos(theta) ** 53 - 1.51366471685535e47 * cos(theta) ** 51 + 1.12466346969148e47 * cos(theta) ** 49 - 7.21551685955907e46 * cos(theta) ** 47 + 4.00820849187223e46 * cos(theta) ** 45 - 1.93096175520852e46 * cos(theta) ** 43 + 8.07249289330227e45 * cos(theta) ** 41 - 2.92766217271467e45 * cos(theta) ** 39 + 9.20015975395067e44 * cos(theta) ** 37 - 2.49992101025343e44 * cos(theta) ** 35 + 5.85611417756216e43 * cos(theta) ** 33 - 1.17791553742965e43 * cos(theta) ** 31 + 2.02413423837689e42 * cos(theta) ** 29 - 2.9529231073698e41 * cos(theta) ** 27 + 3.62911768447759e40 * cos(theta) ** 25 - 3.72217198407958e39 * cos(theta) ** 23 + 3.14953014037503e38 * cos(theta) ** 21 - 2.16781818904869e37 * cos(theta) ** 19 + 1.19271850169668e36 * cos(theta) ** 17 - 5.1315949456105e34 * cos(theta) ** 15 + 1.67855909435857e33 * cos(theta) ** 13 - 4.02235359016801e31 * cos(theta) ** 11 + 6.7120584787391e29 * cos(theta) ** 9 - 7.24974813185141e27 * cos(theta) ** 7 + 4.52301576853475e25 * cos(theta) ** 5 - 1.3322579583313e23 * cos(theta) ** 3 + 1.16864733186956e20 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl83_m11(theta, phi): return ( 3.8688183217449e-21 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 3.85327858534297e44 * cos(theta) ** 72 - 5.96907882674947e45 * cos(theta) ** 70 + 4.4218789468098e46 * cos(theta) ** 68 - 2.08551557781216e47 * cos(theta) ** 66 + 7.03369640630045e47 * cos(theta) ** 64 - 1.80636075861168e48 * cos(theta) ** 62 + 3.67293354251042e48 * cos(theta) ** 60 - 6.07011425793038e48 * cos(theta) ** 58 + 8.30620767248255e48 * cos(theta) ** 56 - 9.53882163730286e48 * cos(theta) ** 54 + 9.28575085917033e48 * cos(theta) ** 52 - 7.7196900559623e48 * cos(theta) ** 50 + 5.51085100148824e48 * cos(theta) ** 48 - 3.39129292399276e48 * cos(theta) ** 46 + 1.8036938213425e48 * cos(theta) ** 44 - 8.30313554739662e47 * cos(theta) ** 42 + 3.30972208625393e47 * cos(theta) ** 40 - 1.14178824735872e47 * cos(theta) ** 38 + 3.40405910896175e46 * cos(theta) ** 36 - 8.74972353588699e45 * cos(theta) ** 34 + 1.93251767859551e45 * cos(theta) ** 32 - 3.6515381660319e44 * cos(theta) ** 30 + 5.86998929129297e43 * cos(theta) ** 28 - 7.97289238989847e42 * cos(theta) ** 26 + 9.07279421119398e41 * cos(theta) ** 24 - 8.56099556338304e40 * cos(theta) ** 22 + 6.61401329478757e39 * cos(theta) ** 20 - 4.11885455919252e38 * cos(theta) ** 18 + 2.02762145288435e37 * cos(theta) ** 16 - 7.69739241841575e35 * cos(theta) ** 14 + 2.18212682266615e34 * cos(theta) ** 12 - 4.42458894918481e32 * cos(theta) ** 10 + 6.04085263086519e30 * cos(theta) ** 8 - 5.07482369229599e28 * cos(theta) ** 6 + 2.26150788426737e26 * cos(theta) ** 4 - 3.99677387499389e23 * cos(theta) ** 2 + 1.16864733186956e20 ) * cos(11 * phi) ) # @torch.jit.script def Yl83_m12(theta, phi): return ( 4.67789301402734e-23 * (1.0 - cos(theta) ** 2) ** 6 * ( 2.77436058144694e46 * cos(theta) ** 71 - 4.17835517872463e47 * cos(theta) ** 69 + 3.00687768383067e48 * cos(theta) ** 67 - 1.37644028135603e49 * cos(theta) ** 65 + 4.50156570003229e49 * cos(theta) ** 63 - 1.11994367033924e50 * cos(theta) ** 61 + 2.20376012550625e50 * cos(theta) ** 59 - 3.52066626959962e50 * cos(theta) ** 57 + 4.65147629659023e50 * cos(theta) ** 55 - 5.15096368414354e50 * cos(theta) ** 53 + 4.82859044676857e50 * cos(theta) ** 51 - 3.85984502798115e50 * cos(theta) ** 49 + 2.64520848071435e50 * cos(theta) ** 47 - 1.55999474503667e50 * cos(theta) ** 45 + 7.93625281390701e49 * cos(theta) ** 43 - 3.48731692990658e49 * cos(theta) ** 41 + 1.32388883450157e49 * cos(theta) ** 39 - 4.33879533996314e48 * cos(theta) ** 37 + 1.22546127922623e48 * cos(theta) ** 35 - 2.97490600220158e47 * cos(theta) ** 33 + 6.18405657150564e46 * cos(theta) ** 31 - 1.09546144980957e46 * cos(theta) ** 29 + 1.64359700156203e45 * cos(theta) ** 27 - 2.0729520213736e44 * cos(theta) ** 25 + 2.17747061068656e43 * cos(theta) ** 23 - 1.88341902394427e42 * cos(theta) ** 21 + 1.32280265895751e41 * cos(theta) ** 19 - 7.41393820654653e39 * cos(theta) ** 17 + 3.24419432461496e38 * cos(theta) ** 15 - 1.0776349385782e37 * cos(theta) ** 13 + 2.61855218719938e35 * cos(theta) ** 11 - 4.42458894918481e33 * cos(theta) ** 9 + 4.83268210469215e31 * cos(theta) ** 7 - 3.04489421537759e29 * cos(theta) ** 5 + 9.04603153706949e26 * cos(theta) ** 3 - 7.99354774998777e23 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl83_m13(theta, phi): return ( 5.66611642730628e-25 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.96979601282732e48 * cos(theta) ** 70 - 2.88306507331999e49 * cos(theta) ** 68 + 2.01460804816655e50 * cos(theta) ** 66 - 8.94686182881417e50 * cos(theta) ** 64 + 2.83598639102034e51 * cos(theta) ** 62 - 6.83165638906938e51 * cos(theta) ** 60 + 1.30021847404869e52 * cos(theta) ** 58 - 2.00677977367179e52 * cos(theta) ** 56 + 2.55831196312463e52 * cos(theta) ** 54 - 2.73001075259608e52 * cos(theta) ** 52 + 2.46258112785197e52 * cos(theta) ** 50 - 1.89132406371076e52 * cos(theta) ** 48 + 1.24324798593575e52 * cos(theta) ** 46 - 7.01997635266502e51 * cos(theta) ** 44 + 3.41258870998001e51 * cos(theta) ** 42 - 1.4297999412617e51 * cos(theta) ** 40 + 5.16316645455613e50 * cos(theta) ** 38 - 1.60535427578636e50 * cos(theta) ** 36 + 4.2891144772918e49 * cos(theta) ** 34 - 9.81718980726521e48 * cos(theta) ** 32 + 1.91705753716675e48 * cos(theta) ** 30 - 3.17683820444776e47 * cos(theta) ** 28 + 4.43771190421749e46 * cos(theta) ** 26 - 5.182380053434e45 * cos(theta) ** 24 + 5.00818240457908e44 * cos(theta) ** 22 - 3.95517995028296e43 * cos(theta) ** 20 + 2.51332505201927e42 * cos(theta) ** 18 - 1.26036949511291e41 * cos(theta) ** 16 + 4.86629148692243e39 * cos(theta) ** 14 - 1.40092542015167e38 * cos(theta) ** 12 + 2.88040740591931e36 * cos(theta) ** 10 - 3.98213005426633e34 * cos(theta) ** 8 + 3.38287747328451e32 * cos(theta) ** 6 - 1.5224471076888e30 * cos(theta) ** 4 + 2.71380946112085e27 * cos(theta) ** 2 - 7.99354774998777e23 ) * cos(13 * phi) ) # @torch.jit.script def Yl83_m14(theta, phi): return ( 6.87623336027961e-27 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.37885720897913e50 * cos(theta) ** 69 - 1.9604842498576e51 * cos(theta) ** 67 + 1.32964131178992e52 * cos(theta) ** 65 - 5.72599157044107e52 * cos(theta) ** 63 + 1.75831156243261e53 * cos(theta) ** 61 - 4.09899383344163e53 * cos(theta) ** 59 + 7.54126714948239e53 * cos(theta) ** 57 - 1.1237966732562e54 * cos(theta) ** 55 + 1.3814884600873e54 * cos(theta) ** 53 - 1.41960559134996e54 * cos(theta) ** 51 + 1.23129056392599e54 * cos(theta) ** 49 - 9.07835550581166e53 * cos(theta) ** 47 + 5.71894073530443e53 * cos(theta) ** 45 - 3.08878959517261e53 * cos(theta) ** 43 + 1.43328725819161e53 * cos(theta) ** 41 - 5.71919976504679e52 * cos(theta) ** 39 + 1.96200325273133e52 * cos(theta) ** 37 - 5.7792753928309e51 * cos(theta) ** 35 + 1.45829892227921e51 * cos(theta) ** 33 - 3.14150073832487e50 * cos(theta) ** 31 + 5.75117261150025e49 * cos(theta) ** 29 - 8.89514697245371e48 * cos(theta) ** 27 + 1.15380509509655e48 * cos(theta) ** 25 - 1.24377121282416e47 * cos(theta) ** 23 + 1.1018001290074e46 * cos(theta) ** 21 - 7.91035990056593e44 * cos(theta) ** 19 + 4.52398509363469e43 * cos(theta) ** 17 - 2.01659119218066e42 * cos(theta) ** 15 + 6.81280808169141e40 * cos(theta) ** 13 - 1.681110504182e39 * cos(theta) ** 11 + 2.88040740591931e37 * cos(theta) ** 9 - 3.18570404341306e35 * cos(theta) ** 7 + 2.0297264839707e33 * cos(theta) ** 5 - 6.08978843075518e30 * cos(theta) ** 3 + 5.4276189222417e27 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl83_m15(theta, phi): return ( 8.36205507851314e-29 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 9.51411474195598e51 * cos(theta) ** 68 - 1.31352444740459e53 * cos(theta) ** 66 + 8.64266852663449e53 * cos(theta) ** 64 - 3.60737468937787e54 * cos(theta) ** 62 + 1.07257005308389e55 * cos(theta) ** 60 - 2.41840636173056e55 * cos(theta) ** 58 + 4.29852227520496e55 * cos(theta) ** 56 - 6.1808817029091e55 * cos(theta) ** 54 + 7.32188883846268e55 * cos(theta) ** 52 - 7.2399885158848e55 * cos(theta) ** 50 + 6.03332376323733e55 * cos(theta) ** 48 - 4.26682708773148e55 * cos(theta) ** 46 + 2.57352333088699e55 * cos(theta) ** 44 - 1.32817952592422e55 * cos(theta) ** 42 + 5.87647775858558e54 * cos(theta) ** 40 - 2.23048790836825e54 * cos(theta) ** 38 + 7.25941203510592e53 * cos(theta) ** 36 - 2.02274638749081e53 * cos(theta) ** 34 + 4.8123864435214e52 * cos(theta) ** 32 - 9.73865228880708e51 * cos(theta) ** 30 + 1.66784005733507e51 * cos(theta) ** 28 - 2.4016896825625e50 * cos(theta) ** 26 + 2.88451273774137e49 * cos(theta) ** 24 - 2.86067378949557e48 * cos(theta) ** 22 + 2.31378027091553e47 * cos(theta) ** 20 - 1.50296838110753e46 * cos(theta) ** 18 + 7.69077465917898e44 * cos(theta) ** 16 - 3.02488678827099e43 * cos(theta) ** 14 + 8.85665050619883e41 * cos(theta) ** 12 - 1.8492215546002e40 * cos(theta) ** 10 + 2.59236666532738e38 * cos(theta) ** 8 - 2.22999283038915e36 * cos(theta) ** 6 + 1.01486324198535e34 * cos(theta) ** 4 - 1.82693652922656e31 * cos(theta) ** 2 + 5.4276189222417e27 ) * cos(15 * phi) ) # @torch.jit.script def Yl83_m16(theta, phi): return ( 1.01915671465815e-30 * (1.0 - cos(theta) ** 2) ** 8 * ( 6.46959802453006e53 * cos(theta) ** 67 - 8.66926135287028e54 * cos(theta) ** 65 + 5.53130785704607e55 * cos(theta) ** 63 - 2.23657230741428e56 * cos(theta) ** 61 + 6.43542031850336e56 * cos(theta) ** 59 - 1.40267568980373e57 * cos(theta) ** 57 + 2.40717247411478e57 * cos(theta) ** 55 - 3.33767611957091e57 * cos(theta) ** 53 + 3.80738219600059e57 * cos(theta) ** 51 - 3.6199942579424e57 * cos(theta) ** 49 + 2.89599540635392e57 * cos(theta) ** 47 - 1.96274046035648e57 * cos(theta) ** 45 + 1.13235026559028e57 * cos(theta) ** 43 - 5.57835400888173e56 * cos(theta) ** 41 + 2.35059110343423e56 * cos(theta) ** 39 - 8.47585405179935e55 * cos(theta) ** 37 + 2.61338833263813e55 * cos(theta) ** 35 - 6.87733771746877e54 * cos(theta) ** 33 + 1.53996366192685e54 * cos(theta) ** 31 - 2.92159568664213e53 * cos(theta) ** 29 + 4.6699521605382e52 * cos(theta) ** 27 - 6.24439317466251e51 * cos(theta) ** 25 + 6.92283057057928e50 * cos(theta) ** 23 - 6.29348233689025e49 * cos(theta) ** 21 + 4.62756054183107e48 * cos(theta) ** 19 - 2.70534308599355e47 * cos(theta) ** 17 + 1.23052394546864e46 * cos(theta) ** 15 - 4.23484150357938e44 * cos(theta) ** 13 + 1.06279806074386e43 * cos(theta) ** 11 - 1.8492215546002e41 * cos(theta) ** 9 + 2.07389333226191e39 * cos(theta) ** 7 - 1.33799569823349e37 * cos(theta) ** 5 + 4.05945296794141e34 * cos(theta) ** 3 - 3.65387305845311e31 * cos(theta) ) * cos(16 * phi) ) # @torch.jit.script def Yl83_m17(theta, phi): return ( 1.24509809541783e-32 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 4.33463067643514e55 * cos(theta) ** 66 - 5.63501987936569e56 * cos(theta) ** 64 + 3.48472394993903e57 * cos(theta) ** 62 - 1.36430910752271e58 * cos(theta) ** 60 + 3.79689798791698e58 * cos(theta) ** 58 - 7.99525143188123e58 * cos(theta) ** 56 + 1.32394486076313e59 * cos(theta) ** 54 - 1.76896834337258e59 * cos(theta) ** 52 + 1.9417649199603e59 * cos(theta) ** 50 - 1.77379718639178e59 * cos(theta) ** 48 + 1.36111784098634e59 * cos(theta) ** 46 - 8.83233207160417e58 * cos(theta) ** 44 + 4.86910614203819e58 * cos(theta) ** 42 - 2.28712514364151e58 * cos(theta) ** 40 + 9.16730530339351e57 * cos(theta) ** 38 - 3.13606599916576e57 * cos(theta) ** 36 + 9.14685916423347e56 * cos(theta) ** 34 - 2.26952144676469e56 * cos(theta) ** 32 + 4.77388735197323e55 * cos(theta) ** 30 - 8.47262749126216e54 * cos(theta) ** 28 + 1.26088708334531e54 * cos(theta) ** 26 - 1.56109829366563e53 * cos(theta) ** 24 + 1.59225103123323e52 * cos(theta) ** 22 - 1.32163129074695e51 * cos(theta) ** 20 + 8.79236502947903e49 * cos(theta) ** 18 - 4.59908324618903e48 * cos(theta) ** 16 + 1.84578591820296e47 * cos(theta) ** 14 - 5.50529395465319e45 * cos(theta) ** 12 + 1.16907786681825e44 * cos(theta) ** 10 - 1.66429939914018e42 * cos(theta) ** 8 + 1.45172533258333e40 * cos(theta) ** 6 - 6.68997849116744e37 * cos(theta) ** 4 + 1.21783589038242e35 * cos(theta) ** 2 - 3.65387305845311e31 ) * cos(17 * phi) ) # @torch.jit.script def Yl83_m18(theta, phi): return ( 1.52500375883672e-34 * (1.0 - cos(theta) ** 2) ** 9 * ( 2.86085624644719e57 * cos(theta) ** 65 - 3.60641272279404e58 * cos(theta) ** 63 + 2.1605288489622e59 * cos(theta) ** 61 - 8.18585464513627e59 * cos(theta) ** 59 + 2.20220083299185e60 * cos(theta) ** 57 - 4.47734080185349e60 * cos(theta) ** 55 + 7.1493022481209e60 * cos(theta) ** 53 - 9.19863538553744e60 * cos(theta) ** 51 + 9.70882459980152e60 * cos(theta) ** 49 - 8.51422649468053e60 * cos(theta) ** 47 + 6.26114206853718e60 * cos(theta) ** 45 - 3.88622611150583e60 * cos(theta) ** 43 + 2.04502457965604e60 * cos(theta) ** 41 - 9.14850057456603e59 * cos(theta) ** 39 + 3.48357601528953e59 * cos(theta) ** 37 - 1.12898375969967e59 * cos(theta) ** 35 + 3.10993211583938e58 * cos(theta) ** 33 - 7.26246862964702e57 * cos(theta) ** 31 + 1.43216620559197e57 * cos(theta) ** 29 - 2.37233569755341e56 * cos(theta) ** 27 + 3.27830641669782e55 * cos(theta) ** 25 - 3.7466359047975e54 * cos(theta) ** 23 + 3.50295226871311e53 * cos(theta) ** 21 - 2.64326258149391e52 * cos(theta) ** 19 + 1.58262570530623e51 * cos(theta) ** 17 - 7.35853319390245e49 * cos(theta) ** 15 + 2.58410028548414e48 * cos(theta) ** 13 - 6.60635274558383e46 * cos(theta) ** 11 + 1.16907786681825e45 * cos(theta) ** 9 - 1.33143951931214e43 * cos(theta) ** 7 + 8.7103519955e40 * cos(theta) ** 5 - 2.67599139646697e38 * cos(theta) ** 3 + 2.43567178076484e35 * cos(theta) ) * cos(18 * phi) ) # @torch.jit.script def Yl83_m19(theta, phi): return ( 1.87289810371175e-36 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.85955656019068e59 * cos(theta) ** 64 - 2.27204001536024e60 * cos(theta) ** 62 + 1.31792259786694e61 * cos(theta) ** 60 - 4.8296542406304e61 * cos(theta) ** 58 + 1.25525447480535e62 * cos(theta) ** 56 - 2.46253744101942e62 * cos(theta) ** 54 + 3.78913019150408e62 * cos(theta) ** 52 - 4.69130404662409e62 * cos(theta) ** 50 + 4.75732405390274e62 * cos(theta) ** 48 - 4.00168645249985e62 * cos(theta) ** 46 + 2.81751393084173e62 * cos(theta) ** 44 - 1.67107722794751e62 * cos(theta) ** 42 + 8.38460077658977e61 * cos(theta) ** 40 - 3.56791522408075e61 * cos(theta) ** 38 + 1.28892312565713e61 * cos(theta) ** 36 - 3.95144315894886e60 * cos(theta) ** 34 + 1.02627759822699e60 * cos(theta) ** 32 - 2.25136527519058e59 * cos(theta) ** 30 + 4.15328199621671e58 * cos(theta) ** 28 - 6.4053063833942e57 * cos(theta) ** 26 + 8.19576604174454e56 * cos(theta) ** 24 - 8.61726258103426e55 * cos(theta) ** 22 + 7.35619976429754e54 * cos(theta) ** 20 - 5.02219890483842e53 * cos(theta) ** 18 + 2.69046369902058e52 * cos(theta) ** 16 - 1.10377997908537e51 * cos(theta) ** 14 + 3.35933037112938e49 * cos(theta) ** 12 - 7.26698802014222e47 * cos(theta) ** 10 + 1.05217008013642e46 * cos(theta) ** 8 - 9.320076635185e43 * cos(theta) ** 6 + 4.35517599775e41 * cos(theta) ** 4 - 8.02797418940092e38 * cos(theta) ** 2 + 2.43567178076484e35 ) * cos(19 * phi) ) # @torch.jit.script def Yl83_m20(theta, phi): return ( 2.30677667075696e-38 * (1.0 - cos(theta) ** 2) ** 10 * ( 1.19011619852203e61 * cos(theta) ** 63 - 1.40866480952335e62 * cos(theta) ** 61 + 7.90753558720164e62 * cos(theta) ** 59 - 2.80119945956563e63 * cos(theta) ** 57 + 7.02942505890998e63 * cos(theta) ** 55 - 1.32977021815049e64 * cos(theta) ** 53 + 1.97034769958212e64 * cos(theta) ** 51 - 2.34565202331205e64 * cos(theta) ** 49 + 2.28351554587332e64 * cos(theta) ** 47 - 1.84077576814993e64 * cos(theta) ** 45 + 1.23970612957036e64 * cos(theta) ** 43 - 7.01852435737953e63 * cos(theta) ** 41 + 3.35384031063591e63 * cos(theta) ** 39 - 1.35580778515069e63 * cos(theta) ** 37 + 4.64012325236566e62 * cos(theta) ** 35 - 1.34349067404261e62 * cos(theta) ** 33 + 3.28408831432638e61 * cos(theta) ** 31 - 6.75409582557173e60 * cos(theta) ** 29 + 1.16291895894068e60 * cos(theta) ** 27 - 1.66537965968249e59 * cos(theta) ** 25 + 1.96698385001869e58 * cos(theta) ** 23 - 1.89579776782754e57 * cos(theta) ** 21 + 1.47123995285951e56 * cos(theta) ** 19 - 9.03995802870916e54 * cos(theta) ** 17 + 4.30474191843293e53 * cos(theta) ** 15 - 1.54529197071951e52 * cos(theta) ** 13 + 4.03119644535525e50 * cos(theta) ** 11 - 7.26698802014222e48 * cos(theta) ** 9 + 8.41736064109137e46 * cos(theta) ** 7 - 5.592045981111e44 * cos(theta) ** 5 + 1.7420703991e42 * cos(theta) ** 3 - 1.60559483788018e39 * cos(theta) ) * cos(20 * phi) ) # @torch.jit.script def Yl83_m21(theta, phi): return ( 2.84982771814728e-40 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 7.49773205068881e62 * cos(theta) ** 62 - 8.59285533809244e63 * cos(theta) ** 60 + 4.66544599644896e64 * cos(theta) ** 58 - 1.59668369195241e65 * cos(theta) ** 56 + 3.86618378240049e65 * cos(theta) ** 54 - 7.04778215619758e65 * cos(theta) ** 52 + 1.00487732678688e66 * cos(theta) ** 50 - 1.1493694914229e66 * cos(theta) ** 48 + 1.07325230656046e66 * cos(theta) ** 46 - 8.28349095667468e65 * cos(theta) ** 44 + 5.33073635715255e65 * cos(theta) ** 42 - 2.87759498652561e65 * cos(theta) ** 40 + 1.307997721148e65 * cos(theta) ** 38 - 5.01648880505754e64 * cos(theta) ** 36 + 1.62404313832798e64 * cos(theta) ** 34 - 4.43351922434062e63 * cos(theta) ** 32 + 1.01806737744118e63 * cos(theta) ** 30 - 1.9586877894158e62 * cos(theta) ** 28 + 3.13988118913983e61 * cos(theta) ** 26 - 4.16344914920623e60 * cos(theta) ** 24 + 4.52406285504299e59 * cos(theta) ** 22 - 3.98117531243783e58 * cos(theta) ** 20 + 2.79535591043307e57 * cos(theta) ** 18 - 1.53679286488056e56 * cos(theta) ** 16 + 6.4571128776494e54 * cos(theta) ** 14 - 2.00887956193537e53 * cos(theta) ** 12 + 4.43431608989078e51 * cos(theta) ** 10 - 6.54028921812799e49 * cos(theta) ** 8 + 5.89215244876396e47 * cos(theta) ** 6 - 2.7960229905555e45 * cos(theta) ** 4 + 5.2262111973e42 * cos(theta) ** 2 - 1.60559483788018e39 ) * cos(21 * phi) ) # @torch.jit.script def Yl83_m22(theta, phi): return ( 3.53206032116106e-42 * (1.0 - cos(theta) ** 2) ** 11 * ( 4.64859387142706e64 * cos(theta) ** 61 - 5.15571320285547e65 * cos(theta) ** 59 + 2.7059586779404e66 * cos(theta) ** 57 - 8.9414286749335e66 * cos(theta) ** 55 + 2.08773924249626e67 * cos(theta) ** 53 - 3.66484672122274e67 * cos(theta) ** 51 + 5.0243866339344e67 * cos(theta) ** 49 - 5.51697355882993e67 * cos(theta) ** 47 + 4.93696061017811e67 * cos(theta) ** 45 - 3.64473602093686e67 * cos(theta) ** 43 + 2.23890927000407e67 * cos(theta) ** 41 - 1.15103799461024e67 * cos(theta) ** 39 + 4.97039134036242e66 * cos(theta) ** 37 - 1.80593596982071e66 * cos(theta) ** 35 + 5.52174667031513e65 * cos(theta) ** 33 - 1.418726151789e65 * cos(theta) ** 31 + 3.05420213232354e64 * cos(theta) ** 29 - 5.48432581036425e63 * cos(theta) ** 27 + 8.16369109176357e62 * cos(theta) ** 25 - 9.99227795809495e61 * cos(theta) ** 23 + 9.95293828109457e60 * cos(theta) ** 21 - 7.96235062487566e59 * cos(theta) ** 19 + 5.03164063877952e58 * cos(theta) ** 17 - 2.45886858380889e57 * cos(theta) ** 15 + 9.03995802870916e55 * cos(theta) ** 13 - 2.41065547432244e54 * cos(theta) ** 11 + 4.43431608989078e52 * cos(theta) ** 9 - 5.2322313745024e50 * cos(theta) ** 7 + 3.53529146925837e48 * cos(theta) ** 5 - 1.1184091962222e46 * cos(theta) ** 3 + 1.04524223946e43 * cos(theta) ) * cos(22 * phi) ) # @torch.jit.script def Yl83_m23(theta, phi): return ( 4.39248474414302e-44 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 2.83564226157051e66 * cos(theta) ** 60 - 3.04187078968473e67 * cos(theta) ** 58 + 1.54239644642603e68 * cos(theta) ** 56 - 4.91778577121342e68 * cos(theta) ** 54 + 1.10650179852302e69 * cos(theta) ** 52 - 1.8690718278236e69 * cos(theta) ** 50 + 2.46194945062786e69 * cos(theta) ** 48 - 2.59297757265007e69 * cos(theta) ** 46 + 2.22163227458015e69 * cos(theta) ** 44 - 1.56723648900285e69 * cos(theta) ** 42 + 9.17952800701669e68 * cos(theta) ** 40 - 4.48904817897995e68 * cos(theta) ** 38 + 1.83904479593409e68 * cos(theta) ** 36 - 6.3207758943725e67 * cos(theta) ** 34 + 1.82217640120399e67 * cos(theta) ** 32 - 4.39805107054589e66 * cos(theta) ** 30 + 8.85718618373826e65 * cos(theta) ** 28 - 1.48076796879835e65 * cos(theta) ** 26 + 2.04092277294089e64 * cos(theta) ** 24 - 2.29822393036184e63 * cos(theta) ** 22 + 2.09011703902986e62 * cos(theta) ** 20 - 1.51284661872637e61 * cos(theta) ** 18 + 8.55378908592518e59 * cos(theta) ** 16 - 3.68830287571334e58 * cos(theta) ** 14 + 1.17519454373219e57 * cos(theta) ** 12 - 2.65172102175469e55 * cos(theta) ** 10 + 3.9908844809017e53 * cos(theta) ** 8 - 3.66256196215168e51 * cos(theta) ** 6 + 1.76764573462919e49 * cos(theta) ** 4 - 3.3552275886666e46 * cos(theta) ** 2 + 1.04524223946e43 ) * cos(23 * phi) ) # @torch.jit.script def Yl83_m24(theta, phi): return ( 5.4820469133926e-46 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.7013853569423e68 * cos(theta) ** 59 - 1.76428505801714e69 * cos(theta) ** 57 + 8.63742009998576e69 * cos(theta) ** 55 - 2.65560431645525e70 * cos(theta) ** 53 + 5.7538093523197e70 * cos(theta) ** 51 - 9.34535913911799e70 * cos(theta) ** 49 + 1.18173573630137e71 * cos(theta) ** 47 - 1.19276968341903e71 * cos(theta) ** 45 + 9.77518200815266e70 * cos(theta) ** 43 - 6.58239325381197e70 * cos(theta) ** 41 + 3.67181120280668e70 * cos(theta) ** 39 - 1.70583830801238e70 * cos(theta) ** 37 + 6.62056126536274e69 * cos(theta) ** 35 - 2.14906380408665e69 * cos(theta) ** 33 + 5.83096448385278e68 * cos(theta) ** 31 - 1.31941532116377e68 * cos(theta) ** 29 + 2.48001213144671e67 * cos(theta) ** 27 - 3.8499967188757e66 * cos(theta) ** 25 + 4.89821465505814e65 * cos(theta) ** 23 - 5.05609264679604e64 * cos(theta) ** 21 + 4.18023407805972e63 * cos(theta) ** 19 - 2.72312391370748e62 * cos(theta) ** 17 + 1.36860625374803e61 * cos(theta) ** 15 - 5.16362402599867e59 * cos(theta) ** 13 + 1.41023345247863e58 * cos(theta) ** 11 - 2.65172102175469e56 * cos(theta) ** 9 + 3.19270758472136e54 * cos(theta) ** 7 - 2.19753717729101e52 * cos(theta) ** 5 + 7.07058293851675e49 * cos(theta) ** 3 - 6.7104551773332e46 * cos(theta) ) * cos(24 * phi) ) # @torch.jit.script def Yl83_m25(theta, phi): return ( 6.86759797962786e-48 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 1.00381736059596e70 * cos(theta) ** 58 - 1.00564248306977e71 * cos(theta) ** 56 + 4.75058105499217e71 * cos(theta) ** 54 - 1.40747028772128e72 * cos(theta) ** 52 + 2.93444276968305e72 * cos(theta) ** 50 - 4.57922597816781e72 * cos(theta) ** 48 + 5.55415796061645e72 * cos(theta) ** 46 - 5.36746357538564e72 * cos(theta) ** 44 + 4.20332826350564e72 * cos(theta) ** 42 - 2.69878123406291e72 * cos(theta) ** 40 + 1.4320063690946e72 * cos(theta) ** 38 - 6.31160173964581e71 * cos(theta) ** 36 + 2.31719644287696e71 * cos(theta) ** 34 - 7.09191055348594e70 * cos(theta) ** 32 + 1.80759898999436e70 * cos(theta) ** 30 - 3.82630443137493e69 * cos(theta) ** 28 + 6.69603275490612e68 * cos(theta) ** 26 - 9.62499179718925e67 * cos(theta) ** 24 + 1.12658937066337e67 * cos(theta) ** 22 - 1.06177945582717e66 * cos(theta) ** 20 + 7.94244474831347e64 * cos(theta) ** 18 - 4.62931065330271e63 * cos(theta) ** 16 + 2.05290938062204e62 * cos(theta) ** 14 - 6.71271123379827e60 * cos(theta) ** 12 + 1.55125679772649e59 * cos(theta) ** 10 - 2.38654891957922e57 * cos(theta) ** 8 + 2.23489530930495e55 * cos(theta) ** 6 - 1.0987685886455e53 * cos(theta) ** 4 + 2.12117488155503e50 * cos(theta) ** 2 - 6.7104551773332e46 ) * cos(25 * phi) ) # @torch.jit.script def Yl83_m26(theta, phi): return ( 8.6372923270973e-50 * (1.0 - cos(theta) ** 2) ** 13 * ( 5.82214069145656e71 * cos(theta) ** 57 - 5.63159790519071e72 * cos(theta) ** 55 + 2.56531376969577e73 * cos(theta) ** 53 - 7.31884549615066e73 * cos(theta) ** 51 + 1.46722138484152e74 * cos(theta) ** 49 - 2.19802846952055e74 * cos(theta) ** 47 + 2.55491266188357e74 * cos(theta) ** 45 - 2.36168397316968e74 * cos(theta) ** 43 + 1.76539787067237e74 * cos(theta) ** 41 - 1.07951249362516e74 * cos(theta) ** 39 + 5.4416242025595e73 * cos(theta) ** 37 - 2.27217662627249e73 * cos(theta) ** 35 + 7.87846790578166e72 * cos(theta) ** 33 - 2.2694113771155e72 * cos(theta) ** 31 + 5.42279696998309e71 * cos(theta) ** 29 - 1.07136524078498e71 * cos(theta) ** 27 + 1.74096851627559e70 * cos(theta) ** 25 - 2.30999803132542e69 * cos(theta) ** 23 + 2.47849661545942e68 * cos(theta) ** 21 - 2.12355891165434e67 * cos(theta) ** 19 + 1.42964005469642e66 * cos(theta) ** 17 - 7.40689704528433e64 * cos(theta) ** 15 + 2.87407313287086e63 * cos(theta) ** 13 - 8.05525348055793e61 * cos(theta) ** 11 + 1.55125679772649e60 * cos(theta) ** 9 - 1.90923913566337e58 * cos(theta) ** 7 + 1.34093718558297e56 * cos(theta) ** 5 - 4.39507435458201e53 * cos(theta) ** 3 + 4.24234976311005e50 * cos(theta) ) * cos(26 * phi) ) # @torch.jit.script def Yl83_m27(theta, phi): return ( 1.09079678195221e-51 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 3.31862019413024e73 * cos(theta) ** 56 - 3.09737884785489e74 * cos(theta) ** 54 + 1.35961629793876e75 * cos(theta) ** 52 - 3.73261120303684e75 * cos(theta) ** 50 + 7.18938478572347e75 * cos(theta) ** 48 - 1.03307338067466e76 * cos(theta) ** 46 + 1.1497106978476e76 * cos(theta) ** 44 - 1.01552410846296e76 * cos(theta) ** 42 + 7.23813126975672e75 * cos(theta) ** 40 - 4.21009872513814e75 * cos(theta) ** 38 + 2.01340095494701e75 * cos(theta) ** 36 - 7.95261819195372e74 * cos(theta) ** 34 + 2.59989440890795e74 * cos(theta) ** 32 - 7.03517526905806e73 * cos(theta) ** 30 + 1.57261112129509e73 * cos(theta) ** 28 - 2.89268615011944e72 * cos(theta) ** 26 + 4.35242129068898e71 * cos(theta) ** 24 - 5.31299547204847e70 * cos(theta) ** 22 + 5.20484289246478e69 * cos(theta) ** 20 - 4.03476193214324e68 * cos(theta) ** 18 + 2.43038809298392e67 * cos(theta) ** 16 - 1.11103455679265e66 * cos(theta) ** 14 + 3.73629507273212e64 * cos(theta) ** 12 - 8.86077882861372e62 * cos(theta) ** 10 + 1.39613111795384e61 * cos(theta) ** 8 - 1.33646739496436e59 * cos(theta) ** 6 + 6.70468592791486e56 * cos(theta) ** 4 - 1.3185223063746e54 * cos(theta) ** 2 + 4.24234976311005e50 ) * cos(27 * phi) ) # @torch.jit.script def Yl83_m28(theta, phi): return ( 1.38352924961911e-53 * (1.0 - cos(theta) ** 2) ** 14 * ( 1.85842730871294e75 * cos(theta) ** 55 - 1.67258457784164e76 * cos(theta) ** 53 + 7.07000474928154e76 * cos(theta) ** 51 - 1.86630560151842e77 * cos(theta) ** 49 + 3.45090469714727e77 * cos(theta) ** 47 - 4.75213755110343e77 * cos(theta) ** 45 + 5.05872707052946e77 * cos(theta) ** 43 - 4.26520125554445e77 * cos(theta) ** 41 + 2.89525250790269e77 * cos(theta) ** 39 - 1.59983751555249e77 * cos(theta) ** 37 + 7.24824343780925e76 * cos(theta) ** 35 - 2.70389018526426e76 * cos(theta) ** 33 + 8.31966210850543e75 * cos(theta) ** 31 - 2.11055258071742e75 * cos(theta) ** 29 + 4.40331113962627e74 * cos(theta) ** 27 - 7.52098399031056e73 * cos(theta) ** 25 + 1.04458110976535e73 * cos(theta) ** 23 - 1.16885900385066e72 * cos(theta) ** 21 + 1.04096857849296e71 * cos(theta) ** 19 - 7.26257147785784e69 * cos(theta) ** 17 + 3.88862094877427e68 * cos(theta) ** 15 - 1.55544837950971e67 * cos(theta) ** 13 + 4.48355408727854e65 * cos(theta) ** 11 - 8.86077882861372e63 * cos(theta) ** 9 + 1.11690489436307e62 * cos(theta) ** 7 - 8.01880436978617e59 * cos(theta) ** 5 + 2.68187437116594e57 * cos(theta) ** 3 - 2.63704461274921e54 * cos(theta) ) * cos(28 * phi) ) # @torch.jit.script def Yl83_m29(theta, phi): return ( 1.76277949085046e-55 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 1.02213501979211e77 * cos(theta) ** 54 - 8.8646982625607e77 * cos(theta) ** 52 + 3.60570242213359e78 * cos(theta) ** 50 - 9.14489744744025e78 * cos(theta) ** 48 + 1.62192520765921e79 * cos(theta) ** 46 - 2.13846189799654e79 * cos(theta) ** 44 + 2.17525264032767e79 * cos(theta) ** 42 - 1.74873251477322e79 * cos(theta) ** 40 + 1.12914847808205e79 * cos(theta) ** 38 - 5.91939880754422e78 * cos(theta) ** 36 + 2.53688520323324e78 * cos(theta) ** 34 - 8.92283761137207e77 * cos(theta) ** 32 + 2.57909525363668e77 * cos(theta) ** 30 - 6.12060248408051e76 * cos(theta) ** 28 + 1.18889400769909e76 * cos(theta) ** 26 - 1.88024599757764e75 * cos(theta) ** 24 + 2.40253655246032e74 * cos(theta) ** 22 - 2.45460390808639e73 * cos(theta) ** 20 + 1.97784029913662e72 * cos(theta) ** 18 - 1.23463715123583e71 * cos(theta) ** 16 + 5.83293142316141e69 * cos(theta) ** 14 - 2.02208289336262e68 * cos(theta) ** 12 + 4.9319094960064e66 * cos(theta) ** 10 - 7.97470094575235e64 * cos(theta) ** 8 + 7.81833426054152e62 * cos(theta) ** 6 - 4.00940218489309e60 * cos(theta) ** 4 + 8.04562311349783e57 * cos(theta) ** 2 - 2.63704461274921e54 ) * cos(29 * phi) ) # @torch.jit.script def Yl83_m30(theta, phi): return ( 2.25663794985244e-57 * (1.0 - cos(theta) ** 2) ** 15 * ( 5.51952910687742e78 * cos(theta) ** 53 - 4.60964309653156e79 * cos(theta) ** 51 + 1.80285121106679e80 * cos(theta) ** 49 - 4.38955077477132e80 * cos(theta) ** 47 + 7.46085595523239e80 * cos(theta) ** 45 - 9.4092323511848e80 * cos(theta) ** 43 + 9.1360610893762e80 * cos(theta) ** 41 - 6.99493005909289e80 * cos(theta) ** 39 + 4.29076421671178e80 * cos(theta) ** 37 - 2.13098357071592e80 * cos(theta) ** 35 + 8.625409690993e79 * cos(theta) ** 33 - 2.85530803563906e79 * cos(theta) ** 31 + 7.73728576091005e78 * cos(theta) ** 29 - 1.71376869554254e78 * cos(theta) ** 27 + 3.09112442001764e77 * cos(theta) ** 25 - 4.51259039418633e76 * cos(theta) ** 23 + 5.2855804154127e75 * cos(theta) ** 21 - 4.90920781617278e74 * cos(theta) ** 19 + 3.56011253844591e73 * cos(theta) ** 17 - 1.97541944197733e72 * cos(theta) ** 15 + 8.16610399242598e70 * cos(theta) ** 13 - 2.42649947203515e69 * cos(theta) ** 11 + 4.9319094960064e67 * cos(theta) ** 9 - 6.37976075660188e65 * cos(theta) ** 7 + 4.69100055632491e63 * cos(theta) ** 5 - 1.60376087395723e61 * cos(theta) ** 3 + 1.60912462269957e58 * cos(theta) ) * cos(30 * phi) ) # @torch.jit.script def Yl83_m31(theta, phi): return ( 2.90316371298274e-59 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 2.92535042664503e80 * cos(theta) ** 52 - 2.3509179792311e81 * cos(theta) ** 50 + 8.83397093422728e81 * cos(theta) ** 48 - 2.06308886414252e82 * cos(theta) ** 46 + 3.35738517985457e82 * cos(theta) ** 44 - 4.04596991100946e82 * cos(theta) ** 42 + 3.74578504664424e82 * cos(theta) ** 40 - 2.72802272304623e82 * cos(theta) ** 38 + 1.58758276018336e82 * cos(theta) ** 36 - 7.45844249750572e81 * cos(theta) ** 34 + 2.84638519802769e81 * cos(theta) ** 32 - 8.8514549104811e80 * cos(theta) ** 30 + 2.24381287066391e80 * cos(theta) ** 28 - 4.62717547796486e79 * cos(theta) ** 26 + 7.7278110500441e78 * cos(theta) ** 24 - 1.03789579066286e78 * cos(theta) ** 22 + 1.10997188723667e77 * cos(theta) ** 20 - 9.32749485072829e75 * cos(theta) ** 18 + 6.05219131535805e74 * cos(theta) ** 16 - 2.963129162966e73 * cos(theta) ** 14 + 1.06159351901538e72 * cos(theta) ** 12 - 2.66914941923866e70 * cos(theta) ** 10 + 4.43871854640576e68 * cos(theta) ** 8 - 4.46583252962131e66 * cos(theta) ** 6 + 2.34550027816246e64 * cos(theta) ** 4 - 4.8112826218717e61 * cos(theta) ** 2 + 1.60912462269957e58 ) * cos(31 * phi) ) # @torch.jit.script def Yl83_m32(theta, phi): return ( 3.75423051100115e-61 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.52118222185542e82 * cos(theta) ** 51 - 1.17545898961555e83 * cos(theta) ** 49 + 4.2403060484291e83 * cos(theta) ** 47 - 9.4902087750556e83 * cos(theta) ** 45 + 1.47724947913601e84 * cos(theta) ** 43 - 1.69930736262397e84 * cos(theta) ** 41 + 1.4983140186577e84 * cos(theta) ** 39 - 1.03664863475757e84 * cos(theta) ** 37 + 5.71529793666009e83 * cos(theta) ** 35 - 2.53587044915194e83 * cos(theta) ** 33 + 9.10843263368861e82 * cos(theta) ** 31 - 2.65543647314433e82 * cos(theta) ** 29 + 6.28267603785896e81 * cos(theta) ** 27 - 1.20306562427086e81 * cos(theta) ** 25 + 1.85467465201058e80 * cos(theta) ** 23 - 2.28337073945828e79 * cos(theta) ** 21 + 2.21994377447333e78 * cos(theta) ** 19 - 1.67894907313109e77 * cos(theta) ** 17 + 9.68350610457288e75 * cos(theta) ** 15 - 4.1483808281524e74 * cos(theta) ** 13 + 1.27391222281845e73 * cos(theta) ** 11 - 2.66914941923866e71 * cos(theta) ** 9 + 3.55097483712461e69 * cos(theta) ** 7 - 2.67949951777279e67 * cos(theta) ** 5 + 9.38200111264982e64 * cos(theta) ** 3 - 9.62256524374341e61 * cos(theta) ) * cos(32 * phi) ) # @torch.jit.script def Yl83_m33(theta, phi): return ( 4.88097802358857e-63 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 7.75802933146262e83 * cos(theta) ** 50 - 5.75974904911619e84 * cos(theta) ** 48 + 1.99294384276168e85 * cos(theta) ** 46 - 4.27059394877502e85 * cos(theta) ** 44 + 6.35217276028485e85 * cos(theta) ** 42 - 6.96716018675829e85 * cos(theta) ** 40 + 5.84342467276502e85 * cos(theta) ** 38 - 3.835599948603e85 * cos(theta) ** 36 + 2.00035427783103e85 * cos(theta) ** 34 - 8.36837248220141e84 * cos(theta) ** 32 + 2.82361411644347e84 * cos(theta) ** 30 - 7.70076577211855e83 * cos(theta) ** 28 + 1.69632253022192e83 * cos(theta) ** 26 - 3.00766406067716e82 * cos(theta) ** 24 + 4.26575169962434e81 * cos(theta) ** 22 - 4.7950785528624e80 * cos(theta) ** 20 + 4.21789317149933e79 * cos(theta) ** 18 - 2.85421342432286e78 * cos(theta) ** 16 + 1.45252591568593e77 * cos(theta) ** 14 - 5.39289507659811e75 * cos(theta) ** 12 + 1.4013034451003e74 * cos(theta) ** 10 - 2.4022344773148e72 * cos(theta) ** 8 + 2.48568238598722e70 * cos(theta) ** 6 - 1.33974975888639e68 * cos(theta) ** 4 + 2.81460033379495e65 * cos(theta) ** 2 - 9.62256524374341e61 ) * cos(33 * phi) ) # @torch.jit.script def Yl83_m34(theta, phi): return ( 6.38159030453734e-65 * (1.0 - cos(theta) ** 2) ** 17 * ( 3.87901466573131e85 * cos(theta) ** 49 - 2.76467954357577e86 * cos(theta) ** 47 + 9.16754167670371e86 * cos(theta) ** 45 - 1.87906133746101e87 * cos(theta) ** 43 + 2.66791255931964e87 * cos(theta) ** 41 - 2.78686407470332e87 * cos(theta) ** 39 + 2.22050137565071e87 * cos(theta) ** 37 - 1.38081598149708e87 * cos(theta) ** 35 + 6.80120454462551e86 * cos(theta) ** 33 - 2.67787919430445e86 * cos(theta) ** 31 + 8.47084234933041e85 * cos(theta) ** 29 - 2.1562144161932e85 * cos(theta) ** 27 + 4.41043857857699e84 * cos(theta) ** 25 - 7.21839374562519e83 * cos(theta) ** 23 + 9.38465373917355e82 * cos(theta) ** 21 - 9.59015710572479e81 * cos(theta) ** 19 + 7.5922077086988e80 * cos(theta) ** 17 - 4.56674147891657e79 * cos(theta) ** 15 + 2.0335362819603e78 * cos(theta) ** 13 - 6.47147409191774e76 * cos(theta) ** 11 + 1.4013034451003e75 * cos(theta) ** 9 - 1.92178758185184e73 * cos(theta) ** 7 + 1.49140943159233e71 * cos(theta) ** 5 - 5.35899903554558e68 * cos(theta) ** 3 + 5.62920066758989e65 * cos(theta) ) * cos(34 * phi) ) # @torch.jit.script def Yl83_m35(theta, phi): return ( 8.39247150883301e-67 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 1.90071718620834e87 * cos(theta) ** 48 - 1.29939938548061e88 * cos(theta) ** 46 + 4.12539375451667e88 * cos(theta) ** 44 - 8.07996375108234e88 * cos(theta) ** 42 + 1.09384414932105e89 * cos(theta) ** 40 - 1.08687698913429e89 * cos(theta) ** 38 + 8.21585508990762e88 * cos(theta) ** 36 - 4.83285593523978e88 * cos(theta) ** 34 + 2.24439749972642e88 * cos(theta) ** 32 - 8.3014255023438e87 * cos(theta) ** 30 + 2.45654428130582e87 * cos(theta) ** 28 - 5.82177892372163e86 * cos(theta) ** 26 + 1.10260964464425e86 * cos(theta) ** 24 - 1.66023056149379e85 * cos(theta) ** 22 + 1.97077728522645e84 * cos(theta) ** 20 - 1.82212985008771e83 * cos(theta) ** 18 + 1.2906753104788e82 * cos(theta) ** 16 - 6.85011221837485e80 * cos(theta) ** 14 + 2.6435971665484e79 * cos(theta) ** 12 - 7.11862150110951e77 * cos(theta) ** 10 + 1.26117310059027e76 * cos(theta) ** 8 - 1.34525130729629e74 * cos(theta) ** 6 + 7.45704715796167e71 * cos(theta) ** 4 - 1.60769971066367e69 * cos(theta) ** 2 + 5.62920066758989e65 ) * cos(35 * phi) ) # @torch.jit.script def Yl83_m36(theta, phi): return ( 1.11044173543872e-68 * (1.0 - cos(theta) ** 2) ** 18 * ( 9.12344249380005e88 * cos(theta) ** 47 - 5.97723717321082e89 * cos(theta) ** 45 + 1.81517325198733e90 * cos(theta) ** 43 - 3.39358477545458e90 * cos(theta) ** 41 + 4.37537659728421e90 * cos(theta) ** 39 - 4.13013255871032e90 * cos(theta) ** 37 + 2.95770783236674e90 * cos(theta) ** 35 - 1.64317101798152e90 * cos(theta) ** 33 + 7.18207199912454e89 * cos(theta) ** 31 - 2.49042765070314e89 * cos(theta) ** 29 + 6.87832398765629e88 * cos(theta) ** 27 - 1.51366252016762e88 * cos(theta) ** 25 + 2.64626314714619e87 * cos(theta) ** 23 - 3.65250723528635e86 * cos(theta) ** 21 + 3.94155457045289e85 * cos(theta) ** 19 - 3.27983373015788e84 * cos(theta) ** 17 + 2.06508049676607e83 * cos(theta) ** 15 - 9.59015710572479e81 * cos(theta) ** 13 + 3.17231659985807e80 * cos(theta) ** 11 - 7.11862150110951e78 * cos(theta) ** 9 + 1.00893848047221e77 * cos(theta) ** 7 - 8.07150784377771e74 * cos(theta) ** 5 + 2.98281886318467e72 * cos(theta) ** 3 - 3.21539942132735e69 * cos(theta) ) * cos(36 * phi) ) # @torch.jit.script def Yl83_m37(theta, phi): return ( 1.47861880142803e-70 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 4.28801797208602e90 * cos(theta) ** 46 - 2.68975672794487e91 * cos(theta) ** 44 + 7.80524498354554e91 * cos(theta) ** 42 - 1.39136975793638e92 * cos(theta) ** 40 + 1.70639687294084e92 * cos(theta) ** 38 - 1.52814904672282e92 * cos(theta) ** 36 + 1.03519774132836e92 * cos(theta) ** 34 - 5.42246435933903e91 * cos(theta) ** 32 + 2.22644231972861e91 * cos(theta) ** 30 - 7.22224018703911e90 * cos(theta) ** 28 + 1.8571474766672e90 * cos(theta) ** 26 - 3.78415630041906e89 * cos(theta) ** 24 + 6.08640523843625e88 * cos(theta) ** 22 - 7.67026519410133e87 * cos(theta) ** 20 + 7.48895368386049e86 * cos(theta) ** 18 - 5.5757173412684e85 * cos(theta) ** 16 + 3.09762074514911e84 * cos(theta) ** 14 - 1.24672042374422e83 * cos(theta) ** 12 + 3.48954825984388e81 * cos(theta) ** 10 - 6.40675935099856e79 * cos(theta) ** 8 + 7.0625693633055e77 * cos(theta) ** 6 - 4.03575392188886e75 * cos(theta) ** 4 + 8.94845658955401e72 * cos(theta) ** 2 - 3.21539942132735e69 ) * cos(37 * phi) ) # @torch.jit.script def Yl83_m38(theta, phi): return ( 1.98191316809053e-72 * (1.0 - cos(theta) ** 2) ** 19 * ( 1.97248826715957e92 * cos(theta) ** 45 - 1.18349296029574e93 * cos(theta) ** 43 + 3.27820289308913e93 * cos(theta) ** 41 - 5.56547903174551e93 * cos(theta) ** 39 + 6.4843081171752e93 * cos(theta) ** 37 - 5.50133656820214e93 * cos(theta) ** 35 + 3.51967232051642e93 * cos(theta) ** 33 - 1.73518859498849e93 * cos(theta) ** 31 + 6.67932695918582e92 * cos(theta) ** 29 - 2.02222725237095e92 * cos(theta) ** 27 + 4.82858343933472e91 * cos(theta) ** 25 - 9.08197512100574e90 * cos(theta) ** 23 + 1.33900915245597e90 * cos(theta) ** 21 - 1.53405303882027e89 * cos(theta) ** 19 + 1.34801166309489e88 * cos(theta) ** 17 - 8.92114774602943e86 * cos(theta) ** 15 + 4.33666904320875e85 * cos(theta) ** 13 - 1.49606450849307e84 * cos(theta) ** 11 + 3.48954825984388e82 * cos(theta) ** 9 - 5.12540748079885e80 * cos(theta) ** 7 + 4.2375416179833e78 * cos(theta) ** 5 - 1.61430156875554e76 * cos(theta) ** 3 + 1.7896913179108e73 * cos(theta) ) * cos(38 * phi) ) # @torch.jit.script def Yl83_m39(theta, phi): return ( 2.67484395331603e-74 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 8.87619720221806e93 * cos(theta) ** 44 - 5.08901972927169e94 * cos(theta) ** 42 + 1.34406318616654e95 * cos(theta) ** 40 - 2.17053682238075e95 * cos(theta) ** 38 + 2.39919400335482e95 * cos(theta) ** 36 - 1.92546779887075e95 * cos(theta) ** 34 + 1.16149186577042e95 * cos(theta) ** 32 - 5.37908464446432e94 * cos(theta) ** 30 + 1.93700481816389e94 * cos(theta) ** 28 - 5.46001358140157e93 * cos(theta) ** 26 + 1.20714585983368e93 * cos(theta) ** 24 - 2.08885427783132e92 * cos(theta) ** 22 + 2.81191922015755e91 * cos(theta) ** 20 - 2.9147007737585e90 * cos(theta) ** 18 + 2.29161982726131e89 * cos(theta) ** 16 - 1.33817216190442e88 * cos(theta) ** 14 + 5.63766975617138e86 * cos(theta) ** 12 - 1.64567095934237e85 * cos(theta) ** 10 + 3.14059343385949e83 * cos(theta) ** 8 - 3.58778523655919e81 * cos(theta) ** 6 + 2.11877080899165e79 * cos(theta) ** 4 - 4.84290470626663e76 * cos(theta) ** 2 + 1.7896913179108e73 ) * cos(39 * phi) ) # @torch.jit.script def Yl83_m40(theta, phi): return ( 3.63596385275829e-76 * (1.0 - cos(theta) ** 2) ** 20 * ( 3.90552676897595e95 * cos(theta) ** 43 - 2.13738828629411e96 * cos(theta) ** 41 + 5.37625274466617e96 * cos(theta) ** 39 - 8.24803992504685e96 * cos(theta) ** 37 + 8.63709841207736e96 * cos(theta) ** 35 - 6.54659051616055e96 * cos(theta) ** 33 + 3.71677397046534e96 * cos(theta) ** 31 - 1.61372539333929e96 * cos(theta) ** 29 + 5.42361349085889e95 * cos(theta) ** 27 - 1.41960353116441e95 * cos(theta) ** 25 + 2.89715006360083e94 * cos(theta) ** 23 - 4.5954794112289e93 * cos(theta) ** 21 + 5.62383844031509e92 * cos(theta) ** 19 - 5.24646139276531e91 * cos(theta) ** 17 + 3.6665917236181e90 * cos(theta) ** 15 - 1.87344102666618e89 * cos(theta) ** 13 + 6.76520370740565e87 * cos(theta) ** 11 - 1.64567095934237e86 * cos(theta) ** 9 + 2.5124747470876e84 * cos(theta) ** 7 - 2.15267114193552e82 * cos(theta) ** 5 + 8.4750832359666e79 * cos(theta) ** 3 - 9.68580941253326e76 * cos(theta) ) * cos(40 * phi) ) # @torch.jit.script def Yl83_m41(theta, phi): return ( 4.97937101135538e-78 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 1.67937651065966e97 * cos(theta) ** 42 - 8.76329197380585e97 * cos(theta) ** 40 + 2.0967385704198e98 * cos(theta) ** 38 - 3.05177477226733e98 * cos(theta) ** 36 + 3.02298444422708e98 * cos(theta) ** 34 - 2.16037487033298e98 * cos(theta) ** 32 + 1.15219993084426e98 * cos(theta) ** 30 - 4.67980364068395e97 * cos(theta) ** 28 + 1.4643756425319e97 * cos(theta) ** 26 - 3.54900882791102e96 * cos(theta) ** 24 + 6.66344514628191e95 * cos(theta) ** 22 - 9.6505067635807e94 * cos(theta) ** 20 + 1.06852930365987e94 * cos(theta) ** 18 - 8.91898436770102e92 * cos(theta) ** 16 + 5.49988758542715e91 * cos(theta) ** 14 - 2.43547333466604e90 * cos(theta) ** 12 + 7.44172407814622e88 * cos(theta) ** 10 - 1.48110386340814e87 * cos(theta) ** 8 + 1.75873232296132e85 * cos(theta) ** 6 - 1.07633557096776e83 * cos(theta) ** 4 + 2.54252497078998e80 * cos(theta) ** 2 - 9.68580941253326e76 ) * cos(41 * phi) ) # @torch.jit.script def Yl83_m42(theta, phi): return ( 6.87218488424811e-80 * (1.0 - cos(theta) ** 2) ** 21 * ( 7.05338134477056e98 * cos(theta) ** 41 - 3.50531678952234e99 * cos(theta) ** 39 + 7.96760656759526e99 * cos(theta) ** 37 - 1.09863891801624e100 * cos(theta) ** 35 + 1.02781471103721e100 * cos(theta) ** 33 - 6.91319958506554e99 * cos(theta) ** 31 + 3.45659979253277e99 * cos(theta) ** 29 - 1.31034501939151e99 * cos(theta) ** 27 + 3.80737667058294e98 * cos(theta) ** 25 - 8.51762118698644e97 * cos(theta) ** 23 + 1.46595793218202e97 * cos(theta) ** 21 - 1.93010135271614e96 * cos(theta) ** 19 + 1.92335274658776e95 * cos(theta) ** 17 - 1.42703749883216e94 * cos(theta) ** 15 + 7.699842619598e92 * cos(theta) ** 13 - 2.92256800159924e91 * cos(theta) ** 11 + 7.44172407814622e89 * cos(theta) ** 9 - 1.18488309072651e88 * cos(theta) ** 7 + 1.05523939377679e86 * cos(theta) ** 5 - 4.30534228387103e83 * cos(theta) ** 3 + 5.08504994157996e80 * cos(theta) ) * cos(42 * phi) ) # @torch.jit.script def Yl83_m43(theta, phi): return ( 9.56131516798588e-82 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 2.89188635135593e100 * cos(theta) ** 40 - 1.36707354791371e101 * cos(theta) ** 38 + 2.94801443001025e101 * cos(theta) ** 36 - 3.84523621305684e101 * cos(theta) ** 34 + 3.39178854642278e101 * cos(theta) ** 32 - 2.14309187137032e101 * cos(theta) ** 30 + 1.0024139398345e101 * cos(theta) ** 28 - 3.53793155235707e100 * cos(theta) ** 26 + 9.51844167645735e99 * cos(theta) ** 24 - 1.95905287300688e99 * cos(theta) ** 22 + 3.07851165758224e98 * cos(theta) ** 20 - 3.66719257016067e97 * cos(theta) ** 18 + 3.26969966919919e96 * cos(theta) ** 16 - 2.14055624824825e95 * cos(theta) ** 14 + 1.00097954054774e94 * cos(theta) ** 12 - 3.21482480175917e92 * cos(theta) ** 10 + 6.6975516703316e90 * cos(theta) ** 8 - 8.29418163508557e88 * cos(theta) ** 6 + 5.27619696888395e86 * cos(theta) ** 4 - 1.29160268516131e84 * cos(theta) ** 2 + 5.08504994157996e80 ) * cos(43 * phi) ) # @torch.jit.script def Yl83_m44(theta, phi): return ( 1.34148486702454e-83 * (1.0 - cos(theta) ** 2) ** 22 * ( 1.15675454054237e102 * cos(theta) ** 39 - 5.19487948207211e102 * cos(theta) ** 37 + 1.06128519480369e103 * cos(theta) ** 35 - 1.30738031243933e103 * cos(theta) ** 33 + 1.08537233485529e103 * cos(theta) ** 31 - 6.42927561411095e102 * cos(theta) ** 29 + 2.80675903153661e102 * cos(theta) ** 27 - 9.19862203612838e101 * cos(theta) ** 25 + 2.28442600234976e101 * cos(theta) ** 23 - 4.30991632061514e100 * cos(theta) ** 21 + 6.15702331516449e99 * cos(theta) ** 19 - 6.6009466262892e98 * cos(theta) ** 17 + 5.23151947071871e97 * cos(theta) ** 15 - 2.99677874754754e96 * cos(theta) ** 13 + 1.20117544865729e95 * cos(theta) ** 11 - 3.21482480175917e93 * cos(theta) ** 9 + 5.35804133626528e91 * cos(theta) ** 7 - 4.97650898105134e89 * cos(theta) ** 5 + 2.11047878755358e87 * cos(theta) ** 3 - 2.58320537032262e84 * cos(theta) ) * cos(44 * phi) ) # @torch.jit.script def Yl83_m45(theta, phi): return ( 1.8986656332305e-85 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 4.51134270811525e103 * cos(theta) ** 38 - 1.92210540836668e104 * cos(theta) ** 36 + 3.71449818181291e104 * cos(theta) ** 34 - 4.31435503104978e104 * cos(theta) ** 32 + 3.3646542380514e104 * cos(theta) ** 30 - 1.86448992809218e104 * cos(theta) ** 28 + 7.57824938514884e103 * cos(theta) ** 26 - 2.2996555090321e103 * cos(theta) ** 24 + 5.25417980540446e102 * cos(theta) ** 22 - 9.05082427329179e101 * cos(theta) ** 20 + 1.16983442988125e101 * cos(theta) ** 18 - 1.12216092646916e100 * cos(theta) ** 16 + 7.84727920607807e98 * cos(theta) ** 14 - 3.89581237181181e97 * cos(theta) ** 12 + 1.32129299352302e96 * cos(theta) ** 10 - 2.89334232158325e94 * cos(theta) ** 8 + 3.75062893538569e92 * cos(theta) ** 6 - 2.48825449052567e90 * cos(theta) ** 4 + 6.33143636266074e87 * cos(theta) ** 2 - 2.58320537032262e84 ) * cos(45 * phi) ) # @torch.jit.script def Yl83_m46(theta, phi): return ( 2.71182609860722e-87 * (1.0 - cos(theta) ** 2) ** 23 * ( 1.7143102290838e105 * cos(theta) ** 37 - 6.91957947012005e105 * cos(theta) ** 35 + 1.26292938181639e106 * cos(theta) ** 33 - 1.38059360993593e106 * cos(theta) ** 31 + 1.00939627141542e106 * cos(theta) ** 29 - 5.22057179865809e105 * cos(theta) ** 27 + 1.9703448401387e105 * cos(theta) ** 25 - 5.51917322167703e104 * cos(theta) ** 23 + 1.15591955718898e104 * cos(theta) ** 21 - 1.81016485465836e103 * cos(theta) ** 19 + 2.10570197378625e102 * cos(theta) ** 17 - 1.79545748235066e101 * cos(theta) ** 15 + 1.09861908885093e100 * cos(theta) ** 13 - 4.67497484617417e98 * cos(theta) ** 11 + 1.32129299352302e97 * cos(theta) ** 9 - 2.3146738572666e95 * cos(theta) ** 7 + 2.25037736123142e93 * cos(theta) ** 5 - 9.95301796210268e90 * cos(theta) ** 3 + 1.26628727253215e88 * cos(theta) ) * cos(46 * phi) ) # @torch.jit.script def Yl83_m47(theta, phi): return ( 3.91011290495497e-89 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 6.34294784761004e106 * cos(theta) ** 36 - 2.42185281454202e107 * cos(theta) ** 34 + 4.16766695999408e107 * cos(theta) ** 32 - 4.27984019080138e107 * cos(theta) ** 30 + 2.92724918710472e107 * cos(theta) ** 28 - 1.40955438563769e107 * cos(theta) ** 26 + 4.92586210034675e106 * cos(theta) ** 24 - 1.26940984098572e106 * cos(theta) ** 22 + 2.42743107009686e105 * cos(theta) ** 20 - 3.43931322385088e104 * cos(theta) ** 18 + 3.57969335543663e103 * cos(theta) ** 16 - 2.69318622352599e102 * cos(theta) ** 14 + 1.42820481550621e101 * cos(theta) ** 12 - 5.14247233079158e99 * cos(theta) ** 10 + 1.18916369417072e98 * cos(theta) ** 8 - 1.62027170008662e96 * cos(theta) ** 6 + 1.12518868061571e94 * cos(theta) ** 4 - 2.98590538863081e91 * cos(theta) ** 2 + 1.26628727253215e88 ) * cos(47 * phi) ) # @torch.jit.script def Yl83_m48(theta, phi): return ( 5.69380251176972e-91 * (1.0 - cos(theta) ** 2) ** 24 * ( 2.28346122513962e108 * cos(theta) ** 35 - 8.23429956944286e108 * cos(theta) ** 33 + 1.33365342719811e109 * cos(theta) ** 31 - 1.28395205724041e109 * cos(theta) ** 29 + 8.1962977238932e108 * cos(theta) ** 27 - 3.66484140265798e108 * cos(theta) ** 25 + 1.18220690408322e108 * cos(theta) ** 23 - 2.79270165016858e107 * cos(theta) ** 21 + 4.85486214019372e106 * cos(theta) ** 19 - 6.19076380293159e105 * cos(theta) ** 17 + 5.72750936869861e104 * cos(theta) ** 15 - 3.77046071293639e103 * cos(theta) ** 13 + 1.71384577860745e102 * cos(theta) ** 11 - 5.14247233079158e100 * cos(theta) ** 9 + 9.51330955336573e98 * cos(theta) ** 7 - 9.72163020051972e96 * cos(theta) ** 5 + 4.50075472246283e94 * cos(theta) ** 3 - 5.97181077726161e91 * cos(theta) ) * cos(48 * phi) ) # @torch.jit.script def Yl83_m49(theta, phi): return ( 8.3768629824346e-93 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 7.99211428798866e109 * cos(theta) ** 34 - 2.71731885791614e110 * cos(theta) ** 32 + 4.13432562431413e110 * cos(theta) ** 30 - 3.7234609659972e110 * cos(theta) ** 28 + 2.21300038545117e110 * cos(theta) ** 26 - 9.16210350664495e109 * cos(theta) ** 24 + 2.71907587939141e109 * cos(theta) ** 22 - 5.86467346535401e108 * cos(theta) ** 20 + 9.22423806636806e107 * cos(theta) ** 18 - 1.05242984649837e107 * cos(theta) ** 16 + 8.59126405304792e105 * cos(theta) ** 14 - 4.90159892681731e104 * cos(theta) ** 12 + 1.88523035646819e103 * cos(theta) ** 10 - 4.62822509771243e101 * cos(theta) ** 8 + 6.65931668735601e99 * cos(theta) ** 6 - 4.86081510025986e97 * cos(theta) ** 4 + 1.35022641673885e95 * cos(theta) ** 2 - 5.97181077726161e91 ) * cos(49 * phi) ) # @torch.jit.script def Yl83_m50(theta, phi): return ( 1.24570765398148e-94 * (1.0 - cos(theta) ** 2) ** 25 * ( 2.71731885791614e111 * cos(theta) ** 33 - 8.69542034533166e111 * cos(theta) ** 31 + 1.24029768729424e112 * cos(theta) ** 29 - 1.04256907047922e112 * cos(theta) ** 27 + 5.75380100217303e111 * cos(theta) ** 25 - 2.19890484159479e111 * cos(theta) ** 23 + 5.98196693466109e110 * cos(theta) ** 21 - 1.1729346930708e110 * cos(theta) ** 19 + 1.66036285194625e109 * cos(theta) ** 17 - 1.68388775439739e108 * cos(theta) ** 15 + 1.20277696742671e107 * cos(theta) ** 13 - 5.88191871218077e105 * cos(theta) ** 11 + 1.88523035646819e104 * cos(theta) ** 9 - 3.70258007816994e102 * cos(theta) ** 7 + 3.9955900124136e100 * cos(theta) ** 5 - 1.94432604010394e98 * cos(theta) ** 3 + 2.7004528334777e95 * cos(theta) ) * cos(50 * phi) ) # @torch.jit.script def Yl83_m51(theta, phi): return ( 1.8732975441188e-96 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 8.96715223112327e112 * cos(theta) ** 32 - 2.69558030705281e113 * cos(theta) ** 30 + 3.59686329315329e113 * cos(theta) ** 28 - 2.81493649029388e113 * cos(theta) ** 26 + 1.43845025054326e113 * cos(theta) ** 24 - 5.05748113566801e112 * cos(theta) ** 22 + 1.25621305627883e112 * cos(theta) ** 20 - 2.22857591683452e111 * cos(theta) ** 18 + 2.82261684830863e110 * cos(theta) ** 16 - 2.52583163159609e109 * cos(theta) ** 14 + 1.56361005765472e108 * cos(theta) ** 12 - 6.47011058339884e106 * cos(theta) ** 10 + 1.69670732082138e105 * cos(theta) ** 8 - 2.59180605471896e103 * cos(theta) ** 6 + 1.9977950062068e101 * cos(theta) ** 4 - 5.83297812031183e98 * cos(theta) ** 2 + 2.7004528334777e95 ) * cos(51 * phi) ) # @torch.jit.script def Yl83_m52(theta, phi): return ( 2.85013144953582e-98 * (1.0 - cos(theta) ** 2) ** 26 * ( 2.86948871395945e114 * cos(theta) ** 31 - 8.08674092115844e114 * cos(theta) ** 29 + 1.00712172208292e115 * cos(theta) ** 27 - 7.31883487476409e114 * cos(theta) ** 25 + 3.45228060130382e114 * cos(theta) ** 23 - 1.11264584984696e114 * cos(theta) ** 21 + 2.51242611255766e113 * cos(theta) ** 19 - 4.01143665030214e112 * cos(theta) ** 17 + 4.5161869572938e111 * cos(theta) ** 15 - 3.53616428423452e110 * cos(theta) ** 13 + 1.87633206918566e109 * cos(theta) ** 11 - 6.47011058339884e107 * cos(theta) ** 9 + 1.3573658566571e106 * cos(theta) ** 7 - 1.55508363283138e104 * cos(theta) ** 5 + 7.99118002482721e101 * cos(theta) ** 3 - 1.16659562406237e99 * cos(theta) ) * cos(52 * phi) ) # @torch.jit.script def Yl83_m53(theta, phi): return ( 4.3894953091829e-100 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 8.89541501327428e115 * cos(theta) ** 30 - 2.34515486713595e116 * cos(theta) ** 28 + 2.71922864962389e116 * cos(theta) ** 26 - 1.82970871869102e116 * cos(theta) ** 24 + 7.94024538299878e115 * cos(theta) ** 22 - 2.33655628467862e115 * cos(theta) ** 20 + 4.77360961385955e114 * cos(theta) ** 18 - 6.81944230551364e113 * cos(theta) ** 16 + 6.77428043594071e112 * cos(theta) ** 14 - 4.59701356950488e111 * cos(theta) ** 12 + 2.06396527610423e110 * cos(theta) ** 10 - 5.82309952505896e108 * cos(theta) ** 8 + 9.5015609965997e106 * cos(theta) ** 6 - 7.77541816415688e104 * cos(theta) ** 4 + 2.39735400744816e102 * cos(theta) ** 2 - 1.16659562406237e99 ) * cos(53 * phi) ) # @torch.jit.script def Yl83_m54(theta, phi): return ( 6.84689516530791e-102 * (1.0 - cos(theta) ** 2) ** 27 * ( 2.66862450398229e117 * cos(theta) ** 29 - 6.56643362798065e117 * cos(theta) ** 27 + 7.06999448902212e117 * cos(theta) ** 25 - 4.39130092485846e117 * cos(theta) ** 23 + 1.74685398425973e117 * cos(theta) ** 21 - 4.67311256935724e116 * cos(theta) ** 19 + 8.59249730494719e115 * cos(theta) ** 17 - 1.09111076888218e115 * cos(theta) ** 15 + 9.48399261031699e113 * cos(theta) ** 13 - 5.51641628340585e112 * cos(theta) ** 11 + 2.06396527610423e111 * cos(theta) ** 9 - 4.65847962004717e109 * cos(theta) ** 7 + 5.70093659795982e107 * cos(theta) ** 5 - 3.11016726566275e105 * cos(theta) ** 3 + 4.79470801489633e102 * cos(theta) ) * cos(54 * phi) ) # @torch.jit.script def Yl83_m55(theta, phi): return ( 1.08231863529359e-103 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 7.73901106154863e118 * cos(theta) ** 28 - 1.77293707955478e119 * cos(theta) ** 26 + 1.76749862225553e119 * cos(theta) ** 24 - 1.00999921271744e119 * cos(theta) ** 22 + 3.66839336694544e118 * cos(theta) ** 20 - 8.87891388177877e117 * cos(theta) ** 18 + 1.46072454184102e117 * cos(theta) ** 16 - 1.63666615332327e116 * cos(theta) ** 14 + 1.23291903934121e115 * cos(theta) ** 12 - 6.06805791174644e113 * cos(theta) ** 10 + 1.85756874849381e112 * cos(theta) ** 8 - 3.26093573403302e110 * cos(theta) ** 6 + 2.85046829897991e108 * cos(theta) ** 4 - 9.33050179698825e105 * cos(theta) ** 2 + 4.79470801489633e102 ) * cos(55 * phi) ) # @torch.jit.script def Yl83_m56(theta, phi): return ( 1.7348771235664e-105 * (1.0 - cos(theta) ** 2) ** 28 * ( 2.16692309723362e120 * cos(theta) ** 27 - 4.60963640684242e120 * cos(theta) ** 25 + 4.24199669341327e120 * cos(theta) ** 23 - 2.22199826797838e120 * cos(theta) ** 21 + 7.33678673389087e119 * cos(theta) ** 19 - 1.59820449872018e119 * cos(theta) ** 17 + 2.33715926694564e118 * cos(theta) ** 15 - 2.29133261465258e117 * cos(theta) ** 13 + 1.47950284720945e116 * cos(theta) ** 11 - 6.06805791174644e114 * cos(theta) ** 9 + 1.48605499879505e113 * cos(theta) ** 7 - 1.95656144041981e111 * cos(theta) ** 5 + 1.14018731959196e109 * cos(theta) ** 3 - 1.86610035939765e106 * cos(theta) ) * cos(56 * phi) ) # @torch.jit.script def Yl83_m57(theta, phi): return ( 2.82177785240865e-107 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 5.85069236253076e121 * cos(theta) ** 26 - 1.1524091017106e122 * cos(theta) ** 24 + 9.75659239485052e121 * cos(theta) ** 22 - 4.6661963627546e121 * cos(theta) ** 20 + 1.39398947943927e121 * cos(theta) ** 18 - 2.7169476478243e120 * cos(theta) ** 16 + 3.50573890041845e119 * cos(theta) ** 14 - 2.97873239904836e118 * cos(theta) ** 12 + 1.6274531319304e117 * cos(theta) ** 10 - 5.4612521205718e115 * cos(theta) ** 8 + 1.04023849915653e114 * cos(theta) ** 6 - 9.78280720209905e111 * cos(theta) ** 4 + 3.42056195877589e109 * cos(theta) ** 2 - 1.86610035939765e106 ) * cos(57 * phi) ) # @torch.jit.script def Yl83_m58(theta, phi): return ( 4.66043644840752e-109 * (1.0 - cos(theta) ** 2) ** 29 * ( 1.521180014258e123 * cos(theta) ** 25 - 2.76578184410545e123 * cos(theta) ** 23 + 2.14645032686711e123 * cos(theta) ** 21 - 9.33239272550919e122 * cos(theta) ** 19 + 2.50918106299068e122 * cos(theta) ** 17 - 4.34711623651888e121 * cos(theta) ** 15 + 4.90803446058584e120 * cos(theta) ** 13 - 3.57447887885803e119 * cos(theta) ** 11 + 1.6274531319304e118 * cos(theta) ** 9 - 4.36900169645744e116 * cos(theta) ** 7 + 6.2414309949392e114 * cos(theta) ** 5 - 3.91312288083962e112 * cos(theta) ** 3 + 6.84112391755179e109 * cos(theta) ) * cos(58 * phi) ) # @torch.jit.script def Yl83_m59(theta, phi): return ( 7.82190277806005e-111 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 3.802950035645e124 * cos(theta) ** 24 - 6.36129824144254e124 * cos(theta) ** 22 + 4.50754568642094e124 * cos(theta) ** 20 - 1.77315461784675e124 * cos(theta) ** 18 + 4.26560780708415e123 * cos(theta) ** 16 - 6.52067435477833e122 * cos(theta) ** 14 + 6.38044479876159e121 * cos(theta) ** 12 - 3.93192676674383e120 * cos(theta) ** 10 + 1.46470781873736e119 * cos(theta) ** 8 - 3.05830118752021e117 * cos(theta) ** 6 + 3.1207154974696e115 * cos(theta) ** 4 - 1.17393686425189e113 * cos(theta) ** 2 + 6.84112391755179e109 ) * cos(59 * phi) ) # @torch.jit.script def Yl83_m60(theta, phi): return ( 1.33517678946737e-112 * (1.0 - cos(theta) ** 2) ** 30 * ( 9.12708008554799e125 * cos(theta) ** 23 - 1.39948561311736e126 * cos(theta) ** 21 + 9.01509137284188e125 * cos(theta) ** 19 - 3.19167831212414e125 * cos(theta) ** 17 + 6.82497249133465e124 * cos(theta) ** 15 - 9.12894409668965e123 * cos(theta) ** 13 + 7.6565337585139e122 * cos(theta) ** 11 - 3.93192676674383e121 * cos(theta) ** 9 + 1.17176625498988e120 * cos(theta) ** 7 - 1.83498071251212e118 * cos(theta) ** 5 + 1.24828619898784e116 * cos(theta) ** 3 - 2.34787372850377e113 * cos(theta) ) * cos(60 * phi) ) # @torch.jit.script def Yl83_m61(theta, phi): return ( 2.32003004931995e-114 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 2.09922841967604e127 * cos(theta) ** 22 - 2.93891978754645e127 * cos(theta) ** 20 + 1.71286736083996e127 * cos(theta) ** 18 - 5.42585313061104e126 * cos(theta) ** 16 + 1.0237458737002e126 * cos(theta) ** 14 - 1.18676273256966e125 * cos(theta) ** 12 + 8.42218713436529e123 * cos(theta) ** 10 - 3.53873409006945e122 * cos(theta) ** 8 + 8.20236378492919e120 * cos(theta) ** 6 - 9.17490356256062e118 * cos(theta) ** 4 + 3.74485859696352e116 * cos(theta) ** 2 - 2.34787372850377e113 ) * cos(61 * phi) ) # @torch.jit.script def Yl83_m62(theta, phi): return ( 4.10769574780988e-116 * (1.0 - cos(theta) ** 2) ** 31 * ( 4.61830252328728e128 * cos(theta) ** 21 - 5.87783957509291e128 * cos(theta) ** 19 + 3.08316124951192e128 * cos(theta) ** 17 - 8.68136500897767e127 * cos(theta) ** 15 + 1.43324422318028e127 * cos(theta) ** 13 - 1.42411527908359e126 * cos(theta) ** 11 + 8.42218713436529e124 * cos(theta) ** 9 - 2.83098727205556e123 * cos(theta) ** 7 + 4.92141827095752e121 * cos(theta) ** 5 - 3.66996142502425e119 * cos(theta) ** 3 + 7.48971719392703e116 * cos(theta) ) * cos(62 * phi) ) # @torch.jit.script def Yl83_m63(theta, phi): return ( 7.41843324752135e-118 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 9.69843529890329e129 * cos(theta) ** 20 - 1.11678951926765e130 * cos(theta) ** 18 + 5.24137412417027e129 * cos(theta) ** 16 - 1.30220475134665e129 * cos(theta) ** 14 + 1.86321749013436e128 * cos(theta) ** 12 - 1.56652680699194e127 * cos(theta) ** 10 + 7.57996842092876e125 * cos(theta) ** 8 - 1.98169109043889e124 * cos(theta) ** 6 + 2.46070913547876e122 * cos(theta) ** 4 - 1.10098842750727e120 * cos(theta) ** 2 + 7.48971719392703e116 ) * cos(63 * phi) ) # @torch.jit.script def Yl83_m64(theta, phi): return ( 1.36816516298103e-119 * (1.0 - cos(theta) ** 2) ** 32 * ( 1.93968705978066e131 * cos(theta) ** 19 - 2.01022113468177e131 * cos(theta) ** 17 + 8.38619859867243e130 * cos(theta) ** 15 - 1.82308665188531e130 * cos(theta) ** 13 + 2.23586098816123e129 * cos(theta) ** 11 - 1.56652680699194e128 * cos(theta) ** 9 + 6.06397473674301e126 * cos(theta) ** 7 - 1.18901465426334e125 * cos(theta) ** 5 + 9.84283654191503e122 * cos(theta) ** 3 - 2.20197685501455e120 * cos(theta) ) * cos(64 * phi) ) # @torch.jit.script def Yl83_m65(theta, phi): return ( 2.58006632149456e-121 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 3.68540541358325e132 * cos(theta) ** 18 - 3.41737592895902e132 * cos(theta) ** 16 + 1.25792978980086e132 * cos(theta) ** 14 - 2.3700126474509e131 * cos(theta) ** 12 + 2.45944708697735e130 * cos(theta) ** 10 - 1.40987412629275e129 * cos(theta) ** 8 + 4.24478231572011e127 * cos(theta) ** 6 - 5.94507327131668e125 * cos(theta) ** 4 + 2.95285096257451e123 * cos(theta) ** 2 - 2.20197685501455e120 ) * cos(65 * phi) ) # @torch.jit.script def Yl83_m66(theta, phi): return ( 4.98197430209356e-123 * (1.0 - cos(theta) ** 2) ** 33 * ( 6.63372974444985e133 * cos(theta) ** 17 - 5.46780148633442e133 * cos(theta) ** 15 + 1.76110170572121e133 * cos(theta) ** 13 - 2.84401517694108e132 * cos(theta) ** 11 + 2.45944708697735e131 * cos(theta) ** 9 - 1.1278993010342e130 * cos(theta) ** 7 + 2.54686938943207e128 * cos(theta) ** 5 - 2.37802930852667e126 * cos(theta) ** 3 + 5.90570192514902e123 * cos(theta) ) * cos(66 * phi) ) # @torch.jit.script def Yl83_m67(theta, phi): return ( 9.86577922878173e-125 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 1.12773405655647e135 * cos(theta) ** 16 - 8.20170222950164e134 * cos(theta) ** 14 + 2.28943221743757e134 * cos(theta) ** 12 - 3.12841669463519e133 * cos(theta) ** 10 + 2.21350237827962e132 * cos(theta) ** 8 - 7.8952951072394e130 * cos(theta) ** 6 + 1.27343469471603e129 * cos(theta) ** 4 - 7.13408792558001e126 * cos(theta) ** 2 + 5.90570192514902e123 ) * cos(67 * phi) ) # @torch.jit.script def Yl83_m68(theta, phi): return ( 2.0071643182917e-126 * (1.0 - cos(theta) ** 2) ** 34 * ( 1.80437449049036e136 * cos(theta) ** 15 - 1.14823831213023e136 * cos(theta) ** 13 + 2.74731866092509e135 * cos(theta) ** 11 - 3.12841669463519e134 * cos(theta) ** 9 + 1.77080190262369e133 * cos(theta) ** 7 - 4.73717706434364e131 * cos(theta) ** 5 + 5.09373877886413e129 * cos(theta) ** 3 - 1.426817585116e127 * cos(theta) ) * cos(68 * phi) ) # @torch.jit.script def Yl83_m69(theta, phi): return ( 4.20354309650058e-128 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 2.70656173573554e137 * cos(theta) ** 14 - 1.4927098057693e137 * cos(theta) ** 12 + 3.0220505270176e136 * cos(theta) ** 10 - 2.81557502517167e135 * cos(theta) ** 8 + 1.23956133183659e134 * cos(theta) ** 6 - 2.36858853217182e132 * cos(theta) ** 4 + 1.52812163365924e130 * cos(theta) ** 2 - 1.426817585116e127 ) * cos(69 * phi) ) # @torch.jit.script def Yl83_m70(theta, phi): return ( 9.08250762421223e-130 * (1.0 - cos(theta) ** 2) ** 35 * ( 3.78918643002976e138 * cos(theta) ** 13 - 1.79125176692316e138 * cos(theta) ** 11 + 3.0220505270176e137 * cos(theta) ** 9 - 2.25246002013734e136 * cos(theta) ** 7 + 7.43736799101952e134 * cos(theta) ** 5 - 9.47435412868728e132 * cos(theta) ** 3 + 3.05624326731848e130 * cos(theta) ) * cos(70 * phi) ) # @torch.jit.script def Yl83_m71(theta, phi): return ( 2.02989575112448e-131 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 4.92594235903868e139 * cos(theta) ** 12 - 1.97037694361547e139 * cos(theta) ** 10 + 2.71984547431584e138 * cos(theta) ** 8 - 1.57672201409614e137 * cos(theta) ** 6 + 3.71868399550976e135 * cos(theta) ** 4 - 2.84230623860618e133 * cos(theta) ** 2 + 3.05624326731848e130 ) * cos(71 * phi) ) # @torch.jit.script def Yl83_m72(theta, phi): return ( 4.70670807067363e-133 * (1.0 - cos(theta) ** 2) ** 36 * ( 5.91113083084642e140 * cos(theta) ** 11 - 1.97037694361547e140 * cos(theta) ** 9 + 2.17587637945267e139 * cos(theta) ** 7 - 9.46033208457683e137 * cos(theta) ** 5 + 1.4874735982039e136 * cos(theta) ** 3 - 5.68461247721237e133 * cos(theta) ) * cos(72 * phi) ) # @torch.jit.script def Yl83_m73(theta, phi): return ( 1.13621003504546e-134 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 6.50224391393106e141 * cos(theta) ** 10 - 1.77333924925393e141 * cos(theta) ** 8 + 1.52311346561687e140 * cos(theta) ** 6 - 4.73016604228841e138 * cos(theta) ** 4 + 4.46242079461171e136 * cos(theta) ** 2 - 5.68461247721237e133 ) * cos(73 * phi) ) # @torch.jit.script def Yl83_m74(theta, phi): return ( 2.86753544254554e-136 * (1.0 - cos(theta) ** 2) ** 37 * ( 6.50224391393106e142 * cos(theta) ** 9 - 1.41867139940314e142 * cos(theta) ** 7 + 9.13868079370121e140 * cos(theta) ** 5 - 1.89206641691537e139 * cos(theta) ** 3 + 8.92484158922342e136 * cos(theta) ) * cos(74 * phi) ) # @torch.jit.script def Yl83_m75(theta, phi): return ( 7.60429569649727e-138 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 5.85201952253796e143 * cos(theta) ** 8 - 9.93069979582199e142 * cos(theta) ** 6 + 4.56934039685061e141 * cos(theta) ** 4 - 5.67619925074609e139 * cos(theta) ** 2 + 8.92484158922342e136 ) * cos(75 * phi) ) # @torch.jit.script def Yl83_m76(theta, phi): return ( 2.13213863903882e-139 * (1.0 - cos(theta) ** 2) ** 38 * ( 4.68161561803036e144 * cos(theta) ** 7 - 5.95841987749319e143 * cos(theta) ** 5 + 1.82773615874024e142 * cos(theta) ** 3 - 1.13523985014922e140 * cos(theta) ) * cos(76 * phi) ) # @torch.jit.script def Yl83_m77(theta, phi): return ( 6.37098275111623e-141 * (1.0 - cos(theta) ** 2) ** 38.5 * ( 3.27713093262125e145 * cos(theta) ** 6 - 2.9792099387466e144 * cos(theta) ** 4 + 5.48320847622073e142 * cos(theta) ** 2 - 1.13523985014922e140 ) * cos(77 * phi) ) # @torch.jit.script def Yl83_m78(theta, phi): return ( 2.04983009988826e-142 * (1.0 - cos(theta) ** 2) ** 39 * ( 1.96627855957275e146 * cos(theta) ** 5 - 1.19168397549864e145 * cos(theta) ** 3 + 1.09664169524415e143 * cos(theta) ) * cos(78 * phi) ) # @torch.jit.script def Yl83_m79(theta, phi): return ( 7.20236881335263e-144 * (1.0 - cos(theta) ** 2) ** 39.5 * ( 9.83139279786376e146 * cos(theta) ** 4 - 3.57505192649591e145 * cos(theta) ** 2 + 1.09664169524415e143 ) * cos(79 * phi) ) # @torch.jit.script def Yl83_m80(theta, phi): return ( 2.82066531886291e-145 * (1.0 - cos(theta) ** 2) ** 40 * (3.93255711914551e147 * cos(theta) ** 3 - 7.15010385299183e145 * cos(theta)) * cos(80 * phi) ) # @torch.jit.script def Yl83_m81(theta, phi): return ( 1.27165413378911e-146 * (1.0 - cos(theta) ** 2) ** 40.5 * (1.17976713574365e148 * cos(theta) ** 2 - 7.15010385299183e145) * cos(81 * phi) ) # @torch.jit.script def Yl83_m82(theta, phi): return 16.5172722476201 * (1.0 - cos(theta) ** 2) ** 41 * cos(82 * phi) * cos(theta) # @torch.jit.script def Yl83_m83(theta, phi): return 1.2819889538225 * (1.0 - cos(theta) ** 2) ** 41.5 * cos(83 * phi) # @torch.jit.script def Yl84_m_minus_84(theta, phi): return 1.28579873622986 * (1.0 - cos(theta) ** 2) ** 42 * sin(84 * phi) # @torch.jit.script def Yl84_m_minus_83(theta, phi): return ( 16.6658563996924 * (1.0 - cos(theta) ** 2) ** 41.5 * sin(83 * phi) * cos(theta) ) # @torch.jit.script def Yl84_m_minus_82(theta, phi): return ( 7.72961936139408e-149 * (1.0 - cos(theta) ** 2) ** 41 * (1.9702111166919e150 * cos(theta) ** 2 - 1.17976713574365e148) * sin(82 * phi) ) # @torch.jit.script def Yl84_m_minus_81(theta, phi): return ( 1.72493517863933e-147 * (1.0 - cos(theta) ** 2) ** 40.5 * (6.567370388973e149 * cos(theta) ** 3 - 1.17976713574365e148 * cos(theta)) * sin(81 * phi) ) # @torch.jit.script def Yl84_m_minus_80(theta, phi): return ( 4.4314387105487e-146 * (1.0 - cos(theta) ** 2) ** 40 * ( 1.64184259724325e149 * cos(theta) ** 4 - 5.89883567871826e147 * cos(theta) ** 2 + 1.78752596324796e145 ) * sin(80 * phi) ) # @torch.jit.script def Yl84_m_minus_79(theta, phi): return ( 1.26897093021025e-144 * (1.0 - cos(theta) ** 2) ** 39.5 * ( 3.2836851944865e148 * cos(theta) ** 5 - 1.96627855957275e147 * cos(theta) ** 3 + 1.78752596324796e145 * cos(theta) ) * sin(79 * phi) ) # @torch.jit.script def Yl84_m_minus_78(theta, phi): return ( 3.96845171677929e-143 * (1.0 - cos(theta) ** 2) ** 39 * ( 5.4728086574775e147 * cos(theta) ** 6 - 4.91569639893188e146 * cos(theta) ** 4 + 8.93762981623979e144 * cos(theta) ** 2 - 1.82773615874024e142 ) * sin(78 * phi) ) # @torch.jit.script def Yl84_m_minus_77(theta, phi): return ( 1.33637280121287e-141 * (1.0 - cos(theta) ** 2) ** 38.5 * ( 7.81829808211071e146 * cos(theta) ** 7 - 9.83139279786376e145 * cos(theta) ** 5 + 2.9792099387466e144 * cos(theta) ** 3 - 1.82773615874024e142 * cos(theta) ) * sin(77 * phi) ) # @torch.jit.script def Yl84_m_minus_76(theta, phi): return ( 4.7960705122028e-140 * (1.0 - cos(theta) ** 2) ** 38 * ( 9.77287260263839e145 * cos(theta) ** 8 - 1.63856546631063e145 * cos(theta) ** 6 + 7.44802484686649e143 * cos(theta) ** 4 - 9.13868079370121e141 * cos(theta) ** 2 + 1.41904981268652e139 ) * sin(76 * phi) ) # @torch.jit.script def Yl84_m_minus_75(theta, phi): return ( 1.81998079647975e-138 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 1.08587473362649e145 * cos(theta) ** 9 - 2.34080780901518e144 * cos(theta) ** 7 + 1.4896049693733e143 * cos(theta) ** 5 - 3.04622693123374e141 * cos(theta) ** 3 + 1.41904981268652e139 * cos(theta) ) * sin(75 * phi) ) # @torch.jit.script def Yl84_m_minus_74(theta, phi): return ( 7.25713776794442e-137 * (1.0 - cos(theta) ** 2) ** 37 * ( 1.08587473362649e144 * cos(theta) ** 10 - 2.92600976126898e143 * cos(theta) ** 8 + 2.4826749489555e142 * cos(theta) ** 6 - 7.61556732808434e140 * cos(theta) ** 4 + 7.09524906343262e138 * cos(theta) ** 2 - 8.92484158922342e135 ) * sin(74 * phi) ) # @torch.jit.script def Yl84_m_minus_73(theta, phi): return ( 3.02545190735408e-135 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 9.87158848751352e142 * cos(theta) ** 11 - 3.25112195696553e142 * cos(theta) ** 9 + 3.54667849850785e141 * cos(theta) ** 7 - 1.52311346561687e140 * cos(theta) ** 5 + 2.36508302114421e138 * cos(theta) ** 3 - 8.92484158922342e135 * cos(theta) ) * sin(73 * phi) ) # @torch.jit.script def Yl84_m_minus_72(theta, phi): return ( 1.31319948275783e-133 * (1.0 - cos(theta) ** 2) ** 36 * ( 8.2263237395946e141 * cos(theta) ** 12 - 3.25112195696553e141 * cos(theta) ** 10 + 4.43334812313481e140 * cos(theta) ** 8 - 2.53852244269478e139 * cos(theta) ** 6 + 5.91270755286052e137 * cos(theta) ** 4 - 4.46242079461171e135 * cos(theta) ** 2 + 4.73717706434364e132 ) * sin(72 * phi) ) # @torch.jit.script def Yl84_m_minus_71(theta, phi): return ( 5.91377338398529e-132 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 6.32794133814969e140 * cos(theta) ** 13 - 2.95556541542321e140 * cos(theta) ** 11 + 4.92594235903868e139 * cos(theta) ** 9 - 3.62646063242112e138 * cos(theta) ** 7 + 1.1825415105721e137 * cos(theta) ** 5 - 1.4874735982039e135 * cos(theta) ** 3 + 4.73717706434364e132 * cos(theta) ) * sin(71 * phi) ) # @torch.jit.script def Yl84_m_minus_70(theta, phi): return ( 2.75482836003585e-130 * (1.0 - cos(theta) ** 2) ** 35 * ( 4.51995809867835e139 * cos(theta) ** 14 - 2.46297117951934e139 * cos(theta) ** 12 + 4.92594235903868e138 * cos(theta) ** 10 - 4.5330757905264e137 * cos(theta) ** 8 + 1.97090251762017e136 * cos(theta) ** 6 - 3.71868399550976e134 * cos(theta) ** 4 + 2.36858853217182e132 * cos(theta) ** 2 - 2.18303090522748e129 ) * sin(70 * phi) ) # @torch.jit.script def Yl84_m_minus_69(theta, phi): return ( 1.32403826105689e-128 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 3.0133053991189e138 * cos(theta) ** 15 - 1.89459321501488e138 * cos(theta) ** 13 + 4.47812941730789e137 * cos(theta) ** 11 - 5.03675087836266e136 * cos(theta) ** 9 + 2.81557502517167e135 * cos(theta) ** 7 - 7.43736799101952e133 * cos(theta) ** 5 + 7.8952951072394e131 * cos(theta) ** 3 - 2.18303090522748e129 * cos(theta) ) * sin(69 * phi) ) # @torch.jit.script def Yl84_m_minus_68(theta, phi): return ( 6.55097952323603e-127 * (1.0 - cos(theta) ** 2) ** 34 * ( 1.88331587444931e137 * cos(theta) ** 16 - 1.35328086786777e137 * cos(theta) ** 14 + 3.73177451442324e136 * cos(theta) ** 12 - 5.03675087836266e135 * cos(theta) ** 10 + 3.51946878146459e134 * cos(theta) ** 8 - 1.23956133183659e133 * cos(theta) ** 6 + 1.97382377680985e131 * cos(theta) ** 4 - 1.09151545261374e129 * cos(theta) ** 2 + 8.91760990697502e125 ) * sin(68 * phi) ) # @torch.jit.script def Yl84_m_minus_67(theta, phi): return ( 3.33006335874572e-125 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 1.10783286732313e136 * cos(theta) ** 17 - 9.0218724524518e135 * cos(theta) ** 15 + 2.87059578032557e135 * cos(theta) ** 13 - 4.57886443487515e134 * cos(theta) ** 11 + 3.91052086829399e133 * cos(theta) ** 9 - 1.77080190262369e132 * cos(theta) ** 7 + 3.9476475536197e130 * cos(theta) ** 5 - 3.63838484204581e128 * cos(theta) ** 3 + 8.91760990697502e125 * cos(theta) ) * sin(67 * phi) ) # @torch.jit.script def Yl84_m_minus_66(theta, phi): return ( 1.73610993670686e-123 * (1.0 - cos(theta) ** 2) ** 33 * ( 6.15462704068403e134 * cos(theta) ** 18 - 5.63867028278237e134 * cos(theta) ** 16 + 2.05042555737541e134 * cos(theta) ** 14 - 3.81572036239596e133 * cos(theta) ** 12 + 3.91052086829399e132 * cos(theta) ** 10 - 2.21350237827962e131 * cos(theta) ** 8 + 6.57941258936617e129 * cos(theta) ** 6 - 9.09596210511452e127 * cos(theta) ** 4 + 4.45880495348751e125 * cos(theta) ** 2 - 3.28094551397168e122 ) * sin(66 * phi) ) # @torch.jit.script def Yl84_m_minus_65(theta, phi): return ( 9.26829082417413e-122 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 3.2392773898337e133 * cos(theta) ** 19 - 3.31686487222493e133 * cos(theta) ** 17 + 1.36695037158361e133 * cos(theta) ** 15 - 2.93516950953535e132 * cos(theta) ** 13 + 3.55501897117636e131 * cos(theta) ** 11 - 2.45944708697735e130 * cos(theta) ** 9 + 9.39916084195167e128 * cos(theta) ** 7 - 1.8191924210229e127 * cos(theta) ** 5 + 1.48626831782917e125 * cos(theta) ** 3 - 3.28094551397168e122 * cos(theta) ) * sin(65 * phi) ) # @torch.jit.script def Yl84_m_minus_64(theta, phi): return ( 5.05950215049249e-120 * (1.0 - cos(theta) ** 2) ** 32 * ( 1.61963869491685e132 * cos(theta) ** 20 - 1.84270270679163e132 * cos(theta) ** 18 + 8.54343982239754e131 * cos(theta) ** 16 - 2.09654964966811e131 * cos(theta) ** 14 + 2.96251580931363e130 * cos(theta) ** 12 - 2.45944708697735e129 * cos(theta) ** 10 + 1.17489510524396e128 * cos(theta) ** 8 - 3.03198736837151e126 * cos(theta) ** 6 + 3.71567079457292e124 * cos(theta) ** 4 - 1.64047275698584e122 * cos(theta) ** 2 + 1.10098842750727e119 ) * sin(64 * phi) ) # @torch.jit.script def Yl84_m_minus_63(theta, phi): return ( 2.82064408831893e-118 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 7.71256521388976e130 * cos(theta) ** 21 - 9.69843529890329e130 * cos(theta) ** 19 + 5.02555283670443e130 * cos(theta) ** 17 - 1.39769976644541e130 * cos(theta) ** 15 + 2.27885831485664e129 * cos(theta) ** 13 - 2.23586098816123e128 * cos(theta) ** 11 + 1.30543900582662e127 * cos(theta) ** 9 - 4.33141052624501e125 * cos(theta) ** 7 + 7.43134158914585e123 * cos(theta) ** 5 - 5.46824252328613e121 * cos(theta) ** 3 + 1.10098842750727e119 * cos(theta) ) * sin(63 * phi) ) # @torch.jit.script def Yl84_m_minus_62(theta, phi): return ( 1.60405146295186e-116 * (1.0 - cos(theta) ** 2) ** 31 * ( 3.50571146085898e129 * cos(theta) ** 22 - 4.84921764945165e129 * cos(theta) ** 20 + 2.79197379816913e129 * cos(theta) ** 18 - 8.73562354028378e128 * cos(theta) ** 16 + 1.62775593918331e128 * cos(theta) ** 14 - 1.86321749013436e127 * cos(theta) ** 12 + 1.30543900582662e126 * cos(theta) ** 10 - 5.41426315780626e124 * cos(theta) ** 8 + 1.23855693152431e123 * cos(theta) ** 6 - 1.36706063082153e121 * cos(theta) ** 4 + 5.50494213753637e118 * cos(theta) ** 2 - 3.40441690633047e115 ) * sin(62 * phi) ) # @torch.jit.script def Yl84_m_minus_61(theta, phi): return ( 9.29519796437372e-115 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 1.52422237428651e128 * cos(theta) ** 23 - 2.30915126164364e128 * cos(theta) ** 21 + 1.46945989377323e128 * cos(theta) ** 19 - 5.13860208251987e127 * cos(theta) ** 17 + 1.08517062612221e127 * cos(theta) ** 15 - 1.43324422318028e126 * cos(theta) ** 13 + 1.18676273256966e125 * cos(theta) ** 11 - 6.01584795311807e123 * cos(theta) ** 9 + 1.76936704503473e122 * cos(theta) ** 7 - 2.73412126164306e120 * cos(theta) ** 5 + 1.83498071251212e118 * cos(theta) ** 3 - 3.40441690633047e115 * cos(theta) ) * sin(61 * phi) ) # @torch.jit.script def Yl84_m_minus_60(theta, phi): return ( 5.48337901375787e-113 * (1.0 - cos(theta) ** 2) ** 30 * ( 6.35092655952714e126 * cos(theta) ** 24 - 1.04961420983802e127 * cos(theta) ** 22 + 7.34729946886613e126 * cos(theta) ** 20 - 2.85477893473326e126 * cos(theta) ** 18 + 6.78231641326381e125 * cos(theta) ** 16 - 1.0237458737002e125 * cos(theta) ** 14 + 9.88968943808046e123 * cos(theta) ** 12 - 6.01584795311807e122 * cos(theta) ** 10 + 2.21170880629341e121 * cos(theta) ** 8 - 4.55686876940511e119 * cos(theta) ** 6 + 4.58745178128031e117 * cos(theta) ** 4 - 1.70220845316524e115 * cos(theta) ** 2 + 9.78280720209905e111 ) * sin(60 * phi) ) # @torch.jit.script def Yl84_m_minus_59(theta, phi): return ( 3.29002740825472e-111 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 2.54037062381086e125 * cos(theta) ** 25 - 4.56354004277399e125 * cos(theta) ** 23 + 3.4987140327934e125 * cos(theta) ** 21 - 1.50251522880698e125 * cos(theta) ** 19 + 3.98959789015518e124 * cos(theta) ** 17 - 6.82497249133465e123 * cos(theta) ** 15 + 7.60745341390805e122 * cos(theta) ** 13 - 5.46895268465279e121 * cos(theta) ** 11 + 2.4574542292149e120 * cos(theta) ** 9 - 6.50981252772158e118 * cos(theta) ** 7 + 9.17490356256062e116 * cos(theta) ** 5 - 5.67402817721745e114 * cos(theta) ** 3 + 9.78280720209905e111 * cos(theta) ) * sin(59 * phi) ) # @torch.jit.script def Yl84_m_minus_58(theta, phi): return ( 2.00610753277077e-109 * (1.0 - cos(theta) ** 2) ** 29 * ( 9.77065624542637e123 * cos(theta) ** 26 - 1.9014750178225e124 * cos(theta) ** 24 + 1.59032456036063e124 * cos(theta) ** 22 - 7.5125761440349e123 * cos(theta) ** 20 + 2.21644327230843e123 * cos(theta) ** 18 - 4.26560780708415e122 * cos(theta) ** 16 + 5.4338952956486e121 * cos(theta) ** 14 - 4.55746057054399e120 * cos(theta) ** 12 + 2.4574542292149e119 * cos(theta) ** 10 - 8.13726565965198e117 * cos(theta) ** 8 + 1.5291505937601e116 * cos(theta) ** 6 - 1.41850704430436e114 * cos(theta) ** 4 + 4.89140360104953e111 * cos(theta) ** 2 - 2.63120150675069e108 ) * sin(58 * phi) ) # @torch.jit.script def Yl84_m_minus_57(theta, phi): return ( 1.24216778811374e-107 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 3.61876157238014e122 * cos(theta) ** 27 - 7.60590007128999e122 * cos(theta) ** 25 + 6.91445461026363e122 * cos(theta) ** 23 - 3.57741721144519e122 * cos(theta) ** 21 + 1.16654909068865e122 * cos(theta) ** 19 - 2.50918106299068e121 * cos(theta) ** 17 + 3.62259686376574e120 * cos(theta) ** 15 - 3.50573890041845e119 * cos(theta) ** 13 + 2.23404929928627e118 * cos(theta) ** 11 - 9.0414062885022e116 * cos(theta) ** 9 + 2.18450084822872e115 * cos(theta) ** 7 - 2.83701408860873e113 * cos(theta) ** 5 + 1.63046786701651e111 * cos(theta) ** 3 - 2.63120150675069e108 * cos(theta) ) * sin(57 * phi) ) # @torch.jit.script def Yl84_m_minus_56(theta, phi): return ( 7.80492681130998e-106 * (1.0 - cos(theta) ** 2) ** 28 * ( 1.29241484727862e121 * cos(theta) ** 28 - 2.92534618126538e121 * cos(theta) ** 26 + 2.88102275427651e121 * cos(theta) ** 24 - 1.62609873247509e121 * cos(theta) ** 22 + 5.83274545344325e120 * cos(theta) ** 20 - 1.39398947943927e120 * cos(theta) ** 18 + 2.26412303985359e119 * cos(theta) ** 16 - 2.50409921458461e118 * cos(theta) ** 14 + 1.86170774940522e117 * cos(theta) ** 12 - 9.0414062885022e115 * cos(theta) ** 10 + 2.7306260602859e114 * cos(theta) ** 8 - 4.72835681434788e112 * cos(theta) ** 6 + 4.07616966754127e110 * cos(theta) ** 4 - 1.31560075337534e108 * cos(theta) ** 2 + 6.66464414070589e104 ) * sin(56 * phi) ) # @torch.jit.script def Yl84_m_minus_55(theta, phi): return ( 4.97315335648737e-104 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 4.45660292165042e119 * cos(theta) ** 29 - 1.08346154861681e120 * cos(theta) ** 27 + 1.1524091017106e120 * cos(theta) ** 25 - 7.06999448902212e119 * cos(theta) ** 23 + 2.77749783497297e119 * cos(theta) ** 21 - 7.33678673389087e118 * cos(theta) ** 19 + 1.33183708226681e118 * cos(theta) ** 17 - 1.66939947638974e117 * cos(theta) ** 15 + 1.43208288415787e116 * cos(theta) ** 13 - 8.21946026227472e114 * cos(theta) ** 11 + 3.03402895587322e113 * cos(theta) ** 9 - 6.75479544906839e111 * cos(theta) ** 7 + 8.15233933508254e109 * cos(theta) ** 5 - 4.38533584458448e107 * cos(theta) ** 3 + 6.66464414070589e104 * cos(theta) ) * sin(55 * phi) ) # @torch.jit.script def Yl84_m_minus_54(theta, phi): return ( 3.21144049393384e-102 * (1.0 - cos(theta) ** 2) ** 27 * ( 1.48553430721681e118 * cos(theta) ** 30 - 3.86950553077431e118 * cos(theta) ** 28 + 4.43234269888694e118 * cos(theta) ** 26 - 2.94583103709255e118 * cos(theta) ** 24 + 1.26249901589681e118 * cos(theta) ** 22 - 3.66839336694544e117 * cos(theta) ** 20 + 7.3990949014823e116 * cos(theta) ** 18 - 1.04337467274359e116 * cos(theta) ** 16 + 1.02291634582705e115 * cos(theta) ** 14 - 6.84955021856227e113 * cos(theta) ** 12 + 3.03402895587322e112 * cos(theta) ** 10 - 8.44349431133549e110 * cos(theta) ** 8 + 1.35872322251376e109 * cos(theta) ** 6 - 1.09633396114612e107 * cos(theta) ** 4 + 3.33232207035295e104 * cos(theta) ** 2 - 1.59823600496544e101 ) * sin(54 * phi) ) # @torch.jit.script def Yl84_m_minus_53(theta, phi): return ( 2.10048831220557e-100 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 4.79204615231228e116 * cos(theta) ** 31 - 1.33431225199114e117 * cos(theta) ** 29 + 1.64160840699516e117 * cos(theta) ** 27 - 1.17833241483702e117 * cos(theta) ** 25 + 5.48912615607307e116 * cos(theta) ** 23 - 1.74685398425973e116 * cos(theta) ** 21 + 3.89426047446437e115 * cos(theta) ** 19 - 6.13749807496228e114 * cos(theta) ** 17 + 6.81944230551364e113 * cos(theta) ** 15 - 5.26888478350944e112 * cos(theta) ** 13 + 2.75820814170293e111 * cos(theta) ** 11 - 9.38166034592832e109 * cos(theta) ** 9 + 1.94103317501965e108 * cos(theta) ** 7 - 2.19266792229224e106 * cos(theta) ** 5 + 1.11077402345098e104 * cos(theta) ** 3 - 1.59823600496544e101 * cos(theta) ) * sin(53 * phi) ) # @torch.jit.script def Yl84_m_minus_52(theta, phi): return ( 1.39077073021898e-98 * (1.0 - cos(theta) ** 2) ** 26 * ( 1.49751442259759e115 * cos(theta) ** 32 - 4.44770750663714e115 * cos(theta) ** 30 + 5.86288716783987e115 * cos(theta) ** 28 - 4.53204774937315e115 * cos(theta) ** 26 + 2.28713589836378e115 * cos(theta) ** 24 - 7.94024538299878e114 * cos(theta) ** 22 + 1.94713023723219e114 * cos(theta) ** 20 - 3.40972115275682e113 * cos(theta) ** 18 + 4.26215144094603e112 * cos(theta) ** 16 - 3.76348913107817e111 * cos(theta) ** 14 + 2.29850678475244e110 * cos(theta) ** 12 - 9.38166034592832e108 * cos(theta) ** 10 + 2.42629146877457e107 * cos(theta) ** 8 - 3.65444653715373e105 * cos(theta) ** 6 + 2.77693505862746e103 * cos(theta) ** 4 - 7.99118002482721e100 * cos(theta) ** 2 + 3.6456113251949e97 ) * sin(52 * phi) ) # @torch.jit.script def Yl84_m_minus_51(theta, phi): return ( 9.31712594605429e-97 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 4.53792249271996e113 * cos(theta) ** 33 - 1.43474435697972e114 * cos(theta) ** 31 + 2.02168523028961e114 * cos(theta) ** 29 - 1.67853620347154e114 * cos(theta) ** 27 + 9.14854359345512e113 * cos(theta) ** 25 - 3.45228060130382e113 * cos(theta) ** 23 + 9.27204874872469e112 * cos(theta) ** 21 - 1.79459008039833e112 * cos(theta) ** 19 + 2.50714790643884e111 * cos(theta) ** 17 - 2.50899275405211e110 * cos(theta) ** 15 + 1.76808214211726e109 * cos(theta) ** 13 - 8.52878213266211e107 * cos(theta) ** 11 + 2.69587940974952e106 * cos(theta) ** 9 - 5.22063791021962e104 * cos(theta) ** 7 + 5.55387011725491e102 * cos(theta) ** 5 - 2.6637266749424e100 * cos(theta) ** 3 + 3.6456113251949e97 * cos(theta) ) * sin(51 * phi) ) # @torch.jit.script def Yl84_m_minus_50(theta, phi): return ( 6.3123098526323e-95 * (1.0 - cos(theta) ** 2) ** 25 * ( 1.33468308609411e112 * cos(theta) ** 34 - 4.48357611556164e112 * cos(theta) ** 32 + 6.73895076763203e112 * cos(theta) ** 30 - 5.99477215525549e112 * cos(theta) ** 28 + 3.51867061286735e112 * cos(theta) ** 26 - 1.43845025054326e112 * cos(theta) ** 24 + 4.21456761305668e111 * cos(theta) ** 22 - 8.97295040199164e110 * cos(theta) ** 20 + 1.39285994802158e110 * cos(theta) ** 18 - 1.56812047128257e109 * cos(theta) ** 16 + 1.26291581579804e108 * cos(theta) ** 14 - 7.10731844388509e106 * cos(theta) ** 12 + 2.69587940974952e105 * cos(theta) ** 10 - 6.52579738777452e103 * cos(theta) ** 8 + 9.25645019542485e101 * cos(theta) ** 6 - 6.65931668735601e99 * cos(theta) ** 4 + 1.82280566259745e97 * cos(theta) ** 2 - 7.94250833375794e93 ) * sin(50 * phi) ) # @torch.jit.script def Yl84_m_minus_49(theta, phi): return ( 4.3228954315221e-93 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 3.81338024598316e110 * cos(theta) ** 35 - 1.35865942895807e111 * cos(theta) ** 33 + 2.17385508633291e111 * cos(theta) ** 31 - 2.06716281215707e111 * cos(theta) ** 29 + 1.30321133809902e111 * cos(theta) ** 27 - 5.75380100217303e110 * cos(theta) ** 25 + 1.83242070132899e110 * cos(theta) ** 23 - 4.27283352475792e109 * cos(theta) ** 21 + 7.33084183169251e108 * cos(theta) ** 19 - 9.22423806636806e107 * cos(theta) ** 17 + 8.41943877198696e106 * cos(theta) ** 15 - 5.46716803375777e105 * cos(theta) ** 13 + 2.45079946340865e104 * cos(theta) ** 11 - 7.25088598641613e102 * cos(theta) ** 9 + 1.32235002791784e101 * cos(theta) ** 7 - 1.3318633374712e99 * cos(theta) ** 5 + 6.07601887532483e96 * cos(theta) ** 3 - 7.94250833375794e93 * cos(theta) ) * sin(49 * phi) ) # @torch.jit.script def Yl84_m_minus_48(theta, phi): return ( 2.9912437292547e-91 * (1.0 - cos(theta) ** 2) ** 24 * ( 1.05927229055088e109 * cos(theta) ** 36 - 3.99605714399433e109 * cos(theta) ** 34 + 6.79329714479036e109 * cos(theta) ** 32 - 6.89054270719022e109 * cos(theta) ** 30 + 4.6543262074965e109 * cos(theta) ** 28 - 2.21300038545117e109 * cos(theta) ** 26 + 7.63508625553746e108 * cos(theta) ** 24 - 1.94219705670815e108 * cos(theta) ** 22 + 3.66542091584626e107 * cos(theta) ** 20 - 5.12457670353781e106 * cos(theta) ** 18 + 5.26214923249185e105 * cos(theta) ** 16 - 3.90512002411269e104 * cos(theta) ** 14 + 2.04233288617388e103 * cos(theta) ** 12 - 7.25088598641613e101 * cos(theta) ** 10 + 1.65293753489729e100 * cos(theta) ** 8 - 2.21977222911867e98 * cos(theta) ** 6 + 1.51900471883121e96 * cos(theta) ** 4 - 3.97125416687897e93 * cos(theta) ** 2 + 1.65883632701711e90 ) * sin(48 * phi) ) # @torch.jit.script def Yl84_m_minus_47(theta, phi): return ( 2.09044925098607e-89 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 2.86289808256994e107 * cos(theta) ** 37 - 1.14173061256981e108 * cos(theta) ** 35 + 2.05857489236071e108 * cos(theta) ** 33 - 2.22275571199684e108 * cos(theta) ** 31 + 1.60494007155052e108 * cos(theta) ** 29 - 8.19629772389321e107 * cos(theta) ** 27 + 3.05403450221498e107 * cos(theta) ** 25 - 8.44433502916585e106 * cos(theta) ** 23 + 1.74543853135536e106 * cos(theta) ** 21 - 2.69714563344095e105 * cos(theta) ** 19 + 3.09538190146579e104 * cos(theta) ** 17 - 2.60341334940846e103 * cos(theta) ** 15 + 1.57102529705683e102 * cos(theta) ** 13 - 6.59171453310558e100 * cos(theta) ** 11 + 1.83659726099699e99 * cos(theta) ** 9 - 3.17110318445524e97 * cos(theta) ** 7 + 3.03800943766241e95 * cos(theta) ** 5 - 1.32375138895966e93 * cos(theta) ** 3 + 1.65883632701711e90 * cos(theta) ) * sin(47 * phi) ) # @torch.jit.script def Yl84_m_minus_46(theta, phi): return ( 1.47491528018325e-87 * (1.0 - cos(theta) ** 2) ** 23 * ( 7.53394232255247e105 * cos(theta) ** 38 - 3.17147392380502e106 * cos(theta) ** 36 + 6.05463203635504e106 * cos(theta) ** 34 - 6.94611159999014e106 * cos(theta) ** 32 + 5.34980023850172e106 * cos(theta) ** 30 - 2.92724918710472e106 * cos(theta) ** 28 + 1.17462865469807e106 * cos(theta) ** 26 - 3.51847292881911e105 * cos(theta) ** 24 + 7.93381150616073e104 * cos(theta) ** 22 - 1.34857281672048e104 * cos(theta) ** 20 + 1.71965661192544e103 * cos(theta) ** 18 - 1.62713334338029e102 * cos(theta) ** 16 + 1.12216092646916e101 * cos(theta) ** 14 - 5.49309544425465e99 * cos(theta) ** 12 + 1.83659726099699e98 * cos(theta) ** 10 - 3.96387898056905e96 * cos(theta) ** 8 + 5.06334906277069e94 * cos(theta) ** 6 - 3.30937847239914e92 * cos(theta) ** 4 + 8.29418163508557e89 * cos(theta) ** 2 - 3.33233492771618e86 ) * sin(46 * phi) ) # @torch.jit.script def Yl84_m_minus_45(theta, phi): return ( 1.05019768017504e-85 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 1.93178008270576e104 * cos(theta) ** 39 - 8.57155114541898e104 * cos(theta) ** 37 + 1.72989486753001e105 * cos(theta) ** 35 - 2.10488230302732e105 * cos(theta) ** 33 + 1.72574201241991e105 * cos(theta) ** 31 - 1.00939627141542e105 * cos(theta) ** 29 + 4.35047649888174e104 * cos(theta) ** 27 - 1.40738917152764e104 * cos(theta) ** 25 + 3.44948326354814e103 * cos(theta) ** 23 - 6.42177531771656e102 * cos(theta) ** 21 + 9.05082427329179e101 * cos(theta) ** 19 - 9.57137260811934e100 * cos(theta) ** 17 + 7.48107284312776e99 * cos(theta) ** 15 - 4.22545803404204e98 * cos(theta) ** 13 + 1.66963387363363e97 * cos(theta) ** 11 - 4.40430997841006e95 * cos(theta) ** 9 + 7.23335580395813e93 * cos(theta) ** 7 - 6.61875694479828e91 * cos(theta) ** 5 + 2.76472721169519e89 * cos(theta) ** 3 - 3.33233492771618e86 * cos(theta) ) * sin(45 * phi) ) # @torch.jit.script def Yl84_m_minus_44(theta, phi): return ( 7.54389969711715e-84 * (1.0 - cos(theta) ** 2) ** 22 * ( 4.8294502067644e102 * cos(theta) ** 40 - 2.25567135405763e103 * cos(theta) ** 38 + 4.8052635209167e103 * cos(theta) ** 36 - 6.19083030302151e103 * cos(theta) ** 34 + 5.39294378881222e103 * cos(theta) ** 32 - 3.3646542380514e103 * cos(theta) ** 30 + 1.55374160674348e103 * cos(theta) ** 28 - 5.41303527510632e102 * cos(theta) ** 26 + 1.43728469314506e102 * cos(theta) ** 24 - 2.91898878078025e101 * cos(theta) ** 22 + 4.5254121366459e100 * cos(theta) ** 20 - 5.31742922673296e99 * cos(theta) ** 18 + 4.67567052695485e98 * cos(theta) ** 16 - 3.01818431003003e97 * cos(theta) ** 14 + 1.39136156136136e96 * cos(theta) ** 12 - 4.40430997841006e94 * cos(theta) ** 10 + 9.04169475494766e92 * cos(theta) ** 8 - 1.10312615746638e91 * cos(theta) ** 6 + 6.91181802923797e88 * cos(theta) ** 4 - 1.66616746385809e86 * cos(theta) ** 2 + 6.45801342580655e82 ) * sin(44 * phi) ) # @torch.jit.script def Yl84_m_minus_43(theta, phi): return ( 5.46503337606992e-82 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 1.17791468457668e101 * cos(theta) ** 41 - 5.78377270271186e101 * cos(theta) ** 39 + 1.29871987051803e102 * cos(theta) ** 37 - 1.76880865800615e102 * cos(theta) ** 35 + 1.63422539054916e102 * cos(theta) ** 33 - 1.08537233485529e102 * cos(theta) ** 31 + 5.35772967842579e101 * cos(theta) ** 29 - 2.00482787966901e101 * cos(theta) ** 27 + 5.74913877258024e100 * cos(theta) ** 25 - 1.26912555686098e100 * cos(theta) ** 23 + 2.15495816030757e99 * cos(theta) ** 21 - 2.7986469614384e98 * cos(theta) ** 19 + 2.7503944276205e97 * cos(theta) ** 17 - 2.01212287335335e96 * cos(theta) ** 15 + 1.07027812412412e95 * cos(theta) ** 13 - 4.00391816219096e93 * cos(theta) ** 11 + 1.00463275054974e92 * cos(theta) ** 9 - 1.57589451066626e90 * cos(theta) ** 7 + 1.38236360584759e88 * cos(theta) ** 5 - 5.55389154619363e85 * cos(theta) ** 3 + 6.45801342580655e82 * cos(theta) ) * sin(43 * phi) ) # @torch.jit.script def Yl84_m_minus_42(theta, phi): return ( 3.99134551249965e-80 * (1.0 - cos(theta) ** 2) ** 21 * ( 2.80455877280163e99 * cos(theta) ** 42 - 1.44594317567797e100 * cos(theta) ** 40 + 3.41768386978428e100 * cos(theta) ** 38 - 4.91335738335041e100 * cos(theta) ** 36 + 4.80654526632105e100 * cos(theta) ** 34 - 3.39178854642278e100 * cos(theta) ** 32 + 1.7859098928086e100 * cos(theta) ** 30 - 7.16009957024645e99 * cos(theta) ** 28 + 2.21120722022317e99 * cos(theta) ** 26 - 5.28802315358742e98 * cos(theta) ** 24 + 9.79526436503441e97 * cos(theta) ** 22 - 1.3993234807192e97 * cos(theta) ** 20 + 1.52799690423361e96 * cos(theta) ** 18 - 1.25757679584584e95 * cos(theta) ** 16 + 7.64484374374373e93 * cos(theta) ** 14 - 3.33659846849247e92 * cos(theta) ** 12 + 1.00463275054974e91 * cos(theta) ** 10 - 1.96986813833282e89 * cos(theta) ** 8 + 2.30393934307932e87 * cos(theta) ** 6 - 1.38847288654841e85 * cos(theta) ** 4 + 3.22900671290327e82 * cos(theta) ** 2 - 1.21072617656666e79 ) * sin(42 * phi) ) # @torch.jit.script def Yl84_m_minus_41(theta, phi): return ( 2.93791228090321e-78 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 6.52222970418983e97 * cos(theta) ** 43 - 3.52669067238528e98 * cos(theta) ** 41 + 8.76329197380585e98 * cos(theta) ** 39 - 1.32793442793254e99 * cos(theta) ** 37 + 1.3732986475203e99 * cos(theta) ** 35 - 1.02781471103721e99 * cos(theta) ** 33 + 5.76099965422128e98 * cos(theta) ** 31 - 2.46899985180912e98 * cos(theta) ** 29 + 8.18965637119692e97 * cos(theta) ** 27 - 2.11520926143497e97 * cos(theta) ** 25 + 4.25881059349322e96 * cos(theta) ** 23 - 6.66344514628191e95 * cos(theta) ** 21 + 8.04208896965058e94 * cos(theta) ** 19 - 7.39751056379908e93 * cos(theta) ** 17 + 5.09656249582916e92 * cos(theta) ** 15 - 2.56661420653267e91 * cos(theta) ** 13 + 9.13302500499763e89 * cos(theta) ** 11 - 2.18874237592536e88 * cos(theta) ** 9 + 3.29134191868475e86 * cos(theta) ** 7 - 2.77694577309682e84 * cos(theta) ** 5 + 1.07633557096776e82 * cos(theta) ** 3 - 1.21072617656666e79 * cos(theta) ) * sin(41 * phi) ) # @torch.jit.script def Yl84_m_minus_40(theta, phi): return ( 2.17881406128541e-76 * (1.0 - cos(theta) ** 2) ** 20 * ( 1.48232493277042e96 * cos(theta) ** 44 - 8.39688255329829e96 * cos(theta) ** 42 + 2.19082299345146e97 * cos(theta) ** 40 - 3.49456428403301e97 * cos(theta) ** 38 + 3.81471846533417e97 * cos(theta) ** 36 - 3.02298444422708e97 * cos(theta) ** 34 + 1.80031239194415e97 * cos(theta) ** 32 - 8.2299995060304e96 * cos(theta) ** 30 + 2.92487727542747e96 * cos(theta) ** 28 - 8.13542023628833e95 * cos(theta) ** 26 + 1.77450441395551e95 * cos(theta) ** 24 - 3.02883870285541e94 * cos(theta) ** 22 + 4.02104448482529e93 * cos(theta) ** 20 - 4.10972809099949e92 * cos(theta) ** 18 + 3.18535155989322e91 * cos(theta) ** 16 - 1.83329586180905e90 * cos(theta) ** 14 + 7.61085417083136e88 * cos(theta) ** 12 - 2.18874237592536e87 * cos(theta) ** 10 + 4.11417739835594e85 * cos(theta) ** 8 - 4.62824295516136e83 * cos(theta) ** 6 + 2.6908389274194e81 * cos(theta) ** 4 - 6.05363088283328e78 * cos(theta) ** 2 + 2.20132032103029e75 ) * sin(40 * phi) ) # @torch.jit.script def Yl84_m_minus_39(theta, phi): return ( 1.62756097834137e-74 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 3.29405540615648e94 * cos(theta) ** 45 - 1.95276338448797e95 * cos(theta) ** 43 + 5.34347071573527e95 * cos(theta) ** 41 - 8.96042124111028e95 * cos(theta) ** 39 + 1.03100499063086e96 * cos(theta) ** 37 - 8.63709841207736e95 * cos(theta) ** 35 + 5.45549209680046e95 * cos(theta) ** 33 - 2.65483855033239e95 * cos(theta) ** 31 + 1.00857837083706e95 * cos(theta) ** 29 - 3.01311860603272e94 * cos(theta) ** 27 + 7.09801765582203e93 * cos(theta) ** 25 - 1.31688639254583e93 * cos(theta) ** 23 + 1.91478308801204e92 * cos(theta) ** 21 - 2.16301478473657e91 * cos(theta) ** 19 + 1.8737362117019e90 * cos(theta) ** 17 - 1.22219724120603e89 * cos(theta) ** 15 + 5.85450320833182e87 * cos(theta) ** 13 - 1.98976579629578e86 * cos(theta) ** 11 + 4.57130822039549e84 * cos(theta) ** 9 - 6.61177565023051e82 * cos(theta) ** 7 + 5.38167785483879e80 * cos(theta) ** 5 - 2.01787696094443e78 * cos(theta) ** 3 + 2.20132032103029e75 * cos(theta) ) * sin(39 * phi) ) # @torch.jit.script def Yl84_m_minus_38(theta, phi): return ( 1.22424613166005e-72 * (1.0 - cos(theta) ** 2) ** 19 * ( 7.16099001338366e92 * cos(theta) ** 46 - 4.43809860110903e93 * cos(theta) ** 44 + 1.27225493231792e94 * cos(theta) ** 42 - 2.24010531027757e94 * cos(theta) ** 40 + 2.71317102797594e94 * cos(theta) ** 38 - 2.39919400335482e94 * cos(theta) ** 36 + 1.60455649905896e94 * cos(theta) ** 34 - 8.29637046978871e93 * cos(theta) ** 32 + 3.3619279027902e93 * cos(theta) ** 30 - 1.07611378786883e93 * cos(theta) ** 28 + 2.73000679070078e92 * cos(theta) ** 26 - 5.48702663560763e91 * cos(theta) ** 24 + 8.70355949096383e90 * cos(theta) ** 22 - 1.08150739236829e90 * cos(theta) ** 20 + 1.04096456205661e89 * cos(theta) ** 18 - 7.6387327575377e87 * cos(theta) ** 16 + 4.1817880059513e86 * cos(theta) ** 14 - 1.65813816357982e85 * cos(theta) ** 12 + 4.57130822039549e83 * cos(theta) ** 10 - 8.26471956278814e81 * cos(theta) ** 8 + 8.96946309139798e79 * cos(theta) ** 6 - 5.04469240236107e77 * cos(theta) ** 4 + 1.10066016051514e75 * cos(theta) ** 2 - 3.89063329980609e71 ) * sin(38 * phi) ) # @torch.jit.script def Yl84_m_minus_37(theta, phi): return ( 9.2703810278393e-71 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 1.52361489646461e91 * cos(theta) ** 47 - 9.86244133579785e91 * cos(theta) ** 45 + 2.95873240073935e92 * cos(theta) ** 43 - 5.46367148848188e92 * cos(theta) ** 41 + 6.95684878968189e92 * cos(theta) ** 39 - 6.4843081171752e92 * cos(theta) ** 37 + 4.58444714016845e92 * cos(theta) ** 35 - 2.51405165751173e92 * cos(theta) ** 33 + 1.08449287186781e92 * cos(theta) ** 31 - 3.71073719954768e91 * cos(theta) ** 29 + 1.01111362618548e91 * cos(theta) ** 27 - 2.19481065424305e90 * cos(theta) ** 25 + 3.78415630041906e89 * cos(theta) ** 23 - 5.15003520175375e88 * cos(theta) ** 21 + 5.47876085292952e87 * cos(theta) ** 19 - 4.4933722103163e86 * cos(theta) ** 17 + 2.7878586706342e85 * cos(theta) ** 15 - 1.2754908950614e84 * cos(theta) ** 13 + 4.15573474581408e82 * cos(theta) ** 11 - 9.18302173643127e80 * cos(theta) ** 9 + 1.28135187019971e79 * cos(theta) ** 7 - 1.00893848047221e77 * cos(theta) ** 5 + 3.66886720171714e74 * cos(theta) ** 3 - 3.89063329980609e71 * cos(theta) ) * sin(37 * phi) ) # @torch.jit.script def Yl84_m_minus_36(theta, phi): return ( 7.06497921612571e-69 * (1.0 - cos(theta) ** 2) ** 18 * ( 3.17419770096793e89 * cos(theta) ** 48 - 2.14400898604301e90 * cos(theta) ** 46 + 6.72439181986217e90 * cos(theta) ** 44 - 1.30087416392426e91 * cos(theta) ** 42 + 1.73921219742047e91 * cos(theta) ** 40 - 1.70639687294084e91 * cos(theta) ** 38 + 1.27345753893568e91 * cos(theta) ** 36 - 7.39426958091686e90 * cos(theta) ** 34 + 3.38904022458689e90 * cos(theta) ** 32 - 1.23691239984923e90 * cos(theta) ** 30 + 3.61112009351955e89 * cos(theta) ** 28 - 8.44157943939636e88 * cos(theta) ** 26 + 1.57673179184127e88 * cos(theta) ** 24 - 2.34092509170625e87 * cos(theta) ** 22 + 2.73938042646476e86 * cos(theta) ** 20 - 2.49631789462016e85 * cos(theta) ** 18 + 1.74241166914637e84 * cos(theta) ** 16 - 9.11064925043856e82 * cos(theta) ** 14 + 3.4631122881784e81 * cos(theta) ** 12 - 9.18302173643127e79 * cos(theta) ** 10 + 1.60168983774964e78 * cos(theta) ** 8 - 1.68156413412036e76 * cos(theta) ** 6 + 9.17216800429286e73 * cos(theta) ** 4 - 1.94531664990304e71 * cos(theta) ** 2 + 6.69874879443197e67 ) * sin(36 * phi) ) # @torch.jit.script def Yl84_m_minus_35(theta, phi): return ( 5.41750787896811e-67 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 6.47795449177129e87 * cos(theta) ** 49 - 4.56172124690002e88 * cos(theta) ** 47 + 1.4943092933027e89 * cos(theta) ** 45 - 3.02528875331222e89 * cos(theta) ** 43 + 4.24198096931823e89 * cos(theta) ** 41 - 4.37537659728421e89 * cos(theta) ** 39 + 3.4417771322586e89 * cos(theta) ** 37 - 2.11264845169053e89 * cos(theta) ** 35 + 1.02698188623845e89 * cos(theta) ** 33 - 3.99003999951363e88 * cos(theta) ** 31 + 1.24521382535157e88 * cos(theta) ** 29 - 3.12651090348013e87 * cos(theta) ** 27 + 6.3069271673651e86 * cos(theta) ** 25 - 1.01779351813315e86 * cos(theta) ** 23 + 1.30446686974512e85 * cos(theta) ** 21 - 1.3138515234843e84 * cos(theta) ** 19 + 1.02494804067434e83 * cos(theta) ** 17 - 6.07376616695904e81 * cos(theta) ** 15 + 2.663932529368e80 * cos(theta) ** 13 - 8.34820157857388e78 * cos(theta) ** 11 + 1.77965537527738e77 * cos(theta) ** 9 - 2.4022344773148e75 * cos(theta) ** 7 + 1.83443360085857e73 * cos(theta) ** 5 - 6.48438883301015e70 * cos(theta) ** 3 + 6.69874879443197e67 * cos(theta) ) * sin(35 * phi) ) # @torch.jit.script def Yl84_m_minus_34(theta, phi): return ( 4.17886204762918e-65 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.29559089835426e86 * cos(theta) ** 50 - 9.50358593104171e86 * cos(theta) ** 48 + 3.24849846370153e87 * cos(theta) ** 46 - 6.87565625752778e87 * cos(theta) ** 44 + 1.00999546888529e88 * cos(theta) ** 42 - 1.09384414932105e88 * cos(theta) ** 40 + 9.05730824278578e87 * cos(theta) ** 38 - 5.86846792136258e87 * cos(theta) ** 36 + 3.02053495952486e87 * cos(theta) ** 34 - 1.24688749984801e87 * cos(theta) ** 32 + 4.1507127511719e86 * cos(theta) ** 30 - 1.11661103695719e86 * cos(theta) ** 28 + 2.42574121821734e85 * cos(theta) ** 26 - 4.2408063255548e84 * cos(theta) ** 24 + 5.92939486247783e83 * cos(theta) ** 22 - 6.56925761742148e82 * cos(theta) ** 20 + 5.6941557815241e81 * cos(theta) ** 18 - 3.7961038543494e80 * cos(theta) ** 16 + 1.90280894954857e79 * cos(theta) ** 14 - 6.95683464881157e77 * cos(theta) ** 12 + 1.77965537527738e76 * cos(theta) ** 10 - 3.00279309664349e74 * cos(theta) ** 8 + 3.05738933476429e72 * cos(theta) ** 6 - 1.62109720825254e70 * cos(theta) ** 4 + 3.34937439721599e67 * cos(theta) ** 2 - 1.12584013351798e64 ) * sin(34 * phi) ) # @torch.jit.script def Yl84_m_minus_33(theta, phi): return ( 3.24178438615108e-63 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 2.54037431049855e84 * cos(theta) ** 51 - 1.93950733286566e85 * cos(theta) ** 49 + 6.91169885893943e85 * cos(theta) ** 47 - 1.52792361278395e86 * cos(theta) ** 45 + 2.34882667182626e86 * cos(theta) ** 43 - 2.66791255931964e86 * cos(theta) ** 41 + 2.32238672891943e86 * cos(theta) ** 39 - 1.58607241117908e86 * cos(theta) ** 37 + 8.63009988435674e85 * cos(theta) ** 35 - 3.7784469692364e85 * cos(theta) ** 33 + 1.33893959715223e85 * cos(theta) ** 31 - 3.85038288605928e84 * cos(theta) ** 29 + 8.98422673413831e83 * cos(theta) ** 27 - 1.69632253022192e83 * cos(theta) ** 25 + 2.57799776629471e82 * cos(theta) ** 23 - 3.12821791305785e81 * cos(theta) ** 21 + 2.996924095539e80 * cos(theta) ** 19 - 2.23300226726435e79 * cos(theta) ** 17 + 1.26853929969905e78 * cos(theta) ** 15 - 5.35141126831659e76 * cos(theta) ** 13 + 1.61786852297943e75 * cos(theta) ** 11 - 3.33643677404833e73 * cos(theta) ** 9 + 4.36769904966326e71 * cos(theta) ** 7 - 3.24219441650507e69 * cos(theta) ** 5 + 1.11645813240533e67 * cos(theta) ** 3 - 1.12584013351798e64 * cos(theta) ) * sin(33 * phi) ) # @torch.jit.script def Yl84_m_minus_32(theta, phi): return ( 2.52859182119784e-61 * (1.0 - cos(theta) ** 2) ** 16 * ( 4.8853352124972e82 * cos(theta) ** 52 - 3.87901466573131e83 * cos(theta) ** 50 + 1.43993726227905e84 * cos(theta) ** 48 - 3.32157307126946e84 * cos(theta) ** 46 + 5.33824243596877e84 * cos(theta) ** 44 - 6.35217276028486e84 * cos(theta) ** 42 + 5.80596682229858e84 * cos(theta) ** 40 - 4.17387476626073e84 * cos(theta) ** 38 + 2.39724996787687e84 * cos(theta) ** 36 - 1.11130793212835e84 * cos(theta) ** 34 + 4.18418624110071e83 * cos(theta) ** 32 - 1.28346096201976e83 * cos(theta) ** 30 + 3.2086524050494e82 * cos(theta) ** 28 - 6.52431742393046e81 * cos(theta) ** 26 + 1.07416573595613e81 * cos(theta) ** 24 - 1.42191723320811e80 * cos(theta) ** 22 + 1.4984620477695e79 * cos(theta) ** 20 - 1.24055681514686e78 * cos(theta) ** 18 + 7.92837062311904e76 * cos(theta) ** 16 - 3.82243662022614e75 * cos(theta) ** 14 + 1.34822376914953e74 * cos(theta) ** 12 - 3.33643677404833e72 * cos(theta) ** 10 + 5.45962381207908e70 * cos(theta) ** 8 - 5.40365736084179e68 * cos(theta) ** 6 + 2.79114533101332e66 * cos(theta) ** 4 - 5.62920066758989e63 * cos(theta) ** 2 + 1.8504933161045e60 ) * sin(32 * phi) ) # @torch.jit.script def Yl84_m_minus_31(theta, phi): return ( 1.9826481918361e-59 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 9.21761360848529e80 * cos(theta) ** 53 - 7.60591110927708e81 * cos(theta) ** 51 + 2.93864747403887e82 * cos(theta) ** 49 - 7.06717674738183e82 * cos(theta) ** 47 + 1.18627609688195e83 * cos(theta) ** 45 - 1.47724947913601e83 * cos(theta) ** 43 + 1.41608946885331e83 * cos(theta) ** 41 - 1.07022429904121e83 * cos(theta) ** 39 + 6.47905396723479e82 * cos(theta) ** 37 - 3.17516552036672e82 * cos(theta) ** 35 + 1.26793522457597e82 * cos(theta) ** 33 - 4.14019665167664e81 * cos(theta) ** 31 + 1.10643186381014e81 * cos(theta) ** 29 - 2.41641386071498e80 * cos(theta) ** 27 + 4.29666294382452e79 * cos(theta) ** 25 - 6.18224884003528e78 * cos(theta) ** 23 + 7.13553356080714e77 * cos(theta) ** 21 - 6.5292463955098e76 * cos(theta) ** 19 + 4.66374742536414e75 * cos(theta) ** 17 - 2.54829108015076e74 * cos(theta) ** 15 + 1.0370952070381e73 * cos(theta) ** 13 - 3.03312434004393e71 * cos(theta) ** 11 + 6.06624868008787e69 * cos(theta) ** 9 - 7.71951051548827e67 * cos(theta) ** 7 + 5.58229066202664e65 * cos(theta) ** 5 - 1.87640022252996e63 * cos(theta) ** 3 + 1.8504933161045e60 * cos(theta) ) * sin(31 * phi) ) # @torch.jit.script def Yl84_m_minus_30(theta, phi): return ( 1.56239722300668e-57 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.70696548305283e79 * cos(theta) ** 54 - 1.46267521332252e80 * cos(theta) ** 52 + 5.87729494807774e80 * cos(theta) ** 50 - 1.47232848903788e81 * cos(theta) ** 48 + 2.57886108017815e81 * cos(theta) ** 46 - 3.35738517985457e81 * cos(theta) ** 44 + 3.37164159250789e81 * cos(theta) ** 42 - 2.67556074760303e81 * cos(theta) ** 40 + 1.70501420190389e81 * cos(theta) ** 38 - 8.81990422324089e80 * cos(theta) ** 36 + 3.72922124875286e80 * cos(theta) ** 34 - 1.29381145364895e80 * cos(theta) ** 32 + 3.68810621270046e79 * cos(theta) ** 30 - 8.63004950255352e78 * cos(theta) ** 28 + 1.65256267070174e78 * cos(theta) ** 26 - 2.57593701668137e77 * cos(theta) ** 24 + 3.24342434582143e76 * cos(theta) ** 22 - 3.2646231977549e75 * cos(theta) ** 20 + 2.59097079186897e74 * cos(theta) ** 18 - 1.59268192509422e73 * cos(theta) ** 16 + 7.40782290741499e71 * cos(theta) ** 14 - 2.52760361670328e70 * cos(theta) ** 12 + 6.06624868008787e68 * cos(theta) ** 10 - 9.64938814436034e66 * cos(theta) ** 8 + 9.30381777004441e64 * cos(theta) ** 6 - 4.69100055632491e62 * cos(theta) ** 4 + 9.25246658052251e59 * cos(theta) ** 2 - 2.9798604124066e56 ) * sin(30 * phi) ) # @torch.jit.script def Yl84_m_minus_29(theta, phi): return ( 1.23715817367941e-55 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 3.1035736055506e77 * cos(theta) ** 55 - 2.75976455343871e78 * cos(theta) ** 53 + 1.15241077413289e79 * cos(theta) ** 51 - 3.00475201844466e79 * cos(theta) ** 49 + 5.48693846846415e79 * cos(theta) ** 47 - 7.46085595523239e79 * cos(theta) ** 45 + 7.84102695932066e79 * cos(theta) ** 43 - 6.525757920983e79 * cos(theta) ** 41 + 4.37183128693306e79 * cos(theta) ** 39 - 2.38375789817321e79 * cos(theta) ** 37 + 1.06549178535796e79 * cos(theta) ** 35 - 3.92064076863318e78 * cos(theta) ** 33 + 1.18971168151628e78 * cos(theta) ** 31 - 2.97587913881156e77 * cos(theta) ** 29 + 6.12060248408051e76 * cos(theta) ** 27 - 1.03037480667255e76 * cos(theta) ** 25 + 1.41018449818323e75 * cos(theta) ** 23 - 1.55458247512138e74 * cos(theta) ** 21 + 1.36366883782577e73 * cos(theta) ** 19 - 9.36871720643661e71 * cos(theta) ** 17 + 4.93854860494333e70 * cos(theta) ** 15 - 1.94431047438714e69 * cos(theta) ** 13 + 5.51477152735261e67 * cos(theta) ** 11 - 1.07215423826226e66 * cos(theta) ** 9 + 1.32911682429206e64 * cos(theta) ** 7 - 9.38200111264982e61 * cos(theta) ** 5 + 3.08415552684084e59 * cos(theta) ** 3 - 2.9798604124066e56 * cos(theta) ) * sin(29 * phi) ) # @torch.jit.script def Yl84_m_minus_28(theta, phi): return ( 9.84143580679611e-54 * (1.0 - cos(theta) ** 2) ** 14 * ( 5.5420957241975e75 * cos(theta) ** 56 - 5.11067509896057e76 * cos(theta) ** 54 + 2.21617456564018e77 * cos(theta) ** 52 - 6.00950403688931e77 * cos(theta) ** 50 + 1.14311218093003e78 * cos(theta) ** 48 - 1.62192520765921e78 * cos(theta) ** 46 + 1.78205158166379e78 * cos(theta) ** 44 - 1.55375188594833e78 * cos(theta) ** 42 + 1.09295782173326e78 * cos(theta) ** 40 - 6.27304710045582e77 * cos(theta) ** 38 + 2.95969940377211e77 * cos(theta) ** 36 - 1.15312963783329e77 * cos(theta) ** 34 + 3.71784900473836e76 * cos(theta) ** 32 - 9.91959712937186e75 * cos(theta) ** 30 + 2.18592945860018e75 * cos(theta) ** 28 - 3.96298002566364e74 * cos(theta) ** 26 + 5.87576874243012e73 * cos(theta) ** 24 - 7.06628397782446e72 * cos(theta) ** 22 + 6.81834418912886e71 * cos(theta) ** 20 - 5.20484289246478e70 * cos(theta) ** 18 + 3.08659287808958e69 * cos(theta) ** 16 - 1.38879319599081e68 * cos(theta) ** 14 + 4.59564293946051e66 * cos(theta) ** 12 - 1.07215423826226e65 * cos(theta) ** 10 + 1.66139603036507e63 * cos(theta) ** 8 - 1.5636668521083e61 * cos(theta) ** 6 + 7.71038881710209e58 * cos(theta) ** 4 - 1.4899302062033e56 * cos(theta) ** 2 + 4.70900823705216e52 ) * sin(28 * phi) ) # @torch.jit.script def Yl84_m_minus_27(theta, phi): return ( 7.86330105103206e-52 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 9.72297495473246e73 * cos(theta) ** 57 - 9.29213654356468e74 * cos(theta) ** 55 + 4.1814614446041e75 * cos(theta) ** 53 - 1.17833412488026e76 * cos(theta) ** 51 + 2.33288200189802e76 * cos(theta) ** 49 - 3.45090469714727e76 * cos(theta) ** 47 + 3.96011462591953e76 * cos(theta) ** 45 - 3.61337647894961e76 * cos(theta) ** 43 + 2.66575078471528e76 * cos(theta) ** 41 - 1.60847361550149e76 * cos(theta) ** 39 + 7.99918757776246e75 * cos(theta) ** 37 - 3.29465610809511e75 * cos(theta) ** 35 + 1.12662091052678e75 * cos(theta) ** 33 - 3.19987004173286e74 * cos(theta) ** 31 + 7.53768778827649e73 * cos(theta) ** 29 - 1.46777037987542e73 * cos(theta) ** 27 + 2.35030749697205e72 * cos(theta) ** 25 - 3.07229738166281e71 * cos(theta) ** 23 + 3.24683056625184e70 * cos(theta) ** 21 - 2.7393909960341e69 * cos(theta) ** 19 + 1.81564286946446e68 * cos(theta) ** 17 - 9.25862130660542e66 * cos(theta) ** 15 + 3.53510995343116e65 * cos(theta) ** 13 - 9.74685671147509e63 * cos(theta) ** 11 + 1.84599558929452e62 * cos(theta) ** 9 - 2.23380978872615e60 * cos(theta) ** 7 + 1.54207776342042e58 * cos(theta) ** 5 - 4.96643402067767e55 * cos(theta) ** 3 + 4.70900823705216e52 * cos(theta) ) * sin(27 * phi) ) # @torch.jit.script def Yl84_m_minus_26(theta, phi): return ( 6.30928854160724e-50 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.67637499219525e72 * cos(theta) ** 58 - 1.65931009706512e73 * cos(theta) ** 56 + 7.74344711963723e73 * cos(theta) ** 54 - 2.26602716323126e74 * cos(theta) ** 52 + 4.66576400379605e74 * cos(theta) ** 50 - 7.18938478572347e74 * cos(theta) ** 48 + 8.60894483895549e74 * cos(theta) ** 46 - 8.21221927034003e74 * cos(theta) ** 44 + 6.34702567789352e74 * cos(theta) ** 42 - 4.02118403875373e74 * cos(theta) ** 40 + 2.10504936256907e74 * cos(theta) ** 38 - 9.15182252248642e73 * cos(theta) ** 36 + 3.31359091331405e73 * cos(theta) ** 34 - 9.99959388041518e72 * cos(theta) ** 32 + 2.51256259609216e72 * cos(theta) ** 30 - 5.24203707098365e71 * cos(theta) ** 28 + 9.03964421912326e70 * cos(theta) ** 26 - 1.28012390902617e70 * cos(theta) ** 24 + 1.47583207556902e69 * cos(theta) ** 22 - 1.36969549801705e68 * cos(theta) ** 20 + 1.00869048303581e67 * cos(theta) ** 18 - 5.78663831662838e65 * cos(theta) ** 16 + 2.52507853816511e64 * cos(theta) ** 14 - 8.12238059289591e62 * cos(theta) ** 12 + 1.84599558929452e61 * cos(theta) ** 10 - 2.79226223590768e59 * cos(theta) ** 8 + 2.5701296057007e57 * cos(theta) ** 6 - 1.24160850516942e55 * cos(theta) ** 4 + 2.35450411852608e52 * cos(theta) ** 2 - 7.31439614329319e48 ) * sin(26 * phi) ) # @torch.jit.script def Yl84_m_minus_25(theta, phi): return ( 5.08279668233104e-48 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 2.84131354609365e70 * cos(theta) ** 59 - 2.91107034572828e71 * cos(theta) ** 57 + 1.40789947629768e72 * cos(theta) ** 55 - 4.27552294949295e72 * cos(theta) ** 53 + 9.14855687018833e72 * cos(theta) ** 51 - 1.46722138484152e73 * cos(theta) ** 49 + 1.83169039126713e73 * cos(theta) ** 47 - 1.82493761563112e73 * cos(theta) ** 45 + 1.47605248323105e73 * cos(theta) ** 43 - 9.80776594817983e72 * cos(theta) ** 41 + 5.39756246812582e72 * cos(theta) ** 39 - 2.47346554661795e72 * cos(theta) ** 37 + 9.46740260946872e71 * cos(theta) ** 35 - 3.03017996376218e71 * cos(theta) ** 33 + 8.10504063255536e70 * cos(theta) ** 31 - 1.80759898999436e70 * cos(theta) ** 29 + 3.34801637745306e69 * cos(theta) ** 27 - 5.12049563610468e68 * cos(theta) ** 25 + 6.41666119812617e67 * cos(theta) ** 23 - 6.52235951436689e66 * cos(theta) ** 21 + 5.30889727913584e65 * cos(theta) ** 19 - 3.40390489213434e64 * cos(theta) ** 17 + 1.68338569211008e63 * cos(theta) ** 15 - 6.24798507145839e61 * cos(theta) ** 13 + 1.67817780844957e60 * cos(theta) ** 11 - 3.10251359545298e58 * cos(theta) ** 9 + 3.67161372242957e56 * cos(theta) ** 7 - 2.48321701033884e54 * cos(theta) ** 5 + 7.84834706175359e51 * cos(theta) ** 3 - 7.31439614329319e48 * cos(theta) ) * sin(25 * phi) ) # @torch.jit.script def Yl84_m_minus_24(theta, phi): return ( 4.11047122146606e-46 * (1.0 - cos(theta) ** 2) ** 12 * ( 4.73552257682275e68 * cos(theta) ** 60 - 5.0190868029798e69 * cos(theta) ** 58 + 2.51410620767443e70 * cos(theta) ** 56 - 7.91763509165361e70 * cos(theta) ** 54 + 1.7593378596516e71 * cos(theta) ** 52 - 2.93444276968305e71 * cos(theta) ** 50 + 3.81602164847318e71 * cos(theta) ** 48 - 3.96725568615461e71 * cos(theta) ** 46 + 3.35466473461603e71 * cos(theta) ** 44 - 2.33518236861425e71 * cos(theta) ** 42 + 1.34939061703145e71 * cos(theta) ** 40 - 6.50911985952093e70 * cos(theta) ** 38 + 2.62983405818575e70 * cos(theta) ** 36 - 8.91229401106522e69 * cos(theta) ** 34 + 2.53282519767355e69 * cos(theta) ** 32 - 6.02532996664787e68 * cos(theta) ** 30 + 1.19572013480466e68 * cos(theta) ** 28 - 1.9694213985018e67 * cos(theta) ** 26 + 2.67360883255257e66 * cos(theta) ** 24 - 2.96470887016677e65 * cos(theta) ** 22 + 2.65444863956792e64 * cos(theta) ** 20 - 1.89105827340797e63 * cos(theta) ** 18 + 1.0521160575688e62 * cos(theta) ** 16 - 4.46284647961314e60 * cos(theta) ** 14 + 1.39848150704131e59 * cos(theta) ** 12 - 3.10251359545298e57 * cos(theta) ** 10 + 4.58951715303696e55 * cos(theta) ** 8 - 4.13869501723139e53 * cos(theta) ** 6 + 1.9620867654384e51 * cos(theta) ** 4 - 3.65719807164659e48 * cos(theta) ** 2 + 1.1184091962222e45 ) * sin(24 * phi) ) # @torch.jit.script def Yl84_m_minus_23(theta, phi): return ( 3.33632544108866e-44 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 7.76315176528319e66 * cos(theta) ** 61 - 8.50692678471152e67 * cos(theta) ** 59 + 4.41071264504285e68 * cos(theta) ** 57 - 1.43957001666429e69 * cos(theta) ** 55 + 3.31950539556906e69 * cos(theta) ** 53 - 5.7538093523197e69 * cos(theta) ** 51 + 7.78779928259833e69 * cos(theta) ** 49 - 8.4409695450098e69 * cos(theta) ** 47 + 7.45481052136895e69 * cos(theta) ** 45 - 5.43065667119592e69 * cos(theta) ** 43 + 3.29119662690598e69 * cos(theta) ** 41 - 1.66900509218485e69 * cos(theta) ** 39 + 7.10765961671825e68 * cos(theta) ** 37 - 2.54636971744721e68 * cos(theta) ** 35 + 7.67522787173803e67 * cos(theta) ** 33 - 1.94365482795093e67 * cos(theta) ** 31 + 4.12317287863677e66 * cos(theta) ** 29 - 7.29415332778445e65 * cos(theta) ** 27 + 1.06944353302103e65 * cos(theta) ** 25 - 1.28900385659425e64 * cos(theta) ** 23 + 1.26402316169901e63 * cos(theta) ** 21 - 9.95293828109457e61 * cos(theta) ** 19 + 6.18891798569881e60 * cos(theta) ** 17 - 2.97523098640876e59 * cos(theta) ** 15 + 1.07575500541639e58 * cos(theta) ** 13 - 2.82046690495726e56 * cos(theta) ** 11 + 5.0994635033744e54 * cos(theta) ** 9 - 5.91242145318771e52 * cos(theta) ** 7 + 3.9241735308768e50 * cos(theta) ** 5 - 1.2190660238822e48 * cos(theta) ** 3 + 1.1184091962222e45 * cos(theta) ) * sin(23 * phi) ) # @torch.jit.script def Yl84_m_minus_22(theta, phi): return ( 2.71741607884599e-42 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.25212125246503e65 * cos(theta) ** 62 - 1.41782113078525e66 * cos(theta) ** 60 + 7.60467697421181e66 * cos(theta) ** 58 - 2.57066074404338e67 * cos(theta) ** 56 + 6.14723221401678e67 * cos(theta) ** 54 - 1.10650179852302e68 * cos(theta) ** 52 + 1.55755985651967e68 * cos(theta) ** 50 - 1.75853532187704e68 * cos(theta) ** 48 + 1.62061098290629e68 * cos(theta) ** 46 - 1.23424015254453e68 * cos(theta) ** 44 + 7.83618244501425e67 * cos(theta) ** 42 - 4.17251273046213e67 * cos(theta) ** 40 + 1.87043674124165e67 * cos(theta) ** 38 - 7.07324921513113e66 * cos(theta) ** 36 + 2.25741996227589e66 * cos(theta) ** 34 - 6.07392133734665e65 * cos(theta) ** 32 + 1.37439095954559e65 * cos(theta) ** 30 - 2.60505475992302e64 * cos(theta) ** 28 + 4.11324435777318e63 * cos(theta) ** 26 - 5.37084940247603e62 * cos(theta) ** 24 + 5.74555982590459e61 * cos(theta) ** 22 - 4.97646914054729e60 * cos(theta) ** 20 + 3.43828776983267e59 * cos(theta) ** 18 - 1.85951936650547e58 * cos(theta) ** 16 + 7.68396432440278e56 * cos(theta) ** 14 - 2.35038908746438e55 * cos(theta) ** 12 + 5.0994635033744e53 * cos(theta) ** 10 - 7.39052681648463e51 * cos(theta) ** 8 + 6.54028921812799e49 * cos(theta) ** 6 - 3.0476650597055e47 * cos(theta) ** 4 + 5.592045981111e44 * cos(theta) ** 2 - 1.68587457977419e41 ) * sin(22 * phi) ) # @torch.jit.script def Yl84_m_minus_21(theta, phi): return ( 2.2206460832857e-40 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.98749405153179e63 * cos(theta) ** 63 - 2.32429693571353e64 * cos(theta) ** 61 + 1.28892830071387e65 * cos(theta) ** 59 - 4.50993112990067e65 * cos(theta) ** 57 + 1.11767858436669e66 * cos(theta) ** 55 - 2.08773924249626e66 * cos(theta) ** 53 + 3.05403893435228e66 * cos(theta) ** 51 - 3.58884759566743e66 * cos(theta) ** 49 + 3.44810847426871e66 * cos(theta) ** 47 - 2.74275589454339e66 * cos(theta) ** 45 + 1.82236801046843e66 * cos(theta) ** 43 - 1.01768603182003e66 * cos(theta) ** 41 + 4.79599164420935e65 * cos(theta) ** 39 - 1.91168897706247e65 * cos(theta) ** 37 + 6.44977132078826e64 * cos(theta) ** 35 - 1.84058222343838e64 * cos(theta) ** 33 + 4.43351922434062e63 * cos(theta) ** 31 - 8.9829474480104e62 * cos(theta) ** 29 + 1.52342383621229e62 * cos(theta) ** 27 - 2.14833976099041e61 * cos(theta) ** 25 + 2.49806948952374e60 * cos(theta) ** 23 - 2.36974720978442e59 * cos(theta) ** 21 + 1.80962514201719e58 * cos(theta) ** 19 - 1.09383492147381e57 * cos(theta) ** 17 + 5.12264288293519e55 * cos(theta) ** 15 - 1.80799160574183e54 * cos(theta) ** 13 + 4.63587591215854e52 * cos(theta) ** 11 - 8.2116964627607e50 * cos(theta) ** 9 + 9.34327031161142e48 * cos(theta) ** 7 - 6.09533011941099e46 * cos(theta) ** 5 + 1.864015327037e44 * cos(theta) ** 3 - 1.68587457977419e41 * cos(theta) ) * sin(21 * phi) ) # @torch.jit.script def Yl84_m_minus_20(theta, phi): return ( 1.82038808672397e-38 * (1.0 - cos(theta) ** 2) ** 10 * ( 3.10545945551843e61 * cos(theta) ** 64 - 3.7488660253444e62 * cos(theta) ** 62 + 2.14821383452311e63 * cos(theta) ** 60 - 7.77574332741494e63 * cos(theta) ** 58 + 1.99585461494051e64 * cos(theta) ** 56 - 3.86618378240049e64 * cos(theta) ** 54 + 5.87315179683132e64 * cos(theta) ** 52 - 7.17769519133486e64 * cos(theta) ** 50 + 7.18355932139314e64 * cos(theta) ** 48 - 5.96251281422477e64 * cos(theta) ** 46 + 4.14174547833734e64 * cos(theta) ** 44 - 2.42306198052389e64 * cos(theta) ** 42 + 1.19899791105234e64 * cos(theta) ** 40 - 5.03076046595386e63 * cos(theta) ** 38 + 1.79160314466341e63 * cos(theta) ** 36 - 5.41347712775993e62 * cos(theta) ** 34 + 1.38547475760644e62 * cos(theta) ** 32 - 2.99431581600347e61 * cos(theta) ** 30 + 5.44079941504389e60 * cos(theta) ** 28 - 8.26284523457851e59 * cos(theta) ** 26 + 1.04086228730156e59 * cos(theta) ** 24 - 1.07715782262928e58 * cos(theta) ** 22 + 9.04812571008598e56 * cos(theta) ** 20 - 6.07686067485449e55 * cos(theta) ** 18 + 3.20165180183449e54 * cos(theta) ** 16 - 1.29142257552988e53 * cos(theta) ** 14 + 3.86322992679879e51 * cos(theta) ** 12 - 8.2116964627607e49 * cos(theta) ** 10 + 1.16790878895143e48 * cos(theta) ** 8 - 1.01588835323517e46 * cos(theta) ** 6 + 4.6600383175925e43 * cos(theta) ** 4 - 8.42937289887097e40 * cos(theta) ** 2 + 2.50874193418779e37 ) * sin(20 * phi) ) # @torch.jit.script def Yl84_m_minus_19(theta, phi): return ( 1.4967088706658e-36 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 4.77762993156681e59 * cos(theta) ** 65 - 5.95058099261016e60 * cos(theta) ** 63 + 3.52166202380838e61 * cos(theta) ** 61 - 1.31792259786694e62 * cos(theta) ** 59 + 3.50149932445704e62 * cos(theta) ** 57 - 7.02942505890998e62 * cos(theta) ** 55 + 1.10814184845874e63 * cos(theta) ** 53 - 1.40739121398723e63 * cos(theta) ** 51 + 1.46603251457003e63 * cos(theta) ** 49 - 1.2686197477074e63 * cos(theta) ** 47 + 9.20387884074965e62 * cos(theta) ** 45 - 5.63502786168346e62 * cos(theta) ** 43 + 2.92438514890814e62 * cos(theta) ** 41 - 1.28993858101381e62 * cos(theta) ** 39 + 4.84217066125245e61 * cos(theta) ** 37 - 1.54670775078855e61 * cos(theta) ** 35 + 4.19840835638316e60 * cos(theta) ** 33 - 9.65908327743054e59 * cos(theta) ** 31 + 1.87613772932548e59 * cos(theta) ** 29 - 3.06031304984389e58 * cos(theta) ** 27 + 4.16344914920623e57 * cos(theta) ** 25 - 4.68329488099688e56 * cos(theta) ** 23 + 4.30863129051713e55 * cos(theta) ** 21 - 3.19834772360763e54 * cos(theta) ** 19 + 1.88332458931441e53 * cos(theta) ** 17 - 8.60948383686587e51 * cos(theta) ** 15 + 2.97171532830676e50 * cos(theta) ** 13 - 7.46517860250973e48 * cos(theta) ** 11 + 1.29767643216825e47 * cos(theta) ** 9 - 1.45126907605024e45 * cos(theta) ** 7 + 9.320076635185e42 * cos(theta) ** 5 - 2.80979096629032e40 * cos(theta) ** 3 + 2.50874193418779e37 * cos(theta) ) * sin(19 * phi) ) # @torch.jit.script def Yl84_m_minus_18(theta, phi): return ( 1.23403623695234e-34 * (1.0 - cos(theta) ** 2) ** 9 * ( 7.23883322964669e57 * cos(theta) ** 66 - 9.29778280095338e58 * cos(theta) ** 64 + 5.68010003840061e59 * cos(theta) ** 62 - 2.19653766311157e60 * cos(theta) ** 60 + 6.037067800788e60 * cos(theta) ** 58 - 1.25525447480535e61 * cos(theta) ** 56 + 2.05211453418285e61 * cos(theta) ** 54 - 2.70652156536005e61 * cos(theta) ** 52 + 2.93206502914006e61 * cos(theta) ** 50 - 2.64295780772375e61 * cos(theta) ** 48 + 2.00084322624992e61 * cos(theta) ** 46 - 1.2806881503826e61 * cos(theta) ** 44 + 6.96282178311462e60 * cos(theta) ** 42 - 3.22484645253453e60 * cos(theta) ** 40 + 1.2742554371717e60 * cos(theta) ** 38 - 4.29641041885709e59 * cos(theta) ** 36 + 1.23482598717152e59 * cos(theta) ** 34 - 3.01846352419704e58 * cos(theta) ** 32 + 6.25379243108494e57 * cos(theta) ** 30 - 1.09296894637282e57 * cos(theta) ** 28 + 1.60132659584855e56 * cos(theta) ** 26 - 1.95137286708203e55 * cos(theta) ** 24 + 1.95846876841688e54 * cos(theta) ** 22 - 1.59917386180381e53 * cos(theta) ** 20 + 1.046291438508e52 * cos(theta) ** 18 - 5.38092739804117e50 * cos(theta) ** 16 + 2.1226538059334e49 * cos(theta) ** 14 - 6.22098216875811e47 * cos(theta) ** 12 + 1.29767643216825e46 * cos(theta) ** 10 - 1.8140863450628e44 * cos(theta) ** 8 + 1.55334610586417e42 * cos(theta) ** 6 - 7.02447741572581e39 * cos(theta) ** 4 + 1.25437096709389e37 * cos(theta) ** 2 - 3.69041178903764e33 ) * sin(18 * phi) ) # @torch.jit.script def Yl84_m_minus_17(theta, phi): return ( 1.02015320892099e-32 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.08042287009652e56 * cos(theta) ** 67 - 1.4304281232236e57 * cos(theta) ** 65 + 9.0160318069851e57 * cos(theta) ** 63 - 3.60088141493699e58 * cos(theta) ** 61 + 1.02323183064203e59 * cos(theta) ** 59 - 2.20220083299185e59 * cos(theta) ** 57 + 3.73111733487791e59 * cos(theta) ** 55 - 5.1066444629435e59 * cos(theta) ** 53 + 5.7491471159609e59 * cos(theta) ** 51 - 5.39379144433418e59 * cos(theta) ** 49 + 4.25711324734026e59 * cos(theta) ** 47 - 2.8459736675169e59 * cos(theta) ** 45 + 1.6192608797941e59 * cos(theta) ** 43 - 7.86547915252324e58 * cos(theta) ** 41 + 3.26732163377358e58 * cos(theta) ** 39 - 1.16119200509651e58 * cos(theta) ** 37 + 3.52807424906148e57 * cos(theta) ** 35 - 9.14685916423347e56 * cos(theta) ** 33 + 2.01735239712417e56 * cos(theta) ** 31 - 3.76885843576834e55 * cos(theta) ** 29 + 5.93083924388351e54 * cos(theta) ** 27 - 7.80549146832814e53 * cos(theta) ** 25 + 8.51508160181251e52 * cos(theta) ** 23 - 7.61511362763721e51 * cos(theta) ** 21 + 5.50679704477897e50 * cos(theta) ** 19 - 3.16525141061245e49 * cos(theta) ** 17 + 1.41510253728893e48 * cos(theta) ** 15 - 4.7853708990447e46 * cos(theta) ** 13 + 1.17970584742568e45 * cos(theta) ** 11 - 2.01565149451422e43 * cos(theta) ** 9 + 2.21906586552024e41 * cos(theta) ** 7 - 1.40489548314516e39 * cos(theta) ** 5 + 4.18123655697965e36 * cos(theta) ** 3 - 3.69041178903764e33 * cos(theta) ) * sin(17 * phi) ) # @torch.jit.script def Yl84_m_minus_16(theta, phi): return ( 8.45435623126083e-31 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.58885716190665e54 * cos(theta) ** 68 - 2.16731533821757e55 * cos(theta) ** 66 + 1.40875496984142e56 * cos(theta) ** 64 - 5.80787324989838e56 * cos(theta) ** 62 + 1.70538638440339e57 * cos(theta) ** 60 - 3.79689798791698e57 * cos(theta) ** 58 + 6.66270952656769e57 * cos(theta) ** 56 - 9.45674900545092e57 * cos(theta) ** 54 + 1.10560521460787e58 * cos(theta) ** 52 - 1.07875828886684e58 * cos(theta) ** 50 + 8.86898593195888e57 * cos(theta) ** 48 - 6.18689927721065e57 * cos(theta) ** 46 + 3.6801383631684e57 * cos(theta) ** 44 - 1.87273313155315e57 * cos(theta) ** 42 + 8.16830408443396e56 * cos(theta) ** 40 - 3.0557684344645e56 * cos(theta) ** 38 + 9.800206247393e55 * cos(theta) ** 36 - 2.69025269536278e55 * cos(theta) ** 34 + 6.30422624101304e54 * cos(theta) ** 32 - 1.25628614525611e54 * cos(theta) ** 30 + 2.11815687281554e53 * cos(theta) ** 28 - 3.00211210320313e52 * cos(theta) ** 26 + 3.54795066742188e51 * cos(theta) ** 24 - 3.46141528528964e50 * cos(theta) ** 22 + 2.75339852238949e49 * cos(theta) ** 20 - 1.75847300589581e48 * cos(theta) ** 18 + 8.84439085805583e46 * cos(theta) ** 16 - 3.41812207074621e45 * cos(theta) ** 14 + 9.8308820618807e43 * cos(theta) ** 12 - 2.01565149451422e42 * cos(theta) ** 10 + 2.7738323319003e40 * cos(theta) ** 8 - 2.3414924719086e38 * cos(theta) ** 6 + 1.04530913924491e36 * cos(theta) ** 4 - 1.84520589451882e33 * cos(theta) ** 2 + 5.37334273301928e29 ) * sin(16 * phi) ) # @torch.jit.script def Yl84_m_minus_15(theta, phi): return ( 7.02271572162013e-29 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 2.30269153899514e52 * cos(theta) ** 69 - 3.23479901226503e53 * cos(theta) ** 67 + 2.16731533821757e54 * cos(theta) ** 65 - 9.21884642841012e54 * cos(theta) ** 63 + 2.79571538426785e55 * cos(theta) ** 61 - 6.43542031850336e55 * cos(theta) ** 59 + 1.16889640816977e56 * cos(theta) ** 57 - 1.71940891008199e56 * cos(theta) ** 55 + 2.08604757473182e56 * cos(theta) ** 53 - 2.11521233111144e56 * cos(theta) ** 51 + 1.8099971289712e56 * cos(theta) ** 49 - 1.31636154834269e56 * cos(theta) ** 47 + 8.17808525148534e55 * cos(theta) ** 45 - 4.35519332919338e55 * cos(theta) ** 43 + 1.99226928888633e55 * cos(theta) ** 41 - 7.83530367811411e54 * cos(theta) ** 39 + 2.6487043911873e54 * cos(theta) ** 37 - 7.6864362724651e53 * cos(theta) ** 35 + 1.91037158818577e53 * cos(theta) ** 33 - 4.05253595243908e52 * cos(theta) ** 31 + 7.30398921660531e51 * cos(theta) ** 29 - 1.11189337155671e51 * cos(theta) ** 27 + 1.41918026696875e50 * cos(theta) ** 25 - 1.50496316751723e49 * cos(theta) ** 23 + 1.3111421535188e48 * cos(theta) ** 21 - 9.25512108366214e46 * cos(theta) ** 19 + 5.2025828576799e45 * cos(theta) ** 17 - 2.27874804716414e44 * cos(theta) ** 15 + 7.56221697067746e42 * cos(theta) ** 13 - 1.83241044955838e41 * cos(theta) ** 11 + 3.08203592433367e39 * cos(theta) ** 9 - 3.34498924558372e37 * cos(theta) ** 7 + 2.09061827848982e35 * cos(theta) ** 5 - 6.15068631506274e32 * cos(theta) ** 3 + 5.37334273301928e29 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl84_m_minus_14(theta, phi): return ( 5.84617357952503e-27 * (1.0 - cos(theta) ** 2) ** 7 * ( 3.28955934142163e50 * cos(theta) ** 70 - 4.75705737097799e51 * cos(theta) ** 68 + 3.28381111851147e52 * cos(theta) ** 66 - 1.44044475443908e53 * cos(theta) ** 64 + 4.50921836172234e53 * cos(theta) ** 62 - 1.07257005308389e54 * cos(theta) ** 60 + 2.01533863477547e54 * cos(theta) ** 58 - 3.07037305371783e54 * cos(theta) ** 56 + 3.86305106431819e54 * cos(theta) ** 54 - 4.06771602136816e54 * cos(theta) ** 52 + 3.6199942579424e54 * cos(theta) ** 50 - 2.74241989238061e54 * cos(theta) ** 48 + 1.77784461988812e54 * cos(theta) ** 46 - 9.89816665725767e53 * cos(theta) ** 44 + 4.74349830687222e53 * cos(theta) ** 42 - 1.95882591952853e53 * cos(theta) ** 40 + 6.97027471365078e52 * cos(theta) ** 38 - 2.13512118679586e52 * cos(theta) ** 36 + 5.61873996525226e51 * cos(theta) ** 34 - 1.26641748513721e51 * cos(theta) ** 32 + 2.43466307220177e50 * cos(theta) ** 30 - 3.97104775555969e49 * cos(theta) ** 28 + 5.45838564218751e48 * cos(theta) ** 26 - 6.27067986465514e47 * cos(theta) ** 24 + 5.9597370614491e46 * cos(theta) ** 22 - 4.62756054183107e45 * cos(theta) ** 20 + 2.89032380982217e44 * cos(theta) ** 18 - 1.42421752947759e43 * cos(theta) ** 16 + 5.4015835504839e41 * cos(theta) ** 14 - 1.52700870796532e40 * cos(theta) ** 12 + 3.08203592433366e38 * cos(theta) ** 10 - 4.18123655697965e36 * cos(theta) ** 8 + 3.48436379748304e34 * cos(theta) ** 6 - 1.53767157876568e32 * cos(theta) ** 4 + 2.68667136650964e29 * cos(theta) ** 2 - 7.75374131748814e25 ) * sin(14 * phi) ) # @torch.jit.script def Yl84_m_minus_13(theta, phi): return ( 4.87656388599221e-25 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 4.63318217101638e48 * cos(theta) ** 71 - 6.89428604489563e49 * cos(theta) ** 69 + 4.90121062464399e50 * cos(theta) ** 67 - 2.2160688529832e51 * cos(theta) ** 65 + 7.15748946305133e51 * cos(theta) ** 63 - 1.75831156243261e52 * cos(theta) ** 61 + 3.41582819453469e52 * cos(theta) ** 59 - 5.38661939248742e52 * cos(theta) ** 57 + 7.02372920785125e52 * cos(theta) ** 55 - 7.67493588937388e52 * cos(theta) ** 53 + 7.0980279567498e52 * cos(theta) ** 51 - 5.59677529057267e52 * cos(theta) ** 49 + 3.78264812742153e52 * cos(theta) ** 47 - 2.1995925905017e52 * cos(theta) ** 45 + 1.10313914113307e52 * cos(theta) ** 43 - 4.77762419397202e51 * cos(theta) ** 41 + 1.78724992657712e51 * cos(theta) ** 39 - 5.77059780215097e50 * cos(theta) ** 37 + 1.60535427578636e50 * cos(theta) ** 35 - 3.83762874284004e49 * cos(theta) ** 33 + 7.85375184581217e48 * cos(theta) ** 31 - 1.36932681226196e48 * cos(theta) ** 29 + 2.0216243119213e47 * cos(theta) ** 27 - 2.50827194586206e46 * cos(theta) ** 25 + 2.591190026717e45 * cos(theta) ** 23 - 2.20360025801479e44 * cos(theta) ** 21 + 1.52122305780114e43 * cos(theta) ** 19 - 8.37775017339758e41 * cos(theta) ** 17 + 3.6010557003226e40 * cos(theta) ** 15 - 1.17462208305024e39 * cos(theta) ** 13 + 2.80185084030333e37 * cos(theta) ** 11 - 4.64581839664405e35 * cos(theta) ** 9 + 4.97766256783291e33 * cos(theta) ** 7 - 3.07534315753137e31 * cos(theta) ** 5 + 8.9555712216988e28 * cos(theta) ** 3 - 7.75374131748814e25 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl84_m_minus_12(theta, phi): return ( 4.0753605157556e-23 * (1.0 - cos(theta) ** 2) ** 6 * ( 6.43497523752275e46 * cos(theta) ** 72 - 9.84898006413662e47 * cos(theta) ** 70 + 7.20766268329998e48 * cos(theta) ** 68 - 3.35768008027758e49 * cos(theta) ** 66 + 1.11835772860177e50 * cos(theta) ** 64 - 2.83598639102034e50 * cos(theta) ** 62 + 5.69304699089115e50 * cos(theta) ** 60 - 9.28727481463349e50 * cos(theta) ** 58 + 1.25423735854487e51 * cos(theta) ** 56 - 1.42128442395813e51 * cos(theta) ** 54 + 1.36500537629804e51 * cos(theta) ** 52 - 1.11935505811453e51 * cos(theta) ** 50 + 7.88051693212818e50 * cos(theta) ** 48 - 4.78172302282979e50 * cos(theta) ** 46 + 2.50713441166608e50 * cos(theta) ** 44 - 1.13752956999334e50 * cos(theta) ** 42 + 4.46812481644281e49 * cos(theta) ** 40 - 1.5185783689871e49 * cos(theta) ** 38 + 4.45931743273989e48 * cos(theta) ** 36 - 1.12871433612942e48 * cos(theta) ** 34 + 2.4542974518163e47 * cos(theta) ** 32 - 4.56442270753988e46 * cos(theta) ** 30 + 7.22008682829035e45 * cos(theta) ** 28 - 9.64719979177714e44 * cos(theta) ** 26 + 1.07966251113208e44 * cos(theta) ** 24 - 1.00163648091582e43 * cos(theta) ** 22 + 7.6061152890057e41 * cos(theta) ** 20 - 4.65430565188755e40 * cos(theta) ** 18 + 2.25065981270163e39 * cos(theta) ** 16 - 8.39015773607316e37 * cos(theta) ** 14 + 2.33487570025278e36 * cos(theta) ** 12 - 4.64581839664405e34 * cos(theta) ** 10 + 6.22207820979114e32 * cos(theta) ** 8 - 5.12557192921895e30 * cos(theta) ** 6 + 2.2388928054247e28 * cos(theta) ** 4 - 3.87687065874407e25 * cos(theta) ** 2 + 1.11021496527608e22 ) * sin(12 * phi) ) # @torch.jit.script def Yl84_m_minus_11(theta, phi): return ( 3.41163907587431e-21 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 8.81503457194898e44 * cos(theta) ** 73 - 1.38718029072347e46 * cos(theta) ** 71 + 1.04458879468116e47 * cos(theta) ** 69 - 5.01146280638445e47 * cos(theta) ** 67 + 1.72055035169503e48 * cos(theta) ** 65 - 4.50156570003229e48 * cos(theta) ** 63 + 9.33286391949369e48 * cos(theta) ** 61 - 1.57411437536161e49 * cos(theta) ** 59 + 2.20041641849976e49 * cos(theta) ** 57 - 2.58415349810568e49 * cos(theta) ** 55 + 2.57548184207177e49 * cos(theta) ** 53 - 2.19481383944026e49 * cos(theta) ** 51 + 1.60826876165881e49 * cos(theta) ** 49 - 1.01738787719783e49 * cos(theta) ** 47 + 5.57140980370239e48 * cos(theta) ** 45 - 2.64541760463567e48 * cos(theta) ** 43 + 1.08978654059581e48 * cos(theta) ** 41 - 3.89379068971051e47 * cos(theta) ** 39 + 1.20522092776754e47 * cos(theta) ** 37 - 3.22489810322692e46 * cos(theta) ** 35 + 7.43726500550394e45 * cos(theta) ** 33 - 1.47239442178706e45 * cos(theta) ** 31 + 2.48968511320357e44 * cos(theta) ** 29 - 3.57303695991746e43 * cos(theta) ** 27 + 4.31865004452833e42 * cos(theta) ** 25 - 4.35494122137311e41 * cos(theta) ** 23 + 3.62195966143129e40 * cos(theta) ** 21 - 2.44963455362502e39 * cos(theta) ** 19 + 1.32391753688331e38 * cos(theta) ** 17 - 5.59343849071544e36 * cos(theta) ** 15 + 1.79605823096367e35 * cos(theta) ** 13 - 4.22347126967641e33 * cos(theta) ** 11 + 6.91342023310127e31 * cos(theta) ** 9 - 7.32224561316992e29 * cos(theta) ** 7 + 4.4777856108494e27 * cos(theta) ** 5 - 1.29229021958136e25 * cos(theta) ** 3 + 1.11021496527608e22 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl84_m_minus_10(theta, phi): return ( 2.86049203326541e-19 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.19122088810121e43 * cos(theta) ** 74 - 1.92663929267148e44 * cos(theta) ** 72 + 1.49226970668737e45 * cos(theta) ** 70 - 7.36979824468301e45 * cos(theta) ** 68 + 2.6068944722652e46 * cos(theta) ** 66 - 7.03369640630045e46 * cos(theta) ** 64 + 1.5053006321764e47 * cos(theta) ** 62 - 2.62352395893601e47 * cos(theta) ** 60 + 3.79382141120649e47 * cos(theta) ** 58 - 4.61455981804586e47 * cos(theta) ** 56 + 4.76941081865143e47 * cos(theta) ** 54 - 4.22079584507742e47 * cos(theta) ** 52 + 3.21653752331762e47 * cos(theta) ** 50 - 2.11955807749548e47 * cos(theta) ** 48 + 1.21117604428313e47 * cos(theta) ** 46 - 6.01231273780834e46 * cos(theta) ** 44 + 2.59472985856145e46 * cos(theta) ** 42 - 9.73447672427627e45 * cos(theta) ** 40 + 3.17163402044089e45 * cos(theta) ** 38 - 8.95805028674145e44 * cos(theta) ** 36 + 2.18743088397175e44 * cos(theta) ** 34 - 4.60123256808455e43 * cos(theta) ** 32 + 8.29895037734523e42 * cos(theta) ** 30 - 1.27608462854195e42 * cos(theta) ** 28 + 1.66101924789551e41 * cos(theta) ** 26 - 1.8145588422388e40 * cos(theta) ** 24 + 1.64634530065058e39 * cos(theta) ** 22 - 1.22481727681251e38 * cos(theta) ** 20 + 7.3550974271295e36 * cos(theta) ** 18 - 3.49589905669715e35 * cos(theta) ** 16 + 1.28289873640262e34 * cos(theta) ** 14 - 3.51955939139701e32 * cos(theta) ** 12 + 6.91342023310127e30 * cos(theta) ** 10 - 9.1528070164624e28 * cos(theta) ** 8 + 7.46297601808233e26 * cos(theta) ** 6 - 3.23072554895339e24 * cos(theta) ** 4 + 5.5510748263804e21 * cos(theta) ** 2 - 1.57925315117508e18 ) * sin(10 * phi) ) # @torch.jit.script def Yl84_m_minus_9(theta, phi): return ( 2.40179148637518e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1.58829451746828e41 * cos(theta) ** 75 - 2.63923190776915e42 * cos(theta) ** 73 + 2.10178831927798e43 * cos(theta) ** 71 - 1.06808670212797e44 * cos(theta) ** 69 + 3.89088727203761e44 * cos(theta) ** 67 - 1.08210713943084e45 * cos(theta) ** 65 + 2.38936608281968e45 * cos(theta) ** 63 - 4.30085894907543e45 * cos(theta) ** 61 + 6.43020578170592e45 * cos(theta) ** 59 - 8.09571897902783e45 * cos(theta) ** 57 + 8.67165603391169e45 * cos(theta) ** 55 - 7.9637657454291e45 * cos(theta) ** 53 + 6.30693632023064e45 * cos(theta) ** 51 - 4.3256287295826e45 * cos(theta) ** 49 + 2.57697030698538e45 * cos(theta) ** 47 - 1.33606949729074e45 * cos(theta) ** 45 + 6.03425548502662e44 * cos(theta) ** 43 - 2.37426261567714e44 * cos(theta) ** 41 + 8.13239492420741e43 * cos(theta) ** 39 - 2.42109467209228e43 * cos(theta) ** 37 + 6.24980252563357e42 * cos(theta) ** 35 - 1.39431289941956e42 * cos(theta) ** 33 + 2.67708076688556e41 * cos(theta) ** 31 - 4.40029182255845e40 * cos(theta) ** 29 + 6.15192314035375e39 * cos(theta) ** 27 - 7.25823536895519e38 * cos(theta) ** 25 + 7.15802304630689e37 * cos(theta) ** 23 - 5.83246322291672e36 * cos(theta) ** 21 + 3.87110390901553e35 * cos(theta) ** 19 - 2.05641120982185e34 * cos(theta) ** 17 + 8.55265824268416e32 * cos(theta) ** 15 - 2.7073533779977e31 * cos(theta) ** 13 + 6.28492748463752e29 * cos(theta) ** 11 - 1.01697855738471e28 * cos(theta) ** 9 + 1.06613943115462e26 * cos(theta) ** 7 - 6.46145109790678e23 * cos(theta) ** 5 + 1.85035827546013e21 * cos(theta) ** 3 - 1.57925315117508e18 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl84_m_minus_8(theta, phi): return ( 2.01921968511511e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 2.08986120719511e39 * cos(theta) ** 76 - 3.56652960509345e40 * cos(theta) ** 74 + 2.91915044344164e41 * cos(theta) ** 72 - 1.5258381458971e42 * cos(theta) ** 70 + 5.72189304711414e42 * cos(theta) ** 68 - 1.63955627186491e43 * cos(theta) ** 66 + 3.73338450440576e43 * cos(theta) ** 64 - 6.93686927270231e43 * cos(theta) ** 62 + 1.07170096361765e44 * cos(theta) ** 60 - 1.39581361707376e44 * cos(theta) ** 58 + 1.54851000605566e44 * cos(theta) ** 56 - 1.47477143433872e44 * cos(theta) ** 54 + 1.21287236927512e44 * cos(theta) ** 52 - 8.65125745916521e43 * cos(theta) ** 50 + 5.36868813955288e43 * cos(theta) ** 48 - 2.90449890715379e43 * cos(theta) ** 46 + 1.37142170114241e43 * cos(theta) ** 44 - 5.65300622780271e42 * cos(theta) ** 42 + 2.03309873105185e42 * cos(theta) ** 40 - 6.3713017686639e41 * cos(theta) ** 38 + 1.73605625712044e41 * cos(theta) ** 36 - 4.10092029241048e40 * cos(theta) ** 34 + 8.36587739651737e39 * cos(theta) ** 32 - 1.46676394085282e39 * cos(theta) ** 30 + 2.1971154072692e38 * cos(theta) ** 28 - 2.79162898805969e37 * cos(theta) ** 26 + 2.98250960262787e36 * cos(theta) ** 24 - 2.65111964678033e35 * cos(theta) ** 22 + 1.93555195450776e34 * cos(theta) ** 20 - 1.14245067212325e33 * cos(theta) ** 18 + 5.3454114016776e31 * cos(theta) ** 16 - 1.93382384142693e30 * cos(theta) ** 14 + 5.23743957053127e28 * cos(theta) ** 12 - 1.01697855738471e27 * cos(theta) ** 10 + 1.33267428894327e25 * cos(theta) ** 8 - 1.0769085163178e23 * cos(theta) ** 6 + 4.62589568865033e20 * cos(theta) ** 4 - 7.89626575587539e17 * cos(theta) ** 2 + 223437061569762.0 ) * sin(8 * phi) ) # @torch.jit.script def Yl84_m_minus_7(theta, phi): return ( 1.6995065695896e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 2.71410546388975e37 * cos(theta) ** 77 - 4.75537280679127e38 * cos(theta) ** 75 + 3.99883622389266e39 * cos(theta) ** 73 - 2.14906781112268e40 * cos(theta) ** 71 + 8.292598619006e40 * cos(theta) ** 69 - 2.4470989132312e41 * cos(theta) ** 67 + 5.74366846831655e41 * cos(theta) ** 65 - 1.1010903607464e42 * cos(theta) ** 63 + 1.75688682560271e42 * cos(theta) ** 61 - 2.36578579165045e42 * cos(theta) ** 59 + 2.71668422115028e42 * cos(theta) ** 57 - 2.68140260788859e42 * cos(theta) ** 55 + 2.28843843259457e42 * cos(theta) ** 53 - 1.69632499199318e42 * cos(theta) ** 51 + 1.09565064072508e42 * cos(theta) ** 49 - 6.17978490883784e41 * cos(theta) ** 47 + 3.04760378031647e41 * cos(theta) ** 45 - 1.31465261111691e41 * cos(theta) ** 43 + 4.9587773928094e40 * cos(theta) ** 41 - 1.63366712017023e40 * cos(theta) ** 39 + 4.69204393816334e39 * cos(theta) ** 37 - 1.17169151211728e39 * cos(theta) ** 35 + 2.53511436258102e38 * cos(theta) ** 33 - 4.73149658339618e37 * cos(theta) ** 31 + 7.5762600250662e36 * cos(theta) ** 29 - 1.03393666224433e36 * cos(theta) ** 27 + 1.19300384105115e35 * cos(theta) ** 25 - 1.15266071599145e34 * cos(theta) ** 23 + 9.21691406908458e32 * cos(theta) ** 21 - 6.01289827433291e31 * cos(theta) ** 19 + 3.14435964804565e30 * cos(theta) ** 17 - 1.28921589428462e29 * cos(theta) ** 15 + 4.02879966963943e27 * cos(theta) ** 13 - 9.24525961258829e25 * cos(theta) ** 11 + 1.48074920993697e24 * cos(theta) ** 9 - 1.53844073759685e22 * cos(theta) ** 7 + 9.25179137730066e19 * cos(theta) ** 5 - 2.6320885852918e17 * cos(theta) ** 3 + 223437061569762.0 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl84_m_minus_6(theta, phi): return ( 1.43182798105761e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 3.47962238960225e35 * cos(theta) ** 78 - 6.25706948262009e36 * cos(theta) ** 76 + 5.40383273499008e37 * cos(theta) ** 74 - 2.98481640433706e38 * cos(theta) ** 72 + 1.18465694557229e39 * cos(theta) ** 70 - 3.59867487239883e39 * cos(theta) ** 68 + 8.7025279822978e39 * cos(theta) ** 66 - 1.72045368866625e40 * cos(theta) ** 64 + 2.83368842839147e40 * cos(theta) ** 62 - 3.94297631941741e40 * cos(theta) ** 60 + 4.68393831232807e40 * cos(theta) ** 58 - 4.78821894265819e40 * cos(theta) ** 56 + 4.2378489492492e40 * cos(theta) ** 54 - 3.26216344614073e40 * cos(theta) ** 52 + 2.19130128145015e40 * cos(theta) ** 50 - 1.28745518934122e40 * cos(theta) ** 48 + 6.62522560938364e39 * cos(theta) ** 46 - 2.98784684344752e39 * cos(theta) ** 44 + 1.18066128400224e39 * cos(theta) ** 42 - 4.08416780042558e38 * cos(theta) ** 40 + 1.23474840477983e38 * cos(theta) ** 38 - 3.25469864477022e37 * cos(theta) ** 36 + 7.45621871347359e36 * cos(theta) ** 34 - 1.47859268231131e36 * cos(theta) ** 32 + 2.5254200083554e35 * cos(theta) ** 30 - 3.69263093658689e34 * cos(theta) ** 28 + 4.58847631173519e33 * cos(theta) ** 26 - 4.8027529832977e32 * cos(theta) ** 24 + 4.18950639503845e31 * cos(theta) ** 22 - 3.00644913716645e30 * cos(theta) ** 20 + 1.74686647113647e29 * cos(theta) ** 18 - 8.05759933927887e27 * cos(theta) ** 16 + 2.87771404974245e26 * cos(theta) ** 14 - 7.70438301049024e24 * cos(theta) ** 12 + 1.48074920993697e23 * cos(theta) ** 10 - 1.92305092199607e21 * cos(theta) ** 8 + 1.54196522955011e19 * cos(theta) ** 6 - 6.58022146322949e16 * cos(theta) ** 4 + 111718530784881.0 * cos(theta) ** 2 - 31478875960.8005 ) * sin(6 * phi) ) # @torch.jit.script def Yl84_m_minus_5(theta, phi): return ( 1.20732903641816e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 4.40458530329399e33 * cos(theta) ** 79 - 8.12606426314298e34 * cos(theta) ** 77 + 7.20511031332011e35 * cos(theta) ** 75 - 4.08878959498227e36 * cos(theta) ** 73 + 1.66853090925674e37 * cos(theta) ** 71 - 5.21547082956352e37 * cos(theta) ** 69 + 1.29888477347728e38 * cos(theta) ** 67 - 2.6468518287173e38 * cos(theta) ** 65 + 4.49791814030392e38 * cos(theta) ** 63 - 6.46389560560232e38 * cos(theta) ** 61 + 7.9388784954713e38 * cos(theta) ** 59 - 8.40038410992665e38 * cos(theta) ** 57 + 7.70517990772582e38 * cos(theta) ** 55 - 6.15502537007684e38 * cos(theta) ** 53 + 4.29666917931403e38 * cos(theta) ** 51 - 2.62745957008412e38 * cos(theta) ** 49 + 1.40962247008162e38 * cos(theta) ** 47 - 6.63965965210561e37 * cos(theta) ** 45 + 2.74572391628427e37 * cos(theta) ** 43 - 9.96138487908678e36 * cos(theta) ** 41 + 3.1660215507175e36 * cos(theta) ** 39 - 8.7964828237033e35 * cos(theta) ** 37 + 2.1303482038496e35 * cos(theta) ** 35 - 4.48058388579184e34 * cos(theta) ** 33 + 8.14651615598516e33 * cos(theta) ** 31 - 1.27332101261617e33 * cos(theta) ** 29 + 1.69943567101303e32 * cos(theta) ** 27 - 1.92110119331908e31 * cos(theta) ** 25 + 1.82152451958193e30 * cos(theta) ** 23 - 1.43164244626974e29 * cos(theta) ** 21 + 9.19403405861301e27 * cos(theta) ** 19 - 4.73976431722286e26 * cos(theta) ** 17 + 1.91847603316164e25 * cos(theta) ** 15 - 5.92644846960788e23 * cos(theta) ** 13 + 1.34613564539725e22 * cos(theta) ** 11 - 2.1367232466623e20 * cos(theta) ** 9 + 2.20280747078587e18 * cos(theta) ** 7 - 1.3160442926459e16 * cos(theta) ** 5 + 37239510261627.0 * cos(theta) ** 3 - 31478875960.8005 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl84_m_minus_4(theta, phi): return ( 1.01874535697151e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 5.50573162911748e31 * cos(theta) ** 80 - 1.04180311065936e33 * cos(theta) ** 78 + 9.48040830700014e33 * cos(theta) ** 76 - 5.52539134457063e34 * cos(theta) ** 74 + 2.31740404063436e35 * cos(theta) ** 72 - 7.45067261366217e35 * cos(theta) ** 70 + 1.91012466687836e36 * cos(theta) ** 68 - 4.01038155866258e36 * cos(theta) ** 66 + 7.02799709422487e36 * cos(theta) ** 64 - 1.04256380735521e37 * cos(theta) ** 62 + 1.32314641591188e37 * cos(theta) ** 60 - 1.44834208791839e37 * cos(theta) ** 58 + 1.37592498352247e37 * cos(theta) ** 56 - 1.13981951297719e37 * cos(theta) ** 54 + 8.26282534483467e36 * cos(theta) ** 52 - 5.25491914016823e36 * cos(theta) ** 50 + 2.93671347933672e36 * cos(theta) ** 48 - 1.44340427219687e36 * cos(theta) ** 46 + 6.2402816279188e35 * cos(theta) ** 44 - 2.37175830454447e35 * cos(theta) ** 42 + 7.91505387679376e34 * cos(theta) ** 40 - 2.31486390097455e34 * cos(theta) ** 38 + 5.91763389958222e33 * cos(theta) ** 36 - 1.31781878993878e33 * cos(theta) ** 34 + 2.54578629874536e32 * cos(theta) ** 32 - 4.24440337538723e31 * cos(theta) ** 30 + 6.06941311076083e30 * cos(theta) ** 28 - 7.38885074353492e29 * cos(theta) ** 26 + 7.58968549825806e28 * cos(theta) ** 24 - 6.50746566486245e27 * cos(theta) ** 22 + 4.5970170293065e26 * cos(theta) ** 20 - 2.63320239845715e25 * cos(theta) ** 18 + 1.19904752072602e24 * cos(theta) ** 16 - 4.23317747829134e22 * cos(theta) ** 14 + 1.12177970449771e21 * cos(theta) ** 12 - 2.1367232466623e19 * cos(theta) ** 10 + 2.75350933848234e17 * cos(theta) ** 8 - 2.19340715440983e15 * cos(theta) ** 6 + 9309877565406.75 * cos(theta) ** 4 - 15739437980.4002 * cos(theta) ** 2 + 4421190.44393265 ) * sin(4 * phi) ) # @torch.jit.script def Yl84_m_minus_3(theta, phi): return ( 8.60101069965504e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 6.79719954212035e29 * cos(theta) ** 81 - 1.31873811475868e31 * cos(theta) ** 79 + 1.23122185805197e32 * cos(theta) ** 77 - 7.36718845942751e32 * cos(theta) ** 75 + 3.17452608306077e33 * cos(theta) ** 73 - 1.0493905089665e34 * cos(theta) ** 71 + 2.76829661866429e34 * cos(theta) ** 69 - 5.98564411740684e34 * cos(theta) ** 67 + 1.08123032218844e35 * cos(theta) ** 65 - 1.65486318627811e35 * cos(theta) ** 63 + 2.16909248510145e35 * cos(theta) ** 61 - 2.45481709816676e35 * cos(theta) ** 59 + 2.41390347986398e35 * cos(theta) ** 57 - 2.07239911450399e35 * cos(theta) ** 55 + 1.5590236499688e35 * cos(theta) ** 53 - 1.03037630199377e35 * cos(theta) ** 51 + 5.99329281497289e34 * cos(theta) ** 49 - 3.07107291956781e34 * cos(theta) ** 47 + 1.38672925064862e34 * cos(theta) ** 45 - 5.51571698731272e33 * cos(theta) ** 43 + 1.93050094555945e33 * cos(theta) ** 41 - 5.93554846403731e32 * cos(theta) ** 39 + 1.5993605134006e32 * cos(theta) ** 37 - 3.76519654268222e31 * cos(theta) ** 35 + 7.71450393559201e30 * cos(theta) ** 33 - 1.36916237915717e30 * cos(theta) ** 31 + 2.09290107267615e29 * cos(theta) ** 29 - 2.73661138649441e28 * cos(theta) ** 27 + 3.03587419930322e27 * cos(theta) ** 25 - 2.82933289776628e26 * cos(theta) ** 23 + 2.18905572824119e25 * cos(theta) ** 21 - 1.38589599918797e24 * cos(theta) ** 19 + 7.05322071015307e22 * cos(theta) ** 17 - 2.82211831886089e21 * cos(theta) ** 15 + 8.62907464998235e19 * cos(theta) ** 13 - 1.94247567878391e18 * cos(theta) ** 11 + 3.05945482053593e16 * cos(theta) ** 9 - 313343879201404.0 * cos(theta) ** 7 + 1861975513081.35 * cos(theta) ** 5 - 5246479326.80008 * cos(theta) ** 3 + 4421190.44393265 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl84_m_minus_2(theta, phi): return ( 0.000726467249768708 * (1.0 - cos(theta) ** 2) * ( 8.28926773429311e27 * cos(theta) ** 82 - 1.64842264344835e29 * cos(theta) ** 80 + 1.57848956160508e30 * cos(theta) ** 78 - 9.69366902556251e30 * cos(theta) ** 76 + 4.28990011224428e31 * cos(theta) ** 74 - 1.45748681800903e32 * cos(theta) ** 72 + 3.9547094552347e32 * cos(theta) ** 70 - 8.80241781971594e32 * cos(theta) ** 68 + 1.63822776089158e33 * cos(theta) ** 66 - 2.58572372855955e33 * cos(theta) ** 64 + 3.49853626629266e33 * cos(theta) ** 62 - 4.09136183027793e33 * cos(theta) ** 60 + 4.16190255148962e33 * cos(theta) ** 58 - 3.70071270447141e33 * cos(theta) ** 56 + 2.88708083327557e33 * cos(theta) ** 54 - 1.98149288844956e33 * cos(theta) ** 52 + 1.19865856299458e33 * cos(theta) ** 50 - 6.39806858243294e32 * cos(theta) ** 48 + 3.01462880575788e32 * cos(theta) ** 46 - 1.25357204257107e32 * cos(theta) ** 44 + 4.5964308227606e31 * cos(theta) ** 42 - 1.48388711600933e31 * cos(theta) ** 40 + 4.20884345631737e30 * cos(theta) ** 38 - 1.04588792852284e30 * cos(theta) ** 36 + 2.26897174576236e29 * cos(theta) ** 34 - 4.27863243486616e28 * cos(theta) ** 32 + 6.97633690892049e27 * cos(theta) ** 30 - 9.77361209462291e26 * cos(theta) ** 28 + 1.16764392280893e26 * cos(theta) ** 26 - 1.17888870740262e25 * cos(theta) ** 24 + 9.95025331018724e23 * cos(theta) ** 22 - 6.92947999593986e22 * cos(theta) ** 20 + 3.91845595008504e21 * cos(theta) ** 18 - 1.76382394928806e20 * cos(theta) ** 16 + 6.16362474998739e18 * cos(theta) ** 14 - 1.61872973231992e17 * cos(theta) ** 12 + 3.05945482053593e15 * cos(theta) ** 10 - 39167984900175.5 * cos(theta) ** 8 + 310329252180.225 * cos(theta) ** 6 - 1311619831.70002 * cos(theta) ** 4 + 2210595.22196633 * cos(theta) ** 2 - 619.73513371638 ) * sin(2 * phi) ) # @torch.jit.script def Yl84_m_minus_1(theta, phi): return ( 0.0613768099421411 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 9.98706955938929e25 * cos(theta) ** 83 - 2.03508968326957e27 * cos(theta) ** 81 + 1.99808805266466e28 * cos(theta) ** 79 - 1.25891805526786e29 * cos(theta) ** 77 + 5.71986681632571e29 * cos(theta) ** 75 - 1.99655728494388e30 * cos(theta) ** 73 + 5.57001331723197e30 * cos(theta) ** 71 - 1.27571272749506e31 * cos(theta) ** 69 + 2.44511606103221e31 * cos(theta) ** 67 - 3.97803650547624e31 * cos(theta) ** 65 + 5.55323216871851e31 * cos(theta) ** 63 - 6.70715054143923e31 * cos(theta) ** 61 + 7.05407212116885e31 * cos(theta) ** 59 - 6.4924784288972e31 * cos(theta) ** 57 + 5.24923787868285e31 * cos(theta) ** 55 - 3.73866582726332e31 * cos(theta) ** 53 + 2.35031090783251e31 * cos(theta) ** 51 - 1.30572828212917e31 * cos(theta) ** 49 + 6.41410384203803e30 * cos(theta) ** 47 - 2.78571565015794e30 * cos(theta) ** 45 + 1.068937400642e30 * cos(theta) ** 43 - 3.61923686831543e29 * cos(theta) ** 41 + 1.07919062982497e29 * cos(theta) ** 39 - 2.82672413114281e28 * cos(theta) ** 37 + 6.48277641646387e27 * cos(theta) ** 35 - 1.29655528329277e27 * cos(theta) ** 33 + 2.25043126094209e26 * cos(theta) ** 31 - 3.37021106711135e25 * cos(theta) ** 29 + 4.32460712151456e24 * cos(theta) ** 27 - 4.71555482961047e23 * cos(theta) ** 25 + 4.32619709138575e22 * cos(theta) ** 23 - 3.29975237901898e21 * cos(theta) ** 21 + 2.06234523688686e20 * cos(theta) ** 19 - 1.03754349958121e19 * cos(theta) ** 17 + 4.10908316665826e17 * cos(theta) ** 15 - 1.24517671716917e16 * cos(theta) ** 13 + 278132256412358.0 * cos(theta) ** 11 - 4351998322241.73 * cos(theta) ** 9 + 44332750311.4607 * cos(theta) ** 7 - 262323966.340004 * cos(theta) ** 5 + 736865.073988776 * cos(theta) ** 3 - 619.73513371638 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl84_m0(theta, phi): return ( 1.3697682065322e25 * cos(theta) ** 84 - 2.85928860357561e26 * cos(theta) ** 82 + 2.87748407650745e27 * cos(theta) ** 80 - 1.85947846252833e28 * cos(theta) ** 78 + 8.67082891765929e28 * cos(theta) ** 76 - 3.10841036670805e29 * cos(theta) ** 74 + 8.91275626377754e29 * cos(theta) ** 72 - 2.09963179817653e30 * cos(theta) ** 70 + 4.14265587630419e30 * cos(theta) ** 68 - 6.9440545152472e30 * cos(theta) ** 66 + 9.99664223839278e30 * cos(theta) ** 64 - 1.24633461673468e31 * cos(theta) ** 62 + 1.35449354037085e31 * cos(theta) ** 60 - 1.28964688889533e31 * cos(theta) ** 58 + 1.0799322732239e31 * cos(theta) ** 56 - 7.97647818112616e30 * cos(theta) ** 54 + 5.20727202426621e30 * cos(theta) ** 52 - 3.00864605846492e30 * cos(theta) ** 50 + 1.53951187202152e30 * cos(theta) ** 48 - 6.97697626211442e29 * cos(theta) ** 46 + 2.79890326794125e29 * cos(theta) ** 44 - 9.92786835947665e28 * cos(theta) ** 42 + 3.10832533000342e28 * cos(theta) ** 40 - 8.57014406999881e27 * cos(theta) ** 38 + 2.07465953209682e27 * cos(theta) ** 36 - 4.39339665620503e26 * cos(theta) ** 34 + 8.10222065789291e25 * cos(theta) ** 32 - 1.29426777659094e25 * cos(theta) ** 30 + 1.77941366250651e24 * cos(theta) ** 28 - 2.0895258292248e23 * cos(theta) ** 26 + 2.07674585473412e22 * cos(theta) ** 24 - 1.72801283058975e21 * cos(theta) ** 22 + 1.18800882103045e20 * cos(theta) ** 20 - 6.64082600752531e18 * cos(theta) ** 18 + 2.958783864739e17 * cos(theta) ** 16 - 1.02468705272346e16 * cos(theta) ** 14 + 267028985675359.0 * cos(theta) ** 12 - 5013915520504.6 * cos(theta) ** 10 + 63844425133.7598 * cos(theta) ** 8 - 503703551.351162 * cos(theta) ** 6 + 2122346.42423242 * cos(theta) ** 4 - 3569.96875396539 * cos(theta) ** 2 + 0.999991247609352 ) # @torch.jit.script def Yl84_m1(theta, phi): return ( 0.0613768099421411 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 9.98706955938929e25 * cos(theta) ** 83 - 2.03508968326957e27 * cos(theta) ** 81 + 1.99808805266466e28 * cos(theta) ** 79 - 1.25891805526786e29 * cos(theta) ** 77 + 5.71986681632571e29 * cos(theta) ** 75 - 1.99655728494388e30 * cos(theta) ** 73 + 5.57001331723197e30 * cos(theta) ** 71 - 1.27571272749506e31 * cos(theta) ** 69 + 2.44511606103221e31 * cos(theta) ** 67 - 3.97803650547624e31 * cos(theta) ** 65 + 5.55323216871851e31 * cos(theta) ** 63 - 6.70715054143923e31 * cos(theta) ** 61 + 7.05407212116885e31 * cos(theta) ** 59 - 6.4924784288972e31 * cos(theta) ** 57 + 5.24923787868285e31 * cos(theta) ** 55 - 3.73866582726332e31 * cos(theta) ** 53 + 2.35031090783251e31 * cos(theta) ** 51 - 1.30572828212917e31 * cos(theta) ** 49 + 6.41410384203803e30 * cos(theta) ** 47 - 2.78571565015794e30 * cos(theta) ** 45 + 1.068937400642e30 * cos(theta) ** 43 - 3.61923686831543e29 * cos(theta) ** 41 + 1.07919062982497e29 * cos(theta) ** 39 - 2.82672413114281e28 * cos(theta) ** 37 + 6.48277641646387e27 * cos(theta) ** 35 - 1.29655528329277e27 * cos(theta) ** 33 + 2.25043126094209e26 * cos(theta) ** 31 - 3.37021106711135e25 * cos(theta) ** 29 + 4.32460712151456e24 * cos(theta) ** 27 - 4.71555482961047e23 * cos(theta) ** 25 + 4.32619709138575e22 * cos(theta) ** 23 - 3.29975237901898e21 * cos(theta) ** 21 + 2.06234523688686e20 * cos(theta) ** 19 - 1.03754349958121e19 * cos(theta) ** 17 + 4.10908316665826e17 * cos(theta) ** 15 - 1.24517671716917e16 * cos(theta) ** 13 + 278132256412358.0 * cos(theta) ** 11 - 4351998322241.73 * cos(theta) ** 9 + 44332750311.4607 * cos(theta) ** 7 - 262323966.340004 * cos(theta) ** 5 + 736865.073988776 * cos(theta) ** 3 - 619.73513371638 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl84_m2(theta, phi): return ( 0.000726467249768708 * (1.0 - cos(theta) ** 2) * ( 8.28926773429311e27 * cos(theta) ** 82 - 1.64842264344835e29 * cos(theta) ** 80 + 1.57848956160508e30 * cos(theta) ** 78 - 9.69366902556251e30 * cos(theta) ** 76 + 4.28990011224428e31 * cos(theta) ** 74 - 1.45748681800903e32 * cos(theta) ** 72 + 3.9547094552347e32 * cos(theta) ** 70 - 8.80241781971594e32 * cos(theta) ** 68 + 1.63822776089158e33 * cos(theta) ** 66 - 2.58572372855955e33 * cos(theta) ** 64 + 3.49853626629266e33 * cos(theta) ** 62 - 4.09136183027793e33 * cos(theta) ** 60 + 4.16190255148962e33 * cos(theta) ** 58 - 3.70071270447141e33 * cos(theta) ** 56 + 2.88708083327557e33 * cos(theta) ** 54 - 1.98149288844956e33 * cos(theta) ** 52 + 1.19865856299458e33 * cos(theta) ** 50 - 6.39806858243294e32 * cos(theta) ** 48 + 3.01462880575788e32 * cos(theta) ** 46 - 1.25357204257107e32 * cos(theta) ** 44 + 4.5964308227606e31 * cos(theta) ** 42 - 1.48388711600933e31 * cos(theta) ** 40 + 4.20884345631737e30 * cos(theta) ** 38 - 1.04588792852284e30 * cos(theta) ** 36 + 2.26897174576236e29 * cos(theta) ** 34 - 4.27863243486616e28 * cos(theta) ** 32 + 6.97633690892049e27 * cos(theta) ** 30 - 9.77361209462291e26 * cos(theta) ** 28 + 1.16764392280893e26 * cos(theta) ** 26 - 1.17888870740262e25 * cos(theta) ** 24 + 9.95025331018724e23 * cos(theta) ** 22 - 6.92947999593986e22 * cos(theta) ** 20 + 3.91845595008504e21 * cos(theta) ** 18 - 1.76382394928806e20 * cos(theta) ** 16 + 6.16362474998739e18 * cos(theta) ** 14 - 1.61872973231992e17 * cos(theta) ** 12 + 3.05945482053593e15 * cos(theta) ** 10 - 39167984900175.5 * cos(theta) ** 8 + 310329252180.225 * cos(theta) ** 6 - 1311619831.70002 * cos(theta) ** 4 + 2210595.22196633 * cos(theta) ** 2 - 619.73513371638 ) * cos(2 * phi) ) # @torch.jit.script def Yl84_m3(theta, phi): return ( 8.60101069965504e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 6.79719954212035e29 * cos(theta) ** 81 - 1.31873811475868e31 * cos(theta) ** 79 + 1.23122185805197e32 * cos(theta) ** 77 - 7.36718845942751e32 * cos(theta) ** 75 + 3.17452608306077e33 * cos(theta) ** 73 - 1.0493905089665e34 * cos(theta) ** 71 + 2.76829661866429e34 * cos(theta) ** 69 - 5.98564411740684e34 * cos(theta) ** 67 + 1.08123032218844e35 * cos(theta) ** 65 - 1.65486318627811e35 * cos(theta) ** 63 + 2.16909248510145e35 * cos(theta) ** 61 - 2.45481709816676e35 * cos(theta) ** 59 + 2.41390347986398e35 * cos(theta) ** 57 - 2.07239911450399e35 * cos(theta) ** 55 + 1.5590236499688e35 * cos(theta) ** 53 - 1.03037630199377e35 * cos(theta) ** 51 + 5.99329281497289e34 * cos(theta) ** 49 - 3.07107291956781e34 * cos(theta) ** 47 + 1.38672925064862e34 * cos(theta) ** 45 - 5.51571698731272e33 * cos(theta) ** 43 + 1.93050094555945e33 * cos(theta) ** 41 - 5.93554846403731e32 * cos(theta) ** 39 + 1.5993605134006e32 * cos(theta) ** 37 - 3.76519654268222e31 * cos(theta) ** 35 + 7.71450393559201e30 * cos(theta) ** 33 - 1.36916237915717e30 * cos(theta) ** 31 + 2.09290107267615e29 * cos(theta) ** 29 - 2.73661138649441e28 * cos(theta) ** 27 + 3.03587419930322e27 * cos(theta) ** 25 - 2.82933289776628e26 * cos(theta) ** 23 + 2.18905572824119e25 * cos(theta) ** 21 - 1.38589599918797e24 * cos(theta) ** 19 + 7.05322071015307e22 * cos(theta) ** 17 - 2.82211831886089e21 * cos(theta) ** 15 + 8.62907464998235e19 * cos(theta) ** 13 - 1.94247567878391e18 * cos(theta) ** 11 + 3.05945482053593e16 * cos(theta) ** 9 - 313343879201404.0 * cos(theta) ** 7 + 1861975513081.35 * cos(theta) ** 5 - 5246479326.80008 * cos(theta) ** 3 + 4421190.44393265 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl84_m4(theta, phi): return ( 1.01874535697151e-7 * (1.0 - cos(theta) ** 2) ** 2 * ( 5.50573162911748e31 * cos(theta) ** 80 - 1.04180311065936e33 * cos(theta) ** 78 + 9.48040830700014e33 * cos(theta) ** 76 - 5.52539134457063e34 * cos(theta) ** 74 + 2.31740404063436e35 * cos(theta) ** 72 - 7.45067261366217e35 * cos(theta) ** 70 + 1.91012466687836e36 * cos(theta) ** 68 - 4.01038155866258e36 * cos(theta) ** 66 + 7.02799709422487e36 * cos(theta) ** 64 - 1.04256380735521e37 * cos(theta) ** 62 + 1.32314641591188e37 * cos(theta) ** 60 - 1.44834208791839e37 * cos(theta) ** 58 + 1.37592498352247e37 * cos(theta) ** 56 - 1.13981951297719e37 * cos(theta) ** 54 + 8.26282534483467e36 * cos(theta) ** 52 - 5.25491914016823e36 * cos(theta) ** 50 + 2.93671347933672e36 * cos(theta) ** 48 - 1.44340427219687e36 * cos(theta) ** 46 + 6.2402816279188e35 * cos(theta) ** 44 - 2.37175830454447e35 * cos(theta) ** 42 + 7.91505387679376e34 * cos(theta) ** 40 - 2.31486390097455e34 * cos(theta) ** 38 + 5.91763389958222e33 * cos(theta) ** 36 - 1.31781878993878e33 * cos(theta) ** 34 + 2.54578629874536e32 * cos(theta) ** 32 - 4.24440337538723e31 * cos(theta) ** 30 + 6.06941311076083e30 * cos(theta) ** 28 - 7.38885074353492e29 * cos(theta) ** 26 + 7.58968549825806e28 * cos(theta) ** 24 - 6.50746566486245e27 * cos(theta) ** 22 + 4.5970170293065e26 * cos(theta) ** 20 - 2.63320239845715e25 * cos(theta) ** 18 + 1.19904752072602e24 * cos(theta) ** 16 - 4.23317747829134e22 * cos(theta) ** 14 + 1.12177970449771e21 * cos(theta) ** 12 - 2.1367232466623e19 * cos(theta) ** 10 + 2.75350933848234e17 * cos(theta) ** 8 - 2.19340715440983e15 * cos(theta) ** 6 + 9309877565406.75 * cos(theta) ** 4 - 15739437980.4002 * cos(theta) ** 2 + 4421190.44393265 ) * cos(4 * phi) ) # @torch.jit.script def Yl84_m5(theta, phi): return ( 1.20732903641816e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 4.40458530329399e33 * cos(theta) ** 79 - 8.12606426314298e34 * cos(theta) ** 77 + 7.20511031332011e35 * cos(theta) ** 75 - 4.08878959498227e36 * cos(theta) ** 73 + 1.66853090925674e37 * cos(theta) ** 71 - 5.21547082956352e37 * cos(theta) ** 69 + 1.29888477347728e38 * cos(theta) ** 67 - 2.6468518287173e38 * cos(theta) ** 65 + 4.49791814030392e38 * cos(theta) ** 63 - 6.46389560560232e38 * cos(theta) ** 61 + 7.9388784954713e38 * cos(theta) ** 59 - 8.40038410992665e38 * cos(theta) ** 57 + 7.70517990772582e38 * cos(theta) ** 55 - 6.15502537007684e38 * cos(theta) ** 53 + 4.29666917931403e38 * cos(theta) ** 51 - 2.62745957008412e38 * cos(theta) ** 49 + 1.40962247008162e38 * cos(theta) ** 47 - 6.63965965210561e37 * cos(theta) ** 45 + 2.74572391628427e37 * cos(theta) ** 43 - 9.96138487908678e36 * cos(theta) ** 41 + 3.1660215507175e36 * cos(theta) ** 39 - 8.7964828237033e35 * cos(theta) ** 37 + 2.1303482038496e35 * cos(theta) ** 35 - 4.48058388579184e34 * cos(theta) ** 33 + 8.14651615598516e33 * cos(theta) ** 31 - 1.27332101261617e33 * cos(theta) ** 29 + 1.69943567101303e32 * cos(theta) ** 27 - 1.92110119331908e31 * cos(theta) ** 25 + 1.82152451958193e30 * cos(theta) ** 23 - 1.43164244626974e29 * cos(theta) ** 21 + 9.19403405861301e27 * cos(theta) ** 19 - 4.73976431722286e26 * cos(theta) ** 17 + 1.91847603316164e25 * cos(theta) ** 15 - 5.92644846960788e23 * cos(theta) ** 13 + 1.34613564539725e22 * cos(theta) ** 11 - 2.1367232466623e20 * cos(theta) ** 9 + 2.20280747078587e18 * cos(theta) ** 7 - 1.3160442926459e16 * cos(theta) ** 5 + 37239510261627.0 * cos(theta) ** 3 - 31478875960.8005 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl84_m6(theta, phi): return ( 1.43182798105761e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 3.47962238960225e35 * cos(theta) ** 78 - 6.25706948262009e36 * cos(theta) ** 76 + 5.40383273499008e37 * cos(theta) ** 74 - 2.98481640433706e38 * cos(theta) ** 72 + 1.18465694557229e39 * cos(theta) ** 70 - 3.59867487239883e39 * cos(theta) ** 68 + 8.7025279822978e39 * cos(theta) ** 66 - 1.72045368866625e40 * cos(theta) ** 64 + 2.83368842839147e40 * cos(theta) ** 62 - 3.94297631941741e40 * cos(theta) ** 60 + 4.68393831232807e40 * cos(theta) ** 58 - 4.78821894265819e40 * cos(theta) ** 56 + 4.2378489492492e40 * cos(theta) ** 54 - 3.26216344614073e40 * cos(theta) ** 52 + 2.19130128145015e40 * cos(theta) ** 50 - 1.28745518934122e40 * cos(theta) ** 48 + 6.62522560938364e39 * cos(theta) ** 46 - 2.98784684344752e39 * cos(theta) ** 44 + 1.18066128400224e39 * cos(theta) ** 42 - 4.08416780042558e38 * cos(theta) ** 40 + 1.23474840477983e38 * cos(theta) ** 38 - 3.25469864477022e37 * cos(theta) ** 36 + 7.45621871347359e36 * cos(theta) ** 34 - 1.47859268231131e36 * cos(theta) ** 32 + 2.5254200083554e35 * cos(theta) ** 30 - 3.69263093658689e34 * cos(theta) ** 28 + 4.58847631173519e33 * cos(theta) ** 26 - 4.8027529832977e32 * cos(theta) ** 24 + 4.18950639503845e31 * cos(theta) ** 22 - 3.00644913716645e30 * cos(theta) ** 20 + 1.74686647113647e29 * cos(theta) ** 18 - 8.05759933927887e27 * cos(theta) ** 16 + 2.87771404974245e26 * cos(theta) ** 14 - 7.70438301049024e24 * cos(theta) ** 12 + 1.48074920993697e23 * cos(theta) ** 10 - 1.92305092199607e21 * cos(theta) ** 8 + 1.54196522955011e19 * cos(theta) ** 6 - 6.58022146322949e16 * cos(theta) ** 4 + 111718530784881.0 * cos(theta) ** 2 - 31478875960.8005 ) * cos(6 * phi) ) # @torch.jit.script def Yl84_m7(theta, phi): return ( 1.6995065695896e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 2.71410546388975e37 * cos(theta) ** 77 - 4.75537280679127e38 * cos(theta) ** 75 + 3.99883622389266e39 * cos(theta) ** 73 - 2.14906781112268e40 * cos(theta) ** 71 + 8.292598619006e40 * cos(theta) ** 69 - 2.4470989132312e41 * cos(theta) ** 67 + 5.74366846831655e41 * cos(theta) ** 65 - 1.1010903607464e42 * cos(theta) ** 63 + 1.75688682560271e42 * cos(theta) ** 61 - 2.36578579165045e42 * cos(theta) ** 59 + 2.71668422115028e42 * cos(theta) ** 57 - 2.68140260788859e42 * cos(theta) ** 55 + 2.28843843259457e42 * cos(theta) ** 53 - 1.69632499199318e42 * cos(theta) ** 51 + 1.09565064072508e42 * cos(theta) ** 49 - 6.17978490883784e41 * cos(theta) ** 47 + 3.04760378031647e41 * cos(theta) ** 45 - 1.31465261111691e41 * cos(theta) ** 43 + 4.9587773928094e40 * cos(theta) ** 41 - 1.63366712017023e40 * cos(theta) ** 39 + 4.69204393816334e39 * cos(theta) ** 37 - 1.17169151211728e39 * cos(theta) ** 35 + 2.53511436258102e38 * cos(theta) ** 33 - 4.73149658339618e37 * cos(theta) ** 31 + 7.5762600250662e36 * cos(theta) ** 29 - 1.03393666224433e36 * cos(theta) ** 27 + 1.19300384105115e35 * cos(theta) ** 25 - 1.15266071599145e34 * cos(theta) ** 23 + 9.21691406908458e32 * cos(theta) ** 21 - 6.01289827433291e31 * cos(theta) ** 19 + 3.14435964804565e30 * cos(theta) ** 17 - 1.28921589428462e29 * cos(theta) ** 15 + 4.02879966963943e27 * cos(theta) ** 13 - 9.24525961258829e25 * cos(theta) ** 11 + 1.48074920993697e24 * cos(theta) ** 9 - 1.53844073759685e22 * cos(theta) ** 7 + 9.25179137730066e19 * cos(theta) ** 5 - 2.6320885852918e17 * cos(theta) ** 3 + 223437061569762.0 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl84_m8(theta, phi): return ( 2.01921968511511e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 2.08986120719511e39 * cos(theta) ** 76 - 3.56652960509345e40 * cos(theta) ** 74 + 2.91915044344164e41 * cos(theta) ** 72 - 1.5258381458971e42 * cos(theta) ** 70 + 5.72189304711414e42 * cos(theta) ** 68 - 1.63955627186491e43 * cos(theta) ** 66 + 3.73338450440576e43 * cos(theta) ** 64 - 6.93686927270231e43 * cos(theta) ** 62 + 1.07170096361765e44 * cos(theta) ** 60 - 1.39581361707376e44 * cos(theta) ** 58 + 1.54851000605566e44 * cos(theta) ** 56 - 1.47477143433872e44 * cos(theta) ** 54 + 1.21287236927512e44 * cos(theta) ** 52 - 8.65125745916521e43 * cos(theta) ** 50 + 5.36868813955288e43 * cos(theta) ** 48 - 2.90449890715379e43 * cos(theta) ** 46 + 1.37142170114241e43 * cos(theta) ** 44 - 5.65300622780271e42 * cos(theta) ** 42 + 2.03309873105185e42 * cos(theta) ** 40 - 6.3713017686639e41 * cos(theta) ** 38 + 1.73605625712044e41 * cos(theta) ** 36 - 4.10092029241048e40 * cos(theta) ** 34 + 8.36587739651737e39 * cos(theta) ** 32 - 1.46676394085282e39 * cos(theta) ** 30 + 2.1971154072692e38 * cos(theta) ** 28 - 2.79162898805969e37 * cos(theta) ** 26 + 2.98250960262787e36 * cos(theta) ** 24 - 2.65111964678033e35 * cos(theta) ** 22 + 1.93555195450776e34 * cos(theta) ** 20 - 1.14245067212325e33 * cos(theta) ** 18 + 5.3454114016776e31 * cos(theta) ** 16 - 1.93382384142693e30 * cos(theta) ** 14 + 5.23743957053127e28 * cos(theta) ** 12 - 1.01697855738471e27 * cos(theta) ** 10 + 1.33267428894327e25 * cos(theta) ** 8 - 1.0769085163178e23 * cos(theta) ** 6 + 4.62589568865033e20 * cos(theta) ** 4 - 7.89626575587539e17 * cos(theta) ** 2 + 223437061569762.0 ) * cos(8 * phi) ) # @torch.jit.script def Yl84_m9(theta, phi): return ( 2.40179148637518e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1.58829451746828e41 * cos(theta) ** 75 - 2.63923190776915e42 * cos(theta) ** 73 + 2.10178831927798e43 * cos(theta) ** 71 - 1.06808670212797e44 * cos(theta) ** 69 + 3.89088727203761e44 * cos(theta) ** 67 - 1.08210713943084e45 * cos(theta) ** 65 + 2.38936608281968e45 * cos(theta) ** 63 - 4.30085894907543e45 * cos(theta) ** 61 + 6.43020578170592e45 * cos(theta) ** 59 - 8.09571897902783e45 * cos(theta) ** 57 + 8.67165603391169e45 * cos(theta) ** 55 - 7.9637657454291e45 * cos(theta) ** 53 + 6.30693632023064e45 * cos(theta) ** 51 - 4.3256287295826e45 * cos(theta) ** 49 + 2.57697030698538e45 * cos(theta) ** 47 - 1.33606949729074e45 * cos(theta) ** 45 + 6.03425548502662e44 * cos(theta) ** 43 - 2.37426261567714e44 * cos(theta) ** 41 + 8.13239492420741e43 * cos(theta) ** 39 - 2.42109467209228e43 * cos(theta) ** 37 + 6.24980252563357e42 * cos(theta) ** 35 - 1.39431289941956e42 * cos(theta) ** 33 + 2.67708076688556e41 * cos(theta) ** 31 - 4.40029182255845e40 * cos(theta) ** 29 + 6.15192314035375e39 * cos(theta) ** 27 - 7.25823536895519e38 * cos(theta) ** 25 + 7.15802304630689e37 * cos(theta) ** 23 - 5.83246322291672e36 * cos(theta) ** 21 + 3.87110390901553e35 * cos(theta) ** 19 - 2.05641120982185e34 * cos(theta) ** 17 + 8.55265824268416e32 * cos(theta) ** 15 - 2.7073533779977e31 * cos(theta) ** 13 + 6.28492748463752e29 * cos(theta) ** 11 - 1.01697855738471e28 * cos(theta) ** 9 + 1.06613943115462e26 * cos(theta) ** 7 - 6.46145109790678e23 * cos(theta) ** 5 + 1.85035827546013e21 * cos(theta) ** 3 - 1.57925315117508e18 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl84_m10(theta, phi): return ( 2.86049203326541e-19 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.19122088810121e43 * cos(theta) ** 74 - 1.92663929267148e44 * cos(theta) ** 72 + 1.49226970668737e45 * cos(theta) ** 70 - 7.36979824468301e45 * cos(theta) ** 68 + 2.6068944722652e46 * cos(theta) ** 66 - 7.03369640630045e46 * cos(theta) ** 64 + 1.5053006321764e47 * cos(theta) ** 62 - 2.62352395893601e47 * cos(theta) ** 60 + 3.79382141120649e47 * cos(theta) ** 58 - 4.61455981804586e47 * cos(theta) ** 56 + 4.76941081865143e47 * cos(theta) ** 54 - 4.22079584507742e47 * cos(theta) ** 52 + 3.21653752331762e47 * cos(theta) ** 50 - 2.11955807749548e47 * cos(theta) ** 48 + 1.21117604428313e47 * cos(theta) ** 46 - 6.01231273780834e46 * cos(theta) ** 44 + 2.59472985856145e46 * cos(theta) ** 42 - 9.73447672427627e45 * cos(theta) ** 40 + 3.17163402044089e45 * cos(theta) ** 38 - 8.95805028674145e44 * cos(theta) ** 36 + 2.18743088397175e44 * cos(theta) ** 34 - 4.60123256808455e43 * cos(theta) ** 32 + 8.29895037734523e42 * cos(theta) ** 30 - 1.27608462854195e42 * cos(theta) ** 28 + 1.66101924789551e41 * cos(theta) ** 26 - 1.8145588422388e40 * cos(theta) ** 24 + 1.64634530065058e39 * cos(theta) ** 22 - 1.22481727681251e38 * cos(theta) ** 20 + 7.3550974271295e36 * cos(theta) ** 18 - 3.49589905669715e35 * cos(theta) ** 16 + 1.28289873640262e34 * cos(theta) ** 14 - 3.51955939139701e32 * cos(theta) ** 12 + 6.91342023310127e30 * cos(theta) ** 10 - 9.1528070164624e28 * cos(theta) ** 8 + 7.46297601808233e26 * cos(theta) ** 6 - 3.23072554895339e24 * cos(theta) ** 4 + 5.5510748263804e21 * cos(theta) ** 2 - 1.57925315117508e18 ) * cos(10 * phi) ) # @torch.jit.script def Yl84_m11(theta, phi): return ( 3.41163907587431e-21 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 8.81503457194898e44 * cos(theta) ** 73 - 1.38718029072347e46 * cos(theta) ** 71 + 1.04458879468116e47 * cos(theta) ** 69 - 5.01146280638445e47 * cos(theta) ** 67 + 1.72055035169503e48 * cos(theta) ** 65 - 4.50156570003229e48 * cos(theta) ** 63 + 9.33286391949369e48 * cos(theta) ** 61 - 1.57411437536161e49 * cos(theta) ** 59 + 2.20041641849976e49 * cos(theta) ** 57 - 2.58415349810568e49 * cos(theta) ** 55 + 2.57548184207177e49 * cos(theta) ** 53 - 2.19481383944026e49 * cos(theta) ** 51 + 1.60826876165881e49 * cos(theta) ** 49 - 1.01738787719783e49 * cos(theta) ** 47 + 5.57140980370239e48 * cos(theta) ** 45 - 2.64541760463567e48 * cos(theta) ** 43 + 1.08978654059581e48 * cos(theta) ** 41 - 3.89379068971051e47 * cos(theta) ** 39 + 1.20522092776754e47 * cos(theta) ** 37 - 3.22489810322692e46 * cos(theta) ** 35 + 7.43726500550394e45 * cos(theta) ** 33 - 1.47239442178706e45 * cos(theta) ** 31 + 2.48968511320357e44 * cos(theta) ** 29 - 3.57303695991746e43 * cos(theta) ** 27 + 4.31865004452833e42 * cos(theta) ** 25 - 4.35494122137311e41 * cos(theta) ** 23 + 3.62195966143129e40 * cos(theta) ** 21 - 2.44963455362502e39 * cos(theta) ** 19 + 1.32391753688331e38 * cos(theta) ** 17 - 5.59343849071544e36 * cos(theta) ** 15 + 1.79605823096367e35 * cos(theta) ** 13 - 4.22347126967641e33 * cos(theta) ** 11 + 6.91342023310127e31 * cos(theta) ** 9 - 7.32224561316992e29 * cos(theta) ** 7 + 4.4777856108494e27 * cos(theta) ** 5 - 1.29229021958136e25 * cos(theta) ** 3 + 1.11021496527608e22 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl84_m12(theta, phi): return ( 4.0753605157556e-23 * (1.0 - cos(theta) ** 2) ** 6 * ( 6.43497523752275e46 * cos(theta) ** 72 - 9.84898006413662e47 * cos(theta) ** 70 + 7.20766268329998e48 * cos(theta) ** 68 - 3.35768008027758e49 * cos(theta) ** 66 + 1.11835772860177e50 * cos(theta) ** 64 - 2.83598639102034e50 * cos(theta) ** 62 + 5.69304699089115e50 * cos(theta) ** 60 - 9.28727481463349e50 * cos(theta) ** 58 + 1.25423735854487e51 * cos(theta) ** 56 - 1.42128442395813e51 * cos(theta) ** 54 + 1.36500537629804e51 * cos(theta) ** 52 - 1.11935505811453e51 * cos(theta) ** 50 + 7.88051693212818e50 * cos(theta) ** 48 - 4.78172302282979e50 * cos(theta) ** 46 + 2.50713441166608e50 * cos(theta) ** 44 - 1.13752956999334e50 * cos(theta) ** 42 + 4.46812481644281e49 * cos(theta) ** 40 - 1.5185783689871e49 * cos(theta) ** 38 + 4.45931743273989e48 * cos(theta) ** 36 - 1.12871433612942e48 * cos(theta) ** 34 + 2.4542974518163e47 * cos(theta) ** 32 - 4.56442270753988e46 * cos(theta) ** 30 + 7.22008682829035e45 * cos(theta) ** 28 - 9.64719979177714e44 * cos(theta) ** 26 + 1.07966251113208e44 * cos(theta) ** 24 - 1.00163648091582e43 * cos(theta) ** 22 + 7.6061152890057e41 * cos(theta) ** 20 - 4.65430565188755e40 * cos(theta) ** 18 + 2.25065981270163e39 * cos(theta) ** 16 - 8.39015773607316e37 * cos(theta) ** 14 + 2.33487570025278e36 * cos(theta) ** 12 - 4.64581839664405e34 * cos(theta) ** 10 + 6.22207820979114e32 * cos(theta) ** 8 - 5.12557192921895e30 * cos(theta) ** 6 + 2.2388928054247e28 * cos(theta) ** 4 - 3.87687065874407e25 * cos(theta) ** 2 + 1.11021496527608e22 ) * cos(12 * phi) ) # @torch.jit.script def Yl84_m13(theta, phi): return ( 4.87656388599221e-25 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 4.63318217101638e48 * cos(theta) ** 71 - 6.89428604489563e49 * cos(theta) ** 69 + 4.90121062464399e50 * cos(theta) ** 67 - 2.2160688529832e51 * cos(theta) ** 65 + 7.15748946305133e51 * cos(theta) ** 63 - 1.75831156243261e52 * cos(theta) ** 61 + 3.41582819453469e52 * cos(theta) ** 59 - 5.38661939248742e52 * cos(theta) ** 57 + 7.02372920785125e52 * cos(theta) ** 55 - 7.67493588937388e52 * cos(theta) ** 53 + 7.0980279567498e52 * cos(theta) ** 51 - 5.59677529057267e52 * cos(theta) ** 49 + 3.78264812742153e52 * cos(theta) ** 47 - 2.1995925905017e52 * cos(theta) ** 45 + 1.10313914113307e52 * cos(theta) ** 43 - 4.77762419397202e51 * cos(theta) ** 41 + 1.78724992657712e51 * cos(theta) ** 39 - 5.77059780215097e50 * cos(theta) ** 37 + 1.60535427578636e50 * cos(theta) ** 35 - 3.83762874284004e49 * cos(theta) ** 33 + 7.85375184581217e48 * cos(theta) ** 31 - 1.36932681226196e48 * cos(theta) ** 29 + 2.0216243119213e47 * cos(theta) ** 27 - 2.50827194586206e46 * cos(theta) ** 25 + 2.591190026717e45 * cos(theta) ** 23 - 2.20360025801479e44 * cos(theta) ** 21 + 1.52122305780114e43 * cos(theta) ** 19 - 8.37775017339758e41 * cos(theta) ** 17 + 3.6010557003226e40 * cos(theta) ** 15 - 1.17462208305024e39 * cos(theta) ** 13 + 2.80185084030333e37 * cos(theta) ** 11 - 4.64581839664405e35 * cos(theta) ** 9 + 4.97766256783291e33 * cos(theta) ** 7 - 3.07534315753137e31 * cos(theta) ** 5 + 8.9555712216988e28 * cos(theta) ** 3 - 7.75374131748814e25 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl84_m14(theta, phi): return ( 5.84617357952503e-27 * (1.0 - cos(theta) ** 2) ** 7 * ( 3.28955934142163e50 * cos(theta) ** 70 - 4.75705737097799e51 * cos(theta) ** 68 + 3.28381111851147e52 * cos(theta) ** 66 - 1.44044475443908e53 * cos(theta) ** 64 + 4.50921836172234e53 * cos(theta) ** 62 - 1.07257005308389e54 * cos(theta) ** 60 + 2.01533863477547e54 * cos(theta) ** 58 - 3.07037305371783e54 * cos(theta) ** 56 + 3.86305106431819e54 * cos(theta) ** 54 - 4.06771602136816e54 * cos(theta) ** 52 + 3.6199942579424e54 * cos(theta) ** 50 - 2.74241989238061e54 * cos(theta) ** 48 + 1.77784461988812e54 * cos(theta) ** 46 - 9.89816665725767e53 * cos(theta) ** 44 + 4.74349830687222e53 * cos(theta) ** 42 - 1.95882591952853e53 * cos(theta) ** 40 + 6.97027471365078e52 * cos(theta) ** 38 - 2.13512118679586e52 * cos(theta) ** 36 + 5.61873996525226e51 * cos(theta) ** 34 - 1.26641748513721e51 * cos(theta) ** 32 + 2.43466307220177e50 * cos(theta) ** 30 - 3.97104775555969e49 * cos(theta) ** 28 + 5.45838564218751e48 * cos(theta) ** 26 - 6.27067986465514e47 * cos(theta) ** 24 + 5.9597370614491e46 * cos(theta) ** 22 - 4.62756054183107e45 * cos(theta) ** 20 + 2.89032380982217e44 * cos(theta) ** 18 - 1.42421752947759e43 * cos(theta) ** 16 + 5.4015835504839e41 * cos(theta) ** 14 - 1.52700870796532e40 * cos(theta) ** 12 + 3.08203592433366e38 * cos(theta) ** 10 - 4.18123655697965e36 * cos(theta) ** 8 + 3.48436379748304e34 * cos(theta) ** 6 - 1.53767157876568e32 * cos(theta) ** 4 + 2.68667136650964e29 * cos(theta) ** 2 - 7.75374131748814e25 ) * cos(14 * phi) ) # @torch.jit.script def Yl84_m15(theta, phi): return ( 7.02271572162013e-29 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 2.30269153899514e52 * cos(theta) ** 69 - 3.23479901226503e53 * cos(theta) ** 67 + 2.16731533821757e54 * cos(theta) ** 65 - 9.21884642841012e54 * cos(theta) ** 63 + 2.79571538426785e55 * cos(theta) ** 61 - 6.43542031850336e55 * cos(theta) ** 59 + 1.16889640816977e56 * cos(theta) ** 57 - 1.71940891008199e56 * cos(theta) ** 55 + 2.08604757473182e56 * cos(theta) ** 53 - 2.11521233111144e56 * cos(theta) ** 51 + 1.8099971289712e56 * cos(theta) ** 49 - 1.31636154834269e56 * cos(theta) ** 47 + 8.17808525148534e55 * cos(theta) ** 45 - 4.35519332919338e55 * cos(theta) ** 43 + 1.99226928888633e55 * cos(theta) ** 41 - 7.83530367811411e54 * cos(theta) ** 39 + 2.6487043911873e54 * cos(theta) ** 37 - 7.6864362724651e53 * cos(theta) ** 35 + 1.91037158818577e53 * cos(theta) ** 33 - 4.05253595243908e52 * cos(theta) ** 31 + 7.30398921660531e51 * cos(theta) ** 29 - 1.11189337155671e51 * cos(theta) ** 27 + 1.41918026696875e50 * cos(theta) ** 25 - 1.50496316751723e49 * cos(theta) ** 23 + 1.3111421535188e48 * cos(theta) ** 21 - 9.25512108366214e46 * cos(theta) ** 19 + 5.2025828576799e45 * cos(theta) ** 17 - 2.27874804716414e44 * cos(theta) ** 15 + 7.56221697067746e42 * cos(theta) ** 13 - 1.83241044955838e41 * cos(theta) ** 11 + 3.08203592433367e39 * cos(theta) ** 9 - 3.34498924558372e37 * cos(theta) ** 7 + 2.09061827848982e35 * cos(theta) ** 5 - 6.15068631506274e32 * cos(theta) ** 3 + 5.37334273301928e29 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl84_m16(theta, phi): return ( 8.45435623126083e-31 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.58885716190665e54 * cos(theta) ** 68 - 2.16731533821757e55 * cos(theta) ** 66 + 1.40875496984142e56 * cos(theta) ** 64 - 5.80787324989838e56 * cos(theta) ** 62 + 1.70538638440339e57 * cos(theta) ** 60 - 3.79689798791698e57 * cos(theta) ** 58 + 6.66270952656769e57 * cos(theta) ** 56 - 9.45674900545092e57 * cos(theta) ** 54 + 1.10560521460787e58 * cos(theta) ** 52 - 1.07875828886684e58 * cos(theta) ** 50 + 8.86898593195888e57 * cos(theta) ** 48 - 6.18689927721065e57 * cos(theta) ** 46 + 3.6801383631684e57 * cos(theta) ** 44 - 1.87273313155315e57 * cos(theta) ** 42 + 8.16830408443396e56 * cos(theta) ** 40 - 3.0557684344645e56 * cos(theta) ** 38 + 9.800206247393e55 * cos(theta) ** 36 - 2.69025269536278e55 * cos(theta) ** 34 + 6.30422624101304e54 * cos(theta) ** 32 - 1.25628614525611e54 * cos(theta) ** 30 + 2.11815687281554e53 * cos(theta) ** 28 - 3.00211210320313e52 * cos(theta) ** 26 + 3.54795066742188e51 * cos(theta) ** 24 - 3.46141528528964e50 * cos(theta) ** 22 + 2.75339852238949e49 * cos(theta) ** 20 - 1.75847300589581e48 * cos(theta) ** 18 + 8.84439085805583e46 * cos(theta) ** 16 - 3.41812207074621e45 * cos(theta) ** 14 + 9.8308820618807e43 * cos(theta) ** 12 - 2.01565149451422e42 * cos(theta) ** 10 + 2.7738323319003e40 * cos(theta) ** 8 - 2.3414924719086e38 * cos(theta) ** 6 + 1.04530913924491e36 * cos(theta) ** 4 - 1.84520589451882e33 * cos(theta) ** 2 + 5.37334273301928e29 ) * cos(16 * phi) ) # @torch.jit.script def Yl84_m17(theta, phi): return ( 1.02015320892099e-32 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.08042287009652e56 * cos(theta) ** 67 - 1.4304281232236e57 * cos(theta) ** 65 + 9.0160318069851e57 * cos(theta) ** 63 - 3.60088141493699e58 * cos(theta) ** 61 + 1.02323183064203e59 * cos(theta) ** 59 - 2.20220083299185e59 * cos(theta) ** 57 + 3.73111733487791e59 * cos(theta) ** 55 - 5.1066444629435e59 * cos(theta) ** 53 + 5.7491471159609e59 * cos(theta) ** 51 - 5.39379144433418e59 * cos(theta) ** 49 + 4.25711324734026e59 * cos(theta) ** 47 - 2.8459736675169e59 * cos(theta) ** 45 + 1.6192608797941e59 * cos(theta) ** 43 - 7.86547915252324e58 * cos(theta) ** 41 + 3.26732163377358e58 * cos(theta) ** 39 - 1.16119200509651e58 * cos(theta) ** 37 + 3.52807424906148e57 * cos(theta) ** 35 - 9.14685916423347e56 * cos(theta) ** 33 + 2.01735239712417e56 * cos(theta) ** 31 - 3.76885843576834e55 * cos(theta) ** 29 + 5.93083924388351e54 * cos(theta) ** 27 - 7.80549146832814e53 * cos(theta) ** 25 + 8.51508160181251e52 * cos(theta) ** 23 - 7.61511362763721e51 * cos(theta) ** 21 + 5.50679704477897e50 * cos(theta) ** 19 - 3.16525141061245e49 * cos(theta) ** 17 + 1.41510253728893e48 * cos(theta) ** 15 - 4.7853708990447e46 * cos(theta) ** 13 + 1.17970584742568e45 * cos(theta) ** 11 - 2.01565149451422e43 * cos(theta) ** 9 + 2.21906586552024e41 * cos(theta) ** 7 - 1.40489548314516e39 * cos(theta) ** 5 + 4.18123655697965e36 * cos(theta) ** 3 - 3.69041178903764e33 * cos(theta) ) * cos(17 * phi) ) # @torch.jit.script def Yl84_m18(theta, phi): return ( 1.23403623695234e-34 * (1.0 - cos(theta) ** 2) ** 9 * ( 7.23883322964669e57 * cos(theta) ** 66 - 9.29778280095338e58 * cos(theta) ** 64 + 5.68010003840061e59 * cos(theta) ** 62 - 2.19653766311157e60 * cos(theta) ** 60 + 6.037067800788e60 * cos(theta) ** 58 - 1.25525447480535e61 * cos(theta) ** 56 + 2.05211453418285e61 * cos(theta) ** 54 - 2.70652156536005e61 * cos(theta) ** 52 + 2.93206502914006e61 * cos(theta) ** 50 - 2.64295780772375e61 * cos(theta) ** 48 + 2.00084322624992e61 * cos(theta) ** 46 - 1.2806881503826e61 * cos(theta) ** 44 + 6.96282178311462e60 * cos(theta) ** 42 - 3.22484645253453e60 * cos(theta) ** 40 + 1.2742554371717e60 * cos(theta) ** 38 - 4.29641041885709e59 * cos(theta) ** 36 + 1.23482598717152e59 * cos(theta) ** 34 - 3.01846352419704e58 * cos(theta) ** 32 + 6.25379243108494e57 * cos(theta) ** 30 - 1.09296894637282e57 * cos(theta) ** 28 + 1.60132659584855e56 * cos(theta) ** 26 - 1.95137286708203e55 * cos(theta) ** 24 + 1.95846876841688e54 * cos(theta) ** 22 - 1.59917386180381e53 * cos(theta) ** 20 + 1.046291438508e52 * cos(theta) ** 18 - 5.38092739804117e50 * cos(theta) ** 16 + 2.1226538059334e49 * cos(theta) ** 14 - 6.22098216875811e47 * cos(theta) ** 12 + 1.29767643216825e46 * cos(theta) ** 10 - 1.8140863450628e44 * cos(theta) ** 8 + 1.55334610586417e42 * cos(theta) ** 6 - 7.02447741572581e39 * cos(theta) ** 4 + 1.25437096709389e37 * cos(theta) ** 2 - 3.69041178903764e33 ) * cos(18 * phi) ) # @torch.jit.script def Yl84_m19(theta, phi): return ( 1.4967088706658e-36 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 4.77762993156681e59 * cos(theta) ** 65 - 5.95058099261016e60 * cos(theta) ** 63 + 3.52166202380838e61 * cos(theta) ** 61 - 1.31792259786694e62 * cos(theta) ** 59 + 3.50149932445704e62 * cos(theta) ** 57 - 7.02942505890998e62 * cos(theta) ** 55 + 1.10814184845874e63 * cos(theta) ** 53 - 1.40739121398723e63 * cos(theta) ** 51 + 1.46603251457003e63 * cos(theta) ** 49 - 1.2686197477074e63 * cos(theta) ** 47 + 9.20387884074965e62 * cos(theta) ** 45 - 5.63502786168346e62 * cos(theta) ** 43 + 2.92438514890814e62 * cos(theta) ** 41 - 1.28993858101381e62 * cos(theta) ** 39 + 4.84217066125245e61 * cos(theta) ** 37 - 1.54670775078855e61 * cos(theta) ** 35 + 4.19840835638316e60 * cos(theta) ** 33 - 9.65908327743054e59 * cos(theta) ** 31 + 1.87613772932548e59 * cos(theta) ** 29 - 3.06031304984389e58 * cos(theta) ** 27 + 4.16344914920623e57 * cos(theta) ** 25 - 4.68329488099688e56 * cos(theta) ** 23 + 4.30863129051713e55 * cos(theta) ** 21 - 3.19834772360763e54 * cos(theta) ** 19 + 1.88332458931441e53 * cos(theta) ** 17 - 8.60948383686587e51 * cos(theta) ** 15 + 2.97171532830676e50 * cos(theta) ** 13 - 7.46517860250973e48 * cos(theta) ** 11 + 1.29767643216825e47 * cos(theta) ** 9 - 1.45126907605024e45 * cos(theta) ** 7 + 9.320076635185e42 * cos(theta) ** 5 - 2.80979096629032e40 * cos(theta) ** 3 + 2.50874193418779e37 * cos(theta) ) * cos(19 * phi) ) # @torch.jit.script def Yl84_m20(theta, phi): return ( 1.82038808672397e-38 * (1.0 - cos(theta) ** 2) ** 10 * ( 3.10545945551843e61 * cos(theta) ** 64 - 3.7488660253444e62 * cos(theta) ** 62 + 2.14821383452311e63 * cos(theta) ** 60 - 7.77574332741494e63 * cos(theta) ** 58 + 1.99585461494051e64 * cos(theta) ** 56 - 3.86618378240049e64 * cos(theta) ** 54 + 5.87315179683132e64 * cos(theta) ** 52 - 7.17769519133486e64 * cos(theta) ** 50 + 7.18355932139314e64 * cos(theta) ** 48 - 5.96251281422477e64 * cos(theta) ** 46 + 4.14174547833734e64 * cos(theta) ** 44 - 2.42306198052389e64 * cos(theta) ** 42 + 1.19899791105234e64 * cos(theta) ** 40 - 5.03076046595386e63 * cos(theta) ** 38 + 1.79160314466341e63 * cos(theta) ** 36 - 5.41347712775993e62 * cos(theta) ** 34 + 1.38547475760644e62 * cos(theta) ** 32 - 2.99431581600347e61 * cos(theta) ** 30 + 5.44079941504389e60 * cos(theta) ** 28 - 8.26284523457851e59 * cos(theta) ** 26 + 1.04086228730156e59 * cos(theta) ** 24 - 1.07715782262928e58 * cos(theta) ** 22 + 9.04812571008598e56 * cos(theta) ** 20 - 6.07686067485449e55 * cos(theta) ** 18 + 3.20165180183449e54 * cos(theta) ** 16 - 1.29142257552988e53 * cos(theta) ** 14 + 3.86322992679879e51 * cos(theta) ** 12 - 8.2116964627607e49 * cos(theta) ** 10 + 1.16790878895143e48 * cos(theta) ** 8 - 1.01588835323517e46 * cos(theta) ** 6 + 4.6600383175925e43 * cos(theta) ** 4 - 8.42937289887097e40 * cos(theta) ** 2 + 2.50874193418779e37 ) * cos(20 * phi) ) # @torch.jit.script def Yl84_m21(theta, phi): return ( 2.2206460832857e-40 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.98749405153179e63 * cos(theta) ** 63 - 2.32429693571353e64 * cos(theta) ** 61 + 1.28892830071387e65 * cos(theta) ** 59 - 4.50993112990067e65 * cos(theta) ** 57 + 1.11767858436669e66 * cos(theta) ** 55 - 2.08773924249626e66 * cos(theta) ** 53 + 3.05403893435228e66 * cos(theta) ** 51 - 3.58884759566743e66 * cos(theta) ** 49 + 3.44810847426871e66 * cos(theta) ** 47 - 2.74275589454339e66 * cos(theta) ** 45 + 1.82236801046843e66 * cos(theta) ** 43 - 1.01768603182003e66 * cos(theta) ** 41 + 4.79599164420935e65 * cos(theta) ** 39 - 1.91168897706247e65 * cos(theta) ** 37 + 6.44977132078826e64 * cos(theta) ** 35 - 1.84058222343838e64 * cos(theta) ** 33 + 4.43351922434062e63 * cos(theta) ** 31 - 8.9829474480104e62 * cos(theta) ** 29 + 1.52342383621229e62 * cos(theta) ** 27 - 2.14833976099041e61 * cos(theta) ** 25 + 2.49806948952374e60 * cos(theta) ** 23 - 2.36974720978442e59 * cos(theta) ** 21 + 1.80962514201719e58 * cos(theta) ** 19 - 1.09383492147381e57 * cos(theta) ** 17 + 5.12264288293519e55 * cos(theta) ** 15 - 1.80799160574183e54 * cos(theta) ** 13 + 4.63587591215854e52 * cos(theta) ** 11 - 8.2116964627607e50 * cos(theta) ** 9 + 9.34327031161142e48 * cos(theta) ** 7 - 6.09533011941099e46 * cos(theta) ** 5 + 1.864015327037e44 * cos(theta) ** 3 - 1.68587457977419e41 * cos(theta) ) * cos(21 * phi) ) # @torch.jit.script def Yl84_m22(theta, phi): return ( 2.71741607884599e-42 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.25212125246503e65 * cos(theta) ** 62 - 1.41782113078525e66 * cos(theta) ** 60 + 7.60467697421181e66 * cos(theta) ** 58 - 2.57066074404338e67 * cos(theta) ** 56 + 6.14723221401678e67 * cos(theta) ** 54 - 1.10650179852302e68 * cos(theta) ** 52 + 1.55755985651967e68 * cos(theta) ** 50 - 1.75853532187704e68 * cos(theta) ** 48 + 1.62061098290629e68 * cos(theta) ** 46 - 1.23424015254453e68 * cos(theta) ** 44 + 7.83618244501425e67 * cos(theta) ** 42 - 4.17251273046213e67 * cos(theta) ** 40 + 1.87043674124165e67 * cos(theta) ** 38 - 7.07324921513113e66 * cos(theta) ** 36 + 2.25741996227589e66 * cos(theta) ** 34 - 6.07392133734665e65 * cos(theta) ** 32 + 1.37439095954559e65 * cos(theta) ** 30 - 2.60505475992302e64 * cos(theta) ** 28 + 4.11324435777318e63 * cos(theta) ** 26 - 5.37084940247603e62 * cos(theta) ** 24 + 5.74555982590459e61 * cos(theta) ** 22 - 4.97646914054729e60 * cos(theta) ** 20 + 3.43828776983267e59 * cos(theta) ** 18 - 1.85951936650547e58 * cos(theta) ** 16 + 7.68396432440278e56 * cos(theta) ** 14 - 2.35038908746438e55 * cos(theta) ** 12 + 5.0994635033744e53 * cos(theta) ** 10 - 7.39052681648463e51 * cos(theta) ** 8 + 6.54028921812799e49 * cos(theta) ** 6 - 3.0476650597055e47 * cos(theta) ** 4 + 5.592045981111e44 * cos(theta) ** 2 - 1.68587457977419e41 ) * cos(22 * phi) ) # @torch.jit.script def Yl84_m23(theta, phi): return ( 3.33632544108866e-44 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 7.76315176528319e66 * cos(theta) ** 61 - 8.50692678471152e67 * cos(theta) ** 59 + 4.41071264504285e68 * cos(theta) ** 57 - 1.43957001666429e69 * cos(theta) ** 55 + 3.31950539556906e69 * cos(theta) ** 53 - 5.7538093523197e69 * cos(theta) ** 51 + 7.78779928259833e69 * cos(theta) ** 49 - 8.4409695450098e69 * cos(theta) ** 47 + 7.45481052136895e69 * cos(theta) ** 45 - 5.43065667119592e69 * cos(theta) ** 43 + 3.29119662690598e69 * cos(theta) ** 41 - 1.66900509218485e69 * cos(theta) ** 39 + 7.10765961671825e68 * cos(theta) ** 37 - 2.54636971744721e68 * cos(theta) ** 35 + 7.67522787173803e67 * cos(theta) ** 33 - 1.94365482795093e67 * cos(theta) ** 31 + 4.12317287863677e66 * cos(theta) ** 29 - 7.29415332778445e65 * cos(theta) ** 27 + 1.06944353302103e65 * cos(theta) ** 25 - 1.28900385659425e64 * cos(theta) ** 23 + 1.26402316169901e63 * cos(theta) ** 21 - 9.95293828109457e61 * cos(theta) ** 19 + 6.18891798569881e60 * cos(theta) ** 17 - 2.97523098640876e59 * cos(theta) ** 15 + 1.07575500541639e58 * cos(theta) ** 13 - 2.82046690495726e56 * cos(theta) ** 11 + 5.0994635033744e54 * cos(theta) ** 9 - 5.91242145318771e52 * cos(theta) ** 7 + 3.9241735308768e50 * cos(theta) ** 5 - 1.2190660238822e48 * cos(theta) ** 3 + 1.1184091962222e45 * cos(theta) ) * cos(23 * phi) ) # @torch.jit.script def Yl84_m24(theta, phi): return ( 4.11047122146606e-46 * (1.0 - cos(theta) ** 2) ** 12 * ( 4.73552257682275e68 * cos(theta) ** 60 - 5.0190868029798e69 * cos(theta) ** 58 + 2.51410620767443e70 * cos(theta) ** 56 - 7.91763509165361e70 * cos(theta) ** 54 + 1.7593378596516e71 * cos(theta) ** 52 - 2.93444276968305e71 * cos(theta) ** 50 + 3.81602164847318e71 * cos(theta) ** 48 - 3.96725568615461e71 * cos(theta) ** 46 + 3.35466473461603e71 * cos(theta) ** 44 - 2.33518236861425e71 * cos(theta) ** 42 + 1.34939061703145e71 * cos(theta) ** 40 - 6.50911985952093e70 * cos(theta) ** 38 + 2.62983405818575e70 * cos(theta) ** 36 - 8.91229401106522e69 * cos(theta) ** 34 + 2.53282519767355e69 * cos(theta) ** 32 - 6.02532996664787e68 * cos(theta) ** 30 + 1.19572013480466e68 * cos(theta) ** 28 - 1.9694213985018e67 * cos(theta) ** 26 + 2.67360883255257e66 * cos(theta) ** 24 - 2.96470887016677e65 * cos(theta) ** 22 + 2.65444863956792e64 * cos(theta) ** 20 - 1.89105827340797e63 * cos(theta) ** 18 + 1.0521160575688e62 * cos(theta) ** 16 - 4.46284647961314e60 * cos(theta) ** 14 + 1.39848150704131e59 * cos(theta) ** 12 - 3.10251359545298e57 * cos(theta) ** 10 + 4.58951715303696e55 * cos(theta) ** 8 - 4.13869501723139e53 * cos(theta) ** 6 + 1.9620867654384e51 * cos(theta) ** 4 - 3.65719807164659e48 * cos(theta) ** 2 + 1.1184091962222e45 ) * cos(24 * phi) ) # @torch.jit.script def Yl84_m25(theta, phi): return ( 5.08279668233104e-48 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 2.84131354609365e70 * cos(theta) ** 59 - 2.91107034572828e71 * cos(theta) ** 57 + 1.40789947629768e72 * cos(theta) ** 55 - 4.27552294949295e72 * cos(theta) ** 53 + 9.14855687018833e72 * cos(theta) ** 51 - 1.46722138484152e73 * cos(theta) ** 49 + 1.83169039126713e73 * cos(theta) ** 47 - 1.82493761563112e73 * cos(theta) ** 45 + 1.47605248323105e73 * cos(theta) ** 43 - 9.80776594817983e72 * cos(theta) ** 41 + 5.39756246812582e72 * cos(theta) ** 39 - 2.47346554661795e72 * cos(theta) ** 37 + 9.46740260946872e71 * cos(theta) ** 35 - 3.03017996376218e71 * cos(theta) ** 33 + 8.10504063255536e70 * cos(theta) ** 31 - 1.80759898999436e70 * cos(theta) ** 29 + 3.34801637745306e69 * cos(theta) ** 27 - 5.12049563610468e68 * cos(theta) ** 25 + 6.41666119812617e67 * cos(theta) ** 23 - 6.52235951436689e66 * cos(theta) ** 21 + 5.30889727913584e65 * cos(theta) ** 19 - 3.40390489213434e64 * cos(theta) ** 17 + 1.68338569211008e63 * cos(theta) ** 15 - 6.24798507145839e61 * cos(theta) ** 13 + 1.67817780844957e60 * cos(theta) ** 11 - 3.10251359545298e58 * cos(theta) ** 9 + 3.67161372242957e56 * cos(theta) ** 7 - 2.48321701033884e54 * cos(theta) ** 5 + 7.84834706175359e51 * cos(theta) ** 3 - 7.31439614329319e48 * cos(theta) ) * cos(25 * phi) ) # @torch.jit.script def Yl84_m26(theta, phi): return ( 6.30928854160724e-50 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.67637499219525e72 * cos(theta) ** 58 - 1.65931009706512e73 * cos(theta) ** 56 + 7.74344711963723e73 * cos(theta) ** 54 - 2.26602716323126e74 * cos(theta) ** 52 + 4.66576400379605e74 * cos(theta) ** 50 - 7.18938478572347e74 * cos(theta) ** 48 + 8.60894483895549e74 * cos(theta) ** 46 - 8.21221927034003e74 * cos(theta) ** 44 + 6.34702567789352e74 * cos(theta) ** 42 - 4.02118403875373e74 * cos(theta) ** 40 + 2.10504936256907e74 * cos(theta) ** 38 - 9.15182252248642e73 * cos(theta) ** 36 + 3.31359091331405e73 * cos(theta) ** 34 - 9.99959388041518e72 * cos(theta) ** 32 + 2.51256259609216e72 * cos(theta) ** 30 - 5.24203707098365e71 * cos(theta) ** 28 + 9.03964421912326e70 * cos(theta) ** 26 - 1.28012390902617e70 * cos(theta) ** 24 + 1.47583207556902e69 * cos(theta) ** 22 - 1.36969549801705e68 * cos(theta) ** 20 + 1.00869048303581e67 * cos(theta) ** 18 - 5.78663831662838e65 * cos(theta) ** 16 + 2.52507853816511e64 * cos(theta) ** 14 - 8.12238059289591e62 * cos(theta) ** 12 + 1.84599558929452e61 * cos(theta) ** 10 - 2.79226223590768e59 * cos(theta) ** 8 + 2.5701296057007e57 * cos(theta) ** 6 - 1.24160850516942e55 * cos(theta) ** 4 + 2.35450411852608e52 * cos(theta) ** 2 - 7.31439614329319e48 ) * cos(26 * phi) ) # @torch.jit.script def Yl84_m27(theta, phi): return ( 7.86330105103206e-52 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 9.72297495473246e73 * cos(theta) ** 57 - 9.29213654356468e74 * cos(theta) ** 55 + 4.1814614446041e75 * cos(theta) ** 53 - 1.17833412488026e76 * cos(theta) ** 51 + 2.33288200189802e76 * cos(theta) ** 49 - 3.45090469714727e76 * cos(theta) ** 47 + 3.96011462591953e76 * cos(theta) ** 45 - 3.61337647894961e76 * cos(theta) ** 43 + 2.66575078471528e76 * cos(theta) ** 41 - 1.60847361550149e76 * cos(theta) ** 39 + 7.99918757776246e75 * cos(theta) ** 37 - 3.29465610809511e75 * cos(theta) ** 35 + 1.12662091052678e75 * cos(theta) ** 33 - 3.19987004173286e74 * cos(theta) ** 31 + 7.53768778827649e73 * cos(theta) ** 29 - 1.46777037987542e73 * cos(theta) ** 27 + 2.35030749697205e72 * cos(theta) ** 25 - 3.07229738166281e71 * cos(theta) ** 23 + 3.24683056625184e70 * cos(theta) ** 21 - 2.7393909960341e69 * cos(theta) ** 19 + 1.81564286946446e68 * cos(theta) ** 17 - 9.25862130660542e66 * cos(theta) ** 15 + 3.53510995343116e65 * cos(theta) ** 13 - 9.74685671147509e63 * cos(theta) ** 11 + 1.84599558929452e62 * cos(theta) ** 9 - 2.23380978872615e60 * cos(theta) ** 7 + 1.54207776342042e58 * cos(theta) ** 5 - 4.96643402067767e55 * cos(theta) ** 3 + 4.70900823705216e52 * cos(theta) ) * cos(27 * phi) ) # @torch.jit.script def Yl84_m28(theta, phi): return ( 9.84143580679611e-54 * (1.0 - cos(theta) ** 2) ** 14 * ( 5.5420957241975e75 * cos(theta) ** 56 - 5.11067509896057e76 * cos(theta) ** 54 + 2.21617456564018e77 * cos(theta) ** 52 - 6.00950403688931e77 * cos(theta) ** 50 + 1.14311218093003e78 * cos(theta) ** 48 - 1.62192520765921e78 * cos(theta) ** 46 + 1.78205158166379e78 * cos(theta) ** 44 - 1.55375188594833e78 * cos(theta) ** 42 + 1.09295782173326e78 * cos(theta) ** 40 - 6.27304710045582e77 * cos(theta) ** 38 + 2.95969940377211e77 * cos(theta) ** 36 - 1.15312963783329e77 * cos(theta) ** 34 + 3.71784900473836e76 * cos(theta) ** 32 - 9.91959712937186e75 * cos(theta) ** 30 + 2.18592945860018e75 * cos(theta) ** 28 - 3.96298002566364e74 * cos(theta) ** 26 + 5.87576874243012e73 * cos(theta) ** 24 - 7.06628397782446e72 * cos(theta) ** 22 + 6.81834418912886e71 * cos(theta) ** 20 - 5.20484289246478e70 * cos(theta) ** 18 + 3.08659287808958e69 * cos(theta) ** 16 - 1.38879319599081e68 * cos(theta) ** 14 + 4.59564293946051e66 * cos(theta) ** 12 - 1.07215423826226e65 * cos(theta) ** 10 + 1.66139603036507e63 * cos(theta) ** 8 - 1.5636668521083e61 * cos(theta) ** 6 + 7.71038881710209e58 * cos(theta) ** 4 - 1.4899302062033e56 * cos(theta) ** 2 + 4.70900823705216e52 ) * cos(28 * phi) ) # @torch.jit.script def Yl84_m29(theta, phi): return ( 1.23715817367941e-55 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 3.1035736055506e77 * cos(theta) ** 55 - 2.75976455343871e78 * cos(theta) ** 53 + 1.15241077413289e79 * cos(theta) ** 51 - 3.00475201844466e79 * cos(theta) ** 49 + 5.48693846846415e79 * cos(theta) ** 47 - 7.46085595523239e79 * cos(theta) ** 45 + 7.84102695932066e79 * cos(theta) ** 43 - 6.525757920983e79 * cos(theta) ** 41 + 4.37183128693306e79 * cos(theta) ** 39 - 2.38375789817321e79 * cos(theta) ** 37 + 1.06549178535796e79 * cos(theta) ** 35 - 3.92064076863318e78 * cos(theta) ** 33 + 1.18971168151628e78 * cos(theta) ** 31 - 2.97587913881156e77 * cos(theta) ** 29 + 6.12060248408051e76 * cos(theta) ** 27 - 1.03037480667255e76 * cos(theta) ** 25 + 1.41018449818323e75 * cos(theta) ** 23 - 1.55458247512138e74 * cos(theta) ** 21 + 1.36366883782577e73 * cos(theta) ** 19 - 9.36871720643661e71 * cos(theta) ** 17 + 4.93854860494333e70 * cos(theta) ** 15 - 1.94431047438714e69 * cos(theta) ** 13 + 5.51477152735261e67 * cos(theta) ** 11 - 1.07215423826226e66 * cos(theta) ** 9 + 1.32911682429206e64 * cos(theta) ** 7 - 9.38200111264982e61 * cos(theta) ** 5 + 3.08415552684084e59 * cos(theta) ** 3 - 2.9798604124066e56 * cos(theta) ) * cos(29 * phi) ) # @torch.jit.script def Yl84_m30(theta, phi): return ( 1.56239722300668e-57 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.70696548305283e79 * cos(theta) ** 54 - 1.46267521332252e80 * cos(theta) ** 52 + 5.87729494807774e80 * cos(theta) ** 50 - 1.47232848903788e81 * cos(theta) ** 48 + 2.57886108017815e81 * cos(theta) ** 46 - 3.35738517985457e81 * cos(theta) ** 44 + 3.37164159250789e81 * cos(theta) ** 42 - 2.67556074760303e81 * cos(theta) ** 40 + 1.70501420190389e81 * cos(theta) ** 38 - 8.81990422324089e80 * cos(theta) ** 36 + 3.72922124875286e80 * cos(theta) ** 34 - 1.29381145364895e80 * cos(theta) ** 32 + 3.68810621270046e79 * cos(theta) ** 30 - 8.63004950255352e78 * cos(theta) ** 28 + 1.65256267070174e78 * cos(theta) ** 26 - 2.57593701668137e77 * cos(theta) ** 24 + 3.24342434582143e76 * cos(theta) ** 22 - 3.2646231977549e75 * cos(theta) ** 20 + 2.59097079186897e74 * cos(theta) ** 18 - 1.59268192509422e73 * cos(theta) ** 16 + 7.40782290741499e71 * cos(theta) ** 14 - 2.52760361670328e70 * cos(theta) ** 12 + 6.06624868008787e68 * cos(theta) ** 10 - 9.64938814436034e66 * cos(theta) ** 8 + 9.30381777004441e64 * cos(theta) ** 6 - 4.69100055632491e62 * cos(theta) ** 4 + 9.25246658052251e59 * cos(theta) ** 2 - 2.9798604124066e56 ) * cos(30 * phi) ) # @torch.jit.script def Yl84_m31(theta, phi): return ( 1.9826481918361e-59 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 9.21761360848529e80 * cos(theta) ** 53 - 7.60591110927708e81 * cos(theta) ** 51 + 2.93864747403887e82 * cos(theta) ** 49 - 7.06717674738183e82 * cos(theta) ** 47 + 1.18627609688195e83 * cos(theta) ** 45 - 1.47724947913601e83 * cos(theta) ** 43 + 1.41608946885331e83 * cos(theta) ** 41 - 1.07022429904121e83 * cos(theta) ** 39 + 6.47905396723479e82 * cos(theta) ** 37 - 3.17516552036672e82 * cos(theta) ** 35 + 1.26793522457597e82 * cos(theta) ** 33 - 4.14019665167664e81 * cos(theta) ** 31 + 1.10643186381014e81 * cos(theta) ** 29 - 2.41641386071498e80 * cos(theta) ** 27 + 4.29666294382452e79 * cos(theta) ** 25 - 6.18224884003528e78 * cos(theta) ** 23 + 7.13553356080714e77 * cos(theta) ** 21 - 6.5292463955098e76 * cos(theta) ** 19 + 4.66374742536414e75 * cos(theta) ** 17 - 2.54829108015076e74 * cos(theta) ** 15 + 1.0370952070381e73 * cos(theta) ** 13 - 3.03312434004393e71 * cos(theta) ** 11 + 6.06624868008787e69 * cos(theta) ** 9 - 7.71951051548827e67 * cos(theta) ** 7 + 5.58229066202664e65 * cos(theta) ** 5 - 1.87640022252996e63 * cos(theta) ** 3 + 1.8504933161045e60 * cos(theta) ) * cos(31 * phi) ) # @torch.jit.script def Yl84_m32(theta, phi): return ( 2.52859182119784e-61 * (1.0 - cos(theta) ** 2) ** 16 * ( 4.8853352124972e82 * cos(theta) ** 52 - 3.87901466573131e83 * cos(theta) ** 50 + 1.43993726227905e84 * cos(theta) ** 48 - 3.32157307126946e84 * cos(theta) ** 46 + 5.33824243596877e84 * cos(theta) ** 44 - 6.35217276028486e84 * cos(theta) ** 42 + 5.80596682229858e84 * cos(theta) ** 40 - 4.17387476626073e84 * cos(theta) ** 38 + 2.39724996787687e84 * cos(theta) ** 36 - 1.11130793212835e84 * cos(theta) ** 34 + 4.18418624110071e83 * cos(theta) ** 32 - 1.28346096201976e83 * cos(theta) ** 30 + 3.2086524050494e82 * cos(theta) ** 28 - 6.52431742393046e81 * cos(theta) ** 26 + 1.07416573595613e81 * cos(theta) ** 24 - 1.42191723320811e80 * cos(theta) ** 22 + 1.4984620477695e79 * cos(theta) ** 20 - 1.24055681514686e78 * cos(theta) ** 18 + 7.92837062311904e76 * cos(theta) ** 16 - 3.82243662022614e75 * cos(theta) ** 14 + 1.34822376914953e74 * cos(theta) ** 12 - 3.33643677404833e72 * cos(theta) ** 10 + 5.45962381207908e70 * cos(theta) ** 8 - 5.40365736084179e68 * cos(theta) ** 6 + 2.79114533101332e66 * cos(theta) ** 4 - 5.62920066758989e63 * cos(theta) ** 2 + 1.8504933161045e60 ) * cos(32 * phi) ) # @torch.jit.script def Yl84_m33(theta, phi): return ( 3.24178438615108e-63 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 2.54037431049855e84 * cos(theta) ** 51 - 1.93950733286566e85 * cos(theta) ** 49 + 6.91169885893943e85 * cos(theta) ** 47 - 1.52792361278395e86 * cos(theta) ** 45 + 2.34882667182626e86 * cos(theta) ** 43 - 2.66791255931964e86 * cos(theta) ** 41 + 2.32238672891943e86 * cos(theta) ** 39 - 1.58607241117908e86 * cos(theta) ** 37 + 8.63009988435674e85 * cos(theta) ** 35 - 3.7784469692364e85 * cos(theta) ** 33 + 1.33893959715223e85 * cos(theta) ** 31 - 3.85038288605928e84 * cos(theta) ** 29 + 8.98422673413831e83 * cos(theta) ** 27 - 1.69632253022192e83 * cos(theta) ** 25 + 2.57799776629471e82 * cos(theta) ** 23 - 3.12821791305785e81 * cos(theta) ** 21 + 2.996924095539e80 * cos(theta) ** 19 - 2.23300226726435e79 * cos(theta) ** 17 + 1.26853929969905e78 * cos(theta) ** 15 - 5.35141126831659e76 * cos(theta) ** 13 + 1.61786852297943e75 * cos(theta) ** 11 - 3.33643677404833e73 * cos(theta) ** 9 + 4.36769904966326e71 * cos(theta) ** 7 - 3.24219441650507e69 * cos(theta) ** 5 + 1.11645813240533e67 * cos(theta) ** 3 - 1.12584013351798e64 * cos(theta) ) * cos(33 * phi) ) # @torch.jit.script def Yl84_m34(theta, phi): return ( 4.17886204762918e-65 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.29559089835426e86 * cos(theta) ** 50 - 9.50358593104171e86 * cos(theta) ** 48 + 3.24849846370153e87 * cos(theta) ** 46 - 6.87565625752778e87 * cos(theta) ** 44 + 1.00999546888529e88 * cos(theta) ** 42 - 1.09384414932105e88 * cos(theta) ** 40 + 9.05730824278578e87 * cos(theta) ** 38 - 5.86846792136258e87 * cos(theta) ** 36 + 3.02053495952486e87 * cos(theta) ** 34 - 1.24688749984801e87 * cos(theta) ** 32 + 4.1507127511719e86 * cos(theta) ** 30 - 1.11661103695719e86 * cos(theta) ** 28 + 2.42574121821734e85 * cos(theta) ** 26 - 4.2408063255548e84 * cos(theta) ** 24 + 5.92939486247783e83 * cos(theta) ** 22 - 6.56925761742148e82 * cos(theta) ** 20 + 5.6941557815241e81 * cos(theta) ** 18 - 3.7961038543494e80 * cos(theta) ** 16 + 1.90280894954857e79 * cos(theta) ** 14 - 6.95683464881157e77 * cos(theta) ** 12 + 1.77965537527738e76 * cos(theta) ** 10 - 3.00279309664349e74 * cos(theta) ** 8 + 3.05738933476429e72 * cos(theta) ** 6 - 1.62109720825254e70 * cos(theta) ** 4 + 3.34937439721599e67 * cos(theta) ** 2 - 1.12584013351798e64 ) * cos(34 * phi) ) # @torch.jit.script def Yl84_m35(theta, phi): return ( 5.41750787896811e-67 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 6.47795449177129e87 * cos(theta) ** 49 - 4.56172124690002e88 * cos(theta) ** 47 + 1.4943092933027e89 * cos(theta) ** 45 - 3.02528875331222e89 * cos(theta) ** 43 + 4.24198096931823e89 * cos(theta) ** 41 - 4.37537659728421e89 * cos(theta) ** 39 + 3.4417771322586e89 * cos(theta) ** 37 - 2.11264845169053e89 * cos(theta) ** 35 + 1.02698188623845e89 * cos(theta) ** 33 - 3.99003999951363e88 * cos(theta) ** 31 + 1.24521382535157e88 * cos(theta) ** 29 - 3.12651090348013e87 * cos(theta) ** 27 + 6.3069271673651e86 * cos(theta) ** 25 - 1.01779351813315e86 * cos(theta) ** 23 + 1.30446686974512e85 * cos(theta) ** 21 - 1.3138515234843e84 * cos(theta) ** 19 + 1.02494804067434e83 * cos(theta) ** 17 - 6.07376616695904e81 * cos(theta) ** 15 + 2.663932529368e80 * cos(theta) ** 13 - 8.34820157857388e78 * cos(theta) ** 11 + 1.77965537527738e77 * cos(theta) ** 9 - 2.4022344773148e75 * cos(theta) ** 7 + 1.83443360085857e73 * cos(theta) ** 5 - 6.48438883301015e70 * cos(theta) ** 3 + 6.69874879443197e67 * cos(theta) ) * cos(35 * phi) ) # @torch.jit.script def Yl84_m36(theta, phi): return ( 7.06497921612571e-69 * (1.0 - cos(theta) ** 2) ** 18 * ( 3.17419770096793e89 * cos(theta) ** 48 - 2.14400898604301e90 * cos(theta) ** 46 + 6.72439181986217e90 * cos(theta) ** 44 - 1.30087416392426e91 * cos(theta) ** 42 + 1.73921219742047e91 * cos(theta) ** 40 - 1.70639687294084e91 * cos(theta) ** 38 + 1.27345753893568e91 * cos(theta) ** 36 - 7.39426958091686e90 * cos(theta) ** 34 + 3.38904022458689e90 * cos(theta) ** 32 - 1.23691239984923e90 * cos(theta) ** 30 + 3.61112009351955e89 * cos(theta) ** 28 - 8.44157943939636e88 * cos(theta) ** 26 + 1.57673179184127e88 * cos(theta) ** 24 - 2.34092509170625e87 * cos(theta) ** 22 + 2.73938042646476e86 * cos(theta) ** 20 - 2.49631789462016e85 * cos(theta) ** 18 + 1.74241166914637e84 * cos(theta) ** 16 - 9.11064925043856e82 * cos(theta) ** 14 + 3.4631122881784e81 * cos(theta) ** 12 - 9.18302173643127e79 * cos(theta) ** 10 + 1.60168983774964e78 * cos(theta) ** 8 - 1.68156413412036e76 * cos(theta) ** 6 + 9.17216800429286e73 * cos(theta) ** 4 - 1.94531664990304e71 * cos(theta) ** 2 + 6.69874879443197e67 ) * cos(36 * phi) ) # @torch.jit.script def Yl84_m37(theta, phi): return ( 9.2703810278393e-71 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 1.52361489646461e91 * cos(theta) ** 47 - 9.86244133579785e91 * cos(theta) ** 45 + 2.95873240073935e92 * cos(theta) ** 43 - 5.46367148848188e92 * cos(theta) ** 41 + 6.95684878968189e92 * cos(theta) ** 39 - 6.4843081171752e92 * cos(theta) ** 37 + 4.58444714016845e92 * cos(theta) ** 35 - 2.51405165751173e92 * cos(theta) ** 33 + 1.08449287186781e92 * cos(theta) ** 31 - 3.71073719954768e91 * cos(theta) ** 29 + 1.01111362618548e91 * cos(theta) ** 27 - 2.19481065424305e90 * cos(theta) ** 25 + 3.78415630041906e89 * cos(theta) ** 23 - 5.15003520175375e88 * cos(theta) ** 21 + 5.47876085292952e87 * cos(theta) ** 19 - 4.4933722103163e86 * cos(theta) ** 17 + 2.7878586706342e85 * cos(theta) ** 15 - 1.2754908950614e84 * cos(theta) ** 13 + 4.15573474581408e82 * cos(theta) ** 11 - 9.18302173643127e80 * cos(theta) ** 9 + 1.28135187019971e79 * cos(theta) ** 7 - 1.00893848047221e77 * cos(theta) ** 5 + 3.66886720171714e74 * cos(theta) ** 3 - 3.89063329980609e71 * cos(theta) ) * cos(37 * phi) ) # @torch.jit.script def Yl84_m38(theta, phi): return ( 1.22424613166005e-72 * (1.0 - cos(theta) ** 2) ** 19 * ( 7.16099001338366e92 * cos(theta) ** 46 - 4.43809860110903e93 * cos(theta) ** 44 + 1.27225493231792e94 * cos(theta) ** 42 - 2.24010531027757e94 * cos(theta) ** 40 + 2.71317102797594e94 * cos(theta) ** 38 - 2.39919400335482e94 * cos(theta) ** 36 + 1.60455649905896e94 * cos(theta) ** 34 - 8.29637046978871e93 * cos(theta) ** 32 + 3.3619279027902e93 * cos(theta) ** 30 - 1.07611378786883e93 * cos(theta) ** 28 + 2.73000679070078e92 * cos(theta) ** 26 - 5.48702663560763e91 * cos(theta) ** 24 + 8.70355949096383e90 * cos(theta) ** 22 - 1.08150739236829e90 * cos(theta) ** 20 + 1.04096456205661e89 * cos(theta) ** 18 - 7.6387327575377e87 * cos(theta) ** 16 + 4.1817880059513e86 * cos(theta) ** 14 - 1.65813816357982e85 * cos(theta) ** 12 + 4.57130822039549e83 * cos(theta) ** 10 - 8.26471956278814e81 * cos(theta) ** 8 + 8.96946309139798e79 * cos(theta) ** 6 - 5.04469240236107e77 * cos(theta) ** 4 + 1.10066016051514e75 * cos(theta) ** 2 - 3.89063329980609e71 ) * cos(38 * phi) ) # @torch.jit.script def Yl84_m39(theta, phi): return ( 1.62756097834137e-74 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 3.29405540615648e94 * cos(theta) ** 45 - 1.95276338448797e95 * cos(theta) ** 43 + 5.34347071573527e95 * cos(theta) ** 41 - 8.96042124111028e95 * cos(theta) ** 39 + 1.03100499063086e96 * cos(theta) ** 37 - 8.63709841207736e95 * cos(theta) ** 35 + 5.45549209680046e95 * cos(theta) ** 33 - 2.65483855033239e95 * cos(theta) ** 31 + 1.00857837083706e95 * cos(theta) ** 29 - 3.01311860603272e94 * cos(theta) ** 27 + 7.09801765582203e93 * cos(theta) ** 25 - 1.31688639254583e93 * cos(theta) ** 23 + 1.91478308801204e92 * cos(theta) ** 21 - 2.16301478473657e91 * cos(theta) ** 19 + 1.8737362117019e90 * cos(theta) ** 17 - 1.22219724120603e89 * cos(theta) ** 15 + 5.85450320833182e87 * cos(theta) ** 13 - 1.98976579629578e86 * cos(theta) ** 11 + 4.57130822039549e84 * cos(theta) ** 9 - 6.61177565023051e82 * cos(theta) ** 7 + 5.38167785483879e80 * cos(theta) ** 5 - 2.01787696094443e78 * cos(theta) ** 3 + 2.20132032103029e75 * cos(theta) ) * cos(39 * phi) ) # @torch.jit.script def Yl84_m40(theta, phi): return ( 2.17881406128541e-76 * (1.0 - cos(theta) ** 2) ** 20 * ( 1.48232493277042e96 * cos(theta) ** 44 - 8.39688255329829e96 * cos(theta) ** 42 + 2.19082299345146e97 * cos(theta) ** 40 - 3.49456428403301e97 * cos(theta) ** 38 + 3.81471846533417e97 * cos(theta) ** 36 - 3.02298444422708e97 * cos(theta) ** 34 + 1.80031239194415e97 * cos(theta) ** 32 - 8.2299995060304e96 * cos(theta) ** 30 + 2.92487727542747e96 * cos(theta) ** 28 - 8.13542023628833e95 * cos(theta) ** 26 + 1.77450441395551e95 * cos(theta) ** 24 - 3.02883870285541e94 * cos(theta) ** 22 + 4.02104448482529e93 * cos(theta) ** 20 - 4.10972809099949e92 * cos(theta) ** 18 + 3.18535155989322e91 * cos(theta) ** 16 - 1.83329586180905e90 * cos(theta) ** 14 + 7.61085417083136e88 * cos(theta) ** 12 - 2.18874237592536e87 * cos(theta) ** 10 + 4.11417739835594e85 * cos(theta) ** 8 - 4.62824295516136e83 * cos(theta) ** 6 + 2.6908389274194e81 * cos(theta) ** 4 - 6.05363088283328e78 * cos(theta) ** 2 + 2.20132032103029e75 ) * cos(40 * phi) ) # @torch.jit.script def Yl84_m41(theta, phi): return ( 2.93791228090321e-78 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 6.52222970418983e97 * cos(theta) ** 43 - 3.52669067238528e98 * cos(theta) ** 41 + 8.76329197380585e98 * cos(theta) ** 39 - 1.32793442793254e99 * cos(theta) ** 37 + 1.3732986475203e99 * cos(theta) ** 35 - 1.02781471103721e99 * cos(theta) ** 33 + 5.76099965422128e98 * cos(theta) ** 31 - 2.46899985180912e98 * cos(theta) ** 29 + 8.18965637119692e97 * cos(theta) ** 27 - 2.11520926143497e97 * cos(theta) ** 25 + 4.25881059349322e96 * cos(theta) ** 23 - 6.66344514628191e95 * cos(theta) ** 21 + 8.04208896965058e94 * cos(theta) ** 19 - 7.39751056379908e93 * cos(theta) ** 17 + 5.09656249582916e92 * cos(theta) ** 15 - 2.56661420653267e91 * cos(theta) ** 13 + 9.13302500499763e89 * cos(theta) ** 11 - 2.18874237592536e88 * cos(theta) ** 9 + 3.29134191868475e86 * cos(theta) ** 7 - 2.77694577309682e84 * cos(theta) ** 5 + 1.07633557096776e82 * cos(theta) ** 3 - 1.21072617656666e79 * cos(theta) ) * cos(41 * phi) ) # @torch.jit.script def Yl84_m42(theta, phi): return ( 3.99134551249965e-80 * (1.0 - cos(theta) ** 2) ** 21 * ( 2.80455877280163e99 * cos(theta) ** 42 - 1.44594317567797e100 * cos(theta) ** 40 + 3.41768386978428e100 * cos(theta) ** 38 - 4.91335738335041e100 * cos(theta) ** 36 + 4.80654526632105e100 * cos(theta) ** 34 - 3.39178854642278e100 * cos(theta) ** 32 + 1.7859098928086e100 * cos(theta) ** 30 - 7.16009957024645e99 * cos(theta) ** 28 + 2.21120722022317e99 * cos(theta) ** 26 - 5.28802315358742e98 * cos(theta) ** 24 + 9.79526436503441e97 * cos(theta) ** 22 - 1.3993234807192e97 * cos(theta) ** 20 + 1.52799690423361e96 * cos(theta) ** 18 - 1.25757679584584e95 * cos(theta) ** 16 + 7.64484374374373e93 * cos(theta) ** 14 - 3.33659846849247e92 * cos(theta) ** 12 + 1.00463275054974e91 * cos(theta) ** 10 - 1.96986813833282e89 * cos(theta) ** 8 + 2.30393934307932e87 * cos(theta) ** 6 - 1.38847288654841e85 * cos(theta) ** 4 + 3.22900671290327e82 * cos(theta) ** 2 - 1.21072617656666e79 ) * cos(42 * phi) ) # @torch.jit.script def Yl84_m43(theta, phi): return ( 5.46503337606992e-82 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 1.17791468457668e101 * cos(theta) ** 41 - 5.78377270271186e101 * cos(theta) ** 39 + 1.29871987051803e102 * cos(theta) ** 37 - 1.76880865800615e102 * cos(theta) ** 35 + 1.63422539054916e102 * cos(theta) ** 33 - 1.08537233485529e102 * cos(theta) ** 31 + 5.35772967842579e101 * cos(theta) ** 29 - 2.00482787966901e101 * cos(theta) ** 27 + 5.74913877258024e100 * cos(theta) ** 25 - 1.26912555686098e100 * cos(theta) ** 23 + 2.15495816030757e99 * cos(theta) ** 21 - 2.7986469614384e98 * cos(theta) ** 19 + 2.7503944276205e97 * cos(theta) ** 17 - 2.01212287335335e96 * cos(theta) ** 15 + 1.07027812412412e95 * cos(theta) ** 13 - 4.00391816219096e93 * cos(theta) ** 11 + 1.00463275054974e92 * cos(theta) ** 9 - 1.57589451066626e90 * cos(theta) ** 7 + 1.38236360584759e88 * cos(theta) ** 5 - 5.55389154619363e85 * cos(theta) ** 3 + 6.45801342580655e82 * cos(theta) ) * cos(43 * phi) ) # @torch.jit.script def Yl84_m44(theta, phi): return ( 7.54389969711715e-84 * (1.0 - cos(theta) ** 2) ** 22 * ( 4.8294502067644e102 * cos(theta) ** 40 - 2.25567135405763e103 * cos(theta) ** 38 + 4.8052635209167e103 * cos(theta) ** 36 - 6.19083030302151e103 * cos(theta) ** 34 + 5.39294378881222e103 * cos(theta) ** 32 - 3.3646542380514e103 * cos(theta) ** 30 + 1.55374160674348e103 * cos(theta) ** 28 - 5.41303527510632e102 * cos(theta) ** 26 + 1.43728469314506e102 * cos(theta) ** 24 - 2.91898878078025e101 * cos(theta) ** 22 + 4.5254121366459e100 * cos(theta) ** 20 - 5.31742922673296e99 * cos(theta) ** 18 + 4.67567052695485e98 * cos(theta) ** 16 - 3.01818431003003e97 * cos(theta) ** 14 + 1.39136156136136e96 * cos(theta) ** 12 - 4.40430997841006e94 * cos(theta) ** 10 + 9.04169475494766e92 * cos(theta) ** 8 - 1.10312615746638e91 * cos(theta) ** 6 + 6.91181802923797e88 * cos(theta) ** 4 - 1.66616746385809e86 * cos(theta) ** 2 + 6.45801342580655e82 ) * cos(44 * phi) ) # @torch.jit.script def Yl84_m45(theta, phi): return ( 1.05019768017504e-85 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 1.93178008270576e104 * cos(theta) ** 39 - 8.57155114541898e104 * cos(theta) ** 37 + 1.72989486753001e105 * cos(theta) ** 35 - 2.10488230302732e105 * cos(theta) ** 33 + 1.72574201241991e105 * cos(theta) ** 31 - 1.00939627141542e105 * cos(theta) ** 29 + 4.35047649888174e104 * cos(theta) ** 27 - 1.40738917152764e104 * cos(theta) ** 25 + 3.44948326354814e103 * cos(theta) ** 23 - 6.42177531771656e102 * cos(theta) ** 21 + 9.05082427329179e101 * cos(theta) ** 19 - 9.57137260811934e100 * cos(theta) ** 17 + 7.48107284312776e99 * cos(theta) ** 15 - 4.22545803404204e98 * cos(theta) ** 13 + 1.66963387363363e97 * cos(theta) ** 11 - 4.40430997841006e95 * cos(theta) ** 9 + 7.23335580395813e93 * cos(theta) ** 7 - 6.61875694479828e91 * cos(theta) ** 5 + 2.76472721169519e89 * cos(theta) ** 3 - 3.33233492771618e86 * cos(theta) ) * cos(45 * phi) ) # @torch.jit.script def Yl84_m46(theta, phi): return ( 1.47491528018325e-87 * (1.0 - cos(theta) ** 2) ** 23 * ( 7.53394232255247e105 * cos(theta) ** 38 - 3.17147392380502e106 * cos(theta) ** 36 + 6.05463203635504e106 * cos(theta) ** 34 - 6.94611159999014e106 * cos(theta) ** 32 + 5.34980023850172e106 * cos(theta) ** 30 - 2.92724918710472e106 * cos(theta) ** 28 + 1.17462865469807e106 * cos(theta) ** 26 - 3.51847292881911e105 * cos(theta) ** 24 + 7.93381150616073e104 * cos(theta) ** 22 - 1.34857281672048e104 * cos(theta) ** 20 + 1.71965661192544e103 * cos(theta) ** 18 - 1.62713334338029e102 * cos(theta) ** 16 + 1.12216092646916e101 * cos(theta) ** 14 - 5.49309544425465e99 * cos(theta) ** 12 + 1.83659726099699e98 * cos(theta) ** 10 - 3.96387898056905e96 * cos(theta) ** 8 + 5.06334906277069e94 * cos(theta) ** 6 - 3.30937847239914e92 * cos(theta) ** 4 + 8.29418163508557e89 * cos(theta) ** 2 - 3.33233492771618e86 ) * cos(46 * phi) ) # @torch.jit.script def Yl84_m47(theta, phi): return ( 2.09044925098607e-89 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 2.86289808256994e107 * cos(theta) ** 37 - 1.14173061256981e108 * cos(theta) ** 35 + 2.05857489236071e108 * cos(theta) ** 33 - 2.22275571199684e108 * cos(theta) ** 31 + 1.60494007155052e108 * cos(theta) ** 29 - 8.19629772389321e107 * cos(theta) ** 27 + 3.05403450221498e107 * cos(theta) ** 25 - 8.44433502916585e106 * cos(theta) ** 23 + 1.74543853135536e106 * cos(theta) ** 21 - 2.69714563344095e105 * cos(theta) ** 19 + 3.09538190146579e104 * cos(theta) ** 17 - 2.60341334940846e103 * cos(theta) ** 15 + 1.57102529705683e102 * cos(theta) ** 13 - 6.59171453310558e100 * cos(theta) ** 11 + 1.83659726099699e99 * cos(theta) ** 9 - 3.17110318445524e97 * cos(theta) ** 7 + 3.03800943766241e95 * cos(theta) ** 5 - 1.32375138895966e93 * cos(theta) ** 3 + 1.65883632701711e90 * cos(theta) ) * cos(47 * phi) ) # @torch.jit.script def Yl84_m48(theta, phi): return ( 2.9912437292547e-91 * (1.0 - cos(theta) ** 2) ** 24 * ( 1.05927229055088e109 * cos(theta) ** 36 - 3.99605714399433e109 * cos(theta) ** 34 + 6.79329714479036e109 * cos(theta) ** 32 - 6.89054270719022e109 * cos(theta) ** 30 + 4.6543262074965e109 * cos(theta) ** 28 - 2.21300038545117e109 * cos(theta) ** 26 + 7.63508625553746e108 * cos(theta) ** 24 - 1.94219705670815e108 * cos(theta) ** 22 + 3.66542091584626e107 * cos(theta) ** 20 - 5.12457670353781e106 * cos(theta) ** 18 + 5.26214923249185e105 * cos(theta) ** 16 - 3.90512002411269e104 * cos(theta) ** 14 + 2.04233288617388e103 * cos(theta) ** 12 - 7.25088598641613e101 * cos(theta) ** 10 + 1.65293753489729e100 * cos(theta) ** 8 - 2.21977222911867e98 * cos(theta) ** 6 + 1.51900471883121e96 * cos(theta) ** 4 - 3.97125416687897e93 * cos(theta) ** 2 + 1.65883632701711e90 ) * cos(48 * phi) ) # @torch.jit.script def Yl84_m49(theta, phi): return ( 4.3228954315221e-93 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 3.81338024598316e110 * cos(theta) ** 35 - 1.35865942895807e111 * cos(theta) ** 33 + 2.17385508633291e111 * cos(theta) ** 31 - 2.06716281215707e111 * cos(theta) ** 29 + 1.30321133809902e111 * cos(theta) ** 27 - 5.75380100217303e110 * cos(theta) ** 25 + 1.83242070132899e110 * cos(theta) ** 23 - 4.27283352475792e109 * cos(theta) ** 21 + 7.33084183169251e108 * cos(theta) ** 19 - 9.22423806636806e107 * cos(theta) ** 17 + 8.41943877198696e106 * cos(theta) ** 15 - 5.46716803375777e105 * cos(theta) ** 13 + 2.45079946340865e104 * cos(theta) ** 11 - 7.25088598641613e102 * cos(theta) ** 9 + 1.32235002791784e101 * cos(theta) ** 7 - 1.3318633374712e99 * cos(theta) ** 5 + 6.07601887532483e96 * cos(theta) ** 3 - 7.94250833375794e93 * cos(theta) ) * cos(49 * phi) ) # @torch.jit.script def Yl84_m50(theta, phi): return ( 6.3123098526323e-95 * (1.0 - cos(theta) ** 2) ** 25 * ( 1.33468308609411e112 * cos(theta) ** 34 - 4.48357611556164e112 * cos(theta) ** 32 + 6.73895076763203e112 * cos(theta) ** 30 - 5.99477215525549e112 * cos(theta) ** 28 + 3.51867061286735e112 * cos(theta) ** 26 - 1.43845025054326e112 * cos(theta) ** 24 + 4.21456761305668e111 * cos(theta) ** 22 - 8.97295040199164e110 * cos(theta) ** 20 + 1.39285994802158e110 * cos(theta) ** 18 - 1.56812047128257e109 * cos(theta) ** 16 + 1.26291581579804e108 * cos(theta) ** 14 - 7.10731844388509e106 * cos(theta) ** 12 + 2.69587940974952e105 * cos(theta) ** 10 - 6.52579738777452e103 * cos(theta) ** 8 + 9.25645019542485e101 * cos(theta) ** 6 - 6.65931668735601e99 * cos(theta) ** 4 + 1.82280566259745e97 * cos(theta) ** 2 - 7.94250833375794e93 ) * cos(50 * phi) ) # @torch.jit.script def Yl84_m51(theta, phi): return ( 9.31712594605429e-97 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 4.53792249271996e113 * cos(theta) ** 33 - 1.43474435697972e114 * cos(theta) ** 31 + 2.02168523028961e114 * cos(theta) ** 29 - 1.67853620347154e114 * cos(theta) ** 27 + 9.14854359345512e113 * cos(theta) ** 25 - 3.45228060130382e113 * cos(theta) ** 23 + 9.27204874872469e112 * cos(theta) ** 21 - 1.79459008039833e112 * cos(theta) ** 19 + 2.50714790643884e111 * cos(theta) ** 17 - 2.50899275405211e110 * cos(theta) ** 15 + 1.76808214211726e109 * cos(theta) ** 13 - 8.52878213266211e107 * cos(theta) ** 11 + 2.69587940974952e106 * cos(theta) ** 9 - 5.22063791021962e104 * cos(theta) ** 7 + 5.55387011725491e102 * cos(theta) ** 5 - 2.6637266749424e100 * cos(theta) ** 3 + 3.6456113251949e97 * cos(theta) ) * cos(51 * phi) ) # @torch.jit.script def Yl84_m52(theta, phi): return ( 1.39077073021898e-98 * (1.0 - cos(theta) ** 2) ** 26 * ( 1.49751442259759e115 * cos(theta) ** 32 - 4.44770750663714e115 * cos(theta) ** 30 + 5.86288716783987e115 * cos(theta) ** 28 - 4.53204774937315e115 * cos(theta) ** 26 + 2.28713589836378e115 * cos(theta) ** 24 - 7.94024538299878e114 * cos(theta) ** 22 + 1.94713023723219e114 * cos(theta) ** 20 - 3.40972115275682e113 * cos(theta) ** 18 + 4.26215144094603e112 * cos(theta) ** 16 - 3.76348913107817e111 * cos(theta) ** 14 + 2.29850678475244e110 * cos(theta) ** 12 - 9.38166034592832e108 * cos(theta) ** 10 + 2.42629146877457e107 * cos(theta) ** 8 - 3.65444653715373e105 * cos(theta) ** 6 + 2.77693505862746e103 * cos(theta) ** 4 - 7.99118002482721e100 * cos(theta) ** 2 + 3.6456113251949e97 ) * cos(52 * phi) ) # @torch.jit.script def Yl84_m53(theta, phi): return ( 2.10048831220557e-100 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 4.79204615231228e116 * cos(theta) ** 31 - 1.33431225199114e117 * cos(theta) ** 29 + 1.64160840699516e117 * cos(theta) ** 27 - 1.17833241483702e117 * cos(theta) ** 25 + 5.48912615607307e116 * cos(theta) ** 23 - 1.74685398425973e116 * cos(theta) ** 21 + 3.89426047446437e115 * cos(theta) ** 19 - 6.13749807496228e114 * cos(theta) ** 17 + 6.81944230551364e113 * cos(theta) ** 15 - 5.26888478350944e112 * cos(theta) ** 13 + 2.75820814170293e111 * cos(theta) ** 11 - 9.38166034592832e109 * cos(theta) ** 9 + 1.94103317501965e108 * cos(theta) ** 7 - 2.19266792229224e106 * cos(theta) ** 5 + 1.11077402345098e104 * cos(theta) ** 3 - 1.59823600496544e101 * cos(theta) ) * cos(53 * phi) ) # @torch.jit.script def Yl84_m54(theta, phi): return ( 3.21144049393384e-102 * (1.0 - cos(theta) ** 2) ** 27 * ( 1.48553430721681e118 * cos(theta) ** 30 - 3.86950553077431e118 * cos(theta) ** 28 + 4.43234269888694e118 * cos(theta) ** 26 - 2.94583103709255e118 * cos(theta) ** 24 + 1.26249901589681e118 * cos(theta) ** 22 - 3.66839336694544e117 * cos(theta) ** 20 + 7.3990949014823e116 * cos(theta) ** 18 - 1.04337467274359e116 * cos(theta) ** 16 + 1.02291634582705e115 * cos(theta) ** 14 - 6.84955021856227e113 * cos(theta) ** 12 + 3.03402895587322e112 * cos(theta) ** 10 - 8.44349431133549e110 * cos(theta) ** 8 + 1.35872322251376e109 * cos(theta) ** 6 - 1.09633396114612e107 * cos(theta) ** 4 + 3.33232207035295e104 * cos(theta) ** 2 - 1.59823600496544e101 ) * cos(54 * phi) ) # @torch.jit.script def Yl84_m55(theta, phi): return ( 4.97315335648737e-104 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 4.45660292165042e119 * cos(theta) ** 29 - 1.08346154861681e120 * cos(theta) ** 27 + 1.1524091017106e120 * cos(theta) ** 25 - 7.06999448902212e119 * cos(theta) ** 23 + 2.77749783497297e119 * cos(theta) ** 21 - 7.33678673389087e118 * cos(theta) ** 19 + 1.33183708226681e118 * cos(theta) ** 17 - 1.66939947638974e117 * cos(theta) ** 15 + 1.43208288415787e116 * cos(theta) ** 13 - 8.21946026227472e114 * cos(theta) ** 11 + 3.03402895587322e113 * cos(theta) ** 9 - 6.75479544906839e111 * cos(theta) ** 7 + 8.15233933508254e109 * cos(theta) ** 5 - 4.38533584458448e107 * cos(theta) ** 3 + 6.66464414070589e104 * cos(theta) ) * cos(55 * phi) ) # @torch.jit.script def Yl84_m56(theta, phi): return ( 7.80492681130998e-106 * (1.0 - cos(theta) ** 2) ** 28 * ( 1.29241484727862e121 * cos(theta) ** 28 - 2.92534618126538e121 * cos(theta) ** 26 + 2.88102275427651e121 * cos(theta) ** 24 - 1.62609873247509e121 * cos(theta) ** 22 + 5.83274545344325e120 * cos(theta) ** 20 - 1.39398947943927e120 * cos(theta) ** 18 + 2.26412303985359e119 * cos(theta) ** 16 - 2.50409921458461e118 * cos(theta) ** 14 + 1.86170774940522e117 * cos(theta) ** 12 - 9.0414062885022e115 * cos(theta) ** 10 + 2.7306260602859e114 * cos(theta) ** 8 - 4.72835681434788e112 * cos(theta) ** 6 + 4.07616966754127e110 * cos(theta) ** 4 - 1.31560075337534e108 * cos(theta) ** 2 + 6.66464414070589e104 ) * cos(56 * phi) ) # @torch.jit.script def Yl84_m57(theta, phi): return ( 1.24216778811374e-107 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 3.61876157238014e122 * cos(theta) ** 27 - 7.60590007128999e122 * cos(theta) ** 25 + 6.91445461026363e122 * cos(theta) ** 23 - 3.57741721144519e122 * cos(theta) ** 21 + 1.16654909068865e122 * cos(theta) ** 19 - 2.50918106299068e121 * cos(theta) ** 17 + 3.62259686376574e120 * cos(theta) ** 15 - 3.50573890041845e119 * cos(theta) ** 13 + 2.23404929928627e118 * cos(theta) ** 11 - 9.0414062885022e116 * cos(theta) ** 9 + 2.18450084822872e115 * cos(theta) ** 7 - 2.83701408860873e113 * cos(theta) ** 5 + 1.63046786701651e111 * cos(theta) ** 3 - 2.63120150675069e108 * cos(theta) ) * cos(57 * phi) ) # @torch.jit.script def Yl84_m58(theta, phi): return ( 2.00610753277077e-109 * (1.0 - cos(theta) ** 2) ** 29 * ( 9.77065624542637e123 * cos(theta) ** 26 - 1.9014750178225e124 * cos(theta) ** 24 + 1.59032456036063e124 * cos(theta) ** 22 - 7.5125761440349e123 * cos(theta) ** 20 + 2.21644327230843e123 * cos(theta) ** 18 - 4.26560780708415e122 * cos(theta) ** 16 + 5.4338952956486e121 * cos(theta) ** 14 - 4.55746057054399e120 * cos(theta) ** 12 + 2.4574542292149e119 * cos(theta) ** 10 - 8.13726565965198e117 * cos(theta) ** 8 + 1.5291505937601e116 * cos(theta) ** 6 - 1.41850704430436e114 * cos(theta) ** 4 + 4.89140360104953e111 * cos(theta) ** 2 - 2.63120150675069e108 ) * cos(58 * phi) ) # @torch.jit.script def Yl84_m59(theta, phi): return ( 3.29002740825472e-111 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 2.54037062381086e125 * cos(theta) ** 25 - 4.56354004277399e125 * cos(theta) ** 23 + 3.4987140327934e125 * cos(theta) ** 21 - 1.50251522880698e125 * cos(theta) ** 19 + 3.98959789015518e124 * cos(theta) ** 17 - 6.82497249133465e123 * cos(theta) ** 15 + 7.60745341390805e122 * cos(theta) ** 13 - 5.46895268465279e121 * cos(theta) ** 11 + 2.4574542292149e120 * cos(theta) ** 9 - 6.50981252772158e118 * cos(theta) ** 7 + 9.17490356256062e116 * cos(theta) ** 5 - 5.67402817721745e114 * cos(theta) ** 3 + 9.78280720209905e111 * cos(theta) ) * cos(59 * phi) ) # @torch.jit.script def Yl84_m60(theta, phi): return ( 5.48337901375787e-113 * (1.0 - cos(theta) ** 2) ** 30 * ( 6.35092655952714e126 * cos(theta) ** 24 - 1.04961420983802e127 * cos(theta) ** 22 + 7.34729946886613e126 * cos(theta) ** 20 - 2.85477893473326e126 * cos(theta) ** 18 + 6.78231641326381e125 * cos(theta) ** 16 - 1.0237458737002e125 * cos(theta) ** 14 + 9.88968943808046e123 * cos(theta) ** 12 - 6.01584795311807e122 * cos(theta) ** 10 + 2.21170880629341e121 * cos(theta) ** 8 - 4.55686876940511e119 * cos(theta) ** 6 + 4.58745178128031e117 * cos(theta) ** 4 - 1.70220845316524e115 * cos(theta) ** 2 + 9.78280720209905e111 ) * cos(60 * phi) ) # @torch.jit.script def Yl84_m61(theta, phi): return ( 9.29519796437372e-115 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 1.52422237428651e128 * cos(theta) ** 23 - 2.30915126164364e128 * cos(theta) ** 21 + 1.46945989377323e128 * cos(theta) ** 19 - 5.13860208251987e127 * cos(theta) ** 17 + 1.08517062612221e127 * cos(theta) ** 15 - 1.43324422318028e126 * cos(theta) ** 13 + 1.18676273256966e125 * cos(theta) ** 11 - 6.01584795311807e123 * cos(theta) ** 9 + 1.76936704503473e122 * cos(theta) ** 7 - 2.73412126164306e120 * cos(theta) ** 5 + 1.83498071251212e118 * cos(theta) ** 3 - 3.40441690633047e115 * cos(theta) ) * cos(61 * phi) ) # @torch.jit.script def Yl84_m62(theta, phi): return ( 1.60405146295186e-116 * (1.0 - cos(theta) ** 2) ** 31 * ( 3.50571146085898e129 * cos(theta) ** 22 - 4.84921764945165e129 * cos(theta) ** 20 + 2.79197379816913e129 * cos(theta) ** 18 - 8.73562354028378e128 * cos(theta) ** 16 + 1.62775593918331e128 * cos(theta) ** 14 - 1.86321749013436e127 * cos(theta) ** 12 + 1.30543900582662e126 * cos(theta) ** 10 - 5.41426315780626e124 * cos(theta) ** 8 + 1.23855693152431e123 * cos(theta) ** 6 - 1.36706063082153e121 * cos(theta) ** 4 + 5.50494213753637e118 * cos(theta) ** 2 - 3.40441690633047e115 ) * cos(62 * phi) ) # @torch.jit.script def Yl84_m63(theta, phi): return ( 2.82064408831893e-118 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 7.71256521388976e130 * cos(theta) ** 21 - 9.69843529890329e130 * cos(theta) ** 19 + 5.02555283670443e130 * cos(theta) ** 17 - 1.39769976644541e130 * cos(theta) ** 15 + 2.27885831485664e129 * cos(theta) ** 13 - 2.23586098816123e128 * cos(theta) ** 11 + 1.30543900582662e127 * cos(theta) ** 9 - 4.33141052624501e125 * cos(theta) ** 7 + 7.43134158914585e123 * cos(theta) ** 5 - 5.46824252328613e121 * cos(theta) ** 3 + 1.10098842750727e119 * cos(theta) ) * cos(63 * phi) ) # @torch.jit.script def Yl84_m64(theta, phi): return ( 5.05950215049249e-120 * (1.0 - cos(theta) ** 2) ** 32 * ( 1.61963869491685e132 * cos(theta) ** 20 - 1.84270270679163e132 * cos(theta) ** 18 + 8.54343982239754e131 * cos(theta) ** 16 - 2.09654964966811e131 * cos(theta) ** 14 + 2.96251580931363e130 * cos(theta) ** 12 - 2.45944708697735e129 * cos(theta) ** 10 + 1.17489510524396e128 * cos(theta) ** 8 - 3.03198736837151e126 * cos(theta) ** 6 + 3.71567079457292e124 * cos(theta) ** 4 - 1.64047275698584e122 * cos(theta) ** 2 + 1.10098842750727e119 ) * cos(64 * phi) ) # @torch.jit.script def Yl84_m65(theta, phi): return ( 9.26829082417413e-122 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 3.2392773898337e133 * cos(theta) ** 19 - 3.31686487222493e133 * cos(theta) ** 17 + 1.36695037158361e133 * cos(theta) ** 15 - 2.93516950953535e132 * cos(theta) ** 13 + 3.55501897117636e131 * cos(theta) ** 11 - 2.45944708697735e130 * cos(theta) ** 9 + 9.39916084195167e128 * cos(theta) ** 7 - 1.8191924210229e127 * cos(theta) ** 5 + 1.48626831782917e125 * cos(theta) ** 3 - 3.28094551397168e122 * cos(theta) ) * cos(65 * phi) ) # @torch.jit.script def Yl84_m66(theta, phi): return ( 1.73610993670686e-123 * (1.0 - cos(theta) ** 2) ** 33 * ( 6.15462704068403e134 * cos(theta) ** 18 - 5.63867028278237e134 * cos(theta) ** 16 + 2.05042555737541e134 * cos(theta) ** 14 - 3.81572036239596e133 * cos(theta) ** 12 + 3.91052086829399e132 * cos(theta) ** 10 - 2.21350237827962e131 * cos(theta) ** 8 + 6.57941258936617e129 * cos(theta) ** 6 - 9.09596210511452e127 * cos(theta) ** 4 + 4.45880495348751e125 * cos(theta) ** 2 - 3.28094551397168e122 ) * cos(66 * phi) ) # @torch.jit.script def Yl84_m67(theta, phi): return ( 3.33006335874572e-125 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 1.10783286732313e136 * cos(theta) ** 17 - 9.0218724524518e135 * cos(theta) ** 15 + 2.87059578032557e135 * cos(theta) ** 13 - 4.57886443487515e134 * cos(theta) ** 11 + 3.91052086829399e133 * cos(theta) ** 9 - 1.77080190262369e132 * cos(theta) ** 7 + 3.9476475536197e130 * cos(theta) ** 5 - 3.63838484204581e128 * cos(theta) ** 3 + 8.91760990697502e125 * cos(theta) ) * cos(67 * phi) ) # @torch.jit.script def Yl84_m68(theta, phi): return ( 6.55097952323603e-127 * (1.0 - cos(theta) ** 2) ** 34 * ( 1.88331587444931e137 * cos(theta) ** 16 - 1.35328086786777e137 * cos(theta) ** 14 + 3.73177451442324e136 * cos(theta) ** 12 - 5.03675087836266e135 * cos(theta) ** 10 + 3.51946878146459e134 * cos(theta) ** 8 - 1.23956133183659e133 * cos(theta) ** 6 + 1.97382377680985e131 * cos(theta) ** 4 - 1.09151545261374e129 * cos(theta) ** 2 + 8.91760990697502e125 ) * cos(68 * phi) ) # @torch.jit.script def Yl84_m69(theta, phi): return ( 1.32403826105689e-128 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 3.0133053991189e138 * cos(theta) ** 15 - 1.89459321501488e138 * cos(theta) ** 13 + 4.47812941730789e137 * cos(theta) ** 11 - 5.03675087836266e136 * cos(theta) ** 9 + 2.81557502517167e135 * cos(theta) ** 7 - 7.43736799101952e133 * cos(theta) ** 5 + 7.8952951072394e131 * cos(theta) ** 3 - 2.18303090522748e129 * cos(theta) ) * cos(69 * phi) ) # @torch.jit.script def Yl84_m70(theta, phi): return ( 2.75482836003585e-130 * (1.0 - cos(theta) ** 2) ** 35 * ( 4.51995809867835e139 * cos(theta) ** 14 - 2.46297117951934e139 * cos(theta) ** 12 + 4.92594235903868e138 * cos(theta) ** 10 - 4.5330757905264e137 * cos(theta) ** 8 + 1.97090251762017e136 * cos(theta) ** 6 - 3.71868399550976e134 * cos(theta) ** 4 + 2.36858853217182e132 * cos(theta) ** 2 - 2.18303090522748e129 ) * cos(70 * phi) ) # @torch.jit.script def Yl84_m71(theta, phi): return ( 5.91377338398529e-132 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 6.32794133814969e140 * cos(theta) ** 13 - 2.95556541542321e140 * cos(theta) ** 11 + 4.92594235903868e139 * cos(theta) ** 9 - 3.62646063242112e138 * cos(theta) ** 7 + 1.1825415105721e137 * cos(theta) ** 5 - 1.4874735982039e135 * cos(theta) ** 3 + 4.73717706434364e132 * cos(theta) ) * cos(71 * phi) ) # @torch.jit.script def Yl84_m72(theta, phi): return ( 1.31319948275783e-133 * (1.0 - cos(theta) ** 2) ** 36 * ( 8.2263237395946e141 * cos(theta) ** 12 - 3.25112195696553e141 * cos(theta) ** 10 + 4.43334812313481e140 * cos(theta) ** 8 - 2.53852244269478e139 * cos(theta) ** 6 + 5.91270755286052e137 * cos(theta) ** 4 - 4.46242079461171e135 * cos(theta) ** 2 + 4.73717706434364e132 ) * cos(72 * phi) ) # @torch.jit.script def Yl84_m73(theta, phi): return ( 3.02545190735408e-135 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 9.87158848751352e142 * cos(theta) ** 11 - 3.25112195696553e142 * cos(theta) ** 9 + 3.54667849850785e141 * cos(theta) ** 7 - 1.52311346561687e140 * cos(theta) ** 5 + 2.36508302114421e138 * cos(theta) ** 3 - 8.92484158922342e135 * cos(theta) ) * cos(73 * phi) ) # @torch.jit.script def Yl84_m74(theta, phi): return ( 7.25713776794442e-137 * (1.0 - cos(theta) ** 2) ** 37 * ( 1.08587473362649e144 * cos(theta) ** 10 - 2.92600976126898e143 * cos(theta) ** 8 + 2.4826749489555e142 * cos(theta) ** 6 - 7.61556732808434e140 * cos(theta) ** 4 + 7.09524906343262e138 * cos(theta) ** 2 - 8.92484158922342e135 ) * cos(74 * phi) ) # @torch.jit.script def Yl84_m75(theta, phi): return ( 1.81998079647975e-138 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 1.08587473362649e145 * cos(theta) ** 9 - 2.34080780901518e144 * cos(theta) ** 7 + 1.4896049693733e143 * cos(theta) ** 5 - 3.04622693123374e141 * cos(theta) ** 3 + 1.41904981268652e139 * cos(theta) ) * cos(75 * phi) ) # @torch.jit.script def Yl84_m76(theta, phi): return ( 4.7960705122028e-140 * (1.0 - cos(theta) ** 2) ** 38 * ( 9.77287260263839e145 * cos(theta) ** 8 - 1.63856546631063e145 * cos(theta) ** 6 + 7.44802484686649e143 * cos(theta) ** 4 - 9.13868079370121e141 * cos(theta) ** 2 + 1.41904981268652e139 ) * cos(76 * phi) ) # @torch.jit.script def Yl84_m77(theta, phi): return ( 1.33637280121287e-141 * (1.0 - cos(theta) ** 2) ** 38.5 * ( 7.81829808211071e146 * cos(theta) ** 7 - 9.83139279786376e145 * cos(theta) ** 5 + 2.9792099387466e144 * cos(theta) ** 3 - 1.82773615874024e142 * cos(theta) ) * cos(77 * phi) ) # @torch.jit.script def Yl84_m78(theta, phi): return ( 3.96845171677929e-143 * (1.0 - cos(theta) ** 2) ** 39 * ( 5.4728086574775e147 * cos(theta) ** 6 - 4.91569639893188e146 * cos(theta) ** 4 + 8.93762981623979e144 * cos(theta) ** 2 - 1.82773615874024e142 ) * cos(78 * phi) ) # @torch.jit.script def Yl84_m79(theta, phi): return ( 1.26897093021025e-144 * (1.0 - cos(theta) ** 2) ** 39.5 * ( 3.2836851944865e148 * cos(theta) ** 5 - 1.96627855957275e147 * cos(theta) ** 3 + 1.78752596324796e145 * cos(theta) ) * cos(79 * phi) ) # @torch.jit.script def Yl84_m80(theta, phi): return ( 4.4314387105487e-146 * (1.0 - cos(theta) ** 2) ** 40 * ( 1.64184259724325e149 * cos(theta) ** 4 - 5.89883567871826e147 * cos(theta) ** 2 + 1.78752596324796e145 ) * cos(80 * phi) ) # @torch.jit.script def Yl84_m81(theta, phi): return ( 1.72493517863933e-147 * (1.0 - cos(theta) ** 2) ** 40.5 * (6.567370388973e149 * cos(theta) ** 3 - 1.17976713574365e148 * cos(theta)) * cos(81 * phi) ) # @torch.jit.script def Yl84_m82(theta, phi): return ( 7.72961936139408e-149 * (1.0 - cos(theta) ** 2) ** 41 * (1.9702111166919e150 * cos(theta) ** 2 - 1.17976713574365e148) * cos(82 * phi) ) # @torch.jit.script def Yl84_m83(theta, phi): return ( 16.6658563996924 * (1.0 - cos(theta) ** 2) ** 41.5 * cos(83 * phi) * cos(theta) ) # @torch.jit.script def Yl84_m84(theta, phi): return 1.28579873622986 * (1.0 - cos(theta) ** 2) ** 42 * cos(84 * phi) # @torch.jit.script def Yl85_m_minus_85(theta, phi): return 1.28957495210276 * (1.0 - cos(theta) ** 2) ** 42.5 * sin(85 * phi) # @torch.jit.script def Yl85_m_minus_84(theta, phi): return 16.8140002588748 * (1.0 - cos(theta) ** 2) ** 42 * sin(84 * phi) * cos(theta) # @torch.jit.script def Yl85_m_minus_83(theta, phi): return ( 4.6419444015591e-151 * (1.0 - cos(theta) ** 2) ** 41.5 * (3.32965678720931e152 * cos(theta) ** 2 - 1.9702111166919e150) * sin(83 * phi) ) # @torch.jit.script def Yl85_m_minus_82(theta, phi): return ( 1.04211393354525e-149 * (1.0 - cos(theta) ** 2) ** 41 * (1.10988559573644e152 * cos(theta) ** 3 - 1.9702111166919e150 * cos(theta)) * sin(82 * phi) ) # @torch.jit.script def Yl85_m_minus_81(theta, phi): return ( 2.69341598890101e-148 * (1.0 - cos(theta) ** 2) ** 40.5 * ( 2.77471398934109e151 * cos(theta) ** 4 - 9.85105558345949e149 * cos(theta) ** 2 + 2.94941783935913e147 ) * sin(81 * phi) ) # @torch.jit.script def Yl85_m_minus_80(theta, phi): return ( 7.75965620507256e-147 * (1.0 - cos(theta) ** 2) ** 40 * ( 5.54942797868218e150 * cos(theta) ** 5 - 3.2836851944865e149 * cos(theta) ** 3 + 2.94941783935913e147 * cos(theta) ) * sin(80 * phi) ) # @torch.jit.script def Yl85_m_minus_79(theta, phi): return ( 2.44151882599156e-145 * (1.0 - cos(theta) ** 2) ** 39.5 * ( 9.24904663113697e149 * cos(theta) ** 6 - 8.20921298621624e148 * cos(theta) ** 4 + 1.47470891967956e147 * cos(theta) ** 2 - 2.9792099387466e144 ) * sin(79 * phi) ) # @torch.jit.script def Yl85_m_minus_78(theta, phi): return ( 8.27239038970388e-144 * (1.0 - cos(theta) ** 2) ** 39 * ( 1.32129237587671e149 * cos(theta) ** 7 - 1.64184259724325e148 * cos(theta) ** 5 + 4.91569639893188e146 * cos(theta) ** 3 - 2.9792099387466e144 * cos(theta) ) * sin(78 * phi) ) # @torch.jit.script def Yl85_m_minus_77(theta, phi): return ( 2.9872379442991e-142 * (1.0 - cos(theta) ** 2) ** 38.5 * ( 1.65161546984589e148 * cos(theta) ** 8 - 2.73640432873875e147 * cos(theta) ** 6 + 1.22892409973297e146 * cos(theta) ** 4 - 1.4896049693733e144 * cos(theta) ** 2 + 2.2846701984253e141 ) * sin(77 * phi) ) # @torch.jit.script def Yl85_m_minus_76(theta, phi): return ( 1.1406399520131e-140 * (1.0 - cos(theta) ** 2) ** 38 * ( 1.83512829982876e147 * cos(theta) ** 9 - 3.90914904105535e146 * cos(theta) ** 7 + 2.45784819946594e145 * cos(theta) ** 5 - 4.96534989791099e143 * cos(theta) ** 3 + 2.2846701984253e141 * cos(theta) ) * sin(76 * phi) ) # @torch.jit.script def Yl85_m_minus_75(theta, phi): return ( 4.57679559867686e-139 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 1.83512829982876e146 * cos(theta) ** 10 - 4.88643630131919e145 * cos(theta) ** 8 + 4.09641366577657e144 * cos(theta) ** 6 - 1.24133747447775e143 * cos(theta) ** 4 + 1.14233509921265e141 * cos(theta) ** 2 - 1.41904981268652e138 ) * sin(75 * phi) ) # @torch.jit.script def Yl85_m_minus_74(theta, phi): return ( 1.9200734880634e-137 * (1.0 - cos(theta) ** 2) ** 37 * ( 1.66829845438979e145 * cos(theta) ** 11 - 5.42937366813244e144 * cos(theta) ** 9 + 5.85201952253796e143 * cos(theta) ** 7 - 2.4826749489555e142 * cos(theta) ** 5 + 3.80778366404217e140 * cos(theta) ** 3 - 1.41904981268652e138 * cos(theta) ) * sin(74 * phi) ) # @torch.jit.script def Yl85_m_minus_73(theta, phi): return ( 8.38700759315741e-136 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 1.39024871199149e144 * cos(theta) ** 12 - 5.42937366813244e143 * cos(theta) ** 10 + 7.31502440317244e142 * cos(theta) ** 8 - 4.13779158159249e141 * cos(theta) ** 6 + 9.51945916010543e139 * cos(theta) ** 4 - 7.09524906343262e137 * cos(theta) ** 2 + 7.43736799101952e134 ) * sin(73 * phi) ) # @torch.jit.script def Yl85_m_minus_72(theta, phi): return ( 3.8010821503779e-134 * (1.0 - cos(theta) ** 2) ** 36 * ( 1.0694220861473e143 * cos(theta) ** 13 - 4.93579424375676e142 * cos(theta) ** 11 + 8.12780489241383e141 * cos(theta) ** 9 - 5.91113083084642e140 * cos(theta) ** 7 + 1.90389183202109e139 * cos(theta) ** 5 - 2.36508302114421e137 * cos(theta) ** 3 + 7.43736799101952e134 * cos(theta) ) * sin(72 * phi) ) # @torch.jit.script def Yl85_m_minus_71(theta, phi): return ( 1.78205498455012e-132 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 7.63872918676641e141 * cos(theta) ** 14 - 4.1131618697973e141 * cos(theta) ** 12 + 8.12780489241383e140 * cos(theta) ** 10 - 7.38891353855802e139 * cos(theta) ** 8 + 3.17315305336848e138 * cos(theta) ** 6 - 5.91270755286052e136 * cos(theta) ** 4 + 3.71868399550976e134 * cos(theta) ** 2 - 3.3836979031026e131 ) * sin(71 * phi) ) # @torch.jit.script def Yl85_m_minus_70(theta, phi): return ( 8.62043196424997e-131 * (1.0 - cos(theta) ** 2) ** 35 * ( 5.09248612451094e140 * cos(theta) ** 15 - 3.16397066907485e140 * cos(theta) ** 13 + 7.38891353855802e139 * cos(theta) ** 11 - 8.20990393173114e138 * cos(theta) ** 9 + 4.5330757905264e137 * cos(theta) ** 7 - 1.1825415105721e136 * cos(theta) ** 5 + 1.23956133183659e134 * cos(theta) ** 3 - 3.3836979031026e131 * cos(theta) ) * sin(70 * phi) ) # @torch.jit.script def Yl85_m_minus_69(theta, phi): return ( 4.2929404978482e-129 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 3.18280382781934e139 * cos(theta) ** 16 - 2.25997904933918e139 * cos(theta) ** 14 + 6.15742794879835e138 * cos(theta) ** 12 - 8.20990393173114e137 * cos(theta) ** 10 + 5.66634473815799e136 * cos(theta) ** 8 - 1.97090251762017e135 * cos(theta) ** 6 + 3.09890332959146e133 * cos(theta) ** 4 - 1.6918489515513e131 * cos(theta) ** 2 + 1.36439431576718e128 ) * sin(69 * phi) ) # @torch.jit.script def Yl85_m_minus_68(theta, phi): return ( 2.19654290176847e-127 * (1.0 - cos(theta) ** 2) ** 34 * ( 1.87223754577608e138 * cos(theta) ** 17 - 1.50665269955945e138 * cos(theta) ** 15 + 4.7364830375372e137 * cos(theta) ** 13 - 7.46354902884649e136 * cos(theta) ** 11 + 6.29593859795333e135 * cos(theta) ** 9 - 2.81557502517167e134 * cos(theta) ** 7 + 6.19780665918293e132 * cos(theta) ** 5 - 5.639496505171e130 * cos(theta) ** 3 + 1.36439431576718e128 * cos(theta) ) * sin(68 * phi) ) # @torch.jit.script def Yl85_m_minus_67(theta, phi): return ( 1.15271423956583e-125 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 1.0401319698756e137 * cos(theta) ** 18 - 9.41657937224657e136 * cos(theta) ** 16 + 3.38320216966942e136 * cos(theta) ** 14 - 6.21962419070541e135 * cos(theta) ** 12 + 6.29593859795333e134 * cos(theta) ** 10 - 3.51946878146459e133 * cos(theta) ** 8 + 1.03296777653049e132 * cos(theta) ** 6 - 1.40987412629275e130 * cos(theta) ** 4 + 6.82197157883589e127 * cos(theta) ** 2 - 4.95422772609723e124 ) * sin(67 * phi) ) # @torch.jit.script def Yl85_m_minus_66(theta, phi): return ( 6.19469962231141e-124 * (1.0 - cos(theta) ** 2) ** 33 * ( 5.47437878881895e135 * cos(theta) ** 19 - 5.53916433661563e135 * cos(theta) ** 17 + 2.25546811311295e135 * cos(theta) ** 15 - 4.78432630054262e134 * cos(theta) ** 13 + 5.72358054359393e133 * cos(theta) ** 11 - 3.91052086829399e132 * cos(theta) ** 9 + 1.47566825218641e131 * cos(theta) ** 7 - 2.8197482525855e129 * cos(theta) ** 5 + 2.27399052627863e127 * cos(theta) ** 3 - 4.95422772609723e124 * cos(theta) ) * sin(66 * phi) ) # @torch.jit.script def Yl85_m_minus_65(theta, phi): return ( 3.4042678552107e-122 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 2.73718939440948e134 * cos(theta) ** 20 - 3.07731352034202e134 * cos(theta) ** 18 + 1.40966757069559e134 * cos(theta) ** 16 - 3.41737592895901e133 * cos(theta) ** 14 + 4.76965045299494e132 * cos(theta) ** 12 - 3.91052086829399e131 * cos(theta) ** 10 + 1.84458531523301e130 * cos(theta) ** 8 - 4.69958042097583e128 * cos(theta) ** 6 + 5.68497631569657e126 * cos(theta) ** 4 - 2.47711386304862e124 * cos(theta) ** 2 + 1.64047275698584e121 ) * sin(65 * phi) ) # @torch.jit.script def Yl85_m_minus_64(theta, phi): return ( 1.91064059505093e-120 * (1.0 - cos(theta) ** 2) ** 32 * ( 1.30342352114737e133 * cos(theta) ** 21 - 1.61963869491685e133 * cos(theta) ** 19 + 8.29216218056232e132 * cos(theta) ** 17 - 2.27825061930601e132 * cos(theta) ** 15 + 3.66896188691919e131 * cos(theta) ** 13 - 3.55501897117636e130 * cos(theta) ** 11 + 2.04953923914779e129 * cos(theta) ** 9 - 6.71368631567976e127 * cos(theta) ** 7 + 1.13699526313931e126 * cos(theta) ** 5 - 8.25704621016205e123 * cos(theta) ** 3 + 1.64047275698584e121 * cos(theta) ) * sin(64 * phi) ) # @torch.jit.script def Yl85_m_minus_63(theta, phi): return ( 1.09391474305682e-118 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 5.92465236885168e131 * cos(theta) ** 22 - 8.09819347458425e131 * cos(theta) ** 20 + 4.60675676697906e131 * cos(theta) ** 18 - 1.42390663706626e131 * cos(theta) ** 16 + 2.62068706208513e130 * cos(theta) ** 14 - 2.96251580931363e129 * cos(theta) ** 12 + 2.04953923914779e128 * cos(theta) ** 10 - 8.3921078945997e126 * cos(theta) ** 8 + 1.89499210523219e125 * cos(theta) ** 6 - 2.06426155254051e123 * cos(theta) ** 4 + 8.20236378492919e120 * cos(theta) ** 2 - 5.00449285230579e117 ) * sin(63 * phi) ) # @torch.jit.script def Yl85_m_minus_62(theta, phi): return ( 6.38231523753122e-117 * (1.0 - cos(theta) ** 2) ** 31 * ( 2.57593581254421e130 * cos(theta) ** 23 - 3.85628260694488e130 * cos(theta) ** 21 + 2.42460882472582e130 * cos(theta) ** 19 - 8.37592139450739e129 * cos(theta) ** 17 + 1.74712470805676e129 * cos(theta) ** 15 - 2.27885831485664e128 * cos(theta) ** 13 + 1.86321749013436e127 * cos(theta) ** 11 - 9.324564327333e125 * cos(theta) ** 9 + 2.70713157890313e124 * cos(theta) ** 7 - 4.12852310508103e122 * cos(theta) ** 5 + 2.73412126164306e120 * cos(theta) ** 3 - 5.00449285230579e117 * cos(theta) ) * sin(62 * phi) ) # @torch.jit.script def Yl85_m_minus_61(theta, phi): return ( 3.79090184266799e-115 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 1.07330658856009e129 * cos(theta) ** 24 - 1.75285573042949e129 * cos(theta) ** 22 + 1.21230441236291e129 * cos(theta) ** 20 - 4.65328966361522e128 * cos(theta) ** 18 + 1.09195294253547e128 * cos(theta) ** 16 - 1.62775593918331e127 * cos(theta) ** 14 + 1.55268124177863e126 * cos(theta) ** 12 - 9.32456432733301e124 * cos(theta) ** 10 + 3.38391447362891e123 * cos(theta) ** 8 - 6.88087184180171e121 * cos(theta) ** 6 + 6.83530315410766e119 * cos(theta) ** 4 - 2.5022464261529e117 * cos(theta) ** 2 + 1.41850704430436e114 ) * sin(61 * phi) ) # @torch.jit.script def Yl85_m_minus_60(theta, phi): return ( 2.29028206231709e-113 * (1.0 - cos(theta) ** 2) ** 30 * ( 4.29322635424035e127 * cos(theta) ** 25 - 7.62111187143257e127 * cos(theta) ** 23 + 5.7728781541091e127 * cos(theta) ** 21 - 2.44909982295538e127 * cos(theta) ** 19 + 6.42325260314984e126 * cos(theta) ** 17 - 1.08517062612221e126 * cos(theta) ** 15 + 1.19437018598356e125 * cos(theta) ** 13 - 8.47687666121182e123 * cos(theta) ** 11 + 3.75990497069879e122 * cos(theta) ** 9 - 9.82981691685959e120 * cos(theta) ** 7 + 1.36706063082153e119 * cos(theta) ** 5 - 8.34082142050965e116 * cos(theta) ** 3 + 1.41850704430436e114 * cos(theta) ) * sin(60 * phi) ) # @torch.jit.script def Yl85_m_minus_59(theta, phi): return ( 1.40624064644506e-111 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 1.65124090547706e126 * cos(theta) ** 26 - 3.17546327976357e126 * cos(theta) ** 24 + 2.62403552459505e126 * cos(theta) ** 22 - 1.22454991147769e126 * cos(theta) ** 20 + 3.56847366841658e125 * cos(theta) ** 18 - 6.78231641326381e124 * cos(theta) ** 16 + 8.53121561416831e123 * cos(theta) ** 14 - 7.06406388434318e122 * cos(theta) ** 12 + 3.75990497069879e121 * cos(theta) ** 10 - 1.22872711460745e120 * cos(theta) ** 8 + 2.27843438470255e118 * cos(theta) ** 6 - 2.08520535512741e116 * cos(theta) ** 4 + 7.09253522152181e113 * cos(theta) ** 2 - 3.76261815465348e110 ) * sin(59 * phi) ) # @torch.jit.script def Yl85_m_minus_58(theta, phi): return ( 8.76844889032084e-110 * (1.0 - cos(theta) ** 2) ** 29 * ( 6.11570705732243e124 * cos(theta) ** 27 - 1.27018531190543e125 * cos(theta) ** 25 + 1.1408850106935e125 * cos(theta) ** 23 - 5.83119005465566e124 * cos(theta) ** 21 + 1.87814403600872e124 * cos(theta) ** 19 - 3.98959789015518e123 * cos(theta) ** 17 + 5.68747707611221e122 * cos(theta) ** 15 - 5.4338952956486e121 * cos(theta) ** 13 + 3.41809542790799e120 * cos(theta) ** 11 - 1.36525234956383e119 * cos(theta) ** 9 + 3.25490626386079e117 * cos(theta) ** 7 - 4.17041071025483e115 * cos(theta) ** 5 + 2.36417840717394e113 * cos(theta) ** 3 - 3.76261815465348e110 * cos(theta) ) * sin(58 * phi) ) # @torch.jit.script def Yl85_m_minus_57(theta, phi): return ( 5.54842614218162e-108 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 2.18418109190087e123 * cos(theta) ** 28 - 4.88532812271319e123 * cos(theta) ** 26 + 4.75368754455624e123 * cos(theta) ** 24 - 2.65054093393439e123 * cos(theta) ** 22 + 9.39072018004362e122 * cos(theta) ** 20 - 2.21644327230843e122 * cos(theta) ** 18 + 3.55467317257013e121 * cos(theta) ** 16 - 3.88135378260615e120 * cos(theta) ** 14 + 2.84841285658999e119 * cos(theta) ** 12 - 1.36525234956383e118 * cos(theta) ** 10 + 4.06863282982599e116 * cos(theta) ** 8 - 6.95068451709138e114 * cos(theta) ** 6 + 5.91044601793484e112 * cos(theta) ** 4 - 1.88130907732674e110 * cos(theta) ** 2 + 9.39714823839531e106 ) * sin(57 * phi) ) # @torch.jit.script def Yl85_m_minus_56(theta, phi): return ( 3.56051631753453e-106 * (1.0 - cos(theta) ** 2) ** 28 * ( 7.5316589375892e121 * cos(theta) ** 29 - 1.80938078619007e122 * cos(theta) ** 27 + 1.9014750178225e122 * cos(theta) ** 25 - 1.1524091017106e122 * cos(theta) ** 23 + 4.47177151430649e121 * cos(theta) ** 21 - 1.16654909068865e121 * cos(theta) ** 19 + 2.0909842191589e120 * cos(theta) ** 17 - 2.5875691884041e119 * cos(theta) ** 15 + 2.19108681276153e118 * cos(theta) ** 13 - 1.24113849960348e117 * cos(theta) ** 11 + 4.5207031442511e115 * cos(theta) ** 9 - 9.92954931013054e113 * cos(theta) ** 7 + 1.18208920358697e112 * cos(theta) ** 5 - 6.2710302577558e109 * cos(theta) ** 3 + 9.39714823839531e106 * cos(theta) ) * sin(56 * phi) ) # @torch.jit.script def Yl85_m_minus_55(theta, phi): return ( 2.31570463083329e-104 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 2.5105529791964e120 * cos(theta) ** 30 - 6.4620742363931e120 * cos(theta) ** 28 + 7.31336545316345e120 * cos(theta) ** 26 - 4.80170459046085e120 * cos(theta) ** 24 + 2.03262341559386e120 * cos(theta) ** 22 - 5.83274545344324e119 * cos(theta) ** 20 + 1.16165789953272e119 * cos(theta) ** 18 - 1.61723074275256e118 * cos(theta) ** 16 + 1.56506200911538e117 * cos(theta) ** 14 - 1.0342820830029e116 * cos(theta) ** 12 + 4.5207031442511e114 * cos(theta) ** 10 - 1.24119366376632e113 * cos(theta) ** 8 + 1.97014867264495e111 * cos(theta) ** 6 - 1.56775756443895e109 * cos(theta) ** 4 + 4.69857411919765e106 * cos(theta) ** 2 - 2.22154804690196e103 ) * sin(55 * phi) ) # @torch.jit.script def Yl85_m_minus_54(theta, phi): return ( 1.52555555938551e-102 * (1.0 - cos(theta) ** 2) ** 27 * ( 8.09855799740775e118 * cos(theta) ** 31 - 2.22830146082521e119 * cos(theta) ** 29 + 2.70865387154202e119 * cos(theta) ** 27 - 1.92068183618434e119 * cos(theta) ** 25 + 8.83749311127764e118 * cos(theta) ** 23 - 2.77749783497297e118 * cos(theta) ** 21 + 6.11398894490906e117 * cos(theta) ** 19 - 9.51312201619153e116 * cos(theta) ** 17 + 1.04337467274359e116 * cos(theta) ** 15 - 7.95601602309925e114 * cos(theta) ** 13 + 4.10973013113736e113 * cos(theta) ** 11 - 1.37910407085146e112 * cos(theta) ** 9 + 2.8144981037785e110 * cos(theta) ** 7 - 3.1355151288779e108 * cos(theta) ** 5 + 1.56619137306588e106 * cos(theta) ** 3 - 2.22154804690196e103 * cos(theta) ) * sin(54 * phi) ) # @torch.jit.script def Yl85_m_minus_53(theta, phi): return ( 1.01744377307574e-100 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 2.53079937418992e117 * cos(theta) ** 32 - 7.42767153608403e117 * cos(theta) ** 30 + 9.67376382693578e117 * cos(theta) ** 28 - 7.38723783147824e117 * cos(theta) ** 26 + 3.68228879636568e117 * cos(theta) ** 24 - 1.26249901589681e117 * cos(theta) ** 22 + 3.05699447245453e116 * cos(theta) ** 20 - 5.28506778677307e115 * cos(theta) ** 18 + 6.52109170464742e114 * cos(theta) ** 16 - 5.68286858792804e113 * cos(theta) ** 14 + 3.42477510928113e112 * cos(theta) ** 12 - 1.37910407085146e111 * cos(theta) ** 10 + 3.51812262972312e109 * cos(theta) ** 8 - 5.22585854812984e107 * cos(theta) ** 6 + 3.91547843266471e105 * cos(theta) ** 4 - 1.11077402345098e103 * cos(theta) ** 2 + 4.99448751551701e99 ) * sin(53 * phi) ) # @torch.jit.script def Yl85_m_minus_52(theta, phi): return ( 6.86604951923717e-99 * (1.0 - cos(theta) ** 2) ** 26 * ( 7.66908901269673e115 * cos(theta) ** 33 - 2.39602307615614e116 * cos(theta) ** 31 + 3.33578062997786e116 * cos(theta) ** 29 - 2.73601401165861e116 * cos(theta) ** 27 + 1.47291551854627e116 * cos(theta) ** 25 - 5.48912615607307e115 * cos(theta) ** 23 + 1.45571165354978e115 * cos(theta) ** 21 - 2.78161462461741e114 * cos(theta) ** 19 + 3.83593629685143e113 * cos(theta) ** 17 - 3.78857905861869e112 * cos(theta) ** 15 + 2.63444239175472e111 * cos(theta) ** 13 - 1.25373097350133e110 * cos(theta) ** 11 + 3.9090251441368e108 * cos(theta) ** 9 - 7.46551221161405e106 * cos(theta) ** 7 + 7.83095686532942e104 * cos(theta) ** 5 - 3.70258007816994e102 * cos(theta) ** 3 + 4.99448751551701e99 * cos(theta) ) * sin(52 * phi) ) # @torch.jit.script def Yl85_m_minus_51(theta, phi): return ( 4.68604735881824e-97 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 2.25561441549904e114 * cos(theta) ** 34 - 7.48757211298793e114 * cos(theta) ** 32 + 1.11192687665929e115 * cos(theta) ** 30 - 9.77147861306645e114 * cos(theta) ** 28 + 5.66505968671644e114 * cos(theta) ** 26 - 2.28713589836378e114 * cos(theta) ** 24 + 6.61687115249898e113 * cos(theta) ** 22 - 1.3908073123087e113 * cos(theta) ** 20 + 2.13107572047301e112 * cos(theta) ** 18 - 2.36786191163668e111 * cos(theta) ** 16 + 1.88174456553909e110 * cos(theta) ** 14 - 1.04477581125111e109 * cos(theta) ** 12 + 3.9090251441368e107 * cos(theta) ** 10 - 9.33189026451756e105 * cos(theta) ** 8 + 1.3051594775549e104 * cos(theta) ** 6 - 9.25645019542485e101 * cos(theta) ** 4 + 2.4972437577585e99 * cos(theta) ** 2 - 1.07223862505732e96 ) * sin(51 * phi) ) # @torch.jit.script def Yl85_m_minus_50(theta, phi): return ( 3.23303309110278e-95 * (1.0 - cos(theta) ** 2) ** 25 * ( 6.44461261571154e112 * cos(theta) ** 35 - 2.26896124635998e113 * cos(theta) ** 33 + 3.58686089244931e113 * cos(theta) ** 31 - 3.36947538381602e113 * cos(theta) ** 29 + 2.09817025433942e113 * cos(theta) ** 27 - 9.14854359345512e112 * cos(theta) ** 25 + 2.87690050108651e112 * cos(theta) ** 23 - 6.62289196337478e111 * cos(theta) ** 21 + 1.12161880024895e111 * cos(theta) ** 19 - 1.39285994802158e110 * cos(theta) ** 17 + 1.25449637702606e109 * cos(theta) ** 15 - 8.03673700962391e107 * cos(theta) ** 13 + 3.55365922194255e106 * cos(theta) ** 11 - 1.03687669605751e105 * cos(theta) ** 9 + 1.86451353936415e103 * cos(theta) ** 7 - 1.85129003908497e101 * cos(theta) ** 5 + 8.32414585919501e98 * cos(theta) ** 3 - 1.07223862505732e96 * cos(theta) ) * sin(50 * phi) ) # @torch.jit.script def Yl85_m_minus_49(theta, phi): return ( 2.25386699752414e-93 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.79017017103098e111 * cos(theta) ** 36 - 6.67341543047053e111 * cos(theta) ** 34 + 1.12089402889041e112 * cos(theta) ** 32 - 1.12315846127201e112 * cos(theta) ** 30 + 7.49346519406936e111 * cos(theta) ** 28 - 3.51867061286735e111 * cos(theta) ** 26 + 1.19870854211938e111 * cos(theta) ** 24 - 3.01040543789763e110 * cos(theta) ** 22 + 5.60809400124477e109 * cos(theta) ** 20 - 7.7381108223421e108 * cos(theta) ** 18 + 7.84060235641285e107 * cos(theta) ** 16 - 5.74052643544565e106 * cos(theta) ** 14 + 2.96138268495212e105 * cos(theta) ** 12 - 1.03687669605751e104 * cos(theta) ** 10 + 2.33064192420519e102 * cos(theta) ** 8 - 3.08548339847495e100 * cos(theta) ** 6 + 2.08103646479875e98 * cos(theta) ** 4 - 5.36119312528661e95 * cos(theta) ** 2 + 2.20625231493276e92 ) * sin(49 * phi) ) # @torch.jit.script def Yl85_m_minus_48(theta, phi): return ( 1.58701687836192e-91 * (1.0 - cos(theta) ** 2) ** 24 * ( 4.8382977595432e109 * cos(theta) ** 37 - 1.90669012299158e110 * cos(theta) ** 35 + 3.39664857239518e110 * cos(theta) ** 33 - 3.62309181055486e110 * cos(theta) ** 31 + 2.58395351519633e110 * cos(theta) ** 29 - 1.30321133809902e110 * cos(theta) ** 27 + 4.79483416847752e109 * cos(theta) ** 25 - 1.30887192952071e109 * cos(theta) ** 23 + 2.6705209529737e108 * cos(theta) ** 21 - 4.07268990649584e107 * cos(theta) ** 19 + 4.61211903318403e106 * cos(theta) ** 17 - 3.82701762363044e105 * cos(theta) ** 15 + 2.2779866807324e104 * cos(theta) ** 13 - 9.42615178234097e102 * cos(theta) ** 11 + 2.58960213800576e101 * cos(theta) ** 9 - 4.40783342639279e99 * cos(theta) ** 7 + 4.16207292959751e97 * cos(theta) ** 5 - 1.78706437509554e95 * cos(theta) ** 3 + 2.20625231493276e92 * cos(theta) ) * sin(48 * phi) ) # @torch.jit.script def Yl85_m_minus_47(theta, phi): return ( 1.12823395091298e-89 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 1.27323625251137e108 * cos(theta) ** 38 - 5.29636145275439e108 * cos(theta) ** 36 + 9.99014285998582e108 * cos(theta) ** 34 - 1.13221619079839e109 * cos(theta) ** 32 + 8.61317838398777e108 * cos(theta) ** 30 - 4.6543262074965e108 * cos(theta) ** 28 + 1.84416698787597e108 * cos(theta) ** 26 - 5.45363303966961e107 * cos(theta) ** 24 + 1.21387316044259e107 * cos(theta) ** 22 - 2.03634495324792e106 * cos(theta) ** 20 + 2.56228835176891e105 * cos(theta) ** 18 - 2.39188601476902e104 * cos(theta) ** 16 + 1.62713334338029e103 * cos(theta) ** 14 - 7.85512648528415e101 * cos(theta) ** 12 + 2.58960213800576e100 * cos(theta) ** 10 - 5.50979178299098e98 * cos(theta) ** 8 + 6.93678821599584e96 * cos(theta) ** 6 - 4.46766093773884e94 * cos(theta) ** 4 + 1.10312615746638e92 * cos(theta) ** 2 - 4.36535875530819e88 ) * sin(47 * phi) ) # @torch.jit.script def Yl85_m_minus_46(theta, phi): return ( 8.09502945854216e-88 * (1.0 - cos(theta) ** 2) ** 23 * ( 3.26470833977274e106 * cos(theta) ** 39 - 1.43144904128497e107 * cos(theta) ** 37 + 2.85432653142452e107 * cos(theta) ** 35 - 3.43095815393452e107 * cos(theta) ** 33 + 2.77844463999606e107 * cos(theta) ** 31 - 1.60494007155052e107 * cos(theta) ** 29 + 6.83024810324434e106 * cos(theta) ** 27 - 2.18145321586785e106 * cos(theta) ** 25 + 5.27770939322866e105 * cos(theta) ** 23 - 9.696880729752e104 * cos(theta) ** 21 + 1.34857281672048e104 * cos(theta) ** 19 - 1.40699177339354e103 * cos(theta) ** 17 + 1.08475556225352e102 * cos(theta) ** 15 - 6.04240498868011e100 * cos(theta) ** 13 + 2.35418376182342e99 * cos(theta) ** 11 - 6.12199086998998e97 * cos(theta) ** 9 + 9.90969745142263e95 * cos(theta) ** 7 - 8.93532187547768e93 * cos(theta) ** 5 + 3.6770871915546e91 * cos(theta) ** 3 - 4.36535875530819e88 * cos(theta) ) * sin(46 * phi) ) # @torch.jit.script def Yl85_m_minus_45(theta, phi): return ( 5.8598173191461e-86 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 8.16177084943184e104 * cos(theta) ** 40 - 3.76697116127623e105 * cos(theta) ** 38 + 7.92868480951255e105 * cos(theta) ** 36 - 1.00910533939251e106 * cos(theta) ** 34 + 8.68263949998767e105 * cos(theta) ** 32 - 5.34980023850172e105 * cos(theta) ** 30 + 2.43937432258726e105 * cos(theta) ** 28 - 8.39020467641479e104 * cos(theta) ** 26 + 2.19904558051194e104 * cos(theta) ** 24 - 4.40767305897818e103 * cos(theta) ** 22 + 6.74286408360239e102 * cos(theta) ** 20 - 7.81662096329746e101 * cos(theta) ** 18 + 6.77972226408453e100 * cos(theta) ** 16 - 4.31600356334294e99 * cos(theta) ** 14 + 1.96181980151952e98 * cos(theta) ** 12 - 6.12199086998998e96 * cos(theta) ** 10 + 1.23871218142783e95 * cos(theta) ** 8 - 1.48922031257961e93 * cos(theta) ** 6 + 9.19271797888651e90 * cos(theta) ** 4 - 2.1826793776541e88 * cos(theta) ** 2 + 8.33083731929045e84 ) * sin(45 * phi) ) # @torch.jit.script def Yl85_m_minus_44(theta, phi): return ( 4.27806798150012e-84 * (1.0 - cos(theta) ** 2) ** 22 * ( 1.9906758169346e103 * cos(theta) ** 41 - 9.65890041352881e103 * cos(theta) ** 39 + 2.14288778635474e104 * cos(theta) ** 37 - 2.88315811255002e104 * cos(theta) ** 35 + 2.63110287878414e104 * cos(theta) ** 33 - 1.72574201241991e104 * cos(theta) ** 31 + 8.41163559512849e103 * cos(theta) ** 29 - 3.10748321348696e103 * cos(theta) ** 27 + 8.79618232204776e102 * cos(theta) ** 25 - 1.91637959086008e102 * cos(theta) ** 23 + 3.21088765885828e101 * cos(theta) ** 21 - 4.11401103331445e100 * cos(theta) ** 19 + 3.98807192004972e99 * cos(theta) ** 17 - 2.87733570889529e98 * cos(theta) ** 15 + 1.50909215501501e97 * cos(theta) ** 13 - 5.56544624544544e95 * cos(theta) ** 11 + 1.37634686825314e94 * cos(theta) ** 9 - 2.12745758939945e92 * cos(theta) ** 7 + 1.8385435957773e90 * cos(theta) ** 5 - 7.27559792551366e87 * cos(theta) ** 3 + 8.33083731929045e84 * cos(theta) ) * sin(44 * phi) ) # @torch.jit.script def Yl85_m_minus_43(theta, phi): return ( 3.14896027468108e-82 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 4.73970432603475e101 * cos(theta) ** 42 - 2.4147251033822e102 * cos(theta) ** 40 + 5.63917838514406e102 * cos(theta) ** 38 - 8.00877253486117e102 * cos(theta) ** 36 + 7.73853787877689e102 * cos(theta) ** 34 - 5.39294378881222e102 * cos(theta) ** 32 + 2.8038785317095e102 * cos(theta) ** 30 - 1.1098154333882e102 * cos(theta) ** 28 + 3.38314704694145e101 * cos(theta) ** 26 - 7.984914961917e100 * cos(theta) ** 24 + 1.45949439039013e100 * cos(theta) ** 22 - 2.05700551665723e99 * cos(theta) ** 20 + 2.21559551113874e98 * cos(theta) ** 18 - 1.79833481805956e97 * cos(theta) ** 16 + 1.07792296786787e96 * cos(theta) ** 14 - 4.63787187120453e94 * cos(theta) ** 12 + 1.37634686825314e93 * cos(theta) ** 10 - 2.65932198674931e91 * cos(theta) ** 8 + 3.0642393262955e89 * cos(theta) ** 6 - 1.81889948137841e87 * cos(theta) ** 4 + 4.16541865964522e84 * cos(theta) ** 2 - 1.53762224423965e81 ) * sin(43 * phi) ) # @torch.jit.script def Yl85_m_minus_42(theta, phi): return ( 2.3361804995891e-80 * (1.0 - cos(theta) ** 2) ** 21 * ( 1.10225682000808e100 * cos(theta) ** 43 - 5.88957342288342e100 * cos(theta) ** 41 + 1.44594317567797e101 * cos(theta) ** 39 - 2.16453311753004e101 * cos(theta) ** 37 + 2.21101082250768e101 * cos(theta) ** 35 - 1.63422539054916e101 * cos(theta) ** 33 + 9.04476945712741e100 * cos(theta) ** 31 - 3.82694977030414e100 * cos(theta) ** 29 + 1.25301742479313e100 * cos(theta) ** 27 - 3.1939659847668e99 * cos(theta) ** 25 + 6.3456277843049e98 * cos(theta) ** 23 - 9.79526436503441e97 * cos(theta) ** 21 + 1.16610290059933e97 * cos(theta) ** 19 - 1.05784401062327e96 * cos(theta) ** 17 + 7.18615311911911e94 * cos(theta) ** 15 - 3.56759374708041e93 * cos(theta) ** 13 + 1.25122442568468e92 * cos(theta) ** 11 - 2.95480220749923e90 * cos(theta) ** 9 + 4.37748475185072e88 * cos(theta) ** 7 - 3.63779896275683e86 * cos(theta) ** 5 + 1.38847288654841e84 * cos(theta) ** 3 - 1.53762224423965e81 * cos(theta) ) * sin(42 * phi) ) # @torch.jit.script def Yl85_m_minus_41(theta, phi): return ( 1.74636328859084e-78 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 2.505129136382e98 * cos(theta) ** 44 - 1.40227938640081e99 * cos(theta) ** 42 + 3.61485793919491e99 * cos(theta) ** 40 - 5.6961397829738e99 * cos(theta) ** 38 + 6.14169672918801e99 * cos(theta) ** 36 - 4.80654526632105e99 * cos(theta) ** 34 + 2.82649045535232e99 * cos(theta) ** 32 - 1.27564992343471e99 * cos(theta) ** 30 + 4.47506223140403e98 * cos(theta) ** 28 - 1.22844845567954e98 * cos(theta) ** 26 + 2.64401157679371e97 * cos(theta) ** 24 - 4.45239289319746e96 * cos(theta) ** 22 + 5.83051450299667e95 * cos(theta) ** 20 - 5.87691117012927e94 * cos(theta) ** 18 + 4.49134569944944e93 * cos(theta) ** 16 - 2.54828124791458e92 * cos(theta) ** 14 + 1.0426870214039e91 * cos(theta) ** 12 - 2.95480220749923e89 * cos(theta) ** 10 + 5.4718559398134e87 * cos(theta) ** 8 - 6.06299827126138e85 * cos(theta) ** 6 + 3.47118221637102e83 * cos(theta) ** 4 - 7.68811122119827e80 * cos(theta) ** 2 + 2.75165040128786e77 ) * sin(41 * phi) ) # @torch.jit.script def Yl85_m_minus_40(theta, phi): return ( 1.31500111983349e-76 * (1.0 - cos(theta) ** 2) ** 20 * ( 5.56695363640445e96 * cos(theta) ** 45 - 3.26111485209492e97 * cos(theta) ** 43 + 8.8167266809632e97 * cos(theta) ** 41 - 1.46054866230097e98 * cos(theta) ** 39 + 1.65991803491568e98 * cos(theta) ** 37 - 1.3732986475203e98 * cos(theta) ** 35 + 8.56512259197672e97 * cos(theta) ** 33 - 4.1149997530152e97 * cos(theta) ** 31 + 1.5431249073807e97 * cos(theta) ** 29 - 4.5498090951094e96 * cos(theta) ** 27 + 1.05760463071748e96 * cos(theta) ** 25 - 1.93582299704237e95 * cos(theta) ** 23 + 2.77643547761746e94 * cos(theta) ** 21 - 3.0931111421733e93 * cos(theta) ** 19 + 2.64196805849967e92 * cos(theta) ** 17 - 1.69885416527639e91 * cos(theta) ** 15 + 8.02066939541459e89 * cos(theta) ** 13 - 2.6861838249993e88 * cos(theta) ** 11 + 6.079839933126e86 * cos(theta) ** 9 - 8.66142610180197e84 * cos(theta) ** 7 + 6.94236443274204e82 * cos(theta) ** 5 - 2.56270374039942e80 * cos(theta) ** 3 + 2.75165040128786e77 * cos(theta) ) * sin(40 * phi) ) # @torch.jit.script def Yl85_m_minus_39(theta, phi): return ( 9.97148970048567e-75 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 1.21020731226184e95 * cos(theta) ** 46 - 7.41162466385208e95 * cos(theta) ** 44 + 2.09922063832457e96 * cos(theta) ** 42 - 3.65137165575244e96 * cos(theta) ** 40 + 4.36820535504126e96 * cos(theta) ** 38 - 3.81471846533417e96 * cos(theta) ** 36 + 2.51915370352256e96 * cos(theta) ** 34 - 1.28593742281725e96 * cos(theta) ** 32 + 5.143749691269e95 * cos(theta) ** 30 - 1.62493181968193e95 * cos(theta) ** 28 + 4.06771011814417e94 * cos(theta) ** 26 - 8.06592915434322e93 * cos(theta) ** 24 + 1.26201612618976e93 * cos(theta) ** 22 - 1.54655557108665e92 * cos(theta) ** 20 + 1.46776003249982e91 * cos(theta) ** 18 - 1.06178385329774e90 * cos(theta) ** 16 + 5.72904956815328e88 * cos(theta) ** 14 - 2.23848652083275e87 * cos(theta) ** 12 + 6.079839933126e85 * cos(theta) ** 10 - 1.08267826272525e84 * cos(theta) ** 8 + 1.15706073879034e82 * cos(theta) ** 6 - 6.40675935099856e79 * cos(theta) ** 4 + 1.37582520064393e77 * cos(theta) ** 2 - 4.78547895876149e73 ) * sin(39 * phi) ) # @torch.jit.script def Yl85_m_minus_38(theta, phi): return ( 7.61236872927005e-73 * (1.0 - cos(theta) ** 2) ** 19 * ( 2.57490917502519e93 * cos(theta) ** 47 - 1.64702770307824e94 * cos(theta) ** 45 + 4.88190846121993e94 * cos(theta) ** 43 - 8.90578452622546e94 * cos(theta) ** 41 + 1.12005265513878e95 * cos(theta) ** 39 - 1.03100499063086e95 * cos(theta) ** 37 + 7.19758201006447e94 * cos(theta) ** 35 - 3.89678006914318e94 * cos(theta) ** 33 + 1.65927409395774e94 * cos(theta) ** 31 - 5.603213171317e93 * cos(theta) ** 29 + 1.50655930301636e93 * cos(theta) ** 27 - 3.22637166173729e92 * cos(theta) ** 25 + 5.48702663560763e91 * cos(theta) ** 23 - 7.36455033850786e90 * cos(theta) ** 21 + 7.72505280263062e89 * cos(theta) ** 19 - 6.24578737233965e88 * cos(theta) ** 17 + 3.81936637876885e87 * cos(theta) ** 15 - 1.72191270833289e86 * cos(theta) ** 13 + 5.52712721193272e84 * cos(theta) ** 11 - 1.2029758474725e83 * cos(theta) ** 9 + 1.65294391255763e81 * cos(theta) ** 7 - 1.28135187019971e79 * cos(theta) ** 5 + 4.58608400214643e76 * cos(theta) ** 3 - 4.78547895876149e73 * cos(theta) ) * sin(38 * phi) ) # @torch.jit.script def Yl85_m_minus_37(theta, phi): return ( 5.8491531257598e-71 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 5.36439411463581e91 * cos(theta) ** 48 - 3.58049500669183e92 * cos(theta) ** 46 + 1.10952465027726e93 * cos(theta) ** 44 - 2.12042488719654e93 * cos(theta) ** 42 + 2.80013163784696e93 * cos(theta) ** 40 - 2.71317102797594e93 * cos(theta) ** 38 + 1.99932833612902e93 * cos(theta) ** 36 - 1.14611178504211e93 * cos(theta) ** 34 + 5.18523154361795e92 * cos(theta) ** 32 - 1.86773772377233e92 * cos(theta) ** 30 + 5.38056893934414e91 * cos(theta) ** 28 - 1.24091217759126e91 * cos(theta) ** 26 + 2.28626109816985e90 * cos(theta) ** 24 - 3.34752288113994e89 * cos(theta) ** 22 + 3.86252640131531e88 * cos(theta) ** 20 - 3.46988187352203e87 * cos(theta) ** 18 + 2.38710398673053e86 * cos(theta) ** 16 - 1.22993764880921e85 * cos(theta) ** 14 + 4.60593934327727e83 * cos(theta) ** 12 - 1.2029758474725e82 * cos(theta) ** 10 + 2.06617989069704e80 * cos(theta) ** 8 - 2.13558645033285e78 * cos(theta) ** 6 + 1.14652100053661e76 * cos(theta) ** 4 - 2.39273947938075e73 * cos(theta) ** 2 + 8.10548604126269e69 ) * sin(37 * phi) ) # @torch.jit.script def Yl85_m_minus_36(theta, phi): return ( 4.52242055431784e-69 * (1.0 - cos(theta) ** 2) ** 18 * ( 1.09477430910935e90 * cos(theta) ** 49 - 7.61807448232304e90 * cos(theta) ** 47 + 2.46561033394946e91 * cos(theta) ** 45 - 4.93122066789892e91 * cos(theta) ** 43 + 6.82958936060234e91 * cos(theta) ** 41 - 6.95684878968189e91 * cos(theta) ** 39 + 5.403590097646e91 * cos(theta) ** 37 - 3.27460510012032e91 * cos(theta) ** 35 + 1.57128228594483e91 * cos(theta) ** 33 - 6.02496039926559e90 * cos(theta) ** 31 + 1.85536859977384e90 * cos(theta) ** 29 - 4.5959710281158e89 * cos(theta) ** 27 + 9.14504439267939e88 * cos(theta) ** 25 - 1.45544473093041e88 * cos(theta) ** 23 + 1.83929828634062e87 * cos(theta) ** 21 - 1.82625361764317e86 * cos(theta) ** 19 + 1.40417881572384e85 * cos(theta) ** 17 - 8.1995843253947e83 * cos(theta) ** 15 + 3.54303026405944e82 * cos(theta) ** 13 - 1.09361440679318e81 * cos(theta) ** 11 + 2.29575543410782e79 * cos(theta) ** 9 - 3.05083778618979e77 * cos(theta) ** 7 + 2.29304200107321e75 * cos(theta) ** 5 - 7.97579826460248e72 * cos(theta) ** 3 + 8.10548604126269e69 * cos(theta) ) * sin(36 * phi) ) # @torch.jit.script def Yl85_m_minus_35(theta, phi): return ( 3.51761766546913e-67 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 2.1895486182187e88 * cos(theta) ** 50 - 1.58709885048397e89 * cos(theta) ** 48 + 5.36002246510753e89 * cos(theta) ** 46 - 1.12073196997703e90 * cos(theta) ** 44 + 1.62609270490532e90 * cos(theta) ** 42 - 1.73921219742047e90 * cos(theta) ** 40 + 1.42199739411737e90 * cos(theta) ** 38 - 9.09612527811201e89 * cos(theta) ** 36 + 4.62141848807304e89 * cos(theta) ** 34 - 1.8828001247705e89 * cos(theta) ** 32 + 6.18456199924613e88 * cos(theta) ** 30 - 1.64141822432707e88 * cos(theta) ** 28 + 3.51732476641515e87 * cos(theta) ** 26 - 6.06435304554336e86 * cos(theta) ** 24 + 8.36044675609375e85 * cos(theta) ** 22 - 9.13126808821586e84 * cos(theta) ** 20 + 7.80099342068801e83 * cos(theta) ** 18 - 5.12474020337169e82 * cos(theta) ** 16 + 2.5307359028996e81 * cos(theta) ** 14 - 9.11345338994315e79 * cos(theta) ** 12 + 2.29575543410782e78 * cos(theta) ** 10 - 3.81354723273724e76 * cos(theta) ** 8 + 3.82173666845536e74 * cos(theta) ** 6 - 1.99394956615062e72 * cos(theta) ** 4 + 4.05274302063134e69 * cos(theta) ** 2 - 1.33974975888639e66 ) * sin(35 * phi) ) # @torch.jit.script def Yl85_m_minus_34(theta, phi): return ( 2.75184738543716e-65 * (1.0 - cos(theta) ** 2) ** 17 * ( 4.29323258474254e86 * cos(theta) ** 51 - 3.23897724588565e87 * cos(theta) ** 49 + 1.14043031172501e88 * cos(theta) ** 47 - 2.49051548883784e88 * cos(theta) ** 45 + 3.78161094164028e88 * cos(theta) ** 43 - 4.24198096931823e88 * cos(theta) ** 41 + 3.64614716440351e88 * cos(theta) ** 39 - 2.45841223732757e88 * cos(theta) ** 37 + 1.32040528230658e88 * cos(theta) ** 35 - 5.70545492354696e87 * cos(theta) ** 33 + 1.99501999975682e87 * cos(theta) ** 31 - 5.66006284250714e86 * cos(theta) ** 29 + 1.30271287645006e86 * cos(theta) ** 27 - 2.42574121821734e85 * cos(theta) ** 25 + 3.63497685047554e84 * cos(theta) ** 23 - 4.34822289915041e83 * cos(theta) ** 21 + 4.10578601088843e82 * cos(theta) ** 19 - 3.01455306080688e81 * cos(theta) ** 17 + 1.68715726859973e80 * cos(theta) ** 15 - 7.01034876149473e78 * cos(theta) ** 13 + 2.08705039464347e77 * cos(theta) ** 11 - 4.23727470304138e75 * cos(theta) ** 9 + 5.45962381207908e73 * cos(theta) ** 7 - 3.98789913230124e71 * cos(theta) ** 5 + 1.35091434021045e69 * cos(theta) ** 3 - 1.33974975888639e66 * cos(theta) ) * sin(34 * phi) ) # @torch.jit.script def Yl85_m_minus_33(theta, phi): return ( 2.16470887267962e-63 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 8.25621650912027e84 * cos(theta) ** 52 - 6.47795449177129e85 * cos(theta) ** 50 + 2.37589648276043e86 * cos(theta) ** 48 - 5.41416410616922e86 * cos(theta) ** 46 + 8.59457032190973e86 * cos(theta) ** 44 - 1.00999546888529e87 * cos(theta) ** 42 + 9.11536791100877e86 * cos(theta) ** 40 - 6.46950588770413e86 * cos(theta) ** 38 + 3.66779245085162e86 * cos(theta) ** 36 - 1.67807497751381e86 * cos(theta) ** 34 + 6.23443749924005e85 * cos(theta) ** 32 - 1.88668761416905e85 * cos(theta) ** 30 + 4.65254598732163e84 * cos(theta) ** 28 - 9.32977391622056e83 * cos(theta) ** 26 + 1.51457368769814e83 * cos(theta) ** 24 - 1.97646495415928e82 * cos(theta) ** 22 + 2.05289300544421e81 * cos(theta) ** 20 - 1.67475170044826e80 * cos(theta) ** 18 + 1.05447329287483e79 * cos(theta) ** 16 - 5.00739197249624e77 * cos(theta) ** 14 + 1.73920866220289e76 * cos(theta) ** 12 - 4.23727470304138e74 * cos(theta) ** 10 + 6.82452976509885e72 * cos(theta) ** 8 - 6.6464985538354e70 * cos(theta) ** 6 + 3.37728585052612e68 * cos(theta) ** 4 - 6.69874879443197e65 * cos(theta) ** 2 + 2.16507717984227e62 ) * sin(33 * phi) ) # @torch.jit.script def Yl85_m_minus_32(theta, phi): return ( 1.71190017245824e-61 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.55777669983401e83 * cos(theta) ** 53 - 1.27018715524927e84 * cos(theta) ** 51 + 4.84876833216414e84 * cos(theta) ** 49 - 1.15194980982324e85 * cos(theta) ** 47 + 1.90990451597994e85 * cos(theta) ** 45 - 2.34882667182626e85 * cos(theta) ** 43 + 2.2232604660997e85 * cos(theta) ** 41 - 1.65884766351388e85 * cos(theta) ** 39 + 9.91295256986923e84 * cos(theta) ** 37 - 4.79449993575375e84 * cos(theta) ** 35 + 1.8892234846182e84 * cos(theta) ** 33 - 6.08608907796466e83 * cos(theta) ** 31 + 1.6043262025247e83 * cos(theta) ** 29 - 3.45547182082243e82 * cos(theta) ** 27 + 6.05829475079257e81 * cos(theta) ** 25 - 8.59332588764903e80 * cos(theta) ** 23 + 9.77568097830578e79 * cos(theta) ** 21 - 8.81448263393823e78 * cos(theta) ** 19 + 6.20278407573431e77 * cos(theta) ** 17 - 3.33826131499749e76 * cos(theta) ** 15 + 1.33785281707915e75 * cos(theta) ** 13 - 3.8520679118558e73 * cos(theta) ** 11 + 7.58281085010983e71 * cos(theta) ** 9 - 9.49499793405058e69 * cos(theta) ** 7 + 6.75457170105224e67 * cos(theta) ** 5 - 2.23291626481066e65 * cos(theta) ** 3 + 2.16507717984227e62 * cos(theta) ) * sin(32 * phi) ) # @torch.jit.script def Yl85_m_minus_31(theta, phi): return ( 1.36071836551589e-59 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 2.88477166635928e81 * cos(theta) ** 54 - 2.4426676062486e82 * cos(theta) ** 52 + 9.69753666432828e82 * cos(theta) ** 50 - 2.39989543713175e83 * cos(theta) ** 48 + 4.15196633908682e83 * cos(theta) ** 46 - 5.33824243596877e83 * cos(theta) ** 44 + 5.29347730023738e83 * cos(theta) ** 42 - 4.1471191587847e83 * cos(theta) ** 40 + 2.60867172891296e83 * cos(theta) ** 38 - 1.33180553770937e83 * cos(theta) ** 36 + 5.55653966064176e82 * cos(theta) ** 34 - 1.90190283686396e82 * cos(theta) ** 32 + 5.34775400841566e81 * cos(theta) ** 30 - 1.23409707886515e81 * cos(theta) ** 28 + 2.33011336568945e80 * cos(theta) ** 26 - 3.5805524531871e79 * cos(theta) ** 24 + 4.44349135377536e78 * cos(theta) ** 22 - 4.40724131696912e77 * cos(theta) ** 20 + 3.44599115318573e76 * cos(theta) ** 18 - 2.08641332187343e75 * cos(theta) ** 16 + 9.55609155056534e73 * cos(theta) ** 14 - 3.21005659321316e72 * cos(theta) ** 12 + 7.58281085010983e70 * cos(theta) ** 10 - 1.18687474175632e69 * cos(theta) ** 8 + 1.12576195017537e67 * cos(theta) ** 6 - 5.58229066202664e64 * cos(theta) ** 4 + 1.08253858992113e62 * cos(theta) ** 2 - 3.42683947426759e58 ) * sin(31 * phi) ) # @torch.jit.script def Yl85_m_minus_30(theta, phi): return ( 1.08687246354893e-57 * (1.0 - cos(theta) ** 2) ** 15 * ( 5.24503939338052e79 * cos(theta) ** 55 - 4.60880680424264e80 * cos(theta) ** 53 + 1.90147777731927e81 * cos(theta) ** 51 - 4.89774579006479e81 * cos(theta) ** 49 + 8.83397093422728e81 * cos(theta) ** 47 - 1.18627609688195e82 * cos(theta) ** 45 + 1.23104123261334e82 * cos(theta) ** 43 - 1.01149247775237e82 * cos(theta) ** 41 + 6.68890186900758e81 * cos(theta) ** 39 - 3.59947442624155e81 * cos(theta) ** 37 + 1.58758276018336e81 * cos(theta) ** 35 - 5.76334192989078e80 * cos(theta) ** 33 + 1.7250819381986e80 * cos(theta) ** 31 - 4.25550716850053e79 * cos(theta) ** 29 + 8.63004950255352e78 * cos(theta) ** 27 - 1.43222098127484e78 * cos(theta) ** 25 + 1.93195276251102e77 * cos(theta) ** 23 - 2.09868634141386e76 * cos(theta) ** 21 + 1.81367955430828e75 * cos(theta) ** 19 - 1.2273019540432e74 * cos(theta) ** 17 + 6.37072770037689e72 * cos(theta) ** 15 - 2.46927430247166e71 * cos(theta) ** 13 + 6.89346440919076e69 * cos(theta) ** 11 - 1.31874971306258e68 * cos(theta) ** 9 + 1.60823135739339e66 * cos(theta) ** 7 - 1.11645813240533e64 * cos(theta) ** 5 + 3.60846196640378e61 * cos(theta) ** 3 - 3.42683947426759e58 * cos(theta) ) * sin(30 * phi) ) # @torch.jit.script def Yl85_m_minus_29(theta, phi): return ( 8.72210919618343e-56 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 9.36614177389378e77 * cos(theta) ** 56 - 8.53482741526415e78 * cos(theta) ** 54 + 3.65668803330629e79 * cos(theta) ** 52 - 9.79549158012957e79 * cos(theta) ** 50 + 1.84041061129735e80 * cos(theta) ** 48 - 2.57886108017815e80 * cos(theta) ** 46 + 2.79782098321215e80 * cos(theta) ** 44 - 2.40831542321992e80 * cos(theta) ** 42 + 1.67222546725189e80 * cos(theta) ** 40 - 9.47230112168829e79 * cos(theta) ** 38 + 4.40995211162044e79 * cos(theta) ** 36 - 1.69510056761494e79 * cos(theta) ** 34 + 5.39088105687063e78 * cos(theta) ** 32 - 1.41850238950018e78 * cos(theta) ** 30 + 3.08216053662626e77 * cos(theta) ** 28 - 5.50854223567246e76 * cos(theta) ** 26 + 8.04980317712927e75 * cos(theta) ** 24 - 9.53948337006302e74 * cos(theta) ** 22 + 9.06839777154139e73 * cos(theta) ** 20 - 6.81834418912886e72 * cos(theta) ** 18 + 3.98170481273556e71 * cos(theta) ** 16 - 1.76376735890833e70 * cos(theta) ** 14 + 5.74455367432563e68 * cos(theta) ** 12 - 1.31874971306258e67 * cos(theta) ** 10 + 2.01028919674174e65 * cos(theta) ** 8 - 1.86076355400888e63 * cos(theta) ** 6 + 9.02115491600944e60 * cos(theta) ** 4 - 1.7134197371338e58 * cos(theta) ** 2 + 5.32117930786894e54 ) * sin(29 * phi) ) # @torch.jit.script def Yl85_m_minus_28(theta, phi): return ( 7.03090731711277e-54 * (1.0 - cos(theta) ** 2) ** 14 * ( 1.64318276734979e76 * cos(theta) ** 57 - 1.5517868027753e77 * cos(theta) ** 55 + 6.89941138359677e77 * cos(theta) ** 53 - 1.92068462355482e78 * cos(theta) ** 51 + 3.75594002305582e78 * cos(theta) ** 49 - 5.48693846846415e78 * cos(theta) ** 47 + 6.21737996269366e78 * cos(theta) ** 45 - 5.6007335423719e78 * cos(theta) ** 43 + 4.07859870061438e78 * cos(theta) ** 41 - 2.42879515940725e78 * cos(theta) ** 39 + 1.19187894908661e78 * cos(theta) ** 37 - 4.84314447889982e77 * cos(theta) ** 35 + 1.63360032026383e77 * cos(theta) ** 33 - 4.57581415967799e76 * cos(theta) ** 31 + 1.06281397814698e76 * cos(theta) ** 29 - 2.04020082802684e75 * cos(theta) ** 27 + 3.21992127085171e74 * cos(theta) ** 25 - 4.14760146524479e73 * cos(theta) ** 23 + 4.31828465311495e72 * cos(theta) ** 21 - 3.58860220480467e71 * cos(theta) ** 19 + 2.34217930160915e70 * cos(theta) ** 17 - 1.17584490593889e69 * cos(theta) ** 15 + 4.41888744178895e67 * cos(theta) ** 13 - 1.19886337551144e66 * cos(theta) ** 11 + 2.23365466304638e64 * cos(theta) ** 9 - 2.65823364858412e62 * cos(theta) ** 7 + 1.80423098320189e60 * cos(theta) ** 5 - 5.71139912377932e57 * cos(theta) ** 3 + 5.32117930786894e54 * cos(theta) ) * sin(28 * phi) ) # @torch.jit.script def Yl85_m_minus_27(theta, phi): return ( 5.69199606972627e-52 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 2.83307373680998e74 * cos(theta) ** 58 - 2.77104786209875e75 * cos(theta) ** 56 + 1.27766877474014e76 * cos(theta) ** 54 - 3.69362427606696e76 * cos(theta) ** 52 + 7.51188004611164e76 * cos(theta) ** 50 - 1.14311218093003e77 * cos(theta) ** 48 + 1.35160433971601e77 * cos(theta) ** 46 - 1.27289398690271e77 * cos(theta) ** 44 + 9.71094928717709e76 * cos(theta) ** 42 - 6.07198789851814e76 * cos(theta) ** 40 + 3.13652355022791e76 * cos(theta) ** 38 - 1.3453179108055e76 * cos(theta) ** 36 + 4.80470682430537e75 * cos(theta) ** 34 - 1.42994192489937e75 * cos(theta) ** 32 + 3.54271326048995e74 * cos(theta) ** 30 - 7.28643152866727e73 * cos(theta) ** 28 + 1.23843125801989e73 * cos(theta) ** 26 - 1.72816727718533e72 * cos(theta) ** 24 + 1.96285666050679e71 * cos(theta) ** 22 - 1.79430110240233e70 * cos(theta) ** 20 + 1.3012107231162e69 * cos(theta) ** 18 - 7.34903066211805e67 * cos(theta) ** 16 + 3.15634817270639e66 * cos(theta) ** 14 - 9.99052812926197e64 * cos(theta) ** 12 + 2.23365466304638e63 * cos(theta) ** 10 - 3.32279206073014e61 * cos(theta) ** 8 + 3.00705163866981e59 * cos(theta) ** 6 - 1.42784978094483e57 * cos(theta) ** 4 + 2.66058965393447e54 * cos(theta) ** 2 - 8.11897971905544e50 ) * sin(27 * phi) ) # @torch.jit.script def Yl85_m_minus_26(theta, phi): return ( 4.62700116333901e-50 * (1.0 - cos(theta) ** 2) ** 13 * ( 4.80181989289826e72 * cos(theta) ** 59 - 4.86148747736623e73 * cos(theta) ** 57 + 2.32303413589117e74 * cos(theta) ** 55 - 6.96910240767351e74 * cos(theta) ** 53 + 1.47291765610032e75 * cos(theta) ** 51 - 2.33288200189802e75 * cos(theta) ** 49 + 2.87575391428939e75 * cos(theta) ** 47 - 2.82865330422823e75 * cos(theta) ** 45 + 2.25836029934351e75 * cos(theta) ** 43 - 1.48097265817516e75 * cos(theta) ** 41 + 8.04236807750746e74 * cos(theta) ** 39 - 3.63599435352839e74 * cos(theta) ** 37 + 1.37277337837296e74 * cos(theta) ** 35 - 4.33315734817991e73 * cos(theta) ** 33 + 1.14281072919031e73 * cos(theta) ** 31 - 2.51256259609216e72 * cos(theta) ** 29 + 4.58678243711069e71 * cos(theta) ** 27 - 6.91266910874132e70 * cos(theta) ** 25 + 8.5341593935078e69 * cos(theta) ** 23 - 8.54429096382063e68 * cos(theta) ** 21 + 6.84847749008524e67 * cos(theta) ** 19 - 4.32295921301062e66 * cos(theta) ** 17 + 2.10423211513759e65 * cos(theta) ** 15 - 7.68502163789382e63 * cos(theta) ** 13 + 2.03059514822398e62 * cos(theta) ** 11 - 3.69199117858905e60 * cos(theta) ** 9 + 4.29578805524259e58 * cos(theta) ** 7 - 2.85569956188966e56 * cos(theta) ** 5 + 8.86863217978156e53 * cos(theta) ** 3 - 8.11897971905544e50 * cos(theta) ) * sin(26 * phi) ) # @torch.jit.script def Yl85_m_minus_25(theta, phi): return ( 3.77604119202241e-48 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 8.00303315483044e70 * cos(theta) ** 60 - 8.38187496097626e71 * cos(theta) ** 58 + 4.1482752426628e72 * cos(theta) ** 56 - 1.29057451993954e73 * cos(theta) ** 54 + 2.83253395403908e73 * cos(theta) ** 52 - 4.66576400379605e73 * cos(theta) ** 50 + 5.99115398810289e73 * cos(theta) ** 48 - 6.14924631353964e73 * cos(theta) ** 46 + 5.13263704396252e73 * cos(theta) ** 44 - 3.52612537660751e73 * cos(theta) ** 42 + 2.01059201937687e73 * cos(theta) ** 40 - 9.56840619349576e72 * cos(theta) ** 38 + 3.81325938436934e72 * cos(theta) ** 36 - 1.27445804358233e72 * cos(theta) ** 34 + 3.57128352871971e71 * cos(theta) ** 32 - 8.37520865364054e70 * cos(theta) ** 30 + 1.63813658468239e70 * cos(theta) ** 28 - 2.65871888797743e69 * cos(theta) ** 26 + 3.55589974729492e68 * cos(theta) ** 24 - 3.88376861991847e67 * cos(theta) ** 22 + 3.42423874504262e66 * cos(theta) ** 20 - 2.40164400722812e65 * cos(theta) ** 18 + 1.315145071961e64 * cos(theta) ** 16 - 5.48930116992416e62 * cos(theta) ** 14 + 1.69216262351998e61 * cos(theta) ** 12 - 3.69199117858905e59 * cos(theta) ** 10 + 5.36973506905324e57 * cos(theta) ** 8 - 4.7594992698161e55 * cos(theta) ** 6 + 2.21715804494539e53 * cos(theta) ** 4 - 4.05948985952772e50 * cos(theta) ** 2 + 1.2190660238822e47 ) * sin(25 * phi) ) # @torch.jit.script def Yl85_m_minus_24(theta, phi): return ( 3.09312864802992e-46 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.31197264833286e69 * cos(theta) ** 61 - 1.42065677304682e70 * cos(theta) ** 59 + 7.2776758643207e70 * cos(theta) ** 57 - 2.3464991271628e71 * cos(theta) ** 55 + 5.34440368686619e71 * cos(theta) ** 53 - 9.14855687018833e71 * cos(theta) ** 51 + 1.22268448736794e72 * cos(theta) ** 49 - 1.30835027947652e72 * cos(theta) ** 47 + 1.14058600976945e72 * cos(theta) ** 45 - 8.20029157350584e71 * cos(theta) ** 43 + 4.90388297408992e71 * cos(theta) ** 41 - 2.45343748551173e71 * cos(theta) ** 39 + 1.03061064442415e71 * cos(theta) ** 37 - 3.64130869594951e70 * cos(theta) ** 35 + 1.08220712991506e70 * cos(theta) ** 33 - 2.70168021085179e69 * cos(theta) ** 31 + 5.64874684373238e68 * cos(theta) ** 29 - 9.847106992509e67 * cos(theta) ** 27 + 1.42235989891797e67 * cos(theta) ** 25 - 1.68859505213846e66 * cos(theta) ** 23 + 1.63058987859172e65 * cos(theta) ** 21 - 1.26402316169901e64 * cos(theta) ** 19 + 7.73614748212351e62 * cos(theta) ** 17 - 3.65953411328277e61 * cos(theta) ** 15 + 1.30166355655383e60 * cos(theta) ** 13 - 3.35635561689914e58 * cos(theta) ** 11 + 5.96637229894804e56 * cos(theta) ** 9 - 6.79928467116586e54 * cos(theta) ** 7 + 4.43431608989078e52 * cos(theta) ** 5 - 1.35316328650924e50 * cos(theta) ** 3 + 1.2190660238822e47 * cos(theta) ) * sin(24 * phi) ) # @torch.jit.script def Yl85_m_minus_23(theta, phi): return ( 2.54276998926749e-44 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 2.1160849166659e67 * cos(theta) ** 62 - 2.36776128841137e68 * cos(theta) ** 60 + 1.25477170074495e69 * cos(theta) ** 58 - 4.19017701279071e69 * cos(theta) ** 56 + 9.89704386456701e69 * cos(theta) ** 54 - 1.7593378596516e70 * cos(theta) ** 52 + 2.44536897473587e70 * cos(theta) ** 50 - 2.72572974890941e70 * cos(theta) ** 48 + 2.47953480384663e70 * cos(theta) ** 46 - 1.86370263034224e70 * cos(theta) ** 44 + 1.16759118430712e70 * cos(theta) ** 42 - 6.13359371377934e69 * cos(theta) ** 40 + 2.71213327480039e69 * cos(theta) ** 38 - 1.01147463776375e69 * cos(theta) ** 36 + 3.18296214680901e68 * cos(theta) ** 34 - 8.44275065891184e67 * cos(theta) ** 32 + 1.88291561457746e67 * cos(theta) ** 30 - 3.51682392589607e66 * cos(theta) ** 28 + 5.47061499583833e65 * cos(theta) ** 26 - 7.0358127172436e64 * cos(theta) ** 24 + 7.41177217541693e63 * cos(theta) ** 22 - 6.32011580849505e62 * cos(theta) ** 20 + 4.29785971229084e61 * cos(theta) ** 18 - 2.28720882080173e60 * cos(theta) ** 16 + 9.29759683252737e58 * cos(theta) ** 14 - 2.79696301408261e57 * cos(theta) ** 12 + 5.96637229894804e55 * cos(theta) ** 10 - 8.49910583895733e53 * cos(theta) ** 8 + 7.39052681648463e51 * cos(theta) ** 6 - 3.3829082162731e49 * cos(theta) ** 4 + 6.09533011941099e46 * cos(theta) ** 2 - 1.80388580035839e43 ) * sin(23 * phi) ) # @torch.jit.script def Yl85_m_minus_22(theta, phi): return ( 2.09743847112246e-42 * (1.0 - cos(theta) ** 2) ** 11 * ( 3.35886494708873e65 * cos(theta) ** 63 - 3.8815758826416e66 * cos(theta) ** 61 + 2.12673169617788e67 * cos(theta) ** 59 - 7.35118774173809e67 * cos(theta) ** 57 + 1.79946252083037e68 * cos(theta) ** 55 - 3.31950539556906e68 * cos(theta) ** 53 + 4.79484112693309e68 * cos(theta) ** 51 - 5.56271377328452e68 * cos(theta) ** 49 + 5.27560596563112e68 * cos(theta) ** 47 - 4.14156140076053e68 * cos(theta) ** 45 + 2.71532833559796e68 * cos(theta) ** 43 - 1.49599846677545e68 * cos(theta) ** 41 + 6.95418788410355e67 * cos(theta) ** 39 - 2.73371523719933e67 * cos(theta) ** 37 + 9.09417756231145e66 * cos(theta) ** 35 - 2.55840929057934e66 * cos(theta) ** 33 + 6.07392133734665e65 * cos(theta) ** 31 - 1.2126979054814e65 * cos(theta) ** 29 + 2.02615370216235e64 * cos(theta) ** 27 - 2.81432508689744e63 * cos(theta) ** 25 + 3.22250964148562e62 * cos(theta) ** 23 - 3.00957895642622e61 * cos(theta) ** 21 + 2.26203142752149e60 * cos(theta) ** 19 - 1.34541695341278e59 * cos(theta) ** 17 + 6.19839788835158e57 * cos(theta) ** 15 - 2.15151001083278e56 * cos(theta) ** 13 + 5.42397481722549e54 * cos(theta) ** 11 - 9.44345093217481e52 * cos(theta) ** 9 + 1.05578954521209e51 * cos(theta) ** 7 - 6.7658164325462e48 * cos(theta) ** 5 + 2.03177670647033e46 * cos(theta) ** 3 - 1.80388580035839e43 * cos(theta) ) * sin(22 * phi) ) # @torch.jit.script def Yl85_m_minus_21(theta, phi): return ( 1.73568577984927e-40 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 5.24822647982615e63 * cos(theta) ** 64 - 6.26060626232515e64 * cos(theta) ** 62 + 3.54455282696313e65 * cos(theta) ** 60 - 1.26744616236864e66 * cos(theta) ** 58 + 3.21332593005422e66 * cos(theta) ** 56 - 6.14723221401678e66 * cos(theta) ** 54 + 9.22084832102517e66 * cos(theta) ** 52 - 1.1125427546569e67 * cos(theta) ** 50 + 1.09908457617315e67 * cos(theta) ** 48 - 9.0033943494794e66 * cos(theta) ** 46 + 6.17120076272264e66 * cos(theta) ** 44 - 3.56190111137011e66 * cos(theta) ** 42 + 1.73854697102589e66 * cos(theta) ** 40 - 7.19398746631402e65 * cos(theta) ** 38 + 2.5261604339754e65 * cos(theta) ** 36 - 7.52473320758631e64 * cos(theta) ** 34 + 1.89810041792083e64 * cos(theta) ** 32 - 4.04232635160468e63 * cos(theta) ** 30 + 7.23626322200838e62 * cos(theta) ** 28 - 1.08243272572979e62 * cos(theta) ** 26 + 1.34271235061901e61 * cos(theta) ** 24 - 1.36799043473919e60 * cos(theta) ** 22 + 1.13101571376075e59 * cos(theta) ** 20 - 7.47453863007102e57 * cos(theta) ** 18 + 3.87399868021974e56 * cos(theta) ** 16 - 1.53679286488056e55 * cos(theta) ** 14 + 4.51997901435458e53 * cos(theta) ** 12 - 9.44345093217481e51 * cos(theta) ** 10 + 1.31973693151511e50 * cos(theta) ** 8 - 1.12763607209103e48 * cos(theta) ** 6 + 5.07944176617583e45 * cos(theta) ** 4 - 9.01942900179194e42 * cos(theta) ** 2 + 2.63417903089718e39 ) * sin(21 * phi) ) # @torch.jit.script def Yl85_m_minus_20(theta, phi): return ( 1.44072375286506e-38 * (1.0 - cos(theta) ** 2) ** 10 * ( 8.07419458434792e61 * cos(theta) ** 65 - 9.93747025765897e62 * cos(theta) ** 63 + 5.81074233928382e63 * cos(theta) ** 61 - 2.14821383452311e64 * cos(theta) ** 59 + 5.63741391237583e64 * cos(theta) ** 57 - 1.11767858436669e65 * cos(theta) ** 55 + 1.73978270208022e65 * cos(theta) ** 53 - 2.1814563816802e65 * cos(theta) ** 51 + 2.24302974729214e65 * cos(theta) ** 49 - 1.91561581903817e65 * cos(theta) ** 47 + 1.3713779472717e65 * cos(theta) ** 45 - 8.28349095667468e64 * cos(theta) ** 43 + 4.2403584659168e64 * cos(theta) ** 41 - 1.84461217084975e64 * cos(theta) ** 39 + 6.82746063236596e63 * cos(theta) ** 37 - 2.14992377359609e63 * cos(theta) ** 35 + 5.75181944824493e62 * cos(theta) ** 33 - 1.30397624245312e62 * cos(theta) ** 31 + 2.49526318000289e61 * cos(theta) ** 29 - 4.0090100952955e60 * cos(theta) ** 27 + 5.37084940247603e59 * cos(theta) ** 25 - 5.94778449886604e58 * cos(theta) ** 23 + 5.38578911314641e57 * cos(theta) ** 21 - 3.93396770003738e56 * cos(theta) ** 19 + 2.27882275307043e55 * cos(theta) ** 17 - 1.02452857658704e54 * cos(theta) ** 15 + 3.47690693411891e52 * cos(theta) ** 13 - 8.58495539288619e50 * cos(theta) ** 11 + 1.46637436835013e49 * cos(theta) ** 9 - 1.61090867441576e47 * cos(theta) ** 7 + 1.01588835323517e45 * cos(theta) ** 5 - 3.00647633393065e42 * cos(theta) ** 3 + 2.63417903089718e39 * cos(theta) ) * sin(20 * phi) ) # @torch.jit.script def Yl85_m_minus_19(theta, phi): return ( 1.19935385017276e-36 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.22336281581029e60 * cos(theta) ** 66 - 1.55272972775921e61 * cos(theta) ** 64 + 9.37216506336101e61 * cos(theta) ** 62 - 3.58035639087185e62 * cos(theta) ** 60 + 9.71967915926868e62 * cos(theta) ** 58 - 1.99585461494051e63 * cos(theta) ** 56 + 3.22181981866707e63 * cos(theta) ** 54 - 4.19510842630808e63 * cos(theta) ** 52 + 4.48605949458429e63 * cos(theta) ** 50 - 3.99086628966286e63 * cos(theta) ** 48 + 2.98125640711239e63 * cos(theta) ** 46 - 1.88261158106243e63 * cos(theta) ** 44 + 1.00960915855162e63 * cos(theta) ** 42 - 4.61153042712437e62 * cos(theta) ** 40 + 1.79670016641209e62 * cos(theta) ** 38 - 5.97201048221136e61 * cos(theta) ** 36 + 1.69171160242498e61 * cos(theta) ** 34 - 4.07492575766601e60 * cos(theta) ** 32 + 8.31754393334296e59 * cos(theta) ** 30 - 1.43178931974839e59 * cos(theta) ** 28 + 2.06571130864463e58 * cos(theta) ** 26 - 2.47824354119418e57 * cos(theta) ** 24 + 2.4480859605211e56 * cos(theta) ** 22 - 1.96698385001869e55 * cos(theta) ** 20 + 1.26601264059469e54 * cos(theta) ** 18 - 6.40330360366899e52 * cos(theta) ** 16 + 2.48350495294208e51 * cos(theta) ** 14 - 7.15412949407183e49 * cos(theta) ** 12 + 1.46637436835013e48 * cos(theta) ** 10 - 2.0136358430197e46 * cos(theta) ** 8 + 1.69314725539194e44 * cos(theta) ** 6 - 7.51619083482662e41 * cos(theta) ** 4 + 1.31708951544859e39 * cos(theta) ** 2 - 3.80112414270877e35 ) * sin(19 * phi) ) # @torch.jit.script def Yl85_m_minus_18(theta, phi): return ( 1.00115519358469e-34 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.82591465046312e58 * cos(theta) ** 67 - 2.38881496578341e59 * cos(theta) ** 65 + 1.48764524815254e60 * cos(theta) ** 63 - 5.8694367063473e60 * cos(theta) ** 61 + 1.64740324733367e61 * cos(theta) ** 59 - 3.50149932445704e61 * cos(theta) ** 57 + 5.85785421575832e61 * cos(theta) ** 55 - 7.91529891756242e61 * cos(theta) ** 53 + 8.79619508742017e61 * cos(theta) ** 51 - 8.14462508094461e61 * cos(theta) ** 49 + 6.34309873853699e61 * cos(theta) ** 47 - 4.18358129124984e61 * cos(theta) ** 45 + 2.34792827570144e61 * cos(theta) ** 43 - 1.12476351881082e61 * cos(theta) ** 41 + 4.60692350362075e60 * cos(theta) ** 39 - 1.61405688708415e60 * cos(theta) ** 37 + 4.83346172121423e59 * cos(theta) ** 35 - 1.23482598717152e59 * cos(theta) ** 33 + 2.68307868817515e58 * cos(theta) ** 31 - 4.93720455085653e57 * cos(theta) ** 29 + 7.65078262460973e56 * cos(theta) ** 27 - 9.91297416477673e55 * cos(theta) ** 25 + 1.06438520022656e55 * cos(theta) ** 23 - 9.36658976199376e53 * cos(theta) ** 21 + 6.66322442418255e52 * cos(theta) ** 19 - 3.76664917862882e51 * cos(theta) ** 17 + 1.65566996862805e50 * cos(theta) ** 15 - 5.5031765339014e48 * cos(theta) ** 13 + 1.33306760759102e47 * cos(theta) ** 11 - 2.23737315891078e45 * cos(theta) ** 9 + 2.41878179341706e43 * cos(theta) ** 7 - 1.50323816696532e41 * cos(theta) ** 5 + 4.39029838482863e38 * cos(theta) ** 3 - 3.80112414270877e35 * cos(theta) ) * sin(18 * phi) ) # @torch.jit.script def Yl85_m_minus_17(theta, phi): return ( 8.37865818516174e-33 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 2.68516860362224e56 * cos(theta) ** 68 - 3.61941661482334e57 * cos(theta) ** 66 + 2.32444570023835e58 * cos(theta) ** 64 - 9.46683339733435e58 * cos(theta) ** 62 + 2.74567207888946e59 * cos(theta) ** 60 - 6.037067800788e59 * cos(theta) ** 58 + 1.04604539567113e60 * cos(theta) ** 56 - 1.46579609584489e60 * cos(theta) ** 54 + 1.69157597835003e60 * cos(theta) ** 52 - 1.62892501618892e60 * cos(theta) ** 50 + 1.32147890386187e60 * cos(theta) ** 48 - 9.09474193749965e59 * cos(theta) ** 46 + 5.33620062659418e59 * cos(theta) ** 44 - 2.67800837812101e59 * cos(theta) ** 42 + 1.15173087590519e59 * cos(theta) ** 40 - 4.24751812390566e58 * cos(theta) ** 38 + 1.34262825589284e58 * cos(theta) ** 36 - 3.63184113873976e57 * cos(theta) ** 34 + 8.38462090054734e56 * cos(theta) ** 32 - 1.64573485028551e56 * cos(theta) ** 30 + 2.73242236593205e55 * cos(theta) ** 28 - 3.81268237106797e54 * cos(theta) ** 26 + 4.43493833427735e53 * cos(theta) ** 24 - 4.25754080090626e52 * cos(theta) ** 22 + 3.33161221209128e51 * cos(theta) ** 20 - 2.09258287701601e50 * cos(theta) ** 18 + 1.03479373039253e49 * cos(theta) ** 16 - 3.93084038135815e47 * cos(theta) ** 14 + 1.11088967299252e46 * cos(theta) ** 12 - 2.23737315891078e44 * cos(theta) ** 10 + 3.02347724177133e42 * cos(theta) ** 8 - 2.5053969449422e40 * cos(theta) ** 6 + 1.09757459620716e38 * cos(theta) ** 4 - 1.90056207135439e35 * cos(theta) ** 2 + 5.42707616034947e31 ) * sin(17 * phi) ) # @torch.jit.script def Yl85_m_minus_16(theta, phi): return ( 7.02909000923895e-31 * (1.0 - cos(theta) ** 2) ** 8 * ( 3.89154870090179e54 * cos(theta) ** 69 - 5.4021143504826e55 * cos(theta) ** 67 + 3.57607030805899e56 * cos(theta) ** 65 - 1.50267196783085e57 * cos(theta) ** 63 + 4.50110176867124e57 * cos(theta) ** 61 - 1.02323183064203e58 * cos(theta) ** 59 + 1.83516736082654e58 * cos(theta) ** 57 - 2.66508381062708e58 * cos(theta) ** 55 + 3.19165278933969e58 * cos(theta) ** 53 - 3.19397061997828e58 * cos(theta) ** 51 + 2.69689572216709e58 * cos(theta) ** 49 - 1.93505147606376e58 * cos(theta) ** 47 + 1.18582236146537e58 * cos(theta) ** 45 - 6.22792646074653e57 * cos(theta) ** 43 + 2.80909969732973e57 * cos(theta) ** 41 - 1.08910721125786e57 * cos(theta) ** 39 + 3.6287250159266e56 * cos(theta) ** 37 - 1.03766889678279e56 * cos(theta) ** 35 + 2.54079421228707e55 * cos(theta) ** 33 - 5.30882209769519e54 * cos(theta) ** 31 + 9.42214608942085e53 * cos(theta) ** 29 - 1.41210458187703e53 * cos(theta) ** 27 + 1.77397533371094e52 * cos(theta) ** 25 - 1.8511046960462e51 * cos(theta) ** 23 + 1.58648200575775e50 * cos(theta) ** 21 - 1.10135940895579e49 * cos(theta) ** 19 + 6.08702194348548e47 * cos(theta) ** 17 - 2.62056025423876e46 * cos(theta) ** 15 + 8.54530517686553e44 * cos(theta) ** 13 - 2.0339755990098e43 * cos(theta) ** 11 + 3.35941915752369e41 * cos(theta) ** 9 - 3.57913849277458e39 * cos(theta) ** 7 + 2.19514919241431e37 * cos(theta) ** 5 - 6.33520690451462e34 * cos(theta) ** 3 + 5.42707616034947e31 * cos(theta) ) * sin(16 * phi) ) # @torch.jit.script def Yl85_m_minus_15(theta, phi): return ( 5.91029028010417e-29 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 5.55935528700256e52 * cos(theta) ** 70 - 7.94428580953324e53 * cos(theta) ** 68 + 5.41828834554393e54 * cos(theta) ** 66 - 2.3479249497357e55 * cos(theta) ** 64 + 7.25984156237297e55 * cos(theta) ** 62 - 1.70538638440339e56 * cos(theta) ** 60 + 3.16408165659748e56 * cos(theta) ** 58 - 4.75907823326264e56 * cos(theta) ** 56 + 5.91046812840683e56 * cos(theta) ** 54 - 6.14225119226592e56 * cos(theta) ** 52 + 5.39379144433418e56 * cos(theta) ** 50 - 4.03135724179949e56 * cos(theta) ** 48 + 2.57787469883777e56 * cos(theta) ** 46 - 1.41543783198785e56 * cos(theta) ** 44 + 6.68833261268983e55 * cos(theta) ** 42 - 2.72276802814465e55 * cos(theta) ** 40 + 9.54927635770157e54 * cos(theta) ** 38 - 2.88241360217441e54 * cos(theta) ** 36 + 7.47292415378551e53 * cos(theta) ** 34 - 1.65900690552975e53 * cos(theta) ** 32 + 3.14071536314029e52 * cos(theta) ** 30 - 5.04323064956081e51 * cos(theta) ** 28 + 6.82298205273438e50 * cos(theta) ** 26 - 7.71293623352583e49 * cos(theta) ** 24 + 7.21128184435341e48 * cos(theta) ** 22 - 5.50679704477897e47 * cos(theta) ** 20 + 3.38167885749193e46 * cos(theta) ** 18 - 1.63785015889923e45 * cos(theta) ** 16 + 6.10378941204681e43 * cos(theta) ** 14 - 1.6949796658415e42 * cos(theta) ** 12 + 3.35941915752369e40 * cos(theta) ** 10 - 4.47392311596822e38 * cos(theta) ** 8 + 3.65858198735719e36 * cos(theta) ** 6 - 1.58380172612865e34 * cos(theta) ** 4 + 2.71353808017474e31 * cos(theta) ** 2 - 7.67620390431326e27 ) * sin(15 * phi) ) # @torch.jit.script def Yl85_m_minus_14(theta, phi): return ( 4.98009911031062e-27 * (1.0 - cos(theta) ** 2) ** 7 * ( 7.83007786901769e50 * cos(theta) ** 71 - 1.15134576949757e52 * cos(theta) ** 69 + 8.08699753066258e52 * cos(theta) ** 67 - 3.61219223036262e53 * cos(theta) ** 65 + 1.15235580355126e54 * cos(theta) ** 63 - 2.79571538426785e54 * cos(theta) ** 61 + 5.36285026541946e54 * cos(theta) ** 59 - 8.34926005835551e54 * cos(theta) ** 57 + 1.07463056880124e55 * cos(theta) ** 55 - 1.15891531929546e55 * cos(theta) ** 53 + 1.05760616555572e55 * cos(theta) ** 51 - 8.22725967714182e54 * cos(theta) ** 49 + 5.48483978476121e54 * cos(theta) ** 47 - 3.14541740441744e54 * cos(theta) ** 45 + 1.55542618899763e54 * cos(theta) ** 43 - 6.6408976296211e53 * cos(theta) ** 41 + 2.44853239941066e53 * cos(theta) ** 39 - 7.79030703290381e52 * cos(theta) ** 37 + 2.13512118679586e52 * cos(theta) ** 35 - 5.02729365312045e51 * cos(theta) ** 33 + 1.01313398810977e51 * cos(theta) ** 31 - 1.73904505157269e50 * cos(theta) ** 29 + 2.52703038990162e49 * cos(theta) ** 27 - 3.08517449341033e48 * cos(theta) ** 25 + 3.13533993232757e47 * cos(theta) ** 23 - 2.62228430703761e46 * cos(theta) ** 21 + 1.77983097762733e45 * cos(theta) ** 19 - 9.63441269940722e43 * cos(theta) ** 17 + 4.06919294136454e42 * cos(theta) ** 15 - 1.30383051218577e41 * cos(theta) ** 13 + 3.05401741593063e39 * cos(theta) ** 11 - 4.97102568440914e37 * cos(theta) ** 9 + 5.22654569622456e35 * cos(theta) ** 7 - 3.16760345225731e33 * cos(theta) ** 5 + 9.04512693391579e30 * cos(theta) ** 3 - 7.67620390431326e27 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl85_m_minus_13(theta, phi): return ( 4.20457236344704e-25 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.08751081514135e49 * cos(theta) ** 72 - 1.64477967071082e50 * cos(theta) ** 70 + 1.1892643427445e51 * cos(theta) ** 68 - 5.47301853085245e51 * cos(theta) ** 66 + 1.80055594304885e52 * cos(theta) ** 64 - 4.50921836172234e52 * cos(theta) ** 62 + 8.93808377569911e52 * cos(theta) ** 60 - 1.43952759626819e53 * cos(theta) ** 58 + 1.91898315857364e53 * cos(theta) ** 56 - 2.14613948017677e53 * cos(theta) ** 54 + 2.03385801068408e53 * cos(theta) ** 52 - 1.64545193542836e53 * cos(theta) ** 50 + 1.14267495515859e53 * cos(theta) ** 48 - 6.8378639226466e52 * cos(theta) ** 46 + 3.53505952044917e52 * cos(theta) ** 44 - 1.58116610229074e52 * cos(theta) ** 42 + 6.12133099852665e51 * cos(theta) ** 40 - 2.05008079813258e51 * cos(theta) ** 38 + 5.93089218554406e50 * cos(theta) ** 36 - 1.47861578032954e50 * cos(theta) ** 34 + 3.16604371284303e49 * cos(theta) ** 32 - 5.79681683857565e48 * cos(theta) ** 30 + 9.02510853536294e47 * cos(theta) ** 28 - 1.18660557438859e47 * cos(theta) ** 26 + 1.30639163846982e46 * cos(theta) ** 24 - 1.19194741228982e45 * cos(theta) ** 22 + 8.89915488813667e43 * cos(theta) ** 20 - 5.35245149967068e42 * cos(theta) ** 18 + 2.54324558835284e41 * cos(theta) ** 16 - 9.31307508704121e39 * cos(theta) ** 14 + 2.54501451327553e38 * cos(theta) ** 12 - 4.97102568440914e36 * cos(theta) ** 10 + 6.5331821202807e34 * cos(theta) ** 8 - 5.27933908709551e32 * cos(theta) ** 6 + 2.26128173347895e30 * cos(theta) ** 4 - 3.83810195215663e27 * cos(theta) ** 2 + 1.0769085163178e24 ) * sin(13 * phi) ) # @torch.jit.script def Yl85_m_minus_12(theta, phi): return ( 3.55628288167851e-23 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.48974084265938e47 * cos(theta) ** 73 - 2.31659108550819e48 * cos(theta) ** 71 + 1.72357151122391e49 * cos(theta) ** 69 - 8.16868437440665e49 * cos(theta) ** 67 + 2.770086066229e50 * cos(theta) ** 65 - 7.15748946305133e50 * cos(theta) ** 63 + 1.46525963536051e51 * cos(theta) ** 61 - 2.43987728181049e51 * cos(theta) ** 59 + 3.36663712030464e51 * cos(theta) ** 57 - 3.90207178213958e51 * cos(theta) ** 55 + 3.83746794468694e51 * cos(theta) ** 53 - 3.22637634397718e51 * cos(theta) ** 51 + 2.33198970440528e51 * cos(theta) ** 49 - 1.45486466439289e51 * cos(theta) ** 47 + 7.85568782322037e50 * cos(theta) ** 45 - 3.67713047044358e50 * cos(theta) ** 43 + 1.49300756061626e50 * cos(theta) ** 41 - 5.25661743110919e49 * cos(theta) ** 39 + 1.60294383393083e49 * cos(theta) ** 37 - 4.22461651522727e48 * cos(theta) ** 35 + 9.59407185710009e47 * cos(theta) ** 33 - 1.86994091566956e47 * cos(theta) ** 31 + 3.11210639150446e46 * cos(theta) ** 29 - 4.39483546069848e45 * cos(theta) ** 27 + 5.22556655387929e44 * cos(theta) ** 25 - 5.182380053434e43 * cos(theta) ** 23 + 4.2376928038746e42 * cos(theta) ** 21 - 2.81707973666878e41 * cos(theta) ** 19 + 1.49602681667814e40 * cos(theta) ** 17 - 6.20871672469414e38 * cos(theta) ** 15 + 1.9577034717504e37 * cos(theta) ** 13 - 4.51911425855376e35 * cos(theta) ** 11 + 7.25909124475633e33 * cos(theta) ** 9 - 7.54191298156502e31 * cos(theta) ** 7 + 4.52256346695789e29 * cos(theta) ** 5 - 1.27936731738554e27 * cos(theta) ** 3 + 1.0769085163178e24 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl85_m_minus_11(theta, phi): return ( 3.0129923311217e-21 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 2.01316330089105e45 * cos(theta) ** 74 - 3.21748761876138e46 * cos(theta) ** 72 + 2.46224501603416e47 * cos(theta) ** 70 - 1.20127711388333e48 * cos(theta) ** 68 + 4.19710010034697e48 * cos(theta) ** 66 - 1.11835772860177e49 * cos(theta) ** 64 + 2.36332199251695e49 * cos(theta) ** 62 - 4.06646213635082e49 * cos(theta) ** 60 + 5.80454675914593e49 * cos(theta) ** 58 - 6.96798532524925e49 * cos(theta) ** 56 + 7.10642211979063e49 * cos(theta) ** 54 - 6.20456989226381e49 * cos(theta) ** 52 + 4.66397940881055e49 * cos(theta) ** 50 - 3.03096805081853e49 * cos(theta) ** 48 + 1.70775822243921e49 * cos(theta) ** 46 - 8.35711470555359e48 * cos(theta) ** 44 + 3.55477990622918e48 * cos(theta) ** 42 - 1.3141543577773e48 * cos(theta) ** 40 + 4.21827324718638e47 * cos(theta) ** 38 - 1.17350458756313e47 * cos(theta) ** 36 + 2.82178584032356e46 * cos(theta) ** 34 - 5.84356536146738e45 * cos(theta) ** 32 + 1.03736879716815e45 * cos(theta) ** 30 - 1.5695840931066e44 * cos(theta) ** 28 + 2.00983328995357e43 * cos(theta) ** 26 - 2.15932502226417e42 * cos(theta) ** 24 + 1.92622400176118e41 * cos(theta) ** 22 - 1.40853986833439e40 * cos(theta) ** 20 + 8.31126009265633e38 * cos(theta) ** 18 - 3.88044795293384e37 * cos(theta) ** 16 + 1.39835962267886e36 * cos(theta) ** 14 - 3.7659285487948e34 * cos(theta) ** 12 + 7.25909124475633e32 * cos(theta) ** 10 - 9.42739122695628e30 * cos(theta) ** 8 + 7.53760577826316e28 * cos(theta) ** 6 - 3.19841829346386e26 * cos(theta) ** 4 + 5.38454258158898e23 * cos(theta) ** 2 - 1.50029049361632e20 ) * sin(11 * phi) ) # @torch.jit.script def Yl85_m_minus_10(theta, phi): return ( 2.55660877079906e-19 * (1.0 - cos(theta) ** 2) ** 5 * ( 2.6842177345214e43 * cos(theta) ** 75 - 4.40751728597449e44 * cos(theta) ** 73 + 3.46795072680867e45 * cos(theta) ** 71 - 1.74098132446859e46 * cos(theta) ** 69 + 6.26432850798056e46 * cos(theta) ** 67 - 1.72055035169503e47 * cos(theta) ** 65 + 3.7513047500269e47 * cos(theta) ** 63 - 6.66633137106692e47 * cos(theta) ** 61 + 9.83821484601005e47 * cos(theta) ** 59 - 1.2224535658332e48 * cos(theta) ** 57 + 1.29207674905284e48 * cos(theta) ** 55 - 1.17067356457808e48 * cos(theta) ** 53 + 9.14505766433442e47 * cos(theta) ** 51 - 6.18564908330312e47 * cos(theta) ** 49 + 3.63352813284939e47 * cos(theta) ** 47 - 1.85713660123413e47 * cos(theta) ** 45 + 8.26693001448646e46 * cos(theta) ** 43 - 3.20525453116414e46 * cos(theta) ** 41 + 1.08160852491959e46 * cos(theta) ** 39 - 3.17163402044089e45 * cos(theta) ** 37 + 8.0622452580673e44 * cos(theta) ** 35 - 1.77077738226284e44 * cos(theta) ** 33 + 3.34635095860695e43 * cos(theta) ** 31 - 5.41235894174689e42 * cos(theta) ** 29 + 7.44382699982804e41 * cos(theta) ** 27 - 8.63730008905667e40 * cos(theta) ** 25 + 8.37488696417906e39 * cos(theta) ** 23 - 6.70733270635423e38 * cos(theta) ** 21 + 4.37434741718754e37 * cos(theta) ** 19 - 2.28261644290226e36 * cos(theta) ** 17 + 9.32239748452574e34 * cos(theta) ** 15 - 2.89686811445754e33 * cos(theta) ** 13 + 6.59917385886939e31 * cos(theta) ** 11 - 1.04748791410625e30 * cos(theta) ** 9 + 1.07680082546617e28 * cos(theta) ** 7 - 6.39683658692771e25 * cos(theta) ** 5 + 1.79484752719633e23 * cos(theta) ** 3 - 1.50029049361632e20 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl85_m_minus_9(theta, phi): return ( 2.17236538128397e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 3.53186544015974e41 * cos(theta) ** 76 - 5.95610444050607e42 * cos(theta) ** 74 + 4.81659823167871e43 * cos(theta) ** 72 - 2.48711617781228e44 * cos(theta) ** 70 + 9.21224780585376e44 * cos(theta) ** 68 - 2.6068944722652e45 * cos(theta) ** 66 + 5.86141367191704e45 * cos(theta) ** 64 - 1.07521473726886e46 * cos(theta) ** 62 + 1.63970247433501e46 * cos(theta) ** 60 - 2.10767856178138e46 * cos(theta) ** 58 + 2.30727990902293e46 * cos(theta) ** 56 - 2.16791400847792e46 * cos(theta) ** 54 + 1.75866493544893e46 * cos(theta) ** 52 - 1.23712981666062e46 * cos(theta) ** 50 + 7.56985027676956e45 * cos(theta) ** 48 - 4.03725348094376e45 * cos(theta) ** 46 + 1.87884773056511e45 * cos(theta) ** 44 - 7.63155840753366e44 * cos(theta) ** 42 + 2.70402131229896e44 * cos(theta) ** 40 - 8.34640531694971e43 * cos(theta) ** 38 + 2.23951257168536e43 * cos(theta) ** 36 - 5.20816877136131e42 * cos(theta) ** 34 + 1.04573467456467e42 * cos(theta) ** 32 - 1.80411964724896e41 * cos(theta) ** 30 + 2.65850964279573e40 * cos(theta) ** 28 - 3.32203849579103e39 * cos(theta) ** 26 + 3.48953623507461e38 * cos(theta) ** 24 - 3.04878759379738e37 * cos(theta) ** 22 + 2.18717370859377e36 * cos(theta) ** 20 - 1.26812024605681e35 * cos(theta) ** 18 + 5.82649842782859e33 * cos(theta) ** 16 - 2.06919151032681e32 * cos(theta) ** 14 + 5.49931154905783e30 * cos(theta) ** 12 - 1.04748791410625e29 * cos(theta) ** 10 + 1.34600103183271e27 * cos(theta) ** 8 - 1.06613943115462e25 * cos(theta) ** 6 + 4.48711881799082e22 * cos(theta) ** 4 - 7.50145246808162e19 * cos(theta) ** 2 + 2.07796467259879e16 ) * sin(9 * phi) ) # @torch.jit.script def Yl85_m_minus_8(theta, phi): return ( 1.84817104808673e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 4.58683823397368e39 * cos(theta) ** 77 - 7.94147258734142e40 * cos(theta) ** 75 + 6.59807976942289e41 * cos(theta) ** 73 - 3.50298053212997e42 * cos(theta) ** 71 + 1.33510837765997e43 * cos(theta) ** 69 - 3.89088727203761e43 * cos(theta) ** 67 + 9.01755949525698e43 * cos(theta) ** 65 - 1.70669005915692e44 * cos(theta) ** 63 + 2.68803684317215e44 * cos(theta) ** 61 - 3.57233654539218e44 * cos(theta) ** 59 + 4.04785948951392e44 * cos(theta) ** 57 - 3.94166183359622e44 * cos(theta) ** 55 + 3.31823572726213e44 * cos(theta) ** 53 - 2.42574473855024e44 * cos(theta) ** 51 + 1.54486740342236e44 * cos(theta) ** 49 - 8.5899010232846e43 * cos(theta) ** 47 + 4.17521717903357e43 * cos(theta) ** 45 - 1.77478102500783e43 * cos(theta) ** 43 + 6.5951739324365e42 * cos(theta) ** 41 - 2.140103927423e42 * cos(theta) ** 39 + 6.05273668023071e41 * cos(theta) ** 37 - 1.48804822038894e41 * cos(theta) ** 35 + 3.16889295322628e40 * cos(theta) ** 33 - 5.8197407975773e39 * cos(theta) ** 31 + 9.1672746303301e38 * cos(theta) ** 29 - 1.23038462807075e38 * cos(theta) ** 27 + 1.39581449402984e37 * cos(theta) ** 25 - 1.32555982339016e36 * cos(theta) ** 23 + 1.04151128980656e35 * cos(theta) ** 21 - 6.67431708450953e33 * cos(theta) ** 19 + 3.42735201636976e32 * cos(theta) ** 17 - 1.37946100688454e31 * cos(theta) ** 15 + 4.23023965312141e29 * cos(theta) ** 13 - 9.52261740096594e27 * cos(theta) ** 11 + 1.49555670203634e26 * cos(theta) ** 9 - 1.52305633022088e24 * cos(theta) ** 7 + 8.97423763598164e21 * cos(theta) ** 5 - 2.50048415602721e19 * cos(theta) ** 3 + 2.07796467259879e16 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl85_m_minus_7(theta, phi): return ( 1.57409499591163e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 5.8805618384278e37 * cos(theta) ** 78 - 1.04493060359756e39 * cos(theta) ** 76 + 8.91632401273363e39 * cos(theta) ** 74 - 4.8652507390694e40 * cos(theta) ** 72 + 1.90729768237138e41 * cos(theta) ** 70 - 5.72189304711414e41 * cos(theta) ** 68 + 1.36629689322075e42 * cos(theta) ** 66 - 2.66670321743268e42 * cos(theta) ** 64 + 4.33554329543894e42 * cos(theta) ** 62 - 5.95389424232029e42 * cos(theta) ** 60 + 6.97906808536882e42 * cos(theta) ** 58 - 7.03868184570754e42 * cos(theta) ** 56 + 6.14488097641135e42 * cos(theta) ** 54 - 4.66489372798124e42 * cos(theta) ** 52 + 3.08973480684472e42 * cos(theta) ** 50 - 1.78956271318429e42 * cos(theta) ** 48 + 9.07655908485558e41 * cos(theta) ** 46 - 4.03359323865416e41 * cos(theta) ** 44 + 1.57027950772298e41 * cos(theta) ** 42 - 5.35025981855751e40 * cos(theta) ** 40 + 1.59282544216598e40 * cos(theta) ** 38 - 4.13346727885818e39 * cos(theta) ** 36 + 9.32027339184199e38 * cos(theta) ** 34 - 1.81866899924291e38 * cos(theta) ** 32 + 3.05575821011003e37 * cos(theta) ** 30 - 4.3942308145384e36 * cos(theta) ** 28 + 5.36851728473017e35 * cos(theta) ** 26 - 5.52316593079235e34 * cos(theta) ** 24 + 4.73414222639344e33 * cos(theta) ** 22 - 3.33715854225476e32 * cos(theta) ** 20 + 1.90408445353875e31 * cos(theta) ** 18 - 8.62163129302839e29 * cos(theta) ** 16 + 3.02159975222958e28 * cos(theta) ** 14 - 7.93551450080495e26 * cos(theta) ** 12 + 1.49555670203634e25 * cos(theta) ** 10 - 1.90382041277611e23 * cos(theta) ** 8 + 1.49570627266361e21 * cos(theta) ** 6 - 6.25121039006802e18 * cos(theta) ** 4 + 1.03898233629939e16 * cos(theta) ** 2 - 2864577712432.85 ) * sin(7 * phi) ) # @torch.jit.script def Yl85_m_minus_6(theta, phi): return ( 1.34195637440744e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 7.44374916256684e35 * cos(theta) ** 79 - 1.35705273194488e37 * cos(theta) ** 77 + 1.18884320169782e38 * cos(theta) ** 75 - 6.6647270398211e38 * cos(theta) ** 73 + 2.68633476390335e39 * cos(theta) ** 71 - 8.29259861900599e39 * cos(theta) ** 69 + 2.03924909435934e40 * cos(theta) ** 67 - 4.10262033451182e40 * cos(theta) ** 65 + 6.88181475466499e40 * cos(theta) ** 63 - 9.7604823644595e40 * cos(theta) ** 61 + 1.18289289582522e41 * cos(theta) ** 59 - 1.23485646415922e41 * cos(theta) ** 57 + 1.11725108662024e41 * cos(theta) ** 55 - 8.80168627920988e40 * cos(theta) ** 53 + 6.05830354283278e40 * cos(theta) ** 51 - 3.65216880241692e40 * cos(theta) ** 49 + 1.93118278401183e40 * cos(theta) ** 47 - 8.96354053034257e39 * cos(theta) ** 45 + 3.65181280865808e39 * cos(theta) ** 43 - 1.30494141916037e39 * cos(theta) ** 41 + 4.08416780042558e38 * cos(theta) ** 39 - 1.11715331861032e38 * cos(theta) ** 37 + 2.662935254812e37 * cos(theta) ** 35 - 5.51111817952396e36 * cos(theta) ** 33 + 9.85728454874204e35 * cos(theta) ** 31 - 1.51525200501324e35 * cos(theta) ** 29 + 1.98833973508525e34 * cos(theta) ** 27 - 2.20926637231694e33 * cos(theta) ** 25 + 2.05832270712758e32 * cos(theta) ** 23 - 1.58912311535941e31 * cos(theta) ** 21 + 1.00214971238882e30 * cos(theta) ** 19 - 5.07154781942846e28 * cos(theta) ** 17 + 2.01439983481972e27 * cos(theta) ** 15 - 6.10424192369611e25 * cos(theta) ** 13 + 1.35959700185122e24 * cos(theta) ** 11 - 2.11535601419567e22 * cos(theta) ** 9 + 2.1367232466623e20 * cos(theta) ** 7 - 1.2502420780136e18 * cos(theta) ** 5 + 3.46327445433131e15 * cos(theta) ** 3 - 2864577712432.85 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl85_m_minus_5(theta, phi): return ( 1.14499631050571e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 9.30468645320855e33 * cos(theta) ** 80 - 1.73981119480112e35 * cos(theta) ** 78 + 1.56426737065502e36 * cos(theta) ** 76 - 9.00638789165013e36 * cos(theta) ** 74 + 3.73102050542132e37 * cos(theta) ** 72 - 1.18465694557228e38 * cos(theta) ** 70 + 2.99889572699902e38 * cos(theta) ** 68 - 6.216091415927e38 * cos(theta) ** 66 + 1.0752835554164e39 * cos(theta) ** 64 - 1.57427134910637e39 * cos(theta) ** 62 + 1.97148815970871e39 * cos(theta) ** 60 - 2.12906286924003e39 * cos(theta) ** 58 + 1.99509122610758e39 * cos(theta) ** 56 - 1.62994190355739e39 * cos(theta) ** 54 + 1.16505837362169e39 * cos(theta) ** 52 - 7.30433760483385e38 * cos(theta) ** 50 + 4.0232974666913e38 * cos(theta) ** 48 - 1.94859576746578e38 * cos(theta) ** 46 + 8.29957456513201e37 * cos(theta) ** 44 - 3.10700337895326e37 * cos(theta) ** 42 + 1.02104195010639e37 * cos(theta) ** 40 - 2.93987715423768e36 * cos(theta) ** 38 + 7.39704237447777e35 * cos(theta) ** 36 - 1.62091711162469e35 * cos(theta) ** 34 + 3.08040142148189e34 * cos(theta) ** 32 - 5.0508400167108e33 * cos(theta) ** 30 + 7.10121333959017e32 * cos(theta) ** 28 - 8.49717835506516e31 * cos(theta) ** 26 + 8.5763446130316e30 * cos(theta) ** 24 - 7.22328688799732e29 * cos(theta) ** 22 + 5.01074856194409e28 * cos(theta) ** 20 - 2.81752656634915e27 * cos(theta) ** 18 + 1.25899989676232e26 * cos(theta) ** 16 - 4.36017280264008e24 * cos(theta) ** 14 + 1.13299750154268e23 * cos(theta) ** 12 - 2.11535601419567e21 * cos(theta) ** 10 + 2.67090405832787e19 * cos(theta) ** 8 - 2.08373679668934e17 * cos(theta) ** 6 + 865818613582828.0 * cos(theta) ** 4 - 1432288856216.42 * cos(theta) ** 2 + 393485949.510006 ) * sin(5 * phi) ) # @torch.jit.script def Yl85_m_minus_4(theta, phi): return ( 9.77614988495605e-8 * (1.0 - cos(theta) ** 2) ** 2 * ( 1.14872672261834e32 * cos(theta) ** 81 - 2.20229265164699e33 * cos(theta) ** 79 + 2.03151606578574e34 * cos(theta) ** 77 - 1.20085171888668e35 * cos(theta) ** 75 + 5.11098699372784e35 * cos(theta) ** 73 - 1.66853090925674e36 * cos(theta) ** 71 + 4.34622569130293e36 * cos(theta) ** 69 - 9.2777483819806e36 * cos(theta) ** 67 + 1.65428239294831e37 * cos(theta) ** 65 - 2.49884341127995e37 * cos(theta) ** 63 + 3.23194780280116e37 * cos(theta) ** 61 - 3.60858113430514e37 * cos(theta) ** 59 + 3.50016004580277e37 * cos(theta) ** 57 - 2.9635307337407e37 * cos(theta) ** 55 + 2.19822334645602e37 * cos(theta) ** 53 - 1.43222305977134e37 * cos(theta) ** 51 + 8.21081115651287e36 * cos(theta) ** 49 - 4.14594844141654e36 * cos(theta) ** 47 + 1.84434990336267e36 * cos(theta) ** 45 - 7.22558925337967e35 * cos(theta) ** 43 + 2.49034621977169e35 * cos(theta) ** 41 - 7.53814654932739e34 * cos(theta) ** 39 + 1.99920064175075e34 * cos(theta) ** 37 - 4.63119174749913e33 * cos(theta) ** 35 + 9.33454976206633e32 * cos(theta) ** 33 - 1.62930323119703e32 * cos(theta) ** 31 + 2.44869425503109e31 * cos(theta) ** 29 - 3.14710309446858e30 * cos(theta) ** 27 + 3.43053784521264e29 * cos(theta) ** 25 - 3.14055951652057e28 * cos(theta) ** 23 + 2.3860707437829e27 * cos(theta) ** 21 - 1.48290871913113e26 * cos(theta) ** 19 + 7.40588174566073e24 * cos(theta) ** 17 - 2.90678186842672e23 * cos(theta) ** 15 + 8.71536539648217e21 * cos(theta) ** 13 - 1.92305092199607e20 * cos(theta) ** 11 + 2.96767117591986e18 * cos(theta) ** 9 - 2.97676685241334e16 * cos(theta) ** 7 + 173163722716566.0 * cos(theta) ** 5 - 477429618738.808 * cos(theta) ** 3 + 393485949.510006 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl85_m_minus_3(theta, phi): return ( 8.3516018330059e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 1.40088624709554e30 * cos(theta) ** 82 - 2.75286581455874e31 * cos(theta) ** 80 + 2.60450777664839e32 * cos(theta) ** 78 - 1.58006805116669e33 * cos(theta) ** 76 + 6.90673918071329e33 * cos(theta) ** 74 - 2.31740404063436e34 * cos(theta) ** 72 + 6.20889384471848e34 * cos(theta) ** 70 - 1.36437476205597e35 * cos(theta) ** 68 + 2.50648847416411e35 * cos(theta) ** 66 - 3.90444283012493e35 * cos(theta) ** 64 + 5.21281903677606e35 * cos(theta) ** 62 - 6.01430189050856e35 * cos(theta) ** 60 + 6.03475869965995e35 * cos(theta) ** 58 - 5.29201916739411e35 * cos(theta) ** 56 + 4.07078397491855e35 * cos(theta) ** 54 - 2.75427511494489e35 * cos(theta) ** 52 + 1.64216223130257e35 * cos(theta) ** 50 - 8.63739258628447e34 * cos(theta) ** 48 + 4.00945631165797e34 * cos(theta) ** 46 - 1.64217937576811e34 * cos(theta) ** 44 + 5.92939576136118e33 * cos(theta) ** 42 - 1.88453663733185e33 * cos(theta) ** 40 + 5.26105432039671e32 * cos(theta) ** 38 - 1.28644215208309e32 * cos(theta) ** 36 + 2.74545581237245e31 * cos(theta) ** 34 - 5.09157259749073e30 * cos(theta) ** 32 + 8.16231418343697e29 * cos(theta) ** 30 - 1.12396539088163e29 * cos(theta) ** 28 + 1.31943763277409e28 * cos(theta) ** 26 - 1.30856646521691e27 * cos(theta) ** 24 + 1.08457761081041e26 * cos(theta) ** 22 - 7.41454359565565e24 * cos(theta) ** 20 + 4.11437874758929e23 * cos(theta) ** 18 - 1.8167386677667e22 * cos(theta) ** 16 + 6.22526099748727e20 * cos(theta) ** 14 - 1.60254243499672e19 * cos(theta) ** 12 + 2.96767117591986e17 * cos(theta) ** 10 - 3.72095856551668e15 * cos(theta) ** 8 + 28860620452760.9 * cos(theta) ** 6 - 119357404684.702 * cos(theta) ** 4 + 196742974.755003 * cos(theta) ** 2 - 53916.9566333251 ) * sin(3 * phi) ) # @torch.jit.script def Yl85_m_minus_2(theta, phi): return ( 0.000713756642844956 * (1.0 - cos(theta) ** 2) * ( 1.68781475553679e28 * cos(theta) ** 83 - 3.39859977106017e29 * cos(theta) ** 81 + 3.2968452868967e30 * cos(theta) ** 79 - 2.05203643008661e31 * cos(theta) ** 77 + 9.20898557428439e31 * cos(theta) ** 75 - 3.17452608306077e32 * cos(theta) ** 73 + 8.74492090805419e32 * cos(theta) ** 71 - 1.97735472761735e33 * cos(theta) ** 69 + 3.74102757337927e33 * cos(theta) ** 67 - 6.00683512326912e33 * cos(theta) ** 65 + 8.27431593139057e33 * cos(theta) ** 63 - 9.85951129591567e33 * cos(theta) ** 61 + 1.02284045756948e34 * cos(theta) ** 59 - 9.284244153323e33 * cos(theta) ** 57 + 7.40142540894281e33 * cos(theta) ** 55 - 5.19674549989602e33 * cos(theta) ** 53 + 3.21992594373054e33 * cos(theta) ** 51 - 1.76273318087438e33 * cos(theta) ** 49 + 8.53075810991058e32 * cos(theta) ** 47 - 3.6492875017069e32 * cos(theta) ** 45 + 1.37892924682818e32 * cos(theta) ** 43 - 4.5964308227606e31 * cos(theta) ** 41 + 1.34898828728121e31 * cos(theta) ** 39 - 3.47687068130565e30 * cos(theta) ** 37 + 7.84415946392129e29 * cos(theta) ** 35 - 1.5429007871184e29 * cos(theta) ** 33 + 2.63300457530225e28 * cos(theta) ** 31 - 3.87574272717805e27 * cos(theta) ** 29 + 4.88680604731145e26 * cos(theta) ** 27 - 5.23426586086762e25 * cos(theta) ** 25 + 4.71555482961047e24 * cos(theta) ** 23 - 3.53073504555031e23 * cos(theta) ** 21 + 2.16546249873121e22 * cos(theta) ** 19 - 1.06866980456865e21 * cos(theta) ** 17 + 4.15017399832484e19 * cos(theta) ** 15 - 1.23272494999748e18 * cos(theta) ** 13 + 2.69788288719987e16 * cos(theta) ** 11 - 413439840612964.0 * cos(theta) ** 9 + 4122945778965.85 * cos(theta) ** 7 - 23871480936.9404 * cos(theta) ** 5 + 65580991.585001 * cos(theta) ** 3 - 53916.9566333251 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl85_m_minus_1(theta, phi): return ( 0.0610168007057101 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 2.00930328040094e26 * cos(theta) ** 84 - 4.14463386714655e27 * cos(theta) ** 82 + 4.12105660862087e28 * cos(theta) ** 80 - 2.63081593600847e29 * cos(theta) ** 78 + 1.21170862819531e30 * cos(theta) ** 76 - 4.28990011224428e30 * cos(theta) ** 74 + 1.21457234834086e31 * cos(theta) ** 72 - 2.82479246802478e31 * cos(theta) ** 70 + 5.50151113732246e31 * cos(theta) ** 68 - 9.10126533828654e31 * cos(theta) ** 66 + 1.29286186427978e32 * cos(theta) ** 64 - 1.59024375740575e32 * cos(theta) ** 62 + 1.70473409594914e32 * cos(theta) ** 60 - 1.60073175057293e32 * cos(theta) ** 58 + 1.32168310873979e32 * cos(theta) ** 56 - 9.62360277758522e31 * cos(theta) ** 54 + 6.19216527640488e31 * cos(theta) ** 52 - 3.52546636174876e31 * cos(theta) ** 50 + 1.77724127289804e31 * cos(theta) ** 48 - 7.93323369936283e30 * cos(theta) ** 46 + 3.13393010642768e30 * cos(theta) ** 44 - 1.09438829113348e30 * cos(theta) ** 42 + 3.37247071820302e29 * cos(theta) ** 40 - 9.14965968764645e28 * cos(theta) ** 38 + 2.17893318442258e28 * cos(theta) ** 36 - 4.53794349152471e27 * cos(theta) ** 34 + 8.22813929781953e26 * cos(theta) ** 32 - 1.29191424239268e26 * cos(theta) ** 30 + 1.74528787403981e25 * cos(theta) ** 28 - 2.01317917725678e24 * cos(theta) ** 26 + 1.9648145123377e23 * cos(theta) ** 24 - 1.60487956615923e22 * cos(theta) ** 22 + 1.0827312493656e21 * cos(theta) ** 20 - 5.93705446982582e19 * cos(theta) ** 18 + 2.59385874895303e18 * cos(theta) ** 16 - 8.8051782142677e16 * cos(theta) ** 14 + 2.24823573933322e15 * cos(theta) ** 12 - 41343984061296.4 * cos(theta) ** 10 + 515368222370.731 * cos(theta) ** 8 - 3978580156.15673 * cos(theta) ** 6 + 16395247.8962503 * cos(theta) ** 4 - 26958.4783166625 * cos(theta) ** 2 + 7.37779921090929 ) * sin(phi) ) # @torch.jit.script def Yl85_m0(theta, phi): return ( 2.73948901583064e25 * cos(theta) ** 85 - 5.78696792101502e26 * cos(theta) ** 83 + 5.89612330395632e27 * cos(theta) ** 81 - 3.85928070804414e28 * cos(theta) ** 79 + 1.82368770881656e29 * cos(theta) ** 77 - 6.62870836769846e29 * cos(theta) ** 75 + 1.92816202519531e30 * cos(theta) ** 73 - 4.61074595287831e30 * cos(theta) ** 71 + 9.24008362330856e30 * cos(theta) ** 69 - 1.57423646915627e31 * cos(theta) ** 67 + 2.30505750549968e31 * cos(theta) ** 65 - 2.92527126994468e31 * cos(theta) ** 63 + 3.23869319172447e31 * cos(theta) ** 61 - 3.14419551239034e31 * cos(theta) ** 59 + 2.68717208876117e31 * cos(theta) ** 57 - 2.02776673932049e31 * cos(theta) ** 55 + 1.35397194599412e31 * cos(theta) ** 53 - 8.01104912657749e30 * cos(theta) ** 51 + 4.20332824542646e30 * cos(theta) ** 49 - 1.95611951587713e30 * cos(theta) ** 47 + 8.07085952924878e29 * cos(theta) ** 45 - 2.9494835488949e29 * cos(theta) ** 43 + 9.53251125501825e28 * cos(theta) ** 41 - 2.71883799273564e28 * cos(theta) ** 39 + 6.82472544924495e27 * cos(theta) ** 37 - 1.50256765262715e27 * cos(theta) ** 35 + 2.88955317812914e26 * cos(theta) ** 33 - 4.82964253894329e25 * cos(theta) ** 31 + 6.97448379071003e24 * cos(theta) ** 29 - 8.64095336902128e23 * cos(theta) ** 27 + 9.10803192950892e22 * cos(theta) ** 25 - 8.08644444762555e21 * cos(theta) ** 23 + 5.97508891719996e20 * cos(theta) ** 21 - 3.62126601042422e19 * cos(theta) ** 19 + 1.76823668698613e18 * cos(theta) ** 17 - 6.80283421301593e16 * cos(theta) ** 15 + 2.00420199878415e15 * cos(theta) ** 13 - 43557468906426.3 * cos(theta) ** 11 + 663617947327.824 * cos(theta) ** 9 - 6586778633.52679 * cos(theta) ** 7 + 38000645.9626546 * cos(theta) ** 5 - 104139.890278582 * cos(theta) ** 3 + 85.5007309347964 * cos(theta) ) # @torch.jit.script def Yl85_m1(theta, phi): return ( 0.0610168007057101 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 2.00930328040094e26 * cos(theta) ** 84 - 4.14463386714655e27 * cos(theta) ** 82 + 4.12105660862087e28 * cos(theta) ** 80 - 2.63081593600847e29 * cos(theta) ** 78 + 1.21170862819531e30 * cos(theta) ** 76 - 4.28990011224428e30 * cos(theta) ** 74 + 1.21457234834086e31 * cos(theta) ** 72 - 2.82479246802478e31 * cos(theta) ** 70 + 5.50151113732246e31 * cos(theta) ** 68 - 9.10126533828654e31 * cos(theta) ** 66 + 1.29286186427978e32 * cos(theta) ** 64 - 1.59024375740575e32 * cos(theta) ** 62 + 1.70473409594914e32 * cos(theta) ** 60 - 1.60073175057293e32 * cos(theta) ** 58 + 1.32168310873979e32 * cos(theta) ** 56 - 9.62360277758522e31 * cos(theta) ** 54 + 6.19216527640488e31 * cos(theta) ** 52 - 3.52546636174876e31 * cos(theta) ** 50 + 1.77724127289804e31 * cos(theta) ** 48 - 7.93323369936283e30 * cos(theta) ** 46 + 3.13393010642768e30 * cos(theta) ** 44 - 1.09438829113348e30 * cos(theta) ** 42 + 3.37247071820302e29 * cos(theta) ** 40 - 9.14965968764645e28 * cos(theta) ** 38 + 2.17893318442258e28 * cos(theta) ** 36 - 4.53794349152471e27 * cos(theta) ** 34 + 8.22813929781953e26 * cos(theta) ** 32 - 1.29191424239268e26 * cos(theta) ** 30 + 1.74528787403981e25 * cos(theta) ** 28 - 2.01317917725678e24 * cos(theta) ** 26 + 1.9648145123377e23 * cos(theta) ** 24 - 1.60487956615923e22 * cos(theta) ** 22 + 1.0827312493656e21 * cos(theta) ** 20 - 5.93705446982582e19 * cos(theta) ** 18 + 2.59385874895303e18 * cos(theta) ** 16 - 8.8051782142677e16 * cos(theta) ** 14 + 2.24823573933322e15 * cos(theta) ** 12 - 41343984061296.4 * cos(theta) ** 10 + 515368222370.731 * cos(theta) ** 8 - 3978580156.15673 * cos(theta) ** 6 + 16395247.8962503 * cos(theta) ** 4 - 26958.4783166625 * cos(theta) ** 2 + 7.37779921090929 ) * cos(phi) ) # @torch.jit.script def Yl85_m2(theta, phi): return ( 0.000713756642844956 * (1.0 - cos(theta) ** 2) * ( 1.68781475553679e28 * cos(theta) ** 83 - 3.39859977106017e29 * cos(theta) ** 81 + 3.2968452868967e30 * cos(theta) ** 79 - 2.05203643008661e31 * cos(theta) ** 77 + 9.20898557428439e31 * cos(theta) ** 75 - 3.17452608306077e32 * cos(theta) ** 73 + 8.74492090805419e32 * cos(theta) ** 71 - 1.97735472761735e33 * cos(theta) ** 69 + 3.74102757337927e33 * cos(theta) ** 67 - 6.00683512326912e33 * cos(theta) ** 65 + 8.27431593139057e33 * cos(theta) ** 63 - 9.85951129591567e33 * cos(theta) ** 61 + 1.02284045756948e34 * cos(theta) ** 59 - 9.284244153323e33 * cos(theta) ** 57 + 7.40142540894281e33 * cos(theta) ** 55 - 5.19674549989602e33 * cos(theta) ** 53 + 3.21992594373054e33 * cos(theta) ** 51 - 1.76273318087438e33 * cos(theta) ** 49 + 8.53075810991058e32 * cos(theta) ** 47 - 3.6492875017069e32 * cos(theta) ** 45 + 1.37892924682818e32 * cos(theta) ** 43 - 4.5964308227606e31 * cos(theta) ** 41 + 1.34898828728121e31 * cos(theta) ** 39 - 3.47687068130565e30 * cos(theta) ** 37 + 7.84415946392129e29 * cos(theta) ** 35 - 1.5429007871184e29 * cos(theta) ** 33 + 2.63300457530225e28 * cos(theta) ** 31 - 3.87574272717805e27 * cos(theta) ** 29 + 4.88680604731145e26 * cos(theta) ** 27 - 5.23426586086762e25 * cos(theta) ** 25 + 4.71555482961047e24 * cos(theta) ** 23 - 3.53073504555031e23 * cos(theta) ** 21 + 2.16546249873121e22 * cos(theta) ** 19 - 1.06866980456865e21 * cos(theta) ** 17 + 4.15017399832484e19 * cos(theta) ** 15 - 1.23272494999748e18 * cos(theta) ** 13 + 2.69788288719987e16 * cos(theta) ** 11 - 413439840612964.0 * cos(theta) ** 9 + 4122945778965.85 * cos(theta) ** 7 - 23871480936.9404 * cos(theta) ** 5 + 65580991.585001 * cos(theta) ** 3 - 53916.9566333251 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl85_m3(theta, phi): return ( 8.3516018330059e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 1.40088624709554e30 * cos(theta) ** 82 - 2.75286581455874e31 * cos(theta) ** 80 + 2.60450777664839e32 * cos(theta) ** 78 - 1.58006805116669e33 * cos(theta) ** 76 + 6.90673918071329e33 * cos(theta) ** 74 - 2.31740404063436e34 * cos(theta) ** 72 + 6.20889384471848e34 * cos(theta) ** 70 - 1.36437476205597e35 * cos(theta) ** 68 + 2.50648847416411e35 * cos(theta) ** 66 - 3.90444283012493e35 * cos(theta) ** 64 + 5.21281903677606e35 * cos(theta) ** 62 - 6.01430189050856e35 * cos(theta) ** 60 + 6.03475869965995e35 * cos(theta) ** 58 - 5.29201916739411e35 * cos(theta) ** 56 + 4.07078397491855e35 * cos(theta) ** 54 - 2.75427511494489e35 * cos(theta) ** 52 + 1.64216223130257e35 * cos(theta) ** 50 - 8.63739258628447e34 * cos(theta) ** 48 + 4.00945631165797e34 * cos(theta) ** 46 - 1.64217937576811e34 * cos(theta) ** 44 + 5.92939576136118e33 * cos(theta) ** 42 - 1.88453663733185e33 * cos(theta) ** 40 + 5.26105432039671e32 * cos(theta) ** 38 - 1.28644215208309e32 * cos(theta) ** 36 + 2.74545581237245e31 * cos(theta) ** 34 - 5.09157259749073e30 * cos(theta) ** 32 + 8.16231418343697e29 * cos(theta) ** 30 - 1.12396539088163e29 * cos(theta) ** 28 + 1.31943763277409e28 * cos(theta) ** 26 - 1.30856646521691e27 * cos(theta) ** 24 + 1.08457761081041e26 * cos(theta) ** 22 - 7.41454359565565e24 * cos(theta) ** 20 + 4.11437874758929e23 * cos(theta) ** 18 - 1.8167386677667e22 * cos(theta) ** 16 + 6.22526099748727e20 * cos(theta) ** 14 - 1.60254243499672e19 * cos(theta) ** 12 + 2.96767117591986e17 * cos(theta) ** 10 - 3.72095856551668e15 * cos(theta) ** 8 + 28860620452760.9 * cos(theta) ** 6 - 119357404684.702 * cos(theta) ** 4 + 196742974.755003 * cos(theta) ** 2 - 53916.9566333251 ) * cos(3 * phi) ) # @torch.jit.script def Yl85_m4(theta, phi): return ( 9.77614988495605e-8 * (1.0 - cos(theta) ** 2) ** 2 * ( 1.14872672261834e32 * cos(theta) ** 81 - 2.20229265164699e33 * cos(theta) ** 79 + 2.03151606578574e34 * cos(theta) ** 77 - 1.20085171888668e35 * cos(theta) ** 75 + 5.11098699372784e35 * cos(theta) ** 73 - 1.66853090925674e36 * cos(theta) ** 71 + 4.34622569130293e36 * cos(theta) ** 69 - 9.2777483819806e36 * cos(theta) ** 67 + 1.65428239294831e37 * cos(theta) ** 65 - 2.49884341127995e37 * cos(theta) ** 63 + 3.23194780280116e37 * cos(theta) ** 61 - 3.60858113430514e37 * cos(theta) ** 59 + 3.50016004580277e37 * cos(theta) ** 57 - 2.9635307337407e37 * cos(theta) ** 55 + 2.19822334645602e37 * cos(theta) ** 53 - 1.43222305977134e37 * cos(theta) ** 51 + 8.21081115651287e36 * cos(theta) ** 49 - 4.14594844141654e36 * cos(theta) ** 47 + 1.84434990336267e36 * cos(theta) ** 45 - 7.22558925337967e35 * cos(theta) ** 43 + 2.49034621977169e35 * cos(theta) ** 41 - 7.53814654932739e34 * cos(theta) ** 39 + 1.99920064175075e34 * cos(theta) ** 37 - 4.63119174749913e33 * cos(theta) ** 35 + 9.33454976206633e32 * cos(theta) ** 33 - 1.62930323119703e32 * cos(theta) ** 31 + 2.44869425503109e31 * cos(theta) ** 29 - 3.14710309446858e30 * cos(theta) ** 27 + 3.43053784521264e29 * cos(theta) ** 25 - 3.14055951652057e28 * cos(theta) ** 23 + 2.3860707437829e27 * cos(theta) ** 21 - 1.48290871913113e26 * cos(theta) ** 19 + 7.40588174566073e24 * cos(theta) ** 17 - 2.90678186842672e23 * cos(theta) ** 15 + 8.71536539648217e21 * cos(theta) ** 13 - 1.92305092199607e20 * cos(theta) ** 11 + 2.96767117591986e18 * cos(theta) ** 9 - 2.97676685241334e16 * cos(theta) ** 7 + 173163722716566.0 * cos(theta) ** 5 - 477429618738.808 * cos(theta) ** 3 + 393485949.510006 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl85_m5(theta, phi): return ( 1.14499631050571e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 9.30468645320855e33 * cos(theta) ** 80 - 1.73981119480112e35 * cos(theta) ** 78 + 1.56426737065502e36 * cos(theta) ** 76 - 9.00638789165013e36 * cos(theta) ** 74 + 3.73102050542132e37 * cos(theta) ** 72 - 1.18465694557228e38 * cos(theta) ** 70 + 2.99889572699902e38 * cos(theta) ** 68 - 6.216091415927e38 * cos(theta) ** 66 + 1.0752835554164e39 * cos(theta) ** 64 - 1.57427134910637e39 * cos(theta) ** 62 + 1.97148815970871e39 * cos(theta) ** 60 - 2.12906286924003e39 * cos(theta) ** 58 + 1.99509122610758e39 * cos(theta) ** 56 - 1.62994190355739e39 * cos(theta) ** 54 + 1.16505837362169e39 * cos(theta) ** 52 - 7.30433760483385e38 * cos(theta) ** 50 + 4.0232974666913e38 * cos(theta) ** 48 - 1.94859576746578e38 * cos(theta) ** 46 + 8.29957456513201e37 * cos(theta) ** 44 - 3.10700337895326e37 * cos(theta) ** 42 + 1.02104195010639e37 * cos(theta) ** 40 - 2.93987715423768e36 * cos(theta) ** 38 + 7.39704237447777e35 * cos(theta) ** 36 - 1.62091711162469e35 * cos(theta) ** 34 + 3.08040142148189e34 * cos(theta) ** 32 - 5.0508400167108e33 * cos(theta) ** 30 + 7.10121333959017e32 * cos(theta) ** 28 - 8.49717835506516e31 * cos(theta) ** 26 + 8.5763446130316e30 * cos(theta) ** 24 - 7.22328688799732e29 * cos(theta) ** 22 + 5.01074856194409e28 * cos(theta) ** 20 - 2.81752656634915e27 * cos(theta) ** 18 + 1.25899989676232e26 * cos(theta) ** 16 - 4.36017280264008e24 * cos(theta) ** 14 + 1.13299750154268e23 * cos(theta) ** 12 - 2.11535601419567e21 * cos(theta) ** 10 + 2.67090405832787e19 * cos(theta) ** 8 - 2.08373679668934e17 * cos(theta) ** 6 + 865818613582828.0 * cos(theta) ** 4 - 1432288856216.42 * cos(theta) ** 2 + 393485949.510006 ) * cos(5 * phi) ) # @torch.jit.script def Yl85_m6(theta, phi): return ( 1.34195637440744e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 7.44374916256684e35 * cos(theta) ** 79 - 1.35705273194488e37 * cos(theta) ** 77 + 1.18884320169782e38 * cos(theta) ** 75 - 6.6647270398211e38 * cos(theta) ** 73 + 2.68633476390335e39 * cos(theta) ** 71 - 8.29259861900599e39 * cos(theta) ** 69 + 2.03924909435934e40 * cos(theta) ** 67 - 4.10262033451182e40 * cos(theta) ** 65 + 6.88181475466499e40 * cos(theta) ** 63 - 9.7604823644595e40 * cos(theta) ** 61 + 1.18289289582522e41 * cos(theta) ** 59 - 1.23485646415922e41 * cos(theta) ** 57 + 1.11725108662024e41 * cos(theta) ** 55 - 8.80168627920988e40 * cos(theta) ** 53 + 6.05830354283278e40 * cos(theta) ** 51 - 3.65216880241692e40 * cos(theta) ** 49 + 1.93118278401183e40 * cos(theta) ** 47 - 8.96354053034257e39 * cos(theta) ** 45 + 3.65181280865808e39 * cos(theta) ** 43 - 1.30494141916037e39 * cos(theta) ** 41 + 4.08416780042558e38 * cos(theta) ** 39 - 1.11715331861032e38 * cos(theta) ** 37 + 2.662935254812e37 * cos(theta) ** 35 - 5.51111817952396e36 * cos(theta) ** 33 + 9.85728454874204e35 * cos(theta) ** 31 - 1.51525200501324e35 * cos(theta) ** 29 + 1.98833973508525e34 * cos(theta) ** 27 - 2.20926637231694e33 * cos(theta) ** 25 + 2.05832270712758e32 * cos(theta) ** 23 - 1.58912311535941e31 * cos(theta) ** 21 + 1.00214971238882e30 * cos(theta) ** 19 - 5.07154781942846e28 * cos(theta) ** 17 + 2.01439983481972e27 * cos(theta) ** 15 - 6.10424192369611e25 * cos(theta) ** 13 + 1.35959700185122e24 * cos(theta) ** 11 - 2.11535601419567e22 * cos(theta) ** 9 + 2.1367232466623e20 * cos(theta) ** 7 - 1.2502420780136e18 * cos(theta) ** 5 + 3.46327445433131e15 * cos(theta) ** 3 - 2864577712432.85 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl85_m7(theta, phi): return ( 1.57409499591163e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 5.8805618384278e37 * cos(theta) ** 78 - 1.04493060359756e39 * cos(theta) ** 76 + 8.91632401273363e39 * cos(theta) ** 74 - 4.8652507390694e40 * cos(theta) ** 72 + 1.90729768237138e41 * cos(theta) ** 70 - 5.72189304711414e41 * cos(theta) ** 68 + 1.36629689322075e42 * cos(theta) ** 66 - 2.66670321743268e42 * cos(theta) ** 64 + 4.33554329543894e42 * cos(theta) ** 62 - 5.95389424232029e42 * cos(theta) ** 60 + 6.97906808536882e42 * cos(theta) ** 58 - 7.03868184570754e42 * cos(theta) ** 56 + 6.14488097641135e42 * cos(theta) ** 54 - 4.66489372798124e42 * cos(theta) ** 52 + 3.08973480684472e42 * cos(theta) ** 50 - 1.78956271318429e42 * cos(theta) ** 48 + 9.07655908485558e41 * cos(theta) ** 46 - 4.03359323865416e41 * cos(theta) ** 44 + 1.57027950772298e41 * cos(theta) ** 42 - 5.35025981855751e40 * cos(theta) ** 40 + 1.59282544216598e40 * cos(theta) ** 38 - 4.13346727885818e39 * cos(theta) ** 36 + 9.32027339184199e38 * cos(theta) ** 34 - 1.81866899924291e38 * cos(theta) ** 32 + 3.05575821011003e37 * cos(theta) ** 30 - 4.3942308145384e36 * cos(theta) ** 28 + 5.36851728473017e35 * cos(theta) ** 26 - 5.52316593079235e34 * cos(theta) ** 24 + 4.73414222639344e33 * cos(theta) ** 22 - 3.33715854225476e32 * cos(theta) ** 20 + 1.90408445353875e31 * cos(theta) ** 18 - 8.62163129302839e29 * cos(theta) ** 16 + 3.02159975222958e28 * cos(theta) ** 14 - 7.93551450080495e26 * cos(theta) ** 12 + 1.49555670203634e25 * cos(theta) ** 10 - 1.90382041277611e23 * cos(theta) ** 8 + 1.49570627266361e21 * cos(theta) ** 6 - 6.25121039006802e18 * cos(theta) ** 4 + 1.03898233629939e16 * cos(theta) ** 2 - 2864577712432.85 ) * cos(7 * phi) ) # @torch.jit.script def Yl85_m8(theta, phi): return ( 1.84817104808673e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 4.58683823397368e39 * cos(theta) ** 77 - 7.94147258734142e40 * cos(theta) ** 75 + 6.59807976942289e41 * cos(theta) ** 73 - 3.50298053212997e42 * cos(theta) ** 71 + 1.33510837765997e43 * cos(theta) ** 69 - 3.89088727203761e43 * cos(theta) ** 67 + 9.01755949525698e43 * cos(theta) ** 65 - 1.70669005915692e44 * cos(theta) ** 63 + 2.68803684317215e44 * cos(theta) ** 61 - 3.57233654539218e44 * cos(theta) ** 59 + 4.04785948951392e44 * cos(theta) ** 57 - 3.94166183359622e44 * cos(theta) ** 55 + 3.31823572726213e44 * cos(theta) ** 53 - 2.42574473855024e44 * cos(theta) ** 51 + 1.54486740342236e44 * cos(theta) ** 49 - 8.5899010232846e43 * cos(theta) ** 47 + 4.17521717903357e43 * cos(theta) ** 45 - 1.77478102500783e43 * cos(theta) ** 43 + 6.5951739324365e42 * cos(theta) ** 41 - 2.140103927423e42 * cos(theta) ** 39 + 6.05273668023071e41 * cos(theta) ** 37 - 1.48804822038894e41 * cos(theta) ** 35 + 3.16889295322628e40 * cos(theta) ** 33 - 5.8197407975773e39 * cos(theta) ** 31 + 9.1672746303301e38 * cos(theta) ** 29 - 1.23038462807075e38 * cos(theta) ** 27 + 1.39581449402984e37 * cos(theta) ** 25 - 1.32555982339016e36 * cos(theta) ** 23 + 1.04151128980656e35 * cos(theta) ** 21 - 6.67431708450953e33 * cos(theta) ** 19 + 3.42735201636976e32 * cos(theta) ** 17 - 1.37946100688454e31 * cos(theta) ** 15 + 4.23023965312141e29 * cos(theta) ** 13 - 9.52261740096594e27 * cos(theta) ** 11 + 1.49555670203634e26 * cos(theta) ** 9 - 1.52305633022088e24 * cos(theta) ** 7 + 8.97423763598164e21 * cos(theta) ** 5 - 2.50048415602721e19 * cos(theta) ** 3 + 2.07796467259879e16 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl85_m9(theta, phi): return ( 2.17236538128397e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 3.53186544015974e41 * cos(theta) ** 76 - 5.95610444050607e42 * cos(theta) ** 74 + 4.81659823167871e43 * cos(theta) ** 72 - 2.48711617781228e44 * cos(theta) ** 70 + 9.21224780585376e44 * cos(theta) ** 68 - 2.6068944722652e45 * cos(theta) ** 66 + 5.86141367191704e45 * cos(theta) ** 64 - 1.07521473726886e46 * cos(theta) ** 62 + 1.63970247433501e46 * cos(theta) ** 60 - 2.10767856178138e46 * cos(theta) ** 58 + 2.30727990902293e46 * cos(theta) ** 56 - 2.16791400847792e46 * cos(theta) ** 54 + 1.75866493544893e46 * cos(theta) ** 52 - 1.23712981666062e46 * cos(theta) ** 50 + 7.56985027676956e45 * cos(theta) ** 48 - 4.03725348094376e45 * cos(theta) ** 46 + 1.87884773056511e45 * cos(theta) ** 44 - 7.63155840753366e44 * cos(theta) ** 42 + 2.70402131229896e44 * cos(theta) ** 40 - 8.34640531694971e43 * cos(theta) ** 38 + 2.23951257168536e43 * cos(theta) ** 36 - 5.20816877136131e42 * cos(theta) ** 34 + 1.04573467456467e42 * cos(theta) ** 32 - 1.80411964724896e41 * cos(theta) ** 30 + 2.65850964279573e40 * cos(theta) ** 28 - 3.32203849579103e39 * cos(theta) ** 26 + 3.48953623507461e38 * cos(theta) ** 24 - 3.04878759379738e37 * cos(theta) ** 22 + 2.18717370859377e36 * cos(theta) ** 20 - 1.26812024605681e35 * cos(theta) ** 18 + 5.82649842782859e33 * cos(theta) ** 16 - 2.06919151032681e32 * cos(theta) ** 14 + 5.49931154905783e30 * cos(theta) ** 12 - 1.04748791410625e29 * cos(theta) ** 10 + 1.34600103183271e27 * cos(theta) ** 8 - 1.06613943115462e25 * cos(theta) ** 6 + 4.48711881799082e22 * cos(theta) ** 4 - 7.50145246808162e19 * cos(theta) ** 2 + 2.07796467259879e16 ) * cos(9 * phi) ) # @torch.jit.script def Yl85_m10(theta, phi): return ( 2.55660877079906e-19 * (1.0 - cos(theta) ** 2) ** 5 * ( 2.6842177345214e43 * cos(theta) ** 75 - 4.40751728597449e44 * cos(theta) ** 73 + 3.46795072680867e45 * cos(theta) ** 71 - 1.74098132446859e46 * cos(theta) ** 69 + 6.26432850798056e46 * cos(theta) ** 67 - 1.72055035169503e47 * cos(theta) ** 65 + 3.7513047500269e47 * cos(theta) ** 63 - 6.66633137106692e47 * cos(theta) ** 61 + 9.83821484601005e47 * cos(theta) ** 59 - 1.2224535658332e48 * cos(theta) ** 57 + 1.29207674905284e48 * cos(theta) ** 55 - 1.17067356457808e48 * cos(theta) ** 53 + 9.14505766433442e47 * cos(theta) ** 51 - 6.18564908330312e47 * cos(theta) ** 49 + 3.63352813284939e47 * cos(theta) ** 47 - 1.85713660123413e47 * cos(theta) ** 45 + 8.26693001448646e46 * cos(theta) ** 43 - 3.20525453116414e46 * cos(theta) ** 41 + 1.08160852491959e46 * cos(theta) ** 39 - 3.17163402044089e45 * cos(theta) ** 37 + 8.0622452580673e44 * cos(theta) ** 35 - 1.77077738226284e44 * cos(theta) ** 33 + 3.34635095860695e43 * cos(theta) ** 31 - 5.41235894174689e42 * cos(theta) ** 29 + 7.44382699982804e41 * cos(theta) ** 27 - 8.63730008905667e40 * cos(theta) ** 25 + 8.37488696417906e39 * cos(theta) ** 23 - 6.70733270635423e38 * cos(theta) ** 21 + 4.37434741718754e37 * cos(theta) ** 19 - 2.28261644290226e36 * cos(theta) ** 17 + 9.32239748452574e34 * cos(theta) ** 15 - 2.89686811445754e33 * cos(theta) ** 13 + 6.59917385886939e31 * cos(theta) ** 11 - 1.04748791410625e30 * cos(theta) ** 9 + 1.07680082546617e28 * cos(theta) ** 7 - 6.39683658692771e25 * cos(theta) ** 5 + 1.79484752719633e23 * cos(theta) ** 3 - 1.50029049361632e20 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl85_m11(theta, phi): return ( 3.0129923311217e-21 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 2.01316330089105e45 * cos(theta) ** 74 - 3.21748761876138e46 * cos(theta) ** 72 + 2.46224501603416e47 * cos(theta) ** 70 - 1.20127711388333e48 * cos(theta) ** 68 + 4.19710010034697e48 * cos(theta) ** 66 - 1.11835772860177e49 * cos(theta) ** 64 + 2.36332199251695e49 * cos(theta) ** 62 - 4.06646213635082e49 * cos(theta) ** 60 + 5.80454675914593e49 * cos(theta) ** 58 - 6.96798532524925e49 * cos(theta) ** 56 + 7.10642211979063e49 * cos(theta) ** 54 - 6.20456989226381e49 * cos(theta) ** 52 + 4.66397940881055e49 * cos(theta) ** 50 - 3.03096805081853e49 * cos(theta) ** 48 + 1.70775822243921e49 * cos(theta) ** 46 - 8.35711470555359e48 * cos(theta) ** 44 + 3.55477990622918e48 * cos(theta) ** 42 - 1.3141543577773e48 * cos(theta) ** 40 + 4.21827324718638e47 * cos(theta) ** 38 - 1.17350458756313e47 * cos(theta) ** 36 + 2.82178584032356e46 * cos(theta) ** 34 - 5.84356536146738e45 * cos(theta) ** 32 + 1.03736879716815e45 * cos(theta) ** 30 - 1.5695840931066e44 * cos(theta) ** 28 + 2.00983328995357e43 * cos(theta) ** 26 - 2.15932502226417e42 * cos(theta) ** 24 + 1.92622400176118e41 * cos(theta) ** 22 - 1.40853986833439e40 * cos(theta) ** 20 + 8.31126009265633e38 * cos(theta) ** 18 - 3.88044795293384e37 * cos(theta) ** 16 + 1.39835962267886e36 * cos(theta) ** 14 - 3.7659285487948e34 * cos(theta) ** 12 + 7.25909124475633e32 * cos(theta) ** 10 - 9.42739122695628e30 * cos(theta) ** 8 + 7.53760577826316e28 * cos(theta) ** 6 - 3.19841829346386e26 * cos(theta) ** 4 + 5.38454258158898e23 * cos(theta) ** 2 - 1.50029049361632e20 ) * cos(11 * phi) ) # @torch.jit.script def Yl85_m12(theta, phi): return ( 3.55628288167851e-23 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.48974084265938e47 * cos(theta) ** 73 - 2.31659108550819e48 * cos(theta) ** 71 + 1.72357151122391e49 * cos(theta) ** 69 - 8.16868437440665e49 * cos(theta) ** 67 + 2.770086066229e50 * cos(theta) ** 65 - 7.15748946305133e50 * cos(theta) ** 63 + 1.46525963536051e51 * cos(theta) ** 61 - 2.43987728181049e51 * cos(theta) ** 59 + 3.36663712030464e51 * cos(theta) ** 57 - 3.90207178213958e51 * cos(theta) ** 55 + 3.83746794468694e51 * cos(theta) ** 53 - 3.22637634397718e51 * cos(theta) ** 51 + 2.33198970440528e51 * cos(theta) ** 49 - 1.45486466439289e51 * cos(theta) ** 47 + 7.85568782322037e50 * cos(theta) ** 45 - 3.67713047044358e50 * cos(theta) ** 43 + 1.49300756061626e50 * cos(theta) ** 41 - 5.25661743110919e49 * cos(theta) ** 39 + 1.60294383393083e49 * cos(theta) ** 37 - 4.22461651522727e48 * cos(theta) ** 35 + 9.59407185710009e47 * cos(theta) ** 33 - 1.86994091566956e47 * cos(theta) ** 31 + 3.11210639150446e46 * cos(theta) ** 29 - 4.39483546069848e45 * cos(theta) ** 27 + 5.22556655387929e44 * cos(theta) ** 25 - 5.182380053434e43 * cos(theta) ** 23 + 4.2376928038746e42 * cos(theta) ** 21 - 2.81707973666878e41 * cos(theta) ** 19 + 1.49602681667814e40 * cos(theta) ** 17 - 6.20871672469414e38 * cos(theta) ** 15 + 1.9577034717504e37 * cos(theta) ** 13 - 4.51911425855376e35 * cos(theta) ** 11 + 7.25909124475633e33 * cos(theta) ** 9 - 7.54191298156502e31 * cos(theta) ** 7 + 4.52256346695789e29 * cos(theta) ** 5 - 1.27936731738554e27 * cos(theta) ** 3 + 1.0769085163178e24 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl85_m13(theta, phi): return ( 4.20457236344704e-25 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.08751081514135e49 * cos(theta) ** 72 - 1.64477967071082e50 * cos(theta) ** 70 + 1.1892643427445e51 * cos(theta) ** 68 - 5.47301853085245e51 * cos(theta) ** 66 + 1.80055594304885e52 * cos(theta) ** 64 - 4.50921836172234e52 * cos(theta) ** 62 + 8.93808377569911e52 * cos(theta) ** 60 - 1.43952759626819e53 * cos(theta) ** 58 + 1.91898315857364e53 * cos(theta) ** 56 - 2.14613948017677e53 * cos(theta) ** 54 + 2.03385801068408e53 * cos(theta) ** 52 - 1.64545193542836e53 * cos(theta) ** 50 + 1.14267495515859e53 * cos(theta) ** 48 - 6.8378639226466e52 * cos(theta) ** 46 + 3.53505952044917e52 * cos(theta) ** 44 - 1.58116610229074e52 * cos(theta) ** 42 + 6.12133099852665e51 * cos(theta) ** 40 - 2.05008079813258e51 * cos(theta) ** 38 + 5.93089218554406e50 * cos(theta) ** 36 - 1.47861578032954e50 * cos(theta) ** 34 + 3.16604371284303e49 * cos(theta) ** 32 - 5.79681683857565e48 * cos(theta) ** 30 + 9.02510853536294e47 * cos(theta) ** 28 - 1.18660557438859e47 * cos(theta) ** 26 + 1.30639163846982e46 * cos(theta) ** 24 - 1.19194741228982e45 * cos(theta) ** 22 + 8.89915488813667e43 * cos(theta) ** 20 - 5.35245149967068e42 * cos(theta) ** 18 + 2.54324558835284e41 * cos(theta) ** 16 - 9.31307508704121e39 * cos(theta) ** 14 + 2.54501451327553e38 * cos(theta) ** 12 - 4.97102568440914e36 * cos(theta) ** 10 + 6.5331821202807e34 * cos(theta) ** 8 - 5.27933908709551e32 * cos(theta) ** 6 + 2.26128173347895e30 * cos(theta) ** 4 - 3.83810195215663e27 * cos(theta) ** 2 + 1.0769085163178e24 ) * cos(13 * phi) ) # @torch.jit.script def Yl85_m14(theta, phi): return ( 4.98009911031062e-27 * (1.0 - cos(theta) ** 2) ** 7 * ( 7.83007786901769e50 * cos(theta) ** 71 - 1.15134576949757e52 * cos(theta) ** 69 + 8.08699753066258e52 * cos(theta) ** 67 - 3.61219223036262e53 * cos(theta) ** 65 + 1.15235580355126e54 * cos(theta) ** 63 - 2.79571538426785e54 * cos(theta) ** 61 + 5.36285026541946e54 * cos(theta) ** 59 - 8.34926005835551e54 * cos(theta) ** 57 + 1.07463056880124e55 * cos(theta) ** 55 - 1.15891531929546e55 * cos(theta) ** 53 + 1.05760616555572e55 * cos(theta) ** 51 - 8.22725967714182e54 * cos(theta) ** 49 + 5.48483978476121e54 * cos(theta) ** 47 - 3.14541740441744e54 * cos(theta) ** 45 + 1.55542618899763e54 * cos(theta) ** 43 - 6.6408976296211e53 * cos(theta) ** 41 + 2.44853239941066e53 * cos(theta) ** 39 - 7.79030703290381e52 * cos(theta) ** 37 + 2.13512118679586e52 * cos(theta) ** 35 - 5.02729365312045e51 * cos(theta) ** 33 + 1.01313398810977e51 * cos(theta) ** 31 - 1.73904505157269e50 * cos(theta) ** 29 + 2.52703038990162e49 * cos(theta) ** 27 - 3.08517449341033e48 * cos(theta) ** 25 + 3.13533993232757e47 * cos(theta) ** 23 - 2.62228430703761e46 * cos(theta) ** 21 + 1.77983097762733e45 * cos(theta) ** 19 - 9.63441269940722e43 * cos(theta) ** 17 + 4.06919294136454e42 * cos(theta) ** 15 - 1.30383051218577e41 * cos(theta) ** 13 + 3.05401741593063e39 * cos(theta) ** 11 - 4.97102568440914e37 * cos(theta) ** 9 + 5.22654569622456e35 * cos(theta) ** 7 - 3.16760345225731e33 * cos(theta) ** 5 + 9.04512693391579e30 * cos(theta) ** 3 - 7.67620390431326e27 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl85_m15(theta, phi): return ( 5.91029028010417e-29 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 5.55935528700256e52 * cos(theta) ** 70 - 7.94428580953324e53 * cos(theta) ** 68 + 5.41828834554393e54 * cos(theta) ** 66 - 2.3479249497357e55 * cos(theta) ** 64 + 7.25984156237297e55 * cos(theta) ** 62 - 1.70538638440339e56 * cos(theta) ** 60 + 3.16408165659748e56 * cos(theta) ** 58 - 4.75907823326264e56 * cos(theta) ** 56 + 5.91046812840683e56 * cos(theta) ** 54 - 6.14225119226592e56 * cos(theta) ** 52 + 5.39379144433418e56 * cos(theta) ** 50 - 4.03135724179949e56 * cos(theta) ** 48 + 2.57787469883777e56 * cos(theta) ** 46 - 1.41543783198785e56 * cos(theta) ** 44 + 6.68833261268983e55 * cos(theta) ** 42 - 2.72276802814465e55 * cos(theta) ** 40 + 9.54927635770157e54 * cos(theta) ** 38 - 2.88241360217441e54 * cos(theta) ** 36 + 7.47292415378551e53 * cos(theta) ** 34 - 1.65900690552975e53 * cos(theta) ** 32 + 3.14071536314029e52 * cos(theta) ** 30 - 5.04323064956081e51 * cos(theta) ** 28 + 6.82298205273438e50 * cos(theta) ** 26 - 7.71293623352583e49 * cos(theta) ** 24 + 7.21128184435341e48 * cos(theta) ** 22 - 5.50679704477897e47 * cos(theta) ** 20 + 3.38167885749193e46 * cos(theta) ** 18 - 1.63785015889923e45 * cos(theta) ** 16 + 6.10378941204681e43 * cos(theta) ** 14 - 1.6949796658415e42 * cos(theta) ** 12 + 3.35941915752369e40 * cos(theta) ** 10 - 4.47392311596822e38 * cos(theta) ** 8 + 3.65858198735719e36 * cos(theta) ** 6 - 1.58380172612865e34 * cos(theta) ** 4 + 2.71353808017474e31 * cos(theta) ** 2 - 7.67620390431326e27 ) * cos(15 * phi) ) # @torch.jit.script def Yl85_m16(theta, phi): return ( 7.02909000923895e-31 * (1.0 - cos(theta) ** 2) ** 8 * ( 3.89154870090179e54 * cos(theta) ** 69 - 5.4021143504826e55 * cos(theta) ** 67 + 3.57607030805899e56 * cos(theta) ** 65 - 1.50267196783085e57 * cos(theta) ** 63 + 4.50110176867124e57 * cos(theta) ** 61 - 1.02323183064203e58 * cos(theta) ** 59 + 1.83516736082654e58 * cos(theta) ** 57 - 2.66508381062708e58 * cos(theta) ** 55 + 3.19165278933969e58 * cos(theta) ** 53 - 3.19397061997828e58 * cos(theta) ** 51 + 2.69689572216709e58 * cos(theta) ** 49 - 1.93505147606376e58 * cos(theta) ** 47 + 1.18582236146537e58 * cos(theta) ** 45 - 6.22792646074653e57 * cos(theta) ** 43 + 2.80909969732973e57 * cos(theta) ** 41 - 1.08910721125786e57 * cos(theta) ** 39 + 3.6287250159266e56 * cos(theta) ** 37 - 1.03766889678279e56 * cos(theta) ** 35 + 2.54079421228707e55 * cos(theta) ** 33 - 5.30882209769519e54 * cos(theta) ** 31 + 9.42214608942085e53 * cos(theta) ** 29 - 1.41210458187703e53 * cos(theta) ** 27 + 1.77397533371094e52 * cos(theta) ** 25 - 1.8511046960462e51 * cos(theta) ** 23 + 1.58648200575775e50 * cos(theta) ** 21 - 1.10135940895579e49 * cos(theta) ** 19 + 6.08702194348548e47 * cos(theta) ** 17 - 2.62056025423876e46 * cos(theta) ** 15 + 8.54530517686553e44 * cos(theta) ** 13 - 2.0339755990098e43 * cos(theta) ** 11 + 3.35941915752369e41 * cos(theta) ** 9 - 3.57913849277458e39 * cos(theta) ** 7 + 2.19514919241431e37 * cos(theta) ** 5 - 6.33520690451462e34 * cos(theta) ** 3 + 5.42707616034947e31 * cos(theta) ) * cos(16 * phi) ) # @torch.jit.script def Yl85_m17(theta, phi): return ( 8.37865818516174e-33 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 2.68516860362224e56 * cos(theta) ** 68 - 3.61941661482334e57 * cos(theta) ** 66 + 2.32444570023835e58 * cos(theta) ** 64 - 9.46683339733435e58 * cos(theta) ** 62 + 2.74567207888946e59 * cos(theta) ** 60 - 6.037067800788e59 * cos(theta) ** 58 + 1.04604539567113e60 * cos(theta) ** 56 - 1.46579609584489e60 * cos(theta) ** 54 + 1.69157597835003e60 * cos(theta) ** 52 - 1.62892501618892e60 * cos(theta) ** 50 + 1.32147890386187e60 * cos(theta) ** 48 - 9.09474193749965e59 * cos(theta) ** 46 + 5.33620062659418e59 * cos(theta) ** 44 - 2.67800837812101e59 * cos(theta) ** 42 + 1.15173087590519e59 * cos(theta) ** 40 - 4.24751812390566e58 * cos(theta) ** 38 + 1.34262825589284e58 * cos(theta) ** 36 - 3.63184113873976e57 * cos(theta) ** 34 + 8.38462090054734e56 * cos(theta) ** 32 - 1.64573485028551e56 * cos(theta) ** 30 + 2.73242236593205e55 * cos(theta) ** 28 - 3.81268237106797e54 * cos(theta) ** 26 + 4.43493833427735e53 * cos(theta) ** 24 - 4.25754080090626e52 * cos(theta) ** 22 + 3.33161221209128e51 * cos(theta) ** 20 - 2.09258287701601e50 * cos(theta) ** 18 + 1.03479373039253e49 * cos(theta) ** 16 - 3.93084038135815e47 * cos(theta) ** 14 + 1.11088967299252e46 * cos(theta) ** 12 - 2.23737315891078e44 * cos(theta) ** 10 + 3.02347724177133e42 * cos(theta) ** 8 - 2.5053969449422e40 * cos(theta) ** 6 + 1.09757459620716e38 * cos(theta) ** 4 - 1.90056207135439e35 * cos(theta) ** 2 + 5.42707616034947e31 ) * cos(17 * phi) ) # @torch.jit.script def Yl85_m18(theta, phi): return ( 1.00115519358469e-34 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.82591465046312e58 * cos(theta) ** 67 - 2.38881496578341e59 * cos(theta) ** 65 + 1.48764524815254e60 * cos(theta) ** 63 - 5.8694367063473e60 * cos(theta) ** 61 + 1.64740324733367e61 * cos(theta) ** 59 - 3.50149932445704e61 * cos(theta) ** 57 + 5.85785421575832e61 * cos(theta) ** 55 - 7.91529891756242e61 * cos(theta) ** 53 + 8.79619508742017e61 * cos(theta) ** 51 - 8.14462508094461e61 * cos(theta) ** 49 + 6.34309873853699e61 * cos(theta) ** 47 - 4.18358129124984e61 * cos(theta) ** 45 + 2.34792827570144e61 * cos(theta) ** 43 - 1.12476351881082e61 * cos(theta) ** 41 + 4.60692350362075e60 * cos(theta) ** 39 - 1.61405688708415e60 * cos(theta) ** 37 + 4.83346172121423e59 * cos(theta) ** 35 - 1.23482598717152e59 * cos(theta) ** 33 + 2.68307868817515e58 * cos(theta) ** 31 - 4.93720455085653e57 * cos(theta) ** 29 + 7.65078262460973e56 * cos(theta) ** 27 - 9.91297416477673e55 * cos(theta) ** 25 + 1.06438520022656e55 * cos(theta) ** 23 - 9.36658976199376e53 * cos(theta) ** 21 + 6.66322442418255e52 * cos(theta) ** 19 - 3.76664917862882e51 * cos(theta) ** 17 + 1.65566996862805e50 * cos(theta) ** 15 - 5.5031765339014e48 * cos(theta) ** 13 + 1.33306760759102e47 * cos(theta) ** 11 - 2.23737315891078e45 * cos(theta) ** 9 + 2.41878179341706e43 * cos(theta) ** 7 - 1.50323816696532e41 * cos(theta) ** 5 + 4.39029838482863e38 * cos(theta) ** 3 - 3.80112414270877e35 * cos(theta) ) * cos(18 * phi) ) # @torch.jit.script def Yl85_m19(theta, phi): return ( 1.19935385017276e-36 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.22336281581029e60 * cos(theta) ** 66 - 1.55272972775921e61 * cos(theta) ** 64 + 9.37216506336101e61 * cos(theta) ** 62 - 3.58035639087185e62 * cos(theta) ** 60 + 9.71967915926868e62 * cos(theta) ** 58 - 1.99585461494051e63 * cos(theta) ** 56 + 3.22181981866707e63 * cos(theta) ** 54 - 4.19510842630808e63 * cos(theta) ** 52 + 4.48605949458429e63 * cos(theta) ** 50 - 3.99086628966286e63 * cos(theta) ** 48 + 2.98125640711239e63 * cos(theta) ** 46 - 1.88261158106243e63 * cos(theta) ** 44 + 1.00960915855162e63 * cos(theta) ** 42 - 4.61153042712437e62 * cos(theta) ** 40 + 1.79670016641209e62 * cos(theta) ** 38 - 5.97201048221136e61 * cos(theta) ** 36 + 1.69171160242498e61 * cos(theta) ** 34 - 4.07492575766601e60 * cos(theta) ** 32 + 8.31754393334296e59 * cos(theta) ** 30 - 1.43178931974839e59 * cos(theta) ** 28 + 2.06571130864463e58 * cos(theta) ** 26 - 2.47824354119418e57 * cos(theta) ** 24 + 2.4480859605211e56 * cos(theta) ** 22 - 1.96698385001869e55 * cos(theta) ** 20 + 1.26601264059469e54 * cos(theta) ** 18 - 6.40330360366899e52 * cos(theta) ** 16 + 2.48350495294208e51 * cos(theta) ** 14 - 7.15412949407183e49 * cos(theta) ** 12 + 1.46637436835013e48 * cos(theta) ** 10 - 2.0136358430197e46 * cos(theta) ** 8 + 1.69314725539194e44 * cos(theta) ** 6 - 7.51619083482662e41 * cos(theta) ** 4 + 1.31708951544859e39 * cos(theta) ** 2 - 3.80112414270877e35 ) * cos(19 * phi) ) # @torch.jit.script def Yl85_m20(theta, phi): return ( 1.44072375286506e-38 * (1.0 - cos(theta) ** 2) ** 10 * ( 8.07419458434792e61 * cos(theta) ** 65 - 9.93747025765897e62 * cos(theta) ** 63 + 5.81074233928382e63 * cos(theta) ** 61 - 2.14821383452311e64 * cos(theta) ** 59 + 5.63741391237583e64 * cos(theta) ** 57 - 1.11767858436669e65 * cos(theta) ** 55 + 1.73978270208022e65 * cos(theta) ** 53 - 2.1814563816802e65 * cos(theta) ** 51 + 2.24302974729214e65 * cos(theta) ** 49 - 1.91561581903817e65 * cos(theta) ** 47 + 1.3713779472717e65 * cos(theta) ** 45 - 8.28349095667468e64 * cos(theta) ** 43 + 4.2403584659168e64 * cos(theta) ** 41 - 1.84461217084975e64 * cos(theta) ** 39 + 6.82746063236596e63 * cos(theta) ** 37 - 2.14992377359609e63 * cos(theta) ** 35 + 5.75181944824493e62 * cos(theta) ** 33 - 1.30397624245312e62 * cos(theta) ** 31 + 2.49526318000289e61 * cos(theta) ** 29 - 4.0090100952955e60 * cos(theta) ** 27 + 5.37084940247603e59 * cos(theta) ** 25 - 5.94778449886604e58 * cos(theta) ** 23 + 5.38578911314641e57 * cos(theta) ** 21 - 3.93396770003738e56 * cos(theta) ** 19 + 2.27882275307043e55 * cos(theta) ** 17 - 1.02452857658704e54 * cos(theta) ** 15 + 3.47690693411891e52 * cos(theta) ** 13 - 8.58495539288619e50 * cos(theta) ** 11 + 1.46637436835013e49 * cos(theta) ** 9 - 1.61090867441576e47 * cos(theta) ** 7 + 1.01588835323517e45 * cos(theta) ** 5 - 3.00647633393065e42 * cos(theta) ** 3 + 2.63417903089718e39 * cos(theta) ) * cos(20 * phi) ) # @torch.jit.script def Yl85_m21(theta, phi): return ( 1.73568577984927e-40 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 5.24822647982615e63 * cos(theta) ** 64 - 6.26060626232515e64 * cos(theta) ** 62 + 3.54455282696313e65 * cos(theta) ** 60 - 1.26744616236864e66 * cos(theta) ** 58 + 3.21332593005422e66 * cos(theta) ** 56 - 6.14723221401678e66 * cos(theta) ** 54 + 9.22084832102517e66 * cos(theta) ** 52 - 1.1125427546569e67 * cos(theta) ** 50 + 1.09908457617315e67 * cos(theta) ** 48 - 9.0033943494794e66 * cos(theta) ** 46 + 6.17120076272264e66 * cos(theta) ** 44 - 3.56190111137011e66 * cos(theta) ** 42 + 1.73854697102589e66 * cos(theta) ** 40 - 7.19398746631402e65 * cos(theta) ** 38 + 2.5261604339754e65 * cos(theta) ** 36 - 7.52473320758631e64 * cos(theta) ** 34 + 1.89810041792083e64 * cos(theta) ** 32 - 4.04232635160468e63 * cos(theta) ** 30 + 7.23626322200838e62 * cos(theta) ** 28 - 1.08243272572979e62 * cos(theta) ** 26 + 1.34271235061901e61 * cos(theta) ** 24 - 1.36799043473919e60 * cos(theta) ** 22 + 1.13101571376075e59 * cos(theta) ** 20 - 7.47453863007102e57 * cos(theta) ** 18 + 3.87399868021974e56 * cos(theta) ** 16 - 1.53679286488056e55 * cos(theta) ** 14 + 4.51997901435458e53 * cos(theta) ** 12 - 9.44345093217481e51 * cos(theta) ** 10 + 1.31973693151511e50 * cos(theta) ** 8 - 1.12763607209103e48 * cos(theta) ** 6 + 5.07944176617583e45 * cos(theta) ** 4 - 9.01942900179194e42 * cos(theta) ** 2 + 2.63417903089718e39 ) * cos(21 * phi) ) # @torch.jit.script def Yl85_m22(theta, phi): return ( 2.09743847112246e-42 * (1.0 - cos(theta) ** 2) ** 11 * ( 3.35886494708873e65 * cos(theta) ** 63 - 3.8815758826416e66 * cos(theta) ** 61 + 2.12673169617788e67 * cos(theta) ** 59 - 7.35118774173809e67 * cos(theta) ** 57 + 1.79946252083037e68 * cos(theta) ** 55 - 3.31950539556906e68 * cos(theta) ** 53 + 4.79484112693309e68 * cos(theta) ** 51 - 5.56271377328452e68 * cos(theta) ** 49 + 5.27560596563112e68 * cos(theta) ** 47 - 4.14156140076053e68 * cos(theta) ** 45 + 2.71532833559796e68 * cos(theta) ** 43 - 1.49599846677545e68 * cos(theta) ** 41 + 6.95418788410355e67 * cos(theta) ** 39 - 2.73371523719933e67 * cos(theta) ** 37 + 9.09417756231145e66 * cos(theta) ** 35 - 2.55840929057934e66 * cos(theta) ** 33 + 6.07392133734665e65 * cos(theta) ** 31 - 1.2126979054814e65 * cos(theta) ** 29 + 2.02615370216235e64 * cos(theta) ** 27 - 2.81432508689744e63 * cos(theta) ** 25 + 3.22250964148562e62 * cos(theta) ** 23 - 3.00957895642622e61 * cos(theta) ** 21 + 2.26203142752149e60 * cos(theta) ** 19 - 1.34541695341278e59 * cos(theta) ** 17 + 6.19839788835158e57 * cos(theta) ** 15 - 2.15151001083278e56 * cos(theta) ** 13 + 5.42397481722549e54 * cos(theta) ** 11 - 9.44345093217481e52 * cos(theta) ** 9 + 1.05578954521209e51 * cos(theta) ** 7 - 6.7658164325462e48 * cos(theta) ** 5 + 2.03177670647033e46 * cos(theta) ** 3 - 1.80388580035839e43 * cos(theta) ) * cos(22 * phi) ) # @torch.jit.script def Yl85_m23(theta, phi): return ( 2.54276998926749e-44 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 2.1160849166659e67 * cos(theta) ** 62 - 2.36776128841137e68 * cos(theta) ** 60 + 1.25477170074495e69 * cos(theta) ** 58 - 4.19017701279071e69 * cos(theta) ** 56 + 9.89704386456701e69 * cos(theta) ** 54 - 1.7593378596516e70 * cos(theta) ** 52 + 2.44536897473587e70 * cos(theta) ** 50 - 2.72572974890941e70 * cos(theta) ** 48 + 2.47953480384663e70 * cos(theta) ** 46 - 1.86370263034224e70 * cos(theta) ** 44 + 1.16759118430712e70 * cos(theta) ** 42 - 6.13359371377934e69 * cos(theta) ** 40 + 2.71213327480039e69 * cos(theta) ** 38 - 1.01147463776375e69 * cos(theta) ** 36 + 3.18296214680901e68 * cos(theta) ** 34 - 8.44275065891184e67 * cos(theta) ** 32 + 1.88291561457746e67 * cos(theta) ** 30 - 3.51682392589607e66 * cos(theta) ** 28 + 5.47061499583833e65 * cos(theta) ** 26 - 7.0358127172436e64 * cos(theta) ** 24 + 7.41177217541693e63 * cos(theta) ** 22 - 6.32011580849505e62 * cos(theta) ** 20 + 4.29785971229084e61 * cos(theta) ** 18 - 2.28720882080173e60 * cos(theta) ** 16 + 9.29759683252737e58 * cos(theta) ** 14 - 2.79696301408261e57 * cos(theta) ** 12 + 5.96637229894804e55 * cos(theta) ** 10 - 8.49910583895733e53 * cos(theta) ** 8 + 7.39052681648463e51 * cos(theta) ** 6 - 3.3829082162731e49 * cos(theta) ** 4 + 6.09533011941099e46 * cos(theta) ** 2 - 1.80388580035839e43 ) * cos(23 * phi) ) # @torch.jit.script def Yl85_m24(theta, phi): return ( 3.09312864802992e-46 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.31197264833286e69 * cos(theta) ** 61 - 1.42065677304682e70 * cos(theta) ** 59 + 7.2776758643207e70 * cos(theta) ** 57 - 2.3464991271628e71 * cos(theta) ** 55 + 5.34440368686619e71 * cos(theta) ** 53 - 9.14855687018833e71 * cos(theta) ** 51 + 1.22268448736794e72 * cos(theta) ** 49 - 1.30835027947652e72 * cos(theta) ** 47 + 1.14058600976945e72 * cos(theta) ** 45 - 8.20029157350584e71 * cos(theta) ** 43 + 4.90388297408992e71 * cos(theta) ** 41 - 2.45343748551173e71 * cos(theta) ** 39 + 1.03061064442415e71 * cos(theta) ** 37 - 3.64130869594951e70 * cos(theta) ** 35 + 1.08220712991506e70 * cos(theta) ** 33 - 2.70168021085179e69 * cos(theta) ** 31 + 5.64874684373238e68 * cos(theta) ** 29 - 9.847106992509e67 * cos(theta) ** 27 + 1.42235989891797e67 * cos(theta) ** 25 - 1.68859505213846e66 * cos(theta) ** 23 + 1.63058987859172e65 * cos(theta) ** 21 - 1.26402316169901e64 * cos(theta) ** 19 + 7.73614748212351e62 * cos(theta) ** 17 - 3.65953411328277e61 * cos(theta) ** 15 + 1.30166355655383e60 * cos(theta) ** 13 - 3.35635561689914e58 * cos(theta) ** 11 + 5.96637229894804e56 * cos(theta) ** 9 - 6.79928467116586e54 * cos(theta) ** 7 + 4.43431608989078e52 * cos(theta) ** 5 - 1.35316328650924e50 * cos(theta) ** 3 + 1.2190660238822e47 * cos(theta) ) * cos(24 * phi) ) # @torch.jit.script def Yl85_m25(theta, phi): return ( 3.77604119202241e-48 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 8.00303315483044e70 * cos(theta) ** 60 - 8.38187496097626e71 * cos(theta) ** 58 + 4.1482752426628e72 * cos(theta) ** 56 - 1.29057451993954e73 * cos(theta) ** 54 + 2.83253395403908e73 * cos(theta) ** 52 - 4.66576400379605e73 * cos(theta) ** 50 + 5.99115398810289e73 * cos(theta) ** 48 - 6.14924631353964e73 * cos(theta) ** 46 + 5.13263704396252e73 * cos(theta) ** 44 - 3.52612537660751e73 * cos(theta) ** 42 + 2.01059201937687e73 * cos(theta) ** 40 - 9.56840619349576e72 * cos(theta) ** 38 + 3.81325938436934e72 * cos(theta) ** 36 - 1.27445804358233e72 * cos(theta) ** 34 + 3.57128352871971e71 * cos(theta) ** 32 - 8.37520865364054e70 * cos(theta) ** 30 + 1.63813658468239e70 * cos(theta) ** 28 - 2.65871888797743e69 * cos(theta) ** 26 + 3.55589974729492e68 * cos(theta) ** 24 - 3.88376861991847e67 * cos(theta) ** 22 + 3.42423874504262e66 * cos(theta) ** 20 - 2.40164400722812e65 * cos(theta) ** 18 + 1.315145071961e64 * cos(theta) ** 16 - 5.48930116992416e62 * cos(theta) ** 14 + 1.69216262351998e61 * cos(theta) ** 12 - 3.69199117858905e59 * cos(theta) ** 10 + 5.36973506905324e57 * cos(theta) ** 8 - 4.7594992698161e55 * cos(theta) ** 6 + 2.21715804494539e53 * cos(theta) ** 4 - 4.05948985952772e50 * cos(theta) ** 2 + 1.2190660238822e47 ) * cos(25 * phi) ) # @torch.jit.script def Yl85_m26(theta, phi): return ( 4.62700116333901e-50 * (1.0 - cos(theta) ** 2) ** 13 * ( 4.80181989289826e72 * cos(theta) ** 59 - 4.86148747736623e73 * cos(theta) ** 57 + 2.32303413589117e74 * cos(theta) ** 55 - 6.96910240767351e74 * cos(theta) ** 53 + 1.47291765610032e75 * cos(theta) ** 51 - 2.33288200189802e75 * cos(theta) ** 49 + 2.87575391428939e75 * cos(theta) ** 47 - 2.82865330422823e75 * cos(theta) ** 45 + 2.25836029934351e75 * cos(theta) ** 43 - 1.48097265817516e75 * cos(theta) ** 41 + 8.04236807750746e74 * cos(theta) ** 39 - 3.63599435352839e74 * cos(theta) ** 37 + 1.37277337837296e74 * cos(theta) ** 35 - 4.33315734817991e73 * cos(theta) ** 33 + 1.14281072919031e73 * cos(theta) ** 31 - 2.51256259609216e72 * cos(theta) ** 29 + 4.58678243711069e71 * cos(theta) ** 27 - 6.91266910874132e70 * cos(theta) ** 25 + 8.5341593935078e69 * cos(theta) ** 23 - 8.54429096382063e68 * cos(theta) ** 21 + 6.84847749008524e67 * cos(theta) ** 19 - 4.32295921301062e66 * cos(theta) ** 17 + 2.10423211513759e65 * cos(theta) ** 15 - 7.68502163789382e63 * cos(theta) ** 13 + 2.03059514822398e62 * cos(theta) ** 11 - 3.69199117858905e60 * cos(theta) ** 9 + 4.29578805524259e58 * cos(theta) ** 7 - 2.85569956188966e56 * cos(theta) ** 5 + 8.86863217978156e53 * cos(theta) ** 3 - 8.11897971905544e50 * cos(theta) ) * cos(26 * phi) ) # @torch.jit.script def Yl85_m27(theta, phi): return ( 5.69199606972627e-52 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 2.83307373680998e74 * cos(theta) ** 58 - 2.77104786209875e75 * cos(theta) ** 56 + 1.27766877474014e76 * cos(theta) ** 54 - 3.69362427606696e76 * cos(theta) ** 52 + 7.51188004611164e76 * cos(theta) ** 50 - 1.14311218093003e77 * cos(theta) ** 48 + 1.35160433971601e77 * cos(theta) ** 46 - 1.27289398690271e77 * cos(theta) ** 44 + 9.71094928717709e76 * cos(theta) ** 42 - 6.07198789851814e76 * cos(theta) ** 40 + 3.13652355022791e76 * cos(theta) ** 38 - 1.3453179108055e76 * cos(theta) ** 36 + 4.80470682430537e75 * cos(theta) ** 34 - 1.42994192489937e75 * cos(theta) ** 32 + 3.54271326048995e74 * cos(theta) ** 30 - 7.28643152866727e73 * cos(theta) ** 28 + 1.23843125801989e73 * cos(theta) ** 26 - 1.72816727718533e72 * cos(theta) ** 24 + 1.96285666050679e71 * cos(theta) ** 22 - 1.79430110240233e70 * cos(theta) ** 20 + 1.3012107231162e69 * cos(theta) ** 18 - 7.34903066211805e67 * cos(theta) ** 16 + 3.15634817270639e66 * cos(theta) ** 14 - 9.99052812926197e64 * cos(theta) ** 12 + 2.23365466304638e63 * cos(theta) ** 10 - 3.32279206073014e61 * cos(theta) ** 8 + 3.00705163866981e59 * cos(theta) ** 6 - 1.42784978094483e57 * cos(theta) ** 4 + 2.66058965393447e54 * cos(theta) ** 2 - 8.11897971905544e50 ) * cos(27 * phi) ) # @torch.jit.script def Yl85_m28(theta, phi): return ( 7.03090731711277e-54 * (1.0 - cos(theta) ** 2) ** 14 * ( 1.64318276734979e76 * cos(theta) ** 57 - 1.5517868027753e77 * cos(theta) ** 55 + 6.89941138359677e77 * cos(theta) ** 53 - 1.92068462355482e78 * cos(theta) ** 51 + 3.75594002305582e78 * cos(theta) ** 49 - 5.48693846846415e78 * cos(theta) ** 47 + 6.21737996269366e78 * cos(theta) ** 45 - 5.6007335423719e78 * cos(theta) ** 43 + 4.07859870061438e78 * cos(theta) ** 41 - 2.42879515940725e78 * cos(theta) ** 39 + 1.19187894908661e78 * cos(theta) ** 37 - 4.84314447889982e77 * cos(theta) ** 35 + 1.63360032026383e77 * cos(theta) ** 33 - 4.57581415967799e76 * cos(theta) ** 31 + 1.06281397814698e76 * cos(theta) ** 29 - 2.04020082802684e75 * cos(theta) ** 27 + 3.21992127085171e74 * cos(theta) ** 25 - 4.14760146524479e73 * cos(theta) ** 23 + 4.31828465311495e72 * cos(theta) ** 21 - 3.58860220480467e71 * cos(theta) ** 19 + 2.34217930160915e70 * cos(theta) ** 17 - 1.17584490593889e69 * cos(theta) ** 15 + 4.41888744178895e67 * cos(theta) ** 13 - 1.19886337551144e66 * cos(theta) ** 11 + 2.23365466304638e64 * cos(theta) ** 9 - 2.65823364858412e62 * cos(theta) ** 7 + 1.80423098320189e60 * cos(theta) ** 5 - 5.71139912377932e57 * cos(theta) ** 3 + 5.32117930786894e54 * cos(theta) ) * cos(28 * phi) ) # @torch.jit.script def Yl85_m29(theta, phi): return ( 8.72210919618343e-56 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 9.36614177389378e77 * cos(theta) ** 56 - 8.53482741526415e78 * cos(theta) ** 54 + 3.65668803330629e79 * cos(theta) ** 52 - 9.79549158012957e79 * cos(theta) ** 50 + 1.84041061129735e80 * cos(theta) ** 48 - 2.57886108017815e80 * cos(theta) ** 46 + 2.79782098321215e80 * cos(theta) ** 44 - 2.40831542321992e80 * cos(theta) ** 42 + 1.67222546725189e80 * cos(theta) ** 40 - 9.47230112168829e79 * cos(theta) ** 38 + 4.40995211162044e79 * cos(theta) ** 36 - 1.69510056761494e79 * cos(theta) ** 34 + 5.39088105687063e78 * cos(theta) ** 32 - 1.41850238950018e78 * cos(theta) ** 30 + 3.08216053662626e77 * cos(theta) ** 28 - 5.50854223567246e76 * cos(theta) ** 26 + 8.04980317712927e75 * cos(theta) ** 24 - 9.53948337006302e74 * cos(theta) ** 22 + 9.06839777154139e73 * cos(theta) ** 20 - 6.81834418912886e72 * cos(theta) ** 18 + 3.98170481273556e71 * cos(theta) ** 16 - 1.76376735890833e70 * cos(theta) ** 14 + 5.74455367432563e68 * cos(theta) ** 12 - 1.31874971306258e67 * cos(theta) ** 10 + 2.01028919674174e65 * cos(theta) ** 8 - 1.86076355400888e63 * cos(theta) ** 6 + 9.02115491600944e60 * cos(theta) ** 4 - 1.7134197371338e58 * cos(theta) ** 2 + 5.32117930786894e54 ) * cos(29 * phi) ) # @torch.jit.script def Yl85_m30(theta, phi): return ( 1.08687246354893e-57 * (1.0 - cos(theta) ** 2) ** 15 * ( 5.24503939338052e79 * cos(theta) ** 55 - 4.60880680424264e80 * cos(theta) ** 53 + 1.90147777731927e81 * cos(theta) ** 51 - 4.89774579006479e81 * cos(theta) ** 49 + 8.83397093422728e81 * cos(theta) ** 47 - 1.18627609688195e82 * cos(theta) ** 45 + 1.23104123261334e82 * cos(theta) ** 43 - 1.01149247775237e82 * cos(theta) ** 41 + 6.68890186900758e81 * cos(theta) ** 39 - 3.59947442624155e81 * cos(theta) ** 37 + 1.58758276018336e81 * cos(theta) ** 35 - 5.76334192989078e80 * cos(theta) ** 33 + 1.7250819381986e80 * cos(theta) ** 31 - 4.25550716850053e79 * cos(theta) ** 29 + 8.63004950255352e78 * cos(theta) ** 27 - 1.43222098127484e78 * cos(theta) ** 25 + 1.93195276251102e77 * cos(theta) ** 23 - 2.09868634141386e76 * cos(theta) ** 21 + 1.81367955430828e75 * cos(theta) ** 19 - 1.2273019540432e74 * cos(theta) ** 17 + 6.37072770037689e72 * cos(theta) ** 15 - 2.46927430247166e71 * cos(theta) ** 13 + 6.89346440919076e69 * cos(theta) ** 11 - 1.31874971306258e68 * cos(theta) ** 9 + 1.60823135739339e66 * cos(theta) ** 7 - 1.11645813240533e64 * cos(theta) ** 5 + 3.60846196640378e61 * cos(theta) ** 3 - 3.42683947426759e58 * cos(theta) ) * cos(30 * phi) ) # @torch.jit.script def Yl85_m31(theta, phi): return ( 1.36071836551589e-59 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 2.88477166635928e81 * cos(theta) ** 54 - 2.4426676062486e82 * cos(theta) ** 52 + 9.69753666432828e82 * cos(theta) ** 50 - 2.39989543713175e83 * cos(theta) ** 48 + 4.15196633908682e83 * cos(theta) ** 46 - 5.33824243596877e83 * cos(theta) ** 44 + 5.29347730023738e83 * cos(theta) ** 42 - 4.1471191587847e83 * cos(theta) ** 40 + 2.60867172891296e83 * cos(theta) ** 38 - 1.33180553770937e83 * cos(theta) ** 36 + 5.55653966064176e82 * cos(theta) ** 34 - 1.90190283686396e82 * cos(theta) ** 32 + 5.34775400841566e81 * cos(theta) ** 30 - 1.23409707886515e81 * cos(theta) ** 28 + 2.33011336568945e80 * cos(theta) ** 26 - 3.5805524531871e79 * cos(theta) ** 24 + 4.44349135377536e78 * cos(theta) ** 22 - 4.40724131696912e77 * cos(theta) ** 20 + 3.44599115318573e76 * cos(theta) ** 18 - 2.08641332187343e75 * cos(theta) ** 16 + 9.55609155056534e73 * cos(theta) ** 14 - 3.21005659321316e72 * cos(theta) ** 12 + 7.58281085010983e70 * cos(theta) ** 10 - 1.18687474175632e69 * cos(theta) ** 8 + 1.12576195017537e67 * cos(theta) ** 6 - 5.58229066202664e64 * cos(theta) ** 4 + 1.08253858992113e62 * cos(theta) ** 2 - 3.42683947426759e58 ) * cos(31 * phi) ) # @torch.jit.script def Yl85_m32(theta, phi): return ( 1.71190017245824e-61 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.55777669983401e83 * cos(theta) ** 53 - 1.27018715524927e84 * cos(theta) ** 51 + 4.84876833216414e84 * cos(theta) ** 49 - 1.15194980982324e85 * cos(theta) ** 47 + 1.90990451597994e85 * cos(theta) ** 45 - 2.34882667182626e85 * cos(theta) ** 43 + 2.2232604660997e85 * cos(theta) ** 41 - 1.65884766351388e85 * cos(theta) ** 39 + 9.91295256986923e84 * cos(theta) ** 37 - 4.79449993575375e84 * cos(theta) ** 35 + 1.8892234846182e84 * cos(theta) ** 33 - 6.08608907796466e83 * cos(theta) ** 31 + 1.6043262025247e83 * cos(theta) ** 29 - 3.45547182082243e82 * cos(theta) ** 27 + 6.05829475079257e81 * cos(theta) ** 25 - 8.59332588764903e80 * cos(theta) ** 23 + 9.77568097830578e79 * cos(theta) ** 21 - 8.81448263393823e78 * cos(theta) ** 19 + 6.20278407573431e77 * cos(theta) ** 17 - 3.33826131499749e76 * cos(theta) ** 15 + 1.33785281707915e75 * cos(theta) ** 13 - 3.8520679118558e73 * cos(theta) ** 11 + 7.58281085010983e71 * cos(theta) ** 9 - 9.49499793405058e69 * cos(theta) ** 7 + 6.75457170105224e67 * cos(theta) ** 5 - 2.23291626481066e65 * cos(theta) ** 3 + 2.16507717984227e62 * cos(theta) ) * cos(32 * phi) ) # @torch.jit.script def Yl85_m33(theta, phi): return ( 2.16470887267962e-63 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 8.25621650912027e84 * cos(theta) ** 52 - 6.47795449177129e85 * cos(theta) ** 50 + 2.37589648276043e86 * cos(theta) ** 48 - 5.41416410616922e86 * cos(theta) ** 46 + 8.59457032190973e86 * cos(theta) ** 44 - 1.00999546888529e87 * cos(theta) ** 42 + 9.11536791100877e86 * cos(theta) ** 40 - 6.46950588770413e86 * cos(theta) ** 38 + 3.66779245085162e86 * cos(theta) ** 36 - 1.67807497751381e86 * cos(theta) ** 34 + 6.23443749924005e85 * cos(theta) ** 32 - 1.88668761416905e85 * cos(theta) ** 30 + 4.65254598732163e84 * cos(theta) ** 28 - 9.32977391622056e83 * cos(theta) ** 26 + 1.51457368769814e83 * cos(theta) ** 24 - 1.97646495415928e82 * cos(theta) ** 22 + 2.05289300544421e81 * cos(theta) ** 20 - 1.67475170044826e80 * cos(theta) ** 18 + 1.05447329287483e79 * cos(theta) ** 16 - 5.00739197249624e77 * cos(theta) ** 14 + 1.73920866220289e76 * cos(theta) ** 12 - 4.23727470304138e74 * cos(theta) ** 10 + 6.82452976509885e72 * cos(theta) ** 8 - 6.6464985538354e70 * cos(theta) ** 6 + 3.37728585052612e68 * cos(theta) ** 4 - 6.69874879443197e65 * cos(theta) ** 2 + 2.16507717984227e62 ) * cos(33 * phi) ) # @torch.jit.script def Yl85_m34(theta, phi): return ( 2.75184738543716e-65 * (1.0 - cos(theta) ** 2) ** 17 * ( 4.29323258474254e86 * cos(theta) ** 51 - 3.23897724588565e87 * cos(theta) ** 49 + 1.14043031172501e88 * cos(theta) ** 47 - 2.49051548883784e88 * cos(theta) ** 45 + 3.78161094164028e88 * cos(theta) ** 43 - 4.24198096931823e88 * cos(theta) ** 41 + 3.64614716440351e88 * cos(theta) ** 39 - 2.45841223732757e88 * cos(theta) ** 37 + 1.32040528230658e88 * cos(theta) ** 35 - 5.70545492354696e87 * cos(theta) ** 33 + 1.99501999975682e87 * cos(theta) ** 31 - 5.66006284250714e86 * cos(theta) ** 29 + 1.30271287645006e86 * cos(theta) ** 27 - 2.42574121821734e85 * cos(theta) ** 25 + 3.63497685047554e84 * cos(theta) ** 23 - 4.34822289915041e83 * cos(theta) ** 21 + 4.10578601088843e82 * cos(theta) ** 19 - 3.01455306080688e81 * cos(theta) ** 17 + 1.68715726859973e80 * cos(theta) ** 15 - 7.01034876149473e78 * cos(theta) ** 13 + 2.08705039464347e77 * cos(theta) ** 11 - 4.23727470304138e75 * cos(theta) ** 9 + 5.45962381207908e73 * cos(theta) ** 7 - 3.98789913230124e71 * cos(theta) ** 5 + 1.35091434021045e69 * cos(theta) ** 3 - 1.33974975888639e66 * cos(theta) ) * cos(34 * phi) ) # @torch.jit.script def Yl85_m35(theta, phi): return ( 3.51761766546913e-67 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 2.1895486182187e88 * cos(theta) ** 50 - 1.58709885048397e89 * cos(theta) ** 48 + 5.36002246510753e89 * cos(theta) ** 46 - 1.12073196997703e90 * cos(theta) ** 44 + 1.62609270490532e90 * cos(theta) ** 42 - 1.73921219742047e90 * cos(theta) ** 40 + 1.42199739411737e90 * cos(theta) ** 38 - 9.09612527811201e89 * cos(theta) ** 36 + 4.62141848807304e89 * cos(theta) ** 34 - 1.8828001247705e89 * cos(theta) ** 32 + 6.18456199924613e88 * cos(theta) ** 30 - 1.64141822432707e88 * cos(theta) ** 28 + 3.51732476641515e87 * cos(theta) ** 26 - 6.06435304554336e86 * cos(theta) ** 24 + 8.36044675609375e85 * cos(theta) ** 22 - 9.13126808821586e84 * cos(theta) ** 20 + 7.80099342068801e83 * cos(theta) ** 18 - 5.12474020337169e82 * cos(theta) ** 16 + 2.5307359028996e81 * cos(theta) ** 14 - 9.11345338994315e79 * cos(theta) ** 12 + 2.29575543410782e78 * cos(theta) ** 10 - 3.81354723273724e76 * cos(theta) ** 8 + 3.82173666845536e74 * cos(theta) ** 6 - 1.99394956615062e72 * cos(theta) ** 4 + 4.05274302063134e69 * cos(theta) ** 2 - 1.33974975888639e66 ) * cos(35 * phi) ) # @torch.jit.script def Yl85_m36(theta, phi): return ( 4.52242055431784e-69 * (1.0 - cos(theta) ** 2) ** 18 * ( 1.09477430910935e90 * cos(theta) ** 49 - 7.61807448232304e90 * cos(theta) ** 47 + 2.46561033394946e91 * cos(theta) ** 45 - 4.93122066789892e91 * cos(theta) ** 43 + 6.82958936060234e91 * cos(theta) ** 41 - 6.95684878968189e91 * cos(theta) ** 39 + 5.403590097646e91 * cos(theta) ** 37 - 3.27460510012032e91 * cos(theta) ** 35 + 1.57128228594483e91 * cos(theta) ** 33 - 6.02496039926559e90 * cos(theta) ** 31 + 1.85536859977384e90 * cos(theta) ** 29 - 4.5959710281158e89 * cos(theta) ** 27 + 9.14504439267939e88 * cos(theta) ** 25 - 1.45544473093041e88 * cos(theta) ** 23 + 1.83929828634062e87 * cos(theta) ** 21 - 1.82625361764317e86 * cos(theta) ** 19 + 1.40417881572384e85 * cos(theta) ** 17 - 8.1995843253947e83 * cos(theta) ** 15 + 3.54303026405944e82 * cos(theta) ** 13 - 1.09361440679318e81 * cos(theta) ** 11 + 2.29575543410782e79 * cos(theta) ** 9 - 3.05083778618979e77 * cos(theta) ** 7 + 2.29304200107321e75 * cos(theta) ** 5 - 7.97579826460248e72 * cos(theta) ** 3 + 8.10548604126269e69 * cos(theta) ) * cos(36 * phi) ) # @torch.jit.script def Yl85_m37(theta, phi): return ( 5.8491531257598e-71 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 5.36439411463581e91 * cos(theta) ** 48 - 3.58049500669183e92 * cos(theta) ** 46 + 1.10952465027726e93 * cos(theta) ** 44 - 2.12042488719654e93 * cos(theta) ** 42 + 2.80013163784696e93 * cos(theta) ** 40 - 2.71317102797594e93 * cos(theta) ** 38 + 1.99932833612902e93 * cos(theta) ** 36 - 1.14611178504211e93 * cos(theta) ** 34 + 5.18523154361795e92 * cos(theta) ** 32 - 1.86773772377233e92 * cos(theta) ** 30 + 5.38056893934414e91 * cos(theta) ** 28 - 1.24091217759126e91 * cos(theta) ** 26 + 2.28626109816985e90 * cos(theta) ** 24 - 3.34752288113994e89 * cos(theta) ** 22 + 3.86252640131531e88 * cos(theta) ** 20 - 3.46988187352203e87 * cos(theta) ** 18 + 2.38710398673053e86 * cos(theta) ** 16 - 1.22993764880921e85 * cos(theta) ** 14 + 4.60593934327727e83 * cos(theta) ** 12 - 1.2029758474725e82 * cos(theta) ** 10 + 2.06617989069704e80 * cos(theta) ** 8 - 2.13558645033285e78 * cos(theta) ** 6 + 1.14652100053661e76 * cos(theta) ** 4 - 2.39273947938075e73 * cos(theta) ** 2 + 8.10548604126269e69 ) * cos(37 * phi) ) # @torch.jit.script def Yl85_m38(theta, phi): return ( 7.61236872927005e-73 * (1.0 - cos(theta) ** 2) ** 19 * ( 2.57490917502519e93 * cos(theta) ** 47 - 1.64702770307824e94 * cos(theta) ** 45 + 4.88190846121993e94 * cos(theta) ** 43 - 8.90578452622546e94 * cos(theta) ** 41 + 1.12005265513878e95 * cos(theta) ** 39 - 1.03100499063086e95 * cos(theta) ** 37 + 7.19758201006447e94 * cos(theta) ** 35 - 3.89678006914318e94 * cos(theta) ** 33 + 1.65927409395774e94 * cos(theta) ** 31 - 5.603213171317e93 * cos(theta) ** 29 + 1.50655930301636e93 * cos(theta) ** 27 - 3.22637166173729e92 * cos(theta) ** 25 + 5.48702663560763e91 * cos(theta) ** 23 - 7.36455033850786e90 * cos(theta) ** 21 + 7.72505280263062e89 * cos(theta) ** 19 - 6.24578737233965e88 * cos(theta) ** 17 + 3.81936637876885e87 * cos(theta) ** 15 - 1.72191270833289e86 * cos(theta) ** 13 + 5.52712721193272e84 * cos(theta) ** 11 - 1.2029758474725e83 * cos(theta) ** 9 + 1.65294391255763e81 * cos(theta) ** 7 - 1.28135187019971e79 * cos(theta) ** 5 + 4.58608400214643e76 * cos(theta) ** 3 - 4.78547895876149e73 * cos(theta) ) * cos(38 * phi) ) # @torch.jit.script def Yl85_m39(theta, phi): return ( 9.97148970048567e-75 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 1.21020731226184e95 * cos(theta) ** 46 - 7.41162466385208e95 * cos(theta) ** 44 + 2.09922063832457e96 * cos(theta) ** 42 - 3.65137165575244e96 * cos(theta) ** 40 + 4.36820535504126e96 * cos(theta) ** 38 - 3.81471846533417e96 * cos(theta) ** 36 + 2.51915370352256e96 * cos(theta) ** 34 - 1.28593742281725e96 * cos(theta) ** 32 + 5.143749691269e95 * cos(theta) ** 30 - 1.62493181968193e95 * cos(theta) ** 28 + 4.06771011814417e94 * cos(theta) ** 26 - 8.06592915434322e93 * cos(theta) ** 24 + 1.26201612618976e93 * cos(theta) ** 22 - 1.54655557108665e92 * cos(theta) ** 20 + 1.46776003249982e91 * cos(theta) ** 18 - 1.06178385329774e90 * cos(theta) ** 16 + 5.72904956815328e88 * cos(theta) ** 14 - 2.23848652083275e87 * cos(theta) ** 12 + 6.079839933126e85 * cos(theta) ** 10 - 1.08267826272525e84 * cos(theta) ** 8 + 1.15706073879034e82 * cos(theta) ** 6 - 6.40675935099856e79 * cos(theta) ** 4 + 1.37582520064393e77 * cos(theta) ** 2 - 4.78547895876149e73 ) * cos(39 * phi) ) # @torch.jit.script def Yl85_m40(theta, phi): return ( 1.31500111983349e-76 * (1.0 - cos(theta) ** 2) ** 20 * ( 5.56695363640445e96 * cos(theta) ** 45 - 3.26111485209492e97 * cos(theta) ** 43 + 8.8167266809632e97 * cos(theta) ** 41 - 1.46054866230097e98 * cos(theta) ** 39 + 1.65991803491568e98 * cos(theta) ** 37 - 1.3732986475203e98 * cos(theta) ** 35 + 8.56512259197672e97 * cos(theta) ** 33 - 4.1149997530152e97 * cos(theta) ** 31 + 1.5431249073807e97 * cos(theta) ** 29 - 4.5498090951094e96 * cos(theta) ** 27 + 1.05760463071748e96 * cos(theta) ** 25 - 1.93582299704237e95 * cos(theta) ** 23 + 2.77643547761746e94 * cos(theta) ** 21 - 3.0931111421733e93 * cos(theta) ** 19 + 2.64196805849967e92 * cos(theta) ** 17 - 1.69885416527639e91 * cos(theta) ** 15 + 8.02066939541459e89 * cos(theta) ** 13 - 2.6861838249993e88 * cos(theta) ** 11 + 6.079839933126e86 * cos(theta) ** 9 - 8.66142610180197e84 * cos(theta) ** 7 + 6.94236443274204e82 * cos(theta) ** 5 - 2.56270374039942e80 * cos(theta) ** 3 + 2.75165040128786e77 * cos(theta) ) * cos(40 * phi) ) # @torch.jit.script def Yl85_m41(theta, phi): return ( 1.74636328859084e-78 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 2.505129136382e98 * cos(theta) ** 44 - 1.40227938640081e99 * cos(theta) ** 42 + 3.61485793919491e99 * cos(theta) ** 40 - 5.6961397829738e99 * cos(theta) ** 38 + 6.14169672918801e99 * cos(theta) ** 36 - 4.80654526632105e99 * cos(theta) ** 34 + 2.82649045535232e99 * cos(theta) ** 32 - 1.27564992343471e99 * cos(theta) ** 30 + 4.47506223140403e98 * cos(theta) ** 28 - 1.22844845567954e98 * cos(theta) ** 26 + 2.64401157679371e97 * cos(theta) ** 24 - 4.45239289319746e96 * cos(theta) ** 22 + 5.83051450299667e95 * cos(theta) ** 20 - 5.87691117012927e94 * cos(theta) ** 18 + 4.49134569944944e93 * cos(theta) ** 16 - 2.54828124791458e92 * cos(theta) ** 14 + 1.0426870214039e91 * cos(theta) ** 12 - 2.95480220749923e89 * cos(theta) ** 10 + 5.4718559398134e87 * cos(theta) ** 8 - 6.06299827126138e85 * cos(theta) ** 6 + 3.47118221637102e83 * cos(theta) ** 4 - 7.68811122119827e80 * cos(theta) ** 2 + 2.75165040128786e77 ) * cos(41 * phi) ) # @torch.jit.script def Yl85_m42(theta, phi): return ( 2.3361804995891e-80 * (1.0 - cos(theta) ** 2) ** 21 * ( 1.10225682000808e100 * cos(theta) ** 43 - 5.88957342288342e100 * cos(theta) ** 41 + 1.44594317567797e101 * cos(theta) ** 39 - 2.16453311753004e101 * cos(theta) ** 37 + 2.21101082250768e101 * cos(theta) ** 35 - 1.63422539054916e101 * cos(theta) ** 33 + 9.04476945712741e100 * cos(theta) ** 31 - 3.82694977030414e100 * cos(theta) ** 29 + 1.25301742479313e100 * cos(theta) ** 27 - 3.1939659847668e99 * cos(theta) ** 25 + 6.3456277843049e98 * cos(theta) ** 23 - 9.79526436503441e97 * cos(theta) ** 21 + 1.16610290059933e97 * cos(theta) ** 19 - 1.05784401062327e96 * cos(theta) ** 17 + 7.18615311911911e94 * cos(theta) ** 15 - 3.56759374708041e93 * cos(theta) ** 13 + 1.25122442568468e92 * cos(theta) ** 11 - 2.95480220749923e90 * cos(theta) ** 9 + 4.37748475185072e88 * cos(theta) ** 7 - 3.63779896275683e86 * cos(theta) ** 5 + 1.38847288654841e84 * cos(theta) ** 3 - 1.53762224423965e81 * cos(theta) ) * cos(42 * phi) ) # @torch.jit.script def Yl85_m43(theta, phi): return ( 3.14896027468108e-82 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 4.73970432603475e101 * cos(theta) ** 42 - 2.4147251033822e102 * cos(theta) ** 40 + 5.63917838514406e102 * cos(theta) ** 38 - 8.00877253486117e102 * cos(theta) ** 36 + 7.73853787877689e102 * cos(theta) ** 34 - 5.39294378881222e102 * cos(theta) ** 32 + 2.8038785317095e102 * cos(theta) ** 30 - 1.1098154333882e102 * cos(theta) ** 28 + 3.38314704694145e101 * cos(theta) ** 26 - 7.984914961917e100 * cos(theta) ** 24 + 1.45949439039013e100 * cos(theta) ** 22 - 2.05700551665723e99 * cos(theta) ** 20 + 2.21559551113874e98 * cos(theta) ** 18 - 1.79833481805956e97 * cos(theta) ** 16 + 1.07792296786787e96 * cos(theta) ** 14 - 4.63787187120453e94 * cos(theta) ** 12 + 1.37634686825314e93 * cos(theta) ** 10 - 2.65932198674931e91 * cos(theta) ** 8 + 3.0642393262955e89 * cos(theta) ** 6 - 1.81889948137841e87 * cos(theta) ** 4 + 4.16541865964522e84 * cos(theta) ** 2 - 1.53762224423965e81 ) * cos(43 * phi) ) # @torch.jit.script def Yl85_m44(theta, phi): return ( 4.27806798150012e-84 * (1.0 - cos(theta) ** 2) ** 22 * ( 1.9906758169346e103 * cos(theta) ** 41 - 9.65890041352881e103 * cos(theta) ** 39 + 2.14288778635474e104 * cos(theta) ** 37 - 2.88315811255002e104 * cos(theta) ** 35 + 2.63110287878414e104 * cos(theta) ** 33 - 1.72574201241991e104 * cos(theta) ** 31 + 8.41163559512849e103 * cos(theta) ** 29 - 3.10748321348696e103 * cos(theta) ** 27 + 8.79618232204776e102 * cos(theta) ** 25 - 1.91637959086008e102 * cos(theta) ** 23 + 3.21088765885828e101 * cos(theta) ** 21 - 4.11401103331445e100 * cos(theta) ** 19 + 3.98807192004972e99 * cos(theta) ** 17 - 2.87733570889529e98 * cos(theta) ** 15 + 1.50909215501501e97 * cos(theta) ** 13 - 5.56544624544544e95 * cos(theta) ** 11 + 1.37634686825314e94 * cos(theta) ** 9 - 2.12745758939945e92 * cos(theta) ** 7 + 1.8385435957773e90 * cos(theta) ** 5 - 7.27559792551366e87 * cos(theta) ** 3 + 8.33083731929045e84 * cos(theta) ) * cos(44 * phi) ) # @torch.jit.script def Yl85_m45(theta, phi): return ( 5.8598173191461e-86 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 8.16177084943184e104 * cos(theta) ** 40 - 3.76697116127623e105 * cos(theta) ** 38 + 7.92868480951255e105 * cos(theta) ** 36 - 1.00910533939251e106 * cos(theta) ** 34 + 8.68263949998767e105 * cos(theta) ** 32 - 5.34980023850172e105 * cos(theta) ** 30 + 2.43937432258726e105 * cos(theta) ** 28 - 8.39020467641479e104 * cos(theta) ** 26 + 2.19904558051194e104 * cos(theta) ** 24 - 4.40767305897818e103 * cos(theta) ** 22 + 6.74286408360239e102 * cos(theta) ** 20 - 7.81662096329746e101 * cos(theta) ** 18 + 6.77972226408453e100 * cos(theta) ** 16 - 4.31600356334294e99 * cos(theta) ** 14 + 1.96181980151952e98 * cos(theta) ** 12 - 6.12199086998998e96 * cos(theta) ** 10 + 1.23871218142783e95 * cos(theta) ** 8 - 1.48922031257961e93 * cos(theta) ** 6 + 9.19271797888651e90 * cos(theta) ** 4 - 2.1826793776541e88 * cos(theta) ** 2 + 8.33083731929045e84 ) * cos(45 * phi) ) # @torch.jit.script def Yl85_m46(theta, phi): return ( 8.09502945854216e-88 * (1.0 - cos(theta) ** 2) ** 23 * ( 3.26470833977274e106 * cos(theta) ** 39 - 1.43144904128497e107 * cos(theta) ** 37 + 2.85432653142452e107 * cos(theta) ** 35 - 3.43095815393452e107 * cos(theta) ** 33 + 2.77844463999606e107 * cos(theta) ** 31 - 1.60494007155052e107 * cos(theta) ** 29 + 6.83024810324434e106 * cos(theta) ** 27 - 2.18145321586785e106 * cos(theta) ** 25 + 5.27770939322866e105 * cos(theta) ** 23 - 9.696880729752e104 * cos(theta) ** 21 + 1.34857281672048e104 * cos(theta) ** 19 - 1.40699177339354e103 * cos(theta) ** 17 + 1.08475556225352e102 * cos(theta) ** 15 - 6.04240498868011e100 * cos(theta) ** 13 + 2.35418376182342e99 * cos(theta) ** 11 - 6.12199086998998e97 * cos(theta) ** 9 + 9.90969745142263e95 * cos(theta) ** 7 - 8.93532187547768e93 * cos(theta) ** 5 + 3.6770871915546e91 * cos(theta) ** 3 - 4.36535875530819e88 * cos(theta) ) * cos(46 * phi) ) # @torch.jit.script def Yl85_m47(theta, phi): return ( 1.12823395091298e-89 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 1.27323625251137e108 * cos(theta) ** 38 - 5.29636145275439e108 * cos(theta) ** 36 + 9.99014285998582e108 * cos(theta) ** 34 - 1.13221619079839e109 * cos(theta) ** 32 + 8.61317838398777e108 * cos(theta) ** 30 - 4.6543262074965e108 * cos(theta) ** 28 + 1.84416698787597e108 * cos(theta) ** 26 - 5.45363303966961e107 * cos(theta) ** 24 + 1.21387316044259e107 * cos(theta) ** 22 - 2.03634495324792e106 * cos(theta) ** 20 + 2.56228835176891e105 * cos(theta) ** 18 - 2.39188601476902e104 * cos(theta) ** 16 + 1.62713334338029e103 * cos(theta) ** 14 - 7.85512648528415e101 * cos(theta) ** 12 + 2.58960213800576e100 * cos(theta) ** 10 - 5.50979178299098e98 * cos(theta) ** 8 + 6.93678821599584e96 * cos(theta) ** 6 - 4.46766093773884e94 * cos(theta) ** 4 + 1.10312615746638e92 * cos(theta) ** 2 - 4.36535875530819e88 ) * cos(47 * phi) ) # @torch.jit.script def Yl85_m48(theta, phi): return ( 1.58701687836192e-91 * (1.0 - cos(theta) ** 2) ** 24 * ( 4.8382977595432e109 * cos(theta) ** 37 - 1.90669012299158e110 * cos(theta) ** 35 + 3.39664857239518e110 * cos(theta) ** 33 - 3.62309181055486e110 * cos(theta) ** 31 + 2.58395351519633e110 * cos(theta) ** 29 - 1.30321133809902e110 * cos(theta) ** 27 + 4.79483416847752e109 * cos(theta) ** 25 - 1.30887192952071e109 * cos(theta) ** 23 + 2.6705209529737e108 * cos(theta) ** 21 - 4.07268990649584e107 * cos(theta) ** 19 + 4.61211903318403e106 * cos(theta) ** 17 - 3.82701762363044e105 * cos(theta) ** 15 + 2.2779866807324e104 * cos(theta) ** 13 - 9.42615178234097e102 * cos(theta) ** 11 + 2.58960213800576e101 * cos(theta) ** 9 - 4.40783342639279e99 * cos(theta) ** 7 + 4.16207292959751e97 * cos(theta) ** 5 - 1.78706437509554e95 * cos(theta) ** 3 + 2.20625231493276e92 * cos(theta) ) * cos(48 * phi) ) # @torch.jit.script def Yl85_m49(theta, phi): return ( 2.25386699752414e-93 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.79017017103098e111 * cos(theta) ** 36 - 6.67341543047053e111 * cos(theta) ** 34 + 1.12089402889041e112 * cos(theta) ** 32 - 1.12315846127201e112 * cos(theta) ** 30 + 7.49346519406936e111 * cos(theta) ** 28 - 3.51867061286735e111 * cos(theta) ** 26 + 1.19870854211938e111 * cos(theta) ** 24 - 3.01040543789763e110 * cos(theta) ** 22 + 5.60809400124477e109 * cos(theta) ** 20 - 7.7381108223421e108 * cos(theta) ** 18 + 7.84060235641285e107 * cos(theta) ** 16 - 5.74052643544565e106 * cos(theta) ** 14 + 2.96138268495212e105 * cos(theta) ** 12 - 1.03687669605751e104 * cos(theta) ** 10 + 2.33064192420519e102 * cos(theta) ** 8 - 3.08548339847495e100 * cos(theta) ** 6 + 2.08103646479875e98 * cos(theta) ** 4 - 5.36119312528661e95 * cos(theta) ** 2 + 2.20625231493276e92 ) * cos(49 * phi) ) # @torch.jit.script def Yl85_m50(theta, phi): return ( 3.23303309110278e-95 * (1.0 - cos(theta) ** 2) ** 25 * ( 6.44461261571154e112 * cos(theta) ** 35 - 2.26896124635998e113 * cos(theta) ** 33 + 3.58686089244931e113 * cos(theta) ** 31 - 3.36947538381602e113 * cos(theta) ** 29 + 2.09817025433942e113 * cos(theta) ** 27 - 9.14854359345512e112 * cos(theta) ** 25 + 2.87690050108651e112 * cos(theta) ** 23 - 6.62289196337478e111 * cos(theta) ** 21 + 1.12161880024895e111 * cos(theta) ** 19 - 1.39285994802158e110 * cos(theta) ** 17 + 1.25449637702606e109 * cos(theta) ** 15 - 8.03673700962391e107 * cos(theta) ** 13 + 3.55365922194255e106 * cos(theta) ** 11 - 1.03687669605751e105 * cos(theta) ** 9 + 1.86451353936415e103 * cos(theta) ** 7 - 1.85129003908497e101 * cos(theta) ** 5 + 8.32414585919501e98 * cos(theta) ** 3 - 1.07223862505732e96 * cos(theta) ) * cos(50 * phi) ) # @torch.jit.script def Yl85_m51(theta, phi): return ( 4.68604735881824e-97 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 2.25561441549904e114 * cos(theta) ** 34 - 7.48757211298793e114 * cos(theta) ** 32 + 1.11192687665929e115 * cos(theta) ** 30 - 9.77147861306645e114 * cos(theta) ** 28 + 5.66505968671644e114 * cos(theta) ** 26 - 2.28713589836378e114 * cos(theta) ** 24 + 6.61687115249898e113 * cos(theta) ** 22 - 1.3908073123087e113 * cos(theta) ** 20 + 2.13107572047301e112 * cos(theta) ** 18 - 2.36786191163668e111 * cos(theta) ** 16 + 1.88174456553909e110 * cos(theta) ** 14 - 1.04477581125111e109 * cos(theta) ** 12 + 3.9090251441368e107 * cos(theta) ** 10 - 9.33189026451756e105 * cos(theta) ** 8 + 1.3051594775549e104 * cos(theta) ** 6 - 9.25645019542485e101 * cos(theta) ** 4 + 2.4972437577585e99 * cos(theta) ** 2 - 1.07223862505732e96 ) * cos(51 * phi) ) # @torch.jit.script def Yl85_m52(theta, phi): return ( 6.86604951923717e-99 * (1.0 - cos(theta) ** 2) ** 26 * ( 7.66908901269673e115 * cos(theta) ** 33 - 2.39602307615614e116 * cos(theta) ** 31 + 3.33578062997786e116 * cos(theta) ** 29 - 2.73601401165861e116 * cos(theta) ** 27 + 1.47291551854627e116 * cos(theta) ** 25 - 5.48912615607307e115 * cos(theta) ** 23 + 1.45571165354978e115 * cos(theta) ** 21 - 2.78161462461741e114 * cos(theta) ** 19 + 3.83593629685143e113 * cos(theta) ** 17 - 3.78857905861869e112 * cos(theta) ** 15 + 2.63444239175472e111 * cos(theta) ** 13 - 1.25373097350133e110 * cos(theta) ** 11 + 3.9090251441368e108 * cos(theta) ** 9 - 7.46551221161405e106 * cos(theta) ** 7 + 7.83095686532942e104 * cos(theta) ** 5 - 3.70258007816994e102 * cos(theta) ** 3 + 4.99448751551701e99 * cos(theta) ) * cos(52 * phi) ) # @torch.jit.script def Yl85_m53(theta, phi): return ( 1.01744377307574e-100 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 2.53079937418992e117 * cos(theta) ** 32 - 7.42767153608403e117 * cos(theta) ** 30 + 9.67376382693578e117 * cos(theta) ** 28 - 7.38723783147824e117 * cos(theta) ** 26 + 3.68228879636568e117 * cos(theta) ** 24 - 1.26249901589681e117 * cos(theta) ** 22 + 3.05699447245453e116 * cos(theta) ** 20 - 5.28506778677307e115 * cos(theta) ** 18 + 6.52109170464742e114 * cos(theta) ** 16 - 5.68286858792804e113 * cos(theta) ** 14 + 3.42477510928113e112 * cos(theta) ** 12 - 1.37910407085146e111 * cos(theta) ** 10 + 3.51812262972312e109 * cos(theta) ** 8 - 5.22585854812984e107 * cos(theta) ** 6 + 3.91547843266471e105 * cos(theta) ** 4 - 1.11077402345098e103 * cos(theta) ** 2 + 4.99448751551701e99 ) * cos(53 * phi) ) # @torch.jit.script def Yl85_m54(theta, phi): return ( 1.52555555938551e-102 * (1.0 - cos(theta) ** 2) ** 27 * ( 8.09855799740775e118 * cos(theta) ** 31 - 2.22830146082521e119 * cos(theta) ** 29 + 2.70865387154202e119 * cos(theta) ** 27 - 1.92068183618434e119 * cos(theta) ** 25 + 8.83749311127764e118 * cos(theta) ** 23 - 2.77749783497297e118 * cos(theta) ** 21 + 6.11398894490906e117 * cos(theta) ** 19 - 9.51312201619153e116 * cos(theta) ** 17 + 1.04337467274359e116 * cos(theta) ** 15 - 7.95601602309925e114 * cos(theta) ** 13 + 4.10973013113736e113 * cos(theta) ** 11 - 1.37910407085146e112 * cos(theta) ** 9 + 2.8144981037785e110 * cos(theta) ** 7 - 3.1355151288779e108 * cos(theta) ** 5 + 1.56619137306588e106 * cos(theta) ** 3 - 2.22154804690196e103 * cos(theta) ) * cos(54 * phi) ) # @torch.jit.script def Yl85_m55(theta, phi): return ( 2.31570463083329e-104 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 2.5105529791964e120 * cos(theta) ** 30 - 6.4620742363931e120 * cos(theta) ** 28 + 7.31336545316345e120 * cos(theta) ** 26 - 4.80170459046085e120 * cos(theta) ** 24 + 2.03262341559386e120 * cos(theta) ** 22 - 5.83274545344324e119 * cos(theta) ** 20 + 1.16165789953272e119 * cos(theta) ** 18 - 1.61723074275256e118 * cos(theta) ** 16 + 1.56506200911538e117 * cos(theta) ** 14 - 1.0342820830029e116 * cos(theta) ** 12 + 4.5207031442511e114 * cos(theta) ** 10 - 1.24119366376632e113 * cos(theta) ** 8 + 1.97014867264495e111 * cos(theta) ** 6 - 1.56775756443895e109 * cos(theta) ** 4 + 4.69857411919765e106 * cos(theta) ** 2 - 2.22154804690196e103 ) * cos(55 * phi) ) # @torch.jit.script def Yl85_m56(theta, phi): return ( 3.56051631753453e-106 * (1.0 - cos(theta) ** 2) ** 28 * ( 7.5316589375892e121 * cos(theta) ** 29 - 1.80938078619007e122 * cos(theta) ** 27 + 1.9014750178225e122 * cos(theta) ** 25 - 1.1524091017106e122 * cos(theta) ** 23 + 4.47177151430649e121 * cos(theta) ** 21 - 1.16654909068865e121 * cos(theta) ** 19 + 2.0909842191589e120 * cos(theta) ** 17 - 2.5875691884041e119 * cos(theta) ** 15 + 2.19108681276153e118 * cos(theta) ** 13 - 1.24113849960348e117 * cos(theta) ** 11 + 4.5207031442511e115 * cos(theta) ** 9 - 9.92954931013054e113 * cos(theta) ** 7 + 1.18208920358697e112 * cos(theta) ** 5 - 6.2710302577558e109 * cos(theta) ** 3 + 9.39714823839531e106 * cos(theta) ) * cos(56 * phi) ) # @torch.jit.script def Yl85_m57(theta, phi): return ( 5.54842614218162e-108 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 2.18418109190087e123 * cos(theta) ** 28 - 4.88532812271319e123 * cos(theta) ** 26 + 4.75368754455624e123 * cos(theta) ** 24 - 2.65054093393439e123 * cos(theta) ** 22 + 9.39072018004362e122 * cos(theta) ** 20 - 2.21644327230843e122 * cos(theta) ** 18 + 3.55467317257013e121 * cos(theta) ** 16 - 3.88135378260615e120 * cos(theta) ** 14 + 2.84841285658999e119 * cos(theta) ** 12 - 1.36525234956383e118 * cos(theta) ** 10 + 4.06863282982599e116 * cos(theta) ** 8 - 6.95068451709138e114 * cos(theta) ** 6 + 5.91044601793484e112 * cos(theta) ** 4 - 1.88130907732674e110 * cos(theta) ** 2 + 9.39714823839531e106 ) * cos(57 * phi) ) # @torch.jit.script def Yl85_m58(theta, phi): return ( 8.76844889032084e-110 * (1.0 - cos(theta) ** 2) ** 29 * ( 6.11570705732243e124 * cos(theta) ** 27 - 1.27018531190543e125 * cos(theta) ** 25 + 1.1408850106935e125 * cos(theta) ** 23 - 5.83119005465566e124 * cos(theta) ** 21 + 1.87814403600872e124 * cos(theta) ** 19 - 3.98959789015518e123 * cos(theta) ** 17 + 5.68747707611221e122 * cos(theta) ** 15 - 5.4338952956486e121 * cos(theta) ** 13 + 3.41809542790799e120 * cos(theta) ** 11 - 1.36525234956383e119 * cos(theta) ** 9 + 3.25490626386079e117 * cos(theta) ** 7 - 4.17041071025483e115 * cos(theta) ** 5 + 2.36417840717394e113 * cos(theta) ** 3 - 3.76261815465348e110 * cos(theta) ) * cos(58 * phi) ) # @torch.jit.script def Yl85_m59(theta, phi): return ( 1.40624064644506e-111 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 1.65124090547706e126 * cos(theta) ** 26 - 3.17546327976357e126 * cos(theta) ** 24 + 2.62403552459505e126 * cos(theta) ** 22 - 1.22454991147769e126 * cos(theta) ** 20 + 3.56847366841658e125 * cos(theta) ** 18 - 6.78231641326381e124 * cos(theta) ** 16 + 8.53121561416831e123 * cos(theta) ** 14 - 7.06406388434318e122 * cos(theta) ** 12 + 3.75990497069879e121 * cos(theta) ** 10 - 1.22872711460745e120 * cos(theta) ** 8 + 2.27843438470255e118 * cos(theta) ** 6 - 2.08520535512741e116 * cos(theta) ** 4 + 7.09253522152181e113 * cos(theta) ** 2 - 3.76261815465348e110 ) * cos(59 * phi) ) # @torch.jit.script def Yl85_m60(theta, phi): return ( 2.29028206231709e-113 * (1.0 - cos(theta) ** 2) ** 30 * ( 4.29322635424035e127 * cos(theta) ** 25 - 7.62111187143257e127 * cos(theta) ** 23 + 5.7728781541091e127 * cos(theta) ** 21 - 2.44909982295538e127 * cos(theta) ** 19 + 6.42325260314984e126 * cos(theta) ** 17 - 1.08517062612221e126 * cos(theta) ** 15 + 1.19437018598356e125 * cos(theta) ** 13 - 8.47687666121182e123 * cos(theta) ** 11 + 3.75990497069879e122 * cos(theta) ** 9 - 9.82981691685959e120 * cos(theta) ** 7 + 1.36706063082153e119 * cos(theta) ** 5 - 8.34082142050965e116 * cos(theta) ** 3 + 1.41850704430436e114 * cos(theta) ) * cos(60 * phi) ) # @torch.jit.script def Yl85_m61(theta, phi): return ( 3.79090184266799e-115 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 1.07330658856009e129 * cos(theta) ** 24 - 1.75285573042949e129 * cos(theta) ** 22 + 1.21230441236291e129 * cos(theta) ** 20 - 4.65328966361522e128 * cos(theta) ** 18 + 1.09195294253547e128 * cos(theta) ** 16 - 1.62775593918331e127 * cos(theta) ** 14 + 1.55268124177863e126 * cos(theta) ** 12 - 9.32456432733301e124 * cos(theta) ** 10 + 3.38391447362891e123 * cos(theta) ** 8 - 6.88087184180171e121 * cos(theta) ** 6 + 6.83530315410766e119 * cos(theta) ** 4 - 2.5022464261529e117 * cos(theta) ** 2 + 1.41850704430436e114 ) * cos(61 * phi) ) # @torch.jit.script def Yl85_m62(theta, phi): return ( 6.38231523753122e-117 * (1.0 - cos(theta) ** 2) ** 31 * ( 2.57593581254421e130 * cos(theta) ** 23 - 3.85628260694488e130 * cos(theta) ** 21 + 2.42460882472582e130 * cos(theta) ** 19 - 8.37592139450739e129 * cos(theta) ** 17 + 1.74712470805676e129 * cos(theta) ** 15 - 2.27885831485664e128 * cos(theta) ** 13 + 1.86321749013436e127 * cos(theta) ** 11 - 9.324564327333e125 * cos(theta) ** 9 + 2.70713157890313e124 * cos(theta) ** 7 - 4.12852310508103e122 * cos(theta) ** 5 + 2.73412126164306e120 * cos(theta) ** 3 - 5.00449285230579e117 * cos(theta) ) * cos(62 * phi) ) # @torch.jit.script def Yl85_m63(theta, phi): return ( 1.09391474305682e-118 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 5.92465236885168e131 * cos(theta) ** 22 - 8.09819347458425e131 * cos(theta) ** 20 + 4.60675676697906e131 * cos(theta) ** 18 - 1.42390663706626e131 * cos(theta) ** 16 + 2.62068706208513e130 * cos(theta) ** 14 - 2.96251580931363e129 * cos(theta) ** 12 + 2.04953923914779e128 * cos(theta) ** 10 - 8.3921078945997e126 * cos(theta) ** 8 + 1.89499210523219e125 * cos(theta) ** 6 - 2.06426155254051e123 * cos(theta) ** 4 + 8.20236378492919e120 * cos(theta) ** 2 - 5.00449285230579e117 ) * cos(63 * phi) ) # @torch.jit.script def Yl85_m64(theta, phi): return ( 1.91064059505093e-120 * (1.0 - cos(theta) ** 2) ** 32 * ( 1.30342352114737e133 * cos(theta) ** 21 - 1.61963869491685e133 * cos(theta) ** 19 + 8.29216218056232e132 * cos(theta) ** 17 - 2.27825061930601e132 * cos(theta) ** 15 + 3.66896188691919e131 * cos(theta) ** 13 - 3.55501897117636e130 * cos(theta) ** 11 + 2.04953923914779e129 * cos(theta) ** 9 - 6.71368631567976e127 * cos(theta) ** 7 + 1.13699526313931e126 * cos(theta) ** 5 - 8.25704621016205e123 * cos(theta) ** 3 + 1.64047275698584e121 * cos(theta) ) * cos(64 * phi) ) # @torch.jit.script def Yl85_m65(theta, phi): return ( 3.4042678552107e-122 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 2.73718939440948e134 * cos(theta) ** 20 - 3.07731352034202e134 * cos(theta) ** 18 + 1.40966757069559e134 * cos(theta) ** 16 - 3.41737592895901e133 * cos(theta) ** 14 + 4.76965045299494e132 * cos(theta) ** 12 - 3.91052086829399e131 * cos(theta) ** 10 + 1.84458531523301e130 * cos(theta) ** 8 - 4.69958042097583e128 * cos(theta) ** 6 + 5.68497631569657e126 * cos(theta) ** 4 - 2.47711386304862e124 * cos(theta) ** 2 + 1.64047275698584e121 ) * cos(65 * phi) ) # @torch.jit.script def Yl85_m66(theta, phi): return ( 6.19469962231141e-124 * (1.0 - cos(theta) ** 2) ** 33 * ( 5.47437878881895e135 * cos(theta) ** 19 - 5.53916433661563e135 * cos(theta) ** 17 + 2.25546811311295e135 * cos(theta) ** 15 - 4.78432630054262e134 * cos(theta) ** 13 + 5.72358054359393e133 * cos(theta) ** 11 - 3.91052086829399e132 * cos(theta) ** 9 + 1.47566825218641e131 * cos(theta) ** 7 - 2.8197482525855e129 * cos(theta) ** 5 + 2.27399052627863e127 * cos(theta) ** 3 - 4.95422772609723e124 * cos(theta) ) * cos(66 * phi) ) # @torch.jit.script def Yl85_m67(theta, phi): return ( 1.15271423956583e-125 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 1.0401319698756e137 * cos(theta) ** 18 - 9.41657937224657e136 * cos(theta) ** 16 + 3.38320216966942e136 * cos(theta) ** 14 - 6.21962419070541e135 * cos(theta) ** 12 + 6.29593859795333e134 * cos(theta) ** 10 - 3.51946878146459e133 * cos(theta) ** 8 + 1.03296777653049e132 * cos(theta) ** 6 - 1.40987412629275e130 * cos(theta) ** 4 + 6.82197157883589e127 * cos(theta) ** 2 - 4.95422772609723e124 ) * cos(67 * phi) ) # @torch.jit.script def Yl85_m68(theta, phi): return ( 2.19654290176847e-127 * (1.0 - cos(theta) ** 2) ** 34 * ( 1.87223754577608e138 * cos(theta) ** 17 - 1.50665269955945e138 * cos(theta) ** 15 + 4.7364830375372e137 * cos(theta) ** 13 - 7.46354902884649e136 * cos(theta) ** 11 + 6.29593859795333e135 * cos(theta) ** 9 - 2.81557502517167e134 * cos(theta) ** 7 + 6.19780665918293e132 * cos(theta) ** 5 - 5.639496505171e130 * cos(theta) ** 3 + 1.36439431576718e128 * cos(theta) ) * cos(68 * phi) ) # @torch.jit.script def Yl85_m69(theta, phi): return ( 4.2929404978482e-129 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 3.18280382781934e139 * cos(theta) ** 16 - 2.25997904933918e139 * cos(theta) ** 14 + 6.15742794879835e138 * cos(theta) ** 12 - 8.20990393173114e137 * cos(theta) ** 10 + 5.66634473815799e136 * cos(theta) ** 8 - 1.97090251762017e135 * cos(theta) ** 6 + 3.09890332959146e133 * cos(theta) ** 4 - 1.6918489515513e131 * cos(theta) ** 2 + 1.36439431576718e128 ) * cos(69 * phi) ) # @torch.jit.script def Yl85_m70(theta, phi): return ( 8.62043196424997e-131 * (1.0 - cos(theta) ** 2) ** 35 * ( 5.09248612451094e140 * cos(theta) ** 15 - 3.16397066907485e140 * cos(theta) ** 13 + 7.38891353855802e139 * cos(theta) ** 11 - 8.20990393173114e138 * cos(theta) ** 9 + 4.5330757905264e137 * cos(theta) ** 7 - 1.1825415105721e136 * cos(theta) ** 5 + 1.23956133183659e134 * cos(theta) ** 3 - 3.3836979031026e131 * cos(theta) ) * cos(70 * phi) ) # @torch.jit.script def Yl85_m71(theta, phi): return ( 1.78205498455012e-132 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 7.63872918676641e141 * cos(theta) ** 14 - 4.1131618697973e141 * cos(theta) ** 12 + 8.12780489241383e140 * cos(theta) ** 10 - 7.38891353855802e139 * cos(theta) ** 8 + 3.17315305336848e138 * cos(theta) ** 6 - 5.91270755286052e136 * cos(theta) ** 4 + 3.71868399550976e134 * cos(theta) ** 2 - 3.3836979031026e131 ) * cos(71 * phi) ) # @torch.jit.script def Yl85_m72(theta, phi): return ( 3.8010821503779e-134 * (1.0 - cos(theta) ** 2) ** 36 * ( 1.0694220861473e143 * cos(theta) ** 13 - 4.93579424375676e142 * cos(theta) ** 11 + 8.12780489241383e141 * cos(theta) ** 9 - 5.91113083084642e140 * cos(theta) ** 7 + 1.90389183202109e139 * cos(theta) ** 5 - 2.36508302114421e137 * cos(theta) ** 3 + 7.43736799101952e134 * cos(theta) ) * cos(72 * phi) ) # @torch.jit.script def Yl85_m73(theta, phi): return ( 8.38700759315741e-136 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 1.39024871199149e144 * cos(theta) ** 12 - 5.42937366813244e143 * cos(theta) ** 10 + 7.31502440317244e142 * cos(theta) ** 8 - 4.13779158159249e141 * cos(theta) ** 6 + 9.51945916010543e139 * cos(theta) ** 4 - 7.09524906343262e137 * cos(theta) ** 2 + 7.43736799101952e134 ) * cos(73 * phi) ) # @torch.jit.script def Yl85_m74(theta, phi): return ( 1.9200734880634e-137 * (1.0 - cos(theta) ** 2) ** 37 * ( 1.66829845438979e145 * cos(theta) ** 11 - 5.42937366813244e144 * cos(theta) ** 9 + 5.85201952253796e143 * cos(theta) ** 7 - 2.4826749489555e142 * cos(theta) ** 5 + 3.80778366404217e140 * cos(theta) ** 3 - 1.41904981268652e138 * cos(theta) ) * cos(74 * phi) ) # @torch.jit.script def Yl85_m75(theta, phi): return ( 4.57679559867686e-139 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 1.83512829982876e146 * cos(theta) ** 10 - 4.88643630131919e145 * cos(theta) ** 8 + 4.09641366577657e144 * cos(theta) ** 6 - 1.24133747447775e143 * cos(theta) ** 4 + 1.14233509921265e141 * cos(theta) ** 2 - 1.41904981268652e138 ) * cos(75 * phi) ) # @torch.jit.script def Yl85_m76(theta, phi): return ( 1.1406399520131e-140 * (1.0 - cos(theta) ** 2) ** 38 * ( 1.83512829982876e147 * cos(theta) ** 9 - 3.90914904105535e146 * cos(theta) ** 7 + 2.45784819946594e145 * cos(theta) ** 5 - 4.96534989791099e143 * cos(theta) ** 3 + 2.2846701984253e141 * cos(theta) ) * cos(76 * phi) ) # @torch.jit.script def Yl85_m77(theta, phi): return ( 2.9872379442991e-142 * (1.0 - cos(theta) ** 2) ** 38.5 * ( 1.65161546984589e148 * cos(theta) ** 8 - 2.73640432873875e147 * cos(theta) ** 6 + 1.22892409973297e146 * cos(theta) ** 4 - 1.4896049693733e144 * cos(theta) ** 2 + 2.2846701984253e141 ) * cos(77 * phi) ) # @torch.jit.script def Yl85_m78(theta, phi): return ( 8.27239038970388e-144 * (1.0 - cos(theta) ** 2) ** 39 * ( 1.32129237587671e149 * cos(theta) ** 7 - 1.64184259724325e148 * cos(theta) ** 5 + 4.91569639893188e146 * cos(theta) ** 3 - 2.9792099387466e144 * cos(theta) ) * cos(78 * phi) ) # @torch.jit.script def Yl85_m79(theta, phi): return ( 2.44151882599156e-145 * (1.0 - cos(theta) ** 2) ** 39.5 * ( 9.24904663113697e149 * cos(theta) ** 6 - 8.20921298621624e148 * cos(theta) ** 4 + 1.47470891967956e147 * cos(theta) ** 2 - 2.9792099387466e144 ) * cos(79 * phi) ) # @torch.jit.script def Yl85_m80(theta, phi): return ( 7.75965620507256e-147 * (1.0 - cos(theta) ** 2) ** 40 * ( 5.54942797868218e150 * cos(theta) ** 5 - 3.2836851944865e149 * cos(theta) ** 3 + 2.94941783935913e147 * cos(theta) ) * cos(80 * phi) ) # @torch.jit.script def Yl85_m81(theta, phi): return ( 2.69341598890101e-148 * (1.0 - cos(theta) ** 2) ** 40.5 * ( 2.77471398934109e151 * cos(theta) ** 4 - 9.85105558345949e149 * cos(theta) ** 2 + 2.94941783935913e147 ) * cos(81 * phi) ) # @torch.jit.script def Yl85_m82(theta, phi): return ( 1.04211393354525e-149 * (1.0 - cos(theta) ** 2) ** 41 * (1.10988559573644e152 * cos(theta) ** 3 - 1.9702111166919e150 * cos(theta)) * cos(82 * phi) ) # @torch.jit.script def Yl85_m83(theta, phi): return ( 4.6419444015591e-151 * (1.0 - cos(theta) ** 2) ** 41.5 * (3.32965678720931e152 * cos(theta) ** 2 - 1.9702111166919e150) * cos(83 * phi) ) # @torch.jit.script def Yl85_m84(theta, phi): return 16.8140002588748 * (1.0 - cos(theta) ** 2) ** 42 * cos(84 * phi) * cos(theta) # @torch.jit.script def Yl85_m85(theta, phi): return 1.28957495210276 * (1.0 - cos(theta) ** 2) ** 42.5 * cos(85 * phi) # @torch.jit.script def Yl86_m_minus_86(theta, phi): return 1.29331828349511 * (1.0 - cos(theta) ** 2) ** 43 * sin(86 * phi) # @torch.jit.script def Yl86_m_minus_85(theta, phi): return 16.96171027275 * (1.0 - cos(theta) ** 2) ** 42.5 * sin(85 * phi) * cos(theta) # @torch.jit.script def Yl86_m_minus_84(theta, phi): return ( 2.75459095946835e-153 * (1.0 - cos(theta) ** 2) ** 42 * (5.69371310612792e154 * cos(theta) ** 2 - 3.32965678720931e152) * sin(84 * phi) ) # @torch.jit.script def Yl86_m_minus_83(theta, phi): return ( 6.22074223106233e-152 * (1.0 - cos(theta) ** 2) ** 41.5 * (1.89790436870931e154 * cos(theta) ** 3 - 3.32965678720931e152 * cos(theta)) * sin(83 * phi) ) # @torch.jit.script def Yl86_m_minus_82(theta, phi): return ( 1.61739298007621e-150 * (1.0 - cos(theta) ** 2) ** 41 * ( 4.74476092177326e153 * cos(theta) ** 4 - 1.66482839360465e152 * cos(theta) ** 2 + 4.92552779172975e149 ) * sin(82 * phi) ) # @torch.jit.script def Yl86_m_minus_81(theta, phi): return ( 4.68765020418527e-149 * (1.0 - cos(theta) ** 2) ** 40.5 * ( 9.48952184354653e152 * cos(theta) ** 5 - 5.54942797868218e151 * cos(theta) ** 3 + 4.92552779172975e149 * cos(theta) ) * sin(81 * phi) ) # @torch.jit.script def Yl86_m_minus_80(theta, phi): return ( 1.4838467766475e-147 * (1.0 - cos(theta) ** 2) ** 40 * ( 1.58158697392442e152 * cos(theta) ** 6 - 1.38735699467055e151 * cos(theta) ** 4 + 2.46276389586487e149 * cos(theta) ** 2 - 4.91569639893188e146 ) * sin(80 * phi) ) # @torch.jit.script def Yl86_m_minus_79(theta, phi): return ( 5.0581548613413e-146 * (1.0 - cos(theta) ** 2) ** 39.5 * ( 2.25940996274917e151 * cos(theta) ** 7 - 2.77471398934109e150 * cos(theta) ** 5 + 8.20921298621624e148 * cos(theta) ** 3 - 4.91569639893188e146 * cos(theta) ) * sin(79 * phi) ) # @torch.jit.script def Yl86_m_minus_78(theta, phi): return ( 1.83771892284239e-144 * (1.0 - cos(theta) ** 2) ** 39 * ( 2.82426245343647e150 * cos(theta) ** 8 - 4.62452331556848e149 * cos(theta) ** 6 + 2.05230324655406e148 * cos(theta) ** 4 - 2.45784819946594e146 * cos(theta) ** 2 + 3.72401242343324e143 ) * sin(78 * phi) ) # @torch.jit.script def Yl86_m_minus_77(theta, phi): return ( 7.06028554586467e-143 * (1.0 - cos(theta) ** 2) ** 38.5 * ( 3.13806939270719e149 * cos(theta) ** 9 - 6.60646187938355e148 * cos(theta) ** 7 + 4.10460649310812e147 * cos(theta) ** 5 - 8.19282733155314e145 * cos(theta) ** 3 + 3.72401242343324e143 * cos(theta) ) * sin(77 * phi) ) # @torch.jit.script def Yl86_m_minus_76(theta, phi): return ( 2.85046733260192e-141 * (1.0 - cos(theta) ** 2) ** 38 * ( 3.13806939270719e148 * cos(theta) ** 10 - 8.25807734922944e147 * cos(theta) ** 8 + 6.84101082184687e146 * cos(theta) ** 6 - 2.04820683288828e145 * cos(theta) ** 4 + 1.86200621171662e143 * cos(theta) ** 2 - 2.2846701984253e140 ) * sin(76 * phi) ) # @torch.jit.script def Yl86_m_minus_75(theta, phi): return ( 1.20328892097281e-139 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 2.85279035700653e147 * cos(theta) ** 11 - 9.17564149914382e146 * cos(theta) ** 9 + 9.77287260263839e145 * cos(theta) ** 7 - 4.09641366577657e144 * cos(theta) ** 5 + 6.20668737238874e142 * cos(theta) ** 3 - 2.2846701984253e140 * cos(theta) ) * sin(75 * phi) ) # @torch.jit.script def Yl86_m_minus_74(theta, phi): return ( 5.2889989291103e-138 * (1.0 - cos(theta) ** 2) ** 37 * ( 2.37732529750544e146 * cos(theta) ** 12 - 9.17564149914382e145 * cos(theta) ** 10 + 1.2216090753298e145 * cos(theta) ** 8 - 6.82735610962761e143 * cos(theta) ** 6 + 1.55167184309719e142 * cos(theta) ** 4 - 1.14233509921265e140 * cos(theta) ** 2 + 1.1825415105721e137 ) * sin(74 * phi) ) # @torch.jit.script def Yl86_m_minus_73(theta, phi): return ( 2.41215464093889e-136 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 1.82871176731188e145 * cos(theta) ** 13 - 8.34149227194893e144 * cos(theta) ** 11 + 1.35734341703311e144 * cos(theta) ** 9 - 9.75336587089659e142 * cos(theta) ** 7 + 3.10334368619437e141 * cos(theta) ** 5 - 3.80778366404217e139 * cos(theta) ** 3 + 1.1825415105721e137 * cos(theta) ) * sin(73 * phi) ) # @torch.jit.script def Yl86_m_minus_72(theta, phi): return ( 1.13806672766906e-134 * (1.0 - cos(theta) ** 2) ** 36 * ( 1.30622269093706e144 * cos(theta) ** 14 - 6.95124355995744e143 * cos(theta) ** 12 + 1.35734341703311e143 * cos(theta) ** 10 - 1.21917073386207e142 * cos(theta) ** 8 + 5.17223947699062e140 * cos(theta) ** 6 - 9.51945916010543e138 * cos(theta) ** 4 + 5.91270755286052e136 * cos(theta) ** 2 - 5.31240570787108e133 ) * sin(72 * phi) ) # @torch.jit.script def Yl86_m_minus_71(theta, phi): return ( 5.54040993754688e-133 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 8.70815127291371e142 * cos(theta) ** 15 - 5.34711043073649e142 * cos(theta) ** 13 + 1.23394856093919e142 * cos(theta) ** 11 - 1.35463414873564e141 * cos(theta) ** 9 + 7.38891353855802e139 * cos(theta) ** 7 - 1.90389183202109e138 * cos(theta) ** 5 + 1.97090251762017e136 * cos(theta) ** 3 - 5.31240570787108e133 * cos(theta) ) * sin(71 * phi) ) # @torch.jit.script def Yl86_m_minus_70(theta, phi): return ( 2.77684550159859e-131 * (1.0 - cos(theta) ** 2) ** 35 * ( 5.44259454557107e141 * cos(theta) ** 16 - 3.81936459338321e141 * cos(theta) ** 14 + 1.02829046744933e141 * cos(theta) ** 12 - 1.35463414873564e140 * cos(theta) ** 10 + 9.23614192319753e138 * cos(theta) ** 8 - 3.17315305336848e137 * cos(theta) ** 6 + 4.92725629405043e135 * cos(theta) ** 4 - 2.65620285393554e133 * cos(theta) ** 2 + 2.11481118943913e130 ) * sin(70 * phi) ) # @torch.jit.script def Yl86_m_minus_69(theta, phi): return ( 1.43000803257229e-129 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 3.2015262032771e140 * cos(theta) ** 17 - 2.54624306225547e140 * cos(theta) ** 15 + 7.90992667268712e139 * cos(theta) ** 13 - 1.23148558975967e139 * cos(theta) ** 11 + 1.02623799146639e138 * cos(theta) ** 9 - 4.5330757905264e136 * cos(theta) ** 7 + 9.85451258810086e134 * cos(theta) ** 5 - 8.85400951311847e132 * cos(theta) ** 3 + 2.11481118943913e130 * cos(theta) ) * sin(69 * phi) ) # @torch.jit.script def Yl86_m_minus_68(theta, phi): return ( 7.55336686206047e-128 * (1.0 - cos(theta) ** 2) ** 34 * ( 1.77862566848728e139 * cos(theta) ** 18 - 1.59140191390967e139 * cos(theta) ** 16 + 5.64994762334794e138 * cos(theta) ** 14 - 1.02623799146639e138 * cos(theta) ** 12 + 1.02623799146639e137 * cos(theta) ** 10 - 5.66634473815799e135 * cos(theta) ** 8 + 1.64241876468348e134 * cos(theta) ** 6 - 2.21350237827962e132 * cos(theta) ** 4 + 1.05740559471956e130 * cos(theta) ** 2 - 7.57996842092876e126 ) * sin(68 * phi) ) # @torch.jit.script def Yl86_m_minus_67(theta, phi): return ( 4.08580597787152e-126 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 9.36118772888041e137 * cos(theta) ** 19 - 9.36118772888041e137 * cos(theta) ** 17 + 3.76663174889863e137 * cos(theta) ** 15 - 7.89413839589533e136 * cos(theta) ** 13 + 9.32943628605811e135 * cos(theta) ** 11 - 6.29593859795333e134 * cos(theta) ** 9 + 2.34631252097639e133 * cos(theta) ** 7 - 4.42700475655924e131 * cos(theta) ** 5 + 3.52468531573188e129 * cos(theta) ** 3 - 7.57996842092876e126 * cos(theta) ) * sin(67 * phi) ) # @torch.jit.script def Yl86_m_minus_66(theta, phi): return ( 2.26015619141157e-124 * (1.0 - cos(theta) ** 2) ** 33 * ( 4.68059386444021e136 * cos(theta) ** 20 - 5.20065984937801e136 * cos(theta) ** 18 + 2.35414484306164e136 * cos(theta) ** 16 - 5.63867028278238e135 * cos(theta) ** 14 + 7.77453023838176e134 * cos(theta) ** 12 - 6.29593859795333e133 * cos(theta) ** 10 + 2.93289065122049e132 * cos(theta) ** 8 - 7.37834126093206e130 * cos(theta) ** 6 + 8.81171328932969e128 * cos(theta) ** 4 - 3.78998421046438e126 * cos(theta) ** 2 + 2.47711386304862e123 ) * sin(66 * phi) ) # @torch.jit.script def Yl86_m_minus_65(theta, phi): return ( 1.27693824371294e-122 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 2.228854221162e135 * cos(theta) ** 21 - 2.73718939440948e135 * cos(theta) ** 19 + 1.38479108415391e135 * cos(theta) ** 17 - 3.75911352185492e134 * cos(theta) ** 15 + 5.98040787567828e133 * cos(theta) ** 13 - 5.72358054359393e132 * cos(theta) ** 11 + 3.25876739024499e131 * cos(theta) ** 9 - 1.05404875156172e130 * cos(theta) ** 7 + 1.76234265786594e128 * cos(theta) ** 5 - 1.26332807015479e126 * cos(theta) ** 3 + 2.47711386304862e123 * cos(theta) ) * sin(65 * phi) ) # @torch.jit.script def Yl86_m_minus_64(theta, phi): return ( 7.35986262532712e-121 * (1.0 - cos(theta) ** 2) ** 32 * ( 1.01311555507364e134 * cos(theta) ** 22 - 1.36859469720474e134 * cos(theta) ** 20 + 7.69328380085504e133 * cos(theta) ** 18 - 2.34944595115932e133 * cos(theta) ** 16 + 4.27171991119877e132 * cos(theta) ** 14 - 4.76965045299494e131 * cos(theta) ** 12 + 3.25876739024499e130 * cos(theta) ** 10 - 1.31756093945215e129 * cos(theta) ** 8 + 2.9372377631099e127 * cos(theta) ** 6 - 3.15832017538699e125 * cos(theta) ** 4 + 1.23855693152431e123 * cos(theta) ** 2 - 7.45669434993563e119 ) * sin(64 * phi) ) # @torch.jit.script def Yl86_m_minus_63(theta, phi): return ( 4.32294047645489e-119 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 4.4048502394506e132 * cos(theta) ** 23 - 6.51711760573685e132 * cos(theta) ** 21 + 4.04909673729212e132 * cos(theta) ** 19 - 1.38202703009372e132 * cos(theta) ** 17 + 2.84781327413251e131 * cos(theta) ** 15 - 3.66896188691919e130 * cos(theta) ** 13 + 2.96251580931363e129 * cos(theta) ** 11 - 1.46395659939128e128 * cos(theta) ** 9 + 4.19605394729985e126 * cos(theta) ** 7 - 6.31664035077397e124 * cos(theta) ** 5 + 4.12852310508103e122 * cos(theta) ** 3 - 7.45669434993563e119 * cos(theta) ) * sin(63 * phi) ) # @torch.jit.script def Yl86_m_minus_62(theta, phi): return ( 2.58510394688469e-117 * (1.0 - cos(theta) ** 2) ** 31 * ( 1.83535426643775e131 * cos(theta) ** 24 - 2.96232618442584e131 * cos(theta) ** 22 + 2.02454836864606e131 * cos(theta) ** 20 - 7.67792794496511e130 * cos(theta) ** 18 + 1.77988329633282e130 * cos(theta) ** 16 - 2.62068706208513e129 * cos(theta) ** 14 + 2.46876317442802e128 * cos(theta) ** 12 - 1.46395659939128e127 * cos(theta) ** 10 + 5.24506743412481e125 * cos(theta) ** 8 - 1.05277339179566e124 * cos(theta) ** 6 + 1.03213077627026e122 * cos(theta) ** 4 - 3.72834717496781e119 * cos(theta) ** 2 + 2.08520535512741e116 ) * sin(62 * phi) ) # @torch.jit.script def Yl86_m_minus_61(theta, phi): return ( 1.57245734250362e-115 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 7.341417065751e129 * cos(theta) ** 25 - 1.2879679062721e130 * cos(theta) ** 23 + 9.6407065173622e129 * cos(theta) ** 21 - 4.04101470787637e129 * cos(theta) ** 19 + 1.04699017431342e129 * cos(theta) ** 17 - 1.74712470805676e128 * cos(theta) ** 15 + 1.89904859571387e127 * cos(theta) ** 13 - 1.33086963581026e126 * cos(theta) ** 11 + 5.82785270458313e124 * cos(theta) ** 9 - 1.50396198827952e123 * cos(theta) ** 7 + 2.06426155254051e121 * cos(theta) ** 5 - 1.24278239165594e119 * cos(theta) ** 3 + 2.08520535512741e116 * cos(theta) ) * sin(61 * phi) ) # @torch.jit.script def Yl86_m_minus_60(theta, phi): return ( 9.72129705504536e-114 * (1.0 - cos(theta) ** 2) ** 30 * ( 2.82362194836577e128 * cos(theta) ** 26 - 5.36653294280044e128 * cos(theta) ** 24 + 4.38213932607373e128 * cos(theta) ** 22 - 2.02050735393819e128 * cos(theta) ** 20 + 5.81661207951902e127 * cos(theta) ** 18 - 1.09195294253547e127 * cos(theta) ** 16 + 1.35646328265276e126 * cos(theta) ** 14 - 1.10905802984188e125 * cos(theta) ** 12 + 5.82785270458313e123 * cos(theta) ** 10 - 1.8799524853494e122 * cos(theta) ** 8 + 3.44043592090086e120 * cos(theta) ** 6 - 3.10695597913985e118 * cos(theta) ** 4 + 1.04260267756371e116 * cos(theta) ** 2 - 5.45579632424755e112 ) * sin(60 * phi) ) # @torch.jit.script def Yl86_m_minus_59(theta, phi): return ( 6.10355024536255e-112 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 1.04578590680214e127 * cos(theta) ** 27 - 2.14661317712017e127 * cos(theta) ** 25 + 1.90527796785814e127 * cos(theta) ** 23 - 9.62146359018184e126 * cos(theta) ** 21 + 3.06137477869422e126 * cos(theta) ** 19 - 6.42325260314984e125 * cos(theta) ** 17 + 9.04308855101841e124 * cos(theta) ** 15 - 8.53121561416831e123 * cos(theta) ** 13 + 5.29804791325739e122 * cos(theta) ** 11 - 2.08883609483266e121 * cos(theta) ** 9 + 4.91490845842979e119 * cos(theta) ** 7 - 6.21391195827969e117 * cos(theta) ** 5 + 3.47534225854569e115 * cos(theta) ** 3 - 5.45579632424755e112 * cos(theta) ) * sin(59 * phi) ) # @torch.jit.script def Yl86_m_minus_58(theta, phi): return ( 3.88906803651622e-110 * (1.0 - cos(theta) ** 2) ** 29 * ( 3.73494966715049e125 * cos(theta) ** 28 - 8.25620452738529e125 * cos(theta) ** 26 + 7.93865819940893e125 * cos(theta) ** 24 - 4.37339254099175e125 * cos(theta) ** 22 + 1.53068738934711e125 * cos(theta) ** 20 - 3.56847366841658e124 * cos(theta) ** 18 + 5.6519303443865e123 * cos(theta) ** 16 - 6.09372543869165e122 * cos(theta) ** 14 + 4.41503992771449e121 * cos(theta) ** 12 - 2.08883609483266e120 * cos(theta) ** 10 + 6.14363557303724e118 * cos(theta) ** 8 - 1.03565199304662e117 * cos(theta) ** 6 + 8.68835564636422e114 * cos(theta) ** 4 - 2.72789816212377e112 * cos(theta) ** 2 + 1.34379219809053e109 ) * sin(58 * phi) ) # @torch.jit.script def Yl86_m_minus_57(theta, phi): return ( 2.51319267873586e-108 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 1.28791367832775e124 * cos(theta) ** 29 - 3.05785352866122e124 * cos(theta) ** 27 + 3.17546327976357e124 * cos(theta) ** 25 - 1.9014750178225e124 * cos(theta) ** 23 + 7.28898756831957e123 * cos(theta) ** 21 - 1.87814403600872e123 * cos(theta) ** 19 + 3.32466490846265e122 * cos(theta) ** 17 - 4.06248362579443e121 * cos(theta) ** 15 + 3.39618455978038e120 * cos(theta) ** 13 - 1.89894190439333e119 * cos(theta) ** 11 + 6.82626174781916e117 * cos(theta) ** 9 - 1.47950284720945e116 * cos(theta) ** 7 + 1.73767112927284e114 * cos(theta) ** 5 - 9.09299387374591e111 * cos(theta) ** 3 + 1.34379219809053e109 * cos(theta) ) * sin(57 * phi) ) # @torch.jit.script def Yl86_m_minus_56(theta, phi): return ( 1.64609324218092e-106 * (1.0 - cos(theta) ** 2) ** 28 * ( 4.29304559442585e122 * cos(theta) ** 30 - 1.09209054595043e123 * cos(theta) ** 28 + 1.2213320306783e123 * cos(theta) ** 26 - 7.92281257426041e122 * cos(theta) ** 24 + 3.31317616741799e122 * cos(theta) ** 22 - 9.39072018004362e121 * cos(theta) ** 20 + 1.84703606025703e121 * cos(theta) ** 18 - 2.53905226612152e120 * cos(theta) ** 16 + 2.42584611412884e119 * cos(theta) ** 14 - 1.58245158699444e118 * cos(theta) ** 12 + 6.82626174781916e116 * cos(theta) ** 10 - 1.84937855901181e115 * cos(theta) ** 8 + 2.89611854878807e113 * cos(theta) ** 6 - 2.27324846843648e111 * cos(theta) ** 4 + 6.71896099045265e108 * cos(theta) ** 2 - 3.13238274613177e105 ) * sin(56 * phi) ) # @torch.jit.script def Yl86_m_minus_55(theta, phi): return ( 1.09214286055077e-104 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 1.38485341755672e121 * cos(theta) ** 31 - 3.7658294687946e121 * cos(theta) ** 29 + 4.52345196547517e121 * cos(theta) ** 27 - 3.16912502970416e121 * cos(theta) ** 25 + 1.44051137713826e121 * cos(theta) ** 23 - 4.47177151430649e120 * cos(theta) ** 21 + 9.72124242240541e119 * cos(theta) ** 19 - 1.49356015654207e119 * cos(theta) ** 17 + 1.61723074275256e118 * cos(theta) ** 15 - 1.21727045153419e117 * cos(theta) ** 13 + 6.20569249801742e115 * cos(theta) ** 11 - 2.05486506556868e114 * cos(theta) ** 9 + 4.13731221255439e112 * cos(theta) ** 7 - 4.54649693687296e110 * cos(theta) ** 5 + 2.23965366348422e108 * cos(theta) ** 3 - 3.13238274613177e105 * cos(theta) ) * sin(55 * phi) ) # @torch.jit.script def Yl86_m_minus_54(theta, phi): return ( 7.33607895109391e-103 * (1.0 - cos(theta) ** 2) ** 27 * ( 4.32766692986476e119 * cos(theta) ** 32 - 1.2552764895982e120 * cos(theta) ** 30 + 1.61551855909828e120 * cos(theta) ** 28 - 1.21889424219391e120 * cos(theta) ** 26 + 6.00213073807607e119 * cos(theta) ** 24 - 2.03262341559386e119 * cos(theta) ** 22 + 4.8606212112027e118 * cos(theta) ** 20 - 8.29755642523373e117 * cos(theta) ** 18 + 1.01076921422035e117 * cos(theta) ** 16 - 8.6947889395299e115 * cos(theta) ** 14 + 5.17141041501451e114 * cos(theta) ** 12 - 2.05486506556868e113 * cos(theta) ** 10 + 5.17164026569299e111 * cos(theta) ** 8 - 7.57749489478826e109 * cos(theta) ** 6 + 5.59913415871054e107 * cos(theta) ** 4 - 1.56619137306588e105 * cos(theta) ** 2 + 6.94233764656864e101 ) * sin(54 * phi) ) # @torch.jit.script def Yl86_m_minus_53(theta, phi): return ( 4.98637554963799e-101 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 1.31141422117114e118 * cos(theta) ** 33 - 4.04927899870387e118 * cos(theta) ** 31 + 5.57075365206302e118 * cos(theta) ** 29 - 4.5144231192367e118 * cos(theta) ** 27 + 2.40085229523043e118 * cos(theta) ** 25 - 8.83749311127764e117 * cos(theta) ** 23 + 2.31458152914414e117 * cos(theta) ** 21 - 4.36713496064933e116 * cos(theta) ** 19 + 5.94570126011971e115 * cos(theta) ** 17 - 5.7965259596866e114 * cos(theta) ** 15 + 3.97800801154963e113 * cos(theta) ** 13 - 1.86805915051698e112 * cos(theta) ** 11 + 5.7462669618811e110 * cos(theta) ** 9 - 1.08249927068404e109 * cos(theta) ** 7 + 1.11982683174211e107 * cos(theta) ** 5 - 5.22063791021962e104 * cos(theta) ** 3 + 6.94233764656864e101 * cos(theta) ) * sin(53 * phi) ) # @torch.jit.script def Yl86_m_minus_52(theta, phi): return ( 3.42792919621603e-99 * (1.0 - cos(theta) ** 2) ** 26 * ( 3.85710065050336e116 * cos(theta) ** 34 - 1.26539968709496e117 * cos(theta) ** 32 + 1.85691788402101e117 * cos(theta) ** 30 - 1.61229397115596e117 * cos(theta) ** 28 + 9.23404728934779e116 * cos(theta) ** 26 - 3.68228879636568e116 * cos(theta) ** 24 + 1.05208251324734e116 * cos(theta) ** 22 - 2.18356748032466e115 * cos(theta) ** 20 + 3.30316736673317e114 * cos(theta) ** 18 - 3.62282872480412e113 * cos(theta) ** 16 + 2.84143429396402e112 * cos(theta) ** 14 - 1.55671595876415e111 * cos(theta) ** 12 + 5.7462669618811e109 * cos(theta) ** 10 - 1.35312408835505e108 * cos(theta) ** 8 + 1.86637805290351e106 * cos(theta) ** 6 - 1.3051594775549e104 * cos(theta) ** 4 + 3.47116882328432e101 * cos(theta) ** 2 - 1.46896691632853e98 ) * sin(52 * phi) ) # @torch.jit.script def Yl86_m_minus_51(theta, phi): return ( 2.38234913716956e-97 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 1.10202875728667e115 * cos(theta) ** 35 - 3.83454450634836e115 * cos(theta) ** 33 + 5.99005769039035e115 * cos(theta) ** 31 - 5.55963438329643e115 * cos(theta) ** 29 + 3.42001751457326e115 * cos(theta) ** 27 - 1.47291551854627e115 * cos(theta) ** 25 + 4.57427179672756e114 * cos(theta) ** 23 - 1.03979403824984e114 * cos(theta) ** 21 + 1.73850914038588e113 * cos(theta) ** 19 - 2.13107572047301e112 * cos(theta) ** 17 + 1.89428952930935e111 * cos(theta) ** 15 - 1.19747381443396e110 * cos(theta) ** 13 + 5.22387905625554e108 * cos(theta) ** 11 - 1.50347120928339e107 * cos(theta) ** 9 + 2.66625436129073e105 * cos(theta) ** 7 - 2.61031895510981e103 * cos(theta) ** 5 + 1.15705627442811e101 * cos(theta) ** 3 - 1.46896691632853e98 * cos(theta) ) * sin(51 * phi) ) # @torch.jit.script def Yl86_m_minus_50(theta, phi): return ( 1.67308090398789e-95 * (1.0 - cos(theta) ** 2) ** 25 * ( 3.06119099246298e113 * cos(theta) ** 36 - 1.12780720774952e114 * cos(theta) ** 34 + 1.87189302824698e114 * cos(theta) ** 32 - 1.85321146109881e114 * cos(theta) ** 30 + 1.22143482663331e114 * cos(theta) ** 28 - 5.66505968671644e113 * cos(theta) ** 26 + 1.90594658196982e113 * cos(theta) ** 24 - 4.72633653749927e112 * cos(theta) ** 22 + 8.6925457019294e111 * cos(theta) ** 20 - 1.18393095581834e111 * cos(theta) ** 18 + 1.18393095581834e110 * cos(theta) ** 16 - 8.55338438881402e108 * cos(theta) ** 14 + 4.35323254687962e107 * cos(theta) ** 12 - 1.50347120928339e106 * cos(theta) ** 10 + 3.33281795161342e104 * cos(theta) ** 8 - 4.35053159184968e102 * cos(theta) ** 6 + 2.89264068607027e100 * cos(theta) ** 4 - 7.34483458164266e97 * cos(theta) ** 2 + 2.97844062515923e94 ) * sin(50 * phi) ) # @torch.jit.script def Yl86_m_minus_49(theta, phi): return ( 1.18682656471811e-93 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 8.27348916881887e111 * cos(theta) ** 37 - 3.22230630785577e112 * cos(theta) ** 35 + 5.67240311589995e112 * cos(theta) ** 33 - 5.97810148741551e112 * cos(theta) ** 31 + 4.21184422977002e112 * cos(theta) ** 29 - 2.09817025433942e112 * cos(theta) ** 27 + 7.62378632787926e111 * cos(theta) ** 25 - 2.05492892934751e111 * cos(theta) ** 23 + 4.13930747710924e110 * cos(theta) ** 21 - 6.23121555693864e109 * cos(theta) ** 19 + 6.96429974010789e108 * cos(theta) ** 17 - 5.70225625920935e107 * cos(theta) ** 15 + 3.34864042067663e106 * cos(theta) ** 13 - 1.36679200843944e105 * cos(theta) ** 11 + 3.70313105734824e103 * cos(theta) ** 9 - 6.21504513121383e101 * cos(theta) ** 7 + 5.78528137214053e99 * cos(theta) ** 5 - 2.44827819388089e97 * cos(theta) ** 3 + 2.97844062515923e94 * cos(theta) ) * sin(49 * phi) ) # @torch.jit.script def Yl86_m_minus_48(theta, phi): return ( 8.50052876115164e-92 * (1.0 - cos(theta) ** 2) ** 24 * ( 2.17723399179444e110 * cos(theta) ** 38 - 8.95085085515491e110 * cos(theta) ** 36 + 1.66835385761763e111 * cos(theta) ** 34 - 1.86815671481735e111 * cos(theta) ** 32 + 1.40394807659001e111 * cos(theta) ** 30 - 7.49346519406936e110 * cos(theta) ** 28 + 2.93222551072279e110 * cos(theta) ** 26 - 8.5622038722813e109 * cos(theta) ** 24 + 1.88150339868602e109 * cos(theta) ** 22 - 3.11560777846932e108 * cos(theta) ** 20 + 3.86905541117105e107 * cos(theta) ** 18 - 3.56391016200584e106 * cos(theta) ** 16 + 2.39188601476902e105 * cos(theta) ** 14 - 1.1389933403662e104 * cos(theta) ** 12 + 3.70313105734824e102 * cos(theta) ** 10 - 7.76880641401729e100 * cos(theta) ** 8 + 9.64213562023422e98 * cos(theta) ** 6 - 6.12069548470221e96 * cos(theta) ** 4 + 1.48922031257961e94 * cos(theta) ** 2 - 5.8059271445599e90 ) * sin(48 * phi) ) # @torch.jit.script def Yl86_m_minus_47(theta, phi): return ( 6.14512390159355e-90 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 5.58265126101138e108 * cos(theta) ** 39 - 2.4191488797716e109 * cos(theta) ** 37 + 4.76672530747895e109 * cos(theta) ** 35 - 5.66108095399196e109 * cos(theta) ** 33 + 4.52886476319357e109 * cos(theta) ** 31 - 2.58395351519633e109 * cos(theta) ** 29 + 1.08600944841585e109 * cos(theta) ** 27 - 3.42488154891252e108 * cos(theta) ** 25 + 8.18044955950442e107 * cos(theta) ** 23 - 1.48362275165206e107 * cos(theta) ** 21 + 2.03634495324792e106 * cos(theta) ** 19 - 2.09641774235638e105 * cos(theta) ** 17 + 1.59459067651268e104 * cos(theta) ** 15 - 8.76148723358616e102 * cos(theta) ** 13 + 3.36648277940749e101 * cos(theta) ** 11 - 8.63200712668587e99 * cos(theta) ** 9 + 1.37744794574775e98 * cos(theta) ** 7 - 1.22413909694044e96 * cos(theta) ** 5 + 4.96406770859871e93 * cos(theta) ** 3 - 5.8059271445599e90 * cos(theta) ) * sin(47 * phi) ) # @torch.jit.script def Yl86_m_minus_46(theta, phi): return ( 4.48215075733493e-88 * (1.0 - cos(theta) ** 2) ** 23 * ( 1.39566281525285e107 * cos(theta) ** 40 - 6.36618126255684e107 * cos(theta) ** 38 + 1.3240903631886e108 * cos(theta) ** 36 - 1.66502380999764e108 * cos(theta) ** 34 + 1.41527023849799e108 * cos(theta) ** 32 - 8.61317838398777e107 * cos(theta) ** 30 + 3.87860517291375e107 * cos(theta) ** 28 - 1.31726213419712e107 * cos(theta) ** 26 + 3.40852064979351e106 * cos(theta) ** 24 - 6.74373978023662e105 * cos(theta) ** 22 + 1.01817247662396e105 * cos(theta) ** 20 - 1.16467652353132e104 * cos(theta) ** 18 + 9.96619172820426e102 * cos(theta) ** 16 - 6.25820516684726e101 * cos(theta) ** 14 + 2.80540231617291e100 * cos(theta) ** 12 - 8.63200712668587e98 * cos(theta) ** 10 + 1.72180993218468e97 * cos(theta) ** 8 - 2.04023182823407e95 * cos(theta) ** 6 + 1.24101692714968e93 * cos(theta) ** 4 - 2.90296357227995e90 * cos(theta) ** 2 + 1.09133968882705e87 ) * sin(46 * phi) ) # @torch.jit.script def Yl86_m_minus_45(theta, phi): return ( 3.29735232158954e-86 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 3.40405564695816e105 * cos(theta) ** 41 - 1.63235416988637e106 * cos(theta) ** 39 + 3.57862260321242e106 * cos(theta) ** 37 - 4.75721088570753e106 * cos(theta) ** 35 + 4.28869769241815e106 * cos(theta) ** 33 - 2.77844463999606e106 * cos(theta) ** 31 + 1.33745005962543e106 * cos(theta) ** 29 - 4.87874864517453e105 * cos(theta) ** 27 + 1.3634082599174e105 * cos(theta) ** 25 - 2.93206077401592e104 * cos(theta) ** 23 + 4.848440364876e103 * cos(theta) ** 21 - 6.12987643963853e102 * cos(theta) ** 19 + 5.86246572247309e101 * cos(theta) ** 17 - 4.17213677789817e100 * cos(theta) ** 15 + 2.15800178167147e99 * cos(theta) ** 13 - 7.84727920607807e97 * cos(theta) ** 11 + 1.91312214687187e96 * cos(theta) ** 9 - 2.91461689747724e94 * cos(theta) ** 7 + 2.48203385429936e92 * cos(theta) ** 5 - 9.67654524093316e89 * cos(theta) ** 3 + 1.09133968882705e87 * cos(theta) ) * sin(45 * phi) ) # @torch.jit.script def Yl86_m_minus_44(theta, phi): return ( 2.44582650436353e-84 * (1.0 - cos(theta) ** 2) ** 22 * ( 8.10489439751943e103 * cos(theta) ** 42 - 4.08088542471592e104 * cos(theta) ** 40 + 9.41742790319059e104 * cos(theta) ** 38 - 1.32144746825209e105 * cos(theta) ** 36 + 1.26138167424063e105 * cos(theta) ** 34 - 8.68263949998767e104 * cos(theta) ** 32 + 4.4581668654181e104 * cos(theta) ** 30 - 1.74241023041947e104 * cos(theta) ** 28 + 5.24387792275924e103 * cos(theta) ** 26 - 1.2216919891733e103 * cos(theta) ** 24 + 2.20383652948909e102 * cos(theta) ** 22 - 3.06493821981927e101 * cos(theta) ** 20 + 3.25692540137394e100 * cos(theta) ** 18 - 2.60758548618636e99 * cos(theta) ** 16 + 1.54142984405105e98 * cos(theta) ** 14 - 6.53939933839839e96 * cos(theta) ** 12 + 1.91312214687187e95 * cos(theta) ** 10 - 3.64327112184656e93 * cos(theta) ** 8 + 4.13672309049893e91 * cos(theta) ** 6 - 2.41913631023329e89 * cos(theta) ** 4 + 5.45669844413524e86 * cos(theta) ** 2 - 1.98353269506915e83 ) * sin(44 * phi) ) # @torch.jit.script def Yl86_m_minus_43(theta, phi): return ( 1.82865404459152e-82 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 1.88485916221382e102 * cos(theta) ** 43 - 9.95337908467298e102 * cos(theta) ** 41 + 2.4147251033822e103 * cos(theta) ** 39 - 3.57147964392457e103 * cos(theta) ** 37 + 3.60394764068752e103 * cos(theta) ** 35 - 2.63110287878414e103 * cos(theta) ** 33 + 1.43811834368326e103 * cos(theta) ** 31 - 6.0083111393775e102 * cos(theta) ** 29 + 1.94217700842935e102 * cos(theta) ** 27 - 4.8867679566932e101 * cos(theta) ** 25 + 9.5818979543004e100 * cos(theta) ** 23 - 1.45949439039013e100 * cos(theta) ** 21 + 1.71417126388102e99 * cos(theta) ** 19 - 1.53387381540374e98 * cos(theta) ** 17 + 1.02761989603403e97 * cos(theta) ** 15 - 5.03030718338338e95 * cos(theta) ** 13 + 1.7392019517017e94 * cos(theta) ** 11 - 4.04807902427395e92 * cos(theta) ** 9 + 5.90960441499847e90 * cos(theta) ** 7 - 4.83827262046658e88 * cos(theta) ** 5 + 1.81889948137841e86 * cos(theta) ** 3 - 1.98353269506915e83 * cos(theta) ) * sin(43 * phi) ) # @torch.jit.script def Yl86_m_minus_42(theta, phi): return ( 1.37769392789582e-80 * (1.0 - cos(theta) ** 2) ** 21 * ( 4.28377082321323e100 * cos(theta) ** 44 - 2.36985216301738e101 * cos(theta) ** 42 + 6.03681275845551e101 * cos(theta) ** 40 - 9.39863064190677e101 * cos(theta) ** 38 + 1.00109656685765e102 * cos(theta) ** 36 - 7.73853787877689e101 * cos(theta) ** 34 + 4.49411982401018e101 * cos(theta) ** 32 - 2.0027703797925e101 * cos(theta) ** 30 + 6.93634645867625e100 * cos(theta) ** 28 - 1.87952613718969e100 * cos(theta) ** 26 + 3.9924574809585e99 * cos(theta) ** 24 - 6.63406541086421e98 * cos(theta) ** 22 + 8.57085631940511e97 * cos(theta) ** 20 - 8.52152119668744e96 * cos(theta) ** 18 + 6.4226243502127e95 * cos(theta) ** 16 - 3.59307655955955e94 * cos(theta) ** 14 + 1.44933495975142e93 * cos(theta) ** 12 - 4.04807902427395e91 * cos(theta) ** 10 + 7.38700551874809e89 * cos(theta) ** 8 - 8.06378770077764e87 * cos(theta) ** 6 + 4.54724870344604e85 * cos(theta) ** 4 - 9.91766347534577e82 * cos(theta) ** 2 + 3.49459600963558e79 ) * sin(42 * phi) ) # @torch.jit.script def Yl86_m_minus_41(theta, phi): return ( 1.0455961753763e-78 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 9.51949071825162e98 * cos(theta) ** 45 - 5.51128410004041e99 * cos(theta) ** 43 + 1.47239335572085e100 * cos(theta) ** 41 - 2.40990529279661e100 * cos(theta) ** 39 + 2.70566639691256e100 * cos(theta) ** 37 - 2.21101082250768e100 * cos(theta) ** 35 + 1.3618544921243e100 * cos(theta) ** 33 - 6.46054961223387e99 * cos(theta) ** 31 + 2.39184360644009e99 * cos(theta) ** 29 - 6.96120791551738e98 * cos(theta) ** 27 + 1.5969829923834e98 * cos(theta) ** 25 - 2.88437626559314e97 * cos(theta) ** 23 + 4.08136015209767e96 * cos(theta) ** 21 - 4.48501115615129e95 * cos(theta) ** 19 + 3.77801432365453e94 * cos(theta) ** 17 - 2.3953843730397e93 * cos(theta) ** 15 + 1.11487304596263e92 * cos(theta) ** 13 - 3.68007184024905e90 * cos(theta) ** 11 + 8.2077839097201e88 * cos(theta) ** 9 - 1.15196967153966e87 * cos(theta) ** 7 + 9.09449740689207e84 * cos(theta) ** 5 - 3.30588782511526e82 * cos(theta) ** 3 + 3.49459600963558e79 * cos(theta) ) * sin(41 * phi) ) # @torch.jit.script def Yl86_m_minus_40(theta, phi): return ( 7.99180286079389e-77 * (1.0 - cos(theta) ** 2) ** 20 * ( 2.06945450396774e97 * cos(theta) ** 46 - 1.252564568191e98 * cos(theta) ** 44 + 3.50569846600204e98 * cos(theta) ** 42 - 6.02476323199152e98 * cos(theta) ** 40 + 7.12017472871725e98 * cos(theta) ** 38 - 6.14169672918801e98 * cos(theta) ** 36 + 4.00545438860088e98 * cos(theta) ** 34 - 2.01892175382308e98 * cos(theta) ** 32 + 7.97281202146695e97 * cos(theta) ** 30 - 2.48614568411335e97 * cos(theta) ** 28 + 6.14224227839769e96 * cos(theta) ** 26 - 1.20182344399714e96 * cos(theta) ** 24 + 1.85516370549894e95 * cos(theta) ** 22 - 2.24250557807564e94 * cos(theta) ** 20 + 2.09889684647474e93 * cos(theta) ** 18 - 1.49711523314981e92 * cos(theta) ** 16 + 7.96337889973305e90 * cos(theta) ** 14 - 3.06672653354087e89 * cos(theta) ** 12 + 8.2077839097201e87 * cos(theta) ** 10 - 1.43996208942458e86 * cos(theta) ** 8 + 1.51574956781535e84 * cos(theta) ** 6 - 8.26471956278814e81 * cos(theta) ** 4 + 1.74729800481779e79 * cos(theta) ** 2 - 5.98184869845186e75 ) * sin(40 * phi) ) # @torch.jit.script def Yl86_m_minus_39(theta, phi): return ( 6.15005449230678e-75 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 4.40309468929307e95 * cos(theta) ** 47 - 2.78347681820223e96 * cos(theta) ** 45 + 8.15278713023729e96 * cos(theta) ** 43 - 1.4694544468272e97 * cos(theta) ** 41 + 1.82568582787622e97 * cos(theta) ** 39 - 1.65991803491568e97 * cos(theta) ** 37 + 1.14441553960025e97 * cos(theta) ** 35 - 6.1179447085548e96 * cos(theta) ** 33 + 2.5718748456345e96 * cos(theta) ** 31 - 8.572916152115e95 * cos(theta) ** 29 + 2.2749045475547e95 * cos(theta) ** 27 - 4.80729377598856e94 * cos(theta) ** 25 + 8.06592915434322e93 * cos(theta) ** 23 - 1.06785979908364e93 * cos(theta) ** 21 + 1.10468255077618e92 * cos(theta) ** 19 - 8.80656019499891e90 * cos(theta) ** 17 + 5.3089192664887e89 * cos(theta) ** 15 - 2.35902041041606e88 * cos(theta) ** 13 + 7.46162173610918e86 * cos(theta) ** 11 - 1.59995787713842e85 * cos(theta) ** 9 + 2.16535652545049e83 * cos(theta) ** 7 - 1.65294391255763e81 * cos(theta) ** 5 + 5.82432668272596e78 * cos(theta) ** 3 - 5.98184869845186e75 * cos(theta) ) * sin(39 * phi) ) # @torch.jit.script def Yl86_m_minus_38(theta, phi): return ( 4.76381172539445e-73 * (1.0 - cos(theta) ** 2) ** 19 * ( 9.17311393602723e93 * cos(theta) ** 48 - 6.05103656130919e94 * cos(theta) ** 46 + 1.85290616596302e95 * cos(theta) ** 44 - 3.49870106387429e95 * cos(theta) ** 42 + 4.56421456969055e95 * cos(theta) ** 40 - 4.36820535504126e95 * cos(theta) ** 38 + 3.17893205444514e95 * cos(theta) ** 36 - 1.79939550251612e95 * cos(theta) ** 34 + 8.03710889260782e94 * cos(theta) ** 32 - 2.85763871737167e94 * cos(theta) ** 30 + 8.12465909840964e93 * cos(theta) ** 28 - 1.84895914461098e93 * cos(theta) ** 26 + 3.36080381430968e92 * cos(theta) ** 24 - 4.85390817765291e91 * cos(theta) ** 22 + 5.52341275388089e90 * cos(theta) ** 20 - 4.89253344166606e89 * cos(theta) ** 18 + 3.31807454155544e88 * cos(theta) ** 16 - 1.68501457886861e87 * cos(theta) ** 14 + 6.21801811342431e85 * cos(theta) ** 12 - 1.59995787713842e84 * cos(theta) ** 10 + 2.70669565681312e82 * cos(theta) ** 8 - 2.75490652092938e80 * cos(theta) ** 6 + 1.45608167068149e78 * cos(theta) ** 4 - 2.99092434922593e75 * cos(theta) ** 2 + 9.9697478307531e71 ) * sin(38 * phi) ) # @torch.jit.script def Yl86_m_minus_37(theta, phi): return ( 3.71332936182363e-71 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 1.87206406857699e92 * cos(theta) ** 49 - 1.28745458751259e93 * cos(theta) ** 47 + 4.1175692576956e93 * cos(theta) ** 45 - 8.13651410203322e93 * cos(theta) ** 43 + 1.11322306577818e94 * cos(theta) ** 41 - 1.12005265513878e94 * cos(theta) ** 39 + 8.59170825525714e93 * cos(theta) ** 37 - 5.14113000718891e93 * cos(theta) ** 35 + 2.43548754321449e93 * cos(theta) ** 33 - 9.21818941087635e92 * cos(theta) ** 31 + 2.8016065856585e92 * cos(theta) ** 29 - 6.84799683189254e91 * cos(theta) ** 27 + 1.34432152572387e91 * cos(theta) ** 25 - 2.11039485984909e90 * cos(theta) ** 23 + 2.63019654946709e89 * cos(theta) ** 21 - 2.57501760087687e88 * cos(theta) ** 19 + 1.95180855385614e87 * cos(theta) ** 17 - 1.12334305257907e86 * cos(theta) ** 15 + 4.78309085648024e84 * cos(theta) ** 13 - 1.45450716103493e83 * cos(theta) ** 11 + 3.00743961868124e81 * cos(theta) ** 9 - 3.93558074418483e79 * cos(theta) ** 7 + 2.91216334136298e77 * cos(theta) ** 5 - 9.9697478307531e74 * cos(theta) ** 3 + 9.9697478307531e71 * cos(theta) ) * sin(37 * phi) ) # @torch.jit.script def Yl86_m_minus_36(theta, phi): return ( 2.9120647647107e-69 * (1.0 - cos(theta) ** 2) ** 18 * ( 3.74412813715397e90 * cos(theta) ** 50 - 2.6821970573179e91 * cos(theta) ** 48 + 8.95123751672957e91 * cos(theta) ** 46 - 1.8492077504621e92 * cos(theta) ** 44 + 2.65053110899567e92 * cos(theta) ** 42 - 2.80013163784696e92 * cos(theta) ** 40 + 2.26097585664661e92 * cos(theta) ** 38 - 1.42809166866359e92 * cos(theta) ** 36 + 7.1631986565132e91 * cos(theta) ** 34 - 2.88068419089886e91 * cos(theta) ** 32 + 9.33868861886166e90 * cos(theta) ** 30 - 2.44571315424733e90 * cos(theta) ** 28 + 5.17046740663027e89 * cos(theta) ** 26 - 8.79331191603787e88 * cos(theta) ** 24 + 1.19554388612141e88 * cos(theta) ** 22 - 1.28750880043844e87 * cos(theta) ** 20 + 1.08433808547563e86 * cos(theta) ** 18 - 7.02089407861921e84 * cos(theta) ** 16 + 3.41649346891446e83 * cos(theta) ** 14 - 1.21208930086244e82 * cos(theta) ** 12 + 3.00743961868124e80 * cos(theta) ** 10 - 4.91947593023104e78 * cos(theta) ** 8 + 4.8536055689383e76 * cos(theta) ** 6 - 2.49243695768828e74 * cos(theta) ** 4 + 4.98487391537655e71 * cos(theta) ** 2 - 1.62109720825254e68 ) * sin(36 * phi) ) # @torch.jit.script def Yl86_m_minus_35(theta, phi): return ( 2.29702664477922e-67 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 7.34142771990975e88 * cos(theta) ** 51 - 5.47387154554674e89 * cos(theta) ** 49 + 1.90451862058076e90 * cos(theta) ** 47 - 4.10935055658244e90 * cos(theta) ** 45 + 6.16402583487365e90 * cos(theta) ** 43 - 6.82958936060234e90 * cos(theta) ** 41 + 5.79737399140158e90 * cos(theta) ** 39 - 3.85970721260428e90 * cos(theta) ** 37 + 2.0466281875752e90 * cos(theta) ** 35 - 8.72934603302685e89 * cos(theta) ** 33 + 3.01248019963279e89 * cos(theta) ** 31 - 8.43349363533563e88 * cos(theta) ** 29 + 1.91498792838158e88 * cos(theta) ** 27 - 3.51732476641515e87 * cos(theta) ** 25 + 5.19801689618002e86 * cos(theta) ** 23 - 6.13099428780208e85 * cos(theta) ** 21 + 5.70704255513491e84 * cos(theta) ** 19 - 4.12993769330542e83 * cos(theta) ** 17 + 2.27766231260964e82 * cos(theta) ** 15 - 9.323763852788e80 * cos(theta) ** 13 + 2.73403601698295e79 * cos(theta) ** 11 - 5.46608436692337e77 * cos(theta) ** 9 + 6.93372224134043e75 * cos(theta) ** 7 - 4.98487391537655e73 * cos(theta) ** 5 + 1.66162463845885e71 * cos(theta) ** 3 - 1.62109720825254e68 * cos(theta) ) * sin(35 * phi) ) # @torch.jit.script def Yl86_m_minus_34(theta, phi): return ( 1.82205041674886e-65 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.41181302305957e87 * cos(theta) ** 52 - 1.09477430910935e88 * cos(theta) ** 50 + 3.96774712620992e88 * cos(theta) ** 48 - 8.93337077517921e88 * cos(theta) ** 46 + 1.40091496247129e89 * cos(theta) ** 44 - 1.62609270490532e89 * cos(theta) ** 42 + 1.44934349785039e89 * cos(theta) ** 40 - 1.01571242436955e89 * cos(theta) ** 38 + 5.68507829882e88 * cos(theta) ** 36 - 2.56745471559613e88 * cos(theta) ** 34 + 9.41400062385248e87 * cos(theta) ** 32 - 2.81116454511188e87 * cos(theta) ** 30 + 6.83924260136279e86 * cos(theta) ** 28 - 1.35281721785198e86 * cos(theta) ** 26 + 2.16584037340834e85 * cos(theta) ** 24 - 2.78681558536458e84 * cos(theta) ** 22 + 2.85352127756746e83 * cos(theta) ** 20 - 2.29440982961412e82 * cos(theta) ** 18 + 1.42353894538102e81 * cos(theta) ** 16 - 6.65983132342e79 * cos(theta) ** 14 + 2.27836334748579e78 * cos(theta) ** 12 - 5.46608436692337e76 * cos(theta) ** 10 + 8.66715280167554e74 * cos(theta) ** 8 - 8.30812319229425e72 * cos(theta) ** 6 + 4.15406159614713e70 * cos(theta) ** 4 - 8.10548604126269e67 * cos(theta) ** 2 + 2.5764418440123e64 ) * sin(34 * phi) ) # @torch.jit.script def Yl86_m_minus_33(theta, phi): return ( 1.45307806764369e-63 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 2.66379815671616e85 * cos(theta) ** 53 - 2.14661629237127e86 * cos(theta) ** 51 + 8.09744311471411e86 * cos(theta) ** 49 - 1.90071718620834e87 * cos(theta) ** 47 + 3.1131443610473e87 * cos(theta) ** 45 - 3.78161094164028e87 * cos(theta) ** 43 + 3.53498414109852e87 * cos(theta) ** 41 - 2.60439083171679e87 * cos(theta) ** 39 + 1.53650764832973e87 * cos(theta) ** 37 - 7.33558490170323e86 * cos(theta) ** 35 + 2.85272746177348e86 * cos(theta) ** 33 - 9.06827272616735e85 * cos(theta) ** 31 + 2.35835951771131e85 * cos(theta) ** 29 - 5.01043414019252e84 * cos(theta) ** 27 + 8.66336149363337e83 * cos(theta) ** 25 - 1.21165895015851e83 * cos(theta) ** 23 + 1.3588196559845e82 * cos(theta) ** 21 - 1.20758412084954e81 * cos(theta) ** 19 + 8.37375850224132e79 * cos(theta) ** 17 - 4.43988754894666e78 * cos(theta) ** 15 + 1.75258719037368e77 * cos(theta) ** 13 - 4.96916760629398e75 * cos(theta) ** 11 + 9.63016977963949e73 * cos(theta) ** 9 - 1.18687474175632e72 * cos(theta) ** 7 + 8.30812319229425e69 * cos(theta) ** 5 - 2.7018286804209e67 * cos(theta) ** 3 + 2.5764418440123e64 * cos(theta) ) * sin(33 * phi) ) # @torch.jit.script def Yl86_m_minus_32(theta, phi): return ( 1.16482131268735e-61 * (1.0 - cos(theta) ** 2) ** 16 * ( 4.93295954947438e83 * cos(theta) ** 54 - 4.12810825456014e84 * cos(theta) ** 52 + 1.61948862294282e85 * cos(theta) ** 50 - 3.95982747126738e85 * cos(theta) ** 48 + 6.76770513271152e85 * cos(theta) ** 46 - 8.59457032190973e85 * cos(theta) ** 44 + 8.41662890737743e85 * cos(theta) ** 42 - 6.51097707929198e85 * cos(theta) ** 40 + 4.04344117981508e85 * cos(theta) ** 38 - 2.03766247269534e85 * cos(theta) ** 36 + 8.39037488756906e84 * cos(theta) ** 34 - 2.8338352269273e84 * cos(theta) ** 32 + 7.86119839237102e83 * cos(theta) ** 30 - 1.78944076435447e83 * cos(theta) ** 28 + 3.33206211293591e82 * cos(theta) ** 26 - 5.04857895899381e81 * cos(theta) ** 24 + 6.17645298174774e80 * cos(theta) ** 22 - 6.03792060424769e79 * cos(theta) ** 20 + 4.65208805680073e78 * cos(theta) ** 18 - 2.77492971809167e77 * cos(theta) ** 16 + 1.25184799312406e76 * cos(theta) ** 14 - 4.14097300524498e74 * cos(theta) ** 12 + 9.63016977963949e72 * cos(theta) ** 10 - 1.4835934271954e71 * cos(theta) ** 8 + 1.38468719871571e69 * cos(theta) ** 6 - 6.75457170105224e66 * cos(theta) ** 4 + 1.28822092200615e64 * cos(theta) ** 2 - 4.00940218489309e60 ) * sin(32 * phi) ) # @torch.jit.script def Yl86_m_minus_31(theta, phi): return ( 9.38386295791054e-60 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 8.96901736268068e81 * cos(theta) ** 55 - 7.78888349917007e82 * cos(theta) ** 53 + 3.17546788812318e83 * cos(theta) ** 51 - 8.0812805536069e83 * cos(theta) ** 49 + 1.43993726227905e84 * cos(theta) ** 47 - 1.90990451597994e84 * cos(theta) ** 45 + 1.95735555985522e84 * cos(theta) ** 43 - 1.58804319007121e84 * cos(theta) ** 41 + 1.03677978969617e84 * cos(theta) ** 39 - 5.50719587214957e83 * cos(theta) ** 37 + 2.39724996787687e83 * cos(theta) ** 35 - 8.58737947553726e82 * cos(theta) ** 33 + 2.53587044915194e82 * cos(theta) ** 31 - 6.17048539432576e81 * cos(theta) ** 29 + 1.23409707886515e81 * cos(theta) ** 27 - 2.01943158359752e80 * cos(theta) ** 25 + 2.68541433989032e79 * cos(theta) ** 23 - 2.87520028773699e78 * cos(theta) ** 21 + 2.44846739831618e77 * cos(theta) ** 19 - 1.63231159887745e76 * cos(theta) ** 17 + 8.34565328749373e74 * cos(theta) ** 15 - 3.18536385018845e73 * cos(theta) ** 13 + 8.75469979967226e71 * cos(theta) ** 11 - 1.64843714132823e70 * cos(theta) ** 9 + 1.97812456959387e68 * cos(theta) ** 7 - 1.35091434021045e66 * cos(theta) ** 5 + 4.2940697400205e63 * cos(theta) ** 3 - 4.00940218489309e60 * cos(theta) ) * sin(31 * phi) ) # @torch.jit.script def Yl86_m_minus_30(theta, phi): return ( 7.59571394967033e-58 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.60161024333584e80 * cos(theta) ** 56 - 1.44238583317964e81 * cos(theta) ** 54 + 6.1066690156215e81 * cos(theta) ** 52 - 1.61625611072138e82 * cos(theta) ** 50 + 2.99986929641468e82 * cos(theta) ** 48 - 4.15196633908682e82 * cos(theta) ** 46 + 4.44853536330731e82 * cos(theta) ** 44 - 3.78105521445527e82 * cos(theta) ** 42 + 2.59194947424044e82 * cos(theta) ** 40 - 1.44926207161831e82 * cos(theta) ** 38 + 6.65902768854687e81 * cos(theta) ** 36 - 2.52569984574625e81 * cos(theta) ** 34 + 7.92459515359982e80 * cos(theta) ** 32 - 2.05682846477525e80 * cos(theta) ** 30 + 4.40748956737555e79 * cos(theta) ** 28 - 7.76704455229817e78 * cos(theta) ** 26 + 1.11892264162097e78 * cos(theta) ** 24 - 1.30690922169863e77 * cos(theta) ** 22 + 1.22423369915809e76 * cos(theta) ** 20 - 9.06839777154139e74 * cos(theta) ** 18 + 5.21603330468358e73 * cos(theta) ** 16 - 2.27525989299175e72 * cos(theta) ** 14 + 7.29558316639355e70 * cos(theta) ** 12 - 1.64843714132822e69 * cos(theta) ** 10 + 2.47265571199234e67 * cos(theta) ** 8 - 2.25152390035075e65 * cos(theta) ** 6 + 1.07351743500512e63 * cos(theta) ** 4 - 2.00470109244654e60 * cos(theta) ** 2 + 6.11935620404928e56 ) * sin(30 * phi) ) # @torch.jit.script def Yl86_m_minus_29(theta, phi): return ( 6.1763944427092e-56 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 2.80984253216813e78 * cos(theta) ** 57 - 2.62251969669026e79 * cos(theta) ** 55 + 1.15220170106066e80 * cos(theta) ** 53 - 3.16912962886545e80 * cos(theta) ** 51 + 6.12218223758098e80 * cos(theta) ** 49 - 8.83397093422729e80 * cos(theta) ** 47 + 9.88563414068291e80 * cos(theta) ** 45 - 8.79315166152389e80 * cos(theta) ** 43 + 6.32182798595228e80 * cos(theta) ** 41 - 3.7160565938931e80 * cos(theta) ** 39 + 1.79973721312078e80 * cos(theta) ** 37 - 7.21628527356073e79 * cos(theta) ** 35 + 2.40139247078783e79 * cos(theta) ** 33 - 6.63493053153308e78 * cos(theta) ** 31 + 1.51982398875019e78 * cos(theta) ** 29 - 2.87668316751784e77 * cos(theta) ** 27 + 4.47569056648387e76 * cos(theta) ** 25 - 5.68221400738536e75 * cos(theta) ** 23 + 5.82968428170518e74 * cos(theta) ** 21 - 4.7728409323902e73 * cos(theta) ** 19 + 3.06825488510799e72 * cos(theta) ** 17 - 1.51683992866117e71 * cos(theta) ** 15 + 5.61198705107196e69 * cos(theta) ** 13 - 1.4985792193893e68 * cos(theta) ** 11 + 2.74739523554704e66 * cos(theta) ** 9 - 3.21646271478678e64 * cos(theta) ** 7 + 2.14703487001025e62 * cos(theta) ** 5 - 6.68233697482181e59 * cos(theta) ** 3 + 6.11935620404928e56 * cos(theta) ) * sin(29 * phi) ) # @torch.jit.script def Yl86_m_minus_28(theta, phi): return ( 5.04426553861479e-54 * (1.0 - cos(theta) ** 2) ** 14 * ( 4.84455608994506e76 * cos(theta) ** 58 - 4.68307088694689e77 * cos(theta) ** 56 + 2.13370685381604e78 * cos(theta) ** 54 - 6.09448005551048e78 * cos(theta) ** 52 + 1.2244364475162e79 * cos(theta) ** 50 - 1.84041061129735e79 * cos(theta) ** 48 + 2.14905090014846e79 * cos(theta) ** 46 - 1.99844355943725e79 * cos(theta) ** 44 + 1.50519713951245e79 * cos(theta) ** 42 - 9.29014148473275e78 * cos(theta) ** 40 + 4.73615056084415e78 * cos(theta) ** 38 - 2.0045236871002e78 * cos(theta) ** 36 + 7.0629190317289e77 * cos(theta) ** 34 - 2.07341579110409e77 * cos(theta) ** 32 + 5.06607996250063e76 * cos(theta) ** 30 - 1.02738684554209e76 * cos(theta) ** 28 + 1.72141944864764e75 * cos(theta) ** 26 - 2.3675891697439e74 * cos(theta) ** 24 + 2.64985649168417e73 * cos(theta) ** 22 - 2.3864204661951e72 * cos(theta) ** 20 + 1.70458604728222e71 * cos(theta) ** 18 - 9.48024955413228e69 * cos(theta) ** 16 + 4.00856217933712e68 * cos(theta) ** 14 - 1.24881601615775e67 * cos(theta) ** 12 + 2.74739523554704e65 * cos(theta) ** 10 - 4.02057839348348e63 * cos(theta) ** 8 + 3.57839145001708e61 * cos(theta) ** 6 - 1.67058424370545e59 * cos(theta) ** 4 + 3.05967810202464e56 * cos(theta) ** 2 - 9.17444708253265e52 ) * sin(28 * phi) ) # @torch.jit.script def Yl86_m_minus_27(theta, phi): return ( 4.13691285026172e-52 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 8.21111201685603e74 * cos(theta) ** 59 - 8.21591383674893e75 * cos(theta) ** 57 + 3.87946700693825e76 * cos(theta) ** 55 - 1.14990189726613e77 * cos(theta) ** 53 + 2.40085577944352e77 * cos(theta) ** 51 - 3.75594002305582e77 * cos(theta) ** 49 + 4.57244872372013e77 * cos(theta) ** 47 - 4.44098568763833e77 * cos(theta) ** 45 + 3.50045846398244e77 * cos(theta) ** 43 - 2.26588816700799e77 * cos(theta) ** 41 + 1.21439757970363e77 * cos(theta) ** 39 - 5.4176315867573e76 * cos(theta) ** 37 + 2.01797686620826e76 * cos(theta) ** 35 - 6.28307815486087e75 * cos(theta) ** 33 + 1.63421934274214e75 * cos(theta) ** 31 - 3.54271326048995e74 * cos(theta) ** 29 + 6.37562758758386e73 * cos(theta) ** 27 - 9.47035667897561e72 * cos(theta) ** 25 + 1.15211151812355e72 * cos(theta) ** 23 - 1.13639069818814e71 * cos(theta) ** 21 + 8.97150551201166e69 * cos(theta) ** 19 - 5.5766173847837e68 * cos(theta) ** 17 + 2.67237478622474e67 * cos(theta) ** 15 - 9.60627704736728e65 * cos(theta) ** 13 + 2.49763203231549e64 * cos(theta) ** 11 - 4.46730932609275e62 * cos(theta) ** 9 + 5.11198778573868e60 * cos(theta) ** 7 - 3.3411684874109e58 * cos(theta) ** 5 + 1.01989270067488e56 * cos(theta) ** 3 - 9.17444708253265e52 * cos(theta) ) * sin(27 * phi) ) # @torch.jit.script def Yl86_m_minus_26(theta, phi): return ( 3.4063652911847e-50 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.36851866947601e73 * cos(theta) ** 60 - 1.41653686840499e74 * cos(theta) ** 58 + 6.92761965524688e74 * cos(theta) ** 56 - 2.12944795790024e75 * cos(theta) ** 54 + 4.6170303450837e75 * cos(theta) ** 52 - 7.51188004611164e75 * cos(theta) ** 50 + 9.5259348410836e75 * cos(theta) ** 48 - 9.65431671225723e75 * cos(theta) ** 46 + 7.95558741814191e75 * cos(theta) ** 44 - 5.39497182620949e75 * cos(theta) ** 42 + 3.03599394925907e75 * cos(theta) ** 40 - 1.42569252283087e75 * cos(theta) ** 38 + 5.60549129502293e74 * cos(theta) ** 36 - 1.84796416319437e74 * cos(theta) ** 34 + 5.10693544606918e73 * cos(theta) ** 32 - 1.18090442016332e73 * cos(theta) ** 30 + 2.27700985270852e72 * cos(theta) ** 28 - 3.64244487652908e71 * cos(theta) ** 26 + 4.80046465884814e70 * cos(theta) ** 24 - 5.16541226449156e69 * cos(theta) ** 22 + 4.48575275600583e68 * cos(theta) ** 20 - 3.09812076932428e67 * cos(theta) ** 18 + 1.67023424139047e66 * cos(theta) ** 16 - 6.8616264624052e64 * cos(theta) ** 14 + 2.08136002692958e63 * cos(theta) ** 12 - 4.46730932609275e61 * cos(theta) ** 10 + 6.38998473217336e59 * cos(theta) ** 8 - 5.56861414568484e57 * cos(theta) ** 6 + 2.5497317516872e55 * cos(theta) ** 4 - 4.58722354126632e52 * cos(theta) ** 2 + 1.35316328650924e49 ) * sin(26 * phi) ) # @torch.jit.script def Yl86_m_minus_25(theta, phi): return ( 2.81556234105056e-48 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 2.24347322864919e71 * cos(theta) ** 61 - 2.40090994644913e72 * cos(theta) ** 59 + 1.21537186934156e73 * cos(theta) ** 57 - 3.87172355981862e73 * cos(theta) ** 55 + 8.71137800959188e73 * cos(theta) ** 53 - 1.47291765610032e74 * cos(theta) ** 51 + 1.94406833491502e74 * cos(theta) ** 49 - 2.05410993877813e74 * cos(theta) ** 47 + 1.76790831514265e74 * cos(theta) ** 45 - 1.25464461074639e74 * cos(theta) ** 43 + 7.40486329087577e73 * cos(theta) ** 41 - 3.65562185341248e73 * cos(theta) ** 39 + 1.5149976473035e73 * cos(theta) ** 37 - 5.27989760912678e72 * cos(theta) ** 35 + 1.54755619577854e72 * cos(theta) ** 33 - 3.80936909730102e71 * cos(theta) ** 31 + 7.85175811278801e70 * cos(theta) ** 29 - 1.34905365797373e70 * cos(theta) ** 27 + 1.92018586353926e69 * cos(theta) ** 25 - 2.24583141934416e68 * cos(theta) ** 23 + 2.13607274095516e67 * cos(theta) ** 21 - 1.63058987859172e66 * cos(theta) ** 19 + 9.82490730229686e64 * cos(theta) ** 17 - 4.57441764160347e63 * cos(theta) ** 15 + 1.60104617456121e62 * cos(theta) ** 13 - 4.06119029644796e60 * cos(theta) ** 11 + 7.09998303574817e58 * cos(theta) ** 9 - 7.95516306526406e56 * cos(theta) ** 7 + 5.0994635033744e54 * cos(theta) ** 5 - 1.52907451375544e52 * cos(theta) ** 3 + 1.35316328650924e49 * cos(theta) ) * sin(25 * phi) ) # @torch.jit.script def Yl86_m_minus_24(theta, phi): return ( 2.33572915599019e-46 * (1.0 - cos(theta) ** 2) ** 12 * ( 3.61850520749869e69 * cos(theta) ** 62 - 4.00151657741522e70 * cos(theta) ** 60 + 2.09546874024406e71 * cos(theta) ** 58 - 6.91379207110467e71 * cos(theta) ** 56 + 1.61321814992442e72 * cos(theta) ** 54 - 2.83253395403908e72 * cos(theta) ** 52 + 3.88813666983004e72 * cos(theta) ** 50 - 4.27939570578778e72 * cos(theta) ** 48 + 3.84327894596227e72 * cos(theta) ** 46 - 2.85146502442362e72 * cos(theta) ** 44 + 1.76306268830376e72 * cos(theta) ** 42 - 9.13905463353121e71 * cos(theta) ** 40 + 3.98683591395657e71 * cos(theta) ** 38 - 1.46663822475744e71 * cos(theta) ** 36 + 4.55163586993688e70 * cos(theta) ** 34 - 1.19042784290657e70 * cos(theta) ** 32 + 2.61725270426267e69 * cos(theta) ** 30 - 4.81804877847762e68 * cos(theta) ** 28 + 7.38533024438175e67 * cos(theta) ** 26 - 9.35763091393399e66 * cos(theta) ** 24 + 9.70942154979617e65 * cos(theta) ** 22 - 8.15294939295862e64 * cos(theta) ** 20 + 5.45828183460936e63 * cos(theta) ** 18 - 2.85901102600217e62 * cos(theta) ** 16 + 1.14360441040087e61 * cos(theta) ** 14 - 3.38432524703996e59 * cos(theta) ** 12 + 7.09998303574817e57 * cos(theta) ** 10 - 9.94395383158007e55 * cos(theta) ** 8 + 8.49910583895733e53 * cos(theta) ** 6 - 3.8226862843886e51 * cos(theta) ** 4 + 6.7658164325462e48 * cos(theta) ** 2 - 1.96623552239064e45 ) * sin(24 * phi) ) # @torch.jit.script def Yl86_m_minus_23(theta, phi): return ( 1.94441561099186e-44 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 5.74365905952173e67 * cos(theta) ** 63 - 6.5598632416643e68 * cos(theta) ** 61 + 3.55164193261706e69 * cos(theta) ** 59 - 1.21294597738678e70 * cos(theta) ** 57 + 2.9331239089535e70 * cos(theta) ** 55 - 5.34440368686619e70 * cos(theta) ** 53 + 7.62379739182361e70 * cos(theta) ** 51 - 8.73346062405669e70 * cos(theta) ** 49 + 8.17718924672824e70 * cos(theta) ** 47 - 6.3365889431636e70 * cos(theta) ** 45 + 4.10014578675292e70 * cos(theta) ** 43 - 2.22903771549542e70 * cos(theta) ** 41 + 1.02226561896322e70 * cos(theta) ** 39 - 3.96388709393903e69 * cos(theta) ** 37 + 1.30046739141054e69 * cos(theta) ** 35 - 3.60735709971688e68 * cos(theta) ** 33 + 8.44275065891184e67 * cos(theta) ** 31 - 1.66139613050952e67 * cos(theta) ** 29 + 2.73530749791917e66 * cos(theta) ** 27 - 3.7430523655736e65 * cos(theta) ** 25 + 4.22148763034616e64 * cos(theta) ** 23 - 3.88235685378982e63 * cos(theta) ** 21 + 2.8727799129523e62 * cos(theta) ** 19 - 1.68177119176598e61 * cos(theta) ** 17 + 7.62402940267244e59 * cos(theta) ** 15 - 2.60332711310766e58 * cos(theta) ** 13 + 6.45453003249834e56 * cos(theta) ** 11 - 1.10488375906445e55 * cos(theta) ** 9 + 1.2141579769939e53 * cos(theta) ** 7 - 7.64537256877721e50 * cos(theta) ** 5 + 2.25527214418207e48 * cos(theta) ** 3 - 1.96623552239064e45 * cos(theta) ) * sin(23 * phi) ) # @torch.jit.script def Yl86_m_minus_22(theta, phi): return ( 1.62402359675725e-42 * (1.0 - cos(theta) ** 2) ** 11 * ( 8.97446728050271e65 * cos(theta) ** 64 - 1.05804245833295e67 * cos(theta) ** 62 + 5.91940322102843e67 * cos(theta) ** 60 - 2.09128616790825e68 * cos(theta) ** 58 + 5.23772126598839e68 * cos(theta) ** 56 - 9.89704386456701e68 * cos(theta) ** 54 + 1.466114883043e69 * cos(theta) ** 52 - 1.74669212481134e69 * cos(theta) ** 50 + 1.70358109306838e69 * cos(theta) ** 48 - 1.37751933547035e69 * cos(theta) ** 46 + 9.31851315171118e68 * cos(theta) ** 44 - 5.30723265594147e68 * cos(theta) ** 42 + 2.55566404740806e68 * cos(theta) ** 40 - 1.04312818261553e68 * cos(theta) ** 38 + 3.61240942058483e67 * cos(theta) ** 36 - 1.06098738226967e67 * cos(theta) ** 34 + 2.63835958090995e66 * cos(theta) ** 32 - 5.53798710169841e65 * cos(theta) ** 30 + 9.76895534971131e64 * cos(theta) ** 28 - 1.43963552522061e64 * cos(theta) ** 26 + 1.7589531793109e63 * cos(theta) ** 24 - 1.76470766081355e62 * cos(theta) ** 22 + 1.43638995647615e61 * cos(theta) ** 20 - 9.34317328758878e59 * cos(theta) ** 18 + 4.76501837667028e58 * cos(theta) ** 16 - 1.85951936650547e57 * cos(theta) ** 14 + 5.37877502708195e55 * cos(theta) ** 12 - 1.10488375906445e54 * cos(theta) ** 10 + 1.51769747124238e52 * cos(theta) ** 8 - 1.27422876146287e50 * cos(theta) ** 6 + 5.63818036045517e47 * cos(theta) ** 4 - 9.83117761195321e44 * cos(theta) ** 2 + 2.81857156305998e41 ) * sin(22 * phi) ) # @torch.jit.script def Yl86_m_minus_21(theta, phi): return ( 1.36069532051179e-40 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.38068727392349e64 * cos(theta) ** 65 - 1.67943247354437e65 * cos(theta) ** 63 + 9.70393970660399e65 * cos(theta) ** 61 - 3.54455282696313e66 * cos(theta) ** 59 + 9.18898467717261e66 * cos(theta) ** 57 - 1.79946252083037e67 * cos(theta) ** 55 + 2.76625449630755e67 * cos(theta) ** 53 - 3.42488651923792e67 * cos(theta) ** 51 + 3.47669610830282e67 * cos(theta) ** 49 - 2.9308922031284e67 * cos(theta) ** 47 + 2.07078070038026e67 * cos(theta) ** 45 - 1.23424015254453e67 * cos(theta) ** 43 + 6.2333269448977e66 * cos(theta) ** 41 - 2.67468764773214e66 * cos(theta) ** 39 + 9.76326870428332e65 * cos(theta) ** 37 - 3.03139252077048e65 * cos(theta) ** 35 + 7.99502903306045e64 * cos(theta) ** 33 - 1.78644745216078e64 * cos(theta) ** 31 + 3.3686052930039e63 * cos(theta) ** 29 - 5.33198342674302e62 * cos(theta) ** 27 + 7.0358127172436e61 * cos(theta) ** 25 - 7.67264200353719e60 * cos(theta) ** 23 + 6.83995217369595e59 * cos(theta) ** 21 - 4.91745962504673e58 * cos(theta) ** 19 + 2.80295198627663e57 * cos(theta) ** 17 - 1.23967957767032e56 * cos(theta) ** 15 + 4.1375192516015e54 * cos(theta) ** 13 - 1.00443978096768e53 * cos(theta) ** 11 + 1.68633052360264e51 * cos(theta) ** 9 - 1.82032680208981e49 * cos(theta) ** 7 + 1.12763607209103e47 * cos(theta) ** 5 - 3.2770592039844e44 * cos(theta) ** 3 + 2.81857156305998e41 * cos(theta) ) * sin(21 * phi) ) # @torch.jit.script def Yl86_m_minus_20(theta, phi): return ( 1.1434699285799e-38 * (1.0 - cos(theta) ** 2) ** 10 * ( 2.0919504150356e62 * cos(theta) ** 66 - 2.62411323991307e63 * cos(theta) ** 64 + 1.56515156558129e64 * cos(theta) ** 62 - 5.90758804493856e64 * cos(theta) ** 60 + 1.58430770296079e65 * cos(theta) ** 58 - 3.21332593005422e65 * cos(theta) ** 56 + 5.12269351168065e65 * cos(theta) ** 54 - 6.58632022930369e65 * cos(theta) ** 52 + 6.95339221660565e65 * cos(theta) ** 50 - 6.10602542318417e65 * cos(theta) ** 48 + 4.5016971747397e65 * cos(theta) ** 46 - 2.80509125578302e65 * cos(theta) ** 44 + 1.48412546307088e65 * cos(theta) ** 42 - 6.68671911933034e64 * cos(theta) ** 40 + 2.56928123796929e64 * cos(theta) ** 38 - 8.42053477991801e63 * cos(theta) ** 36 + 2.35147912737072e63 * cos(theta) ** 34 - 5.58264828800243e62 * cos(theta) ** 32 + 1.1228684310013e62 * cos(theta) ** 30 - 1.90427979526536e61 * cos(theta) ** 28 + 2.70608181432446e60 * cos(theta) ** 26 - 3.1969341681405e59 * cos(theta) ** 24 + 3.10906916986179e58 * cos(theta) ** 22 - 2.45872981252336e57 * cos(theta) ** 20 + 1.55719554793146e56 * cos(theta) ** 18 - 7.74799736043947e54 * cos(theta) ** 16 + 2.95537089400107e53 * cos(theta) ** 14 - 8.37033150806404e51 * cos(theta) ** 12 + 1.68633052360264e50 * cos(theta) ** 10 - 2.27540850261226e48 * cos(theta) ** 8 + 1.87939345348506e46 * cos(theta) ** 6 - 8.19264800996101e43 * cos(theta) ** 4 + 1.40928578152999e41 * cos(theta) ** 2 - 3.99118034984421e37 ) * sin(20 * phi) ) # @torch.jit.script def Yl86_m_minus_19(theta, phi): return ( 9.63640583292203e-37 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 3.12231405229193e60 * cos(theta) ** 67 - 4.03709729217396e61 * cos(theta) ** 65 + 2.48436756441474e62 * cos(theta) ** 63 - 9.68457056547304e62 * cos(theta) ** 61 + 2.68526729315389e63 * cos(theta) ** 59 - 5.63741391237583e63 * cos(theta) ** 57 + 9.31398820305572e63 * cos(theta) ** 55 - 1.2427019300573e64 * cos(theta) ** 53 + 1.36341023855013e64 * cos(theta) ** 51 - 1.24612763738452e64 * cos(theta) ** 49 + 9.57807909519086e63 * cos(theta) ** 47 - 6.23353612396226e63 * cos(theta) ** 45 + 3.45145456528112e63 * cos(theta) ** 43 - 1.63090710227569e63 * cos(theta) ** 41 + 6.58790061017768e62 * cos(theta) ** 39 - 2.27582021078865e62 * cos(theta) ** 37 + 6.71851179248777e61 * cos(theta) ** 35 - 1.69171160242498e61 * cos(theta) ** 33 + 3.62215622903645e60 * cos(theta) ** 31 - 6.56648205263918e59 * cos(theta) ** 29 + 1.00225252382388e59 * cos(theta) ** 27 - 1.2787736672562e58 * cos(theta) ** 25 + 1.35176920428774e57 * cos(theta) ** 23 - 1.17082372024922e56 * cos(theta) ** 21 + 8.19576604174454e54 * cos(theta) ** 19 - 4.55764550614087e53 * cos(theta) ** 17 + 1.97024726266738e52 * cos(theta) ** 15 - 6.43871654466464e50 * cos(theta) ** 13 + 1.53302774872968e49 * cos(theta) ** 11 - 2.52823166956918e47 * cos(theta) ** 9 + 2.68484779069294e45 * cos(theta) ** 7 - 1.6385296019922e43 * cos(theta) ** 5 + 4.69761927176663e40 * cos(theta) ** 3 - 3.99118034984421e37 * cos(theta) ) * sin(19 * phi) ) # @torch.jit.script def Yl86_m_minus_18(theta, phi): return ( 8.14262037718918e-35 * (1.0 - cos(theta) ** 2) ** 9 * ( 4.59163831219402e58 * cos(theta) ** 68 - 6.11681407905145e59 * cos(theta) ** 66 + 3.88182431939804e60 * cos(theta) ** 64 - 1.56202751056017e61 * cos(theta) ** 62 + 4.47544548858981e61 * cos(theta) ** 60 - 9.71967915926868e61 * cos(theta) ** 58 + 1.66321217911709e62 * cos(theta) ** 56 - 2.30129987047648e62 * cos(theta) ** 54 + 2.62194276644255e62 * cos(theta) ** 52 - 2.49225527476905e62 * cos(theta) ** 50 + 1.99543314483143e62 * cos(theta) ** 48 - 1.35511654868745e62 * cos(theta) ** 46 + 7.84421492109345e61 * cos(theta) ** 44 - 3.88311214827546e61 * cos(theta) ** 42 + 1.64697515254442e61 * cos(theta) ** 40 - 5.98900055470698e60 * cos(theta) ** 38 + 1.86625327569105e60 * cos(theta) ** 36 - 4.97562236007347e59 * cos(theta) ** 34 + 1.13192382157389e59 * cos(theta) ** 32 - 2.18882735087973e58 * cos(theta) ** 30 + 3.57947329937098e57 * cos(theta) ** 28 - 4.91836025867769e56 * cos(theta) ** 26 + 5.63237168453223e55 * cos(theta) ** 24 - 5.32192600113282e54 * cos(theta) ** 22 + 4.09788302087227e53 * cos(theta) ** 20 - 2.53202528118937e52 * cos(theta) ** 18 + 1.23140453916711e51 * cos(theta) ** 16 - 4.59908324618903e49 * cos(theta) ** 14 + 1.2775231239414e48 * cos(theta) ** 12 - 2.52823166956918e46 * cos(theta) ** 10 + 3.35605973836617e44 * cos(theta) ** 8 - 2.730882669987e42 * cos(theta) ** 6 + 1.17440481794166e40 * cos(theta) ** 4 - 1.9955901749221e37 * cos(theta) ** 2 + 5.58988844515996e33 ) * sin(18 * phi) ) # @torch.jit.script def Yl86_m_minus_17(theta, phi): return ( 6.89771748603804e-33 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 6.65454827854206e56 * cos(theta) ** 69 - 9.1295732523156e57 * cos(theta) ** 67 + 5.97203741445852e58 * cos(theta) ** 65 - 2.4794087469209e59 * cos(theta) ** 63 + 7.33679588293412e59 * cos(theta) ** 61 - 1.64740324733367e60 * cos(theta) ** 59 + 2.9179161037142e60 * cos(theta) ** 57 - 4.18418158268451e60 * cos(theta) ** 55 + 4.94706182347651e60 * cos(theta) ** 53 - 4.88677504856676e60 * cos(theta) ** 51 + 4.0723125404723e60 * cos(theta) ** 49 - 2.883226699335e60 * cos(theta) ** 47 + 1.7431588713541e60 * cos(theta) ** 45 - 9.03049336808246e59 * cos(theta) ** 43 + 4.01701256718151e59 * cos(theta) ** 41 - 1.53564116787358e59 * cos(theta) ** 39 + 5.04392777213797e58 * cos(theta) ** 37 - 1.42160638859242e58 * cos(theta) ** 35 + 3.43007218658755e57 * cos(theta) ** 33 - 7.0607333899346e56 * cos(theta) ** 31 + 1.23430113771413e56 * cos(theta) ** 29 - 1.82161491062137e55 * cos(theta) ** 27 + 2.25294867381289e54 * cos(theta) ** 25 - 2.31388087005775e53 * cos(theta) ** 23 + 1.95137286708203e52 * cos(theta) ** 21 - 1.33264488483651e51 * cos(theta) ** 19 + 7.24355611274772e49 * cos(theta) ** 17 - 3.06605549745935e48 * cos(theta) ** 15 + 9.82710095339537e46 * cos(theta) ** 13 - 2.29839242688107e45 * cos(theta) ** 11 + 3.7289552648513e43 * cos(theta) ** 9 - 3.90126095712429e41 * cos(theta) ** 7 + 2.34880963588332e39 * cos(theta) ** 5 - 6.65196724974035e36 * cos(theta) ** 3 + 5.58988844515996e33 * cos(theta) ) * sin(17 * phi) ) # @torch.jit.script def Yl86_m_minus_16(theta, phi): return ( 5.85697047959929e-31 * (1.0 - cos(theta) ** 2) ** 8 * ( 9.50649754077437e54 * cos(theta) ** 70 - 1.34258430181112e56 * cos(theta) ** 68 + 9.04854153705836e56 * cos(theta) ** 66 - 3.87407616706391e57 * cos(theta) ** 64 + 1.18335417466679e58 * cos(theta) ** 62 - 2.74567207888946e58 * cos(theta) ** 60 + 5.03088983399e58 * cos(theta) ** 58 - 7.47175282622234e58 * cos(theta) ** 56 + 9.16122559903058e58 * cos(theta) ** 54 - 9.39764432416685e58 * cos(theta) ** 52 + 8.14462508094461e58 * cos(theta) ** 50 - 6.00672229028124e58 * cos(theta) ** 48 + 3.78947580729152e58 * cos(theta) ** 46 - 2.05238485638238e58 * cos(theta) ** 44 + 9.56431563614645e57 * cos(theta) ** 42 - 3.83910291968396e57 * cos(theta) ** 40 + 1.32734941372052e57 * cos(theta) ** 38 - 3.94890663497894e56 * cos(theta) ** 36 + 1.00884476076104e56 * cos(theta) ** 34 - 2.20647918435456e55 * cos(theta) ** 32 + 4.11433712571377e54 * cos(theta) ** 30 - 6.50576753793345e53 * cos(theta) ** 28 + 8.66518720697267e52 * cos(theta) ** 26 - 9.64117029190728e51 * cos(theta) ** 24 + 8.8698766685547e50 * cos(theta) ** 22 - 6.66322442418255e49 * cos(theta) ** 20 + 4.0241978404154e48 * cos(theta) ** 18 - 1.9162846859121e47 * cos(theta) ** 16 + 7.01935782385383e45 * cos(theta) ** 14 - 1.9153270224009e44 * cos(theta) ** 12 + 3.7289552648513e42 * cos(theta) ** 10 - 4.87657619640536e40 * cos(theta) ** 8 + 3.9146827264722e38 * cos(theta) ** 6 - 1.66299181243509e36 * cos(theta) ** 4 + 2.79494422257998e33 * cos(theta) ** 2 - 7.75296594335639e29 ) * sin(16 * phi) ) # @torch.jit.script def Yl86_m_minus_15(theta, phi): return ( 4.98427843690956e-29 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.33894331560202e53 * cos(theta) ** 71 - 1.94577435045089e54 * cos(theta) ** 69 + 1.35052858762065e55 * cos(theta) ** 67 - 5.96011718009832e55 * cos(theta) ** 65 + 1.87833995978856e56 * cos(theta) ** 63 - 4.50110176867124e56 * cos(theta) ** 61 + 8.52693192201695e56 * cos(theta) ** 59 - 1.31083382916181e57 * cos(theta) ** 57 + 1.66567738164192e57 * cos(theta) ** 55 - 1.77314043852205e57 * cos(theta) ** 53 + 1.59698530998914e57 * cos(theta) ** 51 - 1.22586169189413e57 * cos(theta) ** 49 + 8.06271448359898e56 * cos(theta) ** 47 - 4.56085523640528e56 * cos(theta) ** 45 + 2.22425945026662e56 * cos(theta) ** 43 - 9.36366565776576e55 * cos(theta) ** 41 + 3.40346003518082e55 * cos(theta) ** 39 - 1.06727206350782e55 * cos(theta) ** 37 + 2.88241360217441e54 * cos(theta) ** 35 - 6.68630055865019e53 * cos(theta) ** 33 + 1.3272055244238e53 * cos(theta) ** 31 - 2.24336811652877e52 * cos(theta) ** 29 + 3.20932859517506e51 * cos(theta) ** 27 - 3.85646811676291e50 * cos(theta) ** 25 + 3.85646811676291e49 * cos(theta) ** 23 - 3.1729640115155e48 * cos(theta) ** 21 + 2.11799886337653e47 * cos(theta) ** 19 - 1.12722628583064e46 * cos(theta) ** 17 + 4.67957188256922e44 * cos(theta) ** 15 - 1.47332847876992e43 * cos(theta) ** 13 + 3.389959331683e41 * cos(theta) ** 11 - 5.41841799600596e39 * cos(theta) ** 9 + 5.59240389496028e37 * cos(theta) ** 7 - 3.32598362487017e35 * cos(theta) ** 5 + 9.31648074193326e32 * cos(theta) ** 3 - 7.75296594335639e29 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl86_m_minus_14(theta, phi): return ( 4.25039439739959e-27 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.8596434938917e51 * cos(theta) ** 72 - 2.77967764350128e52 * cos(theta) ** 70 + 1.98607145238331e53 * cos(theta) ** 68 - 9.03048057590655e53 * cos(theta) ** 66 + 2.93490618716963e54 * cos(theta) ** 64 - 7.25984156237297e54 * cos(theta) ** 62 + 1.42115532033616e55 * cos(theta) ** 60 - 2.26005832614106e55 * cos(theta) ** 58 + 2.97442389578915e55 * cos(theta) ** 56 - 3.28359340467046e55 * cos(theta) ** 54 + 3.07112559613296e55 * cos(theta) ** 52 - 2.45172338378826e55 * cos(theta) ** 50 + 1.67973218408312e55 * cos(theta) ** 48 - 9.91490268783758e54 * cos(theta) ** 46 + 5.05513511424231e54 * cos(theta) ** 44 - 2.22944420422994e54 * cos(theta) ** 42 + 8.50865008795204e53 * cos(theta) ** 40 - 2.80861069344164e53 * cos(theta) ** 38 + 8.00670445048448e52 * cos(theta) ** 36 - 1.96655898783829e52 * cos(theta) ** 34 + 4.14751726382437e51 * cos(theta) ** 32 - 7.47789372176258e50 * cos(theta) ** 30 + 1.14618878399109e50 * cos(theta) ** 28 - 1.48325696798574e49 * cos(theta) ** 26 + 1.60686171531788e48 * cos(theta) ** 24 - 1.44225636887068e47 * cos(theta) ** 22 + 1.05899943168826e46 * cos(theta) ** 20 - 6.26236825461469e44 * cos(theta) ** 18 + 2.92473242660576e43 * cos(theta) ** 16 - 1.05237748483566e42 * cos(theta) ** 14 + 2.82496610973583e40 * cos(theta) ** 12 - 5.41841799600596e38 * cos(theta) ** 10 + 6.99050486870035e36 * cos(theta) ** 8 - 5.54330604145029e34 * cos(theta) ** 6 + 2.32912018548332e32 * cos(theta) ** 4 - 3.87648297167819e29 * cos(theta) ** 2 + 1.06613943115462e26 ) * sin(14 * phi) ) # @torch.jit.script def Yl86_m_minus_13(theta, phi): return ( 3.63153856504587e-25 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 2.54745684094753e49 * cos(theta) ** 73 - 3.91503893450884e50 * cos(theta) ** 71 + 2.87836442374393e51 * cos(theta) ** 69 - 1.3478329217771e52 * cos(theta) ** 67 + 4.51524028795327e52 * cos(theta) ** 65 - 1.15235580355126e53 * cos(theta) ** 63 + 2.32976282022321e53 * cos(theta) ** 61 - 3.83060733244247e53 * cos(theta) ** 59 + 5.21828753647219e53 * cos(theta) ** 57 - 5.97016982667356e53 * cos(theta) ** 55 + 5.79457659647728e53 * cos(theta) ** 53 - 4.807300752526e53 * cos(theta) ** 51 + 3.42802486547576e53 * cos(theta) ** 49 - 2.1095537633697e53 * cos(theta) ** 47 + 1.12336335872051e53 * cos(theta) ** 45 - 5.18475396332545e52 * cos(theta) ** 43 + 2.0752805092566e52 * cos(theta) ** 41 - 7.20156588061959e51 * cos(theta) ** 39 + 2.16397417580661e51 * cos(theta) ** 37 - 5.61873996525226e50 * cos(theta) ** 35 + 1.25682341328011e50 * cos(theta) ** 33 - 2.41222378121374e49 * cos(theta) ** 31 + 3.95237511721067e48 * cos(theta) ** 29 - 5.49354432587309e47 * cos(theta) ** 27 + 6.42744686127152e46 * cos(theta) ** 25 - 6.27067986465514e45 * cos(theta) ** 23 + 5.04285443661078e44 * cos(theta) ** 21 - 3.29598329190247e43 * cos(theta) ** 19 + 1.72043083917986e42 * cos(theta) ** 17 - 7.01584989890438e40 * cos(theta) ** 15 + 2.17305085364295e39 * cos(theta) ** 13 - 4.9258345418236e37 * cos(theta) ** 11 + 7.76722763188928e35 * cos(theta) ** 9 - 7.91900863064327e33 * cos(theta) ** 7 + 4.65824037096663e31 * cos(theta) ** 5 - 1.2921609905594e29 * cos(theta) ** 3 + 1.06613943115462e26 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl86_m_minus_12(theta, phi): return ( 3.10830851158339e-23 * (1.0 - cos(theta) ** 2) ** 6 * ( 3.4425092445237e47 * cos(theta) ** 74 - 5.43755407570673e48 * cos(theta) ** 72 + 4.11194917677704e49 * cos(theta) ** 70 - 1.98210723790749e50 * cos(theta) ** 68 + 6.84127316356557e50 * cos(theta) ** 66 - 1.80055594304885e51 * cos(theta) ** 64 + 3.75768196810195e51 * cos(theta) ** 62 - 6.38434555407079e51 * cos(theta) ** 60 + 8.99704747667619e51 * cos(theta) ** 58 - 1.06610175476314e52 * cos(theta) ** 56 + 1.07306974008839e52 * cos(theta) ** 54 - 9.24480913947308e51 * cos(theta) ** 52 + 6.85604973095152e51 * cos(theta) ** 50 - 4.39490367368687e51 * cos(theta) ** 48 + 2.44209425808807e51 * cos(theta) ** 46 - 1.17835317348306e51 * cos(theta) ** 44 + 4.94114406965856e50 * cos(theta) ** 42 - 1.8003914701549e50 * cos(theta) ** 40 + 5.69466888370162e49 * cos(theta) ** 38 - 1.56076110145896e49 * cos(theta) ** 36 + 3.69653945082386e48 * cos(theta) ** 34 - 7.53819931629293e47 * cos(theta) ** 32 + 1.31745837240356e47 * cos(theta) ** 30 - 1.96198011638325e46 * cos(theta) ** 28 + 2.47209494664289e45 * cos(theta) ** 26 - 2.61278327693964e44 * cos(theta) ** 24 + 2.29220656209581e43 * cos(theta) ** 22 - 1.64799164595123e42 * cos(theta) ** 20 + 9.55794910655478e40 * cos(theta) ** 18 - 4.38490618681524e39 * cos(theta) ** 16 + 1.55217918117354e38 * cos(theta) ** 14 - 4.10486211818633e36 * cos(theta) ** 12 + 7.76722763188928e34 * cos(theta) ** 10 - 9.89876078830409e32 * cos(theta) ** 8 + 7.76373395161105e30 * cos(theta) ** 6 - 3.2304024763985e28 * cos(theta) ** 4 + 5.3306971557731e25 * cos(theta) ** 2 - 1.45528177880783e22 ) * sin(12 * phi) ) # @torch.jit.script def Yl86_m_minus_11(theta, phi): return ( 2.66481943578521e-21 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 4.59001232603159e45 * cos(theta) ** 75 - 7.44870421329689e46 * cos(theta) ** 73 + 5.79147771377048e47 * cos(theta) ** 71 - 2.87261918537318e48 * cos(theta) ** 69 + 1.02108554680083e49 * cos(theta) ** 67 - 2.770086066229e49 * cos(theta) ** 65 + 5.96457455254278e49 * cos(theta) ** 63 - 1.04661402525751e50 * cos(theta) ** 61 + 1.52492330113156e50 * cos(theta) ** 59 - 1.8703539557248e50 * cos(theta) ** 57 + 1.95103589106979e50 * cos(theta) ** 55 - 1.74430361122134e50 * cos(theta) ** 53 + 1.34432347665716e50 * cos(theta) ** 51 - 8.96919117078953e49 * cos(theta) ** 49 + 5.19594522997462e49 * cos(theta) ** 47 - 2.61856260774012e49 * cos(theta) ** 45 + 1.14910327201362e49 * cos(theta) ** 43 - 4.39119870769487e48 * cos(theta) ** 41 + 1.46017150864144e48 * cos(theta) ** 39 - 4.21827324718638e47 * cos(theta) ** 37 + 1.05615412880682e47 * cos(theta) ** 35 - 2.28430282311907e46 * cos(theta) ** 33 + 4.24986571743083e45 * cos(theta) ** 31 - 6.76544867718361e44 * cos(theta) ** 29 + 9.15590720978849e43 * cos(theta) ** 27 - 1.04511331077586e43 * cos(theta) ** 25 + 9.96611548737308e41 * cos(theta) ** 23 - 7.84757926643445e40 * cos(theta) ** 21 + 5.03049952976567e39 * cos(theta) ** 19 - 2.57935658047955e38 * cos(theta) ** 17 + 1.03478612078236e37 * cos(theta) ** 15 - 3.15758624475872e35 * cos(theta) ** 13 + 7.06111602899025e33 * cos(theta) ** 11 - 1.09986230981157e32 * cos(theta) ** 9 + 1.10910485023015e30 * cos(theta) ** 7 - 6.46080495279699e27 * cos(theta) ** 5 + 1.77689905192437e25 * cos(theta) ** 3 - 1.45528177880783e22 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl86_m_minus_10(theta, phi): return ( 2.28802334065883e-19 * (1.0 - cos(theta) ** 2) ** 5 * ( 6.03948990267315e43 * cos(theta) ** 76 - 1.00658165044553e45 * cos(theta) ** 74 + 8.04371904690344e45 * cos(theta) ** 72 - 4.10374169339026e46 * cos(theta) ** 70 + 1.50159639235416e47 * cos(theta) ** 68 - 4.19710010034697e47 * cos(theta) ** 66 + 9.31964773834809e47 * cos(theta) ** 64 - 1.68808713751211e48 * cos(theta) ** 62 + 2.54153883521926e48 * cos(theta) ** 60 - 3.22474819952552e48 * cos(theta) ** 58 + 3.48399266262463e48 * cos(theta) ** 56 - 3.2301918726321e48 * cos(theta) ** 54 + 2.58523745510992e48 * cos(theta) ** 52 - 1.79383823415791e48 * cos(theta) ** 50 + 1.08248858957805e48 * cos(theta) ** 48 - 5.69252740813071e47 * cos(theta) ** 46 + 2.6115983454855e47 * cos(theta) ** 44 - 1.04552350183211e47 * cos(theta) ** 42 + 3.6504287716036e46 * cos(theta) ** 40 - 1.11007190715431e46 * cos(theta) ** 38 + 2.93376146890782e45 * cos(theta) ** 36 - 6.71853771505608e44 * cos(theta) ** 34 + 1.32808303669713e44 * cos(theta) ** 32 - 2.2551495590612e43 * cos(theta) ** 30 + 3.26996686063875e42 * cos(theta) ** 28 - 4.01966657990714e41 * cos(theta) ** 26 + 4.15254811973878e40 * cos(theta) ** 24 - 3.56708148474293e39 * cos(theta) ** 22 + 2.51524976488284e38 * cos(theta) ** 20 - 1.4329758780442e37 * cos(theta) ** 18 + 6.46741325488973e35 * cos(theta) ** 16 - 2.25541874625623e34 * cos(theta) ** 14 + 5.88426335749188e32 * cos(theta) ** 12 - 1.09986230981157e31 * cos(theta) ** 10 + 1.38638106278769e29 * cos(theta) ** 8 - 1.07680082546617e27 * cos(theta) ** 6 + 4.44224762981091e24 * cos(theta) ** 4 - 7.27640889403917e21 * cos(theta) ** 2 + 1.97406643896885e18 ) * sin(10 * phi) ) # @torch.jit.script def Yl86_m_minus_9(theta, phi): return ( 1.96716790255173e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 7.843493380095e41 * cos(theta) ** 77 - 1.3421088672607e43 * cos(theta) ** 75 + 1.10187932149362e44 * cos(theta) ** 73 - 5.77991787801445e44 * cos(theta) ** 71 + 2.17622665558574e45 * cos(theta) ** 69 - 6.26432850798056e45 * cos(theta) ** 67 + 1.43379195974586e46 * cos(theta) ** 65 - 2.67950339287636e46 * cos(theta) ** 63 + 4.16645710691683e46 * cos(theta) ** 61 - 5.46567491445003e46 * cos(theta) ** 59 + 6.11226782916601e46 * cos(theta) ** 57 - 5.87307613205837e46 * cos(theta) ** 55 + 4.87780651907533e46 * cos(theta) ** 53 - 3.51732987089785e46 * cos(theta) ** 51 + 2.20916038689397e46 * cos(theta) ** 49 - 1.21117604428313e46 * cos(theta) ** 47 + 5.80355187885666e45 * cos(theta) ** 45 - 2.43145000426072e45 * cos(theta) ** 43 + 8.90348480878927e44 * cos(theta) ** 41 - 2.84633822347259e44 * cos(theta) ** 39 + 7.92908505110223e43 * cos(theta) ** 37 - 1.91958220430174e43 * cos(theta) ** 35 + 4.02449405059737e42 * cos(theta) ** 33 - 7.27467599697163e41 * cos(theta) ** 31 + 1.1275747795306e41 * cos(theta) ** 29 - 1.48876539996561e40 * cos(theta) ** 27 + 1.66101924789551e39 * cos(theta) ** 25 - 1.55090499336649e38 * cos(theta) ** 23 + 1.19773798327754e37 * cos(theta) ** 21 - 7.54197830549576e35 * cos(theta) ** 19 + 3.80436073817043e34 * cos(theta) ** 17 - 1.50361249750415e33 * cos(theta) ** 15 + 4.5263564288399e31 * cos(theta) ** 13 - 9.99874827101423e29 * cos(theta) ** 11 + 1.54042340309743e28 * cos(theta) ** 9 - 1.53828689352309e26 * cos(theta) ** 7 + 8.88449525962183e23 * cos(theta) ** 5 - 2.42546963134639e21 * cos(theta) ** 3 + 1.97406643896885e18 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl86_m_minus_8(theta, phi): return ( 1.69336482236135e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.00557607437115e40 * cos(theta) ** 78 - 1.76593272007987e41 * cos(theta) ** 76 + 1.48902611012652e42 * cos(theta) ** 74 - 8.02766371946451e42 * cos(theta) ** 72 + 3.10889522226535e43 * cos(theta) ** 70 - 9.21224780585376e43 * cos(theta) ** 68 + 2.172412060221e44 * cos(theta) ** 66 - 4.18672405136931e44 * cos(theta) ** 64 + 6.72009210793036e44 * cos(theta) ** 62 - 9.10945819075005e44 * cos(theta) ** 60 + 1.05383928089069e45 * cos(theta) ** 58 - 1.04876359501042e45 * cos(theta) ** 56 + 9.03297503532468e44 * cos(theta) ** 54 - 6.7640959055728e44 * cos(theta) ** 52 + 4.41832077378794e44 * cos(theta) ** 50 - 2.52328342558985e44 * cos(theta) ** 48 + 1.26164171279493e44 * cos(theta) ** 46 - 5.52602273695619e43 * cos(theta) ** 44 + 2.11987733542602e43 * cos(theta) ** 42 - 7.11584555868148e42 * cos(theta) ** 40 + 2.08660132923743e42 * cos(theta) ** 38 - 5.33217278972705e41 * cos(theta) ** 36 + 1.18367472076393e41 * cos(theta) ** 34 - 2.27333624905363e40 * cos(theta) ** 32 + 3.75858259843534e39 * cos(theta) ** 30 - 5.31701928559146e38 * cos(theta) ** 28 + 6.3885355688289e37 * cos(theta) ** 26 - 6.46210413902705e36 * cos(theta) ** 24 + 5.44426356035246e35 * cos(theta) ** 22 - 3.77098915274788e34 * cos(theta) ** 20 + 2.11353374342802e33 * cos(theta) ** 18 - 9.39757810940095e31 * cos(theta) ** 16 + 3.23311173488565e30 * cos(theta) ** 14 - 8.33229022584519e28 * cos(theta) ** 12 + 1.54042340309743e27 * cos(theta) ** 10 - 1.92285861690387e25 * cos(theta) ** 8 + 1.48074920993697e23 * cos(theta) ** 6 - 6.06367407836597e20 * cos(theta) ** 4 + 9.87033219484423e17 * cos(theta) ** 2 - 266405727256255.0 ) * sin(8 * phi) ) # @torch.jit.script def Yl86_m_minus_7(theta, phi): return ( 1.4592443015096e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.27288110679893e38 * cos(theta) ** 79 - 2.29341911698684e39 * cos(theta) ** 77 + 1.98536814683536e40 * cos(theta) ** 75 - 1.09967996157048e41 * cos(theta) ** 73 + 4.37872566516246e41 * cos(theta) ** 71 - 1.33510837765997e42 * cos(theta) ** 69 + 3.24240606003134e42 * cos(theta) ** 67 - 6.44111392518356e42 * cos(theta) ** 65 + 1.06668128697307e43 * cos(theta) ** 63 - 1.4933538017623e43 * cos(theta) ** 61 + 1.78616827269609e43 * cos(theta) ** 59 - 1.83993613159723e43 * cos(theta) ** 57 + 1.64235909733176e43 * cos(theta) ** 55 - 1.27624451048543e43 * cos(theta) ** 53 + 8.66337406625087e42 * cos(theta) ** 51 - 5.14955801140786e42 * cos(theta) ** 49 + 2.68434406977644e42 * cos(theta) ** 47 - 1.22800505265693e42 * cos(theta) ** 45 + 4.92994729168841e41 * cos(theta) ** 43 - 1.73557208748329e41 * cos(theta) ** 41 + 5.35025981855751e40 * cos(theta) ** 39 - 1.44112778100731e40 * cos(theta) ** 37 + 3.38192777361124e39 * cos(theta) ** 35 - 6.88889772440495e38 * cos(theta) ** 33 + 1.21244599949527e38 * cos(theta) ** 31 - 1.83345492606602e37 * cos(theta) ** 29 + 2.36612428475144e36 * cos(theta) ** 27 - 2.58484165561082e35 * cos(theta) ** 25 + 2.36707111319672e34 * cos(theta) ** 23 - 1.79570912035613e33 * cos(theta) ** 21 + 1.11238618075159e32 * cos(theta) ** 19 - 5.52798712317703e30 * cos(theta) ** 17 + 2.1554078232571e29 * cos(theta) ** 15 - 6.40945401988092e27 * cos(theta) ** 13 + 1.40038491190676e26 * cos(theta) ** 11 - 2.13650957433763e24 * cos(theta) ** 9 + 2.11535601419567e22 * cos(theta) ** 7 - 1.21273481567319e20 * cos(theta) ** 5 + 3.29011073161474e17 * cos(theta) ** 3 - 266405727256255.0 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl86_m_minus_6(theta, phi): return ( 1.25867751430906e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.59110138349866e36 * cos(theta) ** 80 - 2.9402809192139e37 * cos(theta) ** 78 + 2.61232650899389e38 * cos(theta) ** 76 - 1.48605400212227e39 * cos(theta) ** 74 + 6.08156342383675e39 * cos(theta) ** 72 - 1.90729768237138e40 * cos(theta) ** 70 + 4.76824420592845e40 * cos(theta) ** 68 - 9.75926352300539e40 * cos(theta) ** 66 + 1.66668951089543e41 * cos(theta) ** 64 - 2.40863516413275e41 * cos(theta) ** 62 + 2.97694712116015e41 * cos(theta) ** 60 - 3.17230367516765e41 * cos(theta) ** 58 + 2.93278410237814e41 * cos(theta) ** 56 - 2.36341576015821e41 * cos(theta) ** 54 + 1.66603347427901e41 * cos(theta) ** 52 - 1.02991160228157e41 * cos(theta) ** 50 + 5.59238347870091e40 * cos(theta) ** 48 - 2.66957620142811e40 * cos(theta) ** 46 + 1.12044256629282e40 * cos(theta) ** 44 - 4.13231449400783e39 * cos(theta) ** 42 + 1.33756495463938e39 * cos(theta) ** 40 - 3.79244152896661e38 * cos(theta) ** 38 + 9.39424381558677e37 * cos(theta) ** 36 - 2.02614638953087e37 * cos(theta) ** 34 + 3.78889374842272e36 * cos(theta) ** 32 - 6.11151642022007e35 * cos(theta) ** 30 + 8.4504438741123e34 * cos(theta) ** 28 - 9.94169867542623e33 * cos(theta) ** 26 + 9.86279630498634e32 * cos(theta) ** 24 - 8.16231418343697e31 * cos(theta) ** 22 + 5.56193090375794e30 * cos(theta) ** 20 - 3.07110395732057e29 * cos(theta) ** 18 + 1.34712988953569e28 * cos(theta) ** 16 - 4.57818144277208e26 * cos(theta) ** 14 + 1.16698742658896e25 * cos(theta) ** 12 - 2.13650957433763e23 * cos(theta) ** 10 + 2.64419501774459e21 * cos(theta) ** 8 - 2.02122469278866e19 * cos(theta) ** 6 + 8.22527682903686e16 * cos(theta) ** 4 - 133202863628127.0 * cos(theta) ** 2 + 35807221405.4106 ) * sin(6 * phi) ) # @torch.jit.script def Yl86_m_minus_5(theta, phi): return ( 1.0865529541455e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.96432269567736e34 * cos(theta) ** 81 - 3.72187458128342e35 * cos(theta) ** 79 + 3.39263182986219e36 * cos(theta) ** 77 - 1.98140533616303e37 * cos(theta) ** 75 + 8.33090879977637e37 * cos(theta) ** 73 - 2.68633476390335e38 * cos(theta) ** 71 + 6.91049884917166e38 * cos(theta) ** 69 - 1.45660649597095e39 * cos(theta) ** 67 + 2.56413770906989e39 * cos(theta) ** 65 - 3.82323041925833e39 * cos(theta) ** 63 + 4.88024118222975e39 * cos(theta) ** 61 - 5.37678589011465e39 * cos(theta) ** 59 + 5.14523526733007e39 * cos(theta) ** 57 - 4.29711956392402e39 * cos(theta) ** 55 + 3.1434593854321e39 * cos(theta) ** 53 - 2.01943451427759e39 * cos(theta) ** 51 + 1.14130275075529e39 * cos(theta) ** 49 - 5.67994936474067e38 * cos(theta) ** 47 + 2.4898723695396e38 * cos(theta) ** 45 - 9.61003370699495e37 * cos(theta) ** 43 + 3.26235354790092e37 * cos(theta) ** 41 - 9.72420904863233e36 * cos(theta) ** 39 + 2.53898481502345e36 * cos(theta) ** 37 - 5.78898968437391e35 * cos(theta) ** 35 + 1.14814962073416e35 * cos(theta) ** 33 - 1.97145690974841e34 * cos(theta) ** 31 + 2.913946163487e33 * cos(theta) ** 29 - 3.68211062052823e32 * cos(theta) ** 27 + 3.94511852199454e31 * cos(theta) ** 25 - 3.54883225366825e30 * cos(theta) ** 23 + 2.64853852559902e29 * cos(theta) ** 21 - 1.61637050385293e28 * cos(theta) ** 19 + 7.92429346785698e26 * cos(theta) ** 17 - 3.05212096184806e25 * cos(theta) ** 15 + 8.97682635837664e23 * cos(theta) ** 13 - 1.94228143121603e22 * cos(theta) ** 11 + 2.93799446416066e20 * cos(theta) ** 9 - 2.88746384684094e18 * cos(theta) ** 7 + 1.64505536580737e16 * cos(theta) ** 5 - 44400954542709.1 * cos(theta) ** 3 + 35807221405.4106 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl86_m_minus_4(theta, phi): return ( 9.38595611430988e-8 * (1.0 - cos(theta) ** 2) ** 2 * ( 2.39551548253337e32 * cos(theta) ** 82 - 4.65234322660427e33 * cos(theta) ** 80 + 4.34952798700281e34 * cos(theta) ** 78 - 2.60711228442504e35 * cos(theta) ** 76 + 1.12579848645627e36 * cos(theta) ** 74 - 3.73102050542132e36 * cos(theta) ** 72 + 9.87214121310238e36 * cos(theta) ** 70 - 2.14206837642787e37 * cos(theta) ** 68 + 3.88505713495438e37 * cos(theta) ** 66 - 5.97379753009114e37 * cos(theta) ** 64 + 7.87135674553185e37 * cos(theta) ** 62 - 8.96130981685775e37 * cos(theta) ** 60 + 8.87109528850013e37 * cos(theta) ** 58 - 7.67342779272146e37 * cos(theta) ** 56 + 5.82122108413352e37 * cos(theta) ** 54 - 3.88352791207229e37 * cos(theta) ** 52 + 2.28260550151058e37 * cos(theta) ** 50 - 1.18332278432097e37 * cos(theta) ** 48 + 5.41276602073827e36 * cos(theta) ** 46 - 2.18409856977158e36 * cos(theta) ** 44 + 7.76750844738314e35 * cos(theta) ** 42 - 2.43105226215808e35 * cos(theta) ** 40 + 6.68153898690382e34 * cos(theta) ** 38 - 1.60805269010386e34 * cos(theta) ** 36 + 3.37691064921811e33 * cos(theta) ** 34 - 6.16080284296378e32 * cos(theta) ** 32 + 9.71315387829e31 * cos(theta) ** 30 - 1.31503950733151e31 * cos(theta) ** 28 + 1.51735327769021e30 * cos(theta) ** 26 - 1.4786801056951e29 * cos(theta) ** 24 + 1.20388114799955e28 * cos(theta) ** 22 - 8.08185251926466e26 * cos(theta) ** 20 + 4.40238525992054e25 * cos(theta) ** 18 - 1.90757560115504e24 * cos(theta) ** 16 + 6.41201882741188e22 * cos(theta) ** 14 - 1.61856785934669e21 * cos(theta) ** 12 + 2.93799446416066e19 * cos(theta) ** 10 - 3.60932980855118e17 * cos(theta) ** 8 + 2.74175894301229e15 * cos(theta) ** 6 - 11100238635677.3 * cos(theta) ** 4 + 17903610702.7053 * cos(theta) ** 2 - 4798609.14036593 ) * sin(4 * phi) ) # @torch.jit.script def Yl86_m_minus_3(theta, phi): return ( 8.11220319138235e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 2.88616323196791e30 * cos(theta) ** 83 - 5.74363361309169e31 * cos(theta) ** 81 + 5.50573162911748e32 * cos(theta) ** 79 - 3.38586010964291e33 * cos(theta) ** 77 + 1.50106464860836e34 * cos(theta) ** 75 - 5.11098699372784e34 * cos(theta) ** 73 + 1.39044242438062e35 * cos(theta) ** 71 - 3.10444692235924e35 * cos(theta) ** 69 + 5.79859273873788e35 * cos(theta) ** 67 - 9.19045773860175e35 * cos(theta) ** 65 + 1.24942170563998e36 * cos(theta) ** 63 - 1.46906718309144e36 * cos(theta) ** 61 + 1.50357547262714e36 * cos(theta) ** 59 - 1.34621540223184e36 * cos(theta) ** 57 + 1.05840383347882e36 * cos(theta) ** 55 - 7.32741115485338e35 * cos(theta) ** 53 + 4.47569706178544e35 * cos(theta) ** 51 - 2.4149444577979e35 * cos(theta) ** 49 + 1.15165234483793e35 * cos(theta) ** 47 - 4.85355237727018e34 * cos(theta) ** 45 + 1.80639731334492e34 * cos(theta) ** 43 - 5.92939576136118e33 * cos(theta) ** 41 + 1.71321512484713e33 * cos(theta) ** 39 - 4.34608835163206e32 * cos(theta) ** 37 + 9.64831614062318e31 * cos(theta) ** 35 - 1.86690995241327e31 * cos(theta) ** 33 + 3.13327544460968e30 * cos(theta) ** 31 - 4.53461899079832e29 * cos(theta) ** 29 + 5.61982695440817e28 * cos(theta) ** 27 - 5.91472042278042e27 * cos(theta) ** 25 + 5.23426586086762e26 * cos(theta) ** 23 - 3.84850119964984e25 * cos(theta) ** 21 + 2.31704487364239e24 * cos(theta) ** 19 - 1.12210329479708e23 * cos(theta) ** 17 + 4.27467921827459e21 * cos(theta) ** 15 - 1.24505219949745e20 * cos(theta) ** 13 + 2.67090405832787e18 * cos(theta) ** 11 - 4.01036645394575e16 * cos(theta) ** 9 + 391679849001755.0 * cos(theta) ** 7 - 2220047727135.46 * cos(theta) ** 5 + 5967870234.2351 * cos(theta) ** 3 - 4798609.14036593 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl86_m_minus_2(theta, phi): return ( 0.000701412443903169 * (1.0 - cos(theta) ** 2) * ( 3.43590860948561e28 * cos(theta) ** 84 - 7.00443123547768e29 * cos(theta) ** 82 + 6.88216453639685e30 * cos(theta) ** 80 - 4.34084629441398e31 * cos(theta) ** 78 + 1.97508506395836e32 * cos(theta) ** 76 - 6.90673918071329e32 * cos(theta) ** 74 + 1.93117003386197e33 * cos(theta) ** 72 - 4.43492417479891e33 * cos(theta) ** 70 + 8.52734226284982e33 * cos(theta) ** 68 - 1.39249359675784e34 * cos(theta) ** 66 + 1.95222141506246e34 * cos(theta) ** 64 - 2.36946319853457e34 * cos(theta) ** 62 + 2.50595912104523e34 * cos(theta) ** 60 - 2.32106103833075e34 * cos(theta) ** 58 + 1.8900068454979e34 * cos(theta) ** 56 - 1.35692799163952e34 * cos(theta) ** 54 + 8.60710973420278e33 * cos(theta) ** 52 - 4.8298889155958e33 * cos(theta) ** 50 + 2.39927571841235e33 * cos(theta) ** 48 - 1.05512008201526e33 * cos(theta) ** 46 + 4.10544843942026e32 * cos(theta) ** 44 - 1.41176089556218e32 * cos(theta) ** 42 + 4.28303781211783e31 * cos(theta) ** 40 - 1.14370746095581e31 * cos(theta) ** 38 + 2.68008781683977e30 * cos(theta) ** 36 - 5.4909116247449e29 * cos(theta) ** 34 + 9.79148576440524e28 * cos(theta) ** 32 - 1.51153966359944e28 * cos(theta) ** 30 + 2.00708105514578e27 * cos(theta) ** 28 - 2.27489247030016e26 * cos(theta) ** 26 + 2.18094410869484e25 * cos(theta) ** 24 - 1.74931872711356e24 * cos(theta) ** 22 + 1.1585224368212e23 * cos(theta) ** 20 - 6.23390719331711e21 * cos(theta) ** 18 + 2.67167451142162e20 * cos(theta) ** 16 - 8.89322999641038e18 * cos(theta) ** 14 + 2.22575338193989e17 * cos(theta) ** 12 - 4.01036645394575e15 * cos(theta) ** 10 + 48959981125219.4 * cos(theta) ** 8 - 370007954522.576 * cos(theta) ** 6 + 1491967558.55877 * cos(theta) ** 4 - 2399304.57018296 * cos(theta) ** 2 + 641.868531349108 ) * sin(2 * phi) ) # @torch.jit.script def Yl86_m_minus_1(theta, phi): return ( 0.0606630532955388 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 4.04224542292424e26 * cos(theta) ** 85 - 8.43907377768395e27 * cos(theta) ** 83 + 8.49649942765044e28 * cos(theta) ** 81 - 5.49474214482783e29 * cos(theta) ** 79 + 2.56504553760826e30 * cos(theta) ** 77 - 9.20898557428439e30 * cos(theta) ** 75 + 2.64543840255064e31 * cos(theta) ** 73 - 6.24637207718156e31 * cos(theta) ** 71 + 1.23584670476084e32 * cos(theta) ** 69 - 2.07834865187737e32 * cos(theta) ** 67 + 3.00341756163456e32 * cos(theta) ** 65 - 3.76105269608662e32 * cos(theta) ** 63 + 4.10812970663153e32 * cos(theta) ** 61 - 3.93400175988263e32 * cos(theta) ** 59 + 3.31580148332964e32 * cos(theta) ** 57 - 2.46714180298094e32 * cos(theta) ** 55 + 1.62398296871751e32 * cos(theta) ** 53 - 9.47037042273687e31 * cos(theta) ** 51 + 4.89648105798439e31 * cos(theta) ** 49 - 2.24493634471331e31 * cos(theta) ** 47 + 9.12321875426725e30 * cos(theta) ** 45 - 3.28316487340043e30 * cos(theta) ** 43 + 1.04464336880923e30 * cos(theta) ** 41 - 2.93258323322002e29 * cos(theta) ** 39 + 7.24348058605344e28 * cos(theta) ** 37 - 1.56883189278426e28 * cos(theta) ** 35 + 2.96711689830462e27 * cos(theta) ** 33 - 4.87593439870787e26 * cos(theta) ** 31 + 6.92096915567509e25 * cos(theta) ** 29 - 8.42552766777837e24 * cos(theta) ** 27 + 8.72377643477937e23 * cos(theta) ** 25 - 7.60573359614592e22 * cos(theta) ** 23 + 5.51677350867236e21 * cos(theta) ** 21 - 3.28100378595637e20 * cos(theta) ** 19 + 1.57157324201272e19 * cos(theta) ** 17 - 5.92881999760692e17 * cos(theta) ** 15 + 1.71211798610761e16 * cos(theta) ** 13 - 364578768540523.0 * cos(theta) ** 11 + 5439997902802.16 * cos(theta) ** 9 - 52858279217.5108 * cos(theta) ** 7 + 298393511.711755 * cos(theta) ** 5 - 799768.190060988 * cos(theta) ** 3 + 641.868531349108 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl86_m0(theta, phi): return ( 5.47888543051991e25 * cos(theta) ** 86 - 1.17107171044154e27 * cos(theta) ** 84 + 1.20779762798793e28 * cos(theta) ** 82 - 8.00617948612357e28 * cos(theta) ** 80 + 3.83326169335613e29 * cos(theta) ** 78 - 1.41242759081576e30 * cos(theta) ** 76 + 4.16710003501545e30 * cos(theta) ** 74 - 1.01126120346601e31 * cos(theta) ** 72 + 2.05794875482415e31 * cos(theta) ** 70 - 3.56268547878159e31 * cos(theta) ** 68 + 5.3044428239637e31 * cos(theta) ** 66 - 6.85010828260213e31 * cos(theta) ** 64 + 7.72361202333663e31 * cos(theta) ** 62 - 7.64277882581348e31 * cos(theta) ** 60 + 6.66390074960092e31 * cos(theta) ** 58 - 5.13539764060155e31 * cos(theta) ** 56 + 3.50554626175815e31 * cos(theta) ** 54 - 2.12291015682434e31 * cos(theta) ** 52 + 1.14151616705153e31 * cos(theta) ** 50 - 5.45168539819931e30 * cos(theta) ** 48 + 2.31184252976272e30 * cos(theta) ** 46 - 8.69777178591207e29 * cos(theta) ** 44 + 2.89925726197069e29 * cos(theta) ** 42 - 8.54591065579173e28 * cos(theta) ** 40 + 2.22193677050585e28 * cos(theta) ** 38 - 5.07974487696134e27 * cos(theta) ** 36 + 1.01724070962671e27 * cos(theta) ** 34 - 1.7761345723641e26 * cos(theta) ** 32 + 2.68914147708363e25 * cos(theta) ** 30 - 3.5075758396743e24 * cos(theta) ** 28 + 3.91110226370762e23 * cos(theta) ** 26 - 3.6940082409328e22 * cos(theta) ** 24 + 2.92301110807756e21 * cos(theta) ** 22 - 1.91225025762083e20 * cos(theta) ** 20 + 1.01772422674498e19 * cos(theta) ** 18 - 4.3193288957554e17 * cos(theta) ** 16 + 1.42552108770805e16 * cos(theta) ** 14 - 354142557961870.0 * cos(theta) ** 12 + 6341130989007.97 * cos(theta) ** 10 - 77017785291.5948 * cos(theta) ** 8 + 579703760.259316 * cos(theta) ** 6 - 2330623.53360754 * cos(theta) ** 4 + 3740.96875378418 * cos(theta) ** 2 - 0.999991647630093 ) # @torch.jit.script def Yl86_m1(theta, phi): return ( 0.0606630532955388 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 4.04224542292424e26 * cos(theta) ** 85 - 8.43907377768395e27 * cos(theta) ** 83 + 8.49649942765044e28 * cos(theta) ** 81 - 5.49474214482783e29 * cos(theta) ** 79 + 2.56504553760826e30 * cos(theta) ** 77 - 9.20898557428439e30 * cos(theta) ** 75 + 2.64543840255064e31 * cos(theta) ** 73 - 6.24637207718156e31 * cos(theta) ** 71 + 1.23584670476084e32 * cos(theta) ** 69 - 2.07834865187737e32 * cos(theta) ** 67 + 3.00341756163456e32 * cos(theta) ** 65 - 3.76105269608662e32 * cos(theta) ** 63 + 4.10812970663153e32 * cos(theta) ** 61 - 3.93400175988263e32 * cos(theta) ** 59 + 3.31580148332964e32 * cos(theta) ** 57 - 2.46714180298094e32 * cos(theta) ** 55 + 1.62398296871751e32 * cos(theta) ** 53 - 9.47037042273687e31 * cos(theta) ** 51 + 4.89648105798439e31 * cos(theta) ** 49 - 2.24493634471331e31 * cos(theta) ** 47 + 9.12321875426725e30 * cos(theta) ** 45 - 3.28316487340043e30 * cos(theta) ** 43 + 1.04464336880923e30 * cos(theta) ** 41 - 2.93258323322002e29 * cos(theta) ** 39 + 7.24348058605344e28 * cos(theta) ** 37 - 1.56883189278426e28 * cos(theta) ** 35 + 2.96711689830462e27 * cos(theta) ** 33 - 4.87593439870787e26 * cos(theta) ** 31 + 6.92096915567509e25 * cos(theta) ** 29 - 8.42552766777837e24 * cos(theta) ** 27 + 8.72377643477937e23 * cos(theta) ** 25 - 7.60573359614592e22 * cos(theta) ** 23 + 5.51677350867236e21 * cos(theta) ** 21 - 3.28100378595637e20 * cos(theta) ** 19 + 1.57157324201272e19 * cos(theta) ** 17 - 5.92881999760692e17 * cos(theta) ** 15 + 1.71211798610761e16 * cos(theta) ** 13 - 364578768540523.0 * cos(theta) ** 11 + 5439997902802.16 * cos(theta) ** 9 - 52858279217.5108 * cos(theta) ** 7 + 298393511.711755 * cos(theta) ** 5 - 799768.190060988 * cos(theta) ** 3 + 641.868531349108 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl86_m2(theta, phi): return ( 0.000701412443903169 * (1.0 - cos(theta) ** 2) * ( 3.43590860948561e28 * cos(theta) ** 84 - 7.00443123547768e29 * cos(theta) ** 82 + 6.88216453639685e30 * cos(theta) ** 80 - 4.34084629441398e31 * cos(theta) ** 78 + 1.97508506395836e32 * cos(theta) ** 76 - 6.90673918071329e32 * cos(theta) ** 74 + 1.93117003386197e33 * cos(theta) ** 72 - 4.43492417479891e33 * cos(theta) ** 70 + 8.52734226284982e33 * cos(theta) ** 68 - 1.39249359675784e34 * cos(theta) ** 66 + 1.95222141506246e34 * cos(theta) ** 64 - 2.36946319853457e34 * cos(theta) ** 62 + 2.50595912104523e34 * cos(theta) ** 60 - 2.32106103833075e34 * cos(theta) ** 58 + 1.8900068454979e34 * cos(theta) ** 56 - 1.35692799163952e34 * cos(theta) ** 54 + 8.60710973420278e33 * cos(theta) ** 52 - 4.8298889155958e33 * cos(theta) ** 50 + 2.39927571841235e33 * cos(theta) ** 48 - 1.05512008201526e33 * cos(theta) ** 46 + 4.10544843942026e32 * cos(theta) ** 44 - 1.41176089556218e32 * cos(theta) ** 42 + 4.28303781211783e31 * cos(theta) ** 40 - 1.14370746095581e31 * cos(theta) ** 38 + 2.68008781683977e30 * cos(theta) ** 36 - 5.4909116247449e29 * cos(theta) ** 34 + 9.79148576440524e28 * cos(theta) ** 32 - 1.51153966359944e28 * cos(theta) ** 30 + 2.00708105514578e27 * cos(theta) ** 28 - 2.27489247030016e26 * cos(theta) ** 26 + 2.18094410869484e25 * cos(theta) ** 24 - 1.74931872711356e24 * cos(theta) ** 22 + 1.1585224368212e23 * cos(theta) ** 20 - 6.23390719331711e21 * cos(theta) ** 18 + 2.67167451142162e20 * cos(theta) ** 16 - 8.89322999641038e18 * cos(theta) ** 14 + 2.22575338193989e17 * cos(theta) ** 12 - 4.01036645394575e15 * cos(theta) ** 10 + 48959981125219.4 * cos(theta) ** 8 - 370007954522.576 * cos(theta) ** 6 + 1491967558.55877 * cos(theta) ** 4 - 2399304.57018296 * cos(theta) ** 2 + 641.868531349108 ) * cos(2 * phi) ) # @torch.jit.script def Yl86_m3(theta, phi): return ( 8.11220319138235e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 2.88616323196791e30 * cos(theta) ** 83 - 5.74363361309169e31 * cos(theta) ** 81 + 5.50573162911748e32 * cos(theta) ** 79 - 3.38586010964291e33 * cos(theta) ** 77 + 1.50106464860836e34 * cos(theta) ** 75 - 5.11098699372784e34 * cos(theta) ** 73 + 1.39044242438062e35 * cos(theta) ** 71 - 3.10444692235924e35 * cos(theta) ** 69 + 5.79859273873788e35 * cos(theta) ** 67 - 9.19045773860175e35 * cos(theta) ** 65 + 1.24942170563998e36 * cos(theta) ** 63 - 1.46906718309144e36 * cos(theta) ** 61 + 1.50357547262714e36 * cos(theta) ** 59 - 1.34621540223184e36 * cos(theta) ** 57 + 1.05840383347882e36 * cos(theta) ** 55 - 7.32741115485338e35 * cos(theta) ** 53 + 4.47569706178544e35 * cos(theta) ** 51 - 2.4149444577979e35 * cos(theta) ** 49 + 1.15165234483793e35 * cos(theta) ** 47 - 4.85355237727018e34 * cos(theta) ** 45 + 1.80639731334492e34 * cos(theta) ** 43 - 5.92939576136118e33 * cos(theta) ** 41 + 1.71321512484713e33 * cos(theta) ** 39 - 4.34608835163206e32 * cos(theta) ** 37 + 9.64831614062318e31 * cos(theta) ** 35 - 1.86690995241327e31 * cos(theta) ** 33 + 3.13327544460968e30 * cos(theta) ** 31 - 4.53461899079832e29 * cos(theta) ** 29 + 5.61982695440817e28 * cos(theta) ** 27 - 5.91472042278042e27 * cos(theta) ** 25 + 5.23426586086762e26 * cos(theta) ** 23 - 3.84850119964984e25 * cos(theta) ** 21 + 2.31704487364239e24 * cos(theta) ** 19 - 1.12210329479708e23 * cos(theta) ** 17 + 4.27467921827459e21 * cos(theta) ** 15 - 1.24505219949745e20 * cos(theta) ** 13 + 2.67090405832787e18 * cos(theta) ** 11 - 4.01036645394575e16 * cos(theta) ** 9 + 391679849001755.0 * cos(theta) ** 7 - 2220047727135.46 * cos(theta) ** 5 + 5967870234.2351 * cos(theta) ** 3 - 4798609.14036593 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl86_m4(theta, phi): return ( 9.38595611430988e-8 * (1.0 - cos(theta) ** 2) ** 2 * ( 2.39551548253337e32 * cos(theta) ** 82 - 4.65234322660427e33 * cos(theta) ** 80 + 4.34952798700281e34 * cos(theta) ** 78 - 2.60711228442504e35 * cos(theta) ** 76 + 1.12579848645627e36 * cos(theta) ** 74 - 3.73102050542132e36 * cos(theta) ** 72 + 9.87214121310238e36 * cos(theta) ** 70 - 2.14206837642787e37 * cos(theta) ** 68 + 3.88505713495438e37 * cos(theta) ** 66 - 5.97379753009114e37 * cos(theta) ** 64 + 7.87135674553185e37 * cos(theta) ** 62 - 8.96130981685775e37 * cos(theta) ** 60 + 8.87109528850013e37 * cos(theta) ** 58 - 7.67342779272146e37 * cos(theta) ** 56 + 5.82122108413352e37 * cos(theta) ** 54 - 3.88352791207229e37 * cos(theta) ** 52 + 2.28260550151058e37 * cos(theta) ** 50 - 1.18332278432097e37 * cos(theta) ** 48 + 5.41276602073827e36 * cos(theta) ** 46 - 2.18409856977158e36 * cos(theta) ** 44 + 7.76750844738314e35 * cos(theta) ** 42 - 2.43105226215808e35 * cos(theta) ** 40 + 6.68153898690382e34 * cos(theta) ** 38 - 1.60805269010386e34 * cos(theta) ** 36 + 3.37691064921811e33 * cos(theta) ** 34 - 6.16080284296378e32 * cos(theta) ** 32 + 9.71315387829e31 * cos(theta) ** 30 - 1.31503950733151e31 * cos(theta) ** 28 + 1.51735327769021e30 * cos(theta) ** 26 - 1.4786801056951e29 * cos(theta) ** 24 + 1.20388114799955e28 * cos(theta) ** 22 - 8.08185251926466e26 * cos(theta) ** 20 + 4.40238525992054e25 * cos(theta) ** 18 - 1.90757560115504e24 * cos(theta) ** 16 + 6.41201882741188e22 * cos(theta) ** 14 - 1.61856785934669e21 * cos(theta) ** 12 + 2.93799446416066e19 * cos(theta) ** 10 - 3.60932980855118e17 * cos(theta) ** 8 + 2.74175894301229e15 * cos(theta) ** 6 - 11100238635677.3 * cos(theta) ** 4 + 17903610702.7053 * cos(theta) ** 2 - 4798609.14036593 ) * cos(4 * phi) ) # @torch.jit.script def Yl86_m5(theta, phi): return ( 1.0865529541455e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.96432269567736e34 * cos(theta) ** 81 - 3.72187458128342e35 * cos(theta) ** 79 + 3.39263182986219e36 * cos(theta) ** 77 - 1.98140533616303e37 * cos(theta) ** 75 + 8.33090879977637e37 * cos(theta) ** 73 - 2.68633476390335e38 * cos(theta) ** 71 + 6.91049884917166e38 * cos(theta) ** 69 - 1.45660649597095e39 * cos(theta) ** 67 + 2.56413770906989e39 * cos(theta) ** 65 - 3.82323041925833e39 * cos(theta) ** 63 + 4.88024118222975e39 * cos(theta) ** 61 - 5.37678589011465e39 * cos(theta) ** 59 + 5.14523526733007e39 * cos(theta) ** 57 - 4.29711956392402e39 * cos(theta) ** 55 + 3.1434593854321e39 * cos(theta) ** 53 - 2.01943451427759e39 * cos(theta) ** 51 + 1.14130275075529e39 * cos(theta) ** 49 - 5.67994936474067e38 * cos(theta) ** 47 + 2.4898723695396e38 * cos(theta) ** 45 - 9.61003370699495e37 * cos(theta) ** 43 + 3.26235354790092e37 * cos(theta) ** 41 - 9.72420904863233e36 * cos(theta) ** 39 + 2.53898481502345e36 * cos(theta) ** 37 - 5.78898968437391e35 * cos(theta) ** 35 + 1.14814962073416e35 * cos(theta) ** 33 - 1.97145690974841e34 * cos(theta) ** 31 + 2.913946163487e33 * cos(theta) ** 29 - 3.68211062052823e32 * cos(theta) ** 27 + 3.94511852199454e31 * cos(theta) ** 25 - 3.54883225366825e30 * cos(theta) ** 23 + 2.64853852559902e29 * cos(theta) ** 21 - 1.61637050385293e28 * cos(theta) ** 19 + 7.92429346785698e26 * cos(theta) ** 17 - 3.05212096184806e25 * cos(theta) ** 15 + 8.97682635837664e23 * cos(theta) ** 13 - 1.94228143121603e22 * cos(theta) ** 11 + 2.93799446416066e20 * cos(theta) ** 9 - 2.88746384684094e18 * cos(theta) ** 7 + 1.64505536580737e16 * cos(theta) ** 5 - 44400954542709.1 * cos(theta) ** 3 + 35807221405.4106 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl86_m6(theta, phi): return ( 1.25867751430906e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.59110138349866e36 * cos(theta) ** 80 - 2.9402809192139e37 * cos(theta) ** 78 + 2.61232650899389e38 * cos(theta) ** 76 - 1.48605400212227e39 * cos(theta) ** 74 + 6.08156342383675e39 * cos(theta) ** 72 - 1.90729768237138e40 * cos(theta) ** 70 + 4.76824420592845e40 * cos(theta) ** 68 - 9.75926352300539e40 * cos(theta) ** 66 + 1.66668951089543e41 * cos(theta) ** 64 - 2.40863516413275e41 * cos(theta) ** 62 + 2.97694712116015e41 * cos(theta) ** 60 - 3.17230367516765e41 * cos(theta) ** 58 + 2.93278410237814e41 * cos(theta) ** 56 - 2.36341576015821e41 * cos(theta) ** 54 + 1.66603347427901e41 * cos(theta) ** 52 - 1.02991160228157e41 * cos(theta) ** 50 + 5.59238347870091e40 * cos(theta) ** 48 - 2.66957620142811e40 * cos(theta) ** 46 + 1.12044256629282e40 * cos(theta) ** 44 - 4.13231449400783e39 * cos(theta) ** 42 + 1.33756495463938e39 * cos(theta) ** 40 - 3.79244152896661e38 * cos(theta) ** 38 + 9.39424381558677e37 * cos(theta) ** 36 - 2.02614638953087e37 * cos(theta) ** 34 + 3.78889374842272e36 * cos(theta) ** 32 - 6.11151642022007e35 * cos(theta) ** 30 + 8.4504438741123e34 * cos(theta) ** 28 - 9.94169867542623e33 * cos(theta) ** 26 + 9.86279630498634e32 * cos(theta) ** 24 - 8.16231418343697e31 * cos(theta) ** 22 + 5.56193090375794e30 * cos(theta) ** 20 - 3.07110395732057e29 * cos(theta) ** 18 + 1.34712988953569e28 * cos(theta) ** 16 - 4.57818144277208e26 * cos(theta) ** 14 + 1.16698742658896e25 * cos(theta) ** 12 - 2.13650957433763e23 * cos(theta) ** 10 + 2.64419501774459e21 * cos(theta) ** 8 - 2.02122469278866e19 * cos(theta) ** 6 + 8.22527682903686e16 * cos(theta) ** 4 - 133202863628127.0 * cos(theta) ** 2 + 35807221405.4106 ) * cos(6 * phi) ) # @torch.jit.script def Yl86_m7(theta, phi): return ( 1.4592443015096e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.27288110679893e38 * cos(theta) ** 79 - 2.29341911698684e39 * cos(theta) ** 77 + 1.98536814683536e40 * cos(theta) ** 75 - 1.09967996157048e41 * cos(theta) ** 73 + 4.37872566516246e41 * cos(theta) ** 71 - 1.33510837765997e42 * cos(theta) ** 69 + 3.24240606003134e42 * cos(theta) ** 67 - 6.44111392518356e42 * cos(theta) ** 65 + 1.06668128697307e43 * cos(theta) ** 63 - 1.4933538017623e43 * cos(theta) ** 61 + 1.78616827269609e43 * cos(theta) ** 59 - 1.83993613159723e43 * cos(theta) ** 57 + 1.64235909733176e43 * cos(theta) ** 55 - 1.27624451048543e43 * cos(theta) ** 53 + 8.66337406625087e42 * cos(theta) ** 51 - 5.14955801140786e42 * cos(theta) ** 49 + 2.68434406977644e42 * cos(theta) ** 47 - 1.22800505265693e42 * cos(theta) ** 45 + 4.92994729168841e41 * cos(theta) ** 43 - 1.73557208748329e41 * cos(theta) ** 41 + 5.35025981855751e40 * cos(theta) ** 39 - 1.44112778100731e40 * cos(theta) ** 37 + 3.38192777361124e39 * cos(theta) ** 35 - 6.88889772440495e38 * cos(theta) ** 33 + 1.21244599949527e38 * cos(theta) ** 31 - 1.83345492606602e37 * cos(theta) ** 29 + 2.36612428475144e36 * cos(theta) ** 27 - 2.58484165561082e35 * cos(theta) ** 25 + 2.36707111319672e34 * cos(theta) ** 23 - 1.79570912035613e33 * cos(theta) ** 21 + 1.11238618075159e32 * cos(theta) ** 19 - 5.52798712317703e30 * cos(theta) ** 17 + 2.1554078232571e29 * cos(theta) ** 15 - 6.40945401988092e27 * cos(theta) ** 13 + 1.40038491190676e26 * cos(theta) ** 11 - 2.13650957433763e24 * cos(theta) ** 9 + 2.11535601419567e22 * cos(theta) ** 7 - 1.21273481567319e20 * cos(theta) ** 5 + 3.29011073161474e17 * cos(theta) ** 3 - 266405727256255.0 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl86_m8(theta, phi): return ( 1.69336482236135e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.00557607437115e40 * cos(theta) ** 78 - 1.76593272007987e41 * cos(theta) ** 76 + 1.48902611012652e42 * cos(theta) ** 74 - 8.02766371946451e42 * cos(theta) ** 72 + 3.10889522226535e43 * cos(theta) ** 70 - 9.21224780585376e43 * cos(theta) ** 68 + 2.172412060221e44 * cos(theta) ** 66 - 4.18672405136931e44 * cos(theta) ** 64 + 6.72009210793036e44 * cos(theta) ** 62 - 9.10945819075005e44 * cos(theta) ** 60 + 1.05383928089069e45 * cos(theta) ** 58 - 1.04876359501042e45 * cos(theta) ** 56 + 9.03297503532468e44 * cos(theta) ** 54 - 6.7640959055728e44 * cos(theta) ** 52 + 4.41832077378794e44 * cos(theta) ** 50 - 2.52328342558985e44 * cos(theta) ** 48 + 1.26164171279493e44 * cos(theta) ** 46 - 5.52602273695619e43 * cos(theta) ** 44 + 2.11987733542602e43 * cos(theta) ** 42 - 7.11584555868148e42 * cos(theta) ** 40 + 2.08660132923743e42 * cos(theta) ** 38 - 5.33217278972705e41 * cos(theta) ** 36 + 1.18367472076393e41 * cos(theta) ** 34 - 2.27333624905363e40 * cos(theta) ** 32 + 3.75858259843534e39 * cos(theta) ** 30 - 5.31701928559146e38 * cos(theta) ** 28 + 6.3885355688289e37 * cos(theta) ** 26 - 6.46210413902705e36 * cos(theta) ** 24 + 5.44426356035246e35 * cos(theta) ** 22 - 3.77098915274788e34 * cos(theta) ** 20 + 2.11353374342802e33 * cos(theta) ** 18 - 9.39757810940095e31 * cos(theta) ** 16 + 3.23311173488565e30 * cos(theta) ** 14 - 8.33229022584519e28 * cos(theta) ** 12 + 1.54042340309743e27 * cos(theta) ** 10 - 1.92285861690387e25 * cos(theta) ** 8 + 1.48074920993697e23 * cos(theta) ** 6 - 6.06367407836597e20 * cos(theta) ** 4 + 9.87033219484423e17 * cos(theta) ** 2 - 266405727256255.0 ) * cos(8 * phi) ) # @torch.jit.script def Yl86_m9(theta, phi): return ( 1.96716790255173e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 7.843493380095e41 * cos(theta) ** 77 - 1.3421088672607e43 * cos(theta) ** 75 + 1.10187932149362e44 * cos(theta) ** 73 - 5.77991787801445e44 * cos(theta) ** 71 + 2.17622665558574e45 * cos(theta) ** 69 - 6.26432850798056e45 * cos(theta) ** 67 + 1.43379195974586e46 * cos(theta) ** 65 - 2.67950339287636e46 * cos(theta) ** 63 + 4.16645710691683e46 * cos(theta) ** 61 - 5.46567491445003e46 * cos(theta) ** 59 + 6.11226782916601e46 * cos(theta) ** 57 - 5.87307613205837e46 * cos(theta) ** 55 + 4.87780651907533e46 * cos(theta) ** 53 - 3.51732987089785e46 * cos(theta) ** 51 + 2.20916038689397e46 * cos(theta) ** 49 - 1.21117604428313e46 * cos(theta) ** 47 + 5.80355187885666e45 * cos(theta) ** 45 - 2.43145000426072e45 * cos(theta) ** 43 + 8.90348480878927e44 * cos(theta) ** 41 - 2.84633822347259e44 * cos(theta) ** 39 + 7.92908505110223e43 * cos(theta) ** 37 - 1.91958220430174e43 * cos(theta) ** 35 + 4.02449405059737e42 * cos(theta) ** 33 - 7.27467599697163e41 * cos(theta) ** 31 + 1.1275747795306e41 * cos(theta) ** 29 - 1.48876539996561e40 * cos(theta) ** 27 + 1.66101924789551e39 * cos(theta) ** 25 - 1.55090499336649e38 * cos(theta) ** 23 + 1.19773798327754e37 * cos(theta) ** 21 - 7.54197830549576e35 * cos(theta) ** 19 + 3.80436073817043e34 * cos(theta) ** 17 - 1.50361249750415e33 * cos(theta) ** 15 + 4.5263564288399e31 * cos(theta) ** 13 - 9.99874827101423e29 * cos(theta) ** 11 + 1.54042340309743e28 * cos(theta) ** 9 - 1.53828689352309e26 * cos(theta) ** 7 + 8.88449525962183e23 * cos(theta) ** 5 - 2.42546963134639e21 * cos(theta) ** 3 + 1.97406643896885e18 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl86_m10(theta, phi): return ( 2.28802334065883e-19 * (1.0 - cos(theta) ** 2) ** 5 * ( 6.03948990267315e43 * cos(theta) ** 76 - 1.00658165044553e45 * cos(theta) ** 74 + 8.04371904690344e45 * cos(theta) ** 72 - 4.10374169339026e46 * cos(theta) ** 70 + 1.50159639235416e47 * cos(theta) ** 68 - 4.19710010034697e47 * cos(theta) ** 66 + 9.31964773834809e47 * cos(theta) ** 64 - 1.68808713751211e48 * cos(theta) ** 62 + 2.54153883521926e48 * cos(theta) ** 60 - 3.22474819952552e48 * cos(theta) ** 58 + 3.48399266262463e48 * cos(theta) ** 56 - 3.2301918726321e48 * cos(theta) ** 54 + 2.58523745510992e48 * cos(theta) ** 52 - 1.79383823415791e48 * cos(theta) ** 50 + 1.08248858957805e48 * cos(theta) ** 48 - 5.69252740813071e47 * cos(theta) ** 46 + 2.6115983454855e47 * cos(theta) ** 44 - 1.04552350183211e47 * cos(theta) ** 42 + 3.6504287716036e46 * cos(theta) ** 40 - 1.11007190715431e46 * cos(theta) ** 38 + 2.93376146890782e45 * cos(theta) ** 36 - 6.71853771505608e44 * cos(theta) ** 34 + 1.32808303669713e44 * cos(theta) ** 32 - 2.2551495590612e43 * cos(theta) ** 30 + 3.26996686063875e42 * cos(theta) ** 28 - 4.01966657990714e41 * cos(theta) ** 26 + 4.15254811973878e40 * cos(theta) ** 24 - 3.56708148474293e39 * cos(theta) ** 22 + 2.51524976488284e38 * cos(theta) ** 20 - 1.4329758780442e37 * cos(theta) ** 18 + 6.46741325488973e35 * cos(theta) ** 16 - 2.25541874625623e34 * cos(theta) ** 14 + 5.88426335749188e32 * cos(theta) ** 12 - 1.09986230981157e31 * cos(theta) ** 10 + 1.38638106278769e29 * cos(theta) ** 8 - 1.07680082546617e27 * cos(theta) ** 6 + 4.44224762981091e24 * cos(theta) ** 4 - 7.27640889403917e21 * cos(theta) ** 2 + 1.97406643896885e18 ) * cos(10 * phi) ) # @torch.jit.script def Yl86_m11(theta, phi): return ( 2.66481943578521e-21 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 4.59001232603159e45 * cos(theta) ** 75 - 7.44870421329689e46 * cos(theta) ** 73 + 5.79147771377048e47 * cos(theta) ** 71 - 2.87261918537318e48 * cos(theta) ** 69 + 1.02108554680083e49 * cos(theta) ** 67 - 2.770086066229e49 * cos(theta) ** 65 + 5.96457455254278e49 * cos(theta) ** 63 - 1.04661402525751e50 * cos(theta) ** 61 + 1.52492330113156e50 * cos(theta) ** 59 - 1.8703539557248e50 * cos(theta) ** 57 + 1.95103589106979e50 * cos(theta) ** 55 - 1.74430361122134e50 * cos(theta) ** 53 + 1.34432347665716e50 * cos(theta) ** 51 - 8.96919117078953e49 * cos(theta) ** 49 + 5.19594522997462e49 * cos(theta) ** 47 - 2.61856260774012e49 * cos(theta) ** 45 + 1.14910327201362e49 * cos(theta) ** 43 - 4.39119870769487e48 * cos(theta) ** 41 + 1.46017150864144e48 * cos(theta) ** 39 - 4.21827324718638e47 * cos(theta) ** 37 + 1.05615412880682e47 * cos(theta) ** 35 - 2.28430282311907e46 * cos(theta) ** 33 + 4.24986571743083e45 * cos(theta) ** 31 - 6.76544867718361e44 * cos(theta) ** 29 + 9.15590720978849e43 * cos(theta) ** 27 - 1.04511331077586e43 * cos(theta) ** 25 + 9.96611548737308e41 * cos(theta) ** 23 - 7.84757926643445e40 * cos(theta) ** 21 + 5.03049952976567e39 * cos(theta) ** 19 - 2.57935658047955e38 * cos(theta) ** 17 + 1.03478612078236e37 * cos(theta) ** 15 - 3.15758624475872e35 * cos(theta) ** 13 + 7.06111602899025e33 * cos(theta) ** 11 - 1.09986230981157e32 * cos(theta) ** 9 + 1.10910485023015e30 * cos(theta) ** 7 - 6.46080495279699e27 * cos(theta) ** 5 + 1.77689905192437e25 * cos(theta) ** 3 - 1.45528177880783e22 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl86_m12(theta, phi): return ( 3.10830851158339e-23 * (1.0 - cos(theta) ** 2) ** 6 * ( 3.4425092445237e47 * cos(theta) ** 74 - 5.43755407570673e48 * cos(theta) ** 72 + 4.11194917677704e49 * cos(theta) ** 70 - 1.98210723790749e50 * cos(theta) ** 68 + 6.84127316356557e50 * cos(theta) ** 66 - 1.80055594304885e51 * cos(theta) ** 64 + 3.75768196810195e51 * cos(theta) ** 62 - 6.38434555407079e51 * cos(theta) ** 60 + 8.99704747667619e51 * cos(theta) ** 58 - 1.06610175476314e52 * cos(theta) ** 56 + 1.07306974008839e52 * cos(theta) ** 54 - 9.24480913947308e51 * cos(theta) ** 52 + 6.85604973095152e51 * cos(theta) ** 50 - 4.39490367368687e51 * cos(theta) ** 48 + 2.44209425808807e51 * cos(theta) ** 46 - 1.17835317348306e51 * cos(theta) ** 44 + 4.94114406965856e50 * cos(theta) ** 42 - 1.8003914701549e50 * cos(theta) ** 40 + 5.69466888370162e49 * cos(theta) ** 38 - 1.56076110145896e49 * cos(theta) ** 36 + 3.69653945082386e48 * cos(theta) ** 34 - 7.53819931629293e47 * cos(theta) ** 32 + 1.31745837240356e47 * cos(theta) ** 30 - 1.96198011638325e46 * cos(theta) ** 28 + 2.47209494664289e45 * cos(theta) ** 26 - 2.61278327693964e44 * cos(theta) ** 24 + 2.29220656209581e43 * cos(theta) ** 22 - 1.64799164595123e42 * cos(theta) ** 20 + 9.55794910655478e40 * cos(theta) ** 18 - 4.38490618681524e39 * cos(theta) ** 16 + 1.55217918117354e38 * cos(theta) ** 14 - 4.10486211818633e36 * cos(theta) ** 12 + 7.76722763188928e34 * cos(theta) ** 10 - 9.89876078830409e32 * cos(theta) ** 8 + 7.76373395161105e30 * cos(theta) ** 6 - 3.2304024763985e28 * cos(theta) ** 4 + 5.3306971557731e25 * cos(theta) ** 2 - 1.45528177880783e22 ) * cos(12 * phi) ) # @torch.jit.script def Yl86_m13(theta, phi): return ( 3.63153856504587e-25 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 2.54745684094753e49 * cos(theta) ** 73 - 3.91503893450884e50 * cos(theta) ** 71 + 2.87836442374393e51 * cos(theta) ** 69 - 1.3478329217771e52 * cos(theta) ** 67 + 4.51524028795327e52 * cos(theta) ** 65 - 1.15235580355126e53 * cos(theta) ** 63 + 2.32976282022321e53 * cos(theta) ** 61 - 3.83060733244247e53 * cos(theta) ** 59 + 5.21828753647219e53 * cos(theta) ** 57 - 5.97016982667356e53 * cos(theta) ** 55 + 5.79457659647728e53 * cos(theta) ** 53 - 4.807300752526e53 * cos(theta) ** 51 + 3.42802486547576e53 * cos(theta) ** 49 - 2.1095537633697e53 * cos(theta) ** 47 + 1.12336335872051e53 * cos(theta) ** 45 - 5.18475396332545e52 * cos(theta) ** 43 + 2.0752805092566e52 * cos(theta) ** 41 - 7.20156588061959e51 * cos(theta) ** 39 + 2.16397417580661e51 * cos(theta) ** 37 - 5.61873996525226e50 * cos(theta) ** 35 + 1.25682341328011e50 * cos(theta) ** 33 - 2.41222378121374e49 * cos(theta) ** 31 + 3.95237511721067e48 * cos(theta) ** 29 - 5.49354432587309e47 * cos(theta) ** 27 + 6.42744686127152e46 * cos(theta) ** 25 - 6.27067986465514e45 * cos(theta) ** 23 + 5.04285443661078e44 * cos(theta) ** 21 - 3.29598329190247e43 * cos(theta) ** 19 + 1.72043083917986e42 * cos(theta) ** 17 - 7.01584989890438e40 * cos(theta) ** 15 + 2.17305085364295e39 * cos(theta) ** 13 - 4.9258345418236e37 * cos(theta) ** 11 + 7.76722763188928e35 * cos(theta) ** 9 - 7.91900863064327e33 * cos(theta) ** 7 + 4.65824037096663e31 * cos(theta) ** 5 - 1.2921609905594e29 * cos(theta) ** 3 + 1.06613943115462e26 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl86_m14(theta, phi): return ( 4.25039439739959e-27 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.8596434938917e51 * cos(theta) ** 72 - 2.77967764350128e52 * cos(theta) ** 70 + 1.98607145238331e53 * cos(theta) ** 68 - 9.03048057590655e53 * cos(theta) ** 66 + 2.93490618716963e54 * cos(theta) ** 64 - 7.25984156237297e54 * cos(theta) ** 62 + 1.42115532033616e55 * cos(theta) ** 60 - 2.26005832614106e55 * cos(theta) ** 58 + 2.97442389578915e55 * cos(theta) ** 56 - 3.28359340467046e55 * cos(theta) ** 54 + 3.07112559613296e55 * cos(theta) ** 52 - 2.45172338378826e55 * cos(theta) ** 50 + 1.67973218408312e55 * cos(theta) ** 48 - 9.91490268783758e54 * cos(theta) ** 46 + 5.05513511424231e54 * cos(theta) ** 44 - 2.22944420422994e54 * cos(theta) ** 42 + 8.50865008795204e53 * cos(theta) ** 40 - 2.80861069344164e53 * cos(theta) ** 38 + 8.00670445048448e52 * cos(theta) ** 36 - 1.96655898783829e52 * cos(theta) ** 34 + 4.14751726382437e51 * cos(theta) ** 32 - 7.47789372176258e50 * cos(theta) ** 30 + 1.14618878399109e50 * cos(theta) ** 28 - 1.48325696798574e49 * cos(theta) ** 26 + 1.60686171531788e48 * cos(theta) ** 24 - 1.44225636887068e47 * cos(theta) ** 22 + 1.05899943168826e46 * cos(theta) ** 20 - 6.26236825461469e44 * cos(theta) ** 18 + 2.92473242660576e43 * cos(theta) ** 16 - 1.05237748483566e42 * cos(theta) ** 14 + 2.82496610973583e40 * cos(theta) ** 12 - 5.41841799600596e38 * cos(theta) ** 10 + 6.99050486870035e36 * cos(theta) ** 8 - 5.54330604145029e34 * cos(theta) ** 6 + 2.32912018548332e32 * cos(theta) ** 4 - 3.87648297167819e29 * cos(theta) ** 2 + 1.06613943115462e26 ) * cos(14 * phi) ) # @torch.jit.script def Yl86_m15(theta, phi): return ( 4.98427843690956e-29 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.33894331560202e53 * cos(theta) ** 71 - 1.94577435045089e54 * cos(theta) ** 69 + 1.35052858762065e55 * cos(theta) ** 67 - 5.96011718009832e55 * cos(theta) ** 65 + 1.87833995978856e56 * cos(theta) ** 63 - 4.50110176867124e56 * cos(theta) ** 61 + 8.52693192201695e56 * cos(theta) ** 59 - 1.31083382916181e57 * cos(theta) ** 57 + 1.66567738164192e57 * cos(theta) ** 55 - 1.77314043852205e57 * cos(theta) ** 53 + 1.59698530998914e57 * cos(theta) ** 51 - 1.22586169189413e57 * cos(theta) ** 49 + 8.06271448359898e56 * cos(theta) ** 47 - 4.56085523640528e56 * cos(theta) ** 45 + 2.22425945026662e56 * cos(theta) ** 43 - 9.36366565776576e55 * cos(theta) ** 41 + 3.40346003518082e55 * cos(theta) ** 39 - 1.06727206350782e55 * cos(theta) ** 37 + 2.88241360217441e54 * cos(theta) ** 35 - 6.68630055865019e53 * cos(theta) ** 33 + 1.3272055244238e53 * cos(theta) ** 31 - 2.24336811652877e52 * cos(theta) ** 29 + 3.20932859517506e51 * cos(theta) ** 27 - 3.85646811676291e50 * cos(theta) ** 25 + 3.85646811676291e49 * cos(theta) ** 23 - 3.1729640115155e48 * cos(theta) ** 21 + 2.11799886337653e47 * cos(theta) ** 19 - 1.12722628583064e46 * cos(theta) ** 17 + 4.67957188256922e44 * cos(theta) ** 15 - 1.47332847876992e43 * cos(theta) ** 13 + 3.389959331683e41 * cos(theta) ** 11 - 5.41841799600596e39 * cos(theta) ** 9 + 5.59240389496028e37 * cos(theta) ** 7 - 3.32598362487017e35 * cos(theta) ** 5 + 9.31648074193326e32 * cos(theta) ** 3 - 7.75296594335639e29 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl86_m16(theta, phi): return ( 5.85697047959929e-31 * (1.0 - cos(theta) ** 2) ** 8 * ( 9.50649754077437e54 * cos(theta) ** 70 - 1.34258430181112e56 * cos(theta) ** 68 + 9.04854153705836e56 * cos(theta) ** 66 - 3.87407616706391e57 * cos(theta) ** 64 + 1.18335417466679e58 * cos(theta) ** 62 - 2.74567207888946e58 * cos(theta) ** 60 + 5.03088983399e58 * cos(theta) ** 58 - 7.47175282622234e58 * cos(theta) ** 56 + 9.16122559903058e58 * cos(theta) ** 54 - 9.39764432416685e58 * cos(theta) ** 52 + 8.14462508094461e58 * cos(theta) ** 50 - 6.00672229028124e58 * cos(theta) ** 48 + 3.78947580729152e58 * cos(theta) ** 46 - 2.05238485638238e58 * cos(theta) ** 44 + 9.56431563614645e57 * cos(theta) ** 42 - 3.83910291968396e57 * cos(theta) ** 40 + 1.32734941372052e57 * cos(theta) ** 38 - 3.94890663497894e56 * cos(theta) ** 36 + 1.00884476076104e56 * cos(theta) ** 34 - 2.20647918435456e55 * cos(theta) ** 32 + 4.11433712571377e54 * cos(theta) ** 30 - 6.50576753793345e53 * cos(theta) ** 28 + 8.66518720697267e52 * cos(theta) ** 26 - 9.64117029190728e51 * cos(theta) ** 24 + 8.8698766685547e50 * cos(theta) ** 22 - 6.66322442418255e49 * cos(theta) ** 20 + 4.0241978404154e48 * cos(theta) ** 18 - 1.9162846859121e47 * cos(theta) ** 16 + 7.01935782385383e45 * cos(theta) ** 14 - 1.9153270224009e44 * cos(theta) ** 12 + 3.7289552648513e42 * cos(theta) ** 10 - 4.87657619640536e40 * cos(theta) ** 8 + 3.9146827264722e38 * cos(theta) ** 6 - 1.66299181243509e36 * cos(theta) ** 4 + 2.79494422257998e33 * cos(theta) ** 2 - 7.75296594335639e29 ) * cos(16 * phi) ) # @torch.jit.script def Yl86_m17(theta, phi): return ( 6.89771748603804e-33 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 6.65454827854206e56 * cos(theta) ** 69 - 9.1295732523156e57 * cos(theta) ** 67 + 5.97203741445852e58 * cos(theta) ** 65 - 2.4794087469209e59 * cos(theta) ** 63 + 7.33679588293412e59 * cos(theta) ** 61 - 1.64740324733367e60 * cos(theta) ** 59 + 2.9179161037142e60 * cos(theta) ** 57 - 4.18418158268451e60 * cos(theta) ** 55 + 4.94706182347651e60 * cos(theta) ** 53 - 4.88677504856676e60 * cos(theta) ** 51 + 4.0723125404723e60 * cos(theta) ** 49 - 2.883226699335e60 * cos(theta) ** 47 + 1.7431588713541e60 * cos(theta) ** 45 - 9.03049336808246e59 * cos(theta) ** 43 + 4.01701256718151e59 * cos(theta) ** 41 - 1.53564116787358e59 * cos(theta) ** 39 + 5.04392777213797e58 * cos(theta) ** 37 - 1.42160638859242e58 * cos(theta) ** 35 + 3.43007218658755e57 * cos(theta) ** 33 - 7.0607333899346e56 * cos(theta) ** 31 + 1.23430113771413e56 * cos(theta) ** 29 - 1.82161491062137e55 * cos(theta) ** 27 + 2.25294867381289e54 * cos(theta) ** 25 - 2.31388087005775e53 * cos(theta) ** 23 + 1.95137286708203e52 * cos(theta) ** 21 - 1.33264488483651e51 * cos(theta) ** 19 + 7.24355611274772e49 * cos(theta) ** 17 - 3.06605549745935e48 * cos(theta) ** 15 + 9.82710095339537e46 * cos(theta) ** 13 - 2.29839242688107e45 * cos(theta) ** 11 + 3.7289552648513e43 * cos(theta) ** 9 - 3.90126095712429e41 * cos(theta) ** 7 + 2.34880963588332e39 * cos(theta) ** 5 - 6.65196724974035e36 * cos(theta) ** 3 + 5.58988844515996e33 * cos(theta) ) * cos(17 * phi) ) # @torch.jit.script def Yl86_m18(theta, phi): return ( 8.14262037718918e-35 * (1.0 - cos(theta) ** 2) ** 9 * ( 4.59163831219402e58 * cos(theta) ** 68 - 6.11681407905145e59 * cos(theta) ** 66 + 3.88182431939804e60 * cos(theta) ** 64 - 1.56202751056017e61 * cos(theta) ** 62 + 4.47544548858981e61 * cos(theta) ** 60 - 9.71967915926868e61 * cos(theta) ** 58 + 1.66321217911709e62 * cos(theta) ** 56 - 2.30129987047648e62 * cos(theta) ** 54 + 2.62194276644255e62 * cos(theta) ** 52 - 2.49225527476905e62 * cos(theta) ** 50 + 1.99543314483143e62 * cos(theta) ** 48 - 1.35511654868745e62 * cos(theta) ** 46 + 7.84421492109345e61 * cos(theta) ** 44 - 3.88311214827546e61 * cos(theta) ** 42 + 1.64697515254442e61 * cos(theta) ** 40 - 5.98900055470698e60 * cos(theta) ** 38 + 1.86625327569105e60 * cos(theta) ** 36 - 4.97562236007347e59 * cos(theta) ** 34 + 1.13192382157389e59 * cos(theta) ** 32 - 2.18882735087973e58 * cos(theta) ** 30 + 3.57947329937098e57 * cos(theta) ** 28 - 4.91836025867769e56 * cos(theta) ** 26 + 5.63237168453223e55 * cos(theta) ** 24 - 5.32192600113282e54 * cos(theta) ** 22 + 4.09788302087227e53 * cos(theta) ** 20 - 2.53202528118937e52 * cos(theta) ** 18 + 1.23140453916711e51 * cos(theta) ** 16 - 4.59908324618903e49 * cos(theta) ** 14 + 1.2775231239414e48 * cos(theta) ** 12 - 2.52823166956918e46 * cos(theta) ** 10 + 3.35605973836617e44 * cos(theta) ** 8 - 2.730882669987e42 * cos(theta) ** 6 + 1.17440481794166e40 * cos(theta) ** 4 - 1.9955901749221e37 * cos(theta) ** 2 + 5.58988844515996e33 ) * cos(18 * phi) ) # @torch.jit.script def Yl86_m19(theta, phi): return ( 9.63640583292203e-37 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 3.12231405229193e60 * cos(theta) ** 67 - 4.03709729217396e61 * cos(theta) ** 65 + 2.48436756441474e62 * cos(theta) ** 63 - 9.68457056547304e62 * cos(theta) ** 61 + 2.68526729315389e63 * cos(theta) ** 59 - 5.63741391237583e63 * cos(theta) ** 57 + 9.31398820305572e63 * cos(theta) ** 55 - 1.2427019300573e64 * cos(theta) ** 53 + 1.36341023855013e64 * cos(theta) ** 51 - 1.24612763738452e64 * cos(theta) ** 49 + 9.57807909519086e63 * cos(theta) ** 47 - 6.23353612396226e63 * cos(theta) ** 45 + 3.45145456528112e63 * cos(theta) ** 43 - 1.63090710227569e63 * cos(theta) ** 41 + 6.58790061017768e62 * cos(theta) ** 39 - 2.27582021078865e62 * cos(theta) ** 37 + 6.71851179248777e61 * cos(theta) ** 35 - 1.69171160242498e61 * cos(theta) ** 33 + 3.62215622903645e60 * cos(theta) ** 31 - 6.56648205263918e59 * cos(theta) ** 29 + 1.00225252382388e59 * cos(theta) ** 27 - 1.2787736672562e58 * cos(theta) ** 25 + 1.35176920428774e57 * cos(theta) ** 23 - 1.17082372024922e56 * cos(theta) ** 21 + 8.19576604174454e54 * cos(theta) ** 19 - 4.55764550614087e53 * cos(theta) ** 17 + 1.97024726266738e52 * cos(theta) ** 15 - 6.43871654466464e50 * cos(theta) ** 13 + 1.53302774872968e49 * cos(theta) ** 11 - 2.52823166956918e47 * cos(theta) ** 9 + 2.68484779069294e45 * cos(theta) ** 7 - 1.6385296019922e43 * cos(theta) ** 5 + 4.69761927176663e40 * cos(theta) ** 3 - 3.99118034984421e37 * cos(theta) ) * cos(19 * phi) ) # @torch.jit.script def Yl86_m20(theta, phi): return ( 1.1434699285799e-38 * (1.0 - cos(theta) ** 2) ** 10 * ( 2.0919504150356e62 * cos(theta) ** 66 - 2.62411323991307e63 * cos(theta) ** 64 + 1.56515156558129e64 * cos(theta) ** 62 - 5.90758804493856e64 * cos(theta) ** 60 + 1.58430770296079e65 * cos(theta) ** 58 - 3.21332593005422e65 * cos(theta) ** 56 + 5.12269351168065e65 * cos(theta) ** 54 - 6.58632022930369e65 * cos(theta) ** 52 + 6.95339221660565e65 * cos(theta) ** 50 - 6.10602542318417e65 * cos(theta) ** 48 + 4.5016971747397e65 * cos(theta) ** 46 - 2.80509125578302e65 * cos(theta) ** 44 + 1.48412546307088e65 * cos(theta) ** 42 - 6.68671911933034e64 * cos(theta) ** 40 + 2.56928123796929e64 * cos(theta) ** 38 - 8.42053477991801e63 * cos(theta) ** 36 + 2.35147912737072e63 * cos(theta) ** 34 - 5.58264828800243e62 * cos(theta) ** 32 + 1.1228684310013e62 * cos(theta) ** 30 - 1.90427979526536e61 * cos(theta) ** 28 + 2.70608181432446e60 * cos(theta) ** 26 - 3.1969341681405e59 * cos(theta) ** 24 + 3.10906916986179e58 * cos(theta) ** 22 - 2.45872981252336e57 * cos(theta) ** 20 + 1.55719554793146e56 * cos(theta) ** 18 - 7.74799736043947e54 * cos(theta) ** 16 + 2.95537089400107e53 * cos(theta) ** 14 - 8.37033150806404e51 * cos(theta) ** 12 + 1.68633052360264e50 * cos(theta) ** 10 - 2.27540850261226e48 * cos(theta) ** 8 + 1.87939345348506e46 * cos(theta) ** 6 - 8.19264800996101e43 * cos(theta) ** 4 + 1.40928578152999e41 * cos(theta) ** 2 - 3.99118034984421e37 ) * cos(20 * phi) ) # @torch.jit.script def Yl86_m21(theta, phi): return ( 1.36069532051179e-40 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.38068727392349e64 * cos(theta) ** 65 - 1.67943247354437e65 * cos(theta) ** 63 + 9.70393970660399e65 * cos(theta) ** 61 - 3.54455282696313e66 * cos(theta) ** 59 + 9.18898467717261e66 * cos(theta) ** 57 - 1.79946252083037e67 * cos(theta) ** 55 + 2.76625449630755e67 * cos(theta) ** 53 - 3.42488651923792e67 * cos(theta) ** 51 + 3.47669610830282e67 * cos(theta) ** 49 - 2.9308922031284e67 * cos(theta) ** 47 + 2.07078070038026e67 * cos(theta) ** 45 - 1.23424015254453e67 * cos(theta) ** 43 + 6.2333269448977e66 * cos(theta) ** 41 - 2.67468764773214e66 * cos(theta) ** 39 + 9.76326870428332e65 * cos(theta) ** 37 - 3.03139252077048e65 * cos(theta) ** 35 + 7.99502903306045e64 * cos(theta) ** 33 - 1.78644745216078e64 * cos(theta) ** 31 + 3.3686052930039e63 * cos(theta) ** 29 - 5.33198342674302e62 * cos(theta) ** 27 + 7.0358127172436e61 * cos(theta) ** 25 - 7.67264200353719e60 * cos(theta) ** 23 + 6.83995217369595e59 * cos(theta) ** 21 - 4.91745962504673e58 * cos(theta) ** 19 + 2.80295198627663e57 * cos(theta) ** 17 - 1.23967957767032e56 * cos(theta) ** 15 + 4.1375192516015e54 * cos(theta) ** 13 - 1.00443978096768e53 * cos(theta) ** 11 + 1.68633052360264e51 * cos(theta) ** 9 - 1.82032680208981e49 * cos(theta) ** 7 + 1.12763607209103e47 * cos(theta) ** 5 - 3.2770592039844e44 * cos(theta) ** 3 + 2.81857156305998e41 * cos(theta) ) * cos(21 * phi) ) # @torch.jit.script def Yl86_m22(theta, phi): return ( 1.62402359675725e-42 * (1.0 - cos(theta) ** 2) ** 11 * ( 8.97446728050271e65 * cos(theta) ** 64 - 1.05804245833295e67 * cos(theta) ** 62 + 5.91940322102843e67 * cos(theta) ** 60 - 2.09128616790825e68 * cos(theta) ** 58 + 5.23772126598839e68 * cos(theta) ** 56 - 9.89704386456701e68 * cos(theta) ** 54 + 1.466114883043e69 * cos(theta) ** 52 - 1.74669212481134e69 * cos(theta) ** 50 + 1.70358109306838e69 * cos(theta) ** 48 - 1.37751933547035e69 * cos(theta) ** 46 + 9.31851315171118e68 * cos(theta) ** 44 - 5.30723265594147e68 * cos(theta) ** 42 + 2.55566404740806e68 * cos(theta) ** 40 - 1.04312818261553e68 * cos(theta) ** 38 + 3.61240942058483e67 * cos(theta) ** 36 - 1.06098738226967e67 * cos(theta) ** 34 + 2.63835958090995e66 * cos(theta) ** 32 - 5.53798710169841e65 * cos(theta) ** 30 + 9.76895534971131e64 * cos(theta) ** 28 - 1.43963552522061e64 * cos(theta) ** 26 + 1.7589531793109e63 * cos(theta) ** 24 - 1.76470766081355e62 * cos(theta) ** 22 + 1.43638995647615e61 * cos(theta) ** 20 - 9.34317328758878e59 * cos(theta) ** 18 + 4.76501837667028e58 * cos(theta) ** 16 - 1.85951936650547e57 * cos(theta) ** 14 + 5.37877502708195e55 * cos(theta) ** 12 - 1.10488375906445e54 * cos(theta) ** 10 + 1.51769747124238e52 * cos(theta) ** 8 - 1.27422876146287e50 * cos(theta) ** 6 + 5.63818036045517e47 * cos(theta) ** 4 - 9.83117761195321e44 * cos(theta) ** 2 + 2.81857156305998e41 ) * cos(22 * phi) ) # @torch.jit.script def Yl86_m23(theta, phi): return ( 1.94441561099186e-44 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 5.74365905952173e67 * cos(theta) ** 63 - 6.5598632416643e68 * cos(theta) ** 61 + 3.55164193261706e69 * cos(theta) ** 59 - 1.21294597738678e70 * cos(theta) ** 57 + 2.9331239089535e70 * cos(theta) ** 55 - 5.34440368686619e70 * cos(theta) ** 53 + 7.62379739182361e70 * cos(theta) ** 51 - 8.73346062405669e70 * cos(theta) ** 49 + 8.17718924672824e70 * cos(theta) ** 47 - 6.3365889431636e70 * cos(theta) ** 45 + 4.10014578675292e70 * cos(theta) ** 43 - 2.22903771549542e70 * cos(theta) ** 41 + 1.02226561896322e70 * cos(theta) ** 39 - 3.96388709393903e69 * cos(theta) ** 37 + 1.30046739141054e69 * cos(theta) ** 35 - 3.60735709971688e68 * cos(theta) ** 33 + 8.44275065891184e67 * cos(theta) ** 31 - 1.66139613050952e67 * cos(theta) ** 29 + 2.73530749791917e66 * cos(theta) ** 27 - 3.7430523655736e65 * cos(theta) ** 25 + 4.22148763034616e64 * cos(theta) ** 23 - 3.88235685378982e63 * cos(theta) ** 21 + 2.8727799129523e62 * cos(theta) ** 19 - 1.68177119176598e61 * cos(theta) ** 17 + 7.62402940267244e59 * cos(theta) ** 15 - 2.60332711310766e58 * cos(theta) ** 13 + 6.45453003249834e56 * cos(theta) ** 11 - 1.10488375906445e55 * cos(theta) ** 9 + 1.2141579769939e53 * cos(theta) ** 7 - 7.64537256877721e50 * cos(theta) ** 5 + 2.25527214418207e48 * cos(theta) ** 3 - 1.96623552239064e45 * cos(theta) ) * cos(23 * phi) ) # @torch.jit.script def Yl86_m24(theta, phi): return ( 2.33572915599019e-46 * (1.0 - cos(theta) ** 2) ** 12 * ( 3.61850520749869e69 * cos(theta) ** 62 - 4.00151657741522e70 * cos(theta) ** 60 + 2.09546874024406e71 * cos(theta) ** 58 - 6.91379207110467e71 * cos(theta) ** 56 + 1.61321814992442e72 * cos(theta) ** 54 - 2.83253395403908e72 * cos(theta) ** 52 + 3.88813666983004e72 * cos(theta) ** 50 - 4.27939570578778e72 * cos(theta) ** 48 + 3.84327894596227e72 * cos(theta) ** 46 - 2.85146502442362e72 * cos(theta) ** 44 + 1.76306268830376e72 * cos(theta) ** 42 - 9.13905463353121e71 * cos(theta) ** 40 + 3.98683591395657e71 * cos(theta) ** 38 - 1.46663822475744e71 * cos(theta) ** 36 + 4.55163586993688e70 * cos(theta) ** 34 - 1.19042784290657e70 * cos(theta) ** 32 + 2.61725270426267e69 * cos(theta) ** 30 - 4.81804877847762e68 * cos(theta) ** 28 + 7.38533024438175e67 * cos(theta) ** 26 - 9.35763091393399e66 * cos(theta) ** 24 + 9.70942154979617e65 * cos(theta) ** 22 - 8.15294939295862e64 * cos(theta) ** 20 + 5.45828183460936e63 * cos(theta) ** 18 - 2.85901102600217e62 * cos(theta) ** 16 + 1.14360441040087e61 * cos(theta) ** 14 - 3.38432524703996e59 * cos(theta) ** 12 + 7.09998303574817e57 * cos(theta) ** 10 - 9.94395383158007e55 * cos(theta) ** 8 + 8.49910583895733e53 * cos(theta) ** 6 - 3.8226862843886e51 * cos(theta) ** 4 + 6.7658164325462e48 * cos(theta) ** 2 - 1.96623552239064e45 ) * cos(24 * phi) ) # @torch.jit.script def Yl86_m25(theta, phi): return ( 2.81556234105056e-48 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 2.24347322864919e71 * cos(theta) ** 61 - 2.40090994644913e72 * cos(theta) ** 59 + 1.21537186934156e73 * cos(theta) ** 57 - 3.87172355981862e73 * cos(theta) ** 55 + 8.71137800959188e73 * cos(theta) ** 53 - 1.47291765610032e74 * cos(theta) ** 51 + 1.94406833491502e74 * cos(theta) ** 49 - 2.05410993877813e74 * cos(theta) ** 47 + 1.76790831514265e74 * cos(theta) ** 45 - 1.25464461074639e74 * cos(theta) ** 43 + 7.40486329087577e73 * cos(theta) ** 41 - 3.65562185341248e73 * cos(theta) ** 39 + 1.5149976473035e73 * cos(theta) ** 37 - 5.27989760912678e72 * cos(theta) ** 35 + 1.54755619577854e72 * cos(theta) ** 33 - 3.80936909730102e71 * cos(theta) ** 31 + 7.85175811278801e70 * cos(theta) ** 29 - 1.34905365797373e70 * cos(theta) ** 27 + 1.92018586353926e69 * cos(theta) ** 25 - 2.24583141934416e68 * cos(theta) ** 23 + 2.13607274095516e67 * cos(theta) ** 21 - 1.63058987859172e66 * cos(theta) ** 19 + 9.82490730229686e64 * cos(theta) ** 17 - 4.57441764160347e63 * cos(theta) ** 15 + 1.60104617456121e62 * cos(theta) ** 13 - 4.06119029644796e60 * cos(theta) ** 11 + 7.09998303574817e58 * cos(theta) ** 9 - 7.95516306526406e56 * cos(theta) ** 7 + 5.0994635033744e54 * cos(theta) ** 5 - 1.52907451375544e52 * cos(theta) ** 3 + 1.35316328650924e49 * cos(theta) ) * cos(25 * phi) ) # @torch.jit.script def Yl86_m26(theta, phi): return ( 3.4063652911847e-50 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.36851866947601e73 * cos(theta) ** 60 - 1.41653686840499e74 * cos(theta) ** 58 + 6.92761965524688e74 * cos(theta) ** 56 - 2.12944795790024e75 * cos(theta) ** 54 + 4.6170303450837e75 * cos(theta) ** 52 - 7.51188004611164e75 * cos(theta) ** 50 + 9.5259348410836e75 * cos(theta) ** 48 - 9.65431671225723e75 * cos(theta) ** 46 + 7.95558741814191e75 * cos(theta) ** 44 - 5.39497182620949e75 * cos(theta) ** 42 + 3.03599394925907e75 * cos(theta) ** 40 - 1.42569252283087e75 * cos(theta) ** 38 + 5.60549129502293e74 * cos(theta) ** 36 - 1.84796416319437e74 * cos(theta) ** 34 + 5.10693544606918e73 * cos(theta) ** 32 - 1.18090442016332e73 * cos(theta) ** 30 + 2.27700985270852e72 * cos(theta) ** 28 - 3.64244487652908e71 * cos(theta) ** 26 + 4.80046465884814e70 * cos(theta) ** 24 - 5.16541226449156e69 * cos(theta) ** 22 + 4.48575275600583e68 * cos(theta) ** 20 - 3.09812076932428e67 * cos(theta) ** 18 + 1.67023424139047e66 * cos(theta) ** 16 - 6.8616264624052e64 * cos(theta) ** 14 + 2.08136002692958e63 * cos(theta) ** 12 - 4.46730932609275e61 * cos(theta) ** 10 + 6.38998473217336e59 * cos(theta) ** 8 - 5.56861414568484e57 * cos(theta) ** 6 + 2.5497317516872e55 * cos(theta) ** 4 - 4.58722354126632e52 * cos(theta) ** 2 + 1.35316328650924e49 ) * cos(26 * phi) ) # @torch.jit.script def Yl86_m27(theta, phi): return ( 4.13691285026172e-52 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 8.21111201685603e74 * cos(theta) ** 59 - 8.21591383674893e75 * cos(theta) ** 57 + 3.87946700693825e76 * cos(theta) ** 55 - 1.14990189726613e77 * cos(theta) ** 53 + 2.40085577944352e77 * cos(theta) ** 51 - 3.75594002305582e77 * cos(theta) ** 49 + 4.57244872372013e77 * cos(theta) ** 47 - 4.44098568763833e77 * cos(theta) ** 45 + 3.50045846398244e77 * cos(theta) ** 43 - 2.26588816700799e77 * cos(theta) ** 41 + 1.21439757970363e77 * cos(theta) ** 39 - 5.4176315867573e76 * cos(theta) ** 37 + 2.01797686620826e76 * cos(theta) ** 35 - 6.28307815486087e75 * cos(theta) ** 33 + 1.63421934274214e75 * cos(theta) ** 31 - 3.54271326048995e74 * cos(theta) ** 29 + 6.37562758758386e73 * cos(theta) ** 27 - 9.47035667897561e72 * cos(theta) ** 25 + 1.15211151812355e72 * cos(theta) ** 23 - 1.13639069818814e71 * cos(theta) ** 21 + 8.97150551201166e69 * cos(theta) ** 19 - 5.5766173847837e68 * cos(theta) ** 17 + 2.67237478622474e67 * cos(theta) ** 15 - 9.60627704736728e65 * cos(theta) ** 13 + 2.49763203231549e64 * cos(theta) ** 11 - 4.46730932609275e62 * cos(theta) ** 9 + 5.11198778573868e60 * cos(theta) ** 7 - 3.3411684874109e58 * cos(theta) ** 5 + 1.01989270067488e56 * cos(theta) ** 3 - 9.17444708253265e52 * cos(theta) ) * cos(27 * phi) ) # @torch.jit.script def Yl86_m28(theta, phi): return ( 5.04426553861479e-54 * (1.0 - cos(theta) ** 2) ** 14 * ( 4.84455608994506e76 * cos(theta) ** 58 - 4.68307088694689e77 * cos(theta) ** 56 + 2.13370685381604e78 * cos(theta) ** 54 - 6.09448005551048e78 * cos(theta) ** 52 + 1.2244364475162e79 * cos(theta) ** 50 - 1.84041061129735e79 * cos(theta) ** 48 + 2.14905090014846e79 * cos(theta) ** 46 - 1.99844355943725e79 * cos(theta) ** 44 + 1.50519713951245e79 * cos(theta) ** 42 - 9.29014148473275e78 * cos(theta) ** 40 + 4.73615056084415e78 * cos(theta) ** 38 - 2.0045236871002e78 * cos(theta) ** 36 + 7.0629190317289e77 * cos(theta) ** 34 - 2.07341579110409e77 * cos(theta) ** 32 + 5.06607996250063e76 * cos(theta) ** 30 - 1.02738684554209e76 * cos(theta) ** 28 + 1.72141944864764e75 * cos(theta) ** 26 - 2.3675891697439e74 * cos(theta) ** 24 + 2.64985649168417e73 * cos(theta) ** 22 - 2.3864204661951e72 * cos(theta) ** 20 + 1.70458604728222e71 * cos(theta) ** 18 - 9.48024955413228e69 * cos(theta) ** 16 + 4.00856217933712e68 * cos(theta) ** 14 - 1.24881601615775e67 * cos(theta) ** 12 + 2.74739523554704e65 * cos(theta) ** 10 - 4.02057839348348e63 * cos(theta) ** 8 + 3.57839145001708e61 * cos(theta) ** 6 - 1.67058424370545e59 * cos(theta) ** 4 + 3.05967810202464e56 * cos(theta) ** 2 - 9.17444708253265e52 ) * cos(28 * phi) ) # @torch.jit.script def Yl86_m29(theta, phi): return ( 6.1763944427092e-56 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 2.80984253216813e78 * cos(theta) ** 57 - 2.62251969669026e79 * cos(theta) ** 55 + 1.15220170106066e80 * cos(theta) ** 53 - 3.16912962886545e80 * cos(theta) ** 51 + 6.12218223758098e80 * cos(theta) ** 49 - 8.83397093422729e80 * cos(theta) ** 47 + 9.88563414068291e80 * cos(theta) ** 45 - 8.79315166152389e80 * cos(theta) ** 43 + 6.32182798595228e80 * cos(theta) ** 41 - 3.7160565938931e80 * cos(theta) ** 39 + 1.79973721312078e80 * cos(theta) ** 37 - 7.21628527356073e79 * cos(theta) ** 35 + 2.40139247078783e79 * cos(theta) ** 33 - 6.63493053153308e78 * cos(theta) ** 31 + 1.51982398875019e78 * cos(theta) ** 29 - 2.87668316751784e77 * cos(theta) ** 27 + 4.47569056648387e76 * cos(theta) ** 25 - 5.68221400738536e75 * cos(theta) ** 23 + 5.82968428170518e74 * cos(theta) ** 21 - 4.7728409323902e73 * cos(theta) ** 19 + 3.06825488510799e72 * cos(theta) ** 17 - 1.51683992866117e71 * cos(theta) ** 15 + 5.61198705107196e69 * cos(theta) ** 13 - 1.4985792193893e68 * cos(theta) ** 11 + 2.74739523554704e66 * cos(theta) ** 9 - 3.21646271478678e64 * cos(theta) ** 7 + 2.14703487001025e62 * cos(theta) ** 5 - 6.68233697482181e59 * cos(theta) ** 3 + 6.11935620404928e56 * cos(theta) ) * cos(29 * phi) ) # @torch.jit.script def Yl86_m30(theta, phi): return ( 7.59571394967033e-58 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.60161024333584e80 * cos(theta) ** 56 - 1.44238583317964e81 * cos(theta) ** 54 + 6.1066690156215e81 * cos(theta) ** 52 - 1.61625611072138e82 * cos(theta) ** 50 + 2.99986929641468e82 * cos(theta) ** 48 - 4.15196633908682e82 * cos(theta) ** 46 + 4.44853536330731e82 * cos(theta) ** 44 - 3.78105521445527e82 * cos(theta) ** 42 + 2.59194947424044e82 * cos(theta) ** 40 - 1.44926207161831e82 * cos(theta) ** 38 + 6.65902768854687e81 * cos(theta) ** 36 - 2.52569984574625e81 * cos(theta) ** 34 + 7.92459515359982e80 * cos(theta) ** 32 - 2.05682846477525e80 * cos(theta) ** 30 + 4.40748956737555e79 * cos(theta) ** 28 - 7.76704455229817e78 * cos(theta) ** 26 + 1.11892264162097e78 * cos(theta) ** 24 - 1.30690922169863e77 * cos(theta) ** 22 + 1.22423369915809e76 * cos(theta) ** 20 - 9.06839777154139e74 * cos(theta) ** 18 + 5.21603330468358e73 * cos(theta) ** 16 - 2.27525989299175e72 * cos(theta) ** 14 + 7.29558316639355e70 * cos(theta) ** 12 - 1.64843714132822e69 * cos(theta) ** 10 + 2.47265571199234e67 * cos(theta) ** 8 - 2.25152390035075e65 * cos(theta) ** 6 + 1.07351743500512e63 * cos(theta) ** 4 - 2.00470109244654e60 * cos(theta) ** 2 + 6.11935620404928e56 ) * cos(30 * phi) ) # @torch.jit.script def Yl86_m31(theta, phi): return ( 9.38386295791054e-60 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 8.96901736268068e81 * cos(theta) ** 55 - 7.78888349917007e82 * cos(theta) ** 53 + 3.17546788812318e83 * cos(theta) ** 51 - 8.0812805536069e83 * cos(theta) ** 49 + 1.43993726227905e84 * cos(theta) ** 47 - 1.90990451597994e84 * cos(theta) ** 45 + 1.95735555985522e84 * cos(theta) ** 43 - 1.58804319007121e84 * cos(theta) ** 41 + 1.03677978969617e84 * cos(theta) ** 39 - 5.50719587214957e83 * cos(theta) ** 37 + 2.39724996787687e83 * cos(theta) ** 35 - 8.58737947553726e82 * cos(theta) ** 33 + 2.53587044915194e82 * cos(theta) ** 31 - 6.17048539432576e81 * cos(theta) ** 29 + 1.23409707886515e81 * cos(theta) ** 27 - 2.01943158359752e80 * cos(theta) ** 25 + 2.68541433989032e79 * cos(theta) ** 23 - 2.87520028773699e78 * cos(theta) ** 21 + 2.44846739831618e77 * cos(theta) ** 19 - 1.63231159887745e76 * cos(theta) ** 17 + 8.34565328749373e74 * cos(theta) ** 15 - 3.18536385018845e73 * cos(theta) ** 13 + 8.75469979967226e71 * cos(theta) ** 11 - 1.64843714132823e70 * cos(theta) ** 9 + 1.97812456959387e68 * cos(theta) ** 7 - 1.35091434021045e66 * cos(theta) ** 5 + 4.2940697400205e63 * cos(theta) ** 3 - 4.00940218489309e60 * cos(theta) ) * cos(31 * phi) ) # @torch.jit.script def Yl86_m32(theta, phi): return ( 1.16482131268735e-61 * (1.0 - cos(theta) ** 2) ** 16 * ( 4.93295954947438e83 * cos(theta) ** 54 - 4.12810825456014e84 * cos(theta) ** 52 + 1.61948862294282e85 * cos(theta) ** 50 - 3.95982747126738e85 * cos(theta) ** 48 + 6.76770513271152e85 * cos(theta) ** 46 - 8.59457032190973e85 * cos(theta) ** 44 + 8.41662890737743e85 * cos(theta) ** 42 - 6.51097707929198e85 * cos(theta) ** 40 + 4.04344117981508e85 * cos(theta) ** 38 - 2.03766247269534e85 * cos(theta) ** 36 + 8.39037488756906e84 * cos(theta) ** 34 - 2.8338352269273e84 * cos(theta) ** 32 + 7.86119839237102e83 * cos(theta) ** 30 - 1.78944076435447e83 * cos(theta) ** 28 + 3.33206211293591e82 * cos(theta) ** 26 - 5.04857895899381e81 * cos(theta) ** 24 + 6.17645298174774e80 * cos(theta) ** 22 - 6.03792060424769e79 * cos(theta) ** 20 + 4.65208805680073e78 * cos(theta) ** 18 - 2.77492971809167e77 * cos(theta) ** 16 + 1.25184799312406e76 * cos(theta) ** 14 - 4.14097300524498e74 * cos(theta) ** 12 + 9.63016977963949e72 * cos(theta) ** 10 - 1.4835934271954e71 * cos(theta) ** 8 + 1.38468719871571e69 * cos(theta) ** 6 - 6.75457170105224e66 * cos(theta) ** 4 + 1.28822092200615e64 * cos(theta) ** 2 - 4.00940218489309e60 ) * cos(32 * phi) ) # @torch.jit.script def Yl86_m33(theta, phi): return ( 1.45307806764369e-63 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 2.66379815671616e85 * cos(theta) ** 53 - 2.14661629237127e86 * cos(theta) ** 51 + 8.09744311471411e86 * cos(theta) ** 49 - 1.90071718620834e87 * cos(theta) ** 47 + 3.1131443610473e87 * cos(theta) ** 45 - 3.78161094164028e87 * cos(theta) ** 43 + 3.53498414109852e87 * cos(theta) ** 41 - 2.60439083171679e87 * cos(theta) ** 39 + 1.53650764832973e87 * cos(theta) ** 37 - 7.33558490170323e86 * cos(theta) ** 35 + 2.85272746177348e86 * cos(theta) ** 33 - 9.06827272616735e85 * cos(theta) ** 31 + 2.35835951771131e85 * cos(theta) ** 29 - 5.01043414019252e84 * cos(theta) ** 27 + 8.66336149363337e83 * cos(theta) ** 25 - 1.21165895015851e83 * cos(theta) ** 23 + 1.3588196559845e82 * cos(theta) ** 21 - 1.20758412084954e81 * cos(theta) ** 19 + 8.37375850224132e79 * cos(theta) ** 17 - 4.43988754894666e78 * cos(theta) ** 15 + 1.75258719037368e77 * cos(theta) ** 13 - 4.96916760629398e75 * cos(theta) ** 11 + 9.63016977963949e73 * cos(theta) ** 9 - 1.18687474175632e72 * cos(theta) ** 7 + 8.30812319229425e69 * cos(theta) ** 5 - 2.7018286804209e67 * cos(theta) ** 3 + 2.5764418440123e64 * cos(theta) ) * cos(33 * phi) ) # @torch.jit.script def Yl86_m34(theta, phi): return ( 1.82205041674886e-65 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.41181302305957e87 * cos(theta) ** 52 - 1.09477430910935e88 * cos(theta) ** 50 + 3.96774712620992e88 * cos(theta) ** 48 - 8.93337077517921e88 * cos(theta) ** 46 + 1.40091496247129e89 * cos(theta) ** 44 - 1.62609270490532e89 * cos(theta) ** 42 + 1.44934349785039e89 * cos(theta) ** 40 - 1.01571242436955e89 * cos(theta) ** 38 + 5.68507829882e88 * cos(theta) ** 36 - 2.56745471559613e88 * cos(theta) ** 34 + 9.41400062385248e87 * cos(theta) ** 32 - 2.81116454511188e87 * cos(theta) ** 30 + 6.83924260136279e86 * cos(theta) ** 28 - 1.35281721785198e86 * cos(theta) ** 26 + 2.16584037340834e85 * cos(theta) ** 24 - 2.78681558536458e84 * cos(theta) ** 22 + 2.85352127756746e83 * cos(theta) ** 20 - 2.29440982961412e82 * cos(theta) ** 18 + 1.42353894538102e81 * cos(theta) ** 16 - 6.65983132342e79 * cos(theta) ** 14 + 2.27836334748579e78 * cos(theta) ** 12 - 5.46608436692337e76 * cos(theta) ** 10 + 8.66715280167554e74 * cos(theta) ** 8 - 8.30812319229425e72 * cos(theta) ** 6 + 4.15406159614713e70 * cos(theta) ** 4 - 8.10548604126269e67 * cos(theta) ** 2 + 2.5764418440123e64 ) * cos(34 * phi) ) # @torch.jit.script def Yl86_m35(theta, phi): return ( 2.29702664477922e-67 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 7.34142771990975e88 * cos(theta) ** 51 - 5.47387154554674e89 * cos(theta) ** 49 + 1.90451862058076e90 * cos(theta) ** 47 - 4.10935055658244e90 * cos(theta) ** 45 + 6.16402583487365e90 * cos(theta) ** 43 - 6.82958936060234e90 * cos(theta) ** 41 + 5.79737399140158e90 * cos(theta) ** 39 - 3.85970721260428e90 * cos(theta) ** 37 + 2.0466281875752e90 * cos(theta) ** 35 - 8.72934603302685e89 * cos(theta) ** 33 + 3.01248019963279e89 * cos(theta) ** 31 - 8.43349363533563e88 * cos(theta) ** 29 + 1.91498792838158e88 * cos(theta) ** 27 - 3.51732476641515e87 * cos(theta) ** 25 + 5.19801689618002e86 * cos(theta) ** 23 - 6.13099428780208e85 * cos(theta) ** 21 + 5.70704255513491e84 * cos(theta) ** 19 - 4.12993769330542e83 * cos(theta) ** 17 + 2.27766231260964e82 * cos(theta) ** 15 - 9.323763852788e80 * cos(theta) ** 13 + 2.73403601698295e79 * cos(theta) ** 11 - 5.46608436692337e77 * cos(theta) ** 9 + 6.93372224134043e75 * cos(theta) ** 7 - 4.98487391537655e73 * cos(theta) ** 5 + 1.66162463845885e71 * cos(theta) ** 3 - 1.62109720825254e68 * cos(theta) ) * cos(35 * phi) ) # @torch.jit.script def Yl86_m36(theta, phi): return ( 2.9120647647107e-69 * (1.0 - cos(theta) ** 2) ** 18 * ( 3.74412813715397e90 * cos(theta) ** 50 - 2.6821970573179e91 * cos(theta) ** 48 + 8.95123751672957e91 * cos(theta) ** 46 - 1.8492077504621e92 * cos(theta) ** 44 + 2.65053110899567e92 * cos(theta) ** 42 - 2.80013163784696e92 * cos(theta) ** 40 + 2.26097585664661e92 * cos(theta) ** 38 - 1.42809166866359e92 * cos(theta) ** 36 + 7.1631986565132e91 * cos(theta) ** 34 - 2.88068419089886e91 * cos(theta) ** 32 + 9.33868861886166e90 * cos(theta) ** 30 - 2.44571315424733e90 * cos(theta) ** 28 + 5.17046740663027e89 * cos(theta) ** 26 - 8.79331191603787e88 * cos(theta) ** 24 + 1.19554388612141e88 * cos(theta) ** 22 - 1.28750880043844e87 * cos(theta) ** 20 + 1.08433808547563e86 * cos(theta) ** 18 - 7.02089407861921e84 * cos(theta) ** 16 + 3.41649346891446e83 * cos(theta) ** 14 - 1.21208930086244e82 * cos(theta) ** 12 + 3.00743961868124e80 * cos(theta) ** 10 - 4.91947593023104e78 * cos(theta) ** 8 + 4.8536055689383e76 * cos(theta) ** 6 - 2.49243695768828e74 * cos(theta) ** 4 + 4.98487391537655e71 * cos(theta) ** 2 - 1.62109720825254e68 ) * cos(36 * phi) ) # @torch.jit.script def Yl86_m37(theta, phi): return ( 3.71332936182363e-71 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 1.87206406857699e92 * cos(theta) ** 49 - 1.28745458751259e93 * cos(theta) ** 47 + 4.1175692576956e93 * cos(theta) ** 45 - 8.13651410203322e93 * cos(theta) ** 43 + 1.11322306577818e94 * cos(theta) ** 41 - 1.12005265513878e94 * cos(theta) ** 39 + 8.59170825525714e93 * cos(theta) ** 37 - 5.14113000718891e93 * cos(theta) ** 35 + 2.43548754321449e93 * cos(theta) ** 33 - 9.21818941087635e92 * cos(theta) ** 31 + 2.8016065856585e92 * cos(theta) ** 29 - 6.84799683189254e91 * cos(theta) ** 27 + 1.34432152572387e91 * cos(theta) ** 25 - 2.11039485984909e90 * cos(theta) ** 23 + 2.63019654946709e89 * cos(theta) ** 21 - 2.57501760087687e88 * cos(theta) ** 19 + 1.95180855385614e87 * cos(theta) ** 17 - 1.12334305257907e86 * cos(theta) ** 15 + 4.78309085648024e84 * cos(theta) ** 13 - 1.45450716103493e83 * cos(theta) ** 11 + 3.00743961868124e81 * cos(theta) ** 9 - 3.93558074418483e79 * cos(theta) ** 7 + 2.91216334136298e77 * cos(theta) ** 5 - 9.9697478307531e74 * cos(theta) ** 3 + 9.9697478307531e71 * cos(theta) ) * cos(37 * phi) ) # @torch.jit.script def Yl86_m38(theta, phi): return ( 4.76381172539445e-73 * (1.0 - cos(theta) ** 2) ** 19 * ( 9.17311393602723e93 * cos(theta) ** 48 - 6.05103656130919e94 * cos(theta) ** 46 + 1.85290616596302e95 * cos(theta) ** 44 - 3.49870106387429e95 * cos(theta) ** 42 + 4.56421456969055e95 * cos(theta) ** 40 - 4.36820535504126e95 * cos(theta) ** 38 + 3.17893205444514e95 * cos(theta) ** 36 - 1.79939550251612e95 * cos(theta) ** 34 + 8.03710889260782e94 * cos(theta) ** 32 - 2.85763871737167e94 * cos(theta) ** 30 + 8.12465909840964e93 * cos(theta) ** 28 - 1.84895914461098e93 * cos(theta) ** 26 + 3.36080381430968e92 * cos(theta) ** 24 - 4.85390817765291e91 * cos(theta) ** 22 + 5.52341275388089e90 * cos(theta) ** 20 - 4.89253344166606e89 * cos(theta) ** 18 + 3.31807454155544e88 * cos(theta) ** 16 - 1.68501457886861e87 * cos(theta) ** 14 + 6.21801811342431e85 * cos(theta) ** 12 - 1.59995787713842e84 * cos(theta) ** 10 + 2.70669565681312e82 * cos(theta) ** 8 - 2.75490652092938e80 * cos(theta) ** 6 + 1.45608167068149e78 * cos(theta) ** 4 - 2.99092434922593e75 * cos(theta) ** 2 + 9.9697478307531e71 ) * cos(38 * phi) ) # @torch.jit.script def Yl86_m39(theta, phi): return ( 6.15005449230678e-75 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 4.40309468929307e95 * cos(theta) ** 47 - 2.78347681820223e96 * cos(theta) ** 45 + 8.15278713023729e96 * cos(theta) ** 43 - 1.4694544468272e97 * cos(theta) ** 41 + 1.82568582787622e97 * cos(theta) ** 39 - 1.65991803491568e97 * cos(theta) ** 37 + 1.14441553960025e97 * cos(theta) ** 35 - 6.1179447085548e96 * cos(theta) ** 33 + 2.5718748456345e96 * cos(theta) ** 31 - 8.572916152115e95 * cos(theta) ** 29 + 2.2749045475547e95 * cos(theta) ** 27 - 4.80729377598856e94 * cos(theta) ** 25 + 8.06592915434322e93 * cos(theta) ** 23 - 1.06785979908364e93 * cos(theta) ** 21 + 1.10468255077618e92 * cos(theta) ** 19 - 8.80656019499891e90 * cos(theta) ** 17 + 5.3089192664887e89 * cos(theta) ** 15 - 2.35902041041606e88 * cos(theta) ** 13 + 7.46162173610918e86 * cos(theta) ** 11 - 1.59995787713842e85 * cos(theta) ** 9 + 2.16535652545049e83 * cos(theta) ** 7 - 1.65294391255763e81 * cos(theta) ** 5 + 5.82432668272596e78 * cos(theta) ** 3 - 5.98184869845186e75 * cos(theta) ) * cos(39 * phi) ) # @torch.jit.script def Yl86_m40(theta, phi): return ( 7.99180286079389e-77 * (1.0 - cos(theta) ** 2) ** 20 * ( 2.06945450396774e97 * cos(theta) ** 46 - 1.252564568191e98 * cos(theta) ** 44 + 3.50569846600204e98 * cos(theta) ** 42 - 6.02476323199152e98 * cos(theta) ** 40 + 7.12017472871725e98 * cos(theta) ** 38 - 6.14169672918801e98 * cos(theta) ** 36 + 4.00545438860088e98 * cos(theta) ** 34 - 2.01892175382308e98 * cos(theta) ** 32 + 7.97281202146695e97 * cos(theta) ** 30 - 2.48614568411335e97 * cos(theta) ** 28 + 6.14224227839769e96 * cos(theta) ** 26 - 1.20182344399714e96 * cos(theta) ** 24 + 1.85516370549894e95 * cos(theta) ** 22 - 2.24250557807564e94 * cos(theta) ** 20 + 2.09889684647474e93 * cos(theta) ** 18 - 1.49711523314981e92 * cos(theta) ** 16 + 7.96337889973305e90 * cos(theta) ** 14 - 3.06672653354087e89 * cos(theta) ** 12 + 8.2077839097201e87 * cos(theta) ** 10 - 1.43996208942458e86 * cos(theta) ** 8 + 1.51574956781535e84 * cos(theta) ** 6 - 8.26471956278814e81 * cos(theta) ** 4 + 1.74729800481779e79 * cos(theta) ** 2 - 5.98184869845186e75 ) * cos(40 * phi) ) # @torch.jit.script def Yl86_m41(theta, phi): return ( 1.0455961753763e-78 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 9.51949071825162e98 * cos(theta) ** 45 - 5.51128410004041e99 * cos(theta) ** 43 + 1.47239335572085e100 * cos(theta) ** 41 - 2.40990529279661e100 * cos(theta) ** 39 + 2.70566639691256e100 * cos(theta) ** 37 - 2.21101082250768e100 * cos(theta) ** 35 + 1.3618544921243e100 * cos(theta) ** 33 - 6.46054961223387e99 * cos(theta) ** 31 + 2.39184360644009e99 * cos(theta) ** 29 - 6.96120791551738e98 * cos(theta) ** 27 + 1.5969829923834e98 * cos(theta) ** 25 - 2.88437626559314e97 * cos(theta) ** 23 + 4.08136015209767e96 * cos(theta) ** 21 - 4.48501115615129e95 * cos(theta) ** 19 + 3.77801432365453e94 * cos(theta) ** 17 - 2.3953843730397e93 * cos(theta) ** 15 + 1.11487304596263e92 * cos(theta) ** 13 - 3.68007184024905e90 * cos(theta) ** 11 + 8.2077839097201e88 * cos(theta) ** 9 - 1.15196967153966e87 * cos(theta) ** 7 + 9.09449740689207e84 * cos(theta) ** 5 - 3.30588782511526e82 * cos(theta) ** 3 + 3.49459600963558e79 * cos(theta) ) * cos(41 * phi) ) # @torch.jit.script def Yl86_m42(theta, phi): return ( 1.37769392789582e-80 * (1.0 - cos(theta) ** 2) ** 21 * ( 4.28377082321323e100 * cos(theta) ** 44 - 2.36985216301738e101 * cos(theta) ** 42 + 6.03681275845551e101 * cos(theta) ** 40 - 9.39863064190677e101 * cos(theta) ** 38 + 1.00109656685765e102 * cos(theta) ** 36 - 7.73853787877689e101 * cos(theta) ** 34 + 4.49411982401018e101 * cos(theta) ** 32 - 2.0027703797925e101 * cos(theta) ** 30 + 6.93634645867625e100 * cos(theta) ** 28 - 1.87952613718969e100 * cos(theta) ** 26 + 3.9924574809585e99 * cos(theta) ** 24 - 6.63406541086421e98 * cos(theta) ** 22 + 8.57085631940511e97 * cos(theta) ** 20 - 8.52152119668744e96 * cos(theta) ** 18 + 6.4226243502127e95 * cos(theta) ** 16 - 3.59307655955955e94 * cos(theta) ** 14 + 1.44933495975142e93 * cos(theta) ** 12 - 4.04807902427395e91 * cos(theta) ** 10 + 7.38700551874809e89 * cos(theta) ** 8 - 8.06378770077764e87 * cos(theta) ** 6 + 4.54724870344604e85 * cos(theta) ** 4 - 9.91766347534577e82 * cos(theta) ** 2 + 3.49459600963558e79 ) * cos(42 * phi) ) # @torch.jit.script def Yl86_m43(theta, phi): return ( 1.82865404459152e-82 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 1.88485916221382e102 * cos(theta) ** 43 - 9.95337908467298e102 * cos(theta) ** 41 + 2.4147251033822e103 * cos(theta) ** 39 - 3.57147964392457e103 * cos(theta) ** 37 + 3.60394764068752e103 * cos(theta) ** 35 - 2.63110287878414e103 * cos(theta) ** 33 + 1.43811834368326e103 * cos(theta) ** 31 - 6.0083111393775e102 * cos(theta) ** 29 + 1.94217700842935e102 * cos(theta) ** 27 - 4.8867679566932e101 * cos(theta) ** 25 + 9.5818979543004e100 * cos(theta) ** 23 - 1.45949439039013e100 * cos(theta) ** 21 + 1.71417126388102e99 * cos(theta) ** 19 - 1.53387381540374e98 * cos(theta) ** 17 + 1.02761989603403e97 * cos(theta) ** 15 - 5.03030718338338e95 * cos(theta) ** 13 + 1.7392019517017e94 * cos(theta) ** 11 - 4.04807902427395e92 * cos(theta) ** 9 + 5.90960441499847e90 * cos(theta) ** 7 - 4.83827262046658e88 * cos(theta) ** 5 + 1.81889948137841e86 * cos(theta) ** 3 - 1.98353269506915e83 * cos(theta) ) * cos(43 * phi) ) # @torch.jit.script def Yl86_m44(theta, phi): return ( 2.44582650436353e-84 * (1.0 - cos(theta) ** 2) ** 22 * ( 8.10489439751943e103 * cos(theta) ** 42 - 4.08088542471592e104 * cos(theta) ** 40 + 9.41742790319059e104 * cos(theta) ** 38 - 1.32144746825209e105 * cos(theta) ** 36 + 1.26138167424063e105 * cos(theta) ** 34 - 8.68263949998767e104 * cos(theta) ** 32 + 4.4581668654181e104 * cos(theta) ** 30 - 1.74241023041947e104 * cos(theta) ** 28 + 5.24387792275924e103 * cos(theta) ** 26 - 1.2216919891733e103 * cos(theta) ** 24 + 2.20383652948909e102 * cos(theta) ** 22 - 3.06493821981927e101 * cos(theta) ** 20 + 3.25692540137394e100 * cos(theta) ** 18 - 2.60758548618636e99 * cos(theta) ** 16 + 1.54142984405105e98 * cos(theta) ** 14 - 6.53939933839839e96 * cos(theta) ** 12 + 1.91312214687187e95 * cos(theta) ** 10 - 3.64327112184656e93 * cos(theta) ** 8 + 4.13672309049893e91 * cos(theta) ** 6 - 2.41913631023329e89 * cos(theta) ** 4 + 5.45669844413524e86 * cos(theta) ** 2 - 1.98353269506915e83 ) * cos(44 * phi) ) # @torch.jit.script def Yl86_m45(theta, phi): return ( 3.29735232158954e-86 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 3.40405564695816e105 * cos(theta) ** 41 - 1.63235416988637e106 * cos(theta) ** 39 + 3.57862260321242e106 * cos(theta) ** 37 - 4.75721088570753e106 * cos(theta) ** 35 + 4.28869769241815e106 * cos(theta) ** 33 - 2.77844463999606e106 * cos(theta) ** 31 + 1.33745005962543e106 * cos(theta) ** 29 - 4.87874864517453e105 * cos(theta) ** 27 + 1.3634082599174e105 * cos(theta) ** 25 - 2.93206077401592e104 * cos(theta) ** 23 + 4.848440364876e103 * cos(theta) ** 21 - 6.12987643963853e102 * cos(theta) ** 19 + 5.86246572247309e101 * cos(theta) ** 17 - 4.17213677789817e100 * cos(theta) ** 15 + 2.15800178167147e99 * cos(theta) ** 13 - 7.84727920607807e97 * cos(theta) ** 11 + 1.91312214687187e96 * cos(theta) ** 9 - 2.91461689747724e94 * cos(theta) ** 7 + 2.48203385429936e92 * cos(theta) ** 5 - 9.67654524093316e89 * cos(theta) ** 3 + 1.09133968882705e87 * cos(theta) ) * cos(45 * phi) ) # @torch.jit.script def Yl86_m46(theta, phi): return ( 4.48215075733493e-88 * (1.0 - cos(theta) ** 2) ** 23 * ( 1.39566281525285e107 * cos(theta) ** 40 - 6.36618126255684e107 * cos(theta) ** 38 + 1.3240903631886e108 * cos(theta) ** 36 - 1.66502380999764e108 * cos(theta) ** 34 + 1.41527023849799e108 * cos(theta) ** 32 - 8.61317838398777e107 * cos(theta) ** 30 + 3.87860517291375e107 * cos(theta) ** 28 - 1.31726213419712e107 * cos(theta) ** 26 + 3.40852064979351e106 * cos(theta) ** 24 - 6.74373978023662e105 * cos(theta) ** 22 + 1.01817247662396e105 * cos(theta) ** 20 - 1.16467652353132e104 * cos(theta) ** 18 + 9.96619172820426e102 * cos(theta) ** 16 - 6.25820516684726e101 * cos(theta) ** 14 + 2.80540231617291e100 * cos(theta) ** 12 - 8.63200712668587e98 * cos(theta) ** 10 + 1.72180993218468e97 * cos(theta) ** 8 - 2.04023182823407e95 * cos(theta) ** 6 + 1.24101692714968e93 * cos(theta) ** 4 - 2.90296357227995e90 * cos(theta) ** 2 + 1.09133968882705e87 ) * cos(46 * phi) ) # @torch.jit.script def Yl86_m47(theta, phi): return ( 6.14512390159355e-90 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 5.58265126101138e108 * cos(theta) ** 39 - 2.4191488797716e109 * cos(theta) ** 37 + 4.76672530747895e109 * cos(theta) ** 35 - 5.66108095399196e109 * cos(theta) ** 33 + 4.52886476319357e109 * cos(theta) ** 31 - 2.58395351519633e109 * cos(theta) ** 29 + 1.08600944841585e109 * cos(theta) ** 27 - 3.42488154891252e108 * cos(theta) ** 25 + 8.18044955950442e107 * cos(theta) ** 23 - 1.48362275165206e107 * cos(theta) ** 21 + 2.03634495324792e106 * cos(theta) ** 19 - 2.09641774235638e105 * cos(theta) ** 17 + 1.59459067651268e104 * cos(theta) ** 15 - 8.76148723358616e102 * cos(theta) ** 13 + 3.36648277940749e101 * cos(theta) ** 11 - 8.63200712668587e99 * cos(theta) ** 9 + 1.37744794574775e98 * cos(theta) ** 7 - 1.22413909694044e96 * cos(theta) ** 5 + 4.96406770859871e93 * cos(theta) ** 3 - 5.8059271445599e90 * cos(theta) ) * cos(47 * phi) ) # @torch.jit.script def Yl86_m48(theta, phi): return ( 8.50052876115164e-92 * (1.0 - cos(theta) ** 2) ** 24 * ( 2.17723399179444e110 * cos(theta) ** 38 - 8.95085085515491e110 * cos(theta) ** 36 + 1.66835385761763e111 * cos(theta) ** 34 - 1.86815671481735e111 * cos(theta) ** 32 + 1.40394807659001e111 * cos(theta) ** 30 - 7.49346519406936e110 * cos(theta) ** 28 + 2.93222551072279e110 * cos(theta) ** 26 - 8.5622038722813e109 * cos(theta) ** 24 + 1.88150339868602e109 * cos(theta) ** 22 - 3.11560777846932e108 * cos(theta) ** 20 + 3.86905541117105e107 * cos(theta) ** 18 - 3.56391016200584e106 * cos(theta) ** 16 + 2.39188601476902e105 * cos(theta) ** 14 - 1.1389933403662e104 * cos(theta) ** 12 + 3.70313105734824e102 * cos(theta) ** 10 - 7.76880641401729e100 * cos(theta) ** 8 + 9.64213562023422e98 * cos(theta) ** 6 - 6.12069548470221e96 * cos(theta) ** 4 + 1.48922031257961e94 * cos(theta) ** 2 - 5.8059271445599e90 ) * cos(48 * phi) ) # @torch.jit.script def Yl86_m49(theta, phi): return ( 1.18682656471811e-93 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 8.27348916881887e111 * cos(theta) ** 37 - 3.22230630785577e112 * cos(theta) ** 35 + 5.67240311589995e112 * cos(theta) ** 33 - 5.97810148741551e112 * cos(theta) ** 31 + 4.21184422977002e112 * cos(theta) ** 29 - 2.09817025433942e112 * cos(theta) ** 27 + 7.62378632787926e111 * cos(theta) ** 25 - 2.05492892934751e111 * cos(theta) ** 23 + 4.13930747710924e110 * cos(theta) ** 21 - 6.23121555693864e109 * cos(theta) ** 19 + 6.96429974010789e108 * cos(theta) ** 17 - 5.70225625920935e107 * cos(theta) ** 15 + 3.34864042067663e106 * cos(theta) ** 13 - 1.36679200843944e105 * cos(theta) ** 11 + 3.70313105734824e103 * cos(theta) ** 9 - 6.21504513121383e101 * cos(theta) ** 7 + 5.78528137214053e99 * cos(theta) ** 5 - 2.44827819388089e97 * cos(theta) ** 3 + 2.97844062515923e94 * cos(theta) ) * cos(49 * phi) ) # @torch.jit.script def Yl86_m50(theta, phi): return ( 1.67308090398789e-95 * (1.0 - cos(theta) ** 2) ** 25 * ( 3.06119099246298e113 * cos(theta) ** 36 - 1.12780720774952e114 * cos(theta) ** 34 + 1.87189302824698e114 * cos(theta) ** 32 - 1.85321146109881e114 * cos(theta) ** 30 + 1.22143482663331e114 * cos(theta) ** 28 - 5.66505968671644e113 * cos(theta) ** 26 + 1.90594658196982e113 * cos(theta) ** 24 - 4.72633653749927e112 * cos(theta) ** 22 + 8.6925457019294e111 * cos(theta) ** 20 - 1.18393095581834e111 * cos(theta) ** 18 + 1.18393095581834e110 * cos(theta) ** 16 - 8.55338438881402e108 * cos(theta) ** 14 + 4.35323254687962e107 * cos(theta) ** 12 - 1.50347120928339e106 * cos(theta) ** 10 + 3.33281795161342e104 * cos(theta) ** 8 - 4.35053159184968e102 * cos(theta) ** 6 + 2.89264068607027e100 * cos(theta) ** 4 - 7.34483458164266e97 * cos(theta) ** 2 + 2.97844062515923e94 ) * cos(50 * phi) ) # @torch.jit.script def Yl86_m51(theta, phi): return ( 2.38234913716956e-97 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 1.10202875728667e115 * cos(theta) ** 35 - 3.83454450634836e115 * cos(theta) ** 33 + 5.99005769039035e115 * cos(theta) ** 31 - 5.55963438329643e115 * cos(theta) ** 29 + 3.42001751457326e115 * cos(theta) ** 27 - 1.47291551854627e115 * cos(theta) ** 25 + 4.57427179672756e114 * cos(theta) ** 23 - 1.03979403824984e114 * cos(theta) ** 21 + 1.73850914038588e113 * cos(theta) ** 19 - 2.13107572047301e112 * cos(theta) ** 17 + 1.89428952930935e111 * cos(theta) ** 15 - 1.19747381443396e110 * cos(theta) ** 13 + 5.22387905625554e108 * cos(theta) ** 11 - 1.50347120928339e107 * cos(theta) ** 9 + 2.66625436129073e105 * cos(theta) ** 7 - 2.61031895510981e103 * cos(theta) ** 5 + 1.15705627442811e101 * cos(theta) ** 3 - 1.46896691632853e98 * cos(theta) ) * cos(51 * phi) ) # @torch.jit.script def Yl86_m52(theta, phi): return ( 3.42792919621603e-99 * (1.0 - cos(theta) ** 2) ** 26 * ( 3.85710065050336e116 * cos(theta) ** 34 - 1.26539968709496e117 * cos(theta) ** 32 + 1.85691788402101e117 * cos(theta) ** 30 - 1.61229397115596e117 * cos(theta) ** 28 + 9.23404728934779e116 * cos(theta) ** 26 - 3.68228879636568e116 * cos(theta) ** 24 + 1.05208251324734e116 * cos(theta) ** 22 - 2.18356748032466e115 * cos(theta) ** 20 + 3.30316736673317e114 * cos(theta) ** 18 - 3.62282872480412e113 * cos(theta) ** 16 + 2.84143429396402e112 * cos(theta) ** 14 - 1.55671595876415e111 * cos(theta) ** 12 + 5.7462669618811e109 * cos(theta) ** 10 - 1.35312408835505e108 * cos(theta) ** 8 + 1.86637805290351e106 * cos(theta) ** 6 - 1.3051594775549e104 * cos(theta) ** 4 + 3.47116882328432e101 * cos(theta) ** 2 - 1.46896691632853e98 ) * cos(52 * phi) ) # @torch.jit.script def Yl86_m53(theta, phi): return ( 4.98637554963799e-101 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 1.31141422117114e118 * cos(theta) ** 33 - 4.04927899870387e118 * cos(theta) ** 31 + 5.57075365206302e118 * cos(theta) ** 29 - 4.5144231192367e118 * cos(theta) ** 27 + 2.40085229523043e118 * cos(theta) ** 25 - 8.83749311127764e117 * cos(theta) ** 23 + 2.31458152914414e117 * cos(theta) ** 21 - 4.36713496064933e116 * cos(theta) ** 19 + 5.94570126011971e115 * cos(theta) ** 17 - 5.7965259596866e114 * cos(theta) ** 15 + 3.97800801154963e113 * cos(theta) ** 13 - 1.86805915051698e112 * cos(theta) ** 11 + 5.7462669618811e110 * cos(theta) ** 9 - 1.08249927068404e109 * cos(theta) ** 7 + 1.11982683174211e107 * cos(theta) ** 5 - 5.22063791021962e104 * cos(theta) ** 3 + 6.94233764656864e101 * cos(theta) ) * cos(53 * phi) ) # @torch.jit.script def Yl86_m54(theta, phi): return ( 7.33607895109391e-103 * (1.0 - cos(theta) ** 2) ** 27 * ( 4.32766692986476e119 * cos(theta) ** 32 - 1.2552764895982e120 * cos(theta) ** 30 + 1.61551855909828e120 * cos(theta) ** 28 - 1.21889424219391e120 * cos(theta) ** 26 + 6.00213073807607e119 * cos(theta) ** 24 - 2.03262341559386e119 * cos(theta) ** 22 + 4.8606212112027e118 * cos(theta) ** 20 - 8.29755642523373e117 * cos(theta) ** 18 + 1.01076921422035e117 * cos(theta) ** 16 - 8.6947889395299e115 * cos(theta) ** 14 + 5.17141041501451e114 * cos(theta) ** 12 - 2.05486506556868e113 * cos(theta) ** 10 + 5.17164026569299e111 * cos(theta) ** 8 - 7.57749489478826e109 * cos(theta) ** 6 + 5.59913415871054e107 * cos(theta) ** 4 - 1.56619137306588e105 * cos(theta) ** 2 + 6.94233764656864e101 ) * cos(54 * phi) ) # @torch.jit.script def Yl86_m55(theta, phi): return ( 1.09214286055077e-104 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 1.38485341755672e121 * cos(theta) ** 31 - 3.7658294687946e121 * cos(theta) ** 29 + 4.52345196547517e121 * cos(theta) ** 27 - 3.16912502970416e121 * cos(theta) ** 25 + 1.44051137713826e121 * cos(theta) ** 23 - 4.47177151430649e120 * cos(theta) ** 21 + 9.72124242240541e119 * cos(theta) ** 19 - 1.49356015654207e119 * cos(theta) ** 17 + 1.61723074275256e118 * cos(theta) ** 15 - 1.21727045153419e117 * cos(theta) ** 13 + 6.20569249801742e115 * cos(theta) ** 11 - 2.05486506556868e114 * cos(theta) ** 9 + 4.13731221255439e112 * cos(theta) ** 7 - 4.54649693687296e110 * cos(theta) ** 5 + 2.23965366348422e108 * cos(theta) ** 3 - 3.13238274613177e105 * cos(theta) ) * cos(55 * phi) ) # @torch.jit.script def Yl86_m56(theta, phi): return ( 1.64609324218092e-106 * (1.0 - cos(theta) ** 2) ** 28 * ( 4.29304559442585e122 * cos(theta) ** 30 - 1.09209054595043e123 * cos(theta) ** 28 + 1.2213320306783e123 * cos(theta) ** 26 - 7.92281257426041e122 * cos(theta) ** 24 + 3.31317616741799e122 * cos(theta) ** 22 - 9.39072018004362e121 * cos(theta) ** 20 + 1.84703606025703e121 * cos(theta) ** 18 - 2.53905226612152e120 * cos(theta) ** 16 + 2.42584611412884e119 * cos(theta) ** 14 - 1.58245158699444e118 * cos(theta) ** 12 + 6.82626174781916e116 * cos(theta) ** 10 - 1.84937855901181e115 * cos(theta) ** 8 + 2.89611854878807e113 * cos(theta) ** 6 - 2.27324846843648e111 * cos(theta) ** 4 + 6.71896099045265e108 * cos(theta) ** 2 - 3.13238274613177e105 ) * cos(56 * phi) ) # @torch.jit.script def Yl86_m57(theta, phi): return ( 2.51319267873586e-108 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 1.28791367832775e124 * cos(theta) ** 29 - 3.05785352866122e124 * cos(theta) ** 27 + 3.17546327976357e124 * cos(theta) ** 25 - 1.9014750178225e124 * cos(theta) ** 23 + 7.28898756831957e123 * cos(theta) ** 21 - 1.87814403600872e123 * cos(theta) ** 19 + 3.32466490846265e122 * cos(theta) ** 17 - 4.06248362579443e121 * cos(theta) ** 15 + 3.39618455978038e120 * cos(theta) ** 13 - 1.89894190439333e119 * cos(theta) ** 11 + 6.82626174781916e117 * cos(theta) ** 9 - 1.47950284720945e116 * cos(theta) ** 7 + 1.73767112927284e114 * cos(theta) ** 5 - 9.09299387374591e111 * cos(theta) ** 3 + 1.34379219809053e109 * cos(theta) ) * cos(57 * phi) ) # @torch.jit.script def Yl86_m58(theta, phi): return ( 3.88906803651622e-110 * (1.0 - cos(theta) ** 2) ** 29 * ( 3.73494966715049e125 * cos(theta) ** 28 - 8.25620452738529e125 * cos(theta) ** 26 + 7.93865819940893e125 * cos(theta) ** 24 - 4.37339254099175e125 * cos(theta) ** 22 + 1.53068738934711e125 * cos(theta) ** 20 - 3.56847366841658e124 * cos(theta) ** 18 + 5.6519303443865e123 * cos(theta) ** 16 - 6.09372543869165e122 * cos(theta) ** 14 + 4.41503992771449e121 * cos(theta) ** 12 - 2.08883609483266e120 * cos(theta) ** 10 + 6.14363557303724e118 * cos(theta) ** 8 - 1.03565199304662e117 * cos(theta) ** 6 + 8.68835564636422e114 * cos(theta) ** 4 - 2.72789816212377e112 * cos(theta) ** 2 + 1.34379219809053e109 ) * cos(58 * phi) ) # @torch.jit.script def Yl86_m59(theta, phi): return ( 6.10355024536255e-112 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 1.04578590680214e127 * cos(theta) ** 27 - 2.14661317712017e127 * cos(theta) ** 25 + 1.90527796785814e127 * cos(theta) ** 23 - 9.62146359018184e126 * cos(theta) ** 21 + 3.06137477869422e126 * cos(theta) ** 19 - 6.42325260314984e125 * cos(theta) ** 17 + 9.04308855101841e124 * cos(theta) ** 15 - 8.53121561416831e123 * cos(theta) ** 13 + 5.29804791325739e122 * cos(theta) ** 11 - 2.08883609483266e121 * cos(theta) ** 9 + 4.91490845842979e119 * cos(theta) ** 7 - 6.21391195827969e117 * cos(theta) ** 5 + 3.47534225854569e115 * cos(theta) ** 3 - 5.45579632424755e112 * cos(theta) ) * cos(59 * phi) ) # @torch.jit.script def Yl86_m60(theta, phi): return ( 9.72129705504536e-114 * (1.0 - cos(theta) ** 2) ** 30 * ( 2.82362194836577e128 * cos(theta) ** 26 - 5.36653294280044e128 * cos(theta) ** 24 + 4.38213932607373e128 * cos(theta) ** 22 - 2.02050735393819e128 * cos(theta) ** 20 + 5.81661207951902e127 * cos(theta) ** 18 - 1.09195294253547e127 * cos(theta) ** 16 + 1.35646328265276e126 * cos(theta) ** 14 - 1.10905802984188e125 * cos(theta) ** 12 + 5.82785270458313e123 * cos(theta) ** 10 - 1.8799524853494e122 * cos(theta) ** 8 + 3.44043592090086e120 * cos(theta) ** 6 - 3.10695597913985e118 * cos(theta) ** 4 + 1.04260267756371e116 * cos(theta) ** 2 - 5.45579632424755e112 ) * cos(60 * phi) ) # @torch.jit.script def Yl86_m61(theta, phi): return ( 1.57245734250362e-115 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 7.341417065751e129 * cos(theta) ** 25 - 1.2879679062721e130 * cos(theta) ** 23 + 9.6407065173622e129 * cos(theta) ** 21 - 4.04101470787637e129 * cos(theta) ** 19 + 1.04699017431342e129 * cos(theta) ** 17 - 1.74712470805676e128 * cos(theta) ** 15 + 1.89904859571387e127 * cos(theta) ** 13 - 1.33086963581026e126 * cos(theta) ** 11 + 5.82785270458313e124 * cos(theta) ** 9 - 1.50396198827952e123 * cos(theta) ** 7 + 2.06426155254051e121 * cos(theta) ** 5 - 1.24278239165594e119 * cos(theta) ** 3 + 2.08520535512741e116 * cos(theta) ) * cos(61 * phi) ) # @torch.jit.script def Yl86_m62(theta, phi): return ( 2.58510394688469e-117 * (1.0 - cos(theta) ** 2) ** 31 * ( 1.83535426643775e131 * cos(theta) ** 24 - 2.96232618442584e131 * cos(theta) ** 22 + 2.02454836864606e131 * cos(theta) ** 20 - 7.67792794496511e130 * cos(theta) ** 18 + 1.77988329633282e130 * cos(theta) ** 16 - 2.62068706208513e129 * cos(theta) ** 14 + 2.46876317442802e128 * cos(theta) ** 12 - 1.46395659939128e127 * cos(theta) ** 10 + 5.24506743412481e125 * cos(theta) ** 8 - 1.05277339179566e124 * cos(theta) ** 6 + 1.03213077627026e122 * cos(theta) ** 4 - 3.72834717496781e119 * cos(theta) ** 2 + 2.08520535512741e116 ) * cos(62 * phi) ) # @torch.jit.script def Yl86_m63(theta, phi): return ( 4.32294047645489e-119 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 4.4048502394506e132 * cos(theta) ** 23 - 6.51711760573685e132 * cos(theta) ** 21 + 4.04909673729212e132 * cos(theta) ** 19 - 1.38202703009372e132 * cos(theta) ** 17 + 2.84781327413251e131 * cos(theta) ** 15 - 3.66896188691919e130 * cos(theta) ** 13 + 2.96251580931363e129 * cos(theta) ** 11 - 1.46395659939128e128 * cos(theta) ** 9 + 4.19605394729985e126 * cos(theta) ** 7 - 6.31664035077397e124 * cos(theta) ** 5 + 4.12852310508103e122 * cos(theta) ** 3 - 7.45669434993563e119 * cos(theta) ) * cos(63 * phi) ) # @torch.jit.script def Yl86_m64(theta, phi): return ( 7.35986262532712e-121 * (1.0 - cos(theta) ** 2) ** 32 * ( 1.01311555507364e134 * cos(theta) ** 22 - 1.36859469720474e134 * cos(theta) ** 20 + 7.69328380085504e133 * cos(theta) ** 18 - 2.34944595115932e133 * cos(theta) ** 16 + 4.27171991119877e132 * cos(theta) ** 14 - 4.76965045299494e131 * cos(theta) ** 12 + 3.25876739024499e130 * cos(theta) ** 10 - 1.31756093945215e129 * cos(theta) ** 8 + 2.9372377631099e127 * cos(theta) ** 6 - 3.15832017538699e125 * cos(theta) ** 4 + 1.23855693152431e123 * cos(theta) ** 2 - 7.45669434993563e119 ) * cos(64 * phi) ) # @torch.jit.script def Yl86_m65(theta, phi): return ( 1.27693824371294e-122 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 2.228854221162e135 * cos(theta) ** 21 - 2.73718939440948e135 * cos(theta) ** 19 + 1.38479108415391e135 * cos(theta) ** 17 - 3.75911352185492e134 * cos(theta) ** 15 + 5.98040787567828e133 * cos(theta) ** 13 - 5.72358054359393e132 * cos(theta) ** 11 + 3.25876739024499e131 * cos(theta) ** 9 - 1.05404875156172e130 * cos(theta) ** 7 + 1.76234265786594e128 * cos(theta) ** 5 - 1.26332807015479e126 * cos(theta) ** 3 + 2.47711386304862e123 * cos(theta) ) * cos(65 * phi) ) # @torch.jit.script def Yl86_m66(theta, phi): return ( 2.26015619141157e-124 * (1.0 - cos(theta) ** 2) ** 33 * ( 4.68059386444021e136 * cos(theta) ** 20 - 5.20065984937801e136 * cos(theta) ** 18 + 2.35414484306164e136 * cos(theta) ** 16 - 5.63867028278238e135 * cos(theta) ** 14 + 7.77453023838176e134 * cos(theta) ** 12 - 6.29593859795333e133 * cos(theta) ** 10 + 2.93289065122049e132 * cos(theta) ** 8 - 7.37834126093206e130 * cos(theta) ** 6 + 8.81171328932969e128 * cos(theta) ** 4 - 3.78998421046438e126 * cos(theta) ** 2 + 2.47711386304862e123 ) * cos(66 * phi) ) # @torch.jit.script def Yl86_m67(theta, phi): return ( 4.08580597787152e-126 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 9.36118772888041e137 * cos(theta) ** 19 - 9.36118772888041e137 * cos(theta) ** 17 + 3.76663174889863e137 * cos(theta) ** 15 - 7.89413839589533e136 * cos(theta) ** 13 + 9.32943628605811e135 * cos(theta) ** 11 - 6.29593859795333e134 * cos(theta) ** 9 + 2.34631252097639e133 * cos(theta) ** 7 - 4.42700475655924e131 * cos(theta) ** 5 + 3.52468531573188e129 * cos(theta) ** 3 - 7.57996842092876e126 * cos(theta) ) * cos(67 * phi) ) # @torch.jit.script def Yl86_m68(theta, phi): return ( 7.55336686206047e-128 * (1.0 - cos(theta) ** 2) ** 34 * ( 1.77862566848728e139 * cos(theta) ** 18 - 1.59140191390967e139 * cos(theta) ** 16 + 5.64994762334794e138 * cos(theta) ** 14 - 1.02623799146639e138 * cos(theta) ** 12 + 1.02623799146639e137 * cos(theta) ** 10 - 5.66634473815799e135 * cos(theta) ** 8 + 1.64241876468348e134 * cos(theta) ** 6 - 2.21350237827962e132 * cos(theta) ** 4 + 1.05740559471956e130 * cos(theta) ** 2 - 7.57996842092876e126 ) * cos(68 * phi) ) # @torch.jit.script def Yl86_m69(theta, phi): return ( 1.43000803257229e-129 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 3.2015262032771e140 * cos(theta) ** 17 - 2.54624306225547e140 * cos(theta) ** 15 + 7.90992667268712e139 * cos(theta) ** 13 - 1.23148558975967e139 * cos(theta) ** 11 + 1.02623799146639e138 * cos(theta) ** 9 - 4.5330757905264e136 * cos(theta) ** 7 + 9.85451258810086e134 * cos(theta) ** 5 - 8.85400951311847e132 * cos(theta) ** 3 + 2.11481118943913e130 * cos(theta) ) * cos(69 * phi) ) # @torch.jit.script def Yl86_m70(theta, phi): return ( 2.77684550159859e-131 * (1.0 - cos(theta) ** 2) ** 35 * ( 5.44259454557107e141 * cos(theta) ** 16 - 3.81936459338321e141 * cos(theta) ** 14 + 1.02829046744933e141 * cos(theta) ** 12 - 1.35463414873564e140 * cos(theta) ** 10 + 9.23614192319753e138 * cos(theta) ** 8 - 3.17315305336848e137 * cos(theta) ** 6 + 4.92725629405043e135 * cos(theta) ** 4 - 2.65620285393554e133 * cos(theta) ** 2 + 2.11481118943913e130 ) * cos(70 * phi) ) # @torch.jit.script def Yl86_m71(theta, phi): return ( 5.54040993754688e-133 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 8.70815127291371e142 * cos(theta) ** 15 - 5.34711043073649e142 * cos(theta) ** 13 + 1.23394856093919e142 * cos(theta) ** 11 - 1.35463414873564e141 * cos(theta) ** 9 + 7.38891353855802e139 * cos(theta) ** 7 - 1.90389183202109e138 * cos(theta) ** 5 + 1.97090251762017e136 * cos(theta) ** 3 - 5.31240570787108e133 * cos(theta) ) * cos(71 * phi) ) # @torch.jit.script def Yl86_m72(theta, phi): return ( 1.13806672766906e-134 * (1.0 - cos(theta) ** 2) ** 36 * ( 1.30622269093706e144 * cos(theta) ** 14 - 6.95124355995744e143 * cos(theta) ** 12 + 1.35734341703311e143 * cos(theta) ** 10 - 1.21917073386207e142 * cos(theta) ** 8 + 5.17223947699062e140 * cos(theta) ** 6 - 9.51945916010543e138 * cos(theta) ** 4 + 5.91270755286052e136 * cos(theta) ** 2 - 5.31240570787108e133 ) * cos(72 * phi) ) # @torch.jit.script def Yl86_m73(theta, phi): return ( 2.41215464093889e-136 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 1.82871176731188e145 * cos(theta) ** 13 - 8.34149227194893e144 * cos(theta) ** 11 + 1.35734341703311e144 * cos(theta) ** 9 - 9.75336587089659e142 * cos(theta) ** 7 + 3.10334368619437e141 * cos(theta) ** 5 - 3.80778366404217e139 * cos(theta) ** 3 + 1.1825415105721e137 * cos(theta) ) * cos(73 * phi) ) # @torch.jit.script def Yl86_m74(theta, phi): return ( 5.2889989291103e-138 * (1.0 - cos(theta) ** 2) ** 37 * ( 2.37732529750544e146 * cos(theta) ** 12 - 9.17564149914382e145 * cos(theta) ** 10 + 1.2216090753298e145 * cos(theta) ** 8 - 6.82735610962761e143 * cos(theta) ** 6 + 1.55167184309719e142 * cos(theta) ** 4 - 1.14233509921265e140 * cos(theta) ** 2 + 1.1825415105721e137 ) * cos(74 * phi) ) # @torch.jit.script def Yl86_m75(theta, phi): return ( 1.20328892097281e-139 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 2.85279035700653e147 * cos(theta) ** 11 - 9.17564149914382e146 * cos(theta) ** 9 + 9.77287260263839e145 * cos(theta) ** 7 - 4.09641366577657e144 * cos(theta) ** 5 + 6.20668737238874e142 * cos(theta) ** 3 - 2.2846701984253e140 * cos(theta) ) * cos(75 * phi) ) # @torch.jit.script def Yl86_m76(theta, phi): return ( 2.85046733260192e-141 * (1.0 - cos(theta) ** 2) ** 38 * ( 3.13806939270719e148 * cos(theta) ** 10 - 8.25807734922944e147 * cos(theta) ** 8 + 6.84101082184687e146 * cos(theta) ** 6 - 2.04820683288828e145 * cos(theta) ** 4 + 1.86200621171662e143 * cos(theta) ** 2 - 2.2846701984253e140 ) * cos(76 * phi) ) # @torch.jit.script def Yl86_m77(theta, phi): return ( 7.06028554586467e-143 * (1.0 - cos(theta) ** 2) ** 38.5 * ( 3.13806939270719e149 * cos(theta) ** 9 - 6.60646187938355e148 * cos(theta) ** 7 + 4.10460649310812e147 * cos(theta) ** 5 - 8.19282733155314e145 * cos(theta) ** 3 + 3.72401242343324e143 * cos(theta) ) * cos(77 * phi) ) # @torch.jit.script def Yl86_m78(theta, phi): return ( 1.83771892284239e-144 * (1.0 - cos(theta) ** 2) ** 39 * ( 2.82426245343647e150 * cos(theta) ** 8 - 4.62452331556848e149 * cos(theta) ** 6 + 2.05230324655406e148 * cos(theta) ** 4 - 2.45784819946594e146 * cos(theta) ** 2 + 3.72401242343324e143 ) * cos(78 * phi) ) # @torch.jit.script def Yl86_m79(theta, phi): return ( 5.0581548613413e-146 * (1.0 - cos(theta) ** 2) ** 39.5 * ( 2.25940996274917e151 * cos(theta) ** 7 - 2.77471398934109e150 * cos(theta) ** 5 + 8.20921298621624e148 * cos(theta) ** 3 - 4.91569639893188e146 * cos(theta) ) * cos(79 * phi) ) # @torch.jit.script def Yl86_m80(theta, phi): return ( 1.4838467766475e-147 * (1.0 - cos(theta) ** 2) ** 40 * ( 1.58158697392442e152 * cos(theta) ** 6 - 1.38735699467055e151 * cos(theta) ** 4 + 2.46276389586487e149 * cos(theta) ** 2 - 4.91569639893188e146 ) * cos(80 * phi) ) # @torch.jit.script def Yl86_m81(theta, phi): return ( 4.68765020418527e-149 * (1.0 - cos(theta) ** 2) ** 40.5 * ( 9.48952184354653e152 * cos(theta) ** 5 - 5.54942797868218e151 * cos(theta) ** 3 + 4.92552779172975e149 * cos(theta) ) * cos(81 * phi) ) # @torch.jit.script def Yl86_m82(theta, phi): return ( 1.61739298007621e-150 * (1.0 - cos(theta) ** 2) ** 41 * ( 4.74476092177326e153 * cos(theta) ** 4 - 1.66482839360465e152 * cos(theta) ** 2 + 4.92552779172975e149 ) * cos(82 * phi) ) # @torch.jit.script def Yl86_m83(theta, phi): return ( 6.22074223106233e-152 * (1.0 - cos(theta) ** 2) ** 41.5 * (1.89790436870931e154 * cos(theta) ** 3 - 3.32965678720931e152 * cos(theta)) * cos(83 * phi) ) # @torch.jit.script def Yl86_m84(theta, phi): return ( 2.75459095946835e-153 * (1.0 - cos(theta) ** 2) ** 42 * (5.69371310612792e154 * cos(theta) ** 2 - 3.32965678720931e152) * cos(84 * phi) ) # @torch.jit.script def Yl86_m85(theta, phi): return 16.96171027275 * (1.0 - cos(theta) ** 2) ** 42.5 * cos(85 * phi) * cos(theta) # @torch.jit.script def Yl86_m86(theta, phi): return 1.29331828349511 * (1.0 - cos(theta) ** 2) ** 43 * cos(86 * phi) # @torch.jit.script def Yl87_m_minus_87(theta, phi): return 1.29702939093238 * (1.0 - cos(theta) ** 2) ** 43.5 * sin(87 * phi) # @torch.jit.script def Yl87_m_minus_86(theta, phi): return 17.108992720905 * (1.0 - cos(theta) ** 2) ** 43 * sin(86 * phi) * cos(theta) # @torch.jit.script def Yl87_m_minus_85(theta, phi): return ( 1.61543992435537e-155 * (1.0 - cos(theta) ** 2) ** 42.5 * (9.8501236736013e156 * cos(theta) ** 2 - 5.69371310612792e154) * sin(85 * phi) ) # @torch.jit.script def Yl87_m_minus_84(theta, phi): return ( 3.66957410742427e-154 * (1.0 - cos(theta) ** 2) ** 42 * (3.2833745578671e156 * cos(theta) ** 3 - 5.69371310612792e154 * cos(theta)) * sin(84 * phi) ) # @torch.jit.script def Yl87_m_minus_83(theta, phi): return ( 9.59718162005753e-153 * (1.0 - cos(theta) ** 2) ** 41.5 * ( 8.20843639466775e155 * cos(theta) ** 4 - 2.84685655306396e154 * cos(theta) ** 2 + 8.32414196802327e151 ) * sin(83 * phi) ) # @torch.jit.script def Yl87_m_minus_82(theta, phi): return ( 2.79803521763245e-151 * (1.0 - cos(theta) ** 2) ** 41 * ( 1.64168727893355e155 * cos(theta) ** 5 - 9.48952184354653e153 * cos(theta) ** 3 + 8.32414196802327e151 * cos(theta) ) * sin(82 * phi) ) # @torch.jit.script def Yl87_m_minus_81(theta, phi): return ( 8.90988613519781e-150 * (1.0 - cos(theta) ** 2) ** 40.5 * ( 2.73614546488925e154 * cos(theta) ** 6 - 2.37238046088663e153 * cos(theta) ** 4 + 4.16207098401164e151 * cos(theta) ** 2 - 8.20921298621624e148 ) * sin(81 * phi) ) # @torch.jit.script def Yl87_m_minus_80(theta, phi): return ( 3.05545445765463e-148 * (1.0 - cos(theta) ** 2) ** 40 * ( 3.90877923555607e153 * cos(theta) ** 7 - 4.74476092177326e152 * cos(theta) ** 5 + 1.38735699467055e151 * cos(theta) ** 3 - 8.20921298621624e148 * cos(theta) ) * sin(80 * phi) ) # @torch.jit.script def Yl87_m_minus_79(theta, phi): return ( 1.11680935685474e-146 * (1.0 - cos(theta) ** 2) ** 39.5 * ( 4.88597404444509e152 * cos(theta) ** 8 - 7.90793486962211e151 * cos(theta) ** 6 + 3.46839248667636e150 * cos(theta) ** 4 - 4.10460649310812e148 * cos(theta) ** 2 + 6.14462049866485e145 ) * sin(79 * phi) ) # @torch.jit.script def Yl87_m_minus_78(theta, phi): return ( 4.31672460379404e-145 * (1.0 - cos(theta) ** 2) ** 39 * ( 5.42886004938343e151 * cos(theta) ** 9 - 1.12970498137459e151 * cos(theta) ** 7 + 6.93678497335273e149 * cos(theta) ** 5 - 1.36820216436937e148 * cos(theta) ** 3 + 6.14462049866485e145 * cos(theta) ) * sin(78 * phi) ) # @torch.jit.script def Yl87_m_minus_77(theta, phi): return ( 1.75346182317299e-143 * (1.0 - cos(theta) ** 2) ** 38.5 * ( 5.42886004938343e150 * cos(theta) ** 10 - 1.41213122671823e150 * cos(theta) ** 8 + 1.15613082889212e149 * cos(theta) ** 6 - 3.42050541092343e147 * cos(theta) ** 4 + 3.07231024933243e145 * cos(theta) ** 2 - 3.72401242343324e142 ) * sin(77 * phi) ) # @torch.jit.script def Yl87_m_minus_76(theta, phi): return ( 7.44756978553847e-142 * (1.0 - cos(theta) ** 2) ** 38 * ( 4.9353273176213e149 * cos(theta) ** 11 - 1.56903469635359e149 * cos(theta) ** 9 + 1.65161546984589e148 * cos(theta) ** 7 - 6.84101082184687e146 * cos(theta) ** 5 + 1.02410341644414e145 * cos(theta) ** 3 - 3.72401242343324e142 * cos(theta) ) * sin(76 * phi) ) # @torch.jit.script def Yl87_m_minus_75(theta, phi): return ( 3.29381351035043e-140 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 4.11277276468442e148 * cos(theta) ** 12 - 1.56903469635359e148 * cos(theta) ** 10 + 2.06451933730736e147 * cos(theta) ** 8 - 1.14016847030781e146 * cos(theta) ** 6 + 2.56025854111036e144 * cos(theta) ** 4 - 1.86200621171662e142 * cos(theta) ** 2 + 1.90389183202109e139 ) * sin(75 * phi) ) # @torch.jit.script def Yl87_m_minus_74(theta, phi): return ( 1.51156974270712e-138 * (1.0 - cos(theta) ** 2) ** 37 * ( 3.16367135744955e147 * cos(theta) ** 13 - 1.42639517850327e147 * cos(theta) ** 11 + 2.29391037478595e146 * cos(theta) ** 9 - 1.62881210043973e145 * cos(theta) ** 7 + 5.12051708222071e143 * cos(theta) ** 5 - 6.20668737238874e141 * cos(theta) ** 3 + 1.90389183202109e139 * cos(theta) ) * sin(74 * phi) ) # @torch.jit.script def Yl87_m_minus_73(theta, phi): return ( 7.1763753512832e-137 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 2.25976525532111e146 * cos(theta) ** 14 - 1.18866264875272e146 * cos(theta) ** 12 + 2.29391037478595e145 * cos(theta) ** 10 - 2.03601512554966e144 * cos(theta) ** 8 + 8.53419513703452e142 * cos(theta) ** 6 - 1.55167184309719e141 * cos(theta) ** 4 + 9.51945916010543e138 * cos(theta) ** 2 - 8.44672507551502e135 ) * sin(73 * phi) ) # @torch.jit.script def Yl87_m_minus_72(theta, phi): return ( 3.51569156266604e-135 * (1.0 - cos(theta) ** 2) ** 36 * ( 1.50651017021407e145 * cos(theta) ** 15 - 9.1435588365594e144 * cos(theta) ** 13 + 2.08537306798723e144 * cos(theta) ** 11 - 2.26223902838851e143 * cos(theta) ** 9 + 1.21917073386207e142 * cos(theta) ** 7 - 3.10334368619437e140 * cos(theta) ** 5 + 3.17315305336848e138 * cos(theta) ** 3 - 8.44672507551502e135 * cos(theta) ) * sin(72 * phi) ) # @torch.jit.script def Yl87_m_minus_71(theta, phi): return ( 1.77324735287298e-133 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 9.41568856383795e143 * cos(theta) ** 16 - 6.53111345468528e143 * cos(theta) ** 14 + 1.73781088998936e143 * cos(theta) ** 12 - 2.26223902838852e142 * cos(theta) ** 10 + 1.52396341732759e141 * cos(theta) ** 8 - 5.17223947699062e139 * cos(theta) ** 6 + 7.93288263342119e137 * cos(theta) ** 4 - 4.22336253775751e135 * cos(theta) ** 2 + 3.32025356741943e132 ) * sin(71 * phi) ) # @torch.jit.script def Yl87_m_minus_70(theta, phi): return ( 9.19014416896121e-132 * (1.0 - cos(theta) ** 2) ** 35 * ( 5.53864033166938e142 * cos(theta) ** 17 - 4.35407563645686e142 * cos(theta) ** 15 + 1.33677760768412e142 * cos(theta) ** 13 - 2.05658093489865e141 * cos(theta) ** 11 + 1.69329268591955e140 * cos(theta) ** 9 - 7.38891353855802e138 * cos(theta) ** 7 + 1.58657652668424e137 * cos(theta) ** 5 - 1.40778751258584e135 * cos(theta) ** 3 + 3.32025356741943e132 * cos(theta) ) * sin(70 * phi) ) # @torch.jit.script def Yl87_m_minus_69(theta, phi): return ( 4.88549308735178e-130 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 3.07702240648299e141 * cos(theta) ** 18 - 2.72129727278554e141 * cos(theta) ** 16 + 9.54841148345802e140 * cos(theta) ** 14 - 1.71381744574888e140 * cos(theta) ** 12 + 1.69329268591955e139 * cos(theta) ** 10 - 9.23614192319753e137 * cos(theta) ** 8 + 2.6442942111404e136 * cos(theta) ** 6 - 3.51946878146459e134 * cos(theta) ** 4 + 1.66012678370971e132 * cos(theta) ** 2 - 1.17489510524396e129 ) * sin(69 * phi) ) # @torch.jit.script def Yl87_m_minus_68(theta, phi): return ( 2.65979094257895e-128 * (1.0 - cos(theta) ** 2) ** 34 * ( 1.61948547709631e140 * cos(theta) ** 19 - 1.60076310163855e140 * cos(theta) ** 17 + 6.36560765563868e139 * cos(theta) ** 15 - 1.31832111211452e139 * cos(theta) ** 13 + 1.53935698719959e138 * cos(theta) ** 11 - 1.02623799146639e137 * cos(theta) ** 9 + 3.777563158772e135 * cos(theta) ** 7 - 7.03893756292919e133 * cos(theta) ** 5 + 5.53375594569904e131 * cos(theta) ** 3 - 1.17489510524396e129 * cos(theta) ) * sin(68 * phi) ) # @torch.jit.script def Yl87_m_minus_67(theta, phi): return ( 1.48090892226691e-126 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 8.09742738548156e138 * cos(theta) ** 20 - 8.89312834243639e138 * cos(theta) ** 18 + 3.97850478477417e138 * cos(theta) ** 16 - 9.41657937224657e137 * cos(theta) ** 14 + 1.28279748933299e137 * cos(theta) ** 12 - 1.02623799146639e136 * cos(theta) ** 10 + 4.72195394846499e134 * cos(theta) ** 8 - 1.1731562604882e133 * cos(theta) ** 6 + 1.38343898642476e131 * cos(theta) ** 4 - 5.87447552621979e128 * cos(theta) ** 2 + 3.78998421046438e125 ) * sin(67 * phi) ) # @torch.jit.script def Yl87_m_minus_66(theta, phi): return ( 8.42167267078511e-125 * (1.0 - cos(theta) ** 2) ** 33 * ( 3.85591780261026e137 * cos(theta) ** 21 - 4.68059386444021e137 * cos(theta) ** 19 + 2.3402969322201e137 * cos(theta) ** 17 - 6.27771958149771e136 * cos(theta) ** 15 + 9.86767299486916e135 * cos(theta) ** 13 - 9.32943628605811e134 * cos(theta) ** 11 + 5.24661549829444e133 * cos(theta) ** 9 - 1.67593751498314e132 * cos(theta) ** 7 + 2.76687797284952e130 * cos(theta) ** 5 - 1.95815850873993e128 * cos(theta) ** 3 + 3.78998421046438e125 * cos(theta) ) * sin(66 * phi) ) # @torch.jit.script def Yl87_m_minus_65(theta, phi): return ( 4.88602194583257e-123 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 1.75268991027739e136 * cos(theta) ** 22 - 2.3402969322201e136 * cos(theta) ** 20 + 1.3001649623445e136 * cos(theta) ** 18 - 3.92357473843607e135 * cos(theta) ** 16 + 7.04833785347797e134 * cos(theta) ** 14 - 7.77453023838176e133 * cos(theta) ** 12 + 5.24661549829444e132 * cos(theta) ** 10 - 2.09492189372892e131 * cos(theta) ** 8 + 4.61146328808254e129 * cos(theta) ** 6 - 4.89539627184983e127 * cos(theta) ** 4 + 1.89499210523219e125 * cos(theta) ** 2 - 1.12596084684028e122 ) * sin(65 * phi) ) # @torch.jit.script def Yl87_m_minus_64(theta, phi): return ( 2.8889573162515e-121 * (1.0 - cos(theta) ** 2) ** 32 * ( 7.62039091424953e134 * cos(theta) ** 23 - 1.114427110581e135 * cos(theta) ** 21 + 6.84297348602369e134 * cos(theta) ** 19 - 2.30798514025651e134 * cos(theta) ** 17 + 4.69889190231865e133 * cos(theta) ** 15 - 5.98040787567828e132 * cos(theta) ** 13 + 4.76965045299494e131 * cos(theta) ** 11 - 2.32769099303214e130 * cos(theta) ** 9 + 6.58780469726077e128 * cos(theta) ** 7 - 9.79079254369965e126 * cos(theta) ** 5 + 6.31664035077397e124 * cos(theta) ** 3 - 1.12596084684028e122 * cos(theta) ) * sin(64 * phi) ) # @torch.jit.script def Yl87_m_minus_63(theta, phi): return ( 1.73914270649208e-119 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 3.17516288093731e133 * cos(theta) ** 24 - 5.06557777536819e133 * cos(theta) ** 22 + 3.42148674301185e133 * cos(theta) ** 20 - 1.28221396680917e133 * cos(theta) ** 18 + 2.93680743894915e132 * cos(theta) ** 16 - 4.27171991119877e131 * cos(theta) ** 14 + 3.97470871082912e130 * cos(theta) ** 12 - 2.32769099303214e129 * cos(theta) ** 10 + 8.23475587157596e127 * cos(theta) ** 8 - 1.63179875728328e126 * cos(theta) ** 6 + 1.57916008769349e124 * cos(theta) ** 4 - 5.6298042342014e121 * cos(theta) ** 2 + 3.10695597913985e118 ) * sin(63 * phi) ) # @torch.jit.script def Yl87_m_minus_62(theta, phi): return ( 1.06500305519713e-117 * (1.0 - cos(theta) ** 2) ** 31 * ( 1.27006515237492e132 * cos(theta) ** 25 - 2.2024251197253e132 * cos(theta) ** 23 + 1.62927940143421e132 * cos(theta) ** 21 - 6.74849456215354e131 * cos(theta) ** 19 + 1.72753378761715e131 * cos(theta) ** 17 - 2.84781327413251e130 * cos(theta) ** 15 + 3.05746823909932e129 * cos(theta) ** 13 - 2.11608272093831e128 * cos(theta) ** 11 + 9.14972874619551e126 * cos(theta) ** 9 - 2.33114108183325e125 * cos(theta) ** 7 + 3.15832017538699e123 * cos(theta) ** 5 - 1.87660141140047e121 * cos(theta) ** 3 + 3.10695597913985e118 * cos(theta) ) * sin(62 * phi) ) # @torch.jit.script def Yl87_m_minus_61(theta, phi): return ( 6.62873506814228e-116 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 4.88486597067278e130 * cos(theta) ** 26 - 9.17677133218874e130 * cos(theta) ** 24 + 7.4058154610646e130 * cos(theta) ** 22 - 3.37424728107677e130 * cos(theta) ** 20 + 9.59740993120638e129 * cos(theta) ** 18 - 1.77988329633282e129 * cos(theta) ** 16 + 2.18390588507095e128 * cos(theta) ** 14 - 1.76340226744859e127 * cos(theta) ** 12 + 9.14972874619551e125 * cos(theta) ** 10 - 2.91392635229156e124 * cos(theta) ** 8 + 5.26386695897831e122 * cos(theta) ** 6 - 4.69150352850117e120 * cos(theta) ** 4 + 1.55347798956992e118 * cos(theta) ** 2 - 8.0200205966439e114 ) * sin(61 * phi) ) # @torch.jit.script def Yl87_m_minus_60(theta, phi): return ( 4.19028344984038e-114 * (1.0 - cos(theta) ** 2) ** 30 * ( 1.8092096187677e129 * cos(theta) ** 27 - 3.6707085328755e129 * cos(theta) ** 25 + 3.21991976568026e129 * cos(theta) ** 23 - 1.60678441956037e129 * cos(theta) ** 21 + 5.05126838484547e128 * cos(theta) ** 19 - 1.04699017431342e128 * cos(theta) ** 17 + 1.45593725671396e127 * cos(theta) ** 15 - 1.35646328265276e126 * cos(theta) ** 13 + 8.3179352238141e124 * cos(theta) ** 11 - 3.23769594699063e123 * cos(theta) ** 9 + 7.51980994139758e121 * cos(theta) ** 7 - 9.38300705700233e119 * cos(theta) ** 5 + 5.17825996523308e117 * cos(theta) ** 3 - 8.0200205966439e114 * cos(theta) ) * sin(60 * phi) ) # @torch.jit.script def Yl87_m_minus_59(theta, phi): return ( 2.68832075291e-112 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 6.46146292417034e127 * cos(theta) ** 28 - 1.41181097418288e128 * cos(theta) ** 26 + 1.34163323570011e128 * cos(theta) ** 24 - 7.30356554345621e127 * cos(theta) ** 22 + 2.52563419242273e127 * cos(theta) ** 20 - 5.81661207951902e126 * cos(theta) ** 18 + 9.09960785446227e125 * cos(theta) ** 16 - 9.68902344751972e124 * cos(theta) ** 14 + 6.93161268651175e123 * cos(theta) ** 12 - 3.23769594699063e122 * cos(theta) ** 10 + 9.39976242674698e120 * cos(theta) ** 8 - 1.56383450950039e119 * cos(theta) ** 6 + 1.29456499130827e117 * cos(theta) ** 4 - 4.01001029832195e114 * cos(theta) ** 2 + 1.94849868723127e111 ) * sin(59 * phi) ) # @torch.jit.script def Yl87_m_minus_58(theta, phi): return ( 1.74926864444e-110 * (1.0 - cos(theta) ** 2) ** 29 * ( 2.22809066350701e126 * cos(theta) ** 29 - 5.22892953401068e126 * cos(theta) ** 27 + 5.36653294280044e126 * cos(theta) ** 25 - 3.17546327976357e126 * cos(theta) ** 23 + 1.20268294877273e126 * cos(theta) ** 21 - 3.06137477869422e125 * cos(theta) ** 19 + 5.35271050262487e124 * cos(theta) ** 17 - 6.45934896501315e123 * cos(theta) ** 15 + 5.33200975885519e122 * cos(theta) ** 13 - 2.94335995180966e121 * cos(theta) ** 11 + 1.04441804741633e120 * cos(theta) ** 9 - 2.23404929928627e118 * cos(theta) ** 7 + 2.58912998261654e116 * cos(theta) ** 5 - 1.33667009944065e114 * cos(theta) ** 3 + 1.94849868723127e111 * cos(theta) ) * sin(58 * phi) ) # @torch.jit.script def Yl87_m_minus_57(theta, phi): return ( 1.15372190922818e-108 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 7.42696887835671e124 * cos(theta) ** 30 - 1.86747483357524e125 * cos(theta) ** 28 + 2.06405113184632e125 * cos(theta) ** 26 - 1.32310969990149e125 * cos(theta) ** 24 + 5.46674067623968e124 * cos(theta) ** 22 - 1.53068738934711e124 * cos(theta) ** 20 + 2.97372805701381e123 * cos(theta) ** 18 - 4.03709310313322e122 * cos(theta) ** 16 + 3.80857839918228e121 * cos(theta) ** 14 - 2.45279995984138e120 * cos(theta) ** 12 + 1.04441804741633e119 * cos(theta) ** 10 - 2.79256162410784e117 * cos(theta) ** 8 + 4.31521663769423e115 * cos(theta) ** 6 - 3.34167524860162e113 * cos(theta) ** 4 + 9.74249343615634e110 * cos(theta) ** 2 - 4.47930732696843e107 ) * sin(57 * phi) ) # @torch.jit.script def Yl87_m_minus_56(theta, phi): return ( 7.70838207698024e-107 * (1.0 - cos(theta) ** 2) ** 28 * ( 2.39579641237313e123 * cos(theta) ** 31 - 6.43956839163877e123 * cos(theta) ** 29 + 7.64463382165304e123 * cos(theta) ** 27 - 5.29243879960595e123 * cos(theta) ** 25 + 2.37684377227812e123 * cos(theta) ** 23 - 7.28898756831958e122 * cos(theta) ** 21 + 1.56512003000727e122 * cos(theta) ** 19 - 2.37476064890189e121 * cos(theta) ** 17 + 2.53905226612152e120 * cos(theta) ** 15 - 1.88676919987799e119 * cos(theta) ** 13 + 9.49470952196665e117 * cos(theta) ** 11 - 3.10284624900871e116 * cos(theta) ** 9 + 6.16459519670604e114 * cos(theta) ** 7 - 6.68335049720325e112 * cos(theta) ** 5 + 3.24749781205211e110 * cos(theta) ** 3 - 4.47930732696843e107 * cos(theta) ) * sin(56 * phi) ) # @torch.jit.script def Yl87_m_minus_55(theta, phi): return ( 5.21442278515843e-105 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 7.48686378866604e121 * cos(theta) ** 32 - 2.14652279721292e122 * cos(theta) ** 30 + 2.73022636487609e122 * cos(theta) ** 28 - 2.03555338446383e122 * cos(theta) ** 26 + 9.90351571782551e121 * cos(theta) ** 24 - 3.31317616741799e121 * cos(theta) ** 22 + 7.82560015003635e120 * cos(theta) ** 20 - 1.31931147161216e120 * cos(theta) ** 18 + 1.58690766632595e119 * cos(theta) ** 16 - 1.34769228562713e118 * cos(theta) ** 14 + 7.91225793497221e116 * cos(theta) ** 12 - 3.10284624900871e115 * cos(theta) ** 10 + 7.70574399588255e113 * cos(theta) ** 8 - 1.11389174953387e112 * cos(theta) ** 6 + 8.11874453013028e109 * cos(theta) ** 4 - 2.23965366348422e107 * cos(theta) ** 2 + 9.78869608166178e103 ) * sin(55 * phi) ) # @torch.jit.script def Yl87_m_minus_54(theta, phi): return ( 3.56949997264925e-103 * (1.0 - cos(theta) ** 2) ** 27 * ( 2.26874660262607e120 * cos(theta) ** 33 - 6.92426708778362e120 * cos(theta) ** 31 + 9.4145736719865e120 * cos(theta) ** 29 - 7.53908660912529e120 * cos(theta) ** 27 + 3.9614062871302e120 * cos(theta) ** 25 - 1.44051137713826e120 * cos(theta) ** 23 + 3.72647626192207e119 * cos(theta) ** 21 - 6.94374458743243e118 * cos(theta) ** 19 + 9.33475097838794e117 * cos(theta) ** 17 - 8.98461523751423e116 * cos(theta) ** 15 + 6.08635225767093e115 * cos(theta) ** 13 - 2.82076931728064e114 * cos(theta) ** 11 + 8.56193777320284e112 * cos(theta) ** 9 - 1.59127392790554e111 * cos(theta) ** 7 + 1.62374890602606e109 * cos(theta) ** 5 - 7.46551221161405e106 * cos(theta) ** 3 + 9.78869608166178e103 * cos(theta) ) * sin(54 * phi) ) # @torch.jit.script def Yl87_m_minus_53(theta, phi): return ( 2.47147600195587e-101 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 6.6727841253708e118 * cos(theta) ** 34 - 2.16383346493238e119 * cos(theta) ** 32 + 3.1381912239955e119 * cos(theta) ** 30 - 2.69253093183046e119 * cos(theta) ** 28 + 1.52361780274239e119 * cos(theta) ** 26 - 6.00213073807607e118 * cos(theta) ** 24 + 1.69385284632821e118 * cos(theta) ** 22 - 3.47187229371622e117 * cos(theta) ** 20 + 5.18597276577108e116 * cos(theta) ** 18 - 5.61538452344639e115 * cos(theta) ** 16 + 4.34739446976495e114 * cos(theta) ** 14 - 2.35064109773387e113 * cos(theta) ** 12 + 8.56193777320284e111 * cos(theta) ** 10 - 1.98909240988192e110 * cos(theta) ** 8 + 2.70624817671009e108 * cos(theta) ** 6 - 1.86637805290351e106 * cos(theta) ** 4 + 4.89434804083089e103 * cos(theta) ** 2 - 2.04186401369666e100 ) * sin(53 * phi) ) # @torch.jit.script def Yl87_m_minus_52(theta, phi): return ( 1.73003320136911e-99 * (1.0 - cos(theta) ** 2) ** 26 * ( 1.90650975010594e117 * cos(theta) ** 35 - 6.5570711058557e117 * cos(theta) ** 33 + 1.01231974967597e118 * cos(theta) ** 31 - 9.28458942010503e117 * cos(theta) ** 29 + 5.64302889904587e117 * cos(theta) ** 27 - 2.40085229523043e117 * cos(theta) ** 25 + 7.36457759273137e116 * cos(theta) ** 23 - 1.65327252081725e116 * cos(theta) ** 21 + 2.72945935040583e115 * cos(theta) ** 19 - 3.30316736673317e114 * cos(theta) ** 17 + 2.8982629798433e113 * cos(theta) ** 15 - 1.80818545979528e112 * cos(theta) ** 13 + 7.78357979382076e110 * cos(theta) ** 11 - 2.21010267764658e109 * cos(theta) ** 9 + 3.86606882387156e107 * cos(theta) ** 7 - 3.73275610580703e105 * cos(theta) ** 5 + 1.63144934694363e103 * cos(theta) ** 3 - 2.04186401369666e100 * cos(theta) ) * sin(52 * phi) ) # @torch.jit.script def Yl87_m_minus_51(theta, phi): return ( 1.22380743782299e-97 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 5.29586041696096e115 * cos(theta) ** 36 - 1.92855032525168e116 * cos(theta) ** 34 + 3.1634992177374e116 * cos(theta) ** 32 - 3.09486314003501e116 * cos(theta) ** 30 + 2.01536746394496e116 * cos(theta) ** 28 - 9.23404728934779e115 * cos(theta) ** 26 + 3.0685739969714e115 * cos(theta) ** 24 - 7.51487509462385e114 * cos(theta) ** 22 + 1.36472967520292e114 * cos(theta) ** 20 - 1.83509298151843e113 * cos(theta) ** 18 + 1.81141436240206e112 * cos(theta) ** 16 - 1.29156104271092e111 * cos(theta) ** 14 + 6.48631649485063e109 * cos(theta) ** 12 - 2.21010267764658e108 * cos(theta) ** 10 + 4.83258602983945e106 * cos(theta) ** 8 - 6.22126017634504e104 * cos(theta) ** 6 + 4.07862336735908e102 * cos(theta) ** 4 - 1.02093200684833e100 * cos(theta) ** 2 + 4.08046365646814e96 ) * sin(51 * phi) ) # @torch.jit.script def Yl87_m_minus_50(theta, phi): return ( 8.74487273590109e-96 * (1.0 - cos(theta) ** 2) ** 25 * ( 1.43131362620566e114 * cos(theta) ** 37 - 5.51014378643336e114 * cos(theta) ** 35 + 9.58636126587091e114 * cos(theta) ** 33 - 9.98342948398391e114 * cos(theta) ** 31 + 6.94954297912054e114 * cos(theta) ** 29 - 3.42001751457326e114 * cos(theta) ** 27 + 1.22742959878856e114 * cos(theta) ** 25 - 3.26733699766254e113 * cos(theta) ** 23 + 6.4987127390615e112 * cos(theta) ** 21 - 9.65838411325489e111 * cos(theta) ** 19 + 1.06553786023651e111 * cos(theta) ** 17 - 8.61040695140612e109 * cos(theta) ** 15 + 4.98947422680818e108 * cos(theta) ** 13 - 2.00918425240598e107 * cos(theta) ** 11 + 5.36954003315495e105 * cos(theta) ** 9 - 8.88751453763577e103 * cos(theta) ** 7 + 8.15724673471815e101 * cos(theta) ** 5 - 3.40310668949443e99 * cos(theta) ** 3 + 4.08046365646814e96 * cos(theta) ) * sin(50 * phi) ) # @torch.jit.script def Yl87_m_minus_49(theta, phi): return ( 6.30965444746346e-94 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 3.76661480580438e112 * cos(theta) ** 38 - 1.53059549623149e113 * cos(theta) ** 36 + 2.8195180193738e113 * cos(theta) ** 34 - 3.11982171374497e113 * cos(theta) ** 32 + 2.31651432637351e113 * cos(theta) ** 30 - 1.22143482663331e113 * cos(theta) ** 28 + 4.7208830722637e112 * cos(theta) ** 26 - 1.36139041569273e112 * cos(theta) ** 24 + 2.95396033593705e111 * cos(theta) ** 22 - 4.82919205662744e110 * cos(theta) ** 20 + 5.91965477909171e109 * cos(theta) ** 18 - 5.38150434462882e108 * cos(theta) ** 16 + 3.56391016200584e107 * cos(theta) ** 14 - 1.67432021033832e106 * cos(theta) ** 12 + 5.36954003315495e104 * cos(theta) ** 10 - 1.11093931720447e103 * cos(theta) ** 8 + 1.35954112245303e101 * cos(theta) ** 6 - 8.50776672373608e98 * cos(theta) ** 4 + 2.04023182823407e96 * cos(theta) ** 2 - 7.83800164515586e92 ) * sin(49 * phi) ) # @torch.jit.script def Yl87_m_minus_48(theta, phi): return ( 4.59523084254623e-92 * (1.0 - cos(theta) ** 2) ** 24 * ( 9.65798668154969e110 * cos(theta) ** 39 - 4.13674458440943e111 * cos(theta) ** 37 + 8.05576576963942e111 * cos(theta) ** 35 - 9.45400519316658e111 * cos(theta) ** 33 + 7.47262685926939e111 * cos(theta) ** 31 - 4.21184422977002e111 * cos(theta) ** 29 + 1.74847521194952e111 * cos(theta) ** 27 - 5.4455616627709e110 * cos(theta) ** 25 + 1.28433058084219e110 * cos(theta) ** 23 - 2.29961526506069e109 * cos(theta) ** 21 + 3.11560777846932e108 * cos(theta) ** 19 - 3.16559079095813e107 * cos(theta) ** 17 + 2.3759401080039e106 * cos(theta) ** 15 - 1.28793862333717e105 * cos(theta) ** 13 + 4.88140003014086e103 * cos(theta) ** 11 - 1.23437701911608e102 * cos(theta) ** 9 + 1.94220160350432e100 * cos(theta) ** 7 - 1.70155334474722e98 * cos(theta) ** 5 + 6.80077276078024e95 * cos(theta) ** 3 - 7.83800164515586e92 * cos(theta) ) * sin(48 * phi) ) # @torch.jit.script def Yl87_m_minus_47(theta, phi): return ( 3.37679124436137e-90 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 2.41449667038742e109 * cos(theta) ** 40 - 1.08861699589722e110 * cos(theta) ** 38 + 2.23771271378873e110 * cos(theta) ** 36 - 2.78058976269605e110 * cos(theta) ** 34 + 2.33519589352169e110 * cos(theta) ** 32 - 1.40394807659001e110 * cos(theta) ** 30 + 6.24455432839114e109 * cos(theta) ** 28 - 2.09444679337342e109 * cos(theta) ** 26 + 5.35137742017581e108 * cos(theta) ** 24 - 1.04527966593668e108 * cos(theta) ** 22 + 1.55780388923466e107 * cos(theta) ** 20 - 1.7586615505323e106 * cos(theta) ** 18 + 1.48496256750243e105 * cos(theta) ** 16 - 9.19956159526547e103 * cos(theta) ** 14 + 4.06783335845072e102 * cos(theta) ** 12 - 1.23437701911608e101 * cos(theta) ** 10 + 2.4277520043804e99 * cos(theta) ** 8 - 2.83592224124536e97 * cos(theta) ** 6 + 1.70019319019506e95 * cos(theta) ** 4 - 3.91900082257793e92 * cos(theta) ** 2 + 1.45148178613997e89 ) * sin(47 * phi) ) # @torch.jit.script def Yl87_m_minus_46(theta, phi): return ( 2.5029290597084e-88 * (1.0 - cos(theta) ** 2) ** 23 * ( 5.88901626923761e107 * cos(theta) ** 41 - 2.79132563050569e108 * cos(theta) ** 39 + 6.047872199429e108 * cos(theta) ** 37 - 7.94454217913158e108 * cos(theta) ** 35 + 7.07635119248996e108 * cos(theta) ** 33 - 4.52886476319357e108 * cos(theta) ** 31 + 2.15329459599694e108 * cos(theta) ** 29 - 7.7572103458275e107 * cos(theta) ** 27 + 2.14055096807032e107 * cos(theta) ** 25 - 4.54469419972468e106 * cos(theta) ** 23 + 7.41811375826028e105 * cos(theta) ** 21 - 9.25611342385418e104 * cos(theta) ** 19 + 8.73507392648491e103 * cos(theta) ** 17 - 6.13304106351031e102 * cos(theta) ** 15 + 3.12910258342363e101 * cos(theta) ** 13 - 1.12216092646916e100 * cos(theta) ** 11 + 2.69750222708934e98 * cos(theta) ** 9 - 4.05131748749337e96 * cos(theta) ** 7 + 3.40038638039012e94 * cos(theta) ** 5 - 1.30633360752598e92 * cos(theta) ** 3 + 1.45148178613997e89 * cos(theta) ) * sin(46 * phi) ) # @torch.jit.script def Yl87_m_minus_45(theta, phi): return ( 1.87067786008528e-86 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 1.40214673077086e106 * cos(theta) ** 42 - 6.97831407626423e106 * cos(theta) ** 40 + 1.59154531563921e107 * cos(theta) ** 38 - 2.20681727198099e107 * cos(theta) ** 36 + 2.08127976249705e107 * cos(theta) ** 34 - 1.41527023849799e107 * cos(theta) ** 32 + 7.17764865332314e106 * cos(theta) ** 30 - 2.77043226636696e106 * cos(theta) ** 28 + 8.23288833873201e105 * cos(theta) ** 26 - 1.89362258321862e105 * cos(theta) ** 24 + 3.37186989011831e104 * cos(theta) ** 22 - 4.62805671192709e103 * cos(theta) ** 20 + 4.85281884804717e102 * cos(theta) ** 18 - 3.83315066469395e101 * cos(theta) ** 16 + 2.23507327387402e100 * cos(theta) ** 14 - 9.3513410539097e98 * cos(theta) ** 12 + 2.69750222708934e97 * cos(theta) ** 10 - 5.06414685936671e95 * cos(theta) ** 8 + 5.66731063398353e93 * cos(theta) ** 6 - 3.26583401881494e91 * cos(theta) ** 4 + 7.25740893069987e88 * cos(theta) ** 2 - 2.59842783054059e85 ) * sin(45 * phi) ) # @torch.jit.script def Yl87_m_minus_44(theta, phi): return ( 1.40935434808519e-84 * (1.0 - cos(theta) ** 2) ** 22 * ( 3.26080635062991e104 * cos(theta) ** 43 - 1.70202782347908e105 * cos(theta) ** 41 + 4.08088542471592e105 * cos(theta) ** 39 - 5.96437100535404e105 * cos(theta) ** 37 + 5.94651360713442e105 * cos(theta) ** 35 - 4.28869769241815e105 * cos(theta) ** 33 + 2.31537053333005e105 * cos(theta) ** 31 - 9.55321471161022e104 * cos(theta) ** 29 + 3.04921790323408e104 * cos(theta) ** 27 - 7.57449033287446e103 * cos(theta) ** 25 + 1.46603038700796e103 * cos(theta) ** 23 - 2.20383652948909e102 * cos(theta) ** 21 + 2.55411518318272e101 * cos(theta) ** 19 - 2.2547945086435e100 * cos(theta) ** 17 + 1.49004884924935e99 * cos(theta) ** 15 - 7.19333927223823e97 * cos(theta) ** 13 + 2.4522747518994e96 * cos(theta) ** 11 - 5.62682984374079e94 * cos(theta) ** 9 + 8.0961580485479e92 * cos(theta) ** 7 - 6.53166803762989e90 * cos(theta) ** 5 + 2.41913631023329e88 * cos(theta) ** 3 - 2.59842783054059e85 * cos(theta) ) * sin(44 * phi) ) # @torch.jit.script def Yl87_m_minus_43(theta, phi): return ( 1.06999607787514e-82 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 7.41092352415888e102 * cos(theta) ** 44 - 4.05244719875971e103 * cos(theta) ** 42 + 1.02022135617898e104 * cos(theta) ** 40 - 1.56957131719843e104 * cos(theta) ** 38 + 1.65180933531512e104 * cos(theta) ** 36 - 1.26138167424063e104 * cos(theta) ** 34 + 7.23553291665639e103 * cos(theta) ** 32 - 3.18440490387007e103 * cos(theta) ** 30 + 1.08900639401217e103 * cos(theta) ** 28 - 2.91326551264402e102 * cos(theta) ** 26 + 6.1084599458665e101 * cos(theta) ** 24 - 1.0017438770405e101 * cos(theta) ** 22 + 1.27705759159136e100 * cos(theta) ** 20 - 1.25266361591305e99 * cos(theta) ** 18 + 9.31280530780842e97 * cos(theta) ** 16 - 5.13809948017016e96 * cos(theta) ** 14 + 2.0435622932495e95 * cos(theta) ** 12 - 5.62682984374079e93 * cos(theta) ** 10 + 1.01201975606849e92 * cos(theta) ** 8 - 1.08861133960498e90 * cos(theta) ** 6 + 6.04784077558323e87 * cos(theta) ** 4 - 1.2992139152703e85 * cos(theta) ** 2 + 4.5080288524299e81 ) * sin(43 * phi) ) # @torch.jit.script def Yl87_m_minus_42(theta, phi): return ( 8.18389632082959e-81 * (1.0 - cos(theta) ** 2) ** 21 * ( 1.64687189425753e101 * cos(theta) ** 45 - 9.4242958110691e101 * cos(theta) ** 43 + 2.48834477116824e102 * cos(theta) ** 41 - 4.02454183897034e102 * cos(theta) ** 39 + 4.46434955490572e102 * cos(theta) ** 37 - 3.60394764068752e102 * cos(theta) ** 35 + 2.19258573232012e102 * cos(theta) ** 33 - 1.02722738834518e102 * cos(theta) ** 31 + 3.75519446211093e101 * cos(theta) ** 29 - 1.07898722690519e101 * cos(theta) ** 27 + 2.4433839783466e100 * cos(theta) ** 25 - 4.35540816104564e99 * cos(theta) ** 23 + 6.08122662662553e98 * cos(theta) ** 21 - 6.59296639954239e97 * cos(theta) ** 19 + 5.47812076929907e96 * cos(theta) ** 17 - 3.42539965344677e95 * cos(theta) ** 15 + 1.57197099480731e94 * cos(theta) ** 13 - 5.11529985794617e92 * cos(theta) ** 11 + 1.12446639563165e91 * cos(theta) ** 9 - 1.55515905657854e89 * cos(theta) ** 7 + 1.20956815511665e87 * cos(theta) ** 5 - 4.33071305090099e84 * cos(theta) ** 3 + 4.5080288524299e81 * cos(theta) ) * sin(42 * phi) ) # @torch.jit.script def Yl87_m_minus_41(theta, phi): return ( 6.30425671627657e-79 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 3.58015629186419e99 * cos(theta) ** 46 - 2.14188541160661e100 * cos(theta) ** 44 + 5.92463040754344e100 * cos(theta) ** 42 - 1.00613545974258e101 * cos(theta) ** 40 + 1.17482883023835e101 * cos(theta) ** 38 - 1.00109656685765e101 * cos(theta) ** 36 + 6.44878156564741e100 * cos(theta) ** 34 - 3.2100855885787e100 * cos(theta) ** 32 + 1.25173148737031e100 * cos(theta) ** 30 - 3.85352581037569e99 * cos(theta) ** 28 + 9.39763068594847e98 * cos(theta) ** 26 - 1.81475340043568e98 * cos(theta) ** 24 + 2.76419392119342e97 * cos(theta) ** 22 - 3.29648319977119e96 * cos(theta) ** 20 + 3.04340042738837e95 * cos(theta) ** 18 - 2.14087478340423e94 * cos(theta) ** 16 + 1.12283642486236e93 * cos(theta) ** 14 - 4.26274988162181e91 * cos(theta) ** 12 + 1.12446639563165e90 * cos(theta) ** 10 - 1.94394882072318e88 * cos(theta) ** 8 + 2.01594692519441e86 * cos(theta) ** 6 - 1.08267826272525e84 * cos(theta) ** 4 + 2.25401442621495e81 * cos(theta) ** 2 - 7.59694784703387e77 ) * sin(41 * phi) ) # @torch.jit.script def Yl87_m_minus_40(theta, phi): return ( 4.88976292791609e-77 * (1.0 - cos(theta) ** 2) ** 20 * ( 7.61735381247701e97 * cos(theta) ** 47 - 4.75974535912581e98 * cos(theta) ** 45 + 1.3778210250101e99 * cos(theta) ** 43 - 2.45398892620142e99 * cos(theta) ** 41 + 3.01238161599576e99 * cos(theta) ** 39 - 2.70566639691256e99 * cos(theta) ** 37 + 1.8425090187564e99 * cos(theta) ** 35 - 9.72753208660213e98 * cos(theta) ** 33 + 4.03784350764617e98 * cos(theta) ** 31 - 1.32880200357783e98 * cos(theta) ** 29 + 3.48060395775869e97 * cos(theta) ** 27 - 7.25901360174273e96 * cos(theta) ** 25 + 1.20182344399714e96 * cos(theta) ** 23 - 1.56975390465295e95 * cos(theta) ** 21 + 1.60178969862546e94 * cos(theta) ** 19 - 1.25933810788484e93 * cos(theta) ** 17 + 7.48557616574907e91 * cos(theta) ** 15 - 3.27903837047832e90 * cos(theta) ** 13 + 1.02224217784696e89 * cos(theta) ** 11 - 2.15994313413687e87 * cos(theta) ** 9 + 2.87992417884916e85 * cos(theta) ** 7 - 2.16535652545049e83 * cos(theta) ** 5 + 7.51338142071649e80 * cos(theta) ** 3 - 7.59694784703387e77 * cos(theta) ) * sin(40 * phi) ) # @torch.jit.script def Yl87_m_minus_39(theta, phi): return ( 3.81777458698772e-75 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 1.58694871093271e96 * cos(theta) ** 48 - 1.03472725198387e97 * cos(theta) ** 46 + 3.1314114204775e97 * cos(theta) ** 44 - 5.84283077667006e97 * cos(theta) ** 42 + 7.5309540399894e97 * cos(theta) ** 40 - 7.12017472871725e97 * cos(theta) ** 38 + 5.11808060765668e97 * cos(theta) ** 36 - 2.86103884900063e97 * cos(theta) ** 34 + 1.26182609613943e97 * cos(theta) ** 32 - 4.42934001192609e96 * cos(theta) ** 30 + 1.24307284205668e96 * cos(theta) ** 28 - 2.79192830836259e95 * cos(theta) ** 26 + 5.00759768332142e94 * cos(theta) ** 24 - 7.13524502114977e93 * cos(theta) ** 22 + 8.0089484931273e92 * cos(theta) ** 20 - 6.99632282158247e91 * cos(theta) ** 18 + 4.67848510359317e90 * cos(theta) ** 16 - 2.34217026462737e89 * cos(theta) ** 14 + 8.51868481539131e87 * cos(theta) ** 12 - 2.15994313413687e86 * cos(theta) ** 10 + 3.59990522356144e84 * cos(theta) ** 8 - 3.60892754241749e82 * cos(theta) ** 6 + 1.87834535517912e80 * cos(theta) ** 4 - 3.79847392351693e77 * cos(theta) ** 2 + 1.24621847884414e74 ) * sin(39 * phi) ) # @torch.jit.script def Yl87_m_minus_38(theta, phi): return ( 2.99980894173249e-73 * (1.0 - cos(theta) ** 2) ** 19 * ( 3.23867083863818e94 * cos(theta) ** 49 - 2.20154734464653e95 * cos(theta) ** 47 + 6.95869204550557e95 * cos(theta) ** 45 - 1.35879785503955e96 * cos(theta) ** 43 + 1.836818058534e96 * cos(theta) ** 41 - 1.82568582787622e96 * cos(theta) ** 39 + 1.3832650290964e96 * cos(theta) ** 37 - 8.17439671143036e95 * cos(theta) ** 35 + 3.82371544284675e95 * cos(theta) ** 33 - 1.42881935868583e95 * cos(theta) ** 31 + 4.2864580760575e94 * cos(theta) ** 29 - 1.03404752161577e94 * cos(theta) ** 27 + 2.00303907332857e93 * cos(theta) ** 25 - 3.10228044397816e92 * cos(theta) ** 23 + 3.81378499672728e91 * cos(theta) ** 21 - 3.68227516925393e90 * cos(theta) ** 19 + 2.75205006093716e89 * cos(theta) ** 17 - 1.56144684308491e88 * cos(theta) ** 15 + 6.55283447337793e86 * cos(theta) ** 13 - 1.96358466739715e85 * cos(theta) ** 11 + 3.99989469284605e83 * cos(theta) ** 9 - 5.15561077488213e81 * cos(theta) ** 7 + 3.75669071035825e79 * cos(theta) ** 5 - 1.26615797450564e77 * cos(theta) ** 3 + 1.24621847884414e74 * cos(theta) ) * sin(38 * phi) ) # @torch.jit.script def Yl87_m_minus_37(theta, phi): return ( 2.3715572003035e-71 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 6.47734167727637e92 * cos(theta) ** 50 - 4.58655696801361e93 * cos(theta) ** 48 + 1.5127591403273e94 * cos(theta) ** 46 - 3.0881769432717e94 * cos(theta) ** 44 + 4.37337632984286e94 * cos(theta) ** 42 - 4.56421456969055e94 * cos(theta) ** 40 + 3.64017112920105e94 * cos(theta) ** 38 - 2.2706657531751e94 * cos(theta) ** 36 + 1.12462218907257e94 * cos(theta) ** 34 - 4.46506049589323e93 * cos(theta) ** 32 + 1.42881935868583e93 * cos(theta) ** 30 - 3.69302686291347e92 * cos(theta) ** 28 + 7.7039964358791e91 * cos(theta) ** 26 - 1.29261685165757e91 * cos(theta) ** 24 + 1.73353863487604e90 * cos(theta) ** 22 - 1.84113758462696e89 * cos(theta) ** 20 + 1.52891670052064e88 * cos(theta) ** 18 - 9.7590427692807e86 * cos(theta) ** 16 + 4.68059605241281e85 * cos(theta) ** 14 - 1.63632055616429e84 * cos(theta) ** 12 + 3.99989469284605e82 * cos(theta) ** 10 - 6.44451346860266e80 * cos(theta) ** 8 + 6.26115118393041e78 * cos(theta) ** 6 - 3.16539493626411e76 * cos(theta) ** 4 + 6.23109239422069e73 * cos(theta) ** 2 - 1.99394956615062e70 ) * sin(37 * phi) ) # @torch.jit.script def Yl87_m_minus_36(theta, phi): return ( 1.88594722082738e-69 * (1.0 - cos(theta) ** 2) ** 18 * ( 1.27006699554439e91 * cos(theta) ** 51 - 9.36032034288493e91 * cos(theta) ** 49 + 3.21863646878148e92 * cos(theta) ** 47 - 6.86261542949267e92 * cos(theta) ** 45 + 1.01706426275415e93 * cos(theta) ** 43 - 1.11322306577818e93 * cos(theta) ** 41 + 9.33377212615654e92 * cos(theta) ** 39 - 6.13693446804081e92 * cos(theta) ** 37 + 3.21320625449307e92 * cos(theta) ** 35 - 1.35304863511916e92 * cos(theta) ** 33 + 4.60909470543817e91 * cos(theta) ** 31 - 1.27345753893568e91 * cos(theta) ** 29 + 2.85333201328856e90 * cos(theta) ** 27 - 5.17046740663027e89 * cos(theta) ** 25 + 7.53712449946103e88 * cos(theta) ** 23 - 8.76732183155697e87 * cos(theta) ** 21 + 8.04693000274023e86 * cos(theta) ** 19 - 5.74061339369453e85 * cos(theta) ** 17 + 3.12039736827521e84 * cos(theta) ** 15 - 1.25870812012638e83 * cos(theta) ** 13 + 3.63626790258732e81 * cos(theta) ** 11 - 7.16057052066962e79 * cos(theta) ** 9 + 8.94450169132916e77 * cos(theta) ** 7 - 6.33078987252822e75 * cos(theta) ** 5 + 2.07703079807356e73 * cos(theta) ** 3 - 1.99394956615062e70 * cos(theta) ) * sin(36 * phi) ) # @torch.jit.script def Yl87_m_minus_35(theta, phi): return ( 1.50828621616385e-67 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 2.44243652989305e89 * cos(theta) ** 52 - 1.87206406857699e90 * cos(theta) ** 50 + 6.70549264329476e90 * cos(theta) ** 48 - 1.49187291945493e91 * cos(theta) ** 46 + 2.31150968807762e91 * cos(theta) ** 44 - 2.65053110899567e91 * cos(theta) ** 42 + 2.33344303153913e91 * cos(theta) ** 40 - 1.61498275474758e91 * cos(theta) ** 38 + 8.92557292914741e90 * cos(theta) ** 36 - 3.979554809174e90 * cos(theta) ** 34 + 1.44034209544943e90 * cos(theta) ** 32 - 4.24485846311894e89 * cos(theta) ** 30 + 1.01904714760306e89 * cos(theta) ** 28 - 1.98864131024241e88 * cos(theta) ** 26 + 3.1404685414421e87 * cos(theta) ** 24 - 3.98514628707135e86 * cos(theta) ** 22 + 4.02346500137011e85 * cos(theta) ** 20 - 3.18922966316363e84 * cos(theta) ** 18 + 1.950248355172e83 * cos(theta) ** 16 - 8.99077228661699e81 * cos(theta) ** 14 + 3.0302232521561e80 * cos(theta) ** 12 - 7.16057052066962e78 * cos(theta) ** 10 + 1.11806271141614e77 * cos(theta) ** 8 - 1.05513164542137e75 * cos(theta) ** 6 + 5.19257699518391e72 * cos(theta) ** 4 - 9.9697478307531e69 * cos(theta) ** 2 + 3.11749463125488e66 ) * sin(35 * phi) ) # @torch.jit.script def Yl87_m_minus_34(theta, phi): return ( 1.21283469548074e-65 * (1.0 - cos(theta) ** 2) ** 17 * ( 4.60837081111896e87 * cos(theta) ** 53 - 3.67071385995487e88 * cos(theta) ** 51 + 1.36846788638668e89 * cos(theta) ** 49 - 3.17419770096793e89 * cos(theta) ** 47 + 5.13668819572805e89 * cos(theta) ** 45 - 6.16402583487366e89 * cos(theta) ** 43 + 5.69132446716862e89 * cos(theta) ** 41 - 4.1409814224297e89 * cos(theta) ** 39 + 2.41231700787768e89 * cos(theta) ** 37 - 1.137015659764e89 * cos(theta) ** 35 + 4.36467301651342e88 * cos(theta) ** 33 - 1.36930918165127e88 * cos(theta) ** 31 + 3.51395568138985e87 * cos(theta) ** 29 - 7.36533818608301e86 * cos(theta) ** 27 + 1.25618741657684e86 * cos(theta) ** 25 - 1.73267229872667e85 * cos(theta) ** 23 + 1.91593571493815e84 * cos(theta) ** 21 - 1.67854192798086e83 * cos(theta) ** 19 + 1.14720491480706e82 * cos(theta) ** 17 - 5.993848191078e80 * cos(theta) ** 15 + 2.330940963197e79 * cos(theta) ** 13 - 6.50960956424511e77 * cos(theta) ** 11 + 1.24229190157349e76 * cos(theta) ** 9 - 1.50733092203053e74 * cos(theta) ** 7 + 1.03851539903678e72 * cos(theta) ** 5 - 3.3232492769177e69 * cos(theta) ** 3 + 3.11749463125488e66 * cos(theta) ) * sin(34 * phi) ) # @torch.jit.script def Yl87_m_minus_33(theta, phi): return ( 9.80372628269639e-64 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 8.53402002059067e85 * cos(theta) ** 54 - 7.05906511529783e86 * cos(theta) ** 52 + 2.73693577277337e87 * cos(theta) ** 50 - 6.61291187701653e87 * cos(theta) ** 48 + 1.1166713468974e88 * cos(theta) ** 46 - 1.40091496247129e88 * cos(theta) ** 44 + 1.35507725408777e88 * cos(theta) ** 42 - 1.03524535560742e88 * cos(theta) ** 40 + 6.34820265230968e87 * cos(theta) ** 38 - 3.15837683267778e87 * cos(theta) ** 36 + 1.28372735779807e87 * cos(theta) ** 34 - 4.27909119266022e86 * cos(theta) ** 32 + 1.17131856046328e86 * cos(theta) ** 30 - 2.63047792360107e85 * cos(theta) ** 28 + 4.83149006375707e84 * cos(theta) ** 26 - 7.21946791136115e83 * cos(theta) ** 24 + 8.70879870426432e82 * cos(theta) ** 22 - 8.39270963990429e81 * cos(theta) ** 20 + 6.373360637817e80 * cos(theta) ** 18 - 3.74615511942375e79 * cos(theta) ** 16 + 1.664957830855e78 * cos(theta) ** 14 - 5.42467463687092e76 * cos(theta) ** 12 + 1.24229190157349e75 * cos(theta) ** 10 - 1.88416365253816e73 * cos(theta) ** 8 + 1.73085899839464e71 * cos(theta) ** 6 - 8.30812319229425e68 * cos(theta) ** 4 + 1.55874731562744e66 * cos(theta) ** 2 - 4.77118860002277e62 ) * sin(33 * phi) ) # @torch.jit.script def Yl87_m_minus_32(theta, phi): return ( 7.96458488291644e-62 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.55164000374376e84 * cos(theta) ** 55 - 1.33189907835808e85 * cos(theta) ** 53 + 5.36654073092818e85 * cos(theta) ** 51 - 1.34957385245235e86 * cos(theta) ** 49 + 2.37589648276043e86 * cos(theta) ** 47 - 3.1131443610473e86 * cos(theta) ** 45 + 3.1513424513669e86 * cos(theta) ** 43 - 2.52498867221323e86 * cos(theta) ** 41 + 1.62774426982299e86 * cos(theta) ** 39 - 8.53615360183184e85 * cos(theta) ** 37 + 3.66779245085162e85 * cos(theta) ** 35 - 1.29669430080613e85 * cos(theta) ** 33 + 3.7784469692364e84 * cos(theta) ** 31 - 9.07061352965887e83 * cos(theta) ** 29 + 1.78944076435447e83 * cos(theta) ** 27 - 2.88778716454446e82 * cos(theta) ** 25 + 3.78643421924536e81 * cos(theta) ** 23 - 3.99652839995442e80 * cos(theta) ** 21 + 3.35440033569316e79 * cos(theta) ** 19 - 2.20362065848456e78 * cos(theta) ** 17 + 1.10997188723667e77 * cos(theta) ** 15 - 4.17282664374687e75 * cos(theta) ** 13 + 1.12935627415772e74 * cos(theta) ** 11 - 2.09351516948685e72 * cos(theta) ** 9 + 2.47265571199234e70 * cos(theta) ** 7 - 1.66162463845885e68 * cos(theta) ** 5 + 5.1958243854248e65 * cos(theta) ** 3 - 4.77118860002277e62 * cos(theta) ) * sin(32 * phi) ) # @torch.jit.script def Yl87_m_minus_31(theta, phi): return ( 6.5017555840577e-60 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 2.770785720971e82 * cos(theta) ** 56 - 2.46647977473719e83 * cos(theta) ** 54 + 1.03202706364003e84 * cos(theta) ** 52 - 2.6991477049047e84 * cos(theta) ** 50 + 4.94978433908423e84 * cos(theta) ** 48 - 6.76770513271152e84 * cos(theta) ** 46 + 7.16214193492477e84 * cos(theta) ** 44 - 6.01187779098388e84 * cos(theta) ** 42 + 4.06936067455749e84 * cos(theta) ** 40 - 2.24635621100838e84 * cos(theta) ** 38 + 1.01883123634767e84 * cos(theta) ** 36 - 3.81380676707684e83 * cos(theta) ** 34 + 1.18076467788637e83 * cos(theta) ** 32 - 3.02353784321962e82 * cos(theta) ** 30 + 6.39085987269454e81 * cos(theta) ** 28 - 1.11068737097864e81 * cos(theta) ** 26 + 1.57768092468556e80 * cos(theta) ** 24 - 1.8166038181611e79 * cos(theta) ** 22 + 1.67720016784658e78 * cos(theta) ** 20 - 1.22423369915809e77 * cos(theta) ** 18 + 6.93732429522916e75 * cos(theta) ** 16 - 2.98059045981919e74 * cos(theta) ** 14 + 9.41130228464768e72 * cos(theta) ** 12 - 2.09351516948685e71 * cos(theta) ** 10 + 3.09081963999042e69 * cos(theta) ** 8 - 2.76937439743142e67 * cos(theta) ** 6 + 1.2989560963562e65 * cos(theta) ** 4 - 2.38559430001139e62 * cos(theta) ** 2 + 7.15964675873765e58 ) * sin(31 * phi) ) # @torch.jit.script def Yl87_m_minus_30(theta, phi): return ( 5.33223241699831e-58 * (1.0 - cos(theta) ** 2) ** 15 * ( 4.86102758065087e80 * cos(theta) ** 57 - 4.48450868134034e81 * cos(theta) ** 55 + 1.94722087479252e82 * cos(theta) ** 53 - 5.2924464802053e82 * cos(theta) ** 51 + 1.01016006920086e83 * cos(theta) ** 49 - 1.43993726227905e83 * cos(theta) ** 47 + 1.59158709664995e83 * cos(theta) ** 45 - 1.3981111141823e83 * cos(theta) ** 43 + 9.92526993794509e82 * cos(theta) ** 41 - 5.7598877205343e82 * cos(theta) ** 39 + 2.75359793607479e82 * cos(theta) ** 37 - 1.08965907630767e82 * cos(theta) ** 35 + 3.57807478147386e81 * cos(theta) ** 33 - 9.75334788135363e80 * cos(theta) ** 31 + 2.20374478368777e80 * cos(theta) ** 29 - 4.11365692955051e79 * cos(theta) ** 27 + 6.31072369874226e78 * cos(theta) ** 25 - 7.89827747026566e77 * cos(theta) ** 23 + 7.98666746593609e76 * cos(theta) ** 21 - 6.44333525872678e75 * cos(theta) ** 19 + 4.08077899719363e74 * cos(theta) ** 17 - 1.98706030654613e73 * cos(theta) ** 15 + 7.23946329588283e71 * cos(theta) ** 13 - 1.90319560862441e70 * cos(theta) ** 11 + 3.4342440444338e68 * cos(theta) ** 9 - 3.95624913918774e66 * cos(theta) ** 7 + 2.5979121927124e64 * cos(theta) ** 5 - 7.95198100003795e61 * cos(theta) ** 3 + 7.15964675873765e58 * cos(theta) ) * sin(30 * phi) ) # @torch.jit.script def Yl87_m_minus_29(theta, phi): return ( 4.39254276583338e-56 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 8.38108203560495e78 * cos(theta) ** 58 - 8.00805121667918e79 * cos(theta) ** 56 + 3.60596458294911e80 * cos(theta) ** 54 - 1.01777816927025e81 * cos(theta) ** 52 + 2.02032013840172e81 * cos(theta) ** 50 - 2.99986929641468e81 * cos(theta) ** 48 + 3.45997194923902e81 * cos(theta) ** 46 - 3.17752525950522e81 * cos(theta) ** 44 + 2.36315950903454e81 * cos(theta) ** 42 - 1.43997193013358e81 * cos(theta) ** 40 + 7.24631035809154e80 * cos(theta) ** 38 - 3.0268307675213e80 * cos(theta) ** 36 + 1.05237493572761e80 * cos(theta) ** 34 - 3.04792121292301e79 * cos(theta) ** 32 + 7.34581594562591e78 * cos(theta) ** 30 - 1.46916318912518e78 * cos(theta) ** 28 + 2.42720142259318e77 * cos(theta) ** 26 - 3.29094894594402e76 * cos(theta) ** 24 + 3.63030339360732e75 * cos(theta) ** 22 - 3.22166762936339e74 * cos(theta) ** 20 + 2.26709944288535e73 * cos(theta) ** 18 - 1.24191269159133e72 * cos(theta) ** 16 + 5.17104521134488e70 * cos(theta) ** 14 - 1.58599634052034e69 * cos(theta) ** 12 + 3.4342440444338e67 * cos(theta) ** 10 - 4.94531142398467e65 * cos(theta) ** 8 + 4.32985365452067e63 * cos(theta) ** 6 - 1.98799525000949e61 * cos(theta) ** 4 + 3.57982337936883e58 * cos(theta) ** 2 - 1.05506141449125e55 ) * sin(29 * phi) ) # @torch.jit.script def Yl87_m_minus_28(theta, phi): return ( 3.63388349102687e-54 * (1.0 - cos(theta) ** 2) ** 14 * ( 1.42052237891609e77 * cos(theta) ** 59 - 1.40492126608407e78 * cos(theta) ** 57 + 6.55629924172565e78 * cos(theta) ** 55 - 1.92033616843443e79 * cos(theta) ** 53 + 3.96141203608181e79 * cos(theta) ** 51 - 6.12218223758098e79 * cos(theta) ** 49 + 7.3616424451894e79 * cos(theta) ** 47 - 7.06116724334494e79 * cos(theta) ** 45 + 5.49571978845243e79 * cos(theta) ** 43 - 3.51212665886238e79 * cos(theta) ** 41 + 1.85802829694655e79 * cos(theta) ** 39 - 8.18062369600352e78 * cos(theta) ** 37 + 3.0067855306503e78 * cos(theta) ** 35 - 9.23612488764548e77 * cos(theta) ** 33 + 2.3696180469761e77 * cos(theta) ** 31 - 5.06607996250063e76 * cos(theta) ** 29 + 8.98963489849325e75 * cos(theta) ** 27 - 1.31637957837761e75 * cos(theta) ** 25 + 1.57839277982927e74 * cos(theta) ** 23 - 1.53412744255399e73 * cos(theta) ** 21 + 1.19321023309755e72 * cos(theta) ** 19 - 7.30536877406664e70 * cos(theta) ** 17 + 3.44736347422992e69 * cos(theta) ** 15 - 1.21999718501564e68 * cos(theta) ** 13 + 3.12204004039437e66 * cos(theta) ** 11 - 5.49479047109408e64 * cos(theta) ** 9 + 6.18550522074381e62 * cos(theta) ** 7 - 3.97599050001898e60 * cos(theta) ** 5 + 1.19327445978961e58 * cos(theta) ** 3 - 1.05506141449125e55 * cos(theta) ) * sin(28 * phi) ) # @torch.jit.script def Yl87_m_minus_27(theta, phi): return ( 3.01853033216279e-52 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 2.36753729819349e75 * cos(theta) ** 60 - 2.42227804497253e76 * cos(theta) ** 58 + 1.17076772173672e77 * cos(theta) ** 56 - 3.5561780896934e77 * cos(theta) ** 54 + 7.6181000693881e77 * cos(theta) ** 52 - 1.2244364475162e78 * cos(theta) ** 50 + 1.53367550941446e78 * cos(theta) ** 48 - 1.5350363572489e78 * cos(theta) ** 46 + 1.24902722464828e78 * cos(theta) ** 44 - 8.36220633062471e77 * cos(theta) ** 42 + 4.64507074236637e77 * cos(theta) ** 40 - 2.15279570947461e77 * cos(theta) ** 38 + 8.35218202958417e76 * cos(theta) ** 36 - 2.71650731989573e76 * cos(theta) ** 34 + 7.40505639680031e75 * cos(theta) ** 32 - 1.68869332083354e75 * cos(theta) ** 30 + 3.21058389231902e74 * cos(theta) ** 28 - 5.06299837837542e73 * cos(theta) ** 26 + 6.57663658262195e72 * cos(theta) ** 24 - 6.97330655706361e71 * cos(theta) ** 22 + 5.96605116548776e70 * cos(theta) ** 20 - 4.0585382078148e69 * cos(theta) ** 18 + 2.1546021713937e68 * cos(theta) ** 16 - 8.7142656072546e66 * cos(theta) ** 14 + 2.60170003366197e65 * cos(theta) ** 12 - 5.49479047109408e63 * cos(theta) ** 10 + 7.73188152592976e61 * cos(theta) ** 8 - 6.62665083336496e59 * cos(theta) ** 6 + 2.98318614947402e57 * cos(theta) ** 4 - 5.27530707245627e54 * cos(theta) ** 2 + 1.52907451375544e51 ) * sin(27 * phi) ) # @torch.jit.script def Yl87_m_minus_26(theta, phi): return ( 2.51717197260066e-50 * (1.0 - cos(theta) ** 2) ** 13 * ( 3.8812086855631e73 * cos(theta) ** 61 - 4.10555600842802e74 * cos(theta) ** 59 + 2.05397845918723e75 * cos(theta) ** 57 - 6.46577834489709e75 * cos(theta) ** 55 + 1.43737737158266e76 * cos(theta) ** 53 - 2.40085577944352e76 * cos(theta) ** 51 + 3.12995001921318e76 * cos(theta) ** 49 - 3.26603480265723e76 * cos(theta) ** 47 + 2.77561605477395e76 * cos(theta) ** 45 - 1.94469914665691e76 * cos(theta) ** 43 + 1.13294408350399e76 * cos(theta) ** 41 - 5.51998899865285e75 * cos(theta) ** 39 + 2.25734649448221e75 * cos(theta) ** 37 - 7.76144948541637e74 * cos(theta) ** 35 + 2.24395648387888e74 * cos(theta) ** 33 - 5.44739780914046e73 * cos(theta) ** 31 + 1.10709789390311e73 * cos(theta) ** 29 - 1.87518458458349e72 * cos(theta) ** 27 + 2.63065463304878e71 * cos(theta) ** 25 - 3.03187241611461e70 * cos(theta) ** 23 + 2.84097674547036e69 * cos(theta) ** 21 - 2.13607274095516e68 * cos(theta) ** 19 + 1.26741304199629e67 * cos(theta) ** 17 - 5.8095104048364e65 * cos(theta) ** 15 + 2.00130771820152e64 * cos(theta) ** 13 - 4.99526406463098e62 * cos(theta) ** 11 + 8.59097947325529e60 * cos(theta) ** 9 - 9.46664404766423e58 * cos(theta) ** 7 + 5.96637229894804e56 * cos(theta) ** 5 - 1.75843569081876e54 * cos(theta) ** 3 + 1.52907451375544e51 * cos(theta) ) * sin(26 * phi) ) # @torch.jit.script def Yl87_m_minus_25(theta, phi): return ( 2.10691955484688e-48 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 6.26001400897274e71 * cos(theta) ** 62 - 6.84259334738003e72 * cos(theta) ** 60 + 3.54134217101247e73 * cos(theta) ** 58 - 1.15460327587448e74 * cos(theta) ** 56 + 2.6618099473753e74 * cos(theta) ** 54 - 4.6170303450837e74 * cos(theta) ** 52 + 6.25990003842636e74 * cos(theta) ** 50 - 6.80423917220257e74 * cos(theta) ** 48 + 6.03394794516077e74 * cos(theta) ** 46 - 4.41977078785661e74 * cos(theta) ** 44 + 2.69748591310475e74 * cos(theta) ** 42 - 1.37999724966321e74 * cos(theta) ** 40 + 5.94038551179529e73 * cos(theta) ** 38 - 2.15595819039344e73 * cos(theta) ** 36 + 6.59987201140848e72 * cos(theta) ** 34 - 1.70231181535639e72 * cos(theta) ** 32 + 3.69032631301036e71 * cos(theta) ** 30 - 6.69708780208389e70 * cos(theta) ** 28 + 1.0117902434803e70 * cos(theta) ** 26 - 1.26328017338109e69 * cos(theta) ** 24 + 1.29135306612289e68 * cos(theta) ** 22 - 1.06803637047758e67 * cos(theta) ** 20 + 7.04118356664608e65 * cos(theta) ** 18 - 3.63094400302275e64 * cos(theta) ** 16 + 1.42950551300108e63 * cos(theta) ** 14 - 4.16272005385915e61 * cos(theta) ** 12 + 8.59097947325529e59 * cos(theta) ** 10 - 1.18333050595803e58 * cos(theta) ** 8 + 9.94395383158007e55 * cos(theta) ** 6 - 4.39608922704689e53 * cos(theta) ** 4 + 7.64537256877721e50 * cos(theta) ** 2 - 2.18252142985361e47 ) * sin(25 * phi) ) # @torch.jit.script def Yl87_m_minus_24(theta, phi): return ( 1.76981242607138e-46 * (1.0 - cos(theta) ** 2) ** 12 * ( 9.9365301729726e69 * cos(theta) ** 63 - 1.12173661432459e71 * cos(theta) ** 61 + 6.00227486612283e71 * cos(theta) ** 59 - 2.02561978223593e72 * cos(theta) ** 57 + 4.83965444977327e72 * cos(theta) ** 55 - 8.71137800959188e72 * cos(theta) ** 53 + 1.2274313800836e73 * cos(theta) ** 51 - 1.38862023922501e73 * cos(theta) ** 49 + 1.28381871173633e73 * cos(theta) ** 47 - 9.82171286190359e72 * cos(theta) ** 45 + 6.27322305373197e72 * cos(theta) ** 43 - 3.36584695039808e72 * cos(theta) ** 41 + 1.5231757722552e72 * cos(theta) ** 39 - 5.82691402809037e71 * cos(theta) ** 37 + 1.88567771754528e71 * cos(theta) ** 35 - 5.15852065259513e70 * cos(theta) ** 33 + 1.19042784290657e70 * cos(theta) ** 31 - 2.30934062140824e69 * cos(theta) ** 29 + 3.74737127214926e68 * cos(theta) ** 27 - 5.05312069352436e67 * cos(theta) ** 25 + 5.6145785483604e66 * cos(theta) ** 23 - 5.08588747846466e65 * cos(theta) ** 21 + 3.70588608770846e64 * cos(theta) ** 19 - 2.13584941354279e63 * cos(theta) ** 17 + 9.53003675334055e61 * cos(theta) ** 15 - 3.20209234912243e60 * cos(theta) ** 13 + 7.80998133932299e58 * cos(theta) ** 11 - 1.3148116732867e57 * cos(theta) ** 9 + 1.42056483308287e55 * cos(theta) ** 7 - 8.79217845409379e52 * cos(theta) ** 5 + 2.54845752292574e50 * cos(theta) ** 3 - 2.18252142985361e47 * cos(theta) ) * sin(24 * phi) ) # @torch.jit.script def Yl87_m_minus_23(theta, phi): return ( 1.49169047428675e-44 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.55258283952697e68 * cos(theta) ** 64 - 1.80925260374935e69 * cos(theta) ** 62 + 1.00037914435381e70 * cos(theta) ** 60 - 3.49244790040678e70 * cos(theta) ** 58 + 8.64224008888084e70 * cos(theta) ** 56 - 1.61321814992442e71 * cos(theta) ** 54 + 2.36044496169923e71 * cos(theta) ** 52 - 2.77724047845003e71 * cos(theta) ** 50 + 2.67462231611736e71 * cos(theta) ** 48 - 2.13515496997904e71 * cos(theta) ** 46 + 1.42573251221181e71 * cos(theta) ** 44 - 8.01392131047162e70 * cos(theta) ** 42 + 3.807939430638e70 * cos(theta) ** 40 - 1.53339842844483e70 * cos(theta) ** 38 + 5.237993659848e69 * cos(theta) ** 36 - 1.51721195664563e69 * cos(theta) ** 34 + 3.72008700908303e68 * cos(theta) ** 32 - 7.69780207136079e67 * cos(theta) ** 30 + 1.33834688291045e67 * cos(theta) ** 28 - 1.94350795904783e66 * cos(theta) ** 26 + 2.3394077284835e65 * cos(theta) ** 24 - 2.31176703566576e64 * cos(theta) ** 22 + 1.85294304385423e63 * cos(theta) ** 20 - 1.18658300752377e62 * cos(theta) ** 18 + 5.95627297083785e60 * cos(theta) ** 16 - 2.28720882080173e59 * cos(theta) ** 14 + 6.50831778276916e57 * cos(theta) ** 12 - 1.3148116732867e56 * cos(theta) ** 10 + 1.77570604135358e54 * cos(theta) ** 8 - 1.4653630756823e52 * cos(theta) ** 6 + 6.37114380731434e49 * cos(theta) ** 4 - 1.09126071492681e47 * cos(theta) ** 2 + 3.07224300373538e43 ) * sin(23 * phi) ) # @torch.jit.script def Yl87_m_minus_22(theta, phi): return ( 1.26133874784716e-42 * (1.0 - cos(theta) ** 2) ** 11 * ( 2.38858898388764e66 * cos(theta) ** 65 - 2.87182952976087e67 * cos(theta) ** 63 + 1.63996581041607e68 * cos(theta) ** 61 - 5.91940322102843e68 * cos(theta) ** 59 + 1.51618247173348e69 * cos(theta) ** 57 - 2.9331239089535e69 * cos(theta) ** 55 + 4.45366973905516e69 * cos(theta) ** 53 - 5.44556956558829e69 * cos(theta) ** 51 + 5.45841289003543e69 * cos(theta) ** 49 - 4.54288291484902e69 * cos(theta) ** 47 + 3.1682944715818e69 * cos(theta) ** 45 - 1.86370263034224e69 * cos(theta) ** 43 + 9.28765714789757e68 * cos(theta) ** 41 - 3.93179084216624e68 * cos(theta) ** 39 + 1.41567396212108e68 * cos(theta) ** 37 - 4.33489130470179e67 * cos(theta) ** 35 + 1.12729909366152e67 * cos(theta) ** 33 - 2.48316195850348e66 * cos(theta) ** 31 + 4.61498925141534e65 * cos(theta) ** 29 - 7.19817762610307e64 * cos(theta) ** 27 + 9.35763091393399e63 * cos(theta) ** 25 - 1.00511610246337e63 * cos(theta) ** 23 + 8.82353830406777e61 * cos(theta) ** 21 - 6.24517372380934e60 * cos(theta) ** 19 + 3.50368998284579e59 * cos(theta) ** 17 - 1.52480588053449e58 * cos(theta) ** 15 + 5.00639829443781e56 * cos(theta) ** 13 - 1.19528333935154e55 * cos(theta) ** 11 + 1.97300671261509e53 * cos(theta) ** 9 - 2.09337582240328e51 * cos(theta) ** 7 + 1.27422876146287e49 * cos(theta) ** 5 - 3.63753571642269e46 * cos(theta) ** 3 + 3.07224300373538e43 * cos(theta) ) * sin(22 * phi) ) # @torch.jit.script def Yl87_m_minus_21(theta, phi): return ( 1.0698353748352e-40 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 3.61907421801158e64 * cos(theta) ** 66 - 4.48723364025135e65 * cos(theta) ** 64 + 2.64510614583238e66 * cos(theta) ** 62 - 9.86567203504739e66 * cos(theta) ** 60 + 2.61410770988531e67 * cos(theta) ** 58 - 5.23772126598839e67 * cos(theta) ** 56 + 8.24753655380584e67 * cos(theta) ** 54 - 1.04722491645929e68 * cos(theta) ** 52 + 1.09168257800709e68 * cos(theta) ** 50 - 9.46433940593546e67 * cos(theta) ** 48 + 6.88759667735174e67 * cos(theta) ** 46 - 4.23568779623236e67 * cos(theta) ** 44 + 2.21134693997561e67 * cos(theta) ** 42 - 9.8294771054156e66 * cos(theta) ** 40 + 3.72545779505548e66 * cos(theta) ** 38 - 1.20413647352828e66 * cos(theta) ** 36 + 3.31558556959272e65 * cos(theta) ** 34 - 7.75988112032338e64 * cos(theta) ** 32 + 1.53832975047178e64 * cos(theta) ** 30 - 2.57077772360824e63 * cos(theta) ** 28 + 3.59908881305154e62 * cos(theta) ** 26 - 4.18798376026405e61 * cos(theta) ** 24 + 4.01069922912171e60 * cos(theta) ** 22 - 3.12258686190467e59 * cos(theta) ** 20 + 1.94649443491433e58 * cos(theta) ** 18 - 9.53003675334055e56 * cos(theta) ** 16 + 3.5759987817413e55 * cos(theta) ** 14 - 9.9606944945962e53 * cos(theta) ** 12 + 1.97300671261509e52 * cos(theta) ** 10 - 2.6167197780041e50 * cos(theta) ** 8 + 2.12371460243811e48 * cos(theta) ** 6 - 9.09383929105672e45 * cos(theta) ** 4 + 1.53612150186769e43 * cos(theta) ** 2 - 4.2705629743333e39 ) * sin(21 * phi) ) # @torch.jit.script def Yl87_m_minus_20(theta, phi): return ( 9.10052051744521e-39 * (1.0 - cos(theta) ** 2) ** 10 * ( 5.40160331046505e62 * cos(theta) ** 67 - 6.90343636961747e63 * cos(theta) ** 65 + 4.19858118386092e64 * cos(theta) ** 63 - 1.617323284434e65 * cos(theta) ** 61 + 4.43069103370392e65 * cos(theta) ** 59 - 9.18898467717261e65 * cos(theta) ** 57 + 1.49955210069197e66 * cos(theta) ** 55 - 1.97589606879111e66 * cos(theta) ** 53 + 2.1405540745237e66 * cos(theta) ** 51 - 1.93149783794601e66 * cos(theta) ** 49 + 1.4654461015642e66 * cos(theta) ** 47 - 9.41263954718301e65 * cos(theta) ** 45 + 5.14266730226887e65 * cos(theta) ** 43 - 2.39743344034527e65 * cos(theta) ** 41 + 9.55245588475763e64 * cos(theta) ** 39 - 3.25442290142777e64 * cos(theta) ** 37 + 9.47310162740776e63 * cos(theta) ** 35 - 2.35147912737072e63 * cos(theta) ** 33 + 4.96235403377994e62 * cos(theta) ** 31 - 8.8647507710629e61 * cos(theta) ** 29 + 1.33299585668575e61 * cos(theta) ** 27 - 1.67519350410562e60 * cos(theta) ** 25 + 1.74378227353118e59 * cos(theta) ** 23 - 1.48694612471651e58 * cos(theta) ** 21 + 1.02447075521807e57 * cos(theta) ** 19 - 5.60590397255327e55 * cos(theta) ** 17 + 2.38399918782753e54 * cos(theta) ** 15 - 7.66207268815093e52 * cos(theta) ** 13 + 1.79364246601372e51 * cos(theta) ** 11 - 2.90746642000456e49 * cos(theta) ** 9 + 3.03387800348302e47 * cos(theta) ** 7 - 1.81876785821134e45 * cos(theta) ** 5 + 5.12040500622563e42 * cos(theta) ** 3 - 4.2705629743333e39 * cos(theta) ) * sin(20 * phi) ) # @torch.jit.script def Yl87_m_minus_19(theta, phi): return ( 7.76269599145231e-37 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 7.94353428009566e60 * cos(theta) ** 68 - 1.0459752075178e62 * cos(theta) ** 66 + 6.56028309978268e62 * cos(theta) ** 64 - 2.60858594263548e63 * cos(theta) ** 62 + 7.38448505617319e63 * cos(theta) ** 60 - 1.58430770296079e64 * cos(theta) ** 58 + 2.67777160837852e64 * cos(theta) ** 56 - 3.65906679405761e64 * cos(theta) ** 54 + 4.11645014331481e64 * cos(theta) ** 52 - 3.86299567589203e64 * cos(theta) ** 50 + 3.05301271159209e64 * cos(theta) ** 48 - 2.04622598851805e64 * cos(theta) ** 46 + 1.16878802324292e64 * cos(theta) ** 44 - 5.70817485796493e63 * cos(theta) ** 42 + 2.38811397118941e63 * cos(theta) ** 40 - 8.56427079323098e62 * cos(theta) ** 38 + 2.63141711872438e62 * cos(theta) ** 36 - 6.91611508050212e61 * cos(theta) ** 34 + 1.55073563555623e61 * cos(theta) ** 32 - 2.95491692368763e60 * cos(theta) ** 30 + 4.76069948816341e59 * cos(theta) ** 28 - 6.44305193886777e58 * cos(theta) ** 26 + 7.26575947304658e57 * cos(theta) ** 24 - 6.75884602143868e56 * cos(theta) ** 22 + 5.12235377609034e55 * cos(theta) ** 20 - 3.11439109586293e54 * cos(theta) ** 18 + 1.48999949239221e53 * cos(theta) ** 16 - 5.47290906296495e51 * cos(theta) ** 14 + 1.49470205501143e50 * cos(theta) ** 12 - 2.90746642000456e48 * cos(theta) ** 10 + 3.79234750435377e46 * cos(theta) ** 8 - 3.03127976368557e44 * cos(theta) ** 6 + 1.28010125155641e42 * cos(theta) ** 4 - 2.13528148716665e39 * cos(theta) ** 2 + 5.86938286741796e35 ) * sin(19 * phi) ) # @torch.jit.script def Yl87_m_minus_18(theta, phi): return ( 6.63880720004326e-35 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.15123685218778e59 * cos(theta) ** 69 - 1.56115702614597e60 * cos(theta) ** 67 + 1.00927432304349e61 * cos(theta) ** 65 - 4.14061260735791e61 * cos(theta) ** 63 + 1.21057132068413e62 * cos(theta) ** 61 - 2.68526729315389e62 * cos(theta) ** 59 + 4.69784492697986e62 * cos(theta) ** 57 - 6.65284871646837e62 * cos(theta) ** 55 + 7.76688706285813e62 * cos(theta) ** 53 - 7.57450132527848e62 * cos(theta) ** 51 + 6.23063818692262e62 * cos(theta) ** 49 - 4.35367231599584e62 * cos(theta) ** 47 + 2.59730671831761e62 * cos(theta) ** 45 - 1.32748252510812e62 * cos(theta) ** 43 + 5.82466822241319e61 * cos(theta) ** 41 - 2.19596687005923e61 * cos(theta) ** 39 + 7.11193815871454e60 * cos(theta) ** 37 - 1.97603288014346e60 * cos(theta) ** 35 + 4.69919889562494e59 * cos(theta) ** 33 - 9.53199007641172e58 * cos(theta) ** 31 + 1.6416205131598e58 * cos(theta) ** 29 - 2.38631553291399e57 * cos(theta) ** 27 + 2.90630378921863e56 * cos(theta) ** 25 - 2.93862870497334e55 * cos(theta) ** 23 + 2.43921608385254e54 * cos(theta) ** 21 - 1.63915320834891e53 * cos(theta) ** 19 + 8.76470289642474e51 * cos(theta) ** 17 - 3.64860604197663e50 * cos(theta) ** 15 + 1.14977081154726e49 * cos(theta) ** 13 - 2.64315129091324e47 * cos(theta) ** 11 + 4.21371944928197e45 * cos(theta) ** 9 - 4.33039966240796e43 * cos(theta) ** 7 + 2.56020250311282e41 * cos(theta) ** 5 - 7.11760495722217e38 * cos(theta) ** 3 + 5.86938286741796e35 * cos(theta) ) * sin(18 * phi) ) # @torch.jit.script def Yl87_m_minus_17(theta, phi): return ( 5.69159154928737e-33 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.64462407455397e57 * cos(theta) ** 70 - 2.29581915609701e58 * cos(theta) ** 68 + 1.52920351976286e59 * cos(theta) ** 66 - 6.46970719899673e59 * cos(theta) ** 64 + 1.95253438820021e60 * cos(theta) ** 62 - 4.47544548858981e60 * cos(theta) ** 60 + 8.0997326327239e60 * cos(theta) ** 58 - 1.18800869936935e61 * cos(theta) ** 56 + 1.4383124190478e61 * cos(theta) ** 54 - 1.45663487024586e61 * cos(theta) ** 52 + 1.24612763738452e61 * cos(theta) ** 50 - 9.07015065832467e60 * cos(theta) ** 48 + 5.64631895286437e60 * cos(theta) ** 46 - 3.0170057388821e60 * cos(theta) ** 44 + 1.38682576724124e60 * cos(theta) ** 42 - 5.48991717514806e59 * cos(theta) ** 40 + 1.87156267334593e59 * cos(theta) ** 38 - 5.48898022262073e58 * cos(theta) ** 36 + 1.38211732224263e58 * cos(theta) ** 34 - 2.97874689887866e57 * cos(theta) ** 32 + 5.47206837719932e56 * cos(theta) ** 30 - 8.52255547469282e55 * cos(theta) ** 28 + 1.11780914969947e55 * cos(theta) ** 26 - 1.22442862707222e54 * cos(theta) ** 24 + 1.10873458356934e53 * cos(theta) ** 22 - 8.19576604174454e51 * cos(theta) ** 20 + 4.86927938690264e50 * cos(theta) ** 18 - 2.28037877623539e49 * cos(theta) ** 16 + 8.21264865390898e47 * cos(theta) ** 14 - 2.20262607576103e46 * cos(theta) ** 12 + 4.21371944928197e44 * cos(theta) ** 10 - 5.41299957800995e42 * cos(theta) ** 8 + 4.26700417185469e40 * cos(theta) ** 6 - 1.77940123930554e38 * cos(theta) ** 4 + 2.93469143370898e35 * cos(theta) ** 2 - 7.98555492165708e31 ) * sin(17 * phi) ) # @torch.jit.script def Yl87_m_minus_16(theta, phi): return ( 4.89079624256809e-31 * (1.0 - cos(theta) ** 2) ** 8 * ( 2.3163719359915e55 * cos(theta) ** 71 - 3.32727413927103e56 * cos(theta) ** 69 + 2.2823933130789e57 * cos(theta) ** 67 - 9.9533956907642e57 * cos(theta) ** 65 + 3.09926093365113e58 * cos(theta) ** 63 - 7.33679588293412e58 * cos(theta) ** 61 + 1.37283603944473e59 * cos(theta) ** 59 - 2.08422578836728e59 * cos(theta) ** 57 + 2.61511348917782e59 * cos(theta) ** 55 - 2.74836767970917e59 * cos(theta) ** 53 + 2.44338752428338e59 * cos(theta) ** 51 - 1.85105115476014e59 * cos(theta) ** 49 + 1.20134445805625e59 * cos(theta) ** 47 - 6.70445719751577e58 * cos(theta) ** 45 + 3.22517620288659e58 * cos(theta) ** 43 - 1.3390041890605e58 * cos(theta) ** 41 + 4.79887864960495e57 * cos(theta) ** 39 - 1.48350816827587e57 * cos(theta) ** 37 + 3.94890663497894e56 * cos(theta) ** 35 - 9.02650575417776e55 * cos(theta) ** 33 + 1.76518334748365e55 * cos(theta) ** 31 - 2.9388122326527e54 * cos(theta) ** 29 + 4.14003388777583e53 * cos(theta) ** 27 - 4.8977145082889e52 * cos(theta) ** 25 + 4.82058514595364e51 * cos(theta) ** 23 - 3.90274573416407e50 * cos(theta) ** 21 + 2.5627786246856e49 * cos(theta) ** 19 - 1.34139928013847e48 * cos(theta) ** 17 + 5.47509910260599e46 * cos(theta) ** 15 - 1.69432775058541e45 * cos(theta) ** 13 + 3.83065404480179e43 * cos(theta) ** 11 - 6.01444397556661e41 * cos(theta) ** 9 + 6.0957202455067e39 * cos(theta) ** 7 - 3.55880247861109e37 * cos(theta) ** 5 + 9.78230477902992e34 * cos(theta) ** 3 - 7.98555492165708e31 * cos(theta) ) * sin(16 * phi) ) # @torch.jit.script def Yl87_m_minus_15(theta, phi): return ( 4.21176790154604e-29 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 3.21718324443264e53 * cos(theta) ** 72 - 4.75324877038719e54 * cos(theta) ** 70 + 3.35646075452779e55 * cos(theta) ** 68 - 1.50809025617639e56 * cos(theta) ** 66 + 4.84259520882989e56 * cos(theta) ** 64 - 1.18335417466679e57 * cos(theta) ** 62 + 2.28806006574121e57 * cos(theta) ** 60 - 3.59349273856428e57 * cos(theta) ** 58 + 4.66984551638896e57 * cos(theta) ** 56 - 5.08956977723921e57 * cos(theta) ** 54 + 4.69882216208343e57 * cos(theta) ** 52 - 3.70210230952028e57 * cos(theta) ** 50 + 2.50280095428385e57 * cos(theta) ** 48 - 1.45749069511212e57 * cos(theta) ** 46 + 7.32994591565135e56 * cos(theta) ** 44 - 3.18810521204882e56 * cos(theta) ** 42 + 1.19971966240124e56 * cos(theta) ** 40 - 3.90396886388388e55 * cos(theta) ** 38 + 1.09691850971637e55 * cos(theta) ** 36 - 2.65485463358169e54 * cos(theta) ** 34 + 5.51619796088641e53 * cos(theta) ** 32 - 9.79604077550898e52 * cos(theta) ** 30 + 1.47858353134851e52 * cos(theta) ** 28 - 1.88373634934188e51 * cos(theta) ** 26 + 2.00857714414735e50 * cos(theta) ** 24 - 1.77397533371094e49 * cos(theta) ** 22 + 1.2813893123428e48 * cos(theta) ** 20 - 7.45221822299148e46 * cos(theta) ** 18 + 3.42193693912874e45 * cos(theta) ** 16 - 1.21023410756101e44 * cos(theta) ** 14 + 3.19221170400149e42 * cos(theta) ** 12 - 6.01444397556661e40 * cos(theta) ** 10 + 7.61965030688338e38 * cos(theta) ** 8 - 5.93133746435181e36 * cos(theta) ** 6 + 2.44557619475748e34 * cos(theta) ** 4 - 3.99277746082854e31 * cos(theta) ** 2 + 1.07680082546617e28 ) * sin(15 * phi) ) # @torch.jit.script def Yl87_m_minus_14(theta, phi): return ( 3.63434328353075e-27 * (1.0 - cos(theta) ** 2) ** 7 * ( 4.40710033483924e51 * cos(theta) ** 73 - 6.69471657801012e52 * cos(theta) ** 71 + 4.86443587612724e53 * cos(theta) ** 69 - 2.25088097936775e54 * cos(theta) ** 67 + 7.4501464751229e54 * cos(theta) ** 65 - 1.87833995978856e55 * cos(theta) ** 63 + 3.75091814055937e55 * cos(theta) ** 61 - 6.09066565858353e55 * cos(theta) ** 59 + 8.19271143226134e55 * cos(theta) ** 57 - 9.25376323134402e55 * cos(theta) ** 55 + 8.86570219261024e55 * cos(theta) ** 53 - 7.25902413631427e55 * cos(theta) ** 51 + 5.10775704955888e55 * cos(theta) ** 49 - 3.10104403215345e55 * cos(theta) ** 47 + 1.62887687014474e55 * cos(theta) ** 45 - 7.41419816755539e54 * cos(theta) ** 43 + 2.9261455180518e54 * cos(theta) ** 41 - 1.00101765740612e54 * cos(theta) ** 39 + 2.96464462085506e53 * cos(theta) ** 37 - 7.58529895309056e52 * cos(theta) ** 35 + 1.67157513966255e52 * cos(theta) ** 33 - 3.16001315338999e51 * cos(theta) ** 31 + 5.09856390120176e50 * cos(theta) ** 29 - 6.97680129385883e49 * cos(theta) ** 27 + 8.0343085765894e48 * cos(theta) ** 25 - 7.71293623352583e47 * cos(theta) ** 23 + 6.10185386829904e46 * cos(theta) ** 21 - 3.92222011736394e45 * cos(theta) ** 19 + 2.01290408184044e44 * cos(theta) ** 17 - 8.06822738374004e42 * cos(theta) ** 15 + 2.45554746461653e41 * cos(theta) ** 13 - 5.4676763414242e39 * cos(theta) ** 11 + 8.46627811875931e37 * cos(theta) ** 9 - 8.4733392347883e35 * cos(theta) ** 7 + 4.89115238951496e33 * cos(theta) ** 5 - 1.33092582027618e31 * cos(theta) ** 3 + 1.07680082546617e28 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl87_m_minus_13(theta, phi): return ( 3.14197332166303e-25 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 5.95554099302599e49 * cos(theta) ** 74 - 9.2982174694585e50 * cos(theta) ** 72 + 6.9491941087532e51 * cos(theta) ** 70 - 3.31011908730552e52 * cos(theta) ** 68 + 1.12881007198832e53 * cos(theta) ** 66 - 2.93490618716963e53 * cos(theta) ** 64 + 6.04986796864414e53 * cos(theta) ** 62 - 1.01511094309726e54 * cos(theta) ** 60 + 1.41253645383816e54 * cos(theta) ** 58 - 1.65245771988286e54 * cos(theta) ** 56 + 1.64179670233523e54 * cos(theta) ** 54 - 1.39596618006044e54 * cos(theta) ** 52 + 1.02155140991178e54 * cos(theta) ** 50 - 6.4605084003197e53 * cos(theta) ** 48 + 3.54103667422771e53 * cos(theta) ** 46 - 1.68504503808077e53 * cos(theta) ** 44 + 6.96701313821857e52 * cos(theta) ** 42 - 2.50254414351531e52 * cos(theta) ** 40 + 7.80169637067122e51 * cos(theta) ** 38 - 2.1070274869696e51 * cos(theta) ** 36 + 4.91639746959573e50 * cos(theta) ** 34 - 9.87504110434373e49 * cos(theta) ** 32 + 1.69952130040059e49 * cos(theta) ** 30 - 2.49171474780673e48 * cos(theta) ** 28 + 3.09011868330362e47 * cos(theta) ** 26 - 3.21372343063576e46 * cos(theta) ** 24 + 2.77356994013593e45 * cos(theta) ** 22 - 1.96111005868197e44 * cos(theta) ** 20 + 1.11828004546691e43 * cos(theta) ** 18 - 5.04264211483752e41 * cos(theta) ** 16 + 1.75396247472609e40 * cos(theta) ** 14 - 4.55639695118683e38 * cos(theta) ** 12 + 8.46627811875931e36 * cos(theta) ** 10 - 1.05916740434854e35 * cos(theta) ** 8 + 8.1519206491916e32 * cos(theta) ** 6 - 3.32731455069045e30 * cos(theta) ** 4 + 5.38400412733083e27 * cos(theta) ** 2 - 1.44072896101976e24 ) * sin(13 * phi) ) # @torch.jit.script def Yl87_m_minus_12(theta, phi): return ( 2.72102871457316e-23 * (1.0 - cos(theta) ** 2) ** 6 * ( 7.94072132403466e47 * cos(theta) ** 75 - 1.27372842047377e49 * cos(theta) ** 73 + 9.78759733627211e49 * cos(theta) ** 71 - 4.79727403957321e50 * cos(theta) ** 69 + 1.68479115222137e51 * cos(theta) ** 67 - 4.51524028795327e51 * cos(theta) ** 65 + 9.60296502959387e51 * cos(theta) ** 63 - 1.66411630015944e52 * cos(theta) ** 61 + 2.39412958277655e52 * cos(theta) ** 59 - 2.89904863137344e52 * cos(theta) ** 57 + 2.98508491333678e52 * cos(theta) ** 55 - 2.63389845294422e52 * cos(theta) ** 53 + 2.00304198021917e52 * cos(theta) ** 51 - 1.31847110210606e52 * cos(theta) ** 49 + 7.5341205834632e51 * cos(theta) ** 47 - 3.74454452906838e51 * cos(theta) ** 45 + 1.6202356135392e51 * cos(theta) ** 43 - 6.10376620369587e50 * cos(theta) ** 41 + 2.00043496683877e50 * cos(theta) ** 39 - 5.69466888370162e49 * cos(theta) ** 37 + 1.40468499131307e49 * cos(theta) ** 35 - 2.99243669828598e48 * cos(theta) ** 33 + 5.48232677548576e47 * cos(theta) ** 31 - 8.59211982002319e46 * cos(theta) ** 29 + 1.14448840122356e46 * cos(theta) ** 27 - 1.2854893722543e45 * cos(theta) ** 25 + 1.20589997397214e44 * cos(theta) ** 23 - 9.338619327057e42 * cos(theta) ** 21 + 5.88568444982584e41 * cos(theta) ** 19 - 2.96626006755148e40 * cos(theta) ** 17 + 1.16930831648406e39 * cos(theta) ** 15 - 3.50492073168218e37 * cos(theta) ** 13 + 7.69661647159937e35 * cos(theta) ** 11 - 1.17685267149838e34 * cos(theta) ** 9 + 1.16456009274166e32 * cos(theta) ** 7 - 6.6546291013809e29 * cos(theta) ** 5 + 1.79466804244361e27 * cos(theta) ** 3 - 1.44072896101976e24 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl87_m_minus_11(theta, phi): return ( 2.36024734775532e-21 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.04483175316245e46 * cos(theta) ** 76 - 1.72125462226185e47 * cos(theta) ** 74 + 1.35938851892668e48 * cos(theta) ** 72 - 6.85324862796173e48 * cos(theta) ** 70 + 2.47763404738437e49 * cos(theta) ** 68 - 6.84127316356557e49 * cos(theta) ** 66 + 1.50046328587404e50 * cos(theta) ** 64 - 2.68405854864425e50 * cos(theta) ** 62 + 3.99021597129424e50 * cos(theta) ** 60 - 4.99835970926455e50 * cos(theta) ** 58 + 5.33050877381568e50 * cos(theta) ** 56 - 4.87758972767448e50 * cos(theta) ** 54 + 3.85200380811378e50 * cos(theta) ** 52 - 2.63694220421212e50 * cos(theta) ** 50 + 1.56960845488817e50 * cos(theta) ** 48 - 8.14031419362691e49 * cos(theta) ** 46 + 3.68235366713455e49 * cos(theta) ** 44 - 1.45327766754664e49 * cos(theta) ** 42 + 5.00108741709693e48 * cos(theta) ** 40 - 1.49859707465832e48 * cos(theta) ** 38 + 3.90190275364741e47 * cos(theta) ** 36 - 8.80128440672347e46 * cos(theta) ** 34 + 1.7132271173393e46 * cos(theta) ** 32 - 2.86403994000773e45 * cos(theta) ** 30 + 4.08745857579843e44 * cos(theta) ** 28 - 4.94418989328579e43 * cos(theta) ** 26 + 5.02458322488393e42 * cos(theta) ** 24 - 4.24482696684409e41 * cos(theta) ** 22 + 2.94284222491292e40 * cos(theta) ** 20 - 1.64792225975082e39 * cos(theta) ** 18 + 7.3081769780254e37 * cos(theta) ** 16 - 2.50351480834441e36 * cos(theta) ** 14 + 6.41384705966614e34 * cos(theta) ** 12 - 1.17685267149838e33 * cos(theta) ** 10 + 1.45570011592707e31 * cos(theta) ** 8 - 1.10910485023015e29 * cos(theta) ** 6 + 4.48667010610902e26 * cos(theta) ** 4 - 7.20364480509878e23 * cos(theta) ** 2 + 1.91484444579978e20 ) * sin(11 * phi) ) # @torch.jit.script def Yl87_m_minus_10(theta, phi): return ( 2.05029295166213e-19 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.35692435475644e44 * cos(theta) ** 77 - 2.2950061630158e45 * cos(theta) ** 75 + 1.86217605332422e46 * cos(theta) ** 73 - 9.65246285628413e46 * cos(theta) ** 71 + 3.59077398171648e47 * cos(theta) ** 69 - 1.02108554680083e48 * cos(theta) ** 67 + 2.30840505519084e48 * cos(theta) ** 65 - 4.26041039467341e48 * cos(theta) ** 63 + 6.54133765785942e48 * cos(theta) ** 61 - 8.47179611739755e48 * cos(theta) ** 59 + 9.351769778624e48 * cos(theta) ** 57 - 8.86834495940814e48 * cos(theta) ** 55 + 7.26793171342224e48 * cos(theta) ** 53 - 5.17047491021985e48 * cos(theta) ** 51 + 3.20328256099626e48 * cos(theta) ** 49 - 1.73198174332487e48 * cos(theta) ** 47 + 8.18300814918789e47 * cos(theta) ** 45 - 3.37971550592241e47 * cos(theta) ** 43 + 1.21977741880413e47 * cos(theta) ** 41 - 3.842556601688e46 * cos(theta) ** 39 + 1.0545683117966e46 * cos(theta) ** 37 - 2.51465268763528e45 * cos(theta) ** 35 + 5.19159732527061e44 * cos(theta) ** 33 - 9.23883851615397e43 * cos(theta) ** 31 + 1.40946847441325e43 * cos(theta) ** 29 - 1.8311814419577e42 * cos(theta) ** 27 + 2.00983328995357e41 * cos(theta) ** 25 - 1.84557694210613e40 * cos(theta) ** 23 + 1.40135344043472e39 * cos(theta) ** 21 - 8.67327505132013e37 * cos(theta) ** 19 + 4.29892763413259e36 * cos(theta) ** 17 - 1.66900987222961e35 * cos(theta) ** 15 + 4.9337285074355e33 * cos(theta) ** 13 - 1.06986606499852e32 * cos(theta) ** 11 + 1.6174445732523e30 * cos(theta) ** 9 - 1.58443550032879e28 * cos(theta) ** 7 + 8.97334021221804e25 * cos(theta) ** 5 - 2.40121493503293e23 * cos(theta) ** 3 + 1.91484444579978e20 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl87_m_minus_9(theta, phi): return ( 1.78340133412671e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1.7396466086621e42 * cos(theta) ** 78 - 3.01974495133657e43 * cos(theta) ** 76 + 2.51645412611381e44 * cos(theta) ** 74 - 1.34061984115057e45 * cos(theta) ** 72 + 5.12967711673782e45 * cos(theta) ** 70 - 1.50159639235416e46 * cos(theta) ** 68 + 3.49758341695581e46 * cos(theta) ** 66 - 6.65689124167721e46 * cos(theta) ** 64 + 1.05505446094507e47 * cos(theta) ** 62 - 1.41196601956626e47 * cos(theta) ** 60 + 1.61237409976276e47 * cos(theta) ** 58 - 1.58363302846574e47 * cos(theta) ** 56 + 1.34591328026338e47 * cos(theta) ** 54 - 9.94322098119201e46 * cos(theta) ** 52 + 6.40656512199252e46 * cos(theta) ** 50 - 3.60829529859349e46 * cos(theta) ** 48 + 1.77891481504085e46 * cos(theta) ** 46 - 7.68117160436911e45 * cos(theta) ** 44 + 2.90423194953364e45 * cos(theta) ** 42 - 9.60639150422e44 * cos(theta) ** 40 + 2.77517976788578e44 * cos(theta) ** 38 - 6.98514635454244e43 * cos(theta) ** 36 + 1.52694038978547e43 * cos(theta) ** 34 - 2.88713703629812e42 * cos(theta) ** 32 + 4.69822824804418e41 * cos(theta) ** 30 - 6.53993372127749e40 * cos(theta) ** 28 + 7.73012803828297e39 * cos(theta) ** 26 - 7.68990392544219e38 * cos(theta) ** 24 + 6.36978836561238e37 * cos(theta) ** 22 - 4.33663752566006e36 * cos(theta) ** 20 + 2.38829313007366e35 * cos(theta) ** 18 - 1.0431311701435e34 * cos(theta) ** 16 + 3.52409179102535e32 * cos(theta) ** 14 - 8.91555054165436e30 * cos(theta) ** 12 + 1.6174445732523e29 * cos(theta) ** 10 - 1.98054437541098e27 * cos(theta) ** 8 + 1.49555670203634e25 * cos(theta) ** 6 - 6.00303733758231e22 * cos(theta) ** 4 + 9.57422222899891e19 * cos(theta) ** 2 - 2.53085440893442e16 ) * sin(9 * phi) ) # @torch.jit.script def Yl87_m_minus_8(theta, phi): return ( 1.55309581468744e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 2.20208431476215e40 * cos(theta) ** 79 - 3.9217466900475e41 * cos(theta) ** 77 + 3.35527216815175e42 * cos(theta) ** 75 - 1.8364655358227e43 * cos(theta) ** 73 + 7.22489734751806e43 * cos(theta) ** 71 - 2.17622665558574e44 * cos(theta) ** 69 + 5.22027375665046e44 * cos(theta) ** 67 - 1.02413711410419e45 * cos(theta) ** 65 + 1.67468962054773e45 * cos(theta) ** 63 - 2.31469839273157e45 * cos(theta) ** 61 + 2.73283745722501e45 * cos(theta) ** 59 - 2.77830355871182e45 * cos(theta) ** 57 + 2.44711505502432e45 * cos(theta) ** 55 - 1.87607943041359e45 * cos(theta) ** 53 + 1.25618923960638e45 * cos(theta) ** 51 - 7.36386795631324e44 * cos(theta) ** 49 + 3.78492513838478e44 * cos(theta) ** 47 - 1.70692702319314e44 * cos(theta) ** 45 + 6.75402778961312e43 * cos(theta) ** 43 - 2.34302231810244e43 * cos(theta) ** 41 + 7.11584555868148e42 * cos(theta) ** 39 - 1.88787739311958e42 * cos(theta) ** 37 + 4.3626868279585e41 * cos(theta) ** 35 - 8.74890010999429e40 * cos(theta) ** 33 + 1.51555749936909e40 * cos(theta) ** 31 - 2.2551495590612e39 * cos(theta) ** 29 + 2.86301038454925e38 * cos(theta) ** 27 - 3.07596157017688e37 * cos(theta) ** 25 + 2.76947320244016e36 * cos(theta) ** 23 - 2.06506548840955e35 * cos(theta) ** 21 + 1.25699638424929e34 * cos(theta) ** 19 - 6.1360657067265e32 * cos(theta) ** 17 + 2.34939452735024e31 * cos(theta) ** 15 - 6.85811580127258e29 * cos(theta) ** 13 + 1.47040415750209e28 * cos(theta) ** 11 - 2.20060486156776e26 * cos(theta) ** 9 + 2.13650957433763e24 * cos(theta) ** 7 - 1.20060746751646e22 * cos(theta) ** 5 + 3.1914074096663e19 * cos(theta) ** 3 - 2.53085440893442e16 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl87_m_minus_7(theta, phi): return ( 1.35395754117171e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 2.75260539345268e38 * cos(theta) ** 80 - 5.02788037185577e39 * cos(theta) ** 78 + 4.41483180019967e40 * cos(theta) ** 76 - 2.48171018354419e41 * cos(theta) ** 74 + 1.00345796493306e42 * cos(theta) ** 72 - 3.10889522226535e42 * cos(theta) ** 70 + 7.6768731715448e42 * cos(theta) ** 68 - 1.55172290015786e43 * cos(theta) ** 66 + 2.61670253210582e43 * cos(theta) ** 64 - 3.73338450440576e43 * cos(theta) ** 62 + 4.55472909537502e43 * cos(theta) ** 60 - 4.79017854950314e43 * cos(theta) ** 58 + 4.36984831254343e43 * cos(theta) ** 56 - 3.47422116743257e43 * cos(theta) ** 54 + 2.41574853770457e43 * cos(theta) ** 52 - 1.47277359126265e43 * cos(theta) ** 50 + 7.88526070496829e42 * cos(theta) ** 48 - 3.71071091998508e42 * cos(theta) ** 46 + 1.53500631582116e42 * cos(theta) ** 44 - 5.57862456691057e41 * cos(theta) ** 42 + 1.77896138967037e41 * cos(theta) ** 40 - 4.96809840294626e40 * cos(theta) ** 38 + 1.21185745221069e40 * cos(theta) ** 36 - 2.5732059147042e39 * cos(theta) ** 34 + 4.7361171855284e38 * cos(theta) ** 32 - 7.51716519687068e37 * cos(theta) ** 30 + 1.02250370876759e37 * cos(theta) ** 28 - 1.18306214237572e36 * cos(theta) ** 26 + 1.1539471676834e35 * cos(theta) ** 24 - 9.38666131095252e33 * cos(theta) ** 22 + 6.28498192124647e32 * cos(theta) ** 20 - 3.40892539262583e31 * cos(theta) ** 18 + 1.4683715795939e30 * cos(theta) ** 16 - 4.89865414376613e28 * cos(theta) ** 14 + 1.22533679791841e27 * cos(theta) ** 12 - 2.20060486156776e25 * cos(theta) ** 10 + 2.67063696792204e23 * cos(theta) ** 8 - 2.00101244586077e21 * cos(theta) ** 6 + 7.97851852416576e18 * cos(theta) ** 4 - 1.26542720446721e16 * cos(theta) ** 2 + 3330071590703.18 ) * sin(7 * phi) ) # @torch.jit.script def Yl87_m_minus_6(theta, phi): return ( 1.1814394860243e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 3.39827826352183e36 * cos(theta) ** 81 - 6.36440553399464e37 * cos(theta) ** 79 + 5.73354779246711e38 * cos(theta) ** 77 - 3.30894691139226e39 * cos(theta) ** 75 + 1.3745999519631e40 * cos(theta) ** 73 - 4.37872566516246e40 * cos(theta) ** 71 + 1.11259031471664e41 * cos(theta) ** 69 - 2.31600432859382e41 * cos(theta) ** 67 + 4.02569620323972e41 * cos(theta) ** 65 - 5.92600714985041e41 * cos(theta) ** 63 + 7.46676900881151e41 * cos(theta) ** 61 - 8.11894669407313e41 * cos(theta) ** 59 + 7.66640054832181e41 * cos(theta) ** 57 - 6.31676575896831e41 * cos(theta) ** 55 + 4.55801610887655e41 * cos(theta) ** 53 - 2.88779135541696e41 * cos(theta) ** 51 + 1.60923687856496e41 * cos(theta) ** 49 - 7.89512961698952e40 * cos(theta) ** 47 + 3.41112514626925e40 * cos(theta) ** 45 - 1.29735455044432e40 * cos(theta) ** 43 + 4.33893021870822e39 * cos(theta) ** 41 - 1.27387138537083e39 * cos(theta) ** 39 + 3.27529041138025e38 * cos(theta) ** 37 - 7.35201689915486e37 * cos(theta) ** 35 + 1.4351870259177e37 * cos(theta) ** 33 - 2.42489199899054e36 * cos(theta) ** 31 + 3.52587485781927e35 * cos(theta) ** 29 - 4.3817116384286e34 * cos(theta) ** 27 + 4.61578867073361e33 * cos(theta) ** 25 - 4.08115709171849e32 * cos(theta) ** 23 + 2.99284853392689e31 * cos(theta) ** 21 - 1.79417125927675e30 * cos(theta) ** 19 + 8.6374798799641e28 * cos(theta) ** 17 - 3.26576942917742e27 * cos(theta) ** 15 + 9.42566767629547e25 * cos(theta) ** 13 - 2.00054987415251e24 * cos(theta) ** 11 + 2.96737440880226e22 * cos(theta) ** 9 - 2.85858920837253e20 * cos(theta) ** 7 + 1.59570370483315e18 * cos(theta) ** 5 - 4.21809068155737e15 * cos(theta) ** 3 + 3330071590703.18 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl87_m_minus_5(theta, phi): return ( 1.0317153265403e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 4.14424178478272e34 * cos(theta) ** 82 - 7.95550691749331e35 * cos(theta) ** 80 + 7.35070229803475e36 * cos(theta) ** 78 - 4.35387751498981e37 * cos(theta) ** 76 + 1.85756750265284e38 * cos(theta) ** 74 - 6.08156342383675e38 * cos(theta) ** 72 + 1.58941473530948e39 * cos(theta) ** 70 - 3.40588871852032e39 * cos(theta) ** 68 + 6.09953970187837e39 * cos(theta) ** 66 - 9.25938617164126e39 * cos(theta) ** 64 + 1.20431758206637e40 * cos(theta) ** 62 - 1.35315778234552e40 * cos(theta) ** 60 + 1.32179319798652e40 * cos(theta) ** 58 - 1.12799388553005e40 * cos(theta) ** 56 + 8.44077057199361e39 * cos(theta) ** 54 - 5.55344491426338e39 * cos(theta) ** 52 + 3.21847375712991e39 * cos(theta) ** 50 - 1.64481867020615e39 * cos(theta) ** 48 + 7.41548944841142e38 * cos(theta) ** 46 - 2.94853306919163e38 * cos(theta) ** 44 + 1.03307862350196e38 * cos(theta) ** 42 - 3.18467846342709e37 * cos(theta) ** 40 + 8.61918529310593e36 * cos(theta) ** 38 - 2.04222691643191e36 * cos(theta) ** 36 + 4.22113831152264e35 * cos(theta) ** 34 - 7.57778749684545e34 * cos(theta) ** 32 + 1.17529161927309e34 * cos(theta) ** 30 - 1.5648970137245e33 * cos(theta) ** 28 + 1.77530333489754e32 * cos(theta) ** 26 - 1.70048212154937e31 * cos(theta) ** 24 + 1.3603856972395e30 * cos(theta) ** 22 - 8.97085629638377e28 * cos(theta) ** 20 + 4.79859993331339e27 * cos(theta) ** 18 - 2.04110589323589e26 * cos(theta) ** 16 + 6.73261976878248e24 * cos(theta) ** 14 - 1.66712489512709e23 * cos(theta) ** 12 + 2.96737440880226e21 * cos(theta) ** 10 - 3.57323651046566e19 * cos(theta) ** 8 + 2.65950617472192e17 * cos(theta) ** 6 - 1.05452267038934e15 * cos(theta) ** 4 + 1665035795351.59 * cos(theta) ** 2 - 436673431.7733 ) * sin(5 * phi) ) # @torch.jit.script def Yl87_m_minus_4(theta, phi): return ( 9.01556278258805e-8 * (1.0 - cos(theta) ** 2) ** 2 * ( 4.99306239130448e32 * cos(theta) ** 83 - 9.8216134783868e33 * cos(theta) ** 81 + 9.30468645320855e34 * cos(theta) ** 79 - 5.65438638310365e35 * cos(theta) ** 77 + 2.47675667020379e36 * cos(theta) ** 75 - 8.33090879977637e36 * cos(theta) ** 73 + 2.23861230325279e37 * cos(theta) ** 71 - 4.93607060655119e37 * cos(theta) ** 69 + 9.10379059981846e37 * cos(theta) ** 67 - 1.42452094948327e38 * cos(theta) ** 65 + 1.91161520962916e38 * cos(theta) ** 63 - 2.21829144646807e38 * cos(theta) ** 61 + 2.24032745421444e38 * cos(theta) ** 59 - 1.9789366412808e38 * cos(theta) ** 57 + 1.53468555854429e38 * cos(theta) ** 55 - 1.04781979514403e38 * cos(theta) ** 53 + 6.31073285711748e37 * cos(theta) ** 51 - 3.35677279633908e37 * cos(theta) ** 49 + 1.57776371242796e37 * cos(theta) ** 47 - 6.55229570931474e36 * cos(theta) ** 45 + 2.40250842674874e36 * cos(theta) ** 43 - 7.76750844738314e35 * cos(theta) ** 41 + 2.2100475110528e35 * cos(theta) ** 39 - 5.51953220657272e34 * cos(theta) ** 37 + 1.2060395175779e34 * cos(theta) ** 35 - 2.29629924146832e33 * cos(theta) ** 33 + 3.79126328797771e32 * cos(theta) ** 31 - 5.39619659905e31 * cos(theta) ** 29 + 6.57519753665756e30 * cos(theta) ** 27 - 6.80192848619748e29 * cos(theta) ** 25 + 5.91472042278042e28 * cos(theta) ** 23 - 4.27183633161132e27 * cos(theta) ** 21 + 2.52557891227021e26 * cos(theta) ** 19 - 1.20065052543288e25 * cos(theta) ** 17 + 4.48841317918832e23 * cos(theta) ** 15 - 1.28240376548238e22 * cos(theta) ** 13 + 2.69761309891115e20 * cos(theta) ** 11 - 3.97026278940629e18 * cos(theta) ** 9 + 3.79929453531703e16 * cos(theta) ** 7 - 210904534077868.0 * cos(theta) ** 5 + 555011931783.864 * cos(theta) ** 3 - 436673431.7733 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl87_m_minus_3(theta, phi): return ( 7.88230401443765e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 5.9441218944101e30 * cos(theta) ** 84 - 1.19775774126668e32 * cos(theta) ** 82 + 1.16308580665107e33 * cos(theta) ** 80 - 7.24921331167135e33 * cos(theta) ** 78 + 3.2588903555313e34 * cos(theta) ** 76 - 1.12579848645627e35 * cos(theta) ** 74 + 3.10918375451777e35 * cos(theta) ** 72 - 7.05152943793027e35 * cos(theta) ** 70 + 1.33879273526742e36 * cos(theta) ** 68 - 2.15836507497465e36 * cos(theta) ** 66 + 2.98689876504557e36 * cos(theta) ** 64 - 3.57788942978721e36 * cos(theta) ** 62 + 3.7338790903574e36 * cos(theta) ** 60 - 3.4119597263462e36 * cos(theta) ** 58 + 2.74050992597195e36 * cos(theta) ** 56 - 1.94040702804451e36 * cos(theta) ** 54 + 1.21360247252259e36 * cos(theta) ** 52 - 6.71354559267817e35 * cos(theta) ** 50 + 3.28700773422492e35 * cos(theta) ** 48 - 1.4244121107206e35 * cos(theta) ** 46 + 5.46024642442895e34 * cos(theta) ** 44 - 1.84940677318646e34 * cos(theta) ** 42 + 5.525118777632e33 * cos(theta) ** 40 - 1.45250847541387e33 * cos(theta) ** 38 + 3.35010977104972e32 * cos(theta) ** 36 - 6.75382129843623e31 * cos(theta) ** 34 + 1.18476977749303e31 * cos(theta) ** 32 - 1.79873219968333e30 * cos(theta) ** 30 + 2.34828483452056e29 * cos(theta) ** 28 - 2.61612634084518e28 * cos(theta) ** 26 + 2.46446684282517e27 * cos(theta) ** 24 - 1.94174378709605e26 * cos(theta) ** 22 + 1.2627894561351e25 * cos(theta) ** 20 - 6.67028069684931e23 * cos(theta) ** 18 + 2.8052582369927e22 * cos(theta) ** 16 - 9.16002689630269e20 * cos(theta) ** 14 + 2.24801091575929e19 * cos(theta) ** 12 - 3.97026278940629e17 * cos(theta) ** 10 + 4.74911816914628e15 * cos(theta) ** 8 - 35150755679644.7 * cos(theta) ** 6 + 138752982945.966 * cos(theta) ** 4 - 218336715.88665 * cos(theta) ** 2 + 57126.2992900706 ) * sin(3 * phi) ) # @torch.jit.script def Yl87_m_minus_2(theta, phi): return ( 0.000689420032930979 * (1.0 - cos(theta) ** 2) * ( 6.99308458165894e28 * cos(theta) ** 85 - 1.44308161598396e30 * cos(theta) ** 83 + 1.43590840327292e31 * cos(theta) ** 81 - 9.17621938186247e31 * cos(theta) ** 79 + 4.23232513705363e32 * cos(theta) ** 77 - 1.50106464860836e33 * cos(theta) ** 75 + 4.25915582810653e33 * cos(theta) ** 73 - 9.93173160271869e33 * cos(theta) ** 71 + 1.94027932647452e34 * cos(theta) ** 69 - 3.22144041040993e34 * cos(theta) ** 67 + 4.59522886930088e34 * cos(theta) ** 65 - 5.6791895710908e34 * cos(theta) ** 63 + 6.12111326288098e34 * cos(theta) ** 61 - 5.78298258702746e34 * cos(theta) ** 59 + 4.80791215082798e34 * cos(theta) ** 57 - 3.52801277826274e34 * cos(theta) ** 55 + 2.28981598589168e34 * cos(theta) ** 53 - 1.31638148876042e34 * cos(theta) ** 51 + 6.70817904943862e33 * cos(theta) ** 49 - 3.03066406536297e33 * cos(theta) ** 47 + 1.21338809431754e33 * cos(theta) ** 45 - 4.30094598415456e32 * cos(theta) ** 43 + 1.3475899457639e32 * cos(theta) ** 41 - 3.72438070618942e31 * cos(theta) ** 39 + 9.0543507325668e30 * cos(theta) ** 37 - 1.92966322812464e30 * cos(theta) ** 35 + 3.59021144694859e29 * cos(theta) ** 33 - 5.80236193446237e28 * cos(theta) ** 31 + 8.09753391213985e27 * cos(theta) ** 29 - 9.68935681794513e26 * cos(theta) ** 27 + 9.85786737130069e25 * cos(theta) ** 25 - 8.44236429172198e24 * cos(theta) ** 23 + 6.01328312445287e23 * cos(theta) ** 21 - 3.51067405097332e22 * cos(theta) ** 19 + 1.65015190411335e21 * cos(theta) ** 17 - 6.10668459753513e19 * cos(theta) ** 15 + 1.72923916596868e18 * cos(theta) ** 13 - 3.60932980855118e16 * cos(theta) ** 11 + 527679796571809.0 * cos(theta) ** 9 - 5021536525663.53 * cos(theta) ** 7 + 27750596589.1932 * cos(theta) ** 5 - 72778905.2955499 * cos(theta) ** 3 + 57126.2992900706 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl87_m_minus_1(theta, phi): return ( 0.0603153882582824 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 8.13149369960342e26 * cos(theta) ** 86 - 1.7179543047428e28 * cos(theta) ** 84 + 1.75110780886942e29 * cos(theta) ** 82 - 1.14702742273281e30 * cos(theta) ** 80 + 5.42605786801748e30 * cos(theta) ** 78 - 1.97508506395836e31 * cos(theta) ** 76 + 5.75561598392774e31 * cos(theta) ** 74 - 1.37940716704426e32 * cos(theta) ** 72 + 2.77182760924932e32 * cos(theta) ** 70 - 4.7374123682499e32 * cos(theta) ** 68 + 6.9624679837892e32 * cos(theta) ** 66 - 8.87373370482938e32 * cos(theta) ** 64 + 9.87276332722739e32 * cos(theta) ** 62 - 9.63830431171244e32 * cos(theta) ** 60 + 8.28950370832411e32 * cos(theta) ** 58 - 6.30002281832632e32 * cos(theta) ** 56 + 4.24039997387349e32 * cos(theta) ** 54 - 2.53150286300082e32 * cos(theta) ** 52 + 1.34163580988772e32 * cos(theta) ** 50 - 6.31388346950619e31 * cos(theta) ** 48 + 2.63780020503814e31 * cos(theta) ** 46 - 9.77487723671492e30 * cos(theta) ** 44 + 3.20854748991406e30 * cos(theta) ** 42 - 9.31095176547355e29 * cos(theta) ** 40 + 2.38272387699126e29 * cos(theta) ** 38 - 5.36017563367954e28 * cos(theta) ** 36 + 1.05594454322017e28 * cos(theta) ** 34 - 1.81323810451949e27 * cos(theta) ** 32 + 2.69917797071329e26 * cos(theta) ** 30 - 3.46048457783754e25 * cos(theta) ** 28 + 3.79148745050027e24 * cos(theta) ** 26 - 3.51765178821749e23 * cos(theta) ** 24 + 2.73331051111494e22 * cos(theta) ** 22 - 1.75533702548666e21 * cos(theta) ** 20 + 9.16751057840751e19 * cos(theta) ** 18 - 3.81667787345945e18 * cos(theta) ** 16 + 1.23517083283477e17 * cos(theta) ** 14 - 3.00777484045931e15 * cos(theta) ** 12 + 52767979657180.9 * cos(theta) ** 10 - 627692065707.941 * cos(theta) ** 8 + 4625099431.5322 * cos(theta) ** 6 - 18194726.3238875 * cos(theta) ** 4 + 28563.1496450353 * cos(theta) ** 2 - 7.46358757382683 ) * sin(phi) ) # @torch.jit.script def Yl87_m0(theta, phi): return ( 1.09575898949058e26 * cos(theta) ** 87 - 2.369499641436e27 * cos(theta) ** 85 + 2.473425064306e28 * cos(theta) ** 83 - 1.66017070884286e29 * cos(theta) ** 81 + 8.05232499498633e29 * cos(theta) ** 79 - 3.00717737085489e30 * cos(theta) ** 77 + 8.99693352466403e30 * cos(theta) ** 75 - 2.21530528224869e31 * cos(theta) ** 73 + 4.57690430955153e31 * cos(theta) ** 71 - 8.04926200228984e31 * cos(theta) ** 69 + 1.21829475208851e32 * cos(theta) ** 67 - 1.60050487039079e32 * cos(theta) ** 65 + 1.83722413378193e32 * cos(theta) ** 63 - 1.85239996555297e32 * cos(theta) ** 61 + 1.64717781193486e32 * cos(theta) ** 59 - 1.29577987872209e32 * cos(theta) ** 57 + 9.03874425891805e31 * cos(theta) ** 55 - 5.59972266353496e31 * cos(theta) ** 53 + 3.08409985225867e31 * cos(theta) ** 51 - 1.51065205978863e31 * cos(theta) ** 49 + 6.5797289715238e30 * cos(theta) ** 47 - 2.54661189338247e30 * cos(theta) ** 45 + 8.74790345055046e29 * cos(theta) ** 43 - 2.66240539799362e29 * cos(theta) ** 41 + 7.16263919407732e28 * cos(theta) ** 39 - 1.69840500569961e28 * cos(theta) ** 37 + 3.53701605314554e27 * cos(theta) ** 35 - 6.44176477386469e26 * cos(theta) ** 33 + 1.02078385372166e26 * cos(theta) ** 31 - 1.39895223100669e25 * cos(theta) ** 29 + 1.64630320518468e24 * cos(theta) ** 27 - 1.64959299177797e23 * cos(theta) ** 25 + 1.3932373241368e22 * cos(theta) ** 23 - 9.79952857955549e20 * cos(theta) ** 21 + 5.65668224768184e19 * cos(theta) ** 19 - 2.63208888259481e18 * cos(theta) ** 17 + 9.65383193184722e16 * cos(theta) ** 15 - 2.71247619171517e15 * cos(theta) ** 13 + 56239538265226.7 * cos(theta) ** 11 - 817651230395.842 * cos(theta) ** 9 + 7746169551.1185 * cos(theta) ** 7 - 42661830.7299996 * cos(theta) ** 5 + 111621.744453165 * cos(theta) ** 3 - 87.5007142303357 * cos(theta) ) # @torch.jit.script def Yl87_m1(theta, phi): return ( 0.0603153882582824 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 8.13149369960342e26 * cos(theta) ** 86 - 1.7179543047428e28 * cos(theta) ** 84 + 1.75110780886942e29 * cos(theta) ** 82 - 1.14702742273281e30 * cos(theta) ** 80 + 5.42605786801748e30 * cos(theta) ** 78 - 1.97508506395836e31 * cos(theta) ** 76 + 5.75561598392774e31 * cos(theta) ** 74 - 1.37940716704426e32 * cos(theta) ** 72 + 2.77182760924932e32 * cos(theta) ** 70 - 4.7374123682499e32 * cos(theta) ** 68 + 6.9624679837892e32 * cos(theta) ** 66 - 8.87373370482938e32 * cos(theta) ** 64 + 9.87276332722739e32 * cos(theta) ** 62 - 9.63830431171244e32 * cos(theta) ** 60 + 8.28950370832411e32 * cos(theta) ** 58 - 6.30002281832632e32 * cos(theta) ** 56 + 4.24039997387349e32 * cos(theta) ** 54 - 2.53150286300082e32 * cos(theta) ** 52 + 1.34163580988772e32 * cos(theta) ** 50 - 6.31388346950619e31 * cos(theta) ** 48 + 2.63780020503814e31 * cos(theta) ** 46 - 9.77487723671492e30 * cos(theta) ** 44 + 3.20854748991406e30 * cos(theta) ** 42 - 9.31095176547355e29 * cos(theta) ** 40 + 2.38272387699126e29 * cos(theta) ** 38 - 5.36017563367954e28 * cos(theta) ** 36 + 1.05594454322017e28 * cos(theta) ** 34 - 1.81323810451949e27 * cos(theta) ** 32 + 2.69917797071329e26 * cos(theta) ** 30 - 3.46048457783754e25 * cos(theta) ** 28 + 3.79148745050027e24 * cos(theta) ** 26 - 3.51765178821749e23 * cos(theta) ** 24 + 2.73331051111494e22 * cos(theta) ** 22 - 1.75533702548666e21 * cos(theta) ** 20 + 9.16751057840751e19 * cos(theta) ** 18 - 3.81667787345945e18 * cos(theta) ** 16 + 1.23517083283477e17 * cos(theta) ** 14 - 3.00777484045931e15 * cos(theta) ** 12 + 52767979657180.9 * cos(theta) ** 10 - 627692065707.941 * cos(theta) ** 8 + 4625099431.5322 * cos(theta) ** 6 - 18194726.3238875 * cos(theta) ** 4 + 28563.1496450353 * cos(theta) ** 2 - 7.46358757382683 ) * cos(phi) ) # @torch.jit.script def Yl87_m2(theta, phi): return ( 0.000689420032930979 * (1.0 - cos(theta) ** 2) * ( 6.99308458165894e28 * cos(theta) ** 85 - 1.44308161598396e30 * cos(theta) ** 83 + 1.43590840327292e31 * cos(theta) ** 81 - 9.17621938186247e31 * cos(theta) ** 79 + 4.23232513705363e32 * cos(theta) ** 77 - 1.50106464860836e33 * cos(theta) ** 75 + 4.25915582810653e33 * cos(theta) ** 73 - 9.93173160271869e33 * cos(theta) ** 71 + 1.94027932647452e34 * cos(theta) ** 69 - 3.22144041040993e34 * cos(theta) ** 67 + 4.59522886930088e34 * cos(theta) ** 65 - 5.6791895710908e34 * cos(theta) ** 63 + 6.12111326288098e34 * cos(theta) ** 61 - 5.78298258702746e34 * cos(theta) ** 59 + 4.80791215082798e34 * cos(theta) ** 57 - 3.52801277826274e34 * cos(theta) ** 55 + 2.28981598589168e34 * cos(theta) ** 53 - 1.31638148876042e34 * cos(theta) ** 51 + 6.70817904943862e33 * cos(theta) ** 49 - 3.03066406536297e33 * cos(theta) ** 47 + 1.21338809431754e33 * cos(theta) ** 45 - 4.30094598415456e32 * cos(theta) ** 43 + 1.3475899457639e32 * cos(theta) ** 41 - 3.72438070618942e31 * cos(theta) ** 39 + 9.0543507325668e30 * cos(theta) ** 37 - 1.92966322812464e30 * cos(theta) ** 35 + 3.59021144694859e29 * cos(theta) ** 33 - 5.80236193446237e28 * cos(theta) ** 31 + 8.09753391213985e27 * cos(theta) ** 29 - 9.68935681794513e26 * cos(theta) ** 27 + 9.85786737130069e25 * cos(theta) ** 25 - 8.44236429172198e24 * cos(theta) ** 23 + 6.01328312445287e23 * cos(theta) ** 21 - 3.51067405097332e22 * cos(theta) ** 19 + 1.65015190411335e21 * cos(theta) ** 17 - 6.10668459753513e19 * cos(theta) ** 15 + 1.72923916596868e18 * cos(theta) ** 13 - 3.60932980855118e16 * cos(theta) ** 11 + 527679796571809.0 * cos(theta) ** 9 - 5021536525663.53 * cos(theta) ** 7 + 27750596589.1932 * cos(theta) ** 5 - 72778905.2955499 * cos(theta) ** 3 + 57126.2992900706 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl87_m3(theta, phi): return ( 7.88230401443765e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 5.9441218944101e30 * cos(theta) ** 84 - 1.19775774126668e32 * cos(theta) ** 82 + 1.16308580665107e33 * cos(theta) ** 80 - 7.24921331167135e33 * cos(theta) ** 78 + 3.2588903555313e34 * cos(theta) ** 76 - 1.12579848645627e35 * cos(theta) ** 74 + 3.10918375451777e35 * cos(theta) ** 72 - 7.05152943793027e35 * cos(theta) ** 70 + 1.33879273526742e36 * cos(theta) ** 68 - 2.15836507497465e36 * cos(theta) ** 66 + 2.98689876504557e36 * cos(theta) ** 64 - 3.57788942978721e36 * cos(theta) ** 62 + 3.7338790903574e36 * cos(theta) ** 60 - 3.4119597263462e36 * cos(theta) ** 58 + 2.74050992597195e36 * cos(theta) ** 56 - 1.94040702804451e36 * cos(theta) ** 54 + 1.21360247252259e36 * cos(theta) ** 52 - 6.71354559267817e35 * cos(theta) ** 50 + 3.28700773422492e35 * cos(theta) ** 48 - 1.4244121107206e35 * cos(theta) ** 46 + 5.46024642442895e34 * cos(theta) ** 44 - 1.84940677318646e34 * cos(theta) ** 42 + 5.525118777632e33 * cos(theta) ** 40 - 1.45250847541387e33 * cos(theta) ** 38 + 3.35010977104972e32 * cos(theta) ** 36 - 6.75382129843623e31 * cos(theta) ** 34 + 1.18476977749303e31 * cos(theta) ** 32 - 1.79873219968333e30 * cos(theta) ** 30 + 2.34828483452056e29 * cos(theta) ** 28 - 2.61612634084518e28 * cos(theta) ** 26 + 2.46446684282517e27 * cos(theta) ** 24 - 1.94174378709605e26 * cos(theta) ** 22 + 1.2627894561351e25 * cos(theta) ** 20 - 6.67028069684931e23 * cos(theta) ** 18 + 2.8052582369927e22 * cos(theta) ** 16 - 9.16002689630269e20 * cos(theta) ** 14 + 2.24801091575929e19 * cos(theta) ** 12 - 3.97026278940629e17 * cos(theta) ** 10 + 4.74911816914628e15 * cos(theta) ** 8 - 35150755679644.7 * cos(theta) ** 6 + 138752982945.966 * cos(theta) ** 4 - 218336715.88665 * cos(theta) ** 2 + 57126.2992900706 ) * cos(3 * phi) ) # @torch.jit.script def Yl87_m4(theta, phi): return ( 9.01556278258805e-8 * (1.0 - cos(theta) ** 2) ** 2 * ( 4.99306239130448e32 * cos(theta) ** 83 - 9.8216134783868e33 * cos(theta) ** 81 + 9.30468645320855e34 * cos(theta) ** 79 - 5.65438638310365e35 * cos(theta) ** 77 + 2.47675667020379e36 * cos(theta) ** 75 - 8.33090879977637e36 * cos(theta) ** 73 + 2.23861230325279e37 * cos(theta) ** 71 - 4.93607060655119e37 * cos(theta) ** 69 + 9.10379059981846e37 * cos(theta) ** 67 - 1.42452094948327e38 * cos(theta) ** 65 + 1.91161520962916e38 * cos(theta) ** 63 - 2.21829144646807e38 * cos(theta) ** 61 + 2.24032745421444e38 * cos(theta) ** 59 - 1.9789366412808e38 * cos(theta) ** 57 + 1.53468555854429e38 * cos(theta) ** 55 - 1.04781979514403e38 * cos(theta) ** 53 + 6.31073285711748e37 * cos(theta) ** 51 - 3.35677279633908e37 * cos(theta) ** 49 + 1.57776371242796e37 * cos(theta) ** 47 - 6.55229570931474e36 * cos(theta) ** 45 + 2.40250842674874e36 * cos(theta) ** 43 - 7.76750844738314e35 * cos(theta) ** 41 + 2.2100475110528e35 * cos(theta) ** 39 - 5.51953220657272e34 * cos(theta) ** 37 + 1.2060395175779e34 * cos(theta) ** 35 - 2.29629924146832e33 * cos(theta) ** 33 + 3.79126328797771e32 * cos(theta) ** 31 - 5.39619659905e31 * cos(theta) ** 29 + 6.57519753665756e30 * cos(theta) ** 27 - 6.80192848619748e29 * cos(theta) ** 25 + 5.91472042278042e28 * cos(theta) ** 23 - 4.27183633161132e27 * cos(theta) ** 21 + 2.52557891227021e26 * cos(theta) ** 19 - 1.20065052543288e25 * cos(theta) ** 17 + 4.48841317918832e23 * cos(theta) ** 15 - 1.28240376548238e22 * cos(theta) ** 13 + 2.69761309891115e20 * cos(theta) ** 11 - 3.97026278940629e18 * cos(theta) ** 9 + 3.79929453531703e16 * cos(theta) ** 7 - 210904534077868.0 * cos(theta) ** 5 + 555011931783.864 * cos(theta) ** 3 - 436673431.7733 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl87_m5(theta, phi): return ( 1.0317153265403e-9 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 4.14424178478272e34 * cos(theta) ** 82 - 7.95550691749331e35 * cos(theta) ** 80 + 7.35070229803475e36 * cos(theta) ** 78 - 4.35387751498981e37 * cos(theta) ** 76 + 1.85756750265284e38 * cos(theta) ** 74 - 6.08156342383675e38 * cos(theta) ** 72 + 1.58941473530948e39 * cos(theta) ** 70 - 3.40588871852032e39 * cos(theta) ** 68 + 6.09953970187837e39 * cos(theta) ** 66 - 9.25938617164126e39 * cos(theta) ** 64 + 1.20431758206637e40 * cos(theta) ** 62 - 1.35315778234552e40 * cos(theta) ** 60 + 1.32179319798652e40 * cos(theta) ** 58 - 1.12799388553005e40 * cos(theta) ** 56 + 8.44077057199361e39 * cos(theta) ** 54 - 5.55344491426338e39 * cos(theta) ** 52 + 3.21847375712991e39 * cos(theta) ** 50 - 1.64481867020615e39 * cos(theta) ** 48 + 7.41548944841142e38 * cos(theta) ** 46 - 2.94853306919163e38 * cos(theta) ** 44 + 1.03307862350196e38 * cos(theta) ** 42 - 3.18467846342709e37 * cos(theta) ** 40 + 8.61918529310593e36 * cos(theta) ** 38 - 2.04222691643191e36 * cos(theta) ** 36 + 4.22113831152264e35 * cos(theta) ** 34 - 7.57778749684545e34 * cos(theta) ** 32 + 1.17529161927309e34 * cos(theta) ** 30 - 1.5648970137245e33 * cos(theta) ** 28 + 1.77530333489754e32 * cos(theta) ** 26 - 1.70048212154937e31 * cos(theta) ** 24 + 1.3603856972395e30 * cos(theta) ** 22 - 8.97085629638377e28 * cos(theta) ** 20 + 4.79859993331339e27 * cos(theta) ** 18 - 2.04110589323589e26 * cos(theta) ** 16 + 6.73261976878248e24 * cos(theta) ** 14 - 1.66712489512709e23 * cos(theta) ** 12 + 2.96737440880226e21 * cos(theta) ** 10 - 3.57323651046566e19 * cos(theta) ** 8 + 2.65950617472192e17 * cos(theta) ** 6 - 1.05452267038934e15 * cos(theta) ** 4 + 1665035795351.59 * cos(theta) ** 2 - 436673431.7733 ) * cos(5 * phi) ) # @torch.jit.script def Yl87_m6(theta, phi): return ( 1.1814394860243e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 3.39827826352183e36 * cos(theta) ** 81 - 6.36440553399464e37 * cos(theta) ** 79 + 5.73354779246711e38 * cos(theta) ** 77 - 3.30894691139226e39 * cos(theta) ** 75 + 1.3745999519631e40 * cos(theta) ** 73 - 4.37872566516246e40 * cos(theta) ** 71 + 1.11259031471664e41 * cos(theta) ** 69 - 2.31600432859382e41 * cos(theta) ** 67 + 4.02569620323972e41 * cos(theta) ** 65 - 5.92600714985041e41 * cos(theta) ** 63 + 7.46676900881151e41 * cos(theta) ** 61 - 8.11894669407313e41 * cos(theta) ** 59 + 7.66640054832181e41 * cos(theta) ** 57 - 6.31676575896831e41 * cos(theta) ** 55 + 4.55801610887655e41 * cos(theta) ** 53 - 2.88779135541696e41 * cos(theta) ** 51 + 1.60923687856496e41 * cos(theta) ** 49 - 7.89512961698952e40 * cos(theta) ** 47 + 3.41112514626925e40 * cos(theta) ** 45 - 1.29735455044432e40 * cos(theta) ** 43 + 4.33893021870822e39 * cos(theta) ** 41 - 1.27387138537083e39 * cos(theta) ** 39 + 3.27529041138025e38 * cos(theta) ** 37 - 7.35201689915486e37 * cos(theta) ** 35 + 1.4351870259177e37 * cos(theta) ** 33 - 2.42489199899054e36 * cos(theta) ** 31 + 3.52587485781927e35 * cos(theta) ** 29 - 4.3817116384286e34 * cos(theta) ** 27 + 4.61578867073361e33 * cos(theta) ** 25 - 4.08115709171849e32 * cos(theta) ** 23 + 2.99284853392689e31 * cos(theta) ** 21 - 1.79417125927675e30 * cos(theta) ** 19 + 8.6374798799641e28 * cos(theta) ** 17 - 3.26576942917742e27 * cos(theta) ** 15 + 9.42566767629547e25 * cos(theta) ** 13 - 2.00054987415251e24 * cos(theta) ** 11 + 2.96737440880226e22 * cos(theta) ** 9 - 2.85858920837253e20 * cos(theta) ** 7 + 1.59570370483315e18 * cos(theta) ** 5 - 4.21809068155737e15 * cos(theta) ** 3 + 3330071590703.18 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl87_m7(theta, phi): return ( 1.35395754117171e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 2.75260539345268e38 * cos(theta) ** 80 - 5.02788037185577e39 * cos(theta) ** 78 + 4.41483180019967e40 * cos(theta) ** 76 - 2.48171018354419e41 * cos(theta) ** 74 + 1.00345796493306e42 * cos(theta) ** 72 - 3.10889522226535e42 * cos(theta) ** 70 + 7.6768731715448e42 * cos(theta) ** 68 - 1.55172290015786e43 * cos(theta) ** 66 + 2.61670253210582e43 * cos(theta) ** 64 - 3.73338450440576e43 * cos(theta) ** 62 + 4.55472909537502e43 * cos(theta) ** 60 - 4.79017854950314e43 * cos(theta) ** 58 + 4.36984831254343e43 * cos(theta) ** 56 - 3.47422116743257e43 * cos(theta) ** 54 + 2.41574853770457e43 * cos(theta) ** 52 - 1.47277359126265e43 * cos(theta) ** 50 + 7.88526070496829e42 * cos(theta) ** 48 - 3.71071091998508e42 * cos(theta) ** 46 + 1.53500631582116e42 * cos(theta) ** 44 - 5.57862456691057e41 * cos(theta) ** 42 + 1.77896138967037e41 * cos(theta) ** 40 - 4.96809840294626e40 * cos(theta) ** 38 + 1.21185745221069e40 * cos(theta) ** 36 - 2.5732059147042e39 * cos(theta) ** 34 + 4.7361171855284e38 * cos(theta) ** 32 - 7.51716519687068e37 * cos(theta) ** 30 + 1.02250370876759e37 * cos(theta) ** 28 - 1.18306214237572e36 * cos(theta) ** 26 + 1.1539471676834e35 * cos(theta) ** 24 - 9.38666131095252e33 * cos(theta) ** 22 + 6.28498192124647e32 * cos(theta) ** 20 - 3.40892539262583e31 * cos(theta) ** 18 + 1.4683715795939e30 * cos(theta) ** 16 - 4.89865414376613e28 * cos(theta) ** 14 + 1.22533679791841e27 * cos(theta) ** 12 - 2.20060486156776e25 * cos(theta) ** 10 + 2.67063696792204e23 * cos(theta) ** 8 - 2.00101244586077e21 * cos(theta) ** 6 + 7.97851852416576e18 * cos(theta) ** 4 - 1.26542720446721e16 * cos(theta) ** 2 + 3330071590703.18 ) * cos(7 * phi) ) # @torch.jit.script def Yl87_m8(theta, phi): return ( 1.55309581468744e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 2.20208431476215e40 * cos(theta) ** 79 - 3.9217466900475e41 * cos(theta) ** 77 + 3.35527216815175e42 * cos(theta) ** 75 - 1.8364655358227e43 * cos(theta) ** 73 + 7.22489734751806e43 * cos(theta) ** 71 - 2.17622665558574e44 * cos(theta) ** 69 + 5.22027375665046e44 * cos(theta) ** 67 - 1.02413711410419e45 * cos(theta) ** 65 + 1.67468962054773e45 * cos(theta) ** 63 - 2.31469839273157e45 * cos(theta) ** 61 + 2.73283745722501e45 * cos(theta) ** 59 - 2.77830355871182e45 * cos(theta) ** 57 + 2.44711505502432e45 * cos(theta) ** 55 - 1.87607943041359e45 * cos(theta) ** 53 + 1.25618923960638e45 * cos(theta) ** 51 - 7.36386795631324e44 * cos(theta) ** 49 + 3.78492513838478e44 * cos(theta) ** 47 - 1.70692702319314e44 * cos(theta) ** 45 + 6.75402778961312e43 * cos(theta) ** 43 - 2.34302231810244e43 * cos(theta) ** 41 + 7.11584555868148e42 * cos(theta) ** 39 - 1.88787739311958e42 * cos(theta) ** 37 + 4.3626868279585e41 * cos(theta) ** 35 - 8.74890010999429e40 * cos(theta) ** 33 + 1.51555749936909e40 * cos(theta) ** 31 - 2.2551495590612e39 * cos(theta) ** 29 + 2.86301038454925e38 * cos(theta) ** 27 - 3.07596157017688e37 * cos(theta) ** 25 + 2.76947320244016e36 * cos(theta) ** 23 - 2.06506548840955e35 * cos(theta) ** 21 + 1.25699638424929e34 * cos(theta) ** 19 - 6.1360657067265e32 * cos(theta) ** 17 + 2.34939452735024e31 * cos(theta) ** 15 - 6.85811580127258e29 * cos(theta) ** 13 + 1.47040415750209e28 * cos(theta) ** 11 - 2.20060486156776e26 * cos(theta) ** 9 + 2.13650957433763e24 * cos(theta) ** 7 - 1.20060746751646e22 * cos(theta) ** 5 + 3.1914074096663e19 * cos(theta) ** 3 - 2.53085440893442e16 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl87_m9(theta, phi): return ( 1.78340133412671e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1.7396466086621e42 * cos(theta) ** 78 - 3.01974495133657e43 * cos(theta) ** 76 + 2.51645412611381e44 * cos(theta) ** 74 - 1.34061984115057e45 * cos(theta) ** 72 + 5.12967711673782e45 * cos(theta) ** 70 - 1.50159639235416e46 * cos(theta) ** 68 + 3.49758341695581e46 * cos(theta) ** 66 - 6.65689124167721e46 * cos(theta) ** 64 + 1.05505446094507e47 * cos(theta) ** 62 - 1.41196601956626e47 * cos(theta) ** 60 + 1.61237409976276e47 * cos(theta) ** 58 - 1.58363302846574e47 * cos(theta) ** 56 + 1.34591328026338e47 * cos(theta) ** 54 - 9.94322098119201e46 * cos(theta) ** 52 + 6.40656512199252e46 * cos(theta) ** 50 - 3.60829529859349e46 * cos(theta) ** 48 + 1.77891481504085e46 * cos(theta) ** 46 - 7.68117160436911e45 * cos(theta) ** 44 + 2.90423194953364e45 * cos(theta) ** 42 - 9.60639150422e44 * cos(theta) ** 40 + 2.77517976788578e44 * cos(theta) ** 38 - 6.98514635454244e43 * cos(theta) ** 36 + 1.52694038978547e43 * cos(theta) ** 34 - 2.88713703629812e42 * cos(theta) ** 32 + 4.69822824804418e41 * cos(theta) ** 30 - 6.53993372127749e40 * cos(theta) ** 28 + 7.73012803828297e39 * cos(theta) ** 26 - 7.68990392544219e38 * cos(theta) ** 24 + 6.36978836561238e37 * cos(theta) ** 22 - 4.33663752566006e36 * cos(theta) ** 20 + 2.38829313007366e35 * cos(theta) ** 18 - 1.0431311701435e34 * cos(theta) ** 16 + 3.52409179102535e32 * cos(theta) ** 14 - 8.91555054165436e30 * cos(theta) ** 12 + 1.6174445732523e29 * cos(theta) ** 10 - 1.98054437541098e27 * cos(theta) ** 8 + 1.49555670203634e25 * cos(theta) ** 6 - 6.00303733758231e22 * cos(theta) ** 4 + 9.57422222899891e19 * cos(theta) ** 2 - 2.53085440893442e16 ) * cos(9 * phi) ) # @torch.jit.script def Yl87_m10(theta, phi): return ( 2.05029295166213e-19 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.35692435475644e44 * cos(theta) ** 77 - 2.2950061630158e45 * cos(theta) ** 75 + 1.86217605332422e46 * cos(theta) ** 73 - 9.65246285628413e46 * cos(theta) ** 71 + 3.59077398171648e47 * cos(theta) ** 69 - 1.02108554680083e48 * cos(theta) ** 67 + 2.30840505519084e48 * cos(theta) ** 65 - 4.26041039467341e48 * cos(theta) ** 63 + 6.54133765785942e48 * cos(theta) ** 61 - 8.47179611739755e48 * cos(theta) ** 59 + 9.351769778624e48 * cos(theta) ** 57 - 8.86834495940814e48 * cos(theta) ** 55 + 7.26793171342224e48 * cos(theta) ** 53 - 5.17047491021985e48 * cos(theta) ** 51 + 3.20328256099626e48 * cos(theta) ** 49 - 1.73198174332487e48 * cos(theta) ** 47 + 8.18300814918789e47 * cos(theta) ** 45 - 3.37971550592241e47 * cos(theta) ** 43 + 1.21977741880413e47 * cos(theta) ** 41 - 3.842556601688e46 * cos(theta) ** 39 + 1.0545683117966e46 * cos(theta) ** 37 - 2.51465268763528e45 * cos(theta) ** 35 + 5.19159732527061e44 * cos(theta) ** 33 - 9.23883851615397e43 * cos(theta) ** 31 + 1.40946847441325e43 * cos(theta) ** 29 - 1.8311814419577e42 * cos(theta) ** 27 + 2.00983328995357e41 * cos(theta) ** 25 - 1.84557694210613e40 * cos(theta) ** 23 + 1.40135344043472e39 * cos(theta) ** 21 - 8.67327505132013e37 * cos(theta) ** 19 + 4.29892763413259e36 * cos(theta) ** 17 - 1.66900987222961e35 * cos(theta) ** 15 + 4.9337285074355e33 * cos(theta) ** 13 - 1.06986606499852e32 * cos(theta) ** 11 + 1.6174445732523e30 * cos(theta) ** 9 - 1.58443550032879e28 * cos(theta) ** 7 + 8.97334021221804e25 * cos(theta) ** 5 - 2.40121493503293e23 * cos(theta) ** 3 + 1.91484444579978e20 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl87_m11(theta, phi): return ( 2.36024734775532e-21 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.04483175316245e46 * cos(theta) ** 76 - 1.72125462226185e47 * cos(theta) ** 74 + 1.35938851892668e48 * cos(theta) ** 72 - 6.85324862796173e48 * cos(theta) ** 70 + 2.47763404738437e49 * cos(theta) ** 68 - 6.84127316356557e49 * cos(theta) ** 66 + 1.50046328587404e50 * cos(theta) ** 64 - 2.68405854864425e50 * cos(theta) ** 62 + 3.99021597129424e50 * cos(theta) ** 60 - 4.99835970926455e50 * cos(theta) ** 58 + 5.33050877381568e50 * cos(theta) ** 56 - 4.87758972767448e50 * cos(theta) ** 54 + 3.85200380811378e50 * cos(theta) ** 52 - 2.63694220421212e50 * cos(theta) ** 50 + 1.56960845488817e50 * cos(theta) ** 48 - 8.14031419362691e49 * cos(theta) ** 46 + 3.68235366713455e49 * cos(theta) ** 44 - 1.45327766754664e49 * cos(theta) ** 42 + 5.00108741709693e48 * cos(theta) ** 40 - 1.49859707465832e48 * cos(theta) ** 38 + 3.90190275364741e47 * cos(theta) ** 36 - 8.80128440672347e46 * cos(theta) ** 34 + 1.7132271173393e46 * cos(theta) ** 32 - 2.86403994000773e45 * cos(theta) ** 30 + 4.08745857579843e44 * cos(theta) ** 28 - 4.94418989328579e43 * cos(theta) ** 26 + 5.02458322488393e42 * cos(theta) ** 24 - 4.24482696684409e41 * cos(theta) ** 22 + 2.94284222491292e40 * cos(theta) ** 20 - 1.64792225975082e39 * cos(theta) ** 18 + 7.3081769780254e37 * cos(theta) ** 16 - 2.50351480834441e36 * cos(theta) ** 14 + 6.41384705966614e34 * cos(theta) ** 12 - 1.17685267149838e33 * cos(theta) ** 10 + 1.45570011592707e31 * cos(theta) ** 8 - 1.10910485023015e29 * cos(theta) ** 6 + 4.48667010610902e26 * cos(theta) ** 4 - 7.20364480509878e23 * cos(theta) ** 2 + 1.91484444579978e20 ) * cos(11 * phi) ) # @torch.jit.script def Yl87_m12(theta, phi): return ( 2.72102871457316e-23 * (1.0 - cos(theta) ** 2) ** 6 * ( 7.94072132403466e47 * cos(theta) ** 75 - 1.27372842047377e49 * cos(theta) ** 73 + 9.78759733627211e49 * cos(theta) ** 71 - 4.79727403957321e50 * cos(theta) ** 69 + 1.68479115222137e51 * cos(theta) ** 67 - 4.51524028795327e51 * cos(theta) ** 65 + 9.60296502959387e51 * cos(theta) ** 63 - 1.66411630015944e52 * cos(theta) ** 61 + 2.39412958277655e52 * cos(theta) ** 59 - 2.89904863137344e52 * cos(theta) ** 57 + 2.98508491333678e52 * cos(theta) ** 55 - 2.63389845294422e52 * cos(theta) ** 53 + 2.00304198021917e52 * cos(theta) ** 51 - 1.31847110210606e52 * cos(theta) ** 49 + 7.5341205834632e51 * cos(theta) ** 47 - 3.74454452906838e51 * cos(theta) ** 45 + 1.6202356135392e51 * cos(theta) ** 43 - 6.10376620369587e50 * cos(theta) ** 41 + 2.00043496683877e50 * cos(theta) ** 39 - 5.69466888370162e49 * cos(theta) ** 37 + 1.40468499131307e49 * cos(theta) ** 35 - 2.99243669828598e48 * cos(theta) ** 33 + 5.48232677548576e47 * cos(theta) ** 31 - 8.59211982002319e46 * cos(theta) ** 29 + 1.14448840122356e46 * cos(theta) ** 27 - 1.2854893722543e45 * cos(theta) ** 25 + 1.20589997397214e44 * cos(theta) ** 23 - 9.338619327057e42 * cos(theta) ** 21 + 5.88568444982584e41 * cos(theta) ** 19 - 2.96626006755148e40 * cos(theta) ** 17 + 1.16930831648406e39 * cos(theta) ** 15 - 3.50492073168218e37 * cos(theta) ** 13 + 7.69661647159937e35 * cos(theta) ** 11 - 1.17685267149838e34 * cos(theta) ** 9 + 1.16456009274166e32 * cos(theta) ** 7 - 6.6546291013809e29 * cos(theta) ** 5 + 1.79466804244361e27 * cos(theta) ** 3 - 1.44072896101976e24 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl87_m13(theta, phi): return ( 3.14197332166303e-25 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 5.95554099302599e49 * cos(theta) ** 74 - 9.2982174694585e50 * cos(theta) ** 72 + 6.9491941087532e51 * cos(theta) ** 70 - 3.31011908730552e52 * cos(theta) ** 68 + 1.12881007198832e53 * cos(theta) ** 66 - 2.93490618716963e53 * cos(theta) ** 64 + 6.04986796864414e53 * cos(theta) ** 62 - 1.01511094309726e54 * cos(theta) ** 60 + 1.41253645383816e54 * cos(theta) ** 58 - 1.65245771988286e54 * cos(theta) ** 56 + 1.64179670233523e54 * cos(theta) ** 54 - 1.39596618006044e54 * cos(theta) ** 52 + 1.02155140991178e54 * cos(theta) ** 50 - 6.4605084003197e53 * cos(theta) ** 48 + 3.54103667422771e53 * cos(theta) ** 46 - 1.68504503808077e53 * cos(theta) ** 44 + 6.96701313821857e52 * cos(theta) ** 42 - 2.50254414351531e52 * cos(theta) ** 40 + 7.80169637067122e51 * cos(theta) ** 38 - 2.1070274869696e51 * cos(theta) ** 36 + 4.91639746959573e50 * cos(theta) ** 34 - 9.87504110434373e49 * cos(theta) ** 32 + 1.69952130040059e49 * cos(theta) ** 30 - 2.49171474780673e48 * cos(theta) ** 28 + 3.09011868330362e47 * cos(theta) ** 26 - 3.21372343063576e46 * cos(theta) ** 24 + 2.77356994013593e45 * cos(theta) ** 22 - 1.96111005868197e44 * cos(theta) ** 20 + 1.11828004546691e43 * cos(theta) ** 18 - 5.04264211483752e41 * cos(theta) ** 16 + 1.75396247472609e40 * cos(theta) ** 14 - 4.55639695118683e38 * cos(theta) ** 12 + 8.46627811875931e36 * cos(theta) ** 10 - 1.05916740434854e35 * cos(theta) ** 8 + 8.1519206491916e32 * cos(theta) ** 6 - 3.32731455069045e30 * cos(theta) ** 4 + 5.38400412733083e27 * cos(theta) ** 2 - 1.44072896101976e24 ) * cos(13 * phi) ) # @torch.jit.script def Yl87_m14(theta, phi): return ( 3.63434328353075e-27 * (1.0 - cos(theta) ** 2) ** 7 * ( 4.40710033483924e51 * cos(theta) ** 73 - 6.69471657801012e52 * cos(theta) ** 71 + 4.86443587612724e53 * cos(theta) ** 69 - 2.25088097936775e54 * cos(theta) ** 67 + 7.4501464751229e54 * cos(theta) ** 65 - 1.87833995978856e55 * cos(theta) ** 63 + 3.75091814055937e55 * cos(theta) ** 61 - 6.09066565858353e55 * cos(theta) ** 59 + 8.19271143226134e55 * cos(theta) ** 57 - 9.25376323134402e55 * cos(theta) ** 55 + 8.86570219261024e55 * cos(theta) ** 53 - 7.25902413631427e55 * cos(theta) ** 51 + 5.10775704955888e55 * cos(theta) ** 49 - 3.10104403215345e55 * cos(theta) ** 47 + 1.62887687014474e55 * cos(theta) ** 45 - 7.41419816755539e54 * cos(theta) ** 43 + 2.9261455180518e54 * cos(theta) ** 41 - 1.00101765740612e54 * cos(theta) ** 39 + 2.96464462085506e53 * cos(theta) ** 37 - 7.58529895309056e52 * cos(theta) ** 35 + 1.67157513966255e52 * cos(theta) ** 33 - 3.16001315338999e51 * cos(theta) ** 31 + 5.09856390120176e50 * cos(theta) ** 29 - 6.97680129385883e49 * cos(theta) ** 27 + 8.0343085765894e48 * cos(theta) ** 25 - 7.71293623352583e47 * cos(theta) ** 23 + 6.10185386829904e46 * cos(theta) ** 21 - 3.92222011736394e45 * cos(theta) ** 19 + 2.01290408184044e44 * cos(theta) ** 17 - 8.06822738374004e42 * cos(theta) ** 15 + 2.45554746461653e41 * cos(theta) ** 13 - 5.4676763414242e39 * cos(theta) ** 11 + 8.46627811875931e37 * cos(theta) ** 9 - 8.4733392347883e35 * cos(theta) ** 7 + 4.89115238951496e33 * cos(theta) ** 5 - 1.33092582027618e31 * cos(theta) ** 3 + 1.07680082546617e28 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl87_m15(theta, phi): return ( 4.21176790154604e-29 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 3.21718324443264e53 * cos(theta) ** 72 - 4.75324877038719e54 * cos(theta) ** 70 + 3.35646075452779e55 * cos(theta) ** 68 - 1.50809025617639e56 * cos(theta) ** 66 + 4.84259520882989e56 * cos(theta) ** 64 - 1.18335417466679e57 * cos(theta) ** 62 + 2.28806006574121e57 * cos(theta) ** 60 - 3.59349273856428e57 * cos(theta) ** 58 + 4.66984551638896e57 * cos(theta) ** 56 - 5.08956977723921e57 * cos(theta) ** 54 + 4.69882216208343e57 * cos(theta) ** 52 - 3.70210230952028e57 * cos(theta) ** 50 + 2.50280095428385e57 * cos(theta) ** 48 - 1.45749069511212e57 * cos(theta) ** 46 + 7.32994591565135e56 * cos(theta) ** 44 - 3.18810521204882e56 * cos(theta) ** 42 + 1.19971966240124e56 * cos(theta) ** 40 - 3.90396886388388e55 * cos(theta) ** 38 + 1.09691850971637e55 * cos(theta) ** 36 - 2.65485463358169e54 * cos(theta) ** 34 + 5.51619796088641e53 * cos(theta) ** 32 - 9.79604077550898e52 * cos(theta) ** 30 + 1.47858353134851e52 * cos(theta) ** 28 - 1.88373634934188e51 * cos(theta) ** 26 + 2.00857714414735e50 * cos(theta) ** 24 - 1.77397533371094e49 * cos(theta) ** 22 + 1.2813893123428e48 * cos(theta) ** 20 - 7.45221822299148e46 * cos(theta) ** 18 + 3.42193693912874e45 * cos(theta) ** 16 - 1.21023410756101e44 * cos(theta) ** 14 + 3.19221170400149e42 * cos(theta) ** 12 - 6.01444397556661e40 * cos(theta) ** 10 + 7.61965030688338e38 * cos(theta) ** 8 - 5.93133746435181e36 * cos(theta) ** 6 + 2.44557619475748e34 * cos(theta) ** 4 - 3.99277746082854e31 * cos(theta) ** 2 + 1.07680082546617e28 ) * cos(15 * phi) ) # @torch.jit.script def Yl87_m16(theta, phi): return ( 4.89079624256809e-31 * (1.0 - cos(theta) ** 2) ** 8 * ( 2.3163719359915e55 * cos(theta) ** 71 - 3.32727413927103e56 * cos(theta) ** 69 + 2.2823933130789e57 * cos(theta) ** 67 - 9.9533956907642e57 * cos(theta) ** 65 + 3.09926093365113e58 * cos(theta) ** 63 - 7.33679588293412e58 * cos(theta) ** 61 + 1.37283603944473e59 * cos(theta) ** 59 - 2.08422578836728e59 * cos(theta) ** 57 + 2.61511348917782e59 * cos(theta) ** 55 - 2.74836767970917e59 * cos(theta) ** 53 + 2.44338752428338e59 * cos(theta) ** 51 - 1.85105115476014e59 * cos(theta) ** 49 + 1.20134445805625e59 * cos(theta) ** 47 - 6.70445719751577e58 * cos(theta) ** 45 + 3.22517620288659e58 * cos(theta) ** 43 - 1.3390041890605e58 * cos(theta) ** 41 + 4.79887864960495e57 * cos(theta) ** 39 - 1.48350816827587e57 * cos(theta) ** 37 + 3.94890663497894e56 * cos(theta) ** 35 - 9.02650575417776e55 * cos(theta) ** 33 + 1.76518334748365e55 * cos(theta) ** 31 - 2.9388122326527e54 * cos(theta) ** 29 + 4.14003388777583e53 * cos(theta) ** 27 - 4.8977145082889e52 * cos(theta) ** 25 + 4.82058514595364e51 * cos(theta) ** 23 - 3.90274573416407e50 * cos(theta) ** 21 + 2.5627786246856e49 * cos(theta) ** 19 - 1.34139928013847e48 * cos(theta) ** 17 + 5.47509910260599e46 * cos(theta) ** 15 - 1.69432775058541e45 * cos(theta) ** 13 + 3.83065404480179e43 * cos(theta) ** 11 - 6.01444397556661e41 * cos(theta) ** 9 + 6.0957202455067e39 * cos(theta) ** 7 - 3.55880247861109e37 * cos(theta) ** 5 + 9.78230477902992e34 * cos(theta) ** 3 - 7.98555492165708e31 * cos(theta) ) * cos(16 * phi) ) # @torch.jit.script def Yl87_m17(theta, phi): return ( 5.69159154928737e-33 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.64462407455397e57 * cos(theta) ** 70 - 2.29581915609701e58 * cos(theta) ** 68 + 1.52920351976286e59 * cos(theta) ** 66 - 6.46970719899673e59 * cos(theta) ** 64 + 1.95253438820021e60 * cos(theta) ** 62 - 4.47544548858981e60 * cos(theta) ** 60 + 8.0997326327239e60 * cos(theta) ** 58 - 1.18800869936935e61 * cos(theta) ** 56 + 1.4383124190478e61 * cos(theta) ** 54 - 1.45663487024586e61 * cos(theta) ** 52 + 1.24612763738452e61 * cos(theta) ** 50 - 9.07015065832467e60 * cos(theta) ** 48 + 5.64631895286437e60 * cos(theta) ** 46 - 3.0170057388821e60 * cos(theta) ** 44 + 1.38682576724124e60 * cos(theta) ** 42 - 5.48991717514806e59 * cos(theta) ** 40 + 1.87156267334593e59 * cos(theta) ** 38 - 5.48898022262073e58 * cos(theta) ** 36 + 1.38211732224263e58 * cos(theta) ** 34 - 2.97874689887866e57 * cos(theta) ** 32 + 5.47206837719932e56 * cos(theta) ** 30 - 8.52255547469282e55 * cos(theta) ** 28 + 1.11780914969947e55 * cos(theta) ** 26 - 1.22442862707222e54 * cos(theta) ** 24 + 1.10873458356934e53 * cos(theta) ** 22 - 8.19576604174454e51 * cos(theta) ** 20 + 4.86927938690264e50 * cos(theta) ** 18 - 2.28037877623539e49 * cos(theta) ** 16 + 8.21264865390898e47 * cos(theta) ** 14 - 2.20262607576103e46 * cos(theta) ** 12 + 4.21371944928197e44 * cos(theta) ** 10 - 5.41299957800995e42 * cos(theta) ** 8 + 4.26700417185469e40 * cos(theta) ** 6 - 1.77940123930554e38 * cos(theta) ** 4 + 2.93469143370898e35 * cos(theta) ** 2 - 7.98555492165708e31 ) * cos(17 * phi) ) # @torch.jit.script def Yl87_m18(theta, phi): return ( 6.63880720004326e-35 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.15123685218778e59 * cos(theta) ** 69 - 1.56115702614597e60 * cos(theta) ** 67 + 1.00927432304349e61 * cos(theta) ** 65 - 4.14061260735791e61 * cos(theta) ** 63 + 1.21057132068413e62 * cos(theta) ** 61 - 2.68526729315389e62 * cos(theta) ** 59 + 4.69784492697986e62 * cos(theta) ** 57 - 6.65284871646837e62 * cos(theta) ** 55 + 7.76688706285813e62 * cos(theta) ** 53 - 7.57450132527848e62 * cos(theta) ** 51 + 6.23063818692262e62 * cos(theta) ** 49 - 4.35367231599584e62 * cos(theta) ** 47 + 2.59730671831761e62 * cos(theta) ** 45 - 1.32748252510812e62 * cos(theta) ** 43 + 5.82466822241319e61 * cos(theta) ** 41 - 2.19596687005923e61 * cos(theta) ** 39 + 7.11193815871454e60 * cos(theta) ** 37 - 1.97603288014346e60 * cos(theta) ** 35 + 4.69919889562494e59 * cos(theta) ** 33 - 9.53199007641172e58 * cos(theta) ** 31 + 1.6416205131598e58 * cos(theta) ** 29 - 2.38631553291399e57 * cos(theta) ** 27 + 2.90630378921863e56 * cos(theta) ** 25 - 2.93862870497334e55 * cos(theta) ** 23 + 2.43921608385254e54 * cos(theta) ** 21 - 1.63915320834891e53 * cos(theta) ** 19 + 8.76470289642474e51 * cos(theta) ** 17 - 3.64860604197663e50 * cos(theta) ** 15 + 1.14977081154726e49 * cos(theta) ** 13 - 2.64315129091324e47 * cos(theta) ** 11 + 4.21371944928197e45 * cos(theta) ** 9 - 4.33039966240796e43 * cos(theta) ** 7 + 2.56020250311282e41 * cos(theta) ** 5 - 7.11760495722217e38 * cos(theta) ** 3 + 5.86938286741796e35 * cos(theta) ) * cos(18 * phi) ) # @torch.jit.script def Yl87_m19(theta, phi): return ( 7.76269599145231e-37 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 7.94353428009566e60 * cos(theta) ** 68 - 1.0459752075178e62 * cos(theta) ** 66 + 6.56028309978268e62 * cos(theta) ** 64 - 2.60858594263548e63 * cos(theta) ** 62 + 7.38448505617319e63 * cos(theta) ** 60 - 1.58430770296079e64 * cos(theta) ** 58 + 2.67777160837852e64 * cos(theta) ** 56 - 3.65906679405761e64 * cos(theta) ** 54 + 4.11645014331481e64 * cos(theta) ** 52 - 3.86299567589203e64 * cos(theta) ** 50 + 3.05301271159209e64 * cos(theta) ** 48 - 2.04622598851805e64 * cos(theta) ** 46 + 1.16878802324292e64 * cos(theta) ** 44 - 5.70817485796493e63 * cos(theta) ** 42 + 2.38811397118941e63 * cos(theta) ** 40 - 8.56427079323098e62 * cos(theta) ** 38 + 2.63141711872438e62 * cos(theta) ** 36 - 6.91611508050212e61 * cos(theta) ** 34 + 1.55073563555623e61 * cos(theta) ** 32 - 2.95491692368763e60 * cos(theta) ** 30 + 4.76069948816341e59 * cos(theta) ** 28 - 6.44305193886777e58 * cos(theta) ** 26 + 7.26575947304658e57 * cos(theta) ** 24 - 6.75884602143868e56 * cos(theta) ** 22 + 5.12235377609034e55 * cos(theta) ** 20 - 3.11439109586293e54 * cos(theta) ** 18 + 1.48999949239221e53 * cos(theta) ** 16 - 5.47290906296495e51 * cos(theta) ** 14 + 1.49470205501143e50 * cos(theta) ** 12 - 2.90746642000456e48 * cos(theta) ** 10 + 3.79234750435377e46 * cos(theta) ** 8 - 3.03127976368557e44 * cos(theta) ** 6 + 1.28010125155641e42 * cos(theta) ** 4 - 2.13528148716665e39 * cos(theta) ** 2 + 5.86938286741796e35 ) * cos(19 * phi) ) # @torch.jit.script def Yl87_m20(theta, phi): return ( 9.10052051744521e-39 * (1.0 - cos(theta) ** 2) ** 10 * ( 5.40160331046505e62 * cos(theta) ** 67 - 6.90343636961747e63 * cos(theta) ** 65 + 4.19858118386092e64 * cos(theta) ** 63 - 1.617323284434e65 * cos(theta) ** 61 + 4.43069103370392e65 * cos(theta) ** 59 - 9.18898467717261e65 * cos(theta) ** 57 + 1.49955210069197e66 * cos(theta) ** 55 - 1.97589606879111e66 * cos(theta) ** 53 + 2.1405540745237e66 * cos(theta) ** 51 - 1.93149783794601e66 * cos(theta) ** 49 + 1.4654461015642e66 * cos(theta) ** 47 - 9.41263954718301e65 * cos(theta) ** 45 + 5.14266730226887e65 * cos(theta) ** 43 - 2.39743344034527e65 * cos(theta) ** 41 + 9.55245588475763e64 * cos(theta) ** 39 - 3.25442290142777e64 * cos(theta) ** 37 + 9.47310162740776e63 * cos(theta) ** 35 - 2.35147912737072e63 * cos(theta) ** 33 + 4.96235403377994e62 * cos(theta) ** 31 - 8.8647507710629e61 * cos(theta) ** 29 + 1.33299585668575e61 * cos(theta) ** 27 - 1.67519350410562e60 * cos(theta) ** 25 + 1.74378227353118e59 * cos(theta) ** 23 - 1.48694612471651e58 * cos(theta) ** 21 + 1.02447075521807e57 * cos(theta) ** 19 - 5.60590397255327e55 * cos(theta) ** 17 + 2.38399918782753e54 * cos(theta) ** 15 - 7.66207268815093e52 * cos(theta) ** 13 + 1.79364246601372e51 * cos(theta) ** 11 - 2.90746642000456e49 * cos(theta) ** 9 + 3.03387800348302e47 * cos(theta) ** 7 - 1.81876785821134e45 * cos(theta) ** 5 + 5.12040500622563e42 * cos(theta) ** 3 - 4.2705629743333e39 * cos(theta) ) * cos(20 * phi) ) # @torch.jit.script def Yl87_m21(theta, phi): return ( 1.0698353748352e-40 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 3.61907421801158e64 * cos(theta) ** 66 - 4.48723364025135e65 * cos(theta) ** 64 + 2.64510614583238e66 * cos(theta) ** 62 - 9.86567203504739e66 * cos(theta) ** 60 + 2.61410770988531e67 * cos(theta) ** 58 - 5.23772126598839e67 * cos(theta) ** 56 + 8.24753655380584e67 * cos(theta) ** 54 - 1.04722491645929e68 * cos(theta) ** 52 + 1.09168257800709e68 * cos(theta) ** 50 - 9.46433940593546e67 * cos(theta) ** 48 + 6.88759667735174e67 * cos(theta) ** 46 - 4.23568779623236e67 * cos(theta) ** 44 + 2.21134693997561e67 * cos(theta) ** 42 - 9.8294771054156e66 * cos(theta) ** 40 + 3.72545779505548e66 * cos(theta) ** 38 - 1.20413647352828e66 * cos(theta) ** 36 + 3.31558556959272e65 * cos(theta) ** 34 - 7.75988112032338e64 * cos(theta) ** 32 + 1.53832975047178e64 * cos(theta) ** 30 - 2.57077772360824e63 * cos(theta) ** 28 + 3.59908881305154e62 * cos(theta) ** 26 - 4.18798376026405e61 * cos(theta) ** 24 + 4.01069922912171e60 * cos(theta) ** 22 - 3.12258686190467e59 * cos(theta) ** 20 + 1.94649443491433e58 * cos(theta) ** 18 - 9.53003675334055e56 * cos(theta) ** 16 + 3.5759987817413e55 * cos(theta) ** 14 - 9.9606944945962e53 * cos(theta) ** 12 + 1.97300671261509e52 * cos(theta) ** 10 - 2.6167197780041e50 * cos(theta) ** 8 + 2.12371460243811e48 * cos(theta) ** 6 - 9.09383929105672e45 * cos(theta) ** 4 + 1.53612150186769e43 * cos(theta) ** 2 - 4.2705629743333e39 ) * cos(21 * phi) ) # @torch.jit.script def Yl87_m22(theta, phi): return ( 1.26133874784716e-42 * (1.0 - cos(theta) ** 2) ** 11 * ( 2.38858898388764e66 * cos(theta) ** 65 - 2.87182952976087e67 * cos(theta) ** 63 + 1.63996581041607e68 * cos(theta) ** 61 - 5.91940322102843e68 * cos(theta) ** 59 + 1.51618247173348e69 * cos(theta) ** 57 - 2.9331239089535e69 * cos(theta) ** 55 + 4.45366973905516e69 * cos(theta) ** 53 - 5.44556956558829e69 * cos(theta) ** 51 + 5.45841289003543e69 * cos(theta) ** 49 - 4.54288291484902e69 * cos(theta) ** 47 + 3.1682944715818e69 * cos(theta) ** 45 - 1.86370263034224e69 * cos(theta) ** 43 + 9.28765714789757e68 * cos(theta) ** 41 - 3.93179084216624e68 * cos(theta) ** 39 + 1.41567396212108e68 * cos(theta) ** 37 - 4.33489130470179e67 * cos(theta) ** 35 + 1.12729909366152e67 * cos(theta) ** 33 - 2.48316195850348e66 * cos(theta) ** 31 + 4.61498925141534e65 * cos(theta) ** 29 - 7.19817762610307e64 * cos(theta) ** 27 + 9.35763091393399e63 * cos(theta) ** 25 - 1.00511610246337e63 * cos(theta) ** 23 + 8.82353830406777e61 * cos(theta) ** 21 - 6.24517372380934e60 * cos(theta) ** 19 + 3.50368998284579e59 * cos(theta) ** 17 - 1.52480588053449e58 * cos(theta) ** 15 + 5.00639829443781e56 * cos(theta) ** 13 - 1.19528333935154e55 * cos(theta) ** 11 + 1.97300671261509e53 * cos(theta) ** 9 - 2.09337582240328e51 * cos(theta) ** 7 + 1.27422876146287e49 * cos(theta) ** 5 - 3.63753571642269e46 * cos(theta) ** 3 + 3.07224300373538e43 * cos(theta) ) * cos(22 * phi) ) # @torch.jit.script def Yl87_m23(theta, phi): return ( 1.49169047428675e-44 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.55258283952697e68 * cos(theta) ** 64 - 1.80925260374935e69 * cos(theta) ** 62 + 1.00037914435381e70 * cos(theta) ** 60 - 3.49244790040678e70 * cos(theta) ** 58 + 8.64224008888084e70 * cos(theta) ** 56 - 1.61321814992442e71 * cos(theta) ** 54 + 2.36044496169923e71 * cos(theta) ** 52 - 2.77724047845003e71 * cos(theta) ** 50 + 2.67462231611736e71 * cos(theta) ** 48 - 2.13515496997904e71 * cos(theta) ** 46 + 1.42573251221181e71 * cos(theta) ** 44 - 8.01392131047162e70 * cos(theta) ** 42 + 3.807939430638e70 * cos(theta) ** 40 - 1.53339842844483e70 * cos(theta) ** 38 + 5.237993659848e69 * cos(theta) ** 36 - 1.51721195664563e69 * cos(theta) ** 34 + 3.72008700908303e68 * cos(theta) ** 32 - 7.69780207136079e67 * cos(theta) ** 30 + 1.33834688291045e67 * cos(theta) ** 28 - 1.94350795904783e66 * cos(theta) ** 26 + 2.3394077284835e65 * cos(theta) ** 24 - 2.31176703566576e64 * cos(theta) ** 22 + 1.85294304385423e63 * cos(theta) ** 20 - 1.18658300752377e62 * cos(theta) ** 18 + 5.95627297083785e60 * cos(theta) ** 16 - 2.28720882080173e59 * cos(theta) ** 14 + 6.50831778276916e57 * cos(theta) ** 12 - 1.3148116732867e56 * cos(theta) ** 10 + 1.77570604135358e54 * cos(theta) ** 8 - 1.4653630756823e52 * cos(theta) ** 6 + 6.37114380731434e49 * cos(theta) ** 4 - 1.09126071492681e47 * cos(theta) ** 2 + 3.07224300373538e43 ) * cos(23 * phi) ) # @torch.jit.script def Yl87_m24(theta, phi): return ( 1.76981242607138e-46 * (1.0 - cos(theta) ** 2) ** 12 * ( 9.9365301729726e69 * cos(theta) ** 63 - 1.12173661432459e71 * cos(theta) ** 61 + 6.00227486612283e71 * cos(theta) ** 59 - 2.02561978223593e72 * cos(theta) ** 57 + 4.83965444977327e72 * cos(theta) ** 55 - 8.71137800959188e72 * cos(theta) ** 53 + 1.2274313800836e73 * cos(theta) ** 51 - 1.38862023922501e73 * cos(theta) ** 49 + 1.28381871173633e73 * cos(theta) ** 47 - 9.82171286190359e72 * cos(theta) ** 45 + 6.27322305373197e72 * cos(theta) ** 43 - 3.36584695039808e72 * cos(theta) ** 41 + 1.5231757722552e72 * cos(theta) ** 39 - 5.82691402809037e71 * cos(theta) ** 37 + 1.88567771754528e71 * cos(theta) ** 35 - 5.15852065259513e70 * cos(theta) ** 33 + 1.19042784290657e70 * cos(theta) ** 31 - 2.30934062140824e69 * cos(theta) ** 29 + 3.74737127214926e68 * cos(theta) ** 27 - 5.05312069352436e67 * cos(theta) ** 25 + 5.6145785483604e66 * cos(theta) ** 23 - 5.08588747846466e65 * cos(theta) ** 21 + 3.70588608770846e64 * cos(theta) ** 19 - 2.13584941354279e63 * cos(theta) ** 17 + 9.53003675334055e61 * cos(theta) ** 15 - 3.20209234912243e60 * cos(theta) ** 13 + 7.80998133932299e58 * cos(theta) ** 11 - 1.3148116732867e57 * cos(theta) ** 9 + 1.42056483308287e55 * cos(theta) ** 7 - 8.79217845409379e52 * cos(theta) ** 5 + 2.54845752292574e50 * cos(theta) ** 3 - 2.18252142985361e47 * cos(theta) ) * cos(24 * phi) ) # @torch.jit.script def Yl87_m25(theta, phi): return ( 2.10691955484688e-48 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 6.26001400897274e71 * cos(theta) ** 62 - 6.84259334738003e72 * cos(theta) ** 60 + 3.54134217101247e73 * cos(theta) ** 58 - 1.15460327587448e74 * cos(theta) ** 56 + 2.6618099473753e74 * cos(theta) ** 54 - 4.6170303450837e74 * cos(theta) ** 52 + 6.25990003842636e74 * cos(theta) ** 50 - 6.80423917220257e74 * cos(theta) ** 48 + 6.03394794516077e74 * cos(theta) ** 46 - 4.41977078785661e74 * cos(theta) ** 44 + 2.69748591310475e74 * cos(theta) ** 42 - 1.37999724966321e74 * cos(theta) ** 40 + 5.94038551179529e73 * cos(theta) ** 38 - 2.15595819039344e73 * cos(theta) ** 36 + 6.59987201140848e72 * cos(theta) ** 34 - 1.70231181535639e72 * cos(theta) ** 32 + 3.69032631301036e71 * cos(theta) ** 30 - 6.69708780208389e70 * cos(theta) ** 28 + 1.0117902434803e70 * cos(theta) ** 26 - 1.26328017338109e69 * cos(theta) ** 24 + 1.29135306612289e68 * cos(theta) ** 22 - 1.06803637047758e67 * cos(theta) ** 20 + 7.04118356664608e65 * cos(theta) ** 18 - 3.63094400302275e64 * cos(theta) ** 16 + 1.42950551300108e63 * cos(theta) ** 14 - 4.16272005385915e61 * cos(theta) ** 12 + 8.59097947325529e59 * cos(theta) ** 10 - 1.18333050595803e58 * cos(theta) ** 8 + 9.94395383158007e55 * cos(theta) ** 6 - 4.39608922704689e53 * cos(theta) ** 4 + 7.64537256877721e50 * cos(theta) ** 2 - 2.18252142985361e47 ) * cos(25 * phi) ) # @torch.jit.script def Yl87_m26(theta, phi): return ( 2.51717197260066e-50 * (1.0 - cos(theta) ** 2) ** 13 * ( 3.8812086855631e73 * cos(theta) ** 61 - 4.10555600842802e74 * cos(theta) ** 59 + 2.05397845918723e75 * cos(theta) ** 57 - 6.46577834489709e75 * cos(theta) ** 55 + 1.43737737158266e76 * cos(theta) ** 53 - 2.40085577944352e76 * cos(theta) ** 51 + 3.12995001921318e76 * cos(theta) ** 49 - 3.26603480265723e76 * cos(theta) ** 47 + 2.77561605477395e76 * cos(theta) ** 45 - 1.94469914665691e76 * cos(theta) ** 43 + 1.13294408350399e76 * cos(theta) ** 41 - 5.51998899865285e75 * cos(theta) ** 39 + 2.25734649448221e75 * cos(theta) ** 37 - 7.76144948541637e74 * cos(theta) ** 35 + 2.24395648387888e74 * cos(theta) ** 33 - 5.44739780914046e73 * cos(theta) ** 31 + 1.10709789390311e73 * cos(theta) ** 29 - 1.87518458458349e72 * cos(theta) ** 27 + 2.63065463304878e71 * cos(theta) ** 25 - 3.03187241611461e70 * cos(theta) ** 23 + 2.84097674547036e69 * cos(theta) ** 21 - 2.13607274095516e68 * cos(theta) ** 19 + 1.26741304199629e67 * cos(theta) ** 17 - 5.8095104048364e65 * cos(theta) ** 15 + 2.00130771820152e64 * cos(theta) ** 13 - 4.99526406463098e62 * cos(theta) ** 11 + 8.59097947325529e60 * cos(theta) ** 9 - 9.46664404766423e58 * cos(theta) ** 7 + 5.96637229894804e56 * cos(theta) ** 5 - 1.75843569081876e54 * cos(theta) ** 3 + 1.52907451375544e51 * cos(theta) ) * cos(26 * phi) ) # @torch.jit.script def Yl87_m27(theta, phi): return ( 3.01853033216279e-52 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 2.36753729819349e75 * cos(theta) ** 60 - 2.42227804497253e76 * cos(theta) ** 58 + 1.17076772173672e77 * cos(theta) ** 56 - 3.5561780896934e77 * cos(theta) ** 54 + 7.6181000693881e77 * cos(theta) ** 52 - 1.2244364475162e78 * cos(theta) ** 50 + 1.53367550941446e78 * cos(theta) ** 48 - 1.5350363572489e78 * cos(theta) ** 46 + 1.24902722464828e78 * cos(theta) ** 44 - 8.36220633062471e77 * cos(theta) ** 42 + 4.64507074236637e77 * cos(theta) ** 40 - 2.15279570947461e77 * cos(theta) ** 38 + 8.35218202958417e76 * cos(theta) ** 36 - 2.71650731989573e76 * cos(theta) ** 34 + 7.40505639680031e75 * cos(theta) ** 32 - 1.68869332083354e75 * cos(theta) ** 30 + 3.21058389231902e74 * cos(theta) ** 28 - 5.06299837837542e73 * cos(theta) ** 26 + 6.57663658262195e72 * cos(theta) ** 24 - 6.97330655706361e71 * cos(theta) ** 22 + 5.96605116548776e70 * cos(theta) ** 20 - 4.0585382078148e69 * cos(theta) ** 18 + 2.1546021713937e68 * cos(theta) ** 16 - 8.7142656072546e66 * cos(theta) ** 14 + 2.60170003366197e65 * cos(theta) ** 12 - 5.49479047109408e63 * cos(theta) ** 10 + 7.73188152592976e61 * cos(theta) ** 8 - 6.62665083336496e59 * cos(theta) ** 6 + 2.98318614947402e57 * cos(theta) ** 4 - 5.27530707245627e54 * cos(theta) ** 2 + 1.52907451375544e51 ) * cos(27 * phi) ) # @torch.jit.script def Yl87_m28(theta, phi): return ( 3.63388349102687e-54 * (1.0 - cos(theta) ** 2) ** 14 * ( 1.42052237891609e77 * cos(theta) ** 59 - 1.40492126608407e78 * cos(theta) ** 57 + 6.55629924172565e78 * cos(theta) ** 55 - 1.92033616843443e79 * cos(theta) ** 53 + 3.96141203608181e79 * cos(theta) ** 51 - 6.12218223758098e79 * cos(theta) ** 49 + 7.3616424451894e79 * cos(theta) ** 47 - 7.06116724334494e79 * cos(theta) ** 45 + 5.49571978845243e79 * cos(theta) ** 43 - 3.51212665886238e79 * cos(theta) ** 41 + 1.85802829694655e79 * cos(theta) ** 39 - 8.18062369600352e78 * cos(theta) ** 37 + 3.0067855306503e78 * cos(theta) ** 35 - 9.23612488764548e77 * cos(theta) ** 33 + 2.3696180469761e77 * cos(theta) ** 31 - 5.06607996250063e76 * cos(theta) ** 29 + 8.98963489849325e75 * cos(theta) ** 27 - 1.31637957837761e75 * cos(theta) ** 25 + 1.57839277982927e74 * cos(theta) ** 23 - 1.53412744255399e73 * cos(theta) ** 21 + 1.19321023309755e72 * cos(theta) ** 19 - 7.30536877406664e70 * cos(theta) ** 17 + 3.44736347422992e69 * cos(theta) ** 15 - 1.21999718501564e68 * cos(theta) ** 13 + 3.12204004039437e66 * cos(theta) ** 11 - 5.49479047109408e64 * cos(theta) ** 9 + 6.18550522074381e62 * cos(theta) ** 7 - 3.97599050001898e60 * cos(theta) ** 5 + 1.19327445978961e58 * cos(theta) ** 3 - 1.05506141449125e55 * cos(theta) ) * cos(28 * phi) ) # @torch.jit.script def Yl87_m29(theta, phi): return ( 4.39254276583338e-56 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 8.38108203560495e78 * cos(theta) ** 58 - 8.00805121667918e79 * cos(theta) ** 56 + 3.60596458294911e80 * cos(theta) ** 54 - 1.01777816927025e81 * cos(theta) ** 52 + 2.02032013840172e81 * cos(theta) ** 50 - 2.99986929641468e81 * cos(theta) ** 48 + 3.45997194923902e81 * cos(theta) ** 46 - 3.17752525950522e81 * cos(theta) ** 44 + 2.36315950903454e81 * cos(theta) ** 42 - 1.43997193013358e81 * cos(theta) ** 40 + 7.24631035809154e80 * cos(theta) ** 38 - 3.0268307675213e80 * cos(theta) ** 36 + 1.05237493572761e80 * cos(theta) ** 34 - 3.04792121292301e79 * cos(theta) ** 32 + 7.34581594562591e78 * cos(theta) ** 30 - 1.46916318912518e78 * cos(theta) ** 28 + 2.42720142259318e77 * cos(theta) ** 26 - 3.29094894594402e76 * cos(theta) ** 24 + 3.63030339360732e75 * cos(theta) ** 22 - 3.22166762936339e74 * cos(theta) ** 20 + 2.26709944288535e73 * cos(theta) ** 18 - 1.24191269159133e72 * cos(theta) ** 16 + 5.17104521134488e70 * cos(theta) ** 14 - 1.58599634052034e69 * cos(theta) ** 12 + 3.4342440444338e67 * cos(theta) ** 10 - 4.94531142398467e65 * cos(theta) ** 8 + 4.32985365452067e63 * cos(theta) ** 6 - 1.98799525000949e61 * cos(theta) ** 4 + 3.57982337936883e58 * cos(theta) ** 2 - 1.05506141449125e55 ) * cos(29 * phi) ) # @torch.jit.script def Yl87_m30(theta, phi): return ( 5.33223241699831e-58 * (1.0 - cos(theta) ** 2) ** 15 * ( 4.86102758065087e80 * cos(theta) ** 57 - 4.48450868134034e81 * cos(theta) ** 55 + 1.94722087479252e82 * cos(theta) ** 53 - 5.2924464802053e82 * cos(theta) ** 51 + 1.01016006920086e83 * cos(theta) ** 49 - 1.43993726227905e83 * cos(theta) ** 47 + 1.59158709664995e83 * cos(theta) ** 45 - 1.3981111141823e83 * cos(theta) ** 43 + 9.92526993794509e82 * cos(theta) ** 41 - 5.7598877205343e82 * cos(theta) ** 39 + 2.75359793607479e82 * cos(theta) ** 37 - 1.08965907630767e82 * cos(theta) ** 35 + 3.57807478147386e81 * cos(theta) ** 33 - 9.75334788135363e80 * cos(theta) ** 31 + 2.20374478368777e80 * cos(theta) ** 29 - 4.11365692955051e79 * cos(theta) ** 27 + 6.31072369874226e78 * cos(theta) ** 25 - 7.89827747026566e77 * cos(theta) ** 23 + 7.98666746593609e76 * cos(theta) ** 21 - 6.44333525872678e75 * cos(theta) ** 19 + 4.08077899719363e74 * cos(theta) ** 17 - 1.98706030654613e73 * cos(theta) ** 15 + 7.23946329588283e71 * cos(theta) ** 13 - 1.90319560862441e70 * cos(theta) ** 11 + 3.4342440444338e68 * cos(theta) ** 9 - 3.95624913918774e66 * cos(theta) ** 7 + 2.5979121927124e64 * cos(theta) ** 5 - 7.95198100003795e61 * cos(theta) ** 3 + 7.15964675873765e58 * cos(theta) ) * cos(30 * phi) ) # @torch.jit.script def Yl87_m31(theta, phi): return ( 6.5017555840577e-60 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 2.770785720971e82 * cos(theta) ** 56 - 2.46647977473719e83 * cos(theta) ** 54 + 1.03202706364003e84 * cos(theta) ** 52 - 2.6991477049047e84 * cos(theta) ** 50 + 4.94978433908423e84 * cos(theta) ** 48 - 6.76770513271152e84 * cos(theta) ** 46 + 7.16214193492477e84 * cos(theta) ** 44 - 6.01187779098388e84 * cos(theta) ** 42 + 4.06936067455749e84 * cos(theta) ** 40 - 2.24635621100838e84 * cos(theta) ** 38 + 1.01883123634767e84 * cos(theta) ** 36 - 3.81380676707684e83 * cos(theta) ** 34 + 1.18076467788637e83 * cos(theta) ** 32 - 3.02353784321962e82 * cos(theta) ** 30 + 6.39085987269454e81 * cos(theta) ** 28 - 1.11068737097864e81 * cos(theta) ** 26 + 1.57768092468556e80 * cos(theta) ** 24 - 1.8166038181611e79 * cos(theta) ** 22 + 1.67720016784658e78 * cos(theta) ** 20 - 1.22423369915809e77 * cos(theta) ** 18 + 6.93732429522916e75 * cos(theta) ** 16 - 2.98059045981919e74 * cos(theta) ** 14 + 9.41130228464768e72 * cos(theta) ** 12 - 2.09351516948685e71 * cos(theta) ** 10 + 3.09081963999042e69 * cos(theta) ** 8 - 2.76937439743142e67 * cos(theta) ** 6 + 1.2989560963562e65 * cos(theta) ** 4 - 2.38559430001139e62 * cos(theta) ** 2 + 7.15964675873765e58 ) * cos(31 * phi) ) # @torch.jit.script def Yl87_m32(theta, phi): return ( 7.96458488291644e-62 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.55164000374376e84 * cos(theta) ** 55 - 1.33189907835808e85 * cos(theta) ** 53 + 5.36654073092818e85 * cos(theta) ** 51 - 1.34957385245235e86 * cos(theta) ** 49 + 2.37589648276043e86 * cos(theta) ** 47 - 3.1131443610473e86 * cos(theta) ** 45 + 3.1513424513669e86 * cos(theta) ** 43 - 2.52498867221323e86 * cos(theta) ** 41 + 1.62774426982299e86 * cos(theta) ** 39 - 8.53615360183184e85 * cos(theta) ** 37 + 3.66779245085162e85 * cos(theta) ** 35 - 1.29669430080613e85 * cos(theta) ** 33 + 3.7784469692364e84 * cos(theta) ** 31 - 9.07061352965887e83 * cos(theta) ** 29 + 1.78944076435447e83 * cos(theta) ** 27 - 2.88778716454446e82 * cos(theta) ** 25 + 3.78643421924536e81 * cos(theta) ** 23 - 3.99652839995442e80 * cos(theta) ** 21 + 3.35440033569316e79 * cos(theta) ** 19 - 2.20362065848456e78 * cos(theta) ** 17 + 1.10997188723667e77 * cos(theta) ** 15 - 4.17282664374687e75 * cos(theta) ** 13 + 1.12935627415772e74 * cos(theta) ** 11 - 2.09351516948685e72 * cos(theta) ** 9 + 2.47265571199234e70 * cos(theta) ** 7 - 1.66162463845885e68 * cos(theta) ** 5 + 5.1958243854248e65 * cos(theta) ** 3 - 4.77118860002277e62 * cos(theta) ) * cos(32 * phi) ) # @torch.jit.script def Yl87_m33(theta, phi): return ( 9.80372628269639e-64 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 8.53402002059067e85 * cos(theta) ** 54 - 7.05906511529783e86 * cos(theta) ** 52 + 2.73693577277337e87 * cos(theta) ** 50 - 6.61291187701653e87 * cos(theta) ** 48 + 1.1166713468974e88 * cos(theta) ** 46 - 1.40091496247129e88 * cos(theta) ** 44 + 1.35507725408777e88 * cos(theta) ** 42 - 1.03524535560742e88 * cos(theta) ** 40 + 6.34820265230968e87 * cos(theta) ** 38 - 3.15837683267778e87 * cos(theta) ** 36 + 1.28372735779807e87 * cos(theta) ** 34 - 4.27909119266022e86 * cos(theta) ** 32 + 1.17131856046328e86 * cos(theta) ** 30 - 2.63047792360107e85 * cos(theta) ** 28 + 4.83149006375707e84 * cos(theta) ** 26 - 7.21946791136115e83 * cos(theta) ** 24 + 8.70879870426432e82 * cos(theta) ** 22 - 8.39270963990429e81 * cos(theta) ** 20 + 6.373360637817e80 * cos(theta) ** 18 - 3.74615511942375e79 * cos(theta) ** 16 + 1.664957830855e78 * cos(theta) ** 14 - 5.42467463687092e76 * cos(theta) ** 12 + 1.24229190157349e75 * cos(theta) ** 10 - 1.88416365253816e73 * cos(theta) ** 8 + 1.73085899839464e71 * cos(theta) ** 6 - 8.30812319229425e68 * cos(theta) ** 4 + 1.55874731562744e66 * cos(theta) ** 2 - 4.77118860002277e62 ) * cos(33 * phi) ) # @torch.jit.script def Yl87_m34(theta, phi): return ( 1.21283469548074e-65 * (1.0 - cos(theta) ** 2) ** 17 * ( 4.60837081111896e87 * cos(theta) ** 53 - 3.67071385995487e88 * cos(theta) ** 51 + 1.36846788638668e89 * cos(theta) ** 49 - 3.17419770096793e89 * cos(theta) ** 47 + 5.13668819572805e89 * cos(theta) ** 45 - 6.16402583487366e89 * cos(theta) ** 43 + 5.69132446716862e89 * cos(theta) ** 41 - 4.1409814224297e89 * cos(theta) ** 39 + 2.41231700787768e89 * cos(theta) ** 37 - 1.137015659764e89 * cos(theta) ** 35 + 4.36467301651342e88 * cos(theta) ** 33 - 1.36930918165127e88 * cos(theta) ** 31 + 3.51395568138985e87 * cos(theta) ** 29 - 7.36533818608301e86 * cos(theta) ** 27 + 1.25618741657684e86 * cos(theta) ** 25 - 1.73267229872667e85 * cos(theta) ** 23 + 1.91593571493815e84 * cos(theta) ** 21 - 1.67854192798086e83 * cos(theta) ** 19 + 1.14720491480706e82 * cos(theta) ** 17 - 5.993848191078e80 * cos(theta) ** 15 + 2.330940963197e79 * cos(theta) ** 13 - 6.50960956424511e77 * cos(theta) ** 11 + 1.24229190157349e76 * cos(theta) ** 9 - 1.50733092203053e74 * cos(theta) ** 7 + 1.03851539903678e72 * cos(theta) ** 5 - 3.3232492769177e69 * cos(theta) ** 3 + 3.11749463125488e66 * cos(theta) ) * cos(34 * phi) ) # @torch.jit.script def Yl87_m35(theta, phi): return ( 1.50828621616385e-67 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 2.44243652989305e89 * cos(theta) ** 52 - 1.87206406857699e90 * cos(theta) ** 50 + 6.70549264329476e90 * cos(theta) ** 48 - 1.49187291945493e91 * cos(theta) ** 46 + 2.31150968807762e91 * cos(theta) ** 44 - 2.65053110899567e91 * cos(theta) ** 42 + 2.33344303153913e91 * cos(theta) ** 40 - 1.61498275474758e91 * cos(theta) ** 38 + 8.92557292914741e90 * cos(theta) ** 36 - 3.979554809174e90 * cos(theta) ** 34 + 1.44034209544943e90 * cos(theta) ** 32 - 4.24485846311894e89 * cos(theta) ** 30 + 1.01904714760306e89 * cos(theta) ** 28 - 1.98864131024241e88 * cos(theta) ** 26 + 3.1404685414421e87 * cos(theta) ** 24 - 3.98514628707135e86 * cos(theta) ** 22 + 4.02346500137011e85 * cos(theta) ** 20 - 3.18922966316363e84 * cos(theta) ** 18 + 1.950248355172e83 * cos(theta) ** 16 - 8.99077228661699e81 * cos(theta) ** 14 + 3.0302232521561e80 * cos(theta) ** 12 - 7.16057052066962e78 * cos(theta) ** 10 + 1.11806271141614e77 * cos(theta) ** 8 - 1.05513164542137e75 * cos(theta) ** 6 + 5.19257699518391e72 * cos(theta) ** 4 - 9.9697478307531e69 * cos(theta) ** 2 + 3.11749463125488e66 ) * cos(35 * phi) ) # @torch.jit.script def Yl87_m36(theta, phi): return ( 1.88594722082738e-69 * (1.0 - cos(theta) ** 2) ** 18 * ( 1.27006699554439e91 * cos(theta) ** 51 - 9.36032034288493e91 * cos(theta) ** 49 + 3.21863646878148e92 * cos(theta) ** 47 - 6.86261542949267e92 * cos(theta) ** 45 + 1.01706426275415e93 * cos(theta) ** 43 - 1.11322306577818e93 * cos(theta) ** 41 + 9.33377212615654e92 * cos(theta) ** 39 - 6.13693446804081e92 * cos(theta) ** 37 + 3.21320625449307e92 * cos(theta) ** 35 - 1.35304863511916e92 * cos(theta) ** 33 + 4.60909470543817e91 * cos(theta) ** 31 - 1.27345753893568e91 * cos(theta) ** 29 + 2.85333201328856e90 * cos(theta) ** 27 - 5.17046740663027e89 * cos(theta) ** 25 + 7.53712449946103e88 * cos(theta) ** 23 - 8.76732183155697e87 * cos(theta) ** 21 + 8.04693000274023e86 * cos(theta) ** 19 - 5.74061339369453e85 * cos(theta) ** 17 + 3.12039736827521e84 * cos(theta) ** 15 - 1.25870812012638e83 * cos(theta) ** 13 + 3.63626790258732e81 * cos(theta) ** 11 - 7.16057052066962e79 * cos(theta) ** 9 + 8.94450169132916e77 * cos(theta) ** 7 - 6.33078987252822e75 * cos(theta) ** 5 + 2.07703079807356e73 * cos(theta) ** 3 - 1.99394956615062e70 * cos(theta) ) * cos(36 * phi) ) # @torch.jit.script def Yl87_m37(theta, phi): return ( 2.3715572003035e-71 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 6.47734167727637e92 * cos(theta) ** 50 - 4.58655696801361e93 * cos(theta) ** 48 + 1.5127591403273e94 * cos(theta) ** 46 - 3.0881769432717e94 * cos(theta) ** 44 + 4.37337632984286e94 * cos(theta) ** 42 - 4.56421456969055e94 * cos(theta) ** 40 + 3.64017112920105e94 * cos(theta) ** 38 - 2.2706657531751e94 * cos(theta) ** 36 + 1.12462218907257e94 * cos(theta) ** 34 - 4.46506049589323e93 * cos(theta) ** 32 + 1.42881935868583e93 * cos(theta) ** 30 - 3.69302686291347e92 * cos(theta) ** 28 + 7.7039964358791e91 * cos(theta) ** 26 - 1.29261685165757e91 * cos(theta) ** 24 + 1.73353863487604e90 * cos(theta) ** 22 - 1.84113758462696e89 * cos(theta) ** 20 + 1.52891670052064e88 * cos(theta) ** 18 - 9.7590427692807e86 * cos(theta) ** 16 + 4.68059605241281e85 * cos(theta) ** 14 - 1.63632055616429e84 * cos(theta) ** 12 + 3.99989469284605e82 * cos(theta) ** 10 - 6.44451346860266e80 * cos(theta) ** 8 + 6.26115118393041e78 * cos(theta) ** 6 - 3.16539493626411e76 * cos(theta) ** 4 + 6.23109239422069e73 * cos(theta) ** 2 - 1.99394956615062e70 ) * cos(37 * phi) ) # @torch.jit.script def Yl87_m38(theta, phi): return ( 2.99980894173249e-73 * (1.0 - cos(theta) ** 2) ** 19 * ( 3.23867083863818e94 * cos(theta) ** 49 - 2.20154734464653e95 * cos(theta) ** 47 + 6.95869204550557e95 * cos(theta) ** 45 - 1.35879785503955e96 * cos(theta) ** 43 + 1.836818058534e96 * cos(theta) ** 41 - 1.82568582787622e96 * cos(theta) ** 39 + 1.3832650290964e96 * cos(theta) ** 37 - 8.17439671143036e95 * cos(theta) ** 35 + 3.82371544284675e95 * cos(theta) ** 33 - 1.42881935868583e95 * cos(theta) ** 31 + 4.2864580760575e94 * cos(theta) ** 29 - 1.03404752161577e94 * cos(theta) ** 27 + 2.00303907332857e93 * cos(theta) ** 25 - 3.10228044397816e92 * cos(theta) ** 23 + 3.81378499672728e91 * cos(theta) ** 21 - 3.68227516925393e90 * cos(theta) ** 19 + 2.75205006093716e89 * cos(theta) ** 17 - 1.56144684308491e88 * cos(theta) ** 15 + 6.55283447337793e86 * cos(theta) ** 13 - 1.96358466739715e85 * cos(theta) ** 11 + 3.99989469284605e83 * cos(theta) ** 9 - 5.15561077488213e81 * cos(theta) ** 7 + 3.75669071035825e79 * cos(theta) ** 5 - 1.26615797450564e77 * cos(theta) ** 3 + 1.24621847884414e74 * cos(theta) ) * cos(38 * phi) ) # @torch.jit.script def Yl87_m39(theta, phi): return ( 3.81777458698772e-75 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 1.58694871093271e96 * cos(theta) ** 48 - 1.03472725198387e97 * cos(theta) ** 46 + 3.1314114204775e97 * cos(theta) ** 44 - 5.84283077667006e97 * cos(theta) ** 42 + 7.5309540399894e97 * cos(theta) ** 40 - 7.12017472871725e97 * cos(theta) ** 38 + 5.11808060765668e97 * cos(theta) ** 36 - 2.86103884900063e97 * cos(theta) ** 34 + 1.26182609613943e97 * cos(theta) ** 32 - 4.42934001192609e96 * cos(theta) ** 30 + 1.24307284205668e96 * cos(theta) ** 28 - 2.79192830836259e95 * cos(theta) ** 26 + 5.00759768332142e94 * cos(theta) ** 24 - 7.13524502114977e93 * cos(theta) ** 22 + 8.0089484931273e92 * cos(theta) ** 20 - 6.99632282158247e91 * cos(theta) ** 18 + 4.67848510359317e90 * cos(theta) ** 16 - 2.34217026462737e89 * cos(theta) ** 14 + 8.51868481539131e87 * cos(theta) ** 12 - 2.15994313413687e86 * cos(theta) ** 10 + 3.59990522356144e84 * cos(theta) ** 8 - 3.60892754241749e82 * cos(theta) ** 6 + 1.87834535517912e80 * cos(theta) ** 4 - 3.79847392351693e77 * cos(theta) ** 2 + 1.24621847884414e74 ) * cos(39 * phi) ) # @torch.jit.script def Yl87_m40(theta, phi): return ( 4.88976292791609e-77 * (1.0 - cos(theta) ** 2) ** 20 * ( 7.61735381247701e97 * cos(theta) ** 47 - 4.75974535912581e98 * cos(theta) ** 45 + 1.3778210250101e99 * cos(theta) ** 43 - 2.45398892620142e99 * cos(theta) ** 41 + 3.01238161599576e99 * cos(theta) ** 39 - 2.70566639691256e99 * cos(theta) ** 37 + 1.8425090187564e99 * cos(theta) ** 35 - 9.72753208660213e98 * cos(theta) ** 33 + 4.03784350764617e98 * cos(theta) ** 31 - 1.32880200357783e98 * cos(theta) ** 29 + 3.48060395775869e97 * cos(theta) ** 27 - 7.25901360174273e96 * cos(theta) ** 25 + 1.20182344399714e96 * cos(theta) ** 23 - 1.56975390465295e95 * cos(theta) ** 21 + 1.60178969862546e94 * cos(theta) ** 19 - 1.25933810788484e93 * cos(theta) ** 17 + 7.48557616574907e91 * cos(theta) ** 15 - 3.27903837047832e90 * cos(theta) ** 13 + 1.02224217784696e89 * cos(theta) ** 11 - 2.15994313413687e87 * cos(theta) ** 9 + 2.87992417884916e85 * cos(theta) ** 7 - 2.16535652545049e83 * cos(theta) ** 5 + 7.51338142071649e80 * cos(theta) ** 3 - 7.59694784703387e77 * cos(theta) ) * cos(40 * phi) ) # @torch.jit.script def Yl87_m41(theta, phi): return ( 6.30425671627657e-79 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 3.58015629186419e99 * cos(theta) ** 46 - 2.14188541160661e100 * cos(theta) ** 44 + 5.92463040754344e100 * cos(theta) ** 42 - 1.00613545974258e101 * cos(theta) ** 40 + 1.17482883023835e101 * cos(theta) ** 38 - 1.00109656685765e101 * cos(theta) ** 36 + 6.44878156564741e100 * cos(theta) ** 34 - 3.2100855885787e100 * cos(theta) ** 32 + 1.25173148737031e100 * cos(theta) ** 30 - 3.85352581037569e99 * cos(theta) ** 28 + 9.39763068594847e98 * cos(theta) ** 26 - 1.81475340043568e98 * cos(theta) ** 24 + 2.76419392119342e97 * cos(theta) ** 22 - 3.29648319977119e96 * cos(theta) ** 20 + 3.04340042738837e95 * cos(theta) ** 18 - 2.14087478340423e94 * cos(theta) ** 16 + 1.12283642486236e93 * cos(theta) ** 14 - 4.26274988162181e91 * cos(theta) ** 12 + 1.12446639563165e90 * cos(theta) ** 10 - 1.94394882072318e88 * cos(theta) ** 8 + 2.01594692519441e86 * cos(theta) ** 6 - 1.08267826272525e84 * cos(theta) ** 4 + 2.25401442621495e81 * cos(theta) ** 2 - 7.59694784703387e77 ) * cos(41 * phi) ) # @torch.jit.script def Yl87_m42(theta, phi): return ( 8.18389632082959e-81 * (1.0 - cos(theta) ** 2) ** 21 * ( 1.64687189425753e101 * cos(theta) ** 45 - 9.4242958110691e101 * cos(theta) ** 43 + 2.48834477116824e102 * cos(theta) ** 41 - 4.02454183897034e102 * cos(theta) ** 39 + 4.46434955490572e102 * cos(theta) ** 37 - 3.60394764068752e102 * cos(theta) ** 35 + 2.19258573232012e102 * cos(theta) ** 33 - 1.02722738834518e102 * cos(theta) ** 31 + 3.75519446211093e101 * cos(theta) ** 29 - 1.07898722690519e101 * cos(theta) ** 27 + 2.4433839783466e100 * cos(theta) ** 25 - 4.35540816104564e99 * cos(theta) ** 23 + 6.08122662662553e98 * cos(theta) ** 21 - 6.59296639954239e97 * cos(theta) ** 19 + 5.47812076929907e96 * cos(theta) ** 17 - 3.42539965344677e95 * cos(theta) ** 15 + 1.57197099480731e94 * cos(theta) ** 13 - 5.11529985794617e92 * cos(theta) ** 11 + 1.12446639563165e91 * cos(theta) ** 9 - 1.55515905657854e89 * cos(theta) ** 7 + 1.20956815511665e87 * cos(theta) ** 5 - 4.33071305090099e84 * cos(theta) ** 3 + 4.5080288524299e81 * cos(theta) ) * cos(42 * phi) ) # @torch.jit.script def Yl87_m43(theta, phi): return ( 1.06999607787514e-82 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 7.41092352415888e102 * cos(theta) ** 44 - 4.05244719875971e103 * cos(theta) ** 42 + 1.02022135617898e104 * cos(theta) ** 40 - 1.56957131719843e104 * cos(theta) ** 38 + 1.65180933531512e104 * cos(theta) ** 36 - 1.26138167424063e104 * cos(theta) ** 34 + 7.23553291665639e103 * cos(theta) ** 32 - 3.18440490387007e103 * cos(theta) ** 30 + 1.08900639401217e103 * cos(theta) ** 28 - 2.91326551264402e102 * cos(theta) ** 26 + 6.1084599458665e101 * cos(theta) ** 24 - 1.0017438770405e101 * cos(theta) ** 22 + 1.27705759159136e100 * cos(theta) ** 20 - 1.25266361591305e99 * cos(theta) ** 18 + 9.31280530780842e97 * cos(theta) ** 16 - 5.13809948017016e96 * cos(theta) ** 14 + 2.0435622932495e95 * cos(theta) ** 12 - 5.62682984374079e93 * cos(theta) ** 10 + 1.01201975606849e92 * cos(theta) ** 8 - 1.08861133960498e90 * cos(theta) ** 6 + 6.04784077558323e87 * cos(theta) ** 4 - 1.2992139152703e85 * cos(theta) ** 2 + 4.5080288524299e81 ) * cos(43 * phi) ) # @torch.jit.script def Yl87_m44(theta, phi): return ( 1.40935434808519e-84 * (1.0 - cos(theta) ** 2) ** 22 * ( 3.26080635062991e104 * cos(theta) ** 43 - 1.70202782347908e105 * cos(theta) ** 41 + 4.08088542471592e105 * cos(theta) ** 39 - 5.96437100535404e105 * cos(theta) ** 37 + 5.94651360713442e105 * cos(theta) ** 35 - 4.28869769241815e105 * cos(theta) ** 33 + 2.31537053333005e105 * cos(theta) ** 31 - 9.55321471161022e104 * cos(theta) ** 29 + 3.04921790323408e104 * cos(theta) ** 27 - 7.57449033287446e103 * cos(theta) ** 25 + 1.46603038700796e103 * cos(theta) ** 23 - 2.20383652948909e102 * cos(theta) ** 21 + 2.55411518318272e101 * cos(theta) ** 19 - 2.2547945086435e100 * cos(theta) ** 17 + 1.49004884924935e99 * cos(theta) ** 15 - 7.19333927223823e97 * cos(theta) ** 13 + 2.4522747518994e96 * cos(theta) ** 11 - 5.62682984374079e94 * cos(theta) ** 9 + 8.0961580485479e92 * cos(theta) ** 7 - 6.53166803762989e90 * cos(theta) ** 5 + 2.41913631023329e88 * cos(theta) ** 3 - 2.59842783054059e85 * cos(theta) ) * cos(44 * phi) ) # @torch.jit.script def Yl87_m45(theta, phi): return ( 1.87067786008528e-86 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 1.40214673077086e106 * cos(theta) ** 42 - 6.97831407626423e106 * cos(theta) ** 40 + 1.59154531563921e107 * cos(theta) ** 38 - 2.20681727198099e107 * cos(theta) ** 36 + 2.08127976249705e107 * cos(theta) ** 34 - 1.41527023849799e107 * cos(theta) ** 32 + 7.17764865332314e106 * cos(theta) ** 30 - 2.77043226636696e106 * cos(theta) ** 28 + 8.23288833873201e105 * cos(theta) ** 26 - 1.89362258321862e105 * cos(theta) ** 24 + 3.37186989011831e104 * cos(theta) ** 22 - 4.62805671192709e103 * cos(theta) ** 20 + 4.85281884804717e102 * cos(theta) ** 18 - 3.83315066469395e101 * cos(theta) ** 16 + 2.23507327387402e100 * cos(theta) ** 14 - 9.3513410539097e98 * cos(theta) ** 12 + 2.69750222708934e97 * cos(theta) ** 10 - 5.06414685936671e95 * cos(theta) ** 8 + 5.66731063398353e93 * cos(theta) ** 6 - 3.26583401881494e91 * cos(theta) ** 4 + 7.25740893069987e88 * cos(theta) ** 2 - 2.59842783054059e85 ) * cos(45 * phi) ) # @torch.jit.script def Yl87_m46(theta, phi): return ( 2.5029290597084e-88 * (1.0 - cos(theta) ** 2) ** 23 * ( 5.88901626923761e107 * cos(theta) ** 41 - 2.79132563050569e108 * cos(theta) ** 39 + 6.047872199429e108 * cos(theta) ** 37 - 7.94454217913158e108 * cos(theta) ** 35 + 7.07635119248996e108 * cos(theta) ** 33 - 4.52886476319357e108 * cos(theta) ** 31 + 2.15329459599694e108 * cos(theta) ** 29 - 7.7572103458275e107 * cos(theta) ** 27 + 2.14055096807032e107 * cos(theta) ** 25 - 4.54469419972468e106 * cos(theta) ** 23 + 7.41811375826028e105 * cos(theta) ** 21 - 9.25611342385418e104 * cos(theta) ** 19 + 8.73507392648491e103 * cos(theta) ** 17 - 6.13304106351031e102 * cos(theta) ** 15 + 3.12910258342363e101 * cos(theta) ** 13 - 1.12216092646916e100 * cos(theta) ** 11 + 2.69750222708934e98 * cos(theta) ** 9 - 4.05131748749337e96 * cos(theta) ** 7 + 3.40038638039012e94 * cos(theta) ** 5 - 1.30633360752598e92 * cos(theta) ** 3 + 1.45148178613997e89 * cos(theta) ) * cos(46 * phi) ) # @torch.jit.script def Yl87_m47(theta, phi): return ( 3.37679124436137e-90 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 2.41449667038742e109 * cos(theta) ** 40 - 1.08861699589722e110 * cos(theta) ** 38 + 2.23771271378873e110 * cos(theta) ** 36 - 2.78058976269605e110 * cos(theta) ** 34 + 2.33519589352169e110 * cos(theta) ** 32 - 1.40394807659001e110 * cos(theta) ** 30 + 6.24455432839114e109 * cos(theta) ** 28 - 2.09444679337342e109 * cos(theta) ** 26 + 5.35137742017581e108 * cos(theta) ** 24 - 1.04527966593668e108 * cos(theta) ** 22 + 1.55780388923466e107 * cos(theta) ** 20 - 1.7586615505323e106 * cos(theta) ** 18 + 1.48496256750243e105 * cos(theta) ** 16 - 9.19956159526547e103 * cos(theta) ** 14 + 4.06783335845072e102 * cos(theta) ** 12 - 1.23437701911608e101 * cos(theta) ** 10 + 2.4277520043804e99 * cos(theta) ** 8 - 2.83592224124536e97 * cos(theta) ** 6 + 1.70019319019506e95 * cos(theta) ** 4 - 3.91900082257793e92 * cos(theta) ** 2 + 1.45148178613997e89 ) * cos(47 * phi) ) # @torch.jit.script def Yl87_m48(theta, phi): return ( 4.59523084254623e-92 * (1.0 - cos(theta) ** 2) ** 24 * ( 9.65798668154969e110 * cos(theta) ** 39 - 4.13674458440943e111 * cos(theta) ** 37 + 8.05576576963942e111 * cos(theta) ** 35 - 9.45400519316658e111 * cos(theta) ** 33 + 7.47262685926939e111 * cos(theta) ** 31 - 4.21184422977002e111 * cos(theta) ** 29 + 1.74847521194952e111 * cos(theta) ** 27 - 5.4455616627709e110 * cos(theta) ** 25 + 1.28433058084219e110 * cos(theta) ** 23 - 2.29961526506069e109 * cos(theta) ** 21 + 3.11560777846932e108 * cos(theta) ** 19 - 3.16559079095813e107 * cos(theta) ** 17 + 2.3759401080039e106 * cos(theta) ** 15 - 1.28793862333717e105 * cos(theta) ** 13 + 4.88140003014086e103 * cos(theta) ** 11 - 1.23437701911608e102 * cos(theta) ** 9 + 1.94220160350432e100 * cos(theta) ** 7 - 1.70155334474722e98 * cos(theta) ** 5 + 6.80077276078024e95 * cos(theta) ** 3 - 7.83800164515586e92 * cos(theta) ) * cos(48 * phi) ) # @torch.jit.script def Yl87_m49(theta, phi): return ( 6.30965444746346e-94 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 3.76661480580438e112 * cos(theta) ** 38 - 1.53059549623149e113 * cos(theta) ** 36 + 2.8195180193738e113 * cos(theta) ** 34 - 3.11982171374497e113 * cos(theta) ** 32 + 2.31651432637351e113 * cos(theta) ** 30 - 1.22143482663331e113 * cos(theta) ** 28 + 4.7208830722637e112 * cos(theta) ** 26 - 1.36139041569273e112 * cos(theta) ** 24 + 2.95396033593705e111 * cos(theta) ** 22 - 4.82919205662744e110 * cos(theta) ** 20 + 5.91965477909171e109 * cos(theta) ** 18 - 5.38150434462882e108 * cos(theta) ** 16 + 3.56391016200584e107 * cos(theta) ** 14 - 1.67432021033832e106 * cos(theta) ** 12 + 5.36954003315495e104 * cos(theta) ** 10 - 1.11093931720447e103 * cos(theta) ** 8 + 1.35954112245303e101 * cos(theta) ** 6 - 8.50776672373608e98 * cos(theta) ** 4 + 2.04023182823407e96 * cos(theta) ** 2 - 7.83800164515586e92 ) * cos(49 * phi) ) # @torch.jit.script def Yl87_m50(theta, phi): return ( 8.74487273590109e-96 * (1.0 - cos(theta) ** 2) ** 25 * ( 1.43131362620566e114 * cos(theta) ** 37 - 5.51014378643336e114 * cos(theta) ** 35 + 9.58636126587091e114 * cos(theta) ** 33 - 9.98342948398391e114 * cos(theta) ** 31 + 6.94954297912054e114 * cos(theta) ** 29 - 3.42001751457326e114 * cos(theta) ** 27 + 1.22742959878856e114 * cos(theta) ** 25 - 3.26733699766254e113 * cos(theta) ** 23 + 6.4987127390615e112 * cos(theta) ** 21 - 9.65838411325489e111 * cos(theta) ** 19 + 1.06553786023651e111 * cos(theta) ** 17 - 8.61040695140612e109 * cos(theta) ** 15 + 4.98947422680818e108 * cos(theta) ** 13 - 2.00918425240598e107 * cos(theta) ** 11 + 5.36954003315495e105 * cos(theta) ** 9 - 8.88751453763577e103 * cos(theta) ** 7 + 8.15724673471815e101 * cos(theta) ** 5 - 3.40310668949443e99 * cos(theta) ** 3 + 4.08046365646814e96 * cos(theta) ) * cos(50 * phi) ) # @torch.jit.script def Yl87_m51(theta, phi): return ( 1.22380743782299e-97 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 5.29586041696096e115 * cos(theta) ** 36 - 1.92855032525168e116 * cos(theta) ** 34 + 3.1634992177374e116 * cos(theta) ** 32 - 3.09486314003501e116 * cos(theta) ** 30 + 2.01536746394496e116 * cos(theta) ** 28 - 9.23404728934779e115 * cos(theta) ** 26 + 3.0685739969714e115 * cos(theta) ** 24 - 7.51487509462385e114 * cos(theta) ** 22 + 1.36472967520292e114 * cos(theta) ** 20 - 1.83509298151843e113 * cos(theta) ** 18 + 1.81141436240206e112 * cos(theta) ** 16 - 1.29156104271092e111 * cos(theta) ** 14 + 6.48631649485063e109 * cos(theta) ** 12 - 2.21010267764658e108 * cos(theta) ** 10 + 4.83258602983945e106 * cos(theta) ** 8 - 6.22126017634504e104 * cos(theta) ** 6 + 4.07862336735908e102 * cos(theta) ** 4 - 1.02093200684833e100 * cos(theta) ** 2 + 4.08046365646814e96 ) * cos(51 * phi) ) # @torch.jit.script def Yl87_m52(theta, phi): return ( 1.73003320136911e-99 * (1.0 - cos(theta) ** 2) ** 26 * ( 1.90650975010594e117 * cos(theta) ** 35 - 6.5570711058557e117 * cos(theta) ** 33 + 1.01231974967597e118 * cos(theta) ** 31 - 9.28458942010503e117 * cos(theta) ** 29 + 5.64302889904587e117 * cos(theta) ** 27 - 2.40085229523043e117 * cos(theta) ** 25 + 7.36457759273137e116 * cos(theta) ** 23 - 1.65327252081725e116 * cos(theta) ** 21 + 2.72945935040583e115 * cos(theta) ** 19 - 3.30316736673317e114 * cos(theta) ** 17 + 2.8982629798433e113 * cos(theta) ** 15 - 1.80818545979528e112 * cos(theta) ** 13 + 7.78357979382076e110 * cos(theta) ** 11 - 2.21010267764658e109 * cos(theta) ** 9 + 3.86606882387156e107 * cos(theta) ** 7 - 3.73275610580703e105 * cos(theta) ** 5 + 1.63144934694363e103 * cos(theta) ** 3 - 2.04186401369666e100 * cos(theta) ) * cos(52 * phi) ) # @torch.jit.script def Yl87_m53(theta, phi): return ( 2.47147600195587e-101 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 6.6727841253708e118 * cos(theta) ** 34 - 2.16383346493238e119 * cos(theta) ** 32 + 3.1381912239955e119 * cos(theta) ** 30 - 2.69253093183046e119 * cos(theta) ** 28 + 1.52361780274239e119 * cos(theta) ** 26 - 6.00213073807607e118 * cos(theta) ** 24 + 1.69385284632821e118 * cos(theta) ** 22 - 3.47187229371622e117 * cos(theta) ** 20 + 5.18597276577108e116 * cos(theta) ** 18 - 5.61538452344639e115 * cos(theta) ** 16 + 4.34739446976495e114 * cos(theta) ** 14 - 2.35064109773387e113 * cos(theta) ** 12 + 8.56193777320284e111 * cos(theta) ** 10 - 1.98909240988192e110 * cos(theta) ** 8 + 2.70624817671009e108 * cos(theta) ** 6 - 1.86637805290351e106 * cos(theta) ** 4 + 4.89434804083089e103 * cos(theta) ** 2 - 2.04186401369666e100 ) * cos(53 * phi) ) # @torch.jit.script def Yl87_m54(theta, phi): return ( 3.56949997264925e-103 * (1.0 - cos(theta) ** 2) ** 27 * ( 2.26874660262607e120 * cos(theta) ** 33 - 6.92426708778362e120 * cos(theta) ** 31 + 9.4145736719865e120 * cos(theta) ** 29 - 7.53908660912529e120 * cos(theta) ** 27 + 3.9614062871302e120 * cos(theta) ** 25 - 1.44051137713826e120 * cos(theta) ** 23 + 3.72647626192207e119 * cos(theta) ** 21 - 6.94374458743243e118 * cos(theta) ** 19 + 9.33475097838794e117 * cos(theta) ** 17 - 8.98461523751423e116 * cos(theta) ** 15 + 6.08635225767093e115 * cos(theta) ** 13 - 2.82076931728064e114 * cos(theta) ** 11 + 8.56193777320284e112 * cos(theta) ** 9 - 1.59127392790554e111 * cos(theta) ** 7 + 1.62374890602606e109 * cos(theta) ** 5 - 7.46551221161405e106 * cos(theta) ** 3 + 9.78869608166178e103 * cos(theta) ) * cos(54 * phi) ) # @torch.jit.script def Yl87_m55(theta, phi): return ( 5.21442278515843e-105 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 7.48686378866604e121 * cos(theta) ** 32 - 2.14652279721292e122 * cos(theta) ** 30 + 2.73022636487609e122 * cos(theta) ** 28 - 2.03555338446383e122 * cos(theta) ** 26 + 9.90351571782551e121 * cos(theta) ** 24 - 3.31317616741799e121 * cos(theta) ** 22 + 7.82560015003635e120 * cos(theta) ** 20 - 1.31931147161216e120 * cos(theta) ** 18 + 1.58690766632595e119 * cos(theta) ** 16 - 1.34769228562713e118 * cos(theta) ** 14 + 7.91225793497221e116 * cos(theta) ** 12 - 3.10284624900871e115 * cos(theta) ** 10 + 7.70574399588255e113 * cos(theta) ** 8 - 1.11389174953387e112 * cos(theta) ** 6 + 8.11874453013028e109 * cos(theta) ** 4 - 2.23965366348422e107 * cos(theta) ** 2 + 9.78869608166178e103 ) * cos(55 * phi) ) # @torch.jit.script def Yl87_m56(theta, phi): return ( 7.70838207698024e-107 * (1.0 - cos(theta) ** 2) ** 28 * ( 2.39579641237313e123 * cos(theta) ** 31 - 6.43956839163877e123 * cos(theta) ** 29 + 7.64463382165304e123 * cos(theta) ** 27 - 5.29243879960595e123 * cos(theta) ** 25 + 2.37684377227812e123 * cos(theta) ** 23 - 7.28898756831958e122 * cos(theta) ** 21 + 1.56512003000727e122 * cos(theta) ** 19 - 2.37476064890189e121 * cos(theta) ** 17 + 2.53905226612152e120 * cos(theta) ** 15 - 1.88676919987799e119 * cos(theta) ** 13 + 9.49470952196665e117 * cos(theta) ** 11 - 3.10284624900871e116 * cos(theta) ** 9 + 6.16459519670604e114 * cos(theta) ** 7 - 6.68335049720325e112 * cos(theta) ** 5 + 3.24749781205211e110 * cos(theta) ** 3 - 4.47930732696843e107 * cos(theta) ) * cos(56 * phi) ) # @torch.jit.script def Yl87_m57(theta, phi): return ( 1.15372190922818e-108 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 7.42696887835671e124 * cos(theta) ** 30 - 1.86747483357524e125 * cos(theta) ** 28 + 2.06405113184632e125 * cos(theta) ** 26 - 1.32310969990149e125 * cos(theta) ** 24 + 5.46674067623968e124 * cos(theta) ** 22 - 1.53068738934711e124 * cos(theta) ** 20 + 2.97372805701381e123 * cos(theta) ** 18 - 4.03709310313322e122 * cos(theta) ** 16 + 3.80857839918228e121 * cos(theta) ** 14 - 2.45279995984138e120 * cos(theta) ** 12 + 1.04441804741633e119 * cos(theta) ** 10 - 2.79256162410784e117 * cos(theta) ** 8 + 4.31521663769423e115 * cos(theta) ** 6 - 3.34167524860162e113 * cos(theta) ** 4 + 9.74249343615634e110 * cos(theta) ** 2 - 4.47930732696843e107 ) * cos(57 * phi) ) # @torch.jit.script def Yl87_m58(theta, phi): return ( 1.74926864444e-110 * (1.0 - cos(theta) ** 2) ** 29 * ( 2.22809066350701e126 * cos(theta) ** 29 - 5.22892953401068e126 * cos(theta) ** 27 + 5.36653294280044e126 * cos(theta) ** 25 - 3.17546327976357e126 * cos(theta) ** 23 + 1.20268294877273e126 * cos(theta) ** 21 - 3.06137477869422e125 * cos(theta) ** 19 + 5.35271050262487e124 * cos(theta) ** 17 - 6.45934896501315e123 * cos(theta) ** 15 + 5.33200975885519e122 * cos(theta) ** 13 - 2.94335995180966e121 * cos(theta) ** 11 + 1.04441804741633e120 * cos(theta) ** 9 - 2.23404929928627e118 * cos(theta) ** 7 + 2.58912998261654e116 * cos(theta) ** 5 - 1.33667009944065e114 * cos(theta) ** 3 + 1.94849868723127e111 * cos(theta) ) * cos(58 * phi) ) # @torch.jit.script def Yl87_m59(theta, phi): return ( 2.68832075291e-112 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 6.46146292417034e127 * cos(theta) ** 28 - 1.41181097418288e128 * cos(theta) ** 26 + 1.34163323570011e128 * cos(theta) ** 24 - 7.30356554345621e127 * cos(theta) ** 22 + 2.52563419242273e127 * cos(theta) ** 20 - 5.81661207951902e126 * cos(theta) ** 18 + 9.09960785446227e125 * cos(theta) ** 16 - 9.68902344751972e124 * cos(theta) ** 14 + 6.93161268651175e123 * cos(theta) ** 12 - 3.23769594699063e122 * cos(theta) ** 10 + 9.39976242674698e120 * cos(theta) ** 8 - 1.56383450950039e119 * cos(theta) ** 6 + 1.29456499130827e117 * cos(theta) ** 4 - 4.01001029832195e114 * cos(theta) ** 2 + 1.94849868723127e111 ) * cos(59 * phi) ) # @torch.jit.script def Yl87_m60(theta, phi): return ( 4.19028344984038e-114 * (1.0 - cos(theta) ** 2) ** 30 * ( 1.8092096187677e129 * cos(theta) ** 27 - 3.6707085328755e129 * cos(theta) ** 25 + 3.21991976568026e129 * cos(theta) ** 23 - 1.60678441956037e129 * cos(theta) ** 21 + 5.05126838484547e128 * cos(theta) ** 19 - 1.04699017431342e128 * cos(theta) ** 17 + 1.45593725671396e127 * cos(theta) ** 15 - 1.35646328265276e126 * cos(theta) ** 13 + 8.3179352238141e124 * cos(theta) ** 11 - 3.23769594699063e123 * cos(theta) ** 9 + 7.51980994139758e121 * cos(theta) ** 7 - 9.38300705700233e119 * cos(theta) ** 5 + 5.17825996523308e117 * cos(theta) ** 3 - 8.0200205966439e114 * cos(theta) ) * cos(60 * phi) ) # @torch.jit.script def Yl87_m61(theta, phi): return ( 6.62873506814228e-116 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 4.88486597067278e130 * cos(theta) ** 26 - 9.17677133218874e130 * cos(theta) ** 24 + 7.4058154610646e130 * cos(theta) ** 22 - 3.37424728107677e130 * cos(theta) ** 20 + 9.59740993120638e129 * cos(theta) ** 18 - 1.77988329633282e129 * cos(theta) ** 16 + 2.18390588507095e128 * cos(theta) ** 14 - 1.76340226744859e127 * cos(theta) ** 12 + 9.14972874619551e125 * cos(theta) ** 10 - 2.91392635229156e124 * cos(theta) ** 8 + 5.26386695897831e122 * cos(theta) ** 6 - 4.69150352850117e120 * cos(theta) ** 4 + 1.55347798956992e118 * cos(theta) ** 2 - 8.0200205966439e114 ) * cos(61 * phi) ) # @torch.jit.script def Yl87_m62(theta, phi): return ( 1.06500305519713e-117 * (1.0 - cos(theta) ** 2) ** 31 * ( 1.27006515237492e132 * cos(theta) ** 25 - 2.2024251197253e132 * cos(theta) ** 23 + 1.62927940143421e132 * cos(theta) ** 21 - 6.74849456215354e131 * cos(theta) ** 19 + 1.72753378761715e131 * cos(theta) ** 17 - 2.84781327413251e130 * cos(theta) ** 15 + 3.05746823909932e129 * cos(theta) ** 13 - 2.11608272093831e128 * cos(theta) ** 11 + 9.14972874619551e126 * cos(theta) ** 9 - 2.33114108183325e125 * cos(theta) ** 7 + 3.15832017538699e123 * cos(theta) ** 5 - 1.87660141140047e121 * cos(theta) ** 3 + 3.10695597913985e118 * cos(theta) ) * cos(62 * phi) ) # @torch.jit.script def Yl87_m63(theta, phi): return ( 1.73914270649208e-119 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 3.17516288093731e133 * cos(theta) ** 24 - 5.06557777536819e133 * cos(theta) ** 22 + 3.42148674301185e133 * cos(theta) ** 20 - 1.28221396680917e133 * cos(theta) ** 18 + 2.93680743894915e132 * cos(theta) ** 16 - 4.27171991119877e131 * cos(theta) ** 14 + 3.97470871082912e130 * cos(theta) ** 12 - 2.32769099303214e129 * cos(theta) ** 10 + 8.23475587157596e127 * cos(theta) ** 8 - 1.63179875728328e126 * cos(theta) ** 6 + 1.57916008769349e124 * cos(theta) ** 4 - 5.6298042342014e121 * cos(theta) ** 2 + 3.10695597913985e118 ) * cos(63 * phi) ) # @torch.jit.script def Yl87_m64(theta, phi): return ( 2.8889573162515e-121 * (1.0 - cos(theta) ** 2) ** 32 * ( 7.62039091424953e134 * cos(theta) ** 23 - 1.114427110581e135 * cos(theta) ** 21 + 6.84297348602369e134 * cos(theta) ** 19 - 2.30798514025651e134 * cos(theta) ** 17 + 4.69889190231865e133 * cos(theta) ** 15 - 5.98040787567828e132 * cos(theta) ** 13 + 4.76965045299494e131 * cos(theta) ** 11 - 2.32769099303214e130 * cos(theta) ** 9 + 6.58780469726077e128 * cos(theta) ** 7 - 9.79079254369965e126 * cos(theta) ** 5 + 6.31664035077397e124 * cos(theta) ** 3 - 1.12596084684028e122 * cos(theta) ) * cos(64 * phi) ) # @torch.jit.script def Yl87_m65(theta, phi): return ( 4.88602194583257e-123 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 1.75268991027739e136 * cos(theta) ** 22 - 2.3402969322201e136 * cos(theta) ** 20 + 1.3001649623445e136 * cos(theta) ** 18 - 3.92357473843607e135 * cos(theta) ** 16 + 7.04833785347797e134 * cos(theta) ** 14 - 7.77453023838176e133 * cos(theta) ** 12 + 5.24661549829444e132 * cos(theta) ** 10 - 2.09492189372892e131 * cos(theta) ** 8 + 4.61146328808254e129 * cos(theta) ** 6 - 4.89539627184983e127 * cos(theta) ** 4 + 1.89499210523219e125 * cos(theta) ** 2 - 1.12596084684028e122 ) * cos(65 * phi) ) # @torch.jit.script def Yl87_m66(theta, phi): return ( 8.42167267078511e-125 * (1.0 - cos(theta) ** 2) ** 33 * ( 3.85591780261026e137 * cos(theta) ** 21 - 4.68059386444021e137 * cos(theta) ** 19 + 2.3402969322201e137 * cos(theta) ** 17 - 6.27771958149771e136 * cos(theta) ** 15 + 9.86767299486916e135 * cos(theta) ** 13 - 9.32943628605811e134 * cos(theta) ** 11 + 5.24661549829444e133 * cos(theta) ** 9 - 1.67593751498314e132 * cos(theta) ** 7 + 2.76687797284952e130 * cos(theta) ** 5 - 1.95815850873993e128 * cos(theta) ** 3 + 3.78998421046438e125 * cos(theta) ) * cos(66 * phi) ) # @torch.jit.script def Yl87_m67(theta, phi): return ( 1.48090892226691e-126 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 8.09742738548156e138 * cos(theta) ** 20 - 8.89312834243639e138 * cos(theta) ** 18 + 3.97850478477417e138 * cos(theta) ** 16 - 9.41657937224657e137 * cos(theta) ** 14 + 1.28279748933299e137 * cos(theta) ** 12 - 1.02623799146639e136 * cos(theta) ** 10 + 4.72195394846499e134 * cos(theta) ** 8 - 1.1731562604882e133 * cos(theta) ** 6 + 1.38343898642476e131 * cos(theta) ** 4 - 5.87447552621979e128 * cos(theta) ** 2 + 3.78998421046438e125 ) * cos(67 * phi) ) # @torch.jit.script def Yl87_m68(theta, phi): return ( 2.65979094257895e-128 * (1.0 - cos(theta) ** 2) ** 34 * ( 1.61948547709631e140 * cos(theta) ** 19 - 1.60076310163855e140 * cos(theta) ** 17 + 6.36560765563868e139 * cos(theta) ** 15 - 1.31832111211452e139 * cos(theta) ** 13 + 1.53935698719959e138 * cos(theta) ** 11 - 1.02623799146639e137 * cos(theta) ** 9 + 3.777563158772e135 * cos(theta) ** 7 - 7.03893756292919e133 * cos(theta) ** 5 + 5.53375594569904e131 * cos(theta) ** 3 - 1.17489510524396e129 * cos(theta) ) * cos(68 * phi) ) # @torch.jit.script def Yl87_m69(theta, phi): return ( 4.88549308735178e-130 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 3.07702240648299e141 * cos(theta) ** 18 - 2.72129727278554e141 * cos(theta) ** 16 + 9.54841148345802e140 * cos(theta) ** 14 - 1.71381744574888e140 * cos(theta) ** 12 + 1.69329268591955e139 * cos(theta) ** 10 - 9.23614192319753e137 * cos(theta) ** 8 + 2.6442942111404e136 * cos(theta) ** 6 - 3.51946878146459e134 * cos(theta) ** 4 + 1.66012678370971e132 * cos(theta) ** 2 - 1.17489510524396e129 ) * cos(69 * phi) ) # @torch.jit.script def Yl87_m70(theta, phi): return ( 9.19014416896121e-132 * (1.0 - cos(theta) ** 2) ** 35 * ( 5.53864033166938e142 * cos(theta) ** 17 - 4.35407563645686e142 * cos(theta) ** 15 + 1.33677760768412e142 * cos(theta) ** 13 - 2.05658093489865e141 * cos(theta) ** 11 + 1.69329268591955e140 * cos(theta) ** 9 - 7.38891353855802e138 * cos(theta) ** 7 + 1.58657652668424e137 * cos(theta) ** 5 - 1.40778751258584e135 * cos(theta) ** 3 + 3.32025356741943e132 * cos(theta) ) * cos(70 * phi) ) # @torch.jit.script def Yl87_m71(theta, phi): return ( 1.77324735287298e-133 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 9.41568856383795e143 * cos(theta) ** 16 - 6.53111345468528e143 * cos(theta) ** 14 + 1.73781088998936e143 * cos(theta) ** 12 - 2.26223902838852e142 * cos(theta) ** 10 + 1.52396341732759e141 * cos(theta) ** 8 - 5.17223947699062e139 * cos(theta) ** 6 + 7.93288263342119e137 * cos(theta) ** 4 - 4.22336253775751e135 * cos(theta) ** 2 + 3.32025356741943e132 ) * cos(71 * phi) ) # @torch.jit.script def Yl87_m72(theta, phi): return ( 3.51569156266604e-135 * (1.0 - cos(theta) ** 2) ** 36 * ( 1.50651017021407e145 * cos(theta) ** 15 - 9.1435588365594e144 * cos(theta) ** 13 + 2.08537306798723e144 * cos(theta) ** 11 - 2.26223902838851e143 * cos(theta) ** 9 + 1.21917073386207e142 * cos(theta) ** 7 - 3.10334368619437e140 * cos(theta) ** 5 + 3.17315305336848e138 * cos(theta) ** 3 - 8.44672507551502e135 * cos(theta) ) * cos(72 * phi) ) # @torch.jit.script def Yl87_m73(theta, phi): return ( 7.1763753512832e-137 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 2.25976525532111e146 * cos(theta) ** 14 - 1.18866264875272e146 * cos(theta) ** 12 + 2.29391037478595e145 * cos(theta) ** 10 - 2.03601512554966e144 * cos(theta) ** 8 + 8.53419513703452e142 * cos(theta) ** 6 - 1.55167184309719e141 * cos(theta) ** 4 + 9.51945916010543e138 * cos(theta) ** 2 - 8.44672507551502e135 ) * cos(73 * phi) ) # @torch.jit.script def Yl87_m74(theta, phi): return ( 1.51156974270712e-138 * (1.0 - cos(theta) ** 2) ** 37 * ( 3.16367135744955e147 * cos(theta) ** 13 - 1.42639517850327e147 * cos(theta) ** 11 + 2.29391037478595e146 * cos(theta) ** 9 - 1.62881210043973e145 * cos(theta) ** 7 + 5.12051708222071e143 * cos(theta) ** 5 - 6.20668737238874e141 * cos(theta) ** 3 + 1.90389183202109e139 * cos(theta) ) * cos(74 * phi) ) # @torch.jit.script def Yl87_m75(theta, phi): return ( 3.29381351035043e-140 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 4.11277276468442e148 * cos(theta) ** 12 - 1.56903469635359e148 * cos(theta) ** 10 + 2.06451933730736e147 * cos(theta) ** 8 - 1.14016847030781e146 * cos(theta) ** 6 + 2.56025854111036e144 * cos(theta) ** 4 - 1.86200621171662e142 * cos(theta) ** 2 + 1.90389183202109e139 ) * cos(75 * phi) ) # @torch.jit.script def Yl87_m76(theta, phi): return ( 7.44756978553847e-142 * (1.0 - cos(theta) ** 2) ** 38 * ( 4.9353273176213e149 * cos(theta) ** 11 - 1.56903469635359e149 * cos(theta) ** 9 + 1.65161546984589e148 * cos(theta) ** 7 - 6.84101082184687e146 * cos(theta) ** 5 + 1.02410341644414e145 * cos(theta) ** 3 - 3.72401242343324e142 * cos(theta) ) * cos(76 * phi) ) # @torch.jit.script def Yl87_m77(theta, phi): return ( 1.75346182317299e-143 * (1.0 - cos(theta) ** 2) ** 38.5 * ( 5.42886004938343e150 * cos(theta) ** 10 - 1.41213122671823e150 * cos(theta) ** 8 + 1.15613082889212e149 * cos(theta) ** 6 - 3.42050541092343e147 * cos(theta) ** 4 + 3.07231024933243e145 * cos(theta) ** 2 - 3.72401242343324e142 ) * cos(77 * phi) ) # @torch.jit.script def Yl87_m78(theta, phi): return ( 4.31672460379404e-145 * (1.0 - cos(theta) ** 2) ** 39 * ( 5.42886004938343e151 * cos(theta) ** 9 - 1.12970498137459e151 * cos(theta) ** 7 + 6.93678497335273e149 * cos(theta) ** 5 - 1.36820216436937e148 * cos(theta) ** 3 + 6.14462049866485e145 * cos(theta) ) * cos(78 * phi) ) # @torch.jit.script def Yl87_m79(theta, phi): return ( 1.11680935685474e-146 * (1.0 - cos(theta) ** 2) ** 39.5 * ( 4.88597404444509e152 * cos(theta) ** 8 - 7.90793486962211e151 * cos(theta) ** 6 + 3.46839248667636e150 * cos(theta) ** 4 - 4.10460649310812e148 * cos(theta) ** 2 + 6.14462049866485e145 ) * cos(79 * phi) ) # @torch.jit.script def Yl87_m80(theta, phi): return ( 3.05545445765463e-148 * (1.0 - cos(theta) ** 2) ** 40 * ( 3.90877923555607e153 * cos(theta) ** 7 - 4.74476092177326e152 * cos(theta) ** 5 + 1.38735699467055e151 * cos(theta) ** 3 - 8.20921298621624e148 * cos(theta) ) * cos(80 * phi) ) # @torch.jit.script def Yl87_m81(theta, phi): return ( 8.90988613519781e-150 * (1.0 - cos(theta) ** 2) ** 40.5 * ( 2.73614546488925e154 * cos(theta) ** 6 - 2.37238046088663e153 * cos(theta) ** 4 + 4.16207098401164e151 * cos(theta) ** 2 - 8.20921298621624e148 ) * cos(81 * phi) ) # @torch.jit.script def Yl87_m82(theta, phi): return ( 2.79803521763245e-151 * (1.0 - cos(theta) ** 2) ** 41 * ( 1.64168727893355e155 * cos(theta) ** 5 - 9.48952184354653e153 * cos(theta) ** 3 + 8.32414196802327e151 * cos(theta) ) * cos(82 * phi) ) # @torch.jit.script def Yl87_m83(theta, phi): return ( 9.59718162005753e-153 * (1.0 - cos(theta) ** 2) ** 41.5 * ( 8.20843639466775e155 * cos(theta) ** 4 - 2.84685655306396e154 * cos(theta) ** 2 + 8.32414196802327e151 ) * cos(83 * phi) ) # @torch.jit.script def Yl87_m84(theta, phi): return ( 3.66957410742427e-154 * (1.0 - cos(theta) ** 2) ** 42 * (3.2833745578671e156 * cos(theta) ** 3 - 5.69371310612792e154 * cos(theta)) * cos(84 * phi) ) # @torch.jit.script def Yl87_m85(theta, phi): return ( 1.61543992435537e-155 * (1.0 - cos(theta) ** 2) ** 42.5 * (9.8501236736013e156 * cos(theta) ** 2 - 5.69371310612792e154) * cos(85 * phi) ) # @torch.jit.script def Yl87_m86(theta, phi): return 17.108992720905 * (1.0 - cos(theta) ** 2) ** 43 * cos(86 * phi) * cos(theta) # @torch.jit.script def Yl87_m87(theta, phi): return 1.29702939093238 * (1.0 - cos(theta) ** 2) ** 43.5 * cos(87 * phi) # @torch.jit.script def Yl88_m_minus_88(theta, phi): return 1.30070891432765 * (1.0 - cos(theta) ** 2) ** 44 * sin(88 * phi) # @torch.jit.script def Yl88_m_minus_87(theta, phi): return ( 17.2558537211813 * (1.0 - cos(theta) ** 2) ** 43.5 * sin(87 * phi) * cos(theta) ) # @torch.jit.script def Yl88_m_minus_86(theta, phi): return ( 9.36398577033487e-158 * (1.0 - cos(theta) ** 2) ** 43 * (1.72377164288023e159 * cos(theta) ** 2 - 9.8501236736013e156) * sin(86 * phi) ) # @torch.jit.script def Yl88_m_minus_85(theta, phi): return ( 2.13941972980226e-156 * (1.0 - cos(theta) ** 2) ** 42.5 * (5.74590547626742e158 * cos(theta) ** 3 - 9.8501236736013e156 * cos(theta)) * sin(85 * phi) ) # @torch.jit.script def Yl88_m_minus_84(theta, phi): return ( 5.62793462288332e-155 * (1.0 - cos(theta) ** 2) ** 42 * ( 1.43647636906686e158 * cos(theta) ** 4 - 4.92506183680065e156 * cos(theta) ** 2 + 1.42342827653198e154 ) * sin(84 * phi) ) # @torch.jit.script def Yl88_m_minus_83(theta, phi): return ( 1.65043440895802e-153 * (1.0 - cos(theta) ** 2) ** 41.5 * ( 2.87295273813371e157 * cos(theta) ** 5 - 1.64168727893355e156 * cos(theta) ** 3 + 1.42342827653198e154 * cos(theta) ) * sin(83 * phi) ) # @torch.jit.script def Yl88_m_minus_82(theta, phi): return ( 5.28654520028694e-152 * (1.0 - cos(theta) ** 2) ** 41 * ( 4.78825456355619e156 * cos(theta) ** 6 - 4.10421819733387e155 * cos(theta) ** 4 + 7.1171413826599e153 * cos(theta) ** 2 - 1.38735699467055e151 ) * sin(82 * phi) ) # @torch.jit.script def Yl88_m_minus_81(theta, phi): return ( 1.82366654254733e-150 * (1.0 - cos(theta) ** 2) ** 40.5 * ( 6.84036366222312e155 * cos(theta) ** 7 - 8.20843639466775e154 * cos(theta) ** 5 + 2.37238046088663e153 * cos(theta) ** 3 - 1.38735699467055e151 * cos(theta) ) * sin(81 * phi) ) # @torch.jit.script def Yl88_m_minus_80(theta, phi): return ( 6.70554029006287e-149 * (1.0 - cos(theta) ** 2) ** 40 * ( 8.5504545777789e154 * cos(theta) ** 8 - 1.36807273244462e154 * cos(theta) ** 6 + 5.93095115221658e152 * cos(theta) ** 4 - 6.93678497335273e150 * cos(theta) ** 2 + 1.02615162327703e148 ) * sin(80 * phi) ) # @torch.jit.script def Yl88_m_minus_79(theta, phi): return ( 2.60741207175745e-147 * (1.0 - cos(theta) ** 2) ** 39.5 * ( 9.500505086421e153 * cos(theta) ** 9 - 1.95438961777804e153 * cos(theta) ** 7 + 1.18619023044332e152 * cos(theta) ** 5 - 2.31226165778424e150 * cos(theta) ** 3 + 1.02615162327703e148 * cos(theta) ) * sin(79 * phi) ) # @torch.jit.script def Yl88_m_minus_78(theta, phi): return ( 1.06553546064646e-145 * (1.0 - cos(theta) ** 2) ** 39 * ( 9.500505086421e152 * cos(theta) ** 10 - 2.44298702222254e152 * cos(theta) ** 8 + 1.97698371740553e151 * cos(theta) ** 6 - 5.7806541444606e149 * cos(theta) ** 4 + 5.13075811638515e147 * cos(theta) ** 2 - 6.14462049866485e144 ) * sin(78 * phi) ) # @torch.jit.script def Yl88_m_minus_77(theta, phi): return ( 4.55321642740204e-144 * (1.0 - cos(theta) ** 2) ** 38.5 * ( 8.63682280583728e151 * cos(theta) ** 11 - 2.71443002469172e151 * cos(theta) ** 9 + 2.82426245343647e150 * cos(theta) ** 7 - 1.15613082889212e149 * cos(theta) ** 5 + 1.71025270546172e147 * cos(theta) ** 3 - 6.14462049866485e144 * cos(theta) ) * sin(77 * phi) ) # @torch.jit.script def Yl88_m_minus_76(theta, phi): return ( 2.02605340681909e-142 * (1.0 - cos(theta) ** 2) ** 38 * ( 7.19735233819773e150 * cos(theta) ** 12 - 2.71443002469172e150 * cos(theta) ** 10 + 3.53032806679558e149 * cos(theta) ** 8 - 1.9268847148202e148 * cos(theta) ** 6 + 4.27563176365429e146 * cos(theta) ** 4 - 3.07231024933243e144 * cos(theta) ** 2 + 3.10334368619437e141 ) * sin(76 * phi) ) # @torch.jit.script def Yl88_m_minus_75(theta, phi): return ( 9.35501502528341e-141 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 5.53642487553672e149 * cos(theta) ** 13 - 2.46766365881065e149 * cos(theta) ** 11 + 3.92258674088398e148 * cos(theta) ** 9 - 2.75269244974315e147 * cos(theta) ** 7 + 8.55126352730859e145 * cos(theta) ** 5 - 1.02410341644414e144 * cos(theta) ** 3 + 3.10334368619437e141 * cos(theta) ) * sin(75 * phi) ) # @torch.jit.script def Yl88_m_minus_74(theta, phi): return ( 4.46891721307658e-139 * (1.0 - cos(theta) ** 2) ** 37 * ( 3.95458919681194e148 * cos(theta) ** 14 - 2.05638638234221e148 * cos(theta) ** 12 + 3.92258674088398e147 * cos(theta) ** 10 - 3.44086556217893e146 * cos(theta) ** 8 + 1.42521058788476e145 * cos(theta) ** 6 - 2.56025854111036e143 * cos(theta) ** 4 + 1.55167184309719e141 * cos(theta) ** 2 - 1.35992273715792e138 ) * sin(74 * phi) ) # @torch.jit.script def Yl88_m_minus_73(theta, phi): return ( 2.20295408870265e-137 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 2.63639279787463e147 * cos(theta) ** 15 - 1.58183567872478e147 * cos(theta) ** 13 + 3.56598794625817e146 * cos(theta) ** 11 - 3.82318395797659e145 * cos(theta) ** 9 + 2.03601512554966e144 * cos(theta) ** 7 - 5.12051708222071e142 * cos(theta) ** 5 + 5.17223947699062e140 * cos(theta) ** 3 - 1.35992273715792e138 * cos(theta) ) * sin(73 * phi) ) # @torch.jit.script def Yl88_m_minus_72(theta, phi): return ( 1.11809415090215e-135 * (1.0 - cos(theta) ** 2) ** 36 * ( 1.64774549867164e146 * cos(theta) ** 16 - 1.12988262766055e146 * cos(theta) ** 14 + 2.9716566218818e145 * cos(theta) ** 12 - 3.82318395797659e144 * cos(theta) ** 10 + 2.54501890693708e143 * cos(theta) ** 8 - 8.53419513703452e141 * cos(theta) ** 6 + 1.29305986924765e140 * cos(theta) ** 4 - 6.79961368578959e137 * cos(theta) ** 2 + 5.27920317219689e134 ) * sin(72 * phi) ) # @torch.jit.script def Yl88_m_minus_71(theta, phi): return ( 5.83126566224347e-134 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 9.69262058042142e144 * cos(theta) ** 17 - 7.53255085107036e144 * cos(theta) ** 15 + 2.28588970913985e144 * cos(theta) ** 13 - 3.47562177997872e143 * cos(theta) ** 11 + 2.82779878548564e142 * cos(theta) ** 9 - 1.21917073386207e141 * cos(theta) ** 7 + 2.58611973849531e139 * cos(theta) ** 5 - 2.2665378952632e137 * cos(theta) ** 3 + 5.27920317219689e134 * cos(theta) ) * sin(71 * phi) ) # @torch.jit.script def Yl88_m_minus_70(theta, phi): return ( 3.11959088180028e-132 * (1.0 - cos(theta) ** 2) ** 35 * ( 5.38478921134523e143 * cos(theta) ** 18 - 4.70784428191898e143 * cos(theta) ** 16 + 1.63277836367132e143 * cos(theta) ** 14 - 2.8963514833156e142 * cos(theta) ** 12 + 2.82779878548564e141 * cos(theta) ** 10 - 1.52396341732759e140 * cos(theta) ** 8 + 4.31019956415885e138 * cos(theta) ** 6 - 5.66634473815799e136 * cos(theta) ** 4 + 2.63960158609844e134 * cos(theta) ** 2 - 1.84458531523301e131 ) * sin(70 * phi) ) # @torch.jit.script def Yl88_m_minus_69(theta, phi): return ( 1.70923975802033e-130 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 2.83409958491854e142 * cos(theta) ** 19 - 2.76932016583469e142 * cos(theta) ** 17 + 1.08851890911421e142 * cos(theta) ** 15 - 2.22796267947354e141 * cos(theta) ** 13 + 2.57072616862331e140 * cos(theta) ** 11 - 1.69329268591955e139 * cos(theta) ** 9 + 6.15742794879835e137 * cos(theta) ** 7 - 1.1332689476316e136 * cos(theta) ** 5 + 8.79867195366148e133 * cos(theta) ** 3 - 1.84458531523301e131 * cos(theta) ) * sin(69 * phi) ) # @torch.jit.script def Yl88_m_minus_68(theta, phi): return ( 9.57784512729653e-129 * (1.0 - cos(theta) ** 2) ** 34 * ( 1.41704979245927e141 * cos(theta) ** 20 - 1.5385112032415e141 * cos(theta) ** 18 + 6.80324318196384e140 * cos(theta) ** 16 - 1.59140191390967e140 * cos(theta) ** 14 + 2.14227180718609e139 * cos(theta) ** 12 - 1.69329268591955e138 * cos(theta) ** 10 + 7.69678493599794e136 * cos(theta) ** 8 - 1.888781579386e135 * cos(theta) ** 6 + 2.19966798841537e133 * cos(theta) ** 4 - 9.22292657616507e130 * cos(theta) ** 2 + 5.87447552621979e127 ) * sin(68 * phi) ) # @torch.jit.script def Yl88_m_minus_67(theta, phi): return ( 5.48200915921706e-127 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 6.74785615456796e139 * cos(theta) ** 21 - 8.09742738548155e139 * cos(theta) ** 19 + 4.00190775409638e139 * cos(theta) ** 17 - 1.06093460927311e139 * cos(theta) ** 15 + 1.64790139014315e138 * cos(theta) ** 13 - 1.53935698719959e137 * cos(theta) ** 11 + 8.55198326221994e135 * cos(theta) ** 9 - 2.69825939912285e134 * cos(theta) ** 7 + 4.39933597683074e132 * cos(theta) ** 5 - 3.07430885872169e130 * cos(theta) ** 3 + 5.87447552621979e127 * cos(theta) ) * sin(67 * phi) ) # @torch.jit.script def Yl88_m_minus_66(theta, phi): return ( 3.20123050213715e-125 * (1.0 - cos(theta) ** 2) ** 33 * ( 3.06720734298544e138 * cos(theta) ** 22 - 4.04871369274078e138 * cos(theta) ** 20 + 2.2232820856091e138 * cos(theta) ** 18 - 6.63084130795696e137 * cos(theta) ** 16 + 1.17707242153082e137 * cos(theta) ** 14 - 1.28279748933299e136 * cos(theta) ** 12 + 8.55198326221994e134 * cos(theta) ** 10 - 3.37282424890357e133 * cos(theta) ** 8 + 7.33222662805123e131 * cos(theta) ** 6 - 7.68577214680423e129 * cos(theta) ** 4 + 2.9372377631099e127 * cos(theta) ** 2 - 1.72272009566563e124 ) * sin(66 * phi) ) # @torch.jit.script def Yl88_m_minus_65(theta, phi): return ( 1.90520285980036e-123 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 1.33356840999367e137 * cos(theta) ** 23 - 1.92795890130513e137 * cos(theta) ** 21 + 1.17014846611005e137 * cos(theta) ** 19 - 3.9004948870335e136 * cos(theta) ** 17 + 7.84714947687214e135 * cos(theta) ** 15 - 9.86767299486916e134 * cos(theta) ** 13 + 7.77453023838176e133 * cos(theta) ** 11 - 3.74758249878174e132 * cos(theta) ** 9 + 1.04746094686446e131 * cos(theta) ** 7 - 1.53715442936085e129 * cos(theta) ** 5 + 9.79079254369965e126 * cos(theta) ** 3 - 1.72272009566563e124 * cos(theta) ) * sin(65 * phi) ) # @torch.jit.script def Yl88_m_minus_64(theta, phi): return ( 1.15449634146812e-121 * (1.0 - cos(theta) ** 2) ** 32 * ( 5.55653504164028e135 * cos(theta) ** 24 - 8.76344955138696e135 * cos(theta) ** 22 + 5.85074233055026e135 * cos(theta) ** 20 - 2.1669416039075e135 * cos(theta) ** 18 + 4.90446842304509e134 * cos(theta) ** 16 - 7.04833785347797e133 * cos(theta) ** 14 + 6.47877519865147e132 * cos(theta) ** 12 - 3.74758249878174e131 * cos(theta) ** 10 + 1.30932618358058e130 * cos(theta) ** 8 - 2.56192404893474e128 * cos(theta) ** 6 + 2.44769813592491e126 * cos(theta) ** 4 - 8.61360047832814e123 * cos(theta) ** 2 + 4.69150352850117e120 ) * sin(64 * phi) ) # @torch.jit.script def Yl88_m_minus_63(theta, phi): return ( 7.11679341372251e-120 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 2.22261401665611e134 * cos(theta) ** 25 - 3.81019545712477e134 * cos(theta) ** 23 + 2.7860677764525e134 * cos(theta) ** 21 - 1.14049558100395e134 * cos(theta) ** 19 + 2.88498142532064e133 * cos(theta) ** 17 - 4.69889190231865e132 * cos(theta) ** 15 + 4.9836732297319e131 * cos(theta) ** 13 - 3.40689318071067e130 * cos(theta) ** 11 + 1.45480687064509e129 * cos(theta) ** 9 - 3.6598914984782e127 * cos(theta) ** 7 + 4.89539627184983e125 * cos(theta) ** 5 - 2.87120015944271e123 * cos(theta) ** 3 + 4.69150352850117e120 * cos(theta) ) * sin(63 * phi) ) # @torch.jit.script def Yl88_m_minus_62(theta, phi): return ( 4.45922623989734e-118 * (1.0 - cos(theta) ** 2) ** 31 * ( 8.54851544867736e132 * cos(theta) ** 26 - 1.58758144046865e133 * cos(theta) ** 24 + 1.26639444384205e133 * cos(theta) ** 22 - 5.70247790501974e132 * cos(theta) ** 20 + 1.60276745851147e132 * cos(theta) ** 18 - 2.93680743894915e131 * cos(theta) ** 16 + 3.55976659266564e130 * cos(theta) ** 14 - 2.83907765059223e129 * cos(theta) ** 12 + 1.45480687064509e128 * cos(theta) ** 10 - 4.57486437309776e126 * cos(theta) ** 8 + 8.15899378641638e124 * cos(theta) ** 6 - 7.17800039860678e122 * cos(theta) ** 4 + 2.34575176425058e120 * cos(theta) ** 2 - 1.19498306889994e117 ) * sin(62 * phi) ) # @torch.jit.script def Yl88_m_minus_61(theta, phi): return ( 2.83783420176876e-116 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 3.16611683284347e131 * cos(theta) ** 27 - 6.35032576187461e131 * cos(theta) ** 25 + 5.50606279931325e131 * cos(theta) ** 23 - 2.71546566905702e131 * cos(theta) ** 21 + 8.43561820269193e130 * cos(theta) ** 19 - 1.72753378761715e130 * cos(theta) ** 17 + 2.37317772844376e129 * cos(theta) ** 15 - 2.18390588507095e128 * cos(theta) ** 13 + 1.32255170058644e127 * cos(theta) ** 11 - 5.08318263677528e125 * cos(theta) ** 9 + 1.16557054091663e124 * cos(theta) ** 7 - 1.43560007972136e122 * cos(theta) ** 5 + 7.81917254750194e119 * cos(theta) ** 3 - 1.19498306889994e117 * cos(theta) ) * sin(61 * phi) ) # @torch.jit.script def Yl88_m_minus_60(theta, phi): return ( 1.83298608656671e-114 * (1.0 - cos(theta) ** 2) ** 30 * ( 1.13075601172981e130 * cos(theta) ** 28 - 2.44243298533639e130 * cos(theta) ** 26 + 2.29419283304719e130 * cos(theta) ** 24 - 1.2343025768441e130 * cos(theta) ** 22 + 4.21780910134596e129 * cos(theta) ** 20 - 9.59740993120638e128 * cos(theta) ** 18 + 1.48323608027735e128 * cos(theta) ** 16 - 1.55993277505068e127 * cos(theta) ** 14 + 1.10212641715537e126 * cos(theta) ** 12 - 5.08318263677528e124 * cos(theta) ** 10 + 1.45696317614578e123 * cos(theta) ** 8 - 2.3926667995356e121 * cos(theta) ** 6 + 1.95479313687549e119 * cos(theta) ** 4 - 5.9749153444997e116 * cos(theta) ** 2 + 2.86429307022996e113 ) * sin(60 * phi) ) # @torch.jit.script def Yl88_m_minus_59(theta, phi): return ( 1.20085072628967e-112 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 3.89915866113728e128 * cos(theta) ** 29 - 9.04604809383848e128 * cos(theta) ** 27 + 9.17677133218874e128 * cos(theta) ** 25 - 5.36653294280044e128 * cos(theta) ** 23 + 2.00848052445046e128 * cos(theta) ** 21 - 5.05126838484547e127 * cos(theta) ** 19 + 8.72491811927853e126 * cos(theta) ** 17 - 1.03995518336712e126 * cos(theta) ** 15 + 8.47789551657976e124 * cos(theta) ** 13 - 4.62107512434117e123 * cos(theta) ** 11 + 1.61884797349531e122 * cos(theta) ** 9 - 3.41809542790799e120 * cos(theta) ** 7 + 3.90958627375097e118 * cos(theta) ** 5 - 1.99163844816657e116 * cos(theta) ** 3 + 2.86429307022996e113 * cos(theta) ) * sin(59 * phi) ) # @torch.jit.script def Yl88_m_minus_58(theta, phi): return ( 7.97458919237988e-111 * (1.0 - cos(theta) ** 2) ** 29 * ( 1.29971955371242e127 * cos(theta) ** 30 - 3.23073146208517e127 * cos(theta) ** 28 + 3.52952743545721e127 * cos(theta) ** 26 - 2.23605539283351e127 * cos(theta) ** 24 + 9.12945692932027e126 * cos(theta) ** 22 - 2.52563419242273e126 * cos(theta) ** 20 + 4.84717673293252e125 * cos(theta) ** 18 - 6.49971989604448e124 * cos(theta) ** 16 + 6.05563965469983e123 * cos(theta) ** 14 - 3.85089593695097e122 * cos(theta) ** 12 + 1.61884797349531e121 * cos(theta) ** 10 - 4.27261928488499e119 * cos(theta) ** 8 + 6.51597712291829e117 * cos(theta) ** 6 - 4.97909612041642e115 * cos(theta) ** 4 + 1.43214653511498e113 * cos(theta) ** 2 - 6.49499562410422e109 ) * sin(58 * phi) ) # @torch.jit.script def Yl88_m_minus_57(theta, phi): return ( 5.36494896000854e-109 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 4.19264372165298e125 * cos(theta) ** 31 - 1.11404533175351e126 * cos(theta) ** 29 + 1.30723238350267e126 * cos(theta) ** 27 - 8.94422157133406e125 * cos(theta) ** 25 + 3.96932909970446e125 * cos(theta) ** 23 - 1.20268294877273e125 * cos(theta) ** 21 + 2.55114564891185e124 * cos(theta) ** 19 - 3.82336464473205e123 * cos(theta) ** 17 + 4.03709310313322e122 * cos(theta) ** 15 - 2.96222764380844e121 * cos(theta) ** 13 + 1.47167997590483e120 * cos(theta) ** 11 - 4.74735476098332e118 * cos(theta) ** 9 + 9.30853874702612e116 * cos(theta) ** 7 - 9.95819224083284e114 * cos(theta) ** 5 + 4.77382178371661e112 * cos(theta) ** 3 - 6.49499562410422e109 * cos(theta) ) * sin(57 * phi) ) # @torch.jit.script def Yl88_m_minus_56(theta, phi): return ( 3.65447154693842e-107 * (1.0 - cos(theta) ** 2) ** 28 * ( 1.31020116301656e124 * cos(theta) ** 32 - 3.71348443917836e124 * cos(theta) ** 30 + 4.66868708393811e124 * cos(theta) ** 28 - 3.44008521974387e124 * cos(theta) ** 26 + 1.65388712487686e124 * cos(theta) ** 24 - 5.46674067623968e123 * cos(theta) ** 22 + 1.27557282445593e123 * cos(theta) ** 20 - 2.12409146929558e122 * cos(theta) ** 18 + 2.52318318945826e121 * cos(theta) ** 16 - 2.1158768884346e120 * cos(theta) ** 14 + 1.22639997992069e119 * cos(theta) ** 12 - 4.74735476098332e117 * cos(theta) ** 10 + 1.16356734337827e116 * cos(theta) ** 8 - 1.65969870680547e114 * cos(theta) ** 6 + 1.19345544592915e112 * cos(theta) ** 4 - 3.24749781205211e109 * cos(theta) ** 2 + 1.39978353967763e106 ) * sin(56 * phi) ) # @torch.jit.script def Yl88_m_minus_55(theta, phi): return ( 2.51920088896542e-105 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 3.97030655459563e122 * cos(theta) ** 33 - 1.19789820618657e123 * cos(theta) ** 31 + 1.60989209790969e123 * cos(theta) ** 29 - 1.27410563694217e123 * cos(theta) ** 27 + 6.61554849950744e122 * cos(theta) ** 25 - 2.37684377227812e122 * cos(theta) ** 23 + 6.07415630693298e121 * cos(theta) ** 21 - 1.11794287857662e121 * cos(theta) ** 19 + 1.48422540556368e120 * cos(theta) ** 17 - 1.41058459228973e119 * cos(theta) ** 15 + 9.43384599938994e117 * cos(theta) ** 13 - 4.31577705543938e116 * cos(theta) ** 11 + 1.29285260375363e115 * cos(theta) ** 9 - 2.37099815257925e113 * cos(theta) ** 7 + 2.3869108918583e111 * cos(theta) ** 5 - 1.08249927068404e109 * cos(theta) ** 3 + 1.39978353967763e106 * cos(theta) ) * sin(55 * phi) ) # @torch.jit.script def Yl88_m_minus_54(theta, phi): return ( 1.75658948261692e-103 * (1.0 - cos(theta) ** 2) ** 27 * ( 1.16773722193989e121 * cos(theta) ** 34 - 3.74343189433302e121 * cos(theta) ** 32 + 5.36630699303231e121 * cos(theta) ** 30 - 4.55037727479348e121 * cos(theta) ** 28 + 2.54444173057978e121 * cos(theta) ** 26 - 9.90351571782551e120 * cos(theta) ** 24 + 2.76098013951499e120 * cos(theta) ** 22 - 5.58971439288311e119 * cos(theta) ** 20 + 8.24569669757602e118 * cos(theta) ** 18 - 8.81615370181084e117 * cos(theta) ** 16 + 6.73846142813567e116 * cos(theta) ** 14 - 3.59648087953282e115 * cos(theta) ** 12 + 1.29285260375363e114 * cos(theta) ** 10 - 2.96374769072406e112 * cos(theta) ** 8 + 3.97818481976384e110 * cos(theta) ** 6 - 2.70624817671009e108 * cos(theta) ** 4 + 6.99891769838817e105 * cos(theta) ** 2 - 2.87902825931229e102 ) * sin(54 * phi) ) # @torch.jit.script def Yl88_m_minus_53(theta, phi): return ( 1.23836443964968e-101 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 3.3363920626854e119 * cos(theta) ** 35 - 1.13437330131304e120 * cos(theta) ** 33 + 1.73106677194591e120 * cos(theta) ** 31 - 1.56909561199775e120 * cos(theta) ** 29 + 9.42385826140661e119 * cos(theta) ** 27 - 3.9614062871302e119 * cos(theta) ** 25 + 1.20042614761521e119 * cos(theta) ** 23 - 2.66176875851577e118 * cos(theta) ** 21 + 4.33984036714527e117 * cos(theta) ** 19 - 5.18597276577108e116 * cos(theta) ** 17 + 4.49230761875711e115 * cos(theta) ** 15 - 2.76652375348679e114 * cos(theta) ** 13 + 1.17532054886693e113 * cos(theta) ** 11 - 3.2930529896934e111 * cos(theta) ** 9 + 5.6831211710912e109 * cos(theta) ** 7 - 5.41249635342019e107 * cos(theta) ** 5 + 2.33297256612939e105 * cos(theta) ** 3 - 2.87902825931229e102 * cos(theta) ) * sin(53 * phi) ) # @torch.jit.script def Yl88_m_minus_52(theta, phi): return ( 8.82285779089399e-100 * (1.0 - cos(theta) ** 2) ** 26 * ( 9.26775572968167e117 * cos(theta) ** 36 - 3.3363920626854e118 * cos(theta) ** 34 + 5.40958366233096e118 * cos(theta) ** 32 - 5.23031870665917e118 * cos(theta) ** 30 + 3.36566366478808e118 * cos(theta) ** 28 - 1.52361780274239e118 * cos(theta) ** 26 + 5.00177561506339e117 * cos(theta) ** 24 - 1.20989489023444e117 * cos(theta) ** 22 + 2.16992018357264e116 * cos(theta) ** 20 - 2.88109598098393e115 * cos(theta) ** 18 + 2.8076922617232e114 * cos(theta) ** 16 - 1.9760883953477e113 * cos(theta) ** 14 + 9.79433790722446e111 * cos(theta) ** 12 - 3.2930529896934e110 * cos(theta) ** 10 + 7.103901463864e108 * cos(theta) ** 8 - 9.02082725570031e106 * cos(theta) ** 6 + 5.83243141532348e104 * cos(theta) ** 4 - 1.43951412965614e102 * cos(theta) ** 2 + 5.67184448249072e98 ) * sin(52 * phi) ) # @torch.jit.script def Yl88_m_minus_51(theta, phi): return ( 6.35000634266923e-98 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 2.50479884585991e116 * cos(theta) ** 37 - 9.53254875052972e116 * cos(theta) ** 35 + 1.63926777646393e117 * cos(theta) ** 33 - 1.68719958279328e117 * cos(theta) ** 31 + 1.16057367751313e117 * cos(theta) ** 29 - 5.64302889904587e116 * cos(theta) ** 27 + 2.00071024602536e116 * cos(theta) ** 25 - 5.26041256623669e115 * cos(theta) ** 23 + 1.03329532551078e115 * cos(theta) ** 21 - 1.51636630578102e114 * cos(theta) ** 19 + 1.65158368336659e113 * cos(theta) ** 17 - 1.31739226356514e112 * cos(theta) ** 15 + 7.53410608248035e110 * cos(theta) ** 13 - 2.99368453608491e109 * cos(theta) ** 11 + 7.89322384873777e107 * cos(theta) ** 9 - 1.28868960795719e106 * cos(theta) ** 7 + 1.1664862830647e104 * cos(theta) ** 5 - 4.79838043218715e101 * cos(theta) ** 3 + 5.67184448249072e98 * cos(theta) ) * sin(51 * phi) ) # @torch.jit.script def Yl88_m_minus_50(theta, phi): return ( 4.61501755657922e-96 * (1.0 - cos(theta) ** 2) ** 25 * ( 6.59157591015766e114 * cos(theta) ** 38 - 2.64793020848048e115 * cos(theta) ** 36 + 4.82137581312919e115 * cos(theta) ** 34 - 5.272498696229e115 * cos(theta) ** 32 + 3.86857892504376e115 * cos(theta) ** 30 - 2.01536746394496e115 * cos(theta) ** 28 + 7.69503940778983e114 * cos(theta) ** 26 - 2.19183856926529e114 * cos(theta) ** 24 + 4.6967969341399e113 * cos(theta) ** 22 - 7.58183152890509e112 * cos(theta) ** 20 + 9.17546490759214e111 * cos(theta) ** 18 - 8.2337016472821e110 * cos(theta) ** 16 + 5.38150434462882e109 * cos(theta) ** 14 - 2.49473711340409e108 * cos(theta) ** 12 + 7.89322384873777e106 * cos(theta) ** 10 - 1.61086200994648e105 * cos(theta) ** 8 + 1.94414380510783e103 * cos(theta) ** 6 - 1.19959510804679e101 * cos(theta) ** 4 + 2.83592224124536e98 * cos(theta) ** 2 - 1.07380622538635e95 ) * sin(50 * phi) ) # @torch.jit.script def Yl88_m_minus_49(theta, phi): return ( 3.38567451314845e-94 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.6901476692712e113 * cos(theta) ** 39 - 7.15656813102832e113 * cos(theta) ** 37 + 1.37753594660834e114 * cos(theta) ** 35 - 1.59772687764515e114 * cos(theta) ** 33 + 1.24792868549799e114 * cos(theta) ** 31 - 6.94954297912053e113 * cos(theta) ** 29 + 2.85001459547771e113 * cos(theta) ** 27 - 8.76735427706115e112 * cos(theta) ** 25 + 2.04208562353909e112 * cos(theta) ** 23 - 3.61039596614528e111 * cos(theta) ** 21 + 4.82919205662744e110 * cos(theta) ** 19 - 4.84335391016594e109 * cos(theta) ** 17 + 3.58766956308588e108 * cos(theta) ** 15 - 1.91902854877238e107 * cos(theta) ** 13 + 7.17565804430707e105 * cos(theta) ** 11 - 1.78984667771832e104 * cos(theta) ** 9 + 2.77734829301118e102 * cos(theta) ** 7 - 2.39919021609357e100 * cos(theta) ** 5 + 9.45307413748453e97 * cos(theta) ** 3 - 1.07380622538635e95 * cos(theta) ) * sin(49 * phi) ) # @torch.jit.script def Yl88_m_minus_48(theta, phi): return ( 2.50631401985519e-92 * (1.0 - cos(theta) ** 2) ** 24 * ( 4.22536917317799e111 * cos(theta) ** 40 - 1.88330740290219e112 * cos(theta) ** 38 + 3.82648874057873e112 * cos(theta) ** 36 - 4.69919669895633e112 * cos(theta) ** 34 + 3.89977714218121e112 * cos(theta) ** 32 - 2.31651432637351e112 * cos(theta) ** 30 + 1.01786235552776e112 * cos(theta) ** 28 - 3.37205933733121e111 * cos(theta) ** 26 + 8.50869009807954e110 * cos(theta) ** 24 - 1.64108907552058e110 * cos(theta) ** 22 + 2.41459602831372e109 * cos(theta) ** 20 - 2.69075217231441e108 * cos(theta) ** 18 + 2.24229347692868e107 * cos(theta) ** 16 - 1.37073467769455e106 * cos(theta) ** 14 + 5.97971503692256e104 * cos(theta) ** 12 - 1.78984667771832e103 * cos(theta) ** 10 + 3.47168536626397e101 * cos(theta) ** 8 - 3.99865036015596e99 * cos(theta) ** 6 + 2.36326853437113e97 * cos(theta) ** 4 - 5.36903112693177e94 * cos(theta) ** 2 + 1.95950041128897e91 ) * sin(48 * phi) ) # @torch.jit.script def Yl88_m_minus_47(theta, phi): return ( 1.87153031423753e-90 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 1.03057784711658e110 * cos(theta) ** 41 - 4.82899334077484e110 * cos(theta) ** 39 + 1.03418614610236e111 * cos(theta) ** 37 - 1.34262762827324e111 * cos(theta) ** 35 + 1.18175064914582e111 * cos(theta) ** 33 - 7.47262685926939e110 * cos(theta) ** 31 + 3.50987019147502e110 * cos(theta) ** 29 - 1.24891086567823e110 * cos(theta) ** 27 + 3.40347603923181e109 * cos(theta) ** 25 - 7.13516989356775e108 * cos(theta) ** 23 + 1.14980763253034e108 * cos(theta) ** 21 - 1.41618535384969e107 * cos(theta) ** 19 + 1.31899616289922e106 * cos(theta) ** 17 - 9.13823118463037e104 * cos(theta) ** 15 + 4.59978079763274e103 * cos(theta) ** 13 - 1.62713334338029e102 * cos(theta) ** 11 + 3.85742818473775e100 * cos(theta) ** 9 - 5.71235765736565e98 * cos(theta) ** 7 + 4.72653706874226e96 * cos(theta) ** 5 - 1.78967704231059e94 * cos(theta) ** 3 + 1.95950041128897e91 * cos(theta) ) * sin(47 * phi) ) # @torch.jit.script def Yl88_m_minus_46(theta, phi): return ( 1.40925114213237e-88 * (1.0 - cos(theta) ** 2) ** 23 * ( 2.45375677884901e108 * cos(theta) ** 42 - 1.20724833519371e109 * cos(theta) ** 40 + 2.72154248974305e109 * cos(theta) ** 38 - 3.72952118964788e109 * cos(theta) ** 36 + 3.47573720337007e109 * cos(theta) ** 34 - 2.33519589352168e109 * cos(theta) ** 32 + 1.16995673049167e109 * cos(theta) ** 30 - 4.46039594885081e108 * cos(theta) ** 28 + 1.30902924585839e108 * cos(theta) ** 26 - 2.97298745565323e107 * cos(theta) ** 24 + 5.22639832968338e106 * cos(theta) ** 22 - 7.08092676924845e105 * cos(theta) ** 20 + 7.32775646055123e104 * cos(theta) ** 18 - 5.71139449039398e103 * cos(theta) ** 16 + 3.28555771259481e102 * cos(theta) ** 14 - 1.35594445281691e101 * cos(theta) ** 12 + 3.85742818473775e99 * cos(theta) ** 10 - 7.14044707170706e97 * cos(theta) ** 8 + 7.87756178123711e95 * cos(theta) ** 6 - 4.47419260577647e93 * cos(theta) ** 4 + 9.79750205644483e90 * cos(theta) ** 2 - 3.45590901461899e87 ) * sin(46 * phi) ) # @torch.jit.script def Yl88_m_minus_45(theta, phi): return ( 1.06973208606581e-86 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 5.70641111360234e106 * cos(theta) ** 43 - 2.94450813461881e107 * cos(theta) ** 41 + 6.97831407626423e107 * cos(theta) ** 39 - 1.00797869990483e108 * cos(theta) ** 37 + 9.93067772391447e107 * cos(theta) ** 35 - 7.07635119248995e107 * cos(theta) ** 33 + 3.77405396932798e107 * cos(theta) ** 31 - 1.53806756856925e107 * cos(theta) ** 29 + 4.84825646614219e106 * cos(theta) ** 27 - 1.18919498226129e106 * cos(theta) ** 25 + 2.27234709986234e105 * cos(theta) ** 23 - 3.37186989011831e104 * cos(theta) ** 21 + 3.85671392660591e103 * cos(theta) ** 19 - 3.35964381787881e102 * cos(theta) ** 17 + 2.19037180839654e101 * cos(theta) ** 15 - 1.04303419447454e100 * cos(theta) ** 13 + 3.50675289521614e98 * cos(theta) ** 11 - 7.93383007967452e96 * cos(theta) ** 9 + 1.12536596874816e95 * cos(theta) ** 7 - 8.94838521155294e92 * cos(theta) ** 5 + 3.26583401881494e90 * cos(theta) ** 3 - 3.45590901461899e87 * cos(theta) ) * sin(45 * phi) ) # @torch.jit.script def Yl88_m_minus_44(theta, phi): return ( 8.18327566371218e-85 * (1.0 - cos(theta) ** 2) ** 22 * ( 1.2969116167278e105 * cos(theta) ** 44 - 7.0107336538543e105 * cos(theta) ** 42 + 1.74457851906606e106 * cos(theta) ** 40 - 2.65257552606535e106 * cos(theta) ** 38 + 2.75852158997624e106 * cos(theta) ** 36 - 2.08127976249705e106 * cos(theta) ** 34 + 1.17939186541499e106 * cos(theta) ** 32 - 5.12689189523082e105 * cos(theta) ** 30 + 1.73152016647935e105 * cos(theta) ** 28 - 4.57382685485112e104 * cos(theta) ** 26 + 9.46811291609308e103 * cos(theta) ** 24 - 1.53266813187196e103 * cos(theta) ** 22 + 1.92835696330296e102 * cos(theta) ** 20 - 1.86646878771045e101 * cos(theta) ** 18 + 1.36898238024784e100 * cos(theta) ** 16 - 7.45024424624674e98 * cos(theta) ** 14 + 2.92229407934678e97 * cos(theta) ** 12 - 7.93383007967452e95 * cos(theta) ** 10 + 1.4067074609352e94 * cos(theta) ** 8 - 1.49139753525882e92 * cos(theta) ** 6 + 8.16458504703736e89 * cos(theta) ** 4 - 1.72795450730949e87 * cos(theta) ** 2 + 5.90551779668316e83 ) * sin(44 * phi) ) # @torch.jit.script def Yl88_m_minus_43(theta, phi): return ( 6.30696474934279e-83 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 2.88202581495068e103 * cos(theta) ** 45 - 1.63040317531495e104 * cos(theta) ** 43 + 4.2550695586977e104 * cos(theta) ** 41 - 6.80147570785987e104 * cos(theta) ** 39 + 7.45546375669255e104 * cos(theta) ** 37 - 5.94651360713442e104 * cos(theta) ** 35 + 3.5739147436818e104 * cos(theta) ** 33 - 1.65383609523575e104 * cos(theta) ** 31 + 5.97075919475639e103 * cos(theta) ** 29 - 1.69400994624116e103 * cos(theta) ** 27 + 3.78724516643723e102 * cos(theta) ** 25 - 6.66377448639982e101 * cos(theta) ** 23 + 9.18265220620455e100 * cos(theta) ** 21 - 9.82351993531816e99 * cos(theta) ** 19 + 8.05283753086963e98 * cos(theta) ** 17 - 4.96682949749782e97 * cos(theta) ** 15 + 2.24791852257445e96 * cos(theta) ** 13 - 7.2125727997041e94 * cos(theta) ** 11 + 1.563008289928e93 * cos(theta) ** 9 - 2.13056790751261e91 * cos(theta) ** 7 + 1.63291700940747e89 * cos(theta) ** 5 - 5.75984835769831e86 * cos(theta) ** 3 + 5.90551779668316e83 * cos(theta) ) * sin(43 * phi) ) # @torch.jit.script def Yl88_m_minus_42(theta, phi): return ( 4.89592737905498e-81 * (1.0 - cos(theta) ** 2) ** 21 * ( 6.26527351076234e101 * cos(theta) ** 46 - 3.70546176207944e102 * cos(theta) ** 44 + 1.01311179968993e103 * cos(theta) ** 42 - 1.70036892696497e103 * cos(theta) ** 40 + 1.96196414649804e103 * cos(theta) ** 38 - 1.65180933531512e103 * cos(theta) ** 36 + 1.05115139520053e103 * cos(theta) ** 34 - 5.16823779761171e102 * cos(theta) ** 32 + 1.9902530649188e102 * cos(theta) ** 30 - 6.05003552228984e101 * cos(theta) ** 28 + 1.45663275632201e101 * cos(theta) ** 26 - 2.77657270266659e100 * cos(theta) ** 24 + 4.17393282100207e99 * cos(theta) ** 22 - 4.91175996765908e98 * cos(theta) ** 20 + 4.47379862826091e97 * cos(theta) ** 18 - 3.10426843593614e96 * cos(theta) ** 16 + 1.60565608755318e95 * cos(theta) ** 14 - 6.01047733308675e93 * cos(theta) ** 12 + 1.563008289928e92 * cos(theta) ** 10 - 2.66320988439076e90 * cos(theta) ** 8 + 2.72152834901245e88 * cos(theta) ** 6 - 1.43996208942458e86 * cos(theta) ** 4 + 2.95275889834158e83 * cos(theta) ** 2 - 9.80006272267369e79 ) * sin(42 * phi) ) # @torch.jit.script def Yl88_m_minus_41(theta, phi): return ( 3.82697453538678e-79 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 1.33303691718348e100 * cos(theta) ** 47 - 8.23435947128765e100 * cos(theta) ** 45 + 2.35607395276727e101 * cos(theta) ** 43 - 4.14724128528041e101 * cos(theta) ** 41 + 5.03067729871292e101 * cos(theta) ** 39 - 4.46434955490572e101 * cos(theta) ** 37 + 3.00328970057294e101 * cos(theta) ** 35 - 1.56613266594294e101 * cos(theta) ** 33 + 6.42017117715741e100 * cos(theta) ** 31 - 2.08621914561719e100 * cos(theta) ** 29 + 5.39493613452597e99 * cos(theta) ** 27 - 1.11062908106664e99 * cos(theta) ** 25 + 1.81475340043568e98 * cos(theta) ** 23 - 2.3389333179329e97 * cos(theta) ** 21 + 2.35463085697943e96 * cos(theta) ** 19 - 1.82604025643302e95 * cos(theta) ** 17 + 1.07043739170212e94 * cos(theta) ** 15 - 4.62344410237443e92 * cos(theta) ** 13 + 1.42091662720727e91 * cos(theta) ** 11 - 2.95912209376751e89 * cos(theta) ** 9 + 3.88789764144636e87 * cos(theta) ** 7 - 2.87992417884916e85 * cos(theta) ** 5 + 9.84252966113861e82 * cos(theta) ** 3 - 9.80006272267369e79 * cos(theta) ) * sin(41 * phi) ) # @torch.jit.script def Yl88_m_minus_40(theta, phi): return ( 3.01141802998416e-77 * (1.0 - cos(theta) ** 2) ** 20 * ( 2.77716024413224e98 * cos(theta) ** 48 - 1.7900781459321e99 * cos(theta) ** 46 + 5.35471352901653e99 * cos(theta) ** 44 - 9.8743840125724e99 * cos(theta) ** 42 + 1.25766932467823e100 * cos(theta) ** 40 - 1.17482883023835e100 * cos(theta) ** 38 + 8.34247139048038e99 * cos(theta) ** 36 - 4.60627254689101e99 * cos(theta) ** 34 + 2.00630349286169e99 * cos(theta) ** 32 - 6.95406381872395e98 * cos(theta) ** 30 + 1.92676290518785e98 * cos(theta) ** 28 - 4.27165031179476e97 * cos(theta) ** 26 + 7.56147250181534e96 * cos(theta) ** 24 - 1.06315150815132e96 * cos(theta) ** 22 + 1.17731542848971e95 * cos(theta) ** 20 - 1.01446680912946e94 * cos(theta) ** 18 + 6.69023369813823e92 * cos(theta) ** 16 - 3.30246007312459e91 * cos(theta) ** 14 + 1.18409718933939e90 * cos(theta) ** 12 - 2.95912209376751e88 * cos(theta) ** 10 + 4.85987205180795e86 * cos(theta) ** 8 - 4.79987363141526e84 * cos(theta) ** 6 + 2.46063241528465e82 * cos(theta) ** 4 - 4.90003136133684e79 * cos(theta) ** 2 + 1.58269746813206e76 ) * sin(40 * phi) ) # @torch.jit.script def Yl88_m_minus_39(theta, phi): return ( 2.38492140318794e-75 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 5.66767396761682e96 * cos(theta) ** 49 - 3.80867690623851e97 * cos(theta) ** 47 + 1.18993633978145e98 * cos(theta) ** 45 - 2.29636837501684e98 * cos(theta) ** 43 + 3.06748615775178e98 * cos(theta) ** 41 - 3.01238161599576e98 * cos(theta) ** 39 + 2.25472199742713e98 * cos(theta) ** 37 - 1.31607787054029e98 * cos(theta) ** 35 + 6.07970755412633e97 * cos(theta) ** 33 - 2.24324639313676e97 * cos(theta) ** 31 + 6.64401001788913e96 * cos(theta) ** 29 - 1.58209270807213e96 * cos(theta) ** 27 + 3.02458900072614e95 * cos(theta) ** 25 - 4.62239786152746e94 * cos(theta) ** 23 + 5.60626394518911e93 * cos(theta) ** 21 - 5.3392989954182e92 * cos(theta) ** 19 + 3.93543158714014e91 * cos(theta) ** 17 - 2.20164004874973e90 * cos(theta) ** 15 + 9.10843991799532e88 * cos(theta) ** 13 - 2.6901109943341e87 * cos(theta) ** 11 + 5.39985783534217e85 * cos(theta) ** 9 - 6.85696233059323e83 * cos(theta) ** 7 + 4.9212648305693e81 * cos(theta) ** 5 - 1.63334378711228e79 * cos(theta) ** 3 + 1.58269746813206e76 * cos(theta) ) * sin(39 * phi) ) # @torch.jit.script def Yl88_m_minus_38(theta, phi): return ( 1.90046962962022e-73 * (1.0 - cos(theta) ** 2) ** 19 * ( 1.13353479352336e95 * cos(theta) ** 50 - 7.93474355466355e95 * cos(theta) ** 48 + 2.58681812995968e96 * cos(theta) ** 46 - 5.21901903412917e96 * cos(theta) ** 44 + 7.30353847083757e96 * cos(theta) ** 42 - 7.5309540399894e96 * cos(theta) ** 40 + 5.93347894059771e96 * cos(theta) ** 38 - 3.65577186261191e96 * cos(theta) ** 36 + 1.78814928062539e96 * cos(theta) ** 34 - 7.01014497855237e95 * cos(theta) ** 32 + 2.21467000596304e95 * cos(theta) ** 30 - 5.65033110025762e94 * cos(theta) ** 28 + 1.16330346181774e94 * cos(theta) ** 26 - 1.92599910896978e93 * cos(theta) ** 24 + 2.54830179326778e92 * cos(theta) ** 22 - 2.6696494977091e91 * cos(theta) ** 20 + 2.18635088174452e90 * cos(theta) ** 18 - 1.37602503046858e89 * cos(theta) ** 16 + 6.5060285128538e87 * cos(theta) ** 14 - 2.24175916194508e86 * cos(theta) ** 12 + 5.39985783534217e84 * cos(theta) ** 10 - 8.57120291324154e82 * cos(theta) ** 8 + 8.20210805094884e80 * cos(theta) ** 6 - 4.0833594677807e78 * cos(theta) ** 4 + 7.91348734066028e75 * cos(theta) ** 2 - 2.49243695768828e72 ) * sin(38 * phi) ) # @torch.jit.script def Yl88_m_minus_37(theta, phi): return ( 1.52346083668197e-71 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 2.22261724220268e93 * cos(theta) ** 51 - 1.61933541931909e94 * cos(theta) ** 49 + 5.50386836161634e94 * cos(theta) ** 47 - 1.15978200758426e95 * cos(theta) ** 45 + 1.69849731879944e95 * cos(theta) ** 43 - 1.836818058534e95 * cos(theta) ** 41 + 1.52140485656352e95 * cos(theta) ** 39 - 9.88046449354571e94 * cos(theta) ** 37 + 5.10899794464398e94 * cos(theta) ** 35 - 2.12428635713708e94 * cos(theta) ** 33 + 7.14409679342917e93 * cos(theta) ** 31 - 1.94839003457159e93 * cos(theta) ** 29 + 4.30853134006572e92 * cos(theta) ** 27 - 7.7039964358791e91 * cos(theta) ** 25 + 1.10795730142077e91 * cos(theta) ** 23 - 1.27126166557576e90 * cos(theta) ** 21 + 1.15071099039185e89 * cos(theta) ** 19 - 8.09426488510929e87 * cos(theta) ** 17 + 4.33735234190254e86 * cos(theta) ** 15 - 1.72443012457314e85 * cos(theta) ** 13 + 4.90896166849288e83 * cos(theta) ** 11 - 9.5235587924906e81 * cos(theta) ** 9 + 1.17172972156412e80 * cos(theta) ** 7 - 8.16671893556141e77 * cos(theta) ** 5 + 2.63782911355343e75 * cos(theta) ** 3 - 2.49243695768828e72 * cos(theta) ) * sin(37 * phi) ) # @torch.jit.script def Yl88_m_minus_36(theta, phi): return ( 1.22825339347686e-69 * (1.0 - cos(theta) ** 2) ** 18 * ( 4.27426392731284e91 * cos(theta) ** 52 - 3.23867083863818e92 * cos(theta) ** 50 + 1.1466392420034e93 * cos(theta) ** 48 - 2.52126523387883e93 * cos(theta) ** 46 + 3.86022117908963e93 * cos(theta) ** 44 - 4.37337632984286e93 * cos(theta) ** 42 + 3.80351214140879e93 * cos(theta) ** 40 - 2.60012223514361e93 * cos(theta) ** 38 + 1.41916609573444e93 * cos(theta) ** 36 - 6.24790105040318e92 * cos(theta) ** 34 + 2.23253024794662e92 * cos(theta) ** 32 - 6.49463344857197e91 * cos(theta) ** 30 + 1.53876119288061e91 * cos(theta) ** 28 - 2.96307555226119e90 * cos(theta) ** 26 + 4.61648875591988e89 * cos(theta) ** 24 - 5.77846211625346e88 * cos(theta) ** 22 + 5.75355495195926e87 * cos(theta) ** 20 - 4.49681382506072e86 * cos(theta) ** 18 + 2.71084521368908e85 * cos(theta) ** 16 - 1.23173580326653e84 * cos(theta) ** 14 + 4.09080139041073e82 * cos(theta) ** 12 - 9.5235587924906e80 * cos(theta) ** 10 + 1.46466215195515e79 * cos(theta) ** 8 - 1.36111982259357e77 * cos(theta) ** 6 + 6.59457278388356e74 * cos(theta) ** 4 - 1.24621847884414e72 * cos(theta) ** 2 + 3.8345183964435e68 ) * sin(36 * phi) ) # @torch.jit.script def Yl88_m_minus_35(theta, phi): return ( 9.9571889866149e-68 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 8.06464891945818e89 * cos(theta) ** 53 - 6.35033497772193e90 * cos(theta) ** 51 + 2.34008008572123e91 * cos(theta) ** 49 - 5.36439411463581e91 * cos(theta) ** 47 + 8.57826928686584e91 * cos(theta) ** 45 - 1.01706426275415e92 * cos(theta) ** 43 + 9.27685888148485e91 * cos(theta) ** 41 - 6.66698009011181e91 * cos(theta) ** 39 + 3.83558404252551e91 * cos(theta) ** 37 - 1.78511458582948e91 * cos(theta) ** 35 + 6.7652431755958e90 * cos(theta) ** 33 - 2.09504304792644e90 * cos(theta) ** 31 + 5.30607307889867e89 * cos(theta) ** 29 - 1.09743538972637e89 * cos(theta) ** 27 + 1.84659550236795e88 * cos(theta) ** 25 - 2.51237483315368e87 * cos(theta) ** 23 + 2.73978807236155e86 * cos(theta) ** 21 - 2.36674411845301e85 * cos(theta) ** 19 + 1.59461483158181e84 * cos(theta) ** 17 - 8.21157202177686e82 * cos(theta) ** 15 + 3.14677030031595e81 * cos(theta) ** 13 - 8.657780720446e79 * cos(theta) ** 11 + 1.62740239106128e78 * cos(theta) ** 9 - 1.94445688941938e76 * cos(theta) ** 7 + 1.31891455677671e74 * cos(theta) ** 5 - 4.15406159614713e71 * cos(theta) ** 3 + 3.8345183964435e68 * cos(theta) ) * sin(35 * phi) ) # @torch.jit.script def Yl88_m_minus_34(theta, phi): return ( 8.11495630503163e-66 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.49345350360337e88 * cos(theta) ** 54 - 1.22121826494653e89 * cos(theta) ** 52 + 4.68016017144246e89 * cos(theta) ** 50 - 1.11758210721579e90 * cos(theta) ** 48 + 1.86484114931866e90 * cos(theta) ** 46 - 2.31150968807762e90 * cos(theta) ** 44 + 2.20877592416306e90 * cos(theta) ** 42 - 1.66674502252795e90 * cos(theta) ** 40 + 1.00936422171724e90 * cos(theta) ** 38 - 4.95865162730411e89 * cos(theta) ** 36 + 1.989777404587e89 * cos(theta) ** 34 - 6.54700952477013e88 * cos(theta) ** 32 + 1.76869102629956e88 * cos(theta) ** 30 - 3.9194121061656e87 * cos(theta) ** 28 + 7.1022903937229e86 * cos(theta) ** 26 - 1.04682284714737e86 * cos(theta) ** 24 + 1.2453582147098e85 * cos(theta) ** 22 - 1.1833720592265e84 * cos(theta) ** 20 + 8.85897128656564e82 * cos(theta) ** 18 - 5.13223251361054e81 * cos(theta) ** 16 + 2.24769307165425e80 * cos(theta) ** 14 - 7.21481726703833e78 * cos(theta) ** 12 + 1.62740239106128e77 * cos(theta) ** 10 - 2.43057111177423e75 * cos(theta) ** 8 + 2.19819092796119e73 * cos(theta) ** 6 - 1.03851539903678e71 * cos(theta) ** 4 + 1.91725919822175e68 * cos(theta) ** 2 - 5.77313820602755e64 ) * sin(34 * phi) ) # @torch.jit.script def Yl88_m_minus_33(theta, phi): return ( 6.64733315876798e-64 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 2.71537000655158e86 * cos(theta) ** 55 - 2.30418540555948e87 * cos(theta) ** 53 + 9.17678464988718e87 * cos(theta) ** 51 - 2.28077981064448e88 * cos(theta) ** 49 + 3.96774712620992e88 * cos(theta) ** 47 - 5.13668819572805e88 * cos(theta) ** 45 + 5.13668819572805e88 * cos(theta) ** 43 - 4.0652317622633e88 * cos(theta) ** 41 + 2.58811338901856e88 * cos(theta) ** 39 - 1.3401761154876e88 * cos(theta) ** 37 + 5.68507829882e87 * cos(theta) ** 35 - 1.98394228023337e87 * cos(theta) ** 33 + 5.70545492354696e86 * cos(theta) ** 31 - 1.35152141591917e86 * cos(theta) ** 29 + 2.63047792360107e85 * cos(theta) ** 27 - 4.18729138858946e84 * cos(theta) ** 25 + 5.41460093352086e83 * cos(theta) ** 23 - 5.63510504393574e82 * cos(theta) ** 21 + 4.66261646661349e81 * cos(theta) ** 19 - 3.01896030212384e80 * cos(theta) ** 17 + 1.4984620477695e79 * cos(theta) ** 15 - 5.54985943618333e77 * cos(theta) ** 13 + 1.47945671914662e76 * cos(theta) ** 11 - 2.70063456863803e74 * cos(theta) ** 9 + 3.14027275423027e72 * cos(theta) ** 7 - 2.07703079807356e70 * cos(theta) ** 5 + 6.3908639940725e67 * cos(theta) ** 3 - 5.77313820602755e64 * cos(theta) ) * sin(33 * phi) ) # @torch.jit.script def Yl88_m_minus_32(theta, phi): return ( 5.47184950748734e-62 * (1.0 - cos(theta) ** 2) ** 16 * ( 4.84887501169925e84 * cos(theta) ** 56 - 4.26701001029534e85 * cos(theta) ** 54 + 1.76476627882446e86 * cos(theta) ** 52 - 4.56155962128895e86 * cos(theta) ** 50 + 8.26613984627066e86 * cos(theta) ** 48 - 1.1166713468974e87 * cos(theta) ** 46 + 1.16742913539274e87 * cos(theta) ** 44 - 9.67912324348405e86 * cos(theta) ** 42 + 6.4702834725464e86 * cos(theta) ** 40 - 3.52677925128315e86 * cos(theta) ** 38 + 1.57918841633889e86 * cos(theta) ** 36 - 5.83512435362757e85 * cos(theta) ** 34 + 1.78295466360842e85 * cos(theta) ** 32 - 4.50507138639724e84 * cos(theta) ** 30 + 9.39456401286098e83 * cos(theta) ** 28 - 1.61049668791902e83 * cos(theta) ** 26 + 2.25608372230036e82 * cos(theta) ** 24 - 2.56141138360715e81 * cos(theta) ** 22 + 2.33130823330675e80 * cos(theta) ** 20 - 1.67720016784658e79 * cos(theta) ** 18 + 9.36538779855937e77 * cos(theta) ** 16 - 3.96418531155952e76 * cos(theta) ** 14 + 1.23288059928885e75 * cos(theta) ** 12 - 2.70063456863803e73 * cos(theta) ** 10 + 3.92534094278784e71 * cos(theta) ** 8 - 3.46171799678927e69 * cos(theta) ** 6 + 1.59771599851813e67 * cos(theta) ** 4 - 2.88656910301378e64 * cos(theta) ** 2 + 8.51997964289781e60 ) * sin(32 * phi) ) # @torch.jit.script def Yl88_m_minus_31(theta, phi): return ( 4.52545442251838e-60 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 8.50679826613903e82 * cos(theta) ** 57 - 7.75820001871879e83 * cos(theta) ** 55 + 3.3297476958952e84 * cos(theta) ** 53 - 8.94423455154696e84 * cos(theta) ** 51 + 1.68696731556544e85 * cos(theta) ** 49 - 2.37589648276043e85 * cos(theta) ** 47 + 2.59428696753942e85 * cos(theta) ** 45 - 2.2509588938335e85 * cos(theta) ** 43 + 1.57811792013327e85 * cos(theta) ** 41 - 9.04302372123886e84 * cos(theta) ** 39 + 4.26807680091592e84 * cos(theta) ** 37 - 1.66717838675073e84 * cos(theta) ** 35 + 5.40289292002553e83 * cos(theta) ** 33 - 1.45324883432169e83 * cos(theta) ** 31 + 3.23950483202103e82 * cos(theta) ** 29 - 5.96480254784824e81 * cos(theta) ** 27 + 9.02433488920143e80 * cos(theta) ** 25 - 1.11365712330746e80 * cos(theta) ** 23 + 1.11014677776512e79 * cos(theta) ** 21 - 8.82736930445568e77 * cos(theta) ** 19 + 5.50905164621139e76 * cos(theta) ** 17 - 2.64279020770635e75 * cos(theta) ** 15 + 9.48369691760651e73 * cos(theta) ** 13 - 2.45512233512548e72 * cos(theta) ** 11 + 4.36148993643093e70 * cos(theta) ** 9 - 4.94531142398467e68 * cos(theta) ** 7 + 3.19543199703625e66 * cos(theta) ** 5 - 9.62189701004592e63 * cos(theta) ** 3 + 8.51997964289781e60 * cos(theta) ) * sin(31 * phi) ) # @torch.jit.script def Yl88_m_minus_30(theta, phi): return ( 3.7596695308826e-58 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.46668935623087e81 * cos(theta) ** 58 - 1.3853928604855e82 * cos(theta) ** 56 + 6.16619943684297e82 * cos(theta) ** 54 - 1.72004510606672e83 * cos(theta) ** 52 + 3.37393463113088e83 * cos(theta) ** 50 - 4.94978433908423e83 * cos(theta) ** 48 + 5.6397542772596e83 * cos(theta) ** 46 - 5.11581566780341e83 * cos(theta) ** 44 + 3.75742361936493e83 * cos(theta) ** 42 - 2.26075593030971e83 * cos(theta) ** 40 + 1.12317810550419e83 * cos(theta) ** 38 - 4.6310510743076e82 * cos(theta) ** 36 + 1.58908615294868e82 * cos(theta) ** 34 - 4.54140260725528e81 * cos(theta) ** 32 + 1.07983494400701e81 * cos(theta) ** 30 - 2.13028662423151e80 * cos(theta) ** 28 + 3.47089803430824e79 * cos(theta) ** 26 - 4.64023801378107e78 * cos(theta) ** 24 + 5.04612171711417e77 * cos(theta) ** 22 - 4.41368465222784e76 * cos(theta) ** 20 + 3.06058424789522e75 * cos(theta) ** 18 - 1.65174387981647e74 * cos(theta) ** 16 + 6.77406922686179e72 * cos(theta) ** 14 - 2.04593527927124e71 * cos(theta) ** 12 + 4.36148993643093e69 * cos(theta) ** 10 - 6.18163927998084e67 * cos(theta) ** 8 + 5.32571999506042e65 * cos(theta) ** 6 - 2.40547425251148e63 * cos(theta) ** 4 + 4.2599898214489e60 * cos(theta) ** 2 - 1.23442185495477e57 ) * sin(30 * phi) ) # @torch.jit.script def Yl88_m_minus_29(theta, phi): return ( 3.13701562796289e-56 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 2.48591416310316e79 * cos(theta) ** 59 - 2.43051379032544e80 * cos(theta) ** 57 + 1.12112717033509e81 * cos(theta) ** 55 - 3.2453681246542e81 * cos(theta) ** 53 + 6.61555810025663e81 * cos(theta) ** 51 - 1.01016006920086e82 * cos(theta) ** 49 + 1.19994771856587e82 * cos(theta) ** 47 - 1.13684792617854e82 * cos(theta) ** 45 + 8.73819446363936e81 * cos(theta) ** 43 - 5.51403885441394e81 * cos(theta) ** 41 + 2.87994386026715e81 * cos(theta) ** 39 - 1.25163542548854e81 * cos(theta) ** 37 + 4.54024615128196e80 * cos(theta) ** 35 - 1.37618260825918e80 * cos(theta) ** 33 + 3.48333852905487e79 * cos(theta) ** 31 - 7.34581594562591e78 * cos(theta) ** 29 + 1.28551779048453e78 * cos(theta) ** 27 - 1.85609520551243e77 * cos(theta) ** 25 + 2.19396596396268e76 * cos(theta) ** 23 - 2.10175459629897e75 * cos(theta) ** 21 + 1.61083381468169e74 * cos(theta) ** 19 - 9.71614046950863e72 * cos(theta) ** 17 + 4.5160461512412e71 * cos(theta) ** 15 - 1.57379636867018e70 * cos(theta) ** 13 + 3.96499085130084e68 * cos(theta) ** 11 - 6.8684880888676e66 * cos(theta) ** 9 + 7.60817142151488e64 * cos(theta) ** 7 - 4.81094850502296e62 * cos(theta) ** 5 + 1.41999660714963e60 * cos(theta) ** 3 - 1.23442185495477e57 * cos(theta) ) * sin(29 * phi) ) # @torch.jit.script def Yl88_m_minus_28(theta, phi): return ( 2.6283623549957e-54 * (1.0 - cos(theta) ** 2) ** 14 * ( 4.14319027183861e77 * cos(theta) ** 60 - 4.19054101780248e78 * cos(theta) ** 58 + 2.0020128041698e79 * cos(theta) ** 56 - 6.00994097158184e79 * cos(theta) ** 54 + 1.27222271158781e80 * cos(theta) ** 52 - 2.02032013840172e80 * cos(theta) ** 50 + 2.49989108034557e80 * cos(theta) ** 48 - 2.47140853517073e80 * cos(theta) ** 46 + 1.98595328719076e80 * cos(theta) ** 44 - 1.31286639390808e80 * cos(theta) ** 42 + 7.19985965066788e79 * cos(theta) ** 40 - 3.29377743549616e79 * cos(theta) ** 38 + 1.26117948646721e79 * cos(theta) ** 36 - 4.04759590664464e78 * cos(theta) ** 34 + 1.08854329032965e78 * cos(theta) ** 32 - 2.44860531520864e77 * cos(theta) ** 30 + 4.59113496601619e76 * cos(theta) ** 28 - 7.13882771350934e75 * cos(theta) ** 26 + 9.14152484984451e74 * cos(theta) ** 24 - 9.55342998317715e73 * cos(theta) ** 22 + 8.05416907340847e72 * cos(theta) ** 20 - 5.39785581639368e71 * cos(theta) ** 18 + 2.82252884452575e70 * cos(theta) ** 16 - 1.12414026333584e69 * cos(theta) ** 14 + 3.3041590427507e67 * cos(theta) ** 12 - 6.8684880888676e65 * cos(theta) ** 10 + 9.5102142768936e63 * cos(theta) ** 8 - 8.0182475083716e61 * cos(theta) ** 6 + 3.54999151787409e59 * cos(theta) ** 4 - 6.17210927477384e56 * cos(theta) ** 2 + 1.75843569081876e53 ) * sin(28 * phi) ) # @torch.jit.script def Yl88_m_minus_27(theta, phi): return ( 2.21095116687289e-52 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 6.79211519973542e75 * cos(theta) ** 61 - 7.10261189458047e76 * cos(theta) ** 59 + 3.51230316521017e77 * cos(theta) ** 57 - 1.09271654028761e78 * cos(theta) ** 55 + 2.40042021054304e78 * cos(theta) ** 53 - 3.96141203608181e78 * cos(theta) ** 51 + 5.10181853131749e78 * cos(theta) ** 49 - 5.25831603227815e78 * cos(theta) ** 47 + 4.41322952709059e78 * cos(theta) ** 45 - 3.05317766025135e78 * cos(theta) ** 43 + 1.75606332943119e78 * cos(theta) ** 41 - 8.44558316793886e77 * cos(theta) ** 39 + 3.40859320666814e77 * cos(theta) ** 37 - 1.15645597332704e77 * cos(theta) ** 35 + 3.29861603130196e76 * cos(theta) ** 33 - 7.89872682325367e75 * cos(theta) ** 31 + 1.58314998828145e75 * cos(theta) ** 29 - 2.64401026426272e74 * cos(theta) ** 27 + 3.6566099399378e73 * cos(theta) ** 25 - 4.15366521007702e72 * cos(theta) ** 23 + 3.83531860638499e71 * cos(theta) ** 21 - 2.84097674547036e70 * cos(theta) ** 19 + 1.66031108501515e69 * cos(theta) ** 17 - 7.49426842223896e67 * cos(theta) ** 15 + 2.54166080211593e66 * cos(theta) ** 13 - 6.24408008078873e64 * cos(theta) ** 11 + 1.0566904752104e63 * cos(theta) ** 9 - 1.14546392976737e61 * cos(theta) ** 7 + 7.09998303574817e58 * cos(theta) ** 5 - 2.05736975825795e56 * cos(theta) ** 3 + 1.75843569081876e53 * cos(theta) ) * sin(27 * phi) ) # @torch.jit.script def Yl88_m_minus_26(theta, phi): return ( 1.86691229290973e-50 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.09550245157023e74 * cos(theta) ** 62 - 1.18376864909674e75 * cos(theta) ** 60 + 6.05569511243132e75 * cos(theta) ** 58 - 1.95127953622787e76 * cos(theta) ** 56 + 4.44522261211675e76 * cos(theta) ** 54 - 7.6181000693881e76 * cos(theta) ** 52 + 1.0203637062635e77 * cos(theta) ** 50 - 1.09548250672461e77 * cos(theta) ** 48 + 9.59397723280562e76 * cos(theta) ** 46 - 6.93904013693488e76 * cos(theta) ** 44 + 4.18110316531236e76 * cos(theta) ** 42 - 2.11139579198472e76 * cos(theta) ** 40 + 8.96998212281088e75 * cos(theta) ** 38 - 3.21237770368622e75 * cos(theta) ** 36 + 9.70181185677046e74 * cos(theta) ** 34 - 2.46835213226677e74 * cos(theta) ** 32 + 5.27716662760482e73 * cos(theta) ** 30 - 9.44289380093828e72 * cos(theta) ** 28 + 1.40638843843762e72 * cos(theta) ** 26 - 1.73069383753209e71 * cos(theta) ** 24 + 1.7433266392659e70 * cos(theta) ** 22 - 1.42048837273518e69 * cos(theta) ** 20 + 9.22395047230636e67 * cos(theta) ** 18 - 4.68391776389935e66 * cos(theta) ** 16 + 1.81547200151138e65 * cos(theta) ** 14 - 5.20340006732394e63 * cos(theta) ** 12 + 1.0566904752104e62 * cos(theta) ** 10 - 1.43182991220921e60 * cos(theta) ** 8 + 1.18333050595803e58 * cos(theta) ** 6 - 5.14342439564487e55 * cos(theta) ** 4 + 8.79217845409379e52 * cos(theta) ** 2 - 2.46624921573458e49 ) * sin(26 * phi) ) # @torch.jit.script def Yl88_m_minus_25(theta, phi): return ( 1.58214621197398e-48 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 1.7388927802702e72 * cos(theta) ** 63 - 1.94060434278155e73 * cos(theta) ** 61 + 1.026389002107e74 * cos(theta) ** 59 - 3.42329743197872e74 * cos(theta) ** 57 + 8.08222293112136e74 * cos(theta) ** 55 - 1.43737737158266e75 * cos(theta) ** 53 + 2.00071314953627e75 * cos(theta) ** 51 - 2.23567858515227e75 * cos(theta) ** 49 + 2.04127175166077e75 * cos(theta) ** 47 - 1.54200891931886e75 * cos(theta) ** 45 + 9.72349573328455e74 * cos(theta) ** 43 - 5.14974583410906e74 * cos(theta) ** 41 + 2.29999541610535e74 * cos(theta) ** 39 - 8.68210190185465e73 * cos(theta) ** 37 + 2.77194624479156e73 * cos(theta) ** 35 - 7.47985494626294e72 * cos(theta) ** 33 + 1.70231181535639e72 * cos(theta) ** 31 - 3.25617027618562e71 * cos(theta) ** 29 + 5.20884606828747e70 * cos(theta) ** 27 - 6.92277535012837e69 * cos(theta) ** 25 + 7.57968104028653e68 * cos(theta) ** 23 - 6.764230346358e67 * cos(theta) ** 21 + 4.85471077489809e66 * cos(theta) ** 19 - 2.75524574347021e65 * cos(theta) ** 17 + 1.21031466767425e64 * cos(theta) ** 15 - 4.00261543640303e62 * cos(theta) ** 13 + 9.60627704736728e60 * cos(theta) ** 11 - 1.59092212467691e59 * cos(theta) ** 9 + 1.69047215136861e57 * cos(theta) ** 7 - 1.02868487912897e55 * cos(theta) ** 5 + 2.9307261513646e52 * cos(theta) ** 3 - 2.46624921573458e49 * cos(theta) ) * sin(25 * phi) ) # @torch.jit.script def Yl88_m_minus_24(theta, phi): return ( 1.34547559442794e-46 * (1.0 - cos(theta) ** 2) ** 12 * ( 2.7170199691722e70 * cos(theta) ** 64 - 3.13000700448637e71 * cos(theta) ** 62 + 1.71064833684501e72 * cos(theta) ** 60 - 5.90223695168745e72 * cos(theta) ** 58 + 1.4432540948431e73 * cos(theta) ** 56 - 2.6618099473753e73 * cos(theta) ** 54 + 3.84752528756975e73 * cos(theta) ** 52 - 4.47135717030455e73 * cos(theta) ** 50 + 4.25264948262661e73 * cos(theta) ** 48 - 3.35219330286709e73 * cos(theta) ** 46 + 2.20988539392831e73 * cos(theta) ** 44 - 1.22612996050216e73 * cos(theta) ** 42 + 5.74998854026339e72 * cos(theta) ** 40 - 2.2847636583828e72 * cos(theta) ** 38 + 7.69985067997656e71 * cos(theta) ** 36 - 2.19995733713616e71 * cos(theta) ** 34 + 5.31972442298873e70 * cos(theta) ** 32 - 1.08539009206187e70 * cos(theta) ** 30 + 1.86030216724552e69 * cos(theta) ** 28 - 2.66260590389553e68 * cos(theta) ** 26 + 3.15820043345272e67 * cos(theta) ** 24 - 3.07465015743545e66 * cos(theta) ** 22 + 2.42735538744904e65 * cos(theta) ** 20 - 1.53069207970567e64 * cos(theta) ** 18 + 7.56446667296406e62 * cos(theta) ** 16 - 2.85901102600217e61 * cos(theta) ** 14 + 8.00523087280606e59 * cos(theta) ** 12 - 1.59092212467691e58 * cos(theta) ** 10 + 2.11309018921077e56 * cos(theta) ** 8 - 1.71447479854829e54 * cos(theta) ** 6 + 7.32681537841149e51 * cos(theta) ** 4 - 1.23312460786729e49 * cos(theta) ** 2 + 3.41018973414627e45 ) * sin(24 * phi) ) # @torch.jit.script def Yl88_m_minus_23(theta, phi): return ( 1.14799901164874e-44 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 4.18003072180338e68 * cos(theta) ** 65 - 4.9682650864863e69 * cos(theta) ** 63 + 2.80434153581149e70 * cos(theta) ** 61 - 1.00037914435381e71 * cos(theta) ** 59 + 2.53202472779491e71 * cos(theta) ** 57 - 4.83965444977327e71 * cos(theta) ** 55 + 7.2594816746599e71 * cos(theta) ** 53 - 8.76736700059715e71 * cos(theta) ** 51 + 8.67887649515634e71 * cos(theta) ** 49 - 7.13232617631297e71 * cos(theta) ** 47 + 4.91085643095179e71 * cos(theta) ** 45 - 2.85146502442362e71 * cos(theta) ** 43 + 1.40243622933253e71 * cos(theta) ** 41 - 5.8583683548277e70 * cos(theta) ** 39 + 2.08104072431799e70 * cos(theta) ** 37 - 6.2855923918176e69 * cos(theta) ** 35 + 1.61203770393598e69 * cos(theta) ** 33 - 3.50125836148991e68 * cos(theta) ** 31 + 6.41483505946733e67 * cos(theta) ** 29 - 9.86150334776121e66 * cos(theta) ** 27 + 1.26328017338109e66 * cos(theta) ** 25 - 1.33680441627628e65 * cos(theta) ** 23 + 1.15588351783288e64 * cos(theta) ** 21 - 8.05627410371405e62 * cos(theta) ** 19 + 4.44968627821416e61 * cos(theta) ** 17 - 1.90600735066811e60 * cos(theta) ** 15 + 6.15786990215851e58 * cos(theta) ** 13 - 1.44629284061537e57 * cos(theta) ** 11 + 2.34787798801196e55 * cos(theta) ** 9 - 2.44924971221184e53 * cos(theta) ** 7 + 1.4653630756823e51 * cos(theta) ** 5 - 4.11041535955764e48 * cos(theta) ** 3 + 3.41018973414627e45 * cos(theta) ) * sin(23 * phi) ) # @torch.jit.script def Yl88_m_minus_22(theta, phi): return ( 9.82595953556126e-43 * (1.0 - cos(theta) ** 2) ** 11 * ( 6.33337988152027e66 * cos(theta) ** 66 - 7.76291419763484e67 * cos(theta) ** 64 + 4.52313150937337e68 * cos(theta) ** 62 - 1.66729857392301e69 * cos(theta) ** 60 + 4.36555987550847e69 * cos(theta) ** 58 - 8.64224008888084e69 * cos(theta) ** 56 + 1.34434845827035e70 * cos(theta) ** 54 - 1.68603211549945e70 * cos(theta) ** 52 + 1.73577529903127e70 * cos(theta) ** 50 - 1.48590128673187e70 * cos(theta) ** 48 + 1.06757748498952e70 * cos(theta) ** 46 - 6.48060232823551e69 * cos(theta) ** 44 + 3.33913387936317e69 * cos(theta) ** 42 - 1.46459208870692e69 * cos(theta) ** 40 + 5.47642295873155e68 * cos(theta) ** 38 - 1.745997886616e68 * cos(theta) ** 36 + 4.74128736451759e67 * cos(theta) ** 34 - 1.0941432379656e67 * cos(theta) ** 32 + 2.13827835315578e66 * cos(theta) ** 30 - 3.52196548134329e65 * cos(theta) ** 28 + 4.85876989761957e64 * cos(theta) ** 26 - 5.57001840115119e63 * cos(theta) ** 24 + 5.25401599014944e62 * cos(theta) ** 22 - 4.02813705185702e61 * cos(theta) ** 20 + 2.4720479323412e60 * cos(theta) ** 18 - 1.19125459416757e59 * cos(theta) ** 16 + 4.39847850154179e57 * cos(theta) ** 14 - 1.20524403384614e56 * cos(theta) ** 12 + 2.34787798801196e54 * cos(theta) ** 10 - 3.0615621402648e52 * cos(theta) ** 8 + 2.44227179280383e50 * cos(theta) ** 6 - 1.02760383988941e48 * cos(theta) ** 4 + 1.70509486707314e45 * cos(theta) ** 2 - 4.6549136420233e41 ) * sin(22 * phi) ) # @torch.jit.script def Yl88_m_minus_21(theta, phi): return ( 8.43545892915952e-41 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 9.45280579331383e64 * cos(theta) ** 67 - 1.19429449194382e66 * cos(theta) ** 65 + 7.17957382440217e66 * cos(theta) ** 63 - 2.73327635069346e67 * cos(theta) ** 61 + 7.39925402628554e67 * cos(theta) ** 59 - 1.51618247173348e68 * cos(theta) ** 57 + 2.44426992412791e68 * cos(theta) ** 55 - 3.18119267075368e68 * cos(theta) ** 53 + 3.40348097849268e68 * cos(theta) ** 51 - 3.03245160557524e68 * cos(theta) ** 49 + 2.27144145742451e68 * cos(theta) ** 47 - 1.440133850719e68 * cos(theta) ** 45 + 7.76542762642599e67 * cos(theta) ** 43 - 3.57217582611445e67 * cos(theta) ** 41 + 1.40421101505937e67 * cos(theta) ** 39 - 4.71891320707027e66 * cos(theta) ** 37 + 1.35465353271931e66 * cos(theta) ** 35 - 3.31558556959272e65 * cos(theta) ** 33 + 6.89767210695412e64 * cos(theta) ** 31 - 1.21447085563562e64 * cos(theta) ** 29 + 1.79954440652577e63 * cos(theta) ** 27 - 2.22800736046047e62 * cos(theta) ** 25 + 2.28435477832585e61 * cos(theta) ** 23 - 1.9181605008843e60 * cos(theta) ** 21 + 1.30107785912695e59 * cos(theta) ** 19 - 7.00737996569158e57 * cos(theta) ** 17 + 2.93231900102786e56 * cos(theta) ** 15 - 9.27110795266262e54 * cos(theta) ** 13 + 2.13443453455633e53 * cos(theta) ** 11 - 3.40173571140533e51 * cos(theta) ** 9 + 3.48895970400547e49 * cos(theta) ** 7 - 2.05520767977882e47 * cos(theta) ** 5 + 5.68364955691045e44 * cos(theta) ** 3 - 4.6549136420233e41 * cos(theta) ) * sin(21 * phi) ) # @torch.jit.script def Yl88_m_minus_20(theta, phi): return ( 7.26233737831782e-39 * (1.0 - cos(theta) ** 2) ** 10 * ( 1.39011849901674e63 * cos(theta) ** 68 - 1.80953710900579e64 * cos(theta) ** 66 + 1.12180841006284e65 * cos(theta) ** 64 - 4.40851024305396e65 * cos(theta) ** 62 + 1.23320900438092e66 * cos(theta) ** 60 - 2.61410770988531e66 * cos(theta) ** 58 + 4.36476772165699e66 * cos(theta) ** 56 - 5.89109753843275e66 * cos(theta) ** 54 + 6.54515572787054e66 * cos(theta) ** 52 - 6.06490321115048e66 * cos(theta) ** 50 + 4.73216970296773e66 * cos(theta) ** 48 - 3.13072576243261e66 * cos(theta) ** 46 + 1.76486991509682e66 * cos(theta) ** 44 - 8.50518053836774e65 * cos(theta) ** 42 + 3.51052753764843e65 * cos(theta) ** 40 - 1.24181926501849e65 * cos(theta) ** 38 + 3.76292647977586e64 * cos(theta) ** 36 - 9.75172226350799e63 * cos(theta) ** 34 + 2.15552253342316e63 * cos(theta) ** 32 - 4.04823618545206e62 * cos(theta) ** 30 + 6.4269443090206e61 * cos(theta) ** 28 - 8.56925907869413e60 * cos(theta) ** 26 + 9.51814490969102e59 * cos(theta) ** 24 - 8.7189113676559e58 * cos(theta) ** 22 + 6.50538929563473e57 * cos(theta) ** 20 - 3.89298886982866e56 * cos(theta) ** 18 + 1.83269937564241e55 * cos(theta) ** 16 - 6.62221996618759e53 * cos(theta) ** 14 + 1.77869544546361e52 * cos(theta) ** 12 - 3.40173571140533e50 * cos(theta) ** 10 + 4.36119963000684e48 * cos(theta) ** 8 - 3.4253461329647e46 * cos(theta) ** 6 + 1.42091238922761e44 * cos(theta) ** 4 - 2.32745682101165e41 * cos(theta) ** 2 + 6.28023966813721e37 ) * sin(20 * phi) ) # @torch.jit.script def Yl88_m_minus_19(theta, phi): return ( 6.26921037573639e-37 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 2.01466449132861e61 * cos(theta) ** 69 - 2.70080165523252e62 * cos(theta) ** 67 + 1.72585909240437e63 * cos(theta) ** 65 - 6.99763530643486e63 * cos(theta) ** 63 + 2.0216541055425e64 * cos(theta) ** 61 - 4.43069103370392e64 * cos(theta) ** 59 + 7.65748723097717e64 * cos(theta) ** 57 - 1.07110864335141e65 * cos(theta) ** 55 + 1.23493504299444e65 * cos(theta) ** 53 - 1.18919670806872e65 * cos(theta) ** 51 + 9.65748918973007e64 * cos(theta) ** 49 - 6.66111864347364e64 * cos(theta) ** 47 + 3.92193314465959e64 * cos(theta) ** 45 - 1.9779489624111e64 * cos(theta) ** 43 + 8.56226228694739e63 * cos(theta) ** 41 - 3.18415196158588e63 * cos(theta) ** 39 + 1.01700715669618e63 * cos(theta) ** 37 - 2.78620636100228e62 * cos(theta) ** 35 + 6.53188646491867e61 * cos(theta) ** 33 - 1.30588264046841e61 * cos(theta) ** 31 + 2.21618769276572e60 * cos(theta) ** 29 - 3.1737996587756e59 * cos(theta) ** 27 + 3.80725796387641e58 * cos(theta) ** 25 - 3.79083102941561e57 * cos(theta) ** 23 + 3.09780442649273e56 * cos(theta) ** 21 - 2.04894151043614e55 * cos(theta) ** 19 + 1.07805845626024e54 * cos(theta) ** 17 - 4.41481331079172e52 * cos(theta) ** 15 + 1.36822726574124e51 * cos(theta) ** 13 - 3.09248701036849e49 * cos(theta) ** 11 + 4.84577736667427e47 * cos(theta) ** 9 - 4.893351618521e45 * cos(theta) ** 7 + 2.84182477845523e43 * cos(theta) ** 5 - 7.75818940337217e40 * cos(theta) ** 3 + 6.28023966813721e37 * cos(theta) ) * sin(19 * phi) ) # @torch.jit.script def Yl88_m_minus_18(theta, phi): return ( 5.42567470944355e-35 * (1.0 - cos(theta) ** 2) ** 9 * ( 2.87809213046944e59 * cos(theta) ** 70 - 3.97176714004783e60 * cos(theta) ** 68 + 2.6149380187945e61 * cos(theta) ** 66 - 1.09338051663045e62 * cos(theta) ** 64 + 3.26073242829435e62 * cos(theta) ** 62 - 7.38448505617319e62 * cos(theta) ** 60 + 1.320256419134e63 * cos(theta) ** 58 - 1.91269400598466e63 * cos(theta) ** 56 + 2.286916746286e63 * cos(theta) ** 54 - 2.286916746286e63 * cos(theta) ** 52 + 1.93149783794601e63 * cos(theta) ** 50 - 1.38773305072368e63 * cos(theta) ** 48 + 8.52594161882519e62 * cos(theta) ** 46 - 4.49533855093432e62 * cos(theta) ** 44 + 2.03863387784462e62 * cos(theta) ** 42 - 7.96037990396469e61 * cos(theta) ** 40 + 2.67633462288468e61 * cos(theta) ** 38 - 7.73946211389523e60 * cos(theta) ** 36 + 1.92114307791726e60 * cos(theta) ** 34 - 4.08088325146377e59 * cos(theta) ** 32 + 7.38729230921908e58 * cos(theta) ** 30 - 1.13349987813414e58 * cos(theta) ** 28 + 1.46432998610631e57 * cos(theta) ** 26 - 1.57951292892317e56 * cos(theta) ** 24 + 1.40809292113306e55 * cos(theta) ** 22 - 1.02447075521807e54 * cos(theta) ** 20 + 5.98921364589024e52 * cos(theta) ** 18 - 2.75925831924483e51 * cos(theta) ** 16 + 9.77305189815169e49 * cos(theta) ** 14 - 2.5770725086404e48 * cos(theta) ** 12 + 4.84577736667427e46 * cos(theta) ** 10 - 6.11668952315125e44 * cos(theta) ** 8 + 4.73637463075871e42 * cos(theta) ** 6 - 1.93954735084304e40 * cos(theta) ** 4 + 3.14011983406861e37 * cos(theta) ** 2 - 8.38483266773994e33 ) * sin(18 * phi) ) # @torch.jit.script def Yl88_m_minus_17(theta, phi): return ( 4.7069096230179e-33 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 4.05365088798513e57 * cos(theta) ** 71 - 5.75618426093888e58 * cos(theta) ** 69 + 3.90289256536492e59 * cos(theta) ** 67 - 1.68212387173915e60 * cos(theta) ** 65 + 5.17576575919738e60 * cos(theta) ** 63 - 1.21057132068413e61 * cos(theta) ** 61 + 2.23772274429491e61 * cos(theta) ** 59 - 3.35560351927133e61 * cos(theta) ** 57 + 4.15803044779273e61 * cos(theta) ** 55 - 4.3149372571434e61 * cos(theta) ** 53 + 3.78725066263924e61 * cos(theta) ** 51 - 2.83210826678301e61 * cos(theta) ** 49 + 1.81403013166493e61 * cos(theta) ** 47 - 9.98964122429849e60 * cos(theta) ** 45 + 4.74100901824329e60 * cos(theta) ** 43 - 1.94155607413773e60 * cos(theta) ** 41 + 6.86239646893508e59 * cos(theta) ** 39 - 2.09174651726898e59 * cos(theta) ** 37 + 5.48898022262073e58 * cos(theta) ** 35 - 1.23663128832235e58 * cos(theta) ** 33 + 2.38299751910293e57 * cos(theta) ** 31 - 3.90862026942808e56 * cos(theta) ** 29 + 5.42344439298634e55 * cos(theta) ** 27 - 6.31805171569268e54 * cos(theta) ** 25 + 6.12214313536112e53 * cos(theta) ** 23 - 4.87843216770509e52 * cos(theta) ** 21 + 3.15221770836329e51 * cos(theta) ** 19 - 1.62309312896755e50 * cos(theta) ** 17 + 6.51536793210113e48 * cos(theta) ** 15 - 1.98236346818493e47 * cos(theta) ** 13 + 4.40525215152206e45 * cos(theta) ** 11 - 6.79632169239027e43 * cos(theta) ** 9 + 6.76624947251244e41 * cos(theta) ** 7 - 3.87909470168608e39 * cos(theta) ** 5 + 1.0467066113562e37 * cos(theta) ** 3 - 8.38483266773994e33 * cos(theta) ) * sin(17 * phi) ) # @torch.jit.script def Yl88_m_minus_16(theta, phi): return ( 4.09257603944502e-31 * (1.0 - cos(theta) ** 2) ** 8 * ( 5.63007067775712e55 * cos(theta) ** 72 - 8.22312037276983e56 * cos(theta) ** 70 + 5.73954789024253e57 * cos(theta) ** 68 - 2.5486725329381e58 * cos(theta) ** 66 + 8.08713399874591e58 * cos(theta) ** 64 - 1.95253438820021e59 * cos(theta) ** 62 + 3.72953790715818e59 * cos(theta) ** 60 - 5.7855233090885e59 * cos(theta) ** 58 + 7.42505437105845e59 * cos(theta) ** 56 - 7.99062455026556e59 * cos(theta) ** 54 + 7.28317435122931e59 * cos(theta) ** 52 - 5.66421653356602e59 * cos(theta) ** 50 + 3.77922944096861e59 * cos(theta) ** 48 - 2.17166113571706e59 * cos(theta) ** 46 + 1.07750204960075e59 * cos(theta) ** 44 - 4.62275255747079e58 * cos(theta) ** 42 + 1.71559911723377e58 * cos(theta) ** 40 - 5.50459609807627e57 * cos(theta) ** 38 + 1.52471672850576e57 * cos(theta) ** 36 - 3.63715084800692e56 * cos(theta) ** 34 + 7.44686724719665e55 * cos(theta) ** 32 - 1.30287342314269e55 * cos(theta) ** 30 + 1.93694442606655e54 * cos(theta) ** 28 - 2.43001989065103e53 * cos(theta) ** 26 + 2.55089297306714e52 * cos(theta) ** 24 - 2.21746916713867e51 * cos(theta) ** 22 + 1.57610885418164e50 * cos(theta) ** 20 - 9.0171840498197e48 * cos(theta) ** 18 + 4.0721049575632e47 * cos(theta) ** 16 - 1.41597390584638e46 * cos(theta) ** 14 + 3.67104345960172e44 * cos(theta) ** 12 - 6.79632169239028e42 * cos(theta) ** 10 + 8.45781184064055e40 * cos(theta) ** 8 - 6.46515783614347e38 * cos(theta) ** 6 + 2.61676652839051e36 * cos(theta) ** 4 - 4.19241633386997e33 * cos(theta) ** 2 + 1.10910485023015e30 ) * sin(16 * phi) ) # @torch.jit.script def Yl88_m_minus_15(theta, phi): return ( 3.56594677784948e-29 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 7.71242558596866e53 * cos(theta) ** 73 - 1.15818596799575e55 * cos(theta) ** 71 + 8.31818534817758e55 * cos(theta) ** 69 - 3.8039888551315e56 * cos(theta) ** 67 + 1.24417446134552e57 * cos(theta) ** 65 - 3.09926093365113e57 * cos(theta) ** 63 + 6.11399656911177e57 * cos(theta) ** 61 - 9.80597171031949e57 * cos(theta) ** 59 + 1.30264111772955e58 * cos(theta) ** 57 - 1.45284082732101e58 * cos(theta) ** 55 + 1.37418383985459e58 * cos(theta) ** 53 - 1.11063069285608e58 * cos(theta) ** 51 + 7.71271314483391e57 * cos(theta) ** 49 - 4.62055560790865e57 * cos(theta) ** 47 + 2.39444899911277e57 * cos(theta) ** 45 - 1.07505873429553e57 * cos(theta) ** 43 + 4.18438809081407e56 * cos(theta) ** 41 - 1.41143489694263e56 * cos(theta) ** 39 + 4.12085602298854e55 * cos(theta) ** 37 - 1.03918595657341e55 * cos(theta) ** 35 + 2.25662643854444e54 * cos(theta) ** 33 - 4.20281749400869e53 * cos(theta) ** 31 + 6.67911871057431e52 * cos(theta) ** 29 - 9.00007366907789e51 * cos(theta) ** 27 + 1.02035718922685e51 * cos(theta) ** 25 - 9.64117029190728e49 * cos(theta) ** 23 + 7.50528025800782e48 * cos(theta) ** 21 - 4.74588634201037e47 * cos(theta) ** 19 + 2.39535585739012e46 * cos(theta) ** 17 - 9.43982603897584e44 * cos(theta) ** 15 + 2.82387958430901e43 * cos(theta) ** 13 - 6.17847426580934e41 * cos(theta) ** 11 + 9.39756871182284e39 * cos(theta) ** 9 - 9.23593976591925e37 * cos(theta) ** 7 + 5.23353305678101e35 * cos(theta) ** 5 - 1.39747211128999e33 * cos(theta) ** 3 + 1.10910485023015e30 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl88_m_minus_14(theta, phi): return ( 3.11321654068509e-27 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.04221967377955e52 * cos(theta) ** 74 - 1.60859162221632e53 * cos(theta) ** 72 + 1.1883121925968e54 * cos(theta) ** 70 - 5.59410125754632e54 * cos(theta) ** 68 + 1.88511282022049e55 * cos(theta) ** 66 - 4.84259520882989e55 * cos(theta) ** 64 + 9.86128478888995e55 * cos(theta) ** 62 - 1.63432861838658e56 * cos(theta) ** 60 + 2.24593296160268e56 * cos(theta) ** 58 - 2.59435862021609e56 * cos(theta) ** 56 + 2.54478488861961e56 * cos(theta) ** 54 - 2.13582825549247e56 * cos(theta) ** 52 + 1.54254262896678e56 * cos(theta) ** 50 - 9.62615751647635e55 * cos(theta) ** 48 + 5.20532391111473e55 * cos(theta) ** 46 - 2.44331530521712e55 * cos(theta) ** 44 + 9.96282878765255e54 * cos(theta) ** 42 - 3.52858724235658e54 * cos(theta) ** 40 + 1.0844357955233e54 * cos(theta) ** 38 - 2.88662765714835e53 * cos(theta) ** 36 + 6.63713658395424e52 * cos(theta) ** 34 - 1.31338046687772e52 * cos(theta) ** 32 + 2.22637290352477e51 * cos(theta) ** 30 - 3.21431202467068e50 * cos(theta) ** 28 + 3.92445072779559e49 * cos(theta) ** 26 - 4.0171542882947e48 * cos(theta) ** 24 + 3.41149102636719e47 * cos(theta) ** 22 - 2.37294317100518e46 * cos(theta) ** 20 + 1.33075325410562e45 * cos(theta) ** 18 - 5.8998912743599e43 * cos(theta) ** 16 + 2.01705684593501e42 * cos(theta) ** 14 - 5.14872855484112e40 * cos(theta) ** 12 + 9.39756871182284e38 * cos(theta) ** 10 - 1.15449247073991e37 * cos(theta) ** 8 + 8.72255509463502e34 * cos(theta) ** 6 - 3.49368027822497e32 * cos(theta) ** 4 + 5.54552425115075e29 * cos(theta) ** 2 - 1.45513625062995e26 ) * sin(14 * phi) ) # @torch.jit.script def Yl88_m_minus_13(theta, phi): return ( 2.72295238304572e-25 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.38962623170607e50 * cos(theta) ** 75 - 2.20355016741962e51 * cos(theta) ** 73 + 1.67367914450253e52 * cos(theta) ** 71 - 8.10739312687873e52 * cos(theta) ** 69 + 2.81360122420969e53 * cos(theta) ** 67 - 7.4501464751229e53 * cos(theta) ** 65 + 1.5652832998238e54 * cos(theta) ** 63 - 2.67922724325669e54 * cos(theta) ** 61 + 3.80666603661471e54 * cos(theta) ** 59 - 4.5515063512563e54 * cos(theta) ** 57 + 4.62688161567201e54 * cos(theta) ** 55 - 4.02986463300465e54 * cos(theta) ** 53 + 3.02459339013094e54 * cos(theta) ** 51 - 1.96452194213803e54 * cos(theta) ** 49 + 1.10751572576909e54 * cos(theta) ** 47 - 5.42958956714915e53 * cos(theta) ** 45 + 2.31693692736106e53 * cos(theta) ** 43 - 8.60631034721117e52 * cos(theta) ** 41 + 2.7806046039059e52 * cos(theta) ** 39 - 7.80169637067122e51 * cos(theta) ** 37 + 1.89632473827264e51 * cos(theta) ** 35 - 3.97994080872035e50 * cos(theta) ** 33 + 7.18184807588635e49 * cos(theta) ** 31 - 1.10838345678299e49 * cos(theta) ** 29 + 1.45350026955392e48 * cos(theta) ** 27 - 1.60686171531788e47 * cos(theta) ** 25 + 1.48325696798574e46 * cos(theta) ** 23 - 1.1299729385739e45 * cos(theta) ** 21 + 7.00396449529275e43 * cos(theta) ** 19 - 3.47052427903524e42 * cos(theta) ** 17 + 1.34470456395667e41 * cos(theta) ** 15 - 3.96056042680086e39 * cos(theta) ** 13 + 8.5432442834753e37 * cos(theta) ** 11 - 1.28276941193323e36 * cos(theta) ** 9 + 1.24607929923357e34 * cos(theta) ** 7 - 6.98736055644995e31 * cos(theta) ** 5 + 1.84850808371692e29 * cos(theta) ** 3 - 1.45513625062995e26 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl88_m_minus_12(theta, phi): return ( 2.38565440217662e-23 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.8284555680343e48 * cos(theta) ** 76 - 2.977770496513e49 * cos(theta) ** 74 + 2.32455436736463e50 * cos(theta) ** 72 - 1.15819901812553e51 * cos(theta) ** 70 + 4.1376488591319e51 * cos(theta) ** 68 - 1.12881007198832e52 * cos(theta) ** 66 + 2.44575515597469e52 * cos(theta) ** 64 - 4.32133426331724e52 * cos(theta) ** 62 + 6.34444339435785e52 * cos(theta) ** 60 - 7.84742474354535e52 * cos(theta) ** 58 + 8.2622885994143e52 * cos(theta) ** 56 - 7.46271228334195e52 * cos(theta) ** 54 + 5.81652575025182e52 * cos(theta) ** 52 - 3.92904388427606e52 * cos(theta) ** 50 + 2.30732442868561e52 * cos(theta) ** 48 - 1.1803455580759e52 * cos(theta) ** 46 + 5.26576574400241e51 * cos(theta) ** 44 - 2.04912151124076e51 * cos(theta) ** 42 + 6.95151150976474e50 * cos(theta) ** 40 - 2.0530779922819e50 * cos(theta) ** 38 + 5.267568717424e49 * cos(theta) ** 36 - 1.17057082609422e49 * cos(theta) ** 34 + 2.24432752371448e48 * cos(theta) ** 32 - 3.69461152260997e47 * cos(theta) ** 30 + 5.19107239126401e46 * cos(theta) ** 28 - 6.18023736660723e45 * cos(theta) ** 26 + 6.18023736660723e44 * cos(theta) ** 24 - 5.13624062988135e43 * cos(theta) ** 22 + 3.50198224764637e42 * cos(theta) ** 20 - 1.92806904390846e41 * cos(theta) ** 18 + 8.4044035247292e39 * cos(theta) ** 16 - 2.82897173342919e38 * cos(theta) ** 14 + 7.11937023622942e36 * cos(theta) ** 12 - 1.28276941193323e35 * cos(theta) ** 10 + 1.55759912404197e33 * cos(theta) ** 8 - 1.16456009274166e31 * cos(theta) ** 6 + 4.62127020929229e28 * cos(theta) ** 4 - 7.27568125314977e25 * cos(theta) ** 2 + 1.89569600134178e22 ) * sin(12 * phi) ) # @torch.jit.script def Yl88_m_minus_11(theta, phi): return ( 2.0934032419725e-21 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 2.37461762082376e46 * cos(theta) ** 77 - 3.97036066201733e47 * cos(theta) ** 75 + 3.18432105118442e48 * cos(theta) ** 73 - 1.63126622271202e49 * cos(theta) ** 71 + 5.99659254946652e49 * cos(theta) ** 69 - 1.68479115222137e50 * cos(theta) ** 67 + 3.76270023996106e50 * cos(theta) ** 65 - 6.8592607354242e50 * cos(theta) ** 63 + 1.04007268759965e51 * cos(theta) ** 61 - 1.33007199043141e51 * cos(theta) ** 59 + 1.44952431568672e51 * cos(theta) ** 57 - 1.35685677878945e51 * cos(theta) ** 55 + 1.09745768872676e51 * cos(theta) ** 53 - 7.70400761622757e50 * cos(theta) ** 51 + 4.7088253646645e50 * cos(theta) ** 49 - 2.51137352782107e50 * cos(theta) ** 47 + 1.17017016533387e50 * cos(theta) ** 45 - 4.76539886335059e49 * cos(theta) ** 43 + 1.69549061213774e49 * cos(theta) ** 41 - 5.26430254431256e48 * cos(theta) ** 39 + 1.4236672209254e48 * cos(theta) ** 37 - 3.34448807455492e47 * cos(theta) ** 35 + 6.8009924961045e46 * cos(theta) ** 33 - 1.19181016858386e46 * cos(theta) ** 31 + 1.79002496250483e45 * cos(theta) ** 29 - 2.28897680244712e44 * cos(theta) ** 27 + 2.47209494664289e43 * cos(theta) ** 25 - 2.23314809994841e42 * cos(theta) ** 23 + 1.66761059411732e41 * cos(theta) ** 21 - 1.01477318100445e40 * cos(theta) ** 19 + 4.94376677925247e38 * cos(theta) ** 17 - 1.88598115561946e37 * cos(theta) ** 15 + 5.4764386432534e35 * cos(theta) ** 13 - 1.16615401084839e34 * cos(theta) ** 11 + 1.73066569337996e32 * cos(theta) ** 9 - 1.66365727534523e30 * cos(theta) ** 7 + 9.24254041858458e27 * cos(theta) ** 5 - 2.42522708438326e25 * cos(theta) ** 3 + 1.89569600134178e22 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl88_m_minus_10(theta, phi): return ( 1.83957623774865e-19 * (1.0 - cos(theta) ** 2) ** 5 * ( 3.04438156515867e44 * cos(theta) ** 78 - 5.22415876581227e45 * cos(theta) ** 76 + 4.30313655565462e46 * cos(theta) ** 74 - 2.26564753154447e47 * cos(theta) ** 72 + 8.56656078495217e47 * cos(theta) ** 70 - 2.47763404738437e48 * cos(theta) ** 68 + 5.70106096963797e48 * cos(theta) ** 66 - 1.07175948991003e49 * cos(theta) ** 64 + 1.67753659290266e49 * cos(theta) ** 62 - 2.21678665071902e49 * cos(theta) ** 60 + 2.49917985463228e49 * cos(theta) ** 58 - 2.42295853355258e49 * cos(theta) ** 56 + 2.0323290531977e49 * cos(theta) ** 54 - 1.48153992619761e49 * cos(theta) ** 52 + 9.417650729329e48 * cos(theta) ** 50 - 5.23202818296056e48 * cos(theta) ** 48 + 2.54384818550841e48 * cos(theta) ** 46 - 1.08304519621604e48 * cos(theta) ** 44 + 4.03688240985176e47 * cos(theta) ** 42 - 1.31607563607814e47 * cos(theta) ** 40 + 3.7464926866458e46 * cos(theta) ** 38 - 9.29024465154144e45 * cos(theta) ** 36 + 2.00029191061897e45 * cos(theta) ** 34 - 3.72440677682457e44 * cos(theta) ** 32 + 5.9667498750161e43 * cos(theta) ** 30 - 8.17491715159687e42 * cos(theta) ** 28 + 9.50805748708805e41 * cos(theta) ** 26 - 9.30478374978505e40 * cos(theta) ** 24 + 7.58004815507873e39 * cos(theta) ** 22 - 5.07386590502227e38 * cos(theta) ** 20 + 2.74653709958471e37 * cos(theta) ** 18 - 1.17873822226216e36 * cos(theta) ** 16 + 3.91174188803814e34 * cos(theta) ** 14 - 9.71795009040325e32 * cos(theta) ** 12 + 1.73066569337996e31 * cos(theta) ** 10 - 2.07957159418153e29 * cos(theta) ** 8 + 1.54042340309743e27 * cos(theta) ** 6 - 6.06306771095814e24 * cos(theta) ** 4 + 9.47848000670892e21 * cos(theta) ** 2 - 2.45492877666639e18 ) * sin(10 * phi) ) # @torch.jit.script def Yl88_m_minus_9(theta, phi): return ( 1.6186180329657e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 3.85364755083376e42 * cos(theta) ** 79 - 6.78462177378218e43 * cos(theta) ** 77 + 5.73751540753949e44 * cos(theta) ** 75 - 3.10362675554037e45 * cos(theta) ** 73 + 1.20655785703552e46 * cos(theta) ** 71 - 3.59077398171648e46 * cos(theta) ** 69 + 8.50904622334026e46 * cos(theta) ** 67 - 1.64886075370774e47 * cos(theta) ** 65 + 2.66275649667088e47 * cos(theta) ** 63 - 3.63407647658856e47 * cos(theta) ** 61 + 4.23589805869877e47 * cos(theta) ** 59 - 4.25080444482909e47 * cos(theta) ** 57 + 3.69514373308673e47 * cos(theta) ** 55 - 2.79535835131624e47 * cos(theta) ** 53 + 1.84659818222137e47 * cos(theta) ** 51 - 1.06776085366542e47 * cos(theta) ** 49 + 5.41244294789023e46 * cos(theta) ** 47 - 2.40676710270232e46 * cos(theta) ** 45 + 9.38809862756224e45 * cos(theta) ** 43 - 3.20994057580034e45 * cos(theta) ** 41 + 9.60639150422e44 * cos(theta) ** 39 - 2.51087693284904e44 * cos(theta) ** 37 + 5.71511974462563e43 * cos(theta) ** 35 - 1.12860811418926e43 * cos(theta) ** 33 + 1.92475802419874e42 * cos(theta) ** 31 - 2.81893694882651e41 * cos(theta) ** 29 + 3.52150277299557e40 * cos(theta) ** 27 - 3.72191349991402e39 * cos(theta) ** 25 + 3.2956731109038e38 * cos(theta) ** 23 - 2.41612662143918e37 * cos(theta) ** 21 + 1.44554584188669e36 * cos(theta) ** 19 - 6.93375424860094e34 * cos(theta) ** 17 + 2.60782792535876e33 * cos(theta) ** 15 - 7.47534622338712e31 * cos(theta) ** 13 + 1.57333244852724e30 * cos(theta) ** 11 - 2.31063510464615e28 * cos(theta) ** 9 + 2.20060486156776e26 * cos(theta) ** 7 - 1.21261354219163e24 * cos(theta) ** 5 + 3.15949333556964e21 * cos(theta) ** 3 - 2.45492877666639e18 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl88_m_minus_8(theta, phi): return ( 1.42585458067574e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 4.8170594385422e40 * cos(theta) ** 80 - 8.69823304331048e41 * cos(theta) ** 78 + 7.54936237834144e42 * cos(theta) ** 76 - 4.19409021018969e43 * cos(theta) ** 74 + 1.67577480143822e44 * cos(theta) ** 72 - 5.12967711673782e44 * cos(theta) ** 70 + 1.2513303269618e45 * cos(theta) ** 68 - 2.49827386925415e45 * cos(theta) ** 66 + 4.16055702604826e45 * cos(theta) ** 64 - 5.86141367191704e45 * cos(theta) ** 62 + 7.05983009783129e45 * cos(theta) ** 60 - 7.32897318073981e45 * cos(theta) ** 58 + 6.59847095194058e45 * cos(theta) ** 56 - 5.17658953947453e45 * cos(theta) ** 54 + 3.55115035042572e45 * cos(theta) ** 52 - 2.13552170733084e45 * cos(theta) ** 50 + 1.12759228081046e45 * cos(theta) ** 48 - 5.23210239717896e44 * cos(theta) ** 46 + 2.13365877899142e44 * cos(theta) ** 44 - 7.64271565666748e43 * cos(theta) ** 42 + 2.401597876055e43 * cos(theta) ** 40 - 6.60757087591852e42 * cos(theta) ** 38 + 1.58753326239601e42 * cos(theta) ** 36 - 3.31943562996842e41 * cos(theta) ** 34 + 6.01486882562107e40 * cos(theta) ** 32 - 9.39645649608835e39 * cos(theta) ** 30 + 1.25767956178413e39 * cos(theta) ** 28 - 1.43150519227462e38 * cos(theta) ** 26 + 1.37319712954325e37 * cos(theta) ** 24 - 1.09823937338144e36 * cos(theta) ** 22 + 7.22772920943344e34 * cos(theta) ** 20 - 3.85208569366719e33 * cos(theta) ** 18 + 1.62989245334923e32 * cos(theta) ** 16 - 5.33953301670508e30 * cos(theta) ** 14 + 1.3111103737727e29 * cos(theta) ** 12 - 2.31063510464615e27 * cos(theta) ** 10 + 2.7507560769597e25 * cos(theta) ** 8 - 2.02102257031938e23 * cos(theta) ** 6 + 7.8987333389241e20 * cos(theta) ** 4 - 1.22746438833319e18 * cos(theta) ** 2 + 316356801116802.0 ) * sin(8 * phi) ) # @torch.jit.script def Yl88_m_minus_7(theta, phi): return ( 1.25734182122363e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 5.94698696116321e38 * cos(theta) ** 81 - 1.10104215738107e40 * cos(theta) ** 79 + 9.80436672511875e40 * cos(theta) ** 77 - 5.59212028025292e41 * cos(theta) ** 75 + 2.29558191977838e42 * cos(theta) ** 73 - 7.22489734751806e42 * cos(theta) ** 71 + 1.81352221298812e43 * cos(theta) ** 69 - 3.72876696903605e43 * cos(theta) ** 67 + 6.40085696315116e43 * cos(theta) ** 65 - 9.30383122526514e43 * cos(theta) ** 63 + 1.15734919636578e44 * cos(theta) ** 61 - 1.24219884419319e44 * cos(theta) ** 59 + 1.15762648279659e44 * cos(theta) ** 57 - 9.41198098086278e43 * cos(theta) ** 55 + 6.70028368004852e43 * cos(theta) ** 53 - 4.18729746535459e43 * cos(theta) ** 51 + 2.30120873634789e43 * cos(theta) ** 49 - 1.11321327599552e43 * cos(theta) ** 47 + 4.74146395331426e42 * cos(theta) ** 45 - 1.77737573410872e42 * cos(theta) ** 43 + 5.8575557952561e41 * cos(theta) ** 41 - 1.69424894254321e41 * cos(theta) ** 39 + 4.29063043890813e40 * cos(theta) ** 37 - 9.48410179990978e39 * cos(theta) ** 35 + 1.82268752291548e39 * cos(theta) ** 33 - 3.03111499873818e38 * cos(theta) ** 31 + 4.3368260751177e37 * cos(theta) ** 29 - 5.30187108249861e36 * cos(theta) ** 27 + 5.49278851817299e35 * cos(theta) ** 25 - 4.77495379731063e34 * cos(theta) ** 23 + 3.44177581401592e33 * cos(theta) ** 21 - 2.02741352298273e32 * cos(theta) ** 19 + 9.58760266676016e30 * cos(theta) ** 17 - 3.55968867780339e29 * cos(theta) ** 15 + 1.00854644136362e28 * cos(theta) ** 13 - 2.10057736786013e26 * cos(theta) ** 11 + 3.05639564106633e24 * cos(theta) ** 9 - 2.88717510045626e22 * cos(theta) ** 7 + 1.57974666778482e20 * cos(theta) ** 5 - 4.09154796111064e17 * cos(theta) ** 3 + 316356801116802.0 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl88_m_minus_6(theta, phi): return ( 1.10974217129701e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 7.25242312336976e36 * cos(theta) ** 82 - 1.37630269672634e38 * cos(theta) ** 80 + 1.25697009296394e39 * cos(theta) ** 78 - 7.35805300033279e39 * cos(theta) ** 76 + 3.10213772943024e40 * cos(theta) ** 74 - 1.00345796493306e41 * cos(theta) ** 72 + 2.59074601855446e41 * cos(theta) ** 70 - 5.48348083681771e41 * cos(theta) ** 68 + 9.69826812598661e41 * cos(theta) ** 66 - 1.45372362894768e42 * cos(theta) ** 64 + 1.86669225220288e42 * cos(theta) ** 62 - 2.07033140698865e42 * cos(theta) ** 60 + 1.99590772895964e42 * cos(theta) ** 58 - 1.68071088943978e42 * cos(theta) ** 56 + 1.24079327408306e42 * cos(theta) ** 54 - 8.0524951256819e41 * cos(theta) ** 52 + 4.60241747269578e41 * cos(theta) ** 50 - 2.31919432499067e41 * cos(theta) ** 48 + 1.03075303332919e41 * cos(theta) ** 46 - 4.03949030479254e40 * cos(theta) ** 44 + 1.39465614172764e40 * cos(theta) ** 42 - 4.23562235635803e39 * cos(theta) ** 40 + 1.12911327339688e39 * cos(theta) ** 38 - 2.63447272219716e38 * cos(theta) ** 36 + 5.36084565563375e37 * cos(theta) ** 34 - 9.47223437105681e36 * cos(theta) ** 32 + 1.4456086917059e36 * cos(theta) ** 30 - 1.89352538660664e35 * cos(theta) ** 28 + 2.11261096852807e34 * cos(theta) ** 26 - 1.98956408221276e33 * cos(theta) ** 24 + 1.56444355182542e32 * cos(theta) ** 22 - 1.01370676149137e31 * cos(theta) ** 20 + 5.32644592597786e29 * cos(theta) ** 18 - 2.22480542362712e28 * cos(theta) ** 16 + 7.20390315259725e26 * cos(theta) ** 14 - 1.75048113988344e25 * cos(theta) ** 12 + 3.05639564106633e23 * cos(theta) ** 10 - 3.60896887557032e21 * cos(theta) ** 8 + 2.6329111129747e19 * cos(theta) ** 6 - 1.02288699027766e17 * cos(theta) ** 4 + 158178400558401.0 * cos(theta) ** 2 - 40610629154.9169 ) * sin(6 * phi) ) # @torch.jit.script def Yl88_m_minus_5(theta, phi): return ( 9.8022339352122e-10 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 8.73785918478285e34 * cos(theta) ** 83 - 1.69913913176092e36 * cos(theta) ** 81 + 1.59110138349866e37 * cos(theta) ** 79 - 9.55591298744518e37 * cos(theta) ** 77 + 4.13618363924032e38 * cos(theta) ** 75 - 1.3745999519631e39 * cos(theta) ** 73 + 3.64893805430205e39 * cos(theta) ** 71 - 7.94707367654741e39 * cos(theta) ** 69 + 1.44750270537114e40 * cos(theta) ** 67 - 2.23649789068874e40 * cos(theta) ** 65 + 2.9630035749252e40 * cos(theta) ** 63 - 3.39398591309614e40 * cos(theta) ** 61 + 3.3828944558638e40 * cos(theta) ** 59 - 2.94861559550839e40 * cos(theta) ** 57 + 2.25598777106011e40 * cos(theta) ** 55 - 1.51933870295885e40 * cos(theta) ** 53 + 9.02434798567799e39 * cos(theta) ** 51 - 4.73304964283811e39 * cos(theta) ** 49 + 2.19309156027487e39 * cos(theta) ** 47 - 8.9766451217612e38 * cos(theta) ** 45 + 3.2433863761108e38 * cos(theta) ** 43 - 1.03307862350196e38 * cos(theta) ** 41 + 2.89516223947917e37 * cos(theta) ** 39 - 7.12019654647881e36 * cos(theta) ** 37 + 1.53167018732393e36 * cos(theta) ** 35 - 2.8703740518354e35 * cos(theta) ** 33 + 4.66325384421258e34 * cos(theta) ** 31 - 6.5293978848505e33 * cos(theta) ** 29 + 7.8244850686225e32 * cos(theta) ** 27 - 7.95825632885105e31 * cos(theta) ** 25 + 6.80192848619748e30 * cos(theta) ** 23 - 4.82717505472079e29 * cos(theta) ** 21 + 2.80339259261993e28 * cos(theta) ** 19 - 1.30870907272183e27 * cos(theta) ** 17 + 4.8026021017315e25 * cos(theta) ** 15 - 1.3465239537565e24 * cos(theta) ** 13 + 2.77854149187848e22 * cos(theta) ** 11 - 4.00996541730036e20 * cos(theta) ** 9 + 3.76130158996386e18 * cos(theta) ** 7 - 2.04577398055532e16 * cos(theta) ** 5 + 52726133519467.1 * cos(theta) ** 3 - 40610629154.9169 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl88_m_minus_4(theta, phi): return ( 8.66375535447722e-8 * (1.0 - cos(theta) ** 2) ** 2 * ( 1.04022133152177e33 * cos(theta) ** 84 - 2.07212089239136e34 * cos(theta) ** 82 + 1.98887672937333e35 * cos(theta) ** 80 - 1.22511704967246e36 * cos(theta) ** 78 + 5.44234689373727e36 * cos(theta) ** 76 - 1.85756750265284e37 * cos(theta) ** 74 + 5.06796951986396e37 * cos(theta) ** 72 - 1.13529623950677e38 * cos(theta) ** 70 + 2.1286804490752e38 * cos(theta) ** 68 - 3.38863316771021e38 * cos(theta) ** 66 + 4.62969308582063e38 * cos(theta) ** 64 - 5.47417082757442e38 * cos(theta) ** 62 + 5.63815742643967e38 * cos(theta) ** 60 - 5.08381999225584e38 * cos(theta) ** 58 + 4.02854959117877e38 * cos(theta) ** 56 - 2.81359019066454e38 * cos(theta) ** 54 + 1.73545153570731e38 * cos(theta) ** 52 - 9.46609928567622e37 * cos(theta) ** 50 + 4.56894075057264e37 * cos(theta) ** 48 - 1.95144459168722e37 * cos(theta) ** 46 + 7.37133267297908e36 * cos(theta) ** 44 - 2.45971100833799e36 * cos(theta) ** 42 + 7.23790559869793e35 * cos(theta) ** 40 - 1.8737359332839e35 * cos(theta) ** 38 + 4.25463940923314e34 * cos(theta) ** 36 - 8.44227662304528e33 * cos(theta) ** 34 + 1.45726682631643e33 * cos(theta) ** 32 - 2.17646596161683e32 * cos(theta) ** 30 + 2.79445895307946e31 * cos(theta) ** 28 - 3.06086781878887e30 * cos(theta) ** 26 + 2.83413686924895e29 * cos(theta) ** 24 - 2.19417047941854e28 * cos(theta) ** 22 + 1.40169629630996e27 * cos(theta) ** 20 - 7.27060595956574e25 * cos(theta) ** 18 + 3.00162631358219e24 * cos(theta) ** 16 - 9.61802824111782e22 * cos(theta) ** 14 + 2.31545124323207e21 * cos(theta) ** 12 - 4.00996541730036e19 * cos(theta) ** 10 + 4.70162698745482e17 * cos(theta) ** 8 - 3.40962330092554e15 * cos(theta) ** 6 + 13181533379866.8 * cos(theta) ** 4 - 20305314577.4584 * cos(theta) ** 2 + 5198493.23539642 ) * sin(4 * phi) ) # @torch.jit.script def Yl88_m_minus_3(theta, phi): return ( 7.66142504046251e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 1.22378980179031e31 * cos(theta) ** 85 - 2.49653119565224e32 * cos(theta) ** 83 + 2.4554033695967e33 * cos(theta) ** 81 - 1.55078107553476e34 * cos(theta) ** 79 + 7.06798297887957e34 * cos(theta) ** 77 - 2.47675667020379e35 * cos(theta) ** 75 + 6.94242399981364e35 * cos(theta) ** 73 - 1.59900878803771e36 * cos(theta) ** 71 + 3.08504412909449e36 * cos(theta) ** 69 - 5.05766144434359e36 * cos(theta) ** 67 + 7.12260474741636e36 * cos(theta) ** 65 - 8.68916004376893e36 * cos(theta) ** 63 + 9.24288102695028e36 * cos(theta) ** 61 - 8.61664405467092e36 * cos(theta) ** 59 + 7.06763086171713e36 * cos(theta) ** 57 - 5.11561852848097e36 * cos(theta) ** 55 + 3.27443685982511e36 * cos(theta) ** 53 - 1.8560978991522e36 * cos(theta) ** 51 + 9.32436887871968e35 * cos(theta) ** 49 - 4.15200976954727e35 * cos(theta) ** 47 + 1.63807392732869e35 * cos(theta) ** 45 - 5.72025815892557e34 * cos(theta) ** 43 + 1.76534282895071e34 * cos(theta) ** 41 - 4.80445111098435e33 * cos(theta) ** 39 + 1.14990254303598e33 * cos(theta) ** 37 - 2.4120790351558e32 * cos(theta) ** 35 + 4.41596007974676e31 * cos(theta) ** 33 - 7.02085794069946e30 * cos(theta) ** 31 + 9.63606535544643e29 * cos(theta) ** 29 - 1.13365474769958e29 * cos(theta) ** 27 + 1.13365474769958e28 * cos(theta) ** 25 - 9.53987164964583e26 * cos(theta) ** 23 + 6.67474426814269e25 * cos(theta) ** 21 - 3.82663471556092e24 * cos(theta) ** 19 + 1.76566253740129e23 * cos(theta) ** 17 - 6.41201882741188e21 * cos(theta) ** 15 + 1.78111634094775e20 * cos(theta) ** 13 - 3.64542310663669e18 * cos(theta) ** 11 + 5.22402998606091e16 * cos(theta) ** 9 - 487089042989362.0 * cos(theta) ** 7 + 2636306675973.35 * cos(theta) ** 5 - 6768438192.48614 * cos(theta) ** 3 + 5198493.23539642 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl88_m_minus_2(theta, phi): return ( 0.0006777655315445 * (1.0 - cos(theta) ** 2) * ( 1.4230113974306e29 * cos(theta) ** 86 - 2.97206094720505e30 * cos(theta) ** 84 + 2.99439435316671e31 * cos(theta) ** 82 - 1.93847634441845e32 * cos(theta) ** 80 + 9.06151663958919e32 * cos(theta) ** 78 - 3.2588903555313e33 * cos(theta) ** 76 + 9.38165405380222e33 * cos(theta) ** 74 - 2.22084553894126e34 * cos(theta) ** 72 + 4.40720589870642e34 * cos(theta) ** 70 - 7.43773741815234e34 * cos(theta) ** 68 + 1.07918253748733e35 * cos(theta) ** 66 - 1.35768125683889e35 * cos(theta) ** 64 + 1.49078726241134e35 * cos(theta) ** 62 - 1.43610734244515e35 * cos(theta) ** 60 + 1.21855704512364e35 * cos(theta) ** 58 - 9.13503308657317e34 * cos(theta) ** 56 + 6.06377196263909e34 * cos(theta) ** 54 - 3.56941903683115e34 * cos(theta) ** 52 + 1.86487377574394e34 * cos(theta) ** 50 - 8.65002035322348e33 * cos(theta) ** 48 + 3.56103027680149e33 * cos(theta) ** 46 - 1.30005867248308e33 * cos(theta) ** 44 + 4.20319721178741e32 * cos(theta) ** 42 - 1.20111277774609e32 * cos(theta) ** 40 + 3.0260593237789e31 * cos(theta) ** 38 - 6.70021954209943e30 * cos(theta) ** 36 + 1.29881178816081e30 * cos(theta) ** 34 - 2.19401810646858e29 * cos(theta) ** 32 + 3.21202178514881e28 * cos(theta) ** 30 - 4.04876695606993e27 * cos(theta) ** 28 + 4.36021056807531e26 * cos(theta) ** 26 - 3.97494652068576e25 * cos(theta) ** 24 + 3.03397466733758e24 * cos(theta) ** 22 - 1.91331735778046e23 * cos(theta) ** 20 + 9.80923631889604e21 * cos(theta) ** 18 - 4.00751176713243e20 * cos(theta) ** 16 + 1.27222595781982e19 * cos(theta) ** 14 - 3.03785258886391e17 * cos(theta) ** 12 + 5.22402998606091e15 * cos(theta) ** 10 - 60886130373670.3 * cos(theta) ** 8 + 439384445995.559 * cos(theta) ** 6 - 1692109548.12154 * cos(theta) ** 4 + 2599246.61769821 * cos(theta) ** 2 - 664.259294070588 ) * sin(2 * phi) ) # @torch.jit.script def Yl88_m_minus_1(theta, phi): return ( 0.0599736332592992 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 1.63564528440299e27 * cos(theta) ** 87 - 3.49654229082947e28 * cos(theta) ** 85 + 3.60770403995989e29 * cos(theta) ** 83 - 2.39318067212154e30 * cos(theta) ** 81 + 1.14702742273281e31 * cos(theta) ** 79 - 4.23232513705363e31 * cos(theta) ** 77 + 1.25088720717363e32 * cos(theta) ** 75 - 3.04225416293324e32 * cos(theta) ** 73 + 6.20733225169918e32 * cos(theta) ** 71 - 1.07793295915251e33 * cos(theta) ** 69 + 1.61072020520497e33 * cos(theta) ** 67 - 2.08874039513676e33 * cos(theta) ** 65 + 2.3663289879545e33 * cos(theta) ** 63 - 2.3542743318773e33 * cos(theta) ** 61 + 2.06535092393838e33 * cos(theta) ** 59 - 1.60263738360933e33 * cos(theta) ** 57 + 1.10250399320711e33 * cos(theta) ** 55 - 6.73475289968142e32 * cos(theta) ** 53 + 3.65661524655674e32 * cos(theta) ** 51 - 1.76531027616806e32 * cos(theta) ** 49 + 7.57666016340743e31 * cos(theta) ** 47 - 2.88901927218463e31 * cos(theta) ** 45 + 9.77487723671492e30 * cos(theta) ** 43 - 2.92954336035631e30 * cos(theta) ** 41 + 7.75912647122796e29 * cos(theta) ** 39 - 1.81087014651336e29 * cos(theta) ** 37 + 3.71089082331661e28 * cos(theta) ** 35 - 6.64853971657146e27 * cos(theta) ** 33 + 1.03613605972542e27 * cos(theta) ** 31 - 1.39612653657584e26 * cos(theta) ** 29 + 1.61489280299085e25 * cos(theta) ** 27 - 1.58997860827431e24 * cos(theta) ** 25 + 1.31911942058156e23 * cos(theta) ** 23 - 9.1110350370498e21 * cos(theta) ** 21 + 5.1627559573137e20 * cos(theta) ** 19 - 2.35735986301907e19 * cos(theta) ** 17 + 8.48150638546545e17 * cos(theta) ** 15 - 2.33680968374147e16 * cos(theta) ** 13 + 474911816914628.0 * cos(theta) ** 11 - 6765125597074.48 * cos(theta) ** 9 + 62769206570.7941 * cos(theta) ** 7 - 338421909.624307 * cos(theta) ** 5 + 866415.539232737 * cos(theta) ** 3 - 664.259294070588 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl88_m0(theta, phi): return ( 2.19148260424481e26 * cos(theta) ** 88 - 4.7937116623138e27 * cos(theta) ** 86 + 5.06387749299334e28 * cos(theta) ** 84 - 3.44106762974167e29 * cos(theta) ** 82 + 1.69050082816155e30 * cos(theta) ** 80 - 6.39758397244371e30 * cos(theta) ** 78 + 1.94060047164126e31 * cos(theta) ** 76 - 4.84724920611533e31 * cos(theta) ** 74 + 1.01649224423273e32 * cos(theta) ** 72 - 1.8156213670572e32 * cos(theta) ** 70 + 2.79281885442237e32 * cos(theta) ** 68 - 3.7314025515391e32 * cos(theta) ** 66 + 4.35940003978833e32 * cos(theta) ** 64 - 4.47710162007808e32 * cos(theta) ** 62 + 4.05858061532486e32 * cos(theta) ** 60 - 3.25790824903628e32 * cos(theta) ** 58 + 2.32125962743835e32 * cos(theta) ** 56 - 1.4704812119519e32 * cos(theta) ** 54 + 8.29101108866494e31 * cos(theta) ** 52 - 4.16277194379769e31 * cos(theta) ** 50 + 1.86109329604094e31 * cos(theta) ** 48 - 7.40498496625813e30 * cos(theta) ** 46 + 2.61932995217948e30 * cos(theta) ** 44 - 8.22398318872151e29 * cos(theta) ** 42 + 2.28709609996422e29 * cos(theta) ** 40 - 5.61869278101446e28 * cos(theta) ** 38 + 1.21536646924713e28 * cos(theta) ** 36 - 2.30557324789428e27 * cos(theta) ** 34 + 3.81766998839637e26 * cos(theta) ** 32 - 5.48700177990322e25 * cos(theta) ** 30 + 6.80013041099117e24 * cos(theta) ** 28 - 7.21023645260774e23 * cos(theta) ** 26 + 6.48043928953959e22 * cos(theta) ** 24 - 4.88288627876857e21 * cos(theta) ** 22 + 3.04356915918926e20 * cos(theta) ** 20 - 1.54413388583701e19 * cos(theta) ** 18 + 6.25006572838789e17 * cos(theta) ** 16 - 1.96800810130293e16 * cos(theta) ** 14 + 466619951064530.0 * cos(theta) ** 12 - 7976409419906.5 * cos(theta) ** 10 + 92509903065.9259 * cos(theta) ** 8 - 665026260.807683 * cos(theta) ** 6 + 2553864.28881599 * cos(theta) ** 4 - 3915.96875361511 * cos(theta) ** 2 + 0.999992020841447 ) # @torch.jit.script def Yl88_m1(theta, phi): return ( 0.0599736332592992 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 1.63564528440299e27 * cos(theta) ** 87 - 3.49654229082947e28 * cos(theta) ** 85 + 3.60770403995989e29 * cos(theta) ** 83 - 2.39318067212154e30 * cos(theta) ** 81 + 1.14702742273281e31 * cos(theta) ** 79 - 4.23232513705363e31 * cos(theta) ** 77 + 1.25088720717363e32 * cos(theta) ** 75 - 3.04225416293324e32 * cos(theta) ** 73 + 6.20733225169918e32 * cos(theta) ** 71 - 1.07793295915251e33 * cos(theta) ** 69 + 1.61072020520497e33 * cos(theta) ** 67 - 2.08874039513676e33 * cos(theta) ** 65 + 2.3663289879545e33 * cos(theta) ** 63 - 2.3542743318773e33 * cos(theta) ** 61 + 2.06535092393838e33 * cos(theta) ** 59 - 1.60263738360933e33 * cos(theta) ** 57 + 1.10250399320711e33 * cos(theta) ** 55 - 6.73475289968142e32 * cos(theta) ** 53 + 3.65661524655674e32 * cos(theta) ** 51 - 1.76531027616806e32 * cos(theta) ** 49 + 7.57666016340743e31 * cos(theta) ** 47 - 2.88901927218463e31 * cos(theta) ** 45 + 9.77487723671492e30 * cos(theta) ** 43 - 2.92954336035631e30 * cos(theta) ** 41 + 7.75912647122796e29 * cos(theta) ** 39 - 1.81087014651336e29 * cos(theta) ** 37 + 3.71089082331661e28 * cos(theta) ** 35 - 6.64853971657146e27 * cos(theta) ** 33 + 1.03613605972542e27 * cos(theta) ** 31 - 1.39612653657584e26 * cos(theta) ** 29 + 1.61489280299085e25 * cos(theta) ** 27 - 1.58997860827431e24 * cos(theta) ** 25 + 1.31911942058156e23 * cos(theta) ** 23 - 9.1110350370498e21 * cos(theta) ** 21 + 5.1627559573137e20 * cos(theta) ** 19 - 2.35735986301907e19 * cos(theta) ** 17 + 8.48150638546545e17 * cos(theta) ** 15 - 2.33680968374147e16 * cos(theta) ** 13 + 474911816914628.0 * cos(theta) ** 11 - 6765125597074.48 * cos(theta) ** 9 + 62769206570.7941 * cos(theta) ** 7 - 338421909.624307 * cos(theta) ** 5 + 866415.539232737 * cos(theta) ** 3 - 664.259294070588 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl88_m2(theta, phi): return ( 0.0006777655315445 * (1.0 - cos(theta) ** 2) * ( 1.4230113974306e29 * cos(theta) ** 86 - 2.97206094720505e30 * cos(theta) ** 84 + 2.99439435316671e31 * cos(theta) ** 82 - 1.93847634441845e32 * cos(theta) ** 80 + 9.06151663958919e32 * cos(theta) ** 78 - 3.2588903555313e33 * cos(theta) ** 76 + 9.38165405380222e33 * cos(theta) ** 74 - 2.22084553894126e34 * cos(theta) ** 72 + 4.40720589870642e34 * cos(theta) ** 70 - 7.43773741815234e34 * cos(theta) ** 68 + 1.07918253748733e35 * cos(theta) ** 66 - 1.35768125683889e35 * cos(theta) ** 64 + 1.49078726241134e35 * cos(theta) ** 62 - 1.43610734244515e35 * cos(theta) ** 60 + 1.21855704512364e35 * cos(theta) ** 58 - 9.13503308657317e34 * cos(theta) ** 56 + 6.06377196263909e34 * cos(theta) ** 54 - 3.56941903683115e34 * cos(theta) ** 52 + 1.86487377574394e34 * cos(theta) ** 50 - 8.65002035322348e33 * cos(theta) ** 48 + 3.56103027680149e33 * cos(theta) ** 46 - 1.30005867248308e33 * cos(theta) ** 44 + 4.20319721178741e32 * cos(theta) ** 42 - 1.20111277774609e32 * cos(theta) ** 40 + 3.0260593237789e31 * cos(theta) ** 38 - 6.70021954209943e30 * cos(theta) ** 36 + 1.29881178816081e30 * cos(theta) ** 34 - 2.19401810646858e29 * cos(theta) ** 32 + 3.21202178514881e28 * cos(theta) ** 30 - 4.04876695606993e27 * cos(theta) ** 28 + 4.36021056807531e26 * cos(theta) ** 26 - 3.97494652068576e25 * cos(theta) ** 24 + 3.03397466733758e24 * cos(theta) ** 22 - 1.91331735778046e23 * cos(theta) ** 20 + 9.80923631889604e21 * cos(theta) ** 18 - 4.00751176713243e20 * cos(theta) ** 16 + 1.27222595781982e19 * cos(theta) ** 14 - 3.03785258886391e17 * cos(theta) ** 12 + 5.22402998606091e15 * cos(theta) ** 10 - 60886130373670.3 * cos(theta) ** 8 + 439384445995.559 * cos(theta) ** 6 - 1692109548.12154 * cos(theta) ** 4 + 2599246.61769821 * cos(theta) ** 2 - 664.259294070588 ) * cos(2 * phi) ) # @torch.jit.script def Yl88_m3(theta, phi): return ( 7.66142504046251e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 1.22378980179031e31 * cos(theta) ** 85 - 2.49653119565224e32 * cos(theta) ** 83 + 2.4554033695967e33 * cos(theta) ** 81 - 1.55078107553476e34 * cos(theta) ** 79 + 7.06798297887957e34 * cos(theta) ** 77 - 2.47675667020379e35 * cos(theta) ** 75 + 6.94242399981364e35 * cos(theta) ** 73 - 1.59900878803771e36 * cos(theta) ** 71 + 3.08504412909449e36 * cos(theta) ** 69 - 5.05766144434359e36 * cos(theta) ** 67 + 7.12260474741636e36 * cos(theta) ** 65 - 8.68916004376893e36 * cos(theta) ** 63 + 9.24288102695028e36 * cos(theta) ** 61 - 8.61664405467092e36 * cos(theta) ** 59 + 7.06763086171713e36 * cos(theta) ** 57 - 5.11561852848097e36 * cos(theta) ** 55 + 3.27443685982511e36 * cos(theta) ** 53 - 1.8560978991522e36 * cos(theta) ** 51 + 9.32436887871968e35 * cos(theta) ** 49 - 4.15200976954727e35 * cos(theta) ** 47 + 1.63807392732869e35 * cos(theta) ** 45 - 5.72025815892557e34 * cos(theta) ** 43 + 1.76534282895071e34 * cos(theta) ** 41 - 4.80445111098435e33 * cos(theta) ** 39 + 1.14990254303598e33 * cos(theta) ** 37 - 2.4120790351558e32 * cos(theta) ** 35 + 4.41596007974676e31 * cos(theta) ** 33 - 7.02085794069946e30 * cos(theta) ** 31 + 9.63606535544643e29 * cos(theta) ** 29 - 1.13365474769958e29 * cos(theta) ** 27 + 1.13365474769958e28 * cos(theta) ** 25 - 9.53987164964583e26 * cos(theta) ** 23 + 6.67474426814269e25 * cos(theta) ** 21 - 3.82663471556092e24 * cos(theta) ** 19 + 1.76566253740129e23 * cos(theta) ** 17 - 6.41201882741188e21 * cos(theta) ** 15 + 1.78111634094775e20 * cos(theta) ** 13 - 3.64542310663669e18 * cos(theta) ** 11 + 5.22402998606091e16 * cos(theta) ** 9 - 487089042989362.0 * cos(theta) ** 7 + 2636306675973.35 * cos(theta) ** 5 - 6768438192.48614 * cos(theta) ** 3 + 5198493.23539642 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl88_m4(theta, phi): return ( 8.66375535447722e-8 * (1.0 - cos(theta) ** 2) ** 2 * ( 1.04022133152177e33 * cos(theta) ** 84 - 2.07212089239136e34 * cos(theta) ** 82 + 1.98887672937333e35 * cos(theta) ** 80 - 1.22511704967246e36 * cos(theta) ** 78 + 5.44234689373727e36 * cos(theta) ** 76 - 1.85756750265284e37 * cos(theta) ** 74 + 5.06796951986396e37 * cos(theta) ** 72 - 1.13529623950677e38 * cos(theta) ** 70 + 2.1286804490752e38 * cos(theta) ** 68 - 3.38863316771021e38 * cos(theta) ** 66 + 4.62969308582063e38 * cos(theta) ** 64 - 5.47417082757442e38 * cos(theta) ** 62 + 5.63815742643967e38 * cos(theta) ** 60 - 5.08381999225584e38 * cos(theta) ** 58 + 4.02854959117877e38 * cos(theta) ** 56 - 2.81359019066454e38 * cos(theta) ** 54 + 1.73545153570731e38 * cos(theta) ** 52 - 9.46609928567622e37 * cos(theta) ** 50 + 4.56894075057264e37 * cos(theta) ** 48 - 1.95144459168722e37 * cos(theta) ** 46 + 7.37133267297908e36 * cos(theta) ** 44 - 2.45971100833799e36 * cos(theta) ** 42 + 7.23790559869793e35 * cos(theta) ** 40 - 1.8737359332839e35 * cos(theta) ** 38 + 4.25463940923314e34 * cos(theta) ** 36 - 8.44227662304528e33 * cos(theta) ** 34 + 1.45726682631643e33 * cos(theta) ** 32 - 2.17646596161683e32 * cos(theta) ** 30 + 2.79445895307946e31 * cos(theta) ** 28 - 3.06086781878887e30 * cos(theta) ** 26 + 2.83413686924895e29 * cos(theta) ** 24 - 2.19417047941854e28 * cos(theta) ** 22 + 1.40169629630996e27 * cos(theta) ** 20 - 7.27060595956574e25 * cos(theta) ** 18 + 3.00162631358219e24 * cos(theta) ** 16 - 9.61802824111782e22 * cos(theta) ** 14 + 2.31545124323207e21 * cos(theta) ** 12 - 4.00996541730036e19 * cos(theta) ** 10 + 4.70162698745482e17 * cos(theta) ** 8 - 3.40962330092554e15 * cos(theta) ** 6 + 13181533379866.8 * cos(theta) ** 4 - 20305314577.4584 * cos(theta) ** 2 + 5198493.23539642 ) * cos(4 * phi) ) # @torch.jit.script def Yl88_m5(theta, phi): return ( 9.8022339352122e-10 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 8.73785918478285e34 * cos(theta) ** 83 - 1.69913913176092e36 * cos(theta) ** 81 + 1.59110138349866e37 * cos(theta) ** 79 - 9.55591298744518e37 * cos(theta) ** 77 + 4.13618363924032e38 * cos(theta) ** 75 - 1.3745999519631e39 * cos(theta) ** 73 + 3.64893805430205e39 * cos(theta) ** 71 - 7.94707367654741e39 * cos(theta) ** 69 + 1.44750270537114e40 * cos(theta) ** 67 - 2.23649789068874e40 * cos(theta) ** 65 + 2.9630035749252e40 * cos(theta) ** 63 - 3.39398591309614e40 * cos(theta) ** 61 + 3.3828944558638e40 * cos(theta) ** 59 - 2.94861559550839e40 * cos(theta) ** 57 + 2.25598777106011e40 * cos(theta) ** 55 - 1.51933870295885e40 * cos(theta) ** 53 + 9.02434798567799e39 * cos(theta) ** 51 - 4.73304964283811e39 * cos(theta) ** 49 + 2.19309156027487e39 * cos(theta) ** 47 - 8.9766451217612e38 * cos(theta) ** 45 + 3.2433863761108e38 * cos(theta) ** 43 - 1.03307862350196e38 * cos(theta) ** 41 + 2.89516223947917e37 * cos(theta) ** 39 - 7.12019654647881e36 * cos(theta) ** 37 + 1.53167018732393e36 * cos(theta) ** 35 - 2.8703740518354e35 * cos(theta) ** 33 + 4.66325384421258e34 * cos(theta) ** 31 - 6.5293978848505e33 * cos(theta) ** 29 + 7.8244850686225e32 * cos(theta) ** 27 - 7.95825632885105e31 * cos(theta) ** 25 + 6.80192848619748e30 * cos(theta) ** 23 - 4.82717505472079e29 * cos(theta) ** 21 + 2.80339259261993e28 * cos(theta) ** 19 - 1.30870907272183e27 * cos(theta) ** 17 + 4.8026021017315e25 * cos(theta) ** 15 - 1.3465239537565e24 * cos(theta) ** 13 + 2.77854149187848e22 * cos(theta) ** 11 - 4.00996541730036e20 * cos(theta) ** 9 + 3.76130158996386e18 * cos(theta) ** 7 - 2.04577398055532e16 * cos(theta) ** 5 + 52726133519467.1 * cos(theta) ** 3 - 40610629154.9169 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl88_m6(theta, phi): return ( 1.10974217129701e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 7.25242312336976e36 * cos(theta) ** 82 - 1.37630269672634e38 * cos(theta) ** 80 + 1.25697009296394e39 * cos(theta) ** 78 - 7.35805300033279e39 * cos(theta) ** 76 + 3.10213772943024e40 * cos(theta) ** 74 - 1.00345796493306e41 * cos(theta) ** 72 + 2.59074601855446e41 * cos(theta) ** 70 - 5.48348083681771e41 * cos(theta) ** 68 + 9.69826812598661e41 * cos(theta) ** 66 - 1.45372362894768e42 * cos(theta) ** 64 + 1.86669225220288e42 * cos(theta) ** 62 - 2.07033140698865e42 * cos(theta) ** 60 + 1.99590772895964e42 * cos(theta) ** 58 - 1.68071088943978e42 * cos(theta) ** 56 + 1.24079327408306e42 * cos(theta) ** 54 - 8.0524951256819e41 * cos(theta) ** 52 + 4.60241747269578e41 * cos(theta) ** 50 - 2.31919432499067e41 * cos(theta) ** 48 + 1.03075303332919e41 * cos(theta) ** 46 - 4.03949030479254e40 * cos(theta) ** 44 + 1.39465614172764e40 * cos(theta) ** 42 - 4.23562235635803e39 * cos(theta) ** 40 + 1.12911327339688e39 * cos(theta) ** 38 - 2.63447272219716e38 * cos(theta) ** 36 + 5.36084565563375e37 * cos(theta) ** 34 - 9.47223437105681e36 * cos(theta) ** 32 + 1.4456086917059e36 * cos(theta) ** 30 - 1.89352538660664e35 * cos(theta) ** 28 + 2.11261096852807e34 * cos(theta) ** 26 - 1.98956408221276e33 * cos(theta) ** 24 + 1.56444355182542e32 * cos(theta) ** 22 - 1.01370676149137e31 * cos(theta) ** 20 + 5.32644592597786e29 * cos(theta) ** 18 - 2.22480542362712e28 * cos(theta) ** 16 + 7.20390315259725e26 * cos(theta) ** 14 - 1.75048113988344e25 * cos(theta) ** 12 + 3.05639564106633e23 * cos(theta) ** 10 - 3.60896887557032e21 * cos(theta) ** 8 + 2.6329111129747e19 * cos(theta) ** 6 - 1.02288699027766e17 * cos(theta) ** 4 + 158178400558401.0 * cos(theta) ** 2 - 40610629154.9169 ) * cos(6 * phi) ) # @torch.jit.script def Yl88_m7(theta, phi): return ( 1.25734182122363e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 5.94698696116321e38 * cos(theta) ** 81 - 1.10104215738107e40 * cos(theta) ** 79 + 9.80436672511875e40 * cos(theta) ** 77 - 5.59212028025292e41 * cos(theta) ** 75 + 2.29558191977838e42 * cos(theta) ** 73 - 7.22489734751806e42 * cos(theta) ** 71 + 1.81352221298812e43 * cos(theta) ** 69 - 3.72876696903605e43 * cos(theta) ** 67 + 6.40085696315116e43 * cos(theta) ** 65 - 9.30383122526514e43 * cos(theta) ** 63 + 1.15734919636578e44 * cos(theta) ** 61 - 1.24219884419319e44 * cos(theta) ** 59 + 1.15762648279659e44 * cos(theta) ** 57 - 9.41198098086278e43 * cos(theta) ** 55 + 6.70028368004852e43 * cos(theta) ** 53 - 4.18729746535459e43 * cos(theta) ** 51 + 2.30120873634789e43 * cos(theta) ** 49 - 1.11321327599552e43 * cos(theta) ** 47 + 4.74146395331426e42 * cos(theta) ** 45 - 1.77737573410872e42 * cos(theta) ** 43 + 5.8575557952561e41 * cos(theta) ** 41 - 1.69424894254321e41 * cos(theta) ** 39 + 4.29063043890813e40 * cos(theta) ** 37 - 9.48410179990978e39 * cos(theta) ** 35 + 1.82268752291548e39 * cos(theta) ** 33 - 3.03111499873818e38 * cos(theta) ** 31 + 4.3368260751177e37 * cos(theta) ** 29 - 5.30187108249861e36 * cos(theta) ** 27 + 5.49278851817299e35 * cos(theta) ** 25 - 4.77495379731063e34 * cos(theta) ** 23 + 3.44177581401592e33 * cos(theta) ** 21 - 2.02741352298273e32 * cos(theta) ** 19 + 9.58760266676016e30 * cos(theta) ** 17 - 3.55968867780339e29 * cos(theta) ** 15 + 1.00854644136362e28 * cos(theta) ** 13 - 2.10057736786013e26 * cos(theta) ** 11 + 3.05639564106633e24 * cos(theta) ** 9 - 2.88717510045626e22 * cos(theta) ** 7 + 1.57974666778482e20 * cos(theta) ** 5 - 4.09154796111064e17 * cos(theta) ** 3 + 316356801116802.0 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl88_m8(theta, phi): return ( 1.42585458067574e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 4.8170594385422e40 * cos(theta) ** 80 - 8.69823304331048e41 * cos(theta) ** 78 + 7.54936237834144e42 * cos(theta) ** 76 - 4.19409021018969e43 * cos(theta) ** 74 + 1.67577480143822e44 * cos(theta) ** 72 - 5.12967711673782e44 * cos(theta) ** 70 + 1.2513303269618e45 * cos(theta) ** 68 - 2.49827386925415e45 * cos(theta) ** 66 + 4.16055702604826e45 * cos(theta) ** 64 - 5.86141367191704e45 * cos(theta) ** 62 + 7.05983009783129e45 * cos(theta) ** 60 - 7.32897318073981e45 * cos(theta) ** 58 + 6.59847095194058e45 * cos(theta) ** 56 - 5.17658953947453e45 * cos(theta) ** 54 + 3.55115035042572e45 * cos(theta) ** 52 - 2.13552170733084e45 * cos(theta) ** 50 + 1.12759228081046e45 * cos(theta) ** 48 - 5.23210239717896e44 * cos(theta) ** 46 + 2.13365877899142e44 * cos(theta) ** 44 - 7.64271565666748e43 * cos(theta) ** 42 + 2.401597876055e43 * cos(theta) ** 40 - 6.60757087591852e42 * cos(theta) ** 38 + 1.58753326239601e42 * cos(theta) ** 36 - 3.31943562996842e41 * cos(theta) ** 34 + 6.01486882562107e40 * cos(theta) ** 32 - 9.39645649608835e39 * cos(theta) ** 30 + 1.25767956178413e39 * cos(theta) ** 28 - 1.43150519227462e38 * cos(theta) ** 26 + 1.37319712954325e37 * cos(theta) ** 24 - 1.09823937338144e36 * cos(theta) ** 22 + 7.22772920943344e34 * cos(theta) ** 20 - 3.85208569366719e33 * cos(theta) ** 18 + 1.62989245334923e32 * cos(theta) ** 16 - 5.33953301670508e30 * cos(theta) ** 14 + 1.3111103737727e29 * cos(theta) ** 12 - 2.31063510464615e27 * cos(theta) ** 10 + 2.7507560769597e25 * cos(theta) ** 8 - 2.02102257031938e23 * cos(theta) ** 6 + 7.8987333389241e20 * cos(theta) ** 4 - 1.22746438833319e18 * cos(theta) ** 2 + 316356801116802.0 ) * cos(8 * phi) ) # @torch.jit.script def Yl88_m9(theta, phi): return ( 1.6186180329657e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 3.85364755083376e42 * cos(theta) ** 79 - 6.78462177378218e43 * cos(theta) ** 77 + 5.73751540753949e44 * cos(theta) ** 75 - 3.10362675554037e45 * cos(theta) ** 73 + 1.20655785703552e46 * cos(theta) ** 71 - 3.59077398171648e46 * cos(theta) ** 69 + 8.50904622334026e46 * cos(theta) ** 67 - 1.64886075370774e47 * cos(theta) ** 65 + 2.66275649667088e47 * cos(theta) ** 63 - 3.63407647658856e47 * cos(theta) ** 61 + 4.23589805869877e47 * cos(theta) ** 59 - 4.25080444482909e47 * cos(theta) ** 57 + 3.69514373308673e47 * cos(theta) ** 55 - 2.79535835131624e47 * cos(theta) ** 53 + 1.84659818222137e47 * cos(theta) ** 51 - 1.06776085366542e47 * cos(theta) ** 49 + 5.41244294789023e46 * cos(theta) ** 47 - 2.40676710270232e46 * cos(theta) ** 45 + 9.38809862756224e45 * cos(theta) ** 43 - 3.20994057580034e45 * cos(theta) ** 41 + 9.60639150422e44 * cos(theta) ** 39 - 2.51087693284904e44 * cos(theta) ** 37 + 5.71511974462563e43 * cos(theta) ** 35 - 1.12860811418926e43 * cos(theta) ** 33 + 1.92475802419874e42 * cos(theta) ** 31 - 2.81893694882651e41 * cos(theta) ** 29 + 3.52150277299557e40 * cos(theta) ** 27 - 3.72191349991402e39 * cos(theta) ** 25 + 3.2956731109038e38 * cos(theta) ** 23 - 2.41612662143918e37 * cos(theta) ** 21 + 1.44554584188669e36 * cos(theta) ** 19 - 6.93375424860094e34 * cos(theta) ** 17 + 2.60782792535876e33 * cos(theta) ** 15 - 7.47534622338712e31 * cos(theta) ** 13 + 1.57333244852724e30 * cos(theta) ** 11 - 2.31063510464615e28 * cos(theta) ** 9 + 2.20060486156776e26 * cos(theta) ** 7 - 1.21261354219163e24 * cos(theta) ** 5 + 3.15949333556964e21 * cos(theta) ** 3 - 2.45492877666639e18 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl88_m10(theta, phi): return ( 1.83957623774865e-19 * (1.0 - cos(theta) ** 2) ** 5 * ( 3.04438156515867e44 * cos(theta) ** 78 - 5.22415876581227e45 * cos(theta) ** 76 + 4.30313655565462e46 * cos(theta) ** 74 - 2.26564753154447e47 * cos(theta) ** 72 + 8.56656078495217e47 * cos(theta) ** 70 - 2.47763404738437e48 * cos(theta) ** 68 + 5.70106096963797e48 * cos(theta) ** 66 - 1.07175948991003e49 * cos(theta) ** 64 + 1.67753659290266e49 * cos(theta) ** 62 - 2.21678665071902e49 * cos(theta) ** 60 + 2.49917985463228e49 * cos(theta) ** 58 - 2.42295853355258e49 * cos(theta) ** 56 + 2.0323290531977e49 * cos(theta) ** 54 - 1.48153992619761e49 * cos(theta) ** 52 + 9.417650729329e48 * cos(theta) ** 50 - 5.23202818296056e48 * cos(theta) ** 48 + 2.54384818550841e48 * cos(theta) ** 46 - 1.08304519621604e48 * cos(theta) ** 44 + 4.03688240985176e47 * cos(theta) ** 42 - 1.31607563607814e47 * cos(theta) ** 40 + 3.7464926866458e46 * cos(theta) ** 38 - 9.29024465154144e45 * cos(theta) ** 36 + 2.00029191061897e45 * cos(theta) ** 34 - 3.72440677682457e44 * cos(theta) ** 32 + 5.9667498750161e43 * cos(theta) ** 30 - 8.17491715159687e42 * cos(theta) ** 28 + 9.50805748708805e41 * cos(theta) ** 26 - 9.30478374978505e40 * cos(theta) ** 24 + 7.58004815507873e39 * cos(theta) ** 22 - 5.07386590502227e38 * cos(theta) ** 20 + 2.74653709958471e37 * cos(theta) ** 18 - 1.17873822226216e36 * cos(theta) ** 16 + 3.91174188803814e34 * cos(theta) ** 14 - 9.71795009040325e32 * cos(theta) ** 12 + 1.73066569337996e31 * cos(theta) ** 10 - 2.07957159418153e29 * cos(theta) ** 8 + 1.54042340309743e27 * cos(theta) ** 6 - 6.06306771095814e24 * cos(theta) ** 4 + 9.47848000670892e21 * cos(theta) ** 2 - 2.45492877666639e18 ) * cos(10 * phi) ) # @torch.jit.script def Yl88_m11(theta, phi): return ( 2.0934032419725e-21 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 2.37461762082376e46 * cos(theta) ** 77 - 3.97036066201733e47 * cos(theta) ** 75 + 3.18432105118442e48 * cos(theta) ** 73 - 1.63126622271202e49 * cos(theta) ** 71 + 5.99659254946652e49 * cos(theta) ** 69 - 1.68479115222137e50 * cos(theta) ** 67 + 3.76270023996106e50 * cos(theta) ** 65 - 6.8592607354242e50 * cos(theta) ** 63 + 1.04007268759965e51 * cos(theta) ** 61 - 1.33007199043141e51 * cos(theta) ** 59 + 1.44952431568672e51 * cos(theta) ** 57 - 1.35685677878945e51 * cos(theta) ** 55 + 1.09745768872676e51 * cos(theta) ** 53 - 7.70400761622757e50 * cos(theta) ** 51 + 4.7088253646645e50 * cos(theta) ** 49 - 2.51137352782107e50 * cos(theta) ** 47 + 1.17017016533387e50 * cos(theta) ** 45 - 4.76539886335059e49 * cos(theta) ** 43 + 1.69549061213774e49 * cos(theta) ** 41 - 5.26430254431256e48 * cos(theta) ** 39 + 1.4236672209254e48 * cos(theta) ** 37 - 3.34448807455492e47 * cos(theta) ** 35 + 6.8009924961045e46 * cos(theta) ** 33 - 1.19181016858386e46 * cos(theta) ** 31 + 1.79002496250483e45 * cos(theta) ** 29 - 2.28897680244712e44 * cos(theta) ** 27 + 2.47209494664289e43 * cos(theta) ** 25 - 2.23314809994841e42 * cos(theta) ** 23 + 1.66761059411732e41 * cos(theta) ** 21 - 1.01477318100445e40 * cos(theta) ** 19 + 4.94376677925247e38 * cos(theta) ** 17 - 1.88598115561946e37 * cos(theta) ** 15 + 5.4764386432534e35 * cos(theta) ** 13 - 1.16615401084839e34 * cos(theta) ** 11 + 1.73066569337996e32 * cos(theta) ** 9 - 1.66365727534523e30 * cos(theta) ** 7 + 9.24254041858458e27 * cos(theta) ** 5 - 2.42522708438326e25 * cos(theta) ** 3 + 1.89569600134178e22 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl88_m12(theta, phi): return ( 2.38565440217662e-23 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.8284555680343e48 * cos(theta) ** 76 - 2.977770496513e49 * cos(theta) ** 74 + 2.32455436736463e50 * cos(theta) ** 72 - 1.15819901812553e51 * cos(theta) ** 70 + 4.1376488591319e51 * cos(theta) ** 68 - 1.12881007198832e52 * cos(theta) ** 66 + 2.44575515597469e52 * cos(theta) ** 64 - 4.32133426331724e52 * cos(theta) ** 62 + 6.34444339435785e52 * cos(theta) ** 60 - 7.84742474354535e52 * cos(theta) ** 58 + 8.2622885994143e52 * cos(theta) ** 56 - 7.46271228334195e52 * cos(theta) ** 54 + 5.81652575025182e52 * cos(theta) ** 52 - 3.92904388427606e52 * cos(theta) ** 50 + 2.30732442868561e52 * cos(theta) ** 48 - 1.1803455580759e52 * cos(theta) ** 46 + 5.26576574400241e51 * cos(theta) ** 44 - 2.04912151124076e51 * cos(theta) ** 42 + 6.95151150976474e50 * cos(theta) ** 40 - 2.0530779922819e50 * cos(theta) ** 38 + 5.267568717424e49 * cos(theta) ** 36 - 1.17057082609422e49 * cos(theta) ** 34 + 2.24432752371448e48 * cos(theta) ** 32 - 3.69461152260997e47 * cos(theta) ** 30 + 5.19107239126401e46 * cos(theta) ** 28 - 6.18023736660723e45 * cos(theta) ** 26 + 6.18023736660723e44 * cos(theta) ** 24 - 5.13624062988135e43 * cos(theta) ** 22 + 3.50198224764637e42 * cos(theta) ** 20 - 1.92806904390846e41 * cos(theta) ** 18 + 8.4044035247292e39 * cos(theta) ** 16 - 2.82897173342919e38 * cos(theta) ** 14 + 7.11937023622942e36 * cos(theta) ** 12 - 1.28276941193323e35 * cos(theta) ** 10 + 1.55759912404197e33 * cos(theta) ** 8 - 1.16456009274166e31 * cos(theta) ** 6 + 4.62127020929229e28 * cos(theta) ** 4 - 7.27568125314977e25 * cos(theta) ** 2 + 1.89569600134178e22 ) * cos(12 * phi) ) # @torch.jit.script def Yl88_m13(theta, phi): return ( 2.72295238304572e-25 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.38962623170607e50 * cos(theta) ** 75 - 2.20355016741962e51 * cos(theta) ** 73 + 1.67367914450253e52 * cos(theta) ** 71 - 8.10739312687873e52 * cos(theta) ** 69 + 2.81360122420969e53 * cos(theta) ** 67 - 7.4501464751229e53 * cos(theta) ** 65 + 1.5652832998238e54 * cos(theta) ** 63 - 2.67922724325669e54 * cos(theta) ** 61 + 3.80666603661471e54 * cos(theta) ** 59 - 4.5515063512563e54 * cos(theta) ** 57 + 4.62688161567201e54 * cos(theta) ** 55 - 4.02986463300465e54 * cos(theta) ** 53 + 3.02459339013094e54 * cos(theta) ** 51 - 1.96452194213803e54 * cos(theta) ** 49 + 1.10751572576909e54 * cos(theta) ** 47 - 5.42958956714915e53 * cos(theta) ** 45 + 2.31693692736106e53 * cos(theta) ** 43 - 8.60631034721117e52 * cos(theta) ** 41 + 2.7806046039059e52 * cos(theta) ** 39 - 7.80169637067122e51 * cos(theta) ** 37 + 1.89632473827264e51 * cos(theta) ** 35 - 3.97994080872035e50 * cos(theta) ** 33 + 7.18184807588635e49 * cos(theta) ** 31 - 1.10838345678299e49 * cos(theta) ** 29 + 1.45350026955392e48 * cos(theta) ** 27 - 1.60686171531788e47 * cos(theta) ** 25 + 1.48325696798574e46 * cos(theta) ** 23 - 1.1299729385739e45 * cos(theta) ** 21 + 7.00396449529275e43 * cos(theta) ** 19 - 3.47052427903524e42 * cos(theta) ** 17 + 1.34470456395667e41 * cos(theta) ** 15 - 3.96056042680086e39 * cos(theta) ** 13 + 8.5432442834753e37 * cos(theta) ** 11 - 1.28276941193323e36 * cos(theta) ** 9 + 1.24607929923357e34 * cos(theta) ** 7 - 6.98736055644995e31 * cos(theta) ** 5 + 1.84850808371692e29 * cos(theta) ** 3 - 1.45513625062995e26 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl88_m14(theta, phi): return ( 3.11321654068509e-27 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.04221967377955e52 * cos(theta) ** 74 - 1.60859162221632e53 * cos(theta) ** 72 + 1.1883121925968e54 * cos(theta) ** 70 - 5.59410125754632e54 * cos(theta) ** 68 + 1.88511282022049e55 * cos(theta) ** 66 - 4.84259520882989e55 * cos(theta) ** 64 + 9.86128478888995e55 * cos(theta) ** 62 - 1.63432861838658e56 * cos(theta) ** 60 + 2.24593296160268e56 * cos(theta) ** 58 - 2.59435862021609e56 * cos(theta) ** 56 + 2.54478488861961e56 * cos(theta) ** 54 - 2.13582825549247e56 * cos(theta) ** 52 + 1.54254262896678e56 * cos(theta) ** 50 - 9.62615751647635e55 * cos(theta) ** 48 + 5.20532391111473e55 * cos(theta) ** 46 - 2.44331530521712e55 * cos(theta) ** 44 + 9.96282878765255e54 * cos(theta) ** 42 - 3.52858724235658e54 * cos(theta) ** 40 + 1.0844357955233e54 * cos(theta) ** 38 - 2.88662765714835e53 * cos(theta) ** 36 + 6.63713658395424e52 * cos(theta) ** 34 - 1.31338046687772e52 * cos(theta) ** 32 + 2.22637290352477e51 * cos(theta) ** 30 - 3.21431202467068e50 * cos(theta) ** 28 + 3.92445072779559e49 * cos(theta) ** 26 - 4.0171542882947e48 * cos(theta) ** 24 + 3.41149102636719e47 * cos(theta) ** 22 - 2.37294317100518e46 * cos(theta) ** 20 + 1.33075325410562e45 * cos(theta) ** 18 - 5.8998912743599e43 * cos(theta) ** 16 + 2.01705684593501e42 * cos(theta) ** 14 - 5.14872855484112e40 * cos(theta) ** 12 + 9.39756871182284e38 * cos(theta) ** 10 - 1.15449247073991e37 * cos(theta) ** 8 + 8.72255509463502e34 * cos(theta) ** 6 - 3.49368027822497e32 * cos(theta) ** 4 + 5.54552425115075e29 * cos(theta) ** 2 - 1.45513625062995e26 ) * cos(14 * phi) ) # @torch.jit.script def Yl88_m15(theta, phi): return ( 3.56594677784948e-29 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 7.71242558596866e53 * cos(theta) ** 73 - 1.15818596799575e55 * cos(theta) ** 71 + 8.31818534817758e55 * cos(theta) ** 69 - 3.8039888551315e56 * cos(theta) ** 67 + 1.24417446134552e57 * cos(theta) ** 65 - 3.09926093365113e57 * cos(theta) ** 63 + 6.11399656911177e57 * cos(theta) ** 61 - 9.80597171031949e57 * cos(theta) ** 59 + 1.30264111772955e58 * cos(theta) ** 57 - 1.45284082732101e58 * cos(theta) ** 55 + 1.37418383985459e58 * cos(theta) ** 53 - 1.11063069285608e58 * cos(theta) ** 51 + 7.71271314483391e57 * cos(theta) ** 49 - 4.62055560790865e57 * cos(theta) ** 47 + 2.39444899911277e57 * cos(theta) ** 45 - 1.07505873429553e57 * cos(theta) ** 43 + 4.18438809081407e56 * cos(theta) ** 41 - 1.41143489694263e56 * cos(theta) ** 39 + 4.12085602298854e55 * cos(theta) ** 37 - 1.03918595657341e55 * cos(theta) ** 35 + 2.25662643854444e54 * cos(theta) ** 33 - 4.20281749400869e53 * cos(theta) ** 31 + 6.67911871057431e52 * cos(theta) ** 29 - 9.00007366907789e51 * cos(theta) ** 27 + 1.02035718922685e51 * cos(theta) ** 25 - 9.64117029190728e49 * cos(theta) ** 23 + 7.50528025800782e48 * cos(theta) ** 21 - 4.74588634201037e47 * cos(theta) ** 19 + 2.39535585739012e46 * cos(theta) ** 17 - 9.43982603897584e44 * cos(theta) ** 15 + 2.82387958430901e43 * cos(theta) ** 13 - 6.17847426580934e41 * cos(theta) ** 11 + 9.39756871182284e39 * cos(theta) ** 9 - 9.23593976591925e37 * cos(theta) ** 7 + 5.23353305678101e35 * cos(theta) ** 5 - 1.39747211128999e33 * cos(theta) ** 3 + 1.10910485023015e30 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl88_m16(theta, phi): return ( 4.09257603944502e-31 * (1.0 - cos(theta) ** 2) ** 8 * ( 5.63007067775712e55 * cos(theta) ** 72 - 8.22312037276983e56 * cos(theta) ** 70 + 5.73954789024253e57 * cos(theta) ** 68 - 2.5486725329381e58 * cos(theta) ** 66 + 8.08713399874591e58 * cos(theta) ** 64 - 1.95253438820021e59 * cos(theta) ** 62 + 3.72953790715818e59 * cos(theta) ** 60 - 5.7855233090885e59 * cos(theta) ** 58 + 7.42505437105845e59 * cos(theta) ** 56 - 7.99062455026556e59 * cos(theta) ** 54 + 7.28317435122931e59 * cos(theta) ** 52 - 5.66421653356602e59 * cos(theta) ** 50 + 3.77922944096861e59 * cos(theta) ** 48 - 2.17166113571706e59 * cos(theta) ** 46 + 1.07750204960075e59 * cos(theta) ** 44 - 4.62275255747079e58 * cos(theta) ** 42 + 1.71559911723377e58 * cos(theta) ** 40 - 5.50459609807627e57 * cos(theta) ** 38 + 1.52471672850576e57 * cos(theta) ** 36 - 3.63715084800692e56 * cos(theta) ** 34 + 7.44686724719665e55 * cos(theta) ** 32 - 1.30287342314269e55 * cos(theta) ** 30 + 1.93694442606655e54 * cos(theta) ** 28 - 2.43001989065103e53 * cos(theta) ** 26 + 2.55089297306714e52 * cos(theta) ** 24 - 2.21746916713867e51 * cos(theta) ** 22 + 1.57610885418164e50 * cos(theta) ** 20 - 9.0171840498197e48 * cos(theta) ** 18 + 4.0721049575632e47 * cos(theta) ** 16 - 1.41597390584638e46 * cos(theta) ** 14 + 3.67104345960172e44 * cos(theta) ** 12 - 6.79632169239028e42 * cos(theta) ** 10 + 8.45781184064055e40 * cos(theta) ** 8 - 6.46515783614347e38 * cos(theta) ** 6 + 2.61676652839051e36 * cos(theta) ** 4 - 4.19241633386997e33 * cos(theta) ** 2 + 1.10910485023015e30 ) * cos(16 * phi) ) # @torch.jit.script def Yl88_m17(theta, phi): return ( 4.7069096230179e-33 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 4.05365088798513e57 * cos(theta) ** 71 - 5.75618426093888e58 * cos(theta) ** 69 + 3.90289256536492e59 * cos(theta) ** 67 - 1.68212387173915e60 * cos(theta) ** 65 + 5.17576575919738e60 * cos(theta) ** 63 - 1.21057132068413e61 * cos(theta) ** 61 + 2.23772274429491e61 * cos(theta) ** 59 - 3.35560351927133e61 * cos(theta) ** 57 + 4.15803044779273e61 * cos(theta) ** 55 - 4.3149372571434e61 * cos(theta) ** 53 + 3.78725066263924e61 * cos(theta) ** 51 - 2.83210826678301e61 * cos(theta) ** 49 + 1.81403013166493e61 * cos(theta) ** 47 - 9.98964122429849e60 * cos(theta) ** 45 + 4.74100901824329e60 * cos(theta) ** 43 - 1.94155607413773e60 * cos(theta) ** 41 + 6.86239646893508e59 * cos(theta) ** 39 - 2.09174651726898e59 * cos(theta) ** 37 + 5.48898022262073e58 * cos(theta) ** 35 - 1.23663128832235e58 * cos(theta) ** 33 + 2.38299751910293e57 * cos(theta) ** 31 - 3.90862026942808e56 * cos(theta) ** 29 + 5.42344439298634e55 * cos(theta) ** 27 - 6.31805171569268e54 * cos(theta) ** 25 + 6.12214313536112e53 * cos(theta) ** 23 - 4.87843216770509e52 * cos(theta) ** 21 + 3.15221770836329e51 * cos(theta) ** 19 - 1.62309312896755e50 * cos(theta) ** 17 + 6.51536793210113e48 * cos(theta) ** 15 - 1.98236346818493e47 * cos(theta) ** 13 + 4.40525215152206e45 * cos(theta) ** 11 - 6.79632169239027e43 * cos(theta) ** 9 + 6.76624947251244e41 * cos(theta) ** 7 - 3.87909470168608e39 * cos(theta) ** 5 + 1.0467066113562e37 * cos(theta) ** 3 - 8.38483266773994e33 * cos(theta) ) * cos(17 * phi) ) # @torch.jit.script def Yl88_m18(theta, phi): return ( 5.42567470944355e-35 * (1.0 - cos(theta) ** 2) ** 9 * ( 2.87809213046944e59 * cos(theta) ** 70 - 3.97176714004783e60 * cos(theta) ** 68 + 2.6149380187945e61 * cos(theta) ** 66 - 1.09338051663045e62 * cos(theta) ** 64 + 3.26073242829435e62 * cos(theta) ** 62 - 7.38448505617319e62 * cos(theta) ** 60 + 1.320256419134e63 * cos(theta) ** 58 - 1.91269400598466e63 * cos(theta) ** 56 + 2.286916746286e63 * cos(theta) ** 54 - 2.286916746286e63 * cos(theta) ** 52 + 1.93149783794601e63 * cos(theta) ** 50 - 1.38773305072368e63 * cos(theta) ** 48 + 8.52594161882519e62 * cos(theta) ** 46 - 4.49533855093432e62 * cos(theta) ** 44 + 2.03863387784462e62 * cos(theta) ** 42 - 7.96037990396469e61 * cos(theta) ** 40 + 2.67633462288468e61 * cos(theta) ** 38 - 7.73946211389523e60 * cos(theta) ** 36 + 1.92114307791726e60 * cos(theta) ** 34 - 4.08088325146377e59 * cos(theta) ** 32 + 7.38729230921908e58 * cos(theta) ** 30 - 1.13349987813414e58 * cos(theta) ** 28 + 1.46432998610631e57 * cos(theta) ** 26 - 1.57951292892317e56 * cos(theta) ** 24 + 1.40809292113306e55 * cos(theta) ** 22 - 1.02447075521807e54 * cos(theta) ** 20 + 5.98921364589024e52 * cos(theta) ** 18 - 2.75925831924483e51 * cos(theta) ** 16 + 9.77305189815169e49 * cos(theta) ** 14 - 2.5770725086404e48 * cos(theta) ** 12 + 4.84577736667427e46 * cos(theta) ** 10 - 6.11668952315125e44 * cos(theta) ** 8 + 4.73637463075871e42 * cos(theta) ** 6 - 1.93954735084304e40 * cos(theta) ** 4 + 3.14011983406861e37 * cos(theta) ** 2 - 8.38483266773994e33 ) * cos(18 * phi) ) # @torch.jit.script def Yl88_m19(theta, phi): return ( 6.26921037573639e-37 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 2.01466449132861e61 * cos(theta) ** 69 - 2.70080165523252e62 * cos(theta) ** 67 + 1.72585909240437e63 * cos(theta) ** 65 - 6.99763530643486e63 * cos(theta) ** 63 + 2.0216541055425e64 * cos(theta) ** 61 - 4.43069103370392e64 * cos(theta) ** 59 + 7.65748723097717e64 * cos(theta) ** 57 - 1.07110864335141e65 * cos(theta) ** 55 + 1.23493504299444e65 * cos(theta) ** 53 - 1.18919670806872e65 * cos(theta) ** 51 + 9.65748918973007e64 * cos(theta) ** 49 - 6.66111864347364e64 * cos(theta) ** 47 + 3.92193314465959e64 * cos(theta) ** 45 - 1.9779489624111e64 * cos(theta) ** 43 + 8.56226228694739e63 * cos(theta) ** 41 - 3.18415196158588e63 * cos(theta) ** 39 + 1.01700715669618e63 * cos(theta) ** 37 - 2.78620636100228e62 * cos(theta) ** 35 + 6.53188646491867e61 * cos(theta) ** 33 - 1.30588264046841e61 * cos(theta) ** 31 + 2.21618769276572e60 * cos(theta) ** 29 - 3.1737996587756e59 * cos(theta) ** 27 + 3.80725796387641e58 * cos(theta) ** 25 - 3.79083102941561e57 * cos(theta) ** 23 + 3.09780442649273e56 * cos(theta) ** 21 - 2.04894151043614e55 * cos(theta) ** 19 + 1.07805845626024e54 * cos(theta) ** 17 - 4.41481331079172e52 * cos(theta) ** 15 + 1.36822726574124e51 * cos(theta) ** 13 - 3.09248701036849e49 * cos(theta) ** 11 + 4.84577736667427e47 * cos(theta) ** 9 - 4.893351618521e45 * cos(theta) ** 7 + 2.84182477845523e43 * cos(theta) ** 5 - 7.75818940337217e40 * cos(theta) ** 3 + 6.28023966813721e37 * cos(theta) ) * cos(19 * phi) ) # @torch.jit.script def Yl88_m20(theta, phi): return ( 7.26233737831782e-39 * (1.0 - cos(theta) ** 2) ** 10 * ( 1.39011849901674e63 * cos(theta) ** 68 - 1.80953710900579e64 * cos(theta) ** 66 + 1.12180841006284e65 * cos(theta) ** 64 - 4.40851024305396e65 * cos(theta) ** 62 + 1.23320900438092e66 * cos(theta) ** 60 - 2.61410770988531e66 * cos(theta) ** 58 + 4.36476772165699e66 * cos(theta) ** 56 - 5.89109753843275e66 * cos(theta) ** 54 + 6.54515572787054e66 * cos(theta) ** 52 - 6.06490321115048e66 * cos(theta) ** 50 + 4.73216970296773e66 * cos(theta) ** 48 - 3.13072576243261e66 * cos(theta) ** 46 + 1.76486991509682e66 * cos(theta) ** 44 - 8.50518053836774e65 * cos(theta) ** 42 + 3.51052753764843e65 * cos(theta) ** 40 - 1.24181926501849e65 * cos(theta) ** 38 + 3.76292647977586e64 * cos(theta) ** 36 - 9.75172226350799e63 * cos(theta) ** 34 + 2.15552253342316e63 * cos(theta) ** 32 - 4.04823618545206e62 * cos(theta) ** 30 + 6.4269443090206e61 * cos(theta) ** 28 - 8.56925907869413e60 * cos(theta) ** 26 + 9.51814490969102e59 * cos(theta) ** 24 - 8.7189113676559e58 * cos(theta) ** 22 + 6.50538929563473e57 * cos(theta) ** 20 - 3.89298886982866e56 * cos(theta) ** 18 + 1.83269937564241e55 * cos(theta) ** 16 - 6.62221996618759e53 * cos(theta) ** 14 + 1.77869544546361e52 * cos(theta) ** 12 - 3.40173571140533e50 * cos(theta) ** 10 + 4.36119963000684e48 * cos(theta) ** 8 - 3.4253461329647e46 * cos(theta) ** 6 + 1.42091238922761e44 * cos(theta) ** 4 - 2.32745682101165e41 * cos(theta) ** 2 + 6.28023966813721e37 ) * cos(20 * phi) ) # @torch.jit.script def Yl88_m21(theta, phi): return ( 8.43545892915952e-41 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 9.45280579331383e64 * cos(theta) ** 67 - 1.19429449194382e66 * cos(theta) ** 65 + 7.17957382440217e66 * cos(theta) ** 63 - 2.73327635069346e67 * cos(theta) ** 61 + 7.39925402628554e67 * cos(theta) ** 59 - 1.51618247173348e68 * cos(theta) ** 57 + 2.44426992412791e68 * cos(theta) ** 55 - 3.18119267075368e68 * cos(theta) ** 53 + 3.40348097849268e68 * cos(theta) ** 51 - 3.03245160557524e68 * cos(theta) ** 49 + 2.27144145742451e68 * cos(theta) ** 47 - 1.440133850719e68 * cos(theta) ** 45 + 7.76542762642599e67 * cos(theta) ** 43 - 3.57217582611445e67 * cos(theta) ** 41 + 1.40421101505937e67 * cos(theta) ** 39 - 4.71891320707027e66 * cos(theta) ** 37 + 1.35465353271931e66 * cos(theta) ** 35 - 3.31558556959272e65 * cos(theta) ** 33 + 6.89767210695412e64 * cos(theta) ** 31 - 1.21447085563562e64 * cos(theta) ** 29 + 1.79954440652577e63 * cos(theta) ** 27 - 2.22800736046047e62 * cos(theta) ** 25 + 2.28435477832585e61 * cos(theta) ** 23 - 1.9181605008843e60 * cos(theta) ** 21 + 1.30107785912695e59 * cos(theta) ** 19 - 7.00737996569158e57 * cos(theta) ** 17 + 2.93231900102786e56 * cos(theta) ** 15 - 9.27110795266262e54 * cos(theta) ** 13 + 2.13443453455633e53 * cos(theta) ** 11 - 3.40173571140533e51 * cos(theta) ** 9 + 3.48895970400547e49 * cos(theta) ** 7 - 2.05520767977882e47 * cos(theta) ** 5 + 5.68364955691045e44 * cos(theta) ** 3 - 4.6549136420233e41 * cos(theta) ) * cos(21 * phi) ) # @torch.jit.script def Yl88_m22(theta, phi): return ( 9.82595953556126e-43 * (1.0 - cos(theta) ** 2) ** 11 * ( 6.33337988152027e66 * cos(theta) ** 66 - 7.76291419763484e67 * cos(theta) ** 64 + 4.52313150937337e68 * cos(theta) ** 62 - 1.66729857392301e69 * cos(theta) ** 60 + 4.36555987550847e69 * cos(theta) ** 58 - 8.64224008888084e69 * cos(theta) ** 56 + 1.34434845827035e70 * cos(theta) ** 54 - 1.68603211549945e70 * cos(theta) ** 52 + 1.73577529903127e70 * cos(theta) ** 50 - 1.48590128673187e70 * cos(theta) ** 48 + 1.06757748498952e70 * cos(theta) ** 46 - 6.48060232823551e69 * cos(theta) ** 44 + 3.33913387936317e69 * cos(theta) ** 42 - 1.46459208870692e69 * cos(theta) ** 40 + 5.47642295873155e68 * cos(theta) ** 38 - 1.745997886616e68 * cos(theta) ** 36 + 4.74128736451759e67 * cos(theta) ** 34 - 1.0941432379656e67 * cos(theta) ** 32 + 2.13827835315578e66 * cos(theta) ** 30 - 3.52196548134329e65 * cos(theta) ** 28 + 4.85876989761957e64 * cos(theta) ** 26 - 5.57001840115119e63 * cos(theta) ** 24 + 5.25401599014944e62 * cos(theta) ** 22 - 4.02813705185702e61 * cos(theta) ** 20 + 2.4720479323412e60 * cos(theta) ** 18 - 1.19125459416757e59 * cos(theta) ** 16 + 4.39847850154179e57 * cos(theta) ** 14 - 1.20524403384614e56 * cos(theta) ** 12 + 2.34787798801196e54 * cos(theta) ** 10 - 3.0615621402648e52 * cos(theta) ** 8 + 2.44227179280383e50 * cos(theta) ** 6 - 1.02760383988941e48 * cos(theta) ** 4 + 1.70509486707314e45 * cos(theta) ** 2 - 4.6549136420233e41 ) * cos(22 * phi) ) # @torch.jit.script def Yl88_m23(theta, phi): return ( 1.14799901164874e-44 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 4.18003072180338e68 * cos(theta) ** 65 - 4.9682650864863e69 * cos(theta) ** 63 + 2.80434153581149e70 * cos(theta) ** 61 - 1.00037914435381e71 * cos(theta) ** 59 + 2.53202472779491e71 * cos(theta) ** 57 - 4.83965444977327e71 * cos(theta) ** 55 + 7.2594816746599e71 * cos(theta) ** 53 - 8.76736700059715e71 * cos(theta) ** 51 + 8.67887649515634e71 * cos(theta) ** 49 - 7.13232617631297e71 * cos(theta) ** 47 + 4.91085643095179e71 * cos(theta) ** 45 - 2.85146502442362e71 * cos(theta) ** 43 + 1.40243622933253e71 * cos(theta) ** 41 - 5.8583683548277e70 * cos(theta) ** 39 + 2.08104072431799e70 * cos(theta) ** 37 - 6.2855923918176e69 * cos(theta) ** 35 + 1.61203770393598e69 * cos(theta) ** 33 - 3.50125836148991e68 * cos(theta) ** 31 + 6.41483505946733e67 * cos(theta) ** 29 - 9.86150334776121e66 * cos(theta) ** 27 + 1.26328017338109e66 * cos(theta) ** 25 - 1.33680441627628e65 * cos(theta) ** 23 + 1.15588351783288e64 * cos(theta) ** 21 - 8.05627410371405e62 * cos(theta) ** 19 + 4.44968627821416e61 * cos(theta) ** 17 - 1.90600735066811e60 * cos(theta) ** 15 + 6.15786990215851e58 * cos(theta) ** 13 - 1.44629284061537e57 * cos(theta) ** 11 + 2.34787798801196e55 * cos(theta) ** 9 - 2.44924971221184e53 * cos(theta) ** 7 + 1.4653630756823e51 * cos(theta) ** 5 - 4.11041535955764e48 * cos(theta) ** 3 + 3.41018973414627e45 * cos(theta) ) * cos(23 * phi) ) # @torch.jit.script def Yl88_m24(theta, phi): return ( 1.34547559442794e-46 * (1.0 - cos(theta) ** 2) ** 12 * ( 2.7170199691722e70 * cos(theta) ** 64 - 3.13000700448637e71 * cos(theta) ** 62 + 1.71064833684501e72 * cos(theta) ** 60 - 5.90223695168745e72 * cos(theta) ** 58 + 1.4432540948431e73 * cos(theta) ** 56 - 2.6618099473753e73 * cos(theta) ** 54 + 3.84752528756975e73 * cos(theta) ** 52 - 4.47135717030455e73 * cos(theta) ** 50 + 4.25264948262661e73 * cos(theta) ** 48 - 3.35219330286709e73 * cos(theta) ** 46 + 2.20988539392831e73 * cos(theta) ** 44 - 1.22612996050216e73 * cos(theta) ** 42 + 5.74998854026339e72 * cos(theta) ** 40 - 2.2847636583828e72 * cos(theta) ** 38 + 7.69985067997656e71 * cos(theta) ** 36 - 2.19995733713616e71 * cos(theta) ** 34 + 5.31972442298873e70 * cos(theta) ** 32 - 1.08539009206187e70 * cos(theta) ** 30 + 1.86030216724552e69 * cos(theta) ** 28 - 2.66260590389553e68 * cos(theta) ** 26 + 3.15820043345272e67 * cos(theta) ** 24 - 3.07465015743545e66 * cos(theta) ** 22 + 2.42735538744904e65 * cos(theta) ** 20 - 1.53069207970567e64 * cos(theta) ** 18 + 7.56446667296406e62 * cos(theta) ** 16 - 2.85901102600217e61 * cos(theta) ** 14 + 8.00523087280606e59 * cos(theta) ** 12 - 1.59092212467691e58 * cos(theta) ** 10 + 2.11309018921077e56 * cos(theta) ** 8 - 1.71447479854829e54 * cos(theta) ** 6 + 7.32681537841149e51 * cos(theta) ** 4 - 1.23312460786729e49 * cos(theta) ** 2 + 3.41018973414627e45 ) * cos(24 * phi) ) # @torch.jit.script def Yl88_m25(theta, phi): return ( 1.58214621197398e-48 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 1.7388927802702e72 * cos(theta) ** 63 - 1.94060434278155e73 * cos(theta) ** 61 + 1.026389002107e74 * cos(theta) ** 59 - 3.42329743197872e74 * cos(theta) ** 57 + 8.08222293112136e74 * cos(theta) ** 55 - 1.43737737158266e75 * cos(theta) ** 53 + 2.00071314953627e75 * cos(theta) ** 51 - 2.23567858515227e75 * cos(theta) ** 49 + 2.04127175166077e75 * cos(theta) ** 47 - 1.54200891931886e75 * cos(theta) ** 45 + 9.72349573328455e74 * cos(theta) ** 43 - 5.14974583410906e74 * cos(theta) ** 41 + 2.29999541610535e74 * cos(theta) ** 39 - 8.68210190185465e73 * cos(theta) ** 37 + 2.77194624479156e73 * cos(theta) ** 35 - 7.47985494626294e72 * cos(theta) ** 33 + 1.70231181535639e72 * cos(theta) ** 31 - 3.25617027618562e71 * cos(theta) ** 29 + 5.20884606828747e70 * cos(theta) ** 27 - 6.92277535012837e69 * cos(theta) ** 25 + 7.57968104028653e68 * cos(theta) ** 23 - 6.764230346358e67 * cos(theta) ** 21 + 4.85471077489809e66 * cos(theta) ** 19 - 2.75524574347021e65 * cos(theta) ** 17 + 1.21031466767425e64 * cos(theta) ** 15 - 4.00261543640303e62 * cos(theta) ** 13 + 9.60627704736728e60 * cos(theta) ** 11 - 1.59092212467691e59 * cos(theta) ** 9 + 1.69047215136861e57 * cos(theta) ** 7 - 1.02868487912897e55 * cos(theta) ** 5 + 2.9307261513646e52 * cos(theta) ** 3 - 2.46624921573458e49 * cos(theta) ) * cos(25 * phi) ) # @torch.jit.script def Yl88_m26(theta, phi): return ( 1.86691229290973e-50 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.09550245157023e74 * cos(theta) ** 62 - 1.18376864909674e75 * cos(theta) ** 60 + 6.05569511243132e75 * cos(theta) ** 58 - 1.95127953622787e76 * cos(theta) ** 56 + 4.44522261211675e76 * cos(theta) ** 54 - 7.6181000693881e76 * cos(theta) ** 52 + 1.0203637062635e77 * cos(theta) ** 50 - 1.09548250672461e77 * cos(theta) ** 48 + 9.59397723280562e76 * cos(theta) ** 46 - 6.93904013693488e76 * cos(theta) ** 44 + 4.18110316531236e76 * cos(theta) ** 42 - 2.11139579198472e76 * cos(theta) ** 40 + 8.96998212281088e75 * cos(theta) ** 38 - 3.21237770368622e75 * cos(theta) ** 36 + 9.70181185677046e74 * cos(theta) ** 34 - 2.46835213226677e74 * cos(theta) ** 32 + 5.27716662760482e73 * cos(theta) ** 30 - 9.44289380093828e72 * cos(theta) ** 28 + 1.40638843843762e72 * cos(theta) ** 26 - 1.73069383753209e71 * cos(theta) ** 24 + 1.7433266392659e70 * cos(theta) ** 22 - 1.42048837273518e69 * cos(theta) ** 20 + 9.22395047230636e67 * cos(theta) ** 18 - 4.68391776389935e66 * cos(theta) ** 16 + 1.81547200151138e65 * cos(theta) ** 14 - 5.20340006732394e63 * cos(theta) ** 12 + 1.0566904752104e62 * cos(theta) ** 10 - 1.43182991220921e60 * cos(theta) ** 8 + 1.18333050595803e58 * cos(theta) ** 6 - 5.14342439564487e55 * cos(theta) ** 4 + 8.79217845409379e52 * cos(theta) ** 2 - 2.46624921573458e49 ) * cos(26 * phi) ) # @torch.jit.script def Yl88_m27(theta, phi): return ( 2.21095116687289e-52 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 6.79211519973542e75 * cos(theta) ** 61 - 7.10261189458047e76 * cos(theta) ** 59 + 3.51230316521017e77 * cos(theta) ** 57 - 1.09271654028761e78 * cos(theta) ** 55 + 2.40042021054304e78 * cos(theta) ** 53 - 3.96141203608181e78 * cos(theta) ** 51 + 5.10181853131749e78 * cos(theta) ** 49 - 5.25831603227815e78 * cos(theta) ** 47 + 4.41322952709059e78 * cos(theta) ** 45 - 3.05317766025135e78 * cos(theta) ** 43 + 1.75606332943119e78 * cos(theta) ** 41 - 8.44558316793886e77 * cos(theta) ** 39 + 3.40859320666814e77 * cos(theta) ** 37 - 1.15645597332704e77 * cos(theta) ** 35 + 3.29861603130196e76 * cos(theta) ** 33 - 7.89872682325367e75 * cos(theta) ** 31 + 1.58314998828145e75 * cos(theta) ** 29 - 2.64401026426272e74 * cos(theta) ** 27 + 3.6566099399378e73 * cos(theta) ** 25 - 4.15366521007702e72 * cos(theta) ** 23 + 3.83531860638499e71 * cos(theta) ** 21 - 2.84097674547036e70 * cos(theta) ** 19 + 1.66031108501515e69 * cos(theta) ** 17 - 7.49426842223896e67 * cos(theta) ** 15 + 2.54166080211593e66 * cos(theta) ** 13 - 6.24408008078873e64 * cos(theta) ** 11 + 1.0566904752104e63 * cos(theta) ** 9 - 1.14546392976737e61 * cos(theta) ** 7 + 7.09998303574817e58 * cos(theta) ** 5 - 2.05736975825795e56 * cos(theta) ** 3 + 1.75843569081876e53 * cos(theta) ) * cos(27 * phi) ) # @torch.jit.script def Yl88_m28(theta, phi): return ( 2.6283623549957e-54 * (1.0 - cos(theta) ** 2) ** 14 * ( 4.14319027183861e77 * cos(theta) ** 60 - 4.19054101780248e78 * cos(theta) ** 58 + 2.0020128041698e79 * cos(theta) ** 56 - 6.00994097158184e79 * cos(theta) ** 54 + 1.27222271158781e80 * cos(theta) ** 52 - 2.02032013840172e80 * cos(theta) ** 50 + 2.49989108034557e80 * cos(theta) ** 48 - 2.47140853517073e80 * cos(theta) ** 46 + 1.98595328719076e80 * cos(theta) ** 44 - 1.31286639390808e80 * cos(theta) ** 42 + 7.19985965066788e79 * cos(theta) ** 40 - 3.29377743549616e79 * cos(theta) ** 38 + 1.26117948646721e79 * cos(theta) ** 36 - 4.04759590664464e78 * cos(theta) ** 34 + 1.08854329032965e78 * cos(theta) ** 32 - 2.44860531520864e77 * cos(theta) ** 30 + 4.59113496601619e76 * cos(theta) ** 28 - 7.13882771350934e75 * cos(theta) ** 26 + 9.14152484984451e74 * cos(theta) ** 24 - 9.55342998317715e73 * cos(theta) ** 22 + 8.05416907340847e72 * cos(theta) ** 20 - 5.39785581639368e71 * cos(theta) ** 18 + 2.82252884452575e70 * cos(theta) ** 16 - 1.12414026333584e69 * cos(theta) ** 14 + 3.3041590427507e67 * cos(theta) ** 12 - 6.8684880888676e65 * cos(theta) ** 10 + 9.5102142768936e63 * cos(theta) ** 8 - 8.0182475083716e61 * cos(theta) ** 6 + 3.54999151787409e59 * cos(theta) ** 4 - 6.17210927477384e56 * cos(theta) ** 2 + 1.75843569081876e53 ) * cos(28 * phi) ) # @torch.jit.script def Yl88_m29(theta, phi): return ( 3.13701562796289e-56 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 2.48591416310316e79 * cos(theta) ** 59 - 2.43051379032544e80 * cos(theta) ** 57 + 1.12112717033509e81 * cos(theta) ** 55 - 3.2453681246542e81 * cos(theta) ** 53 + 6.61555810025663e81 * cos(theta) ** 51 - 1.01016006920086e82 * cos(theta) ** 49 + 1.19994771856587e82 * cos(theta) ** 47 - 1.13684792617854e82 * cos(theta) ** 45 + 8.73819446363936e81 * cos(theta) ** 43 - 5.51403885441394e81 * cos(theta) ** 41 + 2.87994386026715e81 * cos(theta) ** 39 - 1.25163542548854e81 * cos(theta) ** 37 + 4.54024615128196e80 * cos(theta) ** 35 - 1.37618260825918e80 * cos(theta) ** 33 + 3.48333852905487e79 * cos(theta) ** 31 - 7.34581594562591e78 * cos(theta) ** 29 + 1.28551779048453e78 * cos(theta) ** 27 - 1.85609520551243e77 * cos(theta) ** 25 + 2.19396596396268e76 * cos(theta) ** 23 - 2.10175459629897e75 * cos(theta) ** 21 + 1.61083381468169e74 * cos(theta) ** 19 - 9.71614046950863e72 * cos(theta) ** 17 + 4.5160461512412e71 * cos(theta) ** 15 - 1.57379636867018e70 * cos(theta) ** 13 + 3.96499085130084e68 * cos(theta) ** 11 - 6.8684880888676e66 * cos(theta) ** 9 + 7.60817142151488e64 * cos(theta) ** 7 - 4.81094850502296e62 * cos(theta) ** 5 + 1.41999660714963e60 * cos(theta) ** 3 - 1.23442185495477e57 * cos(theta) ) * cos(29 * phi) ) # @torch.jit.script def Yl88_m30(theta, phi): return ( 3.7596695308826e-58 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.46668935623087e81 * cos(theta) ** 58 - 1.3853928604855e82 * cos(theta) ** 56 + 6.16619943684297e82 * cos(theta) ** 54 - 1.72004510606672e83 * cos(theta) ** 52 + 3.37393463113088e83 * cos(theta) ** 50 - 4.94978433908423e83 * cos(theta) ** 48 + 5.6397542772596e83 * cos(theta) ** 46 - 5.11581566780341e83 * cos(theta) ** 44 + 3.75742361936493e83 * cos(theta) ** 42 - 2.26075593030971e83 * cos(theta) ** 40 + 1.12317810550419e83 * cos(theta) ** 38 - 4.6310510743076e82 * cos(theta) ** 36 + 1.58908615294868e82 * cos(theta) ** 34 - 4.54140260725528e81 * cos(theta) ** 32 + 1.07983494400701e81 * cos(theta) ** 30 - 2.13028662423151e80 * cos(theta) ** 28 + 3.47089803430824e79 * cos(theta) ** 26 - 4.64023801378107e78 * cos(theta) ** 24 + 5.04612171711417e77 * cos(theta) ** 22 - 4.41368465222784e76 * cos(theta) ** 20 + 3.06058424789522e75 * cos(theta) ** 18 - 1.65174387981647e74 * cos(theta) ** 16 + 6.77406922686179e72 * cos(theta) ** 14 - 2.04593527927124e71 * cos(theta) ** 12 + 4.36148993643093e69 * cos(theta) ** 10 - 6.18163927998084e67 * cos(theta) ** 8 + 5.32571999506042e65 * cos(theta) ** 6 - 2.40547425251148e63 * cos(theta) ** 4 + 4.2599898214489e60 * cos(theta) ** 2 - 1.23442185495477e57 ) * cos(30 * phi) ) # @torch.jit.script def Yl88_m31(theta, phi): return ( 4.52545442251838e-60 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 8.50679826613903e82 * cos(theta) ** 57 - 7.75820001871879e83 * cos(theta) ** 55 + 3.3297476958952e84 * cos(theta) ** 53 - 8.94423455154696e84 * cos(theta) ** 51 + 1.68696731556544e85 * cos(theta) ** 49 - 2.37589648276043e85 * cos(theta) ** 47 + 2.59428696753942e85 * cos(theta) ** 45 - 2.2509588938335e85 * cos(theta) ** 43 + 1.57811792013327e85 * cos(theta) ** 41 - 9.04302372123886e84 * cos(theta) ** 39 + 4.26807680091592e84 * cos(theta) ** 37 - 1.66717838675073e84 * cos(theta) ** 35 + 5.40289292002553e83 * cos(theta) ** 33 - 1.45324883432169e83 * cos(theta) ** 31 + 3.23950483202103e82 * cos(theta) ** 29 - 5.96480254784824e81 * cos(theta) ** 27 + 9.02433488920143e80 * cos(theta) ** 25 - 1.11365712330746e80 * cos(theta) ** 23 + 1.11014677776512e79 * cos(theta) ** 21 - 8.82736930445568e77 * cos(theta) ** 19 + 5.50905164621139e76 * cos(theta) ** 17 - 2.64279020770635e75 * cos(theta) ** 15 + 9.48369691760651e73 * cos(theta) ** 13 - 2.45512233512548e72 * cos(theta) ** 11 + 4.36148993643093e70 * cos(theta) ** 9 - 4.94531142398467e68 * cos(theta) ** 7 + 3.19543199703625e66 * cos(theta) ** 5 - 9.62189701004592e63 * cos(theta) ** 3 + 8.51997964289781e60 * cos(theta) ) * cos(31 * phi) ) # @torch.jit.script def Yl88_m32(theta, phi): return ( 5.47184950748734e-62 * (1.0 - cos(theta) ** 2) ** 16 * ( 4.84887501169925e84 * cos(theta) ** 56 - 4.26701001029534e85 * cos(theta) ** 54 + 1.76476627882446e86 * cos(theta) ** 52 - 4.56155962128895e86 * cos(theta) ** 50 + 8.26613984627066e86 * cos(theta) ** 48 - 1.1166713468974e87 * cos(theta) ** 46 + 1.16742913539274e87 * cos(theta) ** 44 - 9.67912324348405e86 * cos(theta) ** 42 + 6.4702834725464e86 * cos(theta) ** 40 - 3.52677925128315e86 * cos(theta) ** 38 + 1.57918841633889e86 * cos(theta) ** 36 - 5.83512435362757e85 * cos(theta) ** 34 + 1.78295466360842e85 * cos(theta) ** 32 - 4.50507138639724e84 * cos(theta) ** 30 + 9.39456401286098e83 * cos(theta) ** 28 - 1.61049668791902e83 * cos(theta) ** 26 + 2.25608372230036e82 * cos(theta) ** 24 - 2.56141138360715e81 * cos(theta) ** 22 + 2.33130823330675e80 * cos(theta) ** 20 - 1.67720016784658e79 * cos(theta) ** 18 + 9.36538779855937e77 * cos(theta) ** 16 - 3.96418531155952e76 * cos(theta) ** 14 + 1.23288059928885e75 * cos(theta) ** 12 - 2.70063456863803e73 * cos(theta) ** 10 + 3.92534094278784e71 * cos(theta) ** 8 - 3.46171799678927e69 * cos(theta) ** 6 + 1.59771599851813e67 * cos(theta) ** 4 - 2.88656910301378e64 * cos(theta) ** 2 + 8.51997964289781e60 ) * cos(32 * phi) ) # @torch.jit.script def Yl88_m33(theta, phi): return ( 6.64733315876798e-64 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 2.71537000655158e86 * cos(theta) ** 55 - 2.30418540555948e87 * cos(theta) ** 53 + 9.17678464988718e87 * cos(theta) ** 51 - 2.28077981064448e88 * cos(theta) ** 49 + 3.96774712620992e88 * cos(theta) ** 47 - 5.13668819572805e88 * cos(theta) ** 45 + 5.13668819572805e88 * cos(theta) ** 43 - 4.0652317622633e88 * cos(theta) ** 41 + 2.58811338901856e88 * cos(theta) ** 39 - 1.3401761154876e88 * cos(theta) ** 37 + 5.68507829882e87 * cos(theta) ** 35 - 1.98394228023337e87 * cos(theta) ** 33 + 5.70545492354696e86 * cos(theta) ** 31 - 1.35152141591917e86 * cos(theta) ** 29 + 2.63047792360107e85 * cos(theta) ** 27 - 4.18729138858946e84 * cos(theta) ** 25 + 5.41460093352086e83 * cos(theta) ** 23 - 5.63510504393574e82 * cos(theta) ** 21 + 4.66261646661349e81 * cos(theta) ** 19 - 3.01896030212384e80 * cos(theta) ** 17 + 1.4984620477695e79 * cos(theta) ** 15 - 5.54985943618333e77 * cos(theta) ** 13 + 1.47945671914662e76 * cos(theta) ** 11 - 2.70063456863803e74 * cos(theta) ** 9 + 3.14027275423027e72 * cos(theta) ** 7 - 2.07703079807356e70 * cos(theta) ** 5 + 6.3908639940725e67 * cos(theta) ** 3 - 5.77313820602755e64 * cos(theta) ) * cos(33 * phi) ) # @torch.jit.script def Yl88_m34(theta, phi): return ( 8.11495630503163e-66 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.49345350360337e88 * cos(theta) ** 54 - 1.22121826494653e89 * cos(theta) ** 52 + 4.68016017144246e89 * cos(theta) ** 50 - 1.11758210721579e90 * cos(theta) ** 48 + 1.86484114931866e90 * cos(theta) ** 46 - 2.31150968807762e90 * cos(theta) ** 44 + 2.20877592416306e90 * cos(theta) ** 42 - 1.66674502252795e90 * cos(theta) ** 40 + 1.00936422171724e90 * cos(theta) ** 38 - 4.95865162730411e89 * cos(theta) ** 36 + 1.989777404587e89 * cos(theta) ** 34 - 6.54700952477013e88 * cos(theta) ** 32 + 1.76869102629956e88 * cos(theta) ** 30 - 3.9194121061656e87 * cos(theta) ** 28 + 7.1022903937229e86 * cos(theta) ** 26 - 1.04682284714737e86 * cos(theta) ** 24 + 1.2453582147098e85 * cos(theta) ** 22 - 1.1833720592265e84 * cos(theta) ** 20 + 8.85897128656564e82 * cos(theta) ** 18 - 5.13223251361054e81 * cos(theta) ** 16 + 2.24769307165425e80 * cos(theta) ** 14 - 7.21481726703833e78 * cos(theta) ** 12 + 1.62740239106128e77 * cos(theta) ** 10 - 2.43057111177423e75 * cos(theta) ** 8 + 2.19819092796119e73 * cos(theta) ** 6 - 1.03851539903678e71 * cos(theta) ** 4 + 1.91725919822175e68 * cos(theta) ** 2 - 5.77313820602755e64 ) * cos(34 * phi) ) # @torch.jit.script def Yl88_m35(theta, phi): return ( 9.9571889866149e-68 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 8.06464891945818e89 * cos(theta) ** 53 - 6.35033497772193e90 * cos(theta) ** 51 + 2.34008008572123e91 * cos(theta) ** 49 - 5.36439411463581e91 * cos(theta) ** 47 + 8.57826928686584e91 * cos(theta) ** 45 - 1.01706426275415e92 * cos(theta) ** 43 + 9.27685888148485e91 * cos(theta) ** 41 - 6.66698009011181e91 * cos(theta) ** 39 + 3.83558404252551e91 * cos(theta) ** 37 - 1.78511458582948e91 * cos(theta) ** 35 + 6.7652431755958e90 * cos(theta) ** 33 - 2.09504304792644e90 * cos(theta) ** 31 + 5.30607307889867e89 * cos(theta) ** 29 - 1.09743538972637e89 * cos(theta) ** 27 + 1.84659550236795e88 * cos(theta) ** 25 - 2.51237483315368e87 * cos(theta) ** 23 + 2.73978807236155e86 * cos(theta) ** 21 - 2.36674411845301e85 * cos(theta) ** 19 + 1.59461483158181e84 * cos(theta) ** 17 - 8.21157202177686e82 * cos(theta) ** 15 + 3.14677030031595e81 * cos(theta) ** 13 - 8.657780720446e79 * cos(theta) ** 11 + 1.62740239106128e78 * cos(theta) ** 9 - 1.94445688941938e76 * cos(theta) ** 7 + 1.31891455677671e74 * cos(theta) ** 5 - 4.15406159614713e71 * cos(theta) ** 3 + 3.8345183964435e68 * cos(theta) ) * cos(35 * phi) ) # @torch.jit.script def Yl88_m36(theta, phi): return ( 1.22825339347686e-69 * (1.0 - cos(theta) ** 2) ** 18 * ( 4.27426392731284e91 * cos(theta) ** 52 - 3.23867083863818e92 * cos(theta) ** 50 + 1.1466392420034e93 * cos(theta) ** 48 - 2.52126523387883e93 * cos(theta) ** 46 + 3.86022117908963e93 * cos(theta) ** 44 - 4.37337632984286e93 * cos(theta) ** 42 + 3.80351214140879e93 * cos(theta) ** 40 - 2.60012223514361e93 * cos(theta) ** 38 + 1.41916609573444e93 * cos(theta) ** 36 - 6.24790105040318e92 * cos(theta) ** 34 + 2.23253024794662e92 * cos(theta) ** 32 - 6.49463344857197e91 * cos(theta) ** 30 + 1.53876119288061e91 * cos(theta) ** 28 - 2.96307555226119e90 * cos(theta) ** 26 + 4.61648875591988e89 * cos(theta) ** 24 - 5.77846211625346e88 * cos(theta) ** 22 + 5.75355495195926e87 * cos(theta) ** 20 - 4.49681382506072e86 * cos(theta) ** 18 + 2.71084521368908e85 * cos(theta) ** 16 - 1.23173580326653e84 * cos(theta) ** 14 + 4.09080139041073e82 * cos(theta) ** 12 - 9.5235587924906e80 * cos(theta) ** 10 + 1.46466215195515e79 * cos(theta) ** 8 - 1.36111982259357e77 * cos(theta) ** 6 + 6.59457278388356e74 * cos(theta) ** 4 - 1.24621847884414e72 * cos(theta) ** 2 + 3.8345183964435e68 ) * cos(36 * phi) ) # @torch.jit.script def Yl88_m37(theta, phi): return ( 1.52346083668197e-71 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 2.22261724220268e93 * cos(theta) ** 51 - 1.61933541931909e94 * cos(theta) ** 49 + 5.50386836161634e94 * cos(theta) ** 47 - 1.15978200758426e95 * cos(theta) ** 45 + 1.69849731879944e95 * cos(theta) ** 43 - 1.836818058534e95 * cos(theta) ** 41 + 1.52140485656352e95 * cos(theta) ** 39 - 9.88046449354571e94 * cos(theta) ** 37 + 5.10899794464398e94 * cos(theta) ** 35 - 2.12428635713708e94 * cos(theta) ** 33 + 7.14409679342917e93 * cos(theta) ** 31 - 1.94839003457159e93 * cos(theta) ** 29 + 4.30853134006572e92 * cos(theta) ** 27 - 7.7039964358791e91 * cos(theta) ** 25 + 1.10795730142077e91 * cos(theta) ** 23 - 1.27126166557576e90 * cos(theta) ** 21 + 1.15071099039185e89 * cos(theta) ** 19 - 8.09426488510929e87 * cos(theta) ** 17 + 4.33735234190254e86 * cos(theta) ** 15 - 1.72443012457314e85 * cos(theta) ** 13 + 4.90896166849288e83 * cos(theta) ** 11 - 9.5235587924906e81 * cos(theta) ** 9 + 1.17172972156412e80 * cos(theta) ** 7 - 8.16671893556141e77 * cos(theta) ** 5 + 2.63782911355343e75 * cos(theta) ** 3 - 2.49243695768828e72 * cos(theta) ) * cos(37 * phi) ) # @torch.jit.script def Yl88_m38(theta, phi): return ( 1.90046962962022e-73 * (1.0 - cos(theta) ** 2) ** 19 * ( 1.13353479352336e95 * cos(theta) ** 50 - 7.93474355466355e95 * cos(theta) ** 48 + 2.58681812995968e96 * cos(theta) ** 46 - 5.21901903412917e96 * cos(theta) ** 44 + 7.30353847083757e96 * cos(theta) ** 42 - 7.5309540399894e96 * cos(theta) ** 40 + 5.93347894059771e96 * cos(theta) ** 38 - 3.65577186261191e96 * cos(theta) ** 36 + 1.78814928062539e96 * cos(theta) ** 34 - 7.01014497855237e95 * cos(theta) ** 32 + 2.21467000596304e95 * cos(theta) ** 30 - 5.65033110025762e94 * cos(theta) ** 28 + 1.16330346181774e94 * cos(theta) ** 26 - 1.92599910896978e93 * cos(theta) ** 24 + 2.54830179326778e92 * cos(theta) ** 22 - 2.6696494977091e91 * cos(theta) ** 20 + 2.18635088174452e90 * cos(theta) ** 18 - 1.37602503046858e89 * cos(theta) ** 16 + 6.5060285128538e87 * cos(theta) ** 14 - 2.24175916194508e86 * cos(theta) ** 12 + 5.39985783534217e84 * cos(theta) ** 10 - 8.57120291324154e82 * cos(theta) ** 8 + 8.20210805094884e80 * cos(theta) ** 6 - 4.0833594677807e78 * cos(theta) ** 4 + 7.91348734066028e75 * cos(theta) ** 2 - 2.49243695768828e72 ) * cos(38 * phi) ) # @torch.jit.script def Yl88_m39(theta, phi): return ( 2.38492140318794e-75 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 5.66767396761682e96 * cos(theta) ** 49 - 3.80867690623851e97 * cos(theta) ** 47 + 1.18993633978145e98 * cos(theta) ** 45 - 2.29636837501684e98 * cos(theta) ** 43 + 3.06748615775178e98 * cos(theta) ** 41 - 3.01238161599576e98 * cos(theta) ** 39 + 2.25472199742713e98 * cos(theta) ** 37 - 1.31607787054029e98 * cos(theta) ** 35 + 6.07970755412633e97 * cos(theta) ** 33 - 2.24324639313676e97 * cos(theta) ** 31 + 6.64401001788913e96 * cos(theta) ** 29 - 1.58209270807213e96 * cos(theta) ** 27 + 3.02458900072614e95 * cos(theta) ** 25 - 4.62239786152746e94 * cos(theta) ** 23 + 5.60626394518911e93 * cos(theta) ** 21 - 5.3392989954182e92 * cos(theta) ** 19 + 3.93543158714014e91 * cos(theta) ** 17 - 2.20164004874973e90 * cos(theta) ** 15 + 9.10843991799532e88 * cos(theta) ** 13 - 2.6901109943341e87 * cos(theta) ** 11 + 5.39985783534217e85 * cos(theta) ** 9 - 6.85696233059323e83 * cos(theta) ** 7 + 4.9212648305693e81 * cos(theta) ** 5 - 1.63334378711228e79 * cos(theta) ** 3 + 1.58269746813206e76 * cos(theta) ) * cos(39 * phi) ) # @torch.jit.script def Yl88_m40(theta, phi): return ( 3.01141802998416e-77 * (1.0 - cos(theta) ** 2) ** 20 * ( 2.77716024413224e98 * cos(theta) ** 48 - 1.7900781459321e99 * cos(theta) ** 46 + 5.35471352901653e99 * cos(theta) ** 44 - 9.8743840125724e99 * cos(theta) ** 42 + 1.25766932467823e100 * cos(theta) ** 40 - 1.17482883023835e100 * cos(theta) ** 38 + 8.34247139048038e99 * cos(theta) ** 36 - 4.60627254689101e99 * cos(theta) ** 34 + 2.00630349286169e99 * cos(theta) ** 32 - 6.95406381872395e98 * cos(theta) ** 30 + 1.92676290518785e98 * cos(theta) ** 28 - 4.27165031179476e97 * cos(theta) ** 26 + 7.56147250181534e96 * cos(theta) ** 24 - 1.06315150815132e96 * cos(theta) ** 22 + 1.17731542848971e95 * cos(theta) ** 20 - 1.01446680912946e94 * cos(theta) ** 18 + 6.69023369813823e92 * cos(theta) ** 16 - 3.30246007312459e91 * cos(theta) ** 14 + 1.18409718933939e90 * cos(theta) ** 12 - 2.95912209376751e88 * cos(theta) ** 10 + 4.85987205180795e86 * cos(theta) ** 8 - 4.79987363141526e84 * cos(theta) ** 6 + 2.46063241528465e82 * cos(theta) ** 4 - 4.90003136133684e79 * cos(theta) ** 2 + 1.58269746813206e76 ) * cos(40 * phi) ) # @torch.jit.script def Yl88_m41(theta, phi): return ( 3.82697453538678e-79 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 1.33303691718348e100 * cos(theta) ** 47 - 8.23435947128765e100 * cos(theta) ** 45 + 2.35607395276727e101 * cos(theta) ** 43 - 4.14724128528041e101 * cos(theta) ** 41 + 5.03067729871292e101 * cos(theta) ** 39 - 4.46434955490572e101 * cos(theta) ** 37 + 3.00328970057294e101 * cos(theta) ** 35 - 1.56613266594294e101 * cos(theta) ** 33 + 6.42017117715741e100 * cos(theta) ** 31 - 2.08621914561719e100 * cos(theta) ** 29 + 5.39493613452597e99 * cos(theta) ** 27 - 1.11062908106664e99 * cos(theta) ** 25 + 1.81475340043568e98 * cos(theta) ** 23 - 2.3389333179329e97 * cos(theta) ** 21 + 2.35463085697943e96 * cos(theta) ** 19 - 1.82604025643302e95 * cos(theta) ** 17 + 1.07043739170212e94 * cos(theta) ** 15 - 4.62344410237443e92 * cos(theta) ** 13 + 1.42091662720727e91 * cos(theta) ** 11 - 2.95912209376751e89 * cos(theta) ** 9 + 3.88789764144636e87 * cos(theta) ** 7 - 2.87992417884916e85 * cos(theta) ** 5 + 9.84252966113861e82 * cos(theta) ** 3 - 9.80006272267369e79 * cos(theta) ) * cos(41 * phi) ) # @torch.jit.script def Yl88_m42(theta, phi): return ( 4.89592737905498e-81 * (1.0 - cos(theta) ** 2) ** 21 * ( 6.26527351076234e101 * cos(theta) ** 46 - 3.70546176207944e102 * cos(theta) ** 44 + 1.01311179968993e103 * cos(theta) ** 42 - 1.70036892696497e103 * cos(theta) ** 40 + 1.96196414649804e103 * cos(theta) ** 38 - 1.65180933531512e103 * cos(theta) ** 36 + 1.05115139520053e103 * cos(theta) ** 34 - 5.16823779761171e102 * cos(theta) ** 32 + 1.9902530649188e102 * cos(theta) ** 30 - 6.05003552228984e101 * cos(theta) ** 28 + 1.45663275632201e101 * cos(theta) ** 26 - 2.77657270266659e100 * cos(theta) ** 24 + 4.17393282100207e99 * cos(theta) ** 22 - 4.91175996765908e98 * cos(theta) ** 20 + 4.47379862826091e97 * cos(theta) ** 18 - 3.10426843593614e96 * cos(theta) ** 16 + 1.60565608755318e95 * cos(theta) ** 14 - 6.01047733308675e93 * cos(theta) ** 12 + 1.563008289928e92 * cos(theta) ** 10 - 2.66320988439076e90 * cos(theta) ** 8 + 2.72152834901245e88 * cos(theta) ** 6 - 1.43996208942458e86 * cos(theta) ** 4 + 2.95275889834158e83 * cos(theta) ** 2 - 9.80006272267369e79 ) * cos(42 * phi) ) # @torch.jit.script def Yl88_m43(theta, phi): return ( 6.30696474934279e-83 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 2.88202581495068e103 * cos(theta) ** 45 - 1.63040317531495e104 * cos(theta) ** 43 + 4.2550695586977e104 * cos(theta) ** 41 - 6.80147570785987e104 * cos(theta) ** 39 + 7.45546375669255e104 * cos(theta) ** 37 - 5.94651360713442e104 * cos(theta) ** 35 + 3.5739147436818e104 * cos(theta) ** 33 - 1.65383609523575e104 * cos(theta) ** 31 + 5.97075919475639e103 * cos(theta) ** 29 - 1.69400994624116e103 * cos(theta) ** 27 + 3.78724516643723e102 * cos(theta) ** 25 - 6.66377448639982e101 * cos(theta) ** 23 + 9.18265220620455e100 * cos(theta) ** 21 - 9.82351993531816e99 * cos(theta) ** 19 + 8.05283753086963e98 * cos(theta) ** 17 - 4.96682949749782e97 * cos(theta) ** 15 + 2.24791852257445e96 * cos(theta) ** 13 - 7.2125727997041e94 * cos(theta) ** 11 + 1.563008289928e93 * cos(theta) ** 9 - 2.13056790751261e91 * cos(theta) ** 7 + 1.63291700940747e89 * cos(theta) ** 5 - 5.75984835769831e86 * cos(theta) ** 3 + 5.90551779668316e83 * cos(theta) ) * cos(43 * phi) ) # @torch.jit.script def Yl88_m44(theta, phi): return ( 8.18327566371218e-85 * (1.0 - cos(theta) ** 2) ** 22 * ( 1.2969116167278e105 * cos(theta) ** 44 - 7.0107336538543e105 * cos(theta) ** 42 + 1.74457851906606e106 * cos(theta) ** 40 - 2.65257552606535e106 * cos(theta) ** 38 + 2.75852158997624e106 * cos(theta) ** 36 - 2.08127976249705e106 * cos(theta) ** 34 + 1.17939186541499e106 * cos(theta) ** 32 - 5.12689189523082e105 * cos(theta) ** 30 + 1.73152016647935e105 * cos(theta) ** 28 - 4.57382685485112e104 * cos(theta) ** 26 + 9.46811291609308e103 * cos(theta) ** 24 - 1.53266813187196e103 * cos(theta) ** 22 + 1.92835696330296e102 * cos(theta) ** 20 - 1.86646878771045e101 * cos(theta) ** 18 + 1.36898238024784e100 * cos(theta) ** 16 - 7.45024424624674e98 * cos(theta) ** 14 + 2.92229407934678e97 * cos(theta) ** 12 - 7.93383007967452e95 * cos(theta) ** 10 + 1.4067074609352e94 * cos(theta) ** 8 - 1.49139753525882e92 * cos(theta) ** 6 + 8.16458504703736e89 * cos(theta) ** 4 - 1.72795450730949e87 * cos(theta) ** 2 + 5.90551779668316e83 ) * cos(44 * phi) ) # @torch.jit.script def Yl88_m45(theta, phi): return ( 1.06973208606581e-86 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 5.70641111360234e106 * cos(theta) ** 43 - 2.94450813461881e107 * cos(theta) ** 41 + 6.97831407626423e107 * cos(theta) ** 39 - 1.00797869990483e108 * cos(theta) ** 37 + 9.93067772391447e107 * cos(theta) ** 35 - 7.07635119248995e107 * cos(theta) ** 33 + 3.77405396932798e107 * cos(theta) ** 31 - 1.53806756856925e107 * cos(theta) ** 29 + 4.84825646614219e106 * cos(theta) ** 27 - 1.18919498226129e106 * cos(theta) ** 25 + 2.27234709986234e105 * cos(theta) ** 23 - 3.37186989011831e104 * cos(theta) ** 21 + 3.85671392660591e103 * cos(theta) ** 19 - 3.35964381787881e102 * cos(theta) ** 17 + 2.19037180839654e101 * cos(theta) ** 15 - 1.04303419447454e100 * cos(theta) ** 13 + 3.50675289521614e98 * cos(theta) ** 11 - 7.93383007967452e96 * cos(theta) ** 9 + 1.12536596874816e95 * cos(theta) ** 7 - 8.94838521155294e92 * cos(theta) ** 5 + 3.26583401881494e90 * cos(theta) ** 3 - 3.45590901461899e87 * cos(theta) ) * cos(45 * phi) ) # @torch.jit.script def Yl88_m46(theta, phi): return ( 1.40925114213237e-88 * (1.0 - cos(theta) ** 2) ** 23 * ( 2.45375677884901e108 * cos(theta) ** 42 - 1.20724833519371e109 * cos(theta) ** 40 + 2.72154248974305e109 * cos(theta) ** 38 - 3.72952118964788e109 * cos(theta) ** 36 + 3.47573720337007e109 * cos(theta) ** 34 - 2.33519589352168e109 * cos(theta) ** 32 + 1.16995673049167e109 * cos(theta) ** 30 - 4.46039594885081e108 * cos(theta) ** 28 + 1.30902924585839e108 * cos(theta) ** 26 - 2.97298745565323e107 * cos(theta) ** 24 + 5.22639832968338e106 * cos(theta) ** 22 - 7.08092676924845e105 * cos(theta) ** 20 + 7.32775646055123e104 * cos(theta) ** 18 - 5.71139449039398e103 * cos(theta) ** 16 + 3.28555771259481e102 * cos(theta) ** 14 - 1.35594445281691e101 * cos(theta) ** 12 + 3.85742818473775e99 * cos(theta) ** 10 - 7.14044707170706e97 * cos(theta) ** 8 + 7.87756178123711e95 * cos(theta) ** 6 - 4.47419260577647e93 * cos(theta) ** 4 + 9.79750205644483e90 * cos(theta) ** 2 - 3.45590901461899e87 ) * cos(46 * phi) ) # @torch.jit.script def Yl88_m47(theta, phi): return ( 1.87153031423753e-90 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 1.03057784711658e110 * cos(theta) ** 41 - 4.82899334077484e110 * cos(theta) ** 39 + 1.03418614610236e111 * cos(theta) ** 37 - 1.34262762827324e111 * cos(theta) ** 35 + 1.18175064914582e111 * cos(theta) ** 33 - 7.47262685926939e110 * cos(theta) ** 31 + 3.50987019147502e110 * cos(theta) ** 29 - 1.24891086567823e110 * cos(theta) ** 27 + 3.40347603923181e109 * cos(theta) ** 25 - 7.13516989356775e108 * cos(theta) ** 23 + 1.14980763253034e108 * cos(theta) ** 21 - 1.41618535384969e107 * cos(theta) ** 19 + 1.31899616289922e106 * cos(theta) ** 17 - 9.13823118463037e104 * cos(theta) ** 15 + 4.59978079763274e103 * cos(theta) ** 13 - 1.62713334338029e102 * cos(theta) ** 11 + 3.85742818473775e100 * cos(theta) ** 9 - 5.71235765736565e98 * cos(theta) ** 7 + 4.72653706874226e96 * cos(theta) ** 5 - 1.78967704231059e94 * cos(theta) ** 3 + 1.95950041128897e91 * cos(theta) ) * cos(47 * phi) ) # @torch.jit.script def Yl88_m48(theta, phi): return ( 2.50631401985519e-92 * (1.0 - cos(theta) ** 2) ** 24 * ( 4.22536917317799e111 * cos(theta) ** 40 - 1.88330740290219e112 * cos(theta) ** 38 + 3.82648874057873e112 * cos(theta) ** 36 - 4.69919669895633e112 * cos(theta) ** 34 + 3.89977714218121e112 * cos(theta) ** 32 - 2.31651432637351e112 * cos(theta) ** 30 + 1.01786235552776e112 * cos(theta) ** 28 - 3.37205933733121e111 * cos(theta) ** 26 + 8.50869009807954e110 * cos(theta) ** 24 - 1.64108907552058e110 * cos(theta) ** 22 + 2.41459602831372e109 * cos(theta) ** 20 - 2.69075217231441e108 * cos(theta) ** 18 + 2.24229347692868e107 * cos(theta) ** 16 - 1.37073467769455e106 * cos(theta) ** 14 + 5.97971503692256e104 * cos(theta) ** 12 - 1.78984667771832e103 * cos(theta) ** 10 + 3.47168536626397e101 * cos(theta) ** 8 - 3.99865036015596e99 * cos(theta) ** 6 + 2.36326853437113e97 * cos(theta) ** 4 - 5.36903112693177e94 * cos(theta) ** 2 + 1.95950041128897e91 ) * cos(48 * phi) ) # @torch.jit.script def Yl88_m49(theta, phi): return ( 3.38567451314845e-94 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.6901476692712e113 * cos(theta) ** 39 - 7.15656813102832e113 * cos(theta) ** 37 + 1.37753594660834e114 * cos(theta) ** 35 - 1.59772687764515e114 * cos(theta) ** 33 + 1.24792868549799e114 * cos(theta) ** 31 - 6.94954297912053e113 * cos(theta) ** 29 + 2.85001459547771e113 * cos(theta) ** 27 - 8.76735427706115e112 * cos(theta) ** 25 + 2.04208562353909e112 * cos(theta) ** 23 - 3.61039596614528e111 * cos(theta) ** 21 + 4.82919205662744e110 * cos(theta) ** 19 - 4.84335391016594e109 * cos(theta) ** 17 + 3.58766956308588e108 * cos(theta) ** 15 - 1.91902854877238e107 * cos(theta) ** 13 + 7.17565804430707e105 * cos(theta) ** 11 - 1.78984667771832e104 * cos(theta) ** 9 + 2.77734829301118e102 * cos(theta) ** 7 - 2.39919021609357e100 * cos(theta) ** 5 + 9.45307413748453e97 * cos(theta) ** 3 - 1.07380622538635e95 * cos(theta) ) * cos(49 * phi) ) # @torch.jit.script def Yl88_m50(theta, phi): return ( 4.61501755657922e-96 * (1.0 - cos(theta) ** 2) ** 25 * ( 6.59157591015766e114 * cos(theta) ** 38 - 2.64793020848048e115 * cos(theta) ** 36 + 4.82137581312919e115 * cos(theta) ** 34 - 5.272498696229e115 * cos(theta) ** 32 + 3.86857892504376e115 * cos(theta) ** 30 - 2.01536746394496e115 * cos(theta) ** 28 + 7.69503940778983e114 * cos(theta) ** 26 - 2.19183856926529e114 * cos(theta) ** 24 + 4.6967969341399e113 * cos(theta) ** 22 - 7.58183152890509e112 * cos(theta) ** 20 + 9.17546490759214e111 * cos(theta) ** 18 - 8.2337016472821e110 * cos(theta) ** 16 + 5.38150434462882e109 * cos(theta) ** 14 - 2.49473711340409e108 * cos(theta) ** 12 + 7.89322384873777e106 * cos(theta) ** 10 - 1.61086200994648e105 * cos(theta) ** 8 + 1.94414380510783e103 * cos(theta) ** 6 - 1.19959510804679e101 * cos(theta) ** 4 + 2.83592224124536e98 * cos(theta) ** 2 - 1.07380622538635e95 ) * cos(50 * phi) ) # @torch.jit.script def Yl88_m51(theta, phi): return ( 6.35000634266923e-98 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 2.50479884585991e116 * cos(theta) ** 37 - 9.53254875052972e116 * cos(theta) ** 35 + 1.63926777646393e117 * cos(theta) ** 33 - 1.68719958279328e117 * cos(theta) ** 31 + 1.16057367751313e117 * cos(theta) ** 29 - 5.64302889904587e116 * cos(theta) ** 27 + 2.00071024602536e116 * cos(theta) ** 25 - 5.26041256623669e115 * cos(theta) ** 23 + 1.03329532551078e115 * cos(theta) ** 21 - 1.51636630578102e114 * cos(theta) ** 19 + 1.65158368336659e113 * cos(theta) ** 17 - 1.31739226356514e112 * cos(theta) ** 15 + 7.53410608248035e110 * cos(theta) ** 13 - 2.99368453608491e109 * cos(theta) ** 11 + 7.89322384873777e107 * cos(theta) ** 9 - 1.28868960795719e106 * cos(theta) ** 7 + 1.1664862830647e104 * cos(theta) ** 5 - 4.79838043218715e101 * cos(theta) ** 3 + 5.67184448249072e98 * cos(theta) ) * cos(51 * phi) ) # @torch.jit.script def Yl88_m52(theta, phi): return ( 8.82285779089399e-100 * (1.0 - cos(theta) ** 2) ** 26 * ( 9.26775572968167e117 * cos(theta) ** 36 - 3.3363920626854e118 * cos(theta) ** 34 + 5.40958366233096e118 * cos(theta) ** 32 - 5.23031870665917e118 * cos(theta) ** 30 + 3.36566366478808e118 * cos(theta) ** 28 - 1.52361780274239e118 * cos(theta) ** 26 + 5.00177561506339e117 * cos(theta) ** 24 - 1.20989489023444e117 * cos(theta) ** 22 + 2.16992018357264e116 * cos(theta) ** 20 - 2.88109598098393e115 * cos(theta) ** 18 + 2.8076922617232e114 * cos(theta) ** 16 - 1.9760883953477e113 * cos(theta) ** 14 + 9.79433790722446e111 * cos(theta) ** 12 - 3.2930529896934e110 * cos(theta) ** 10 + 7.103901463864e108 * cos(theta) ** 8 - 9.02082725570031e106 * cos(theta) ** 6 + 5.83243141532348e104 * cos(theta) ** 4 - 1.43951412965614e102 * cos(theta) ** 2 + 5.67184448249072e98 ) * cos(52 * phi) ) # @torch.jit.script def Yl88_m53(theta, phi): return ( 1.23836443964968e-101 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 3.3363920626854e119 * cos(theta) ** 35 - 1.13437330131304e120 * cos(theta) ** 33 + 1.73106677194591e120 * cos(theta) ** 31 - 1.56909561199775e120 * cos(theta) ** 29 + 9.42385826140661e119 * cos(theta) ** 27 - 3.9614062871302e119 * cos(theta) ** 25 + 1.20042614761521e119 * cos(theta) ** 23 - 2.66176875851577e118 * cos(theta) ** 21 + 4.33984036714527e117 * cos(theta) ** 19 - 5.18597276577108e116 * cos(theta) ** 17 + 4.49230761875711e115 * cos(theta) ** 15 - 2.76652375348679e114 * cos(theta) ** 13 + 1.17532054886693e113 * cos(theta) ** 11 - 3.2930529896934e111 * cos(theta) ** 9 + 5.6831211710912e109 * cos(theta) ** 7 - 5.41249635342019e107 * cos(theta) ** 5 + 2.33297256612939e105 * cos(theta) ** 3 - 2.87902825931229e102 * cos(theta) ) * cos(53 * phi) ) # @torch.jit.script def Yl88_m54(theta, phi): return ( 1.75658948261692e-103 * (1.0 - cos(theta) ** 2) ** 27 * ( 1.16773722193989e121 * cos(theta) ** 34 - 3.74343189433302e121 * cos(theta) ** 32 + 5.36630699303231e121 * cos(theta) ** 30 - 4.55037727479348e121 * cos(theta) ** 28 + 2.54444173057978e121 * cos(theta) ** 26 - 9.90351571782551e120 * cos(theta) ** 24 + 2.76098013951499e120 * cos(theta) ** 22 - 5.58971439288311e119 * cos(theta) ** 20 + 8.24569669757602e118 * cos(theta) ** 18 - 8.81615370181084e117 * cos(theta) ** 16 + 6.73846142813567e116 * cos(theta) ** 14 - 3.59648087953282e115 * cos(theta) ** 12 + 1.29285260375363e114 * cos(theta) ** 10 - 2.96374769072406e112 * cos(theta) ** 8 + 3.97818481976384e110 * cos(theta) ** 6 - 2.70624817671009e108 * cos(theta) ** 4 + 6.99891769838817e105 * cos(theta) ** 2 - 2.87902825931229e102 ) * cos(54 * phi) ) # @torch.jit.script def Yl88_m55(theta, phi): return ( 2.51920088896542e-105 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 3.97030655459563e122 * cos(theta) ** 33 - 1.19789820618657e123 * cos(theta) ** 31 + 1.60989209790969e123 * cos(theta) ** 29 - 1.27410563694217e123 * cos(theta) ** 27 + 6.61554849950744e122 * cos(theta) ** 25 - 2.37684377227812e122 * cos(theta) ** 23 + 6.07415630693298e121 * cos(theta) ** 21 - 1.11794287857662e121 * cos(theta) ** 19 + 1.48422540556368e120 * cos(theta) ** 17 - 1.41058459228973e119 * cos(theta) ** 15 + 9.43384599938994e117 * cos(theta) ** 13 - 4.31577705543938e116 * cos(theta) ** 11 + 1.29285260375363e115 * cos(theta) ** 9 - 2.37099815257925e113 * cos(theta) ** 7 + 2.3869108918583e111 * cos(theta) ** 5 - 1.08249927068404e109 * cos(theta) ** 3 + 1.39978353967763e106 * cos(theta) ) * cos(55 * phi) ) # @torch.jit.script def Yl88_m56(theta, phi): return ( 3.65447154693842e-107 * (1.0 - cos(theta) ** 2) ** 28 * ( 1.31020116301656e124 * cos(theta) ** 32 - 3.71348443917836e124 * cos(theta) ** 30 + 4.66868708393811e124 * cos(theta) ** 28 - 3.44008521974387e124 * cos(theta) ** 26 + 1.65388712487686e124 * cos(theta) ** 24 - 5.46674067623968e123 * cos(theta) ** 22 + 1.27557282445593e123 * cos(theta) ** 20 - 2.12409146929558e122 * cos(theta) ** 18 + 2.52318318945826e121 * cos(theta) ** 16 - 2.1158768884346e120 * cos(theta) ** 14 + 1.22639997992069e119 * cos(theta) ** 12 - 4.74735476098332e117 * cos(theta) ** 10 + 1.16356734337827e116 * cos(theta) ** 8 - 1.65969870680547e114 * cos(theta) ** 6 + 1.19345544592915e112 * cos(theta) ** 4 - 3.24749781205211e109 * cos(theta) ** 2 + 1.39978353967763e106 ) * cos(56 * phi) ) # @torch.jit.script def Yl88_m57(theta, phi): return ( 5.36494896000854e-109 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 4.19264372165298e125 * cos(theta) ** 31 - 1.11404533175351e126 * cos(theta) ** 29 + 1.30723238350267e126 * cos(theta) ** 27 - 8.94422157133406e125 * cos(theta) ** 25 + 3.96932909970446e125 * cos(theta) ** 23 - 1.20268294877273e125 * cos(theta) ** 21 + 2.55114564891185e124 * cos(theta) ** 19 - 3.82336464473205e123 * cos(theta) ** 17 + 4.03709310313322e122 * cos(theta) ** 15 - 2.96222764380844e121 * cos(theta) ** 13 + 1.47167997590483e120 * cos(theta) ** 11 - 4.74735476098332e118 * cos(theta) ** 9 + 9.30853874702612e116 * cos(theta) ** 7 - 9.95819224083284e114 * cos(theta) ** 5 + 4.77382178371661e112 * cos(theta) ** 3 - 6.49499562410422e109 * cos(theta) ) * cos(57 * phi) ) # @torch.jit.script def Yl88_m58(theta, phi): return ( 7.97458919237988e-111 * (1.0 - cos(theta) ** 2) ** 29 * ( 1.29971955371242e127 * cos(theta) ** 30 - 3.23073146208517e127 * cos(theta) ** 28 + 3.52952743545721e127 * cos(theta) ** 26 - 2.23605539283351e127 * cos(theta) ** 24 + 9.12945692932027e126 * cos(theta) ** 22 - 2.52563419242273e126 * cos(theta) ** 20 + 4.84717673293252e125 * cos(theta) ** 18 - 6.49971989604448e124 * cos(theta) ** 16 + 6.05563965469983e123 * cos(theta) ** 14 - 3.85089593695097e122 * cos(theta) ** 12 + 1.61884797349531e121 * cos(theta) ** 10 - 4.27261928488499e119 * cos(theta) ** 8 + 6.51597712291829e117 * cos(theta) ** 6 - 4.97909612041642e115 * cos(theta) ** 4 + 1.43214653511498e113 * cos(theta) ** 2 - 6.49499562410422e109 ) * cos(58 * phi) ) # @torch.jit.script def Yl88_m59(theta, phi): return ( 1.20085072628967e-112 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 3.89915866113728e128 * cos(theta) ** 29 - 9.04604809383848e128 * cos(theta) ** 27 + 9.17677133218874e128 * cos(theta) ** 25 - 5.36653294280044e128 * cos(theta) ** 23 + 2.00848052445046e128 * cos(theta) ** 21 - 5.05126838484547e127 * cos(theta) ** 19 + 8.72491811927853e126 * cos(theta) ** 17 - 1.03995518336712e126 * cos(theta) ** 15 + 8.47789551657976e124 * cos(theta) ** 13 - 4.62107512434117e123 * cos(theta) ** 11 + 1.61884797349531e122 * cos(theta) ** 9 - 3.41809542790799e120 * cos(theta) ** 7 + 3.90958627375097e118 * cos(theta) ** 5 - 1.99163844816657e116 * cos(theta) ** 3 + 2.86429307022996e113 * cos(theta) ) * cos(59 * phi) ) # @torch.jit.script def Yl88_m60(theta, phi): return ( 1.83298608656671e-114 * (1.0 - cos(theta) ** 2) ** 30 * ( 1.13075601172981e130 * cos(theta) ** 28 - 2.44243298533639e130 * cos(theta) ** 26 + 2.29419283304719e130 * cos(theta) ** 24 - 1.2343025768441e130 * cos(theta) ** 22 + 4.21780910134596e129 * cos(theta) ** 20 - 9.59740993120638e128 * cos(theta) ** 18 + 1.48323608027735e128 * cos(theta) ** 16 - 1.55993277505068e127 * cos(theta) ** 14 + 1.10212641715537e126 * cos(theta) ** 12 - 5.08318263677528e124 * cos(theta) ** 10 + 1.45696317614578e123 * cos(theta) ** 8 - 2.3926667995356e121 * cos(theta) ** 6 + 1.95479313687549e119 * cos(theta) ** 4 - 5.9749153444997e116 * cos(theta) ** 2 + 2.86429307022996e113 ) * cos(60 * phi) ) # @torch.jit.script def Yl88_m61(theta, phi): return ( 2.83783420176876e-116 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 3.16611683284347e131 * cos(theta) ** 27 - 6.35032576187461e131 * cos(theta) ** 25 + 5.50606279931325e131 * cos(theta) ** 23 - 2.71546566905702e131 * cos(theta) ** 21 + 8.43561820269193e130 * cos(theta) ** 19 - 1.72753378761715e130 * cos(theta) ** 17 + 2.37317772844376e129 * cos(theta) ** 15 - 2.18390588507095e128 * cos(theta) ** 13 + 1.32255170058644e127 * cos(theta) ** 11 - 5.08318263677528e125 * cos(theta) ** 9 + 1.16557054091663e124 * cos(theta) ** 7 - 1.43560007972136e122 * cos(theta) ** 5 + 7.81917254750194e119 * cos(theta) ** 3 - 1.19498306889994e117 * cos(theta) ) * cos(61 * phi) ) # @torch.jit.script def Yl88_m62(theta, phi): return ( 4.45922623989734e-118 * (1.0 - cos(theta) ** 2) ** 31 * ( 8.54851544867736e132 * cos(theta) ** 26 - 1.58758144046865e133 * cos(theta) ** 24 + 1.26639444384205e133 * cos(theta) ** 22 - 5.70247790501974e132 * cos(theta) ** 20 + 1.60276745851147e132 * cos(theta) ** 18 - 2.93680743894915e131 * cos(theta) ** 16 + 3.55976659266564e130 * cos(theta) ** 14 - 2.83907765059223e129 * cos(theta) ** 12 + 1.45480687064509e128 * cos(theta) ** 10 - 4.57486437309776e126 * cos(theta) ** 8 + 8.15899378641638e124 * cos(theta) ** 6 - 7.17800039860678e122 * cos(theta) ** 4 + 2.34575176425058e120 * cos(theta) ** 2 - 1.19498306889994e117 ) * cos(62 * phi) ) # @torch.jit.script def Yl88_m63(theta, phi): return ( 7.11679341372251e-120 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 2.22261401665611e134 * cos(theta) ** 25 - 3.81019545712477e134 * cos(theta) ** 23 + 2.7860677764525e134 * cos(theta) ** 21 - 1.14049558100395e134 * cos(theta) ** 19 + 2.88498142532064e133 * cos(theta) ** 17 - 4.69889190231865e132 * cos(theta) ** 15 + 4.9836732297319e131 * cos(theta) ** 13 - 3.40689318071067e130 * cos(theta) ** 11 + 1.45480687064509e129 * cos(theta) ** 9 - 3.6598914984782e127 * cos(theta) ** 7 + 4.89539627184983e125 * cos(theta) ** 5 - 2.87120015944271e123 * cos(theta) ** 3 + 4.69150352850117e120 * cos(theta) ) * cos(63 * phi) ) # @torch.jit.script def Yl88_m64(theta, phi): return ( 1.15449634146812e-121 * (1.0 - cos(theta) ** 2) ** 32 * ( 5.55653504164028e135 * cos(theta) ** 24 - 8.76344955138696e135 * cos(theta) ** 22 + 5.85074233055026e135 * cos(theta) ** 20 - 2.1669416039075e135 * cos(theta) ** 18 + 4.90446842304509e134 * cos(theta) ** 16 - 7.04833785347797e133 * cos(theta) ** 14 + 6.47877519865147e132 * cos(theta) ** 12 - 3.74758249878174e131 * cos(theta) ** 10 + 1.30932618358058e130 * cos(theta) ** 8 - 2.56192404893474e128 * cos(theta) ** 6 + 2.44769813592491e126 * cos(theta) ** 4 - 8.61360047832814e123 * cos(theta) ** 2 + 4.69150352850117e120 ) * cos(64 * phi) ) # @torch.jit.script def Yl88_m65(theta, phi): return ( 1.90520285980036e-123 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 1.33356840999367e137 * cos(theta) ** 23 - 1.92795890130513e137 * cos(theta) ** 21 + 1.17014846611005e137 * cos(theta) ** 19 - 3.9004948870335e136 * cos(theta) ** 17 + 7.84714947687214e135 * cos(theta) ** 15 - 9.86767299486916e134 * cos(theta) ** 13 + 7.77453023838176e133 * cos(theta) ** 11 - 3.74758249878174e132 * cos(theta) ** 9 + 1.04746094686446e131 * cos(theta) ** 7 - 1.53715442936085e129 * cos(theta) ** 5 + 9.79079254369965e126 * cos(theta) ** 3 - 1.72272009566563e124 * cos(theta) ) * cos(65 * phi) ) # @torch.jit.script def Yl88_m66(theta, phi): return ( 3.20123050213715e-125 * (1.0 - cos(theta) ** 2) ** 33 * ( 3.06720734298544e138 * cos(theta) ** 22 - 4.04871369274078e138 * cos(theta) ** 20 + 2.2232820856091e138 * cos(theta) ** 18 - 6.63084130795696e137 * cos(theta) ** 16 + 1.17707242153082e137 * cos(theta) ** 14 - 1.28279748933299e136 * cos(theta) ** 12 + 8.55198326221994e134 * cos(theta) ** 10 - 3.37282424890357e133 * cos(theta) ** 8 + 7.33222662805123e131 * cos(theta) ** 6 - 7.68577214680423e129 * cos(theta) ** 4 + 2.9372377631099e127 * cos(theta) ** 2 - 1.72272009566563e124 ) * cos(66 * phi) ) # @torch.jit.script def Yl88_m67(theta, phi): return ( 5.48200915921706e-127 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 6.74785615456796e139 * cos(theta) ** 21 - 8.09742738548155e139 * cos(theta) ** 19 + 4.00190775409638e139 * cos(theta) ** 17 - 1.06093460927311e139 * cos(theta) ** 15 + 1.64790139014315e138 * cos(theta) ** 13 - 1.53935698719959e137 * cos(theta) ** 11 + 8.55198326221994e135 * cos(theta) ** 9 - 2.69825939912285e134 * cos(theta) ** 7 + 4.39933597683074e132 * cos(theta) ** 5 - 3.07430885872169e130 * cos(theta) ** 3 + 5.87447552621979e127 * cos(theta) ) * cos(67 * phi) ) # @torch.jit.script def Yl88_m68(theta, phi): return ( 9.57784512729653e-129 * (1.0 - cos(theta) ** 2) ** 34 * ( 1.41704979245927e141 * cos(theta) ** 20 - 1.5385112032415e141 * cos(theta) ** 18 + 6.80324318196384e140 * cos(theta) ** 16 - 1.59140191390967e140 * cos(theta) ** 14 + 2.14227180718609e139 * cos(theta) ** 12 - 1.69329268591955e138 * cos(theta) ** 10 + 7.69678493599794e136 * cos(theta) ** 8 - 1.888781579386e135 * cos(theta) ** 6 + 2.19966798841537e133 * cos(theta) ** 4 - 9.22292657616507e130 * cos(theta) ** 2 + 5.87447552621979e127 ) * cos(68 * phi) ) # @torch.jit.script def Yl88_m69(theta, phi): return ( 1.70923975802033e-130 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 2.83409958491854e142 * cos(theta) ** 19 - 2.76932016583469e142 * cos(theta) ** 17 + 1.08851890911421e142 * cos(theta) ** 15 - 2.22796267947354e141 * cos(theta) ** 13 + 2.57072616862331e140 * cos(theta) ** 11 - 1.69329268591955e139 * cos(theta) ** 9 + 6.15742794879835e137 * cos(theta) ** 7 - 1.1332689476316e136 * cos(theta) ** 5 + 8.79867195366148e133 * cos(theta) ** 3 - 1.84458531523301e131 * cos(theta) ) * cos(69 * phi) ) # @torch.jit.script def Yl88_m70(theta, phi): return ( 3.11959088180028e-132 * (1.0 - cos(theta) ** 2) ** 35 * ( 5.38478921134523e143 * cos(theta) ** 18 - 4.70784428191898e143 * cos(theta) ** 16 + 1.63277836367132e143 * cos(theta) ** 14 - 2.8963514833156e142 * cos(theta) ** 12 + 2.82779878548564e141 * cos(theta) ** 10 - 1.52396341732759e140 * cos(theta) ** 8 + 4.31019956415885e138 * cos(theta) ** 6 - 5.66634473815799e136 * cos(theta) ** 4 + 2.63960158609844e134 * cos(theta) ** 2 - 1.84458531523301e131 ) * cos(70 * phi) ) # @torch.jit.script def Yl88_m71(theta, phi): return ( 5.83126566224347e-134 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 9.69262058042142e144 * cos(theta) ** 17 - 7.53255085107036e144 * cos(theta) ** 15 + 2.28588970913985e144 * cos(theta) ** 13 - 3.47562177997872e143 * cos(theta) ** 11 + 2.82779878548564e142 * cos(theta) ** 9 - 1.21917073386207e141 * cos(theta) ** 7 + 2.58611973849531e139 * cos(theta) ** 5 - 2.2665378952632e137 * cos(theta) ** 3 + 5.27920317219689e134 * cos(theta) ) * cos(71 * phi) ) # @torch.jit.script def Yl88_m72(theta, phi): return ( 1.11809415090215e-135 * (1.0 - cos(theta) ** 2) ** 36 * ( 1.64774549867164e146 * cos(theta) ** 16 - 1.12988262766055e146 * cos(theta) ** 14 + 2.9716566218818e145 * cos(theta) ** 12 - 3.82318395797659e144 * cos(theta) ** 10 + 2.54501890693708e143 * cos(theta) ** 8 - 8.53419513703452e141 * cos(theta) ** 6 + 1.29305986924765e140 * cos(theta) ** 4 - 6.79961368578959e137 * cos(theta) ** 2 + 5.27920317219689e134 ) * cos(72 * phi) ) # @torch.jit.script def Yl88_m73(theta, phi): return ( 2.20295408870265e-137 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 2.63639279787463e147 * cos(theta) ** 15 - 1.58183567872478e147 * cos(theta) ** 13 + 3.56598794625817e146 * cos(theta) ** 11 - 3.82318395797659e145 * cos(theta) ** 9 + 2.03601512554966e144 * cos(theta) ** 7 - 5.12051708222071e142 * cos(theta) ** 5 + 5.17223947699062e140 * cos(theta) ** 3 - 1.35992273715792e138 * cos(theta) ) * cos(73 * phi) ) # @torch.jit.script def Yl88_m74(theta, phi): return ( 4.46891721307658e-139 * (1.0 - cos(theta) ** 2) ** 37 * ( 3.95458919681194e148 * cos(theta) ** 14 - 2.05638638234221e148 * cos(theta) ** 12 + 3.92258674088398e147 * cos(theta) ** 10 - 3.44086556217893e146 * cos(theta) ** 8 + 1.42521058788476e145 * cos(theta) ** 6 - 2.56025854111036e143 * cos(theta) ** 4 + 1.55167184309719e141 * cos(theta) ** 2 - 1.35992273715792e138 ) * cos(74 * phi) ) # @torch.jit.script def Yl88_m75(theta, phi): return ( 9.35501502528341e-141 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 5.53642487553672e149 * cos(theta) ** 13 - 2.46766365881065e149 * cos(theta) ** 11 + 3.92258674088398e148 * cos(theta) ** 9 - 2.75269244974315e147 * cos(theta) ** 7 + 8.55126352730859e145 * cos(theta) ** 5 - 1.02410341644414e144 * cos(theta) ** 3 + 3.10334368619437e141 * cos(theta) ) * cos(75 * phi) ) # @torch.jit.script def Yl88_m76(theta, phi): return ( 2.02605340681909e-142 * (1.0 - cos(theta) ** 2) ** 38 * ( 7.19735233819773e150 * cos(theta) ** 12 - 2.71443002469172e150 * cos(theta) ** 10 + 3.53032806679558e149 * cos(theta) ** 8 - 1.9268847148202e148 * cos(theta) ** 6 + 4.27563176365429e146 * cos(theta) ** 4 - 3.07231024933243e144 * cos(theta) ** 2 + 3.10334368619437e141 ) * cos(76 * phi) ) # @torch.jit.script def Yl88_m77(theta, phi): return ( 4.55321642740204e-144 * (1.0 - cos(theta) ** 2) ** 38.5 * ( 8.63682280583728e151 * cos(theta) ** 11 - 2.71443002469172e151 * cos(theta) ** 9 + 2.82426245343647e150 * cos(theta) ** 7 - 1.15613082889212e149 * cos(theta) ** 5 + 1.71025270546172e147 * cos(theta) ** 3 - 6.14462049866485e144 * cos(theta) ) * cos(77 * phi) ) # @torch.jit.script def Yl88_m78(theta, phi): return ( 1.06553546064646e-145 * (1.0 - cos(theta) ** 2) ** 39 * ( 9.500505086421e152 * cos(theta) ** 10 - 2.44298702222254e152 * cos(theta) ** 8 + 1.97698371740553e151 * cos(theta) ** 6 - 5.7806541444606e149 * cos(theta) ** 4 + 5.13075811638515e147 * cos(theta) ** 2 - 6.14462049866485e144 ) * cos(78 * phi) ) # @torch.jit.script def Yl88_m79(theta, phi): return ( 2.60741207175745e-147 * (1.0 - cos(theta) ** 2) ** 39.5 * ( 9.500505086421e153 * cos(theta) ** 9 - 1.95438961777804e153 * cos(theta) ** 7 + 1.18619023044332e152 * cos(theta) ** 5 - 2.31226165778424e150 * cos(theta) ** 3 + 1.02615162327703e148 * cos(theta) ) * cos(79 * phi) ) # @torch.jit.script def Yl88_m80(theta, phi): return ( 6.70554029006287e-149 * (1.0 - cos(theta) ** 2) ** 40 * ( 8.5504545777789e154 * cos(theta) ** 8 - 1.36807273244462e154 * cos(theta) ** 6 + 5.93095115221658e152 * cos(theta) ** 4 - 6.93678497335273e150 * cos(theta) ** 2 + 1.02615162327703e148 ) * cos(80 * phi) ) # @torch.jit.script def Yl88_m81(theta, phi): return ( 1.82366654254733e-150 * (1.0 - cos(theta) ** 2) ** 40.5 * ( 6.84036366222312e155 * cos(theta) ** 7 - 8.20843639466775e154 * cos(theta) ** 5 + 2.37238046088663e153 * cos(theta) ** 3 - 1.38735699467055e151 * cos(theta) ) * cos(81 * phi) ) # @torch.jit.script def Yl88_m82(theta, phi): return ( 5.28654520028694e-152 * (1.0 - cos(theta) ** 2) ** 41 * ( 4.78825456355619e156 * cos(theta) ** 6 - 4.10421819733387e155 * cos(theta) ** 4 + 7.1171413826599e153 * cos(theta) ** 2 - 1.38735699467055e151 ) * cos(82 * phi) ) # @torch.jit.script def Yl88_m83(theta, phi): return ( 1.65043440895802e-153 * (1.0 - cos(theta) ** 2) ** 41.5 * ( 2.87295273813371e157 * cos(theta) ** 5 - 1.64168727893355e156 * cos(theta) ** 3 + 1.42342827653198e154 * cos(theta) ) * cos(83 * phi) ) # @torch.jit.script def Yl88_m84(theta, phi): return ( 5.62793462288332e-155 * (1.0 - cos(theta) ** 2) ** 42 * ( 1.43647636906686e158 * cos(theta) ** 4 - 4.92506183680065e156 * cos(theta) ** 2 + 1.42342827653198e154 ) * cos(84 * phi) ) # @torch.jit.script def Yl88_m85(theta, phi): return ( 2.13941972980226e-156 * (1.0 - cos(theta) ** 2) ** 42.5 * (5.74590547626742e158 * cos(theta) ** 3 - 9.8501236736013e156 * cos(theta)) * cos(85 * phi) ) # @torch.jit.script def Yl88_m86(theta, phi): return ( 9.36398577033487e-158 * (1.0 - cos(theta) ** 2) ** 43 * (1.72377164288023e159 * cos(theta) ** 2 - 9.8501236736013e156) * cos(86 * phi) ) # @torch.jit.script def Yl88_m87(theta, phi): return ( 17.2558537211813 * (1.0 - cos(theta) ** 2) ** 43.5 * cos(87 * phi) * cos(theta) ) # @torch.jit.script def Yl88_m88(theta, phi): return 1.30070891432765 * (1.0 - cos(theta) ** 2) ** 44 * cos(88 * phi) # @torch.jit.script def Yl89_m_minus_89(theta, phi): return 1.30435747384896 * (1.0 - cos(theta) ** 2) ** 44.5 * sin(89 * phi) # @torch.jit.script def Yl89_m_minus_88(theta, phi): return 17.4022992356252 * (1.0 - cos(theta) ** 2) ** 44 * sin(88 * phi) * cos(theta) # @torch.jit.script def Yl89_m_minus_87(theta, phi): return ( 5.36568618484204e-160 * (1.0 - cos(theta) ** 2) ** 43.5 * (3.051075807898e161 * cos(theta) ** 2 - 1.72377164288023e159) * sin(87 * phi) ) # @torch.jit.script def Yl89_m_minus_86(theta, phi): return ( 1.23294081721955e-158 * (1.0 - cos(theta) ** 2) ** 43 * (1.01702526929933e161 * cos(theta) ** 3 - 1.72377164288023e159 * cos(theta)) * sin(86 * phi) ) # @torch.jit.script def Yl89_m_minus_85(theta, phi): return ( 3.26205478362367e-157 * (1.0 - cos(theta) ** 2) ** 42.5 * ( 2.54256317324833e160 * cos(theta) ** 4 - 8.61885821440113e158 * cos(theta) ** 2 + 2.46253091840032e156 ) * sin(85 * phi) ) # @torch.jit.script def Yl89_m_minus_84(theta, phi): return ( 9.62167928580298e-156 * (1.0 - cos(theta) ** 2) ** 42 * ( 5.08512634649667e159 * cos(theta) ** 5 - 2.87295273813371e158 * cos(theta) ** 3 + 2.46253091840032e156 * cos(theta) ) * sin(84 * phi) ) # @torch.jit.script def Yl89_m_minus_83(theta, phi): return ( 3.0999133430702e-154 * (1.0 - cos(theta) ** 2) ** 41.5 * ( 8.47521057749445e158 * cos(theta) ** 6 - 7.18238184533428e157 * cos(theta) ** 4 + 1.23126545920016e156 * cos(theta) ** 2 - 2.37238046088663e153 ) * sin(83 * phi) ) # @torch.jit.script def Yl89_m_minus_82(theta, phi): return ( 1.07562972868882e-152 * (1.0 - cos(theta) ** 2) ** 41 * ( 1.21074436821349e158 * cos(theta) ** 7 - 1.43647636906686e157 * cos(theta) ** 5 + 4.10421819733387e155 * cos(theta) ** 3 - 2.37238046088663e153 * cos(theta) ) * sin(82 * phi) ) # @torch.jit.script def Yl89_m_minus_81(theta, phi): return ( 3.97837617692343e-151 * (1.0 - cos(theta) ** 2) ** 40.5 * ( 1.51343046026687e157 * cos(theta) ** 8 - 2.39412728177809e156 * cos(theta) ** 6 + 1.02605454933347e155 * cos(theta) ** 4 - 1.18619023044332e153 * cos(theta) ** 2 + 1.73419624333818e150 ) * sin(81 * phi) ) # @torch.jit.script def Yl89_m_minus_80(theta, phi): return ( 1.55615037248401e-149 * (1.0 - cos(theta) ** 2) ** 40 * ( 1.68158940029652e156 * cos(theta) ** 9 - 3.42018183111156e155 * cos(theta) ** 7 + 2.05210909866694e154 * cos(theta) ** 5 - 3.95396743481105e152 * cos(theta) ** 3 + 1.73419624333818e150 * cos(theta) ) * sin(80 * phi) ) # @torch.jit.script def Yl89_m_minus_79(theta, phi): return ( 6.39727342639955e-148 * (1.0 - cos(theta) ** 2) ** 39.5 * ( 1.68158940029652e155 * cos(theta) ** 10 - 4.27522728888945e154 * cos(theta) ** 8 + 3.42018183111156e153 * cos(theta) ** 6 - 9.88491858702763e151 * cos(theta) ** 4 + 8.67098121669091e149 * cos(theta) ** 2 - 1.02615162327703e147 ) * sin(79 * phi) ) # @torch.jit.script def Yl89_m_minus_78(theta, phi): return ( 2.75008360374433e-146 * (1.0 - cos(theta) ** 2) ** 39 * ( 1.5287176366332e154 * cos(theta) ** 11 - 4.7502525432105e153 * cos(theta) ** 9 + 4.88597404444509e152 * cos(theta) ** 7 - 1.97698371740553e151 * cos(theta) ** 5 + 2.8903270722303e149 * cos(theta) ** 3 - 1.02615162327703e147 * cos(theta) ) * sin(78 * phi) ) # @torch.jit.script def Yl89_m_minus_77(theta, phi): return ( 1.23110403680912e-144 * (1.0 - cos(theta) ** 2) ** 38.5 * ( 1.273931363861e153 * cos(theta) ** 12 - 4.7502525432105e152 * cos(theta) ** 10 + 6.10746755555636e151 * cos(theta) ** 8 - 3.29497286234254e150 * cos(theta) ** 6 + 7.22581768057576e148 * cos(theta) ** 4 - 5.13075811638515e146 * cos(theta) ** 2 + 5.12051708222071e143 ) * sin(77 * phi) ) # @torch.jit.script def Yl89_m_minus_76(theta, phi): return ( 5.71900499082503e-143 * (1.0 - cos(theta) ** 2) ** 38 * ( 9.79947202969999e151 * cos(theta) ** 13 - 4.31841140291864e151 * cos(theta) ** 11 + 6.78607506172929e150 * cos(theta) ** 9 - 4.70710408906078e149 * cos(theta) ** 7 + 1.44516353611515e148 * cos(theta) ** 5 - 1.71025270546172e146 * cos(theta) ** 3 + 5.12051708222071e143 * cos(theta) ) * sin(76 * phi) ) # @torch.jit.script def Yl89_m_minus_75(theta, phi): return ( 2.74869444967131e-141 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 6.99962287835713e150 * cos(theta) ** 14 - 3.59867616909887e150 * cos(theta) ** 12 + 6.78607506172929e149 * cos(theta) ** 10 - 5.88388011132597e148 * cos(theta) ** 8 + 2.40860589352525e147 * cos(theta) ** 6 - 4.27563176365429e145 * cos(theta) ** 4 + 2.56025854111036e143 * cos(theta) ** 2 - 2.21667406156741e140 ) * sin(75 * phi) ) # @torch.jit.script def Yl89_m_minus_74(theta, phi): return ( 1.36330811253467e-139 * (1.0 - cos(theta) ** 2) ** 37 * ( 4.66641525223809e149 * cos(theta) ** 15 - 2.76821243776836e149 * cos(theta) ** 13 + 6.16915914702663e148 * cos(theta) ** 11 - 6.53764456813997e147 * cos(theta) ** 9 + 3.44086556217893e146 * cos(theta) ** 7 - 8.55126352730859e144 * cos(theta) ** 5 + 8.53419513703452e142 * cos(theta) ** 3 - 2.21667406156741e140 * cos(theta) ) * sin(74 * phi) ) # @torch.jit.script def Yl89_m_minus_73(theta, phi): return ( 6.96222112353882e-138 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 2.91650953264881e148 * cos(theta) ** 16 - 1.97729459840597e148 * cos(theta) ** 14 + 5.14096595585552e147 * cos(theta) ** 12 - 6.53764456813997e146 * cos(theta) ** 10 + 4.30108195272366e145 * cos(theta) ** 8 - 1.42521058788476e144 * cos(theta) ** 6 + 2.13354878425863e142 * cos(theta) ** 4 - 1.1083370307837e140 * cos(theta) ** 2 + 8.49951710723699e136 ) * sin(73 * phi) ) # @torch.jit.script def Yl89_m_minus_72(theta, phi): return ( 3.65367388073676e-136 * (1.0 - cos(theta) ** 2) ** 36 * ( 1.71559384273459e147 * cos(theta) ** 17 - 1.31819639893731e147 * cos(theta) ** 15 + 3.95458919681194e146 * cos(theta) ** 13 - 5.94331324376361e145 * cos(theta) ** 11 + 4.77897994747074e144 * cos(theta) ** 9 - 2.03601512554966e143 * cos(theta) ** 7 + 4.26709756851726e141 * cos(theta) ** 5 - 3.69445676927901e139 * cos(theta) ** 3 + 8.49951710723699e136 * cos(theta) ) * sin(72 * phi) ) # @torch.jit.script def Yl89_m_minus_71(theta, phi): return ( 1.96688501270417e-134 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 9.53107690408106e145 * cos(theta) ** 18 - 8.23872749335821e145 * cos(theta) ** 16 + 2.82470656915139e145 * cos(theta) ** 14 - 4.95276103646967e144 * cos(theta) ** 12 + 4.77897994747074e143 * cos(theta) ** 10 - 2.54501890693708e142 * cos(theta) ** 8 + 7.1118292808621e140 * cos(theta) ** 6 - 9.23614192319753e138 * cos(theta) ** 4 + 4.2497585536185e136 * cos(theta) ** 2 - 2.93289065122049e133 ) * sin(71 * phi) ) # @torch.jit.script def Yl89_m_minus_70(theta, phi): return ( 1.08446555619479e-132 * (1.0 - cos(theta) ** 2) ** 35 * ( 5.01635626530582e144 * cos(theta) ** 19 - 4.84631029021071e144 * cos(theta) ** 17 + 1.88313771276759e144 * cos(theta) ** 15 - 3.80981618189975e143 * cos(theta) ** 13 + 4.3445272249734e142 * cos(theta) ** 11 - 2.82779878548564e141 * cos(theta) ** 9 + 1.01597561155173e140 * cos(theta) ** 7 - 1.84722838463951e138 * cos(theta) ** 5 + 1.4165861845395e136 * cos(theta) ** 3 - 2.93289065122049e133 * cos(theta) ) * sin(70 * phi) ) # @torch.jit.script def Yl89_m_minus_69(theta, phi): return ( 6.11546271788306e-131 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 2.50817813265291e143 * cos(theta) ** 20 - 2.69239460567262e143 * cos(theta) ** 18 + 1.17696107047974e143 * cos(theta) ** 16 - 2.72129727278554e142 * cos(theta) ** 14 + 3.6204393541445e141 * cos(theta) ** 12 - 2.82779878548564e140 * cos(theta) ** 10 + 1.26996951443966e139 * cos(theta) ** 8 - 3.07871397439918e137 * cos(theta) ** 6 + 3.54146546134875e135 * cos(theta) ** 4 - 1.46644532561025e133 * cos(theta) ** 2 + 9.22292657616507e129 ) * sin(69 * phi) ) # @torch.jit.script def Yl89_m_minus_68(theta, phi): return ( 3.52263392866995e-129 * (1.0 - cos(theta) ** 2) ** 34 * ( 1.19437053935853e142 * cos(theta) ** 21 - 1.41704979245927e142 * cos(theta) ** 19 + 6.92330041458673e141 * cos(theta) ** 17 - 1.81419818185702e141 * cos(theta) ** 15 + 2.78495334934192e140 * cos(theta) ** 13 - 2.57072616862331e139 * cos(theta) ** 11 + 1.41107723826629e138 * cos(theta) ** 9 - 4.39816282057025e136 * cos(theta) ** 7 + 7.08293092269749e134 * cos(theta) ** 5 - 4.88815108536749e132 * cos(theta) ** 3 + 9.22292657616507e129 * cos(theta) ) * sin(68 * phi) ) # @torch.jit.script def Yl89_m_minus_67(theta, phi): return ( 2.07027806328931e-127 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 5.42895699708422e140 * cos(theta) ** 22 - 7.08524896229636e140 * cos(theta) ** 20 + 3.84627800810374e140 * cos(theta) ** 18 - 1.13387386366064e140 * cos(theta) ** 16 + 1.98925239238709e139 * cos(theta) ** 14 - 2.14227180718609e138 * cos(theta) ** 12 + 1.41107723826629e137 * cos(theta) ** 10 - 5.49770352571282e135 * cos(theta) ** 8 + 1.18048848711625e134 * cos(theta) ** 6 - 1.22203777134187e132 * cos(theta) ** 4 + 4.61146328808254e129 * cos(theta) ** 2 - 2.67021614828172e126 ) * sin(67 * phi) ) # @torch.jit.script def Yl89_m_minus_66(theta, phi): return ( 1.24009483179719e-125 * (1.0 - cos(theta) ** 2) ** 33 * ( 2.36041608568879e139 * cos(theta) ** 23 - 3.37392807728398e139 * cos(theta) ** 21 + 2.02435684637039e139 * cos(theta) ** 19 - 6.66984625682729e138 * cos(theta) ** 17 + 1.32616826159139e138 * cos(theta) ** 15 - 1.64790139014315e137 * cos(theta) ** 13 + 1.28279748933299e136 * cos(theta) ** 11 - 6.10855947301424e134 * cos(theta) ** 9 + 1.68641212445178e133 * cos(theta) ** 7 - 2.44407554268374e131 * cos(theta) ** 5 + 1.53715442936085e129 * cos(theta) ** 3 - 2.67021614828172e126 * cos(theta) ) * sin(66 * phi) ) # @torch.jit.script def Yl89_m_minus_65(theta, phi): return ( 7.56356193448717e-124 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 9.8350670237033e137 * cos(theta) ** 24 - 1.53360367149272e138 * cos(theta) ** 22 + 1.01217842318519e138 * cos(theta) ** 20 - 3.70547014268183e137 * cos(theta) ** 18 + 8.2885516349462e136 * cos(theta) ** 16 - 1.17707242153082e136 * cos(theta) ** 14 + 1.06899790777749e135 * cos(theta) ** 12 - 6.10855947301424e133 * cos(theta) ** 10 + 2.10801515556473e132 * cos(theta) ** 8 - 4.07345923780624e130 * cos(theta) ** 6 + 3.84288607340211e128 * cos(theta) ** 4 - 1.33510807414086e126 * cos(theta) ** 2 + 7.17800039860678e122 ) * sin(65 * phi) ) # @torch.jit.script def Yl89_m_minus_64(theta, phi): return ( 4.69306676041125e-122 * (1.0 - cos(theta) ** 2) ** 32 * ( 3.93402680948132e136 * cos(theta) ** 25 - 6.66784204996834e136 * cos(theta) ** 23 + 4.81989725326283e136 * cos(theta) ** 21 - 1.95024744351675e136 * cos(theta) ** 19 + 4.87561860879188e135 * cos(theta) ** 17 - 7.84714947687214e134 * cos(theta) ** 15 + 8.22306082905763e133 * cos(theta) ** 13 - 5.5532358845584e132 * cos(theta) ** 11 + 2.34223906173859e131 * cos(theta) ** 9 - 5.81922748258035e129 * cos(theta) ** 7 + 7.68577214680423e127 * cos(theta) ** 5 - 4.45036024713621e125 * cos(theta) ** 3 + 7.17800039860678e122 * cos(theta) ) * sin(64 * phi) ) # @torch.jit.script def Yl89_m_minus_63(theta, phi): return ( 2.95998235141899e-120 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 1.51308723441589e135 * cos(theta) ** 26 - 2.77826752082014e135 * cos(theta) ** 24 + 2.19086238784674e135 * cos(theta) ** 22 - 9.75123721758376e134 * cos(theta) ** 20 + 2.70867700488438e134 * cos(theta) ** 18 - 4.90446842304509e133 * cos(theta) ** 16 + 5.87361487789831e132 * cos(theta) ** 14 - 4.62769657046533e131 * cos(theta) ** 12 + 2.34223906173859e130 * cos(theta) ** 10 - 7.27403435322543e128 * cos(theta) ** 8 + 1.28096202446737e127 * cos(theta) ** 6 - 1.11259006178405e125 * cos(theta) ** 4 + 3.58900019930339e122 * cos(theta) ** 2 - 1.80442443403891e119 ) * sin(63 * phi) ) # @torch.jit.script def Yl89_m_minus_62(theta, phi): return ( 1.89623779144393e-118 * (1.0 - cos(theta) ** 2) ** 31 * ( 5.60402679413294e133 * cos(theta) ** 27 - 1.11130700832806e134 * cos(theta) ** 25 + 9.52548864281192e133 * cos(theta) ** 23 - 4.6434462940875e133 * cos(theta) ** 21 + 1.42561947625494e133 * cos(theta) ** 19 - 2.88498142532064e132 * cos(theta) ** 17 + 3.91574325193221e131 * cos(theta) ** 15 - 3.55976659266564e130 * cos(theta) ** 13 + 2.12930823794417e129 * cos(theta) ** 11 - 8.0822603924727e127 * cos(theta) ** 9 + 1.8299457492391e126 * cos(theta) ** 7 - 2.2251801235681e124 * cos(theta) ** 5 + 1.1963333997678e122 * cos(theta) ** 3 - 1.80442443403891e119 * cos(theta) ) * sin(62 * phi) ) # @torch.jit.script def Yl89_m_minus_61(theta, phi): return ( 1.23299208012332e-116 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 2.00143814076176e132 * cos(theta) ** 28 - 4.27425772433868e132 * cos(theta) ** 26 + 3.96895360117163e132 * cos(theta) ** 24 - 2.11065740640341e132 * cos(theta) ** 22 + 7.12809738127468e131 * cos(theta) ** 20 - 1.60276745851147e131 * cos(theta) ** 18 + 2.44733953245763e130 * cos(theta) ** 16 - 2.5426904233326e129 * cos(theta) ** 14 + 1.77442353162014e128 * cos(theta) ** 12 - 8.0822603924727e126 * cos(theta) ** 10 + 2.28743218654888e125 * cos(theta) ** 8 - 3.70863353928017e123 * cos(theta) ** 6 + 2.99083349941949e121 * cos(theta) ** 4 - 9.02212217019455e118 * cos(theta) ** 2 + 4.26779667464265e115 ) * sin(61 * phi) ) # @torch.jit.script def Yl89_m_minus_60(theta, phi): return ( 8.13214128810101e-115 * (1.0 - cos(theta) ** 2) ** 30 * ( 6.90151083021298e130 * cos(theta) ** 29 - 1.58305841642173e131 * cos(theta) ** 27 + 1.58758144046865e131 * cos(theta) ** 25 - 9.17677133218874e130 * cos(theta) ** 23 + 3.39433208632128e130 * cos(theta) ** 21 - 8.43561820269193e129 * cos(theta) ** 19 + 1.43961148968096e129 * cos(theta) ** 17 - 1.6951269488884e128 * cos(theta) ** 15 + 1.36494117816934e127 * cos(theta) ** 13 - 7.34750944770246e125 * cos(theta) ** 11 + 2.54159131838764e124 * cos(theta) ** 9 - 5.29804791325739e122 * cos(theta) ** 7 + 5.98166699883899e120 * cos(theta) ** 5 - 3.00737405673152e118 * cos(theta) ** 3 + 4.26779667464265e115 * cos(theta) ) * sin(60 * phi) ) # @torch.jit.script def Yl89_m_minus_59(theta, phi): return ( 5.4369917879787e-113 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 2.30050361007099e129 * cos(theta) ** 30 - 5.65378005864905e129 * cos(theta) ** 28 + 6.10608246334097e129 * cos(theta) ** 26 - 3.82365472174531e129 * cos(theta) ** 24 + 1.54287822105513e129 * cos(theta) ** 22 - 4.21780910134596e128 * cos(theta) ** 20 + 7.99784160933865e127 * cos(theta) ** 18 - 1.05945434305525e127 * cos(theta) ** 16 + 9.74957984406672e125 * cos(theta) ** 14 - 6.12292453975205e124 * cos(theta) ** 12 + 2.54159131838764e123 * cos(theta) ** 10 - 6.62255989157174e121 * cos(theta) ** 8 + 9.96944499806498e119 * cos(theta) ** 6 - 7.51843514182879e117 * cos(theta) ** 4 + 2.13389833732132e115 * cos(theta) ** 2 - 9.54764356743321e111 ) * sin(59 * phi) ) # @torch.jit.script def Yl89_m_minus_58(theta, phi): return ( 3.68273425697931e-111 * (1.0 - cos(theta) ** 2) ** 29 * ( 7.42097938732578e127 * cos(theta) ** 31 - 1.94957933056864e128 * cos(theta) ** 29 + 2.26151202345962e128 * cos(theta) ** 27 - 1.52946188869812e128 * cos(theta) ** 25 + 6.70816617850054e127 * cos(theta) ** 23 - 2.00848052445046e127 * cos(theta) ** 21 + 4.20939032070455e126 * cos(theta) ** 19 - 6.23208437091324e125 * cos(theta) ** 17 + 6.49971989604448e124 * cos(theta) ** 15 - 4.70994195365542e123 * cos(theta) ** 13 + 2.31053756217058e122 * cos(theta) ** 11 - 7.35839987952415e120 * cos(theta) ** 9 + 1.424206428295e119 * cos(theta) ** 7 - 1.50368702836576e117 * cos(theta) ** 5 + 7.11299445773774e114 * cos(theta) ** 3 - 9.54764356743321e111 * cos(theta) ) * sin(58 * phi) ) # @torch.jit.script def Yl89_m_minus_57(theta, phi): return ( 2.52582954060277e-109 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 2.31905605853931e126 * cos(theta) ** 32 - 6.49859776856212e126 * cos(theta) ** 30 + 8.07682865521293e126 * cos(theta) ** 28 - 5.88254572576202e126 * cos(theta) ** 26 + 2.79506924104189e126 * cos(theta) ** 24 - 9.12945692932027e125 * cos(theta) ** 22 + 2.10469516035228e125 * cos(theta) ** 20 - 3.4622690949518e124 * cos(theta) ** 18 + 4.0623249350278e123 * cos(theta) ** 16 - 3.36424425261101e122 * cos(theta) ** 14 + 1.92544796847549e121 * cos(theta) ** 12 - 7.35839987952415e119 * cos(theta) ** 10 + 1.78025803536875e118 * cos(theta) ** 8 - 2.50614504727626e116 * cos(theta) ** 6 + 1.77824861443444e114 * cos(theta) ** 4 - 4.7738217837166e111 * cos(theta) ** 2 + 2.02968613253257e108 ) * sin(57 * phi) ) # @torch.jit.script def Yl89_m_minus_56(theta, phi): return ( 1.75322411673177e-107 * (1.0 - cos(theta) ** 2) ** 28 * ( 7.02744260163426e124 * cos(theta) ** 33 - 2.09632186082649e125 * cos(theta) ** 31 + 2.78511332938377e125 * cos(theta) ** 29 - 2.17872063917112e125 * cos(theta) ** 27 + 1.11802769641676e125 * cos(theta) ** 25 - 3.96932909970446e124 * cos(theta) ** 23 + 1.00223579064394e124 * cos(theta) ** 21 - 1.82224689207989e123 * cos(theta) ** 19 + 2.38960290295753e122 * cos(theta) ** 17 - 2.24282950174068e121 * cos(theta) ** 15 + 1.48111382190422e120 * cos(theta) ** 13 - 6.68945443593105e118 * cos(theta) ** 11 + 1.97806448374305e117 * cos(theta) ** 9 - 3.58020721039466e115 * cos(theta) ** 7 + 3.55649722886887e113 * cos(theta) ** 5 - 1.59127392790554e111 * cos(theta) ** 3 + 2.02968613253257e108 * cos(theta) ) * sin(56 * phi) ) # @torch.jit.script def Yl89_m_minus_55(theta, phi): return ( 1.23100805769927e-105 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 2.06689488283361e123 * cos(theta) ** 34 - 6.55100581508279e123 * cos(theta) ** 32 + 9.28371109794589e123 * cos(theta) ** 30 - 7.78114513989685e123 * cos(theta) ** 28 + 4.30010652467984e123 * cos(theta) ** 26 - 1.65388712487686e123 * cos(theta) ** 24 + 4.55561723019973e122 * cos(theta) ** 22 - 9.11123446039947e121 * cos(theta) ** 20 + 1.32755716830974e121 * cos(theta) ** 18 - 1.40176843858792e120 * cos(theta) ** 16 + 1.0579384442173e119 * cos(theta) ** 14 - 5.57454536327587e117 * cos(theta) ** 12 + 1.97806448374305e116 * cos(theta) ** 10 - 4.47525901299333e114 * cos(theta) ** 8 + 5.92749538144812e112 * cos(theta) ** 6 - 3.97818481976384e110 * cos(theta) ** 4 + 1.01484306626629e108 * cos(theta) ** 2 - 4.11701041081657e104 ) * sin(55 * phi) ) # @torch.jit.script def Yl89_m_minus_54(theta, phi): return ( 8.73929025958482e-104 * (1.0 - cos(theta) ** 2) ** 27 * ( 5.90541395095316e121 * cos(theta) ** 35 - 1.98515327729781e122 * cos(theta) ** 33 + 2.99474551546642e122 * cos(theta) ** 31 - 2.68315349651615e122 * cos(theta) ** 29 + 1.59263204617772e122 * cos(theta) ** 27 - 6.61554849950744e121 * cos(theta) ** 25 + 1.9807031435651e121 * cos(theta) ** 23 - 4.3386830763807e120 * cos(theta) ** 21 + 6.98714299110389e119 * cos(theta) ** 19 - 8.24569669757602e118 * cos(theta) ** 17 + 7.05292296144867e117 * cos(theta) ** 15 - 4.28811181790452e116 * cos(theta) ** 13 + 1.79824043976641e115 * cos(theta) ** 11 - 4.97251001443703e113 * cos(theta) ** 9 + 8.46785054492588e111 * cos(theta) ** 7 - 7.95636963952768e109 * cos(theta) ** 5 + 3.38281022088762e107 * cos(theta) ** 3 - 4.11701041081657e104 * cos(theta) ) * sin(54 * phi) ) # @torch.jit.script def Yl89_m_minus_53(theta, phi): return ( 6.2704026980257e-102 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 1.64039276415366e120 * cos(theta) ** 36 - 5.83868610969945e120 * cos(theta) ** 34 + 9.35857973583255e120 * cos(theta) ** 32 - 8.94384498838718e120 * cos(theta) ** 30 + 5.68797159349185e120 * cos(theta) ** 28 - 2.54444173057978e120 * cos(theta) ** 26 + 8.25292976485459e119 * cos(theta) ** 24 - 1.97212867108214e119 * cos(theta) ** 22 + 3.49357149555194e118 * cos(theta) ** 20 - 4.58094260976445e117 * cos(theta) ** 18 + 4.40807685090542e116 * cos(theta) ** 16 - 3.06293701278894e115 * cos(theta) ** 14 + 1.49853369980534e114 * cos(theta) ** 12 - 4.97251001443703e112 * cos(theta) ** 10 + 1.05848131811574e111 * cos(theta) ** 8 - 1.32606160658795e109 * cos(theta) ** 6 + 8.45702555221904e106 * cos(theta) ** 4 - 2.05850520540829e104 * cos(theta) ** 2 + 7.99730072031191e100 ) * sin(53 * phi) ) # @torch.jit.script def Yl89_m_minus_52(theta, phi): return ( 4.54506885839889e-100 * (1.0 - cos(theta) ** 2) ** 26 * ( 4.43349395717204e118 * cos(theta) ** 37 - 1.6681960313427e119 * cos(theta) ** 35 + 2.83593325328259e119 * cos(theta) ** 33 - 2.88511128657651e119 * cos(theta) ** 31 + 1.96136951499719e119 * cos(theta) ** 29 - 9.42385826140661e118 * cos(theta) ** 27 + 3.30117190594184e118 * cos(theta) ** 25 - 8.57447248296581e117 * cos(theta) ** 23 + 1.66360547407235e117 * cos(theta) ** 21 - 2.41102242619182e116 * cos(theta) ** 19 + 2.59298638288554e115 * cos(theta) ** 17 - 2.04195800852596e114 * cos(theta) ** 15 + 1.15271823061949e113 * cos(theta) ** 13 - 4.52046364948821e111 * cos(theta) ** 11 + 1.17609035346193e110 * cos(theta) ** 9 - 1.89437372369707e108 * cos(theta) ** 7 + 1.69140511044381e106 * cos(theta) ** 5 - 6.86168401802762e103 * cos(theta) ** 3 + 7.99730072031191e100 * cos(theta) ) * sin(52 * phi) ) # @torch.jit.script def Yl89_m_minus_51(theta, phi): return ( 3.32691589418808e-98 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 1.16670893609791e117 * cos(theta) ** 38 - 4.63387786484084e117 * cos(theta) ** 36 + 8.34098015671351e117 * cos(theta) ** 34 - 9.01597277055159e117 * cos(theta) ** 32 + 6.53789838332396e117 * cos(theta) ** 30 - 3.36566366478808e117 * cos(theta) ** 28 + 1.26968150228532e117 * cos(theta) ** 26 - 3.57269686790242e116 * cos(theta) ** 24 + 7.56184306396525e115 * cos(theta) ** 22 - 1.20551121309591e115 * cos(theta) ** 20 + 1.44054799049197e114 * cos(theta) ** 18 - 1.27622375532873e113 * cos(theta) ** 16 + 8.2337016472821e111 * cos(theta) ** 14 - 3.76705304124018e110 * cos(theta) ** 12 + 1.17609035346193e109 * cos(theta) ** 10 - 2.36796715462133e107 * cos(theta) ** 8 + 2.81900851740635e105 * cos(theta) ** 6 - 1.71542100450691e103 * cos(theta) ** 4 + 3.99865036015596e100 * cos(theta) ** 2 - 1.49259065328703e97 ) * sin(51 * phi) ) # @torch.jit.script def Yl89_m_minus_50(theta, phi): return ( 2.45831846480124e-96 * (1.0 - cos(theta) ** 2) ** 25 * ( 2.99156137461002e115 * cos(theta) ** 39 - 1.25239942292996e116 * cos(theta) ** 37 + 2.38313718763243e116 * cos(theta) ** 35 - 2.73211296077321e116 * cos(theta) ** 33 + 2.1089994784916e116 * cos(theta) ** 31 - 1.16057367751313e116 * cos(theta) ** 29 + 4.70252408253823e115 * cos(theta) ** 27 - 1.42907874716097e115 * cos(theta) ** 25 + 3.28775785389793e114 * cos(theta) ** 23 - 5.74052958617099e113 * cos(theta) ** 21 + 7.58183152890509e112 * cos(theta) ** 19 - 7.50719856075721e111 * cos(theta) ** 17 + 5.4891344315214e110 * cos(theta) ** 15 - 2.89773310864629e109 * cos(theta) ** 13 + 1.06917304860175e108 * cos(theta) ** 11 - 2.63107461624592e106 * cos(theta) ** 9 + 4.02715502486621e104 * cos(theta) ** 7 - 3.43084200901381e102 * cos(theta) ** 5 + 1.33288345338532e100 * cos(theta) ** 3 - 1.49259065328703e97 * cos(theta) ) * sin(50 * phi) ) # @torch.jit.script def Yl89_m_minus_49(theta, phi): return ( 1.83305518164533e-94 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 7.47890343652504e113 * cos(theta) ** 40 - 3.29578795507883e114 * cos(theta) ** 38 + 6.61982552120119e114 * cos(theta) ** 36 - 8.03562635521532e114 * cos(theta) ** 34 + 6.59062337028625e114 * cos(theta) ** 32 - 3.86857892504376e114 * cos(theta) ** 30 + 1.6794728866208e114 * cos(theta) ** 28 - 5.49645671984988e113 * cos(theta) ** 26 + 1.36989910579081e113 * cos(theta) ** 24 - 2.60933163007772e112 * cos(theta) ** 22 + 3.79091576445254e111 * cos(theta) ** 20 - 4.17066586708734e110 * cos(theta) ** 18 + 3.43070901970087e109 * cos(theta) ** 16 - 2.06980936331878e108 * cos(theta) ** 14 + 8.90977540501461e106 * cos(theta) ** 12 - 2.63107461624592e105 * cos(theta) ** 10 + 5.03394378108276e103 * cos(theta) ** 8 - 5.71807001502302e101 * cos(theta) ** 6 + 3.3322086334633e99 * cos(theta) ** 4 - 7.46295326643516e96 * cos(theta) ** 2 + 2.68451556346588e93 ) * sin(49 * phi) ) # @torch.jit.script def Yl89_m_minus_48(theta, phi): return ( 1.37881821026187e-92 * (1.0 - cos(theta) ** 2) ** 24 * ( 1.82412278939635e112 * cos(theta) ** 41 - 8.45073834635598e112 * cos(theta) ** 39 + 1.78914203275708e113 * cos(theta) ** 37 - 2.29589324434724e113 * cos(theta) ** 35 + 1.99715859705644e113 * cos(theta) ** 33 - 1.24792868549799e113 * cos(theta) ** 31 + 5.79128581593378e112 * cos(theta) ** 29 - 2.03572471105551e112 * cos(theta) ** 27 + 5.47959642316322e111 * cos(theta) ** 25 - 1.13449201307727e111 * cos(theta) ** 23 + 1.80519798307264e110 * cos(theta) ** 21 - 2.19508729846702e109 * cos(theta) ** 19 + 2.01806412923581e108 * cos(theta) ** 17 - 1.37987290887919e107 * cos(theta) ** 15 + 6.85367338847277e105 * cos(theta) ** 13 - 2.39188601476902e104 * cos(theta) ** 11 + 5.59327086786974e102 * cos(theta) ** 9 - 8.16867145003288e100 * cos(theta) ** 7 + 6.66441726692659e98 * cos(theta) ** 5 - 2.48765108881172e96 * cos(theta) ** 3 + 2.68451556346588e93 * cos(theta) ) * sin(48 * phi) ) # @torch.jit.script def Yl89_m_minus_47(theta, phi): return ( 1.04590427793794e-90 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 4.34314949856274e110 * cos(theta) ** 42 - 2.11268458658899e111 * cos(theta) ** 40 + 4.70826850725547e111 * cos(theta) ** 38 - 6.37748123429788e111 * cos(theta) ** 36 + 5.87399587369541e111 * cos(theta) ** 34 - 3.89977714218121e111 * cos(theta) ** 32 + 1.93042860531126e111 * cos(theta) ** 30 - 7.27044539662682e110 * cos(theta) ** 28 + 2.10753708583201e110 * cos(theta) ** 26 - 4.72705005448863e109 * cos(theta) ** 24 + 8.20544537760291e108 * cos(theta) ** 22 - 1.09754364923351e108 * cos(theta) ** 20 + 1.12114673846434e107 * cos(theta) ** 18 - 8.62420568049491e105 * cos(theta) ** 16 + 4.89548099176627e104 * cos(theta) ** 14 - 1.99323834564085e103 * cos(theta) ** 12 + 5.59327086786974e101 * cos(theta) ** 10 - 1.02108393125411e100 * cos(theta) ** 8 + 1.11073621115443e98 * cos(theta) ** 6 - 6.2191277220293e95 * cos(theta) ** 4 + 1.34225778173294e93 * cos(theta) ** 2 - 4.66547716973563e89 ) * sin(47 * phi) ) # @torch.jit.script def Yl89_m_minus_46(theta, phi): return ( 7.99826190890544e-89 * (1.0 - cos(theta) ** 2) ** 23 * ( 1.01003476710761e109 * cos(theta) ** 43 - 5.15288923558291e109 * cos(theta) ** 41 + 1.20724833519371e110 * cos(theta) ** 39 - 1.72364357683726e110 * cos(theta) ** 37 + 1.67828453534155e110 * cos(theta) ** 35 - 1.18175064914582e110 * cos(theta) ** 33 + 6.22718904939116e109 * cos(theta) ** 31 - 2.50705013676787e109 * cos(theta) ** 29 + 7.80569291048892e108 * cos(theta) ** 27 - 1.89082002179545e108 * cos(theta) ** 25 + 3.56758494678387e107 * cos(theta) ** 23 - 5.22639832968338e106 * cos(theta) ** 21 + 5.90077230770704e105 * cos(theta) ** 19 - 5.07306216499701e104 * cos(theta) ** 17 + 3.26365399451085e103 * cos(theta) ** 15 - 1.53326026587758e102 * cos(theta) ** 13 + 5.0847916980634e100 * cos(theta) ** 11 - 1.13453770139346e99 * cos(theta) ** 9 + 1.5867660159349e97 * cos(theta) ** 7 - 1.24382554440586e95 * cos(theta) ** 5 + 4.47419260577647e92 * cos(theta) ** 3 - 4.66547716973563e89 * cos(theta) ) * sin(46 * phi) ) # @torch.jit.script def Yl89_m_minus_45(theta, phi): return ( 6.16437206669811e-87 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 2.29553356160821e107 * cos(theta) ** 44 - 1.2268783894245e108 * cos(theta) ** 42 + 3.01812083798428e108 * cos(theta) ** 40 - 4.53590414957175e108 * cos(theta) ** 38 + 4.66190148705985e108 * cos(theta) ** 36 - 3.47573720337007e108 * cos(theta) ** 34 + 1.94599657793474e108 * cos(theta) ** 32 - 8.35683378922623e107 * cos(theta) ** 30 + 2.78774746803176e107 * cos(theta) ** 28 - 7.27238469921328e106 * cos(theta) ** 26 + 1.48649372782661e106 * cos(theta) ** 24 - 2.37563560440154e105 * cos(theta) ** 22 + 2.95038615385352e104 * cos(theta) ** 20 - 2.81836786944278e103 * cos(theta) ** 18 + 2.03978374656928e102 * cos(theta) ** 16 - 1.09518590419827e101 * cos(theta) ** 14 + 4.23732641505283e99 * cos(theta) ** 12 - 1.13453770139346e98 * cos(theta) ** 10 + 1.98345751991863e96 * cos(theta) ** 8 - 2.07304257400977e94 * cos(theta) ** 6 + 1.11854815144412e92 * cos(theta) ** 4 - 2.33273858486782e89 * cos(theta) ** 2 + 7.85433866958861e85 ) * sin(45 * phi) ) # @torch.jit.script def Yl89_m_minus_44(theta, phi): return ( 4.78682444162545e-85 * (1.0 - cos(theta) ** 2) ** 22 * ( 5.1011856924627e105 * cos(theta) ** 45 - 2.85320555680117e106 * cos(theta) ** 43 + 7.36127033654702e106 * cos(theta) ** 41 - 1.16305234604404e107 * cos(theta) ** 39 + 1.25997337488104e107 * cos(theta) ** 37 - 9.93067772391447e106 * cos(theta) ** 35 + 5.89695932707496e106 * cos(theta) ** 33 - 2.69575283523427e106 * cos(theta) ** 31 + 9.61292230355778e105 * cos(theta) ** 29 - 2.69347581452344e105 * cos(theta) ** 27 + 5.94597491130645e104 * cos(theta) ** 25 - 1.03288504539197e104 * cos(theta) ** 23 + 1.4049457875493e103 * cos(theta) ** 21 - 1.48335151023304e102 * cos(theta) ** 19 + 1.19987279209958e101 * cos(theta) ** 17 - 7.3012393613218e99 * cos(theta) ** 15 + 3.25948185773295e98 * cos(theta) ** 13 - 1.03139791035769e97 * cos(theta) ** 11 + 2.20384168879848e95 * cos(theta) ** 9 - 2.96148939144252e93 * cos(theta) ** 7 + 2.23709630288824e91 * cos(theta) ** 5 - 7.77579528289272e88 * cos(theta) ** 3 + 7.85433866958861e85 * cos(theta) ) * sin(44 * phi) ) # @torch.jit.script def Yl89_m_minus_43(theta, phi): return ( 3.74414135178388e-83 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 1.10895341140493e104 * cos(theta) ** 46 - 6.48455808363902e104 * cos(theta) ** 44 + 1.75268341346358e105 * cos(theta) ** 42 - 2.90763086511009e105 * cos(theta) ** 40 + 3.31571940758169e105 * cos(theta) ** 38 - 2.75852158997624e105 * cos(theta) ** 36 + 1.73439980208087e105 * cos(theta) ** 34 - 8.42422761010709e104 * cos(theta) ** 32 + 3.20430743451926e104 * cos(theta) ** 30 - 9.61955648044085e103 * cos(theta) ** 28 + 2.28691342742556e103 * cos(theta) ** 26 - 4.30368768913322e102 * cos(theta) ** 24 + 6.38611721613316e101 * cos(theta) ** 22 - 7.41675755116521e100 * cos(theta) ** 20 + 6.66595995610875e99 * cos(theta) ** 18 - 4.56327460082613e98 * cos(theta) ** 16 + 2.3282013269521e97 * cos(theta) ** 14 - 8.59498258631406e95 * cos(theta) ** 12 + 2.20384168879848e94 * cos(theta) ** 10 - 3.70186173930315e92 * cos(theta) ** 8 + 3.72849383814706e90 * cos(theta) ** 6 - 1.94394882072318e88 * cos(theta) ** 4 + 3.9271693347943e85 * cos(theta) ** 2 - 1.28380821667025e82 ) * sin(43 * phi) ) # @torch.jit.script def Yl89_m_minus_42(theta, phi): return ( 2.94909070805061e-81 * (1.0 - cos(theta) ** 2) ** 21 * ( 2.35947534341475e102 * cos(theta) ** 47 - 1.44101290747534e103 * cos(theta) ** 45 + 4.07600793828739e103 * cos(theta) ** 43 - 7.0917825978295e103 * cos(theta) ** 41 + 8.50184463482484e103 * cos(theta) ** 39 - 7.45546375669255e103 * cos(theta) ** 37 + 4.95542800594535e103 * cos(theta) ** 35 - 2.552796245487e103 * cos(theta) ** 33 + 1.03364755952234e103 * cos(theta) ** 31 - 3.31708844153133e102 * cos(theta) ** 29 + 8.47004973120578e101 * cos(theta) ** 27 - 1.72147507565329e101 * cos(theta) ** 25 + 2.77657270266659e100 * cos(theta) ** 23 - 3.53178931007867e99 * cos(theta) ** 21 + 3.50839997689934e98 * cos(theta) ** 19 - 2.68427917695654e97 * cos(theta) ** 17 + 1.55213421796807e96 * cos(theta) ** 15 - 6.61152506639543e94 * cos(theta) ** 13 + 2.00349244436225e93 * cos(theta) ** 11 - 4.11317971033684e91 * cos(theta) ** 9 + 5.32641976878151e89 * cos(theta) ** 7 - 3.88789764144636e87 * cos(theta) ** 5 + 1.30905644493143e85 * cos(theta) ** 3 - 1.28380821667025e82 * cos(theta) ) * sin(42 * phi) ) # @torch.jit.script def Yl89_m_minus_41(theta, phi): return ( 2.33853781656624e-79 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 4.91557363211407e100 * cos(theta) ** 48 - 3.13263675538117e101 * cos(theta) ** 46 + 9.2636544051986e101 * cos(theta) ** 44 - 1.68851966614988e102 * cos(theta) ** 42 + 2.12546115870621e102 * cos(theta) ** 40 - 1.96196414649804e102 * cos(theta) ** 38 + 1.37650777942926e102 * cos(theta) ** 36 - 7.50822425143234e101 * cos(theta) ** 34 + 3.23014862350732e101 * cos(theta) ** 32 - 1.10569614717711e101 * cos(theta) ** 30 + 3.02501776114492e100 * cos(theta) ** 28 - 6.62105798328187e99 * cos(theta) ** 26 + 1.15690529277775e99 * cos(theta) ** 24 - 1.60535877730849e98 * cos(theta) ** 22 + 1.75419998844967e97 * cos(theta) ** 20 - 1.4912662094203e96 * cos(theta) ** 18 + 9.70083886230044e94 * cos(theta) ** 16 - 4.72251790456816e93 * cos(theta) ** 14 + 1.66957703696854e92 * cos(theta) ** 12 - 4.11317971033684e90 * cos(theta) ** 10 + 6.65802471097689e88 * cos(theta) ** 8 - 6.4798294024106e86 * cos(theta) ** 6 + 3.27264111232859e84 * cos(theta) ** 4 - 6.41904108335126e81 * cos(theta) ** 2 + 2.04167973389035e78 ) * sin(41 * phi) ) # @torch.jit.script def Yl89_m_minus_40(theta, phi): return ( 1.86644034437968e-77 * (1.0 - cos(theta) ** 2) ** 20 * ( 1.00317829226818e99 * cos(theta) ** 49 - 6.66518458591738e99 * cos(theta) ** 47 + 2.05858986782191e100 * cos(theta) ** 45 - 3.92678992127879e100 * cos(theta) ** 43 + 5.18405160660051e100 * cos(theta) ** 41 - 5.03067729871292e100 * cos(theta) ** 39 + 3.72029129575477e100 * cos(theta) ** 37 - 2.14520692898067e100 * cos(theta) ** 35 + 9.78832916214339e99 * cos(theta) ** 33 - 3.56676176508745e99 * cos(theta) ** 31 + 1.04310957280859e99 * cos(theta) ** 29 - 2.45224369751181e98 * cos(theta) ** 27 + 4.62762117111099e97 * cos(theta) ** 25 - 6.97982077090647e96 * cos(theta) ** 23 + 8.35333327833177e95 * cos(theta) ** 21 - 7.84876952326475e94 * cos(theta) ** 19 + 5.7063758013532e93 * cos(theta) ** 17 - 3.14834526971211e92 * cos(theta) ** 15 + 1.28429002843734e91 * cos(theta) ** 13 - 3.7392542821244e89 * cos(theta) ** 11 + 7.39780523441877e87 * cos(theta) ** 9 - 9.25689914630086e85 * cos(theta) ** 7 + 6.54528222465717e83 * cos(theta) ** 5 - 2.13968036111709e81 * cos(theta) ** 3 + 2.04167973389035e78 * cos(theta) ) * sin(40 * phi) ) # @torch.jit.script def Yl89_m_minus_39(theta, phi): return ( 1.49897355401543e-75 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 2.00635658453636e97 * cos(theta) ** 50 - 1.38858012206612e98 * cos(theta) ** 48 + 4.47519536483024e98 * cos(theta) ** 46 - 8.92452254836089e98 * cos(theta) ** 44 + 1.23429800157155e99 * cos(theta) ** 42 - 1.25766932467823e99 * cos(theta) ** 40 + 9.79024025198622e98 * cos(theta) ** 38 - 5.95890813605741e98 * cos(theta) ** 36 + 2.87892034180688e98 * cos(theta) ** 34 - 1.11461305158983e98 * cos(theta) ** 32 + 3.47703190936198e97 * cos(theta) ** 30 - 8.75801320539931e96 * cos(theta) ** 28 + 1.77985429658115e96 * cos(theta) ** 26 - 2.90825865454436e95 * cos(theta) ** 24 + 3.79696967196899e94 * cos(theta) ** 22 - 3.92438476163237e93 * cos(theta) ** 20 + 3.17020877852955e92 * cos(theta) ** 18 - 1.96771579357007e91 * cos(theta) ** 16 + 9.17350020312386e89 * cos(theta) ** 14 - 3.11604523510366e88 * cos(theta) ** 12 + 7.39780523441877e86 * cos(theta) ** 10 - 1.15711239328761e85 * cos(theta) ** 8 + 1.0908803707762e83 * cos(theta) ** 6 - 5.34920090279272e80 * cos(theta) ** 4 + 1.02083986694518e78 * cos(theta) ** 2 - 3.16539493626411e74 ) * sin(39 * phi) ) # @torch.jit.script def Yl89_m_minus_38(theta, phi): return ( 1.21111126490024e-73 * (1.0 - cos(theta) ** 2) ** 19 * ( 3.93403251869874e95 * cos(theta) ** 51 - 2.83383698380841e96 * cos(theta) ** 49 + 9.52169226559626e96 * cos(theta) ** 47 - 1.98322723296909e97 * cos(theta) ** 45 + 2.87046046877105e97 * cos(theta) ** 43 - 3.06748615775178e97 * cos(theta) ** 41 + 2.5103180133298e97 * cos(theta) ** 39 - 1.61051571244795e97 * cos(theta) ** 37 + 8.2254866908768e96 * cos(theta) ** 35 - 3.37761530784796e96 * cos(theta) ** 33 + 1.12162319656838e96 * cos(theta) ** 31 - 3.02000455358597e95 * cos(theta) ** 29 + 6.59205295030055e94 * cos(theta) ** 27 - 1.16330346181774e94 * cos(theta) ** 25 + 1.65085637911695e93 * cos(theta) ** 23 - 1.86875464839637e92 * cos(theta) ** 21 + 1.66853093606819e91 * cos(theta) ** 19 - 1.15747987857063e90 * cos(theta) ** 17 + 6.11566680208257e88 * cos(theta) ** 15 - 2.39695787315666e87 * cos(theta) ** 13 + 6.72527748583524e85 * cos(theta) ** 11 - 1.28568043698623e84 * cos(theta) ** 9 + 1.55840052968028e82 * cos(theta) ** 7 - 1.06984018055854e80 * cos(theta) ** 5 + 3.40279955648392e77 * cos(theta) ** 3 - 3.16539493626411e74 * cos(theta) ) * sin(38 * phi) ) # @torch.jit.script def Yl89_m_minus_37(theta, phi): return ( 9.84209552655039e-72 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 7.56544715134372e93 * cos(theta) ** 52 - 5.66767396761682e94 * cos(theta) ** 50 + 1.98368588866589e95 * cos(theta) ** 48 - 4.3113635499328e95 * cos(theta) ** 46 + 6.52377379266147e95 * cos(theta) ** 44 - 7.30353847083757e95 * cos(theta) ** 42 + 6.2757950333245e95 * cos(theta) ** 40 - 4.23819924328408e95 * cos(theta) ** 38 + 2.28485741413244e95 * cos(theta) ** 36 - 9.93416267014106e94 * cos(theta) ** 34 + 3.50507248927619e94 * cos(theta) ** 32 - 1.00666818452866e94 * cos(theta) ** 30 + 2.35430462510734e93 * cos(theta) ** 28 - 4.4742440839144e92 * cos(theta) ** 26 + 6.87856824632063e91 * cos(theta) ** 24 - 8.49433931089259e90 * cos(theta) ** 22 + 8.34265468034093e89 * cos(theta) ** 20 - 6.43044376983682e88 * cos(theta) ** 18 + 3.82229175130161e87 * cos(theta) ** 16 - 1.71211276654047e86 * cos(theta) ** 14 + 5.6043979048627e84 * cos(theta) ** 12 - 1.28568043698623e83 * cos(theta) ** 10 + 1.94800066210035e81 * cos(theta) ** 8 - 1.78306696759757e79 * cos(theta) ** 6 + 8.5069988912098e76 * cos(theta) ** 4 - 1.58269746813206e74 * cos(theta) ** 2 + 4.79314799555438e70 ) * sin(37 * phi) ) # @torch.jit.script def Yl89_m_minus_36(theta, phi): return ( 8.04286507778352e-70 * (1.0 - cos(theta) ** 2) ** 18 * ( 1.4274428587441e92 * cos(theta) ** 53 - 1.11130862110134e93 * cos(theta) ** 51 + 4.04833854829773e93 * cos(theta) ** 49 - 9.17311393602723e93 * cos(theta) ** 47 + 1.44972750948033e94 * cos(theta) ** 45 - 1.69849731879944e94 * cos(theta) ** 43 + 1.530681715445e94 * cos(theta) ** 41 - 1.08671775468823e94 * cos(theta) ** 39 + 6.17529030846607e93 * cos(theta) ** 37 - 2.83833219146888e93 * cos(theta) ** 35 + 1.06214317856854e93 * cos(theta) ** 33 - 3.24731672428599e92 * cos(theta) ** 31 + 8.11829181071497e91 * cos(theta) ** 29 - 1.65712743848682e91 * cos(theta) ** 27 + 2.75142729852825e90 * cos(theta) ** 25 - 3.69319100473591e89 * cos(theta) ** 23 + 3.97269270492425e88 * cos(theta) ** 21 - 3.3844440893878e87 * cos(theta) ** 19 + 2.24840691253036e86 * cos(theta) ** 17 - 1.14140851102698e85 * cos(theta) ** 15 + 4.31107531143285e83 * cos(theta) ** 13 - 1.16880039726021e82 * cos(theta) ** 11 + 2.1644451801115e80 * cos(theta) ** 9 - 2.54723852513939e78 * cos(theta) ** 7 + 1.70139977824196e76 * cos(theta) ** 5 - 5.27565822710685e73 * cos(theta) ** 3 + 4.79314799555438e70 * cos(theta) ) * sin(36 * phi) ) # @torch.jit.script def Yl89_m_minus_35(theta, phi): return ( 6.60788794510886e-68 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 2.64341270137796e90 * cos(theta) ** 54 - 2.13713196365642e91 * cos(theta) ** 52 + 8.09667709659546e91 * cos(theta) ** 50 - 1.91106540333901e92 * cos(theta) ** 48 + 3.15158154234854e92 * cos(theta) ** 46 - 3.86022117908963e92 * cos(theta) ** 44 + 3.64448027486905e92 * cos(theta) ** 42 - 2.71679438672056e92 * cos(theta) ** 40 + 1.62507639696475e92 * cos(theta) ** 38 - 7.88425608741354e91 * cos(theta) ** 36 + 3.12395052520159e91 * cos(theta) ** 34 - 1.01478647633937e91 * cos(theta) ** 32 + 2.70609727023832e90 * cos(theta) ** 30 - 5.91831228031006e89 * cos(theta) ** 28 + 1.05824126866471e89 * cos(theta) ** 26 - 1.53882958530663e88 * cos(theta) ** 24 + 1.80576941132921e87 * cos(theta) ** 22 - 1.6922220446939e86 * cos(theta) ** 20 + 1.24911495140575e85 * cos(theta) ** 18 - 7.13380319391864e83 * cos(theta) ** 16 + 3.07933950816632e82 * cos(theta) ** 14 - 9.74000331050175e80 * cos(theta) ** 12 + 2.1644451801115e79 * cos(theta) ** 10 - 3.18404815642424e77 * cos(theta) ** 8 + 2.83566629706993e75 * cos(theta) ** 6 - 1.31891455677671e73 * cos(theta) ** 4 + 2.39657399777719e70 * cos(theta) ** 2 - 7.10095999341389e66 ) * sin(35 * phi) ) # @torch.jit.script def Yl89_m_minus_34(theta, phi): return ( 5.45701134971043e-66 * (1.0 - cos(theta) ** 2) ** 17 * ( 4.80620491159629e88 * cos(theta) ** 55 - 4.03232445972909e89 * cos(theta) ** 53 + 1.58758374443048e90 * cos(theta) ** 51 - 3.90013347620205e90 * cos(theta) ** 49 + 6.70549264329476e90 * cos(theta) ** 47 - 8.57826928686584e90 * cos(theta) ** 45 + 8.47553552295128e90 * cos(theta) ** 43 - 6.62632777248918e90 * cos(theta) ** 41 + 4.16686255631988e90 * cos(theta) ** 39 - 2.13088002362528e90 * cos(theta) ** 37 + 8.92557292914741e89 * cos(theta) ** 35 - 3.07511053436173e89 * cos(theta) ** 33 + 8.72934603302684e88 * cos(theta) ** 31 - 2.04079733803795e88 * cos(theta) ** 29 + 3.9194121061656e87 * cos(theta) ** 27 - 6.15531834122651e86 * cos(theta) ** 25 + 7.85117135360524e85 * cos(theta) ** 23 - 8.0582002128281e84 * cos(theta) ** 21 + 6.57428921792503e83 * cos(theta) ** 19 - 4.19635481995214e82 * cos(theta) ** 17 + 2.05289300544421e81 * cos(theta) ** 15 - 7.4923102388475e79 * cos(theta) ** 13 + 1.967677436465e78 * cos(theta) ** 11 - 3.53783128491582e76 * cos(theta) ** 9 + 4.05095185295705e74 * cos(theta) ** 7 - 2.63782911355343e72 * cos(theta) ** 5 + 7.98857999259063e69 * cos(theta) ** 3 - 7.10095999341389e66 * cos(theta) ) * sin(34 * phi) ) # @torch.jit.script def Yl89_m_minus_33(theta, phi): return ( 4.52899067270559e-64 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 8.58250877070766e86 * cos(theta) ** 56 - 7.46726751801684e87 * cos(theta) ** 54 + 3.05304566236631e88 * cos(theta) ** 52 - 7.8002669524041e88 * cos(theta) ** 50 + 1.39697763401974e89 * cos(theta) ** 48 - 1.86484114931866e89 * cos(theta) ** 46 + 1.92625807339802e89 * cos(theta) ** 44 - 1.5776970886879e89 * cos(theta) ** 42 + 1.04171563907997e89 * cos(theta) ** 40 - 5.60757900954021e88 * cos(theta) ** 38 + 2.47932581365206e88 * cos(theta) ** 36 - 9.04444274812273e87 * cos(theta) ** 34 + 2.72792063532089e87 * cos(theta) ** 32 - 6.80265779345983e86 * cos(theta) ** 30 + 1.39979003791629e86 * cos(theta) ** 28 - 2.36743013124097e85 * cos(theta) ** 26 + 3.27132139733552e84 * cos(theta) ** 24 - 3.66281827855823e83 * cos(theta) ** 22 + 3.28714460896251e82 * cos(theta) ** 20 - 2.33130823330675e81 * cos(theta) ** 18 + 1.28305812840263e80 * cos(theta) ** 16 - 5.35165017060535e78 * cos(theta) ** 14 + 1.63973119705417e77 * cos(theta) ** 12 - 3.53783128491582e75 * cos(theta) ** 10 + 5.06368981619631e73 * cos(theta) ** 8 - 4.39638185592238e71 * cos(theta) ** 6 + 1.99714499814766e69 * cos(theta) ** 4 - 3.55047999670695e66 * cos(theta) ** 2 + 1.03091753679063e63 ) * sin(33 * phi) ) # @torch.jit.script def Yl89_m_minus_32(theta, phi): return ( 3.77675462261663e-62 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.50570329310661e85 * cos(theta) ** 57 - 1.35768500327579e86 * cos(theta) ** 55 + 5.7604635138987e86 * cos(theta) ** 53 - 1.52946410831453e87 * cos(theta) ** 51 + 2.85097476330559e87 * cos(theta) ** 49 - 3.96774712620992e87 * cos(theta) ** 47 + 4.28057349644004e87 * cos(theta) ** 45 - 3.6690629969486e87 * cos(theta) ** 43 + 2.54076985141456e87 * cos(theta) ** 41 - 1.43784077167698e87 * cos(theta) ** 39 + 6.70088057743799e86 * cos(theta) ** 37 - 2.58412649946364e86 * cos(theta) ** 35 + 8.26642616763906e85 * cos(theta) ** 33 - 2.19440573982575e85 * cos(theta) ** 31 + 4.82686219971133e84 * cos(theta) ** 29 - 8.76825974533691e83 * cos(theta) ** 27 + 1.30852855893421e83 * cos(theta) ** 25 - 1.59252968632966e82 * cos(theta) ** 23 + 1.56530695664882e81 * cos(theta) ** 21 - 1.22700433331934e80 * cos(theta) ** 19 + 7.54740075530961e78 * cos(theta) ** 17 - 3.56776678040357e77 * cos(theta) ** 15 + 1.26133169004167e76 * cos(theta) ** 13 - 3.21621025901438e74 * cos(theta) ** 11 + 5.6263220179959e72 * cos(theta) ** 9 - 6.28054550846054e70 * cos(theta) ** 7 + 3.99428999629531e68 * cos(theta) ** 5 - 1.18349333223565e66 * cos(theta) ** 3 + 1.03091753679063e63 * cos(theta) ) * sin(32 * phi) ) # @torch.jit.script def Yl89_m_minus_31(theta, phi): return ( 3.1639196910608e-60 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 2.59604016052863e83 * cos(theta) ** 58 - 2.42443750584962e84 * cos(theta) ** 56 + 1.06675250257383e85 * cos(theta) ** 54 - 2.9412771313741e85 * cos(theta) ** 52 + 5.70194952661119e85 * cos(theta) ** 50 - 8.26613984627066e85 * cos(theta) ** 48 + 9.30559455747834e85 * cos(theta) ** 46 - 8.33877953851955e85 * cos(theta) ** 44 + 6.04945202717753e85 * cos(theta) ** 42 - 3.59460192919245e85 * cos(theta) ** 40 + 1.76338962564158e85 * cos(theta) ** 38 - 7.17812916517677e84 * cos(theta) ** 36 + 2.43130181401149e84 * cos(theta) ** 34 - 6.85751793695548e83 * cos(theta) ** 32 + 1.60895406657044e83 * cos(theta) ** 30 - 3.13152133762033e82 * cos(theta) ** 28 + 5.03280214974695e81 * cos(theta) ** 26 - 6.63554035970693e80 * cos(theta) ** 24 + 7.11503162113098e79 * cos(theta) ** 22 - 6.1350216665967e78 * cos(theta) ** 20 + 4.19300041961645e77 * cos(theta) ** 18 - 2.22985423775223e76 * cos(theta) ** 16 + 9.00951207172619e74 * cos(theta) ** 14 - 2.68017521584532e73 * cos(theta) ** 12 + 5.6263220179959e71 * cos(theta) ** 10 - 7.85068188557567e69 * cos(theta) ** 8 + 6.65714999382552e67 * cos(theta) ** 6 - 2.95873333058912e65 * cos(theta) ** 4 + 5.15458768395317e62 * cos(theta) ** 2 - 1.46896200739617e59 ) * sin(31 * phi) ) # @torch.jit.script def Yl89_m_minus_30(theta, phi): return ( 2.66220858884676e-58 * (1.0 - cos(theta) ** 2) ** 15 * ( 4.4000680686926e81 * cos(theta) ** 59 - 4.25339913306951e82 * cos(theta) ** 57 + 1.9395500046797e83 * cos(theta) ** 55 - 5.54957949315867e83 * cos(theta) ** 53 + 1.11802931894337e84 * cos(theta) ** 51 - 1.68696731556544e84 * cos(theta) ** 49 + 1.97991373563369e84 * cos(theta) ** 47 - 1.85306211967101e84 * cos(theta) ** 45 + 1.40684930864594e84 * cos(theta) ** 43 - 8.76732177851816e83 * cos(theta) ** 41 + 4.52151186061943e83 * cos(theta) ** 39 - 1.94003490950724e83 * cos(theta) ** 37 + 6.94657661146139e82 * cos(theta) ** 35 - 2.07803573847136e82 * cos(theta) ** 33 + 5.19017440829175e81 * cos(theta) ** 31 - 1.07983494400701e81 * cos(theta) ** 29 + 1.86400079620257e80 * cos(theta) ** 27 - 2.65421614388277e79 * cos(theta) ** 25 + 3.09349200918738e78 * cos(theta) ** 23 - 2.92143888885557e77 * cos(theta) ** 21 + 2.20684232611392e76 * cos(theta) ** 19 - 1.31167896338367e75 * cos(theta) ** 17 + 6.00634138115079e73 * cos(theta) ** 15 - 2.06167324295794e72 * cos(theta) ** 13 + 5.11483819817809e70 * cos(theta) ** 11 - 8.72297987286186e68 * cos(theta) ** 9 + 9.5102142768936e66 * cos(theta) ** 7 - 5.91746666117824e64 * cos(theta) ** 5 + 1.71819589465106e62 * cos(theta) ** 3 - 1.46896200739617e59 * cos(theta) ) * sin(30 * phi) ) # @torch.jit.script def Yl89_m_minus_29(theta, phi): return ( 2.24952687544693e-56 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 7.33344678115433e79 * cos(theta) ** 60 - 7.33344678115433e80 * cos(theta) ** 58 + 3.46348215121375e81 * cos(theta) ** 56 - 1.0276999061405e82 * cos(theta) ** 54 + 2.1500563825834e82 * cos(theta) ** 52 - 3.37393463113088e82 * cos(theta) ** 50 + 4.12482028257019e82 * cos(theta) ** 48 - 4.02839591232829e82 * cos(theta) ** 46 + 3.19738479237713e82 * cos(theta) ** 44 - 2.08745756631385e82 * cos(theta) ** 42 + 1.13037796515486e82 * cos(theta) ** 40 - 5.10535502501904e81 * cos(theta) ** 38 + 1.92960461429483e81 * cos(theta) ** 36 - 6.1118698190334e80 * cos(theta) ** 34 + 1.62192950259117e80 * cos(theta) ** 32 - 3.5994498133567e79 * cos(theta) ** 30 + 6.65714570072348e78 * cos(theta) ** 28 - 1.02085236303184e78 * cos(theta) ** 26 + 1.28895500382808e77 * cos(theta) ** 24 - 1.32792676766162e76 * cos(theta) ** 22 + 1.10342116305696e75 * cos(theta) ** 20 - 7.28710535213147e73 * cos(theta) ** 18 + 3.75396336321924e72 * cos(theta) ** 16 - 1.47262374496996e71 * cos(theta) ** 14 + 4.26236516514841e69 * cos(theta) ** 12 - 8.72297987286186e67 * cos(theta) ** 10 + 1.1887767846117e66 * cos(theta) ** 8 - 9.86244443529707e63 * cos(theta) ** 6 + 4.29548973662764e61 * cos(theta) ** 4 - 7.34481003698087e58 * cos(theta) ** 2 + 2.05736975825795e55 ) * sin(29 * phi) ) # @torch.jit.script def Yl89_m_minus_28(theta, phi): return ( 1.90852172201028e-54 * (1.0 - cos(theta) ** 2) ** 14 * ( 1.20220439035317e78 * cos(theta) ** 61 - 1.24295708155158e79 * cos(theta) ** 59 + 6.07628447581359e79 * cos(theta) ** 57 - 1.86854528389181e80 * cos(theta) ** 55 + 4.05671015581774e80 * cos(theta) ** 53 - 6.61555810025663e80 * cos(theta) ** 51 + 8.41800057667385e80 * cos(theta) ** 49 - 8.57105513261338e80 * cos(theta) ** 47 + 7.10529953861584e80 * cos(theta) ** 45 - 4.85455247979965e80 * cos(theta) ** 43 + 2.75701942720697e80 * cos(theta) ** 41 - 1.30906539103052e80 * cos(theta) ** 39 + 5.21514760620225e79 * cos(theta) ** 37 - 1.74624851972383e79 * cos(theta) ** 35 + 4.91493788663992e78 * cos(theta) ** 33 - 1.16111284301829e78 * cos(theta) ** 31 + 2.2955674830081e77 * cos(theta) ** 29 - 3.78093467789569e76 * cos(theta) ** 27 + 5.1558200153123e75 * cos(theta) ** 25 - 5.77359464200706e74 * cos(theta) ** 23 + 5.25438649074743e73 * cos(theta) ** 21 - 3.83531860638499e72 * cos(theta) ** 19 + 2.20821374307014e71 * cos(theta) ** 17 - 9.81749163313303e69 * cos(theta) ** 15 + 3.27874243472954e68 * cos(theta) ** 13 - 7.92998170260169e66 * cos(theta) ** 11 + 1.320863094013e65 * cos(theta) ** 9 - 1.40892063361387e63 * cos(theta) ** 7 + 8.59097947325529e60 * cos(theta) ** 5 - 2.44827001232696e58 * cos(theta) ** 3 + 2.05736975825795e55 * cos(theta) ) * sin(28 * phi) ) # @torch.jit.script def Yl89_m_minus_27(theta, phi): return ( 1.62549591679572e-52 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.93903933927931e76 * cos(theta) ** 62 - 2.0715951359193e77 * cos(theta) ** 60 + 1.04763525445062e78 * cos(theta) ** 58 - 3.33668800694966e78 * cos(theta) ** 56 + 7.5124262144773e78 * cos(theta) ** 54 - 1.27222271158781e79 * cos(theta) ** 52 + 1.68360011533477e79 * cos(theta) ** 50 - 1.78563648596112e79 * cos(theta) ** 48 + 1.54463033448171e79 * cos(theta) ** 46 - 1.10330738177265e79 * cos(theta) ** 44 + 6.5643319695404e78 * cos(theta) ** 42 - 3.27266347757631e78 * cos(theta) ** 40 + 1.37240726479007e78 * cos(theta) ** 38 - 4.85069033256619e77 * cos(theta) ** 36 + 1.4455699666588e77 * cos(theta) ** 34 - 3.62847763443215e76 * cos(theta) ** 32 + 7.65189161002699e75 * cos(theta) ** 30 - 1.35033381353417e75 * cos(theta) ** 28 + 1.98300769819704e74 * cos(theta) ** 26 - 2.40566443416961e73 * cos(theta) ** 24 + 2.38835749579429e72 * cos(theta) ** 22 - 1.91765930319249e71 * cos(theta) ** 20 + 1.22678541281675e70 * cos(theta) ** 18 - 6.13593227070815e68 * cos(theta) ** 16 + 2.34195888194967e67 * cos(theta) ** 14 - 6.60831808550141e65 * cos(theta) ** 12 + 1.320863094013e64 * cos(theta) ** 10 - 1.76115079201733e62 * cos(theta) ** 8 + 1.43182991220921e60 * cos(theta) ** 6 - 6.12067503081739e57 * cos(theta) ** 4 + 1.02868487912897e55 * cos(theta) ** 2 - 2.83618659809477e51 ) * sin(27 * phi) ) # @torch.jit.script def Yl89_m_minus_26(theta, phi): return ( 1.38958511135867e-50 * (1.0 - cos(theta) ** 2) ** 13 * ( 3.07784022107826e74 * cos(theta) ** 63 - 3.39605759986771e75 * cos(theta) ** 61 + 1.77565297364512e76 * cos(theta) ** 59 - 5.85383860868361e76 * cos(theta) ** 57 + 1.36589567535951e77 * cos(theta) ** 55 - 2.40042021054304e77 * cos(theta) ** 53 + 3.30117669673484e77 * cos(theta) ** 51 - 3.6441560937982e77 * cos(theta) ** 49 + 3.28644752017384e77 * cos(theta) ** 47 - 2.45179418171699e77 * cos(theta) ** 45 + 1.52658883012567e77 * cos(theta) ** 43 - 7.98210604286905e76 * cos(theta) ** 41 + 3.51899298664119e76 * cos(theta) ** 39 - 1.31099738718005e76 * cos(theta) ** 37 + 4.13019990473943e75 * cos(theta) ** 35 - 1.09953867710065e75 * cos(theta) ** 33 + 2.46835213226677e74 * cos(theta) ** 31 - 4.65632349494543e73 * cos(theta) ** 29 + 7.34447295628533e72 * cos(theta) ** 27 - 9.62265773667843e71 * cos(theta) ** 25 + 1.03841630251926e71 * cos(theta) ** 23 - 9.1317109675833e69 * cos(theta) ** 21 + 6.45676533061446e68 * cos(theta) ** 19 - 3.60937192394597e67 * cos(theta) ** 17 + 1.56130592129978e66 * cos(theta) ** 15 - 5.08332160423185e64 * cos(theta) ** 13 + 1.20078463092091e63 * cos(theta) ** 11 - 1.95683421335259e61 * cos(theta) ** 9 + 2.04547130315602e59 * cos(theta) ** 7 - 1.22413500616348e57 * cos(theta) ** 5 + 3.42894959709658e54 * cos(theta) ** 3 - 2.83618659809477e51 * cos(theta) ) * sin(26 * phi) ) # @torch.jit.script def Yl89_m_minus_25(theta, phi): return ( 1.19213121397702e-48 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 4.80912534543478e72 * cos(theta) ** 64 - 5.47751225785115e73 * cos(theta) ** 62 + 2.95942162274186e74 * cos(theta) ** 60 - 1.00928251873855e75 * cos(theta) ** 58 + 2.43909942028484e75 * cos(theta) ** 56 - 4.44522261211675e75 * cos(theta) ** 54 + 6.34841672449009e75 * cos(theta) ** 52 - 7.28831218759641e75 * cos(theta) ** 50 + 6.84676566702884e75 * cos(theta) ** 48 - 5.32998735155868e75 * cos(theta) ** 46 + 3.46952006846744e75 * cos(theta) ** 44 - 1.90050143877834e75 * cos(theta) ** 42 + 8.79748246660298e74 * cos(theta) ** 40 - 3.44999312415803e74 * cos(theta) ** 38 + 1.14727775131651e74 * cos(theta) ** 36 - 3.23393728559015e73 * cos(theta) ** 34 + 7.71360041333366e72 * cos(theta) ** 32 - 1.55210783164848e72 * cos(theta) ** 30 + 2.62302605581619e71 * cos(theta) ** 28 - 3.70102220641478e70 * cos(theta) ** 26 + 4.32673459383023e69 * cos(theta) ** 24 - 4.15077771253786e68 * cos(theta) ** 22 + 3.22838266530723e67 * cos(theta) ** 20 - 2.00520662441443e66 * cos(theta) ** 18 + 9.75816200812364e64 * cos(theta) ** 16 - 3.63094400302275e63 * cos(theta) ** 14 + 1.00065385910076e62 * cos(theta) ** 12 - 1.95683421335259e60 * cos(theta) ** 10 + 2.55683912894503e58 * cos(theta) ** 8 - 2.04022501027246e56 * cos(theta) ** 6 + 8.57237399274144e53 * cos(theta) ** 4 - 1.41809329904739e51 * cos(theta) ** 2 + 3.85351439958529e47 ) * sin(25 * phi) ) # @torch.jit.script def Yl89_m_minus_24(theta, phi): return ( 1.02620272462204e-46 * (1.0 - cos(theta) ** 2) ** 12 * ( 7.39865437759198e70 * cos(theta) ** 65 - 8.69446390135102e71 * cos(theta) ** 63 + 4.85151085695387e72 * cos(theta) ** 61 - 1.71064833684501e73 * cos(theta) ** 59 + 4.2791217899734e73 * cos(theta) ** 57 - 8.08222293112136e73 * cos(theta) ** 55 + 1.19781447631888e74 * cos(theta) ** 53 - 1.42908082109734e74 * cos(theta) ** 51 + 1.39729911572017e74 * cos(theta) ** 49 - 1.13403986203376e74 * cos(theta) ** 47 + 7.71004459659432e73 * cos(theta) ** 45 - 4.41977078785661e73 * cos(theta) ** 43 + 2.14572743087878e73 * cos(theta) ** 41 - 8.84613621578982e72 * cos(theta) ** 39 + 3.1007506792338e72 * cos(theta) ** 37 - 9.23982081597187e71 * cos(theta) ** 35 + 2.33745467070717e71 * cos(theta) ** 33 - 5.00679945693057e70 * cos(theta) ** 31 + 9.04491743384893e69 * cos(theta) ** 29 - 1.37074896533881e69 * cos(theta) ** 27 + 1.73069383753209e68 * cos(theta) ** 25 - 1.80468596197298e67 * cos(theta) ** 23 + 1.53732507871773e66 * cos(theta) ** 21 - 1.05537190758654e65 * cos(theta) ** 19 + 5.74009529889626e63 * cos(theta) ** 17 - 2.4206293353485e62 * cos(theta) ** 15 + 7.69733737769814e60 * cos(theta) ** 13 - 1.7789401939569e59 * cos(theta) ** 11 + 2.84093236549447e57 * cos(theta) ** 9 - 2.91460715753209e55 * cos(theta) ** 7 + 1.71447479854829e53 * cos(theta) ** 5 - 4.72697766349128e50 * cos(theta) ** 3 + 3.85351439958529e47 * cos(theta) ) * sin(24 * phi) ) # @torch.jit.script def Yl89_m_minus_23(theta, phi): return ( 8.86225726032474e-45 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.12100823902909e69 * cos(theta) ** 66 - 1.3585099845861e70 * cos(theta) ** 64 + 7.82501751121592e70 * cos(theta) ** 62 - 2.85108056140834e71 * cos(theta) ** 60 + 7.37779618960931e71 * cos(theta) ** 58 - 1.4432540948431e72 * cos(theta) ** 56 + 2.21817495614608e72 * cos(theta) ** 54 - 2.74823234826411e72 * cos(theta) ** 52 + 2.79459823144034e72 * cos(theta) ** 50 - 2.36258304590367e72 * cos(theta) ** 48 + 1.67609665143355e72 * cos(theta) ** 46 - 1.0044933608765e72 * cos(theta) ** 44 + 5.10887483542566e71 * cos(theta) ** 42 - 2.21153405394746e71 * cos(theta) ** 40 + 8.15987020851001e70 * cos(theta) ** 38 - 2.56661689332552e70 * cos(theta) ** 36 + 6.8748666785505e69 * cos(theta) ** 34 - 1.5646248302908e69 * cos(theta) ** 32 + 3.01497247794964e68 * cos(theta) ** 30 - 4.89553201906717e67 * cos(theta) ** 28 + 6.65651475973882e66 * cos(theta) ** 26 - 7.5195248415541e65 * cos(theta) ** 24 + 6.98784126689876e64 * cos(theta) ** 22 - 5.2768595379327e63 * cos(theta) ** 20 + 3.18894183272014e62 * cos(theta) ** 18 - 1.51289333459281e61 * cos(theta) ** 16 + 5.49809812692724e59 * cos(theta) ** 14 - 1.48245016163075e58 * cos(theta) ** 12 + 2.84093236549447e56 * cos(theta) ** 10 - 3.64325894691511e54 * cos(theta) ** 8 + 2.85745799758048e52 * cos(theta) ** 6 - 1.18174441587282e50 * cos(theta) ** 4 + 1.92675719979264e47 * cos(theta) ** 2 - 5.16695414264586e43 ) * sin(23 * phi) ) # @torch.jit.script def Yl89_m_minus_22(theta, phi): return ( 7.67698630014625e-43 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.67314662541655e67 * cos(theta) ** 67 - 2.09001536090169e68 * cos(theta) ** 65 + 1.24206627162157e69 * cos(theta) ** 63 - 4.67390255968581e69 * cos(theta) ** 61 + 1.25047393044226e70 * cos(theta) ** 59 - 2.53202472779491e70 * cos(theta) ** 57 + 4.03304537481106e70 * cos(theta) ** 55 - 5.1853440533285e70 * cos(theta) ** 53 + 5.47960437537322e70 * cos(theta) ** 51 - 4.82159805286463e70 * cos(theta) ** 49 + 3.56616308815648e70 * cos(theta) ** 47 - 2.23220746861445e70 * cos(theta) ** 45 + 1.18811042684318e70 * cos(theta) ** 43 - 5.39398549743282e69 * cos(theta) ** 41 + 2.09227441243846e69 * cos(theta) ** 39 - 6.9368024143933e68 * cos(theta) ** 37 + 1.964247622443e68 * cos(theta) ** 35 - 4.74128736451759e67 * cos(theta) ** 33 + 9.7257176708053e66 * cos(theta) ** 31 - 1.68811448933351e66 * cos(theta) ** 29 + 2.4653758369403e65 * cos(theta) ** 27 - 3.00780993662164e64 * cos(theta) ** 25 + 3.03819185517337e63 * cos(theta) ** 23 - 2.51279025615843e62 * cos(theta) ** 21 + 1.67839043827376e61 * cos(theta) ** 19 - 8.89937255642831e59 * cos(theta) ** 17 + 3.66539875128483e58 * cos(theta) ** 15 - 1.1403462781775e57 * cos(theta) ** 13 + 2.58266578681316e55 * cos(theta) ** 11 - 4.04806549657235e53 * cos(theta) ** 9 + 4.0820828536864e51 * cos(theta) ** 7 - 2.36348883174564e49 * cos(theta) ** 5 + 6.42252399930881e46 * cos(theta) ** 3 - 5.16695414264586e43 * cos(theta) ) * sin(22 * phi) ) # @torch.jit.script def Yl89_m_minus_21(theta, phi): return ( 6.66970631729821e-41 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 2.46050974325963e65 * cos(theta) ** 68 - 3.16668994076013e66 * cos(theta) ** 66 + 1.94072854940871e67 * cos(theta) ** 64 - 7.53855251562227e67 * cos(theta) ** 62 + 2.08412321740376e68 * cos(theta) ** 60 - 4.36555987550847e68 * cos(theta) ** 58 + 7.20186674073403e68 * cos(theta) ** 56 - 9.60248898764537e68 * cos(theta) ** 54 + 1.05377007218716e69 * cos(theta) ** 52 - 9.64319610572927e68 * cos(theta) ** 50 + 7.42950643365934e68 * cos(theta) ** 48 - 4.85262493177055e68 * cos(theta) ** 46 + 2.70025097009813e68 * cos(theta) ** 44 - 1.28428226129353e68 * cos(theta) ** 42 + 5.23068603109616e67 * cos(theta) ** 40 - 1.82547431957718e67 * cos(theta) ** 38 + 5.456243395675e66 * cos(theta) ** 36 - 1.39449628368164e66 * cos(theta) ** 34 + 3.03928677212666e65 * cos(theta) ** 32 - 5.62704829777836e64 * cos(theta) ** 30 + 8.80491370335822e63 * cos(theta) ** 28 - 1.15684997562371e63 * cos(theta) ** 26 + 1.26591327298891e62 * cos(theta) ** 24 - 1.14217738916292e61 * cos(theta) ** 22 + 8.3919521913688e59 * cos(theta) ** 20 - 4.9440958646824e58 * cos(theta) ** 18 + 2.29087421955302e57 * cos(theta) ** 16 - 8.14533055841073e55 * cos(theta) ** 14 + 2.15222148901097e54 * cos(theta) ** 12 - 4.04806549657235e52 * cos(theta) ** 10 + 5.102603567108e50 * cos(theta) ** 8 - 3.9391480529094e48 * cos(theta) ** 6 + 1.6056309998272e46 * cos(theta) ** 4 - 2.58347707132293e43 * cos(theta) ** 2 + 6.84546123826956e39 ) * sin(21 * phi) ) # @torch.jit.script def Yl89_m_minus_20(theta, phi): return ( 5.81068856595213e-39 * (1.0 - cos(theta) ** 2) ** 10 * ( 3.56595614965164e63 * cos(theta) ** 69 - 4.72640289665692e64 * cos(theta) ** 67 + 2.98573622985956e65 * cos(theta) ** 65 - 1.19659563740036e66 * cos(theta) ** 63 + 3.41659543836682e66 * cos(theta) ** 61 - 7.39925402628554e66 * cos(theta) ** 59 + 1.26348539311123e67 * cos(theta) ** 57 - 1.7459070886628e67 * cos(theta) ** 55 + 1.98824541922105e67 * cos(theta) ** 53 - 1.89082276582927e67 * cos(theta) ** 51 + 1.51622580278762e67 * cos(theta) ** 49 - 1.03247338973841e67 * cos(theta) ** 47 + 6.00055771132917e66 * cos(theta) ** 45 - 2.98670293324076e66 * cos(theta) ** 43 + 1.27577708075516e66 * cos(theta) ** 41 - 4.68070338353124e65 * cos(theta) ** 39 + 1.47466037720946e65 * cos(theta) ** 37 - 3.98427509623327e64 * cos(theta) ** 35 + 9.20995991553533e63 * cos(theta) ** 33 - 1.81517687025108e63 * cos(theta) ** 31 + 3.03617713908904e62 * cos(theta) ** 29 - 4.28462953934707e61 * cos(theta) ** 27 + 5.06365309195562e60 * cos(theta) ** 25 - 4.96598864853445e59 * cos(theta) ** 23 + 3.99616771017562e58 * cos(theta) ** 21 - 2.60215571825389e57 * cos(theta) ** 19 + 1.3475730703253e56 * cos(theta) ** 17 - 5.43022037227382e54 * cos(theta) ** 15 + 1.6555549915469e53 * cos(theta) ** 13 - 3.6800595423385e51 * cos(theta) ** 11 + 5.66955951900889e49 * cos(theta) ** 9 - 5.62735436129915e47 * cos(theta) ** 7 + 3.2112619996544e45 * cos(theta) ** 5 - 8.61159023774311e42 * cos(theta) ** 3 + 6.84546123826956e39 * cos(theta) ) * sin(20 * phi) ) # @torch.jit.script def Yl89_m_minus_19(theta, phi): return ( 5.07562897863914e-37 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 5.09422307093091e61 * cos(theta) ** 70 - 6.9505924950837e62 * cos(theta) ** 68 + 4.52384277251448e63 * cos(theta) ** 66 - 1.86968068343806e64 * cos(theta) ** 64 + 5.51063780381745e64 * cos(theta) ** 62 - 1.23320900438092e65 * cos(theta) ** 60 + 2.17842309157109e65 * cos(theta) ** 58 - 3.11769122975499e65 * cos(theta) ** 56 + 3.68193596152047e65 * cos(theta) ** 54 - 3.63619762659475e65 * cos(theta) ** 52 + 3.03245160557524e65 * cos(theta) ** 50 - 2.1509862286217e65 * cos(theta) ** 48 + 1.30446906768025e65 * cos(theta) ** 46 - 6.78796121191083e64 * cos(theta) ** 44 + 3.03756447798848e64 * cos(theta) ** 42 - 1.17017584588281e64 * cos(theta) ** 40 + 3.88068520318279e63 * cos(theta) ** 38 - 1.10674308228702e63 * cos(theta) ** 36 + 2.70881173986333e62 * cos(theta) ** 34 - 5.67242771953463e61 * cos(theta) ** 32 + 1.01205904636301e61 * cos(theta) ** 30 - 1.5302248354811e60 * cos(theta) ** 28 + 1.94755888152139e59 * cos(theta) ** 26 - 2.06916193688935e58 * cos(theta) ** 24 + 1.81643986826165e57 * cos(theta) ** 22 - 1.30107785912695e56 * cos(theta) ** 20 + 7.4865170573628e54 * cos(theta) ** 18 - 3.39388773267114e53 * cos(theta) ** 16 + 1.18253927967635e52 * cos(theta) ** 14 - 3.06671628528208e50 * cos(theta) ** 12 + 5.66955951900889e48 * cos(theta) ** 10 - 7.03419295162393e46 * cos(theta) ** 8 + 5.35210333275734e44 * cos(theta) ** 6 - 2.15289755943578e42 * cos(theta) ** 4 + 3.42273061913478e39 * cos(theta) ** 2 - 8.97177095448173e35 ) * sin(19 * phi) ) # @torch.jit.script def Yl89_m_minus_18(theta, phi): return ( 4.44458197209647e-35 * (1.0 - cos(theta) ** 2) ** 9 * ( 7.17496207173368e59 * cos(theta) ** 71 - 1.0073322456643e61 * cos(theta) ** 69 + 6.75200413808131e61 * cos(theta) ** 67 - 2.87643182067395e62 * cos(theta) ** 65 + 8.74704413304358e62 * cos(theta) ** 63 - 2.0216541055425e63 * cos(theta) ** 61 + 3.6922425280866e63 * cos(theta) ** 59 - 5.46963373641227e63 * cos(theta) ** 57 + 6.6944290209463e63 * cos(theta) ** 55 - 6.86075023885801e63 * cos(theta) ** 53 + 5.94598354034361e63 * cos(theta) ** 51 - 4.38976781351367e63 * cos(theta) ** 49 + 2.77546610144735e63 * cos(theta) ** 47 - 1.50843582486907e63 * cos(theta) ** 45 + 7.06410343718251e62 * cos(theta) ** 43 - 2.85408742898246e62 * cos(theta) ** 41 + 9.95047487995587e61 * cos(theta) ** 39 - 2.99119751969464e61 * cos(theta) ** 37 + 7.73946211389523e60 * cos(theta) ** 35 - 1.71891749076807e60 * cos(theta) ** 33 + 3.26470660117101e59 * cos(theta) ** 31 - 5.27663736372791e58 * cos(theta) ** 29 + 7.21318104267183e57 * cos(theta) ** 27 - 8.27664774755741e56 * cos(theta) ** 25 + 7.89756464461585e55 * cos(theta) ** 23 - 6.19560885298546e54 * cos(theta) ** 21 + 3.94027213545411e53 * cos(theta) ** 19 - 1.99640454863008e52 * cos(theta) ** 17 + 7.88359519784236e50 * cos(theta) ** 15 - 2.35901252714006e49 * cos(theta) ** 13 + 5.15414501728081e47 * cos(theta) ** 11 - 7.81576994624882e45 * cos(theta) ** 9 + 7.64586190393906e43 * cos(theta) ** 7 - 4.30579511887155e41 * cos(theta) ** 5 + 1.14091020637826e39 * cos(theta) ** 3 - 8.97177095448173e35 * cos(theta) ) * sin(18 * phi) ) # @torch.jit.script def Yl89_m_minus_17(theta, phi): return ( 3.90111773492035e-33 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 9.96522509963011e57 * cos(theta) ** 72 - 1.43904606523472e59 * cos(theta) ** 70 + 9.92941785011957e59 * cos(theta) ** 68 - 4.35823003132416e60 * cos(theta) ** 66 + 1.36672564578806e61 * cos(theta) ** 64 - 3.26073242829435e61 * cos(theta) ** 62 + 6.153737546811e61 * cos(theta) ** 60 - 9.43040299381425e61 * cos(theta) ** 58 + 1.19543375374041e62 * cos(theta) ** 56 - 1.27050930349222e62 * cos(theta) ** 54 + 1.143458373143e62 * cos(theta) ** 52 - 8.77953562702733e61 * cos(theta) ** 50 + 5.78222104468198e61 * cos(theta) ** 48 - 3.27920831493277e61 * cos(theta) ** 46 + 1.60547805390512e61 * cos(theta) ** 44 - 6.79544625948205e60 * cos(theta) ** 42 + 2.48761871998897e60 * cos(theta) ** 40 - 7.87157242024906e59 * cos(theta) ** 38 + 2.14985058719312e59 * cos(theta) ** 36 - 5.05563967872962e58 * cos(theta) ** 34 + 1.02022081286594e58 * cos(theta) ** 32 - 1.75887912124264e57 * cos(theta) ** 30 + 2.57613608666851e56 * cos(theta) ** 28 - 3.18332605675285e55 * cos(theta) ** 26 + 3.2906519352566e54 * cos(theta) ** 24 - 2.81618584226612e53 * cos(theta) ** 22 + 1.97013606772705e52 * cos(theta) ** 20 - 1.10911363812782e51 * cos(theta) ** 18 + 4.92724699865148e49 * cos(theta) ** 16 - 1.68500894795719e48 * cos(theta) ** 14 + 4.29512084773401e46 * cos(theta) ** 12 - 7.81576994624882e44 * cos(theta) ** 10 + 9.55732737992382e42 * cos(theta) ** 8 - 7.17632519811926e40 * cos(theta) ** 6 + 2.85227551594565e38 * cos(theta) ** 4 - 4.48588547724087e35 * cos(theta) ** 2 + 1.16456009274166e32 ) * sin(17 * phi) ) # @torch.jit.script def Yl89_m_minus_16(theta, phi): return ( 3.43165342252496e-31 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.36509932871645e56 * cos(theta) ** 73 - 2.02682544399256e57 * cos(theta) ** 71 + 1.43904606523472e58 * cos(theta) ** 69 - 6.50482094227486e58 * cos(theta) ** 67 + 2.10265483967394e59 * cos(theta) ** 65 - 5.17576575919738e59 * cos(theta) ** 63 + 1.00880943390344e60 * cos(theta) ** 61 - 1.59837338878208e60 * cos(theta) ** 59 + 2.09725219954458e60 * cos(theta) ** 57 - 2.31001691544041e60 * cos(theta) ** 55 + 2.1574686285717e60 * cos(theta) ** 53 - 1.72147757392693e60 * cos(theta) ** 51 + 1.18004511115959e60 * cos(theta) ** 49 - 6.97703896794206e59 * cos(theta) ** 47 + 3.56772900867803e59 * cos(theta) ** 45 - 1.58033633941443e59 * cos(theta) ** 43 + 6.06736273168041e58 * cos(theta) ** 41 - 2.01835190262796e58 * cos(theta) ** 39 + 5.81040699241384e57 * cos(theta) ** 37 - 1.44446847963703e57 * cos(theta) ** 35 + 3.09157822080588e56 * cos(theta) ** 33 - 5.67380361691174e55 * cos(theta) ** 31 + 8.88322788506383e54 * cos(theta) ** 29 - 1.1790096506492e54 * cos(theta) ** 27 + 1.31626077410264e53 * cos(theta) ** 25 - 1.22442862707222e52 * cos(theta) ** 23 + 9.38160032250978e50 * cos(theta) ** 21 - 5.83744020067275e49 * cos(theta) ** 19 + 2.89838058744205e48 * cos(theta) ** 17 - 1.12333929863813e47 * cos(theta) ** 15 + 3.30393911364154e45 * cos(theta) ** 13 - 7.10524540568074e43 * cos(theta) ** 11 + 1.06192526443598e42 * cos(theta) ** 9 - 1.02518931401704e40 * cos(theta) ** 7 + 5.7045510318913e37 * cos(theta) ** 5 - 1.49529515908029e35 * cos(theta) ** 3 + 1.16456009274166e32 * cos(theta) ) * sin(16 * phi) ) # @torch.jit.script def Yl89_m_minus_15(theta, phi): return ( 3.02492025183777e-29 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.8447288225898e54 * cos(theta) ** 74 - 2.81503533887856e55 * cos(theta) ** 72 + 2.05578009319246e56 * cos(theta) ** 70 - 9.56591315040421e56 * cos(theta) ** 68 + 3.18584066617263e57 * cos(theta) ** 66 - 8.08713399874591e57 * cos(theta) ** 64 + 1.62711199016684e58 * cos(theta) ** 62 - 2.66395564797013e58 * cos(theta) ** 60 + 3.61595206818031e58 * cos(theta) ** 58 - 4.12503020614358e58 * cos(theta) ** 56 + 3.99531227513278e58 * cos(theta) ** 54 - 3.31053379601332e58 * cos(theta) ** 52 + 2.36009022231918e58 * cos(theta) ** 50 - 1.45354978498793e58 * cos(theta) ** 48 + 7.75593262756094e57 * cos(theta) ** 46 - 3.59167349866916e57 * cos(theta) ** 44 + 1.44461017420962e57 * cos(theta) ** 42 - 5.04587975656991e56 * cos(theta) ** 40 + 1.52905447168785e56 * cos(theta) ** 38 - 4.01241244343621e55 * cos(theta) ** 36 + 9.0928771200173e54 * cos(theta) ** 34 - 1.77306363028492e54 * cos(theta) ** 32 + 2.96107596168794e53 * cos(theta) ** 30 - 4.21074875231858e52 * cos(theta) ** 28 + 5.06254143885631e51 * cos(theta) ** 26 - 5.10178594613427e50 * cos(theta) ** 24 + 4.26436378295899e49 * cos(theta) ** 22 - 2.91872010033638e48 * cos(theta) ** 20 + 1.6102114374678e47 * cos(theta) ** 18 - 7.02087061648828e45 * cos(theta) ** 16 + 2.35995650974396e44 * cos(theta) ** 14 - 5.92103783806728e42 * cos(theta) ** 12 + 1.06192526443598e41 * cos(theta) ** 10 - 1.2814866425213e39 * cos(theta) ** 8 + 9.50758505315217e36 * cos(theta) ** 6 - 3.73823789770072e34 * cos(theta) ** 4 + 5.82280046370829e31 * cos(theta) ** 2 - 1.49879033814885e28 ) * sin(15 * phi) ) # @torch.jit.script def Yl89_m_minus_14(theta, phi): return ( 2.67153723039434e-27 * (1.0 - cos(theta) ** 2) ** 7 * ( 2.45963843011974e52 * cos(theta) ** 75 - 3.85621279298433e53 * cos(theta) ** 73 + 2.89546491998938e54 * cos(theta) ** 71 - 1.38636422469626e55 * cos(theta) ** 69 + 4.75498606891437e55 * cos(theta) ** 67 - 1.24417446134552e56 * cos(theta) ** 65 + 2.58271744470927e56 * cos(theta) ** 63 - 4.36714040650841e56 * cos(theta) ** 61 + 6.12873231894968e56 * cos(theta) ** 59 - 7.23689509849752e56 * cos(theta) ** 57 + 7.26420413660506e56 * cos(theta) ** 55 - 6.24629018115721e56 * cos(theta) ** 53 + 4.62762788690034e56 * cos(theta) ** 51 - 2.96642813262843e56 * cos(theta) ** 49 + 1.65019843139595e56 * cos(theta) ** 47 - 7.98149666370925e55 * cos(theta) ** 45 + 3.35955854467354e55 * cos(theta) ** 43 - 1.2307023796512e55 * cos(theta) ** 41 + 3.92065249150731e54 * cos(theta) ** 39 - 1.0844357955233e54 * cos(theta) ** 37 + 2.59796489143352e53 * cos(theta) ** 35 - 5.37292009177248e52 * cos(theta) ** 33 + 9.55185794092885e51 * cos(theta) ** 31 - 1.45198232838572e51 * cos(theta) ** 29 + 1.87501534772456e50 * cos(theta) ** 27 - 2.04071437845371e49 * cos(theta) ** 25 + 1.85407120998217e48 * cos(theta) ** 23 - 1.38986671444589e47 * cos(theta) ** 21 + 8.47479703930423e45 * cos(theta) ** 19 - 4.12992389205193e44 * cos(theta) ** 17 + 1.57330433982931e43 * cos(theta) ** 15 - 4.55464449082099e41 * cos(theta) ** 13 + 9.65386604032709e39 * cos(theta) ** 11 - 1.42387404724588e38 * cos(theta) ** 9 + 1.3582264361646e36 * cos(theta) ** 7 - 7.47647579540144e33 * cos(theta) ** 5 + 1.94093348790276e31 * cos(theta) ** 3 - 1.49879033814885e28 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl89_m_minus_13(theta, phi): return ( 2.36366889105142e-25 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 3.2363663554207e50 * cos(theta) ** 76 - 5.21109836889774e51 * cos(theta) ** 74 + 4.0214790555408e52 * cos(theta) ** 72 - 1.98052032099466e53 * cos(theta) ** 70 + 6.9926265719329e53 * cos(theta) ** 68 - 1.88511282022049e54 * cos(theta) ** 66 + 4.03549600735824e54 * cos(theta) ** 64 - 7.04377484920711e54 * cos(theta) ** 62 + 1.02145538649161e55 * cos(theta) ** 60 - 1.24774053422371e55 * cos(theta) ** 58 + 1.29717931010805e55 * cos(theta) ** 56 - 1.156720403918e55 * cos(theta) ** 54 + 8.89928439788528e54 * cos(theta) ** 52 - 5.93285626525685e54 * cos(theta) ** 50 + 3.43791339874155e54 * cos(theta) ** 48 - 1.73510797037158e54 * cos(theta) ** 46 + 7.63536032880349e53 * cos(theta) ** 44 - 2.93024376107428e53 * cos(theta) ** 42 + 9.80163122876828e52 * cos(theta) ** 40 - 2.85377840927184e52 * cos(theta) ** 38 + 7.21656914287088e51 * cos(theta) ** 36 - 1.5802706152272e51 * cos(theta) ** 34 + 2.98495560654027e50 * cos(theta) ** 32 - 4.83994109461906e49 * cos(theta) ** 30 + 6.69648338473057e48 * cos(theta) ** 28 - 7.84890145559118e47 * cos(theta) ** 26 + 7.72529670825904e46 * cos(theta) ** 24 - 6.31757597475406e45 * cos(theta) ** 22 + 4.23739851965211e44 * cos(theta) ** 20 - 2.29440216225107e43 * cos(theta) ** 18 + 9.83315212393317e41 * cos(theta) ** 16 - 3.25331749344356e40 * cos(theta) ** 14 + 8.04488836693925e38 * cos(theta) ** 12 - 1.42387404724588e37 * cos(theta) ** 10 + 1.69778304520574e35 * cos(theta) ** 8 - 1.24607929923357e33 * cos(theta) ** 6 + 4.85233371975691e30 * cos(theta) ** 4 - 7.49395169074426e27 * cos(theta) ** 2 + 1.9146529613552e24 ) * sin(13 * phi) ) # @torch.jit.script def Yl89_m_minus_12(theta, phi): return ( 2.09474946331826e-23 * (1.0 - cos(theta) ** 2) ** 6 * ( 4.20307318885806e48 * cos(theta) ** 77 - 6.94813115853033e49 * cos(theta) ** 75 + 5.50887541854904e50 * cos(theta) ** 73 - 2.78946524083755e51 * cos(theta) ** 71 + 1.01342414085984e52 * cos(theta) ** 69 - 2.81360122420969e52 * cos(theta) ** 67 + 6.20845539593575e52 * cos(theta) ** 65 - 1.11805949987414e53 * cos(theta) ** 63 + 1.67451702703543e53 * cos(theta) ** 61 - 2.11481446478595e53 * cos(theta) ** 59 + 2.27575317562815e53 * cos(theta) ** 57 - 2.10312800712364e53 * cos(theta) ** 55 + 1.67911026375194e53 * cos(theta) ** 53 - 1.16330515005036e53 * cos(theta) ** 51 + 7.01614979335011e52 * cos(theta) ** 49 - 3.69171908589697e52 * cos(theta) ** 47 + 1.69674673973411e52 * cos(theta) ** 45 - 6.81452037459135e51 * cos(theta) ** 43 + 2.39064176311421e51 * cos(theta) ** 41 - 7.31738053659446e50 * cos(theta) ** 39 + 1.9504240926678e50 * cos(theta) ** 37 - 4.51505890064914e49 * cos(theta) ** 35 + 9.04532001981898e48 * cos(theta) ** 33 - 1.56127132084486e48 * cos(theta) ** 31 + 2.30913220163123e47 * cos(theta) ** 29 - 2.90700053910785e46 * cos(theta) ** 27 + 3.09011868330362e45 * cos(theta) ** 25 - 2.74677216293655e44 * cos(theta) ** 23 + 2.01780881888196e43 * cos(theta) ** 21 - 1.2075800853953e42 * cos(theta) ** 19 + 5.78420713172539e40 * cos(theta) ** 17 - 2.16887832896238e39 * cos(theta) ** 15 + 6.18837566687634e37 * cos(theta) ** 13 - 1.29443095204171e36 * cos(theta) ** 11 + 1.88642560578416e34 * cos(theta) ** 9 - 1.78011328461939e32 * cos(theta) ** 7 + 9.70466743951381e29 * cos(theta) ** 5 - 2.49798389691475e27 * cos(theta) ** 3 + 1.9146529613552e24 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl89_m_minus_11(theta, phi): return ( 1.85925978615847e-21 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 5.38855537033084e46 * cos(theta) ** 78 - 9.14227784017148e47 * cos(theta) ** 76 + 7.44442624128249e48 * cos(theta) ** 74 - 3.87425727894104e49 * cos(theta) ** 72 + 1.44774877265692e50 * cos(theta) ** 70 - 4.1376488591319e50 * cos(theta) ** 68 + 9.40675059990265e50 * cos(theta) ** 66 - 1.74696796855335e51 * cos(theta) ** 64 + 2.70083391457328e51 * cos(theta) ** 62 - 3.52469077464325e51 * cos(theta) ** 60 + 3.92371237177267e51 * cos(theta) ** 58 - 3.7555857270065e51 * cos(theta) ** 56 + 3.10946345139248e51 * cos(theta) ** 54 - 2.23712528855839e51 * cos(theta) ** 52 + 1.40322995867002e51 * cos(theta) ** 50 - 7.69108142895202e50 * cos(theta) ** 48 + 3.68857986898719e50 * cos(theta) ** 46 - 1.54875463058894e50 * cos(theta) ** 44 + 5.69200419789099e49 * cos(theta) ** 42 - 1.82934513414862e49 * cos(theta) ** 40 + 5.13269498070475e48 * cos(theta) ** 38 - 1.25418302795809e48 * cos(theta) ** 36 + 2.66038824112323e47 * cos(theta) ** 34 - 4.87897287764018e46 * cos(theta) ** 32 + 7.69710733877078e45 * cos(theta) ** 30 - 1.0382144782528e45 * cos(theta) ** 28 + 1.18850718588601e44 * cos(theta) ** 26 - 1.14448840122356e43 * cos(theta) ** 24 + 9.17185826764527e41 * cos(theta) ** 22 - 6.03790042697651e40 * cos(theta) ** 20 + 3.21344840651411e39 * cos(theta) ** 18 - 1.35554895560148e38 * cos(theta) ** 16 + 4.4202683334831e36 * cos(theta) ** 14 - 1.07869246003476e35 * cos(theta) ** 12 + 1.88642560578416e33 * cos(theta) ** 10 - 2.22514160577424e31 * cos(theta) ** 8 + 1.6174445732523e29 * cos(theta) ** 6 - 6.24495974228688e26 * cos(theta) ** 4 + 9.57326480677601e23 * cos(theta) ** 2 - 2.43037948889972e20 ) * sin(11 * phi) ) # @torch.jit.script def Yl89_m_minus_10(theta, phi): return ( 1.65254624516731e-19 * (1.0 - cos(theta) ** 2) ** 5 * ( 6.82095616497575e44 * cos(theta) ** 79 - 1.18730881041188e46 * cos(theta) ** 77 + 9.92590165504332e46 * cos(theta) ** 75 - 5.30720175197403e47 * cos(theta) ** 73 + 2.03908277839002e48 * cos(theta) ** 71 - 5.99659254946652e48 * cos(theta) ** 69 + 1.40399262685114e49 * cos(theta) ** 67 - 2.68764302854362e49 * cos(theta) ** 65 + 4.28703795964012e49 * cos(theta) ** 63 - 5.77818159777582e49 * cos(theta) ** 61 + 6.65035995215707e49 * cos(theta) ** 59 - 6.58874688948509e49 * cos(theta) ** 57 + 5.65356991162269e49 * cos(theta) ** 55 - 4.22099111048753e49 * cos(theta) ** 53 + 2.75143129150985e49 * cos(theta) ** 51 - 1.56960845488817e49 * cos(theta) ** 49 + 7.84804227444084e48 * cos(theta) ** 47 - 3.44167695686432e48 * cos(theta) ** 45 + 1.32372190648628e48 * cos(theta) ** 43 - 4.46181740036248e47 * cos(theta) ** 41 + 1.31607563607814e47 * cos(theta) ** 39 - 3.3896838593462e46 * cos(theta) ** 37 + 7.60110926035209e45 * cos(theta) ** 35 - 1.47847662958793e45 * cos(theta) ** 33 + 2.48293785121638e44 * cos(theta) ** 31 - 3.58004992500966e43 * cos(theta) ** 29 + 4.40187846624447e42 * cos(theta) ** 27 - 4.57795360489425e41 * cos(theta) ** 25 + 3.98776446419359e40 * cos(theta) ** 23 - 2.87519067951262e39 * cos(theta) ** 21 + 1.69128863500743e38 * cos(theta) ** 19 - 7.97381738589109e36 * cos(theta) ** 17 + 2.9468455556554e35 * cos(theta) ** 15 - 8.2976343079597e33 * cos(theta) ** 13 + 1.71493236889469e32 * cos(theta) ** 11 - 2.47237956197138e30 * cos(theta) ** 9 + 2.31063510464615e28 * cos(theta) ** 7 - 1.24899194845738e26 * cos(theta) ** 5 + 3.19108826892534e23 * cos(theta) ** 3 - 2.43037948889972e20 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl89_m_minus_9(theta, phi): return ( 1.47067331559185e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 8.52619520621969e42 * cos(theta) ** 80 - 1.52219078257933e44 * cos(theta) ** 78 + 1.30603969145307e45 * cos(theta) ** 76 - 7.17189425942437e45 * cos(theta) ** 74 + 2.83205941443059e46 * cos(theta) ** 72 - 8.56656078495217e46 * cos(theta) ** 70 + 2.06469503948697e47 * cos(theta) ** 68 - 4.07218640688427e47 * cos(theta) ** 66 + 6.69849681193769e47 * cos(theta) ** 64 - 9.31964773834809e47 * cos(theta) ** 62 + 1.10839332535951e48 * cos(theta) ** 60 - 1.13599084301467e48 * cos(theta) ** 58 + 1.00956605564691e48 * cos(theta) ** 56 - 7.81665020460654e47 * cos(theta) ** 54 + 5.29121402213432e47 * cos(theta) ** 52 - 3.13921690977633e47 * cos(theta) ** 50 + 1.63500880717517e47 * cos(theta) ** 48 - 7.48190642796591e46 * cos(theta) ** 46 + 3.0084588783779e46 * cos(theta) ** 44 - 1.06233747627678e46 * cos(theta) ** 42 + 3.29018909019535e45 * cos(theta) ** 40 - 8.92022068249e44 * cos(theta) ** 38 + 2.11141923898669e44 * cos(theta) ** 36 - 4.34846067525863e43 * cos(theta) ** 34 + 7.75918078505118e42 * cos(theta) ** 32 - 1.19334997500322e42 * cos(theta) ** 30 + 1.57209945223017e41 * cos(theta) ** 28 - 1.76075138649779e40 * cos(theta) ** 26 + 1.66156852674733e39 * cos(theta) ** 24 - 1.30690485432392e38 * cos(theta) ** 22 + 8.45644317503712e36 * cos(theta) ** 20 - 4.42989854771727e35 * cos(theta) ** 18 + 1.84177847228463e34 * cos(theta) ** 16 - 5.92688164854264e32 * cos(theta) ** 14 + 1.42911030741224e31 * cos(theta) ** 12 - 2.47237956197138e29 * cos(theta) ** 10 + 2.88829388080768e27 * cos(theta) ** 8 - 2.08165324742896e25 * cos(theta) ** 6 + 7.97772067231334e22 * cos(theta) ** 4 - 1.21518974444986e20 * cos(theta) ** 2 + 3.06866097083298e16 ) * sin(9 * phi) ) # @torch.jit.script def Yl89_m_minus_8(theta, phi): return ( 1.31030307370003e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.05261669212589e41 * cos(theta) ** 81 - 1.92682377541688e42 * cos(theta) ** 79 + 1.69615544344554e43 * cos(theta) ** 77 - 9.56252567923249e43 * cos(theta) ** 75 + 3.87953344442546e44 * cos(theta) ** 73 - 1.20655785703552e45 * cos(theta) ** 71 + 2.9923116514304e45 * cos(theta) ** 69 - 6.07789015952875e45 * cos(theta) ** 67 + 1.03053797106734e46 * cos(theta) ** 65 - 1.47930916481716e46 * cos(theta) ** 63 + 1.81703823829428e46 * cos(theta) ** 61 - 1.92540820849944e46 * cos(theta) ** 59 + 1.77116851867879e46 * cos(theta) ** 57 - 1.42120912811028e46 * cos(theta) ** 55 + 9.9834226832723e45 * cos(theta) ** 53 - 6.15532727407124e45 * cos(theta) ** 51 + 3.33675266770444e45 * cos(theta) ** 49 - 1.5918949846736e45 * cos(theta) ** 47 + 6.68546417417311e44 * cos(theta) ** 45 - 2.47055227041112e44 * cos(theta) ** 43 + 8.02485143950086e43 * cos(theta) ** 41 - 2.28723607243333e43 * cos(theta) ** 39 + 5.70653848374781e42 * cos(theta) ** 37 - 1.24241733578818e42 * cos(theta) ** 35 + 2.35126690456097e41 * cos(theta) ** 33 - 3.84951604839749e40 * cos(theta) ** 31 + 5.42103259389713e39 * cos(theta) ** 29 - 6.52130143147329e38 * cos(theta) ** 27 + 6.64627410698932e37 * cos(theta) ** 25 - 5.68219501879965e36 * cos(theta) ** 23 + 4.02687770239863e35 * cos(theta) ** 21 - 2.33152555143014e34 * cos(theta) ** 19 + 1.0833991013439e33 * cos(theta) ** 17 - 3.95125443236176e31 * cos(theta) ** 15 + 1.09931562108634e30 * cos(theta) ** 13 - 2.24761778361034e28 * cos(theta) ** 11 + 3.20921542311965e26 * cos(theta) ** 9 - 2.97379035346994e24 * cos(theta) ** 7 + 1.59554413446267e22 * cos(theta) ** 5 - 4.05063248149954e19 * cos(theta) ** 3 + 3.06866097083298e16 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl89_m_minus_7(theta, phi): return ( 1.168596424302e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.28367889283645e39 * cos(theta) ** 82 - 2.4085297192711e40 * cos(theta) ** 80 + 2.17455826082762e41 * cos(theta) ** 78 - 1.25822706305691e42 * cos(theta) ** 76 + 5.24261276273711e42 * cos(theta) ** 74 - 1.67577480143822e43 * cos(theta) ** 72 + 4.27473093061485e43 * cos(theta) ** 70 - 8.93807376401287e43 * cos(theta) ** 68 + 1.56142116828384e44 * cos(theta) ** 66 - 2.31142057002681e44 * cos(theta) ** 64 + 2.93070683595852e44 * cos(theta) ** 62 - 3.2090136808324e44 * cos(theta) ** 60 + 3.05373882530825e44 * cos(theta) ** 58 - 2.53787344305407e44 * cos(theta) ** 56 + 1.84878197838376e44 * cos(theta) ** 54 - 1.18371678347524e44 * cos(theta) ** 52 + 6.67350533540887e43 * cos(theta) ** 50 - 3.31644788473666e43 * cos(theta) ** 48 + 1.45336177699415e43 * cos(theta) ** 46 - 5.61489152366163e42 * cos(theta) ** 44 + 1.91067891416687e42 * cos(theta) ** 42 - 5.71809018108334e41 * cos(theta) ** 40 + 1.50172065361785e41 * cos(theta) ** 38 - 3.45115926607828e40 * cos(theta) ** 36 + 6.91549089576754e39 * cos(theta) ** 34 - 1.20297376512421e39 * cos(theta) ** 32 + 1.80701086463238e38 * cos(theta) ** 30 - 2.32903622552617e37 * cos(theta) ** 28 + 2.55625927191897e36 * cos(theta) ** 26 - 2.36758125783319e35 * cos(theta) ** 24 + 1.83039895563574e34 * cos(theta) ** 22 - 1.16576277571507e33 * cos(theta) ** 20 + 6.01888389635499e31 * cos(theta) ** 18 - 2.4695340202261e30 * cos(theta) ** 16 + 7.852254436331e28 * cos(theta) ** 14 - 1.87301481967529e27 * cos(theta) ** 12 + 3.20921542311965e25 * cos(theta) ** 10 - 3.71723794183743e23 * cos(theta) ** 8 + 2.65924022410445e21 * cos(theta) ** 6 - 1.01265812037488e19 * cos(theta) ** 4 + 1.53433048541649e16 * cos(theta) ** 2 - 3858009769717.1 ) * sin(7 * phi) ) # @torch.jit.script def Yl89_m_minus_6(theta, phi): return ( 1.04313187372637e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.54660107570656e37 * cos(theta) ** 83 - 2.9734934805816e38 * cos(theta) ** 81 + 2.75260539345268e39 * cos(theta) ** 79 - 1.63406112085313e40 * cos(theta) ** 77 + 6.99015035031615e40 * cos(theta) ** 75 - 2.29558191977838e41 * cos(theta) ** 73 + 6.02074778959838e41 * cos(theta) ** 71 - 1.29537300927723e42 * cos(theta) ** 69 + 2.33047935564753e42 * cos(theta) ** 67 - 3.55603164619509e42 * cos(theta) ** 65 + 4.65191561263257e42 * cos(theta) ** 63 - 5.26067816529902e42 * cos(theta) ** 61 + 5.17582851747162e42 * cos(theta) ** 59 - 4.45240954921767e42 * cos(theta) ** 57 + 3.36142177887956e42 * cos(theta) ** 55 - 2.23342789334951e42 * cos(theta) ** 53 + 1.30853045792331e42 * cos(theta) ** 51 - 6.76826098925849e41 * cos(theta) ** 49 + 3.09225909998756e41 * cos(theta) ** 47 - 1.24775367192481e41 * cos(theta) ** 45 + 4.44343933527179e40 * cos(theta) ** 43 - 1.39465614172764e40 * cos(theta) ** 41 + 3.8505657785073e39 * cos(theta) ** 39 - 9.32745747588724e38 * cos(theta) ** 37 + 1.97585454164787e38 * cos(theta) ** 35 - 3.64537504583095e37 * cos(theta) ** 33 + 5.82906730526573e36 * cos(theta) ** 31 - 8.03115939836611e35 * cos(theta) ** 29 + 9.46762693303322e34 * cos(theta) ** 27 - 9.47032503133275e33 * cos(theta) ** 25 + 7.95825632885105e32 * cos(theta) ** 23 - 5.55125131292891e31 * cos(theta) ** 21 + 3.16783362966052e30 * cos(theta) ** 19 - 1.45266707072124e29 * cos(theta) ** 17 + 5.23483629088734e27 * cos(theta) ** 15 - 1.44078063051945e26 * cos(theta) ** 13 + 2.91746856647241e24 * cos(theta) ** 11 - 4.13026437981937e22 * cos(theta) ** 9 + 3.79891460586349e20 * cos(theta) ** 7 - 2.02531624074977e18 * cos(theta) ** 5 + 5.11443495138831e15 * cos(theta) ** 3 - 3858009769717.1 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl89_m_minus_5(theta, phi): return ( 9.31838524946863e-10 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.84119175679353e35 * cos(theta) ** 84 - 3.62621156168488e36 * cos(theta) ** 82 + 3.44075674181585e37 * cos(theta) ** 80 - 2.0949501549399e38 * cos(theta) ** 78 + 9.19756625041598e38 * cos(theta) ** 76 - 3.10213772943024e39 * cos(theta) ** 74 + 8.36214970777553e39 * cos(theta) ** 72 - 1.85053287039604e40 * cos(theta) ** 70 + 3.42717552301107e40 * cos(theta) ** 68 - 5.38792673665923e40 * cos(theta) ** 66 + 7.26861814473839e40 * cos(theta) ** 64 - 8.48496478274036e40 * cos(theta) ** 62 + 8.6263808624527e40 * cos(theta) ** 60 - 7.67656818830632e40 * cos(theta) ** 58 + 6.00253889085636e40 * cos(theta) ** 56 - 4.13597758027687e40 * cos(theta) ** 54 + 2.51640472677559e40 * cos(theta) ** 52 - 1.3536521978517e40 * cos(theta) ** 50 + 6.44220645830742e39 * cos(theta) ** 48 - 2.71250798244523e39 * cos(theta) ** 46 + 1.00987257619813e39 * cos(theta) ** 44 - 3.32060986125629e38 * cos(theta) ** 42 + 9.62641444626824e37 * cos(theta) ** 40 - 2.45459407260191e37 * cos(theta) ** 38 + 5.48848483791075e36 * cos(theta) ** 36 - 1.07216913112675e36 * cos(theta) ** 34 + 1.82158353289554e35 * cos(theta) ** 32 - 2.6770531327887e34 * cos(theta) ** 30 + 3.38129533322615e33 * cos(theta) ** 28 - 3.64243270435875e32 * cos(theta) ** 26 + 3.31594013702127e31 * cos(theta) ** 24 - 2.52329605133132e30 * cos(theta) ** 22 + 1.58391681483026e29 * cos(theta) ** 20 - 8.07037261511798e27 * cos(theta) ** 18 + 3.27177268180458e26 * cos(theta) ** 16 - 1.02912902179961e25 * cos(theta) ** 14 + 2.43122380539367e23 * cos(theta) ** 12 - 4.13026437981937e21 * cos(theta) ** 10 + 4.74864325732937e19 * cos(theta) ** 8 - 3.37552706791628e17 * cos(theta) ** 6 + 1.27860873784708e15 * cos(theta) ** 4 - 1929004884858.55 * cos(theta) ** 2 + 483459870.891867 ) * sin(5 * phi) ) # @torch.jit.script def Yl89_m_minus_4(theta, phi): return ( 8.32940637874957e-8 * (1.0 - cos(theta) ** 2) ** 2 * ( 2.16610794916886e33 * cos(theta) ** 85 - 4.36892959239142e34 * cos(theta) ** 83 + 4.24784782940229e35 * cos(theta) ** 81 - 2.65183563916444e36 * cos(theta) ** 79 + 1.19448912343065e37 * cos(theta) ** 77 - 4.13618363924032e37 * cos(theta) ** 75 + 1.14549995996925e38 * cos(theta) ** 73 - 2.60638432450147e38 * cos(theta) ** 71 + 4.96692104784213e38 * cos(theta) ** 69 - 8.04168169650631e38 * cos(theta) ** 67 + 1.11824894534437e39 * cos(theta) ** 65 - 1.34681980678418e39 * cos(theta) ** 63 + 1.41416079712339e39 * cos(theta) ** 61 - 1.30111325225531e39 * cos(theta) ** 59 + 1.05307699839585e39 * cos(theta) ** 57 - 7.51995923686703e38 * cos(theta) ** 55 + 4.7479334467464e38 * cos(theta) ** 53 - 2.65421999578764e38 * cos(theta) ** 51 + 1.31473601189947e38 * cos(theta) ** 49 - 5.7712935796707e37 * cos(theta) ** 47 + 2.2441612804403e37 * cos(theta) ** 45 - 7.72234851454952e36 * cos(theta) ** 43 + 2.34790596250445e36 * cos(theta) ** 41 - 6.2938309553895e35 * cos(theta) ** 39 + 1.48337428051642e35 * cos(theta) ** 37 - 3.06334037464786e34 * cos(theta) ** 35 + 5.51995009968346e33 * cos(theta) ** 33 - 8.63565526706034e32 * cos(theta) ** 31 + 1.16596390800902e32 * cos(theta) ** 29 - 1.3490491497625e31 * cos(theta) ** 27 + 1.32637605480851e30 * cos(theta) ** 25 - 1.09708523970927e29 * cos(theta) ** 23 + 7.54246102300124e27 * cos(theta) ** 21 - 4.24756453427262e26 * cos(theta) ** 19 + 1.9245721657674e25 * cos(theta) ** 17 - 6.86086014533071e23 * cos(theta) ** 15 + 1.87017215799513e22 * cos(theta) ** 13 - 3.75478579983579e20 * cos(theta) ** 11 + 5.27627028592152e18 * cos(theta) ** 9 - 4.82218152559469e16 * cos(theta) ** 7 + 255721747569415.0 * cos(theta) ** 5 - 643001628286.184 * cos(theta) ** 3 + 483459870.891867 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl89_m_minus_3(theta, phi): return ( 7.44911623588723e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 2.51873017345216e31 * cos(theta) ** 86 - 5.20110665760884e32 * cos(theta) ** 84 + 5.1803022309784e33 * cos(theta) ** 82 - 3.31479454895554e34 * cos(theta) ** 80 + 1.53139631209057e35 * cos(theta) ** 78 - 5.44234689373727e35 * cos(theta) ** 76 + 1.54797291887737e36 * cos(theta) ** 74 - 3.61997822847426e36 * cos(theta) ** 72 + 7.09560149691733e36 * cos(theta) ** 70 - 1.18260024948622e37 * cos(theta) ** 68 + 1.6943165838551e37 * cos(theta) ** 66 - 2.10440594810029e37 * cos(theta) ** 64 + 2.28090451148934e37 * cos(theta) ** 62 - 2.16852208709218e37 * cos(theta) ** 60 + 1.81564999723423e37 * cos(theta) ** 58 - 1.34284986372626e37 * cos(theta) ** 56 + 8.79246934582667e36 * cos(theta) ** 54 - 5.10426922266855e36 * cos(theta) ** 52 + 2.62947202379895e36 * cos(theta) ** 50 - 1.20235282909806e36 * cos(theta) ** 48 + 4.87861147921804e35 * cos(theta) ** 46 - 1.75507920785216e35 * cos(theta) ** 44 + 5.59025229167726e34 * cos(theta) ** 42 - 1.57345773884738e34 * cos(theta) ** 40 + 3.90361652767479e33 * cos(theta) ** 38 - 8.50927881846628e32 * cos(theta) ** 36 + 1.62351473520102e32 * cos(theta) ** 34 - 2.69864227095636e31 * cos(theta) ** 32 + 3.88654636003006e30 * cos(theta) ** 30 - 4.81803267772321e29 * cos(theta) ** 28 + 5.10144636464811e28 * cos(theta) ** 26 - 4.57118849878863e27 * cos(theta) ** 24 + 3.42839137409147e26 * cos(theta) ** 22 - 2.12378226713631e25 * cos(theta) ** 20 + 1.06920675875967e24 * cos(theta) ** 18 - 4.2880375908317e22 * cos(theta) ** 16 + 1.33583725571081e21 * cos(theta) ** 14 - 3.12898816652982e19 * cos(theta) ** 12 + 5.27627028592152e17 * cos(theta) ** 10 - 6.02772690699336e15 * cos(theta) ** 8 + 42620291261569.2 * cos(theta) ** 6 - 160750407071.546 * cos(theta) ** 4 + 241729935.445934 * cos(theta) ** 2 - 60447.5957604235 ) * sin(3 * phi) ) # @torch.jit.script def Yl89_m_minus_2(theta, phi): return ( 0.000666435757516697 * (1.0 - cos(theta) ** 2) * ( 2.89509215339329e29 * cos(theta) ** 87 - 6.11894900895157e30 * cos(theta) ** 85 + 6.24132798913061e31 * cos(theta) ** 83 - 4.09233894932783e32 * cos(theta) ** 81 + 1.93847634441845e33 * cos(theta) ** 79 - 7.06798297887957e33 * cos(theta) ** 77 + 2.06396389183649e34 * cos(theta) ** 75 - 4.95887428558117e34 * cos(theta) ** 73 + 9.99380492523568e34 * cos(theta) ** 71 - 1.7139134050525e35 * cos(theta) ** 69 + 2.5288307221718e35 * cos(theta) ** 67 - 3.23754761246198e35 * cos(theta) ** 65 + 3.62048335157039e35 * cos(theta) ** 63 - 3.55495424113472e35 * cos(theta) ** 61 + 3.07737287666819e35 * cos(theta) ** 59 - 2.35587695390571e35 * cos(theta) ** 57 + 1.5986307901503e35 * cos(theta) ** 55 - 9.63069664654443e34 * cos(theta) ** 53 + 5.155827497645e34 * cos(theta) ** 51 - 2.4537812838736e34 * cos(theta) ** 49 + 1.03800244238682e34 * cos(theta) ** 47 - 3.90017601744925e33 * cos(theta) ** 45 + 1.30005867248308e33 * cos(theta) ** 43 - 3.83770180206677e32 * cos(theta) ** 41 + 1.00092731478841e32 * cos(theta) ** 39 - 2.29980508607197e31 * cos(theta) ** 37 + 4.63861352914576e30 * cos(theta) ** 35 - 8.1777038513829e29 * cos(theta) ** 33 + 1.25372463226776e29 * cos(theta) ** 31 - 1.66139057852525e28 * cos(theta) ** 29 + 1.8894245794993e27 * cos(theta) ** 27 - 1.82847539951545e26 * cos(theta) ** 25 + 1.49060494525716e25 * cos(theta) ** 23 - 1.01132488911253e24 * cos(theta) ** 21 + 5.62740399347194e22 * cos(theta) ** 19 - 2.52237505343041e21 * cos(theta) ** 17 + 8.90558170473873e19 * cos(theta) ** 15 - 2.40691397425371e18 * cos(theta) ** 13 + 4.79660935083775e16 * cos(theta) ** 11 - 669747434110373.0 * cos(theta) ** 9 + 6088613037367.03 * cos(theta) ** 7 - 32150081414.3092 * cos(theta) ** 5 + 80576645.1486446 * cos(theta) ** 3 - 60447.5957604235 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl89_m_minus_1(theta, phi): return ( 0.0596376227236298 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 3.28987744703783e27 * cos(theta) ** 88 - 7.11505698715299e28 * cos(theta) ** 86 + 7.43015236801263e29 * cos(theta) ** 84 - 4.99065725527784e30 * cos(theta) ** 82 + 2.42309543052306e31 * cos(theta) ** 80 - 9.06151663958919e31 * cos(theta) ** 78 + 2.71574196294275e32 * cos(theta) ** 76 - 6.70118146700159e32 * cos(theta) ** 74 + 1.38802846183829e33 * cos(theta) ** 72 - 2.44844772150357e33 * cos(theta) ** 70 + 3.71886870907617e33 * cos(theta) ** 68 - 4.90537517039694e33 * cos(theta) ** 66 + 5.65700523682873e33 * cos(theta) ** 64 - 5.73379716312052e33 * cos(theta) ** 62 + 5.12895479444698e33 * cos(theta) ** 60 - 4.06185681707881e33 * cos(theta) ** 58 + 2.85469783955411e33 * cos(theta) ** 56 - 1.78346234195267e33 * cos(theta) ** 54 + 9.91505288008653e32 * cos(theta) ** 52 - 4.9075625677472e32 * cos(theta) ** 50 + 2.16250508830587e32 * cos(theta) ** 48 - 8.47864351619402e31 * cos(theta) ** 46 + 2.95467880109792e31 * cos(theta) ** 44 - 9.13738524301612e30 * cos(theta) ** 42 + 2.50231828697102e30 * cos(theta) ** 40 - 6.05211864755781e29 * cos(theta) ** 38 + 1.28850375809604e29 * cos(theta) ** 36 - 2.40520701511262e28 * cos(theta) ** 34 + 3.91788947583675e27 * cos(theta) ** 32 - 5.53796859508415e26 * cos(theta) ** 30 + 6.74794492678321e25 * cos(theta) ** 28 - 7.03259769044404e24 * cos(theta) ** 26 + 6.2108539385715e23 * cos(theta) ** 24 - 4.59693131414786e22 * cos(theta) ** 22 + 2.81370199673597e21 * cos(theta) ** 20 - 1.40131947412801e20 * cos(theta) ** 18 + 5.5659885654617e18 * cos(theta) ** 16 - 1.71922426732408e17 * cos(theta) ** 14 + 3.99717445903146e15 * cos(theta) ** 12 - 66974743411037.3 * cos(theta) ** 10 + 761076629670.879 * cos(theta) ** 8 - 5358346902.38486 * cos(theta) ** 6 + 20144161.2871611 * cos(theta) ** 4 - 30223.7978802118 * cos(theta) ** 2 + 7.54840106898396 ) * sin(phi) ) # @torch.jit.script def Yl89_m0(theta, phi): return ( 4.3828960410898e26 * cos(theta) ** 89 - 9.6968479643546e27 * cos(theta) ** 87 + 1.03645452099002e29 * cos(theta) ** 85 - 7.12936924842844e29 * cos(theta) ** 83 + 3.54696543163772e30 * cos(theta) ** 81 - 1.36001988148002e31 * cos(theta) ** 79 + 4.18185753976043e31 * cos(theta) ** 77 - 1.05940391007264e32 * cos(theta) ** 75 + 2.25448301414999e32 * cos(theta) ** 73 - 4.08887602566333e32 * cos(theta) ** 71 + 6.39047605268766e32 * cos(theta) ** 69 - 8.68098252438057e32 * cos(theta) ** 67 + 1.03191679362395e33 * cos(theta) ** 65 - 1.0791286730708e33 * cos(theta) ** 63 + 9.96943376777325e32 * cos(theta) ** 61 - 8.16289207831098e32 * cos(theta) ** 59 + 5.93822633758082e32 * cos(theta) ** 57 - 3.84479076461622e32 * cos(theta) ** 55 + 2.21814851804782e32 * cos(theta) ** 53 - 1.14095134672262e32 * cos(theta) ** 51 + 5.23278045709115e31 * cos(theta) ** 49 - 2.13894675618324e31 * cos(theta) ** 47 + 7.78519004523261e30 * cos(theta) ** 45 - 2.51956134186999e30 * cos(theta) ** 43 + 7.23652637311895e29 * cos(theta) ** 41 - 1.83998500029691e29 * cos(theta) ** 39 + 4.12910019751669e28 * cos(theta) ** 37 - 8.14809105643293e27 * cos(theta) ** 35 + 1.40769865812358e27 * cos(theta) ** 33 - 2.11816725987247e26 * cos(theta) ** 31 + 2.75895735529607e25 * cos(theta) ** 29 - 3.08832833264462e24 * cos(theta) ** 27 + 2.94566099119093e23 * cos(theta) ** 25 - 2.36979967111096e22 * cos(theta) ** 23 + 1.58865743717826e21 * cos(theta) ** 21 - 8.74490332391701e19 * cos(theta) ** 19 + 3.88208325127157e18 * cos(theta) ** 17 - 1.35897895025208e17 * cos(theta) ** 15 + 3.64570234482546e15 * cos(theta) ** 13 - 72192125640108.1 * cos(theta) ** 11 + 1002668411668.17 * cos(theta) ** 9 - 9076203877.30803 * cos(theta) ** 7 + 47769494.0910949 * cos(theta) ** 5 - 119453.598627394 * cos(theta) ** 3 + 89.5006982722733 * cos(theta) ) # @torch.jit.script def Yl89_m1(theta, phi): return ( 0.0596376227236298 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 3.28987744703783e27 * cos(theta) ** 88 - 7.11505698715299e28 * cos(theta) ** 86 + 7.43015236801263e29 * cos(theta) ** 84 - 4.99065725527784e30 * cos(theta) ** 82 + 2.42309543052306e31 * cos(theta) ** 80 - 9.06151663958919e31 * cos(theta) ** 78 + 2.71574196294275e32 * cos(theta) ** 76 - 6.70118146700159e32 * cos(theta) ** 74 + 1.38802846183829e33 * cos(theta) ** 72 - 2.44844772150357e33 * cos(theta) ** 70 + 3.71886870907617e33 * cos(theta) ** 68 - 4.90537517039694e33 * cos(theta) ** 66 + 5.65700523682873e33 * cos(theta) ** 64 - 5.73379716312052e33 * cos(theta) ** 62 + 5.12895479444698e33 * cos(theta) ** 60 - 4.06185681707881e33 * cos(theta) ** 58 + 2.85469783955411e33 * cos(theta) ** 56 - 1.78346234195267e33 * cos(theta) ** 54 + 9.91505288008653e32 * cos(theta) ** 52 - 4.9075625677472e32 * cos(theta) ** 50 + 2.16250508830587e32 * cos(theta) ** 48 - 8.47864351619402e31 * cos(theta) ** 46 + 2.95467880109792e31 * cos(theta) ** 44 - 9.13738524301612e30 * cos(theta) ** 42 + 2.50231828697102e30 * cos(theta) ** 40 - 6.05211864755781e29 * cos(theta) ** 38 + 1.28850375809604e29 * cos(theta) ** 36 - 2.40520701511262e28 * cos(theta) ** 34 + 3.91788947583675e27 * cos(theta) ** 32 - 5.53796859508415e26 * cos(theta) ** 30 + 6.74794492678321e25 * cos(theta) ** 28 - 7.03259769044404e24 * cos(theta) ** 26 + 6.2108539385715e23 * cos(theta) ** 24 - 4.59693131414786e22 * cos(theta) ** 22 + 2.81370199673597e21 * cos(theta) ** 20 - 1.40131947412801e20 * cos(theta) ** 18 + 5.5659885654617e18 * cos(theta) ** 16 - 1.71922426732408e17 * cos(theta) ** 14 + 3.99717445903146e15 * cos(theta) ** 12 - 66974743411037.3 * cos(theta) ** 10 + 761076629670.879 * cos(theta) ** 8 - 5358346902.38486 * cos(theta) ** 6 + 20144161.2871611 * cos(theta) ** 4 - 30223.7978802118 * cos(theta) ** 2 + 7.54840106898396 ) * cos(phi) ) # @torch.jit.script def Yl89_m2(theta, phi): return ( 0.000666435757516697 * (1.0 - cos(theta) ** 2) * ( 2.89509215339329e29 * cos(theta) ** 87 - 6.11894900895157e30 * cos(theta) ** 85 + 6.24132798913061e31 * cos(theta) ** 83 - 4.09233894932783e32 * cos(theta) ** 81 + 1.93847634441845e33 * cos(theta) ** 79 - 7.06798297887957e33 * cos(theta) ** 77 + 2.06396389183649e34 * cos(theta) ** 75 - 4.95887428558117e34 * cos(theta) ** 73 + 9.99380492523568e34 * cos(theta) ** 71 - 1.7139134050525e35 * cos(theta) ** 69 + 2.5288307221718e35 * cos(theta) ** 67 - 3.23754761246198e35 * cos(theta) ** 65 + 3.62048335157039e35 * cos(theta) ** 63 - 3.55495424113472e35 * cos(theta) ** 61 + 3.07737287666819e35 * cos(theta) ** 59 - 2.35587695390571e35 * cos(theta) ** 57 + 1.5986307901503e35 * cos(theta) ** 55 - 9.63069664654443e34 * cos(theta) ** 53 + 5.155827497645e34 * cos(theta) ** 51 - 2.4537812838736e34 * cos(theta) ** 49 + 1.03800244238682e34 * cos(theta) ** 47 - 3.90017601744925e33 * cos(theta) ** 45 + 1.30005867248308e33 * cos(theta) ** 43 - 3.83770180206677e32 * cos(theta) ** 41 + 1.00092731478841e32 * cos(theta) ** 39 - 2.29980508607197e31 * cos(theta) ** 37 + 4.63861352914576e30 * cos(theta) ** 35 - 8.1777038513829e29 * cos(theta) ** 33 + 1.25372463226776e29 * cos(theta) ** 31 - 1.66139057852525e28 * cos(theta) ** 29 + 1.8894245794993e27 * cos(theta) ** 27 - 1.82847539951545e26 * cos(theta) ** 25 + 1.49060494525716e25 * cos(theta) ** 23 - 1.01132488911253e24 * cos(theta) ** 21 + 5.62740399347194e22 * cos(theta) ** 19 - 2.52237505343041e21 * cos(theta) ** 17 + 8.90558170473873e19 * cos(theta) ** 15 - 2.40691397425371e18 * cos(theta) ** 13 + 4.79660935083775e16 * cos(theta) ** 11 - 669747434110373.0 * cos(theta) ** 9 + 6088613037367.03 * cos(theta) ** 7 - 32150081414.3092 * cos(theta) ** 5 + 80576645.1486446 * cos(theta) ** 3 - 60447.5957604235 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl89_m3(theta, phi): return ( 7.44911623588723e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 2.51873017345216e31 * cos(theta) ** 86 - 5.20110665760884e32 * cos(theta) ** 84 + 5.1803022309784e33 * cos(theta) ** 82 - 3.31479454895554e34 * cos(theta) ** 80 + 1.53139631209057e35 * cos(theta) ** 78 - 5.44234689373727e35 * cos(theta) ** 76 + 1.54797291887737e36 * cos(theta) ** 74 - 3.61997822847426e36 * cos(theta) ** 72 + 7.09560149691733e36 * cos(theta) ** 70 - 1.18260024948622e37 * cos(theta) ** 68 + 1.6943165838551e37 * cos(theta) ** 66 - 2.10440594810029e37 * cos(theta) ** 64 + 2.28090451148934e37 * cos(theta) ** 62 - 2.16852208709218e37 * cos(theta) ** 60 + 1.81564999723423e37 * cos(theta) ** 58 - 1.34284986372626e37 * cos(theta) ** 56 + 8.79246934582667e36 * cos(theta) ** 54 - 5.10426922266855e36 * cos(theta) ** 52 + 2.62947202379895e36 * cos(theta) ** 50 - 1.20235282909806e36 * cos(theta) ** 48 + 4.87861147921804e35 * cos(theta) ** 46 - 1.75507920785216e35 * cos(theta) ** 44 + 5.59025229167726e34 * cos(theta) ** 42 - 1.57345773884738e34 * cos(theta) ** 40 + 3.90361652767479e33 * cos(theta) ** 38 - 8.50927881846628e32 * cos(theta) ** 36 + 1.62351473520102e32 * cos(theta) ** 34 - 2.69864227095636e31 * cos(theta) ** 32 + 3.88654636003006e30 * cos(theta) ** 30 - 4.81803267772321e29 * cos(theta) ** 28 + 5.10144636464811e28 * cos(theta) ** 26 - 4.57118849878863e27 * cos(theta) ** 24 + 3.42839137409147e26 * cos(theta) ** 22 - 2.12378226713631e25 * cos(theta) ** 20 + 1.06920675875967e24 * cos(theta) ** 18 - 4.2880375908317e22 * cos(theta) ** 16 + 1.33583725571081e21 * cos(theta) ** 14 - 3.12898816652982e19 * cos(theta) ** 12 + 5.27627028592152e17 * cos(theta) ** 10 - 6.02772690699336e15 * cos(theta) ** 8 + 42620291261569.2 * cos(theta) ** 6 - 160750407071.546 * cos(theta) ** 4 + 241729935.445934 * cos(theta) ** 2 - 60447.5957604235 ) * cos(3 * phi) ) # @torch.jit.script def Yl89_m4(theta, phi): return ( 8.32940637874957e-8 * (1.0 - cos(theta) ** 2) ** 2 * ( 2.16610794916886e33 * cos(theta) ** 85 - 4.36892959239142e34 * cos(theta) ** 83 + 4.24784782940229e35 * cos(theta) ** 81 - 2.65183563916444e36 * cos(theta) ** 79 + 1.19448912343065e37 * cos(theta) ** 77 - 4.13618363924032e37 * cos(theta) ** 75 + 1.14549995996925e38 * cos(theta) ** 73 - 2.60638432450147e38 * cos(theta) ** 71 + 4.96692104784213e38 * cos(theta) ** 69 - 8.04168169650631e38 * cos(theta) ** 67 + 1.11824894534437e39 * cos(theta) ** 65 - 1.34681980678418e39 * cos(theta) ** 63 + 1.41416079712339e39 * cos(theta) ** 61 - 1.30111325225531e39 * cos(theta) ** 59 + 1.05307699839585e39 * cos(theta) ** 57 - 7.51995923686703e38 * cos(theta) ** 55 + 4.7479334467464e38 * cos(theta) ** 53 - 2.65421999578764e38 * cos(theta) ** 51 + 1.31473601189947e38 * cos(theta) ** 49 - 5.7712935796707e37 * cos(theta) ** 47 + 2.2441612804403e37 * cos(theta) ** 45 - 7.72234851454952e36 * cos(theta) ** 43 + 2.34790596250445e36 * cos(theta) ** 41 - 6.2938309553895e35 * cos(theta) ** 39 + 1.48337428051642e35 * cos(theta) ** 37 - 3.06334037464786e34 * cos(theta) ** 35 + 5.51995009968346e33 * cos(theta) ** 33 - 8.63565526706034e32 * cos(theta) ** 31 + 1.16596390800902e32 * cos(theta) ** 29 - 1.3490491497625e31 * cos(theta) ** 27 + 1.32637605480851e30 * cos(theta) ** 25 - 1.09708523970927e29 * cos(theta) ** 23 + 7.54246102300124e27 * cos(theta) ** 21 - 4.24756453427262e26 * cos(theta) ** 19 + 1.9245721657674e25 * cos(theta) ** 17 - 6.86086014533071e23 * cos(theta) ** 15 + 1.87017215799513e22 * cos(theta) ** 13 - 3.75478579983579e20 * cos(theta) ** 11 + 5.27627028592152e18 * cos(theta) ** 9 - 4.82218152559469e16 * cos(theta) ** 7 + 255721747569415.0 * cos(theta) ** 5 - 643001628286.184 * cos(theta) ** 3 + 483459870.891867 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl89_m5(theta, phi): return ( 9.31838524946863e-10 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.84119175679353e35 * cos(theta) ** 84 - 3.62621156168488e36 * cos(theta) ** 82 + 3.44075674181585e37 * cos(theta) ** 80 - 2.0949501549399e38 * cos(theta) ** 78 + 9.19756625041598e38 * cos(theta) ** 76 - 3.10213772943024e39 * cos(theta) ** 74 + 8.36214970777553e39 * cos(theta) ** 72 - 1.85053287039604e40 * cos(theta) ** 70 + 3.42717552301107e40 * cos(theta) ** 68 - 5.38792673665923e40 * cos(theta) ** 66 + 7.26861814473839e40 * cos(theta) ** 64 - 8.48496478274036e40 * cos(theta) ** 62 + 8.6263808624527e40 * cos(theta) ** 60 - 7.67656818830632e40 * cos(theta) ** 58 + 6.00253889085636e40 * cos(theta) ** 56 - 4.13597758027687e40 * cos(theta) ** 54 + 2.51640472677559e40 * cos(theta) ** 52 - 1.3536521978517e40 * cos(theta) ** 50 + 6.44220645830742e39 * cos(theta) ** 48 - 2.71250798244523e39 * cos(theta) ** 46 + 1.00987257619813e39 * cos(theta) ** 44 - 3.32060986125629e38 * cos(theta) ** 42 + 9.62641444626824e37 * cos(theta) ** 40 - 2.45459407260191e37 * cos(theta) ** 38 + 5.48848483791075e36 * cos(theta) ** 36 - 1.07216913112675e36 * cos(theta) ** 34 + 1.82158353289554e35 * cos(theta) ** 32 - 2.6770531327887e34 * cos(theta) ** 30 + 3.38129533322615e33 * cos(theta) ** 28 - 3.64243270435875e32 * cos(theta) ** 26 + 3.31594013702127e31 * cos(theta) ** 24 - 2.52329605133132e30 * cos(theta) ** 22 + 1.58391681483026e29 * cos(theta) ** 20 - 8.07037261511798e27 * cos(theta) ** 18 + 3.27177268180458e26 * cos(theta) ** 16 - 1.02912902179961e25 * cos(theta) ** 14 + 2.43122380539367e23 * cos(theta) ** 12 - 4.13026437981937e21 * cos(theta) ** 10 + 4.74864325732937e19 * cos(theta) ** 8 - 3.37552706791628e17 * cos(theta) ** 6 + 1.27860873784708e15 * cos(theta) ** 4 - 1929004884858.55 * cos(theta) ** 2 + 483459870.891867 ) * cos(5 * phi) ) # @torch.jit.script def Yl89_m6(theta, phi): return ( 1.04313187372637e-11 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.54660107570656e37 * cos(theta) ** 83 - 2.9734934805816e38 * cos(theta) ** 81 + 2.75260539345268e39 * cos(theta) ** 79 - 1.63406112085313e40 * cos(theta) ** 77 + 6.99015035031615e40 * cos(theta) ** 75 - 2.29558191977838e41 * cos(theta) ** 73 + 6.02074778959838e41 * cos(theta) ** 71 - 1.29537300927723e42 * cos(theta) ** 69 + 2.33047935564753e42 * cos(theta) ** 67 - 3.55603164619509e42 * cos(theta) ** 65 + 4.65191561263257e42 * cos(theta) ** 63 - 5.26067816529902e42 * cos(theta) ** 61 + 5.17582851747162e42 * cos(theta) ** 59 - 4.45240954921767e42 * cos(theta) ** 57 + 3.36142177887956e42 * cos(theta) ** 55 - 2.23342789334951e42 * cos(theta) ** 53 + 1.30853045792331e42 * cos(theta) ** 51 - 6.76826098925849e41 * cos(theta) ** 49 + 3.09225909998756e41 * cos(theta) ** 47 - 1.24775367192481e41 * cos(theta) ** 45 + 4.44343933527179e40 * cos(theta) ** 43 - 1.39465614172764e40 * cos(theta) ** 41 + 3.8505657785073e39 * cos(theta) ** 39 - 9.32745747588724e38 * cos(theta) ** 37 + 1.97585454164787e38 * cos(theta) ** 35 - 3.64537504583095e37 * cos(theta) ** 33 + 5.82906730526573e36 * cos(theta) ** 31 - 8.03115939836611e35 * cos(theta) ** 29 + 9.46762693303322e34 * cos(theta) ** 27 - 9.47032503133275e33 * cos(theta) ** 25 + 7.95825632885105e32 * cos(theta) ** 23 - 5.55125131292891e31 * cos(theta) ** 21 + 3.16783362966052e30 * cos(theta) ** 19 - 1.45266707072124e29 * cos(theta) ** 17 + 5.23483629088734e27 * cos(theta) ** 15 - 1.44078063051945e26 * cos(theta) ** 13 + 2.91746856647241e24 * cos(theta) ** 11 - 4.13026437981937e22 * cos(theta) ** 9 + 3.79891460586349e20 * cos(theta) ** 7 - 2.02531624074977e18 * cos(theta) ** 5 + 5.11443495138831e15 * cos(theta) ** 3 - 3858009769717.1 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl89_m7(theta, phi): return ( 1.168596424302e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.28367889283645e39 * cos(theta) ** 82 - 2.4085297192711e40 * cos(theta) ** 80 + 2.17455826082762e41 * cos(theta) ** 78 - 1.25822706305691e42 * cos(theta) ** 76 + 5.24261276273711e42 * cos(theta) ** 74 - 1.67577480143822e43 * cos(theta) ** 72 + 4.27473093061485e43 * cos(theta) ** 70 - 8.93807376401287e43 * cos(theta) ** 68 + 1.56142116828384e44 * cos(theta) ** 66 - 2.31142057002681e44 * cos(theta) ** 64 + 2.93070683595852e44 * cos(theta) ** 62 - 3.2090136808324e44 * cos(theta) ** 60 + 3.05373882530825e44 * cos(theta) ** 58 - 2.53787344305407e44 * cos(theta) ** 56 + 1.84878197838376e44 * cos(theta) ** 54 - 1.18371678347524e44 * cos(theta) ** 52 + 6.67350533540887e43 * cos(theta) ** 50 - 3.31644788473666e43 * cos(theta) ** 48 + 1.45336177699415e43 * cos(theta) ** 46 - 5.61489152366163e42 * cos(theta) ** 44 + 1.91067891416687e42 * cos(theta) ** 42 - 5.71809018108334e41 * cos(theta) ** 40 + 1.50172065361785e41 * cos(theta) ** 38 - 3.45115926607828e40 * cos(theta) ** 36 + 6.91549089576754e39 * cos(theta) ** 34 - 1.20297376512421e39 * cos(theta) ** 32 + 1.80701086463238e38 * cos(theta) ** 30 - 2.32903622552617e37 * cos(theta) ** 28 + 2.55625927191897e36 * cos(theta) ** 26 - 2.36758125783319e35 * cos(theta) ** 24 + 1.83039895563574e34 * cos(theta) ** 22 - 1.16576277571507e33 * cos(theta) ** 20 + 6.01888389635499e31 * cos(theta) ** 18 - 2.4695340202261e30 * cos(theta) ** 16 + 7.852254436331e28 * cos(theta) ** 14 - 1.87301481967529e27 * cos(theta) ** 12 + 3.20921542311965e25 * cos(theta) ** 10 - 3.71723794183743e23 * cos(theta) ** 8 + 2.65924022410445e21 * cos(theta) ** 6 - 1.01265812037488e19 * cos(theta) ** 4 + 1.53433048541649e16 * cos(theta) ** 2 - 3858009769717.1 ) * cos(7 * phi) ) # @torch.jit.script def Yl89_m8(theta, phi): return ( 1.31030307370003e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.05261669212589e41 * cos(theta) ** 81 - 1.92682377541688e42 * cos(theta) ** 79 + 1.69615544344554e43 * cos(theta) ** 77 - 9.56252567923249e43 * cos(theta) ** 75 + 3.87953344442546e44 * cos(theta) ** 73 - 1.20655785703552e45 * cos(theta) ** 71 + 2.9923116514304e45 * cos(theta) ** 69 - 6.07789015952875e45 * cos(theta) ** 67 + 1.03053797106734e46 * cos(theta) ** 65 - 1.47930916481716e46 * cos(theta) ** 63 + 1.81703823829428e46 * cos(theta) ** 61 - 1.92540820849944e46 * cos(theta) ** 59 + 1.77116851867879e46 * cos(theta) ** 57 - 1.42120912811028e46 * cos(theta) ** 55 + 9.9834226832723e45 * cos(theta) ** 53 - 6.15532727407124e45 * cos(theta) ** 51 + 3.33675266770444e45 * cos(theta) ** 49 - 1.5918949846736e45 * cos(theta) ** 47 + 6.68546417417311e44 * cos(theta) ** 45 - 2.47055227041112e44 * cos(theta) ** 43 + 8.02485143950086e43 * cos(theta) ** 41 - 2.28723607243333e43 * cos(theta) ** 39 + 5.70653848374781e42 * cos(theta) ** 37 - 1.24241733578818e42 * cos(theta) ** 35 + 2.35126690456097e41 * cos(theta) ** 33 - 3.84951604839749e40 * cos(theta) ** 31 + 5.42103259389713e39 * cos(theta) ** 29 - 6.52130143147329e38 * cos(theta) ** 27 + 6.64627410698932e37 * cos(theta) ** 25 - 5.68219501879965e36 * cos(theta) ** 23 + 4.02687770239863e35 * cos(theta) ** 21 - 2.33152555143014e34 * cos(theta) ** 19 + 1.0833991013439e33 * cos(theta) ** 17 - 3.95125443236176e31 * cos(theta) ** 15 + 1.09931562108634e30 * cos(theta) ** 13 - 2.24761778361034e28 * cos(theta) ** 11 + 3.20921542311965e26 * cos(theta) ** 9 - 2.97379035346994e24 * cos(theta) ** 7 + 1.59554413446267e22 * cos(theta) ** 5 - 4.05063248149954e19 * cos(theta) ** 3 + 3.06866097083298e16 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl89_m9(theta, phi): return ( 1.47067331559185e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 8.52619520621969e42 * cos(theta) ** 80 - 1.52219078257933e44 * cos(theta) ** 78 + 1.30603969145307e45 * cos(theta) ** 76 - 7.17189425942437e45 * cos(theta) ** 74 + 2.83205941443059e46 * cos(theta) ** 72 - 8.56656078495217e46 * cos(theta) ** 70 + 2.06469503948697e47 * cos(theta) ** 68 - 4.07218640688427e47 * cos(theta) ** 66 + 6.69849681193769e47 * cos(theta) ** 64 - 9.31964773834809e47 * cos(theta) ** 62 + 1.10839332535951e48 * cos(theta) ** 60 - 1.13599084301467e48 * cos(theta) ** 58 + 1.00956605564691e48 * cos(theta) ** 56 - 7.81665020460654e47 * cos(theta) ** 54 + 5.29121402213432e47 * cos(theta) ** 52 - 3.13921690977633e47 * cos(theta) ** 50 + 1.63500880717517e47 * cos(theta) ** 48 - 7.48190642796591e46 * cos(theta) ** 46 + 3.0084588783779e46 * cos(theta) ** 44 - 1.06233747627678e46 * cos(theta) ** 42 + 3.29018909019535e45 * cos(theta) ** 40 - 8.92022068249e44 * cos(theta) ** 38 + 2.11141923898669e44 * cos(theta) ** 36 - 4.34846067525863e43 * cos(theta) ** 34 + 7.75918078505118e42 * cos(theta) ** 32 - 1.19334997500322e42 * cos(theta) ** 30 + 1.57209945223017e41 * cos(theta) ** 28 - 1.76075138649779e40 * cos(theta) ** 26 + 1.66156852674733e39 * cos(theta) ** 24 - 1.30690485432392e38 * cos(theta) ** 22 + 8.45644317503712e36 * cos(theta) ** 20 - 4.42989854771727e35 * cos(theta) ** 18 + 1.84177847228463e34 * cos(theta) ** 16 - 5.92688164854264e32 * cos(theta) ** 14 + 1.42911030741224e31 * cos(theta) ** 12 - 2.47237956197138e29 * cos(theta) ** 10 + 2.88829388080768e27 * cos(theta) ** 8 - 2.08165324742896e25 * cos(theta) ** 6 + 7.97772067231334e22 * cos(theta) ** 4 - 1.21518974444986e20 * cos(theta) ** 2 + 3.06866097083298e16 ) * cos(9 * phi) ) # @torch.jit.script def Yl89_m10(theta, phi): return ( 1.65254624516731e-19 * (1.0 - cos(theta) ** 2) ** 5 * ( 6.82095616497575e44 * cos(theta) ** 79 - 1.18730881041188e46 * cos(theta) ** 77 + 9.92590165504332e46 * cos(theta) ** 75 - 5.30720175197403e47 * cos(theta) ** 73 + 2.03908277839002e48 * cos(theta) ** 71 - 5.99659254946652e48 * cos(theta) ** 69 + 1.40399262685114e49 * cos(theta) ** 67 - 2.68764302854362e49 * cos(theta) ** 65 + 4.28703795964012e49 * cos(theta) ** 63 - 5.77818159777582e49 * cos(theta) ** 61 + 6.65035995215707e49 * cos(theta) ** 59 - 6.58874688948509e49 * cos(theta) ** 57 + 5.65356991162269e49 * cos(theta) ** 55 - 4.22099111048753e49 * cos(theta) ** 53 + 2.75143129150985e49 * cos(theta) ** 51 - 1.56960845488817e49 * cos(theta) ** 49 + 7.84804227444084e48 * cos(theta) ** 47 - 3.44167695686432e48 * cos(theta) ** 45 + 1.32372190648628e48 * cos(theta) ** 43 - 4.46181740036248e47 * cos(theta) ** 41 + 1.31607563607814e47 * cos(theta) ** 39 - 3.3896838593462e46 * cos(theta) ** 37 + 7.60110926035209e45 * cos(theta) ** 35 - 1.47847662958793e45 * cos(theta) ** 33 + 2.48293785121638e44 * cos(theta) ** 31 - 3.58004992500966e43 * cos(theta) ** 29 + 4.40187846624447e42 * cos(theta) ** 27 - 4.57795360489425e41 * cos(theta) ** 25 + 3.98776446419359e40 * cos(theta) ** 23 - 2.87519067951262e39 * cos(theta) ** 21 + 1.69128863500743e38 * cos(theta) ** 19 - 7.97381738589109e36 * cos(theta) ** 17 + 2.9468455556554e35 * cos(theta) ** 15 - 8.2976343079597e33 * cos(theta) ** 13 + 1.71493236889469e32 * cos(theta) ** 11 - 2.47237956197138e30 * cos(theta) ** 9 + 2.31063510464615e28 * cos(theta) ** 7 - 1.24899194845738e26 * cos(theta) ** 5 + 3.19108826892534e23 * cos(theta) ** 3 - 2.43037948889972e20 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl89_m11(theta, phi): return ( 1.85925978615847e-21 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 5.38855537033084e46 * cos(theta) ** 78 - 9.14227784017148e47 * cos(theta) ** 76 + 7.44442624128249e48 * cos(theta) ** 74 - 3.87425727894104e49 * cos(theta) ** 72 + 1.44774877265692e50 * cos(theta) ** 70 - 4.1376488591319e50 * cos(theta) ** 68 + 9.40675059990265e50 * cos(theta) ** 66 - 1.74696796855335e51 * cos(theta) ** 64 + 2.70083391457328e51 * cos(theta) ** 62 - 3.52469077464325e51 * cos(theta) ** 60 + 3.92371237177267e51 * cos(theta) ** 58 - 3.7555857270065e51 * cos(theta) ** 56 + 3.10946345139248e51 * cos(theta) ** 54 - 2.23712528855839e51 * cos(theta) ** 52 + 1.40322995867002e51 * cos(theta) ** 50 - 7.69108142895202e50 * cos(theta) ** 48 + 3.68857986898719e50 * cos(theta) ** 46 - 1.54875463058894e50 * cos(theta) ** 44 + 5.69200419789099e49 * cos(theta) ** 42 - 1.82934513414862e49 * cos(theta) ** 40 + 5.13269498070475e48 * cos(theta) ** 38 - 1.25418302795809e48 * cos(theta) ** 36 + 2.66038824112323e47 * cos(theta) ** 34 - 4.87897287764018e46 * cos(theta) ** 32 + 7.69710733877078e45 * cos(theta) ** 30 - 1.0382144782528e45 * cos(theta) ** 28 + 1.18850718588601e44 * cos(theta) ** 26 - 1.14448840122356e43 * cos(theta) ** 24 + 9.17185826764527e41 * cos(theta) ** 22 - 6.03790042697651e40 * cos(theta) ** 20 + 3.21344840651411e39 * cos(theta) ** 18 - 1.35554895560148e38 * cos(theta) ** 16 + 4.4202683334831e36 * cos(theta) ** 14 - 1.07869246003476e35 * cos(theta) ** 12 + 1.88642560578416e33 * cos(theta) ** 10 - 2.22514160577424e31 * cos(theta) ** 8 + 1.6174445732523e29 * cos(theta) ** 6 - 6.24495974228688e26 * cos(theta) ** 4 + 9.57326480677601e23 * cos(theta) ** 2 - 2.43037948889972e20 ) * cos(11 * phi) ) # @torch.jit.script def Yl89_m12(theta, phi): return ( 2.09474946331826e-23 * (1.0 - cos(theta) ** 2) ** 6 * ( 4.20307318885806e48 * cos(theta) ** 77 - 6.94813115853033e49 * cos(theta) ** 75 + 5.50887541854904e50 * cos(theta) ** 73 - 2.78946524083755e51 * cos(theta) ** 71 + 1.01342414085984e52 * cos(theta) ** 69 - 2.81360122420969e52 * cos(theta) ** 67 + 6.20845539593575e52 * cos(theta) ** 65 - 1.11805949987414e53 * cos(theta) ** 63 + 1.67451702703543e53 * cos(theta) ** 61 - 2.11481446478595e53 * cos(theta) ** 59 + 2.27575317562815e53 * cos(theta) ** 57 - 2.10312800712364e53 * cos(theta) ** 55 + 1.67911026375194e53 * cos(theta) ** 53 - 1.16330515005036e53 * cos(theta) ** 51 + 7.01614979335011e52 * cos(theta) ** 49 - 3.69171908589697e52 * cos(theta) ** 47 + 1.69674673973411e52 * cos(theta) ** 45 - 6.81452037459135e51 * cos(theta) ** 43 + 2.39064176311421e51 * cos(theta) ** 41 - 7.31738053659446e50 * cos(theta) ** 39 + 1.9504240926678e50 * cos(theta) ** 37 - 4.51505890064914e49 * cos(theta) ** 35 + 9.04532001981898e48 * cos(theta) ** 33 - 1.56127132084486e48 * cos(theta) ** 31 + 2.30913220163123e47 * cos(theta) ** 29 - 2.90700053910785e46 * cos(theta) ** 27 + 3.09011868330362e45 * cos(theta) ** 25 - 2.74677216293655e44 * cos(theta) ** 23 + 2.01780881888196e43 * cos(theta) ** 21 - 1.2075800853953e42 * cos(theta) ** 19 + 5.78420713172539e40 * cos(theta) ** 17 - 2.16887832896238e39 * cos(theta) ** 15 + 6.18837566687634e37 * cos(theta) ** 13 - 1.29443095204171e36 * cos(theta) ** 11 + 1.88642560578416e34 * cos(theta) ** 9 - 1.78011328461939e32 * cos(theta) ** 7 + 9.70466743951381e29 * cos(theta) ** 5 - 2.49798389691475e27 * cos(theta) ** 3 + 1.9146529613552e24 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl89_m13(theta, phi): return ( 2.36366889105142e-25 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 3.2363663554207e50 * cos(theta) ** 76 - 5.21109836889774e51 * cos(theta) ** 74 + 4.0214790555408e52 * cos(theta) ** 72 - 1.98052032099466e53 * cos(theta) ** 70 + 6.9926265719329e53 * cos(theta) ** 68 - 1.88511282022049e54 * cos(theta) ** 66 + 4.03549600735824e54 * cos(theta) ** 64 - 7.04377484920711e54 * cos(theta) ** 62 + 1.02145538649161e55 * cos(theta) ** 60 - 1.24774053422371e55 * cos(theta) ** 58 + 1.29717931010805e55 * cos(theta) ** 56 - 1.156720403918e55 * cos(theta) ** 54 + 8.89928439788528e54 * cos(theta) ** 52 - 5.93285626525685e54 * cos(theta) ** 50 + 3.43791339874155e54 * cos(theta) ** 48 - 1.73510797037158e54 * cos(theta) ** 46 + 7.63536032880349e53 * cos(theta) ** 44 - 2.93024376107428e53 * cos(theta) ** 42 + 9.80163122876828e52 * cos(theta) ** 40 - 2.85377840927184e52 * cos(theta) ** 38 + 7.21656914287088e51 * cos(theta) ** 36 - 1.5802706152272e51 * cos(theta) ** 34 + 2.98495560654027e50 * cos(theta) ** 32 - 4.83994109461906e49 * cos(theta) ** 30 + 6.69648338473057e48 * cos(theta) ** 28 - 7.84890145559118e47 * cos(theta) ** 26 + 7.72529670825904e46 * cos(theta) ** 24 - 6.31757597475406e45 * cos(theta) ** 22 + 4.23739851965211e44 * cos(theta) ** 20 - 2.29440216225107e43 * cos(theta) ** 18 + 9.83315212393317e41 * cos(theta) ** 16 - 3.25331749344356e40 * cos(theta) ** 14 + 8.04488836693925e38 * cos(theta) ** 12 - 1.42387404724588e37 * cos(theta) ** 10 + 1.69778304520574e35 * cos(theta) ** 8 - 1.24607929923357e33 * cos(theta) ** 6 + 4.85233371975691e30 * cos(theta) ** 4 - 7.49395169074426e27 * cos(theta) ** 2 + 1.9146529613552e24 ) * cos(13 * phi) ) # @torch.jit.script def Yl89_m14(theta, phi): return ( 2.67153723039434e-27 * (1.0 - cos(theta) ** 2) ** 7 * ( 2.45963843011974e52 * cos(theta) ** 75 - 3.85621279298433e53 * cos(theta) ** 73 + 2.89546491998938e54 * cos(theta) ** 71 - 1.38636422469626e55 * cos(theta) ** 69 + 4.75498606891437e55 * cos(theta) ** 67 - 1.24417446134552e56 * cos(theta) ** 65 + 2.58271744470927e56 * cos(theta) ** 63 - 4.36714040650841e56 * cos(theta) ** 61 + 6.12873231894968e56 * cos(theta) ** 59 - 7.23689509849752e56 * cos(theta) ** 57 + 7.26420413660506e56 * cos(theta) ** 55 - 6.24629018115721e56 * cos(theta) ** 53 + 4.62762788690034e56 * cos(theta) ** 51 - 2.96642813262843e56 * cos(theta) ** 49 + 1.65019843139595e56 * cos(theta) ** 47 - 7.98149666370925e55 * cos(theta) ** 45 + 3.35955854467354e55 * cos(theta) ** 43 - 1.2307023796512e55 * cos(theta) ** 41 + 3.92065249150731e54 * cos(theta) ** 39 - 1.0844357955233e54 * cos(theta) ** 37 + 2.59796489143352e53 * cos(theta) ** 35 - 5.37292009177248e52 * cos(theta) ** 33 + 9.55185794092885e51 * cos(theta) ** 31 - 1.45198232838572e51 * cos(theta) ** 29 + 1.87501534772456e50 * cos(theta) ** 27 - 2.04071437845371e49 * cos(theta) ** 25 + 1.85407120998217e48 * cos(theta) ** 23 - 1.38986671444589e47 * cos(theta) ** 21 + 8.47479703930423e45 * cos(theta) ** 19 - 4.12992389205193e44 * cos(theta) ** 17 + 1.57330433982931e43 * cos(theta) ** 15 - 4.55464449082099e41 * cos(theta) ** 13 + 9.65386604032709e39 * cos(theta) ** 11 - 1.42387404724588e38 * cos(theta) ** 9 + 1.3582264361646e36 * cos(theta) ** 7 - 7.47647579540144e33 * cos(theta) ** 5 + 1.94093348790276e31 * cos(theta) ** 3 - 1.49879033814885e28 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl89_m15(theta, phi): return ( 3.02492025183777e-29 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.8447288225898e54 * cos(theta) ** 74 - 2.81503533887856e55 * cos(theta) ** 72 + 2.05578009319246e56 * cos(theta) ** 70 - 9.56591315040421e56 * cos(theta) ** 68 + 3.18584066617263e57 * cos(theta) ** 66 - 8.08713399874591e57 * cos(theta) ** 64 + 1.62711199016684e58 * cos(theta) ** 62 - 2.66395564797013e58 * cos(theta) ** 60 + 3.61595206818031e58 * cos(theta) ** 58 - 4.12503020614358e58 * cos(theta) ** 56 + 3.99531227513278e58 * cos(theta) ** 54 - 3.31053379601332e58 * cos(theta) ** 52 + 2.36009022231918e58 * cos(theta) ** 50 - 1.45354978498793e58 * cos(theta) ** 48 + 7.75593262756094e57 * cos(theta) ** 46 - 3.59167349866916e57 * cos(theta) ** 44 + 1.44461017420962e57 * cos(theta) ** 42 - 5.04587975656991e56 * cos(theta) ** 40 + 1.52905447168785e56 * cos(theta) ** 38 - 4.01241244343621e55 * cos(theta) ** 36 + 9.0928771200173e54 * cos(theta) ** 34 - 1.77306363028492e54 * cos(theta) ** 32 + 2.96107596168794e53 * cos(theta) ** 30 - 4.21074875231858e52 * cos(theta) ** 28 + 5.06254143885631e51 * cos(theta) ** 26 - 5.10178594613427e50 * cos(theta) ** 24 + 4.26436378295899e49 * cos(theta) ** 22 - 2.91872010033638e48 * cos(theta) ** 20 + 1.6102114374678e47 * cos(theta) ** 18 - 7.02087061648828e45 * cos(theta) ** 16 + 2.35995650974396e44 * cos(theta) ** 14 - 5.92103783806728e42 * cos(theta) ** 12 + 1.06192526443598e41 * cos(theta) ** 10 - 1.2814866425213e39 * cos(theta) ** 8 + 9.50758505315217e36 * cos(theta) ** 6 - 3.73823789770072e34 * cos(theta) ** 4 + 5.82280046370829e31 * cos(theta) ** 2 - 1.49879033814885e28 ) * cos(15 * phi) ) # @torch.jit.script def Yl89_m16(theta, phi): return ( 3.43165342252496e-31 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.36509932871645e56 * cos(theta) ** 73 - 2.02682544399256e57 * cos(theta) ** 71 + 1.43904606523472e58 * cos(theta) ** 69 - 6.50482094227486e58 * cos(theta) ** 67 + 2.10265483967394e59 * cos(theta) ** 65 - 5.17576575919738e59 * cos(theta) ** 63 + 1.00880943390344e60 * cos(theta) ** 61 - 1.59837338878208e60 * cos(theta) ** 59 + 2.09725219954458e60 * cos(theta) ** 57 - 2.31001691544041e60 * cos(theta) ** 55 + 2.1574686285717e60 * cos(theta) ** 53 - 1.72147757392693e60 * cos(theta) ** 51 + 1.18004511115959e60 * cos(theta) ** 49 - 6.97703896794206e59 * cos(theta) ** 47 + 3.56772900867803e59 * cos(theta) ** 45 - 1.58033633941443e59 * cos(theta) ** 43 + 6.06736273168041e58 * cos(theta) ** 41 - 2.01835190262796e58 * cos(theta) ** 39 + 5.81040699241384e57 * cos(theta) ** 37 - 1.44446847963703e57 * cos(theta) ** 35 + 3.09157822080588e56 * cos(theta) ** 33 - 5.67380361691174e55 * cos(theta) ** 31 + 8.88322788506383e54 * cos(theta) ** 29 - 1.1790096506492e54 * cos(theta) ** 27 + 1.31626077410264e53 * cos(theta) ** 25 - 1.22442862707222e52 * cos(theta) ** 23 + 9.38160032250978e50 * cos(theta) ** 21 - 5.83744020067275e49 * cos(theta) ** 19 + 2.89838058744205e48 * cos(theta) ** 17 - 1.12333929863813e47 * cos(theta) ** 15 + 3.30393911364154e45 * cos(theta) ** 13 - 7.10524540568074e43 * cos(theta) ** 11 + 1.06192526443598e42 * cos(theta) ** 9 - 1.02518931401704e40 * cos(theta) ** 7 + 5.7045510318913e37 * cos(theta) ** 5 - 1.49529515908029e35 * cos(theta) ** 3 + 1.16456009274166e32 * cos(theta) ) * cos(16 * phi) ) # @torch.jit.script def Yl89_m17(theta, phi): return ( 3.90111773492035e-33 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 9.96522509963011e57 * cos(theta) ** 72 - 1.43904606523472e59 * cos(theta) ** 70 + 9.92941785011957e59 * cos(theta) ** 68 - 4.35823003132416e60 * cos(theta) ** 66 + 1.36672564578806e61 * cos(theta) ** 64 - 3.26073242829435e61 * cos(theta) ** 62 + 6.153737546811e61 * cos(theta) ** 60 - 9.43040299381425e61 * cos(theta) ** 58 + 1.19543375374041e62 * cos(theta) ** 56 - 1.27050930349222e62 * cos(theta) ** 54 + 1.143458373143e62 * cos(theta) ** 52 - 8.77953562702733e61 * cos(theta) ** 50 + 5.78222104468198e61 * cos(theta) ** 48 - 3.27920831493277e61 * cos(theta) ** 46 + 1.60547805390512e61 * cos(theta) ** 44 - 6.79544625948205e60 * cos(theta) ** 42 + 2.48761871998897e60 * cos(theta) ** 40 - 7.87157242024906e59 * cos(theta) ** 38 + 2.14985058719312e59 * cos(theta) ** 36 - 5.05563967872962e58 * cos(theta) ** 34 + 1.02022081286594e58 * cos(theta) ** 32 - 1.75887912124264e57 * cos(theta) ** 30 + 2.57613608666851e56 * cos(theta) ** 28 - 3.18332605675285e55 * cos(theta) ** 26 + 3.2906519352566e54 * cos(theta) ** 24 - 2.81618584226612e53 * cos(theta) ** 22 + 1.97013606772705e52 * cos(theta) ** 20 - 1.10911363812782e51 * cos(theta) ** 18 + 4.92724699865148e49 * cos(theta) ** 16 - 1.68500894795719e48 * cos(theta) ** 14 + 4.29512084773401e46 * cos(theta) ** 12 - 7.81576994624882e44 * cos(theta) ** 10 + 9.55732737992382e42 * cos(theta) ** 8 - 7.17632519811926e40 * cos(theta) ** 6 + 2.85227551594565e38 * cos(theta) ** 4 - 4.48588547724087e35 * cos(theta) ** 2 + 1.16456009274166e32 ) * cos(17 * phi) ) # @torch.jit.script def Yl89_m18(theta, phi): return ( 4.44458197209647e-35 * (1.0 - cos(theta) ** 2) ** 9 * ( 7.17496207173368e59 * cos(theta) ** 71 - 1.0073322456643e61 * cos(theta) ** 69 + 6.75200413808131e61 * cos(theta) ** 67 - 2.87643182067395e62 * cos(theta) ** 65 + 8.74704413304358e62 * cos(theta) ** 63 - 2.0216541055425e63 * cos(theta) ** 61 + 3.6922425280866e63 * cos(theta) ** 59 - 5.46963373641227e63 * cos(theta) ** 57 + 6.6944290209463e63 * cos(theta) ** 55 - 6.86075023885801e63 * cos(theta) ** 53 + 5.94598354034361e63 * cos(theta) ** 51 - 4.38976781351367e63 * cos(theta) ** 49 + 2.77546610144735e63 * cos(theta) ** 47 - 1.50843582486907e63 * cos(theta) ** 45 + 7.06410343718251e62 * cos(theta) ** 43 - 2.85408742898246e62 * cos(theta) ** 41 + 9.95047487995587e61 * cos(theta) ** 39 - 2.99119751969464e61 * cos(theta) ** 37 + 7.73946211389523e60 * cos(theta) ** 35 - 1.71891749076807e60 * cos(theta) ** 33 + 3.26470660117101e59 * cos(theta) ** 31 - 5.27663736372791e58 * cos(theta) ** 29 + 7.21318104267183e57 * cos(theta) ** 27 - 8.27664774755741e56 * cos(theta) ** 25 + 7.89756464461585e55 * cos(theta) ** 23 - 6.19560885298546e54 * cos(theta) ** 21 + 3.94027213545411e53 * cos(theta) ** 19 - 1.99640454863008e52 * cos(theta) ** 17 + 7.88359519784236e50 * cos(theta) ** 15 - 2.35901252714006e49 * cos(theta) ** 13 + 5.15414501728081e47 * cos(theta) ** 11 - 7.81576994624882e45 * cos(theta) ** 9 + 7.64586190393906e43 * cos(theta) ** 7 - 4.30579511887155e41 * cos(theta) ** 5 + 1.14091020637826e39 * cos(theta) ** 3 - 8.97177095448173e35 * cos(theta) ) * cos(18 * phi) ) # @torch.jit.script def Yl89_m19(theta, phi): return ( 5.07562897863914e-37 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 5.09422307093091e61 * cos(theta) ** 70 - 6.9505924950837e62 * cos(theta) ** 68 + 4.52384277251448e63 * cos(theta) ** 66 - 1.86968068343806e64 * cos(theta) ** 64 + 5.51063780381745e64 * cos(theta) ** 62 - 1.23320900438092e65 * cos(theta) ** 60 + 2.17842309157109e65 * cos(theta) ** 58 - 3.11769122975499e65 * cos(theta) ** 56 + 3.68193596152047e65 * cos(theta) ** 54 - 3.63619762659475e65 * cos(theta) ** 52 + 3.03245160557524e65 * cos(theta) ** 50 - 2.1509862286217e65 * cos(theta) ** 48 + 1.30446906768025e65 * cos(theta) ** 46 - 6.78796121191083e64 * cos(theta) ** 44 + 3.03756447798848e64 * cos(theta) ** 42 - 1.17017584588281e64 * cos(theta) ** 40 + 3.88068520318279e63 * cos(theta) ** 38 - 1.10674308228702e63 * cos(theta) ** 36 + 2.70881173986333e62 * cos(theta) ** 34 - 5.67242771953463e61 * cos(theta) ** 32 + 1.01205904636301e61 * cos(theta) ** 30 - 1.5302248354811e60 * cos(theta) ** 28 + 1.94755888152139e59 * cos(theta) ** 26 - 2.06916193688935e58 * cos(theta) ** 24 + 1.81643986826165e57 * cos(theta) ** 22 - 1.30107785912695e56 * cos(theta) ** 20 + 7.4865170573628e54 * cos(theta) ** 18 - 3.39388773267114e53 * cos(theta) ** 16 + 1.18253927967635e52 * cos(theta) ** 14 - 3.06671628528208e50 * cos(theta) ** 12 + 5.66955951900889e48 * cos(theta) ** 10 - 7.03419295162393e46 * cos(theta) ** 8 + 5.35210333275734e44 * cos(theta) ** 6 - 2.15289755943578e42 * cos(theta) ** 4 + 3.42273061913478e39 * cos(theta) ** 2 - 8.97177095448173e35 ) * cos(19 * phi) ) # @torch.jit.script def Yl89_m20(theta, phi): return ( 5.81068856595213e-39 * (1.0 - cos(theta) ** 2) ** 10 * ( 3.56595614965164e63 * cos(theta) ** 69 - 4.72640289665692e64 * cos(theta) ** 67 + 2.98573622985956e65 * cos(theta) ** 65 - 1.19659563740036e66 * cos(theta) ** 63 + 3.41659543836682e66 * cos(theta) ** 61 - 7.39925402628554e66 * cos(theta) ** 59 + 1.26348539311123e67 * cos(theta) ** 57 - 1.7459070886628e67 * cos(theta) ** 55 + 1.98824541922105e67 * cos(theta) ** 53 - 1.89082276582927e67 * cos(theta) ** 51 + 1.51622580278762e67 * cos(theta) ** 49 - 1.03247338973841e67 * cos(theta) ** 47 + 6.00055771132917e66 * cos(theta) ** 45 - 2.98670293324076e66 * cos(theta) ** 43 + 1.27577708075516e66 * cos(theta) ** 41 - 4.68070338353124e65 * cos(theta) ** 39 + 1.47466037720946e65 * cos(theta) ** 37 - 3.98427509623327e64 * cos(theta) ** 35 + 9.20995991553533e63 * cos(theta) ** 33 - 1.81517687025108e63 * cos(theta) ** 31 + 3.03617713908904e62 * cos(theta) ** 29 - 4.28462953934707e61 * cos(theta) ** 27 + 5.06365309195562e60 * cos(theta) ** 25 - 4.96598864853445e59 * cos(theta) ** 23 + 3.99616771017562e58 * cos(theta) ** 21 - 2.60215571825389e57 * cos(theta) ** 19 + 1.3475730703253e56 * cos(theta) ** 17 - 5.43022037227382e54 * cos(theta) ** 15 + 1.6555549915469e53 * cos(theta) ** 13 - 3.6800595423385e51 * cos(theta) ** 11 + 5.66955951900889e49 * cos(theta) ** 9 - 5.62735436129915e47 * cos(theta) ** 7 + 3.2112619996544e45 * cos(theta) ** 5 - 8.61159023774311e42 * cos(theta) ** 3 + 6.84546123826956e39 * cos(theta) ) * cos(20 * phi) ) # @torch.jit.script def Yl89_m21(theta, phi): return ( 6.66970631729821e-41 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 2.46050974325963e65 * cos(theta) ** 68 - 3.16668994076013e66 * cos(theta) ** 66 + 1.94072854940871e67 * cos(theta) ** 64 - 7.53855251562227e67 * cos(theta) ** 62 + 2.08412321740376e68 * cos(theta) ** 60 - 4.36555987550847e68 * cos(theta) ** 58 + 7.20186674073403e68 * cos(theta) ** 56 - 9.60248898764537e68 * cos(theta) ** 54 + 1.05377007218716e69 * cos(theta) ** 52 - 9.64319610572927e68 * cos(theta) ** 50 + 7.42950643365934e68 * cos(theta) ** 48 - 4.85262493177055e68 * cos(theta) ** 46 + 2.70025097009813e68 * cos(theta) ** 44 - 1.28428226129353e68 * cos(theta) ** 42 + 5.23068603109616e67 * cos(theta) ** 40 - 1.82547431957718e67 * cos(theta) ** 38 + 5.456243395675e66 * cos(theta) ** 36 - 1.39449628368164e66 * cos(theta) ** 34 + 3.03928677212666e65 * cos(theta) ** 32 - 5.62704829777836e64 * cos(theta) ** 30 + 8.80491370335822e63 * cos(theta) ** 28 - 1.15684997562371e63 * cos(theta) ** 26 + 1.26591327298891e62 * cos(theta) ** 24 - 1.14217738916292e61 * cos(theta) ** 22 + 8.3919521913688e59 * cos(theta) ** 20 - 4.9440958646824e58 * cos(theta) ** 18 + 2.29087421955302e57 * cos(theta) ** 16 - 8.14533055841073e55 * cos(theta) ** 14 + 2.15222148901097e54 * cos(theta) ** 12 - 4.04806549657235e52 * cos(theta) ** 10 + 5.102603567108e50 * cos(theta) ** 8 - 3.9391480529094e48 * cos(theta) ** 6 + 1.6056309998272e46 * cos(theta) ** 4 - 2.58347707132293e43 * cos(theta) ** 2 + 6.84546123826956e39 ) * cos(21 * phi) ) # @torch.jit.script def Yl89_m22(theta, phi): return ( 7.67698630014625e-43 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.67314662541655e67 * cos(theta) ** 67 - 2.09001536090169e68 * cos(theta) ** 65 + 1.24206627162157e69 * cos(theta) ** 63 - 4.67390255968581e69 * cos(theta) ** 61 + 1.25047393044226e70 * cos(theta) ** 59 - 2.53202472779491e70 * cos(theta) ** 57 + 4.03304537481106e70 * cos(theta) ** 55 - 5.1853440533285e70 * cos(theta) ** 53 + 5.47960437537322e70 * cos(theta) ** 51 - 4.82159805286463e70 * cos(theta) ** 49 + 3.56616308815648e70 * cos(theta) ** 47 - 2.23220746861445e70 * cos(theta) ** 45 + 1.18811042684318e70 * cos(theta) ** 43 - 5.39398549743282e69 * cos(theta) ** 41 + 2.09227441243846e69 * cos(theta) ** 39 - 6.9368024143933e68 * cos(theta) ** 37 + 1.964247622443e68 * cos(theta) ** 35 - 4.74128736451759e67 * cos(theta) ** 33 + 9.7257176708053e66 * cos(theta) ** 31 - 1.68811448933351e66 * cos(theta) ** 29 + 2.4653758369403e65 * cos(theta) ** 27 - 3.00780993662164e64 * cos(theta) ** 25 + 3.03819185517337e63 * cos(theta) ** 23 - 2.51279025615843e62 * cos(theta) ** 21 + 1.67839043827376e61 * cos(theta) ** 19 - 8.89937255642831e59 * cos(theta) ** 17 + 3.66539875128483e58 * cos(theta) ** 15 - 1.1403462781775e57 * cos(theta) ** 13 + 2.58266578681316e55 * cos(theta) ** 11 - 4.04806549657235e53 * cos(theta) ** 9 + 4.0820828536864e51 * cos(theta) ** 7 - 2.36348883174564e49 * cos(theta) ** 5 + 6.42252399930881e46 * cos(theta) ** 3 - 5.16695414264586e43 * cos(theta) ) * cos(22 * phi) ) # @torch.jit.script def Yl89_m23(theta, phi): return ( 8.86225726032474e-45 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.12100823902909e69 * cos(theta) ** 66 - 1.3585099845861e70 * cos(theta) ** 64 + 7.82501751121592e70 * cos(theta) ** 62 - 2.85108056140834e71 * cos(theta) ** 60 + 7.37779618960931e71 * cos(theta) ** 58 - 1.4432540948431e72 * cos(theta) ** 56 + 2.21817495614608e72 * cos(theta) ** 54 - 2.74823234826411e72 * cos(theta) ** 52 + 2.79459823144034e72 * cos(theta) ** 50 - 2.36258304590367e72 * cos(theta) ** 48 + 1.67609665143355e72 * cos(theta) ** 46 - 1.0044933608765e72 * cos(theta) ** 44 + 5.10887483542566e71 * cos(theta) ** 42 - 2.21153405394746e71 * cos(theta) ** 40 + 8.15987020851001e70 * cos(theta) ** 38 - 2.56661689332552e70 * cos(theta) ** 36 + 6.8748666785505e69 * cos(theta) ** 34 - 1.5646248302908e69 * cos(theta) ** 32 + 3.01497247794964e68 * cos(theta) ** 30 - 4.89553201906717e67 * cos(theta) ** 28 + 6.65651475973882e66 * cos(theta) ** 26 - 7.5195248415541e65 * cos(theta) ** 24 + 6.98784126689876e64 * cos(theta) ** 22 - 5.2768595379327e63 * cos(theta) ** 20 + 3.18894183272014e62 * cos(theta) ** 18 - 1.51289333459281e61 * cos(theta) ** 16 + 5.49809812692724e59 * cos(theta) ** 14 - 1.48245016163075e58 * cos(theta) ** 12 + 2.84093236549447e56 * cos(theta) ** 10 - 3.64325894691511e54 * cos(theta) ** 8 + 2.85745799758048e52 * cos(theta) ** 6 - 1.18174441587282e50 * cos(theta) ** 4 + 1.92675719979264e47 * cos(theta) ** 2 - 5.16695414264586e43 ) * cos(23 * phi) ) # @torch.jit.script def Yl89_m24(theta, phi): return ( 1.02620272462204e-46 * (1.0 - cos(theta) ** 2) ** 12 * ( 7.39865437759198e70 * cos(theta) ** 65 - 8.69446390135102e71 * cos(theta) ** 63 + 4.85151085695387e72 * cos(theta) ** 61 - 1.71064833684501e73 * cos(theta) ** 59 + 4.2791217899734e73 * cos(theta) ** 57 - 8.08222293112136e73 * cos(theta) ** 55 + 1.19781447631888e74 * cos(theta) ** 53 - 1.42908082109734e74 * cos(theta) ** 51 + 1.39729911572017e74 * cos(theta) ** 49 - 1.13403986203376e74 * cos(theta) ** 47 + 7.71004459659432e73 * cos(theta) ** 45 - 4.41977078785661e73 * cos(theta) ** 43 + 2.14572743087878e73 * cos(theta) ** 41 - 8.84613621578982e72 * cos(theta) ** 39 + 3.1007506792338e72 * cos(theta) ** 37 - 9.23982081597187e71 * cos(theta) ** 35 + 2.33745467070717e71 * cos(theta) ** 33 - 5.00679945693057e70 * cos(theta) ** 31 + 9.04491743384893e69 * cos(theta) ** 29 - 1.37074896533881e69 * cos(theta) ** 27 + 1.73069383753209e68 * cos(theta) ** 25 - 1.80468596197298e67 * cos(theta) ** 23 + 1.53732507871773e66 * cos(theta) ** 21 - 1.05537190758654e65 * cos(theta) ** 19 + 5.74009529889626e63 * cos(theta) ** 17 - 2.4206293353485e62 * cos(theta) ** 15 + 7.69733737769814e60 * cos(theta) ** 13 - 1.7789401939569e59 * cos(theta) ** 11 + 2.84093236549447e57 * cos(theta) ** 9 - 2.91460715753209e55 * cos(theta) ** 7 + 1.71447479854829e53 * cos(theta) ** 5 - 4.72697766349128e50 * cos(theta) ** 3 + 3.85351439958529e47 * cos(theta) ) * cos(24 * phi) ) # @torch.jit.script def Yl89_m25(theta, phi): return ( 1.19213121397702e-48 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 4.80912534543478e72 * cos(theta) ** 64 - 5.47751225785115e73 * cos(theta) ** 62 + 2.95942162274186e74 * cos(theta) ** 60 - 1.00928251873855e75 * cos(theta) ** 58 + 2.43909942028484e75 * cos(theta) ** 56 - 4.44522261211675e75 * cos(theta) ** 54 + 6.34841672449009e75 * cos(theta) ** 52 - 7.28831218759641e75 * cos(theta) ** 50 + 6.84676566702884e75 * cos(theta) ** 48 - 5.32998735155868e75 * cos(theta) ** 46 + 3.46952006846744e75 * cos(theta) ** 44 - 1.90050143877834e75 * cos(theta) ** 42 + 8.79748246660298e74 * cos(theta) ** 40 - 3.44999312415803e74 * cos(theta) ** 38 + 1.14727775131651e74 * cos(theta) ** 36 - 3.23393728559015e73 * cos(theta) ** 34 + 7.71360041333366e72 * cos(theta) ** 32 - 1.55210783164848e72 * cos(theta) ** 30 + 2.62302605581619e71 * cos(theta) ** 28 - 3.70102220641478e70 * cos(theta) ** 26 + 4.32673459383023e69 * cos(theta) ** 24 - 4.15077771253786e68 * cos(theta) ** 22 + 3.22838266530723e67 * cos(theta) ** 20 - 2.00520662441443e66 * cos(theta) ** 18 + 9.75816200812364e64 * cos(theta) ** 16 - 3.63094400302275e63 * cos(theta) ** 14 + 1.00065385910076e62 * cos(theta) ** 12 - 1.95683421335259e60 * cos(theta) ** 10 + 2.55683912894503e58 * cos(theta) ** 8 - 2.04022501027246e56 * cos(theta) ** 6 + 8.57237399274144e53 * cos(theta) ** 4 - 1.41809329904739e51 * cos(theta) ** 2 + 3.85351439958529e47 ) * cos(25 * phi) ) # @torch.jit.script def Yl89_m26(theta, phi): return ( 1.38958511135867e-50 * (1.0 - cos(theta) ** 2) ** 13 * ( 3.07784022107826e74 * cos(theta) ** 63 - 3.39605759986771e75 * cos(theta) ** 61 + 1.77565297364512e76 * cos(theta) ** 59 - 5.85383860868361e76 * cos(theta) ** 57 + 1.36589567535951e77 * cos(theta) ** 55 - 2.40042021054304e77 * cos(theta) ** 53 + 3.30117669673484e77 * cos(theta) ** 51 - 3.6441560937982e77 * cos(theta) ** 49 + 3.28644752017384e77 * cos(theta) ** 47 - 2.45179418171699e77 * cos(theta) ** 45 + 1.52658883012567e77 * cos(theta) ** 43 - 7.98210604286905e76 * cos(theta) ** 41 + 3.51899298664119e76 * cos(theta) ** 39 - 1.31099738718005e76 * cos(theta) ** 37 + 4.13019990473943e75 * cos(theta) ** 35 - 1.09953867710065e75 * cos(theta) ** 33 + 2.46835213226677e74 * cos(theta) ** 31 - 4.65632349494543e73 * cos(theta) ** 29 + 7.34447295628533e72 * cos(theta) ** 27 - 9.62265773667843e71 * cos(theta) ** 25 + 1.03841630251926e71 * cos(theta) ** 23 - 9.1317109675833e69 * cos(theta) ** 21 + 6.45676533061446e68 * cos(theta) ** 19 - 3.60937192394597e67 * cos(theta) ** 17 + 1.56130592129978e66 * cos(theta) ** 15 - 5.08332160423185e64 * cos(theta) ** 13 + 1.20078463092091e63 * cos(theta) ** 11 - 1.95683421335259e61 * cos(theta) ** 9 + 2.04547130315602e59 * cos(theta) ** 7 - 1.22413500616348e57 * cos(theta) ** 5 + 3.42894959709658e54 * cos(theta) ** 3 - 2.83618659809477e51 * cos(theta) ) * cos(26 * phi) ) # @torch.jit.script def Yl89_m27(theta, phi): return ( 1.62549591679572e-52 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.93903933927931e76 * cos(theta) ** 62 - 2.0715951359193e77 * cos(theta) ** 60 + 1.04763525445062e78 * cos(theta) ** 58 - 3.33668800694966e78 * cos(theta) ** 56 + 7.5124262144773e78 * cos(theta) ** 54 - 1.27222271158781e79 * cos(theta) ** 52 + 1.68360011533477e79 * cos(theta) ** 50 - 1.78563648596112e79 * cos(theta) ** 48 + 1.54463033448171e79 * cos(theta) ** 46 - 1.10330738177265e79 * cos(theta) ** 44 + 6.5643319695404e78 * cos(theta) ** 42 - 3.27266347757631e78 * cos(theta) ** 40 + 1.37240726479007e78 * cos(theta) ** 38 - 4.85069033256619e77 * cos(theta) ** 36 + 1.4455699666588e77 * cos(theta) ** 34 - 3.62847763443215e76 * cos(theta) ** 32 + 7.65189161002699e75 * cos(theta) ** 30 - 1.35033381353417e75 * cos(theta) ** 28 + 1.98300769819704e74 * cos(theta) ** 26 - 2.40566443416961e73 * cos(theta) ** 24 + 2.38835749579429e72 * cos(theta) ** 22 - 1.91765930319249e71 * cos(theta) ** 20 + 1.22678541281675e70 * cos(theta) ** 18 - 6.13593227070815e68 * cos(theta) ** 16 + 2.34195888194967e67 * cos(theta) ** 14 - 6.60831808550141e65 * cos(theta) ** 12 + 1.320863094013e64 * cos(theta) ** 10 - 1.76115079201733e62 * cos(theta) ** 8 + 1.43182991220921e60 * cos(theta) ** 6 - 6.12067503081739e57 * cos(theta) ** 4 + 1.02868487912897e55 * cos(theta) ** 2 - 2.83618659809477e51 ) * cos(27 * phi) ) # @torch.jit.script def Yl89_m28(theta, phi): return ( 1.90852172201028e-54 * (1.0 - cos(theta) ** 2) ** 14 * ( 1.20220439035317e78 * cos(theta) ** 61 - 1.24295708155158e79 * cos(theta) ** 59 + 6.07628447581359e79 * cos(theta) ** 57 - 1.86854528389181e80 * cos(theta) ** 55 + 4.05671015581774e80 * cos(theta) ** 53 - 6.61555810025663e80 * cos(theta) ** 51 + 8.41800057667385e80 * cos(theta) ** 49 - 8.57105513261338e80 * cos(theta) ** 47 + 7.10529953861584e80 * cos(theta) ** 45 - 4.85455247979965e80 * cos(theta) ** 43 + 2.75701942720697e80 * cos(theta) ** 41 - 1.30906539103052e80 * cos(theta) ** 39 + 5.21514760620225e79 * cos(theta) ** 37 - 1.74624851972383e79 * cos(theta) ** 35 + 4.91493788663992e78 * cos(theta) ** 33 - 1.16111284301829e78 * cos(theta) ** 31 + 2.2955674830081e77 * cos(theta) ** 29 - 3.78093467789569e76 * cos(theta) ** 27 + 5.1558200153123e75 * cos(theta) ** 25 - 5.77359464200706e74 * cos(theta) ** 23 + 5.25438649074743e73 * cos(theta) ** 21 - 3.83531860638499e72 * cos(theta) ** 19 + 2.20821374307014e71 * cos(theta) ** 17 - 9.81749163313303e69 * cos(theta) ** 15 + 3.27874243472954e68 * cos(theta) ** 13 - 7.92998170260169e66 * cos(theta) ** 11 + 1.320863094013e65 * cos(theta) ** 9 - 1.40892063361387e63 * cos(theta) ** 7 + 8.59097947325529e60 * cos(theta) ** 5 - 2.44827001232696e58 * cos(theta) ** 3 + 2.05736975825795e55 * cos(theta) ) * cos(28 * phi) ) # @torch.jit.script def Yl89_m29(theta, phi): return ( 2.24952687544693e-56 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 7.33344678115433e79 * cos(theta) ** 60 - 7.33344678115433e80 * cos(theta) ** 58 + 3.46348215121375e81 * cos(theta) ** 56 - 1.0276999061405e82 * cos(theta) ** 54 + 2.1500563825834e82 * cos(theta) ** 52 - 3.37393463113088e82 * cos(theta) ** 50 + 4.12482028257019e82 * cos(theta) ** 48 - 4.02839591232829e82 * cos(theta) ** 46 + 3.19738479237713e82 * cos(theta) ** 44 - 2.08745756631385e82 * cos(theta) ** 42 + 1.13037796515486e82 * cos(theta) ** 40 - 5.10535502501904e81 * cos(theta) ** 38 + 1.92960461429483e81 * cos(theta) ** 36 - 6.1118698190334e80 * cos(theta) ** 34 + 1.62192950259117e80 * cos(theta) ** 32 - 3.5994498133567e79 * cos(theta) ** 30 + 6.65714570072348e78 * cos(theta) ** 28 - 1.02085236303184e78 * cos(theta) ** 26 + 1.28895500382808e77 * cos(theta) ** 24 - 1.32792676766162e76 * cos(theta) ** 22 + 1.10342116305696e75 * cos(theta) ** 20 - 7.28710535213147e73 * cos(theta) ** 18 + 3.75396336321924e72 * cos(theta) ** 16 - 1.47262374496996e71 * cos(theta) ** 14 + 4.26236516514841e69 * cos(theta) ** 12 - 8.72297987286186e67 * cos(theta) ** 10 + 1.1887767846117e66 * cos(theta) ** 8 - 9.86244443529707e63 * cos(theta) ** 6 + 4.29548973662764e61 * cos(theta) ** 4 - 7.34481003698087e58 * cos(theta) ** 2 + 2.05736975825795e55 ) * cos(29 * phi) ) # @torch.jit.script def Yl89_m30(theta, phi): return ( 2.66220858884676e-58 * (1.0 - cos(theta) ** 2) ** 15 * ( 4.4000680686926e81 * cos(theta) ** 59 - 4.25339913306951e82 * cos(theta) ** 57 + 1.9395500046797e83 * cos(theta) ** 55 - 5.54957949315867e83 * cos(theta) ** 53 + 1.11802931894337e84 * cos(theta) ** 51 - 1.68696731556544e84 * cos(theta) ** 49 + 1.97991373563369e84 * cos(theta) ** 47 - 1.85306211967101e84 * cos(theta) ** 45 + 1.40684930864594e84 * cos(theta) ** 43 - 8.76732177851816e83 * cos(theta) ** 41 + 4.52151186061943e83 * cos(theta) ** 39 - 1.94003490950724e83 * cos(theta) ** 37 + 6.94657661146139e82 * cos(theta) ** 35 - 2.07803573847136e82 * cos(theta) ** 33 + 5.19017440829175e81 * cos(theta) ** 31 - 1.07983494400701e81 * cos(theta) ** 29 + 1.86400079620257e80 * cos(theta) ** 27 - 2.65421614388277e79 * cos(theta) ** 25 + 3.09349200918738e78 * cos(theta) ** 23 - 2.92143888885557e77 * cos(theta) ** 21 + 2.20684232611392e76 * cos(theta) ** 19 - 1.31167896338367e75 * cos(theta) ** 17 + 6.00634138115079e73 * cos(theta) ** 15 - 2.06167324295794e72 * cos(theta) ** 13 + 5.11483819817809e70 * cos(theta) ** 11 - 8.72297987286186e68 * cos(theta) ** 9 + 9.5102142768936e66 * cos(theta) ** 7 - 5.91746666117824e64 * cos(theta) ** 5 + 1.71819589465106e62 * cos(theta) ** 3 - 1.46896200739617e59 * cos(theta) ) * cos(30 * phi) ) # @torch.jit.script def Yl89_m31(theta, phi): return ( 3.1639196910608e-60 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 2.59604016052863e83 * cos(theta) ** 58 - 2.42443750584962e84 * cos(theta) ** 56 + 1.06675250257383e85 * cos(theta) ** 54 - 2.9412771313741e85 * cos(theta) ** 52 + 5.70194952661119e85 * cos(theta) ** 50 - 8.26613984627066e85 * cos(theta) ** 48 + 9.30559455747834e85 * cos(theta) ** 46 - 8.33877953851955e85 * cos(theta) ** 44 + 6.04945202717753e85 * cos(theta) ** 42 - 3.59460192919245e85 * cos(theta) ** 40 + 1.76338962564158e85 * cos(theta) ** 38 - 7.17812916517677e84 * cos(theta) ** 36 + 2.43130181401149e84 * cos(theta) ** 34 - 6.85751793695548e83 * cos(theta) ** 32 + 1.60895406657044e83 * cos(theta) ** 30 - 3.13152133762033e82 * cos(theta) ** 28 + 5.03280214974695e81 * cos(theta) ** 26 - 6.63554035970693e80 * cos(theta) ** 24 + 7.11503162113098e79 * cos(theta) ** 22 - 6.1350216665967e78 * cos(theta) ** 20 + 4.19300041961645e77 * cos(theta) ** 18 - 2.22985423775223e76 * cos(theta) ** 16 + 9.00951207172619e74 * cos(theta) ** 14 - 2.68017521584532e73 * cos(theta) ** 12 + 5.6263220179959e71 * cos(theta) ** 10 - 7.85068188557567e69 * cos(theta) ** 8 + 6.65714999382552e67 * cos(theta) ** 6 - 2.95873333058912e65 * cos(theta) ** 4 + 5.15458768395317e62 * cos(theta) ** 2 - 1.46896200739617e59 ) * cos(31 * phi) ) # @torch.jit.script def Yl89_m32(theta, phi): return ( 3.77675462261663e-62 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.50570329310661e85 * cos(theta) ** 57 - 1.35768500327579e86 * cos(theta) ** 55 + 5.7604635138987e86 * cos(theta) ** 53 - 1.52946410831453e87 * cos(theta) ** 51 + 2.85097476330559e87 * cos(theta) ** 49 - 3.96774712620992e87 * cos(theta) ** 47 + 4.28057349644004e87 * cos(theta) ** 45 - 3.6690629969486e87 * cos(theta) ** 43 + 2.54076985141456e87 * cos(theta) ** 41 - 1.43784077167698e87 * cos(theta) ** 39 + 6.70088057743799e86 * cos(theta) ** 37 - 2.58412649946364e86 * cos(theta) ** 35 + 8.26642616763906e85 * cos(theta) ** 33 - 2.19440573982575e85 * cos(theta) ** 31 + 4.82686219971133e84 * cos(theta) ** 29 - 8.76825974533691e83 * cos(theta) ** 27 + 1.30852855893421e83 * cos(theta) ** 25 - 1.59252968632966e82 * cos(theta) ** 23 + 1.56530695664882e81 * cos(theta) ** 21 - 1.22700433331934e80 * cos(theta) ** 19 + 7.54740075530961e78 * cos(theta) ** 17 - 3.56776678040357e77 * cos(theta) ** 15 + 1.26133169004167e76 * cos(theta) ** 13 - 3.21621025901438e74 * cos(theta) ** 11 + 5.6263220179959e72 * cos(theta) ** 9 - 6.28054550846054e70 * cos(theta) ** 7 + 3.99428999629531e68 * cos(theta) ** 5 - 1.18349333223565e66 * cos(theta) ** 3 + 1.03091753679063e63 * cos(theta) ) * cos(32 * phi) ) # @torch.jit.script def Yl89_m33(theta, phi): return ( 4.52899067270559e-64 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 8.58250877070766e86 * cos(theta) ** 56 - 7.46726751801684e87 * cos(theta) ** 54 + 3.05304566236631e88 * cos(theta) ** 52 - 7.8002669524041e88 * cos(theta) ** 50 + 1.39697763401974e89 * cos(theta) ** 48 - 1.86484114931866e89 * cos(theta) ** 46 + 1.92625807339802e89 * cos(theta) ** 44 - 1.5776970886879e89 * cos(theta) ** 42 + 1.04171563907997e89 * cos(theta) ** 40 - 5.60757900954021e88 * cos(theta) ** 38 + 2.47932581365206e88 * cos(theta) ** 36 - 9.04444274812273e87 * cos(theta) ** 34 + 2.72792063532089e87 * cos(theta) ** 32 - 6.80265779345983e86 * cos(theta) ** 30 + 1.39979003791629e86 * cos(theta) ** 28 - 2.36743013124097e85 * cos(theta) ** 26 + 3.27132139733552e84 * cos(theta) ** 24 - 3.66281827855823e83 * cos(theta) ** 22 + 3.28714460896251e82 * cos(theta) ** 20 - 2.33130823330675e81 * cos(theta) ** 18 + 1.28305812840263e80 * cos(theta) ** 16 - 5.35165017060535e78 * cos(theta) ** 14 + 1.63973119705417e77 * cos(theta) ** 12 - 3.53783128491582e75 * cos(theta) ** 10 + 5.06368981619631e73 * cos(theta) ** 8 - 4.39638185592238e71 * cos(theta) ** 6 + 1.99714499814766e69 * cos(theta) ** 4 - 3.55047999670695e66 * cos(theta) ** 2 + 1.03091753679063e63 ) * cos(33 * phi) ) # @torch.jit.script def Yl89_m34(theta, phi): return ( 5.45701134971043e-66 * (1.0 - cos(theta) ** 2) ** 17 * ( 4.80620491159629e88 * cos(theta) ** 55 - 4.03232445972909e89 * cos(theta) ** 53 + 1.58758374443048e90 * cos(theta) ** 51 - 3.90013347620205e90 * cos(theta) ** 49 + 6.70549264329476e90 * cos(theta) ** 47 - 8.57826928686584e90 * cos(theta) ** 45 + 8.47553552295128e90 * cos(theta) ** 43 - 6.62632777248918e90 * cos(theta) ** 41 + 4.16686255631988e90 * cos(theta) ** 39 - 2.13088002362528e90 * cos(theta) ** 37 + 8.92557292914741e89 * cos(theta) ** 35 - 3.07511053436173e89 * cos(theta) ** 33 + 8.72934603302684e88 * cos(theta) ** 31 - 2.04079733803795e88 * cos(theta) ** 29 + 3.9194121061656e87 * cos(theta) ** 27 - 6.15531834122651e86 * cos(theta) ** 25 + 7.85117135360524e85 * cos(theta) ** 23 - 8.0582002128281e84 * cos(theta) ** 21 + 6.57428921792503e83 * cos(theta) ** 19 - 4.19635481995214e82 * cos(theta) ** 17 + 2.05289300544421e81 * cos(theta) ** 15 - 7.4923102388475e79 * cos(theta) ** 13 + 1.967677436465e78 * cos(theta) ** 11 - 3.53783128491582e76 * cos(theta) ** 9 + 4.05095185295705e74 * cos(theta) ** 7 - 2.63782911355343e72 * cos(theta) ** 5 + 7.98857999259063e69 * cos(theta) ** 3 - 7.10095999341389e66 * cos(theta) ) * cos(34 * phi) ) # @torch.jit.script def Yl89_m35(theta, phi): return ( 6.60788794510886e-68 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 2.64341270137796e90 * cos(theta) ** 54 - 2.13713196365642e91 * cos(theta) ** 52 + 8.09667709659546e91 * cos(theta) ** 50 - 1.91106540333901e92 * cos(theta) ** 48 + 3.15158154234854e92 * cos(theta) ** 46 - 3.86022117908963e92 * cos(theta) ** 44 + 3.64448027486905e92 * cos(theta) ** 42 - 2.71679438672056e92 * cos(theta) ** 40 + 1.62507639696475e92 * cos(theta) ** 38 - 7.88425608741354e91 * cos(theta) ** 36 + 3.12395052520159e91 * cos(theta) ** 34 - 1.01478647633937e91 * cos(theta) ** 32 + 2.70609727023832e90 * cos(theta) ** 30 - 5.91831228031006e89 * cos(theta) ** 28 + 1.05824126866471e89 * cos(theta) ** 26 - 1.53882958530663e88 * cos(theta) ** 24 + 1.80576941132921e87 * cos(theta) ** 22 - 1.6922220446939e86 * cos(theta) ** 20 + 1.24911495140575e85 * cos(theta) ** 18 - 7.13380319391864e83 * cos(theta) ** 16 + 3.07933950816632e82 * cos(theta) ** 14 - 9.74000331050175e80 * cos(theta) ** 12 + 2.1644451801115e79 * cos(theta) ** 10 - 3.18404815642424e77 * cos(theta) ** 8 + 2.83566629706993e75 * cos(theta) ** 6 - 1.31891455677671e73 * cos(theta) ** 4 + 2.39657399777719e70 * cos(theta) ** 2 - 7.10095999341389e66 ) * cos(35 * phi) ) # @torch.jit.script def Yl89_m36(theta, phi): return ( 8.04286507778352e-70 * (1.0 - cos(theta) ** 2) ** 18 * ( 1.4274428587441e92 * cos(theta) ** 53 - 1.11130862110134e93 * cos(theta) ** 51 + 4.04833854829773e93 * cos(theta) ** 49 - 9.17311393602723e93 * cos(theta) ** 47 + 1.44972750948033e94 * cos(theta) ** 45 - 1.69849731879944e94 * cos(theta) ** 43 + 1.530681715445e94 * cos(theta) ** 41 - 1.08671775468823e94 * cos(theta) ** 39 + 6.17529030846607e93 * cos(theta) ** 37 - 2.83833219146888e93 * cos(theta) ** 35 + 1.06214317856854e93 * cos(theta) ** 33 - 3.24731672428599e92 * cos(theta) ** 31 + 8.11829181071497e91 * cos(theta) ** 29 - 1.65712743848682e91 * cos(theta) ** 27 + 2.75142729852825e90 * cos(theta) ** 25 - 3.69319100473591e89 * cos(theta) ** 23 + 3.97269270492425e88 * cos(theta) ** 21 - 3.3844440893878e87 * cos(theta) ** 19 + 2.24840691253036e86 * cos(theta) ** 17 - 1.14140851102698e85 * cos(theta) ** 15 + 4.31107531143285e83 * cos(theta) ** 13 - 1.16880039726021e82 * cos(theta) ** 11 + 2.1644451801115e80 * cos(theta) ** 9 - 2.54723852513939e78 * cos(theta) ** 7 + 1.70139977824196e76 * cos(theta) ** 5 - 5.27565822710685e73 * cos(theta) ** 3 + 4.79314799555438e70 * cos(theta) ) * cos(36 * phi) ) # @torch.jit.script def Yl89_m37(theta, phi): return ( 9.84209552655039e-72 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 7.56544715134372e93 * cos(theta) ** 52 - 5.66767396761682e94 * cos(theta) ** 50 + 1.98368588866589e95 * cos(theta) ** 48 - 4.3113635499328e95 * cos(theta) ** 46 + 6.52377379266147e95 * cos(theta) ** 44 - 7.30353847083757e95 * cos(theta) ** 42 + 6.2757950333245e95 * cos(theta) ** 40 - 4.23819924328408e95 * cos(theta) ** 38 + 2.28485741413244e95 * cos(theta) ** 36 - 9.93416267014106e94 * cos(theta) ** 34 + 3.50507248927619e94 * cos(theta) ** 32 - 1.00666818452866e94 * cos(theta) ** 30 + 2.35430462510734e93 * cos(theta) ** 28 - 4.4742440839144e92 * cos(theta) ** 26 + 6.87856824632063e91 * cos(theta) ** 24 - 8.49433931089259e90 * cos(theta) ** 22 + 8.34265468034093e89 * cos(theta) ** 20 - 6.43044376983682e88 * cos(theta) ** 18 + 3.82229175130161e87 * cos(theta) ** 16 - 1.71211276654047e86 * cos(theta) ** 14 + 5.6043979048627e84 * cos(theta) ** 12 - 1.28568043698623e83 * cos(theta) ** 10 + 1.94800066210035e81 * cos(theta) ** 8 - 1.78306696759757e79 * cos(theta) ** 6 + 8.5069988912098e76 * cos(theta) ** 4 - 1.58269746813206e74 * cos(theta) ** 2 + 4.79314799555438e70 ) * cos(37 * phi) ) # @torch.jit.script def Yl89_m38(theta, phi): return ( 1.21111126490024e-73 * (1.0 - cos(theta) ** 2) ** 19 * ( 3.93403251869874e95 * cos(theta) ** 51 - 2.83383698380841e96 * cos(theta) ** 49 + 9.52169226559626e96 * cos(theta) ** 47 - 1.98322723296909e97 * cos(theta) ** 45 + 2.87046046877105e97 * cos(theta) ** 43 - 3.06748615775178e97 * cos(theta) ** 41 + 2.5103180133298e97 * cos(theta) ** 39 - 1.61051571244795e97 * cos(theta) ** 37 + 8.2254866908768e96 * cos(theta) ** 35 - 3.37761530784796e96 * cos(theta) ** 33 + 1.12162319656838e96 * cos(theta) ** 31 - 3.02000455358597e95 * cos(theta) ** 29 + 6.59205295030055e94 * cos(theta) ** 27 - 1.16330346181774e94 * cos(theta) ** 25 + 1.65085637911695e93 * cos(theta) ** 23 - 1.86875464839637e92 * cos(theta) ** 21 + 1.66853093606819e91 * cos(theta) ** 19 - 1.15747987857063e90 * cos(theta) ** 17 + 6.11566680208257e88 * cos(theta) ** 15 - 2.39695787315666e87 * cos(theta) ** 13 + 6.72527748583524e85 * cos(theta) ** 11 - 1.28568043698623e84 * cos(theta) ** 9 + 1.55840052968028e82 * cos(theta) ** 7 - 1.06984018055854e80 * cos(theta) ** 5 + 3.40279955648392e77 * cos(theta) ** 3 - 3.16539493626411e74 * cos(theta) ) * cos(38 * phi) ) # @torch.jit.script def Yl89_m39(theta, phi): return ( 1.49897355401543e-75 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 2.00635658453636e97 * cos(theta) ** 50 - 1.38858012206612e98 * cos(theta) ** 48 + 4.47519536483024e98 * cos(theta) ** 46 - 8.92452254836089e98 * cos(theta) ** 44 + 1.23429800157155e99 * cos(theta) ** 42 - 1.25766932467823e99 * cos(theta) ** 40 + 9.79024025198622e98 * cos(theta) ** 38 - 5.95890813605741e98 * cos(theta) ** 36 + 2.87892034180688e98 * cos(theta) ** 34 - 1.11461305158983e98 * cos(theta) ** 32 + 3.47703190936198e97 * cos(theta) ** 30 - 8.75801320539931e96 * cos(theta) ** 28 + 1.77985429658115e96 * cos(theta) ** 26 - 2.90825865454436e95 * cos(theta) ** 24 + 3.79696967196899e94 * cos(theta) ** 22 - 3.92438476163237e93 * cos(theta) ** 20 + 3.17020877852955e92 * cos(theta) ** 18 - 1.96771579357007e91 * cos(theta) ** 16 + 9.17350020312386e89 * cos(theta) ** 14 - 3.11604523510366e88 * cos(theta) ** 12 + 7.39780523441877e86 * cos(theta) ** 10 - 1.15711239328761e85 * cos(theta) ** 8 + 1.0908803707762e83 * cos(theta) ** 6 - 5.34920090279272e80 * cos(theta) ** 4 + 1.02083986694518e78 * cos(theta) ** 2 - 3.16539493626411e74 ) * cos(39 * phi) ) # @torch.jit.script def Yl89_m40(theta, phi): return ( 1.86644034437968e-77 * (1.0 - cos(theta) ** 2) ** 20 * ( 1.00317829226818e99 * cos(theta) ** 49 - 6.66518458591738e99 * cos(theta) ** 47 + 2.05858986782191e100 * cos(theta) ** 45 - 3.92678992127879e100 * cos(theta) ** 43 + 5.18405160660051e100 * cos(theta) ** 41 - 5.03067729871292e100 * cos(theta) ** 39 + 3.72029129575477e100 * cos(theta) ** 37 - 2.14520692898067e100 * cos(theta) ** 35 + 9.78832916214339e99 * cos(theta) ** 33 - 3.56676176508745e99 * cos(theta) ** 31 + 1.04310957280859e99 * cos(theta) ** 29 - 2.45224369751181e98 * cos(theta) ** 27 + 4.62762117111099e97 * cos(theta) ** 25 - 6.97982077090647e96 * cos(theta) ** 23 + 8.35333327833177e95 * cos(theta) ** 21 - 7.84876952326475e94 * cos(theta) ** 19 + 5.7063758013532e93 * cos(theta) ** 17 - 3.14834526971211e92 * cos(theta) ** 15 + 1.28429002843734e91 * cos(theta) ** 13 - 3.7392542821244e89 * cos(theta) ** 11 + 7.39780523441877e87 * cos(theta) ** 9 - 9.25689914630086e85 * cos(theta) ** 7 + 6.54528222465717e83 * cos(theta) ** 5 - 2.13968036111709e81 * cos(theta) ** 3 + 2.04167973389035e78 * cos(theta) ) * cos(40 * phi) ) # @torch.jit.script def Yl89_m41(theta, phi): return ( 2.33853781656624e-79 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 4.91557363211407e100 * cos(theta) ** 48 - 3.13263675538117e101 * cos(theta) ** 46 + 9.2636544051986e101 * cos(theta) ** 44 - 1.68851966614988e102 * cos(theta) ** 42 + 2.12546115870621e102 * cos(theta) ** 40 - 1.96196414649804e102 * cos(theta) ** 38 + 1.37650777942926e102 * cos(theta) ** 36 - 7.50822425143234e101 * cos(theta) ** 34 + 3.23014862350732e101 * cos(theta) ** 32 - 1.10569614717711e101 * cos(theta) ** 30 + 3.02501776114492e100 * cos(theta) ** 28 - 6.62105798328187e99 * cos(theta) ** 26 + 1.15690529277775e99 * cos(theta) ** 24 - 1.60535877730849e98 * cos(theta) ** 22 + 1.75419998844967e97 * cos(theta) ** 20 - 1.4912662094203e96 * cos(theta) ** 18 + 9.70083886230044e94 * cos(theta) ** 16 - 4.72251790456816e93 * cos(theta) ** 14 + 1.66957703696854e92 * cos(theta) ** 12 - 4.11317971033684e90 * cos(theta) ** 10 + 6.65802471097689e88 * cos(theta) ** 8 - 6.4798294024106e86 * cos(theta) ** 6 + 3.27264111232859e84 * cos(theta) ** 4 - 6.41904108335126e81 * cos(theta) ** 2 + 2.04167973389035e78 ) * cos(41 * phi) ) # @torch.jit.script def Yl89_m42(theta, phi): return ( 2.94909070805061e-81 * (1.0 - cos(theta) ** 2) ** 21 * ( 2.35947534341475e102 * cos(theta) ** 47 - 1.44101290747534e103 * cos(theta) ** 45 + 4.07600793828739e103 * cos(theta) ** 43 - 7.0917825978295e103 * cos(theta) ** 41 + 8.50184463482484e103 * cos(theta) ** 39 - 7.45546375669255e103 * cos(theta) ** 37 + 4.95542800594535e103 * cos(theta) ** 35 - 2.552796245487e103 * cos(theta) ** 33 + 1.03364755952234e103 * cos(theta) ** 31 - 3.31708844153133e102 * cos(theta) ** 29 + 8.47004973120578e101 * cos(theta) ** 27 - 1.72147507565329e101 * cos(theta) ** 25 + 2.77657270266659e100 * cos(theta) ** 23 - 3.53178931007867e99 * cos(theta) ** 21 + 3.50839997689934e98 * cos(theta) ** 19 - 2.68427917695654e97 * cos(theta) ** 17 + 1.55213421796807e96 * cos(theta) ** 15 - 6.61152506639543e94 * cos(theta) ** 13 + 2.00349244436225e93 * cos(theta) ** 11 - 4.11317971033684e91 * cos(theta) ** 9 + 5.32641976878151e89 * cos(theta) ** 7 - 3.88789764144636e87 * cos(theta) ** 5 + 1.30905644493143e85 * cos(theta) ** 3 - 1.28380821667025e82 * cos(theta) ) * cos(42 * phi) ) # @torch.jit.script def Yl89_m43(theta, phi): return ( 3.74414135178388e-83 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 1.10895341140493e104 * cos(theta) ** 46 - 6.48455808363902e104 * cos(theta) ** 44 + 1.75268341346358e105 * cos(theta) ** 42 - 2.90763086511009e105 * cos(theta) ** 40 + 3.31571940758169e105 * cos(theta) ** 38 - 2.75852158997624e105 * cos(theta) ** 36 + 1.73439980208087e105 * cos(theta) ** 34 - 8.42422761010709e104 * cos(theta) ** 32 + 3.20430743451926e104 * cos(theta) ** 30 - 9.61955648044085e103 * cos(theta) ** 28 + 2.28691342742556e103 * cos(theta) ** 26 - 4.30368768913322e102 * cos(theta) ** 24 + 6.38611721613316e101 * cos(theta) ** 22 - 7.41675755116521e100 * cos(theta) ** 20 + 6.66595995610875e99 * cos(theta) ** 18 - 4.56327460082613e98 * cos(theta) ** 16 + 2.3282013269521e97 * cos(theta) ** 14 - 8.59498258631406e95 * cos(theta) ** 12 + 2.20384168879848e94 * cos(theta) ** 10 - 3.70186173930315e92 * cos(theta) ** 8 + 3.72849383814706e90 * cos(theta) ** 6 - 1.94394882072318e88 * cos(theta) ** 4 + 3.9271693347943e85 * cos(theta) ** 2 - 1.28380821667025e82 ) * cos(43 * phi) ) # @torch.jit.script def Yl89_m44(theta, phi): return ( 4.78682444162545e-85 * (1.0 - cos(theta) ** 2) ** 22 * ( 5.1011856924627e105 * cos(theta) ** 45 - 2.85320555680117e106 * cos(theta) ** 43 + 7.36127033654702e106 * cos(theta) ** 41 - 1.16305234604404e107 * cos(theta) ** 39 + 1.25997337488104e107 * cos(theta) ** 37 - 9.93067772391447e106 * cos(theta) ** 35 + 5.89695932707496e106 * cos(theta) ** 33 - 2.69575283523427e106 * cos(theta) ** 31 + 9.61292230355778e105 * cos(theta) ** 29 - 2.69347581452344e105 * cos(theta) ** 27 + 5.94597491130645e104 * cos(theta) ** 25 - 1.03288504539197e104 * cos(theta) ** 23 + 1.4049457875493e103 * cos(theta) ** 21 - 1.48335151023304e102 * cos(theta) ** 19 + 1.19987279209958e101 * cos(theta) ** 17 - 7.3012393613218e99 * cos(theta) ** 15 + 3.25948185773295e98 * cos(theta) ** 13 - 1.03139791035769e97 * cos(theta) ** 11 + 2.20384168879848e95 * cos(theta) ** 9 - 2.96148939144252e93 * cos(theta) ** 7 + 2.23709630288824e91 * cos(theta) ** 5 - 7.77579528289272e88 * cos(theta) ** 3 + 7.85433866958861e85 * cos(theta) ) * cos(44 * phi) ) # @torch.jit.script def Yl89_m45(theta, phi): return ( 6.16437206669811e-87 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 2.29553356160821e107 * cos(theta) ** 44 - 1.2268783894245e108 * cos(theta) ** 42 + 3.01812083798428e108 * cos(theta) ** 40 - 4.53590414957175e108 * cos(theta) ** 38 + 4.66190148705985e108 * cos(theta) ** 36 - 3.47573720337007e108 * cos(theta) ** 34 + 1.94599657793474e108 * cos(theta) ** 32 - 8.35683378922623e107 * cos(theta) ** 30 + 2.78774746803176e107 * cos(theta) ** 28 - 7.27238469921328e106 * cos(theta) ** 26 + 1.48649372782661e106 * cos(theta) ** 24 - 2.37563560440154e105 * cos(theta) ** 22 + 2.95038615385352e104 * cos(theta) ** 20 - 2.81836786944278e103 * cos(theta) ** 18 + 2.03978374656928e102 * cos(theta) ** 16 - 1.09518590419827e101 * cos(theta) ** 14 + 4.23732641505283e99 * cos(theta) ** 12 - 1.13453770139346e98 * cos(theta) ** 10 + 1.98345751991863e96 * cos(theta) ** 8 - 2.07304257400977e94 * cos(theta) ** 6 + 1.11854815144412e92 * cos(theta) ** 4 - 2.33273858486782e89 * cos(theta) ** 2 + 7.85433866958861e85 ) * cos(45 * phi) ) # @torch.jit.script def Yl89_m46(theta, phi): return ( 7.99826190890544e-89 * (1.0 - cos(theta) ** 2) ** 23 * ( 1.01003476710761e109 * cos(theta) ** 43 - 5.15288923558291e109 * cos(theta) ** 41 + 1.20724833519371e110 * cos(theta) ** 39 - 1.72364357683726e110 * cos(theta) ** 37 + 1.67828453534155e110 * cos(theta) ** 35 - 1.18175064914582e110 * cos(theta) ** 33 + 6.22718904939116e109 * cos(theta) ** 31 - 2.50705013676787e109 * cos(theta) ** 29 + 7.80569291048892e108 * cos(theta) ** 27 - 1.89082002179545e108 * cos(theta) ** 25 + 3.56758494678387e107 * cos(theta) ** 23 - 5.22639832968338e106 * cos(theta) ** 21 + 5.90077230770704e105 * cos(theta) ** 19 - 5.07306216499701e104 * cos(theta) ** 17 + 3.26365399451085e103 * cos(theta) ** 15 - 1.53326026587758e102 * cos(theta) ** 13 + 5.0847916980634e100 * cos(theta) ** 11 - 1.13453770139346e99 * cos(theta) ** 9 + 1.5867660159349e97 * cos(theta) ** 7 - 1.24382554440586e95 * cos(theta) ** 5 + 4.47419260577647e92 * cos(theta) ** 3 - 4.66547716973563e89 * cos(theta) ) * cos(46 * phi) ) # @torch.jit.script def Yl89_m47(theta, phi): return ( 1.04590427793794e-90 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 4.34314949856274e110 * cos(theta) ** 42 - 2.11268458658899e111 * cos(theta) ** 40 + 4.70826850725547e111 * cos(theta) ** 38 - 6.37748123429788e111 * cos(theta) ** 36 + 5.87399587369541e111 * cos(theta) ** 34 - 3.89977714218121e111 * cos(theta) ** 32 + 1.93042860531126e111 * cos(theta) ** 30 - 7.27044539662682e110 * cos(theta) ** 28 + 2.10753708583201e110 * cos(theta) ** 26 - 4.72705005448863e109 * cos(theta) ** 24 + 8.20544537760291e108 * cos(theta) ** 22 - 1.09754364923351e108 * cos(theta) ** 20 + 1.12114673846434e107 * cos(theta) ** 18 - 8.62420568049491e105 * cos(theta) ** 16 + 4.89548099176627e104 * cos(theta) ** 14 - 1.99323834564085e103 * cos(theta) ** 12 + 5.59327086786974e101 * cos(theta) ** 10 - 1.02108393125411e100 * cos(theta) ** 8 + 1.11073621115443e98 * cos(theta) ** 6 - 6.2191277220293e95 * cos(theta) ** 4 + 1.34225778173294e93 * cos(theta) ** 2 - 4.66547716973563e89 ) * cos(47 * phi) ) # @torch.jit.script def Yl89_m48(theta, phi): return ( 1.37881821026187e-92 * (1.0 - cos(theta) ** 2) ** 24 * ( 1.82412278939635e112 * cos(theta) ** 41 - 8.45073834635598e112 * cos(theta) ** 39 + 1.78914203275708e113 * cos(theta) ** 37 - 2.29589324434724e113 * cos(theta) ** 35 + 1.99715859705644e113 * cos(theta) ** 33 - 1.24792868549799e113 * cos(theta) ** 31 + 5.79128581593378e112 * cos(theta) ** 29 - 2.03572471105551e112 * cos(theta) ** 27 + 5.47959642316322e111 * cos(theta) ** 25 - 1.13449201307727e111 * cos(theta) ** 23 + 1.80519798307264e110 * cos(theta) ** 21 - 2.19508729846702e109 * cos(theta) ** 19 + 2.01806412923581e108 * cos(theta) ** 17 - 1.37987290887919e107 * cos(theta) ** 15 + 6.85367338847277e105 * cos(theta) ** 13 - 2.39188601476902e104 * cos(theta) ** 11 + 5.59327086786974e102 * cos(theta) ** 9 - 8.16867145003288e100 * cos(theta) ** 7 + 6.66441726692659e98 * cos(theta) ** 5 - 2.48765108881172e96 * cos(theta) ** 3 + 2.68451556346588e93 * cos(theta) ) * cos(48 * phi) ) # @torch.jit.script def Yl89_m49(theta, phi): return ( 1.83305518164533e-94 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 7.47890343652504e113 * cos(theta) ** 40 - 3.29578795507883e114 * cos(theta) ** 38 + 6.61982552120119e114 * cos(theta) ** 36 - 8.03562635521532e114 * cos(theta) ** 34 + 6.59062337028625e114 * cos(theta) ** 32 - 3.86857892504376e114 * cos(theta) ** 30 + 1.6794728866208e114 * cos(theta) ** 28 - 5.49645671984988e113 * cos(theta) ** 26 + 1.36989910579081e113 * cos(theta) ** 24 - 2.60933163007772e112 * cos(theta) ** 22 + 3.79091576445254e111 * cos(theta) ** 20 - 4.17066586708734e110 * cos(theta) ** 18 + 3.43070901970087e109 * cos(theta) ** 16 - 2.06980936331878e108 * cos(theta) ** 14 + 8.90977540501461e106 * cos(theta) ** 12 - 2.63107461624592e105 * cos(theta) ** 10 + 5.03394378108276e103 * cos(theta) ** 8 - 5.71807001502302e101 * cos(theta) ** 6 + 3.3322086334633e99 * cos(theta) ** 4 - 7.46295326643516e96 * cos(theta) ** 2 + 2.68451556346588e93 ) * cos(49 * phi) ) # @torch.jit.script def Yl89_m50(theta, phi): return ( 2.45831846480124e-96 * (1.0 - cos(theta) ** 2) ** 25 * ( 2.99156137461002e115 * cos(theta) ** 39 - 1.25239942292996e116 * cos(theta) ** 37 + 2.38313718763243e116 * cos(theta) ** 35 - 2.73211296077321e116 * cos(theta) ** 33 + 2.1089994784916e116 * cos(theta) ** 31 - 1.16057367751313e116 * cos(theta) ** 29 + 4.70252408253823e115 * cos(theta) ** 27 - 1.42907874716097e115 * cos(theta) ** 25 + 3.28775785389793e114 * cos(theta) ** 23 - 5.74052958617099e113 * cos(theta) ** 21 + 7.58183152890509e112 * cos(theta) ** 19 - 7.50719856075721e111 * cos(theta) ** 17 + 5.4891344315214e110 * cos(theta) ** 15 - 2.89773310864629e109 * cos(theta) ** 13 + 1.06917304860175e108 * cos(theta) ** 11 - 2.63107461624592e106 * cos(theta) ** 9 + 4.02715502486621e104 * cos(theta) ** 7 - 3.43084200901381e102 * cos(theta) ** 5 + 1.33288345338532e100 * cos(theta) ** 3 - 1.49259065328703e97 * cos(theta) ) * cos(50 * phi) ) # @torch.jit.script def Yl89_m51(theta, phi): return ( 3.32691589418808e-98 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 1.16670893609791e117 * cos(theta) ** 38 - 4.63387786484084e117 * cos(theta) ** 36 + 8.34098015671351e117 * cos(theta) ** 34 - 9.01597277055159e117 * cos(theta) ** 32 + 6.53789838332396e117 * cos(theta) ** 30 - 3.36566366478808e117 * cos(theta) ** 28 + 1.26968150228532e117 * cos(theta) ** 26 - 3.57269686790242e116 * cos(theta) ** 24 + 7.56184306396525e115 * cos(theta) ** 22 - 1.20551121309591e115 * cos(theta) ** 20 + 1.44054799049197e114 * cos(theta) ** 18 - 1.27622375532873e113 * cos(theta) ** 16 + 8.2337016472821e111 * cos(theta) ** 14 - 3.76705304124018e110 * cos(theta) ** 12 + 1.17609035346193e109 * cos(theta) ** 10 - 2.36796715462133e107 * cos(theta) ** 8 + 2.81900851740635e105 * cos(theta) ** 6 - 1.71542100450691e103 * cos(theta) ** 4 + 3.99865036015596e100 * cos(theta) ** 2 - 1.49259065328703e97 ) * cos(51 * phi) ) # @torch.jit.script def Yl89_m52(theta, phi): return ( 4.54506885839889e-100 * (1.0 - cos(theta) ** 2) ** 26 * ( 4.43349395717204e118 * cos(theta) ** 37 - 1.6681960313427e119 * cos(theta) ** 35 + 2.83593325328259e119 * cos(theta) ** 33 - 2.88511128657651e119 * cos(theta) ** 31 + 1.96136951499719e119 * cos(theta) ** 29 - 9.42385826140661e118 * cos(theta) ** 27 + 3.30117190594184e118 * cos(theta) ** 25 - 8.57447248296581e117 * cos(theta) ** 23 + 1.66360547407235e117 * cos(theta) ** 21 - 2.41102242619182e116 * cos(theta) ** 19 + 2.59298638288554e115 * cos(theta) ** 17 - 2.04195800852596e114 * cos(theta) ** 15 + 1.15271823061949e113 * cos(theta) ** 13 - 4.52046364948821e111 * cos(theta) ** 11 + 1.17609035346193e110 * cos(theta) ** 9 - 1.89437372369707e108 * cos(theta) ** 7 + 1.69140511044381e106 * cos(theta) ** 5 - 6.86168401802762e103 * cos(theta) ** 3 + 7.99730072031191e100 * cos(theta) ) * cos(52 * phi) ) # @torch.jit.script def Yl89_m53(theta, phi): return ( 6.2704026980257e-102 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 1.64039276415366e120 * cos(theta) ** 36 - 5.83868610969945e120 * cos(theta) ** 34 + 9.35857973583255e120 * cos(theta) ** 32 - 8.94384498838718e120 * cos(theta) ** 30 + 5.68797159349185e120 * cos(theta) ** 28 - 2.54444173057978e120 * cos(theta) ** 26 + 8.25292976485459e119 * cos(theta) ** 24 - 1.97212867108214e119 * cos(theta) ** 22 + 3.49357149555194e118 * cos(theta) ** 20 - 4.58094260976445e117 * cos(theta) ** 18 + 4.40807685090542e116 * cos(theta) ** 16 - 3.06293701278894e115 * cos(theta) ** 14 + 1.49853369980534e114 * cos(theta) ** 12 - 4.97251001443703e112 * cos(theta) ** 10 + 1.05848131811574e111 * cos(theta) ** 8 - 1.32606160658795e109 * cos(theta) ** 6 + 8.45702555221904e106 * cos(theta) ** 4 - 2.05850520540829e104 * cos(theta) ** 2 + 7.99730072031191e100 ) * cos(53 * phi) ) # @torch.jit.script def Yl89_m54(theta, phi): return ( 8.73929025958482e-104 * (1.0 - cos(theta) ** 2) ** 27 * ( 5.90541395095316e121 * cos(theta) ** 35 - 1.98515327729781e122 * cos(theta) ** 33 + 2.99474551546642e122 * cos(theta) ** 31 - 2.68315349651615e122 * cos(theta) ** 29 + 1.59263204617772e122 * cos(theta) ** 27 - 6.61554849950744e121 * cos(theta) ** 25 + 1.9807031435651e121 * cos(theta) ** 23 - 4.3386830763807e120 * cos(theta) ** 21 + 6.98714299110389e119 * cos(theta) ** 19 - 8.24569669757602e118 * cos(theta) ** 17 + 7.05292296144867e117 * cos(theta) ** 15 - 4.28811181790452e116 * cos(theta) ** 13 + 1.79824043976641e115 * cos(theta) ** 11 - 4.97251001443703e113 * cos(theta) ** 9 + 8.46785054492588e111 * cos(theta) ** 7 - 7.95636963952768e109 * cos(theta) ** 5 + 3.38281022088762e107 * cos(theta) ** 3 - 4.11701041081657e104 * cos(theta) ) * cos(54 * phi) ) # @torch.jit.script def Yl89_m55(theta, phi): return ( 1.23100805769927e-105 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 2.06689488283361e123 * cos(theta) ** 34 - 6.55100581508279e123 * cos(theta) ** 32 + 9.28371109794589e123 * cos(theta) ** 30 - 7.78114513989685e123 * cos(theta) ** 28 + 4.30010652467984e123 * cos(theta) ** 26 - 1.65388712487686e123 * cos(theta) ** 24 + 4.55561723019973e122 * cos(theta) ** 22 - 9.11123446039947e121 * cos(theta) ** 20 + 1.32755716830974e121 * cos(theta) ** 18 - 1.40176843858792e120 * cos(theta) ** 16 + 1.0579384442173e119 * cos(theta) ** 14 - 5.57454536327587e117 * cos(theta) ** 12 + 1.97806448374305e116 * cos(theta) ** 10 - 4.47525901299333e114 * cos(theta) ** 8 + 5.92749538144812e112 * cos(theta) ** 6 - 3.97818481976384e110 * cos(theta) ** 4 + 1.01484306626629e108 * cos(theta) ** 2 - 4.11701041081657e104 ) * cos(55 * phi) ) # @torch.jit.script def Yl89_m56(theta, phi): return ( 1.75322411673177e-107 * (1.0 - cos(theta) ** 2) ** 28 * ( 7.02744260163426e124 * cos(theta) ** 33 - 2.09632186082649e125 * cos(theta) ** 31 + 2.78511332938377e125 * cos(theta) ** 29 - 2.17872063917112e125 * cos(theta) ** 27 + 1.11802769641676e125 * cos(theta) ** 25 - 3.96932909970446e124 * cos(theta) ** 23 + 1.00223579064394e124 * cos(theta) ** 21 - 1.82224689207989e123 * cos(theta) ** 19 + 2.38960290295753e122 * cos(theta) ** 17 - 2.24282950174068e121 * cos(theta) ** 15 + 1.48111382190422e120 * cos(theta) ** 13 - 6.68945443593105e118 * cos(theta) ** 11 + 1.97806448374305e117 * cos(theta) ** 9 - 3.58020721039466e115 * cos(theta) ** 7 + 3.55649722886887e113 * cos(theta) ** 5 - 1.59127392790554e111 * cos(theta) ** 3 + 2.02968613253257e108 * cos(theta) ) * cos(56 * phi) ) # @torch.jit.script def Yl89_m57(theta, phi): return ( 2.52582954060277e-109 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 2.31905605853931e126 * cos(theta) ** 32 - 6.49859776856212e126 * cos(theta) ** 30 + 8.07682865521293e126 * cos(theta) ** 28 - 5.88254572576202e126 * cos(theta) ** 26 + 2.79506924104189e126 * cos(theta) ** 24 - 9.12945692932027e125 * cos(theta) ** 22 + 2.10469516035228e125 * cos(theta) ** 20 - 3.4622690949518e124 * cos(theta) ** 18 + 4.0623249350278e123 * cos(theta) ** 16 - 3.36424425261101e122 * cos(theta) ** 14 + 1.92544796847549e121 * cos(theta) ** 12 - 7.35839987952415e119 * cos(theta) ** 10 + 1.78025803536875e118 * cos(theta) ** 8 - 2.50614504727626e116 * cos(theta) ** 6 + 1.77824861443444e114 * cos(theta) ** 4 - 4.7738217837166e111 * cos(theta) ** 2 + 2.02968613253257e108 ) * cos(57 * phi) ) # @torch.jit.script def Yl89_m58(theta, phi): return ( 3.68273425697931e-111 * (1.0 - cos(theta) ** 2) ** 29 * ( 7.42097938732578e127 * cos(theta) ** 31 - 1.94957933056864e128 * cos(theta) ** 29 + 2.26151202345962e128 * cos(theta) ** 27 - 1.52946188869812e128 * cos(theta) ** 25 + 6.70816617850054e127 * cos(theta) ** 23 - 2.00848052445046e127 * cos(theta) ** 21 + 4.20939032070455e126 * cos(theta) ** 19 - 6.23208437091324e125 * cos(theta) ** 17 + 6.49971989604448e124 * cos(theta) ** 15 - 4.70994195365542e123 * cos(theta) ** 13 + 2.31053756217058e122 * cos(theta) ** 11 - 7.35839987952415e120 * cos(theta) ** 9 + 1.424206428295e119 * cos(theta) ** 7 - 1.50368702836576e117 * cos(theta) ** 5 + 7.11299445773774e114 * cos(theta) ** 3 - 9.54764356743321e111 * cos(theta) ) * cos(58 * phi) ) # @torch.jit.script def Yl89_m59(theta, phi): return ( 5.4369917879787e-113 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 2.30050361007099e129 * cos(theta) ** 30 - 5.65378005864905e129 * cos(theta) ** 28 + 6.10608246334097e129 * cos(theta) ** 26 - 3.82365472174531e129 * cos(theta) ** 24 + 1.54287822105513e129 * cos(theta) ** 22 - 4.21780910134596e128 * cos(theta) ** 20 + 7.99784160933865e127 * cos(theta) ** 18 - 1.05945434305525e127 * cos(theta) ** 16 + 9.74957984406672e125 * cos(theta) ** 14 - 6.12292453975205e124 * cos(theta) ** 12 + 2.54159131838764e123 * cos(theta) ** 10 - 6.62255989157174e121 * cos(theta) ** 8 + 9.96944499806498e119 * cos(theta) ** 6 - 7.51843514182879e117 * cos(theta) ** 4 + 2.13389833732132e115 * cos(theta) ** 2 - 9.54764356743321e111 ) * cos(59 * phi) ) # @torch.jit.script def Yl89_m60(theta, phi): return ( 8.13214128810101e-115 * (1.0 - cos(theta) ** 2) ** 30 * ( 6.90151083021298e130 * cos(theta) ** 29 - 1.58305841642173e131 * cos(theta) ** 27 + 1.58758144046865e131 * cos(theta) ** 25 - 9.17677133218874e130 * cos(theta) ** 23 + 3.39433208632128e130 * cos(theta) ** 21 - 8.43561820269193e129 * cos(theta) ** 19 + 1.43961148968096e129 * cos(theta) ** 17 - 1.6951269488884e128 * cos(theta) ** 15 + 1.36494117816934e127 * cos(theta) ** 13 - 7.34750944770246e125 * cos(theta) ** 11 + 2.54159131838764e124 * cos(theta) ** 9 - 5.29804791325739e122 * cos(theta) ** 7 + 5.98166699883899e120 * cos(theta) ** 5 - 3.00737405673152e118 * cos(theta) ** 3 + 4.26779667464265e115 * cos(theta) ) * cos(60 * phi) ) # @torch.jit.script def Yl89_m61(theta, phi): return ( 1.23299208012332e-116 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 2.00143814076176e132 * cos(theta) ** 28 - 4.27425772433868e132 * cos(theta) ** 26 + 3.96895360117163e132 * cos(theta) ** 24 - 2.11065740640341e132 * cos(theta) ** 22 + 7.12809738127468e131 * cos(theta) ** 20 - 1.60276745851147e131 * cos(theta) ** 18 + 2.44733953245763e130 * cos(theta) ** 16 - 2.5426904233326e129 * cos(theta) ** 14 + 1.77442353162014e128 * cos(theta) ** 12 - 8.0822603924727e126 * cos(theta) ** 10 + 2.28743218654888e125 * cos(theta) ** 8 - 3.70863353928017e123 * cos(theta) ** 6 + 2.99083349941949e121 * cos(theta) ** 4 - 9.02212217019455e118 * cos(theta) ** 2 + 4.26779667464265e115 ) * cos(61 * phi) ) # @torch.jit.script def Yl89_m62(theta, phi): return ( 1.89623779144393e-118 * (1.0 - cos(theta) ** 2) ** 31 * ( 5.60402679413294e133 * cos(theta) ** 27 - 1.11130700832806e134 * cos(theta) ** 25 + 9.52548864281192e133 * cos(theta) ** 23 - 4.6434462940875e133 * cos(theta) ** 21 + 1.42561947625494e133 * cos(theta) ** 19 - 2.88498142532064e132 * cos(theta) ** 17 + 3.91574325193221e131 * cos(theta) ** 15 - 3.55976659266564e130 * cos(theta) ** 13 + 2.12930823794417e129 * cos(theta) ** 11 - 8.0822603924727e127 * cos(theta) ** 9 + 1.8299457492391e126 * cos(theta) ** 7 - 2.2251801235681e124 * cos(theta) ** 5 + 1.1963333997678e122 * cos(theta) ** 3 - 1.80442443403891e119 * cos(theta) ) * cos(62 * phi) ) # @torch.jit.script def Yl89_m63(theta, phi): return ( 2.95998235141899e-120 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 1.51308723441589e135 * cos(theta) ** 26 - 2.77826752082014e135 * cos(theta) ** 24 + 2.19086238784674e135 * cos(theta) ** 22 - 9.75123721758376e134 * cos(theta) ** 20 + 2.70867700488438e134 * cos(theta) ** 18 - 4.90446842304509e133 * cos(theta) ** 16 + 5.87361487789831e132 * cos(theta) ** 14 - 4.62769657046533e131 * cos(theta) ** 12 + 2.34223906173859e130 * cos(theta) ** 10 - 7.27403435322543e128 * cos(theta) ** 8 + 1.28096202446737e127 * cos(theta) ** 6 - 1.11259006178405e125 * cos(theta) ** 4 + 3.58900019930339e122 * cos(theta) ** 2 - 1.80442443403891e119 ) * cos(63 * phi) ) # @torch.jit.script def Yl89_m64(theta, phi): return ( 4.69306676041125e-122 * (1.0 - cos(theta) ** 2) ** 32 * ( 3.93402680948132e136 * cos(theta) ** 25 - 6.66784204996834e136 * cos(theta) ** 23 + 4.81989725326283e136 * cos(theta) ** 21 - 1.95024744351675e136 * cos(theta) ** 19 + 4.87561860879188e135 * cos(theta) ** 17 - 7.84714947687214e134 * cos(theta) ** 15 + 8.22306082905763e133 * cos(theta) ** 13 - 5.5532358845584e132 * cos(theta) ** 11 + 2.34223906173859e131 * cos(theta) ** 9 - 5.81922748258035e129 * cos(theta) ** 7 + 7.68577214680423e127 * cos(theta) ** 5 - 4.45036024713621e125 * cos(theta) ** 3 + 7.17800039860678e122 * cos(theta) ) * cos(64 * phi) ) # @torch.jit.script def Yl89_m65(theta, phi): return ( 7.56356193448717e-124 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 9.8350670237033e137 * cos(theta) ** 24 - 1.53360367149272e138 * cos(theta) ** 22 + 1.01217842318519e138 * cos(theta) ** 20 - 3.70547014268183e137 * cos(theta) ** 18 + 8.2885516349462e136 * cos(theta) ** 16 - 1.17707242153082e136 * cos(theta) ** 14 + 1.06899790777749e135 * cos(theta) ** 12 - 6.10855947301424e133 * cos(theta) ** 10 + 2.10801515556473e132 * cos(theta) ** 8 - 4.07345923780624e130 * cos(theta) ** 6 + 3.84288607340211e128 * cos(theta) ** 4 - 1.33510807414086e126 * cos(theta) ** 2 + 7.17800039860678e122 ) * cos(65 * phi) ) # @torch.jit.script def Yl89_m66(theta, phi): return ( 1.24009483179719e-125 * (1.0 - cos(theta) ** 2) ** 33 * ( 2.36041608568879e139 * cos(theta) ** 23 - 3.37392807728398e139 * cos(theta) ** 21 + 2.02435684637039e139 * cos(theta) ** 19 - 6.66984625682729e138 * cos(theta) ** 17 + 1.32616826159139e138 * cos(theta) ** 15 - 1.64790139014315e137 * cos(theta) ** 13 + 1.28279748933299e136 * cos(theta) ** 11 - 6.10855947301424e134 * cos(theta) ** 9 + 1.68641212445178e133 * cos(theta) ** 7 - 2.44407554268374e131 * cos(theta) ** 5 + 1.53715442936085e129 * cos(theta) ** 3 - 2.67021614828172e126 * cos(theta) ) * cos(66 * phi) ) # @torch.jit.script def Yl89_m67(theta, phi): return ( 2.07027806328931e-127 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 5.42895699708422e140 * cos(theta) ** 22 - 7.08524896229636e140 * cos(theta) ** 20 + 3.84627800810374e140 * cos(theta) ** 18 - 1.13387386366064e140 * cos(theta) ** 16 + 1.98925239238709e139 * cos(theta) ** 14 - 2.14227180718609e138 * cos(theta) ** 12 + 1.41107723826629e137 * cos(theta) ** 10 - 5.49770352571282e135 * cos(theta) ** 8 + 1.18048848711625e134 * cos(theta) ** 6 - 1.22203777134187e132 * cos(theta) ** 4 + 4.61146328808254e129 * cos(theta) ** 2 - 2.67021614828172e126 ) * cos(67 * phi) ) # @torch.jit.script def Yl89_m68(theta, phi): return ( 3.52263392866995e-129 * (1.0 - cos(theta) ** 2) ** 34 * ( 1.19437053935853e142 * cos(theta) ** 21 - 1.41704979245927e142 * cos(theta) ** 19 + 6.92330041458673e141 * cos(theta) ** 17 - 1.81419818185702e141 * cos(theta) ** 15 + 2.78495334934192e140 * cos(theta) ** 13 - 2.57072616862331e139 * cos(theta) ** 11 + 1.41107723826629e138 * cos(theta) ** 9 - 4.39816282057025e136 * cos(theta) ** 7 + 7.08293092269749e134 * cos(theta) ** 5 - 4.88815108536749e132 * cos(theta) ** 3 + 9.22292657616507e129 * cos(theta) ) * cos(68 * phi) ) # @torch.jit.script def Yl89_m69(theta, phi): return ( 6.11546271788306e-131 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 2.50817813265291e143 * cos(theta) ** 20 - 2.69239460567262e143 * cos(theta) ** 18 + 1.17696107047974e143 * cos(theta) ** 16 - 2.72129727278554e142 * cos(theta) ** 14 + 3.6204393541445e141 * cos(theta) ** 12 - 2.82779878548564e140 * cos(theta) ** 10 + 1.26996951443966e139 * cos(theta) ** 8 - 3.07871397439918e137 * cos(theta) ** 6 + 3.54146546134875e135 * cos(theta) ** 4 - 1.46644532561025e133 * cos(theta) ** 2 + 9.22292657616507e129 ) * cos(69 * phi) ) # @torch.jit.script def Yl89_m70(theta, phi): return ( 1.08446555619479e-132 * (1.0 - cos(theta) ** 2) ** 35 * ( 5.01635626530582e144 * cos(theta) ** 19 - 4.84631029021071e144 * cos(theta) ** 17 + 1.88313771276759e144 * cos(theta) ** 15 - 3.80981618189975e143 * cos(theta) ** 13 + 4.3445272249734e142 * cos(theta) ** 11 - 2.82779878548564e141 * cos(theta) ** 9 + 1.01597561155173e140 * cos(theta) ** 7 - 1.84722838463951e138 * cos(theta) ** 5 + 1.4165861845395e136 * cos(theta) ** 3 - 2.93289065122049e133 * cos(theta) ) * cos(70 * phi) ) # @torch.jit.script def Yl89_m71(theta, phi): return ( 1.96688501270417e-134 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 9.53107690408106e145 * cos(theta) ** 18 - 8.23872749335821e145 * cos(theta) ** 16 + 2.82470656915139e145 * cos(theta) ** 14 - 4.95276103646967e144 * cos(theta) ** 12 + 4.77897994747074e143 * cos(theta) ** 10 - 2.54501890693708e142 * cos(theta) ** 8 + 7.1118292808621e140 * cos(theta) ** 6 - 9.23614192319753e138 * cos(theta) ** 4 + 4.2497585536185e136 * cos(theta) ** 2 - 2.93289065122049e133 ) * cos(71 * phi) ) # @torch.jit.script def Yl89_m72(theta, phi): return ( 3.65367388073676e-136 * (1.0 - cos(theta) ** 2) ** 36 * ( 1.71559384273459e147 * cos(theta) ** 17 - 1.31819639893731e147 * cos(theta) ** 15 + 3.95458919681194e146 * cos(theta) ** 13 - 5.94331324376361e145 * cos(theta) ** 11 + 4.77897994747074e144 * cos(theta) ** 9 - 2.03601512554966e143 * cos(theta) ** 7 + 4.26709756851726e141 * cos(theta) ** 5 - 3.69445676927901e139 * cos(theta) ** 3 + 8.49951710723699e136 * cos(theta) ) * cos(72 * phi) ) # @torch.jit.script def Yl89_m73(theta, phi): return ( 6.96222112353882e-138 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 2.91650953264881e148 * cos(theta) ** 16 - 1.97729459840597e148 * cos(theta) ** 14 + 5.14096595585552e147 * cos(theta) ** 12 - 6.53764456813997e146 * cos(theta) ** 10 + 4.30108195272366e145 * cos(theta) ** 8 - 1.42521058788476e144 * cos(theta) ** 6 + 2.13354878425863e142 * cos(theta) ** 4 - 1.1083370307837e140 * cos(theta) ** 2 + 8.49951710723699e136 ) * cos(73 * phi) ) # @torch.jit.script def Yl89_m74(theta, phi): return ( 1.36330811253467e-139 * (1.0 - cos(theta) ** 2) ** 37 * ( 4.66641525223809e149 * cos(theta) ** 15 - 2.76821243776836e149 * cos(theta) ** 13 + 6.16915914702663e148 * cos(theta) ** 11 - 6.53764456813997e147 * cos(theta) ** 9 + 3.44086556217893e146 * cos(theta) ** 7 - 8.55126352730859e144 * cos(theta) ** 5 + 8.53419513703452e142 * cos(theta) ** 3 - 2.21667406156741e140 * cos(theta) ) * cos(74 * phi) ) # @torch.jit.script def Yl89_m75(theta, phi): return ( 2.74869444967131e-141 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 6.99962287835713e150 * cos(theta) ** 14 - 3.59867616909887e150 * cos(theta) ** 12 + 6.78607506172929e149 * cos(theta) ** 10 - 5.88388011132597e148 * cos(theta) ** 8 + 2.40860589352525e147 * cos(theta) ** 6 - 4.27563176365429e145 * cos(theta) ** 4 + 2.56025854111036e143 * cos(theta) ** 2 - 2.21667406156741e140 ) * cos(75 * phi) ) # @torch.jit.script def Yl89_m76(theta, phi): return ( 5.71900499082503e-143 * (1.0 - cos(theta) ** 2) ** 38 * ( 9.79947202969999e151 * cos(theta) ** 13 - 4.31841140291864e151 * cos(theta) ** 11 + 6.78607506172929e150 * cos(theta) ** 9 - 4.70710408906078e149 * cos(theta) ** 7 + 1.44516353611515e148 * cos(theta) ** 5 - 1.71025270546172e146 * cos(theta) ** 3 + 5.12051708222071e143 * cos(theta) ) * cos(76 * phi) ) # @torch.jit.script def Yl89_m77(theta, phi): return ( 1.23110403680912e-144 * (1.0 - cos(theta) ** 2) ** 38.5 * ( 1.273931363861e153 * cos(theta) ** 12 - 4.7502525432105e152 * cos(theta) ** 10 + 6.10746755555636e151 * cos(theta) ** 8 - 3.29497286234254e150 * cos(theta) ** 6 + 7.22581768057576e148 * cos(theta) ** 4 - 5.13075811638515e146 * cos(theta) ** 2 + 5.12051708222071e143 ) * cos(77 * phi) ) # @torch.jit.script def Yl89_m78(theta, phi): return ( 2.75008360374433e-146 * (1.0 - cos(theta) ** 2) ** 39 * ( 1.5287176366332e154 * cos(theta) ** 11 - 4.7502525432105e153 * cos(theta) ** 9 + 4.88597404444509e152 * cos(theta) ** 7 - 1.97698371740553e151 * cos(theta) ** 5 + 2.8903270722303e149 * cos(theta) ** 3 - 1.02615162327703e147 * cos(theta) ) * cos(78 * phi) ) # @torch.jit.script def Yl89_m79(theta, phi): return ( 6.39727342639955e-148 * (1.0 - cos(theta) ** 2) ** 39.5 * ( 1.68158940029652e155 * cos(theta) ** 10 - 4.27522728888945e154 * cos(theta) ** 8 + 3.42018183111156e153 * cos(theta) ** 6 - 9.88491858702763e151 * cos(theta) ** 4 + 8.67098121669091e149 * cos(theta) ** 2 - 1.02615162327703e147 ) * cos(79 * phi) ) # @torch.jit.script def Yl89_m80(theta, phi): return ( 1.55615037248401e-149 * (1.0 - cos(theta) ** 2) ** 40 * ( 1.68158940029652e156 * cos(theta) ** 9 - 3.42018183111156e155 * cos(theta) ** 7 + 2.05210909866694e154 * cos(theta) ** 5 - 3.95396743481105e152 * cos(theta) ** 3 + 1.73419624333818e150 * cos(theta) ) * cos(80 * phi) ) # @torch.jit.script def Yl89_m81(theta, phi): return ( 3.97837617692343e-151 * (1.0 - cos(theta) ** 2) ** 40.5 * ( 1.51343046026687e157 * cos(theta) ** 8 - 2.39412728177809e156 * cos(theta) ** 6 + 1.02605454933347e155 * cos(theta) ** 4 - 1.18619023044332e153 * cos(theta) ** 2 + 1.73419624333818e150 ) * cos(81 * phi) ) # @torch.jit.script def Yl89_m82(theta, phi): return ( 1.07562972868882e-152 * (1.0 - cos(theta) ** 2) ** 41 * ( 1.21074436821349e158 * cos(theta) ** 7 - 1.43647636906686e157 * cos(theta) ** 5 + 4.10421819733387e155 * cos(theta) ** 3 - 2.37238046088663e153 * cos(theta) ) * cos(82 * phi) ) # @torch.jit.script def Yl89_m83(theta, phi): return ( 3.0999133430702e-154 * (1.0 - cos(theta) ** 2) ** 41.5 * ( 8.47521057749445e158 * cos(theta) ** 6 - 7.18238184533428e157 * cos(theta) ** 4 + 1.23126545920016e156 * cos(theta) ** 2 - 2.37238046088663e153 ) * cos(83 * phi) ) # @torch.jit.script def Yl89_m84(theta, phi): return ( 9.62167928580298e-156 * (1.0 - cos(theta) ** 2) ** 42 * ( 5.08512634649667e159 * cos(theta) ** 5 - 2.87295273813371e158 * cos(theta) ** 3 + 2.46253091840032e156 * cos(theta) ) * cos(84 * phi) ) # @torch.jit.script def Yl89_m85(theta, phi): return ( 3.26205478362367e-157 * (1.0 - cos(theta) ** 2) ** 42.5 * ( 2.54256317324833e160 * cos(theta) ** 4 - 8.61885821440113e158 * cos(theta) ** 2 + 2.46253091840032e156 ) * cos(85 * phi) ) # @torch.jit.script def Yl89_m86(theta, phi): return ( 1.23294081721955e-158 * (1.0 - cos(theta) ** 2) ** 43 * (1.01702526929933e161 * cos(theta) ** 3 - 1.72377164288023e159 * cos(theta)) * cos(86 * phi) ) # @torch.jit.script def Yl89_m87(theta, phi): return ( 5.36568618484204e-160 * (1.0 - cos(theta) ** 2) ** 43.5 * (3.051075807898e161 * cos(theta) ** 2 - 1.72377164288023e159) * cos(87 * phi) ) # @torch.jit.script def Yl89_m88(theta, phi): return 17.4022992356252 * (1.0 - cos(theta) ** 2) ** 44 * cos(88 * phi) * cos(theta) # @torch.jit.script def Yl89_m89(theta, phi): return 1.30435747384896 * (1.0 - cos(theta) ** 2) ** 44.5 * cos(89 * phi) # @torch.jit.script def Yl90_m_minus_90(theta, phi): return 1.30797567074086 * (1.0 - cos(theta) ** 2) ** 45 * sin(90 * phi) # @torch.jit.script def Yl90_m_minus_89(theta, phi): return ( 17.5483350761546 * (1.0 - cos(theta) ** 2) ** 44.5 * sin(89 * phi) * cos(theta) ) # @torch.jit.script def Yl90_m_minus_88(theta, phi): return ( 3.03977477475515e-162 * (1.0 - cos(theta) ** 2) ** 44 * (5.46142569613742e163 * cos(theta) ** 2 - 3.051075807898e161) * sin(88 * phi) ) # @torch.jit.script def Yl90_m_minus_87(theta, phi): return ( 7.02444530463506e-161 * (1.0 - cos(theta) ** 2) ** 43.5 * (1.82047523204581e163 * cos(theta) ** 3 - 3.051075807898e161 * cos(theta)) * sin(87 * phi) ) # @torch.jit.script def Yl90_m_minus_86(theta, phi): return ( 1.86908332990183e-159 * (1.0 - cos(theta) ** 2) ** 43 * ( 4.55118808011452e162 * cos(theta) ** 4 - 1.525537903949e161 * cos(theta) ** 2 + 4.30942910720057e158 ) * sin(86 * phi) ) # @torch.jit.script def Yl90_m_minus_85(theta, phi): return ( 5.54459718538947e-158 * (1.0 - cos(theta) ** 2) ** 42.5 * ( 9.10237616022904e161 * cos(theta) ** 5 - 5.08512634649667e160 * cos(theta) ** 3 + 4.30942910720057e158 * cos(theta) ) * sin(85 * phi) ) # @torch.jit.script def Yl90_m_minus_84(theta, phi): return ( 1.79665483178156e-156 * (1.0 - cos(theta) ** 2) ** 42 * ( 1.51706269337151e161 * cos(theta) ** 6 - 1.27128158662417e160 * cos(theta) ** 4 + 2.15471455360028e158 * cos(theta) ** 2 - 4.10421819733387e155 ) * sin(84 * phi) ) # @torch.jit.script def Yl90_m_minus_83(theta, phi): return ( 6.27029962282424e-155 * (1.0 - cos(theta) ** 2) ** 41.5 * ( 2.16723241910215e160 * cos(theta) ** 7 - 2.54256317324833e159 * cos(theta) ** 5 + 7.18238184533428e157 * cos(theta) ** 3 - 4.10421819733387e155 * cos(theta) ) * sin(83 * phi) ) # @torch.jit.script def Yl90_m_minus_82(theta, phi): return ( 2.33268630094631e-153 * (1.0 - cos(theta) ** 2) ** 41 * ( 2.70904052387769e159 * cos(theta) ** 8 - 4.23760528874722e158 * cos(theta) ** 6 + 1.79559546133357e157 * cos(theta) ** 4 - 2.05210909866694e155 * cos(theta) ** 2 + 2.96547557610829e152 ) * sin(82 * phi) ) # @torch.jit.script def Yl90_m_minus_81(theta, phi): return ( 9.17786820896213e-152 * (1.0 - cos(theta) ** 2) ** 40.5 * ( 3.01004502653077e158 * cos(theta) ** 9 - 6.05372184106746e157 * cos(theta) ** 7 + 3.59119092266714e156 * cos(theta) ** 5 - 6.84036366222312e154 * cos(theta) ** 3 + 2.96547557610829e152 * cos(theta) ) * sin(81 * phi) ) # @torch.jit.script def Yl90_m_minus_80(theta, phi): return ( 3.79524548497779e-150 * (1.0 - cos(theta) ** 2) ** 40 * ( 3.01004502653077e157 * cos(theta) ** 10 - 7.56715230133433e156 * cos(theta) ** 8 + 5.98531820444523e155 * cos(theta) ** 6 - 1.71009091555578e154 * cos(theta) ** 4 + 1.48273778805415e152 * cos(theta) ** 2 - 1.73419624333818e149 ) * sin(80 * phi) ) # @torch.jit.script def Yl90_m_minus_79(theta, phi): return ( 1.64119685305045e-148 * (1.0 - cos(theta) ** 2) ** 39.5 * ( 2.73640456957342e156 * cos(theta) ** 11 - 8.40794700148259e155 * cos(theta) ** 9 + 8.5504545777789e154 * cos(theta) ** 7 - 3.42018183111156e153 * cos(theta) ** 5 + 4.94245929351382e151 * cos(theta) ** 3 - 1.73419624333818e149 * cos(theta) ) * sin(79 * phi) ) # @torch.jit.script def Yl90_m_minus_78(theta, phi): return ( 7.39085447023436e-147 * (1.0 - cos(theta) ** 2) ** 39 * ( 2.28033714131119e155 * cos(theta) ** 12 - 8.40794700148259e154 * cos(theta) ** 10 + 1.06880682222236e154 * cos(theta) ** 8 - 5.7003030518526e152 * cos(theta) ** 6 + 1.23561482337845e151 * cos(theta) ** 4 - 8.67098121669091e148 * cos(theta) ** 2 + 8.55126352730859e145 ) * sin(78 * phi) ) # @torch.jit.script def Yl90_m_minus_77(theta, phi): return ( 3.45398914132051e-145 * (1.0 - cos(theta) ** 2) ** 38.5 * ( 1.7541054933163e154 * cos(theta) ** 13 - 7.64358818316599e153 * cos(theta) ** 11 + 1.18756313580263e153 * cos(theta) ** 9 - 8.14329007407515e151 * cos(theta) ** 7 + 2.47122964675691e150 * cos(theta) ** 5 - 2.8903270722303e148 * cos(theta) ** 3 + 8.55126352730859e145 * cos(theta) ) * sin(77 * phi) ) # @torch.jit.script def Yl90_m_minus_76(theta, phi): return ( 1.67010286601711e-143 * (1.0 - cos(theta) ** 2) ** 38 * ( 1.25293249522593e153 * cos(theta) ** 14 - 6.36965681930499e152 * cos(theta) ** 12 + 1.18756313580263e152 * cos(theta) ** 10 - 1.01791125925939e151 * cos(theta) ** 8 + 4.11871607792818e149 * cos(theta) ** 6 - 7.22581768057576e147 * cos(theta) ** 4 + 4.27563176365429e145 * cos(theta) ** 2 - 3.65751220158622e142 ) * sin(76 * phi) ) # @torch.jit.script def Yl90_m_minus_75(theta, phi): return ( 8.33379656691093e-142 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 8.35288330150618e151 * cos(theta) ** 15 - 4.89973601484999e151 * cos(theta) ** 13 + 1.07960285072966e151 * cos(theta) ** 11 - 1.13101251028821e150 * cos(theta) ** 9 + 5.88388011132597e148 * cos(theta) ** 7 - 1.44516353611515e147 * cos(theta) ** 5 + 1.42521058788476e145 * cos(theta) ** 3 - 3.65751220158622e142 * cos(theta) ) * sin(75 * phi) ) # @torch.jit.script def Yl90_m_minus_74(theta, phi): return ( 4.28198220661008e-140 * (1.0 - cos(theta) ** 2) ** 37 * ( 5.22055206344136e150 * cos(theta) ** 16 - 3.49981143917857e150 * cos(theta) ** 14 + 8.99669042274716e149 * cos(theta) ** 12 - 1.13101251028821e149 * cos(theta) ** 10 + 7.35485013915747e147 * cos(theta) ** 8 - 2.40860589352525e146 * cos(theta) ** 6 + 3.56302646971191e144 * cos(theta) ** 4 - 1.82875610079311e142 * cos(theta) ** 2 + 1.38542128847963e139 ) * sin(74 * phi) ) # @torch.jit.script def Yl90_m_minus_73(theta, phi): return ( 2.26095148267755e-138 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 3.07091297849492e149 * cos(theta) ** 17 - 2.33320762611904e149 * cos(theta) ** 15 + 6.92053109442089e148 * cos(theta) ** 13 - 1.0281931911711e148 * cos(theta) ** 11 + 8.17205571017496e146 * cos(theta) ** 9 - 3.44086556217893e145 * cos(theta) ** 7 + 7.12605293942382e143 * cos(theta) ** 5 - 6.09585366931037e141 * cos(theta) ** 3 + 1.38542128847963e139 * cos(theta) ) * sin(73 * phi) ) # @torch.jit.script def Yl90_m_minus_72(theta, phi): return ( 1.22467625579179e-136 * (1.0 - cos(theta) ** 2) ** 36 * ( 1.70606276583051e148 * cos(theta) ** 18 - 1.4582547663244e148 * cos(theta) ** 16 + 4.94323649601492e147 * cos(theta) ** 14 - 8.56827659309254e146 * cos(theta) ** 12 + 8.17205571017496e145 * cos(theta) ** 10 - 4.30108195272366e144 * cos(theta) ** 8 + 1.18767548990397e143 * cos(theta) ** 6 - 1.52396341732759e141 * cos(theta) ** 4 + 6.92710644239815e138 * cos(theta) ** 2 - 4.721953948465e135 ) * sin(72 * phi) ) # @torch.jit.script def Yl90_m_minus_71(theta, phi): return ( 6.79447031427588e-135 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 8.97927771489742e146 * cos(theta) ** 19 - 8.57796921367296e146 * cos(theta) ** 17 + 3.29549099734328e146 * cos(theta) ** 15 - 6.59098199468657e145 * cos(theta) ** 13 + 7.42914155470451e144 * cos(theta) ** 11 - 4.77897994747074e143 * cos(theta) ** 9 + 1.69667927129139e142 * cos(theta) ** 7 - 3.04792683465519e140 * cos(theta) ** 5 + 2.30903548079938e138 * cos(theta) ** 3 - 4.721953948465e135 * cos(theta) ) * sin(71 * phi) ) # @torch.jit.script def Yl90_m_minus_70(theta, phi): return ( 3.85552515829005e-133 * (1.0 - cos(theta) ** 2) ** 35 * ( 4.48963885744871e145 * cos(theta) ** 20 - 4.76553845204053e145 * cos(theta) ** 18 + 2.05968187333955e145 * cos(theta) ** 16 - 4.70784428191898e144 * cos(theta) ** 14 + 6.19095129558709e143 * cos(theta) ** 12 - 4.77897994747074e142 * cos(theta) ** 10 + 2.12084908911423e141 * cos(theta) ** 8 - 5.07987805775864e139 * cos(theta) ** 6 + 5.77258870199846e137 * cos(theta) ** 4 - 2.3609769742325e135 * cos(theta) ** 2 + 1.46644532561025e132 ) * sin(70 * phi) ) # @torch.jit.script def Yl90_m_minus_69(theta, phi): return ( 2.23487470492771e-131 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 2.13792326545177e144 * cos(theta) ** 21 - 2.50817813265291e144 * cos(theta) ** 19 + 1.21157757255268e144 * cos(theta) ** 17 - 3.13856285461265e143 * cos(theta) ** 15 + 4.76227022737469e142 * cos(theta) ** 13 - 4.3445272249734e141 * cos(theta) ** 11 + 2.3564989879047e140 * cos(theta) ** 9 - 7.25696865394092e138 * cos(theta) ** 7 + 1.15451774039969e137 * cos(theta) ** 5 - 7.86992324744166e134 * cos(theta) ** 3 + 1.46644532561025e132 * cos(theta) ) * sin(69 * phi) ) # @torch.jit.script def Yl90_m_minus_68(theta, phi): return ( 1.32179188920369e-129 * (1.0 - cos(theta) ** 2) ** 34 * ( 9.71783302478076e142 * cos(theta) ** 22 - 1.25408906632646e143 * cos(theta) ** 20 + 6.73098651418154e142 * cos(theta) ** 18 - 1.96160178413291e142 * cos(theta) ** 16 + 3.40162159098192e141 * cos(theta) ** 14 - 3.6204393541445e140 * cos(theta) ** 12 + 2.3564989879047e139 * cos(theta) ** 10 - 9.07121081742615e137 * cos(theta) ** 8 + 1.92419623399949e136 * cos(theta) ** 6 - 1.96748081186041e134 * cos(theta) ** 4 + 7.33222662805123e131 * cos(theta) ** 2 - 4.19223935280231e128 ) * sin(68 * phi) ) # @torch.jit.script def Yl90_m_minus_67(theta, phi): return ( 7.96811409510254e-128 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 4.22514479338294e141 * cos(theta) ** 23 - 5.97185269679265e141 * cos(theta) ** 21 + 3.54262448114818e141 * cos(theta) ** 19 - 1.15388340243112e141 * cos(theta) ** 17 + 2.26774772732128e140 * cos(theta) ** 15 - 2.78495334934192e139 * cos(theta) ** 13 + 2.14227180718609e138 * cos(theta) ** 11 - 1.00791231304735e137 * cos(theta) ** 9 + 2.74885176285641e135 * cos(theta) ** 7 - 3.93496162372083e133 * cos(theta) ** 5 + 2.44407554268374e131 * cos(theta) ** 3 - 4.19223935280231e128 * cos(theta) ) * sin(67 * phi) ) # @torch.jit.script def Yl90_m_minus_66(theta, phi): return ( 4.89115010536715e-126 * (1.0 - cos(theta) ** 2) ** 33 * ( 1.76047699724289e140 * cos(theta) ** 24 - 2.71447849854211e140 * cos(theta) ** 22 + 1.77131224057409e140 * cos(theta) ** 20 - 6.41046334683956e139 * cos(theta) ** 18 + 1.4173423295758e139 * cos(theta) ** 16 - 1.98925239238709e138 * cos(theta) ** 14 + 1.78522650598841e137 * cos(theta) ** 12 - 1.00791231304735e136 * cos(theta) ** 10 + 3.43606470357051e134 * cos(theta) ** 8 - 6.55826937286805e132 * cos(theta) ** 6 + 6.11018885670936e130 * cos(theta) ** 4 - 2.09611967640115e128 * cos(theta) ** 2 + 1.11259006178405e125 ) * sin(66 * phi) ) # @torch.jit.script def Yl90_m_minus_65(theta, phi): return ( 3.05452226178839e-124 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 7.04190798897157e138 * cos(theta) ** 25 - 1.1802080428444e139 * cos(theta) ** 23 + 8.43482019320995e138 * cos(theta) ** 21 - 3.37392807728398e138 * cos(theta) ** 19 + 8.33730782103412e137 * cos(theta) ** 17 - 1.32616826159139e137 * cos(theta) ** 15 + 1.37325115845262e136 * cos(theta) ** 13 - 9.16283920952136e134 * cos(theta) ** 11 + 3.8178496706339e133 * cos(theta) ** 9 - 9.36895624695435e131 * cos(theta) ** 7 + 1.22203777134187e130 * cos(theta) ** 5 - 6.98706558800384e127 * cos(theta) ** 3 + 1.11259006178405e125 * cos(theta) ) * sin(65 * phi) ) # @torch.jit.script def Yl90_m_minus_64(theta, phi): return ( 1.93908040520439e-122 * (1.0 - cos(theta) ** 2) ** 32 * ( 2.70842614960445e137 * cos(theta) ** 26 - 4.91753351185165e137 * cos(theta) ** 24 + 3.8340091787318e137 * cos(theta) ** 22 - 1.68696403864199e137 * cos(theta) ** 20 + 4.63183767835229e136 * cos(theta) ** 18 - 8.2885516349462e135 * cos(theta) ** 16 + 9.80893684609017e134 * cos(theta) ** 14 - 7.6356993412678e133 * cos(theta) ** 12 + 3.8178496706339e132 * cos(theta) ** 10 - 1.17111953086929e131 * cos(theta) ** 8 + 2.03672961890312e129 * cos(theta) ** 6 - 1.74676639700096e127 * cos(theta) ** 4 + 5.56295030892026e124 * cos(theta) ** 2 - 2.76076938407953e121 ) * sin(64 * phi) ) # @torch.jit.script def Yl90_m_minus_63(theta, phi): return ( 1.25036860391688e-120 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 1.0031207961498e136 * cos(theta) ** 27 - 1.96701340474066e136 * cos(theta) ** 25 + 1.66696051249209e136 * cos(theta) ** 23 - 8.03316208877138e135 * cos(theta) ** 21 + 2.43780930439594e135 * cos(theta) ** 19 - 4.87561860879188e134 * cos(theta) ** 17 + 6.53929123072678e133 * cos(theta) ** 15 - 5.87361487789831e132 * cos(theta) ** 13 + 3.470772427849e131 * cos(theta) ** 11 - 1.3012439231881e130 * cos(theta) ** 9 + 2.90961374129017e128 * cos(theta) ** 7 - 3.49353279400192e126 * cos(theta) ** 5 + 1.85431676964009e124 * cos(theta) ** 3 - 2.76076938407953e121 * cos(theta) ) * sin(63 * phi) ) # @torch.jit.script def Yl90_m_minus_62(theta, phi): return ( 8.18394668238493e-119 * (1.0 - cos(theta) ** 2) ** 31 * ( 3.58257427196356e134 * cos(theta) ** 28 - 7.56543617207947e134 * cos(theta) ** 26 + 6.94566880205036e134 * cos(theta) ** 24 - 3.6514373130779e134 * cos(theta) ** 22 + 1.21890465219797e134 * cos(theta) ** 20 - 2.70867700488438e133 * cos(theta) ** 18 + 4.08705701920424e132 * cos(theta) ** 16 - 4.19543919849879e131 * cos(theta) ** 14 + 2.89231035654083e130 * cos(theta) ** 12 - 1.3012439231881e129 * cos(theta) ** 10 + 3.63701717661272e127 * cos(theta) ** 8 - 5.82255465666987e125 * cos(theta) ** 6 + 4.63579192410022e123 * cos(theta) ** 4 - 1.38038469203977e121 * cos(theta) ** 2 + 6.44437297871039e117 ) * sin(62 * phi) ) # @torch.jit.script def Yl90_m_minus_61(theta, phi): return ( 5.43354895429245e-117 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 1.23537043860812e133 * cos(theta) ** 29 - 2.80201339706647e133 * cos(theta) ** 27 + 2.77826752082014e133 * cos(theta) ** 25 - 1.58758144046865e133 * cos(theta) ** 23 + 5.80430786760938e132 * cos(theta) ** 21 - 1.42561947625494e132 * cos(theta) ** 19 + 2.4041511877672e131 * cos(theta) ** 17 - 2.79695946566586e130 * cos(theta) ** 15 + 2.22485412041603e129 * cos(theta) ** 13 - 1.1829490210801e128 * cos(theta) ** 11 + 4.04113019623635e126 * cos(theta) ** 9 - 8.3179352238141e124 * cos(theta) ** 7 + 9.27158384820043e122 * cos(theta) ** 5 - 4.60128230679922e120 * cos(theta) ** 3 + 6.44437297871039e117 * cos(theta) ) * sin(61 * phi) ) # @torch.jit.script def Yl90_m_minus_60(theta, phi): return ( 3.65706504865961e-115 * (1.0 - cos(theta) ** 2) ** 30 * ( 4.11790146202708e131 * cos(theta) ** 30 - 1.00071907038088e132 * cos(theta) ** 28 + 1.06856443108467e132 * cos(theta) ** 26 - 6.61492266861939e131 * cos(theta) ** 24 + 2.63832175800426e131 * cos(theta) ** 22 - 7.12809738127468e130 * cos(theta) ** 20 + 1.33563954875956e130 * cos(theta) ** 18 - 1.74809966604116e129 * cos(theta) ** 16 + 1.58918151458288e128 * cos(theta) ** 14 - 9.8579085090008e126 * cos(theta) ** 12 + 4.04113019623635e125 * cos(theta) ** 10 - 1.03974190297676e124 * cos(theta) ** 8 + 1.54526397470007e122 * cos(theta) ** 6 - 1.15032057669981e120 * cos(theta) ** 4 + 3.2221864893552e117 * cos(theta) ** 2 - 1.42259889154755e114 ) * sin(60 * phi) ) # @torch.jit.script def Yl90_m_minus_59(theta, phi): return ( 2.49378588056581e-113 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 1.32835531033131e130 * cos(theta) ** 31 - 3.45075541510649e130 * cos(theta) ** 29 + 3.95764604105433e130 * cos(theta) ** 27 - 2.64596906744775e130 * cos(theta) ** 25 + 1.14709641652359e130 * cos(theta) ** 23 - 3.39433208632128e129 * cos(theta) ** 21 + 7.02968183557661e128 * cos(theta) ** 19 - 1.02829392120068e128 * cos(theta) ** 17 + 1.05945434305525e127 * cos(theta) ** 15 - 7.58300654538523e125 * cos(theta) ** 13 + 3.67375472385123e124 * cos(theta) ** 11 - 1.15526878108529e123 * cos(theta) ** 9 + 2.20751996385725e121 * cos(theta) ** 7 - 2.30064115339961e119 * cos(theta) ** 5 + 1.0740621631184e117 * cos(theta) ** 3 - 1.42259889154755e114 * cos(theta) ) * sin(59 * phi) ) # @torch.jit.script def Yl90_m_minus_58(theta, phi): return ( 1.72197675682181e-111 * (1.0 - cos(theta) ** 2) ** 29 * ( 4.15111034478536e128 * cos(theta) ** 32 - 1.1502518050355e129 * cos(theta) ** 30 + 1.41344501466226e129 * cos(theta) ** 28 - 1.01768041055683e129 * cos(theta) ** 26 + 4.77956840218164e128 * cos(theta) ** 24 - 1.54287822105513e128 * cos(theta) ** 22 + 3.5148409177883e127 * cos(theta) ** 20 - 5.71274400667047e126 * cos(theta) ** 18 + 6.62158964409531e125 * cos(theta) ** 16 - 5.41643324670373e124 * cos(theta) ** 14 + 3.06146226987602e123 * cos(theta) ** 12 - 1.15526878108529e122 * cos(theta) ** 10 + 2.75939995482156e120 * cos(theta) ** 8 - 3.83440192233268e118 * cos(theta) ** 6 + 2.685155407796e116 * cos(theta) ** 4 - 7.11299445773774e113 * cos(theta) ** 2 + 2.98363861482288e110 ) * sin(58 * phi) ) # @torch.jit.script def Yl90_m_minus_57(theta, phi): return ( 1.20341414720173e-109 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 1.25791222569253e127 * cos(theta) ** 33 - 3.71048969366289e127 * cos(theta) ** 31 + 4.87394832642159e127 * cos(theta) ** 29 - 3.76918670576603e127 * cos(theta) ** 27 + 1.91182736087266e127 * cos(theta) ** 25 - 6.70816617850054e126 * cos(theta) ** 23 + 1.67373377037538e126 * cos(theta) ** 21 - 3.00670737193182e125 * cos(theta) ** 19 + 3.89505273182077e124 * cos(theta) ** 17 - 3.61095549780249e123 * cos(theta) ** 15 + 2.35497097682771e122 * cos(theta) ** 13 - 1.05024434644117e121 * cos(theta) ** 11 + 3.06599994980173e119 * cos(theta) ** 9 - 5.47771703190383e117 * cos(theta) ** 7 + 5.370310815592e115 * cos(theta) ** 5 - 2.37099815257925e113 * cos(theta) ** 3 + 2.98363861482288e110 * cos(theta) ) * sin(57 * phi) ) # @torch.jit.script def Yl90_m_minus_56(theta, phi): return ( 8.5077209857911e-108 * (1.0 - cos(theta) ** 2) ** 28 * ( 3.69974184027216e125 * cos(theta) ** 34 - 1.15952802926965e126 * cos(theta) ** 32 + 1.62464944214053e126 * cos(theta) ** 30 - 1.34613810920215e126 * cos(theta) ** 28 + 7.35318215720252e125 * cos(theta) ** 26 - 2.79506924104189e125 * cos(theta) ** 24 + 7.60788077443356e124 * cos(theta) ** 22 - 1.50335368596591e124 * cos(theta) ** 20 + 2.16391818434487e123 * cos(theta) ** 18 - 2.25684718612656e122 * cos(theta) ** 16 + 1.68212212630551e121 * cos(theta) ** 14 - 8.75203622034312e119 * cos(theta) ** 12 + 3.06599994980173e118 * cos(theta) ** 10 - 6.84714628987979e116 * cos(theta) ** 8 + 8.95051802598666e114 * cos(theta) ** 6 - 5.92749538144812e112 * cos(theta) ** 4 + 1.49181930741144e110 * cos(theta) ** 2 - 5.96966509568403e106 ) * sin(56 * phi) ) # @torch.jit.script def Yl90_m_minus_55(theta, phi): return ( 6.08168173009143e-106 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 1.05706909722062e124 * cos(theta) ** 35 - 3.51372130081713e124 * cos(theta) ** 33 + 5.24080465206623e124 * cos(theta) ** 31 - 4.64185554897295e124 * cos(theta) ** 29 + 2.7234007989639e124 * cos(theta) ** 27 - 1.11802769641676e124 * cos(theta) ** 25 + 3.30777424975372e123 * cos(theta) ** 23 - 7.15882707602815e122 * cos(theta) ** 21 + 1.13890430754993e122 * cos(theta) ** 19 - 1.32755716830974e121 * cos(theta) ** 17 + 1.12141475087034e120 * cos(theta) ** 15 - 6.73233555411009e118 * cos(theta) ** 13 + 2.78727268163794e117 * cos(theta) ** 11 - 7.60794032208866e115 * cos(theta) ** 9 + 1.27864543228381e114 * cos(theta) ** 7 - 1.18549907628962e112 * cos(theta) ** 5 + 4.9727310247048e109 * cos(theta) ** 3 - 5.96966509568403e106 * cos(theta) ) * sin(55 * phi) ) # @torch.jit.script def Yl90_m_minus_54(theta, phi): return ( 4.39398874506055e-104 * (1.0 - cos(theta) ** 2) ** 27 * ( 2.93630304783504e122 * cos(theta) ** 36 - 1.0334474414168e123 * cos(theta) ** 34 + 1.6377514537707e123 * cos(theta) ** 32 - 1.54728518299098e123 * cos(theta) ** 30 + 9.72643142487106e122 * cos(theta) ** 28 - 4.30010652467984e122 * cos(theta) ** 26 + 1.37823927073072e122 * cos(theta) ** 24 - 3.25401230728552e121 * cos(theta) ** 22 + 5.69452153774967e120 * cos(theta) ** 20 - 7.37531760172077e119 * cos(theta) ** 18 + 7.00884219293961e118 * cos(theta) ** 16 - 4.80881111007864e117 * cos(theta) ** 14 + 2.32272723469828e116 * cos(theta) ** 12 - 7.60794032208866e114 * cos(theta) ** 10 + 1.59830679035476e113 * cos(theta) ** 8 - 1.97583179381604e111 * cos(theta) ** 6 + 1.2431827561762e109 * cos(theta) ** 4 - 2.98483254784202e106 * cos(theta) ** 2 + 1.1436140030046e103 ) * sin(54 * phi) ) # @torch.jit.script def Yl90_m_minus_53(theta, phi): return ( 3.20731081164077e-102 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 7.93595418333796e120 * cos(theta) ** 37 - 2.95270697547658e121 * cos(theta) ** 35 + 4.96288319324454e121 * cos(theta) ** 33 - 4.99124252577736e121 * cos(theta) ** 31 + 3.35394187064519e121 * cos(theta) ** 29 - 1.59263204617772e121 * cos(theta) ** 27 + 5.51295708292287e120 * cos(theta) ** 25 - 1.41478795968936e120 * cos(theta) ** 23 + 2.71167692273794e119 * cos(theta) ** 21 - 3.88174610616883e118 * cos(theta) ** 19 + 4.12284834878801e117 * cos(theta) ** 17 - 3.20587407338576e116 * cos(theta) ** 15 + 1.78671325746022e115 * cos(theta) ** 13 - 6.91630938371696e113 * cos(theta) ** 11 + 1.77589643372751e112 * cos(theta) ** 9 - 2.82261684830863e110 * cos(theta) ** 7 + 2.4863655123524e108 * cos(theta) ** 5 - 9.94944182614005e105 * cos(theta) ** 3 + 1.1436140030046e103 * cos(theta) ) * sin(53 * phi) ) # @torch.jit.script def Yl90_m_minus_52(theta, phi): return ( 2.36429065301138e-100 * (1.0 - cos(theta) ** 2) ** 26 * ( 2.08840899561525e119 * cos(theta) ** 38 - 8.20196382076828e119 * cos(theta) ** 36 + 1.45967152742486e120 * cos(theta) ** 34 - 1.55976328930543e120 * cos(theta) ** 32 + 1.1179806235484e120 * cos(theta) ** 30 - 5.68797159349185e119 * cos(theta) ** 28 + 2.12036810881649e119 * cos(theta) ** 26 - 5.89494983203899e118 * cos(theta) ** 24 + 1.23258041942634e118 * cos(theta) ** 22 - 1.94087305308441e117 * cos(theta) ** 20 + 2.29047130488223e116 * cos(theta) ** 18 - 2.0036712958661e115 * cos(theta) ** 16 + 1.27622375532873e114 * cos(theta) ** 14 - 5.76359115309747e112 * cos(theta) ** 12 + 1.77589643372751e111 * cos(theta) ** 10 - 3.52827106038578e109 * cos(theta) ** 8 + 4.14394252058733e107 * cos(theta) ** 6 - 2.48736045653501e105 * cos(theta) ** 4 + 5.71807001502302e102 * cos(theta) ** 2 - 2.10455282113471e99 ) * sin(52 * phi) ) # @torch.jit.script def Yl90_m_minus_51(theta, phi): return ( 1.75945166675974e-98 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 5.35489486055193e117 * cos(theta) ** 39 - 2.21674697858602e118 * cos(theta) ** 37 + 4.17049007835675e118 * cos(theta) ** 35 - 4.72655542213765e118 * cos(theta) ** 33 + 3.60638910822064e118 * cos(theta) ** 31 - 1.96136951499719e118 * cos(theta) ** 29 + 7.85321521783884e117 * cos(theta) ** 27 - 2.3579799328156e117 * cos(theta) ** 25 + 5.35904530185363e116 * cos(theta) ** 23 - 9.2422526337353e115 * cos(theta) ** 21 + 1.20551121309591e115 * cos(theta) ** 19 - 1.17863017403888e114 * cos(theta) ** 17 + 8.50815836885817e112 * cos(theta) ** 15 - 4.43353165622882e111 * cos(theta) ** 13 + 1.61445130338865e110 * cos(theta) ** 11 - 3.92030117820643e108 * cos(theta) ** 9 + 5.91991788655333e106 * cos(theta) ** 7 - 4.97472091307003e104 * cos(theta) ** 5 + 1.90602333834101e102 * cos(theta) ** 3 - 2.10455282113471e99 * cos(theta) ) * sin(51 * phi) ) # @torch.jit.script def Yl90_m_minus_50(theta, phi): return ( 1.32134703033014e-96 * (1.0 - cos(theta) ** 2) ** 25 * ( 1.33872371513798e116 * cos(theta) ** 40 - 5.83354468048953e116 * cos(theta) ** 38 + 1.15846946621021e117 * cos(theta) ** 36 - 1.39016335945225e117 * cos(theta) ** 34 + 1.12699659631895e117 * cos(theta) ** 32 - 6.53789838332396e116 * cos(theta) ** 30 + 2.80471972065673e116 * cos(theta) ** 28 - 9.0691535877523e115 * cos(theta) ** 26 + 2.23293554243901e115 * cos(theta) ** 24 - 4.20102392442514e114 * cos(theta) ** 22 + 6.02755606547954e113 * cos(theta) ** 20 - 6.54794541132712e112 * cos(theta) ** 18 + 5.31759898053636e111 * cos(theta) ** 16 - 3.16680832587773e110 * cos(theta) ** 14 + 1.34537608615721e109 * cos(theta) ** 12 - 3.92030117820643e107 * cos(theta) ** 10 + 7.39989735819166e105 * cos(theta) ** 8 - 8.29120152178337e103 * cos(theta) ** 6 + 4.76505834585251e101 * cos(theta) ** 4 - 1.05227641056736e99 * cos(theta) ** 2 + 3.73147663321758e95 ) * sin(50 * phi) ) # @torch.jit.script def Yl90_m_minus_49(theta, phi): return ( 1.00108934536272e-94 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 3.26517979301947e114 * cos(theta) ** 41 - 1.49578068730501e115 * cos(theta) ** 39 + 3.13099855732489e115 * cos(theta) ** 37 - 3.97189531272072e115 * cos(theta) ** 35 + 3.41514120096651e115 * cos(theta) ** 33 - 2.1089994784916e115 * cos(theta) ** 31 + 9.67144731260941e114 * cos(theta) ** 29 - 3.35894577324159e114 * cos(theta) ** 27 + 8.93174216975605e113 * cos(theta) ** 25 - 1.82653214105441e113 * cos(theta) ** 23 + 2.8702647930855e112 * cos(theta) ** 21 - 3.44628705859322e111 * cos(theta) ** 19 + 3.1279994003155e110 * cos(theta) ** 17 - 2.11120555058515e109 * cos(theta) ** 15 + 1.03490468165939e108 * cos(theta) ** 13 - 3.56391016200584e106 * cos(theta) ** 11 + 8.22210817576851e104 * cos(theta) ** 9 - 1.18445736025477e103 * cos(theta) ** 7 + 9.53011669170503e100 * cos(theta) ** 5 - 3.50758803522452e98 * cos(theta) ** 3 + 3.73147663321758e95 * cos(theta) ) * sin(49 * phi) ) # @torch.jit.script def Yl90_m_minus_48(theta, phi): return ( 7.6490039379346e-93 * (1.0 - cos(theta) ** 2) ** 24 * ( 7.77423760242731e112 * cos(theta) ** 42 - 3.73945171826252e113 * cos(theta) ** 40 + 8.23946988769708e113 * cos(theta) ** 38 - 1.10330425353353e114 * cos(theta) ** 36 + 1.00445329440192e114 * cos(theta) ** 34 - 6.59062337028625e113 * cos(theta) ** 32 + 3.2238157708698e113 * cos(theta) ** 30 - 1.19962349044343e113 * cos(theta) ** 28 + 3.43528544990617e112 * cos(theta) ** 26 - 7.6105505877267e111 * cos(theta) ** 24 + 1.30466581503886e111 * cos(theta) ** 22 - 1.72314352929661e110 * cos(theta) ** 20 + 1.73777744461972e109 * cos(theta) ** 18 - 1.31950346911572e108 * cos(theta) ** 16 + 7.39217629756706e106 * cos(theta) ** 14 - 2.96992513500487e105 * cos(theta) ** 12 + 8.22210817576851e103 * cos(theta) ** 10 - 1.48057170031846e102 * cos(theta) ** 8 + 1.58835278195084e100 * cos(theta) ** 6 - 8.76897008806131e97 * cos(theta) ** 4 + 1.86573831660879e95 * cos(theta) ** 2 - 6.39170372253782e91 ) * sin(48 * phi) ) # @torch.jit.script def Yl90_m_minus_47(theta, phi): return ( 5.89221595168767e-91 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 1.80796223312263e111 * cos(theta) ** 43 - 9.12061394698176e111 * cos(theta) ** 41 + 2.11268458658899e112 * cos(theta) ** 39 - 2.98190338792847e112 * cos(theta) ** 37 + 2.86986655543404e112 * cos(theta) ** 35 - 1.99715859705644e112 * cos(theta) ** 33 + 1.03994057124832e112 * cos(theta) ** 31 - 4.13663272566698e111 * cos(theta) ** 29 + 1.27232794440969e111 * cos(theta) ** 27 - 3.04422023509068e110 * cos(theta) ** 25 + 5.67246006538636e109 * cos(theta) ** 23 - 8.20544537760291e108 * cos(theta) ** 21 + 9.14619707694592e107 * cos(theta) ** 19 - 7.76178511244542e106 * cos(theta) ** 17 + 4.92811753171138e105 * cos(theta) ** 15 - 2.28455779615759e104 * cos(theta) ** 13 + 7.47464379615319e102 * cos(theta) ** 11 - 1.64507966702051e101 * cos(theta) ** 9 + 2.26907540278691e99 * cos(theta) ** 7 - 1.75379401761226e97 * cos(theta) ** 5 + 6.2191277220293e94 * cos(theta) ** 3 - 6.39170372253782e91 * cos(theta) ) * sin(47 * phi) ) # @torch.jit.script def Yl90_m_minus_46(theta, phi): return ( 4.57472800038355e-89 * (1.0 - cos(theta) ** 2) ** 23 * ( 4.1090050752787e109 * cos(theta) ** 44 - 2.17157474928137e110 * cos(theta) ** 42 + 5.28171146647249e110 * cos(theta) ** 40 - 7.84711417875912e110 * cos(theta) ** 38 + 7.97185154287234e110 * cos(theta) ** 36 - 5.87399587369541e110 * cos(theta) ** 34 + 3.24981428515101e110 * cos(theta) ** 32 - 1.37887757522233e110 * cos(theta) ** 30 + 4.54402837289176e109 * cos(theta) ** 28 - 1.17085393657334e109 * cos(theta) ** 26 + 2.36352502724432e108 * cos(theta) ** 24 - 3.72974789891041e107 * cos(theta) ** 22 + 4.57309853847296e106 * cos(theta) ** 20 - 4.31210284024745e105 * cos(theta) ** 18 + 3.08007345731961e104 * cos(theta) ** 16 - 1.63182699725542e103 * cos(theta) ** 14 + 6.22886983012766e101 * cos(theta) ** 12 - 1.64507966702051e100 * cos(theta) ** 10 + 2.83634425348364e98 * cos(theta) ** 8 - 2.92299002935377e96 * cos(theta) ** 6 + 1.55478193050732e94 * cos(theta) ** 4 - 3.19585186126891e91 * cos(theta) ** 2 + 1.06033572039446e88 ) * sin(46 * phi) ) # @torch.jit.script def Yl90_m_minus_45(theta, phi): return ( 3.5788293339898e-87 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 9.13112238950823e107 * cos(theta) ** 45 - 5.05017383553807e108 * cos(theta) ** 43 + 1.28822230889573e109 * cos(theta) ** 41 - 2.01208055865618e109 * cos(theta) ** 39 + 2.15455447104658e109 * cos(theta) ** 37 - 1.67828453534155e109 * cos(theta) ** 35 + 9.84792207621519e108 * cos(theta) ** 33 - 4.44799217813654e108 * cos(theta) ** 31 + 1.56690633547992e108 * cos(theta) ** 29 - 4.33649606138273e107 * cos(theta) ** 27 + 9.45410010897726e106 * cos(theta) ** 25 - 1.6216295212654e106 * cos(theta) ** 23 + 2.17766597070141e105 * cos(theta) ** 21 - 2.26952781065655e104 * cos(theta) ** 19 + 1.81180791607036e103 * cos(theta) ** 17 - 1.08788466483695e102 * cos(theta) ** 15 + 4.79143833086743e100 * cos(theta) ** 13 - 1.49552697001865e99 * cos(theta) ** 11 + 3.15149361498182e97 * cos(theta) ** 9 - 4.17570004193396e95 * cos(theta) ** 7 + 3.10956386101465e93 * cos(theta) ** 5 - 1.0652839537563e91 * cos(theta) ** 3 + 1.06033572039446e88 * cos(theta) ) * sin(45 * phi) ) # @torch.jit.script def Yl90_m_minus_44(theta, phi): return ( 2.82024467884152e-85 * (1.0 - cos(theta) ** 2) ** 22 * ( 1.98502660641483e106 * cos(theta) ** 46 - 1.14776678080411e107 * cos(theta) ** 44 + 3.06719597356126e107 * cos(theta) ** 42 - 5.03020139664046e107 * cos(theta) ** 40 + 5.66988018696468e107 * cos(theta) ** 38 - 4.66190148705985e107 * cos(theta) ** 36 + 2.89644766947506e107 * cos(theta) ** 34 - 1.38999755566767e107 * cos(theta) ** 32 + 5.2230211182664e106 * cos(theta) ** 30 - 1.54874859335098e106 * cos(theta) ** 28 + 3.63619234960664e105 * cos(theta) ** 26 - 6.75678967193915e104 * cos(theta) ** 24 + 9.8984816850064e103 * cos(theta) ** 22 - 1.13476390532828e103 * cos(theta) ** 20 + 1.00655995337242e102 * cos(theta) ** 18 - 6.79927915523093e100 * cos(theta) ** 16 + 3.42245595061959e99 * cos(theta) ** 14 - 1.24627247501554e98 * cos(theta) ** 12 + 3.15149361498182e96 * cos(theta) ** 10 - 5.21962505241744e94 * cos(theta) ** 8 + 5.18260643502441e92 * cos(theta) ** 6 - 2.66320988439076e90 * cos(theta) ** 4 + 5.30167860197231e87 * cos(theta) ** 2 - 1.70746492817144e84 ) * sin(44 * phi) ) # @torch.jit.script def Yl90_m_minus_43(theta, phi): return ( 2.23814447133482e-83 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 4.22346086471241e104 * cos(theta) ** 47 - 2.55059284623135e105 * cos(theta) ** 45 + 7.13301389200292e105 * cos(theta) ** 43 - 1.2268783894245e106 * cos(theta) ** 41 + 1.45381543255505e106 * cos(theta) ** 39 - 1.25997337488104e106 * cos(theta) ** 37 + 8.27556476992873e105 * cos(theta) ** 35 - 4.21211380505354e105 * cos(theta) ** 33 + 1.68484552202142e105 * cos(theta) ** 31 - 5.34051239086543e104 * cos(theta) ** 29 + 1.34673790726172e104 * cos(theta) ** 27 - 2.70271586877566e103 * cos(theta) ** 25 + 4.30368768913322e102 * cos(theta) ** 23 - 5.40363764442037e101 * cos(theta) ** 21 + 5.29768396511801e100 * cos(theta) ** 19 - 3.99957597366525e99 * cos(theta) ** 17 + 2.28163730041306e98 * cos(theta) ** 15 - 9.58671134627337e96 * cos(theta) ** 13 + 2.86499419543802e95 * cos(theta) ** 11 - 5.79958339157494e93 * cos(theta) ** 9 + 7.4037234786063e91 * cos(theta) ** 7 - 5.32641976878151e89 * cos(theta) ** 5 + 1.76722620065744e87 * cos(theta) ** 3 - 1.70746492817144e84 * cos(theta) ) * sin(43 * phi) ) # @torch.jit.script def Yl90_m_minus_42(theta, phi): return ( 1.78827603200494e-81 * (1.0 - cos(theta) ** 2) ** 21 * ( 8.79887680148419e102 * cos(theta) ** 48 - 5.54476705702467e103 * cos(theta) ** 46 + 1.62113952090976e104 * cos(theta) ** 44 - 2.92113902243929e104 * cos(theta) ** 42 + 3.63453858138762e104 * cos(theta) ** 40 - 3.31571940758169e104 * cos(theta) ** 38 + 2.29876799164687e104 * cos(theta) ** 36 - 1.23885700148634e104 * cos(theta) ** 34 + 5.26514225631693e103 * cos(theta) ** 32 - 1.78017079695514e103 * cos(theta) ** 30 + 4.80977824022042e102 * cos(theta) ** 28 - 1.03950610337525e102 * cos(theta) ** 26 + 1.79320320380551e101 * cos(theta) ** 24 - 2.45619892928199e100 * cos(theta) ** 22 + 2.648841982559e99 * cos(theta) ** 20 - 2.22198665203625e98 * cos(theta) ** 18 + 1.42602331275816e97 * cos(theta) ** 16 - 6.84765096162384e95 * cos(theta) ** 14 + 2.38749516286502e94 * cos(theta) ** 12 - 5.79958339157494e92 * cos(theta) ** 10 + 9.25465434825788e90 * cos(theta) ** 8 - 8.87736628130252e88 * cos(theta) ** 6 + 4.41806550164359e86 * cos(theta) ** 4 - 8.53732464085718e83 * cos(theta) ** 2 + 2.67460045139636e80 ) * sin(42 * phi) ) # @torch.jit.script def Yl90_m_minus_41(theta, phi): return ( 1.43820091732168e-79 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 1.79568914316004e101 * cos(theta) ** 49 - 1.17973767170738e102 * cos(theta) ** 47 + 3.60253226868835e102 * cos(theta) ** 45 - 6.79334656381231e102 * cos(theta) ** 43 + 8.86472824728687e102 * cos(theta) ** 41 - 8.50184463482484e102 * cos(theta) ** 39 + 6.21288646391046e102 * cos(theta) ** 37 - 3.5395914328181e102 * cos(theta) ** 35 + 1.59549765342937e102 * cos(theta) ** 33 - 5.74248644179079e101 * cos(theta) ** 31 + 1.65854422076566e101 * cos(theta) ** 29 - 3.85002260509353e100 * cos(theta) ** 27 + 7.17281281522203e99 * cos(theta) ** 25 - 1.06791257794869e99 * cos(theta) ** 23 + 1.2613533250281e98 * cos(theta) ** 21 - 1.16946665896645e97 * cos(theta) ** 19 + 8.3883724279892e95 * cos(theta) ** 17 - 4.56510064108256e94 * cos(theta) ** 15 + 1.8365347406654e93 * cos(theta) ** 13 - 5.2723485377954e91 * cos(theta) ** 11 + 1.02829492758421e90 * cos(theta) ** 9 - 1.26819518304322e88 * cos(theta) ** 7 + 8.83613100328718e85 * cos(theta) ** 5 - 2.84577488028573e83 * cos(theta) ** 3 + 2.67460045139636e80 * cos(theta) ) * sin(41 * phi) ) # @torch.jit.script def Yl90_m_minus_40(theta, phi): return ( 1.16396577719155e-77 * (1.0 - cos(theta) ** 2) ** 20 * ( 3.59137828632008e99 * cos(theta) ** 50 - 2.45778681605704e100 * cos(theta) ** 48 + 7.83159188845293e100 * cos(theta) ** 46 - 1.54394240086643e101 * cos(theta) ** 44 + 2.11064958268735e101 * cos(theta) ** 42 - 2.12546115870621e101 * cos(theta) ** 40 + 1.6349701220817e101 * cos(theta) ** 38 - 9.83219842449474e100 * cos(theta) ** 36 + 4.69264015714521e100 * cos(theta) ** 34 - 1.79452701305962e100 * cos(theta) ** 32 + 5.52848073588554e99 * cos(theta) ** 30 - 1.37500807324769e99 * cos(theta) ** 28 + 2.75877415970078e98 * cos(theta) ** 26 - 4.44963574145287e97 * cos(theta) ** 24 + 5.73342420467317e96 * cos(theta) ** 22 - 5.84733329483224e95 * cos(theta) ** 20 + 4.66020690443845e94 * cos(theta) ** 18 - 2.8531879006766e93 * cos(theta) ** 16 + 1.31181052904671e92 * cos(theta) ** 14 - 4.39362378149617e90 * cos(theta) ** 12 + 1.02829492758421e89 * cos(theta) ** 10 - 1.58524397880402e87 * cos(theta) ** 8 + 1.47268850054786e85 * cos(theta) ** 6 - 7.11443720071432e82 * cos(theta) ** 4 + 1.33730022569818e80 * cos(theta) ** 2 - 4.0833594677807e76 ) * sin(40 * phi) ) # @torch.jit.script def Yl90_m_minus_39(theta, phi): return ( 9.4775694516246e-76 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 7.04191820847074e97 * cos(theta) ** 51 - 5.01589146134089e98 * cos(theta) ** 49 + 1.66629614647935e99 * cos(theta) ** 47 - 3.43098311303652e99 * cos(theta) ** 45 + 4.90848740159849e99 * cos(theta) ** 43 - 5.18405160660051e99 * cos(theta) ** 41 + 4.19223108226077e99 * cos(theta) ** 39 - 2.65735092553912e99 * cos(theta) ** 37 + 1.34075433061292e99 * cos(theta) ** 35 - 5.43796064563522e98 * cos(theta) ** 33 + 1.78338088254372e98 * cos(theta) ** 31 - 4.74140714912997e97 * cos(theta) ** 29 + 1.02176820729659e97 * cos(theta) ** 27 - 1.77985429658115e96 * cos(theta) ** 25 + 2.4927931324666e95 * cos(theta) ** 23 - 2.78444442611059e94 * cos(theta) ** 21 + 2.45274047602023e93 * cos(theta) ** 19 - 1.67834582392741e92 * cos(theta) ** 17 + 8.74540352697808e90 * cos(theta) ** 15 - 3.3797106011509e89 * cos(theta) ** 13 + 9.34813570531099e87 * cos(theta) ** 11 - 1.76138219867114e86 * cos(theta) ** 9 + 2.10384071506838e84 * cos(theta) ** 7 - 1.42288744014286e82 * cos(theta) ** 5 + 4.45766741899393e79 * cos(theta) ** 3 - 4.0833594677807e76 * cos(theta) ) * sin(39 * phi) ) # @torch.jit.script def Yl90_m_minus_38(theta, phi): return ( 7.76235503401608e-74 * (1.0 - cos(theta) ** 2) ** 19 * ( 1.35421504009053e96 * cos(theta) ** 52 - 1.00317829226818e97 * cos(theta) ** 50 + 3.4714503051653e97 * cos(theta) ** 48 - 7.45865894138374e97 * cos(theta) ** 46 + 1.11556531854511e98 * cos(theta) ** 44 - 1.23429800157155e98 * cos(theta) ** 42 + 1.04805777056519e98 * cos(theta) ** 40 - 6.99302875141873e97 * cos(theta) ** 38 + 3.72431758503588e97 * cos(theta) ** 36 - 1.59940018989271e97 * cos(theta) ** 34 + 5.57306525794914e96 * cos(theta) ** 32 - 1.58046904970999e96 * cos(theta) ** 30 + 3.64917216891638e95 * cos(theta) ** 28 - 6.84559344838904e94 * cos(theta) ** 26 + 1.03866380519441e94 * cos(theta) ** 24 - 1.265656557323e93 * cos(theta) ** 22 + 1.22637023801012e92 * cos(theta) ** 20 - 9.3241434662634e90 * cos(theta) ** 18 + 5.4658772043613e89 * cos(theta) ** 16 - 2.41407900082207e88 * cos(theta) ** 14 + 7.79011308775916e86 * cos(theta) ** 12 - 1.76138219867114e85 * cos(theta) ** 10 + 2.62980089383547e83 * cos(theta) ** 8 - 2.37147906690477e81 * cos(theta) ** 6 + 1.11441685474848e79 * cos(theta) ** 4 - 2.04167973389035e76 * cos(theta) ** 2 + 6.08729795435406e72 ) * sin(38 * phi) ) # @torch.jit.script def Yl90_m_minus_37(theta, phi): return ( 6.39346691626065e-72 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 2.55512271715194e94 * cos(theta) ** 53 - 1.96701625934937e95 * cos(theta) ** 51 + 7.08459245952103e95 * cos(theta) ** 49 - 1.58694871093271e96 * cos(theta) ** 47 + 2.47903404121136e96 * cos(theta) ** 45 - 2.87046046877105e96 * cos(theta) ** 43 + 2.55623846479315e96 * cos(theta) ** 41 - 1.79308429523557e96 * cos(theta) ** 39 + 1.00657232027997e96 * cos(theta) ** 37 - 4.56971482826489e95 * cos(theta) ** 35 + 1.68880765392398e95 * cos(theta) ** 33 - 5.098287257129e94 * cos(theta) ** 31 + 1.25833523066082e94 * cos(theta) ** 29 - 2.53540498088483e93 * cos(theta) ** 27 + 4.15465522077766e92 * cos(theta) ** 25 - 5.5028545970565e91 * cos(theta) ** 23 + 5.83985827623865e90 * cos(theta) ** 21 - 4.90744392961231e89 * cos(theta) ** 19 + 3.21522188491841e88 * cos(theta) ** 17 - 1.60938600054805e87 * cos(theta) ** 15 + 5.99239468289166e85 * cos(theta) ** 13 - 1.60125654424649e84 * cos(theta) ** 11 + 2.92200099315052e82 * cos(theta) ** 9 - 3.38782723843539e80 * cos(theta) ** 7 + 2.22883370949697e78 * cos(theta) ** 5 - 6.80559911296784e75 * cos(theta) ** 3 + 6.08729795435406e72 * cos(theta) ) * sin(37 * phi) ) # @torch.jit.script def Yl90_m_minus_36(theta, phi): return ( 5.294624471457e-70 * (1.0 - cos(theta) ** 2) ** 18 * ( 4.73170873546655e92 * cos(theta) ** 54 - 3.78272357567186e93 * cos(theta) ** 52 + 1.41691849190421e94 * cos(theta) ** 50 - 3.30614314777648e94 * cos(theta) ** 48 + 5.389204437416e94 * cos(theta) ** 46 - 6.52377379266147e94 * cos(theta) ** 44 + 6.08628205903131e94 * cos(theta) ** 42 - 4.48271073808893e94 * cos(theta) ** 40 + 2.64887452705255e94 * cos(theta) ** 38 - 1.26936523007358e94 * cos(theta) ** 36 + 4.96708133507053e93 * cos(theta) ** 34 - 1.59321476785281e93 * cos(theta) ** 32 + 4.1944507688694e92 * cos(theta) ** 30 - 9.05501778887438e91 * cos(theta) ** 28 + 1.59794431568371e91 * cos(theta) ** 26 - 2.29285608210688e90 * cos(theta) ** 24 + 2.65448103465393e89 * cos(theta) ** 22 - 2.45372196480616e88 * cos(theta) ** 20 + 1.78623438051023e87 * cos(theta) ** 18 - 1.00586625034253e86 * cos(theta) ** 16 + 4.28028191635119e84 * cos(theta) ** 14 - 1.33438045353874e83 * cos(theta) ** 12 + 2.92200099315052e81 * cos(theta) ** 10 - 4.23478404804424e79 * cos(theta) ** 8 + 3.71472284916161e77 * cos(theta) ** 6 - 1.70139977824196e75 * cos(theta) ** 4 + 3.04364897717703e72 * cos(theta) ** 2 - 8.87619999176736e68 ) * sin(36 * phi) ) # @torch.jit.script def Yl90_m_minus_35(theta, phi): return ( 4.40759599641002e-68 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 8.60310679175736e90 * cos(theta) ** 55 - 7.13721429372049e91 * cos(theta) ** 53 + 2.77827155275334e92 * cos(theta) ** 51 - 6.74723091382955e92 * cos(theta) ** 49 + 1.1466392420034e93 * cos(theta) ** 47 - 1.44972750948033e93 * cos(theta) ** 45 + 1.41541443233286e93 * cos(theta) ** 43 - 1.09334408246071e93 * cos(theta) ** 41 + 6.79198596680141e92 * cos(theta) ** 39 - 3.4307168380367e92 * cos(theta) ** 37 + 1.41916609573444e92 * cos(theta) ** 35 - 4.82792353894792e91 * cos(theta) ** 33 + 1.35304863511916e91 * cos(theta) ** 31 - 3.12241992719806e90 * cos(theta) ** 29 + 5.91831228031006e89 * cos(theta) ** 27 - 9.1714243284275e88 * cos(theta) ** 25 + 1.15412218897997e88 * cos(theta) ** 23 - 1.16843903086007e87 * cos(theta) ** 21 + 9.40123358163279e85 * cos(theta) ** 19 - 5.91686029613252e84 * cos(theta) ** 17 + 2.85352127756746e83 * cos(theta) ** 15 - 1.02644650272211e82 * cos(theta) ** 13 + 2.65636453922775e80 * cos(theta) ** 11 - 4.70531560893804e78 * cos(theta) ** 9 + 5.30674692737373e76 * cos(theta) ** 7 - 3.40279955648392e74 * cos(theta) ** 5 + 1.01454965905901e72 * cos(theta) ** 3 - 8.87619999176736e68 * cos(theta) ) * sin(35 * phi) ) # @torch.jit.script def Yl90_m_minus_34(theta, phi): return ( 3.68765938330789e-66 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.53626906995667e89 * cos(theta) ** 56 - 1.32170635068898e90 * cos(theta) ** 54 + 5.34282990914105e90 * cos(theta) ** 52 - 1.34944618276591e91 * cos(theta) ** 50 + 2.38883175417376e91 * cos(theta) ** 48 - 3.15158154234854e91 * cos(theta) ** 46 + 3.21685098257469e91 * cos(theta) ** 44 - 2.60320019633503e91 * cos(theta) ** 42 + 1.69799649170035e91 * cos(theta) ** 40 - 9.02820220535975e90 * cos(theta) ** 38 + 3.94212804370677e90 * cos(theta) ** 36 - 1.41997751145527e90 * cos(theta) ** 34 + 4.22827698474738e89 * cos(theta) ** 32 - 1.04080664239935e89 * cos(theta) ** 30 + 2.11368295725359e88 * cos(theta) ** 28 - 3.52747089554904e87 * cos(theta) ** 26 + 4.80884245408321e86 * cos(theta) ** 24 - 5.31108650390943e85 * cos(theta) ** 22 + 4.70061679081639e84 * cos(theta) ** 20 - 3.28714460896251e83 * cos(theta) ** 18 + 1.78345079847966e82 * cos(theta) ** 16 - 7.33176073372934e80 * cos(theta) ** 14 + 2.21363711602312e79 * cos(theta) ** 12 - 4.70531560893804e77 * cos(theta) ** 10 + 6.63343365921716e75 * cos(theta) ** 8 - 5.67133259413987e73 * cos(theta) ** 6 + 2.53637414764752e71 * cos(theta) ** 4 - 4.43809999588368e68 * cos(theta) ** 2 + 1.26802857025248e65 ) * sin(34 * phi) ) # @torch.jit.script def Yl90_m_minus_33(theta, phi): return ( 3.10026680543058e-64 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 2.69520889466083e87 * cos(theta) ** 57 - 2.40310245579815e88 * cos(theta) ** 55 + 1.00808111493227e89 * cos(theta) ** 53 - 2.64597290738414e89 * cos(theta) ** 51 + 4.87516684525257e89 * cos(theta) ** 49 - 6.70549264329476e89 * cos(theta) ** 47 + 7.14855773905486e89 * cos(theta) ** 45 - 6.0539539449652e89 * cos(theta) ** 43 + 4.14145485780574e89 * cos(theta) ** 41 - 2.31492364239993e89 * cos(theta) ** 39 + 1.06544001181264e89 * cos(theta) ** 37 - 4.05707860415791e88 * cos(theta) ** 35 + 1.28129605598405e88 * cos(theta) ** 33 - 3.3574407819334e87 * cos(theta) ** 31 + 7.28856192156411e86 * cos(theta) ** 29 - 1.3064707020552e86 * cos(theta) ** 27 + 1.92353698163329e85 * cos(theta) ** 25 - 2.30916804517801e84 * cos(theta) ** 23 + 2.23838894800781e83 * cos(theta) ** 21 - 1.73007610998027e82 * cos(theta) ** 19 + 1.04908870498804e81 * cos(theta) ** 17 - 4.88784048915289e79 * cos(theta) ** 15 + 1.70279778155625e78 * cos(theta) ** 13 - 4.27755964448913e76 * cos(theta) ** 11 + 7.37048184357463e74 * cos(theta) ** 9 - 8.10190370591409e72 * cos(theta) ** 7 + 5.07274829529505e70 * cos(theta) ** 5 - 1.47936666529456e68 * cos(theta) ** 3 + 1.26802857025248e65 * cos(theta) ) * sin(33 * phi) ) # @torch.jit.script def Yl90_m_minus_32(theta, phi): return ( 2.61857865120515e-62 * (1.0 - cos(theta) ** 2) ** 16 * ( 4.64691188734625e85 * cos(theta) ** 58 - 4.29125438535383e86 * cos(theta) ** 56 + 1.86681687950421e87 * cos(theta) ** 54 - 5.08840943727719e87 * cos(theta) ** 52 + 9.75033369050513e87 * cos(theta) ** 50 - 1.39697763401974e88 * cos(theta) ** 48 + 1.55403429109888e88 * cos(theta) ** 46 - 1.37589862385573e88 * cos(theta) ** 44 + 9.86060680429937e87 * cos(theta) ** 42 - 5.78730910599984e87 * cos(theta) ** 40 + 2.80378950477011e87 * cos(theta) ** 38 - 1.12696627893275e87 * cos(theta) ** 36 + 3.76851781171781e86 * cos(theta) ** 34 - 1.04920024435419e86 * cos(theta) ** 32 + 2.42952064052137e85 * cos(theta) ** 30 - 4.66596679305429e84 * cos(theta) ** 28 + 7.39821916012802e83 * cos(theta) ** 26 - 9.62153352157506e82 * cos(theta) ** 24 + 1.01744952182173e82 * cos(theta) ** 22 - 8.65038054990135e80 * cos(theta) ** 20 + 5.82827058326687e79 * cos(theta) ** 18 - 3.05490030572056e78 * cos(theta) ** 16 + 1.21628412968304e77 * cos(theta) ** 14 - 3.56463303707427e75 * cos(theta) ** 12 + 7.37048184357463e73 * cos(theta) ** 10 - 1.01273796323926e72 * cos(theta) ** 8 + 8.45458049215842e69 * cos(theta) ** 6 - 3.6984166632364e67 * cos(theta) ** 4 + 6.3401428512624e64 * cos(theta) ** 2 - 1.77744402894937e61 ) * sin(32 * phi) ) # @torch.jit.script def Yl90_m_minus_31(theta, phi): return ( 2.22162904171772e-60 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 7.87612184295975e83 * cos(theta) ** 59 - 7.52851646553304e84 * cos(theta) ** 57 + 3.39421250818947e85 * cos(theta) ** 55 - 9.6007725231645e85 * cos(theta) ** 53 + 1.91183013539316e86 * cos(theta) ** 51 - 2.85097476330559e86 * cos(theta) ** 49 + 3.30645593850826e86 * cos(theta) ** 47 - 3.05755249745717e86 * cos(theta) ** 45 + 2.29316437309288e86 * cos(theta) ** 43 - 1.41153880634142e86 * cos(theta) ** 41 + 7.18920385838489e85 * cos(theta) ** 39 - 3.04585480792636e85 * cos(theta) ** 37 + 1.07671937477652e85 * cos(theta) ** 35 - 3.17939467986118e84 * cos(theta) ** 33 + 7.83716335652055e83 * cos(theta) ** 31 - 1.60895406657044e83 * cos(theta) ** 29 + 2.74008117041778e82 * cos(theta) ** 27 - 3.84861340863002e81 * cos(theta) ** 25 + 4.42369357313796e80 * cos(theta) ** 23 - 4.11922883328636e79 * cos(theta) ** 21 + 3.06751083329835e78 * cos(theta) ** 19 - 1.79700017983562e77 * cos(theta) ** 17 + 8.10856086455357e75 * cos(theta) ** 15 - 2.74202541313406e74 * cos(theta) ** 13 + 6.7004380396133e72 * cos(theta) ** 11 - 1.12526440359918e71 * cos(theta) ** 9 + 1.20779721316549e69 * cos(theta) ** 7 - 7.3968333264728e66 * cos(theta) ** 5 + 2.1133809504208e64 * cos(theta) ** 3 - 1.77744402894937e61 * cos(theta) ) * sin(31 * phi) ) # @torch.jit.script def Yl90_m_minus_30(theta, phi): return ( 1.89295310160517e-58 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.31268697382663e82 * cos(theta) ** 60 - 1.29802008026432e83 * cos(theta) ** 58 + 6.06109376462406e83 * cos(theta) ** 56 - 1.77792083762306e84 * cos(theta) ** 54 + 3.67659641421762e84 * cos(theta) ** 52 - 5.70194952661119e84 * cos(theta) ** 50 + 6.88844987189221e84 * cos(theta) ** 48 - 6.64685325534167e84 * cos(theta) ** 46 + 5.21173721157472e84 * cos(theta) ** 44 - 3.36080668176529e84 * cos(theta) ** 42 + 1.79730096459622e84 * cos(theta) ** 40 - 8.0154073892799e83 * cos(theta) ** 38 + 2.99088715215699e83 * cos(theta) ** 36 - 9.35116082312111e82 * cos(theta) ** 34 + 2.44911354891267e82 * cos(theta) ** 32 - 5.36318022190148e81 * cos(theta) ** 30 + 9.78600418006352e80 * cos(theta) ** 28 - 1.48023592639616e80 * cos(theta) ** 26 + 1.84320565547415e79 * cos(theta) ** 24 - 1.87237674240289e78 * cos(theta) ** 22 + 1.53375541664918e77 * cos(theta) ** 20 - 9.98333433242012e75 * cos(theta) ** 18 + 5.06785054034598e74 * cos(theta) ** 16 - 1.95858958081004e73 * cos(theta) ** 14 + 5.58369836634441e71 * cos(theta) ** 12 - 1.12526440359918e70 * cos(theta) ** 10 + 1.50974651645686e68 * cos(theta) ** 8 - 1.23280555441213e66 * cos(theta) ** 6 + 5.283452376052e63 * cos(theta) ** 4 - 8.88722014474685e60 * cos(theta) ** 2 + 2.44827001232696e57 ) * sin(30 * phi) ) # @torch.jit.script def Yl90_m_minus_29(theta, phi): return ( 1.61955385759464e-56 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 2.15194585873217e80 * cos(theta) ** 61 - 2.2000340343463e81 * cos(theta) ** 59 + 1.06334978326738e82 * cos(theta) ** 57 - 3.23258334113283e82 * cos(theta) ** 55 + 6.93697436644834e82 * cos(theta) ** 53 - 1.11802931894337e83 * cos(theta) ** 51 + 1.40580609630453e83 * cos(theta) ** 49 - 1.41422409688121e83 * cos(theta) ** 47 + 1.15816382479438e83 * cos(theta) ** 45 - 7.81582949247743e82 * cos(theta) ** 43 + 4.38366088925908e82 * cos(theta) ** 41 - 2.05523266391792e82 * cos(theta) ** 39 + 8.08347878961348e81 * cos(theta) ** 37 - 2.67176023517746e81 * cos(theta) ** 35 + 7.42155620882627e80 * cos(theta) ** 33 - 1.73005813609725e80 * cos(theta) ** 31 + 3.3744842000219e79 * cos(theta) ** 29 - 5.48235528294875e78 * cos(theta) ** 27 + 7.37282262189659e77 * cos(theta) ** 25 - 8.14076844522995e76 * cos(theta) ** 23 + 7.30359722213893e75 * cos(theta) ** 21 - 5.25438649074743e74 * cos(theta) ** 19 + 2.98108855314469e73 * cos(theta) ** 17 - 1.30572638720669e72 * cos(theta) ** 15 + 4.2951525894957e70 * cos(theta) ** 13 - 1.02296763963562e69 * cos(theta) ** 11 + 1.67749612939651e67 * cos(theta) ** 9 - 1.76115079201733e65 * cos(theta) ** 7 + 1.0566904752104e63 * cos(theta) ** 5 - 2.96240671491562e60 * cos(theta) ** 3 + 2.44827001232696e57 * cos(theta) ) * sin(29 * phi) ) # @torch.jit.script def Yl90_m_minus_28(theta, phi): return ( 1.39112040310174e-54 * (1.0 - cos(theta) ** 2) ** 14 * ( 3.47088041730996e78 * cos(theta) ** 62 - 3.66672339057717e79 * cos(theta) ** 60 + 1.83336169528858e80 * cos(theta) ** 58 - 5.77247025202291e80 * cos(theta) ** 56 + 1.28462488267562e81 * cos(theta) ** 54 - 2.1500563825834e81 * cos(theta) ** 52 + 2.81161219260907e81 * cos(theta) ** 50 - 2.94630020183585e81 * cos(theta) ** 48 + 2.51774744520518e81 * cos(theta) ** 46 - 1.77632488465396e81 * cos(theta) ** 44 + 1.04372878315692e81 * cos(theta) ** 42 - 5.1380816597948e80 * cos(theta) ** 40 + 2.1272312604246e80 * cos(theta) ** 38 - 7.42155620882627e79 * cos(theta) ** 36 + 2.18281064965479e79 * cos(theta) ** 34 - 5.40643167530391e78 * cos(theta) ** 32 + 1.12482806667397e78 * cos(theta) ** 30 - 1.95798402962455e77 * cos(theta) ** 28 + 2.83570100842177e76 * cos(theta) ** 26 - 3.39198685217915e75 * cos(theta) ** 24 + 3.31981691915406e74 * cos(theta) ** 22 - 2.62719324537372e73 * cos(theta) ** 20 + 1.65616030730261e72 * cos(theta) ** 18 - 8.16078992004184e70 * cos(theta) ** 16 + 3.06796613535407e69 * cos(theta) ** 14 - 8.52473033029681e67 * cos(theta) ** 12 + 1.67749612939651e66 * cos(theta) ** 10 - 2.20143849002167e64 * cos(theta) ** 8 + 1.76115079201733e62 * cos(theta) ** 6 - 7.40601678728904e59 * cos(theta) ** 4 + 1.22413500616348e57 * cos(theta) ** 2 - 3.31833831977088e53 ) * sin(28 * phi) ) # @torch.jit.script def Yl90_m_minus_27(theta, phi): return ( 1.19943301459621e-52 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 5.50933399573009e76 * cos(theta) ** 63 - 6.01102195176585e77 * cos(theta) ** 61 + 3.10739270387895e78 * cos(theta) ** 59 - 1.01271407930227e79 * cos(theta) ** 57 + 2.33568160486476e79 * cos(theta) ** 55 - 4.05671015581774e79 * cos(theta) ** 53 + 5.51296508354719e79 * cos(theta) ** 51 - 6.01285755476704e79 * cos(theta) ** 49 + 5.35690945788336e79 * cos(theta) ** 47 - 3.94738863256436e79 * cos(theta) ** 45 + 2.42727623989982e79 * cos(theta) ** 43 - 1.25319064873044e79 * cos(theta) ** 41 + 5.45443912929385e78 * cos(theta) ** 39 - 2.00582600238548e78 * cos(theta) ** 37 + 6.23660185615653e77 * cos(theta) ** 35 - 1.63831262887997e77 * cos(theta) ** 33 + 3.62847763443215e76 * cos(theta) ** 31 - 6.75166906767087e75 * cos(theta) ** 29 + 1.0502596327488e75 * cos(theta) ** 27 - 1.35679474087166e74 * cos(theta) ** 25 + 1.44339866050176e73 * cos(theta) ** 23 - 1.25104440255891e72 * cos(theta) ** 21 + 8.71663319632951e70 * cos(theta) ** 19 - 4.80046465884814e69 * cos(theta) ** 17 + 2.04531075690272e68 * cos(theta) ** 15 - 6.55748486945909e66 * cos(theta) ** 13 + 1.52499648126956e65 * cos(theta) ** 11 - 2.44604276669074e63 * cos(theta) ** 9 + 2.51592970288191e61 * cos(theta) ** 7 - 1.48120335745781e59 * cos(theta) ** 5 + 4.08045002054493e56 * cos(theta) ** 3 - 3.31833831977088e53 * cos(theta) ) * sin(27 * phi) ) # @torch.jit.script def Yl90_m_minus_26(theta, phi): return ( 1.03790813654663e-50 * (1.0 - cos(theta) ** 2) ** 13 * ( 8.60833436832827e74 * cos(theta) ** 64 - 9.69519669639653e75 * cos(theta) ** 62 + 5.17898783979826e76 * cos(theta) ** 60 - 1.7460587574177e77 * cos(theta) ** 58 + 4.17086000868707e77 * cos(theta) ** 56 - 7.5124262144773e77 * cos(theta) ** 54 + 1.06018559298984e78 * cos(theta) ** 52 - 1.20257151095341e78 * cos(theta) ** 50 + 1.1160228037257e78 * cos(theta) ** 48 - 8.58127963600947e77 * cos(theta) ** 46 + 5.51653690886323e77 * cos(theta) ** 44 - 2.983787258882e77 * cos(theta) ** 42 + 1.36360978232346e77 * cos(theta) ** 40 - 5.27848947996179e76 * cos(theta) ** 38 + 1.73238940448793e76 * cos(theta) ** 36 - 4.81856655552933e75 * cos(theta) ** 34 + 1.13389926076005e75 * cos(theta) ** 32 - 2.25055635589029e74 * cos(theta) ** 30 + 3.75092725981715e73 * cos(theta) ** 28 - 5.21844131104484e72 * cos(theta) ** 26 + 6.01416108542402e71 * cos(theta) ** 24 - 5.68656546617687e70 * cos(theta) ** 22 + 4.35831659816476e69 * cos(theta) ** 20 - 2.66692481047119e68 * cos(theta) ** 18 + 1.2783192230642e67 * cos(theta) ** 16 - 4.68391776389935e65 * cos(theta) ** 14 + 1.27083040105796e64 * cos(theta) ** 12 - 2.44604276669074e62 * cos(theta) ** 10 + 3.14491212860238e60 * cos(theta) ** 8 - 2.46867226242968e58 * cos(theta) ** 6 + 1.02011250513623e56 * cos(theta) ** 4 - 1.65916915988544e53 * cos(theta) ** 2 + 4.43154155952308e49 ) * sin(26 * phi) ) # @torch.jit.script def Yl90_m_minus_25(theta, phi): return ( 9.01248571778017e-49 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 1.32435913358896e73 * cos(theta) ** 65 - 1.53892011053913e74 * cos(theta) ** 63 + 8.49014399966928e74 * cos(theta) ** 61 - 2.95942162274186e75 * cos(theta) ** 59 + 7.31729826085452e75 * cos(theta) ** 57 - 1.36589567535951e76 * cos(theta) ** 55 + 2.00035017545254e76 * cos(theta) ** 53 - 2.3579833548106e76 * cos(theta) ** 51 + 2.27759755862388e76 * cos(theta) ** 49 - 1.82580417787436e76 * cos(theta) ** 47 + 1.2258970908585e76 * cos(theta) ** 45 - 6.93904013693488e75 * cos(theta) ** 43 + 3.3258775178621e75 * cos(theta) ** 41 - 1.35345884101584e75 * cos(theta) ** 39 + 4.68213352564304e74 * cos(theta) ** 37 - 1.37673330157981e74 * cos(theta) ** 35 + 3.43605836593954e73 * cos(theta) ** 33 - 7.25985921254933e72 * cos(theta) ** 31 + 1.2934231930404e72 * cos(theta) ** 29 - 1.93275604112772e71 * cos(theta) ** 27 + 2.40566443416961e70 * cos(theta) ** 25 - 2.47241976790299e69 * cos(theta) ** 23 + 2.07538885626893e68 * cos(theta) ** 21 - 1.4036446370901e67 * cos(theta) ** 19 + 7.5195248415541e65 * cos(theta) ** 17 - 3.12261184259957e64 * cos(theta) ** 15 + 9.77561846967664e62 * cos(theta) ** 13 - 2.22367524244613e61 * cos(theta) ** 11 + 3.4943468095582e59 * cos(theta) ** 9 - 3.52667466061383e57 * cos(theta) ** 7 + 2.04022501027246e55 * cos(theta) ** 5 - 5.5305638662848e52 * cos(theta) ** 3 + 4.43154155952308e49 * cos(theta) ) * sin(25 * phi) ) # @torch.jit.script def Yl90_m_minus_24(theta, phi): return ( 7.85173217826566e-47 * (1.0 - cos(theta) ** 2) ** 12 * ( 2.00660474786207e71 * cos(theta) ** 66 - 2.40456267271739e72 * cos(theta) ** 64 + 1.36937806446279e73 * cos(theta) ** 62 - 4.93236937123644e73 * cos(theta) ** 60 + 1.26160314842319e74 * cos(theta) ** 58 - 2.43909942028484e74 * cos(theta) ** 56 + 3.70435217676396e74 * cos(theta) ** 54 - 4.53458337463578e74 * cos(theta) ** 52 + 4.55519511724776e74 * cos(theta) ** 50 - 3.80375870390491e74 * cos(theta) ** 48 + 2.66499367577934e74 * cos(theta) ** 46 - 1.57705457657611e74 * cos(theta) ** 44 + 7.91875599490977e73 * cos(theta) ** 42 - 3.38364710253961e73 * cos(theta) ** 40 + 1.23214040148501e73 * cos(theta) ** 38 - 3.82425917105502e72 * cos(theta) ** 36 + 1.01060540174692e72 * cos(theta) ** 34 - 2.26870600392166e71 * cos(theta) ** 32 + 4.31141064346799e70 * cos(theta) ** 30 - 6.90270014688471e69 * cos(theta) ** 28 + 9.25255551603695e68 * cos(theta) ** 26 - 1.03017490329291e68 * cos(theta) ** 24 + 9.43358571031333e66 * cos(theta) ** 22 - 7.01822318545049e65 * cos(theta) ** 20 + 4.17751380086339e64 * cos(theta) ** 18 - 1.95163240162473e63 * cos(theta) ** 16 + 6.9825846211976e61 * cos(theta) ** 14 - 1.85306270203844e60 * cos(theta) ** 12 + 3.4943468095582e58 * cos(theta) ** 10 - 4.40834332576729e56 * cos(theta) ** 8 + 3.40037501712077e54 * cos(theta) ** 6 - 1.3826409665712e52 * cos(theta) ** 4 + 2.21577077976154e49 * cos(theta) ** 2 - 5.83865818118983e45 ) * sin(24 * phi) ) # @torch.jit.script def Yl90_m_minus_23(theta, phi): return ( 6.86207253565265e-45 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 2.99493245949562e69 * cos(theta) ** 67 - 3.69932718879599e70 * cos(theta) ** 65 + 2.17361597533776e71 * cos(theta) ** 63 - 8.08585142825645e71 * cos(theta) ** 61 + 2.13831042105626e72 * cos(theta) ** 59 - 4.2791217899734e72 * cos(theta) ** 57 + 6.73518577593447e72 * cos(theta) ** 55 - 8.55581768799203e72 * cos(theta) ** 53 + 8.93175513185835e72 * cos(theta) ** 51 - 7.76277286511206e72 * cos(theta) ** 49 + 5.67019931016881e72 * cos(theta) ** 47 - 3.50456572572469e72 * cos(theta) ** 45 + 1.84157116160692e72 * cos(theta) ** 43 - 8.25279781107221e71 * cos(theta) ** 41 + 3.15933436278208e71 * cos(theta) ** 39 - 1.0335835597446e71 * cos(theta) ** 37 + 2.88744400499121e70 * cos(theta) ** 35 - 6.8748666785505e69 * cos(theta) ** 33 + 1.39077762692516e69 * cos(theta) ** 31 - 2.38024142996025e68 * cos(theta) ** 29 + 3.42687241334702e67 * cos(theta) ** 27 - 4.12069961317165e66 * cos(theta) ** 25 + 4.10155900448406e65 * cos(theta) ** 23 - 3.34201104069071e64 * cos(theta) ** 21 + 2.19869147413863e63 * cos(theta) ** 19 - 1.14801905977925e62 * cos(theta) ** 17 + 4.65505641413173e60 * cos(theta) ** 15 - 1.42543284772188e59 * cos(theta) ** 13 + 3.17667891778018e57 * cos(theta) ** 11 - 4.89815925085254e55 * cos(theta) ** 9 + 4.85767859588682e53 * cos(theta) ** 7 - 2.7652819331424e51 * cos(theta) ** 5 + 7.38590259920513e48 * cos(theta) ** 3 - 5.83865818118983e45 * cos(theta) ) * sin(23 * phi) ) # @torch.jit.script def Yl90_m_minus_22(theta, phi): return ( 6.01518491319549e-43 * (1.0 - cos(theta) ** 2) ** 11 * ( 4.40431244043474e67 * cos(theta) ** 68 - 5.60504119514544e68 * cos(theta) ** 66 + 3.39627496146524e69 * cos(theta) ** 64 - 1.30416958520265e70 * cos(theta) ** 62 + 3.56385070176043e70 * cos(theta) ** 60 - 7.37779618960931e70 * cos(theta) ** 58 + 1.20271174570258e71 * cos(theta) ** 56 - 1.58441068296149e71 * cos(theta) ** 54 + 1.71764521766507e71 * cos(theta) ** 52 - 1.55255457302241e71 * cos(theta) ** 50 + 1.18129152295183e71 * cos(theta) ** 48 - 7.61862114287976e70 * cos(theta) ** 46 + 4.1853890036521e70 * cos(theta) ** 44 - 1.9649518597791e70 * cos(theta) ** 42 + 7.8983359069552e69 * cos(theta) ** 40 - 2.71995673617e69 * cos(theta) ** 38 + 8.02067779164225e68 * cos(theta) ** 36 - 2.02201961133838e68 * cos(theta) ** 34 + 4.34618008414112e67 * cos(theta) ** 32 - 7.93413809986748e66 * cos(theta) ** 30 + 1.22388300476679e66 * cos(theta) ** 28 - 1.58488446660448e65 * cos(theta) ** 26 + 1.70898291853502e64 * cos(theta) ** 24 - 1.51909592758669e63 * cos(theta) ** 22 + 1.09934573706931e62 * cos(theta) ** 20 - 6.37788366544029e60 * cos(theta) ** 18 + 2.90941025883233e59 * cos(theta) ** 16 - 1.01816631980134e58 * cos(theta) ** 14 + 2.64723243148349e56 * cos(theta) ** 12 - 4.89815925085254e54 * cos(theta) ** 10 + 6.07209824485852e52 * cos(theta) ** 8 - 4.608803221904e50 * cos(theta) ** 6 + 1.84647564980128e48 * cos(theta) ** 4 - 2.91932909059491e45 * cos(theta) ** 2 + 7.59846197447921e41 ) * sin(22 * phi) ) # @torch.jit.script def Yl90_m_minus_21(theta, phi): return ( 5.28789154620833e-41 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 6.38306150787643e65 * cos(theta) ** 69 - 8.36573312708274e66 * cos(theta) ** 67 + 5.22503840225422e67 * cos(theta) ** 65 - 2.07011045270262e68 * cos(theta) ** 63 + 5.84237819960726e68 * cos(theta) ** 61 - 1.25047393044226e69 * cos(theta) ** 59 + 2.11002060649576e69 * cos(theta) ** 57 - 2.88074669629361e69 * cos(theta) ** 55 + 3.24084003333031e69 * cos(theta) ** 53 - 3.04422465298512e69 * cos(theta) ** 51 + 2.41079902643232e69 * cos(theta) ** 49 - 1.62098322188931e69 * cos(theta) ** 47 + 9.30086445256022e68 * cos(theta) ** 45 - 4.56965548785837e68 * cos(theta) ** 43 + 1.92642339194029e68 * cos(theta) ** 41 - 6.97424804146155e67 * cos(theta) ** 39 + 2.1677507544979e67 * cos(theta) ** 37 - 5.77719888953823e66 * cos(theta) ** 35 + 1.31702426792155e66 * cos(theta) ** 33 - 2.55939938705403e65 * cos(theta) ** 31 + 4.22028622333377e64 * cos(theta) ** 29 - 5.86994246890548e63 * cos(theta) ** 27 + 6.83593167414009e62 * cos(theta) ** 25 - 6.60476490255081e61 * cos(theta) ** 23 + 5.23497970033006e60 * cos(theta) ** 21 - 3.35678087654752e59 * cos(theta) ** 19 + 1.71141779931314e58 * cos(theta) ** 17 - 6.78777546534227e56 * cos(theta) ** 15 + 2.03633263960268e55 * cos(theta) ** 13 - 4.45287204622958e53 * cos(theta) ** 11 + 6.74677582762058e51 * cos(theta) ** 9 - 6.58400460272e49 * cos(theta) ** 7 + 3.69295129960257e47 * cos(theta) ** 5 - 9.73109696864971e44 * cos(theta) ** 3 + 7.59846197447921e41 * cos(theta) ) * sin(21 * phi) ) # @torch.jit.script def Yl90_m_minus_20(theta, phi): return ( 4.66114967282393e-39 * (1.0 - cos(theta) ** 2) ** 10 * ( 9.11865929696633e63 * cos(theta) ** 70 - 1.23025487162981e65 * cos(theta) ** 68 + 7.91672485190034e65 * cos(theta) ** 66 - 3.23454758234785e66 * cos(theta) ** 64 + 9.42319064452784e66 * cos(theta) ** 62 - 2.08412321740376e67 * cos(theta) ** 60 + 3.63796656292372e67 * cos(theta) ** 58 - 5.14419052909574e67 * cos(theta) ** 56 + 6.00155561727836e67 * cos(theta) ** 54 - 5.85427817881754e67 * cos(theta) ** 52 + 4.82159805286463e67 * cos(theta) ** 50 - 3.37704837893606e67 * cos(theta) ** 48 + 2.02192705490439e67 * cos(theta) ** 46 - 1.03855806542236e67 * cos(theta) ** 44 + 4.5867223617626e66 * cos(theta) ** 42 - 1.74356201036539e66 * cos(theta) ** 40 + 5.7046072486787e65 * cos(theta) ** 38 - 1.60477746931618e65 * cos(theta) ** 36 + 3.87360078800456e64 * cos(theta) ** 34 - 7.99812308454383e63 * cos(theta) ** 32 + 1.40676207444459e63 * cos(theta) ** 30 - 2.0964080246091e62 * cos(theta) ** 28 + 2.62920449005388e61 * cos(theta) ** 26 - 2.75198537606284e60 * cos(theta) ** 24 + 2.37953622742276e59 * cos(theta) ** 22 - 1.67839043827376e58 * cos(theta) ** 20 + 9.50787666285076e56 * cos(theta) ** 18 - 4.24235966583892e55 * cos(theta) ** 16 + 1.45452331400192e54 * cos(theta) ** 14 - 3.71072670519132e52 * cos(theta) ** 12 + 6.74677582762058e50 * cos(theta) ** 10 - 8.2300057534e48 * cos(theta) ** 8 + 6.15491883267094e46 * cos(theta) ** 6 - 2.43277424216243e44 * cos(theta) ** 4 + 3.79923098723961e41 * cos(theta) ** 2 - 9.77923034038509e37 ) * sin(20 * phi) ) # @torch.jit.script def Yl90_m_minus_19(theta, phi): return ( 4.11925393837239e-37 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.28431821084033e62 * cos(theta) ** 71 - 1.78297807482582e63 * cos(theta) ** 69 + 1.18160072416423e64 * cos(theta) ** 67 - 4.97622704976592e64 * cos(theta) ** 65 + 1.49574454675045e65 * cos(theta) ** 63 - 3.41659543836682e65 * cos(theta) ** 61 + 6.16604502190462e65 * cos(theta) ** 59 - 9.02489566508024e65 * cos(theta) ** 57 + 1.09119193041425e66 * cos(theta) ** 55 - 1.10458078845614e66 * cos(theta) ** 53 + 9.45411382914634e65 * cos(theta) ** 51 - 6.89193546721646e65 * cos(theta) ** 49 + 4.30197245724339e65 * cos(theta) ** 47 - 2.30790681204968e65 * cos(theta) ** 45 + 1.06667961901456e65 * cos(theta) ** 43 - 4.25259026918387e64 * cos(theta) ** 41 + 1.46271980735351e64 * cos(theta) ** 39 - 4.33723640355723e63 * cos(theta) ** 37 + 1.10674308228702e63 * cos(theta) ** 35 - 2.42367366198298e62 * cos(theta) ** 33 + 4.53794217562771e61 * cos(theta) ** 31 - 7.22899318830724e60 * cos(theta) ** 29 + 9.73779440760697e59 * cos(theta) ** 27 - 1.10079415042514e59 * cos(theta) ** 25 + 1.03458096844468e58 * cos(theta) ** 23 - 7.99233542035124e56 * cos(theta) ** 21 + 5.00414561202672e55 * cos(theta) ** 19 - 2.4955056857876e54 * cos(theta) ** 17 + 9.69682209334611e52 * cos(theta) ** 15 - 2.85440515783948e51 * cos(theta) ** 13 + 6.13343257056416e49 * cos(theta) ** 11 - 9.14445083711111e47 * cos(theta) ** 9 + 8.79274118952992e45 * cos(theta) ** 7 - 4.86554848432486e43 * cos(theta) ** 5 + 1.26641032907987e41 * cos(theta) ** 3 - 9.77923034038509e37 * cos(theta) ) * sin(19 * phi) ) # @torch.jit.script def Yl90_m_minus_18(theta, phi): return ( 3.64920333241427e-35 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.78377529283379e60 * cos(theta) ** 72 - 2.54711153546546e61 * cos(theta) ** 70 + 1.73764812377093e62 * cos(theta) ** 68 - 7.53973795419079e62 * cos(theta) ** 66 + 2.33710085429758e63 * cos(theta) ** 64 - 5.51063780381745e63 * cos(theta) ** 62 + 1.02767417031744e64 * cos(theta) ** 60 - 1.55601649397935e64 * cos(theta) ** 58 + 1.94855701859687e64 * cos(theta) ** 56 - 2.04551997862248e64 * cos(theta) ** 54 + 1.81809881329737e64 * cos(theta) ** 52 - 1.37838709344329e64 * cos(theta) ** 50 + 8.96244261925707e63 * cos(theta) ** 48 - 5.01718872184713e63 * cos(theta) ** 46 + 2.42427186139672e63 * cos(theta) ** 44 - 1.01252149266283e63 * cos(theta) ** 42 + 3.65679951838378e62 * cos(theta) ** 40 - 1.14137800093611e62 * cos(theta) ** 38 + 3.07428633968616e61 * cos(theta) ** 36 - 7.12845194700877e60 * cos(theta) ** 34 + 1.41810692988366e60 * cos(theta) ** 32 - 2.40966439610241e59 * cos(theta) ** 30 + 3.47778371700249e58 * cos(theta) ** 28 - 4.23382365548129e57 * cos(theta) ** 26 + 4.31075403518615e56 * cos(theta) ** 24 - 3.63287973652329e55 * cos(theta) ** 22 + 2.50207280601336e54 * cos(theta) ** 20 - 1.38639204765978e53 * cos(theta) ** 18 + 6.06051380834132e51 * cos(theta) ** 16 - 2.0388608270282e50 * cos(theta) ** 14 + 5.11119380880347e48 * cos(theta) ** 12 - 9.14445083711112e46 * cos(theta) ** 10 + 1.09909264869124e45 * cos(theta) ** 8 - 8.10924747387476e42 * cos(theta) ** 6 + 3.16602582269967e40 * cos(theta) ** 4 - 4.88961517019254e37 * cos(theta) ** 2 + 1.24607929923357e34 ) * sin(18 * phi) ) # @torch.jit.script def Yl90_m_minus_17(theta, phi): return ( 3.24019666432327e-33 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 2.44352779840245e58 * cos(theta) ** 73 - 3.58748103586684e59 * cos(theta) ** 71 + 2.51833061416076e60 * cos(theta) ** 69 - 1.12533402301355e61 * cos(theta) ** 67 + 3.59553977584243e61 * cos(theta) ** 65 - 8.74704413304358e61 * cos(theta) ** 63 + 1.68471175461875e62 * cos(theta) ** 61 - 2.63731609149043e62 * cos(theta) ** 59 + 3.41852108525767e62 * cos(theta) ** 57 - 3.71912723385906e62 * cos(theta) ** 55 + 3.43037511942901e62 * cos(theta) ** 53 - 2.70271979106528e62 * cos(theta) ** 51 + 1.82906992229736e62 * cos(theta) ** 49 - 1.06748696209513e62 * cos(theta) ** 47 + 5.38727080310383e61 * cos(theta) ** 45 - 2.3547011457275e61 * cos(theta) ** 43 + 8.9190232155702e60 * cos(theta) ** 41 - 2.92661025881055e60 * cos(theta) ** 39 + 8.30888199915179e59 * cos(theta) ** 37 - 2.03670055628822e59 * cos(theta) ** 35 + 4.29729372692018e58 * cos(theta) ** 33 - 7.77311095516908e57 * cos(theta) ** 31 + 1.19923576448362e57 * cos(theta) ** 29 - 1.56808283536344e56 * cos(theta) ** 27 + 1.72430161407446e55 * cos(theta) ** 25 - 1.57951292892317e54 * cos(theta) ** 23 + 1.19146324095874e53 * cos(theta) ** 21 - 7.29680025084094e51 * cos(theta) ** 19 + 3.56500812255372e50 * cos(theta) ** 17 - 1.35924055135213e49 * cos(theta) ** 15 + 3.93168754523344e47 * cos(theta) ** 13 - 8.31313712464647e45 * cos(theta) ** 11 + 1.22121405410138e44 * cos(theta) ** 9 - 1.15846392483925e42 * cos(theta) ** 7 + 6.33205164539934e39 * cos(theta) ** 5 - 1.62987172339751e37 * cos(theta) ** 3 + 1.24607929923357e34 * cos(theta) ) * sin(17 * phi) ) # @torch.jit.script def Yl90_m_minus_16(theta, phi): return ( 2.88322887896897e-31 * (1.0 - cos(theta) ** 2) ** 8 * ( 3.30206459243574e56 * cos(theta) ** 74 - 4.98261254981505e57 * cos(theta) ** 72 + 3.5976151630868e58 * cos(theta) ** 70 - 1.65490297501993e59 * cos(theta) ** 68 + 5.4477875391552e59 * cos(theta) ** 66 - 1.36672564578806e60 * cos(theta) ** 64 + 2.71727702357863e60 * cos(theta) ** 62 - 4.39552681915071e60 * cos(theta) ** 60 + 5.89400187113391e60 * cos(theta) ** 58 - 6.64129863189117e60 * cos(theta) ** 56 + 6.35254651746112e60 * cos(theta) ** 54 - 5.19753805974092e60 * cos(theta) ** 52 + 3.65813984459472e60 * cos(theta) ** 50 - 2.22393117103153e60 * cos(theta) ** 48 + 1.1711458267617e60 * cos(theta) ** 46 - 5.35159351301705e59 * cos(theta) ** 44 + 2.12357695608814e59 * cos(theta) ** 42 - 7.31652564702637e58 * cos(theta) ** 40 + 2.18654789451363e58 * cos(theta) ** 38 - 5.65750154524505e57 * cos(theta) ** 36 + 1.26390991968241e57 * cos(theta) ** 34 - 2.42909717349034e56 * cos(theta) ** 32 + 3.99745254827872e55 * cos(theta) ** 30 - 5.60029584058372e54 * cos(theta) ** 28 + 6.63192928490177e53 * cos(theta) ** 26 - 6.58130387051321e52 * cos(theta) ** 24 + 5.41574200435792e51 * cos(theta) ** 22 - 3.64840012542047e50 * cos(theta) ** 20 + 1.9805600680854e49 * cos(theta) ** 18 - 8.49525344595082e47 * cos(theta) ** 16 + 2.80834824659531e46 * cos(theta) ** 14 - 6.92761427053872e44 * cos(theta) ** 12 + 1.22121405410138e43 * cos(theta) ** 10 - 1.44807990604906e41 * cos(theta) ** 8 + 1.05534194089989e39 * cos(theta) ** 6 - 4.07467930849379e36 * cos(theta) ** 4 + 6.23039649616787e33 * cos(theta) ** 2 - 1.57372985505629e30 ) * sin(16 * phi) ) # @torch.jit.script def Yl90_m_minus_15(theta, phi): return ( 2.57076680602771e-29 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 4.40275278991433e54 * cos(theta) ** 75 - 6.82549664358227e55 * cos(theta) ** 73 + 5.06706360998141e56 * cos(theta) ** 71 - 2.39841010872453e57 * cos(theta) ** 69 + 8.13102617784358e57 * cos(theta) ** 67 - 2.10265483967394e58 * cos(theta) ** 65 + 4.31313813266449e58 * cos(theta) ** 63 - 7.20578167073887e58 * cos(theta) ** 61 + 9.98983367988798e58 * cos(theta) ** 59 - 1.1651401108581e59 * cos(theta) ** 57 + 1.1550084577202e59 * cos(theta) ** 55 - 9.80667558441683e58 * cos(theta) ** 53 + 7.17282322469553e58 * cos(theta) ** 51 - 4.53863504292149e58 * cos(theta) ** 49 + 2.49179963140788e58 * cos(theta) ** 47 - 1.18924300289268e58 * cos(theta) ** 45 + 4.9385510606701e57 * cos(theta) ** 43 - 1.78451845049424e57 * cos(theta) ** 41 + 5.60653306285546e56 * cos(theta) ** 39 - 1.52905447168785e56 * cos(theta) ** 37 + 3.61117119909259e55 * cos(theta) ** 35 - 7.36090052572829e54 * cos(theta) ** 33 + 1.28950082202539e54 * cos(theta) ** 31 - 1.93113649675301e53 * cos(theta) ** 29 + 2.45627010551917e52 * cos(theta) ** 27 - 2.63252154820528e51 * cos(theta) ** 25 + 2.35467043667736e50 * cos(theta) ** 23 - 1.73733339305737e49 * cos(theta) ** 21 + 1.04240003583442e48 * cos(theta) ** 19 - 4.99720790938284e46 * cos(theta) ** 17 + 1.87223216439688e45 * cos(theta) ** 15 - 5.32893405426056e43 * cos(theta) ** 13 + 1.11019459463762e42 * cos(theta) ** 11 - 1.60897767338785e40 * cos(theta) ** 9 + 1.5076313441427e38 * cos(theta) ** 7 - 8.14935861698757e35 * cos(theta) ** 5 + 2.07679883205596e33 * cos(theta) ** 3 - 1.57372985505629e30 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl90_m_minus_14(theta, phi): return ( 2.296487729738e-27 * (1.0 - cos(theta) ** 2) ** 7 * ( 5.79309577620306e52 * cos(theta) ** 76 - 9.22364411294901e53 * cos(theta) ** 74 + 7.0375883471964e54 * cos(theta) ** 72 - 3.42630015532076e55 * cos(theta) ** 70 + 1.19573914380053e56 * cos(theta) ** 68 - 3.18584066617263e56 * cos(theta) ** 66 + 6.73927833228826e56 * cos(theta) ** 64 - 1.16222285011917e57 * cos(theta) ** 62 + 1.66497227998133e57 * cos(theta) ** 60 - 2.00886226010017e57 * cos(theta) ** 58 + 2.06251510307179e57 * cos(theta) ** 56 - 1.81605103415126e57 * cos(theta) ** 54 + 1.37938908167222e57 * cos(theta) ** 52 - 9.07727008584298e56 * cos(theta) ** 50 + 5.19124923209975e56 * cos(theta) ** 48 - 2.58531087585365e56 * cos(theta) ** 46 + 1.12239796833411e56 * cos(theta) ** 44 - 4.24885345355771e55 * cos(theta) ** 42 + 1.40163326571386e55 * cos(theta) ** 40 - 4.02382755707329e54 * cos(theta) ** 38 + 1.00310311085905e54 * cos(theta) ** 36 - 2.16497074286126e53 * cos(theta) ** 34 + 4.02969006882936e52 * cos(theta) ** 32 - 6.43712165584335e51 * cos(theta) ** 30 + 8.77239323399705e50 * cos(theta) ** 28 - 1.01250828777126e50 * cos(theta) ** 26 + 9.81112681948898e48 * cos(theta) ** 24 - 7.89696996844257e47 * cos(theta) ** 22 + 5.2120001791721e46 * cos(theta) ** 20 - 2.7762266163238e45 * cos(theta) ** 18 + 1.17014510274805e44 * cos(theta) ** 16 - 3.80638146732897e42 * cos(theta) ** 14 + 9.25162162198013e40 * cos(theta) ** 12 - 1.60897767338785e39 * cos(theta) ** 10 + 1.88453918017838e37 * cos(theta) ** 8 - 1.3582264361646e35 * cos(theta) ** 6 + 5.19199708013989e32 * cos(theta) ** 4 - 7.86864927528147e29 * cos(theta) ** 2 + 1.97209255019586e26 ) * sin(14 * phi) ) # @torch.jit.script def Yl90_m_minus_13(theta, phi): return ( 2.05506783318313e-25 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 7.52350100805592e50 * cos(theta) ** 77 - 1.22981921505987e52 * cos(theta) ** 75 + 9.64053198246083e52 * cos(theta) ** 73 - 4.82577486664896e53 * cos(theta) ** 71 + 1.73295528087033e54 * cos(theta) ** 69 - 4.75498606891437e54 * cos(theta) ** 67 + 1.03681205112127e55 * cos(theta) ** 65 - 1.84479817479234e55 * cos(theta) ** 63 + 2.72946275406775e55 * cos(theta) ** 61 - 3.40485128830538e55 * cos(theta) ** 59 + 3.61844754924876e55 * cos(theta) ** 57 - 3.30191097118412e55 * cos(theta) ** 55 + 2.60262090881551e55 * cos(theta) ** 53 - 1.77985687957706e55 * cos(theta) ** 51 + 1.05943861879587e55 * cos(theta) ** 49 - 5.50066143798648e54 * cos(theta) ** 47 + 2.49421770740914e54 * cos(theta) ** 45 - 9.88105454315746e53 * cos(theta) ** 43 + 3.41861772125333e53 * cos(theta) ** 41 - 1.03175065565982e53 * cos(theta) ** 39 + 2.71108948880825e52 * cos(theta) ** 37 - 6.18563069388932e51 * cos(theta) ** 35 + 1.22111820267556e51 * cos(theta) ** 33 - 2.07649085672366e50 * cos(theta) ** 31 + 3.02496318413691e49 * cos(theta) ** 29 - 3.75003069544912e48 * cos(theta) ** 27 + 3.92445072779559e47 * cos(theta) ** 25 - 3.43346520367068e46 * cos(theta) ** 23 + 2.48190484722481e45 * cos(theta) ** 21 - 1.46117190332831e44 * cos(theta) ** 19 + 6.88320648675322e42 * cos(theta) ** 17 - 2.53758764488598e41 * cos(theta) ** 15 + 7.11663201690779e39 * cos(theta) ** 13 - 1.46270697580714e38 * cos(theta) ** 11 + 2.09393242242042e36 * cos(theta) ** 9 - 1.94032348023514e34 * cos(theta) ** 7 + 1.03839941602798e32 * cos(theta) ** 5 - 2.62288309176049e29 * cos(theta) ** 3 + 1.97209255019586e26 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl90_m_minus_12(theta, phi): return ( 1.8420103887068e-23 * (1.0 - cos(theta) ** 2) ** 6 * ( 9.64551411289221e48 * cos(theta) ** 78 - 1.61818317771035e50 * cos(theta) ** 76 + 1.30277459222444e51 * cos(theta) ** 74 - 6.702465092568e51 * cos(theta) ** 72 + 2.47565040124333e52 * cos(theta) ** 70 - 6.9926265719329e52 * cos(theta) ** 68 + 1.57092735018374e53 * cos(theta) ** 66 - 2.88249714811303e53 * cos(theta) ** 64 + 4.40235928075444e53 * cos(theta) ** 62 - 5.67475214717563e53 * cos(theta) ** 60 + 6.23870267111855e53 * cos(theta) ** 58 - 5.89626959140021e53 * cos(theta) ** 56 + 4.81966834965834e53 * cos(theta) ** 54 - 3.42280169149434e53 * cos(theta) ** 52 + 2.11887723759173e53 * cos(theta) ** 50 - 1.14597113291385e53 * cos(theta) ** 48 + 5.42221240741117e52 * cos(theta) ** 46 - 2.24569421435397e52 * cos(theta) ** 44 + 8.13956600298411e51 * cos(theta) ** 42 - 2.57937663914955e51 * cos(theta) ** 40 + 7.1344460231796e50 * cos(theta) ** 38 - 1.71823074830259e50 * cos(theta) ** 36 + 3.59152412551636e49 * cos(theta) ** 34 - 6.48903392726145e48 * cos(theta) ** 32 + 1.00832106137897e48 * cos(theta) ** 30 - 1.33929667694611e47 * cos(theta) ** 28 + 1.50940412607523e46 * cos(theta) ** 26 - 1.43061050152945e45 * cos(theta) ** 24 + 1.12813856692037e44 * cos(theta) ** 22 - 7.30585951664157e42 * cos(theta) ** 20 + 3.82400360375179e41 * cos(theta) ** 18 - 1.58599227805374e40 * cos(theta) ** 16 + 5.08330858350557e38 * cos(theta) ** 14 - 1.21892247983928e37 * cos(theta) ** 12 + 2.09393242242042e35 * cos(theta) ** 10 - 2.42540435029392e33 * cos(theta) ** 8 + 1.73066569337996e31 * cos(theta) ** 6 - 6.55720772940123e28 * cos(theta) ** 4 + 9.86046275097929e25 * cos(theta) ** 2 - 2.45468328378872e22 ) * sin(12 * phi) ) # @torch.jit.script def Yl90_m_minus_11(theta, phi): return ( 1.65350573959125e-21 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.22095115353066e47 * cos(theta) ** 79 - 2.10153659442903e48 * cos(theta) ** 77 + 1.73703278963258e49 * cos(theta) ** 75 - 9.18145903091507e49 * cos(theta) ** 73 + 3.48683155104694e50 * cos(theta) ** 71 - 1.01342414085984e51 * cos(theta) ** 69 + 2.34466768684141e51 * cos(theta) ** 67 - 4.43461099709697e51 * cos(theta) ** 65 + 6.9878718742134e51 * cos(theta) ** 63 - 9.30287237241907e51 * cos(theta) ** 61 + 1.05740723239297e52 * cos(theta) ** 59 - 1.03443326164916e52 * cos(theta) ** 57 + 8.76303336301517e51 * cos(theta) ** 55 - 6.45811639904592e51 * cos(theta) ** 53 + 4.15466125017987e51 * cos(theta) ** 51 - 2.33871659778337e51 * cos(theta) ** 49 + 1.1536622143428e51 * cos(theta) ** 47 - 4.99043158745326e50 * cos(theta) ** 45 + 1.89292232627538e50 * cos(theta) ** 43 - 6.29116253451109e49 * cos(theta) ** 41 + 1.82934513414862e49 * cos(theta) ** 39 - 4.6438668873043e48 * cos(theta) ** 37 + 1.02614975014753e48 * cos(theta) ** 35 - 1.96637391735195e47 * cos(theta) ** 33 + 3.25264858509346e46 * cos(theta) ** 31 - 4.61826440326246e45 * cos(theta) ** 29 + 5.59038565213047e44 * cos(theta) ** 27 - 5.72244200611781e43 * cos(theta) ** 25 + 4.90495029095812e42 * cos(theta) ** 23 - 3.47898072221027e41 * cos(theta) ** 21 + 2.01263347565884e40 * cos(theta) ** 19 - 9.32936634149257e38 * cos(theta) ** 17 + 3.38887238900371e37 * cos(theta) ** 15 - 9.37632676799446e35 * cos(theta) ** 13 + 1.90357492947311e34 * cos(theta) ** 11 - 2.6948937225488e32 * cos(theta) ** 9 + 2.47237956197138e30 * cos(theta) ** 7 - 1.31144154588025e28 * cos(theta) ** 5 + 3.2868209169931e25 * cos(theta) ** 3 - 2.45468328378872e22 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl90_m_minus_10(theta, phi): return ( 1.48631680153858e-19 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.52618894191332e45 * cos(theta) ** 80 - 2.69427768516542e46 * cos(theta) ** 78 + 2.28556946004287e47 * cos(theta) ** 76 - 1.24073770688042e48 * cos(theta) ** 74 + 4.8428215986763e48 * cos(theta) ** 72 - 1.44774877265692e49 * cos(theta) ** 70 + 3.44804071594325e49 * cos(theta) ** 68 - 6.71910757135904e49 * cos(theta) ** 66 + 1.09185498034584e50 * cos(theta) ** 64 - 1.50046328587404e50 * cos(theta) ** 62 + 1.76234538732162e50 * cos(theta) ** 60 - 1.78350562353303e50 * cos(theta) ** 58 + 1.56482738625271e50 * cos(theta) ** 56 - 1.1959474813048e50 * cos(theta) ** 54 + 7.98973317342282e49 * cos(theta) ** 52 - 4.67743319556674e49 * cos(theta) ** 50 + 2.40346294654751e49 * cos(theta) ** 48 - 1.08487643205506e49 * cos(theta) ** 46 + 4.3020961960804e48 * cos(theta) ** 44 - 1.49789584155026e48 * cos(theta) ** 42 + 4.57336283537154e47 * cos(theta) ** 40 - 1.22207023350113e47 * cos(theta) ** 38 + 2.85041597263203e46 * cos(theta) ** 36 - 5.78345269809398e45 * cos(theta) ** 34 + 1.01645268284171e45 * cos(theta) ** 32 - 1.53942146775415e44 * cos(theta) ** 30 + 1.99656630433231e43 * cos(theta) ** 28 - 2.20093923312223e42 * cos(theta) ** 26 + 2.04372928789922e41 * cos(theta) ** 24 - 1.58135487373194e40 * cos(theta) ** 22 + 1.00631673782942e39 * cos(theta) ** 20 - 5.18298130082921e37 * cos(theta) ** 18 + 2.11804524312732e36 * cos(theta) ** 16 - 6.69737626285319e34 * cos(theta) ** 14 + 1.58631244122759e33 * cos(theta) ** 12 - 2.6948937225488e31 * cos(theta) ** 10 + 3.09047445246422e29 * cos(theta) ** 8 - 2.18573590980041e27 * cos(theta) ** 6 + 8.21705229248274e24 * cos(theta) ** 4 - 1.22734164189436e22 * cos(theta) ** 2 + 3.03797436112465e18 ) * sin(10 * phi) ) # @torch.jit.script def Yl90_m_minus_9(theta, phi): return ( 1.33768512138472e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1.88418387890534e43 * cos(theta) ** 81 - 3.41047808248788e44 * cos(theta) ** 79 + 2.9682720260297e45 * cos(theta) ** 77 - 1.65431694250722e46 * cos(theta) ** 75 + 6.63400218996754e46 * cos(theta) ** 73 - 2.03908277839002e47 * cos(theta) ** 71 + 4.99716045788876e47 * cos(theta) ** 69 - 1.00285187632224e48 * cos(theta) ** 67 + 1.67977689283976e48 * cos(theta) ** 65 - 2.38168775535562e48 * cos(theta) ** 63 + 2.88909079888791e48 * cos(theta) ** 61 - 3.02289088734412e48 * cos(theta) ** 59 + 2.74531120395212e48 * cos(theta) ** 57 - 2.17444996600873e48 * cos(theta) ** 55 + 1.50749682517412e48 * cos(theta) ** 53 - 9.17143763836615e47 * cos(theta) ** 51 + 4.90502642152552e47 * cos(theta) ** 49 - 2.30824772777672e47 * cos(theta) ** 47 + 9.56021376906755e46 * cos(theta) ** 45 - 3.48347870127967e46 * cos(theta) ** 43 + 1.11545435009062e46 * cos(theta) ** 41 - 3.13351341923367e45 * cos(theta) ** 39 + 7.70382695305955e44 * cos(theta) ** 37 - 1.65241505659828e44 * cos(theta) ** 35 + 3.08015964497486e43 * cos(theta) ** 33 - 4.96587570243276e42 * cos(theta) ** 31 + 6.88471139424935e41 * cos(theta) ** 29 - 8.15162678934161e40 * cos(theta) ** 27 + 8.17491715159687e39 * cos(theta) ** 25 - 6.87545597274758e38 * cos(theta) ** 23 + 4.79198446585437e37 * cos(theta) ** 21 - 2.72788489517327e36 * cos(theta) ** 19 + 1.24590896654548e35 * cos(theta) ** 17 - 4.46491750856879e33 * cos(theta) ** 15 + 1.22024033940584e32 * cos(theta) ** 13 - 2.44990338413527e30 * cos(theta) ** 11 + 3.43386050273802e28 * cos(theta) ** 9 - 3.12247987114344e26 * cos(theta) ** 7 + 1.64341045849655e24 * cos(theta) ** 5 - 4.09113880631453e21 * cos(theta) ** 3 + 3.03797436112465e18 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl90_m_minus_8(theta, phi): return ( 1.20525355203382e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 2.29778521817724e41 * cos(theta) ** 82 - 4.26309760310984e42 * cos(theta) ** 80 + 3.80547695644834e43 * cos(theta) ** 78 - 2.17673281908845e44 * cos(theta) ** 76 + 8.96486782428046e44 * cos(theta) ** 74 - 2.83205941443059e45 * cos(theta) ** 72 + 7.1388006541268e45 * cos(theta) ** 70 - 1.47478217106212e46 * cos(theta) ** 68 + 2.54511650430267e46 * cos(theta) ** 66 - 3.72138711774316e46 * cos(theta) ** 64 + 4.65982386917405e46 * cos(theta) ** 62 - 5.03815147890687e46 * cos(theta) ** 60 + 4.73329517922779e46 * cos(theta) ** 58 - 3.88294636787273e46 * cos(theta) ** 56 + 2.79166078735948e46 * cos(theta) ** 54 - 1.76373800737811e46 * cos(theta) ** 52 + 9.81005284305105e45 * cos(theta) ** 50 - 4.80884943286816e45 * cos(theta) ** 48 + 2.07830734110164e45 * cos(theta) ** 46 - 7.9169970483629e44 * cos(theta) ** 44 + 2.65584369069195e44 * cos(theta) ** 42 - 7.83378354808417e43 * cos(theta) ** 40 + 2.02732288238409e43 * cos(theta) ** 38 - 4.59004182388411e42 * cos(theta) ** 36 + 9.05929307345548e41 * cos(theta) ** 34 - 1.55183615701024e41 * cos(theta) ** 32 + 2.29490379808312e40 * cos(theta) ** 30 - 2.91129528190772e39 * cos(theta) ** 28 + 3.14419890446033e38 * cos(theta) ** 26 - 2.86477332197816e37 * cos(theta) ** 24 + 2.17817475720653e36 * cos(theta) ** 22 - 1.36394244758663e35 * cos(theta) ** 20 + 6.92171648080823e33 * cos(theta) ** 18 - 2.79057344285549e32 * cos(theta) ** 16 + 8.71600242432741e30 * cos(theta) ** 14 - 2.04158615344606e29 * cos(theta) ** 12 + 3.43386050273802e27 * cos(theta) ** 10 - 3.9030998389293e25 * cos(theta) ** 8 + 2.73901743082758e23 * cos(theta) ** 6 - 1.02278470157863e21 * cos(theta) ** 4 + 1.51898718056233e18 * cos(theta) ** 2 - 374226947662559.0 ) * sin(8 * phi) ) # @torch.jit.script def Yl90_m_minus_7(theta, phi): return ( 1.08700240285979e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 2.76841592551475e39 * cos(theta) ** 83 - 5.26308346062944e40 * cos(theta) ** 81 + 4.8170594385422e41 * cos(theta) ** 79 - 2.82692573907591e42 * cos(theta) ** 77 + 1.19531570990406e43 * cos(theta) ** 75 - 3.87953344442546e43 * cos(theta) ** 73 + 1.00546488086293e44 * cos(theta) ** 71 - 2.13736546530743e44 * cos(theta) ** 69 + 3.79868134970547e44 * cos(theta) ** 67 - 5.7252109503741e44 * cos(theta) ** 65 + 7.39654582408579e44 * cos(theta) ** 63 - 8.25926471951946e44 * cos(theta) ** 61 + 8.02253420208101e44 * cos(theta) ** 59 - 6.81218661030303e44 * cos(theta) ** 57 + 5.07574688610814e44 * cos(theta) ** 55 - 3.32780756109077e44 * cos(theta) ** 53 + 1.92353977314726e44 * cos(theta) ** 51 - 9.81397843442482e43 * cos(theta) ** 49 + 4.42193051298222e43 * cos(theta) ** 47 - 1.75933267741398e43 * cos(theta) ** 45 + 6.17638067602779e42 * cos(theta) ** 43 - 1.91067891416687e42 * cos(theta) ** 41 + 5.19826380098485e41 * cos(theta) ** 39 - 1.240551844293e41 * cos(theta) ** 37 + 2.58836944955871e40 * cos(theta) ** 35 - 4.70253380912193e39 * cos(theta) ** 33 + 7.40291547768747e38 * cos(theta) ** 31 - 1.00389492479576e38 * cos(theta) ** 29 + 1.16451811276309e37 * cos(theta) ** 27 - 1.14590932879126e36 * cos(theta) ** 25 + 9.47032503133275e34 * cos(theta) ** 23 - 6.49496403612682e33 * cos(theta) ** 21 + 3.6430086741096e32 * cos(theta) ** 19 - 1.641513789915e31 * cos(theta) ** 17 + 5.81066828288494e29 * cos(theta) ** 15 - 1.5704508872662e28 * cos(theta) ** 13 + 3.12169136612548e26 * cos(theta) ** 11 - 4.33677759881033e24 * cos(theta) ** 9 + 3.9128820440394e22 * cos(theta) ** 7 - 2.04556940315727e20 * cos(theta) ** 5 + 5.06329060187442e17 * cos(theta) ** 3 - 374226947662559.0 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl90_m_minus_6(theta, phi): return ( 9.81196553994633e-12 * (1.0 - cos(theta) ** 2) ** 3 * ( 3.29573324466042e37 * cos(theta) ** 84 - 6.41839446418224e38 * cos(theta) ** 82 + 6.02132429817775e39 * cos(theta) ** 80 - 3.62426376804603e40 * cos(theta) ** 78 + 1.57278382882113e41 * cos(theta) ** 76 - 5.24261276273711e41 * cos(theta) ** 74 + 1.39647900119851e42 * cos(theta) ** 72 - 3.05337923615347e42 * cos(theta) ** 70 + 5.58629610250805e42 * cos(theta) ** 68 - 8.67456204602136e42 * cos(theta) ** 66 + 1.1557102850134e43 * cos(theta) ** 64 - 1.33213947089024e43 * cos(theta) ** 62 + 1.33708903368017e43 * cos(theta) ** 60 - 1.17451493281087e43 * cos(theta) ** 58 + 9.06383372519311e42 * cos(theta) ** 56 - 6.16260659461253e42 * cos(theta) ** 54 + 3.69911494836012e42 * cos(theta) ** 52 - 1.96279568688496e42 * cos(theta) ** 50 + 9.21235523537962e41 * cos(theta) ** 48 - 3.82463625524778e41 * cos(theta) ** 46 + 1.40372288091541e41 * cos(theta) ** 44 - 4.54923550992112e40 * cos(theta) ** 42 + 1.29956595024621e40 * cos(theta) ** 40 - 3.26461011656053e39 * cos(theta) ** 38 + 7.18991513766308e38 * cos(theta) ** 36 - 1.38309817915351e38 * cos(theta) ** 34 + 2.31341108677734e37 * cos(theta) ** 32 - 3.34631641598588e36 * cos(theta) ** 30 + 4.15899325986817e35 * cos(theta) ** 28 - 4.40734357227409e34 * cos(theta) ** 26 + 3.94596876305531e33 * cos(theta) ** 24 - 2.95225638005765e32 * cos(theta) ** 22 + 1.8215043370548e31 * cos(theta) ** 20 - 9.11952105508331e29 * cos(theta) ** 18 + 3.63166767680309e28 * cos(theta) ** 16 - 1.12175063376157e27 * cos(theta) ** 14 + 2.60140947177123e25 * cos(theta) ** 12 - 4.33677759881033e23 * cos(theta) ** 10 + 4.89110255504925e21 * cos(theta) ** 8 - 3.40928233859544e19 * cos(theta) ** 6 + 1.26582265046861e17 * cos(theta) ** 4 - 187113473831279.0 * cos(theta) ** 2 + 45928687734.7274 ) * sin(6 * phi) ) # @torch.jit.script def Yl90_m_minus_5(theta, phi): return ( 8.86341519335458e-10 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 3.87733322901225e35 * cos(theta) ** 85 - 7.73300537853282e36 * cos(theta) ** 83 + 7.43373370145401e37 * cos(theta) ** 81 - 4.58767565575447e38 * cos(theta) ** 79 + 2.04257640106641e39 * cos(theta) ** 77 - 6.99015035031615e39 * cos(theta) ** 75 + 1.91298493314865e40 * cos(theta) ** 73 - 4.30053413542742e40 * cos(theta) ** 71 + 8.09608130798268e40 * cos(theta) ** 69 - 1.29471075313752e41 * cos(theta) ** 67 + 1.77801582309754e41 * cos(theta) ** 65 - 2.11450709665117e41 * cos(theta) ** 63 + 2.19194923554126e41 * cos(theta) ** 61 - 1.99070327595062e41 * cos(theta) ** 59 + 1.59014626757774e41 * cos(theta) ** 57 - 1.12047392629319e41 * cos(theta) ** 55 + 6.97946216671721e40 * cos(theta) ** 53 - 3.84861899389208e40 * cos(theta) ** 51 + 1.88007249701625e40 * cos(theta) ** 49 - 8.13752394733569e39 * cos(theta) ** 47 + 3.11938417981202e39 * cos(theta) ** 45 - 1.05796174649328e39 * cos(theta) ** 43 + 3.16967304938101e38 * cos(theta) ** 41 - 8.37079517066804e37 * cos(theta) ** 39 + 1.94322030747651e37 * cos(theta) ** 37 - 3.95170908329574e36 * cos(theta) ** 35 + 7.01033662659799e35 * cos(theta) ** 33 - 1.07945690838254e35 * cos(theta) ** 31 + 1.43413560685109e34 * cos(theta) ** 29 - 1.63234947121262e33 * cos(theta) ** 27 + 1.57838750522212e32 * cos(theta) ** 25 - 1.28358973045985e31 * cos(theta) ** 23 + 8.67383017645142e29 * cos(theta) ** 21 - 4.79974792372806e28 * cos(theta) ** 19 + 2.13627510400182e27 * cos(theta) ** 17 - 7.47833755841048e25 * cos(theta) ** 15 + 2.00108420905479e24 * cos(theta) ** 13 - 3.94252508982758e22 * cos(theta) ** 11 + 5.43455839449917e20 * cos(theta) ** 9 - 4.87040334085063e18 * cos(theta) ** 7 + 2.53164530093721e16 * cos(theta) ** 5 - 62371157943759.8 * cos(theta) ** 3 + 45928687734.7274 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl90_m_minus_4(theta, phi): return ( 8.01146836122801e-8 * (1.0 - cos(theta) ** 2) ** 2 * ( 4.50852701047937e33 * cos(theta) ** 86 - 9.20595878396764e34 * cos(theta) ** 84 + 9.0655289042122e35 * cos(theta) ** 82 - 5.73459456969309e36 * cos(theta) ** 80 + 2.61868769367488e37 * cos(theta) ** 78 - 9.19756625041598e37 * cos(theta) ** 76 + 2.5851147745252e38 * cos(theta) ** 74 - 5.97296407698252e38 * cos(theta) ** 72 + 1.15658304399753e39 * cos(theta) ** 70 - 1.90398640167282e39 * cos(theta) ** 68 + 2.69396336832961e39 * cos(theta) ** 66 - 3.30391733851745e39 * cos(theta) ** 64 + 3.53540199280848e39 * cos(theta) ** 62 - 3.31783879325104e39 * cos(theta) ** 60 + 2.74163149582369e39 * cos(theta) ** 58 - 2.00084629695212e39 * cos(theta) ** 56 + 1.29249299383652e39 * cos(theta) ** 54 - 7.40119037286939e38 * cos(theta) ** 52 + 3.7601449940325e38 * cos(theta) ** 50 - 1.69531748902827e38 * cos(theta) ** 48 + 6.78126995611308e37 * cos(theta) ** 46 - 2.40445851475746e37 * cos(theta) ** 44 + 7.5468405937643e36 * cos(theta) ** 42 - 2.09269879266701e36 * cos(theta) ** 40 + 5.11373765125397e35 * cos(theta) ** 38 - 1.09769696758215e35 * cos(theta) ** 36 + 2.06186371370529e34 * cos(theta) ** 34 - 3.37330283869544e33 * cos(theta) ** 32 + 4.78045202283697e32 * cos(theta) ** 30 - 5.82981954004509e31 * cos(theta) ** 28 + 6.07072117393125e30 * cos(theta) ** 26 - 5.34829054358269e29 * cos(theta) ** 24 + 3.94265008020519e28 * cos(theta) ** 22 - 2.39987396186403e27 * cos(theta) ** 20 + 1.18681950222323e26 * cos(theta) ** 18 - 4.67396097400655e24 * cos(theta) ** 16 + 1.42934586361057e23 * cos(theta) ** 14 - 3.28543757485631e21 * cos(theta) ** 12 + 5.43455839449917e19 * cos(theta) ** 10 - 6.08800417606329e17 * cos(theta) ** 8 + 4.21940883489535e15 * cos(theta) ** 6 - 15592789485940.0 * cos(theta) ** 4 + 22964343867.3637 * cos(theta) ** 2 - 5621626.40571939 ) * sin(4 * phi) ) # @torch.jit.script def Yl90_m_minus_3(theta, phi): return ( 7.24495471157403e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 5.18221495457398e31 * cos(theta) ** 87 - 1.08305397458443e33 * cos(theta) ** 85 + 1.09223239809786e34 * cos(theta) ** 83 - 7.07974638233715e34 * cos(theta) ** 81 + 3.31479454895554e35 * cos(theta) ** 79 - 1.19448912343065e36 * cos(theta) ** 77 + 3.44681969936694e36 * cos(theta) ** 75 - 8.18214257120894e36 * cos(theta) ** 73 + 1.62899020281342e37 * cos(theta) ** 71 - 2.75940058213452e37 * cos(theta) ** 69 + 4.02084084825315e37 * cos(theta) ** 67 - 5.08294975156531e37 * cos(theta) ** 65 + 5.6117491949341e37 * cos(theta) ** 63 - 5.43907998893613e37 * cos(theta) ** 61 + 4.64683304376896e37 * cos(theta) ** 59 - 3.51025666131951e37 * cos(theta) ** 57 + 2.34998726152095e37 * cos(theta) ** 55 - 1.39645101374894e37 * cos(theta) ** 53 + 7.37283332163235e36 * cos(theta) ** 51 - 3.45983161026177e36 * cos(theta) ** 49 + 1.44282339491768e36 * cos(theta) ** 47 - 5.34324114390547e35 * cos(theta) ** 45 + 1.75507920785216e35 * cos(theta) ** 43 - 5.1041433967488e34 * cos(theta) ** 41 + 1.31121478237281e34 * cos(theta) ** 39 - 2.96674856103284e33 * cos(theta) ** 37 + 5.89103918201512e32 * cos(theta) ** 35 - 1.02221298142286e32 * cos(theta) ** 33 + 1.54208129768935e31 * cos(theta) ** 31 - 2.01028260001555e30 * cos(theta) ** 29 + 2.24841524960417e29 * cos(theta) ** 27 - 2.13931621743308e28 * cos(theta) ** 25 + 1.71419568704574e27 * cos(theta) ** 23 - 1.14279712469716e26 * cos(theta) ** 21 + 6.24641843275385e24 * cos(theta) ** 19 - 2.74938880823915e23 * cos(theta) ** 17 + 9.52897242407044e21 * cos(theta) ** 15 - 2.5272596729664e20 * cos(theta) ** 13 + 4.94050763136288e18 * cos(theta) ** 11 - 6.76444908451477e16 * cos(theta) ** 9 + 602772690699336.0 * cos(theta) ** 7 - 3118557897187.99 * cos(theta) ** 5 + 7654781289.12123 * cos(theta) ** 3 - 5621626.40571939 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl90_m_minus_2(theta, phi): return ( 0.00065541818256458 * (1.0 - cos(theta) ** 2) * ( 5.88888063019771e29 * cos(theta) ** 88 - 1.25936508672608e31 * cos(theta) ** 86 + 1.30027666440221e32 * cos(theta) ** 84 - 8.63383705163067e32 * cos(theta) ** 82 + 4.14349318619443e33 * cos(theta) ** 80 - 1.53139631209057e34 * cos(theta) ** 78 + 4.53528907811439e34 * cos(theta) ** 76 - 1.10569494205526e35 * cos(theta) ** 74 + 2.26248639279641e35 * cos(theta) ** 72 - 3.94200083162074e35 * cos(theta) ** 70 + 5.91300124743111e35 * cos(theta) ** 68 - 7.70143901752319e35 * cos(theta) ** 66 + 8.76835811708453e35 * cos(theta) ** 64 - 8.7727096595744e35 * cos(theta) ** 62 + 7.74472173961493e35 * cos(theta) ** 60 - 6.05216665744743e35 * cos(theta) ** 58 + 4.19640582414455e35 * cos(theta) ** 56 - 2.58602039583137e35 * cos(theta) ** 54 + 1.41785256185237e35 * cos(theta) ** 52 - 6.91966322052355e34 * cos(theta) ** 50 + 3.00588207274516e34 * cos(theta) ** 48 - 1.16157416171858e34 * cos(theta) ** 46 + 3.98881638148219e33 * cos(theta) ** 44 - 1.21527223732114e33 * cos(theta) ** 42 + 3.27803695593203e32 * cos(theta) ** 40 - 7.80723305534957e31 * cos(theta) ** 38 + 1.63639977278198e31 * cos(theta) ** 36 - 3.00650876889077e30 * cos(theta) ** 34 + 4.81900405527921e29 * cos(theta) ** 32 - 6.70094200005183e28 * cos(theta) ** 30 + 8.03005446287202e27 * cos(theta) ** 28 - 8.22813929781953e26 * cos(theta) ** 26 + 7.14248202935723e25 * cos(theta) ** 24 - 5.19453238498708e24 * cos(theta) ** 22 + 3.12320921637693e23 * cos(theta) ** 20 - 1.52743822679953e22 * cos(theta) ** 18 + 5.95560776504402e20 * cos(theta) ** 16 - 1.80518548069028e19 * cos(theta) ** 14 + 4.1170896928024e17 * cos(theta) ** 12 - 6.76444908451477e15 * cos(theta) ** 10 + 75346586337417.0 * cos(theta) ** 8 - 519759649531.332 * cos(theta) ** 6 + 1913695322.28031 * cos(theta) ** 4 - 2810813.20285969 * cos(theta) ** 2 + 686.90449727754 ) * sin(2 * phi) ) # @torch.jit.script def Yl90_m_minus_1(theta, phi): return ( 0.0593071974988607 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 6.61671980921091e27 * cos(theta) ** 89 - 1.44754607669664e29 * cos(theta) ** 87 + 1.52973725223789e30 * cos(theta) ** 85 - 1.04022133152177e31 * cos(theta) ** 83 + 5.11542368665979e31 * cos(theta) ** 81 - 1.93847634441845e32 * cos(theta) ** 79 + 5.88998581573297e32 * cos(theta) ** 77 - 1.47425992274035e33 * cos(theta) ** 75 + 3.09929642848823e33 * cos(theta) ** 73 - 5.55211384735315e33 * cos(theta) ** 71 + 8.56956702526248e33 * cos(theta) ** 69 - 1.14946851007809e34 * cos(theta) ** 67 + 1.34897817185916e34 * cos(theta) ** 65 - 1.39249359675784e34 * cos(theta) ** 63 + 1.26962651469097e34 * cos(theta) ** 61 - 1.0257909588894e34 * cos(theta) ** 59 + 7.36211548095535e33 * cos(theta) ** 57 - 4.70185526514795e33 * cos(theta) ** 55 + 2.67519351292901e33 * cos(theta) ** 53 - 1.35679670990658e33 * cos(theta) ** 51 + 6.134453209684e32 * cos(theta) ** 49 - 2.47143438663528e32 * cos(theta) ** 47 + 8.86403640329375e31 * cos(theta) ** 45 - 2.82621450539801e31 * cos(theta) ** 43 + 7.9952120876391e30 * cos(theta) ** 41 - 2.00185462957681e30 * cos(theta) ** 39 + 4.42270208859994e29 * cos(theta) ** 37 - 8.59002505397363e28 * cos(theta) ** 35 + 1.46030425917552e28 * cos(theta) ** 33 - 2.16159419356511e27 * cos(theta) ** 31 + 2.76898429754208e26 * cos(theta) ** 29 - 3.04745899919242e25 * cos(theta) ** 27 + 2.85699281174289e24 * cos(theta) ** 25 - 2.25849234129873e23 * cos(theta) ** 23 + 1.48724248398901e22 * cos(theta) ** 21 - 8.03914856210277e20 * cos(theta) ** 19 + 3.50329868532001e19 * cos(theta) ** 17 - 1.20345698712685e18 * cos(theta) ** 15 + 3.16699207138646e16 * cos(theta) ** 13 - 614949916774070.0 * cos(theta) ** 11 + 8371842926379.67 * cos(theta) ** 9 - 74251378504.476 * cos(theta) ** 7 + 382739064.456062 * cos(theta) ** 5 - 936937.734286565 * cos(theta) ** 3 + 686.90449727754 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl90_m0(theta, phi): return ( 8.76565680656663e26 * cos(theta) ** 90 - 1.96125449778209e28 * cos(theta) ** 88 + 2.12081418573724e29 * cos(theta) ** 86 - 1.47649063787993e30 * cos(theta) ** 84 + 7.43792827116968e30 * cos(theta) ** 82 - 2.88904792848591e31 * cos(theta) ** 80 + 9.00334462920658e31 * cos(theta) ** 78 - 2.31283523708361e32 * cos(theta) ** 76 + 4.99362153461233e32 * cos(theta) ** 74 - 9.19411844920784e32 * cos(theta) ** 72 + 1.45963768671896e33 * cos(theta) ** 70 - 2.01545169435465e33 * cos(theta) ** 68 + 2.43694212300419e33 * cos(theta) ** 66 - 2.59416419545608e33 * cos(theta) ** 64 + 2.44156630160572e33 * cos(theta) ** 62 - 2.03841142443109e33 * cos(theta) ** 60 + 1.51341787803818e33 * cos(theta) ** 58 - 1.0010723298908e33 * cos(theta) ** 56 + 5.90671029897255e32 * cos(theta) ** 54 - 3.11096887663957e32 * cos(theta) ** 52 + 1.46281728029222e32 * cos(theta) ** 50 - 6.13892144007528e31 * cos(theta) ** 48 + 2.29751273536991e31 * cos(theta) ** 46 - 7.65837578456637e30 * cos(theta) ** 44 + 2.26968154517537e30 * cos(theta) ** 42 - 5.96701010807938e29 * cos(theta) ** 40 + 1.38767676932079e29 * cos(theta) ** 38 - 2.84495995576702e28 * cos(theta) ** 36 + 5.12092792038064e27 * cos(theta) ** 34 - 8.05394046350866e26 * cos(theta) ** 32 + 1.1004833250414e26 * cos(theta) ** 30 - 1.29766941283006e25 * cos(theta) ** 28 + 1.31014700333805e24 * cos(theta) ** 26 - 1.12199677492718e23 * cos(theta) ** 24 + 8.06015382300629e21 * cos(theta) ** 22 - 4.7925238947605e20 * cos(theta) ** 20 + 2.32053909277394e19 * cos(theta) ** 18 - 8.96798386447115e17 * cos(theta) ** 16 + 2.69713800435223e16 * cos(theta) ** 14 - 611002136908271.0 * cos(theta) ** 12 + 9981718078204.43 * cos(theta) ** 10 - 110662062951.269 * cos(theta) ** 8 + 760564006.537929 * cos(theta) ** 6 - 2792768.68985776 * cos(theta) ** 4 + 4094.96875345712 * cos(theta) ** 2 - 0.999992369586599 ) # @torch.jit.script def Yl90_m1(theta, phi): return ( 0.0593071974988607 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 6.61671980921091e27 * cos(theta) ** 89 - 1.44754607669664e29 * cos(theta) ** 87 + 1.52973725223789e30 * cos(theta) ** 85 - 1.04022133152177e31 * cos(theta) ** 83 + 5.11542368665979e31 * cos(theta) ** 81 - 1.93847634441845e32 * cos(theta) ** 79 + 5.88998581573297e32 * cos(theta) ** 77 - 1.47425992274035e33 * cos(theta) ** 75 + 3.09929642848823e33 * cos(theta) ** 73 - 5.55211384735315e33 * cos(theta) ** 71 + 8.56956702526248e33 * cos(theta) ** 69 - 1.14946851007809e34 * cos(theta) ** 67 + 1.34897817185916e34 * cos(theta) ** 65 - 1.39249359675784e34 * cos(theta) ** 63 + 1.26962651469097e34 * cos(theta) ** 61 - 1.0257909588894e34 * cos(theta) ** 59 + 7.36211548095535e33 * cos(theta) ** 57 - 4.70185526514795e33 * cos(theta) ** 55 + 2.67519351292901e33 * cos(theta) ** 53 - 1.35679670990658e33 * cos(theta) ** 51 + 6.134453209684e32 * cos(theta) ** 49 - 2.47143438663528e32 * cos(theta) ** 47 + 8.86403640329375e31 * cos(theta) ** 45 - 2.82621450539801e31 * cos(theta) ** 43 + 7.9952120876391e30 * cos(theta) ** 41 - 2.00185462957681e30 * cos(theta) ** 39 + 4.42270208859994e29 * cos(theta) ** 37 - 8.59002505397363e28 * cos(theta) ** 35 + 1.46030425917552e28 * cos(theta) ** 33 - 2.16159419356511e27 * cos(theta) ** 31 + 2.76898429754208e26 * cos(theta) ** 29 - 3.04745899919242e25 * cos(theta) ** 27 + 2.85699281174289e24 * cos(theta) ** 25 - 2.25849234129873e23 * cos(theta) ** 23 + 1.48724248398901e22 * cos(theta) ** 21 - 8.03914856210277e20 * cos(theta) ** 19 + 3.50329868532001e19 * cos(theta) ** 17 - 1.20345698712685e18 * cos(theta) ** 15 + 3.16699207138646e16 * cos(theta) ** 13 - 614949916774070.0 * cos(theta) ** 11 + 8371842926379.67 * cos(theta) ** 9 - 74251378504.476 * cos(theta) ** 7 + 382739064.456062 * cos(theta) ** 5 - 936937.734286565 * cos(theta) ** 3 + 686.90449727754 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl90_m2(theta, phi): return ( 0.00065541818256458 * (1.0 - cos(theta) ** 2) * ( 5.88888063019771e29 * cos(theta) ** 88 - 1.25936508672608e31 * cos(theta) ** 86 + 1.30027666440221e32 * cos(theta) ** 84 - 8.63383705163067e32 * cos(theta) ** 82 + 4.14349318619443e33 * cos(theta) ** 80 - 1.53139631209057e34 * cos(theta) ** 78 + 4.53528907811439e34 * cos(theta) ** 76 - 1.10569494205526e35 * cos(theta) ** 74 + 2.26248639279641e35 * cos(theta) ** 72 - 3.94200083162074e35 * cos(theta) ** 70 + 5.91300124743111e35 * cos(theta) ** 68 - 7.70143901752319e35 * cos(theta) ** 66 + 8.76835811708453e35 * cos(theta) ** 64 - 8.7727096595744e35 * cos(theta) ** 62 + 7.74472173961493e35 * cos(theta) ** 60 - 6.05216665744743e35 * cos(theta) ** 58 + 4.19640582414455e35 * cos(theta) ** 56 - 2.58602039583137e35 * cos(theta) ** 54 + 1.41785256185237e35 * cos(theta) ** 52 - 6.91966322052355e34 * cos(theta) ** 50 + 3.00588207274516e34 * cos(theta) ** 48 - 1.16157416171858e34 * cos(theta) ** 46 + 3.98881638148219e33 * cos(theta) ** 44 - 1.21527223732114e33 * cos(theta) ** 42 + 3.27803695593203e32 * cos(theta) ** 40 - 7.80723305534957e31 * cos(theta) ** 38 + 1.63639977278198e31 * cos(theta) ** 36 - 3.00650876889077e30 * cos(theta) ** 34 + 4.81900405527921e29 * cos(theta) ** 32 - 6.70094200005183e28 * cos(theta) ** 30 + 8.03005446287202e27 * cos(theta) ** 28 - 8.22813929781953e26 * cos(theta) ** 26 + 7.14248202935723e25 * cos(theta) ** 24 - 5.19453238498708e24 * cos(theta) ** 22 + 3.12320921637693e23 * cos(theta) ** 20 - 1.52743822679953e22 * cos(theta) ** 18 + 5.95560776504402e20 * cos(theta) ** 16 - 1.80518548069028e19 * cos(theta) ** 14 + 4.1170896928024e17 * cos(theta) ** 12 - 6.76444908451477e15 * cos(theta) ** 10 + 75346586337417.0 * cos(theta) ** 8 - 519759649531.332 * cos(theta) ** 6 + 1913695322.28031 * cos(theta) ** 4 - 2810813.20285969 * cos(theta) ** 2 + 686.90449727754 ) * cos(2 * phi) ) # @torch.jit.script def Yl90_m3(theta, phi): return ( 7.24495471157403e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 5.18221495457398e31 * cos(theta) ** 87 - 1.08305397458443e33 * cos(theta) ** 85 + 1.09223239809786e34 * cos(theta) ** 83 - 7.07974638233715e34 * cos(theta) ** 81 + 3.31479454895554e35 * cos(theta) ** 79 - 1.19448912343065e36 * cos(theta) ** 77 + 3.44681969936694e36 * cos(theta) ** 75 - 8.18214257120894e36 * cos(theta) ** 73 + 1.62899020281342e37 * cos(theta) ** 71 - 2.75940058213452e37 * cos(theta) ** 69 + 4.02084084825315e37 * cos(theta) ** 67 - 5.08294975156531e37 * cos(theta) ** 65 + 5.6117491949341e37 * cos(theta) ** 63 - 5.43907998893613e37 * cos(theta) ** 61 + 4.64683304376896e37 * cos(theta) ** 59 - 3.51025666131951e37 * cos(theta) ** 57 + 2.34998726152095e37 * cos(theta) ** 55 - 1.39645101374894e37 * cos(theta) ** 53 + 7.37283332163235e36 * cos(theta) ** 51 - 3.45983161026177e36 * cos(theta) ** 49 + 1.44282339491768e36 * cos(theta) ** 47 - 5.34324114390547e35 * cos(theta) ** 45 + 1.75507920785216e35 * cos(theta) ** 43 - 5.1041433967488e34 * cos(theta) ** 41 + 1.31121478237281e34 * cos(theta) ** 39 - 2.96674856103284e33 * cos(theta) ** 37 + 5.89103918201512e32 * cos(theta) ** 35 - 1.02221298142286e32 * cos(theta) ** 33 + 1.54208129768935e31 * cos(theta) ** 31 - 2.01028260001555e30 * cos(theta) ** 29 + 2.24841524960417e29 * cos(theta) ** 27 - 2.13931621743308e28 * cos(theta) ** 25 + 1.71419568704574e27 * cos(theta) ** 23 - 1.14279712469716e26 * cos(theta) ** 21 + 6.24641843275385e24 * cos(theta) ** 19 - 2.74938880823915e23 * cos(theta) ** 17 + 9.52897242407044e21 * cos(theta) ** 15 - 2.5272596729664e20 * cos(theta) ** 13 + 4.94050763136288e18 * cos(theta) ** 11 - 6.76444908451477e16 * cos(theta) ** 9 + 602772690699336.0 * cos(theta) ** 7 - 3118557897187.99 * cos(theta) ** 5 + 7654781289.12123 * cos(theta) ** 3 - 5621626.40571939 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl90_m4(theta, phi): return ( 8.01146836122801e-8 * (1.0 - cos(theta) ** 2) ** 2 * ( 4.50852701047937e33 * cos(theta) ** 86 - 9.20595878396764e34 * cos(theta) ** 84 + 9.0655289042122e35 * cos(theta) ** 82 - 5.73459456969309e36 * cos(theta) ** 80 + 2.61868769367488e37 * cos(theta) ** 78 - 9.19756625041598e37 * cos(theta) ** 76 + 2.5851147745252e38 * cos(theta) ** 74 - 5.97296407698252e38 * cos(theta) ** 72 + 1.15658304399753e39 * cos(theta) ** 70 - 1.90398640167282e39 * cos(theta) ** 68 + 2.69396336832961e39 * cos(theta) ** 66 - 3.30391733851745e39 * cos(theta) ** 64 + 3.53540199280848e39 * cos(theta) ** 62 - 3.31783879325104e39 * cos(theta) ** 60 + 2.74163149582369e39 * cos(theta) ** 58 - 2.00084629695212e39 * cos(theta) ** 56 + 1.29249299383652e39 * cos(theta) ** 54 - 7.40119037286939e38 * cos(theta) ** 52 + 3.7601449940325e38 * cos(theta) ** 50 - 1.69531748902827e38 * cos(theta) ** 48 + 6.78126995611308e37 * cos(theta) ** 46 - 2.40445851475746e37 * cos(theta) ** 44 + 7.5468405937643e36 * cos(theta) ** 42 - 2.09269879266701e36 * cos(theta) ** 40 + 5.11373765125397e35 * cos(theta) ** 38 - 1.09769696758215e35 * cos(theta) ** 36 + 2.06186371370529e34 * cos(theta) ** 34 - 3.37330283869544e33 * cos(theta) ** 32 + 4.78045202283697e32 * cos(theta) ** 30 - 5.82981954004509e31 * cos(theta) ** 28 + 6.07072117393125e30 * cos(theta) ** 26 - 5.34829054358269e29 * cos(theta) ** 24 + 3.94265008020519e28 * cos(theta) ** 22 - 2.39987396186403e27 * cos(theta) ** 20 + 1.18681950222323e26 * cos(theta) ** 18 - 4.67396097400655e24 * cos(theta) ** 16 + 1.42934586361057e23 * cos(theta) ** 14 - 3.28543757485631e21 * cos(theta) ** 12 + 5.43455839449917e19 * cos(theta) ** 10 - 6.08800417606329e17 * cos(theta) ** 8 + 4.21940883489535e15 * cos(theta) ** 6 - 15592789485940.0 * cos(theta) ** 4 + 22964343867.3637 * cos(theta) ** 2 - 5621626.40571939 ) * cos(4 * phi) ) # @torch.jit.script def Yl90_m5(theta, phi): return ( 8.86341519335458e-10 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 3.87733322901225e35 * cos(theta) ** 85 - 7.73300537853282e36 * cos(theta) ** 83 + 7.43373370145401e37 * cos(theta) ** 81 - 4.58767565575447e38 * cos(theta) ** 79 + 2.04257640106641e39 * cos(theta) ** 77 - 6.99015035031615e39 * cos(theta) ** 75 + 1.91298493314865e40 * cos(theta) ** 73 - 4.30053413542742e40 * cos(theta) ** 71 + 8.09608130798268e40 * cos(theta) ** 69 - 1.29471075313752e41 * cos(theta) ** 67 + 1.77801582309754e41 * cos(theta) ** 65 - 2.11450709665117e41 * cos(theta) ** 63 + 2.19194923554126e41 * cos(theta) ** 61 - 1.99070327595062e41 * cos(theta) ** 59 + 1.59014626757774e41 * cos(theta) ** 57 - 1.12047392629319e41 * cos(theta) ** 55 + 6.97946216671721e40 * cos(theta) ** 53 - 3.84861899389208e40 * cos(theta) ** 51 + 1.88007249701625e40 * cos(theta) ** 49 - 8.13752394733569e39 * cos(theta) ** 47 + 3.11938417981202e39 * cos(theta) ** 45 - 1.05796174649328e39 * cos(theta) ** 43 + 3.16967304938101e38 * cos(theta) ** 41 - 8.37079517066804e37 * cos(theta) ** 39 + 1.94322030747651e37 * cos(theta) ** 37 - 3.95170908329574e36 * cos(theta) ** 35 + 7.01033662659799e35 * cos(theta) ** 33 - 1.07945690838254e35 * cos(theta) ** 31 + 1.43413560685109e34 * cos(theta) ** 29 - 1.63234947121262e33 * cos(theta) ** 27 + 1.57838750522212e32 * cos(theta) ** 25 - 1.28358973045985e31 * cos(theta) ** 23 + 8.67383017645142e29 * cos(theta) ** 21 - 4.79974792372806e28 * cos(theta) ** 19 + 2.13627510400182e27 * cos(theta) ** 17 - 7.47833755841048e25 * cos(theta) ** 15 + 2.00108420905479e24 * cos(theta) ** 13 - 3.94252508982758e22 * cos(theta) ** 11 + 5.43455839449917e20 * cos(theta) ** 9 - 4.87040334085063e18 * cos(theta) ** 7 + 2.53164530093721e16 * cos(theta) ** 5 - 62371157943759.8 * cos(theta) ** 3 + 45928687734.7274 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl90_m6(theta, phi): return ( 9.81196553994633e-12 * (1.0 - cos(theta) ** 2) ** 3 * ( 3.29573324466042e37 * cos(theta) ** 84 - 6.41839446418224e38 * cos(theta) ** 82 + 6.02132429817775e39 * cos(theta) ** 80 - 3.62426376804603e40 * cos(theta) ** 78 + 1.57278382882113e41 * cos(theta) ** 76 - 5.24261276273711e41 * cos(theta) ** 74 + 1.39647900119851e42 * cos(theta) ** 72 - 3.05337923615347e42 * cos(theta) ** 70 + 5.58629610250805e42 * cos(theta) ** 68 - 8.67456204602136e42 * cos(theta) ** 66 + 1.1557102850134e43 * cos(theta) ** 64 - 1.33213947089024e43 * cos(theta) ** 62 + 1.33708903368017e43 * cos(theta) ** 60 - 1.17451493281087e43 * cos(theta) ** 58 + 9.06383372519311e42 * cos(theta) ** 56 - 6.16260659461253e42 * cos(theta) ** 54 + 3.69911494836012e42 * cos(theta) ** 52 - 1.96279568688496e42 * cos(theta) ** 50 + 9.21235523537962e41 * cos(theta) ** 48 - 3.82463625524778e41 * cos(theta) ** 46 + 1.40372288091541e41 * cos(theta) ** 44 - 4.54923550992112e40 * cos(theta) ** 42 + 1.29956595024621e40 * cos(theta) ** 40 - 3.26461011656053e39 * cos(theta) ** 38 + 7.18991513766308e38 * cos(theta) ** 36 - 1.38309817915351e38 * cos(theta) ** 34 + 2.31341108677734e37 * cos(theta) ** 32 - 3.34631641598588e36 * cos(theta) ** 30 + 4.15899325986817e35 * cos(theta) ** 28 - 4.40734357227409e34 * cos(theta) ** 26 + 3.94596876305531e33 * cos(theta) ** 24 - 2.95225638005765e32 * cos(theta) ** 22 + 1.8215043370548e31 * cos(theta) ** 20 - 9.11952105508331e29 * cos(theta) ** 18 + 3.63166767680309e28 * cos(theta) ** 16 - 1.12175063376157e27 * cos(theta) ** 14 + 2.60140947177123e25 * cos(theta) ** 12 - 4.33677759881033e23 * cos(theta) ** 10 + 4.89110255504925e21 * cos(theta) ** 8 - 3.40928233859544e19 * cos(theta) ** 6 + 1.26582265046861e17 * cos(theta) ** 4 - 187113473831279.0 * cos(theta) ** 2 + 45928687734.7274 ) * cos(6 * phi) ) # @torch.jit.script def Yl90_m7(theta, phi): return ( 1.08700240285979e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 2.76841592551475e39 * cos(theta) ** 83 - 5.26308346062944e40 * cos(theta) ** 81 + 4.8170594385422e41 * cos(theta) ** 79 - 2.82692573907591e42 * cos(theta) ** 77 + 1.19531570990406e43 * cos(theta) ** 75 - 3.87953344442546e43 * cos(theta) ** 73 + 1.00546488086293e44 * cos(theta) ** 71 - 2.13736546530743e44 * cos(theta) ** 69 + 3.79868134970547e44 * cos(theta) ** 67 - 5.7252109503741e44 * cos(theta) ** 65 + 7.39654582408579e44 * cos(theta) ** 63 - 8.25926471951946e44 * cos(theta) ** 61 + 8.02253420208101e44 * cos(theta) ** 59 - 6.81218661030303e44 * cos(theta) ** 57 + 5.07574688610814e44 * cos(theta) ** 55 - 3.32780756109077e44 * cos(theta) ** 53 + 1.92353977314726e44 * cos(theta) ** 51 - 9.81397843442482e43 * cos(theta) ** 49 + 4.42193051298222e43 * cos(theta) ** 47 - 1.75933267741398e43 * cos(theta) ** 45 + 6.17638067602779e42 * cos(theta) ** 43 - 1.91067891416687e42 * cos(theta) ** 41 + 5.19826380098485e41 * cos(theta) ** 39 - 1.240551844293e41 * cos(theta) ** 37 + 2.58836944955871e40 * cos(theta) ** 35 - 4.70253380912193e39 * cos(theta) ** 33 + 7.40291547768747e38 * cos(theta) ** 31 - 1.00389492479576e38 * cos(theta) ** 29 + 1.16451811276309e37 * cos(theta) ** 27 - 1.14590932879126e36 * cos(theta) ** 25 + 9.47032503133275e34 * cos(theta) ** 23 - 6.49496403612682e33 * cos(theta) ** 21 + 3.6430086741096e32 * cos(theta) ** 19 - 1.641513789915e31 * cos(theta) ** 17 + 5.81066828288494e29 * cos(theta) ** 15 - 1.5704508872662e28 * cos(theta) ** 13 + 3.12169136612548e26 * cos(theta) ** 11 - 4.33677759881033e24 * cos(theta) ** 9 + 3.9128820440394e22 * cos(theta) ** 7 - 2.04556940315727e20 * cos(theta) ** 5 + 5.06329060187442e17 * cos(theta) ** 3 - 374226947662559.0 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl90_m8(theta, phi): return ( 1.20525355203382e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 2.29778521817724e41 * cos(theta) ** 82 - 4.26309760310984e42 * cos(theta) ** 80 + 3.80547695644834e43 * cos(theta) ** 78 - 2.17673281908845e44 * cos(theta) ** 76 + 8.96486782428046e44 * cos(theta) ** 74 - 2.83205941443059e45 * cos(theta) ** 72 + 7.1388006541268e45 * cos(theta) ** 70 - 1.47478217106212e46 * cos(theta) ** 68 + 2.54511650430267e46 * cos(theta) ** 66 - 3.72138711774316e46 * cos(theta) ** 64 + 4.65982386917405e46 * cos(theta) ** 62 - 5.03815147890687e46 * cos(theta) ** 60 + 4.73329517922779e46 * cos(theta) ** 58 - 3.88294636787273e46 * cos(theta) ** 56 + 2.79166078735948e46 * cos(theta) ** 54 - 1.76373800737811e46 * cos(theta) ** 52 + 9.81005284305105e45 * cos(theta) ** 50 - 4.80884943286816e45 * cos(theta) ** 48 + 2.07830734110164e45 * cos(theta) ** 46 - 7.9169970483629e44 * cos(theta) ** 44 + 2.65584369069195e44 * cos(theta) ** 42 - 7.83378354808417e43 * cos(theta) ** 40 + 2.02732288238409e43 * cos(theta) ** 38 - 4.59004182388411e42 * cos(theta) ** 36 + 9.05929307345548e41 * cos(theta) ** 34 - 1.55183615701024e41 * cos(theta) ** 32 + 2.29490379808312e40 * cos(theta) ** 30 - 2.91129528190772e39 * cos(theta) ** 28 + 3.14419890446033e38 * cos(theta) ** 26 - 2.86477332197816e37 * cos(theta) ** 24 + 2.17817475720653e36 * cos(theta) ** 22 - 1.36394244758663e35 * cos(theta) ** 20 + 6.92171648080823e33 * cos(theta) ** 18 - 2.79057344285549e32 * cos(theta) ** 16 + 8.71600242432741e30 * cos(theta) ** 14 - 2.04158615344606e29 * cos(theta) ** 12 + 3.43386050273802e27 * cos(theta) ** 10 - 3.9030998389293e25 * cos(theta) ** 8 + 2.73901743082758e23 * cos(theta) ** 6 - 1.02278470157863e21 * cos(theta) ** 4 + 1.51898718056233e18 * cos(theta) ** 2 - 374226947662559.0 ) * cos(8 * phi) ) # @torch.jit.script def Yl90_m9(theta, phi): return ( 1.33768512138472e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1.88418387890534e43 * cos(theta) ** 81 - 3.41047808248788e44 * cos(theta) ** 79 + 2.9682720260297e45 * cos(theta) ** 77 - 1.65431694250722e46 * cos(theta) ** 75 + 6.63400218996754e46 * cos(theta) ** 73 - 2.03908277839002e47 * cos(theta) ** 71 + 4.99716045788876e47 * cos(theta) ** 69 - 1.00285187632224e48 * cos(theta) ** 67 + 1.67977689283976e48 * cos(theta) ** 65 - 2.38168775535562e48 * cos(theta) ** 63 + 2.88909079888791e48 * cos(theta) ** 61 - 3.02289088734412e48 * cos(theta) ** 59 + 2.74531120395212e48 * cos(theta) ** 57 - 2.17444996600873e48 * cos(theta) ** 55 + 1.50749682517412e48 * cos(theta) ** 53 - 9.17143763836615e47 * cos(theta) ** 51 + 4.90502642152552e47 * cos(theta) ** 49 - 2.30824772777672e47 * cos(theta) ** 47 + 9.56021376906755e46 * cos(theta) ** 45 - 3.48347870127967e46 * cos(theta) ** 43 + 1.11545435009062e46 * cos(theta) ** 41 - 3.13351341923367e45 * cos(theta) ** 39 + 7.70382695305955e44 * cos(theta) ** 37 - 1.65241505659828e44 * cos(theta) ** 35 + 3.08015964497486e43 * cos(theta) ** 33 - 4.96587570243276e42 * cos(theta) ** 31 + 6.88471139424935e41 * cos(theta) ** 29 - 8.15162678934161e40 * cos(theta) ** 27 + 8.17491715159687e39 * cos(theta) ** 25 - 6.87545597274758e38 * cos(theta) ** 23 + 4.79198446585437e37 * cos(theta) ** 21 - 2.72788489517327e36 * cos(theta) ** 19 + 1.24590896654548e35 * cos(theta) ** 17 - 4.46491750856879e33 * cos(theta) ** 15 + 1.22024033940584e32 * cos(theta) ** 13 - 2.44990338413527e30 * cos(theta) ** 11 + 3.43386050273802e28 * cos(theta) ** 9 - 3.12247987114344e26 * cos(theta) ** 7 + 1.64341045849655e24 * cos(theta) ** 5 - 4.09113880631453e21 * cos(theta) ** 3 + 3.03797436112465e18 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl90_m10(theta, phi): return ( 1.48631680153858e-19 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.52618894191332e45 * cos(theta) ** 80 - 2.69427768516542e46 * cos(theta) ** 78 + 2.28556946004287e47 * cos(theta) ** 76 - 1.24073770688042e48 * cos(theta) ** 74 + 4.8428215986763e48 * cos(theta) ** 72 - 1.44774877265692e49 * cos(theta) ** 70 + 3.44804071594325e49 * cos(theta) ** 68 - 6.71910757135904e49 * cos(theta) ** 66 + 1.09185498034584e50 * cos(theta) ** 64 - 1.50046328587404e50 * cos(theta) ** 62 + 1.76234538732162e50 * cos(theta) ** 60 - 1.78350562353303e50 * cos(theta) ** 58 + 1.56482738625271e50 * cos(theta) ** 56 - 1.1959474813048e50 * cos(theta) ** 54 + 7.98973317342282e49 * cos(theta) ** 52 - 4.67743319556674e49 * cos(theta) ** 50 + 2.40346294654751e49 * cos(theta) ** 48 - 1.08487643205506e49 * cos(theta) ** 46 + 4.3020961960804e48 * cos(theta) ** 44 - 1.49789584155026e48 * cos(theta) ** 42 + 4.57336283537154e47 * cos(theta) ** 40 - 1.22207023350113e47 * cos(theta) ** 38 + 2.85041597263203e46 * cos(theta) ** 36 - 5.78345269809398e45 * cos(theta) ** 34 + 1.01645268284171e45 * cos(theta) ** 32 - 1.53942146775415e44 * cos(theta) ** 30 + 1.99656630433231e43 * cos(theta) ** 28 - 2.20093923312223e42 * cos(theta) ** 26 + 2.04372928789922e41 * cos(theta) ** 24 - 1.58135487373194e40 * cos(theta) ** 22 + 1.00631673782942e39 * cos(theta) ** 20 - 5.18298130082921e37 * cos(theta) ** 18 + 2.11804524312732e36 * cos(theta) ** 16 - 6.69737626285319e34 * cos(theta) ** 14 + 1.58631244122759e33 * cos(theta) ** 12 - 2.6948937225488e31 * cos(theta) ** 10 + 3.09047445246422e29 * cos(theta) ** 8 - 2.18573590980041e27 * cos(theta) ** 6 + 8.21705229248274e24 * cos(theta) ** 4 - 1.22734164189436e22 * cos(theta) ** 2 + 3.03797436112465e18 ) * cos(10 * phi) ) # @torch.jit.script def Yl90_m11(theta, phi): return ( 1.65350573959125e-21 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.22095115353066e47 * cos(theta) ** 79 - 2.10153659442903e48 * cos(theta) ** 77 + 1.73703278963258e49 * cos(theta) ** 75 - 9.18145903091507e49 * cos(theta) ** 73 + 3.48683155104694e50 * cos(theta) ** 71 - 1.01342414085984e51 * cos(theta) ** 69 + 2.34466768684141e51 * cos(theta) ** 67 - 4.43461099709697e51 * cos(theta) ** 65 + 6.9878718742134e51 * cos(theta) ** 63 - 9.30287237241907e51 * cos(theta) ** 61 + 1.05740723239297e52 * cos(theta) ** 59 - 1.03443326164916e52 * cos(theta) ** 57 + 8.76303336301517e51 * cos(theta) ** 55 - 6.45811639904592e51 * cos(theta) ** 53 + 4.15466125017987e51 * cos(theta) ** 51 - 2.33871659778337e51 * cos(theta) ** 49 + 1.1536622143428e51 * cos(theta) ** 47 - 4.99043158745326e50 * cos(theta) ** 45 + 1.89292232627538e50 * cos(theta) ** 43 - 6.29116253451109e49 * cos(theta) ** 41 + 1.82934513414862e49 * cos(theta) ** 39 - 4.6438668873043e48 * cos(theta) ** 37 + 1.02614975014753e48 * cos(theta) ** 35 - 1.96637391735195e47 * cos(theta) ** 33 + 3.25264858509346e46 * cos(theta) ** 31 - 4.61826440326246e45 * cos(theta) ** 29 + 5.59038565213047e44 * cos(theta) ** 27 - 5.72244200611781e43 * cos(theta) ** 25 + 4.90495029095812e42 * cos(theta) ** 23 - 3.47898072221027e41 * cos(theta) ** 21 + 2.01263347565884e40 * cos(theta) ** 19 - 9.32936634149257e38 * cos(theta) ** 17 + 3.38887238900371e37 * cos(theta) ** 15 - 9.37632676799446e35 * cos(theta) ** 13 + 1.90357492947311e34 * cos(theta) ** 11 - 2.6948937225488e32 * cos(theta) ** 9 + 2.47237956197138e30 * cos(theta) ** 7 - 1.31144154588025e28 * cos(theta) ** 5 + 3.2868209169931e25 * cos(theta) ** 3 - 2.45468328378872e22 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl90_m12(theta, phi): return ( 1.8420103887068e-23 * (1.0 - cos(theta) ** 2) ** 6 * ( 9.64551411289221e48 * cos(theta) ** 78 - 1.61818317771035e50 * cos(theta) ** 76 + 1.30277459222444e51 * cos(theta) ** 74 - 6.702465092568e51 * cos(theta) ** 72 + 2.47565040124333e52 * cos(theta) ** 70 - 6.9926265719329e52 * cos(theta) ** 68 + 1.57092735018374e53 * cos(theta) ** 66 - 2.88249714811303e53 * cos(theta) ** 64 + 4.40235928075444e53 * cos(theta) ** 62 - 5.67475214717563e53 * cos(theta) ** 60 + 6.23870267111855e53 * cos(theta) ** 58 - 5.89626959140021e53 * cos(theta) ** 56 + 4.81966834965834e53 * cos(theta) ** 54 - 3.42280169149434e53 * cos(theta) ** 52 + 2.11887723759173e53 * cos(theta) ** 50 - 1.14597113291385e53 * cos(theta) ** 48 + 5.42221240741117e52 * cos(theta) ** 46 - 2.24569421435397e52 * cos(theta) ** 44 + 8.13956600298411e51 * cos(theta) ** 42 - 2.57937663914955e51 * cos(theta) ** 40 + 7.1344460231796e50 * cos(theta) ** 38 - 1.71823074830259e50 * cos(theta) ** 36 + 3.59152412551636e49 * cos(theta) ** 34 - 6.48903392726145e48 * cos(theta) ** 32 + 1.00832106137897e48 * cos(theta) ** 30 - 1.33929667694611e47 * cos(theta) ** 28 + 1.50940412607523e46 * cos(theta) ** 26 - 1.43061050152945e45 * cos(theta) ** 24 + 1.12813856692037e44 * cos(theta) ** 22 - 7.30585951664157e42 * cos(theta) ** 20 + 3.82400360375179e41 * cos(theta) ** 18 - 1.58599227805374e40 * cos(theta) ** 16 + 5.08330858350557e38 * cos(theta) ** 14 - 1.21892247983928e37 * cos(theta) ** 12 + 2.09393242242042e35 * cos(theta) ** 10 - 2.42540435029392e33 * cos(theta) ** 8 + 1.73066569337996e31 * cos(theta) ** 6 - 6.55720772940123e28 * cos(theta) ** 4 + 9.86046275097929e25 * cos(theta) ** 2 - 2.45468328378872e22 ) * cos(12 * phi) ) # @torch.jit.script def Yl90_m13(theta, phi): return ( 2.05506783318313e-25 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 7.52350100805592e50 * cos(theta) ** 77 - 1.22981921505987e52 * cos(theta) ** 75 + 9.64053198246083e52 * cos(theta) ** 73 - 4.82577486664896e53 * cos(theta) ** 71 + 1.73295528087033e54 * cos(theta) ** 69 - 4.75498606891437e54 * cos(theta) ** 67 + 1.03681205112127e55 * cos(theta) ** 65 - 1.84479817479234e55 * cos(theta) ** 63 + 2.72946275406775e55 * cos(theta) ** 61 - 3.40485128830538e55 * cos(theta) ** 59 + 3.61844754924876e55 * cos(theta) ** 57 - 3.30191097118412e55 * cos(theta) ** 55 + 2.60262090881551e55 * cos(theta) ** 53 - 1.77985687957706e55 * cos(theta) ** 51 + 1.05943861879587e55 * cos(theta) ** 49 - 5.50066143798648e54 * cos(theta) ** 47 + 2.49421770740914e54 * cos(theta) ** 45 - 9.88105454315746e53 * cos(theta) ** 43 + 3.41861772125333e53 * cos(theta) ** 41 - 1.03175065565982e53 * cos(theta) ** 39 + 2.71108948880825e52 * cos(theta) ** 37 - 6.18563069388932e51 * cos(theta) ** 35 + 1.22111820267556e51 * cos(theta) ** 33 - 2.07649085672366e50 * cos(theta) ** 31 + 3.02496318413691e49 * cos(theta) ** 29 - 3.75003069544912e48 * cos(theta) ** 27 + 3.92445072779559e47 * cos(theta) ** 25 - 3.43346520367068e46 * cos(theta) ** 23 + 2.48190484722481e45 * cos(theta) ** 21 - 1.46117190332831e44 * cos(theta) ** 19 + 6.88320648675322e42 * cos(theta) ** 17 - 2.53758764488598e41 * cos(theta) ** 15 + 7.11663201690779e39 * cos(theta) ** 13 - 1.46270697580714e38 * cos(theta) ** 11 + 2.09393242242042e36 * cos(theta) ** 9 - 1.94032348023514e34 * cos(theta) ** 7 + 1.03839941602798e32 * cos(theta) ** 5 - 2.62288309176049e29 * cos(theta) ** 3 + 1.97209255019586e26 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl90_m14(theta, phi): return ( 2.296487729738e-27 * (1.0 - cos(theta) ** 2) ** 7 * ( 5.79309577620306e52 * cos(theta) ** 76 - 9.22364411294901e53 * cos(theta) ** 74 + 7.0375883471964e54 * cos(theta) ** 72 - 3.42630015532076e55 * cos(theta) ** 70 + 1.19573914380053e56 * cos(theta) ** 68 - 3.18584066617263e56 * cos(theta) ** 66 + 6.73927833228826e56 * cos(theta) ** 64 - 1.16222285011917e57 * cos(theta) ** 62 + 1.66497227998133e57 * cos(theta) ** 60 - 2.00886226010017e57 * cos(theta) ** 58 + 2.06251510307179e57 * cos(theta) ** 56 - 1.81605103415126e57 * cos(theta) ** 54 + 1.37938908167222e57 * cos(theta) ** 52 - 9.07727008584298e56 * cos(theta) ** 50 + 5.19124923209975e56 * cos(theta) ** 48 - 2.58531087585365e56 * cos(theta) ** 46 + 1.12239796833411e56 * cos(theta) ** 44 - 4.24885345355771e55 * cos(theta) ** 42 + 1.40163326571386e55 * cos(theta) ** 40 - 4.02382755707329e54 * cos(theta) ** 38 + 1.00310311085905e54 * cos(theta) ** 36 - 2.16497074286126e53 * cos(theta) ** 34 + 4.02969006882936e52 * cos(theta) ** 32 - 6.43712165584335e51 * cos(theta) ** 30 + 8.77239323399705e50 * cos(theta) ** 28 - 1.01250828777126e50 * cos(theta) ** 26 + 9.81112681948898e48 * cos(theta) ** 24 - 7.89696996844257e47 * cos(theta) ** 22 + 5.2120001791721e46 * cos(theta) ** 20 - 2.7762266163238e45 * cos(theta) ** 18 + 1.17014510274805e44 * cos(theta) ** 16 - 3.80638146732897e42 * cos(theta) ** 14 + 9.25162162198013e40 * cos(theta) ** 12 - 1.60897767338785e39 * cos(theta) ** 10 + 1.88453918017838e37 * cos(theta) ** 8 - 1.3582264361646e35 * cos(theta) ** 6 + 5.19199708013989e32 * cos(theta) ** 4 - 7.86864927528147e29 * cos(theta) ** 2 + 1.97209255019586e26 ) * cos(14 * phi) ) # @torch.jit.script def Yl90_m15(theta, phi): return ( 2.57076680602771e-29 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 4.40275278991433e54 * cos(theta) ** 75 - 6.82549664358227e55 * cos(theta) ** 73 + 5.06706360998141e56 * cos(theta) ** 71 - 2.39841010872453e57 * cos(theta) ** 69 + 8.13102617784358e57 * cos(theta) ** 67 - 2.10265483967394e58 * cos(theta) ** 65 + 4.31313813266449e58 * cos(theta) ** 63 - 7.20578167073887e58 * cos(theta) ** 61 + 9.98983367988798e58 * cos(theta) ** 59 - 1.1651401108581e59 * cos(theta) ** 57 + 1.1550084577202e59 * cos(theta) ** 55 - 9.80667558441683e58 * cos(theta) ** 53 + 7.17282322469553e58 * cos(theta) ** 51 - 4.53863504292149e58 * cos(theta) ** 49 + 2.49179963140788e58 * cos(theta) ** 47 - 1.18924300289268e58 * cos(theta) ** 45 + 4.9385510606701e57 * cos(theta) ** 43 - 1.78451845049424e57 * cos(theta) ** 41 + 5.60653306285546e56 * cos(theta) ** 39 - 1.52905447168785e56 * cos(theta) ** 37 + 3.61117119909259e55 * cos(theta) ** 35 - 7.36090052572829e54 * cos(theta) ** 33 + 1.28950082202539e54 * cos(theta) ** 31 - 1.93113649675301e53 * cos(theta) ** 29 + 2.45627010551917e52 * cos(theta) ** 27 - 2.63252154820528e51 * cos(theta) ** 25 + 2.35467043667736e50 * cos(theta) ** 23 - 1.73733339305737e49 * cos(theta) ** 21 + 1.04240003583442e48 * cos(theta) ** 19 - 4.99720790938284e46 * cos(theta) ** 17 + 1.87223216439688e45 * cos(theta) ** 15 - 5.32893405426056e43 * cos(theta) ** 13 + 1.11019459463762e42 * cos(theta) ** 11 - 1.60897767338785e40 * cos(theta) ** 9 + 1.5076313441427e38 * cos(theta) ** 7 - 8.14935861698757e35 * cos(theta) ** 5 + 2.07679883205596e33 * cos(theta) ** 3 - 1.57372985505629e30 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl90_m16(theta, phi): return ( 2.88322887896897e-31 * (1.0 - cos(theta) ** 2) ** 8 * ( 3.30206459243574e56 * cos(theta) ** 74 - 4.98261254981505e57 * cos(theta) ** 72 + 3.5976151630868e58 * cos(theta) ** 70 - 1.65490297501993e59 * cos(theta) ** 68 + 5.4477875391552e59 * cos(theta) ** 66 - 1.36672564578806e60 * cos(theta) ** 64 + 2.71727702357863e60 * cos(theta) ** 62 - 4.39552681915071e60 * cos(theta) ** 60 + 5.89400187113391e60 * cos(theta) ** 58 - 6.64129863189117e60 * cos(theta) ** 56 + 6.35254651746112e60 * cos(theta) ** 54 - 5.19753805974092e60 * cos(theta) ** 52 + 3.65813984459472e60 * cos(theta) ** 50 - 2.22393117103153e60 * cos(theta) ** 48 + 1.1711458267617e60 * cos(theta) ** 46 - 5.35159351301705e59 * cos(theta) ** 44 + 2.12357695608814e59 * cos(theta) ** 42 - 7.31652564702637e58 * cos(theta) ** 40 + 2.18654789451363e58 * cos(theta) ** 38 - 5.65750154524505e57 * cos(theta) ** 36 + 1.26390991968241e57 * cos(theta) ** 34 - 2.42909717349034e56 * cos(theta) ** 32 + 3.99745254827872e55 * cos(theta) ** 30 - 5.60029584058372e54 * cos(theta) ** 28 + 6.63192928490177e53 * cos(theta) ** 26 - 6.58130387051321e52 * cos(theta) ** 24 + 5.41574200435792e51 * cos(theta) ** 22 - 3.64840012542047e50 * cos(theta) ** 20 + 1.9805600680854e49 * cos(theta) ** 18 - 8.49525344595082e47 * cos(theta) ** 16 + 2.80834824659531e46 * cos(theta) ** 14 - 6.92761427053872e44 * cos(theta) ** 12 + 1.22121405410138e43 * cos(theta) ** 10 - 1.44807990604906e41 * cos(theta) ** 8 + 1.05534194089989e39 * cos(theta) ** 6 - 4.07467930849379e36 * cos(theta) ** 4 + 6.23039649616787e33 * cos(theta) ** 2 - 1.57372985505629e30 ) * cos(16 * phi) ) # @torch.jit.script def Yl90_m17(theta, phi): return ( 3.24019666432327e-33 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 2.44352779840245e58 * cos(theta) ** 73 - 3.58748103586684e59 * cos(theta) ** 71 + 2.51833061416076e60 * cos(theta) ** 69 - 1.12533402301355e61 * cos(theta) ** 67 + 3.59553977584243e61 * cos(theta) ** 65 - 8.74704413304358e61 * cos(theta) ** 63 + 1.68471175461875e62 * cos(theta) ** 61 - 2.63731609149043e62 * cos(theta) ** 59 + 3.41852108525767e62 * cos(theta) ** 57 - 3.71912723385906e62 * cos(theta) ** 55 + 3.43037511942901e62 * cos(theta) ** 53 - 2.70271979106528e62 * cos(theta) ** 51 + 1.82906992229736e62 * cos(theta) ** 49 - 1.06748696209513e62 * cos(theta) ** 47 + 5.38727080310383e61 * cos(theta) ** 45 - 2.3547011457275e61 * cos(theta) ** 43 + 8.9190232155702e60 * cos(theta) ** 41 - 2.92661025881055e60 * cos(theta) ** 39 + 8.30888199915179e59 * cos(theta) ** 37 - 2.03670055628822e59 * cos(theta) ** 35 + 4.29729372692018e58 * cos(theta) ** 33 - 7.77311095516908e57 * cos(theta) ** 31 + 1.19923576448362e57 * cos(theta) ** 29 - 1.56808283536344e56 * cos(theta) ** 27 + 1.72430161407446e55 * cos(theta) ** 25 - 1.57951292892317e54 * cos(theta) ** 23 + 1.19146324095874e53 * cos(theta) ** 21 - 7.29680025084094e51 * cos(theta) ** 19 + 3.56500812255372e50 * cos(theta) ** 17 - 1.35924055135213e49 * cos(theta) ** 15 + 3.93168754523344e47 * cos(theta) ** 13 - 8.31313712464647e45 * cos(theta) ** 11 + 1.22121405410138e44 * cos(theta) ** 9 - 1.15846392483925e42 * cos(theta) ** 7 + 6.33205164539934e39 * cos(theta) ** 5 - 1.62987172339751e37 * cos(theta) ** 3 + 1.24607929923357e34 * cos(theta) ) * cos(17 * phi) ) # @torch.jit.script def Yl90_m18(theta, phi): return ( 3.64920333241427e-35 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.78377529283379e60 * cos(theta) ** 72 - 2.54711153546546e61 * cos(theta) ** 70 + 1.73764812377093e62 * cos(theta) ** 68 - 7.53973795419079e62 * cos(theta) ** 66 + 2.33710085429758e63 * cos(theta) ** 64 - 5.51063780381745e63 * cos(theta) ** 62 + 1.02767417031744e64 * cos(theta) ** 60 - 1.55601649397935e64 * cos(theta) ** 58 + 1.94855701859687e64 * cos(theta) ** 56 - 2.04551997862248e64 * cos(theta) ** 54 + 1.81809881329737e64 * cos(theta) ** 52 - 1.37838709344329e64 * cos(theta) ** 50 + 8.96244261925707e63 * cos(theta) ** 48 - 5.01718872184713e63 * cos(theta) ** 46 + 2.42427186139672e63 * cos(theta) ** 44 - 1.01252149266283e63 * cos(theta) ** 42 + 3.65679951838378e62 * cos(theta) ** 40 - 1.14137800093611e62 * cos(theta) ** 38 + 3.07428633968616e61 * cos(theta) ** 36 - 7.12845194700877e60 * cos(theta) ** 34 + 1.41810692988366e60 * cos(theta) ** 32 - 2.40966439610241e59 * cos(theta) ** 30 + 3.47778371700249e58 * cos(theta) ** 28 - 4.23382365548129e57 * cos(theta) ** 26 + 4.31075403518615e56 * cos(theta) ** 24 - 3.63287973652329e55 * cos(theta) ** 22 + 2.50207280601336e54 * cos(theta) ** 20 - 1.38639204765978e53 * cos(theta) ** 18 + 6.06051380834132e51 * cos(theta) ** 16 - 2.0388608270282e50 * cos(theta) ** 14 + 5.11119380880347e48 * cos(theta) ** 12 - 9.14445083711112e46 * cos(theta) ** 10 + 1.09909264869124e45 * cos(theta) ** 8 - 8.10924747387476e42 * cos(theta) ** 6 + 3.16602582269967e40 * cos(theta) ** 4 - 4.88961517019254e37 * cos(theta) ** 2 + 1.24607929923357e34 ) * cos(18 * phi) ) # @torch.jit.script def Yl90_m19(theta, phi): return ( 4.11925393837239e-37 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.28431821084033e62 * cos(theta) ** 71 - 1.78297807482582e63 * cos(theta) ** 69 + 1.18160072416423e64 * cos(theta) ** 67 - 4.97622704976592e64 * cos(theta) ** 65 + 1.49574454675045e65 * cos(theta) ** 63 - 3.41659543836682e65 * cos(theta) ** 61 + 6.16604502190462e65 * cos(theta) ** 59 - 9.02489566508024e65 * cos(theta) ** 57 + 1.09119193041425e66 * cos(theta) ** 55 - 1.10458078845614e66 * cos(theta) ** 53 + 9.45411382914634e65 * cos(theta) ** 51 - 6.89193546721646e65 * cos(theta) ** 49 + 4.30197245724339e65 * cos(theta) ** 47 - 2.30790681204968e65 * cos(theta) ** 45 + 1.06667961901456e65 * cos(theta) ** 43 - 4.25259026918387e64 * cos(theta) ** 41 + 1.46271980735351e64 * cos(theta) ** 39 - 4.33723640355723e63 * cos(theta) ** 37 + 1.10674308228702e63 * cos(theta) ** 35 - 2.42367366198298e62 * cos(theta) ** 33 + 4.53794217562771e61 * cos(theta) ** 31 - 7.22899318830724e60 * cos(theta) ** 29 + 9.73779440760697e59 * cos(theta) ** 27 - 1.10079415042514e59 * cos(theta) ** 25 + 1.03458096844468e58 * cos(theta) ** 23 - 7.99233542035124e56 * cos(theta) ** 21 + 5.00414561202672e55 * cos(theta) ** 19 - 2.4955056857876e54 * cos(theta) ** 17 + 9.69682209334611e52 * cos(theta) ** 15 - 2.85440515783948e51 * cos(theta) ** 13 + 6.13343257056416e49 * cos(theta) ** 11 - 9.14445083711111e47 * cos(theta) ** 9 + 8.79274118952992e45 * cos(theta) ** 7 - 4.86554848432486e43 * cos(theta) ** 5 + 1.26641032907987e41 * cos(theta) ** 3 - 9.77923034038509e37 * cos(theta) ) * cos(19 * phi) ) # @torch.jit.script def Yl90_m20(theta, phi): return ( 4.66114967282393e-39 * (1.0 - cos(theta) ** 2) ** 10 * ( 9.11865929696633e63 * cos(theta) ** 70 - 1.23025487162981e65 * cos(theta) ** 68 + 7.91672485190034e65 * cos(theta) ** 66 - 3.23454758234785e66 * cos(theta) ** 64 + 9.42319064452784e66 * cos(theta) ** 62 - 2.08412321740376e67 * cos(theta) ** 60 + 3.63796656292372e67 * cos(theta) ** 58 - 5.14419052909574e67 * cos(theta) ** 56 + 6.00155561727836e67 * cos(theta) ** 54 - 5.85427817881754e67 * cos(theta) ** 52 + 4.82159805286463e67 * cos(theta) ** 50 - 3.37704837893606e67 * cos(theta) ** 48 + 2.02192705490439e67 * cos(theta) ** 46 - 1.03855806542236e67 * cos(theta) ** 44 + 4.5867223617626e66 * cos(theta) ** 42 - 1.74356201036539e66 * cos(theta) ** 40 + 5.7046072486787e65 * cos(theta) ** 38 - 1.60477746931618e65 * cos(theta) ** 36 + 3.87360078800456e64 * cos(theta) ** 34 - 7.99812308454383e63 * cos(theta) ** 32 + 1.40676207444459e63 * cos(theta) ** 30 - 2.0964080246091e62 * cos(theta) ** 28 + 2.62920449005388e61 * cos(theta) ** 26 - 2.75198537606284e60 * cos(theta) ** 24 + 2.37953622742276e59 * cos(theta) ** 22 - 1.67839043827376e58 * cos(theta) ** 20 + 9.50787666285076e56 * cos(theta) ** 18 - 4.24235966583892e55 * cos(theta) ** 16 + 1.45452331400192e54 * cos(theta) ** 14 - 3.71072670519132e52 * cos(theta) ** 12 + 6.74677582762058e50 * cos(theta) ** 10 - 8.2300057534e48 * cos(theta) ** 8 + 6.15491883267094e46 * cos(theta) ** 6 - 2.43277424216243e44 * cos(theta) ** 4 + 3.79923098723961e41 * cos(theta) ** 2 - 9.77923034038509e37 ) * cos(20 * phi) ) # @torch.jit.script def Yl90_m21(theta, phi): return ( 5.28789154620833e-41 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 6.38306150787643e65 * cos(theta) ** 69 - 8.36573312708274e66 * cos(theta) ** 67 + 5.22503840225422e67 * cos(theta) ** 65 - 2.07011045270262e68 * cos(theta) ** 63 + 5.84237819960726e68 * cos(theta) ** 61 - 1.25047393044226e69 * cos(theta) ** 59 + 2.11002060649576e69 * cos(theta) ** 57 - 2.88074669629361e69 * cos(theta) ** 55 + 3.24084003333031e69 * cos(theta) ** 53 - 3.04422465298512e69 * cos(theta) ** 51 + 2.41079902643232e69 * cos(theta) ** 49 - 1.62098322188931e69 * cos(theta) ** 47 + 9.30086445256022e68 * cos(theta) ** 45 - 4.56965548785837e68 * cos(theta) ** 43 + 1.92642339194029e68 * cos(theta) ** 41 - 6.97424804146155e67 * cos(theta) ** 39 + 2.1677507544979e67 * cos(theta) ** 37 - 5.77719888953823e66 * cos(theta) ** 35 + 1.31702426792155e66 * cos(theta) ** 33 - 2.55939938705403e65 * cos(theta) ** 31 + 4.22028622333377e64 * cos(theta) ** 29 - 5.86994246890548e63 * cos(theta) ** 27 + 6.83593167414009e62 * cos(theta) ** 25 - 6.60476490255081e61 * cos(theta) ** 23 + 5.23497970033006e60 * cos(theta) ** 21 - 3.35678087654752e59 * cos(theta) ** 19 + 1.71141779931314e58 * cos(theta) ** 17 - 6.78777546534227e56 * cos(theta) ** 15 + 2.03633263960268e55 * cos(theta) ** 13 - 4.45287204622958e53 * cos(theta) ** 11 + 6.74677582762058e51 * cos(theta) ** 9 - 6.58400460272e49 * cos(theta) ** 7 + 3.69295129960257e47 * cos(theta) ** 5 - 9.73109696864971e44 * cos(theta) ** 3 + 7.59846197447921e41 * cos(theta) ) * cos(21 * phi) ) # @torch.jit.script def Yl90_m22(theta, phi): return ( 6.01518491319549e-43 * (1.0 - cos(theta) ** 2) ** 11 * ( 4.40431244043474e67 * cos(theta) ** 68 - 5.60504119514544e68 * cos(theta) ** 66 + 3.39627496146524e69 * cos(theta) ** 64 - 1.30416958520265e70 * cos(theta) ** 62 + 3.56385070176043e70 * cos(theta) ** 60 - 7.37779618960931e70 * cos(theta) ** 58 + 1.20271174570258e71 * cos(theta) ** 56 - 1.58441068296149e71 * cos(theta) ** 54 + 1.71764521766507e71 * cos(theta) ** 52 - 1.55255457302241e71 * cos(theta) ** 50 + 1.18129152295183e71 * cos(theta) ** 48 - 7.61862114287976e70 * cos(theta) ** 46 + 4.1853890036521e70 * cos(theta) ** 44 - 1.9649518597791e70 * cos(theta) ** 42 + 7.8983359069552e69 * cos(theta) ** 40 - 2.71995673617e69 * cos(theta) ** 38 + 8.02067779164225e68 * cos(theta) ** 36 - 2.02201961133838e68 * cos(theta) ** 34 + 4.34618008414112e67 * cos(theta) ** 32 - 7.93413809986748e66 * cos(theta) ** 30 + 1.22388300476679e66 * cos(theta) ** 28 - 1.58488446660448e65 * cos(theta) ** 26 + 1.70898291853502e64 * cos(theta) ** 24 - 1.51909592758669e63 * cos(theta) ** 22 + 1.09934573706931e62 * cos(theta) ** 20 - 6.37788366544029e60 * cos(theta) ** 18 + 2.90941025883233e59 * cos(theta) ** 16 - 1.01816631980134e58 * cos(theta) ** 14 + 2.64723243148349e56 * cos(theta) ** 12 - 4.89815925085254e54 * cos(theta) ** 10 + 6.07209824485852e52 * cos(theta) ** 8 - 4.608803221904e50 * cos(theta) ** 6 + 1.84647564980128e48 * cos(theta) ** 4 - 2.91932909059491e45 * cos(theta) ** 2 + 7.59846197447921e41 ) * cos(22 * phi) ) # @torch.jit.script def Yl90_m23(theta, phi): return ( 6.86207253565265e-45 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 2.99493245949562e69 * cos(theta) ** 67 - 3.69932718879599e70 * cos(theta) ** 65 + 2.17361597533776e71 * cos(theta) ** 63 - 8.08585142825645e71 * cos(theta) ** 61 + 2.13831042105626e72 * cos(theta) ** 59 - 4.2791217899734e72 * cos(theta) ** 57 + 6.73518577593447e72 * cos(theta) ** 55 - 8.55581768799203e72 * cos(theta) ** 53 + 8.93175513185835e72 * cos(theta) ** 51 - 7.76277286511206e72 * cos(theta) ** 49 + 5.67019931016881e72 * cos(theta) ** 47 - 3.50456572572469e72 * cos(theta) ** 45 + 1.84157116160692e72 * cos(theta) ** 43 - 8.25279781107221e71 * cos(theta) ** 41 + 3.15933436278208e71 * cos(theta) ** 39 - 1.0335835597446e71 * cos(theta) ** 37 + 2.88744400499121e70 * cos(theta) ** 35 - 6.8748666785505e69 * cos(theta) ** 33 + 1.39077762692516e69 * cos(theta) ** 31 - 2.38024142996025e68 * cos(theta) ** 29 + 3.42687241334702e67 * cos(theta) ** 27 - 4.12069961317165e66 * cos(theta) ** 25 + 4.10155900448406e65 * cos(theta) ** 23 - 3.34201104069071e64 * cos(theta) ** 21 + 2.19869147413863e63 * cos(theta) ** 19 - 1.14801905977925e62 * cos(theta) ** 17 + 4.65505641413173e60 * cos(theta) ** 15 - 1.42543284772188e59 * cos(theta) ** 13 + 3.17667891778018e57 * cos(theta) ** 11 - 4.89815925085254e55 * cos(theta) ** 9 + 4.85767859588682e53 * cos(theta) ** 7 - 2.7652819331424e51 * cos(theta) ** 5 + 7.38590259920513e48 * cos(theta) ** 3 - 5.83865818118983e45 * cos(theta) ) * cos(23 * phi) ) # @torch.jit.script def Yl90_m24(theta, phi): return ( 7.85173217826566e-47 * (1.0 - cos(theta) ** 2) ** 12 * ( 2.00660474786207e71 * cos(theta) ** 66 - 2.40456267271739e72 * cos(theta) ** 64 + 1.36937806446279e73 * cos(theta) ** 62 - 4.93236937123644e73 * cos(theta) ** 60 + 1.26160314842319e74 * cos(theta) ** 58 - 2.43909942028484e74 * cos(theta) ** 56 + 3.70435217676396e74 * cos(theta) ** 54 - 4.53458337463578e74 * cos(theta) ** 52 + 4.55519511724776e74 * cos(theta) ** 50 - 3.80375870390491e74 * cos(theta) ** 48 + 2.66499367577934e74 * cos(theta) ** 46 - 1.57705457657611e74 * cos(theta) ** 44 + 7.91875599490977e73 * cos(theta) ** 42 - 3.38364710253961e73 * cos(theta) ** 40 + 1.23214040148501e73 * cos(theta) ** 38 - 3.82425917105502e72 * cos(theta) ** 36 + 1.01060540174692e72 * cos(theta) ** 34 - 2.26870600392166e71 * cos(theta) ** 32 + 4.31141064346799e70 * cos(theta) ** 30 - 6.90270014688471e69 * cos(theta) ** 28 + 9.25255551603695e68 * cos(theta) ** 26 - 1.03017490329291e68 * cos(theta) ** 24 + 9.43358571031333e66 * cos(theta) ** 22 - 7.01822318545049e65 * cos(theta) ** 20 + 4.17751380086339e64 * cos(theta) ** 18 - 1.95163240162473e63 * cos(theta) ** 16 + 6.9825846211976e61 * cos(theta) ** 14 - 1.85306270203844e60 * cos(theta) ** 12 + 3.4943468095582e58 * cos(theta) ** 10 - 4.40834332576729e56 * cos(theta) ** 8 + 3.40037501712077e54 * cos(theta) ** 6 - 1.3826409665712e52 * cos(theta) ** 4 + 2.21577077976154e49 * cos(theta) ** 2 - 5.83865818118983e45 ) * cos(24 * phi) ) # @torch.jit.script def Yl90_m25(theta, phi): return ( 9.01248571778017e-49 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 1.32435913358896e73 * cos(theta) ** 65 - 1.53892011053913e74 * cos(theta) ** 63 + 8.49014399966928e74 * cos(theta) ** 61 - 2.95942162274186e75 * cos(theta) ** 59 + 7.31729826085452e75 * cos(theta) ** 57 - 1.36589567535951e76 * cos(theta) ** 55 + 2.00035017545254e76 * cos(theta) ** 53 - 2.3579833548106e76 * cos(theta) ** 51 + 2.27759755862388e76 * cos(theta) ** 49 - 1.82580417787436e76 * cos(theta) ** 47 + 1.2258970908585e76 * cos(theta) ** 45 - 6.93904013693488e75 * cos(theta) ** 43 + 3.3258775178621e75 * cos(theta) ** 41 - 1.35345884101584e75 * cos(theta) ** 39 + 4.68213352564304e74 * cos(theta) ** 37 - 1.37673330157981e74 * cos(theta) ** 35 + 3.43605836593954e73 * cos(theta) ** 33 - 7.25985921254933e72 * cos(theta) ** 31 + 1.2934231930404e72 * cos(theta) ** 29 - 1.93275604112772e71 * cos(theta) ** 27 + 2.40566443416961e70 * cos(theta) ** 25 - 2.47241976790299e69 * cos(theta) ** 23 + 2.07538885626893e68 * cos(theta) ** 21 - 1.4036446370901e67 * cos(theta) ** 19 + 7.5195248415541e65 * cos(theta) ** 17 - 3.12261184259957e64 * cos(theta) ** 15 + 9.77561846967664e62 * cos(theta) ** 13 - 2.22367524244613e61 * cos(theta) ** 11 + 3.4943468095582e59 * cos(theta) ** 9 - 3.52667466061383e57 * cos(theta) ** 7 + 2.04022501027246e55 * cos(theta) ** 5 - 5.5305638662848e52 * cos(theta) ** 3 + 4.43154155952308e49 * cos(theta) ) * cos(25 * phi) ) # @torch.jit.script def Yl90_m26(theta, phi): return ( 1.03790813654663e-50 * (1.0 - cos(theta) ** 2) ** 13 * ( 8.60833436832827e74 * cos(theta) ** 64 - 9.69519669639653e75 * cos(theta) ** 62 + 5.17898783979826e76 * cos(theta) ** 60 - 1.7460587574177e77 * cos(theta) ** 58 + 4.17086000868707e77 * cos(theta) ** 56 - 7.5124262144773e77 * cos(theta) ** 54 + 1.06018559298984e78 * cos(theta) ** 52 - 1.20257151095341e78 * cos(theta) ** 50 + 1.1160228037257e78 * cos(theta) ** 48 - 8.58127963600947e77 * cos(theta) ** 46 + 5.51653690886323e77 * cos(theta) ** 44 - 2.983787258882e77 * cos(theta) ** 42 + 1.36360978232346e77 * cos(theta) ** 40 - 5.27848947996179e76 * cos(theta) ** 38 + 1.73238940448793e76 * cos(theta) ** 36 - 4.81856655552933e75 * cos(theta) ** 34 + 1.13389926076005e75 * cos(theta) ** 32 - 2.25055635589029e74 * cos(theta) ** 30 + 3.75092725981715e73 * cos(theta) ** 28 - 5.21844131104484e72 * cos(theta) ** 26 + 6.01416108542402e71 * cos(theta) ** 24 - 5.68656546617687e70 * cos(theta) ** 22 + 4.35831659816476e69 * cos(theta) ** 20 - 2.66692481047119e68 * cos(theta) ** 18 + 1.2783192230642e67 * cos(theta) ** 16 - 4.68391776389935e65 * cos(theta) ** 14 + 1.27083040105796e64 * cos(theta) ** 12 - 2.44604276669074e62 * cos(theta) ** 10 + 3.14491212860238e60 * cos(theta) ** 8 - 2.46867226242968e58 * cos(theta) ** 6 + 1.02011250513623e56 * cos(theta) ** 4 - 1.65916915988544e53 * cos(theta) ** 2 + 4.43154155952308e49 ) * cos(26 * phi) ) # @torch.jit.script def Yl90_m27(theta, phi): return ( 1.19943301459621e-52 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 5.50933399573009e76 * cos(theta) ** 63 - 6.01102195176585e77 * cos(theta) ** 61 + 3.10739270387895e78 * cos(theta) ** 59 - 1.01271407930227e79 * cos(theta) ** 57 + 2.33568160486476e79 * cos(theta) ** 55 - 4.05671015581774e79 * cos(theta) ** 53 + 5.51296508354719e79 * cos(theta) ** 51 - 6.01285755476704e79 * cos(theta) ** 49 + 5.35690945788336e79 * cos(theta) ** 47 - 3.94738863256436e79 * cos(theta) ** 45 + 2.42727623989982e79 * cos(theta) ** 43 - 1.25319064873044e79 * cos(theta) ** 41 + 5.45443912929385e78 * cos(theta) ** 39 - 2.00582600238548e78 * cos(theta) ** 37 + 6.23660185615653e77 * cos(theta) ** 35 - 1.63831262887997e77 * cos(theta) ** 33 + 3.62847763443215e76 * cos(theta) ** 31 - 6.75166906767087e75 * cos(theta) ** 29 + 1.0502596327488e75 * cos(theta) ** 27 - 1.35679474087166e74 * cos(theta) ** 25 + 1.44339866050176e73 * cos(theta) ** 23 - 1.25104440255891e72 * cos(theta) ** 21 + 8.71663319632951e70 * cos(theta) ** 19 - 4.80046465884814e69 * cos(theta) ** 17 + 2.04531075690272e68 * cos(theta) ** 15 - 6.55748486945909e66 * cos(theta) ** 13 + 1.52499648126956e65 * cos(theta) ** 11 - 2.44604276669074e63 * cos(theta) ** 9 + 2.51592970288191e61 * cos(theta) ** 7 - 1.48120335745781e59 * cos(theta) ** 5 + 4.08045002054493e56 * cos(theta) ** 3 - 3.31833831977088e53 * cos(theta) ) * cos(27 * phi) ) # @torch.jit.script def Yl90_m28(theta, phi): return ( 1.39112040310174e-54 * (1.0 - cos(theta) ** 2) ** 14 * ( 3.47088041730996e78 * cos(theta) ** 62 - 3.66672339057717e79 * cos(theta) ** 60 + 1.83336169528858e80 * cos(theta) ** 58 - 5.77247025202291e80 * cos(theta) ** 56 + 1.28462488267562e81 * cos(theta) ** 54 - 2.1500563825834e81 * cos(theta) ** 52 + 2.81161219260907e81 * cos(theta) ** 50 - 2.94630020183585e81 * cos(theta) ** 48 + 2.51774744520518e81 * cos(theta) ** 46 - 1.77632488465396e81 * cos(theta) ** 44 + 1.04372878315692e81 * cos(theta) ** 42 - 5.1380816597948e80 * cos(theta) ** 40 + 2.1272312604246e80 * cos(theta) ** 38 - 7.42155620882627e79 * cos(theta) ** 36 + 2.18281064965479e79 * cos(theta) ** 34 - 5.40643167530391e78 * cos(theta) ** 32 + 1.12482806667397e78 * cos(theta) ** 30 - 1.95798402962455e77 * cos(theta) ** 28 + 2.83570100842177e76 * cos(theta) ** 26 - 3.39198685217915e75 * cos(theta) ** 24 + 3.31981691915406e74 * cos(theta) ** 22 - 2.62719324537372e73 * cos(theta) ** 20 + 1.65616030730261e72 * cos(theta) ** 18 - 8.16078992004184e70 * cos(theta) ** 16 + 3.06796613535407e69 * cos(theta) ** 14 - 8.52473033029681e67 * cos(theta) ** 12 + 1.67749612939651e66 * cos(theta) ** 10 - 2.20143849002167e64 * cos(theta) ** 8 + 1.76115079201733e62 * cos(theta) ** 6 - 7.40601678728904e59 * cos(theta) ** 4 + 1.22413500616348e57 * cos(theta) ** 2 - 3.31833831977088e53 ) * cos(28 * phi) ) # @torch.jit.script def Yl90_m29(theta, phi): return ( 1.61955385759464e-56 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 2.15194585873217e80 * cos(theta) ** 61 - 2.2000340343463e81 * cos(theta) ** 59 + 1.06334978326738e82 * cos(theta) ** 57 - 3.23258334113283e82 * cos(theta) ** 55 + 6.93697436644834e82 * cos(theta) ** 53 - 1.11802931894337e83 * cos(theta) ** 51 + 1.40580609630453e83 * cos(theta) ** 49 - 1.41422409688121e83 * cos(theta) ** 47 + 1.15816382479438e83 * cos(theta) ** 45 - 7.81582949247743e82 * cos(theta) ** 43 + 4.38366088925908e82 * cos(theta) ** 41 - 2.05523266391792e82 * cos(theta) ** 39 + 8.08347878961348e81 * cos(theta) ** 37 - 2.67176023517746e81 * cos(theta) ** 35 + 7.42155620882627e80 * cos(theta) ** 33 - 1.73005813609725e80 * cos(theta) ** 31 + 3.3744842000219e79 * cos(theta) ** 29 - 5.48235528294875e78 * cos(theta) ** 27 + 7.37282262189659e77 * cos(theta) ** 25 - 8.14076844522995e76 * cos(theta) ** 23 + 7.30359722213893e75 * cos(theta) ** 21 - 5.25438649074743e74 * cos(theta) ** 19 + 2.98108855314469e73 * cos(theta) ** 17 - 1.30572638720669e72 * cos(theta) ** 15 + 4.2951525894957e70 * cos(theta) ** 13 - 1.02296763963562e69 * cos(theta) ** 11 + 1.67749612939651e67 * cos(theta) ** 9 - 1.76115079201733e65 * cos(theta) ** 7 + 1.0566904752104e63 * cos(theta) ** 5 - 2.96240671491562e60 * cos(theta) ** 3 + 2.44827001232696e57 * cos(theta) ) * cos(29 * phi) ) # @torch.jit.script def Yl90_m30(theta, phi): return ( 1.89295310160517e-58 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.31268697382663e82 * cos(theta) ** 60 - 1.29802008026432e83 * cos(theta) ** 58 + 6.06109376462406e83 * cos(theta) ** 56 - 1.77792083762306e84 * cos(theta) ** 54 + 3.67659641421762e84 * cos(theta) ** 52 - 5.70194952661119e84 * cos(theta) ** 50 + 6.88844987189221e84 * cos(theta) ** 48 - 6.64685325534167e84 * cos(theta) ** 46 + 5.21173721157472e84 * cos(theta) ** 44 - 3.36080668176529e84 * cos(theta) ** 42 + 1.79730096459622e84 * cos(theta) ** 40 - 8.0154073892799e83 * cos(theta) ** 38 + 2.99088715215699e83 * cos(theta) ** 36 - 9.35116082312111e82 * cos(theta) ** 34 + 2.44911354891267e82 * cos(theta) ** 32 - 5.36318022190148e81 * cos(theta) ** 30 + 9.78600418006352e80 * cos(theta) ** 28 - 1.48023592639616e80 * cos(theta) ** 26 + 1.84320565547415e79 * cos(theta) ** 24 - 1.87237674240289e78 * cos(theta) ** 22 + 1.53375541664918e77 * cos(theta) ** 20 - 9.98333433242012e75 * cos(theta) ** 18 + 5.06785054034598e74 * cos(theta) ** 16 - 1.95858958081004e73 * cos(theta) ** 14 + 5.58369836634441e71 * cos(theta) ** 12 - 1.12526440359918e70 * cos(theta) ** 10 + 1.50974651645686e68 * cos(theta) ** 8 - 1.23280555441213e66 * cos(theta) ** 6 + 5.283452376052e63 * cos(theta) ** 4 - 8.88722014474685e60 * cos(theta) ** 2 + 2.44827001232696e57 ) * cos(30 * phi) ) # @torch.jit.script def Yl90_m31(theta, phi): return ( 2.22162904171772e-60 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 7.87612184295975e83 * cos(theta) ** 59 - 7.52851646553304e84 * cos(theta) ** 57 + 3.39421250818947e85 * cos(theta) ** 55 - 9.6007725231645e85 * cos(theta) ** 53 + 1.91183013539316e86 * cos(theta) ** 51 - 2.85097476330559e86 * cos(theta) ** 49 + 3.30645593850826e86 * cos(theta) ** 47 - 3.05755249745717e86 * cos(theta) ** 45 + 2.29316437309288e86 * cos(theta) ** 43 - 1.41153880634142e86 * cos(theta) ** 41 + 7.18920385838489e85 * cos(theta) ** 39 - 3.04585480792636e85 * cos(theta) ** 37 + 1.07671937477652e85 * cos(theta) ** 35 - 3.17939467986118e84 * cos(theta) ** 33 + 7.83716335652055e83 * cos(theta) ** 31 - 1.60895406657044e83 * cos(theta) ** 29 + 2.74008117041778e82 * cos(theta) ** 27 - 3.84861340863002e81 * cos(theta) ** 25 + 4.42369357313796e80 * cos(theta) ** 23 - 4.11922883328636e79 * cos(theta) ** 21 + 3.06751083329835e78 * cos(theta) ** 19 - 1.79700017983562e77 * cos(theta) ** 17 + 8.10856086455357e75 * cos(theta) ** 15 - 2.74202541313406e74 * cos(theta) ** 13 + 6.7004380396133e72 * cos(theta) ** 11 - 1.12526440359918e71 * cos(theta) ** 9 + 1.20779721316549e69 * cos(theta) ** 7 - 7.3968333264728e66 * cos(theta) ** 5 + 2.1133809504208e64 * cos(theta) ** 3 - 1.77744402894937e61 * cos(theta) ) * cos(31 * phi) ) # @torch.jit.script def Yl90_m32(theta, phi): return ( 2.61857865120515e-62 * (1.0 - cos(theta) ** 2) ** 16 * ( 4.64691188734625e85 * cos(theta) ** 58 - 4.29125438535383e86 * cos(theta) ** 56 + 1.86681687950421e87 * cos(theta) ** 54 - 5.08840943727719e87 * cos(theta) ** 52 + 9.75033369050513e87 * cos(theta) ** 50 - 1.39697763401974e88 * cos(theta) ** 48 + 1.55403429109888e88 * cos(theta) ** 46 - 1.37589862385573e88 * cos(theta) ** 44 + 9.86060680429937e87 * cos(theta) ** 42 - 5.78730910599984e87 * cos(theta) ** 40 + 2.80378950477011e87 * cos(theta) ** 38 - 1.12696627893275e87 * cos(theta) ** 36 + 3.76851781171781e86 * cos(theta) ** 34 - 1.04920024435419e86 * cos(theta) ** 32 + 2.42952064052137e85 * cos(theta) ** 30 - 4.66596679305429e84 * cos(theta) ** 28 + 7.39821916012802e83 * cos(theta) ** 26 - 9.62153352157506e82 * cos(theta) ** 24 + 1.01744952182173e82 * cos(theta) ** 22 - 8.65038054990135e80 * cos(theta) ** 20 + 5.82827058326687e79 * cos(theta) ** 18 - 3.05490030572056e78 * cos(theta) ** 16 + 1.21628412968304e77 * cos(theta) ** 14 - 3.56463303707427e75 * cos(theta) ** 12 + 7.37048184357463e73 * cos(theta) ** 10 - 1.01273796323926e72 * cos(theta) ** 8 + 8.45458049215842e69 * cos(theta) ** 6 - 3.6984166632364e67 * cos(theta) ** 4 + 6.3401428512624e64 * cos(theta) ** 2 - 1.77744402894937e61 ) * cos(32 * phi) ) # @torch.jit.script def Yl90_m33(theta, phi): return ( 3.10026680543058e-64 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 2.69520889466083e87 * cos(theta) ** 57 - 2.40310245579815e88 * cos(theta) ** 55 + 1.00808111493227e89 * cos(theta) ** 53 - 2.64597290738414e89 * cos(theta) ** 51 + 4.87516684525257e89 * cos(theta) ** 49 - 6.70549264329476e89 * cos(theta) ** 47 + 7.14855773905486e89 * cos(theta) ** 45 - 6.0539539449652e89 * cos(theta) ** 43 + 4.14145485780574e89 * cos(theta) ** 41 - 2.31492364239993e89 * cos(theta) ** 39 + 1.06544001181264e89 * cos(theta) ** 37 - 4.05707860415791e88 * cos(theta) ** 35 + 1.28129605598405e88 * cos(theta) ** 33 - 3.3574407819334e87 * cos(theta) ** 31 + 7.28856192156411e86 * cos(theta) ** 29 - 1.3064707020552e86 * cos(theta) ** 27 + 1.92353698163329e85 * cos(theta) ** 25 - 2.30916804517801e84 * cos(theta) ** 23 + 2.23838894800781e83 * cos(theta) ** 21 - 1.73007610998027e82 * cos(theta) ** 19 + 1.04908870498804e81 * cos(theta) ** 17 - 4.88784048915289e79 * cos(theta) ** 15 + 1.70279778155625e78 * cos(theta) ** 13 - 4.27755964448913e76 * cos(theta) ** 11 + 7.37048184357463e74 * cos(theta) ** 9 - 8.10190370591409e72 * cos(theta) ** 7 + 5.07274829529505e70 * cos(theta) ** 5 - 1.47936666529456e68 * cos(theta) ** 3 + 1.26802857025248e65 * cos(theta) ) * cos(33 * phi) ) # @torch.jit.script def Yl90_m34(theta, phi): return ( 3.68765938330789e-66 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.53626906995667e89 * cos(theta) ** 56 - 1.32170635068898e90 * cos(theta) ** 54 + 5.34282990914105e90 * cos(theta) ** 52 - 1.34944618276591e91 * cos(theta) ** 50 + 2.38883175417376e91 * cos(theta) ** 48 - 3.15158154234854e91 * cos(theta) ** 46 + 3.21685098257469e91 * cos(theta) ** 44 - 2.60320019633503e91 * cos(theta) ** 42 + 1.69799649170035e91 * cos(theta) ** 40 - 9.02820220535975e90 * cos(theta) ** 38 + 3.94212804370677e90 * cos(theta) ** 36 - 1.41997751145527e90 * cos(theta) ** 34 + 4.22827698474738e89 * cos(theta) ** 32 - 1.04080664239935e89 * cos(theta) ** 30 + 2.11368295725359e88 * cos(theta) ** 28 - 3.52747089554904e87 * cos(theta) ** 26 + 4.80884245408321e86 * cos(theta) ** 24 - 5.31108650390943e85 * cos(theta) ** 22 + 4.70061679081639e84 * cos(theta) ** 20 - 3.28714460896251e83 * cos(theta) ** 18 + 1.78345079847966e82 * cos(theta) ** 16 - 7.33176073372934e80 * cos(theta) ** 14 + 2.21363711602312e79 * cos(theta) ** 12 - 4.70531560893804e77 * cos(theta) ** 10 + 6.63343365921716e75 * cos(theta) ** 8 - 5.67133259413987e73 * cos(theta) ** 6 + 2.53637414764752e71 * cos(theta) ** 4 - 4.43809999588368e68 * cos(theta) ** 2 + 1.26802857025248e65 ) * cos(34 * phi) ) # @torch.jit.script def Yl90_m35(theta, phi): return ( 4.40759599641002e-68 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 8.60310679175736e90 * cos(theta) ** 55 - 7.13721429372049e91 * cos(theta) ** 53 + 2.77827155275334e92 * cos(theta) ** 51 - 6.74723091382955e92 * cos(theta) ** 49 + 1.1466392420034e93 * cos(theta) ** 47 - 1.44972750948033e93 * cos(theta) ** 45 + 1.41541443233286e93 * cos(theta) ** 43 - 1.09334408246071e93 * cos(theta) ** 41 + 6.79198596680141e92 * cos(theta) ** 39 - 3.4307168380367e92 * cos(theta) ** 37 + 1.41916609573444e92 * cos(theta) ** 35 - 4.82792353894792e91 * cos(theta) ** 33 + 1.35304863511916e91 * cos(theta) ** 31 - 3.12241992719806e90 * cos(theta) ** 29 + 5.91831228031006e89 * cos(theta) ** 27 - 9.1714243284275e88 * cos(theta) ** 25 + 1.15412218897997e88 * cos(theta) ** 23 - 1.16843903086007e87 * cos(theta) ** 21 + 9.40123358163279e85 * cos(theta) ** 19 - 5.91686029613252e84 * cos(theta) ** 17 + 2.85352127756746e83 * cos(theta) ** 15 - 1.02644650272211e82 * cos(theta) ** 13 + 2.65636453922775e80 * cos(theta) ** 11 - 4.70531560893804e78 * cos(theta) ** 9 + 5.30674692737373e76 * cos(theta) ** 7 - 3.40279955648392e74 * cos(theta) ** 5 + 1.01454965905901e72 * cos(theta) ** 3 - 8.87619999176736e68 * cos(theta) ) * cos(35 * phi) ) # @torch.jit.script def Yl90_m36(theta, phi): return ( 5.294624471457e-70 * (1.0 - cos(theta) ** 2) ** 18 * ( 4.73170873546655e92 * cos(theta) ** 54 - 3.78272357567186e93 * cos(theta) ** 52 + 1.41691849190421e94 * cos(theta) ** 50 - 3.30614314777648e94 * cos(theta) ** 48 + 5.389204437416e94 * cos(theta) ** 46 - 6.52377379266147e94 * cos(theta) ** 44 + 6.08628205903131e94 * cos(theta) ** 42 - 4.48271073808893e94 * cos(theta) ** 40 + 2.64887452705255e94 * cos(theta) ** 38 - 1.26936523007358e94 * cos(theta) ** 36 + 4.96708133507053e93 * cos(theta) ** 34 - 1.59321476785281e93 * cos(theta) ** 32 + 4.1944507688694e92 * cos(theta) ** 30 - 9.05501778887438e91 * cos(theta) ** 28 + 1.59794431568371e91 * cos(theta) ** 26 - 2.29285608210688e90 * cos(theta) ** 24 + 2.65448103465393e89 * cos(theta) ** 22 - 2.45372196480616e88 * cos(theta) ** 20 + 1.78623438051023e87 * cos(theta) ** 18 - 1.00586625034253e86 * cos(theta) ** 16 + 4.28028191635119e84 * cos(theta) ** 14 - 1.33438045353874e83 * cos(theta) ** 12 + 2.92200099315052e81 * cos(theta) ** 10 - 4.23478404804424e79 * cos(theta) ** 8 + 3.71472284916161e77 * cos(theta) ** 6 - 1.70139977824196e75 * cos(theta) ** 4 + 3.04364897717703e72 * cos(theta) ** 2 - 8.87619999176736e68 ) * cos(36 * phi) ) # @torch.jit.script def Yl90_m37(theta, phi): return ( 6.39346691626065e-72 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 2.55512271715194e94 * cos(theta) ** 53 - 1.96701625934937e95 * cos(theta) ** 51 + 7.08459245952103e95 * cos(theta) ** 49 - 1.58694871093271e96 * cos(theta) ** 47 + 2.47903404121136e96 * cos(theta) ** 45 - 2.87046046877105e96 * cos(theta) ** 43 + 2.55623846479315e96 * cos(theta) ** 41 - 1.79308429523557e96 * cos(theta) ** 39 + 1.00657232027997e96 * cos(theta) ** 37 - 4.56971482826489e95 * cos(theta) ** 35 + 1.68880765392398e95 * cos(theta) ** 33 - 5.098287257129e94 * cos(theta) ** 31 + 1.25833523066082e94 * cos(theta) ** 29 - 2.53540498088483e93 * cos(theta) ** 27 + 4.15465522077766e92 * cos(theta) ** 25 - 5.5028545970565e91 * cos(theta) ** 23 + 5.83985827623865e90 * cos(theta) ** 21 - 4.90744392961231e89 * cos(theta) ** 19 + 3.21522188491841e88 * cos(theta) ** 17 - 1.60938600054805e87 * cos(theta) ** 15 + 5.99239468289166e85 * cos(theta) ** 13 - 1.60125654424649e84 * cos(theta) ** 11 + 2.92200099315052e82 * cos(theta) ** 9 - 3.38782723843539e80 * cos(theta) ** 7 + 2.22883370949697e78 * cos(theta) ** 5 - 6.80559911296784e75 * cos(theta) ** 3 + 6.08729795435406e72 * cos(theta) ) * cos(37 * phi) ) # @torch.jit.script def Yl90_m38(theta, phi): return ( 7.76235503401608e-74 * (1.0 - cos(theta) ** 2) ** 19 * ( 1.35421504009053e96 * cos(theta) ** 52 - 1.00317829226818e97 * cos(theta) ** 50 + 3.4714503051653e97 * cos(theta) ** 48 - 7.45865894138374e97 * cos(theta) ** 46 + 1.11556531854511e98 * cos(theta) ** 44 - 1.23429800157155e98 * cos(theta) ** 42 + 1.04805777056519e98 * cos(theta) ** 40 - 6.99302875141873e97 * cos(theta) ** 38 + 3.72431758503588e97 * cos(theta) ** 36 - 1.59940018989271e97 * cos(theta) ** 34 + 5.57306525794914e96 * cos(theta) ** 32 - 1.58046904970999e96 * cos(theta) ** 30 + 3.64917216891638e95 * cos(theta) ** 28 - 6.84559344838904e94 * cos(theta) ** 26 + 1.03866380519441e94 * cos(theta) ** 24 - 1.265656557323e93 * cos(theta) ** 22 + 1.22637023801012e92 * cos(theta) ** 20 - 9.3241434662634e90 * cos(theta) ** 18 + 5.4658772043613e89 * cos(theta) ** 16 - 2.41407900082207e88 * cos(theta) ** 14 + 7.79011308775916e86 * cos(theta) ** 12 - 1.76138219867114e85 * cos(theta) ** 10 + 2.62980089383547e83 * cos(theta) ** 8 - 2.37147906690477e81 * cos(theta) ** 6 + 1.11441685474848e79 * cos(theta) ** 4 - 2.04167973389035e76 * cos(theta) ** 2 + 6.08729795435406e72 ) * cos(38 * phi) ) # @torch.jit.script def Yl90_m39(theta, phi): return ( 9.4775694516246e-76 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 7.04191820847074e97 * cos(theta) ** 51 - 5.01589146134089e98 * cos(theta) ** 49 + 1.66629614647935e99 * cos(theta) ** 47 - 3.43098311303652e99 * cos(theta) ** 45 + 4.90848740159849e99 * cos(theta) ** 43 - 5.18405160660051e99 * cos(theta) ** 41 + 4.19223108226077e99 * cos(theta) ** 39 - 2.65735092553912e99 * cos(theta) ** 37 + 1.34075433061292e99 * cos(theta) ** 35 - 5.43796064563522e98 * cos(theta) ** 33 + 1.78338088254372e98 * cos(theta) ** 31 - 4.74140714912997e97 * cos(theta) ** 29 + 1.02176820729659e97 * cos(theta) ** 27 - 1.77985429658115e96 * cos(theta) ** 25 + 2.4927931324666e95 * cos(theta) ** 23 - 2.78444442611059e94 * cos(theta) ** 21 + 2.45274047602023e93 * cos(theta) ** 19 - 1.67834582392741e92 * cos(theta) ** 17 + 8.74540352697808e90 * cos(theta) ** 15 - 3.3797106011509e89 * cos(theta) ** 13 + 9.34813570531099e87 * cos(theta) ** 11 - 1.76138219867114e86 * cos(theta) ** 9 + 2.10384071506838e84 * cos(theta) ** 7 - 1.42288744014286e82 * cos(theta) ** 5 + 4.45766741899393e79 * cos(theta) ** 3 - 4.0833594677807e76 * cos(theta) ) * cos(39 * phi) ) # @torch.jit.script def Yl90_m40(theta, phi): return ( 1.16396577719155e-77 * (1.0 - cos(theta) ** 2) ** 20 * ( 3.59137828632008e99 * cos(theta) ** 50 - 2.45778681605704e100 * cos(theta) ** 48 + 7.83159188845293e100 * cos(theta) ** 46 - 1.54394240086643e101 * cos(theta) ** 44 + 2.11064958268735e101 * cos(theta) ** 42 - 2.12546115870621e101 * cos(theta) ** 40 + 1.6349701220817e101 * cos(theta) ** 38 - 9.83219842449474e100 * cos(theta) ** 36 + 4.69264015714521e100 * cos(theta) ** 34 - 1.79452701305962e100 * cos(theta) ** 32 + 5.52848073588554e99 * cos(theta) ** 30 - 1.37500807324769e99 * cos(theta) ** 28 + 2.75877415970078e98 * cos(theta) ** 26 - 4.44963574145287e97 * cos(theta) ** 24 + 5.73342420467317e96 * cos(theta) ** 22 - 5.84733329483224e95 * cos(theta) ** 20 + 4.66020690443845e94 * cos(theta) ** 18 - 2.8531879006766e93 * cos(theta) ** 16 + 1.31181052904671e92 * cos(theta) ** 14 - 4.39362378149617e90 * cos(theta) ** 12 + 1.02829492758421e89 * cos(theta) ** 10 - 1.58524397880402e87 * cos(theta) ** 8 + 1.47268850054786e85 * cos(theta) ** 6 - 7.11443720071432e82 * cos(theta) ** 4 + 1.33730022569818e80 * cos(theta) ** 2 - 4.0833594677807e76 ) * cos(40 * phi) ) # @torch.jit.script def Yl90_m41(theta, phi): return ( 1.43820091732168e-79 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 1.79568914316004e101 * cos(theta) ** 49 - 1.17973767170738e102 * cos(theta) ** 47 + 3.60253226868835e102 * cos(theta) ** 45 - 6.79334656381231e102 * cos(theta) ** 43 + 8.86472824728687e102 * cos(theta) ** 41 - 8.50184463482484e102 * cos(theta) ** 39 + 6.21288646391046e102 * cos(theta) ** 37 - 3.5395914328181e102 * cos(theta) ** 35 + 1.59549765342937e102 * cos(theta) ** 33 - 5.74248644179079e101 * cos(theta) ** 31 + 1.65854422076566e101 * cos(theta) ** 29 - 3.85002260509353e100 * cos(theta) ** 27 + 7.17281281522203e99 * cos(theta) ** 25 - 1.06791257794869e99 * cos(theta) ** 23 + 1.2613533250281e98 * cos(theta) ** 21 - 1.16946665896645e97 * cos(theta) ** 19 + 8.3883724279892e95 * cos(theta) ** 17 - 4.56510064108256e94 * cos(theta) ** 15 + 1.8365347406654e93 * cos(theta) ** 13 - 5.2723485377954e91 * cos(theta) ** 11 + 1.02829492758421e90 * cos(theta) ** 9 - 1.26819518304322e88 * cos(theta) ** 7 + 8.83613100328718e85 * cos(theta) ** 5 - 2.84577488028573e83 * cos(theta) ** 3 + 2.67460045139636e80 * cos(theta) ) * cos(41 * phi) ) # @torch.jit.script def Yl90_m42(theta, phi): return ( 1.78827603200494e-81 * (1.0 - cos(theta) ** 2) ** 21 * ( 8.79887680148419e102 * cos(theta) ** 48 - 5.54476705702467e103 * cos(theta) ** 46 + 1.62113952090976e104 * cos(theta) ** 44 - 2.92113902243929e104 * cos(theta) ** 42 + 3.63453858138762e104 * cos(theta) ** 40 - 3.31571940758169e104 * cos(theta) ** 38 + 2.29876799164687e104 * cos(theta) ** 36 - 1.23885700148634e104 * cos(theta) ** 34 + 5.26514225631693e103 * cos(theta) ** 32 - 1.78017079695514e103 * cos(theta) ** 30 + 4.80977824022042e102 * cos(theta) ** 28 - 1.03950610337525e102 * cos(theta) ** 26 + 1.79320320380551e101 * cos(theta) ** 24 - 2.45619892928199e100 * cos(theta) ** 22 + 2.648841982559e99 * cos(theta) ** 20 - 2.22198665203625e98 * cos(theta) ** 18 + 1.42602331275816e97 * cos(theta) ** 16 - 6.84765096162384e95 * cos(theta) ** 14 + 2.38749516286502e94 * cos(theta) ** 12 - 5.79958339157494e92 * cos(theta) ** 10 + 9.25465434825788e90 * cos(theta) ** 8 - 8.87736628130252e88 * cos(theta) ** 6 + 4.41806550164359e86 * cos(theta) ** 4 - 8.53732464085718e83 * cos(theta) ** 2 + 2.67460045139636e80 ) * cos(42 * phi) ) # @torch.jit.script def Yl90_m43(theta, phi): return ( 2.23814447133482e-83 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 4.22346086471241e104 * cos(theta) ** 47 - 2.55059284623135e105 * cos(theta) ** 45 + 7.13301389200292e105 * cos(theta) ** 43 - 1.2268783894245e106 * cos(theta) ** 41 + 1.45381543255505e106 * cos(theta) ** 39 - 1.25997337488104e106 * cos(theta) ** 37 + 8.27556476992873e105 * cos(theta) ** 35 - 4.21211380505354e105 * cos(theta) ** 33 + 1.68484552202142e105 * cos(theta) ** 31 - 5.34051239086543e104 * cos(theta) ** 29 + 1.34673790726172e104 * cos(theta) ** 27 - 2.70271586877566e103 * cos(theta) ** 25 + 4.30368768913322e102 * cos(theta) ** 23 - 5.40363764442037e101 * cos(theta) ** 21 + 5.29768396511801e100 * cos(theta) ** 19 - 3.99957597366525e99 * cos(theta) ** 17 + 2.28163730041306e98 * cos(theta) ** 15 - 9.58671134627337e96 * cos(theta) ** 13 + 2.86499419543802e95 * cos(theta) ** 11 - 5.79958339157494e93 * cos(theta) ** 9 + 7.4037234786063e91 * cos(theta) ** 7 - 5.32641976878151e89 * cos(theta) ** 5 + 1.76722620065744e87 * cos(theta) ** 3 - 1.70746492817144e84 * cos(theta) ) * cos(43 * phi) ) # @torch.jit.script def Yl90_m44(theta, phi): return ( 2.82024467884152e-85 * (1.0 - cos(theta) ** 2) ** 22 * ( 1.98502660641483e106 * cos(theta) ** 46 - 1.14776678080411e107 * cos(theta) ** 44 + 3.06719597356126e107 * cos(theta) ** 42 - 5.03020139664046e107 * cos(theta) ** 40 + 5.66988018696468e107 * cos(theta) ** 38 - 4.66190148705985e107 * cos(theta) ** 36 + 2.89644766947506e107 * cos(theta) ** 34 - 1.38999755566767e107 * cos(theta) ** 32 + 5.2230211182664e106 * cos(theta) ** 30 - 1.54874859335098e106 * cos(theta) ** 28 + 3.63619234960664e105 * cos(theta) ** 26 - 6.75678967193915e104 * cos(theta) ** 24 + 9.8984816850064e103 * cos(theta) ** 22 - 1.13476390532828e103 * cos(theta) ** 20 + 1.00655995337242e102 * cos(theta) ** 18 - 6.79927915523093e100 * cos(theta) ** 16 + 3.42245595061959e99 * cos(theta) ** 14 - 1.24627247501554e98 * cos(theta) ** 12 + 3.15149361498182e96 * cos(theta) ** 10 - 5.21962505241744e94 * cos(theta) ** 8 + 5.18260643502441e92 * cos(theta) ** 6 - 2.66320988439076e90 * cos(theta) ** 4 + 5.30167860197231e87 * cos(theta) ** 2 - 1.70746492817144e84 ) * cos(44 * phi) ) # @torch.jit.script def Yl90_m45(theta, phi): return ( 3.5788293339898e-87 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 9.13112238950823e107 * cos(theta) ** 45 - 5.05017383553807e108 * cos(theta) ** 43 + 1.28822230889573e109 * cos(theta) ** 41 - 2.01208055865618e109 * cos(theta) ** 39 + 2.15455447104658e109 * cos(theta) ** 37 - 1.67828453534155e109 * cos(theta) ** 35 + 9.84792207621519e108 * cos(theta) ** 33 - 4.44799217813654e108 * cos(theta) ** 31 + 1.56690633547992e108 * cos(theta) ** 29 - 4.33649606138273e107 * cos(theta) ** 27 + 9.45410010897726e106 * cos(theta) ** 25 - 1.6216295212654e106 * cos(theta) ** 23 + 2.17766597070141e105 * cos(theta) ** 21 - 2.26952781065655e104 * cos(theta) ** 19 + 1.81180791607036e103 * cos(theta) ** 17 - 1.08788466483695e102 * cos(theta) ** 15 + 4.79143833086743e100 * cos(theta) ** 13 - 1.49552697001865e99 * cos(theta) ** 11 + 3.15149361498182e97 * cos(theta) ** 9 - 4.17570004193396e95 * cos(theta) ** 7 + 3.10956386101465e93 * cos(theta) ** 5 - 1.0652839537563e91 * cos(theta) ** 3 + 1.06033572039446e88 * cos(theta) ) * cos(45 * phi) ) # @torch.jit.script def Yl90_m46(theta, phi): return ( 4.57472800038355e-89 * (1.0 - cos(theta) ** 2) ** 23 * ( 4.1090050752787e109 * cos(theta) ** 44 - 2.17157474928137e110 * cos(theta) ** 42 + 5.28171146647249e110 * cos(theta) ** 40 - 7.84711417875912e110 * cos(theta) ** 38 + 7.97185154287234e110 * cos(theta) ** 36 - 5.87399587369541e110 * cos(theta) ** 34 + 3.24981428515101e110 * cos(theta) ** 32 - 1.37887757522233e110 * cos(theta) ** 30 + 4.54402837289176e109 * cos(theta) ** 28 - 1.17085393657334e109 * cos(theta) ** 26 + 2.36352502724432e108 * cos(theta) ** 24 - 3.72974789891041e107 * cos(theta) ** 22 + 4.57309853847296e106 * cos(theta) ** 20 - 4.31210284024745e105 * cos(theta) ** 18 + 3.08007345731961e104 * cos(theta) ** 16 - 1.63182699725542e103 * cos(theta) ** 14 + 6.22886983012766e101 * cos(theta) ** 12 - 1.64507966702051e100 * cos(theta) ** 10 + 2.83634425348364e98 * cos(theta) ** 8 - 2.92299002935377e96 * cos(theta) ** 6 + 1.55478193050732e94 * cos(theta) ** 4 - 3.19585186126891e91 * cos(theta) ** 2 + 1.06033572039446e88 ) * cos(46 * phi) ) # @torch.jit.script def Yl90_m47(theta, phi): return ( 5.89221595168767e-91 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 1.80796223312263e111 * cos(theta) ** 43 - 9.12061394698176e111 * cos(theta) ** 41 + 2.11268458658899e112 * cos(theta) ** 39 - 2.98190338792847e112 * cos(theta) ** 37 + 2.86986655543404e112 * cos(theta) ** 35 - 1.99715859705644e112 * cos(theta) ** 33 + 1.03994057124832e112 * cos(theta) ** 31 - 4.13663272566698e111 * cos(theta) ** 29 + 1.27232794440969e111 * cos(theta) ** 27 - 3.04422023509068e110 * cos(theta) ** 25 + 5.67246006538636e109 * cos(theta) ** 23 - 8.20544537760291e108 * cos(theta) ** 21 + 9.14619707694592e107 * cos(theta) ** 19 - 7.76178511244542e106 * cos(theta) ** 17 + 4.92811753171138e105 * cos(theta) ** 15 - 2.28455779615759e104 * cos(theta) ** 13 + 7.47464379615319e102 * cos(theta) ** 11 - 1.64507966702051e101 * cos(theta) ** 9 + 2.26907540278691e99 * cos(theta) ** 7 - 1.75379401761226e97 * cos(theta) ** 5 + 6.2191277220293e94 * cos(theta) ** 3 - 6.39170372253782e91 * cos(theta) ) * cos(47 * phi) ) # @torch.jit.script def Yl90_m48(theta, phi): return ( 7.6490039379346e-93 * (1.0 - cos(theta) ** 2) ** 24 * ( 7.77423760242731e112 * cos(theta) ** 42 - 3.73945171826252e113 * cos(theta) ** 40 + 8.23946988769708e113 * cos(theta) ** 38 - 1.10330425353353e114 * cos(theta) ** 36 + 1.00445329440192e114 * cos(theta) ** 34 - 6.59062337028625e113 * cos(theta) ** 32 + 3.2238157708698e113 * cos(theta) ** 30 - 1.19962349044343e113 * cos(theta) ** 28 + 3.43528544990617e112 * cos(theta) ** 26 - 7.6105505877267e111 * cos(theta) ** 24 + 1.30466581503886e111 * cos(theta) ** 22 - 1.72314352929661e110 * cos(theta) ** 20 + 1.73777744461972e109 * cos(theta) ** 18 - 1.31950346911572e108 * cos(theta) ** 16 + 7.39217629756706e106 * cos(theta) ** 14 - 2.96992513500487e105 * cos(theta) ** 12 + 8.22210817576851e103 * cos(theta) ** 10 - 1.48057170031846e102 * cos(theta) ** 8 + 1.58835278195084e100 * cos(theta) ** 6 - 8.76897008806131e97 * cos(theta) ** 4 + 1.86573831660879e95 * cos(theta) ** 2 - 6.39170372253782e91 ) * cos(48 * phi) ) # @torch.jit.script def Yl90_m49(theta, phi): return ( 1.00108934536272e-94 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 3.26517979301947e114 * cos(theta) ** 41 - 1.49578068730501e115 * cos(theta) ** 39 + 3.13099855732489e115 * cos(theta) ** 37 - 3.97189531272072e115 * cos(theta) ** 35 + 3.41514120096651e115 * cos(theta) ** 33 - 2.1089994784916e115 * cos(theta) ** 31 + 9.67144731260941e114 * cos(theta) ** 29 - 3.35894577324159e114 * cos(theta) ** 27 + 8.93174216975605e113 * cos(theta) ** 25 - 1.82653214105441e113 * cos(theta) ** 23 + 2.8702647930855e112 * cos(theta) ** 21 - 3.44628705859322e111 * cos(theta) ** 19 + 3.1279994003155e110 * cos(theta) ** 17 - 2.11120555058515e109 * cos(theta) ** 15 + 1.03490468165939e108 * cos(theta) ** 13 - 3.56391016200584e106 * cos(theta) ** 11 + 8.22210817576851e104 * cos(theta) ** 9 - 1.18445736025477e103 * cos(theta) ** 7 + 9.53011669170503e100 * cos(theta) ** 5 - 3.50758803522452e98 * cos(theta) ** 3 + 3.73147663321758e95 * cos(theta) ) * cos(49 * phi) ) # @torch.jit.script def Yl90_m50(theta, phi): return ( 1.32134703033014e-96 * (1.0 - cos(theta) ** 2) ** 25 * ( 1.33872371513798e116 * cos(theta) ** 40 - 5.83354468048953e116 * cos(theta) ** 38 + 1.15846946621021e117 * cos(theta) ** 36 - 1.39016335945225e117 * cos(theta) ** 34 + 1.12699659631895e117 * cos(theta) ** 32 - 6.53789838332396e116 * cos(theta) ** 30 + 2.80471972065673e116 * cos(theta) ** 28 - 9.0691535877523e115 * cos(theta) ** 26 + 2.23293554243901e115 * cos(theta) ** 24 - 4.20102392442514e114 * cos(theta) ** 22 + 6.02755606547954e113 * cos(theta) ** 20 - 6.54794541132712e112 * cos(theta) ** 18 + 5.31759898053636e111 * cos(theta) ** 16 - 3.16680832587773e110 * cos(theta) ** 14 + 1.34537608615721e109 * cos(theta) ** 12 - 3.92030117820643e107 * cos(theta) ** 10 + 7.39989735819166e105 * cos(theta) ** 8 - 8.29120152178337e103 * cos(theta) ** 6 + 4.76505834585251e101 * cos(theta) ** 4 - 1.05227641056736e99 * cos(theta) ** 2 + 3.73147663321758e95 ) * cos(50 * phi) ) # @torch.jit.script def Yl90_m51(theta, phi): return ( 1.75945166675974e-98 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 5.35489486055193e117 * cos(theta) ** 39 - 2.21674697858602e118 * cos(theta) ** 37 + 4.17049007835675e118 * cos(theta) ** 35 - 4.72655542213765e118 * cos(theta) ** 33 + 3.60638910822064e118 * cos(theta) ** 31 - 1.96136951499719e118 * cos(theta) ** 29 + 7.85321521783884e117 * cos(theta) ** 27 - 2.3579799328156e117 * cos(theta) ** 25 + 5.35904530185363e116 * cos(theta) ** 23 - 9.2422526337353e115 * cos(theta) ** 21 + 1.20551121309591e115 * cos(theta) ** 19 - 1.17863017403888e114 * cos(theta) ** 17 + 8.50815836885817e112 * cos(theta) ** 15 - 4.43353165622882e111 * cos(theta) ** 13 + 1.61445130338865e110 * cos(theta) ** 11 - 3.92030117820643e108 * cos(theta) ** 9 + 5.91991788655333e106 * cos(theta) ** 7 - 4.97472091307003e104 * cos(theta) ** 5 + 1.90602333834101e102 * cos(theta) ** 3 - 2.10455282113471e99 * cos(theta) ) * cos(51 * phi) ) # @torch.jit.script def Yl90_m52(theta, phi): return ( 2.36429065301138e-100 * (1.0 - cos(theta) ** 2) ** 26 * ( 2.08840899561525e119 * cos(theta) ** 38 - 8.20196382076828e119 * cos(theta) ** 36 + 1.45967152742486e120 * cos(theta) ** 34 - 1.55976328930543e120 * cos(theta) ** 32 + 1.1179806235484e120 * cos(theta) ** 30 - 5.68797159349185e119 * cos(theta) ** 28 + 2.12036810881649e119 * cos(theta) ** 26 - 5.89494983203899e118 * cos(theta) ** 24 + 1.23258041942634e118 * cos(theta) ** 22 - 1.94087305308441e117 * cos(theta) ** 20 + 2.29047130488223e116 * cos(theta) ** 18 - 2.0036712958661e115 * cos(theta) ** 16 + 1.27622375532873e114 * cos(theta) ** 14 - 5.76359115309747e112 * cos(theta) ** 12 + 1.77589643372751e111 * cos(theta) ** 10 - 3.52827106038578e109 * cos(theta) ** 8 + 4.14394252058733e107 * cos(theta) ** 6 - 2.48736045653501e105 * cos(theta) ** 4 + 5.71807001502302e102 * cos(theta) ** 2 - 2.10455282113471e99 ) * cos(52 * phi) ) # @torch.jit.script def Yl90_m53(theta, phi): return ( 3.20731081164077e-102 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 7.93595418333796e120 * cos(theta) ** 37 - 2.95270697547658e121 * cos(theta) ** 35 + 4.96288319324454e121 * cos(theta) ** 33 - 4.99124252577736e121 * cos(theta) ** 31 + 3.35394187064519e121 * cos(theta) ** 29 - 1.59263204617772e121 * cos(theta) ** 27 + 5.51295708292287e120 * cos(theta) ** 25 - 1.41478795968936e120 * cos(theta) ** 23 + 2.71167692273794e119 * cos(theta) ** 21 - 3.88174610616883e118 * cos(theta) ** 19 + 4.12284834878801e117 * cos(theta) ** 17 - 3.20587407338576e116 * cos(theta) ** 15 + 1.78671325746022e115 * cos(theta) ** 13 - 6.91630938371696e113 * cos(theta) ** 11 + 1.77589643372751e112 * cos(theta) ** 9 - 2.82261684830863e110 * cos(theta) ** 7 + 2.4863655123524e108 * cos(theta) ** 5 - 9.94944182614005e105 * cos(theta) ** 3 + 1.1436140030046e103 * cos(theta) ) * cos(53 * phi) ) # @torch.jit.script def Yl90_m54(theta, phi): return ( 4.39398874506055e-104 * (1.0 - cos(theta) ** 2) ** 27 * ( 2.93630304783504e122 * cos(theta) ** 36 - 1.0334474414168e123 * cos(theta) ** 34 + 1.6377514537707e123 * cos(theta) ** 32 - 1.54728518299098e123 * cos(theta) ** 30 + 9.72643142487106e122 * cos(theta) ** 28 - 4.30010652467984e122 * cos(theta) ** 26 + 1.37823927073072e122 * cos(theta) ** 24 - 3.25401230728552e121 * cos(theta) ** 22 + 5.69452153774967e120 * cos(theta) ** 20 - 7.37531760172077e119 * cos(theta) ** 18 + 7.00884219293961e118 * cos(theta) ** 16 - 4.80881111007864e117 * cos(theta) ** 14 + 2.32272723469828e116 * cos(theta) ** 12 - 7.60794032208866e114 * cos(theta) ** 10 + 1.59830679035476e113 * cos(theta) ** 8 - 1.97583179381604e111 * cos(theta) ** 6 + 1.2431827561762e109 * cos(theta) ** 4 - 2.98483254784202e106 * cos(theta) ** 2 + 1.1436140030046e103 ) * cos(54 * phi) ) # @torch.jit.script def Yl90_m55(theta, phi): return ( 6.08168173009143e-106 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 1.05706909722062e124 * cos(theta) ** 35 - 3.51372130081713e124 * cos(theta) ** 33 + 5.24080465206623e124 * cos(theta) ** 31 - 4.64185554897295e124 * cos(theta) ** 29 + 2.7234007989639e124 * cos(theta) ** 27 - 1.11802769641676e124 * cos(theta) ** 25 + 3.30777424975372e123 * cos(theta) ** 23 - 7.15882707602815e122 * cos(theta) ** 21 + 1.13890430754993e122 * cos(theta) ** 19 - 1.32755716830974e121 * cos(theta) ** 17 + 1.12141475087034e120 * cos(theta) ** 15 - 6.73233555411009e118 * cos(theta) ** 13 + 2.78727268163794e117 * cos(theta) ** 11 - 7.60794032208866e115 * cos(theta) ** 9 + 1.27864543228381e114 * cos(theta) ** 7 - 1.18549907628962e112 * cos(theta) ** 5 + 4.9727310247048e109 * cos(theta) ** 3 - 5.96966509568403e106 * cos(theta) ) * cos(55 * phi) ) # @torch.jit.script def Yl90_m56(theta, phi): return ( 8.5077209857911e-108 * (1.0 - cos(theta) ** 2) ** 28 * ( 3.69974184027216e125 * cos(theta) ** 34 - 1.15952802926965e126 * cos(theta) ** 32 + 1.62464944214053e126 * cos(theta) ** 30 - 1.34613810920215e126 * cos(theta) ** 28 + 7.35318215720252e125 * cos(theta) ** 26 - 2.79506924104189e125 * cos(theta) ** 24 + 7.60788077443356e124 * cos(theta) ** 22 - 1.50335368596591e124 * cos(theta) ** 20 + 2.16391818434487e123 * cos(theta) ** 18 - 2.25684718612656e122 * cos(theta) ** 16 + 1.68212212630551e121 * cos(theta) ** 14 - 8.75203622034312e119 * cos(theta) ** 12 + 3.06599994980173e118 * cos(theta) ** 10 - 6.84714628987979e116 * cos(theta) ** 8 + 8.95051802598666e114 * cos(theta) ** 6 - 5.92749538144812e112 * cos(theta) ** 4 + 1.49181930741144e110 * cos(theta) ** 2 - 5.96966509568403e106 ) * cos(56 * phi) ) # @torch.jit.script def Yl90_m57(theta, phi): return ( 1.20341414720173e-109 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 1.25791222569253e127 * cos(theta) ** 33 - 3.71048969366289e127 * cos(theta) ** 31 + 4.87394832642159e127 * cos(theta) ** 29 - 3.76918670576603e127 * cos(theta) ** 27 + 1.91182736087266e127 * cos(theta) ** 25 - 6.70816617850054e126 * cos(theta) ** 23 + 1.67373377037538e126 * cos(theta) ** 21 - 3.00670737193182e125 * cos(theta) ** 19 + 3.89505273182077e124 * cos(theta) ** 17 - 3.61095549780249e123 * cos(theta) ** 15 + 2.35497097682771e122 * cos(theta) ** 13 - 1.05024434644117e121 * cos(theta) ** 11 + 3.06599994980173e119 * cos(theta) ** 9 - 5.47771703190383e117 * cos(theta) ** 7 + 5.370310815592e115 * cos(theta) ** 5 - 2.37099815257925e113 * cos(theta) ** 3 + 2.98363861482288e110 * cos(theta) ) * cos(57 * phi) ) # @torch.jit.script def Yl90_m58(theta, phi): return ( 1.72197675682181e-111 * (1.0 - cos(theta) ** 2) ** 29 * ( 4.15111034478536e128 * cos(theta) ** 32 - 1.1502518050355e129 * cos(theta) ** 30 + 1.41344501466226e129 * cos(theta) ** 28 - 1.01768041055683e129 * cos(theta) ** 26 + 4.77956840218164e128 * cos(theta) ** 24 - 1.54287822105513e128 * cos(theta) ** 22 + 3.5148409177883e127 * cos(theta) ** 20 - 5.71274400667047e126 * cos(theta) ** 18 + 6.62158964409531e125 * cos(theta) ** 16 - 5.41643324670373e124 * cos(theta) ** 14 + 3.06146226987602e123 * cos(theta) ** 12 - 1.15526878108529e122 * cos(theta) ** 10 + 2.75939995482156e120 * cos(theta) ** 8 - 3.83440192233268e118 * cos(theta) ** 6 + 2.685155407796e116 * cos(theta) ** 4 - 7.11299445773774e113 * cos(theta) ** 2 + 2.98363861482288e110 ) * cos(58 * phi) ) # @torch.jit.script def Yl90_m59(theta, phi): return ( 2.49378588056581e-113 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 1.32835531033131e130 * cos(theta) ** 31 - 3.45075541510649e130 * cos(theta) ** 29 + 3.95764604105433e130 * cos(theta) ** 27 - 2.64596906744775e130 * cos(theta) ** 25 + 1.14709641652359e130 * cos(theta) ** 23 - 3.39433208632128e129 * cos(theta) ** 21 + 7.02968183557661e128 * cos(theta) ** 19 - 1.02829392120068e128 * cos(theta) ** 17 + 1.05945434305525e127 * cos(theta) ** 15 - 7.58300654538523e125 * cos(theta) ** 13 + 3.67375472385123e124 * cos(theta) ** 11 - 1.15526878108529e123 * cos(theta) ** 9 + 2.20751996385725e121 * cos(theta) ** 7 - 2.30064115339961e119 * cos(theta) ** 5 + 1.0740621631184e117 * cos(theta) ** 3 - 1.42259889154755e114 * cos(theta) ) * cos(59 * phi) ) # @torch.jit.script def Yl90_m60(theta, phi): return ( 3.65706504865961e-115 * (1.0 - cos(theta) ** 2) ** 30 * ( 4.11790146202708e131 * cos(theta) ** 30 - 1.00071907038088e132 * cos(theta) ** 28 + 1.06856443108467e132 * cos(theta) ** 26 - 6.61492266861939e131 * cos(theta) ** 24 + 2.63832175800426e131 * cos(theta) ** 22 - 7.12809738127468e130 * cos(theta) ** 20 + 1.33563954875956e130 * cos(theta) ** 18 - 1.74809966604116e129 * cos(theta) ** 16 + 1.58918151458288e128 * cos(theta) ** 14 - 9.8579085090008e126 * cos(theta) ** 12 + 4.04113019623635e125 * cos(theta) ** 10 - 1.03974190297676e124 * cos(theta) ** 8 + 1.54526397470007e122 * cos(theta) ** 6 - 1.15032057669981e120 * cos(theta) ** 4 + 3.2221864893552e117 * cos(theta) ** 2 - 1.42259889154755e114 ) * cos(60 * phi) ) # @torch.jit.script def Yl90_m61(theta, phi): return ( 5.43354895429245e-117 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 1.23537043860812e133 * cos(theta) ** 29 - 2.80201339706647e133 * cos(theta) ** 27 + 2.77826752082014e133 * cos(theta) ** 25 - 1.58758144046865e133 * cos(theta) ** 23 + 5.80430786760938e132 * cos(theta) ** 21 - 1.42561947625494e132 * cos(theta) ** 19 + 2.4041511877672e131 * cos(theta) ** 17 - 2.79695946566586e130 * cos(theta) ** 15 + 2.22485412041603e129 * cos(theta) ** 13 - 1.1829490210801e128 * cos(theta) ** 11 + 4.04113019623635e126 * cos(theta) ** 9 - 8.3179352238141e124 * cos(theta) ** 7 + 9.27158384820043e122 * cos(theta) ** 5 - 4.60128230679922e120 * cos(theta) ** 3 + 6.44437297871039e117 * cos(theta) ) * cos(61 * phi) ) # @torch.jit.script def Yl90_m62(theta, phi): return ( 8.18394668238493e-119 * (1.0 - cos(theta) ** 2) ** 31 * ( 3.58257427196356e134 * cos(theta) ** 28 - 7.56543617207947e134 * cos(theta) ** 26 + 6.94566880205036e134 * cos(theta) ** 24 - 3.6514373130779e134 * cos(theta) ** 22 + 1.21890465219797e134 * cos(theta) ** 20 - 2.70867700488438e133 * cos(theta) ** 18 + 4.08705701920424e132 * cos(theta) ** 16 - 4.19543919849879e131 * cos(theta) ** 14 + 2.89231035654083e130 * cos(theta) ** 12 - 1.3012439231881e129 * cos(theta) ** 10 + 3.63701717661272e127 * cos(theta) ** 8 - 5.82255465666987e125 * cos(theta) ** 6 + 4.63579192410022e123 * cos(theta) ** 4 - 1.38038469203977e121 * cos(theta) ** 2 + 6.44437297871039e117 ) * cos(62 * phi) ) # @torch.jit.script def Yl90_m63(theta, phi): return ( 1.25036860391688e-120 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 1.0031207961498e136 * cos(theta) ** 27 - 1.96701340474066e136 * cos(theta) ** 25 + 1.66696051249209e136 * cos(theta) ** 23 - 8.03316208877138e135 * cos(theta) ** 21 + 2.43780930439594e135 * cos(theta) ** 19 - 4.87561860879188e134 * cos(theta) ** 17 + 6.53929123072678e133 * cos(theta) ** 15 - 5.87361487789831e132 * cos(theta) ** 13 + 3.470772427849e131 * cos(theta) ** 11 - 1.3012439231881e130 * cos(theta) ** 9 + 2.90961374129017e128 * cos(theta) ** 7 - 3.49353279400192e126 * cos(theta) ** 5 + 1.85431676964009e124 * cos(theta) ** 3 - 2.76076938407953e121 * cos(theta) ) * cos(63 * phi) ) # @torch.jit.script def Yl90_m64(theta, phi): return ( 1.93908040520439e-122 * (1.0 - cos(theta) ** 2) ** 32 * ( 2.70842614960445e137 * cos(theta) ** 26 - 4.91753351185165e137 * cos(theta) ** 24 + 3.8340091787318e137 * cos(theta) ** 22 - 1.68696403864199e137 * cos(theta) ** 20 + 4.63183767835229e136 * cos(theta) ** 18 - 8.2885516349462e135 * cos(theta) ** 16 + 9.80893684609017e134 * cos(theta) ** 14 - 7.6356993412678e133 * cos(theta) ** 12 + 3.8178496706339e132 * cos(theta) ** 10 - 1.17111953086929e131 * cos(theta) ** 8 + 2.03672961890312e129 * cos(theta) ** 6 - 1.74676639700096e127 * cos(theta) ** 4 + 5.56295030892026e124 * cos(theta) ** 2 - 2.76076938407953e121 ) * cos(64 * phi) ) # @torch.jit.script def Yl90_m65(theta, phi): return ( 3.05452226178839e-124 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 7.04190798897157e138 * cos(theta) ** 25 - 1.1802080428444e139 * cos(theta) ** 23 + 8.43482019320995e138 * cos(theta) ** 21 - 3.37392807728398e138 * cos(theta) ** 19 + 8.33730782103412e137 * cos(theta) ** 17 - 1.32616826159139e137 * cos(theta) ** 15 + 1.37325115845262e136 * cos(theta) ** 13 - 9.16283920952136e134 * cos(theta) ** 11 + 3.8178496706339e133 * cos(theta) ** 9 - 9.36895624695435e131 * cos(theta) ** 7 + 1.22203777134187e130 * cos(theta) ** 5 - 6.98706558800384e127 * cos(theta) ** 3 + 1.11259006178405e125 * cos(theta) ) * cos(65 * phi) ) # @torch.jit.script def Yl90_m66(theta, phi): return ( 4.89115010536715e-126 * (1.0 - cos(theta) ** 2) ** 33 * ( 1.76047699724289e140 * cos(theta) ** 24 - 2.71447849854211e140 * cos(theta) ** 22 + 1.77131224057409e140 * cos(theta) ** 20 - 6.41046334683956e139 * cos(theta) ** 18 + 1.4173423295758e139 * cos(theta) ** 16 - 1.98925239238709e138 * cos(theta) ** 14 + 1.78522650598841e137 * cos(theta) ** 12 - 1.00791231304735e136 * cos(theta) ** 10 + 3.43606470357051e134 * cos(theta) ** 8 - 6.55826937286805e132 * cos(theta) ** 6 + 6.11018885670936e130 * cos(theta) ** 4 - 2.09611967640115e128 * cos(theta) ** 2 + 1.11259006178405e125 ) * cos(66 * phi) ) # @torch.jit.script def Yl90_m67(theta, phi): return ( 7.96811409510254e-128 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 4.22514479338294e141 * cos(theta) ** 23 - 5.97185269679265e141 * cos(theta) ** 21 + 3.54262448114818e141 * cos(theta) ** 19 - 1.15388340243112e141 * cos(theta) ** 17 + 2.26774772732128e140 * cos(theta) ** 15 - 2.78495334934192e139 * cos(theta) ** 13 + 2.14227180718609e138 * cos(theta) ** 11 - 1.00791231304735e137 * cos(theta) ** 9 + 2.74885176285641e135 * cos(theta) ** 7 - 3.93496162372083e133 * cos(theta) ** 5 + 2.44407554268374e131 * cos(theta) ** 3 - 4.19223935280231e128 * cos(theta) ) * cos(67 * phi) ) # @torch.jit.script def Yl90_m68(theta, phi): return ( 1.32179188920369e-129 * (1.0 - cos(theta) ** 2) ** 34 * ( 9.71783302478076e142 * cos(theta) ** 22 - 1.25408906632646e143 * cos(theta) ** 20 + 6.73098651418154e142 * cos(theta) ** 18 - 1.96160178413291e142 * cos(theta) ** 16 + 3.40162159098192e141 * cos(theta) ** 14 - 3.6204393541445e140 * cos(theta) ** 12 + 2.3564989879047e139 * cos(theta) ** 10 - 9.07121081742615e137 * cos(theta) ** 8 + 1.92419623399949e136 * cos(theta) ** 6 - 1.96748081186041e134 * cos(theta) ** 4 + 7.33222662805123e131 * cos(theta) ** 2 - 4.19223935280231e128 ) * cos(68 * phi) ) # @torch.jit.script def Yl90_m69(theta, phi): return ( 2.23487470492771e-131 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 2.13792326545177e144 * cos(theta) ** 21 - 2.50817813265291e144 * cos(theta) ** 19 + 1.21157757255268e144 * cos(theta) ** 17 - 3.13856285461265e143 * cos(theta) ** 15 + 4.76227022737469e142 * cos(theta) ** 13 - 4.3445272249734e141 * cos(theta) ** 11 + 2.3564989879047e140 * cos(theta) ** 9 - 7.25696865394092e138 * cos(theta) ** 7 + 1.15451774039969e137 * cos(theta) ** 5 - 7.86992324744166e134 * cos(theta) ** 3 + 1.46644532561025e132 * cos(theta) ) * cos(69 * phi) ) # @torch.jit.script def Yl90_m70(theta, phi): return ( 3.85552515829005e-133 * (1.0 - cos(theta) ** 2) ** 35 * ( 4.48963885744871e145 * cos(theta) ** 20 - 4.76553845204053e145 * cos(theta) ** 18 + 2.05968187333955e145 * cos(theta) ** 16 - 4.70784428191898e144 * cos(theta) ** 14 + 6.19095129558709e143 * cos(theta) ** 12 - 4.77897994747074e142 * cos(theta) ** 10 + 2.12084908911423e141 * cos(theta) ** 8 - 5.07987805775864e139 * cos(theta) ** 6 + 5.77258870199846e137 * cos(theta) ** 4 - 2.3609769742325e135 * cos(theta) ** 2 + 1.46644532561025e132 ) * cos(70 * phi) ) # @torch.jit.script def Yl90_m71(theta, phi): return ( 6.79447031427588e-135 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 8.97927771489742e146 * cos(theta) ** 19 - 8.57796921367296e146 * cos(theta) ** 17 + 3.29549099734328e146 * cos(theta) ** 15 - 6.59098199468657e145 * cos(theta) ** 13 + 7.42914155470451e144 * cos(theta) ** 11 - 4.77897994747074e143 * cos(theta) ** 9 + 1.69667927129139e142 * cos(theta) ** 7 - 3.04792683465519e140 * cos(theta) ** 5 + 2.30903548079938e138 * cos(theta) ** 3 - 4.721953948465e135 * cos(theta) ) * cos(71 * phi) ) # @torch.jit.script def Yl90_m72(theta, phi): return ( 1.22467625579179e-136 * (1.0 - cos(theta) ** 2) ** 36 * ( 1.70606276583051e148 * cos(theta) ** 18 - 1.4582547663244e148 * cos(theta) ** 16 + 4.94323649601492e147 * cos(theta) ** 14 - 8.56827659309254e146 * cos(theta) ** 12 + 8.17205571017496e145 * cos(theta) ** 10 - 4.30108195272366e144 * cos(theta) ** 8 + 1.18767548990397e143 * cos(theta) ** 6 - 1.52396341732759e141 * cos(theta) ** 4 + 6.92710644239815e138 * cos(theta) ** 2 - 4.721953948465e135 ) * cos(72 * phi) ) # @torch.jit.script def Yl90_m73(theta, phi): return ( 2.26095148267755e-138 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 3.07091297849492e149 * cos(theta) ** 17 - 2.33320762611904e149 * cos(theta) ** 15 + 6.92053109442089e148 * cos(theta) ** 13 - 1.0281931911711e148 * cos(theta) ** 11 + 8.17205571017496e146 * cos(theta) ** 9 - 3.44086556217893e145 * cos(theta) ** 7 + 7.12605293942382e143 * cos(theta) ** 5 - 6.09585366931037e141 * cos(theta) ** 3 + 1.38542128847963e139 * cos(theta) ) * cos(73 * phi) ) # @torch.jit.script def Yl90_m74(theta, phi): return ( 4.28198220661008e-140 * (1.0 - cos(theta) ** 2) ** 37 * ( 5.22055206344136e150 * cos(theta) ** 16 - 3.49981143917857e150 * cos(theta) ** 14 + 8.99669042274716e149 * cos(theta) ** 12 - 1.13101251028821e149 * cos(theta) ** 10 + 7.35485013915747e147 * cos(theta) ** 8 - 2.40860589352525e146 * cos(theta) ** 6 + 3.56302646971191e144 * cos(theta) ** 4 - 1.82875610079311e142 * cos(theta) ** 2 + 1.38542128847963e139 ) * cos(74 * phi) ) # @torch.jit.script def Yl90_m75(theta, phi): return ( 8.33379656691093e-142 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 8.35288330150618e151 * cos(theta) ** 15 - 4.89973601484999e151 * cos(theta) ** 13 + 1.07960285072966e151 * cos(theta) ** 11 - 1.13101251028821e150 * cos(theta) ** 9 + 5.88388011132597e148 * cos(theta) ** 7 - 1.44516353611515e147 * cos(theta) ** 5 + 1.42521058788476e145 * cos(theta) ** 3 - 3.65751220158622e142 * cos(theta) ) * cos(75 * phi) ) # @torch.jit.script def Yl90_m76(theta, phi): return ( 1.67010286601711e-143 * (1.0 - cos(theta) ** 2) ** 38 * ( 1.25293249522593e153 * cos(theta) ** 14 - 6.36965681930499e152 * cos(theta) ** 12 + 1.18756313580263e152 * cos(theta) ** 10 - 1.01791125925939e151 * cos(theta) ** 8 + 4.11871607792818e149 * cos(theta) ** 6 - 7.22581768057576e147 * cos(theta) ** 4 + 4.27563176365429e145 * cos(theta) ** 2 - 3.65751220158622e142 ) * cos(76 * phi) ) # @torch.jit.script def Yl90_m77(theta, phi): return ( 3.45398914132051e-145 * (1.0 - cos(theta) ** 2) ** 38.5 * ( 1.7541054933163e154 * cos(theta) ** 13 - 7.64358818316599e153 * cos(theta) ** 11 + 1.18756313580263e153 * cos(theta) ** 9 - 8.14329007407515e151 * cos(theta) ** 7 + 2.47122964675691e150 * cos(theta) ** 5 - 2.8903270722303e148 * cos(theta) ** 3 + 8.55126352730859e145 * cos(theta) ) * cos(77 * phi) ) # @torch.jit.script def Yl90_m78(theta, phi): return ( 7.39085447023436e-147 * (1.0 - cos(theta) ** 2) ** 39 * ( 2.28033714131119e155 * cos(theta) ** 12 - 8.40794700148259e154 * cos(theta) ** 10 + 1.06880682222236e154 * cos(theta) ** 8 - 5.7003030518526e152 * cos(theta) ** 6 + 1.23561482337845e151 * cos(theta) ** 4 - 8.67098121669091e148 * cos(theta) ** 2 + 8.55126352730859e145 ) * cos(78 * phi) ) # @torch.jit.script def Yl90_m79(theta, phi): return ( 1.64119685305045e-148 * (1.0 - cos(theta) ** 2) ** 39.5 * ( 2.73640456957342e156 * cos(theta) ** 11 - 8.40794700148259e155 * cos(theta) ** 9 + 8.5504545777789e154 * cos(theta) ** 7 - 3.42018183111156e153 * cos(theta) ** 5 + 4.94245929351382e151 * cos(theta) ** 3 - 1.73419624333818e149 * cos(theta) ) * cos(79 * phi) ) # @torch.jit.script def Yl90_m80(theta, phi): return ( 3.79524548497779e-150 * (1.0 - cos(theta) ** 2) ** 40 * ( 3.01004502653077e157 * cos(theta) ** 10 - 7.56715230133433e156 * cos(theta) ** 8 + 5.98531820444523e155 * cos(theta) ** 6 - 1.71009091555578e154 * cos(theta) ** 4 + 1.48273778805415e152 * cos(theta) ** 2 - 1.73419624333818e149 ) * cos(80 * phi) ) # @torch.jit.script def Yl90_m81(theta, phi): return ( 9.17786820896213e-152 * (1.0 - cos(theta) ** 2) ** 40.5 * ( 3.01004502653077e158 * cos(theta) ** 9 - 6.05372184106746e157 * cos(theta) ** 7 + 3.59119092266714e156 * cos(theta) ** 5 - 6.84036366222312e154 * cos(theta) ** 3 + 2.96547557610829e152 * cos(theta) ) * cos(81 * phi) ) # @torch.jit.script def Yl90_m82(theta, phi): return ( 2.33268630094631e-153 * (1.0 - cos(theta) ** 2) ** 41 * ( 2.70904052387769e159 * cos(theta) ** 8 - 4.23760528874722e158 * cos(theta) ** 6 + 1.79559546133357e157 * cos(theta) ** 4 - 2.05210909866694e155 * cos(theta) ** 2 + 2.96547557610829e152 ) * cos(82 * phi) ) # @torch.jit.script def Yl90_m83(theta, phi): return ( 6.27029962282424e-155 * (1.0 - cos(theta) ** 2) ** 41.5 * ( 2.16723241910215e160 * cos(theta) ** 7 - 2.54256317324833e159 * cos(theta) ** 5 + 7.18238184533428e157 * cos(theta) ** 3 - 4.10421819733387e155 * cos(theta) ) * cos(83 * phi) ) # @torch.jit.script def Yl90_m84(theta, phi): return ( 1.79665483178156e-156 * (1.0 - cos(theta) ** 2) ** 42 * ( 1.51706269337151e161 * cos(theta) ** 6 - 1.27128158662417e160 * cos(theta) ** 4 + 2.15471455360028e158 * cos(theta) ** 2 - 4.10421819733387e155 ) * cos(84 * phi) ) # @torch.jit.script def Yl90_m85(theta, phi): return ( 5.54459718538947e-158 * (1.0 - cos(theta) ** 2) ** 42.5 * ( 9.10237616022904e161 * cos(theta) ** 5 - 5.08512634649667e160 * cos(theta) ** 3 + 4.30942910720057e158 * cos(theta) ) * cos(85 * phi) ) # @torch.jit.script def Yl90_m86(theta, phi): return ( 1.86908332990183e-159 * (1.0 - cos(theta) ** 2) ** 43 * ( 4.55118808011452e162 * cos(theta) ** 4 - 1.525537903949e161 * cos(theta) ** 2 + 4.30942910720057e158 ) * cos(86 * phi) ) # @torch.jit.script def Yl90_m87(theta, phi): return ( 7.02444530463506e-161 * (1.0 - cos(theta) ** 2) ** 43.5 * (1.82047523204581e163 * cos(theta) ** 3 - 3.051075807898e161 * cos(theta)) * cos(87 * phi) ) # @torch.jit.script def Yl90_m88(theta, phi): return ( 3.03977477475515e-162 * (1.0 - cos(theta) ** 2) ** 44 * (5.46142569613742e163 * cos(theta) ** 2 - 3.051075807898e161) * cos(88 * phi) ) # @torch.jit.script def Yl90_m89(theta, phi): return ( 17.5483350761546 * (1.0 - cos(theta) ** 2) ** 44.5 * cos(89 * phi) * cos(theta) ) # @torch.jit.script def Yl90_m90(theta, phi): return 1.30797567074086 * (1.0 - cos(theta) ** 2) ** 45 * cos(90 * phi) # @torch.jit.script def Yl91_m_minus_91(theta, phi): return 1.31156408810318 * (1.0 - cos(theta) ** 2) ** 45.5 * sin(91 * phi) # @torch.jit.script def Yl91_m_minus_90(theta, phi): return 17.6939669099597 * (1.0 - cos(theta) ** 2) ** 45 * sin(90 * phi) * cos(theta) # @torch.jit.script def Yl91_m_minus_89(theta, phi): return ( 1.70280491915874e-164 * (1.0 - cos(theta) ** 2) ** 44.5 * (9.88518051000874e165 * cos(theta) ** 2 - 5.46142569613742e163) * sin(89 * phi) ) # @torch.jit.script def Yl91_m_minus_88(theta, phi): return ( 3.95696105624512e-163 * (1.0 - cos(theta) ** 2) ** 44 * (3.29506017000291e165 * cos(theta) ** 3 - 5.46142569613742e163 * cos(theta)) * sin(88 * phi) ) # @torch.jit.script def Yl91_m_minus_87(theta, phi): return ( 1.05881061636435e-161 * (1.0 - cos(theta) ** 2) ** 43.5 * ( 8.23765042500728e164 * cos(theta) ** 4 - 2.73071284806871e163 * cos(theta) ** 2 + 7.627689519745e160 ) * sin(87 * phi) ) # @torch.jit.script def Yl91_m_minus_86(theta, phi): return ( 3.15873571224314e-160 * (1.0 - cos(theta) ** 2) ** 43 * ( 1.64753008500146e164 * cos(theta) ** 5 - 9.10237616022904e162 * cos(theta) ** 3 + 7.627689519745e160 * cos(theta) ) * sin(86 * phi) ) # @torch.jit.script def Yl91_m_minus_85(theta, phi): return ( 1.02937958015436e-158 * (1.0 - cos(theta) ** 2) ** 42.5 * ( 2.74588347500243e163 * cos(theta) ** 6 - 2.27559404005726e162 * cos(theta) ** 4 + 3.8138447598725e160 * cos(theta) ** 2 - 7.18238184533428e157 ) * sin(85 * phi) ) # @torch.jit.script def Yl91_m_minus_84(theta, phi): return ( 3.61310766278528e-157 * (1.0 - cos(theta) ** 2) ** 42 * ( 3.9226906785749e162 * cos(theta) ** 7 - 4.55118808011452e161 * cos(theta) ** 5 + 1.27128158662417e160 * cos(theta) ** 3 - 7.18238184533428e157 * cos(theta) ) * sin(84 * phi) ) # @torch.jit.script def Yl91_m_minus_83(theta, phi): return ( 1.35190109756701e-155 * (1.0 - cos(theta) ** 2) ** 41.5 * ( 4.90336334821862e161 * cos(theta) ** 8 - 7.58531346685753e160 * cos(theta) ** 6 + 3.17820396656042e159 * cos(theta) ** 4 - 3.59119092266714e157 * cos(theta) ** 2 + 5.13027274666734e154 ) * sin(83 * phi) ) # @torch.jit.script def Yl91_m_minus_82(theta, phi): return ( 5.3498400728677e-154 * (1.0 - cos(theta) ** 2) ** 41 * ( 5.44818149802069e160 * cos(theta) ** 9 - 1.08361620955108e160 * cos(theta) ** 7 + 6.35640793312084e158 * cos(theta) ** 5 - 1.19706364088905e157 * cos(theta) ** 3 + 5.13027274666734e154 * cos(theta) ) * sin(82 * phi) ) # @torch.jit.script def Yl91_m_minus_81(theta, phi): return ( 2.2251733557883e-152 * (1.0 - cos(theta) ** 2) ** 40.5 * ( 5.44818149802069e159 * cos(theta) ** 10 - 1.35452026193884e159 * cos(theta) ** 8 + 1.05940132218681e158 * cos(theta) ** 6 - 2.99265910222262e156 * cos(theta) ** 4 + 2.56513637333367e154 * cos(theta) ** 2 - 2.96547557610829e151 ) * sin(81 * phi) ) # @torch.jit.script def Yl91_m_minus_80(theta, phi): return ( 9.67886465892713e-151 * (1.0 - cos(theta) ** 2) ** 40 * ( 4.9528922709279e158 * cos(theta) ** 11 - 1.50502251326538e158 * cos(theta) ** 9 + 1.51343046026687e157 * cos(theta) ** 7 - 5.98531820444523e155 * cos(theta) ** 5 + 8.5504545777789e153 * cos(theta) ** 3 - 2.96547557610829e151 * cos(theta) ) * sin(80 * phi) ) # @torch.jit.script def Yl91_m_minus_79(theta, phi): return ( 4.38442954177759e-149 * (1.0 - cos(theta) ** 2) ** 39.5 * ( 4.12741022577325e157 * cos(theta) ** 12 - 1.50502251326538e157 * cos(theta) ** 10 + 1.89178807533358e156 * cos(theta) ** 8 - 9.97553034074205e154 * cos(theta) ** 6 + 2.13761364444473e153 * cos(theta) ** 4 - 1.48273778805415e151 * cos(theta) ** 2 + 1.44516353611515e148 ) * sin(79 * phi) ) # @torch.jit.script def Yl91_m_minus_78(theta, phi): return ( 2.06114826053476e-147 * (1.0 - cos(theta) ** 2) ** 39 * ( 3.1749309429025e156 * cos(theta) ** 13 - 1.36820228478671e156 * cos(theta) ** 11 + 2.10198675037065e155 * cos(theta) ** 9 - 1.42507576296315e154 * cos(theta) ** 7 + 4.27522728888945e152 * cos(theta) ** 5 - 4.94245929351382e150 * cos(theta) ** 3 + 1.44516353611515e148 * cos(theta) ) * sin(78 * phi) ) # @torch.jit.script def Yl91_m_minus_77(theta, phi): return ( 1.0025743798546e-145 * (1.0 - cos(theta) ** 2) ** 38.5 * ( 2.26780781635893e155 * cos(theta) ** 14 - 1.14016857065559e155 * cos(theta) ** 12 + 2.10198675037065e154 * cos(theta) ** 10 - 1.78134470370394e153 * cos(theta) ** 8 + 7.12537881481575e151 * cos(theta) ** 6 - 1.23561482337845e150 * cos(theta) ** 4 + 7.22581768057576e147 * cos(theta) ** 2 - 6.10804537664899e144 ) * sin(77 * phi) ) # @torch.jit.script def Yl91_m_minus_76(theta, phi): return ( 5.03288344350919e-144 * (1.0 - cos(theta) ** 2) ** 38 * ( 1.51187187757262e154 * cos(theta) ** 15 - 8.77052746658149e153 * cos(theta) ** 13 + 1.9108970457915e153 * cos(theta) ** 11 - 1.97927189300438e152 * cos(theta) ** 9 + 1.01791125925939e151 * cos(theta) ** 7 - 2.47122964675691e149 * cos(theta) ** 5 + 2.40860589352525e147 * cos(theta) ** 3 - 6.10804537664899e144 * cos(theta) ) * sin(76 * phi) ) # @torch.jit.script def Yl91_m_minus_75(theta, phi): return ( 2.60156750632951e-142 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 9.44919923482887e152 * cos(theta) ** 16 - 6.26466247612963e152 * cos(theta) ** 14 + 1.59241420482625e152 * cos(theta) ** 12 - 1.97927189300438e151 * cos(theta) ** 10 + 1.27238907407424e150 * cos(theta) ** 8 - 4.11871607792818e148 * cos(theta) ** 6 + 6.02151473381313e146 * cos(theta) ** 4 - 3.0540226883245e144 * cos(theta) ** 2 + 2.28594512599139e141 ) * sin(75 * phi) ) # @torch.jit.script def Yl91_m_minus_74(theta, phi): return ( 1.38201769701949e-140 * (1.0 - cos(theta) ** 2) ** 37 * ( 5.5583524910758e151 * cos(theta) ** 17 - 4.17644165075309e151 * cos(theta) ** 15 + 1.2249340037125e151 * cos(theta) ** 13 - 1.79933808454943e150 * cos(theta) ** 11 + 1.41376563786027e149 * cos(theta) ** 9 - 5.88388011132597e147 * cos(theta) ** 7 + 1.20430294676263e146 * cos(theta) ** 5 - 1.01800756277483e144 * cos(theta) ** 3 + 2.28594512599139e141 * cos(theta) ) * sin(74 * phi) ) # @torch.jit.script def Yl91_m_minus_73(theta, phi): return ( 7.5316794655501e-139 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 3.08797360615322e150 * cos(theta) ** 18 - 2.61027603172068e150 * cos(theta) ** 16 + 8.74952859794642e149 * cos(theta) ** 14 - 1.49944840379119e149 * cos(theta) ** 12 + 1.41376563786027e148 * cos(theta) ** 10 - 7.35485013915747e146 * cos(theta) ** 8 + 2.00717157793771e145 * cos(theta) ** 6 - 2.54501890693708e143 * cos(theta) ** 4 + 1.14297256299569e141 * cos(theta) ** 2 - 7.69678493599794e137 ) * sin(73 * phi) ) # @torch.jit.script def Yl91_m_minus_72(theta, phi): return ( 4.20426956083568e-137 * (1.0 - cos(theta) ** 2) ** 36 * ( 1.62524926639643e149 * cos(theta) ** 19 - 1.53545648924746e149 * cos(theta) ** 17 + 5.83301906529761e148 * cos(theta) ** 15 - 1.15342184907015e148 * cos(theta) ** 13 + 1.28524148896388e147 * cos(theta) ** 11 - 8.17205571017496e145 * cos(theta) ** 9 + 2.86738796848244e144 * cos(theta) ** 7 - 5.09003781387416e142 * cos(theta) ** 5 + 3.80990854331898e140 * cos(theta) ** 3 - 7.69678493599794e137 * cos(theta) ) * sin(72 * phi) ) # @torch.jit.script def Yl91_m_minus_71(theta, phi): return ( 2.40048697311509e-135 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 8.12624633198217e147 * cos(theta) ** 20 - 8.53031382915255e147 * cos(theta) ** 18 + 3.64563691581101e147 * cos(theta) ** 16 - 8.23872749335821e146 * cos(theta) ** 14 + 1.07103457413657e146 * cos(theta) ** 12 - 8.17205571017496e144 * cos(theta) ** 10 + 3.58423496060305e143 * cos(theta) ** 8 - 8.48339635645693e141 * cos(theta) ** 6 + 9.52477135829745e139 * cos(theta) ** 4 - 3.84839246799897e137 * cos(theta) ** 2 + 2.3609769742325e134 ) * sin(71 * phi) ) # @torch.jit.script def Yl91_m_minus_70(theta, phi): return ( 1.40012402603984e-133 * (1.0 - cos(theta) ** 2) ** 35 * ( 3.8696411104677e146 * cos(theta) ** 21 - 4.48963885744871e146 * cos(theta) ** 19 + 2.14449230341824e146 * cos(theta) ** 17 - 5.49248499557214e145 * cos(theta) ** 15 + 8.23872749335821e144 * cos(theta) ** 13 - 7.42914155470451e143 * cos(theta) ** 11 + 3.98248328955895e142 * cos(theta) ** 9 - 1.21191376520813e141 * cos(theta) ** 7 + 1.90495427165949e139 * cos(theta) ** 5 - 1.28279748933299e137 * cos(theta) ** 3 + 2.3609769742325e134 * cos(theta) ) * sin(70 * phi) ) # @torch.jit.script def Yl91_m_minus_69(theta, phi): return ( 8.33279670647098e-132 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 1.75892777748532e145 * cos(theta) ** 22 - 2.24481942872436e145 * cos(theta) ** 20 + 1.19138461301013e145 * cos(theta) ** 18 - 3.43280312223259e144 * cos(theta) ** 16 + 5.88480535239872e143 * cos(theta) ** 14 - 6.19095129558709e142 * cos(theta) ** 12 + 3.98248328955895e141 * cos(theta) ** 10 - 1.51489220651017e140 * cos(theta) ** 8 + 3.17492378609915e138 * cos(theta) ** 6 - 3.20699372333248e136 * cos(theta) ** 4 + 1.18048848711625e134 * cos(theta) ** 2 - 6.66566057095567e130 ) * sin(69 * phi) ) # @torch.jit.script def Yl91_m_minus_68(theta, phi): return ( 5.05492476206179e-130 * (1.0 - cos(theta) ** 2) ** 34 * ( 7.64751207602312e143 * cos(theta) ** 23 - 1.06896163272588e144 * cos(theta) ** 21 + 6.27044533163228e143 * cos(theta) ** 19 - 2.01929595425446e143 * cos(theta) ** 17 + 3.92320356826581e142 * cos(theta) ** 15 - 4.76227022737469e141 * cos(theta) ** 13 + 3.6204393541445e140 * cos(theta) ** 11 - 1.68321356278907e139 * cos(theta) ** 9 + 4.53560540871307e137 * cos(theta) ** 7 - 6.41398744666495e135 * cos(theta) ** 5 + 3.93496162372083e133 * cos(theta) ** 3 - 6.66566057095567e130 * cos(theta) ) * sin(68 * phi) ) # @torch.jit.script def Yl91_m_minus_67(theta, phi): return ( 3.1226181444423e-128 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 3.18646336500963e142 * cos(theta) ** 24 - 4.85891651239038e142 * cos(theta) ** 22 + 3.13522266581614e142 * cos(theta) ** 20 - 1.12183108569692e142 * cos(theta) ** 18 + 2.45200223016613e141 * cos(theta) ** 16 - 3.40162159098192e140 * cos(theta) ** 14 + 3.01703279512042e139 * cos(theta) ** 12 - 1.68321356278907e138 * cos(theta) ** 10 + 5.66950676089134e136 * cos(theta) ** 8 - 1.06899790777749e135 * cos(theta) ** 6 + 9.83740405930207e132 * cos(theta) ** 4 - 3.33283028547783e130 * cos(theta) ** 2 + 1.74676639700096e127 ) * sin(67 * phi) ) # @torch.jit.script def Yl91_m_minus_66(theta, phi): return ( 1.96253507230319e-126 * (1.0 - cos(theta) ** 2) ** 33 * ( 1.27458534600385e141 * cos(theta) ** 25 - 2.11257239669147e141 * cos(theta) ** 23 + 1.49296317419816e141 * cos(theta) ** 21 - 5.90437413524697e140 * cos(theta) ** 19 + 1.4423542530389e140 * cos(theta) ** 17 - 2.26774772732128e139 * cos(theta) ** 15 + 2.32079445778494e138 * cos(theta) ** 13 - 1.53019414799007e137 * cos(theta) ** 11 + 6.29945195654593e135 * cos(theta) ** 9 - 1.52713986825356e134 * cos(theta) ** 7 + 1.96748081186041e132 * cos(theta) ** 5 - 1.11094342849261e130 * cos(theta) ** 3 + 1.74676639700096e127 * cos(theta) ) * sin(66 * phi) ) # @torch.jit.script def Yl91_m_minus_65(theta, phi): return ( 1.25387408621049e-124 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 4.90225133078405e139 * cos(theta) ** 26 - 8.80238498621446e139 * cos(theta) ** 24 + 6.78619624635528e139 * cos(theta) ** 22 - 2.95218706762348e139 * cos(theta) ** 20 + 8.01307918354945e138 * cos(theta) ** 18 - 1.4173423295758e138 * cos(theta) ** 16 + 1.65771032698924e137 * cos(theta) ** 14 - 1.27516178999172e136 * cos(theta) ** 12 + 6.29945195654593e134 * cos(theta) ** 10 - 1.90892483531695e133 * cos(theta) ** 8 + 3.27913468643402e131 * cos(theta) ** 6 - 2.77735857123153e129 * cos(theta) ** 4 + 8.73383198500481e126 * cos(theta) ** 2 - 4.27919254532328e123 ) * sin(65 * phi) ) # @torch.jit.script def Yl91_m_minus_64(theta, phi): return ( 8.13763315945349e-123 * (1.0 - cos(theta) ** 2) ** 32 * ( 1.81564864103113e138 * cos(theta) ** 27 - 3.52095399448578e138 * cos(theta) ** 25 + 2.95052010711099e138 * cos(theta) ** 23 - 1.40580336553499e138 * cos(theta) ** 21 + 4.21741009660498e137 * cos(theta) ** 19 - 8.33730782103411e136 * cos(theta) ** 17 + 1.10514021799283e136 * cos(theta) ** 15 - 9.80893684609017e134 * cos(theta) ** 13 + 5.72677450595085e133 * cos(theta) ** 11 - 2.12102759479661e132 * cos(theta) ** 9 + 4.68447812347718e130 * cos(theta) ** 7 - 5.55471714246306e128 * cos(theta) ** 5 + 2.91127732833494e126 * cos(theta) ** 3 - 4.27919254532328e123 * cos(theta) ) * sin(64 * phi) ) # @torch.jit.script def Yl91_m_minus_63(theta, phi): return ( 5.36096501313161e-121 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 6.48445943225404e136 * cos(theta) ** 28 - 1.35421307480222e137 * cos(theta) ** 26 + 1.22938337796291e137 * cos(theta) ** 24 - 6.39001529788633e136 * cos(theta) ** 22 + 2.10870504830249e136 * cos(theta) ** 20 - 4.63183767835229e135 * cos(theta) ** 18 + 6.90712636245516e134 * cos(theta) ** 16 - 7.00638346149298e133 * cos(theta) ** 14 + 4.77231208829237e132 * cos(theta) ** 12 - 2.12102759479661e131 * cos(theta) ** 10 + 5.85559765434647e129 * cos(theta) ** 8 - 9.25786190410509e127 * cos(theta) ** 6 + 7.27819332083734e125 * cos(theta) ** 4 - 2.13959627266164e123 * cos(theta) ** 2 + 9.8598906574269e119 ) * sin(63 * phi) ) # @torch.jit.script def Yl91_m_minus_62(theta, phi): return ( 3.58263308565707e-119 * (1.0 - cos(theta) ** 2) ** 31 * ( 2.2360204938807e135 * cos(theta) ** 29 - 5.01560398074898e135 * cos(theta) ** 27 + 4.91753351185165e135 * cos(theta) ** 25 - 2.77826752082014e135 * cos(theta) ** 23 + 1.00414526109642e135 * cos(theta) ** 21 - 2.43780930439594e134 * cos(theta) ** 19 + 4.06301550732657e133 * cos(theta) ** 17 - 4.67092230766199e132 * cos(theta) ** 15 + 3.67100929868644e131 * cos(theta) ** 13 - 1.92820690436056e130 * cos(theta) ** 11 + 6.50621961594052e128 * cos(theta) ** 9 - 1.32255170058644e127 * cos(theta) ** 7 + 1.45563866416747e125 * cos(theta) ** 5 - 7.13198757553879e122 * cos(theta) ** 3 + 9.8598906574269e119 * cos(theta) ) * sin(62 * phi) ) # @torch.jit.script def Yl91_m_minus_61(theta, phi): return ( 2.42721739041605e-117 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 7.45340164626901e133 * cos(theta) ** 30 - 1.79128713598178e134 * cos(theta) ** 28 + 1.89135904301987e134 * cos(theta) ** 26 - 1.15761146700839e134 * cos(theta) ** 24 + 4.56429664134738e133 * cos(theta) ** 22 - 1.21890465219797e133 * cos(theta) ** 20 + 2.25723083740365e132 * cos(theta) ** 18 - 2.91932644228874e131 * cos(theta) ** 16 + 2.62214949906174e130 * cos(theta) ** 14 - 1.60683908696713e129 * cos(theta) ** 12 + 6.50621961594052e127 * cos(theta) ** 10 - 1.65318962573305e126 * cos(theta) ** 8 + 2.42606444027911e124 * cos(theta) ** 6 - 1.7829968938847e122 * cos(theta) ** 4 + 4.92994532871345e119 * cos(theta) ** 2 - 2.1481243262368e116 ) * sin(61 * phi) ) # @torch.jit.script def Yl91_m_minus_60(theta, phi): return ( 1.66613932894921e-115 * (1.0 - cos(theta) ** 2) ** 30 * ( 2.40432311169968e132 * cos(theta) ** 31 - 6.17685219304061e132 * cos(theta) ** 29 + 7.00503349266617e132 * cos(theta) ** 27 - 4.63044586803357e132 * cos(theta) ** 25 + 1.98447680058582e132 * cos(theta) ** 23 - 5.80430786760938e131 * cos(theta) ** 21 + 1.18801623021245e131 * cos(theta) ** 19 - 1.71725084840514e130 * cos(theta) ** 17 + 1.74809966604116e129 * cos(theta) ** 15 - 1.23603006689779e128 * cos(theta) ** 13 + 5.91474510540048e126 * cos(theta) ** 11 - 1.83687736192561e125 * cos(theta) ** 9 + 3.46580634325588e123 * cos(theta) ** 7 - 3.5659937877694e121 * cos(theta) ** 5 + 1.64331510957115e119 * cos(theta) ** 3 - 2.1481243262368e116 * cos(theta) ) * sin(60 * phi) ) # @torch.jit.script def Yl91_m_minus_59(theta, phi): return ( 1.15817658036646e-113 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 7.5135097240615e130 * cos(theta) ** 32 - 2.05895073101354e131 * cos(theta) ** 30 + 2.5017976759522e131 * cos(theta) ** 28 - 1.78094071847445e131 * cos(theta) ** 26 + 8.26865333577423e130 * cos(theta) ** 24 - 2.63832175800426e130 * cos(theta) ** 22 + 5.94008115106223e129 * cos(theta) ** 20 - 9.54028249113968e128 * cos(theta) ** 18 + 1.09256229127573e128 * cos(theta) ** 16 - 8.82878619212709e126 * cos(theta) ** 14 + 4.9289542545004e125 * cos(theta) ** 12 - 1.83687736192561e124 * cos(theta) ** 10 + 4.33225792906984e122 * cos(theta) ** 8 - 5.94332297961566e120 * cos(theta) ** 6 + 4.10828777392788e118 * cos(theta) ** 4 - 1.0740621631184e116 * cos(theta) ** 2 + 4.44562153608609e112 ) * sin(59 * phi) ) # @torch.jit.script def Yl91_m_minus_58(theta, phi): return ( 8.14849452781386e-112 * (1.0 - cos(theta) ** 2) ** 29 * ( 2.27682112850348e129 * cos(theta) ** 33 - 6.64177655165657e129 * cos(theta) ** 31 + 8.62688853776622e129 * cos(theta) ** 29 - 6.59607673509056e129 * cos(theta) ** 27 + 3.30746133430969e129 * cos(theta) ** 25 - 1.14709641652359e129 * cos(theta) ** 23 + 2.8286100719344e128 * cos(theta) ** 21 - 5.02120131112615e127 * cos(theta) ** 19 + 6.42683700750428e126 * cos(theta) ** 17 - 5.88585746141806e125 * cos(theta) ** 15 + 3.79150327269261e124 * cos(theta) ** 13 - 1.66988851084147e123 * cos(theta) ** 11 + 4.81361992118872e121 * cos(theta) ** 9 - 8.49046139945094e119 * cos(theta) ** 7 + 8.21657554785575e117 * cos(theta) ** 5 - 3.58020721039466e115 * cos(theta) ** 3 + 4.44562153608609e112 * cos(theta) ) * sin(58 * phi) ) # @torch.jit.script def Yl91_m_minus_57(theta, phi): return ( 5.79975931321007e-110 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 6.6965327308926e127 * cos(theta) ** 34 - 2.07555517239268e128 * cos(theta) ** 32 + 2.87562951258874e128 * cos(theta) ** 30 - 2.35574169110377e128 * cos(theta) ** 28 + 1.27210051319604e128 * cos(theta) ** 26 - 4.77956840218164e127 * cos(theta) ** 24 + 1.28573185087927e127 * cos(theta) ** 22 - 2.51060065556307e126 * cos(theta) ** 20 + 3.57046500416904e125 * cos(theta) ** 18 - 3.67866091338629e124 * cos(theta) ** 16 + 2.70821662335187e123 * cos(theta) ** 14 - 1.39157375903456e122 * cos(theta) ** 12 + 4.81361992118872e120 * cos(theta) ** 10 - 1.06130767493137e119 * cos(theta) ** 8 + 1.36942925797596e117 * cos(theta) ** 6 - 8.95051802598666e114 * cos(theta) ** 4 + 2.22281076804304e112 * cos(theta) ** 2 - 8.77540769065552e108 ) * sin(57 * phi) ) # @torch.jit.script def Yl91_m_minus_56(theta, phi): return ( 4.1742153503652e-108 * (1.0 - cos(theta) ** 2) ** 28 * ( 1.91329506596931e126 * cos(theta) ** 35 - 6.28956112846266e126 * cos(theta) ** 33 + 9.27622423415723e126 * cos(theta) ** 31 - 8.12324721070266e126 * cos(theta) ** 29 + 4.71148338220754e126 * cos(theta) ** 27 - 1.91182736087266e126 * cos(theta) ** 25 + 5.59013848208379e125 * cos(theta) ** 23 - 1.1955241216967e125 * cos(theta) ** 21 + 1.87919210745739e124 * cos(theta) ** 19 - 2.16391818434487e123 * cos(theta) ** 17 + 1.80547774890124e122 * cos(theta) ** 15 - 1.0704413531035e121 * cos(theta) ** 13 + 4.37601811017156e119 * cos(theta) ** 11 - 1.17923074992374e118 * cos(theta) ** 9 + 1.95632751139423e116 * cos(theta) ** 7 - 1.79010360519733e114 * cos(theta) ** 5 + 7.40936922681015e111 * cos(theta) ** 3 - 8.77540769065552e108 * cos(theta) ) * sin(56 * phi) ) # @torch.jit.script def Yl91_m_minus_55(theta, phi): return ( 3.03658028879791e-106 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 5.31470851658143e124 * cos(theta) ** 36 - 1.84987092013608e125 * cos(theta) ** 34 + 2.89882007317413e125 * cos(theta) ** 32 - 2.70774907023422e125 * cos(theta) ** 30 + 1.68267263650269e125 * cos(theta) ** 28 - 7.35318215720252e124 * cos(theta) ** 26 + 2.32922436753491e124 * cos(theta) ** 24 - 5.43420055316683e123 * cos(theta) ** 22 + 9.39596053728695e122 * cos(theta) ** 20 - 1.20217676908049e122 * cos(theta) ** 18 + 1.12842359306328e121 * cos(theta) ** 16 - 7.64600966502503e119 * cos(theta) ** 14 + 3.6466817584763e118 * cos(theta) ** 12 - 1.17923074992374e117 * cos(theta) ** 10 + 2.44540938924278e115 * cos(theta) ** 8 - 2.98350600866222e113 * cos(theta) ** 6 + 1.85234230670254e111 * cos(theta) ** 4 - 4.38770384532776e108 * cos(theta) ** 2 + 1.65824030435667e105 ) * sin(55 * phi) ) # @torch.jit.script def Yl91_m_minus_54(theta, phi): return ( 2.23183486914707e-104 * (1.0 - cos(theta) ** 2) ** 27 * ( 1.43640770718417e123 * cos(theta) ** 37 - 5.28534548610308e123 * cos(theta) ** 35 + 8.78430325204283e123 * cos(theta) ** 33 - 8.73467442011038e123 * cos(theta) ** 31 + 5.80231943621618e123 * cos(theta) ** 29 - 2.7234007989639e123 * cos(theta) ** 27 + 9.31689747013965e122 * cos(theta) ** 25 - 2.36269589268123e122 * cos(theta) ** 23 + 4.4742669225176e121 * cos(theta) ** 21 - 6.32724615305519e120 * cos(theta) ** 19 + 6.63778584154869e119 * cos(theta) ** 17 - 5.09733977668336e118 * cos(theta) ** 15 + 2.80513981421254e117 * cos(theta) ** 13 - 1.07202795447613e116 * cos(theta) ** 11 + 2.71712154360309e114 * cos(theta) ** 9 - 4.26215144094603e112 * cos(theta) ** 7 + 3.70468461340507e110 * cos(theta) ** 5 - 1.46256794844259e108 * cos(theta) ** 3 + 1.65824030435667e105 * cos(theta) ) * sin(54 * phi) ) # @torch.jit.script def Yl91_m_minus_53(theta, phi): return ( 1.65667705742867e-102 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 3.78002028206361e121 * cos(theta) ** 38 - 1.46815152391752e122 * cos(theta) ** 36 + 2.58361860354201e122 * cos(theta) ** 34 - 2.72958575628449e122 * cos(theta) ** 32 + 1.93410647873873e122 * cos(theta) ** 30 - 9.72643142487106e121 * cos(theta) ** 28 + 3.58342210389986e121 * cos(theta) ** 26 - 9.84456621950512e120 * cos(theta) ** 24 + 2.03375769205345e120 * cos(theta) ** 22 - 3.16362307652759e119 * cos(theta) ** 20 + 3.68765880086038e118 * cos(theta) ** 18 - 3.1858373604271e117 * cos(theta) ** 16 + 2.0036712958661e116 * cos(theta) ** 14 - 8.93356628730108e114 * cos(theta) ** 12 + 2.71712154360309e113 * cos(theta) ** 10 - 5.32768930118253e111 * cos(theta) ** 8 + 6.17447435567512e109 * cos(theta) ** 6 - 3.65641987110647e107 * cos(theta) ** 4 + 8.29120152178337e104 * cos(theta) ** 2 - 3.00951053422264e101 ) * sin(53 * phi) ) # @torch.jit.script def Yl91_m_minus_52(theta, phi): return ( 1.24151338891615e-100 * (1.0 - cos(theta) ** 2) ** 26 * ( 9.69235969759899e119 * cos(theta) ** 39 - 3.96797709166898e120 * cos(theta) ** 37 + 7.38176743869145e120 * cos(theta) ** 35 - 8.27147198874089e120 * cos(theta) ** 33 + 6.2390531572217e120 * cos(theta) ** 31 - 3.35394187064519e120 * cos(theta) ** 29 + 1.32719337181476e120 * cos(theta) ** 27 - 3.93782648780205e119 * cos(theta) ** 25 + 8.84242474805849e118 * cos(theta) ** 23 - 1.50648717929885e118 * cos(theta) ** 21 + 1.94087305308441e117 * cos(theta) ** 19 - 1.87402197672182e116 * cos(theta) ** 17 + 1.33578086391073e115 * cos(theta) ** 15 - 6.87197406715468e113 * cos(theta) ** 13 + 2.47011049418463e112 * cos(theta) ** 11 - 5.9196547790917e110 * cos(theta) ** 9 + 8.82067765096446e108 * cos(theta) ** 7 - 7.31283974221294e106 * cos(theta) ** 5 + 2.76373384059446e104 * cos(theta) ** 3 - 3.00951053422264e101 * cos(theta) ) * sin(52 * phi) ) # @torch.jit.script def Yl91_m_minus_51(theta, phi): return ( 9.38965038251594e-99 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 2.42308992439975e118 * cos(theta) ** 40 - 1.04420449780763e119 * cos(theta) ** 38 + 2.05049095519207e119 * cos(theta) ** 36 - 2.43278587904144e119 * cos(theta) ** 34 + 1.94970411163178e119 * cos(theta) ** 32 - 1.1179806235484e119 * cos(theta) ** 30 + 4.73997632790987e118 * cos(theta) ** 28 - 1.51454864915463e118 * cos(theta) ** 26 + 3.68434364502437e117 * cos(theta) ** 24 - 6.84766899681297e116 * cos(theta) ** 22 + 9.70436526542206e115 * cos(theta) ** 20 - 1.04112332040101e115 * cos(theta) ** 18 + 8.34863039944208e113 * cos(theta) ** 16 - 4.90855290511048e112 * cos(theta) ** 14 + 2.05842541182052e111 * cos(theta) ** 12 - 5.91965477909171e109 * cos(theta) ** 10 + 1.10258470637056e108 * cos(theta) ** 8 - 1.21880662370216e106 * cos(theta) ** 6 + 6.90933460148615e103 * cos(theta) ** 4 - 1.50475526711132e101 * cos(theta) ** 2 + 5.26138205283678e97 ) * sin(51 * phi) ) # @torch.jit.script def Yl91_m_minus_50(theta, phi): return ( 7.16449398582233e-97 * (1.0 - cos(theta) ** 2) ** 25 * ( 5.90997542536524e116 * cos(theta) ** 41 - 2.67744743027596e117 * cos(theta) ** 39 + 5.54186744646505e117 * cos(theta) ** 37 - 6.95081679726125e117 * cos(theta) ** 35 + 5.90819427767207e117 * cos(theta) ** 33 - 3.60638910822064e117 * cos(theta) ** 31 + 1.63447459583099e117 * cos(theta) ** 29 - 5.60943944131346e116 * cos(theta) ** 27 + 1.47373745800975e116 * cos(theta) ** 25 - 2.97724738991868e115 * cos(theta) ** 23 + 4.62112631686765e114 * cos(theta) ** 21 - 5.47959642316322e113 * cos(theta) ** 19 + 4.91095905849534e112 * cos(theta) ** 17 - 3.27236860340699e111 * cos(theta) ** 15 + 1.58340416293887e110 * cos(theta) ** 13 - 5.38150434462882e108 * cos(theta) ** 11 + 1.22509411818951e107 * cos(theta) ** 9 - 1.74115231957451e105 * cos(theta) ** 7 + 1.38186692029723e103 * cos(theta) ** 5 - 5.01585089037107e100 * cos(theta) ** 3 + 5.26138205283678e97 * cos(theta) ) * sin(50 * phi) ) # @torch.jit.script def Yl91_m_minus_49(theta, phi): return ( 5.51340281912741e-95 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.40713700603934e115 * cos(theta) ** 42 - 6.69361857568991e115 * cos(theta) ** 40 + 1.45838617012238e116 * cos(theta) ** 38 - 1.93078244368368e116 * cos(theta) ** 36 + 1.73770419931531e116 * cos(theta) ** 34 - 1.12699659631895e116 * cos(theta) ** 32 + 5.44824865276997e115 * cos(theta) ** 30 - 2.00337122904052e115 * cos(theta) ** 28 + 5.66822099234519e114 * cos(theta) ** 26 - 1.24051974579945e114 * cos(theta) ** 24 + 2.10051196221257e113 * cos(theta) ** 22 - 2.73979821158161e112 * cos(theta) ** 20 + 2.72831058805297e111 * cos(theta) ** 18 - 2.04523037712937e110 * cos(theta) ** 16 + 1.13100297352776e109 * cos(theta) ** 14 - 4.48458695385735e107 * cos(theta) ** 12 + 1.22509411818951e106 * cos(theta) ** 10 - 2.17644039946814e104 * cos(theta) ** 8 + 2.30311153382871e102 * cos(theta) ** 6 - 1.25396272259277e100 * cos(theta) ** 4 + 2.63069102641839e97 * cos(theta) ** 2 - 8.88446817432757e93 ) * sin(49 * phi) ) # @torch.jit.script def Yl91_m_minus_48(theta, phi): return ( 4.27777531070406e-93 * (1.0 - cos(theta) ** 2) ** 24 * ( 3.27241164195196e113 * cos(theta) ** 43 - 1.63258989650973e114 * cos(theta) ** 41 + 3.73945171826252e114 * cos(theta) ** 39 - 5.21833092887482e114 * cos(theta) ** 37 + 4.9648691409009e114 * cos(theta) ** 35 - 3.41514120096651e114 * cos(theta) ** 33 + 1.75749956540967e114 * cos(theta) ** 31 - 6.90817665186387e113 * cos(theta) ** 29 + 2.099341108276e113 * cos(theta) ** 27 - 4.96207898319781e112 * cos(theta) ** 25 + 9.13266070527204e111 * cos(theta) ** 23 - 1.30466581503886e111 * cos(theta) ** 21 + 1.43595294108051e110 * cos(theta) ** 19 - 1.20307669242904e109 * cos(theta) ** 17 + 7.54001982351841e107 * cos(theta) ** 15 - 3.44968227219796e106 * cos(theta) ** 13 + 1.11372192562683e105 * cos(theta) ** 11 - 2.41826711052015e103 * cos(theta) ** 9 + 3.29015933404102e101 * cos(theta) ** 7 - 2.50792544518553e99 * cos(theta) ** 5 + 8.76897008806131e96 * cos(theta) ** 3 - 8.88446817432757e93 * cos(theta) ) * sin(48 * phi) ) # @torch.jit.script def Yl91_m_minus_47(theta, phi): return ( 3.34542815794696e-91 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 7.43729918625445e111 * cos(theta) ** 44 - 3.88711880121365e112 * cos(theta) ** 42 + 9.3486292956563e112 * cos(theta) ** 40 - 1.37324498128285e113 * cos(theta) ** 38 + 1.37913031691692e113 * cos(theta) ** 36 - 1.00445329440192e113 * cos(theta) ** 34 + 5.49218614190521e112 * cos(theta) ** 32 - 2.30272555062129e112 * cos(theta) ** 30 + 7.49764681527141e111 * cos(theta) ** 28 - 1.90849191661454e111 * cos(theta) ** 26 + 3.80527529386335e110 * cos(theta) ** 24 - 5.93029915926756e109 * cos(theta) ** 22 + 7.17976470540254e108 * cos(theta) ** 20 - 6.68375940238355e107 * cos(theta) ** 18 + 4.712512389699e106 * cos(theta) ** 16 - 2.46405876585569e105 * cos(theta) ** 14 + 9.28101604689022e103 * cos(theta) ** 12 - 2.41826711052015e102 * cos(theta) ** 10 + 4.11269916755128e100 * cos(theta) ** 8 - 4.17987574197589e98 * cos(theta) ** 6 + 2.19224252201533e96 * cos(theta) ** 4 - 4.44223408716378e93 * cos(theta) ** 2 + 1.45265993694041e90 ) * sin(47 * phi) ) # @torch.jit.script def Yl91_m_minus_46(theta, phi): return ( 2.63631625886393e-89 * (1.0 - cos(theta) ** 2) ** 23 * ( 1.65273315250099e110 * cos(theta) ** 45 - 9.03981116561315e110 * cos(theta) ** 43 + 2.28015348674544e111 * cos(theta) ** 41 - 3.52114097764832e111 * cos(theta) ** 39 + 3.72737923491058e111 * cos(theta) ** 37 - 2.86986655543404e111 * cos(theta) ** 35 + 1.66429883088037e111 * cos(theta) ** 33 - 7.42814693748803e110 * cos(theta) ** 31 + 2.58539545354187e110 * cos(theta) ** 29 - 7.06848858005385e109 * cos(theta) ** 27 + 1.52211011754534e109 * cos(theta) ** 25 - 2.57839093881198e108 * cos(theta) ** 23 + 3.41893557400121e107 * cos(theta) ** 21 - 3.51776810651766e106 * cos(theta) ** 19 + 2.77206611158765e105 * cos(theta) ** 17 - 1.64270584390379e104 * cos(theta) ** 15 + 7.13924311299247e102 * cos(theta) ** 13 - 2.19842464592741e101 * cos(theta) ** 11 + 4.56966574172364e99 * cos(theta) ** 9 - 5.97125105996556e97 * cos(theta) ** 7 + 4.38448504403065e95 * cos(theta) ** 5 - 1.48074469572126e93 * cos(theta) ** 3 + 1.45265993694041e90 * cos(theta) ) * sin(46 * phi) ) # @torch.jit.script def Yl91_m_minus_45(theta, phi): return ( 2.09284327775303e-87 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 3.59289815761085e108 * cos(theta) ** 46 - 2.05450253763935e109 * cos(theta) ** 44 + 5.42893687320343e109 * cos(theta) ** 42 - 8.80285244412081e109 * cos(theta) ** 40 + 9.8088927234489e109 * cos(theta) ** 38 - 7.97185154287234e109 * cos(theta) ** 36 + 4.89499656141284e109 * cos(theta) ** 34 - 2.32129591796501e109 * cos(theta) ** 32 + 8.61798484513955e108 * cos(theta) ** 30 - 2.52446020716209e108 * cos(theta) ** 28 + 5.85426968286669e107 * cos(theta) ** 26 - 1.07432955783833e107 * cos(theta) ** 24 + 1.55406162454601e106 * cos(theta) ** 22 - 1.75888405325883e105 * cos(theta) ** 20 + 1.54003672865981e104 * cos(theta) ** 18 - 1.02669115243987e103 * cos(theta) ** 16 + 5.0994593664232e101 * cos(theta) ** 14 - 1.83202053827284e100 * cos(theta) ** 12 + 4.56966574172364e98 * cos(theta) ** 10 - 7.46406382495695e96 * cos(theta) ** 8 + 7.30747507338442e94 * cos(theta) ** 6 - 3.70186173930315e92 * cos(theta) ** 4 + 7.26329968470206e89 * cos(theta) ** 2 - 2.30507765303144e86 ) * sin(45 * phi) ) # @torch.jit.script def Yl91_m_minus_44(theta, phi): return ( 1.67322787335225e-85 * (1.0 - cos(theta) ** 2) ** 22 * ( 7.64446416512946e106 * cos(theta) ** 47 - 4.56556119475411e107 * cos(theta) ** 45 + 1.26254345888452e108 * cos(theta) ** 43 - 2.14703718149288e108 * cos(theta) ** 41 + 2.51510069832023e108 * cos(theta) ** 39 - 2.15455447104658e108 * cos(theta) ** 37 + 1.39857044611796e108 * cos(theta) ** 35 - 7.03423005443942e107 * cos(theta) ** 33 + 2.77999511133534e107 * cos(theta) ** 31 - 8.70503519711066e106 * cos(theta) ** 29 + 2.16824803069137e106 * cos(theta) ** 27 - 4.2973182313533e105 * cos(theta) ** 25 + 6.75678967193915e104 * cos(theta) ** 23 - 8.37563834885157e103 * cos(theta) ** 21 + 8.10545646663055e102 * cos(theta) ** 19 - 6.03935972023453e101 * cos(theta) ** 17 + 3.39963957761546e100 * cos(theta) ** 15 - 1.40924656790219e99 * cos(theta) ** 13 + 4.15424158338513e97 * cos(theta) ** 11 - 8.29340424995216e95 * cos(theta) ** 9 + 1.04392501048349e94 * cos(theta) ** 7 - 7.4037234786063e91 * cos(theta) ** 5 + 2.42109989490069e89 * cos(theta) ** 3 - 2.30507765303144e86 * cos(theta) ) * sin(44 * phi) ) # @torch.jit.script def Yl91_m_minus_43(theta, phi): return ( 1.34692245599869e-83 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 1.59259670106864e105 * cos(theta) ** 48 - 9.92513303207416e105 * cos(theta) ** 46 + 2.86941695201027e106 * cos(theta) ** 44 - 5.11199328926876e106 * cos(theta) ** 42 + 6.28775174580058e106 * cos(theta) ** 40 - 5.66988018696468e106 * cos(theta) ** 38 + 3.88491790588321e106 * cos(theta) ** 36 - 2.06889119248218e106 * cos(theta) ** 34 + 8.68748472292294e105 * cos(theta) ** 32 - 2.90167839903689e105 * cos(theta) ** 30 + 7.74374296675488e104 * cos(theta) ** 28 - 1.65281470436665e104 * cos(theta) ** 26 + 2.81532902997465e103 * cos(theta) ** 24 - 3.80710834038708e102 * cos(theta) ** 22 + 4.05272823331528e101 * cos(theta) ** 20 - 3.35519984457474e100 * cos(theta) ** 18 + 2.12477473600966e99 * cos(theta) ** 16 - 1.0066046913587e98 * cos(theta) ** 14 + 3.46186798615427e96 * cos(theta) ** 12 - 8.29340424995216e94 * cos(theta) ** 10 + 1.30490626310436e93 * cos(theta) ** 8 - 1.23395391310105e91 * cos(theta) ** 6 + 6.05274973725172e88 * cos(theta) ** 4 - 1.15253882651572e86 * cos(theta) ** 2 + 3.55721860035716e82 ) * sin(43 * phi) ) # @torch.jit.script def Yl91_m_minus_42(theta, phi): return ( 1.09142282699425e-81 * (1.0 - cos(theta) ** 2) ** 21 * ( 3.25019734911967e103 * cos(theta) ** 49 - 2.1117304323562e104 * cos(theta) ** 47 + 6.37648211557837e104 * cos(theta) ** 45 - 1.18883564866715e105 * cos(theta) ** 43 + 1.53359798678063e105 * cos(theta) ** 41 - 1.45381543255505e105 * cos(theta) ** 39 + 1.04997781240087e105 * cos(theta) ** 37 - 5.91111769280624e104 * cos(theta) ** 35 + 2.63257112815847e104 * cos(theta) ** 33 - 9.36025290011899e103 * cos(theta) ** 31 + 2.67025619543272e103 * cos(theta) ** 29 - 6.12153594209872e102 * cos(theta) ** 27 + 1.12613161198986e102 * cos(theta) ** 25 - 1.65526449582047e101 * cos(theta) ** 23 + 1.92987058729299e100 * cos(theta) ** 21 - 1.76589465503934e99 * cos(theta) ** 19 + 1.24986749177039e98 * cos(theta) ** 17 - 6.71069794239136e96 * cos(theta) ** 15 + 2.66297537396483e95 * cos(theta) ** 13 - 7.53945840904742e93 * cos(theta) ** 11 + 1.44989584789373e92 * cos(theta) ** 9 - 1.76279130443007e90 * cos(theta) ** 7 + 1.21054994745034e88 * cos(theta) ** 5 - 3.84179608838573e85 * cos(theta) ** 3 + 3.55721860035716e82 * cos(theta) ) * sin(42 * phi) ) # @torch.jit.script def Yl91_m_minus_41(theta, phi): return ( 8.90028380751955e-80 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 6.50039469823934e101 * cos(theta) ** 50 - 4.39943840074209e102 * cos(theta) ** 48 + 1.38619176425617e103 * cos(theta) ** 46 - 2.70189920151626e103 * cos(theta) ** 44 + 3.65142377804912e103 * cos(theta) ** 42 - 3.63453858138762e103 * cos(theta) ** 40 + 2.76309950631807e103 * cos(theta) ** 38 - 1.64197713689062e103 * cos(theta) ** 36 + 7.7428562592896e102 * cos(theta) ** 34 - 2.92507903128718e102 * cos(theta) ** 32 + 8.90085398477572e101 * cos(theta) ** 30 - 2.18626283646383e101 * cos(theta) ** 28 + 4.33127543073023e100 * cos(theta) ** 26 - 6.89693539925195e99 * cos(theta) ** 24 + 8.77213903314995e98 * cos(theta) ** 22 - 8.82947327519668e97 * cos(theta) ** 20 + 6.94370828761328e96 * cos(theta) ** 18 - 4.1941862139946e95 * cos(theta) ** 16 + 1.90212526711773e94 * cos(theta) ** 14 - 6.28288200753952e92 * cos(theta) ** 12 + 1.44989584789373e91 * cos(theta) ** 10 - 2.20348913053759e89 * cos(theta) ** 8 + 2.01758324575057e87 * cos(theta) ** 6 - 9.60449022096433e84 * cos(theta) ** 4 + 1.77860930017858e82 * cos(theta) ** 2 - 5.34920090279272e78 ) * sin(41 * phi) ) # @torch.jit.script def Yl91_m_minus_40(theta, phi): return ( 7.30257303341627e-78 * (1.0 - cos(theta) ** 2) ** 20 * ( 1.2745871957332e100 * cos(theta) ** 51 - 8.97844571580019e100 * cos(theta) ** 49 + 2.94934417926844e101 * cos(theta) ** 47 - 6.00422044781391e101 * cos(theta) ** 45 + 8.49168320476539e101 * cos(theta) ** 43 - 8.86472824728687e101 * cos(theta) ** 41 + 7.0848705290207e101 * cos(theta) ** 39 - 4.43777604565033e101 * cos(theta) ** 37 + 2.21224464551132e101 * cos(theta) ** 35 - 8.86387585238541e100 * cos(theta) ** 33 + 2.8712432208954e100 * cos(theta) ** 31 - 7.53883736711665e99 * cos(theta) ** 29 + 1.60417608545564e99 * cos(theta) ** 27 - 2.75877415970078e98 * cos(theta) ** 25 + 3.81397349267389e97 * cos(theta) ** 23 - 4.20451108342699e96 * cos(theta) ** 21 + 3.65458330927015e95 * cos(theta) ** 19 - 2.46716836117329e94 * cos(theta) ** 17 + 1.26808351141182e93 * cos(theta) ** 15 - 4.83298615964578e91 * cos(theta) ** 13 + 1.31808713444885e90 * cos(theta) ** 11 - 2.44832125615288e88 * cos(theta) ** 9 + 2.88226177964368e86 * cos(theta) ** 7 - 1.92089804419287e84 * cos(theta) ** 5 + 5.92869766726193e81 * cos(theta) ** 3 - 5.34920090279272e78 * cos(theta) ) * sin(40 * phi) ) # @torch.jit.script def Yl91_m_minus_39(theta, phi): return ( 6.02716705137558e-76 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 2.45112922256385e98 * cos(theta) ** 52 - 1.79568914316004e99 * cos(theta) ** 50 + 6.14446704014259e99 * cos(theta) ** 48 - 1.30526531474215e100 * cos(theta) ** 46 + 1.92992800108304e100 * cos(theta) ** 44 - 2.11064958268735e100 * cos(theta) ** 42 + 1.77121763225517e100 * cos(theta) ** 40 - 1.16783580148693e100 * cos(theta) ** 38 + 6.14512401530921e99 * cos(theta) ** 36 - 2.60702230952512e99 * cos(theta) ** 34 + 8.97263506529811e98 * cos(theta) ** 32 - 2.51294578903888e98 * cos(theta) ** 30 + 5.72920030519871e97 * cos(theta) ** 28 - 1.0610669845003e97 * cos(theta) ** 26 + 1.58915562194745e96 * cos(theta) ** 24 - 1.91114140155772e95 * cos(theta) ** 22 + 1.82729165463507e94 * cos(theta) ** 20 - 1.37064908954072e93 * cos(theta) ** 18 + 7.92552194632389e91 * cos(theta) ** 16 - 3.45213297117556e90 * cos(theta) ** 14 + 1.09840594537404e89 * cos(theta) ** 12 - 2.44832125615288e87 * cos(theta) ** 10 + 3.6028272245546e85 * cos(theta) ** 8 - 3.20149674032144e83 * cos(theta) ** 6 + 1.48217441681548e81 * cos(theta) ** 4 - 2.67460045139636e78 * cos(theta) ** 2 + 7.85261436111674e74 ) * sin(39 * phi) ) # @torch.jit.script def Yl91_m_minus_38(theta, phi): return ( 5.00291172181902e-74 * (1.0 - cos(theta) ** 2) ** 19 * ( 4.624772118045e96 * cos(theta) ** 53 - 3.52095910423537e97 * cos(theta) ** 51 + 1.25397286533522e98 * cos(theta) ** 49 - 2.77716024413224e98 * cos(theta) ** 47 + 4.28872889129565e98 * cos(theta) ** 45 - 4.90848740159849e98 * cos(theta) ** 43 + 4.32004300550042e98 * cos(theta) ** 41 - 2.99445077304341e98 * cos(theta) ** 39 + 1.66084432846195e98 * cos(theta) ** 37 - 7.44863517007177e97 * cos(theta) ** 35 + 2.71898032281761e97 * cos(theta) ** 33 - 8.10627673883511e96 * cos(theta) ** 31 + 1.97558631213749e96 * cos(theta) ** 29 - 3.92987772037148e95 * cos(theta) ** 27 + 6.35662248778982e94 * cos(theta) ** 25 - 8.30931044155532e93 * cos(theta) ** 23 + 8.70138883159559e92 * cos(theta) ** 21 - 7.2139425765301e91 * cos(theta) ** 19 + 4.6620717331317e90 * cos(theta) ** 17 - 2.30142198078371e89 * cos(theta) ** 15 + 8.44927650287724e87 * cos(theta) ** 13 - 2.22574659650262e86 * cos(theta) ** 11 + 4.00314136061622e84 * cos(theta) ** 9 - 4.57356677188778e82 * cos(theta) ** 7 + 2.96434883363097e80 * cos(theta) ** 5 - 8.91533483798787e77 * cos(theta) ** 3 + 7.85261436111674e74 * cos(theta) ) * sin(38 * phi) ) # @torch.jit.script def Yl91_m_minus_37(theta, phi): return ( 4.17555852073138e-72 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 8.56439281119445e94 * cos(theta) ** 54 - 6.77107520045263e95 * cos(theta) ** 52 + 2.50794573067044e96 * cos(theta) ** 50 - 5.78575050860884e96 * cos(theta) ** 48 + 9.32332367672967e96 * cos(theta) ** 46 - 1.11556531854511e97 * cos(theta) ** 44 + 1.02858166797629e97 * cos(theta) ** 42 - 7.48612693260851e96 * cos(theta) ** 40 + 4.37064296963671e96 * cos(theta) ** 38 - 2.06906532501994e96 * cos(theta) ** 36 + 7.99700094946356e95 * cos(theta) ** 34 - 2.53321148088597e95 * cos(theta) ** 32 + 6.58528770712496e94 * cos(theta) ** 30 - 1.40352775727553e94 * cos(theta) ** 28 + 2.44485480299608e93 * cos(theta) ** 26 - 3.46221268398138e92 * cos(theta) ** 24 + 3.95517674163436e91 * cos(theta) ** 22 - 3.60697128826505e90 * cos(theta) ** 20 + 2.59003985173983e89 * cos(theta) ** 18 - 1.43838873798982e88 * cos(theta) ** 16 + 6.03519750205517e86 * cos(theta) ** 14 - 1.85478883041885e85 * cos(theta) ** 12 + 4.00314136061622e83 * cos(theta) ** 10 - 5.71695846485972e81 * cos(theta) ** 8 + 4.94058138938494e79 * cos(theta) ** 6 - 2.22883370949697e77 * cos(theta) ** 4 + 3.92630718055837e74 * cos(theta) ** 2 - 1.12727739895446e71 ) * sin(37 * phi) ) # @torch.jit.script def Yl91_m_minus_36(theta, phi): return ( 3.50349017807627e-70 * (1.0 - cos(theta) ** 2) ** 18 * ( 1.55716232930808e93 * cos(theta) ** 55 - 1.27756135857597e94 * cos(theta) ** 53 + 4.91754064837342e94 * cos(theta) ** 51 - 1.18076540992017e95 * cos(theta) ** 49 + 1.98368588866589e95 * cos(theta) ** 47 - 2.47903404121136e95 * cos(theta) ** 45 + 2.39205039064254e95 * cos(theta) ** 43 - 1.82588461770939e95 * cos(theta) ** 41 + 1.12067768452223e95 * cos(theta) ** 39 - 5.59206844599983e94 * cos(theta) ** 37 + 2.28485741413244e94 * cos(theta) ** 35 - 7.67639842692719e93 * cos(theta) ** 33 + 2.12428635713708e93 * cos(theta) ** 31 - 4.839750887157e92 * cos(theta) ** 29 + 9.05501778887438e91 * cos(theta) ** 27 - 1.38488507359255e91 * cos(theta) ** 25 + 1.71964206158016e90 * cos(theta) ** 23 - 1.71760537536431e89 * cos(theta) ** 21 + 1.36317886933675e88 * cos(theta) ** 19 - 8.46111022346951e86 * cos(theta) ** 17 + 4.02346500137011e85 * cos(theta) ** 15 - 1.42676063878373e84 * cos(theta) ** 13 + 3.63921941874202e82 * cos(theta) ** 11 - 6.35217607206636e80 * cos(theta) ** 9 + 7.05797341340706e78 * cos(theta) ** 7 - 4.45766741899393e76 * cos(theta) ** 5 + 1.30876906018612e74 * cos(theta) ** 3 - 1.12727739895446e71 * cos(theta) ) * sin(36 * phi) ) # @torch.jit.script def Yl91_m_minus_35(theta, phi): return ( 2.95458697044207e-68 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 2.78064701662158e91 * cos(theta) ** 56 - 2.36585436773327e92 * cos(theta) ** 54 + 9.45680893917965e92 * cos(theta) ** 52 - 2.36153081984034e93 * cos(theta) ** 50 + 4.1326789347206e93 * cos(theta) ** 48 - 5.389204437416e93 * cos(theta) ** 46 + 5.43647816055122e93 * cos(theta) ** 44 - 4.34734432787951e93 * cos(theta) ** 42 + 2.80169421130558e93 * cos(theta) ** 40 - 1.47159695947364e93 * cos(theta) ** 38 + 6.3468261503679e92 * cos(theta) ** 36 - 2.25776424321388e92 * cos(theta) ** 34 + 6.63839486605338e91 * cos(theta) ** 32 - 1.613250295719e91 * cos(theta) ** 30 + 3.23393492459799e90 * cos(theta) ** 28 - 5.32648105227905e89 * cos(theta) ** 26 + 7.16517525658399e88 * cos(theta) ** 24 - 7.80729716074686e87 * cos(theta) ** 22 + 6.81589434668377e86 * cos(theta) ** 20 - 4.70061679081639e85 * cos(theta) ** 18 + 2.51466562585632e84 * cos(theta) ** 16 - 1.01911474198838e83 * cos(theta) ** 14 + 3.03268284895168e81 * cos(theta) ** 12 - 6.35217607206636e79 * cos(theta) ** 10 + 8.82246676675883e77 * cos(theta) ** 8 - 7.42944569832322e75 * cos(theta) ** 6 + 3.27192265046531e73 * cos(theta) ** 4 - 5.63638699477228e70 * cos(theta) ** 2 + 1.5850357128156e67 ) * sin(35 * phi) ) # @torch.jit.script def Yl91_m_minus_34(theta, phi): return ( 2.50391440507732e-66 * (1.0 - cos(theta) ** 2) ** 17 * ( 4.8783280993361e89 * cos(theta) ** 57 - 4.30155339587868e90 * cos(theta) ** 55 + 1.78430357343012e91 * cos(theta) ** 53 - 4.63045258792224e91 * cos(theta) ** 51 + 8.43403864228694e91 * cos(theta) ** 49 - 1.1466392420034e92 * cos(theta) ** 47 + 1.20810625790027e92 * cos(theta) ** 45 - 1.01101030880919e92 * cos(theta) ** 43 + 6.83340051537947e91 * cos(theta) ** 41 - 3.77332553711189e91 * cos(theta) ** 39 + 1.71535841901835e91 * cos(theta) ** 37 - 6.45075498061108e90 * cos(theta) ** 35 + 2.01163480789496e90 * cos(theta) ** 33 - 5.20403321199677e89 * cos(theta) ** 31 + 1.11514997399931e89 * cos(theta) ** 29 - 1.97277076010335e88 * cos(theta) ** 27 + 2.86607010263359e87 * cos(theta) ** 25 - 3.39447702641168e86 * cos(theta) ** 23 + 3.24566397461132e85 * cos(theta) ** 21 - 2.47400883727179e84 * cos(theta) ** 19 + 1.47921507403313e83 * cos(theta) ** 17 - 6.79409827992252e81 * cos(theta) ** 15 + 2.33283296073206e80 * cos(theta) ** 13 - 5.77470552006032e78 * cos(theta) ** 11 + 9.80274085195425e76 * cos(theta) ** 9 - 1.06134938547475e75 * cos(theta) ** 7 + 6.54384530093061e72 * cos(theta) ** 5 - 1.87879566492409e70 * cos(theta) ** 3 + 1.5850357128156e67 * cos(theta) ) * sin(34 * phi) ) # @torch.jit.script def Yl91_m_minus_33(theta, phi): return ( 2.13200629156353e-64 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 8.41091051609672e87 * cos(theta) ** 58 - 7.68134534978336e88 * cos(theta) ** 56 + 3.30426587672245e89 * cos(theta) ** 54 - 8.90471651523508e89 * cos(theta) ** 52 + 1.68680772845739e90 * cos(theta) ** 50 - 2.38883175417376e90 * cos(theta) ** 48 + 2.62631795195711e90 * cos(theta) ** 46 - 2.29775070183906e90 * cos(theta) ** 44 + 1.6270001227094e90 * cos(theta) ** 42 - 9.43331384277973e89 * cos(theta) ** 40 + 4.51410110267987e89 * cos(theta) ** 38 - 1.79187638350308e89 * cos(theta) ** 36 + 5.91657296439695e88 * cos(theta) ** 34 - 1.62626037874899e88 * cos(theta) ** 32 + 3.7171665799977e87 * cos(theta) ** 30 - 7.04560985751197e86 * cos(theta) ** 28 + 1.10233465485907e86 * cos(theta) ** 26 - 1.41436542767153e85 * cos(theta) ** 24 + 1.47530180664151e84 * cos(theta) ** 22 - 1.23700441863589e83 * cos(theta) ** 20 + 8.21786152240628e81 * cos(theta) ** 18 - 4.24631142495157e80 * cos(theta) ** 16 + 1.66630925766576e79 * cos(theta) ** 14 - 4.81225460005027e77 * cos(theta) ** 12 + 9.80274085195425e75 * cos(theta) ** 10 - 1.32668673184343e74 * cos(theta) ** 8 + 1.09064088348844e72 * cos(theta) ** 6 - 4.69698916231023e69 * cos(theta) ** 4 + 7.925178564078e66 * cos(theta) ** 2 - 2.18625615560773e63 ) * sin(33 * phi) ) # @torch.jit.script def Yl91_m_minus_32(theta, phi): return ( 1.82358214106964e-62 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.42557805357572e86 * cos(theta) ** 59 - 1.34760444733041e87 * cos(theta) ** 57 + 6.00775613949536e87 * cos(theta) ** 55 - 1.68013519155379e88 * cos(theta) ** 53 + 3.30746613423017e88 * cos(theta) ** 51 - 4.87516684525257e88 * cos(theta) ** 49 + 5.58791053607896e88 * cos(theta) ** 47 - 5.10611267075347e88 * cos(theta) ** 45 + 3.78372121560325e88 * cos(theta) ** 43 - 2.30080825433652e88 * cos(theta) ** 41 + 1.15746182119997e88 * cos(theta) ** 39 - 4.84290914460291e87 * cos(theta) ** 37 + 1.69044941839913e87 * cos(theta) ** 35 - 4.92806175378482e86 * cos(theta) ** 33 + 1.19908599354764e86 * cos(theta) ** 31 - 2.42952064052137e85 * cos(theta) ** 29 + 4.0827209439225e84 * cos(theta) ** 27 - 5.65746171068613e83 * cos(theta) ** 25 + 6.41435568105004e82 * cos(theta) ** 23 - 5.89049723159949e81 * cos(theta) ** 21 + 4.32519027495067e80 * cos(theta) ** 19 - 2.49783024997151e79 * cos(theta) ** 17 + 1.11087283844384e78 * cos(theta) ** 15 - 3.70173430773098e76 * cos(theta) ** 13 + 8.91158259268568e74 * cos(theta) ** 11 - 1.47409636871493e73 * cos(theta) ** 9 + 1.55805840498348e71 * cos(theta) ** 7 - 9.39397832462046e68 * cos(theta) ** 5 + 2.641726188026e66 * cos(theta) ** 3 - 2.18625615560773e63 * cos(theta) ) * sin(32 * phi) ) # @torch.jit.script def Yl91_m_minus_31(theta, phi): return ( 1.56658336740129e-60 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 2.37596342262619e84 * cos(theta) ** 60 - 2.32345594367313e85 * cos(theta) ** 58 + 1.07281359633846e86 * cos(theta) ** 56 - 3.11136146584035e86 * cos(theta) ** 54 + 6.36051179659648e86 * cos(theta) ** 52 - 9.75033369050513e86 * cos(theta) ** 50 + 1.16414802834978e87 * cos(theta) ** 48 - 1.11002449364206e87 * cos(theta) ** 46 + 8.59936639909829e86 * cos(theta) ** 44 - 5.47811489127743e86 * cos(theta) ** 42 + 2.89365455299992e86 * cos(theta) ** 40 - 1.2744497748955e86 * cos(theta) ** 38 + 4.69569282888647e85 * cos(theta) ** 36 - 1.44942992758377e85 * cos(theta) ** 34 + 3.74714372983639e84 * cos(theta) ** 32 - 8.09840213507123e83 * cos(theta) ** 30 + 1.45811462282946e83 * cos(theta) ** 28 - 2.17594681180236e82 * cos(theta) ** 26 + 2.67264820043752e81 * cos(theta) ** 24 - 2.67749874163613e80 * cos(theta) ** 22 + 2.16259513747534e79 * cos(theta) ** 20 - 1.3876834722064e78 * cos(theta) ** 18 + 6.94295524027399e76 * cos(theta) ** 16 - 2.64409593409355e75 * cos(theta) ** 14 + 7.42631882723807e73 * cos(theta) ** 12 - 1.47409636871493e72 * cos(theta) ** 10 + 1.94757300622935e70 * cos(theta) ** 8 - 1.56566305410341e68 * cos(theta) ** 6 + 6.604315470065e65 * cos(theta) ** 4 - 1.09312807780386e63 * cos(theta) ** 2 + 2.96240671491562e59 ) * sin(31 * phi) ) # @torch.jit.script def Yl91_m_minus_30(theta, phi): return ( 1.35144490130788e-58 * (1.0 - cos(theta) ** 2) ** 15 * ( 3.89502200430523e82 * cos(theta) ** 61 - 3.93806092147988e83 * cos(theta) ** 59 + 1.88212911638326e84 * cos(theta) ** 57 - 5.65702084698245e84 * cos(theta) ** 55 + 1.20009656539556e85 * cos(theta) ** 53 - 1.91183013539316e85 * cos(theta) ** 51 + 2.37581230275466e85 * cos(theta) ** 49 - 2.36175424179162e85 * cos(theta) ** 47 + 1.91097031091073e85 * cos(theta) ** 45 - 1.27398020727382e85 * cos(theta) ** 43 + 7.05769403170712e84 * cos(theta) ** 41 - 3.2678199356295e84 * cos(theta) ** 39 + 1.26910616996932e84 * cos(theta) ** 37 - 4.14122836452506e83 * cos(theta) ** 35 + 1.13549809995042e83 * cos(theta) ** 33 - 2.61238778550685e82 * cos(theta) ** 31 + 5.02798145803264e81 * cos(theta) ** 29 - 8.05906226593466e80 * cos(theta) ** 27 + 1.06905928017501e80 * cos(theta) ** 25 - 1.16412988766788e79 * cos(theta) ** 23 + 1.02980720832159e78 * cos(theta) ** 21 - 7.30359722213893e76 * cos(theta) ** 19 + 4.08409131780823e75 * cos(theta) ** 17 - 1.76273062272904e74 * cos(theta) ** 15 + 5.71255294402928e72 * cos(theta) ** 13 - 1.34008760792266e71 * cos(theta) ** 11 + 2.1639700069215e69 * cos(theta) ** 9 - 2.23666150586201e67 * cos(theta) ** 7 + 1.320863094013e65 * cos(theta) ** 5 - 3.64376025934621e62 * cos(theta) ** 3 + 2.96240671491562e59 * cos(theta) ) * sin(30 * phi) ) # @torch.jit.script def Yl91_m_minus_29(theta, phi): return ( 1.17054165736105e-56 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 6.28229355533102e80 * cos(theta) ** 62 - 6.56343486913313e81 * cos(theta) ** 60 + 3.24505020066079e82 * cos(theta) ** 58 - 1.01018229410401e83 * cos(theta) ** 56 + 2.22240104702882e83 * cos(theta) ** 54 - 3.67659641421762e83 * cos(theta) ** 52 + 4.75162460550932e83 * cos(theta) ** 50 - 4.92032133706587e83 * cos(theta) ** 48 + 4.15428328458855e83 * cos(theta) ** 46 - 2.89540956198596e83 * cos(theta) ** 44 + 1.68040334088265e83 * cos(theta) ** 42 - 8.16954983907374e82 * cos(theta) ** 40 + 3.33975307886662e82 * cos(theta) ** 38 - 1.15034121236807e82 * cos(theta) ** 36 + 3.33970029397182e81 * cos(theta) ** 34 - 8.1637118297089e80 * cos(theta) ** 32 + 1.67599381934421e80 * cos(theta) ** 30 - 2.87823652354809e79 * cos(theta) ** 28 + 4.11176646221156e78 * cos(theta) ** 26 - 4.85054119861618e77 * cos(theta) ** 24 + 4.68094185600722e76 * cos(theta) ** 22 - 3.65179861106946e75 * cos(theta) ** 20 + 2.26893962100457e74 * cos(theta) ** 18 - 1.10170663920565e73 * cos(theta) ** 16 + 4.08039496002092e71 * cos(theta) ** 14 - 1.11673967326888e70 * cos(theta) ** 12 + 2.1639700069215e68 * cos(theta) ** 10 - 2.79582688232752e66 * cos(theta) ** 8 + 2.20143849002167e64 * cos(theta) ** 6 - 9.10940064836552e61 * cos(theta) ** 4 + 1.48120335745781e59 * cos(theta) ** 2 - 3.94882260052735e55 ) * sin(29 * phi) ) # @torch.jit.script def Yl91_m_minus_28(theta, phi): return ( 1.01776560923568e-54 * (1.0 - cos(theta) ** 2) ** 14 * ( 9.97189453227146e78 * cos(theta) ** 63 - 1.07597292936609e80 * cos(theta) ** 61 + 5.50008508586575e80 * cos(theta) ** 59 - 1.77224963877896e81 * cos(theta) ** 57 + 4.04072917641604e81 * cos(theta) ** 55 - 6.93697436644834e81 * cos(theta) ** 53 + 9.31691099119475e81 * cos(theta) ** 51 - 1.0041472116461e82 * cos(theta) ** 49 + 8.83890060550755e81 * cos(theta) ** 47 - 6.4342434710799e81 * cos(theta) ** 45 + 3.90791474623871e81 * cos(theta) ** 43 - 1.9925731314814e81 * cos(theta) ** 41 + 8.56346943299134e80 * cos(theta) ** 39 - 3.10903030369749e80 * cos(theta) ** 37 + 9.5420008399195e79 * cos(theta) ** 35 - 2.47385206960876e79 * cos(theta) ** 33 + 5.40643167530391e78 * cos(theta) ** 31 - 9.92495352947618e77 * cos(theta) ** 29 + 1.52287646748576e77 * cos(theta) ** 27 - 1.94021647944647e76 * cos(theta) ** 25 + 2.03519211130749e75 * cos(theta) ** 23 - 1.73895171955689e74 * cos(theta) ** 21 + 1.19417874789714e73 * cos(theta) ** 19 - 6.48062728944499e71 * cos(theta) ** 17 + 2.72026330668061e70 * cos(theta) ** 15 - 8.59030517899141e68 * cos(theta) ** 13 + 1.96724546083773e67 * cos(theta) ** 11 - 3.10647431369724e65 * cos(theta) ** 9 + 3.14491212860238e63 * cos(theta) ** 7 - 1.8218801296731e61 * cos(theta) ** 5 + 4.93734452485936e58 * cos(theta) ** 3 - 3.94882260052735e55 * cos(theta) ) * sin(28 * phi) ) # @torch.jit.script def Yl91_m_minus_27(theta, phi): return ( 8.88200962506307e-53 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.55810852066742e77 * cos(theta) ** 64 - 1.73544020865498e78 * cos(theta) ** 62 + 9.16680847644292e78 * cos(theta) ** 60 - 3.05560282548097e79 * cos(theta) ** 58 + 7.21558781502864e79 * cos(theta) ** 56 - 1.28462488267562e80 * cos(theta) ** 54 + 1.79171365215284e80 * cos(theta) ** 52 - 2.00829442329219e80 * cos(theta) ** 50 + 1.84143762614741e80 * cos(theta) ** 48 - 1.39874858066954e80 * cos(theta) ** 46 + 8.88162442326981e79 * cos(theta) ** 44 - 4.74422174162238e79 * cos(theta) ** 42 + 2.14086735824784e79 * cos(theta) ** 40 - 8.18165869394077e78 * cos(theta) ** 38 + 2.65055578886653e78 * cos(theta) ** 36 - 7.27603549884929e77 * cos(theta) ** 34 + 1.68950989853247e77 * cos(theta) ** 32 - 3.30831784315873e76 * cos(theta) ** 30 + 5.43884452673487e75 * cos(theta) ** 28 - 7.46237107479412e74 * cos(theta) ** 26 + 8.47996713044787e73 * cos(theta) ** 24 - 7.90432599798585e72 * cos(theta) ** 22 + 5.97089373948572e71 * cos(theta) ** 20 - 3.6003484941361e70 * cos(theta) ** 18 + 1.70016456667538e69 * cos(theta) ** 16 - 6.13593227070815e67 * cos(theta) ** 14 + 1.63937121736477e66 * cos(theta) ** 12 - 3.10647431369724e64 * cos(theta) ** 10 + 3.93114016075298e62 * cos(theta) ** 8 - 3.03646688278851e60 * cos(theta) ** 6 + 1.23433613121484e58 * cos(theta) ** 4 - 1.97441130026367e55 * cos(theta) ** 2 + 5.184903624642e51 ) * sin(27 * phi) ) # @torch.jit.script def Yl91_m_minus_26(theta, phi): return ( 7.77873401328519e-51 * (1.0 - cos(theta) ** 2) ** 13 * ( 2.39709003179602e75 * cos(theta) ** 65 - 2.75466699786504e76 * cos(theta) ** 63 + 1.50275548794146e77 * cos(theta) ** 61 - 5.17898783979826e77 * cos(theta) ** 59 + 1.26589259912783e78 * cos(theta) ** 57 - 2.33568160486476e78 * cos(theta) ** 55 + 3.38059179651479e78 * cos(theta) ** 53 - 3.93783220253371e78 * cos(theta) ** 51 + 3.7580359717294e78 * cos(theta) ** 49 - 2.9760608099352e78 * cos(theta) ** 47 + 1.97369431628218e78 * cos(theta) ** 45 - 1.10330738177265e78 * cos(theta) ** 43 + 5.2216277030435e77 * cos(theta) ** 41 - 2.09786120357456e77 * cos(theta) ** 39 + 7.16366429423386e76 * cos(theta) ** 37 - 2.07886728538551e76 * cos(theta) ** 35 + 5.11972696524991e75 * cos(theta) ** 33 - 1.06719930424475e75 * cos(theta) ** 31 + 1.87546362990858e74 * cos(theta) ** 29 - 2.76384113881264e73 * cos(theta) ** 27 + 3.39198685217915e72 * cos(theta) ** 25 - 3.43666347738515e71 * cos(theta) ** 23 + 2.84328273308844e70 * cos(theta) ** 21 - 1.89492026007163e69 * cos(theta) ** 19 + 1.0000968039267e68 * cos(theta) ** 17 - 4.09062151380543e66 * cos(theta) ** 15 + 1.26105478258829e65 * cos(theta) ** 13 - 2.82406755790658e63 * cos(theta) ** 11 + 4.36793351194775e61 * cos(theta) ** 9 - 4.33780983255501e59 * cos(theta) ** 7 + 2.46867226242968e57 * cos(theta) ** 5 - 6.58137100087892e54 * cos(theta) ** 3 + 5.184903624642e51 * cos(theta) ) * sin(26 * phi) ) # @torch.jit.script def Yl91_m_minus_25(theta, phi): return ( 6.83555559851118e-49 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 3.63195459363034e73 * cos(theta) ** 66 - 4.30416718416413e74 * cos(theta) ** 64 + 2.42379917409913e75 * cos(theta) ** 62 - 8.63164639966376e75 * cos(theta) ** 60 + 2.18257344677212e76 * cos(theta) ** 58 - 4.17086000868707e76 * cos(theta) ** 56 + 6.26035517873109e76 * cos(theta) ** 54 - 7.57275423564174e76 * cos(theta) ** 52 + 7.5160719434588e76 * cos(theta) ** 50 - 6.200126687365e76 * cos(theta) ** 48 + 4.29063981800474e76 * cos(theta) ** 46 - 2.50751677675602e76 * cos(theta) ** 44 + 1.24324469120083e76 * cos(theta) ** 42 - 5.24465300893639e75 * cos(theta) ** 40 + 1.88517481427207e75 * cos(theta) ** 38 - 5.77463134829309e74 * cos(theta) ** 36 + 1.50580204860292e74 * cos(theta) ** 34 - 3.33499782576485e73 * cos(theta) ** 32 + 6.25154543302859e72 * cos(theta) ** 30 - 9.87086121004514e71 * cos(theta) ** 28 + 1.30461032776121e71 * cos(theta) ** 26 - 1.43194311557715e70 * cos(theta) ** 24 + 1.29240124231293e69 * cos(theta) ** 22 - 9.47460130035817e67 * cos(theta) ** 20 + 5.55609335514831e66 * cos(theta) ** 18 - 2.55663844612839e65 * cos(theta) ** 16 + 9.0075341613449e63 * cos(theta) ** 14 - 2.35338963158882e62 * cos(theta) ** 12 + 4.36793351194775e60 * cos(theta) ** 10 - 5.42226229069376e58 * cos(theta) ** 8 + 4.11445377071614e56 * cos(theta) ** 6 - 1.64534275021973e54 * cos(theta) ** 4 + 2.592451812321e51 * cos(theta) ** 2 - 6.7144569083683e47 ) * sin(25 * phi) ) # @torch.jit.script def Yl91_m_minus_24(theta, phi): return ( 6.02615386200106e-47 * (1.0 - cos(theta) ** 2) ** 12 * ( 5.42082775168708e71 * cos(theta) ** 67 - 6.62179566794482e72 * cos(theta) ** 65 + 3.84730027634783e73 * cos(theta) ** 63 - 1.41502399994488e74 * cos(theta) ** 61 + 3.69927702842733e74 * cos(theta) ** 59 - 7.31729826085452e74 * cos(theta) ** 57 + 1.13824639613292e75 * cos(theta) ** 55 - 1.42882155389467e75 * cos(theta) ** 53 + 1.47373959675663e75 * cos(theta) ** 51 - 1.26533197701327e75 * cos(theta) ** 49 + 9.12902088937178e74 * cos(theta) ** 47 - 5.57225950390226e74 * cos(theta) ** 45 + 2.89126672372287e74 * cos(theta) ** 43 - 1.27918366071619e74 * cos(theta) ** 41 + 4.83378157505658e73 * cos(theta) ** 39 - 1.56071117521435e73 * cos(theta) ** 37 + 4.3022915674369e72 * cos(theta) ** 35 - 1.01060540174692e72 * cos(theta) ** 33 + 2.01662755904148e71 * cos(theta) ** 31 - 3.40374524484315e70 * cos(theta) ** 29 + 4.8318901028193e69 * cos(theta) ** 27 - 5.72777246230859e68 * cos(theta) ** 25 + 5.61913583614316e67 * cos(theta) ** 23 - 4.51171490493246e66 * cos(theta) ** 21 + 2.92425966060437e65 * cos(theta) ** 19 - 1.50390496831082e64 * cos(theta) ** 17 + 6.00502277422993e62 * cos(theta) ** 15 - 1.81029971660678e61 * cos(theta) ** 13 + 3.97084864722523e59 * cos(theta) ** 11 - 6.02473587854863e57 * cos(theta) ** 9 + 5.87779110102305e55 * cos(theta) ** 7 - 3.29068550043946e53 * cos(theta) ** 5 + 8.64150604107e50 * cos(theta) ** 3 - 6.7144569083683e47 * cos(theta) ) * sin(24 * phi) ) # @torch.jit.script def Yl91_m_minus_23(theta, phi): return ( 5.32897389261526e-45 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 7.97180551718688e69 * cos(theta) ** 68 - 1.00330237393103e71 * cos(theta) ** 66 + 6.01140668179348e71 * cos(theta) ** 64 - 2.28229677410464e72 * cos(theta) ** 62 + 6.16546171404555e72 * cos(theta) ** 60 - 1.26160314842319e73 * cos(theta) ** 58 + 2.03258285023737e73 * cos(theta) ** 56 - 2.64596584054568e73 * cos(theta) ** 54 + 2.83411460914736e73 * cos(theta) ** 52 - 2.53066395402653e73 * cos(theta) ** 50 + 1.90187935195245e73 * cos(theta) ** 48 - 1.21136076171788e73 * cos(theta) ** 46 + 6.57106073573379e72 * cos(theta) ** 44 - 3.0456753826576e72 * cos(theta) ** 42 + 1.20844539376415e72 * cos(theta) ** 40 - 4.1071346716167e71 * cos(theta) ** 38 + 1.1950809909547e71 * cos(theta) ** 36 - 2.97236882866742e70 * cos(theta) ** 34 + 6.30196112200462e69 * cos(theta) ** 32 - 1.13458174828105e69 * cos(theta) ** 30 + 1.72567503672118e68 * cos(theta) ** 28 - 2.20298940858023e67 * cos(theta) ** 26 + 2.34130659839298e66 * cos(theta) ** 24 - 2.05077950224203e65 * cos(theta) ** 22 + 1.46212983030219e64 * cos(theta) ** 20 - 8.35502760172678e62 * cos(theta) ** 18 + 3.75313923389371e61 * cos(theta) ** 16 - 1.2930712261477e60 * cos(theta) ** 14 + 3.30904053935436e58 * cos(theta) ** 12 - 6.02473587854863e56 * cos(theta) ** 10 + 7.34723887627881e54 * cos(theta) ** 8 - 5.48447583406576e52 * cos(theta) ** 6 + 2.1603765102675e50 * cos(theta) ** 4 - 3.35722845418415e47 * cos(theta) ** 2 + 8.58626203116151e43 ) * sin(23 * phi) ) # @torch.jit.script def Yl91_m_minus_22(theta, phi): return ( 4.72629215111746e-43 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.15533413292563e68 * cos(theta) ** 69 - 1.49746622974781e69 * cos(theta) ** 67 + 9.24831797198997e69 * cos(theta) ** 65 - 3.62269329222959e70 * cos(theta) ** 63 + 1.01073142853206e71 * cos(theta) ** 61 - 2.13831042105626e71 * cos(theta) ** 59 + 3.56593482497783e71 * cos(theta) ** 57 - 4.81084698281033e71 * cos(theta) ** 55 + 5.34738605499502e71 * cos(theta) ** 53 - 4.96208618436575e71 * cos(theta) ** 51 + 3.88138643255603e71 * cos(theta) ** 49 - 2.577363322804e71 * cos(theta) ** 47 + 1.46023571905195e71 * cos(theta) ** 45 - 7.08296600618047e70 * cos(theta) ** 43 + 2.94742778966865e70 * cos(theta) ** 41 - 1.05311145426069e70 * cos(theta) ** 39 + 3.22994862420188e69 * cos(theta) ** 37 - 8.4924823676212e68 * cos(theta) ** 35 + 1.90968518848625e68 * cos(theta) ** 33 - 3.65994112348726e67 * cos(theta) ** 31 + 5.95060357490061e66 * cos(theta) ** 29 - 8.15922003177862e65 * cos(theta) ** 27 + 9.36522639357193e64 * cos(theta) ** 25 - 8.9164326184436e63 * cos(theta) ** 23 + 6.96252300143898e62 * cos(theta) ** 21 - 4.39738294827725e61 * cos(theta) ** 19 + 2.20772896111395e60 * cos(theta) ** 17 - 8.62047484098469e58 * cos(theta) ** 15 + 2.54541579950335e57 * cos(theta) ** 13 - 5.47703261686239e55 * cos(theta) ** 11 + 8.1635987514209e53 * cos(theta) ** 9 - 7.8349654772368e51 * cos(theta) ** 7 + 4.320753020535e49 * cos(theta) ** 5 - 1.11907615139472e47 * cos(theta) ** 3 + 8.58626203116151e43 * cos(theta) ) * sin(22 * phi) ) # @torch.jit.script def Yl91_m_minus_21(theta, phi): return ( 4.20347825743065e-41 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.65047733275091e66 * cos(theta) ** 70 - 2.20215622021737e67 * cos(theta) ** 68 + 1.40126029878636e68 * cos(theta) ** 66 - 5.66045826910874e68 * cos(theta) ** 64 + 1.63021198150332e69 * cos(theta) ** 62 - 3.56385070176043e69 * cos(theta) ** 60 + 6.14816349134109e69 * cos(theta) ** 58 - 8.59079818358988e69 * cos(theta) ** 56 + 9.90256676850929e69 * cos(theta) ** 54 - 9.54247343147259e69 * cos(theta) ** 52 + 7.76277286511206e69 * cos(theta) ** 50 - 5.36950692250834e69 * cos(theta) ** 48 + 3.1744254761999e69 * cos(theta) ** 46 - 1.60976500140465e69 * cos(theta) ** 44 + 7.01768521349678e68 * cos(theta) ** 42 - 2.63277863565173e68 * cos(theta) ** 40 + 8.49986480053126e67 * cos(theta) ** 38 - 2.35902287989478e67 * cos(theta) ** 36 + 5.61672114260662e66 * cos(theta) ** 34 - 1.14373160108977e66 * cos(theta) ** 32 + 1.98353452496687e65 * cos(theta) ** 30 - 2.91400715420665e64 * cos(theta) ** 28 + 3.60201015137382e63 * cos(theta) ** 26 - 3.71518025768483e62 * cos(theta) ** 24 + 3.16478318247226e61 * cos(theta) ** 22 - 2.19869147413863e60 * cos(theta) ** 20 + 1.22651608950775e59 * cos(theta) ** 18 - 5.38779677561543e57 * cos(theta) ** 16 + 1.81815414250239e56 * cos(theta) ** 14 - 4.56419384738532e54 * cos(theta) ** 12 + 8.1635987514209e52 * cos(theta) ** 10 - 9.793706846546e50 * cos(theta) ** 8 + 7.201255034225e48 * cos(theta) ** 6 - 2.79769037848679e46 * cos(theta) ** 4 + 4.29313101558076e43 * cos(theta) ** 2 - 1.08549456778274e40 ) * sin(21 * phi) ) # @torch.jit.script def Yl91_m_minus_20(theta, phi): return ( 3.74840916485146e-39 * (1.0 - cos(theta) ** 2) ** 10 * ( 2.32461596162099e64 * cos(theta) ** 71 - 3.19153075393822e65 * cos(theta) ** 69 + 2.09143328177069e66 * cos(theta) ** 67 - 8.70839733709037e66 * cos(theta) ** 65 + 2.58763806587828e67 * cos(theta) ** 63 - 5.84237819960726e67 * cos(theta) ** 61 + 1.04206160870188e68 * cos(theta) ** 59 - 1.5071575760684e68 * cos(theta) ** 57 + 1.80046668518351e68 * cos(theta) ** 55 - 1.80046668518351e68 * cos(theta) ** 53 + 1.52211232649256e68 * cos(theta) ** 51 - 1.09581773928742e68 * cos(theta) ** 49 + 6.75409675787213e67 * cos(theta) ** 47 - 3.57725555867701e67 * cos(theta) ** 45 + 1.63201981709227e67 * cos(theta) ** 43 - 6.42141130646764e66 * cos(theta) ** 41 + 2.17945251295673e66 * cos(theta) ** 39 - 6.37573751322913e65 * cos(theta) ** 37 + 1.60477746931618e65 * cos(theta) ** 35 - 3.46585333663566e64 * cos(theta) ** 33 + 6.39849846763507e63 * cos(theta) ** 31 - 1.00483005317471e63 * cos(theta) ** 29 + 1.33407783384215e62 * cos(theta) ** 27 - 1.48607210307393e61 * cos(theta) ** 25 + 1.37599268803142e60 * cos(theta) ** 23 - 1.04699594006601e59 * cos(theta) ** 21 + 6.45534783951446e57 * cos(theta) ** 19 - 3.16929222095025e56 * cos(theta) ** 17 + 1.21210276166826e55 * cos(theta) ** 15 - 3.51091834414256e53 * cos(theta) ** 13 + 7.42145341038264e51 * cos(theta) ** 11 - 1.08818964961622e50 * cos(theta) ** 9 + 1.028750719175e48 * cos(theta) ** 7 - 5.59538075697358e45 * cos(theta) ** 5 + 1.43104367186025e43 * cos(theta) ** 3 - 1.08549456778274e40 * cos(theta) ) * sin(20 * phi) ) # @torch.jit.script def Yl91_m_minus_19(theta, phi): return ( 3.35100232120186e-37 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 3.22863328002916e62 * cos(theta) ** 72 - 4.55932964848317e63 * cos(theta) ** 70 + 3.07563717907454e64 * cos(theta) ** 68 - 1.31945414198339e65 * cos(theta) ** 66 + 4.04318447793481e65 * cos(theta) ** 64 - 9.42319064452784e65 * cos(theta) ** 62 + 1.73676934783647e66 * cos(theta) ** 60 - 2.59854754494552e66 * cos(theta) ** 58 + 3.21511908068484e66 * cos(theta) ** 56 - 3.33419756515464e66 * cos(theta) ** 54 + 2.92713908940877e66 * cos(theta) ** 52 - 2.19163547857483e66 * cos(theta) ** 50 + 1.40710349122336e66 * cos(theta) ** 48 - 7.77664251886306e65 * cos(theta) ** 46 + 3.70913594793699e65 * cos(theta) ** 44 - 1.52890745392087e65 * cos(theta) ** 42 + 5.44863128239183e64 * cos(theta) ** 40 - 1.67782566137609e64 * cos(theta) ** 38 + 4.45771519254493e63 * cos(theta) ** 36 - 1.01936862842225e63 * cos(theta) ** 34 + 1.99953077113596e62 * cos(theta) ** 32 - 3.34943351058236e61 * cos(theta) ** 30 + 4.76456369229341e60 * cos(theta) ** 28 - 5.71566193489974e59 * cos(theta) ** 26 + 5.73330286679758e58 * cos(theta) ** 24 - 4.75907245484551e57 * cos(theta) ** 22 + 3.22767391975723e56 * cos(theta) ** 20 - 1.76071790052792e55 * cos(theta) ** 18 + 7.57564226042665e53 * cos(theta) ** 16 - 2.50779881724468e52 * cos(theta) ** 14 + 6.1845445086522e50 * cos(theta) ** 12 - 1.08818964961622e49 * cos(theta) ** 10 + 1.28593839896875e47 * cos(theta) ** 8 - 9.32563459495597e44 * cos(theta) ** 6 + 3.57760917965063e42 * cos(theta) ** 4 - 5.42747283891372e39 * cos(theta) ** 2 + 1.3582264361646e36 ) * sin(19 * phi) ) # @torch.jit.script def Yl91_m_minus_18(theta, phi): return ( 3.00284213621534e-35 * (1.0 - cos(theta) ** 2) ** 9 * ( 4.42278531510844e60 * cos(theta) ** 73 - 6.42159105420164e61 * cos(theta) ** 71 + 4.45744518706455e62 * cos(theta) ** 69 - 1.96933454027372e63 * cos(theta) ** 67 + 6.22028381220741e63 * cos(theta) ** 65 - 1.49574454675045e64 * cos(theta) ** 63 + 2.84716286530568e64 * cos(theta) ** 61 - 4.40431787278901e64 * cos(theta) ** 59 + 5.64055979067515e64 * cos(theta) ** 57 - 6.06217739119026e64 * cos(theta) ** 55 + 5.5229039422807e64 * cos(theta) ** 53 - 4.29732446779379e64 * cos(theta) ** 51 + 2.87163977800686e64 * cos(theta) ** 49 - 1.65460479124746e64 * cos(theta) ** 47 + 8.24252432874886e63 * cos(theta) ** 45 - 3.55559873004853e63 * cos(theta) ** 43 + 1.32893445911996e63 * cos(theta) ** 41 - 4.30211708045151e62 * cos(theta) ** 39 + 1.20478788987701e62 * cos(theta) ** 37 - 2.91248179549215e61 * cos(theta) ** 35 + 6.05918415495745e60 * cos(theta) ** 33 - 1.0804624227685e60 * cos(theta) ** 31 + 1.64295299734256e59 * cos(theta) ** 29 - 2.11691182774065e58 * cos(theta) ** 27 + 2.29332114671903e57 * cos(theta) ** 25 - 2.06916193688935e56 * cos(theta) ** 23 + 1.53698758083678e55 * cos(theta) ** 21 - 9.26693631856799e53 * cos(theta) ** 19 + 4.45626015319214e52 * cos(theta) ** 17 - 1.67186587816312e51 * cos(theta) ** 15 + 4.75734192973246e49 * cos(theta) ** 13 - 9.8926331783293e47 * cos(theta) ** 11 + 1.42882044329861e46 * cos(theta) ** 9 - 1.33223351356514e44 * cos(theta) ** 7 + 7.15521835930126e41 * cos(theta) ** 5 - 1.80915761297124e39 * cos(theta) ** 3 + 1.3582264361646e36 * cos(theta) ) * sin(18 * phi) ) # @torch.jit.script def Yl91_m_minus_17(theta, phi): return ( 2.69687992278696e-33 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 5.9767369123087e58 * cos(theta) ** 74 - 8.91887646416895e59 * cos(theta) ** 72 + 6.36777883866364e60 * cos(theta) ** 70 - 2.89608020628488e61 * cos(theta) ** 68 + 9.42467244273849e61 * cos(theta) ** 66 - 2.33710085429758e62 * cos(theta) ** 64 + 4.59219816984788e62 * cos(theta) ** 62 - 7.34052978798169e62 * cos(theta) ** 60 + 9.72510308737095e62 * cos(theta) ** 58 - 1.08253167699826e63 * cos(theta) ** 56 + 1.02275998931124e63 * cos(theta) ** 54 - 8.26408551498806e62 * cos(theta) ** 52 + 5.74327955601371e62 * cos(theta) ** 50 - 3.44709331509887e62 * cos(theta) ** 48 + 1.7918531149454e62 * cos(theta) ** 46 - 8.08090620465575e61 * cos(theta) ** 44 + 3.16412966457133e61 * cos(theta) ** 42 - 1.07552927011288e61 * cos(theta) ** 40 + 3.17049444704476e60 * cos(theta) ** 38 - 8.09022720970042e59 * cos(theta) ** 36 + 1.78211298675219e59 * cos(theta) ** 34 - 3.37644507115157e58 * cos(theta) ** 32 + 5.47650999114185e57 * cos(theta) ** 30 - 7.56039938478802e56 * cos(theta) ** 28 + 8.82046594891936e55 * cos(theta) ** 26 - 8.6215080703723e54 * cos(theta) ** 24 + 6.98630718562171e53 * cos(theta) ** 22 - 4.633468159284e52 * cos(theta) ** 20 + 2.47570008510675e51 * cos(theta) ** 18 - 1.04491617385195e50 * cos(theta) ** 16 + 3.39810137838033e48 * cos(theta) ** 14 - 8.24386098194108e46 * cos(theta) ** 12 + 1.42882044329861e45 * cos(theta) ** 10 - 1.66529189195642e43 * cos(theta) ** 8 + 1.19253639321688e41 * cos(theta) ** 6 - 4.5228940324281e38 * cos(theta) ** 4 + 6.79113218082298e35 * cos(theta) ** 2 - 1.68389094491023e32 ) * sin(17 * phi) ) # @torch.jit.script def Yl91_m_minus_16(theta, phi): return ( 2.42719193050827e-31 * (1.0 - cos(theta) ** 2) ** 8 * ( 7.96898254974493e56 * cos(theta) ** 75 - 1.22176389920123e58 * cos(theta) ** 73 + 8.9687025896671e58 * cos(theta) ** 71 - 4.19721769026794e59 * cos(theta) ** 69 + 1.40666752876694e60 * cos(theta) ** 67 - 3.59553977584243e60 * cos(theta) ** 65 + 7.28920344420298e60 * cos(theta) ** 63 - 1.20336553901339e61 * cos(theta) ** 61 + 1.64832255718152e61 * cos(theta) ** 59 - 1.8991783806987e61 * cos(theta) ** 57 + 1.85956361692953e61 * cos(theta) ** 55 - 1.55926141792228e61 * cos(theta) ** 53 + 1.1261332462772e61 * cos(theta) ** 51 - 7.03488431652831e60 * cos(theta) ** 49 + 3.81245343605405e60 * cos(theta) ** 47 - 1.79575693436794e60 * cos(theta) ** 45 + 7.35844108039844e59 * cos(theta) ** 43 - 2.62324212222653e59 * cos(theta) ** 41 + 8.12947294114041e58 * cos(theta) ** 39 - 2.18654789451363e58 * cos(theta) ** 37 + 5.09175139072055e57 * cos(theta) ** 35 - 1.02316517307623e57 * cos(theta) ** 33 + 1.76661612617479e56 * cos(theta) ** 31 - 2.60703427061656e55 * cos(theta) ** 29 + 3.2668392403405e54 * cos(theta) ** 27 - 3.44860322814892e53 * cos(theta) ** 25 + 3.03752486331379e52 * cos(theta) ** 23 - 2.20641340918286e51 * cos(theta) ** 21 + 1.30300004479302e50 * cos(theta) ** 19 - 6.14656572854089e48 * cos(theta) ** 17 + 2.26540091892022e47 * cos(theta) ** 15 - 6.34143152457006e45 * cos(theta) ** 13 + 1.29892767572601e44 * cos(theta) ** 11 - 1.85032432439603e42 * cos(theta) ** 9 + 1.70362341888125e40 * cos(theta) ** 7 - 9.04578806485621e37 * cos(theta) ** 5 + 2.26371072694099e35 * cos(theta) ** 3 - 1.68389094491023e32 * cos(theta) ) * sin(16 * phi) ) # @torch.jit.script def Yl91_m_minus_15(theta, phi): return ( 2.18878349199524e-29 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.04855033549275e55 * cos(theta) ** 76 - 1.65103229621787e56 * cos(theta) ** 74 + 1.24565313745376e57 * cos(theta) ** 72 - 5.99602527181134e57 * cos(theta) ** 70 + 2.06862871877491e58 * cos(theta) ** 68 - 5.4477875391552e58 * cos(theta) ** 66 + 1.13893803815672e59 * cos(theta) ** 64 - 1.94091215969902e59 * cos(theta) ** 62 + 2.74720426196919e59 * cos(theta) ** 60 - 3.27444548396328e59 * cos(theta) ** 58 + 3.32064931594559e59 * cos(theta) ** 56 - 2.88752114430051e59 * cos(theta) ** 54 + 2.16564085822538e59 * cos(theta) ** 52 - 1.40697686330566e59 * cos(theta) ** 50 + 7.94261132511261e58 * cos(theta) ** 48 - 3.90381942253901e58 * cos(theta) ** 46 + 1.67237297281783e58 * cos(theta) ** 44 - 6.24581457672983e57 * cos(theta) ** 42 + 2.0323682352851e57 * cos(theta) ** 40 - 5.75407340661481e56 * cos(theta) ** 38 + 1.41437538631126e56 * cos(theta) ** 36 - 3.00930933257716e55 * cos(theta) ** 34 + 5.52067539429622e54 * cos(theta) ** 32 - 8.69011423538853e53 * cos(theta) ** 30 + 1.16672830012161e53 * cos(theta) ** 28 - 1.32638585698035e52 * cos(theta) ** 26 + 1.26563535971408e51 * cos(theta) ** 24 - 1.00291518599221e50 * cos(theta) ** 22 + 6.51500022396512e48 * cos(theta) ** 20 - 3.41475873807827e47 * cos(theta) ** 18 + 1.41587557432514e46 * cos(theta) ** 16 - 4.52959394612147e44 * cos(theta) ** 14 + 1.08243972977168e43 * cos(theta) ** 12 - 1.85032432439603e41 * cos(theta) ** 10 + 2.12952927360156e39 * cos(theta) ** 8 - 1.5076313441427e37 * cos(theta) ** 6 + 5.65927681735248e34 * cos(theta) ** 4 - 8.41945472455117e31 * cos(theta) ** 2 + 2.07069717770565e28 ) * sin(15 * phi) ) # @torch.jit.script def Yl91_m_minus_14(theta, phi): return ( 1.9774299141302e-27 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.36175368245812e53 * cos(theta) ** 77 - 2.20137639495716e54 * cos(theta) ** 75 + 1.70637416089557e55 * cos(theta) ** 73 - 8.44510601663568e55 * cos(theta) ** 71 + 2.99801263590567e56 * cos(theta) ** 69 - 8.13102617784358e56 * cos(theta) ** 67 + 1.75221236639495e57 * cos(theta) ** 65 - 3.0808129519032e57 * cos(theta) ** 63 + 4.50361354421179e57 * cos(theta) ** 61 - 5.54990759993777e57 * cos(theta) ** 59 + 5.8257005542905e57 * cos(theta) ** 57 - 5.25003844418274e57 * cos(theta) ** 55 + 4.08611482684034e57 * cos(theta) ** 53 - 2.75877816334444e57 * cos(theta) ** 51 + 1.62094108675768e57 * cos(theta) ** 49 - 8.30599877135959e56 * cos(theta) ** 47 + 3.71638438403962e56 * cos(theta) ** 45 - 1.45251501784415e56 * cos(theta) ** 43 + 4.95699569581732e55 * cos(theta) ** 41 - 1.47540343759354e55 * cos(theta) ** 39 + 3.82263617921963e54 * cos(theta) ** 37 - 8.59802666450616e53 * cos(theta) ** 35 + 1.67293193766552e53 * cos(theta) ** 33 - 2.80326265657694e52 * cos(theta) ** 31 + 4.0232010349021e51 * cos(theta) ** 29 - 4.91254021103835e50 * cos(theta) ** 27 + 5.06254143885631e49 * cos(theta) ** 25 - 4.36050080866177e48 * cos(theta) ** 23 + 3.10238105903101e47 * cos(theta) ** 21 - 1.79724144109383e46 * cos(theta) ** 19 + 8.32867984897139e44 * cos(theta) ** 17 - 3.01972929741432e43 * cos(theta) ** 15 + 8.32645945978212e41 * cos(theta) ** 13 - 1.68211302217821e40 * cos(theta) ** 11 + 2.36614363733507e38 * cos(theta) ** 9 - 2.153759063061e36 * cos(theta) ** 7 + 1.1318553634705e34 * cos(theta) ** 5 - 2.80648490818372e31 * cos(theta) ** 3 + 2.07069717770565e28 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl91_m_minus_13(theta, phi): return ( 1.78954675951153e-25 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.74583805443349e51 * cos(theta) ** 78 - 2.89654788810153e52 * cos(theta) ** 76 + 2.30591102823725e53 * cos(theta) ** 74 - 1.1729313911994e54 * cos(theta) ** 72 + 4.28287519415095e54 * cos(theta) ** 70 - 1.19573914380053e55 * cos(theta) ** 68 + 2.65486722181053e55 * cos(theta) ** 66 - 4.81377023734876e55 * cos(theta) ** 64 + 7.26389281324483e55 * cos(theta) ** 62 - 9.24984599989628e55 * cos(theta) ** 60 + 1.00443113005009e56 * cos(theta) ** 58 - 9.37506865032633e55 * cos(theta) ** 56 + 7.5668793089636e55 * cos(theta) ** 54 - 5.30534262181622e55 * cos(theta) ** 52 + 3.24188217351535e55 * cos(theta) ** 50 - 1.73041641069991e55 * cos(theta) ** 48 + 8.07909648704265e54 * cos(theta) ** 46 - 3.30117049510033e54 * cos(theta) ** 44 + 1.1802370704327e54 * cos(theta) ** 42 - 3.68850859398385e53 * cos(theta) ** 40 + 1.00595688926832e53 * cos(theta) ** 38 - 2.3883407401406e52 * cos(theta) ** 36 + 4.92038805195742e51 * cos(theta) ** 34 - 8.76019580180295e50 * cos(theta) ** 32 + 1.34106701163403e50 * cos(theta) ** 30 - 1.75447864679941e49 * cos(theta) ** 28 + 1.94713132263704e48 * cos(theta) ** 26 - 1.8168753369424e47 * cos(theta) ** 24 + 1.41017320865046e46 * cos(theta) ** 22 - 8.98620720546914e44 * cos(theta) ** 20 + 4.62704436053966e43 * cos(theta) ** 18 - 1.88733081088395e42 * cos(theta) ** 16 + 5.94747104270151e40 * cos(theta) ** 14 - 1.40176085181517e39 * cos(theta) ** 12 + 2.36614363733507e37 * cos(theta) ** 10 - 2.69219882882625e35 * cos(theta) ** 8 + 1.88642560578416e33 * cos(theta) ** 6 - 7.01621227045931e30 * cos(theta) ** 4 + 1.03534858885283e28 * cos(theta) ** 2 - 2.52832378230238e24 ) * sin(13 * phi) ) # @torch.jit.script def Yl91_m_minus_12(theta, phi): return ( 1.62208372158755e-23 * (1.0 - cos(theta) ** 2) ** 6 * ( 2.20992158789049e49 * cos(theta) ** 79 - 3.76175050402796e50 * cos(theta) ** 77 + 3.07454803764967e51 * cos(theta) ** 75 - 1.60675533041014e52 * cos(theta) ** 73 + 6.0322185833112e52 * cos(theta) ** 71 - 1.73295528087033e53 * cos(theta) ** 69 + 3.96248839076198e53 * cos(theta) ** 67 - 7.40580036515193e53 * cos(theta) ** 65 + 1.15299885924521e54 * cos(theta) ** 63 - 1.51636819670431e54 * cos(theta) ** 61 + 1.70242564415269e54 * cos(theta) ** 59 - 1.64474888602216e54 * cos(theta) ** 57 + 1.37579623799338e54 * cos(theta) ** 55 - 1.00100804185212e54 * cos(theta) ** 53 + 6.3566317127752e53 * cos(theta) ** 51 - 3.53146206265289e53 * cos(theta) ** 49 + 1.71895669937078e53 * cos(theta) ** 47 - 7.33593443355629e52 * cos(theta) ** 45 + 2.74473737309929e52 * cos(theta) ** 43 - 8.99636242435086e51 * cos(theta) ** 41 + 2.57937663914955e51 * cos(theta) ** 39 - 6.45497497335297e50 * cos(theta) ** 37 + 1.40582515770212e50 * cos(theta) ** 35 - 2.65460478842514e49 * cos(theta) ** 33 + 4.3260226181743e48 * cos(theta) ** 31 - 6.04992636827383e47 * cos(theta) ** 29 + 7.21159749124831e46 * cos(theta) ** 27 - 7.26750134776962e45 * cos(theta) ** 25 + 6.13118786369765e44 * cos(theta) ** 23 - 4.27914628831864e43 * cos(theta) ** 21 + 2.43528650554719e42 * cos(theta) ** 19 - 1.11019459463762e41 * cos(theta) ** 17 + 3.96498069513434e39 * cos(theta) ** 15 - 1.07827757831936e38 * cos(theta) ** 13 + 2.15103967030461e36 * cos(theta) ** 11 - 2.99133203202917e34 * cos(theta) ** 9 + 2.6948937225488e32 * cos(theta) ** 7 - 1.40324245409186e30 * cos(theta) ** 5 + 3.45116196284275e27 * cos(theta) ** 3 - 2.52832378230238e24 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl91_m_minus_11(theta, phi): return ( 1.47243750776309e-21 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 2.76240198486312e47 * cos(theta) ** 80 - 4.8227570564461e48 * cos(theta) ** 78 + 4.04545794427588e49 * cos(theta) ** 76 - 2.17129098704073e50 * cos(theta) ** 74 + 8.37808136571e50 * cos(theta) ** 72 - 2.47565040124333e51 * cos(theta) ** 70 + 5.82718880994409e51 * cos(theta) ** 68 - 1.12209096441696e52 * cos(theta) ** 66 + 1.80156071757064e52 * cos(theta) ** 64 - 2.44575515597469e52 * cos(theta) ** 62 + 2.83737607358781e52 * cos(theta) ** 60 - 2.83577394141752e52 * cos(theta) ** 58 + 2.45677899641675e52 * cos(theta) ** 56 - 1.85371859602244e52 * cos(theta) ** 54 + 1.22242917553369e52 * cos(theta) ** 52 - 7.06292412530578e51 * cos(theta) ** 50 + 3.58115979035578e51 * cos(theta) ** 48 - 1.59476835512093e51 * cos(theta) ** 46 + 6.23803948431658e50 * cos(theta) ** 44 - 2.14199105341687e50 * cos(theta) ** 42 + 6.44844159787387e49 * cos(theta) ** 40 - 1.69867762456657e49 * cos(theta) ** 38 + 3.90506988250589e48 * cos(theta) ** 36 - 7.80766114242687e47 * cos(theta) ** 34 + 1.35188206817947e47 * cos(theta) ** 32 - 2.01664212275794e46 * cos(theta) ** 30 + 2.57557053258868e45 * cos(theta) ** 28 - 2.79519282606524e44 * cos(theta) ** 26 + 2.55466160987402e43 * cos(theta) ** 24 - 1.94506649469029e42 * cos(theta) ** 22 + 1.2176432527736e41 * cos(theta) ** 20 - 6.16774774798676e39 * cos(theta) ** 18 + 2.47811293445896e38 * cos(theta) ** 16 - 7.70198270228116e36 * cos(theta) ** 14 + 1.79253305858718e35 * cos(theta) ** 12 - 2.99133203202917e33 * cos(theta) ** 10 + 3.368617153186e31 * cos(theta) ** 8 - 2.33873742348644e29 * cos(theta) ** 6 + 8.62790490710688e26 * cos(theta) ** 4 - 1.26416189115119e24 * cos(theta) ** 2 + 3.0683541047359e20 ) * sin(11 * phi) ) # @torch.jit.script def Yl91_m_minus_10(theta, phi): return ( 1.33838008929746e-19 * (1.0 - cos(theta) ** 2) ** 5 * ( 3.41037282081866e45 * cos(theta) ** 81 - 6.1047557676533e46 * cos(theta) ** 79 + 5.25384148607257e47 * cos(theta) ** 77 - 2.89505464938764e48 * cos(theta) ** 75 + 1.14768237886438e49 * cos(theta) ** 73 - 3.48683155104694e49 * cos(theta) ** 71 + 8.44520117383201e49 * cos(theta) ** 69 - 1.67476263345815e50 * cos(theta) ** 67 + 2.7716318731856e50 * cos(theta) ** 65 - 3.88215104122967e50 * cos(theta) ** 63 + 4.65143618620953e50 * cos(theta) ** 61 - 4.80639651087716e50 * cos(theta) ** 59 + 4.31013859020483e50 * cos(theta) ** 57 - 3.37039744731353e50 * cos(theta) ** 55 + 2.3064701425164e50 * cos(theta) ** 53 - 1.38488708339329e50 * cos(theta) ** 51 + 7.30848936807303e49 * cos(theta) ** 49 - 3.39312415983177e49 * cos(theta) ** 47 + 1.38623099651479e49 * cos(theta) ** 45 - 4.98137454282993e48 * cos(theta) ** 43 + 1.57279063362777e48 * cos(theta) ** 41 - 4.3555836527348e47 * cos(theta) ** 39 + 1.05542429256916e47 * cos(theta) ** 37 - 2.23076032640768e46 * cos(theta) ** 35 + 4.09661232781657e45 * cos(theta) ** 33 - 6.50529717018691e44 * cos(theta) ** 31 + 8.88127769858166e43 * cos(theta) ** 29 - 1.03525660224638e43 * cos(theta) ** 27 + 1.02186464394961e42 * cos(theta) ** 25 - 8.45681084647952e40 * cos(theta) ** 23 + 5.79830120368379e39 * cos(theta) ** 21 - 3.24618302525619e38 * cos(theta) ** 19 + 1.45771349085821e37 * cos(theta) ** 17 - 5.13465513485411e35 * cos(theta) ** 15 + 1.3788715835286e34 * cos(theta) ** 13 - 2.71939275639015e32 * cos(theta) ** 11 + 3.74290794798445e30 * cos(theta) ** 9 - 3.34105346212348e28 * cos(theta) ** 7 + 1.72558098142138e26 * cos(theta) ** 5 - 4.21387297050397e23 * cos(theta) ** 3 + 3.0683541047359e20 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl91_m_minus_9(theta, phi): return ( 1.2179994164083e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 4.15899124490081e43 * cos(theta) ** 82 - 7.63094470956662e44 * cos(theta) ** 80 + 6.73569421291355e45 * cos(theta) ** 78 - 3.80928243340478e46 * cos(theta) ** 76 + 1.55092213360052e47 * cos(theta) ** 74 - 4.8428215986763e47 * cos(theta) ** 72 + 1.20645731054743e48 * cos(theta) ** 70 - 2.46288622567375e48 * cos(theta) ** 68 + 4.1994422320994e48 * cos(theta) ** 66 - 6.06586100192135e48 * cos(theta) ** 64 + 7.50231642937021e48 * cos(theta) ** 62 - 8.01066085146193e48 * cos(theta) ** 60 + 7.43127343138764e48 * cos(theta) ** 58 - 6.01856687020273e48 * cos(theta) ** 56 + 4.27124100466e48 * cos(theta) ** 54 - 2.66324439114094e48 * cos(theta) ** 52 + 1.46169787361461e48 * cos(theta) ** 50 - 7.06900866631619e47 * cos(theta) ** 48 + 3.01354564459738e47 * cos(theta) ** 46 - 1.13213057791589e47 * cos(theta) ** 44 + 3.74473960387565e46 * cos(theta) ** 42 - 1.0888959131837e46 * cos(theta) ** 40 + 2.77743234886621e45 * cos(theta) ** 38 - 6.19655646224355e44 * cos(theta) ** 36 + 1.20488597876958e44 * cos(theta) ** 34 - 2.03290536568341e43 * cos(theta) ** 32 + 2.96042589952722e42 * cos(theta) ** 30 - 3.6973450080228e41 * cos(theta) ** 28 + 3.93024863057542e40 * cos(theta) ** 26 - 3.52367118603313e39 * cos(theta) ** 24 + 2.6355914562199e38 * cos(theta) ** 22 - 1.62309151262809e37 * cos(theta) ** 20 + 8.09840828254563e35 * cos(theta) ** 18 - 3.20915945928382e34 * cos(theta) ** 16 + 9.84908273948998e32 * cos(theta) ** 14 - 2.26616063032513e31 * cos(theta) ** 12 + 3.74290794798445e29 * cos(theta) ** 10 - 4.17631682765435e27 * cos(theta) ** 8 + 2.87596830236896e25 * cos(theta) ** 6 - 1.05346824262599e23 * cos(theta) ** 4 + 1.53417705236795e20 * cos(theta) ** 2 - 3.70484678185933e16 ) * sin(9 * phi) ) # @torch.jit.script def Yl91_m_minus_8(theta, phi): return ( 1.10965027826244e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 5.0108328251817e41 * cos(theta) ** 83 - 9.42091939452669e42 * cos(theta) ** 81 + 8.52619520621969e43 * cos(theta) ** 79 - 4.94712004338284e44 * cos(theta) ** 77 + 2.06789617813403e45 * cos(theta) ** 75 - 6.63400218996754e45 * cos(theta) ** 73 + 1.69923564865835e46 * cos(theta) ** 71 - 3.5694003270634e46 * cos(theta) ** 69 + 6.26782422701403e46 * cos(theta) ** 67 - 9.33209384910977e46 * cos(theta) ** 65 + 1.19084387767781e47 * cos(theta) ** 63 - 1.31322309040359e47 * cos(theta) ** 61 + 1.25953786972672e47 * cos(theta) ** 59 - 1.05588892459697e47 * cos(theta) ** 57 + 7.76589273574545e46 * cos(theta) ** 55 - 5.02498941724706e46 * cos(theta) ** 53 + 2.86607426198942e46 * cos(theta) ** 51 - 1.44265482986045e46 * cos(theta) ** 49 + 6.41179924382421e45 * cos(theta) ** 47 - 2.51584572870199e45 * cos(theta) ** 45 + 8.70869675319919e44 * cos(theta) ** 43 - 2.65584369069195e44 * cos(theta) ** 41 + 7.12162140734925e43 * cos(theta) ** 39 - 1.67474498979555e43 * cos(theta) ** 37 + 3.44253136791308e42 * cos(theta) ** 35 - 6.16031928994973e41 * cos(theta) ** 33 + 9.54976096621684e40 * cos(theta) ** 31 - 1.27494655449062e40 * cos(theta) ** 29 + 1.45564764095386e39 * cos(theta) ** 27 - 1.40946847441325e38 * cos(theta) ** 25 + 1.14590932879126e37 * cos(theta) ** 23 - 7.72900720299092e35 * cos(theta) ** 21 + 4.26232014870823e34 * cos(theta) ** 19 - 1.88774085840225e33 * cos(theta) ** 17 + 6.56605515965999e31 * cos(theta) ** 15 - 1.74320048486548e30 * cos(theta) ** 13 + 3.40264358907677e28 * cos(theta) ** 11 - 4.64035203072706e26 * cos(theta) ** 9 + 4.10852614624137e24 * cos(theta) ** 7 - 2.10693648525198e22 * cos(theta) ** 5 + 5.11392350789317e19 * cos(theta) ** 3 - 3.70484678185933e16 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl91_m_minus_7(theta, phi): return ( 1.01191344601396e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 5.96527717283535e39 * cos(theta) ** 84 - 1.14889260908862e41 * cos(theta) ** 82 + 1.06577440077746e42 * cos(theta) ** 80 - 6.34246159408056e42 * cos(theta) ** 78 + 2.72091602386056e43 * cos(theta) ** 76 - 8.96486782428046e43 * cos(theta) ** 74 + 2.36004951202549e44 * cos(theta) ** 72 - 5.09914332437629e44 * cos(theta) ** 70 + 9.21738856913828e44 * cos(theta) ** 68 - 1.41395361350148e45 * cos(theta) ** 66 + 1.86069355887158e45 * cos(theta) ** 64 - 2.11810175871548e45 * cos(theta) ** 62 + 2.09922978287786e45 * cos(theta) ** 60 - 1.82049814585684e45 * cos(theta) ** 58 + 1.38676655995455e45 * cos(theta) ** 56 - 9.30553595786492e44 * cos(theta) ** 54 + 5.51168127305658e44 * cos(theta) ** 52 - 2.8853096597209e44 * cos(theta) ** 50 + 1.33579150913004e44 * cos(theta) ** 48 - 5.46922984500432e43 * cos(theta) ** 46 + 1.97924926209072e43 * cos(theta) ** 44 - 6.32343735879036e42 * cos(theta) ** 42 + 1.78040535183731e42 * cos(theta) ** 40 - 4.40722365735672e41 * cos(theta) ** 38 + 9.5625871330919e40 * cos(theta) ** 36 - 1.8118586146911e40 * cos(theta) ** 34 + 2.98430030194276e39 * cos(theta) ** 32 - 4.24982184830207e38 * cos(theta) ** 30 + 5.19874157483521e37 * cos(theta) ** 28 - 5.42103259389713e36 * cos(theta) ** 26 + 4.77462220329693e35 * cos(theta) ** 24 - 3.5131850922686e34 * cos(theta) ** 22 + 2.13116007435411e33 * cos(theta) ** 20 - 1.04874492133458e32 * cos(theta) ** 18 + 4.10378447478749e30 * cos(theta) ** 16 - 1.24514320347534e29 * cos(theta) ** 14 + 2.83553632423064e27 * cos(theta) ** 12 - 4.64035203072706e25 * cos(theta) ** 10 + 5.13565768280171e23 * cos(theta) ** 8 - 3.51156080875331e21 * cos(theta) ** 6 + 1.27848087697329e19 * cos(theta) ** 4 - 1.85242339092967e16 * cos(theta) ** 2 + 4455082710268.56 ) * sin(7 * phi) ) # @torch.jit.script def Yl91_m_minus_6(theta, phi): return ( 9.23561599955551e-12 * (1.0 - cos(theta) ** 2) ** 3 * ( 7.01797314451218e37 * cos(theta) ** 85 - 1.38420796275737e39 * cos(theta) ** 83 + 1.31577086515736e40 * cos(theta) ** 81 - 8.02843239757033e40 * cos(theta) ** 79 + 3.53365717384488e41 * cos(theta) ** 77 - 1.19531570990406e42 * cos(theta) ** 75 + 3.23294453702122e42 * cos(theta) ** 73 - 7.18189200616379e42 * cos(theta) ** 71 + 1.33585341581714e43 * cos(theta) ** 69 - 2.11037852761415e43 * cos(theta) ** 67 + 2.86260547518705e43 * cos(theta) ** 65 - 3.36206628367536e43 * cos(theta) ** 63 + 3.44136029979978e43 * cos(theta) ** 61 - 3.08559007772346e43 * cos(theta) ** 59 + 2.43292378939394e43 * cos(theta) ** 57 - 1.69191562870271e43 * cos(theta) ** 55 + 1.03993986284086e43 * cos(theta) ** 53 - 5.65746992102136e42 * cos(theta) ** 51 + 2.72610512067356e42 * cos(theta) ** 49 - 1.163665924469e42 * cos(theta) ** 47 + 4.39833169353494e41 * cos(theta) ** 45 - 1.47056682762566e41 * cos(theta) ** 43 + 4.34245207765198e40 * cos(theta) ** 41 - 1.13005734804018e40 * cos(theta) ** 39 + 2.58448300894376e39 * cos(theta) ** 37 - 5.17673889911742e38 * cos(theta) ** 35 + 9.0433342483114e37 * cos(theta) ** 33 - 1.37091027364583e37 * cos(theta) ** 31 + 1.79266950856386e36 * cos(theta) ** 29 - 2.00778984959153e35 * cos(theta) ** 27 + 1.90984888131877e34 * cos(theta) ** 25 - 1.52747177924722e33 * cos(theta) ** 23 + 1.01483813064482e32 * cos(theta) ** 21 - 5.51971011228727e30 * cos(theta) ** 19 + 2.41399086752205e29 * cos(theta) ** 17 - 8.30095468983563e27 * cos(theta) ** 15 + 2.18118178786972e26 * cos(theta) ** 13 - 4.21850184611551e24 * cos(theta) ** 11 + 5.70628631422412e22 * cos(theta) ** 9 - 5.01651544107615e20 * cos(theta) ** 7 + 2.55696175394658e18 * cos(theta) ** 5 - 6.17474463643222e15 * cos(theta) ** 3 + 4455082710268.56 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl91_m_minus_5(theta, phi): return ( 8.43530830093822e-10 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 8.16043388896765e35 * cos(theta) ** 86 - 1.64786662233021e37 * cos(theta) ** 84 + 1.60459861604556e38 * cos(theta) ** 82 - 1.00355404969629e39 * cos(theta) ** 80 + 4.53032971005754e39 * cos(theta) ** 78 - 1.57278382882113e40 * cos(theta) ** 76 + 4.36884396894759e40 * cos(theta) ** 74 - 9.97485000856082e40 * cos(theta) ** 72 + 1.90836202259592e41 * cos(theta) ** 70 - 3.10349783472669e41 * cos(theta) ** 68 + 4.33728102301068e41 * cos(theta) ** 66 - 5.25322856824275e41 * cos(theta) ** 64 + 5.55058112870932e41 * cos(theta) ** 62 - 5.14265012953911e41 * cos(theta) ** 60 + 4.19469618861024e41 * cos(theta) ** 58 - 3.0212779083977e41 * cos(theta) ** 56 + 1.92581456081642e41 * cos(theta) ** 54 - 1.0879749848118e41 * cos(theta) ** 52 + 5.45221024134712e40 * cos(theta) ** 50 - 2.42430400931043e40 * cos(theta) ** 48 + 9.56159063811944e39 * cos(theta) ** 46 - 3.34219733551287e39 * cos(theta) ** 44 + 1.03391716134571e39 * cos(theta) ** 42 - 2.82514337010046e38 * cos(theta) ** 40 + 6.80127107616778e37 * cos(theta) ** 38 - 1.43798302753262e37 * cos(theta) ** 36 + 2.65980419067982e36 * cos(theta) ** 34 - 4.28409460514321e35 * cos(theta) ** 32 + 5.97556502854622e34 * cos(theta) ** 30 - 7.17067803425546e33 * cos(theta) ** 28 + 7.34557262045681e32 * cos(theta) ** 26 - 6.36446574686341e31 * cos(theta) ** 24 + 4.61290059384007e30 * cos(theta) ** 22 - 2.75985505614363e29 * cos(theta) ** 20 + 1.34110603751225e28 * cos(theta) ** 18 - 5.18809668114727e26 * cos(theta) ** 16 + 1.55798699133552e25 * cos(theta) ** 14 - 3.51541820509626e23 * cos(theta) ** 12 + 5.70628631422412e21 * cos(theta) ** 10 - 6.27064430134519e19 * cos(theta) ** 8 + 4.26160292324431e17 * cos(theta) ** 6 - 1.54368615910806e15 * cos(theta) ** 4 + 2227541355134.28 * cos(theta) ** 2 - 534054508.543342 ) * sin(5 * phi) ) # @torch.jit.script def Yl91_m_minus_4(theta, phi): return ( 7.7089672917547e-8 * (1.0 - cos(theta) ** 2) ** 2 * ( 9.37980906777891e33 * cos(theta) ** 87 - 1.93866661450613e35 * cos(theta) ** 85 + 1.93325134463321e36 * cos(theta) ** 83 - 1.238955616909e37 * cos(theta) ** 81 + 5.73459456969309e37 * cos(theta) ** 79 - 2.04257640106641e38 * cos(theta) ** 77 + 5.82512529193012e38 * cos(theta) ** 75 - 1.36641780939189e39 * cos(theta) ** 73 + 2.68783383464214e39 * cos(theta) ** 71 - 4.49782294887926e39 * cos(theta) ** 69 + 6.47355376568758e39 * cos(theta) ** 67 - 8.08189010498884e39 * cos(theta) ** 65 + 8.81044623604654e39 * cos(theta) ** 63 - 8.430573982851e39 * cos(theta) ** 61 + 7.10965455696651e39 * cos(theta) ** 59 - 5.30048755859246e39 * cos(theta) ** 57 + 3.50148101966621e39 * cos(theta) ** 55 - 2.05278299021094e39 * cos(theta) ** 53 + 1.06906083163669e39 * cos(theta) ** 51 - 4.94755920267434e38 * cos(theta) ** 49 + 2.03438098683392e38 * cos(theta) ** 47 - 7.42710519002861e37 * cos(theta) ** 45 + 2.40445851475746e37 * cos(theta) ** 43 - 6.89059358561088e36 * cos(theta) ** 41 + 1.74391566055584e36 * cos(theta) ** 39 - 3.88644061495302e35 * cos(theta) ** 37 + 7.5994405447995e34 * cos(theta) ** 35 - 1.29821048640703e34 * cos(theta) ** 33 + 1.92760162211168e33 * cos(theta) ** 31 - 2.47264759801912e32 * cos(theta) ** 29 + 2.72058245202104e31 * cos(theta) ** 27 - 2.54578629874536e30 * cos(theta) ** 25 + 2.00560895384351e29 * cos(theta) ** 23 - 1.31421669340173e28 * cos(theta) ** 21 + 7.05845282901185e26 * cos(theta) ** 19 - 3.05182157714545e25 * cos(theta) ** 17 + 1.03865799422368e24 * cos(theta) ** 15 - 2.70416785007404e22 * cos(theta) ** 13 + 5.18753301293102e20 * cos(theta) ** 11 - 6.96738255705021e18 * cos(theta) ** 9 + 6.08800417606329e16 * cos(theta) ** 7 - 308737231821611.0 * cos(theta) ** 5 + 742513785044.76 * cos(theta) ** 3 - 534054508.543342 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl91_m_minus_3(theta, phi): return ( 7.04854280867098e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 1.06588739406579e32 * cos(theta) ** 88 - 2.25426350523968e33 * cos(theta) ** 86 + 2.30148969599191e34 * cos(theta) ** 84 - 1.51092148403537e35 * cos(theta) ** 82 + 7.16824321211637e35 * cos(theta) ** 80 - 2.61868769367488e36 * cos(theta) ** 78 + 7.66463854201332e36 * cos(theta) ** 76 - 1.84651055323229e37 * cos(theta) ** 74 + 3.73310254811408e37 * cos(theta) ** 72 - 6.42546135554181e37 * cos(theta) ** 70 + 9.51993200836409e37 * cos(theta) ** 68 - 1.22452880378619e38 * cos(theta) ** 66 + 1.37663222438227e38 * cos(theta) ** 64 - 1.35976999723403e38 * cos(theta) ** 62 + 1.18494242616108e38 * cos(theta) ** 60 - 9.13877165274562e37 * cos(theta) ** 58 + 6.25264467797538e37 * cos(theta) ** 56 - 3.80144998187212e37 * cos(theta) ** 54 + 2.05588621468594e37 * cos(theta) ** 52 - 9.89511840534868e36 * cos(theta) ** 50 + 4.23829372257067e36 * cos(theta) ** 48 - 1.61458808478883e36 * cos(theta) ** 46 + 5.4646784426306e35 * cos(theta) ** 44 - 1.64061752038354e35 * cos(theta) ** 42 + 4.3597891513896e34 * cos(theta) ** 40 - 1.02274753025079e34 * cos(theta) ** 38 + 2.11095570688875e33 * cos(theta) ** 36 - 3.81826613649128e32 * cos(theta) ** 34 + 6.02375506909901e31 * cos(theta) ** 32 - 8.24215866006375e30 * cos(theta) ** 30 + 9.71636590007515e29 * cos(theta) ** 28 - 9.79148576440524e28 * cos(theta) ** 26 + 8.35670397434796e27 * cos(theta) ** 24 - 5.97371224273514e26 * cos(theta) ** 22 + 3.52922641450593e25 * cos(theta) ** 20 - 1.69545643174747e24 * cos(theta) ** 18 + 6.49161246389799e22 * cos(theta) ** 16 - 1.9315484643386e21 * cos(theta) ** 14 + 4.32294417744252e19 * cos(theta) ** 12 - 6.96738255705021e17 * cos(theta) ** 10 + 7.61000522007912e15 * cos(theta) ** 8 - 51456205303601.9 * cos(theta) ** 6 + 185628446261.19 * cos(theta) ** 4 - 267027254.271671 * cos(theta) ** 2 + 63882.1182468112 ) * sin(3 * phi) ) # @torch.jit.script def Yl91_m_minus_2(theta, phi): return ( 0.000644700893128692 * (1.0 - cos(theta) ** 2) * ( 1.19762628546717e30 * cos(theta) ** 89 - 2.59110747728699e31 * cos(theta) ** 87 + 2.70763493646107e32 * cos(theta) ** 85 - 1.82038733016309e33 * cos(theta) ** 83 + 8.84968297792144e33 * cos(theta) ** 81 - 3.31479454895554e34 * cos(theta) ** 79 + 9.95407602858873e34 * cos(theta) ** 77 - 2.46201407097638e35 * cos(theta) ** 75 + 5.11383910700559e35 * cos(theta) ** 73 - 9.04994557118564e35 * cos(theta) ** 71 + 1.37970029106726e36 * cos(theta) ** 69 - 1.82765493102416e36 * cos(theta) ** 67 + 2.11789572981888e36 * cos(theta) ** 65 - 2.15836507497465e36 * cos(theta) ** 63 + 1.94252856747719e36 * cos(theta) ** 61 - 1.54894434792299e36 * cos(theta) ** 59 + 1.09695520666235e36 * cos(theta) ** 57 - 6.91172723976749e35 * cos(theta) ** 55 + 3.87903059374706e35 * cos(theta) ** 53 - 1.94021929516641e35 * cos(theta) ** 51 + 8.64957902565444e34 * cos(theta) ** 49 - 3.43529379742304e34 * cos(theta) ** 47 + 1.21437298725124e34 * cos(theta) ** 45 - 3.81538958228731e33 * cos(theta) ** 43 + 1.063363207656e33 * cos(theta) ** 41 - 2.62242956474563e32 * cos(theta) ** 39 + 5.70528569429392e31 * cos(theta) ** 37 - 1.09093318185465e31 * cos(theta) ** 35 + 1.8253803239694e30 * cos(theta) ** 33 - 2.65876085808508e29 * cos(theta) ** 31 + 3.35047100002591e28 * cos(theta) ** 29 - 3.62647620903898e27 * cos(theta) ** 27 + 3.34268158973918e26 * cos(theta) ** 25 - 2.59726619249354e25 * cos(theta) ** 23 + 1.68058400690758e24 * cos(theta) ** 21 - 8.92345490393407e22 * cos(theta) ** 19 + 3.81859556699881e21 * cos(theta) ** 17 - 1.28769897622573e20 * cos(theta) ** 15 + 3.32534167495578e18 * cos(theta) ** 13 - 6.33398414277292e16 * cos(theta) ** 11 + 845556135564346.0 * cos(theta) ** 9 - 7350886471943.12 * cos(theta) ** 7 + 37125689252.238 * cos(theta) ** 5 - 89009084.7572237 * cos(theta) ** 3 + 63882.1182468112 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl91_m_minus_1(theta, phi): return ( 0.0589822045383166 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 1.3306958727413e28 * cos(theta) ** 90 - 2.94444031509885e29 * cos(theta) ** 88 + 3.1484127168152e30 * cos(theta) ** 86 - 2.16712777400368e31 * cos(theta) ** 84 + 1.07922963145383e32 * cos(theta) ** 82 - 4.14349318619443e32 * cos(theta) ** 80 + 1.27616359340881e33 * cos(theta) ** 78 - 3.23949219865314e33 * cos(theta) ** 76 + 6.91059338784539e33 * cos(theta) ** 74 - 1.25693688488689e34 * cos(theta) ** 72 + 1.97100041581037e34 * cos(theta) ** 70 - 2.68772783974141e34 * cos(theta) ** 68 + 3.208932923968e34 * cos(theta) ** 66 - 3.3724454296479e34 * cos(theta) ** 64 + 3.13311059270514e34 * cos(theta) ** 62 - 2.58157391320498e34 * cos(theta) ** 60 + 1.89130208045232e34 * cos(theta) ** 58 - 1.23423700710134e34 * cos(theta) ** 56 + 7.18338998842048e33 * cos(theta) ** 54 - 3.73119095224309e33 * cos(theta) ** 52 + 1.72991580513089e33 * cos(theta) ** 50 - 7.15686207796466e32 * cos(theta) ** 48 + 2.63994127663314e32 * cos(theta) ** 46 - 8.67133995974389e31 * cos(theta) ** 44 + 2.53181716108572e31 * cos(theta) ** 42 - 6.55607391186406e30 * cos(theta) ** 40 + 1.50139097218261e30 * cos(theta) ** 38 - 3.03036994959625e29 * cos(theta) ** 36 + 5.36876565873352e28 * cos(theta) ** 34 - 8.30862768151587e27 * cos(theta) ** 32 + 1.1168236666753e27 * cos(theta) ** 30 - 1.29517007465678e26 * cos(theta) ** 28 + 1.2856467652843e25 * cos(theta) ** 26 - 1.08219424687231e24 * cos(theta) ** 24 + 7.63901821321629e22 * cos(theta) ** 22 - 4.46172745196704e21 * cos(theta) ** 20 + 2.12144198166601e20 * cos(theta) ** 18 - 8.04811860141084e18 * cos(theta) ** 16 + 2.37524405353985e17 * cos(theta) ** 14 - 5.27832011897743e15 * cos(theta) ** 12 + 84555613556434.6 * cos(theta) ** 10 - 918860808992.89 * cos(theta) ** 8 + 6187614875.373 * cos(theta) ** 6 - 22252271.1893059 * cos(theta) ** 4 + 31941.0591234056 * cos(theta) ** 2 - 7.63227219197267 ) * sin(phi) ) # @torch.jit.script def Yl91_m0(theta, phi): return ( 1.75310489795454e27 * cos(theta) ** 91 - 3.96627876084189e28 * cos(theta) ** 89 + 4.33853285683152e29 * cos(theta) ** 87 - 3.05658218783554e30 * cos(theta) ** 85 + 1.55885691579613e31 * cos(theta) ** 83 - 6.13270529994707e31 * cos(theta) ** 81 + 1.93664377893065e32 * cos(theta) ** 79 - 5.04378654512709e32 * cos(theta) ** 77 + 1.10464965801212e33 * cos(theta) ** 75 - 2.06424431042668e33 * cos(theta) ** 73 + 3.32811904773087e33 * cos(theta) ** 71 - 4.66989036341683e33 * cos(theta) ** 69 + 5.74190922042761e33 * cos(theta) ** 67 - 6.2201672152697e33 * cos(theta) ** 65 + 5.96218792984376e33 * cos(theta) ** 63 - 5.07370502265136e33 * cos(theta) ** 61 + 3.84307954944205e33 * cos(theta) ** 59 - 2.59593727165233e33 * cos(theta) ** 57 + 1.56580343369505e33 * cos(theta) ** 55 - 8.43999309995338e32 * cos(theta) ** 53 + 4.06654212997754e32 * cos(theta) ** 51 - 1.75104397694068e32 * cos(theta) ** 49 + 6.73390358692689e31 * cos(theta) ** 47 - 2.31017130354426e31 * cos(theta) ** 45 + 7.05885676082969e30 * cos(theta) ** 43 - 1.91703688873059e30 * cos(theta) ** 41 + 4.61529726588104e29 * cos(theta) ** 39 - 9.81893561302857e28 * cos(theta) ** 37 + 1.83897950457734e28 * cos(theta) ** 35 - 3.01846291096143e27 * cos(theta) ** 33 + 4.3191014010505e26 * cos(theta) ** 31 - 5.35425793518657e25 * cos(theta) ** 29 + 5.70858382795627e24 * cos(theta) ** 27 - 5.18962166177843e23 * cos(theta) ** 25 + 3.98180690162028e22 * cos(theta) ** 23 - 2.54714828346379e21 * cos(theta) ** 21 + 1.33859144025875e20 * cos(theta) ** 19 - 5.67565425946557e18 * cos(theta) ** 17 + 1.89839886691421e17 * cos(theta) ** 15 - 4.86768940234412e15 * cos(theta) ** 13 + 92155284801660.6 * cos(theta) ** 11 - 1223989534917.01 * cos(theta) ** 9 + 10597311990.6235 * cos(theta) ** 7 - 53354963.2709404 * cos(theta) ** 5 + 127643.452801293 * cos(theta) ** 3 - 91.5006830116795 * cos(theta) ) # @torch.jit.script def Yl91_m1(theta, phi): return ( 0.0589822045383166 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 1.3306958727413e28 * cos(theta) ** 90 - 2.94444031509885e29 * cos(theta) ** 88 + 3.1484127168152e30 * cos(theta) ** 86 - 2.16712777400368e31 * cos(theta) ** 84 + 1.07922963145383e32 * cos(theta) ** 82 - 4.14349318619443e32 * cos(theta) ** 80 + 1.27616359340881e33 * cos(theta) ** 78 - 3.23949219865314e33 * cos(theta) ** 76 + 6.91059338784539e33 * cos(theta) ** 74 - 1.25693688488689e34 * cos(theta) ** 72 + 1.97100041581037e34 * cos(theta) ** 70 - 2.68772783974141e34 * cos(theta) ** 68 + 3.208932923968e34 * cos(theta) ** 66 - 3.3724454296479e34 * cos(theta) ** 64 + 3.13311059270514e34 * cos(theta) ** 62 - 2.58157391320498e34 * cos(theta) ** 60 + 1.89130208045232e34 * cos(theta) ** 58 - 1.23423700710134e34 * cos(theta) ** 56 + 7.18338998842048e33 * cos(theta) ** 54 - 3.73119095224309e33 * cos(theta) ** 52 + 1.72991580513089e33 * cos(theta) ** 50 - 7.15686207796466e32 * cos(theta) ** 48 + 2.63994127663314e32 * cos(theta) ** 46 - 8.67133995974389e31 * cos(theta) ** 44 + 2.53181716108572e31 * cos(theta) ** 42 - 6.55607391186406e30 * cos(theta) ** 40 + 1.50139097218261e30 * cos(theta) ** 38 - 3.03036994959625e29 * cos(theta) ** 36 + 5.36876565873352e28 * cos(theta) ** 34 - 8.30862768151587e27 * cos(theta) ** 32 + 1.1168236666753e27 * cos(theta) ** 30 - 1.29517007465678e26 * cos(theta) ** 28 + 1.2856467652843e25 * cos(theta) ** 26 - 1.08219424687231e24 * cos(theta) ** 24 + 7.63901821321629e22 * cos(theta) ** 22 - 4.46172745196704e21 * cos(theta) ** 20 + 2.12144198166601e20 * cos(theta) ** 18 - 8.04811860141084e18 * cos(theta) ** 16 + 2.37524405353985e17 * cos(theta) ** 14 - 5.27832011897743e15 * cos(theta) ** 12 + 84555613556434.6 * cos(theta) ** 10 - 918860808992.89 * cos(theta) ** 8 + 6187614875.373 * cos(theta) ** 6 - 22252271.1893059 * cos(theta) ** 4 + 31941.0591234056 * cos(theta) ** 2 - 7.63227219197267 ) * cos(phi) ) # @torch.jit.script def Yl91_m2(theta, phi): return ( 0.000644700893128692 * (1.0 - cos(theta) ** 2) * ( 1.19762628546717e30 * cos(theta) ** 89 - 2.59110747728699e31 * cos(theta) ** 87 + 2.70763493646107e32 * cos(theta) ** 85 - 1.82038733016309e33 * cos(theta) ** 83 + 8.84968297792144e33 * cos(theta) ** 81 - 3.31479454895554e34 * cos(theta) ** 79 + 9.95407602858873e34 * cos(theta) ** 77 - 2.46201407097638e35 * cos(theta) ** 75 + 5.11383910700559e35 * cos(theta) ** 73 - 9.04994557118564e35 * cos(theta) ** 71 + 1.37970029106726e36 * cos(theta) ** 69 - 1.82765493102416e36 * cos(theta) ** 67 + 2.11789572981888e36 * cos(theta) ** 65 - 2.15836507497465e36 * cos(theta) ** 63 + 1.94252856747719e36 * cos(theta) ** 61 - 1.54894434792299e36 * cos(theta) ** 59 + 1.09695520666235e36 * cos(theta) ** 57 - 6.91172723976749e35 * cos(theta) ** 55 + 3.87903059374706e35 * cos(theta) ** 53 - 1.94021929516641e35 * cos(theta) ** 51 + 8.64957902565444e34 * cos(theta) ** 49 - 3.43529379742304e34 * cos(theta) ** 47 + 1.21437298725124e34 * cos(theta) ** 45 - 3.81538958228731e33 * cos(theta) ** 43 + 1.063363207656e33 * cos(theta) ** 41 - 2.62242956474563e32 * cos(theta) ** 39 + 5.70528569429392e31 * cos(theta) ** 37 - 1.09093318185465e31 * cos(theta) ** 35 + 1.8253803239694e30 * cos(theta) ** 33 - 2.65876085808508e29 * cos(theta) ** 31 + 3.35047100002591e28 * cos(theta) ** 29 - 3.62647620903898e27 * cos(theta) ** 27 + 3.34268158973918e26 * cos(theta) ** 25 - 2.59726619249354e25 * cos(theta) ** 23 + 1.68058400690758e24 * cos(theta) ** 21 - 8.92345490393407e22 * cos(theta) ** 19 + 3.81859556699881e21 * cos(theta) ** 17 - 1.28769897622573e20 * cos(theta) ** 15 + 3.32534167495578e18 * cos(theta) ** 13 - 6.33398414277292e16 * cos(theta) ** 11 + 845556135564346.0 * cos(theta) ** 9 - 7350886471943.12 * cos(theta) ** 7 + 37125689252.238 * cos(theta) ** 5 - 89009084.7572237 * cos(theta) ** 3 + 63882.1182468112 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl91_m3(theta, phi): return ( 7.04854280867098e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 1.06588739406579e32 * cos(theta) ** 88 - 2.25426350523968e33 * cos(theta) ** 86 + 2.30148969599191e34 * cos(theta) ** 84 - 1.51092148403537e35 * cos(theta) ** 82 + 7.16824321211637e35 * cos(theta) ** 80 - 2.61868769367488e36 * cos(theta) ** 78 + 7.66463854201332e36 * cos(theta) ** 76 - 1.84651055323229e37 * cos(theta) ** 74 + 3.73310254811408e37 * cos(theta) ** 72 - 6.42546135554181e37 * cos(theta) ** 70 + 9.51993200836409e37 * cos(theta) ** 68 - 1.22452880378619e38 * cos(theta) ** 66 + 1.37663222438227e38 * cos(theta) ** 64 - 1.35976999723403e38 * cos(theta) ** 62 + 1.18494242616108e38 * cos(theta) ** 60 - 9.13877165274562e37 * cos(theta) ** 58 + 6.25264467797538e37 * cos(theta) ** 56 - 3.80144998187212e37 * cos(theta) ** 54 + 2.05588621468594e37 * cos(theta) ** 52 - 9.89511840534868e36 * cos(theta) ** 50 + 4.23829372257067e36 * cos(theta) ** 48 - 1.61458808478883e36 * cos(theta) ** 46 + 5.4646784426306e35 * cos(theta) ** 44 - 1.64061752038354e35 * cos(theta) ** 42 + 4.3597891513896e34 * cos(theta) ** 40 - 1.02274753025079e34 * cos(theta) ** 38 + 2.11095570688875e33 * cos(theta) ** 36 - 3.81826613649128e32 * cos(theta) ** 34 + 6.02375506909901e31 * cos(theta) ** 32 - 8.24215866006375e30 * cos(theta) ** 30 + 9.71636590007515e29 * cos(theta) ** 28 - 9.79148576440524e28 * cos(theta) ** 26 + 8.35670397434796e27 * cos(theta) ** 24 - 5.97371224273514e26 * cos(theta) ** 22 + 3.52922641450593e25 * cos(theta) ** 20 - 1.69545643174747e24 * cos(theta) ** 18 + 6.49161246389799e22 * cos(theta) ** 16 - 1.9315484643386e21 * cos(theta) ** 14 + 4.32294417744252e19 * cos(theta) ** 12 - 6.96738255705021e17 * cos(theta) ** 10 + 7.61000522007912e15 * cos(theta) ** 8 - 51456205303601.9 * cos(theta) ** 6 + 185628446261.19 * cos(theta) ** 4 - 267027254.271671 * cos(theta) ** 2 + 63882.1182468112 ) * cos(3 * phi) ) # @torch.jit.script def Yl91_m4(theta, phi): return ( 7.7089672917547e-8 * (1.0 - cos(theta) ** 2) ** 2 * ( 9.37980906777891e33 * cos(theta) ** 87 - 1.93866661450613e35 * cos(theta) ** 85 + 1.93325134463321e36 * cos(theta) ** 83 - 1.238955616909e37 * cos(theta) ** 81 + 5.73459456969309e37 * cos(theta) ** 79 - 2.04257640106641e38 * cos(theta) ** 77 + 5.82512529193012e38 * cos(theta) ** 75 - 1.36641780939189e39 * cos(theta) ** 73 + 2.68783383464214e39 * cos(theta) ** 71 - 4.49782294887926e39 * cos(theta) ** 69 + 6.47355376568758e39 * cos(theta) ** 67 - 8.08189010498884e39 * cos(theta) ** 65 + 8.81044623604654e39 * cos(theta) ** 63 - 8.430573982851e39 * cos(theta) ** 61 + 7.10965455696651e39 * cos(theta) ** 59 - 5.30048755859246e39 * cos(theta) ** 57 + 3.50148101966621e39 * cos(theta) ** 55 - 2.05278299021094e39 * cos(theta) ** 53 + 1.06906083163669e39 * cos(theta) ** 51 - 4.94755920267434e38 * cos(theta) ** 49 + 2.03438098683392e38 * cos(theta) ** 47 - 7.42710519002861e37 * cos(theta) ** 45 + 2.40445851475746e37 * cos(theta) ** 43 - 6.89059358561088e36 * cos(theta) ** 41 + 1.74391566055584e36 * cos(theta) ** 39 - 3.88644061495302e35 * cos(theta) ** 37 + 7.5994405447995e34 * cos(theta) ** 35 - 1.29821048640703e34 * cos(theta) ** 33 + 1.92760162211168e33 * cos(theta) ** 31 - 2.47264759801912e32 * cos(theta) ** 29 + 2.72058245202104e31 * cos(theta) ** 27 - 2.54578629874536e30 * cos(theta) ** 25 + 2.00560895384351e29 * cos(theta) ** 23 - 1.31421669340173e28 * cos(theta) ** 21 + 7.05845282901185e26 * cos(theta) ** 19 - 3.05182157714545e25 * cos(theta) ** 17 + 1.03865799422368e24 * cos(theta) ** 15 - 2.70416785007404e22 * cos(theta) ** 13 + 5.18753301293102e20 * cos(theta) ** 11 - 6.96738255705021e18 * cos(theta) ** 9 + 6.08800417606329e16 * cos(theta) ** 7 - 308737231821611.0 * cos(theta) ** 5 + 742513785044.76 * cos(theta) ** 3 - 534054508.543342 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl91_m5(theta, phi): return ( 8.43530830093822e-10 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 8.16043388896765e35 * cos(theta) ** 86 - 1.64786662233021e37 * cos(theta) ** 84 + 1.60459861604556e38 * cos(theta) ** 82 - 1.00355404969629e39 * cos(theta) ** 80 + 4.53032971005754e39 * cos(theta) ** 78 - 1.57278382882113e40 * cos(theta) ** 76 + 4.36884396894759e40 * cos(theta) ** 74 - 9.97485000856082e40 * cos(theta) ** 72 + 1.90836202259592e41 * cos(theta) ** 70 - 3.10349783472669e41 * cos(theta) ** 68 + 4.33728102301068e41 * cos(theta) ** 66 - 5.25322856824275e41 * cos(theta) ** 64 + 5.55058112870932e41 * cos(theta) ** 62 - 5.14265012953911e41 * cos(theta) ** 60 + 4.19469618861024e41 * cos(theta) ** 58 - 3.0212779083977e41 * cos(theta) ** 56 + 1.92581456081642e41 * cos(theta) ** 54 - 1.0879749848118e41 * cos(theta) ** 52 + 5.45221024134712e40 * cos(theta) ** 50 - 2.42430400931043e40 * cos(theta) ** 48 + 9.56159063811944e39 * cos(theta) ** 46 - 3.34219733551287e39 * cos(theta) ** 44 + 1.03391716134571e39 * cos(theta) ** 42 - 2.82514337010046e38 * cos(theta) ** 40 + 6.80127107616778e37 * cos(theta) ** 38 - 1.43798302753262e37 * cos(theta) ** 36 + 2.65980419067982e36 * cos(theta) ** 34 - 4.28409460514321e35 * cos(theta) ** 32 + 5.97556502854622e34 * cos(theta) ** 30 - 7.17067803425546e33 * cos(theta) ** 28 + 7.34557262045681e32 * cos(theta) ** 26 - 6.36446574686341e31 * cos(theta) ** 24 + 4.61290059384007e30 * cos(theta) ** 22 - 2.75985505614363e29 * cos(theta) ** 20 + 1.34110603751225e28 * cos(theta) ** 18 - 5.18809668114727e26 * cos(theta) ** 16 + 1.55798699133552e25 * cos(theta) ** 14 - 3.51541820509626e23 * cos(theta) ** 12 + 5.70628631422412e21 * cos(theta) ** 10 - 6.27064430134519e19 * cos(theta) ** 8 + 4.26160292324431e17 * cos(theta) ** 6 - 1.54368615910806e15 * cos(theta) ** 4 + 2227541355134.28 * cos(theta) ** 2 - 534054508.543342 ) * cos(5 * phi) ) # @torch.jit.script def Yl91_m6(theta, phi): return ( 9.23561599955551e-12 * (1.0 - cos(theta) ** 2) ** 3 * ( 7.01797314451218e37 * cos(theta) ** 85 - 1.38420796275737e39 * cos(theta) ** 83 + 1.31577086515736e40 * cos(theta) ** 81 - 8.02843239757033e40 * cos(theta) ** 79 + 3.53365717384488e41 * cos(theta) ** 77 - 1.19531570990406e42 * cos(theta) ** 75 + 3.23294453702122e42 * cos(theta) ** 73 - 7.18189200616379e42 * cos(theta) ** 71 + 1.33585341581714e43 * cos(theta) ** 69 - 2.11037852761415e43 * cos(theta) ** 67 + 2.86260547518705e43 * cos(theta) ** 65 - 3.36206628367536e43 * cos(theta) ** 63 + 3.44136029979978e43 * cos(theta) ** 61 - 3.08559007772346e43 * cos(theta) ** 59 + 2.43292378939394e43 * cos(theta) ** 57 - 1.69191562870271e43 * cos(theta) ** 55 + 1.03993986284086e43 * cos(theta) ** 53 - 5.65746992102136e42 * cos(theta) ** 51 + 2.72610512067356e42 * cos(theta) ** 49 - 1.163665924469e42 * cos(theta) ** 47 + 4.39833169353494e41 * cos(theta) ** 45 - 1.47056682762566e41 * cos(theta) ** 43 + 4.34245207765198e40 * cos(theta) ** 41 - 1.13005734804018e40 * cos(theta) ** 39 + 2.58448300894376e39 * cos(theta) ** 37 - 5.17673889911742e38 * cos(theta) ** 35 + 9.0433342483114e37 * cos(theta) ** 33 - 1.37091027364583e37 * cos(theta) ** 31 + 1.79266950856386e36 * cos(theta) ** 29 - 2.00778984959153e35 * cos(theta) ** 27 + 1.90984888131877e34 * cos(theta) ** 25 - 1.52747177924722e33 * cos(theta) ** 23 + 1.01483813064482e32 * cos(theta) ** 21 - 5.51971011228727e30 * cos(theta) ** 19 + 2.41399086752205e29 * cos(theta) ** 17 - 8.30095468983563e27 * cos(theta) ** 15 + 2.18118178786972e26 * cos(theta) ** 13 - 4.21850184611551e24 * cos(theta) ** 11 + 5.70628631422412e22 * cos(theta) ** 9 - 5.01651544107615e20 * cos(theta) ** 7 + 2.55696175394658e18 * cos(theta) ** 5 - 6.17474463643222e15 * cos(theta) ** 3 + 4455082710268.56 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl91_m7(theta, phi): return ( 1.01191344601396e-13 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 5.96527717283535e39 * cos(theta) ** 84 - 1.14889260908862e41 * cos(theta) ** 82 + 1.06577440077746e42 * cos(theta) ** 80 - 6.34246159408056e42 * cos(theta) ** 78 + 2.72091602386056e43 * cos(theta) ** 76 - 8.96486782428046e43 * cos(theta) ** 74 + 2.36004951202549e44 * cos(theta) ** 72 - 5.09914332437629e44 * cos(theta) ** 70 + 9.21738856913828e44 * cos(theta) ** 68 - 1.41395361350148e45 * cos(theta) ** 66 + 1.86069355887158e45 * cos(theta) ** 64 - 2.11810175871548e45 * cos(theta) ** 62 + 2.09922978287786e45 * cos(theta) ** 60 - 1.82049814585684e45 * cos(theta) ** 58 + 1.38676655995455e45 * cos(theta) ** 56 - 9.30553595786492e44 * cos(theta) ** 54 + 5.51168127305658e44 * cos(theta) ** 52 - 2.8853096597209e44 * cos(theta) ** 50 + 1.33579150913004e44 * cos(theta) ** 48 - 5.46922984500432e43 * cos(theta) ** 46 + 1.97924926209072e43 * cos(theta) ** 44 - 6.32343735879036e42 * cos(theta) ** 42 + 1.78040535183731e42 * cos(theta) ** 40 - 4.40722365735672e41 * cos(theta) ** 38 + 9.5625871330919e40 * cos(theta) ** 36 - 1.8118586146911e40 * cos(theta) ** 34 + 2.98430030194276e39 * cos(theta) ** 32 - 4.24982184830207e38 * cos(theta) ** 30 + 5.19874157483521e37 * cos(theta) ** 28 - 5.42103259389713e36 * cos(theta) ** 26 + 4.77462220329693e35 * cos(theta) ** 24 - 3.5131850922686e34 * cos(theta) ** 22 + 2.13116007435411e33 * cos(theta) ** 20 - 1.04874492133458e32 * cos(theta) ** 18 + 4.10378447478749e30 * cos(theta) ** 16 - 1.24514320347534e29 * cos(theta) ** 14 + 2.83553632423064e27 * cos(theta) ** 12 - 4.64035203072706e25 * cos(theta) ** 10 + 5.13565768280171e23 * cos(theta) ** 8 - 3.51156080875331e21 * cos(theta) ** 6 + 1.27848087697329e19 * cos(theta) ** 4 - 1.85242339092967e16 * cos(theta) ** 2 + 4455082710268.56 ) * cos(7 * phi) ) # @torch.jit.script def Yl91_m8(theta, phi): return ( 1.10965027826244e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 5.0108328251817e41 * cos(theta) ** 83 - 9.42091939452669e42 * cos(theta) ** 81 + 8.52619520621969e43 * cos(theta) ** 79 - 4.94712004338284e44 * cos(theta) ** 77 + 2.06789617813403e45 * cos(theta) ** 75 - 6.63400218996754e45 * cos(theta) ** 73 + 1.69923564865835e46 * cos(theta) ** 71 - 3.5694003270634e46 * cos(theta) ** 69 + 6.26782422701403e46 * cos(theta) ** 67 - 9.33209384910977e46 * cos(theta) ** 65 + 1.19084387767781e47 * cos(theta) ** 63 - 1.31322309040359e47 * cos(theta) ** 61 + 1.25953786972672e47 * cos(theta) ** 59 - 1.05588892459697e47 * cos(theta) ** 57 + 7.76589273574545e46 * cos(theta) ** 55 - 5.02498941724706e46 * cos(theta) ** 53 + 2.86607426198942e46 * cos(theta) ** 51 - 1.44265482986045e46 * cos(theta) ** 49 + 6.41179924382421e45 * cos(theta) ** 47 - 2.51584572870199e45 * cos(theta) ** 45 + 8.70869675319919e44 * cos(theta) ** 43 - 2.65584369069195e44 * cos(theta) ** 41 + 7.12162140734925e43 * cos(theta) ** 39 - 1.67474498979555e43 * cos(theta) ** 37 + 3.44253136791308e42 * cos(theta) ** 35 - 6.16031928994973e41 * cos(theta) ** 33 + 9.54976096621684e40 * cos(theta) ** 31 - 1.27494655449062e40 * cos(theta) ** 29 + 1.45564764095386e39 * cos(theta) ** 27 - 1.40946847441325e38 * cos(theta) ** 25 + 1.14590932879126e37 * cos(theta) ** 23 - 7.72900720299092e35 * cos(theta) ** 21 + 4.26232014870823e34 * cos(theta) ** 19 - 1.88774085840225e33 * cos(theta) ** 17 + 6.56605515965999e31 * cos(theta) ** 15 - 1.74320048486548e30 * cos(theta) ** 13 + 3.40264358907677e28 * cos(theta) ** 11 - 4.64035203072706e26 * cos(theta) ** 9 + 4.10852614624137e24 * cos(theta) ** 7 - 2.10693648525198e22 * cos(theta) ** 5 + 5.11392350789317e19 * cos(theta) ** 3 - 3.70484678185933e16 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl91_m9(theta, phi): return ( 1.2179994164083e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 4.15899124490081e43 * cos(theta) ** 82 - 7.63094470956662e44 * cos(theta) ** 80 + 6.73569421291355e45 * cos(theta) ** 78 - 3.80928243340478e46 * cos(theta) ** 76 + 1.55092213360052e47 * cos(theta) ** 74 - 4.8428215986763e47 * cos(theta) ** 72 + 1.20645731054743e48 * cos(theta) ** 70 - 2.46288622567375e48 * cos(theta) ** 68 + 4.1994422320994e48 * cos(theta) ** 66 - 6.06586100192135e48 * cos(theta) ** 64 + 7.50231642937021e48 * cos(theta) ** 62 - 8.01066085146193e48 * cos(theta) ** 60 + 7.43127343138764e48 * cos(theta) ** 58 - 6.01856687020273e48 * cos(theta) ** 56 + 4.27124100466e48 * cos(theta) ** 54 - 2.66324439114094e48 * cos(theta) ** 52 + 1.46169787361461e48 * cos(theta) ** 50 - 7.06900866631619e47 * cos(theta) ** 48 + 3.01354564459738e47 * cos(theta) ** 46 - 1.13213057791589e47 * cos(theta) ** 44 + 3.74473960387565e46 * cos(theta) ** 42 - 1.0888959131837e46 * cos(theta) ** 40 + 2.77743234886621e45 * cos(theta) ** 38 - 6.19655646224355e44 * cos(theta) ** 36 + 1.20488597876958e44 * cos(theta) ** 34 - 2.03290536568341e43 * cos(theta) ** 32 + 2.96042589952722e42 * cos(theta) ** 30 - 3.6973450080228e41 * cos(theta) ** 28 + 3.93024863057542e40 * cos(theta) ** 26 - 3.52367118603313e39 * cos(theta) ** 24 + 2.6355914562199e38 * cos(theta) ** 22 - 1.62309151262809e37 * cos(theta) ** 20 + 8.09840828254563e35 * cos(theta) ** 18 - 3.20915945928382e34 * cos(theta) ** 16 + 9.84908273948998e32 * cos(theta) ** 14 - 2.26616063032513e31 * cos(theta) ** 12 + 3.74290794798445e29 * cos(theta) ** 10 - 4.17631682765435e27 * cos(theta) ** 8 + 2.87596830236896e25 * cos(theta) ** 6 - 1.05346824262599e23 * cos(theta) ** 4 + 1.53417705236795e20 * cos(theta) ** 2 - 3.70484678185933e16 ) * cos(9 * phi) ) # @torch.jit.script def Yl91_m10(theta, phi): return ( 1.33838008929746e-19 * (1.0 - cos(theta) ** 2) ** 5 * ( 3.41037282081866e45 * cos(theta) ** 81 - 6.1047557676533e46 * cos(theta) ** 79 + 5.25384148607257e47 * cos(theta) ** 77 - 2.89505464938764e48 * cos(theta) ** 75 + 1.14768237886438e49 * cos(theta) ** 73 - 3.48683155104694e49 * cos(theta) ** 71 + 8.44520117383201e49 * cos(theta) ** 69 - 1.67476263345815e50 * cos(theta) ** 67 + 2.7716318731856e50 * cos(theta) ** 65 - 3.88215104122967e50 * cos(theta) ** 63 + 4.65143618620953e50 * cos(theta) ** 61 - 4.80639651087716e50 * cos(theta) ** 59 + 4.31013859020483e50 * cos(theta) ** 57 - 3.37039744731353e50 * cos(theta) ** 55 + 2.3064701425164e50 * cos(theta) ** 53 - 1.38488708339329e50 * cos(theta) ** 51 + 7.30848936807303e49 * cos(theta) ** 49 - 3.39312415983177e49 * cos(theta) ** 47 + 1.38623099651479e49 * cos(theta) ** 45 - 4.98137454282993e48 * cos(theta) ** 43 + 1.57279063362777e48 * cos(theta) ** 41 - 4.3555836527348e47 * cos(theta) ** 39 + 1.05542429256916e47 * cos(theta) ** 37 - 2.23076032640768e46 * cos(theta) ** 35 + 4.09661232781657e45 * cos(theta) ** 33 - 6.50529717018691e44 * cos(theta) ** 31 + 8.88127769858166e43 * cos(theta) ** 29 - 1.03525660224638e43 * cos(theta) ** 27 + 1.02186464394961e42 * cos(theta) ** 25 - 8.45681084647952e40 * cos(theta) ** 23 + 5.79830120368379e39 * cos(theta) ** 21 - 3.24618302525619e38 * cos(theta) ** 19 + 1.45771349085821e37 * cos(theta) ** 17 - 5.13465513485411e35 * cos(theta) ** 15 + 1.3788715835286e34 * cos(theta) ** 13 - 2.71939275639015e32 * cos(theta) ** 11 + 3.74290794798445e30 * cos(theta) ** 9 - 3.34105346212348e28 * cos(theta) ** 7 + 1.72558098142138e26 * cos(theta) ** 5 - 4.21387297050397e23 * cos(theta) ** 3 + 3.0683541047359e20 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl91_m11(theta, phi): return ( 1.47243750776309e-21 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 2.76240198486312e47 * cos(theta) ** 80 - 4.8227570564461e48 * cos(theta) ** 78 + 4.04545794427588e49 * cos(theta) ** 76 - 2.17129098704073e50 * cos(theta) ** 74 + 8.37808136571e50 * cos(theta) ** 72 - 2.47565040124333e51 * cos(theta) ** 70 + 5.82718880994409e51 * cos(theta) ** 68 - 1.12209096441696e52 * cos(theta) ** 66 + 1.80156071757064e52 * cos(theta) ** 64 - 2.44575515597469e52 * cos(theta) ** 62 + 2.83737607358781e52 * cos(theta) ** 60 - 2.83577394141752e52 * cos(theta) ** 58 + 2.45677899641675e52 * cos(theta) ** 56 - 1.85371859602244e52 * cos(theta) ** 54 + 1.22242917553369e52 * cos(theta) ** 52 - 7.06292412530578e51 * cos(theta) ** 50 + 3.58115979035578e51 * cos(theta) ** 48 - 1.59476835512093e51 * cos(theta) ** 46 + 6.23803948431658e50 * cos(theta) ** 44 - 2.14199105341687e50 * cos(theta) ** 42 + 6.44844159787387e49 * cos(theta) ** 40 - 1.69867762456657e49 * cos(theta) ** 38 + 3.90506988250589e48 * cos(theta) ** 36 - 7.80766114242687e47 * cos(theta) ** 34 + 1.35188206817947e47 * cos(theta) ** 32 - 2.01664212275794e46 * cos(theta) ** 30 + 2.57557053258868e45 * cos(theta) ** 28 - 2.79519282606524e44 * cos(theta) ** 26 + 2.55466160987402e43 * cos(theta) ** 24 - 1.94506649469029e42 * cos(theta) ** 22 + 1.2176432527736e41 * cos(theta) ** 20 - 6.16774774798676e39 * cos(theta) ** 18 + 2.47811293445896e38 * cos(theta) ** 16 - 7.70198270228116e36 * cos(theta) ** 14 + 1.79253305858718e35 * cos(theta) ** 12 - 2.99133203202917e33 * cos(theta) ** 10 + 3.368617153186e31 * cos(theta) ** 8 - 2.33873742348644e29 * cos(theta) ** 6 + 8.62790490710688e26 * cos(theta) ** 4 - 1.26416189115119e24 * cos(theta) ** 2 + 3.0683541047359e20 ) * cos(11 * phi) ) # @torch.jit.script def Yl91_m12(theta, phi): return ( 1.62208372158755e-23 * (1.0 - cos(theta) ** 2) ** 6 * ( 2.20992158789049e49 * cos(theta) ** 79 - 3.76175050402796e50 * cos(theta) ** 77 + 3.07454803764967e51 * cos(theta) ** 75 - 1.60675533041014e52 * cos(theta) ** 73 + 6.0322185833112e52 * cos(theta) ** 71 - 1.73295528087033e53 * cos(theta) ** 69 + 3.96248839076198e53 * cos(theta) ** 67 - 7.40580036515193e53 * cos(theta) ** 65 + 1.15299885924521e54 * cos(theta) ** 63 - 1.51636819670431e54 * cos(theta) ** 61 + 1.70242564415269e54 * cos(theta) ** 59 - 1.64474888602216e54 * cos(theta) ** 57 + 1.37579623799338e54 * cos(theta) ** 55 - 1.00100804185212e54 * cos(theta) ** 53 + 6.3566317127752e53 * cos(theta) ** 51 - 3.53146206265289e53 * cos(theta) ** 49 + 1.71895669937078e53 * cos(theta) ** 47 - 7.33593443355629e52 * cos(theta) ** 45 + 2.74473737309929e52 * cos(theta) ** 43 - 8.99636242435086e51 * cos(theta) ** 41 + 2.57937663914955e51 * cos(theta) ** 39 - 6.45497497335297e50 * cos(theta) ** 37 + 1.40582515770212e50 * cos(theta) ** 35 - 2.65460478842514e49 * cos(theta) ** 33 + 4.3260226181743e48 * cos(theta) ** 31 - 6.04992636827383e47 * cos(theta) ** 29 + 7.21159749124831e46 * cos(theta) ** 27 - 7.26750134776962e45 * cos(theta) ** 25 + 6.13118786369765e44 * cos(theta) ** 23 - 4.27914628831864e43 * cos(theta) ** 21 + 2.43528650554719e42 * cos(theta) ** 19 - 1.11019459463762e41 * cos(theta) ** 17 + 3.96498069513434e39 * cos(theta) ** 15 - 1.07827757831936e38 * cos(theta) ** 13 + 2.15103967030461e36 * cos(theta) ** 11 - 2.99133203202917e34 * cos(theta) ** 9 + 2.6948937225488e32 * cos(theta) ** 7 - 1.40324245409186e30 * cos(theta) ** 5 + 3.45116196284275e27 * cos(theta) ** 3 - 2.52832378230238e24 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl91_m13(theta, phi): return ( 1.78954675951153e-25 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.74583805443349e51 * cos(theta) ** 78 - 2.89654788810153e52 * cos(theta) ** 76 + 2.30591102823725e53 * cos(theta) ** 74 - 1.1729313911994e54 * cos(theta) ** 72 + 4.28287519415095e54 * cos(theta) ** 70 - 1.19573914380053e55 * cos(theta) ** 68 + 2.65486722181053e55 * cos(theta) ** 66 - 4.81377023734876e55 * cos(theta) ** 64 + 7.26389281324483e55 * cos(theta) ** 62 - 9.24984599989628e55 * cos(theta) ** 60 + 1.00443113005009e56 * cos(theta) ** 58 - 9.37506865032633e55 * cos(theta) ** 56 + 7.5668793089636e55 * cos(theta) ** 54 - 5.30534262181622e55 * cos(theta) ** 52 + 3.24188217351535e55 * cos(theta) ** 50 - 1.73041641069991e55 * cos(theta) ** 48 + 8.07909648704265e54 * cos(theta) ** 46 - 3.30117049510033e54 * cos(theta) ** 44 + 1.1802370704327e54 * cos(theta) ** 42 - 3.68850859398385e53 * cos(theta) ** 40 + 1.00595688926832e53 * cos(theta) ** 38 - 2.3883407401406e52 * cos(theta) ** 36 + 4.92038805195742e51 * cos(theta) ** 34 - 8.76019580180295e50 * cos(theta) ** 32 + 1.34106701163403e50 * cos(theta) ** 30 - 1.75447864679941e49 * cos(theta) ** 28 + 1.94713132263704e48 * cos(theta) ** 26 - 1.8168753369424e47 * cos(theta) ** 24 + 1.41017320865046e46 * cos(theta) ** 22 - 8.98620720546914e44 * cos(theta) ** 20 + 4.62704436053966e43 * cos(theta) ** 18 - 1.88733081088395e42 * cos(theta) ** 16 + 5.94747104270151e40 * cos(theta) ** 14 - 1.40176085181517e39 * cos(theta) ** 12 + 2.36614363733507e37 * cos(theta) ** 10 - 2.69219882882625e35 * cos(theta) ** 8 + 1.88642560578416e33 * cos(theta) ** 6 - 7.01621227045931e30 * cos(theta) ** 4 + 1.03534858885283e28 * cos(theta) ** 2 - 2.52832378230238e24 ) * cos(13 * phi) ) # @torch.jit.script def Yl91_m14(theta, phi): return ( 1.9774299141302e-27 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.36175368245812e53 * cos(theta) ** 77 - 2.20137639495716e54 * cos(theta) ** 75 + 1.70637416089557e55 * cos(theta) ** 73 - 8.44510601663568e55 * cos(theta) ** 71 + 2.99801263590567e56 * cos(theta) ** 69 - 8.13102617784358e56 * cos(theta) ** 67 + 1.75221236639495e57 * cos(theta) ** 65 - 3.0808129519032e57 * cos(theta) ** 63 + 4.50361354421179e57 * cos(theta) ** 61 - 5.54990759993777e57 * cos(theta) ** 59 + 5.8257005542905e57 * cos(theta) ** 57 - 5.25003844418274e57 * cos(theta) ** 55 + 4.08611482684034e57 * cos(theta) ** 53 - 2.75877816334444e57 * cos(theta) ** 51 + 1.62094108675768e57 * cos(theta) ** 49 - 8.30599877135959e56 * cos(theta) ** 47 + 3.71638438403962e56 * cos(theta) ** 45 - 1.45251501784415e56 * cos(theta) ** 43 + 4.95699569581732e55 * cos(theta) ** 41 - 1.47540343759354e55 * cos(theta) ** 39 + 3.82263617921963e54 * cos(theta) ** 37 - 8.59802666450616e53 * cos(theta) ** 35 + 1.67293193766552e53 * cos(theta) ** 33 - 2.80326265657694e52 * cos(theta) ** 31 + 4.0232010349021e51 * cos(theta) ** 29 - 4.91254021103835e50 * cos(theta) ** 27 + 5.06254143885631e49 * cos(theta) ** 25 - 4.36050080866177e48 * cos(theta) ** 23 + 3.10238105903101e47 * cos(theta) ** 21 - 1.79724144109383e46 * cos(theta) ** 19 + 8.32867984897139e44 * cos(theta) ** 17 - 3.01972929741432e43 * cos(theta) ** 15 + 8.32645945978212e41 * cos(theta) ** 13 - 1.68211302217821e40 * cos(theta) ** 11 + 2.36614363733507e38 * cos(theta) ** 9 - 2.153759063061e36 * cos(theta) ** 7 + 1.1318553634705e34 * cos(theta) ** 5 - 2.80648490818372e31 * cos(theta) ** 3 + 2.07069717770565e28 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl91_m15(theta, phi): return ( 2.18878349199524e-29 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.04855033549275e55 * cos(theta) ** 76 - 1.65103229621787e56 * cos(theta) ** 74 + 1.24565313745376e57 * cos(theta) ** 72 - 5.99602527181134e57 * cos(theta) ** 70 + 2.06862871877491e58 * cos(theta) ** 68 - 5.4477875391552e58 * cos(theta) ** 66 + 1.13893803815672e59 * cos(theta) ** 64 - 1.94091215969902e59 * cos(theta) ** 62 + 2.74720426196919e59 * cos(theta) ** 60 - 3.27444548396328e59 * cos(theta) ** 58 + 3.32064931594559e59 * cos(theta) ** 56 - 2.88752114430051e59 * cos(theta) ** 54 + 2.16564085822538e59 * cos(theta) ** 52 - 1.40697686330566e59 * cos(theta) ** 50 + 7.94261132511261e58 * cos(theta) ** 48 - 3.90381942253901e58 * cos(theta) ** 46 + 1.67237297281783e58 * cos(theta) ** 44 - 6.24581457672983e57 * cos(theta) ** 42 + 2.0323682352851e57 * cos(theta) ** 40 - 5.75407340661481e56 * cos(theta) ** 38 + 1.41437538631126e56 * cos(theta) ** 36 - 3.00930933257716e55 * cos(theta) ** 34 + 5.52067539429622e54 * cos(theta) ** 32 - 8.69011423538853e53 * cos(theta) ** 30 + 1.16672830012161e53 * cos(theta) ** 28 - 1.32638585698035e52 * cos(theta) ** 26 + 1.26563535971408e51 * cos(theta) ** 24 - 1.00291518599221e50 * cos(theta) ** 22 + 6.51500022396512e48 * cos(theta) ** 20 - 3.41475873807827e47 * cos(theta) ** 18 + 1.41587557432514e46 * cos(theta) ** 16 - 4.52959394612147e44 * cos(theta) ** 14 + 1.08243972977168e43 * cos(theta) ** 12 - 1.85032432439603e41 * cos(theta) ** 10 + 2.12952927360156e39 * cos(theta) ** 8 - 1.5076313441427e37 * cos(theta) ** 6 + 5.65927681735248e34 * cos(theta) ** 4 - 8.41945472455117e31 * cos(theta) ** 2 + 2.07069717770565e28 ) * cos(15 * phi) ) # @torch.jit.script def Yl91_m16(theta, phi): return ( 2.42719193050827e-31 * (1.0 - cos(theta) ** 2) ** 8 * ( 7.96898254974493e56 * cos(theta) ** 75 - 1.22176389920123e58 * cos(theta) ** 73 + 8.9687025896671e58 * cos(theta) ** 71 - 4.19721769026794e59 * cos(theta) ** 69 + 1.40666752876694e60 * cos(theta) ** 67 - 3.59553977584243e60 * cos(theta) ** 65 + 7.28920344420298e60 * cos(theta) ** 63 - 1.20336553901339e61 * cos(theta) ** 61 + 1.64832255718152e61 * cos(theta) ** 59 - 1.8991783806987e61 * cos(theta) ** 57 + 1.85956361692953e61 * cos(theta) ** 55 - 1.55926141792228e61 * cos(theta) ** 53 + 1.1261332462772e61 * cos(theta) ** 51 - 7.03488431652831e60 * cos(theta) ** 49 + 3.81245343605405e60 * cos(theta) ** 47 - 1.79575693436794e60 * cos(theta) ** 45 + 7.35844108039844e59 * cos(theta) ** 43 - 2.62324212222653e59 * cos(theta) ** 41 + 8.12947294114041e58 * cos(theta) ** 39 - 2.18654789451363e58 * cos(theta) ** 37 + 5.09175139072055e57 * cos(theta) ** 35 - 1.02316517307623e57 * cos(theta) ** 33 + 1.76661612617479e56 * cos(theta) ** 31 - 2.60703427061656e55 * cos(theta) ** 29 + 3.2668392403405e54 * cos(theta) ** 27 - 3.44860322814892e53 * cos(theta) ** 25 + 3.03752486331379e52 * cos(theta) ** 23 - 2.20641340918286e51 * cos(theta) ** 21 + 1.30300004479302e50 * cos(theta) ** 19 - 6.14656572854089e48 * cos(theta) ** 17 + 2.26540091892022e47 * cos(theta) ** 15 - 6.34143152457006e45 * cos(theta) ** 13 + 1.29892767572601e44 * cos(theta) ** 11 - 1.85032432439603e42 * cos(theta) ** 9 + 1.70362341888125e40 * cos(theta) ** 7 - 9.04578806485621e37 * cos(theta) ** 5 + 2.26371072694099e35 * cos(theta) ** 3 - 1.68389094491023e32 * cos(theta) ) * cos(16 * phi) ) # @torch.jit.script def Yl91_m17(theta, phi): return ( 2.69687992278696e-33 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 5.9767369123087e58 * cos(theta) ** 74 - 8.91887646416895e59 * cos(theta) ** 72 + 6.36777883866364e60 * cos(theta) ** 70 - 2.89608020628488e61 * cos(theta) ** 68 + 9.42467244273849e61 * cos(theta) ** 66 - 2.33710085429758e62 * cos(theta) ** 64 + 4.59219816984788e62 * cos(theta) ** 62 - 7.34052978798169e62 * cos(theta) ** 60 + 9.72510308737095e62 * cos(theta) ** 58 - 1.08253167699826e63 * cos(theta) ** 56 + 1.02275998931124e63 * cos(theta) ** 54 - 8.26408551498806e62 * cos(theta) ** 52 + 5.74327955601371e62 * cos(theta) ** 50 - 3.44709331509887e62 * cos(theta) ** 48 + 1.7918531149454e62 * cos(theta) ** 46 - 8.08090620465575e61 * cos(theta) ** 44 + 3.16412966457133e61 * cos(theta) ** 42 - 1.07552927011288e61 * cos(theta) ** 40 + 3.17049444704476e60 * cos(theta) ** 38 - 8.09022720970042e59 * cos(theta) ** 36 + 1.78211298675219e59 * cos(theta) ** 34 - 3.37644507115157e58 * cos(theta) ** 32 + 5.47650999114185e57 * cos(theta) ** 30 - 7.56039938478802e56 * cos(theta) ** 28 + 8.82046594891936e55 * cos(theta) ** 26 - 8.6215080703723e54 * cos(theta) ** 24 + 6.98630718562171e53 * cos(theta) ** 22 - 4.633468159284e52 * cos(theta) ** 20 + 2.47570008510675e51 * cos(theta) ** 18 - 1.04491617385195e50 * cos(theta) ** 16 + 3.39810137838033e48 * cos(theta) ** 14 - 8.24386098194108e46 * cos(theta) ** 12 + 1.42882044329861e45 * cos(theta) ** 10 - 1.66529189195642e43 * cos(theta) ** 8 + 1.19253639321688e41 * cos(theta) ** 6 - 4.5228940324281e38 * cos(theta) ** 4 + 6.79113218082298e35 * cos(theta) ** 2 - 1.68389094491023e32 ) * cos(17 * phi) ) # @torch.jit.script def Yl91_m18(theta, phi): return ( 3.00284213621534e-35 * (1.0 - cos(theta) ** 2) ** 9 * ( 4.42278531510844e60 * cos(theta) ** 73 - 6.42159105420164e61 * cos(theta) ** 71 + 4.45744518706455e62 * cos(theta) ** 69 - 1.96933454027372e63 * cos(theta) ** 67 + 6.22028381220741e63 * cos(theta) ** 65 - 1.49574454675045e64 * cos(theta) ** 63 + 2.84716286530568e64 * cos(theta) ** 61 - 4.40431787278901e64 * cos(theta) ** 59 + 5.64055979067515e64 * cos(theta) ** 57 - 6.06217739119026e64 * cos(theta) ** 55 + 5.5229039422807e64 * cos(theta) ** 53 - 4.29732446779379e64 * cos(theta) ** 51 + 2.87163977800686e64 * cos(theta) ** 49 - 1.65460479124746e64 * cos(theta) ** 47 + 8.24252432874886e63 * cos(theta) ** 45 - 3.55559873004853e63 * cos(theta) ** 43 + 1.32893445911996e63 * cos(theta) ** 41 - 4.30211708045151e62 * cos(theta) ** 39 + 1.20478788987701e62 * cos(theta) ** 37 - 2.91248179549215e61 * cos(theta) ** 35 + 6.05918415495745e60 * cos(theta) ** 33 - 1.0804624227685e60 * cos(theta) ** 31 + 1.64295299734256e59 * cos(theta) ** 29 - 2.11691182774065e58 * cos(theta) ** 27 + 2.29332114671903e57 * cos(theta) ** 25 - 2.06916193688935e56 * cos(theta) ** 23 + 1.53698758083678e55 * cos(theta) ** 21 - 9.26693631856799e53 * cos(theta) ** 19 + 4.45626015319214e52 * cos(theta) ** 17 - 1.67186587816312e51 * cos(theta) ** 15 + 4.75734192973246e49 * cos(theta) ** 13 - 9.8926331783293e47 * cos(theta) ** 11 + 1.42882044329861e46 * cos(theta) ** 9 - 1.33223351356514e44 * cos(theta) ** 7 + 7.15521835930126e41 * cos(theta) ** 5 - 1.80915761297124e39 * cos(theta) ** 3 + 1.3582264361646e36 * cos(theta) ) * cos(18 * phi) ) # @torch.jit.script def Yl91_m19(theta, phi): return ( 3.35100232120186e-37 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 3.22863328002916e62 * cos(theta) ** 72 - 4.55932964848317e63 * cos(theta) ** 70 + 3.07563717907454e64 * cos(theta) ** 68 - 1.31945414198339e65 * cos(theta) ** 66 + 4.04318447793481e65 * cos(theta) ** 64 - 9.42319064452784e65 * cos(theta) ** 62 + 1.73676934783647e66 * cos(theta) ** 60 - 2.59854754494552e66 * cos(theta) ** 58 + 3.21511908068484e66 * cos(theta) ** 56 - 3.33419756515464e66 * cos(theta) ** 54 + 2.92713908940877e66 * cos(theta) ** 52 - 2.19163547857483e66 * cos(theta) ** 50 + 1.40710349122336e66 * cos(theta) ** 48 - 7.77664251886306e65 * cos(theta) ** 46 + 3.70913594793699e65 * cos(theta) ** 44 - 1.52890745392087e65 * cos(theta) ** 42 + 5.44863128239183e64 * cos(theta) ** 40 - 1.67782566137609e64 * cos(theta) ** 38 + 4.45771519254493e63 * cos(theta) ** 36 - 1.01936862842225e63 * cos(theta) ** 34 + 1.99953077113596e62 * cos(theta) ** 32 - 3.34943351058236e61 * cos(theta) ** 30 + 4.76456369229341e60 * cos(theta) ** 28 - 5.71566193489974e59 * cos(theta) ** 26 + 5.73330286679758e58 * cos(theta) ** 24 - 4.75907245484551e57 * cos(theta) ** 22 + 3.22767391975723e56 * cos(theta) ** 20 - 1.76071790052792e55 * cos(theta) ** 18 + 7.57564226042665e53 * cos(theta) ** 16 - 2.50779881724468e52 * cos(theta) ** 14 + 6.1845445086522e50 * cos(theta) ** 12 - 1.08818964961622e49 * cos(theta) ** 10 + 1.28593839896875e47 * cos(theta) ** 8 - 9.32563459495597e44 * cos(theta) ** 6 + 3.57760917965063e42 * cos(theta) ** 4 - 5.42747283891372e39 * cos(theta) ** 2 + 1.3582264361646e36 ) * cos(19 * phi) ) # @torch.jit.script def Yl91_m20(theta, phi): return ( 3.74840916485146e-39 * (1.0 - cos(theta) ** 2) ** 10 * ( 2.32461596162099e64 * cos(theta) ** 71 - 3.19153075393822e65 * cos(theta) ** 69 + 2.09143328177069e66 * cos(theta) ** 67 - 8.70839733709037e66 * cos(theta) ** 65 + 2.58763806587828e67 * cos(theta) ** 63 - 5.84237819960726e67 * cos(theta) ** 61 + 1.04206160870188e68 * cos(theta) ** 59 - 1.5071575760684e68 * cos(theta) ** 57 + 1.80046668518351e68 * cos(theta) ** 55 - 1.80046668518351e68 * cos(theta) ** 53 + 1.52211232649256e68 * cos(theta) ** 51 - 1.09581773928742e68 * cos(theta) ** 49 + 6.75409675787213e67 * cos(theta) ** 47 - 3.57725555867701e67 * cos(theta) ** 45 + 1.63201981709227e67 * cos(theta) ** 43 - 6.42141130646764e66 * cos(theta) ** 41 + 2.17945251295673e66 * cos(theta) ** 39 - 6.37573751322913e65 * cos(theta) ** 37 + 1.60477746931618e65 * cos(theta) ** 35 - 3.46585333663566e64 * cos(theta) ** 33 + 6.39849846763507e63 * cos(theta) ** 31 - 1.00483005317471e63 * cos(theta) ** 29 + 1.33407783384215e62 * cos(theta) ** 27 - 1.48607210307393e61 * cos(theta) ** 25 + 1.37599268803142e60 * cos(theta) ** 23 - 1.04699594006601e59 * cos(theta) ** 21 + 6.45534783951446e57 * cos(theta) ** 19 - 3.16929222095025e56 * cos(theta) ** 17 + 1.21210276166826e55 * cos(theta) ** 15 - 3.51091834414256e53 * cos(theta) ** 13 + 7.42145341038264e51 * cos(theta) ** 11 - 1.08818964961622e50 * cos(theta) ** 9 + 1.028750719175e48 * cos(theta) ** 7 - 5.59538075697358e45 * cos(theta) ** 5 + 1.43104367186025e43 * cos(theta) ** 3 - 1.08549456778274e40 * cos(theta) ) * cos(20 * phi) ) # @torch.jit.script def Yl91_m21(theta, phi): return ( 4.20347825743065e-41 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.65047733275091e66 * cos(theta) ** 70 - 2.20215622021737e67 * cos(theta) ** 68 + 1.40126029878636e68 * cos(theta) ** 66 - 5.66045826910874e68 * cos(theta) ** 64 + 1.63021198150332e69 * cos(theta) ** 62 - 3.56385070176043e69 * cos(theta) ** 60 + 6.14816349134109e69 * cos(theta) ** 58 - 8.59079818358988e69 * cos(theta) ** 56 + 9.90256676850929e69 * cos(theta) ** 54 - 9.54247343147259e69 * cos(theta) ** 52 + 7.76277286511206e69 * cos(theta) ** 50 - 5.36950692250834e69 * cos(theta) ** 48 + 3.1744254761999e69 * cos(theta) ** 46 - 1.60976500140465e69 * cos(theta) ** 44 + 7.01768521349678e68 * cos(theta) ** 42 - 2.63277863565173e68 * cos(theta) ** 40 + 8.49986480053126e67 * cos(theta) ** 38 - 2.35902287989478e67 * cos(theta) ** 36 + 5.61672114260662e66 * cos(theta) ** 34 - 1.14373160108977e66 * cos(theta) ** 32 + 1.98353452496687e65 * cos(theta) ** 30 - 2.91400715420665e64 * cos(theta) ** 28 + 3.60201015137382e63 * cos(theta) ** 26 - 3.71518025768483e62 * cos(theta) ** 24 + 3.16478318247226e61 * cos(theta) ** 22 - 2.19869147413863e60 * cos(theta) ** 20 + 1.22651608950775e59 * cos(theta) ** 18 - 5.38779677561543e57 * cos(theta) ** 16 + 1.81815414250239e56 * cos(theta) ** 14 - 4.56419384738532e54 * cos(theta) ** 12 + 8.1635987514209e52 * cos(theta) ** 10 - 9.793706846546e50 * cos(theta) ** 8 + 7.201255034225e48 * cos(theta) ** 6 - 2.79769037848679e46 * cos(theta) ** 4 + 4.29313101558076e43 * cos(theta) ** 2 - 1.08549456778274e40 ) * cos(21 * phi) ) # @torch.jit.script def Yl91_m22(theta, phi): return ( 4.72629215111746e-43 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.15533413292563e68 * cos(theta) ** 69 - 1.49746622974781e69 * cos(theta) ** 67 + 9.24831797198997e69 * cos(theta) ** 65 - 3.62269329222959e70 * cos(theta) ** 63 + 1.01073142853206e71 * cos(theta) ** 61 - 2.13831042105626e71 * cos(theta) ** 59 + 3.56593482497783e71 * cos(theta) ** 57 - 4.81084698281033e71 * cos(theta) ** 55 + 5.34738605499502e71 * cos(theta) ** 53 - 4.96208618436575e71 * cos(theta) ** 51 + 3.88138643255603e71 * cos(theta) ** 49 - 2.577363322804e71 * cos(theta) ** 47 + 1.46023571905195e71 * cos(theta) ** 45 - 7.08296600618047e70 * cos(theta) ** 43 + 2.94742778966865e70 * cos(theta) ** 41 - 1.05311145426069e70 * cos(theta) ** 39 + 3.22994862420188e69 * cos(theta) ** 37 - 8.4924823676212e68 * cos(theta) ** 35 + 1.90968518848625e68 * cos(theta) ** 33 - 3.65994112348726e67 * cos(theta) ** 31 + 5.95060357490061e66 * cos(theta) ** 29 - 8.15922003177862e65 * cos(theta) ** 27 + 9.36522639357193e64 * cos(theta) ** 25 - 8.9164326184436e63 * cos(theta) ** 23 + 6.96252300143898e62 * cos(theta) ** 21 - 4.39738294827725e61 * cos(theta) ** 19 + 2.20772896111395e60 * cos(theta) ** 17 - 8.62047484098469e58 * cos(theta) ** 15 + 2.54541579950335e57 * cos(theta) ** 13 - 5.47703261686239e55 * cos(theta) ** 11 + 8.1635987514209e53 * cos(theta) ** 9 - 7.8349654772368e51 * cos(theta) ** 7 + 4.320753020535e49 * cos(theta) ** 5 - 1.11907615139472e47 * cos(theta) ** 3 + 8.58626203116151e43 * cos(theta) ) * cos(22 * phi) ) # @torch.jit.script def Yl91_m23(theta, phi): return ( 5.32897389261526e-45 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 7.97180551718688e69 * cos(theta) ** 68 - 1.00330237393103e71 * cos(theta) ** 66 + 6.01140668179348e71 * cos(theta) ** 64 - 2.28229677410464e72 * cos(theta) ** 62 + 6.16546171404555e72 * cos(theta) ** 60 - 1.26160314842319e73 * cos(theta) ** 58 + 2.03258285023737e73 * cos(theta) ** 56 - 2.64596584054568e73 * cos(theta) ** 54 + 2.83411460914736e73 * cos(theta) ** 52 - 2.53066395402653e73 * cos(theta) ** 50 + 1.90187935195245e73 * cos(theta) ** 48 - 1.21136076171788e73 * cos(theta) ** 46 + 6.57106073573379e72 * cos(theta) ** 44 - 3.0456753826576e72 * cos(theta) ** 42 + 1.20844539376415e72 * cos(theta) ** 40 - 4.1071346716167e71 * cos(theta) ** 38 + 1.1950809909547e71 * cos(theta) ** 36 - 2.97236882866742e70 * cos(theta) ** 34 + 6.30196112200462e69 * cos(theta) ** 32 - 1.13458174828105e69 * cos(theta) ** 30 + 1.72567503672118e68 * cos(theta) ** 28 - 2.20298940858023e67 * cos(theta) ** 26 + 2.34130659839298e66 * cos(theta) ** 24 - 2.05077950224203e65 * cos(theta) ** 22 + 1.46212983030219e64 * cos(theta) ** 20 - 8.35502760172678e62 * cos(theta) ** 18 + 3.75313923389371e61 * cos(theta) ** 16 - 1.2930712261477e60 * cos(theta) ** 14 + 3.30904053935436e58 * cos(theta) ** 12 - 6.02473587854863e56 * cos(theta) ** 10 + 7.34723887627881e54 * cos(theta) ** 8 - 5.48447583406576e52 * cos(theta) ** 6 + 2.1603765102675e50 * cos(theta) ** 4 - 3.35722845418415e47 * cos(theta) ** 2 + 8.58626203116151e43 ) * cos(23 * phi) ) # @torch.jit.script def Yl91_m24(theta, phi): return ( 6.02615386200106e-47 * (1.0 - cos(theta) ** 2) ** 12 * ( 5.42082775168708e71 * cos(theta) ** 67 - 6.62179566794482e72 * cos(theta) ** 65 + 3.84730027634783e73 * cos(theta) ** 63 - 1.41502399994488e74 * cos(theta) ** 61 + 3.69927702842733e74 * cos(theta) ** 59 - 7.31729826085452e74 * cos(theta) ** 57 + 1.13824639613292e75 * cos(theta) ** 55 - 1.42882155389467e75 * cos(theta) ** 53 + 1.47373959675663e75 * cos(theta) ** 51 - 1.26533197701327e75 * cos(theta) ** 49 + 9.12902088937178e74 * cos(theta) ** 47 - 5.57225950390226e74 * cos(theta) ** 45 + 2.89126672372287e74 * cos(theta) ** 43 - 1.27918366071619e74 * cos(theta) ** 41 + 4.83378157505658e73 * cos(theta) ** 39 - 1.56071117521435e73 * cos(theta) ** 37 + 4.3022915674369e72 * cos(theta) ** 35 - 1.01060540174692e72 * cos(theta) ** 33 + 2.01662755904148e71 * cos(theta) ** 31 - 3.40374524484315e70 * cos(theta) ** 29 + 4.8318901028193e69 * cos(theta) ** 27 - 5.72777246230859e68 * cos(theta) ** 25 + 5.61913583614316e67 * cos(theta) ** 23 - 4.51171490493246e66 * cos(theta) ** 21 + 2.92425966060437e65 * cos(theta) ** 19 - 1.50390496831082e64 * cos(theta) ** 17 + 6.00502277422993e62 * cos(theta) ** 15 - 1.81029971660678e61 * cos(theta) ** 13 + 3.97084864722523e59 * cos(theta) ** 11 - 6.02473587854863e57 * cos(theta) ** 9 + 5.87779110102305e55 * cos(theta) ** 7 - 3.29068550043946e53 * cos(theta) ** 5 + 8.64150604107e50 * cos(theta) ** 3 - 6.7144569083683e47 * cos(theta) ) * cos(24 * phi) ) # @torch.jit.script def Yl91_m25(theta, phi): return ( 6.83555559851118e-49 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 3.63195459363034e73 * cos(theta) ** 66 - 4.30416718416413e74 * cos(theta) ** 64 + 2.42379917409913e75 * cos(theta) ** 62 - 8.63164639966376e75 * cos(theta) ** 60 + 2.18257344677212e76 * cos(theta) ** 58 - 4.17086000868707e76 * cos(theta) ** 56 + 6.26035517873109e76 * cos(theta) ** 54 - 7.57275423564174e76 * cos(theta) ** 52 + 7.5160719434588e76 * cos(theta) ** 50 - 6.200126687365e76 * cos(theta) ** 48 + 4.29063981800474e76 * cos(theta) ** 46 - 2.50751677675602e76 * cos(theta) ** 44 + 1.24324469120083e76 * cos(theta) ** 42 - 5.24465300893639e75 * cos(theta) ** 40 + 1.88517481427207e75 * cos(theta) ** 38 - 5.77463134829309e74 * cos(theta) ** 36 + 1.50580204860292e74 * cos(theta) ** 34 - 3.33499782576485e73 * cos(theta) ** 32 + 6.25154543302859e72 * cos(theta) ** 30 - 9.87086121004514e71 * cos(theta) ** 28 + 1.30461032776121e71 * cos(theta) ** 26 - 1.43194311557715e70 * cos(theta) ** 24 + 1.29240124231293e69 * cos(theta) ** 22 - 9.47460130035817e67 * cos(theta) ** 20 + 5.55609335514831e66 * cos(theta) ** 18 - 2.55663844612839e65 * cos(theta) ** 16 + 9.0075341613449e63 * cos(theta) ** 14 - 2.35338963158882e62 * cos(theta) ** 12 + 4.36793351194775e60 * cos(theta) ** 10 - 5.42226229069376e58 * cos(theta) ** 8 + 4.11445377071614e56 * cos(theta) ** 6 - 1.64534275021973e54 * cos(theta) ** 4 + 2.592451812321e51 * cos(theta) ** 2 - 6.7144569083683e47 ) * cos(25 * phi) ) # @torch.jit.script def Yl91_m26(theta, phi): return ( 7.77873401328519e-51 * (1.0 - cos(theta) ** 2) ** 13 * ( 2.39709003179602e75 * cos(theta) ** 65 - 2.75466699786504e76 * cos(theta) ** 63 + 1.50275548794146e77 * cos(theta) ** 61 - 5.17898783979826e77 * cos(theta) ** 59 + 1.26589259912783e78 * cos(theta) ** 57 - 2.33568160486476e78 * cos(theta) ** 55 + 3.38059179651479e78 * cos(theta) ** 53 - 3.93783220253371e78 * cos(theta) ** 51 + 3.7580359717294e78 * cos(theta) ** 49 - 2.9760608099352e78 * cos(theta) ** 47 + 1.97369431628218e78 * cos(theta) ** 45 - 1.10330738177265e78 * cos(theta) ** 43 + 5.2216277030435e77 * cos(theta) ** 41 - 2.09786120357456e77 * cos(theta) ** 39 + 7.16366429423386e76 * cos(theta) ** 37 - 2.07886728538551e76 * cos(theta) ** 35 + 5.11972696524991e75 * cos(theta) ** 33 - 1.06719930424475e75 * cos(theta) ** 31 + 1.87546362990858e74 * cos(theta) ** 29 - 2.76384113881264e73 * cos(theta) ** 27 + 3.39198685217915e72 * cos(theta) ** 25 - 3.43666347738515e71 * cos(theta) ** 23 + 2.84328273308844e70 * cos(theta) ** 21 - 1.89492026007163e69 * cos(theta) ** 19 + 1.0000968039267e68 * cos(theta) ** 17 - 4.09062151380543e66 * cos(theta) ** 15 + 1.26105478258829e65 * cos(theta) ** 13 - 2.82406755790658e63 * cos(theta) ** 11 + 4.36793351194775e61 * cos(theta) ** 9 - 4.33780983255501e59 * cos(theta) ** 7 + 2.46867226242968e57 * cos(theta) ** 5 - 6.58137100087892e54 * cos(theta) ** 3 + 5.184903624642e51 * cos(theta) ) * cos(26 * phi) ) # @torch.jit.script def Yl91_m27(theta, phi): return ( 8.88200962506307e-53 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.55810852066742e77 * cos(theta) ** 64 - 1.73544020865498e78 * cos(theta) ** 62 + 9.16680847644292e78 * cos(theta) ** 60 - 3.05560282548097e79 * cos(theta) ** 58 + 7.21558781502864e79 * cos(theta) ** 56 - 1.28462488267562e80 * cos(theta) ** 54 + 1.79171365215284e80 * cos(theta) ** 52 - 2.00829442329219e80 * cos(theta) ** 50 + 1.84143762614741e80 * cos(theta) ** 48 - 1.39874858066954e80 * cos(theta) ** 46 + 8.88162442326981e79 * cos(theta) ** 44 - 4.74422174162238e79 * cos(theta) ** 42 + 2.14086735824784e79 * cos(theta) ** 40 - 8.18165869394077e78 * cos(theta) ** 38 + 2.65055578886653e78 * cos(theta) ** 36 - 7.27603549884929e77 * cos(theta) ** 34 + 1.68950989853247e77 * cos(theta) ** 32 - 3.30831784315873e76 * cos(theta) ** 30 + 5.43884452673487e75 * cos(theta) ** 28 - 7.46237107479412e74 * cos(theta) ** 26 + 8.47996713044787e73 * cos(theta) ** 24 - 7.90432599798585e72 * cos(theta) ** 22 + 5.97089373948572e71 * cos(theta) ** 20 - 3.6003484941361e70 * cos(theta) ** 18 + 1.70016456667538e69 * cos(theta) ** 16 - 6.13593227070815e67 * cos(theta) ** 14 + 1.63937121736477e66 * cos(theta) ** 12 - 3.10647431369724e64 * cos(theta) ** 10 + 3.93114016075298e62 * cos(theta) ** 8 - 3.03646688278851e60 * cos(theta) ** 6 + 1.23433613121484e58 * cos(theta) ** 4 - 1.97441130026367e55 * cos(theta) ** 2 + 5.184903624642e51 ) * cos(27 * phi) ) # @torch.jit.script def Yl91_m28(theta, phi): return ( 1.01776560923568e-54 * (1.0 - cos(theta) ** 2) ** 14 * ( 9.97189453227146e78 * cos(theta) ** 63 - 1.07597292936609e80 * cos(theta) ** 61 + 5.50008508586575e80 * cos(theta) ** 59 - 1.77224963877896e81 * cos(theta) ** 57 + 4.04072917641604e81 * cos(theta) ** 55 - 6.93697436644834e81 * cos(theta) ** 53 + 9.31691099119475e81 * cos(theta) ** 51 - 1.0041472116461e82 * cos(theta) ** 49 + 8.83890060550755e81 * cos(theta) ** 47 - 6.4342434710799e81 * cos(theta) ** 45 + 3.90791474623871e81 * cos(theta) ** 43 - 1.9925731314814e81 * cos(theta) ** 41 + 8.56346943299134e80 * cos(theta) ** 39 - 3.10903030369749e80 * cos(theta) ** 37 + 9.5420008399195e79 * cos(theta) ** 35 - 2.47385206960876e79 * cos(theta) ** 33 + 5.40643167530391e78 * cos(theta) ** 31 - 9.92495352947618e77 * cos(theta) ** 29 + 1.52287646748576e77 * cos(theta) ** 27 - 1.94021647944647e76 * cos(theta) ** 25 + 2.03519211130749e75 * cos(theta) ** 23 - 1.73895171955689e74 * cos(theta) ** 21 + 1.19417874789714e73 * cos(theta) ** 19 - 6.48062728944499e71 * cos(theta) ** 17 + 2.72026330668061e70 * cos(theta) ** 15 - 8.59030517899141e68 * cos(theta) ** 13 + 1.96724546083773e67 * cos(theta) ** 11 - 3.10647431369724e65 * cos(theta) ** 9 + 3.14491212860238e63 * cos(theta) ** 7 - 1.8218801296731e61 * cos(theta) ** 5 + 4.93734452485936e58 * cos(theta) ** 3 - 3.94882260052735e55 * cos(theta) ) * cos(28 * phi) ) # @torch.jit.script def Yl91_m29(theta, phi): return ( 1.17054165736105e-56 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 6.28229355533102e80 * cos(theta) ** 62 - 6.56343486913313e81 * cos(theta) ** 60 + 3.24505020066079e82 * cos(theta) ** 58 - 1.01018229410401e83 * cos(theta) ** 56 + 2.22240104702882e83 * cos(theta) ** 54 - 3.67659641421762e83 * cos(theta) ** 52 + 4.75162460550932e83 * cos(theta) ** 50 - 4.92032133706587e83 * cos(theta) ** 48 + 4.15428328458855e83 * cos(theta) ** 46 - 2.89540956198596e83 * cos(theta) ** 44 + 1.68040334088265e83 * cos(theta) ** 42 - 8.16954983907374e82 * cos(theta) ** 40 + 3.33975307886662e82 * cos(theta) ** 38 - 1.15034121236807e82 * cos(theta) ** 36 + 3.33970029397182e81 * cos(theta) ** 34 - 8.1637118297089e80 * cos(theta) ** 32 + 1.67599381934421e80 * cos(theta) ** 30 - 2.87823652354809e79 * cos(theta) ** 28 + 4.11176646221156e78 * cos(theta) ** 26 - 4.85054119861618e77 * cos(theta) ** 24 + 4.68094185600722e76 * cos(theta) ** 22 - 3.65179861106946e75 * cos(theta) ** 20 + 2.26893962100457e74 * cos(theta) ** 18 - 1.10170663920565e73 * cos(theta) ** 16 + 4.08039496002092e71 * cos(theta) ** 14 - 1.11673967326888e70 * cos(theta) ** 12 + 2.1639700069215e68 * cos(theta) ** 10 - 2.79582688232752e66 * cos(theta) ** 8 + 2.20143849002167e64 * cos(theta) ** 6 - 9.10940064836552e61 * cos(theta) ** 4 + 1.48120335745781e59 * cos(theta) ** 2 - 3.94882260052735e55 ) * cos(29 * phi) ) # @torch.jit.script def Yl91_m30(theta, phi): return ( 1.35144490130788e-58 * (1.0 - cos(theta) ** 2) ** 15 * ( 3.89502200430523e82 * cos(theta) ** 61 - 3.93806092147988e83 * cos(theta) ** 59 + 1.88212911638326e84 * cos(theta) ** 57 - 5.65702084698245e84 * cos(theta) ** 55 + 1.20009656539556e85 * cos(theta) ** 53 - 1.91183013539316e85 * cos(theta) ** 51 + 2.37581230275466e85 * cos(theta) ** 49 - 2.36175424179162e85 * cos(theta) ** 47 + 1.91097031091073e85 * cos(theta) ** 45 - 1.27398020727382e85 * cos(theta) ** 43 + 7.05769403170712e84 * cos(theta) ** 41 - 3.2678199356295e84 * cos(theta) ** 39 + 1.26910616996932e84 * cos(theta) ** 37 - 4.14122836452506e83 * cos(theta) ** 35 + 1.13549809995042e83 * cos(theta) ** 33 - 2.61238778550685e82 * cos(theta) ** 31 + 5.02798145803264e81 * cos(theta) ** 29 - 8.05906226593466e80 * cos(theta) ** 27 + 1.06905928017501e80 * cos(theta) ** 25 - 1.16412988766788e79 * cos(theta) ** 23 + 1.02980720832159e78 * cos(theta) ** 21 - 7.30359722213893e76 * cos(theta) ** 19 + 4.08409131780823e75 * cos(theta) ** 17 - 1.76273062272904e74 * cos(theta) ** 15 + 5.71255294402928e72 * cos(theta) ** 13 - 1.34008760792266e71 * cos(theta) ** 11 + 2.1639700069215e69 * cos(theta) ** 9 - 2.23666150586201e67 * cos(theta) ** 7 + 1.320863094013e65 * cos(theta) ** 5 - 3.64376025934621e62 * cos(theta) ** 3 + 2.96240671491562e59 * cos(theta) ) * cos(30 * phi) ) # @torch.jit.script def Yl91_m31(theta, phi): return ( 1.56658336740129e-60 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 2.37596342262619e84 * cos(theta) ** 60 - 2.32345594367313e85 * cos(theta) ** 58 + 1.07281359633846e86 * cos(theta) ** 56 - 3.11136146584035e86 * cos(theta) ** 54 + 6.36051179659648e86 * cos(theta) ** 52 - 9.75033369050513e86 * cos(theta) ** 50 + 1.16414802834978e87 * cos(theta) ** 48 - 1.11002449364206e87 * cos(theta) ** 46 + 8.59936639909829e86 * cos(theta) ** 44 - 5.47811489127743e86 * cos(theta) ** 42 + 2.89365455299992e86 * cos(theta) ** 40 - 1.2744497748955e86 * cos(theta) ** 38 + 4.69569282888647e85 * cos(theta) ** 36 - 1.44942992758377e85 * cos(theta) ** 34 + 3.74714372983639e84 * cos(theta) ** 32 - 8.09840213507123e83 * cos(theta) ** 30 + 1.45811462282946e83 * cos(theta) ** 28 - 2.17594681180236e82 * cos(theta) ** 26 + 2.67264820043752e81 * cos(theta) ** 24 - 2.67749874163613e80 * cos(theta) ** 22 + 2.16259513747534e79 * cos(theta) ** 20 - 1.3876834722064e78 * cos(theta) ** 18 + 6.94295524027399e76 * cos(theta) ** 16 - 2.64409593409355e75 * cos(theta) ** 14 + 7.42631882723807e73 * cos(theta) ** 12 - 1.47409636871493e72 * cos(theta) ** 10 + 1.94757300622935e70 * cos(theta) ** 8 - 1.56566305410341e68 * cos(theta) ** 6 + 6.604315470065e65 * cos(theta) ** 4 - 1.09312807780386e63 * cos(theta) ** 2 + 2.96240671491562e59 ) * cos(31 * phi) ) # @torch.jit.script def Yl91_m32(theta, phi): return ( 1.82358214106964e-62 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.42557805357572e86 * cos(theta) ** 59 - 1.34760444733041e87 * cos(theta) ** 57 + 6.00775613949536e87 * cos(theta) ** 55 - 1.68013519155379e88 * cos(theta) ** 53 + 3.30746613423017e88 * cos(theta) ** 51 - 4.87516684525257e88 * cos(theta) ** 49 + 5.58791053607896e88 * cos(theta) ** 47 - 5.10611267075347e88 * cos(theta) ** 45 + 3.78372121560325e88 * cos(theta) ** 43 - 2.30080825433652e88 * cos(theta) ** 41 + 1.15746182119997e88 * cos(theta) ** 39 - 4.84290914460291e87 * cos(theta) ** 37 + 1.69044941839913e87 * cos(theta) ** 35 - 4.92806175378482e86 * cos(theta) ** 33 + 1.19908599354764e86 * cos(theta) ** 31 - 2.42952064052137e85 * cos(theta) ** 29 + 4.0827209439225e84 * cos(theta) ** 27 - 5.65746171068613e83 * cos(theta) ** 25 + 6.41435568105004e82 * cos(theta) ** 23 - 5.89049723159949e81 * cos(theta) ** 21 + 4.32519027495067e80 * cos(theta) ** 19 - 2.49783024997151e79 * cos(theta) ** 17 + 1.11087283844384e78 * cos(theta) ** 15 - 3.70173430773098e76 * cos(theta) ** 13 + 8.91158259268568e74 * cos(theta) ** 11 - 1.47409636871493e73 * cos(theta) ** 9 + 1.55805840498348e71 * cos(theta) ** 7 - 9.39397832462046e68 * cos(theta) ** 5 + 2.641726188026e66 * cos(theta) ** 3 - 2.18625615560773e63 * cos(theta) ) * cos(32 * phi) ) # @torch.jit.script def Yl91_m33(theta, phi): return ( 2.13200629156353e-64 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 8.41091051609672e87 * cos(theta) ** 58 - 7.68134534978336e88 * cos(theta) ** 56 + 3.30426587672245e89 * cos(theta) ** 54 - 8.90471651523508e89 * cos(theta) ** 52 + 1.68680772845739e90 * cos(theta) ** 50 - 2.38883175417376e90 * cos(theta) ** 48 + 2.62631795195711e90 * cos(theta) ** 46 - 2.29775070183906e90 * cos(theta) ** 44 + 1.6270001227094e90 * cos(theta) ** 42 - 9.43331384277973e89 * cos(theta) ** 40 + 4.51410110267987e89 * cos(theta) ** 38 - 1.79187638350308e89 * cos(theta) ** 36 + 5.91657296439695e88 * cos(theta) ** 34 - 1.62626037874899e88 * cos(theta) ** 32 + 3.7171665799977e87 * cos(theta) ** 30 - 7.04560985751197e86 * cos(theta) ** 28 + 1.10233465485907e86 * cos(theta) ** 26 - 1.41436542767153e85 * cos(theta) ** 24 + 1.47530180664151e84 * cos(theta) ** 22 - 1.23700441863589e83 * cos(theta) ** 20 + 8.21786152240628e81 * cos(theta) ** 18 - 4.24631142495157e80 * cos(theta) ** 16 + 1.66630925766576e79 * cos(theta) ** 14 - 4.81225460005027e77 * cos(theta) ** 12 + 9.80274085195425e75 * cos(theta) ** 10 - 1.32668673184343e74 * cos(theta) ** 8 + 1.09064088348844e72 * cos(theta) ** 6 - 4.69698916231023e69 * cos(theta) ** 4 + 7.925178564078e66 * cos(theta) ** 2 - 2.18625615560773e63 ) * cos(33 * phi) ) # @torch.jit.script def Yl91_m34(theta, phi): return ( 2.50391440507732e-66 * (1.0 - cos(theta) ** 2) ** 17 * ( 4.8783280993361e89 * cos(theta) ** 57 - 4.30155339587868e90 * cos(theta) ** 55 + 1.78430357343012e91 * cos(theta) ** 53 - 4.63045258792224e91 * cos(theta) ** 51 + 8.43403864228694e91 * cos(theta) ** 49 - 1.1466392420034e92 * cos(theta) ** 47 + 1.20810625790027e92 * cos(theta) ** 45 - 1.01101030880919e92 * cos(theta) ** 43 + 6.83340051537947e91 * cos(theta) ** 41 - 3.77332553711189e91 * cos(theta) ** 39 + 1.71535841901835e91 * cos(theta) ** 37 - 6.45075498061108e90 * cos(theta) ** 35 + 2.01163480789496e90 * cos(theta) ** 33 - 5.20403321199677e89 * cos(theta) ** 31 + 1.11514997399931e89 * cos(theta) ** 29 - 1.97277076010335e88 * cos(theta) ** 27 + 2.86607010263359e87 * cos(theta) ** 25 - 3.39447702641168e86 * cos(theta) ** 23 + 3.24566397461132e85 * cos(theta) ** 21 - 2.47400883727179e84 * cos(theta) ** 19 + 1.47921507403313e83 * cos(theta) ** 17 - 6.79409827992252e81 * cos(theta) ** 15 + 2.33283296073206e80 * cos(theta) ** 13 - 5.77470552006032e78 * cos(theta) ** 11 + 9.80274085195425e76 * cos(theta) ** 9 - 1.06134938547475e75 * cos(theta) ** 7 + 6.54384530093061e72 * cos(theta) ** 5 - 1.87879566492409e70 * cos(theta) ** 3 + 1.5850357128156e67 * cos(theta) ) * cos(34 * phi) ) # @torch.jit.script def Yl91_m35(theta, phi): return ( 2.95458697044207e-68 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 2.78064701662158e91 * cos(theta) ** 56 - 2.36585436773327e92 * cos(theta) ** 54 + 9.45680893917965e92 * cos(theta) ** 52 - 2.36153081984034e93 * cos(theta) ** 50 + 4.1326789347206e93 * cos(theta) ** 48 - 5.389204437416e93 * cos(theta) ** 46 + 5.43647816055122e93 * cos(theta) ** 44 - 4.34734432787951e93 * cos(theta) ** 42 + 2.80169421130558e93 * cos(theta) ** 40 - 1.47159695947364e93 * cos(theta) ** 38 + 6.3468261503679e92 * cos(theta) ** 36 - 2.25776424321388e92 * cos(theta) ** 34 + 6.63839486605338e91 * cos(theta) ** 32 - 1.613250295719e91 * cos(theta) ** 30 + 3.23393492459799e90 * cos(theta) ** 28 - 5.32648105227905e89 * cos(theta) ** 26 + 7.16517525658399e88 * cos(theta) ** 24 - 7.80729716074686e87 * cos(theta) ** 22 + 6.81589434668377e86 * cos(theta) ** 20 - 4.70061679081639e85 * cos(theta) ** 18 + 2.51466562585632e84 * cos(theta) ** 16 - 1.01911474198838e83 * cos(theta) ** 14 + 3.03268284895168e81 * cos(theta) ** 12 - 6.35217607206636e79 * cos(theta) ** 10 + 8.82246676675883e77 * cos(theta) ** 8 - 7.42944569832322e75 * cos(theta) ** 6 + 3.27192265046531e73 * cos(theta) ** 4 - 5.63638699477228e70 * cos(theta) ** 2 + 1.5850357128156e67 ) * cos(35 * phi) ) # @torch.jit.script def Yl91_m36(theta, phi): return ( 3.50349017807627e-70 * (1.0 - cos(theta) ** 2) ** 18 * ( 1.55716232930808e93 * cos(theta) ** 55 - 1.27756135857597e94 * cos(theta) ** 53 + 4.91754064837342e94 * cos(theta) ** 51 - 1.18076540992017e95 * cos(theta) ** 49 + 1.98368588866589e95 * cos(theta) ** 47 - 2.47903404121136e95 * cos(theta) ** 45 + 2.39205039064254e95 * cos(theta) ** 43 - 1.82588461770939e95 * cos(theta) ** 41 + 1.12067768452223e95 * cos(theta) ** 39 - 5.59206844599983e94 * cos(theta) ** 37 + 2.28485741413244e94 * cos(theta) ** 35 - 7.67639842692719e93 * cos(theta) ** 33 + 2.12428635713708e93 * cos(theta) ** 31 - 4.839750887157e92 * cos(theta) ** 29 + 9.05501778887438e91 * cos(theta) ** 27 - 1.38488507359255e91 * cos(theta) ** 25 + 1.71964206158016e90 * cos(theta) ** 23 - 1.71760537536431e89 * cos(theta) ** 21 + 1.36317886933675e88 * cos(theta) ** 19 - 8.46111022346951e86 * cos(theta) ** 17 + 4.02346500137011e85 * cos(theta) ** 15 - 1.42676063878373e84 * cos(theta) ** 13 + 3.63921941874202e82 * cos(theta) ** 11 - 6.35217607206636e80 * cos(theta) ** 9 + 7.05797341340706e78 * cos(theta) ** 7 - 4.45766741899393e76 * cos(theta) ** 5 + 1.30876906018612e74 * cos(theta) ** 3 - 1.12727739895446e71 * cos(theta) ) * cos(36 * phi) ) # @torch.jit.script def Yl91_m37(theta, phi): return ( 4.17555852073138e-72 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 8.56439281119445e94 * cos(theta) ** 54 - 6.77107520045263e95 * cos(theta) ** 52 + 2.50794573067044e96 * cos(theta) ** 50 - 5.78575050860884e96 * cos(theta) ** 48 + 9.32332367672967e96 * cos(theta) ** 46 - 1.11556531854511e97 * cos(theta) ** 44 + 1.02858166797629e97 * cos(theta) ** 42 - 7.48612693260851e96 * cos(theta) ** 40 + 4.37064296963671e96 * cos(theta) ** 38 - 2.06906532501994e96 * cos(theta) ** 36 + 7.99700094946356e95 * cos(theta) ** 34 - 2.53321148088597e95 * cos(theta) ** 32 + 6.58528770712496e94 * cos(theta) ** 30 - 1.40352775727553e94 * cos(theta) ** 28 + 2.44485480299608e93 * cos(theta) ** 26 - 3.46221268398138e92 * cos(theta) ** 24 + 3.95517674163436e91 * cos(theta) ** 22 - 3.60697128826505e90 * cos(theta) ** 20 + 2.59003985173983e89 * cos(theta) ** 18 - 1.43838873798982e88 * cos(theta) ** 16 + 6.03519750205517e86 * cos(theta) ** 14 - 1.85478883041885e85 * cos(theta) ** 12 + 4.00314136061622e83 * cos(theta) ** 10 - 5.71695846485972e81 * cos(theta) ** 8 + 4.94058138938494e79 * cos(theta) ** 6 - 2.22883370949697e77 * cos(theta) ** 4 + 3.92630718055837e74 * cos(theta) ** 2 - 1.12727739895446e71 ) * cos(37 * phi) ) # @torch.jit.script def Yl91_m38(theta, phi): return ( 5.00291172181902e-74 * (1.0 - cos(theta) ** 2) ** 19 * ( 4.624772118045e96 * cos(theta) ** 53 - 3.52095910423537e97 * cos(theta) ** 51 + 1.25397286533522e98 * cos(theta) ** 49 - 2.77716024413224e98 * cos(theta) ** 47 + 4.28872889129565e98 * cos(theta) ** 45 - 4.90848740159849e98 * cos(theta) ** 43 + 4.32004300550042e98 * cos(theta) ** 41 - 2.99445077304341e98 * cos(theta) ** 39 + 1.66084432846195e98 * cos(theta) ** 37 - 7.44863517007177e97 * cos(theta) ** 35 + 2.71898032281761e97 * cos(theta) ** 33 - 8.10627673883511e96 * cos(theta) ** 31 + 1.97558631213749e96 * cos(theta) ** 29 - 3.92987772037148e95 * cos(theta) ** 27 + 6.35662248778982e94 * cos(theta) ** 25 - 8.30931044155532e93 * cos(theta) ** 23 + 8.70138883159559e92 * cos(theta) ** 21 - 7.2139425765301e91 * cos(theta) ** 19 + 4.6620717331317e90 * cos(theta) ** 17 - 2.30142198078371e89 * cos(theta) ** 15 + 8.44927650287724e87 * cos(theta) ** 13 - 2.22574659650262e86 * cos(theta) ** 11 + 4.00314136061622e84 * cos(theta) ** 9 - 4.57356677188778e82 * cos(theta) ** 7 + 2.96434883363097e80 * cos(theta) ** 5 - 8.91533483798787e77 * cos(theta) ** 3 + 7.85261436111674e74 * cos(theta) ) * cos(38 * phi) ) # @torch.jit.script def Yl91_m39(theta, phi): return ( 6.02716705137558e-76 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 2.45112922256385e98 * cos(theta) ** 52 - 1.79568914316004e99 * cos(theta) ** 50 + 6.14446704014259e99 * cos(theta) ** 48 - 1.30526531474215e100 * cos(theta) ** 46 + 1.92992800108304e100 * cos(theta) ** 44 - 2.11064958268735e100 * cos(theta) ** 42 + 1.77121763225517e100 * cos(theta) ** 40 - 1.16783580148693e100 * cos(theta) ** 38 + 6.14512401530921e99 * cos(theta) ** 36 - 2.60702230952512e99 * cos(theta) ** 34 + 8.97263506529811e98 * cos(theta) ** 32 - 2.51294578903888e98 * cos(theta) ** 30 + 5.72920030519871e97 * cos(theta) ** 28 - 1.0610669845003e97 * cos(theta) ** 26 + 1.58915562194745e96 * cos(theta) ** 24 - 1.91114140155772e95 * cos(theta) ** 22 + 1.82729165463507e94 * cos(theta) ** 20 - 1.37064908954072e93 * cos(theta) ** 18 + 7.92552194632389e91 * cos(theta) ** 16 - 3.45213297117556e90 * cos(theta) ** 14 + 1.09840594537404e89 * cos(theta) ** 12 - 2.44832125615288e87 * cos(theta) ** 10 + 3.6028272245546e85 * cos(theta) ** 8 - 3.20149674032144e83 * cos(theta) ** 6 + 1.48217441681548e81 * cos(theta) ** 4 - 2.67460045139636e78 * cos(theta) ** 2 + 7.85261436111674e74 ) * cos(39 * phi) ) # @torch.jit.script def Yl91_m40(theta, phi): return ( 7.30257303341627e-78 * (1.0 - cos(theta) ** 2) ** 20 * ( 1.2745871957332e100 * cos(theta) ** 51 - 8.97844571580019e100 * cos(theta) ** 49 + 2.94934417926844e101 * cos(theta) ** 47 - 6.00422044781391e101 * cos(theta) ** 45 + 8.49168320476539e101 * cos(theta) ** 43 - 8.86472824728687e101 * cos(theta) ** 41 + 7.0848705290207e101 * cos(theta) ** 39 - 4.43777604565033e101 * cos(theta) ** 37 + 2.21224464551132e101 * cos(theta) ** 35 - 8.86387585238541e100 * cos(theta) ** 33 + 2.8712432208954e100 * cos(theta) ** 31 - 7.53883736711665e99 * cos(theta) ** 29 + 1.60417608545564e99 * cos(theta) ** 27 - 2.75877415970078e98 * cos(theta) ** 25 + 3.81397349267389e97 * cos(theta) ** 23 - 4.20451108342699e96 * cos(theta) ** 21 + 3.65458330927015e95 * cos(theta) ** 19 - 2.46716836117329e94 * cos(theta) ** 17 + 1.26808351141182e93 * cos(theta) ** 15 - 4.83298615964578e91 * cos(theta) ** 13 + 1.31808713444885e90 * cos(theta) ** 11 - 2.44832125615288e88 * cos(theta) ** 9 + 2.88226177964368e86 * cos(theta) ** 7 - 1.92089804419287e84 * cos(theta) ** 5 + 5.92869766726193e81 * cos(theta) ** 3 - 5.34920090279272e78 * cos(theta) ) * cos(40 * phi) ) # @torch.jit.script def Yl91_m41(theta, phi): return ( 8.90028380751955e-80 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 6.50039469823934e101 * cos(theta) ** 50 - 4.39943840074209e102 * cos(theta) ** 48 + 1.38619176425617e103 * cos(theta) ** 46 - 2.70189920151626e103 * cos(theta) ** 44 + 3.65142377804912e103 * cos(theta) ** 42 - 3.63453858138762e103 * cos(theta) ** 40 + 2.76309950631807e103 * cos(theta) ** 38 - 1.64197713689062e103 * cos(theta) ** 36 + 7.7428562592896e102 * cos(theta) ** 34 - 2.92507903128718e102 * cos(theta) ** 32 + 8.90085398477572e101 * cos(theta) ** 30 - 2.18626283646383e101 * cos(theta) ** 28 + 4.33127543073023e100 * cos(theta) ** 26 - 6.89693539925195e99 * cos(theta) ** 24 + 8.77213903314995e98 * cos(theta) ** 22 - 8.82947327519668e97 * cos(theta) ** 20 + 6.94370828761328e96 * cos(theta) ** 18 - 4.1941862139946e95 * cos(theta) ** 16 + 1.90212526711773e94 * cos(theta) ** 14 - 6.28288200753952e92 * cos(theta) ** 12 + 1.44989584789373e91 * cos(theta) ** 10 - 2.20348913053759e89 * cos(theta) ** 8 + 2.01758324575057e87 * cos(theta) ** 6 - 9.60449022096433e84 * cos(theta) ** 4 + 1.77860930017858e82 * cos(theta) ** 2 - 5.34920090279272e78 ) * cos(41 * phi) ) # @torch.jit.script def Yl91_m42(theta, phi): return ( 1.09142282699425e-81 * (1.0 - cos(theta) ** 2) ** 21 * ( 3.25019734911967e103 * cos(theta) ** 49 - 2.1117304323562e104 * cos(theta) ** 47 + 6.37648211557837e104 * cos(theta) ** 45 - 1.18883564866715e105 * cos(theta) ** 43 + 1.53359798678063e105 * cos(theta) ** 41 - 1.45381543255505e105 * cos(theta) ** 39 + 1.04997781240087e105 * cos(theta) ** 37 - 5.91111769280624e104 * cos(theta) ** 35 + 2.63257112815847e104 * cos(theta) ** 33 - 9.36025290011899e103 * cos(theta) ** 31 + 2.67025619543272e103 * cos(theta) ** 29 - 6.12153594209872e102 * cos(theta) ** 27 + 1.12613161198986e102 * cos(theta) ** 25 - 1.65526449582047e101 * cos(theta) ** 23 + 1.92987058729299e100 * cos(theta) ** 21 - 1.76589465503934e99 * cos(theta) ** 19 + 1.24986749177039e98 * cos(theta) ** 17 - 6.71069794239136e96 * cos(theta) ** 15 + 2.66297537396483e95 * cos(theta) ** 13 - 7.53945840904742e93 * cos(theta) ** 11 + 1.44989584789373e92 * cos(theta) ** 9 - 1.76279130443007e90 * cos(theta) ** 7 + 1.21054994745034e88 * cos(theta) ** 5 - 3.84179608838573e85 * cos(theta) ** 3 + 3.55721860035716e82 * cos(theta) ) * cos(42 * phi) ) # @torch.jit.script def Yl91_m43(theta, phi): return ( 1.34692245599869e-83 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 1.59259670106864e105 * cos(theta) ** 48 - 9.92513303207416e105 * cos(theta) ** 46 + 2.86941695201027e106 * cos(theta) ** 44 - 5.11199328926876e106 * cos(theta) ** 42 + 6.28775174580058e106 * cos(theta) ** 40 - 5.66988018696468e106 * cos(theta) ** 38 + 3.88491790588321e106 * cos(theta) ** 36 - 2.06889119248218e106 * cos(theta) ** 34 + 8.68748472292294e105 * cos(theta) ** 32 - 2.90167839903689e105 * cos(theta) ** 30 + 7.74374296675488e104 * cos(theta) ** 28 - 1.65281470436665e104 * cos(theta) ** 26 + 2.81532902997465e103 * cos(theta) ** 24 - 3.80710834038708e102 * cos(theta) ** 22 + 4.05272823331528e101 * cos(theta) ** 20 - 3.35519984457474e100 * cos(theta) ** 18 + 2.12477473600966e99 * cos(theta) ** 16 - 1.0066046913587e98 * cos(theta) ** 14 + 3.46186798615427e96 * cos(theta) ** 12 - 8.29340424995216e94 * cos(theta) ** 10 + 1.30490626310436e93 * cos(theta) ** 8 - 1.23395391310105e91 * cos(theta) ** 6 + 6.05274973725172e88 * cos(theta) ** 4 - 1.15253882651572e86 * cos(theta) ** 2 + 3.55721860035716e82 ) * cos(43 * phi) ) # @torch.jit.script def Yl91_m44(theta, phi): return ( 1.67322787335225e-85 * (1.0 - cos(theta) ** 2) ** 22 * ( 7.64446416512946e106 * cos(theta) ** 47 - 4.56556119475411e107 * cos(theta) ** 45 + 1.26254345888452e108 * cos(theta) ** 43 - 2.14703718149288e108 * cos(theta) ** 41 + 2.51510069832023e108 * cos(theta) ** 39 - 2.15455447104658e108 * cos(theta) ** 37 + 1.39857044611796e108 * cos(theta) ** 35 - 7.03423005443942e107 * cos(theta) ** 33 + 2.77999511133534e107 * cos(theta) ** 31 - 8.70503519711066e106 * cos(theta) ** 29 + 2.16824803069137e106 * cos(theta) ** 27 - 4.2973182313533e105 * cos(theta) ** 25 + 6.75678967193915e104 * cos(theta) ** 23 - 8.37563834885157e103 * cos(theta) ** 21 + 8.10545646663055e102 * cos(theta) ** 19 - 6.03935972023453e101 * cos(theta) ** 17 + 3.39963957761546e100 * cos(theta) ** 15 - 1.40924656790219e99 * cos(theta) ** 13 + 4.15424158338513e97 * cos(theta) ** 11 - 8.29340424995216e95 * cos(theta) ** 9 + 1.04392501048349e94 * cos(theta) ** 7 - 7.4037234786063e91 * cos(theta) ** 5 + 2.42109989490069e89 * cos(theta) ** 3 - 2.30507765303144e86 * cos(theta) ) * cos(44 * phi) ) # @torch.jit.script def Yl91_m45(theta, phi): return ( 2.09284327775303e-87 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 3.59289815761085e108 * cos(theta) ** 46 - 2.05450253763935e109 * cos(theta) ** 44 + 5.42893687320343e109 * cos(theta) ** 42 - 8.80285244412081e109 * cos(theta) ** 40 + 9.8088927234489e109 * cos(theta) ** 38 - 7.97185154287234e109 * cos(theta) ** 36 + 4.89499656141284e109 * cos(theta) ** 34 - 2.32129591796501e109 * cos(theta) ** 32 + 8.61798484513955e108 * cos(theta) ** 30 - 2.52446020716209e108 * cos(theta) ** 28 + 5.85426968286669e107 * cos(theta) ** 26 - 1.07432955783833e107 * cos(theta) ** 24 + 1.55406162454601e106 * cos(theta) ** 22 - 1.75888405325883e105 * cos(theta) ** 20 + 1.54003672865981e104 * cos(theta) ** 18 - 1.02669115243987e103 * cos(theta) ** 16 + 5.0994593664232e101 * cos(theta) ** 14 - 1.83202053827284e100 * cos(theta) ** 12 + 4.56966574172364e98 * cos(theta) ** 10 - 7.46406382495695e96 * cos(theta) ** 8 + 7.30747507338442e94 * cos(theta) ** 6 - 3.70186173930315e92 * cos(theta) ** 4 + 7.26329968470206e89 * cos(theta) ** 2 - 2.30507765303144e86 ) * cos(45 * phi) ) # @torch.jit.script def Yl91_m46(theta, phi): return ( 2.63631625886393e-89 * (1.0 - cos(theta) ** 2) ** 23 * ( 1.65273315250099e110 * cos(theta) ** 45 - 9.03981116561315e110 * cos(theta) ** 43 + 2.28015348674544e111 * cos(theta) ** 41 - 3.52114097764832e111 * cos(theta) ** 39 + 3.72737923491058e111 * cos(theta) ** 37 - 2.86986655543404e111 * cos(theta) ** 35 + 1.66429883088037e111 * cos(theta) ** 33 - 7.42814693748803e110 * cos(theta) ** 31 + 2.58539545354187e110 * cos(theta) ** 29 - 7.06848858005385e109 * cos(theta) ** 27 + 1.52211011754534e109 * cos(theta) ** 25 - 2.57839093881198e108 * cos(theta) ** 23 + 3.41893557400121e107 * cos(theta) ** 21 - 3.51776810651766e106 * cos(theta) ** 19 + 2.77206611158765e105 * cos(theta) ** 17 - 1.64270584390379e104 * cos(theta) ** 15 + 7.13924311299247e102 * cos(theta) ** 13 - 2.19842464592741e101 * cos(theta) ** 11 + 4.56966574172364e99 * cos(theta) ** 9 - 5.97125105996556e97 * cos(theta) ** 7 + 4.38448504403065e95 * cos(theta) ** 5 - 1.48074469572126e93 * cos(theta) ** 3 + 1.45265993694041e90 * cos(theta) ) * cos(46 * phi) ) # @torch.jit.script def Yl91_m47(theta, phi): return ( 3.34542815794696e-91 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 7.43729918625445e111 * cos(theta) ** 44 - 3.88711880121365e112 * cos(theta) ** 42 + 9.3486292956563e112 * cos(theta) ** 40 - 1.37324498128285e113 * cos(theta) ** 38 + 1.37913031691692e113 * cos(theta) ** 36 - 1.00445329440192e113 * cos(theta) ** 34 + 5.49218614190521e112 * cos(theta) ** 32 - 2.30272555062129e112 * cos(theta) ** 30 + 7.49764681527141e111 * cos(theta) ** 28 - 1.90849191661454e111 * cos(theta) ** 26 + 3.80527529386335e110 * cos(theta) ** 24 - 5.93029915926756e109 * cos(theta) ** 22 + 7.17976470540254e108 * cos(theta) ** 20 - 6.68375940238355e107 * cos(theta) ** 18 + 4.712512389699e106 * cos(theta) ** 16 - 2.46405876585569e105 * cos(theta) ** 14 + 9.28101604689022e103 * cos(theta) ** 12 - 2.41826711052015e102 * cos(theta) ** 10 + 4.11269916755128e100 * cos(theta) ** 8 - 4.17987574197589e98 * cos(theta) ** 6 + 2.19224252201533e96 * cos(theta) ** 4 - 4.44223408716378e93 * cos(theta) ** 2 + 1.45265993694041e90 ) * cos(47 * phi) ) # @torch.jit.script def Yl91_m48(theta, phi): return ( 4.27777531070406e-93 * (1.0 - cos(theta) ** 2) ** 24 * ( 3.27241164195196e113 * cos(theta) ** 43 - 1.63258989650973e114 * cos(theta) ** 41 + 3.73945171826252e114 * cos(theta) ** 39 - 5.21833092887482e114 * cos(theta) ** 37 + 4.9648691409009e114 * cos(theta) ** 35 - 3.41514120096651e114 * cos(theta) ** 33 + 1.75749956540967e114 * cos(theta) ** 31 - 6.90817665186387e113 * cos(theta) ** 29 + 2.099341108276e113 * cos(theta) ** 27 - 4.96207898319781e112 * cos(theta) ** 25 + 9.13266070527204e111 * cos(theta) ** 23 - 1.30466581503886e111 * cos(theta) ** 21 + 1.43595294108051e110 * cos(theta) ** 19 - 1.20307669242904e109 * cos(theta) ** 17 + 7.54001982351841e107 * cos(theta) ** 15 - 3.44968227219796e106 * cos(theta) ** 13 + 1.11372192562683e105 * cos(theta) ** 11 - 2.41826711052015e103 * cos(theta) ** 9 + 3.29015933404102e101 * cos(theta) ** 7 - 2.50792544518553e99 * cos(theta) ** 5 + 8.76897008806131e96 * cos(theta) ** 3 - 8.88446817432757e93 * cos(theta) ) * cos(48 * phi) ) # @torch.jit.script def Yl91_m49(theta, phi): return ( 5.51340281912741e-95 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.40713700603934e115 * cos(theta) ** 42 - 6.69361857568991e115 * cos(theta) ** 40 + 1.45838617012238e116 * cos(theta) ** 38 - 1.93078244368368e116 * cos(theta) ** 36 + 1.73770419931531e116 * cos(theta) ** 34 - 1.12699659631895e116 * cos(theta) ** 32 + 5.44824865276997e115 * cos(theta) ** 30 - 2.00337122904052e115 * cos(theta) ** 28 + 5.66822099234519e114 * cos(theta) ** 26 - 1.24051974579945e114 * cos(theta) ** 24 + 2.10051196221257e113 * cos(theta) ** 22 - 2.73979821158161e112 * cos(theta) ** 20 + 2.72831058805297e111 * cos(theta) ** 18 - 2.04523037712937e110 * cos(theta) ** 16 + 1.13100297352776e109 * cos(theta) ** 14 - 4.48458695385735e107 * cos(theta) ** 12 + 1.22509411818951e106 * cos(theta) ** 10 - 2.17644039946814e104 * cos(theta) ** 8 + 2.30311153382871e102 * cos(theta) ** 6 - 1.25396272259277e100 * cos(theta) ** 4 + 2.63069102641839e97 * cos(theta) ** 2 - 8.88446817432757e93 ) * cos(49 * phi) ) # @torch.jit.script def Yl91_m50(theta, phi): return ( 7.16449398582233e-97 * (1.0 - cos(theta) ** 2) ** 25 * ( 5.90997542536524e116 * cos(theta) ** 41 - 2.67744743027596e117 * cos(theta) ** 39 + 5.54186744646505e117 * cos(theta) ** 37 - 6.95081679726125e117 * cos(theta) ** 35 + 5.90819427767207e117 * cos(theta) ** 33 - 3.60638910822064e117 * cos(theta) ** 31 + 1.63447459583099e117 * cos(theta) ** 29 - 5.60943944131346e116 * cos(theta) ** 27 + 1.47373745800975e116 * cos(theta) ** 25 - 2.97724738991868e115 * cos(theta) ** 23 + 4.62112631686765e114 * cos(theta) ** 21 - 5.47959642316322e113 * cos(theta) ** 19 + 4.91095905849534e112 * cos(theta) ** 17 - 3.27236860340699e111 * cos(theta) ** 15 + 1.58340416293887e110 * cos(theta) ** 13 - 5.38150434462882e108 * cos(theta) ** 11 + 1.22509411818951e107 * cos(theta) ** 9 - 1.74115231957451e105 * cos(theta) ** 7 + 1.38186692029723e103 * cos(theta) ** 5 - 5.01585089037107e100 * cos(theta) ** 3 + 5.26138205283678e97 * cos(theta) ) * cos(50 * phi) ) # @torch.jit.script def Yl91_m51(theta, phi): return ( 9.38965038251594e-99 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 2.42308992439975e118 * cos(theta) ** 40 - 1.04420449780763e119 * cos(theta) ** 38 + 2.05049095519207e119 * cos(theta) ** 36 - 2.43278587904144e119 * cos(theta) ** 34 + 1.94970411163178e119 * cos(theta) ** 32 - 1.1179806235484e119 * cos(theta) ** 30 + 4.73997632790987e118 * cos(theta) ** 28 - 1.51454864915463e118 * cos(theta) ** 26 + 3.68434364502437e117 * cos(theta) ** 24 - 6.84766899681297e116 * cos(theta) ** 22 + 9.70436526542206e115 * cos(theta) ** 20 - 1.04112332040101e115 * cos(theta) ** 18 + 8.34863039944208e113 * cos(theta) ** 16 - 4.90855290511048e112 * cos(theta) ** 14 + 2.05842541182052e111 * cos(theta) ** 12 - 5.91965477909171e109 * cos(theta) ** 10 + 1.10258470637056e108 * cos(theta) ** 8 - 1.21880662370216e106 * cos(theta) ** 6 + 6.90933460148615e103 * cos(theta) ** 4 - 1.50475526711132e101 * cos(theta) ** 2 + 5.26138205283678e97 ) * cos(51 * phi) ) # @torch.jit.script def Yl91_m52(theta, phi): return ( 1.24151338891615e-100 * (1.0 - cos(theta) ** 2) ** 26 * ( 9.69235969759899e119 * cos(theta) ** 39 - 3.96797709166898e120 * cos(theta) ** 37 + 7.38176743869145e120 * cos(theta) ** 35 - 8.27147198874089e120 * cos(theta) ** 33 + 6.2390531572217e120 * cos(theta) ** 31 - 3.35394187064519e120 * cos(theta) ** 29 + 1.32719337181476e120 * cos(theta) ** 27 - 3.93782648780205e119 * cos(theta) ** 25 + 8.84242474805849e118 * cos(theta) ** 23 - 1.50648717929885e118 * cos(theta) ** 21 + 1.94087305308441e117 * cos(theta) ** 19 - 1.87402197672182e116 * cos(theta) ** 17 + 1.33578086391073e115 * cos(theta) ** 15 - 6.87197406715468e113 * cos(theta) ** 13 + 2.47011049418463e112 * cos(theta) ** 11 - 5.9196547790917e110 * cos(theta) ** 9 + 8.82067765096446e108 * cos(theta) ** 7 - 7.31283974221294e106 * cos(theta) ** 5 + 2.76373384059446e104 * cos(theta) ** 3 - 3.00951053422264e101 * cos(theta) ) * cos(52 * phi) ) # @torch.jit.script def Yl91_m53(theta, phi): return ( 1.65667705742867e-102 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 3.78002028206361e121 * cos(theta) ** 38 - 1.46815152391752e122 * cos(theta) ** 36 + 2.58361860354201e122 * cos(theta) ** 34 - 2.72958575628449e122 * cos(theta) ** 32 + 1.93410647873873e122 * cos(theta) ** 30 - 9.72643142487106e121 * cos(theta) ** 28 + 3.58342210389986e121 * cos(theta) ** 26 - 9.84456621950512e120 * cos(theta) ** 24 + 2.03375769205345e120 * cos(theta) ** 22 - 3.16362307652759e119 * cos(theta) ** 20 + 3.68765880086038e118 * cos(theta) ** 18 - 3.1858373604271e117 * cos(theta) ** 16 + 2.0036712958661e116 * cos(theta) ** 14 - 8.93356628730108e114 * cos(theta) ** 12 + 2.71712154360309e113 * cos(theta) ** 10 - 5.32768930118253e111 * cos(theta) ** 8 + 6.17447435567512e109 * cos(theta) ** 6 - 3.65641987110647e107 * cos(theta) ** 4 + 8.29120152178337e104 * cos(theta) ** 2 - 3.00951053422264e101 ) * cos(53 * phi) ) # @torch.jit.script def Yl91_m54(theta, phi): return ( 2.23183486914707e-104 * (1.0 - cos(theta) ** 2) ** 27 * ( 1.43640770718417e123 * cos(theta) ** 37 - 5.28534548610308e123 * cos(theta) ** 35 + 8.78430325204283e123 * cos(theta) ** 33 - 8.73467442011038e123 * cos(theta) ** 31 + 5.80231943621618e123 * cos(theta) ** 29 - 2.7234007989639e123 * cos(theta) ** 27 + 9.31689747013965e122 * cos(theta) ** 25 - 2.36269589268123e122 * cos(theta) ** 23 + 4.4742669225176e121 * cos(theta) ** 21 - 6.32724615305519e120 * cos(theta) ** 19 + 6.63778584154869e119 * cos(theta) ** 17 - 5.09733977668336e118 * cos(theta) ** 15 + 2.80513981421254e117 * cos(theta) ** 13 - 1.07202795447613e116 * cos(theta) ** 11 + 2.71712154360309e114 * cos(theta) ** 9 - 4.26215144094603e112 * cos(theta) ** 7 + 3.70468461340507e110 * cos(theta) ** 5 - 1.46256794844259e108 * cos(theta) ** 3 + 1.65824030435667e105 * cos(theta) ) * cos(54 * phi) ) # @torch.jit.script def Yl91_m55(theta, phi): return ( 3.03658028879791e-106 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 5.31470851658143e124 * cos(theta) ** 36 - 1.84987092013608e125 * cos(theta) ** 34 + 2.89882007317413e125 * cos(theta) ** 32 - 2.70774907023422e125 * cos(theta) ** 30 + 1.68267263650269e125 * cos(theta) ** 28 - 7.35318215720252e124 * cos(theta) ** 26 + 2.32922436753491e124 * cos(theta) ** 24 - 5.43420055316683e123 * cos(theta) ** 22 + 9.39596053728695e122 * cos(theta) ** 20 - 1.20217676908049e122 * cos(theta) ** 18 + 1.12842359306328e121 * cos(theta) ** 16 - 7.64600966502503e119 * cos(theta) ** 14 + 3.6466817584763e118 * cos(theta) ** 12 - 1.17923074992374e117 * cos(theta) ** 10 + 2.44540938924278e115 * cos(theta) ** 8 - 2.98350600866222e113 * cos(theta) ** 6 + 1.85234230670254e111 * cos(theta) ** 4 - 4.38770384532776e108 * cos(theta) ** 2 + 1.65824030435667e105 ) * cos(55 * phi) ) # @torch.jit.script def Yl91_m56(theta, phi): return ( 4.1742153503652e-108 * (1.0 - cos(theta) ** 2) ** 28 * ( 1.91329506596931e126 * cos(theta) ** 35 - 6.28956112846266e126 * cos(theta) ** 33 + 9.27622423415723e126 * cos(theta) ** 31 - 8.12324721070266e126 * cos(theta) ** 29 + 4.71148338220754e126 * cos(theta) ** 27 - 1.91182736087266e126 * cos(theta) ** 25 + 5.59013848208379e125 * cos(theta) ** 23 - 1.1955241216967e125 * cos(theta) ** 21 + 1.87919210745739e124 * cos(theta) ** 19 - 2.16391818434487e123 * cos(theta) ** 17 + 1.80547774890124e122 * cos(theta) ** 15 - 1.0704413531035e121 * cos(theta) ** 13 + 4.37601811017156e119 * cos(theta) ** 11 - 1.17923074992374e118 * cos(theta) ** 9 + 1.95632751139423e116 * cos(theta) ** 7 - 1.79010360519733e114 * cos(theta) ** 5 + 7.40936922681015e111 * cos(theta) ** 3 - 8.77540769065552e108 * cos(theta) ) * cos(56 * phi) ) # @torch.jit.script def Yl91_m57(theta, phi): return ( 5.79975931321007e-110 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 6.6965327308926e127 * cos(theta) ** 34 - 2.07555517239268e128 * cos(theta) ** 32 + 2.87562951258874e128 * cos(theta) ** 30 - 2.35574169110377e128 * cos(theta) ** 28 + 1.27210051319604e128 * cos(theta) ** 26 - 4.77956840218164e127 * cos(theta) ** 24 + 1.28573185087927e127 * cos(theta) ** 22 - 2.51060065556307e126 * cos(theta) ** 20 + 3.57046500416904e125 * cos(theta) ** 18 - 3.67866091338629e124 * cos(theta) ** 16 + 2.70821662335187e123 * cos(theta) ** 14 - 1.39157375903456e122 * cos(theta) ** 12 + 4.81361992118872e120 * cos(theta) ** 10 - 1.06130767493137e119 * cos(theta) ** 8 + 1.36942925797596e117 * cos(theta) ** 6 - 8.95051802598666e114 * cos(theta) ** 4 + 2.22281076804304e112 * cos(theta) ** 2 - 8.77540769065552e108 ) * cos(57 * phi) ) # @torch.jit.script def Yl91_m58(theta, phi): return ( 8.14849452781386e-112 * (1.0 - cos(theta) ** 2) ** 29 * ( 2.27682112850348e129 * cos(theta) ** 33 - 6.64177655165657e129 * cos(theta) ** 31 + 8.62688853776622e129 * cos(theta) ** 29 - 6.59607673509056e129 * cos(theta) ** 27 + 3.30746133430969e129 * cos(theta) ** 25 - 1.14709641652359e129 * cos(theta) ** 23 + 2.8286100719344e128 * cos(theta) ** 21 - 5.02120131112615e127 * cos(theta) ** 19 + 6.42683700750428e126 * cos(theta) ** 17 - 5.88585746141806e125 * cos(theta) ** 15 + 3.79150327269261e124 * cos(theta) ** 13 - 1.66988851084147e123 * cos(theta) ** 11 + 4.81361992118872e121 * cos(theta) ** 9 - 8.49046139945094e119 * cos(theta) ** 7 + 8.21657554785575e117 * cos(theta) ** 5 - 3.58020721039466e115 * cos(theta) ** 3 + 4.44562153608609e112 * cos(theta) ) * cos(58 * phi) ) # @torch.jit.script def Yl91_m59(theta, phi): return ( 1.15817658036646e-113 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 7.5135097240615e130 * cos(theta) ** 32 - 2.05895073101354e131 * cos(theta) ** 30 + 2.5017976759522e131 * cos(theta) ** 28 - 1.78094071847445e131 * cos(theta) ** 26 + 8.26865333577423e130 * cos(theta) ** 24 - 2.63832175800426e130 * cos(theta) ** 22 + 5.94008115106223e129 * cos(theta) ** 20 - 9.54028249113968e128 * cos(theta) ** 18 + 1.09256229127573e128 * cos(theta) ** 16 - 8.82878619212709e126 * cos(theta) ** 14 + 4.9289542545004e125 * cos(theta) ** 12 - 1.83687736192561e124 * cos(theta) ** 10 + 4.33225792906984e122 * cos(theta) ** 8 - 5.94332297961566e120 * cos(theta) ** 6 + 4.10828777392788e118 * cos(theta) ** 4 - 1.0740621631184e116 * cos(theta) ** 2 + 4.44562153608609e112 ) * cos(59 * phi) ) # @torch.jit.script def Yl91_m60(theta, phi): return ( 1.66613932894921e-115 * (1.0 - cos(theta) ** 2) ** 30 * ( 2.40432311169968e132 * cos(theta) ** 31 - 6.17685219304061e132 * cos(theta) ** 29 + 7.00503349266617e132 * cos(theta) ** 27 - 4.63044586803357e132 * cos(theta) ** 25 + 1.98447680058582e132 * cos(theta) ** 23 - 5.80430786760938e131 * cos(theta) ** 21 + 1.18801623021245e131 * cos(theta) ** 19 - 1.71725084840514e130 * cos(theta) ** 17 + 1.74809966604116e129 * cos(theta) ** 15 - 1.23603006689779e128 * cos(theta) ** 13 + 5.91474510540048e126 * cos(theta) ** 11 - 1.83687736192561e125 * cos(theta) ** 9 + 3.46580634325588e123 * cos(theta) ** 7 - 3.5659937877694e121 * cos(theta) ** 5 + 1.64331510957115e119 * cos(theta) ** 3 - 2.1481243262368e116 * cos(theta) ) * cos(60 * phi) ) # @torch.jit.script def Yl91_m61(theta, phi): return ( 2.42721739041605e-117 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 7.45340164626901e133 * cos(theta) ** 30 - 1.79128713598178e134 * cos(theta) ** 28 + 1.89135904301987e134 * cos(theta) ** 26 - 1.15761146700839e134 * cos(theta) ** 24 + 4.56429664134738e133 * cos(theta) ** 22 - 1.21890465219797e133 * cos(theta) ** 20 + 2.25723083740365e132 * cos(theta) ** 18 - 2.91932644228874e131 * cos(theta) ** 16 + 2.62214949906174e130 * cos(theta) ** 14 - 1.60683908696713e129 * cos(theta) ** 12 + 6.50621961594052e127 * cos(theta) ** 10 - 1.65318962573305e126 * cos(theta) ** 8 + 2.42606444027911e124 * cos(theta) ** 6 - 1.7829968938847e122 * cos(theta) ** 4 + 4.92994532871345e119 * cos(theta) ** 2 - 2.1481243262368e116 ) * cos(61 * phi) ) # @torch.jit.script def Yl91_m62(theta, phi): return ( 3.58263308565707e-119 * (1.0 - cos(theta) ** 2) ** 31 * ( 2.2360204938807e135 * cos(theta) ** 29 - 5.01560398074898e135 * cos(theta) ** 27 + 4.91753351185165e135 * cos(theta) ** 25 - 2.77826752082014e135 * cos(theta) ** 23 + 1.00414526109642e135 * cos(theta) ** 21 - 2.43780930439594e134 * cos(theta) ** 19 + 4.06301550732657e133 * cos(theta) ** 17 - 4.67092230766199e132 * cos(theta) ** 15 + 3.67100929868644e131 * cos(theta) ** 13 - 1.92820690436056e130 * cos(theta) ** 11 + 6.50621961594052e128 * cos(theta) ** 9 - 1.32255170058644e127 * cos(theta) ** 7 + 1.45563866416747e125 * cos(theta) ** 5 - 7.13198757553879e122 * cos(theta) ** 3 + 9.8598906574269e119 * cos(theta) ) * cos(62 * phi) ) # @torch.jit.script def Yl91_m63(theta, phi): return ( 5.36096501313161e-121 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 6.48445943225404e136 * cos(theta) ** 28 - 1.35421307480222e137 * cos(theta) ** 26 + 1.22938337796291e137 * cos(theta) ** 24 - 6.39001529788633e136 * cos(theta) ** 22 + 2.10870504830249e136 * cos(theta) ** 20 - 4.63183767835229e135 * cos(theta) ** 18 + 6.90712636245516e134 * cos(theta) ** 16 - 7.00638346149298e133 * cos(theta) ** 14 + 4.77231208829237e132 * cos(theta) ** 12 - 2.12102759479661e131 * cos(theta) ** 10 + 5.85559765434647e129 * cos(theta) ** 8 - 9.25786190410509e127 * cos(theta) ** 6 + 7.27819332083734e125 * cos(theta) ** 4 - 2.13959627266164e123 * cos(theta) ** 2 + 9.8598906574269e119 ) * cos(63 * phi) ) # @torch.jit.script def Yl91_m64(theta, phi): return ( 8.13763315945349e-123 * (1.0 - cos(theta) ** 2) ** 32 * ( 1.81564864103113e138 * cos(theta) ** 27 - 3.52095399448578e138 * cos(theta) ** 25 + 2.95052010711099e138 * cos(theta) ** 23 - 1.40580336553499e138 * cos(theta) ** 21 + 4.21741009660498e137 * cos(theta) ** 19 - 8.33730782103411e136 * cos(theta) ** 17 + 1.10514021799283e136 * cos(theta) ** 15 - 9.80893684609017e134 * cos(theta) ** 13 + 5.72677450595085e133 * cos(theta) ** 11 - 2.12102759479661e132 * cos(theta) ** 9 + 4.68447812347718e130 * cos(theta) ** 7 - 5.55471714246306e128 * cos(theta) ** 5 + 2.91127732833494e126 * cos(theta) ** 3 - 4.27919254532328e123 * cos(theta) ) * cos(64 * phi) ) # @torch.jit.script def Yl91_m65(theta, phi): return ( 1.25387408621049e-124 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 4.90225133078405e139 * cos(theta) ** 26 - 8.80238498621446e139 * cos(theta) ** 24 + 6.78619624635528e139 * cos(theta) ** 22 - 2.95218706762348e139 * cos(theta) ** 20 + 8.01307918354945e138 * cos(theta) ** 18 - 1.4173423295758e138 * cos(theta) ** 16 + 1.65771032698924e137 * cos(theta) ** 14 - 1.27516178999172e136 * cos(theta) ** 12 + 6.29945195654593e134 * cos(theta) ** 10 - 1.90892483531695e133 * cos(theta) ** 8 + 3.27913468643402e131 * cos(theta) ** 6 - 2.77735857123153e129 * cos(theta) ** 4 + 8.73383198500481e126 * cos(theta) ** 2 - 4.27919254532328e123 ) * cos(65 * phi) ) # @torch.jit.script def Yl91_m66(theta, phi): return ( 1.96253507230319e-126 * (1.0 - cos(theta) ** 2) ** 33 * ( 1.27458534600385e141 * cos(theta) ** 25 - 2.11257239669147e141 * cos(theta) ** 23 + 1.49296317419816e141 * cos(theta) ** 21 - 5.90437413524697e140 * cos(theta) ** 19 + 1.4423542530389e140 * cos(theta) ** 17 - 2.26774772732128e139 * cos(theta) ** 15 + 2.32079445778494e138 * cos(theta) ** 13 - 1.53019414799007e137 * cos(theta) ** 11 + 6.29945195654593e135 * cos(theta) ** 9 - 1.52713986825356e134 * cos(theta) ** 7 + 1.96748081186041e132 * cos(theta) ** 5 - 1.11094342849261e130 * cos(theta) ** 3 + 1.74676639700096e127 * cos(theta) ) * cos(66 * phi) ) # @torch.jit.script def Yl91_m67(theta, phi): return ( 3.1226181444423e-128 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 3.18646336500963e142 * cos(theta) ** 24 - 4.85891651239038e142 * cos(theta) ** 22 + 3.13522266581614e142 * cos(theta) ** 20 - 1.12183108569692e142 * cos(theta) ** 18 + 2.45200223016613e141 * cos(theta) ** 16 - 3.40162159098192e140 * cos(theta) ** 14 + 3.01703279512042e139 * cos(theta) ** 12 - 1.68321356278907e138 * cos(theta) ** 10 + 5.66950676089134e136 * cos(theta) ** 8 - 1.06899790777749e135 * cos(theta) ** 6 + 9.83740405930207e132 * cos(theta) ** 4 - 3.33283028547783e130 * cos(theta) ** 2 + 1.74676639700096e127 ) * cos(67 * phi) ) # @torch.jit.script def Yl91_m68(theta, phi): return ( 5.05492476206179e-130 * (1.0 - cos(theta) ** 2) ** 34 * ( 7.64751207602312e143 * cos(theta) ** 23 - 1.06896163272588e144 * cos(theta) ** 21 + 6.27044533163228e143 * cos(theta) ** 19 - 2.01929595425446e143 * cos(theta) ** 17 + 3.92320356826581e142 * cos(theta) ** 15 - 4.76227022737469e141 * cos(theta) ** 13 + 3.6204393541445e140 * cos(theta) ** 11 - 1.68321356278907e139 * cos(theta) ** 9 + 4.53560540871307e137 * cos(theta) ** 7 - 6.41398744666495e135 * cos(theta) ** 5 + 3.93496162372083e133 * cos(theta) ** 3 - 6.66566057095567e130 * cos(theta) ) * cos(68 * phi) ) # @torch.jit.script def Yl91_m69(theta, phi): return ( 8.33279670647098e-132 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 1.75892777748532e145 * cos(theta) ** 22 - 2.24481942872436e145 * cos(theta) ** 20 + 1.19138461301013e145 * cos(theta) ** 18 - 3.43280312223259e144 * cos(theta) ** 16 + 5.88480535239872e143 * cos(theta) ** 14 - 6.19095129558709e142 * cos(theta) ** 12 + 3.98248328955895e141 * cos(theta) ** 10 - 1.51489220651017e140 * cos(theta) ** 8 + 3.17492378609915e138 * cos(theta) ** 6 - 3.20699372333248e136 * cos(theta) ** 4 + 1.18048848711625e134 * cos(theta) ** 2 - 6.66566057095567e130 ) * cos(69 * phi) ) # @torch.jit.script def Yl91_m70(theta, phi): return ( 1.40012402603984e-133 * (1.0 - cos(theta) ** 2) ** 35 * ( 3.8696411104677e146 * cos(theta) ** 21 - 4.48963885744871e146 * cos(theta) ** 19 + 2.14449230341824e146 * cos(theta) ** 17 - 5.49248499557214e145 * cos(theta) ** 15 + 8.23872749335821e144 * cos(theta) ** 13 - 7.42914155470451e143 * cos(theta) ** 11 + 3.98248328955895e142 * cos(theta) ** 9 - 1.21191376520813e141 * cos(theta) ** 7 + 1.90495427165949e139 * cos(theta) ** 5 - 1.28279748933299e137 * cos(theta) ** 3 + 2.3609769742325e134 * cos(theta) ) * cos(70 * phi) ) # @torch.jit.script def Yl91_m71(theta, phi): return ( 2.40048697311509e-135 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 8.12624633198217e147 * cos(theta) ** 20 - 8.53031382915255e147 * cos(theta) ** 18 + 3.64563691581101e147 * cos(theta) ** 16 - 8.23872749335821e146 * cos(theta) ** 14 + 1.07103457413657e146 * cos(theta) ** 12 - 8.17205571017496e144 * cos(theta) ** 10 + 3.58423496060305e143 * cos(theta) ** 8 - 8.48339635645693e141 * cos(theta) ** 6 + 9.52477135829745e139 * cos(theta) ** 4 - 3.84839246799897e137 * cos(theta) ** 2 + 2.3609769742325e134 ) * cos(71 * phi) ) # @torch.jit.script def Yl91_m72(theta, phi): return ( 4.20426956083568e-137 * (1.0 - cos(theta) ** 2) ** 36 * ( 1.62524926639643e149 * cos(theta) ** 19 - 1.53545648924746e149 * cos(theta) ** 17 + 5.83301906529761e148 * cos(theta) ** 15 - 1.15342184907015e148 * cos(theta) ** 13 + 1.28524148896388e147 * cos(theta) ** 11 - 8.17205571017496e145 * cos(theta) ** 9 + 2.86738796848244e144 * cos(theta) ** 7 - 5.09003781387416e142 * cos(theta) ** 5 + 3.80990854331898e140 * cos(theta) ** 3 - 7.69678493599794e137 * cos(theta) ) * cos(72 * phi) ) # @torch.jit.script def Yl91_m73(theta, phi): return ( 7.5316794655501e-139 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 3.08797360615322e150 * cos(theta) ** 18 - 2.61027603172068e150 * cos(theta) ** 16 + 8.74952859794642e149 * cos(theta) ** 14 - 1.49944840379119e149 * cos(theta) ** 12 + 1.41376563786027e148 * cos(theta) ** 10 - 7.35485013915747e146 * cos(theta) ** 8 + 2.00717157793771e145 * cos(theta) ** 6 - 2.54501890693708e143 * cos(theta) ** 4 + 1.14297256299569e141 * cos(theta) ** 2 - 7.69678493599794e137 ) * cos(73 * phi) ) # @torch.jit.script def Yl91_m74(theta, phi): return ( 1.38201769701949e-140 * (1.0 - cos(theta) ** 2) ** 37 * ( 5.5583524910758e151 * cos(theta) ** 17 - 4.17644165075309e151 * cos(theta) ** 15 + 1.2249340037125e151 * cos(theta) ** 13 - 1.79933808454943e150 * cos(theta) ** 11 + 1.41376563786027e149 * cos(theta) ** 9 - 5.88388011132597e147 * cos(theta) ** 7 + 1.20430294676263e146 * cos(theta) ** 5 - 1.01800756277483e144 * cos(theta) ** 3 + 2.28594512599139e141 * cos(theta) ) * cos(74 * phi) ) # @torch.jit.script def Yl91_m75(theta, phi): return ( 2.60156750632951e-142 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 9.44919923482887e152 * cos(theta) ** 16 - 6.26466247612963e152 * cos(theta) ** 14 + 1.59241420482625e152 * cos(theta) ** 12 - 1.97927189300438e151 * cos(theta) ** 10 + 1.27238907407424e150 * cos(theta) ** 8 - 4.11871607792818e148 * cos(theta) ** 6 + 6.02151473381313e146 * cos(theta) ** 4 - 3.0540226883245e144 * cos(theta) ** 2 + 2.28594512599139e141 ) * cos(75 * phi) ) # @torch.jit.script def Yl91_m76(theta, phi): return ( 5.03288344350919e-144 * (1.0 - cos(theta) ** 2) ** 38 * ( 1.51187187757262e154 * cos(theta) ** 15 - 8.77052746658149e153 * cos(theta) ** 13 + 1.9108970457915e153 * cos(theta) ** 11 - 1.97927189300438e152 * cos(theta) ** 9 + 1.01791125925939e151 * cos(theta) ** 7 - 2.47122964675691e149 * cos(theta) ** 5 + 2.40860589352525e147 * cos(theta) ** 3 - 6.10804537664899e144 * cos(theta) ) * cos(76 * phi) ) # @torch.jit.script def Yl91_m77(theta, phi): return ( 1.0025743798546e-145 * (1.0 - cos(theta) ** 2) ** 38.5 * ( 2.26780781635893e155 * cos(theta) ** 14 - 1.14016857065559e155 * cos(theta) ** 12 + 2.10198675037065e154 * cos(theta) ** 10 - 1.78134470370394e153 * cos(theta) ** 8 + 7.12537881481575e151 * cos(theta) ** 6 - 1.23561482337845e150 * cos(theta) ** 4 + 7.22581768057576e147 * cos(theta) ** 2 - 6.10804537664899e144 ) * cos(77 * phi) ) # @torch.jit.script def Yl91_m78(theta, phi): return ( 2.06114826053476e-147 * (1.0 - cos(theta) ** 2) ** 39 * ( 3.1749309429025e156 * cos(theta) ** 13 - 1.36820228478671e156 * cos(theta) ** 11 + 2.10198675037065e155 * cos(theta) ** 9 - 1.42507576296315e154 * cos(theta) ** 7 + 4.27522728888945e152 * cos(theta) ** 5 - 4.94245929351382e150 * cos(theta) ** 3 + 1.44516353611515e148 * cos(theta) ) * cos(78 * phi) ) # @torch.jit.script def Yl91_m79(theta, phi): return ( 4.38442954177759e-149 * (1.0 - cos(theta) ** 2) ** 39.5 * ( 4.12741022577325e157 * cos(theta) ** 12 - 1.50502251326538e157 * cos(theta) ** 10 + 1.89178807533358e156 * cos(theta) ** 8 - 9.97553034074205e154 * cos(theta) ** 6 + 2.13761364444473e153 * cos(theta) ** 4 - 1.48273778805415e151 * cos(theta) ** 2 + 1.44516353611515e148 ) * cos(79 * phi) ) # @torch.jit.script def Yl91_m80(theta, phi): return ( 9.67886465892713e-151 * (1.0 - cos(theta) ** 2) ** 40 * ( 4.9528922709279e158 * cos(theta) ** 11 - 1.50502251326538e158 * cos(theta) ** 9 + 1.51343046026687e157 * cos(theta) ** 7 - 5.98531820444523e155 * cos(theta) ** 5 + 8.5504545777789e153 * cos(theta) ** 3 - 2.96547557610829e151 * cos(theta) ) * cos(80 * phi) ) # @torch.jit.script def Yl91_m81(theta, phi): return ( 2.2251733557883e-152 * (1.0 - cos(theta) ** 2) ** 40.5 * ( 5.44818149802069e159 * cos(theta) ** 10 - 1.35452026193884e159 * cos(theta) ** 8 + 1.05940132218681e158 * cos(theta) ** 6 - 2.99265910222262e156 * cos(theta) ** 4 + 2.56513637333367e154 * cos(theta) ** 2 - 2.96547557610829e151 ) * cos(81 * phi) ) # @torch.jit.script def Yl91_m82(theta, phi): return ( 5.3498400728677e-154 * (1.0 - cos(theta) ** 2) ** 41 * ( 5.44818149802069e160 * cos(theta) ** 9 - 1.08361620955108e160 * cos(theta) ** 7 + 6.35640793312084e158 * cos(theta) ** 5 - 1.19706364088905e157 * cos(theta) ** 3 + 5.13027274666734e154 * cos(theta) ) * cos(82 * phi) ) # @torch.jit.script def Yl91_m83(theta, phi): return ( 1.35190109756701e-155 * (1.0 - cos(theta) ** 2) ** 41.5 * ( 4.90336334821862e161 * cos(theta) ** 8 - 7.58531346685753e160 * cos(theta) ** 6 + 3.17820396656042e159 * cos(theta) ** 4 - 3.59119092266714e157 * cos(theta) ** 2 + 5.13027274666734e154 ) * cos(83 * phi) ) # @torch.jit.script def Yl91_m84(theta, phi): return ( 3.61310766278528e-157 * (1.0 - cos(theta) ** 2) ** 42 * ( 3.9226906785749e162 * cos(theta) ** 7 - 4.55118808011452e161 * cos(theta) ** 5 + 1.27128158662417e160 * cos(theta) ** 3 - 7.18238184533428e157 * cos(theta) ) * cos(84 * phi) ) # @torch.jit.script def Yl91_m85(theta, phi): return ( 1.02937958015436e-158 * (1.0 - cos(theta) ** 2) ** 42.5 * ( 2.74588347500243e163 * cos(theta) ** 6 - 2.27559404005726e162 * cos(theta) ** 4 + 3.8138447598725e160 * cos(theta) ** 2 - 7.18238184533428e157 ) * cos(85 * phi) ) # @torch.jit.script def Yl91_m86(theta, phi): return ( 3.15873571224314e-160 * (1.0 - cos(theta) ** 2) ** 43 * ( 1.64753008500146e164 * cos(theta) ** 5 - 9.10237616022904e162 * cos(theta) ** 3 + 7.627689519745e160 * cos(theta) ) * cos(86 * phi) ) # @torch.jit.script def Yl91_m87(theta, phi): return ( 1.05881061636435e-161 * (1.0 - cos(theta) ** 2) ** 43.5 * ( 8.23765042500728e164 * cos(theta) ** 4 - 2.73071284806871e163 * cos(theta) ** 2 + 7.627689519745e160 ) * cos(87 * phi) ) # @torch.jit.script def Yl91_m88(theta, phi): return ( 3.95696105624512e-163 * (1.0 - cos(theta) ** 2) ** 44 * (3.29506017000291e165 * cos(theta) ** 3 - 5.46142569613742e163 * cos(theta)) * cos(88 * phi) ) # @torch.jit.script def Yl91_m89(theta, phi): return ( 1.70280491915874e-164 * (1.0 - cos(theta) ** 2) ** 44.5 * (9.88518051000874e165 * cos(theta) ** 2 - 5.46142569613742e163) * cos(89 * phi) ) # @torch.jit.script def Yl91_m90(theta, phi): return 17.6939669099597 * (1.0 - cos(theta) ** 2) ** 45 * cos(90 * phi) * cos(theta) # @torch.jit.script def Yl91_m91(theta, phi): return 1.31156408810318 * (1.0 - cos(theta) ** 2) ** 45.5 * cos(91 * phi) # @torch.jit.script def Yl92_m_minus_92(theta, phi): return 1.31512329162961 * (1.0 - cos(theta) ** 2) ** 46 * sin(92 * phi) # @torch.jit.script def Yl92_m_minus_91(theta, phi): return ( 17.8392002646519 * (1.0 - cos(theta) ** 2) ** 45.5 * sin(91 * phi) * cos(theta) ) # @torch.jit.script def Yl92_m_minus_90(theta, phi): return ( 9.43300867924983e-167 * (1.0 - cos(theta) ** 2) ** 45 * (1.8089880333316e168 * cos(theta) ** 2 - 9.88518051000874e165) * sin(90 * phi) ) # @torch.jit.script def Yl92_m_minus_89(theta, phi): return ( 2.20417745196638e-165 * (1.0 - cos(theta) ** 2) ** 44.5 * (6.02996011110533e167 * cos(theta) ** 3 - 9.88518051000874e165 * cos(theta)) * sin(89 * phi) ) # @torch.jit.script def Yl92_m_minus_88(theta, phi): return ( 5.93083495435852e-164 * (1.0 - cos(theta) ** 2) ** 44 * ( 1.50749002777633e167 * cos(theta) ** 4 - 4.94259025500437e165 * cos(theta) ** 2 + 1.36535642403436e163 ) * sin(88 * phi) ) # @torch.jit.script def Yl92_m_minus_87(theta, phi): return ( 1.77925048630756e-162 * (1.0 - cos(theta) ** 2) ** 43.5 * ( 3.01498005555266e166 * cos(theta) ** 5 - 1.64753008500146e165 * cos(theta) ** 3 + 1.36535642403436e163 * cos(theta) ) * sin(87 * phi) ) # @torch.jit.script def Yl92_m_minus_86(theta, phi): return ( 5.83094887879286e-161 * (1.0 - cos(theta) ** 2) ** 43 * ( 5.02496675925444e165 * cos(theta) ** 6 - 4.11882521250364e164 * cos(theta) ** 4 + 6.82678212017178e162 * cos(theta) ** 2 - 1.27128158662417e160 ) * sin(86 * phi) ) # @torch.jit.script def Yl92_m_minus_85(theta, phi): return ( 2.05825062066215e-159 * (1.0 - cos(theta) ** 2) ** 42.5 * ( 7.17852394179206e164 * cos(theta) ** 7 - 8.23765042500728e163 * cos(theta) ** 5 + 2.27559404005726e162 * cos(theta) ** 3 - 1.27128158662417e160 * cos(theta) ) * sin(85 * phi) ) # @torch.jit.script def Yl92_m_minus_84(theta, phi): return ( 7.74515086639239e-158 * (1.0 - cos(theta) ** 2) ** 42 * ( 8.97315492724007e163 * cos(theta) ** 8 - 1.37294173750121e163 * cos(theta) ** 6 + 5.68898510014315e161 * cos(theta) ** 4 - 6.35640793312084e159 * cos(theta) ** 2 + 8.97797730666785e156 ) * sin(84 * phi) ) # @torch.jit.script def Yl92_m_minus_83(theta, phi): return ( 3.08253112422235e-156 * (1.0 - cos(theta) ** 2) ** 41.5 * ( 9.97017214137786e162 * cos(theta) ** 9 - 1.96134533928745e162 * cos(theta) ** 7 + 1.13779702002863e161 * cos(theta) ** 5 - 2.11880264437361e159 * cos(theta) ** 3 + 8.97797730666785e156 * cos(theta) ) * sin(83 * phi) ) # @torch.jit.script def Yl92_m_minus_82(theta, phi): return ( 1.28951528609199e-154 * (1.0 - cos(theta) ** 2) ** 41 * ( 9.97017214137786e161 * cos(theta) ** 10 - 2.45168167410931e161 * cos(theta) ** 8 + 1.89632836671438e160 * cos(theta) ** 6 - 5.29700661093403e158 * cos(theta) ** 4 + 4.48898865333392e156 * cos(theta) ** 2 - 5.13027274666734e153 ) * sin(82 * phi) ) # @torch.jit.script def Yl92_m_minus_81(theta, phi): return ( 5.64153726766583e-153 * (1.0 - cos(theta) ** 2) ** 40.5 * ( 9.06379285579805e160 * cos(theta) ** 11 - 2.72409074901034e160 * cos(theta) ** 9 + 2.70904052387769e159 * cos(theta) ** 7 - 1.05940132218681e158 * cos(theta) ** 5 + 1.49632955111131e156 * cos(theta) ** 3 - 5.13027274666734e153 * cos(theta) ) * sin(81 * phi) ) # @torch.jit.script def Yl92_m_minus_80(theta, phi): return ( 2.57046169264107e-151 * (1.0 - cos(theta) ** 2) ** 40 * ( 7.55316071316504e159 * cos(theta) ** 12 - 2.72409074901034e159 * cos(theta) ** 10 + 3.38630065484711e158 * cos(theta) ** 8 - 1.76566887031134e157 * cos(theta) ** 6 + 3.74082387777827e155 * cos(theta) ** 4 - 2.56513637333367e153 * cos(theta) ** 2 + 2.47122964675691e150 ) * sin(80 * phi) ) # @torch.jit.script def Yl92_m_minus_79(theta, phi): return ( 1.21547781257485e-149 * (1.0 - cos(theta) ** 2) ** 39.5 * ( 5.81012362551157e158 * cos(theta) ** 13 - 2.47644613546395e158 * cos(theta) ** 11 + 3.76255628316346e157 * cos(theta) ** 9 - 2.52238410044478e156 * cos(theta) ** 7 + 7.48164775555654e154 * cos(theta) ** 5 - 8.5504545777789e152 * cos(theta) ** 3 + 2.47122964675691e150 * cos(theta) ) * sin(79 * phi) ) # @torch.jit.script def Yl92_m_minus_78(theta, phi): return ( 5.94715296002301e-148 * (1.0 - cos(theta) ** 2) ** 39 * ( 4.15008830393684e157 * cos(theta) ** 14 - 2.06370511288662e157 * cos(theta) ** 12 + 3.76255628316346e156 * cos(theta) ** 10 - 3.15298012555597e155 * cos(theta) ** 8 + 1.24694129259276e154 * cos(theta) ** 6 - 2.13761364444473e152 * cos(theta) ** 4 + 1.23561482337845e150 * cos(theta) ** 2 - 1.03225966865368e147 ) * sin(78 * phi) ) # @torch.jit.script def Yl92_m_minus_77(theta, phi): return ( 3.00316503444735e-146 * (1.0 - cos(theta) ** 2) ** 38.5 * ( 2.76672553595789e156 * cos(theta) ** 15 - 1.58746547145125e156 * cos(theta) ** 13 + 3.42050571196678e155 * cos(theta) ** 11 - 3.50331125061775e154 * cos(theta) ** 9 + 1.78134470370394e153 * cos(theta) ** 7 - 4.27522728888945e151 * cos(theta) ** 5 + 4.11871607792818e149 * cos(theta) ** 3 - 1.03225966865368e147 * cos(theta) ) * sin(77 * phi) ) # @torch.jit.script def Yl92_m_minus_76(theta, phi): return ( 1.56164581791262e-144 * (1.0 - cos(theta) ** 2) ** 38 * ( 1.72920345997368e155 * cos(theta) ** 16 - 1.13390390817946e155 * cos(theta) ** 14 + 2.85042142663898e154 * cos(theta) ** 12 - 3.50331125061775e153 * cos(theta) ** 10 + 2.22668087962992e152 * cos(theta) ** 8 - 7.12537881481575e150 * cos(theta) ** 6 + 1.02967901948205e149 * cos(theta) ** 4 - 5.1612983432684e146 * cos(theta) ** 2 + 3.81752836040562e143 ) * sin(76 * phi) ) # @torch.jit.script def Yl92_m_minus_75(theta, phi): return ( 8.34567837787017e-143 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 1.01717850586687e154 * cos(theta) ** 17 - 7.55935938786309e153 * cos(theta) ** 15 + 2.19263186664537e153 * cos(theta) ** 13 - 3.1848284096525e152 * cos(theta) ** 11 + 2.47408986625547e151 * cos(theta) ** 9 - 1.01791125925939e150 * cos(theta) ** 7 + 2.05935803896409e148 * cos(theta) ** 5 - 1.72043278108947e146 * cos(theta) ** 3 + 3.81752836040562e143 * cos(theta) ) * sin(75 * phi) ) # @torch.jit.script def Yl92_m_minus_74(theta, phi): return ( 4.57568513827241e-141 * (1.0 - cos(theta) ** 2) ** 37 * ( 5.6509916992604e152 * cos(theta) ** 18 - 4.72459961741443e152 * cos(theta) ** 16 + 1.56616561903241e152 * cos(theta) ** 14 - 2.65402367471041e151 * cos(theta) ** 12 + 2.47408986625547e150 * cos(theta) ** 10 - 1.27238907407424e149 * cos(theta) ** 8 + 3.43226339827348e147 * cos(theta) ** 6 - 4.30108195272366e145 * cos(theta) ** 4 + 1.90876418020281e143 * cos(theta) ** 2 - 1.26996951443966e140 ) * sin(74 * phi) ) # @torch.jit.script def Yl92_m_minus_73(theta, phi): return ( 2.56972693499622e-139 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 2.97420615750547e151 * cos(theta) ** 19 - 2.7791762455379e151 * cos(theta) ** 17 + 1.04411041268827e151 * cos(theta) ** 15 - 2.04155667285416e150 * cos(theta) ** 13 + 2.24917260568679e149 * cos(theta) ** 11 - 1.41376563786027e148 * cos(theta) ** 9 + 4.90323342610498e146 * cos(theta) ** 7 - 8.60216390544733e144 * cos(theta) ** 5 + 6.3625472673427e142 * cos(theta) ** 3 - 1.26996951443966e140 * cos(theta) ) * sin(73 * phi) ) # @torch.jit.script def Yl92_m_minus_72(theta, phi): return ( 1.47619573625819e-137 * (1.0 - cos(theta) ** 2) ** 36 * ( 1.48710307875274e150 * cos(theta) ** 20 - 1.54398680307661e150 * cos(theta) ** 18 + 6.5256900793017e149 * cos(theta) ** 16 - 1.4582547663244e149 * cos(theta) ** 14 + 1.87431050473899e148 * cos(theta) ** 12 - 1.41376563786027e147 * cos(theta) ** 10 + 6.12904178263122e145 * cos(theta) ** 8 - 1.43369398424122e144 * cos(theta) ** 6 + 1.59063681683567e142 * cos(theta) ** 4 - 6.3498475721983e139 * cos(theta) ** 2 + 3.84839246799897e136 ) * sin(72 * phi) ) # @torch.jit.script def Yl92_m_minus_71(theta, phi): return ( 8.66314369349615e-136 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 7.08144323215589e148 * cos(theta) ** 21 - 8.12624633198217e148 * cos(theta) ** 19 + 3.83864122311865e148 * cos(theta) ** 17 - 9.72169844216269e147 * cos(theta) ** 15 + 1.44177731133769e147 * cos(theta) ** 13 - 1.28524148896388e146 * cos(theta) ** 11 + 6.8100464251458e144 * cos(theta) ** 9 - 2.04813426320174e143 * cos(theta) ** 7 + 3.18127363367135e141 * cos(theta) ** 5 - 2.11661585739943e139 * cos(theta) ** 3 + 3.84839246799897e136 * cos(theta) ) * sin(71 * phi) ) # @torch.jit.script def Yl92_m_minus_70(theta, phi): return ( 5.18776936971783e-134 * (1.0 - cos(theta) ** 2) ** 35 * ( 3.21883783279813e147 * cos(theta) ** 22 - 4.06312316599108e147 * cos(theta) ** 20 + 2.13257845728814e147 * cos(theta) ** 18 - 6.07606152635168e146 * cos(theta) ** 16 + 1.02984093666978e146 * cos(theta) ** 14 - 1.07103457413657e145 * cos(theta) ** 12 + 6.8100464251458e143 * cos(theta) ** 10 - 2.56016782900218e142 * cos(theta) ** 8 + 5.30212272278558e140 * cos(theta) ** 6 - 5.29153964349858e138 * cos(theta) ** 4 + 1.92419623399949e136 * cos(theta) ** 2 - 1.07317135192386e133 ) * sin(70 * phi) ) # @torch.jit.script def Yl92_m_minus_69(theta, phi): return ( 3.16666473675985e-132 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 1.39949470991223e146 * cos(theta) ** 23 - 1.93482055523385e146 * cos(theta) ** 21 + 1.12240971436218e146 * cos(theta) ** 19 - 3.5741538390304e145 * cos(theta) ** 17 + 6.86560624446517e144 * cos(theta) ** 15 - 8.23872749335821e143 * cos(theta) ** 13 + 6.19095129558709e142 * cos(theta) ** 11 - 2.84463092111353e141 * cos(theta) ** 9 + 7.57446103255083e139 * cos(theta) ** 7 - 1.05830792869972e138 * cos(theta) ** 5 + 6.41398744666495e135 * cos(theta) ** 3 - 1.07317135192386e133 * cos(theta) ) * sin(69 * phi) ) # @torch.jit.script def Yl92_m_minus_68(theta, phi): return ( 1.9684330342856e-130 * (1.0 - cos(theta) ** 2) ** 34 * ( 5.83122795796763e144 * cos(theta) ** 24 - 8.79463888742659e144 * cos(theta) ** 22 + 5.61204857181089e144 * cos(theta) ** 20 - 1.98564102168356e144 * cos(theta) ** 18 + 4.29100390279073e143 * cos(theta) ** 16 - 5.88480535239872e142 * cos(theta) ** 14 + 5.15912607965591e141 * cos(theta) ** 12 - 2.84463092111353e140 * cos(theta) ** 10 + 9.46807629068854e138 * cos(theta) ** 8 - 1.76384654783286e137 * cos(theta) ** 6 + 1.60349686166624e135 * cos(theta) ** 4 - 5.36585675961931e132 * cos(theta) ** 2 + 2.77735857123153e129 ) * sin(68 * phi) ) # @torch.jit.script def Yl92_m_minus_67(theta, phi): return ( 1.24494636197176e-128 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 2.33249118318705e143 * cos(theta) ** 25 - 3.82375603801156e143 * cos(theta) ** 23 + 2.67240408181471e143 * cos(theta) ** 21 - 1.04507422193871e143 * cos(theta) ** 19 + 2.52411994281808e142 * cos(theta) ** 17 - 3.92320356826581e141 * cos(theta) ** 15 + 3.96855852281224e140 * cos(theta) ** 13 - 2.58602811010321e139 * cos(theta) ** 11 + 1.05200847674317e138 * cos(theta) ** 9 - 2.51978078261837e136 * cos(theta) ** 7 + 3.20699372333248e134 * cos(theta) ** 5 - 1.7886189198731e132 * cos(theta) ** 3 + 2.77735857123153e129 * cos(theta) ) * sin(67 * phi) ) # @torch.jit.script def Yl92_m_minus_66(theta, phi): return ( 8.00453073594444e-127 * (1.0 - cos(theta) ** 2) ** 33 * ( 8.97111993533482e141 * cos(theta) ** 26 - 1.59323168250482e142 * cos(theta) ** 24 + 1.2147291280976e142 * cos(theta) ** 22 - 5.22537110969357e141 * cos(theta) ** 20 + 1.40228885712115e141 * cos(theta) ** 18 - 2.45200223016613e140 * cos(theta) ** 16 + 2.8346846591516e139 * cos(theta) ** 14 - 2.15502342508601e138 * cos(theta) ** 12 + 1.05200847674317e137 * cos(theta) ** 10 - 3.14972597827297e135 * cos(theta) ** 8 + 5.34498953888746e133 * cos(theta) ** 6 - 4.47154729968276e131 * cos(theta) ** 4 + 1.38867928561576e129 * cos(theta) ** 2 - 6.71833229615754e125 ) * sin(66 * phi) ) # @torch.jit.script def Yl92_m_minus_65(theta, phi): return ( 5.22812908680753e-125 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 3.32263701308697e140 * cos(theta) ** 27 - 6.37292673001927e140 * cos(theta) ** 25 + 5.28143099172867e140 * cos(theta) ** 23 - 2.48827195699694e140 * cos(theta) ** 21 + 7.38046766905871e139 * cos(theta) ** 19 - 1.4423542530389e139 * cos(theta) ** 17 + 1.88978977276773e138 * cos(theta) ** 15 - 1.65771032698924e137 * cos(theta) ** 13 + 9.56371342493792e135 * cos(theta) ** 11 - 3.49969553141441e134 * cos(theta) ** 9 + 7.6356993412678e132 * cos(theta) ** 7 - 8.94309459936552e130 * cos(theta) ** 5 + 4.62893095205255e128 * cos(theta) ** 3 - 6.71833229615754e125 * cos(theta) ) * sin(65 * phi) ) # @torch.jit.script def Yl92_m_minus_64(theta, phi): return ( 3.46637180864413e-123 * (1.0 - cos(theta) ** 2) ** 32 * ( 1.18665607610249e139 * cos(theta) ** 28 - 2.45112566539203e139 * cos(theta) ** 26 + 2.20059624655361e139 * cos(theta) ** 24 - 1.13103270772588e139 * cos(theta) ** 22 + 3.69023383452935e138 * cos(theta) ** 20 - 8.01307918354946e137 * cos(theta) ** 18 + 1.18111860797983e137 * cos(theta) ** 16 - 1.18407880499231e136 * cos(theta) ** 14 + 7.96976118744827e134 * cos(theta) ** 12 - 3.49969553141441e133 * cos(theta) ** 10 + 9.54462417658475e131 * cos(theta) ** 8 - 1.49051576656092e130 * cos(theta) ** 6 + 1.15723273801314e128 * cos(theta) ** 4 - 3.35916614807877e125 * cos(theta) ** 2 + 1.52828305190117e122 ) * sin(64 * phi) ) # @torch.jit.script def Yl92_m_minus_63(theta, phi): return ( 2.33150548841968e-121 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 4.09191750380168e137 * cos(theta) ** 29 - 9.07824320515565e137 * cos(theta) ** 27 + 8.80238498621446e137 * cos(theta) ** 25 - 4.91753351185165e137 * cos(theta) ** 23 + 1.75725420691874e137 * cos(theta) ** 21 - 4.21741009660498e136 * cos(theta) ** 19 + 6.94775651752843e135 * cos(theta) ** 17 - 7.89385869994876e134 * cos(theta) ** 15 + 6.13058552880636e133 * cos(theta) ** 13 - 3.18154139219492e132 * cos(theta) ** 11 + 1.06051379739831e131 * cos(theta) ** 9 - 2.12930823794417e129 * cos(theta) ** 7 + 2.31446547602627e127 * cos(theta) ** 5 - 1.11972204935959e125 * cos(theta) ** 3 + 1.52828305190117e122 * cos(theta) ) * sin(63 * phi) ) # @torch.jit.script def Yl92_m_minus_62(theta, phi): return ( 1.58987477392937e-119 * (1.0 - cos(theta) ** 2) ** 31 * ( 1.36397250126723e136 * cos(theta) ** 30 - 3.24222971612702e136 * cos(theta) ** 28 + 3.38553268700556e136 * cos(theta) ** 26 - 2.04897229660486e136 * cos(theta) ** 24 + 7.98751912235791e135 * cos(theta) ** 22 - 2.10870504830249e135 * cos(theta) ** 20 + 3.85986473196024e134 * cos(theta) ** 18 - 4.93366168746797e133 * cos(theta) ** 16 + 4.37898966343311e132 * cos(theta) ** 14 - 2.65128449349576e131 * cos(theta) ** 12 + 1.06051379739831e130 * cos(theta) ** 10 - 2.66163529743021e128 * cos(theta) ** 8 + 3.85744246004379e126 * cos(theta) ** 6 - 2.79930512339898e124 * cos(theta) ** 4 + 7.64141525950585e121 * cos(theta) ** 2 - 3.2866302191423e118 ) * sin(62 * phi) ) # @torch.jit.script def Yl92_m_minus_61(theta, phi): return ( 1.09851028114502e-117 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 4.39991129441041e134 * cos(theta) ** 31 - 1.11801024694035e135 * cos(theta) ** 29 + 1.25390099518724e135 * cos(theta) ** 27 - 8.19588918641942e134 * cos(theta) ** 25 + 3.47283440102518e134 * cos(theta) ** 23 - 1.00414526109642e134 * cos(theta) ** 21 + 2.03150775366328e133 * cos(theta) ** 19 - 2.90215393380469e132 * cos(theta) ** 17 + 2.91932644228874e131 * cos(theta) ** 15 - 2.03944961038136e130 * cos(theta) ** 13 + 9.64103452180278e128 * cos(theta) ** 11 - 2.95737255270024e127 * cos(theta) ** 9 + 5.51063208577684e125 * cos(theta) ** 7 - 5.59861024679795e123 * cos(theta) ** 5 + 2.54713841983528e121 * cos(theta) ** 3 - 3.2866302191423e118 * cos(theta) ) * sin(61 * phi) ) # @torch.jit.script def Yl92_m_minus_60(theta, phi): return ( 7.68643272641954e-116 * (1.0 - cos(theta) ** 2) ** 30 * ( 1.37497227950325e133 * cos(theta) ** 32 - 3.7267008231345e133 * cos(theta) ** 30 + 4.47821783995445e133 * cos(theta) ** 28 - 3.15226507169978e133 * cos(theta) ** 26 + 1.44701433376049e133 * cos(theta) ** 24 - 4.56429664134738e132 * cos(theta) ** 22 + 1.01575387683164e132 * cos(theta) ** 20 - 1.61230774100261e131 * cos(theta) ** 18 + 1.82457902643046e130 * cos(theta) ** 16 - 1.45674972170097e129 * cos(theta) ** 14 + 8.03419543483565e127 * cos(theta) ** 12 - 2.95737255270024e126 * cos(theta) ** 10 + 6.88829010722105e124 * cos(theta) ** 8 - 9.33101707799659e122 * cos(theta) ** 6 + 6.36784604958821e120 * cos(theta) ** 4 - 1.64331510957115e118 * cos(theta) ** 2 + 6.71288851948999e114 ) * sin(60 * phi) ) # @torch.jit.script def Yl92_m_minus_59(theta, phi): return ( 5.44381796405602e-114 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 4.16658266516138e131 * cos(theta) ** 33 - 1.20216155584984e132 * cos(theta) ** 31 + 1.54421304826015e132 * cos(theta) ** 29 - 1.16750558211103e132 * cos(theta) ** 27 + 5.78805733504196e131 * cos(theta) ** 25 - 1.98447680058582e131 * cos(theta) ** 23 + 4.83692322300782e130 * cos(theta) ** 21 - 8.48583021580319e129 * cos(theta) ** 19 + 1.07328178025321e129 * cos(theta) ** 17 - 9.71166481133979e127 * cos(theta) ** 15 + 6.18015033448896e126 * cos(theta) ** 13 - 2.68852050245476e125 * cos(theta) ** 11 + 7.65365567469006e123 * cos(theta) ** 9 - 1.3330024397138e122 * cos(theta) ** 7 + 1.27356920991764e120 * cos(theta) ** 5 - 5.47771703190383e117 * cos(theta) ** 3 + 6.71288851948999e114 * cos(theta) ) * sin(59 * phi) ) # @torch.jit.script def Yl92_m_minus_58(theta, phi): return ( 3.90060098918551e-112 * (1.0 - cos(theta) ** 2) ** 29 * ( 1.22546548975335e130 * cos(theta) ** 34 - 3.75675486203075e130 * cos(theta) ** 32 + 5.14737682753385e130 * cos(theta) ** 30 - 4.16966279325367e130 * cos(theta) ** 28 + 2.22617589809306e130 * cos(theta) ** 26 - 8.26865333577423e129 * cos(theta) ** 24 + 2.19860146500355e129 * cos(theta) ** 22 - 4.24291510790159e128 * cos(theta) ** 20 + 5.9626765569623e127 * cos(theta) ** 18 - 6.06979050708737e126 * cos(theta) ** 16 + 4.41439309606354e125 * cos(theta) ** 14 - 2.24043375204564e124 * cos(theta) ** 12 + 7.65365567469006e122 * cos(theta) ** 10 - 1.66625304964225e121 * cos(theta) ** 8 + 2.12261534986274e119 * cos(theta) ** 6 - 1.36942925797596e117 * cos(theta) ** 4 + 3.356444259745e114 * cos(theta) ** 2 - 1.30753574590767e111 ) * sin(58 * phi) ) # @torch.jit.script def Yl92_m_minus_57(theta, phi): return ( 2.82625392354232e-110 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 3.50132997072385e128 * cos(theta) ** 35 - 1.13841056425174e129 * cos(theta) ** 33 + 1.66044413791414e129 * cos(theta) ** 31 - 1.43781475629437e129 * cos(theta) ** 29 + 8.2450959188632e128 * cos(theta) ** 27 - 3.30746133430969e128 * cos(theta) ** 25 + 9.55913680436328e127 * cos(theta) ** 23 - 2.02043576566743e127 * cos(theta) ** 21 + 3.13825081945384e126 * cos(theta) ** 19 - 3.57046500416904e125 * cos(theta) ** 17 + 2.94292873070903e124 * cos(theta) ** 15 - 1.72341057849664e123 * cos(theta) ** 13 + 6.95786879517278e121 * cos(theta) ** 11 - 1.85139227738028e120 * cos(theta) ** 9 + 3.03230764266105e118 * cos(theta) ** 7 - 2.73885851595192e116 * cos(theta) ** 5 + 1.11881475324833e114 * cos(theta) ** 3 - 1.30753574590767e111 * cos(theta) ) * sin(57 * phi) ) # @torch.jit.script def Yl92_m_minus_56(theta, phi): return ( 2.0699295421143e-108 * (1.0 - cos(theta) ** 2) ** 28 * ( 9.72591658534402e126 * cos(theta) ** 36 - 3.3482663654463e127 * cos(theta) ** 34 + 5.1888879309817e127 * cos(theta) ** 32 - 4.79271585431457e127 * cos(theta) ** 30 + 2.94467711387971e127 * cos(theta) ** 28 - 1.27210051319604e127 * cos(theta) ** 26 + 3.9829736684847e126 * cos(theta) ** 24 - 9.18379893485194e125 * cos(theta) ** 22 + 1.56912540972692e125 * cos(theta) ** 20 - 1.9835916689828e124 * cos(theta) ** 18 + 1.83933045669314e123 * cos(theta) ** 16 - 1.23100755606903e122 * cos(theta) ** 14 + 5.79822399597732e120 * cos(theta) ** 12 - 1.85139227738028e119 * cos(theta) ** 10 + 3.79038455332631e117 * cos(theta) ** 8 - 4.5647641932532e115 * cos(theta) ** 6 + 2.79703688312083e113 * cos(theta) ** 4 - 6.53767872953836e110 * cos(theta) ** 2 + 2.43761324740431e107 ) * sin(56 * phi) ) # @torch.jit.script def Yl92_m_minus_55(theta, phi): return ( 1.53174786116458e-106 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 2.62862610414703e125 * cos(theta) ** 37 - 9.56647532984657e125 * cos(theta) ** 35 + 1.57239028211567e126 * cos(theta) ** 33 - 1.54603737235954e126 * cos(theta) ** 31 + 1.01540590133783e126 * cos(theta) ** 29 - 4.71148338220754e125 * cos(theta) ** 27 + 1.59318946739388e125 * cos(theta) ** 25 - 3.99295605863128e124 * cos(theta) ** 23 + 7.47202576060439e123 * cos(theta) ** 21 - 1.04399561525411e123 * cos(theta) ** 19 + 1.08195909217244e122 * cos(theta) ** 17 - 8.2067170404602e120 * cos(theta) ** 15 + 4.46017230459794e119 * cos(theta) ** 13 - 1.68308388852752e118 * cos(theta) ** 11 + 4.21153839258479e116 * cos(theta) ** 9 - 6.52109170464742e114 * cos(theta) ** 7 + 5.59407376624166e112 * cos(theta) ** 5 - 2.17922624317946e110 * cos(theta) ** 3 + 2.43761324740431e107 * cos(theta) ) * sin(55 * phi) ) # @torch.jit.script def Yl92_m_minus_54(theta, phi): return ( 1.14482142432251e-104 * (1.0 - cos(theta) ** 2) ** 27 * ( 6.9174371161764e123 * cos(theta) ** 38 - 2.65735425829072e124 * cos(theta) ** 36 + 4.6246773003402e124 * cos(theta) ** 34 - 4.83136678862356e124 * cos(theta) ** 32 + 3.38468633779277e124 * cos(theta) ** 30 - 1.68267263650269e124 * cos(theta) ** 28 + 6.12765179766877e123 * cos(theta) ** 26 - 1.66373169109637e123 * cos(theta) ** 24 + 3.39637534572927e122 * cos(theta) ** 22 - 5.21997807627053e121 * cos(theta) ** 20 + 6.01088384540243e120 * cos(theta) ** 18 - 5.12919815028763e119 * cos(theta) ** 16 + 3.1858373604271e118 * cos(theta) ** 14 - 1.40256990710627e117 * cos(theta) ** 12 + 4.21153839258479e115 * cos(theta) ** 10 - 8.15136463080928e113 * cos(theta) ** 8 + 9.32345627706944e111 * cos(theta) ** 6 - 5.44806560794864e109 * cos(theta) ** 4 + 1.21880662370216e107 * cos(theta) ** 2 - 4.36379027462283e103 ) * sin(54 * phi) ) # @torch.jit.script def Yl92_m_minus_53(theta, phi): return ( 8.63866195477575e-103 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 1.77370182466062e122 * cos(theta) ** 39 - 7.18203853592085e122 * cos(theta) ** 37 + 1.32133637152577e123 * cos(theta) ** 35 - 1.46405054200714e123 * cos(theta) ** 33 + 1.0918343025138e123 * cos(theta) ** 31 - 5.80231943621618e122 * cos(theta) ** 29 + 2.26950066580325e122 * cos(theta) ** 27 - 6.65492676438546e121 * cos(theta) ** 25 + 1.47668493292577e121 * cos(theta) ** 23 - 2.48570384584311e120 * cos(theta) ** 21 + 3.16362307652759e119 * cos(theta) ** 19 - 3.01717538252213e118 * cos(theta) ** 17 + 2.12389157361806e117 * cos(theta) ** 15 - 1.07889992854328e116 * cos(theta) ** 13 + 3.82867126598618e114 * cos(theta) ** 11 - 9.05707181201031e112 * cos(theta) ** 9 + 1.33192232529563e111 * cos(theta) ** 7 - 1.08961312158973e109 * cos(theta) ** 5 + 4.06268874567385e106 * cos(theta) ** 3 - 4.36379027462283e103 * cos(theta) ) * sin(53 * phi) ) # @torch.jit.script def Yl92_m_minus_52(theta, phi): return ( 6.57900893858309e-101 * (1.0 - cos(theta) ** 2) ** 26 * ( 4.43425456165154e120 * cos(theta) ** 40 - 1.8900101410318e121 * cos(theta) ** 38 + 3.67037880979381e121 * cos(theta) ** 36 - 4.30603100590335e121 * cos(theta) ** 34 + 3.41198219535562e121 * cos(theta) ** 32 - 1.93410647873873e121 * cos(theta) ** 30 + 8.10535952072588e120 * cos(theta) ** 28 - 2.55958721707133e120 * cos(theta) ** 26 + 6.1528538871907e119 * cos(theta) ** 24 - 1.12986538447414e119 * cos(theta) ** 22 + 1.5818115382638e118 * cos(theta) ** 20 - 1.67620854584563e117 * cos(theta) ** 18 + 1.32743223351129e116 * cos(theta) ** 16 - 7.70642806102346e114 * cos(theta) ** 14 + 3.19055938832181e113 * cos(theta) ** 12 - 9.05707181201031e111 * cos(theta) ** 10 + 1.66490290661954e110 * cos(theta) ** 8 - 1.81602186931621e108 * cos(theta) ** 6 + 1.01567218641846e106 * cos(theta) ** 4 - 2.18189513731141e103 * cos(theta) ** 2 + 7.5237763355566e99 ) * sin(52 * phi) ) # @torch.jit.script def Yl92_m_minus_51(theta, phi): return ( 5.05514539115145e-99 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 1.08152550284184e119 * cos(theta) ** 41 - 4.8461798487995e119 * cos(theta) ** 39 + 9.91994272917245e119 * cos(theta) ** 37 - 1.23029457311524e120 * cos(theta) ** 35 + 1.03393399859261e120 * cos(theta) ** 33 - 6.2390531572217e119 * cos(theta) ** 31 + 2.79495155887099e119 * cos(theta) ** 29 - 9.47995265581974e118 * cos(theta) ** 27 + 2.46114155487628e118 * cos(theta) ** 25 - 4.91245819336583e117 * cos(theta) ** 23 + 7.53243589649427e116 * cos(theta) ** 21 - 8.82215024129279e115 * cos(theta) ** 19 + 7.80842490300759e114 * cos(theta) ** 17 - 5.13761870734897e113 * cos(theta) ** 15 + 2.45427645255524e112 * cos(theta) ** 13 - 8.2337016472821e110 * cos(theta) ** 11 + 1.84989211846616e109 * cos(theta) ** 9 - 2.59431695616602e107 * cos(theta) ** 7 + 2.03134437283693e105 * cos(theta) ** 5 - 7.27298379103805e102 * cos(theta) ** 3 + 7.5237763355566e99 * cos(theta) ) * sin(51 * phi) ) # @torch.jit.script def Yl92_m_minus_50(theta, phi): return ( 3.91765614269084e-97 * (1.0 - cos(theta) ** 2) ** 25 * ( 2.575060721052e117 * cos(theta) ** 42 - 1.21154496219987e118 * cos(theta) ** 40 + 2.61051124451906e118 * cos(theta) ** 38 - 3.41748492532012e118 * cos(theta) ** 36 + 3.0409823488018e118 * cos(theta) ** 34 - 1.94970411163178e118 * cos(theta) ** 32 + 9.31650519623665e117 * cos(theta) ** 30 - 3.38569737707848e117 * cos(theta) ** 28 + 9.46592905721646e116 * cos(theta) ** 26 - 2.04685758056909e116 * cos(theta) ** 24 + 3.42383449840649e115 * cos(theta) ** 22 - 4.41107512064639e114 * cos(theta) ** 20 + 4.33801383500422e113 * cos(theta) ** 18 - 3.21101169209311e112 * cos(theta) ** 16 + 1.75305460896803e111 * cos(theta) ** 14 - 6.86141803940175e109 * cos(theta) ** 12 + 1.84989211846616e108 * cos(theta) ** 10 - 3.24289619520752e106 * cos(theta) ** 8 + 3.38557395472821e104 * cos(theta) ** 6 - 1.81824594775951e102 * cos(theta) ** 4 + 3.7618881677783e99 * cos(theta) ** 2 - 1.25271001258019e96 ) * sin(50 * phi) ) # @torch.jit.script def Yl92_m_minus_49(theta, phi): return ( 3.06129170542975e-95 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 5.98851330477209e115 * cos(theta) ** 43 - 2.95498771268262e116 * cos(theta) ** 41 + 6.69361857568991e116 * cos(theta) ** 39 - 9.23644574410842e116 * cos(theta) ** 37 + 8.68852099657657e116 * cos(theta) ** 35 - 5.90819427767207e116 * cos(theta) ** 33 + 3.00532425685053e116 * cos(theta) ** 31 - 1.16748185416499e116 * cos(theta) ** 29 + 3.50589965082091e115 * cos(theta) ** 27 - 8.18743032227638e114 * cos(theta) ** 25 + 1.48862369495934e114 * cos(theta) ** 23 - 2.10051196221257e113 * cos(theta) ** 21 + 2.28316517631801e112 * cos(theta) ** 19 - 1.88883040711359e111 * cos(theta) ** 17 + 1.16870307264535e110 * cos(theta) ** 15 - 5.27801387646288e108 * cos(theta) ** 13 + 1.68172010769651e107 * cos(theta) ** 11 - 3.60321799467502e105 * cos(theta) ** 9 + 4.8365342210403e103 * cos(theta) ** 7 - 3.63649189551902e101 * cos(theta) ** 5 + 1.25396272259277e99 * cos(theta) ** 3 - 1.25271001258019e96 * cos(theta) ) * sin(49 * phi) ) # @torch.jit.script def Yl92_m_minus_48(theta, phi): return ( 2.41124094281695e-93 * (1.0 - cos(theta) ** 2) ** 24 * ( 1.36102575108456e114 * cos(theta) ** 44 - 7.03568503019671e114 * cos(theta) ** 42 + 1.67340464392248e115 * cos(theta) ** 40 - 2.43064361687064e115 * cos(theta) ** 38 + 2.4134780546046e115 * cos(theta) ** 36 - 1.73770419931531e115 * cos(theta) ** 34 + 9.39163830265791e114 * cos(theta) ** 32 - 3.89160618054998e114 * cos(theta) ** 30 + 1.25210701815033e114 * cos(theta) ** 28 - 3.14901166241399e113 * cos(theta) ** 26 + 6.20259872899726e112 * cos(theta) ** 24 - 9.54778164642076e111 * cos(theta) ** 22 + 1.141582588159e111 * cos(theta) ** 20 - 1.04935022617422e110 * cos(theta) ** 18 + 7.30439420403346e108 * cos(theta) ** 16 - 3.7700099117592e107 * cos(theta) ** 14 + 1.40143342308042e106 * cos(theta) ** 12 - 3.60321799467503e104 * cos(theta) ** 10 + 6.04566777630038e102 * cos(theta) ** 8 - 6.06081982586504e100 * cos(theta) ** 6 + 3.13490680648192e98 * cos(theta) ** 4 - 6.26355006290093e95 * cos(theta) ** 2 + 2.01919731234717e92 ) * sin(48 * phi) ) # @torch.jit.script def Yl92_m_minus_47(theta, phi): return ( 1.91386316572517e-91 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 3.02450166907681e112 * cos(theta) ** 45 - 1.63620582097598e113 * cos(theta) ** 43 + 4.08147474127434e113 * cos(theta) ** 41 - 6.23241953043753e113 * cos(theta) ** 39 + 6.52291366109352e113 * cos(theta) ** 37 - 4.9648691409009e113 * cos(theta) ** 35 + 2.84595100080543e113 * cos(theta) ** 33 - 1.25535683243548e113 * cos(theta) ** 31 + 4.31761040741492e112 * cos(theta) ** 29 - 1.16630061570889e112 * cos(theta) ** 27 + 2.4810394915989e111 * cos(theta) ** 25 - 4.15120941148729e110 * cos(theta) ** 23 + 5.43610756266193e109 * cos(theta) ** 21 - 5.52289592723273e108 * cos(theta) ** 19 + 4.29670247296086e107 * cos(theta) ** 17 - 2.5133399411728e106 * cos(theta) ** 15 + 1.07802571006186e105 * cos(theta) ** 13 - 3.27565272243184e103 * cos(theta) ** 11 + 6.71740864033375e101 * cos(theta) ** 9 - 8.65831403695006e99 * cos(theta) ** 7 + 6.26981361296383e97 * cos(theta) ** 5 - 2.08785002096698e95 * cos(theta) ** 3 + 2.01919731234717e92 * cos(theta) ) * sin(47 * phi) ) # @torch.jit.script def Yl92_m_minus_46(theta, phi): return ( 1.53037266560346e-89 * (1.0 - cos(theta) ** 2) ** 23 * ( 6.57500362842785e110 * cos(theta) ** 46 - 3.71864959312723e111 * cos(theta) ** 44 + 9.71779700303413e111 * cos(theta) ** 42 - 1.55810488260938e112 * cos(theta) ** 40 + 1.71655622660356e112 * cos(theta) ** 38 - 1.37913031691692e112 * cos(theta) ** 36 + 8.37044412001596e111 * cos(theta) ** 34 - 3.92299010136086e111 * cos(theta) ** 32 + 1.43920346913831e111 * cos(theta) ** 30 - 4.16535934181745e110 * cos(theta) ** 28 + 9.5424595830727e109 * cos(theta) ** 26 - 1.7296705881197e109 * cos(theta) ** 24 + 2.47095798302815e108 * cos(theta) ** 22 - 2.76144796361636e107 * cos(theta) ** 20 + 2.3870569294227e106 * cos(theta) ** 18 - 1.570837463233e105 * cos(theta) ** 16 + 7.70018364329903e103 * cos(theta) ** 14 - 2.72971060202653e102 * cos(theta) ** 12 + 6.71740864033375e100 * cos(theta) ** 10 - 1.08228925461876e99 * cos(theta) ** 8 + 1.04496893549397e97 * cos(theta) ** 6 - 5.21962505241744e94 * cos(theta) ** 4 + 1.00959865617359e92 * cos(theta) ** 2 - 3.15795638465307e88 ) * sin(46 * phi) ) # @torch.jit.script def Yl92_m_minus_45(theta, phi): return ( 1.23249643628823e-87 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 1.39893694221869e109 * cos(theta) ** 47 - 8.26366576250495e109 * cos(theta) ** 45 + 2.25995279140329e110 * cos(theta) ** 43 - 3.8002558112424e110 * cos(theta) ** 41 + 4.4014262220604e110 * cos(theta) ** 39 - 3.72737923491058e110 * cos(theta) ** 37 + 2.3915554628617e110 * cos(theta) ** 35 - 1.18878487920026e110 * cos(theta) ** 33 + 4.64259183593002e109 * cos(theta) ** 31 - 1.43633080752326e109 * cos(theta) ** 29 + 3.53424429002693e108 * cos(theta) ** 27 - 6.91868235247882e107 * cos(theta) ** 25 + 1.07432955783833e107 * cos(theta) ** 23 - 1.3149752207697e106 * cos(theta) ** 21 + 1.25634575232774e105 * cos(theta) ** 19 - 9.24022037195883e103 * cos(theta) ** 17 + 5.13345576219935e102 * cos(theta) ** 15 - 2.09977738617426e101 * cos(theta) ** 13 + 6.10673512757614e99 * cos(theta) ** 11 - 1.20254361624306e98 * cos(theta) ** 9 + 1.49281276499139e96 * cos(theta) ** 7 - 1.04392501048349e94 * cos(theta) ** 5 + 3.36532885391196e91 * cos(theta) ** 3 - 3.15795638465307e88 * cos(theta) ) * sin(45 * phi) ) # @torch.jit.script def Yl92_m_minus_44(theta, phi): return ( 9.9946266227838e-86 * (1.0 - cos(theta) ** 2) ** 22 * ( 2.91445196295561e107 * cos(theta) ** 48 - 1.79644907880542e108 * cos(theta) ** 46 + 5.13625634409838e108 * cos(theta) ** 44 - 9.04822812200571e108 * cos(theta) ** 42 + 1.1003565555151e109 * cos(theta) ** 40 - 9.8088927234489e108 * cos(theta) ** 38 + 6.64320961906029e108 * cos(theta) ** 36 - 3.49642611529489e108 * cos(theta) ** 34 + 1.45080994872813e108 * cos(theta) ** 32 - 4.78776935841086e107 * cos(theta) ** 30 + 1.26223010358105e107 * cos(theta) ** 28 - 2.66103167403031e106 * cos(theta) ** 26 + 4.47637315765969e105 * cos(theta) ** 24 - 5.97716009440771e104 * cos(theta) ** 22 + 6.28172876163868e103 * cos(theta) ** 20 - 5.13345576219935e102 * cos(theta) ** 18 + 3.20840985137459e101 * cos(theta) ** 16 - 1.49984099012447e100 * cos(theta) ** 14 + 5.08894593964678e98 * cos(theta) ** 12 - 1.20254361624306e97 * cos(theta) ** 10 + 1.86601595623924e95 * cos(theta) ** 8 - 1.73987501747248e93 * cos(theta) ** 6 + 8.41332213477989e90 * cos(theta) ** 4 - 1.57897819232654e88 * cos(theta) ** 2 + 4.80224511048216e84 ) * sin(44 * phi) ) # @torch.jit.script def Yl92_m_minus_43(theta, phi): return ( 8.15894618621495e-84 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 5.94786114888899e105 * cos(theta) ** 49 - 3.82223208256473e106 * cos(theta) ** 47 + 1.14139029868853e107 * cos(theta) ** 45 - 2.10423909814086e107 * cos(theta) ** 43 + 2.6837964768661e107 * cos(theta) ** 41 - 2.51510069832023e107 * cos(theta) ** 39 + 1.79546205920548e107 * cos(theta) ** 37 - 9.98978890084254e106 * cos(theta) ** 35 + 4.39639378402464e106 * cos(theta) ** 33 - 1.54444172851963e106 * cos(theta) ** 31 + 4.35251759855533e105 * cos(theta) ** 29 - 9.85567286677894e104 * cos(theta) ** 27 + 1.79054926306388e104 * cos(theta) ** 25 - 2.59876525843814e103 * cos(theta) ** 23 + 2.99129941030413e102 * cos(theta) ** 21 - 2.70181882221018e101 * cos(theta) ** 19 + 1.88729991257329e100 * cos(theta) ** 17 - 9.99893993416313e98 * cos(theta) ** 15 + 3.91457379972829e97 * cos(theta) ** 13 - 1.09322146931188e96 * cos(theta) ** 11 + 2.07335106248804e94 * cos(theta) ** 9 - 2.4855357392464e92 * cos(theta) ** 7 + 1.68266442695598e90 * cos(theta) ** 5 - 5.26326064108845e87 * cos(theta) ** 3 + 4.80224511048216e84 * cos(theta) ) * sin(43 * phi) ) # @torch.jit.script def Yl92_m_minus_42(theta, phi): return ( 6.70325830749101e-82 * (1.0 - cos(theta) ** 2) ** 21 * ( 1.1895722297778e104 * cos(theta) ** 50 - 7.96298350534319e104 * cos(theta) ** 48 + 2.48128325801854e105 * cos(theta) ** 46 - 4.78236158668378e105 * cos(theta) ** 44 + 6.38999161158595e105 * cos(theta) ** 42 - 6.28775174580058e105 * cos(theta) ** 40 + 4.7249001558039e105 * cos(theta) ** 38 - 2.77494136134515e105 * cos(theta) ** 36 + 1.29305699530136e105 * cos(theta) ** 34 - 4.82638040162385e104 * cos(theta) ** 32 + 1.45083919951844e104 * cos(theta) ** 30 - 3.51988316670676e103 * cos(theta) ** 28 + 6.88672793486106e102 * cos(theta) ** 26 - 1.08281885768256e102 * cos(theta) ** 24 + 1.35968155013824e101 * cos(theta) ** 22 - 1.35090941110509e100 * cos(theta) ** 20 + 1.04849995142961e99 * cos(theta) ** 18 - 6.24933745885195e97 * cos(theta) ** 16 + 2.79612414266307e96 * cos(theta) ** 14 - 9.1101789109323e94 * cos(theta) ** 12 + 2.07335106248804e93 * cos(theta) ** 10 - 3.106919674058e91 * cos(theta) ** 8 + 2.8044407115933e89 * cos(theta) ** 6 - 1.31581516027211e87 * cos(theta) ** 4 + 2.40112255524108e84 * cos(theta) ** 2 - 7.11443720071432e80 ) * sin(42 * phi) ) # @torch.jit.script def Yl92_m_minus_41(theta, phi): return ( 5.54145029768469e-80 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 2.33249456819176e102 * cos(theta) ** 51 - 1.62509867455983e103 * cos(theta) ** 49 + 5.27932608089051e103 * cos(theta) ** 47 - 1.06274701926306e104 * cos(theta) ** 45 + 1.48604456083394e104 * cos(theta) ** 43 - 1.53359798678063e104 * cos(theta) ** 41 + 1.21151286046254e104 * cos(theta) ** 39 - 7.49984151714905e103 * cos(theta) ** 37 + 3.6944485580039e103 * cos(theta) ** 35 - 1.46253951564359e103 * cos(theta) ** 33 + 4.68012645005949e102 * cos(theta) ** 31 - 1.21375281610578e102 * cos(theta) ** 29 + 2.55063997587447e101 * cos(theta) ** 27 - 4.33127543073023e100 * cos(theta) ** 25 + 5.91165891364453e99 * cos(theta) ** 23 - 6.4329019576433e98 * cos(theta) ** 21 + 5.51842079699793e97 * cos(theta) ** 19 - 3.67608085814821e96 * cos(theta) ** 17 + 1.86408276177538e95 * cos(theta) ** 15 - 7.00782993148638e93 * cos(theta) ** 13 + 1.88486460226186e92 * cos(theta) ** 11 - 3.45213297117556e90 * cos(theta) ** 9 + 4.00634387370471e88 * cos(theta) ** 7 - 2.63163032054423e86 * cos(theta) ** 5 + 8.00374185080361e83 * cos(theta) ** 3 - 7.11443720071432e80 * cos(theta) ) * sin(41 * phi) ) # @torch.jit.script def Yl92_m_minus_40(theta, phi): return ( 4.60840813529167e-78 * (1.0 - cos(theta) ** 2) ** 20 * ( 4.48556647729185e100 * cos(theta) ** 52 - 3.25019734911967e101 * cos(theta) ** 50 + 1.09985960018552e102 * cos(theta) ** 48 - 2.31031960709361e102 * cos(theta) ** 46 + 3.37737400189532e102 * cos(theta) ** 44 - 3.65142377804912e102 * cos(theta) ** 42 + 3.02878215115635e102 * cos(theta) ** 40 - 1.97364250451291e102 * cos(theta) ** 38 + 1.02623571055664e102 * cos(theta) ** 36 - 4.30158681071645e101 * cos(theta) ** 34 + 1.46253951564359e101 * cos(theta) ** 32 - 4.0458427203526e100 * cos(theta) ** 30 + 9.10942848526595e99 * cos(theta) ** 28 - 1.66587516566547e99 * cos(theta) ** 26 + 2.46319121401855e98 * cos(theta) ** 24 - 2.92404634438332e97 * cos(theta) ** 22 + 2.75921039849896e96 * cos(theta) ** 20 - 2.04226714341567e95 * cos(theta) ** 18 + 1.16505172610961e94 * cos(theta) ** 16 - 5.00559280820456e92 * cos(theta) ** 14 + 1.57072050188488e91 * cos(theta) ** 12 - 3.45213297117556e89 * cos(theta) ** 10 + 5.00792984213089e87 * cos(theta) ** 8 - 4.38605053424038e85 * cos(theta) ** 6 + 2.0009354627009e83 * cos(theta) ** 4 - 3.55721860035716e80 * cos(theta) ** 2 + 1.02869248130629e77 ) * sin(40 * phi) ) # @torch.jit.script def Yl92_m_minus_39(theta, phi): return ( 3.85456909508432e-76 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 8.46333297602236e98 * cos(theta) ** 53 - 6.37293597866602e99 * cos(theta) ** 51 + 2.24461142895005e100 * cos(theta) ** 49 - 4.91557363211407e100 * cos(theta) ** 47 + 7.50527555976739e100 * cos(theta) ** 45 - 8.49168320476539e100 * cos(theta) ** 43 + 7.38727353940573e100 * cos(theta) ** 41 - 5.06062180644335e100 * cos(theta) ** 39 + 2.77361002853145e100 * cos(theta) ** 37 - 1.22902480306184e100 * cos(theta) ** 35 + 4.4319379261927e99 * cos(theta) ** 33 - 1.30511055495245e99 * cos(theta) ** 31 + 3.1411822362986e98 * cos(theta) ** 29 - 6.16990802098323e97 * cos(theta) ** 27 + 9.85276485607422e96 * cos(theta) ** 25 - 1.27132449755796e96 * cos(theta) ** 23 + 1.31390971357093e95 * cos(theta) ** 21 - 1.07487744390299e94 * cos(theta) ** 19 + 6.8532454477036e92 * cos(theta) ** 17 - 3.33706187213637e91 * cos(theta) ** 15 + 1.20824653991145e90 * cos(theta) ** 13 - 3.13830270106869e88 * cos(theta) ** 11 + 5.56436649125654e86 * cos(theta) ** 9 - 6.26578647748625e84 * cos(theta) ** 7 + 4.0018709254018e82 * cos(theta) ** 5 - 1.18573953345239e80 * cos(theta) ** 3 + 1.02869248130629e77 * cos(theta) ) * sin(39 * phi) ) # @torch.jit.script def Yl92_m_minus_38(theta, phi): return ( 3.24196530482212e-74 * (1.0 - cos(theta) ** 2) ** 19 * ( 1.56728388444859e97 * cos(theta) ** 54 - 1.22556461128193e98 * cos(theta) ** 52 + 4.48922285790009e98 * cos(theta) ** 50 - 1.02407784002376e99 * cos(theta) ** 48 + 1.63158164342769e99 * cos(theta) ** 46 - 1.92992800108304e99 * cos(theta) ** 44 + 1.75887465223946e99 * cos(theta) ** 42 - 1.26515545161084e99 * cos(theta) ** 40 + 7.2989737592933e98 * cos(theta) ** 38 - 3.41395778628289e98 * cos(theta) ** 36 + 1.30351115476256e98 * cos(theta) ** 34 - 4.07847048422641e97 * cos(theta) ** 32 + 1.04706074543287e97 * cos(theta) ** 30 - 2.20353857892258e96 * cos(theta) ** 28 + 3.78952494464393e95 * cos(theta) ** 26 - 5.29718540649152e94 * cos(theta) ** 24 + 5.97231687986788e93 * cos(theta) ** 22 - 5.37438721951493e92 * cos(theta) ** 20 + 3.80735858205755e91 * cos(theta) ** 18 - 2.08566367008523e90 * cos(theta) ** 16 + 8.6303324279389e88 * cos(theta) ** 14 - 2.61525225089057e87 * cos(theta) ** 12 + 5.56436649125654e85 * cos(theta) ** 10 - 7.83223309685782e83 * cos(theta) ** 8 + 6.66978487566967e81 * cos(theta) ** 6 - 2.96434883363097e79 * cos(theta) ** 4 + 5.14346240653146e76 * cos(theta) ** 2 - 1.45418784465125e73 ) * sin(38 * phi) ) # @torch.jit.script def Yl92_m_minus_37(theta, phi): return ( 2.74133040911422e-72 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 2.84960706263379e95 * cos(theta) ** 55 - 2.3123860590225e96 * cos(theta) ** 53 + 8.80239776058842e96 * cos(theta) ** 51 - 2.0899547755587e97 * cos(theta) ** 49 + 3.4714503051653e97 * cos(theta) ** 47 - 4.28872889129565e97 * cos(theta) ** 45 + 4.09040616799874e97 * cos(theta) ** 43 - 3.08574500392887e97 * cos(theta) ** 41 + 1.87153173315213e97 * cos(theta) ** 39 - 9.22691293589971e96 * cos(theta) ** 37 + 3.72431758503588e96 * cos(theta) ** 35 - 1.23590014673528e96 * cos(theta) ** 33 + 3.37761530784796e95 * cos(theta) ** 31 - 7.59840889283649e94 * cos(theta) ** 29 + 1.40352775727553e94 * cos(theta) ** 27 - 2.11887416259661e93 * cos(theta) ** 25 + 2.59665951298604e92 * cos(theta) ** 23 - 2.55923200929282e91 * cos(theta) ** 21 + 2.00387293792503e90 * cos(theta) ** 19 - 1.22686098240308e89 * cos(theta) ** 17 + 5.75355495195926e87 * cos(theta) ** 15 - 2.01173250068506e86 * cos(theta) ** 13 + 5.0585149920514e84 * cos(theta) ** 11 - 8.70248121873091e82 * cos(theta) ** 9 + 9.52826410809953e80 * cos(theta) ** 7 - 5.92869766726193e78 * cos(theta) ** 5 + 1.71448746884382e76 * cos(theta) ** 3 - 1.45418784465125e73 * cos(theta) ) * sin(37 * phi) ) # @torch.jit.script def Yl92_m_minus_36(theta, phi): return ( 2.329969587437e-70 * (1.0 - cos(theta) ** 2) ** 18 * ( 5.08858404041748e93 * cos(theta) ** 56 - 4.28219640559723e94 * cos(theta) ** 54 + 1.69276880011316e95 * cos(theta) ** 52 - 4.17990955111741e95 * cos(theta) ** 50 + 7.23218813576105e95 * cos(theta) ** 48 - 9.32332367672967e95 * cos(theta) ** 46 + 9.29637765454259e95 * cos(theta) ** 44 - 7.34701191411637e95 * cos(theta) ** 42 + 4.67882933288032e95 * cos(theta) ** 40 - 2.4281349831315e95 * cos(theta) ** 38 + 1.03453266250997e95 * cos(theta) ** 36 - 3.63500043157434e94 * cos(theta) ** 34 + 1.05550478370249e94 * cos(theta) ** 32 - 2.53280296427883e93 * cos(theta) ** 30 + 5.01259913312689e92 * cos(theta) ** 28 - 8.14951600998695e91 * cos(theta) ** 26 + 1.08194146374418e91 * cos(theta) ** 24 - 1.16328727695128e90 * cos(theta) ** 22 + 1.00193646896251e89 * cos(theta) ** 20 - 6.81589434668377e87 * cos(theta) ** 18 + 3.59597184497454e86 * cos(theta) ** 16 - 1.43695178620361e85 * cos(theta) ** 14 + 4.21542916004283e83 * cos(theta) ** 12 - 8.70248121873091e81 * cos(theta) ** 10 + 1.19103301351244e80 * cos(theta) ** 8 - 9.88116277876989e77 * cos(theta) ** 6 + 4.28621867210955e75 * cos(theta) ** 4 - 7.27093922325624e72 * cos(theta) ** 2 + 2.01299535527581e69 ) * sin(36 * phi) ) # @torch.jit.script def Yl92_m_minus_35(theta, phi): return ( 1.99018140879344e-68 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 8.92734042178506e91 * cos(theta) ** 57 - 7.78581164654041e92 * cos(theta) ** 55 + 3.19390339643992e93 * cos(theta) ** 53 - 8.19590108062237e93 * cos(theta) ** 51 + 1.47595676240021e94 * cos(theta) ** 49 - 1.98368588866589e94 * cos(theta) ** 47 + 2.06586170100947e94 * cos(theta) ** 45 - 1.70860742188753e94 * cos(theta) ** 43 + 1.14117788606837e94 * cos(theta) ** 41 - 6.22598713623462e93 * cos(theta) ** 39 + 2.79603422299991e93 * cos(theta) ** 37 - 1.03857155187838e93 * cos(theta) ** 35 + 3.19849934455299e92 * cos(theta) ** 33 - 8.17033214283493e91 * cos(theta) ** 31 + 1.72848245969893e91 * cos(theta) ** 29 - 3.01833926295813e90 * cos(theta) ** 27 + 4.32776585497673e89 * cos(theta) ** 25 - 5.0577707693534e88 * cos(theta) ** 23 + 4.77112604267864e87 * cos(theta) ** 21 - 3.58731281404409e86 * cos(theta) ** 19 + 2.11527755586738e85 * cos(theta) ** 17 - 9.57967857469075e83 * cos(theta) ** 15 + 3.24263781541757e82 * cos(theta) ** 13 - 7.91134656248264e80 * cos(theta) ** 11 + 1.32337001501382e79 * cos(theta) ** 9 - 1.41159468268141e77 * cos(theta) ** 7 + 8.5724373442191e74 * cos(theta) ** 5 - 2.42364640775208e72 * cos(theta) ** 3 + 2.01299535527581e69 * cos(theta) ) * sin(35 * phi) ) # @torch.jit.script def Yl92_m_minus_34(theta, phi): return ( 1.70808123770373e-66 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.5391966244457e90 * cos(theta) ** 58 - 1.39032350831079e91 * cos(theta) ** 56 + 5.91463591933319e91 * cos(theta) ** 54 - 1.57613482319661e92 * cos(theta) ** 52 + 2.95191352480043e92 * cos(theta) ** 50 - 4.1326789347206e92 * cos(theta) ** 48 + 4.49100369784666e92 * cos(theta) ** 46 - 3.88319868610802e92 * cos(theta) ** 44 + 2.71709020492469e92 * cos(theta) ** 42 - 1.55649678405866e92 * cos(theta) ** 40 + 7.35798479736819e91 * cos(theta) ** 38 - 2.88492097743996e91 * cos(theta) ** 36 + 9.40735101339116e90 * cos(theta) ** 34 - 2.55322879463592e90 * cos(theta) ** 32 + 5.76160819899643e89 * cos(theta) ** 30 - 1.07797830819933e89 * cos(theta) ** 28 + 1.6645253288372e88 * cos(theta) ** 26 - 2.10740448723058e87 * cos(theta) ** 24 + 2.16869365576302e86 * cos(theta) ** 22 - 1.79365640702204e85 * cos(theta) ** 20 + 1.1751541977041e84 * cos(theta) ** 18 - 5.98729910918172e82 * cos(theta) ** 16 + 2.3161698681554e81 * cos(theta) ** 14 - 6.59278880206887e79 * cos(theta) ** 12 + 1.32337001501382e78 * cos(theta) ** 10 - 1.76449335335177e76 * cos(theta) ** 8 + 1.42873955736985e74 * cos(theta) ** 6 - 6.0591160193802e71 * cos(theta) ** 4 + 1.00649767763791e69 * cos(theta) ** 2 - 2.73282019450966e65 ) * sin(34 * phi) ) # @torch.jit.script def Yl92_m_minus_33(theta, phi): return ( 1.47271869749464e-64 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 2.60880783804356e88 * cos(theta) ** 59 - 2.43916404966805e89 * cos(theta) ** 57 + 1.07538834896967e90 * cos(theta) ** 55 - 2.97383928905021e90 * cos(theta) ** 53 + 5.7880657349028e90 * cos(theta) ** 51 - 8.43403864228694e90 * cos(theta) ** 49 + 9.55532701669503e90 * cos(theta) ** 47 - 8.62933041357337e90 * cos(theta) ** 45 + 6.31881443005742e90 * cos(theta) ** 43 - 3.79633361965526e90 * cos(theta) ** 41 + 1.88666276855595e90 * cos(theta) ** 39 - 7.79708372281069e89 * cos(theta) ** 37 + 2.68781457525462e89 * cos(theta) ** 35 - 7.73705695344217e88 * cos(theta) ** 33 + 1.85858328999885e88 * cos(theta) ** 31 - 3.7171665799977e87 * cos(theta) ** 29 + 6.16490862532297e86 * cos(theta) ** 27 - 8.42961794892234e85 * cos(theta) ** 25 + 9.42910285114355e84 * cos(theta) ** 23 - 8.54122098581926e83 * cos(theta) ** 21 + 6.18502209317946e82 * cos(theta) ** 19 - 3.52194065245983e81 * cos(theta) ** 17 + 1.54411324543694e80 * cos(theta) ** 15 - 5.07137600159144e78 * cos(theta) ** 13 + 1.20306365001257e77 * cos(theta) ** 11 - 1.96054817039085e75 * cos(theta) ** 9 + 2.04105651052836e73 * cos(theta) ** 7 - 1.21182320387604e71 * cos(theta) ** 5 + 3.35499225879302e68 * cos(theta) ** 3 - 2.73282019450966e65 * cos(theta) ) * sin(33 * phi) ) # @torch.jit.script def Yl92_m_minus_32(theta, phi): return ( 1.27541180465869e-62 * (1.0 - cos(theta) ** 2) ** 16 * ( 4.34801306340593e86 * cos(theta) ** 60 - 4.20545525804836e87 * cos(theta) ** 58 + 1.92033633744584e88 * cos(theta) ** 56 - 5.50710979453742e88 * cos(theta) ** 54 + 1.11308956440438e89 * cos(theta) ** 52 - 1.68680772845739e89 * cos(theta) ** 50 + 1.99069312847813e89 * cos(theta) ** 48 - 1.87594139425508e89 * cos(theta) ** 46 + 1.43609418864941e89 * cos(theta) ** 44 - 9.03888957060776e88 * cos(theta) ** 42 + 4.71665692138987e88 * cos(theta) ** 40 - 2.05186413758176e88 * cos(theta) ** 38 + 7.46615159792949e87 * cos(theta) ** 36 - 2.27560498630652e87 * cos(theta) ** 34 + 5.8080727812464e86 * cos(theta) ** 32 - 1.2390555266659e86 * cos(theta) ** 30 + 2.20175308047249e85 * cos(theta) ** 28 - 3.24216074958551e84 * cos(theta) ** 26 + 3.92879285464315e83 * cos(theta) ** 24 - 3.88237317537239e82 * cos(theta) ** 22 + 3.09251104658973e81 * cos(theta) ** 20 - 1.95663369581102e80 * cos(theta) ** 18 + 9.65070778398085e78 * cos(theta) ** 16 - 3.62241142970817e77 * cos(theta) ** 14 + 1.00255304167714e76 * cos(theta) ** 12 - 1.96054817039085e74 * cos(theta) ** 10 + 2.55132063816045e72 * cos(theta) ** 8 - 2.0197053397934e70 * cos(theta) ** 6 + 8.38748064698256e67 * cos(theta) ** 4 - 1.36641009725483e65 * cos(theta) ** 2 + 3.64376025934621e61 ) * sin(32 * phi) ) # @torch.jit.script def Yl92_m_minus_31(theta, phi): return ( 1.10924171186194e-60 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 7.12789026787858e84 * cos(theta) ** 61 - 7.12789026787858e85 * cos(theta) ** 59 + 3.36901111832603e86 * cos(theta) ** 57 - 1.00129268991589e87 * cos(theta) ** 55 + 2.10016898944224e87 * cos(theta) ** 53 - 3.30746613423017e87 * cos(theta) ** 51 + 4.06263903771047e87 * cos(theta) ** 49 - 3.99136466862783e87 * cos(theta) ** 47 + 3.19132041922092e87 * cos(theta) ** 45 - 2.1020673420018e87 * cos(theta) ** 43 + 1.15040412716826e87 * cos(theta) ** 41 - 5.26119009636349e86 * cos(theta) ** 39 + 2.01787881025121e86 * cos(theta) ** 37 - 6.50172853230435e85 * cos(theta) ** 35 + 1.76002205492315e85 * cos(theta) ** 33 - 3.99695331182548e84 * cos(theta) ** 31 + 7.59225200162928e83 * cos(theta) ** 29 - 1.20080027762426e83 * cos(theta) ** 27 + 1.57151714185726e82 * cos(theta) ** 25 - 1.68798833711843e81 * cos(theta) ** 23 + 1.47262430789987e80 * cos(theta) ** 21 - 1.02980720832159e79 * cos(theta) ** 19 + 5.67688693175344e77 * cos(theta) ** 17 - 2.41494095313878e76 * cos(theta) ** 15 + 7.71194647443953e74 * cos(theta) ** 13 - 1.78231651853714e73 * cos(theta) ** 11 + 2.83480070906716e71 * cos(theta) ** 9 - 2.885293342562e69 * cos(theta) ** 7 + 1.67749612939651e67 * cos(theta) ** 5 - 4.55470032418276e64 * cos(theta) ** 3 + 3.64376025934621e61 * cos(theta) ) * sin(31 * phi) ) # @torch.jit.script def Yl92_m_minus_30(theta, phi): return ( 9.68667196672842e-59 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.14965972062558e83 * cos(theta) ** 62 - 1.1879817113131e84 * cos(theta) ** 60 + 5.80863985918282e84 * cos(theta) ** 58 - 1.7880226605641e85 * cos(theta) ** 56 + 3.88920183230044e85 * cos(theta) ** 54 - 6.36051179659648e85 * cos(theta) ** 52 + 8.12527807542094e85 * cos(theta) ** 50 - 8.31534305964132e85 * cos(theta) ** 48 + 6.93765308526287e85 * cos(theta) ** 46 - 4.77742577727683e85 * cos(theta) ** 44 + 2.73905744563872e85 * cos(theta) ** 42 - 1.31529752409087e85 * cos(theta) ** 40 + 5.31020739539793e84 * cos(theta) ** 38 - 1.80603570341787e84 * cos(theta) ** 36 + 5.17653545565633e83 * cos(theta) ** 34 - 1.24904790994546e83 * cos(theta) ** 32 + 2.53075066720976e82 * cos(theta) ** 30 - 4.28857242008666e81 * cos(theta) ** 28 + 6.044296699451e80 * cos(theta) ** 26 - 7.03328473799346e79 * cos(theta) ** 24 + 6.69374685409033e78 * cos(theta) ** 22 - 5.14903604160794e77 * cos(theta) ** 20 + 3.15382607319636e76 * cos(theta) ** 18 - 1.50933809571174e75 * cos(theta) ** 16 + 5.50853319602824e73 * cos(theta) ** 14 - 1.48526376544761e72 * cos(theta) ** 12 + 2.83480070906716e70 * cos(theta) ** 10 - 3.6066166782025e68 * cos(theta) ** 8 + 2.79582688232752e66 * cos(theta) ** 6 - 1.13867508104569e64 * cos(theta) ** 4 + 1.8218801296731e61 * cos(theta) ** 2 - 4.77807534663809e57 ) * sin(30 * phi) ) # @torch.jit.script def Yl92_m_minus_29(theta, phi): return ( 8.49228934738827e-57 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 1.82485669940568e81 * cos(theta) ** 63 - 1.94751100215262e82 * cos(theta) ** 61 + 9.84515230369969e82 * cos(theta) ** 59 - 3.13688186063877e83 * cos(theta) ** 57 + 7.07127605872807e83 * cos(theta) ** 55 - 1.20009656539556e84 * cos(theta) ** 53 + 1.5931917794943e84 * cos(theta) ** 51 - 1.6970087876819e84 * cos(theta) ** 49 + 1.47609640111976e84 * cos(theta) ** 47 - 1.06165017272818e84 * cos(theta) ** 45 + 6.3699010363691e83 * cos(theta) ** 43 - 3.20804274168505e83 * cos(theta) ** 41 + 1.36159163984562e83 * cos(theta) ** 39 - 4.88117757680506e82 * cos(theta) ** 37 + 1.47901013018752e82 * cos(theta) ** 35 - 3.7849936665014e81 * cos(theta) ** 33 + 8.1637118297089e80 * cos(theta) ** 31 - 1.47881807589195e80 * cos(theta) ** 29 + 2.23862840720407e79 * cos(theta) ** 27 - 2.81331389519738e78 * cos(theta) ** 25 + 2.91032471916971e77 * cos(theta) ** 23 - 2.45192192457521e76 * cos(theta) ** 21 + 1.65990845957703e75 * cos(theta) ** 19 - 8.87845938653963e73 * cos(theta) ** 17 + 3.67235546401883e72 * cos(theta) ** 15 - 1.14251058880586e71 * cos(theta) ** 13 + 2.57709155369742e69 * cos(theta) ** 11 - 4.00735186466944e67 * cos(theta) ** 9 + 3.99403840332503e65 * cos(theta) ** 7 - 2.27735016209138e63 * cos(theta) ** 5 + 6.07293376557701e60 * cos(theta) ** 3 - 4.77807534663809e57 * cos(theta) ) * sin(29 * phi) ) # @torch.jit.script def Yl92_m_minus_28(theta, phi): return ( 7.47321462570168e-55 * (1.0 - cos(theta) ** 2) ** 14 * ( 2.85133859282137e79 * cos(theta) ** 64 - 3.14114677766551e80 * cos(theta) ** 62 + 1.64085871728328e81 * cos(theta) ** 60 - 5.40841700110132e81 * cos(theta) ** 58 + 1.26272786763001e82 * cos(theta) ** 56 - 2.22240104702882e82 * cos(theta) ** 54 + 3.06383034518135e82 * cos(theta) ** 52 - 3.3940175753638e82 * cos(theta) ** 50 + 3.07520083566617e82 * cos(theta) ** 48 - 2.30793515810475e82 * cos(theta) ** 46 + 1.44770478099298e82 * cos(theta) ** 44 - 7.63819700401203e81 * cos(theta) ** 42 + 3.40397909961406e81 * cos(theta) ** 40 - 1.2845204149487e81 * cos(theta) ** 38 + 4.10836147274312e80 * cos(theta) ** 36 - 1.11323343132394e80 * cos(theta) ** 34 + 2.55115994678403e79 * cos(theta) ** 32 - 4.9293935863065e78 * cos(theta) ** 30 + 7.99510145430026e77 * cos(theta) ** 28 - 1.08204380584515e77 * cos(theta) ** 26 + 1.21263529965405e76 * cos(theta) ** 24 - 1.11450996571601e75 * cos(theta) ** 22 + 8.29954229788515e73 * cos(theta) ** 20 - 4.93247743696646e72 * cos(theta) ** 18 + 2.29522216501177e71 * cos(theta) ** 16 - 8.16078992004184e69 * cos(theta) ** 14 + 2.14757629474785e68 * cos(theta) ** 12 - 4.00735186466944e66 * cos(theta) ** 10 + 4.99254800415628e64 * cos(theta) ** 8 - 3.79558360348563e62 * cos(theta) ** 6 + 1.51823344139425e60 * cos(theta) ** 4 - 2.38903767331905e57 * cos(theta) ** 2 + 6.17003531332398e53 ) * sin(28 * phi) ) # @torch.jit.script def Yl92_m_minus_27(theta, phi): return ( 6.6001644476941e-53 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 4.38667475818673e77 * cos(theta) ** 65 - 4.98594726613573e78 * cos(theta) ** 63 + 2.68993232341522e79 * cos(theta) ** 61 - 9.16680847644292e79 * cos(theta) ** 59 + 2.2153120484737e80 * cos(theta) ** 57 - 4.04072917641604e80 * cos(theta) ** 55 + 5.78081197204028e80 * cos(theta) ** 53 - 6.65493642228197e80 * cos(theta) ** 51 + 6.2759200727881e80 * cos(theta) ** 49 - 4.91050033639308e80 * cos(theta) ** 47 + 3.21712173553995e80 * cos(theta) ** 45 - 1.77632488465396e80 * cos(theta) ** 43 + 8.30238804783917e79 * cos(theta) ** 41 - 3.29364208961205e79 * cos(theta) ** 39 + 1.11036796560625e79 * cos(theta) ** 37 - 3.18066694663983e78 * cos(theta) ** 35 + 7.73078771752737e77 * cos(theta) ** 33 - 1.59012696332468e77 * cos(theta) ** 31 + 2.75693153596561e76 * cos(theta) ** 29 - 4.00756965127833e75 * cos(theta) ** 27 + 4.85054119861618e74 * cos(theta) ** 25 - 4.84569550311307e73 * cos(theta) ** 23 + 3.95216299899293e72 * cos(theta) ** 21 - 2.59604075629814e71 * cos(theta) ** 19 + 1.35013068530104e70 * cos(theta) ** 17 - 5.44052661336122e68 * cos(theta) ** 15 + 1.65198176519065e67 * cos(theta) ** 13 - 3.64304714969949e65 * cos(theta) ** 11 + 5.54727556017365e63 * cos(theta) ** 9 - 5.42226229069376e61 * cos(theta) ** 7 + 3.03646688278851e59 * cos(theta) ** 5 - 7.96345891106349e56 * cos(theta) ** 3 + 6.17003531332398e53 * cos(theta) ) * sin(27 * phi) ) # @torch.jit.script def Yl92_m_minus_26(theta, phi): return ( 5.84925028499633e-51 * (1.0 - cos(theta) ** 2) ** 13 * ( 6.64647690634352e75 * cos(theta) ** 66 - 7.79054260333708e76 * cos(theta) ** 64 + 4.33860052163745e77 * cos(theta) ** 62 - 1.52780141274049e78 * cos(theta) ** 60 + 3.81950353185121e78 * cos(theta) ** 58 - 7.21558781502864e78 * cos(theta) ** 56 + 1.07052073556302e79 * cos(theta) ** 54 - 1.27979546582345e79 * cos(theta) ** 52 + 1.25518401455762e79 * cos(theta) ** 50 - 1.02302090341523e79 * cos(theta) ** 48 + 6.99374290334772e78 * cos(theta) ** 46 - 4.03710201057718e78 * cos(theta) ** 44 + 1.97675905900933e78 * cos(theta) ** 42 - 8.23410522403014e77 * cos(theta) ** 40 + 2.9220209621217e77 * cos(theta) ** 38 - 8.83518596288842e76 * cos(theta) ** 36 + 2.2737610933904e76 * cos(theta) ** 34 - 4.96914676038962e75 * cos(theta) ** 32 + 9.18977178655202e74 * cos(theta) ** 30 - 1.43127487545654e74 * cos(theta) ** 28 + 1.86559276869853e73 * cos(theta) ** 26 - 2.01903979296378e72 * cos(theta) ** 24 + 1.79643772681497e71 * cos(theta) ** 22 - 1.29802037814907e70 * cos(theta) ** 20 + 7.50072602945022e68 * cos(theta) ** 18 - 3.40032913335076e67 * cos(theta) ** 16 + 1.17998697513618e66 * cos(theta) ** 14 - 3.03587262474958e64 * cos(theta) ** 12 + 5.54727556017365e62 * cos(theta) ** 10 - 6.7778278633672e60 * cos(theta) ** 8 + 5.06077813798085e58 * cos(theta) ** 6 - 1.99086472776587e56 * cos(theta) ** 4 + 3.08501765666199e53 * cos(theta) ** 2 - 7.85591458279091e49 ) * sin(26 * phi) ) # @torch.jit.script def Yl92_m_minus_25(theta, phi): return ( 5.20090127435586e-49 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 9.92011478558735e73 * cos(theta) ** 67 - 1.19854501589801e75 * cos(theta) ** 65 + 6.88666749466261e75 * cos(theta) ** 63 - 2.50459247990244e76 * cos(theta) ** 61 + 6.47373479974782e76 * cos(theta) ** 59 - 1.26589259912783e77 * cos(theta) ** 57 + 1.9464013373873e77 * cos(theta) ** 55 - 2.41470842608199e77 * cos(theta) ** 53 + 2.46114512658357e77 * cos(theta) ** 51 - 2.08779776207189e77 * cos(theta) ** 49 + 1.4880304049676e77 * cos(theta) ** 47 - 8.97133780128263e76 * cos(theta) ** 45 + 4.59711409071936e76 * cos(theta) ** 43 - 2.00831834732442e76 * cos(theta) ** 41 + 7.4923614413377e75 * cos(theta) ** 39 - 2.38788809807795e75 * cos(theta) ** 37 + 6.49646026682972e74 * cos(theta) ** 35 - 1.50580204860292e74 * cos(theta) ** 33 + 2.96444251179098e73 * cos(theta) ** 31 - 4.93543060502257e72 * cos(theta) ** 29 + 6.9096028470316e71 * cos(theta) ** 27 - 8.07615917185511e70 * cos(theta) ** 25 + 7.81059881223899e69 * cos(theta) ** 23 - 6.18104941975747e68 * cos(theta) ** 21 + 3.9477505418159e67 * cos(theta) ** 19 - 2.00019360785339e66 * cos(theta) ** 17 + 7.86657983424121e64 * cos(theta) ** 15 - 2.33528663442275e63 * cos(theta) ** 13 + 5.04297778197604e61 * cos(theta) ** 11 - 7.53091984818578e59 * cos(theta) ** 9 + 7.22968305425835e57 * cos(theta) ** 7 - 3.98172945553174e55 * cos(theta) ** 5 + 1.02833921888733e53 * cos(theta) ** 3 - 7.85591458279091e49 * cos(theta) ) * sin(25 * phi) ) # @torch.jit.script def Yl92_m_minus_24(theta, phi): return ( 4.63901735355543e-47 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.4588404096452e72 * cos(theta) ** 68 - 1.81597729681517e73 * cos(theta) ** 66 + 1.07604179604103e74 * cos(theta) ** 64 - 4.03966529016522e74 * cos(theta) ** 62 + 1.07895579995797e75 * cos(theta) ** 60 - 2.18257344677212e75 * cos(theta) ** 58 + 3.4757166739059e75 * cos(theta) ** 56 - 4.4716822705222e75 * cos(theta) ** 54 + 4.73297139727609e75 * cos(theta) ** 52 - 4.17559552414378e75 * cos(theta) ** 50 + 3.1000633436825e75 * cos(theta) ** 48 - 1.95029082636579e75 * cos(theta) ** 46 + 1.04479865698167e75 * cos(theta) ** 44 - 4.78171035077244e74 * cos(theta) ** 42 + 1.87309036033443e74 * cos(theta) ** 40 - 6.28391604757356e73 * cos(theta) ** 38 + 1.80457229634159e73 * cos(theta) ** 36 - 4.42882955471446e72 * cos(theta) ** 34 + 9.2638828493468e71 * cos(theta) ** 32 - 1.64514353500752e71 * cos(theta) ** 30 + 2.46771530251128e70 * cos(theta) ** 28 - 3.10621506609812e69 * cos(theta) ** 26 + 3.25441617176624e68 * cos(theta) ** 24 - 2.80956791807158e67 * cos(theta) ** 22 + 1.97387527090795e66 * cos(theta) ** 20 - 1.11121867102966e65 * cos(theta) ** 18 + 4.91661239640076e63 * cos(theta) ** 16 - 1.66806188173054e62 * cos(theta) ** 14 + 4.20248148498004e60 * cos(theta) ** 12 - 7.53091984818578e58 * cos(theta) ** 10 + 9.03710381782294e56 * cos(theta) ** 8 - 6.63621575921957e54 * cos(theta) ** 6 + 2.57084804721833e52 * cos(theta) ** 4 - 3.92795729139546e49 * cos(theta) ** 2 + 9.87420133583574e45 ) * sin(24 * phi) ) # @torch.jit.script def Yl92_m_minus_23(theta, phi): return ( 4.15030044672352e-45 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 2.11426146325391e70 * cos(theta) ** 69 - 2.71041387584354e71 * cos(theta) ** 67 + 1.6554489169862e72 * cos(theta) ** 65 - 6.41216712724638e72 * cos(theta) ** 63 + 1.7687799999311e73 * cos(theta) ** 61 - 3.69927702842733e73 * cos(theta) ** 59 + 6.0977485507121e73 * cos(theta) ** 57 - 8.13033140094946e73 * cos(theta) ** 55 + 8.93013471184168e73 * cos(theta) ** 53 - 8.18744220420348e73 * cos(theta) ** 51 + 6.32665988506633e73 * cos(theta) ** 49 - 4.14955494971445e73 * cos(theta) ** 47 + 2.32177479329261e73 * cos(theta) ** 45 - 1.11202566297033e73 * cos(theta) ** 43 + 4.5685130739864e72 * cos(theta) ** 41 - 1.61126052501886e72 * cos(theta) ** 39 + 4.87722242254484e71 * cos(theta) ** 37 - 1.26537987277556e71 * cos(theta) ** 35 + 2.80723722707479e70 * cos(theta) ** 33 - 5.30691462905653e69 * cos(theta) ** 31 + 8.50936311210788e68 * cos(theta) ** 29 - 1.15045002448079e68 * cos(theta) ** 27 + 1.3017664687065e67 * cos(theta) ** 25 - 1.22155126872677e66 * cos(theta) ** 23 + 9.39940605194263e64 * cos(theta) ** 21 - 5.84851932120875e63 * cos(theta) ** 19 + 2.89212493905927e62 * cos(theta) ** 17 - 1.11204125448702e61 * cos(theta) ** 15 + 3.23267806536926e59 * cos(theta) ** 13 - 6.84629077107798e57 * cos(theta) ** 11 + 1.00412264642477e56 * cos(theta) ** 9 - 9.48030822745653e53 * cos(theta) ** 7 + 5.14169609443665e51 * cos(theta) ** 5 - 1.30931909713182e49 * cos(theta) ** 3 + 9.87420133583574e45 * cos(theta) ) * sin(23 * phi) ) # @torch.jit.script def Yl92_m_minus_22(theta, phi): return ( 3.72372394350724e-43 * (1.0 - cos(theta) ** 2) ** 11 * ( 3.02037351893416e68 * cos(theta) ** 70 - 3.98590275859344e69 * cos(theta) ** 68 + 2.50825593482758e70 * cos(theta) ** 66 - 1.00190111363225e71 * cos(theta) ** 64 + 2.8528709676308e71 * cos(theta) ** 62 - 6.16546171404555e71 * cos(theta) ** 60 + 1.05133595701933e72 * cos(theta) ** 58 - 1.45184489302669e72 * cos(theta) ** 56 + 1.65372865034105e72 * cos(theta) ** 54 - 1.57450811619298e72 * cos(theta) ** 52 + 1.26533197701327e72 * cos(theta) ** 50 - 8.64490614523843e71 * cos(theta) ** 48 + 5.04733650715784e71 * cos(theta) ** 46 - 2.5273310522053e71 * cos(theta) ** 44 + 1.087741208092e71 * cos(theta) ** 42 - 4.02815131254715e70 * cos(theta) ** 40 + 1.28347958488022e70 * cos(theta) ** 38 - 3.51494409104322e69 * cos(theta) ** 36 + 8.25658007963173e68 * cos(theta) ** 34 - 1.65841082158016e68 * cos(theta) ** 32 + 2.83645437070263e67 * cos(theta) ** 30 - 4.10875008743138e66 * cos(theta) ** 28 + 5.00679411040961e65 * cos(theta) ** 26 - 5.08979695302822e64 * cos(theta) ** 24 + 4.27245729633756e63 * cos(theta) ** 22 - 2.92425966060437e62 * cos(theta) ** 20 + 1.60673607725515e61 * cos(theta) ** 18 - 6.95025784054391e59 * cos(theta) ** 16 + 2.30905576097804e58 * cos(theta) ** 14 - 5.70524230923165e56 * cos(theta) ** 12 + 1.00412264642477e55 * cos(theta) ** 10 - 1.18503852843207e53 * cos(theta) ** 8 + 8.56949349072775e50 * cos(theta) ** 6 - 3.27329774282955e48 * cos(theta) ** 4 + 4.93710066791787e45 * cos(theta) ** 2 - 1.2266088615945e42 ) * sin(22 * phi) ) # @torch.jit.script def Yl92_m_minus_21(theta, phi): return ( 3.35011007789734e-41 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 4.25404720976642e66 * cos(theta) ** 71 - 5.77667066462817e67 * cos(theta) ** 69 + 3.74366557436953e68 * cos(theta) ** 67 - 1.541386328665e69 * cos(theta) ** 65 + 4.52836661528699e69 * cos(theta) ** 63 - 1.01073142853206e70 * cos(theta) ** 61 + 1.78192535088022e70 * cos(theta) ** 59 - 2.5470963035556e70 * cos(theta) ** 57 + 3.00677936425646e70 * cos(theta) ** 55 - 2.97077003055279e70 * cos(theta) ** 53 + 2.48104309218287e70 * cos(theta) ** 51 - 1.76426656025274e70 * cos(theta) ** 49 + 1.07390138450167e70 * cos(theta) ** 47 - 5.6162912271229e69 * cos(theta) ** 45 + 2.52963071649303e69 * cos(theta) ** 43 - 9.82475929889549e68 * cos(theta) ** 41 + 3.29097329456467e68 * cos(theta) ** 39 - 9.49984889471141e67 * cos(theta) ** 37 + 2.35902287989478e67 * cos(theta) ** 35 - 5.02548733812171e66 * cos(theta) ** 33 + 9.14985280871815e65 * cos(theta) ** 31 - 1.41681037497634e65 * cos(theta) ** 29 + 1.8543681890406e64 * cos(theta) ** 27 - 2.03591878121129e63 * cos(theta) ** 25 + 1.85759012884242e62 * cos(theta) ** 23 - 1.3925046002878e61 * cos(theta) ** 21 + 8.45650566976395e59 * cos(theta) ** 19 - 4.08838696502583e58 * cos(theta) ** 17 + 1.53937050731869e57 * cos(theta) ** 15 - 4.38864793017819e55 * cos(theta) ** 13 + 9.12838769477065e53 * cos(theta) ** 11 - 1.31670947603563e52 * cos(theta) ** 9 + 1.22421335581825e50 * cos(theta) ** 7 - 6.54659548565909e47 * cos(theta) ** 5 + 1.64570022263929e45 * cos(theta) ** 3 - 1.2266088615945e42 * cos(theta) ) * sin(21 * phi) ) # @torch.jit.script def Yl92_m_minus_20(theta, phi): return ( 3.02179186207228e-39 * (1.0 - cos(theta) ** 2) ** 10 * ( 5.90839890245336e64 * cos(theta) ** 72 - 8.25238666375453e65 * cos(theta) ** 70 + 5.50539055054342e66 * cos(theta) ** 68 - 2.3354338313106e67 * cos(theta) ** 66 + 7.07557283638592e67 * cos(theta) ** 64 - 1.63021198150332e68 * cos(theta) ** 62 + 2.96987558480036e68 * cos(theta) ** 60 - 4.39154535095792e68 * cos(theta) ** 58 + 5.36924886474367e68 * cos(theta) ** 56 - 5.50142598250516e68 * cos(theta) ** 54 + 4.7712367157363e68 * cos(theta) ** 52 - 3.52853312050548e68 * cos(theta) ** 50 + 2.23729455104514e68 * cos(theta) ** 48 - 1.2209328754615e68 * cos(theta) ** 46 + 5.74916071930233e67 * cos(theta) ** 44 - 2.33922840449893e67 * cos(theta) ** 42 + 8.22743323641167e66 * cos(theta) ** 40 - 2.49996023545037e66 * cos(theta) ** 38 + 6.55284133304105e65 * cos(theta) ** 36 - 1.47808451121227e65 * cos(theta) ** 34 + 2.85932900272442e64 * cos(theta) ** 32 - 4.72270124992112e63 * cos(theta) ** 30 + 6.62274353228784e62 * cos(theta) ** 28 - 7.83045685081265e61 * cos(theta) ** 26 + 7.73995887017673e60 * cos(theta) ** 24 - 6.32956636494453e59 * cos(theta) ** 22 + 4.22825283488197e58 * cos(theta) ** 20 - 2.27132609168101e57 * cos(theta) ** 18 + 9.62106567074184e55 * cos(theta) ** 16 - 3.13474852155585e54 * cos(theta) ** 14 + 7.6069897456422e52 * cos(theta) ** 12 - 1.31670947603563e51 * cos(theta) ** 10 + 1.53026669477281e49 * cos(theta) ** 8 - 1.09109924760985e47 * cos(theta) ** 6 + 4.11425055659822e44 * cos(theta) ** 4 - 6.13304430797251e41 * cos(theta) ** 2 + 1.5076313441427e38 ) * sin(20 * phi) ) # @torch.jit.script def Yl92_m_minus_19(theta, phi): return ( 2.7323415644396e-37 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 8.09369712664844e62 * cos(theta) ** 73 - 1.1623079808105e64 * cos(theta) ** 71 + 7.97882688484554e64 * cos(theta) ** 69 - 3.48572213628448e65 * cos(theta) ** 67 + 1.0885496671363e66 * cos(theta) ** 65 - 2.58763806587828e66 * cos(theta) ** 63 + 4.86864849967272e66 * cos(theta) ** 61 - 7.44329720501343e66 * cos(theta) ** 59 + 9.4197348504275e66 * cos(theta) ** 57 - 1.00025926954639e67 * cos(theta) ** 55 + 9.00233342591754e66 * cos(theta) ** 53 - 6.918692393148e66 * cos(theta) ** 51 + 4.5659072470309e66 * cos(theta) ** 49 - 2.59772952225851e66 * cos(theta) ** 47 + 1.27759127095607e66 * cos(theta) ** 45 - 5.44006605697425e65 * cos(theta) ** 43 + 2.00669103327114e65 * cos(theta) ** 41 - 6.41015444987274e64 * cos(theta) ** 39 + 1.7710381981192e64 * cos(theta) ** 37 - 4.22309860346362e63 * cos(theta) ** 35 + 8.66463334158915e62 * cos(theta) ** 33 - 1.52345201610359e62 * cos(theta) ** 31 + 2.28370466630615e61 * cos(theta) ** 29 - 2.90016920400468e60 * cos(theta) ** 27 + 3.09598354807069e59 * cos(theta) ** 25 - 2.75198537606284e58 * cos(theta) ** 23 + 2.01345373089618e57 * cos(theta) ** 21 - 1.19543478509527e56 * cos(theta) ** 19 + 5.65945039455402e54 * cos(theta) ** 17 - 2.0898323477039e53 * cos(theta) ** 15 + 5.85153057357093e51 * cos(theta) ** 13 - 1.19700861457784e50 * cos(theta) ** 11 + 1.70029632752535e48 * cos(theta) ** 9 - 1.55871321087121e46 * cos(theta) ** 7 + 8.22850111319645e43 * cos(theta) ** 5 - 2.0443481026575e41 * cos(theta) ** 3 + 1.5076313441427e38 * cos(theta) ) * sin(19 * phi) ) # @torch.jit.script def Yl92_m_minus_18(theta, phi): return ( 2.47635177527373e-35 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.09374285495249e61 * cos(theta) ** 74 - 1.61431664001458e62 * cos(theta) ** 72 + 1.13983241212079e63 * cos(theta) ** 70 - 5.12606196512423e63 * cos(theta) ** 68 + 1.64931767747924e64 * cos(theta) ** 66 - 4.04318447793481e64 * cos(theta) ** 64 + 7.85265887043987e64 * cos(theta) ** 62 - 1.24054953416891e65 * cos(theta) ** 60 + 1.62409221559095e65 * cos(theta) ** 58 - 1.78617726704713e65 * cos(theta) ** 56 + 1.66709878257732e65 * cos(theta) ** 54 - 1.33051776791308e65 * cos(theta) ** 52 + 9.1318144940618e64 * cos(theta) ** 50 - 5.41193650470523e64 * cos(theta) ** 48 + 2.77737232816538e64 * cos(theta) ** 46 - 1.23637864931233e64 * cos(theta) ** 44 + 4.77783579350271e63 * cos(theta) ** 42 - 1.60253861246819e63 * cos(theta) ** 40 + 4.6606268371558e62 * cos(theta) ** 38 - 1.17308294540656e62 * cos(theta) ** 36 + 2.54842157105563e61 * cos(theta) ** 34 - 4.76078755032371e60 * cos(theta) ** 32 + 7.61234888768717e59 * cos(theta) ** 30 - 1.03577471571596e59 * cos(theta) ** 28 + 1.19076290310411e58 * cos(theta) ** 26 - 1.14666057335952e57 * cos(theta) ** 24 + 9.15206241316444e55 * cos(theta) ** 22 - 5.97717392547635e54 * cos(theta) ** 20 + 3.14413910808557e53 * cos(theta) ** 18 - 1.30614521731494e52 * cos(theta) ** 16 + 4.1796646954078e50 * cos(theta) ** 14 - 9.97507178814871e48 * cos(theta) ** 12 + 1.70029632752535e47 * cos(theta) ** 10 - 1.94839151358902e45 * cos(theta) ** 8 + 1.37141685219941e43 * cos(theta) ** 6 - 5.11087025664376e40 * cos(theta) ** 4 + 7.5381567207135e37 * cos(theta) ** 2 - 1.83544112995216e34 ) * sin(18 * phi) ) # @torch.jit.script def Yl92_m_minus_17(theta, phi): return ( 2.24925819878324e-33 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.45832380660332e59 * cos(theta) ** 75 - 2.21139265755422e60 * cos(theta) ** 73 + 1.60539776355041e61 * cos(theta) ** 71 - 7.42907531177424e61 * cos(theta) ** 69 + 2.46166817534214e62 * cos(theta) ** 67 - 6.22028381220741e62 * cos(theta) ** 65 + 1.24645378895871e63 * cos(theta) ** 63 - 2.03368776093263e63 * cos(theta) ** 61 + 2.75269867049313e63 * cos(theta) ** 59 - 3.13364432815286e63 * cos(theta) ** 57 + 3.03108869559513e63 * cos(theta) ** 55 - 2.51041088285486e63 * cos(theta) ** 53 + 1.79055186158075e63 * cos(theta) ** 51 - 1.10447683769494e63 * cos(theta) ** 49 + 5.90930282588378e62 * cos(theta) ** 47 - 2.74750810958295e62 * cos(theta) ** 45 + 1.11112460314017e62 * cos(theta) ** 43 - 3.90863076211753e61 * cos(theta) ** 41 + 1.19503252234764e61 * cos(theta) ** 39 - 3.17049444704476e60 * cos(theta) ** 37 + 7.28120448873038e59 * cos(theta) ** 35 - 1.44266289403749e59 * cos(theta) ** 33 + 2.45559641538296e58 * cos(theta) ** 31 - 3.57163695074469e57 * cos(theta) ** 29 + 4.41023297445968e56 * cos(theta) ** 27 - 4.58664229343806e55 * cos(theta) ** 25 + 3.97915757094106e54 * cos(theta) ** 23 - 2.84627329784588e53 * cos(theta) ** 21 + 1.65481005688714e52 * cos(theta) ** 19 - 7.68320716067611e50 * cos(theta) ** 17 + 2.78644313027187e49 * cos(theta) ** 15 - 7.67313214472978e47 * cos(theta) ** 13 + 1.54572393411395e46 * cos(theta) ** 11 - 2.16487945954335e44 * cos(theta) ** 9 + 1.95916693171344e42 * cos(theta) ** 7 - 1.02217405132875e40 * cos(theta) ** 5 + 2.5127189069045e37 * cos(theta) ** 3 - 1.83544112995216e34 * cos(theta) ) * sin(17 * phi) ) # @torch.jit.script def Yl92_m_minus_16(theta, phi): return ( 2.04719568416579e-31 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.91884711395174e57 * cos(theta) ** 76 - 2.98836845615435e58 * cos(theta) ** 74 + 2.22971911604224e59 * cos(theta) ** 72 - 1.06129647311061e60 * cos(theta) ** 70 + 3.62010025785609e60 * cos(theta) ** 68 - 9.42467244273849e60 * cos(theta) ** 66 + 1.94758404524798e61 * cos(theta) ** 64 - 3.28014154989134e61 * cos(theta) ** 62 + 4.58783111748855e61 * cos(theta) ** 60 - 5.40283504853942e61 * cos(theta) ** 58 + 5.4126583849913e61 * cos(theta) ** 56 - 4.64890904232382e61 * cos(theta) ** 54 + 3.44336896457836e61 * cos(theta) ** 52 - 2.20895367538989e61 * cos(theta) ** 50 + 1.23110475539245e61 * cos(theta) ** 48 - 5.97284371648468e60 * cos(theta) ** 46 + 2.52528318895492e60 * cos(theta) ** 44 - 9.30626371932745e59 * cos(theta) ** 42 + 2.9875813058691e59 * cos(theta) ** 40 - 8.34340643959148e58 * cos(theta) ** 38 + 2.02255680242511e58 * cos(theta) ** 36 - 4.24312615893379e57 * cos(theta) ** 34 + 7.67373879807175e56 * cos(theta) ** 32 - 1.19054565024823e56 * cos(theta) ** 30 + 1.57508320516417e55 * cos(theta) ** 28 - 1.76409318978387e54 * cos(theta) ** 26 + 1.65798232122544e53 * cos(theta) ** 24 - 1.29376058992995e52 * cos(theta) ** 22 + 8.27405028443571e50 * cos(theta) ** 20 - 4.26844842259784e49 * cos(theta) ** 18 + 1.74152695641992e48 * cos(theta) ** 16 - 5.48080867480698e46 * cos(theta) ** 14 + 1.28810327842829e45 * cos(theta) ** 12 - 2.16487945954335e43 * cos(theta) ** 10 + 2.4489586646418e41 * cos(theta) ** 8 - 1.70362341888125e39 * cos(theta) ** 6 + 6.28179726726125e36 * cos(theta) ** 4 - 9.17720564976078e33 * cos(theta) ** 2 + 2.21564598014505e30 ) * sin(16 * phi) ) # @torch.jit.script def Yl92_m_minus_15(theta, phi): return ( 1.86688083625133e-29 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 2.49200923889836e55 * cos(theta) ** 77 - 3.98449127487246e56 * cos(theta) ** 75 + 3.05440974800306e57 * cos(theta) ** 73 - 1.49478376494452e58 * cos(theta) ** 71 + 5.24652211283492e58 * cos(theta) ** 69 - 1.40666752876694e59 * cos(theta) ** 67 + 2.99628314653536e59 * cos(theta) ** 65 - 5.20657388871641e59 * cos(theta) ** 63 + 7.5210346188337e59 * cos(theta) ** 61 - 9.15734753989731e59 * cos(theta) ** 59 + 9.49589190349352e59 * cos(theta) ** 57 - 8.45256189513422e59 * cos(theta) ** 55 + 6.49692257467615e59 * cos(theta) ** 53 - 4.33128171645076e59 * cos(theta) ** 51 + 2.5124586844744e59 * cos(theta) ** 49 - 1.27081781201802e59 * cos(theta) ** 47 + 5.61174041989982e58 * cos(theta) ** 45 - 2.16424737658778e58 * cos(theta) ** 43 + 7.28678367285147e57 * cos(theta) ** 41 - 2.13933498451063e57 * cos(theta) ** 39 + 5.46636973628407e56 * cos(theta) ** 37 - 1.21232175969537e56 * cos(theta) ** 35 + 2.32537539335507e55 * cos(theta) ** 33 - 3.84046983951041e54 * cos(theta) ** 31 + 5.43132139711783e53 * cos(theta) ** 29 - 6.533678480681e52 * cos(theta) ** 27 + 6.63192928490177e51 * cos(theta) ** 25 - 5.62504604317368e50 * cos(theta) ** 23 + 3.94002394496938e49 * cos(theta) ** 21 - 2.24655180136728e48 * cos(theta) ** 19 + 1.02442762142348e47 * cos(theta) ** 17 - 3.65387244987132e45 * cos(theta) ** 15 + 9.90848675714072e43 * cos(theta) ** 13 - 1.9680722359485e42 * cos(theta) ** 11 + 2.72106518293533e40 * cos(theta) ** 9 - 2.43374774125893e38 * cos(theta) ** 7 + 1.25635945345225e36 * cos(theta) ** 5 - 3.05906854992026e33 * cos(theta) ** 3 + 2.21564598014505e30 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl92_m_minus_14(theta, phi): return ( 1.70551595998805e-27 * (1.0 - cos(theta) ** 2) ** 7 * ( 3.19488363961329e53 * cos(theta) ** 78 - 5.24275167746377e54 * cos(theta) ** 76 + 4.12758074054468e55 * cos(theta) ** 74 - 2.07608856242294e56 * cos(theta) ** 72 + 7.49503158976417e56 * cos(theta) ** 70 - 2.06862871877491e57 * cos(theta) ** 68 + 4.539822949296e57 * cos(theta) ** 66 - 8.1352717011194e57 * cos(theta) ** 64 + 1.21307009981189e58 * cos(theta) ** 62 - 1.52622458998289e58 * cos(theta) ** 60 + 1.63722274198164e58 * cos(theta) ** 58 - 1.50938605270254e58 * cos(theta) ** 56 + 1.20313381012521e58 * cos(theta) ** 54 - 8.32938791625147e57 * cos(theta) ** 52 + 5.02491736894879e57 * cos(theta) ** 50 - 2.64753710837087e57 * cos(theta) ** 48 + 1.21994356954344e57 * cos(theta) ** 46 - 4.9187440376995e56 * cos(theta) ** 44 + 1.73494849353606e56 * cos(theta) ** 42 - 5.34833746127659e55 * cos(theta) ** 40 + 1.4385183516537e55 * cos(theta) ** 38 - 3.36756044359825e54 * cos(theta) ** 36 + 6.83933939222081e53 * cos(theta) ** 34 - 1.200146824847e53 * cos(theta) ** 32 + 1.81044046570594e52 * cos(theta) ** 30 - 2.33345660024322e51 * cos(theta) ** 28 + 2.55074203265453e50 * cos(theta) ** 26 - 2.3437691846557e49 * cos(theta) ** 24 + 1.79091997498608e48 * cos(theta) ** 22 - 1.12327590068364e47 * cos(theta) ** 20 + 5.69126456346379e45 * cos(theta) ** 18 - 2.28367028116958e44 * cos(theta) ** 16 + 7.0774905408148e42 * cos(theta) ** 14 - 1.64006019662375e41 * cos(theta) ** 12 + 2.72106518293533e39 * cos(theta) ** 10 - 3.04218467657366e37 * cos(theta) ** 8 + 2.09393242242042e35 * cos(theta) ** 6 - 7.64767137480065e32 * cos(theta) ** 4 + 1.10782299007252e30 * cos(theta) ** 2 - 2.6547399714175e26 ) * sin(14 * phi) ) # @torch.jit.script def Yl92_m_minus_13(theta, phi): return ( 1.56071019065575e-25 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 4.0441565058396e51 * cos(theta) ** 79 - 6.80876841229061e52 * cos(theta) ** 77 + 5.50344098739291e53 * cos(theta) ** 75 - 2.84395693482594e54 * cos(theta) ** 73 + 1.05563825207946e55 * cos(theta) ** 71 - 2.99801263590567e55 * cos(theta) ** 69 + 6.77585514820298e55 * cos(theta) ** 67 - 1.25158026171068e56 * cos(theta) ** 65 + 1.9255080949395e56 * cos(theta) ** 63 - 2.50200752456211e56 * cos(theta) ** 61 + 2.77495379996888e56 * cos(theta) ** 59 - 2.64804570649568e56 * cos(theta) ** 57 + 2.18751601840948e56 * cos(theta) ** 55 - 1.57158262570782e56 * cos(theta) ** 53 + 9.85277915480156e55 * cos(theta) ** 51 - 5.40313695585892e55 * cos(theta) ** 49 + 2.59562461604987e55 * cos(theta) ** 47 - 1.09305423059989e55 * cos(theta) ** 45 + 4.03476393845596e54 * cos(theta) ** 43 - 1.30447255153087e54 * cos(theta) ** 41 + 3.68850859398385e53 * cos(theta) ** 39 - 9.10151471242769e52 * cos(theta) ** 37 + 1.95409696920595e52 * cos(theta) ** 35 - 3.63680856014244e51 * cos(theta) ** 33 + 5.8401305345353e50 * cos(theta) ** 31 - 8.04640206980419e49 * cos(theta) ** 29 + 9.44719271353529e48 * cos(theta) ** 27 - 9.3750767386228e47 * cos(theta) ** 25 + 7.78660858689602e46 * cos(theta) ** 23 - 5.3489328603983e45 * cos(theta) ** 21 + 2.99540240182305e44 * cos(theta) ** 19 - 1.34333545951152e43 * cos(theta) ** 17 + 4.71832702720987e41 * cos(theta) ** 15 - 1.26158476663365e40 * cos(theta) ** 13 + 2.4736956208503e38 * cos(theta) ** 11 - 3.38020519619296e36 * cos(theta) ** 9 + 2.99133203202917e34 * cos(theta) ** 7 - 1.52953427496013e32 * cos(theta) ** 5 + 3.69274330024174e29 * cos(theta) ** 3 - 2.6547399714175e26 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl92_m_minus_12(theta, phi): return ( 1.43041451731379e-23 * (1.0 - cos(theta) ** 2) ** 6 * ( 5.0551956322995e49 * cos(theta) ** 80 - 8.72919027216745e50 * cos(theta) ** 78 + 7.24136972025383e51 * cos(theta) ** 76 - 3.84318504706209e52 * cos(theta) ** 74 + 1.46616423899925e53 * cos(theta) ** 72 - 4.28287519415095e53 * cos(theta) ** 70 + 9.96449286500439e53 * cos(theta) ** 68 - 1.89633372986466e54 * cos(theta) ** 66 + 3.00860639834297e54 * cos(theta) ** 64 - 4.03549600735824e54 * cos(theta) ** 62 + 4.62492299994814e54 * cos(theta) ** 60 - 4.56559604568221e54 * cos(theta) ** 58 + 3.90627860430264e54 * cos(theta) ** 56 - 2.91033819575523e54 * cos(theta) ** 54 + 1.89476522207722e54 * cos(theta) ** 52 - 1.08062739117178e54 * cos(theta) ** 50 + 5.40755128343723e53 * cos(theta) ** 48 - 2.37620484913019e53 * cos(theta) ** 46 + 9.16991804194537e52 * cos(theta) ** 44 - 3.10588702745446e52 * cos(theta) ** 42 + 9.22127148495963e51 * cos(theta) ** 40 - 2.39513545063887e51 * cos(theta) ** 38 + 5.42804713668318e50 * cos(theta) ** 36 - 1.06964957651248e50 * cos(theta) ** 34 + 1.82504079204228e49 * cos(theta) ** 32 - 2.68213402326806e48 * cos(theta) ** 30 + 3.37399739769117e47 * cos(theta) ** 28 - 3.60579874562416e46 * cos(theta) ** 26 + 3.24442024454001e45 * cos(theta) ** 24 - 2.43133311836286e44 * cos(theta) ** 22 + 1.49770120091152e43 * cos(theta) ** 20 - 7.46297477506397e41 * cos(theta) ** 18 + 2.94895439200617e40 * cos(theta) ** 16 - 9.01131976166896e38 * cos(theta) ** 14 + 2.06141301737525e37 * cos(theta) ** 12 - 3.38020519619296e35 * cos(theta) ** 10 + 3.73916504003646e33 * cos(theta) ** 8 - 2.54922379160022e31 * cos(theta) ** 6 + 9.23185825060436e28 * cos(theta) ** 4 - 1.32736998570875e26 * cos(theta) ** 2 + 3.16040472787798e22 ) * sin(12 * phi) ) # @torch.jit.script def Yl92_m_minus_11(theta, phi): return ( 1.31286807653569e-21 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 6.24098226209815e47 * cos(theta) ** 81 - 1.10496079394525e49 * cos(theta) ** 79 + 9.4043762600699e49 * cos(theta) ** 77 - 5.12424672941612e50 * cos(theta) ** 75 + 2.00844416301267e51 * cos(theta) ** 73 - 6.0322185833112e51 * cos(theta) ** 71 + 1.44412940072527e52 * cos(theta) ** 69 - 2.83034885054427e52 * cos(theta) ** 67 + 4.62862522821996e52 * cos(theta) ** 65 - 6.40554921802895e52 * cos(theta) ** 63 + 7.58184098352154e52 * cos(theta) ** 61 - 7.73829838251222e52 * cos(theta) ** 59 + 6.85312035842568e52 * cos(theta) ** 57 - 5.29152399228224e52 * cos(theta) ** 55 + 3.57502872090042e52 * cos(theta) ** 53 - 2.11887723759173e52 * cos(theta) ** 51 + 1.10358189457903e52 * cos(theta) ** 49 - 5.05575499814934e51 * cos(theta) ** 47 + 2.03775956487675e51 * cos(theta) ** 45 - 7.2229930871034e50 * cos(theta) ** 43 + 2.24909060608772e50 * cos(theta) ** 41 - 6.14137295035607e49 * cos(theta) ** 39 + 1.46703976667113e49 * cos(theta) ** 37 - 3.05614164717852e48 * cos(theta) ** 35 + 5.53042664255237e47 * cos(theta) ** 33 - 8.65204523634859e46 * cos(theta) ** 31 + 1.1634473785142e46 * cos(theta) ** 29 - 1.33548101689784e45 * cos(theta) ** 27 + 1.297768097816e44 * cos(theta) ** 25 - 1.05710135580994e43 * cos(theta) ** 23 + 7.13191048053106e41 * cos(theta) ** 21 - 3.92788146055999e40 * cos(theta) ** 19 + 1.73467905412127e39 * cos(theta) ** 17 - 6.00754650777931e37 * cos(theta) ** 15 + 1.58570232105789e36 * cos(theta) ** 13 - 3.07291381472087e34 * cos(theta) ** 11 + 4.15462782226273e32 * cos(theta) ** 9 - 3.64174827371459e30 * cos(theta) ** 7 + 1.84637165012087e28 * cos(theta) ** 5 - 4.42456661902917e25 * cos(theta) ** 3 + 3.16040472787798e22 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl92_m_minus_10(theta, phi): return ( 1.20655361938957e-19 * (1.0 - cos(theta) ** 2) ** 5 * ( 7.61095397816848e45 * cos(theta) ** 82 - 1.38120099243156e47 * cos(theta) ** 80 + 1.20568926411153e48 * cos(theta) ** 78 - 6.74242990712647e48 * cos(theta) ** 76 + 2.71411373380091e49 * cos(theta) ** 74 - 8.37808136571e49 * cos(theta) ** 72 + 2.06304200103611e50 * cos(theta) ** 70 - 4.16227772138863e50 * cos(theta) ** 68 + 7.013068527606e50 * cos(theta) ** 66 - 1.00086706531702e51 * cos(theta) ** 64 + 1.22287757798734e51 * cos(theta) ** 62 - 1.28971639708537e51 * cos(theta) ** 60 + 1.18157247559063e51 * cos(theta) ** 58 - 9.44914998621828e50 * cos(theta) ** 56 + 6.620423557223e50 * cos(theta) ** 54 - 4.07476391844564e50 * cos(theta) ** 52 + 2.20716378915805e50 * cos(theta) ** 50 - 1.05328229128111e50 * cos(theta) ** 48 + 4.42991209755815e49 * cos(theta) ** 46 - 1.64158933797805e49 * cos(theta) ** 44 + 5.35497763354218e48 * cos(theta) ** 42 - 1.53534323758902e48 * cos(theta) ** 40 + 3.86063096492403e47 * cos(theta) ** 38 - 8.48928235327366e46 * cos(theta) ** 36 + 1.62659607133893e46 * cos(theta) ** 34 - 2.70376413635894e45 * cos(theta) ** 32 + 3.87815792838066e44 * cos(theta) ** 30 - 4.76957506034941e43 * cos(theta) ** 28 + 4.99141576083078e42 * cos(theta) ** 26 - 4.40458898254142e41 * cos(theta) ** 24 + 3.24177749115048e40 * cos(theta) ** 22 - 1.96394073027999e39 * cos(theta) ** 20 + 9.6371058562293e37 * cos(theta) ** 18 - 3.75471656736207e36 * cos(theta) ** 16 + 1.13264451504135e35 * cos(theta) ** 14 - 2.56076151226739e33 * cos(theta) ** 12 + 4.15462782226273e31 * cos(theta) ** 10 - 4.55218534214324e29 * cos(theta) ** 8 + 3.07728608353479e27 * cos(theta) ** 6 - 1.10614165475729e25 * cos(theta) ** 4 + 1.58020236393899e22 * cos(theta) ** 2 - 3.74189524967793e18 ) * sin(10 * phi) ) # @torch.jit.script def Yl92_m_minus_9(theta, phi): return ( 1.11016046922451e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 9.16982407008251e43 * cos(theta) ** 83 - 1.70518641040933e45 * cos(theta) ** 81 + 1.52618894191332e46 * cos(theta) ** 79 - 8.75640247678762e46 * cos(theta) ** 77 + 3.61881831173454e47 * cos(theta) ** 75 - 1.14768237886438e48 * cos(theta) ** 73 + 2.90569295920578e48 * cos(theta) ** 71 - 6.03228655273715e48 * cos(theta) ** 69 + 1.04672664591134e49 * cos(theta) ** 67 - 1.53979548510311e49 * cos(theta) ** 65 + 1.94107552061483e49 * cos(theta) ** 63 - 2.11428917554979e49 * cos(theta) ** 61 + 2.00266521286548e49 * cos(theta) ** 59 - 1.65774561161724e49 * cos(theta) ** 57 + 1.20371337404055e49 * cos(theta) ** 55 - 7.688233808388e48 * cos(theta) ** 53 + 4.32777213560403e48 * cos(theta) ** 51 - 2.14955569649207e48 * cos(theta) ** 49 + 9.42534488842159e47 * cos(theta) ** 47 - 3.64797630661788e47 * cos(theta) ** 45 + 1.24534363570748e47 * cos(theta) ** 43 - 3.74473960387565e46 * cos(theta) ** 41 + 9.89905375621545e45 * cos(theta) ** 39 - 2.29440063601991e45 * cos(theta) ** 37 + 4.64741734668266e44 * cos(theta) ** 35 - 8.19322465563314e43 * cos(theta) ** 33 + 1.25101868657441e43 * cos(theta) ** 31 - 1.6446810552929e42 * cos(theta) ** 29 + 1.8486725040114e41 * cos(theta) ** 27 - 1.76183559301657e40 * cos(theta) ** 25 + 1.40946847441325e39 * cos(theta) ** 23 - 9.35209871561902e37 * cos(theta) ** 21 + 5.07216097696279e36 * cos(theta) ** 19 - 2.20865680433063e35 * cos(theta) ** 17 + 7.55096343360898e33 * cos(theta) ** 15 - 1.969816547898e32 * cos(theta) ** 13 + 3.77693438387521e30 * cos(theta) ** 11 - 5.05798371349249e28 * cos(theta) ** 9 + 4.39612297647827e26 * cos(theta) ** 7 - 2.21228330951458e24 * cos(theta) ** 5 + 5.26734121312996e21 * cos(theta) ** 3 - 3.74189524967793e18 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl92_m_minus_8(theta, phi): return ( 1.02255361584935e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.09164572262887e42 * cos(theta) ** 84 - 2.0794956224504e43 * cos(theta) ** 82 + 1.90773617739166e44 * cos(theta) ** 80 - 1.12261570215226e45 * cos(theta) ** 78 + 4.76160304175598e45 * cos(theta) ** 76 - 1.55092213360052e46 * cos(theta) ** 74 + 4.03568466556359e46 * cos(theta) ** 72 - 8.61755221819593e46 * cos(theta) ** 70 + 1.53930389104609e47 * cos(theta) ** 68 - 2.33302346227744e47 * cos(theta) ** 66 + 3.03293050096068e47 * cos(theta) ** 64 - 3.41014383153192e47 * cos(theta) ** 62 + 3.3377753547758e47 * cos(theta) ** 60 - 2.85818208899525e47 * cos(theta) ** 58 + 2.14948816792955e47 * cos(theta) ** 56 - 1.42374700155333e47 * cos(theta) ** 54 + 8.32263872231544e46 * cos(theta) ** 52 - 4.29911139298413e46 * cos(theta) ** 50 + 1.96361351842117e46 * cos(theta) ** 48 - 7.93038327525626e45 * cos(theta) ** 46 + 2.83032644478974e45 * cos(theta) ** 44 - 8.91604667589441e44 * cos(theta) ** 42 + 2.47476343905386e44 * cos(theta) ** 40 - 6.03789641057871e43 * cos(theta) ** 38 + 1.29094926296741e43 * cos(theta) ** 36 - 2.40977195753916e42 * cos(theta) ** 34 + 3.90943339554502e41 * cos(theta) ** 32 - 5.48227018430967e40 * cos(theta) ** 30 + 6.60240180004071e39 * cos(theta) ** 28 - 6.77629074237141e38 * cos(theta) ** 26 + 5.87278531005522e37 * cos(theta) ** 24 - 4.25095396164501e36 * cos(theta) ** 22 + 2.5360804884814e35 * cos(theta) ** 20 - 1.22703155796146e34 * cos(theta) ** 18 + 4.71935214600561e32 * cos(theta) ** 16 - 1.40701181992714e31 * cos(theta) ** 14 + 3.14744531989601e29 * cos(theta) ** 12 - 5.05798371349249e27 * cos(theta) ** 10 + 5.49515372059783e25 * cos(theta) ** 8 - 3.68713884919097e23 * cos(theta) ** 6 + 1.31683530328249e21 * cos(theta) ** 4 - 1.87094762483896e18 * cos(theta) ** 2 + 441053188316587.0 ) * sin(8 * phi) ) # @torch.jit.script def Yl92_m_minus_7(theta, phi): return ( 9.42747852128868e-14 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.28428908544573e40 * cos(theta) ** 85 - 2.50541641259085e41 * cos(theta) ** 83 + 2.35522984863167e42 * cos(theta) ** 81 - 1.42103253436995e43 * cos(theta) ** 79 + 6.18390005422855e43 * cos(theta) ** 77 - 2.06789617813403e44 * cos(theta) ** 75 + 5.52833515830628e44 * cos(theta) ** 73 - 1.21373974904168e45 * cos(theta) ** 71 + 2.23087520441463e45 * cos(theta) ** 69 - 3.48212457056335e45 * cos(theta) ** 67 + 4.66604692455489e45 * cos(theta) ** 65 - 5.41292671671733e45 * cos(theta) ** 63 + 5.47176287668164e45 * cos(theta) ** 61 - 4.84437642202584e45 * cos(theta) ** 59 + 3.77103187356061e45 * cos(theta) ** 57 - 2.58863091191515e45 * cos(theta) ** 55 + 1.57030919288971e45 * cos(theta) ** 53 - 8.42963018232183e44 * cos(theta) ** 51 + 4.00737452739013e44 * cos(theta) ** 49 - 1.68731559048006e44 * cos(theta) ** 47 + 6.28961432175497e43 * cos(theta) ** 45 - 2.07349922695219e43 * cos(theta) ** 43 + 6.03600838793625e42 * cos(theta) ** 41 - 1.54817856681505e42 * cos(theta) ** 39 + 3.48905206207407e41 * cos(theta) ** 37 - 6.88506273582617e40 * cos(theta) ** 35 + 1.18467678652879e40 * cos(theta) ** 33 - 1.76847425300312e39 * cos(theta) ** 31 + 2.27669027587611e38 * cos(theta) ** 29 - 2.50973731198941e37 * cos(theta) ** 27 + 2.34911412402209e36 * cos(theta) ** 25 - 1.84824085288913e35 * cos(theta) ** 23 + 1.20765737546733e34 * cos(theta) ** 21 - 6.4580608313761e32 * cos(theta) ** 19 + 2.77608949765036e31 * cos(theta) ** 17 - 9.38007879951426e29 * cos(theta) ** 15 + 2.42111178453539e28 * cos(theta) ** 13 - 4.5981670122659e26 * cos(theta) ** 11 + 6.10572635621981e24 * cos(theta) ** 9 - 5.26734121312996e22 * cos(theta) ** 7 + 2.63367060656498e20 * cos(theta) ** 5 - 6.23649208279654e17 * cos(theta) ** 3 + 441053188316587.0 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl92_m_minus_6(theta, phi): return ( 8.69886066509475e-12 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.49335940168108e38 * cos(theta) ** 86 - 2.98263858641768e39 * cos(theta) ** 84 + 2.87223152272155e40 * cos(theta) ** 82 - 1.77629066796244e41 * cos(theta) ** 80 + 7.9280769926007e41 * cos(theta) ** 78 - 2.72091602386056e42 * cos(theta) ** 76 + 7.47072318690038e42 * cos(theta) ** 74 - 1.68574965144678e43 * cos(theta) ** 72 + 3.18696457773518e43 * cos(theta) ** 70 - 5.12077142729904e43 * cos(theta) ** 68 + 7.06976806750741e43 * cos(theta) ** 66 - 8.45769799487082e43 * cos(theta) ** 64 + 8.82542399464781e43 * cos(theta) ** 62 - 8.0739607033764e43 * cos(theta) ** 60 + 6.50177909234587e43 * cos(theta) ** 58 - 4.62255519984848e43 * cos(theta) ** 56 + 2.90797998683279e43 * cos(theta) ** 54 - 1.62108272736958e43 * cos(theta) ** 52 + 8.01474905478027e42 * cos(theta) ** 50 - 3.51524081350012e42 * cos(theta) ** 48 + 1.36730746125108e42 * cos(theta) ** 46 - 4.71249824307315e41 * cos(theta) ** 44 + 1.43714485427054e41 * cos(theta) ** 42 - 3.87044641703763e40 * cos(theta) ** 40 + 9.1817159528265e39 * cos(theta) ** 38 - 1.91251742661838e39 * cos(theta) ** 36 + 3.48434348979057e38 * cos(theta) ** 34 - 5.52648204063475e37 * cos(theta) ** 32 + 7.58896758625369e36 * cos(theta) ** 30 - 8.96334754281932e35 * cos(theta) ** 28 + 9.03505432316188e34 * cos(theta) ** 26 - 7.70100355370472e33 * cos(theta) ** 24 + 5.48935170666969e32 * cos(theta) ** 22 - 3.22903041568805e31 * cos(theta) ** 20 + 1.54227194313909e30 * cos(theta) ** 18 - 5.86254924969642e28 * cos(theta) ** 16 + 1.72936556038242e27 * cos(theta) ** 14 - 3.83180584355492e25 * cos(theta) ** 12 + 6.10572635621981e23 * cos(theta) ** 10 - 6.58417651641245e21 * cos(theta) ** 8 + 4.38945101094163e19 * cos(theta) ** 6 - 1.55912302069914e17 * cos(theta) ** 4 + 220526594158294.0 * cos(theta) ** 2 - 51803287328.7042 ) * sin(6 * phi) ) # @torch.jit.script def Yl92_m_minus_5(theta, phi): return ( 8.0322097084169e-10 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.71650505940354e36 * cos(theta) ** 87 - 3.50898657225609e37 * cos(theta) ** 85 + 3.46051990689344e38 * cos(theta) ** 83 - 2.19295144192893e39 * cos(theta) ** 81 + 1.00355404969629e40 * cos(theta) ** 79 - 3.53365717384488e40 * cos(theta) ** 77 + 9.96096424920051e40 * cos(theta) ** 75 - 2.3092460978723e41 * cos(theta) ** 73 + 4.48868250385237e41 * cos(theta) ** 71 - 7.42140786565079e41 * cos(theta) ** 69 + 1.05518926380708e42 * cos(theta) ** 67 - 1.3011843069032e42 * cos(theta) ** 65 + 1.4008609515314e42 * cos(theta) ** 63 - 1.32360011530761e42 * cos(theta) ** 61 + 1.10199645632981e42 * cos(theta) ** 59 - 8.10974596464646e41 * cos(theta) ** 57 + 5.28723633969598e41 * cos(theta) ** 55 - 3.05864665541431e41 * cos(theta) ** 53 + 1.57151942250593e41 * cos(theta) ** 51 - 7.17396084387779e40 * cos(theta) ** 49 + 2.90916481117251e40 * cos(theta) ** 47 - 1.04722183179403e40 * cos(theta) ** 45 + 3.34219733551287e39 * cos(theta) ** 43 - 9.44011321228691e38 * cos(theta) ** 41 + 2.35428614175039e38 * cos(theta) ** 39 - 5.16896601788751e37 * cos(theta) ** 37 + 9.95526711368734e36 * cos(theta) ** 35 - 1.67469152746507e36 * cos(theta) ** 33 + 2.44805406008184e35 * cos(theta) ** 31 - 3.0908094975239e34 * cos(theta) ** 29 + 3.34631641598588e33 * cos(theta) ** 27 - 3.08040142148189e32 * cos(theta) ** 25 + 2.38667465507378e31 * cos(theta) ** 23 - 1.53763353128002e30 * cos(theta) ** 21 + 8.11722075336363e28 * cos(theta) ** 19 - 3.44855838217436e27 * cos(theta) ** 17 + 1.15291037358828e26 * cos(theta) ** 15 - 2.94754295658071e24 * cos(theta) ** 13 + 5.55066032383619e22 * cos(theta) ** 11 - 7.31575168490272e20 * cos(theta) ** 9 + 6.27064430134519e18 * cos(theta) ** 7 - 3.11824604139827e16 * cos(theta) ** 5 + 73508864719431.2 * cos(theta) ** 3 - 51803287328.7042 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl92_m_minus_4(theta, phi): return ( 7.42099675879653e-8 * (1.0 - cos(theta) ** 2) ** 2 * ( 1.95057393114039e34 * cos(theta) ** 88 - 4.08021694448383e35 * cos(theta) ** 86 + 4.11966655582552e36 * cos(theta) ** 84 - 2.6743310267426e37 * cos(theta) ** 82 + 1.25444256212036e38 * cos(theta) ** 80 - 4.53032971005754e38 * cos(theta) ** 78 + 1.31065319068428e39 * cos(theta) ** 76 - 3.12060283496257e39 * cos(theta) ** 74 + 6.23428125535051e39 * cos(theta) ** 72 - 1.0602011236644e40 * cos(theta) ** 70 + 1.55174891736335e40 * cos(theta) ** 68 - 1.97149137409576e40 * cos(theta) ** 66 + 2.18884523676781e40 * cos(theta) ** 64 - 2.13483889565743e40 * cos(theta) ** 62 + 1.83666076054968e40 * cos(theta) ** 60 - 1.39823206287008e40 * cos(theta) ** 58 + 9.44149346374282e39 * cos(theta) ** 56 - 5.66416047298946e39 * cos(theta) ** 54 + 3.02215273558834e39 * cos(theta) ** 52 - 1.43479216877556e39 * cos(theta) ** 50 + 6.06076002327606e38 * cos(theta) ** 48 - 2.27656919955225e38 * cos(theta) ** 46 + 7.59590303525653e37 * cos(theta) ** 44 - 2.24764600292546e37 * cos(theta) ** 42 + 5.88571535437596e36 * cos(theta) ** 40 - 1.36025421523356e36 * cos(theta) ** 38 + 2.76535197602426e35 * cos(theta) ** 36 - 4.92556331607375e34 * cos(theta) ** 34 + 7.65016893775574e33 * cos(theta) ** 32 - 1.03026983250797e33 * cos(theta) ** 30 + 1.19511300570924e32 * cos(theta) ** 28 - 1.18476977749303e31 * cos(theta) ** 26 + 9.94447772947407e29 * cos(theta) ** 24 - 6.98924332400011e28 * cos(theta) ** 22 + 4.05861037668181e27 * cos(theta) ** 20 - 1.91586576787465e26 * cos(theta) ** 18 + 7.20568983492676e24 * cos(theta) ** 16 - 2.10538782612908e23 * cos(theta) ** 14 + 4.62555026986349e21 * cos(theta) ** 12 - 7.31575168490272e19 * cos(theta) ** 10 + 7.83830537668149e17 * cos(theta) ** 8 - 5.19707673566379e15 * cos(theta) ** 6 + 18377216179857.8 * cos(theta) ** 4 - 25901643664.3521 * cos(theta) ** 2 + 6068801.23344707 ) * sin(4 * phi) ) # @torch.jit.script def Yl92_m_minus_3(theta, phi): return ( 6.85950633855616e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 2.19165610240493e32 * cos(theta) ** 89 - 4.68990453388946e33 * cos(theta) ** 87 + 4.84666653626532e34 * cos(theta) ** 85 - 3.22208557438868e35 * cos(theta) ** 83 + 1.54869452113625e36 * cos(theta) ** 81 - 5.73459456969309e36 * cos(theta) ** 79 + 1.70214700088867e37 * cos(theta) ** 77 - 4.16080377995009e37 * cos(theta) ** 75 + 8.54011130869933e37 * cos(theta) ** 73 - 1.49324101924563e38 * cos(theta) ** 71 + 2.24891147443963e38 * cos(theta) ** 69 - 2.9425244389489e38 * cos(theta) ** 67 + 3.36745421041202e38 * cos(theta) ** 65 - 3.38863316771021e38 * cos(theta) ** 63 + 3.01091927958964e38 * cos(theta) ** 61 - 2.36988485232217e38 * cos(theta) ** 59 + 1.65640236206014e38 * cos(theta) ** 57 - 1.02984735872536e38 * cos(theta) ** 55 + 5.70217497280818e37 * cos(theta) ** 53 - 2.81331797799129e37 * cos(theta) ** 51 + 1.23688980066858e37 * cos(theta) ** 49 - 4.84376425436648e36 * cos(theta) ** 47 + 1.68797845227923e36 * cos(theta) ** 45 - 5.22708372773362e35 * cos(theta) ** 43 + 1.4355403303356e35 * cos(theta) ** 41 - 3.48783132111168e34 * cos(theta) ** 39 + 7.47392425952503e33 * cos(theta) ** 37 - 1.4073038045925e33 * cos(theta) ** 35 + 2.31823301144113e32 * cos(theta) ** 33 - 3.32345107260635e31 * cos(theta) ** 31 + 4.12107933003187e30 * cos(theta) ** 29 - 4.38803621293716e29 * cos(theta) ** 27 + 3.97779109178963e28 * cos(theta) ** 25 - 3.03880144521744e27 * cos(theta) ** 23 + 1.93267160794372e26 * cos(theta) ** 21 - 1.00835040414455e25 * cos(theta) ** 19 + 4.23864107936868e23 * cos(theta) ** 17 - 1.40359188408605e22 * cos(theta) ** 15 + 3.55811559220269e20 * cos(theta) ** 13 - 6.65068334991157e18 * cos(theta) ** 11 + 8.70922819631277e16 * cos(theta) ** 9 - 742439533666255.0 * cos(theta) ** 7 + 3675443235971.56 * cos(theta) ** 5 - 8633881221.4507 * cos(theta) ** 3 + 6068801.23344707 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl92_m_minus_2(theta, phi): return ( 0.000634272553902751 * (1.0 - cos(theta) ** 2) * ( 2.43517344711659e30 * cos(theta) ** 90 - 5.32943697032893e31 * cos(theta) ** 88 + 5.63565876309921e32 * cos(theta) ** 86 - 3.83581615998652e33 * cos(theta) ** 84 + 1.88865185504421e34 * cos(theta) ** 82 - 7.16824321211636e34 * cos(theta) ** 80 + 2.18223974472907e35 * cos(theta) ** 78 - 5.4747418157238e35 * cos(theta) ** 76 + 1.15406909577018e36 * cos(theta) ** 74 - 2.07394586006338e36 * cos(theta) ** 72 + 3.2127306777709e36 * cos(theta) ** 70 - 4.32724182198368e36 * cos(theta) ** 68 + 5.10220334910912e36 * cos(theta) ** 66 - 5.2947393245472e36 * cos(theta) ** 64 + 4.85632141869297e36 * cos(theta) ** 62 - 3.94980808720362e36 * cos(theta) ** 60 + 2.85586614148301e36 * cos(theta) ** 58 - 1.83901314058099e36 * cos(theta) ** 56 + 1.05595832829781e36 * cos(theta) ** 54 - 5.41022688075248e35 * cos(theta) ** 52 + 2.47377960133717e35 * cos(theta) ** 50 - 1.00911755299302e35 * cos(theta) ** 48 + 3.66951837452006e34 * cos(theta) ** 46 - 1.18797357448491e34 * cos(theta) ** 44 + 3.41795316746572e33 * cos(theta) ** 42 - 8.7195783027792e32 * cos(theta) ** 40 + 1.96682217355922e32 * cos(theta) ** 38 - 3.90917723497917e31 * cos(theta) ** 36 + 6.81833238659157e30 * cos(theta) ** 34 - 1.03857846018948e30 * cos(theta) ** 32 + 1.37369311001062e29 * cos(theta) ** 30 - 1.5671557903347e28 * cos(theta) ** 28 + 1.52991965068832e27 * cos(theta) ** 26 - 1.2661672688406e26 * cos(theta) ** 24 + 8.78487094519873e24 * cos(theta) ** 22 - 5.04175202072275e23 * cos(theta) ** 20 + 2.35480059964927e22 * cos(theta) ** 18 - 8.77244927553782e20 * cos(theta) ** 16 + 2.54151113728763e19 * cos(theta) ** 14 - 5.54223612492631e17 * cos(theta) ** 12 + 8.70922819631277e15 * cos(theta) ** 10 - 92804941708281.9 * cos(theta) ** 8 + 612573872661.927 * cos(theta) ** 6 - 2158470305.36267 * cos(theta) ** 4 + 3034400.61672353 * cos(theta) ** 2 - 709.801313853458 ) * sin(2 * phi) ) # @torch.jit.script def Yl92_m_minus_1(theta, phi): return ( 0.0586624966031447 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 2.6760147770512e28 * cos(theta) ** 91 - 5.98813142733587e29 * cos(theta) ** 89 + 6.47776869321748e30 * cos(theta) ** 87 - 4.51272489410179e31 * cos(theta) ** 85 + 2.27548416270387e32 * cos(theta) ** 83 - 8.84968297792144e32 * cos(theta) ** 81 + 2.76232879079629e33 * cos(theta) ** 79 - 7.1100543061348e33 * cos(theta) ** 77 + 1.53875879436024e34 * cos(theta) ** 75 - 2.84102172611421e34 * cos(theta) ** 73 + 4.52497278559282e34 * cos(theta) ** 71 - 6.27136495939663e34 * cos(theta) ** 69 + 7.61522887926734e34 * cos(theta) ** 67 - 8.14575280699569e34 * cos(theta) ** 65 + 7.70844669633805e34 * cos(theta) ** 63 - 6.47509522492396e34 * cos(theta) ** 61 + 4.84045108725933e34 * cos(theta) ** 59 - 3.22633884312455e34 * cos(theta) ** 57 + 1.91992423326875e34 * cos(theta) ** 55 - 1.02079752467028e34 * cos(theta) ** 53 + 4.85054823791602e33 * cos(theta) ** 51 - 2.05942357753677e33 * cos(theta) ** 49 + 7.80748590323418e32 * cos(theta) ** 47 - 2.63994127663314e32 * cos(theta) ** 45 + 7.9487282964319e31 * cos(theta) ** 43 - 2.126726415312e31 * cos(theta) ** 41 + 5.04313377835697e30 * cos(theta) ** 39 - 1.05653438783221e30 * cos(theta) ** 37 + 1.94809496759759e29 * cos(theta) ** 35 - 3.14720745511965e28 * cos(theta) ** 33 + 4.43126809680847e27 * cos(theta) ** 31 - 5.40398548391276e26 * cos(theta) ** 29 + 5.6663690766234e25 * cos(theta) ** 27 - 5.0646690753624e24 * cos(theta) ** 25 + 3.81950910660814e23 * cos(theta) ** 23 - 2.40083429558226e22 * cos(theta) ** 21 + 1.23936873665751e21 * cos(theta) ** 19 - 5.16026427972813e19 * cos(theta) ** 17 + 1.69434075819176e18 * cos(theta) ** 15 - 4.26325855763562e16 * cos(theta) ** 13 + 791748017846615.0 * cos(theta) ** 11 - 10311660189809.1 * cos(theta) ** 9 + 87510553237.4181 * cos(theta) ** 7 - 431694061.072535 * cos(theta) ** 5 + 1011466.87224118 * cos(theta) ** 3 - 709.801313853458 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl92_m0(theta, phi): return ( 3.50615801430925e27 * cos(theta) ** 92 - 8.02009696606477e28 * cos(theta) ** 90 + 8.87306307985895e29 * cos(theta) ** 88 - 6.32515558094973e30 * cos(theta) ** 86 + 3.26531689948747e31 * cos(theta) ** 84 - 1.30090225275581e32 * cos(theta) ** 82 + 4.16213524219849e32 * cos(theta) ** 80 - 1.09877588682934e33 * cos(theta) ** 78 + 2.4405502870921e33 * cos(theta) ** 76 - 4.6277899655439e33 * cos(theta) ** 74 + 7.57555193753581e33 * cos(theta) ** 72 - 1.07992809550148e34 * cos(theta) ** 70 + 1.34991011937685e34 * cos(theta) ** 68 - 1.48770936233211e34 * cos(theta) ** 66 + 1.45183647961891e34 * cos(theta) ** 64 - 1.25888272813407e34 * cos(theta) ** 62 + 9.72445767525137e33 * cos(theta) ** 60 - 6.70521623887609e33 * cos(theta) ** 58 + 4.13263327474354e33 * cos(theta) ** 56 - 2.27864491339243e33 * cos(theta) ** 54 + 1.12439340381537e33 * cos(theta) ** 52 - 4.96485399087305e32 * cos(theta) ** 50 + 1.96065317176644e32 * cos(theta) ** 48 - 6.91778785659225e31 * cos(theta) ** 46 + 2.17758833077037e31 * cos(theta) ** 44 - 6.10369943972969e30 * cos(theta) ** 42 + 1.5197470264914e30 * cos(theta) ** 40 - 3.35143534255949e29 * cos(theta) ** 38 + 6.52286557535803e28 * cos(theta) ** 36 - 1.1157766257061e28 * cos(theta) ** 34 + 1.66920183205632e27 * cos(theta) ** 32 - 2.17131945633343e26 * cos(theta) ** 30 + 2.43936974045724e25 * cos(theta) ** 28 - 2.34805643466472e24 * cos(theta) ** 26 + 1.91834676034699e23 * cos(theta) ** 24 - 1.31543777852365e22 * cos(theta) ** 22 + 7.46966880135112e20 * cos(theta) ** 20 - 3.45565393780549e19 * cos(theta) ** 18 + 1.27647284520579e18 * cos(theta) ** 16 - 3.67066238736389e16 * cos(theta) ** 14 + 795310183928843.0 * cos(theta) ** 12 - 12429664252735.9 * cos(theta) ** 10 + 131856410036.095 * cos(theta) ** 8 - 867272605.358388 * cos(theta) ** 6 + 3048052.73673285 * cos(theta) ** 4 - 4277.96875330927 * cos(theta) ** 2 + 0.999992695958221 ) # @torch.jit.script def Yl92_m1(theta, phi): return ( 0.0586624966031447 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 2.6760147770512e28 * cos(theta) ** 91 - 5.98813142733587e29 * cos(theta) ** 89 + 6.47776869321748e30 * cos(theta) ** 87 - 4.51272489410179e31 * cos(theta) ** 85 + 2.27548416270387e32 * cos(theta) ** 83 - 8.84968297792144e32 * cos(theta) ** 81 + 2.76232879079629e33 * cos(theta) ** 79 - 7.1100543061348e33 * cos(theta) ** 77 + 1.53875879436024e34 * cos(theta) ** 75 - 2.84102172611421e34 * cos(theta) ** 73 + 4.52497278559282e34 * cos(theta) ** 71 - 6.27136495939663e34 * cos(theta) ** 69 + 7.61522887926734e34 * cos(theta) ** 67 - 8.14575280699569e34 * cos(theta) ** 65 + 7.70844669633805e34 * cos(theta) ** 63 - 6.47509522492396e34 * cos(theta) ** 61 + 4.84045108725933e34 * cos(theta) ** 59 - 3.22633884312455e34 * cos(theta) ** 57 + 1.91992423326875e34 * cos(theta) ** 55 - 1.02079752467028e34 * cos(theta) ** 53 + 4.85054823791602e33 * cos(theta) ** 51 - 2.05942357753677e33 * cos(theta) ** 49 + 7.80748590323418e32 * cos(theta) ** 47 - 2.63994127663314e32 * cos(theta) ** 45 + 7.9487282964319e31 * cos(theta) ** 43 - 2.126726415312e31 * cos(theta) ** 41 + 5.04313377835697e30 * cos(theta) ** 39 - 1.05653438783221e30 * cos(theta) ** 37 + 1.94809496759759e29 * cos(theta) ** 35 - 3.14720745511965e28 * cos(theta) ** 33 + 4.43126809680847e27 * cos(theta) ** 31 - 5.40398548391276e26 * cos(theta) ** 29 + 5.6663690766234e25 * cos(theta) ** 27 - 5.0646690753624e24 * cos(theta) ** 25 + 3.81950910660814e23 * cos(theta) ** 23 - 2.40083429558226e22 * cos(theta) ** 21 + 1.23936873665751e21 * cos(theta) ** 19 - 5.16026427972813e19 * cos(theta) ** 17 + 1.69434075819176e18 * cos(theta) ** 15 - 4.26325855763562e16 * cos(theta) ** 13 + 791748017846615.0 * cos(theta) ** 11 - 10311660189809.1 * cos(theta) ** 9 + 87510553237.4181 * cos(theta) ** 7 - 431694061.072535 * cos(theta) ** 5 + 1011466.87224118 * cos(theta) ** 3 - 709.801313853458 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl92_m2(theta, phi): return ( 0.000634272553902751 * (1.0 - cos(theta) ** 2) * ( 2.43517344711659e30 * cos(theta) ** 90 - 5.32943697032893e31 * cos(theta) ** 88 + 5.63565876309921e32 * cos(theta) ** 86 - 3.83581615998652e33 * cos(theta) ** 84 + 1.88865185504421e34 * cos(theta) ** 82 - 7.16824321211636e34 * cos(theta) ** 80 + 2.18223974472907e35 * cos(theta) ** 78 - 5.4747418157238e35 * cos(theta) ** 76 + 1.15406909577018e36 * cos(theta) ** 74 - 2.07394586006338e36 * cos(theta) ** 72 + 3.2127306777709e36 * cos(theta) ** 70 - 4.32724182198368e36 * cos(theta) ** 68 + 5.10220334910912e36 * cos(theta) ** 66 - 5.2947393245472e36 * cos(theta) ** 64 + 4.85632141869297e36 * cos(theta) ** 62 - 3.94980808720362e36 * cos(theta) ** 60 + 2.85586614148301e36 * cos(theta) ** 58 - 1.83901314058099e36 * cos(theta) ** 56 + 1.05595832829781e36 * cos(theta) ** 54 - 5.41022688075248e35 * cos(theta) ** 52 + 2.47377960133717e35 * cos(theta) ** 50 - 1.00911755299302e35 * cos(theta) ** 48 + 3.66951837452006e34 * cos(theta) ** 46 - 1.18797357448491e34 * cos(theta) ** 44 + 3.41795316746572e33 * cos(theta) ** 42 - 8.7195783027792e32 * cos(theta) ** 40 + 1.96682217355922e32 * cos(theta) ** 38 - 3.90917723497917e31 * cos(theta) ** 36 + 6.81833238659157e30 * cos(theta) ** 34 - 1.03857846018948e30 * cos(theta) ** 32 + 1.37369311001062e29 * cos(theta) ** 30 - 1.5671557903347e28 * cos(theta) ** 28 + 1.52991965068832e27 * cos(theta) ** 26 - 1.2661672688406e26 * cos(theta) ** 24 + 8.78487094519873e24 * cos(theta) ** 22 - 5.04175202072275e23 * cos(theta) ** 20 + 2.35480059964927e22 * cos(theta) ** 18 - 8.77244927553782e20 * cos(theta) ** 16 + 2.54151113728763e19 * cos(theta) ** 14 - 5.54223612492631e17 * cos(theta) ** 12 + 8.70922819631277e15 * cos(theta) ** 10 - 92804941708281.9 * cos(theta) ** 8 + 612573872661.927 * cos(theta) ** 6 - 2158470305.36267 * cos(theta) ** 4 + 3034400.61672353 * cos(theta) ** 2 - 709.801313853458 ) * cos(2 * phi) ) # @torch.jit.script def Yl92_m3(theta, phi): return ( 6.85950633855616e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 2.19165610240493e32 * cos(theta) ** 89 - 4.68990453388946e33 * cos(theta) ** 87 + 4.84666653626532e34 * cos(theta) ** 85 - 3.22208557438868e35 * cos(theta) ** 83 + 1.54869452113625e36 * cos(theta) ** 81 - 5.73459456969309e36 * cos(theta) ** 79 + 1.70214700088867e37 * cos(theta) ** 77 - 4.16080377995009e37 * cos(theta) ** 75 + 8.54011130869933e37 * cos(theta) ** 73 - 1.49324101924563e38 * cos(theta) ** 71 + 2.24891147443963e38 * cos(theta) ** 69 - 2.9425244389489e38 * cos(theta) ** 67 + 3.36745421041202e38 * cos(theta) ** 65 - 3.38863316771021e38 * cos(theta) ** 63 + 3.01091927958964e38 * cos(theta) ** 61 - 2.36988485232217e38 * cos(theta) ** 59 + 1.65640236206014e38 * cos(theta) ** 57 - 1.02984735872536e38 * cos(theta) ** 55 + 5.70217497280818e37 * cos(theta) ** 53 - 2.81331797799129e37 * cos(theta) ** 51 + 1.23688980066858e37 * cos(theta) ** 49 - 4.84376425436648e36 * cos(theta) ** 47 + 1.68797845227923e36 * cos(theta) ** 45 - 5.22708372773362e35 * cos(theta) ** 43 + 1.4355403303356e35 * cos(theta) ** 41 - 3.48783132111168e34 * cos(theta) ** 39 + 7.47392425952503e33 * cos(theta) ** 37 - 1.4073038045925e33 * cos(theta) ** 35 + 2.31823301144113e32 * cos(theta) ** 33 - 3.32345107260635e31 * cos(theta) ** 31 + 4.12107933003187e30 * cos(theta) ** 29 - 4.38803621293716e29 * cos(theta) ** 27 + 3.97779109178963e28 * cos(theta) ** 25 - 3.03880144521744e27 * cos(theta) ** 23 + 1.93267160794372e26 * cos(theta) ** 21 - 1.00835040414455e25 * cos(theta) ** 19 + 4.23864107936868e23 * cos(theta) ** 17 - 1.40359188408605e22 * cos(theta) ** 15 + 3.55811559220269e20 * cos(theta) ** 13 - 6.65068334991157e18 * cos(theta) ** 11 + 8.70922819631277e16 * cos(theta) ** 9 - 742439533666255.0 * cos(theta) ** 7 + 3675443235971.56 * cos(theta) ** 5 - 8633881221.4507 * cos(theta) ** 3 + 6068801.23344707 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl92_m4(theta, phi): return ( 7.42099675879653e-8 * (1.0 - cos(theta) ** 2) ** 2 * ( 1.95057393114039e34 * cos(theta) ** 88 - 4.08021694448383e35 * cos(theta) ** 86 + 4.11966655582552e36 * cos(theta) ** 84 - 2.6743310267426e37 * cos(theta) ** 82 + 1.25444256212036e38 * cos(theta) ** 80 - 4.53032971005754e38 * cos(theta) ** 78 + 1.31065319068428e39 * cos(theta) ** 76 - 3.12060283496257e39 * cos(theta) ** 74 + 6.23428125535051e39 * cos(theta) ** 72 - 1.0602011236644e40 * cos(theta) ** 70 + 1.55174891736335e40 * cos(theta) ** 68 - 1.97149137409576e40 * cos(theta) ** 66 + 2.18884523676781e40 * cos(theta) ** 64 - 2.13483889565743e40 * cos(theta) ** 62 + 1.83666076054968e40 * cos(theta) ** 60 - 1.39823206287008e40 * cos(theta) ** 58 + 9.44149346374282e39 * cos(theta) ** 56 - 5.66416047298946e39 * cos(theta) ** 54 + 3.02215273558834e39 * cos(theta) ** 52 - 1.43479216877556e39 * cos(theta) ** 50 + 6.06076002327606e38 * cos(theta) ** 48 - 2.27656919955225e38 * cos(theta) ** 46 + 7.59590303525653e37 * cos(theta) ** 44 - 2.24764600292546e37 * cos(theta) ** 42 + 5.88571535437596e36 * cos(theta) ** 40 - 1.36025421523356e36 * cos(theta) ** 38 + 2.76535197602426e35 * cos(theta) ** 36 - 4.92556331607375e34 * cos(theta) ** 34 + 7.65016893775574e33 * cos(theta) ** 32 - 1.03026983250797e33 * cos(theta) ** 30 + 1.19511300570924e32 * cos(theta) ** 28 - 1.18476977749303e31 * cos(theta) ** 26 + 9.94447772947407e29 * cos(theta) ** 24 - 6.98924332400011e28 * cos(theta) ** 22 + 4.05861037668181e27 * cos(theta) ** 20 - 1.91586576787465e26 * cos(theta) ** 18 + 7.20568983492676e24 * cos(theta) ** 16 - 2.10538782612908e23 * cos(theta) ** 14 + 4.62555026986349e21 * cos(theta) ** 12 - 7.31575168490272e19 * cos(theta) ** 10 + 7.83830537668149e17 * cos(theta) ** 8 - 5.19707673566379e15 * cos(theta) ** 6 + 18377216179857.8 * cos(theta) ** 4 - 25901643664.3521 * cos(theta) ** 2 + 6068801.23344707 ) * cos(4 * phi) ) # @torch.jit.script def Yl92_m5(theta, phi): return ( 8.0322097084169e-10 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.71650505940354e36 * cos(theta) ** 87 - 3.50898657225609e37 * cos(theta) ** 85 + 3.46051990689344e38 * cos(theta) ** 83 - 2.19295144192893e39 * cos(theta) ** 81 + 1.00355404969629e40 * cos(theta) ** 79 - 3.53365717384488e40 * cos(theta) ** 77 + 9.96096424920051e40 * cos(theta) ** 75 - 2.3092460978723e41 * cos(theta) ** 73 + 4.48868250385237e41 * cos(theta) ** 71 - 7.42140786565079e41 * cos(theta) ** 69 + 1.05518926380708e42 * cos(theta) ** 67 - 1.3011843069032e42 * cos(theta) ** 65 + 1.4008609515314e42 * cos(theta) ** 63 - 1.32360011530761e42 * cos(theta) ** 61 + 1.10199645632981e42 * cos(theta) ** 59 - 8.10974596464646e41 * cos(theta) ** 57 + 5.28723633969598e41 * cos(theta) ** 55 - 3.05864665541431e41 * cos(theta) ** 53 + 1.57151942250593e41 * cos(theta) ** 51 - 7.17396084387779e40 * cos(theta) ** 49 + 2.90916481117251e40 * cos(theta) ** 47 - 1.04722183179403e40 * cos(theta) ** 45 + 3.34219733551287e39 * cos(theta) ** 43 - 9.44011321228691e38 * cos(theta) ** 41 + 2.35428614175039e38 * cos(theta) ** 39 - 5.16896601788751e37 * cos(theta) ** 37 + 9.95526711368734e36 * cos(theta) ** 35 - 1.67469152746507e36 * cos(theta) ** 33 + 2.44805406008184e35 * cos(theta) ** 31 - 3.0908094975239e34 * cos(theta) ** 29 + 3.34631641598588e33 * cos(theta) ** 27 - 3.08040142148189e32 * cos(theta) ** 25 + 2.38667465507378e31 * cos(theta) ** 23 - 1.53763353128002e30 * cos(theta) ** 21 + 8.11722075336363e28 * cos(theta) ** 19 - 3.44855838217436e27 * cos(theta) ** 17 + 1.15291037358828e26 * cos(theta) ** 15 - 2.94754295658071e24 * cos(theta) ** 13 + 5.55066032383619e22 * cos(theta) ** 11 - 7.31575168490272e20 * cos(theta) ** 9 + 6.27064430134519e18 * cos(theta) ** 7 - 3.11824604139827e16 * cos(theta) ** 5 + 73508864719431.2 * cos(theta) ** 3 - 51803287328.7042 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl92_m6(theta, phi): return ( 8.69886066509475e-12 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.49335940168108e38 * cos(theta) ** 86 - 2.98263858641768e39 * cos(theta) ** 84 + 2.87223152272155e40 * cos(theta) ** 82 - 1.77629066796244e41 * cos(theta) ** 80 + 7.9280769926007e41 * cos(theta) ** 78 - 2.72091602386056e42 * cos(theta) ** 76 + 7.47072318690038e42 * cos(theta) ** 74 - 1.68574965144678e43 * cos(theta) ** 72 + 3.18696457773518e43 * cos(theta) ** 70 - 5.12077142729904e43 * cos(theta) ** 68 + 7.06976806750741e43 * cos(theta) ** 66 - 8.45769799487082e43 * cos(theta) ** 64 + 8.82542399464781e43 * cos(theta) ** 62 - 8.0739607033764e43 * cos(theta) ** 60 + 6.50177909234587e43 * cos(theta) ** 58 - 4.62255519984848e43 * cos(theta) ** 56 + 2.90797998683279e43 * cos(theta) ** 54 - 1.62108272736958e43 * cos(theta) ** 52 + 8.01474905478027e42 * cos(theta) ** 50 - 3.51524081350012e42 * cos(theta) ** 48 + 1.36730746125108e42 * cos(theta) ** 46 - 4.71249824307315e41 * cos(theta) ** 44 + 1.43714485427054e41 * cos(theta) ** 42 - 3.87044641703763e40 * cos(theta) ** 40 + 9.1817159528265e39 * cos(theta) ** 38 - 1.91251742661838e39 * cos(theta) ** 36 + 3.48434348979057e38 * cos(theta) ** 34 - 5.52648204063475e37 * cos(theta) ** 32 + 7.58896758625369e36 * cos(theta) ** 30 - 8.96334754281932e35 * cos(theta) ** 28 + 9.03505432316188e34 * cos(theta) ** 26 - 7.70100355370472e33 * cos(theta) ** 24 + 5.48935170666969e32 * cos(theta) ** 22 - 3.22903041568805e31 * cos(theta) ** 20 + 1.54227194313909e30 * cos(theta) ** 18 - 5.86254924969642e28 * cos(theta) ** 16 + 1.72936556038242e27 * cos(theta) ** 14 - 3.83180584355492e25 * cos(theta) ** 12 + 6.10572635621981e23 * cos(theta) ** 10 - 6.58417651641245e21 * cos(theta) ** 8 + 4.38945101094163e19 * cos(theta) ** 6 - 1.55912302069914e17 * cos(theta) ** 4 + 220526594158294.0 * cos(theta) ** 2 - 51803287328.7042 ) * cos(6 * phi) ) # @torch.jit.script def Yl92_m7(theta, phi): return ( 9.42747852128868e-14 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.28428908544573e40 * cos(theta) ** 85 - 2.50541641259085e41 * cos(theta) ** 83 + 2.35522984863167e42 * cos(theta) ** 81 - 1.42103253436995e43 * cos(theta) ** 79 + 6.18390005422855e43 * cos(theta) ** 77 - 2.06789617813403e44 * cos(theta) ** 75 + 5.52833515830628e44 * cos(theta) ** 73 - 1.21373974904168e45 * cos(theta) ** 71 + 2.23087520441463e45 * cos(theta) ** 69 - 3.48212457056335e45 * cos(theta) ** 67 + 4.66604692455489e45 * cos(theta) ** 65 - 5.41292671671733e45 * cos(theta) ** 63 + 5.47176287668164e45 * cos(theta) ** 61 - 4.84437642202584e45 * cos(theta) ** 59 + 3.77103187356061e45 * cos(theta) ** 57 - 2.58863091191515e45 * cos(theta) ** 55 + 1.57030919288971e45 * cos(theta) ** 53 - 8.42963018232183e44 * cos(theta) ** 51 + 4.00737452739013e44 * cos(theta) ** 49 - 1.68731559048006e44 * cos(theta) ** 47 + 6.28961432175497e43 * cos(theta) ** 45 - 2.07349922695219e43 * cos(theta) ** 43 + 6.03600838793625e42 * cos(theta) ** 41 - 1.54817856681505e42 * cos(theta) ** 39 + 3.48905206207407e41 * cos(theta) ** 37 - 6.88506273582617e40 * cos(theta) ** 35 + 1.18467678652879e40 * cos(theta) ** 33 - 1.76847425300312e39 * cos(theta) ** 31 + 2.27669027587611e38 * cos(theta) ** 29 - 2.50973731198941e37 * cos(theta) ** 27 + 2.34911412402209e36 * cos(theta) ** 25 - 1.84824085288913e35 * cos(theta) ** 23 + 1.20765737546733e34 * cos(theta) ** 21 - 6.4580608313761e32 * cos(theta) ** 19 + 2.77608949765036e31 * cos(theta) ** 17 - 9.38007879951426e29 * cos(theta) ** 15 + 2.42111178453539e28 * cos(theta) ** 13 - 4.5981670122659e26 * cos(theta) ** 11 + 6.10572635621981e24 * cos(theta) ** 9 - 5.26734121312996e22 * cos(theta) ** 7 + 2.63367060656498e20 * cos(theta) ** 5 - 6.23649208279654e17 * cos(theta) ** 3 + 441053188316587.0 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl92_m8(theta, phi): return ( 1.02255361584935e-15 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.09164572262887e42 * cos(theta) ** 84 - 2.0794956224504e43 * cos(theta) ** 82 + 1.90773617739166e44 * cos(theta) ** 80 - 1.12261570215226e45 * cos(theta) ** 78 + 4.76160304175598e45 * cos(theta) ** 76 - 1.55092213360052e46 * cos(theta) ** 74 + 4.03568466556359e46 * cos(theta) ** 72 - 8.61755221819593e46 * cos(theta) ** 70 + 1.53930389104609e47 * cos(theta) ** 68 - 2.33302346227744e47 * cos(theta) ** 66 + 3.03293050096068e47 * cos(theta) ** 64 - 3.41014383153192e47 * cos(theta) ** 62 + 3.3377753547758e47 * cos(theta) ** 60 - 2.85818208899525e47 * cos(theta) ** 58 + 2.14948816792955e47 * cos(theta) ** 56 - 1.42374700155333e47 * cos(theta) ** 54 + 8.32263872231544e46 * cos(theta) ** 52 - 4.29911139298413e46 * cos(theta) ** 50 + 1.96361351842117e46 * cos(theta) ** 48 - 7.93038327525626e45 * cos(theta) ** 46 + 2.83032644478974e45 * cos(theta) ** 44 - 8.91604667589441e44 * cos(theta) ** 42 + 2.47476343905386e44 * cos(theta) ** 40 - 6.03789641057871e43 * cos(theta) ** 38 + 1.29094926296741e43 * cos(theta) ** 36 - 2.40977195753916e42 * cos(theta) ** 34 + 3.90943339554502e41 * cos(theta) ** 32 - 5.48227018430967e40 * cos(theta) ** 30 + 6.60240180004071e39 * cos(theta) ** 28 - 6.77629074237141e38 * cos(theta) ** 26 + 5.87278531005522e37 * cos(theta) ** 24 - 4.25095396164501e36 * cos(theta) ** 22 + 2.5360804884814e35 * cos(theta) ** 20 - 1.22703155796146e34 * cos(theta) ** 18 + 4.71935214600561e32 * cos(theta) ** 16 - 1.40701181992714e31 * cos(theta) ** 14 + 3.14744531989601e29 * cos(theta) ** 12 - 5.05798371349249e27 * cos(theta) ** 10 + 5.49515372059783e25 * cos(theta) ** 8 - 3.68713884919097e23 * cos(theta) ** 6 + 1.31683530328249e21 * cos(theta) ** 4 - 1.87094762483896e18 * cos(theta) ** 2 + 441053188316587.0 ) * cos(8 * phi) ) # @torch.jit.script def Yl92_m9(theta, phi): return ( 1.11016046922451e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 9.16982407008251e43 * cos(theta) ** 83 - 1.70518641040933e45 * cos(theta) ** 81 + 1.52618894191332e46 * cos(theta) ** 79 - 8.75640247678762e46 * cos(theta) ** 77 + 3.61881831173454e47 * cos(theta) ** 75 - 1.14768237886438e48 * cos(theta) ** 73 + 2.90569295920578e48 * cos(theta) ** 71 - 6.03228655273715e48 * cos(theta) ** 69 + 1.04672664591134e49 * cos(theta) ** 67 - 1.53979548510311e49 * cos(theta) ** 65 + 1.94107552061483e49 * cos(theta) ** 63 - 2.11428917554979e49 * cos(theta) ** 61 + 2.00266521286548e49 * cos(theta) ** 59 - 1.65774561161724e49 * cos(theta) ** 57 + 1.20371337404055e49 * cos(theta) ** 55 - 7.688233808388e48 * cos(theta) ** 53 + 4.32777213560403e48 * cos(theta) ** 51 - 2.14955569649207e48 * cos(theta) ** 49 + 9.42534488842159e47 * cos(theta) ** 47 - 3.64797630661788e47 * cos(theta) ** 45 + 1.24534363570748e47 * cos(theta) ** 43 - 3.74473960387565e46 * cos(theta) ** 41 + 9.89905375621545e45 * cos(theta) ** 39 - 2.29440063601991e45 * cos(theta) ** 37 + 4.64741734668266e44 * cos(theta) ** 35 - 8.19322465563314e43 * cos(theta) ** 33 + 1.25101868657441e43 * cos(theta) ** 31 - 1.6446810552929e42 * cos(theta) ** 29 + 1.8486725040114e41 * cos(theta) ** 27 - 1.76183559301657e40 * cos(theta) ** 25 + 1.40946847441325e39 * cos(theta) ** 23 - 9.35209871561902e37 * cos(theta) ** 21 + 5.07216097696279e36 * cos(theta) ** 19 - 2.20865680433063e35 * cos(theta) ** 17 + 7.55096343360898e33 * cos(theta) ** 15 - 1.969816547898e32 * cos(theta) ** 13 + 3.77693438387521e30 * cos(theta) ** 11 - 5.05798371349249e28 * cos(theta) ** 9 + 4.39612297647827e26 * cos(theta) ** 7 - 2.21228330951458e24 * cos(theta) ** 5 + 5.26734121312996e21 * cos(theta) ** 3 - 3.74189524967793e18 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl92_m10(theta, phi): return ( 1.20655361938957e-19 * (1.0 - cos(theta) ** 2) ** 5 * ( 7.61095397816848e45 * cos(theta) ** 82 - 1.38120099243156e47 * cos(theta) ** 80 + 1.20568926411153e48 * cos(theta) ** 78 - 6.74242990712647e48 * cos(theta) ** 76 + 2.71411373380091e49 * cos(theta) ** 74 - 8.37808136571e49 * cos(theta) ** 72 + 2.06304200103611e50 * cos(theta) ** 70 - 4.16227772138863e50 * cos(theta) ** 68 + 7.013068527606e50 * cos(theta) ** 66 - 1.00086706531702e51 * cos(theta) ** 64 + 1.22287757798734e51 * cos(theta) ** 62 - 1.28971639708537e51 * cos(theta) ** 60 + 1.18157247559063e51 * cos(theta) ** 58 - 9.44914998621828e50 * cos(theta) ** 56 + 6.620423557223e50 * cos(theta) ** 54 - 4.07476391844564e50 * cos(theta) ** 52 + 2.20716378915805e50 * cos(theta) ** 50 - 1.05328229128111e50 * cos(theta) ** 48 + 4.42991209755815e49 * cos(theta) ** 46 - 1.64158933797805e49 * cos(theta) ** 44 + 5.35497763354218e48 * cos(theta) ** 42 - 1.53534323758902e48 * cos(theta) ** 40 + 3.86063096492403e47 * cos(theta) ** 38 - 8.48928235327366e46 * cos(theta) ** 36 + 1.62659607133893e46 * cos(theta) ** 34 - 2.70376413635894e45 * cos(theta) ** 32 + 3.87815792838066e44 * cos(theta) ** 30 - 4.76957506034941e43 * cos(theta) ** 28 + 4.99141576083078e42 * cos(theta) ** 26 - 4.40458898254142e41 * cos(theta) ** 24 + 3.24177749115048e40 * cos(theta) ** 22 - 1.96394073027999e39 * cos(theta) ** 20 + 9.6371058562293e37 * cos(theta) ** 18 - 3.75471656736207e36 * cos(theta) ** 16 + 1.13264451504135e35 * cos(theta) ** 14 - 2.56076151226739e33 * cos(theta) ** 12 + 4.15462782226273e31 * cos(theta) ** 10 - 4.55218534214324e29 * cos(theta) ** 8 + 3.07728608353479e27 * cos(theta) ** 6 - 1.10614165475729e25 * cos(theta) ** 4 + 1.58020236393899e22 * cos(theta) ** 2 - 3.74189524967793e18 ) * cos(10 * phi) ) # @torch.jit.script def Yl92_m11(theta, phi): return ( 1.31286807653569e-21 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 6.24098226209815e47 * cos(theta) ** 81 - 1.10496079394525e49 * cos(theta) ** 79 + 9.4043762600699e49 * cos(theta) ** 77 - 5.12424672941612e50 * cos(theta) ** 75 + 2.00844416301267e51 * cos(theta) ** 73 - 6.0322185833112e51 * cos(theta) ** 71 + 1.44412940072527e52 * cos(theta) ** 69 - 2.83034885054427e52 * cos(theta) ** 67 + 4.62862522821996e52 * cos(theta) ** 65 - 6.40554921802895e52 * cos(theta) ** 63 + 7.58184098352154e52 * cos(theta) ** 61 - 7.73829838251222e52 * cos(theta) ** 59 + 6.85312035842568e52 * cos(theta) ** 57 - 5.29152399228224e52 * cos(theta) ** 55 + 3.57502872090042e52 * cos(theta) ** 53 - 2.11887723759173e52 * cos(theta) ** 51 + 1.10358189457903e52 * cos(theta) ** 49 - 5.05575499814934e51 * cos(theta) ** 47 + 2.03775956487675e51 * cos(theta) ** 45 - 7.2229930871034e50 * cos(theta) ** 43 + 2.24909060608772e50 * cos(theta) ** 41 - 6.14137295035607e49 * cos(theta) ** 39 + 1.46703976667113e49 * cos(theta) ** 37 - 3.05614164717852e48 * cos(theta) ** 35 + 5.53042664255237e47 * cos(theta) ** 33 - 8.65204523634859e46 * cos(theta) ** 31 + 1.1634473785142e46 * cos(theta) ** 29 - 1.33548101689784e45 * cos(theta) ** 27 + 1.297768097816e44 * cos(theta) ** 25 - 1.05710135580994e43 * cos(theta) ** 23 + 7.13191048053106e41 * cos(theta) ** 21 - 3.92788146055999e40 * cos(theta) ** 19 + 1.73467905412127e39 * cos(theta) ** 17 - 6.00754650777931e37 * cos(theta) ** 15 + 1.58570232105789e36 * cos(theta) ** 13 - 3.07291381472087e34 * cos(theta) ** 11 + 4.15462782226273e32 * cos(theta) ** 9 - 3.64174827371459e30 * cos(theta) ** 7 + 1.84637165012087e28 * cos(theta) ** 5 - 4.42456661902917e25 * cos(theta) ** 3 + 3.16040472787798e22 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl92_m12(theta, phi): return ( 1.43041451731379e-23 * (1.0 - cos(theta) ** 2) ** 6 * ( 5.0551956322995e49 * cos(theta) ** 80 - 8.72919027216745e50 * cos(theta) ** 78 + 7.24136972025383e51 * cos(theta) ** 76 - 3.84318504706209e52 * cos(theta) ** 74 + 1.46616423899925e53 * cos(theta) ** 72 - 4.28287519415095e53 * cos(theta) ** 70 + 9.96449286500439e53 * cos(theta) ** 68 - 1.89633372986466e54 * cos(theta) ** 66 + 3.00860639834297e54 * cos(theta) ** 64 - 4.03549600735824e54 * cos(theta) ** 62 + 4.62492299994814e54 * cos(theta) ** 60 - 4.56559604568221e54 * cos(theta) ** 58 + 3.90627860430264e54 * cos(theta) ** 56 - 2.91033819575523e54 * cos(theta) ** 54 + 1.89476522207722e54 * cos(theta) ** 52 - 1.08062739117178e54 * cos(theta) ** 50 + 5.40755128343723e53 * cos(theta) ** 48 - 2.37620484913019e53 * cos(theta) ** 46 + 9.16991804194537e52 * cos(theta) ** 44 - 3.10588702745446e52 * cos(theta) ** 42 + 9.22127148495963e51 * cos(theta) ** 40 - 2.39513545063887e51 * cos(theta) ** 38 + 5.42804713668318e50 * cos(theta) ** 36 - 1.06964957651248e50 * cos(theta) ** 34 + 1.82504079204228e49 * cos(theta) ** 32 - 2.68213402326806e48 * cos(theta) ** 30 + 3.37399739769117e47 * cos(theta) ** 28 - 3.60579874562416e46 * cos(theta) ** 26 + 3.24442024454001e45 * cos(theta) ** 24 - 2.43133311836286e44 * cos(theta) ** 22 + 1.49770120091152e43 * cos(theta) ** 20 - 7.46297477506397e41 * cos(theta) ** 18 + 2.94895439200617e40 * cos(theta) ** 16 - 9.01131976166896e38 * cos(theta) ** 14 + 2.06141301737525e37 * cos(theta) ** 12 - 3.38020519619296e35 * cos(theta) ** 10 + 3.73916504003646e33 * cos(theta) ** 8 - 2.54922379160022e31 * cos(theta) ** 6 + 9.23185825060436e28 * cos(theta) ** 4 - 1.32736998570875e26 * cos(theta) ** 2 + 3.16040472787798e22 ) * cos(12 * phi) ) # @torch.jit.script def Yl92_m13(theta, phi): return ( 1.56071019065575e-25 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 4.0441565058396e51 * cos(theta) ** 79 - 6.80876841229061e52 * cos(theta) ** 77 + 5.50344098739291e53 * cos(theta) ** 75 - 2.84395693482594e54 * cos(theta) ** 73 + 1.05563825207946e55 * cos(theta) ** 71 - 2.99801263590567e55 * cos(theta) ** 69 + 6.77585514820298e55 * cos(theta) ** 67 - 1.25158026171068e56 * cos(theta) ** 65 + 1.9255080949395e56 * cos(theta) ** 63 - 2.50200752456211e56 * cos(theta) ** 61 + 2.77495379996888e56 * cos(theta) ** 59 - 2.64804570649568e56 * cos(theta) ** 57 + 2.18751601840948e56 * cos(theta) ** 55 - 1.57158262570782e56 * cos(theta) ** 53 + 9.85277915480156e55 * cos(theta) ** 51 - 5.40313695585892e55 * cos(theta) ** 49 + 2.59562461604987e55 * cos(theta) ** 47 - 1.09305423059989e55 * cos(theta) ** 45 + 4.03476393845596e54 * cos(theta) ** 43 - 1.30447255153087e54 * cos(theta) ** 41 + 3.68850859398385e53 * cos(theta) ** 39 - 9.10151471242769e52 * cos(theta) ** 37 + 1.95409696920595e52 * cos(theta) ** 35 - 3.63680856014244e51 * cos(theta) ** 33 + 5.8401305345353e50 * cos(theta) ** 31 - 8.04640206980419e49 * cos(theta) ** 29 + 9.44719271353529e48 * cos(theta) ** 27 - 9.3750767386228e47 * cos(theta) ** 25 + 7.78660858689602e46 * cos(theta) ** 23 - 5.3489328603983e45 * cos(theta) ** 21 + 2.99540240182305e44 * cos(theta) ** 19 - 1.34333545951152e43 * cos(theta) ** 17 + 4.71832702720987e41 * cos(theta) ** 15 - 1.26158476663365e40 * cos(theta) ** 13 + 2.4736956208503e38 * cos(theta) ** 11 - 3.38020519619296e36 * cos(theta) ** 9 + 2.99133203202917e34 * cos(theta) ** 7 - 1.52953427496013e32 * cos(theta) ** 5 + 3.69274330024174e29 * cos(theta) ** 3 - 2.6547399714175e26 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl92_m14(theta, phi): return ( 1.70551595998805e-27 * (1.0 - cos(theta) ** 2) ** 7 * ( 3.19488363961329e53 * cos(theta) ** 78 - 5.24275167746377e54 * cos(theta) ** 76 + 4.12758074054468e55 * cos(theta) ** 74 - 2.07608856242294e56 * cos(theta) ** 72 + 7.49503158976417e56 * cos(theta) ** 70 - 2.06862871877491e57 * cos(theta) ** 68 + 4.539822949296e57 * cos(theta) ** 66 - 8.1352717011194e57 * cos(theta) ** 64 + 1.21307009981189e58 * cos(theta) ** 62 - 1.52622458998289e58 * cos(theta) ** 60 + 1.63722274198164e58 * cos(theta) ** 58 - 1.50938605270254e58 * cos(theta) ** 56 + 1.20313381012521e58 * cos(theta) ** 54 - 8.32938791625147e57 * cos(theta) ** 52 + 5.02491736894879e57 * cos(theta) ** 50 - 2.64753710837087e57 * cos(theta) ** 48 + 1.21994356954344e57 * cos(theta) ** 46 - 4.9187440376995e56 * cos(theta) ** 44 + 1.73494849353606e56 * cos(theta) ** 42 - 5.34833746127659e55 * cos(theta) ** 40 + 1.4385183516537e55 * cos(theta) ** 38 - 3.36756044359825e54 * cos(theta) ** 36 + 6.83933939222081e53 * cos(theta) ** 34 - 1.200146824847e53 * cos(theta) ** 32 + 1.81044046570594e52 * cos(theta) ** 30 - 2.33345660024322e51 * cos(theta) ** 28 + 2.55074203265453e50 * cos(theta) ** 26 - 2.3437691846557e49 * cos(theta) ** 24 + 1.79091997498608e48 * cos(theta) ** 22 - 1.12327590068364e47 * cos(theta) ** 20 + 5.69126456346379e45 * cos(theta) ** 18 - 2.28367028116958e44 * cos(theta) ** 16 + 7.0774905408148e42 * cos(theta) ** 14 - 1.64006019662375e41 * cos(theta) ** 12 + 2.72106518293533e39 * cos(theta) ** 10 - 3.04218467657366e37 * cos(theta) ** 8 + 2.09393242242042e35 * cos(theta) ** 6 - 7.64767137480065e32 * cos(theta) ** 4 + 1.10782299007252e30 * cos(theta) ** 2 - 2.6547399714175e26 ) * cos(14 * phi) ) # @torch.jit.script def Yl92_m15(theta, phi): return ( 1.86688083625133e-29 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 2.49200923889836e55 * cos(theta) ** 77 - 3.98449127487246e56 * cos(theta) ** 75 + 3.05440974800306e57 * cos(theta) ** 73 - 1.49478376494452e58 * cos(theta) ** 71 + 5.24652211283492e58 * cos(theta) ** 69 - 1.40666752876694e59 * cos(theta) ** 67 + 2.99628314653536e59 * cos(theta) ** 65 - 5.20657388871641e59 * cos(theta) ** 63 + 7.5210346188337e59 * cos(theta) ** 61 - 9.15734753989731e59 * cos(theta) ** 59 + 9.49589190349352e59 * cos(theta) ** 57 - 8.45256189513422e59 * cos(theta) ** 55 + 6.49692257467615e59 * cos(theta) ** 53 - 4.33128171645076e59 * cos(theta) ** 51 + 2.5124586844744e59 * cos(theta) ** 49 - 1.27081781201802e59 * cos(theta) ** 47 + 5.61174041989982e58 * cos(theta) ** 45 - 2.16424737658778e58 * cos(theta) ** 43 + 7.28678367285147e57 * cos(theta) ** 41 - 2.13933498451063e57 * cos(theta) ** 39 + 5.46636973628407e56 * cos(theta) ** 37 - 1.21232175969537e56 * cos(theta) ** 35 + 2.32537539335507e55 * cos(theta) ** 33 - 3.84046983951041e54 * cos(theta) ** 31 + 5.43132139711783e53 * cos(theta) ** 29 - 6.533678480681e52 * cos(theta) ** 27 + 6.63192928490177e51 * cos(theta) ** 25 - 5.62504604317368e50 * cos(theta) ** 23 + 3.94002394496938e49 * cos(theta) ** 21 - 2.24655180136728e48 * cos(theta) ** 19 + 1.02442762142348e47 * cos(theta) ** 17 - 3.65387244987132e45 * cos(theta) ** 15 + 9.90848675714072e43 * cos(theta) ** 13 - 1.9680722359485e42 * cos(theta) ** 11 + 2.72106518293533e40 * cos(theta) ** 9 - 2.43374774125893e38 * cos(theta) ** 7 + 1.25635945345225e36 * cos(theta) ** 5 - 3.05906854992026e33 * cos(theta) ** 3 + 2.21564598014505e30 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl92_m16(theta, phi): return ( 2.04719568416579e-31 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.91884711395174e57 * cos(theta) ** 76 - 2.98836845615435e58 * cos(theta) ** 74 + 2.22971911604224e59 * cos(theta) ** 72 - 1.06129647311061e60 * cos(theta) ** 70 + 3.62010025785609e60 * cos(theta) ** 68 - 9.42467244273849e60 * cos(theta) ** 66 + 1.94758404524798e61 * cos(theta) ** 64 - 3.28014154989134e61 * cos(theta) ** 62 + 4.58783111748855e61 * cos(theta) ** 60 - 5.40283504853942e61 * cos(theta) ** 58 + 5.4126583849913e61 * cos(theta) ** 56 - 4.64890904232382e61 * cos(theta) ** 54 + 3.44336896457836e61 * cos(theta) ** 52 - 2.20895367538989e61 * cos(theta) ** 50 + 1.23110475539245e61 * cos(theta) ** 48 - 5.97284371648468e60 * cos(theta) ** 46 + 2.52528318895492e60 * cos(theta) ** 44 - 9.30626371932745e59 * cos(theta) ** 42 + 2.9875813058691e59 * cos(theta) ** 40 - 8.34340643959148e58 * cos(theta) ** 38 + 2.02255680242511e58 * cos(theta) ** 36 - 4.24312615893379e57 * cos(theta) ** 34 + 7.67373879807175e56 * cos(theta) ** 32 - 1.19054565024823e56 * cos(theta) ** 30 + 1.57508320516417e55 * cos(theta) ** 28 - 1.76409318978387e54 * cos(theta) ** 26 + 1.65798232122544e53 * cos(theta) ** 24 - 1.29376058992995e52 * cos(theta) ** 22 + 8.27405028443571e50 * cos(theta) ** 20 - 4.26844842259784e49 * cos(theta) ** 18 + 1.74152695641992e48 * cos(theta) ** 16 - 5.48080867480698e46 * cos(theta) ** 14 + 1.28810327842829e45 * cos(theta) ** 12 - 2.16487945954335e43 * cos(theta) ** 10 + 2.4489586646418e41 * cos(theta) ** 8 - 1.70362341888125e39 * cos(theta) ** 6 + 6.28179726726125e36 * cos(theta) ** 4 - 9.17720564976078e33 * cos(theta) ** 2 + 2.21564598014505e30 ) * cos(16 * phi) ) # @torch.jit.script def Yl92_m17(theta, phi): return ( 2.24925819878324e-33 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.45832380660332e59 * cos(theta) ** 75 - 2.21139265755422e60 * cos(theta) ** 73 + 1.60539776355041e61 * cos(theta) ** 71 - 7.42907531177424e61 * cos(theta) ** 69 + 2.46166817534214e62 * cos(theta) ** 67 - 6.22028381220741e62 * cos(theta) ** 65 + 1.24645378895871e63 * cos(theta) ** 63 - 2.03368776093263e63 * cos(theta) ** 61 + 2.75269867049313e63 * cos(theta) ** 59 - 3.13364432815286e63 * cos(theta) ** 57 + 3.03108869559513e63 * cos(theta) ** 55 - 2.51041088285486e63 * cos(theta) ** 53 + 1.79055186158075e63 * cos(theta) ** 51 - 1.10447683769494e63 * cos(theta) ** 49 + 5.90930282588378e62 * cos(theta) ** 47 - 2.74750810958295e62 * cos(theta) ** 45 + 1.11112460314017e62 * cos(theta) ** 43 - 3.90863076211753e61 * cos(theta) ** 41 + 1.19503252234764e61 * cos(theta) ** 39 - 3.17049444704476e60 * cos(theta) ** 37 + 7.28120448873038e59 * cos(theta) ** 35 - 1.44266289403749e59 * cos(theta) ** 33 + 2.45559641538296e58 * cos(theta) ** 31 - 3.57163695074469e57 * cos(theta) ** 29 + 4.41023297445968e56 * cos(theta) ** 27 - 4.58664229343806e55 * cos(theta) ** 25 + 3.97915757094106e54 * cos(theta) ** 23 - 2.84627329784588e53 * cos(theta) ** 21 + 1.65481005688714e52 * cos(theta) ** 19 - 7.68320716067611e50 * cos(theta) ** 17 + 2.78644313027187e49 * cos(theta) ** 15 - 7.67313214472978e47 * cos(theta) ** 13 + 1.54572393411395e46 * cos(theta) ** 11 - 2.16487945954335e44 * cos(theta) ** 9 + 1.95916693171344e42 * cos(theta) ** 7 - 1.02217405132875e40 * cos(theta) ** 5 + 2.5127189069045e37 * cos(theta) ** 3 - 1.83544112995216e34 * cos(theta) ) * cos(17 * phi) ) # @torch.jit.script def Yl92_m18(theta, phi): return ( 2.47635177527373e-35 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.09374285495249e61 * cos(theta) ** 74 - 1.61431664001458e62 * cos(theta) ** 72 + 1.13983241212079e63 * cos(theta) ** 70 - 5.12606196512423e63 * cos(theta) ** 68 + 1.64931767747924e64 * cos(theta) ** 66 - 4.04318447793481e64 * cos(theta) ** 64 + 7.85265887043987e64 * cos(theta) ** 62 - 1.24054953416891e65 * cos(theta) ** 60 + 1.62409221559095e65 * cos(theta) ** 58 - 1.78617726704713e65 * cos(theta) ** 56 + 1.66709878257732e65 * cos(theta) ** 54 - 1.33051776791308e65 * cos(theta) ** 52 + 9.1318144940618e64 * cos(theta) ** 50 - 5.41193650470523e64 * cos(theta) ** 48 + 2.77737232816538e64 * cos(theta) ** 46 - 1.23637864931233e64 * cos(theta) ** 44 + 4.77783579350271e63 * cos(theta) ** 42 - 1.60253861246819e63 * cos(theta) ** 40 + 4.6606268371558e62 * cos(theta) ** 38 - 1.17308294540656e62 * cos(theta) ** 36 + 2.54842157105563e61 * cos(theta) ** 34 - 4.76078755032371e60 * cos(theta) ** 32 + 7.61234888768717e59 * cos(theta) ** 30 - 1.03577471571596e59 * cos(theta) ** 28 + 1.19076290310411e58 * cos(theta) ** 26 - 1.14666057335952e57 * cos(theta) ** 24 + 9.15206241316444e55 * cos(theta) ** 22 - 5.97717392547635e54 * cos(theta) ** 20 + 3.14413910808557e53 * cos(theta) ** 18 - 1.30614521731494e52 * cos(theta) ** 16 + 4.1796646954078e50 * cos(theta) ** 14 - 9.97507178814871e48 * cos(theta) ** 12 + 1.70029632752535e47 * cos(theta) ** 10 - 1.94839151358902e45 * cos(theta) ** 8 + 1.37141685219941e43 * cos(theta) ** 6 - 5.11087025664376e40 * cos(theta) ** 4 + 7.5381567207135e37 * cos(theta) ** 2 - 1.83544112995216e34 ) * cos(18 * phi) ) # @torch.jit.script def Yl92_m19(theta, phi): return ( 2.7323415644396e-37 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 8.09369712664844e62 * cos(theta) ** 73 - 1.1623079808105e64 * cos(theta) ** 71 + 7.97882688484554e64 * cos(theta) ** 69 - 3.48572213628448e65 * cos(theta) ** 67 + 1.0885496671363e66 * cos(theta) ** 65 - 2.58763806587828e66 * cos(theta) ** 63 + 4.86864849967272e66 * cos(theta) ** 61 - 7.44329720501343e66 * cos(theta) ** 59 + 9.4197348504275e66 * cos(theta) ** 57 - 1.00025926954639e67 * cos(theta) ** 55 + 9.00233342591754e66 * cos(theta) ** 53 - 6.918692393148e66 * cos(theta) ** 51 + 4.5659072470309e66 * cos(theta) ** 49 - 2.59772952225851e66 * cos(theta) ** 47 + 1.27759127095607e66 * cos(theta) ** 45 - 5.44006605697425e65 * cos(theta) ** 43 + 2.00669103327114e65 * cos(theta) ** 41 - 6.41015444987274e64 * cos(theta) ** 39 + 1.7710381981192e64 * cos(theta) ** 37 - 4.22309860346362e63 * cos(theta) ** 35 + 8.66463334158915e62 * cos(theta) ** 33 - 1.52345201610359e62 * cos(theta) ** 31 + 2.28370466630615e61 * cos(theta) ** 29 - 2.90016920400468e60 * cos(theta) ** 27 + 3.09598354807069e59 * cos(theta) ** 25 - 2.75198537606284e58 * cos(theta) ** 23 + 2.01345373089618e57 * cos(theta) ** 21 - 1.19543478509527e56 * cos(theta) ** 19 + 5.65945039455402e54 * cos(theta) ** 17 - 2.0898323477039e53 * cos(theta) ** 15 + 5.85153057357093e51 * cos(theta) ** 13 - 1.19700861457784e50 * cos(theta) ** 11 + 1.70029632752535e48 * cos(theta) ** 9 - 1.55871321087121e46 * cos(theta) ** 7 + 8.22850111319645e43 * cos(theta) ** 5 - 2.0443481026575e41 * cos(theta) ** 3 + 1.5076313441427e38 * cos(theta) ) * cos(19 * phi) ) # @torch.jit.script def Yl92_m20(theta, phi): return ( 3.02179186207228e-39 * (1.0 - cos(theta) ** 2) ** 10 * ( 5.90839890245336e64 * cos(theta) ** 72 - 8.25238666375453e65 * cos(theta) ** 70 + 5.50539055054342e66 * cos(theta) ** 68 - 2.3354338313106e67 * cos(theta) ** 66 + 7.07557283638592e67 * cos(theta) ** 64 - 1.63021198150332e68 * cos(theta) ** 62 + 2.96987558480036e68 * cos(theta) ** 60 - 4.39154535095792e68 * cos(theta) ** 58 + 5.36924886474367e68 * cos(theta) ** 56 - 5.50142598250516e68 * cos(theta) ** 54 + 4.7712367157363e68 * cos(theta) ** 52 - 3.52853312050548e68 * cos(theta) ** 50 + 2.23729455104514e68 * cos(theta) ** 48 - 1.2209328754615e68 * cos(theta) ** 46 + 5.74916071930233e67 * cos(theta) ** 44 - 2.33922840449893e67 * cos(theta) ** 42 + 8.22743323641167e66 * cos(theta) ** 40 - 2.49996023545037e66 * cos(theta) ** 38 + 6.55284133304105e65 * cos(theta) ** 36 - 1.47808451121227e65 * cos(theta) ** 34 + 2.85932900272442e64 * cos(theta) ** 32 - 4.72270124992112e63 * cos(theta) ** 30 + 6.62274353228784e62 * cos(theta) ** 28 - 7.83045685081265e61 * cos(theta) ** 26 + 7.73995887017673e60 * cos(theta) ** 24 - 6.32956636494453e59 * cos(theta) ** 22 + 4.22825283488197e58 * cos(theta) ** 20 - 2.27132609168101e57 * cos(theta) ** 18 + 9.62106567074184e55 * cos(theta) ** 16 - 3.13474852155585e54 * cos(theta) ** 14 + 7.6069897456422e52 * cos(theta) ** 12 - 1.31670947603563e51 * cos(theta) ** 10 + 1.53026669477281e49 * cos(theta) ** 8 - 1.09109924760985e47 * cos(theta) ** 6 + 4.11425055659822e44 * cos(theta) ** 4 - 6.13304430797251e41 * cos(theta) ** 2 + 1.5076313441427e38 ) * cos(20 * phi) ) # @torch.jit.script def Yl92_m21(theta, phi): return ( 3.35011007789734e-41 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 4.25404720976642e66 * cos(theta) ** 71 - 5.77667066462817e67 * cos(theta) ** 69 + 3.74366557436953e68 * cos(theta) ** 67 - 1.541386328665e69 * cos(theta) ** 65 + 4.52836661528699e69 * cos(theta) ** 63 - 1.01073142853206e70 * cos(theta) ** 61 + 1.78192535088022e70 * cos(theta) ** 59 - 2.5470963035556e70 * cos(theta) ** 57 + 3.00677936425646e70 * cos(theta) ** 55 - 2.97077003055279e70 * cos(theta) ** 53 + 2.48104309218287e70 * cos(theta) ** 51 - 1.76426656025274e70 * cos(theta) ** 49 + 1.07390138450167e70 * cos(theta) ** 47 - 5.6162912271229e69 * cos(theta) ** 45 + 2.52963071649303e69 * cos(theta) ** 43 - 9.82475929889549e68 * cos(theta) ** 41 + 3.29097329456467e68 * cos(theta) ** 39 - 9.49984889471141e67 * cos(theta) ** 37 + 2.35902287989478e67 * cos(theta) ** 35 - 5.02548733812171e66 * cos(theta) ** 33 + 9.14985280871815e65 * cos(theta) ** 31 - 1.41681037497634e65 * cos(theta) ** 29 + 1.8543681890406e64 * cos(theta) ** 27 - 2.03591878121129e63 * cos(theta) ** 25 + 1.85759012884242e62 * cos(theta) ** 23 - 1.3925046002878e61 * cos(theta) ** 21 + 8.45650566976395e59 * cos(theta) ** 19 - 4.08838696502583e58 * cos(theta) ** 17 + 1.53937050731869e57 * cos(theta) ** 15 - 4.38864793017819e55 * cos(theta) ** 13 + 9.12838769477065e53 * cos(theta) ** 11 - 1.31670947603563e52 * cos(theta) ** 9 + 1.22421335581825e50 * cos(theta) ** 7 - 6.54659548565909e47 * cos(theta) ** 5 + 1.64570022263929e45 * cos(theta) ** 3 - 1.2266088615945e42 * cos(theta) ) * cos(21 * phi) ) # @torch.jit.script def Yl92_m22(theta, phi): return ( 3.72372394350724e-43 * (1.0 - cos(theta) ** 2) ** 11 * ( 3.02037351893416e68 * cos(theta) ** 70 - 3.98590275859344e69 * cos(theta) ** 68 + 2.50825593482758e70 * cos(theta) ** 66 - 1.00190111363225e71 * cos(theta) ** 64 + 2.8528709676308e71 * cos(theta) ** 62 - 6.16546171404555e71 * cos(theta) ** 60 + 1.05133595701933e72 * cos(theta) ** 58 - 1.45184489302669e72 * cos(theta) ** 56 + 1.65372865034105e72 * cos(theta) ** 54 - 1.57450811619298e72 * cos(theta) ** 52 + 1.26533197701327e72 * cos(theta) ** 50 - 8.64490614523843e71 * cos(theta) ** 48 + 5.04733650715784e71 * cos(theta) ** 46 - 2.5273310522053e71 * cos(theta) ** 44 + 1.087741208092e71 * cos(theta) ** 42 - 4.02815131254715e70 * cos(theta) ** 40 + 1.28347958488022e70 * cos(theta) ** 38 - 3.51494409104322e69 * cos(theta) ** 36 + 8.25658007963173e68 * cos(theta) ** 34 - 1.65841082158016e68 * cos(theta) ** 32 + 2.83645437070263e67 * cos(theta) ** 30 - 4.10875008743138e66 * cos(theta) ** 28 + 5.00679411040961e65 * cos(theta) ** 26 - 5.08979695302822e64 * cos(theta) ** 24 + 4.27245729633756e63 * cos(theta) ** 22 - 2.92425966060437e62 * cos(theta) ** 20 + 1.60673607725515e61 * cos(theta) ** 18 - 6.95025784054391e59 * cos(theta) ** 16 + 2.30905576097804e58 * cos(theta) ** 14 - 5.70524230923165e56 * cos(theta) ** 12 + 1.00412264642477e55 * cos(theta) ** 10 - 1.18503852843207e53 * cos(theta) ** 8 + 8.56949349072775e50 * cos(theta) ** 6 - 3.27329774282955e48 * cos(theta) ** 4 + 4.93710066791787e45 * cos(theta) ** 2 - 1.2266088615945e42 ) * cos(22 * phi) ) # @torch.jit.script def Yl92_m23(theta, phi): return ( 4.15030044672352e-45 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 2.11426146325391e70 * cos(theta) ** 69 - 2.71041387584354e71 * cos(theta) ** 67 + 1.6554489169862e72 * cos(theta) ** 65 - 6.41216712724638e72 * cos(theta) ** 63 + 1.7687799999311e73 * cos(theta) ** 61 - 3.69927702842733e73 * cos(theta) ** 59 + 6.0977485507121e73 * cos(theta) ** 57 - 8.13033140094946e73 * cos(theta) ** 55 + 8.93013471184168e73 * cos(theta) ** 53 - 8.18744220420348e73 * cos(theta) ** 51 + 6.32665988506633e73 * cos(theta) ** 49 - 4.14955494971445e73 * cos(theta) ** 47 + 2.32177479329261e73 * cos(theta) ** 45 - 1.11202566297033e73 * cos(theta) ** 43 + 4.5685130739864e72 * cos(theta) ** 41 - 1.61126052501886e72 * cos(theta) ** 39 + 4.87722242254484e71 * cos(theta) ** 37 - 1.26537987277556e71 * cos(theta) ** 35 + 2.80723722707479e70 * cos(theta) ** 33 - 5.30691462905653e69 * cos(theta) ** 31 + 8.50936311210788e68 * cos(theta) ** 29 - 1.15045002448079e68 * cos(theta) ** 27 + 1.3017664687065e67 * cos(theta) ** 25 - 1.22155126872677e66 * cos(theta) ** 23 + 9.39940605194263e64 * cos(theta) ** 21 - 5.84851932120875e63 * cos(theta) ** 19 + 2.89212493905927e62 * cos(theta) ** 17 - 1.11204125448702e61 * cos(theta) ** 15 + 3.23267806536926e59 * cos(theta) ** 13 - 6.84629077107798e57 * cos(theta) ** 11 + 1.00412264642477e56 * cos(theta) ** 9 - 9.48030822745653e53 * cos(theta) ** 7 + 5.14169609443665e51 * cos(theta) ** 5 - 1.30931909713182e49 * cos(theta) ** 3 + 9.87420133583574e45 * cos(theta) ) * cos(23 * phi) ) # @torch.jit.script def Yl92_m24(theta, phi): return ( 4.63901735355543e-47 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.4588404096452e72 * cos(theta) ** 68 - 1.81597729681517e73 * cos(theta) ** 66 + 1.07604179604103e74 * cos(theta) ** 64 - 4.03966529016522e74 * cos(theta) ** 62 + 1.07895579995797e75 * cos(theta) ** 60 - 2.18257344677212e75 * cos(theta) ** 58 + 3.4757166739059e75 * cos(theta) ** 56 - 4.4716822705222e75 * cos(theta) ** 54 + 4.73297139727609e75 * cos(theta) ** 52 - 4.17559552414378e75 * cos(theta) ** 50 + 3.1000633436825e75 * cos(theta) ** 48 - 1.95029082636579e75 * cos(theta) ** 46 + 1.04479865698167e75 * cos(theta) ** 44 - 4.78171035077244e74 * cos(theta) ** 42 + 1.87309036033443e74 * cos(theta) ** 40 - 6.28391604757356e73 * cos(theta) ** 38 + 1.80457229634159e73 * cos(theta) ** 36 - 4.42882955471446e72 * cos(theta) ** 34 + 9.2638828493468e71 * cos(theta) ** 32 - 1.64514353500752e71 * cos(theta) ** 30 + 2.46771530251128e70 * cos(theta) ** 28 - 3.10621506609812e69 * cos(theta) ** 26 + 3.25441617176624e68 * cos(theta) ** 24 - 2.80956791807158e67 * cos(theta) ** 22 + 1.97387527090795e66 * cos(theta) ** 20 - 1.11121867102966e65 * cos(theta) ** 18 + 4.91661239640076e63 * cos(theta) ** 16 - 1.66806188173054e62 * cos(theta) ** 14 + 4.20248148498004e60 * cos(theta) ** 12 - 7.53091984818578e58 * cos(theta) ** 10 + 9.03710381782294e56 * cos(theta) ** 8 - 6.63621575921957e54 * cos(theta) ** 6 + 2.57084804721833e52 * cos(theta) ** 4 - 3.92795729139546e49 * cos(theta) ** 2 + 9.87420133583574e45 ) * cos(24 * phi) ) # @torch.jit.script def Yl92_m25(theta, phi): return ( 5.20090127435586e-49 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 9.92011478558735e73 * cos(theta) ** 67 - 1.19854501589801e75 * cos(theta) ** 65 + 6.88666749466261e75 * cos(theta) ** 63 - 2.50459247990244e76 * cos(theta) ** 61 + 6.47373479974782e76 * cos(theta) ** 59 - 1.26589259912783e77 * cos(theta) ** 57 + 1.9464013373873e77 * cos(theta) ** 55 - 2.41470842608199e77 * cos(theta) ** 53 + 2.46114512658357e77 * cos(theta) ** 51 - 2.08779776207189e77 * cos(theta) ** 49 + 1.4880304049676e77 * cos(theta) ** 47 - 8.97133780128263e76 * cos(theta) ** 45 + 4.59711409071936e76 * cos(theta) ** 43 - 2.00831834732442e76 * cos(theta) ** 41 + 7.4923614413377e75 * cos(theta) ** 39 - 2.38788809807795e75 * cos(theta) ** 37 + 6.49646026682972e74 * cos(theta) ** 35 - 1.50580204860292e74 * cos(theta) ** 33 + 2.96444251179098e73 * cos(theta) ** 31 - 4.93543060502257e72 * cos(theta) ** 29 + 6.9096028470316e71 * cos(theta) ** 27 - 8.07615917185511e70 * cos(theta) ** 25 + 7.81059881223899e69 * cos(theta) ** 23 - 6.18104941975747e68 * cos(theta) ** 21 + 3.9477505418159e67 * cos(theta) ** 19 - 2.00019360785339e66 * cos(theta) ** 17 + 7.86657983424121e64 * cos(theta) ** 15 - 2.33528663442275e63 * cos(theta) ** 13 + 5.04297778197604e61 * cos(theta) ** 11 - 7.53091984818578e59 * cos(theta) ** 9 + 7.22968305425835e57 * cos(theta) ** 7 - 3.98172945553174e55 * cos(theta) ** 5 + 1.02833921888733e53 * cos(theta) ** 3 - 7.85591458279091e49 * cos(theta) ) * cos(25 * phi) ) # @torch.jit.script def Yl92_m26(theta, phi): return ( 5.84925028499633e-51 * (1.0 - cos(theta) ** 2) ** 13 * ( 6.64647690634352e75 * cos(theta) ** 66 - 7.79054260333708e76 * cos(theta) ** 64 + 4.33860052163745e77 * cos(theta) ** 62 - 1.52780141274049e78 * cos(theta) ** 60 + 3.81950353185121e78 * cos(theta) ** 58 - 7.21558781502864e78 * cos(theta) ** 56 + 1.07052073556302e79 * cos(theta) ** 54 - 1.27979546582345e79 * cos(theta) ** 52 + 1.25518401455762e79 * cos(theta) ** 50 - 1.02302090341523e79 * cos(theta) ** 48 + 6.99374290334772e78 * cos(theta) ** 46 - 4.03710201057718e78 * cos(theta) ** 44 + 1.97675905900933e78 * cos(theta) ** 42 - 8.23410522403014e77 * cos(theta) ** 40 + 2.9220209621217e77 * cos(theta) ** 38 - 8.83518596288842e76 * cos(theta) ** 36 + 2.2737610933904e76 * cos(theta) ** 34 - 4.96914676038962e75 * cos(theta) ** 32 + 9.18977178655202e74 * cos(theta) ** 30 - 1.43127487545654e74 * cos(theta) ** 28 + 1.86559276869853e73 * cos(theta) ** 26 - 2.01903979296378e72 * cos(theta) ** 24 + 1.79643772681497e71 * cos(theta) ** 22 - 1.29802037814907e70 * cos(theta) ** 20 + 7.50072602945022e68 * cos(theta) ** 18 - 3.40032913335076e67 * cos(theta) ** 16 + 1.17998697513618e66 * cos(theta) ** 14 - 3.03587262474958e64 * cos(theta) ** 12 + 5.54727556017365e62 * cos(theta) ** 10 - 6.7778278633672e60 * cos(theta) ** 8 + 5.06077813798085e58 * cos(theta) ** 6 - 1.99086472776587e56 * cos(theta) ** 4 + 3.08501765666199e53 * cos(theta) ** 2 - 7.85591458279091e49 ) * cos(26 * phi) ) # @torch.jit.script def Yl92_m27(theta, phi): return ( 6.6001644476941e-53 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 4.38667475818673e77 * cos(theta) ** 65 - 4.98594726613573e78 * cos(theta) ** 63 + 2.68993232341522e79 * cos(theta) ** 61 - 9.16680847644292e79 * cos(theta) ** 59 + 2.2153120484737e80 * cos(theta) ** 57 - 4.04072917641604e80 * cos(theta) ** 55 + 5.78081197204028e80 * cos(theta) ** 53 - 6.65493642228197e80 * cos(theta) ** 51 + 6.2759200727881e80 * cos(theta) ** 49 - 4.91050033639308e80 * cos(theta) ** 47 + 3.21712173553995e80 * cos(theta) ** 45 - 1.77632488465396e80 * cos(theta) ** 43 + 8.30238804783917e79 * cos(theta) ** 41 - 3.29364208961205e79 * cos(theta) ** 39 + 1.11036796560625e79 * cos(theta) ** 37 - 3.18066694663983e78 * cos(theta) ** 35 + 7.73078771752737e77 * cos(theta) ** 33 - 1.59012696332468e77 * cos(theta) ** 31 + 2.75693153596561e76 * cos(theta) ** 29 - 4.00756965127833e75 * cos(theta) ** 27 + 4.85054119861618e74 * cos(theta) ** 25 - 4.84569550311307e73 * cos(theta) ** 23 + 3.95216299899293e72 * cos(theta) ** 21 - 2.59604075629814e71 * cos(theta) ** 19 + 1.35013068530104e70 * cos(theta) ** 17 - 5.44052661336122e68 * cos(theta) ** 15 + 1.65198176519065e67 * cos(theta) ** 13 - 3.64304714969949e65 * cos(theta) ** 11 + 5.54727556017365e63 * cos(theta) ** 9 - 5.42226229069376e61 * cos(theta) ** 7 + 3.03646688278851e59 * cos(theta) ** 5 - 7.96345891106349e56 * cos(theta) ** 3 + 6.17003531332398e53 * cos(theta) ) * cos(27 * phi) ) # @torch.jit.script def Yl92_m28(theta, phi): return ( 7.47321462570168e-55 * (1.0 - cos(theta) ** 2) ** 14 * ( 2.85133859282137e79 * cos(theta) ** 64 - 3.14114677766551e80 * cos(theta) ** 62 + 1.64085871728328e81 * cos(theta) ** 60 - 5.40841700110132e81 * cos(theta) ** 58 + 1.26272786763001e82 * cos(theta) ** 56 - 2.22240104702882e82 * cos(theta) ** 54 + 3.06383034518135e82 * cos(theta) ** 52 - 3.3940175753638e82 * cos(theta) ** 50 + 3.07520083566617e82 * cos(theta) ** 48 - 2.30793515810475e82 * cos(theta) ** 46 + 1.44770478099298e82 * cos(theta) ** 44 - 7.63819700401203e81 * cos(theta) ** 42 + 3.40397909961406e81 * cos(theta) ** 40 - 1.2845204149487e81 * cos(theta) ** 38 + 4.10836147274312e80 * cos(theta) ** 36 - 1.11323343132394e80 * cos(theta) ** 34 + 2.55115994678403e79 * cos(theta) ** 32 - 4.9293935863065e78 * cos(theta) ** 30 + 7.99510145430026e77 * cos(theta) ** 28 - 1.08204380584515e77 * cos(theta) ** 26 + 1.21263529965405e76 * cos(theta) ** 24 - 1.11450996571601e75 * cos(theta) ** 22 + 8.29954229788515e73 * cos(theta) ** 20 - 4.93247743696646e72 * cos(theta) ** 18 + 2.29522216501177e71 * cos(theta) ** 16 - 8.16078992004184e69 * cos(theta) ** 14 + 2.14757629474785e68 * cos(theta) ** 12 - 4.00735186466944e66 * cos(theta) ** 10 + 4.99254800415628e64 * cos(theta) ** 8 - 3.79558360348563e62 * cos(theta) ** 6 + 1.51823344139425e60 * cos(theta) ** 4 - 2.38903767331905e57 * cos(theta) ** 2 + 6.17003531332398e53 ) * cos(28 * phi) ) # @torch.jit.script def Yl92_m29(theta, phi): return ( 8.49228934738827e-57 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 1.82485669940568e81 * cos(theta) ** 63 - 1.94751100215262e82 * cos(theta) ** 61 + 9.84515230369969e82 * cos(theta) ** 59 - 3.13688186063877e83 * cos(theta) ** 57 + 7.07127605872807e83 * cos(theta) ** 55 - 1.20009656539556e84 * cos(theta) ** 53 + 1.5931917794943e84 * cos(theta) ** 51 - 1.6970087876819e84 * cos(theta) ** 49 + 1.47609640111976e84 * cos(theta) ** 47 - 1.06165017272818e84 * cos(theta) ** 45 + 6.3699010363691e83 * cos(theta) ** 43 - 3.20804274168505e83 * cos(theta) ** 41 + 1.36159163984562e83 * cos(theta) ** 39 - 4.88117757680506e82 * cos(theta) ** 37 + 1.47901013018752e82 * cos(theta) ** 35 - 3.7849936665014e81 * cos(theta) ** 33 + 8.1637118297089e80 * cos(theta) ** 31 - 1.47881807589195e80 * cos(theta) ** 29 + 2.23862840720407e79 * cos(theta) ** 27 - 2.81331389519738e78 * cos(theta) ** 25 + 2.91032471916971e77 * cos(theta) ** 23 - 2.45192192457521e76 * cos(theta) ** 21 + 1.65990845957703e75 * cos(theta) ** 19 - 8.87845938653963e73 * cos(theta) ** 17 + 3.67235546401883e72 * cos(theta) ** 15 - 1.14251058880586e71 * cos(theta) ** 13 + 2.57709155369742e69 * cos(theta) ** 11 - 4.00735186466944e67 * cos(theta) ** 9 + 3.99403840332503e65 * cos(theta) ** 7 - 2.27735016209138e63 * cos(theta) ** 5 + 6.07293376557701e60 * cos(theta) ** 3 - 4.77807534663809e57 * cos(theta) ) * cos(29 * phi) ) # @torch.jit.script def Yl92_m30(theta, phi): return ( 9.68667196672842e-59 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.14965972062558e83 * cos(theta) ** 62 - 1.1879817113131e84 * cos(theta) ** 60 + 5.80863985918282e84 * cos(theta) ** 58 - 1.7880226605641e85 * cos(theta) ** 56 + 3.88920183230044e85 * cos(theta) ** 54 - 6.36051179659648e85 * cos(theta) ** 52 + 8.12527807542094e85 * cos(theta) ** 50 - 8.31534305964132e85 * cos(theta) ** 48 + 6.93765308526287e85 * cos(theta) ** 46 - 4.77742577727683e85 * cos(theta) ** 44 + 2.73905744563872e85 * cos(theta) ** 42 - 1.31529752409087e85 * cos(theta) ** 40 + 5.31020739539793e84 * cos(theta) ** 38 - 1.80603570341787e84 * cos(theta) ** 36 + 5.17653545565633e83 * cos(theta) ** 34 - 1.24904790994546e83 * cos(theta) ** 32 + 2.53075066720976e82 * cos(theta) ** 30 - 4.28857242008666e81 * cos(theta) ** 28 + 6.044296699451e80 * cos(theta) ** 26 - 7.03328473799346e79 * cos(theta) ** 24 + 6.69374685409033e78 * cos(theta) ** 22 - 5.14903604160794e77 * cos(theta) ** 20 + 3.15382607319636e76 * cos(theta) ** 18 - 1.50933809571174e75 * cos(theta) ** 16 + 5.50853319602824e73 * cos(theta) ** 14 - 1.48526376544761e72 * cos(theta) ** 12 + 2.83480070906716e70 * cos(theta) ** 10 - 3.6066166782025e68 * cos(theta) ** 8 + 2.79582688232752e66 * cos(theta) ** 6 - 1.13867508104569e64 * cos(theta) ** 4 + 1.8218801296731e61 * cos(theta) ** 2 - 4.77807534663809e57 ) * cos(30 * phi) ) # @torch.jit.script def Yl92_m31(theta, phi): return ( 1.10924171186194e-60 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 7.12789026787858e84 * cos(theta) ** 61 - 7.12789026787858e85 * cos(theta) ** 59 + 3.36901111832603e86 * cos(theta) ** 57 - 1.00129268991589e87 * cos(theta) ** 55 + 2.10016898944224e87 * cos(theta) ** 53 - 3.30746613423017e87 * cos(theta) ** 51 + 4.06263903771047e87 * cos(theta) ** 49 - 3.99136466862783e87 * cos(theta) ** 47 + 3.19132041922092e87 * cos(theta) ** 45 - 2.1020673420018e87 * cos(theta) ** 43 + 1.15040412716826e87 * cos(theta) ** 41 - 5.26119009636349e86 * cos(theta) ** 39 + 2.01787881025121e86 * cos(theta) ** 37 - 6.50172853230435e85 * cos(theta) ** 35 + 1.76002205492315e85 * cos(theta) ** 33 - 3.99695331182548e84 * cos(theta) ** 31 + 7.59225200162928e83 * cos(theta) ** 29 - 1.20080027762426e83 * cos(theta) ** 27 + 1.57151714185726e82 * cos(theta) ** 25 - 1.68798833711843e81 * cos(theta) ** 23 + 1.47262430789987e80 * cos(theta) ** 21 - 1.02980720832159e79 * cos(theta) ** 19 + 5.67688693175344e77 * cos(theta) ** 17 - 2.41494095313878e76 * cos(theta) ** 15 + 7.71194647443953e74 * cos(theta) ** 13 - 1.78231651853714e73 * cos(theta) ** 11 + 2.83480070906716e71 * cos(theta) ** 9 - 2.885293342562e69 * cos(theta) ** 7 + 1.67749612939651e67 * cos(theta) ** 5 - 4.55470032418276e64 * cos(theta) ** 3 + 3.64376025934621e61 * cos(theta) ) * cos(31 * phi) ) # @torch.jit.script def Yl92_m32(theta, phi): return ( 1.27541180465869e-62 * (1.0 - cos(theta) ** 2) ** 16 * ( 4.34801306340593e86 * cos(theta) ** 60 - 4.20545525804836e87 * cos(theta) ** 58 + 1.92033633744584e88 * cos(theta) ** 56 - 5.50710979453742e88 * cos(theta) ** 54 + 1.11308956440438e89 * cos(theta) ** 52 - 1.68680772845739e89 * cos(theta) ** 50 + 1.99069312847813e89 * cos(theta) ** 48 - 1.87594139425508e89 * cos(theta) ** 46 + 1.43609418864941e89 * cos(theta) ** 44 - 9.03888957060776e88 * cos(theta) ** 42 + 4.71665692138987e88 * cos(theta) ** 40 - 2.05186413758176e88 * cos(theta) ** 38 + 7.46615159792949e87 * cos(theta) ** 36 - 2.27560498630652e87 * cos(theta) ** 34 + 5.8080727812464e86 * cos(theta) ** 32 - 1.2390555266659e86 * cos(theta) ** 30 + 2.20175308047249e85 * cos(theta) ** 28 - 3.24216074958551e84 * cos(theta) ** 26 + 3.92879285464315e83 * cos(theta) ** 24 - 3.88237317537239e82 * cos(theta) ** 22 + 3.09251104658973e81 * cos(theta) ** 20 - 1.95663369581102e80 * cos(theta) ** 18 + 9.65070778398085e78 * cos(theta) ** 16 - 3.62241142970817e77 * cos(theta) ** 14 + 1.00255304167714e76 * cos(theta) ** 12 - 1.96054817039085e74 * cos(theta) ** 10 + 2.55132063816045e72 * cos(theta) ** 8 - 2.0197053397934e70 * cos(theta) ** 6 + 8.38748064698256e67 * cos(theta) ** 4 - 1.36641009725483e65 * cos(theta) ** 2 + 3.64376025934621e61 ) * cos(32 * phi) ) # @torch.jit.script def Yl92_m33(theta, phi): return ( 1.47271869749464e-64 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 2.60880783804356e88 * cos(theta) ** 59 - 2.43916404966805e89 * cos(theta) ** 57 + 1.07538834896967e90 * cos(theta) ** 55 - 2.97383928905021e90 * cos(theta) ** 53 + 5.7880657349028e90 * cos(theta) ** 51 - 8.43403864228694e90 * cos(theta) ** 49 + 9.55532701669503e90 * cos(theta) ** 47 - 8.62933041357337e90 * cos(theta) ** 45 + 6.31881443005742e90 * cos(theta) ** 43 - 3.79633361965526e90 * cos(theta) ** 41 + 1.88666276855595e90 * cos(theta) ** 39 - 7.79708372281069e89 * cos(theta) ** 37 + 2.68781457525462e89 * cos(theta) ** 35 - 7.73705695344217e88 * cos(theta) ** 33 + 1.85858328999885e88 * cos(theta) ** 31 - 3.7171665799977e87 * cos(theta) ** 29 + 6.16490862532297e86 * cos(theta) ** 27 - 8.42961794892234e85 * cos(theta) ** 25 + 9.42910285114355e84 * cos(theta) ** 23 - 8.54122098581926e83 * cos(theta) ** 21 + 6.18502209317946e82 * cos(theta) ** 19 - 3.52194065245983e81 * cos(theta) ** 17 + 1.54411324543694e80 * cos(theta) ** 15 - 5.07137600159144e78 * cos(theta) ** 13 + 1.20306365001257e77 * cos(theta) ** 11 - 1.96054817039085e75 * cos(theta) ** 9 + 2.04105651052836e73 * cos(theta) ** 7 - 1.21182320387604e71 * cos(theta) ** 5 + 3.35499225879302e68 * cos(theta) ** 3 - 2.73282019450966e65 * cos(theta) ) * cos(33 * phi) ) # @torch.jit.script def Yl92_m34(theta, phi): return ( 1.70808123770373e-66 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.5391966244457e90 * cos(theta) ** 58 - 1.39032350831079e91 * cos(theta) ** 56 + 5.91463591933319e91 * cos(theta) ** 54 - 1.57613482319661e92 * cos(theta) ** 52 + 2.95191352480043e92 * cos(theta) ** 50 - 4.1326789347206e92 * cos(theta) ** 48 + 4.49100369784666e92 * cos(theta) ** 46 - 3.88319868610802e92 * cos(theta) ** 44 + 2.71709020492469e92 * cos(theta) ** 42 - 1.55649678405866e92 * cos(theta) ** 40 + 7.35798479736819e91 * cos(theta) ** 38 - 2.88492097743996e91 * cos(theta) ** 36 + 9.40735101339116e90 * cos(theta) ** 34 - 2.55322879463592e90 * cos(theta) ** 32 + 5.76160819899643e89 * cos(theta) ** 30 - 1.07797830819933e89 * cos(theta) ** 28 + 1.6645253288372e88 * cos(theta) ** 26 - 2.10740448723058e87 * cos(theta) ** 24 + 2.16869365576302e86 * cos(theta) ** 22 - 1.79365640702204e85 * cos(theta) ** 20 + 1.1751541977041e84 * cos(theta) ** 18 - 5.98729910918172e82 * cos(theta) ** 16 + 2.3161698681554e81 * cos(theta) ** 14 - 6.59278880206887e79 * cos(theta) ** 12 + 1.32337001501382e78 * cos(theta) ** 10 - 1.76449335335177e76 * cos(theta) ** 8 + 1.42873955736985e74 * cos(theta) ** 6 - 6.0591160193802e71 * cos(theta) ** 4 + 1.00649767763791e69 * cos(theta) ** 2 - 2.73282019450966e65 ) * cos(34 * phi) ) # @torch.jit.script def Yl92_m35(theta, phi): return ( 1.99018140879344e-68 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 8.92734042178506e91 * cos(theta) ** 57 - 7.78581164654041e92 * cos(theta) ** 55 + 3.19390339643992e93 * cos(theta) ** 53 - 8.19590108062237e93 * cos(theta) ** 51 + 1.47595676240021e94 * cos(theta) ** 49 - 1.98368588866589e94 * cos(theta) ** 47 + 2.06586170100947e94 * cos(theta) ** 45 - 1.70860742188753e94 * cos(theta) ** 43 + 1.14117788606837e94 * cos(theta) ** 41 - 6.22598713623462e93 * cos(theta) ** 39 + 2.79603422299991e93 * cos(theta) ** 37 - 1.03857155187838e93 * cos(theta) ** 35 + 3.19849934455299e92 * cos(theta) ** 33 - 8.17033214283493e91 * cos(theta) ** 31 + 1.72848245969893e91 * cos(theta) ** 29 - 3.01833926295813e90 * cos(theta) ** 27 + 4.32776585497673e89 * cos(theta) ** 25 - 5.0577707693534e88 * cos(theta) ** 23 + 4.77112604267864e87 * cos(theta) ** 21 - 3.58731281404409e86 * cos(theta) ** 19 + 2.11527755586738e85 * cos(theta) ** 17 - 9.57967857469075e83 * cos(theta) ** 15 + 3.24263781541757e82 * cos(theta) ** 13 - 7.91134656248264e80 * cos(theta) ** 11 + 1.32337001501382e79 * cos(theta) ** 9 - 1.41159468268141e77 * cos(theta) ** 7 + 8.5724373442191e74 * cos(theta) ** 5 - 2.42364640775208e72 * cos(theta) ** 3 + 2.01299535527581e69 * cos(theta) ) * cos(35 * phi) ) # @torch.jit.script def Yl92_m36(theta, phi): return ( 2.329969587437e-70 * (1.0 - cos(theta) ** 2) ** 18 * ( 5.08858404041748e93 * cos(theta) ** 56 - 4.28219640559723e94 * cos(theta) ** 54 + 1.69276880011316e95 * cos(theta) ** 52 - 4.17990955111741e95 * cos(theta) ** 50 + 7.23218813576105e95 * cos(theta) ** 48 - 9.32332367672967e95 * cos(theta) ** 46 + 9.29637765454259e95 * cos(theta) ** 44 - 7.34701191411637e95 * cos(theta) ** 42 + 4.67882933288032e95 * cos(theta) ** 40 - 2.4281349831315e95 * cos(theta) ** 38 + 1.03453266250997e95 * cos(theta) ** 36 - 3.63500043157434e94 * cos(theta) ** 34 + 1.05550478370249e94 * cos(theta) ** 32 - 2.53280296427883e93 * cos(theta) ** 30 + 5.01259913312689e92 * cos(theta) ** 28 - 8.14951600998695e91 * cos(theta) ** 26 + 1.08194146374418e91 * cos(theta) ** 24 - 1.16328727695128e90 * cos(theta) ** 22 + 1.00193646896251e89 * cos(theta) ** 20 - 6.81589434668377e87 * cos(theta) ** 18 + 3.59597184497454e86 * cos(theta) ** 16 - 1.43695178620361e85 * cos(theta) ** 14 + 4.21542916004283e83 * cos(theta) ** 12 - 8.70248121873091e81 * cos(theta) ** 10 + 1.19103301351244e80 * cos(theta) ** 8 - 9.88116277876989e77 * cos(theta) ** 6 + 4.28621867210955e75 * cos(theta) ** 4 - 7.27093922325624e72 * cos(theta) ** 2 + 2.01299535527581e69 ) * cos(36 * phi) ) # @torch.jit.script def Yl92_m37(theta, phi): return ( 2.74133040911422e-72 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 2.84960706263379e95 * cos(theta) ** 55 - 2.3123860590225e96 * cos(theta) ** 53 + 8.80239776058842e96 * cos(theta) ** 51 - 2.0899547755587e97 * cos(theta) ** 49 + 3.4714503051653e97 * cos(theta) ** 47 - 4.28872889129565e97 * cos(theta) ** 45 + 4.09040616799874e97 * cos(theta) ** 43 - 3.08574500392887e97 * cos(theta) ** 41 + 1.87153173315213e97 * cos(theta) ** 39 - 9.22691293589971e96 * cos(theta) ** 37 + 3.72431758503588e96 * cos(theta) ** 35 - 1.23590014673528e96 * cos(theta) ** 33 + 3.37761530784796e95 * cos(theta) ** 31 - 7.59840889283649e94 * cos(theta) ** 29 + 1.40352775727553e94 * cos(theta) ** 27 - 2.11887416259661e93 * cos(theta) ** 25 + 2.59665951298604e92 * cos(theta) ** 23 - 2.55923200929282e91 * cos(theta) ** 21 + 2.00387293792503e90 * cos(theta) ** 19 - 1.22686098240308e89 * cos(theta) ** 17 + 5.75355495195926e87 * cos(theta) ** 15 - 2.01173250068506e86 * cos(theta) ** 13 + 5.0585149920514e84 * cos(theta) ** 11 - 8.70248121873091e82 * cos(theta) ** 9 + 9.52826410809953e80 * cos(theta) ** 7 - 5.92869766726193e78 * cos(theta) ** 5 + 1.71448746884382e76 * cos(theta) ** 3 - 1.45418784465125e73 * cos(theta) ) * cos(37 * phi) ) # @torch.jit.script def Yl92_m38(theta, phi): return ( 3.24196530482212e-74 * (1.0 - cos(theta) ** 2) ** 19 * ( 1.56728388444859e97 * cos(theta) ** 54 - 1.22556461128193e98 * cos(theta) ** 52 + 4.48922285790009e98 * cos(theta) ** 50 - 1.02407784002376e99 * cos(theta) ** 48 + 1.63158164342769e99 * cos(theta) ** 46 - 1.92992800108304e99 * cos(theta) ** 44 + 1.75887465223946e99 * cos(theta) ** 42 - 1.26515545161084e99 * cos(theta) ** 40 + 7.2989737592933e98 * cos(theta) ** 38 - 3.41395778628289e98 * cos(theta) ** 36 + 1.30351115476256e98 * cos(theta) ** 34 - 4.07847048422641e97 * cos(theta) ** 32 + 1.04706074543287e97 * cos(theta) ** 30 - 2.20353857892258e96 * cos(theta) ** 28 + 3.78952494464393e95 * cos(theta) ** 26 - 5.29718540649152e94 * cos(theta) ** 24 + 5.97231687986788e93 * cos(theta) ** 22 - 5.37438721951493e92 * cos(theta) ** 20 + 3.80735858205755e91 * cos(theta) ** 18 - 2.08566367008523e90 * cos(theta) ** 16 + 8.6303324279389e88 * cos(theta) ** 14 - 2.61525225089057e87 * cos(theta) ** 12 + 5.56436649125654e85 * cos(theta) ** 10 - 7.83223309685782e83 * cos(theta) ** 8 + 6.66978487566967e81 * cos(theta) ** 6 - 2.96434883363097e79 * cos(theta) ** 4 + 5.14346240653146e76 * cos(theta) ** 2 - 1.45418784465125e73 ) * cos(38 * phi) ) # @torch.jit.script def Yl92_m39(theta, phi): return ( 3.85456909508432e-76 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 8.46333297602236e98 * cos(theta) ** 53 - 6.37293597866602e99 * cos(theta) ** 51 + 2.24461142895005e100 * cos(theta) ** 49 - 4.91557363211407e100 * cos(theta) ** 47 + 7.50527555976739e100 * cos(theta) ** 45 - 8.49168320476539e100 * cos(theta) ** 43 + 7.38727353940573e100 * cos(theta) ** 41 - 5.06062180644335e100 * cos(theta) ** 39 + 2.77361002853145e100 * cos(theta) ** 37 - 1.22902480306184e100 * cos(theta) ** 35 + 4.4319379261927e99 * cos(theta) ** 33 - 1.30511055495245e99 * cos(theta) ** 31 + 3.1411822362986e98 * cos(theta) ** 29 - 6.16990802098323e97 * cos(theta) ** 27 + 9.85276485607422e96 * cos(theta) ** 25 - 1.27132449755796e96 * cos(theta) ** 23 + 1.31390971357093e95 * cos(theta) ** 21 - 1.07487744390299e94 * cos(theta) ** 19 + 6.8532454477036e92 * cos(theta) ** 17 - 3.33706187213637e91 * cos(theta) ** 15 + 1.20824653991145e90 * cos(theta) ** 13 - 3.13830270106869e88 * cos(theta) ** 11 + 5.56436649125654e86 * cos(theta) ** 9 - 6.26578647748625e84 * cos(theta) ** 7 + 4.0018709254018e82 * cos(theta) ** 5 - 1.18573953345239e80 * cos(theta) ** 3 + 1.02869248130629e77 * cos(theta) ) * cos(39 * phi) ) # @torch.jit.script def Yl92_m40(theta, phi): return ( 4.60840813529167e-78 * (1.0 - cos(theta) ** 2) ** 20 * ( 4.48556647729185e100 * cos(theta) ** 52 - 3.25019734911967e101 * cos(theta) ** 50 + 1.09985960018552e102 * cos(theta) ** 48 - 2.31031960709361e102 * cos(theta) ** 46 + 3.37737400189532e102 * cos(theta) ** 44 - 3.65142377804912e102 * cos(theta) ** 42 + 3.02878215115635e102 * cos(theta) ** 40 - 1.97364250451291e102 * cos(theta) ** 38 + 1.02623571055664e102 * cos(theta) ** 36 - 4.30158681071645e101 * cos(theta) ** 34 + 1.46253951564359e101 * cos(theta) ** 32 - 4.0458427203526e100 * cos(theta) ** 30 + 9.10942848526595e99 * cos(theta) ** 28 - 1.66587516566547e99 * cos(theta) ** 26 + 2.46319121401855e98 * cos(theta) ** 24 - 2.92404634438332e97 * cos(theta) ** 22 + 2.75921039849896e96 * cos(theta) ** 20 - 2.04226714341567e95 * cos(theta) ** 18 + 1.16505172610961e94 * cos(theta) ** 16 - 5.00559280820456e92 * cos(theta) ** 14 + 1.57072050188488e91 * cos(theta) ** 12 - 3.45213297117556e89 * cos(theta) ** 10 + 5.00792984213089e87 * cos(theta) ** 8 - 4.38605053424038e85 * cos(theta) ** 6 + 2.0009354627009e83 * cos(theta) ** 4 - 3.55721860035716e80 * cos(theta) ** 2 + 1.02869248130629e77 ) * cos(40 * phi) ) # @torch.jit.script def Yl92_m41(theta, phi): return ( 5.54145029768469e-80 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 2.33249456819176e102 * cos(theta) ** 51 - 1.62509867455983e103 * cos(theta) ** 49 + 5.27932608089051e103 * cos(theta) ** 47 - 1.06274701926306e104 * cos(theta) ** 45 + 1.48604456083394e104 * cos(theta) ** 43 - 1.53359798678063e104 * cos(theta) ** 41 + 1.21151286046254e104 * cos(theta) ** 39 - 7.49984151714905e103 * cos(theta) ** 37 + 3.6944485580039e103 * cos(theta) ** 35 - 1.46253951564359e103 * cos(theta) ** 33 + 4.68012645005949e102 * cos(theta) ** 31 - 1.21375281610578e102 * cos(theta) ** 29 + 2.55063997587447e101 * cos(theta) ** 27 - 4.33127543073023e100 * cos(theta) ** 25 + 5.91165891364453e99 * cos(theta) ** 23 - 6.4329019576433e98 * cos(theta) ** 21 + 5.51842079699793e97 * cos(theta) ** 19 - 3.67608085814821e96 * cos(theta) ** 17 + 1.86408276177538e95 * cos(theta) ** 15 - 7.00782993148638e93 * cos(theta) ** 13 + 1.88486460226186e92 * cos(theta) ** 11 - 3.45213297117556e90 * cos(theta) ** 9 + 4.00634387370471e88 * cos(theta) ** 7 - 2.63163032054423e86 * cos(theta) ** 5 + 8.00374185080361e83 * cos(theta) ** 3 - 7.11443720071432e80 * cos(theta) ) * cos(41 * phi) ) # @torch.jit.script def Yl92_m42(theta, phi): return ( 6.70325830749101e-82 * (1.0 - cos(theta) ** 2) ** 21 * ( 1.1895722297778e104 * cos(theta) ** 50 - 7.96298350534319e104 * cos(theta) ** 48 + 2.48128325801854e105 * cos(theta) ** 46 - 4.78236158668378e105 * cos(theta) ** 44 + 6.38999161158595e105 * cos(theta) ** 42 - 6.28775174580058e105 * cos(theta) ** 40 + 4.7249001558039e105 * cos(theta) ** 38 - 2.77494136134515e105 * cos(theta) ** 36 + 1.29305699530136e105 * cos(theta) ** 34 - 4.82638040162385e104 * cos(theta) ** 32 + 1.45083919951844e104 * cos(theta) ** 30 - 3.51988316670676e103 * cos(theta) ** 28 + 6.88672793486106e102 * cos(theta) ** 26 - 1.08281885768256e102 * cos(theta) ** 24 + 1.35968155013824e101 * cos(theta) ** 22 - 1.35090941110509e100 * cos(theta) ** 20 + 1.04849995142961e99 * cos(theta) ** 18 - 6.24933745885195e97 * cos(theta) ** 16 + 2.79612414266307e96 * cos(theta) ** 14 - 9.1101789109323e94 * cos(theta) ** 12 + 2.07335106248804e93 * cos(theta) ** 10 - 3.106919674058e91 * cos(theta) ** 8 + 2.8044407115933e89 * cos(theta) ** 6 - 1.31581516027211e87 * cos(theta) ** 4 + 2.40112255524108e84 * cos(theta) ** 2 - 7.11443720071432e80 ) * cos(42 * phi) ) # @torch.jit.script def Yl92_m43(theta, phi): return ( 8.15894618621495e-84 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 5.94786114888899e105 * cos(theta) ** 49 - 3.82223208256473e106 * cos(theta) ** 47 + 1.14139029868853e107 * cos(theta) ** 45 - 2.10423909814086e107 * cos(theta) ** 43 + 2.6837964768661e107 * cos(theta) ** 41 - 2.51510069832023e107 * cos(theta) ** 39 + 1.79546205920548e107 * cos(theta) ** 37 - 9.98978890084254e106 * cos(theta) ** 35 + 4.39639378402464e106 * cos(theta) ** 33 - 1.54444172851963e106 * cos(theta) ** 31 + 4.35251759855533e105 * cos(theta) ** 29 - 9.85567286677894e104 * cos(theta) ** 27 + 1.79054926306388e104 * cos(theta) ** 25 - 2.59876525843814e103 * cos(theta) ** 23 + 2.99129941030413e102 * cos(theta) ** 21 - 2.70181882221018e101 * cos(theta) ** 19 + 1.88729991257329e100 * cos(theta) ** 17 - 9.99893993416313e98 * cos(theta) ** 15 + 3.91457379972829e97 * cos(theta) ** 13 - 1.09322146931188e96 * cos(theta) ** 11 + 2.07335106248804e94 * cos(theta) ** 9 - 2.4855357392464e92 * cos(theta) ** 7 + 1.68266442695598e90 * cos(theta) ** 5 - 5.26326064108845e87 * cos(theta) ** 3 + 4.80224511048216e84 * cos(theta) ) * cos(43 * phi) ) # @torch.jit.script def Yl92_m44(theta, phi): return ( 9.9946266227838e-86 * (1.0 - cos(theta) ** 2) ** 22 * ( 2.91445196295561e107 * cos(theta) ** 48 - 1.79644907880542e108 * cos(theta) ** 46 + 5.13625634409838e108 * cos(theta) ** 44 - 9.04822812200571e108 * cos(theta) ** 42 + 1.1003565555151e109 * cos(theta) ** 40 - 9.8088927234489e108 * cos(theta) ** 38 + 6.64320961906029e108 * cos(theta) ** 36 - 3.49642611529489e108 * cos(theta) ** 34 + 1.45080994872813e108 * cos(theta) ** 32 - 4.78776935841086e107 * cos(theta) ** 30 + 1.26223010358105e107 * cos(theta) ** 28 - 2.66103167403031e106 * cos(theta) ** 26 + 4.47637315765969e105 * cos(theta) ** 24 - 5.97716009440771e104 * cos(theta) ** 22 + 6.28172876163868e103 * cos(theta) ** 20 - 5.13345576219935e102 * cos(theta) ** 18 + 3.20840985137459e101 * cos(theta) ** 16 - 1.49984099012447e100 * cos(theta) ** 14 + 5.08894593964678e98 * cos(theta) ** 12 - 1.20254361624306e97 * cos(theta) ** 10 + 1.86601595623924e95 * cos(theta) ** 8 - 1.73987501747248e93 * cos(theta) ** 6 + 8.41332213477989e90 * cos(theta) ** 4 - 1.57897819232654e88 * cos(theta) ** 2 + 4.80224511048216e84 ) * cos(44 * phi) ) # @torch.jit.script def Yl92_m45(theta, phi): return ( 1.23249643628823e-87 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 1.39893694221869e109 * cos(theta) ** 47 - 8.26366576250495e109 * cos(theta) ** 45 + 2.25995279140329e110 * cos(theta) ** 43 - 3.8002558112424e110 * cos(theta) ** 41 + 4.4014262220604e110 * cos(theta) ** 39 - 3.72737923491058e110 * cos(theta) ** 37 + 2.3915554628617e110 * cos(theta) ** 35 - 1.18878487920026e110 * cos(theta) ** 33 + 4.64259183593002e109 * cos(theta) ** 31 - 1.43633080752326e109 * cos(theta) ** 29 + 3.53424429002693e108 * cos(theta) ** 27 - 6.91868235247882e107 * cos(theta) ** 25 + 1.07432955783833e107 * cos(theta) ** 23 - 1.3149752207697e106 * cos(theta) ** 21 + 1.25634575232774e105 * cos(theta) ** 19 - 9.24022037195883e103 * cos(theta) ** 17 + 5.13345576219935e102 * cos(theta) ** 15 - 2.09977738617426e101 * cos(theta) ** 13 + 6.10673512757614e99 * cos(theta) ** 11 - 1.20254361624306e98 * cos(theta) ** 9 + 1.49281276499139e96 * cos(theta) ** 7 - 1.04392501048349e94 * cos(theta) ** 5 + 3.36532885391196e91 * cos(theta) ** 3 - 3.15795638465307e88 * cos(theta) ) * cos(45 * phi) ) # @torch.jit.script def Yl92_m46(theta, phi): return ( 1.53037266560346e-89 * (1.0 - cos(theta) ** 2) ** 23 * ( 6.57500362842785e110 * cos(theta) ** 46 - 3.71864959312723e111 * cos(theta) ** 44 + 9.71779700303413e111 * cos(theta) ** 42 - 1.55810488260938e112 * cos(theta) ** 40 + 1.71655622660356e112 * cos(theta) ** 38 - 1.37913031691692e112 * cos(theta) ** 36 + 8.37044412001596e111 * cos(theta) ** 34 - 3.92299010136086e111 * cos(theta) ** 32 + 1.43920346913831e111 * cos(theta) ** 30 - 4.16535934181745e110 * cos(theta) ** 28 + 9.5424595830727e109 * cos(theta) ** 26 - 1.7296705881197e109 * cos(theta) ** 24 + 2.47095798302815e108 * cos(theta) ** 22 - 2.76144796361636e107 * cos(theta) ** 20 + 2.3870569294227e106 * cos(theta) ** 18 - 1.570837463233e105 * cos(theta) ** 16 + 7.70018364329903e103 * cos(theta) ** 14 - 2.72971060202653e102 * cos(theta) ** 12 + 6.71740864033375e100 * cos(theta) ** 10 - 1.08228925461876e99 * cos(theta) ** 8 + 1.04496893549397e97 * cos(theta) ** 6 - 5.21962505241744e94 * cos(theta) ** 4 + 1.00959865617359e92 * cos(theta) ** 2 - 3.15795638465307e88 ) * cos(46 * phi) ) # @torch.jit.script def Yl92_m47(theta, phi): return ( 1.91386316572517e-91 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 3.02450166907681e112 * cos(theta) ** 45 - 1.63620582097598e113 * cos(theta) ** 43 + 4.08147474127434e113 * cos(theta) ** 41 - 6.23241953043753e113 * cos(theta) ** 39 + 6.52291366109352e113 * cos(theta) ** 37 - 4.9648691409009e113 * cos(theta) ** 35 + 2.84595100080543e113 * cos(theta) ** 33 - 1.25535683243548e113 * cos(theta) ** 31 + 4.31761040741492e112 * cos(theta) ** 29 - 1.16630061570889e112 * cos(theta) ** 27 + 2.4810394915989e111 * cos(theta) ** 25 - 4.15120941148729e110 * cos(theta) ** 23 + 5.43610756266193e109 * cos(theta) ** 21 - 5.52289592723273e108 * cos(theta) ** 19 + 4.29670247296086e107 * cos(theta) ** 17 - 2.5133399411728e106 * cos(theta) ** 15 + 1.07802571006186e105 * cos(theta) ** 13 - 3.27565272243184e103 * cos(theta) ** 11 + 6.71740864033375e101 * cos(theta) ** 9 - 8.65831403695006e99 * cos(theta) ** 7 + 6.26981361296383e97 * cos(theta) ** 5 - 2.08785002096698e95 * cos(theta) ** 3 + 2.01919731234717e92 * cos(theta) ) * cos(47 * phi) ) # @torch.jit.script def Yl92_m48(theta, phi): return ( 2.41124094281695e-93 * (1.0 - cos(theta) ** 2) ** 24 * ( 1.36102575108456e114 * cos(theta) ** 44 - 7.03568503019671e114 * cos(theta) ** 42 + 1.67340464392248e115 * cos(theta) ** 40 - 2.43064361687064e115 * cos(theta) ** 38 + 2.4134780546046e115 * cos(theta) ** 36 - 1.73770419931531e115 * cos(theta) ** 34 + 9.39163830265791e114 * cos(theta) ** 32 - 3.89160618054998e114 * cos(theta) ** 30 + 1.25210701815033e114 * cos(theta) ** 28 - 3.14901166241399e113 * cos(theta) ** 26 + 6.20259872899726e112 * cos(theta) ** 24 - 9.54778164642076e111 * cos(theta) ** 22 + 1.141582588159e111 * cos(theta) ** 20 - 1.04935022617422e110 * cos(theta) ** 18 + 7.30439420403346e108 * cos(theta) ** 16 - 3.7700099117592e107 * cos(theta) ** 14 + 1.40143342308042e106 * cos(theta) ** 12 - 3.60321799467503e104 * cos(theta) ** 10 + 6.04566777630038e102 * cos(theta) ** 8 - 6.06081982586504e100 * cos(theta) ** 6 + 3.13490680648192e98 * cos(theta) ** 4 - 6.26355006290093e95 * cos(theta) ** 2 + 2.01919731234717e92 ) * cos(48 * phi) ) # @torch.jit.script def Yl92_m49(theta, phi): return ( 3.06129170542975e-95 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 5.98851330477209e115 * cos(theta) ** 43 - 2.95498771268262e116 * cos(theta) ** 41 + 6.69361857568991e116 * cos(theta) ** 39 - 9.23644574410842e116 * cos(theta) ** 37 + 8.68852099657657e116 * cos(theta) ** 35 - 5.90819427767207e116 * cos(theta) ** 33 + 3.00532425685053e116 * cos(theta) ** 31 - 1.16748185416499e116 * cos(theta) ** 29 + 3.50589965082091e115 * cos(theta) ** 27 - 8.18743032227638e114 * cos(theta) ** 25 + 1.48862369495934e114 * cos(theta) ** 23 - 2.10051196221257e113 * cos(theta) ** 21 + 2.28316517631801e112 * cos(theta) ** 19 - 1.88883040711359e111 * cos(theta) ** 17 + 1.16870307264535e110 * cos(theta) ** 15 - 5.27801387646288e108 * cos(theta) ** 13 + 1.68172010769651e107 * cos(theta) ** 11 - 3.60321799467502e105 * cos(theta) ** 9 + 4.8365342210403e103 * cos(theta) ** 7 - 3.63649189551902e101 * cos(theta) ** 5 + 1.25396272259277e99 * cos(theta) ** 3 - 1.25271001258019e96 * cos(theta) ) * cos(49 * phi) ) # @torch.jit.script def Yl92_m50(theta, phi): return ( 3.91765614269084e-97 * (1.0 - cos(theta) ** 2) ** 25 * ( 2.575060721052e117 * cos(theta) ** 42 - 1.21154496219987e118 * cos(theta) ** 40 + 2.61051124451906e118 * cos(theta) ** 38 - 3.41748492532012e118 * cos(theta) ** 36 + 3.0409823488018e118 * cos(theta) ** 34 - 1.94970411163178e118 * cos(theta) ** 32 + 9.31650519623665e117 * cos(theta) ** 30 - 3.38569737707848e117 * cos(theta) ** 28 + 9.46592905721646e116 * cos(theta) ** 26 - 2.04685758056909e116 * cos(theta) ** 24 + 3.42383449840649e115 * cos(theta) ** 22 - 4.41107512064639e114 * cos(theta) ** 20 + 4.33801383500422e113 * cos(theta) ** 18 - 3.21101169209311e112 * cos(theta) ** 16 + 1.75305460896803e111 * cos(theta) ** 14 - 6.86141803940175e109 * cos(theta) ** 12 + 1.84989211846616e108 * cos(theta) ** 10 - 3.24289619520752e106 * cos(theta) ** 8 + 3.38557395472821e104 * cos(theta) ** 6 - 1.81824594775951e102 * cos(theta) ** 4 + 3.7618881677783e99 * cos(theta) ** 2 - 1.25271001258019e96 ) * cos(50 * phi) ) # @torch.jit.script def Yl92_m51(theta, phi): return ( 5.05514539115145e-99 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 1.08152550284184e119 * cos(theta) ** 41 - 4.8461798487995e119 * cos(theta) ** 39 + 9.91994272917245e119 * cos(theta) ** 37 - 1.23029457311524e120 * cos(theta) ** 35 + 1.03393399859261e120 * cos(theta) ** 33 - 6.2390531572217e119 * cos(theta) ** 31 + 2.79495155887099e119 * cos(theta) ** 29 - 9.47995265581974e118 * cos(theta) ** 27 + 2.46114155487628e118 * cos(theta) ** 25 - 4.91245819336583e117 * cos(theta) ** 23 + 7.53243589649427e116 * cos(theta) ** 21 - 8.82215024129279e115 * cos(theta) ** 19 + 7.80842490300759e114 * cos(theta) ** 17 - 5.13761870734897e113 * cos(theta) ** 15 + 2.45427645255524e112 * cos(theta) ** 13 - 8.2337016472821e110 * cos(theta) ** 11 + 1.84989211846616e109 * cos(theta) ** 9 - 2.59431695616602e107 * cos(theta) ** 7 + 2.03134437283693e105 * cos(theta) ** 5 - 7.27298379103805e102 * cos(theta) ** 3 + 7.5237763355566e99 * cos(theta) ) * cos(51 * phi) ) # @torch.jit.script def Yl92_m52(theta, phi): return ( 6.57900893858309e-101 * (1.0 - cos(theta) ** 2) ** 26 * ( 4.43425456165154e120 * cos(theta) ** 40 - 1.8900101410318e121 * cos(theta) ** 38 + 3.67037880979381e121 * cos(theta) ** 36 - 4.30603100590335e121 * cos(theta) ** 34 + 3.41198219535562e121 * cos(theta) ** 32 - 1.93410647873873e121 * cos(theta) ** 30 + 8.10535952072588e120 * cos(theta) ** 28 - 2.55958721707133e120 * cos(theta) ** 26 + 6.1528538871907e119 * cos(theta) ** 24 - 1.12986538447414e119 * cos(theta) ** 22 + 1.5818115382638e118 * cos(theta) ** 20 - 1.67620854584563e117 * cos(theta) ** 18 + 1.32743223351129e116 * cos(theta) ** 16 - 7.70642806102346e114 * cos(theta) ** 14 + 3.19055938832181e113 * cos(theta) ** 12 - 9.05707181201031e111 * cos(theta) ** 10 + 1.66490290661954e110 * cos(theta) ** 8 - 1.81602186931621e108 * cos(theta) ** 6 + 1.01567218641846e106 * cos(theta) ** 4 - 2.18189513731141e103 * cos(theta) ** 2 + 7.5237763355566e99 ) * cos(52 * phi) ) # @torch.jit.script def Yl92_m53(theta, phi): return ( 8.63866195477575e-103 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 1.77370182466062e122 * cos(theta) ** 39 - 7.18203853592085e122 * cos(theta) ** 37 + 1.32133637152577e123 * cos(theta) ** 35 - 1.46405054200714e123 * cos(theta) ** 33 + 1.0918343025138e123 * cos(theta) ** 31 - 5.80231943621618e122 * cos(theta) ** 29 + 2.26950066580325e122 * cos(theta) ** 27 - 6.65492676438546e121 * cos(theta) ** 25 + 1.47668493292577e121 * cos(theta) ** 23 - 2.48570384584311e120 * cos(theta) ** 21 + 3.16362307652759e119 * cos(theta) ** 19 - 3.01717538252213e118 * cos(theta) ** 17 + 2.12389157361806e117 * cos(theta) ** 15 - 1.07889992854328e116 * cos(theta) ** 13 + 3.82867126598618e114 * cos(theta) ** 11 - 9.05707181201031e112 * cos(theta) ** 9 + 1.33192232529563e111 * cos(theta) ** 7 - 1.08961312158973e109 * cos(theta) ** 5 + 4.06268874567385e106 * cos(theta) ** 3 - 4.36379027462283e103 * cos(theta) ) * cos(53 * phi) ) # @torch.jit.script def Yl92_m54(theta, phi): return ( 1.14482142432251e-104 * (1.0 - cos(theta) ** 2) ** 27 * ( 6.9174371161764e123 * cos(theta) ** 38 - 2.65735425829072e124 * cos(theta) ** 36 + 4.6246773003402e124 * cos(theta) ** 34 - 4.83136678862356e124 * cos(theta) ** 32 + 3.38468633779277e124 * cos(theta) ** 30 - 1.68267263650269e124 * cos(theta) ** 28 + 6.12765179766877e123 * cos(theta) ** 26 - 1.66373169109637e123 * cos(theta) ** 24 + 3.39637534572927e122 * cos(theta) ** 22 - 5.21997807627053e121 * cos(theta) ** 20 + 6.01088384540243e120 * cos(theta) ** 18 - 5.12919815028763e119 * cos(theta) ** 16 + 3.1858373604271e118 * cos(theta) ** 14 - 1.40256990710627e117 * cos(theta) ** 12 + 4.21153839258479e115 * cos(theta) ** 10 - 8.15136463080928e113 * cos(theta) ** 8 + 9.32345627706944e111 * cos(theta) ** 6 - 5.44806560794864e109 * cos(theta) ** 4 + 1.21880662370216e107 * cos(theta) ** 2 - 4.36379027462283e103 ) * cos(54 * phi) ) # @torch.jit.script def Yl92_m55(theta, phi): return ( 1.53174786116458e-106 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 2.62862610414703e125 * cos(theta) ** 37 - 9.56647532984657e125 * cos(theta) ** 35 + 1.57239028211567e126 * cos(theta) ** 33 - 1.54603737235954e126 * cos(theta) ** 31 + 1.01540590133783e126 * cos(theta) ** 29 - 4.71148338220754e125 * cos(theta) ** 27 + 1.59318946739388e125 * cos(theta) ** 25 - 3.99295605863128e124 * cos(theta) ** 23 + 7.47202576060439e123 * cos(theta) ** 21 - 1.04399561525411e123 * cos(theta) ** 19 + 1.08195909217244e122 * cos(theta) ** 17 - 8.2067170404602e120 * cos(theta) ** 15 + 4.46017230459794e119 * cos(theta) ** 13 - 1.68308388852752e118 * cos(theta) ** 11 + 4.21153839258479e116 * cos(theta) ** 9 - 6.52109170464742e114 * cos(theta) ** 7 + 5.59407376624166e112 * cos(theta) ** 5 - 2.17922624317946e110 * cos(theta) ** 3 + 2.43761324740431e107 * cos(theta) ) * cos(55 * phi) ) # @torch.jit.script def Yl92_m56(theta, phi): return ( 2.0699295421143e-108 * (1.0 - cos(theta) ** 2) ** 28 * ( 9.72591658534402e126 * cos(theta) ** 36 - 3.3482663654463e127 * cos(theta) ** 34 + 5.1888879309817e127 * cos(theta) ** 32 - 4.79271585431457e127 * cos(theta) ** 30 + 2.94467711387971e127 * cos(theta) ** 28 - 1.27210051319604e127 * cos(theta) ** 26 + 3.9829736684847e126 * cos(theta) ** 24 - 9.18379893485194e125 * cos(theta) ** 22 + 1.56912540972692e125 * cos(theta) ** 20 - 1.9835916689828e124 * cos(theta) ** 18 + 1.83933045669314e123 * cos(theta) ** 16 - 1.23100755606903e122 * cos(theta) ** 14 + 5.79822399597732e120 * cos(theta) ** 12 - 1.85139227738028e119 * cos(theta) ** 10 + 3.79038455332631e117 * cos(theta) ** 8 - 4.5647641932532e115 * cos(theta) ** 6 + 2.79703688312083e113 * cos(theta) ** 4 - 6.53767872953836e110 * cos(theta) ** 2 + 2.43761324740431e107 ) * cos(56 * phi) ) # @torch.jit.script def Yl92_m57(theta, phi): return ( 2.82625392354232e-110 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 3.50132997072385e128 * cos(theta) ** 35 - 1.13841056425174e129 * cos(theta) ** 33 + 1.66044413791414e129 * cos(theta) ** 31 - 1.43781475629437e129 * cos(theta) ** 29 + 8.2450959188632e128 * cos(theta) ** 27 - 3.30746133430969e128 * cos(theta) ** 25 + 9.55913680436328e127 * cos(theta) ** 23 - 2.02043576566743e127 * cos(theta) ** 21 + 3.13825081945384e126 * cos(theta) ** 19 - 3.57046500416904e125 * cos(theta) ** 17 + 2.94292873070903e124 * cos(theta) ** 15 - 1.72341057849664e123 * cos(theta) ** 13 + 6.95786879517278e121 * cos(theta) ** 11 - 1.85139227738028e120 * cos(theta) ** 9 + 3.03230764266105e118 * cos(theta) ** 7 - 2.73885851595192e116 * cos(theta) ** 5 + 1.11881475324833e114 * cos(theta) ** 3 - 1.30753574590767e111 * cos(theta) ) * cos(57 * phi) ) # @torch.jit.script def Yl92_m58(theta, phi): return ( 3.90060098918551e-112 * (1.0 - cos(theta) ** 2) ** 29 * ( 1.22546548975335e130 * cos(theta) ** 34 - 3.75675486203075e130 * cos(theta) ** 32 + 5.14737682753385e130 * cos(theta) ** 30 - 4.16966279325367e130 * cos(theta) ** 28 + 2.22617589809306e130 * cos(theta) ** 26 - 8.26865333577423e129 * cos(theta) ** 24 + 2.19860146500355e129 * cos(theta) ** 22 - 4.24291510790159e128 * cos(theta) ** 20 + 5.9626765569623e127 * cos(theta) ** 18 - 6.06979050708737e126 * cos(theta) ** 16 + 4.41439309606354e125 * cos(theta) ** 14 - 2.24043375204564e124 * cos(theta) ** 12 + 7.65365567469006e122 * cos(theta) ** 10 - 1.66625304964225e121 * cos(theta) ** 8 + 2.12261534986274e119 * cos(theta) ** 6 - 1.36942925797596e117 * cos(theta) ** 4 + 3.356444259745e114 * cos(theta) ** 2 - 1.30753574590767e111 ) * cos(58 * phi) ) # @torch.jit.script def Yl92_m59(theta, phi): return ( 5.44381796405602e-114 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 4.16658266516138e131 * cos(theta) ** 33 - 1.20216155584984e132 * cos(theta) ** 31 + 1.54421304826015e132 * cos(theta) ** 29 - 1.16750558211103e132 * cos(theta) ** 27 + 5.78805733504196e131 * cos(theta) ** 25 - 1.98447680058582e131 * cos(theta) ** 23 + 4.83692322300782e130 * cos(theta) ** 21 - 8.48583021580319e129 * cos(theta) ** 19 + 1.07328178025321e129 * cos(theta) ** 17 - 9.71166481133979e127 * cos(theta) ** 15 + 6.18015033448896e126 * cos(theta) ** 13 - 2.68852050245476e125 * cos(theta) ** 11 + 7.65365567469006e123 * cos(theta) ** 9 - 1.3330024397138e122 * cos(theta) ** 7 + 1.27356920991764e120 * cos(theta) ** 5 - 5.47771703190383e117 * cos(theta) ** 3 + 6.71288851948999e114 * cos(theta) ) * cos(59 * phi) ) # @torch.jit.script def Yl92_m60(theta, phi): return ( 7.68643272641954e-116 * (1.0 - cos(theta) ** 2) ** 30 * ( 1.37497227950325e133 * cos(theta) ** 32 - 3.7267008231345e133 * cos(theta) ** 30 + 4.47821783995445e133 * cos(theta) ** 28 - 3.15226507169978e133 * cos(theta) ** 26 + 1.44701433376049e133 * cos(theta) ** 24 - 4.56429664134738e132 * cos(theta) ** 22 + 1.01575387683164e132 * cos(theta) ** 20 - 1.61230774100261e131 * cos(theta) ** 18 + 1.82457902643046e130 * cos(theta) ** 16 - 1.45674972170097e129 * cos(theta) ** 14 + 8.03419543483565e127 * cos(theta) ** 12 - 2.95737255270024e126 * cos(theta) ** 10 + 6.88829010722105e124 * cos(theta) ** 8 - 9.33101707799659e122 * cos(theta) ** 6 + 6.36784604958821e120 * cos(theta) ** 4 - 1.64331510957115e118 * cos(theta) ** 2 + 6.71288851948999e114 ) * cos(60 * phi) ) # @torch.jit.script def Yl92_m61(theta, phi): return ( 1.09851028114502e-117 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 4.39991129441041e134 * cos(theta) ** 31 - 1.11801024694035e135 * cos(theta) ** 29 + 1.25390099518724e135 * cos(theta) ** 27 - 8.19588918641942e134 * cos(theta) ** 25 + 3.47283440102518e134 * cos(theta) ** 23 - 1.00414526109642e134 * cos(theta) ** 21 + 2.03150775366328e133 * cos(theta) ** 19 - 2.90215393380469e132 * cos(theta) ** 17 + 2.91932644228874e131 * cos(theta) ** 15 - 2.03944961038136e130 * cos(theta) ** 13 + 9.64103452180278e128 * cos(theta) ** 11 - 2.95737255270024e127 * cos(theta) ** 9 + 5.51063208577684e125 * cos(theta) ** 7 - 5.59861024679795e123 * cos(theta) ** 5 + 2.54713841983528e121 * cos(theta) ** 3 - 3.2866302191423e118 * cos(theta) ) * cos(61 * phi) ) # @torch.jit.script def Yl92_m62(theta, phi): return ( 1.58987477392937e-119 * (1.0 - cos(theta) ** 2) ** 31 * ( 1.36397250126723e136 * cos(theta) ** 30 - 3.24222971612702e136 * cos(theta) ** 28 + 3.38553268700556e136 * cos(theta) ** 26 - 2.04897229660486e136 * cos(theta) ** 24 + 7.98751912235791e135 * cos(theta) ** 22 - 2.10870504830249e135 * cos(theta) ** 20 + 3.85986473196024e134 * cos(theta) ** 18 - 4.93366168746797e133 * cos(theta) ** 16 + 4.37898966343311e132 * cos(theta) ** 14 - 2.65128449349576e131 * cos(theta) ** 12 + 1.06051379739831e130 * cos(theta) ** 10 - 2.66163529743021e128 * cos(theta) ** 8 + 3.85744246004379e126 * cos(theta) ** 6 - 2.79930512339898e124 * cos(theta) ** 4 + 7.64141525950585e121 * cos(theta) ** 2 - 3.2866302191423e118 ) * cos(62 * phi) ) # @torch.jit.script def Yl92_m63(theta, phi): return ( 2.33150548841968e-121 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 4.09191750380168e137 * cos(theta) ** 29 - 9.07824320515565e137 * cos(theta) ** 27 + 8.80238498621446e137 * cos(theta) ** 25 - 4.91753351185165e137 * cos(theta) ** 23 + 1.75725420691874e137 * cos(theta) ** 21 - 4.21741009660498e136 * cos(theta) ** 19 + 6.94775651752843e135 * cos(theta) ** 17 - 7.89385869994876e134 * cos(theta) ** 15 + 6.13058552880636e133 * cos(theta) ** 13 - 3.18154139219492e132 * cos(theta) ** 11 + 1.06051379739831e131 * cos(theta) ** 9 - 2.12930823794417e129 * cos(theta) ** 7 + 2.31446547602627e127 * cos(theta) ** 5 - 1.11972204935959e125 * cos(theta) ** 3 + 1.52828305190117e122 * cos(theta) ) * cos(63 * phi) ) # @torch.jit.script def Yl92_m64(theta, phi): return ( 3.46637180864413e-123 * (1.0 - cos(theta) ** 2) ** 32 * ( 1.18665607610249e139 * cos(theta) ** 28 - 2.45112566539203e139 * cos(theta) ** 26 + 2.20059624655361e139 * cos(theta) ** 24 - 1.13103270772588e139 * cos(theta) ** 22 + 3.69023383452935e138 * cos(theta) ** 20 - 8.01307918354946e137 * cos(theta) ** 18 + 1.18111860797983e137 * cos(theta) ** 16 - 1.18407880499231e136 * cos(theta) ** 14 + 7.96976118744827e134 * cos(theta) ** 12 - 3.49969553141441e133 * cos(theta) ** 10 + 9.54462417658475e131 * cos(theta) ** 8 - 1.49051576656092e130 * cos(theta) ** 6 + 1.15723273801314e128 * cos(theta) ** 4 - 3.35916614807877e125 * cos(theta) ** 2 + 1.52828305190117e122 ) * cos(64 * phi) ) # @torch.jit.script def Yl92_m65(theta, phi): return ( 5.22812908680753e-125 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 3.32263701308697e140 * cos(theta) ** 27 - 6.37292673001927e140 * cos(theta) ** 25 + 5.28143099172867e140 * cos(theta) ** 23 - 2.48827195699694e140 * cos(theta) ** 21 + 7.38046766905871e139 * cos(theta) ** 19 - 1.4423542530389e139 * cos(theta) ** 17 + 1.88978977276773e138 * cos(theta) ** 15 - 1.65771032698924e137 * cos(theta) ** 13 + 9.56371342493792e135 * cos(theta) ** 11 - 3.49969553141441e134 * cos(theta) ** 9 + 7.6356993412678e132 * cos(theta) ** 7 - 8.94309459936552e130 * cos(theta) ** 5 + 4.62893095205255e128 * cos(theta) ** 3 - 6.71833229615754e125 * cos(theta) ) * cos(65 * phi) ) # @torch.jit.script def Yl92_m66(theta, phi): return ( 8.00453073594444e-127 * (1.0 - cos(theta) ** 2) ** 33 * ( 8.97111993533482e141 * cos(theta) ** 26 - 1.59323168250482e142 * cos(theta) ** 24 + 1.2147291280976e142 * cos(theta) ** 22 - 5.22537110969357e141 * cos(theta) ** 20 + 1.40228885712115e141 * cos(theta) ** 18 - 2.45200223016613e140 * cos(theta) ** 16 + 2.8346846591516e139 * cos(theta) ** 14 - 2.15502342508601e138 * cos(theta) ** 12 + 1.05200847674317e137 * cos(theta) ** 10 - 3.14972597827297e135 * cos(theta) ** 8 + 5.34498953888746e133 * cos(theta) ** 6 - 4.47154729968276e131 * cos(theta) ** 4 + 1.38867928561576e129 * cos(theta) ** 2 - 6.71833229615754e125 ) * cos(66 * phi) ) # @torch.jit.script def Yl92_m67(theta, phi): return ( 1.24494636197176e-128 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 2.33249118318705e143 * cos(theta) ** 25 - 3.82375603801156e143 * cos(theta) ** 23 + 2.67240408181471e143 * cos(theta) ** 21 - 1.04507422193871e143 * cos(theta) ** 19 + 2.52411994281808e142 * cos(theta) ** 17 - 3.92320356826581e141 * cos(theta) ** 15 + 3.96855852281224e140 * cos(theta) ** 13 - 2.58602811010321e139 * cos(theta) ** 11 + 1.05200847674317e138 * cos(theta) ** 9 - 2.51978078261837e136 * cos(theta) ** 7 + 3.20699372333248e134 * cos(theta) ** 5 - 1.7886189198731e132 * cos(theta) ** 3 + 2.77735857123153e129 * cos(theta) ) * cos(67 * phi) ) # @torch.jit.script def Yl92_m68(theta, phi): return ( 1.9684330342856e-130 * (1.0 - cos(theta) ** 2) ** 34 * ( 5.83122795796763e144 * cos(theta) ** 24 - 8.79463888742659e144 * cos(theta) ** 22 + 5.61204857181089e144 * cos(theta) ** 20 - 1.98564102168356e144 * cos(theta) ** 18 + 4.29100390279073e143 * cos(theta) ** 16 - 5.88480535239872e142 * cos(theta) ** 14 + 5.15912607965591e141 * cos(theta) ** 12 - 2.84463092111353e140 * cos(theta) ** 10 + 9.46807629068854e138 * cos(theta) ** 8 - 1.76384654783286e137 * cos(theta) ** 6 + 1.60349686166624e135 * cos(theta) ** 4 - 5.36585675961931e132 * cos(theta) ** 2 + 2.77735857123153e129 ) * cos(68 * phi) ) # @torch.jit.script def Yl92_m69(theta, phi): return ( 3.16666473675985e-132 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 1.39949470991223e146 * cos(theta) ** 23 - 1.93482055523385e146 * cos(theta) ** 21 + 1.12240971436218e146 * cos(theta) ** 19 - 3.5741538390304e145 * cos(theta) ** 17 + 6.86560624446517e144 * cos(theta) ** 15 - 8.23872749335821e143 * cos(theta) ** 13 + 6.19095129558709e142 * cos(theta) ** 11 - 2.84463092111353e141 * cos(theta) ** 9 + 7.57446103255083e139 * cos(theta) ** 7 - 1.05830792869972e138 * cos(theta) ** 5 + 6.41398744666495e135 * cos(theta) ** 3 - 1.07317135192386e133 * cos(theta) ) * cos(69 * phi) ) # @torch.jit.script def Yl92_m70(theta, phi): return ( 5.18776936971783e-134 * (1.0 - cos(theta) ** 2) ** 35 * ( 3.21883783279813e147 * cos(theta) ** 22 - 4.06312316599108e147 * cos(theta) ** 20 + 2.13257845728814e147 * cos(theta) ** 18 - 6.07606152635168e146 * cos(theta) ** 16 + 1.02984093666978e146 * cos(theta) ** 14 - 1.07103457413657e145 * cos(theta) ** 12 + 6.8100464251458e143 * cos(theta) ** 10 - 2.56016782900218e142 * cos(theta) ** 8 + 5.30212272278558e140 * cos(theta) ** 6 - 5.29153964349858e138 * cos(theta) ** 4 + 1.92419623399949e136 * cos(theta) ** 2 - 1.07317135192386e133 ) * cos(70 * phi) ) # @torch.jit.script def Yl92_m71(theta, phi): return ( 8.66314369349615e-136 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 7.08144323215589e148 * cos(theta) ** 21 - 8.12624633198217e148 * cos(theta) ** 19 + 3.83864122311865e148 * cos(theta) ** 17 - 9.72169844216269e147 * cos(theta) ** 15 + 1.44177731133769e147 * cos(theta) ** 13 - 1.28524148896388e146 * cos(theta) ** 11 + 6.8100464251458e144 * cos(theta) ** 9 - 2.04813426320174e143 * cos(theta) ** 7 + 3.18127363367135e141 * cos(theta) ** 5 - 2.11661585739943e139 * cos(theta) ** 3 + 3.84839246799897e136 * cos(theta) ) * cos(71 * phi) ) # @torch.jit.script def Yl92_m72(theta, phi): return ( 1.47619573625819e-137 * (1.0 - cos(theta) ** 2) ** 36 * ( 1.48710307875274e150 * cos(theta) ** 20 - 1.54398680307661e150 * cos(theta) ** 18 + 6.5256900793017e149 * cos(theta) ** 16 - 1.4582547663244e149 * cos(theta) ** 14 + 1.87431050473899e148 * cos(theta) ** 12 - 1.41376563786027e147 * cos(theta) ** 10 + 6.12904178263122e145 * cos(theta) ** 8 - 1.43369398424122e144 * cos(theta) ** 6 + 1.59063681683567e142 * cos(theta) ** 4 - 6.3498475721983e139 * cos(theta) ** 2 + 3.84839246799897e136 ) * cos(72 * phi) ) # @torch.jit.script def Yl92_m73(theta, phi): return ( 2.56972693499622e-139 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 2.97420615750547e151 * cos(theta) ** 19 - 2.7791762455379e151 * cos(theta) ** 17 + 1.04411041268827e151 * cos(theta) ** 15 - 2.04155667285416e150 * cos(theta) ** 13 + 2.24917260568679e149 * cos(theta) ** 11 - 1.41376563786027e148 * cos(theta) ** 9 + 4.90323342610498e146 * cos(theta) ** 7 - 8.60216390544733e144 * cos(theta) ** 5 + 6.3625472673427e142 * cos(theta) ** 3 - 1.26996951443966e140 * cos(theta) ) * cos(73 * phi) ) # @torch.jit.script def Yl92_m74(theta, phi): return ( 4.57568513827241e-141 * (1.0 - cos(theta) ** 2) ** 37 * ( 5.6509916992604e152 * cos(theta) ** 18 - 4.72459961741443e152 * cos(theta) ** 16 + 1.56616561903241e152 * cos(theta) ** 14 - 2.65402367471041e151 * cos(theta) ** 12 + 2.47408986625547e150 * cos(theta) ** 10 - 1.27238907407424e149 * cos(theta) ** 8 + 3.43226339827348e147 * cos(theta) ** 6 - 4.30108195272366e145 * cos(theta) ** 4 + 1.90876418020281e143 * cos(theta) ** 2 - 1.26996951443966e140 ) * cos(74 * phi) ) # @torch.jit.script def Yl92_m75(theta, phi): return ( 8.34567837787017e-143 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 1.01717850586687e154 * cos(theta) ** 17 - 7.55935938786309e153 * cos(theta) ** 15 + 2.19263186664537e153 * cos(theta) ** 13 - 3.1848284096525e152 * cos(theta) ** 11 + 2.47408986625547e151 * cos(theta) ** 9 - 1.01791125925939e150 * cos(theta) ** 7 + 2.05935803896409e148 * cos(theta) ** 5 - 1.72043278108947e146 * cos(theta) ** 3 + 3.81752836040562e143 * cos(theta) ) * cos(75 * phi) ) # @torch.jit.script def Yl92_m76(theta, phi): return ( 1.56164581791262e-144 * (1.0 - cos(theta) ** 2) ** 38 * ( 1.72920345997368e155 * cos(theta) ** 16 - 1.13390390817946e155 * cos(theta) ** 14 + 2.85042142663898e154 * cos(theta) ** 12 - 3.50331125061775e153 * cos(theta) ** 10 + 2.22668087962992e152 * cos(theta) ** 8 - 7.12537881481575e150 * cos(theta) ** 6 + 1.02967901948205e149 * cos(theta) ** 4 - 5.1612983432684e146 * cos(theta) ** 2 + 3.81752836040562e143 ) * cos(76 * phi) ) # @torch.jit.script def Yl92_m77(theta, phi): return ( 3.00316503444735e-146 * (1.0 - cos(theta) ** 2) ** 38.5 * ( 2.76672553595789e156 * cos(theta) ** 15 - 1.58746547145125e156 * cos(theta) ** 13 + 3.42050571196678e155 * cos(theta) ** 11 - 3.50331125061775e154 * cos(theta) ** 9 + 1.78134470370394e153 * cos(theta) ** 7 - 4.27522728888945e151 * cos(theta) ** 5 + 4.11871607792818e149 * cos(theta) ** 3 - 1.03225966865368e147 * cos(theta) ) * cos(77 * phi) ) # @torch.jit.script def Yl92_m78(theta, phi): return ( 5.94715296002301e-148 * (1.0 - cos(theta) ** 2) ** 39 * ( 4.15008830393684e157 * cos(theta) ** 14 - 2.06370511288662e157 * cos(theta) ** 12 + 3.76255628316346e156 * cos(theta) ** 10 - 3.15298012555597e155 * cos(theta) ** 8 + 1.24694129259276e154 * cos(theta) ** 6 - 2.13761364444473e152 * cos(theta) ** 4 + 1.23561482337845e150 * cos(theta) ** 2 - 1.03225966865368e147 ) * cos(78 * phi) ) # @torch.jit.script def Yl92_m79(theta, phi): return ( 1.21547781257485e-149 * (1.0 - cos(theta) ** 2) ** 39.5 * ( 5.81012362551157e158 * cos(theta) ** 13 - 2.47644613546395e158 * cos(theta) ** 11 + 3.76255628316346e157 * cos(theta) ** 9 - 2.52238410044478e156 * cos(theta) ** 7 + 7.48164775555654e154 * cos(theta) ** 5 - 8.5504545777789e152 * cos(theta) ** 3 + 2.47122964675691e150 * cos(theta) ) * cos(79 * phi) ) # @torch.jit.script def Yl92_m80(theta, phi): return ( 2.57046169264107e-151 * (1.0 - cos(theta) ** 2) ** 40 * ( 7.55316071316504e159 * cos(theta) ** 12 - 2.72409074901034e159 * cos(theta) ** 10 + 3.38630065484711e158 * cos(theta) ** 8 - 1.76566887031134e157 * cos(theta) ** 6 + 3.74082387777827e155 * cos(theta) ** 4 - 2.56513637333367e153 * cos(theta) ** 2 + 2.47122964675691e150 ) * cos(80 * phi) ) # @torch.jit.script def Yl92_m81(theta, phi): return ( 5.64153726766583e-153 * (1.0 - cos(theta) ** 2) ** 40.5 * ( 9.06379285579805e160 * cos(theta) ** 11 - 2.72409074901034e160 * cos(theta) ** 9 + 2.70904052387769e159 * cos(theta) ** 7 - 1.05940132218681e158 * cos(theta) ** 5 + 1.49632955111131e156 * cos(theta) ** 3 - 5.13027274666734e153 * cos(theta) ) * cos(81 * phi) ) # @torch.jit.script def Yl92_m82(theta, phi): return ( 1.28951528609199e-154 * (1.0 - cos(theta) ** 2) ** 41 * ( 9.97017214137786e161 * cos(theta) ** 10 - 2.45168167410931e161 * cos(theta) ** 8 + 1.89632836671438e160 * cos(theta) ** 6 - 5.29700661093403e158 * cos(theta) ** 4 + 4.48898865333392e156 * cos(theta) ** 2 - 5.13027274666734e153 ) * cos(82 * phi) ) # @torch.jit.script def Yl92_m83(theta, phi): return ( 3.08253112422235e-156 * (1.0 - cos(theta) ** 2) ** 41.5 * ( 9.97017214137786e162 * cos(theta) ** 9 - 1.96134533928745e162 * cos(theta) ** 7 + 1.13779702002863e161 * cos(theta) ** 5 - 2.11880264437361e159 * cos(theta) ** 3 + 8.97797730666785e156 * cos(theta) ) * cos(83 * phi) ) # @torch.jit.script def Yl92_m84(theta, phi): return ( 7.74515086639239e-158 * (1.0 - cos(theta) ** 2) ** 42 * ( 8.97315492724007e163 * cos(theta) ** 8 - 1.37294173750121e163 * cos(theta) ** 6 + 5.68898510014315e161 * cos(theta) ** 4 - 6.35640793312084e159 * cos(theta) ** 2 + 8.97797730666785e156 ) * cos(84 * phi) ) # @torch.jit.script def Yl92_m85(theta, phi): return ( 2.05825062066215e-159 * (1.0 - cos(theta) ** 2) ** 42.5 * ( 7.17852394179206e164 * cos(theta) ** 7 - 8.23765042500728e163 * cos(theta) ** 5 + 2.27559404005726e162 * cos(theta) ** 3 - 1.27128158662417e160 * cos(theta) ) * cos(85 * phi) ) # @torch.jit.script def Yl92_m86(theta, phi): return ( 5.83094887879286e-161 * (1.0 - cos(theta) ** 2) ** 43 * ( 5.02496675925444e165 * cos(theta) ** 6 - 4.11882521250364e164 * cos(theta) ** 4 + 6.82678212017178e162 * cos(theta) ** 2 - 1.27128158662417e160 ) * cos(86 * phi) ) # @torch.jit.script def Yl92_m87(theta, phi): return ( 1.77925048630756e-162 * (1.0 - cos(theta) ** 2) ** 43.5 * ( 3.01498005555266e166 * cos(theta) ** 5 - 1.64753008500146e165 * cos(theta) ** 3 + 1.36535642403436e163 * cos(theta) ) * cos(87 * phi) ) # @torch.jit.script def Yl92_m88(theta, phi): return ( 5.93083495435852e-164 * (1.0 - cos(theta) ** 2) ** 44 * ( 1.50749002777633e167 * cos(theta) ** 4 - 4.94259025500437e165 * cos(theta) ** 2 + 1.36535642403436e163 ) * cos(88 * phi) ) # @torch.jit.script def Yl92_m89(theta, phi): return ( 2.20417745196638e-165 * (1.0 - cos(theta) ** 2) ** 44.5 * (6.02996011110533e167 * cos(theta) ** 3 - 9.88518051000874e165 * cos(theta)) * cos(89 * phi) ) # @torch.jit.script def Yl92_m90(theta, phi): return ( 9.43300867924983e-167 * (1.0 - cos(theta) ** 2) ** 45 * (1.8089880333316e168 * cos(theta) ** 2 - 9.88518051000874e165) * cos(90 * phi) ) # @torch.jit.script def Yl92_m91(theta, phi): return ( 17.8392002646519 * (1.0 - cos(theta) ** 2) ** 45.5 * cos(91 * phi) * cos(theta) ) # @torch.jit.script def Yl92_m92(theta, phi): return 1.31512329162961 * (1.0 - cos(theta) ** 2) ** 46 * cos(92 * phi) # @torch.jit.script def Yl93_m_minus_93(theta, phi): return 1.31865383030867 * (1.0 - cos(theta) ** 2) ** 46.5 * sin(93 * phi) # @torch.jit.script def Yl93_m_minus_92(theta, phi): return 17.9840405331759 * (1.0 - cos(theta) ** 2) ** 46 * sin(92 * phi) * cos(theta) # @torch.jit.script def Yl93_m_minus_91(theta, phi): return ( 5.16833572383453e-169 * (1.0 - cos(theta) ** 2) ** 45.5 * (3.34662786166346e170 * cos(theta) ** 2 - 1.8089880333316e168) * sin(91 * phi) ) # @torch.jit.script def Yl93_m_minus_90(theta, phi): return ( 1.21428395250674e-167 * (1.0 - cos(theta) ** 2) ** 45 * (1.11554262055449e170 * cos(theta) ** 3 - 1.8089880333316e168 * cos(theta)) * sin(90 * phi) ) # @torch.jit.script def Yl93_m_minus_89(theta, phi): return ( 3.28530576761869e-166 * (1.0 - cos(theta) ** 2) ** 44.5 * ( 2.78885655138621e169 * cos(theta) ** 4 - 9.04494016665799e167 * cos(theta) ** 2 + 2.47129512750218e165 ) * sin(89 * phi) ) # @torch.jit.script def Yl93_m_minus_88(theta, phi): return ( 9.91052114065714e-165 * (1.0 - cos(theta) ** 2) ** 44 * ( 5.57771310277243e168 * cos(theta) ** 5 - 3.01498005555266e167 * cos(theta) ** 3 + 2.47129512750218e165 * cos(theta) ) * sin(88 * phi) ) # @torch.jit.script def Yl93_m_minus_87(theta, phi): return ( 3.26596408733228e-163 * (1.0 - cos(theta) ** 2) ** 43.5 * ( 9.29618850462072e167 * cos(theta) ** 6 - 7.53745013888166e166 * cos(theta) ** 4 + 1.23564756375109e165 * cos(theta) ** 2 - 2.27559404005726e162 ) * sin(87 * phi) ) # @torch.jit.script def Yl93_m_minus_86(theta, phi): return ( 1.15930224656375e-161 * (1.0 - cos(theta) ** 2) ** 43 * ( 1.32802692923153e167 * cos(theta) ** 7 - 1.50749002777633e166 * cos(theta) ** 5 + 4.11882521250364e164 * cos(theta) ** 3 - 2.27559404005726e162 * cos(theta) ) * sin(86 * phi) ) # @torch.jit.script def Yl93_m_minus_85(theta, phi): return ( 4.3870055764807e-160 * (1.0 - cos(theta) ** 2) ** 42.5 * ( 1.66003366153941e166 * cos(theta) ** 8 - 2.51248337962722e165 * cos(theta) ** 6 + 1.02970630312591e164 * cos(theta) ** 4 - 1.13779702002863e162 * cos(theta) ** 2 + 1.58910198328021e159 ) * sin(85 * phi) ) # @torch.jit.script def Yl93_m_minus_84(theta, phi): return ( 1.75589863946563e-158 * (1.0 - cos(theta) ** 2) ** 42 * ( 1.8444818461549e165 * cos(theta) ** 9 - 3.58926197089603e164 * cos(theta) ** 7 + 2.05941260625182e163 * cos(theta) ** 5 - 3.79265673342877e161 * cos(theta) ** 3 + 1.58910198328021e159 * cos(theta) ) * sin(84 * phi) ) # @torch.jit.script def Yl93_m_minus_83(theta, phi): return ( 7.38730577191492e-157 * (1.0 - cos(theta) ** 2) ** 41.5 * ( 1.8444818461549e164 * cos(theta) ** 10 - 4.48657746362004e163 * cos(theta) ** 8 + 3.43235434375303e162 * cos(theta) ** 6 - 9.48164183357192e160 * cos(theta) ** 4 + 7.94550991640105e158 * cos(theta) ** 2 - 8.97797730666785e155 ) * sin(83 * phi) ) # @torch.jit.script def Yl93_m_minus_82(theta, phi): return ( 3.25041453964257e-155 * (1.0 - cos(theta) ** 2) ** 41 * ( 1.67680167832264e163 * cos(theta) ** 11 - 4.98508607068893e162 * cos(theta) ** 9 + 4.90336334821862e161 * cos(theta) ** 7 - 1.89632836671438e160 * cos(theta) ** 5 + 2.64850330546702e158 * cos(theta) ** 3 - 8.97797730666785e155 * cos(theta) ) * sin(82 * phi) ) # @torch.jit.script def Yl93_m_minus_81(theta, phi): return ( 1.48952706678971e-153 * (1.0 - cos(theta) ** 2) ** 40.5 * ( 1.39733473193553e162 * cos(theta) ** 12 - 4.98508607068893e161 * cos(theta) ** 10 + 6.12920418527327e160 * cos(theta) ** 8 - 3.16054727785731e159 * cos(theta) ** 6 + 6.62125826366754e157 * cos(theta) ** 4 - 4.48898865333392e155 * cos(theta) ** 2 + 4.27522728888945e152 ) * sin(81 * phi) ) # @torch.jit.script def Yl93_m_minus_80(theta, phi): return ( 7.08426338913616e-152 * (1.0 - cos(theta) ** 2) ** 40 * ( 1.07487287071964e161 * cos(theta) ** 13 - 4.53189642789903e160 * cos(theta) ** 11 + 6.81022687252586e159 * cos(theta) ** 9 - 4.51506753979615e158 * cos(theta) ** 7 + 1.32425165273351e157 * cos(theta) ** 5 - 1.49632955111131e155 * cos(theta) ** 3 + 4.27522728888945e152 * cos(theta) ) * sin(80 * phi) ) # @torch.jit.script def Yl93_m_minus_79(theta, phi): return ( 3.48643657580112e-150 * (1.0 - cos(theta) ** 2) ** 39.5 * ( 7.67766336228315e159 * cos(theta) ** 14 - 3.77658035658252e159 * cos(theta) ** 12 + 6.81022687252586e158 * cos(theta) ** 10 - 5.64383442474519e157 * cos(theta) ** 8 + 2.20708608788918e156 * cos(theta) ** 6 - 3.74082387777827e154 * cos(theta) ** 4 + 2.13761364444473e152 * cos(theta) ** 2 - 1.76516403339779e149 ) * sin(79 * phi) ) # @torch.jit.script def Yl93_m_minus_78(theta, phi): return ( 1.77089014883691e-148 * (1.0 - cos(theta) ** 2) ** 39 * ( 5.1184422415221e158 * cos(theta) ** 15 - 2.90506181275579e158 * cos(theta) ** 13 + 6.19111533865987e157 * cos(theta) ** 11 - 6.27092713860576e156 * cos(theta) ** 9 + 3.15298012555597e155 * cos(theta) ** 7 - 7.48164775555654e153 * cos(theta) ** 5 + 7.12537881481575e151 * cos(theta) ** 3 - 1.76516403339779e149 * cos(theta) ) * sin(78 * phi) ) # @torch.jit.script def Yl93_m_minus_77(theta, phi): return ( 9.26295743867017e-147 * (1.0 - cos(theta) ** 2) ** 38.5 * ( 3.19902640095131e157 * cos(theta) ** 16 - 2.07504415196842e157 * cos(theta) ** 14 + 5.15926278221656e156 * cos(theta) ** 12 - 6.27092713860576e155 * cos(theta) ** 10 + 3.94122515694496e154 * cos(theta) ** 8 - 1.24694129259276e153 * cos(theta) ** 6 + 1.78134470370394e151 * cos(theta) ** 4 - 8.82582016698896e148 * cos(theta) ** 2 + 6.4516229290855e145 ) * sin(77 * phi) ) # @torch.jit.script def Yl93_m_minus_76(theta, phi): return ( 4.97964737381752e-145 * (1.0 - cos(theta) ** 2) ** 38 * ( 1.88178023585371e156 * cos(theta) ** 17 - 1.38336276797895e156 * cos(theta) ** 15 + 3.96866367862812e155 * cos(theta) ** 13 - 5.70084285327797e154 * cos(theta) ** 11 + 4.37913906327218e153 * cos(theta) ** 9 - 1.78134470370394e152 * cos(theta) ** 7 + 3.56268940740788e150 * cos(theta) ** 5 - 2.94194005566299e148 * cos(theta) ** 3 + 6.4516229290855e145 * cos(theta) ) * sin(76 * phi) ) # @torch.jit.script def Yl93_m_minus_75(theta, phi): return ( 2.74649109223644e-143 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 1.04543346436317e155 * cos(theta) ** 18 - 8.64601729986841e154 * cos(theta) ** 16 + 2.83475977044866e154 * cos(theta) ** 14 - 4.75070237773164e153 * cos(theta) ** 12 + 4.37913906327218e152 * cos(theta) ** 10 - 2.22668087962992e151 * cos(theta) ** 8 + 5.93781567901313e149 * cos(theta) ** 6 - 7.35485013915747e147 * cos(theta) ** 4 + 3.22581146454275e145 * cos(theta) ** 2 - 2.12084908911423e142 ) * sin(75 * phi) ) # @torch.jit.script def Yl93_m_minus_74(theta, phi): return ( 1.55170670284662e-141 * (1.0 - cos(theta) ** 2) ** 37 * ( 5.50228139138513e153 * cos(theta) ** 19 - 5.08589252933436e153 * cos(theta) ** 17 + 1.88983984696577e153 * cos(theta) ** 15 - 3.65438644440895e152 * cos(theta) ** 13 + 3.98103551206562e151 * cos(theta) ** 11 - 2.47408986625547e150 * cos(theta) ** 9 + 8.48259382716161e148 * cos(theta) ** 7 - 1.47097002783149e147 * cos(theta) ** 5 + 1.07527048818092e145 * cos(theta) ** 3 - 2.12084908911423e142 * cos(theta) ) * sin(74 * phi) ) # @torch.jit.script def Yl93_m_minus_73(theta, phi): return ( 8.96773713382673e-140 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 2.75114069569256e152 * cos(theta) ** 20 - 2.8254958496302e152 * cos(theta) ** 18 + 1.18114990435361e152 * cos(theta) ** 16 - 2.61027603172068e151 * cos(theta) ** 14 + 3.31752959338802e150 * cos(theta) ** 12 - 2.47408986625547e149 * cos(theta) ** 10 + 1.0603242283952e148 * cos(theta) ** 8 - 2.45161671305249e146 * cos(theta) ** 6 + 2.68817622045229e144 * cos(theta) ** 4 - 1.06042454455712e142 * cos(theta) ** 2 + 6.3498475721983e138 ) * sin(73 * phi) ) # @torch.jit.script def Yl93_m_minus_72(theta, phi): return ( 5.29476343404247e-138 * (1.0 - cos(theta) ** 2) ** 36 * ( 1.31006699794884e151 * cos(theta) ** 21 - 1.48710307875274e151 * cos(theta) ** 19 + 6.94794061384475e150 * cos(theta) ** 17 - 1.74018402114712e150 * cos(theta) ** 15 + 2.5519458410677e149 * cos(theta) ** 13 - 2.24917260568679e148 * cos(theta) ** 11 + 1.17813803155022e147 * cos(theta) ** 9 - 3.50230959007498e145 * cos(theta) ** 7 + 5.37635244090458e143 * cos(theta) ** 5 - 3.53474848185705e141 * cos(theta) ** 3 + 6.3498475721983e138 * cos(theta) ) * sin(72 * phi) ) # @torch.jit.script def Yl93_m_minus_71(theta, phi): return ( 3.19006750642644e-136 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 5.95484999067654e149 * cos(theta) ** 22 - 7.43551539376368e149 * cos(theta) ** 20 + 3.85996700769153e149 * cos(theta) ** 18 - 1.08761501321695e149 * cos(theta) ** 16 + 1.8228184579055e148 * cos(theta) ** 14 - 1.87431050473899e147 * cos(theta) ** 12 + 1.17813803155022e146 * cos(theta) ** 10 - 4.37788698759373e144 * cos(theta) ** 8 + 8.96058740150763e142 * cos(theta) ** 6 - 8.83687120464264e140 * cos(theta) ** 4 + 3.17492378609915e138 * cos(theta) ** 2 - 1.7492693036359e135 ) * sin(71 * phi) ) # @torch.jit.script def Yl93_m_minus_70(theta, phi): return ( 1.95923132334199e-134 * (1.0 - cos(theta) ** 2) ** 35 * ( 2.58906521333763e148 * cos(theta) ** 23 - 3.54072161607794e148 * cos(theta) ** 21 + 2.03156158299554e148 * cos(theta) ** 19 - 6.39773537186441e147 * cos(theta) ** 17 + 1.21521230527034e147 * cos(theta) ** 15 - 1.44177731133769e146 * cos(theta) ** 13 + 1.07103457413657e145 * cos(theta) ** 11 - 4.86431887510414e143 * cos(theta) ** 9 + 1.28008391450109e142 * cos(theta) ** 7 - 1.76737424092853e140 * cos(theta) ** 5 + 1.05830792869972e138 * cos(theta) ** 3 - 1.7492693036359e135 * cos(theta) ) * sin(70 * phi) ) # @torch.jit.script def Yl93_m_minus_69(theta, phi): return ( 1.22542049208268e-132 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 1.07877717222401e147 * cos(theta) ** 24 - 1.60941891639907e147 * cos(theta) ** 22 + 1.01578079149777e147 * cos(theta) ** 20 - 3.55429742881356e146 * cos(theta) ** 18 + 7.5950769079396e145 * cos(theta) ** 16 - 1.02984093666978e145 * cos(theta) ** 14 + 8.92528811780473e143 * cos(theta) ** 12 - 4.86431887510414e142 * cos(theta) ** 10 + 1.60010489312636e141 * cos(theta) ** 8 - 2.94562373488088e139 * cos(theta) ** 6 + 2.64576982174929e137 * cos(theta) ** 4 - 8.74634651817948e134 * cos(theta) ** 2 + 4.47154729968276e131 ) * sin(69 * phi) ) # @torch.jit.script def Yl93_m_minus_68(theta, phi): return ( 7.79852825780955e-131 * (1.0 - cos(theta) ** 2) ** 34 * ( 4.31510868889605e145 * cos(theta) ** 25 - 6.99747354956116e145 * cos(theta) ** 23 + 4.83705138808462e145 * cos(theta) ** 21 - 1.8706828572703e145 * cos(theta) ** 19 + 4.467692298788e144 * cos(theta) ** 17 - 6.86560624446517e143 * cos(theta) ** 15 + 6.86560624446517e142 * cos(theta) ** 13 - 4.42210806827649e141 * cos(theta) ** 11 + 1.77789432569596e140 * cos(theta) ** 9 - 4.20803390697268e138 * cos(theta) ** 7 + 5.29153964349858e136 * cos(theta) ** 5 - 2.91544883939316e134 * cos(theta) ** 3 + 4.47154729968276e131 * cos(theta) ) * sin(68 * phi) ) # @torch.jit.script def Yl93_m_minus_67(theta, phi): return ( 5.04559354236107e-129 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 1.65965718803694e144 * cos(theta) ** 26 - 2.91561397898381e144 * cos(theta) ** 24 + 2.19865972185665e144 * cos(theta) ** 22 - 9.35341428635148e143 * cos(theta) ** 20 + 2.48205127710444e143 * cos(theta) ** 18 - 4.29100390279073e142 * cos(theta) ** 16 + 4.90400446033227e141 * cos(theta) ** 14 - 3.68509005689708e140 * cos(theta) ** 12 + 1.77789432569596e139 * cos(theta) ** 10 - 5.26004238371585e137 * cos(theta) ** 8 + 8.81923273916431e135 * cos(theta) ** 6 - 7.2886220984829e133 * cos(theta) ** 4 + 2.23577364984138e131 * cos(theta) ** 2 - 1.06821483508905e128 ) * sin(67 * phi) ) # @torch.jit.script def Yl93_m_minus_66(theta, phi): return ( 3.31630247898427e-127 * (1.0 - cos(theta) ** 2) ** 33 * ( 6.14687847421089e142 * cos(theta) ** 27 - 1.16624559159353e143 * cos(theta) ** 25 + 9.5593900950289e142 * cos(theta) ** 23 - 4.45400680302452e142 * cos(theta) ** 21 + 1.30634277742339e142 * cos(theta) ** 19 - 2.52411994281808e141 * cos(theta) ** 17 + 3.26933630688818e140 * cos(theta) ** 15 - 2.8346846591516e139 * cos(theta) ** 13 + 1.61626756881451e138 * cos(theta) ** 11 - 5.84449153746206e136 * cos(theta) ** 9 + 1.25989039130919e135 * cos(theta) ** 7 - 1.45772441969658e133 * cos(theta) ** 5 + 7.4525788328046e130 * cos(theta) ** 3 - 1.06821483508905e128 * cos(theta) ) * sin(66 * phi) ) # @torch.jit.script def Yl93_m_minus_65(theta, phi): return ( 2.21274675939624e-125 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 2.1953137407896e141 * cos(theta) ** 28 - 4.48555996766741e141 * cos(theta) ** 26 + 3.98307920626204e141 * cos(theta) ** 24 - 2.02454854682933e141 * cos(theta) ** 22 + 6.53171388711696e140 * cos(theta) ** 20 - 1.40228885712115e140 * cos(theta) ** 18 + 2.04333519180511e139 * cos(theta) ** 16 - 2.02477475653686e138 * cos(theta) ** 14 + 1.34688964067876e137 * cos(theta) ** 12 - 5.84449153746206e135 * cos(theta) ** 10 + 1.57486298913648e134 * cos(theta) ** 8 - 2.4295406994943e132 * cos(theta) ** 6 + 1.86314470820115e130 * cos(theta) ** 4 - 5.34107417544525e127 * cos(theta) ** 2 + 2.39940439148484e124 ) * sin(65 * phi) ) # @torch.jit.script def Yl93_m_minus_64(theta, phi): return ( 1.49781872566821e-123 * (1.0 - cos(theta) ** 2) ** 32 * ( 7.57004738203312e139 * cos(theta) ** 29 - 1.66131850654348e140 * cos(theta) ** 27 + 1.59323168250482e140 * cos(theta) ** 25 - 8.80238498621446e139 * cos(theta) ** 23 + 3.11033994624617e139 * cos(theta) ** 21 - 7.38046766905871e138 * cos(theta) ** 19 + 1.20196187753242e138 * cos(theta) ** 17 - 1.34984983769124e137 * cos(theta) ** 15 + 1.03606895436827e136 * cos(theta) ** 13 - 5.31317412496551e134 * cos(theta) ** 11 + 1.7498477657072e133 * cos(theta) ** 9 - 3.470772427849e131 * cos(theta) ** 7 + 3.7262894164023e129 * cos(theta) ** 5 - 1.78035805848175e127 * cos(theta) ** 3 + 2.39940439148484e124 * cos(theta) ) * sin(64 * phi) ) # @torch.jit.script def Yl93_m_minus_63(theta, phi): return ( 1.02794459985316e-121 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 2.52334912734437e138 * cos(theta) ** 30 - 5.93328038051244e138 * cos(theta) ** 28 + 6.12781416348007e138 * cos(theta) ** 26 - 3.66766041092269e138 * cos(theta) ** 24 + 1.41379088465735e138 * cos(theta) ** 22 - 3.69023383452935e137 * cos(theta) ** 20 + 6.67756598629121e136 * cos(theta) ** 18 - 8.43656148557024e135 * cos(theta) ** 16 + 7.40049253120196e134 * cos(theta) ** 14 - 4.42764510413793e133 * cos(theta) ** 12 + 1.7498477657072e132 * cos(theta) ** 10 - 4.33846553481125e130 * cos(theta) ** 8 + 6.2104823606705e128 * cos(theta) ** 6 - 4.45089514620437e126 * cos(theta) ** 4 + 1.19970219574242e124 * cos(theta) ** 2 - 5.09427683967057e120 ) * sin(63 * phi) ) # @torch.jit.script def Yl93_m_minus_62(theta, phi): return ( 7.14846599304781e-120 * (1.0 - cos(theta) ** 2) ** 31 * ( 8.13983589465927e136 * cos(theta) ** 31 - 2.04595875190084e137 * cos(theta) ** 29 + 2.26956080128891e137 * cos(theta) ** 27 - 1.46706416436908e137 * cos(theta) ** 25 + 6.14691688981457e136 * cos(theta) ** 23 - 1.75725420691874e136 * cos(theta) ** 21 + 3.51450841383748e135 * cos(theta) ** 19 - 4.96268322680602e134 * cos(theta) ** 17 + 4.93366168746797e133 * cos(theta) ** 15 - 3.40588084933687e132 * cos(theta) ** 13 + 1.59077069609746e131 * cos(theta) ** 11 - 4.82051726090139e129 * cos(theta) ** 9 + 8.87211765810071e127 * cos(theta) ** 7 - 8.90179029240874e125 * cos(theta) ** 5 + 3.99900731914139e123 * cos(theta) ** 3 - 5.09427683967057e120 * cos(theta) ) * sin(62 * phi) ) # @torch.jit.script def Yl93_m_minus_61(theta, phi): return ( 5.03446926325561e-118 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 2.54369871708102e135 * cos(theta) ** 32 - 6.81986250633614e135 * cos(theta) ** 30 + 8.10557429031755e135 * cos(theta) ** 28 - 5.6425544783426e135 * cos(theta) ** 26 + 2.56121537075607e135 * cos(theta) ** 24 - 7.98751912235791e134 * cos(theta) ** 22 + 1.75725420691874e134 * cos(theta) ** 20 - 2.75704623711446e133 * cos(theta) ** 18 + 3.08353855466748e132 * cos(theta) ** 16 - 2.43277203524062e131 * cos(theta) ** 14 + 1.32564224674788e130 * cos(theta) ** 12 - 4.82051726090139e128 * cos(theta) ** 10 + 1.10901470726259e127 * cos(theta) ** 8 - 1.48363171540146e125 * cos(theta) ** 6 + 9.99751829785349e122 * cos(theta) ** 4 - 2.54713841983528e120 * cos(theta) ** 2 + 1.02707194348197e117 ) * sin(61 * phi) ) # @torch.jit.script def Yl93_m_minus_60(theta, phi): return ( 3.58897988341905e-116 * (1.0 - cos(theta) ** 2) ** 30 * ( 7.70817793054855e133 * cos(theta) ** 33 - 2.19995564720521e134 * cos(theta) ** 31 + 2.79502561735088e134 * cos(theta) ** 29 - 2.08983499197874e134 * cos(theta) ** 27 + 1.02448614830243e134 * cos(theta) ** 25 - 3.47283440102518e133 * cos(theta) ** 23 + 8.36787717580352e132 * cos(theta) ** 21 - 1.45107696690235e132 * cos(theta) ** 19 + 1.81384620862793e131 * cos(theta) ** 17 - 1.62184802349375e130 * cos(theta) ** 15 + 1.01972480519068e129 * cos(theta) ** 13 - 4.38228841900126e127 * cos(theta) ** 11 + 1.2322385636251e126 * cos(theta) ** 9 - 2.11947387914494e124 * cos(theta) ** 7 + 1.9995036595707e122 * cos(theta) ** 5 - 8.49046139945094e119 * cos(theta) ** 3 + 1.02707194348197e117 * cos(theta) ) * sin(60 * phi) ) # @torch.jit.script def Yl93_m_minus_59(theta, phi): return ( 2.58854785336987e-114 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 2.26711115604369e132 * cos(theta) ** 34 - 6.87486139751627e132 * cos(theta) ** 32 + 9.31675205783626e132 * cos(theta) ** 30 - 7.46369639992408e132 * cos(theta) ** 28 + 3.94033133962472e132 * cos(theta) ** 26 - 1.44701433376049e132 * cos(theta) ** 24 + 3.80358053445615e131 * cos(theta) ** 22 - 7.25538483451173e130 * cos(theta) ** 20 + 1.00769233812663e130 * cos(theta) ** 18 - 1.01365501468359e129 * cos(theta) ** 16 + 7.28374860850484e127 * cos(theta) ** 14 - 3.65190701583439e126 * cos(theta) ** 12 + 1.2322385636251e125 * cos(theta) ** 10 - 2.64934234893117e123 * cos(theta) ** 8 + 3.3325060992845e121 * cos(theta) ** 6 - 2.12261534986274e119 * cos(theta) ** 4 + 5.13535971740985e116 * cos(theta) ** 2 - 1.97437897632059e113 ) * sin(59 * phi) ) # @torch.jit.script def Yl93_m_minus_58(theta, phi): return ( 1.88804357848192e-112 * (1.0 - cos(theta) ** 2) ** 29 * ( 6.47746044583912e130 * cos(theta) ** 35 - 2.08329133258069e131 * cos(theta) ** 33 + 3.0054038896246e131 * cos(theta) ** 31 - 2.57368841376692e131 * cos(theta) ** 29 + 1.45938197763879e131 * cos(theta) ** 27 - 5.78805733504196e130 * cos(theta) ** 25 + 1.65373066715485e130 * cos(theta) ** 23 - 3.4549451592913e129 * cos(theta) ** 21 + 5.30364388487699e128 * cos(theta) ** 19 - 5.9626765569623e127 * cos(theta) ** 17 + 4.8558324056699e126 * cos(theta) ** 15 - 2.80915924294953e125 * cos(theta) ** 13 + 1.12021687602282e124 * cos(theta) ** 11 - 2.94371372103464e122 * cos(theta) ** 9 + 4.76072299897785e120 * cos(theta) ** 7 - 4.24523069972547e118 * cos(theta) ** 5 + 1.71178657246995e116 * cos(theta) ** 3 - 1.97437897632059e113 * cos(theta) ) * sin(58 * phi) ) # @torch.jit.script def Yl93_m_minus_57(theta, phi): return ( 1.39204007488598e-110 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 1.79929456828864e129 * cos(theta) ** 36 - 6.12732744876673e129 * cos(theta) ** 34 + 9.39188715507688e129 * cos(theta) ** 32 - 8.57896137922307e129 * cos(theta) ** 30 + 5.21207849156709e129 * cos(theta) ** 28 - 2.22617589809306e129 * cos(theta) ** 26 + 6.89054444647853e128 * cos(theta) ** 24 - 1.57042961785968e128 * cos(theta) ** 22 + 2.6518219424385e127 * cos(theta) ** 20 - 3.31259808720128e126 * cos(theta) ** 18 + 3.03489525354369e125 * cos(theta) ** 16 - 2.00654231639252e124 * cos(theta) ** 14 + 9.33514063352348e122 * cos(theta) ** 12 - 2.94371372103464e121 * cos(theta) ** 10 + 5.95090374872231e119 * cos(theta) ** 8 - 7.07538449954245e117 * cos(theta) ** 6 + 4.27946643117487e115 * cos(theta) ** 4 - 9.87189488160293e112 * cos(theta) ** 2 + 3.63204373863243e109 ) * sin(57 * phi) ) # @torch.jit.script def Yl93_m_minus_56(theta, phi): return ( 1.03704649914995e-108 * (1.0 - cos(theta) ** 2) ** 28 * ( 4.86295829267201e127 * cos(theta) ** 37 - 1.75066498536192e128 * cos(theta) ** 35 + 2.84602641062936e128 * cos(theta) ** 33 - 2.76740689652357e128 * cos(theta) ** 31 + 1.79726844536796e128 * cos(theta) ** 29 - 8.2450959188632e127 * cos(theta) ** 27 + 2.75621777859141e127 * cos(theta) ** 25 - 6.82795486025948e126 * cos(theta) ** 23 + 1.26277235354214e126 * cos(theta) ** 21 - 1.74347267747436e125 * cos(theta) ** 19 + 1.78523250208452e124 * cos(theta) ** 17 - 1.33769487759501e123 * cos(theta) ** 15 + 7.18087741040268e121 * cos(theta) ** 13 - 2.67610338275876e120 * cos(theta) ** 11 + 6.61211527635813e118 * cos(theta) ** 9 - 1.01076921422035e117 * cos(theta) ** 7 + 8.55893286234974e114 * cos(theta) ** 5 - 3.29063162720098e112 * cos(theta) ** 3 + 3.63204373863243e109 * cos(theta) ) * sin(56 * phi) ) # @torch.jit.script def Yl93_m_minus_55(theta, phi): return ( 7.8033872960414e-107 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 1.27972586649263e126 * cos(theta) ** 38 - 4.86295829267201e126 * cos(theta) ** 36 + 8.37066591361575e126 * cos(theta) ** 34 - 8.64814655163617e126 * cos(theta) ** 32 + 5.99089481789321e126 * cos(theta) ** 30 - 2.94467711387971e126 * cos(theta) ** 28 + 1.0600837609967e126 * cos(theta) ** 26 - 2.84498119177478e125 * cos(theta) ** 24 + 5.73987433428246e124 * cos(theta) ** 22 - 8.71736338737178e123 * cos(theta) ** 20 + 9.917958344914e122 * cos(theta) ** 18 - 8.36059298496883e121 * cos(theta) ** 16 + 5.12919815028763e120 * cos(theta) ** 14 - 2.23008615229897e119 * cos(theta) ** 12 + 6.61211527635813e117 * cos(theta) ** 10 - 1.26346151777544e116 * cos(theta) ** 8 + 1.42648881039162e114 * cos(theta) ** 6 - 8.22657906800244e111 * cos(theta) ** 4 + 1.81602186931621e109 * cos(theta) ** 2 - 6.41477170369556e105 ) * sin(55 * phi) ) # @torch.jit.script def Yl93_m_minus_54(theta, phi): return ( 5.92852046636883e-105 * (1.0 - cos(theta) ** 2) ** 27 * ( 3.28134837562214e124 * cos(theta) ** 39 - 1.31431305207352e125 * cos(theta) ** 37 + 2.39161883246164e125 * cos(theta) ** 35 - 2.62065047019278e125 * cos(theta) ** 33 + 1.93254671544942e125 * cos(theta) ** 31 - 1.01540590133783e125 * cos(theta) ** 29 + 3.92623615183962e124 * cos(theta) ** 27 - 1.13799247670991e124 * cos(theta) ** 25 + 2.49559753664455e123 * cos(theta) ** 23 - 4.15112542255799e122 * cos(theta) ** 21 + 5.21997807627053e121 * cos(theta) ** 19 - 4.91799587351108e120 * cos(theta) ** 17 + 3.41946543352508e119 * cos(theta) ** 15 - 1.71545088638382e118 * cos(theta) ** 13 + 6.0110138875983e116 * cos(theta) ** 11 - 1.4038461308616e115 * cos(theta) ** 9 + 2.03784115770232e113 * cos(theta) ** 7 - 1.64531581360049e111 * cos(theta) ** 5 + 6.05340623105404e108 * cos(theta) ** 3 - 6.41477170369556e105 * cos(theta) ) * sin(54 * phi) ) # @torch.jit.script def Yl93_m_minus_53(theta, phi): return ( 4.54605814888576e-103 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 8.20337093905535e122 * cos(theta) ** 40 - 3.4587185580882e123 * cos(theta) ** 38 + 6.64338564572679e123 * cos(theta) ** 36 - 7.70779550056699e123 * cos(theta) ** 34 + 6.03920848577944e123 * cos(theta) ** 32 - 3.38468633779277e123 * cos(theta) ** 30 + 1.40222719708558e123 * cos(theta) ** 28 - 4.37689414119198e122 * cos(theta) ** 26 + 1.03983230693523e122 * cos(theta) ** 24 - 1.88687519207181e121 * cos(theta) ** 22 + 2.60998903813526e120 * cos(theta) ** 20 - 2.73221992972838e119 * cos(theta) ** 18 + 2.13716589595318e118 * cos(theta) ** 16 - 1.22532206170273e117 * cos(theta) ** 14 + 5.00917823966525e115 * cos(theta) ** 12 - 1.4038461308616e114 * cos(theta) ** 10 + 2.5473014471279e112 * cos(theta) ** 8 - 2.74219302266748e110 * cos(theta) ** 6 + 1.51335155776351e108 * cos(theta) ** 4 - 3.20738585184778e105 * cos(theta) ** 2 + 1.09094756865571e102 ) * sin(53 * phi) ) # @torch.jit.script def Yl93_m_minus_52(theta, phi): return ( 3.51725084593921e-101 * (1.0 - cos(theta) ** 2) ** 26 * ( 2.0008221802574e121 * cos(theta) ** 41 - 8.86850912330308e121 * cos(theta) ** 39 + 1.79550963398021e122 * cos(theta) ** 37 - 2.20222728587628e122 * cos(theta) ** 35 + 1.83006317750892e122 * cos(theta) ** 33 - 1.0918343025138e122 * cos(theta) ** 31 + 4.83526619684682e121 * cos(theta) ** 29 - 1.62107190414518e121 * cos(theta) ** 27 + 4.15932922774091e120 * cos(theta) ** 25 - 8.20380518292093e119 * cos(theta) ** 23 + 1.24285192292155e119 * cos(theta) ** 21 - 1.43801048933072e118 * cos(theta) ** 19 + 1.25715640938422e117 * cos(theta) ** 17 - 8.16881374468486e115 * cos(theta) ** 15 + 3.85321403051173e114 * cos(theta) ** 13 - 1.27622375532873e113 * cos(theta) ** 11 + 2.83033494125322e111 * cos(theta) ** 9 - 3.91741860381069e109 * cos(theta) ** 7 + 3.02670311552702e107 * cos(theta) ** 5 - 1.06912861728259e105 * cos(theta) ** 3 + 1.09094756865571e102 * cos(theta) ) * sin(52 * phi) ) # @torch.jit.script def Yl93_m_minus_51(theta, phi): return ( 2.74480811525604e-99 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 4.76386233394619e119 * cos(theta) ** 42 - 2.21712728082577e120 * cos(theta) ** 40 + 4.72502535257951e120 * cos(theta) ** 38 - 6.11729801632301e120 * cos(theta) ** 36 + 5.38253875737918e120 * cos(theta) ** 34 - 3.41198219535562e120 * cos(theta) ** 32 + 1.61175539894894e120 * cos(theta) ** 30 - 5.7895425148042e119 * cos(theta) ** 28 + 1.59974201066958e119 * cos(theta) ** 26 - 3.41825215955039e118 * cos(theta) ** 24 + 5.6493269223707e117 * cos(theta) ** 22 - 7.19005244665362e116 * cos(theta) ** 20 + 6.98420227435679e115 * cos(theta) ** 18 - 5.10550859042804e114 * cos(theta) ** 16 + 2.75229573607981e113 * cos(theta) ** 14 - 1.06351979610727e112 * cos(theta) ** 12 + 2.83033494125322e110 * cos(theta) ** 10 - 4.89677325476336e108 * cos(theta) ** 8 + 5.04450519254503e106 * cos(theta) ** 6 - 2.67282154320648e104 * cos(theta) ** 4 + 5.45473784327854e101 * cos(theta) ** 2 - 1.79137531798967e98 ) * sin(51 * phi) ) # @torch.jit.script def Yl93_m_minus_50(theta, phi): return ( 2.1598692572156e-97 * (1.0 - cos(theta) ** 2) ** 25 * ( 1.10787496138284e118 * cos(theta) ** 43 - 5.40762751420919e118 * cos(theta) ** 41 + 1.21154496219987e119 * cos(theta) ** 39 - 1.65332378819541e119 * cos(theta) ** 37 + 1.53786821639405e119 * cos(theta) ** 35 - 1.03393399859261e119 * cos(theta) ** 33 + 5.19921096435142e118 * cos(theta) ** 31 - 1.99639397062214e118 * cos(theta) ** 29 + 5.92497040988734e117 * cos(theta) ** 27 - 1.36730086382016e117 * cos(theta) ** 25 + 2.45622909668291e116 * cos(theta) ** 23 - 3.42383449840649e115 * cos(theta) ** 21 + 3.67589593387199e114 * cos(theta) ** 19 - 3.00324034731061e113 * cos(theta) ** 17 + 1.8348638240532e112 * cos(theta) ** 15 - 8.18092150851747e110 * cos(theta) ** 13 + 2.57303176477566e109 * cos(theta) ** 11 - 5.44085917195929e107 * cos(theta) ** 9 + 7.20643598935005e105 * cos(theta) ** 7 - 5.34564308641297e103 * cos(theta) ** 5 + 1.81824594775951e101 * cos(theta) ** 3 - 1.79137531798967e98 * cos(theta) ) * sin(50 * phi) ) # @torch.jit.script def Yl93_m_minus_49(theta, phi): return ( 1.71325425814162e-95 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 2.51789763950644e116 * cos(theta) ** 44 - 1.287530360526e117 * cos(theta) ** 42 + 3.02886240549968e117 * cos(theta) ** 40 - 4.35085207419844e117 * cos(theta) ** 38 + 4.27185615665015e117 * cos(theta) ** 36 - 3.0409823488018e117 * cos(theta) ** 34 + 1.62475342635982e117 * cos(theta) ** 32 - 6.65464656874046e116 * cos(theta) ** 30 + 2.11606086067405e116 * cos(theta) ** 28 - 5.25884947623137e115 * cos(theta) ** 26 + 1.02342879028455e115 * cos(theta) ** 24 - 1.55628840836658e114 * cos(theta) ** 22 + 1.837947966936e113 * cos(theta) ** 20 - 1.66846685961701e112 * cos(theta) ** 18 + 1.14678989003325e111 * cos(theta) ** 16 - 5.84351536322676e109 * cos(theta) ** 14 + 2.14419313731305e108 * cos(theta) ** 12 - 5.44085917195929e106 * cos(theta) ** 10 + 9.00804498668756e104 * cos(theta) ** 8 - 8.90940514402161e102 * cos(theta) ** 6 + 4.54561486939878e100 * cos(theta) ** 4 - 8.95687658994834e97 * cos(theta) ** 2 + 2.84706821040952e94 ) * sin(49 * phi) ) # @torch.jit.script def Yl93_m_minus_48(theta, phi): return ( 1.3695322039999e-93 * (1.0 - cos(theta) ** 2) ** 24 * ( 5.5953280877921e114 * cos(theta) ** 45 - 2.99425665238604e115 * cos(theta) ** 43 + 7.38746928170655e115 * cos(theta) ** 41 - 1.11560309594832e116 * cos(theta) ** 39 + 1.15455571801355e116 * cos(theta) ** 37 - 8.68852099657657e115 * cos(theta) ** 35 + 4.92349523139339e115 * cos(theta) ** 33 - 2.14666018346466e115 * cos(theta) ** 31 + 7.29676158853121e114 * cos(theta) ** 29 - 1.94772202823384e114 * cos(theta) ** 27 + 4.09371516113819e113 * cos(theta) ** 25 - 6.76647134072428e112 * cos(theta) ** 23 + 8.7521331758857e111 * cos(theta) ** 21 - 8.78140452430003e110 * cos(theta) ** 19 + 6.74582288254854e109 * cos(theta) ** 17 - 3.89567690881784e108 * cos(theta) ** 15 + 1.64937933639465e107 * cos(theta) ** 13 - 4.94623561087208e105 * cos(theta) ** 11 + 1.00089388740973e104 * cos(theta) ** 9 - 1.27277216343166e102 * cos(theta) ** 7 + 9.09122973879756e99 * cos(theta) ** 5 - 2.98562552998278e97 * cos(theta) ** 3 + 2.84706821040952e94 * cos(theta) ) * sin(48 * phi) ) # @torch.jit.script def Yl93_m_minus_47(theta, phi): return ( 1.10296243441217e-91 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 1.21637567125915e113 * cos(theta) ** 46 - 6.80512875542282e113 * cos(theta) ** 44 + 1.75892125754918e114 * cos(theta) ** 42 - 2.7890077398708e114 * cos(theta) ** 40 + 3.0383045210883e114 * cos(theta) ** 38 - 2.4134780546046e114 * cos(theta) ** 36 + 1.44808683276276e114 * cos(theta) ** 34 - 6.70831307332708e113 * cos(theta) ** 32 + 2.43225386284374e113 * cos(theta) ** 30 - 6.95615010083514e112 * cos(theta) ** 28 + 1.574505831207e112 * cos(theta) ** 26 - 2.81936305863512e111 * cos(theta) ** 24 + 3.97824235267532e110 * cos(theta) ** 22 - 4.39070226215002e109 * cos(theta) ** 20 + 3.74767937919364e108 * cos(theta) ** 18 - 2.43479806801115e107 * cos(theta) ** 16 + 1.17812809742475e106 * cos(theta) ** 14 - 4.12186300906007e104 * cos(theta) ** 12 + 1.00089388740973e103 * cos(theta) ** 10 - 1.59096520428957e101 * cos(theta) ** 8 + 1.51520495646626e99 * cos(theta) ** 6 - 7.46406382495695e96 * cos(theta) ** 4 + 1.42353410520476e94 * cos(theta) ** 2 - 4.38955937466777e90 ) * sin(47 * phi) ) # @torch.jit.script def Yl93_m_minus_46(theta, phi): return ( 8.94692234611806e-90 * (1.0 - cos(theta) ** 2) ** 23 * ( 2.58803334310458e111 * cos(theta) ** 47 - 1.51225083453841e112 * cos(theta) ** 45 + 4.09051455243995e112 * cos(theta) ** 43 - 6.80245790212389e112 * cos(theta) ** 41 + 7.79052441304692e112 * cos(theta) ** 39 - 6.52291366109352e112 * cos(theta) ** 37 + 4.13739095075075e112 * cos(theta) ** 35 - 2.03282214343245e112 * cos(theta) ** 33 + 7.84598020272173e111 * cos(theta) ** 31 - 2.39867244856384e111 * cos(theta) ** 29 + 5.83150307854443e110 * cos(theta) ** 27 - 1.12774522345405e110 * cos(theta) ** 25 + 1.7296705881197e109 * cos(theta) ** 23 - 2.09081060102382e108 * cos(theta) ** 21 + 1.97246283115455e107 * cos(theta) ** 19 - 1.43223415765362e106 * cos(theta) ** 17 + 7.85418731616501e104 * cos(theta) ** 15 - 3.17066385312313e103 * cos(theta) ** 13 + 9.09903534008845e101 * cos(theta) ** 11 - 1.7677391158773e100 * cos(theta) ** 9 + 2.16457850923751e98 * cos(theta) ** 7 - 1.49281276499139e96 * cos(theta) ** 5 + 4.74511368401586e93 * cos(theta) ** 3 - 4.38955937466777e90 * cos(theta) ) * sin(46 * phi) ) # @torch.jit.script def Yl93_m_minus_45(theta, phi): return ( 7.30805297385656e-88 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 5.39173613146787e109 * cos(theta) ** 48 - 3.28750181421392e110 * cos(theta) ** 46 + 9.29662398281806e110 * cos(theta) ** 44 - 1.61963283383902e111 * cos(theta) ** 42 + 1.94763110326173e111 * cos(theta) ** 40 - 1.71655622660356e111 * cos(theta) ** 38 + 1.14927526409743e111 * cos(theta) ** 36 - 5.97888865715426e110 * cos(theta) ** 34 + 2.45186881335054e110 * cos(theta) ** 32 - 7.99557482854614e109 * cos(theta) ** 30 + 2.08267967090873e109 * cos(theta) ** 28 - 4.33748162866941e108 * cos(theta) ** 26 + 7.2069607838321e107 * cos(theta) ** 24 - 9.50368455010826e106 * cos(theta) ** 22 + 9.86231415577273e105 * cos(theta) ** 20 - 7.95685643140899e104 * cos(theta) ** 18 + 4.90886707260313e103 * cos(theta) ** 16 - 2.26475989508795e102 * cos(theta) ** 14 + 7.58252945007371e100 * cos(theta) ** 12 - 1.7677391158773e99 * cos(theta) ** 10 + 2.70572313654689e97 * cos(theta) ** 8 - 2.48802127498565e95 * cos(theta) ** 6 + 1.18627842100396e93 * cos(theta) ** 4 - 2.19477968733388e90 * cos(theta) ** 2 + 6.57907580136057e86 ) * sin(45 * phi) ) # @torch.jit.script def Yl93_m_minus_44(theta, phi): return ( 6.009512875208e-86 * (1.0 - cos(theta) ** 2) ** 22 * ( 1.10035431254446e108 * cos(theta) ** 49 - 6.99468471109346e108 * cos(theta) ** 47 + 2.06591644062624e109 * cos(theta) ** 45 - 3.76658798567214e109 * cos(theta) ** 43 + 4.750319764053e109 * cos(theta) ** 41 - 4.4014262220604e109 * cos(theta) ** 39 + 3.10614936242549e109 * cos(theta) ** 37 - 1.70825390204407e109 * cos(theta) ** 35 + 7.42990549500164e108 * cos(theta) ** 33 - 2.57921768662779e108 * cos(theta) ** 31 + 7.18165403761629e107 * cos(theta) ** 29 - 1.60647467728497e107 * cos(theta) ** 27 + 2.88278431353284e106 * cos(theta) ** 25 - 4.13203676091664e105 * cos(theta) ** 23 + 4.69634007417749e104 * cos(theta) ** 21 - 4.18781917442579e103 * cos(theta) ** 19 + 2.88756886623713e102 * cos(theta) ** 17 - 1.50983993005863e101 * cos(theta) ** 15 + 5.83271496159516e99 * cos(theta) ** 13 - 1.60703555988846e98 * cos(theta) ** 11 + 3.00635904060766e96 * cos(theta) ** 9 - 3.55431610712236e94 * cos(theta) ** 7 + 2.37255684200793e92 * cos(theta) ** 5 - 7.31593229111295e89 * cos(theta) ** 3 + 6.57907580136057e86 * cos(theta) ) * sin(44 * phi) ) # @torch.jit.script def Yl93_m_minus_43(theta, phi): return ( 4.97375691234947e-84 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 2.20070862508893e106 * cos(theta) ** 50 - 1.4572259814778e107 * cos(theta) ** 48 + 4.49112269701356e107 * cos(theta) ** 46 - 8.56042724016396e107 * cos(theta) ** 44 + 1.13102851525071e108 * cos(theta) ** 42 - 1.1003565555151e108 * cos(theta) ** 40 + 8.17407726954075e107 * cos(theta) ** 38 - 4.74514972790021e107 * cos(theta) ** 36 + 2.1852663220593e107 * cos(theta) ** 34 - 8.06005527071184e106 * cos(theta) ** 32 + 2.39388467920543e106 * cos(theta) ** 30 - 5.73740956173203e105 * cos(theta) ** 28 + 1.10876319751263e105 * cos(theta) ** 26 - 1.72168198371527e104 * cos(theta) ** 24 + 2.13470003371704e103 * cos(theta) ** 22 - 2.09390958721289e102 * cos(theta) ** 20 + 1.6042049256873e101 * cos(theta) ** 18 - 9.43649956286645e99 * cos(theta) ** 16 + 4.16622497256797e98 * cos(theta) ** 14 - 1.33919629990705e97 * cos(theta) ** 12 + 3.00635904060766e95 * cos(theta) ** 10 - 4.44289513390294e93 * cos(theta) ** 8 + 3.95426140334655e91 * cos(theta) ** 6 - 1.82898307277824e89 * cos(theta) ** 4 + 3.28953790068028e86 * cos(theta) ** 2 - 9.60449022096433e82 ) * sin(43 * phi) ) # @torch.jit.script def Yl93_m_minus_42(theta, phi): return ( 4.14227662356497e-82 * (1.0 - cos(theta) ** 2) ** 21 * ( 4.31511495115476e104 * cos(theta) ** 51 - 2.9739305744445e105 * cos(theta) ** 49 + 9.55558020641183e105 * cos(theta) ** 47 - 1.90231716448088e106 * cos(theta) ** 45 + 2.63029887267608e106 * cos(theta) ** 43 - 2.6837964768661e106 * cos(theta) ** 41 + 2.09591724860019e106 * cos(theta) ** 39 - 1.28247289943249e106 * cos(theta) ** 37 + 6.24361806302659e105 * cos(theta) ** 35 - 2.4424409911248e105 * cos(theta) ** 33 + 7.72220864259817e104 * cos(theta) ** 31 - 1.97841709025242e104 * cos(theta) ** 29 + 4.10653036115789e103 * cos(theta) ** 27 - 6.88672793486106e102 * cos(theta) ** 25 + 9.28130449442191e101 * cos(theta) ** 23 - 9.97099803434711e100 * cos(theta) ** 21 + 8.44318381940683e99 * cos(theta) ** 19 - 5.5508820958038e98 * cos(theta) ** 17 + 2.77748331504531e97 * cos(theta) ** 15 - 1.0301509999285e96 * cos(theta) ** 13 + 2.73305367327969e94 * cos(theta) ** 11 - 4.93655014878105e92 * cos(theta) ** 9 + 5.64894486192364e90 * cos(theta) ** 7 - 3.65796614555647e88 * cos(theta) ** 5 + 1.09651263356009e86 * cos(theta) ** 3 - 9.60449022096433e82 * cos(theta) ) * sin(42 * phi) ) # @torch.jit.script def Yl93_m_minus_41(theta, phi): return ( 3.47062470594923e-80 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 8.29829798298992e102 * cos(theta) ** 52 - 5.94786114888899e103 * cos(theta) ** 50 + 1.9907458763358e104 * cos(theta) ** 48 - 4.13547209669757e104 * cos(theta) ** 46 + 5.97795198335472e104 * cos(theta) ** 44 - 6.38999161158595e104 * cos(theta) ** 42 + 5.23979312150048e104 * cos(theta) ** 40 - 3.37492868271707e104 * cos(theta) ** 38 + 1.73433835084072e104 * cos(theta) ** 36 - 7.18364997389647e103 * cos(theta) ** 34 + 2.41319020081193e103 * cos(theta) ** 32 - 6.59472363417474e102 * cos(theta) ** 30 + 1.46661798612782e102 * cos(theta) ** 28 - 2.6487415134081e101 * cos(theta) ** 26 + 3.86721020600913e100 * cos(theta) ** 24 - 4.53227183379414e99 * cos(theta) ** 22 + 4.22159190970341e98 * cos(theta) ** 20 - 3.08382338655766e97 * cos(theta) ** 18 + 1.73592707190332e96 * cos(theta) ** 16 - 7.3582214280607e94 * cos(theta) ** 14 + 2.27754472773307e93 * cos(theta) ** 12 - 4.93655014878105e91 * cos(theta) ** 10 + 7.06118107740455e89 * cos(theta) ** 8 - 6.09661024259412e87 * cos(theta) ** 6 + 2.74128158390024e85 * cos(theta) ** 4 - 4.80224511048216e82 * cos(theta) ** 2 + 1.36816100013737e79 ) * sin(41 * phi) ) # @torch.jit.script def Yl93_m_minus_40(theta, phi): return ( 2.92481221625372e-78 * (1.0 - cos(theta) ** 2) ** 20 * ( 1.56571660056414e101 * cos(theta) ** 53 - 1.16624728409588e102 * cos(theta) ** 51 + 4.06274668639959e102 * cos(theta) ** 49 - 8.79887680148419e102 * cos(theta) ** 47 + 1.32843377407883e103 * cos(theta) ** 45 - 1.48604456083394e103 * cos(theta) ** 43 + 1.27799832231719e103 * cos(theta) ** 41 - 8.65366328901814e102 * cos(theta) ** 39 + 4.68740094821816e102 * cos(theta) ** 37 - 2.05247142111328e102 * cos(theta) ** 35 + 7.31269757821796e101 * cos(theta) ** 33 - 2.1273302045725e101 * cos(theta) ** 31 + 5.05730340044075e100 * cos(theta) ** 29 - 9.81015375336333e99 * cos(theta) ** 27 + 1.54688408240365e99 * cos(theta) ** 25 - 1.97055297121484e98 * cos(theta) ** 23 + 2.01028186176353e97 * cos(theta) ** 21 - 1.62306494029351e96 * cos(theta) ** 19 + 1.02113357170784e95 * cos(theta) ** 17 - 4.90548095204047e93 * cos(theta) ** 15 + 1.7519574828716e92 * cos(theta) ** 13 - 4.48777286252823e90 * cos(theta) ** 11 + 7.84575675267172e88 * cos(theta) ** 9 - 8.70944320370589e86 * cos(theta) ** 7 + 5.48256316780047e84 * cos(theta) ** 5 - 1.60074837016072e82 * cos(theta) ** 3 + 1.36816100013737e79 * cos(theta) ) * sin(40 * phi) ) # @torch.jit.script def Yl93_m_minus_39(theta, phi): return ( 2.47868128902229e-76 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 2.89947518622988e99 * cos(theta) ** 54 - 2.24278323864593e100 * cos(theta) ** 52 + 8.12549337279917e100 * cos(theta) ** 50 - 1.83309933364254e101 * cos(theta) ** 48 + 2.88789950886702e101 * cos(theta) ** 46 - 3.37737400189532e101 * cos(theta) ** 44 + 3.04285314837426e101 * cos(theta) ** 42 - 2.16341582225453e101 * cos(theta) ** 40 + 1.23352656532057e101 * cos(theta) ** 38 - 5.70130950309243e100 * cos(theta) ** 36 + 2.15079340535822e100 * cos(theta) ** 34 - 6.64790688928905e99 * cos(theta) ** 32 + 1.68576780014692e99 * cos(theta) ** 30 - 3.5036263404869e98 * cos(theta) ** 28 + 5.94955416309097e97 * cos(theta) ** 26 - 8.21063738006185e96 * cos(theta) ** 24 + 9.13764482619786e95 * cos(theta) ** 22 - 8.11532470146754e94 * cos(theta) ** 20 + 5.67296428726575e93 * cos(theta) ** 18 - 3.06592559502529e92 * cos(theta) ** 16 + 1.25139820205114e91 * cos(theta) ** 14 - 3.73981071877352e89 * cos(theta) ** 12 + 7.84575675267172e87 * cos(theta) ** 10 - 1.08868040046324e86 * cos(theta) ** 8 + 9.13760527966745e83 * cos(theta) ** 6 - 4.0018709254018e81 * cos(theta) ** 4 + 6.84080500068684e78 * cos(theta) ** 2 - 1.90498607649313e75 ) * sin(39 * phi) ) # @torch.jit.script def Yl93_m_minus_38(theta, phi): return ( 2.11197609764664e-74 * (1.0 - cos(theta) ** 2) ** 19 * ( 5.27177306587251e97 * cos(theta) ** 55 - 4.23166648801118e98 * cos(theta) ** 53 + 1.5932339946665e99 * cos(theta) ** 51 - 3.74101904825008e99 * cos(theta) ** 49 + 6.14446704014259e99 * cos(theta) ** 47 - 7.50527555976739e99 * cos(theta) ** 45 + 7.07640267063782e99 * cos(theta) ** 43 - 5.27662395671838e99 * cos(theta) ** 41 + 3.1628886290271e99 * cos(theta) ** 39 - 1.54089446029525e99 * cos(theta) ** 37 + 6.14512401530921e98 * cos(theta) ** 35 - 2.0145172391785e98 * cos(theta) ** 33 + 5.43796064563522e97 * cos(theta) ** 31 - 1.208147013961e97 * cos(theta) ** 29 + 2.20353857892258e96 * cos(theta) ** 27 - 3.28425495202474e95 * cos(theta) ** 25 + 3.97288905486864e94 * cos(theta) ** 23 - 3.86444033403216e93 * cos(theta) ** 21 + 2.98577067750829e92 * cos(theta) ** 19 - 1.80348564413253e91 * cos(theta) ** 17 + 8.34265468034093e89 * cos(theta) ** 15 - 2.87677747597963e88 * cos(theta) ** 13 + 7.13250613879248e86 * cos(theta) ** 11 - 1.2096448894036e85 * cos(theta) ** 9 + 1.30537218280964e83 * cos(theta) ** 7 - 8.00374185080361e80 * cos(theta) ** 5 + 2.28026833356228e78 * cos(theta) ** 3 - 1.90498607649313e75 * cos(theta) ) * sin(38 * phi) ) # @torch.jit.script def Yl93_m_minus_37(theta, phi): return ( 1.80891708266735e-72 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 9.41388047477235e95 * cos(theta) ** 56 - 7.83641942224293e96 * cos(theta) ** 54 + 3.06391152820482e97 * cos(theta) ** 52 - 7.48203809650016e97 * cos(theta) ** 50 + 1.28009730002971e98 * cos(theta) ** 48 - 1.63158164342769e98 * cos(theta) ** 46 + 1.60827333423587e98 * cos(theta) ** 44 - 1.2563390373139e98 * cos(theta) ** 42 + 7.90722157256774e97 * cos(theta) ** 40 - 4.05498542182961e97 * cos(theta) ** 38 + 1.70697889314145e97 * cos(theta) ** 36 - 5.92505070346618e96 * cos(theta) ** 34 + 1.69936270176101e96 * cos(theta) ** 32 - 4.02715671320334e95 * cos(theta) ** 30 + 7.86978063900922e94 * cos(theta) ** 28 - 1.26317498154798e94 * cos(theta) ** 26 + 1.6553704395286e93 * cos(theta) ** 24 - 1.75656378819644e92 * cos(theta) ** 22 + 1.49288533875415e91 * cos(theta) ** 20 - 1.00193646896251e90 * cos(theta) ** 18 + 5.21415917521308e88 * cos(theta) ** 16 - 2.05484105427117e87 * cos(theta) ** 14 + 5.9437551156604e85 * cos(theta) ** 12 - 1.2096448894036e84 * cos(theta) ** 10 + 1.63171522851205e82 * cos(theta) ** 8 - 1.33395697513393e80 * cos(theta) ** 6 + 5.7006708339057e77 * cos(theta) ** 4 - 9.52493038246567e74 * cos(theta) ** 2 + 2.5967640083058e71 ) * sin(37 * phi) ) # @torch.jit.script def Yl93_m_minus_36(theta, phi): return ( 1.5571403693523e-70 * (1.0 - cos(theta) ** 2) ** 18 * ( 1.65155797803024e94 * cos(theta) ** 57 - 1.4248035313169e95 * cos(theta) ** 55 + 5.78096514755626e95 * cos(theta) ** 53 - 1.4670662934314e96 * cos(theta) ** 51 + 2.61244346944838e96 * cos(theta) ** 49 - 3.4714503051653e96 * cos(theta) ** 47 + 3.57394074274637e96 * cos(theta) ** 45 - 2.92171869142767e96 * cos(theta) ** 43 + 1.92859062745555e96 * cos(theta) ** 41 - 1.03973985175118e96 * cos(theta) ** 39 + 4.61345646794986e95 * cos(theta) ** 37 - 1.69287162956177e95 * cos(theta) ** 35 + 5.14958394473032e94 * cos(theta) ** 33 - 1.29908281071075e94 * cos(theta) ** 31 + 2.71371746172732e93 * cos(theta) ** 29 - 4.6784258575851e92 * cos(theta) ** 27 + 6.62148175811439e91 * cos(theta) ** 25 - 7.63723386172364e90 * cos(theta) ** 23 + 7.10897780359117e89 * cos(theta) ** 21 - 5.27334983664481e88 * cos(theta) ** 19 + 3.0671524560077e87 * cos(theta) ** 17 - 1.36989403618078e86 * cos(theta) ** 15 + 4.57211931973877e84 * cos(theta) ** 13 - 1.09967717218509e83 * cos(theta) ** 11 + 1.81301692056894e81 * cos(theta) ** 9 - 1.90565282161991e79 * cos(theta) ** 7 + 1.14013416678114e77 * cos(theta) ** 5 - 3.17497679415522e74 * cos(theta) ** 3 + 2.5967640083058e71 * cos(theta) ) * sin(36 * phi) ) # @torch.jit.script def Yl93_m_minus_35(theta, phi): return ( 1.34690391727332e-68 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 2.84751375522455e92 * cos(theta) ** 58 - 2.54429202020874e93 * cos(theta) ** 56 + 1.07054910139931e94 * cos(theta) ** 54 - 2.82128133352193e94 * cos(theta) ** 52 + 5.22488693889676e94 * cos(theta) ** 50 - 7.23218813576105e94 * cos(theta) ** 48 + 7.76943639727473e94 * cos(theta) ** 46 - 6.64026975324471e94 * cos(theta) ** 44 + 4.59188244632273e94 * cos(theta) ** 42 - 2.59934962937796e94 * cos(theta) ** 40 + 1.21406749156575e94 * cos(theta) ** 38 - 4.70242119322713e93 * cos(theta) ** 36 + 1.51458351315598e93 * cos(theta) ** 34 - 4.05963378347111e92 * cos(theta) ** 32 + 9.04572487242439e91 * cos(theta) ** 30 - 1.67086637770896e91 * cos(theta) ** 28 + 2.54672375312092e90 * cos(theta) ** 26 - 3.18218077571818e89 * cos(theta) ** 24 + 3.2313535470869e88 * cos(theta) ** 22 - 2.63667491832241e87 * cos(theta) ** 20 + 1.70397358667094e86 * cos(theta) ** 18 - 8.56183772612986e84 * cos(theta) ** 16 + 3.26579951409912e83 * cos(theta) ** 14 - 9.16397643487573e81 * cos(theta) ** 12 + 1.81301692056894e80 * cos(theta) ** 10 - 2.38206602702488e78 * cos(theta) ** 8 + 1.9002236113019e76 * cos(theta) ** 6 - 7.93744198538806e73 * cos(theta) ** 4 + 1.2983820041529e71 * cos(theta) ** 2 - 3.47068164702726e67 ) * sin(35 * phi) ) # @torch.jit.script def Yl93_m_minus_34(theta, phi): return ( 1.17048972768622e-66 * (1.0 - cos(theta) ** 2) ** 17 * ( 4.82629450038058e90 * cos(theta) ** 59 - 4.46367021089253e91 * cos(theta) ** 57 + 1.9464529116351e92 * cos(theta) ** 55 - 5.32317232739987e92 * cos(theta) ** 53 + 1.0244876350778e93 * cos(theta) ** 51 - 1.47595676240021e93 * cos(theta) ** 49 + 1.65307157388824e93 * cos(theta) ** 47 - 1.47561550072105e93 * cos(theta) ** 45 + 1.0678796386797e93 * cos(theta) ** 43 - 6.33987714482428e92 * cos(theta) ** 41 + 3.11299356811731e92 * cos(theta) ** 39 - 1.27092464681814e92 * cos(theta) ** 37 + 4.32738146615993e91 * cos(theta) ** 35 - 1.23019205559731e91 * cos(theta) ** 33 + 2.91797576529819e90 * cos(theta) ** 31 - 5.76160819899643e89 * cos(theta) ** 29 + 9.43231019674415e88 * cos(theta) ** 27 - 1.27287231028727e88 * cos(theta) ** 25 + 1.40493632482039e87 * cos(theta) ** 23 - 1.25555948491543e86 * cos(theta) ** 21 + 8.96828203511022e84 * cos(theta) ** 19 - 5.03637513301756e83 * cos(theta) ** 17 + 2.17719967606608e82 * cos(theta) ** 15 - 7.0492126422121e80 * cos(theta) ** 13 + 1.64819720051722e79 * cos(theta) ** 11 - 2.64674003002765e77 * cos(theta) ** 9 + 2.71460515900272e75 * cos(theta) ** 7 - 1.58748839707761e73 * cos(theta) ** 5 + 4.327940013843e70 * cos(theta) ** 3 - 3.47068164702726e67 * cos(theta) ) * sin(34 * phi) ) # @torch.jit.script def Yl93_m_minus_33(theta, phi): return ( 1.02175104912872e-64 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 8.04382416730097e88 * cos(theta) ** 60 - 7.6959831222285e89 * cos(theta) ** 58 + 3.47580877077697e90 * cos(theta) ** 56 - 9.85772653222198e90 * cos(theta) ** 54 + 1.97016852899576e91 * cos(theta) ** 52 - 2.95191352480043e91 * cos(theta) ** 50 + 3.44389911226717e91 * cos(theta) ** 48 - 3.20785978417619e91 * cos(theta) ** 46 + 2.42699917881751e91 * cos(theta) ** 44 - 1.5094945582915e91 * cos(theta) ** 42 + 7.78248392029328e90 * cos(theta) ** 40 - 3.34453854425827e90 * cos(theta) ** 38 + 1.20205040726665e90 * cos(theta) ** 36 - 3.61821192822737e89 * cos(theta) ** 34 + 9.11867426655684e88 * cos(theta) ** 32 - 1.92053606633214e88 * cos(theta) ** 30 + 3.36868221312291e87 * cos(theta) ** 28 - 4.89566273187413e86 * cos(theta) ** 26 + 5.85390135341829e85 * cos(theta) ** 24 - 5.70708856779741e84 * cos(theta) ** 22 + 4.48414101755511e83 * cos(theta) ** 20 - 2.79798618500976e82 * cos(theta) ** 18 + 1.3607497975413e81 * cos(theta) ** 16 - 5.03515188729436e79 * cos(theta) ** 14 + 1.37349766709768e78 * cos(theta) ** 12 - 2.64674003002765e76 * cos(theta) ** 10 + 3.39325644875339e74 * cos(theta) ** 8 - 2.64581399512935e72 * cos(theta) ** 6 + 1.08198500346075e70 * cos(theta) ** 4 - 1.73534082351363e67 * cos(theta) ** 2 + 4.55470032418276e63 ) * sin(33 * phi) ) # @torch.jit.script def Yl93_m_minus_32(theta, phi): return ( 8.95767460692613e-63 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.31865969955754e87 * cos(theta) ** 61 - 1.30440391902178e88 * cos(theta) ** 59 + 6.09791012417012e88 * cos(theta) ** 57 - 1.79231391494945e89 * cos(theta) ** 55 + 3.71729911131276e89 * cos(theta) ** 53 - 5.7880657349028e89 * cos(theta) ** 51 + 7.02836553523912e89 * cos(theta) ** 49 - 6.82523358335359e89 * cos(theta) ** 47 + 5.39333150848336e89 * cos(theta) ** 45 - 3.51045246114301e89 * cos(theta) ** 43 + 1.89816680982763e89 * cos(theta) ** 41 - 8.57573985707249e88 * cos(theta) ** 39 + 3.24878488450445e88 * cos(theta) ** 37 - 1.03377483663639e88 * cos(theta) ** 35 + 2.76323462622935e87 * cos(theta) ** 33 - 6.19527763332949e86 * cos(theta) ** 31 + 1.16161455624928e86 * cos(theta) ** 29 - 1.81320841921264e85 * cos(theta) ** 27 + 2.34156054136732e84 * cos(theta) ** 25 - 2.48134285556409e83 * cos(theta) ** 23 + 2.13530524645482e82 * cos(theta) ** 21 - 1.47262430789987e81 * cos(theta) ** 19 + 8.00441057377235e79 * cos(theta) ** 17 - 3.3567679248629e78 * cos(theta) ** 15 + 1.05653666699822e77 * cos(theta) ** 13 - 2.40612730002513e75 * cos(theta) ** 11 + 3.77028494305933e73 * cos(theta) ** 9 - 3.77973427875622e71 * cos(theta) ** 7 + 2.1639700069215e69 * cos(theta) ** 5 - 5.78446941171211e66 * cos(theta) ** 3 + 4.55470032418276e63 * cos(theta) ) * sin(32 * phi) ) # @torch.jit.script def Yl93_m_minus_31(theta, phi): return ( 7.88580681552409e-61 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 2.12687048315732e85 * cos(theta) ** 62 - 2.17400653170297e86 * cos(theta) ** 60 + 1.05136381451209e87 * cos(theta) ** 58 - 3.20056056240973e87 * cos(theta) ** 56 + 6.88388724317177e87 * cos(theta) ** 54 - 1.11308956440438e88 * cos(theta) ** 52 + 1.40567310704782e88 * cos(theta) ** 50 - 1.42192366319866e88 * cos(theta) ** 48 + 1.17246337140943e88 * cos(theta) ** 46 - 7.9783010480523e87 * cos(theta) ** 44 + 4.51944478530388e87 * cos(theta) ** 42 - 2.14393496426812e87 * cos(theta) ** 40 + 8.54943390659067e86 * cos(theta) ** 38 - 2.87159676843442e86 * cos(theta) ** 36 + 8.12716066538043e85 * cos(theta) ** 34 - 1.93602426041547e85 * cos(theta) ** 32 + 3.87204852083093e84 * cos(theta) ** 30 - 6.47574435433086e83 * cos(theta) ** 28 + 9.00600208218198e82 * cos(theta) ** 26 - 1.03389285648504e82 * cos(theta) ** 24 + 9.70593293843098e80 * cos(theta) ** 22 - 7.36312153949936e79 * cos(theta) ** 20 + 4.44689476320686e78 * cos(theta) ** 18 - 2.09797995303931e77 * cos(theta) ** 16 + 7.54669047855869e75 * cos(theta) ** 14 - 2.00510608335428e74 * cos(theta) ** 12 + 3.77028494305933e72 * cos(theta) ** 10 - 4.72466784844527e70 * cos(theta) ** 8 + 3.6066166782025e68 * cos(theta) ** 6 - 1.44611735292803e66 * cos(theta) ** 4 + 2.27735016209138e63 * cos(theta) ** 2 - 5.87703267636485e59 ) * sin(31 * phi) ) # @torch.jit.script def Yl93_m_minus_30(theta, phi): return ( 6.96991129511242e-59 * (1.0 - cos(theta) ** 2) ** 15 * ( 3.3759848939005e83 * cos(theta) ** 63 - 3.56394513393929e84 * cos(theta) ** 61 + 1.78197256696964e85 * cos(theta) ** 59 - 5.61501853054339e85 * cos(theta) ** 57 + 1.25161586239487e86 * cos(theta) ** 55 - 2.10016898944224e86 * cos(theta) ** 53 + 2.75622177852514e86 * cos(theta) ** 51 - 2.90188502693605e86 * cos(theta) ** 49 + 2.49460291789239e86 * cos(theta) ** 47 - 1.77295578845607e86 * cos(theta) ** 45 + 1.0510336710009e86 * cos(theta) ** 43 - 5.22910966894664e85 * cos(theta) ** 41 + 2.19216254015145e85 * cos(theta) ** 39 - 7.76107234712005e84 * cos(theta) ** 37 + 2.32204590439441e84 * cos(theta) ** 35 - 5.86674018307717e83 * cos(theta) ** 33 + 1.24904790994546e83 * cos(theta) ** 31 - 2.23301529459685e82 * cos(theta) ** 29 + 3.33555632673407e81 * cos(theta) ** 27 - 4.13557142594016e80 * cos(theta) ** 25 + 4.21997084279608e79 * cos(theta) ** 23 - 3.50624835214255e78 * cos(theta) ** 21 + 2.34047092800361e77 * cos(theta) ** 19 - 1.23410585472901e76 * cos(theta) ** 17 + 5.03112698570579e74 * cos(theta) ** 15 - 1.54238929488791e73 * cos(theta) ** 13 + 3.42753176641757e71 * cos(theta) ** 11 - 5.24963094271697e69 * cos(theta) ** 9 + 5.15230954028928e67 * cos(theta) ** 7 - 2.89223470585605e65 * cos(theta) ** 5 + 7.59116720697127e62 * cos(theta) ** 3 - 5.87703267636485e59 * cos(theta) ) * sin(30 * phi) ) # @torch.jit.script def Yl93_m_minus_29(theta, phi): return ( 6.18400445319037e-57 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 5.27497639671954e81 * cos(theta) ** 64 - 5.74829860312788e82 * cos(theta) ** 62 + 2.96995427828274e83 * cos(theta) ** 60 - 9.68106643197136e83 * cos(theta) ** 58 + 2.23502832570512e84 * cos(theta) ** 56 - 3.88920183230044e84 * cos(theta) ** 54 + 5.30042649716374e84 * cos(theta) ** 52 - 5.8037700538721e84 * cos(theta) ** 50 + 5.19708941227582e84 * cos(theta) ** 48 - 3.85425171403493e84 * cos(theta) ** 46 + 2.38871288863841e84 * cos(theta) ** 44 - 1.24502611165396e84 * cos(theta) ** 42 + 5.48040635037863e83 * cos(theta) ** 40 - 2.04238745976843e83 * cos(theta) ** 38 + 6.45012751220669e82 * cos(theta) ** 36 - 1.72551181855211e82 * cos(theta) ** 34 + 3.90327471857957e81 * cos(theta) ** 32 - 7.44338431532282e80 * cos(theta) ** 30 + 1.19127011669074e80 * cos(theta) ** 28 - 1.59060439459237e79 * cos(theta) ** 26 + 1.75832118449837e78 * cos(theta) ** 24 - 1.59374925097389e77 * cos(theta) ** 22 + 1.17023546400181e76 * cos(theta) ** 20 - 6.85614363738338e74 * cos(theta) ** 18 + 3.14445436606612e73 * cos(theta) ** 16 - 1.10170663920565e72 * cos(theta) ** 14 + 2.85627647201464e70 * cos(theta) ** 12 - 5.24963094271697e68 * cos(theta) ** 10 + 6.4403869253616e66 * cos(theta) ** 8 - 4.82039117642676e64 * cos(theta) ** 6 + 1.89779180174282e62 * cos(theta) ** 4 - 2.93851633818243e59 * cos(theta) ** 2 + 7.46574272912202e55 ) * sin(29 * phi) ) # @torch.jit.script def Yl93_m_minus_28(theta, phi): return ( 5.50688981950095e-55 * (1.0 - cos(theta) ** 2) ** 14 * ( 8.11534830264544e79 * cos(theta) ** 65 - 9.12428349702839e80 * cos(theta) ** 63 + 4.86877750538154e81 * cos(theta) ** 61 - 1.64085871728328e82 * cos(theta) ** 59 + 3.92110232579846e82 * cos(theta) ** 57 - 7.07127605872807e82 * cos(theta) ** 55 + 1.00008047116297e83 * cos(theta) ** 53 - 1.13799412821022e83 * cos(theta) ** 51 + 1.06063049230119e83 * cos(theta) ** 49 - 8.20053556177645e82 * cos(theta) ** 47 + 5.30825086364092e82 * cos(theta) ** 45 - 2.89540956198596e82 * cos(theta) ** 43 + 1.33668447570211e82 * cos(theta) ** 41 - 5.23689092248317e81 * cos(theta) ** 39 + 1.74327770600181e81 * cos(theta) ** 37 - 4.93003376729174e80 * cos(theta) ** 35 + 1.18281052078169e80 * cos(theta) ** 33 - 2.40109171462027e79 * cos(theta) ** 31 + 4.10782798858875e78 * cos(theta) ** 29 - 5.89112738737914e77 * cos(theta) ** 27 + 7.03328473799346e76 * cos(theta) ** 25 - 6.92934456945169e75 * cos(theta) ** 23 + 5.57254982858003e74 * cos(theta) ** 21 - 3.60849665125441e73 * cos(theta) ** 19 + 1.84967903886242e72 * cos(theta) ** 17 - 7.34471092803765e70 * cos(theta) ** 15 + 2.19713574770357e69 * cos(theta) ** 13 - 4.77239176610634e67 * cos(theta) ** 11 + 7.15598547262401e65 * cos(theta) ** 9 - 6.88627310918108e63 * cos(theta) ** 7 + 3.79558360348563e61 * cos(theta) ** 5 - 9.79505446060809e58 * cos(theta) ** 3 + 7.46574272912202e55 * cos(theta) ) * sin(28 * phi) ) # @torch.jit.script def Yl93_m_minus_27(theta, phi): return ( 4.92120028220969e-53 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.22959822767355e78 * cos(theta) ** 66 - 1.42566929641069e79 * cos(theta) ** 64 + 7.85286694416378e79 * cos(theta) ** 62 - 2.73476452880547e80 * cos(theta) ** 60 + 6.76052125137665e80 * cos(theta) ** 58 - 1.26272786763001e81 * cos(theta) ** 56 + 1.85200087252402e81 * cos(theta) ** 54 - 2.18845024655811e81 * cos(theta) ** 52 + 2.12126098460238e81 * cos(theta) ** 50 - 1.70844490870343e81 * cos(theta) ** 48 + 1.15396757905237e81 * cos(theta) ** 46 - 6.58047627724081e80 * cos(theta) ** 44 + 3.18258208500501e80 * cos(theta) ** 42 - 1.30922273062079e80 * cos(theta) ** 40 + 4.58757291053108e79 * cos(theta) ** 38 - 1.36945382424771e79 * cos(theta) ** 36 + 3.47885447288732e78 * cos(theta) ** 34 - 7.50341160818833e77 * cos(theta) ** 32 + 1.36927599619625e77 * cos(theta) ** 30 - 2.10397406692112e76 * cos(theta) ** 28 + 2.70510951461287e75 * cos(theta) ** 26 - 2.8872269039382e74 * cos(theta) ** 24 + 2.5329771948091e73 * cos(theta) ** 22 - 1.80424832562721e72 * cos(theta) ** 20 + 1.02759946603468e71 * cos(theta) ** 18 - 4.59044433002353e69 * cos(theta) ** 16 + 1.56938267693112e68 * cos(theta) ** 14 - 3.97699313842195e66 * cos(theta) ** 12 + 7.15598547262401e64 * cos(theta) ** 10 - 8.60784138647635e62 * cos(theta) ** 8 + 6.32597267247606e60 * cos(theta) ** 6 - 2.44876361515202e58 * cos(theta) ** 4 + 3.73287136456101e55 * cos(theta) ** 2 - 9.34853835352119e51 ) * sin(27 * phi) ) # @torch.jit.script def Yl93_m_minus_26(theta, phi): return ( 4.41264576223461e-51 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.83522123533366e76 * cos(theta) ** 67 - 2.19333737909336e77 * cos(theta) ** 65 + 1.24648681653393e78 * cos(theta) ** 63 - 4.48322053902536e78 * cos(theta) ** 61 + 1.14585105955536e79 * cos(theta) ** 59 - 2.2153120484737e79 * cos(theta) ** 57 + 3.36727431368003e79 * cos(theta) ** 55 - 4.1291514086002e79 * cos(theta) ** 53 + 4.15933526392623e79 * cos(theta) ** 51 - 3.48662226266005e79 * cos(theta) ** 49 + 2.45525016819654e79 * cos(theta) ** 47 - 1.46232806160907e79 * cos(theta) ** 45 + 7.40135368605817e78 * cos(theta) ** 43 - 3.19322617224583e78 * cos(theta) ** 41 + 1.17630074629002e78 * cos(theta) ** 39 - 3.70122655202083e77 * cos(theta) ** 37 + 9.93958420824948e76 * cos(theta) ** 35 - 2.2737610933904e76 * cos(theta) ** 33 + 4.41701934256855e75 * cos(theta) ** 31 - 7.25508298938318e74 * cos(theta) ** 29 + 1.00189241281958e74 * cos(theta) ** 27 - 1.15489076157528e73 * cos(theta) ** 25 + 1.1012944325257e72 * cos(theta) ** 23 - 8.59165869346288e70 * cos(theta) ** 21 + 5.40841824228779e69 * cos(theta) ** 19 - 2.70026137060208e68 * cos(theta) ** 17 + 1.04625511795408e67 * cos(theta) ** 15 - 3.05922549109381e65 * cos(theta) ** 13 + 6.5054413387491e63 * cos(theta) ** 11 - 9.56426820719594e61 * cos(theta) ** 9 + 9.03710381782294e59 * cos(theta) ** 7 - 4.89752723030404e57 * cos(theta) ** 5 + 1.24429045485367e55 * cos(theta) ** 3 - 9.34853835352119e51 * cos(theta) ) * sin(26 * phi) ) # @torch.jit.script def Yl93_m_minus_25(theta, phi): return ( 3.96941952563658e-49 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 2.69885475784362e74 * cos(theta) ** 68 - 3.32323845317176e75 * cos(theta) ** 66 + 1.94763565083427e76 * cos(theta) ** 64 - 7.23100086939574e76 * cos(theta) ** 62 + 1.90975176592561e77 * cos(theta) ** 60 - 3.81950353185121e77 * cos(theta) ** 58 + 6.0129898458572e77 * cos(theta) ** 56 - 7.64657668259297e77 * cos(theta) ** 54 + 7.99872166139659e77 * cos(theta) ** 52 - 6.97324452532011e77 * cos(theta) ** 50 + 5.11510451707613e77 * cos(theta) ** 48 - 3.17897404697624e77 * cos(theta) ** 46 + 1.68212583774049e77 * cos(theta) ** 44 - 7.60291945772817e76 * cos(theta) ** 42 + 2.94075186572505e76 * cos(theta) ** 40 - 9.74006987373901e75 * cos(theta) ** 38 + 2.76099561340263e75 * cos(theta) ** 36 - 6.68753262761883e74 * cos(theta) ** 34 + 1.38031854455267e74 * cos(theta) ** 32 - 2.41836099646106e73 * cos(theta) ** 30 + 3.57818718864136e72 * cos(theta) ** 28 - 4.44188754452031e71 * cos(theta) ** 26 + 4.5887268021904e70 * cos(theta) ** 24 - 3.90529940611949e69 * cos(theta) ** 22 + 2.70420912114389e68 * cos(theta) ** 20 - 1.50014520589004e67 * cos(theta) ** 18 + 6.53909448721301e65 * cos(theta) ** 16 - 2.185161065067e64 * cos(theta) ** 14 + 5.42120111562425e62 * cos(theta) ** 12 - 9.56426820719594e60 * cos(theta) ** 10 + 1.12963797722787e59 * cos(theta) ** 8 - 8.16254538384007e56 * cos(theta) ** 6 + 3.11072613713417e54 * cos(theta) ** 4 - 4.67426917676059e51 * cos(theta) ** 2 + 1.15528155629278e48 ) * sin(25 * phi) ) # @torch.jit.script def Yl93_m_minus_24(theta, phi): return ( 3.58172757672399e-47 * (1.0 - cos(theta) ** 2) ** 12 * ( 3.91138370701973e72 * cos(theta) ** 69 - 4.96005739279367e73 * cos(theta) ** 67 + 2.99636253974503e74 * cos(theta) ** 65 - 1.1477779157771e75 * cos(theta) ** 63 + 3.13074059987805e75 * cos(theta) ** 61 - 6.47373479974782e75 * cos(theta) ** 59 + 1.05491049927319e76 * cos(theta) ** 57 - 1.39028666956236e76 * cos(theta) ** 55 + 1.50919276630124e76 * cos(theta) ** 53 - 1.36730284810198e76 * cos(theta) ** 51 + 1.04389888103594e76 * cos(theta) ** 49 - 6.76377456803455e75 * cos(theta) ** 47 + 3.7380574172011e75 * cos(theta) ** 45 - 1.76812080412283e75 * cos(theta) ** 43 + 7.17256552615866e74 * cos(theta) ** 41 - 2.49745381377923e74 * cos(theta) ** 39 + 7.4621503064936e73 * cos(theta) ** 37 - 1.91072360789109e73 * cos(theta) ** 35 + 4.18278346834143e72 * cos(theta) ** 33 - 7.80116450471309e71 * cos(theta) ** 31 + 1.23385765125564e71 * cos(theta) ** 29 - 1.64514353500752e70 * cos(theta) ** 27 + 1.83549072087616e69 * cos(theta) ** 25 - 1.69795626353021e68 * cos(theta) ** 23 + 1.28771862911614e67 * cos(theta) ** 21 - 7.89550108363181e65 * cos(theta) ** 19 + 3.84652616894883e64 * cos(theta) ** 17 - 1.456774043378e63 * cos(theta) ** 15 + 4.17015470432634e61 * cos(theta) ** 13 - 8.69478927926904e59 * cos(theta) ** 11 + 1.25515330803096e58 * cos(theta) ** 9 - 1.16607791197715e56 * cos(theta) ** 7 + 6.22145227426835e53 * cos(theta) ** 5 - 1.55808972558686e51 * cos(theta) ** 3 + 1.15528155629278e48 * cos(theta) ) * sin(24 * phi) ) # @torch.jit.script def Yl93_m_minus_23(theta, phi): return ( 3.24141398518232e-45 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 5.58769101002819e70 * cos(theta) ** 70 - 7.29420204822599e71 * cos(theta) ** 68 + 4.53994324203793e72 * cos(theta) ** 66 - 1.79340299340172e73 * cos(theta) ** 64 + 5.04958161270652e73 * cos(theta) ** 62 - 1.07895579995797e74 * cos(theta) ** 60 + 1.81881120564344e74 * cos(theta) ** 58 - 2.48265476707564e74 * cos(theta) ** 56 + 2.79480141907638e74 * cos(theta) ** 54 - 2.62942855404227e74 * cos(theta) ** 52 + 2.08779776207189e74 * cos(theta) ** 50 - 1.40911970167386e74 * cos(theta) ** 48 + 8.12621177652412e73 * cos(theta) ** 46 - 4.01845637300643e73 * cos(theta) ** 44 + 1.70775369670444e73 * cos(theta) ** 42 - 6.24363453444809e72 * cos(theta) ** 40 + 1.96372376486674e72 * cos(theta) ** 38 - 5.30756557747526e71 * cos(theta) ** 36 + 1.23023043186513e71 * cos(theta) ** 34 - 2.43786390772284e70 * cos(theta) ** 32 + 4.11285883751881e69 * cos(theta) ** 30 - 5.87551262502687e68 * cos(theta) ** 28 + 7.05957969567755e67 * cos(theta) ** 26 - 7.07481776470923e66 * cos(theta) ** 24 + 5.85326649598245e65 * cos(theta) ** 22 - 3.9477505418159e64 * cos(theta) ** 20 + 2.13695898274935e63 * cos(theta) ** 18 - 9.10483777111252e61 * cos(theta) ** 16 + 2.97868193166167e60 * cos(theta) ** 14 - 7.2456577327242e58 * cos(theta) ** 12 + 1.25515330803096e57 * cos(theta) ** 10 - 1.45759738997144e55 * cos(theta) ** 8 + 1.03690871237806e53 * cos(theta) ** 6 - 3.89522431396716e50 * cos(theta) ** 4 + 5.77640778146391e47 * cos(theta) ** 2 - 1.41060019083368e44 ) * sin(23 * phi) ) # @torch.jit.script def Yl93_m_minus_22(theta, phi): return ( 2.94166132377253e-43 * (1.0 - cos(theta) ** 2) ** 11 * ( 7.86998733806788e68 * cos(theta) ** 71 - 1.05713073162696e70 * cos(theta) ** 69 + 6.77603468960884e70 * cos(theta) ** 67 - 2.75908152831034e71 * cos(theta) ** 65 + 8.01520890905798e71 * cos(theta) ** 63 - 1.7687799999311e72 * cos(theta) ** 61 + 3.08273085702277e72 * cos(theta) ** 59 - 4.35553467908007e72 * cos(theta) ** 57 + 5.08145712559341e72 * cos(theta) ** 55 - 4.96118595102316e72 * cos(theta) ** 53 + 4.09372110210174e72 * cos(theta) ** 51 - 2.87575449321197e72 * cos(theta) ** 49 + 1.72898122904769e72 * cos(theta) ** 47 - 8.92990305112541e71 * cos(theta) ** 45 + 3.97152022489405e71 * cos(theta) ** 43 - 1.5228376913288e71 * cos(theta) ** 41 + 5.03518914068394e70 * cos(theta) ** 39 - 1.43447718310142e70 * cos(theta) ** 37 + 3.51494409104322e69 * cos(theta) ** 35 - 7.38746638703891e68 * cos(theta) ** 33 + 1.32672865726413e68 * cos(theta) ** 31 - 2.02603883621616e67 * cos(theta) ** 29 + 2.61465914654724e66 * cos(theta) ** 27 - 2.82992710588369e65 * cos(theta) ** 25 + 2.54489847651411e64 * cos(theta) ** 23 - 1.87988121038853e63 * cos(theta) ** 21 + 1.1247152540786e62 * cos(theta) ** 19 - 5.35578692418383e60 * cos(theta) ** 17 + 1.98578795444112e59 * cos(theta) ** 15 - 5.57358287132631e57 * cos(theta) ** 13 + 1.14104846184633e56 * cos(theta) ** 11 - 1.61955265552382e54 * cos(theta) ** 9 + 1.48129816054008e52 * cos(theta) ** 7 - 7.79044862793432e49 * cos(theta) ** 5 + 1.92546926048797e47 * cos(theta) ** 3 - 1.41060019083368e44 * cos(theta) ) * sin(22 * phi) ) # @torch.jit.script def Yl93_m_minus_21(theta, phi): return ( 2.67675017001011e-41 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.09305379695387e67 * cos(theta) ** 72 - 1.51018675946708e68 * cos(theta) ** 70 + 9.96475689648359e68 * cos(theta) ** 68 - 4.18042655804597e69 * cos(theta) ** 66 + 1.25237639204031e70 * cos(theta) ** 64 - 2.8528709676308e70 * cos(theta) ** 62 + 5.13788476170462e70 * cos(theta) ** 60 - 7.50954255013805e70 * cos(theta) ** 58 + 9.07403058141681e70 * cos(theta) ** 56 - 9.18738139078362e70 * cos(theta) ** 54 + 7.87254058096489e70 * cos(theta) ** 52 - 5.75150898642393e70 * cos(theta) ** 50 + 3.60204422718268e70 * cos(theta) ** 48 - 1.94128327198378e70 * cos(theta) ** 46 + 9.02618232930466e69 * cos(theta) ** 44 - 3.62580402697334e69 * cos(theta) ** 42 + 1.25879728517099e69 * cos(theta) ** 40 - 3.77493995553006e68 * cos(theta) ** 38 + 9.76373358623117e67 * cos(theta) ** 36 - 2.17278423148203e67 * cos(theta) ** 34 + 4.14602705395041e66 * cos(theta) ** 32 - 6.7534627873872e65 * cos(theta) ** 30 + 9.33806838052585e64 * cos(theta) ** 28 - 1.08843350226296e64 * cos(theta) ** 26 + 1.06037436521421e63 * cos(theta) ** 24 - 8.54491459267511e61 * cos(theta) ** 22 + 5.62357627039302e60 * cos(theta) ** 20 - 2.97543718010213e59 * cos(theta) ** 18 + 1.2411174715257e58 * cos(theta) ** 16 - 3.98113062237593e56 * cos(theta) ** 14 + 9.50873718205276e54 * cos(theta) ** 12 - 1.61955265552382e53 * cos(theta) ** 10 + 1.8516227006751e51 * cos(theta) ** 8 - 1.29840810465572e49 * cos(theta) ** 6 + 4.81367315121992e46 * cos(theta) ** 4 - 7.05300095416838e43 * cos(theta) ** 2 + 1.70362341888125e40 ) * sin(21 * phi) ) # @torch.jit.script def Yl93_m_minus_20(theta, phi): return ( 2.44186525089707e-39 * (1.0 - cos(theta) ** 2) ** 10 * ( 1.49733396842996e65 * cos(theta) ** 73 - 2.12702360488321e66 * cos(theta) ** 71 + 1.44416766615704e67 * cos(theta) ** 69 - 6.23944262394921e67 * cos(theta) ** 67 + 1.92673291083124e68 * cos(theta) ** 65 - 4.52836661528699e68 * cos(theta) ** 63 + 8.4227619044338e68 * cos(theta) ** 61 - 1.2728038220573e69 * cos(theta) ** 59 + 1.59193518972225e69 * cos(theta) ** 57 - 1.67043298014248e69 * cos(theta) ** 55 + 1.48538501527639e69 * cos(theta) ** 53 - 1.12774686008312e69 * cos(theta) ** 51 + 7.35111066771975e68 * cos(theta) ** 49 - 4.13038994039103e68 * cos(theta) ** 47 + 2.00581829540104e68 * cos(theta) ** 45 - 8.43210238831009e67 * cos(theta) ** 43 + 3.07023728090484e67 * cos(theta) ** 41 - 9.67933321930784e66 * cos(theta) ** 39 + 2.63884691519761e66 * cos(theta) ** 37 - 6.20795494709152e65 * cos(theta) ** 35 + 1.25637183453043e65 * cos(theta) ** 33 - 2.17853638302813e64 * cos(theta) ** 31 + 3.22002357949167e63 * cos(theta) ** 29 - 4.03123519356651e62 * cos(theta) ** 27 + 4.24149746085685e61 * cos(theta) ** 25 - 3.71518025768483e60 * cos(theta) ** 23 + 2.67789346209192e59 * cos(theta) ** 21 - 1.56601956847481e58 * cos(theta) ** 19 + 7.30069100897469e56 * cos(theta) ** 17 - 2.65408708158396e55 * cos(theta) ** 15 + 7.31441321696366e53 * cos(theta) ** 13 - 1.47232059593075e52 * cos(theta) ** 11 + 2.05735855630567e50 * cos(theta) ** 9 - 1.85486872093674e48 * cos(theta) ** 7 + 9.62734630243984e45 * cos(theta) ** 5 - 2.35100031805613e43 * cos(theta) ** 3 + 1.70362341888125e40 * cos(theta) ) * sin(20 * phi) ) # @torch.jit.script def Yl93_m_minus_19(theta, phi): return ( 2.23293857428703e-37 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 2.02342428166211e63 * cos(theta) ** 74 - 2.95419945122668e64 * cos(theta) ** 72 + 2.06309666593863e65 * cos(theta) ** 70 - 9.17565091757237e65 * cos(theta) ** 68 + 2.91929228913825e66 * cos(theta) ** 66 - 7.07557283638592e66 * cos(theta) ** 64 + 1.3585099845861e67 * cos(theta) ** 62 - 2.12133970342883e67 * cos(theta) ** 60 + 2.7447158443487e67 * cos(theta) ** 58 - 2.98291603596871e67 * cos(theta) ** 56 + 2.75071299125258e67 * cos(theta) ** 54 - 2.16874396169832e67 * cos(theta) ** 52 + 1.47022213354395e67 * cos(theta) ** 50 - 8.60497904248132e66 * cos(theta) ** 48 + 4.36047455521964e66 * cos(theta) ** 46 - 1.91638690643411e66 * cos(theta) ** 44 + 7.31008876405915e65 * cos(theta) ** 42 - 2.41983330482696e65 * cos(theta) ** 40 + 6.94433398736214e64 * cos(theta) ** 38 - 1.72443192974765e64 * cos(theta) ** 36 + 3.69521127803067e63 * cos(theta) ** 34 - 6.80792619696291e62 * cos(theta) ** 32 + 1.07334119316389e62 * cos(theta) ** 30 - 1.43972685484518e61 * cos(theta) ** 28 + 1.63134517725264e60 * cos(theta) ** 26 - 1.54799177403535e59 * cos(theta) ** 24 + 1.21722430095087e58 * cos(theta) ** 22 - 7.83009784237402e56 * cos(theta) ** 20 + 4.05593944943038e55 * cos(theta) ** 18 - 1.65880442598997e54 * cos(theta) ** 16 + 5.22458086925976e52 * cos(theta) ** 14 - 1.22693382994229e51 * cos(theta) ** 12 + 2.05735855630567e49 * cos(theta) ** 10 - 2.31858590117093e47 * cos(theta) ** 8 + 1.60455771707331e45 * cos(theta) ** 6 - 5.87750079514032e42 * cos(theta) ** 4 + 8.51811709440626e39 * cos(theta) ** 2 - 2.03733965424689e36 ) * sin(19 * phi) ) # @torch.jit.script def Yl93_m_minus_18(theta, phi): return ( 2.04652200777142e-35 * (1.0 - cos(theta) ** 2) ** 9 * ( 2.69789904221615e61 * cos(theta) ** 75 - 4.04684856332422e62 * cos(theta) ** 73 + 2.90576995202624e63 * cos(theta) ** 71 - 1.32980448080759e64 * cos(theta) ** 69 + 4.35715267035559e64 * cos(theta) ** 67 - 1.0885496671363e65 * cos(theta) ** 65 + 2.15636505489857e65 * cos(theta) ** 63 - 3.4776060711948e65 * cos(theta) ** 61 + 4.65206075313339e65 * cos(theta) ** 59 - 5.23318602801528e65 * cos(theta) ** 57 + 5.00129634773197e65 * cos(theta) ** 55 - 4.09196973905343e65 * cos(theta) ** 53 + 2.882788497145e65 * cos(theta) ** 51 - 1.75611817193496e65 * cos(theta) ** 49 + 9.27760543663754e64 * cos(theta) ** 47 - 4.25863756985358e64 * cos(theta) ** 45 + 1.70002064280445e64 * cos(theta) ** 43 - 5.90203245079747e63 * cos(theta) ** 41 + 1.78059845829798e63 * cos(theta) ** 39 - 4.6606268371558e62 * cos(theta) ** 37 + 1.05577465086591e62 * cos(theta) ** 35 - 2.06300793847361e61 * cos(theta) ** 33 + 3.46239094568997e60 * cos(theta) ** 31 - 4.96457536153511e59 * cos(theta) ** 29 + 6.04201917500976e58 * cos(theta) ** 27 - 6.19196709614139e57 * cos(theta) ** 25 + 5.29227956935161e56 * cos(theta) ** 23 - 3.72861802017811e55 * cos(theta) ** 21 + 2.13470497338441e54 * cos(theta) ** 19 - 9.75767309405866e52 * cos(theta) ** 17 + 3.48305391283984e51 * cos(theta) ** 15 - 9.43795253801762e49 * cos(theta) ** 13 + 1.87032596027788e48 * cos(theta) ** 11 - 2.57620655685659e46 * cos(theta) ** 9 + 2.29222531010472e44 * cos(theta) ** 7 - 1.17550015902806e42 * cos(theta) ** 5 + 2.83937236480209e39 * cos(theta) ** 3 - 2.03733965424689e36 * cos(theta) ) * sin(18 * phi) ) # @torch.jit.script def Yl93_m_minus_17(theta, phi): return ( 1.8796833946566e-33 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 3.54986716081072e59 * cos(theta) ** 76 - 5.46871427476246e60 * cos(theta) ** 74 + 4.03579160003645e61 * cos(theta) ** 72 - 1.89972068686799e62 * cos(theta) ** 70 + 6.40757745640529e62 * cos(theta) ** 68 - 1.64931767747924e63 * cos(theta) ** 66 + 3.36932039827901e63 * cos(theta) ** 64 - 5.60904205031419e63 * cos(theta) ** 62 + 7.75343458855566e63 * cos(theta) ** 60 - 9.02273453106082e63 * cos(theta) ** 58 + 8.93088633523565e63 * cos(theta) ** 56 - 7.57772173898783e63 * cos(theta) ** 54 + 5.54382403297116e63 * cos(theta) ** 52 - 3.51223634386993e63 * cos(theta) ** 50 + 1.93283446596615e63 * cos(theta) ** 48 - 9.25790776055126e62 * cos(theta) ** 46 + 3.86368327910103e62 * cos(theta) ** 44 - 1.40524582161844e62 * cos(theta) ** 42 + 4.45149614574496e61 * cos(theta) ** 40 - 1.22648074661995e61 * cos(theta) ** 38 + 2.9327073635164e60 * cos(theta) ** 36 - 6.06767040727532e59 * cos(theta) ** 34 + 1.08199717052812e59 * cos(theta) ** 32 - 1.65485845384504e58 * cos(theta) ** 30 + 2.15786399107491e57 * cos(theta) ** 28 - 2.38152580620823e56 * cos(theta) ** 26 + 2.20511648722984e55 * cos(theta) ** 24 - 1.69482637280823e54 * cos(theta) ** 22 + 1.06735248669221e53 * cos(theta) ** 20 - 5.42092949669926e51 * cos(theta) ** 18 + 2.1769086955249e50 * cos(theta) ** 16 - 6.74139467001259e48 * cos(theta) ** 14 + 1.55860496689824e47 * cos(theta) ** 12 - 2.57620655685659e45 * cos(theta) ** 10 + 2.86528163763091e43 * cos(theta) ** 8 - 1.95916693171344e41 * cos(theta) ** 6 + 7.09843091200522e38 * cos(theta) ** 4 - 1.01866982712345e36 * cos(theta) ** 2 + 2.4150541183581e32 ) * sin(17 * phi) ) # @torch.jit.script def Yl93_m_minus_16(theta, phi): return ( 1.72992155473396e-31 * (1.0 - cos(theta) ** 2) ** 8 * ( 4.61021709196197e57 * cos(theta) ** 77 - 7.29161903301661e58 * cos(theta) ** 75 + 5.52848164388555e59 * cos(theta) ** 73 - 2.67566293925068e60 * cos(theta) ** 71 + 9.28634413971781e60 * cos(theta) ** 69 - 2.46166817534214e61 * cos(theta) ** 67 + 5.18356984350617e61 * cos(theta) ** 65 - 8.90324134970507e61 * cos(theta) ** 63 + 1.27105485058289e62 * cos(theta) ** 61 - 1.52927703916285e62 * cos(theta) ** 59 + 1.56682216407643e62 * cos(theta) ** 57 - 1.37776758890688e62 * cos(theta) ** 55 + 1.04600453452286e62 * cos(theta) ** 53 - 6.88673792915672e61 * cos(theta) ** 51 + 3.9445601346248e61 * cos(theta) ** 49 - 1.96976760862793e61 * cos(theta) ** 47 + 8.58596284244673e60 * cos(theta) ** 45 - 3.26801353864754e60 * cos(theta) ** 43 + 1.08573076725487e60 * cos(theta) ** 41 - 3.14482242723063e59 * cos(theta) ** 39 + 7.9262361176119e58 * cos(theta) ** 37 - 1.73362011636438e58 * cos(theta) ** 35 + 3.27877930463066e57 * cos(theta) ** 33 - 5.33825307691948e56 * cos(theta) ** 31 + 7.44091031405143e55 * cos(theta) ** 29 - 8.82046594891936e54 * cos(theta) ** 27 + 8.82046594891936e53 * cos(theta) ** 25 - 7.36881031655752e52 * cos(theta) ** 23 + 5.08263088901051e51 * cos(theta) ** 21 - 2.85312078773645e50 * cos(theta) ** 19 + 1.28053452677935e49 * cos(theta) ** 17 - 4.49426311334173e47 * cos(theta) ** 15 + 1.19892689761403e46 * cos(theta) ** 13 - 2.34200596077872e44 * cos(theta) ** 11 + 3.18364626403434e42 * cos(theta) ** 9 - 2.79880990244777e40 * cos(theta) ** 7 + 1.41968618240104e38 * cos(theta) ** 5 - 3.39556609041149e35 * cos(theta) ** 3 + 2.4150541183581e32 * cos(theta) ) * sin(16 * phi) ) # @torch.jit.script def Yl93_m_minus_15(theta, phi): return ( 1.59509649345119e-29 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 5.91053473328458e55 * cos(theta) ** 78 - 9.5942355697587e56 * cos(theta) ** 76 + 7.47092114038587e57 * cos(theta) ** 74 - 3.71619852673706e58 * cos(theta) ** 72 + 1.32662059138826e59 * cos(theta) ** 70 - 3.62010025785609e59 * cos(theta) ** 68 + 7.85389370228208e59 * cos(theta) ** 66 - 1.39113146089142e60 * cos(theta) ** 64 + 2.05008846868209e60 * cos(theta) ** 62 - 2.54879506527142e60 * cos(theta) ** 60 + 2.70141752426971e60 * cos(theta) ** 58 - 2.46029926590514e60 * cos(theta) ** 56 + 1.93704543430159e60 * cos(theta) ** 54 - 1.32437267868398e60 * cos(theta) ** 52 + 7.88912026924961e59 * cos(theta) ** 50 - 4.10368251797485e59 * cos(theta) ** 48 + 1.86651366140146e59 * cos(theta) ** 46 - 7.42730349692624e58 * cos(theta) ** 44 + 2.58507325536874e58 * cos(theta) ** 42 - 7.86205606807658e57 * cos(theta) ** 40 + 2.08585160989787e57 * cos(theta) ** 38 - 4.81561143434549e56 * cos(theta) ** 36 + 9.64346854303134e55 * cos(theta) ** 34 - 1.66820408653734e55 * cos(theta) ** 32 + 2.48030343801714e54 * cos(theta) ** 30 - 3.15016641032834e53 * cos(theta) ** 28 + 3.39248690343052e52 * cos(theta) ** 26 - 3.07033763189897e51 * cos(theta) ** 24 + 2.31028676773205e50 * cos(theta) ** 22 - 1.42656039386823e49 * cos(theta) ** 20 + 7.11408070432973e47 * cos(theta) ** 18 - 2.80891444583858e46 * cos(theta) ** 16 + 8.56376355438591e44 * cos(theta) ** 14 - 1.95167163398226e43 * cos(theta) ** 12 + 3.18364626403434e41 * cos(theta) ** 10 - 3.49851237805971e39 * cos(theta) ** 8 + 2.36614363733507e37 * cos(theta) ** 6 - 8.48891522602872e34 * cos(theta) ** 4 + 1.20752705917905e32 * cos(theta) ** 2 - 2.84057176941673e28 ) * sin(15 * phi) ) # @torch.jit.script def Yl93_m_minus_14(theta, phi): return ( 1.47337190313315e-27 * (1.0 - cos(theta) ** 2) ** 7 * ( 7.48168953580327e53 * cos(theta) ** 79 - 1.24600461944918e55 * cos(theta) ** 77 + 9.96122818718116e55 * cos(theta) ** 75 - 5.09068291333844e56 * cos(theta) ** 73 + 1.86847970618065e57 * cos(theta) ** 71 - 5.24652211283492e57 * cos(theta) ** 69 + 1.17222294063912e58 * cos(theta) ** 67 - 2.14020224752526e58 * cos(theta) ** 65 + 3.25410868044776e58 * cos(theta) ** 63 - 4.17835256601872e58 * cos(theta) ** 61 + 4.57867376994866e58 * cos(theta) ** 59 - 4.31631450158796e58 * cos(theta) ** 57 + 3.52190078963926e58 * cos(theta) ** 55 - 2.49881637487544e58 * cos(theta) ** 53 + 1.54688632730384e58 * cos(theta) ** 51 - 8.37486228158132e57 * cos(theta) ** 49 + 3.97130566255631e57 * cos(theta) ** 47 - 1.65051188820583e57 * cos(theta) ** 45 + 6.01179826829938e56 * cos(theta) ** 43 - 1.91757465075039e56 * cos(theta) ** 41 + 5.34833746127659e55 * cos(theta) ** 39 - 1.30151660387716e55 * cos(theta) ** 37 + 2.75527672658038e54 * cos(theta) ** 35 - 5.05516389859799e53 * cos(theta) ** 33 + 8.00097883231336e52 * cos(theta) ** 31 - 1.08626427942357e52 * cos(theta) ** 29 + 1.25647663090019e51 * cos(theta) ** 27 - 1.22813505275959e50 * cos(theta) ** 25 + 1.00447250770959e49 * cos(theta) ** 23 - 6.79314473270583e47 * cos(theta) ** 21 + 3.74425300227881e46 * cos(theta) ** 19 - 1.65230261519916e45 * cos(theta) ** 17 + 5.70917570292394e43 * cos(theta) ** 15 - 1.50128587229405e42 * cos(theta) ** 13 + 2.89422387639485e40 * cos(theta) ** 11 - 3.8872359756219e38 * cos(theta) ** 9 + 3.38020519619296e36 * cos(theta) ** 7 - 1.69778304520574e34 * cos(theta) ** 5 + 4.0250901972635e31 * cos(theta) ** 3 - 2.84057176941673e28 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl93_m_minus_13(theta, phi): return ( 1.36316763414868e-25 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 9.35211191975408e51 * cos(theta) ** 80 - 1.59744181980664e53 * cos(theta) ** 78 + 1.31068791936594e54 * cos(theta) ** 76 - 6.87930123424113e54 * cos(theta) ** 74 + 2.59511070302867e55 * cos(theta) ** 72 - 7.49503158976417e55 * cos(theta) ** 70 + 1.72385726564576e56 * cos(theta) ** 68 - 3.24273067806857e56 * cos(theta) ** 66 + 5.08454481319962e56 * cos(theta) ** 64 - 6.73927833228826e56 * cos(theta) ** 62 + 7.63112294991443e56 * cos(theta) ** 60 - 7.441921554462e56 * cos(theta) ** 58 + 6.28910855292725e56 * cos(theta) ** 56 - 4.62743773125082e56 * cos(theta) ** 54 + 2.97478139866124e56 * cos(theta) ** 52 - 1.67497245631626e56 * cos(theta) ** 50 + 8.27355346365897e55 * cos(theta) ** 48 - 3.58806932218659e55 * cos(theta) ** 46 + 1.36631778824986e55 * cos(theta) ** 44 - 4.56565393035806e54 * cos(theta) ** 42 + 1.33708436531915e54 * cos(theta) ** 40 - 3.42504369441358e53 * cos(theta) ** 38 + 7.65354646272328e52 * cos(theta) ** 36 - 1.48681291135235e52 * cos(theta) ** 34 + 2.50030588509793e51 * cos(theta) ** 32 - 3.62088093141189e50 * cos(theta) ** 30 + 4.48741653892926e49 * cos(theta) ** 28 - 4.72359635676764e48 * cos(theta) ** 26 + 4.18530211545661e47 * cos(theta) ** 24 - 3.08779306032083e46 * cos(theta) ** 22 + 1.8721265011394e45 * cos(theta) ** 20 - 9.17945897332869e43 * cos(theta) ** 18 + 3.56823481432746e42 * cos(theta) ** 16 - 1.07234705163861e41 * cos(theta) ** 14 + 2.41185323032905e39 * cos(theta) ** 12 - 3.8872359756219e37 * cos(theta) ** 10 + 4.2252564952412e35 * cos(theta) ** 8 - 2.82963840867624e33 * cos(theta) ** 6 + 1.00627254931588e31 * cos(theta) ** 4 - 1.42028588470836e28 * cos(theta) ** 2 + 3.31842496427188e24 ) * sin(13 * phi) ) # @torch.jit.script def Yl93_m_minus_12(theta, phi): return ( 1.26312028032232e-23 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.15458171848816e50 * cos(theta) ** 81 - 2.0220782529198e51 * cos(theta) ** 79 + 1.70219210307265e52 * cos(theta) ** 77 - 9.17240164565485e52 * cos(theta) ** 75 + 3.55494616853243e53 * cos(theta) ** 73 - 1.05563825207946e54 * cos(theta) ** 71 + 2.49834386325472e54 * cos(theta) ** 69 - 4.8398965344307e54 * cos(theta) ** 67 + 7.82237663569173e54 * cos(theta) ** 65 - 1.06972671941083e55 * cos(theta) ** 63 + 1.25100376228105e55 * cos(theta) ** 61 - 1.26134263634949e55 * cos(theta) ** 59 + 1.10335237770653e55 * cos(theta) ** 57 - 8.41352314772876e54 * cos(theta) ** 55 + 5.61279509181366e54 * cos(theta) ** 53 - 3.28425971826719e54 * cos(theta) ** 51 + 1.68848029870591e54 * cos(theta) ** 49 - 7.63419004720551e53 * cos(theta) ** 47 + 3.03626175166636e53 * cos(theta) ** 45 - 1.0617799838042e53 * cos(theta) ** 43 + 3.26118137882719e52 * cos(theta) ** 41 - 8.78216331900917e51 * cos(theta) ** 39 + 2.06852607100629e51 * cos(theta) ** 37 - 4.24803688957814e50 * cos(theta) ** 35 + 7.57668450029675e49 * cos(theta) ** 33 - 1.16802610690706e49 * cos(theta) ** 31 + 1.54738501342388e48 * cos(theta) ** 29 - 1.74948013213616e47 * cos(theta) ** 27 + 1.67412084618264e46 * cos(theta) ** 25 - 1.34251872187862e45 * cos(theta) ** 23 + 8.91488810066383e43 * cos(theta) ** 21 - 4.83129419648878e42 * cos(theta) ** 19 + 2.09896165548674e41 * cos(theta) ** 17 - 7.14898034425737e39 * cos(theta) ** 15 + 1.85527171563773e38 * cos(theta) ** 13 - 3.533850886929e36 * cos(theta) ** 11 + 4.69472943915689e34 * cos(theta) ** 9 - 4.0423405838232e32 * cos(theta) ** 7 + 2.01254509863175e30 * cos(theta) ** 5 - 4.73428628236121e27 * cos(theta) ** 3 + 3.31842496427188e24 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl93_m_minus_11(theta, phi): return ( 1.17205039031839e-21 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.40802648596117e48 * cos(theta) ** 82 - 2.52759781614975e49 * cos(theta) ** 80 + 2.18229756804186e50 * cos(theta) ** 78 - 1.20689495337564e51 * cos(theta) ** 76 + 4.80398130882761e51 * cos(theta) ** 74 - 1.46616423899925e52 * cos(theta) ** 72 + 3.56906266179246e52 * cos(theta) ** 70 - 7.11749490357456e52 * cos(theta) ** 68 + 1.18520858116541e53 * cos(theta) ** 66 - 1.67144799907943e53 * cos(theta) ** 64 + 2.01774800367912e53 * cos(theta) ** 62 - 2.10223772724915e53 * cos(theta) ** 60 + 1.90233168570092e53 * cos(theta) ** 58 - 1.50241484780871e53 * cos(theta) ** 56 + 1.03940649848401e53 * cos(theta) ** 54 - 6.31588407359074e52 * cos(theta) ** 52 + 3.37696059741182e52 * cos(theta) ** 50 - 1.59045625983448e52 * cos(theta) ** 48 + 6.60056902536164e51 * cos(theta) ** 46 - 2.41313632682773e51 * cos(theta) ** 44 + 7.76471756863616e50 * cos(theta) ** 42 - 2.19554082975229e50 * cos(theta) ** 40 + 5.44348966054288e49 * cos(theta) ** 38 - 1.18001024710504e49 * cos(theta) ** 36 + 2.22843661773434e48 * cos(theta) ** 34 - 3.65008158408456e47 * cos(theta) ** 32 + 5.15795004474628e46 * cos(theta) ** 30 - 6.24814332905773e45 * cos(theta) ** 28 + 6.43892633147171e44 * cos(theta) ** 26 - 5.5938280078276e43 * cos(theta) ** 24 + 4.0522218639381e42 * cos(theta) ** 22 - 2.41564709824439e41 * cos(theta) ** 20 + 1.16608980860375e40 * cos(theta) ** 18 - 4.46811271516086e38 * cos(theta) ** 16 + 1.32519408259838e37 * cos(theta) ** 14 - 2.9448757391075e35 * cos(theta) ** 12 + 4.69472943915689e33 * cos(theta) ** 10 - 5.052925729779e31 * cos(theta) ** 8 + 3.35424183105292e29 * cos(theta) ** 6 - 1.1835715705903e27 * cos(theta) ** 4 + 1.65921248213594e24 * cos(theta) ** 2 - 3.85415210716826e20 ) * sin(11 * phi) ) # @torch.jit.script def Yl93_m_minus_10(theta, phi): return ( 1.08893510723961e-19 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.69641745296526e46 * cos(theta) ** 83 - 3.12049113104908e47 * cos(theta) ** 81 + 2.76240198486312e48 * cos(theta) ** 79 - 1.56739604334498e49 * cos(theta) ** 77 + 6.40530841177014e49 * cos(theta) ** 75 - 2.00844416301267e50 * cos(theta) ** 73 + 5.026848819426e50 * cos(theta) ** 71 - 1.03152100051805e51 * cos(theta) ** 69 + 1.76896803159017e51 * cos(theta) ** 67 - 2.5714584601222e51 * cos(theta) ** 65 + 3.20277460901447e51 * cos(theta) ** 63 - 3.44629135614615e51 * cos(theta) ** 61 + 3.22429099271343e51 * cos(theta) ** 59 - 2.63581552247142e51 * cos(theta) ** 57 + 1.88982999724366e51 * cos(theta) ** 55 - 1.19167624030014e51 * cos(theta) ** 53 + 6.62149136747416e50 * cos(theta) ** 51 - 3.24582910170302e50 * cos(theta) ** 49 + 1.40437638837482e50 * cos(theta) ** 47 - 5.36252517072829e49 * cos(theta) ** 45 + 1.80574827177585e49 * cos(theta) ** 43 - 5.35497763354218e48 * cos(theta) ** 41 + 1.39576657962638e48 * cos(theta) ** 39 - 3.18921688406767e47 * cos(theta) ** 37 + 6.36696176495525e46 * cos(theta) ** 35 - 1.10608532851047e46 * cos(theta) ** 33 + 1.66385485314396e45 * cos(theta) ** 31 - 2.1545321824337e44 * cos(theta) ** 29 + 2.38478753017471e43 * cos(theta) ** 27 - 2.23753120313104e42 * cos(theta) ** 25 + 1.76183559301657e41 * cos(theta) ** 23 - 1.15030814202114e40 * cos(theta) ** 21 + 6.13731478212498e38 * cos(theta) ** 19 - 2.62830159715345e37 * cos(theta) ** 17 + 8.83462721732251e35 * cos(theta) ** 15 - 2.26528903008269e34 * cos(theta) ** 13 + 4.26793585377899e32 * cos(theta) ** 11 - 5.61436192197667e30 * cos(theta) ** 9 + 4.79177404436131e28 * cos(theta) ** 7 - 2.3671431411806e26 * cos(theta) ** 5 + 5.53070827378646e23 * cos(theta) ** 3 - 3.85415210716826e20 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl93_m_minus_9(theta, phi): return ( 1.01288526919999e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 2.01954458686341e44 * cos(theta) ** 84 - 3.80547698908424e45 * cos(theta) ** 82 + 3.4530024810789e46 * cos(theta) ** 80 - 2.00948210685254e47 * cos(theta) ** 78 + 8.42803738390808e47 * cos(theta) ** 76 - 2.71411373380091e48 * cos(theta) ** 74 + 6.981734471425e48 * cos(theta) ** 72 - 1.4736014293115e49 * cos(theta) ** 70 + 2.6014235758679e49 * cos(theta) ** 68 - 3.89614918200333e49 * cos(theta) ** 66 + 5.00433532658512e49 * cos(theta) ** 64 - 5.55853444539702e49 * cos(theta) ** 62 + 5.37381832118904e49 * cos(theta) ** 60 - 4.54450952150244e49 * cos(theta) ** 58 + 3.37469642364939e49 * cos(theta) ** 56 - 2.20680785240767e49 * cos(theta) ** 54 + 1.27336372451426e49 * cos(theta) ** 52 - 6.49165820340604e48 * cos(theta) ** 50 + 2.92578414244754e48 * cos(theta) ** 48 - 1.16576634146267e48 * cos(theta) ** 46 + 4.10397334494512e47 * cos(theta) ** 44 - 1.2749946746529e47 * cos(theta) ** 42 + 3.48941644906595e46 * cos(theta) ** 40 - 8.3926760107044e45 * cos(theta) ** 38 + 1.76860049026535e45 * cos(theta) ** 36 - 3.25319214267786e44 * cos(theta) ** 34 + 5.19954641607488e43 * cos(theta) ** 32 - 7.18177394144567e42 * cos(theta) ** 30 + 8.51709832205252e41 * cos(theta) ** 28 - 8.60588924281169e40 * cos(theta) ** 26 + 7.34098163756903e39 * cos(theta) ** 24 - 5.22867337282336e38 * cos(theta) ** 22 + 3.06865739106249e37 * cos(theta) ** 20 - 1.46016755397414e36 * cos(theta) ** 18 + 5.52164201082657e34 * cos(theta) ** 16 - 1.61806359291621e33 * cos(theta) ** 14 + 3.55661321148249e31 * cos(theta) ** 12 - 5.61436192197667e29 * cos(theta) ** 10 + 5.98971755545164e27 * cos(theta) ** 8 - 3.94523856863434e25 * cos(theta) ** 6 + 1.38267706844661e23 * cos(theta) ** 4 - 1.92707605358413e20 * cos(theta) ** 2 + 4.45463720199753e16 ) * sin(9 * phi) ) # @torch.jit.script def Yl93_m_minus_8(theta, phi): return ( 9.43126187179398e-16 * (1.0 - cos(theta) ** 2) ** 4 * ( 2.3759348080746e42 * cos(theta) ** 85 - 4.58491203504125e43 * cos(theta) ** 83 + 4.26296602602333e44 * cos(theta) ** 81 - 2.54364823652221e45 * cos(theta) ** 79 + 1.09455030959845e46 * cos(theta) ** 77 - 3.61881831173454e46 * cos(theta) ** 75 + 9.56401982386987e46 * cos(theta) ** 73 - 2.07549497086127e47 * cos(theta) ** 71 + 3.77017909546072e47 * cos(theta) ** 69 - 5.81514803284079e47 * cos(theta) ** 67 + 7.69897742551556e47 * cos(theta) ** 65 - 8.82307054824924e47 * cos(theta) ** 63 + 8.80953823145745e47 * cos(theta) ** 61 - 7.70255851102109e47 * cos(theta) ** 59 + 5.92052004149015e47 * cos(theta) ** 57 - 4.01237791346848e47 * cos(theta) ** 55 + 2.40257306512125e47 * cos(theta) ** 53 - 1.2728741575306e47 * cos(theta) ** 51 + 5.9709880458113e46 * cos(theta) ** 49 - 2.48035391800568e46 * cos(theta) ** 47 + 9.1199407665447e45 * cos(theta) ** 45 - 2.96510389454163e45 * cos(theta) ** 43 + 8.51077182699011e44 * cos(theta) ** 41 - 2.15196820787292e44 * cos(theta) ** 39 + 4.78000132504148e43 * cos(theta) ** 37 - 9.29483469336532e42 * cos(theta) ** 35 + 1.5756201260833e42 * cos(theta) ** 33 - 2.31670127143409e41 * cos(theta) ** 31 + 2.93693045588018e40 * cos(theta) ** 29 - 3.18736638622655e39 * cos(theta) ** 27 + 2.93639265502761e38 * cos(theta) ** 25 - 2.27333624905363e37 * cos(theta) ** 23 + 1.46126542431547e36 * cos(theta) ** 21 - 7.68509238933756e34 * cos(theta) ** 19 + 3.24802471225092e33 * cos(theta) ** 17 - 1.07870906194414e32 * cos(theta) ** 15 + 2.73585631652499e30 * cos(theta) ** 13 - 5.10396538361515e28 * cos(theta) ** 11 + 6.6552417282796e26 * cos(theta) ** 9 - 5.63605509804906e24 * cos(theta) ** 7 + 2.76535413689323e22 * cos(theta) ** 5 - 6.42358684528044e19 * cos(theta) ** 3 + 4.45463720199753e16 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl93_m_minus_7(theta, phi): return ( 8.7898146311169e-14 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 2.76271489311e40 * cos(theta) ** 86 - 5.45822861314435e41 * cos(theta) ** 84 + 5.19873905612601e42 * cos(theta) ** 82 - 3.17956029565276e43 * cos(theta) ** 80 + 1.40326962769032e44 * cos(theta) ** 78 - 4.76160304175598e44 * cos(theta) ** 76 + 1.29243511133377e45 * cos(theta) ** 74 - 2.88263190397399e45 * cos(theta) ** 72 + 5.38597013637245e45 * cos(theta) ** 70 - 8.5516882835894e45 * cos(theta) ** 68 + 1.16651173113872e46 * cos(theta) ** 66 - 1.37860477316394e46 * cos(theta) ** 64 + 1.4208932631383e46 * cos(theta) ** 62 - 1.28375975183685e46 * cos(theta) ** 60 + 1.0207793174983e46 * cos(theta) ** 58 - 7.16496055976515e45 * cos(theta) ** 56 + 4.44920937985417e45 * cos(theta) ** 54 - 2.44783491832807e45 * cos(theta) ** 52 + 1.19419760916226e45 * cos(theta) ** 50 - 5.16740399584517e44 * cos(theta) ** 48 + 1.98259581881407e44 * cos(theta) ** 46 - 6.73887248759461e43 * cos(theta) ** 44 + 2.02637424452146e43 * cos(theta) ** 42 - 5.37992051968231e42 * cos(theta) ** 40 + 1.25789508553723e42 * cos(theta) ** 38 - 2.58189852593481e41 * cos(theta) ** 36 + 4.63417684142146e40 * cos(theta) ** 34 - 7.23969147323152e39 * cos(theta) ** 32 + 9.78976818626727e38 * cos(theta) ** 30 - 1.13834513793805e38 * cos(theta) ** 28 + 1.12938179039523e37 * cos(theta) ** 26 - 9.47223437105681e35 * cos(theta) ** 24 + 6.64211556507032e34 * cos(theta) ** 22 - 3.84254619466878e33 * cos(theta) ** 20 + 1.80445817347273e32 * cos(theta) ** 18 - 6.74193163715088e30 * cos(theta) ** 16 + 1.95418308323214e29 * cos(theta) ** 14 - 4.25330448634596e27 * cos(theta) ** 12 + 6.6552417282796e25 * cos(theta) ** 10 - 7.04506887256132e23 * cos(theta) ** 8 + 4.60892356148872e21 * cos(theta) ** 6 - 1.60589671132011e19 * cos(theta) ** 4 + 2.22731860099877e16 * cos(theta) ** 2 - 5128525445541.71 ) * sin(7 * phi) ) # @torch.jit.script def Yl93_m_minus_6(theta, phi): return ( 8.19859328708133e-12 * (1.0 - cos(theta) ** 2) ** 3 * ( 3.17553435989655e38 * cos(theta) ** 87 - 6.42144542722864e39 * cos(theta) ** 85 + 6.26354103147712e40 * cos(theta) ** 83 - 3.92538308105279e41 * cos(theta) ** 81 + 1.77629066796243e42 * cos(theta) ** 79 - 6.18390005422855e42 * cos(theta) ** 77 + 1.72324681511169e43 * cos(theta) ** 75 - 3.94881082736163e43 * cos(theta) ** 73 + 7.5858734315105e43 * cos(theta) ** 71 - 1.23937511356368e44 * cos(theta) ** 69 + 1.74106228528167e44 * cos(theta) ** 67 - 2.12093042025222e44 * cos(theta) ** 65 + 2.25538613196555e44 * cos(theta) ** 63 - 2.10452418333909e44 * cos(theta) ** 61 + 1.7301344364378e44 * cos(theta) ** 59 - 1.2570106245202e44 * cos(theta) ** 57 + 8.08947159973485e43 * cos(theta) ** 55 - 4.61855644967561e43 * cos(theta) ** 53 + 2.34156393953384e43 * cos(theta) ** 51 - 1.05457224405004e43 * cos(theta) ** 49 + 4.21828897620014e42 * cos(theta) ** 47 - 1.49752721946547e42 * cos(theta) ** 45 + 4.71249824307315e41 * cos(theta) ** 43 - 1.31217573650788e41 * cos(theta) ** 41 + 3.22537201419803e40 * cos(theta) ** 39 - 6.97810412414814e39 * cos(theta) ** 37 + 1.32405052612042e39 * cos(theta) ** 35 - 2.19384590097925e38 * cos(theta) ** 33 + 3.15798973750557e37 * cos(theta) ** 31 - 3.92532806185536e36 * cos(theta) ** 29 + 4.18289551998235e35 * cos(theta) ** 27 - 3.78889374842272e34 * cos(theta) ** 25 + 2.88787633263927e33 * cos(theta) ** 23 - 1.82978390222323e32 * cos(theta) ** 21 + 9.49714828143545e30 * cos(theta) ** 19 - 3.96584213950052e29 * cos(theta) ** 17 + 1.30278872215476e28 * cos(theta) ** 15 - 3.27177268180458e26 * cos(theta) ** 13 + 6.05021975298145e24 * cos(theta) ** 11 - 7.82785430284591e22 * cos(theta) ** 9 + 6.58417651641245e20 * cos(theta) ** 7 - 3.21179342264022e18 * cos(theta) ** 5 + 7.42439533666255e15 * cos(theta) ** 3 - 5128525445541.71 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl93_m_minus_5(theta, phi): return ( 7.65241080052115e-10 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 3.60856177260972e36 * cos(theta) ** 88 - 7.4667970084054e37 * cos(theta) ** 86 + 7.45659646604419e38 * cos(theta) ** 84 - 4.78705253786925e39 * cos(theta) ** 82 + 2.22036333495304e40 * cos(theta) ** 80 - 7.9280769926007e40 * cos(theta) ** 78 + 2.2674300198838e41 * cos(theta) ** 76 - 5.33623084778599e41 * cos(theta) ** 74 + 1.05359353215424e42 * cos(theta) ** 72 - 1.77053587651954e42 * cos(theta) ** 70 + 2.56038571364952e42 * cos(theta) ** 68 - 3.21353093977609e42 * cos(theta) ** 66 + 3.52404083119618e42 * cos(theta) ** 64 - 3.39439384409531e42 * cos(theta) ** 62 + 2.883557394063e42 * cos(theta) ** 60 - 2.16725969744862e42 * cos(theta) ** 58 + 1.44454849995265e42 * cos(theta) ** 56 - 8.55288231421408e41 * cos(theta) ** 54 + 4.50300757602662e41 * cos(theta) ** 52 - 2.10914448810007e41 * cos(theta) ** 50 + 8.78810203375029e40 * cos(theta) ** 48 - 3.25549395535971e40 * cos(theta) ** 46 + 1.07102232797117e40 * cos(theta) ** 44 - 3.12422794406638e39 * cos(theta) ** 42 + 8.06343003549507e38 * cos(theta) ** 40 - 1.8363431905653e38 * cos(theta) ** 38 + 3.67791812811227e37 * cos(theta) ** 36 - 6.45248794405661e36 * cos(theta) ** 34 + 9.8687179297049e35 * cos(theta) ** 32 - 1.30844268728512e35 * cos(theta) ** 30 + 1.49389125713655e34 * cos(theta) ** 28 - 1.45726682631643e33 * cos(theta) ** 26 + 1.20328180526636e32 * cos(theta) ** 24 - 8.31719955556013e30 * cos(theta) ** 22 + 4.74857414071772e29 * cos(theta) ** 20 - 2.20324563305584e28 * cos(theta) ** 18 + 8.14242951346724e26 * cos(theta) ** 16 - 2.33698048700327e25 * cos(theta) ** 14 + 5.04184979415121e23 * cos(theta) ** 12 - 7.82785430284591e21 * cos(theta) ** 10 + 8.23022064551556e19 * cos(theta) ** 8 - 5.3529890377337e17 * cos(theta) ** 6 + 1.85609883416564e15 * cos(theta) ** 4 - 2564262722770.86 * cos(theta) ** 2 + 588673719.644366 ) * sin(5 * phi) ) # @torch.jit.script def Yl93_m_minus_4(theta, phi): return ( 7.14671259268717e-8 * (1.0 - cos(theta) ** 2) ** 2 * ( 4.05456378944912e34 * cos(theta) ** 89 - 8.5825252970177e35 * cos(theta) ** 87 + 8.77246643064022e36 * cos(theta) ** 85 - 5.76753317815573e37 * cos(theta) ** 83 + 2.74118930241117e38 * cos(theta) ** 81 - 1.00355404969629e39 * cos(theta) ** 79 + 2.9447143115374e39 * cos(theta) ** 77 - 7.11497446371465e39 * cos(theta) ** 75 + 1.44327881117019e40 * cos(theta) ** 73 - 2.4937125021402e40 * cos(theta) ** 71 + 3.71070393282539e40 * cos(theta) ** 69 - 4.79631483548671e40 * cos(theta) ** 67 + 5.42160127876335e40 * cos(theta) ** 65 - 5.38792673665923e40 * cos(theta) ** 63 + 4.72714326895574e40 * cos(theta) ** 61 - 3.67332152109936e40 * cos(theta) ** 59 + 2.53429561395202e40 * cos(theta) ** 57 - 1.55506951167529e40 * cos(theta) ** 55 + 8.49624070948419e39 * cos(theta) ** 53 - 4.1355774276472e39 * cos(theta) ** 51 + 1.79349021096945e39 * cos(theta) ** 49 - 6.92658288374407e38 * cos(theta) ** 47 + 2.38004961771371e38 * cos(theta) ** 45 - 7.26564638154973e37 * cos(theta) ** 43 + 1.96669025255977e37 * cos(theta) ** 41 - 4.70857228350077e36 * cos(theta) ** 39 + 9.94031926516829e35 * cos(theta) ** 37 - 1.84356798401617e35 * cos(theta) ** 35 + 2.99052058475906e34 * cos(theta) ** 33 - 4.22078286221006e33 * cos(theta) ** 31 + 5.15134916253984e32 * cos(theta) ** 29 - 5.39728454191271e31 * cos(theta) ** 27 + 4.81312722106545e30 * cos(theta) ** 25 - 3.61617371980875e29 * cos(theta) ** 23 + 2.26122578129415e28 * cos(theta) ** 21 - 1.15960296476623e27 * cos(theta) ** 19 + 4.78966441968661e25 * cos(theta) ** 17 - 1.55798699133552e24 * cos(theta) ** 15 + 3.87834599550093e22 * cos(theta) ** 13 - 7.11623118440538e20 * cos(theta) ** 11 + 9.1446896061284e18 * cos(theta) ** 9 - 7.64712719676243e16 * cos(theta) ** 7 + 371219766833128.0 * cos(theta) ** 5 - 854754240923.619 * cos(theta) ** 3 + 588673719.644366 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl93_m_minus_3(theta, phi): return ( 6.67749296296141e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 4.50507087716569e32 * cos(theta) ** 90 - 9.75286965570193e33 * cos(theta) ** 88 + 1.02005423612096e35 * cos(theta) ** 86 - 6.86611092637587e35 * cos(theta) ** 84 + 3.34291378342825e36 * cos(theta) ** 82 - 1.25444256212036e37 * cos(theta) ** 80 + 3.77527475838129e37 * cos(theta) ** 78 - 9.3618085048877e37 * cos(theta) ** 76 + 1.9503767718516e38 * cos(theta) ** 74 - 3.46348958630584e38 * cos(theta) ** 72 + 5.30100561832199e38 * cos(theta) ** 70 - 7.05340416983339e38 * cos(theta) ** 68 + 8.21454739206568e38 * cos(theta) ** 66 - 8.41863552603004e38 * cos(theta) ** 64 + 7.62442462734796e38 * cos(theta) ** 62 - 6.1222025351656e38 * cos(theta) ** 60 + 4.369475196469e38 * cos(theta) ** 58 - 2.7769098422773e38 * cos(theta) ** 56 + 1.57337790916374e38 * cos(theta) ** 54 - 7.95303351470615e37 * cos(theta) ** 52 + 3.58698042193889e37 * cos(theta) ** 50 - 1.44303810078002e37 * cos(theta) ** 48 + 5.17402090807329e36 * cos(theta) ** 46 - 1.65128326853403e36 * cos(theta) ** 44 + 4.68259583942803e35 * cos(theta) ** 42 - 1.17714307087519e35 * cos(theta) ** 40 + 2.61587349083376e34 * cos(theta) ** 38 - 5.12102217782271e33 * cos(theta) ** 36 + 8.79564877870312e32 * cos(theta) ** 34 - 1.31899464444064e32 * cos(theta) ** 32 + 1.71711638751328e31 * cos(theta) ** 30 - 1.92760162211168e30 * cos(theta) ** 28 + 1.85120277733287e29 * cos(theta) ** 26 - 1.50673904992031e28 * cos(theta) ** 24 + 1.02782990058825e27 * cos(theta) ** 22 - 5.79801482383116e25 * cos(theta) ** 20 + 2.66092467760367e24 * cos(theta) ** 18 - 9.73741869584698e22 * cos(theta) ** 16 + 2.77024713964352e21 * cos(theta) ** 14 - 5.93019265367115e19 * cos(theta) ** 12 + 9.1446896061284e17 * cos(theta) ** 10 - 9.55890899595304e15 * cos(theta) ** 8 + 61869961138854.6 * cos(theta) ** 6 - 213688560230.905 * cos(theta) ** 4 + 294336859.822183 * cos(theta) ** 2 - 67431.1248160785 ) * sin(3 * phi) ) # @torch.jit.script def Yl93_m_minus_2(theta, phi): return ( 0.000624122373893299 * (1.0 - cos(theta) ** 2) * ( 4.95062733754471e30 * cos(theta) ** 91 - 1.09582805120246e32 * cos(theta) ** 89 + 1.17247613347236e33 * cos(theta) ** 87 - 8.0777775604422e33 * cos(theta) ** 85 + 4.02760696798584e34 * cos(theta) ** 83 - 1.54869452113625e35 * cos(theta) ** 81 + 4.77882880807758e35 * cos(theta) ** 79 - 1.21581928634905e36 * cos(theta) ** 77 + 2.6005023624688e36 * cos(theta) ** 75 - 4.74450628261074e36 * cos(theta) ** 73 + 7.46620509622815e36 * cos(theta) ** 71 - 1.02223248838165e37 * cos(theta) ** 69 + 1.22605184956204e37 * cos(theta) ** 67 - 1.29517469631231e37 * cos(theta) ** 65 + 1.21022613132507e37 * cos(theta) ** 63 - 1.00363975986321e37 * cos(theta) ** 61 + 7.40589016350678e36 * cos(theta) ** 59 - 4.87177165311807e36 * cos(theta) ** 57 + 2.86068710757043e36 * cos(theta) ** 55 - 1.50057236126531e36 * cos(theta) ** 53 + 7.03329494497822e35 * cos(theta) ** 51 - 2.94497571587758e35 * cos(theta) ** 49 + 1.10085551235602e35 * cos(theta) ** 47 - 3.66951837452006e34 * cos(theta) ** 45 + 1.08897577661117e34 * cos(theta) ** 43 - 2.8710806606712e33 * cos(theta) ** 41 + 6.70736792521477e32 * cos(theta) ** 39 - 1.38406004806019e32 * cos(theta) ** 37 + 2.51304250820089e31 * cos(theta) ** 35 - 3.99695346800195e30 * cos(theta) ** 33 + 5.53908512101058e29 * cos(theta) ** 31 - 6.6469021452127e28 * cos(theta) ** 29 + 6.85630658271432e27 * cos(theta) ** 27 - 6.02695619968126e26 * cos(theta) ** 25 + 4.46882565473153e25 * cos(theta) ** 23 - 2.7609594399196e24 * cos(theta) ** 21 + 1.40048667242299e23 * cos(theta) ** 19 - 5.72789335049822e21 * cos(theta) ** 17 + 1.84683142642901e20 * cos(theta) ** 15 - 4.56168665667011e18 * cos(theta) ** 13 + 8.31335418738946e16 * cos(theta) ** 11 - 1.06210099955034e15 * cos(theta) ** 9 + 8838565876979.23 * cos(theta) ** 7 - 42737712046.1809 * cos(theta) ** 5 + 98112286.6073942 * cos(theta) ** 3 - 67431.1248160785 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl93_m_minus_1(theta, phi): return ( 0.0583479319819766 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 5.38111667124425e28 * cos(theta) ** 92 - 1.21758672355829e30 * cos(theta) ** 90 + 1.33235924258223e31 * cos(theta) ** 88 - 9.39276460516535e31 * cos(theta) ** 86 + 4.79477019998315e32 * cos(theta) ** 84 - 1.88865185504421e33 * cos(theta) ** 82 + 5.97353601009697e33 * cos(theta) ** 80 - 1.55874267480648e34 * cos(theta) ** 78 + 3.42171363482737e34 * cos(theta) ** 76 - 6.411494976501e34 * cos(theta) ** 74 + 1.03697293003169e35 * cos(theta) ** 72 - 1.4603321262595e35 * cos(theta) ** 70 + 1.80301742582653e35 * cos(theta) ** 68 - 1.96238590350351e35 * cos(theta) ** 66 + 1.89097833019543e35 * cos(theta) ** 64 - 1.61877380623099e35 * cos(theta) ** 62 + 1.23431502725113e35 * cos(theta) ** 60 - 8.39960629847943e34 * cos(theta) ** 58 + 5.1083698349472e34 * cos(theta) ** 56 - 2.77883770604687e34 * cos(theta) ** 54 + 1.35255672018812e34 * cos(theta) ** 52 - 5.88995143175516e33 * cos(theta) ** 50 + 2.29344898407504e33 * cos(theta) ** 48 - 7.97721385765231e32 * cos(theta) ** 46 + 2.47494494684357e32 * cos(theta) ** 44 - 6.83590633493143e31 * cos(theta) ** 42 + 1.67684198130369e31 * cos(theta) ** 40 - 3.64226328436892e30 * cos(theta) ** 38 + 6.98067363389137e29 * cos(theta) ** 36 - 1.17557454941234e29 * cos(theta) ** 34 + 1.73096410031581e28 * cos(theta) ** 32 - 2.21563404840423e27 * cos(theta) ** 30 + 2.44868092239797e26 * cos(theta) ** 28 - 2.31806007680048e25 * cos(theta) ** 26 + 1.86201068947147e24 * cos(theta) ** 24 - 1.25498156359982e23 * cos(theta) ** 22 + 7.00243336211493e21 * cos(theta) ** 20 - 3.18216297249901e20 * cos(theta) ** 18 + 1.15426964151813e19 * cos(theta) ** 16 - 3.25834761190722e17 * cos(theta) ** 14 + 6.92779515615788e15 * cos(theta) ** 12 - 106210099955034.0 * cos(theta) ** 10 + 1104820734622.4 * cos(theta) ** 8 - 7122952007.69682 * cos(theta) ** 6 + 24528071.6518486 * cos(theta) ** 4 - 33715.5624080393 * cos(theta) ** 2 + 7.7152316723202 ) * sin(phi) ) # @torch.jit.script def Yl93_m0(theta, phi): return ( 7.01221468212321e27 * cos(theta) ** 93 - 1.62152726541206e29 * cos(theta) ** 91 + 1.81424976826841e30 * cos(theta) ** 89 - 1.30839817542157e31 * cos(theta) ** 87 + 6.83619772940234e31 * cos(theta) ** 85 - 2.75765264338603e32 * cos(theta) ** 83 + 8.93742090042158e32 * cos(theta) ** 81 - 2.39118445230107e33 * cos(theta) ** 79 + 5.38540884323069e33 * cos(theta) ** 77 - 1.03600961704753e34 * cos(theta) ** 75 + 1.72151298641132e34 * cos(theta) ** 73 - 2.49263698528317e34 * cos(theta) ** 71 + 3.16677040308215e34 * cos(theta) ** 69 - 3.54956682543274e34 * cos(theta) ** 67 + 3.52564791151473e34 * cos(theta) ** 65 - 3.11394804923594e34 * cos(theta) ** 63 + 2.4522340887733e34 * cos(theta) ** 61 - 1.72533194250486e34 * cos(theta) ** 59 + 1.08610851862613e34 * cos(theta) ** 57 - 6.12302789024126e33 * cos(theta) ** 55 + 3.09275388333614e33 * cos(theta) ** 53 - 1.39961078858365e33 * cos(theta) ** 51 + 5.67229420039463e32 * cos(theta) ** 49 - 2.05692814667409e32 * cos(theta) ** 47 + 6.66528575106323e31 * cos(theta) ** 45 - 1.92660814410295e31 * cos(theta) ** 43 + 4.95648761858964e30 * cos(theta) ** 41 - 1.13180725347912e30 * cos(theta) ** 39 + 2.28644813202842e29 * cos(theta) ** 37 - 4.07050108508668e28 * cos(theta) ** 35 + 6.35681927985978e27 * cos(theta) ** 33 - 8.66167891552507e26 * cos(theta) ** 31 + 1.02329285968475e26 * cos(theta) ** 29 - 1.04046306294016e25 * cos(theta) ** 27 + 9.02626137152735e23 * cos(theta) ** 25 - 6.61264569342663e22 * cos(theta) ** 23 + 4.04106125709405e21 * cos(theta) ** 21 - 2.02971266201806e20 * cos(theta) ** 19 + 8.22856484601916e18 * cos(theta) ** 17 - 2.63252133394168e17 * cos(theta) ** 15 + 6.45828831924944e15 * cos(theta) ** 13 - 117014283136227.0 * cos(theta) ** 11 + 1487698930303.39 * cos(theta) ** 9 - 12331835480.2952 * cos(theta) ** 7 + 59450997.4945361 * cos(theta) ** 5 - 136199.306974882 * cos(theta) ** 3 + 93.5006684038094 * cos(theta) ) # @torch.jit.script def Yl93_m1(theta, phi): return ( 0.0583479319819766 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 5.38111667124425e28 * cos(theta) ** 92 - 1.21758672355829e30 * cos(theta) ** 90 + 1.33235924258223e31 * cos(theta) ** 88 - 9.39276460516535e31 * cos(theta) ** 86 + 4.79477019998315e32 * cos(theta) ** 84 - 1.88865185504421e33 * cos(theta) ** 82 + 5.97353601009697e33 * cos(theta) ** 80 - 1.55874267480648e34 * cos(theta) ** 78 + 3.42171363482737e34 * cos(theta) ** 76 - 6.411494976501e34 * cos(theta) ** 74 + 1.03697293003169e35 * cos(theta) ** 72 - 1.4603321262595e35 * cos(theta) ** 70 + 1.80301742582653e35 * cos(theta) ** 68 - 1.96238590350351e35 * cos(theta) ** 66 + 1.89097833019543e35 * cos(theta) ** 64 - 1.61877380623099e35 * cos(theta) ** 62 + 1.23431502725113e35 * cos(theta) ** 60 - 8.39960629847943e34 * cos(theta) ** 58 + 5.1083698349472e34 * cos(theta) ** 56 - 2.77883770604687e34 * cos(theta) ** 54 + 1.35255672018812e34 * cos(theta) ** 52 - 5.88995143175516e33 * cos(theta) ** 50 + 2.29344898407504e33 * cos(theta) ** 48 - 7.97721385765231e32 * cos(theta) ** 46 + 2.47494494684357e32 * cos(theta) ** 44 - 6.83590633493143e31 * cos(theta) ** 42 + 1.67684198130369e31 * cos(theta) ** 40 - 3.64226328436892e30 * cos(theta) ** 38 + 6.98067363389137e29 * cos(theta) ** 36 - 1.17557454941234e29 * cos(theta) ** 34 + 1.73096410031581e28 * cos(theta) ** 32 - 2.21563404840423e27 * cos(theta) ** 30 + 2.44868092239797e26 * cos(theta) ** 28 - 2.31806007680048e25 * cos(theta) ** 26 + 1.86201068947147e24 * cos(theta) ** 24 - 1.25498156359982e23 * cos(theta) ** 22 + 7.00243336211493e21 * cos(theta) ** 20 - 3.18216297249901e20 * cos(theta) ** 18 + 1.15426964151813e19 * cos(theta) ** 16 - 3.25834761190722e17 * cos(theta) ** 14 + 6.92779515615788e15 * cos(theta) ** 12 - 106210099955034.0 * cos(theta) ** 10 + 1104820734622.4 * cos(theta) ** 8 - 7122952007.69682 * cos(theta) ** 6 + 24528071.6518486 * cos(theta) ** 4 - 33715.5624080393 * cos(theta) ** 2 + 7.7152316723202 ) * cos(phi) ) # @torch.jit.script def Yl93_m2(theta, phi): return ( 0.000624122373893299 * (1.0 - cos(theta) ** 2) * ( 4.95062733754471e30 * cos(theta) ** 91 - 1.09582805120246e32 * cos(theta) ** 89 + 1.17247613347236e33 * cos(theta) ** 87 - 8.0777775604422e33 * cos(theta) ** 85 + 4.02760696798584e34 * cos(theta) ** 83 - 1.54869452113625e35 * cos(theta) ** 81 + 4.77882880807758e35 * cos(theta) ** 79 - 1.21581928634905e36 * cos(theta) ** 77 + 2.6005023624688e36 * cos(theta) ** 75 - 4.74450628261074e36 * cos(theta) ** 73 + 7.46620509622815e36 * cos(theta) ** 71 - 1.02223248838165e37 * cos(theta) ** 69 + 1.22605184956204e37 * cos(theta) ** 67 - 1.29517469631231e37 * cos(theta) ** 65 + 1.21022613132507e37 * cos(theta) ** 63 - 1.00363975986321e37 * cos(theta) ** 61 + 7.40589016350678e36 * cos(theta) ** 59 - 4.87177165311807e36 * cos(theta) ** 57 + 2.86068710757043e36 * cos(theta) ** 55 - 1.50057236126531e36 * cos(theta) ** 53 + 7.03329494497822e35 * cos(theta) ** 51 - 2.94497571587758e35 * cos(theta) ** 49 + 1.10085551235602e35 * cos(theta) ** 47 - 3.66951837452006e34 * cos(theta) ** 45 + 1.08897577661117e34 * cos(theta) ** 43 - 2.8710806606712e33 * cos(theta) ** 41 + 6.70736792521477e32 * cos(theta) ** 39 - 1.38406004806019e32 * cos(theta) ** 37 + 2.51304250820089e31 * cos(theta) ** 35 - 3.99695346800195e30 * cos(theta) ** 33 + 5.53908512101058e29 * cos(theta) ** 31 - 6.6469021452127e28 * cos(theta) ** 29 + 6.85630658271432e27 * cos(theta) ** 27 - 6.02695619968126e26 * cos(theta) ** 25 + 4.46882565473153e25 * cos(theta) ** 23 - 2.7609594399196e24 * cos(theta) ** 21 + 1.40048667242299e23 * cos(theta) ** 19 - 5.72789335049822e21 * cos(theta) ** 17 + 1.84683142642901e20 * cos(theta) ** 15 - 4.56168665667011e18 * cos(theta) ** 13 + 8.31335418738946e16 * cos(theta) ** 11 - 1.06210099955034e15 * cos(theta) ** 9 + 8838565876979.23 * cos(theta) ** 7 - 42737712046.1809 * cos(theta) ** 5 + 98112286.6073942 * cos(theta) ** 3 - 67431.1248160785 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl93_m3(theta, phi): return ( 6.67749296296141e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 4.50507087716569e32 * cos(theta) ** 90 - 9.75286965570193e33 * cos(theta) ** 88 + 1.02005423612096e35 * cos(theta) ** 86 - 6.86611092637587e35 * cos(theta) ** 84 + 3.34291378342825e36 * cos(theta) ** 82 - 1.25444256212036e37 * cos(theta) ** 80 + 3.77527475838129e37 * cos(theta) ** 78 - 9.3618085048877e37 * cos(theta) ** 76 + 1.9503767718516e38 * cos(theta) ** 74 - 3.46348958630584e38 * cos(theta) ** 72 + 5.30100561832199e38 * cos(theta) ** 70 - 7.05340416983339e38 * cos(theta) ** 68 + 8.21454739206568e38 * cos(theta) ** 66 - 8.41863552603004e38 * cos(theta) ** 64 + 7.62442462734796e38 * cos(theta) ** 62 - 6.1222025351656e38 * cos(theta) ** 60 + 4.369475196469e38 * cos(theta) ** 58 - 2.7769098422773e38 * cos(theta) ** 56 + 1.57337790916374e38 * cos(theta) ** 54 - 7.95303351470615e37 * cos(theta) ** 52 + 3.58698042193889e37 * cos(theta) ** 50 - 1.44303810078002e37 * cos(theta) ** 48 + 5.17402090807329e36 * cos(theta) ** 46 - 1.65128326853403e36 * cos(theta) ** 44 + 4.68259583942803e35 * cos(theta) ** 42 - 1.17714307087519e35 * cos(theta) ** 40 + 2.61587349083376e34 * cos(theta) ** 38 - 5.12102217782271e33 * cos(theta) ** 36 + 8.79564877870312e32 * cos(theta) ** 34 - 1.31899464444064e32 * cos(theta) ** 32 + 1.71711638751328e31 * cos(theta) ** 30 - 1.92760162211168e30 * cos(theta) ** 28 + 1.85120277733287e29 * cos(theta) ** 26 - 1.50673904992031e28 * cos(theta) ** 24 + 1.02782990058825e27 * cos(theta) ** 22 - 5.79801482383116e25 * cos(theta) ** 20 + 2.66092467760367e24 * cos(theta) ** 18 - 9.73741869584698e22 * cos(theta) ** 16 + 2.77024713964352e21 * cos(theta) ** 14 - 5.93019265367115e19 * cos(theta) ** 12 + 9.1446896061284e17 * cos(theta) ** 10 - 9.55890899595304e15 * cos(theta) ** 8 + 61869961138854.6 * cos(theta) ** 6 - 213688560230.905 * cos(theta) ** 4 + 294336859.822183 * cos(theta) ** 2 - 67431.1248160785 ) * cos(3 * phi) ) # @torch.jit.script def Yl93_m4(theta, phi): return ( 7.14671259268717e-8 * (1.0 - cos(theta) ** 2) ** 2 * ( 4.05456378944912e34 * cos(theta) ** 89 - 8.5825252970177e35 * cos(theta) ** 87 + 8.77246643064022e36 * cos(theta) ** 85 - 5.76753317815573e37 * cos(theta) ** 83 + 2.74118930241117e38 * cos(theta) ** 81 - 1.00355404969629e39 * cos(theta) ** 79 + 2.9447143115374e39 * cos(theta) ** 77 - 7.11497446371465e39 * cos(theta) ** 75 + 1.44327881117019e40 * cos(theta) ** 73 - 2.4937125021402e40 * cos(theta) ** 71 + 3.71070393282539e40 * cos(theta) ** 69 - 4.79631483548671e40 * cos(theta) ** 67 + 5.42160127876335e40 * cos(theta) ** 65 - 5.38792673665923e40 * cos(theta) ** 63 + 4.72714326895574e40 * cos(theta) ** 61 - 3.67332152109936e40 * cos(theta) ** 59 + 2.53429561395202e40 * cos(theta) ** 57 - 1.55506951167529e40 * cos(theta) ** 55 + 8.49624070948419e39 * cos(theta) ** 53 - 4.1355774276472e39 * cos(theta) ** 51 + 1.79349021096945e39 * cos(theta) ** 49 - 6.92658288374407e38 * cos(theta) ** 47 + 2.38004961771371e38 * cos(theta) ** 45 - 7.26564638154973e37 * cos(theta) ** 43 + 1.96669025255977e37 * cos(theta) ** 41 - 4.70857228350077e36 * cos(theta) ** 39 + 9.94031926516829e35 * cos(theta) ** 37 - 1.84356798401617e35 * cos(theta) ** 35 + 2.99052058475906e34 * cos(theta) ** 33 - 4.22078286221006e33 * cos(theta) ** 31 + 5.15134916253984e32 * cos(theta) ** 29 - 5.39728454191271e31 * cos(theta) ** 27 + 4.81312722106545e30 * cos(theta) ** 25 - 3.61617371980875e29 * cos(theta) ** 23 + 2.26122578129415e28 * cos(theta) ** 21 - 1.15960296476623e27 * cos(theta) ** 19 + 4.78966441968661e25 * cos(theta) ** 17 - 1.55798699133552e24 * cos(theta) ** 15 + 3.87834599550093e22 * cos(theta) ** 13 - 7.11623118440538e20 * cos(theta) ** 11 + 9.1446896061284e18 * cos(theta) ** 9 - 7.64712719676243e16 * cos(theta) ** 7 + 371219766833128.0 * cos(theta) ** 5 - 854754240923.619 * cos(theta) ** 3 + 588673719.644366 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl93_m5(theta, phi): return ( 7.65241080052115e-10 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 3.60856177260972e36 * cos(theta) ** 88 - 7.4667970084054e37 * cos(theta) ** 86 + 7.45659646604419e38 * cos(theta) ** 84 - 4.78705253786925e39 * cos(theta) ** 82 + 2.22036333495304e40 * cos(theta) ** 80 - 7.9280769926007e40 * cos(theta) ** 78 + 2.2674300198838e41 * cos(theta) ** 76 - 5.33623084778599e41 * cos(theta) ** 74 + 1.05359353215424e42 * cos(theta) ** 72 - 1.77053587651954e42 * cos(theta) ** 70 + 2.56038571364952e42 * cos(theta) ** 68 - 3.21353093977609e42 * cos(theta) ** 66 + 3.52404083119618e42 * cos(theta) ** 64 - 3.39439384409531e42 * cos(theta) ** 62 + 2.883557394063e42 * cos(theta) ** 60 - 2.16725969744862e42 * cos(theta) ** 58 + 1.44454849995265e42 * cos(theta) ** 56 - 8.55288231421408e41 * cos(theta) ** 54 + 4.50300757602662e41 * cos(theta) ** 52 - 2.10914448810007e41 * cos(theta) ** 50 + 8.78810203375029e40 * cos(theta) ** 48 - 3.25549395535971e40 * cos(theta) ** 46 + 1.07102232797117e40 * cos(theta) ** 44 - 3.12422794406638e39 * cos(theta) ** 42 + 8.06343003549507e38 * cos(theta) ** 40 - 1.8363431905653e38 * cos(theta) ** 38 + 3.67791812811227e37 * cos(theta) ** 36 - 6.45248794405661e36 * cos(theta) ** 34 + 9.8687179297049e35 * cos(theta) ** 32 - 1.30844268728512e35 * cos(theta) ** 30 + 1.49389125713655e34 * cos(theta) ** 28 - 1.45726682631643e33 * cos(theta) ** 26 + 1.20328180526636e32 * cos(theta) ** 24 - 8.31719955556013e30 * cos(theta) ** 22 + 4.74857414071772e29 * cos(theta) ** 20 - 2.20324563305584e28 * cos(theta) ** 18 + 8.14242951346724e26 * cos(theta) ** 16 - 2.33698048700327e25 * cos(theta) ** 14 + 5.04184979415121e23 * cos(theta) ** 12 - 7.82785430284591e21 * cos(theta) ** 10 + 8.23022064551556e19 * cos(theta) ** 8 - 5.3529890377337e17 * cos(theta) ** 6 + 1.85609883416564e15 * cos(theta) ** 4 - 2564262722770.86 * cos(theta) ** 2 + 588673719.644366 ) * cos(5 * phi) ) # @torch.jit.script def Yl93_m6(theta, phi): return ( 8.19859328708133e-12 * (1.0 - cos(theta) ** 2) ** 3 * ( 3.17553435989655e38 * cos(theta) ** 87 - 6.42144542722864e39 * cos(theta) ** 85 + 6.26354103147712e40 * cos(theta) ** 83 - 3.92538308105279e41 * cos(theta) ** 81 + 1.77629066796243e42 * cos(theta) ** 79 - 6.18390005422855e42 * cos(theta) ** 77 + 1.72324681511169e43 * cos(theta) ** 75 - 3.94881082736163e43 * cos(theta) ** 73 + 7.5858734315105e43 * cos(theta) ** 71 - 1.23937511356368e44 * cos(theta) ** 69 + 1.74106228528167e44 * cos(theta) ** 67 - 2.12093042025222e44 * cos(theta) ** 65 + 2.25538613196555e44 * cos(theta) ** 63 - 2.10452418333909e44 * cos(theta) ** 61 + 1.7301344364378e44 * cos(theta) ** 59 - 1.2570106245202e44 * cos(theta) ** 57 + 8.08947159973485e43 * cos(theta) ** 55 - 4.61855644967561e43 * cos(theta) ** 53 + 2.34156393953384e43 * cos(theta) ** 51 - 1.05457224405004e43 * cos(theta) ** 49 + 4.21828897620014e42 * cos(theta) ** 47 - 1.49752721946547e42 * cos(theta) ** 45 + 4.71249824307315e41 * cos(theta) ** 43 - 1.31217573650788e41 * cos(theta) ** 41 + 3.22537201419803e40 * cos(theta) ** 39 - 6.97810412414814e39 * cos(theta) ** 37 + 1.32405052612042e39 * cos(theta) ** 35 - 2.19384590097925e38 * cos(theta) ** 33 + 3.15798973750557e37 * cos(theta) ** 31 - 3.92532806185536e36 * cos(theta) ** 29 + 4.18289551998235e35 * cos(theta) ** 27 - 3.78889374842272e34 * cos(theta) ** 25 + 2.88787633263927e33 * cos(theta) ** 23 - 1.82978390222323e32 * cos(theta) ** 21 + 9.49714828143545e30 * cos(theta) ** 19 - 3.96584213950052e29 * cos(theta) ** 17 + 1.30278872215476e28 * cos(theta) ** 15 - 3.27177268180458e26 * cos(theta) ** 13 + 6.05021975298145e24 * cos(theta) ** 11 - 7.82785430284591e22 * cos(theta) ** 9 + 6.58417651641245e20 * cos(theta) ** 7 - 3.21179342264022e18 * cos(theta) ** 5 + 7.42439533666255e15 * cos(theta) ** 3 - 5128525445541.71 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl93_m7(theta, phi): return ( 8.7898146311169e-14 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 2.76271489311e40 * cos(theta) ** 86 - 5.45822861314435e41 * cos(theta) ** 84 + 5.19873905612601e42 * cos(theta) ** 82 - 3.17956029565276e43 * cos(theta) ** 80 + 1.40326962769032e44 * cos(theta) ** 78 - 4.76160304175598e44 * cos(theta) ** 76 + 1.29243511133377e45 * cos(theta) ** 74 - 2.88263190397399e45 * cos(theta) ** 72 + 5.38597013637245e45 * cos(theta) ** 70 - 8.5516882835894e45 * cos(theta) ** 68 + 1.16651173113872e46 * cos(theta) ** 66 - 1.37860477316394e46 * cos(theta) ** 64 + 1.4208932631383e46 * cos(theta) ** 62 - 1.28375975183685e46 * cos(theta) ** 60 + 1.0207793174983e46 * cos(theta) ** 58 - 7.16496055976515e45 * cos(theta) ** 56 + 4.44920937985417e45 * cos(theta) ** 54 - 2.44783491832807e45 * cos(theta) ** 52 + 1.19419760916226e45 * cos(theta) ** 50 - 5.16740399584517e44 * cos(theta) ** 48 + 1.98259581881407e44 * cos(theta) ** 46 - 6.73887248759461e43 * cos(theta) ** 44 + 2.02637424452146e43 * cos(theta) ** 42 - 5.37992051968231e42 * cos(theta) ** 40 + 1.25789508553723e42 * cos(theta) ** 38 - 2.58189852593481e41 * cos(theta) ** 36 + 4.63417684142146e40 * cos(theta) ** 34 - 7.23969147323152e39 * cos(theta) ** 32 + 9.78976818626727e38 * cos(theta) ** 30 - 1.13834513793805e38 * cos(theta) ** 28 + 1.12938179039523e37 * cos(theta) ** 26 - 9.47223437105681e35 * cos(theta) ** 24 + 6.64211556507032e34 * cos(theta) ** 22 - 3.84254619466878e33 * cos(theta) ** 20 + 1.80445817347273e32 * cos(theta) ** 18 - 6.74193163715088e30 * cos(theta) ** 16 + 1.95418308323214e29 * cos(theta) ** 14 - 4.25330448634596e27 * cos(theta) ** 12 + 6.6552417282796e25 * cos(theta) ** 10 - 7.04506887256132e23 * cos(theta) ** 8 + 4.60892356148872e21 * cos(theta) ** 6 - 1.60589671132011e19 * cos(theta) ** 4 + 2.22731860099877e16 * cos(theta) ** 2 - 5128525445541.71 ) * cos(7 * phi) ) # @torch.jit.script def Yl93_m8(theta, phi): return ( 9.43126187179398e-16 * (1.0 - cos(theta) ** 2) ** 4 * ( 2.3759348080746e42 * cos(theta) ** 85 - 4.58491203504125e43 * cos(theta) ** 83 + 4.26296602602333e44 * cos(theta) ** 81 - 2.54364823652221e45 * cos(theta) ** 79 + 1.09455030959845e46 * cos(theta) ** 77 - 3.61881831173454e46 * cos(theta) ** 75 + 9.56401982386987e46 * cos(theta) ** 73 - 2.07549497086127e47 * cos(theta) ** 71 + 3.77017909546072e47 * cos(theta) ** 69 - 5.81514803284079e47 * cos(theta) ** 67 + 7.69897742551556e47 * cos(theta) ** 65 - 8.82307054824924e47 * cos(theta) ** 63 + 8.80953823145745e47 * cos(theta) ** 61 - 7.70255851102109e47 * cos(theta) ** 59 + 5.92052004149015e47 * cos(theta) ** 57 - 4.01237791346848e47 * cos(theta) ** 55 + 2.40257306512125e47 * cos(theta) ** 53 - 1.2728741575306e47 * cos(theta) ** 51 + 5.9709880458113e46 * cos(theta) ** 49 - 2.48035391800568e46 * cos(theta) ** 47 + 9.1199407665447e45 * cos(theta) ** 45 - 2.96510389454163e45 * cos(theta) ** 43 + 8.51077182699011e44 * cos(theta) ** 41 - 2.15196820787292e44 * cos(theta) ** 39 + 4.78000132504148e43 * cos(theta) ** 37 - 9.29483469336532e42 * cos(theta) ** 35 + 1.5756201260833e42 * cos(theta) ** 33 - 2.31670127143409e41 * cos(theta) ** 31 + 2.93693045588018e40 * cos(theta) ** 29 - 3.18736638622655e39 * cos(theta) ** 27 + 2.93639265502761e38 * cos(theta) ** 25 - 2.27333624905363e37 * cos(theta) ** 23 + 1.46126542431547e36 * cos(theta) ** 21 - 7.68509238933756e34 * cos(theta) ** 19 + 3.24802471225092e33 * cos(theta) ** 17 - 1.07870906194414e32 * cos(theta) ** 15 + 2.73585631652499e30 * cos(theta) ** 13 - 5.10396538361515e28 * cos(theta) ** 11 + 6.6552417282796e26 * cos(theta) ** 9 - 5.63605509804906e24 * cos(theta) ** 7 + 2.76535413689323e22 * cos(theta) ** 5 - 6.42358684528044e19 * cos(theta) ** 3 + 4.45463720199753e16 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl93_m9(theta, phi): return ( 1.01288526919999e-17 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 2.01954458686341e44 * cos(theta) ** 84 - 3.80547698908424e45 * cos(theta) ** 82 + 3.4530024810789e46 * cos(theta) ** 80 - 2.00948210685254e47 * cos(theta) ** 78 + 8.42803738390808e47 * cos(theta) ** 76 - 2.71411373380091e48 * cos(theta) ** 74 + 6.981734471425e48 * cos(theta) ** 72 - 1.4736014293115e49 * cos(theta) ** 70 + 2.6014235758679e49 * cos(theta) ** 68 - 3.89614918200333e49 * cos(theta) ** 66 + 5.00433532658512e49 * cos(theta) ** 64 - 5.55853444539702e49 * cos(theta) ** 62 + 5.37381832118904e49 * cos(theta) ** 60 - 4.54450952150244e49 * cos(theta) ** 58 + 3.37469642364939e49 * cos(theta) ** 56 - 2.20680785240767e49 * cos(theta) ** 54 + 1.27336372451426e49 * cos(theta) ** 52 - 6.49165820340604e48 * cos(theta) ** 50 + 2.92578414244754e48 * cos(theta) ** 48 - 1.16576634146267e48 * cos(theta) ** 46 + 4.10397334494512e47 * cos(theta) ** 44 - 1.2749946746529e47 * cos(theta) ** 42 + 3.48941644906595e46 * cos(theta) ** 40 - 8.3926760107044e45 * cos(theta) ** 38 + 1.76860049026535e45 * cos(theta) ** 36 - 3.25319214267786e44 * cos(theta) ** 34 + 5.19954641607488e43 * cos(theta) ** 32 - 7.18177394144567e42 * cos(theta) ** 30 + 8.51709832205252e41 * cos(theta) ** 28 - 8.60588924281169e40 * cos(theta) ** 26 + 7.34098163756903e39 * cos(theta) ** 24 - 5.22867337282336e38 * cos(theta) ** 22 + 3.06865739106249e37 * cos(theta) ** 20 - 1.46016755397414e36 * cos(theta) ** 18 + 5.52164201082657e34 * cos(theta) ** 16 - 1.61806359291621e33 * cos(theta) ** 14 + 3.55661321148249e31 * cos(theta) ** 12 - 5.61436192197667e29 * cos(theta) ** 10 + 5.98971755545164e27 * cos(theta) ** 8 - 3.94523856863434e25 * cos(theta) ** 6 + 1.38267706844661e23 * cos(theta) ** 4 - 1.92707605358413e20 * cos(theta) ** 2 + 4.45463720199753e16 ) * cos(9 * phi) ) # @torch.jit.script def Yl93_m10(theta, phi): return ( 1.08893510723961e-19 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.69641745296526e46 * cos(theta) ** 83 - 3.12049113104908e47 * cos(theta) ** 81 + 2.76240198486312e48 * cos(theta) ** 79 - 1.56739604334498e49 * cos(theta) ** 77 + 6.40530841177014e49 * cos(theta) ** 75 - 2.00844416301267e50 * cos(theta) ** 73 + 5.026848819426e50 * cos(theta) ** 71 - 1.03152100051805e51 * cos(theta) ** 69 + 1.76896803159017e51 * cos(theta) ** 67 - 2.5714584601222e51 * cos(theta) ** 65 + 3.20277460901447e51 * cos(theta) ** 63 - 3.44629135614615e51 * cos(theta) ** 61 + 3.22429099271343e51 * cos(theta) ** 59 - 2.63581552247142e51 * cos(theta) ** 57 + 1.88982999724366e51 * cos(theta) ** 55 - 1.19167624030014e51 * cos(theta) ** 53 + 6.62149136747416e50 * cos(theta) ** 51 - 3.24582910170302e50 * cos(theta) ** 49 + 1.40437638837482e50 * cos(theta) ** 47 - 5.36252517072829e49 * cos(theta) ** 45 + 1.80574827177585e49 * cos(theta) ** 43 - 5.35497763354218e48 * cos(theta) ** 41 + 1.39576657962638e48 * cos(theta) ** 39 - 3.18921688406767e47 * cos(theta) ** 37 + 6.36696176495525e46 * cos(theta) ** 35 - 1.10608532851047e46 * cos(theta) ** 33 + 1.66385485314396e45 * cos(theta) ** 31 - 2.1545321824337e44 * cos(theta) ** 29 + 2.38478753017471e43 * cos(theta) ** 27 - 2.23753120313104e42 * cos(theta) ** 25 + 1.76183559301657e41 * cos(theta) ** 23 - 1.15030814202114e40 * cos(theta) ** 21 + 6.13731478212498e38 * cos(theta) ** 19 - 2.62830159715345e37 * cos(theta) ** 17 + 8.83462721732251e35 * cos(theta) ** 15 - 2.26528903008269e34 * cos(theta) ** 13 + 4.26793585377899e32 * cos(theta) ** 11 - 5.61436192197667e30 * cos(theta) ** 9 + 4.79177404436131e28 * cos(theta) ** 7 - 2.3671431411806e26 * cos(theta) ** 5 + 5.53070827378646e23 * cos(theta) ** 3 - 3.85415210716826e20 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl93_m11(theta, phi): return ( 1.17205039031839e-21 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.40802648596117e48 * cos(theta) ** 82 - 2.52759781614975e49 * cos(theta) ** 80 + 2.18229756804186e50 * cos(theta) ** 78 - 1.20689495337564e51 * cos(theta) ** 76 + 4.80398130882761e51 * cos(theta) ** 74 - 1.46616423899925e52 * cos(theta) ** 72 + 3.56906266179246e52 * cos(theta) ** 70 - 7.11749490357456e52 * cos(theta) ** 68 + 1.18520858116541e53 * cos(theta) ** 66 - 1.67144799907943e53 * cos(theta) ** 64 + 2.01774800367912e53 * cos(theta) ** 62 - 2.10223772724915e53 * cos(theta) ** 60 + 1.90233168570092e53 * cos(theta) ** 58 - 1.50241484780871e53 * cos(theta) ** 56 + 1.03940649848401e53 * cos(theta) ** 54 - 6.31588407359074e52 * cos(theta) ** 52 + 3.37696059741182e52 * cos(theta) ** 50 - 1.59045625983448e52 * cos(theta) ** 48 + 6.60056902536164e51 * cos(theta) ** 46 - 2.41313632682773e51 * cos(theta) ** 44 + 7.76471756863616e50 * cos(theta) ** 42 - 2.19554082975229e50 * cos(theta) ** 40 + 5.44348966054288e49 * cos(theta) ** 38 - 1.18001024710504e49 * cos(theta) ** 36 + 2.22843661773434e48 * cos(theta) ** 34 - 3.65008158408456e47 * cos(theta) ** 32 + 5.15795004474628e46 * cos(theta) ** 30 - 6.24814332905773e45 * cos(theta) ** 28 + 6.43892633147171e44 * cos(theta) ** 26 - 5.5938280078276e43 * cos(theta) ** 24 + 4.0522218639381e42 * cos(theta) ** 22 - 2.41564709824439e41 * cos(theta) ** 20 + 1.16608980860375e40 * cos(theta) ** 18 - 4.46811271516086e38 * cos(theta) ** 16 + 1.32519408259838e37 * cos(theta) ** 14 - 2.9448757391075e35 * cos(theta) ** 12 + 4.69472943915689e33 * cos(theta) ** 10 - 5.052925729779e31 * cos(theta) ** 8 + 3.35424183105292e29 * cos(theta) ** 6 - 1.1835715705903e27 * cos(theta) ** 4 + 1.65921248213594e24 * cos(theta) ** 2 - 3.85415210716826e20 ) * cos(11 * phi) ) # @torch.jit.script def Yl93_m12(theta, phi): return ( 1.26312028032232e-23 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.15458171848816e50 * cos(theta) ** 81 - 2.0220782529198e51 * cos(theta) ** 79 + 1.70219210307265e52 * cos(theta) ** 77 - 9.17240164565485e52 * cos(theta) ** 75 + 3.55494616853243e53 * cos(theta) ** 73 - 1.05563825207946e54 * cos(theta) ** 71 + 2.49834386325472e54 * cos(theta) ** 69 - 4.8398965344307e54 * cos(theta) ** 67 + 7.82237663569173e54 * cos(theta) ** 65 - 1.06972671941083e55 * cos(theta) ** 63 + 1.25100376228105e55 * cos(theta) ** 61 - 1.26134263634949e55 * cos(theta) ** 59 + 1.10335237770653e55 * cos(theta) ** 57 - 8.41352314772876e54 * cos(theta) ** 55 + 5.61279509181366e54 * cos(theta) ** 53 - 3.28425971826719e54 * cos(theta) ** 51 + 1.68848029870591e54 * cos(theta) ** 49 - 7.63419004720551e53 * cos(theta) ** 47 + 3.03626175166636e53 * cos(theta) ** 45 - 1.0617799838042e53 * cos(theta) ** 43 + 3.26118137882719e52 * cos(theta) ** 41 - 8.78216331900917e51 * cos(theta) ** 39 + 2.06852607100629e51 * cos(theta) ** 37 - 4.24803688957814e50 * cos(theta) ** 35 + 7.57668450029675e49 * cos(theta) ** 33 - 1.16802610690706e49 * cos(theta) ** 31 + 1.54738501342388e48 * cos(theta) ** 29 - 1.74948013213616e47 * cos(theta) ** 27 + 1.67412084618264e46 * cos(theta) ** 25 - 1.34251872187862e45 * cos(theta) ** 23 + 8.91488810066383e43 * cos(theta) ** 21 - 4.83129419648878e42 * cos(theta) ** 19 + 2.09896165548674e41 * cos(theta) ** 17 - 7.14898034425737e39 * cos(theta) ** 15 + 1.85527171563773e38 * cos(theta) ** 13 - 3.533850886929e36 * cos(theta) ** 11 + 4.69472943915689e34 * cos(theta) ** 9 - 4.0423405838232e32 * cos(theta) ** 7 + 2.01254509863175e30 * cos(theta) ** 5 - 4.73428628236121e27 * cos(theta) ** 3 + 3.31842496427188e24 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl93_m13(theta, phi): return ( 1.36316763414868e-25 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 9.35211191975408e51 * cos(theta) ** 80 - 1.59744181980664e53 * cos(theta) ** 78 + 1.31068791936594e54 * cos(theta) ** 76 - 6.87930123424113e54 * cos(theta) ** 74 + 2.59511070302867e55 * cos(theta) ** 72 - 7.49503158976417e55 * cos(theta) ** 70 + 1.72385726564576e56 * cos(theta) ** 68 - 3.24273067806857e56 * cos(theta) ** 66 + 5.08454481319962e56 * cos(theta) ** 64 - 6.73927833228826e56 * cos(theta) ** 62 + 7.63112294991443e56 * cos(theta) ** 60 - 7.441921554462e56 * cos(theta) ** 58 + 6.28910855292725e56 * cos(theta) ** 56 - 4.62743773125082e56 * cos(theta) ** 54 + 2.97478139866124e56 * cos(theta) ** 52 - 1.67497245631626e56 * cos(theta) ** 50 + 8.27355346365897e55 * cos(theta) ** 48 - 3.58806932218659e55 * cos(theta) ** 46 + 1.36631778824986e55 * cos(theta) ** 44 - 4.56565393035806e54 * cos(theta) ** 42 + 1.33708436531915e54 * cos(theta) ** 40 - 3.42504369441358e53 * cos(theta) ** 38 + 7.65354646272328e52 * cos(theta) ** 36 - 1.48681291135235e52 * cos(theta) ** 34 + 2.50030588509793e51 * cos(theta) ** 32 - 3.62088093141189e50 * cos(theta) ** 30 + 4.48741653892926e49 * cos(theta) ** 28 - 4.72359635676764e48 * cos(theta) ** 26 + 4.18530211545661e47 * cos(theta) ** 24 - 3.08779306032083e46 * cos(theta) ** 22 + 1.8721265011394e45 * cos(theta) ** 20 - 9.17945897332869e43 * cos(theta) ** 18 + 3.56823481432746e42 * cos(theta) ** 16 - 1.07234705163861e41 * cos(theta) ** 14 + 2.41185323032905e39 * cos(theta) ** 12 - 3.8872359756219e37 * cos(theta) ** 10 + 4.2252564952412e35 * cos(theta) ** 8 - 2.82963840867624e33 * cos(theta) ** 6 + 1.00627254931588e31 * cos(theta) ** 4 - 1.42028588470836e28 * cos(theta) ** 2 + 3.31842496427188e24 ) * cos(13 * phi) ) # @torch.jit.script def Yl93_m14(theta, phi): return ( 1.47337190313315e-27 * (1.0 - cos(theta) ** 2) ** 7 * ( 7.48168953580327e53 * cos(theta) ** 79 - 1.24600461944918e55 * cos(theta) ** 77 + 9.96122818718116e55 * cos(theta) ** 75 - 5.09068291333844e56 * cos(theta) ** 73 + 1.86847970618065e57 * cos(theta) ** 71 - 5.24652211283492e57 * cos(theta) ** 69 + 1.17222294063912e58 * cos(theta) ** 67 - 2.14020224752526e58 * cos(theta) ** 65 + 3.25410868044776e58 * cos(theta) ** 63 - 4.17835256601872e58 * cos(theta) ** 61 + 4.57867376994866e58 * cos(theta) ** 59 - 4.31631450158796e58 * cos(theta) ** 57 + 3.52190078963926e58 * cos(theta) ** 55 - 2.49881637487544e58 * cos(theta) ** 53 + 1.54688632730384e58 * cos(theta) ** 51 - 8.37486228158132e57 * cos(theta) ** 49 + 3.97130566255631e57 * cos(theta) ** 47 - 1.65051188820583e57 * cos(theta) ** 45 + 6.01179826829938e56 * cos(theta) ** 43 - 1.91757465075039e56 * cos(theta) ** 41 + 5.34833746127659e55 * cos(theta) ** 39 - 1.30151660387716e55 * cos(theta) ** 37 + 2.75527672658038e54 * cos(theta) ** 35 - 5.05516389859799e53 * cos(theta) ** 33 + 8.00097883231336e52 * cos(theta) ** 31 - 1.08626427942357e52 * cos(theta) ** 29 + 1.25647663090019e51 * cos(theta) ** 27 - 1.22813505275959e50 * cos(theta) ** 25 + 1.00447250770959e49 * cos(theta) ** 23 - 6.79314473270583e47 * cos(theta) ** 21 + 3.74425300227881e46 * cos(theta) ** 19 - 1.65230261519916e45 * cos(theta) ** 17 + 5.70917570292394e43 * cos(theta) ** 15 - 1.50128587229405e42 * cos(theta) ** 13 + 2.89422387639485e40 * cos(theta) ** 11 - 3.8872359756219e38 * cos(theta) ** 9 + 3.38020519619296e36 * cos(theta) ** 7 - 1.69778304520574e34 * cos(theta) ** 5 + 4.0250901972635e31 * cos(theta) ** 3 - 2.84057176941673e28 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl93_m15(theta, phi): return ( 1.59509649345119e-29 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 5.91053473328458e55 * cos(theta) ** 78 - 9.5942355697587e56 * cos(theta) ** 76 + 7.47092114038587e57 * cos(theta) ** 74 - 3.71619852673706e58 * cos(theta) ** 72 + 1.32662059138826e59 * cos(theta) ** 70 - 3.62010025785609e59 * cos(theta) ** 68 + 7.85389370228208e59 * cos(theta) ** 66 - 1.39113146089142e60 * cos(theta) ** 64 + 2.05008846868209e60 * cos(theta) ** 62 - 2.54879506527142e60 * cos(theta) ** 60 + 2.70141752426971e60 * cos(theta) ** 58 - 2.46029926590514e60 * cos(theta) ** 56 + 1.93704543430159e60 * cos(theta) ** 54 - 1.32437267868398e60 * cos(theta) ** 52 + 7.88912026924961e59 * cos(theta) ** 50 - 4.10368251797485e59 * cos(theta) ** 48 + 1.86651366140146e59 * cos(theta) ** 46 - 7.42730349692624e58 * cos(theta) ** 44 + 2.58507325536874e58 * cos(theta) ** 42 - 7.86205606807658e57 * cos(theta) ** 40 + 2.08585160989787e57 * cos(theta) ** 38 - 4.81561143434549e56 * cos(theta) ** 36 + 9.64346854303134e55 * cos(theta) ** 34 - 1.66820408653734e55 * cos(theta) ** 32 + 2.48030343801714e54 * cos(theta) ** 30 - 3.15016641032834e53 * cos(theta) ** 28 + 3.39248690343052e52 * cos(theta) ** 26 - 3.07033763189897e51 * cos(theta) ** 24 + 2.31028676773205e50 * cos(theta) ** 22 - 1.42656039386823e49 * cos(theta) ** 20 + 7.11408070432973e47 * cos(theta) ** 18 - 2.80891444583858e46 * cos(theta) ** 16 + 8.56376355438591e44 * cos(theta) ** 14 - 1.95167163398226e43 * cos(theta) ** 12 + 3.18364626403434e41 * cos(theta) ** 10 - 3.49851237805971e39 * cos(theta) ** 8 + 2.36614363733507e37 * cos(theta) ** 6 - 8.48891522602872e34 * cos(theta) ** 4 + 1.20752705917905e32 * cos(theta) ** 2 - 2.84057176941673e28 ) * cos(15 * phi) ) # @torch.jit.script def Yl93_m16(theta, phi): return ( 1.72992155473396e-31 * (1.0 - cos(theta) ** 2) ** 8 * ( 4.61021709196197e57 * cos(theta) ** 77 - 7.29161903301661e58 * cos(theta) ** 75 + 5.52848164388555e59 * cos(theta) ** 73 - 2.67566293925068e60 * cos(theta) ** 71 + 9.28634413971781e60 * cos(theta) ** 69 - 2.46166817534214e61 * cos(theta) ** 67 + 5.18356984350617e61 * cos(theta) ** 65 - 8.90324134970507e61 * cos(theta) ** 63 + 1.27105485058289e62 * cos(theta) ** 61 - 1.52927703916285e62 * cos(theta) ** 59 + 1.56682216407643e62 * cos(theta) ** 57 - 1.37776758890688e62 * cos(theta) ** 55 + 1.04600453452286e62 * cos(theta) ** 53 - 6.88673792915672e61 * cos(theta) ** 51 + 3.9445601346248e61 * cos(theta) ** 49 - 1.96976760862793e61 * cos(theta) ** 47 + 8.58596284244673e60 * cos(theta) ** 45 - 3.26801353864754e60 * cos(theta) ** 43 + 1.08573076725487e60 * cos(theta) ** 41 - 3.14482242723063e59 * cos(theta) ** 39 + 7.9262361176119e58 * cos(theta) ** 37 - 1.73362011636438e58 * cos(theta) ** 35 + 3.27877930463066e57 * cos(theta) ** 33 - 5.33825307691948e56 * cos(theta) ** 31 + 7.44091031405143e55 * cos(theta) ** 29 - 8.82046594891936e54 * cos(theta) ** 27 + 8.82046594891936e53 * cos(theta) ** 25 - 7.36881031655752e52 * cos(theta) ** 23 + 5.08263088901051e51 * cos(theta) ** 21 - 2.85312078773645e50 * cos(theta) ** 19 + 1.28053452677935e49 * cos(theta) ** 17 - 4.49426311334173e47 * cos(theta) ** 15 + 1.19892689761403e46 * cos(theta) ** 13 - 2.34200596077872e44 * cos(theta) ** 11 + 3.18364626403434e42 * cos(theta) ** 9 - 2.79880990244777e40 * cos(theta) ** 7 + 1.41968618240104e38 * cos(theta) ** 5 - 3.39556609041149e35 * cos(theta) ** 3 + 2.4150541183581e32 * cos(theta) ) * cos(16 * phi) ) # @torch.jit.script def Yl93_m17(theta, phi): return ( 1.8796833946566e-33 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 3.54986716081072e59 * cos(theta) ** 76 - 5.46871427476246e60 * cos(theta) ** 74 + 4.03579160003645e61 * cos(theta) ** 72 - 1.89972068686799e62 * cos(theta) ** 70 + 6.40757745640529e62 * cos(theta) ** 68 - 1.64931767747924e63 * cos(theta) ** 66 + 3.36932039827901e63 * cos(theta) ** 64 - 5.60904205031419e63 * cos(theta) ** 62 + 7.75343458855566e63 * cos(theta) ** 60 - 9.02273453106082e63 * cos(theta) ** 58 + 8.93088633523565e63 * cos(theta) ** 56 - 7.57772173898783e63 * cos(theta) ** 54 + 5.54382403297116e63 * cos(theta) ** 52 - 3.51223634386993e63 * cos(theta) ** 50 + 1.93283446596615e63 * cos(theta) ** 48 - 9.25790776055126e62 * cos(theta) ** 46 + 3.86368327910103e62 * cos(theta) ** 44 - 1.40524582161844e62 * cos(theta) ** 42 + 4.45149614574496e61 * cos(theta) ** 40 - 1.22648074661995e61 * cos(theta) ** 38 + 2.9327073635164e60 * cos(theta) ** 36 - 6.06767040727532e59 * cos(theta) ** 34 + 1.08199717052812e59 * cos(theta) ** 32 - 1.65485845384504e58 * cos(theta) ** 30 + 2.15786399107491e57 * cos(theta) ** 28 - 2.38152580620823e56 * cos(theta) ** 26 + 2.20511648722984e55 * cos(theta) ** 24 - 1.69482637280823e54 * cos(theta) ** 22 + 1.06735248669221e53 * cos(theta) ** 20 - 5.42092949669926e51 * cos(theta) ** 18 + 2.1769086955249e50 * cos(theta) ** 16 - 6.74139467001259e48 * cos(theta) ** 14 + 1.55860496689824e47 * cos(theta) ** 12 - 2.57620655685659e45 * cos(theta) ** 10 + 2.86528163763091e43 * cos(theta) ** 8 - 1.95916693171344e41 * cos(theta) ** 6 + 7.09843091200522e38 * cos(theta) ** 4 - 1.01866982712345e36 * cos(theta) ** 2 + 2.4150541183581e32 ) * cos(17 * phi) ) # @torch.jit.script def Yl93_m18(theta, phi): return ( 2.04652200777142e-35 * (1.0 - cos(theta) ** 2) ** 9 * ( 2.69789904221615e61 * cos(theta) ** 75 - 4.04684856332422e62 * cos(theta) ** 73 + 2.90576995202624e63 * cos(theta) ** 71 - 1.32980448080759e64 * cos(theta) ** 69 + 4.35715267035559e64 * cos(theta) ** 67 - 1.0885496671363e65 * cos(theta) ** 65 + 2.15636505489857e65 * cos(theta) ** 63 - 3.4776060711948e65 * cos(theta) ** 61 + 4.65206075313339e65 * cos(theta) ** 59 - 5.23318602801528e65 * cos(theta) ** 57 + 5.00129634773197e65 * cos(theta) ** 55 - 4.09196973905343e65 * cos(theta) ** 53 + 2.882788497145e65 * cos(theta) ** 51 - 1.75611817193496e65 * cos(theta) ** 49 + 9.27760543663754e64 * cos(theta) ** 47 - 4.25863756985358e64 * cos(theta) ** 45 + 1.70002064280445e64 * cos(theta) ** 43 - 5.90203245079747e63 * cos(theta) ** 41 + 1.78059845829798e63 * cos(theta) ** 39 - 4.6606268371558e62 * cos(theta) ** 37 + 1.05577465086591e62 * cos(theta) ** 35 - 2.06300793847361e61 * cos(theta) ** 33 + 3.46239094568997e60 * cos(theta) ** 31 - 4.96457536153511e59 * cos(theta) ** 29 + 6.04201917500976e58 * cos(theta) ** 27 - 6.19196709614139e57 * cos(theta) ** 25 + 5.29227956935161e56 * cos(theta) ** 23 - 3.72861802017811e55 * cos(theta) ** 21 + 2.13470497338441e54 * cos(theta) ** 19 - 9.75767309405866e52 * cos(theta) ** 17 + 3.48305391283984e51 * cos(theta) ** 15 - 9.43795253801762e49 * cos(theta) ** 13 + 1.87032596027788e48 * cos(theta) ** 11 - 2.57620655685659e46 * cos(theta) ** 9 + 2.29222531010472e44 * cos(theta) ** 7 - 1.17550015902806e42 * cos(theta) ** 5 + 2.83937236480209e39 * cos(theta) ** 3 - 2.03733965424689e36 * cos(theta) ) * cos(18 * phi) ) # @torch.jit.script def Yl93_m19(theta, phi): return ( 2.23293857428703e-37 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 2.02342428166211e63 * cos(theta) ** 74 - 2.95419945122668e64 * cos(theta) ** 72 + 2.06309666593863e65 * cos(theta) ** 70 - 9.17565091757237e65 * cos(theta) ** 68 + 2.91929228913825e66 * cos(theta) ** 66 - 7.07557283638592e66 * cos(theta) ** 64 + 1.3585099845861e67 * cos(theta) ** 62 - 2.12133970342883e67 * cos(theta) ** 60 + 2.7447158443487e67 * cos(theta) ** 58 - 2.98291603596871e67 * cos(theta) ** 56 + 2.75071299125258e67 * cos(theta) ** 54 - 2.16874396169832e67 * cos(theta) ** 52 + 1.47022213354395e67 * cos(theta) ** 50 - 8.60497904248132e66 * cos(theta) ** 48 + 4.36047455521964e66 * cos(theta) ** 46 - 1.91638690643411e66 * cos(theta) ** 44 + 7.31008876405915e65 * cos(theta) ** 42 - 2.41983330482696e65 * cos(theta) ** 40 + 6.94433398736214e64 * cos(theta) ** 38 - 1.72443192974765e64 * cos(theta) ** 36 + 3.69521127803067e63 * cos(theta) ** 34 - 6.80792619696291e62 * cos(theta) ** 32 + 1.07334119316389e62 * cos(theta) ** 30 - 1.43972685484518e61 * cos(theta) ** 28 + 1.63134517725264e60 * cos(theta) ** 26 - 1.54799177403535e59 * cos(theta) ** 24 + 1.21722430095087e58 * cos(theta) ** 22 - 7.83009784237402e56 * cos(theta) ** 20 + 4.05593944943038e55 * cos(theta) ** 18 - 1.65880442598997e54 * cos(theta) ** 16 + 5.22458086925976e52 * cos(theta) ** 14 - 1.22693382994229e51 * cos(theta) ** 12 + 2.05735855630567e49 * cos(theta) ** 10 - 2.31858590117093e47 * cos(theta) ** 8 + 1.60455771707331e45 * cos(theta) ** 6 - 5.87750079514032e42 * cos(theta) ** 4 + 8.51811709440626e39 * cos(theta) ** 2 - 2.03733965424689e36 ) * cos(19 * phi) ) # @torch.jit.script def Yl93_m20(theta, phi): return ( 2.44186525089707e-39 * (1.0 - cos(theta) ** 2) ** 10 * ( 1.49733396842996e65 * cos(theta) ** 73 - 2.12702360488321e66 * cos(theta) ** 71 + 1.44416766615704e67 * cos(theta) ** 69 - 6.23944262394921e67 * cos(theta) ** 67 + 1.92673291083124e68 * cos(theta) ** 65 - 4.52836661528699e68 * cos(theta) ** 63 + 8.4227619044338e68 * cos(theta) ** 61 - 1.2728038220573e69 * cos(theta) ** 59 + 1.59193518972225e69 * cos(theta) ** 57 - 1.67043298014248e69 * cos(theta) ** 55 + 1.48538501527639e69 * cos(theta) ** 53 - 1.12774686008312e69 * cos(theta) ** 51 + 7.35111066771975e68 * cos(theta) ** 49 - 4.13038994039103e68 * cos(theta) ** 47 + 2.00581829540104e68 * cos(theta) ** 45 - 8.43210238831009e67 * cos(theta) ** 43 + 3.07023728090484e67 * cos(theta) ** 41 - 9.67933321930784e66 * cos(theta) ** 39 + 2.63884691519761e66 * cos(theta) ** 37 - 6.20795494709152e65 * cos(theta) ** 35 + 1.25637183453043e65 * cos(theta) ** 33 - 2.17853638302813e64 * cos(theta) ** 31 + 3.22002357949167e63 * cos(theta) ** 29 - 4.03123519356651e62 * cos(theta) ** 27 + 4.24149746085685e61 * cos(theta) ** 25 - 3.71518025768483e60 * cos(theta) ** 23 + 2.67789346209192e59 * cos(theta) ** 21 - 1.56601956847481e58 * cos(theta) ** 19 + 7.30069100897469e56 * cos(theta) ** 17 - 2.65408708158396e55 * cos(theta) ** 15 + 7.31441321696366e53 * cos(theta) ** 13 - 1.47232059593075e52 * cos(theta) ** 11 + 2.05735855630567e50 * cos(theta) ** 9 - 1.85486872093674e48 * cos(theta) ** 7 + 9.62734630243984e45 * cos(theta) ** 5 - 2.35100031805613e43 * cos(theta) ** 3 + 1.70362341888125e40 * cos(theta) ) * cos(20 * phi) ) # @torch.jit.script def Yl93_m21(theta, phi): return ( 2.67675017001011e-41 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.09305379695387e67 * cos(theta) ** 72 - 1.51018675946708e68 * cos(theta) ** 70 + 9.96475689648359e68 * cos(theta) ** 68 - 4.18042655804597e69 * cos(theta) ** 66 + 1.25237639204031e70 * cos(theta) ** 64 - 2.8528709676308e70 * cos(theta) ** 62 + 5.13788476170462e70 * cos(theta) ** 60 - 7.50954255013805e70 * cos(theta) ** 58 + 9.07403058141681e70 * cos(theta) ** 56 - 9.18738139078362e70 * cos(theta) ** 54 + 7.87254058096489e70 * cos(theta) ** 52 - 5.75150898642393e70 * cos(theta) ** 50 + 3.60204422718268e70 * cos(theta) ** 48 - 1.94128327198378e70 * cos(theta) ** 46 + 9.02618232930466e69 * cos(theta) ** 44 - 3.62580402697334e69 * cos(theta) ** 42 + 1.25879728517099e69 * cos(theta) ** 40 - 3.77493995553006e68 * cos(theta) ** 38 + 9.76373358623117e67 * cos(theta) ** 36 - 2.17278423148203e67 * cos(theta) ** 34 + 4.14602705395041e66 * cos(theta) ** 32 - 6.7534627873872e65 * cos(theta) ** 30 + 9.33806838052585e64 * cos(theta) ** 28 - 1.08843350226296e64 * cos(theta) ** 26 + 1.06037436521421e63 * cos(theta) ** 24 - 8.54491459267511e61 * cos(theta) ** 22 + 5.62357627039302e60 * cos(theta) ** 20 - 2.97543718010213e59 * cos(theta) ** 18 + 1.2411174715257e58 * cos(theta) ** 16 - 3.98113062237593e56 * cos(theta) ** 14 + 9.50873718205276e54 * cos(theta) ** 12 - 1.61955265552382e53 * cos(theta) ** 10 + 1.8516227006751e51 * cos(theta) ** 8 - 1.29840810465572e49 * cos(theta) ** 6 + 4.81367315121992e46 * cos(theta) ** 4 - 7.05300095416838e43 * cos(theta) ** 2 + 1.70362341888125e40 ) * cos(21 * phi) ) # @torch.jit.script def Yl93_m22(theta, phi): return ( 2.94166132377253e-43 * (1.0 - cos(theta) ** 2) ** 11 * ( 7.86998733806788e68 * cos(theta) ** 71 - 1.05713073162696e70 * cos(theta) ** 69 + 6.77603468960884e70 * cos(theta) ** 67 - 2.75908152831034e71 * cos(theta) ** 65 + 8.01520890905798e71 * cos(theta) ** 63 - 1.7687799999311e72 * cos(theta) ** 61 + 3.08273085702277e72 * cos(theta) ** 59 - 4.35553467908007e72 * cos(theta) ** 57 + 5.08145712559341e72 * cos(theta) ** 55 - 4.96118595102316e72 * cos(theta) ** 53 + 4.09372110210174e72 * cos(theta) ** 51 - 2.87575449321197e72 * cos(theta) ** 49 + 1.72898122904769e72 * cos(theta) ** 47 - 8.92990305112541e71 * cos(theta) ** 45 + 3.97152022489405e71 * cos(theta) ** 43 - 1.5228376913288e71 * cos(theta) ** 41 + 5.03518914068394e70 * cos(theta) ** 39 - 1.43447718310142e70 * cos(theta) ** 37 + 3.51494409104322e69 * cos(theta) ** 35 - 7.38746638703891e68 * cos(theta) ** 33 + 1.32672865726413e68 * cos(theta) ** 31 - 2.02603883621616e67 * cos(theta) ** 29 + 2.61465914654724e66 * cos(theta) ** 27 - 2.82992710588369e65 * cos(theta) ** 25 + 2.54489847651411e64 * cos(theta) ** 23 - 1.87988121038853e63 * cos(theta) ** 21 + 1.1247152540786e62 * cos(theta) ** 19 - 5.35578692418383e60 * cos(theta) ** 17 + 1.98578795444112e59 * cos(theta) ** 15 - 5.57358287132631e57 * cos(theta) ** 13 + 1.14104846184633e56 * cos(theta) ** 11 - 1.61955265552382e54 * cos(theta) ** 9 + 1.48129816054008e52 * cos(theta) ** 7 - 7.79044862793432e49 * cos(theta) ** 5 + 1.92546926048797e47 * cos(theta) ** 3 - 1.41060019083368e44 * cos(theta) ) * cos(22 * phi) ) # @torch.jit.script def Yl93_m23(theta, phi): return ( 3.24141398518232e-45 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 5.58769101002819e70 * cos(theta) ** 70 - 7.29420204822599e71 * cos(theta) ** 68 + 4.53994324203793e72 * cos(theta) ** 66 - 1.79340299340172e73 * cos(theta) ** 64 + 5.04958161270652e73 * cos(theta) ** 62 - 1.07895579995797e74 * cos(theta) ** 60 + 1.81881120564344e74 * cos(theta) ** 58 - 2.48265476707564e74 * cos(theta) ** 56 + 2.79480141907638e74 * cos(theta) ** 54 - 2.62942855404227e74 * cos(theta) ** 52 + 2.08779776207189e74 * cos(theta) ** 50 - 1.40911970167386e74 * cos(theta) ** 48 + 8.12621177652412e73 * cos(theta) ** 46 - 4.01845637300643e73 * cos(theta) ** 44 + 1.70775369670444e73 * cos(theta) ** 42 - 6.24363453444809e72 * cos(theta) ** 40 + 1.96372376486674e72 * cos(theta) ** 38 - 5.30756557747526e71 * cos(theta) ** 36 + 1.23023043186513e71 * cos(theta) ** 34 - 2.43786390772284e70 * cos(theta) ** 32 + 4.11285883751881e69 * cos(theta) ** 30 - 5.87551262502687e68 * cos(theta) ** 28 + 7.05957969567755e67 * cos(theta) ** 26 - 7.07481776470923e66 * cos(theta) ** 24 + 5.85326649598245e65 * cos(theta) ** 22 - 3.9477505418159e64 * cos(theta) ** 20 + 2.13695898274935e63 * cos(theta) ** 18 - 9.10483777111252e61 * cos(theta) ** 16 + 2.97868193166167e60 * cos(theta) ** 14 - 7.2456577327242e58 * cos(theta) ** 12 + 1.25515330803096e57 * cos(theta) ** 10 - 1.45759738997144e55 * cos(theta) ** 8 + 1.03690871237806e53 * cos(theta) ** 6 - 3.89522431396716e50 * cos(theta) ** 4 + 5.77640778146391e47 * cos(theta) ** 2 - 1.41060019083368e44 ) * cos(23 * phi) ) # @torch.jit.script def Yl93_m24(theta, phi): return ( 3.58172757672399e-47 * (1.0 - cos(theta) ** 2) ** 12 * ( 3.91138370701973e72 * cos(theta) ** 69 - 4.96005739279367e73 * cos(theta) ** 67 + 2.99636253974503e74 * cos(theta) ** 65 - 1.1477779157771e75 * cos(theta) ** 63 + 3.13074059987805e75 * cos(theta) ** 61 - 6.47373479974782e75 * cos(theta) ** 59 + 1.05491049927319e76 * cos(theta) ** 57 - 1.39028666956236e76 * cos(theta) ** 55 + 1.50919276630124e76 * cos(theta) ** 53 - 1.36730284810198e76 * cos(theta) ** 51 + 1.04389888103594e76 * cos(theta) ** 49 - 6.76377456803455e75 * cos(theta) ** 47 + 3.7380574172011e75 * cos(theta) ** 45 - 1.76812080412283e75 * cos(theta) ** 43 + 7.17256552615866e74 * cos(theta) ** 41 - 2.49745381377923e74 * cos(theta) ** 39 + 7.4621503064936e73 * cos(theta) ** 37 - 1.91072360789109e73 * cos(theta) ** 35 + 4.18278346834143e72 * cos(theta) ** 33 - 7.80116450471309e71 * cos(theta) ** 31 + 1.23385765125564e71 * cos(theta) ** 29 - 1.64514353500752e70 * cos(theta) ** 27 + 1.83549072087616e69 * cos(theta) ** 25 - 1.69795626353021e68 * cos(theta) ** 23 + 1.28771862911614e67 * cos(theta) ** 21 - 7.89550108363181e65 * cos(theta) ** 19 + 3.84652616894883e64 * cos(theta) ** 17 - 1.456774043378e63 * cos(theta) ** 15 + 4.17015470432634e61 * cos(theta) ** 13 - 8.69478927926904e59 * cos(theta) ** 11 + 1.25515330803096e58 * cos(theta) ** 9 - 1.16607791197715e56 * cos(theta) ** 7 + 6.22145227426835e53 * cos(theta) ** 5 - 1.55808972558686e51 * cos(theta) ** 3 + 1.15528155629278e48 * cos(theta) ) * cos(24 * phi) ) # @torch.jit.script def Yl93_m25(theta, phi): return ( 3.96941952563658e-49 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 2.69885475784362e74 * cos(theta) ** 68 - 3.32323845317176e75 * cos(theta) ** 66 + 1.94763565083427e76 * cos(theta) ** 64 - 7.23100086939574e76 * cos(theta) ** 62 + 1.90975176592561e77 * cos(theta) ** 60 - 3.81950353185121e77 * cos(theta) ** 58 + 6.0129898458572e77 * cos(theta) ** 56 - 7.64657668259297e77 * cos(theta) ** 54 + 7.99872166139659e77 * cos(theta) ** 52 - 6.97324452532011e77 * cos(theta) ** 50 + 5.11510451707613e77 * cos(theta) ** 48 - 3.17897404697624e77 * cos(theta) ** 46 + 1.68212583774049e77 * cos(theta) ** 44 - 7.60291945772817e76 * cos(theta) ** 42 + 2.94075186572505e76 * cos(theta) ** 40 - 9.74006987373901e75 * cos(theta) ** 38 + 2.76099561340263e75 * cos(theta) ** 36 - 6.68753262761883e74 * cos(theta) ** 34 + 1.38031854455267e74 * cos(theta) ** 32 - 2.41836099646106e73 * cos(theta) ** 30 + 3.57818718864136e72 * cos(theta) ** 28 - 4.44188754452031e71 * cos(theta) ** 26 + 4.5887268021904e70 * cos(theta) ** 24 - 3.90529940611949e69 * cos(theta) ** 22 + 2.70420912114389e68 * cos(theta) ** 20 - 1.50014520589004e67 * cos(theta) ** 18 + 6.53909448721301e65 * cos(theta) ** 16 - 2.185161065067e64 * cos(theta) ** 14 + 5.42120111562425e62 * cos(theta) ** 12 - 9.56426820719594e60 * cos(theta) ** 10 + 1.12963797722787e59 * cos(theta) ** 8 - 8.16254538384007e56 * cos(theta) ** 6 + 3.11072613713417e54 * cos(theta) ** 4 - 4.67426917676059e51 * cos(theta) ** 2 + 1.15528155629278e48 ) * cos(25 * phi) ) # @torch.jit.script def Yl93_m26(theta, phi): return ( 4.41264576223461e-51 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.83522123533366e76 * cos(theta) ** 67 - 2.19333737909336e77 * cos(theta) ** 65 + 1.24648681653393e78 * cos(theta) ** 63 - 4.48322053902536e78 * cos(theta) ** 61 + 1.14585105955536e79 * cos(theta) ** 59 - 2.2153120484737e79 * cos(theta) ** 57 + 3.36727431368003e79 * cos(theta) ** 55 - 4.1291514086002e79 * cos(theta) ** 53 + 4.15933526392623e79 * cos(theta) ** 51 - 3.48662226266005e79 * cos(theta) ** 49 + 2.45525016819654e79 * cos(theta) ** 47 - 1.46232806160907e79 * cos(theta) ** 45 + 7.40135368605817e78 * cos(theta) ** 43 - 3.19322617224583e78 * cos(theta) ** 41 + 1.17630074629002e78 * cos(theta) ** 39 - 3.70122655202083e77 * cos(theta) ** 37 + 9.93958420824948e76 * cos(theta) ** 35 - 2.2737610933904e76 * cos(theta) ** 33 + 4.41701934256855e75 * cos(theta) ** 31 - 7.25508298938318e74 * cos(theta) ** 29 + 1.00189241281958e74 * cos(theta) ** 27 - 1.15489076157528e73 * cos(theta) ** 25 + 1.1012944325257e72 * cos(theta) ** 23 - 8.59165869346288e70 * cos(theta) ** 21 + 5.40841824228779e69 * cos(theta) ** 19 - 2.70026137060208e68 * cos(theta) ** 17 + 1.04625511795408e67 * cos(theta) ** 15 - 3.05922549109381e65 * cos(theta) ** 13 + 6.5054413387491e63 * cos(theta) ** 11 - 9.56426820719594e61 * cos(theta) ** 9 + 9.03710381782294e59 * cos(theta) ** 7 - 4.89752723030404e57 * cos(theta) ** 5 + 1.24429045485367e55 * cos(theta) ** 3 - 9.34853835352119e51 * cos(theta) ) * cos(26 * phi) ) # @torch.jit.script def Yl93_m27(theta, phi): return ( 4.92120028220969e-53 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.22959822767355e78 * cos(theta) ** 66 - 1.42566929641069e79 * cos(theta) ** 64 + 7.85286694416378e79 * cos(theta) ** 62 - 2.73476452880547e80 * cos(theta) ** 60 + 6.76052125137665e80 * cos(theta) ** 58 - 1.26272786763001e81 * cos(theta) ** 56 + 1.85200087252402e81 * cos(theta) ** 54 - 2.18845024655811e81 * cos(theta) ** 52 + 2.12126098460238e81 * cos(theta) ** 50 - 1.70844490870343e81 * cos(theta) ** 48 + 1.15396757905237e81 * cos(theta) ** 46 - 6.58047627724081e80 * cos(theta) ** 44 + 3.18258208500501e80 * cos(theta) ** 42 - 1.30922273062079e80 * cos(theta) ** 40 + 4.58757291053108e79 * cos(theta) ** 38 - 1.36945382424771e79 * cos(theta) ** 36 + 3.47885447288732e78 * cos(theta) ** 34 - 7.50341160818833e77 * cos(theta) ** 32 + 1.36927599619625e77 * cos(theta) ** 30 - 2.10397406692112e76 * cos(theta) ** 28 + 2.70510951461287e75 * cos(theta) ** 26 - 2.8872269039382e74 * cos(theta) ** 24 + 2.5329771948091e73 * cos(theta) ** 22 - 1.80424832562721e72 * cos(theta) ** 20 + 1.02759946603468e71 * cos(theta) ** 18 - 4.59044433002353e69 * cos(theta) ** 16 + 1.56938267693112e68 * cos(theta) ** 14 - 3.97699313842195e66 * cos(theta) ** 12 + 7.15598547262401e64 * cos(theta) ** 10 - 8.60784138647635e62 * cos(theta) ** 8 + 6.32597267247606e60 * cos(theta) ** 6 - 2.44876361515202e58 * cos(theta) ** 4 + 3.73287136456101e55 * cos(theta) ** 2 - 9.34853835352119e51 ) * cos(27 * phi) ) # @torch.jit.script def Yl93_m28(theta, phi): return ( 5.50688981950095e-55 * (1.0 - cos(theta) ** 2) ** 14 * ( 8.11534830264544e79 * cos(theta) ** 65 - 9.12428349702839e80 * cos(theta) ** 63 + 4.86877750538154e81 * cos(theta) ** 61 - 1.64085871728328e82 * cos(theta) ** 59 + 3.92110232579846e82 * cos(theta) ** 57 - 7.07127605872807e82 * cos(theta) ** 55 + 1.00008047116297e83 * cos(theta) ** 53 - 1.13799412821022e83 * cos(theta) ** 51 + 1.06063049230119e83 * cos(theta) ** 49 - 8.20053556177645e82 * cos(theta) ** 47 + 5.30825086364092e82 * cos(theta) ** 45 - 2.89540956198596e82 * cos(theta) ** 43 + 1.33668447570211e82 * cos(theta) ** 41 - 5.23689092248317e81 * cos(theta) ** 39 + 1.74327770600181e81 * cos(theta) ** 37 - 4.93003376729174e80 * cos(theta) ** 35 + 1.18281052078169e80 * cos(theta) ** 33 - 2.40109171462027e79 * cos(theta) ** 31 + 4.10782798858875e78 * cos(theta) ** 29 - 5.89112738737914e77 * cos(theta) ** 27 + 7.03328473799346e76 * cos(theta) ** 25 - 6.92934456945169e75 * cos(theta) ** 23 + 5.57254982858003e74 * cos(theta) ** 21 - 3.60849665125441e73 * cos(theta) ** 19 + 1.84967903886242e72 * cos(theta) ** 17 - 7.34471092803765e70 * cos(theta) ** 15 + 2.19713574770357e69 * cos(theta) ** 13 - 4.77239176610634e67 * cos(theta) ** 11 + 7.15598547262401e65 * cos(theta) ** 9 - 6.88627310918108e63 * cos(theta) ** 7 + 3.79558360348563e61 * cos(theta) ** 5 - 9.79505446060809e58 * cos(theta) ** 3 + 7.46574272912202e55 * cos(theta) ) * cos(28 * phi) ) # @torch.jit.script def Yl93_m29(theta, phi): return ( 6.18400445319037e-57 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 5.27497639671954e81 * cos(theta) ** 64 - 5.74829860312788e82 * cos(theta) ** 62 + 2.96995427828274e83 * cos(theta) ** 60 - 9.68106643197136e83 * cos(theta) ** 58 + 2.23502832570512e84 * cos(theta) ** 56 - 3.88920183230044e84 * cos(theta) ** 54 + 5.30042649716374e84 * cos(theta) ** 52 - 5.8037700538721e84 * cos(theta) ** 50 + 5.19708941227582e84 * cos(theta) ** 48 - 3.85425171403493e84 * cos(theta) ** 46 + 2.38871288863841e84 * cos(theta) ** 44 - 1.24502611165396e84 * cos(theta) ** 42 + 5.48040635037863e83 * cos(theta) ** 40 - 2.04238745976843e83 * cos(theta) ** 38 + 6.45012751220669e82 * cos(theta) ** 36 - 1.72551181855211e82 * cos(theta) ** 34 + 3.90327471857957e81 * cos(theta) ** 32 - 7.44338431532282e80 * cos(theta) ** 30 + 1.19127011669074e80 * cos(theta) ** 28 - 1.59060439459237e79 * cos(theta) ** 26 + 1.75832118449837e78 * cos(theta) ** 24 - 1.59374925097389e77 * cos(theta) ** 22 + 1.17023546400181e76 * cos(theta) ** 20 - 6.85614363738338e74 * cos(theta) ** 18 + 3.14445436606612e73 * cos(theta) ** 16 - 1.10170663920565e72 * cos(theta) ** 14 + 2.85627647201464e70 * cos(theta) ** 12 - 5.24963094271697e68 * cos(theta) ** 10 + 6.4403869253616e66 * cos(theta) ** 8 - 4.82039117642676e64 * cos(theta) ** 6 + 1.89779180174282e62 * cos(theta) ** 4 - 2.93851633818243e59 * cos(theta) ** 2 + 7.46574272912202e55 ) * cos(29 * phi) ) # @torch.jit.script def Yl93_m30(theta, phi): return ( 6.96991129511242e-59 * (1.0 - cos(theta) ** 2) ** 15 * ( 3.3759848939005e83 * cos(theta) ** 63 - 3.56394513393929e84 * cos(theta) ** 61 + 1.78197256696964e85 * cos(theta) ** 59 - 5.61501853054339e85 * cos(theta) ** 57 + 1.25161586239487e86 * cos(theta) ** 55 - 2.10016898944224e86 * cos(theta) ** 53 + 2.75622177852514e86 * cos(theta) ** 51 - 2.90188502693605e86 * cos(theta) ** 49 + 2.49460291789239e86 * cos(theta) ** 47 - 1.77295578845607e86 * cos(theta) ** 45 + 1.0510336710009e86 * cos(theta) ** 43 - 5.22910966894664e85 * cos(theta) ** 41 + 2.19216254015145e85 * cos(theta) ** 39 - 7.76107234712005e84 * cos(theta) ** 37 + 2.32204590439441e84 * cos(theta) ** 35 - 5.86674018307717e83 * cos(theta) ** 33 + 1.24904790994546e83 * cos(theta) ** 31 - 2.23301529459685e82 * cos(theta) ** 29 + 3.33555632673407e81 * cos(theta) ** 27 - 4.13557142594016e80 * cos(theta) ** 25 + 4.21997084279608e79 * cos(theta) ** 23 - 3.50624835214255e78 * cos(theta) ** 21 + 2.34047092800361e77 * cos(theta) ** 19 - 1.23410585472901e76 * cos(theta) ** 17 + 5.03112698570579e74 * cos(theta) ** 15 - 1.54238929488791e73 * cos(theta) ** 13 + 3.42753176641757e71 * cos(theta) ** 11 - 5.24963094271697e69 * cos(theta) ** 9 + 5.15230954028928e67 * cos(theta) ** 7 - 2.89223470585605e65 * cos(theta) ** 5 + 7.59116720697127e62 * cos(theta) ** 3 - 5.87703267636485e59 * cos(theta) ) * cos(30 * phi) ) # @torch.jit.script def Yl93_m31(theta, phi): return ( 7.88580681552409e-61 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 2.12687048315732e85 * cos(theta) ** 62 - 2.17400653170297e86 * cos(theta) ** 60 + 1.05136381451209e87 * cos(theta) ** 58 - 3.20056056240973e87 * cos(theta) ** 56 + 6.88388724317177e87 * cos(theta) ** 54 - 1.11308956440438e88 * cos(theta) ** 52 + 1.40567310704782e88 * cos(theta) ** 50 - 1.42192366319866e88 * cos(theta) ** 48 + 1.17246337140943e88 * cos(theta) ** 46 - 7.9783010480523e87 * cos(theta) ** 44 + 4.51944478530388e87 * cos(theta) ** 42 - 2.14393496426812e87 * cos(theta) ** 40 + 8.54943390659067e86 * cos(theta) ** 38 - 2.87159676843442e86 * cos(theta) ** 36 + 8.12716066538043e85 * cos(theta) ** 34 - 1.93602426041547e85 * cos(theta) ** 32 + 3.87204852083093e84 * cos(theta) ** 30 - 6.47574435433086e83 * cos(theta) ** 28 + 9.00600208218198e82 * cos(theta) ** 26 - 1.03389285648504e82 * cos(theta) ** 24 + 9.70593293843098e80 * cos(theta) ** 22 - 7.36312153949936e79 * cos(theta) ** 20 + 4.44689476320686e78 * cos(theta) ** 18 - 2.09797995303931e77 * cos(theta) ** 16 + 7.54669047855869e75 * cos(theta) ** 14 - 2.00510608335428e74 * cos(theta) ** 12 + 3.77028494305933e72 * cos(theta) ** 10 - 4.72466784844527e70 * cos(theta) ** 8 + 3.6066166782025e68 * cos(theta) ** 6 - 1.44611735292803e66 * cos(theta) ** 4 + 2.27735016209138e63 * cos(theta) ** 2 - 5.87703267636485e59 ) * cos(31 * phi) ) # @torch.jit.script def Yl93_m32(theta, phi): return ( 8.95767460692613e-63 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.31865969955754e87 * cos(theta) ** 61 - 1.30440391902178e88 * cos(theta) ** 59 + 6.09791012417012e88 * cos(theta) ** 57 - 1.79231391494945e89 * cos(theta) ** 55 + 3.71729911131276e89 * cos(theta) ** 53 - 5.7880657349028e89 * cos(theta) ** 51 + 7.02836553523912e89 * cos(theta) ** 49 - 6.82523358335359e89 * cos(theta) ** 47 + 5.39333150848336e89 * cos(theta) ** 45 - 3.51045246114301e89 * cos(theta) ** 43 + 1.89816680982763e89 * cos(theta) ** 41 - 8.57573985707249e88 * cos(theta) ** 39 + 3.24878488450445e88 * cos(theta) ** 37 - 1.03377483663639e88 * cos(theta) ** 35 + 2.76323462622935e87 * cos(theta) ** 33 - 6.19527763332949e86 * cos(theta) ** 31 + 1.16161455624928e86 * cos(theta) ** 29 - 1.81320841921264e85 * cos(theta) ** 27 + 2.34156054136732e84 * cos(theta) ** 25 - 2.48134285556409e83 * cos(theta) ** 23 + 2.13530524645482e82 * cos(theta) ** 21 - 1.47262430789987e81 * cos(theta) ** 19 + 8.00441057377235e79 * cos(theta) ** 17 - 3.3567679248629e78 * cos(theta) ** 15 + 1.05653666699822e77 * cos(theta) ** 13 - 2.40612730002513e75 * cos(theta) ** 11 + 3.77028494305933e73 * cos(theta) ** 9 - 3.77973427875622e71 * cos(theta) ** 7 + 2.1639700069215e69 * cos(theta) ** 5 - 5.78446941171211e66 * cos(theta) ** 3 + 4.55470032418276e63 * cos(theta) ) * cos(32 * phi) ) # @torch.jit.script def Yl93_m33(theta, phi): return ( 1.02175104912872e-64 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 8.04382416730097e88 * cos(theta) ** 60 - 7.6959831222285e89 * cos(theta) ** 58 + 3.47580877077697e90 * cos(theta) ** 56 - 9.85772653222198e90 * cos(theta) ** 54 + 1.97016852899576e91 * cos(theta) ** 52 - 2.95191352480043e91 * cos(theta) ** 50 + 3.44389911226717e91 * cos(theta) ** 48 - 3.20785978417619e91 * cos(theta) ** 46 + 2.42699917881751e91 * cos(theta) ** 44 - 1.5094945582915e91 * cos(theta) ** 42 + 7.78248392029328e90 * cos(theta) ** 40 - 3.34453854425827e90 * cos(theta) ** 38 + 1.20205040726665e90 * cos(theta) ** 36 - 3.61821192822737e89 * cos(theta) ** 34 + 9.11867426655684e88 * cos(theta) ** 32 - 1.92053606633214e88 * cos(theta) ** 30 + 3.36868221312291e87 * cos(theta) ** 28 - 4.89566273187413e86 * cos(theta) ** 26 + 5.85390135341829e85 * cos(theta) ** 24 - 5.70708856779741e84 * cos(theta) ** 22 + 4.48414101755511e83 * cos(theta) ** 20 - 2.79798618500976e82 * cos(theta) ** 18 + 1.3607497975413e81 * cos(theta) ** 16 - 5.03515188729436e79 * cos(theta) ** 14 + 1.37349766709768e78 * cos(theta) ** 12 - 2.64674003002765e76 * cos(theta) ** 10 + 3.39325644875339e74 * cos(theta) ** 8 - 2.64581399512935e72 * cos(theta) ** 6 + 1.08198500346075e70 * cos(theta) ** 4 - 1.73534082351363e67 * cos(theta) ** 2 + 4.55470032418276e63 ) * cos(33 * phi) ) # @torch.jit.script def Yl93_m34(theta, phi): return ( 1.17048972768622e-66 * (1.0 - cos(theta) ** 2) ** 17 * ( 4.82629450038058e90 * cos(theta) ** 59 - 4.46367021089253e91 * cos(theta) ** 57 + 1.9464529116351e92 * cos(theta) ** 55 - 5.32317232739987e92 * cos(theta) ** 53 + 1.0244876350778e93 * cos(theta) ** 51 - 1.47595676240021e93 * cos(theta) ** 49 + 1.65307157388824e93 * cos(theta) ** 47 - 1.47561550072105e93 * cos(theta) ** 45 + 1.0678796386797e93 * cos(theta) ** 43 - 6.33987714482428e92 * cos(theta) ** 41 + 3.11299356811731e92 * cos(theta) ** 39 - 1.27092464681814e92 * cos(theta) ** 37 + 4.32738146615993e91 * cos(theta) ** 35 - 1.23019205559731e91 * cos(theta) ** 33 + 2.91797576529819e90 * cos(theta) ** 31 - 5.76160819899643e89 * cos(theta) ** 29 + 9.43231019674415e88 * cos(theta) ** 27 - 1.27287231028727e88 * cos(theta) ** 25 + 1.40493632482039e87 * cos(theta) ** 23 - 1.25555948491543e86 * cos(theta) ** 21 + 8.96828203511022e84 * cos(theta) ** 19 - 5.03637513301756e83 * cos(theta) ** 17 + 2.17719967606608e82 * cos(theta) ** 15 - 7.0492126422121e80 * cos(theta) ** 13 + 1.64819720051722e79 * cos(theta) ** 11 - 2.64674003002765e77 * cos(theta) ** 9 + 2.71460515900272e75 * cos(theta) ** 7 - 1.58748839707761e73 * cos(theta) ** 5 + 4.327940013843e70 * cos(theta) ** 3 - 3.47068164702726e67 * cos(theta) ) * cos(34 * phi) ) # @torch.jit.script def Yl93_m35(theta, phi): return ( 1.34690391727332e-68 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 2.84751375522455e92 * cos(theta) ** 58 - 2.54429202020874e93 * cos(theta) ** 56 + 1.07054910139931e94 * cos(theta) ** 54 - 2.82128133352193e94 * cos(theta) ** 52 + 5.22488693889676e94 * cos(theta) ** 50 - 7.23218813576105e94 * cos(theta) ** 48 + 7.76943639727473e94 * cos(theta) ** 46 - 6.64026975324471e94 * cos(theta) ** 44 + 4.59188244632273e94 * cos(theta) ** 42 - 2.59934962937796e94 * cos(theta) ** 40 + 1.21406749156575e94 * cos(theta) ** 38 - 4.70242119322713e93 * cos(theta) ** 36 + 1.51458351315598e93 * cos(theta) ** 34 - 4.05963378347111e92 * cos(theta) ** 32 + 9.04572487242439e91 * cos(theta) ** 30 - 1.67086637770896e91 * cos(theta) ** 28 + 2.54672375312092e90 * cos(theta) ** 26 - 3.18218077571818e89 * cos(theta) ** 24 + 3.2313535470869e88 * cos(theta) ** 22 - 2.63667491832241e87 * cos(theta) ** 20 + 1.70397358667094e86 * cos(theta) ** 18 - 8.56183772612986e84 * cos(theta) ** 16 + 3.26579951409912e83 * cos(theta) ** 14 - 9.16397643487573e81 * cos(theta) ** 12 + 1.81301692056894e80 * cos(theta) ** 10 - 2.38206602702488e78 * cos(theta) ** 8 + 1.9002236113019e76 * cos(theta) ** 6 - 7.93744198538806e73 * cos(theta) ** 4 + 1.2983820041529e71 * cos(theta) ** 2 - 3.47068164702726e67 ) * cos(35 * phi) ) # @torch.jit.script def Yl93_m36(theta, phi): return ( 1.5571403693523e-70 * (1.0 - cos(theta) ** 2) ** 18 * ( 1.65155797803024e94 * cos(theta) ** 57 - 1.4248035313169e95 * cos(theta) ** 55 + 5.78096514755626e95 * cos(theta) ** 53 - 1.4670662934314e96 * cos(theta) ** 51 + 2.61244346944838e96 * cos(theta) ** 49 - 3.4714503051653e96 * cos(theta) ** 47 + 3.57394074274637e96 * cos(theta) ** 45 - 2.92171869142767e96 * cos(theta) ** 43 + 1.92859062745555e96 * cos(theta) ** 41 - 1.03973985175118e96 * cos(theta) ** 39 + 4.61345646794986e95 * cos(theta) ** 37 - 1.69287162956177e95 * cos(theta) ** 35 + 5.14958394473032e94 * cos(theta) ** 33 - 1.29908281071075e94 * cos(theta) ** 31 + 2.71371746172732e93 * cos(theta) ** 29 - 4.6784258575851e92 * cos(theta) ** 27 + 6.62148175811439e91 * cos(theta) ** 25 - 7.63723386172364e90 * cos(theta) ** 23 + 7.10897780359117e89 * cos(theta) ** 21 - 5.27334983664481e88 * cos(theta) ** 19 + 3.0671524560077e87 * cos(theta) ** 17 - 1.36989403618078e86 * cos(theta) ** 15 + 4.57211931973877e84 * cos(theta) ** 13 - 1.09967717218509e83 * cos(theta) ** 11 + 1.81301692056894e81 * cos(theta) ** 9 - 1.90565282161991e79 * cos(theta) ** 7 + 1.14013416678114e77 * cos(theta) ** 5 - 3.17497679415522e74 * cos(theta) ** 3 + 2.5967640083058e71 * cos(theta) ) * cos(36 * phi) ) # @torch.jit.script def Yl93_m37(theta, phi): return ( 1.80891708266735e-72 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 9.41388047477235e95 * cos(theta) ** 56 - 7.83641942224293e96 * cos(theta) ** 54 + 3.06391152820482e97 * cos(theta) ** 52 - 7.48203809650016e97 * cos(theta) ** 50 + 1.28009730002971e98 * cos(theta) ** 48 - 1.63158164342769e98 * cos(theta) ** 46 + 1.60827333423587e98 * cos(theta) ** 44 - 1.2563390373139e98 * cos(theta) ** 42 + 7.90722157256774e97 * cos(theta) ** 40 - 4.05498542182961e97 * cos(theta) ** 38 + 1.70697889314145e97 * cos(theta) ** 36 - 5.92505070346618e96 * cos(theta) ** 34 + 1.69936270176101e96 * cos(theta) ** 32 - 4.02715671320334e95 * cos(theta) ** 30 + 7.86978063900922e94 * cos(theta) ** 28 - 1.26317498154798e94 * cos(theta) ** 26 + 1.6553704395286e93 * cos(theta) ** 24 - 1.75656378819644e92 * cos(theta) ** 22 + 1.49288533875415e91 * cos(theta) ** 20 - 1.00193646896251e90 * cos(theta) ** 18 + 5.21415917521308e88 * cos(theta) ** 16 - 2.05484105427117e87 * cos(theta) ** 14 + 5.9437551156604e85 * cos(theta) ** 12 - 1.2096448894036e84 * cos(theta) ** 10 + 1.63171522851205e82 * cos(theta) ** 8 - 1.33395697513393e80 * cos(theta) ** 6 + 5.7006708339057e77 * cos(theta) ** 4 - 9.52493038246567e74 * cos(theta) ** 2 + 2.5967640083058e71 ) * cos(37 * phi) ) # @torch.jit.script def Yl93_m38(theta, phi): return ( 2.11197609764664e-74 * (1.0 - cos(theta) ** 2) ** 19 * ( 5.27177306587251e97 * cos(theta) ** 55 - 4.23166648801118e98 * cos(theta) ** 53 + 1.5932339946665e99 * cos(theta) ** 51 - 3.74101904825008e99 * cos(theta) ** 49 + 6.14446704014259e99 * cos(theta) ** 47 - 7.50527555976739e99 * cos(theta) ** 45 + 7.07640267063782e99 * cos(theta) ** 43 - 5.27662395671838e99 * cos(theta) ** 41 + 3.1628886290271e99 * cos(theta) ** 39 - 1.54089446029525e99 * cos(theta) ** 37 + 6.14512401530921e98 * cos(theta) ** 35 - 2.0145172391785e98 * cos(theta) ** 33 + 5.43796064563522e97 * cos(theta) ** 31 - 1.208147013961e97 * cos(theta) ** 29 + 2.20353857892258e96 * cos(theta) ** 27 - 3.28425495202474e95 * cos(theta) ** 25 + 3.97288905486864e94 * cos(theta) ** 23 - 3.86444033403216e93 * cos(theta) ** 21 + 2.98577067750829e92 * cos(theta) ** 19 - 1.80348564413253e91 * cos(theta) ** 17 + 8.34265468034093e89 * cos(theta) ** 15 - 2.87677747597963e88 * cos(theta) ** 13 + 7.13250613879248e86 * cos(theta) ** 11 - 1.2096448894036e85 * cos(theta) ** 9 + 1.30537218280964e83 * cos(theta) ** 7 - 8.00374185080361e80 * cos(theta) ** 5 + 2.28026833356228e78 * cos(theta) ** 3 - 1.90498607649313e75 * cos(theta) ) * cos(38 * phi) ) # @torch.jit.script def Yl93_m39(theta, phi): return ( 2.47868128902229e-76 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 2.89947518622988e99 * cos(theta) ** 54 - 2.24278323864593e100 * cos(theta) ** 52 + 8.12549337279917e100 * cos(theta) ** 50 - 1.83309933364254e101 * cos(theta) ** 48 + 2.88789950886702e101 * cos(theta) ** 46 - 3.37737400189532e101 * cos(theta) ** 44 + 3.04285314837426e101 * cos(theta) ** 42 - 2.16341582225453e101 * cos(theta) ** 40 + 1.23352656532057e101 * cos(theta) ** 38 - 5.70130950309243e100 * cos(theta) ** 36 + 2.15079340535822e100 * cos(theta) ** 34 - 6.64790688928905e99 * cos(theta) ** 32 + 1.68576780014692e99 * cos(theta) ** 30 - 3.5036263404869e98 * cos(theta) ** 28 + 5.94955416309097e97 * cos(theta) ** 26 - 8.21063738006185e96 * cos(theta) ** 24 + 9.13764482619786e95 * cos(theta) ** 22 - 8.11532470146754e94 * cos(theta) ** 20 + 5.67296428726575e93 * cos(theta) ** 18 - 3.06592559502529e92 * cos(theta) ** 16 + 1.25139820205114e91 * cos(theta) ** 14 - 3.73981071877352e89 * cos(theta) ** 12 + 7.84575675267172e87 * cos(theta) ** 10 - 1.08868040046324e86 * cos(theta) ** 8 + 9.13760527966745e83 * cos(theta) ** 6 - 4.0018709254018e81 * cos(theta) ** 4 + 6.84080500068684e78 * cos(theta) ** 2 - 1.90498607649313e75 ) * cos(39 * phi) ) # @torch.jit.script def Yl93_m40(theta, phi): return ( 2.92481221625372e-78 * (1.0 - cos(theta) ** 2) ** 20 * ( 1.56571660056414e101 * cos(theta) ** 53 - 1.16624728409588e102 * cos(theta) ** 51 + 4.06274668639959e102 * cos(theta) ** 49 - 8.79887680148419e102 * cos(theta) ** 47 + 1.32843377407883e103 * cos(theta) ** 45 - 1.48604456083394e103 * cos(theta) ** 43 + 1.27799832231719e103 * cos(theta) ** 41 - 8.65366328901814e102 * cos(theta) ** 39 + 4.68740094821816e102 * cos(theta) ** 37 - 2.05247142111328e102 * cos(theta) ** 35 + 7.31269757821796e101 * cos(theta) ** 33 - 2.1273302045725e101 * cos(theta) ** 31 + 5.05730340044075e100 * cos(theta) ** 29 - 9.81015375336333e99 * cos(theta) ** 27 + 1.54688408240365e99 * cos(theta) ** 25 - 1.97055297121484e98 * cos(theta) ** 23 + 2.01028186176353e97 * cos(theta) ** 21 - 1.62306494029351e96 * cos(theta) ** 19 + 1.02113357170784e95 * cos(theta) ** 17 - 4.90548095204047e93 * cos(theta) ** 15 + 1.7519574828716e92 * cos(theta) ** 13 - 4.48777286252823e90 * cos(theta) ** 11 + 7.84575675267172e88 * cos(theta) ** 9 - 8.70944320370589e86 * cos(theta) ** 7 + 5.48256316780047e84 * cos(theta) ** 5 - 1.60074837016072e82 * cos(theta) ** 3 + 1.36816100013737e79 * cos(theta) ) * cos(40 * phi) ) # @torch.jit.script def Yl93_m41(theta, phi): return ( 3.47062470594923e-80 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 8.29829798298992e102 * cos(theta) ** 52 - 5.94786114888899e103 * cos(theta) ** 50 + 1.9907458763358e104 * cos(theta) ** 48 - 4.13547209669757e104 * cos(theta) ** 46 + 5.97795198335472e104 * cos(theta) ** 44 - 6.38999161158595e104 * cos(theta) ** 42 + 5.23979312150048e104 * cos(theta) ** 40 - 3.37492868271707e104 * cos(theta) ** 38 + 1.73433835084072e104 * cos(theta) ** 36 - 7.18364997389647e103 * cos(theta) ** 34 + 2.41319020081193e103 * cos(theta) ** 32 - 6.59472363417474e102 * cos(theta) ** 30 + 1.46661798612782e102 * cos(theta) ** 28 - 2.6487415134081e101 * cos(theta) ** 26 + 3.86721020600913e100 * cos(theta) ** 24 - 4.53227183379414e99 * cos(theta) ** 22 + 4.22159190970341e98 * cos(theta) ** 20 - 3.08382338655766e97 * cos(theta) ** 18 + 1.73592707190332e96 * cos(theta) ** 16 - 7.3582214280607e94 * cos(theta) ** 14 + 2.27754472773307e93 * cos(theta) ** 12 - 4.93655014878105e91 * cos(theta) ** 10 + 7.06118107740455e89 * cos(theta) ** 8 - 6.09661024259412e87 * cos(theta) ** 6 + 2.74128158390024e85 * cos(theta) ** 4 - 4.80224511048216e82 * cos(theta) ** 2 + 1.36816100013737e79 ) * cos(41 * phi) ) # @torch.jit.script def Yl93_m42(theta, phi): return ( 4.14227662356497e-82 * (1.0 - cos(theta) ** 2) ** 21 * ( 4.31511495115476e104 * cos(theta) ** 51 - 2.9739305744445e105 * cos(theta) ** 49 + 9.55558020641183e105 * cos(theta) ** 47 - 1.90231716448088e106 * cos(theta) ** 45 + 2.63029887267608e106 * cos(theta) ** 43 - 2.6837964768661e106 * cos(theta) ** 41 + 2.09591724860019e106 * cos(theta) ** 39 - 1.28247289943249e106 * cos(theta) ** 37 + 6.24361806302659e105 * cos(theta) ** 35 - 2.4424409911248e105 * cos(theta) ** 33 + 7.72220864259817e104 * cos(theta) ** 31 - 1.97841709025242e104 * cos(theta) ** 29 + 4.10653036115789e103 * cos(theta) ** 27 - 6.88672793486106e102 * cos(theta) ** 25 + 9.28130449442191e101 * cos(theta) ** 23 - 9.97099803434711e100 * cos(theta) ** 21 + 8.44318381940683e99 * cos(theta) ** 19 - 5.5508820958038e98 * cos(theta) ** 17 + 2.77748331504531e97 * cos(theta) ** 15 - 1.0301509999285e96 * cos(theta) ** 13 + 2.73305367327969e94 * cos(theta) ** 11 - 4.93655014878105e92 * cos(theta) ** 9 + 5.64894486192364e90 * cos(theta) ** 7 - 3.65796614555647e88 * cos(theta) ** 5 + 1.09651263356009e86 * cos(theta) ** 3 - 9.60449022096433e82 * cos(theta) ) * cos(42 * phi) ) # @torch.jit.script def Yl93_m43(theta, phi): return ( 4.97375691234947e-84 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 2.20070862508893e106 * cos(theta) ** 50 - 1.4572259814778e107 * cos(theta) ** 48 + 4.49112269701356e107 * cos(theta) ** 46 - 8.56042724016396e107 * cos(theta) ** 44 + 1.13102851525071e108 * cos(theta) ** 42 - 1.1003565555151e108 * cos(theta) ** 40 + 8.17407726954075e107 * cos(theta) ** 38 - 4.74514972790021e107 * cos(theta) ** 36 + 2.1852663220593e107 * cos(theta) ** 34 - 8.06005527071184e106 * cos(theta) ** 32 + 2.39388467920543e106 * cos(theta) ** 30 - 5.73740956173203e105 * cos(theta) ** 28 + 1.10876319751263e105 * cos(theta) ** 26 - 1.72168198371527e104 * cos(theta) ** 24 + 2.13470003371704e103 * cos(theta) ** 22 - 2.09390958721289e102 * cos(theta) ** 20 + 1.6042049256873e101 * cos(theta) ** 18 - 9.43649956286645e99 * cos(theta) ** 16 + 4.16622497256797e98 * cos(theta) ** 14 - 1.33919629990705e97 * cos(theta) ** 12 + 3.00635904060766e95 * cos(theta) ** 10 - 4.44289513390294e93 * cos(theta) ** 8 + 3.95426140334655e91 * cos(theta) ** 6 - 1.82898307277824e89 * cos(theta) ** 4 + 3.28953790068028e86 * cos(theta) ** 2 - 9.60449022096433e82 ) * cos(43 * phi) ) # @torch.jit.script def Yl93_m44(theta, phi): return ( 6.009512875208e-86 * (1.0 - cos(theta) ** 2) ** 22 * ( 1.10035431254446e108 * cos(theta) ** 49 - 6.99468471109346e108 * cos(theta) ** 47 + 2.06591644062624e109 * cos(theta) ** 45 - 3.76658798567214e109 * cos(theta) ** 43 + 4.750319764053e109 * cos(theta) ** 41 - 4.4014262220604e109 * cos(theta) ** 39 + 3.10614936242549e109 * cos(theta) ** 37 - 1.70825390204407e109 * cos(theta) ** 35 + 7.42990549500164e108 * cos(theta) ** 33 - 2.57921768662779e108 * cos(theta) ** 31 + 7.18165403761629e107 * cos(theta) ** 29 - 1.60647467728497e107 * cos(theta) ** 27 + 2.88278431353284e106 * cos(theta) ** 25 - 4.13203676091664e105 * cos(theta) ** 23 + 4.69634007417749e104 * cos(theta) ** 21 - 4.18781917442579e103 * cos(theta) ** 19 + 2.88756886623713e102 * cos(theta) ** 17 - 1.50983993005863e101 * cos(theta) ** 15 + 5.83271496159516e99 * cos(theta) ** 13 - 1.60703555988846e98 * cos(theta) ** 11 + 3.00635904060766e96 * cos(theta) ** 9 - 3.55431610712236e94 * cos(theta) ** 7 + 2.37255684200793e92 * cos(theta) ** 5 - 7.31593229111295e89 * cos(theta) ** 3 + 6.57907580136057e86 * cos(theta) ) * cos(44 * phi) ) # @torch.jit.script def Yl93_m45(theta, phi): return ( 7.30805297385656e-88 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 5.39173613146787e109 * cos(theta) ** 48 - 3.28750181421392e110 * cos(theta) ** 46 + 9.29662398281806e110 * cos(theta) ** 44 - 1.61963283383902e111 * cos(theta) ** 42 + 1.94763110326173e111 * cos(theta) ** 40 - 1.71655622660356e111 * cos(theta) ** 38 + 1.14927526409743e111 * cos(theta) ** 36 - 5.97888865715426e110 * cos(theta) ** 34 + 2.45186881335054e110 * cos(theta) ** 32 - 7.99557482854614e109 * cos(theta) ** 30 + 2.08267967090873e109 * cos(theta) ** 28 - 4.33748162866941e108 * cos(theta) ** 26 + 7.2069607838321e107 * cos(theta) ** 24 - 9.50368455010826e106 * cos(theta) ** 22 + 9.86231415577273e105 * cos(theta) ** 20 - 7.95685643140899e104 * cos(theta) ** 18 + 4.90886707260313e103 * cos(theta) ** 16 - 2.26475989508795e102 * cos(theta) ** 14 + 7.58252945007371e100 * cos(theta) ** 12 - 1.7677391158773e99 * cos(theta) ** 10 + 2.70572313654689e97 * cos(theta) ** 8 - 2.48802127498565e95 * cos(theta) ** 6 + 1.18627842100396e93 * cos(theta) ** 4 - 2.19477968733388e90 * cos(theta) ** 2 + 6.57907580136057e86 ) * cos(45 * phi) ) # @torch.jit.script def Yl93_m46(theta, phi): return ( 8.94692234611806e-90 * (1.0 - cos(theta) ** 2) ** 23 * ( 2.58803334310458e111 * cos(theta) ** 47 - 1.51225083453841e112 * cos(theta) ** 45 + 4.09051455243995e112 * cos(theta) ** 43 - 6.80245790212389e112 * cos(theta) ** 41 + 7.79052441304692e112 * cos(theta) ** 39 - 6.52291366109352e112 * cos(theta) ** 37 + 4.13739095075075e112 * cos(theta) ** 35 - 2.03282214343245e112 * cos(theta) ** 33 + 7.84598020272173e111 * cos(theta) ** 31 - 2.39867244856384e111 * cos(theta) ** 29 + 5.83150307854443e110 * cos(theta) ** 27 - 1.12774522345405e110 * cos(theta) ** 25 + 1.7296705881197e109 * cos(theta) ** 23 - 2.09081060102382e108 * cos(theta) ** 21 + 1.97246283115455e107 * cos(theta) ** 19 - 1.43223415765362e106 * cos(theta) ** 17 + 7.85418731616501e104 * cos(theta) ** 15 - 3.17066385312313e103 * cos(theta) ** 13 + 9.09903534008845e101 * cos(theta) ** 11 - 1.7677391158773e100 * cos(theta) ** 9 + 2.16457850923751e98 * cos(theta) ** 7 - 1.49281276499139e96 * cos(theta) ** 5 + 4.74511368401586e93 * cos(theta) ** 3 - 4.38955937466777e90 * cos(theta) ) * cos(46 * phi) ) # @torch.jit.script def Yl93_m47(theta, phi): return ( 1.10296243441217e-91 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 1.21637567125915e113 * cos(theta) ** 46 - 6.80512875542282e113 * cos(theta) ** 44 + 1.75892125754918e114 * cos(theta) ** 42 - 2.7890077398708e114 * cos(theta) ** 40 + 3.0383045210883e114 * cos(theta) ** 38 - 2.4134780546046e114 * cos(theta) ** 36 + 1.44808683276276e114 * cos(theta) ** 34 - 6.70831307332708e113 * cos(theta) ** 32 + 2.43225386284374e113 * cos(theta) ** 30 - 6.95615010083514e112 * cos(theta) ** 28 + 1.574505831207e112 * cos(theta) ** 26 - 2.81936305863512e111 * cos(theta) ** 24 + 3.97824235267532e110 * cos(theta) ** 22 - 4.39070226215002e109 * cos(theta) ** 20 + 3.74767937919364e108 * cos(theta) ** 18 - 2.43479806801115e107 * cos(theta) ** 16 + 1.17812809742475e106 * cos(theta) ** 14 - 4.12186300906007e104 * cos(theta) ** 12 + 1.00089388740973e103 * cos(theta) ** 10 - 1.59096520428957e101 * cos(theta) ** 8 + 1.51520495646626e99 * cos(theta) ** 6 - 7.46406382495695e96 * cos(theta) ** 4 + 1.42353410520476e94 * cos(theta) ** 2 - 4.38955937466777e90 ) * cos(47 * phi) ) # @torch.jit.script def Yl93_m48(theta, phi): return ( 1.3695322039999e-93 * (1.0 - cos(theta) ** 2) ** 24 * ( 5.5953280877921e114 * cos(theta) ** 45 - 2.99425665238604e115 * cos(theta) ** 43 + 7.38746928170655e115 * cos(theta) ** 41 - 1.11560309594832e116 * cos(theta) ** 39 + 1.15455571801355e116 * cos(theta) ** 37 - 8.68852099657657e115 * cos(theta) ** 35 + 4.92349523139339e115 * cos(theta) ** 33 - 2.14666018346466e115 * cos(theta) ** 31 + 7.29676158853121e114 * cos(theta) ** 29 - 1.94772202823384e114 * cos(theta) ** 27 + 4.09371516113819e113 * cos(theta) ** 25 - 6.76647134072428e112 * cos(theta) ** 23 + 8.7521331758857e111 * cos(theta) ** 21 - 8.78140452430003e110 * cos(theta) ** 19 + 6.74582288254854e109 * cos(theta) ** 17 - 3.89567690881784e108 * cos(theta) ** 15 + 1.64937933639465e107 * cos(theta) ** 13 - 4.94623561087208e105 * cos(theta) ** 11 + 1.00089388740973e104 * cos(theta) ** 9 - 1.27277216343166e102 * cos(theta) ** 7 + 9.09122973879756e99 * cos(theta) ** 5 - 2.98562552998278e97 * cos(theta) ** 3 + 2.84706821040952e94 * cos(theta) ) * cos(48 * phi) ) # @torch.jit.script def Yl93_m49(theta, phi): return ( 1.71325425814162e-95 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 2.51789763950644e116 * cos(theta) ** 44 - 1.287530360526e117 * cos(theta) ** 42 + 3.02886240549968e117 * cos(theta) ** 40 - 4.35085207419844e117 * cos(theta) ** 38 + 4.27185615665015e117 * cos(theta) ** 36 - 3.0409823488018e117 * cos(theta) ** 34 + 1.62475342635982e117 * cos(theta) ** 32 - 6.65464656874046e116 * cos(theta) ** 30 + 2.11606086067405e116 * cos(theta) ** 28 - 5.25884947623137e115 * cos(theta) ** 26 + 1.02342879028455e115 * cos(theta) ** 24 - 1.55628840836658e114 * cos(theta) ** 22 + 1.837947966936e113 * cos(theta) ** 20 - 1.66846685961701e112 * cos(theta) ** 18 + 1.14678989003325e111 * cos(theta) ** 16 - 5.84351536322676e109 * cos(theta) ** 14 + 2.14419313731305e108 * cos(theta) ** 12 - 5.44085917195929e106 * cos(theta) ** 10 + 9.00804498668756e104 * cos(theta) ** 8 - 8.90940514402161e102 * cos(theta) ** 6 + 4.54561486939878e100 * cos(theta) ** 4 - 8.95687658994834e97 * cos(theta) ** 2 + 2.84706821040952e94 ) * cos(49 * phi) ) # @torch.jit.script def Yl93_m50(theta, phi): return ( 2.1598692572156e-97 * (1.0 - cos(theta) ** 2) ** 25 * ( 1.10787496138284e118 * cos(theta) ** 43 - 5.40762751420919e118 * cos(theta) ** 41 + 1.21154496219987e119 * cos(theta) ** 39 - 1.65332378819541e119 * cos(theta) ** 37 + 1.53786821639405e119 * cos(theta) ** 35 - 1.03393399859261e119 * cos(theta) ** 33 + 5.19921096435142e118 * cos(theta) ** 31 - 1.99639397062214e118 * cos(theta) ** 29 + 5.92497040988734e117 * cos(theta) ** 27 - 1.36730086382016e117 * cos(theta) ** 25 + 2.45622909668291e116 * cos(theta) ** 23 - 3.42383449840649e115 * cos(theta) ** 21 + 3.67589593387199e114 * cos(theta) ** 19 - 3.00324034731061e113 * cos(theta) ** 17 + 1.8348638240532e112 * cos(theta) ** 15 - 8.18092150851747e110 * cos(theta) ** 13 + 2.57303176477566e109 * cos(theta) ** 11 - 5.44085917195929e107 * cos(theta) ** 9 + 7.20643598935005e105 * cos(theta) ** 7 - 5.34564308641297e103 * cos(theta) ** 5 + 1.81824594775951e101 * cos(theta) ** 3 - 1.79137531798967e98 * cos(theta) ) * cos(50 * phi) ) # @torch.jit.script def Yl93_m51(theta, phi): return ( 2.74480811525604e-99 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 4.76386233394619e119 * cos(theta) ** 42 - 2.21712728082577e120 * cos(theta) ** 40 + 4.72502535257951e120 * cos(theta) ** 38 - 6.11729801632301e120 * cos(theta) ** 36 + 5.38253875737918e120 * cos(theta) ** 34 - 3.41198219535562e120 * cos(theta) ** 32 + 1.61175539894894e120 * cos(theta) ** 30 - 5.7895425148042e119 * cos(theta) ** 28 + 1.59974201066958e119 * cos(theta) ** 26 - 3.41825215955039e118 * cos(theta) ** 24 + 5.6493269223707e117 * cos(theta) ** 22 - 7.19005244665362e116 * cos(theta) ** 20 + 6.98420227435679e115 * cos(theta) ** 18 - 5.10550859042804e114 * cos(theta) ** 16 + 2.75229573607981e113 * cos(theta) ** 14 - 1.06351979610727e112 * cos(theta) ** 12 + 2.83033494125322e110 * cos(theta) ** 10 - 4.89677325476336e108 * cos(theta) ** 8 + 5.04450519254503e106 * cos(theta) ** 6 - 2.67282154320648e104 * cos(theta) ** 4 + 5.45473784327854e101 * cos(theta) ** 2 - 1.79137531798967e98 ) * cos(51 * phi) ) # @torch.jit.script def Yl93_m52(theta, phi): return ( 3.51725084593921e-101 * (1.0 - cos(theta) ** 2) ** 26 * ( 2.0008221802574e121 * cos(theta) ** 41 - 8.86850912330308e121 * cos(theta) ** 39 + 1.79550963398021e122 * cos(theta) ** 37 - 2.20222728587628e122 * cos(theta) ** 35 + 1.83006317750892e122 * cos(theta) ** 33 - 1.0918343025138e122 * cos(theta) ** 31 + 4.83526619684682e121 * cos(theta) ** 29 - 1.62107190414518e121 * cos(theta) ** 27 + 4.15932922774091e120 * cos(theta) ** 25 - 8.20380518292093e119 * cos(theta) ** 23 + 1.24285192292155e119 * cos(theta) ** 21 - 1.43801048933072e118 * cos(theta) ** 19 + 1.25715640938422e117 * cos(theta) ** 17 - 8.16881374468486e115 * cos(theta) ** 15 + 3.85321403051173e114 * cos(theta) ** 13 - 1.27622375532873e113 * cos(theta) ** 11 + 2.83033494125322e111 * cos(theta) ** 9 - 3.91741860381069e109 * cos(theta) ** 7 + 3.02670311552702e107 * cos(theta) ** 5 - 1.06912861728259e105 * cos(theta) ** 3 + 1.09094756865571e102 * cos(theta) ) * cos(52 * phi) ) # @torch.jit.script def Yl93_m53(theta, phi): return ( 4.54605814888576e-103 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 8.20337093905535e122 * cos(theta) ** 40 - 3.4587185580882e123 * cos(theta) ** 38 + 6.64338564572679e123 * cos(theta) ** 36 - 7.70779550056699e123 * cos(theta) ** 34 + 6.03920848577944e123 * cos(theta) ** 32 - 3.38468633779277e123 * cos(theta) ** 30 + 1.40222719708558e123 * cos(theta) ** 28 - 4.37689414119198e122 * cos(theta) ** 26 + 1.03983230693523e122 * cos(theta) ** 24 - 1.88687519207181e121 * cos(theta) ** 22 + 2.60998903813526e120 * cos(theta) ** 20 - 2.73221992972838e119 * cos(theta) ** 18 + 2.13716589595318e118 * cos(theta) ** 16 - 1.22532206170273e117 * cos(theta) ** 14 + 5.00917823966525e115 * cos(theta) ** 12 - 1.4038461308616e114 * cos(theta) ** 10 + 2.5473014471279e112 * cos(theta) ** 8 - 2.74219302266748e110 * cos(theta) ** 6 + 1.51335155776351e108 * cos(theta) ** 4 - 3.20738585184778e105 * cos(theta) ** 2 + 1.09094756865571e102 ) * cos(53 * phi) ) # @torch.jit.script def Yl93_m54(theta, phi): return ( 5.92852046636883e-105 * (1.0 - cos(theta) ** 2) ** 27 * ( 3.28134837562214e124 * cos(theta) ** 39 - 1.31431305207352e125 * cos(theta) ** 37 + 2.39161883246164e125 * cos(theta) ** 35 - 2.62065047019278e125 * cos(theta) ** 33 + 1.93254671544942e125 * cos(theta) ** 31 - 1.01540590133783e125 * cos(theta) ** 29 + 3.92623615183962e124 * cos(theta) ** 27 - 1.13799247670991e124 * cos(theta) ** 25 + 2.49559753664455e123 * cos(theta) ** 23 - 4.15112542255799e122 * cos(theta) ** 21 + 5.21997807627053e121 * cos(theta) ** 19 - 4.91799587351108e120 * cos(theta) ** 17 + 3.41946543352508e119 * cos(theta) ** 15 - 1.71545088638382e118 * cos(theta) ** 13 + 6.0110138875983e116 * cos(theta) ** 11 - 1.4038461308616e115 * cos(theta) ** 9 + 2.03784115770232e113 * cos(theta) ** 7 - 1.64531581360049e111 * cos(theta) ** 5 + 6.05340623105404e108 * cos(theta) ** 3 - 6.41477170369556e105 * cos(theta) ) * cos(54 * phi) ) # @torch.jit.script def Yl93_m55(theta, phi): return ( 7.8033872960414e-107 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 1.27972586649263e126 * cos(theta) ** 38 - 4.86295829267201e126 * cos(theta) ** 36 + 8.37066591361575e126 * cos(theta) ** 34 - 8.64814655163617e126 * cos(theta) ** 32 + 5.99089481789321e126 * cos(theta) ** 30 - 2.94467711387971e126 * cos(theta) ** 28 + 1.0600837609967e126 * cos(theta) ** 26 - 2.84498119177478e125 * cos(theta) ** 24 + 5.73987433428246e124 * cos(theta) ** 22 - 8.71736338737178e123 * cos(theta) ** 20 + 9.917958344914e122 * cos(theta) ** 18 - 8.36059298496883e121 * cos(theta) ** 16 + 5.12919815028763e120 * cos(theta) ** 14 - 2.23008615229897e119 * cos(theta) ** 12 + 6.61211527635813e117 * cos(theta) ** 10 - 1.26346151777544e116 * cos(theta) ** 8 + 1.42648881039162e114 * cos(theta) ** 6 - 8.22657906800244e111 * cos(theta) ** 4 + 1.81602186931621e109 * cos(theta) ** 2 - 6.41477170369556e105 ) * cos(55 * phi) ) # @torch.jit.script def Yl93_m56(theta, phi): return ( 1.03704649914995e-108 * (1.0 - cos(theta) ** 2) ** 28 * ( 4.86295829267201e127 * cos(theta) ** 37 - 1.75066498536192e128 * cos(theta) ** 35 + 2.84602641062936e128 * cos(theta) ** 33 - 2.76740689652357e128 * cos(theta) ** 31 + 1.79726844536796e128 * cos(theta) ** 29 - 8.2450959188632e127 * cos(theta) ** 27 + 2.75621777859141e127 * cos(theta) ** 25 - 6.82795486025948e126 * cos(theta) ** 23 + 1.26277235354214e126 * cos(theta) ** 21 - 1.74347267747436e125 * cos(theta) ** 19 + 1.78523250208452e124 * cos(theta) ** 17 - 1.33769487759501e123 * cos(theta) ** 15 + 7.18087741040268e121 * cos(theta) ** 13 - 2.67610338275876e120 * cos(theta) ** 11 + 6.61211527635813e118 * cos(theta) ** 9 - 1.01076921422035e117 * cos(theta) ** 7 + 8.55893286234974e114 * cos(theta) ** 5 - 3.29063162720098e112 * cos(theta) ** 3 + 3.63204373863243e109 * cos(theta) ) * cos(56 * phi) ) # @torch.jit.script def Yl93_m57(theta, phi): return ( 1.39204007488598e-110 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 1.79929456828864e129 * cos(theta) ** 36 - 6.12732744876673e129 * cos(theta) ** 34 + 9.39188715507688e129 * cos(theta) ** 32 - 8.57896137922307e129 * cos(theta) ** 30 + 5.21207849156709e129 * cos(theta) ** 28 - 2.22617589809306e129 * cos(theta) ** 26 + 6.89054444647853e128 * cos(theta) ** 24 - 1.57042961785968e128 * cos(theta) ** 22 + 2.6518219424385e127 * cos(theta) ** 20 - 3.31259808720128e126 * cos(theta) ** 18 + 3.03489525354369e125 * cos(theta) ** 16 - 2.00654231639252e124 * cos(theta) ** 14 + 9.33514063352348e122 * cos(theta) ** 12 - 2.94371372103464e121 * cos(theta) ** 10 + 5.95090374872231e119 * cos(theta) ** 8 - 7.07538449954245e117 * cos(theta) ** 6 + 4.27946643117487e115 * cos(theta) ** 4 - 9.87189488160293e112 * cos(theta) ** 2 + 3.63204373863243e109 ) * cos(57 * phi) ) # @torch.jit.script def Yl93_m58(theta, phi): return ( 1.88804357848192e-112 * (1.0 - cos(theta) ** 2) ** 29 * ( 6.47746044583912e130 * cos(theta) ** 35 - 2.08329133258069e131 * cos(theta) ** 33 + 3.0054038896246e131 * cos(theta) ** 31 - 2.57368841376692e131 * cos(theta) ** 29 + 1.45938197763879e131 * cos(theta) ** 27 - 5.78805733504196e130 * cos(theta) ** 25 + 1.65373066715485e130 * cos(theta) ** 23 - 3.4549451592913e129 * cos(theta) ** 21 + 5.30364388487699e128 * cos(theta) ** 19 - 5.9626765569623e127 * cos(theta) ** 17 + 4.8558324056699e126 * cos(theta) ** 15 - 2.80915924294953e125 * cos(theta) ** 13 + 1.12021687602282e124 * cos(theta) ** 11 - 2.94371372103464e122 * cos(theta) ** 9 + 4.76072299897785e120 * cos(theta) ** 7 - 4.24523069972547e118 * cos(theta) ** 5 + 1.71178657246995e116 * cos(theta) ** 3 - 1.97437897632059e113 * cos(theta) ) * cos(58 * phi) ) # @torch.jit.script def Yl93_m59(theta, phi): return ( 2.58854785336987e-114 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 2.26711115604369e132 * cos(theta) ** 34 - 6.87486139751627e132 * cos(theta) ** 32 + 9.31675205783626e132 * cos(theta) ** 30 - 7.46369639992408e132 * cos(theta) ** 28 + 3.94033133962472e132 * cos(theta) ** 26 - 1.44701433376049e132 * cos(theta) ** 24 + 3.80358053445615e131 * cos(theta) ** 22 - 7.25538483451173e130 * cos(theta) ** 20 + 1.00769233812663e130 * cos(theta) ** 18 - 1.01365501468359e129 * cos(theta) ** 16 + 7.28374860850484e127 * cos(theta) ** 14 - 3.65190701583439e126 * cos(theta) ** 12 + 1.2322385636251e125 * cos(theta) ** 10 - 2.64934234893117e123 * cos(theta) ** 8 + 3.3325060992845e121 * cos(theta) ** 6 - 2.12261534986274e119 * cos(theta) ** 4 + 5.13535971740985e116 * cos(theta) ** 2 - 1.97437897632059e113 ) * cos(59 * phi) ) # @torch.jit.script def Yl93_m60(theta, phi): return ( 3.58897988341905e-116 * (1.0 - cos(theta) ** 2) ** 30 * ( 7.70817793054855e133 * cos(theta) ** 33 - 2.19995564720521e134 * cos(theta) ** 31 + 2.79502561735088e134 * cos(theta) ** 29 - 2.08983499197874e134 * cos(theta) ** 27 + 1.02448614830243e134 * cos(theta) ** 25 - 3.47283440102518e133 * cos(theta) ** 23 + 8.36787717580352e132 * cos(theta) ** 21 - 1.45107696690235e132 * cos(theta) ** 19 + 1.81384620862793e131 * cos(theta) ** 17 - 1.62184802349375e130 * cos(theta) ** 15 + 1.01972480519068e129 * cos(theta) ** 13 - 4.38228841900126e127 * cos(theta) ** 11 + 1.2322385636251e126 * cos(theta) ** 9 - 2.11947387914494e124 * cos(theta) ** 7 + 1.9995036595707e122 * cos(theta) ** 5 - 8.49046139945094e119 * cos(theta) ** 3 + 1.02707194348197e117 * cos(theta) ) * cos(60 * phi) ) # @torch.jit.script def Yl93_m61(theta, phi): return ( 5.03446926325561e-118 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 2.54369871708102e135 * cos(theta) ** 32 - 6.81986250633614e135 * cos(theta) ** 30 + 8.10557429031755e135 * cos(theta) ** 28 - 5.6425544783426e135 * cos(theta) ** 26 + 2.56121537075607e135 * cos(theta) ** 24 - 7.98751912235791e134 * cos(theta) ** 22 + 1.75725420691874e134 * cos(theta) ** 20 - 2.75704623711446e133 * cos(theta) ** 18 + 3.08353855466748e132 * cos(theta) ** 16 - 2.43277203524062e131 * cos(theta) ** 14 + 1.32564224674788e130 * cos(theta) ** 12 - 4.82051726090139e128 * cos(theta) ** 10 + 1.10901470726259e127 * cos(theta) ** 8 - 1.48363171540146e125 * cos(theta) ** 6 + 9.99751829785349e122 * cos(theta) ** 4 - 2.54713841983528e120 * cos(theta) ** 2 + 1.02707194348197e117 ) * cos(61 * phi) ) # @torch.jit.script def Yl93_m62(theta, phi): return ( 7.14846599304781e-120 * (1.0 - cos(theta) ** 2) ** 31 * ( 8.13983589465927e136 * cos(theta) ** 31 - 2.04595875190084e137 * cos(theta) ** 29 + 2.26956080128891e137 * cos(theta) ** 27 - 1.46706416436908e137 * cos(theta) ** 25 + 6.14691688981457e136 * cos(theta) ** 23 - 1.75725420691874e136 * cos(theta) ** 21 + 3.51450841383748e135 * cos(theta) ** 19 - 4.96268322680602e134 * cos(theta) ** 17 + 4.93366168746797e133 * cos(theta) ** 15 - 3.40588084933687e132 * cos(theta) ** 13 + 1.59077069609746e131 * cos(theta) ** 11 - 4.82051726090139e129 * cos(theta) ** 9 + 8.87211765810071e127 * cos(theta) ** 7 - 8.90179029240874e125 * cos(theta) ** 5 + 3.99900731914139e123 * cos(theta) ** 3 - 5.09427683967057e120 * cos(theta) ) * cos(62 * phi) ) # @torch.jit.script def Yl93_m63(theta, phi): return ( 1.02794459985316e-121 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 2.52334912734437e138 * cos(theta) ** 30 - 5.93328038051244e138 * cos(theta) ** 28 + 6.12781416348007e138 * cos(theta) ** 26 - 3.66766041092269e138 * cos(theta) ** 24 + 1.41379088465735e138 * cos(theta) ** 22 - 3.69023383452935e137 * cos(theta) ** 20 + 6.67756598629121e136 * cos(theta) ** 18 - 8.43656148557024e135 * cos(theta) ** 16 + 7.40049253120196e134 * cos(theta) ** 14 - 4.42764510413793e133 * cos(theta) ** 12 + 1.7498477657072e132 * cos(theta) ** 10 - 4.33846553481125e130 * cos(theta) ** 8 + 6.2104823606705e128 * cos(theta) ** 6 - 4.45089514620437e126 * cos(theta) ** 4 + 1.19970219574242e124 * cos(theta) ** 2 - 5.09427683967057e120 ) * cos(63 * phi) ) # @torch.jit.script def Yl93_m64(theta, phi): return ( 1.49781872566821e-123 * (1.0 - cos(theta) ** 2) ** 32 * ( 7.57004738203312e139 * cos(theta) ** 29 - 1.66131850654348e140 * cos(theta) ** 27 + 1.59323168250482e140 * cos(theta) ** 25 - 8.80238498621446e139 * cos(theta) ** 23 + 3.11033994624617e139 * cos(theta) ** 21 - 7.38046766905871e138 * cos(theta) ** 19 + 1.20196187753242e138 * cos(theta) ** 17 - 1.34984983769124e137 * cos(theta) ** 15 + 1.03606895436827e136 * cos(theta) ** 13 - 5.31317412496551e134 * cos(theta) ** 11 + 1.7498477657072e133 * cos(theta) ** 9 - 3.470772427849e131 * cos(theta) ** 7 + 3.7262894164023e129 * cos(theta) ** 5 - 1.78035805848175e127 * cos(theta) ** 3 + 2.39940439148484e124 * cos(theta) ) * cos(64 * phi) ) # @torch.jit.script def Yl93_m65(theta, phi): return ( 2.21274675939624e-125 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 2.1953137407896e141 * cos(theta) ** 28 - 4.48555996766741e141 * cos(theta) ** 26 + 3.98307920626204e141 * cos(theta) ** 24 - 2.02454854682933e141 * cos(theta) ** 22 + 6.53171388711696e140 * cos(theta) ** 20 - 1.40228885712115e140 * cos(theta) ** 18 + 2.04333519180511e139 * cos(theta) ** 16 - 2.02477475653686e138 * cos(theta) ** 14 + 1.34688964067876e137 * cos(theta) ** 12 - 5.84449153746206e135 * cos(theta) ** 10 + 1.57486298913648e134 * cos(theta) ** 8 - 2.4295406994943e132 * cos(theta) ** 6 + 1.86314470820115e130 * cos(theta) ** 4 - 5.34107417544525e127 * cos(theta) ** 2 + 2.39940439148484e124 ) * cos(65 * phi) ) # @torch.jit.script def Yl93_m66(theta, phi): return ( 3.31630247898427e-127 * (1.0 - cos(theta) ** 2) ** 33 * ( 6.14687847421089e142 * cos(theta) ** 27 - 1.16624559159353e143 * cos(theta) ** 25 + 9.5593900950289e142 * cos(theta) ** 23 - 4.45400680302452e142 * cos(theta) ** 21 + 1.30634277742339e142 * cos(theta) ** 19 - 2.52411994281808e141 * cos(theta) ** 17 + 3.26933630688818e140 * cos(theta) ** 15 - 2.8346846591516e139 * cos(theta) ** 13 + 1.61626756881451e138 * cos(theta) ** 11 - 5.84449153746206e136 * cos(theta) ** 9 + 1.25989039130919e135 * cos(theta) ** 7 - 1.45772441969658e133 * cos(theta) ** 5 + 7.4525788328046e130 * cos(theta) ** 3 - 1.06821483508905e128 * cos(theta) ) * cos(66 * phi) ) # @torch.jit.script def Yl93_m67(theta, phi): return ( 5.04559354236107e-129 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 1.65965718803694e144 * cos(theta) ** 26 - 2.91561397898381e144 * cos(theta) ** 24 + 2.19865972185665e144 * cos(theta) ** 22 - 9.35341428635148e143 * cos(theta) ** 20 + 2.48205127710444e143 * cos(theta) ** 18 - 4.29100390279073e142 * cos(theta) ** 16 + 4.90400446033227e141 * cos(theta) ** 14 - 3.68509005689708e140 * cos(theta) ** 12 + 1.77789432569596e139 * cos(theta) ** 10 - 5.26004238371585e137 * cos(theta) ** 8 + 8.81923273916431e135 * cos(theta) ** 6 - 7.2886220984829e133 * cos(theta) ** 4 + 2.23577364984138e131 * cos(theta) ** 2 - 1.06821483508905e128 ) * cos(67 * phi) ) # @torch.jit.script def Yl93_m68(theta, phi): return ( 7.79852825780955e-131 * (1.0 - cos(theta) ** 2) ** 34 * ( 4.31510868889605e145 * cos(theta) ** 25 - 6.99747354956116e145 * cos(theta) ** 23 + 4.83705138808462e145 * cos(theta) ** 21 - 1.8706828572703e145 * cos(theta) ** 19 + 4.467692298788e144 * cos(theta) ** 17 - 6.86560624446517e143 * cos(theta) ** 15 + 6.86560624446517e142 * cos(theta) ** 13 - 4.42210806827649e141 * cos(theta) ** 11 + 1.77789432569596e140 * cos(theta) ** 9 - 4.20803390697268e138 * cos(theta) ** 7 + 5.29153964349858e136 * cos(theta) ** 5 - 2.91544883939316e134 * cos(theta) ** 3 + 4.47154729968276e131 * cos(theta) ) * cos(68 * phi) ) # @torch.jit.script def Yl93_m69(theta, phi): return ( 1.22542049208268e-132 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 1.07877717222401e147 * cos(theta) ** 24 - 1.60941891639907e147 * cos(theta) ** 22 + 1.01578079149777e147 * cos(theta) ** 20 - 3.55429742881356e146 * cos(theta) ** 18 + 7.5950769079396e145 * cos(theta) ** 16 - 1.02984093666978e145 * cos(theta) ** 14 + 8.92528811780473e143 * cos(theta) ** 12 - 4.86431887510414e142 * cos(theta) ** 10 + 1.60010489312636e141 * cos(theta) ** 8 - 2.94562373488088e139 * cos(theta) ** 6 + 2.64576982174929e137 * cos(theta) ** 4 - 8.74634651817948e134 * cos(theta) ** 2 + 4.47154729968276e131 ) * cos(69 * phi) ) # @torch.jit.script def Yl93_m70(theta, phi): return ( 1.95923132334199e-134 * (1.0 - cos(theta) ** 2) ** 35 * ( 2.58906521333763e148 * cos(theta) ** 23 - 3.54072161607794e148 * cos(theta) ** 21 + 2.03156158299554e148 * cos(theta) ** 19 - 6.39773537186441e147 * cos(theta) ** 17 + 1.21521230527034e147 * cos(theta) ** 15 - 1.44177731133769e146 * cos(theta) ** 13 + 1.07103457413657e145 * cos(theta) ** 11 - 4.86431887510414e143 * cos(theta) ** 9 + 1.28008391450109e142 * cos(theta) ** 7 - 1.76737424092853e140 * cos(theta) ** 5 + 1.05830792869972e138 * cos(theta) ** 3 - 1.7492693036359e135 * cos(theta) ) * cos(70 * phi) ) # @torch.jit.script def Yl93_m71(theta, phi): return ( 3.19006750642644e-136 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 5.95484999067654e149 * cos(theta) ** 22 - 7.43551539376368e149 * cos(theta) ** 20 + 3.85996700769153e149 * cos(theta) ** 18 - 1.08761501321695e149 * cos(theta) ** 16 + 1.8228184579055e148 * cos(theta) ** 14 - 1.87431050473899e147 * cos(theta) ** 12 + 1.17813803155022e146 * cos(theta) ** 10 - 4.37788698759373e144 * cos(theta) ** 8 + 8.96058740150763e142 * cos(theta) ** 6 - 8.83687120464264e140 * cos(theta) ** 4 + 3.17492378609915e138 * cos(theta) ** 2 - 1.7492693036359e135 ) * cos(71 * phi) ) # @torch.jit.script def Yl93_m72(theta, phi): return ( 5.29476343404247e-138 * (1.0 - cos(theta) ** 2) ** 36 * ( 1.31006699794884e151 * cos(theta) ** 21 - 1.48710307875274e151 * cos(theta) ** 19 + 6.94794061384475e150 * cos(theta) ** 17 - 1.74018402114712e150 * cos(theta) ** 15 + 2.5519458410677e149 * cos(theta) ** 13 - 2.24917260568679e148 * cos(theta) ** 11 + 1.17813803155022e147 * cos(theta) ** 9 - 3.50230959007498e145 * cos(theta) ** 7 + 5.37635244090458e143 * cos(theta) ** 5 - 3.53474848185705e141 * cos(theta) ** 3 + 6.3498475721983e138 * cos(theta) ) * cos(72 * phi) ) # @torch.jit.script def Yl93_m73(theta, phi): return ( 8.96773713382673e-140 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 2.75114069569256e152 * cos(theta) ** 20 - 2.8254958496302e152 * cos(theta) ** 18 + 1.18114990435361e152 * cos(theta) ** 16 - 2.61027603172068e151 * cos(theta) ** 14 + 3.31752959338802e150 * cos(theta) ** 12 - 2.47408986625547e149 * cos(theta) ** 10 + 1.0603242283952e148 * cos(theta) ** 8 - 2.45161671305249e146 * cos(theta) ** 6 + 2.68817622045229e144 * cos(theta) ** 4 - 1.06042454455712e142 * cos(theta) ** 2 + 6.3498475721983e138 ) * cos(73 * phi) ) # @torch.jit.script def Yl93_m74(theta, phi): return ( 1.55170670284662e-141 * (1.0 - cos(theta) ** 2) ** 37 * ( 5.50228139138513e153 * cos(theta) ** 19 - 5.08589252933436e153 * cos(theta) ** 17 + 1.88983984696577e153 * cos(theta) ** 15 - 3.65438644440895e152 * cos(theta) ** 13 + 3.98103551206562e151 * cos(theta) ** 11 - 2.47408986625547e150 * cos(theta) ** 9 + 8.48259382716161e148 * cos(theta) ** 7 - 1.47097002783149e147 * cos(theta) ** 5 + 1.07527048818092e145 * cos(theta) ** 3 - 2.12084908911423e142 * cos(theta) ) * cos(74 * phi) ) # @torch.jit.script def Yl93_m75(theta, phi): return ( 2.74649109223644e-143 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 1.04543346436317e155 * cos(theta) ** 18 - 8.64601729986841e154 * cos(theta) ** 16 + 2.83475977044866e154 * cos(theta) ** 14 - 4.75070237773164e153 * cos(theta) ** 12 + 4.37913906327218e152 * cos(theta) ** 10 - 2.22668087962992e151 * cos(theta) ** 8 + 5.93781567901313e149 * cos(theta) ** 6 - 7.35485013915747e147 * cos(theta) ** 4 + 3.22581146454275e145 * cos(theta) ** 2 - 2.12084908911423e142 ) * cos(75 * phi) ) # @torch.jit.script def Yl93_m76(theta, phi): return ( 4.97964737381752e-145 * (1.0 - cos(theta) ** 2) ** 38 * ( 1.88178023585371e156 * cos(theta) ** 17 - 1.38336276797895e156 * cos(theta) ** 15 + 3.96866367862812e155 * cos(theta) ** 13 - 5.70084285327797e154 * cos(theta) ** 11 + 4.37913906327218e153 * cos(theta) ** 9 - 1.78134470370394e152 * cos(theta) ** 7 + 3.56268940740788e150 * cos(theta) ** 5 - 2.94194005566299e148 * cos(theta) ** 3 + 6.4516229290855e145 * cos(theta) ) * cos(76 * phi) ) # @torch.jit.script def Yl93_m77(theta, phi): return ( 9.26295743867017e-147 * (1.0 - cos(theta) ** 2) ** 38.5 * ( 3.19902640095131e157 * cos(theta) ** 16 - 2.07504415196842e157 * cos(theta) ** 14 + 5.15926278221656e156 * cos(theta) ** 12 - 6.27092713860576e155 * cos(theta) ** 10 + 3.94122515694496e154 * cos(theta) ** 8 - 1.24694129259276e153 * cos(theta) ** 6 + 1.78134470370394e151 * cos(theta) ** 4 - 8.82582016698896e148 * cos(theta) ** 2 + 6.4516229290855e145 ) * cos(77 * phi) ) # @torch.jit.script def Yl93_m78(theta, phi): return ( 1.77089014883691e-148 * (1.0 - cos(theta) ** 2) ** 39 * ( 5.1184422415221e158 * cos(theta) ** 15 - 2.90506181275579e158 * cos(theta) ** 13 + 6.19111533865987e157 * cos(theta) ** 11 - 6.27092713860576e156 * cos(theta) ** 9 + 3.15298012555597e155 * cos(theta) ** 7 - 7.48164775555654e153 * cos(theta) ** 5 + 7.12537881481575e151 * cos(theta) ** 3 - 1.76516403339779e149 * cos(theta) ) * cos(78 * phi) ) # @torch.jit.script def Yl93_m79(theta, phi): return ( 3.48643657580112e-150 * (1.0 - cos(theta) ** 2) ** 39.5 * ( 7.67766336228315e159 * cos(theta) ** 14 - 3.77658035658252e159 * cos(theta) ** 12 + 6.81022687252586e158 * cos(theta) ** 10 - 5.64383442474519e157 * cos(theta) ** 8 + 2.20708608788918e156 * cos(theta) ** 6 - 3.74082387777827e154 * cos(theta) ** 4 + 2.13761364444473e152 * cos(theta) ** 2 - 1.76516403339779e149 ) * cos(79 * phi) ) # @torch.jit.script def Yl93_m80(theta, phi): return ( 7.08426338913616e-152 * (1.0 - cos(theta) ** 2) ** 40 * ( 1.07487287071964e161 * cos(theta) ** 13 - 4.53189642789903e160 * cos(theta) ** 11 + 6.81022687252586e159 * cos(theta) ** 9 - 4.51506753979615e158 * cos(theta) ** 7 + 1.32425165273351e157 * cos(theta) ** 5 - 1.49632955111131e155 * cos(theta) ** 3 + 4.27522728888945e152 * cos(theta) ) * cos(80 * phi) ) # @torch.jit.script def Yl93_m81(theta, phi): return ( 1.48952706678971e-153 * (1.0 - cos(theta) ** 2) ** 40.5 * ( 1.39733473193553e162 * cos(theta) ** 12 - 4.98508607068893e161 * cos(theta) ** 10 + 6.12920418527327e160 * cos(theta) ** 8 - 3.16054727785731e159 * cos(theta) ** 6 + 6.62125826366754e157 * cos(theta) ** 4 - 4.48898865333392e155 * cos(theta) ** 2 + 4.27522728888945e152 ) * cos(81 * phi) ) # @torch.jit.script def Yl93_m82(theta, phi): return ( 3.25041453964257e-155 * (1.0 - cos(theta) ** 2) ** 41 * ( 1.67680167832264e163 * cos(theta) ** 11 - 4.98508607068893e162 * cos(theta) ** 9 + 4.90336334821862e161 * cos(theta) ** 7 - 1.89632836671438e160 * cos(theta) ** 5 + 2.64850330546702e158 * cos(theta) ** 3 - 8.97797730666785e155 * cos(theta) ) * cos(82 * phi) ) # @torch.jit.script def Yl93_m83(theta, phi): return ( 7.38730577191492e-157 * (1.0 - cos(theta) ** 2) ** 41.5 * ( 1.8444818461549e164 * cos(theta) ** 10 - 4.48657746362004e163 * cos(theta) ** 8 + 3.43235434375303e162 * cos(theta) ** 6 - 9.48164183357192e160 * cos(theta) ** 4 + 7.94550991640105e158 * cos(theta) ** 2 - 8.97797730666785e155 ) * cos(83 * phi) ) # @torch.jit.script def Yl93_m84(theta, phi): return ( 1.75589863946563e-158 * (1.0 - cos(theta) ** 2) ** 42 * ( 1.8444818461549e165 * cos(theta) ** 9 - 3.58926197089603e164 * cos(theta) ** 7 + 2.05941260625182e163 * cos(theta) ** 5 - 3.79265673342877e161 * cos(theta) ** 3 + 1.58910198328021e159 * cos(theta) ) * cos(84 * phi) ) # @torch.jit.script def Yl93_m85(theta, phi): return ( 4.3870055764807e-160 * (1.0 - cos(theta) ** 2) ** 42.5 * ( 1.66003366153941e166 * cos(theta) ** 8 - 2.51248337962722e165 * cos(theta) ** 6 + 1.02970630312591e164 * cos(theta) ** 4 - 1.13779702002863e162 * cos(theta) ** 2 + 1.58910198328021e159 ) * cos(85 * phi) ) # @torch.jit.script def Yl93_m86(theta, phi): return ( 1.15930224656375e-161 * (1.0 - cos(theta) ** 2) ** 43 * ( 1.32802692923153e167 * cos(theta) ** 7 - 1.50749002777633e166 * cos(theta) ** 5 + 4.11882521250364e164 * cos(theta) ** 3 - 2.27559404005726e162 * cos(theta) ) * cos(86 * phi) ) # @torch.jit.script def Yl93_m87(theta, phi): return ( 3.26596408733228e-163 * (1.0 - cos(theta) ** 2) ** 43.5 * ( 9.29618850462072e167 * cos(theta) ** 6 - 7.53745013888166e166 * cos(theta) ** 4 + 1.23564756375109e165 * cos(theta) ** 2 - 2.27559404005726e162 ) * cos(87 * phi) ) # @torch.jit.script def Yl93_m88(theta, phi): return ( 9.91052114065714e-165 * (1.0 - cos(theta) ** 2) ** 44 * ( 5.57771310277243e168 * cos(theta) ** 5 - 3.01498005555266e167 * cos(theta) ** 3 + 2.47129512750218e165 * cos(theta) ) * cos(88 * phi) ) # @torch.jit.script def Yl93_m89(theta, phi): return ( 3.28530576761869e-166 * (1.0 - cos(theta) ** 2) ** 44.5 * ( 2.78885655138621e169 * cos(theta) ** 4 - 9.04494016665799e167 * cos(theta) ** 2 + 2.47129512750218e165 ) * cos(89 * phi) ) # @torch.jit.script def Yl93_m90(theta, phi): return ( 1.21428395250674e-167 * (1.0 - cos(theta) ** 2) ** 45 * (1.11554262055449e170 * cos(theta) ** 3 - 1.8089880333316e168 * cos(theta)) * cos(90 * phi) ) # @torch.jit.script def Yl93_m91(theta, phi): return ( 5.16833572383453e-169 * (1.0 - cos(theta) ** 2) ** 45.5 * (3.34662786166346e170 * cos(theta) ** 2 - 1.8089880333316e168) * cos(91 * phi) ) # @torch.jit.script def Yl93_m92(theta, phi): return 17.9840405331759 * (1.0 - cos(theta) ** 2) ** 46 * cos(92 * phi) * cos(theta) # @torch.jit.script def Yl93_m93(theta, phi): return 1.31865383030867 * (1.0 - cos(theta) ** 2) ** 46.5 * cos(93 * phi) # @torch.jit.script def Yl94_m_minus_94(theta, phi): return 1.32215623708918 * (1.0 - cos(theta) ** 2) ** 47 * sin(94 * phi) # @torch.jit.script def Yl94_m_minus_93(theta, phi): return ( 18.1284929784988 * (1.0 - cos(theta) ** 2) ** 46.5 * sin(93 * phi) * cos(theta) ) # @torch.jit.script def Yl94_m_minus_92(theta, phi): return ( 2.80103463690266e-171 * (1.0 - cos(theta) ** 2) ** 46 * (6.25819410131067e172 * cos(theta) ** 2 - 3.34662786166346e170) * sin(92 * phi) ) # @torch.jit.script def Yl94_m_minus_91(theta, phi): return ( 6.61661063590542e-170 * (1.0 - cos(theta) ** 2) ** 45.5 * (2.08606470043689e172 * cos(theta) ** 3 - 3.34662786166346e170 * cos(theta)) * sin(91 * phi) ) # @torch.jit.script def Yl94_m_minus_90(theta, phi): return ( 1.79991268864106e-168 * (1.0 - cos(theta) ** 2) ** 45 * ( 5.21516175109222e171 * cos(theta) ** 4 - 1.67331393083173e170 * cos(theta) ** 2 + 4.522470083329e167 ) * sin(90 * phi) ) # @torch.jit.script def Yl94_m_minus_89(theta, phi): return ( 5.45940549125323e-167 * (1.0 - cos(theta) ** 2) ** 44.5 * ( 1.04303235021844e171 * cos(theta) ** 5 - 5.57771310277243e169 * cos(theta) ** 3 + 4.522470083329e167 * cos(theta) ) * sin(89 * phi) ) # @torch.jit.script def Yl94_m_minus_88(theta, phi): return ( 1.80903313770319e-165 * (1.0 - cos(theta) ** 2) ** 44 * ( 1.73838725036407e170 * cos(theta) ** 6 - 1.39442827569311e169 * cos(theta) ** 4 + 2.2612350416645e167 * cos(theta) ** 2 - 4.11882521250364e164 ) * sin(88 * phi) ) # @torch.jit.script def Yl94_m_minus_87(theta, phi): return ( 6.4570066889192e-164 * (1.0 - cos(theta) ** 2) ** 43.5 * ( 2.48341035766296e169 * cos(theta) ** 7 - 2.78885655138621e168 * cos(theta) ** 5 + 7.53745013888166e166 * cos(theta) ** 3 - 4.11882521250364e164 * cos(theta) ) * sin(87 * phi) ) # @torch.jit.script def Yl94_m_minus_86(theta, phi): return ( 2.45705861613682e-162 * (1.0 - cos(theta) ** 2) ** 43 * ( 3.1042629470787e168 * cos(theta) ** 8 - 4.64809425231036e167 * cos(theta) ** 6 + 1.88436253472042e166 * cos(theta) ** 4 - 2.05941260625182e164 * cos(theta) ** 2 + 2.84449255007157e161 ) * sin(86 * phi) ) # @torch.jit.script def Yl94_m_minus_85(theta, phi): return ( 9.8894701626903e-161 * (1.0 - cos(theta) ** 2) ** 42.5 * ( 3.44918105230967e167 * cos(theta) ** 9 - 6.64013464615765e166 * cos(theta) ** 7 + 3.76872506944083e165 * cos(theta) ** 5 - 6.86470868750607e163 * cos(theta) ** 3 + 2.84449255007157e161 * cos(theta) ) * sin(85 * phi) ) # @torch.jit.script def Yl94_m_minus_84(theta, phi): return ( 4.18407576385452e-159 * (1.0 - cos(theta) ** 2) ** 42 * ( 3.44918105230967e166 * cos(theta) ** 10 - 8.30016830769707e165 * cos(theta) ** 8 + 6.28120844906805e164 * cos(theta) ** 6 - 1.71617717187652e163 * cos(theta) ** 4 + 1.42224627503579e161 * cos(theta) ** 2 - 1.58910198328021e158 ) * sin(84 * phi) ) # @torch.jit.script def Yl94_m_minus_83(theta, phi): return ( 1.85142397671217e-157 * (1.0 - cos(theta) ** 2) ** 41.5 * ( 3.13561913846334e165 * cos(theta) ** 11 - 9.22240923077452e164 * cos(theta) ** 9 + 8.97315492724007e163 * cos(theta) ** 7 - 3.43235434375303e162 * cos(theta) ** 5 + 4.74082091678596e160 * cos(theta) ** 3 - 1.58910198328021e158 * cos(theta) ) * sin(83 * phi) ) # @torch.jit.script def Yl94_m_minus_82(theta, phi): return ( 8.53263444373482e-156 * (1.0 - cos(theta) ** 2) ** 41 * ( 2.61301594871945e164 * cos(theta) ** 12 - 9.22240923077452e163 * cos(theta) ** 10 + 1.12164436590501e163 * cos(theta) ** 8 - 5.72059057292172e161 * cos(theta) ** 6 + 1.18520522919649e160 * cos(theta) ** 4 - 7.94550991640105e157 * cos(theta) ** 2 + 7.48164775555654e154 ) * sin(82 * phi) ) # @torch.jit.script def Yl94_m_minus_81(theta, phi): return ( 4.08141870014996e-154 * (1.0 - cos(theta) ** 2) ** 40.5 * ( 2.01001226824573e163 * cos(theta) ** 13 - 8.3840083916132e162 * cos(theta) ** 11 + 1.24627151767223e162 * cos(theta) ** 9 - 8.17227224703103e160 * cos(theta) ** 7 + 2.37041045839298e159 * cos(theta) ** 5 - 2.64850330546702e157 * cos(theta) ** 3 + 7.48164775555654e154 * cos(theta) ) * sin(81 * phi) ) # @torch.jit.script def Yl94_m_minus_80(theta, phi): return ( 2.02019918781633e-152 * (1.0 - cos(theta) ** 2) ** 40 * ( 1.43572304874695e162 * cos(theta) ** 14 - 6.98667365967767e161 * cos(theta) ** 12 + 1.24627151767223e161 * cos(theta) ** 10 - 1.02153403087888e160 * cos(theta) ** 8 + 3.95068409732163e158 * cos(theta) ** 6 - 6.62125826366754e156 * cos(theta) ** 4 + 3.74082387777827e154 * cos(theta) ** 2 - 3.05373377777818e151 ) * sin(80 * phi) ) # @torch.jit.script def Yl94_m_minus_79(theta, phi): return ( 1.03208257516365e-150 * (1.0 - cos(theta) ** 2) ** 39.5 * ( 9.57148699164633e160 * cos(theta) ** 15 - 5.3743643535982e160 * cos(theta) ** 13 + 1.13297410697476e160 * cos(theta) ** 11 - 1.13503781208764e159 * cos(theta) ** 9 + 5.64383442474519e157 * cos(theta) ** 7 - 1.32425165273351e156 * cos(theta) ** 5 + 1.24694129259276e154 * cos(theta) ** 3 - 3.05373377777818e151 * cos(theta) ) * sin(79 * phi) ) # @torch.jit.script def Yl94_m_minus_78(theta, phi): return ( 5.42997073227417e-149 * (1.0 - cos(theta) ** 2) ** 39 * ( 5.98217936977895e159 * cos(theta) ** 16 - 3.83883168114157e159 * cos(theta) ** 14 + 9.4414508914563e158 * cos(theta) ** 12 - 1.13503781208764e158 * cos(theta) ** 10 + 7.05479303093148e156 * cos(theta) ** 8 - 2.20708608788918e155 * cos(theta) ** 6 + 3.11735323148189e153 * cos(theta) ** 4 - 1.52686688888909e151 * cos(theta) ** 2 + 1.10322752087362e148 ) * sin(78 * phi) ) # @torch.jit.script def Yl94_m_minus_77(theta, phi): return ( 2.93620364103731e-147 * (1.0 - cos(theta) ** 2) ** 38.5 * ( 3.51892904104644e158 * cos(theta) ** 17 - 2.55922112076105e158 * cos(theta) ** 15 + 7.26265453188947e157 * cos(theta) ** 13 - 1.03185255644331e157 * cos(theta) ** 11 + 7.8386589232572e155 * cos(theta) ** 9 - 3.15298012555597e154 * cos(theta) ** 7 + 6.23470646296378e152 * cos(theta) ** 5 - 5.08955629629697e150 * cos(theta) ** 3 + 1.10322752087362e148 * cos(theta) ) * sin(77 * phi) ) # @torch.jit.script def Yl94_m_minus_76(theta, phi): return ( 1.6289977356341e-145 * (1.0 - cos(theta) ** 2) ** 38 * ( 1.95496057835914e157 * cos(theta) ** 18 - 1.59951320047566e157 * cos(theta) ** 16 + 5.18761037992105e156 * cos(theta) ** 14 - 8.59877130369427e155 * cos(theta) ** 12 + 7.8386589232572e154 * cos(theta) ** 10 - 3.94122515694496e153 * cos(theta) ** 8 + 1.0391177438273e152 * cos(theta) ** 6 - 1.27238907407424e150 * cos(theta) ** 4 + 5.5161376043681e147 * cos(theta) ** 2 - 3.58423496060305e144 ) * sin(76 * phi) ) # @torch.jit.script def Yl94_m_minus_75(theta, phi): return ( 9.25809732143938e-144 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 1.02892662018902e156 * cos(theta) ** 19 - 9.40890117926856e155 * cos(theta) ** 17 + 3.45840691994736e155 * cos(theta) ** 15 - 6.61443946438021e154 * cos(theta) ** 13 + 7.12605356659746e153 * cos(theta) ** 11 - 4.37913906327218e152 * cos(theta) ** 9 + 1.48445391975328e151 * cos(theta) ** 7 - 2.54477814814848e149 * cos(theta) ** 5 + 1.83871253478937e147 * cos(theta) ** 3 - 3.58423496060305e144 * cos(theta) ) * sin(75 * phi) ) # @torch.jit.script def Yl94_m_minus_74(theta, phi): return ( 5.38245108779227e-142 * (1.0 - cos(theta) ** 2) ** 37 * ( 5.14463310094509e154 * cos(theta) ** 20 - 5.22716732181587e154 * cos(theta) ** 18 + 2.1615043249671e154 * cos(theta) ** 16 - 4.72459961741443e153 * cos(theta) ** 14 + 5.93837797216455e152 * cos(theta) ** 12 - 4.37913906327218e151 * cos(theta) ** 10 + 1.8555673996916e150 * cos(theta) ** 8 - 4.24129691358081e148 * cos(theta) ** 6 + 4.59678133697342e146 * cos(theta) ** 4 - 1.79211748030153e144 * cos(theta) ** 2 + 1.06042454455712e141 ) * sin(74 * phi) ) # @torch.jit.script def Yl94_m_minus_73(theta, phi): return ( 3.19701283740957e-140 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 2.44982528616433e153 * cos(theta) ** 21 - 2.75114069569256e153 * cos(theta) ** 19 + 1.27147313233359e153 * cos(theta) ** 17 - 3.14973307827629e152 * cos(theta) ** 15 + 4.56798305551119e151 * cos(theta) ** 13 - 3.98103551206562e150 * cos(theta) ** 11 + 2.06174155521289e149 * cos(theta) ** 9 - 6.05899559082972e147 * cos(theta) ** 7 + 9.19356267394683e145 * cos(theta) ** 5 - 5.97372493433842e143 * cos(theta) ** 3 + 1.06042454455712e141 * cos(theta) ) * sin(73 * phi) ) # @torch.jit.script def Yl94_m_minus_72(theta, phi): return ( 1.93782233028034e-138 * (1.0 - cos(theta) ** 2) ** 36 * ( 1.11355694825651e152 * cos(theta) ** 22 - 1.37557034784628e152 * cos(theta) ** 20 + 7.0637396240755e151 * cos(theta) ** 18 - 1.96858317392268e151 * cos(theta) ** 16 + 3.26284503965085e150 * cos(theta) ** 14 - 3.31752959338802e149 * cos(theta) ** 12 + 2.06174155521289e148 * cos(theta) ** 10 - 7.57374448853715e146 * cos(theta) ** 8 + 1.53226044565781e145 * cos(theta) ** 6 - 1.49343123358461e143 * cos(theta) ** 4 + 5.30212272278558e140 * cos(theta) ** 2 - 2.88629435099923e137 ) * sin(72 * phi) ) # @torch.jit.script def Yl94_m_minus_71(theta, phi): return ( 1.19737977497088e-136 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 4.84155194894136e150 * cos(theta) ** 23 - 6.5503349897442e150 * cos(theta) ** 21 + 3.71775769688184e150 * cos(theta) ** 19 - 1.15799010230746e150 * cos(theta) ** 17 + 2.1752300264339e149 * cos(theta) ** 15 - 2.5519458410677e148 * cos(theta) ** 13 + 1.87431050473899e147 * cos(theta) ** 11 - 8.41527165393017e145 * cos(theta) ** 9 + 2.18894349379686e144 * cos(theta) ** 7 - 2.98686246716921e142 * cos(theta) ** 5 + 1.76737424092853e140 * cos(theta) ** 3 - 2.88629435099923e137 * cos(theta) ) * sin(71 * phi) ) # @torch.jit.script def Yl94_m_minus_70(theta, phi): return ( 7.53493501565664e-135 * (1.0 - cos(theta) ** 2) ** 35 * ( 2.0173133120589e149 * cos(theta) ** 24 - 2.97742499533827e149 * cos(theta) ** 22 + 1.85887884844092e149 * cos(theta) ** 20 - 6.43327834615255e148 * cos(theta) ** 18 + 1.35951876652119e148 * cos(theta) ** 16 - 1.8228184579055e147 * cos(theta) ** 14 + 1.56192542061583e146 * cos(theta) ** 12 - 8.41527165393017e144 * cos(theta) ** 10 + 2.73617936724608e143 * cos(theta) ** 8 - 4.97810411194869e141 * cos(theta) ** 6 + 4.41843560232132e139 * cos(theta) ** 4 - 1.44314717549961e137 * cos(theta) ** 2 + 7.2886220984829e133 ) * sin(70 * phi) ) # @torch.jit.script def Yl94_m_minus_69(theta, phi): return ( 4.82471250262325e-133 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 8.06925324823561e147 * cos(theta) ** 25 - 1.29453260666881e148 * cos(theta) ** 23 + 8.85180404019486e147 * cos(theta) ** 21 - 3.38593597165924e147 * cos(theta) ** 19 + 7.99716921483052e146 * cos(theta) ** 17 - 1.21521230527034e146 * cos(theta) ** 15 + 1.20148109278141e145 * cos(theta) ** 13 - 7.65024695811834e143 * cos(theta) ** 11 + 3.04019929694009e142 * cos(theta) ** 9 - 7.11157730278384e140 * cos(theta) ** 7 + 8.83687120464264e138 * cos(theta) ** 5 - 4.81049058499871e136 * cos(theta) ** 3 + 7.2886220984829e133 * cos(theta) ) * sin(69 * phi) ) # @torch.jit.script def Yl94_m_minus_68(theta, phi): return ( 3.14088413358919e-131 * (1.0 - cos(theta) ** 2) ** 34 * ( 3.10355894162908e146 * cos(theta) ** 26 - 5.39388586112006e146 * cos(theta) ** 24 + 4.02354729099766e146 * cos(theta) ** 22 - 1.69296798582962e146 * cos(theta) ** 20 + 4.44287178601695e145 * cos(theta) ** 18 - 7.5950769079396e144 * cos(theta) ** 16 + 8.58200780558147e143 * cos(theta) ** 14 - 6.37520579843195e142 * cos(theta) ** 12 + 3.04019929694009e141 * cos(theta) ** 10 - 8.8894716284798e139 * cos(theta) ** 8 + 1.47281186744044e138 * cos(theta) ** 6 - 1.20262264624968e136 * cos(theta) ** 4 + 3.64431104924145e133 * cos(theta) ** 2 - 1.71982588449337e130 ) * sin(68 * phi) ) # @torch.jit.script def Yl94_m_minus_67(theta, phi): return ( 2.07726213649423e-129 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 1.14946627467744e145 * cos(theta) ** 27 - 2.15755434444802e145 * cos(theta) ** 25 + 1.74936838739029e145 * cos(theta) ** 23 - 8.06175231347437e144 * cos(theta) ** 21 + 2.33835357158787e144 * cos(theta) ** 19 - 4.467692298788e143 * cos(theta) ** 17 + 5.72133853705431e142 * cos(theta) ** 15 - 4.90400446033227e141 * cos(theta) ** 13 + 2.76381754267281e140 * cos(theta) ** 11 - 9.87719069831088e138 * cos(theta) ** 9 + 2.10401695348634e137 * cos(theta) ** 7 - 2.40524529249936e135 * cos(theta) ** 5 + 1.21477034974715e133 * cos(theta) ** 3 - 1.71982588449337e130 * cos(theta) ) * sin(67 * phi) ) # @torch.jit.script def Yl94_m_minus_66(theta, phi): return ( 1.39470789309361e-127 * (1.0 - cos(theta) ** 2) ** 33 * ( 4.10523669527656e143 * cos(theta) ** 28 - 8.2982859401847e143 * cos(theta) ** 26 + 7.28903494745954e143 * cos(theta) ** 24 - 3.66443286976108e143 * cos(theta) ** 22 + 1.16917678579394e143 * cos(theta) ** 20 - 2.48205127710444e142 * cos(theta) ** 18 + 3.57583658565894e141 * cos(theta) ** 16 - 3.50286032880876e140 * cos(theta) ** 14 + 2.30318128556067e139 * cos(theta) ** 12 - 9.87719069831088e137 * cos(theta) ** 10 + 2.63002119185793e136 * cos(theta) ** 8 - 4.00874215416559e134 * cos(theta) ** 6 + 3.03692587436787e132 * cos(theta) ** 4 - 8.59912942246685e129 * cos(theta) ** 2 + 3.81505298246089e126 ) * sin(66 * phi) ) # @torch.jit.script def Yl94_m_minus_65(theta, phi): return ( 9.50040783163933e-126 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 1.41559886044019e142 * cos(theta) ** 29 - 3.07343923710545e142 * cos(theta) ** 27 + 2.91561397898381e142 * cos(theta) ** 25 - 1.59323168250482e142 * cos(theta) ** 23 + 5.56750850378064e141 * cos(theta) ** 21 - 1.30634277742339e141 * cos(theta) ** 19 + 2.10343328568173e140 * cos(theta) ** 17 - 2.33524021920584e139 * cos(theta) ** 15 + 1.77167791196975e138 * cos(theta) ** 13 - 8.97926427119171e136 * cos(theta) ** 11 + 2.92224576873103e135 * cos(theta) ** 9 - 5.72677450595085e133 * cos(theta) ** 7 + 6.07385174873575e131 * cos(theta) ** 5 - 2.86637647415562e129 * cos(theta) ** 3 + 3.81505298246089e126 * cos(theta) ) * sin(65 * phi) ) # @torch.jit.script def Yl94_m_minus_64(theta, phi): return ( 6.56147439661888e-124 * (1.0 - cos(theta) ** 2) ** 32 * ( 4.71866286813398e140 * cos(theta) ** 30 - 1.0976568703948e141 * cos(theta) ** 28 + 1.12138999191685e141 * cos(theta) ** 26 - 6.63846534377007e140 * cos(theta) ** 24 + 2.53068568353666e140 * cos(theta) ** 22 - 6.53171388711696e139 * cos(theta) ** 20 + 1.16857404760096e139 * cos(theta) ** 18 - 1.45952513700365e138 * cos(theta) ** 16 + 1.26548422283554e137 * cos(theta) ** 14 - 7.48272022599309e135 * cos(theta) ** 12 + 2.92224576873103e134 * cos(theta) ** 10 - 7.15846813243856e132 * cos(theta) ** 8 + 1.01230862478929e131 * cos(theta) ** 6 - 7.16594118538904e128 * cos(theta) ** 4 + 1.90752649123045e126 * cos(theta) ** 2 - 7.99801463828279e122 ) * sin(64 * phi) ) # @torch.jit.script def Yl94_m_minus_63(theta, phi): return ( 4.59209462848014e-122 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 1.52214931230128e139 * cos(theta) ** 31 - 3.78502369101656e139 * cos(theta) ** 29 + 4.15329626635871e139 * cos(theta) ** 27 - 2.65538613750803e139 * cos(theta) ** 25 + 1.10029812327681e139 * cos(theta) ** 23 - 3.11033994624617e138 * cos(theta) ** 21 + 6.15038972421559e137 * cos(theta) ** 19 - 8.58544198237442e136 * cos(theta) ** 17 + 8.43656148557024e135 * cos(theta) ** 15 - 5.7559386353793e134 * cos(theta) ** 13 + 2.65658706248276e133 * cos(theta) ** 11 - 7.95385348048729e131 * cos(theta) ** 9 + 1.44615517827042e130 * cos(theta) ** 7 - 1.43318823707781e128 * cos(theta) ** 5 + 6.35842163743482e125 * cos(theta) ** 3 - 7.99801463828279e122 * cos(theta) ) * sin(63 * phi) ) # @torch.jit.script def Yl94_m_minus_62(theta, phi): return ( 3.25488496537784e-120 * (1.0 - cos(theta) ** 2) ** 31 * ( 4.75671660094151e137 * cos(theta) ** 32 - 1.26167456367219e138 * cos(theta) ** 30 + 1.48332009512811e138 * cos(theta) ** 28 - 1.02130236058001e138 * cos(theta) ** 26 + 4.58457551365336e137 * cos(theta) ** 24 - 1.41379088465735e137 * cos(theta) ** 22 + 3.0751948621078e136 * cos(theta) ** 20 - 4.76968999020801e135 * cos(theta) ** 18 + 5.2728509284814e134 * cos(theta) ** 16 - 4.11138473955665e133 * cos(theta) ** 14 + 2.21382255206896e132 * cos(theta) ** 12 - 7.95385348048729e130 * cos(theta) ** 10 + 1.80769397283802e129 * cos(theta) ** 8 - 2.38864706179635e127 * cos(theta) ** 6 + 1.5896054093587e125 * cos(theta) ** 4 - 3.99900731914139e122 * cos(theta) ** 2 + 1.59196151239705e119 ) * sin(62 * phi) ) # @torch.jit.script def Yl94_m_minus_61(theta, phi): return ( 2.33536578628732e-118 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 1.44142927301258e136 * cos(theta) ** 33 - 4.06991794732963e136 * cos(theta) ** 31 + 5.11489687975211e136 * cos(theta) ** 29 - 3.78260133548152e136 * cos(theta) ** 27 + 1.83383020546135e136 * cos(theta) ** 25 - 6.14691688981457e135 * cos(theta) ** 23 + 1.46437850576562e135 * cos(theta) ** 21 - 2.51036315274106e134 * cos(theta) ** 19 + 3.10167701675376e133 * cos(theta) ** 17 - 2.74092315970443e132 * cos(theta) ** 15 + 1.70294042466843e131 * cos(theta) ** 13 - 7.23077589135208e129 * cos(theta) ** 11 + 2.00854885870891e128 * cos(theta) ** 9 - 3.41235294542335e126 * cos(theta) ** 7 + 3.17921081871741e124 * cos(theta) ** 5 - 1.3330024397138e122 * cos(theta) ** 3 + 1.59196151239705e119 * cos(theta) ) * sin(61 * phi) ) # @torch.jit.script def Yl94_m_minus_60(theta, phi): return ( 1.6953533196612e-116 * (1.0 - cos(theta) ** 2) ** 30 * ( 4.2394978618017e134 * cos(theta) ** 34 - 1.27184935854051e135 * cos(theta) ** 32 + 1.70496562658404e135 * cos(theta) ** 30 - 1.35092904838626e135 * cos(theta) ** 28 + 7.05319309792825e134 * cos(theta) ** 26 - 2.56121537075607e134 * cos(theta) ** 24 + 6.65626593529826e133 * cos(theta) ** 22 - 1.25518157637053e133 * cos(theta) ** 20 + 1.72315389819654e132 * cos(theta) ** 18 - 1.71307697481527e131 * cos(theta) ** 16 + 1.21638601762031e130 * cos(theta) ** 14 - 6.02564657612674e128 * cos(theta) ** 12 + 2.00854885870891e127 * cos(theta) ** 10 - 4.26544118177919e125 * cos(theta) ** 8 + 5.29868469786235e123 * cos(theta) ** 6 - 3.3325060992845e121 * cos(theta) ** 4 + 7.95980756198526e118 * cos(theta) ** 2 - 3.0207998337705e115 ) * sin(60 * phi) ) # @torch.jit.script def Yl94_m_minus_59(theta, phi): return ( 1.24467109370472e-114 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 1.21128510337191e133 * cos(theta) ** 35 - 3.85408896527427e133 * cos(theta) ** 33 + 5.49988911801302e133 * cos(theta) ** 31 - 4.65837602891813e133 * cos(theta) ** 29 + 2.61229373997343e133 * cos(theta) ** 27 - 1.02448614830243e133 * cos(theta) ** 25 + 2.89402866752098e132 * cos(theta) ** 23 - 5.97705512557395e131 * cos(theta) ** 21 + 9.06923104313966e130 * cos(theta) ** 19 - 1.00769233812663e130 * cos(theta) ** 17 + 8.10924011746873e128 * cos(theta) ** 15 - 4.63511275086672e127 * cos(theta) ** 13 + 1.82595350791719e126 * cos(theta) ** 11 - 4.73937909086577e124 * cos(theta) ** 9 + 7.56954956837478e122 * cos(theta) ** 7 - 6.66501219856899e120 * cos(theta) ** 5 + 2.65326918732842e118 * cos(theta) ** 3 - 3.0207998337705e115 * cos(theta) ) * sin(59 * phi) ) # @torch.jit.script def Yl94_m_minus_58(theta, phi): return ( 9.23743869929569e-113 * (1.0 - cos(theta) ** 2) ** 29 * ( 3.36468084269976e131 * cos(theta) ** 36 - 1.13355557802185e132 * cos(theta) ** 34 + 1.71871534937907e132 * cos(theta) ** 32 - 1.55279200963938e132 * cos(theta) ** 30 + 9.32962049990509e131 * cos(theta) ** 28 - 3.94033133962472e131 * cos(theta) ** 26 + 1.20584527813374e131 * cos(theta) ** 24 - 2.71684323889725e130 * cos(theta) ** 22 + 4.53461552156983e129 * cos(theta) ** 20 - 5.59829076737016e128 * cos(theta) ** 18 + 5.06827507341796e127 * cos(theta) ** 16 - 3.31079482204766e126 * cos(theta) ** 14 + 1.52162792326433e125 * cos(theta) ** 12 - 4.73937909086577e123 * cos(theta) ** 10 + 9.46193696046848e121 * cos(theta) ** 8 - 1.11083536642817e120 * cos(theta) ** 6 + 6.63317296832105e117 * cos(theta) ** 4 - 1.51039991688525e115 * cos(theta) ** 2 + 5.48438604533496e111 ) * sin(58 * phi) ) # @torch.jit.script def Yl94_m_minus_57(theta, phi): return ( 6.92746316785253e-111 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 9.09373200729666e129 * cos(theta) ** 37 - 3.23873022291956e130 * cos(theta) ** 35 + 5.20822833145172e130 * cos(theta) ** 33 - 5.00900648270767e130 * cos(theta) ** 31 + 3.21711051720865e130 * cos(theta) ** 29 - 1.45938197763879e130 * cos(theta) ** 27 + 4.82338111253497e129 * cos(theta) ** 25 - 1.18123619082489e129 * cos(theta) ** 23 + 2.15934072455706e128 * cos(theta) ** 21 - 2.94646882493166e127 * cos(theta) ** 19 + 2.98133827848115e126 * cos(theta) ** 17 - 2.20719654803177e125 * cos(theta) ** 15 + 1.17048301789564e124 * cos(theta) ** 13 - 4.30852644624161e122 * cos(theta) ** 11 + 1.05132632894094e121 * cos(theta) ** 9 - 1.58690766632595e119 * cos(theta) ** 7 + 1.32663459366421e117 * cos(theta) ** 5 - 5.0346663896175e114 * cos(theta) ** 3 + 5.48438604533496e111 * cos(theta) ) * sin(57 * phi) ) # @torch.jit.script def Yl94_m_minus_56(theta, phi): return ( 5.24752477092704e-109 * (1.0 - cos(theta) ** 2) ** 28 * ( 2.39308737034123e128 * cos(theta) ** 38 - 8.99647284144322e128 * cos(theta) ** 36 + 1.53183186219168e129 * cos(theta) ** 34 - 1.56531452584615e129 * cos(theta) ** 32 + 1.07237017240288e129 * cos(theta) ** 30 - 5.21207849156709e128 * cos(theta) ** 28 + 1.85514658174422e128 * cos(theta) ** 26 - 4.92181746177038e127 * cos(theta) ** 24 + 9.81518511162301e126 * cos(theta) ** 22 - 1.47323441246583e126 * cos(theta) ** 20 + 1.65629904360064e125 * cos(theta) ** 18 - 1.37949784251986e124 * cos(theta) ** 16 + 8.36059298496883e122 * cos(theta) ** 14 - 3.59043870520134e121 * cos(theta) ** 12 + 1.05132632894094e120 * cos(theta) ** 10 - 1.98363458290744e118 * cos(theta) ** 8 + 2.21105765610702e116 * cos(theta) ** 6 - 1.25866659740437e114 * cos(theta) ** 4 + 2.74219302266748e111 * cos(theta) ** 2 - 9.55800983850638e107 ) * sin(56 * phi) ) # @torch.jit.script def Yl94_m_minus_55(theta, phi): return ( 4.01358468075277e-107 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 6.1361214624134e126 * cos(theta) ** 39 - 2.431479146336e127 * cos(theta) ** 37 + 4.37666246340481e127 * cos(theta) ** 35 - 4.74337735104893e127 * cos(theta) ** 33 + 3.45925862065447e127 * cos(theta) ** 31 - 1.79726844536796e127 * cos(theta) ** 29 + 6.87091326571933e126 * cos(theta) ** 27 - 1.96872698470815e126 * cos(theta) ** 25 + 4.26747178766218e125 * cos(theta) ** 23 - 7.01540196412301e124 * cos(theta) ** 21 + 8.71736338737178e123 * cos(theta) ** 19 - 8.11469319129328e122 * cos(theta) ** 17 + 5.57372865664589e121 * cos(theta) ** 15 - 2.76187592707795e120 * cos(theta) ** 13 + 9.55751208128129e118 * cos(theta) ** 11 - 2.20403842545271e117 * cos(theta) ** 9 + 3.1586537944386e115 * cos(theta) ** 7 - 2.51733319480875e113 * cos(theta) ** 5 + 9.1406434088916e110 * cos(theta) ** 3 - 9.55800983850638e107 * cos(theta) ) * sin(55 * phi) ) # @torch.jit.script def Yl94_m_minus_54(theta, phi): return ( 3.09852896481309e-105 * (1.0 - cos(theta) ** 2) ** 27 * ( 1.53403036560335e125 * cos(theta) ** 40 - 6.39862933246317e125 * cos(theta) ** 38 + 1.215739573168e126 * cos(theta) ** 36 - 1.39511098560263e126 * cos(theta) ** 34 + 1.08101831895452e126 * cos(theta) ** 32 - 5.99089481789321e125 * cos(theta) ** 30 + 2.45389759489976e125 * cos(theta) ** 28 - 7.57202686426212e124 * cos(theta) ** 26 + 1.77811324485924e124 * cos(theta) ** 24 - 3.18881907460137e123 * cos(theta) ** 22 + 4.35868169368589e122 * cos(theta) ** 20 - 4.50816288405182e121 * cos(theta) ** 18 + 3.48358041040368e120 * cos(theta) ** 16 - 1.97276851934139e119 * cos(theta) ** 14 + 7.96459340106774e117 * cos(theta) ** 12 - 2.20403842545271e116 * cos(theta) ** 10 + 3.94831724304824e114 * cos(theta) ** 8 - 4.19555532468125e112 * cos(theta) ** 6 + 2.2851608522229e110 * cos(theta) ** 4 - 4.77900491925319e107 * cos(theta) ** 2 + 1.60369292592389e104 ) * sin(54 * phi) ) # @torch.jit.script def Yl94_m_minus_53(theta, phi): return ( 2.41367252197616e-103 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 3.74153747708134e123 * cos(theta) ** 41 - 1.64067418781107e124 * cos(theta) ** 39 + 3.28578263018379e124 * cos(theta) ** 37 - 3.98603138743607e124 * cos(theta) ** 35 + 3.27581308774097e124 * cos(theta) ** 33 - 1.93254671544942e124 * cos(theta) ** 31 + 8.46171584448193e123 * cos(theta) ** 29 - 2.80445439417116e123 * cos(theta) ** 27 + 7.11245297943696e122 * cos(theta) ** 25 - 1.38644307591364e122 * cos(theta) ** 23 + 2.075562711279e121 * cos(theta) ** 21 - 2.37271730739569e120 * cos(theta) ** 19 + 2.04916494729628e119 * cos(theta) ** 17 - 1.31517901289426e118 * cos(theta) ** 15 + 6.12661030851365e116 * cos(theta) ** 13 - 2.0036712958661e115 * cos(theta) ** 11 + 4.38701915894249e113 * cos(theta) ** 9 - 5.99365046383035e111 * cos(theta) ** 7 + 4.5703217044458e109 * cos(theta) ** 5 - 1.59300163975106e107 * cos(theta) ** 3 + 1.60369292592389e104 * cos(theta) ) * sin(53 * phi) ) # @torch.jit.script def Yl94_m_minus_52(theta, phi): return ( 1.89653848043213e-101 * (1.0 - cos(theta) ** 2) ** 26 * ( 8.90842256447938e121 * cos(theta) ** 42 - 4.10168546952767e122 * cos(theta) ** 40 + 8.6467963952205e122 * cos(theta) ** 38 - 1.10723094095446e123 * cos(theta) ** 36 + 9.63474437570874e122 * cos(theta) ** 34 - 6.03920848577944e122 * cos(theta) ** 32 + 2.82057194816064e122 * cos(theta) ** 30 - 1.00159085506113e122 * cos(theta) ** 28 + 2.73555883824499e121 * cos(theta) ** 26 - 5.77684614964016e120 * cos(theta) ** 24 + 9.43437596035907e119 * cos(theta) ** 22 - 1.18635865369785e119 * cos(theta) ** 20 + 1.13842497072016e118 * cos(theta) ** 18 - 8.21986883058915e116 * cos(theta) ** 16 + 4.37615022036689e115 * cos(theta) ** 14 - 1.66972607988842e114 * cos(theta) ** 12 + 4.38701915894249e112 * cos(theta) ** 10 - 7.49206307978794e110 * cos(theta) ** 8 + 7.617202840743e108 * cos(theta) ** 6 - 3.98250409937766e106 * cos(theta) ** 4 + 8.01846462961945e103 * cos(theta) ** 2 - 2.59749421108502e100 ) * sin(52 * phi) ) # @torch.jit.script def Yl94_m_minus_51(theta, phi): return ( 1.50270009743515e-99 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 2.0717261777859e120 * cos(theta) ** 43 - 1.0004110901287e121 * cos(theta) ** 41 + 2.21712728082577e121 * cos(theta) ** 39 - 2.99251605663369e121 * cos(theta) ** 37 + 2.75278410734535e121 * cos(theta) ** 35 - 1.83006317750892e121 * cos(theta) ** 33 + 9.09861918761498e120 * cos(theta) ** 31 - 3.4537615691763e120 * cos(theta) ** 29 + 1.01316994009074e120 * cos(theta) ** 27 - 2.31073845985606e119 * cos(theta) ** 25 + 4.10190259146047e118 * cos(theta) ** 23 - 5.6493269223707e117 * cos(theta) ** 21 + 5.99171037221135e116 * cos(theta) ** 19 - 4.83521695917009e115 * cos(theta) ** 17 + 2.91743348024459e114 * cos(theta) ** 15 - 1.28440467683724e113 * cos(theta) ** 13 + 3.98819923540227e111 * cos(theta) ** 11 - 8.32451453309771e109 * cos(theta) ** 9 + 1.08817183439186e108 * cos(theta) ** 7 - 7.96500819875532e105 * cos(theta) ** 5 + 2.67282154320648e103 * cos(theta) ** 3 - 2.59749421108502e100 * cos(theta) ) * sin(51 * phi) ) # @torch.jit.script def Yl94_m_minus_50(theta, phi): return ( 1.20028023304834e-97 * (1.0 - cos(theta) ** 2) ** 25 * ( 4.70846858587705e118 * cos(theta) ** 44 - 2.3819311669731e119 * cos(theta) ** 42 + 5.54281820206442e119 * cos(theta) ** 40 - 7.87504225429918e119 * cos(theta) ** 38 + 7.64662252040376e119 * cos(theta) ** 36 - 5.38253875737918e119 * cos(theta) ** 34 + 2.84331849612968e119 * cos(theta) ** 32 - 1.1512538563921e119 * cos(theta) ** 30 + 3.61846407175263e118 * cos(theta) ** 28 - 8.88745561483101e117 * cos(theta) ** 26 + 1.70912607977519e117 * cos(theta) ** 24 - 2.56787587380486e116 * cos(theta) ** 22 + 2.99585518610568e115 * cos(theta) ** 20 - 2.68623164398338e114 * cos(theta) ** 18 + 1.82339592515287e113 * cos(theta) ** 16 - 9.17431912026602e111 * cos(theta) ** 14 + 3.32349936283522e110 * cos(theta) ** 12 - 8.32451453309771e108 * cos(theta) ** 10 + 1.36021479298982e107 * cos(theta) ** 8 - 1.32750136645922e105 * cos(theta) ** 6 + 6.68205385801621e102 * cos(theta) ** 4 - 1.29874710554251e100 * cos(theta) ** 2 + 4.07130754088561e96 ) * sin(50 * phi) ) # @torch.jit.script def Yl94_m_minus_49(theta, phi): return ( 9.66206949532334e-96 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.04632635241712e117 * cos(theta) ** 45 - 5.53937480691418e117 * cos(theta) ** 43 + 1.3519068785523e118 * cos(theta) ** 41 - 2.01924160366646e118 * cos(theta) ** 39 + 2.06665473524426e118 * cos(theta) ** 37 - 1.53786821639405e118 * cos(theta) ** 35 + 8.61611665493843e117 * cos(theta) ** 33 - 3.71372211739387e117 * cos(theta) ** 31 + 1.24774623163884e117 * cos(theta) ** 29 - 3.29165022771519e116 * cos(theta) ** 27 + 6.83650431910078e115 * cos(theta) ** 25 - 1.11646777121951e115 * cos(theta) ** 23 + 1.42659770766937e114 * cos(theta) ** 21 - 1.41380612841231e113 * cos(theta) ** 19 + 1.07258583832522e112 * cos(theta) ** 17 - 6.11621274684401e110 * cos(theta) ** 15 + 2.55653797141171e109 * cos(theta) ** 13 - 7.56774048463428e107 * cos(theta) ** 11 + 1.51134976998869e106 * cos(theta) ** 9 - 1.89643052351317e104 * cos(theta) ** 7 + 1.33641077160324e102 * cos(theta) ** 5 - 4.32915701847503e99 * cos(theta) ** 3 + 4.07130754088561e96 * cos(theta) ) * sin(49 * phi) ) # @torch.jit.script def Yl94_m_minus_48(theta, phi): return ( 7.83640894059076e-94 * (1.0 - cos(theta) ** 2) ** 24 * ( 2.27462250525461e115 * cos(theta) ** 46 - 1.25894881975322e116 * cos(theta) ** 44 + 3.218825901315e116 * cos(theta) ** 42 - 5.04810400916614e116 * cos(theta) ** 40 + 5.43856509274805e116 * cos(theta) ** 38 - 4.27185615665015e116 * cos(theta) ** 36 + 2.53415195733483e116 * cos(theta) ** 34 - 1.16053816168558e116 * cos(theta) ** 32 + 4.15915410546279e115 * cos(theta) ** 30 - 1.17558936704114e115 * cos(theta) ** 28 + 2.62942473811568e114 * cos(theta) ** 26 - 4.65194904674794e113 * cos(theta) ** 24 + 6.48453503486077e112 * cos(theta) ** 22 - 7.06903064206153e111 * cos(theta) ** 20 + 5.95881021291788e110 * cos(theta) ** 18 - 3.82263296677751e109 * cos(theta) ** 16 + 1.82609855100836e108 * cos(theta) ** 14 - 6.3064504038619e106 * cos(theta) ** 12 + 1.51134976998869e105 * cos(theta) ** 10 - 2.37053815439146e103 * cos(theta) ** 8 + 2.2273512860054e101 * cos(theta) ** 6 - 1.08228925461876e99 * cos(theta) ** 4 + 2.0356537704428e96 * cos(theta) ** 2 - 6.18927871828155e92 ) * sin(48 * phi) ) # @torch.jit.script def Yl94_m_minus_47(theta, phi): return ( 6.40191926012626e-92 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 4.83962235160556e113 * cos(theta) ** 47 - 2.79766404389605e114 * cos(theta) ** 45 + 7.48564163096511e114 * cos(theta) ** 43 - 1.23124488028442e115 * cos(theta) ** 41 + 1.3945038699354e115 * cos(theta) ** 39 - 1.15455571801355e115 * cos(theta) ** 37 + 7.24043416381381e114 * cos(theta) ** 35 - 3.51678230813813e114 * cos(theta) ** 33 + 1.34166261466542e114 * cos(theta) ** 31 - 4.05375643807289e113 * cos(theta) ** 29 + 9.7386101411692e112 * cos(theta) ** 27 - 1.86077961869918e112 * cos(theta) ** 25 + 2.81936305863512e111 * cos(theta) ** 23 - 3.36620506764835e110 * cos(theta) ** 21 + 3.13621590153573e109 * cos(theta) ** 19 - 2.24860762751618e108 * cos(theta) ** 17 + 1.21739903400558e107 * cos(theta) ** 15 - 4.85111569527839e105 * cos(theta) ** 13 + 1.37395433635336e104 * cos(theta) ** 11 - 2.63393128265718e102 * cos(theta) ** 9 + 3.18193040857915e100 * cos(theta) ** 7 - 2.16457850923751e98 * cos(theta) ** 5 + 6.78551256814268e95 * cos(theta) ** 3 - 6.18927871828155e92 * cos(theta) ) * sin(47 * phi) ) # @torch.jit.script def Yl94_m_minus_46(theta, phi): return ( 5.26672166724968e-90 * (1.0 - cos(theta) ** 2) ** 23 * ( 1.00825465658449e112 * cos(theta) ** 48 - 6.08187835629576e112 * cos(theta) ** 46 + 1.70128218885571e113 * cos(theta) ** 44 - 2.93153542924863e113 * cos(theta) ** 42 + 3.4862596748385e113 * cos(theta) ** 40 - 3.0383045210883e113 * cos(theta) ** 38 + 2.0112317121705e113 * cos(theta) ** 36 - 1.03434773768769e113 * cos(theta) ** 34 + 4.19269567082942e112 * cos(theta) ** 32 - 1.3512521460243e112 * cos(theta) ** 30 + 3.47807505041757e111 * cos(theta) ** 28 - 7.15684468730453e110 * cos(theta) ** 26 + 1.17473460776463e110 * cos(theta) ** 24 - 1.53009321256743e109 * cos(theta) ** 22 + 1.56810795076786e108 * cos(theta) ** 20 - 1.24922645973121e107 * cos(theta) ** 18 + 7.60874396253485e105 * cos(theta) ** 16 - 3.46508263948456e104 * cos(theta) ** 14 + 1.14496194696113e103 * cos(theta) ** 12 - 2.63393128265718e101 * cos(theta) ** 10 + 3.97741301072393e99 * cos(theta) ** 8 - 3.60763084872919e97 * cos(theta) ** 6 + 1.69637814203567e95 * cos(theta) ** 4 - 3.09463935914078e92 * cos(theta) ** 2 + 9.14491536389119e88 ) * sin(46 * phi) ) # @torch.jit.script def Yl94_m_minus_45(theta, phi): return ( 4.36216838103599e-88 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 2.05766256445815e110 * cos(theta) ** 49 - 1.29401667155229e111 * cos(theta) ** 47 + 3.78062708634601e111 * cos(theta) ** 45 - 6.81752425406658e111 * cos(theta) ** 43 + 8.50307237765487e111 * cos(theta) ** 41 - 7.79052441304692e111 * cos(theta) ** 39 + 5.4357613842446e111 * cos(theta) ** 37 - 2.95527925053625e111 * cos(theta) ** 35 + 1.27051383964528e111 * cos(theta) ** 33 - 4.35887789040096e110 * cos(theta) ** 31 + 1.19933622428192e110 * cos(theta) ** 29 - 2.6506832175202e109 * cos(theta) ** 27 + 4.69893843105853e108 * cos(theta) ** 25 - 6.65257918507578e107 * cos(theta) ** 23 + 7.46718071794221e106 * cos(theta) ** 21 - 6.57487610384848e105 * cos(theta) ** 19 + 4.47573174266756e104 * cos(theta) ** 17 - 2.31005509298971e103 * cos(theta) ** 15 + 8.80739959200869e101 * cos(theta) ** 13 - 2.3944829842338e100 * cos(theta) ** 11 + 4.41934778969326e98 * cos(theta) ** 9 - 5.15375835532742e96 * cos(theta) ** 7 + 3.39275628407134e94 * cos(theta) ** 5 - 1.03154645304693e92 * cos(theta) ** 3 + 9.14491536389119e88 * cos(theta) ) * sin(45 * phi) ) # @torch.jit.script def Yl94_m_minus_44(theta, phi): return ( 3.63659408296205e-86 * (1.0 - cos(theta) ** 2) ** 22 * ( 4.11532512891629e108 * cos(theta) ** 50 - 2.69586806573394e109 * cos(theta) ** 48 + 8.21875453553481e109 * cos(theta) ** 46 - 1.54943733046968e110 * cos(theta) ** 44 + 2.02454104229878e110 * cos(theta) ** 42 - 1.94763110326173e110 * cos(theta) ** 40 + 1.43046352216963e110 * cos(theta) ** 38 - 8.20910902926736e109 * cos(theta) ** 36 + 3.73680541072141e109 * cos(theta) ** 34 - 1.3621493407503e109 * cos(theta) ** 32 + 3.99778741427307e108 * cos(theta) ** 30 - 9.46672577685784e107 * cos(theta) ** 28 + 1.80728401194559e107 * cos(theta) ** 26 - 2.77190799378158e106 * cos(theta) ** 24 + 3.39417305361009e105 * cos(theta) ** 22 - 3.28743805192424e104 * cos(theta) ** 20 + 2.48651763481531e103 * cos(theta) ** 18 - 1.44378443311857e102 * cos(theta) ** 16 + 6.29099970857764e100 * cos(theta) ** 14 - 1.9954024868615e99 * cos(theta) ** 12 + 4.41934778969326e97 * cos(theta) ** 10 - 6.44219794415927e95 * cos(theta) ** 8 + 5.65459380678556e93 * cos(theta) ** 6 - 2.57886613261731e91 * cos(theta) ** 4 + 4.57245768194559e88 * cos(theta) ** 2 - 1.31581516027211e85 ) * sin(44 * phi) ) # @torch.jit.script def Yl94_m_minus_43(theta, phi): return ( 3.05084019079274e-84 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 8.0692649586594e106 * cos(theta) ** 51 - 5.50177156272232e107 * cos(theta) ** 49 + 1.74867117777336e108 * cos(theta) ** 47 - 3.44319406771039e108 * cos(theta) ** 45 + 4.70823498209018e108 * cos(theta) ** 43 - 4.750319764053e108 * cos(theta) ** 41 + 3.66785518505034e108 * cos(theta) ** 39 - 2.2186781160182e108 * cos(theta) ** 37 + 1.06765868877755e108 * cos(theta) ** 35 - 4.12772527500091e107 * cos(theta) ** 33 + 1.28960884331389e107 * cos(theta) ** 31 - 3.2643881989165e106 * cos(theta) ** 29 + 6.69364448868736e105 * cos(theta) ** 27 - 1.10876319751263e105 * cos(theta) ** 25 + 1.47572741461308e104 * cos(theta) ** 23 - 1.5654466913925e103 * cos(theta) ** 21 + 1.30869349200806e102 * cos(theta) ** 19 - 8.49284960657981e100 * cos(theta) ** 17 + 4.19399980571842e99 * cos(theta) ** 15 - 1.53492498989346e98 * cos(theta) ** 13 + 4.01758889972114e96 * cos(theta) ** 11 - 7.15799771573252e94 * cos(theta) ** 9 + 8.07799115255081e92 * cos(theta) ** 7 - 5.15773226523463e90 * cos(theta) ** 5 + 1.52415256064853e88 * cos(theta) ** 3 - 1.31581516027211e85 * cos(theta) ) * sin(43 * phi) ) # @torch.jit.script def Yl94_m_minus_42(theta, phi): return ( 2.57502479009705e-82 * (1.0 - cos(theta) ** 2) ** 21 * ( 1.55178172281912e105 * cos(theta) ** 52 - 1.10035431254446e106 * cos(theta) ** 50 + 3.64306495369451e106 * cos(theta) ** 48 - 7.4852044950226e106 * cos(theta) ** 46 + 1.0700534050205e107 * cos(theta) ** 44 - 1.13102851525071e107 * cos(theta) ** 42 + 9.16963796262584e106 * cos(theta) ** 40 - 5.83862662110054e106 * cos(theta) ** 38 + 2.96571857993763e106 * cos(theta) ** 36 - 1.2140368455885e106 * cos(theta) ** 34 + 4.03002763535592e105 * cos(theta) ** 32 - 1.08812939963883e105 * cos(theta) ** 30 + 2.39058731738834e104 * cos(theta) ** 28 - 4.26447383658704e103 * cos(theta) ** 26 + 6.14886422755452e102 * cos(theta) ** 24 - 7.1156667790568e101 * cos(theta) ** 22 + 6.54346746004029e100 * cos(theta) ** 20 - 4.71824978143323e99 * cos(theta) ** 18 + 2.62124987857401e98 * cos(theta) ** 16 - 1.09637499278104e97 * cos(theta) ** 14 + 3.34799074976762e95 * cos(theta) ** 12 - 7.15799771573252e93 * cos(theta) ** 10 + 1.00974889406885e92 * cos(theta) ** 8 - 8.59622044205772e89 * cos(theta) ** 6 + 3.81038140162133e87 * cos(theta) ** 4 - 6.57907580136057e84 * cos(theta) ** 2 + 1.84701735018545e81 ) * sin(42 * phi) ) # @torch.jit.script def Yl94_m_minus_41(theta, phi): return ( 2.18619453028729e-80 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 2.92789004305494e103 * cos(theta) ** 53 - 2.15755747557738e104 * cos(theta) ** 51 + 7.43482643611124e104 * cos(theta) ** 49 - 1.59259670106864e105 * cos(theta) ** 47 + 2.3778964556011e105 * cos(theta) ** 45 - 2.63029887267608e105 * cos(theta) ** 43 + 2.23649706405508e105 * cos(theta) ** 41 - 1.49708374900014e105 * cos(theta) ** 39 + 8.01545562145305e104 * cos(theta) ** 37 - 3.46867670168144e104 * cos(theta) ** 35 + 1.2212204955624e104 * cos(theta) ** 33 - 3.51009483754462e103 * cos(theta) ** 31 + 8.24340454271843e102 * cos(theta) ** 29 - 1.5794347542915e102 * cos(theta) ** 27 + 2.45954569102181e101 * cos(theta) ** 25 - 3.0937681648073e100 * cos(theta) ** 23 + 3.11593688573347e99 * cos(theta) ** 21 - 2.48328935864907e98 * cos(theta) ** 19 + 1.54191169327883e97 * cos(theta) ** 17 - 7.3091666185403e95 * cos(theta) ** 15 + 2.57537749982125e94 * cos(theta) ** 13 - 6.50727065066593e92 * cos(theta) ** 11 + 1.12194321563206e91 * cos(theta) ** 9 - 1.22803149172253e89 * cos(theta) ** 7 + 7.62076280324265e86 * cos(theta) ** 5 - 2.19302526712019e84 * cos(theta) ** 3 + 1.84701735018545e81 * cos(theta) ) * sin(41 * phi) ) # @torch.jit.script def Yl94_m_minus_40(theta, phi): return ( 1.86660561345564e-78 * (1.0 - cos(theta) ** 2) ** 20 * ( 5.42201859824988e101 * cos(theta) ** 54 - 4.14914899149496e102 * cos(theta) ** 52 + 1.48696528722225e103 * cos(theta) ** 50 - 3.317909793893e103 * cos(theta) ** 48 + 5.16934012087196e103 * cos(theta) ** 46 - 5.97795198335472e103 * cos(theta) ** 44 + 5.32499300965496e103 * cos(theta) ** 42 - 3.74270937250034e103 * cos(theta) ** 40 + 2.10933042669817e103 * cos(theta) ** 38 - 9.63521306022621e102 * cos(theta) ** 36 + 3.59182498694823e102 * cos(theta) ** 34 - 1.09690463673269e102 * cos(theta) ** 32 + 2.74780151423948e101 * cos(theta) ** 30 - 5.64083840818392e100 * cos(theta) ** 28 + 9.45979111931464e99 * cos(theta) ** 26 - 1.28907006866971e99 * cos(theta) ** 24 + 1.41633494806067e98 * cos(theta) ** 22 - 1.24164467932453e97 * cos(theta) ** 20 + 8.56617607377129e95 * cos(theta) ** 18 - 4.56822913658769e94 * cos(theta) ** 16 + 1.83955535701518e93 * cos(theta) ** 14 - 5.42272554222161e91 * cos(theta) ** 12 + 1.12194321563206e90 * cos(theta) ** 10 - 1.53503936465316e88 * cos(theta) ** 8 + 1.27012713387378e86 * cos(theta) ** 6 - 5.48256316780047e83 * cos(theta) ** 4 + 9.23508675092724e80 * cos(theta) ** 2 - 2.53363148173587e77 ) * sin(40 * phi) ) # @torch.jit.script def Yl94_m_minus_39(theta, phi): return ( 1.6024567302825e-76 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 9.8582156331816e99 * cos(theta) ** 55 - 7.82858300282068e100 * cos(theta) ** 53 + 2.9156182102397e101 * cos(theta) ** 51 - 6.77124447733264e101 * cos(theta) ** 49 + 1.09985960018552e102 * cos(theta) ** 47 - 1.32843377407883e102 * cos(theta) ** 45 + 1.23837046736162e102 * cos(theta) ** 43 - 9.12855944512279e101 * cos(theta) ** 41 + 5.40853955563634e101 * cos(theta) ** 39 - 2.60411163789898e101 * cos(theta) ** 37 + 1.02623571055664e101 * cos(theta) ** 35 - 3.32395344464453e100 * cos(theta) ** 33 + 8.86387585238541e99 * cos(theta) ** 31 - 1.94511669247721e99 * cos(theta) ** 29 + 3.5036263404869e98 * cos(theta) ** 27 - 5.15628027467884e97 * cos(theta) ** 25 + 6.15797803504639e96 * cos(theta) ** 23 - 5.91259371106921e95 * cos(theta) ** 21 + 4.50851372303752e94 * cos(theta) ** 19 - 2.68719360975746e93 * cos(theta) ** 17 + 1.22637023801012e92 * cos(theta) ** 15 - 4.17132734017047e90 * cos(theta) ** 13 + 1.01994837784732e89 * cos(theta) ** 11 - 1.70559929405907e87 * cos(theta) ** 9 + 1.81446733410539e85 * cos(theta) ** 7 - 1.09651263356009e83 * cos(theta) ** 5 + 3.07836225030908e80 * cos(theta) ** 3 - 2.53363148173587e77 * cos(theta) ) * sin(39 * phi) ) # @torch.jit.script def Yl94_m_minus_38(theta, phi): return ( 1.38294893902275e-74 * (1.0 - cos(theta) ** 2) ** 19 * ( 1.76039564878243e98 * cos(theta) ** 56 - 1.44973759311494e99 * cos(theta) ** 54 + 5.60695809661481e99 * cos(theta) ** 52 - 1.35424889546653e100 * cos(theta) ** 50 + 2.29137416705317e100 * cos(theta) ** 48 - 2.88789950886702e100 * cos(theta) ** 46 + 2.81447833491277e100 * cos(theta) ** 44 - 2.17346653455305e100 * cos(theta) ** 42 + 1.35213488890908e100 * cos(theta) ** 40 - 6.85292536289204e99 * cos(theta) ** 38 + 2.85065475154622e99 * cos(theta) ** 36 - 9.7763336607192e98 * cos(theta) ** 34 + 2.76996120387044e98 * cos(theta) ** 32 - 6.48372230825738e97 * cos(theta) ** 30 + 1.25129512160247e97 * cos(theta) ** 28 - 1.98318472103032e96 * cos(theta) ** 26 + 2.56582418126933e95 * cos(theta) ** 24 - 2.68754259594055e94 * cos(theta) ** 22 + 2.25425686151876e93 * cos(theta) ** 20 - 1.49288533875415e92 * cos(theta) ** 18 + 7.66481398756323e90 * cos(theta) ** 16 - 2.97951952869319e89 * cos(theta) ** 14 + 8.49956981539437e87 * cos(theta) ** 12 - 1.70559929405907e86 * cos(theta) ** 10 + 2.26808416763174e84 * cos(theta) ** 8 - 1.82752105593349e82 * cos(theta) ** 6 + 7.6959056257727e79 * cos(theta) ** 4 - 1.26681574086793e77 * cos(theta) ** 2 + 3.4017608508806e73 ) * sin(38 * phi) ) # @torch.jit.script def Yl94_m_minus_37(theta, phi): return ( 1.19958365302349e-72 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 3.08841341891654e96 * cos(theta) ** 57 - 2.63588653293626e97 * cos(theta) ** 55 + 1.05791662200279e98 * cos(theta) ** 53 - 2.65538999111084e98 * cos(theta) ** 51 + 4.6762738103126e98 * cos(theta) ** 49 - 6.14446704014259e98 * cos(theta) ** 47 + 6.25439629980616e98 * cos(theta) ** 45 - 5.05457333616987e98 * cos(theta) ** 43 + 3.29788997294898e98 * cos(theta) ** 41 - 1.7571603494595e98 * cos(theta) ** 39 + 7.70447230147626e97 * cos(theta) ** 37 - 2.79323818877691e97 * cos(theta) ** 35 + 8.39382182991042e96 * cos(theta) ** 33 - 2.09152332524431e96 * cos(theta) ** 31 + 4.31481076414643e95 * cos(theta) ** 29 - 7.34512859640861e94 * cos(theta) ** 27 + 1.02632967250773e94 * cos(theta) ** 25 - 1.16849678084372e93 * cos(theta) ** 23 + 1.07345564834227e92 * cos(theta) ** 21 - 7.85729125660077e90 * cos(theta) ** 19 + 4.50871411033131e89 * cos(theta) ** 17 - 1.98634635246213e88 * cos(theta) ** 15 + 6.53813062722644e86 * cos(theta) ** 13 - 1.55054481278097e85 * cos(theta) ** 11 + 2.52009351959083e83 * cos(theta) ** 9 - 2.61074436561927e81 * cos(theta) ** 7 + 1.53918112515454e79 * cos(theta) ** 5 - 4.22271913622645e76 * cos(theta) ** 3 + 3.4017608508806e73 * cos(theta) ) * sin(37 * phi) ) # @torch.jit.script def Yl94_m_minus_36(theta, phi): return ( 1.04563517283457e-70 * (1.0 - cos(theta) ** 2) ** 18 * ( 5.3248507222699e94 * cos(theta) ** 58 - 4.70694023738617e95 * cos(theta) ** 56 + 1.95910485556073e96 * cos(theta) ** 54 - 5.10651921367469e96 * cos(theta) ** 52 + 9.3525476206252e96 * cos(theta) ** 50 - 1.28009730002971e97 * cos(theta) ** 48 + 1.35965136952308e97 * cos(theta) ** 46 - 1.14876666731133e97 * cos(theta) ** 44 + 7.85211898321187e96 * cos(theta) ** 42 - 4.39290087364875e96 * cos(theta) ** 40 + 2.02749271091481e96 * cos(theta) ** 38 - 7.75899496882476e95 * cos(theta) ** 36 + 2.46877112644424e95 * cos(theta) ** 34 - 6.53601039138848e94 * cos(theta) ** 32 + 1.43827025471548e94 * cos(theta) ** 30 - 2.62326021300307e93 * cos(theta) ** 28 + 3.94742181733743e92 * cos(theta) ** 26 - 4.86873658684882e91 * cos(theta) ** 24 + 4.87934385610121e90 * cos(theta) ** 22 - 3.92864562830038e89 * cos(theta) ** 20 + 2.50484117240629e88 * cos(theta) ** 18 - 1.24146647028883e87 * cos(theta) ** 16 + 4.67009330516174e85 * cos(theta) ** 14 - 1.29212067731748e84 * cos(theta) ** 12 + 2.52009351959083e82 * cos(theta) ** 10 - 3.26343045702409e80 * cos(theta) ** 8 + 2.56530187525757e78 * cos(theta) ** 6 - 1.05567978405661e76 * cos(theta) ** 4 + 1.7008804254403e73 * cos(theta) ** 2 - 4.47717932466517e69 ) * sin(36 * phi) ) # @torch.jit.script def Yl94_m_minus_35(theta, phi): return ( 9.15751978185659e-69 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 9.02517071571169e92 * cos(theta) ** 59 - 8.25778989015118e93 * cos(theta) ** 57 + 3.56200882829224e94 * cos(theta) ** 55 - 9.63494191259376e94 * cos(theta) ** 53 + 1.83383286678925e95 * cos(theta) ** 51 - 2.61244346944838e95 * cos(theta) ** 49 + 2.89287525430442e95 * cos(theta) ** 47 - 2.55281481624741e95 * cos(theta) ** 45 + 1.8260741821423e95 * cos(theta) ** 43 - 1.0714392374753e95 * cos(theta) ** 41 + 5.19869925875591e94 * cos(theta) ** 39 - 2.09702566724993e94 * cos(theta) ** 37 + 7.05363178984069e93 * cos(theta) ** 35 - 1.98060920951166e93 * cos(theta) ** 33 + 4.63958146682412e92 * cos(theta) ** 31 - 9.04572487242439e91 * cos(theta) ** 29 + 1.46200808049534e91 * cos(theta) ** 27 - 1.94749463473953e90 * cos(theta) ** 25 + 2.12145385047879e89 * cos(theta) ** 23 - 1.87078363252399e88 * cos(theta) ** 21 + 1.3183374591612e87 * cos(theta) ** 19 - 7.30274394287547e85 * cos(theta) ** 17 + 3.11339553677449e84 * cos(theta) ** 15 - 9.93938982551906e82 * cos(theta) ** 13 + 2.29099410871893e81 * cos(theta) ** 11 - 3.62603384113788e79 * cos(theta) ** 9 + 3.66471696465367e77 * cos(theta) ** 7 - 2.11135956811322e75 * cos(theta) ** 5 + 5.66960141813433e72 * cos(theta) ** 3 - 4.47717932466517e69 * cos(theta) ) * sin(35 * phi) ) # @torch.jit.script def Yl94_m_minus_34(theta, phi): return ( 8.05653588471146e-67 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.50419511928528e91 * cos(theta) ** 60 - 1.42375687761227e92 * cos(theta) ** 58 + 6.36073005052185e92 * cos(theta) ** 56 - 1.78424850233218e93 * cos(theta) ** 54 + 3.52660166690241e93 * cos(theta) ** 52 - 5.22488693889676e93 * cos(theta) ** 50 + 6.02682344646754e93 * cos(theta) ** 48 - 5.54959742662481e93 * cos(theta) ** 46 + 4.15016859577794e93 * cos(theta) ** 44 - 2.55104580351263e93 * cos(theta) ** 42 + 1.29967481468898e93 * cos(theta) ** 40 - 5.51848859802614e92 * cos(theta) ** 38 + 1.95934216384464e92 * cos(theta) ** 36 - 5.82532120444606e91 * cos(theta) ** 34 + 1.44986920838254e91 * cos(theta) ** 32 - 3.01524162414146e90 * cos(theta) ** 30 + 5.22145743034051e89 * cos(theta) ** 28 - 7.49036397976741e88 * cos(theta) ** 26 + 8.83939104366162e87 * cos(theta) ** 24 - 8.50356196601815e86 * cos(theta) ** 22 + 6.59168729580601e85 * cos(theta) ** 20 - 4.05707996826415e84 * cos(theta) ** 18 + 1.94587221048406e83 * cos(theta) ** 16 - 7.09956416108504e81 * cos(theta) ** 14 + 1.90916175726578e80 * cos(theta) ** 12 - 3.62603384113788e78 * cos(theta) ** 10 + 4.58089620581708e76 * cos(theta) ** 8 - 3.51893261352204e74 * cos(theta) ** 6 + 1.41740035453358e72 * cos(theta) ** 4 - 2.23858966233259e69 * cos(theta) ** 2 + 5.78446941171211e65 ) * sin(34 * phi) ) # @torch.jit.script def Yl94_m_minus_33(theta, phi): return ( 7.11898779156498e-65 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 2.46589363817259e89 * cos(theta) ** 61 - 2.41314725019029e90 * cos(theta) ** 59 + 1.11591755272313e91 * cos(theta) ** 57 - 3.24408818605851e91 * cos(theta) ** 55 + 6.65396540924984e91 * cos(theta) ** 53 - 1.0244876350778e92 * cos(theta) ** 51 + 1.22996396866685e92 * cos(theta) ** 49 - 1.18076540992017e92 * cos(theta) ** 47 + 9.22259687950654e91 * cos(theta) ** 45 - 5.93266465933169e91 * cos(theta) ** 43 + 3.16993857241214e91 * cos(theta) ** 41 - 1.41499707641696e91 * cos(theta) ** 39 + 5.29551936174226e90 * cos(theta) ** 37 - 1.66437748698459e90 * cos(theta) ** 35 + 4.39354305570466e89 * cos(theta) ** 33 - 9.7265858843273e88 * cos(theta) ** 31 + 1.80050256218638e88 * cos(theta) ** 29 - 2.77420888139534e87 * cos(theta) ** 27 + 3.53575641746465e86 * cos(theta) ** 25 - 3.6972008547905e85 * cos(theta) ** 23 + 3.13889871228858e84 * cos(theta) ** 21 - 2.13530524645482e83 * cos(theta) ** 19 + 1.14463071204945e82 * cos(theta) ** 17 - 4.73304277405669e80 * cos(theta) ** 15 + 1.46858596712752e79 * cos(theta) ** 13 - 3.29639440103443e77 * cos(theta) ** 11 + 5.08988467313009e75 * cos(theta) ** 9 - 5.02704659074577e73 * cos(theta) ** 7 + 2.83480070906716e71 * cos(theta) ** 5 - 7.46196554110862e68 * cos(theta) ** 3 + 5.78446941171211e65 * cos(theta) ) * sin(33 * phi) ) # @torch.jit.script def Yl94_m_minus_32(theta, phi): return ( 6.31707384021571e-63 * (1.0 - cos(theta) ** 2) ** 16 * ( 3.97724780350418e87 * cos(theta) ** 62 - 4.02191208365049e88 * cos(theta) ** 60 + 1.92399578055712e89 * cos(theta) ** 58 - 5.79301461796162e89 * cos(theta) ** 56 + 1.23221581652775e90 * cos(theta) ** 54 - 1.97016852899576e90 * cos(theta) ** 52 + 2.45992793733369e90 * cos(theta) ** 50 - 2.45992793733369e90 * cos(theta) ** 48 + 2.00491236511012e90 * cos(theta) ** 46 - 1.34833287712084e90 * cos(theta) ** 44 + 7.54747279145748e89 * cos(theta) ** 42 - 3.5374926910424e89 * cos(theta) ** 40 + 1.39355772677428e89 * cos(theta) ** 38 - 4.62327079717942e88 * cos(theta) ** 36 + 1.29221854579549e88 * cos(theta) ** 34 - 3.03955808885228e87 * cos(theta) ** 32 + 6.00167520728794e86 * cos(theta) ** 30 - 9.90788886212621e85 * cos(theta) ** 28 + 1.35990631440948e85 * cos(theta) ** 26 - 1.54050035616271e84 * cos(theta) ** 24 + 1.42677214194935e83 * cos(theta) ** 22 - 1.06765262322741e82 * cos(theta) ** 20 + 6.35905951138581e80 * cos(theta) ** 18 - 2.95815173378543e79 * cos(theta) ** 16 + 1.04898997651966e78 * cos(theta) ** 14 - 2.74699533419536e76 * cos(theta) ** 12 + 5.08988467313009e74 * cos(theta) ** 10 - 6.28380823843221e72 * cos(theta) ** 8 + 4.72466784844527e70 * cos(theta) ** 6 - 1.86549138527715e68 * cos(theta) ** 4 + 2.89223470585605e65 * cos(theta) ** 2 - 7.34629084545607e61 ) * sin(32 * phi) ) # @torch.jit.script def Yl94_m_minus_31(theta, phi): return ( 5.62822564458757e-61 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 6.31309175159394e85 * cos(theta) ** 63 - 6.59329849778768e86 * cos(theta) ** 61 + 3.26100979755445e87 * cos(theta) ** 59 - 1.01631835402835e88 * cos(theta) ** 57 + 2.24039239368681e88 * cos(theta) ** 55 - 3.71729911131276e88 * cos(theta) ** 53 + 4.823388112419e88 * cos(theta) ** 51 - 5.02026109659937e88 * cos(theta) ** 49 + 4.265770989596e88 * cos(theta) ** 47 - 2.99629528249075e88 * cos(theta) ** 45 + 1.75522623057151e88 * cos(theta) ** 43 - 8.62803095376195e87 * cos(theta) ** 41 + 3.57322494044687e87 * cos(theta) ** 39 - 1.24953264788633e87 * cos(theta) ** 37 + 3.69205298798711e86 * cos(theta) ** 35 - 9.21078208743116e85 * cos(theta) ** 33 + 1.93602426041547e85 * cos(theta) ** 31 - 3.41651340073318e84 * cos(theta) ** 29 + 5.03669005336844e83 * cos(theta) ** 27 - 6.16200142465083e82 * cos(theta) ** 25 + 6.20335713891023e81 * cos(theta) ** 23 - 5.0840601106067e80 * cos(theta) ** 21 + 3.34687342704516e79 * cos(theta) ** 19 - 1.7400892551679e78 * cos(theta) ** 17 + 6.99326651013105e76 * cos(theta) ** 15 - 2.11307333399643e75 * cos(theta) ** 13 + 4.62716788466372e73 * cos(theta) ** 11 - 6.98200915381357e71 * cos(theta) ** 9 + 6.74952549777896e69 * cos(theta) ** 7 - 3.73098277055431e67 * cos(theta) ** 5 + 9.64078235285351e64 * cos(theta) ** 3 - 7.34629084545607e61 * cos(theta) ) * sin(31 * phi) ) # @torch.jit.script def Yl94_m_minus_30(theta, phi): return ( 5.03403805360215e-59 * (1.0 - cos(theta) ** 2) ** 15 * ( 9.86420586186554e83 * cos(theta) ** 64 - 1.06343524157866e85 * cos(theta) ** 62 + 5.43501632925741e85 * cos(theta) ** 60 - 1.75227302418682e86 * cos(theta) ** 58 + 4.00070070301217e86 * cos(theta) ** 56 - 6.88388724317177e86 * cos(theta) ** 54 + 9.27574637003654e86 * cos(theta) ** 52 - 1.00405221931987e87 * cos(theta) ** 50 + 8.88702289499166e86 * cos(theta) ** 48 - 6.51368539671903e86 * cos(theta) ** 46 + 3.98915052402615e86 * cos(theta) ** 44 - 2.05429308422904e86 * cos(theta) ** 42 + 8.93306235111717e85 * cos(theta) ** 40 - 3.28824381022718e85 * cos(theta) ** 38 + 1.02557027444086e85 * cos(theta) ** 36 - 2.70905355512681e84 * cos(theta) ** 34 + 6.05007581379833e83 * cos(theta) ** 32 - 1.13883780024439e83 * cos(theta) ** 30 + 1.79881787620302e82 * cos(theta) ** 28 - 2.37000054794263e81 * cos(theta) ** 26 + 2.5847321412126e80 * cos(theta) ** 24 - 2.31093641391214e79 * cos(theta) ** 22 + 1.67343671352258e78 * cos(theta) ** 20 - 9.66716252871057e76 * cos(theta) ** 18 + 4.37079156883191e75 * cos(theta) ** 16 - 1.50933809571174e74 * cos(theta) ** 14 + 3.85597323721977e72 * cos(theta) ** 12 - 6.98200915381357e70 * cos(theta) ** 10 + 8.4369068722237e68 * cos(theta) ** 8 - 6.21830461759051e66 * cos(theta) ** 6 + 2.41019558821338e64 * cos(theta) ** 4 - 3.67314542272803e61 * cos(theta) ** 2 + 9.18286355682008e57 ) * sin(30 * phi) ) # @torch.jit.script def Yl94_m_minus_29(theta, phi): return ( 4.51943365200135e-57 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 1.5175701325947e82 * cos(theta) ** 65 - 1.68799244695025e83 * cos(theta) ** 63 + 8.90986283484822e83 * cos(theta) ** 61 - 2.96995427828274e84 * cos(theta) ** 59 + 7.01877316317924e84 * cos(theta) ** 57 - 1.25161586239487e85 * cos(theta) ** 55 + 1.7501408245352e85 * cos(theta) ** 53 - 1.96872984180367e85 * cos(theta) ** 51 + 1.81367814183503e85 * cos(theta) ** 49 - 1.38589050994022e85 * cos(theta) ** 47 + 8.86477894228034e84 * cos(theta) ** 45 - 4.77742577727683e84 * cos(theta) ** 43 + 2.17879569539443e84 * cos(theta) ** 41 - 8.4313943851979e83 * cos(theta) ** 39 + 2.77181155254288e83 * cos(theta) ** 37 - 7.74015301464803e82 * cos(theta) ** 35 + 1.83335630721162e82 * cos(theta) ** 33 - 3.67367032336901e81 * cos(theta) ** 31 + 6.20282026276902e80 * cos(theta) ** 29 - 8.77777980719492e79 * cos(theta) ** 27 + 1.03389285648504e79 * cos(theta) ** 25 - 1.00475496257049e78 * cos(theta) ** 23 + 7.96874625486944e76 * cos(theta) ** 21 - 5.08798027826872e75 * cos(theta) ** 19 + 2.57105386401877e74 * cos(theta) ** 17 - 1.00622539714116e73 * cos(theta) ** 15 + 2.96613325939982e71 * cos(theta) ** 13 - 6.34728104892143e69 * cos(theta) ** 11 + 9.37434096913745e67 * cos(theta) ** 9 - 8.88329231084359e65 * cos(theta) ** 7 + 4.82039117642676e63 * cos(theta) ** 5 - 1.22438180757601e61 * cos(theta) ** 3 + 9.18286355682008e57 * cos(theta) ) * sin(29 * phi) ) # @torch.jit.script def Yl94_m_minus_28(theta, phi): return ( 4.07200721244265e-55 * (1.0 - cos(theta) ** 2) ** 14 * ( 2.29934868574954e80 * cos(theta) ** 66 - 2.63748819835977e81 * cos(theta) ** 64 + 1.43707465078197e82 * cos(theta) ** 62 - 4.9499237971379e82 * cos(theta) ** 60 + 1.21013330399642e83 * cos(theta) ** 58 - 2.23502832570512e83 * cos(theta) ** 56 + 3.24100152691703e83 * cos(theta) ** 54 - 3.78601892654553e83 * cos(theta) ** 52 + 3.62735628367006e83 * cos(theta) ** 50 - 2.88727189570879e83 * cos(theta) ** 48 + 1.92712585701746e83 * cos(theta) ** 46 - 1.08577858574473e83 * cos(theta) ** 44 + 5.18760879855817e82 * cos(theta) ** 42 - 2.10784859629947e82 * cos(theta) ** 40 + 7.29424092774441e81 * cos(theta) ** 38 - 2.1500425040689e81 * cos(theta) ** 36 + 5.39222443297534e80 * cos(theta) ** 34 - 1.14802197605281e80 * cos(theta) ** 32 + 2.06760675425634e79 * cos(theta) ** 30 - 3.13492135971247e78 * cos(theta) ** 28 + 3.97651098648092e77 * cos(theta) ** 26 - 4.18647901071039e76 * cos(theta) ** 24 + 3.62215738857702e75 * cos(theta) ** 22 - 2.54399013913436e74 * cos(theta) ** 20 + 1.4283632577882e73 * cos(theta) ** 18 - 6.28890873213224e71 * cos(theta) ** 16 + 2.11866661385701e70 * cos(theta) ** 14 - 5.28940087410119e68 * cos(theta) ** 12 + 9.37434096913745e66 * cos(theta) ** 10 - 1.11041153885545e65 * cos(theta) ** 8 + 8.03398529404459e62 * cos(theta) ** 6 - 3.06095451894003e60 * cos(theta) ** 4 + 4.59143177841004e57 * cos(theta) ** 2 - 1.13117314077606e54 ) * sin(28 * phi) ) # @torch.jit.script def Yl94_m_minus_27(theta, phi): return ( 3.68150890453798e-53 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 3.43186371007394e78 * cos(theta) ** 67 - 4.05767415132272e79 * cos(theta) ** 65 + 2.2810708742571e80 * cos(theta) ** 63 - 8.1146291756359e80 * cos(theta) ** 61 + 2.0510733966041e81 * cos(theta) ** 59 - 3.92110232579846e81 * cos(theta) ** 57 + 5.89273004894005e81 * cos(theta) ** 55 - 7.14343193687835e81 * cos(theta) ** 53 + 7.11246330131385e81 * cos(theta) ** 51 - 5.89239162389549e81 * cos(theta) ** 49 + 4.10026778088822e81 * cos(theta) ** 47 - 2.41284130165496e81 * cos(theta) ** 45 + 1.20642065082748e81 * cos(theta) ** 43 - 5.14109413731579e80 * cos(theta) ** 41 + 1.87031818660113e80 * cos(theta) ** 39 - 5.8109256866727e79 * cos(theta) ** 37 + 1.54063555227867e79 * cos(theta) ** 35 - 3.47885447288732e78 * cos(theta) ** 33 + 6.66969920727851e77 * cos(theta) ** 31 - 1.08100736541809e77 * cos(theta) ** 29 + 1.47278184684478e76 * cos(theta) ** 27 - 1.67459160428416e75 * cos(theta) ** 25 + 1.57485103851175e74 * cos(theta) ** 23 - 1.21142387577827e73 * cos(theta) ** 21 + 7.51770135678002e71 * cos(theta) ** 19 - 3.69935807772485e70 * cos(theta) ** 17 + 1.41244440923801e69 * cos(theta) ** 15 - 4.06876990315476e67 * cos(theta) ** 13 + 8.52212815376132e65 * cos(theta) ** 11 - 1.23379059872828e64 * cos(theta) ** 9 + 1.14771218486351e62 * cos(theta) ** 7 - 6.12190903788006e59 * cos(theta) ** 5 + 1.53047725947001e57 * cos(theta) ** 3 - 1.13117314077606e54 * cos(theta) ) * sin(27 * phi) ) # @torch.jit.script def Yl94_m_minus_26(theta, phi): return ( 3.33943501651365e-51 * (1.0 - cos(theta) ** 2) ** 13 * ( 5.04685839716756e76 * cos(theta) ** 68 - 6.14799113836776e77 * cos(theta) ** 66 + 3.56417324102671e78 * cos(theta) ** 64 - 1.30881115736063e79 * cos(theta) ** 62 + 3.41845566100684e79 * cos(theta) ** 60 - 6.76052125137665e79 * cos(theta) ** 58 + 1.05227322302501e80 * cos(theta) ** 56 - 1.32285776608858e80 * cos(theta) ** 54 + 1.36778140409882e80 * cos(theta) ** 52 - 1.1784783247791e80 * cos(theta) ** 50 + 8.54222454351713e79 * cos(theta) ** 48 - 5.24530717751079e79 * cos(theta) ** 46 + 2.741865115517e79 * cos(theta) ** 44 - 1.22407003269424e79 * cos(theta) ** 42 + 4.67579546650283e78 * cos(theta) ** 40 - 1.52919097017703e78 * cos(theta) ** 38 + 4.27954320077408e77 * cos(theta) ** 36 - 1.02319249202568e77 * cos(theta) ** 34 + 2.08428100227454e76 * cos(theta) ** 32 - 3.60335788472698e75 * cos(theta) ** 30 + 5.2599351673028e74 * cos(theta) ** 28 - 6.44073693955445e73 * cos(theta) ** 26 + 6.56187932713228e72 * cos(theta) ** 24 - 5.50647216262849e71 * cos(theta) ** 22 + 3.75885067839001e70 * cos(theta) ** 20 - 2.05519893206936e69 * cos(theta) ** 18 + 8.82777755773756e67 * cos(theta) ** 16 - 2.90626421653912e66 * cos(theta) ** 14 + 7.10177346146776e64 * cos(theta) ** 12 - 1.23379059872828e63 * cos(theta) ** 10 + 1.43464023107939e61 * cos(theta) ** 8 - 1.02031817298001e59 * cos(theta) ** 6 + 3.82619314867503e56 * cos(theta) ** 4 - 5.65586570388032e53 * cos(theta) ** 2 + 1.37478505198841e50 ) * sin(26 * phi) ) # @torch.jit.script def Yl94_m_minus_25(theta, phi): return ( 3.03870237404727e-49 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 7.3142875321269e74 * cos(theta) ** 69 - 9.1761061766683e75 * cos(theta) ** 67 + 5.48334344773341e76 * cos(theta) ** 65 - 2.07747802755655e77 * cos(theta) ** 63 + 5.6040256737817e77 * cos(theta) ** 61 - 1.14585105955536e78 * cos(theta) ** 59 + 1.84609337372809e78 * cos(theta) ** 57 - 2.40519593834288e78 * cos(theta) ** 55 + 2.58071963037513e78 * cos(theta) ** 53 - 2.31074181329235e78 * cos(theta) ** 51 + 1.74331113133003e78 * cos(theta) ** 49 - 1.1160228037257e78 * cos(theta) ** 47 + 6.09303359003779e77 * cos(theta) ** 45 - 2.84667449463776e77 * cos(theta) ** 43 + 1.14043791865923e77 * cos(theta) ** 41 - 3.9210024876334e76 * cos(theta) ** 39 + 1.15663329750651e76 * cos(theta) ** 37 - 2.92340712007337e75 * cos(theta) ** 35 + 6.31600303719556e74 * cos(theta) ** 33 - 1.16237351120225e74 * cos(theta) ** 31 + 1.81377074734579e73 * cos(theta) ** 29 - 2.38545812576091e72 * cos(theta) ** 27 + 2.62475173085291e71 * cos(theta) ** 25 - 2.3941183315776e70 * cos(theta) ** 23 + 1.78992889447143e69 * cos(theta) ** 21 - 1.08168364845756e68 * cos(theta) ** 19 + 5.19281032808092e66 * cos(theta) ** 17 - 1.93750947769274e65 * cos(theta) ** 15 + 5.46290266266751e63 * cos(theta) ** 13 - 1.12162781702571e62 * cos(theta) ** 11 + 1.59404470119932e60 * cos(theta) ** 9 - 1.45759738997144e58 * cos(theta) ** 7 + 7.65238629735007e55 * cos(theta) ** 5 - 1.88528856796011e53 * cos(theta) ** 3 + 1.37478505198841e50 * cos(theta) ) * sin(25 * phi) ) # @torch.jit.script def Yl94_m_minus_24(theta, phi): return ( 2.77338821558175e-47 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.04489821887527e73 * cos(theta) ** 70 - 1.34942737892181e74 * cos(theta) ** 68 + 8.3080961329294e74 * cos(theta) ** 66 - 3.24605941805712e75 * cos(theta) ** 64 + 9.03875108674468e75 * cos(theta) ** 62 - 1.90975176592561e76 * cos(theta) ** 60 + 3.18291960987601e76 * cos(theta) ** 58 - 4.29499274704086e76 * cos(theta) ** 56 + 4.77911042662061e76 * cos(theta) ** 54 - 4.44373425633144e76 * cos(theta) ** 52 + 3.48662226266005e76 * cos(theta) ** 50 - 2.32504750776188e76 * cos(theta) ** 48 + 1.32457251957343e76 * cos(theta) ** 46 - 6.46971476054036e75 * cos(theta) ** 44 + 2.71532837776006e75 * cos(theta) ** 42 - 9.8025062190835e74 * cos(theta) ** 40 + 3.04377183554344e74 * cos(theta) ** 38 - 8.12057533353715e73 * cos(theta) ** 36 + 1.85764795211634e73 * cos(theta) ** 34 - 3.63241722250703e72 * cos(theta) ** 32 + 6.04590249115265e71 * cos(theta) ** 30 - 8.51949330628896e70 * cos(theta) ** 28 + 1.00951989648189e70 * cos(theta) ** 26 - 9.97549304824001e68 * cos(theta) ** 24 + 8.13604042941561e67 * cos(theta) ** 22 - 5.40841824228779e66 * cos(theta) ** 20 + 2.88489462671162e65 * cos(theta) ** 18 - 1.21094342355796e64 * cos(theta) ** 16 + 3.90207333047679e62 * cos(theta) ** 14 - 9.34689847521422e60 * cos(theta) ** 12 + 1.59404470119932e59 * cos(theta) ** 10 - 1.8219967374643e57 * cos(theta) ** 8 + 1.27539771622501e55 * cos(theta) ** 6 - 4.71322141990026e52 * cos(theta) ** 4 + 6.87392525994205e49 * cos(theta) ** 2 - 1.6504022232754e46 ) * sin(24 * phi) ) # @torch.jit.script def Yl94_m_minus_23(theta, phi): return ( 2.53852148748199e-45 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.47168763221869e71 * cos(theta) ** 71 - 1.95569185350987e72 * cos(theta) ** 69 + 1.24001434819842e73 * cos(theta) ** 67 - 4.99393756624172e73 * cos(theta) ** 65 + 1.43472239472138e74 * cos(theta) ** 63 - 3.13074059987805e74 * cos(theta) ** 61 + 5.39477899978985e74 * cos(theta) ** 59 - 7.53507499480852e74 * cos(theta) ** 57 + 8.68929168476474e74 * cos(theta) ** 55 - 8.38440425722913e74 * cos(theta) ** 53 + 6.83651424050991e74 * cos(theta) ** 51 - 4.74499491379975e74 * cos(theta) ** 49 + 2.81823940334773e74 * cos(theta) ** 47 - 1.43771439123119e74 * cos(theta) ** 45 + 6.31471715758154e73 * cos(theta) ** 43 - 2.39085517538622e73 * cos(theta) ** 41 + 7.80454316806011e72 * cos(theta) ** 39 - 2.19475009014518e72 * cos(theta) ** 37 + 5.30756557747526e71 * cos(theta) ** 35 - 1.1007324916688e71 * cos(theta) ** 33 + 1.95029112617827e70 * cos(theta) ** 31 - 2.93775631251343e69 * cos(theta) ** 29 + 3.73896257956255e68 * cos(theta) ** 27 - 3.990197219296e67 * cos(theta) ** 25 + 3.53740888235461e66 * cos(theta) ** 23 - 2.57543725823228e65 * cos(theta) ** 21 + 1.51836559300612e64 * cos(theta) ** 19 - 7.1231966091645e62 * cos(theta) ** 17 + 2.60138222031786e61 * cos(theta) ** 15 - 7.18992190401094e59 * cos(theta) ** 13 + 1.44913154654484e58 * cos(theta) ** 11 - 2.02444081940478e56 * cos(theta) ** 9 + 1.8219967374643e54 * cos(theta) ** 7 - 9.42644283980053e51 * cos(theta) ** 5 + 2.29130841998068e49 * cos(theta) ** 3 - 1.6504022232754e46 * cos(theta) ) * sin(23 * phi) ) # @torch.jit.script def Yl94_m_minus_22(theta, phi): return ( 2.32991470806215e-43 * (1.0 - cos(theta) ** 2) ** 11 * ( 2.04401060030374e69 * cos(theta) ** 72 - 2.7938455050141e70 * cos(theta) ** 70 + 1.8235505120565e71 * cos(theta) ** 68 - 7.56657207006321e71 * cos(theta) ** 66 + 2.24175374175215e72 * cos(theta) ** 64 - 5.04958161270652e72 * cos(theta) ** 62 + 8.99129833298309e72 * cos(theta) ** 60 - 1.29915086117388e73 * cos(theta) ** 58 + 1.55165922942227e73 * cos(theta) ** 56 - 1.55266745504243e73 * cos(theta) ** 54 + 1.31471427702114e73 * cos(theta) ** 52 - 9.48998982759949e72 * cos(theta) ** 50 + 5.87133209030777e72 * cos(theta) ** 48 - 3.12546606789389e72 * cos(theta) ** 46 + 1.43516299035944e72 * cos(theta) ** 44 - 5.69251232234814e71 * cos(theta) ** 42 + 1.95113579201503e71 * cos(theta) ** 40 - 5.77565813196099e70 * cos(theta) ** 38 + 1.47432377152091e70 * cos(theta) ** 36 - 3.23744850490823e69 * cos(theta) ** 34 + 6.0946597693071e68 * cos(theta) ** 32 - 9.79252104171144e67 * cos(theta) ** 30 + 1.3353437784152e67 * cos(theta) ** 28 - 1.53469123819077e66 * cos(theta) ** 26 + 1.47392036764776e65 * cos(theta) ** 24 - 1.17065329919649e64 * cos(theta) ** 22 + 7.59182796503058e62 * cos(theta) ** 20 - 3.95733144953583e61 * cos(theta) ** 18 + 1.62586388769866e60 * cos(theta) ** 16 - 5.13565850286495e58 * cos(theta) ** 14 + 1.2076096221207e57 * cos(theta) ** 12 - 2.02444081940478e55 * cos(theta) ** 10 + 2.27749592183038e53 * cos(theta) ** 8 - 1.57107380663342e51 * cos(theta) ** 6 + 5.72827104995171e48 * cos(theta) ** 4 - 8.25201111637701e45 * cos(theta) ** 2 + 1.95916693171344e42 ) * sin(22 * phi) ) # @torch.jit.script def Yl94_m_minus_21(theta, phi): return ( 2.14402797478665e-41 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 2.80001452096403e67 * cos(theta) ** 73 - 3.93499366903394e68 * cos(theta) ** 71 + 2.64282682906739e69 * cos(theta) ** 69 - 1.12933911493481e70 * cos(theta) ** 67 + 3.44885191038793e70 * cos(theta) ** 65 - 8.01520890905798e70 * cos(theta) ** 63 + 1.47398333327592e71 * cos(theta) ** 61 - 2.20195061215912e71 * cos(theta) ** 59 + 2.72220917442504e71 * cos(theta) ** 57 - 2.82303173644079e71 * cos(theta) ** 55 + 2.48059297551158e71 * cos(theta) ** 53 - 1.86078231913716e71 * cos(theta) ** 51 + 1.19823103883832e71 * cos(theta) ** 49 - 6.64992780402956e70 * cos(theta) ** 47 + 3.18925108968765e70 * cos(theta) ** 45 - 1.32384007496468e70 * cos(theta) ** 43 + 4.7588677854025e69 * cos(theta) ** 41 - 1.4809379825541e69 * cos(theta) ** 39 + 3.9846588419484e68 * cos(theta) ** 37 - 9.24985287116637e67 * cos(theta) ** 35 + 1.84686659675973e67 * cos(theta) ** 33 - 3.15887775539079e66 * cos(theta) ** 31 + 4.60463371867309e65 * cos(theta) ** 29 - 5.68404162292878e64 * cos(theta) ** 27 + 5.89568147059102e63 * cos(theta) ** 25 - 5.08979695302822e62 * cos(theta) ** 23 + 3.61515617382409e61 * cos(theta) ** 21 - 2.08280602607149e60 * cos(theta) ** 19 + 9.56390522175684e58 * cos(theta) ** 17 - 3.4237723352433e57 * cos(theta) ** 15 + 9.28930478554385e55 * cos(theta) ** 13 - 1.84040074491344e54 * cos(theta) ** 11 + 2.53055102425598e52 * cos(theta) ** 9 - 2.24439115233346e50 * cos(theta) ** 7 + 1.14565420999034e48 * cos(theta) ** 5 - 2.75067037212567e45 * cos(theta) ** 3 + 1.95916693171344e42 * cos(theta) ) * sin(21 * phi) ) # @torch.jit.script def Yl94_m_minus_20(theta, phi): return ( 1.97785854375996e-39 * (1.0 - cos(theta) ** 2) ** 10 * ( 3.78380340670815e65 * cos(theta) ** 74 - 5.46526898476936e66 * cos(theta) ** 72 + 3.7754668986677e67 * cos(theta) ** 70 - 1.6607928160806e68 * cos(theta) ** 68 + 5.22553319755747e68 * cos(theta) ** 66 - 1.25237639204031e69 * cos(theta) ** 64 + 2.37739247302567e69 * cos(theta) ** 62 - 3.66991768693187e69 * cos(theta) ** 60 + 4.69346409383628e69 * cos(theta) ** 58 - 5.04112810078712e69 * cos(theta) ** 56 + 4.59369069539181e69 * cos(theta) ** 54 - 3.57842753680222e69 * cos(theta) ** 52 + 2.39646207767664e69 * cos(theta) ** 50 - 1.38540162583949e69 * cos(theta) ** 48 + 6.93315454279923e68 * cos(theta) ** 46 - 3.00872744310155e68 * cos(theta) ** 44 + 1.13306375842917e68 * cos(theta) ** 42 - 3.70234495638525e67 * cos(theta) ** 40 + 1.04859443209168e67 * cos(theta) ** 38 - 2.56940357532399e66 * cos(theta) ** 36 + 5.43196057870508e65 * cos(theta) ** 34 - 9.87149298559621e64 * cos(theta) ** 32 + 1.53487790622436e64 * cos(theta) ** 30 - 2.03001486533171e63 * cos(theta) ** 28 + 2.26756979638116e62 * cos(theta) ** 26 - 2.12074873042843e61 * cos(theta) ** 24 + 1.64325280628368e60 * cos(theta) ** 22 - 1.04140301303575e59 * cos(theta) ** 20 + 5.3132806787538e57 * cos(theta) ** 18 - 2.13985770952706e56 * cos(theta) ** 16 + 6.63521770395989e54 * cos(theta) ** 14 - 1.53366728742786e53 * cos(theta) ** 12 + 2.53055102425598e51 * cos(theta) ** 10 - 2.80548894041682e49 * cos(theta) ** 8 + 1.90942368331724e47 * cos(theta) ** 6 - 6.87667593031417e44 * cos(theta) ** 4 + 9.7958346585672e41 * cos(theta) ** 2 - 2.30219380929899e38 ) * sin(20 * phi) ) # @torch.jit.script def Yl94_m_minus_19(theta, phi): return ( 1.82885083545686e-37 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 5.04507120894419e63 * cos(theta) ** 75 - 7.48666984214981e64 * cos(theta) ** 73 + 5.31755901220802e65 * cos(theta) ** 71 - 2.40694611026174e66 * cos(theta) ** 69 + 7.79930327993651e66 * cos(theta) ** 67 - 1.92673291083124e67 * cos(theta) ** 65 + 3.77363884607249e67 * cos(theta) ** 63 - 6.016258503167e67 * cos(theta) ** 61 + 7.9550238878581e67 * cos(theta) ** 59 - 8.84408438734582e67 * cos(theta) ** 57 + 8.35216490071238e67 * cos(theta) ** 55 - 6.75175006943815e67 * cos(theta) ** 53 + 4.69894525034635e67 * cos(theta) ** 51 - 2.82735025681529e67 * cos(theta) ** 49 + 1.47513926442537e67 * cos(theta) ** 47 - 6.68606098467012e66 * cos(theta) ** 45 + 2.6350319963469e66 * cos(theta) ** 43 - 9.03010964972012e65 * cos(theta) ** 41 + 2.68870367202996e65 * cos(theta) ** 39 - 6.94433398736214e64 * cos(theta) ** 37 + 1.55198873677288e64 * cos(theta) ** 35 - 2.99136151078673e63 * cos(theta) ** 33 + 4.95121905233666e62 * cos(theta) ** 31 - 7.00005125976451e61 * cos(theta) ** 29 + 8.39840665326356e60 * cos(theta) ** 27 - 8.4829949217137e59 * cos(theta) ** 25 + 7.14457741862468e58 * cos(theta) ** 23 - 4.95906196683688e57 * cos(theta) ** 21 + 2.79646351513358e56 * cos(theta) ** 19 - 1.25873982913357e55 * cos(theta) ** 17 + 4.42347846930659e53 * cos(theta) ** 15 - 1.1797440672522e52 * cos(theta) ** 13 + 2.3005009311418e50 * cos(theta) ** 11 - 3.11720993379647e48 * cos(theta) ** 9 + 2.72774811902462e46 * cos(theta) ** 7 - 1.37533518606283e44 * cos(theta) ** 5 + 3.2652782195224e41 * cos(theta) ** 3 - 2.30219380929899e38 * cos(theta) ) * sin(19 * phi) ) # @torch.jit.script def Yl94_m_minus_18(theta, phi): return ( 1.69482281992191e-35 * (1.0 - cos(theta) ** 2) ** 9 * ( 6.63825159071604e61 * cos(theta) ** 76 - 1.01171214083105e63 * cos(theta) ** 74 + 7.3854986280667e63 * cos(theta) ** 72 - 3.43849444323105e64 * cos(theta) ** 70 + 1.14695636469655e65 * cos(theta) ** 68 - 2.91929228913825e65 * cos(theta) ** 66 + 5.89631069698827e65 * cos(theta) ** 64 - 9.70364274704355e65 * cos(theta) ** 62 + 1.32583731464302e66 * cos(theta) ** 60 - 1.52484213574928e66 * cos(theta) ** 58 + 1.49145801798435e66 * cos(theta) ** 56 - 1.25032408693299e66 * cos(theta) ** 54 + 9.03643317374298e65 * cos(theta) ** 52 - 5.65470051363058e65 * cos(theta) ** 50 + 3.07320680088618e65 * cos(theta) ** 48 - 1.45349151840655e65 * cos(theta) ** 46 + 5.9887090826066e64 * cos(theta) ** 44 - 2.15002610707622e64 * cos(theta) ** 42 + 6.72175918007489e63 * cos(theta) ** 40 - 1.82745631246372e63 * cos(theta) ** 38 + 4.31107982436911e62 * cos(theta) ** 36 - 8.79812209054921e61 * cos(theta) ** 34 + 1.54725595385521e61 * cos(theta) ** 32 - 2.3333504199215e60 * cos(theta) ** 30 + 2.99943094759413e59 * cos(theta) ** 28 - 3.26269035450527e58 * cos(theta) ** 26 + 2.97690725776028e57 * cos(theta) ** 24 - 2.25411907583495e56 * cos(theta) ** 22 + 1.39823175756679e55 * cos(theta) ** 20 - 6.99299905074204e53 * cos(theta) ** 18 + 2.76467404331662e52 * cos(theta) ** 16 - 8.42674333751574e50 * cos(theta) ** 14 + 1.91708410928483e49 * cos(theta) ** 12 - 3.11720993379647e47 * cos(theta) ** 10 + 3.40968514878078e45 * cos(theta) ** 8 - 2.29222531010472e43 * cos(theta) ** 6 + 8.163195548806e40 * cos(theta) ** 4 - 1.15109690464949e38 * cos(theta) ** 2 + 2.68071007137749e34 ) * sin(18 * phi) ) # @torch.jit.script def Yl94_m_minus_17(theta, phi): return ( 1.57390558634765e-33 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 8.62110596196889e59 * cos(theta) ** 77 - 1.34894952110807e61 * cos(theta) ** 75 + 1.01171214083105e62 * cos(theta) ** 73 - 4.84294992004374e62 * cos(theta) ** 71 + 1.66225560100949e63 * cos(theta) ** 69 - 4.3571526703556e63 * cos(theta) ** 67 + 9.0712472261358e63 * cos(theta) ** 65 - 1.54026075349898e64 * cos(theta) ** 63 + 2.17350379449675e64 * cos(theta) ** 61 - 2.58447819618522e64 * cos(theta) ** 59 + 2.61659301400764e64 * cos(theta) ** 57 - 2.27331652169635e64 * cos(theta) ** 55 + 1.70498739127226e64 * cos(theta) ** 53 - 1.10876480659423e64 * cos(theta) ** 51 + 6.27185061405344e63 * cos(theta) ** 49 - 3.09253514554585e63 * cos(theta) ** 47 + 1.33082424057924e63 * cos(theta) ** 45 - 5.00006071413074e62 * cos(theta) ** 43 + 1.63945345855485e62 * cos(theta) ** 41 - 4.68578541657364e61 * cos(theta) ** 39 + 1.16515670928895e61 * cos(theta) ** 37 - 2.51374916872835e60 * cos(theta) ** 35 + 4.68865440562184e59 * cos(theta) ** 33 - 7.52693683845646e58 * cos(theta) ** 31 + 1.03428653365315e58 * cos(theta) ** 29 - 1.20840383500195e57 * cos(theta) ** 27 + 1.19076290310411e56 * cos(theta) ** 25 - 9.80051772102151e54 * cos(theta) ** 23 + 6.65824646460376e53 * cos(theta) ** 21 - 3.68052581618002e52 * cos(theta) ** 19 + 1.62627884900978e51 * cos(theta) ** 17 - 5.61782889167716e49 * cos(theta) ** 15 + 1.47468008406525e48 * cos(theta) ** 13 - 2.83382721254225e46 * cos(theta) ** 11 + 3.78853905420086e44 * cos(theta) ** 9 - 3.27460758586389e42 * cos(theta) ** 7 + 1.6326391097612e40 * cos(theta) ** 5 - 3.83698968216498e37 * cos(theta) ** 3 + 2.68071007137749e34 * cos(theta) ) * sin(17 * phi) ) # @torch.jit.script def Yl94_m_minus_16(theta, phi): return ( 1.46449356450711e-31 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.10526999512422e58 * cos(theta) ** 78 - 1.77493358040536e59 * cos(theta) ** 76 + 1.36717856869061e60 * cos(theta) ** 74 - 6.72631933339408e60 * cos(theta) ** 72 + 2.37465085858498e61 * cos(theta) ** 70 - 6.40757745640529e61 * cos(theta) ** 68 + 1.37443139789936e62 * cos(theta) ** 66 - 2.40665742734215e62 * cos(theta) ** 64 + 3.50565128144637e62 * cos(theta) ** 62 - 4.3074636603087e62 * cos(theta) ** 60 + 4.51136726553041e62 * cos(theta) ** 58 - 4.05949378874348e62 * cos(theta) ** 56 + 3.15738405791159e62 * cos(theta) ** 54 - 2.13224001268121e62 * cos(theta) ** 52 + 1.25437012281069e62 * cos(theta) ** 50 - 6.44278155322051e61 * cos(theta) ** 48 + 2.89309617517227e61 * cos(theta) ** 46 - 1.13637743502971e61 * cos(theta) ** 44 + 3.90346061560679e60 * cos(theta) ** 42 - 1.17144635414341e60 * cos(theta) ** 40 + 3.06620186654987e59 * cos(theta) ** 38 - 6.98263657980096e58 * cos(theta) ** 36 + 1.37901600165348e58 * cos(theta) ** 34 - 2.35216776201764e57 * cos(theta) ** 32 + 3.44762177884383e56 * cos(theta) ** 30 - 4.31572798214983e55 * cos(theta) ** 28 + 4.5798573196312e54 * cos(theta) ** 26 - 4.08354905042563e53 * cos(theta) ** 24 + 3.02647566572898e52 * cos(theta) ** 22 - 1.84026290809001e51 * cos(theta) ** 20 + 9.03488249449876e49 * cos(theta) ** 18 - 3.51114305729822e48 * cos(theta) ** 16 + 1.05334291718947e47 * cos(theta) ** 14 - 2.36152267711854e45 * cos(theta) ** 12 + 3.78853905420086e43 * cos(theta) ** 10 - 4.09325948232987e41 * cos(theta) ** 8 + 2.72106518293533e39 * cos(theta) ** 6 - 9.59247420541246e36 * cos(theta) ** 4 + 1.34035503568875e34 * cos(theta) ** 2 - 3.09622322866423e30 ) * sin(16 * phi) ) # @torch.jit.script def Yl94_m_minus_15(theta, phi): return ( 1.36520338302375e-29 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.39907594319521e56 * cos(theta) ** 79 - 2.30510854598099e57 * cos(theta) ** 77 + 1.82290475825415e58 * cos(theta) ** 75 - 9.21413607314258e58 * cos(theta) ** 73 + 3.34457867406335e59 * cos(theta) ** 71 - 9.28634413971781e59 * cos(theta) ** 69 + 2.05139014611845e60 * cos(theta) ** 67 - 3.70254988821869e60 * cos(theta) ** 65 + 5.56452584356567e60 * cos(theta) ** 63 - 7.06141583657164e60 * cos(theta) ** 61 + 7.64638519581426e60 * cos(theta) ** 59 - 7.12191892762014e60 * cos(theta) ** 57 + 5.74069828711199e60 * cos(theta) ** 55 - 4.02309436354946e60 * cos(theta) ** 53 + 2.45954926041311e60 * cos(theta) ** 51 - 1.31485337820827e60 * cos(theta) ** 49 + 6.15552377696227e59 * cos(theta) ** 47 - 2.52528318895492e59 * cos(theta) ** 45 + 9.07781538513207e58 * cos(theta) ** 43 - 2.85718622961808e58 * cos(theta) ** 41 + 7.86205606807658e57 * cos(theta) ** 39 - 1.88719907562188e57 * cos(theta) ** 37 + 3.94004571900995e56 * cos(theta) ** 35 - 7.12778109702316e55 * cos(theta) ** 33 + 1.11213605769156e55 * cos(theta) ** 31 - 1.48818206281029e54 * cos(theta) ** 29 + 1.69624345171526e53 * cos(theta) ** 27 - 1.63341962017025e52 * cos(theta) ** 25 + 1.31585898509956e51 * cos(theta) ** 23 - 8.76315670519053e49 * cos(theta) ** 21 + 4.75520131289408e48 * cos(theta) ** 19 - 2.06537826899895e47 * cos(theta) ** 17 + 7.02228611459645e45 * cos(theta) ** 15 - 1.8165559054758e44 * cos(theta) ** 13 + 3.44412641290988e42 * cos(theta) ** 11 - 4.54806609147763e40 * cos(theta) ** 9 + 3.8872359756219e38 * cos(theta) ** 7 - 1.91849484108249e36 * cos(theta) ** 5 + 4.46785011896248e33 * cos(theta) ** 3 - 3.09622322866423e30 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl94_m_minus_14(theta, phi): return ( 1.27483975524809e-27 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.74884492899401e54 * cos(theta) ** 80 - 2.95526736664229e55 * cos(theta) ** 78 + 2.39855889243967e56 * cos(theta) ** 76 - 1.24515352339765e57 * cos(theta) ** 74 + 4.64524815842133e57 * cos(theta) ** 72 - 1.32662059138826e58 * cos(theta) ** 70 + 3.01675021488008e58 * cos(theta) ** 68 - 5.60992407305863e58 * cos(theta) ** 66 + 8.69457163057136e58 * cos(theta) ** 64 - 1.13893803815672e59 * cos(theta) ** 62 + 1.27439753263571e59 * cos(theta) ** 60 - 1.22791705648623e59 * cos(theta) ** 58 + 1.02512469412714e59 * cos(theta) ** 56 - 7.45017474731382e58 * cos(theta) ** 54 + 4.72990242387137e58 * cos(theta) ** 52 - 2.62970675641654e58 * cos(theta) ** 50 + 1.28240078686714e58 * cos(theta) ** 48 - 5.48974606294548e57 * cos(theta) ** 46 + 2.06313986025729e57 * cos(theta) ** 44 - 6.80282435623351e56 * cos(theta) ** 42 + 1.96551401701915e56 * cos(theta) ** 40 - 4.96631335689969e55 * cos(theta) ** 38 + 1.09445714416943e55 * cos(theta) ** 36 - 2.09640620500681e54 * cos(theta) ** 34 + 3.47542518028612e53 * cos(theta) ** 32 - 4.96060687603429e52 * cos(theta) ** 30 + 6.0580123275545e51 * cos(theta) ** 28 - 6.28238315450097e50 * cos(theta) ** 26 + 5.48274577124816e49 * cos(theta) ** 24 - 3.98325304781388e48 * cos(theta) ** 22 + 2.37760065644704e47 * cos(theta) ** 20 - 1.14743237166609e46 * cos(theta) ** 18 + 4.38892882162278e44 * cos(theta) ** 16 - 1.29753993248271e43 * cos(theta) ** 14 + 2.87010534409156e41 * cos(theta) ** 12 - 4.54806609147763e39 * cos(theta) ** 10 + 4.85904496952738e37 * cos(theta) ** 8 - 3.19749140180415e35 * cos(theta) ** 6 + 1.11696252974062e33 * cos(theta) ** 4 - 1.54811161433212e30 * cos(theta) ** 2 + 3.55071471177091e26 ) * sin(14 * phi) ) # @torch.jit.script def Yl94_m_minus_13(theta, phi): return ( 1.19236710290311e-25 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 2.15906781357286e52 * cos(theta) ** 81 - 3.74084476790163e53 * cos(theta) ** 79 + 3.11501154862295e54 * cos(theta) ** 77 - 1.66020469786353e55 * cos(theta) ** 75 + 6.36335364167305e55 * cos(theta) ** 73 - 1.86847970618065e56 * cos(theta) ** 71 + 4.37210176069577e56 * cos(theta) ** 69 - 8.37302100456512e56 * cos(theta) ** 67 + 1.33762640470329e57 * cos(theta) ** 65 - 1.80783815580431e57 * cos(theta) ** 63 + 2.08917628300936e57 * cos(theta) ** 61 - 2.08121534997666e57 * cos(theta) ** 59 + 1.79846437566165e57 * cos(theta) ** 57 - 1.35457722678433e57 * cos(theta) ** 55 + 8.92434419598372e56 * cos(theta) ** 53 - 5.15628775767948e56 * cos(theta) ** 51 + 2.61714446299416e56 * cos(theta) ** 49 - 1.16803107722244e56 * cos(theta) ** 47 + 4.5847552450162e55 * cos(theta) ** 45 - 1.58205217586826e55 * cos(theta) ** 43 + 4.79393662687597e54 * cos(theta) ** 41 - 1.27341368125633e54 * cos(theta) ** 39 + 2.957992281539e53 * cos(theta) ** 37 - 5.98973201430518e52 * cos(theta) ** 35 + 1.05315914554125e52 * cos(theta) ** 33 - 1.60019576646267e51 * cos(theta) ** 31 + 2.08896976812224e50 * cos(theta) ** 29 - 2.3268085757411e49 * cos(theta) ** 27 + 2.19309830849926e48 * cos(theta) ** 25 - 1.73184915122342e47 * cos(theta) ** 23 + 1.13219078878431e46 * cos(theta) ** 21 - 6.03911774561098e44 * cos(theta) ** 19 + 2.58172283624869e43 * cos(theta) ** 17 - 8.65026621655142e41 * cos(theta) ** 15 + 2.2077733416089e40 * cos(theta) ** 13 - 4.13460553770693e38 * cos(theta) ** 11 + 5.39893885503042e36 * cos(theta) ** 9 - 4.56784485972022e34 * cos(theta) ** 7 + 2.23392505948124e32 * cos(theta) ** 5 - 5.16037204777372e29 * cos(theta) ** 3 + 3.55071471177091e26 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl94_m_minus_12(theta, phi): return ( 1.11688587998697e-23 * (1.0 - cos(theta) ** 2) ** 6 * ( 2.63300952874739e50 * cos(theta) ** 82 - 4.67605595987704e51 * cos(theta) ** 80 + 3.99360454951661e52 * cos(theta) ** 78 - 2.1844798656099e53 * cos(theta) ** 76 + 8.59912654280142e53 * cos(theta) ** 74 - 2.59511070302867e54 * cos(theta) ** 72 + 6.24585965813681e54 * cos(theta) ** 70 - 1.2313266183184e55 * cos(theta) ** 68 + 2.02670667379286e55 * cos(theta) ** 66 - 2.82474711844424e55 * cos(theta) ** 64 + 3.36963916614413e55 * cos(theta) ** 62 - 3.4686922499611e55 * cos(theta) ** 60 + 3.1008006476925e55 * cos(theta) ** 58 - 2.41888790497202e55 * cos(theta) ** 56 + 1.65265633258958e55 * cos(theta) ** 54 - 9.91593799553746e54 * cos(theta) ** 52 + 5.23428892598833e54 * cos(theta) ** 50 - 2.43339807754676e54 * cos(theta) ** 48 + 9.96685922829608e53 * cos(theta) ** 46 - 3.59557312697332e53 * cos(theta) ** 44 + 1.14141348258952e53 * cos(theta) ** 42 - 3.18353420314083e52 * cos(theta) ** 40 + 7.78419021457631e51 * cos(theta) ** 38 - 1.66381444841811e51 * cos(theta) ** 36 + 3.09752689865073e50 * cos(theta) ** 34 - 5.00061177019585e49 * cos(theta) ** 32 + 6.96323256040747e48 * cos(theta) ** 30 - 8.31003062764678e47 * cos(theta) ** 28 + 8.43499349422793e46 * cos(theta) ** 26 - 7.2160381300976e45 * cos(theta) ** 24 + 5.14632176720139e44 * cos(theta) ** 22 - 3.01955887280549e43 * cos(theta) ** 20 + 1.43429046458261e42 * cos(theta) ** 18 - 5.40641638534464e40 * cos(theta) ** 16 + 1.57698095829207e39 * cos(theta) ** 14 - 3.44550461475578e37 * cos(theta) ** 12 + 5.39893885503042e35 * cos(theta) ** 10 - 5.70980607465027e33 * cos(theta) ** 8 + 3.72320843246874e31 * cos(theta) ** 6 - 1.29009301194343e29 * cos(theta) ** 4 + 1.77535735588545e26 * cos(theta) ** 2 - 4.04685971252668e22 ) * sin(12 * phi) ) # @torch.jit.script def Yl94_m_minus_11(theta, phi): return ( 1.04761275948261e-21 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 3.17230063704504e48 * cos(theta) ** 83 - 5.77290859244079e49 * cos(theta) ** 81 + 5.0551956322995e50 * cos(theta) ** 79 - 2.83698683845442e51 * cos(theta) ** 77 + 1.14655020570686e52 * cos(theta) ** 75 - 3.55494616853243e52 * cos(theta) ** 73 + 8.7969854339955e52 * cos(theta) ** 71 - 1.78453133089623e53 * cos(theta) ** 69 + 3.02493533401919e53 * cos(theta) ** 67 - 4.34576479760652e53 * cos(theta) ** 65 + 5.34863359705417e53 * cos(theta) ** 63 - 5.68638073764115e53 * cos(theta) ** 61 + 5.25559431812288e53 * cos(theta) ** 59 - 4.24366299117898e53 * cos(theta) ** 57 + 3.00482969561741e53 * cos(theta) ** 55 - 1.87093169727122e53 * cos(theta) ** 53 + 1.0263311619585e53 * cos(theta) ** 51 - 4.96611852560562e52 * cos(theta) ** 49 + 2.12060834644597e52 * cos(theta) ** 47 - 7.99016250438515e51 * cos(theta) ** 45 + 2.6544499595105e51 * cos(theta) ** 43 - 7.76471756863616e50 * cos(theta) ** 41 + 1.99594620886572e50 * cos(theta) ** 39 - 4.49679580653542e49 * cos(theta) ** 37 + 8.85007685328779e48 * cos(theta) ** 35 - 1.51533690005935e48 * cos(theta) ** 33 + 2.24620405174435e47 * cos(theta) ** 31 - 2.86552780263682e46 * cos(theta) ** 29 + 3.12407166452886e45 * cos(theta) ** 27 - 2.88641525203904e44 * cos(theta) ** 25 + 2.23753120313104e43 * cos(theta) ** 23 - 1.43788517752642e42 * cos(theta) ** 21 + 7.54889718201372e40 * cos(theta) ** 19 - 3.18024493255567e39 * cos(theta) ** 17 + 1.05132063886138e38 * cos(theta) ** 15 - 2.65038816519675e36 * cos(theta) ** 13 + 4.90812623184584e34 * cos(theta) ** 11 - 6.34422897183363e32 * cos(theta) ** 9 + 5.31886918924105e30 * cos(theta) ** 7 - 2.58018602388686e28 * cos(theta) ** 5 + 5.91785785295151e25 * cos(theta) ** 3 - 4.04685971252668e22 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl94_m_minus_10(theta, phi): return ( 9.8386400460569e-20 * (1.0 - cos(theta) ** 2) ** 5 * ( 3.77654837743457e46 * cos(theta) ** 84 - 7.04013242980584e47 * cos(theta) ** 82 + 6.31899454037438e48 * cos(theta) ** 80 - 3.6371626134031e49 * cos(theta) ** 78 + 1.50861869171955e50 * cos(theta) ** 76 - 4.80398130882761e50 * cos(theta) ** 74 + 1.22180353249938e51 * cos(theta) ** 72 - 2.5493304727089e51 * cos(theta) ** 70 + 4.4484343147341e51 * cos(theta) ** 68 - 6.58449211758563e51 * cos(theta) ** 66 + 8.35723999539714e51 * cos(theta) ** 64 - 9.17158183490509e51 * cos(theta) ** 62 + 8.75932386353814e51 * cos(theta) ** 60 - 7.31666032961893e51 * cos(theta) ** 58 + 5.36576731360252e51 * cos(theta) ** 56 - 3.46468832828004e51 * cos(theta) ** 54 + 1.97371377299711e51 * cos(theta) ** 52 - 9.93223705121125e50 * cos(theta) ** 50 + 4.41793405509578e50 * cos(theta) ** 48 - 1.73699184877938e50 * cos(theta) ** 46 + 6.03284081706932e49 * cos(theta) ** 44 - 1.8487422782467e49 * cos(theta) ** 42 + 4.9898655221643e48 * cos(theta) ** 40 - 1.18336731750932e48 * cos(theta) ** 38 + 2.45835468146883e47 * cos(theta) ** 36 - 4.45687323546867e46 * cos(theta) ** 34 + 7.01938766170108e45 * cos(theta) ** 32 - 9.55175934212274e44 * cos(theta) ** 30 + 1.11573988018888e44 * cos(theta) ** 28 - 1.11015971232271e43 * cos(theta) ** 26 + 9.32304667971266e41 * cos(theta) ** 24 - 6.5358417160292e40 * cos(theta) ** 22 + 3.77444859100686e39 * cos(theta) ** 20 - 1.76680274030871e38 * cos(theta) ** 18 + 6.57075399288362e36 * cos(theta) ** 16 - 1.89313440371197e35 * cos(theta) ** 14 + 4.09010519320487e33 * cos(theta) ** 12 - 6.34422897183363e31 * cos(theta) ** 10 + 6.64858648655132e29 * cos(theta) ** 8 - 4.30031003981143e27 * cos(theta) ** 6 + 1.47946446323788e25 * cos(theta) ** 4 - 2.02342985626334e22 * cos(theta) ** 2 + 4.58827631805746e18 ) * sin(10 * phi) ) # @torch.jit.script def Yl94_m_minus_9(theta, phi): return ( 9.2504147341075e-18 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 4.4429980910995e44 * cos(theta) ** 85 - 8.48208726482632e45 * cos(theta) ** 83 + 7.80122782762269e46 * cos(theta) ** 81 - 4.60400330810519e47 * cos(theta) ** 79 + 1.95924505418123e48 * cos(theta) ** 77 - 6.40530841177014e48 * cos(theta) ** 75 + 1.67370346917723e49 * cos(theta) ** 73 - 3.59060629959e49 * cos(theta) ** 71 + 6.44700625323783e49 * cos(theta) ** 69 - 9.82760017550094e49 * cos(theta) ** 67 + 1.2857292300611e50 * cos(theta) ** 65 - 1.45580664046112e50 * cos(theta) ** 63 + 1.43595473172756e50 * cos(theta) ** 61 - 1.24011192027439e50 * cos(theta) ** 59 + 9.41362686596934e49 * cos(theta) ** 57 - 6.29943332414552e49 * cos(theta) ** 55 + 3.72398825093794e49 * cos(theta) ** 53 - 1.94749746102181e49 * cos(theta) ** 51 + 9.01619194917506e48 * cos(theta) ** 49 - 3.69572733782847e48 * cos(theta) ** 47 + 1.34063129268207e48 * cos(theta) ** 45 - 4.29940064708536e47 * cos(theta) ** 43 + 1.21704037125959e47 * cos(theta) ** 41 - 3.03427517310082e46 * cos(theta) ** 39 + 6.64420184180765e45 * cos(theta) ** 37 - 1.27339235299105e45 * cos(theta) ** 35 + 2.12708717021245e44 * cos(theta) ** 33 - 3.08121269100733e43 * cos(theta) ** 31 + 3.84737889720304e42 * cos(theta) ** 29 - 4.11170263823225e41 * cos(theta) ** 27 + 3.72921867188507e40 * cos(theta) ** 25 - 2.84167031131704e39 * cos(theta) ** 23 + 1.79735647190803e38 * cos(theta) ** 21 - 9.29896179109845e36 * cos(theta) ** 19 + 3.8651494075786e35 * cos(theta) ** 17 - 1.26208960247464e34 * cos(theta) ** 15 + 3.14623476400374e32 * cos(theta) ** 13 - 5.76748088348512e30 * cos(theta) ** 11 + 7.38731831839035e28 * cos(theta) ** 9 - 6.14330005687347e26 * cos(theta) ** 7 + 2.95892892647576e24 * cos(theta) ** 5 - 6.74476618754446e21 * cos(theta) ** 3 + 4.58827631805746e18 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl94_m_minus_8(theta, phi): return ( 8.70620807381728e-16 * (1.0 - cos(theta) ** 2) ** 4 * ( 5.1662768501157e42 * cos(theta) ** 86 - 1.0097722934317e44 * cos(theta) ** 84 + 9.5136924727106e44 * cos(theta) ** 82 - 5.75500413513149e45 * cos(theta) ** 80 + 2.51185263356568e46 * cos(theta) ** 78 - 8.42803738390808e46 * cos(theta) ** 76 + 2.26176144483409e47 * cos(theta) ** 74 - 4.986953193875e47 * cos(theta) ** 72 + 9.2100089331969e47 * cos(theta) ** 70 - 1.44523531992661e48 * cos(theta) ** 68 + 1.94807459100167e48 * cos(theta) ** 66 - 2.27469787572051e48 * cos(theta) ** 64 + 2.31605601891543e48 * cos(theta) ** 62 - 2.06685320045732e48 * cos(theta) ** 60 + 1.6230391148223e48 * cos(theta) ** 58 - 1.12489880788313e48 * cos(theta) ** 56 + 6.89627453877396e47 * cos(theta) ** 54 - 3.74518742504195e47 * cos(theta) ** 52 + 1.80323838983501e47 * cos(theta) ** 50 - 7.69943195380931e46 * cos(theta) ** 48 + 2.91441585365668e46 * cos(theta) ** 46 - 9.77136510701218e45 * cos(theta) ** 44 + 2.89771516966568e45 * cos(theta) ** 42 - 7.58568793275206e44 * cos(theta) ** 40 + 1.74847416889675e44 * cos(theta) ** 38 - 3.53720098053069e43 * cos(theta) ** 36 + 6.25613873591897e42 * cos(theta) ** 34 - 9.62878965939792e41 * cos(theta) ** 32 + 1.28245963240101e41 * cos(theta) ** 30 - 1.46846522794009e40 * cos(theta) ** 28 + 1.43431487380195e39 * cos(theta) ** 26 - 1.1840292963821e38 * cos(theta) ** 24 + 8.1698021450365e36 * cos(theta) ** 22 - 4.64948089554923e35 * cos(theta) ** 20 + 2.14730522643255e34 * cos(theta) ** 18 - 7.88806001546653e32 * cos(theta) ** 16 + 2.24731054571696e31 * cos(theta) ** 14 - 4.80623406957094e29 * cos(theta) ** 12 + 7.38731831839035e27 * cos(theta) ** 10 - 7.67912507109184e25 * cos(theta) ** 8 + 4.93154821079293e23 * cos(theta) ** 6 - 1.68619154688612e21 * cos(theta) ** 4 + 2.29413815902873e18 * cos(theta) ** 2 - 517981069999713.0 ) * sin(8 * phi) ) # @torch.jit.script def Yl94_m_minus_7(theta, phi): return ( 8.20141436451245e-14 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 5.93824925300655e40 * cos(theta) ** 87 - 1.1879674040373e42 * cos(theta) ** 85 + 1.14622800876031e43 * cos(theta) ** 83 - 7.10494337670555e43 * cos(theta) ** 81 + 3.17956029565276e44 * cos(theta) ** 79 - 1.09455030959845e45 * cos(theta) ** 77 + 3.01568192644545e45 * cos(theta) ** 75 - 6.83144273133562e45 * cos(theta) ** 73 + 1.2971843567883e46 * cos(theta) ** 71 - 2.09454394192262e46 * cos(theta) ** 69 + 2.9075740164204e46 * cos(theta) ** 67 - 3.49953519341617e46 * cos(theta) ** 65 + 3.67627939510385e46 * cos(theta) ** 63 - 3.38828393517594e46 * cos(theta) ** 61 + 2.7509137539361e46 * cos(theta) ** 59 - 1.97350668049672e46 * cos(theta) ** 57 + 1.2538680979589e46 * cos(theta) ** 55 - 7.06639136800368e45 * cos(theta) ** 53 + 3.5357615486961e45 * cos(theta) ** 51 - 1.57131264363455e45 * cos(theta) ** 49 + 6.20088479501421e44 * cos(theta) ** 47 - 2.17141446822493e44 * cos(theta) ** 45 + 6.73887248759461e43 * cos(theta) ** 43 - 1.85016778847611e43 * cos(theta) ** 41 + 4.48326709973526e42 * cos(theta) ** 39 - 9.56000265008295e41 * cos(theta) ** 37 + 1.78746821026256e41 * cos(theta) ** 35 - 2.9178150483024e40 * cos(theta) ** 33 + 4.1369665561323e39 * cos(theta) ** 31 - 5.06367319979341e38 * cos(theta) ** 29 + 5.31227731037759e37 * cos(theta) ** 27 - 4.7361171855284e36 * cos(theta) ** 25 + 3.5520878891463e35 * cos(theta) ** 23 - 2.21403852169011e34 * cos(theta) ** 21 + 1.13016064549082e33 * cos(theta) ** 19 - 4.6400353032156e31 * cos(theta) ** 17 + 1.49820703047797e30 * cos(theta) ** 15 - 3.69710313043918e28 * cos(theta) ** 13 + 6.71574392580941e26 * cos(theta) ** 11 - 8.53236119010205e24 * cos(theta) ** 9 + 7.04506887256132e22 * cos(theta) ** 7 - 3.37238309377223e20 * cos(theta) ** 5 + 7.64712719676243e17 * cos(theta) ** 3 - 517981069999713.0 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl94_m_minus_6(theta, phi): return ( 7.73198098857658e-12 * (1.0 - cos(theta) ** 2) ** 3 * ( 6.74801051478017e38 * cos(theta) ** 88 - 1.381357446555e40 * cos(theta) ** 86 + 1.36455715328609e41 * cos(theta) ** 84 - 8.66456509354335e41 * cos(theta) ** 82 + 3.97445036956595e42 * cos(theta) ** 80 - 1.40326962769032e43 * cos(theta) ** 78 + 3.96800253479665e43 * cos(theta) ** 76 - 9.23167936666976e43 * cos(theta) ** 74 + 1.80164493998374e44 * cos(theta) ** 72 - 2.99220563131803e44 * cos(theta) ** 70 + 4.2758441417947e44 * cos(theta) ** 68 - 5.30232605063055e44 * cos(theta) ** 66 + 5.74418655484977e44 * cos(theta) ** 64 - 5.46497408899345e44 * cos(theta) ** 62 + 4.58485625656017e44 * cos(theta) ** 60 - 3.40259772499434e44 * cos(theta) ** 58 + 2.23905017492661e44 * cos(theta) ** 56 - 1.30859099407475e44 * cos(theta) ** 54 + 6.7995414398002e43 * cos(theta) ** 52 - 3.1426252872691e43 * cos(theta) ** 50 + 1.29185099896129e43 * cos(theta) ** 48 - 4.72046623527159e42 * cos(theta) ** 46 + 1.53156192899877e42 * cos(theta) ** 44 - 4.4051614011336e41 * cos(theta) ** 42 + 1.12081677493381e41 * cos(theta) ** 40 - 2.51579017107446e40 * cos(theta) ** 38 + 4.96518947295156e39 * cos(theta) ** 36 - 8.58180896559529e38 * cos(theta) ** 34 + 1.29280204879134e38 * cos(theta) ** 32 - 1.6878910665978e37 * cos(theta) ** 30 + 1.89724189656342e36 * cos(theta) ** 28 - 1.82158353289554e35 * cos(theta) ** 26 + 1.48003662047763e34 * cos(theta) ** 24 - 1.00638114622278e33 * cos(theta) ** 22 + 5.65080322745409e31 * cos(theta) ** 20 - 2.57779739067534e30 * cos(theta) ** 18 + 9.36379394048733e28 * cos(theta) ** 16 - 2.6407879503137e27 * cos(theta) ** 14 + 5.59645327150784e25 * cos(theta) ** 12 - 8.53236119010205e23 * cos(theta) ** 10 + 8.80633609070165e21 * cos(theta) ** 8 - 5.62063848962038e19 * cos(theta) ** 6 + 1.91178179919061e17 * cos(theta) ** 4 - 258990534999856.0 * cos(theta) ** 2 + 58278698244.7922 ) * sin(6 * phi) ) # @torch.jit.script def Yl94_m_minus_5(theta, phi): return ( 7.29433627596518e-10 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 7.58203428626985e36 * cos(theta) ** 89 - 1.58776717994827e38 * cos(theta) ** 87 + 1.60536135680716e39 * cos(theta) ** 85 - 1.04392350524619e40 * cos(theta) ** 83 + 4.90672885131599e40 * cos(theta) ** 81 - 1.77629066796244e41 * cos(theta) ** 79 + 5.15325004519045e41 * cos(theta) ** 77 - 1.23089058222263e42 * cos(theta) ** 75 + 2.46800676710102e42 * cos(theta) ** 73 - 4.21437412861694e42 * cos(theta) ** 71 + 6.19687556781841e42 * cos(theta) ** 69 - 7.91391947855307e42 * cos(theta) ** 67 + 8.83721008438426e42 * cos(theta) ** 65 - 8.67456204602136e42 * cos(theta) ** 63 + 7.51615779763962e42 * cos(theta) ** 61 - 5.767114788126e42 * cos(theta) ** 59 + 3.92815820162563e42 * cos(theta) ** 57 - 2.37925635286319e42 * cos(theta) ** 55 + 1.28293234713211e42 * cos(theta) ** 53 - 6.16201036719432e41 * cos(theta) ** 51 + 2.63643061012509e41 * cos(theta) ** 49 - 1.00435451814289e41 * cos(theta) ** 47 + 3.40347095333061e40 * cos(theta) ** 45 - 1.02445613979851e40 * cos(theta) ** 43 + 2.73369945105808e39 * cos(theta) ** 41 - 6.45074402839606e38 * cos(theta) ** 39 + 1.34194310079772e38 * cos(theta) ** 37 - 2.45194541874151e37 * cos(theta) ** 35 + 3.91758196603437e36 * cos(theta) ** 33 - 5.44480989225098e35 * cos(theta) ** 31 + 6.5422134364256e34 * cos(theta) ** 29 - 6.74660567739089e33 * cos(theta) ** 27 + 5.92014648191051e32 * cos(theta) ** 25 - 4.37557020096859e31 * cos(theta) ** 23 + 2.69085867974004e30 * cos(theta) ** 21 - 1.35673546877649e29 * cos(theta) ** 19 + 5.50811408263961e27 * cos(theta) ** 17 - 1.76052530020913e26 * cos(theta) ** 15 + 4.30496405500603e24 * cos(theta) ** 13 - 7.75669199100186e22 * cos(theta) ** 11 + 9.78481787855739e20 * cos(theta) ** 9 - 8.02948355660055e18 * cos(theta) ** 7 + 3.82356359838121e16 * cos(theta) ** 5 - 86330178333285.5 * cos(theta) ** 3 + 58278698244.7922 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl94_m_minus_4(theta, phi): return ( 6.88532798498471e-8 * (1.0 - cos(theta) ** 2) ** 2 * ( 8.42448254029984e34 * cos(theta) ** 90 - 1.80428088630486e36 * cos(theta) ** 88 + 1.86669925210135e37 * cos(theta) ** 86 - 1.24276607767403e38 * cos(theta) ** 84 + 5.98381567233657e38 * cos(theta) ** 82 - 2.22036333495304e39 * cos(theta) ** 80 + 6.60673082716725e39 * cos(theta) ** 78 - 1.61959287134557e40 * cos(theta) ** 76 + 3.33514427986624e40 * cos(theta) ** 74 - 5.85329740085687e40 * cos(theta) ** 72 + 8.85267938259772e40 * cos(theta) ** 70 - 1.16381168802251e41 * cos(theta) ** 68 + 1.33897122490671e41 * cos(theta) ** 66 - 1.35540031969084e41 * cos(theta) ** 64 + 1.21228351574833e41 * cos(theta) ** 62 - 9.61185798021e40 * cos(theta) ** 60 + 6.77268655452695e40 * cos(theta) ** 58 - 4.24867205868427e40 * cos(theta) ** 56 + 2.37580064283725e40 * cos(theta) ** 54 - 1.18500199369122e40 * cos(theta) ** 52 + 5.27286122025018e39 * cos(theta) ** 50 - 2.09240524613102e39 * cos(theta) ** 48 + 7.39884989854481e38 * cos(theta) ** 46 - 2.32830940863298e38 * cos(theta) ** 44 + 6.50880821680496e37 * cos(theta) ** 42 - 1.61268600709901e37 * cos(theta) ** 40 + 3.53142921262558e36 * cos(theta) ** 38 - 6.8109594965042e35 * cos(theta) ** 36 + 1.15222999001011e35 * cos(theta) ** 34 - 1.70150309132843e34 * cos(theta) ** 32 + 2.18073781214187e33 * cos(theta) ** 30 - 2.4095020276396e32 * cos(theta) ** 28 + 2.27697941611943e31 * cos(theta) ** 26 - 1.82315425040358e30 * cos(theta) ** 24 + 1.22311758170002e29 * cos(theta) ** 22 - 6.78367734388246e27 * cos(theta) ** 20 + 3.06006337924423e26 * cos(theta) ** 18 - 1.10032831263071e25 * cos(theta) ** 16 + 3.07497432500431e23 * cos(theta) ** 14 - 6.46390999250155e21 * cos(theta) ** 12 + 9.78481787855739e19 * cos(theta) ** 10 - 1.00368544457507e18 * cos(theta) ** 8 + 6.37260599730202e15 * cos(theta) ** 6 - 21582544583321.4 * cos(theta) ** 4 + 29139349122.3961 * cos(theta) ** 2 - 6540819.10715962 ) * sin(4 * phi) ) # @torch.jit.script def Yl94_m_minus_3(theta, phi): return ( 6.50217070175442e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 9.25767312120861e32 * cos(theta) ** 91 - 2.02728189472456e34 * cos(theta) ** 89 + 2.14563132425443e35 * cos(theta) ** 87 - 1.46207773844004e36 * cos(theta) ** 85 + 7.20941647269466e36 * cos(theta) ** 83 - 2.74118930241117e37 * cos(theta) ** 81 + 8.36295041413576e37 * cos(theta) ** 79 - 2.10336736538386e38 * cos(theta) ** 77 + 4.44685903982166e38 * cos(theta) ** 75 - 8.01821561761215e38 * cos(theta) ** 73 + 1.2468562510701e39 * cos(theta) ** 71 - 1.68668360582972e39 * cos(theta) ** 69 + 1.99846451478613e39 * cos(theta) ** 67 - 2.08523126106283e39 * cos(theta) ** 65 + 1.92425954880687e39 * cos(theta) ** 63 - 1.57571442298525e39 * cos(theta) ** 61 + 1.14791297534355e39 * cos(theta) ** 59 - 7.45381062927065e38 * cos(theta) ** 57 + 4.31963753243136e38 * cos(theta) ** 55 - 2.23585281828531e38 * cos(theta) ** 53 + 1.0338943569118e38 * cos(theta) ** 51 - 4.27021478802249e37 * cos(theta) ** 49 + 1.57422338266911e37 * cos(theta) ** 47 - 5.17402090807329e36 * cos(theta) ** 45 + 1.51367632948953e36 * cos(theta) ** 43 - 3.93338050511955e35 * cos(theta) ** 41 + 9.05494669903994e34 * cos(theta) ** 39 - 1.84079986392005e34 * cos(theta) ** 37 + 3.29208568574317e33 * cos(theta) ** 35 - 5.15606997372252e32 * cos(theta) ** 33 + 7.03463810368344e31 * cos(theta) ** 31 - 8.30862768151587e30 * cos(theta) ** 29 + 8.43325709673861e29 * cos(theta) ** 27 - 7.29261700161432e28 * cos(theta) ** 25 + 5.31790252913052e27 * cos(theta) ** 23 - 3.23032254470593e26 * cos(theta) ** 21 + 1.61055967328643e25 * cos(theta) ** 19 - 6.47251948606299e23 * cos(theta) ** 17 + 2.04998288333621e22 * cos(theta) ** 15 - 4.97223845577042e20 * cos(theta) ** 13 + 8.89528898050672e18 * cos(theta) ** 11 - 1.11520604952785e17 * cos(theta) ** 9 + 910372285328861.0 * cos(theta) ** 7 - 4316508916664.27 * cos(theta) ** 5 + 9713116374.13203 * cos(theta) ** 3 - 6540819.10715962 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl94_m_minus_2(theta, phi): return ( 0.00061424007480898 * (1.0 - cos(theta) ** 2) * ( 1.00626881752268e31 * cos(theta) ** 92 - 2.25253543858284e32 * cos(theta) ** 90 + 2.43821741392548e33 * cos(theta) ** 88 - 1.70009039353493e34 * cos(theta) ** 86 + 8.58263865796983e34 * cos(theta) ** 84 - 3.34291378342825e35 * cos(theta) ** 82 + 1.04536880176697e36 * cos(theta) ** 80 - 2.6966248274152e36 * cos(theta) ** 78 + 5.85113031555481e36 * cos(theta) ** 76 - 1.08354265102867e37 * cos(theta) ** 74 + 1.73174479315292e37 * cos(theta) ** 72 - 2.40954800832818e37 * cos(theta) ** 70 + 2.93891840409725e37 * cos(theta) ** 68 - 3.15944130464065e37 * cos(theta) ** 66 + 3.00665554501073e37 * cos(theta) ** 64 - 2.54147487578265e37 * cos(theta) ** 62 + 1.91318829223925e37 * cos(theta) ** 60 - 1.28513976366735e37 * cos(theta) ** 58 + 7.71363845077028e36 * cos(theta) ** 56 - 4.14046818200984e36 * cos(theta) ** 54 + 1.98825837867654e36 * cos(theta) ** 52 - 8.54042957604499e35 * cos(theta) ** 50 + 3.27963204722731e35 * cos(theta) ** 48 - 1.12478715392898e35 * cos(theta) ** 46 + 3.44017347611256e34 * cos(theta) ** 44 - 9.36519167885606e33 * cos(theta) ** 42 + 2.26373667475999e33 * cos(theta) ** 40 - 4.84421016821067e32 * cos(theta) ** 38 + 9.14468246039769e31 * cos(theta) ** 36 - 1.51649116874192e31 * cos(theta) ** 34 + 2.19832440740107e30 * cos(theta) ** 32 - 2.76954256050529e29 * cos(theta) ** 30 + 3.0118775345495e28 * cos(theta) ** 28 - 2.80485269292858e27 * cos(theta) ** 26 + 2.21579272047105e26 * cos(theta) ** 24 - 1.46832842941179e25 * cos(theta) ** 22 + 8.05279836643217e23 * cos(theta) ** 20 - 3.59584415892388e22 * cos(theta) ** 18 + 1.28123930208513e21 * cos(theta) ** 16 - 3.55159889697887e19 * cos(theta) ** 14 + 7.41274081708893e17 * cos(theta) ** 12 - 1.11520604952785e16 * cos(theta) ** 10 + 113796535666108.0 * cos(theta) ** 8 - 719418152777.379 * cos(theta) ** 6 + 2428279093.53301 * cos(theta) ** 4 - 3270409.55357981 * cos(theta) ** 2 + 732.947008870419 ) * sin(2 * phi) ) # @torch.jit.script def Yl94_m_minus_1(theta, phi): return ( 0.0580383742269541 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 1.08200948120718e29 * cos(theta) ** 93 - 2.47531366877236e30 * cos(theta) ** 91 + 2.73957012800616e31 * cos(theta) ** 89 - 1.95412688912061e32 * cos(theta) ** 87 + 1.00972219505527e33 * cos(theta) ** 85 - 4.02760696798584e33 * cos(theta) ** 83 + 1.29057876761354e34 * cos(theta) ** 81 - 3.41344914862684e34 * cos(theta) ** 79 + 7.59887053968157e34 * cos(theta) ** 77 - 1.44472353470489e35 * cos(theta) ** 75 + 2.37225314130537e35 * cos(theta) ** 73 - 3.39372958919462e35 * cos(theta) ** 71 + 4.25930203492355e35 * cos(theta) ** 69 - 4.71558403677708e35 * cos(theta) ** 67 + 4.62562391540112e35 * cos(theta) ** 65 - 4.03408710441691e35 * cos(theta) ** 63 + 3.13637424957254e35 * cos(theta) ** 61 - 2.1782029892667e35 * cos(theta) ** 59 + 1.35326990364391e35 * cos(theta) ** 57 - 7.52812396729062e34 * cos(theta) ** 55 + 3.75143090316328e34 * cos(theta) ** 53 - 1.67459403451862e34 * cos(theta) ** 51 + 6.6931266269945e33 * cos(theta) ** 49 - 2.39316415729569e33 * cos(theta) ** 47 + 7.6448299469168e32 * cos(theta) ** 45 - 2.17795155322234e32 * cos(theta) ** 43 + 5.52130896282923e31 * cos(theta) ** 41 - 1.24210517133607e31 * cos(theta) ** 39 + 2.47153580010748e30 * cos(theta) ** 37 - 4.33283191069119e29 * cos(theta) ** 35 + 6.66158911333659e28 * cos(theta) ** 33 - 8.93400825969449e27 * cos(theta) ** 31 + 1.03857846018948e27 * cos(theta) ** 29 - 1.03883433071429e26 * cos(theta) ** 27 + 8.8631708818842e24 * cos(theta) ** 25 - 6.38403664961647e23 * cos(theta) ** 23 + 3.83466588877722e22 * cos(theta) ** 21 - 1.89254955732836e21 * cos(theta) ** 19 + 7.53670177697135e19 * cos(theta) ** 17 - 2.36773259798592e18 * cos(theta) ** 15 + 5.70210832083764e16 * cos(theta) ** 13 - 1.01382368138896e15 * cos(theta) ** 11 + 12644059518456.4 * cos(theta) ** 9 - 102774021825.34 * cos(theta) ** 7 + 485655818.706602 * cos(theta) ** 5 - 1090136.51785994 * cos(theta) ** 3 + 732.947008870419 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl94_m0(theta, phi): return ( 1.4024230963831e28 * cos(theta) ** 94 - 3.27807024293611e29 * cos(theta) ** 92 + 3.70864919917043e30 * cos(theta) ** 90 - 2.70548998955875e31 * cos(theta) ** 88 + 1.43047177900979e32 * cos(theta) ** 86 - 5.84175905282771e32 * cos(theta) ** 84 + 1.91754915801859e33 * cos(theta) ** 82 - 5.19851490104467e33 * cos(theta) ** 80 + 1.18694415370673e34 * cos(theta) ** 78 - 2.31604502506908e34 * cos(theta) ** 76 + 3.90575640322301e34 * cos(theta) ** 74 - 5.74275887049828e34 * cos(theta) ** 72 + 7.41337963282505e34 * cos(theta) ** 70 - 8.44894375331406e34 * cos(theta) ** 68 + 8.53890588733338e34 * cos(theta) ** 66 - 7.67964491753882e34 * cos(theta) ** 64 + 6.16328190834326e34 * cos(theta) ** 62 - 4.42306113422281e34 * cos(theta) ** 60 + 2.84270813637414e34 * cos(theta) ** 58 - 1.63785170771225e34 * cos(theta) ** 56 + 8.46406587207002e33 * cos(theta) ** 54 - 3.92357572495374e33 * cos(theta) ** 52 + 1.63092834209676e33 * cos(theta) ** 50 - 6.07445186703719e32 * cos(theta) ** 48 + 2.02481728901239e32 * cos(theta) ** 46 - 6.03075077446857e31 * cos(theta) ** 44 + 1.60165363072635e31 * cos(theta) ** 42 - 3.7833299754606e30 * cos(theta) ** 40 + 7.92426794000878e29 * cos(theta) ** 38 - 1.46637545717983e29 * cos(theta) ** 36 + 2.38712283726949e28 * cos(theta) ** 34 - 3.40151361876603e27 * cos(theta) ** 32 + 4.21787688726987e26 * cos(theta) ** 30 - 4.52026717408818e25 * cos(theta) ** 28 + 4.15328388868579e24 * cos(theta) ** 26 - 3.24085777628543e23 * cos(theta) ** 24 + 2.12363899870555e22 * cos(theta) ** 22 - 1.15290389823968e21 * cos(theta) ** 20 + 5.10134468247645e19 * cos(theta) ** 18 - 1.8029700540977e18 * cos(theta) ** 16 + 4.96230290118634e16 * cos(theta) ** 14 - 1.02933568271702e15 * cos(theta) ** 12 + 15405023822975.8 * cos(theta) ** 10 - 156519772416.779 * cos(theta) ** 8 + 986173183.54406 * cos(theta) ** 6 - 3320448.42944128 * cos(theta) ** 4 + 4464.9687531707 * cos(theta) ** 2 - 0.999993001829944 ) # @torch.jit.script def Yl94_m1(theta, phi): return ( 0.0580383742269541 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 1.08200948120718e29 * cos(theta) ** 93 - 2.47531366877236e30 * cos(theta) ** 91 + 2.73957012800616e31 * cos(theta) ** 89 - 1.95412688912061e32 * cos(theta) ** 87 + 1.00972219505527e33 * cos(theta) ** 85 - 4.02760696798584e33 * cos(theta) ** 83 + 1.29057876761354e34 * cos(theta) ** 81 - 3.41344914862684e34 * cos(theta) ** 79 + 7.59887053968157e34 * cos(theta) ** 77 - 1.44472353470489e35 * cos(theta) ** 75 + 2.37225314130537e35 * cos(theta) ** 73 - 3.39372958919462e35 * cos(theta) ** 71 + 4.25930203492355e35 * cos(theta) ** 69 - 4.71558403677708e35 * cos(theta) ** 67 + 4.62562391540112e35 * cos(theta) ** 65 - 4.03408710441691e35 * cos(theta) ** 63 + 3.13637424957254e35 * cos(theta) ** 61 - 2.1782029892667e35 * cos(theta) ** 59 + 1.35326990364391e35 * cos(theta) ** 57 - 7.52812396729062e34 * cos(theta) ** 55 + 3.75143090316328e34 * cos(theta) ** 53 - 1.67459403451862e34 * cos(theta) ** 51 + 6.6931266269945e33 * cos(theta) ** 49 - 2.39316415729569e33 * cos(theta) ** 47 + 7.6448299469168e32 * cos(theta) ** 45 - 2.17795155322234e32 * cos(theta) ** 43 + 5.52130896282923e31 * cos(theta) ** 41 - 1.24210517133607e31 * cos(theta) ** 39 + 2.47153580010748e30 * cos(theta) ** 37 - 4.33283191069119e29 * cos(theta) ** 35 + 6.66158911333659e28 * cos(theta) ** 33 - 8.93400825969449e27 * cos(theta) ** 31 + 1.03857846018948e27 * cos(theta) ** 29 - 1.03883433071429e26 * cos(theta) ** 27 + 8.8631708818842e24 * cos(theta) ** 25 - 6.38403664961647e23 * cos(theta) ** 23 + 3.83466588877722e22 * cos(theta) ** 21 - 1.89254955732836e21 * cos(theta) ** 19 + 7.53670177697135e19 * cos(theta) ** 17 - 2.36773259798592e18 * cos(theta) ** 15 + 5.70210832083764e16 * cos(theta) ** 13 - 1.01382368138896e15 * cos(theta) ** 11 + 12644059518456.4 * cos(theta) ** 9 - 102774021825.34 * cos(theta) ** 7 + 485655818.706602 * cos(theta) ** 5 - 1090136.51785994 * cos(theta) ** 3 + 732.947008870419 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl94_m2(theta, phi): return ( 0.00061424007480898 * (1.0 - cos(theta) ** 2) * ( 1.00626881752268e31 * cos(theta) ** 92 - 2.25253543858284e32 * cos(theta) ** 90 + 2.43821741392548e33 * cos(theta) ** 88 - 1.70009039353493e34 * cos(theta) ** 86 + 8.58263865796983e34 * cos(theta) ** 84 - 3.34291378342825e35 * cos(theta) ** 82 + 1.04536880176697e36 * cos(theta) ** 80 - 2.6966248274152e36 * cos(theta) ** 78 + 5.85113031555481e36 * cos(theta) ** 76 - 1.08354265102867e37 * cos(theta) ** 74 + 1.73174479315292e37 * cos(theta) ** 72 - 2.40954800832818e37 * cos(theta) ** 70 + 2.93891840409725e37 * cos(theta) ** 68 - 3.15944130464065e37 * cos(theta) ** 66 + 3.00665554501073e37 * cos(theta) ** 64 - 2.54147487578265e37 * cos(theta) ** 62 + 1.91318829223925e37 * cos(theta) ** 60 - 1.28513976366735e37 * cos(theta) ** 58 + 7.71363845077028e36 * cos(theta) ** 56 - 4.14046818200984e36 * cos(theta) ** 54 + 1.98825837867654e36 * cos(theta) ** 52 - 8.54042957604499e35 * cos(theta) ** 50 + 3.27963204722731e35 * cos(theta) ** 48 - 1.12478715392898e35 * cos(theta) ** 46 + 3.44017347611256e34 * cos(theta) ** 44 - 9.36519167885606e33 * cos(theta) ** 42 + 2.26373667475999e33 * cos(theta) ** 40 - 4.84421016821067e32 * cos(theta) ** 38 + 9.14468246039769e31 * cos(theta) ** 36 - 1.51649116874192e31 * cos(theta) ** 34 + 2.19832440740107e30 * cos(theta) ** 32 - 2.76954256050529e29 * cos(theta) ** 30 + 3.0118775345495e28 * cos(theta) ** 28 - 2.80485269292858e27 * cos(theta) ** 26 + 2.21579272047105e26 * cos(theta) ** 24 - 1.46832842941179e25 * cos(theta) ** 22 + 8.05279836643217e23 * cos(theta) ** 20 - 3.59584415892388e22 * cos(theta) ** 18 + 1.28123930208513e21 * cos(theta) ** 16 - 3.55159889697887e19 * cos(theta) ** 14 + 7.41274081708893e17 * cos(theta) ** 12 - 1.11520604952785e16 * cos(theta) ** 10 + 113796535666108.0 * cos(theta) ** 8 - 719418152777.379 * cos(theta) ** 6 + 2428279093.53301 * cos(theta) ** 4 - 3270409.55357981 * cos(theta) ** 2 + 732.947008870419 ) * cos(2 * phi) ) # @torch.jit.script def Yl94_m3(theta, phi): return ( 6.50217070175442e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 9.25767312120861e32 * cos(theta) ** 91 - 2.02728189472456e34 * cos(theta) ** 89 + 2.14563132425443e35 * cos(theta) ** 87 - 1.46207773844004e36 * cos(theta) ** 85 + 7.20941647269466e36 * cos(theta) ** 83 - 2.74118930241117e37 * cos(theta) ** 81 + 8.36295041413576e37 * cos(theta) ** 79 - 2.10336736538386e38 * cos(theta) ** 77 + 4.44685903982166e38 * cos(theta) ** 75 - 8.01821561761215e38 * cos(theta) ** 73 + 1.2468562510701e39 * cos(theta) ** 71 - 1.68668360582972e39 * cos(theta) ** 69 + 1.99846451478613e39 * cos(theta) ** 67 - 2.08523126106283e39 * cos(theta) ** 65 + 1.92425954880687e39 * cos(theta) ** 63 - 1.57571442298525e39 * cos(theta) ** 61 + 1.14791297534355e39 * cos(theta) ** 59 - 7.45381062927065e38 * cos(theta) ** 57 + 4.31963753243136e38 * cos(theta) ** 55 - 2.23585281828531e38 * cos(theta) ** 53 + 1.0338943569118e38 * cos(theta) ** 51 - 4.27021478802249e37 * cos(theta) ** 49 + 1.57422338266911e37 * cos(theta) ** 47 - 5.17402090807329e36 * cos(theta) ** 45 + 1.51367632948953e36 * cos(theta) ** 43 - 3.93338050511955e35 * cos(theta) ** 41 + 9.05494669903994e34 * cos(theta) ** 39 - 1.84079986392005e34 * cos(theta) ** 37 + 3.29208568574317e33 * cos(theta) ** 35 - 5.15606997372252e32 * cos(theta) ** 33 + 7.03463810368344e31 * cos(theta) ** 31 - 8.30862768151587e30 * cos(theta) ** 29 + 8.43325709673861e29 * cos(theta) ** 27 - 7.29261700161432e28 * cos(theta) ** 25 + 5.31790252913052e27 * cos(theta) ** 23 - 3.23032254470593e26 * cos(theta) ** 21 + 1.61055967328643e25 * cos(theta) ** 19 - 6.47251948606299e23 * cos(theta) ** 17 + 2.04998288333621e22 * cos(theta) ** 15 - 4.97223845577042e20 * cos(theta) ** 13 + 8.89528898050672e18 * cos(theta) ** 11 - 1.11520604952785e17 * cos(theta) ** 9 + 910372285328861.0 * cos(theta) ** 7 - 4316508916664.27 * cos(theta) ** 5 + 9713116374.13203 * cos(theta) ** 3 - 6540819.10715962 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl94_m4(theta, phi): return ( 6.88532798498471e-8 * (1.0 - cos(theta) ** 2) ** 2 * ( 8.42448254029984e34 * cos(theta) ** 90 - 1.80428088630486e36 * cos(theta) ** 88 + 1.86669925210135e37 * cos(theta) ** 86 - 1.24276607767403e38 * cos(theta) ** 84 + 5.98381567233657e38 * cos(theta) ** 82 - 2.22036333495304e39 * cos(theta) ** 80 + 6.60673082716725e39 * cos(theta) ** 78 - 1.61959287134557e40 * cos(theta) ** 76 + 3.33514427986624e40 * cos(theta) ** 74 - 5.85329740085687e40 * cos(theta) ** 72 + 8.85267938259772e40 * cos(theta) ** 70 - 1.16381168802251e41 * cos(theta) ** 68 + 1.33897122490671e41 * cos(theta) ** 66 - 1.35540031969084e41 * cos(theta) ** 64 + 1.21228351574833e41 * cos(theta) ** 62 - 9.61185798021e40 * cos(theta) ** 60 + 6.77268655452695e40 * cos(theta) ** 58 - 4.24867205868427e40 * cos(theta) ** 56 + 2.37580064283725e40 * cos(theta) ** 54 - 1.18500199369122e40 * cos(theta) ** 52 + 5.27286122025018e39 * cos(theta) ** 50 - 2.09240524613102e39 * cos(theta) ** 48 + 7.39884989854481e38 * cos(theta) ** 46 - 2.32830940863298e38 * cos(theta) ** 44 + 6.50880821680496e37 * cos(theta) ** 42 - 1.61268600709901e37 * cos(theta) ** 40 + 3.53142921262558e36 * cos(theta) ** 38 - 6.8109594965042e35 * cos(theta) ** 36 + 1.15222999001011e35 * cos(theta) ** 34 - 1.70150309132843e34 * cos(theta) ** 32 + 2.18073781214187e33 * cos(theta) ** 30 - 2.4095020276396e32 * cos(theta) ** 28 + 2.27697941611943e31 * cos(theta) ** 26 - 1.82315425040358e30 * cos(theta) ** 24 + 1.22311758170002e29 * cos(theta) ** 22 - 6.78367734388246e27 * cos(theta) ** 20 + 3.06006337924423e26 * cos(theta) ** 18 - 1.10032831263071e25 * cos(theta) ** 16 + 3.07497432500431e23 * cos(theta) ** 14 - 6.46390999250155e21 * cos(theta) ** 12 + 9.78481787855739e19 * cos(theta) ** 10 - 1.00368544457507e18 * cos(theta) ** 8 + 6.37260599730202e15 * cos(theta) ** 6 - 21582544583321.4 * cos(theta) ** 4 + 29139349122.3961 * cos(theta) ** 2 - 6540819.10715962 ) * cos(4 * phi) ) # @torch.jit.script def Yl94_m5(theta, phi): return ( 7.29433627596518e-10 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 7.58203428626985e36 * cos(theta) ** 89 - 1.58776717994827e38 * cos(theta) ** 87 + 1.60536135680716e39 * cos(theta) ** 85 - 1.04392350524619e40 * cos(theta) ** 83 + 4.90672885131599e40 * cos(theta) ** 81 - 1.77629066796244e41 * cos(theta) ** 79 + 5.15325004519045e41 * cos(theta) ** 77 - 1.23089058222263e42 * cos(theta) ** 75 + 2.46800676710102e42 * cos(theta) ** 73 - 4.21437412861694e42 * cos(theta) ** 71 + 6.19687556781841e42 * cos(theta) ** 69 - 7.91391947855307e42 * cos(theta) ** 67 + 8.83721008438426e42 * cos(theta) ** 65 - 8.67456204602136e42 * cos(theta) ** 63 + 7.51615779763962e42 * cos(theta) ** 61 - 5.767114788126e42 * cos(theta) ** 59 + 3.92815820162563e42 * cos(theta) ** 57 - 2.37925635286319e42 * cos(theta) ** 55 + 1.28293234713211e42 * cos(theta) ** 53 - 6.16201036719432e41 * cos(theta) ** 51 + 2.63643061012509e41 * cos(theta) ** 49 - 1.00435451814289e41 * cos(theta) ** 47 + 3.40347095333061e40 * cos(theta) ** 45 - 1.02445613979851e40 * cos(theta) ** 43 + 2.73369945105808e39 * cos(theta) ** 41 - 6.45074402839606e38 * cos(theta) ** 39 + 1.34194310079772e38 * cos(theta) ** 37 - 2.45194541874151e37 * cos(theta) ** 35 + 3.91758196603437e36 * cos(theta) ** 33 - 5.44480989225098e35 * cos(theta) ** 31 + 6.5422134364256e34 * cos(theta) ** 29 - 6.74660567739089e33 * cos(theta) ** 27 + 5.92014648191051e32 * cos(theta) ** 25 - 4.37557020096859e31 * cos(theta) ** 23 + 2.69085867974004e30 * cos(theta) ** 21 - 1.35673546877649e29 * cos(theta) ** 19 + 5.50811408263961e27 * cos(theta) ** 17 - 1.76052530020913e26 * cos(theta) ** 15 + 4.30496405500603e24 * cos(theta) ** 13 - 7.75669199100186e22 * cos(theta) ** 11 + 9.78481787855739e20 * cos(theta) ** 9 - 8.02948355660055e18 * cos(theta) ** 7 + 3.82356359838121e16 * cos(theta) ** 5 - 86330178333285.5 * cos(theta) ** 3 + 58278698244.7922 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl94_m6(theta, phi): return ( 7.73198098857658e-12 * (1.0 - cos(theta) ** 2) ** 3 * ( 6.74801051478017e38 * cos(theta) ** 88 - 1.381357446555e40 * cos(theta) ** 86 + 1.36455715328609e41 * cos(theta) ** 84 - 8.66456509354335e41 * cos(theta) ** 82 + 3.97445036956595e42 * cos(theta) ** 80 - 1.40326962769032e43 * cos(theta) ** 78 + 3.96800253479665e43 * cos(theta) ** 76 - 9.23167936666976e43 * cos(theta) ** 74 + 1.80164493998374e44 * cos(theta) ** 72 - 2.99220563131803e44 * cos(theta) ** 70 + 4.2758441417947e44 * cos(theta) ** 68 - 5.30232605063055e44 * cos(theta) ** 66 + 5.74418655484977e44 * cos(theta) ** 64 - 5.46497408899345e44 * cos(theta) ** 62 + 4.58485625656017e44 * cos(theta) ** 60 - 3.40259772499434e44 * cos(theta) ** 58 + 2.23905017492661e44 * cos(theta) ** 56 - 1.30859099407475e44 * cos(theta) ** 54 + 6.7995414398002e43 * cos(theta) ** 52 - 3.1426252872691e43 * cos(theta) ** 50 + 1.29185099896129e43 * cos(theta) ** 48 - 4.72046623527159e42 * cos(theta) ** 46 + 1.53156192899877e42 * cos(theta) ** 44 - 4.4051614011336e41 * cos(theta) ** 42 + 1.12081677493381e41 * cos(theta) ** 40 - 2.51579017107446e40 * cos(theta) ** 38 + 4.96518947295156e39 * cos(theta) ** 36 - 8.58180896559529e38 * cos(theta) ** 34 + 1.29280204879134e38 * cos(theta) ** 32 - 1.6878910665978e37 * cos(theta) ** 30 + 1.89724189656342e36 * cos(theta) ** 28 - 1.82158353289554e35 * cos(theta) ** 26 + 1.48003662047763e34 * cos(theta) ** 24 - 1.00638114622278e33 * cos(theta) ** 22 + 5.65080322745409e31 * cos(theta) ** 20 - 2.57779739067534e30 * cos(theta) ** 18 + 9.36379394048733e28 * cos(theta) ** 16 - 2.6407879503137e27 * cos(theta) ** 14 + 5.59645327150784e25 * cos(theta) ** 12 - 8.53236119010205e23 * cos(theta) ** 10 + 8.80633609070165e21 * cos(theta) ** 8 - 5.62063848962038e19 * cos(theta) ** 6 + 1.91178179919061e17 * cos(theta) ** 4 - 258990534999856.0 * cos(theta) ** 2 + 58278698244.7922 ) * cos(6 * phi) ) # @torch.jit.script def Yl94_m7(theta, phi): return ( 8.20141436451245e-14 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 5.93824925300655e40 * cos(theta) ** 87 - 1.1879674040373e42 * cos(theta) ** 85 + 1.14622800876031e43 * cos(theta) ** 83 - 7.10494337670555e43 * cos(theta) ** 81 + 3.17956029565276e44 * cos(theta) ** 79 - 1.09455030959845e45 * cos(theta) ** 77 + 3.01568192644545e45 * cos(theta) ** 75 - 6.83144273133562e45 * cos(theta) ** 73 + 1.2971843567883e46 * cos(theta) ** 71 - 2.09454394192262e46 * cos(theta) ** 69 + 2.9075740164204e46 * cos(theta) ** 67 - 3.49953519341617e46 * cos(theta) ** 65 + 3.67627939510385e46 * cos(theta) ** 63 - 3.38828393517594e46 * cos(theta) ** 61 + 2.7509137539361e46 * cos(theta) ** 59 - 1.97350668049672e46 * cos(theta) ** 57 + 1.2538680979589e46 * cos(theta) ** 55 - 7.06639136800368e45 * cos(theta) ** 53 + 3.5357615486961e45 * cos(theta) ** 51 - 1.57131264363455e45 * cos(theta) ** 49 + 6.20088479501421e44 * cos(theta) ** 47 - 2.17141446822493e44 * cos(theta) ** 45 + 6.73887248759461e43 * cos(theta) ** 43 - 1.85016778847611e43 * cos(theta) ** 41 + 4.48326709973526e42 * cos(theta) ** 39 - 9.56000265008295e41 * cos(theta) ** 37 + 1.78746821026256e41 * cos(theta) ** 35 - 2.9178150483024e40 * cos(theta) ** 33 + 4.1369665561323e39 * cos(theta) ** 31 - 5.06367319979341e38 * cos(theta) ** 29 + 5.31227731037759e37 * cos(theta) ** 27 - 4.7361171855284e36 * cos(theta) ** 25 + 3.5520878891463e35 * cos(theta) ** 23 - 2.21403852169011e34 * cos(theta) ** 21 + 1.13016064549082e33 * cos(theta) ** 19 - 4.6400353032156e31 * cos(theta) ** 17 + 1.49820703047797e30 * cos(theta) ** 15 - 3.69710313043918e28 * cos(theta) ** 13 + 6.71574392580941e26 * cos(theta) ** 11 - 8.53236119010205e24 * cos(theta) ** 9 + 7.04506887256132e22 * cos(theta) ** 7 - 3.37238309377223e20 * cos(theta) ** 5 + 7.64712719676243e17 * cos(theta) ** 3 - 517981069999713.0 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl94_m8(theta, phi): return ( 8.70620807381728e-16 * (1.0 - cos(theta) ** 2) ** 4 * ( 5.1662768501157e42 * cos(theta) ** 86 - 1.0097722934317e44 * cos(theta) ** 84 + 9.5136924727106e44 * cos(theta) ** 82 - 5.75500413513149e45 * cos(theta) ** 80 + 2.51185263356568e46 * cos(theta) ** 78 - 8.42803738390808e46 * cos(theta) ** 76 + 2.26176144483409e47 * cos(theta) ** 74 - 4.986953193875e47 * cos(theta) ** 72 + 9.2100089331969e47 * cos(theta) ** 70 - 1.44523531992661e48 * cos(theta) ** 68 + 1.94807459100167e48 * cos(theta) ** 66 - 2.27469787572051e48 * cos(theta) ** 64 + 2.31605601891543e48 * cos(theta) ** 62 - 2.06685320045732e48 * cos(theta) ** 60 + 1.6230391148223e48 * cos(theta) ** 58 - 1.12489880788313e48 * cos(theta) ** 56 + 6.89627453877396e47 * cos(theta) ** 54 - 3.74518742504195e47 * cos(theta) ** 52 + 1.80323838983501e47 * cos(theta) ** 50 - 7.69943195380931e46 * cos(theta) ** 48 + 2.91441585365668e46 * cos(theta) ** 46 - 9.77136510701218e45 * cos(theta) ** 44 + 2.89771516966568e45 * cos(theta) ** 42 - 7.58568793275206e44 * cos(theta) ** 40 + 1.74847416889675e44 * cos(theta) ** 38 - 3.53720098053069e43 * cos(theta) ** 36 + 6.25613873591897e42 * cos(theta) ** 34 - 9.62878965939792e41 * cos(theta) ** 32 + 1.28245963240101e41 * cos(theta) ** 30 - 1.46846522794009e40 * cos(theta) ** 28 + 1.43431487380195e39 * cos(theta) ** 26 - 1.1840292963821e38 * cos(theta) ** 24 + 8.1698021450365e36 * cos(theta) ** 22 - 4.64948089554923e35 * cos(theta) ** 20 + 2.14730522643255e34 * cos(theta) ** 18 - 7.88806001546653e32 * cos(theta) ** 16 + 2.24731054571696e31 * cos(theta) ** 14 - 4.80623406957094e29 * cos(theta) ** 12 + 7.38731831839035e27 * cos(theta) ** 10 - 7.67912507109184e25 * cos(theta) ** 8 + 4.93154821079293e23 * cos(theta) ** 6 - 1.68619154688612e21 * cos(theta) ** 4 + 2.29413815902873e18 * cos(theta) ** 2 - 517981069999713.0 ) * cos(8 * phi) ) # @torch.jit.script def Yl94_m9(theta, phi): return ( 9.2504147341075e-18 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 4.4429980910995e44 * cos(theta) ** 85 - 8.48208726482632e45 * cos(theta) ** 83 + 7.80122782762269e46 * cos(theta) ** 81 - 4.60400330810519e47 * cos(theta) ** 79 + 1.95924505418123e48 * cos(theta) ** 77 - 6.40530841177014e48 * cos(theta) ** 75 + 1.67370346917723e49 * cos(theta) ** 73 - 3.59060629959e49 * cos(theta) ** 71 + 6.44700625323783e49 * cos(theta) ** 69 - 9.82760017550094e49 * cos(theta) ** 67 + 1.2857292300611e50 * cos(theta) ** 65 - 1.45580664046112e50 * cos(theta) ** 63 + 1.43595473172756e50 * cos(theta) ** 61 - 1.24011192027439e50 * cos(theta) ** 59 + 9.41362686596934e49 * cos(theta) ** 57 - 6.29943332414552e49 * cos(theta) ** 55 + 3.72398825093794e49 * cos(theta) ** 53 - 1.94749746102181e49 * cos(theta) ** 51 + 9.01619194917506e48 * cos(theta) ** 49 - 3.69572733782847e48 * cos(theta) ** 47 + 1.34063129268207e48 * cos(theta) ** 45 - 4.29940064708536e47 * cos(theta) ** 43 + 1.21704037125959e47 * cos(theta) ** 41 - 3.03427517310082e46 * cos(theta) ** 39 + 6.64420184180765e45 * cos(theta) ** 37 - 1.27339235299105e45 * cos(theta) ** 35 + 2.12708717021245e44 * cos(theta) ** 33 - 3.08121269100733e43 * cos(theta) ** 31 + 3.84737889720304e42 * cos(theta) ** 29 - 4.11170263823225e41 * cos(theta) ** 27 + 3.72921867188507e40 * cos(theta) ** 25 - 2.84167031131704e39 * cos(theta) ** 23 + 1.79735647190803e38 * cos(theta) ** 21 - 9.29896179109845e36 * cos(theta) ** 19 + 3.8651494075786e35 * cos(theta) ** 17 - 1.26208960247464e34 * cos(theta) ** 15 + 3.14623476400374e32 * cos(theta) ** 13 - 5.76748088348512e30 * cos(theta) ** 11 + 7.38731831839035e28 * cos(theta) ** 9 - 6.14330005687347e26 * cos(theta) ** 7 + 2.95892892647576e24 * cos(theta) ** 5 - 6.74476618754446e21 * cos(theta) ** 3 + 4.58827631805746e18 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl94_m10(theta, phi): return ( 9.8386400460569e-20 * (1.0 - cos(theta) ** 2) ** 5 * ( 3.77654837743457e46 * cos(theta) ** 84 - 7.04013242980584e47 * cos(theta) ** 82 + 6.31899454037438e48 * cos(theta) ** 80 - 3.6371626134031e49 * cos(theta) ** 78 + 1.50861869171955e50 * cos(theta) ** 76 - 4.80398130882761e50 * cos(theta) ** 74 + 1.22180353249938e51 * cos(theta) ** 72 - 2.5493304727089e51 * cos(theta) ** 70 + 4.4484343147341e51 * cos(theta) ** 68 - 6.58449211758563e51 * cos(theta) ** 66 + 8.35723999539714e51 * cos(theta) ** 64 - 9.17158183490509e51 * cos(theta) ** 62 + 8.75932386353814e51 * cos(theta) ** 60 - 7.31666032961893e51 * cos(theta) ** 58 + 5.36576731360252e51 * cos(theta) ** 56 - 3.46468832828004e51 * cos(theta) ** 54 + 1.97371377299711e51 * cos(theta) ** 52 - 9.93223705121125e50 * cos(theta) ** 50 + 4.41793405509578e50 * cos(theta) ** 48 - 1.73699184877938e50 * cos(theta) ** 46 + 6.03284081706932e49 * cos(theta) ** 44 - 1.8487422782467e49 * cos(theta) ** 42 + 4.9898655221643e48 * cos(theta) ** 40 - 1.18336731750932e48 * cos(theta) ** 38 + 2.45835468146883e47 * cos(theta) ** 36 - 4.45687323546867e46 * cos(theta) ** 34 + 7.01938766170108e45 * cos(theta) ** 32 - 9.55175934212274e44 * cos(theta) ** 30 + 1.11573988018888e44 * cos(theta) ** 28 - 1.11015971232271e43 * cos(theta) ** 26 + 9.32304667971266e41 * cos(theta) ** 24 - 6.5358417160292e40 * cos(theta) ** 22 + 3.77444859100686e39 * cos(theta) ** 20 - 1.76680274030871e38 * cos(theta) ** 18 + 6.57075399288362e36 * cos(theta) ** 16 - 1.89313440371197e35 * cos(theta) ** 14 + 4.09010519320487e33 * cos(theta) ** 12 - 6.34422897183363e31 * cos(theta) ** 10 + 6.64858648655132e29 * cos(theta) ** 8 - 4.30031003981143e27 * cos(theta) ** 6 + 1.47946446323788e25 * cos(theta) ** 4 - 2.02342985626334e22 * cos(theta) ** 2 + 4.58827631805746e18 ) * cos(10 * phi) ) # @torch.jit.script def Yl94_m11(theta, phi): return ( 1.04761275948261e-21 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 3.17230063704504e48 * cos(theta) ** 83 - 5.77290859244079e49 * cos(theta) ** 81 + 5.0551956322995e50 * cos(theta) ** 79 - 2.83698683845442e51 * cos(theta) ** 77 + 1.14655020570686e52 * cos(theta) ** 75 - 3.55494616853243e52 * cos(theta) ** 73 + 8.7969854339955e52 * cos(theta) ** 71 - 1.78453133089623e53 * cos(theta) ** 69 + 3.02493533401919e53 * cos(theta) ** 67 - 4.34576479760652e53 * cos(theta) ** 65 + 5.34863359705417e53 * cos(theta) ** 63 - 5.68638073764115e53 * cos(theta) ** 61 + 5.25559431812288e53 * cos(theta) ** 59 - 4.24366299117898e53 * cos(theta) ** 57 + 3.00482969561741e53 * cos(theta) ** 55 - 1.87093169727122e53 * cos(theta) ** 53 + 1.0263311619585e53 * cos(theta) ** 51 - 4.96611852560562e52 * cos(theta) ** 49 + 2.12060834644597e52 * cos(theta) ** 47 - 7.99016250438515e51 * cos(theta) ** 45 + 2.6544499595105e51 * cos(theta) ** 43 - 7.76471756863616e50 * cos(theta) ** 41 + 1.99594620886572e50 * cos(theta) ** 39 - 4.49679580653542e49 * cos(theta) ** 37 + 8.85007685328779e48 * cos(theta) ** 35 - 1.51533690005935e48 * cos(theta) ** 33 + 2.24620405174435e47 * cos(theta) ** 31 - 2.86552780263682e46 * cos(theta) ** 29 + 3.12407166452886e45 * cos(theta) ** 27 - 2.88641525203904e44 * cos(theta) ** 25 + 2.23753120313104e43 * cos(theta) ** 23 - 1.43788517752642e42 * cos(theta) ** 21 + 7.54889718201372e40 * cos(theta) ** 19 - 3.18024493255567e39 * cos(theta) ** 17 + 1.05132063886138e38 * cos(theta) ** 15 - 2.65038816519675e36 * cos(theta) ** 13 + 4.90812623184584e34 * cos(theta) ** 11 - 6.34422897183363e32 * cos(theta) ** 9 + 5.31886918924105e30 * cos(theta) ** 7 - 2.58018602388686e28 * cos(theta) ** 5 + 5.91785785295151e25 * cos(theta) ** 3 - 4.04685971252668e22 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl94_m12(theta, phi): return ( 1.11688587998697e-23 * (1.0 - cos(theta) ** 2) ** 6 * ( 2.63300952874739e50 * cos(theta) ** 82 - 4.67605595987704e51 * cos(theta) ** 80 + 3.99360454951661e52 * cos(theta) ** 78 - 2.1844798656099e53 * cos(theta) ** 76 + 8.59912654280142e53 * cos(theta) ** 74 - 2.59511070302867e54 * cos(theta) ** 72 + 6.24585965813681e54 * cos(theta) ** 70 - 1.2313266183184e55 * cos(theta) ** 68 + 2.02670667379286e55 * cos(theta) ** 66 - 2.82474711844424e55 * cos(theta) ** 64 + 3.36963916614413e55 * cos(theta) ** 62 - 3.4686922499611e55 * cos(theta) ** 60 + 3.1008006476925e55 * cos(theta) ** 58 - 2.41888790497202e55 * cos(theta) ** 56 + 1.65265633258958e55 * cos(theta) ** 54 - 9.91593799553746e54 * cos(theta) ** 52 + 5.23428892598833e54 * cos(theta) ** 50 - 2.43339807754676e54 * cos(theta) ** 48 + 9.96685922829608e53 * cos(theta) ** 46 - 3.59557312697332e53 * cos(theta) ** 44 + 1.14141348258952e53 * cos(theta) ** 42 - 3.18353420314083e52 * cos(theta) ** 40 + 7.78419021457631e51 * cos(theta) ** 38 - 1.66381444841811e51 * cos(theta) ** 36 + 3.09752689865073e50 * cos(theta) ** 34 - 5.00061177019585e49 * cos(theta) ** 32 + 6.96323256040747e48 * cos(theta) ** 30 - 8.31003062764678e47 * cos(theta) ** 28 + 8.43499349422793e46 * cos(theta) ** 26 - 7.2160381300976e45 * cos(theta) ** 24 + 5.14632176720139e44 * cos(theta) ** 22 - 3.01955887280549e43 * cos(theta) ** 20 + 1.43429046458261e42 * cos(theta) ** 18 - 5.40641638534464e40 * cos(theta) ** 16 + 1.57698095829207e39 * cos(theta) ** 14 - 3.44550461475578e37 * cos(theta) ** 12 + 5.39893885503042e35 * cos(theta) ** 10 - 5.70980607465027e33 * cos(theta) ** 8 + 3.72320843246874e31 * cos(theta) ** 6 - 1.29009301194343e29 * cos(theta) ** 4 + 1.77535735588545e26 * cos(theta) ** 2 - 4.04685971252668e22 ) * cos(12 * phi) ) # @torch.jit.script def Yl94_m13(theta, phi): return ( 1.19236710290311e-25 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 2.15906781357286e52 * cos(theta) ** 81 - 3.74084476790163e53 * cos(theta) ** 79 + 3.11501154862295e54 * cos(theta) ** 77 - 1.66020469786353e55 * cos(theta) ** 75 + 6.36335364167305e55 * cos(theta) ** 73 - 1.86847970618065e56 * cos(theta) ** 71 + 4.37210176069577e56 * cos(theta) ** 69 - 8.37302100456512e56 * cos(theta) ** 67 + 1.33762640470329e57 * cos(theta) ** 65 - 1.80783815580431e57 * cos(theta) ** 63 + 2.08917628300936e57 * cos(theta) ** 61 - 2.08121534997666e57 * cos(theta) ** 59 + 1.79846437566165e57 * cos(theta) ** 57 - 1.35457722678433e57 * cos(theta) ** 55 + 8.92434419598372e56 * cos(theta) ** 53 - 5.15628775767948e56 * cos(theta) ** 51 + 2.61714446299416e56 * cos(theta) ** 49 - 1.16803107722244e56 * cos(theta) ** 47 + 4.5847552450162e55 * cos(theta) ** 45 - 1.58205217586826e55 * cos(theta) ** 43 + 4.79393662687597e54 * cos(theta) ** 41 - 1.27341368125633e54 * cos(theta) ** 39 + 2.957992281539e53 * cos(theta) ** 37 - 5.98973201430518e52 * cos(theta) ** 35 + 1.05315914554125e52 * cos(theta) ** 33 - 1.60019576646267e51 * cos(theta) ** 31 + 2.08896976812224e50 * cos(theta) ** 29 - 2.3268085757411e49 * cos(theta) ** 27 + 2.19309830849926e48 * cos(theta) ** 25 - 1.73184915122342e47 * cos(theta) ** 23 + 1.13219078878431e46 * cos(theta) ** 21 - 6.03911774561098e44 * cos(theta) ** 19 + 2.58172283624869e43 * cos(theta) ** 17 - 8.65026621655142e41 * cos(theta) ** 15 + 2.2077733416089e40 * cos(theta) ** 13 - 4.13460553770693e38 * cos(theta) ** 11 + 5.39893885503042e36 * cos(theta) ** 9 - 4.56784485972022e34 * cos(theta) ** 7 + 2.23392505948124e32 * cos(theta) ** 5 - 5.16037204777372e29 * cos(theta) ** 3 + 3.55071471177091e26 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl94_m14(theta, phi): return ( 1.27483975524809e-27 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.74884492899401e54 * cos(theta) ** 80 - 2.95526736664229e55 * cos(theta) ** 78 + 2.39855889243967e56 * cos(theta) ** 76 - 1.24515352339765e57 * cos(theta) ** 74 + 4.64524815842133e57 * cos(theta) ** 72 - 1.32662059138826e58 * cos(theta) ** 70 + 3.01675021488008e58 * cos(theta) ** 68 - 5.60992407305863e58 * cos(theta) ** 66 + 8.69457163057136e58 * cos(theta) ** 64 - 1.13893803815672e59 * cos(theta) ** 62 + 1.27439753263571e59 * cos(theta) ** 60 - 1.22791705648623e59 * cos(theta) ** 58 + 1.02512469412714e59 * cos(theta) ** 56 - 7.45017474731382e58 * cos(theta) ** 54 + 4.72990242387137e58 * cos(theta) ** 52 - 2.62970675641654e58 * cos(theta) ** 50 + 1.28240078686714e58 * cos(theta) ** 48 - 5.48974606294548e57 * cos(theta) ** 46 + 2.06313986025729e57 * cos(theta) ** 44 - 6.80282435623351e56 * cos(theta) ** 42 + 1.96551401701915e56 * cos(theta) ** 40 - 4.96631335689969e55 * cos(theta) ** 38 + 1.09445714416943e55 * cos(theta) ** 36 - 2.09640620500681e54 * cos(theta) ** 34 + 3.47542518028612e53 * cos(theta) ** 32 - 4.96060687603429e52 * cos(theta) ** 30 + 6.0580123275545e51 * cos(theta) ** 28 - 6.28238315450097e50 * cos(theta) ** 26 + 5.48274577124816e49 * cos(theta) ** 24 - 3.98325304781388e48 * cos(theta) ** 22 + 2.37760065644704e47 * cos(theta) ** 20 - 1.14743237166609e46 * cos(theta) ** 18 + 4.38892882162278e44 * cos(theta) ** 16 - 1.29753993248271e43 * cos(theta) ** 14 + 2.87010534409156e41 * cos(theta) ** 12 - 4.54806609147763e39 * cos(theta) ** 10 + 4.85904496952738e37 * cos(theta) ** 8 - 3.19749140180415e35 * cos(theta) ** 6 + 1.11696252974062e33 * cos(theta) ** 4 - 1.54811161433212e30 * cos(theta) ** 2 + 3.55071471177091e26 ) * cos(14 * phi) ) # @torch.jit.script def Yl94_m15(theta, phi): return ( 1.36520338302375e-29 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.39907594319521e56 * cos(theta) ** 79 - 2.30510854598099e57 * cos(theta) ** 77 + 1.82290475825415e58 * cos(theta) ** 75 - 9.21413607314258e58 * cos(theta) ** 73 + 3.34457867406335e59 * cos(theta) ** 71 - 9.28634413971781e59 * cos(theta) ** 69 + 2.05139014611845e60 * cos(theta) ** 67 - 3.70254988821869e60 * cos(theta) ** 65 + 5.56452584356567e60 * cos(theta) ** 63 - 7.06141583657164e60 * cos(theta) ** 61 + 7.64638519581426e60 * cos(theta) ** 59 - 7.12191892762014e60 * cos(theta) ** 57 + 5.74069828711199e60 * cos(theta) ** 55 - 4.02309436354946e60 * cos(theta) ** 53 + 2.45954926041311e60 * cos(theta) ** 51 - 1.31485337820827e60 * cos(theta) ** 49 + 6.15552377696227e59 * cos(theta) ** 47 - 2.52528318895492e59 * cos(theta) ** 45 + 9.07781538513207e58 * cos(theta) ** 43 - 2.85718622961808e58 * cos(theta) ** 41 + 7.86205606807658e57 * cos(theta) ** 39 - 1.88719907562188e57 * cos(theta) ** 37 + 3.94004571900995e56 * cos(theta) ** 35 - 7.12778109702316e55 * cos(theta) ** 33 + 1.11213605769156e55 * cos(theta) ** 31 - 1.48818206281029e54 * cos(theta) ** 29 + 1.69624345171526e53 * cos(theta) ** 27 - 1.63341962017025e52 * cos(theta) ** 25 + 1.31585898509956e51 * cos(theta) ** 23 - 8.76315670519053e49 * cos(theta) ** 21 + 4.75520131289408e48 * cos(theta) ** 19 - 2.06537826899895e47 * cos(theta) ** 17 + 7.02228611459645e45 * cos(theta) ** 15 - 1.8165559054758e44 * cos(theta) ** 13 + 3.44412641290988e42 * cos(theta) ** 11 - 4.54806609147763e40 * cos(theta) ** 9 + 3.8872359756219e38 * cos(theta) ** 7 - 1.91849484108249e36 * cos(theta) ** 5 + 4.46785011896248e33 * cos(theta) ** 3 - 3.09622322866423e30 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl94_m16(theta, phi): return ( 1.46449356450711e-31 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.10526999512422e58 * cos(theta) ** 78 - 1.77493358040536e59 * cos(theta) ** 76 + 1.36717856869061e60 * cos(theta) ** 74 - 6.72631933339408e60 * cos(theta) ** 72 + 2.37465085858498e61 * cos(theta) ** 70 - 6.40757745640529e61 * cos(theta) ** 68 + 1.37443139789936e62 * cos(theta) ** 66 - 2.40665742734215e62 * cos(theta) ** 64 + 3.50565128144637e62 * cos(theta) ** 62 - 4.3074636603087e62 * cos(theta) ** 60 + 4.51136726553041e62 * cos(theta) ** 58 - 4.05949378874348e62 * cos(theta) ** 56 + 3.15738405791159e62 * cos(theta) ** 54 - 2.13224001268121e62 * cos(theta) ** 52 + 1.25437012281069e62 * cos(theta) ** 50 - 6.44278155322051e61 * cos(theta) ** 48 + 2.89309617517227e61 * cos(theta) ** 46 - 1.13637743502971e61 * cos(theta) ** 44 + 3.90346061560679e60 * cos(theta) ** 42 - 1.17144635414341e60 * cos(theta) ** 40 + 3.06620186654987e59 * cos(theta) ** 38 - 6.98263657980096e58 * cos(theta) ** 36 + 1.37901600165348e58 * cos(theta) ** 34 - 2.35216776201764e57 * cos(theta) ** 32 + 3.44762177884383e56 * cos(theta) ** 30 - 4.31572798214983e55 * cos(theta) ** 28 + 4.5798573196312e54 * cos(theta) ** 26 - 4.08354905042563e53 * cos(theta) ** 24 + 3.02647566572898e52 * cos(theta) ** 22 - 1.84026290809001e51 * cos(theta) ** 20 + 9.03488249449876e49 * cos(theta) ** 18 - 3.51114305729822e48 * cos(theta) ** 16 + 1.05334291718947e47 * cos(theta) ** 14 - 2.36152267711854e45 * cos(theta) ** 12 + 3.78853905420086e43 * cos(theta) ** 10 - 4.09325948232987e41 * cos(theta) ** 8 + 2.72106518293533e39 * cos(theta) ** 6 - 9.59247420541246e36 * cos(theta) ** 4 + 1.34035503568875e34 * cos(theta) ** 2 - 3.09622322866423e30 ) * cos(16 * phi) ) # @torch.jit.script def Yl94_m17(theta, phi): return ( 1.57390558634765e-33 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 8.62110596196889e59 * cos(theta) ** 77 - 1.34894952110807e61 * cos(theta) ** 75 + 1.01171214083105e62 * cos(theta) ** 73 - 4.84294992004374e62 * cos(theta) ** 71 + 1.66225560100949e63 * cos(theta) ** 69 - 4.3571526703556e63 * cos(theta) ** 67 + 9.0712472261358e63 * cos(theta) ** 65 - 1.54026075349898e64 * cos(theta) ** 63 + 2.17350379449675e64 * cos(theta) ** 61 - 2.58447819618522e64 * cos(theta) ** 59 + 2.61659301400764e64 * cos(theta) ** 57 - 2.27331652169635e64 * cos(theta) ** 55 + 1.70498739127226e64 * cos(theta) ** 53 - 1.10876480659423e64 * cos(theta) ** 51 + 6.27185061405344e63 * cos(theta) ** 49 - 3.09253514554585e63 * cos(theta) ** 47 + 1.33082424057924e63 * cos(theta) ** 45 - 5.00006071413074e62 * cos(theta) ** 43 + 1.63945345855485e62 * cos(theta) ** 41 - 4.68578541657364e61 * cos(theta) ** 39 + 1.16515670928895e61 * cos(theta) ** 37 - 2.51374916872835e60 * cos(theta) ** 35 + 4.68865440562184e59 * cos(theta) ** 33 - 7.52693683845646e58 * cos(theta) ** 31 + 1.03428653365315e58 * cos(theta) ** 29 - 1.20840383500195e57 * cos(theta) ** 27 + 1.19076290310411e56 * cos(theta) ** 25 - 9.80051772102151e54 * cos(theta) ** 23 + 6.65824646460376e53 * cos(theta) ** 21 - 3.68052581618002e52 * cos(theta) ** 19 + 1.62627884900978e51 * cos(theta) ** 17 - 5.61782889167716e49 * cos(theta) ** 15 + 1.47468008406525e48 * cos(theta) ** 13 - 2.83382721254225e46 * cos(theta) ** 11 + 3.78853905420086e44 * cos(theta) ** 9 - 3.27460758586389e42 * cos(theta) ** 7 + 1.6326391097612e40 * cos(theta) ** 5 - 3.83698968216498e37 * cos(theta) ** 3 + 2.68071007137749e34 * cos(theta) ) * cos(17 * phi) ) # @torch.jit.script def Yl94_m18(theta, phi): return ( 1.69482281992191e-35 * (1.0 - cos(theta) ** 2) ** 9 * ( 6.63825159071604e61 * cos(theta) ** 76 - 1.01171214083105e63 * cos(theta) ** 74 + 7.3854986280667e63 * cos(theta) ** 72 - 3.43849444323105e64 * cos(theta) ** 70 + 1.14695636469655e65 * cos(theta) ** 68 - 2.91929228913825e65 * cos(theta) ** 66 + 5.89631069698827e65 * cos(theta) ** 64 - 9.70364274704355e65 * cos(theta) ** 62 + 1.32583731464302e66 * cos(theta) ** 60 - 1.52484213574928e66 * cos(theta) ** 58 + 1.49145801798435e66 * cos(theta) ** 56 - 1.25032408693299e66 * cos(theta) ** 54 + 9.03643317374298e65 * cos(theta) ** 52 - 5.65470051363058e65 * cos(theta) ** 50 + 3.07320680088618e65 * cos(theta) ** 48 - 1.45349151840655e65 * cos(theta) ** 46 + 5.9887090826066e64 * cos(theta) ** 44 - 2.15002610707622e64 * cos(theta) ** 42 + 6.72175918007489e63 * cos(theta) ** 40 - 1.82745631246372e63 * cos(theta) ** 38 + 4.31107982436911e62 * cos(theta) ** 36 - 8.79812209054921e61 * cos(theta) ** 34 + 1.54725595385521e61 * cos(theta) ** 32 - 2.3333504199215e60 * cos(theta) ** 30 + 2.99943094759413e59 * cos(theta) ** 28 - 3.26269035450527e58 * cos(theta) ** 26 + 2.97690725776028e57 * cos(theta) ** 24 - 2.25411907583495e56 * cos(theta) ** 22 + 1.39823175756679e55 * cos(theta) ** 20 - 6.99299905074204e53 * cos(theta) ** 18 + 2.76467404331662e52 * cos(theta) ** 16 - 8.42674333751574e50 * cos(theta) ** 14 + 1.91708410928483e49 * cos(theta) ** 12 - 3.11720993379647e47 * cos(theta) ** 10 + 3.40968514878078e45 * cos(theta) ** 8 - 2.29222531010472e43 * cos(theta) ** 6 + 8.163195548806e40 * cos(theta) ** 4 - 1.15109690464949e38 * cos(theta) ** 2 + 2.68071007137749e34 ) * cos(18 * phi) ) # @torch.jit.script def Yl94_m19(theta, phi): return ( 1.82885083545686e-37 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 5.04507120894419e63 * cos(theta) ** 75 - 7.48666984214981e64 * cos(theta) ** 73 + 5.31755901220802e65 * cos(theta) ** 71 - 2.40694611026174e66 * cos(theta) ** 69 + 7.79930327993651e66 * cos(theta) ** 67 - 1.92673291083124e67 * cos(theta) ** 65 + 3.77363884607249e67 * cos(theta) ** 63 - 6.016258503167e67 * cos(theta) ** 61 + 7.9550238878581e67 * cos(theta) ** 59 - 8.84408438734582e67 * cos(theta) ** 57 + 8.35216490071238e67 * cos(theta) ** 55 - 6.75175006943815e67 * cos(theta) ** 53 + 4.69894525034635e67 * cos(theta) ** 51 - 2.82735025681529e67 * cos(theta) ** 49 + 1.47513926442537e67 * cos(theta) ** 47 - 6.68606098467012e66 * cos(theta) ** 45 + 2.6350319963469e66 * cos(theta) ** 43 - 9.03010964972012e65 * cos(theta) ** 41 + 2.68870367202996e65 * cos(theta) ** 39 - 6.94433398736214e64 * cos(theta) ** 37 + 1.55198873677288e64 * cos(theta) ** 35 - 2.99136151078673e63 * cos(theta) ** 33 + 4.95121905233666e62 * cos(theta) ** 31 - 7.00005125976451e61 * cos(theta) ** 29 + 8.39840665326356e60 * cos(theta) ** 27 - 8.4829949217137e59 * cos(theta) ** 25 + 7.14457741862468e58 * cos(theta) ** 23 - 4.95906196683688e57 * cos(theta) ** 21 + 2.79646351513358e56 * cos(theta) ** 19 - 1.25873982913357e55 * cos(theta) ** 17 + 4.42347846930659e53 * cos(theta) ** 15 - 1.1797440672522e52 * cos(theta) ** 13 + 2.3005009311418e50 * cos(theta) ** 11 - 3.11720993379647e48 * cos(theta) ** 9 + 2.72774811902462e46 * cos(theta) ** 7 - 1.37533518606283e44 * cos(theta) ** 5 + 3.2652782195224e41 * cos(theta) ** 3 - 2.30219380929899e38 * cos(theta) ) * cos(19 * phi) ) # @torch.jit.script def Yl94_m20(theta, phi): return ( 1.97785854375996e-39 * (1.0 - cos(theta) ** 2) ** 10 * ( 3.78380340670815e65 * cos(theta) ** 74 - 5.46526898476936e66 * cos(theta) ** 72 + 3.7754668986677e67 * cos(theta) ** 70 - 1.6607928160806e68 * cos(theta) ** 68 + 5.22553319755747e68 * cos(theta) ** 66 - 1.25237639204031e69 * cos(theta) ** 64 + 2.37739247302567e69 * cos(theta) ** 62 - 3.66991768693187e69 * cos(theta) ** 60 + 4.69346409383628e69 * cos(theta) ** 58 - 5.04112810078712e69 * cos(theta) ** 56 + 4.59369069539181e69 * cos(theta) ** 54 - 3.57842753680222e69 * cos(theta) ** 52 + 2.39646207767664e69 * cos(theta) ** 50 - 1.38540162583949e69 * cos(theta) ** 48 + 6.93315454279923e68 * cos(theta) ** 46 - 3.00872744310155e68 * cos(theta) ** 44 + 1.13306375842917e68 * cos(theta) ** 42 - 3.70234495638525e67 * cos(theta) ** 40 + 1.04859443209168e67 * cos(theta) ** 38 - 2.56940357532399e66 * cos(theta) ** 36 + 5.43196057870508e65 * cos(theta) ** 34 - 9.87149298559621e64 * cos(theta) ** 32 + 1.53487790622436e64 * cos(theta) ** 30 - 2.03001486533171e63 * cos(theta) ** 28 + 2.26756979638116e62 * cos(theta) ** 26 - 2.12074873042843e61 * cos(theta) ** 24 + 1.64325280628368e60 * cos(theta) ** 22 - 1.04140301303575e59 * cos(theta) ** 20 + 5.3132806787538e57 * cos(theta) ** 18 - 2.13985770952706e56 * cos(theta) ** 16 + 6.63521770395989e54 * cos(theta) ** 14 - 1.53366728742786e53 * cos(theta) ** 12 + 2.53055102425598e51 * cos(theta) ** 10 - 2.80548894041682e49 * cos(theta) ** 8 + 1.90942368331724e47 * cos(theta) ** 6 - 6.87667593031417e44 * cos(theta) ** 4 + 9.7958346585672e41 * cos(theta) ** 2 - 2.30219380929899e38 ) * cos(20 * phi) ) # @torch.jit.script def Yl94_m21(theta, phi): return ( 2.14402797478665e-41 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 2.80001452096403e67 * cos(theta) ** 73 - 3.93499366903394e68 * cos(theta) ** 71 + 2.64282682906739e69 * cos(theta) ** 69 - 1.12933911493481e70 * cos(theta) ** 67 + 3.44885191038793e70 * cos(theta) ** 65 - 8.01520890905798e70 * cos(theta) ** 63 + 1.47398333327592e71 * cos(theta) ** 61 - 2.20195061215912e71 * cos(theta) ** 59 + 2.72220917442504e71 * cos(theta) ** 57 - 2.82303173644079e71 * cos(theta) ** 55 + 2.48059297551158e71 * cos(theta) ** 53 - 1.86078231913716e71 * cos(theta) ** 51 + 1.19823103883832e71 * cos(theta) ** 49 - 6.64992780402956e70 * cos(theta) ** 47 + 3.18925108968765e70 * cos(theta) ** 45 - 1.32384007496468e70 * cos(theta) ** 43 + 4.7588677854025e69 * cos(theta) ** 41 - 1.4809379825541e69 * cos(theta) ** 39 + 3.9846588419484e68 * cos(theta) ** 37 - 9.24985287116637e67 * cos(theta) ** 35 + 1.84686659675973e67 * cos(theta) ** 33 - 3.15887775539079e66 * cos(theta) ** 31 + 4.60463371867309e65 * cos(theta) ** 29 - 5.68404162292878e64 * cos(theta) ** 27 + 5.89568147059102e63 * cos(theta) ** 25 - 5.08979695302822e62 * cos(theta) ** 23 + 3.61515617382409e61 * cos(theta) ** 21 - 2.08280602607149e60 * cos(theta) ** 19 + 9.56390522175684e58 * cos(theta) ** 17 - 3.4237723352433e57 * cos(theta) ** 15 + 9.28930478554385e55 * cos(theta) ** 13 - 1.84040074491344e54 * cos(theta) ** 11 + 2.53055102425598e52 * cos(theta) ** 9 - 2.24439115233346e50 * cos(theta) ** 7 + 1.14565420999034e48 * cos(theta) ** 5 - 2.75067037212567e45 * cos(theta) ** 3 + 1.95916693171344e42 * cos(theta) ) * cos(21 * phi) ) # @torch.jit.script def Yl94_m22(theta, phi): return ( 2.32991470806215e-43 * (1.0 - cos(theta) ** 2) ** 11 * ( 2.04401060030374e69 * cos(theta) ** 72 - 2.7938455050141e70 * cos(theta) ** 70 + 1.8235505120565e71 * cos(theta) ** 68 - 7.56657207006321e71 * cos(theta) ** 66 + 2.24175374175215e72 * cos(theta) ** 64 - 5.04958161270652e72 * cos(theta) ** 62 + 8.99129833298309e72 * cos(theta) ** 60 - 1.29915086117388e73 * cos(theta) ** 58 + 1.55165922942227e73 * cos(theta) ** 56 - 1.55266745504243e73 * cos(theta) ** 54 + 1.31471427702114e73 * cos(theta) ** 52 - 9.48998982759949e72 * cos(theta) ** 50 + 5.87133209030777e72 * cos(theta) ** 48 - 3.12546606789389e72 * cos(theta) ** 46 + 1.43516299035944e72 * cos(theta) ** 44 - 5.69251232234814e71 * cos(theta) ** 42 + 1.95113579201503e71 * cos(theta) ** 40 - 5.77565813196099e70 * cos(theta) ** 38 + 1.47432377152091e70 * cos(theta) ** 36 - 3.23744850490823e69 * cos(theta) ** 34 + 6.0946597693071e68 * cos(theta) ** 32 - 9.79252104171144e67 * cos(theta) ** 30 + 1.3353437784152e67 * cos(theta) ** 28 - 1.53469123819077e66 * cos(theta) ** 26 + 1.47392036764776e65 * cos(theta) ** 24 - 1.17065329919649e64 * cos(theta) ** 22 + 7.59182796503058e62 * cos(theta) ** 20 - 3.95733144953583e61 * cos(theta) ** 18 + 1.62586388769866e60 * cos(theta) ** 16 - 5.13565850286495e58 * cos(theta) ** 14 + 1.2076096221207e57 * cos(theta) ** 12 - 2.02444081940478e55 * cos(theta) ** 10 + 2.27749592183038e53 * cos(theta) ** 8 - 1.57107380663342e51 * cos(theta) ** 6 + 5.72827104995171e48 * cos(theta) ** 4 - 8.25201111637701e45 * cos(theta) ** 2 + 1.95916693171344e42 ) * cos(22 * phi) ) # @torch.jit.script def Yl94_m23(theta, phi): return ( 2.53852148748199e-45 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.47168763221869e71 * cos(theta) ** 71 - 1.95569185350987e72 * cos(theta) ** 69 + 1.24001434819842e73 * cos(theta) ** 67 - 4.99393756624172e73 * cos(theta) ** 65 + 1.43472239472138e74 * cos(theta) ** 63 - 3.13074059987805e74 * cos(theta) ** 61 + 5.39477899978985e74 * cos(theta) ** 59 - 7.53507499480852e74 * cos(theta) ** 57 + 8.68929168476474e74 * cos(theta) ** 55 - 8.38440425722913e74 * cos(theta) ** 53 + 6.83651424050991e74 * cos(theta) ** 51 - 4.74499491379975e74 * cos(theta) ** 49 + 2.81823940334773e74 * cos(theta) ** 47 - 1.43771439123119e74 * cos(theta) ** 45 + 6.31471715758154e73 * cos(theta) ** 43 - 2.39085517538622e73 * cos(theta) ** 41 + 7.80454316806011e72 * cos(theta) ** 39 - 2.19475009014518e72 * cos(theta) ** 37 + 5.30756557747526e71 * cos(theta) ** 35 - 1.1007324916688e71 * cos(theta) ** 33 + 1.95029112617827e70 * cos(theta) ** 31 - 2.93775631251343e69 * cos(theta) ** 29 + 3.73896257956255e68 * cos(theta) ** 27 - 3.990197219296e67 * cos(theta) ** 25 + 3.53740888235461e66 * cos(theta) ** 23 - 2.57543725823228e65 * cos(theta) ** 21 + 1.51836559300612e64 * cos(theta) ** 19 - 7.1231966091645e62 * cos(theta) ** 17 + 2.60138222031786e61 * cos(theta) ** 15 - 7.18992190401094e59 * cos(theta) ** 13 + 1.44913154654484e58 * cos(theta) ** 11 - 2.02444081940478e56 * cos(theta) ** 9 + 1.8219967374643e54 * cos(theta) ** 7 - 9.42644283980053e51 * cos(theta) ** 5 + 2.29130841998068e49 * cos(theta) ** 3 - 1.6504022232754e46 * cos(theta) ) * cos(23 * phi) ) # @torch.jit.script def Yl94_m24(theta, phi): return ( 2.77338821558175e-47 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.04489821887527e73 * cos(theta) ** 70 - 1.34942737892181e74 * cos(theta) ** 68 + 8.3080961329294e74 * cos(theta) ** 66 - 3.24605941805712e75 * cos(theta) ** 64 + 9.03875108674468e75 * cos(theta) ** 62 - 1.90975176592561e76 * cos(theta) ** 60 + 3.18291960987601e76 * cos(theta) ** 58 - 4.29499274704086e76 * cos(theta) ** 56 + 4.77911042662061e76 * cos(theta) ** 54 - 4.44373425633144e76 * cos(theta) ** 52 + 3.48662226266005e76 * cos(theta) ** 50 - 2.32504750776188e76 * cos(theta) ** 48 + 1.32457251957343e76 * cos(theta) ** 46 - 6.46971476054036e75 * cos(theta) ** 44 + 2.71532837776006e75 * cos(theta) ** 42 - 9.8025062190835e74 * cos(theta) ** 40 + 3.04377183554344e74 * cos(theta) ** 38 - 8.12057533353715e73 * cos(theta) ** 36 + 1.85764795211634e73 * cos(theta) ** 34 - 3.63241722250703e72 * cos(theta) ** 32 + 6.04590249115265e71 * cos(theta) ** 30 - 8.51949330628896e70 * cos(theta) ** 28 + 1.00951989648189e70 * cos(theta) ** 26 - 9.97549304824001e68 * cos(theta) ** 24 + 8.13604042941561e67 * cos(theta) ** 22 - 5.40841824228779e66 * cos(theta) ** 20 + 2.88489462671162e65 * cos(theta) ** 18 - 1.21094342355796e64 * cos(theta) ** 16 + 3.90207333047679e62 * cos(theta) ** 14 - 9.34689847521422e60 * cos(theta) ** 12 + 1.59404470119932e59 * cos(theta) ** 10 - 1.8219967374643e57 * cos(theta) ** 8 + 1.27539771622501e55 * cos(theta) ** 6 - 4.71322141990026e52 * cos(theta) ** 4 + 6.87392525994205e49 * cos(theta) ** 2 - 1.6504022232754e46 ) * cos(24 * phi) ) # @torch.jit.script def Yl94_m25(theta, phi): return ( 3.03870237404727e-49 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 7.3142875321269e74 * cos(theta) ** 69 - 9.1761061766683e75 * cos(theta) ** 67 + 5.48334344773341e76 * cos(theta) ** 65 - 2.07747802755655e77 * cos(theta) ** 63 + 5.6040256737817e77 * cos(theta) ** 61 - 1.14585105955536e78 * cos(theta) ** 59 + 1.84609337372809e78 * cos(theta) ** 57 - 2.40519593834288e78 * cos(theta) ** 55 + 2.58071963037513e78 * cos(theta) ** 53 - 2.31074181329235e78 * cos(theta) ** 51 + 1.74331113133003e78 * cos(theta) ** 49 - 1.1160228037257e78 * cos(theta) ** 47 + 6.09303359003779e77 * cos(theta) ** 45 - 2.84667449463776e77 * cos(theta) ** 43 + 1.14043791865923e77 * cos(theta) ** 41 - 3.9210024876334e76 * cos(theta) ** 39 + 1.15663329750651e76 * cos(theta) ** 37 - 2.92340712007337e75 * cos(theta) ** 35 + 6.31600303719556e74 * cos(theta) ** 33 - 1.16237351120225e74 * cos(theta) ** 31 + 1.81377074734579e73 * cos(theta) ** 29 - 2.38545812576091e72 * cos(theta) ** 27 + 2.62475173085291e71 * cos(theta) ** 25 - 2.3941183315776e70 * cos(theta) ** 23 + 1.78992889447143e69 * cos(theta) ** 21 - 1.08168364845756e68 * cos(theta) ** 19 + 5.19281032808092e66 * cos(theta) ** 17 - 1.93750947769274e65 * cos(theta) ** 15 + 5.46290266266751e63 * cos(theta) ** 13 - 1.12162781702571e62 * cos(theta) ** 11 + 1.59404470119932e60 * cos(theta) ** 9 - 1.45759738997144e58 * cos(theta) ** 7 + 7.65238629735007e55 * cos(theta) ** 5 - 1.88528856796011e53 * cos(theta) ** 3 + 1.37478505198841e50 * cos(theta) ) * cos(25 * phi) ) # @torch.jit.script def Yl94_m26(theta, phi): return ( 3.33943501651365e-51 * (1.0 - cos(theta) ** 2) ** 13 * ( 5.04685839716756e76 * cos(theta) ** 68 - 6.14799113836776e77 * cos(theta) ** 66 + 3.56417324102671e78 * cos(theta) ** 64 - 1.30881115736063e79 * cos(theta) ** 62 + 3.41845566100684e79 * cos(theta) ** 60 - 6.76052125137665e79 * cos(theta) ** 58 + 1.05227322302501e80 * cos(theta) ** 56 - 1.32285776608858e80 * cos(theta) ** 54 + 1.36778140409882e80 * cos(theta) ** 52 - 1.1784783247791e80 * cos(theta) ** 50 + 8.54222454351713e79 * cos(theta) ** 48 - 5.24530717751079e79 * cos(theta) ** 46 + 2.741865115517e79 * cos(theta) ** 44 - 1.22407003269424e79 * cos(theta) ** 42 + 4.67579546650283e78 * cos(theta) ** 40 - 1.52919097017703e78 * cos(theta) ** 38 + 4.27954320077408e77 * cos(theta) ** 36 - 1.02319249202568e77 * cos(theta) ** 34 + 2.08428100227454e76 * cos(theta) ** 32 - 3.60335788472698e75 * cos(theta) ** 30 + 5.2599351673028e74 * cos(theta) ** 28 - 6.44073693955445e73 * cos(theta) ** 26 + 6.56187932713228e72 * cos(theta) ** 24 - 5.50647216262849e71 * cos(theta) ** 22 + 3.75885067839001e70 * cos(theta) ** 20 - 2.05519893206936e69 * cos(theta) ** 18 + 8.82777755773756e67 * cos(theta) ** 16 - 2.90626421653912e66 * cos(theta) ** 14 + 7.10177346146776e64 * cos(theta) ** 12 - 1.23379059872828e63 * cos(theta) ** 10 + 1.43464023107939e61 * cos(theta) ** 8 - 1.02031817298001e59 * cos(theta) ** 6 + 3.82619314867503e56 * cos(theta) ** 4 - 5.65586570388032e53 * cos(theta) ** 2 + 1.37478505198841e50 ) * cos(26 * phi) ) # @torch.jit.script def Yl94_m27(theta, phi): return ( 3.68150890453798e-53 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 3.43186371007394e78 * cos(theta) ** 67 - 4.05767415132272e79 * cos(theta) ** 65 + 2.2810708742571e80 * cos(theta) ** 63 - 8.1146291756359e80 * cos(theta) ** 61 + 2.0510733966041e81 * cos(theta) ** 59 - 3.92110232579846e81 * cos(theta) ** 57 + 5.89273004894005e81 * cos(theta) ** 55 - 7.14343193687835e81 * cos(theta) ** 53 + 7.11246330131385e81 * cos(theta) ** 51 - 5.89239162389549e81 * cos(theta) ** 49 + 4.10026778088822e81 * cos(theta) ** 47 - 2.41284130165496e81 * cos(theta) ** 45 + 1.20642065082748e81 * cos(theta) ** 43 - 5.14109413731579e80 * cos(theta) ** 41 + 1.87031818660113e80 * cos(theta) ** 39 - 5.8109256866727e79 * cos(theta) ** 37 + 1.54063555227867e79 * cos(theta) ** 35 - 3.47885447288732e78 * cos(theta) ** 33 + 6.66969920727851e77 * cos(theta) ** 31 - 1.08100736541809e77 * cos(theta) ** 29 + 1.47278184684478e76 * cos(theta) ** 27 - 1.67459160428416e75 * cos(theta) ** 25 + 1.57485103851175e74 * cos(theta) ** 23 - 1.21142387577827e73 * cos(theta) ** 21 + 7.51770135678002e71 * cos(theta) ** 19 - 3.69935807772485e70 * cos(theta) ** 17 + 1.41244440923801e69 * cos(theta) ** 15 - 4.06876990315476e67 * cos(theta) ** 13 + 8.52212815376132e65 * cos(theta) ** 11 - 1.23379059872828e64 * cos(theta) ** 9 + 1.14771218486351e62 * cos(theta) ** 7 - 6.12190903788006e59 * cos(theta) ** 5 + 1.53047725947001e57 * cos(theta) ** 3 - 1.13117314077606e54 * cos(theta) ) * cos(27 * phi) ) # @torch.jit.script def Yl94_m28(theta, phi): return ( 4.07200721244265e-55 * (1.0 - cos(theta) ** 2) ** 14 * ( 2.29934868574954e80 * cos(theta) ** 66 - 2.63748819835977e81 * cos(theta) ** 64 + 1.43707465078197e82 * cos(theta) ** 62 - 4.9499237971379e82 * cos(theta) ** 60 + 1.21013330399642e83 * cos(theta) ** 58 - 2.23502832570512e83 * cos(theta) ** 56 + 3.24100152691703e83 * cos(theta) ** 54 - 3.78601892654553e83 * cos(theta) ** 52 + 3.62735628367006e83 * cos(theta) ** 50 - 2.88727189570879e83 * cos(theta) ** 48 + 1.92712585701746e83 * cos(theta) ** 46 - 1.08577858574473e83 * cos(theta) ** 44 + 5.18760879855817e82 * cos(theta) ** 42 - 2.10784859629947e82 * cos(theta) ** 40 + 7.29424092774441e81 * cos(theta) ** 38 - 2.1500425040689e81 * cos(theta) ** 36 + 5.39222443297534e80 * cos(theta) ** 34 - 1.14802197605281e80 * cos(theta) ** 32 + 2.06760675425634e79 * cos(theta) ** 30 - 3.13492135971247e78 * cos(theta) ** 28 + 3.97651098648092e77 * cos(theta) ** 26 - 4.18647901071039e76 * cos(theta) ** 24 + 3.62215738857702e75 * cos(theta) ** 22 - 2.54399013913436e74 * cos(theta) ** 20 + 1.4283632577882e73 * cos(theta) ** 18 - 6.28890873213224e71 * cos(theta) ** 16 + 2.11866661385701e70 * cos(theta) ** 14 - 5.28940087410119e68 * cos(theta) ** 12 + 9.37434096913745e66 * cos(theta) ** 10 - 1.11041153885545e65 * cos(theta) ** 8 + 8.03398529404459e62 * cos(theta) ** 6 - 3.06095451894003e60 * cos(theta) ** 4 + 4.59143177841004e57 * cos(theta) ** 2 - 1.13117314077606e54 ) * cos(28 * phi) ) # @torch.jit.script def Yl94_m29(theta, phi): return ( 4.51943365200135e-57 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 1.5175701325947e82 * cos(theta) ** 65 - 1.68799244695025e83 * cos(theta) ** 63 + 8.90986283484822e83 * cos(theta) ** 61 - 2.96995427828274e84 * cos(theta) ** 59 + 7.01877316317924e84 * cos(theta) ** 57 - 1.25161586239487e85 * cos(theta) ** 55 + 1.7501408245352e85 * cos(theta) ** 53 - 1.96872984180367e85 * cos(theta) ** 51 + 1.81367814183503e85 * cos(theta) ** 49 - 1.38589050994022e85 * cos(theta) ** 47 + 8.86477894228034e84 * cos(theta) ** 45 - 4.77742577727683e84 * cos(theta) ** 43 + 2.17879569539443e84 * cos(theta) ** 41 - 8.4313943851979e83 * cos(theta) ** 39 + 2.77181155254288e83 * cos(theta) ** 37 - 7.74015301464803e82 * cos(theta) ** 35 + 1.83335630721162e82 * cos(theta) ** 33 - 3.67367032336901e81 * cos(theta) ** 31 + 6.20282026276902e80 * cos(theta) ** 29 - 8.77777980719492e79 * cos(theta) ** 27 + 1.03389285648504e79 * cos(theta) ** 25 - 1.00475496257049e78 * cos(theta) ** 23 + 7.96874625486944e76 * cos(theta) ** 21 - 5.08798027826872e75 * cos(theta) ** 19 + 2.57105386401877e74 * cos(theta) ** 17 - 1.00622539714116e73 * cos(theta) ** 15 + 2.96613325939982e71 * cos(theta) ** 13 - 6.34728104892143e69 * cos(theta) ** 11 + 9.37434096913745e67 * cos(theta) ** 9 - 8.88329231084359e65 * cos(theta) ** 7 + 4.82039117642676e63 * cos(theta) ** 5 - 1.22438180757601e61 * cos(theta) ** 3 + 9.18286355682008e57 * cos(theta) ) * cos(29 * phi) ) # @torch.jit.script def Yl94_m30(theta, phi): return ( 5.03403805360215e-59 * (1.0 - cos(theta) ** 2) ** 15 * ( 9.86420586186554e83 * cos(theta) ** 64 - 1.06343524157866e85 * cos(theta) ** 62 + 5.43501632925741e85 * cos(theta) ** 60 - 1.75227302418682e86 * cos(theta) ** 58 + 4.00070070301217e86 * cos(theta) ** 56 - 6.88388724317177e86 * cos(theta) ** 54 + 9.27574637003654e86 * cos(theta) ** 52 - 1.00405221931987e87 * cos(theta) ** 50 + 8.88702289499166e86 * cos(theta) ** 48 - 6.51368539671903e86 * cos(theta) ** 46 + 3.98915052402615e86 * cos(theta) ** 44 - 2.05429308422904e86 * cos(theta) ** 42 + 8.93306235111717e85 * cos(theta) ** 40 - 3.28824381022718e85 * cos(theta) ** 38 + 1.02557027444086e85 * cos(theta) ** 36 - 2.70905355512681e84 * cos(theta) ** 34 + 6.05007581379833e83 * cos(theta) ** 32 - 1.13883780024439e83 * cos(theta) ** 30 + 1.79881787620302e82 * cos(theta) ** 28 - 2.37000054794263e81 * cos(theta) ** 26 + 2.5847321412126e80 * cos(theta) ** 24 - 2.31093641391214e79 * cos(theta) ** 22 + 1.67343671352258e78 * cos(theta) ** 20 - 9.66716252871057e76 * cos(theta) ** 18 + 4.37079156883191e75 * cos(theta) ** 16 - 1.50933809571174e74 * cos(theta) ** 14 + 3.85597323721977e72 * cos(theta) ** 12 - 6.98200915381357e70 * cos(theta) ** 10 + 8.4369068722237e68 * cos(theta) ** 8 - 6.21830461759051e66 * cos(theta) ** 6 + 2.41019558821338e64 * cos(theta) ** 4 - 3.67314542272803e61 * cos(theta) ** 2 + 9.18286355682008e57 ) * cos(30 * phi) ) # @torch.jit.script def Yl94_m31(theta, phi): return ( 5.62822564458757e-61 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 6.31309175159394e85 * cos(theta) ** 63 - 6.59329849778768e86 * cos(theta) ** 61 + 3.26100979755445e87 * cos(theta) ** 59 - 1.01631835402835e88 * cos(theta) ** 57 + 2.24039239368681e88 * cos(theta) ** 55 - 3.71729911131276e88 * cos(theta) ** 53 + 4.823388112419e88 * cos(theta) ** 51 - 5.02026109659937e88 * cos(theta) ** 49 + 4.265770989596e88 * cos(theta) ** 47 - 2.99629528249075e88 * cos(theta) ** 45 + 1.75522623057151e88 * cos(theta) ** 43 - 8.62803095376195e87 * cos(theta) ** 41 + 3.57322494044687e87 * cos(theta) ** 39 - 1.24953264788633e87 * cos(theta) ** 37 + 3.69205298798711e86 * cos(theta) ** 35 - 9.21078208743116e85 * cos(theta) ** 33 + 1.93602426041547e85 * cos(theta) ** 31 - 3.41651340073318e84 * cos(theta) ** 29 + 5.03669005336844e83 * cos(theta) ** 27 - 6.16200142465083e82 * cos(theta) ** 25 + 6.20335713891023e81 * cos(theta) ** 23 - 5.0840601106067e80 * cos(theta) ** 21 + 3.34687342704516e79 * cos(theta) ** 19 - 1.7400892551679e78 * cos(theta) ** 17 + 6.99326651013105e76 * cos(theta) ** 15 - 2.11307333399643e75 * cos(theta) ** 13 + 4.62716788466372e73 * cos(theta) ** 11 - 6.98200915381357e71 * cos(theta) ** 9 + 6.74952549777896e69 * cos(theta) ** 7 - 3.73098277055431e67 * cos(theta) ** 5 + 9.64078235285351e64 * cos(theta) ** 3 - 7.34629084545607e61 * cos(theta) ) * cos(31 * phi) ) # @torch.jit.script def Yl94_m32(theta, phi): return ( 6.31707384021571e-63 * (1.0 - cos(theta) ** 2) ** 16 * ( 3.97724780350418e87 * cos(theta) ** 62 - 4.02191208365049e88 * cos(theta) ** 60 + 1.92399578055712e89 * cos(theta) ** 58 - 5.79301461796162e89 * cos(theta) ** 56 + 1.23221581652775e90 * cos(theta) ** 54 - 1.97016852899576e90 * cos(theta) ** 52 + 2.45992793733369e90 * cos(theta) ** 50 - 2.45992793733369e90 * cos(theta) ** 48 + 2.00491236511012e90 * cos(theta) ** 46 - 1.34833287712084e90 * cos(theta) ** 44 + 7.54747279145748e89 * cos(theta) ** 42 - 3.5374926910424e89 * cos(theta) ** 40 + 1.39355772677428e89 * cos(theta) ** 38 - 4.62327079717942e88 * cos(theta) ** 36 + 1.29221854579549e88 * cos(theta) ** 34 - 3.03955808885228e87 * cos(theta) ** 32 + 6.00167520728794e86 * cos(theta) ** 30 - 9.90788886212621e85 * cos(theta) ** 28 + 1.35990631440948e85 * cos(theta) ** 26 - 1.54050035616271e84 * cos(theta) ** 24 + 1.42677214194935e83 * cos(theta) ** 22 - 1.06765262322741e82 * cos(theta) ** 20 + 6.35905951138581e80 * cos(theta) ** 18 - 2.95815173378543e79 * cos(theta) ** 16 + 1.04898997651966e78 * cos(theta) ** 14 - 2.74699533419536e76 * cos(theta) ** 12 + 5.08988467313009e74 * cos(theta) ** 10 - 6.28380823843221e72 * cos(theta) ** 8 + 4.72466784844527e70 * cos(theta) ** 6 - 1.86549138527715e68 * cos(theta) ** 4 + 2.89223470585605e65 * cos(theta) ** 2 - 7.34629084545607e61 ) * cos(32 * phi) ) # @torch.jit.script def Yl94_m33(theta, phi): return ( 7.11898779156498e-65 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 2.46589363817259e89 * cos(theta) ** 61 - 2.41314725019029e90 * cos(theta) ** 59 + 1.11591755272313e91 * cos(theta) ** 57 - 3.24408818605851e91 * cos(theta) ** 55 + 6.65396540924984e91 * cos(theta) ** 53 - 1.0244876350778e92 * cos(theta) ** 51 + 1.22996396866685e92 * cos(theta) ** 49 - 1.18076540992017e92 * cos(theta) ** 47 + 9.22259687950654e91 * cos(theta) ** 45 - 5.93266465933169e91 * cos(theta) ** 43 + 3.16993857241214e91 * cos(theta) ** 41 - 1.41499707641696e91 * cos(theta) ** 39 + 5.29551936174226e90 * cos(theta) ** 37 - 1.66437748698459e90 * cos(theta) ** 35 + 4.39354305570466e89 * cos(theta) ** 33 - 9.7265858843273e88 * cos(theta) ** 31 + 1.80050256218638e88 * cos(theta) ** 29 - 2.77420888139534e87 * cos(theta) ** 27 + 3.53575641746465e86 * cos(theta) ** 25 - 3.6972008547905e85 * cos(theta) ** 23 + 3.13889871228858e84 * cos(theta) ** 21 - 2.13530524645482e83 * cos(theta) ** 19 + 1.14463071204945e82 * cos(theta) ** 17 - 4.73304277405669e80 * cos(theta) ** 15 + 1.46858596712752e79 * cos(theta) ** 13 - 3.29639440103443e77 * cos(theta) ** 11 + 5.08988467313009e75 * cos(theta) ** 9 - 5.02704659074577e73 * cos(theta) ** 7 + 2.83480070906716e71 * cos(theta) ** 5 - 7.46196554110862e68 * cos(theta) ** 3 + 5.78446941171211e65 * cos(theta) ) * cos(33 * phi) ) # @torch.jit.script def Yl94_m34(theta, phi): return ( 8.05653588471146e-67 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.50419511928528e91 * cos(theta) ** 60 - 1.42375687761227e92 * cos(theta) ** 58 + 6.36073005052185e92 * cos(theta) ** 56 - 1.78424850233218e93 * cos(theta) ** 54 + 3.52660166690241e93 * cos(theta) ** 52 - 5.22488693889676e93 * cos(theta) ** 50 + 6.02682344646754e93 * cos(theta) ** 48 - 5.54959742662481e93 * cos(theta) ** 46 + 4.15016859577794e93 * cos(theta) ** 44 - 2.55104580351263e93 * cos(theta) ** 42 + 1.29967481468898e93 * cos(theta) ** 40 - 5.51848859802614e92 * cos(theta) ** 38 + 1.95934216384464e92 * cos(theta) ** 36 - 5.82532120444606e91 * cos(theta) ** 34 + 1.44986920838254e91 * cos(theta) ** 32 - 3.01524162414146e90 * cos(theta) ** 30 + 5.22145743034051e89 * cos(theta) ** 28 - 7.49036397976741e88 * cos(theta) ** 26 + 8.83939104366162e87 * cos(theta) ** 24 - 8.50356196601815e86 * cos(theta) ** 22 + 6.59168729580601e85 * cos(theta) ** 20 - 4.05707996826415e84 * cos(theta) ** 18 + 1.94587221048406e83 * cos(theta) ** 16 - 7.09956416108504e81 * cos(theta) ** 14 + 1.90916175726578e80 * cos(theta) ** 12 - 3.62603384113788e78 * cos(theta) ** 10 + 4.58089620581708e76 * cos(theta) ** 8 - 3.51893261352204e74 * cos(theta) ** 6 + 1.41740035453358e72 * cos(theta) ** 4 - 2.23858966233259e69 * cos(theta) ** 2 + 5.78446941171211e65 ) * cos(34 * phi) ) # @torch.jit.script def Yl94_m35(theta, phi): return ( 9.15751978185659e-69 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 9.02517071571169e92 * cos(theta) ** 59 - 8.25778989015118e93 * cos(theta) ** 57 + 3.56200882829224e94 * cos(theta) ** 55 - 9.63494191259376e94 * cos(theta) ** 53 + 1.83383286678925e95 * cos(theta) ** 51 - 2.61244346944838e95 * cos(theta) ** 49 + 2.89287525430442e95 * cos(theta) ** 47 - 2.55281481624741e95 * cos(theta) ** 45 + 1.8260741821423e95 * cos(theta) ** 43 - 1.0714392374753e95 * cos(theta) ** 41 + 5.19869925875591e94 * cos(theta) ** 39 - 2.09702566724993e94 * cos(theta) ** 37 + 7.05363178984069e93 * cos(theta) ** 35 - 1.98060920951166e93 * cos(theta) ** 33 + 4.63958146682412e92 * cos(theta) ** 31 - 9.04572487242439e91 * cos(theta) ** 29 + 1.46200808049534e91 * cos(theta) ** 27 - 1.94749463473953e90 * cos(theta) ** 25 + 2.12145385047879e89 * cos(theta) ** 23 - 1.87078363252399e88 * cos(theta) ** 21 + 1.3183374591612e87 * cos(theta) ** 19 - 7.30274394287547e85 * cos(theta) ** 17 + 3.11339553677449e84 * cos(theta) ** 15 - 9.93938982551906e82 * cos(theta) ** 13 + 2.29099410871893e81 * cos(theta) ** 11 - 3.62603384113788e79 * cos(theta) ** 9 + 3.66471696465367e77 * cos(theta) ** 7 - 2.11135956811322e75 * cos(theta) ** 5 + 5.66960141813433e72 * cos(theta) ** 3 - 4.47717932466517e69 * cos(theta) ) * cos(35 * phi) ) # @torch.jit.script def Yl94_m36(theta, phi): return ( 1.04563517283457e-70 * (1.0 - cos(theta) ** 2) ** 18 * ( 5.3248507222699e94 * cos(theta) ** 58 - 4.70694023738617e95 * cos(theta) ** 56 + 1.95910485556073e96 * cos(theta) ** 54 - 5.10651921367469e96 * cos(theta) ** 52 + 9.3525476206252e96 * cos(theta) ** 50 - 1.28009730002971e97 * cos(theta) ** 48 + 1.35965136952308e97 * cos(theta) ** 46 - 1.14876666731133e97 * cos(theta) ** 44 + 7.85211898321187e96 * cos(theta) ** 42 - 4.39290087364875e96 * cos(theta) ** 40 + 2.02749271091481e96 * cos(theta) ** 38 - 7.75899496882476e95 * cos(theta) ** 36 + 2.46877112644424e95 * cos(theta) ** 34 - 6.53601039138848e94 * cos(theta) ** 32 + 1.43827025471548e94 * cos(theta) ** 30 - 2.62326021300307e93 * cos(theta) ** 28 + 3.94742181733743e92 * cos(theta) ** 26 - 4.86873658684882e91 * cos(theta) ** 24 + 4.87934385610121e90 * cos(theta) ** 22 - 3.92864562830038e89 * cos(theta) ** 20 + 2.50484117240629e88 * cos(theta) ** 18 - 1.24146647028883e87 * cos(theta) ** 16 + 4.67009330516174e85 * cos(theta) ** 14 - 1.29212067731748e84 * cos(theta) ** 12 + 2.52009351959083e82 * cos(theta) ** 10 - 3.26343045702409e80 * cos(theta) ** 8 + 2.56530187525757e78 * cos(theta) ** 6 - 1.05567978405661e76 * cos(theta) ** 4 + 1.7008804254403e73 * cos(theta) ** 2 - 4.47717932466517e69 ) * cos(36 * phi) ) # @torch.jit.script def Yl94_m37(theta, phi): return ( 1.19958365302349e-72 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 3.08841341891654e96 * cos(theta) ** 57 - 2.63588653293626e97 * cos(theta) ** 55 + 1.05791662200279e98 * cos(theta) ** 53 - 2.65538999111084e98 * cos(theta) ** 51 + 4.6762738103126e98 * cos(theta) ** 49 - 6.14446704014259e98 * cos(theta) ** 47 + 6.25439629980616e98 * cos(theta) ** 45 - 5.05457333616987e98 * cos(theta) ** 43 + 3.29788997294898e98 * cos(theta) ** 41 - 1.7571603494595e98 * cos(theta) ** 39 + 7.70447230147626e97 * cos(theta) ** 37 - 2.79323818877691e97 * cos(theta) ** 35 + 8.39382182991042e96 * cos(theta) ** 33 - 2.09152332524431e96 * cos(theta) ** 31 + 4.31481076414643e95 * cos(theta) ** 29 - 7.34512859640861e94 * cos(theta) ** 27 + 1.02632967250773e94 * cos(theta) ** 25 - 1.16849678084372e93 * cos(theta) ** 23 + 1.07345564834227e92 * cos(theta) ** 21 - 7.85729125660077e90 * cos(theta) ** 19 + 4.50871411033131e89 * cos(theta) ** 17 - 1.98634635246213e88 * cos(theta) ** 15 + 6.53813062722644e86 * cos(theta) ** 13 - 1.55054481278097e85 * cos(theta) ** 11 + 2.52009351959083e83 * cos(theta) ** 9 - 2.61074436561927e81 * cos(theta) ** 7 + 1.53918112515454e79 * cos(theta) ** 5 - 4.22271913622645e76 * cos(theta) ** 3 + 3.4017608508806e73 * cos(theta) ) * cos(37 * phi) ) # @torch.jit.script def Yl94_m38(theta, phi): return ( 1.38294893902275e-74 * (1.0 - cos(theta) ** 2) ** 19 * ( 1.76039564878243e98 * cos(theta) ** 56 - 1.44973759311494e99 * cos(theta) ** 54 + 5.60695809661481e99 * cos(theta) ** 52 - 1.35424889546653e100 * cos(theta) ** 50 + 2.29137416705317e100 * cos(theta) ** 48 - 2.88789950886702e100 * cos(theta) ** 46 + 2.81447833491277e100 * cos(theta) ** 44 - 2.17346653455305e100 * cos(theta) ** 42 + 1.35213488890908e100 * cos(theta) ** 40 - 6.85292536289204e99 * cos(theta) ** 38 + 2.85065475154622e99 * cos(theta) ** 36 - 9.7763336607192e98 * cos(theta) ** 34 + 2.76996120387044e98 * cos(theta) ** 32 - 6.48372230825738e97 * cos(theta) ** 30 + 1.25129512160247e97 * cos(theta) ** 28 - 1.98318472103032e96 * cos(theta) ** 26 + 2.56582418126933e95 * cos(theta) ** 24 - 2.68754259594055e94 * cos(theta) ** 22 + 2.25425686151876e93 * cos(theta) ** 20 - 1.49288533875415e92 * cos(theta) ** 18 + 7.66481398756323e90 * cos(theta) ** 16 - 2.97951952869319e89 * cos(theta) ** 14 + 8.49956981539437e87 * cos(theta) ** 12 - 1.70559929405907e86 * cos(theta) ** 10 + 2.26808416763174e84 * cos(theta) ** 8 - 1.82752105593349e82 * cos(theta) ** 6 + 7.6959056257727e79 * cos(theta) ** 4 - 1.26681574086793e77 * cos(theta) ** 2 + 3.4017608508806e73 ) * cos(38 * phi) ) # @torch.jit.script def Yl94_m39(theta, phi): return ( 1.6024567302825e-76 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 9.8582156331816e99 * cos(theta) ** 55 - 7.82858300282068e100 * cos(theta) ** 53 + 2.9156182102397e101 * cos(theta) ** 51 - 6.77124447733264e101 * cos(theta) ** 49 + 1.09985960018552e102 * cos(theta) ** 47 - 1.32843377407883e102 * cos(theta) ** 45 + 1.23837046736162e102 * cos(theta) ** 43 - 9.12855944512279e101 * cos(theta) ** 41 + 5.40853955563634e101 * cos(theta) ** 39 - 2.60411163789898e101 * cos(theta) ** 37 + 1.02623571055664e101 * cos(theta) ** 35 - 3.32395344464453e100 * cos(theta) ** 33 + 8.86387585238541e99 * cos(theta) ** 31 - 1.94511669247721e99 * cos(theta) ** 29 + 3.5036263404869e98 * cos(theta) ** 27 - 5.15628027467884e97 * cos(theta) ** 25 + 6.15797803504639e96 * cos(theta) ** 23 - 5.91259371106921e95 * cos(theta) ** 21 + 4.50851372303752e94 * cos(theta) ** 19 - 2.68719360975746e93 * cos(theta) ** 17 + 1.22637023801012e92 * cos(theta) ** 15 - 4.17132734017047e90 * cos(theta) ** 13 + 1.01994837784732e89 * cos(theta) ** 11 - 1.70559929405907e87 * cos(theta) ** 9 + 1.81446733410539e85 * cos(theta) ** 7 - 1.09651263356009e83 * cos(theta) ** 5 + 3.07836225030908e80 * cos(theta) ** 3 - 2.53363148173587e77 * cos(theta) ) * cos(39 * phi) ) # @torch.jit.script def Yl94_m40(theta, phi): return ( 1.86660561345564e-78 * (1.0 - cos(theta) ** 2) ** 20 * ( 5.42201859824988e101 * cos(theta) ** 54 - 4.14914899149496e102 * cos(theta) ** 52 + 1.48696528722225e103 * cos(theta) ** 50 - 3.317909793893e103 * cos(theta) ** 48 + 5.16934012087196e103 * cos(theta) ** 46 - 5.97795198335472e103 * cos(theta) ** 44 + 5.32499300965496e103 * cos(theta) ** 42 - 3.74270937250034e103 * cos(theta) ** 40 + 2.10933042669817e103 * cos(theta) ** 38 - 9.63521306022621e102 * cos(theta) ** 36 + 3.59182498694823e102 * cos(theta) ** 34 - 1.09690463673269e102 * cos(theta) ** 32 + 2.74780151423948e101 * cos(theta) ** 30 - 5.64083840818392e100 * cos(theta) ** 28 + 9.45979111931464e99 * cos(theta) ** 26 - 1.28907006866971e99 * cos(theta) ** 24 + 1.41633494806067e98 * cos(theta) ** 22 - 1.24164467932453e97 * cos(theta) ** 20 + 8.56617607377129e95 * cos(theta) ** 18 - 4.56822913658769e94 * cos(theta) ** 16 + 1.83955535701518e93 * cos(theta) ** 14 - 5.42272554222161e91 * cos(theta) ** 12 + 1.12194321563206e90 * cos(theta) ** 10 - 1.53503936465316e88 * cos(theta) ** 8 + 1.27012713387378e86 * cos(theta) ** 6 - 5.48256316780047e83 * cos(theta) ** 4 + 9.23508675092724e80 * cos(theta) ** 2 - 2.53363148173587e77 ) * cos(40 * phi) ) # @torch.jit.script def Yl94_m41(theta, phi): return ( 2.18619453028729e-80 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 2.92789004305494e103 * cos(theta) ** 53 - 2.15755747557738e104 * cos(theta) ** 51 + 7.43482643611124e104 * cos(theta) ** 49 - 1.59259670106864e105 * cos(theta) ** 47 + 2.3778964556011e105 * cos(theta) ** 45 - 2.63029887267608e105 * cos(theta) ** 43 + 2.23649706405508e105 * cos(theta) ** 41 - 1.49708374900014e105 * cos(theta) ** 39 + 8.01545562145305e104 * cos(theta) ** 37 - 3.46867670168144e104 * cos(theta) ** 35 + 1.2212204955624e104 * cos(theta) ** 33 - 3.51009483754462e103 * cos(theta) ** 31 + 8.24340454271843e102 * cos(theta) ** 29 - 1.5794347542915e102 * cos(theta) ** 27 + 2.45954569102181e101 * cos(theta) ** 25 - 3.0937681648073e100 * cos(theta) ** 23 + 3.11593688573347e99 * cos(theta) ** 21 - 2.48328935864907e98 * cos(theta) ** 19 + 1.54191169327883e97 * cos(theta) ** 17 - 7.3091666185403e95 * cos(theta) ** 15 + 2.57537749982125e94 * cos(theta) ** 13 - 6.50727065066593e92 * cos(theta) ** 11 + 1.12194321563206e91 * cos(theta) ** 9 - 1.22803149172253e89 * cos(theta) ** 7 + 7.62076280324265e86 * cos(theta) ** 5 - 2.19302526712019e84 * cos(theta) ** 3 + 1.84701735018545e81 * cos(theta) ) * cos(41 * phi) ) # @torch.jit.script def Yl94_m42(theta, phi): return ( 2.57502479009705e-82 * (1.0 - cos(theta) ** 2) ** 21 * ( 1.55178172281912e105 * cos(theta) ** 52 - 1.10035431254446e106 * cos(theta) ** 50 + 3.64306495369451e106 * cos(theta) ** 48 - 7.4852044950226e106 * cos(theta) ** 46 + 1.0700534050205e107 * cos(theta) ** 44 - 1.13102851525071e107 * cos(theta) ** 42 + 9.16963796262584e106 * cos(theta) ** 40 - 5.83862662110054e106 * cos(theta) ** 38 + 2.96571857993763e106 * cos(theta) ** 36 - 1.2140368455885e106 * cos(theta) ** 34 + 4.03002763535592e105 * cos(theta) ** 32 - 1.08812939963883e105 * cos(theta) ** 30 + 2.39058731738834e104 * cos(theta) ** 28 - 4.26447383658704e103 * cos(theta) ** 26 + 6.14886422755452e102 * cos(theta) ** 24 - 7.1156667790568e101 * cos(theta) ** 22 + 6.54346746004029e100 * cos(theta) ** 20 - 4.71824978143323e99 * cos(theta) ** 18 + 2.62124987857401e98 * cos(theta) ** 16 - 1.09637499278104e97 * cos(theta) ** 14 + 3.34799074976762e95 * cos(theta) ** 12 - 7.15799771573252e93 * cos(theta) ** 10 + 1.00974889406885e92 * cos(theta) ** 8 - 8.59622044205772e89 * cos(theta) ** 6 + 3.81038140162133e87 * cos(theta) ** 4 - 6.57907580136057e84 * cos(theta) ** 2 + 1.84701735018545e81 ) * cos(42 * phi) ) # @torch.jit.script def Yl94_m43(theta, phi): return ( 3.05084019079274e-84 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 8.0692649586594e106 * cos(theta) ** 51 - 5.50177156272232e107 * cos(theta) ** 49 + 1.74867117777336e108 * cos(theta) ** 47 - 3.44319406771039e108 * cos(theta) ** 45 + 4.70823498209018e108 * cos(theta) ** 43 - 4.750319764053e108 * cos(theta) ** 41 + 3.66785518505034e108 * cos(theta) ** 39 - 2.2186781160182e108 * cos(theta) ** 37 + 1.06765868877755e108 * cos(theta) ** 35 - 4.12772527500091e107 * cos(theta) ** 33 + 1.28960884331389e107 * cos(theta) ** 31 - 3.2643881989165e106 * cos(theta) ** 29 + 6.69364448868736e105 * cos(theta) ** 27 - 1.10876319751263e105 * cos(theta) ** 25 + 1.47572741461308e104 * cos(theta) ** 23 - 1.5654466913925e103 * cos(theta) ** 21 + 1.30869349200806e102 * cos(theta) ** 19 - 8.49284960657981e100 * cos(theta) ** 17 + 4.19399980571842e99 * cos(theta) ** 15 - 1.53492498989346e98 * cos(theta) ** 13 + 4.01758889972114e96 * cos(theta) ** 11 - 7.15799771573252e94 * cos(theta) ** 9 + 8.07799115255081e92 * cos(theta) ** 7 - 5.15773226523463e90 * cos(theta) ** 5 + 1.52415256064853e88 * cos(theta) ** 3 - 1.31581516027211e85 * cos(theta) ) * cos(43 * phi) ) # @torch.jit.script def Yl94_m44(theta, phi): return ( 3.63659408296205e-86 * (1.0 - cos(theta) ** 2) ** 22 * ( 4.11532512891629e108 * cos(theta) ** 50 - 2.69586806573394e109 * cos(theta) ** 48 + 8.21875453553481e109 * cos(theta) ** 46 - 1.54943733046968e110 * cos(theta) ** 44 + 2.02454104229878e110 * cos(theta) ** 42 - 1.94763110326173e110 * cos(theta) ** 40 + 1.43046352216963e110 * cos(theta) ** 38 - 8.20910902926736e109 * cos(theta) ** 36 + 3.73680541072141e109 * cos(theta) ** 34 - 1.3621493407503e109 * cos(theta) ** 32 + 3.99778741427307e108 * cos(theta) ** 30 - 9.46672577685784e107 * cos(theta) ** 28 + 1.80728401194559e107 * cos(theta) ** 26 - 2.77190799378158e106 * cos(theta) ** 24 + 3.39417305361009e105 * cos(theta) ** 22 - 3.28743805192424e104 * cos(theta) ** 20 + 2.48651763481531e103 * cos(theta) ** 18 - 1.44378443311857e102 * cos(theta) ** 16 + 6.29099970857764e100 * cos(theta) ** 14 - 1.9954024868615e99 * cos(theta) ** 12 + 4.41934778969326e97 * cos(theta) ** 10 - 6.44219794415927e95 * cos(theta) ** 8 + 5.65459380678556e93 * cos(theta) ** 6 - 2.57886613261731e91 * cos(theta) ** 4 + 4.57245768194559e88 * cos(theta) ** 2 - 1.31581516027211e85 ) * cos(44 * phi) ) # @torch.jit.script def Yl94_m45(theta, phi): return ( 4.36216838103599e-88 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 2.05766256445815e110 * cos(theta) ** 49 - 1.29401667155229e111 * cos(theta) ** 47 + 3.78062708634601e111 * cos(theta) ** 45 - 6.81752425406658e111 * cos(theta) ** 43 + 8.50307237765487e111 * cos(theta) ** 41 - 7.79052441304692e111 * cos(theta) ** 39 + 5.4357613842446e111 * cos(theta) ** 37 - 2.95527925053625e111 * cos(theta) ** 35 + 1.27051383964528e111 * cos(theta) ** 33 - 4.35887789040096e110 * cos(theta) ** 31 + 1.19933622428192e110 * cos(theta) ** 29 - 2.6506832175202e109 * cos(theta) ** 27 + 4.69893843105853e108 * cos(theta) ** 25 - 6.65257918507578e107 * cos(theta) ** 23 + 7.46718071794221e106 * cos(theta) ** 21 - 6.57487610384848e105 * cos(theta) ** 19 + 4.47573174266756e104 * cos(theta) ** 17 - 2.31005509298971e103 * cos(theta) ** 15 + 8.80739959200869e101 * cos(theta) ** 13 - 2.3944829842338e100 * cos(theta) ** 11 + 4.41934778969326e98 * cos(theta) ** 9 - 5.15375835532742e96 * cos(theta) ** 7 + 3.39275628407134e94 * cos(theta) ** 5 - 1.03154645304693e92 * cos(theta) ** 3 + 9.14491536389119e88 * cos(theta) ) * cos(45 * phi) ) # @torch.jit.script def Yl94_m46(theta, phi): return ( 5.26672166724968e-90 * (1.0 - cos(theta) ** 2) ** 23 * ( 1.00825465658449e112 * cos(theta) ** 48 - 6.08187835629576e112 * cos(theta) ** 46 + 1.70128218885571e113 * cos(theta) ** 44 - 2.93153542924863e113 * cos(theta) ** 42 + 3.4862596748385e113 * cos(theta) ** 40 - 3.0383045210883e113 * cos(theta) ** 38 + 2.0112317121705e113 * cos(theta) ** 36 - 1.03434773768769e113 * cos(theta) ** 34 + 4.19269567082942e112 * cos(theta) ** 32 - 1.3512521460243e112 * cos(theta) ** 30 + 3.47807505041757e111 * cos(theta) ** 28 - 7.15684468730453e110 * cos(theta) ** 26 + 1.17473460776463e110 * cos(theta) ** 24 - 1.53009321256743e109 * cos(theta) ** 22 + 1.56810795076786e108 * cos(theta) ** 20 - 1.24922645973121e107 * cos(theta) ** 18 + 7.60874396253485e105 * cos(theta) ** 16 - 3.46508263948456e104 * cos(theta) ** 14 + 1.14496194696113e103 * cos(theta) ** 12 - 2.63393128265718e101 * cos(theta) ** 10 + 3.97741301072393e99 * cos(theta) ** 8 - 3.60763084872919e97 * cos(theta) ** 6 + 1.69637814203567e95 * cos(theta) ** 4 - 3.09463935914078e92 * cos(theta) ** 2 + 9.14491536389119e88 ) * cos(46 * phi) ) # @torch.jit.script def Yl94_m47(theta, phi): return ( 6.40191926012626e-92 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 4.83962235160556e113 * cos(theta) ** 47 - 2.79766404389605e114 * cos(theta) ** 45 + 7.48564163096511e114 * cos(theta) ** 43 - 1.23124488028442e115 * cos(theta) ** 41 + 1.3945038699354e115 * cos(theta) ** 39 - 1.15455571801355e115 * cos(theta) ** 37 + 7.24043416381381e114 * cos(theta) ** 35 - 3.51678230813813e114 * cos(theta) ** 33 + 1.34166261466542e114 * cos(theta) ** 31 - 4.05375643807289e113 * cos(theta) ** 29 + 9.7386101411692e112 * cos(theta) ** 27 - 1.86077961869918e112 * cos(theta) ** 25 + 2.81936305863512e111 * cos(theta) ** 23 - 3.36620506764835e110 * cos(theta) ** 21 + 3.13621590153573e109 * cos(theta) ** 19 - 2.24860762751618e108 * cos(theta) ** 17 + 1.21739903400558e107 * cos(theta) ** 15 - 4.85111569527839e105 * cos(theta) ** 13 + 1.37395433635336e104 * cos(theta) ** 11 - 2.63393128265718e102 * cos(theta) ** 9 + 3.18193040857915e100 * cos(theta) ** 7 - 2.16457850923751e98 * cos(theta) ** 5 + 6.78551256814268e95 * cos(theta) ** 3 - 6.18927871828155e92 * cos(theta) ) * cos(47 * phi) ) # @torch.jit.script def Yl94_m48(theta, phi): return ( 7.83640894059076e-94 * (1.0 - cos(theta) ** 2) ** 24 * ( 2.27462250525461e115 * cos(theta) ** 46 - 1.25894881975322e116 * cos(theta) ** 44 + 3.218825901315e116 * cos(theta) ** 42 - 5.04810400916614e116 * cos(theta) ** 40 + 5.43856509274805e116 * cos(theta) ** 38 - 4.27185615665015e116 * cos(theta) ** 36 + 2.53415195733483e116 * cos(theta) ** 34 - 1.16053816168558e116 * cos(theta) ** 32 + 4.15915410546279e115 * cos(theta) ** 30 - 1.17558936704114e115 * cos(theta) ** 28 + 2.62942473811568e114 * cos(theta) ** 26 - 4.65194904674794e113 * cos(theta) ** 24 + 6.48453503486077e112 * cos(theta) ** 22 - 7.06903064206153e111 * cos(theta) ** 20 + 5.95881021291788e110 * cos(theta) ** 18 - 3.82263296677751e109 * cos(theta) ** 16 + 1.82609855100836e108 * cos(theta) ** 14 - 6.3064504038619e106 * cos(theta) ** 12 + 1.51134976998869e105 * cos(theta) ** 10 - 2.37053815439146e103 * cos(theta) ** 8 + 2.2273512860054e101 * cos(theta) ** 6 - 1.08228925461876e99 * cos(theta) ** 4 + 2.0356537704428e96 * cos(theta) ** 2 - 6.18927871828155e92 ) * cos(48 * phi) ) # @torch.jit.script def Yl94_m49(theta, phi): return ( 9.66206949532334e-96 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.04632635241712e117 * cos(theta) ** 45 - 5.53937480691418e117 * cos(theta) ** 43 + 1.3519068785523e118 * cos(theta) ** 41 - 2.01924160366646e118 * cos(theta) ** 39 + 2.06665473524426e118 * cos(theta) ** 37 - 1.53786821639405e118 * cos(theta) ** 35 + 8.61611665493843e117 * cos(theta) ** 33 - 3.71372211739387e117 * cos(theta) ** 31 + 1.24774623163884e117 * cos(theta) ** 29 - 3.29165022771519e116 * cos(theta) ** 27 + 6.83650431910078e115 * cos(theta) ** 25 - 1.11646777121951e115 * cos(theta) ** 23 + 1.42659770766937e114 * cos(theta) ** 21 - 1.41380612841231e113 * cos(theta) ** 19 + 1.07258583832522e112 * cos(theta) ** 17 - 6.11621274684401e110 * cos(theta) ** 15 + 2.55653797141171e109 * cos(theta) ** 13 - 7.56774048463428e107 * cos(theta) ** 11 + 1.51134976998869e106 * cos(theta) ** 9 - 1.89643052351317e104 * cos(theta) ** 7 + 1.33641077160324e102 * cos(theta) ** 5 - 4.32915701847503e99 * cos(theta) ** 3 + 4.07130754088561e96 * cos(theta) ) * cos(49 * phi) ) # @torch.jit.script def Yl94_m50(theta, phi): return ( 1.20028023304834e-97 * (1.0 - cos(theta) ** 2) ** 25 * ( 4.70846858587705e118 * cos(theta) ** 44 - 2.3819311669731e119 * cos(theta) ** 42 + 5.54281820206442e119 * cos(theta) ** 40 - 7.87504225429918e119 * cos(theta) ** 38 + 7.64662252040376e119 * cos(theta) ** 36 - 5.38253875737918e119 * cos(theta) ** 34 + 2.84331849612968e119 * cos(theta) ** 32 - 1.1512538563921e119 * cos(theta) ** 30 + 3.61846407175263e118 * cos(theta) ** 28 - 8.88745561483101e117 * cos(theta) ** 26 + 1.70912607977519e117 * cos(theta) ** 24 - 2.56787587380486e116 * cos(theta) ** 22 + 2.99585518610568e115 * cos(theta) ** 20 - 2.68623164398338e114 * cos(theta) ** 18 + 1.82339592515287e113 * cos(theta) ** 16 - 9.17431912026602e111 * cos(theta) ** 14 + 3.32349936283522e110 * cos(theta) ** 12 - 8.32451453309771e108 * cos(theta) ** 10 + 1.36021479298982e107 * cos(theta) ** 8 - 1.32750136645922e105 * cos(theta) ** 6 + 6.68205385801621e102 * cos(theta) ** 4 - 1.29874710554251e100 * cos(theta) ** 2 + 4.07130754088561e96 ) * cos(50 * phi) ) # @torch.jit.script def Yl94_m51(theta, phi): return ( 1.50270009743515e-99 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 2.0717261777859e120 * cos(theta) ** 43 - 1.0004110901287e121 * cos(theta) ** 41 + 2.21712728082577e121 * cos(theta) ** 39 - 2.99251605663369e121 * cos(theta) ** 37 + 2.75278410734535e121 * cos(theta) ** 35 - 1.83006317750892e121 * cos(theta) ** 33 + 9.09861918761498e120 * cos(theta) ** 31 - 3.4537615691763e120 * cos(theta) ** 29 + 1.01316994009074e120 * cos(theta) ** 27 - 2.31073845985606e119 * cos(theta) ** 25 + 4.10190259146047e118 * cos(theta) ** 23 - 5.6493269223707e117 * cos(theta) ** 21 + 5.99171037221135e116 * cos(theta) ** 19 - 4.83521695917009e115 * cos(theta) ** 17 + 2.91743348024459e114 * cos(theta) ** 15 - 1.28440467683724e113 * cos(theta) ** 13 + 3.98819923540227e111 * cos(theta) ** 11 - 8.32451453309771e109 * cos(theta) ** 9 + 1.08817183439186e108 * cos(theta) ** 7 - 7.96500819875532e105 * cos(theta) ** 5 + 2.67282154320648e103 * cos(theta) ** 3 - 2.59749421108502e100 * cos(theta) ) * cos(51 * phi) ) # @torch.jit.script def Yl94_m52(theta, phi): return ( 1.89653848043213e-101 * (1.0 - cos(theta) ** 2) ** 26 * ( 8.90842256447938e121 * cos(theta) ** 42 - 4.10168546952767e122 * cos(theta) ** 40 + 8.6467963952205e122 * cos(theta) ** 38 - 1.10723094095446e123 * cos(theta) ** 36 + 9.63474437570874e122 * cos(theta) ** 34 - 6.03920848577944e122 * cos(theta) ** 32 + 2.82057194816064e122 * cos(theta) ** 30 - 1.00159085506113e122 * cos(theta) ** 28 + 2.73555883824499e121 * cos(theta) ** 26 - 5.77684614964016e120 * cos(theta) ** 24 + 9.43437596035907e119 * cos(theta) ** 22 - 1.18635865369785e119 * cos(theta) ** 20 + 1.13842497072016e118 * cos(theta) ** 18 - 8.21986883058915e116 * cos(theta) ** 16 + 4.37615022036689e115 * cos(theta) ** 14 - 1.66972607988842e114 * cos(theta) ** 12 + 4.38701915894249e112 * cos(theta) ** 10 - 7.49206307978794e110 * cos(theta) ** 8 + 7.617202840743e108 * cos(theta) ** 6 - 3.98250409937766e106 * cos(theta) ** 4 + 8.01846462961945e103 * cos(theta) ** 2 - 2.59749421108502e100 ) * cos(52 * phi) ) # @torch.jit.script def Yl94_m53(theta, phi): return ( 2.41367252197616e-103 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 3.74153747708134e123 * cos(theta) ** 41 - 1.64067418781107e124 * cos(theta) ** 39 + 3.28578263018379e124 * cos(theta) ** 37 - 3.98603138743607e124 * cos(theta) ** 35 + 3.27581308774097e124 * cos(theta) ** 33 - 1.93254671544942e124 * cos(theta) ** 31 + 8.46171584448193e123 * cos(theta) ** 29 - 2.80445439417116e123 * cos(theta) ** 27 + 7.11245297943696e122 * cos(theta) ** 25 - 1.38644307591364e122 * cos(theta) ** 23 + 2.075562711279e121 * cos(theta) ** 21 - 2.37271730739569e120 * cos(theta) ** 19 + 2.04916494729628e119 * cos(theta) ** 17 - 1.31517901289426e118 * cos(theta) ** 15 + 6.12661030851365e116 * cos(theta) ** 13 - 2.0036712958661e115 * cos(theta) ** 11 + 4.38701915894249e113 * cos(theta) ** 9 - 5.99365046383035e111 * cos(theta) ** 7 + 4.5703217044458e109 * cos(theta) ** 5 - 1.59300163975106e107 * cos(theta) ** 3 + 1.60369292592389e104 * cos(theta) ) * cos(53 * phi) ) # @torch.jit.script def Yl94_m54(theta, phi): return ( 3.09852896481309e-105 * (1.0 - cos(theta) ** 2) ** 27 * ( 1.53403036560335e125 * cos(theta) ** 40 - 6.39862933246317e125 * cos(theta) ** 38 + 1.215739573168e126 * cos(theta) ** 36 - 1.39511098560263e126 * cos(theta) ** 34 + 1.08101831895452e126 * cos(theta) ** 32 - 5.99089481789321e125 * cos(theta) ** 30 + 2.45389759489976e125 * cos(theta) ** 28 - 7.57202686426212e124 * cos(theta) ** 26 + 1.77811324485924e124 * cos(theta) ** 24 - 3.18881907460137e123 * cos(theta) ** 22 + 4.35868169368589e122 * cos(theta) ** 20 - 4.50816288405182e121 * cos(theta) ** 18 + 3.48358041040368e120 * cos(theta) ** 16 - 1.97276851934139e119 * cos(theta) ** 14 + 7.96459340106774e117 * cos(theta) ** 12 - 2.20403842545271e116 * cos(theta) ** 10 + 3.94831724304824e114 * cos(theta) ** 8 - 4.19555532468125e112 * cos(theta) ** 6 + 2.2851608522229e110 * cos(theta) ** 4 - 4.77900491925319e107 * cos(theta) ** 2 + 1.60369292592389e104 ) * cos(54 * phi) ) # @torch.jit.script def Yl94_m55(theta, phi): return ( 4.01358468075277e-107 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 6.1361214624134e126 * cos(theta) ** 39 - 2.431479146336e127 * cos(theta) ** 37 + 4.37666246340481e127 * cos(theta) ** 35 - 4.74337735104893e127 * cos(theta) ** 33 + 3.45925862065447e127 * cos(theta) ** 31 - 1.79726844536796e127 * cos(theta) ** 29 + 6.87091326571933e126 * cos(theta) ** 27 - 1.96872698470815e126 * cos(theta) ** 25 + 4.26747178766218e125 * cos(theta) ** 23 - 7.01540196412301e124 * cos(theta) ** 21 + 8.71736338737178e123 * cos(theta) ** 19 - 8.11469319129328e122 * cos(theta) ** 17 + 5.57372865664589e121 * cos(theta) ** 15 - 2.76187592707795e120 * cos(theta) ** 13 + 9.55751208128129e118 * cos(theta) ** 11 - 2.20403842545271e117 * cos(theta) ** 9 + 3.1586537944386e115 * cos(theta) ** 7 - 2.51733319480875e113 * cos(theta) ** 5 + 9.1406434088916e110 * cos(theta) ** 3 - 9.55800983850638e107 * cos(theta) ) * cos(55 * phi) ) # @torch.jit.script def Yl94_m56(theta, phi): return ( 5.24752477092704e-109 * (1.0 - cos(theta) ** 2) ** 28 * ( 2.39308737034123e128 * cos(theta) ** 38 - 8.99647284144322e128 * cos(theta) ** 36 + 1.53183186219168e129 * cos(theta) ** 34 - 1.56531452584615e129 * cos(theta) ** 32 + 1.07237017240288e129 * cos(theta) ** 30 - 5.21207849156709e128 * cos(theta) ** 28 + 1.85514658174422e128 * cos(theta) ** 26 - 4.92181746177038e127 * cos(theta) ** 24 + 9.81518511162301e126 * cos(theta) ** 22 - 1.47323441246583e126 * cos(theta) ** 20 + 1.65629904360064e125 * cos(theta) ** 18 - 1.37949784251986e124 * cos(theta) ** 16 + 8.36059298496883e122 * cos(theta) ** 14 - 3.59043870520134e121 * cos(theta) ** 12 + 1.05132632894094e120 * cos(theta) ** 10 - 1.98363458290744e118 * cos(theta) ** 8 + 2.21105765610702e116 * cos(theta) ** 6 - 1.25866659740437e114 * cos(theta) ** 4 + 2.74219302266748e111 * cos(theta) ** 2 - 9.55800983850638e107 ) * cos(56 * phi) ) # @torch.jit.script def Yl94_m57(theta, phi): return ( 6.92746316785253e-111 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 9.09373200729666e129 * cos(theta) ** 37 - 3.23873022291956e130 * cos(theta) ** 35 + 5.20822833145172e130 * cos(theta) ** 33 - 5.00900648270767e130 * cos(theta) ** 31 + 3.21711051720865e130 * cos(theta) ** 29 - 1.45938197763879e130 * cos(theta) ** 27 + 4.82338111253497e129 * cos(theta) ** 25 - 1.18123619082489e129 * cos(theta) ** 23 + 2.15934072455706e128 * cos(theta) ** 21 - 2.94646882493166e127 * cos(theta) ** 19 + 2.98133827848115e126 * cos(theta) ** 17 - 2.20719654803177e125 * cos(theta) ** 15 + 1.17048301789564e124 * cos(theta) ** 13 - 4.30852644624161e122 * cos(theta) ** 11 + 1.05132632894094e121 * cos(theta) ** 9 - 1.58690766632595e119 * cos(theta) ** 7 + 1.32663459366421e117 * cos(theta) ** 5 - 5.0346663896175e114 * cos(theta) ** 3 + 5.48438604533496e111 * cos(theta) ) * cos(57 * phi) ) # @torch.jit.script def Yl94_m58(theta, phi): return ( 9.23743869929569e-113 * (1.0 - cos(theta) ** 2) ** 29 * ( 3.36468084269976e131 * cos(theta) ** 36 - 1.13355557802185e132 * cos(theta) ** 34 + 1.71871534937907e132 * cos(theta) ** 32 - 1.55279200963938e132 * cos(theta) ** 30 + 9.32962049990509e131 * cos(theta) ** 28 - 3.94033133962472e131 * cos(theta) ** 26 + 1.20584527813374e131 * cos(theta) ** 24 - 2.71684323889725e130 * cos(theta) ** 22 + 4.53461552156983e129 * cos(theta) ** 20 - 5.59829076737016e128 * cos(theta) ** 18 + 5.06827507341796e127 * cos(theta) ** 16 - 3.31079482204766e126 * cos(theta) ** 14 + 1.52162792326433e125 * cos(theta) ** 12 - 4.73937909086577e123 * cos(theta) ** 10 + 9.46193696046848e121 * cos(theta) ** 8 - 1.11083536642817e120 * cos(theta) ** 6 + 6.63317296832105e117 * cos(theta) ** 4 - 1.51039991688525e115 * cos(theta) ** 2 + 5.48438604533496e111 ) * cos(58 * phi) ) # @torch.jit.script def Yl94_m59(theta, phi): return ( 1.24467109370472e-114 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 1.21128510337191e133 * cos(theta) ** 35 - 3.85408896527427e133 * cos(theta) ** 33 + 5.49988911801302e133 * cos(theta) ** 31 - 4.65837602891813e133 * cos(theta) ** 29 + 2.61229373997343e133 * cos(theta) ** 27 - 1.02448614830243e133 * cos(theta) ** 25 + 2.89402866752098e132 * cos(theta) ** 23 - 5.97705512557395e131 * cos(theta) ** 21 + 9.06923104313966e130 * cos(theta) ** 19 - 1.00769233812663e130 * cos(theta) ** 17 + 8.10924011746873e128 * cos(theta) ** 15 - 4.63511275086672e127 * cos(theta) ** 13 + 1.82595350791719e126 * cos(theta) ** 11 - 4.73937909086577e124 * cos(theta) ** 9 + 7.56954956837478e122 * cos(theta) ** 7 - 6.66501219856899e120 * cos(theta) ** 5 + 2.65326918732842e118 * cos(theta) ** 3 - 3.0207998337705e115 * cos(theta) ) * cos(59 * phi) ) # @torch.jit.script def Yl94_m60(theta, phi): return ( 1.6953533196612e-116 * (1.0 - cos(theta) ** 2) ** 30 * ( 4.2394978618017e134 * cos(theta) ** 34 - 1.27184935854051e135 * cos(theta) ** 32 + 1.70496562658404e135 * cos(theta) ** 30 - 1.35092904838626e135 * cos(theta) ** 28 + 7.05319309792825e134 * cos(theta) ** 26 - 2.56121537075607e134 * cos(theta) ** 24 + 6.65626593529826e133 * cos(theta) ** 22 - 1.25518157637053e133 * cos(theta) ** 20 + 1.72315389819654e132 * cos(theta) ** 18 - 1.71307697481527e131 * cos(theta) ** 16 + 1.21638601762031e130 * cos(theta) ** 14 - 6.02564657612674e128 * cos(theta) ** 12 + 2.00854885870891e127 * cos(theta) ** 10 - 4.26544118177919e125 * cos(theta) ** 8 + 5.29868469786235e123 * cos(theta) ** 6 - 3.3325060992845e121 * cos(theta) ** 4 + 7.95980756198526e118 * cos(theta) ** 2 - 3.0207998337705e115 ) * cos(60 * phi) ) # @torch.jit.script def Yl94_m61(theta, phi): return ( 2.33536578628732e-118 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 1.44142927301258e136 * cos(theta) ** 33 - 4.06991794732963e136 * cos(theta) ** 31 + 5.11489687975211e136 * cos(theta) ** 29 - 3.78260133548152e136 * cos(theta) ** 27 + 1.83383020546135e136 * cos(theta) ** 25 - 6.14691688981457e135 * cos(theta) ** 23 + 1.46437850576562e135 * cos(theta) ** 21 - 2.51036315274106e134 * cos(theta) ** 19 + 3.10167701675376e133 * cos(theta) ** 17 - 2.74092315970443e132 * cos(theta) ** 15 + 1.70294042466843e131 * cos(theta) ** 13 - 7.23077589135208e129 * cos(theta) ** 11 + 2.00854885870891e128 * cos(theta) ** 9 - 3.41235294542335e126 * cos(theta) ** 7 + 3.17921081871741e124 * cos(theta) ** 5 - 1.3330024397138e122 * cos(theta) ** 3 + 1.59196151239705e119 * cos(theta) ) * cos(61 * phi) ) # @torch.jit.script def Yl94_m62(theta, phi): return ( 3.25488496537784e-120 * (1.0 - cos(theta) ** 2) ** 31 * ( 4.75671660094151e137 * cos(theta) ** 32 - 1.26167456367219e138 * cos(theta) ** 30 + 1.48332009512811e138 * cos(theta) ** 28 - 1.02130236058001e138 * cos(theta) ** 26 + 4.58457551365336e137 * cos(theta) ** 24 - 1.41379088465735e137 * cos(theta) ** 22 + 3.0751948621078e136 * cos(theta) ** 20 - 4.76968999020801e135 * cos(theta) ** 18 + 5.2728509284814e134 * cos(theta) ** 16 - 4.11138473955665e133 * cos(theta) ** 14 + 2.21382255206896e132 * cos(theta) ** 12 - 7.95385348048729e130 * cos(theta) ** 10 + 1.80769397283802e129 * cos(theta) ** 8 - 2.38864706179635e127 * cos(theta) ** 6 + 1.5896054093587e125 * cos(theta) ** 4 - 3.99900731914139e122 * cos(theta) ** 2 + 1.59196151239705e119 ) * cos(62 * phi) ) # @torch.jit.script def Yl94_m63(theta, phi): return ( 4.59209462848014e-122 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 1.52214931230128e139 * cos(theta) ** 31 - 3.78502369101656e139 * cos(theta) ** 29 + 4.15329626635871e139 * cos(theta) ** 27 - 2.65538613750803e139 * cos(theta) ** 25 + 1.10029812327681e139 * cos(theta) ** 23 - 3.11033994624617e138 * cos(theta) ** 21 + 6.15038972421559e137 * cos(theta) ** 19 - 8.58544198237442e136 * cos(theta) ** 17 + 8.43656148557024e135 * cos(theta) ** 15 - 5.7559386353793e134 * cos(theta) ** 13 + 2.65658706248276e133 * cos(theta) ** 11 - 7.95385348048729e131 * cos(theta) ** 9 + 1.44615517827042e130 * cos(theta) ** 7 - 1.43318823707781e128 * cos(theta) ** 5 + 6.35842163743482e125 * cos(theta) ** 3 - 7.99801463828279e122 * cos(theta) ) * cos(63 * phi) ) # @torch.jit.script def Yl94_m64(theta, phi): return ( 6.56147439661888e-124 * (1.0 - cos(theta) ** 2) ** 32 * ( 4.71866286813398e140 * cos(theta) ** 30 - 1.0976568703948e141 * cos(theta) ** 28 + 1.12138999191685e141 * cos(theta) ** 26 - 6.63846534377007e140 * cos(theta) ** 24 + 2.53068568353666e140 * cos(theta) ** 22 - 6.53171388711696e139 * cos(theta) ** 20 + 1.16857404760096e139 * cos(theta) ** 18 - 1.45952513700365e138 * cos(theta) ** 16 + 1.26548422283554e137 * cos(theta) ** 14 - 7.48272022599309e135 * cos(theta) ** 12 + 2.92224576873103e134 * cos(theta) ** 10 - 7.15846813243856e132 * cos(theta) ** 8 + 1.01230862478929e131 * cos(theta) ** 6 - 7.16594118538904e128 * cos(theta) ** 4 + 1.90752649123045e126 * cos(theta) ** 2 - 7.99801463828279e122 ) * cos(64 * phi) ) # @torch.jit.script def Yl94_m65(theta, phi): return ( 9.50040783163933e-126 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 1.41559886044019e142 * cos(theta) ** 29 - 3.07343923710545e142 * cos(theta) ** 27 + 2.91561397898381e142 * cos(theta) ** 25 - 1.59323168250482e142 * cos(theta) ** 23 + 5.56750850378064e141 * cos(theta) ** 21 - 1.30634277742339e141 * cos(theta) ** 19 + 2.10343328568173e140 * cos(theta) ** 17 - 2.33524021920584e139 * cos(theta) ** 15 + 1.77167791196975e138 * cos(theta) ** 13 - 8.97926427119171e136 * cos(theta) ** 11 + 2.92224576873103e135 * cos(theta) ** 9 - 5.72677450595085e133 * cos(theta) ** 7 + 6.07385174873575e131 * cos(theta) ** 5 - 2.86637647415562e129 * cos(theta) ** 3 + 3.81505298246089e126 * cos(theta) ) * cos(65 * phi) ) # @torch.jit.script def Yl94_m66(theta, phi): return ( 1.39470789309361e-127 * (1.0 - cos(theta) ** 2) ** 33 * ( 4.10523669527656e143 * cos(theta) ** 28 - 8.2982859401847e143 * cos(theta) ** 26 + 7.28903494745954e143 * cos(theta) ** 24 - 3.66443286976108e143 * cos(theta) ** 22 + 1.16917678579394e143 * cos(theta) ** 20 - 2.48205127710444e142 * cos(theta) ** 18 + 3.57583658565894e141 * cos(theta) ** 16 - 3.50286032880876e140 * cos(theta) ** 14 + 2.30318128556067e139 * cos(theta) ** 12 - 9.87719069831088e137 * cos(theta) ** 10 + 2.63002119185793e136 * cos(theta) ** 8 - 4.00874215416559e134 * cos(theta) ** 6 + 3.03692587436787e132 * cos(theta) ** 4 - 8.59912942246685e129 * cos(theta) ** 2 + 3.81505298246089e126 ) * cos(66 * phi) ) # @torch.jit.script def Yl94_m67(theta, phi): return ( 2.07726213649423e-129 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 1.14946627467744e145 * cos(theta) ** 27 - 2.15755434444802e145 * cos(theta) ** 25 + 1.74936838739029e145 * cos(theta) ** 23 - 8.06175231347437e144 * cos(theta) ** 21 + 2.33835357158787e144 * cos(theta) ** 19 - 4.467692298788e143 * cos(theta) ** 17 + 5.72133853705431e142 * cos(theta) ** 15 - 4.90400446033227e141 * cos(theta) ** 13 + 2.76381754267281e140 * cos(theta) ** 11 - 9.87719069831088e138 * cos(theta) ** 9 + 2.10401695348634e137 * cos(theta) ** 7 - 2.40524529249936e135 * cos(theta) ** 5 + 1.21477034974715e133 * cos(theta) ** 3 - 1.71982588449337e130 * cos(theta) ) * cos(67 * phi) ) # @torch.jit.script def Yl94_m68(theta, phi): return ( 3.14088413358919e-131 * (1.0 - cos(theta) ** 2) ** 34 * ( 3.10355894162908e146 * cos(theta) ** 26 - 5.39388586112006e146 * cos(theta) ** 24 + 4.02354729099766e146 * cos(theta) ** 22 - 1.69296798582962e146 * cos(theta) ** 20 + 4.44287178601695e145 * cos(theta) ** 18 - 7.5950769079396e144 * cos(theta) ** 16 + 8.58200780558147e143 * cos(theta) ** 14 - 6.37520579843195e142 * cos(theta) ** 12 + 3.04019929694009e141 * cos(theta) ** 10 - 8.8894716284798e139 * cos(theta) ** 8 + 1.47281186744044e138 * cos(theta) ** 6 - 1.20262264624968e136 * cos(theta) ** 4 + 3.64431104924145e133 * cos(theta) ** 2 - 1.71982588449337e130 ) * cos(68 * phi) ) # @torch.jit.script def Yl94_m69(theta, phi): return ( 4.82471250262325e-133 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 8.06925324823561e147 * cos(theta) ** 25 - 1.29453260666881e148 * cos(theta) ** 23 + 8.85180404019486e147 * cos(theta) ** 21 - 3.38593597165924e147 * cos(theta) ** 19 + 7.99716921483052e146 * cos(theta) ** 17 - 1.21521230527034e146 * cos(theta) ** 15 + 1.20148109278141e145 * cos(theta) ** 13 - 7.65024695811834e143 * cos(theta) ** 11 + 3.04019929694009e142 * cos(theta) ** 9 - 7.11157730278384e140 * cos(theta) ** 7 + 8.83687120464264e138 * cos(theta) ** 5 - 4.81049058499871e136 * cos(theta) ** 3 + 7.2886220984829e133 * cos(theta) ) * cos(69 * phi) ) # @torch.jit.script def Yl94_m70(theta, phi): return ( 7.53493501565664e-135 * (1.0 - cos(theta) ** 2) ** 35 * ( 2.0173133120589e149 * cos(theta) ** 24 - 2.97742499533827e149 * cos(theta) ** 22 + 1.85887884844092e149 * cos(theta) ** 20 - 6.43327834615255e148 * cos(theta) ** 18 + 1.35951876652119e148 * cos(theta) ** 16 - 1.8228184579055e147 * cos(theta) ** 14 + 1.56192542061583e146 * cos(theta) ** 12 - 8.41527165393017e144 * cos(theta) ** 10 + 2.73617936724608e143 * cos(theta) ** 8 - 4.97810411194869e141 * cos(theta) ** 6 + 4.41843560232132e139 * cos(theta) ** 4 - 1.44314717549961e137 * cos(theta) ** 2 + 7.2886220984829e133 ) * cos(70 * phi) ) # @torch.jit.script def Yl94_m71(theta, phi): return ( 1.19737977497088e-136 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 4.84155194894136e150 * cos(theta) ** 23 - 6.5503349897442e150 * cos(theta) ** 21 + 3.71775769688184e150 * cos(theta) ** 19 - 1.15799010230746e150 * cos(theta) ** 17 + 2.1752300264339e149 * cos(theta) ** 15 - 2.5519458410677e148 * cos(theta) ** 13 + 1.87431050473899e147 * cos(theta) ** 11 - 8.41527165393017e145 * cos(theta) ** 9 + 2.18894349379686e144 * cos(theta) ** 7 - 2.98686246716921e142 * cos(theta) ** 5 + 1.76737424092853e140 * cos(theta) ** 3 - 2.88629435099923e137 * cos(theta) ) * cos(71 * phi) ) # @torch.jit.script def Yl94_m72(theta, phi): return ( 1.93782233028034e-138 * (1.0 - cos(theta) ** 2) ** 36 * ( 1.11355694825651e152 * cos(theta) ** 22 - 1.37557034784628e152 * cos(theta) ** 20 + 7.0637396240755e151 * cos(theta) ** 18 - 1.96858317392268e151 * cos(theta) ** 16 + 3.26284503965085e150 * cos(theta) ** 14 - 3.31752959338802e149 * cos(theta) ** 12 + 2.06174155521289e148 * cos(theta) ** 10 - 7.57374448853715e146 * cos(theta) ** 8 + 1.53226044565781e145 * cos(theta) ** 6 - 1.49343123358461e143 * cos(theta) ** 4 + 5.30212272278558e140 * cos(theta) ** 2 - 2.88629435099923e137 ) * cos(72 * phi) ) # @torch.jit.script def Yl94_m73(theta, phi): return ( 3.19701283740957e-140 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 2.44982528616433e153 * cos(theta) ** 21 - 2.75114069569256e153 * cos(theta) ** 19 + 1.27147313233359e153 * cos(theta) ** 17 - 3.14973307827629e152 * cos(theta) ** 15 + 4.56798305551119e151 * cos(theta) ** 13 - 3.98103551206562e150 * cos(theta) ** 11 + 2.06174155521289e149 * cos(theta) ** 9 - 6.05899559082972e147 * cos(theta) ** 7 + 9.19356267394683e145 * cos(theta) ** 5 - 5.97372493433842e143 * cos(theta) ** 3 + 1.06042454455712e141 * cos(theta) ) * cos(73 * phi) ) # @torch.jit.script def Yl94_m74(theta, phi): return ( 5.38245108779227e-142 * (1.0 - cos(theta) ** 2) ** 37 * ( 5.14463310094509e154 * cos(theta) ** 20 - 5.22716732181587e154 * cos(theta) ** 18 + 2.1615043249671e154 * cos(theta) ** 16 - 4.72459961741443e153 * cos(theta) ** 14 + 5.93837797216455e152 * cos(theta) ** 12 - 4.37913906327218e151 * cos(theta) ** 10 + 1.8555673996916e150 * cos(theta) ** 8 - 4.24129691358081e148 * cos(theta) ** 6 + 4.59678133697342e146 * cos(theta) ** 4 - 1.79211748030153e144 * cos(theta) ** 2 + 1.06042454455712e141 ) * cos(74 * phi) ) # @torch.jit.script def Yl94_m75(theta, phi): return ( 9.25809732143938e-144 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 1.02892662018902e156 * cos(theta) ** 19 - 9.40890117926856e155 * cos(theta) ** 17 + 3.45840691994736e155 * cos(theta) ** 15 - 6.61443946438021e154 * cos(theta) ** 13 + 7.12605356659746e153 * cos(theta) ** 11 - 4.37913906327218e152 * cos(theta) ** 9 + 1.48445391975328e151 * cos(theta) ** 7 - 2.54477814814848e149 * cos(theta) ** 5 + 1.83871253478937e147 * cos(theta) ** 3 - 3.58423496060305e144 * cos(theta) ) * cos(75 * phi) ) # @torch.jit.script def Yl94_m76(theta, phi): return ( 1.6289977356341e-145 * (1.0 - cos(theta) ** 2) ** 38 * ( 1.95496057835914e157 * cos(theta) ** 18 - 1.59951320047566e157 * cos(theta) ** 16 + 5.18761037992105e156 * cos(theta) ** 14 - 8.59877130369427e155 * cos(theta) ** 12 + 7.8386589232572e154 * cos(theta) ** 10 - 3.94122515694496e153 * cos(theta) ** 8 + 1.0391177438273e152 * cos(theta) ** 6 - 1.27238907407424e150 * cos(theta) ** 4 + 5.5161376043681e147 * cos(theta) ** 2 - 3.58423496060305e144 ) * cos(76 * phi) ) # @torch.jit.script def Yl94_m77(theta, phi): return ( 2.93620364103731e-147 * (1.0 - cos(theta) ** 2) ** 38.5 * ( 3.51892904104644e158 * cos(theta) ** 17 - 2.55922112076105e158 * cos(theta) ** 15 + 7.26265453188947e157 * cos(theta) ** 13 - 1.03185255644331e157 * cos(theta) ** 11 + 7.8386589232572e155 * cos(theta) ** 9 - 3.15298012555597e154 * cos(theta) ** 7 + 6.23470646296378e152 * cos(theta) ** 5 - 5.08955629629697e150 * cos(theta) ** 3 + 1.10322752087362e148 * cos(theta) ) * cos(77 * phi) ) # @torch.jit.script def Yl94_m78(theta, phi): return ( 5.42997073227417e-149 * (1.0 - cos(theta) ** 2) ** 39 * ( 5.98217936977895e159 * cos(theta) ** 16 - 3.83883168114157e159 * cos(theta) ** 14 + 9.4414508914563e158 * cos(theta) ** 12 - 1.13503781208764e158 * cos(theta) ** 10 + 7.05479303093148e156 * cos(theta) ** 8 - 2.20708608788918e155 * cos(theta) ** 6 + 3.11735323148189e153 * cos(theta) ** 4 - 1.52686688888909e151 * cos(theta) ** 2 + 1.10322752087362e148 ) * cos(78 * phi) ) # @torch.jit.script def Yl94_m79(theta, phi): return ( 1.03208257516365e-150 * (1.0 - cos(theta) ** 2) ** 39.5 * ( 9.57148699164633e160 * cos(theta) ** 15 - 5.3743643535982e160 * cos(theta) ** 13 + 1.13297410697476e160 * cos(theta) ** 11 - 1.13503781208764e159 * cos(theta) ** 9 + 5.64383442474519e157 * cos(theta) ** 7 - 1.32425165273351e156 * cos(theta) ** 5 + 1.24694129259276e154 * cos(theta) ** 3 - 3.05373377777818e151 * cos(theta) ) * cos(79 * phi) ) # @torch.jit.script def Yl94_m80(theta, phi): return ( 2.02019918781633e-152 * (1.0 - cos(theta) ** 2) ** 40 * ( 1.43572304874695e162 * cos(theta) ** 14 - 6.98667365967767e161 * cos(theta) ** 12 + 1.24627151767223e161 * cos(theta) ** 10 - 1.02153403087888e160 * cos(theta) ** 8 + 3.95068409732163e158 * cos(theta) ** 6 - 6.62125826366754e156 * cos(theta) ** 4 + 3.74082387777827e154 * cos(theta) ** 2 - 3.05373377777818e151 ) * cos(80 * phi) ) # @torch.jit.script def Yl94_m81(theta, phi): return ( 4.08141870014996e-154 * (1.0 - cos(theta) ** 2) ** 40.5 * ( 2.01001226824573e163 * cos(theta) ** 13 - 8.3840083916132e162 * cos(theta) ** 11 + 1.24627151767223e162 * cos(theta) ** 9 - 8.17227224703103e160 * cos(theta) ** 7 + 2.37041045839298e159 * cos(theta) ** 5 - 2.64850330546702e157 * cos(theta) ** 3 + 7.48164775555654e154 * cos(theta) ) * cos(81 * phi) ) # @torch.jit.script def Yl94_m82(theta, phi): return ( 8.53263444373482e-156 * (1.0 - cos(theta) ** 2) ** 41 * ( 2.61301594871945e164 * cos(theta) ** 12 - 9.22240923077452e163 * cos(theta) ** 10 + 1.12164436590501e163 * cos(theta) ** 8 - 5.72059057292172e161 * cos(theta) ** 6 + 1.18520522919649e160 * cos(theta) ** 4 - 7.94550991640105e157 * cos(theta) ** 2 + 7.48164775555654e154 ) * cos(82 * phi) ) # @torch.jit.script def Yl94_m83(theta, phi): return ( 1.85142397671217e-157 * (1.0 - cos(theta) ** 2) ** 41.5 * ( 3.13561913846334e165 * cos(theta) ** 11 - 9.22240923077452e164 * cos(theta) ** 9 + 8.97315492724007e163 * cos(theta) ** 7 - 3.43235434375303e162 * cos(theta) ** 5 + 4.74082091678596e160 * cos(theta) ** 3 - 1.58910198328021e158 * cos(theta) ) * cos(83 * phi) ) # @torch.jit.script def Yl94_m84(theta, phi): return ( 4.18407576385452e-159 * (1.0 - cos(theta) ** 2) ** 42 * ( 3.44918105230967e166 * cos(theta) ** 10 - 8.30016830769707e165 * cos(theta) ** 8 + 6.28120844906805e164 * cos(theta) ** 6 - 1.71617717187652e163 * cos(theta) ** 4 + 1.42224627503579e161 * cos(theta) ** 2 - 1.58910198328021e158 ) * cos(84 * phi) ) # @torch.jit.script def Yl94_m85(theta, phi): return ( 9.8894701626903e-161 * (1.0 - cos(theta) ** 2) ** 42.5 * ( 3.44918105230967e167 * cos(theta) ** 9 - 6.64013464615765e166 * cos(theta) ** 7 + 3.76872506944083e165 * cos(theta) ** 5 - 6.86470868750607e163 * cos(theta) ** 3 + 2.84449255007157e161 * cos(theta) ) * cos(85 * phi) ) # @torch.jit.script def Yl94_m86(theta, phi): return ( 2.45705861613682e-162 * (1.0 - cos(theta) ** 2) ** 43 * ( 3.1042629470787e168 * cos(theta) ** 8 - 4.64809425231036e167 * cos(theta) ** 6 + 1.88436253472042e166 * cos(theta) ** 4 - 2.05941260625182e164 * cos(theta) ** 2 + 2.84449255007157e161 ) * cos(86 * phi) ) # @torch.jit.script def Yl94_m87(theta, phi): return ( 6.4570066889192e-164 * (1.0 - cos(theta) ** 2) ** 43.5 * ( 2.48341035766296e169 * cos(theta) ** 7 - 2.78885655138621e168 * cos(theta) ** 5 + 7.53745013888166e166 * cos(theta) ** 3 - 4.11882521250364e164 * cos(theta) ) * cos(87 * phi) ) # @torch.jit.script def Yl94_m88(theta, phi): return ( 1.80903313770319e-165 * (1.0 - cos(theta) ** 2) ** 44 * ( 1.73838725036407e170 * cos(theta) ** 6 - 1.39442827569311e169 * cos(theta) ** 4 + 2.2612350416645e167 * cos(theta) ** 2 - 4.11882521250364e164 ) * cos(88 * phi) ) # @torch.jit.script def Yl94_m89(theta, phi): return ( 5.45940549125323e-167 * (1.0 - cos(theta) ** 2) ** 44.5 * ( 1.04303235021844e171 * cos(theta) ** 5 - 5.57771310277243e169 * cos(theta) ** 3 + 4.522470083329e167 * cos(theta) ) * cos(89 * phi) ) # @torch.jit.script def Yl94_m90(theta, phi): return ( 1.79991268864106e-168 * (1.0 - cos(theta) ** 2) ** 45 * ( 5.21516175109222e171 * cos(theta) ** 4 - 1.67331393083173e170 * cos(theta) ** 2 + 4.522470083329e167 ) * cos(90 * phi) ) # @torch.jit.script def Yl94_m91(theta, phi): return ( 6.61661063590542e-170 * (1.0 - cos(theta) ** 2) ** 45.5 * (2.08606470043689e172 * cos(theta) ** 3 - 3.34662786166346e170 * cos(theta)) * cos(91 * phi) ) # @torch.jit.script def Yl94_m92(theta, phi): return ( 2.80103463690266e-171 * (1.0 - cos(theta) ** 2) ** 46 * (6.25819410131067e172 * cos(theta) ** 2 - 3.34662786166346e170) * cos(92 * phi) ) # @torch.jit.script def Yl94_m93(theta, phi): return ( 18.1284929784988 * (1.0 - cos(theta) ** 2) ** 46.5 * cos(93 * phi) * cos(theta) ) # @torch.jit.script def Yl94_m94(theta, phi): return 1.32215623708918 * (1.0 - cos(theta) ** 2) ** 47 * cos(94 * phi) # @torch.jit.script def Yl95_m_minus_95(theta, phi): return 1.32563102951268 * (1.0 - cos(theta) ** 2) ** 47.5 * sin(95 * phi) # @torch.jit.script def Yl95_m_minus_94(theta, phi): return 18.2725627380863 * (1.0 - cos(theta) ** 2) ** 47 * sin(94 * phi) * cos(theta) # @torch.jit.script def Yl95_m_minus_93(theta, phi): return ( 1.50177383295964e-173 * (1.0 - cos(theta) ** 2) ** 46.5 * (1.18279868514772e175 * cos(theta) ** 2 - 6.25819410131067e172) * sin(93 * phi) ) # @torch.jit.script def Yl95_m_minus_92(theta, phi): return ( 3.56651524598497e-172 * (1.0 - cos(theta) ** 2) ** 46 * (3.94266228382572e174 * cos(theta) ** 3 - 6.25819410131067e172 * cos(theta)) * sin(92 * phi) ) # @torch.jit.script def Yl95_m_minus_91(theta, phi): return ( 9.75427249357057e-171 * (1.0 - cos(theta) ** 2) ** 45.5 * ( 9.8566557095643e173 * cos(theta) ** 4 - 3.12909705065533e172 * cos(theta) ** 2 + 8.36656965415864e169 ) * sin(91 * phi) ) # @torch.jit.script def Yl95_m_minus_90(theta, phi): return ( 2.97465331841056e-169 * (1.0 - cos(theta) ** 2) ** 45 * ( 1.97133114191286e173 * cos(theta) ** 5 - 1.04303235021844e172 * cos(theta) ** 3 + 8.36656965415864e169 * cos(theta) ) * sin(90 * phi) ) # @torch.jit.script def Yl95_m_minus_89(theta, phi): return ( 9.91055206577886e-168 * (1.0 - cos(theta) ** 2) ** 44.5 * ( 3.2855519031881e172 * cos(theta) ** 6 - 2.60758087554611e171 * cos(theta) ** 4 + 4.18328482707932e169 * cos(theta) ** 2 - 7.53745013888166e166 ) * sin(89 * phi) ) # @torch.jit.script def Yl95_m_minus_88(theta, phi): return ( 3.55676997310882e-166 * (1.0 - cos(theta) ** 2) ** 44 * ( 4.693645575983e171 * cos(theta) ** 7 - 5.21516175109222e170 * cos(theta) ** 5 + 1.39442827569311e169 * cos(theta) ** 3 - 7.53745013888166e166 * cos(theta) ) * sin(88 * phi) ) # @torch.jit.script def Yl95_m_minus_87(theta, phi): return ( 1.36090032358417e-164 * (1.0 - cos(theta) ** 2) ** 43.5 * ( 5.86705696997875e170 * cos(theta) ** 8 - 8.69193625182037e169 * cos(theta) ** 6 + 3.48607068923277e168 * cos(theta) ** 4 - 3.76872506944083e166 * cos(theta) ** 2 + 5.14853151562955e163 ) * sin(87 * phi) ) # @torch.jit.script def Yl95_m_minus_86(theta, phi): return ( 5.50786473455747e-163 * (1.0 - cos(theta) ** 2) ** 43 * ( 6.51895218886528e169 * cos(theta) ** 9 - 1.24170517883148e169 * cos(theta) ** 7 + 6.97214137846554e167 * cos(theta) ** 5 - 1.25624168981361e166 * cos(theta) ** 3 + 5.14853151562955e163 * cos(theta) ) * sin(86 * phi) ) # @torch.jit.script def Yl95_m_minus_85(theta, phi): return ( 2.34327119260382e-161 * (1.0 - cos(theta) ** 2) ** 42.5 * ( 6.51895218886528e168 * cos(theta) ** 10 - 1.55213147353935e168 * cos(theta) ** 8 + 1.16202356307759e167 * cos(theta) ** 6 - 3.14060422453403e165 * cos(theta) ** 4 + 2.57426575781477e163 * cos(theta) ** 2 - 2.84449255007157e160 ) * sin(85 * phi) ) # @torch.jit.script def Yl95_m_minus_84(theta, phi): return ( 1.0426898564066e-159 * (1.0 - cos(theta) ** 2) ** 42 * ( 5.92632017169571e167 * cos(theta) ** 11 - 1.72459052615484e167 * cos(theta) ** 9 + 1.66003366153941e166 * cos(theta) ** 7 - 6.28120844906805e164 * cos(theta) ** 5 + 8.58088585938258e162 * cos(theta) ** 3 - 2.84449255007157e160 * cos(theta) ) * sin(84 * phi) ) # @torch.jit.script def Yl95_m_minus_83(theta, phi): return ( 4.83250472274067e-158 * (1.0 - cos(theta) ** 2) ** 41.5 * ( 4.93860014307975e166 * cos(theta) ** 12 - 1.72459052615484e166 * cos(theta) ** 10 + 2.07504207692427e165 * cos(theta) ** 8 - 1.04686807484468e164 * cos(theta) ** 6 + 2.14522146484565e162 * cos(theta) ** 4 - 1.42224627503579e160 * cos(theta) ** 2 + 1.32425165273351e157 ) * sin(83 * phi) ) # @torch.jit.script def Yl95_m_minus_82(theta, phi): return ( 2.32463067573646e-156 * (1.0 - cos(theta) ** 2) ** 41 * ( 3.79892318698443e165 * cos(theta) ** 13 - 1.56780956923167e165 * cos(theta) ** 11 + 2.30560230769363e164 * cos(theta) ** 9 - 1.49552582120668e163 * cos(theta) ** 7 + 4.29044292969129e161 * cos(theta) ** 5 - 4.74082091678596e159 * cos(theta) ** 3 + 1.32425165273351e157 * cos(theta) ) * sin(82 * phi) ) # @torch.jit.script def Yl95_m_minus_81(theta, phi): return ( 1.15718984938984e-154 * (1.0 - cos(theta) ** 2) ** 40.5 * ( 2.71351656213173e164 * cos(theta) ** 14 - 1.30650797435972e164 * cos(theta) ** 12 + 2.30560230769363e163 * cos(theta) ** 10 - 1.86940727650835e162 * cos(theta) ** 8 + 7.15073821615215e160 * cos(theta) ** 6 - 1.18520522919649e159 * cos(theta) ** 4 + 6.62125826366754e156 * cos(theta) ** 2 - 5.34403411111181e153 ) * sin(81 * phi) ) # @torch.jit.script def Yl95_m_minus_80(theta, phi): return ( 5.94574910123317e-153 * (1.0 - cos(theta) ** 2) ** 40 * ( 1.80901104142116e163 * cos(theta) ** 15 - 1.00500613412286e163 * cos(theta) ** 13 + 2.0960020979033e162 * cos(theta) ** 11 - 2.07711919612039e161 * cos(theta) ** 9 + 1.02153403087888e160 * cos(theta) ** 7 - 2.37041045839298e158 * cos(theta) ** 5 + 2.20708608788918e156 * cos(theta) ** 3 - 5.34403411111181e153 * cos(theta) ) * sin(80 * phi) ) # @torch.jit.script def Yl95_m_minus_79(theta, phi): return ( 3.14619469596975e-151 * (1.0 - cos(theta) ** 2) ** 39.5 * ( 1.13063190088822e162 * cos(theta) ** 16 - 7.17861524373474e161 * cos(theta) ** 14 + 1.74666841491942e161 * cos(theta) ** 12 - 2.07711919612039e160 * cos(theta) ** 10 + 1.2769175385986e159 * cos(theta) ** 8 - 3.95068409732163e157 * cos(theta) ** 6 + 5.51771521972295e155 * cos(theta) ** 4 - 2.67201705555591e153 * cos(theta) ** 2 + 1.90858361111136e150 ) * sin(79 * phi) ) # @torch.jit.script def Yl95_m_minus_78(theta, phi): return ( 1.71113659507699e-149 * (1.0 - cos(theta) ** 2) ** 39 * ( 6.65077588757778e160 * cos(theta) ** 17 - 4.78574349582316e160 * cos(theta) ** 15 + 1.34359108839955e160 * cos(theta) ** 13 - 1.88829017829126e159 * cos(theta) ** 11 + 1.41879726510955e158 * cos(theta) ** 9 - 5.64383442474519e156 * cos(theta) ** 7 + 1.10354304394459e155 * cos(theta) ** 5 - 8.90672351851969e152 * cos(theta) ** 3 + 1.90858361111136e150 * cos(theta) ) * sin(78 * phi) ) # @torch.jit.script def Yl95_m_minus_77(theta, phi): return ( 9.54869416412232e-148 * (1.0 - cos(theta) ** 2) ** 38.5 * ( 3.69487549309877e159 * cos(theta) ** 18 - 2.99108968488948e159 * cos(theta) ** 16 + 9.59707920285394e158 * cos(theta) ** 14 - 1.57357514857605e158 * cos(theta) ** 12 + 1.41879726510955e157 * cos(theta) ** 10 - 7.05479303093148e155 * cos(theta) ** 8 + 1.83923840657432e154 * cos(theta) ** 6 - 2.22668087962992e152 * cos(theta) ** 4 + 9.54291805555681e149 * cos(theta) ** 2 - 6.12904178263122e146 ) * sin(77 * phi) ) # @torch.jit.script def Yl95_m_minus_76(theta, phi): return ( 5.45864696480855e-146 * (1.0 - cos(theta) ** 2) ** 38 * ( 1.94467131215725e158 * cos(theta) ** 19 - 1.75946452052322e158 * cos(theta) ** 17 + 6.39805280190262e157 * cos(theta) ** 15 - 1.21044242198158e157 * cos(theta) ** 13 + 1.28981569555414e156 * cos(theta) ** 11 - 7.8386589232572e154 * cos(theta) ** 9 + 2.62748343796331e153 * cos(theta) ** 7 - 4.45336175925985e151 * cos(theta) ** 5 + 3.1809726851856e149 * cos(theta) ** 3 - 6.12904178263122e146 * cos(theta) ) * sin(76 * phi) ) # @torch.jit.script def Yl95_m_minus_75(theta, phi): return ( 3.19225856201428e-144 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 9.72335656078622e156 * cos(theta) ** 20 - 9.77480289179568e156 * cos(theta) ** 18 + 3.99878300118914e156 * cos(theta) ** 16 - 8.64601729986841e155 * cos(theta) ** 14 + 1.07484641296178e155 * cos(theta) ** 12 - 7.83865892325721e153 * cos(theta) ** 10 + 3.28435429745414e152 * cos(theta) ** 8 - 7.42226959876641e150 * cos(theta) ** 6 + 7.95243171296401e148 * cos(theta) ** 4 - 3.06452089131561e146 * cos(theta) ** 2 + 1.79211748030153e143 ) * sin(75 * phi) ) # @torch.jit.script def Yl95_m_minus_74(theta, phi): return ( 1.90735779481748e-142 * (1.0 - cos(theta) ** 2) ** 37 * ( 4.63016979085058e155 * cos(theta) ** 21 - 5.14463310094509e155 * cos(theta) ** 19 + 2.35222529481714e155 * cos(theta) ** 17 - 5.76401153324561e154 * cos(theta) ** 15 + 8.26804933047526e153 * cos(theta) ** 13 - 7.12605356659746e152 * cos(theta) ** 11 + 3.64928255272682e151 * cos(theta) ** 9 - 1.0603242283952e150 * cos(theta) ** 7 + 1.5904863425928e148 * cos(theta) ** 5 - 1.02150696377187e146 * cos(theta) ** 3 + 1.79211748030153e143 * cos(theta) ) * sin(74 * phi) ) # @torch.jit.script def Yl95_m_minus_73(theta, phi): return ( 1.16301913785641e-140 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 2.10462263220481e154 * cos(theta) ** 22 - 2.57231655047255e154 * cos(theta) ** 20 + 1.30679183045397e154 * cos(theta) ** 18 - 3.6025072082785e153 * cos(theta) ** 16 + 5.90574952176804e152 * cos(theta) ** 14 - 5.93837797216455e151 * cos(theta) ** 12 + 3.64928255272682e150 * cos(theta) ** 10 - 1.325405285494e149 * cos(theta) ** 8 + 2.650810570988e147 * cos(theta) ** 6 - 2.55376740942968e145 * cos(theta) ** 4 + 8.96058740150763e142 * cos(theta) ** 2 - 4.82011156616871e139 ) * sin(73 * phi) ) # @torch.jit.script def Yl95_m_minus_72(theta, phi): return ( 7.22945269162081e-139 * (1.0 - cos(theta) ** 2) ** 36 * ( 9.15053318349918e152 * cos(theta) ** 23 - 1.22491264308216e153 * cos(theta) ** 21 + 6.87785173923141e152 * cos(theta) ** 19 - 2.11912188722265e152 * cos(theta) ** 17 + 3.93716634784536e151 * cos(theta) ** 15 - 4.56798305551119e150 * cos(theta) ** 13 + 3.31752959338802e149 * cos(theta) ** 11 - 1.47267253943778e148 * cos(theta) ** 9 + 3.78687224426858e146 * cos(theta) ** 7 - 5.10753481885935e144 * cos(theta) ** 5 + 2.98686246716921e142 * cos(theta) ** 3 - 4.82011156616871e139 * cos(theta) ) * sin(72 * phi) ) # @torch.jit.script def Yl95_m_minus_71(theta, phi): return ( 4.57687737186935e-137 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 3.81272215979132e151 * cos(theta) ** 24 - 5.56778474128257e151 * cos(theta) ** 22 + 3.4389258696157e151 * cos(theta) ** 20 - 1.17728993734592e151 * cos(theta) ** 18 + 2.46072896740335e150 * cos(theta) ** 16 - 3.26284503965085e149 * cos(theta) ** 14 + 2.76460799449001e148 * cos(theta) ** 12 - 1.47267253943778e147 * cos(theta) ** 10 + 4.73359030533572e145 * cos(theta) ** 8 - 8.51255803143225e143 * cos(theta) ** 6 + 7.46715616792303e141 * cos(theta) ** 4 - 2.41005578308436e139 * cos(theta) ** 2 + 1.20262264624968e136 ) * sin(71 * phi) ) # @torch.jit.script def Yl95_m_minus_70(theta, phi): return ( 2.94844699596395e-135 * (1.0 - cos(theta) ** 2) ** 35 * ( 1.52508886391653e150 * cos(theta) ** 25 - 2.42077597447068e150 * cos(theta) ** 23 + 1.63758374743605e150 * cos(theta) ** 21 - 6.1962628281364e149 * cos(theta) ** 19 + 1.44748762788432e149 * cos(theta) ** 17 - 2.1752300264339e148 * cos(theta) ** 15 + 2.12662153422309e147 * cos(theta) ** 13 - 1.33879321767071e146 * cos(theta) ** 11 + 5.25954478370636e144 * cos(theta) ** 9 - 1.21607971877604e143 * cos(theta) ** 7 + 1.49343123358461e141 * cos(theta) ** 5 - 8.03351927694785e138 * cos(theta) ** 3 + 1.20262264624968e136 * cos(theta) ) * sin(70 * phi) ) # @torch.jit.script def Yl95_m_minus_69(theta, phi): return ( 1.93117651346421e-133 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 5.86572639967896e148 * cos(theta) ** 26 - 1.00865665602945e149 * cos(theta) ** 24 + 7.44356248834568e148 * cos(theta) ** 22 - 3.0981314140682e148 * cos(theta) ** 20 + 8.04159793269069e147 * cos(theta) ** 18 - 1.35951876652119e147 * cos(theta) ** 16 + 1.51901538158792e146 * cos(theta) ** 14 - 1.11566101472559e145 * cos(theta) ** 12 + 5.25954478370636e143 * cos(theta) ** 10 - 1.52009964847005e142 * cos(theta) ** 8 + 2.48905205597434e140 * cos(theta) ** 6 - 2.00837981923696e138 * cos(theta) ** 4 + 6.01311323124839e135 * cos(theta) ** 2 - 2.80331619172419e132 ) * sin(69 * phi) ) # @torch.jit.script def Yl95_m_minus_68(theta, phi): return ( 1.28506701737372e-131 * (1.0 - cos(theta) ** 2) ** 34 * ( 2.17249125914036e147 * cos(theta) ** 27 - 4.0346266241178e147 * cos(theta) ** 25 + 3.23633151667203e147 * cos(theta) ** 23 - 1.47530067336581e147 * cos(theta) ** 21 + 4.23241996457405e146 * cos(theta) ** 19 - 7.99716921483052e145 * cos(theta) ** 17 + 1.01267692105861e145 * cos(theta) ** 15 - 8.58200780558147e143 * cos(theta) ** 13 + 4.78140434882396e142 * cos(theta) ** 11 - 1.68899960941116e141 * cos(theta) ** 9 + 3.55578865139192e139 * cos(theta) ** 7 - 4.01675963847393e137 * cos(theta) ** 5 + 2.0043710770828e135 * cos(theta) ** 3 - 2.80331619172419e132 * cos(theta) ) * sin(68 * phi) ) # @torch.jit.script def Yl95_m_minus_67(theta, phi): return ( 8.68157646942252e-130 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 7.7588973540727e145 * cos(theta) ** 28 - 1.55177947081454e146 * cos(theta) ** 26 + 1.34847146528001e146 * cos(theta) ** 24 - 6.70591215166277e145 * cos(theta) ** 22 + 2.11620998228702e145 * cos(theta) ** 20 - 4.44287178601695e144 * cos(theta) ** 18 + 6.32923075661633e143 * cos(theta) ** 16 - 6.13000557541533e142 * cos(theta) ** 14 + 3.98450362401997e141 * cos(theta) ** 12 - 1.68899960941116e140 * cos(theta) ** 10 + 4.4447358142399e138 * cos(theta) ** 8 - 6.69459939745654e136 * cos(theta) ** 6 + 5.01092769270699e134 * cos(theta) ** 4 - 1.4016580958621e132 * cos(theta) ** 2 + 6.14223530176203e128 ) * sin(67 * phi) ) # @torch.jit.script def Yl95_m_minus_66(theta, phi): return ( 5.95052249330961e-128 * (1.0 - cos(theta) ** 2) ** 33 * ( 2.67548184623196e144 * cos(theta) ** 29 - 5.74733137338718e144 * cos(theta) ** 27 + 5.39388586112006e144 * cos(theta) ** 25 - 2.91561397898381e144 * cos(theta) ** 23 + 1.0077190391843e144 * cos(theta) ** 21 - 2.33835357158787e143 * cos(theta) ** 19 + 3.72307691565667e142 * cos(theta) ** 17 - 4.08667038361022e141 * cos(theta) ** 15 + 3.06500278770767e140 * cos(theta) ** 13 - 1.53545419037378e139 * cos(theta) ** 11 + 4.93859534915544e137 * cos(theta) ** 9 - 9.56371342493792e135 * cos(theta) ** 7 + 1.0021855385414e134 * cos(theta) ** 5 - 4.67219365287365e131 * cos(theta) ** 3 + 6.14223530176203e128 * cos(theta) ) * sin(66 * phi) ) # @torch.jit.script def Yl95_m_minus_65(theta, phi): return ( 4.13550610767948e-126 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 8.91827282077322e142 * cos(theta) ** 30 - 2.05261834763828e143 * cos(theta) ** 28 + 2.07457148504618e143 * cos(theta) ** 26 - 1.21483915790992e143 * cos(theta) ** 24 + 4.58054108720135e142 * cos(theta) ** 22 - 1.16917678579394e142 * cos(theta) ** 20 + 2.0683760642537e141 * cos(theta) ** 18 - 2.55416898975639e140 * cos(theta) ** 16 + 2.18928770550548e139 * cos(theta) ** 14 - 1.27954515864482e138 * cos(theta) ** 12 + 4.93859534915544e136 * cos(theta) ** 10 - 1.19546417811724e135 * cos(theta) ** 8 + 1.67030923090233e133 * cos(theta) ** 6 - 1.16804841321841e131 * cos(theta) ** 4 + 3.07111765088102e128 * cos(theta) ** 2 - 1.27168432748696e125 ) * sin(65 * phi) ) # @torch.jit.script def Yl95_m_minus_64(theta, phi): return ( 2.9125239467274e-124 * (1.0 - cos(theta) ** 2) ** 32 * ( 2.87686220024942e141 * cos(theta) ** 31 - 7.07799430220096e141 * cos(theta) ** 29 + 7.68359809276361e141 * cos(theta) ** 27 - 4.85935663163969e141 * cos(theta) ** 25 + 1.99153960313102e141 * cos(theta) ** 23 - 5.56750850378064e140 * cos(theta) ** 21 + 1.08861898118616e140 * cos(theta) ** 19 - 1.50245234691552e139 * cos(theta) ** 17 + 1.45952513700365e138 * cos(theta) ** 15 - 9.84265506649861e136 * cos(theta) ** 13 + 4.48963213559586e135 * cos(theta) ** 11 - 1.32829353124138e134 * cos(theta) ** 9 + 2.38615604414619e132 * cos(theta) ** 7 - 2.33609682643683e130 * cos(theta) ** 5 + 1.02370588362701e128 * cos(theta) ** 3 - 1.27168432748696e125 * cos(theta) ) * sin(64 * phi) ) # @torch.jit.script def Yl95_m_minus_63(theta, phi): return ( 2.07750968051765e-122 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 8.99019437577945e139 * cos(theta) ** 32 - 2.35933143406699e140 * cos(theta) ** 30 + 2.74414217598701e140 * cos(theta) ** 28 - 1.86898331986142e140 * cos(theta) ** 26 + 8.29808167971259e139 * cos(theta) ** 24 - 2.53068568353666e139 * cos(theta) ** 22 + 5.4430949059308e138 * cos(theta) ** 20 - 8.34695748286402e137 * cos(theta) ** 18 + 9.12203210627282e136 * cos(theta) ** 16 - 7.03046790464186e135 * cos(theta) ** 14 + 3.74136011299655e134 * cos(theta) ** 12 - 1.32829353124138e133 * cos(theta) ** 10 + 2.98269505518273e131 * cos(theta) ** 8 - 3.89349471072804e129 * cos(theta) ** 6 + 2.55926470906751e127 * cos(theta) ** 4 - 6.35842163743482e124 * cos(theta) ** 2 + 2.49937957446337e121 ) * sin(63 * phi) ) # @torch.jit.script def Yl95_m_minus_62(theta, phi): return ( 1.50012887140968e-120 * (1.0 - cos(theta) ** 2) ** 31 * ( 2.72430132599377e138 * cos(theta) ** 33 - 7.61074656150641e138 * cos(theta) ** 31 + 9.4625592275414e138 * cos(theta) ** 29 - 6.92216044393118e138 * cos(theta) ** 27 + 3.31923267188503e138 * cos(theta) ** 25 - 1.10029812327681e138 * cos(theta) ** 23 + 2.59194995520514e137 * cos(theta) ** 21 - 4.39313551729685e136 * cos(theta) ** 19 + 5.36590123898401e135 * cos(theta) ** 17 - 4.68697860309458e134 * cos(theta) ** 15 + 2.87796931768965e133 * cos(theta) ** 13 - 1.2075395738558e132 * cos(theta) ** 11 + 3.3141056168697e130 * cos(theta) ** 9 - 5.56213530104006e128 * cos(theta) ** 7 + 5.11852941813503e126 * cos(theta) ** 5 - 2.11947387914494e124 * cos(theta) ** 3 + 2.49937957446337e121 * cos(theta) ) * sin(62 * phi) ) # @torch.jit.script def Yl95_m_minus_61(theta, phi): return ( 1.0960184229933e-118 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 8.01265095880522e136 * cos(theta) ** 34 - 2.37835830047075e137 * cos(theta) ** 32 + 3.15418640918047e137 * cos(theta) ** 30 - 2.47220015854685e137 * cos(theta) ** 28 + 1.27662795072501e137 * cos(theta) ** 26 - 4.58457551365336e136 * cos(theta) ** 24 + 1.17815907054779e136 * cos(theta) ** 22 - 2.19656775864843e135 * cos(theta) ** 20 + 2.98105624388001e134 * cos(theta) ** 18 - 2.92936162693411e133 * cos(theta) ** 16 + 2.05569236977832e132 * cos(theta) ** 14 - 1.00628297821316e131 * cos(theta) ** 12 + 3.3141056168697e129 * cos(theta) ** 10 - 6.95266912630008e127 * cos(theta) ** 8 + 8.53088236355838e125 * cos(theta) ** 6 - 5.29868469786235e123 * cos(theta) ** 4 + 1.24968978723169e121 * cos(theta) ** 2 - 4.68223974234427e117 ) * sin(61 * phi) ) # @torch.jit.script def Yl95_m_minus_60(theta, phi): return ( 8.09867881455509e-117 * (1.0 - cos(theta) ** 2) ** 30 * ( 2.28932884537292e135 * cos(theta) ** 35 - 7.20714636506289e135 * cos(theta) ** 33 + 1.01747948683241e136 * cos(theta) ** 31 - 8.52482813292018e135 * cos(theta) ** 29 + 4.7282516693519e135 * cos(theta) ** 27 - 1.83383020546135e135 * cos(theta) ** 25 + 5.12243074151214e134 * cos(theta) ** 23 - 1.04598464697544e134 * cos(theta) ** 21 + 1.56897697046316e133 * cos(theta) ** 19 - 1.72315389819654e132 * cos(theta) ** 17 + 1.37046157985222e131 * cos(theta) ** 15 - 7.74063829394742e129 * cos(theta) ** 13 + 3.01282328806337e128 * cos(theta) ** 11 - 7.7251879181112e126 * cos(theta) ** 9 + 1.21869748050834e125 * cos(theta) ** 7 - 1.05973693957247e123 * cos(theta) ** 5 + 4.16563262410562e120 * cos(theta) ** 3 - 4.68223974234427e117 * cos(theta) ) * sin(60 * phi) ) # @torch.jit.script def Yl95_m_minus_59(theta, phi): return ( 6.04966428705415e-115 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 6.35924679270255e133 * cos(theta) ** 36 - 2.11974893090085e134 * cos(theta) ** 34 + 3.17962339635128e134 * cos(theta) ** 32 - 2.84160937764006e134 * cos(theta) ** 30 + 1.68866131048282e134 * cos(theta) ** 28 - 7.05319309792825e133 * cos(theta) ** 26 + 2.13434614229672e133 * cos(theta) ** 24 - 4.75447566807018e132 * cos(theta) ** 22 + 7.8448848523158e131 * cos(theta) ** 20 - 9.57307721220297e130 * cos(theta) ** 18 + 8.56538487407634e129 * cos(theta) ** 16 - 5.52902735281959e128 * cos(theta) ** 14 + 2.51068607338614e127 * cos(theta) ** 12 - 7.7251879181112e125 * cos(theta) ** 10 + 1.52337185063543e124 * cos(theta) ** 8 - 1.76622823262078e122 * cos(theta) ** 6 + 1.0414081560264e120 * cos(theta) ** 4 - 2.34111987117214e117 * cos(theta) ** 2 + 8.39111064936249e113 ) * sin(59 * phi) ) # @torch.jit.script def Yl95_m_minus_58(theta, phi): return ( 4.56659500771156e-113 * (1.0 - cos(theta) ** 2) ** 29 * ( 1.71871534937907e132 * cos(theta) ** 37 - 6.05642551685957e132 * cos(theta) ** 35 + 9.63522241318568e132 * cos(theta) ** 33 - 9.16648186335503e132 * cos(theta) ** 31 + 5.82297003614766e132 * cos(theta) ** 29 - 2.61229373997343e132 * cos(theta) ** 27 + 8.5373845691869e131 * cos(theta) ** 25 - 2.06716333394356e131 * cos(theta) ** 23 + 3.73565945348372e130 * cos(theta) ** 21 - 5.03846169063314e129 * cos(theta) ** 19 + 5.03846169063314e128 * cos(theta) ** 17 - 3.68601823521306e127 * cos(theta) ** 15 + 1.9312969795278e126 * cos(theta) ** 13 - 7.02289810737382e124 * cos(theta) ** 11 + 1.69263538959492e123 * cos(theta) ** 9 - 2.52318318945826e121 * cos(theta) ** 7 + 2.08281631205281e119 * cos(theta) ** 5 - 7.80373290390712e116 * cos(theta) ** 3 + 8.39111064936249e113 * cos(theta) ) * sin(58 * phi) ) # @torch.jit.script def Yl95_m_minus_57(theta, phi): return ( 3.48200997777645e-111 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 4.52293512994492e130 * cos(theta) ** 38 - 1.68234042134988e131 * cos(theta) ** 36 + 2.83388894505461e131 * cos(theta) ** 34 - 2.86452558229845e131 * cos(theta) ** 32 + 1.94099001204922e131 * cos(theta) ** 30 - 9.32962049990509e130 * cos(theta) ** 28 + 3.28360944968727e130 * cos(theta) ** 26 - 8.61318055809816e129 * cos(theta) ** 24 + 1.69802702431078e129 * cos(theta) ** 22 - 2.51923084531657e128 * cos(theta) ** 20 + 2.79914538368508e127 * cos(theta) ** 18 - 2.30376139700816e126 * cos(theta) ** 16 + 1.37949784251986e125 * cos(theta) ** 14 - 5.85241508947818e123 * cos(theta) ** 12 + 1.69263538959492e122 * cos(theta) ** 10 - 3.15397898682283e120 * cos(theta) ** 8 + 3.47136052008802e118 * cos(theta) ** 6 - 1.95093322597678e116 * cos(theta) ** 4 + 4.19555532468125e113 * cos(theta) ** 2 - 1.44325948561446e110 ) * sin(57 * phi) ) # @torch.jit.script def Yl95_m_minus_56(theta, phi): return ( 2.68092156880921e-109 * (1.0 - cos(theta) ** 2) ** 28 * ( 1.15972695639613e129 * cos(theta) ** 39 - 4.54686600364833e129 * cos(theta) ** 37 + 8.09682555729889e129 * cos(theta) ** 35 - 8.68038055241954e129 * cos(theta) ** 33 + 6.26125810338458e129 * cos(theta) ** 31 - 3.21711051720865e129 * cos(theta) ** 29 + 1.21615164803232e129 * cos(theta) ** 27 - 3.44527222323926e128 * cos(theta) ** 25 + 7.38272619265557e127 * cos(theta) ** 23 - 1.19963373586503e127 * cos(theta) ** 21 + 1.47323441246583e126 * cos(theta) ** 19 - 1.35515376294598e125 * cos(theta) ** 17 + 9.19665228346571e123 * cos(theta) ** 15 - 4.50185776113706e122 * cos(theta) ** 13 + 1.53875944508629e121 * cos(theta) ** 11 - 3.50442109646981e119 * cos(theta) ** 9 + 4.95908645726859e117 * cos(theta) ** 7 - 3.90186645195356e115 * cos(theta) ** 5 + 1.39851844156042e113 * cos(theta) ** 3 - 1.44325948561446e110 * cos(theta) ) * sin(56 * phi) ) # @torch.jit.script def Yl95_m_minus_55(theta, phi): return ( 2.08354352887006e-107 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 2.89931739099033e127 * cos(theta) ** 40 - 1.19654368517061e128 * cos(theta) ** 38 + 2.2491182103608e128 * cos(theta) ** 36 - 2.5530531036528e128 * cos(theta) ** 34 + 1.95664315730768e128 * cos(theta) ** 32 - 1.07237017240288e128 * cos(theta) ** 30 + 4.34339874297258e127 * cos(theta) ** 28 - 1.32510470124587e127 * cos(theta) ** 26 + 3.07613591360649e126 * cos(theta) ** 24 - 5.45288061756834e125 * cos(theta) ** 22 + 7.36617206232916e124 * cos(theta) ** 20 - 7.52863201636654e123 * cos(theta) ** 18 + 5.74790767716607e122 * cos(theta) ** 16 - 3.21561268652647e121 * cos(theta) ** 14 + 1.28229953757191e120 * cos(theta) ** 12 - 3.50442109646981e118 * cos(theta) ** 10 + 6.19885807158574e116 * cos(theta) ** 8 - 6.50311075325593e114 * cos(theta) ** 6 + 3.49629610390104e112 * cos(theta) ** 4 - 7.21629742807232e109 * cos(theta) ** 2 + 2.3895024596266e106 ) * sin(55 * phi) ) # @torch.jit.script def Yl95_m_minus_54(theta, phi): return ( 1.63395516663347e-105 * (1.0 - cos(theta) ** 2) ** 27 * ( 7.07150583168373e125 * cos(theta) ** 41 - 3.0680607312067e126 * cos(theta) ** 39 + 6.07869786584001e126 * cos(theta) ** 37 - 7.29443743900801e126 * cos(theta) ** 35 + 5.92922168881116e126 * cos(theta) ** 33 - 3.45925862065447e126 * cos(theta) ** 31 + 1.4977237044733e126 * cos(theta) ** 29 - 4.90779518979952e125 * cos(theta) ** 27 + 1.23045436544259e125 * cos(theta) ** 25 - 2.37081765981232e124 * cos(theta) ** 23 + 3.5077009820615e123 * cos(theta) ** 21 - 3.96243790335081e122 * cos(theta) ** 19 + 3.38112216303887e121 * cos(theta) ** 17 - 2.14374179101765e120 * cos(theta) ** 15 + 9.86384259670697e118 * cos(theta) ** 13 - 3.1858373604271e117 * cos(theta) ** 11 + 6.88762007953971e115 * cos(theta) ** 9 - 9.29015821893704e113 * cos(theta) ** 7 + 6.99259220780208e111 * cos(theta) ** 5 - 2.40543247602411e109 * cos(theta) ** 3 + 2.3895024596266e106 * cos(theta) ) * sin(54 * phi) ) # @torch.jit.script def Yl95_m_minus_53(theta, phi): return ( 1.29258143909558e-103 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 1.6836918646866e124 * cos(theta) ** 42 - 7.67015182801675e124 * cos(theta) ** 40 + 1.59965733311579e125 * cos(theta) ** 38 - 2.02623262194667e125 * cos(theta) ** 36 + 1.74388873200328e125 * cos(theta) ** 34 - 1.08101831895452e125 * cos(theta) ** 32 + 4.99241234824434e124 * cos(theta) ** 30 - 1.75278399635697e124 * cos(theta) ** 28 + 4.73251679016382e123 * cos(theta) ** 26 - 9.87840691588467e122 * cos(theta) ** 24 + 1.59440953730068e122 * cos(theta) ** 22 - 1.98121895167541e121 * cos(theta) ** 20 + 1.87840120168826e120 * cos(theta) ** 18 - 1.33983861938603e119 * cos(theta) ** 16 + 7.04560185479069e117 * cos(theta) ** 14 - 2.65486446702258e116 * cos(theta) ** 12 + 6.88762007953971e114 * cos(theta) ** 10 - 1.16126977736713e113 * cos(theta) ** 8 + 1.16543203463368e111 * cos(theta) ** 6 - 6.01358119006027e108 * cos(theta) ** 4 + 1.1947512298133e106 * cos(theta) ** 2 - 3.81831649029498e102 ) * sin(53 * phi) ) # @torch.jit.script def Yl95_m_minus_52(theta, phi): return ( 1.03115274168685e-101 * (1.0 - cos(theta) ** 2) ** 26 * ( 3.91556247601536e122 * cos(theta) ** 43 - 1.87076873854067e123 * cos(theta) ** 41 + 4.10168546952767e123 * cos(theta) ** 39 - 5.47630438363965e123 * cos(theta) ** 37 + 4.98253923429509e123 * cos(theta) ** 35 - 3.27581308774097e123 * cos(theta) ** 33 + 1.61045559620785e123 * cos(theta) ** 31 - 6.04408274605852e122 * cos(theta) ** 29 + 1.75278399635697e122 * cos(theta) ** 27 - 3.95136276635387e121 * cos(theta) ** 25 + 6.93221537956819e120 * cos(theta) ** 23 - 9.43437596035907e119 * cos(theta) ** 21 + 9.88632211414873e118 * cos(theta) ** 19 - 7.88140364344724e117 * cos(theta) ** 17 + 4.6970679031938e116 * cos(theta) ** 15 - 2.04220343617122e115 * cos(theta) ** 13 + 6.26147279958156e113 * cos(theta) ** 11 - 1.29029975263015e112 * cos(theta) ** 9 + 1.66490290661954e110 * cos(theta) ** 7 - 1.20271623801205e108 * cos(theta) ** 5 + 3.98250409937766e105 * cos(theta) ** 3 - 3.81831649029498e102 * cos(theta) ) * sin(52 * phi) ) # @torch.jit.script def Yl95_m_minus_51(theta, phi): return ( 8.2929301318774e-100 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 8.89900562730763e120 * cos(theta) ** 44 - 4.45421128223969e121 * cos(theta) ** 42 + 1.02542136738192e122 * cos(theta) ** 40 - 1.44113273253675e122 * cos(theta) ** 38 + 1.38403867619308e122 * cos(theta) ** 36 - 9.63474437570874e121 * cos(theta) ** 34 + 5.03267373814954e121 * cos(theta) ** 32 - 2.01469424868617e121 * cos(theta) ** 30 + 6.25994284413204e120 * cos(theta) ** 28 - 1.5197549101361e120 * cos(theta) ** 26 + 2.88842307482008e119 * cos(theta) ** 24 - 4.28835270925412e118 * cos(theta) ** 22 + 4.94316105707436e117 * cos(theta) ** 20 - 4.37855757969291e116 * cos(theta) ** 18 + 2.93566743949612e115 * cos(theta) ** 16 - 1.4587167401223e114 * cos(theta) ** 14 + 5.2178939996513e112 * cos(theta) ** 12 - 1.29029975263015e111 * cos(theta) ** 10 + 2.08112863327443e109 * cos(theta) ** 8 - 2.00452706335342e107 * cos(theta) ** 6 + 9.95626024844415e104 * cos(theta) ** 4 - 1.90915824514749e102 * cos(theta) ** 2 + 5.90339593428413e98 ) * sin(51 * phi) ) # @torch.jit.script def Yl95_m_minus_50(theta, phi): return ( 6.72187901134314e-98 * (1.0 - cos(theta) ** 2) ** 25 * ( 1.97755680606836e119 * cos(theta) ** 45 - 1.03586308889295e120 * cos(theta) ** 43 + 2.50102772532175e120 * cos(theta) ** 41 - 3.69521213470961e120 * cos(theta) ** 39 + 3.74064507079211e120 * cos(theta) ** 37 - 2.75278410734535e120 * cos(theta) ** 35 + 1.5250526479241e120 * cos(theta) ** 33 - 6.49901370543927e119 * cos(theta) ** 31 + 2.15860098073519e119 * cos(theta) ** 29 - 5.62872188939297e118 * cos(theta) ** 27 + 1.15536922992803e118 * cos(theta) ** 25 - 1.86450117793658e117 * cos(theta) ** 23 + 2.35388621765446e116 * cos(theta) ** 21 - 2.30450398931206e115 * cos(theta) ** 19 + 1.7268631997036e114 * cos(theta) ** 17 - 9.72477826748198e112 * cos(theta) ** 15 + 4.01376461511638e111 * cos(theta) ** 13 - 1.17299977511831e110 * cos(theta) ** 11 + 2.3123651480827e108 * cos(theta) ** 9 - 2.86361009050489e106 * cos(theta) ** 7 + 1.99125204968883e104 * cos(theta) ** 5 - 6.36386081715829e101 * cos(theta) ** 3 + 5.90339593428413e98 * cos(theta) ) * sin(50 * phi) ) # @torch.jit.script def Yl95_m_minus_49(theta, phi): return ( 5.4897631565097e-96 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 4.29903653493122e117 * cos(theta) ** 46 - 2.35423429293853e118 * cos(theta) ** 44 + 5.95482791743274e118 * cos(theta) ** 42 - 9.23803033677404e118 * cos(theta) ** 40 + 9.84380281787397e118 * cos(theta) ** 38 - 7.64662252040376e118 * cos(theta) ** 36 + 4.48544896448265e118 * cos(theta) ** 34 - 2.03094178294977e118 * cos(theta) ** 32 + 7.19533660245062e117 * cos(theta) ** 30 - 2.01025781764035e117 * cos(theta) ** 28 + 4.44372780741551e116 * cos(theta) ** 26 - 7.76875490806907e115 * cos(theta) ** 24 + 1.06994828075203e115 * cos(theta) ** 22 - 1.15225199465603e114 * cos(theta) ** 20 + 9.59368444279779e112 * cos(theta) ** 18 - 6.07798641717624e111 * cos(theta) ** 16 + 2.86697472508313e110 * cos(theta) ** 14 - 9.77499812598595e108 * cos(theta) ** 12 + 2.3123651480827e107 * cos(theta) ** 10 - 3.57951261313111e105 * cos(theta) ** 8 + 3.31875341614805e103 * cos(theta) ** 6 - 1.59096520428957e101 * cos(theta) ** 4 + 2.95169796714207e98 * cos(theta) ** 2 - 8.85066856714262e94 ) * sin(49 * phi) ) # @torch.jit.script def Yl95_m_minus_48(theta, phi): return ( 4.51631040468455e-94 * (1.0 - cos(theta) ** 2) ** 24 * ( 9.14688624453451e115 * cos(theta) ** 47 - 5.23163176208561e116 * cos(theta) ** 45 + 1.38484370172854e117 * cos(theta) ** 43 - 2.2531781309205e117 * cos(theta) ** 41 + 2.52405200458307e117 * cos(theta) ** 39 - 2.06665473524426e117 * cos(theta) ** 37 + 1.28155684699504e117 * cos(theta) ** 35 - 6.15436903924174e116 * cos(theta) ** 33 + 2.32107632337117e116 * cos(theta) ** 31 - 6.93192350910465e115 * cos(theta) ** 29 + 1.64582511385759e115 * cos(theta) ** 27 - 3.10750196322763e114 * cos(theta) ** 25 + 4.65194904674794e113 * cos(theta) ** 23 - 5.48691426026681e112 * cos(theta) ** 21 + 5.04930760147252e111 * cos(theta) ** 19 - 3.57528612775073e110 * cos(theta) ** 17 + 1.91131648338875e109 * cos(theta) ** 15 - 7.5192293276815e107 * cos(theta) ** 13 + 2.10215013462063e106 * cos(theta) ** 11 - 3.97723623681234e104 * cos(theta) ** 9 + 4.74107630878293e102 * cos(theta) ** 7 - 3.18193040857915e100 * cos(theta) ** 5 + 9.83899322380688e97 * cos(theta) ** 3 - 8.85066856714262e94 * cos(theta) ) * sin(48 * phi) ) # @torch.jit.script def Yl95_m_minus_47(theta, phi): return ( 3.7417297815972e-92 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 1.90560130094469e114 * cos(theta) ** 48 - 1.13731125262731e115 * cos(theta) ** 46 + 3.14737204938306e115 * cos(theta) ** 44 - 5.36470983552499e115 * cos(theta) ** 42 + 6.31013001145768e115 * cos(theta) ** 40 - 5.43856509274805e115 * cos(theta) ** 38 + 3.55988013054179e115 * cos(theta) ** 36 - 1.81010854095345e115 * cos(theta) ** 34 + 7.2533635105349e114 * cos(theta) ** 32 - 2.31064116970155e114 * cos(theta) ** 30 + 5.8779468352057e113 * cos(theta) ** 28 - 1.19519306277986e113 * cos(theta) ** 26 + 1.93831210281164e112 * cos(theta) ** 24 - 2.49405193648491e111 * cos(theta) ** 22 + 2.52465380073626e110 * cos(theta) ** 20 - 1.98627007097263e109 * cos(theta) ** 18 + 1.19457280211797e108 * cos(theta) ** 16 - 5.37087809120107e106 * cos(theta) ** 14 + 1.75179177885053e105 * cos(theta) ** 12 - 3.97723623681235e103 * cos(theta) ** 10 + 5.92634538597866e101 * cos(theta) ** 8 - 5.30321734763191e99 * cos(theta) ** 6 + 2.45974830595172e97 * cos(theta) ** 4 - 4.42533428357131e94 * cos(theta) ** 2 + 1.28943306630866e91 ) * sin(47 * phi) ) # @torch.jit.script def Yl95_m_minus_46(theta, phi): return ( 3.12114994121691e-90 * (1.0 - cos(theta) ** 2) ** 23 * ( 3.8889822468259e112 * cos(theta) ** 49 - 2.41981117580278e113 * cos(theta) ** 47 + 6.99416010974013e113 * cos(theta) ** 45 - 1.24760693849418e114 * cos(theta) ** 43 + 1.53905610035553e114 * cos(theta) ** 41 - 1.3945038699354e114 * cos(theta) ** 39 + 9.62129765011294e113 * cos(theta) ** 37 - 5.17173868843843e113 * cos(theta) ** 35 + 2.19798894258633e113 * cos(theta) ** 33 - 7.45368119258564e112 * cos(theta) ** 31 + 2.02687821903645e112 * cos(theta) ** 29 - 4.42664097325873e111 * cos(theta) ** 27 + 7.75324841124657e110 * cos(theta) ** 25 - 1.08437040716735e110 * cos(theta) ** 23 + 1.2022160955887e109 * cos(theta) ** 21 - 1.04540530051191e108 * cos(theta) ** 19 + 7.02689883598807e106 * cos(theta) ** 17 - 3.58058539413405e105 * cos(theta) ** 15 + 1.34753213757733e104 * cos(theta) ** 13 - 3.61566930619304e102 * cos(theta) ** 11 + 6.58482820664295e100 * cos(theta) ** 9 - 7.5760247823313e98 * cos(theta) ** 7 + 4.91949661190344e96 * cos(theta) ** 5 - 1.4751114278571e94 * cos(theta) ** 3 + 1.28943306630866e91 * cos(theta) ) * sin(46 * phi) ) # @torch.jit.script def Yl95_m_minus_45(theta, phi): return ( 2.62065101714605e-88 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 7.7779644936518e110 * cos(theta) ** 50 - 5.04127328292246e111 * cos(theta) ** 48 + 1.52046958907394e112 * cos(theta) ** 46 - 2.83547031475951e112 * cos(theta) ** 44 + 3.66441928656079e112 * cos(theta) ** 42 - 3.4862596748385e112 * cos(theta) ** 40 + 2.53192043424025e112 * cos(theta) ** 38 - 1.43659408012179e112 * cos(theta) ** 36 + 6.46467336054804e111 * cos(theta) ** 34 - 2.32927537268301e111 * cos(theta) ** 32 + 6.75626073012149e110 * cos(theta) ** 30 - 1.58094320473526e110 * cos(theta) ** 28 + 2.98201861971022e109 * cos(theta) ** 26 - 4.51821002986397e108 * cos(theta) ** 24 + 5.46461861631225e107 * cos(theta) ** 22 - 5.22702650255954e106 * cos(theta) ** 20 + 3.90383268666004e105 * cos(theta) ** 18 - 2.23786587133378e104 * cos(theta) ** 16 + 9.62522955412378e102 * cos(theta) ** 14 - 3.01305775516087e101 * cos(theta) ** 12 + 6.58482820664296e99 * cos(theta) ** 10 - 9.47003097791413e97 * cos(theta) ** 8 + 8.19916101983907e95 * cos(theta) ** 6 - 3.68777856964276e93 * cos(theta) ** 4 + 6.44716533154329e90 * cos(theta) ** 2 - 1.82898307277824e87 ) * sin(45 * phi) ) # @torch.jit.script def Yl95_m_minus_44(theta, phi): return ( 2.21441134212219e-86 * (1.0 - cos(theta) ** 2) ** 22 * ( 1.52509107718663e109 * cos(theta) ** 51 - 1.02883128222907e110 * cos(theta) ** 49 + 3.23504167888072e110 * cos(theta) ** 47 - 6.30104514391002e110 * cos(theta) ** 45 + 8.52190531758323e110 * cos(theta) ** 43 - 8.50307237765487e110 * cos(theta) ** 41 + 6.4921036775391e110 * cos(theta) ** 39 - 3.88268670303186e110 * cos(theta) ** 37 + 1.84704953158515e110 * cos(theta) ** 35 - 7.05841022025156e109 * cos(theta) ** 33 + 2.17943894520048e109 * cos(theta) ** 31 - 5.45152829219055e108 * cos(theta) ** 29 + 1.10445134063341e108 * cos(theta) ** 27 - 1.80728401194559e107 * cos(theta) ** 25 + 2.37592113752707e106 * cos(theta) ** 23 - 2.48906023931407e105 * cos(theta) ** 21 + 2.05464878245265e104 * cos(theta) ** 19 - 1.31639168901987e103 * cos(theta) ** 17 + 6.41681970274919e101 * cos(theta) ** 15 - 2.31773673473913e100 * cos(theta) ** 13 + 5.9862074605845e98 * cos(theta) ** 11 - 1.05222566421268e97 * cos(theta) ** 9 + 1.17130871711987e95 * cos(theta) ** 7 - 7.37555713928552e92 * cos(theta) ** 5 + 2.14905511051443e90 * cos(theta) ** 3 - 1.82898307277824e87 * cos(theta) ) * sin(44 * phi) ) # @torch.jit.script def Yl95_m_minus_43(theta, phi): return ( 1.88264037871918e-84 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 2.93286745612813e107 * cos(theta) ** 52 - 2.05766256445815e108 * cos(theta) ** 50 + 6.73967016433484e108 * cos(theta) ** 48 - 1.36979242258914e109 * cos(theta) ** 46 + 1.9367966630871e109 * cos(theta) ** 44 - 2.02454104229878e109 * cos(theta) ** 42 + 1.62302591938477e109 * cos(theta) ** 40 - 1.02175965869259e109 * cos(theta) ** 38 + 5.1306931432921e108 * cos(theta) ** 36 - 2.07600300595634e108 * cos(theta) ** 34 + 6.8107467037515e107 * cos(theta) ** 32 - 1.81717609739685e107 * cos(theta) ** 30 + 3.94446907369077e106 * cos(theta) ** 28 - 6.95109235363688e105 * cos(theta) ** 26 + 9.89967140636277e104 * cos(theta) ** 24 - 1.13139101787003e104 * cos(theta) ** 22 + 1.02732439122633e103 * cos(theta) ** 20 - 7.3132871612215e101 * cos(theta) ** 18 + 4.01051231421824e100 * cos(theta) ** 16 - 1.65552623909938e99 * cos(theta) ** 14 + 4.98850621715375e97 * cos(theta) ** 12 - 1.05222566421268e96 * cos(theta) ** 10 + 1.46413589639983e94 * cos(theta) ** 8 - 1.22925952321425e92 * cos(theta) ** 6 + 5.37263777628607e89 * cos(theta) ** 4 - 9.14491536389119e86 * cos(theta) ** 2 + 2.53041376975406e83 ) * sin(43 * phi) ) # @torch.jit.script def Yl95_m_minus_42(theta, phi): return ( 1.61007033060363e-82 * (1.0 - cos(theta) ** 2) ** 21 * ( 5.53371218137383e105 * cos(theta) ** 53 - 4.0346324793297e106 * cos(theta) ** 51 + 1.37544289068058e107 * cos(theta) ** 49 - 2.91445196295561e107 * cos(theta) ** 47 + 4.30399258463799e107 * cos(theta) ** 45 - 4.70823498209018e107 * cos(theta) ** 43 + 3.9585998033775e107 * cos(theta) ** 41 - 2.61989656075024e107 * cos(theta) ** 39 + 1.38667382251138e107 * cos(theta) ** 37 - 5.93143715987526e106 * cos(theta) ** 35 + 2.06386263750045e106 * cos(theta) ** 33 - 5.86185837869952e105 * cos(theta) ** 31 + 1.36016174954854e105 * cos(theta) ** 29 - 2.57447864949514e104 * cos(theta) ** 27 + 3.95986856254511e103 * cos(theta) ** 25 - 4.91909138204361e102 * cos(theta) ** 23 + 4.89202091060155e101 * cos(theta) ** 21 - 3.84909850590605e100 * cos(theta) ** 19 + 2.35912489071661e99 * cos(theta) ** 17 - 1.10368415939959e98 * cos(theta) ** 15 + 3.83731247473366e96 * cos(theta) ** 13 - 9.56568785647891e94 * cos(theta) ** 11 + 1.62681766266648e93 * cos(theta) ** 9 - 1.75608503316322e91 * cos(theta) ** 7 + 1.07452755525721e89 * cos(theta) ** 5 - 3.04830512129706e86 * cos(theta) ** 3 + 2.53041376975406e83 * cos(theta) ) * sin(42 * phi) ) # @torch.jit.script def Yl95_m_minus_41(theta, phi): return ( 1.38484768914446e-80 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 1.02476151506923e104 * cos(theta) ** 54 - 7.75890861409558e104 * cos(theta) ** 52 + 2.75088578136116e105 * cos(theta) ** 50 - 6.07177492282418e105 * cos(theta) ** 48 + 9.35650561877825e105 * cos(theta) ** 46 - 1.0700534050205e106 * cos(theta) ** 44 + 9.42523762708928e105 * cos(theta) ** 42 - 6.5497414018756e105 * cos(theta) ** 40 + 3.64914163818784e105 * cos(theta) ** 38 - 1.64762143329868e105 * cos(theta) ** 36 + 6.07018422794251e104 * cos(theta) ** 34 - 1.8318307433436e104 * cos(theta) ** 32 + 4.53387249849513e103 * cos(theta) ** 30 - 9.19456660533978e102 * cos(theta) ** 28 + 1.52302637020966e102 * cos(theta) ** 26 - 2.04962140918484e101 * cos(theta) ** 24 + 2.22364586845525e100 * cos(theta) ** 22 - 1.92454925295303e99 * cos(theta) ** 20 + 1.31062493928701e98 * cos(theta) ** 18 - 6.89802599624741e96 * cos(theta) ** 16 + 2.74093748195261e95 * cos(theta) ** 14 - 7.97140654706576e93 * cos(theta) ** 12 + 1.62681766266648e92 * cos(theta) ** 10 - 2.19510629145402e90 * cos(theta) ** 8 + 1.79087925876202e88 * cos(theta) ** 6 - 7.62076280324266e85 * cos(theta) ** 4 + 1.26520688487703e83 * cos(theta) ** 2 - 3.42040250034342e79 ) * sin(41 * phi) ) # @torch.jit.script def Yl95_m_minus_40(theta, phi): return ( 1.19771312731902e-78 * (1.0 - cos(theta) ** 2) ** 20 * ( 1.86320275467132e102 * cos(theta) ** 55 - 1.46394502152747e103 * cos(theta) ** 53 + 5.39389368894345e103 * cos(theta) ** 51 - 1.23913773935187e104 * cos(theta) ** 49 + 1.9907458763358e104 * cos(theta) ** 47 - 2.3778964556011e104 * cos(theta) ** 45 + 2.19191572723007e104 * cos(theta) ** 43 - 1.59749790289649e104 * cos(theta) ** 41 + 9.35677343125086e103 * cos(theta) ** 39 - 4.45303090080725e103 * cos(theta) ** 37 + 1.73433835084072e103 * cos(theta) ** 35 - 5.55100225255636e102 * cos(theta) ** 33 + 1.46253951564359e102 * cos(theta) ** 31 - 3.17054020873786e101 * cos(theta) ** 29 + 5.64083840818392e100 * cos(theta) ** 27 - 8.19848563673936e99 * cos(theta) ** 25 + 9.66802551502283e98 * cos(theta) ** 23 - 9.16452025215727e97 * cos(theta) ** 21 + 6.89802599624741e96 * cos(theta) ** 19 - 4.05766235073377e95 * cos(theta) ** 17 + 1.82729165463507e94 * cos(theta) ** 15 - 6.13185119005059e92 * cos(theta) ** 13 + 1.47892514787862e91 * cos(theta) ** 11 - 2.43900699050447e89 * cos(theta) ** 9 + 2.55839894108861e87 * cos(theta) ** 7 - 1.52415256064853e85 * cos(theta) ** 5 + 4.21735628292344e82 * cos(theta) ** 3 - 3.42040250034342e79 * cos(theta) ) * sin(40 * phi) ) # @torch.jit.script def Yl95_m_minus_39(theta, phi): return ( 1.0413907297102e-76 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 3.32714777619879e100 * cos(theta) ** 56 - 2.71100929912494e101 * cos(theta) ** 54 + 1.03728724787374e102 * cos(theta) ** 52 - 2.47827547870375e102 * cos(theta) ** 50 + 4.14738724236624e102 * cos(theta) ** 48 - 5.16934012087196e102 * cos(theta) ** 46 + 4.9816266527956e102 * cos(theta) ** 44 - 3.80356643546783e102 * cos(theta) ** 42 + 2.33919335781271e102 * cos(theta) ** 40 - 1.17185023705454e102 * cos(theta) ** 38 + 4.81760653011311e101 * cos(theta) ** 36 - 1.63264772134011e101 * cos(theta) ** 34 + 4.57043598638622e100 * cos(theta) ** 32 - 1.05684673624595e100 * cos(theta) ** 30 + 2.01458514577997e99 * cos(theta) ** 28 - 3.15326370643821e98 * cos(theta) ** 26 + 4.02834396459284e97 * cos(theta) ** 24 - 4.16569102370785e96 * cos(theta) ** 22 + 3.4490129981237e95 * cos(theta) ** 20 - 2.25425686151876e94 * cos(theta) ** 18 + 1.14205728414692e93 * cos(theta) ** 16 - 4.37989370717899e91 * cos(theta) ** 14 + 1.23243762323218e90 * cos(theta) ** 12 - 2.43900699050447e88 * cos(theta) ** 10 + 3.19799867636076e86 * cos(theta) ** 8 - 2.54025426774755e84 * cos(theta) ** 6 + 1.05433907073086e82 * cos(theta) ** 4 - 1.71020125017171e79 * cos(theta) ** 2 + 4.52434193167119e75 ) * sin(39 * phi) ) # @torch.jit.script def Yl95_m_minus_38(theta, phi): return ( 9.10130218782643e-75 * (1.0 - cos(theta) ** 2) ** 19 * ( 5.83710136175226e98 * cos(theta) ** 57 - 4.9291078165908e99 * cos(theta) ** 55 + 1.95714575070517e100 * cos(theta) ** 53 - 4.85936368373284e100 * cos(theta) ** 51 + 8.4640555966658e100 * cos(theta) ** 49 - 1.09985960018552e101 * cos(theta) ** 47 + 1.10702814506569e101 * cos(theta) ** 45 - 8.84550333829728e100 * cos(theta) ** 43 + 5.70534965320174e100 * cos(theta) ** 41 - 3.00474419757574e100 * cos(theta) ** 39 + 1.30205581894949e100 * cos(theta) ** 37 - 4.66470777525745e99 * cos(theta) ** 35 + 1.38498060193522e99 * cos(theta) ** 33 - 3.40918302014823e98 * cos(theta) ** 31 + 6.94684533027576e97 * cos(theta) ** 29 - 1.16787544682897e97 * cos(theta) ** 27 + 1.61133758583714e96 * cos(theta) ** 25 - 1.81117001030776e95 * cos(theta) ** 23 + 1.64238714196367e94 * cos(theta) ** 21 - 1.18645097974672e93 * cos(theta) ** 19 + 6.71798402439366e91 * cos(theta) ** 17 - 2.91992913811933e90 * cos(theta) ** 15 + 9.48028940947833e88 * cos(theta) ** 13 - 2.21727908227679e87 * cos(theta) ** 11 + 3.55333186262306e85 * cos(theta) ** 9 - 3.62893466821079e83 * cos(theta) ** 7 + 2.10867814146172e81 * cos(theta) ** 5 - 5.7006708339057e78 * cos(theta) ** 3 + 4.52434193167119e75 * cos(theta) ) * sin(38 * phi) ) # @torch.jit.script def Yl95_m_minus_37(theta, phi): return ( 7.99361728806196e-73 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 1.00639678650901e97 * cos(theta) ** 58 - 8.80197824391214e97 * cos(theta) ** 56 + 3.62434398278735e98 * cos(theta) ** 54 - 9.34493016102469e98 * cos(theta) ** 52 + 1.69281111933316e99 * cos(theta) ** 50 - 2.29137416705317e99 * cos(theta) ** 48 + 2.40658292405585e99 * cos(theta) ** 46 - 2.01034166779484e99 * cos(theta) ** 44 + 1.35841658409565e99 * cos(theta) ** 42 - 7.51186049393935e98 * cos(theta) ** 40 + 3.42646268144602e98 * cos(theta) ** 38 - 1.29575215979373e98 * cos(theta) ** 36 + 4.073472358633e97 * cos(theta) ** 34 - 1.06536969379632e97 * cos(theta) ** 32 + 2.31561511009192e96 * cos(theta) ** 30 - 4.17098373867489e95 * cos(theta) ** 28 + 6.19745225321976e94 * cos(theta) ** 26 - 7.54654170961567e93 * cos(theta) ** 24 + 7.46539609983486e92 * cos(theta) ** 22 - 5.93225489873358e91 * cos(theta) ** 20 + 3.73221334688536e90 * cos(theta) ** 18 - 1.82495571132458e89 * cos(theta) ** 16 + 6.77163529248452e87 * cos(theta) ** 14 - 1.84773256856399e86 * cos(theta) ** 12 + 3.55333186262306e84 * cos(theta) ** 10 - 4.53616833526349e82 * cos(theta) ** 8 + 3.51446356910287e80 * cos(theta) ** 6 - 1.42516770847643e78 * cos(theta) ** 4 + 2.2621709658356e75 * cos(theta) ** 2 - 5.86510491531137e71 ) * sin(37 * phi) ) # @torch.jit.script def Yl95_m_minus_36(theta, phi): return ( 7.05433895064767e-71 * (1.0 - cos(theta) ** 2) ** 18 * ( 1.70575726526951e95 * cos(theta) ** 59 - 1.54420670945827e96 * cos(theta) ** 57 + 6.58971633234064e96 * cos(theta) ** 55 - 1.76319437000466e97 * cos(theta) ** 53 + 3.31923748888855e97 * cos(theta) ** 51 - 4.6762738103126e97 * cos(theta) ** 49 + 5.12038920011882e97 * cos(theta) ** 47 - 4.46742592843297e97 * cos(theta) ** 45 + 3.15910833510617e97 * cos(theta) ** 43 - 1.83216109608277e97 * cos(theta) ** 41 + 8.78580174729749e96 * cos(theta) ** 39 - 3.50203286430739e96 * cos(theta) ** 37 + 1.16384924532371e96 * cos(theta) ** 35 - 3.22839301150401e95 * cos(theta) ** 33 + 7.46972616158684e94 * cos(theta) ** 31 - 1.43827025471548e94 * cos(theta) ** 29 + 2.29535268637769e93 * cos(theta) ** 27 - 3.01861668384627e92 * cos(theta) ** 25 + 3.24582439123255e91 * cos(theta) ** 23 - 2.82488328511123e90 * cos(theta) ** 21 + 1.96432281415019e89 * cos(theta) ** 19 - 1.07350335960269e88 * cos(theta) ** 17 + 4.51442352832302e86 * cos(theta) ** 15 - 1.42133274504923e85 * cos(theta) ** 13 + 3.23030169329369e83 * cos(theta) ** 11 - 5.04018703918165e81 * cos(theta) ** 9 + 5.02066224157552e79 * cos(theta) ** 7 - 2.85033541695285e77 * cos(theta) ** 5 + 7.54056988611866e74 * cos(theta) ** 3 - 5.86510491531137e71 * cos(theta) ) * sin(36 * phi) ) # @torch.jit.script def Yl95_m_minus_35(theta, phi): return ( 6.25413996102351e-69 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 2.84292877544918e93 * cos(theta) ** 60 - 2.66242536113495e94 * cos(theta) ** 58 + 1.17673505934654e95 * cos(theta) ** 56 - 3.26517475926789e95 * cos(theta) ** 54 + 6.38314901709337e95 * cos(theta) ** 52 - 9.3525476206252e95 * cos(theta) ** 50 + 1.06674775002475e96 * cos(theta) ** 48 - 9.71179549659341e95 * cos(theta) ** 46 + 7.17979167069584e95 * cos(theta) ** 44 - 4.36228832400659e95 * cos(theta) ** 42 + 2.19645043682437e95 * cos(theta) ** 40 - 9.21587595870366e94 * cos(theta) ** 38 + 3.23291457034365e94 * cos(theta) ** 36 - 9.49527356324708e93 * cos(theta) ** 34 + 2.33428942549589e93 * cos(theta) ** 32 - 4.79423418238493e92 * cos(theta) ** 30 + 8.1976881656346e91 * cos(theta) ** 28 - 1.16100641686395e91 * cos(theta) ** 26 + 1.35242682968023e90 * cos(theta) ** 24 - 1.28403785686874e89 * cos(theta) ** 22 + 9.82161407075096e87 * cos(theta) ** 20 - 5.9639075533483e86 * cos(theta) ** 18 + 2.82151470520188e85 * cos(theta) ** 16 - 1.01523767503516e84 * cos(theta) ** 14 + 2.69191807774475e82 * cos(theta) ** 12 - 5.04018703918165e80 * cos(theta) ** 10 + 6.2758278019694e78 * cos(theta) ** 8 - 4.75055902825475e76 * cos(theta) ** 6 + 1.88514247152966e74 * cos(theta) ** 4 - 2.93255245765569e71 * cos(theta) ** 2 + 7.46196554110862e67 ) * sin(35 * phi) ) # @torch.jit.script def Yl95_m_minus_34(theta, phi): return ( 5.56934587317868e-67 * (1.0 - cos(theta) ** 2) ** 17 * ( 4.6605389761462e91 * cos(theta) ** 61 - 4.51258535785585e92 * cos(theta) ** 59 + 2.0644474725378e93 * cos(theta) ** 57 - 5.93668138048706e93 * cos(theta) ** 55 + 1.20436773907422e94 * cos(theta) ** 53 - 1.83383286678925e94 * cos(theta) ** 51 + 2.17703622454032e94 * cos(theta) ** 49 - 2.0663394673603e94 * cos(theta) ** 47 + 1.59550926015463e94 * cos(theta) ** 45 - 1.01448565674572e94 * cos(theta) ** 43 + 5.35719618737652e93 * cos(theta) ** 41 - 2.36304511761632e93 * cos(theta) ** 39 + 8.73760694687473e92 * cos(theta) ** 37 - 2.71293530378488e92 * cos(theta) ** 35 + 7.07360431968451e91 * cos(theta) ** 33 - 1.54652715560804e91 * cos(theta) ** 31 + 2.82678902263262e90 * cos(theta) ** 29 - 4.30002376616277e89 * cos(theta) ** 27 + 5.40970731872091e88 * cos(theta) ** 25 - 5.58277329073365e87 * cos(theta) ** 23 + 4.67695908130998e86 * cos(theta) ** 21 - 3.13889871228858e85 * cos(theta) ** 19 + 1.6597145324717e84 * cos(theta) ** 17 - 6.76825116690107e82 * cos(theta) ** 15 + 2.0707062136498e81 * cos(theta) ** 13 - 4.58198821743786e79 * cos(theta) ** 11 + 6.97314200218823e77 * cos(theta) ** 9 - 6.78651289750679e75 * cos(theta) ** 7 + 3.77028494305933e73 * cos(theta) ** 5 - 9.77517485885229e70 * cos(theta) ** 3 + 7.46196554110862e67 * cos(theta) ) * sin(34 * phi) ) # @torch.jit.script def Yl95_m_minus_33(theta, phi): return ( 4.9807516743342e-65 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 7.51699834862291e89 * cos(theta) ** 62 - 7.52097559642641e90 * cos(theta) ** 60 + 3.55939219403068e91 * cos(theta) ** 58 - 1.06012167508698e92 * cos(theta) ** 56 + 2.23031062791522e92 * cos(theta) ** 54 - 3.52660166690241e92 * cos(theta) ** 52 + 4.35407244908063e92 * cos(theta) ** 50 - 4.30487389033396e92 * cos(theta) ** 48 + 3.4684983916405e92 * cos(theta) ** 46 - 2.30564921987664e92 * cos(theta) ** 44 + 1.27552290175631e92 * cos(theta) ** 42 - 5.90761279404081e91 * cos(theta) ** 40 + 2.29937024917756e91 * cos(theta) ** 38 - 7.53593139940245e90 * cos(theta) ** 36 + 2.08047185873074e90 * cos(theta) ** 34 - 4.83289736127513e89 * cos(theta) ** 32 + 9.42263007544207e88 * cos(theta) ** 30 - 1.53572277362956e88 * cos(theta) ** 28 + 2.0806566610465e87 * cos(theta) ** 26 - 2.32615553780569e86 * cos(theta) ** 24 + 2.12589049150454e85 * cos(theta) ** 22 - 1.56944935614429e84 * cos(theta) ** 20 + 9.22063629150943e82 * cos(theta) ** 18 - 4.23015697931317e81 * cos(theta) ** 16 + 1.47907586689272e80 * cos(theta) ** 14 - 3.81832351453155e78 * cos(theta) ** 12 + 6.97314200218823e76 * cos(theta) ** 10 - 8.48314112188349e74 * cos(theta) ** 8 + 6.28380823843221e72 * cos(theta) ** 6 - 2.44379371471307e70 * cos(theta) ** 4 + 3.73098277055431e67 * cos(theta) ** 2 - 9.3297893737292e63 ) * sin(33 * phi) ) # @torch.jit.script def Yl95_m_minus_32(theta, phi): return ( 4.47270391055021e-63 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.19317434105126e88 * cos(theta) ** 63 - 1.2329468190863e89 * cos(theta) ** 61 + 6.03286812547573e89 * cos(theta) ** 59 - 1.85986258787189e90 * cos(theta) ** 57 + 4.05511023257313e90 * cos(theta) ** 55 - 6.65396540924984e90 * cos(theta) ** 53 + 8.53739695898163e90 * cos(theta) ** 51 - 8.78545691904889e90 * cos(theta) ** 49 + 7.37978381200107e90 * cos(theta) ** 47 - 5.12366493305919e90 * cos(theta) ** 45 + 2.96633232966585e90 * cos(theta) ** 43 - 1.44088116927825e90 * cos(theta) ** 41 + 5.89582115173733e89 * cos(theta) ** 39 - 2.03673821605472e89 * cos(theta) ** 37 + 5.94420531065925e88 * cos(theta) ** 35 - 1.46451435190155e88 * cos(theta) ** 33 + 3.03955808885228e87 * cos(theta) ** 31 - 5.29559577113642e86 * cos(theta) ** 29 + 7.70613578165372e85 * cos(theta) ** 27 - 9.30462215122275e84 * cos(theta) ** 25 + 9.24300213697625e83 * cos(theta) ** 23 - 7.47356836259185e82 * cos(theta) ** 21 + 4.85296646921549e81 * cos(theta) ** 19 - 2.4883276348901e80 * cos(theta) ** 17 + 9.86050577928478e78 * cos(theta) ** 15 - 2.93717193425504e77 * cos(theta) ** 13 + 6.3392200019893e75 * cos(theta) ** 11 - 9.42571235764832e73 * cos(theta) ** 9 + 8.97686891204602e71 * cos(theta) ** 7 - 4.88758742942614e69 * cos(theta) ** 5 + 1.2436609235181e67 * cos(theta) ** 3 - 9.3297893737292e63 * cos(theta) ) * sin(32 * phi) ) # @torch.jit.script def Yl95_m_minus_31(theta, phi): return ( 4.03238505659312e-61 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 1.86433490789259e86 * cos(theta) ** 64 - 1.98862390175209e87 * cos(theta) ** 62 + 1.00547802091262e88 * cos(theta) ** 60 - 3.20665963426188e88 * cos(theta) ** 58 + 7.24126827245202e88 * cos(theta) ** 56 - 1.23221581652775e89 * cos(theta) ** 54 + 1.64180710749647e89 * cos(theta) ** 52 - 1.75709138380978e89 * cos(theta) ** 50 + 1.53745496083356e89 * cos(theta) ** 48 - 1.11384020283895e89 * cos(theta) ** 46 + 6.7416643856042e88 * cos(theta) ** 44 - 3.43066945066249e88 * cos(theta) ** 42 + 1.47395528793433e88 * cos(theta) ** 40 - 5.3598374106703e87 * cos(theta) ** 38 + 1.65116814184979e87 * cos(theta) ** 36 - 4.30739515265163e86 * cos(theta) ** 34 + 9.49861902766338e85 * cos(theta) ** 32 - 1.76519859037881e85 * cos(theta) ** 30 + 2.75219135059061e84 * cos(theta) ** 28 - 3.57870082739337e83 * cos(theta) ** 26 + 3.85125089040677e82 * cos(theta) ** 24 - 3.39707652845084e81 * cos(theta) ** 22 + 2.42648323460774e80 * cos(theta) ** 20 - 1.38240424160561e79 * cos(theta) ** 18 + 6.16281611205299e77 * cos(theta) ** 16 - 2.09797995303932e76 * cos(theta) ** 14 + 5.28268333499108e74 * cos(theta) ** 12 - 9.42571235764832e72 * cos(theta) ** 10 + 1.12210861400575e71 * cos(theta) ** 8 - 8.14597904904357e68 * cos(theta) ** 6 + 3.10915230879526e66 * cos(theta) ** 4 - 4.6648946868646e63 * cos(theta) ** 2 + 1.14785794460251e60 ) * sin(31 * phi) ) # @torch.jit.script def Yl95_m_minus_30(theta, phi): return ( 3.64925277986555e-59 * (1.0 - cos(theta) ** 2) ** 15 * ( 2.86820755060398e84 * cos(theta) ** 65 - 3.15654587579697e85 * cos(theta) ** 63 + 1.64832462444692e86 * cos(theta) ** 61 - 5.43501632925742e86 * cos(theta) ** 59 + 1.27039794253544e87 * cos(theta) ** 57 - 2.24039239368681e87 * cos(theta) ** 55 + 3.0977492594273e87 * cos(theta) ** 53 - 3.44527722315643e87 * cos(theta) ** 51 + 3.13766318537461e87 * cos(theta) ** 49 - 2.36987277199778e87 * cos(theta) ** 47 + 1.49814764124538e87 * cos(theta) ** 45 - 7.9783010480523e86 * cos(theta) ** 43 + 3.59501289740081e86 * cos(theta) ** 41 - 1.37431728478726e86 * cos(theta) ** 39 + 4.46261659959403e85 * cos(theta) ** 37 - 1.23068432932904e85 * cos(theta) ** 35 + 2.87836940232224e84 * cos(theta) ** 33 - 5.69418900122196e83 * cos(theta) ** 31 + 9.4903150020366e82 * cos(theta) ** 29 - 1.32544475088643e82 * cos(theta) ** 27 + 1.54050035616271e81 * cos(theta) ** 25 - 1.47698979497863e80 * cos(theta) ** 23 + 1.15546820695607e79 * cos(theta) ** 21 - 7.27581179792427e77 * cos(theta) ** 19 + 3.62518594826646e76 * cos(theta) ** 17 - 1.39865330202621e75 * cos(theta) ** 15 + 4.06360256537775e73 * cos(theta) ** 13 - 8.56882941604393e71 * cos(theta) ** 11 + 1.24678734889528e70 * cos(theta) ** 9 - 1.16371129272051e68 * cos(theta) ** 7 + 6.21830461759051e65 * cos(theta) ** 5 - 1.55496489562153e63 * cos(theta) ** 3 + 1.14785794460251e60 * cos(theta) ) * sin(30 * phi) ) # @torch.jit.script def Yl95_m_minus_29(theta, phi): return ( 3.31459844134536e-57 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 4.34576901606663e82 * cos(theta) ** 66 - 4.93210293093277e83 * cos(theta) ** 64 + 2.65858810394665e84 * cos(theta) ** 62 - 9.05836054876236e84 * cos(theta) ** 60 + 2.19034128023352e85 * cos(theta) ** 58 - 4.00070070301217e85 * cos(theta) ** 56 + 5.73657270264314e85 * cos(theta) ** 54 - 6.62553312145467e85 * cos(theta) ** 52 + 6.27532637074921e85 * cos(theta) ** 50 - 4.93723494166203e85 * cos(theta) ** 48 + 3.25684269835952e85 * cos(theta) ** 46 - 1.81325023819371e85 * cos(theta) ** 44 + 8.55955451762098e84 * cos(theta) ** 42 - 3.43579321196814e84 * cos(theta) ** 40 + 1.17437278936685e84 * cos(theta) ** 38 - 3.41856758146955e83 * cos(theta) ** 36 + 8.46579235977128e82 * cos(theta) ** 34 - 1.77943406288186e82 * cos(theta) ** 32 + 3.1634383340122e81 * cos(theta) ** 30 - 4.73373125316583e80 * cos(theta) ** 28 + 5.92500136985657e79 * cos(theta) ** 26 - 6.15412414574428e78 * cos(theta) ** 24 + 5.25212821343668e77 * cos(theta) ** 22 - 3.63790589896214e76 * cos(theta) ** 20 + 2.01399219348137e75 * cos(theta) ** 18 - 8.74158313766381e73 * cos(theta) ** 16 + 2.90257326098411e72 * cos(theta) ** 14 - 7.14069118003661e70 * cos(theta) ** 12 + 1.24678734889528e69 * cos(theta) ** 10 - 1.45463911590064e67 * cos(theta) ** 8 + 1.03638410293175e65 * cos(theta) ** 6 - 3.88741223905384e62 * cos(theta) ** 4 + 5.73928972301255e59 * cos(theta) ** 2 - 1.39134296315456e56 ) * sin(29 * phi) ) # @torch.jit.script def Yl95_m_minus_28(theta, phi): return ( 3.02119784141626e-55 * (1.0 - cos(theta) ** 2) ** 14 * ( 6.48622241203975e80 * cos(theta) ** 67 - 7.58785066297349e81 * cos(theta) ** 65 + 4.21998111737563e82 * cos(theta) ** 63 - 1.48497713914137e83 * cos(theta) ** 61 + 3.71244284785343e83 * cos(theta) ** 59 - 7.01877316317924e83 * cos(theta) ** 57 + 1.04301321866239e84 * cos(theta) ** 55 - 1.25010058895371e84 * cos(theta) ** 53 + 1.2304561511273e84 * cos(theta) ** 51 - 1.00759896768613e84 * cos(theta) ** 49 + 6.9294525497011e83 * cos(theta) ** 47 - 4.02944497376379e83 * cos(theta) ** 45 + 1.99059407386535e83 * cos(theta) ** 43 - 8.37998344382474e82 * cos(theta) ** 41 + 3.01121228042782e82 * cos(theta) ** 39 - 9.23937184180959e81 * cos(theta) ** 37 + 2.41879781707751e81 * cos(theta) ** 35 - 5.39222443297534e80 * cos(theta) ** 33 + 1.02046397871361e80 * cos(theta) ** 31 - 1.63232112178132e79 * cos(theta) ** 29 + 2.19444495179873e78 * cos(theta) ** 27 - 2.46164965829771e77 * cos(theta) ** 25 + 2.28353400584203e76 * cos(theta) ** 23 - 1.73233614236292e75 * cos(theta) ** 21 + 1.05999589130598e74 * cos(theta) ** 19 - 5.14210772803754e72 * cos(theta) ** 17 + 1.93504884065607e71 * cos(theta) ** 15 - 5.49283936925893e69 * cos(theta) ** 13 + 1.13344304445025e68 * cos(theta) ** 11 - 1.61626568433404e66 * cos(theta) ** 9 + 1.48054871847393e64 * cos(theta) ** 7 - 7.77482447810767e61 * cos(theta) ** 5 + 1.91309657433752e59 * cos(theta) ** 3 - 1.39134296315456e56 * cos(theta) ) * sin(28 * phi) ) # @torch.jit.script def Yl95_m_minus_27(theta, phi): return ( 2.76303367377826e-53 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 9.53856237064669e78 * cos(theta) ** 68 - 1.14967434287477e80 * cos(theta) ** 66 + 6.59372049589942e80 * cos(theta) ** 64 - 2.39512441796995e81 * cos(theta) ** 62 + 6.18740474642238e81 * cos(theta) ** 60 - 1.21013330399642e82 * cos(theta) ** 58 + 1.86252360475427e82 * cos(theta) ** 56 - 2.31500109065502e82 * cos(theta) ** 54 + 2.36626182909095e82 * cos(theta) ** 52 - 2.01519793537226e82 * cos(theta) ** 50 + 1.4436359478544e82 * cos(theta) ** 48 - 8.75966298644302e81 * cos(theta) ** 46 + 4.52407744060306e81 * cos(theta) ** 44 - 1.9952341532916e81 * cos(theta) ** 42 + 7.52803070106955e80 * cos(theta) ** 40 - 2.43141364258147e80 * cos(theta) ** 38 + 6.7188828252153e79 * cos(theta) ** 36 - 1.58594836263981e79 * cos(theta) ** 34 + 3.18894993348004e78 * cos(theta) ** 32 - 5.44107040593774e77 * cos(theta) ** 30 + 7.83730339928118e76 * cos(theta) ** 28 - 9.46788330114504e75 * cos(theta) ** 26 + 9.5147250243418e74 * cos(theta) ** 24 - 7.87425519255873e73 * cos(theta) ** 22 + 5.29997945652992e72 * cos(theta) ** 20 - 2.85672651557641e71 * cos(theta) ** 18 + 1.20940552541005e70 * cos(theta) ** 16 - 3.92345669232781e68 * cos(theta) ** 14 + 9.44535870375212e66 * cos(theta) ** 12 - 1.61626568433404e65 * cos(theta) ** 10 + 1.85068589809242e63 * cos(theta) ** 8 - 1.29580407968461e61 * cos(theta) ** 6 + 4.78274143584379e58 * cos(theta) ** 4 - 6.95671481577279e55 * cos(theta) ** 2 + 1.66348991290598e52 ) * sin(27 * phi) ) # @torch.jit.script def Yl95_m_minus_26(theta, phi): return ( 2.53507398479645e-51 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.38240034357198e77 * cos(theta) ** 69 - 1.71593185503697e78 * cos(theta) ** 67 + 1.01441853783068e79 * cos(theta) ** 65 - 3.8017847904285e79 * cos(theta) ** 63 + 1.01432864695449e80 * cos(theta) ** 61 - 2.0510733966041e80 * cos(theta) ** 59 + 3.26758527149871e80 * cos(theta) ** 57 - 4.20909289210004e80 * cos(theta) ** 55 + 4.46464496054897e80 * cos(theta) ** 53 - 3.95136850072992e80 * cos(theta) ** 51 + 2.94619581194775e80 * cos(theta) ** 49 - 1.86375808222192e80 * cos(theta) ** 47 + 1.00535054235623e80 * cos(theta) ** 45 - 4.64007942625955e79 * cos(theta) ** 43 + 1.83610504904135e79 * cos(theta) ** 41 - 6.2343939553371e78 * cos(theta) ** 39 + 1.81591427708522e78 * cos(theta) ** 37 - 4.53128103611373e77 * cos(theta) ** 35 + 9.66348464690921e76 * cos(theta) ** 33 - 1.7551840019154e76 * cos(theta) ** 31 + 2.70251841354523e75 * cos(theta) ** 29 - 3.50662344486853e74 * cos(theta) ** 27 + 3.80589000973672e73 * cos(theta) ** 25 - 3.42358921415597e72 * cos(theta) ** 23 + 2.52379974120472e71 * cos(theta) ** 21 - 1.503540271356e70 * cos(theta) ** 19 + 7.11415014947086e68 * cos(theta) ** 17 - 2.6156377948852e67 * cos(theta) ** 15 + 7.26566054134779e65 * cos(theta) ** 13 - 1.46933244030367e64 * cos(theta) ** 11 + 2.05631766454713e62 * cos(theta) ** 9 - 1.85114868526373e60 * cos(theta) ** 7 + 9.56548287168759e57 * cos(theta) ** 5 - 2.31890493859093e55 * cos(theta) ** 3 + 1.66348991290598e52 * cos(theta) ) * sin(26 * phi) ) # @torch.jit.script def Yl95_m_minus_25(theta, phi): return ( 2.33309457412421e-49 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 1.97485763367426e75 * cos(theta) ** 70 - 2.52342919858378e76 * cos(theta) ** 68 + 1.53699778459194e77 * cos(theta) ** 66 - 5.94028873504452e77 * cos(theta) ** 64 + 1.63601394670079e78 * cos(theta) ** 62 - 3.41845566100684e78 * cos(theta) ** 60 + 5.63376770948054e78 * cos(theta) ** 58 - 7.5162373073215e78 * cos(theta) ** 56 + 8.26786103805365e78 * cos(theta) ** 54 - 7.59878557832676e78 * cos(theta) ** 52 + 5.89239162389549e78 * cos(theta) ** 50 - 3.88282933796233e78 * cos(theta) ** 48 + 2.18554465729616e78 * cos(theta) ** 46 - 1.05456350596808e78 * cos(theta) ** 44 + 4.3716786881937e77 * cos(theta) ** 42 - 1.55859848883428e77 * cos(theta) ** 40 + 4.7787217818032e76 * cos(theta) ** 38 - 1.25868917669826e76 * cos(theta) ** 36 + 2.842201366738e75 * cos(theta) ** 34 - 5.48495000598562e74 * cos(theta) ** 32 + 9.00839471181744e73 * cos(theta) ** 30 - 1.25236551602448e73 * cos(theta) ** 28 + 1.46380384989874e72 * cos(theta) ** 26 - 1.42649550589832e71 * cos(theta) ** 24 + 1.1471817005476e70 * cos(theta) ** 22 - 7.51770135678002e68 * cos(theta) ** 20 + 3.95230563859492e67 * cos(theta) ** 18 - 1.63477362180325e66 * cos(theta) ** 16 + 5.18975752953413e64 * cos(theta) ** 14 - 1.22444370025306e63 * cos(theta) ** 12 + 2.05631766454713e61 * cos(theta) ** 10 - 2.31393585657966e59 * cos(theta) ** 8 + 1.59424714528126e57 * cos(theta) ** 6 - 5.79726234647733e54 * cos(theta) ** 4 + 8.31744956452988e51 * cos(theta) ** 2 - 1.96397864569773e48 ) * sin(25 * phi) ) # @torch.jit.script def Yl95_m_minus_24(theta, phi): return ( 2.1535360244538e-47 * (1.0 - cos(theta) ** 2) ** 12 * ( 2.78148962489333e73 * cos(theta) ** 71 - 3.65714376606345e74 * cos(theta) ** 69 + 2.29402654416707e75 * cos(theta) ** 67 - 9.13890574622234e75 * cos(theta) ** 65 + 2.59684753444569e76 * cos(theta) ** 63 - 5.6040256737817e76 * cos(theta) ** 61 + 9.54875882962804e76 * cos(theta) ** 59 - 1.31863812409149e77 * cos(theta) ** 57 + 1.5032474614643e77 * cos(theta) ** 55 - 1.43373312798618e77 * cos(theta) ** 53 + 1.15537090664617e77 * cos(theta) ** 51 - 7.92414150604558e76 * cos(theta) ** 49 + 4.65009501552375e76 * cos(theta) ** 47 - 2.34347445770684e76 * cos(theta) ** 45 + 1.01666946237063e76 * cos(theta) ** 43 - 3.80145972886409e75 * cos(theta) ** 41 + 1.22531327738544e75 * cos(theta) ** 39 - 3.40186263972502e74 * cos(theta) ** 37 + 8.12057533353715e73 * cos(theta) ** 35 - 1.66210606241988e73 * cos(theta) ** 33 + 2.90593377800563e72 * cos(theta) ** 31 - 4.31850177939475e71 * cos(theta) ** 29 + 5.4214957403657e70 * cos(theta) ** 27 - 5.70598202359329e69 * cos(theta) ** 25 + 4.98774652412001e68 * cos(theta) ** 23 - 3.57985778894287e67 * cos(theta) ** 21 + 2.08016086241838e66 * cos(theta) ** 19 - 9.61631542237207e64 * cos(theta) ** 17 + 3.45983835302276e63 * cos(theta) ** 15 - 9.41879769425433e61 * cos(theta) ** 13 + 1.86937969504284e60 * cos(theta) ** 11 - 2.57103984064407e58 * cos(theta) ** 9 + 2.27749592183038e56 * cos(theta) ** 7 - 1.15945246929546e54 * cos(theta) ** 5 + 2.77248318817663e51 * cos(theta) ** 3 - 1.96397864569773e48 * cos(theta) ) * sin(24 * phi) ) # @torch.jit.script def Yl95_m_minus_23(theta, phi): return ( 1.99338813975248e-45 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 3.86318003457407e71 * cos(theta) ** 72 - 5.22449109437636e72 * cos(theta) ** 70 + 3.37356844730452e73 * cos(theta) ** 68 - 1.38468268882157e74 * cos(theta) ** 66 + 4.0575742725714e74 * cos(theta) ** 64 - 9.03875108674468e74 * cos(theta) ** 62 + 1.59145980493801e75 * cos(theta) ** 60 - 2.27351400705429e75 * cos(theta) ** 58 + 2.68437046690053e75 * cos(theta) ** 56 - 2.65506134812256e75 * cos(theta) ** 54 + 2.22186712816572e75 * cos(theta) ** 52 - 1.58482830120912e75 * cos(theta) ** 50 + 9.68769794900781e74 * cos(theta) ** 48 - 5.09450969066705e74 * cos(theta) ** 46 + 2.3106124144787e74 * cos(theta) ** 44 - 9.05109459253354e73 * cos(theta) ** 42 + 3.06328319346359e73 * cos(theta) ** 40 - 8.95227010453954e72 * cos(theta) ** 38 + 2.25571537042699e72 * cos(theta) ** 36 - 4.88854724241143e71 * cos(theta) ** 34 + 9.08104305626758e70 * cos(theta) ** 32 - 1.43950059313158e70 * cos(theta) ** 30 + 1.93624847870204e69 * cos(theta) ** 28 - 2.1946084706128e68 * cos(theta) ** 26 + 2.07822771838334e67 * cos(theta) ** 24 - 1.62720808588312e66 * cos(theta) ** 22 + 1.04008043120919e65 * cos(theta) ** 20 - 5.34239745687337e63 * cos(theta) ** 18 + 2.16239897063922e62 * cos(theta) ** 16 - 6.72771263875309e60 * cos(theta) ** 14 + 1.5578164125357e59 * cos(theta) ** 12 - 2.57103984064407e57 * cos(theta) ** 10 + 2.84686990228797e55 * cos(theta) ** 8 - 1.93242078215911e53 * cos(theta) ** 6 + 6.93120797044157e50 * cos(theta) ** 4 - 9.81989322848864e47 * cos(theta) ** 2 + 2.29222531010472e44 ) * sin(23 * phi) ) # @torch.jit.script def Yl95_m_minus_22(theta, phi): return ( 1.85009616828234e-43 * (1.0 - cos(theta) ** 2) ** 11 * ( 5.29202744462201e69 * cos(theta) ** 73 - 7.35843816109346e70 * cos(theta) ** 71 + 4.88922963377467e71 * cos(theta) ** 69 - 2.0666905803307e72 * cos(theta) ** 67 + 6.24242195780215e72 * cos(theta) ** 65 - 1.43472239472138e73 * cos(theta) ** 63 + 2.60895049989837e73 * cos(theta) ** 61 - 3.85341357127847e73 * cos(theta) ** 59 + 4.70942187175532e73 * cos(theta) ** 57 - 4.82738426931374e73 * cos(theta) ** 55 + 4.19220212861457e73 * cos(theta) ** 53 - 3.10750647295905e73 * cos(theta) ** 51 + 1.97708121408323e73 * cos(theta) ** 49 - 1.08393823205682e73 * cos(theta) ** 47 + 5.13469425439711e72 * cos(theta) ** 45 - 2.10490571919385e72 * cos(theta) ** 43 + 7.47142242308193e71 * cos(theta) ** 41 - 2.29545387295886e71 * cos(theta) ** 39 + 6.09652802818105e70 * cos(theta) ** 37 - 1.39672778354612e70 * cos(theta) ** 35 + 2.751831229172e69 * cos(theta) ** 33 - 4.64355030042446e68 * cos(theta) ** 31 + 6.67671889207599e67 * cos(theta) ** 29 - 8.12817952078816e66 * cos(theta) ** 27 + 8.31291087353334e65 * cos(theta) ** 25 - 7.07481776470923e64 * cos(theta) ** 23 + 4.952763958139e63 * cos(theta) ** 21 - 2.81178813519651e62 * cos(theta) ** 19 + 1.27199939449366e61 * cos(theta) ** 17 - 4.48514175916873e59 * cos(theta) ** 15 + 1.19832031733516e58 * cos(theta) ** 13 - 2.33730894604006e56 * cos(theta) ** 11 + 3.16318878031997e54 * cos(theta) ** 9 - 2.76060111737016e52 * cos(theta) ** 7 + 1.38624159408831e50 * cos(theta) ** 5 - 3.27329774282955e47 * cos(theta) ** 3 + 2.29222531010472e44 * cos(theta) ) * sin(22 * phi) ) # @torch.jit.script def Yl95_m_minus_21(theta, phi): return ( 1.72148441156258e-41 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 7.15138843867839e67 * cos(theta) ** 74 - 1.02200530015187e69 * cos(theta) ** 72 + 6.98461376253524e69 * cos(theta) ** 70 - 3.0392508534275e70 * cos(theta) ** 68 + 9.45821508757901e70 * cos(theta) ** 66 - 2.24175374175215e71 * cos(theta) ** 64 + 4.20798467725544e71 * cos(theta) ** 62 - 6.42235595213078e71 * cos(theta) ** 60 + 8.11969288233677e71 * cos(theta) ** 58 - 8.62032905234597e71 * cos(theta) ** 56 + 7.76333727521216e71 * cos(theta) ** 54 - 5.97597398645971e71 * cos(theta) ** 52 + 3.95416242816646e71 * cos(theta) ** 50 - 2.25820465011837e71 * cos(theta) ** 48 + 1.11623788139068e71 * cos(theta) ** 46 - 4.78387663453147e70 * cos(theta) ** 44 + 1.77891010073379e70 * cos(theta) ** 42 - 5.73863468239714e69 * cos(theta) ** 40 + 1.60434948110028e69 * cos(theta) ** 38 - 3.87979939873923e68 * cos(theta) ** 36 + 8.09362126227057e67 * cos(theta) ** 34 - 1.45110946888264e67 * cos(theta) ** 32 + 2.22557296402533e66 * cos(theta) ** 30 - 2.90292125742434e65 * cos(theta) ** 28 + 3.19727341289744e64 * cos(theta) ** 26 - 2.94784073529551e63 * cos(theta) ** 24 + 2.25125634460864e62 * cos(theta) ** 22 - 1.40589406759826e61 * cos(theta) ** 20 + 7.06666330274256e59 * cos(theta) ** 18 - 2.80321359948045e58 * cos(theta) ** 16 + 8.55943083810826e56 * cos(theta) ** 14 - 1.94775745503339e55 * cos(theta) ** 12 + 3.16318878031997e53 * cos(theta) ** 10 - 3.45075139671269e51 * cos(theta) ** 8 + 2.31040265681386e49 * cos(theta) ** 6 - 8.18324435707387e46 * cos(theta) ** 4 + 1.14611265505236e44 * cos(theta) ** 2 - 2.64752288069384e40 ) * sin(21 * phi) ) # @torch.jit.script def Yl95_m_minus_20(theta, phi): return ( 1.60569376406278e-39 * (1.0 - cos(theta) ** 2) ** 10 * ( 9.53518458490452e65 * cos(theta) ** 75 - 1.40000726048201e67 * cos(theta) ** 73 + 9.83748417258484e67 * cos(theta) ** 71 - 4.40471138177898e68 * cos(theta) ** 69 + 1.41167389366851e69 * cos(theta) ** 67 - 3.44885191038793e69 * cos(theta) ** 65 + 6.67934075754831e69 * cos(theta) ** 63 - 1.05284523805423e70 * cos(theta) ** 61 + 1.37621913259945e70 * cos(theta) ** 59 - 1.51233843023614e70 * cos(theta) ** 57 + 1.41151586822039e70 * cos(theta) ** 55 - 1.12754226159617e70 * cos(theta) ** 53 + 7.75325966307148e69 * cos(theta) ** 51 - 4.60858091860892e69 * cos(theta) ** 49 + 2.37497421572484e69 * cos(theta) ** 47 - 1.06308369656255e69 * cos(theta) ** 45 + 4.13700023426464e68 * cos(theta) ** 43 - 1.39966699570662e68 * cos(theta) ** 41 + 4.11371661820583e67 * cos(theta) ** 39 - 1.04859443209168e67 * cos(theta) ** 37 + 2.31246321779159e66 * cos(theta) ** 35 - 4.3973014208565e65 * cos(theta) ** 33 + 7.17926762588816e64 * cos(theta) ** 31 - 1.00100733014632e64 * cos(theta) ** 29 + 1.18417533811016e63 * cos(theta) ** 27 - 1.1791362941182e62 * cos(theta) ** 25 + 9.78807106351581e60 * cos(theta) ** 23 - 6.69473365522979e59 * cos(theta) ** 21 + 3.71929647512766e58 * cos(theta) ** 19 - 1.64894917616497e57 * cos(theta) ** 17 + 5.70628722540551e55 * cos(theta) ** 15 - 1.4982749654103e54 * cos(theta) ** 13 + 2.87562616392724e52 * cos(theta) ** 11 - 3.83416821856966e50 * cos(theta) ** 9 + 3.30057522401979e48 * cos(theta) ** 7 - 1.63664887141477e46 * cos(theta) ** 5 + 3.82037551684121e43 * cos(theta) ** 3 - 2.64752288069384e40 * cos(theta) ) * sin(20 * phi) ) # @torch.jit.script def Yl95_m_minus_19(theta, phi): return ( 1.50113045851864e-37 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.25462955064533e64 * cos(theta) ** 76 - 1.89190170335407e65 * cos(theta) ** 74 + 1.36631724619234e66 * cos(theta) ** 72 - 6.29244483111283e66 * cos(theta) ** 70 + 2.07599102010075e67 * cos(theta) ** 68 - 5.22553319755747e67 * cos(theta) ** 66 + 1.04364699336692e68 * cos(theta) ** 64 - 1.69813748073262e68 * cos(theta) ** 62 + 2.29369855433242e68 * cos(theta) ** 60 - 2.60748005213127e68 * cos(theta) ** 58 + 2.52056405039356e68 * cos(theta) ** 56 - 2.0880412251781e68 * cos(theta) ** 54 + 1.49101147366759e68 * cos(theta) ** 52 - 9.21716183721784e67 * cos(theta) ** 50 + 4.94786294942676e67 * cos(theta) ** 48 - 2.31105151426641e67 * cos(theta) ** 46 + 9.40227325969235e66 * cos(theta) ** 44 - 3.33254046596814e66 * cos(theta) ** 42 + 1.02842915455146e66 * cos(theta) ** 40 - 2.75945903182022e65 * cos(theta) ** 38 + 6.42350893830998e64 * cos(theta) ** 36 - 1.29332394731073e64 * cos(theta) ** 34 + 2.24352113309005e63 * cos(theta) ** 32 - 3.33669110048775e62 * cos(theta) ** 30 + 4.22919763610772e61 * cos(theta) ** 28 - 4.53513959276232e60 * cos(theta) ** 26 + 4.07836294313159e59 * cos(theta) ** 24 - 3.04306075237718e58 * cos(theta) ** 22 + 1.85964823756383e57 * cos(theta) ** 20 - 9.16082875647207e55 * cos(theta) ** 18 + 3.56642951587844e54 * cos(theta) ** 16 - 1.0701964038645e53 * cos(theta) ** 14 + 2.39635513660604e51 * cos(theta) ** 12 - 3.83416821856966e49 * cos(theta) ** 10 + 4.12571903002474e47 * cos(theta) ** 8 - 2.72774811902462e45 * cos(theta) ** 6 + 9.55093879210302e42 * cos(theta) ** 4 - 1.32376144034692e40 * cos(theta) ** 2 + 3.02920238065656e36 ) * sin(19 * phi) ) # @torch.jit.script def Yl95_m_minus_18(theta, phi): return ( 1.4064238590253e-35 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.62938902681212e62 * cos(theta) ** 77 - 2.5225356044721e63 * cos(theta) ** 75 + 1.87166746053745e64 * cos(theta) ** 73 - 8.86259835368004e64 * cos(theta) ** 71 + 3.00868263782717e65 * cos(theta) ** 69 - 7.79930327993651e65 * cos(theta) ** 67 + 1.60561075902604e66 * cos(theta) ** 65 - 2.69545631862321e66 * cos(theta) ** 63 + 3.76016156447938e66 * cos(theta) ** 61 - 4.41945771547672e66 * cos(theta) ** 59 + 4.42204219367291e66 * cos(theta) ** 57 - 3.7964385912329e66 * cos(theta) ** 55 + 2.81322919559923e66 * cos(theta) ** 53 - 1.8072866347486e66 * cos(theta) ** 51 + 1.0097679488626e66 * cos(theta) ** 49 - 4.91713088141789e65 * cos(theta) ** 47 + 2.08939405770941e65 * cos(theta) ** 45 - 7.75009410690265e64 * cos(theta) ** 43 + 2.50836379158892e64 * cos(theta) ** 41 - 7.0755359790262e63 * cos(theta) ** 39 + 1.73608349684054e63 * cos(theta) ** 37 - 3.69521127803067e62 * cos(theta) ** 35 + 6.79854888815166e61 * cos(theta) ** 33 - 1.07635196789927e61 * cos(theta) ** 31 + 1.45834401245094e60 * cos(theta) ** 29 - 1.67968133065271e59 * cos(theta) ** 27 + 1.63134517725263e58 * cos(theta) ** 25 - 1.3230698923379e57 * cos(theta) ** 23 + 8.855467797923e55 * cos(theta) ** 21 - 4.82148881919583e54 * cos(theta) ** 19 + 2.09789971522261e53 * cos(theta) ** 17 - 7.13464269242999e51 * cos(theta) ** 15 + 1.84335010508157e50 * cos(theta) ** 13 - 3.48560747142696e48 * cos(theta) ** 11 + 4.58413225558305e46 * cos(theta) ** 9 - 3.89678302717803e44 * cos(theta) ** 7 + 1.9101877584206e42 * cos(theta) ** 5 - 4.41253813448973e39 * cos(theta) ** 3 + 3.02920238065656e36 * cos(theta) ) * sin(18 * phi) ) # @torch.jit.script def Yl95_m_minus_17(theta, phi): return ( 1.32039158660871e-33 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 2.08896029078477e60 * cos(theta) ** 78 - 3.31912579535802e61 * cos(theta) ** 76 + 2.52928035207764e62 * cos(theta) ** 74 - 1.23091643801112e63 * cos(theta) ** 72 + 4.29811805403882e63 * cos(theta) ** 70 - 1.14695636469655e64 * cos(theta) ** 68 + 2.43274357428187e64 * cos(theta) ** 66 - 4.21165049784876e64 * cos(theta) ** 64 + 6.06477671690222e64 * cos(theta) ** 62 - 7.36576285912787e64 * cos(theta) ** 60 + 7.6242106787464e64 * cos(theta) ** 58 - 6.77935462720161e64 * cos(theta) ** 56 + 5.20968369555413e64 * cos(theta) ** 54 - 3.47555122067038e64 * cos(theta) ** 52 + 2.01953589772521e64 * cos(theta) ** 50 - 1.02440226696206e64 * cos(theta) ** 48 + 4.54216099502046e63 * cos(theta) ** 46 - 1.76138502429606e63 * cos(theta) ** 44 + 5.97229474187839e62 * cos(theta) ** 42 - 1.76888399475655e62 * cos(theta) ** 40 + 4.5686407811593e61 * cos(theta) ** 38 - 1.02644757723074e61 * cos(theta) ** 36 + 1.99957320239755e60 * cos(theta) ** 34 - 3.36359989968523e59 * cos(theta) ** 32 + 4.8611467081698e58 * cos(theta) ** 30 - 5.99886189518826e57 * cos(theta) ** 28 + 6.27440452789475e56 * cos(theta) ** 26 - 5.5127912180746e55 * cos(theta) ** 24 + 4.02521263541955e54 * cos(theta) ** 22 - 2.41074440959791e53 * cos(theta) ** 20 + 1.16549984179034e52 * cos(theta) ** 18 - 4.45915168276874e50 * cos(theta) ** 16 + 1.31667864648683e49 * cos(theta) ** 14 - 2.9046728928558e47 * cos(theta) ** 12 + 4.58413225558305e45 * cos(theta) ** 10 - 4.87097878397254e43 * cos(theta) ** 8 + 3.18364626403434e41 * cos(theta) ** 6 - 1.10313453362243e39 * cos(theta) ** 4 + 1.51460119032828e36 * cos(theta) ** 2 - 3.4368077838173e32 ) * sin(17 * phi) ) # @torch.jit.script def Yl95_m_minus_16(theta, phi): return ( 1.24201060859807e-31 * (1.0 - cos(theta) ** 2) ** 8 * ( 2.64425353263895e58 * cos(theta) ** 79 - 4.31055298098444e59 * cos(theta) ** 77 + 3.37237380277018e60 * cos(theta) ** 75 - 1.68618690138509e61 * cos(theta) ** 73 + 6.05368740005467e61 * cos(theta) ** 71 - 1.66225560100949e62 * cos(theta) ** 69 + 3.63096055862966e62 * cos(theta) ** 67 - 6.47946230438272e62 * cos(theta) ** 65 + 9.62662970936861e62 * cos(theta) ** 63 - 1.20750210805375e63 * cos(theta) ** 61 + 1.29223909809261e63 * cos(theta) ** 59 - 1.18936046091256e63 * cos(theta) ** 57 + 9.47215217373478e62 * cos(theta) ** 55 - 6.55764381258562e62 * cos(theta) ** 53 + 3.95987430926511e62 * cos(theta) ** 51 - 2.09061687135115e62 * cos(theta) ** 49 + 9.66417232983077e61 * cos(theta) ** 47 - 3.91418894288013e61 * cos(theta) ** 45 + 1.38890575392521e61 * cos(theta) ** 43 - 4.31435120672329e60 * cos(theta) ** 41 + 1.17144635414341e60 * cos(theta) ** 39 - 2.77418264116417e59 * cos(theta) ** 37 + 5.71306629256442e58 * cos(theta) ** 35 - 1.01927269687431e58 * cos(theta) ** 33 + 1.5681118413451e57 * cos(theta) ** 31 - 2.0685730673063e56 * cos(theta) ** 29 + 2.32385352884991e55 * cos(theta) ** 27 - 2.20511648722984e54 * cos(theta) ** 25 + 1.75009245018241e53 * cos(theta) ** 23 - 1.14797352837996e52 * cos(theta) ** 21 + 6.13420969363337e50 * cos(theta) ** 19 - 2.62303040162867e49 * cos(theta) ** 17 + 8.77785764324556e47 * cos(theta) ** 15 - 2.23436376373523e46 * cos(theta) ** 13 + 4.16739295962095e44 * cos(theta) ** 11 - 5.41219864885838e42 * cos(theta) ** 9 + 4.54806609147763e40 * cos(theta) ** 7 - 2.20626906724486e38 * cos(theta) ** 5 + 5.04867063442761e35 * cos(theta) ** 3 - 3.4368077838173e32 * cos(theta) ) * sin(16 * phi) ) # @torch.jit.script def Yl95_m_minus_15(theta, phi): return ( 1.17039319566575e-29 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 3.30531691579869e56 * cos(theta) ** 80 - 5.52634997562108e57 * cos(theta) ** 78 + 4.4373339510134e58 * cos(theta) ** 76 - 2.27863094781769e59 * cos(theta) ** 74 + 8.4078991667426e59 * cos(theta) ** 72 - 2.37465085858498e60 * cos(theta) ** 70 + 5.33964788033774e60 * cos(theta) ** 68 - 9.8173671278526e60 * cos(theta) ** 66 + 1.50416089208884e61 * cos(theta) ** 64 - 1.94758404524798e61 * cos(theta) ** 62 + 2.15373183015435e61 * cos(theta) ** 60 - 2.05062148433201e61 * cos(theta) ** 58 + 1.69145574530978e61 * cos(theta) ** 56 - 1.21437848381215e61 * cos(theta) ** 54 + 7.61514290243291e60 * cos(theta) ** 52 - 4.18123374270229e60 * cos(theta) ** 50 + 2.01336923538141e60 * cos(theta) ** 48 - 8.5091063975655e59 * cos(theta) ** 46 + 3.15660398619365e59 * cos(theta) ** 44 - 1.02722647779126e59 * cos(theta) ** 42 + 2.92861588535853e58 * cos(theta) ** 40 - 7.30048063464254e57 * cos(theta) ** 38 + 1.58696285904567e57 * cos(theta) ** 36 - 2.99786087315974e56 * cos(theta) ** 34 + 4.90034950420342e55 * cos(theta) ** 32 - 6.89524355768766e54 * cos(theta) ** 30 + 8.29947688874967e53 * cos(theta) ** 28 - 8.4812172585763e52 * cos(theta) ** 26 + 7.29205187576005e51 * cos(theta) ** 24 - 5.21806149263618e50 * cos(theta) ** 22 + 3.06710484681668e49 * cos(theta) ** 20 - 1.45723911201593e48 * cos(theta) ** 18 + 5.48616102702847e46 * cos(theta) ** 16 - 1.59597411695374e45 * cos(theta) ** 14 + 3.47282746635079e43 * cos(theta) ** 12 - 5.41219864885838e41 * cos(theta) ** 10 + 5.68508261434704e39 * cos(theta) ** 8 - 3.67711511207477e37 * cos(theta) ** 6 + 1.2621676586069e35 * cos(theta) ** 4 - 1.71840389190865e32 * cos(theta) ** 2 + 3.87027903583029e28 ) * sin(15 * phi) ) # @torch.jit.script def Yl95_m_minus_14(theta, phi): return ( 1.10476686550714e-27 * (1.0 - cos(theta) ** 2) ** 7 * ( 4.0806381676527e54 * cos(theta) ** 81 - 6.99537971597605e55 * cos(theta) ** 79 + 5.76277136495247e56 * cos(theta) ** 77 - 3.03817459709025e57 * cos(theta) ** 75 + 1.15176700914282e58 * cos(theta) ** 73 - 3.34457867406336e58 * cos(theta) ** 71 + 7.73862011643151e58 * cos(theta) ** 69 - 1.4652786757989e59 * cos(theta) ** 67 + 2.31409368013668e59 * cos(theta) ** 65 - 3.09140324642537e59 * cos(theta) ** 63 + 3.53070791828582e59 * cos(theta) ** 61 - 3.47562963446103e59 * cos(theta) ** 59 + 2.96746621984172e59 * cos(theta) ** 57 - 2.20796087965846e59 * cos(theta) ** 55 + 1.43681941555338e59 * cos(theta) ** 53 - 8.19849753471038e58 * cos(theta) ** 51 + 4.10891680690084e58 * cos(theta) ** 49 - 1.81044816969479e58 * cos(theta) ** 47 + 7.01467552487478e57 * cos(theta) ** 45 - 2.38889878556107e57 * cos(theta) ** 43 + 7.14296557404519e56 * cos(theta) ** 41 - 1.87191811144681e56 * cos(theta) ** 39 + 4.28908880823155e55 * cos(theta) ** 37 - 8.56531678045641e54 * cos(theta) ** 35 + 1.48495439521316e54 * cos(theta) ** 33 - 2.22427211538311e53 * cos(theta) ** 31 + 2.86188858232747e52 * cos(theta) ** 29 - 3.14119157725048e51 * cos(theta) ** 27 + 2.91682075030402e50 * cos(theta) ** 25 - 2.26872238810269e49 * cos(theta) ** 23 + 1.46052611753175e48 * cos(theta) ** 21 - 7.66967953692594e46 * cos(theta) ** 19 + 3.22715354531087e45 * cos(theta) ** 17 - 1.06398274463583e44 * cos(theta) ** 15 + 2.67140574334676e42 * cos(theta) ** 13 - 4.92018058987125e40 * cos(theta) ** 11 + 6.31675846038559e38 * cos(theta) ** 9 - 5.25302158867825e36 * cos(theta) ** 7 + 2.5243353172138e34 * cos(theta) ** 5 - 5.72801297302883e31 * cos(theta) ** 3 + 3.87027903583029e28 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl95_m_minus_13(theta, phi): return ( 1.04445760252969e-25 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 4.97638800933256e52 * cos(theta) ** 82 - 8.74422464497007e53 * cos(theta) ** 80 + 7.38816841660573e54 * cos(theta) ** 78 - 3.99759815406612e55 * cos(theta) ** 76 + 1.55644190424706e56 * cos(theta) ** 74 - 4.64524815842133e56 * cos(theta) ** 72 + 1.10551715949022e57 * cos(theta) ** 70 - 2.1548215820572e57 * cos(theta) ** 68 + 3.50620254566164e57 * cos(theta) ** 66 - 4.83031757253964e57 * cos(theta) ** 64 + 5.69469019078358e57 * cos(theta) ** 62 - 5.79271605743504e57 * cos(theta) ** 60 + 5.11632106869263e57 * cos(theta) ** 58 - 3.94278728510439e57 * cos(theta) ** 56 + 2.66077669546922e57 * cos(theta) ** 54 - 1.57663414129046e57 * cos(theta) ** 52 + 8.21783361380167e56 * cos(theta) ** 50 - 3.77176702019747e56 * cos(theta) ** 48 + 1.5249294619293e56 * cos(theta) ** 46 - 5.42931542172971e55 * cos(theta) ** 44 + 1.70070608905838e55 * cos(theta) ** 42 - 4.67979527861701e54 * cos(theta) ** 40 + 1.12870758111357e54 * cos(theta) ** 38 - 2.37925466123789e53 * cos(theta) ** 36 + 4.36751292709753e52 * cos(theta) ** 34 - 6.95085036057223e51 * cos(theta) ** 32 + 9.53962860775824e50 * cos(theta) ** 30 - 1.12185413473232e50 * cos(theta) ** 28 + 1.12185413473232e49 * cos(theta) ** 26 - 9.45300995042786e47 * cos(theta) ** 24 + 6.63875507968979e46 * cos(theta) ** 22 - 3.83483976846297e45 * cos(theta) ** 20 + 1.79286308072826e44 * cos(theta) ** 18 - 6.64989215397391e42 * cos(theta) ** 16 + 1.9081469595334e41 * cos(theta) ** 14 - 4.10015049155938e39 * cos(theta) ** 12 + 6.31675846038559e37 * cos(theta) ** 10 - 6.56627698584781e35 * cos(theta) ** 8 + 4.20722552868967e33 * cos(theta) ** 6 - 1.43200324325721e31 * cos(theta) ** 4 + 1.93513951791514e28 * cos(theta) ** 2 - 4.33013989240354e24 ) * sin(13 * phi) ) # @torch.jit.script def Yl95_m_minus_12(theta, phi): return ( 9.88875778383378e-24 * (1.0 - cos(theta) ** 2) ** 6 * ( 5.99564820401513e50 * cos(theta) ** 83 - 1.07953390678643e52 * cos(theta) ** 81 + 9.35211191975408e52 * cos(theta) ** 79 - 5.19168591437159e53 * cos(theta) ** 77 + 2.07525587232941e54 * cos(theta) ** 75 - 6.36335364167305e54 * cos(theta) ** 73 + 1.5570664218172e55 * cos(theta) ** 71 - 3.1229298290684e55 * cos(theta) ** 69 + 5.2331381278532e55 * cos(theta) ** 67 - 7.43125780390714e55 * cos(theta) ** 65 + 9.03919077902155e55 * cos(theta) ** 63 - 9.49625583186073e55 * cos(theta) ** 61 + 8.67173062490276e55 * cos(theta) ** 59 - 6.91717067562173e55 * cos(theta) ** 57 + 4.83777580994404e55 * cos(theta) ** 55 - 2.97478139866124e55 * cos(theta) ** 53 + 1.61133992427484e55 * cos(theta) ** 51 - 7.69748371468872e54 * cos(theta) ** 49 + 3.24453077006234e54 * cos(theta) ** 47 - 1.20651453816216e54 * cos(theta) ** 45 + 3.95513043967065e53 * cos(theta) ** 43 - 1.14141348258952e53 * cos(theta) ** 41 + 2.8941220028553e52 * cos(theta) ** 39 - 6.43041800334565e51 * cos(theta) ** 37 + 1.24786083631358e51 * cos(theta) ** 35 - 2.10631829108249e50 * cos(theta) ** 33 + 3.07729955088975e49 * cos(theta) ** 31 - 3.86846253355971e48 * cos(theta) ** 29 + 4.15501531382339e47 * cos(theta) ** 27 - 3.78120398017114e46 * cos(theta) ** 25 + 2.88641525203904e45 * cos(theta) ** 23 - 1.82611417545856e44 * cos(theta) ** 21 + 9.43612147751715e42 * cos(theta) ** 19 - 3.91170126704347e41 * cos(theta) ** 17 + 1.27209797302227e40 * cos(theta) ** 15 - 3.15396191658414e38 * cos(theta) ** 13 + 5.74250769125963e36 * cos(theta) ** 11 - 7.29586331760868e34 * cos(theta) ** 9 + 6.01032218384239e32 * cos(theta) ** 7 - 2.86400648651441e30 * cos(theta) ** 5 + 6.45046505971715e27 * cos(theta) ** 3 - 4.33013989240354e24 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl95_m_minus_11(theta, phi): return ( 9.37504306230062e-22 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 7.13767643335135e48 * cos(theta) ** 84 - 1.31650476437369e50 * cos(theta) ** 82 + 1.16901398996926e51 * cos(theta) ** 80 - 6.65600758252768e51 * cos(theta) ** 78 + 2.73059983201238e52 * cos(theta) ** 76 - 8.59912654280142e52 * cos(theta) ** 74 + 2.1625922525239e53 * cos(theta) ** 72 - 4.46132832724058e53 * cos(theta) ** 70 + 7.69579136449e53 * cos(theta) ** 68 - 1.12594815210714e54 * cos(theta) ** 66 + 1.41237355922212e54 * cos(theta) ** 64 - 1.53165416642915e54 * cos(theta) ** 62 + 1.44528843748379e54 * cos(theta) ** 60 - 1.19261563372789e54 * cos(theta) ** 58 + 8.63888537490006e53 * cos(theta) ** 56 - 5.50885444196526e53 * cos(theta) ** 54 + 3.09873062360546e53 * cos(theta) ** 52 - 1.53949674293774e53 * cos(theta) ** 50 + 6.75943910429654e52 * cos(theta) ** 48 - 2.62285769165686e52 * cos(theta) ** 46 + 8.98893281743329e51 * cos(theta) ** 44 - 2.71765114902266e51 * cos(theta) ** 42 + 7.23530500713824e50 * cos(theta) ** 40 - 1.69221526403833e50 * cos(theta) ** 38 + 3.46628010087105e49 * cos(theta) ** 36 - 6.19505379730146e48 * cos(theta) ** 34 + 9.61656109653048e47 * cos(theta) ** 32 - 1.28948751118657e47 * cos(theta) ** 30 + 1.48393404065121e46 * cos(theta) ** 28 - 1.45430922314275e45 * cos(theta) ** 26 + 1.20267302168293e44 * cos(theta) ** 24 - 8.30051897935708e42 * cos(theta) ** 22 + 4.71806073875858e41 * cos(theta) ** 20 - 2.17316737057971e40 * cos(theta) ** 18 + 7.95061233138918e38 * cos(theta) ** 16 - 2.25282994041724e37 * cos(theta) ** 14 + 4.78542307604969e35 * cos(theta) ** 12 - 7.29586331760868e33 * cos(theta) ** 10 + 7.51290272980299e31 * cos(theta) ** 8 - 4.77334414419069e29 * cos(theta) ** 6 + 1.61261626492929e27 * cos(theta) ** 4 - 2.16506994620177e24 * cos(theta) ** 2 + 4.81769013396033e20 ) * sin(11 * phi) ) # @torch.jit.script def Yl95_m_minus_10(theta, phi): return ( 8.89888648148811e-20 * (1.0 - cos(theta) ** 2) ** 5 * ( 8.39726639217805e46 * cos(theta) ** 85 - 1.58615031852252e48 * cos(theta) ** 83 + 1.4432271481102e49 * cos(theta) ** 81 - 8.42532605383251e49 * cos(theta) ** 79 + 3.54623354806803e50 * cos(theta) ** 77 - 1.14655020570686e51 * cos(theta) ** 75 + 2.96245514044369e51 * cos(theta) ** 73 - 6.2835610242825e51 * cos(theta) ** 71 + 1.11533208181014e52 * cos(theta) ** 69 - 1.68051963001066e52 * cos(theta) ** 67 + 2.17288239880326e52 * cos(theta) ** 65 - 2.43119708957008e52 * cos(theta) ** 63 + 2.36932530735048e52 * cos(theta) ** 61 - 2.02138243004726e52 * cos(theta) ** 59 + 1.51559392542106e52 * cos(theta) ** 57 - 1.00160989853914e52 * cos(theta) ** 55 + 5.84666155397256e51 * cos(theta) ** 53 - 3.01862106458381e51 * cos(theta) ** 51 + 1.37947736822378e51 * cos(theta) ** 49 - 5.58054828012098e50 * cos(theta) ** 47 + 1.99754062609629e50 * cos(theta) ** 45 - 6.32011895121548e49 * cos(theta) ** 43 + 1.7647085383264e49 * cos(theta) ** 41 - 4.33901349753418e48 * cos(theta) ** 39 + 9.36832459694879e47 * cos(theta) ** 37 - 1.77001537065756e47 * cos(theta) ** 35 + 2.91410942319106e46 * cos(theta) ** 33 - 4.1596371328599e45 * cos(theta) ** 31 + 5.11701393328004e44 * cos(theta) ** 29 - 5.38633045608425e43 * cos(theta) ** 27 + 4.81069208673173e42 * cos(theta) ** 25 - 3.60892129537264e41 * cos(theta) ** 23 + 2.24669558988504e40 * cos(theta) ** 21 - 1.14377230030511e39 * cos(theta) ** 19 + 4.6768307831701e37 * cos(theta) ** 17 - 1.50188662694483e36 * cos(theta) ** 15 + 3.68109467388438e34 * cos(theta) ** 13 - 6.63260301600789e32 * cos(theta) ** 11 + 8.3476696997811e30 * cos(theta) ** 9 - 6.81906306312956e28 * cos(theta) ** 7 + 3.22523252985857e26 * cos(theta) ** 5 - 7.21689982067257e23 * cos(theta) ** 3 + 4.81769013396033e20 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl95_m_minus_9(theta, phi): return ( 8.45628364538477e-18 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 9.76426324671867e44 * cos(theta) ** 86 - 1.88827418871729e46 * cos(theta) ** 84 + 1.76003310745146e47 * cos(theta) ** 82 - 1.05316575672906e48 * cos(theta) ** 80 + 4.54645326675388e48 * cos(theta) ** 78 - 1.50861869171955e49 * cos(theta) ** 76 + 4.00331775735634e49 * cos(theta) ** 74 - 8.72716808928125e49 * cos(theta) ** 72 + 1.59333154544306e50 * cos(theta) ** 70 - 2.4713523970745e50 * cos(theta) ** 68 + 3.29224605879281e50 * cos(theta) ** 66 - 3.79874545245325e50 * cos(theta) ** 64 + 3.82149243121045e50 * cos(theta) ** 62 - 3.36897071674544e50 * cos(theta) ** 60 + 2.6130929748639e50 * cos(theta) ** 58 - 1.78858910453417e50 * cos(theta) ** 56 + 1.08271510258751e50 * cos(theta) ** 54 - 5.80504050881502e49 * cos(theta) ** 52 + 2.75895473644757e49 * cos(theta) ** 50 - 1.16261422502521e49 * cos(theta) ** 48 + 4.34247962194845e48 * cos(theta) ** 46 - 1.43639067073079e48 * cos(theta) ** 44 + 4.20168699601524e47 * cos(theta) ** 42 - 1.08475337438354e47 * cos(theta) ** 40 + 2.46534857814442e46 * cos(theta) ** 38 - 4.91670936293766e45 * cos(theta) ** 36 + 8.57091006820899e44 * cos(theta) ** 34 - 1.29988660401872e44 * cos(theta) ** 32 + 1.70567131109335e43 * cos(theta) ** 30 - 1.92368944860152e42 * cos(theta) ** 28 + 1.85026618720451e41 * cos(theta) ** 26 - 1.50371720640527e40 * cos(theta) ** 24 + 1.02122526812956e39 * cos(theta) ** 22 - 5.71886150152555e37 * cos(theta) ** 20 + 2.59823932398339e36 * cos(theta) ** 18 - 9.38679141840517e34 * cos(theta) ** 16 + 2.62935333848884e33 * cos(theta) ** 14 - 5.52716918000658e31 * cos(theta) ** 12 + 8.3476696997811e29 * cos(theta) ** 10 - 8.52382882891194e27 * cos(theta) ** 8 + 5.37538754976429e25 * cos(theta) ** 6 - 1.80422495516814e23 * cos(theta) ** 4 + 2.40884506698017e20 * cos(theta) ** 2 - 5.33520502099704e16 ) * sin(9 * phi) ) # @torch.jit.script def Yl95_m_minus_8(theta, phi): return ( 8.04369950339516e-16 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.12232910881824e43 * cos(theta) ** 87 - 2.22149904554975e44 * cos(theta) ** 85 + 2.12052181620658e45 * cos(theta) ** 83 - 1.30020463793712e46 * cos(theta) ** 81 + 5.75500413513149e46 * cos(theta) ** 79 - 1.95924505418123e47 * cos(theta) ** 77 + 5.33775700980845e47 * cos(theta) ** 75 - 1.19550247798373e48 * cos(theta) ** 73 + 2.24412893724375e48 * cos(theta) ** 71 - 3.58167014068768e48 * cos(theta) ** 69 + 4.91380008775047e48 * cos(theta) ** 67 - 5.844223773005e48 * cos(theta) ** 65 + 6.06586100192135e48 * cos(theta) ** 63 - 5.52290281433678e48 * cos(theta) ** 61 + 4.42897114383712e48 * cos(theta) ** 59 - 3.13787562198978e48 * cos(theta) ** 57 + 1.96857291379548e48 * cos(theta) ** 55 - 1.09529066204057e48 * cos(theta) ** 53 + 5.40971516950504e47 * cos(theta) ** 51 - 2.37268209188817e47 * cos(theta) ** 49 + 9.23931834457117e46 * cos(theta) ** 47 - 3.19197926829065e46 * cos(theta) ** 45 + 9.77136510701218e45 * cos(theta) ** 43 - 2.64573993752084e45 * cos(theta) ** 41 + 6.32140661062671e44 * cos(theta) ** 39 - 1.32884036836153e44 * cos(theta) ** 37 + 2.44883144805971e43 * cos(theta) ** 35 - 3.93905031520824e42 * cos(theta) ** 33 + 5.50216551965595e41 * cos(theta) ** 31 - 6.63341189172937e40 * cos(theta) ** 29 + 6.85283773038709e39 * cos(theta) ** 27 - 6.01486882562107e38 * cos(theta) ** 25 + 4.44010986143288e37 * cos(theta) ** 23 - 2.72326738167883e36 * cos(theta) ** 21 + 1.36749438104389e35 * cos(theta) ** 19 - 5.52164201082657e33 * cos(theta) ** 17 + 1.75290222565923e32 * cos(theta) ** 15 - 4.25166860000506e30 * cos(theta) ** 13 + 7.58879063616463e28 * cos(theta) ** 11 - 9.47092092101327e26 * cos(theta) ** 9 + 7.67912507109184e24 * cos(theta) ** 7 - 3.60844991033629e22 * cos(theta) ** 5 + 8.02948355660055e19 * cos(theta) ** 3 - 5.33520502099704e16 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl95_m_minus_7(theta, phi): return ( 7.65800748117377e-14 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.27537398729345e41 * cos(theta) ** 88 - 2.58313842505785e42 * cos(theta) ** 86 + 2.52443073357926e43 * cos(theta) ** 84 - 1.58561541211843e44 * cos(theta) ** 82 + 7.19375516891437e44 * cos(theta) ** 80 - 2.51185263356568e45 * cos(theta) ** 78 + 7.02336448659007e45 * cos(theta) ** 76 - 1.61554388916721e46 * cos(theta) ** 74 + 3.11684574617188e46 * cos(theta) ** 72 - 5.11667162955383e46 * cos(theta) ** 70 + 7.22617659963304e46 * cos(theta) ** 68 - 8.85488450455303e46 * cos(theta) ** 66 + 9.47790781550211e46 * cos(theta) ** 64 - 8.90790776505933e46 * cos(theta) ** 62 + 7.38161857306187e46 * cos(theta) ** 60 - 5.410130382741e46 * cos(theta) ** 58 + 3.51530877463478e46 * cos(theta) ** 56 - 2.02831604081587e46 * cos(theta) ** 54 + 1.04032984028943e46 * cos(theta) ** 52 - 4.74536418377635e45 * cos(theta) ** 50 + 1.92485798845233e45 * cos(theta) ** 48 - 6.93908536584923e44 * cos(theta) ** 46 + 2.22076479704822e44 * cos(theta) ** 44 - 6.29938080362105e43 * cos(theta) ** 42 + 1.58035165265668e43 * cos(theta) ** 40 - 3.4969483377935e42 * cos(theta) ** 38 + 6.80230957794364e41 * cos(theta) ** 36 - 1.15854421035536e41 * cos(theta) ** 34 + 1.71942672489249e40 * cos(theta) ** 32 - 2.21113729724312e39 * cos(theta) ** 30 + 2.44744204656682e38 * cos(theta) ** 28 - 2.31341108677734e37 * cos(theta) ** 26 + 1.85004577559703e36 * cos(theta) ** 24 - 1.23784880985401e35 * cos(theta) ** 22 + 6.83747190521945e33 * cos(theta) ** 20 - 3.06757889490365e32 * cos(theta) ** 18 + 1.09556389103702e31 * cos(theta) ** 16 - 3.03690614286076e29 * cos(theta) ** 14 + 6.32399219680386e27 * cos(theta) ** 12 - 9.47092092101327e25 * cos(theta) ** 10 + 9.5989063388648e23 * cos(theta) ** 8 - 6.01408318389381e21 * cos(theta) ** 6 + 2.00737088915014e19 * cos(theta) ** 4 - 2.66760251049852e16 * cos(theta) ** 2 + 5886148522724.01 ) * sin(7 * phi) ) # @torch.jit.script def Yl95_m_minus_6(theta, phi): return ( 7.29643764699456e-12 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.433004480105e39 * cos(theta) ** 89 - 2.96912462650327e40 * cos(theta) ** 87 + 2.96991851009325e41 * cos(theta) ** 85 - 1.91038001460052e42 * cos(theta) ** 83 + 8.88117922088193e42 * cos(theta) ** 81 - 3.17956029565276e43 * cos(theta) ** 79 + 9.12125257998711e43 * cos(theta) ** 77 - 2.15405851888961e44 * cos(theta) ** 75 + 4.26965170708476e44 * cos(theta) ** 73 - 7.20657975993497e44 * cos(theta) ** 71 + 1.04727197096131e45 * cos(theta) ** 69 - 1.32162455291836e45 * cos(theta) ** 67 + 1.4581396639234e45 * cos(theta) ** 65 - 1.41395361350148e45 * cos(theta) ** 63 + 1.21010140541998e45 * cos(theta) ** 61 - 9.16971251312034e44 * cos(theta) ** 59 + 6.16720837655224e44 * cos(theta) ** 57 - 3.68784734693795e44 * cos(theta) ** 55 + 1.96288649111213e44 * cos(theta) ** 53 - 9.30463565446343e43 * cos(theta) ** 51 + 3.92828160908638e43 * cos(theta) ** 49 - 1.47640114167005e43 * cos(theta) ** 47 + 4.93503288232938e42 * cos(theta) ** 45 - 1.46497227991187e42 * cos(theta) ** 43 + 3.8545162259919e41 * cos(theta) ** 41 - 8.96653419947052e40 * cos(theta) ** 39 + 1.83846204809288e40 * cos(theta) ** 37 - 3.31012631530104e39 * cos(theta) ** 35 + 5.21038401482571e38 * cos(theta) ** 33 - 7.13270095884879e37 * cos(theta) ** 31 + 8.43945533298902e36 * cos(theta) ** 29 - 8.56818921028643e35 * cos(theta) ** 27 + 7.40018310238813e34 * cos(theta) ** 25 - 5.38195134719137e33 * cos(theta) ** 23 + 3.25593900248545e32 * cos(theta) ** 21 - 1.61451520784403e31 * cos(theta) ** 19 + 6.44449347668834e29 * cos(theta) ** 17 - 2.0246040952405e28 * cos(theta) ** 15 + 4.86460938215682e26 * cos(theta) ** 13 - 8.60992811001206e24 * cos(theta) ** 11 + 1.06654514876276e23 * cos(theta) ** 9 - 8.59154740556259e20 * cos(theta) ** 7 + 4.01474177830028e18 * cos(theta) ** 5 - 8.89200836832841e15 * cos(theta) ** 3 + 5886148522724.01 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl95_m_minus_5(theta, phi): return ( 6.95653247845935e-10 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.59222720011667e37 * cos(theta) ** 90 - 3.37400525739008e38 * cos(theta) ** 88 + 3.4533936163875e39 * cos(theta) ** 86 - 2.27426192214348e40 * cos(theta) ** 84 + 1.08307063669292e41 * cos(theta) ** 82 - 3.97445036956595e41 * cos(theta) ** 80 + 1.1693913564086e42 * cos(theta) ** 78 - 2.83428752485475e42 * cos(theta) ** 76 + 5.7697996041686e42 * cos(theta) ** 74 - 1.00091385554652e43 * cos(theta) ** 72 + 1.49610281565902e43 * cos(theta) ** 70 - 1.94356551899759e43 * cos(theta) ** 68 + 2.20930252109606e43 * cos(theta) ** 66 - 2.20930252109606e43 * cos(theta) ** 64 + 1.95177646035481e43 * cos(theta) ** 62 - 1.52828541885339e43 * cos(theta) ** 60 + 1.06331178906073e43 * cos(theta) ** 58 - 6.58544169096062e42 * cos(theta) ** 56 + 3.63497498354099e42 * cos(theta) ** 54 - 1.78935301047374e42 * cos(theta) ** 52 + 7.85656321817276e41 * cos(theta) ** 50 - 3.0758357118126e41 * cos(theta) ** 48 + 1.072833235289e41 * cos(theta) ** 46 - 3.32948245434516e40 * cos(theta) ** 44 + 9.177419585695e39 * cos(theta) ** 42 - 2.24163354986763e39 * cos(theta) ** 40 + 4.83805802129704e38 * cos(theta) ** 38 - 9.19479532028067e37 * cos(theta) ** 36 + 1.53246588671345e37 * cos(theta) ** 34 - 2.22896904964025e36 * cos(theta) ** 32 + 2.81315177766301e35 * cos(theta) ** 30 - 3.0600675751023e34 * cos(theta) ** 28 + 2.84622427014928e33 * cos(theta) ** 26 - 2.2424797279964e32 * cos(theta) ** 24 + 1.47997227385702e31 * cos(theta) ** 22 - 8.07257603922013e29 * cos(theta) ** 20 + 3.58027415371574e28 * cos(theta) ** 18 - 1.26537755952531e27 * cos(theta) ** 16 + 3.47472098725487e25 * cos(theta) ** 14 - 7.17494009167672e23 * cos(theta) ** 12 + 1.06654514876276e22 * cos(theta) ** 10 - 1.07394342569532e20 * cos(theta) ** 8 + 6.69123629716713e17 * cos(theta) ** 6 - 2.2230020920821e15 * cos(theta) ** 4 + 2943074261362.01 * cos(theta) ** 2 - 647541091.608802 ) * sin(5 * phi) ) # @torch.jit.script def Yl95_m_minus_4(theta, phi): return ( 6.63610903713256e-8 * (1.0 - cos(theta) ** 2) ** 2 * ( 1.74970021990843e35 * cos(theta) ** 91 - 3.79101714313493e36 * cos(theta) ** 89 + 3.96941794987069e37 * cos(theta) ** 87 - 2.67560226134527e38 * cos(theta) ** 85 + 1.30490438155773e39 * cos(theta) ** 83 - 4.90672885131599e39 * cos(theta) ** 81 + 1.48024222330203e40 * cos(theta) ** 79 - 3.68089288942175e40 * cos(theta) ** 77 + 7.69306613889146e40 * cos(theta) ** 75 - 1.37111487061168e41 * cos(theta) ** 73 + 2.10718706430847e41 * cos(theta) ** 71 - 2.81676162173564e41 * cos(theta) ** 69 + 3.29746644939711e41 * cos(theta) ** 67 - 3.39892695553241e41 * cos(theta) ** 65 + 3.09805787357906e41 * cos(theta) ** 63 - 2.50538593254654e41 * cos(theta) ** 61 + 1.80222337128937e41 * cos(theta) ** 59 - 1.15534064753695e41 * cos(theta) ** 57 + 6.60904542461997e40 * cos(theta) ** 55 - 3.37613775561082e40 * cos(theta) ** 53 + 1.54050259179858e40 * cos(theta) ** 51 - 6.27721573839307e39 * cos(theta) ** 49 + 2.28262390487021e39 * cos(theta) ** 47 - 7.39884989854481e38 * cos(theta) ** 45 + 2.13428362458023e38 * cos(theta) ** 43 - 5.46739890211617e37 * cos(theta) ** 41 + 1.24052769776847e37 * cos(theta) ** 39 - 2.48507981629207e36 * cos(theta) ** 37 + 4.37847396203841e35 * cos(theta) ** 35 - 6.7544516655765e34 * cos(theta) ** 33 + 9.07468315375164e33 * cos(theta) ** 31 - 1.05519571555252e33 * cos(theta) ** 29 + 1.05415713709233e32 * cos(theta) ** 27 - 8.96991891198561e30 * cos(theta) ** 25 + 6.43466206024793e29 * cos(theta) ** 23 - 3.84408382820006e28 * cos(theta) ** 21 + 1.88435481774513e27 * cos(theta) ** 19 - 7.44339740897244e25 * cos(theta) ** 17 + 2.31648065816991e24 * cos(theta) ** 15 - 5.51918468590517e22 * cos(theta) ** 13 + 9.69586498875233e20 * cos(theta) ** 11 - 1.1932704729948e19 * cos(theta) ** 9 + 9.55890899595304e16 * cos(theta) ** 7 - 444600418416420.0 * cos(theta) ** 5 + 981024753787.335 * cos(theta) ** 3 - 647541091.608802 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl95_m_minus_3(theta, phi): return ( 6.33322655709477e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 1.90184806511786e33 * cos(theta) ** 92 - 4.21224127014992e34 * cos(theta) ** 90 + 4.51070221576214e35 * cos(theta) ** 88 - 3.11116542016892e36 * cos(theta) ** 86 + 1.55345759709254e37 * cos(theta) ** 84 - 5.98381567233657e37 * cos(theta) ** 82 + 1.85030277912754e38 * cos(theta) ** 80 - 4.71909344797661e38 * cos(theta) ** 78 + 1.01224554459098e39 * cos(theta) ** 76 - 1.85285793325902e39 * cos(theta) ** 74 + 2.92664870042843e39 * cos(theta) ** 72 - 4.02394517390806e39 * cos(theta) ** 70 + 4.84921536676046e39 * cos(theta) ** 68 - 5.14988932656425e39 * cos(theta) ** 66 + 4.84071542746727e39 * cos(theta) ** 64 - 4.04094505249442e39 * cos(theta) ** 62 + 3.00370561881562e39 * cos(theta) ** 60 - 1.9919666336844e39 * cos(theta) ** 58 + 1.18018668296785e39 * cos(theta) ** 56 - 6.25210695483486e38 * cos(theta) ** 54 + 2.96250498422804e38 * cos(theta) ** 52 - 1.25544314767861e38 * cos(theta) ** 50 + 4.7554664684796e37 * cos(theta) ** 48 - 1.60844563011844e37 * cos(theta) ** 46 + 4.85064460131871e36 * cos(theta) ** 44 - 1.30176164336099e36 * cos(theta) ** 42 + 3.10131924442118e35 * cos(theta) ** 40 - 6.5396837270844e34 * cos(theta) ** 38 + 1.21624276723289e34 * cos(theta) ** 36 - 1.98660343105191e33 * cos(theta) ** 34 + 2.83583848554739e32 * cos(theta) ** 32 - 3.51731905184172e31 * cos(theta) ** 30 + 3.76484691818688e30 * cos(theta) ** 28 - 3.44996881230216e29 * cos(theta) ** 26 + 2.68110919176997e28 * cos(theta) ** 24 - 1.74731083100003e27 * cos(theta) ** 22 + 9.42177408872564e25 * cos(theta) ** 20 - 4.13522078276247e24 * cos(theta) ** 18 + 1.4478004113562e23 * cos(theta) ** 16 - 3.94227477564655e21 * cos(theta) ** 14 + 8.07988749062694e19 * cos(theta) ** 12 - 1.1932704729948e18 * cos(theta) ** 10 + 1.19486362449413e16 * cos(theta) ** 8 - 74100069736070.0 * cos(theta) ** 6 + 245256188446.834 * cos(theta) ** 4 - 323770545.804401 * cos(theta) ** 2 + 71095.8598604306 ) * sin(3 * phi) ) # @torch.jit.script def Yl95_m_minus_2(theta, phi): return ( 0.000604615861596843 * (1.0 - cos(theta) ** 2) * ( 2.04499791948157e31 * cos(theta) ** 93 - 4.62883656060431e32 * cos(theta) ** 91 + 5.0682047368114e33 * cos(theta) ** 89 - 3.57605220709071e34 * cos(theta) ** 87 + 1.82759717305005e35 * cos(theta) ** 85 - 7.20941647269466e35 * cos(theta) ** 83 + 2.28432441867597e36 * cos(theta) ** 81 - 5.97353601009697e36 * cos(theta) ** 79 + 1.31460460336491e37 * cos(theta) ** 77 - 2.47047724434536e37 * cos(theta) ** 75 + 4.00910780880607e37 * cos(theta) ** 73 - 5.66752841395501e37 * cos(theta) ** 71 + 7.02784835762385e37 * cos(theta) ** 69 - 7.68640197994664e37 * cos(theta) ** 67 + 7.44725450379581e37 * cos(theta) ** 65 - 6.41419849602289e37 * cos(theta) ** 63 + 4.92410757182889e37 * cos(theta) ** 61 - 3.37621463336338e37 * cos(theta) ** 59 + 2.07050295257518e37 * cos(theta) ** 57 - 1.13674671906088e37 * cos(theta) ** 55 + 5.58963204571328e36 * cos(theta) ** 53 - 2.46165323074238e36 * cos(theta) ** 51 + 9.70503360914203e35 * cos(theta) ** 49 - 3.42222474493284e35 * cos(theta) ** 47 + 1.07792102251527e35 * cos(theta) ** 45 - 3.02735265897905e34 * cos(theta) ** 43 + 7.56419327907605e33 * cos(theta) ** 41 - 1.67684198130369e33 * cos(theta) ** 39 + 3.28714261414295e32 * cos(theta) ** 37 - 5.67600980300546e31 * cos(theta) ** 35 + 8.5934499562042e30 * cos(theta) ** 33 - 1.1346190489812e30 * cos(theta) ** 31 + 1.29822307523686e29 * cos(theta) ** 29 - 1.27776622677858e28 * cos(theta) ** 27 + 1.07244367670799e27 * cos(theta) ** 25 - 7.5970036130436e25 * cos(theta) ** 23 + 4.48655908986935e24 * cos(theta) ** 21 - 2.17643199092761e23 * cos(theta) ** 19 + 8.51647300797762e21 * cos(theta) ** 17 - 2.62818318376437e20 * cos(theta) ** 15 + 6.21529806971303e18 * cos(theta) ** 13 - 1.08479133908619e17 * cos(theta) ** 11 + 1.32762624943792e15 * cos(theta) ** 9 - 10585724248010.0 * cos(theta) ** 7 + 49051237689.3668 * cos(theta) ** 5 - 107923515.268134 * cos(theta) ** 3 + 71095.8598604306 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl95_m_minus_1(theta, phi): return ( 0.057733691905001 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 2.17552970157613e29 * cos(theta) ** 94 - 5.03134408761338e30 * cos(theta) ** 92 + 5.63133859645711e31 * cos(theta) ** 90 - 4.06369568987581e32 * cos(theta) ** 88 + 2.12511299191866e33 * cos(theta) ** 86 - 8.58263865796983e33 * cos(theta) ** 84 + 2.78576148619021e34 * cos(theta) ** 82 - 7.46692001262121e34 * cos(theta) ** 80 + 1.6853905171345e35 * cos(theta) ** 78 - 3.25062795308601e35 * cos(theta) ** 76 + 5.41771325514334e35 * cos(theta) ** 74 - 7.87156724160418e35 * cos(theta) ** 72 + 1.00397833680341e36 * cos(theta) ** 70 - 1.13035323234509e36 * cos(theta) ** 68 + 1.12837189451452e36 * cos(theta) ** 66 - 1.00221851500358e36 * cos(theta) ** 64 + 7.9421089868208e35 * cos(theta) ** 62 - 5.62702438893897e35 * cos(theta) ** 60 + 3.56983267685376e35 * cos(theta) ** 58 - 2.02990485546586e35 * cos(theta) ** 56 + 1.03511704550246e35 * cos(theta) ** 54 - 4.73394852065842e34 * cos(theta) ** 52 + 1.94100672182841e34 * cos(theta) ** 50 - 7.12963488527675e33 * cos(theta) ** 48 + 2.34330657068537e33 * cos(theta) ** 46 - 6.88034695222512e32 * cos(theta) ** 44 + 1.80099839978001e32 * cos(theta) ** 42 - 4.19210495325923e31 * cos(theta) ** 40 + 8.6503753003762e30 * cos(theta) ** 38 - 1.57666938972374e30 * cos(theta) ** 36 + 2.52748528123653e29 * cos(theta) ** 34 - 3.54568452806625e28 * cos(theta) ** 32 + 4.32741025078952e27 * cos(theta) ** 30 - 4.56345080992349e26 * cos(theta) ** 28 + 4.1247833719538e25 * cos(theta) ** 26 - 3.1654181721015e24 * cos(theta) ** 24 + 2.03934504084971e23 * cos(theta) ** 22 - 1.08821599546381e22 * cos(theta) ** 20 + 4.7313738933209e20 * cos(theta) ** 18 - 1.64261448985273e19 * cos(theta) ** 16 + 4.43949862122359e17 * cos(theta) ** 14 - 9.03992782571821e15 * cos(theta) ** 12 + 132762624943792.0 * cos(theta) ** 10 - 1323215531001.25 * cos(theta) ** 8 + 8175206281.56113 * cos(theta) ** 6 - 26980878.8170334 * cos(theta) ** 4 + 35547.9299302153 * cos(theta) ** 2 - 7.79730860500445 ) * sin(phi) ) # @torch.jit.script def Yl95_m0(theta, phi): return ( 2.80480734421195e28 * cos(theta) ** 95 - 6.62617184756949e29 * cos(theta) ** 93 + 7.57934843954607e30 * cos(theta) ** 91 - 5.59233006485426e31 * cos(theta) ** 89 + 2.99174378879362e32 * cos(theta) ** 87 - 1.23669762584275e33 * cos(theta) ** 85 + 4.11081054400245e33 * cos(theta) ** 83 - 1.12906281527364e34 * cos(theta) ** 81 + 2.61297394391898e34 * cos(theta) ** 79 - 5.17056693719614e34 * cos(theta) ** 77 + 8.84741453698007e34 * cos(theta) ** 75 - 1.32068721571381e35 * cos(theta) ** 73 + 1.7319191631217e35 * cos(theta) ** 71 - 2.00644248035311e35 * cos(theta) ** 69 + 2.06271431152866e35 * cos(theta) ** 67 - 1.88847260571009e35 * cos(theta) ** 65 + 1.54403420592649e35 * cos(theta) ** 63 - 1.12982345604138e35 * cos(theta) ** 61 + 7.41066998048644e34 * cos(theta) ** 59 - 4.36176688565955e34 * cos(theta) ** 57 + 2.30509269851412e34 * cos(theta) ** 55 - 1.09397975624591e34 * cos(theta) ** 53 + 4.66142270905031e33 * cos(theta) ** 51 - 1.78210313464442e33 * cos(theta) ** 49 + 6.10650724458577e32 * cos(theta) ** 47 - 1.87266222167297e32 * cos(theta) ** 45 + 5.12987160889939e31 * cos(theta) ** 43 - 1.25230442358371e31 * cos(theta) ** 41 + 2.71663922576361e30 * cos(theta) ** 39 - 5.21915910368378e29 * cos(theta) ** 37 + 8.84468183983053e28 * cos(theta) ** 35 - 1.31597541752917e28 * cos(theta) ** 33 + 1.70973184167176e27 * cos(theta) ** 31 - 1.92733407606635e26 * cos(theta) ** 29 + 1.87110864390946e25 * cos(theta) ** 27 - 1.5507889823193e24 * cos(theta) ** 25 + 1.08598668229643e23 * cos(theta) ** 23 - 6.34683831418331e21 * cos(theta) ** 21 + 3.04996806860068e20 * cos(theta) ** 19 - 1.183445744794e19 * cos(theta) ** 17 + 3.62496894801766e17 * cos(theta) ** 15 - 8.5169330844004e15 * cos(theta) ** 13 + 147823938714560.0 * cos(theta) ** 11 - 1800734580133.06 * cos(theta) ** 9 + 14304158182.8752 * cos(theta) ** 7 - 66091819.986882 * cos(theta) ** 5 + 145129.161148182 * cos(theta) ** 3 - 95.5006544076652 * cos(theta) ) # @torch.jit.script def Yl95_m1(theta, phi): return ( 0.057733691905001 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 2.17552970157613e29 * cos(theta) ** 94 - 5.03134408761338e30 * cos(theta) ** 92 + 5.63133859645711e31 * cos(theta) ** 90 - 4.06369568987581e32 * cos(theta) ** 88 + 2.12511299191866e33 * cos(theta) ** 86 - 8.58263865796983e33 * cos(theta) ** 84 + 2.78576148619021e34 * cos(theta) ** 82 - 7.46692001262121e34 * cos(theta) ** 80 + 1.6853905171345e35 * cos(theta) ** 78 - 3.25062795308601e35 * cos(theta) ** 76 + 5.41771325514334e35 * cos(theta) ** 74 - 7.87156724160418e35 * cos(theta) ** 72 + 1.00397833680341e36 * cos(theta) ** 70 - 1.13035323234509e36 * cos(theta) ** 68 + 1.12837189451452e36 * cos(theta) ** 66 - 1.00221851500358e36 * cos(theta) ** 64 + 7.9421089868208e35 * cos(theta) ** 62 - 5.62702438893897e35 * cos(theta) ** 60 + 3.56983267685376e35 * cos(theta) ** 58 - 2.02990485546586e35 * cos(theta) ** 56 + 1.03511704550246e35 * cos(theta) ** 54 - 4.73394852065842e34 * cos(theta) ** 52 + 1.94100672182841e34 * cos(theta) ** 50 - 7.12963488527675e33 * cos(theta) ** 48 + 2.34330657068537e33 * cos(theta) ** 46 - 6.88034695222512e32 * cos(theta) ** 44 + 1.80099839978001e32 * cos(theta) ** 42 - 4.19210495325923e31 * cos(theta) ** 40 + 8.6503753003762e30 * cos(theta) ** 38 - 1.57666938972374e30 * cos(theta) ** 36 + 2.52748528123653e29 * cos(theta) ** 34 - 3.54568452806625e28 * cos(theta) ** 32 + 4.32741025078952e27 * cos(theta) ** 30 - 4.56345080992349e26 * cos(theta) ** 28 + 4.1247833719538e25 * cos(theta) ** 26 - 3.1654181721015e24 * cos(theta) ** 24 + 2.03934504084971e23 * cos(theta) ** 22 - 1.08821599546381e22 * cos(theta) ** 20 + 4.7313738933209e20 * cos(theta) ** 18 - 1.64261448985273e19 * cos(theta) ** 16 + 4.43949862122359e17 * cos(theta) ** 14 - 9.03992782571821e15 * cos(theta) ** 12 + 132762624943792.0 * cos(theta) ** 10 - 1323215531001.25 * cos(theta) ** 8 + 8175206281.56113 * cos(theta) ** 6 - 26980878.8170334 * cos(theta) ** 4 + 35547.9299302153 * cos(theta) ** 2 - 7.79730860500445 ) * cos(phi) ) # @torch.jit.script def Yl95_m2(theta, phi): return ( 0.000604615861596843 * (1.0 - cos(theta) ** 2) * ( 2.04499791948157e31 * cos(theta) ** 93 - 4.62883656060431e32 * cos(theta) ** 91 + 5.0682047368114e33 * cos(theta) ** 89 - 3.57605220709071e34 * cos(theta) ** 87 + 1.82759717305005e35 * cos(theta) ** 85 - 7.20941647269466e35 * cos(theta) ** 83 + 2.28432441867597e36 * cos(theta) ** 81 - 5.97353601009697e36 * cos(theta) ** 79 + 1.31460460336491e37 * cos(theta) ** 77 - 2.47047724434536e37 * cos(theta) ** 75 + 4.00910780880607e37 * cos(theta) ** 73 - 5.66752841395501e37 * cos(theta) ** 71 + 7.02784835762385e37 * cos(theta) ** 69 - 7.68640197994664e37 * cos(theta) ** 67 + 7.44725450379581e37 * cos(theta) ** 65 - 6.41419849602289e37 * cos(theta) ** 63 + 4.92410757182889e37 * cos(theta) ** 61 - 3.37621463336338e37 * cos(theta) ** 59 + 2.07050295257518e37 * cos(theta) ** 57 - 1.13674671906088e37 * cos(theta) ** 55 + 5.58963204571328e36 * cos(theta) ** 53 - 2.46165323074238e36 * cos(theta) ** 51 + 9.70503360914203e35 * cos(theta) ** 49 - 3.42222474493284e35 * cos(theta) ** 47 + 1.07792102251527e35 * cos(theta) ** 45 - 3.02735265897905e34 * cos(theta) ** 43 + 7.56419327907605e33 * cos(theta) ** 41 - 1.67684198130369e33 * cos(theta) ** 39 + 3.28714261414295e32 * cos(theta) ** 37 - 5.67600980300546e31 * cos(theta) ** 35 + 8.5934499562042e30 * cos(theta) ** 33 - 1.1346190489812e30 * cos(theta) ** 31 + 1.29822307523686e29 * cos(theta) ** 29 - 1.27776622677858e28 * cos(theta) ** 27 + 1.07244367670799e27 * cos(theta) ** 25 - 7.5970036130436e25 * cos(theta) ** 23 + 4.48655908986935e24 * cos(theta) ** 21 - 2.17643199092761e23 * cos(theta) ** 19 + 8.51647300797762e21 * cos(theta) ** 17 - 2.62818318376437e20 * cos(theta) ** 15 + 6.21529806971303e18 * cos(theta) ** 13 - 1.08479133908619e17 * cos(theta) ** 11 + 1.32762624943792e15 * cos(theta) ** 9 - 10585724248010.0 * cos(theta) ** 7 + 49051237689.3668 * cos(theta) ** 5 - 107923515.268134 * cos(theta) ** 3 + 71095.8598604306 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl95_m3(theta, phi): return ( 6.33322655709477e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 1.90184806511786e33 * cos(theta) ** 92 - 4.21224127014992e34 * cos(theta) ** 90 + 4.51070221576214e35 * cos(theta) ** 88 - 3.11116542016892e36 * cos(theta) ** 86 + 1.55345759709254e37 * cos(theta) ** 84 - 5.98381567233657e37 * cos(theta) ** 82 + 1.85030277912754e38 * cos(theta) ** 80 - 4.71909344797661e38 * cos(theta) ** 78 + 1.01224554459098e39 * cos(theta) ** 76 - 1.85285793325902e39 * cos(theta) ** 74 + 2.92664870042843e39 * cos(theta) ** 72 - 4.02394517390806e39 * cos(theta) ** 70 + 4.84921536676046e39 * cos(theta) ** 68 - 5.14988932656425e39 * cos(theta) ** 66 + 4.84071542746727e39 * cos(theta) ** 64 - 4.04094505249442e39 * cos(theta) ** 62 + 3.00370561881562e39 * cos(theta) ** 60 - 1.9919666336844e39 * cos(theta) ** 58 + 1.18018668296785e39 * cos(theta) ** 56 - 6.25210695483486e38 * cos(theta) ** 54 + 2.96250498422804e38 * cos(theta) ** 52 - 1.25544314767861e38 * cos(theta) ** 50 + 4.7554664684796e37 * cos(theta) ** 48 - 1.60844563011844e37 * cos(theta) ** 46 + 4.85064460131871e36 * cos(theta) ** 44 - 1.30176164336099e36 * cos(theta) ** 42 + 3.10131924442118e35 * cos(theta) ** 40 - 6.5396837270844e34 * cos(theta) ** 38 + 1.21624276723289e34 * cos(theta) ** 36 - 1.98660343105191e33 * cos(theta) ** 34 + 2.83583848554739e32 * cos(theta) ** 32 - 3.51731905184172e31 * cos(theta) ** 30 + 3.76484691818688e30 * cos(theta) ** 28 - 3.44996881230216e29 * cos(theta) ** 26 + 2.68110919176997e28 * cos(theta) ** 24 - 1.74731083100003e27 * cos(theta) ** 22 + 9.42177408872564e25 * cos(theta) ** 20 - 4.13522078276247e24 * cos(theta) ** 18 + 1.4478004113562e23 * cos(theta) ** 16 - 3.94227477564655e21 * cos(theta) ** 14 + 8.07988749062694e19 * cos(theta) ** 12 - 1.1932704729948e18 * cos(theta) ** 10 + 1.19486362449413e16 * cos(theta) ** 8 - 74100069736070.0 * cos(theta) ** 6 + 245256188446.834 * cos(theta) ** 4 - 323770545.804401 * cos(theta) ** 2 + 71095.8598604306 ) * cos(3 * phi) ) # @torch.jit.script def Yl95_m4(theta, phi): return ( 6.63610903713256e-8 * (1.0 - cos(theta) ** 2) ** 2 * ( 1.74970021990843e35 * cos(theta) ** 91 - 3.79101714313493e36 * cos(theta) ** 89 + 3.96941794987069e37 * cos(theta) ** 87 - 2.67560226134527e38 * cos(theta) ** 85 + 1.30490438155773e39 * cos(theta) ** 83 - 4.90672885131599e39 * cos(theta) ** 81 + 1.48024222330203e40 * cos(theta) ** 79 - 3.68089288942175e40 * cos(theta) ** 77 + 7.69306613889146e40 * cos(theta) ** 75 - 1.37111487061168e41 * cos(theta) ** 73 + 2.10718706430847e41 * cos(theta) ** 71 - 2.81676162173564e41 * cos(theta) ** 69 + 3.29746644939711e41 * cos(theta) ** 67 - 3.39892695553241e41 * cos(theta) ** 65 + 3.09805787357906e41 * cos(theta) ** 63 - 2.50538593254654e41 * cos(theta) ** 61 + 1.80222337128937e41 * cos(theta) ** 59 - 1.15534064753695e41 * cos(theta) ** 57 + 6.60904542461997e40 * cos(theta) ** 55 - 3.37613775561082e40 * cos(theta) ** 53 + 1.54050259179858e40 * cos(theta) ** 51 - 6.27721573839307e39 * cos(theta) ** 49 + 2.28262390487021e39 * cos(theta) ** 47 - 7.39884989854481e38 * cos(theta) ** 45 + 2.13428362458023e38 * cos(theta) ** 43 - 5.46739890211617e37 * cos(theta) ** 41 + 1.24052769776847e37 * cos(theta) ** 39 - 2.48507981629207e36 * cos(theta) ** 37 + 4.37847396203841e35 * cos(theta) ** 35 - 6.7544516655765e34 * cos(theta) ** 33 + 9.07468315375164e33 * cos(theta) ** 31 - 1.05519571555252e33 * cos(theta) ** 29 + 1.05415713709233e32 * cos(theta) ** 27 - 8.96991891198561e30 * cos(theta) ** 25 + 6.43466206024793e29 * cos(theta) ** 23 - 3.84408382820006e28 * cos(theta) ** 21 + 1.88435481774513e27 * cos(theta) ** 19 - 7.44339740897244e25 * cos(theta) ** 17 + 2.31648065816991e24 * cos(theta) ** 15 - 5.51918468590517e22 * cos(theta) ** 13 + 9.69586498875233e20 * cos(theta) ** 11 - 1.1932704729948e19 * cos(theta) ** 9 + 9.55890899595304e16 * cos(theta) ** 7 - 444600418416420.0 * cos(theta) ** 5 + 981024753787.335 * cos(theta) ** 3 - 647541091.608802 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl95_m5(theta, phi): return ( 6.95653247845935e-10 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.59222720011667e37 * cos(theta) ** 90 - 3.37400525739008e38 * cos(theta) ** 88 + 3.4533936163875e39 * cos(theta) ** 86 - 2.27426192214348e40 * cos(theta) ** 84 + 1.08307063669292e41 * cos(theta) ** 82 - 3.97445036956595e41 * cos(theta) ** 80 + 1.1693913564086e42 * cos(theta) ** 78 - 2.83428752485475e42 * cos(theta) ** 76 + 5.7697996041686e42 * cos(theta) ** 74 - 1.00091385554652e43 * cos(theta) ** 72 + 1.49610281565902e43 * cos(theta) ** 70 - 1.94356551899759e43 * cos(theta) ** 68 + 2.20930252109606e43 * cos(theta) ** 66 - 2.20930252109606e43 * cos(theta) ** 64 + 1.95177646035481e43 * cos(theta) ** 62 - 1.52828541885339e43 * cos(theta) ** 60 + 1.06331178906073e43 * cos(theta) ** 58 - 6.58544169096062e42 * cos(theta) ** 56 + 3.63497498354099e42 * cos(theta) ** 54 - 1.78935301047374e42 * cos(theta) ** 52 + 7.85656321817276e41 * cos(theta) ** 50 - 3.0758357118126e41 * cos(theta) ** 48 + 1.072833235289e41 * cos(theta) ** 46 - 3.32948245434516e40 * cos(theta) ** 44 + 9.177419585695e39 * cos(theta) ** 42 - 2.24163354986763e39 * cos(theta) ** 40 + 4.83805802129704e38 * cos(theta) ** 38 - 9.19479532028067e37 * cos(theta) ** 36 + 1.53246588671345e37 * cos(theta) ** 34 - 2.22896904964025e36 * cos(theta) ** 32 + 2.81315177766301e35 * cos(theta) ** 30 - 3.0600675751023e34 * cos(theta) ** 28 + 2.84622427014928e33 * cos(theta) ** 26 - 2.2424797279964e32 * cos(theta) ** 24 + 1.47997227385702e31 * cos(theta) ** 22 - 8.07257603922013e29 * cos(theta) ** 20 + 3.58027415371574e28 * cos(theta) ** 18 - 1.26537755952531e27 * cos(theta) ** 16 + 3.47472098725487e25 * cos(theta) ** 14 - 7.17494009167672e23 * cos(theta) ** 12 + 1.06654514876276e22 * cos(theta) ** 10 - 1.07394342569532e20 * cos(theta) ** 8 + 6.69123629716713e17 * cos(theta) ** 6 - 2.2230020920821e15 * cos(theta) ** 4 + 2943074261362.01 * cos(theta) ** 2 - 647541091.608802 ) * cos(5 * phi) ) # @torch.jit.script def Yl95_m6(theta, phi): return ( 7.29643764699456e-12 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.433004480105e39 * cos(theta) ** 89 - 2.96912462650327e40 * cos(theta) ** 87 + 2.96991851009325e41 * cos(theta) ** 85 - 1.91038001460052e42 * cos(theta) ** 83 + 8.88117922088193e42 * cos(theta) ** 81 - 3.17956029565276e43 * cos(theta) ** 79 + 9.12125257998711e43 * cos(theta) ** 77 - 2.15405851888961e44 * cos(theta) ** 75 + 4.26965170708476e44 * cos(theta) ** 73 - 7.20657975993497e44 * cos(theta) ** 71 + 1.04727197096131e45 * cos(theta) ** 69 - 1.32162455291836e45 * cos(theta) ** 67 + 1.4581396639234e45 * cos(theta) ** 65 - 1.41395361350148e45 * cos(theta) ** 63 + 1.21010140541998e45 * cos(theta) ** 61 - 9.16971251312034e44 * cos(theta) ** 59 + 6.16720837655224e44 * cos(theta) ** 57 - 3.68784734693795e44 * cos(theta) ** 55 + 1.96288649111213e44 * cos(theta) ** 53 - 9.30463565446343e43 * cos(theta) ** 51 + 3.92828160908638e43 * cos(theta) ** 49 - 1.47640114167005e43 * cos(theta) ** 47 + 4.93503288232938e42 * cos(theta) ** 45 - 1.46497227991187e42 * cos(theta) ** 43 + 3.8545162259919e41 * cos(theta) ** 41 - 8.96653419947052e40 * cos(theta) ** 39 + 1.83846204809288e40 * cos(theta) ** 37 - 3.31012631530104e39 * cos(theta) ** 35 + 5.21038401482571e38 * cos(theta) ** 33 - 7.13270095884879e37 * cos(theta) ** 31 + 8.43945533298902e36 * cos(theta) ** 29 - 8.56818921028643e35 * cos(theta) ** 27 + 7.40018310238813e34 * cos(theta) ** 25 - 5.38195134719137e33 * cos(theta) ** 23 + 3.25593900248545e32 * cos(theta) ** 21 - 1.61451520784403e31 * cos(theta) ** 19 + 6.44449347668834e29 * cos(theta) ** 17 - 2.0246040952405e28 * cos(theta) ** 15 + 4.86460938215682e26 * cos(theta) ** 13 - 8.60992811001206e24 * cos(theta) ** 11 + 1.06654514876276e23 * cos(theta) ** 9 - 8.59154740556259e20 * cos(theta) ** 7 + 4.01474177830028e18 * cos(theta) ** 5 - 8.89200836832841e15 * cos(theta) ** 3 + 5886148522724.01 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl95_m7(theta, phi): return ( 7.65800748117377e-14 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.27537398729345e41 * cos(theta) ** 88 - 2.58313842505785e42 * cos(theta) ** 86 + 2.52443073357926e43 * cos(theta) ** 84 - 1.58561541211843e44 * cos(theta) ** 82 + 7.19375516891437e44 * cos(theta) ** 80 - 2.51185263356568e45 * cos(theta) ** 78 + 7.02336448659007e45 * cos(theta) ** 76 - 1.61554388916721e46 * cos(theta) ** 74 + 3.11684574617188e46 * cos(theta) ** 72 - 5.11667162955383e46 * cos(theta) ** 70 + 7.22617659963304e46 * cos(theta) ** 68 - 8.85488450455303e46 * cos(theta) ** 66 + 9.47790781550211e46 * cos(theta) ** 64 - 8.90790776505933e46 * cos(theta) ** 62 + 7.38161857306187e46 * cos(theta) ** 60 - 5.410130382741e46 * cos(theta) ** 58 + 3.51530877463478e46 * cos(theta) ** 56 - 2.02831604081587e46 * cos(theta) ** 54 + 1.04032984028943e46 * cos(theta) ** 52 - 4.74536418377635e45 * cos(theta) ** 50 + 1.92485798845233e45 * cos(theta) ** 48 - 6.93908536584923e44 * cos(theta) ** 46 + 2.22076479704822e44 * cos(theta) ** 44 - 6.29938080362105e43 * cos(theta) ** 42 + 1.58035165265668e43 * cos(theta) ** 40 - 3.4969483377935e42 * cos(theta) ** 38 + 6.80230957794364e41 * cos(theta) ** 36 - 1.15854421035536e41 * cos(theta) ** 34 + 1.71942672489249e40 * cos(theta) ** 32 - 2.21113729724312e39 * cos(theta) ** 30 + 2.44744204656682e38 * cos(theta) ** 28 - 2.31341108677734e37 * cos(theta) ** 26 + 1.85004577559703e36 * cos(theta) ** 24 - 1.23784880985401e35 * cos(theta) ** 22 + 6.83747190521945e33 * cos(theta) ** 20 - 3.06757889490365e32 * cos(theta) ** 18 + 1.09556389103702e31 * cos(theta) ** 16 - 3.03690614286076e29 * cos(theta) ** 14 + 6.32399219680386e27 * cos(theta) ** 12 - 9.47092092101327e25 * cos(theta) ** 10 + 9.5989063388648e23 * cos(theta) ** 8 - 6.01408318389381e21 * cos(theta) ** 6 + 2.00737088915014e19 * cos(theta) ** 4 - 2.66760251049852e16 * cos(theta) ** 2 + 5886148522724.01 ) * cos(7 * phi) ) # @torch.jit.script def Yl95_m8(theta, phi): return ( 8.04369950339516e-16 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.12232910881824e43 * cos(theta) ** 87 - 2.22149904554975e44 * cos(theta) ** 85 + 2.12052181620658e45 * cos(theta) ** 83 - 1.30020463793712e46 * cos(theta) ** 81 + 5.75500413513149e46 * cos(theta) ** 79 - 1.95924505418123e47 * cos(theta) ** 77 + 5.33775700980845e47 * cos(theta) ** 75 - 1.19550247798373e48 * cos(theta) ** 73 + 2.24412893724375e48 * cos(theta) ** 71 - 3.58167014068768e48 * cos(theta) ** 69 + 4.91380008775047e48 * cos(theta) ** 67 - 5.844223773005e48 * cos(theta) ** 65 + 6.06586100192135e48 * cos(theta) ** 63 - 5.52290281433678e48 * cos(theta) ** 61 + 4.42897114383712e48 * cos(theta) ** 59 - 3.13787562198978e48 * cos(theta) ** 57 + 1.96857291379548e48 * cos(theta) ** 55 - 1.09529066204057e48 * cos(theta) ** 53 + 5.40971516950504e47 * cos(theta) ** 51 - 2.37268209188817e47 * cos(theta) ** 49 + 9.23931834457117e46 * cos(theta) ** 47 - 3.19197926829065e46 * cos(theta) ** 45 + 9.77136510701218e45 * cos(theta) ** 43 - 2.64573993752084e45 * cos(theta) ** 41 + 6.32140661062671e44 * cos(theta) ** 39 - 1.32884036836153e44 * cos(theta) ** 37 + 2.44883144805971e43 * cos(theta) ** 35 - 3.93905031520824e42 * cos(theta) ** 33 + 5.50216551965595e41 * cos(theta) ** 31 - 6.63341189172937e40 * cos(theta) ** 29 + 6.85283773038709e39 * cos(theta) ** 27 - 6.01486882562107e38 * cos(theta) ** 25 + 4.44010986143288e37 * cos(theta) ** 23 - 2.72326738167883e36 * cos(theta) ** 21 + 1.36749438104389e35 * cos(theta) ** 19 - 5.52164201082657e33 * cos(theta) ** 17 + 1.75290222565923e32 * cos(theta) ** 15 - 4.25166860000506e30 * cos(theta) ** 13 + 7.58879063616463e28 * cos(theta) ** 11 - 9.47092092101327e26 * cos(theta) ** 9 + 7.67912507109184e24 * cos(theta) ** 7 - 3.60844991033629e22 * cos(theta) ** 5 + 8.02948355660055e19 * cos(theta) ** 3 - 5.33520502099704e16 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl95_m9(theta, phi): return ( 8.45628364538477e-18 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 9.76426324671867e44 * cos(theta) ** 86 - 1.88827418871729e46 * cos(theta) ** 84 + 1.76003310745146e47 * cos(theta) ** 82 - 1.05316575672906e48 * cos(theta) ** 80 + 4.54645326675388e48 * cos(theta) ** 78 - 1.50861869171955e49 * cos(theta) ** 76 + 4.00331775735634e49 * cos(theta) ** 74 - 8.72716808928125e49 * cos(theta) ** 72 + 1.59333154544306e50 * cos(theta) ** 70 - 2.4713523970745e50 * cos(theta) ** 68 + 3.29224605879281e50 * cos(theta) ** 66 - 3.79874545245325e50 * cos(theta) ** 64 + 3.82149243121045e50 * cos(theta) ** 62 - 3.36897071674544e50 * cos(theta) ** 60 + 2.6130929748639e50 * cos(theta) ** 58 - 1.78858910453417e50 * cos(theta) ** 56 + 1.08271510258751e50 * cos(theta) ** 54 - 5.80504050881502e49 * cos(theta) ** 52 + 2.75895473644757e49 * cos(theta) ** 50 - 1.16261422502521e49 * cos(theta) ** 48 + 4.34247962194845e48 * cos(theta) ** 46 - 1.43639067073079e48 * cos(theta) ** 44 + 4.20168699601524e47 * cos(theta) ** 42 - 1.08475337438354e47 * cos(theta) ** 40 + 2.46534857814442e46 * cos(theta) ** 38 - 4.91670936293766e45 * cos(theta) ** 36 + 8.57091006820899e44 * cos(theta) ** 34 - 1.29988660401872e44 * cos(theta) ** 32 + 1.70567131109335e43 * cos(theta) ** 30 - 1.92368944860152e42 * cos(theta) ** 28 + 1.85026618720451e41 * cos(theta) ** 26 - 1.50371720640527e40 * cos(theta) ** 24 + 1.02122526812956e39 * cos(theta) ** 22 - 5.71886150152555e37 * cos(theta) ** 20 + 2.59823932398339e36 * cos(theta) ** 18 - 9.38679141840517e34 * cos(theta) ** 16 + 2.62935333848884e33 * cos(theta) ** 14 - 5.52716918000658e31 * cos(theta) ** 12 + 8.3476696997811e29 * cos(theta) ** 10 - 8.52382882891194e27 * cos(theta) ** 8 + 5.37538754976429e25 * cos(theta) ** 6 - 1.80422495516814e23 * cos(theta) ** 4 + 2.40884506698017e20 * cos(theta) ** 2 - 5.33520502099704e16 ) * cos(9 * phi) ) # @torch.jit.script def Yl95_m10(theta, phi): return ( 8.89888648148811e-20 * (1.0 - cos(theta) ** 2) ** 5 * ( 8.39726639217805e46 * cos(theta) ** 85 - 1.58615031852252e48 * cos(theta) ** 83 + 1.4432271481102e49 * cos(theta) ** 81 - 8.42532605383251e49 * cos(theta) ** 79 + 3.54623354806803e50 * cos(theta) ** 77 - 1.14655020570686e51 * cos(theta) ** 75 + 2.96245514044369e51 * cos(theta) ** 73 - 6.2835610242825e51 * cos(theta) ** 71 + 1.11533208181014e52 * cos(theta) ** 69 - 1.68051963001066e52 * cos(theta) ** 67 + 2.17288239880326e52 * cos(theta) ** 65 - 2.43119708957008e52 * cos(theta) ** 63 + 2.36932530735048e52 * cos(theta) ** 61 - 2.02138243004726e52 * cos(theta) ** 59 + 1.51559392542106e52 * cos(theta) ** 57 - 1.00160989853914e52 * cos(theta) ** 55 + 5.84666155397256e51 * cos(theta) ** 53 - 3.01862106458381e51 * cos(theta) ** 51 + 1.37947736822378e51 * cos(theta) ** 49 - 5.58054828012098e50 * cos(theta) ** 47 + 1.99754062609629e50 * cos(theta) ** 45 - 6.32011895121548e49 * cos(theta) ** 43 + 1.7647085383264e49 * cos(theta) ** 41 - 4.33901349753418e48 * cos(theta) ** 39 + 9.36832459694879e47 * cos(theta) ** 37 - 1.77001537065756e47 * cos(theta) ** 35 + 2.91410942319106e46 * cos(theta) ** 33 - 4.1596371328599e45 * cos(theta) ** 31 + 5.11701393328004e44 * cos(theta) ** 29 - 5.38633045608425e43 * cos(theta) ** 27 + 4.81069208673173e42 * cos(theta) ** 25 - 3.60892129537264e41 * cos(theta) ** 23 + 2.24669558988504e40 * cos(theta) ** 21 - 1.14377230030511e39 * cos(theta) ** 19 + 4.6768307831701e37 * cos(theta) ** 17 - 1.50188662694483e36 * cos(theta) ** 15 + 3.68109467388438e34 * cos(theta) ** 13 - 6.63260301600789e32 * cos(theta) ** 11 + 8.3476696997811e30 * cos(theta) ** 9 - 6.81906306312956e28 * cos(theta) ** 7 + 3.22523252985857e26 * cos(theta) ** 5 - 7.21689982067257e23 * cos(theta) ** 3 + 4.81769013396033e20 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl95_m11(theta, phi): return ( 9.37504306230062e-22 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 7.13767643335135e48 * cos(theta) ** 84 - 1.31650476437369e50 * cos(theta) ** 82 + 1.16901398996926e51 * cos(theta) ** 80 - 6.65600758252768e51 * cos(theta) ** 78 + 2.73059983201238e52 * cos(theta) ** 76 - 8.59912654280142e52 * cos(theta) ** 74 + 2.1625922525239e53 * cos(theta) ** 72 - 4.46132832724058e53 * cos(theta) ** 70 + 7.69579136449e53 * cos(theta) ** 68 - 1.12594815210714e54 * cos(theta) ** 66 + 1.41237355922212e54 * cos(theta) ** 64 - 1.53165416642915e54 * cos(theta) ** 62 + 1.44528843748379e54 * cos(theta) ** 60 - 1.19261563372789e54 * cos(theta) ** 58 + 8.63888537490006e53 * cos(theta) ** 56 - 5.50885444196526e53 * cos(theta) ** 54 + 3.09873062360546e53 * cos(theta) ** 52 - 1.53949674293774e53 * cos(theta) ** 50 + 6.75943910429654e52 * cos(theta) ** 48 - 2.62285769165686e52 * cos(theta) ** 46 + 8.98893281743329e51 * cos(theta) ** 44 - 2.71765114902266e51 * cos(theta) ** 42 + 7.23530500713824e50 * cos(theta) ** 40 - 1.69221526403833e50 * cos(theta) ** 38 + 3.46628010087105e49 * cos(theta) ** 36 - 6.19505379730146e48 * cos(theta) ** 34 + 9.61656109653048e47 * cos(theta) ** 32 - 1.28948751118657e47 * cos(theta) ** 30 + 1.48393404065121e46 * cos(theta) ** 28 - 1.45430922314275e45 * cos(theta) ** 26 + 1.20267302168293e44 * cos(theta) ** 24 - 8.30051897935708e42 * cos(theta) ** 22 + 4.71806073875858e41 * cos(theta) ** 20 - 2.17316737057971e40 * cos(theta) ** 18 + 7.95061233138918e38 * cos(theta) ** 16 - 2.25282994041724e37 * cos(theta) ** 14 + 4.78542307604969e35 * cos(theta) ** 12 - 7.29586331760868e33 * cos(theta) ** 10 + 7.51290272980299e31 * cos(theta) ** 8 - 4.77334414419069e29 * cos(theta) ** 6 + 1.61261626492929e27 * cos(theta) ** 4 - 2.16506994620177e24 * cos(theta) ** 2 + 4.81769013396033e20 ) * cos(11 * phi) ) # @torch.jit.script def Yl95_m12(theta, phi): return ( 9.88875778383378e-24 * (1.0 - cos(theta) ** 2) ** 6 * ( 5.99564820401513e50 * cos(theta) ** 83 - 1.07953390678643e52 * cos(theta) ** 81 + 9.35211191975408e52 * cos(theta) ** 79 - 5.19168591437159e53 * cos(theta) ** 77 + 2.07525587232941e54 * cos(theta) ** 75 - 6.36335364167305e54 * cos(theta) ** 73 + 1.5570664218172e55 * cos(theta) ** 71 - 3.1229298290684e55 * cos(theta) ** 69 + 5.2331381278532e55 * cos(theta) ** 67 - 7.43125780390714e55 * cos(theta) ** 65 + 9.03919077902155e55 * cos(theta) ** 63 - 9.49625583186073e55 * cos(theta) ** 61 + 8.67173062490276e55 * cos(theta) ** 59 - 6.91717067562173e55 * cos(theta) ** 57 + 4.83777580994404e55 * cos(theta) ** 55 - 2.97478139866124e55 * cos(theta) ** 53 + 1.61133992427484e55 * cos(theta) ** 51 - 7.69748371468872e54 * cos(theta) ** 49 + 3.24453077006234e54 * cos(theta) ** 47 - 1.20651453816216e54 * cos(theta) ** 45 + 3.95513043967065e53 * cos(theta) ** 43 - 1.14141348258952e53 * cos(theta) ** 41 + 2.8941220028553e52 * cos(theta) ** 39 - 6.43041800334565e51 * cos(theta) ** 37 + 1.24786083631358e51 * cos(theta) ** 35 - 2.10631829108249e50 * cos(theta) ** 33 + 3.07729955088975e49 * cos(theta) ** 31 - 3.86846253355971e48 * cos(theta) ** 29 + 4.15501531382339e47 * cos(theta) ** 27 - 3.78120398017114e46 * cos(theta) ** 25 + 2.88641525203904e45 * cos(theta) ** 23 - 1.82611417545856e44 * cos(theta) ** 21 + 9.43612147751715e42 * cos(theta) ** 19 - 3.91170126704347e41 * cos(theta) ** 17 + 1.27209797302227e40 * cos(theta) ** 15 - 3.15396191658414e38 * cos(theta) ** 13 + 5.74250769125963e36 * cos(theta) ** 11 - 7.29586331760868e34 * cos(theta) ** 9 + 6.01032218384239e32 * cos(theta) ** 7 - 2.86400648651441e30 * cos(theta) ** 5 + 6.45046505971715e27 * cos(theta) ** 3 - 4.33013989240354e24 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl95_m13(theta, phi): return ( 1.04445760252969e-25 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 4.97638800933256e52 * cos(theta) ** 82 - 8.74422464497007e53 * cos(theta) ** 80 + 7.38816841660573e54 * cos(theta) ** 78 - 3.99759815406612e55 * cos(theta) ** 76 + 1.55644190424706e56 * cos(theta) ** 74 - 4.64524815842133e56 * cos(theta) ** 72 + 1.10551715949022e57 * cos(theta) ** 70 - 2.1548215820572e57 * cos(theta) ** 68 + 3.50620254566164e57 * cos(theta) ** 66 - 4.83031757253964e57 * cos(theta) ** 64 + 5.69469019078358e57 * cos(theta) ** 62 - 5.79271605743504e57 * cos(theta) ** 60 + 5.11632106869263e57 * cos(theta) ** 58 - 3.94278728510439e57 * cos(theta) ** 56 + 2.66077669546922e57 * cos(theta) ** 54 - 1.57663414129046e57 * cos(theta) ** 52 + 8.21783361380167e56 * cos(theta) ** 50 - 3.77176702019747e56 * cos(theta) ** 48 + 1.5249294619293e56 * cos(theta) ** 46 - 5.42931542172971e55 * cos(theta) ** 44 + 1.70070608905838e55 * cos(theta) ** 42 - 4.67979527861701e54 * cos(theta) ** 40 + 1.12870758111357e54 * cos(theta) ** 38 - 2.37925466123789e53 * cos(theta) ** 36 + 4.36751292709753e52 * cos(theta) ** 34 - 6.95085036057223e51 * cos(theta) ** 32 + 9.53962860775824e50 * cos(theta) ** 30 - 1.12185413473232e50 * cos(theta) ** 28 + 1.12185413473232e49 * cos(theta) ** 26 - 9.45300995042786e47 * cos(theta) ** 24 + 6.63875507968979e46 * cos(theta) ** 22 - 3.83483976846297e45 * cos(theta) ** 20 + 1.79286308072826e44 * cos(theta) ** 18 - 6.64989215397391e42 * cos(theta) ** 16 + 1.9081469595334e41 * cos(theta) ** 14 - 4.10015049155938e39 * cos(theta) ** 12 + 6.31675846038559e37 * cos(theta) ** 10 - 6.56627698584781e35 * cos(theta) ** 8 + 4.20722552868967e33 * cos(theta) ** 6 - 1.43200324325721e31 * cos(theta) ** 4 + 1.93513951791514e28 * cos(theta) ** 2 - 4.33013989240354e24 ) * cos(13 * phi) ) # @torch.jit.script def Yl95_m14(theta, phi): return ( 1.10476686550714e-27 * (1.0 - cos(theta) ** 2) ** 7 * ( 4.0806381676527e54 * cos(theta) ** 81 - 6.99537971597605e55 * cos(theta) ** 79 + 5.76277136495247e56 * cos(theta) ** 77 - 3.03817459709025e57 * cos(theta) ** 75 + 1.15176700914282e58 * cos(theta) ** 73 - 3.34457867406336e58 * cos(theta) ** 71 + 7.73862011643151e58 * cos(theta) ** 69 - 1.4652786757989e59 * cos(theta) ** 67 + 2.31409368013668e59 * cos(theta) ** 65 - 3.09140324642537e59 * cos(theta) ** 63 + 3.53070791828582e59 * cos(theta) ** 61 - 3.47562963446103e59 * cos(theta) ** 59 + 2.96746621984172e59 * cos(theta) ** 57 - 2.20796087965846e59 * cos(theta) ** 55 + 1.43681941555338e59 * cos(theta) ** 53 - 8.19849753471038e58 * cos(theta) ** 51 + 4.10891680690084e58 * cos(theta) ** 49 - 1.81044816969479e58 * cos(theta) ** 47 + 7.01467552487478e57 * cos(theta) ** 45 - 2.38889878556107e57 * cos(theta) ** 43 + 7.14296557404519e56 * cos(theta) ** 41 - 1.87191811144681e56 * cos(theta) ** 39 + 4.28908880823155e55 * cos(theta) ** 37 - 8.56531678045641e54 * cos(theta) ** 35 + 1.48495439521316e54 * cos(theta) ** 33 - 2.22427211538311e53 * cos(theta) ** 31 + 2.86188858232747e52 * cos(theta) ** 29 - 3.14119157725048e51 * cos(theta) ** 27 + 2.91682075030402e50 * cos(theta) ** 25 - 2.26872238810269e49 * cos(theta) ** 23 + 1.46052611753175e48 * cos(theta) ** 21 - 7.66967953692594e46 * cos(theta) ** 19 + 3.22715354531087e45 * cos(theta) ** 17 - 1.06398274463583e44 * cos(theta) ** 15 + 2.67140574334676e42 * cos(theta) ** 13 - 4.92018058987125e40 * cos(theta) ** 11 + 6.31675846038559e38 * cos(theta) ** 9 - 5.25302158867825e36 * cos(theta) ** 7 + 2.5243353172138e34 * cos(theta) ** 5 - 5.72801297302883e31 * cos(theta) ** 3 + 3.87027903583029e28 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl95_m15(theta, phi): return ( 1.17039319566575e-29 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 3.30531691579869e56 * cos(theta) ** 80 - 5.52634997562108e57 * cos(theta) ** 78 + 4.4373339510134e58 * cos(theta) ** 76 - 2.27863094781769e59 * cos(theta) ** 74 + 8.4078991667426e59 * cos(theta) ** 72 - 2.37465085858498e60 * cos(theta) ** 70 + 5.33964788033774e60 * cos(theta) ** 68 - 9.8173671278526e60 * cos(theta) ** 66 + 1.50416089208884e61 * cos(theta) ** 64 - 1.94758404524798e61 * cos(theta) ** 62 + 2.15373183015435e61 * cos(theta) ** 60 - 2.05062148433201e61 * cos(theta) ** 58 + 1.69145574530978e61 * cos(theta) ** 56 - 1.21437848381215e61 * cos(theta) ** 54 + 7.61514290243291e60 * cos(theta) ** 52 - 4.18123374270229e60 * cos(theta) ** 50 + 2.01336923538141e60 * cos(theta) ** 48 - 8.5091063975655e59 * cos(theta) ** 46 + 3.15660398619365e59 * cos(theta) ** 44 - 1.02722647779126e59 * cos(theta) ** 42 + 2.92861588535853e58 * cos(theta) ** 40 - 7.30048063464254e57 * cos(theta) ** 38 + 1.58696285904567e57 * cos(theta) ** 36 - 2.99786087315974e56 * cos(theta) ** 34 + 4.90034950420342e55 * cos(theta) ** 32 - 6.89524355768766e54 * cos(theta) ** 30 + 8.29947688874967e53 * cos(theta) ** 28 - 8.4812172585763e52 * cos(theta) ** 26 + 7.29205187576005e51 * cos(theta) ** 24 - 5.21806149263618e50 * cos(theta) ** 22 + 3.06710484681668e49 * cos(theta) ** 20 - 1.45723911201593e48 * cos(theta) ** 18 + 5.48616102702847e46 * cos(theta) ** 16 - 1.59597411695374e45 * cos(theta) ** 14 + 3.47282746635079e43 * cos(theta) ** 12 - 5.41219864885838e41 * cos(theta) ** 10 + 5.68508261434704e39 * cos(theta) ** 8 - 3.67711511207477e37 * cos(theta) ** 6 + 1.2621676586069e35 * cos(theta) ** 4 - 1.71840389190865e32 * cos(theta) ** 2 + 3.87027903583029e28 ) * cos(15 * phi) ) # @torch.jit.script def Yl95_m16(theta, phi): return ( 1.24201060859807e-31 * (1.0 - cos(theta) ** 2) ** 8 * ( 2.64425353263895e58 * cos(theta) ** 79 - 4.31055298098444e59 * cos(theta) ** 77 + 3.37237380277018e60 * cos(theta) ** 75 - 1.68618690138509e61 * cos(theta) ** 73 + 6.05368740005467e61 * cos(theta) ** 71 - 1.66225560100949e62 * cos(theta) ** 69 + 3.63096055862966e62 * cos(theta) ** 67 - 6.47946230438272e62 * cos(theta) ** 65 + 9.62662970936861e62 * cos(theta) ** 63 - 1.20750210805375e63 * cos(theta) ** 61 + 1.29223909809261e63 * cos(theta) ** 59 - 1.18936046091256e63 * cos(theta) ** 57 + 9.47215217373478e62 * cos(theta) ** 55 - 6.55764381258562e62 * cos(theta) ** 53 + 3.95987430926511e62 * cos(theta) ** 51 - 2.09061687135115e62 * cos(theta) ** 49 + 9.66417232983077e61 * cos(theta) ** 47 - 3.91418894288013e61 * cos(theta) ** 45 + 1.38890575392521e61 * cos(theta) ** 43 - 4.31435120672329e60 * cos(theta) ** 41 + 1.17144635414341e60 * cos(theta) ** 39 - 2.77418264116417e59 * cos(theta) ** 37 + 5.71306629256442e58 * cos(theta) ** 35 - 1.01927269687431e58 * cos(theta) ** 33 + 1.5681118413451e57 * cos(theta) ** 31 - 2.0685730673063e56 * cos(theta) ** 29 + 2.32385352884991e55 * cos(theta) ** 27 - 2.20511648722984e54 * cos(theta) ** 25 + 1.75009245018241e53 * cos(theta) ** 23 - 1.14797352837996e52 * cos(theta) ** 21 + 6.13420969363337e50 * cos(theta) ** 19 - 2.62303040162867e49 * cos(theta) ** 17 + 8.77785764324556e47 * cos(theta) ** 15 - 2.23436376373523e46 * cos(theta) ** 13 + 4.16739295962095e44 * cos(theta) ** 11 - 5.41219864885838e42 * cos(theta) ** 9 + 4.54806609147763e40 * cos(theta) ** 7 - 2.20626906724486e38 * cos(theta) ** 5 + 5.04867063442761e35 * cos(theta) ** 3 - 3.4368077838173e32 * cos(theta) ) * cos(16 * phi) ) # @torch.jit.script def Yl95_m17(theta, phi): return ( 1.32039158660871e-33 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 2.08896029078477e60 * cos(theta) ** 78 - 3.31912579535802e61 * cos(theta) ** 76 + 2.52928035207764e62 * cos(theta) ** 74 - 1.23091643801112e63 * cos(theta) ** 72 + 4.29811805403882e63 * cos(theta) ** 70 - 1.14695636469655e64 * cos(theta) ** 68 + 2.43274357428187e64 * cos(theta) ** 66 - 4.21165049784876e64 * cos(theta) ** 64 + 6.06477671690222e64 * cos(theta) ** 62 - 7.36576285912787e64 * cos(theta) ** 60 + 7.6242106787464e64 * cos(theta) ** 58 - 6.77935462720161e64 * cos(theta) ** 56 + 5.20968369555413e64 * cos(theta) ** 54 - 3.47555122067038e64 * cos(theta) ** 52 + 2.01953589772521e64 * cos(theta) ** 50 - 1.02440226696206e64 * cos(theta) ** 48 + 4.54216099502046e63 * cos(theta) ** 46 - 1.76138502429606e63 * cos(theta) ** 44 + 5.97229474187839e62 * cos(theta) ** 42 - 1.76888399475655e62 * cos(theta) ** 40 + 4.5686407811593e61 * cos(theta) ** 38 - 1.02644757723074e61 * cos(theta) ** 36 + 1.99957320239755e60 * cos(theta) ** 34 - 3.36359989968523e59 * cos(theta) ** 32 + 4.8611467081698e58 * cos(theta) ** 30 - 5.99886189518826e57 * cos(theta) ** 28 + 6.27440452789475e56 * cos(theta) ** 26 - 5.5127912180746e55 * cos(theta) ** 24 + 4.02521263541955e54 * cos(theta) ** 22 - 2.41074440959791e53 * cos(theta) ** 20 + 1.16549984179034e52 * cos(theta) ** 18 - 4.45915168276874e50 * cos(theta) ** 16 + 1.31667864648683e49 * cos(theta) ** 14 - 2.9046728928558e47 * cos(theta) ** 12 + 4.58413225558305e45 * cos(theta) ** 10 - 4.87097878397254e43 * cos(theta) ** 8 + 3.18364626403434e41 * cos(theta) ** 6 - 1.10313453362243e39 * cos(theta) ** 4 + 1.51460119032828e36 * cos(theta) ** 2 - 3.4368077838173e32 ) * cos(17 * phi) ) # @torch.jit.script def Yl95_m18(theta, phi): return ( 1.4064238590253e-35 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.62938902681212e62 * cos(theta) ** 77 - 2.5225356044721e63 * cos(theta) ** 75 + 1.87166746053745e64 * cos(theta) ** 73 - 8.86259835368004e64 * cos(theta) ** 71 + 3.00868263782717e65 * cos(theta) ** 69 - 7.79930327993651e65 * cos(theta) ** 67 + 1.60561075902604e66 * cos(theta) ** 65 - 2.69545631862321e66 * cos(theta) ** 63 + 3.76016156447938e66 * cos(theta) ** 61 - 4.41945771547672e66 * cos(theta) ** 59 + 4.42204219367291e66 * cos(theta) ** 57 - 3.7964385912329e66 * cos(theta) ** 55 + 2.81322919559923e66 * cos(theta) ** 53 - 1.8072866347486e66 * cos(theta) ** 51 + 1.0097679488626e66 * cos(theta) ** 49 - 4.91713088141789e65 * cos(theta) ** 47 + 2.08939405770941e65 * cos(theta) ** 45 - 7.75009410690265e64 * cos(theta) ** 43 + 2.50836379158892e64 * cos(theta) ** 41 - 7.0755359790262e63 * cos(theta) ** 39 + 1.73608349684054e63 * cos(theta) ** 37 - 3.69521127803067e62 * cos(theta) ** 35 + 6.79854888815166e61 * cos(theta) ** 33 - 1.07635196789927e61 * cos(theta) ** 31 + 1.45834401245094e60 * cos(theta) ** 29 - 1.67968133065271e59 * cos(theta) ** 27 + 1.63134517725263e58 * cos(theta) ** 25 - 1.3230698923379e57 * cos(theta) ** 23 + 8.855467797923e55 * cos(theta) ** 21 - 4.82148881919583e54 * cos(theta) ** 19 + 2.09789971522261e53 * cos(theta) ** 17 - 7.13464269242999e51 * cos(theta) ** 15 + 1.84335010508157e50 * cos(theta) ** 13 - 3.48560747142696e48 * cos(theta) ** 11 + 4.58413225558305e46 * cos(theta) ** 9 - 3.89678302717803e44 * cos(theta) ** 7 + 1.9101877584206e42 * cos(theta) ** 5 - 4.41253813448973e39 * cos(theta) ** 3 + 3.02920238065656e36 * cos(theta) ) * cos(18 * phi) ) # @torch.jit.script def Yl95_m19(theta, phi): return ( 1.50113045851864e-37 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.25462955064533e64 * cos(theta) ** 76 - 1.89190170335407e65 * cos(theta) ** 74 + 1.36631724619234e66 * cos(theta) ** 72 - 6.29244483111283e66 * cos(theta) ** 70 + 2.07599102010075e67 * cos(theta) ** 68 - 5.22553319755747e67 * cos(theta) ** 66 + 1.04364699336692e68 * cos(theta) ** 64 - 1.69813748073262e68 * cos(theta) ** 62 + 2.29369855433242e68 * cos(theta) ** 60 - 2.60748005213127e68 * cos(theta) ** 58 + 2.52056405039356e68 * cos(theta) ** 56 - 2.0880412251781e68 * cos(theta) ** 54 + 1.49101147366759e68 * cos(theta) ** 52 - 9.21716183721784e67 * cos(theta) ** 50 + 4.94786294942676e67 * cos(theta) ** 48 - 2.31105151426641e67 * cos(theta) ** 46 + 9.40227325969235e66 * cos(theta) ** 44 - 3.33254046596814e66 * cos(theta) ** 42 + 1.02842915455146e66 * cos(theta) ** 40 - 2.75945903182022e65 * cos(theta) ** 38 + 6.42350893830998e64 * cos(theta) ** 36 - 1.29332394731073e64 * cos(theta) ** 34 + 2.24352113309005e63 * cos(theta) ** 32 - 3.33669110048775e62 * cos(theta) ** 30 + 4.22919763610772e61 * cos(theta) ** 28 - 4.53513959276232e60 * cos(theta) ** 26 + 4.07836294313159e59 * cos(theta) ** 24 - 3.04306075237718e58 * cos(theta) ** 22 + 1.85964823756383e57 * cos(theta) ** 20 - 9.16082875647207e55 * cos(theta) ** 18 + 3.56642951587844e54 * cos(theta) ** 16 - 1.0701964038645e53 * cos(theta) ** 14 + 2.39635513660604e51 * cos(theta) ** 12 - 3.83416821856966e49 * cos(theta) ** 10 + 4.12571903002474e47 * cos(theta) ** 8 - 2.72774811902462e45 * cos(theta) ** 6 + 9.55093879210302e42 * cos(theta) ** 4 - 1.32376144034692e40 * cos(theta) ** 2 + 3.02920238065656e36 ) * cos(19 * phi) ) # @torch.jit.script def Yl95_m20(theta, phi): return ( 1.60569376406278e-39 * (1.0 - cos(theta) ** 2) ** 10 * ( 9.53518458490452e65 * cos(theta) ** 75 - 1.40000726048201e67 * cos(theta) ** 73 + 9.83748417258484e67 * cos(theta) ** 71 - 4.40471138177898e68 * cos(theta) ** 69 + 1.41167389366851e69 * cos(theta) ** 67 - 3.44885191038793e69 * cos(theta) ** 65 + 6.67934075754831e69 * cos(theta) ** 63 - 1.05284523805423e70 * cos(theta) ** 61 + 1.37621913259945e70 * cos(theta) ** 59 - 1.51233843023614e70 * cos(theta) ** 57 + 1.41151586822039e70 * cos(theta) ** 55 - 1.12754226159617e70 * cos(theta) ** 53 + 7.75325966307148e69 * cos(theta) ** 51 - 4.60858091860892e69 * cos(theta) ** 49 + 2.37497421572484e69 * cos(theta) ** 47 - 1.06308369656255e69 * cos(theta) ** 45 + 4.13700023426464e68 * cos(theta) ** 43 - 1.39966699570662e68 * cos(theta) ** 41 + 4.11371661820583e67 * cos(theta) ** 39 - 1.04859443209168e67 * cos(theta) ** 37 + 2.31246321779159e66 * cos(theta) ** 35 - 4.3973014208565e65 * cos(theta) ** 33 + 7.17926762588816e64 * cos(theta) ** 31 - 1.00100733014632e64 * cos(theta) ** 29 + 1.18417533811016e63 * cos(theta) ** 27 - 1.1791362941182e62 * cos(theta) ** 25 + 9.78807106351581e60 * cos(theta) ** 23 - 6.69473365522979e59 * cos(theta) ** 21 + 3.71929647512766e58 * cos(theta) ** 19 - 1.64894917616497e57 * cos(theta) ** 17 + 5.70628722540551e55 * cos(theta) ** 15 - 1.4982749654103e54 * cos(theta) ** 13 + 2.87562616392724e52 * cos(theta) ** 11 - 3.83416821856966e50 * cos(theta) ** 9 + 3.30057522401979e48 * cos(theta) ** 7 - 1.63664887141477e46 * cos(theta) ** 5 + 3.82037551684121e43 * cos(theta) ** 3 - 2.64752288069384e40 * cos(theta) ) * cos(20 * phi) ) # @torch.jit.script def Yl95_m21(theta, phi): return ( 1.72148441156258e-41 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 7.15138843867839e67 * cos(theta) ** 74 - 1.02200530015187e69 * cos(theta) ** 72 + 6.98461376253524e69 * cos(theta) ** 70 - 3.0392508534275e70 * cos(theta) ** 68 + 9.45821508757901e70 * cos(theta) ** 66 - 2.24175374175215e71 * cos(theta) ** 64 + 4.20798467725544e71 * cos(theta) ** 62 - 6.42235595213078e71 * cos(theta) ** 60 + 8.11969288233677e71 * cos(theta) ** 58 - 8.62032905234597e71 * cos(theta) ** 56 + 7.76333727521216e71 * cos(theta) ** 54 - 5.97597398645971e71 * cos(theta) ** 52 + 3.95416242816646e71 * cos(theta) ** 50 - 2.25820465011837e71 * cos(theta) ** 48 + 1.11623788139068e71 * cos(theta) ** 46 - 4.78387663453147e70 * cos(theta) ** 44 + 1.77891010073379e70 * cos(theta) ** 42 - 5.73863468239714e69 * cos(theta) ** 40 + 1.60434948110028e69 * cos(theta) ** 38 - 3.87979939873923e68 * cos(theta) ** 36 + 8.09362126227057e67 * cos(theta) ** 34 - 1.45110946888264e67 * cos(theta) ** 32 + 2.22557296402533e66 * cos(theta) ** 30 - 2.90292125742434e65 * cos(theta) ** 28 + 3.19727341289744e64 * cos(theta) ** 26 - 2.94784073529551e63 * cos(theta) ** 24 + 2.25125634460864e62 * cos(theta) ** 22 - 1.40589406759826e61 * cos(theta) ** 20 + 7.06666330274256e59 * cos(theta) ** 18 - 2.80321359948045e58 * cos(theta) ** 16 + 8.55943083810826e56 * cos(theta) ** 14 - 1.94775745503339e55 * cos(theta) ** 12 + 3.16318878031997e53 * cos(theta) ** 10 - 3.45075139671269e51 * cos(theta) ** 8 + 2.31040265681386e49 * cos(theta) ** 6 - 8.18324435707387e46 * cos(theta) ** 4 + 1.14611265505236e44 * cos(theta) ** 2 - 2.64752288069384e40 ) * cos(21 * phi) ) # @torch.jit.script def Yl95_m22(theta, phi): return ( 1.85009616828234e-43 * (1.0 - cos(theta) ** 2) ** 11 * ( 5.29202744462201e69 * cos(theta) ** 73 - 7.35843816109346e70 * cos(theta) ** 71 + 4.88922963377467e71 * cos(theta) ** 69 - 2.0666905803307e72 * cos(theta) ** 67 + 6.24242195780215e72 * cos(theta) ** 65 - 1.43472239472138e73 * cos(theta) ** 63 + 2.60895049989837e73 * cos(theta) ** 61 - 3.85341357127847e73 * cos(theta) ** 59 + 4.70942187175532e73 * cos(theta) ** 57 - 4.82738426931374e73 * cos(theta) ** 55 + 4.19220212861457e73 * cos(theta) ** 53 - 3.10750647295905e73 * cos(theta) ** 51 + 1.97708121408323e73 * cos(theta) ** 49 - 1.08393823205682e73 * cos(theta) ** 47 + 5.13469425439711e72 * cos(theta) ** 45 - 2.10490571919385e72 * cos(theta) ** 43 + 7.47142242308193e71 * cos(theta) ** 41 - 2.29545387295886e71 * cos(theta) ** 39 + 6.09652802818105e70 * cos(theta) ** 37 - 1.39672778354612e70 * cos(theta) ** 35 + 2.751831229172e69 * cos(theta) ** 33 - 4.64355030042446e68 * cos(theta) ** 31 + 6.67671889207599e67 * cos(theta) ** 29 - 8.12817952078816e66 * cos(theta) ** 27 + 8.31291087353334e65 * cos(theta) ** 25 - 7.07481776470923e64 * cos(theta) ** 23 + 4.952763958139e63 * cos(theta) ** 21 - 2.81178813519651e62 * cos(theta) ** 19 + 1.27199939449366e61 * cos(theta) ** 17 - 4.48514175916873e59 * cos(theta) ** 15 + 1.19832031733516e58 * cos(theta) ** 13 - 2.33730894604006e56 * cos(theta) ** 11 + 3.16318878031997e54 * cos(theta) ** 9 - 2.76060111737016e52 * cos(theta) ** 7 + 1.38624159408831e50 * cos(theta) ** 5 - 3.27329774282955e47 * cos(theta) ** 3 + 2.29222531010472e44 * cos(theta) ) * cos(22 * phi) ) # @torch.jit.script def Yl95_m23(theta, phi): return ( 1.99338813975248e-45 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 3.86318003457407e71 * cos(theta) ** 72 - 5.22449109437636e72 * cos(theta) ** 70 + 3.37356844730452e73 * cos(theta) ** 68 - 1.38468268882157e74 * cos(theta) ** 66 + 4.0575742725714e74 * cos(theta) ** 64 - 9.03875108674468e74 * cos(theta) ** 62 + 1.59145980493801e75 * cos(theta) ** 60 - 2.27351400705429e75 * cos(theta) ** 58 + 2.68437046690053e75 * cos(theta) ** 56 - 2.65506134812256e75 * cos(theta) ** 54 + 2.22186712816572e75 * cos(theta) ** 52 - 1.58482830120912e75 * cos(theta) ** 50 + 9.68769794900781e74 * cos(theta) ** 48 - 5.09450969066705e74 * cos(theta) ** 46 + 2.3106124144787e74 * cos(theta) ** 44 - 9.05109459253354e73 * cos(theta) ** 42 + 3.06328319346359e73 * cos(theta) ** 40 - 8.95227010453954e72 * cos(theta) ** 38 + 2.25571537042699e72 * cos(theta) ** 36 - 4.88854724241143e71 * cos(theta) ** 34 + 9.08104305626758e70 * cos(theta) ** 32 - 1.43950059313158e70 * cos(theta) ** 30 + 1.93624847870204e69 * cos(theta) ** 28 - 2.1946084706128e68 * cos(theta) ** 26 + 2.07822771838334e67 * cos(theta) ** 24 - 1.62720808588312e66 * cos(theta) ** 22 + 1.04008043120919e65 * cos(theta) ** 20 - 5.34239745687337e63 * cos(theta) ** 18 + 2.16239897063922e62 * cos(theta) ** 16 - 6.72771263875309e60 * cos(theta) ** 14 + 1.5578164125357e59 * cos(theta) ** 12 - 2.57103984064407e57 * cos(theta) ** 10 + 2.84686990228797e55 * cos(theta) ** 8 - 1.93242078215911e53 * cos(theta) ** 6 + 6.93120797044157e50 * cos(theta) ** 4 - 9.81989322848864e47 * cos(theta) ** 2 + 2.29222531010472e44 ) * cos(23 * phi) ) # @torch.jit.script def Yl95_m24(theta, phi): return ( 2.1535360244538e-47 * (1.0 - cos(theta) ** 2) ** 12 * ( 2.78148962489333e73 * cos(theta) ** 71 - 3.65714376606345e74 * cos(theta) ** 69 + 2.29402654416707e75 * cos(theta) ** 67 - 9.13890574622234e75 * cos(theta) ** 65 + 2.59684753444569e76 * cos(theta) ** 63 - 5.6040256737817e76 * cos(theta) ** 61 + 9.54875882962804e76 * cos(theta) ** 59 - 1.31863812409149e77 * cos(theta) ** 57 + 1.5032474614643e77 * cos(theta) ** 55 - 1.43373312798618e77 * cos(theta) ** 53 + 1.15537090664617e77 * cos(theta) ** 51 - 7.92414150604558e76 * cos(theta) ** 49 + 4.65009501552375e76 * cos(theta) ** 47 - 2.34347445770684e76 * cos(theta) ** 45 + 1.01666946237063e76 * cos(theta) ** 43 - 3.80145972886409e75 * cos(theta) ** 41 + 1.22531327738544e75 * cos(theta) ** 39 - 3.40186263972502e74 * cos(theta) ** 37 + 8.12057533353715e73 * cos(theta) ** 35 - 1.66210606241988e73 * cos(theta) ** 33 + 2.90593377800563e72 * cos(theta) ** 31 - 4.31850177939475e71 * cos(theta) ** 29 + 5.4214957403657e70 * cos(theta) ** 27 - 5.70598202359329e69 * cos(theta) ** 25 + 4.98774652412001e68 * cos(theta) ** 23 - 3.57985778894287e67 * cos(theta) ** 21 + 2.08016086241838e66 * cos(theta) ** 19 - 9.61631542237207e64 * cos(theta) ** 17 + 3.45983835302276e63 * cos(theta) ** 15 - 9.41879769425433e61 * cos(theta) ** 13 + 1.86937969504284e60 * cos(theta) ** 11 - 2.57103984064407e58 * cos(theta) ** 9 + 2.27749592183038e56 * cos(theta) ** 7 - 1.15945246929546e54 * cos(theta) ** 5 + 2.77248318817663e51 * cos(theta) ** 3 - 1.96397864569773e48 * cos(theta) ) * cos(24 * phi) ) # @torch.jit.script def Yl95_m25(theta, phi): return ( 2.33309457412421e-49 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 1.97485763367426e75 * cos(theta) ** 70 - 2.52342919858378e76 * cos(theta) ** 68 + 1.53699778459194e77 * cos(theta) ** 66 - 5.94028873504452e77 * cos(theta) ** 64 + 1.63601394670079e78 * cos(theta) ** 62 - 3.41845566100684e78 * cos(theta) ** 60 + 5.63376770948054e78 * cos(theta) ** 58 - 7.5162373073215e78 * cos(theta) ** 56 + 8.26786103805365e78 * cos(theta) ** 54 - 7.59878557832676e78 * cos(theta) ** 52 + 5.89239162389549e78 * cos(theta) ** 50 - 3.88282933796233e78 * cos(theta) ** 48 + 2.18554465729616e78 * cos(theta) ** 46 - 1.05456350596808e78 * cos(theta) ** 44 + 4.3716786881937e77 * cos(theta) ** 42 - 1.55859848883428e77 * cos(theta) ** 40 + 4.7787217818032e76 * cos(theta) ** 38 - 1.25868917669826e76 * cos(theta) ** 36 + 2.842201366738e75 * cos(theta) ** 34 - 5.48495000598562e74 * cos(theta) ** 32 + 9.00839471181744e73 * cos(theta) ** 30 - 1.25236551602448e73 * cos(theta) ** 28 + 1.46380384989874e72 * cos(theta) ** 26 - 1.42649550589832e71 * cos(theta) ** 24 + 1.1471817005476e70 * cos(theta) ** 22 - 7.51770135678002e68 * cos(theta) ** 20 + 3.95230563859492e67 * cos(theta) ** 18 - 1.63477362180325e66 * cos(theta) ** 16 + 5.18975752953413e64 * cos(theta) ** 14 - 1.22444370025306e63 * cos(theta) ** 12 + 2.05631766454713e61 * cos(theta) ** 10 - 2.31393585657966e59 * cos(theta) ** 8 + 1.59424714528126e57 * cos(theta) ** 6 - 5.79726234647733e54 * cos(theta) ** 4 + 8.31744956452988e51 * cos(theta) ** 2 - 1.96397864569773e48 ) * cos(25 * phi) ) # @torch.jit.script def Yl95_m26(theta, phi): return ( 2.53507398479645e-51 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.38240034357198e77 * cos(theta) ** 69 - 1.71593185503697e78 * cos(theta) ** 67 + 1.01441853783068e79 * cos(theta) ** 65 - 3.8017847904285e79 * cos(theta) ** 63 + 1.01432864695449e80 * cos(theta) ** 61 - 2.0510733966041e80 * cos(theta) ** 59 + 3.26758527149871e80 * cos(theta) ** 57 - 4.20909289210004e80 * cos(theta) ** 55 + 4.46464496054897e80 * cos(theta) ** 53 - 3.95136850072992e80 * cos(theta) ** 51 + 2.94619581194775e80 * cos(theta) ** 49 - 1.86375808222192e80 * cos(theta) ** 47 + 1.00535054235623e80 * cos(theta) ** 45 - 4.64007942625955e79 * cos(theta) ** 43 + 1.83610504904135e79 * cos(theta) ** 41 - 6.2343939553371e78 * cos(theta) ** 39 + 1.81591427708522e78 * cos(theta) ** 37 - 4.53128103611373e77 * cos(theta) ** 35 + 9.66348464690921e76 * cos(theta) ** 33 - 1.7551840019154e76 * cos(theta) ** 31 + 2.70251841354523e75 * cos(theta) ** 29 - 3.50662344486853e74 * cos(theta) ** 27 + 3.80589000973672e73 * cos(theta) ** 25 - 3.42358921415597e72 * cos(theta) ** 23 + 2.52379974120472e71 * cos(theta) ** 21 - 1.503540271356e70 * cos(theta) ** 19 + 7.11415014947086e68 * cos(theta) ** 17 - 2.6156377948852e67 * cos(theta) ** 15 + 7.26566054134779e65 * cos(theta) ** 13 - 1.46933244030367e64 * cos(theta) ** 11 + 2.05631766454713e62 * cos(theta) ** 9 - 1.85114868526373e60 * cos(theta) ** 7 + 9.56548287168759e57 * cos(theta) ** 5 - 2.31890493859093e55 * cos(theta) ** 3 + 1.66348991290598e52 * cos(theta) ) * cos(26 * phi) ) # @torch.jit.script def Yl95_m27(theta, phi): return ( 2.76303367377826e-53 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 9.53856237064669e78 * cos(theta) ** 68 - 1.14967434287477e80 * cos(theta) ** 66 + 6.59372049589942e80 * cos(theta) ** 64 - 2.39512441796995e81 * cos(theta) ** 62 + 6.18740474642238e81 * cos(theta) ** 60 - 1.21013330399642e82 * cos(theta) ** 58 + 1.86252360475427e82 * cos(theta) ** 56 - 2.31500109065502e82 * cos(theta) ** 54 + 2.36626182909095e82 * cos(theta) ** 52 - 2.01519793537226e82 * cos(theta) ** 50 + 1.4436359478544e82 * cos(theta) ** 48 - 8.75966298644302e81 * cos(theta) ** 46 + 4.52407744060306e81 * cos(theta) ** 44 - 1.9952341532916e81 * cos(theta) ** 42 + 7.52803070106955e80 * cos(theta) ** 40 - 2.43141364258147e80 * cos(theta) ** 38 + 6.7188828252153e79 * cos(theta) ** 36 - 1.58594836263981e79 * cos(theta) ** 34 + 3.18894993348004e78 * cos(theta) ** 32 - 5.44107040593774e77 * cos(theta) ** 30 + 7.83730339928118e76 * cos(theta) ** 28 - 9.46788330114504e75 * cos(theta) ** 26 + 9.5147250243418e74 * cos(theta) ** 24 - 7.87425519255873e73 * cos(theta) ** 22 + 5.29997945652992e72 * cos(theta) ** 20 - 2.85672651557641e71 * cos(theta) ** 18 + 1.20940552541005e70 * cos(theta) ** 16 - 3.92345669232781e68 * cos(theta) ** 14 + 9.44535870375212e66 * cos(theta) ** 12 - 1.61626568433404e65 * cos(theta) ** 10 + 1.85068589809242e63 * cos(theta) ** 8 - 1.29580407968461e61 * cos(theta) ** 6 + 4.78274143584379e58 * cos(theta) ** 4 - 6.95671481577279e55 * cos(theta) ** 2 + 1.66348991290598e52 ) * cos(27 * phi) ) # @torch.jit.script def Yl95_m28(theta, phi): return ( 3.02119784141626e-55 * (1.0 - cos(theta) ** 2) ** 14 * ( 6.48622241203975e80 * cos(theta) ** 67 - 7.58785066297349e81 * cos(theta) ** 65 + 4.21998111737563e82 * cos(theta) ** 63 - 1.48497713914137e83 * cos(theta) ** 61 + 3.71244284785343e83 * cos(theta) ** 59 - 7.01877316317924e83 * cos(theta) ** 57 + 1.04301321866239e84 * cos(theta) ** 55 - 1.25010058895371e84 * cos(theta) ** 53 + 1.2304561511273e84 * cos(theta) ** 51 - 1.00759896768613e84 * cos(theta) ** 49 + 6.9294525497011e83 * cos(theta) ** 47 - 4.02944497376379e83 * cos(theta) ** 45 + 1.99059407386535e83 * cos(theta) ** 43 - 8.37998344382474e82 * cos(theta) ** 41 + 3.01121228042782e82 * cos(theta) ** 39 - 9.23937184180959e81 * cos(theta) ** 37 + 2.41879781707751e81 * cos(theta) ** 35 - 5.39222443297534e80 * cos(theta) ** 33 + 1.02046397871361e80 * cos(theta) ** 31 - 1.63232112178132e79 * cos(theta) ** 29 + 2.19444495179873e78 * cos(theta) ** 27 - 2.46164965829771e77 * cos(theta) ** 25 + 2.28353400584203e76 * cos(theta) ** 23 - 1.73233614236292e75 * cos(theta) ** 21 + 1.05999589130598e74 * cos(theta) ** 19 - 5.14210772803754e72 * cos(theta) ** 17 + 1.93504884065607e71 * cos(theta) ** 15 - 5.49283936925893e69 * cos(theta) ** 13 + 1.13344304445025e68 * cos(theta) ** 11 - 1.61626568433404e66 * cos(theta) ** 9 + 1.48054871847393e64 * cos(theta) ** 7 - 7.77482447810767e61 * cos(theta) ** 5 + 1.91309657433752e59 * cos(theta) ** 3 - 1.39134296315456e56 * cos(theta) ) * cos(28 * phi) ) # @torch.jit.script def Yl95_m29(theta, phi): return ( 3.31459844134536e-57 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 4.34576901606663e82 * cos(theta) ** 66 - 4.93210293093277e83 * cos(theta) ** 64 + 2.65858810394665e84 * cos(theta) ** 62 - 9.05836054876236e84 * cos(theta) ** 60 + 2.19034128023352e85 * cos(theta) ** 58 - 4.00070070301217e85 * cos(theta) ** 56 + 5.73657270264314e85 * cos(theta) ** 54 - 6.62553312145467e85 * cos(theta) ** 52 + 6.27532637074921e85 * cos(theta) ** 50 - 4.93723494166203e85 * cos(theta) ** 48 + 3.25684269835952e85 * cos(theta) ** 46 - 1.81325023819371e85 * cos(theta) ** 44 + 8.55955451762098e84 * cos(theta) ** 42 - 3.43579321196814e84 * cos(theta) ** 40 + 1.17437278936685e84 * cos(theta) ** 38 - 3.41856758146955e83 * cos(theta) ** 36 + 8.46579235977128e82 * cos(theta) ** 34 - 1.77943406288186e82 * cos(theta) ** 32 + 3.1634383340122e81 * cos(theta) ** 30 - 4.73373125316583e80 * cos(theta) ** 28 + 5.92500136985657e79 * cos(theta) ** 26 - 6.15412414574428e78 * cos(theta) ** 24 + 5.25212821343668e77 * cos(theta) ** 22 - 3.63790589896214e76 * cos(theta) ** 20 + 2.01399219348137e75 * cos(theta) ** 18 - 8.74158313766381e73 * cos(theta) ** 16 + 2.90257326098411e72 * cos(theta) ** 14 - 7.14069118003661e70 * cos(theta) ** 12 + 1.24678734889528e69 * cos(theta) ** 10 - 1.45463911590064e67 * cos(theta) ** 8 + 1.03638410293175e65 * cos(theta) ** 6 - 3.88741223905384e62 * cos(theta) ** 4 + 5.73928972301255e59 * cos(theta) ** 2 - 1.39134296315456e56 ) * cos(29 * phi) ) # @torch.jit.script def Yl95_m30(theta, phi): return ( 3.64925277986555e-59 * (1.0 - cos(theta) ** 2) ** 15 * ( 2.86820755060398e84 * cos(theta) ** 65 - 3.15654587579697e85 * cos(theta) ** 63 + 1.64832462444692e86 * cos(theta) ** 61 - 5.43501632925742e86 * cos(theta) ** 59 + 1.27039794253544e87 * cos(theta) ** 57 - 2.24039239368681e87 * cos(theta) ** 55 + 3.0977492594273e87 * cos(theta) ** 53 - 3.44527722315643e87 * cos(theta) ** 51 + 3.13766318537461e87 * cos(theta) ** 49 - 2.36987277199778e87 * cos(theta) ** 47 + 1.49814764124538e87 * cos(theta) ** 45 - 7.9783010480523e86 * cos(theta) ** 43 + 3.59501289740081e86 * cos(theta) ** 41 - 1.37431728478726e86 * cos(theta) ** 39 + 4.46261659959403e85 * cos(theta) ** 37 - 1.23068432932904e85 * cos(theta) ** 35 + 2.87836940232224e84 * cos(theta) ** 33 - 5.69418900122196e83 * cos(theta) ** 31 + 9.4903150020366e82 * cos(theta) ** 29 - 1.32544475088643e82 * cos(theta) ** 27 + 1.54050035616271e81 * cos(theta) ** 25 - 1.47698979497863e80 * cos(theta) ** 23 + 1.15546820695607e79 * cos(theta) ** 21 - 7.27581179792427e77 * cos(theta) ** 19 + 3.62518594826646e76 * cos(theta) ** 17 - 1.39865330202621e75 * cos(theta) ** 15 + 4.06360256537775e73 * cos(theta) ** 13 - 8.56882941604393e71 * cos(theta) ** 11 + 1.24678734889528e70 * cos(theta) ** 9 - 1.16371129272051e68 * cos(theta) ** 7 + 6.21830461759051e65 * cos(theta) ** 5 - 1.55496489562153e63 * cos(theta) ** 3 + 1.14785794460251e60 * cos(theta) ) * cos(30 * phi) ) # @torch.jit.script def Yl95_m31(theta, phi): return ( 4.03238505659312e-61 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 1.86433490789259e86 * cos(theta) ** 64 - 1.98862390175209e87 * cos(theta) ** 62 + 1.00547802091262e88 * cos(theta) ** 60 - 3.20665963426188e88 * cos(theta) ** 58 + 7.24126827245202e88 * cos(theta) ** 56 - 1.23221581652775e89 * cos(theta) ** 54 + 1.64180710749647e89 * cos(theta) ** 52 - 1.75709138380978e89 * cos(theta) ** 50 + 1.53745496083356e89 * cos(theta) ** 48 - 1.11384020283895e89 * cos(theta) ** 46 + 6.7416643856042e88 * cos(theta) ** 44 - 3.43066945066249e88 * cos(theta) ** 42 + 1.47395528793433e88 * cos(theta) ** 40 - 5.3598374106703e87 * cos(theta) ** 38 + 1.65116814184979e87 * cos(theta) ** 36 - 4.30739515265163e86 * cos(theta) ** 34 + 9.49861902766338e85 * cos(theta) ** 32 - 1.76519859037881e85 * cos(theta) ** 30 + 2.75219135059061e84 * cos(theta) ** 28 - 3.57870082739337e83 * cos(theta) ** 26 + 3.85125089040677e82 * cos(theta) ** 24 - 3.39707652845084e81 * cos(theta) ** 22 + 2.42648323460774e80 * cos(theta) ** 20 - 1.38240424160561e79 * cos(theta) ** 18 + 6.16281611205299e77 * cos(theta) ** 16 - 2.09797995303932e76 * cos(theta) ** 14 + 5.28268333499108e74 * cos(theta) ** 12 - 9.42571235764832e72 * cos(theta) ** 10 + 1.12210861400575e71 * cos(theta) ** 8 - 8.14597904904357e68 * cos(theta) ** 6 + 3.10915230879526e66 * cos(theta) ** 4 - 4.6648946868646e63 * cos(theta) ** 2 + 1.14785794460251e60 ) * cos(31 * phi) ) # @torch.jit.script def Yl95_m32(theta, phi): return ( 4.47270391055021e-63 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.19317434105126e88 * cos(theta) ** 63 - 1.2329468190863e89 * cos(theta) ** 61 + 6.03286812547573e89 * cos(theta) ** 59 - 1.85986258787189e90 * cos(theta) ** 57 + 4.05511023257313e90 * cos(theta) ** 55 - 6.65396540924984e90 * cos(theta) ** 53 + 8.53739695898163e90 * cos(theta) ** 51 - 8.78545691904889e90 * cos(theta) ** 49 + 7.37978381200107e90 * cos(theta) ** 47 - 5.12366493305919e90 * cos(theta) ** 45 + 2.96633232966585e90 * cos(theta) ** 43 - 1.44088116927825e90 * cos(theta) ** 41 + 5.89582115173733e89 * cos(theta) ** 39 - 2.03673821605472e89 * cos(theta) ** 37 + 5.94420531065925e88 * cos(theta) ** 35 - 1.46451435190155e88 * cos(theta) ** 33 + 3.03955808885228e87 * cos(theta) ** 31 - 5.29559577113642e86 * cos(theta) ** 29 + 7.70613578165372e85 * cos(theta) ** 27 - 9.30462215122275e84 * cos(theta) ** 25 + 9.24300213697625e83 * cos(theta) ** 23 - 7.47356836259185e82 * cos(theta) ** 21 + 4.85296646921549e81 * cos(theta) ** 19 - 2.4883276348901e80 * cos(theta) ** 17 + 9.86050577928478e78 * cos(theta) ** 15 - 2.93717193425504e77 * cos(theta) ** 13 + 6.3392200019893e75 * cos(theta) ** 11 - 9.42571235764832e73 * cos(theta) ** 9 + 8.97686891204602e71 * cos(theta) ** 7 - 4.88758742942614e69 * cos(theta) ** 5 + 1.2436609235181e67 * cos(theta) ** 3 - 9.3297893737292e63 * cos(theta) ) * cos(32 * phi) ) # @torch.jit.script def Yl95_m33(theta, phi): return ( 4.9807516743342e-65 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 7.51699834862291e89 * cos(theta) ** 62 - 7.52097559642641e90 * cos(theta) ** 60 + 3.55939219403068e91 * cos(theta) ** 58 - 1.06012167508698e92 * cos(theta) ** 56 + 2.23031062791522e92 * cos(theta) ** 54 - 3.52660166690241e92 * cos(theta) ** 52 + 4.35407244908063e92 * cos(theta) ** 50 - 4.30487389033396e92 * cos(theta) ** 48 + 3.4684983916405e92 * cos(theta) ** 46 - 2.30564921987664e92 * cos(theta) ** 44 + 1.27552290175631e92 * cos(theta) ** 42 - 5.90761279404081e91 * cos(theta) ** 40 + 2.29937024917756e91 * cos(theta) ** 38 - 7.53593139940245e90 * cos(theta) ** 36 + 2.08047185873074e90 * cos(theta) ** 34 - 4.83289736127513e89 * cos(theta) ** 32 + 9.42263007544207e88 * cos(theta) ** 30 - 1.53572277362956e88 * cos(theta) ** 28 + 2.0806566610465e87 * cos(theta) ** 26 - 2.32615553780569e86 * cos(theta) ** 24 + 2.12589049150454e85 * cos(theta) ** 22 - 1.56944935614429e84 * cos(theta) ** 20 + 9.22063629150943e82 * cos(theta) ** 18 - 4.23015697931317e81 * cos(theta) ** 16 + 1.47907586689272e80 * cos(theta) ** 14 - 3.81832351453155e78 * cos(theta) ** 12 + 6.97314200218823e76 * cos(theta) ** 10 - 8.48314112188349e74 * cos(theta) ** 8 + 6.28380823843221e72 * cos(theta) ** 6 - 2.44379371471307e70 * cos(theta) ** 4 + 3.73098277055431e67 * cos(theta) ** 2 - 9.3297893737292e63 ) * cos(33 * phi) ) # @torch.jit.script def Yl95_m34(theta, phi): return ( 5.56934587317868e-67 * (1.0 - cos(theta) ** 2) ** 17 * ( 4.6605389761462e91 * cos(theta) ** 61 - 4.51258535785585e92 * cos(theta) ** 59 + 2.0644474725378e93 * cos(theta) ** 57 - 5.93668138048706e93 * cos(theta) ** 55 + 1.20436773907422e94 * cos(theta) ** 53 - 1.83383286678925e94 * cos(theta) ** 51 + 2.17703622454032e94 * cos(theta) ** 49 - 2.0663394673603e94 * cos(theta) ** 47 + 1.59550926015463e94 * cos(theta) ** 45 - 1.01448565674572e94 * cos(theta) ** 43 + 5.35719618737652e93 * cos(theta) ** 41 - 2.36304511761632e93 * cos(theta) ** 39 + 8.73760694687473e92 * cos(theta) ** 37 - 2.71293530378488e92 * cos(theta) ** 35 + 7.07360431968451e91 * cos(theta) ** 33 - 1.54652715560804e91 * cos(theta) ** 31 + 2.82678902263262e90 * cos(theta) ** 29 - 4.30002376616277e89 * cos(theta) ** 27 + 5.40970731872091e88 * cos(theta) ** 25 - 5.58277329073365e87 * cos(theta) ** 23 + 4.67695908130998e86 * cos(theta) ** 21 - 3.13889871228858e85 * cos(theta) ** 19 + 1.6597145324717e84 * cos(theta) ** 17 - 6.76825116690107e82 * cos(theta) ** 15 + 2.0707062136498e81 * cos(theta) ** 13 - 4.58198821743786e79 * cos(theta) ** 11 + 6.97314200218823e77 * cos(theta) ** 9 - 6.78651289750679e75 * cos(theta) ** 7 + 3.77028494305933e73 * cos(theta) ** 5 - 9.77517485885229e70 * cos(theta) ** 3 + 7.46196554110862e67 * cos(theta) ) * cos(34 * phi) ) # @torch.jit.script def Yl95_m35(theta, phi): return ( 6.25413996102351e-69 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 2.84292877544918e93 * cos(theta) ** 60 - 2.66242536113495e94 * cos(theta) ** 58 + 1.17673505934654e95 * cos(theta) ** 56 - 3.26517475926789e95 * cos(theta) ** 54 + 6.38314901709337e95 * cos(theta) ** 52 - 9.3525476206252e95 * cos(theta) ** 50 + 1.06674775002475e96 * cos(theta) ** 48 - 9.71179549659341e95 * cos(theta) ** 46 + 7.17979167069584e95 * cos(theta) ** 44 - 4.36228832400659e95 * cos(theta) ** 42 + 2.19645043682437e95 * cos(theta) ** 40 - 9.21587595870366e94 * cos(theta) ** 38 + 3.23291457034365e94 * cos(theta) ** 36 - 9.49527356324708e93 * cos(theta) ** 34 + 2.33428942549589e93 * cos(theta) ** 32 - 4.79423418238493e92 * cos(theta) ** 30 + 8.1976881656346e91 * cos(theta) ** 28 - 1.16100641686395e91 * cos(theta) ** 26 + 1.35242682968023e90 * cos(theta) ** 24 - 1.28403785686874e89 * cos(theta) ** 22 + 9.82161407075096e87 * cos(theta) ** 20 - 5.9639075533483e86 * cos(theta) ** 18 + 2.82151470520188e85 * cos(theta) ** 16 - 1.01523767503516e84 * cos(theta) ** 14 + 2.69191807774475e82 * cos(theta) ** 12 - 5.04018703918165e80 * cos(theta) ** 10 + 6.2758278019694e78 * cos(theta) ** 8 - 4.75055902825475e76 * cos(theta) ** 6 + 1.88514247152966e74 * cos(theta) ** 4 - 2.93255245765569e71 * cos(theta) ** 2 + 7.46196554110862e67 ) * cos(35 * phi) ) # @torch.jit.script def Yl95_m36(theta, phi): return ( 7.05433895064767e-71 * (1.0 - cos(theta) ** 2) ** 18 * ( 1.70575726526951e95 * cos(theta) ** 59 - 1.54420670945827e96 * cos(theta) ** 57 + 6.58971633234064e96 * cos(theta) ** 55 - 1.76319437000466e97 * cos(theta) ** 53 + 3.31923748888855e97 * cos(theta) ** 51 - 4.6762738103126e97 * cos(theta) ** 49 + 5.12038920011882e97 * cos(theta) ** 47 - 4.46742592843297e97 * cos(theta) ** 45 + 3.15910833510617e97 * cos(theta) ** 43 - 1.83216109608277e97 * cos(theta) ** 41 + 8.78580174729749e96 * cos(theta) ** 39 - 3.50203286430739e96 * cos(theta) ** 37 + 1.16384924532371e96 * cos(theta) ** 35 - 3.22839301150401e95 * cos(theta) ** 33 + 7.46972616158684e94 * cos(theta) ** 31 - 1.43827025471548e94 * cos(theta) ** 29 + 2.29535268637769e93 * cos(theta) ** 27 - 3.01861668384627e92 * cos(theta) ** 25 + 3.24582439123255e91 * cos(theta) ** 23 - 2.82488328511123e90 * cos(theta) ** 21 + 1.96432281415019e89 * cos(theta) ** 19 - 1.07350335960269e88 * cos(theta) ** 17 + 4.51442352832302e86 * cos(theta) ** 15 - 1.42133274504923e85 * cos(theta) ** 13 + 3.23030169329369e83 * cos(theta) ** 11 - 5.04018703918165e81 * cos(theta) ** 9 + 5.02066224157552e79 * cos(theta) ** 7 - 2.85033541695285e77 * cos(theta) ** 5 + 7.54056988611866e74 * cos(theta) ** 3 - 5.86510491531137e71 * cos(theta) ) * cos(36 * phi) ) # @torch.jit.script def Yl95_m37(theta, phi): return ( 7.99361728806196e-73 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 1.00639678650901e97 * cos(theta) ** 58 - 8.80197824391214e97 * cos(theta) ** 56 + 3.62434398278735e98 * cos(theta) ** 54 - 9.34493016102469e98 * cos(theta) ** 52 + 1.69281111933316e99 * cos(theta) ** 50 - 2.29137416705317e99 * cos(theta) ** 48 + 2.40658292405585e99 * cos(theta) ** 46 - 2.01034166779484e99 * cos(theta) ** 44 + 1.35841658409565e99 * cos(theta) ** 42 - 7.51186049393935e98 * cos(theta) ** 40 + 3.42646268144602e98 * cos(theta) ** 38 - 1.29575215979373e98 * cos(theta) ** 36 + 4.073472358633e97 * cos(theta) ** 34 - 1.06536969379632e97 * cos(theta) ** 32 + 2.31561511009192e96 * cos(theta) ** 30 - 4.17098373867489e95 * cos(theta) ** 28 + 6.19745225321976e94 * cos(theta) ** 26 - 7.54654170961567e93 * cos(theta) ** 24 + 7.46539609983486e92 * cos(theta) ** 22 - 5.93225489873358e91 * cos(theta) ** 20 + 3.73221334688536e90 * cos(theta) ** 18 - 1.82495571132458e89 * cos(theta) ** 16 + 6.77163529248452e87 * cos(theta) ** 14 - 1.84773256856399e86 * cos(theta) ** 12 + 3.55333186262306e84 * cos(theta) ** 10 - 4.53616833526349e82 * cos(theta) ** 8 + 3.51446356910287e80 * cos(theta) ** 6 - 1.42516770847643e78 * cos(theta) ** 4 + 2.2621709658356e75 * cos(theta) ** 2 - 5.86510491531137e71 ) * cos(37 * phi) ) # @torch.jit.script def Yl95_m38(theta, phi): return ( 9.10130218782643e-75 * (1.0 - cos(theta) ** 2) ** 19 * ( 5.83710136175226e98 * cos(theta) ** 57 - 4.9291078165908e99 * cos(theta) ** 55 + 1.95714575070517e100 * cos(theta) ** 53 - 4.85936368373284e100 * cos(theta) ** 51 + 8.4640555966658e100 * cos(theta) ** 49 - 1.09985960018552e101 * cos(theta) ** 47 + 1.10702814506569e101 * cos(theta) ** 45 - 8.84550333829728e100 * cos(theta) ** 43 + 5.70534965320174e100 * cos(theta) ** 41 - 3.00474419757574e100 * cos(theta) ** 39 + 1.30205581894949e100 * cos(theta) ** 37 - 4.66470777525745e99 * cos(theta) ** 35 + 1.38498060193522e99 * cos(theta) ** 33 - 3.40918302014823e98 * cos(theta) ** 31 + 6.94684533027576e97 * cos(theta) ** 29 - 1.16787544682897e97 * cos(theta) ** 27 + 1.61133758583714e96 * cos(theta) ** 25 - 1.81117001030776e95 * cos(theta) ** 23 + 1.64238714196367e94 * cos(theta) ** 21 - 1.18645097974672e93 * cos(theta) ** 19 + 6.71798402439366e91 * cos(theta) ** 17 - 2.91992913811933e90 * cos(theta) ** 15 + 9.48028940947833e88 * cos(theta) ** 13 - 2.21727908227679e87 * cos(theta) ** 11 + 3.55333186262306e85 * cos(theta) ** 9 - 3.62893466821079e83 * cos(theta) ** 7 + 2.10867814146172e81 * cos(theta) ** 5 - 5.7006708339057e78 * cos(theta) ** 3 + 4.52434193167119e75 * cos(theta) ) * cos(38 * phi) ) # @torch.jit.script def Yl95_m39(theta, phi): return ( 1.0413907297102e-76 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 3.32714777619879e100 * cos(theta) ** 56 - 2.71100929912494e101 * cos(theta) ** 54 + 1.03728724787374e102 * cos(theta) ** 52 - 2.47827547870375e102 * cos(theta) ** 50 + 4.14738724236624e102 * cos(theta) ** 48 - 5.16934012087196e102 * cos(theta) ** 46 + 4.9816266527956e102 * cos(theta) ** 44 - 3.80356643546783e102 * cos(theta) ** 42 + 2.33919335781271e102 * cos(theta) ** 40 - 1.17185023705454e102 * cos(theta) ** 38 + 4.81760653011311e101 * cos(theta) ** 36 - 1.63264772134011e101 * cos(theta) ** 34 + 4.57043598638622e100 * cos(theta) ** 32 - 1.05684673624595e100 * cos(theta) ** 30 + 2.01458514577997e99 * cos(theta) ** 28 - 3.15326370643821e98 * cos(theta) ** 26 + 4.02834396459284e97 * cos(theta) ** 24 - 4.16569102370785e96 * cos(theta) ** 22 + 3.4490129981237e95 * cos(theta) ** 20 - 2.25425686151876e94 * cos(theta) ** 18 + 1.14205728414692e93 * cos(theta) ** 16 - 4.37989370717899e91 * cos(theta) ** 14 + 1.23243762323218e90 * cos(theta) ** 12 - 2.43900699050447e88 * cos(theta) ** 10 + 3.19799867636076e86 * cos(theta) ** 8 - 2.54025426774755e84 * cos(theta) ** 6 + 1.05433907073086e82 * cos(theta) ** 4 - 1.71020125017171e79 * cos(theta) ** 2 + 4.52434193167119e75 ) * cos(39 * phi) ) # @torch.jit.script def Yl95_m40(theta, phi): return ( 1.19771312731902e-78 * (1.0 - cos(theta) ** 2) ** 20 * ( 1.86320275467132e102 * cos(theta) ** 55 - 1.46394502152747e103 * cos(theta) ** 53 + 5.39389368894345e103 * cos(theta) ** 51 - 1.23913773935187e104 * cos(theta) ** 49 + 1.9907458763358e104 * cos(theta) ** 47 - 2.3778964556011e104 * cos(theta) ** 45 + 2.19191572723007e104 * cos(theta) ** 43 - 1.59749790289649e104 * cos(theta) ** 41 + 9.35677343125086e103 * cos(theta) ** 39 - 4.45303090080725e103 * cos(theta) ** 37 + 1.73433835084072e103 * cos(theta) ** 35 - 5.55100225255636e102 * cos(theta) ** 33 + 1.46253951564359e102 * cos(theta) ** 31 - 3.17054020873786e101 * cos(theta) ** 29 + 5.64083840818392e100 * cos(theta) ** 27 - 8.19848563673936e99 * cos(theta) ** 25 + 9.66802551502283e98 * cos(theta) ** 23 - 9.16452025215727e97 * cos(theta) ** 21 + 6.89802599624741e96 * cos(theta) ** 19 - 4.05766235073377e95 * cos(theta) ** 17 + 1.82729165463507e94 * cos(theta) ** 15 - 6.13185119005059e92 * cos(theta) ** 13 + 1.47892514787862e91 * cos(theta) ** 11 - 2.43900699050447e89 * cos(theta) ** 9 + 2.55839894108861e87 * cos(theta) ** 7 - 1.52415256064853e85 * cos(theta) ** 5 + 4.21735628292344e82 * cos(theta) ** 3 - 3.42040250034342e79 * cos(theta) ) * cos(40 * phi) ) # @torch.jit.script def Yl95_m41(theta, phi): return ( 1.38484768914446e-80 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 1.02476151506923e104 * cos(theta) ** 54 - 7.75890861409558e104 * cos(theta) ** 52 + 2.75088578136116e105 * cos(theta) ** 50 - 6.07177492282418e105 * cos(theta) ** 48 + 9.35650561877825e105 * cos(theta) ** 46 - 1.0700534050205e106 * cos(theta) ** 44 + 9.42523762708928e105 * cos(theta) ** 42 - 6.5497414018756e105 * cos(theta) ** 40 + 3.64914163818784e105 * cos(theta) ** 38 - 1.64762143329868e105 * cos(theta) ** 36 + 6.07018422794251e104 * cos(theta) ** 34 - 1.8318307433436e104 * cos(theta) ** 32 + 4.53387249849513e103 * cos(theta) ** 30 - 9.19456660533978e102 * cos(theta) ** 28 + 1.52302637020966e102 * cos(theta) ** 26 - 2.04962140918484e101 * cos(theta) ** 24 + 2.22364586845525e100 * cos(theta) ** 22 - 1.92454925295303e99 * cos(theta) ** 20 + 1.31062493928701e98 * cos(theta) ** 18 - 6.89802599624741e96 * cos(theta) ** 16 + 2.74093748195261e95 * cos(theta) ** 14 - 7.97140654706576e93 * cos(theta) ** 12 + 1.62681766266648e92 * cos(theta) ** 10 - 2.19510629145402e90 * cos(theta) ** 8 + 1.79087925876202e88 * cos(theta) ** 6 - 7.62076280324266e85 * cos(theta) ** 4 + 1.26520688487703e83 * cos(theta) ** 2 - 3.42040250034342e79 ) * cos(41 * phi) ) # @torch.jit.script def Yl95_m42(theta, phi): return ( 1.61007033060363e-82 * (1.0 - cos(theta) ** 2) ** 21 * ( 5.53371218137383e105 * cos(theta) ** 53 - 4.0346324793297e106 * cos(theta) ** 51 + 1.37544289068058e107 * cos(theta) ** 49 - 2.91445196295561e107 * cos(theta) ** 47 + 4.30399258463799e107 * cos(theta) ** 45 - 4.70823498209018e107 * cos(theta) ** 43 + 3.9585998033775e107 * cos(theta) ** 41 - 2.61989656075024e107 * cos(theta) ** 39 + 1.38667382251138e107 * cos(theta) ** 37 - 5.93143715987526e106 * cos(theta) ** 35 + 2.06386263750045e106 * cos(theta) ** 33 - 5.86185837869952e105 * cos(theta) ** 31 + 1.36016174954854e105 * cos(theta) ** 29 - 2.57447864949514e104 * cos(theta) ** 27 + 3.95986856254511e103 * cos(theta) ** 25 - 4.91909138204361e102 * cos(theta) ** 23 + 4.89202091060155e101 * cos(theta) ** 21 - 3.84909850590605e100 * cos(theta) ** 19 + 2.35912489071661e99 * cos(theta) ** 17 - 1.10368415939959e98 * cos(theta) ** 15 + 3.83731247473366e96 * cos(theta) ** 13 - 9.56568785647891e94 * cos(theta) ** 11 + 1.62681766266648e93 * cos(theta) ** 9 - 1.75608503316322e91 * cos(theta) ** 7 + 1.07452755525721e89 * cos(theta) ** 5 - 3.04830512129706e86 * cos(theta) ** 3 + 2.53041376975406e83 * cos(theta) ) * cos(42 * phi) ) # @torch.jit.script def Yl95_m43(theta, phi): return ( 1.88264037871918e-84 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 2.93286745612813e107 * cos(theta) ** 52 - 2.05766256445815e108 * cos(theta) ** 50 + 6.73967016433484e108 * cos(theta) ** 48 - 1.36979242258914e109 * cos(theta) ** 46 + 1.9367966630871e109 * cos(theta) ** 44 - 2.02454104229878e109 * cos(theta) ** 42 + 1.62302591938477e109 * cos(theta) ** 40 - 1.02175965869259e109 * cos(theta) ** 38 + 5.1306931432921e108 * cos(theta) ** 36 - 2.07600300595634e108 * cos(theta) ** 34 + 6.8107467037515e107 * cos(theta) ** 32 - 1.81717609739685e107 * cos(theta) ** 30 + 3.94446907369077e106 * cos(theta) ** 28 - 6.95109235363688e105 * cos(theta) ** 26 + 9.89967140636277e104 * cos(theta) ** 24 - 1.13139101787003e104 * cos(theta) ** 22 + 1.02732439122633e103 * cos(theta) ** 20 - 7.3132871612215e101 * cos(theta) ** 18 + 4.01051231421824e100 * cos(theta) ** 16 - 1.65552623909938e99 * cos(theta) ** 14 + 4.98850621715375e97 * cos(theta) ** 12 - 1.05222566421268e96 * cos(theta) ** 10 + 1.46413589639983e94 * cos(theta) ** 8 - 1.22925952321425e92 * cos(theta) ** 6 + 5.37263777628607e89 * cos(theta) ** 4 - 9.14491536389119e86 * cos(theta) ** 2 + 2.53041376975406e83 ) * cos(43 * phi) ) # @torch.jit.script def Yl95_m44(theta, phi): return ( 2.21441134212219e-86 * (1.0 - cos(theta) ** 2) ** 22 * ( 1.52509107718663e109 * cos(theta) ** 51 - 1.02883128222907e110 * cos(theta) ** 49 + 3.23504167888072e110 * cos(theta) ** 47 - 6.30104514391002e110 * cos(theta) ** 45 + 8.52190531758323e110 * cos(theta) ** 43 - 8.50307237765487e110 * cos(theta) ** 41 + 6.4921036775391e110 * cos(theta) ** 39 - 3.88268670303186e110 * cos(theta) ** 37 + 1.84704953158515e110 * cos(theta) ** 35 - 7.05841022025156e109 * cos(theta) ** 33 + 2.17943894520048e109 * cos(theta) ** 31 - 5.45152829219055e108 * cos(theta) ** 29 + 1.10445134063341e108 * cos(theta) ** 27 - 1.80728401194559e107 * cos(theta) ** 25 + 2.37592113752707e106 * cos(theta) ** 23 - 2.48906023931407e105 * cos(theta) ** 21 + 2.05464878245265e104 * cos(theta) ** 19 - 1.31639168901987e103 * cos(theta) ** 17 + 6.41681970274919e101 * cos(theta) ** 15 - 2.31773673473913e100 * cos(theta) ** 13 + 5.9862074605845e98 * cos(theta) ** 11 - 1.05222566421268e97 * cos(theta) ** 9 + 1.17130871711987e95 * cos(theta) ** 7 - 7.37555713928552e92 * cos(theta) ** 5 + 2.14905511051443e90 * cos(theta) ** 3 - 1.82898307277824e87 * cos(theta) ) * cos(44 * phi) ) # @torch.jit.script def Yl95_m45(theta, phi): return ( 2.62065101714605e-88 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 7.7779644936518e110 * cos(theta) ** 50 - 5.04127328292246e111 * cos(theta) ** 48 + 1.52046958907394e112 * cos(theta) ** 46 - 2.83547031475951e112 * cos(theta) ** 44 + 3.66441928656079e112 * cos(theta) ** 42 - 3.4862596748385e112 * cos(theta) ** 40 + 2.53192043424025e112 * cos(theta) ** 38 - 1.43659408012179e112 * cos(theta) ** 36 + 6.46467336054804e111 * cos(theta) ** 34 - 2.32927537268301e111 * cos(theta) ** 32 + 6.75626073012149e110 * cos(theta) ** 30 - 1.58094320473526e110 * cos(theta) ** 28 + 2.98201861971022e109 * cos(theta) ** 26 - 4.51821002986397e108 * cos(theta) ** 24 + 5.46461861631225e107 * cos(theta) ** 22 - 5.22702650255954e106 * cos(theta) ** 20 + 3.90383268666004e105 * cos(theta) ** 18 - 2.23786587133378e104 * cos(theta) ** 16 + 9.62522955412378e102 * cos(theta) ** 14 - 3.01305775516087e101 * cos(theta) ** 12 + 6.58482820664296e99 * cos(theta) ** 10 - 9.47003097791413e97 * cos(theta) ** 8 + 8.19916101983907e95 * cos(theta) ** 6 - 3.68777856964276e93 * cos(theta) ** 4 + 6.44716533154329e90 * cos(theta) ** 2 - 1.82898307277824e87 ) * cos(45 * phi) ) # @torch.jit.script def Yl95_m46(theta, phi): return ( 3.12114994121691e-90 * (1.0 - cos(theta) ** 2) ** 23 * ( 3.8889822468259e112 * cos(theta) ** 49 - 2.41981117580278e113 * cos(theta) ** 47 + 6.99416010974013e113 * cos(theta) ** 45 - 1.24760693849418e114 * cos(theta) ** 43 + 1.53905610035553e114 * cos(theta) ** 41 - 1.3945038699354e114 * cos(theta) ** 39 + 9.62129765011294e113 * cos(theta) ** 37 - 5.17173868843843e113 * cos(theta) ** 35 + 2.19798894258633e113 * cos(theta) ** 33 - 7.45368119258564e112 * cos(theta) ** 31 + 2.02687821903645e112 * cos(theta) ** 29 - 4.42664097325873e111 * cos(theta) ** 27 + 7.75324841124657e110 * cos(theta) ** 25 - 1.08437040716735e110 * cos(theta) ** 23 + 1.2022160955887e109 * cos(theta) ** 21 - 1.04540530051191e108 * cos(theta) ** 19 + 7.02689883598807e106 * cos(theta) ** 17 - 3.58058539413405e105 * cos(theta) ** 15 + 1.34753213757733e104 * cos(theta) ** 13 - 3.61566930619304e102 * cos(theta) ** 11 + 6.58482820664295e100 * cos(theta) ** 9 - 7.5760247823313e98 * cos(theta) ** 7 + 4.91949661190344e96 * cos(theta) ** 5 - 1.4751114278571e94 * cos(theta) ** 3 + 1.28943306630866e91 * cos(theta) ) * cos(46 * phi) ) # @torch.jit.script def Yl95_m47(theta, phi): return ( 3.7417297815972e-92 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 1.90560130094469e114 * cos(theta) ** 48 - 1.13731125262731e115 * cos(theta) ** 46 + 3.14737204938306e115 * cos(theta) ** 44 - 5.36470983552499e115 * cos(theta) ** 42 + 6.31013001145768e115 * cos(theta) ** 40 - 5.43856509274805e115 * cos(theta) ** 38 + 3.55988013054179e115 * cos(theta) ** 36 - 1.81010854095345e115 * cos(theta) ** 34 + 7.2533635105349e114 * cos(theta) ** 32 - 2.31064116970155e114 * cos(theta) ** 30 + 5.8779468352057e113 * cos(theta) ** 28 - 1.19519306277986e113 * cos(theta) ** 26 + 1.93831210281164e112 * cos(theta) ** 24 - 2.49405193648491e111 * cos(theta) ** 22 + 2.52465380073626e110 * cos(theta) ** 20 - 1.98627007097263e109 * cos(theta) ** 18 + 1.19457280211797e108 * cos(theta) ** 16 - 5.37087809120107e106 * cos(theta) ** 14 + 1.75179177885053e105 * cos(theta) ** 12 - 3.97723623681235e103 * cos(theta) ** 10 + 5.92634538597866e101 * cos(theta) ** 8 - 5.30321734763191e99 * cos(theta) ** 6 + 2.45974830595172e97 * cos(theta) ** 4 - 4.42533428357131e94 * cos(theta) ** 2 + 1.28943306630866e91 ) * cos(47 * phi) ) # @torch.jit.script def Yl95_m48(theta, phi): return ( 4.51631040468455e-94 * (1.0 - cos(theta) ** 2) ** 24 * ( 9.14688624453451e115 * cos(theta) ** 47 - 5.23163176208561e116 * cos(theta) ** 45 + 1.38484370172854e117 * cos(theta) ** 43 - 2.2531781309205e117 * cos(theta) ** 41 + 2.52405200458307e117 * cos(theta) ** 39 - 2.06665473524426e117 * cos(theta) ** 37 + 1.28155684699504e117 * cos(theta) ** 35 - 6.15436903924174e116 * cos(theta) ** 33 + 2.32107632337117e116 * cos(theta) ** 31 - 6.93192350910465e115 * cos(theta) ** 29 + 1.64582511385759e115 * cos(theta) ** 27 - 3.10750196322763e114 * cos(theta) ** 25 + 4.65194904674794e113 * cos(theta) ** 23 - 5.48691426026681e112 * cos(theta) ** 21 + 5.04930760147252e111 * cos(theta) ** 19 - 3.57528612775073e110 * cos(theta) ** 17 + 1.91131648338875e109 * cos(theta) ** 15 - 7.5192293276815e107 * cos(theta) ** 13 + 2.10215013462063e106 * cos(theta) ** 11 - 3.97723623681234e104 * cos(theta) ** 9 + 4.74107630878293e102 * cos(theta) ** 7 - 3.18193040857915e100 * cos(theta) ** 5 + 9.83899322380688e97 * cos(theta) ** 3 - 8.85066856714262e94 * cos(theta) ) * cos(48 * phi) ) # @torch.jit.script def Yl95_m49(theta, phi): return ( 5.4897631565097e-96 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 4.29903653493122e117 * cos(theta) ** 46 - 2.35423429293853e118 * cos(theta) ** 44 + 5.95482791743274e118 * cos(theta) ** 42 - 9.23803033677404e118 * cos(theta) ** 40 + 9.84380281787397e118 * cos(theta) ** 38 - 7.64662252040376e118 * cos(theta) ** 36 + 4.48544896448265e118 * cos(theta) ** 34 - 2.03094178294977e118 * cos(theta) ** 32 + 7.19533660245062e117 * cos(theta) ** 30 - 2.01025781764035e117 * cos(theta) ** 28 + 4.44372780741551e116 * cos(theta) ** 26 - 7.76875490806907e115 * cos(theta) ** 24 + 1.06994828075203e115 * cos(theta) ** 22 - 1.15225199465603e114 * cos(theta) ** 20 + 9.59368444279779e112 * cos(theta) ** 18 - 6.07798641717624e111 * cos(theta) ** 16 + 2.86697472508313e110 * cos(theta) ** 14 - 9.77499812598595e108 * cos(theta) ** 12 + 2.3123651480827e107 * cos(theta) ** 10 - 3.57951261313111e105 * cos(theta) ** 8 + 3.31875341614805e103 * cos(theta) ** 6 - 1.59096520428957e101 * cos(theta) ** 4 + 2.95169796714207e98 * cos(theta) ** 2 - 8.85066856714262e94 ) * cos(49 * phi) ) # @torch.jit.script def Yl95_m50(theta, phi): return ( 6.72187901134314e-98 * (1.0 - cos(theta) ** 2) ** 25 * ( 1.97755680606836e119 * cos(theta) ** 45 - 1.03586308889295e120 * cos(theta) ** 43 + 2.50102772532175e120 * cos(theta) ** 41 - 3.69521213470961e120 * cos(theta) ** 39 + 3.74064507079211e120 * cos(theta) ** 37 - 2.75278410734535e120 * cos(theta) ** 35 + 1.5250526479241e120 * cos(theta) ** 33 - 6.49901370543927e119 * cos(theta) ** 31 + 2.15860098073519e119 * cos(theta) ** 29 - 5.62872188939297e118 * cos(theta) ** 27 + 1.15536922992803e118 * cos(theta) ** 25 - 1.86450117793658e117 * cos(theta) ** 23 + 2.35388621765446e116 * cos(theta) ** 21 - 2.30450398931206e115 * cos(theta) ** 19 + 1.7268631997036e114 * cos(theta) ** 17 - 9.72477826748198e112 * cos(theta) ** 15 + 4.01376461511638e111 * cos(theta) ** 13 - 1.17299977511831e110 * cos(theta) ** 11 + 2.3123651480827e108 * cos(theta) ** 9 - 2.86361009050489e106 * cos(theta) ** 7 + 1.99125204968883e104 * cos(theta) ** 5 - 6.36386081715829e101 * cos(theta) ** 3 + 5.90339593428413e98 * cos(theta) ) * cos(50 * phi) ) # @torch.jit.script def Yl95_m51(theta, phi): return ( 8.2929301318774e-100 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 8.89900562730763e120 * cos(theta) ** 44 - 4.45421128223969e121 * cos(theta) ** 42 + 1.02542136738192e122 * cos(theta) ** 40 - 1.44113273253675e122 * cos(theta) ** 38 + 1.38403867619308e122 * cos(theta) ** 36 - 9.63474437570874e121 * cos(theta) ** 34 + 5.03267373814954e121 * cos(theta) ** 32 - 2.01469424868617e121 * cos(theta) ** 30 + 6.25994284413204e120 * cos(theta) ** 28 - 1.5197549101361e120 * cos(theta) ** 26 + 2.88842307482008e119 * cos(theta) ** 24 - 4.28835270925412e118 * cos(theta) ** 22 + 4.94316105707436e117 * cos(theta) ** 20 - 4.37855757969291e116 * cos(theta) ** 18 + 2.93566743949612e115 * cos(theta) ** 16 - 1.4587167401223e114 * cos(theta) ** 14 + 5.2178939996513e112 * cos(theta) ** 12 - 1.29029975263015e111 * cos(theta) ** 10 + 2.08112863327443e109 * cos(theta) ** 8 - 2.00452706335342e107 * cos(theta) ** 6 + 9.95626024844415e104 * cos(theta) ** 4 - 1.90915824514749e102 * cos(theta) ** 2 + 5.90339593428413e98 ) * cos(51 * phi) ) # @torch.jit.script def Yl95_m52(theta, phi): return ( 1.03115274168685e-101 * (1.0 - cos(theta) ** 2) ** 26 * ( 3.91556247601536e122 * cos(theta) ** 43 - 1.87076873854067e123 * cos(theta) ** 41 + 4.10168546952767e123 * cos(theta) ** 39 - 5.47630438363965e123 * cos(theta) ** 37 + 4.98253923429509e123 * cos(theta) ** 35 - 3.27581308774097e123 * cos(theta) ** 33 + 1.61045559620785e123 * cos(theta) ** 31 - 6.04408274605852e122 * cos(theta) ** 29 + 1.75278399635697e122 * cos(theta) ** 27 - 3.95136276635387e121 * cos(theta) ** 25 + 6.93221537956819e120 * cos(theta) ** 23 - 9.43437596035907e119 * cos(theta) ** 21 + 9.88632211414873e118 * cos(theta) ** 19 - 7.88140364344724e117 * cos(theta) ** 17 + 4.6970679031938e116 * cos(theta) ** 15 - 2.04220343617122e115 * cos(theta) ** 13 + 6.26147279958156e113 * cos(theta) ** 11 - 1.29029975263015e112 * cos(theta) ** 9 + 1.66490290661954e110 * cos(theta) ** 7 - 1.20271623801205e108 * cos(theta) ** 5 + 3.98250409937766e105 * cos(theta) ** 3 - 3.81831649029498e102 * cos(theta) ) * cos(52 * phi) ) # @torch.jit.script def Yl95_m53(theta, phi): return ( 1.29258143909558e-103 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 1.6836918646866e124 * cos(theta) ** 42 - 7.67015182801675e124 * cos(theta) ** 40 + 1.59965733311579e125 * cos(theta) ** 38 - 2.02623262194667e125 * cos(theta) ** 36 + 1.74388873200328e125 * cos(theta) ** 34 - 1.08101831895452e125 * cos(theta) ** 32 + 4.99241234824434e124 * cos(theta) ** 30 - 1.75278399635697e124 * cos(theta) ** 28 + 4.73251679016382e123 * cos(theta) ** 26 - 9.87840691588467e122 * cos(theta) ** 24 + 1.59440953730068e122 * cos(theta) ** 22 - 1.98121895167541e121 * cos(theta) ** 20 + 1.87840120168826e120 * cos(theta) ** 18 - 1.33983861938603e119 * cos(theta) ** 16 + 7.04560185479069e117 * cos(theta) ** 14 - 2.65486446702258e116 * cos(theta) ** 12 + 6.88762007953971e114 * cos(theta) ** 10 - 1.16126977736713e113 * cos(theta) ** 8 + 1.16543203463368e111 * cos(theta) ** 6 - 6.01358119006027e108 * cos(theta) ** 4 + 1.1947512298133e106 * cos(theta) ** 2 - 3.81831649029498e102 ) * cos(53 * phi) ) # @torch.jit.script def Yl95_m54(theta, phi): return ( 1.63395516663347e-105 * (1.0 - cos(theta) ** 2) ** 27 * ( 7.07150583168373e125 * cos(theta) ** 41 - 3.0680607312067e126 * cos(theta) ** 39 + 6.07869786584001e126 * cos(theta) ** 37 - 7.29443743900801e126 * cos(theta) ** 35 + 5.92922168881116e126 * cos(theta) ** 33 - 3.45925862065447e126 * cos(theta) ** 31 + 1.4977237044733e126 * cos(theta) ** 29 - 4.90779518979952e125 * cos(theta) ** 27 + 1.23045436544259e125 * cos(theta) ** 25 - 2.37081765981232e124 * cos(theta) ** 23 + 3.5077009820615e123 * cos(theta) ** 21 - 3.96243790335081e122 * cos(theta) ** 19 + 3.38112216303887e121 * cos(theta) ** 17 - 2.14374179101765e120 * cos(theta) ** 15 + 9.86384259670697e118 * cos(theta) ** 13 - 3.1858373604271e117 * cos(theta) ** 11 + 6.88762007953971e115 * cos(theta) ** 9 - 9.29015821893704e113 * cos(theta) ** 7 + 6.99259220780208e111 * cos(theta) ** 5 - 2.40543247602411e109 * cos(theta) ** 3 + 2.3895024596266e106 * cos(theta) ) * cos(54 * phi) ) # @torch.jit.script def Yl95_m55(theta, phi): return ( 2.08354352887006e-107 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 2.89931739099033e127 * cos(theta) ** 40 - 1.19654368517061e128 * cos(theta) ** 38 + 2.2491182103608e128 * cos(theta) ** 36 - 2.5530531036528e128 * cos(theta) ** 34 + 1.95664315730768e128 * cos(theta) ** 32 - 1.07237017240288e128 * cos(theta) ** 30 + 4.34339874297258e127 * cos(theta) ** 28 - 1.32510470124587e127 * cos(theta) ** 26 + 3.07613591360649e126 * cos(theta) ** 24 - 5.45288061756834e125 * cos(theta) ** 22 + 7.36617206232916e124 * cos(theta) ** 20 - 7.52863201636654e123 * cos(theta) ** 18 + 5.74790767716607e122 * cos(theta) ** 16 - 3.21561268652647e121 * cos(theta) ** 14 + 1.28229953757191e120 * cos(theta) ** 12 - 3.50442109646981e118 * cos(theta) ** 10 + 6.19885807158574e116 * cos(theta) ** 8 - 6.50311075325593e114 * cos(theta) ** 6 + 3.49629610390104e112 * cos(theta) ** 4 - 7.21629742807232e109 * cos(theta) ** 2 + 2.3895024596266e106 ) * cos(55 * phi) ) # @torch.jit.script def Yl95_m56(theta, phi): return ( 2.68092156880921e-109 * (1.0 - cos(theta) ** 2) ** 28 * ( 1.15972695639613e129 * cos(theta) ** 39 - 4.54686600364833e129 * cos(theta) ** 37 + 8.09682555729889e129 * cos(theta) ** 35 - 8.68038055241954e129 * cos(theta) ** 33 + 6.26125810338458e129 * cos(theta) ** 31 - 3.21711051720865e129 * cos(theta) ** 29 + 1.21615164803232e129 * cos(theta) ** 27 - 3.44527222323926e128 * cos(theta) ** 25 + 7.38272619265557e127 * cos(theta) ** 23 - 1.19963373586503e127 * cos(theta) ** 21 + 1.47323441246583e126 * cos(theta) ** 19 - 1.35515376294598e125 * cos(theta) ** 17 + 9.19665228346571e123 * cos(theta) ** 15 - 4.50185776113706e122 * cos(theta) ** 13 + 1.53875944508629e121 * cos(theta) ** 11 - 3.50442109646981e119 * cos(theta) ** 9 + 4.95908645726859e117 * cos(theta) ** 7 - 3.90186645195356e115 * cos(theta) ** 5 + 1.39851844156042e113 * cos(theta) ** 3 - 1.44325948561446e110 * cos(theta) ) * cos(56 * phi) ) # @torch.jit.script def Yl95_m57(theta, phi): return ( 3.48200997777645e-111 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 4.52293512994492e130 * cos(theta) ** 38 - 1.68234042134988e131 * cos(theta) ** 36 + 2.83388894505461e131 * cos(theta) ** 34 - 2.86452558229845e131 * cos(theta) ** 32 + 1.94099001204922e131 * cos(theta) ** 30 - 9.32962049990509e130 * cos(theta) ** 28 + 3.28360944968727e130 * cos(theta) ** 26 - 8.61318055809816e129 * cos(theta) ** 24 + 1.69802702431078e129 * cos(theta) ** 22 - 2.51923084531657e128 * cos(theta) ** 20 + 2.79914538368508e127 * cos(theta) ** 18 - 2.30376139700816e126 * cos(theta) ** 16 + 1.37949784251986e125 * cos(theta) ** 14 - 5.85241508947818e123 * cos(theta) ** 12 + 1.69263538959492e122 * cos(theta) ** 10 - 3.15397898682283e120 * cos(theta) ** 8 + 3.47136052008802e118 * cos(theta) ** 6 - 1.95093322597678e116 * cos(theta) ** 4 + 4.19555532468125e113 * cos(theta) ** 2 - 1.44325948561446e110 ) * cos(57 * phi) ) # @torch.jit.script def Yl95_m58(theta, phi): return ( 4.56659500771156e-113 * (1.0 - cos(theta) ** 2) ** 29 * ( 1.71871534937907e132 * cos(theta) ** 37 - 6.05642551685957e132 * cos(theta) ** 35 + 9.63522241318568e132 * cos(theta) ** 33 - 9.16648186335503e132 * cos(theta) ** 31 + 5.82297003614766e132 * cos(theta) ** 29 - 2.61229373997343e132 * cos(theta) ** 27 + 8.5373845691869e131 * cos(theta) ** 25 - 2.06716333394356e131 * cos(theta) ** 23 + 3.73565945348372e130 * cos(theta) ** 21 - 5.03846169063314e129 * cos(theta) ** 19 + 5.03846169063314e128 * cos(theta) ** 17 - 3.68601823521306e127 * cos(theta) ** 15 + 1.9312969795278e126 * cos(theta) ** 13 - 7.02289810737382e124 * cos(theta) ** 11 + 1.69263538959492e123 * cos(theta) ** 9 - 2.52318318945826e121 * cos(theta) ** 7 + 2.08281631205281e119 * cos(theta) ** 5 - 7.80373290390712e116 * cos(theta) ** 3 + 8.39111064936249e113 * cos(theta) ) * cos(58 * phi) ) # @torch.jit.script def Yl95_m59(theta, phi): return ( 6.04966428705415e-115 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 6.35924679270255e133 * cos(theta) ** 36 - 2.11974893090085e134 * cos(theta) ** 34 + 3.17962339635128e134 * cos(theta) ** 32 - 2.84160937764006e134 * cos(theta) ** 30 + 1.68866131048282e134 * cos(theta) ** 28 - 7.05319309792825e133 * cos(theta) ** 26 + 2.13434614229672e133 * cos(theta) ** 24 - 4.75447566807018e132 * cos(theta) ** 22 + 7.8448848523158e131 * cos(theta) ** 20 - 9.57307721220297e130 * cos(theta) ** 18 + 8.56538487407634e129 * cos(theta) ** 16 - 5.52902735281959e128 * cos(theta) ** 14 + 2.51068607338614e127 * cos(theta) ** 12 - 7.7251879181112e125 * cos(theta) ** 10 + 1.52337185063543e124 * cos(theta) ** 8 - 1.76622823262078e122 * cos(theta) ** 6 + 1.0414081560264e120 * cos(theta) ** 4 - 2.34111987117214e117 * cos(theta) ** 2 + 8.39111064936249e113 ) * cos(59 * phi) ) # @torch.jit.script def Yl95_m60(theta, phi): return ( 8.09867881455509e-117 * (1.0 - cos(theta) ** 2) ** 30 * ( 2.28932884537292e135 * cos(theta) ** 35 - 7.20714636506289e135 * cos(theta) ** 33 + 1.01747948683241e136 * cos(theta) ** 31 - 8.52482813292018e135 * cos(theta) ** 29 + 4.7282516693519e135 * cos(theta) ** 27 - 1.83383020546135e135 * cos(theta) ** 25 + 5.12243074151214e134 * cos(theta) ** 23 - 1.04598464697544e134 * cos(theta) ** 21 + 1.56897697046316e133 * cos(theta) ** 19 - 1.72315389819654e132 * cos(theta) ** 17 + 1.37046157985222e131 * cos(theta) ** 15 - 7.74063829394742e129 * cos(theta) ** 13 + 3.01282328806337e128 * cos(theta) ** 11 - 7.7251879181112e126 * cos(theta) ** 9 + 1.21869748050834e125 * cos(theta) ** 7 - 1.05973693957247e123 * cos(theta) ** 5 + 4.16563262410562e120 * cos(theta) ** 3 - 4.68223974234427e117 * cos(theta) ) * cos(60 * phi) ) # @torch.jit.script def Yl95_m61(theta, phi): return ( 1.0960184229933e-118 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 8.01265095880522e136 * cos(theta) ** 34 - 2.37835830047075e137 * cos(theta) ** 32 + 3.15418640918047e137 * cos(theta) ** 30 - 2.47220015854685e137 * cos(theta) ** 28 + 1.27662795072501e137 * cos(theta) ** 26 - 4.58457551365336e136 * cos(theta) ** 24 + 1.17815907054779e136 * cos(theta) ** 22 - 2.19656775864843e135 * cos(theta) ** 20 + 2.98105624388001e134 * cos(theta) ** 18 - 2.92936162693411e133 * cos(theta) ** 16 + 2.05569236977832e132 * cos(theta) ** 14 - 1.00628297821316e131 * cos(theta) ** 12 + 3.3141056168697e129 * cos(theta) ** 10 - 6.95266912630008e127 * cos(theta) ** 8 + 8.53088236355838e125 * cos(theta) ** 6 - 5.29868469786235e123 * cos(theta) ** 4 + 1.24968978723169e121 * cos(theta) ** 2 - 4.68223974234427e117 ) * cos(61 * phi) ) # @torch.jit.script def Yl95_m62(theta, phi): return ( 1.50012887140968e-120 * (1.0 - cos(theta) ** 2) ** 31 * ( 2.72430132599377e138 * cos(theta) ** 33 - 7.61074656150641e138 * cos(theta) ** 31 + 9.4625592275414e138 * cos(theta) ** 29 - 6.92216044393118e138 * cos(theta) ** 27 + 3.31923267188503e138 * cos(theta) ** 25 - 1.10029812327681e138 * cos(theta) ** 23 + 2.59194995520514e137 * cos(theta) ** 21 - 4.39313551729685e136 * cos(theta) ** 19 + 5.36590123898401e135 * cos(theta) ** 17 - 4.68697860309458e134 * cos(theta) ** 15 + 2.87796931768965e133 * cos(theta) ** 13 - 1.2075395738558e132 * cos(theta) ** 11 + 3.3141056168697e130 * cos(theta) ** 9 - 5.56213530104006e128 * cos(theta) ** 7 + 5.11852941813503e126 * cos(theta) ** 5 - 2.11947387914494e124 * cos(theta) ** 3 + 2.49937957446337e121 * cos(theta) ) * cos(62 * phi) ) # @torch.jit.script def Yl95_m63(theta, phi): return ( 2.07750968051765e-122 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 8.99019437577945e139 * cos(theta) ** 32 - 2.35933143406699e140 * cos(theta) ** 30 + 2.74414217598701e140 * cos(theta) ** 28 - 1.86898331986142e140 * cos(theta) ** 26 + 8.29808167971259e139 * cos(theta) ** 24 - 2.53068568353666e139 * cos(theta) ** 22 + 5.4430949059308e138 * cos(theta) ** 20 - 8.34695748286402e137 * cos(theta) ** 18 + 9.12203210627282e136 * cos(theta) ** 16 - 7.03046790464186e135 * cos(theta) ** 14 + 3.74136011299655e134 * cos(theta) ** 12 - 1.32829353124138e133 * cos(theta) ** 10 + 2.98269505518273e131 * cos(theta) ** 8 - 3.89349471072804e129 * cos(theta) ** 6 + 2.55926470906751e127 * cos(theta) ** 4 - 6.35842163743482e124 * cos(theta) ** 2 + 2.49937957446337e121 ) * cos(63 * phi) ) # @torch.jit.script def Yl95_m64(theta, phi): return ( 2.9125239467274e-124 * (1.0 - cos(theta) ** 2) ** 32 * ( 2.87686220024942e141 * cos(theta) ** 31 - 7.07799430220096e141 * cos(theta) ** 29 + 7.68359809276361e141 * cos(theta) ** 27 - 4.85935663163969e141 * cos(theta) ** 25 + 1.99153960313102e141 * cos(theta) ** 23 - 5.56750850378064e140 * cos(theta) ** 21 + 1.08861898118616e140 * cos(theta) ** 19 - 1.50245234691552e139 * cos(theta) ** 17 + 1.45952513700365e138 * cos(theta) ** 15 - 9.84265506649861e136 * cos(theta) ** 13 + 4.48963213559586e135 * cos(theta) ** 11 - 1.32829353124138e134 * cos(theta) ** 9 + 2.38615604414619e132 * cos(theta) ** 7 - 2.33609682643683e130 * cos(theta) ** 5 + 1.02370588362701e128 * cos(theta) ** 3 - 1.27168432748696e125 * cos(theta) ) * cos(64 * phi) ) # @torch.jit.script def Yl95_m65(theta, phi): return ( 4.13550610767948e-126 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 8.91827282077322e142 * cos(theta) ** 30 - 2.05261834763828e143 * cos(theta) ** 28 + 2.07457148504618e143 * cos(theta) ** 26 - 1.21483915790992e143 * cos(theta) ** 24 + 4.58054108720135e142 * cos(theta) ** 22 - 1.16917678579394e142 * cos(theta) ** 20 + 2.0683760642537e141 * cos(theta) ** 18 - 2.55416898975639e140 * cos(theta) ** 16 + 2.18928770550548e139 * cos(theta) ** 14 - 1.27954515864482e138 * cos(theta) ** 12 + 4.93859534915544e136 * cos(theta) ** 10 - 1.19546417811724e135 * cos(theta) ** 8 + 1.67030923090233e133 * cos(theta) ** 6 - 1.16804841321841e131 * cos(theta) ** 4 + 3.07111765088102e128 * cos(theta) ** 2 - 1.27168432748696e125 ) * cos(65 * phi) ) # @torch.jit.script def Yl95_m66(theta, phi): return ( 5.95052249330961e-128 * (1.0 - cos(theta) ** 2) ** 33 * ( 2.67548184623196e144 * cos(theta) ** 29 - 5.74733137338718e144 * cos(theta) ** 27 + 5.39388586112006e144 * cos(theta) ** 25 - 2.91561397898381e144 * cos(theta) ** 23 + 1.0077190391843e144 * cos(theta) ** 21 - 2.33835357158787e143 * cos(theta) ** 19 + 3.72307691565667e142 * cos(theta) ** 17 - 4.08667038361022e141 * cos(theta) ** 15 + 3.06500278770767e140 * cos(theta) ** 13 - 1.53545419037378e139 * cos(theta) ** 11 + 4.93859534915544e137 * cos(theta) ** 9 - 9.56371342493792e135 * cos(theta) ** 7 + 1.0021855385414e134 * cos(theta) ** 5 - 4.67219365287365e131 * cos(theta) ** 3 + 6.14223530176203e128 * cos(theta) ) * cos(66 * phi) ) # @torch.jit.script def Yl95_m67(theta, phi): return ( 8.68157646942252e-130 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 7.7588973540727e145 * cos(theta) ** 28 - 1.55177947081454e146 * cos(theta) ** 26 + 1.34847146528001e146 * cos(theta) ** 24 - 6.70591215166277e145 * cos(theta) ** 22 + 2.11620998228702e145 * cos(theta) ** 20 - 4.44287178601695e144 * cos(theta) ** 18 + 6.32923075661633e143 * cos(theta) ** 16 - 6.13000557541533e142 * cos(theta) ** 14 + 3.98450362401997e141 * cos(theta) ** 12 - 1.68899960941116e140 * cos(theta) ** 10 + 4.4447358142399e138 * cos(theta) ** 8 - 6.69459939745654e136 * cos(theta) ** 6 + 5.01092769270699e134 * cos(theta) ** 4 - 1.4016580958621e132 * cos(theta) ** 2 + 6.14223530176203e128 ) * cos(67 * phi) ) # @torch.jit.script def Yl95_m68(theta, phi): return ( 1.28506701737372e-131 * (1.0 - cos(theta) ** 2) ** 34 * ( 2.17249125914036e147 * cos(theta) ** 27 - 4.0346266241178e147 * cos(theta) ** 25 + 3.23633151667203e147 * cos(theta) ** 23 - 1.47530067336581e147 * cos(theta) ** 21 + 4.23241996457405e146 * cos(theta) ** 19 - 7.99716921483052e145 * cos(theta) ** 17 + 1.01267692105861e145 * cos(theta) ** 15 - 8.58200780558147e143 * cos(theta) ** 13 + 4.78140434882396e142 * cos(theta) ** 11 - 1.68899960941116e141 * cos(theta) ** 9 + 3.55578865139192e139 * cos(theta) ** 7 - 4.01675963847393e137 * cos(theta) ** 5 + 2.0043710770828e135 * cos(theta) ** 3 - 2.80331619172419e132 * cos(theta) ) * cos(68 * phi) ) # @torch.jit.script def Yl95_m69(theta, phi): return ( 1.93117651346421e-133 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 5.86572639967896e148 * cos(theta) ** 26 - 1.00865665602945e149 * cos(theta) ** 24 + 7.44356248834568e148 * cos(theta) ** 22 - 3.0981314140682e148 * cos(theta) ** 20 + 8.04159793269069e147 * cos(theta) ** 18 - 1.35951876652119e147 * cos(theta) ** 16 + 1.51901538158792e146 * cos(theta) ** 14 - 1.11566101472559e145 * cos(theta) ** 12 + 5.25954478370636e143 * cos(theta) ** 10 - 1.52009964847005e142 * cos(theta) ** 8 + 2.48905205597434e140 * cos(theta) ** 6 - 2.00837981923696e138 * cos(theta) ** 4 + 6.01311323124839e135 * cos(theta) ** 2 - 2.80331619172419e132 ) * cos(69 * phi) ) # @torch.jit.script def Yl95_m70(theta, phi): return ( 2.94844699596395e-135 * (1.0 - cos(theta) ** 2) ** 35 * ( 1.52508886391653e150 * cos(theta) ** 25 - 2.42077597447068e150 * cos(theta) ** 23 + 1.63758374743605e150 * cos(theta) ** 21 - 6.1962628281364e149 * cos(theta) ** 19 + 1.44748762788432e149 * cos(theta) ** 17 - 2.1752300264339e148 * cos(theta) ** 15 + 2.12662153422309e147 * cos(theta) ** 13 - 1.33879321767071e146 * cos(theta) ** 11 + 5.25954478370636e144 * cos(theta) ** 9 - 1.21607971877604e143 * cos(theta) ** 7 + 1.49343123358461e141 * cos(theta) ** 5 - 8.03351927694785e138 * cos(theta) ** 3 + 1.20262264624968e136 * cos(theta) ) * cos(70 * phi) ) # @torch.jit.script def Yl95_m71(theta, phi): return ( 4.57687737186935e-137 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 3.81272215979132e151 * cos(theta) ** 24 - 5.56778474128257e151 * cos(theta) ** 22 + 3.4389258696157e151 * cos(theta) ** 20 - 1.17728993734592e151 * cos(theta) ** 18 + 2.46072896740335e150 * cos(theta) ** 16 - 3.26284503965085e149 * cos(theta) ** 14 + 2.76460799449001e148 * cos(theta) ** 12 - 1.47267253943778e147 * cos(theta) ** 10 + 4.73359030533572e145 * cos(theta) ** 8 - 8.51255803143225e143 * cos(theta) ** 6 + 7.46715616792303e141 * cos(theta) ** 4 - 2.41005578308436e139 * cos(theta) ** 2 + 1.20262264624968e136 ) * cos(71 * phi) ) # @torch.jit.script def Yl95_m72(theta, phi): return ( 7.22945269162081e-139 * (1.0 - cos(theta) ** 2) ** 36 * ( 9.15053318349918e152 * cos(theta) ** 23 - 1.22491264308216e153 * cos(theta) ** 21 + 6.87785173923141e152 * cos(theta) ** 19 - 2.11912188722265e152 * cos(theta) ** 17 + 3.93716634784536e151 * cos(theta) ** 15 - 4.56798305551119e150 * cos(theta) ** 13 + 3.31752959338802e149 * cos(theta) ** 11 - 1.47267253943778e148 * cos(theta) ** 9 + 3.78687224426858e146 * cos(theta) ** 7 - 5.10753481885935e144 * cos(theta) ** 5 + 2.98686246716921e142 * cos(theta) ** 3 - 4.82011156616871e139 * cos(theta) ) * cos(72 * phi) ) # @torch.jit.script def Yl95_m73(theta, phi): return ( 1.16301913785641e-140 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 2.10462263220481e154 * cos(theta) ** 22 - 2.57231655047255e154 * cos(theta) ** 20 + 1.30679183045397e154 * cos(theta) ** 18 - 3.6025072082785e153 * cos(theta) ** 16 + 5.90574952176804e152 * cos(theta) ** 14 - 5.93837797216455e151 * cos(theta) ** 12 + 3.64928255272682e150 * cos(theta) ** 10 - 1.325405285494e149 * cos(theta) ** 8 + 2.650810570988e147 * cos(theta) ** 6 - 2.55376740942968e145 * cos(theta) ** 4 + 8.96058740150763e142 * cos(theta) ** 2 - 4.82011156616871e139 ) * cos(73 * phi) ) # @torch.jit.script def Yl95_m74(theta, phi): return ( 1.90735779481748e-142 * (1.0 - cos(theta) ** 2) ** 37 * ( 4.63016979085058e155 * cos(theta) ** 21 - 5.14463310094509e155 * cos(theta) ** 19 + 2.35222529481714e155 * cos(theta) ** 17 - 5.76401153324561e154 * cos(theta) ** 15 + 8.26804933047526e153 * cos(theta) ** 13 - 7.12605356659746e152 * cos(theta) ** 11 + 3.64928255272682e151 * cos(theta) ** 9 - 1.0603242283952e150 * cos(theta) ** 7 + 1.5904863425928e148 * cos(theta) ** 5 - 1.02150696377187e146 * cos(theta) ** 3 + 1.79211748030153e143 * cos(theta) ) * cos(74 * phi) ) # @torch.jit.script def Yl95_m75(theta, phi): return ( 3.19225856201428e-144 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 9.72335656078622e156 * cos(theta) ** 20 - 9.77480289179568e156 * cos(theta) ** 18 + 3.99878300118914e156 * cos(theta) ** 16 - 8.64601729986841e155 * cos(theta) ** 14 + 1.07484641296178e155 * cos(theta) ** 12 - 7.83865892325721e153 * cos(theta) ** 10 + 3.28435429745414e152 * cos(theta) ** 8 - 7.42226959876641e150 * cos(theta) ** 6 + 7.95243171296401e148 * cos(theta) ** 4 - 3.06452089131561e146 * cos(theta) ** 2 + 1.79211748030153e143 ) * cos(75 * phi) ) # @torch.jit.script def Yl95_m76(theta, phi): return ( 5.45864696480855e-146 * (1.0 - cos(theta) ** 2) ** 38 * ( 1.94467131215725e158 * cos(theta) ** 19 - 1.75946452052322e158 * cos(theta) ** 17 + 6.39805280190262e157 * cos(theta) ** 15 - 1.21044242198158e157 * cos(theta) ** 13 + 1.28981569555414e156 * cos(theta) ** 11 - 7.8386589232572e154 * cos(theta) ** 9 + 2.62748343796331e153 * cos(theta) ** 7 - 4.45336175925985e151 * cos(theta) ** 5 + 3.1809726851856e149 * cos(theta) ** 3 - 6.12904178263122e146 * cos(theta) ) * cos(76 * phi) ) # @torch.jit.script def Yl95_m77(theta, phi): return ( 9.54869416412232e-148 * (1.0 - cos(theta) ** 2) ** 38.5 * ( 3.69487549309877e159 * cos(theta) ** 18 - 2.99108968488948e159 * cos(theta) ** 16 + 9.59707920285394e158 * cos(theta) ** 14 - 1.57357514857605e158 * cos(theta) ** 12 + 1.41879726510955e157 * cos(theta) ** 10 - 7.05479303093148e155 * cos(theta) ** 8 + 1.83923840657432e154 * cos(theta) ** 6 - 2.22668087962992e152 * cos(theta) ** 4 + 9.54291805555681e149 * cos(theta) ** 2 - 6.12904178263122e146 ) * cos(77 * phi) ) # @torch.jit.script def Yl95_m78(theta, phi): return ( 1.71113659507699e-149 * (1.0 - cos(theta) ** 2) ** 39 * ( 6.65077588757778e160 * cos(theta) ** 17 - 4.78574349582316e160 * cos(theta) ** 15 + 1.34359108839955e160 * cos(theta) ** 13 - 1.88829017829126e159 * cos(theta) ** 11 + 1.41879726510955e158 * cos(theta) ** 9 - 5.64383442474519e156 * cos(theta) ** 7 + 1.10354304394459e155 * cos(theta) ** 5 - 8.90672351851969e152 * cos(theta) ** 3 + 1.90858361111136e150 * cos(theta) ) * cos(78 * phi) ) # @torch.jit.script def Yl95_m79(theta, phi): return ( 3.14619469596975e-151 * (1.0 - cos(theta) ** 2) ** 39.5 * ( 1.13063190088822e162 * cos(theta) ** 16 - 7.17861524373474e161 * cos(theta) ** 14 + 1.74666841491942e161 * cos(theta) ** 12 - 2.07711919612039e160 * cos(theta) ** 10 + 1.2769175385986e159 * cos(theta) ** 8 - 3.95068409732163e157 * cos(theta) ** 6 + 5.51771521972295e155 * cos(theta) ** 4 - 2.67201705555591e153 * cos(theta) ** 2 + 1.90858361111136e150 ) * cos(79 * phi) ) # @torch.jit.script def Yl95_m80(theta, phi): return ( 5.94574910123317e-153 * (1.0 - cos(theta) ** 2) ** 40 * ( 1.80901104142116e163 * cos(theta) ** 15 - 1.00500613412286e163 * cos(theta) ** 13 + 2.0960020979033e162 * cos(theta) ** 11 - 2.07711919612039e161 * cos(theta) ** 9 + 1.02153403087888e160 * cos(theta) ** 7 - 2.37041045839298e158 * cos(theta) ** 5 + 2.20708608788918e156 * cos(theta) ** 3 - 5.34403411111181e153 * cos(theta) ) * cos(80 * phi) ) # @torch.jit.script def Yl95_m81(theta, phi): return ( 1.15718984938984e-154 * (1.0 - cos(theta) ** 2) ** 40.5 * ( 2.71351656213173e164 * cos(theta) ** 14 - 1.30650797435972e164 * cos(theta) ** 12 + 2.30560230769363e163 * cos(theta) ** 10 - 1.86940727650835e162 * cos(theta) ** 8 + 7.15073821615215e160 * cos(theta) ** 6 - 1.18520522919649e159 * cos(theta) ** 4 + 6.62125826366754e156 * cos(theta) ** 2 - 5.34403411111181e153 ) * cos(81 * phi) ) # @torch.jit.script def Yl95_m82(theta, phi): return ( 2.32463067573646e-156 * (1.0 - cos(theta) ** 2) ** 41 * ( 3.79892318698443e165 * cos(theta) ** 13 - 1.56780956923167e165 * cos(theta) ** 11 + 2.30560230769363e164 * cos(theta) ** 9 - 1.49552582120668e163 * cos(theta) ** 7 + 4.29044292969129e161 * cos(theta) ** 5 - 4.74082091678596e159 * cos(theta) ** 3 + 1.32425165273351e157 * cos(theta) ) * cos(82 * phi) ) # @torch.jit.script def Yl95_m83(theta, phi): return ( 4.83250472274067e-158 * (1.0 - cos(theta) ** 2) ** 41.5 * ( 4.93860014307975e166 * cos(theta) ** 12 - 1.72459052615484e166 * cos(theta) ** 10 + 2.07504207692427e165 * cos(theta) ** 8 - 1.04686807484468e164 * cos(theta) ** 6 + 2.14522146484565e162 * cos(theta) ** 4 - 1.42224627503579e160 * cos(theta) ** 2 + 1.32425165273351e157 ) * cos(83 * phi) ) # @torch.jit.script def Yl95_m84(theta, phi): return ( 1.0426898564066e-159 * (1.0 - cos(theta) ** 2) ** 42 * ( 5.92632017169571e167 * cos(theta) ** 11 - 1.72459052615484e167 * cos(theta) ** 9 + 1.66003366153941e166 * cos(theta) ** 7 - 6.28120844906805e164 * cos(theta) ** 5 + 8.58088585938258e162 * cos(theta) ** 3 - 2.84449255007157e160 * cos(theta) ) * cos(84 * phi) ) # @torch.jit.script def Yl95_m85(theta, phi): return ( 2.34327119260382e-161 * (1.0 - cos(theta) ** 2) ** 42.5 * ( 6.51895218886528e168 * cos(theta) ** 10 - 1.55213147353935e168 * cos(theta) ** 8 + 1.16202356307759e167 * cos(theta) ** 6 - 3.14060422453403e165 * cos(theta) ** 4 + 2.57426575781477e163 * cos(theta) ** 2 - 2.84449255007157e160 ) * cos(85 * phi) ) # @torch.jit.script def Yl95_m86(theta, phi): return ( 5.50786473455747e-163 * (1.0 - cos(theta) ** 2) ** 43 * ( 6.51895218886528e169 * cos(theta) ** 9 - 1.24170517883148e169 * cos(theta) ** 7 + 6.97214137846554e167 * cos(theta) ** 5 - 1.25624168981361e166 * cos(theta) ** 3 + 5.14853151562955e163 * cos(theta) ) * cos(86 * phi) ) # @torch.jit.script def Yl95_m87(theta, phi): return ( 1.36090032358417e-164 * (1.0 - cos(theta) ** 2) ** 43.5 * ( 5.86705696997875e170 * cos(theta) ** 8 - 8.69193625182037e169 * cos(theta) ** 6 + 3.48607068923277e168 * cos(theta) ** 4 - 3.76872506944083e166 * cos(theta) ** 2 + 5.14853151562955e163 ) * cos(87 * phi) ) # @torch.jit.script def Yl95_m88(theta, phi): return ( 3.55676997310882e-166 * (1.0 - cos(theta) ** 2) ** 44 * ( 4.693645575983e171 * cos(theta) ** 7 - 5.21516175109222e170 * cos(theta) ** 5 + 1.39442827569311e169 * cos(theta) ** 3 - 7.53745013888166e166 * cos(theta) ) * cos(88 * phi) ) # @torch.jit.script def Yl95_m89(theta, phi): return ( 9.91055206577886e-168 * (1.0 - cos(theta) ** 2) ** 44.5 * ( 3.2855519031881e172 * cos(theta) ** 6 - 2.60758087554611e171 * cos(theta) ** 4 + 4.18328482707932e169 * cos(theta) ** 2 - 7.53745013888166e166 ) * cos(89 * phi) ) # @torch.jit.script def Yl95_m90(theta, phi): return ( 2.97465331841056e-169 * (1.0 - cos(theta) ** 2) ** 45 * ( 1.97133114191286e173 * cos(theta) ** 5 - 1.04303235021844e172 * cos(theta) ** 3 + 8.36656965415864e169 * cos(theta) ) * cos(90 * phi) ) # @torch.jit.script def Yl95_m91(theta, phi): return ( 9.75427249357057e-171 * (1.0 - cos(theta) ** 2) ** 45.5 * ( 9.8566557095643e173 * cos(theta) ** 4 - 3.12909705065533e172 * cos(theta) ** 2 + 8.36656965415864e169 ) * cos(91 * phi) ) # @torch.jit.script def Yl95_m92(theta, phi): return ( 3.56651524598497e-172 * (1.0 - cos(theta) ** 2) ** 46 * (3.94266228382572e174 * cos(theta) ** 3 - 6.25819410131067e172 * cos(theta)) * cos(92 * phi) ) # @torch.jit.script def Yl95_m93(theta, phi): return ( 1.50177383295964e-173 * (1.0 - cos(theta) ** 2) ** 46.5 * (1.18279868514772e175 * cos(theta) ** 2 - 6.25819410131067e172) * cos(93 * phi) ) # @torch.jit.script def Yl95_m94(theta, phi): return 18.2725627380863 * (1.0 - cos(theta) ** 2) ** 47 * cos(94 * phi) * cos(theta) # @torch.jit.script def Yl95_m95(theta, phi): return 1.32563102951268 * (1.0 - cos(theta) ** 2) ** 47.5 * cos(95 * phi) # @torch.jit.script def Yl96_m_minus_96(theta, phi): return 1.32907871031442 * (1.0 - cos(theta) ** 2) ** 48 * sin(96 * phi) # @torch.jit.script def Yl96_m_minus_95(theta, phi): return ( 18.4162548281816 * (1.0 - cos(theta) ** 2) ** 47.5 * sin(95 * phi) * cos(theta) ) # @torch.jit.script def Yl96_m_minus_94(theta, phi): return ( 7.96633932527857e-176 * (1.0 - cos(theta) ** 2) ** 47 * (2.25914548863214e177 * cos(theta) ** 2 - 1.18279868514772e175) * sin(94 * phi) ) # @torch.jit.script def Yl96_m_minus_93(theta, phi): return ( 1.90193744586733e-174 * (1.0 - cos(theta) ** 2) ** 46.5 * (7.53048496210712e176 * cos(theta) ** 3 - 1.18279868514772e175 * cos(theta)) * sin(93 * phi) ) # @torch.jit.script def Yl96_m_minus_92(theta, phi): return ( 5.22946338765481e-173 * (1.0 - cos(theta) ** 2) ** 46 * ( 1.88262124052678e176 * cos(theta) ** 4 - 5.91399342573858e174 * cos(theta) ** 2 + 1.56454852532767e172 ) * sin(92 * phi) ) # @torch.jit.script def Yl96_m_minus_91(theta, phi): return ( 1.60332311414302e-171 * (1.0 - cos(theta) ** 2) ** 45.5 * ( 3.76524248105356e175 * cos(theta) ** 5 - 1.97133114191286e174 * cos(theta) ** 3 + 1.56454852532767e172 * cos(theta) ) * sin(91 * phi) ) # @torch.jit.script def Yl96_m_minus_90(theta, phi): return ( 5.37053414416425e-170 * (1.0 - cos(theta) ** 2) ** 45 * ( 6.27540413508927e174 * cos(theta) ** 6 - 4.92832785478215e173 * cos(theta) ** 4 + 7.82274262663833e171 * cos(theta) ** 2 - 1.39442827569311e169 ) * sin(90 * phi) ) # @torch.jit.script def Yl96_m_minus_89(theta, phi): return ( 1.93786256906189e-168 * (1.0 - cos(theta) ** 2) ** 44.5 * ( 8.96486305012753e173 * cos(theta) ** 7 - 9.8566557095643e172 * cos(theta) ** 5 + 2.60758087554611e171 * cos(theta) ** 3 - 1.39442827569311e169 * cos(theta) ) * sin(89 * phi) ) # @torch.jit.script def Yl96_m_minus_88(theta, phi): return ( 7.45510615492852e-167 * (1.0 - cos(theta) ** 2) ** 44 * ( 1.12060788126594e173 * cos(theta) ** 8 - 1.64277595159405e172 * cos(theta) ** 6 + 6.51895218886528e170 * cos(theta) ** 4 - 6.97214137846554e168 * cos(theta) ** 2 + 9.42181267360208e165 ) * sin(88 * phi) ) # @torch.jit.script def Yl96_m_minus_87(theta, phi): return ( 3.03377940011721e-165 * (1.0 - cos(theta) ** 2) ** 43.5 * ( 1.24511986807327e172 * cos(theta) ** 9 - 2.3468227879915e171 * cos(theta) ** 7 + 1.30379043777306e170 * cos(theta) ** 5 - 2.32404712615518e168 * cos(theta) ** 3 + 9.42181267360208e165 * cos(theta) ) * sin(87 * phi) ) # @torch.jit.script def Yl96_m_minus_86(theta, phi): return ( 1.29780529860581e-163 * (1.0 - cos(theta) ** 2) ** 43 * ( 1.24511986807327e171 * cos(theta) ** 10 - 2.93352848498937e170 * cos(theta) ** 8 + 2.17298406295509e169 * cos(theta) ** 6 - 5.81011781538795e167 * cos(theta) ** 4 + 4.71090633680104e165 * cos(theta) ** 2 - 5.14853151562955e162 ) * sin(86 * phi) ) # @torch.jit.script def Yl96_m_minus_85(theta, phi): return ( 5.80686299422056e-162 * (1.0 - cos(theta) ** 2) ** 42.5 * ( 1.13192715279388e170 * cos(theta) ** 11 - 3.25947609443264e169 * cos(theta) ** 9 + 3.1042629470787e168 * cos(theta) ** 7 - 1.16202356307759e167 * cos(theta) ** 5 + 1.57030211226701e165 * cos(theta) ** 3 - 5.14853151562955e162 * cos(theta) ) * sin(85 * phi) ) # @torch.jit.script def Yl96_m_minus_84(theta, phi): return ( 2.70627228516799e-160 * (1.0 - cos(theta) ** 2) ** 42 * ( 9.43272627328233e168 * cos(theta) ** 12 - 3.25947609443264e168 * cos(theta) ** 10 + 3.88032868384838e167 * cos(theta) ** 8 - 1.93670593846265e166 * cos(theta) ** 6 + 3.92575528066753e164 * cos(theta) ** 4 - 2.57426575781477e162 * cos(theta) ** 2 + 2.37041045839298e159 ) * sin(84 * phi) ) # @torch.jit.script def Yl96_m_minus_83(theta, phi): return ( 1.30911988200608e-158 * (1.0 - cos(theta) ** 2) ** 41.5 * ( 7.25594328714026e167 * cos(theta) ** 13 - 2.96316008584785e167 * cos(theta) ** 11 + 4.31147631538709e166 * cos(theta) ** 9 - 2.76672276923236e165 * cos(theta) ** 7 + 7.85151056133506e163 * cos(theta) ** 5 - 8.58088585938258e161 * cos(theta) ** 3 + 2.37041045839298e159 * cos(theta) ) * sin(83 * phi) ) # @torch.jit.script def Yl96_m_minus_82(theta, phi): return ( 6.55344942213777e-157 * (1.0 - cos(theta) ** 2) ** 41 * ( 5.18281663367161e166 * cos(theta) ** 14 - 2.46930007153988e166 * cos(theta) ** 12 + 4.31147631538709e165 * cos(theta) ** 10 - 3.45840346154044e164 * cos(theta) ** 8 + 1.30858509355584e163 * cos(theta) ** 6 - 2.14522146484565e161 * cos(theta) ** 4 + 1.18520522919649e159 * cos(theta) ** 2 - 9.45894037666791e155 ) * sin(82 * phi) ) # @torch.jit.script def Yl96_m_minus_81(theta, phi): return ( 3.38630118576512e-155 * (1.0 - cos(theta) ** 2) ** 40.5 * ( 3.45521108911441e165 * cos(theta) ** 15 - 1.89946159349221e165 * cos(theta) ** 13 + 3.91952392307917e164 * cos(theta) ** 11 - 3.84267051282272e163 * cos(theta) ** 9 + 1.86940727650835e162 * cos(theta) ** 7 - 4.29044292969129e160 * cos(theta) ** 5 + 3.95068409732163e158 * cos(theta) ** 3 - 9.45894037666791e155 * cos(theta) ) * sin(81 * phi) ) # @torch.jit.script def Yl96_m_minus_80(theta, phi): return ( 1.80207228381835e-153 * (1.0 - cos(theta) ** 2) ** 40 * ( 2.1595069306965e164 * cos(theta) ** 16 - 1.35675828106587e164 * cos(theta) ** 14 + 3.26626993589931e163 * cos(theta) ** 12 - 3.84267051282272e162 * cos(theta) ** 10 + 2.33675909563544e161 * cos(theta) ** 8 - 7.15073821615215e159 * cos(theta) ** 6 + 9.87671024330408e157 * cos(theta) ** 4 - 4.72947018833396e155 * cos(theta) ** 2 + 3.34002131944488e152 ) * sin(80 * phi) ) # @torch.jit.script def Yl96_m_minus_79(theta, phi): return ( 9.85718714045239e-152 * (1.0 - cos(theta) ** 2) ** 39.5 * ( 1.27029819452736e163 * cos(theta) ** 17 - 9.04505520710578e162 * cos(theta) ** 15 + 2.51251533530716e162 * cos(theta) ** 13 - 3.49333682983883e161 * cos(theta) ** 11 + 2.59639899515048e160 * cos(theta) ** 9 - 1.02153403087888e159 * cos(theta) ** 7 + 1.97534204866082e157 * cos(theta) ** 5 - 1.57649006277799e155 * cos(theta) ** 3 + 3.34002131944488e152 * cos(theta) ) * sin(79 * phi) ) # @torch.jit.script def Yl96_m_minus_78(theta, phi): return ( 5.53233256153302e-150 * (1.0 - cos(theta) ** 2) ** 39 * ( 7.05721219181864e161 * cos(theta) ** 18 - 5.65315950444111e161 * cos(theta) ** 16 + 1.79465381093369e161 * cos(theta) ** 14 - 2.91111402486569e160 * cos(theta) ** 12 + 2.59639899515048e159 * cos(theta) ** 10 - 1.2769175385986e158 * cos(theta) ** 8 + 3.29223674776803e156 * cos(theta) ** 6 - 3.94122515694496e154 * cos(theta) ** 4 + 1.67001065972244e152 * cos(theta) ** 2 - 1.0603242283952e149 ) * sin(78 * phi) ) # @torch.jit.script def Yl96_m_minus_77(theta, phi): return ( 3.18097095250874e-148 * (1.0 - cos(theta) ** 2) ** 38.5 * ( 3.71432220622034e160 * cos(theta) ** 19 - 3.32538794378889e160 * cos(theta) ** 17 + 1.19643587395579e160 * cos(theta) ** 15 - 2.23931848066592e159 * cos(theta) ** 13 + 2.36036272286408e158 * cos(theta) ** 11 - 1.41879726510955e157 * cos(theta) ** 9 + 4.70319535395432e155 * cos(theta) ** 7 - 7.88245031388993e153 * cos(theta) ** 5 + 5.56670219907481e151 * cos(theta) ** 3 - 1.0603242283952e149 * cos(theta) ) * sin(77 * phi) ) # @torch.jit.script def Yl96_m_minus_76(theta, phi): return ( 1.87110324820511e-146 * (1.0 - cos(theta) ** 2) ** 38 * ( 1.85716110311017e159 * cos(theta) ** 20 - 1.84743774654938e159 * cos(theta) ** 18 + 7.47772421222369e158 * cos(theta) ** 16 - 1.59951320047566e158 * cos(theta) ** 14 + 1.96696893572006e157 * cos(theta) ** 12 - 1.41879726510955e156 * cos(theta) ** 10 + 5.8789941924429e154 * cos(theta) ** 8 - 1.31374171898165e153 * cos(theta) ** 6 + 1.3916755497687e151 * cos(theta) ** 4 - 5.30162114197601e148 * cos(theta) ** 2 + 3.06452089131561e145 ) * sin(76 * phi) ) # @torch.jit.script def Yl96_m_minus_75(theta, phi): return ( 1.12453149551192e-144 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 8.84362430052461e157 * cos(theta) ** 21 - 9.72335656078623e157 * cos(theta) ** 19 + 4.39866130130805e157 * cos(theta) ** 17 - 1.06634213365044e157 * cos(theta) ** 15 + 1.51305302747697e156 * cos(theta) ** 13 - 1.28981569555414e155 * cos(theta) ** 11 + 6.532215769381e153 * cos(theta) ** 9 - 1.87677388425951e152 * cos(theta) ** 7 + 2.7833510995374e150 * cos(theta) ** 5 - 1.76720704732534e148 * cos(theta) ** 3 + 3.06452089131561e145 * cos(theta) ) * sin(75 * phi) ) # @torch.jit.script def Yl96_m_minus_74(theta, phi): return ( 6.89733022227171e-143 * (1.0 - cos(theta) ** 2) ** 37 * ( 4.01982922751119e156 * cos(theta) ** 22 - 4.86167828039311e156 * cos(theta) ** 20 + 2.44370072294892e156 * cos(theta) ** 18 - 6.66463833531523e155 * cos(theta) ** 16 + 1.08075216248355e155 * cos(theta) ** 14 - 1.07484641296178e154 * cos(theta) ** 12 + 6.532215769381e152 * cos(theta) ** 10 - 2.34596735532438e151 * cos(theta) ** 8 + 4.63891849922901e149 * cos(theta) ** 6 - 4.41801761831334e147 * cos(theta) ** 4 + 1.53226044565781e145 * cos(theta) ** 2 - 8.14598854682512e141 ) * sin(74 * phi) ) # @torch.jit.script def Yl96_m_minus_73(theta, phi): return ( 4.31290009161695e-141 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 1.74775183804834e155 * cos(theta) ** 23 - 2.31508489542529e155 * cos(theta) ** 21 + 1.28615827523627e155 * cos(theta) ** 19 - 3.9203754913619e154 * cos(theta) ** 17 + 7.20501441655701e153 * cos(theta) ** 15 - 8.26804933047526e152 * cos(theta) ** 13 + 5.93837797216455e151 * cos(theta) ** 11 - 2.60663039480487e150 * cos(theta) ** 9 + 6.62702642747001e148 * cos(theta) ** 7 - 8.83603523662668e146 * cos(theta) ** 5 + 5.10753481885935e144 * cos(theta) ** 3 - 8.14598854682512e141 * cos(theta) ) * sin(73 * phi) ) # @torch.jit.script def Yl96_m_minus_72(theta, phi): return ( 2.74674517937673e-139 * (1.0 - cos(theta) ** 2) ** 36 * ( 7.28229932520143e153 * cos(theta) ** 24 - 1.05231131610241e154 * cos(theta) ** 22 + 6.43079137618137e153 * cos(theta) ** 20 - 2.17798638408995e153 * cos(theta) ** 18 + 4.50313401034813e152 * cos(theta) ** 16 - 5.90574952176804e151 * cos(theta) ** 14 + 4.94864831013712e150 * cos(theta) ** 12 - 2.60663039480487e149 * cos(theta) ** 10 + 8.28378303433751e147 * cos(theta) ** 8 - 1.47267253943778e146 * cos(theta) ** 6 + 1.27688370471484e144 * cos(theta) ** 4 - 4.07299427341256e141 * cos(theta) ** 2 + 2.00837981923696e138 ) * sin(72 * phi) ) # @torch.jit.script def Yl96_m_minus_71(theta, phi): return ( 1.78009432721424e-137 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 2.91291973008057e152 * cos(theta) ** 25 - 4.57526659174959e152 * cos(theta) ** 23 + 3.06228160770541e152 * cos(theta) ** 21 - 1.14630862320523e152 * cos(theta) ** 19 + 2.64890235902831e151 * cos(theta) ** 17 - 3.93716634784536e150 * cos(theta) ** 15 + 3.80665254625933e149 * cos(theta) ** 13 - 2.36966399527715e148 * cos(theta) ** 11 + 9.20420337148612e146 * cos(theta) ** 9 - 2.10381791348254e145 * cos(theta) ** 7 + 2.55376740942968e143 * cos(theta) ** 5 - 1.35766475780419e141 * cos(theta) ** 3 + 2.00837981923696e138 * cos(theta) ) * sin(71 * phi) ) # @torch.jit.script def Yl96_m_minus_70(theta, phi): return ( 1.1729727577158e-135 * (1.0 - cos(theta) ** 2) ** 35 * ( 1.12035374233868e151 * cos(theta) ** 26 - 1.90636107989566e151 * cos(theta) ** 24 + 1.39194618532064e151 * cos(theta) ** 22 - 5.73154311602617e150 * cos(theta) ** 20 + 1.4716124216824e150 * cos(theta) ** 18 - 2.46072896740335e149 * cos(theta) ** 16 + 2.71903753304238e148 * cos(theta) ** 14 - 1.9747199960643e147 * cos(theta) ** 12 + 9.20420337148612e145 * cos(theta) ** 10 - 2.62977239185318e144 * cos(theta) ** 8 + 4.25627901571613e142 * cos(theta) ** 6 - 3.39416189451047e140 * cos(theta) ** 4 + 1.00418990961848e138 * cos(theta) ** 2 - 4.62547171634492e134 ) * sin(70 * phi) ) # @torch.jit.script def Yl96_m_minus_69(theta, phi): return ( 7.85278761645772e-134 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 4.14945830495808e149 * cos(theta) ** 27 - 7.62544431958265e149 * cos(theta) ** 25 + 6.0519399361767e149 * cos(theta) ** 23 - 2.72930624572675e149 * cos(theta) ** 21 + 7.7453285351705e148 * cos(theta) ** 19 - 1.44748762788432e148 * cos(theta) ** 17 + 1.81269168869492e147 * cos(theta) ** 15 - 1.51901538158792e146 * cos(theta) ** 13 + 8.36745761044193e144 * cos(theta) ** 11 - 2.92196932428131e143 * cos(theta) ** 9 + 6.08039859388018e141 * cos(theta) ** 7 - 6.78832378902094e139 * cos(theta) ** 5 + 3.34729969872827e137 * cos(theta) ** 3 - 4.62547171634492e134 * cos(theta) ) * sin(69 * phi) ) # @torch.jit.script def Yl96_m_minus_68(theta, phi): return ( 5.33758543606813e-132 * (1.0 - cos(theta) ** 2) ** 34 * ( 1.48194939462789e148 * cos(theta) ** 28 - 2.93286319983948e148 * cos(theta) ** 26 + 2.52164164007363e148 * cos(theta) ** 24 - 1.24059374805761e148 * cos(theta) ** 22 + 3.87266426758525e147 * cos(theta) ** 20 - 8.04159793269069e146 * cos(theta) ** 18 + 1.13293230543432e146 * cos(theta) ** 16 - 1.08501098684851e145 * cos(theta) ** 14 + 6.97288134203494e143 * cos(theta) ** 12 - 2.92196932428131e142 * cos(theta) ** 10 + 7.60049824235023e140 * cos(theta) ** 8 - 1.13138729817016e139 * cos(theta) ** 6 + 8.36824924682068e136 * cos(theta) ** 4 - 2.31273585817246e134 * cos(theta) ** 2 + 1.00118435418721e131 ) * sin(68 * phi) ) # @torch.jit.script def Yl96_m_minus_67(theta, phi): return ( 3.68099953510626e-130 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 5.11017032630305e146 * cos(theta) ** 29 - 1.08624562957018e147 * cos(theta) ** 27 + 1.00865665602945e147 * cos(theta) ** 25 - 5.39388586112006e146 * cos(theta) ** 23 + 1.84412584170726e146 * cos(theta) ** 21 - 4.23241996457405e145 * cos(theta) ** 19 + 6.66430767902543e144 * cos(theta) ** 17 - 7.23340657899009e143 * cos(theta) ** 15 + 5.36375487848842e142 * cos(theta) ** 13 - 2.65633574934664e141 * cos(theta) ** 11 + 8.44499804705581e139 * cos(theta) ** 9 - 1.61626756881451e138 * cos(theta) ** 7 + 1.67364984936414e136 * cos(theta) ** 5 - 7.70911952724153e133 * cos(theta) ** 3 + 1.00118435418721e131 * cos(theta) ) * sin(67 * phi) ) # @torch.jit.script def Yl96_m_minus_66(theta, phi): return ( 2.57406904634943e-128 * (1.0 - cos(theta) ** 2) ** 33 * ( 1.70339010876768e145 * cos(theta) ** 30 - 3.87944867703635e145 * cos(theta) ** 28 + 3.87944867703635e145 * cos(theta) ** 26 - 2.24745244213336e145 * cos(theta) ** 24 + 8.38239018957847e144 * cos(theta) ** 22 - 2.11620998228702e144 * cos(theta) ** 20 + 3.70239315501413e143 * cos(theta) ** 18 - 4.52087911186881e142 * cos(theta) ** 16 + 3.83125348463458e141 * cos(theta) ** 14 - 2.21361312445554e140 * cos(theta) ** 12 + 8.44499804705581e138 * cos(theta) ** 10 - 2.02033446101814e137 * cos(theta) ** 8 + 2.78941641560689e135 * cos(theta) ** 6 - 1.92727988181038e133 * cos(theta) ** 4 + 5.00592177093606e130 * cos(theta) ** 2 - 2.04741176725401e127 ) * sin(66 * phi) ) # @torch.jit.script def Yl96_m_minus_65(theta, phi): return ( 1.8241415945285e-126 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 5.4948068024764e143 * cos(theta) ** 31 - 1.33774092311598e144 * cos(theta) ** 29 + 1.4368328433468e144 * cos(theta) ** 27 - 8.98980976853343e143 * cos(theta) ** 25 + 3.64451747372977e143 * cos(theta) ** 23 - 1.0077190391843e143 * cos(theta) ** 21 + 1.94862797632323e142 * cos(theta) ** 19 - 2.65934065404048e141 * cos(theta) ** 17 + 2.55416898975639e140 * cos(theta) ** 15 - 1.70277932650426e139 * cos(theta) ** 13 + 7.67727095186891e137 * cos(theta) ** 11 - 2.24481606779793e136 * cos(theta) ** 9 + 3.98488059372413e134 * cos(theta) ** 7 - 3.85455976362076e132 * cos(theta) ** 5 + 1.66864059031202e130 * cos(theta) ** 3 - 2.04741176725401e127 * cos(theta) ) * sin(65 * phi) ) # @torch.jit.script def Yl96_m_minus_64(theta, phi): return ( 1.30932202506075e-124 * (1.0 - cos(theta) ** 2) ** 32 * ( 1.71712712577388e142 * cos(theta) ** 32 - 4.45913641038661e142 * cos(theta) ** 30 + 5.1315458690957e142 * cos(theta) ** 28 - 3.45761914174363e142 * cos(theta) ** 26 + 1.5185489473874e142 * cos(theta) ** 24 - 4.58054108720135e141 * cos(theta) ** 22 + 9.74313988161613e140 * cos(theta) ** 20 - 1.47741147446693e140 * cos(theta) ** 18 + 1.59635561859774e139 * cos(theta) ** 16 - 1.21627094750304e138 * cos(theta) ** 14 + 6.3977257932241e136 * cos(theta) ** 12 - 2.24481606779793e135 * cos(theta) ** 10 + 4.98110074215517e133 * cos(theta) ** 8 - 6.42426627270127e131 * cos(theta) ** 6 + 4.17160147578005e129 * cos(theta) ** 4 - 1.02370588362701e127 * cos(theta) ** 2 + 3.97401352339676e123 ) * sin(64 * phi) ) # @torch.jit.script def Yl96_m_minus_63(theta, phi): return ( 9.51400630272681e-123 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 5.20341553264811e140 * cos(theta) ** 33 - 1.43843110012471e141 * cos(theta) ** 31 + 1.76949857555024e141 * cos(theta) ** 29 - 1.28059968212727e141 * cos(theta) ** 27 + 6.07419578954961e140 * cos(theta) ** 25 - 1.99153960313102e140 * cos(theta) ** 23 + 4.6395904198172e139 * cos(theta) ** 21 - 7.77584986561543e138 * cos(theta) ** 19 + 9.39032716822202e137 * cos(theta) ** 17 - 8.10847298335361e136 * cos(theta) ** 15 + 4.9213275332493e135 * cos(theta) ** 13 - 2.0407418798163e134 * cos(theta) ** 11 + 5.53455638017241e132 * cos(theta) ** 9 - 9.17752324671611e130 * cos(theta) ** 7 + 8.3432029515601e128 * cos(theta) ** 5 - 3.41235294542335e126 * cos(theta) ** 3 + 3.97401352339676e123 * cos(theta) ) * sin(63 * phi) ) # @torch.jit.script def Yl96_m_minus_62(theta, phi): return ( 6.99522125388846e-121 * (1.0 - cos(theta) ** 2) ** 31 * ( 1.5304163331318e139 * cos(theta) ** 34 - 4.49509718788973e139 * cos(theta) ** 32 + 5.89832858516747e139 * cos(theta) ** 30 - 4.57357029331168e139 * cos(theta) ** 28 + 2.33622914982677e139 * cos(theta) ** 26 - 8.29808167971259e138 * cos(theta) ** 24 + 2.10890473628055e138 * cos(theta) ** 22 - 3.88792493280771e137 * cos(theta) ** 20 + 5.21684842679001e136 * cos(theta) ** 18 - 5.06779561459601e135 * cos(theta) ** 16 + 3.51523395232093e134 * cos(theta) ** 14 - 1.70061823318025e133 * cos(theta) ** 12 + 5.53455638017241e131 * cos(theta) ** 10 - 1.14719040583951e130 * cos(theta) ** 8 + 1.39053382526002e128 * cos(theta) ** 6 - 8.53088236355838e125 * cos(theta) ** 4 + 1.98700676169838e123 * cos(theta) ** 2 - 7.3511163954805e119 ) * sin(62 * phi) ) # @torch.jit.script def Yl96_m_minus_61(theta, phi): return ( 5.20192421860811e-119 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 4.37261809466227e137 * cos(theta) ** 35 - 1.36215066299689e138 * cos(theta) ** 33 + 1.9026866403766e138 * cos(theta) ** 31 - 1.57709320459023e138 * cos(theta) ** 29 + 8.65270055491398e137 * cos(theta) ** 27 - 3.31923267188503e137 * cos(theta) ** 25 + 9.16915102730673e136 * cos(theta) ** 23 - 1.85139282514653e136 * cos(theta) ** 21 + 2.74570969831053e135 * cos(theta) ** 19 - 2.98105624388001e134 * cos(theta) ** 17 + 2.34348930154729e133 * cos(theta) ** 15 - 1.30816787167711e132 * cos(theta) ** 13 + 5.03141489106582e130 * cos(theta) ** 11 - 1.27465600648835e129 * cos(theta) ** 9 + 1.98647689322859e127 * cos(theta) ** 7 - 1.70617647271168e125 * cos(theta) ** 5 + 6.62335587232794e122 * cos(theta) ** 3 - 7.3511163954805e119 * cos(theta) ) * sin(61 * phi) ) # @torch.jit.script def Yl96_m_minus_60(theta, phi): return ( 3.91079541827941e-117 * (1.0 - cos(theta) ** 2) ** 30 * ( 1.21461613740619e136 * cos(theta) ** 36 - 4.00632547940261e136 * cos(theta) ** 34 + 5.94589575117689e136 * cos(theta) ** 32 - 5.25697734863411e136 * cos(theta) ** 30 + 3.09025019818356e136 * cos(theta) ** 28 - 1.27662795072501e136 * cos(theta) ** 26 + 3.82047959471114e135 * cos(theta) ** 24 - 8.41542193248423e134 * cos(theta) ** 22 + 1.37285484915527e134 * cos(theta) ** 20 - 1.65614235771111e133 * cos(theta) ** 18 + 1.46468081346705e132 * cos(theta) ** 16 - 9.3440562262651e130 * cos(theta) ** 14 + 4.19284574255485e129 * cos(theta) ** 12 - 1.27465600648835e128 * cos(theta) ** 10 + 2.48309611653574e126 * cos(theta) ** 8 - 2.84362745451946e124 * cos(theta) ** 6 + 1.65583896808198e122 * cos(theta) ** 4 - 3.67555819774025e119 * cos(theta) ** 2 + 1.30062215065119e116 ) * sin(60 * phi) ) # @torch.jit.script def Yl96_m_minus_59(theta, phi): return ( 2.97117518296351e-115 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 3.28274631731402e134 * cos(theta) ** 37 - 1.14466442268646e135 * cos(theta) ** 35 + 1.80178659126572e135 * cos(theta) ** 33 - 1.69579914472068e135 * cos(theta) ** 31 + 1.06560351661502e135 * cos(theta) ** 29 - 4.7282516693519e134 * cos(theta) ** 27 + 1.52819183788445e134 * cos(theta) ** 25 - 3.6588791010801e133 * cos(theta) ** 23 + 6.5374040435965e132 * cos(theta) ** 21 - 8.71653872479534e131 * cos(theta) ** 19 + 8.61576949098268e130 * cos(theta) ** 17 - 6.22937081751007e129 * cos(theta) ** 15 + 3.22526595581143e128 * cos(theta) ** 13 - 1.15877818771668e127 * cos(theta) ** 11 + 2.75899568503971e125 * cos(theta) ** 9 - 4.0623249350278e123 * cos(theta) ** 7 + 3.31167793616397e121 * cos(theta) ** 5 - 1.22518606591342e119 * cos(theta) ** 3 + 1.30062215065119e116 * cos(theta) ) * sin(59 * phi) ) # @torch.jit.script def Yl96_m_minus_58(theta, phi): return ( 2.28026807175571e-113 * (1.0 - cos(theta) ** 2) ** 29 * ( 8.63880609819479e132 * cos(theta) ** 38 - 3.17962339635128e133 * cos(theta) ** 36 + 5.29937232725213e133 * cos(theta) ** 34 - 5.29937232725213e133 * cos(theta) ** 32 + 3.55201172205007e133 * cos(theta) ** 30 - 1.68866131048282e133 * cos(theta) ** 28 + 5.87766091494021e132 * cos(theta) ** 26 - 1.52453295878337e132 * cos(theta) ** 24 + 2.97154729254387e131 * cos(theta) ** 22 - 4.35826936239767e130 * cos(theta) ** 20 + 4.78653860610149e129 * cos(theta) ** 18 - 3.89335676094379e128 * cos(theta) ** 16 + 2.30376139700816e127 * cos(theta) ** 14 - 9.656484897639e125 * cos(theta) ** 12 + 2.75899568503971e124 * cos(theta) ** 10 - 5.07790616878475e122 * cos(theta) ** 8 + 5.51946322693995e120 * cos(theta) ** 6 - 3.06296516478354e118 * cos(theta) ** 4 + 6.50311075325593e115 * cos(theta) ** 2 - 2.20818701299013e112 ) * sin(58 * phi) ) # @torch.jit.script def Yl96_m_minus_57(theta, phi): return ( 1.76717097671067e-111 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 2.21507848671661e131 * cos(theta) ** 39 - 8.59357674689534e131 * cos(theta) ** 37 + 1.51410637921489e132 * cos(theta) ** 35 - 1.60587040219761e132 * cos(theta) ** 33 + 1.14581023291938e132 * cos(theta) ** 31 - 5.82297003614766e131 * cos(theta) ** 29 + 2.17691144997786e131 * cos(theta) ** 27 - 6.0981318351335e130 * cos(theta) ** 25 + 1.29197708371472e130 * cos(theta) ** 23 - 2.07536636304651e129 * cos(theta) ** 21 + 2.51923084531657e128 * cos(theta) ** 19 - 2.2902098593787e127 * cos(theta) ** 17 + 1.53584093133877e126 * cos(theta) ** 15 - 7.42806530587615e124 * cos(theta) ** 13 + 2.50817789549065e123 * cos(theta) ** 11 - 5.64211796531639e121 * cos(theta) ** 9 + 7.88494746705706e119 * cos(theta) ** 7 - 6.12593032956709e117 * cos(theta) ** 5 + 2.16770358441864e115 * cos(theta) ** 3 - 2.20818701299013e112 * cos(theta) ) * sin(57 * phi) ) # @torch.jit.script def Yl96_m_minus_56(theta, phi): return ( 1.38246543381318e-109 * (1.0 - cos(theta) ** 2) ** 28 * ( 5.53769621679153e129 * cos(theta) ** 40 - 2.26146756497246e130 * cos(theta) ** 38 + 4.2058510533747e130 * cos(theta) ** 36 - 4.72314824175769e130 * cos(theta) ** 34 + 3.58065697787306e130 * cos(theta) ** 32 - 1.94099001204922e130 * cos(theta) ** 30 + 7.77468374992091e129 * cos(theta) ** 28 - 2.34543532120519e129 * cos(theta) ** 26 + 5.38323784881135e128 * cos(theta) ** 24 - 9.43348346839322e127 * cos(theta) ** 22 + 1.25961542265829e127 * cos(theta) ** 20 - 1.27233881076595e126 * cos(theta) ** 18 + 9.59900582086734e124 * cos(theta) ** 16 - 5.30576093276868e123 * cos(theta) ** 14 + 2.09014824624221e122 * cos(theta) ** 12 - 5.64211796531639e120 * cos(theta) ** 10 + 9.85618433382133e118 * cos(theta) ** 8 - 1.02098838826118e117 * cos(theta) ** 6 + 5.41925896104661e114 * cos(theta) ** 4 - 1.10409350649506e112 * cos(theta) ** 2 + 3.60814871403616e108 ) * sin(56 * phi) ) # @torch.jit.script def Yl96_m_minus_55(theta, phi): return ( 1.0913599282954e-107 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 1.35065761385159e128 * cos(theta) ** 41 - 5.79863478198066e128 * cos(theta) ** 39 + 1.13671650091208e129 * cos(theta) ** 37 - 1.34947092621648e129 * cos(theta) ** 35 + 1.08504756905244e129 * cos(theta) ** 33 - 6.26125810338458e128 * cos(theta) ** 31 + 2.68092543100721e128 * cos(theta) ** 29 - 8.68679748594515e127 * cos(theta) ** 27 + 2.15329513952454e127 * cos(theta) ** 25 - 4.10151455147531e126 * cos(theta) ** 23 + 5.99816867932517e125 * cos(theta) ** 21 - 6.69652005666287e124 * cos(theta) ** 19 + 5.6464740122749e123 * cos(theta) ** 17 - 3.53717395517912e122 * cos(theta) ** 15 + 1.60780634326324e121 * cos(theta) ** 13 - 5.12919815028763e119 * cos(theta) ** 11 + 1.09513159264681e118 * cos(theta) ** 9 - 1.45855484037312e116 * cos(theta) ** 7 + 1.08385179220932e114 * cos(theta) ** 5 - 3.68031168831688e111 * cos(theta) ** 3 + 3.60814871403616e108 * cos(theta) ) * sin(55 * phi) ) # @torch.jit.script def Yl96_m_minus_54(theta, phi): return ( 8.69122758830419e-106 * (1.0 - cos(theta) ** 2) ** 27 * ( 3.21585146155141e126 * cos(theta) ** 42 - 1.44965869549517e127 * cos(theta) ** 40 + 2.99135921292653e127 * cos(theta) ** 38 - 3.74853035060134e127 * cos(theta) ** 36 + 3.19131637956601e127 * cos(theta) ** 34 - 1.95664315730768e127 * cos(theta) ** 32 + 8.93641810335737e126 * cos(theta) ** 30 - 3.10242767355184e126 * cos(theta) ** 28 + 8.28190438278669e125 * cos(theta) ** 26 - 1.70896439644805e125 * cos(theta) ** 24 + 2.72644030878417e124 * cos(theta) ** 22 - 3.34826002833143e123 * cos(theta) ** 20 + 3.13693000681939e122 * cos(theta) ** 18 - 2.21073372198695e121 * cos(theta) ** 16 + 1.14843310233088e120 * cos(theta) ** 14 - 4.27433179190635e118 * cos(theta) ** 12 + 1.09513159264681e117 * cos(theta) ** 10 - 1.82319355046639e115 * cos(theta) ** 8 + 1.8064196536822e113 * cos(theta) ** 6 - 9.20077922079221e110 * cos(theta) ** 4 + 1.80407435701808e108 * cos(theta) ** 2 - 5.68929157053951e104 ) * sin(54 * phi) ) # @torch.jit.script def Yl96_m_minus_53(theta, phi): return ( 6.98008931602214e-104 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 7.47872432918933e124 * cos(theta) ** 43 - 3.53575291584187e125 * cos(theta) ** 41 + 7.67015182801675e125 * cos(theta) ** 39 - 1.01311631097334e126 * cos(theta) ** 37 + 9.11804679876002e125 * cos(theta) ** 35 - 5.92922168881116e125 * cos(theta) ** 33 + 2.88271551721205e125 * cos(theta) ** 31 - 1.06980264605236e125 * cos(theta) ** 29 + 3.0673719936247e124 * cos(theta) ** 27 - 6.83585758579219e123 * cos(theta) ** 25 + 1.18540882990616e123 * cos(theta) ** 23 - 1.59440953730068e122 * cos(theta) ** 21 + 1.65101579306284e121 * cos(theta) ** 19 - 1.30043160116879e120 * cos(theta) ** 17 + 7.65622068220589e118 * cos(theta) ** 15 - 3.28794753223566e117 * cos(theta) ** 13 + 9.95574175133468e115 * cos(theta) ** 11 - 2.02577061162933e114 * cos(theta) ** 9 + 2.58059950526029e112 * cos(theta) ** 7 - 1.84015584415844e110 * cos(theta) ** 5 + 6.01358119006027e107 * cos(theta) ** 3 - 5.68929157053951e104 * cos(theta) ) * sin(53 * phi) ) # @torch.jit.script def Yl96_m_minus_52(theta, phi): return ( 5.65171758682122e-102 * (1.0 - cos(theta) ** 2) ** 26 * ( 1.69971007481576e123 * cos(theta) ** 44 - 8.41845932343302e123 * cos(theta) ** 42 + 1.91753795700419e124 * cos(theta) ** 40 - 2.66609555519299e124 * cos(theta) ** 38 + 2.53279077743334e124 * cos(theta) ** 36 - 1.74388873200328e124 * cos(theta) ** 34 + 9.00848599128767e123 * cos(theta) ** 32 - 3.56600882017453e123 * cos(theta) ** 30 + 1.09548999772311e123 * cos(theta) ** 28 - 2.62917599453546e122 * cos(theta) ** 26 + 4.93920345794233e121 * cos(theta) ** 24 - 7.24731607863947e120 * cos(theta) ** 22 + 8.25507896531419e119 * cos(theta) ** 20 - 7.2246200064933e118 * cos(theta) ** 18 + 4.78513792637868e117 * cos(theta) ** 16 - 2.3485339515969e116 * cos(theta) ** 14 + 8.29645145944557e114 * cos(theta) ** 12 - 2.02577061162933e113 * cos(theta) ** 10 + 3.22574938157536e111 * cos(theta) ** 8 - 3.06692640693074e109 * cos(theta) ** 6 + 1.50339529751507e107 * cos(theta) ** 4 - 2.84464578526976e104 * cos(theta) ** 2 + 8.67799202339767e100 ) * sin(52 * phi) ) # @torch.jit.script def Yl96_m_minus_51(theta, phi): return ( 4.61230020485101e-100 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 3.77713349959057e121 * cos(theta) ** 45 - 1.95778123800768e122 * cos(theta) ** 43 + 4.67692184635168e122 * cos(theta) ** 41 - 6.83614244921279e122 * cos(theta) ** 39 + 6.84538047954956e122 * cos(theta) ** 37 - 4.98253923429509e122 * cos(theta) ** 35 + 2.72984423978414e122 * cos(theta) ** 33 - 1.15032542586275e122 * cos(theta) ** 31 + 3.77755171628658e121 * cos(theta) ** 29 - 9.73768886864984e120 * cos(theta) ** 27 + 1.97568138317693e120 * cos(theta) ** 25 - 3.15100699071281e119 * cos(theta) ** 23 + 3.93098998348295e118 * cos(theta) ** 21 - 3.8024315823649e117 * cos(theta) ** 19 + 2.81478701551687e116 * cos(theta) ** 17 - 1.5656893010646e115 * cos(theta) ** 15 + 6.38188573803505e113 * cos(theta) ** 13 - 1.84160964693575e112 * cos(theta) ** 11 + 3.58416597952818e110 * cos(theta) ** 9 - 4.38132343847248e108 * cos(theta) ** 7 + 3.00679059503013e106 * cos(theta) ** 5 - 9.48215261756586e103 * cos(theta) ** 3 + 8.67799202339767e100 * cos(theta) ) * sin(51 * phi) ) # @torch.jit.script def Yl96_m_minus_50(theta, phi): return ( 3.79275814837856e-98 * (1.0 - cos(theta) ** 2) ** 25 * ( 8.21115978171863e119 * cos(theta) ** 46 - 4.44950281365381e120 * cos(theta) ** 44 + 1.11355282055992e121 * cos(theta) ** 42 - 1.7090356123032e121 * cos(theta) ** 40 + 1.80141591567094e121 * cos(theta) ** 38 - 1.38403867619308e121 * cos(theta) ** 36 + 8.02895364642395e120 * cos(theta) ** 34 - 3.5947669558211e120 * cos(theta) ** 32 + 1.25918390542886e120 * cos(theta) ** 30 - 3.4777460245178e119 * cos(theta) ** 28 + 7.59877455068051e118 * cos(theta) ** 26 - 1.31291957946367e118 * cos(theta) ** 24 + 1.78681362885589e117 * cos(theta) ** 22 - 1.90121579118245e116 * cos(theta) ** 20 + 1.56377056417604e115 * cos(theta) ** 18 - 9.78555813165374e113 * cos(theta) ** 16 + 4.55848981288218e112 * cos(theta) ** 14 - 1.53467470577979e111 * cos(theta) ** 12 + 3.58416597952818e109 * cos(theta) ** 10 - 5.4766542980906e107 * cos(theta) ** 8 + 5.01131765838355e105 * cos(theta) ** 6 - 2.37053815439146e103 * cos(theta) ** 4 + 4.33899601169884e100 * cos(theta) ** 2 - 1.28334694223568e97 ) * sin(50 * phi) ) # @torch.jit.script def Yl96_m_minus_49(theta, phi): return ( 3.14181426283119e-96 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.74705527270609e118 * cos(theta) ** 47 - 9.88778403034181e118 * cos(theta) ** 45 + 2.58965772223238e119 * cos(theta) ** 43 - 4.16837954220292e119 * cos(theta) ** 41 + 4.61901516838702e119 * cos(theta) ** 39 - 3.74064507079211e119 * cos(theta) ** 37 + 2.29398675612113e119 * cos(theta) ** 35 - 1.08932331994579e119 * cos(theta) ** 33 + 4.06188356589955e118 * cos(theta) ** 31 - 1.1992227670751e118 * cos(theta) ** 29 + 2.81436094469649e117 * cos(theta) ** 27 - 5.25167831785469e116 * cos(theta) ** 25 + 7.76875490806907e115 * cos(theta) ** 23 - 9.05340852944023e114 * cos(theta) ** 21 + 8.23037139040021e113 * cos(theta) ** 19 - 5.75621066567867e112 * cos(theta) ** 17 + 3.03899320858812e111 * cos(theta) ** 15 - 1.180519004446e110 * cos(theta) ** 13 + 3.25833270866198e108 * cos(theta) ** 11 - 6.08517144232289e106 * cos(theta) ** 9 + 7.15902522626222e104 * cos(theta) ** 7 - 4.74107630878293e102 * cos(theta) ** 5 + 1.44633200389961e100 * cos(theta) ** 3 - 1.28334694223568e97 * cos(theta) ) * sin(49 * phi) ) # @torch.jit.script def Yl96_m_minus_48(theta, phi): return ( 2.62110927205299e-94 * (1.0 - cos(theta) ** 2) ** 24 * ( 3.63969848480436e116 * cos(theta) ** 48 - 2.14951826746561e117 * cos(theta) ** 46 + 5.88558573234631e117 * cos(theta) ** 44 - 9.92471319572124e117 * cos(theta) ** 42 + 1.15475379209675e118 * cos(theta) ** 40 - 9.84380281787397e117 * cos(theta) ** 38 + 6.3721854336698e117 * cos(theta) ** 36 - 3.20389211748761e117 * cos(theta) ** 34 + 1.26933861434361e117 * cos(theta) ** 32 - 3.99740922358368e116 * cos(theta) ** 30 + 1.00512890882017e116 * cos(theta) ** 28 - 2.01987627609796e115 * cos(theta) ** 26 + 3.23698121169544e114 * cos(theta) ** 24 - 4.1151856952001e113 * cos(theta) ** 22 + 4.1151856952001e112 * cos(theta) ** 20 - 3.19789481426593e111 * cos(theta) ** 18 + 1.89937075536757e110 * cos(theta) ** 16 - 8.43227860318568e108 * cos(theta) ** 14 + 2.71527725721832e107 * cos(theta) ** 12 - 6.08517144232289e105 * cos(theta) ** 10 + 8.94878153282778e103 * cos(theta) ** 8 - 7.90179384797155e101 * cos(theta) ** 6 + 3.61583000974903e99 * cos(theta) ** 4 - 6.4167347111784e96 * cos(theta) ** 2 + 1.84388928482138e93 ) * sin(48 * phi) ) # @torch.jit.script def Yl96_m_minus_47(theta, phi): return ( 2.20173178852451e-92 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 7.42795609143747e114 * cos(theta) ** 49 - 4.57344312226726e115 * cos(theta) ** 47 + 1.3079079405214e116 * cos(theta) ** 45 - 2.30807283621424e116 * cos(theta) ** 43 + 2.81647266365062e116 * cos(theta) ** 41 - 2.52405200458307e116 * cos(theta) ** 39 + 1.72221227937022e116 * cos(theta) ** 37 - 9.15397747853603e115 * cos(theta) ** 35 + 3.84648064952608e115 * cos(theta) ** 33 - 1.28948684631732e115 * cos(theta) ** 31 + 3.46596175455232e114 * cos(theta) ** 29 - 7.48102324480725e113 * cos(theta) ** 27 + 1.29479248467818e113 * cos(theta) ** 25 - 1.78921117182613e112 * cos(theta) ** 23 + 1.95961223580957e111 * cos(theta) ** 21 - 1.68310253382417e110 * cos(theta) ** 19 + 1.1172769149221e109 * cos(theta) ** 17 - 5.62151906879045e107 * cos(theta) ** 15 + 2.08867481324486e106 * cos(theta) ** 13 - 5.53197403847535e104 * cos(theta) ** 11 + 9.94309059203086e102 * cos(theta) ** 9 - 1.12882769256736e101 * cos(theta) ** 7 + 7.23166001949806e98 * cos(theta) ** 5 - 2.1389115703928e96 * cos(theta) ** 3 + 1.84388928482138e93 * cos(theta) ) * sin(47 * phi) ) # @torch.jit.script def Yl96_m_minus_46(theta, phi): return ( 1.86173315785279e-90 * (1.0 - cos(theta) ** 2) ** 23 * ( 1.48559121828749e113 * cos(theta) ** 50 - 9.52800650472345e113 * cos(theta) ** 48 + 2.84327813156827e114 * cos(theta) ** 46 - 5.24562008230509e114 * cos(theta) ** 44 + 6.70588729440624e114 * cos(theta) ** 42 - 6.31013001145768e114 * cos(theta) ** 40 + 4.53213757729004e114 * cos(theta) ** 38 - 2.54277152181556e114 * cos(theta) ** 36 + 1.13131783809591e114 * cos(theta) ** 34 - 4.02964639474161e113 * cos(theta) ** 32 + 1.15532058485077e113 * cos(theta) ** 30 - 2.67179401600259e112 * cos(theta) ** 28 + 4.97997109491607e111 * cos(theta) ** 26 - 7.45504654927555e110 * cos(theta) ** 24 + 8.90732834458897e109 * cos(theta) ** 22 - 8.41551266912087e108 * cos(theta) ** 20 + 6.20709397178946e107 * cos(theta) ** 18 - 3.51344941799403e106 * cos(theta) ** 16 + 1.49191058088919e105 * cos(theta) ** 14 - 4.60997836539613e103 * cos(theta) ** 12 + 9.94309059203086e101 * cos(theta) ** 10 - 1.4110346157092e100 * cos(theta) ** 8 + 1.20527666991634e98 * cos(theta) ** 6 - 5.347278925982e95 * cos(theta) ** 4 + 9.2194464241069e92 * cos(theta) ** 2 - 2.57886613261731e89 ) * sin(46 * phi) ) # @torch.jit.script def Yl96_m_minus_45(theta, phi): return ( 1.58433382348208e-88 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 2.91292395742646e111 * cos(theta) ** 51 - 1.94449112341295e112 * cos(theta) ** 49 + 6.04952793950695e112 * cos(theta) ** 47 - 1.16569335162335e113 * cos(theta) ** 45 + 1.55950867311773e113 * cos(theta) ** 43 - 1.53905610035553e113 * cos(theta) ** 41 + 1.1620865582795e113 * cos(theta) ** 39 - 6.87235546436639e112 * cos(theta) ** 37 + 3.23233668027402e112 * cos(theta) ** 35 - 1.22110496810352e112 * cos(theta) ** 33 + 3.72684059629282e111 * cos(theta) ** 31 - 9.21308281380203e110 * cos(theta) ** 29 + 1.8444337388578e110 * cos(theta) ** 27 - 2.98201861971022e109 * cos(theta) ** 25 + 3.87275145416912e108 * cos(theta) ** 23 - 4.00738698529565e107 * cos(theta) ** 21 + 3.26689156409972e106 * cos(theta) ** 19 - 2.0667349517612e105 * cos(theta) ** 17 + 9.94607053926124e103 * cos(theta) ** 15 - 3.54613720415087e102 * cos(theta) ** 13 + 9.0391732654826e100 * cos(theta) ** 11 - 1.56781623967689e99 * cos(theta) ** 9 + 1.7218238141662e97 * cos(theta) ** 7 - 1.0694557851964e95 * cos(theta) ** 5 + 3.07314880803563e92 * cos(theta) ** 3 - 2.57886613261731e89 * cos(theta) ) * sin(45 * phi) ) # @torch.jit.script def Yl96_m_minus_44(theta, phi): return ( 1.35661908383044e-86 * (1.0 - cos(theta) ** 2) ** 22 * ( 5.60177684120473e109 * cos(theta) ** 52 - 3.8889822468259e110 * cos(theta) ** 50 + 1.26031832073062e111 * cos(theta) ** 48 - 2.5341159817899e111 * cos(theta) ** 46 + 3.54433789344939e111 * cos(theta) ** 44 - 3.66441928656079e111 * cos(theta) ** 42 + 2.90521639569875e111 * cos(theta) ** 40 - 1.80851459588589e111 * cos(theta) ** 38 + 8.97871300076117e110 * cos(theta) ** 36 - 3.59148520030447e110 * cos(theta) ** 34 + 1.16463768634151e110 * cos(theta) ** 32 - 3.07102760460068e109 * cos(theta) ** 30 + 6.58726335306358e108 * cos(theta) ** 28 - 1.14693023835008e108 * cos(theta) ** 26 + 1.61364643923713e107 * cos(theta) ** 24 - 1.82153953877075e106 * cos(theta) ** 22 + 1.63344578204986e105 * cos(theta) ** 20 - 1.14818608431178e104 * cos(theta) ** 18 + 6.21629408703828e102 * cos(theta) ** 16 - 2.53295514582205e101 * cos(theta) ** 14 + 7.53264438790217e99 * cos(theta) ** 12 - 1.56781623967689e98 * cos(theta) ** 10 + 2.15227976770776e96 * cos(theta) ** 8 - 1.78242630866067e94 * cos(theta) ** 6 + 7.68287202008908e91 * cos(theta) ** 4 - 1.28943306630866e89 * cos(theta) ** 2 + 3.51727513995815e85 ) * sin(44 * phi) ) # @torch.jit.script def Yl96_m_minus_43(theta, phi): return ( 1.16858383578193e-84 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 1.0569390266424e108 * cos(theta) ** 53 - 7.62545538593313e108 * cos(theta) ** 51 + 2.57207820557268e109 * cos(theta) ** 49 - 5.39173613146787e109 * cos(theta) ** 47 + 7.87630642988753e109 * cos(theta) ** 45 - 8.52190531758323e109 * cos(theta) ** 43 + 7.08589364804572e109 * cos(theta) ** 41 - 4.63721691252793e109 * cos(theta) ** 39 + 2.42667918939491e109 * cos(theta) ** 37 - 1.02613862865842e109 * cos(theta) ** 35 + 3.52920511012578e108 * cos(theta) ** 33 - 9.90654066000218e107 * cos(theta) ** 31 + 2.27147012174606e107 * cos(theta) ** 29 - 4.24788977166698e106 * cos(theta) ** 27 + 6.45458575694853e105 * cos(theta) ** 25 - 7.91973712509022e104 * cos(theta) ** 23 + 7.77831324785646e103 * cos(theta) ** 21 - 6.0430846542725e102 * cos(theta) ** 19 + 3.65664358061075e101 * cos(theta) ** 17 - 1.68863676388137e100 * cos(theta) ** 15 + 5.79434183684782e98 * cos(theta) ** 13 - 1.42528749061536e97 * cos(theta) ** 11 + 2.39142196411973e95 * cos(theta) ** 9 - 2.54632329808667e93 * cos(theta) ** 7 + 1.53657440401782e91 * cos(theta) ** 5 - 4.29811022102886e88 * cos(theta) ** 3 + 3.51727513995815e85 * cos(theta) ) * sin(43 * phi) ) # @torch.jit.script def Yl96_m_minus_42(theta, phi): return ( 1.01242801662482e-82 * (1.0 - cos(theta) ** 2) ** 21 * ( 1.95729449378222e106 * cos(theta) ** 54 - 1.46643372806406e107 * cos(theta) ** 52 + 5.14415641114537e107 * cos(theta) ** 50 - 1.12327836072247e108 * cos(theta) ** 48 + 1.71224052823642e108 * cos(theta) ** 46 - 1.9367966630871e108 * cos(theta) ** 44 + 1.68711753524898e108 * cos(theta) ** 42 - 1.15930422813198e108 * cos(theta) ** 40 + 6.38599786682871e107 * cos(theta) ** 38 - 2.85038507960672e107 * cos(theta) ** 36 + 1.03800150297817e107 * cos(theta) ** 34 - 3.09579395625068e106 * cos(theta) ** 32 + 7.57156707248687e105 * cos(theta) ** 30 - 1.51710348988106e105 * cos(theta) ** 28 + 2.48253298344174e104 * cos(theta) ** 26 - 3.29989046878759e103 * cos(theta) ** 24 + 3.53559693084385e102 * cos(theta) ** 22 - 3.02154232713625e101 * cos(theta) ** 20 + 2.03146865589486e100 * cos(theta) ** 18 - 1.05539797742585e99 * cos(theta) ** 16 + 4.13881559774844e97 * cos(theta) ** 14 - 1.1877395755128e96 * cos(theta) ** 12 + 2.39142196411973e94 * cos(theta) ** 10 - 3.18290412260833e92 * cos(theta) ** 8 + 2.56095734002969e90 * cos(theta) ** 6 - 1.07452755525721e88 * cos(theta) ** 4 + 1.75863756997907e85 * cos(theta) ** 2 - 4.68595142547049e81 ) * sin(42 * phi) ) # @torch.jit.script def Yl96_m_minus_41(theta, phi): return ( 8.8203342398957e-81 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 3.55871726142223e104 * cos(theta) ** 55 - 2.76685609068691e105 * cos(theta) ** 53 + 1.00865811983243e106 * cos(theta) ** 51 - 2.29240481780097e106 * cos(theta) ** 49 + 3.64306495369451e106 * cos(theta) ** 47 - 4.30399258463799e106 * cos(theta) ** 45 + 3.92352915174182e106 * cos(theta) ** 43 - 2.82757128812678e106 * cos(theta) ** 41 + 1.6374353504689e106 * cos(theta) ** 39 - 7.70374345839654e105 * cos(theta) ** 37 + 2.96571857993763e105 * cos(theta) ** 35 - 9.38119380682025e104 * cos(theta) ** 33 + 2.4424409911248e104 * cos(theta) ** 31 - 5.23139134441746e103 * cos(theta) ** 29 + 9.19456660533978e102 * cos(theta) ** 27 - 1.31995618751504e102 * cos(theta) ** 25 + 1.53721605688863e101 * cos(theta) ** 23 - 1.43882967958869e100 * cos(theta) ** 21 + 1.06919402941835e99 * cos(theta) ** 19 - 6.20822339662267e97 * cos(theta) ** 17 + 2.75921039849896e96 * cos(theta) ** 15 - 9.13645827317537e94 * cos(theta) ** 13 + 2.17401996738157e93 * cos(theta) ** 11 - 3.53656013623148e91 * cos(theta) ** 9 + 3.65851048575671e89 * cos(theta) ** 7 - 2.14905511051443e87 * cos(theta) ** 5 + 5.86212523326358e84 * cos(theta) ** 3 - 4.68595142547049e81 * cos(theta) ) * sin(41 * phi) ) # @torch.jit.script def Yl96_m_minus_40(theta, phi): return ( 7.72572668236375e-79 * (1.0 - cos(theta) ** 2) ** 20 * ( 6.35485225253969e102 * cos(theta) ** 56 - 5.12380757534614e103 * cos(theta) ** 54 + 1.93972715352389e104 * cos(theta) ** 52 - 4.58480963560193e104 * cos(theta) ** 50 + 7.58971865353023e104 * cos(theta) ** 48 - 9.35650561877825e104 * cos(theta) ** 46 + 8.91711170850413e104 * cos(theta) ** 44 - 6.73231259077806e104 * cos(theta) ** 42 + 4.09358837617225e104 * cos(theta) ** 40 - 2.02730091010435e104 * cos(theta) ** 38 + 8.23810716649341e103 * cos(theta) ** 36 - 2.75917464906478e103 * cos(theta) ** 34 + 7.63262809726499e102 * cos(theta) ** 32 - 1.74379711480582e102 * cos(theta) ** 30 + 3.28377378762135e101 * cos(theta) ** 28 - 5.07675456736553e100 * cos(theta) ** 26 + 6.40506690370262e99 * cos(theta) ** 24 - 6.54013490722132e98 * cos(theta) ** 22 + 5.34597014709174e97 * cos(theta) ** 20 - 3.4490129981237e96 * cos(theta) ** 18 + 1.72450649906185e95 * cos(theta) ** 16 - 6.52604162369669e93 * cos(theta) ** 14 + 1.81168330615131e92 * cos(theta) ** 12 - 3.53656013623148e90 * cos(theta) ** 10 + 4.57313810719588e88 * cos(theta) ** 8 - 3.58175851752405e86 * cos(theta) ** 6 + 1.4655313083159e84 * cos(theta) ** 4 - 2.34297571273524e81 * cos(theta) ** 2 + 6.10786160775611e77 ) * sin(40 * phi) ) # @torch.jit.script def Yl96_m_minus_39(theta, phi): return ( 6.80215026794904e-77 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 1.11488636009468e101 * cos(theta) ** 57 - 9.31601377335661e101 * cos(theta) ** 55 + 3.65986255381867e102 * cos(theta) ** 53 - 8.98982281490575e102 * cos(theta) ** 51 + 1.54892217418984e103 * cos(theta) ** 49 - 1.9907458763358e103 * cos(theta) ** 47 + 1.98158037966758e103 * cos(theta) ** 45 - 1.56565409087862e103 * cos(theta) ** 43 + 9.98436189310305e102 * cos(theta) ** 41 - 5.19820746180603e102 * cos(theta) ** 39 + 2.22651545040362e102 * cos(theta) ** 37 - 7.88335614018508e101 * cos(theta) ** 35 + 2.31291760523182e101 * cos(theta) ** 33 - 5.62515198324458e100 * cos(theta) ** 31 + 1.13233578883495e100 * cos(theta) ** 29 - 1.88027946939464e99 * cos(theta) ** 27 + 2.56202676148105e98 * cos(theta) ** 25 - 2.84353691618318e97 * cos(theta) ** 23 + 2.54570007004369e96 * cos(theta) ** 21 - 1.81526999901248e95 * cos(theta) ** 19 + 1.01441558768344e94 * cos(theta) ** 17 - 4.3506944157978e92 * cos(theta) ** 15 + 1.39360254319332e91 * cos(theta) ** 13 - 3.21505466930135e89 * cos(theta) ** 11 + 5.08126456355098e87 * cos(theta) ** 9 - 5.11679788217721e85 * cos(theta) ** 7 + 2.93106261663179e83 * cos(theta) ** 5 - 7.80991904245081e80 * cos(theta) ** 3 + 6.10786160775611e77 * cos(theta) ) * sin(39 * phi) ) # @torch.jit.script def Yl96_m_minus_38(theta, phi): return ( 6.01903824490719e-75 * (1.0 - cos(theta) ** 2) ** 19 * ( 1.92221786223221e99 * cos(theta) ** 58 - 1.66357388809939e100 * cos(theta) ** 56 + 6.77752324781235e100 * cos(theta) ** 54 - 1.72881207978957e101 * cos(theta) ** 52 + 3.09784434837968e101 * cos(theta) ** 50 - 4.14738724236624e101 * cos(theta) ** 48 + 4.30778343405997e101 * cos(theta) ** 46 - 3.55830475199686e101 * cos(theta) ** 44 + 2.37722902216739e101 * cos(theta) ** 42 - 1.29955186545151e101 * cos(theta) ** 40 + 5.8592511852727e100 * cos(theta) ** 38 - 2.18982115005141e100 * cos(theta) ** 36 + 6.80269883891711e99 * cos(theta) ** 34 - 1.75785999476393e99 * cos(theta) ** 32 + 3.77445262944983e98 * cos(theta) ** 30 - 6.71528381926657e97 * cos(theta) ** 28 + 9.85394908261942e96 * cos(theta) ** 26 - 1.18480704840966e96 * cos(theta) ** 24 + 1.1571363954744e95 * cos(theta) ** 22 - 9.07634999506238e93 * cos(theta) ** 20 + 5.6356421537969e92 * cos(theta) ** 18 - 2.71918400987362e91 * cos(theta) ** 16 + 9.95430387995225e89 * cos(theta) ** 14 - 2.67921222441779e88 * cos(theta) ** 12 + 5.08126456355098e86 * cos(theta) ** 10 - 6.39599735272151e84 * cos(theta) ** 8 + 4.88510436105298e82 * cos(theta) ** 6 - 1.9524797606127e80 * cos(theta) ** 4 + 3.05393080387806e77 * cos(theta) ** 2 - 7.80058953736413e73 ) * sin(38 * phi) ) # @torch.jit.script def Yl96_m_minus_37(theta, phi): return ( 5.35186941113327e-73 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 3.25799637666476e97 * cos(theta) ** 59 - 2.91855068087613e98 * cos(theta) ** 57 + 1.2322769541477e99 * cos(theta) ** 55 - 3.26190958450862e99 * cos(theta) ** 53 + 6.07420460466605e99 * cos(theta) ** 51 - 8.4640555966658e99 * cos(theta) ** 49 + 9.16549666821269e99 * cos(theta) ** 47 - 7.90734389332635e99 * cos(theta) ** 45 + 5.5284395864358e99 * cos(theta) ** 43 - 3.16963869622319e99 * cos(theta) ** 41 + 1.50237209878787e99 * cos(theta) ** 39 - 5.91843554067949e98 * cos(theta) ** 37 + 1.9436282396906e98 * cos(theta) ** 35 - 5.32684846898161e97 * cos(theta) ** 33 + 1.21756536433865e97 * cos(theta) ** 31 - 2.31561511009192e96 * cos(theta) ** 29 + 3.64961077134053e95 * cos(theta) ** 27 - 4.73922819363864e94 * cos(theta) ** 25 + 5.03102780641045e93 * cos(theta) ** 23 - 4.32207142622018e92 * cos(theta) ** 21 + 2.96612744936679e91 * cos(theta) ** 19 - 1.59952000580801e90 * cos(theta) ** 17 + 6.63620258663483e88 * cos(theta) ** 15 - 2.06093248032138e87 * cos(theta) ** 13 + 4.61933142140998e85 * cos(theta) ** 11 - 7.10666372524613e83 * cos(theta) ** 9 + 6.97872051578998e81 * cos(theta) ** 7 - 3.90495952122541e79 * cos(theta) ** 5 + 1.01797693462602e77 * cos(theta) ** 3 - 7.80058953736413e73 * cos(theta) ) * sin(37 * phi) ) # @torch.jit.script def Yl96_m_minus_36(theta, phi): return ( 4.78087020767889e-71 * (1.0 - cos(theta) ** 2) ** 18 * ( 5.42999396110794e95 * cos(theta) ** 60 - 5.03198393254505e96 * cos(theta) ** 58 + 2.20049456097804e97 * cos(theta) ** 56 - 6.04057330464559e97 * cos(theta) ** 54 + 1.16811627012809e98 * cos(theta) ** 52 - 1.69281111933316e98 * cos(theta) ** 50 + 1.90947847254431e98 * cos(theta) ** 48 - 1.71898780289703e98 * cos(theta) ** 46 + 1.25646354237177e98 * cos(theta) ** 44 - 7.54675880053141e97 * cos(theta) ** 42 + 3.75593024696968e97 * cos(theta) ** 40 - 1.55748303702092e97 * cos(theta) ** 38 + 5.39896733247389e96 * cos(theta) ** 36 - 1.56672013793577e96 * cos(theta) ** 34 + 3.8048917635583e95 * cos(theta) ** 32 - 7.71871703363973e94 * cos(theta) ** 30 + 1.3034324183359e94 * cos(theta) ** 28 - 1.8227800744764e93 * cos(theta) ** 26 + 2.09626158600435e92 * cos(theta) ** 24 - 1.96457792100917e91 * cos(theta) ** 22 + 1.48306372468339e90 * cos(theta) ** 20 - 8.88622225448896e88 * cos(theta) ** 18 + 4.14762661664677e87 * cos(theta) ** 16 - 1.47209462880098e86 * cos(theta) ** 14 + 3.84944285117499e84 * cos(theta) ** 12 - 7.10666372524613e82 * cos(theta) ** 10 + 8.72340064473747e80 * cos(theta) ** 8 - 6.50826586870901e78 * cos(theta) ** 6 + 2.54494233656505e76 * cos(theta) ** 4 - 3.90029476868206e73 * cos(theta) ** 2 + 9.77517485885229e69 ) * sin(36 * phi) ) # @torch.jit.script def Yl96_m_minus_35(theta, phi): return ( 4.29001525613128e-69 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 8.90162944443925e93 * cos(theta) ** 61 - 8.52878632634755e94 * cos(theta) ** 59 + 3.86051677364568e95 * cos(theta) ** 57 - 1.09828605539011e96 * cos(theta) ** 55 + 2.20399296250582e96 * cos(theta) ** 53 - 3.31923748888855e96 * cos(theta) ** 51 + 3.89689484192717e96 * cos(theta) ** 49 - 3.65742085722773e96 * cos(theta) ** 47 + 2.79214120527061e96 * cos(theta) ** 45 - 1.75506018617009e96 * cos(theta) ** 43 + 9.16080548041385e95 * cos(theta) ** 41 - 3.99354624877159e95 * cos(theta) ** 39 + 1.45918036012808e95 * cos(theta) ** 37 - 4.47634325124505e94 * cos(theta) ** 35 + 1.15299750410857e94 * cos(theta) ** 33 - 2.48990872052895e93 * cos(theta) ** 31 + 4.49459454598587e92 * cos(theta) ** 29 - 6.75103731287556e91 * cos(theta) ** 27 + 8.38504634401741e90 * cos(theta) ** 25 - 8.54164313482249e89 * cos(theta) ** 23 + 7.06220821277807e88 * cos(theta) ** 21 - 4.67695908130998e87 * cos(theta) ** 19 + 2.43978036273339e86 * cos(theta) ** 17 - 9.81396419200656e84 * cos(theta) ** 15 + 2.96110988551922e83 * cos(theta) ** 13 - 6.46060338658739e81 * cos(theta) ** 11 + 9.69266738304164e79 * cos(theta) ** 9 - 9.2975226695843e77 * cos(theta) ** 7 + 5.08988467313009e75 * cos(theta) ** 5 - 1.30009825622735e73 * cos(theta) ** 3 + 9.77517485885229e69 * cos(theta) ) * sin(35 * phi) ) # @torch.jit.script def Yl96_m_minus_34(theta, phi): return ( 3.86625352702393e-67 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.43574668458698e92 * cos(theta) ** 62 - 1.42146438772459e93 * cos(theta) ** 60 + 6.65606340283737e93 * cos(theta) ** 58 - 1.96122509891091e94 * cos(theta) ** 56 + 4.08146844908486e94 * cos(theta) ** 54 - 6.38314901709337e94 * cos(theta) ** 52 + 7.79378968385433e94 * cos(theta) ** 50 - 7.61962678589111e94 * cos(theta) ** 48 + 6.06987218537088e94 * cos(theta) ** 46 - 3.98877315038658e94 * cos(theta) ** 44 + 2.1811441620033e94 * cos(theta) ** 42 - 9.98386562192897e93 * cos(theta) ** 40 + 3.83994831612653e93 * cos(theta) ** 38 - 1.2434286809014e93 * cos(theta) ** 36 + 3.3911691297311e92 * cos(theta) ** 34 - 7.78096475165296e91 * cos(theta) ** 32 + 1.49819818199529e91 * cos(theta) ** 30 - 2.41108475459841e90 * cos(theta) ** 28 + 3.22501782462208e89 * cos(theta) ** 26 - 3.5590179728427e88 * cos(theta) ** 24 + 3.21009464217185e87 * cos(theta) ** 22 - 2.33847954065499e86 * cos(theta) ** 20 + 1.35543353485189e85 * cos(theta) ** 18 - 6.1337276200041e83 * cos(theta) ** 16 + 2.11507848965659e82 * cos(theta) ** 14 - 5.38383615548949e80 * cos(theta) ** 12 + 9.69266738304164e78 * cos(theta) ** 10 - 1.16219033369804e77 * cos(theta) ** 8 + 8.48314112188349e74 * cos(theta) ** 6 - 3.25024564056839e72 * cos(theta) ** 4 + 4.88758742942614e69 * cos(theta) ** 2 - 1.20354282921107e66 ) * sin(34 * phi) ) # @torch.jit.script def Yl96_m_minus_33(theta, phi): return ( 3.49890604025733e-65 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 2.2789629914079e90 * cos(theta) ** 63 - 2.3302694880731e91 * cos(theta) ** 61 + 1.12814633946396e92 * cos(theta) ** 59 - 3.44074578756299e92 * cos(theta) ** 57 + 7.42085172560883e92 * cos(theta) ** 55 - 1.20436773907422e93 * cos(theta) ** 53 + 1.52819405565771e93 * cos(theta) ** 51 - 1.55502587467165e93 * cos(theta) ** 49 + 1.29146216710019e93 * cos(theta) ** 47 - 8.8639403341924e92 * cos(theta) ** 45 + 5.0724282837286e92 * cos(theta) ** 43 - 2.43508917608024e92 * cos(theta) ** 41 + 9.84602132340135e91 * cos(theta) ** 39 - 3.36061805649028e91 * cos(theta) ** 37 + 9.68905465637458e90 * cos(theta) ** 35 - 2.3578681065615e90 * cos(theta) ** 33 + 4.83289736127513e89 * cos(theta) ** 31 - 8.31408536068418e88 * cos(theta) ** 29 + 1.19445104615633e88 * cos(theta) ** 27 - 1.42360718913708e87 * cos(theta) ** 25 + 1.39569332268341e86 * cos(theta) ** 23 - 1.11356168602619e85 * cos(theta) ** 21 + 7.13386070974677e83 * cos(theta) ** 19 - 3.60807507059065e82 * cos(theta) ** 17 + 1.41005232643772e81 * cos(theta) ** 15 - 4.14141242729961e79 * cos(theta) ** 13 + 8.81151580276512e77 * cos(theta) ** 11 - 1.29132259299782e76 * cos(theta) ** 9 + 1.21187730312621e74 * cos(theta) ** 7 - 6.50049128113677e71 * cos(theta) ** 5 + 1.62919580980871e69 * cos(theta) ** 3 - 1.20354282921107e66 * cos(theta) ) * sin(33 * phi) ) # @torch.jit.script def Yl96_m_minus_32(theta, phi): return ( 3.17919467411013e-63 * (1.0 - cos(theta) ** 2) ** 16 * ( 3.56087967407484e88 * cos(theta) ** 64 - 3.75849917431145e89 * cos(theta) ** 62 + 1.8802438991066e90 * cos(theta) ** 60 - 5.93232032338447e90 * cos(theta) ** 58 + 1.32515209385872e91 * cos(theta) ** 56 - 2.23031062791522e91 * cos(theta) ** 54 + 2.93883472241868e91 * cos(theta) ** 52 - 3.11005174934331e91 * cos(theta) ** 50 + 2.69054618145872e91 * cos(theta) ** 48 - 1.92694355091139e91 * cos(theta) ** 46 + 1.15282460993832e91 * cos(theta) ** 44 - 5.79783137161961e90 * cos(theta) ** 42 + 2.46150533085034e90 * cos(theta) ** 40 - 8.843731727606e89 * cos(theta) ** 38 + 2.69140407121516e89 * cos(theta) ** 36 - 6.93490619576912e88 * cos(theta) ** 34 + 1.51028042539848e88 * cos(theta) ** 32 - 2.77136178689473e87 * cos(theta) ** 30 + 4.26589659341545e86 * cos(theta) ** 28 - 5.47541226591185e85 * cos(theta) ** 26 + 5.81538884451422e84 * cos(theta) ** 24 - 5.06164402739175e83 * cos(theta) ** 22 + 3.56693035487338e82 * cos(theta) ** 20 - 2.00448615032814e81 * cos(theta) ** 18 + 8.81282704023577e79 * cos(theta) ** 16 - 2.95815173378543e78 * cos(theta) ** 14 + 7.3429298356376e76 * cos(theta) ** 12 - 1.29132259299782e75 * cos(theta) ** 10 + 1.51484662890777e73 * cos(theta) ** 8 - 1.0834152135228e71 * cos(theta) ** 6 + 4.07298952452179e68 * cos(theta) ** 4 - 6.01771414605534e65 * cos(theta) ** 2 + 1.45777958964519e62 ) * sin(32 * phi) ) # @torch.jit.script def Yl96_m_minus_31(theta, phi): return ( 2.89987171122115e-61 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 5.4782764216536e86 * cos(theta) ** 65 - 5.96587170525628e87 * cos(theta) ** 63 + 3.08236704771574e88 * cos(theta) ** 61 - 1.00547802091262e89 * cos(theta) ** 59 + 2.32482823483986e89 * cos(theta) ** 57 - 4.05511023257313e89 * cos(theta) ** 55 + 5.54497117437486e89 * cos(theta) ** 53 - 6.09814068498688e89 * cos(theta) ** 51 + 5.49091057440556e89 * cos(theta) ** 49 - 4.09987989555615e89 * cos(theta) ** 47 + 2.5618324665296e89 * cos(theta) ** 45 - 1.34833287712084e89 * cos(theta) ** 43 + 6.00367153865936e88 * cos(theta) ** 41 - 2.26762351989897e88 * cos(theta) ** 39 + 7.27406505733827e87 * cos(theta) ** 37 - 1.98140177021975e87 * cos(theta) ** 35 + 4.57660734969236e86 * cos(theta) ** 33 - 8.93987673191848e85 * cos(theta) ** 31 + 1.47099882531567e85 * cos(theta) ** 29 - 2.02793046885624e84 * cos(theta) ** 27 + 2.32615553780569e83 * cos(theta) ** 25 - 2.20071479451815e82 * cos(theta) ** 23 + 1.69853826422542e81 * cos(theta) ** 21 - 1.05499271069902e80 * cos(theta) ** 19 + 5.18401590602104e78 * cos(theta) ** 17 - 1.97210115585696e77 * cos(theta) ** 15 + 5.64840756587508e75 * cos(theta) ** 13 - 1.17392962999802e74 * cos(theta) ** 11 + 1.68316292100863e72 * cos(theta) ** 9 - 1.54773601931828e70 * cos(theta) ** 7 + 8.14597904904357e67 * cos(theta) ** 5 - 2.00590471535178e65 * cos(theta) ** 3 + 1.45777958964519e62 * cos(theta) ) * sin(31 * phi) ) # @torch.jit.script def Yl96_m_minus_30(theta, phi): return ( 2.65492717982987e-59 * (1.0 - cos(theta) ** 2) ** 15 * ( 8.30041882068727e84 * cos(theta) ** 66 - 9.32167453946293e85 * cos(theta) ** 64 + 4.97155975438023e86 * cos(theta) ** 62 - 1.67579670152104e87 * cos(theta) ** 60 + 4.00832454282734e87 * cos(theta) ** 58 - 7.24126827245202e87 * cos(theta) ** 56 + 1.02684651377312e88 * cos(theta) ** 54 - 1.17271936249748e88 * cos(theta) ** 52 + 1.09818211488111e88 * cos(theta) ** 50 - 8.54141644907531e87 * cos(theta) ** 48 + 5.56920101419477e87 * cos(theta) ** 46 - 3.06439290254736e87 * cos(theta) ** 44 + 1.4294456044427e87 * cos(theta) ** 42 - 5.66905879974744e86 * cos(theta) ** 40 + 1.91422764666797e86 * cos(theta) ** 38 - 5.50389380616597e85 * cos(theta) ** 36 + 1.34606098520363e85 * cos(theta) ** 34 - 2.79371147872452e84 * cos(theta) ** 32 + 4.90332941771891e83 * cos(theta) ** 30 - 7.24260881734372e82 * cos(theta) ** 28 + 8.94675206848342e81 * cos(theta) ** 26 - 9.16964497715898e80 * cos(theta) ** 24 + 7.72062847375191e79 * cos(theta) ** 22 - 5.2749635534951e78 * cos(theta) ** 20 + 2.88000883667836e77 * cos(theta) ** 18 - 1.2325632224106e76 * cos(theta) ** 16 + 4.03457683276791e74 * cos(theta) ** 14 - 9.78274691665015e72 * cos(theta) ** 12 + 1.68316292100863e71 * cos(theta) ** 10 - 1.93467002414785e69 * cos(theta) ** 8 + 1.3576631748406e67 * cos(theta) ** 6 - 5.01476178837945e64 * cos(theta) ** 4 + 7.28889794822594e61 * cos(theta) ** 2 - 1.7391787039432e58 ) * sin(30 * phi) ) # @torch.jit.script def Yl96_m_minus_29(theta, phi): return ( 2.43935657056412e-57 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 1.23886848069959e83 * cos(theta) ** 67 - 1.43410377530199e84 * cos(theta) ** 65 + 7.89136468949243e84 * cos(theta) ** 63 - 2.74720770741153e85 * cos(theta) ** 61 + 6.79377041157177e85 * cos(theta) ** 59 - 1.27039794253544e86 * cos(theta) ** 57 + 1.86699366140568e86 * cos(theta) ** 55 - 2.21267804244807e86 * cos(theta) ** 53 + 2.15329826447277e86 * cos(theta) ** 51 - 1.743146214097e86 * cos(theta) ** 49 + 1.18493638599889e86 * cos(theta) ** 47 - 6.8097620056608e85 * cos(theta) ** 45 + 3.32429210335513e85 * cos(theta) ** 43 - 1.38269726823108e85 * cos(theta) ** 41 + 4.90827601709735e84 * cos(theta) ** 39 - 1.48753886653134e84 * cos(theta) ** 37 + 3.84588852915324e83 * cos(theta) ** 35 - 8.46579235977128e82 * cos(theta) ** 33 + 1.5817191670061e82 * cos(theta) ** 31 - 2.49745131632542e81 * cos(theta) ** 29 + 3.31361187721608e80 * cos(theta) ** 27 - 3.66785799086359e79 * cos(theta) ** 25 + 3.35679498858779e78 * cos(theta) ** 23 - 2.51188740642624e77 * cos(theta) ** 21 + 1.51579412456756e76 * cos(theta) ** 19 - 7.25037189653293e74 * cos(theta) ** 17 + 2.68971788851194e73 * cos(theta) ** 15 - 7.52518993588473e71 * cos(theta) ** 13 + 1.53014811000784e70 * cos(theta) ** 11 - 2.14963336016428e68 * cos(theta) ** 9 + 1.93951882120085e66 * cos(theta) ** 7 - 1.00295235767589e64 * cos(theta) ** 5 + 2.42963264940865e61 * cos(theta) ** 3 - 1.7391787039432e58 * cos(theta) ) * sin(29 * phi) ) # @torch.jit.script def Yl96_m_minus_28(theta, phi): return ( 2.24897563495054e-55 * (1.0 - cos(theta) ** 2) ** 14 * ( 1.82186541279352e81 * cos(theta) ** 68 - 2.17288450803332e82 * cos(theta) ** 66 + 1.23302573273319e83 * cos(theta) ** 64 - 4.43098017324441e83 * cos(theta) ** 62 + 1.13229506859529e84 * cos(theta) ** 60 - 2.19034128023352e84 * cos(theta) ** 58 + 3.33391725251014e84 * cos(theta) ** 56 - 4.09755193045939e84 * cos(theta) ** 54 + 4.14095820090917e84 * cos(theta) ** 52 - 3.48629242819401e84 * cos(theta) ** 50 + 2.46861747083102e84 * cos(theta) ** 48 - 1.48038304470887e84 * cos(theta) ** 46 + 7.55520932580711e83 * cos(theta) ** 44 - 3.29213635293115e83 * cos(theta) ** 42 + 1.22706900427434e83 * cos(theta) ** 40 - 3.91457596455617e82 * cos(theta) ** 38 + 1.06830236920923e82 * cos(theta) ** 36 - 2.4899389293445e81 * cos(theta) ** 34 + 4.94287239689406e80 * cos(theta) ** 32 - 8.32483772108474e79 * cos(theta) ** 30 + 1.18343281329146e79 * cos(theta) ** 28 - 1.41071461187061e78 * cos(theta) ** 26 + 1.39866457857825e77 * cos(theta) ** 24 - 1.14176700292102e76 * cos(theta) ** 22 + 7.57897062283778e74 * cos(theta) ** 20 - 4.02798438696274e73 * cos(theta) ** 18 + 1.68107368031996e72 * cos(theta) ** 16 - 5.37513566848909e70 * cos(theta) ** 14 + 1.27512342500654e69 * cos(theta) ** 12 - 2.14963336016428e67 * cos(theta) ** 10 + 2.42439852650106e65 * cos(theta) ** 8 - 1.67158726279315e63 * cos(theta) ** 6 + 6.07408162352162e60 * cos(theta) ** 4 - 8.69589351971599e57 * cos(theta) ** 2 + 2.04609259287435e54 ) * sin(28 * phi) ) # @torch.jit.script def Yl96_m_minus_27(theta, phi): return ( 2.08027207054461e-53 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 2.64038465622249e79 * cos(theta) ** 69 - 3.24311120601988e80 * cos(theta) ** 67 + 1.89696266574337e81 * cos(theta) ** 65 - 7.03330186229272e81 * cos(theta) ** 63 + 1.85622142392671e82 * cos(theta) ** 61 - 3.71244284785343e82 * cos(theta) ** 59 + 5.8489776359827e82 * cos(theta) ** 57 - 7.45009441901707e82 * cos(theta) ** 55 + 7.8131286809607e82 * cos(theta) ** 53 - 6.83586750626276e82 * cos(theta) ** 51 + 5.03799483843064e82 * cos(theta) ** 49 - 3.14975115895504e82 * cos(theta) ** 47 + 1.67893540573491e82 * cos(theta) ** 45 - 7.65613105332825e81 * cos(theta) ** 43 + 2.99285122993741e81 * cos(theta) ** 41 - 1.00373742680927e81 * cos(theta) ** 39 + 2.8873037005655e80 * cos(theta) ** 37 - 7.11411122669856e79 * cos(theta) ** 35 + 1.49784012027093e79 * cos(theta) ** 33 - 2.68543152293056e78 * cos(theta) ** 31 + 4.0808028044533e77 * cos(theta) ** 29 - 5.22486893285412e76 * cos(theta) ** 27 + 5.59465831431298e75 * cos(theta) ** 25 - 4.96420436052616e74 * cos(theta) ** 23 + 3.60903362992275e73 * cos(theta) ** 21 - 2.11999178261197e72 * cos(theta) ** 19 + 9.88866870776449e70 * cos(theta) ** 17 - 3.58342377899273e69 * cos(theta) ** 15 + 9.80864173081951e67 * cos(theta) ** 13 - 1.95421214560389e66 * cos(theta) ** 11 + 2.69377614055674e64 * cos(theta) ** 9 - 2.38798180399021e62 * cos(theta) ** 7 + 1.21481632470432e60 * cos(theta) ** 5 - 2.89863117323866e57 * cos(theta) ** 3 + 2.04609259287435e54 * cos(theta) ) * sin(27 * phi) ) # @torch.jit.script def Yl96_m_minus_26(theta, phi): return ( 1.93028623657921e-51 * (1.0 - cos(theta) ** 2) ** 13 * ( 3.77197808031784e77 * cos(theta) ** 70 - 4.76928118532335e78 * cos(theta) ** 68 + 2.87418585718693e79 * cos(theta) ** 66 - 1.09895341598324e80 * cos(theta) ** 64 + 2.99390552246244e80 * cos(theta) ** 62 - 6.18740474642238e80 * cos(theta) ** 60 + 1.00844441999702e81 * cos(theta) ** 58 - 1.33037400339591e81 * cos(theta) ** 56 + 1.44687568165939e81 * cos(theta) ** 54 - 1.31458990505053e81 * cos(theta) ** 52 + 1.00759896768613e81 * cos(theta) ** 50 - 6.56198158115634e80 * cos(theta) ** 48 + 3.64985957768459e80 * cos(theta) ** 46 - 1.74002978484733e80 * cos(theta) ** 44 + 7.12583626175573e79 * cos(theta) ** 42 - 2.50934356702318e79 * cos(theta) ** 40 + 7.59816763306709e78 * cos(theta) ** 38 - 1.97614200741627e78 * cos(theta) ** 36 + 4.40541211844391e77 * cos(theta) ** 34 - 8.391973509158e76 * cos(theta) ** 32 + 1.36026760148443e76 * cos(theta) ** 30 - 1.86602461887647e75 * cos(theta) ** 28 + 2.15179165935115e74 * cos(theta) ** 26 - 2.06841848355257e73 * cos(theta) ** 24 + 1.64046983178307e72 * cos(theta) ** 22 - 1.05999589130598e71 * cos(theta) ** 20 + 5.49370483764694e69 * cos(theta) ** 18 - 2.23963986187046e68 * cos(theta) ** 16 + 7.00617266487108e66 * cos(theta) ** 14 - 1.62851012133657e65 * cos(theta) ** 12 + 2.69377614055674e63 * cos(theta) ** 10 - 2.98497725498777e61 * cos(theta) ** 8 + 2.02469387450721e59 * cos(theta) ** 6 - 7.24657793309666e56 * cos(theta) ** 4 + 1.02304629643718e54 * cos(theta) ** 2 - 2.37641416129425e50 ) * sin(26 * phi) ) # @torch.jit.script def Yl96_m_minus_25(theta, phi): return ( 1.79651481823311e-49 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 5.31264518354626e75 * cos(theta) ** 71 - 6.91200171785992e76 * cos(theta) ** 69 + 4.28982963759243e77 * cos(theta) ** 67 - 1.69069756305113e78 * cos(theta) ** 65 + 4.75223098803562e78 * cos(theta) ** 63 - 1.01432864695449e79 * cos(theta) ** 61 + 1.70922783050342e79 * cos(theta) ** 59 - 2.33398947964194e79 * cos(theta) ** 57 + 2.63068305756252e79 * cos(theta) ** 55 - 2.48035831141609e79 * cos(theta) ** 53 + 1.97568425036496e79 * cos(theta) ** 51 - 1.3391799145217e79 * cos(theta) ** 49 + 7.76565867592466e78 * cos(theta) ** 47 - 3.86673285521629e78 * cos(theta) ** 45 + 1.65717122366412e78 * cos(theta) ** 43 - 6.12035016347118e77 * cos(theta) ** 41 + 1.94824811104284e77 * cos(theta) ** 39 - 5.34092434436829e76 * cos(theta) ** 37 + 1.25868917669826e76 * cos(theta) ** 35 - 2.54302227550242e75 * cos(theta) ** 33 + 4.3879600047885e74 * cos(theta) ** 31 - 6.43456765129817e73 * cos(theta) ** 29 + 7.96959873833758e72 * cos(theta) ** 27 - 8.27367393421026e71 * cos(theta) ** 25 + 7.13247752949161e70 * cos(theta) ** 23 - 5.04759948240944e69 * cos(theta) ** 21 + 2.89142359876155e68 * cos(theta) ** 19 - 1.31743521286497e67 * cos(theta) ** 17 + 4.67078177658072e65 * cos(theta) ** 15 - 1.25270009333583e64 * cos(theta) ** 13 + 2.44888740050613e62 * cos(theta) ** 11 - 3.31664139443085e60 * cos(theta) ** 9 + 2.89241982072458e58 * cos(theta) ** 7 - 1.44931558661933e56 * cos(theta) ** 5 + 3.41015432145725e53 * cos(theta) ** 3 - 2.37641416129425e50 * cos(theta) ) * sin(25 * phi) ) # @torch.jit.script def Yl96_m_minus_24(theta, phi): return ( 1.67683270982667e-47 * (1.0 - cos(theta) ** 2) ** 12 * ( 7.37867386603647e73 * cos(theta) ** 72 - 9.87428816837132e74 * cos(theta) ** 70 + 6.30857299645945e75 * cos(theta) ** 68 - 2.5616629743199e76 * cos(theta) ** 66 + 7.42536091880565e76 * cos(theta) ** 64 - 1.63601394670079e77 * cos(theta) ** 62 + 2.84871305083903e77 * cos(theta) ** 60 - 4.0241197924861e77 * cos(theta) ** 58 + 4.69764831707594e77 * cos(theta) ** 56 - 4.59325613225203e77 * cos(theta) ** 54 + 3.79939278916338e77 * cos(theta) ** 52 - 2.6783598290434e77 * cos(theta) ** 50 + 1.61784555748431e77 * cos(theta) ** 48 - 8.40594098960063e76 * cos(theta) ** 46 + 3.76629823560028e76 * cos(theta) ** 44 - 1.4572262293979e76 * cos(theta) ** 42 + 4.87062027760711e75 * cos(theta) ** 40 - 1.40550640641271e75 * cos(theta) ** 38 + 3.49635882416183e74 * cos(theta) ** 36 - 7.47947728088948e73 * cos(theta) ** 34 + 1.37123750149641e73 * cos(theta) ** 32 - 2.14485588376606e72 * cos(theta) ** 30 + 2.84628526369199e71 * cos(theta) ** 28 - 3.18218228238856e70 * cos(theta) ** 26 + 2.97186563728817e69 * cos(theta) ** 24 - 2.2943634010952e68 * cos(theta) ** 22 + 1.44571179938077e67 * cos(theta) ** 20 - 7.31908451591652e65 * cos(theta) ** 18 + 2.91923861036295e64 * cos(theta) ** 16 - 8.94785780954161e62 * cos(theta) ** 14 + 2.04073950042177e61 * cos(theta) ** 12 - 3.31664139443085e59 * cos(theta) ** 10 + 3.61552477590572e57 * cos(theta) ** 8 - 2.41552597769889e55 * cos(theta) ** 6 + 8.52538580364313e52 * cos(theta) ** 4 - 1.18820708064713e50 * cos(theta) ** 2 + 2.72774811902462e46 ) * sin(24 * phi) ) # @torch.jit.script def Yl96_m_minus_23(theta, phi): return ( 1.56942942262094e-45 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.0107772419228e72 * cos(theta) ** 73 - 1.39074481244666e73 * cos(theta) ** 71 + 9.14285941515863e73 * cos(theta) ** 69 - 3.82337757361179e74 * cos(theta) ** 67 + 1.14236321827779e75 * cos(theta) ** 65 - 2.59684753444569e75 * cos(theta) ** 63 + 4.67002139481808e75 * cos(theta) ** 61 - 6.82054202116288e75 * cos(theta) ** 59 + 8.24148827557182e75 * cos(theta) ** 57 - 8.35137478591278e75 * cos(theta) ** 55 + 7.16866563993091e75 * cos(theta) ** 53 - 5.25168593930079e75 * cos(theta) ** 51 + 3.30172562751899e75 * cos(theta) ** 49 - 1.78849808289375e75 * cos(theta) ** 47 + 8.36955163466729e74 * cos(theta) ** 45 - 3.38889820790209e74 * cos(theta) ** 43 + 1.18795616527003e74 * cos(theta) ** 41 - 3.6038625805454e73 * cos(theta) ** 39 + 9.44961844368062e72 * cos(theta) ** 37 - 2.13699350882557e72 * cos(theta) ** 35 + 4.15526515604971e71 * cos(theta) ** 33 - 6.91888994763245e70 * cos(theta) ** 31 + 9.8147767713517e69 * cos(theta) ** 29 - 1.17858603051428e69 * cos(theta) ** 27 + 1.18874625491527e68 * cos(theta) ** 25 - 9.97549304824001e66 * cos(theta) ** 23 + 6.88434190181321e65 * cos(theta) ** 21 - 3.85214974521922e64 * cos(theta) ** 19 + 1.71719918256644e63 * cos(theta) ** 17 - 5.96523853969441e61 * cos(theta) ** 15 + 1.56979961570905e60 * cos(theta) ** 13 - 3.01512854039168e58 * cos(theta) ** 11 + 4.01724975100636e56 * cos(theta) ** 9 - 3.45075139671269e54 * cos(theta) ** 7 + 1.70507716072863e52 * cos(theta) ** 5 - 3.96069026882375e49 * cos(theta) ** 3 + 2.72774811902462e46 * cos(theta) ) * sin(23 * phi) ) # @torch.jit.script def Yl96_m_minus_22(theta, phi): return ( 1.47275711925126e-43 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.36591519178757e70 * cos(theta) ** 74 - 1.93159001728703e71 * cos(theta) ** 72 + 1.30612277359409e72 * cos(theta) ** 70 - 5.62261407884087e72 * cos(theta) ** 68 + 1.73085336102696e73 * cos(theta) ** 66 - 4.0575742725714e73 * cos(theta) ** 64 + 7.53229257228723e73 * cos(theta) ** 62 - 1.13675700352715e74 * cos(theta) ** 60 + 1.42094625440893e74 * cos(theta) ** 58 - 1.49131692605585e74 * cos(theta) ** 56 + 1.32753067406128e74 * cos(theta) ** 54 - 1.00993960371169e74 * cos(theta) ** 52 + 6.60345125503798e73 * cos(theta) ** 50 - 3.72603767269531e73 * cos(theta) ** 48 + 1.8194677466668e73 * cos(theta) ** 46 - 7.70204138159567e72 * cos(theta) ** 44 + 2.82846706016673e72 * cos(theta) ** 42 - 9.00965645136351e71 * cos(theta) ** 40 + 2.48674169570543e71 * cos(theta) ** 38 - 5.93609308007102e70 * cos(theta) ** 36 + 1.22213681060286e70 * cos(theta) ** 34 - 2.16215310863514e69 * cos(theta) ** 32 + 3.27159225711723e68 * cos(theta) ** 30 - 4.2092358232653e67 * cos(theta) ** 28 + 4.57210098044334e66 * cos(theta) ** 26 - 4.15645543676667e65 * cos(theta) ** 24 + 3.129246319006e64 * cos(theta) ** 22 - 1.92607487260961e63 * cos(theta) ** 20 + 9.53999545870245e61 * cos(theta) ** 18 - 3.728274087309e60 * cos(theta) ** 16 + 1.12128543979218e59 * cos(theta) ** 14 - 2.51260711699307e57 * cos(theta) ** 12 + 4.01724975100636e55 * cos(theta) ** 10 - 4.31343924589087e53 * cos(theta) ** 8 + 2.84179526788104e51 * cos(theta) ** 6 - 9.90172567205938e48 * cos(theta) ** 4 + 1.36387405951231e46 * cos(theta) ** 2 - 3.09760177041179e42 ) * sin(22 * phi) ) # @torch.jit.script def Yl96_m_minus_21(theta, phi): return ( 1.38548799204113e-41 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.82122025571676e68 * cos(theta) ** 75 - 2.64601372231101e69 * cos(theta) ** 73 + 1.83960954027337e70 * cos(theta) ** 71 - 8.14871605629111e70 * cos(theta) ** 69 + 2.58336322541337e71 * cos(theta) ** 67 - 6.24242195780215e71 * cos(theta) ** 65 + 1.19560199560115e72 * cos(theta) ** 63 - 1.86353607135598e72 * cos(theta) ** 61 + 2.40838348204904e72 * cos(theta) ** 59 - 2.61634548430851e72 * cos(theta) ** 57 + 2.41369213465687e72 * cos(theta) ** 55 - 1.90554642209753e72 * cos(theta) ** 53 + 1.29479436373294e72 * cos(theta) ** 51 - 7.60415851570472e71 * cos(theta) ** 49 + 3.87120797163149e71 * cos(theta) ** 47 - 1.7115647514657e71 * cos(theta) ** 45 + 6.57783037248077e70 * cos(theta) ** 43 - 2.19747718325939e70 * cos(theta) ** 41 + 6.37626075821904e69 * cos(theta) ** 39 - 1.60434948110028e69 * cos(theta) ** 37 + 3.4918194588653e68 * cos(theta) ** 35 - 6.55197911707618e67 * cos(theta) ** 33 + 1.05535234100556e67 * cos(theta) ** 31 - 1.45146062871217e66 * cos(theta) ** 29 + 1.69337073349753e65 * cos(theta) ** 27 - 1.66258217470667e64 * cos(theta) ** 25 + 1.3605418778287e63 * cos(theta) ** 23 - 9.17178510766481e61 * cos(theta) ** 21 + 5.02105024142234e60 * cos(theta) ** 19 - 2.19310240429941e59 * cos(theta) ** 17 + 7.47523626528121e57 * cos(theta) ** 15 - 1.93277470537928e56 * cos(theta) ** 13 + 3.6520452281876e54 * cos(theta) ** 11 - 4.79271027321207e52 * cos(theta) ** 9 + 4.05970752554435e50 * cos(theta) ** 7 - 1.98034513441188e48 * cos(theta) ** 5 + 4.54624686504104e45 * cos(theta) ** 3 - 3.09760177041179e42 * cos(theta) ) * sin(21 * phi) ) # @torch.jit.script def Yl96_m_minus_20(theta, phi): return ( 1.30647917975732e-39 * (1.0 - cos(theta) ** 2) ** 10 * ( 2.39634244173258e66 * cos(theta) ** 76 - 3.5756942193392e67 * cos(theta) ** 74 + 2.55501325037967e68 * cos(theta) ** 72 - 1.16410229375587e69 * cos(theta) ** 70 + 3.79906356678437e69 * cos(theta) ** 68 - 9.45821508757901e69 * cos(theta) ** 66 + 1.86812811812679e70 * cos(theta) ** 64 - 3.00570334089674e70 * cos(theta) ** 62 + 4.01397247008174e70 * cos(theta) ** 60 - 4.51094049018709e70 * cos(theta) ** 58 + 4.31016452617299e70 * cos(theta) ** 56 - 3.52878967055098e70 * cos(theta) ** 54 + 2.48998916102488e70 * cos(theta) ** 52 - 1.52083170314094e70 * cos(theta) ** 50 + 8.06501660756561e69 * cos(theta) ** 48 - 3.72079293796892e69 * cos(theta) ** 46 + 1.49496144829108e69 * cos(theta) ** 44 - 5.23208853156998e68 * cos(theta) ** 42 + 1.59406518955476e68 * cos(theta) ** 40 - 4.22197231868493e67 * cos(theta) ** 38 + 9.69949849684807e66 * cos(theta) ** 36 - 1.92705268149299e66 * cos(theta) ** 34 + 3.29797606564237e65 * cos(theta) ** 32 - 4.83820209570724e64 * cos(theta) ** 30 + 6.04775261963404e63 * cos(theta) ** 28 - 6.39454682579488e62 * cos(theta) ** 26 + 5.66892449095291e61 * cos(theta) ** 24 - 4.16899323075673e60 * cos(theta) ** 22 + 2.51052512071117e59 * cos(theta) ** 20 - 1.21839022461079e58 * cos(theta) ** 18 + 4.67202266580076e56 * cos(theta) ** 16 - 1.3805533609852e55 * cos(theta) ** 14 + 3.04337102348967e53 * cos(theta) ** 12 - 4.79271027321207e51 * cos(theta) ** 10 + 5.07463440693043e49 * cos(theta) ** 8 - 3.30057522401979e47 * cos(theta) ** 6 + 1.13656171626026e45 * cos(theta) ** 4 - 1.54880088520589e42 * cos(theta) ** 2 + 3.48358273775505e38 ) * sin(20 * phi) ) # @torch.jit.script def Yl96_m_minus_19(theta, phi): return ( 1.23474378923924e-37 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 3.11213304121115e64 * cos(theta) ** 77 - 4.76759229245226e65 * cos(theta) ** 75 + 3.50001815120503e66 * cos(theta) ** 73 - 1.63958069543081e67 * cos(theta) ** 71 + 5.50588922722372e67 * cos(theta) ** 69 - 1.41167389366851e68 * cos(theta) ** 67 + 2.87404325865661e68 * cos(theta) ** 65 - 4.77095768396308e68 * cos(theta) ** 63 + 6.58028273783891e68 * cos(theta) ** 61 - 7.64566184777473e68 * cos(theta) ** 59 + 7.56169215118068e68 * cos(theta) ** 57 - 6.4159812191836e68 * cos(theta) ** 55 + 4.69809275665072e68 * cos(theta) ** 53 - 2.98202294733518e68 * cos(theta) ** 51 + 1.64592175664604e68 * cos(theta) ** 49 - 7.91658071908281e67 * cos(theta) ** 47 + 3.32213655175797e67 * cos(theta) ** 45 - 1.21676477478372e67 * cos(theta) ** 43 + 3.88796387696283e66 * cos(theta) ** 41 - 1.08255700479101e66 * cos(theta) ** 39 + 2.62148608022921e65 * cos(theta) ** 37 - 5.5058648042657e64 * cos(theta) ** 35 + 9.99386686558295e63 * cos(theta) ** 33 - 1.56071035345395e63 * cos(theta) ** 31 + 2.08543193780484e62 * cos(theta) ** 29 - 2.36835067622033e61 * cos(theta) ** 27 + 2.26756979638116e60 * cos(theta) ** 25 - 1.81260575250293e59 * cos(theta) ** 23 + 1.19548815271961e58 * cos(theta) ** 21 - 6.41258012953045e56 * cos(theta) ** 19 + 2.74824862694162e55 * cos(theta) ** 17 - 9.20368907323469e53 * cos(theta) ** 15 + 2.34105463345359e52 * cos(theta) ** 13 - 4.3570093392837e50 * cos(theta) ** 11 + 5.63848267436715e48 * cos(theta) ** 9 - 4.71510746288542e46 * cos(theta) ** 7 + 2.27312343252052e44 * cos(theta) ** 5 - 5.16266961735298e41 * cos(theta) ** 3 + 3.48358273775505e38 * cos(theta) ) * sin(19 * phi) ) # @torch.jit.script def Yl96_m_minus_18(theta, phi): return ( 1.16942687923752e-35 * (1.0 - cos(theta) ** 2) ** 9 * ( 3.98991415539891e62 * cos(theta) ** 78 - 6.27314775322666e63 * cos(theta) ** 76 + 4.72975425838518e64 * cos(theta) ** 74 - 2.27719541032057e65 * cos(theta) ** 72 + 7.86555603889104e65 * cos(theta) ** 70 - 2.07599102010075e66 * cos(theta) ** 68 + 4.35461099796455e66 * cos(theta) ** 66 - 7.45462138119231e66 * cos(theta) ** 64 + 1.06133592545789e67 * cos(theta) ** 62 - 1.27427697462912e67 * cos(theta) ** 60 + 1.30374002606563e67 * cos(theta) ** 58 - 1.14571093199707e67 * cos(theta) ** 56 + 8.7001717715754e66 * cos(theta) ** 54 - 5.73465951410612e66 * cos(theta) ** 52 + 3.29184351329209e66 * cos(theta) ** 50 - 1.64928764980892e66 * cos(theta) ** 48 + 7.22203598208253e65 * cos(theta) ** 46 - 2.76537448814481e65 * cos(theta) ** 44 + 9.2570568499115e64 * cos(theta) ** 42 - 2.70639251197752e64 * cos(theta) ** 40 + 6.89864757955055e63 * cos(theta) ** 38 - 1.5294068900738e63 * cos(theta) ** 36 + 2.9393726075244e62 * cos(theta) ** 34 - 4.87721985454358e61 * cos(theta) ** 32 + 6.95143979268281e60 * cos(theta) ** 30 - 8.45839527221545e59 * cos(theta) ** 28 + 8.7214222937737e58 * cos(theta) ** 26 - 7.5525239687622e57 * cos(theta) ** 24 + 5.43403705781639e56 * cos(theta) ** 22 - 3.20629006476523e55 * cos(theta) ** 20 + 1.52680479274535e54 * cos(theta) ** 18 - 5.75230567077168e52 * cos(theta) ** 16 + 1.67218188103828e51 * cos(theta) ** 14 - 3.63084111606975e49 * cos(theta) ** 12 + 5.63848267436715e47 * cos(theta) ** 10 - 5.89388432860677e45 * cos(theta) ** 8 + 3.78853905420086e43 * cos(theta) ** 6 - 1.29066740433825e41 * cos(theta) ** 4 + 1.74179136887752e38 * cos(theta) ** 2 - 3.88359279571354e34 ) * sin(18 * phi) ) # @torch.jit.script def Yl96_m_minus_17(theta, phi): return ( 1.10978549225984e-33 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 5.05052424734039e60 * cos(theta) ** 79 - 8.1469451340606e61 * cos(theta) ** 77 + 6.30633901118024e62 * cos(theta) ** 75 - 3.11944576756242e63 * cos(theta) ** 73 + 1.10782479421001e64 * cos(theta) ** 71 - 3.00868263782717e64 * cos(theta) ** 69 + 6.4994193999471e64 * cos(theta) ** 67 - 1.14686482787574e65 * cos(theta) ** 65 + 1.68466019913951e65 * cos(theta) ** 63 - 2.08897864693299e65 * cos(theta) ** 61 + 2.20972885773836e65 * cos(theta) ** 59 - 2.01001917894223e65 * cos(theta) ** 57 + 1.58184941301371e65 * cos(theta) ** 55 - 1.08201122907663e65 * cos(theta) ** 53 + 6.45459512410213e64 * cos(theta) ** 51 - 3.36589316287534e64 * cos(theta) ** 49 + 1.53660340044309e64 * cos(theta) ** 47 - 6.1452766403218e63 * cos(theta) ** 45 + 2.15280391858407e63 * cos(theta) ** 43 - 6.60095734628664e62 * cos(theta) ** 41 + 1.76888399475655e62 * cos(theta) ** 39 - 4.13353213533461e61 * cos(theta) ** 37 + 8.3982074500697e60 * cos(theta) ** 35 - 1.47794541046775e60 * cos(theta) ** 33 + 2.24239993312349e59 * cos(theta) ** 31 - 2.91668802490188e58 * cos(theta) ** 29 + 3.23015640510137e57 * cos(theta) ** 27 - 3.02100958750488e56 * cos(theta) ** 25 + 2.36262480774626e55 * cos(theta) ** 23 - 1.52680479274535e54 * cos(theta) ** 21 + 8.03581469865971e52 * cos(theta) ** 19 - 3.38370921810099e51 * cos(theta) ** 17 + 1.11478792069219e50 * cos(theta) ** 15 - 2.79295470466904e48 * cos(theta) ** 13 + 5.12589334033377e46 * cos(theta) ** 11 - 6.54876036511864e44 * cos(theta) ** 9 + 5.41219864885838e42 * cos(theta) ** 7 - 2.58133480867649e40 * cos(theta) ** 5 + 5.80597122959175e37 * cos(theta) ** 3 - 3.88359279571354e34 * cos(theta) ) * sin(17 * phi) ) # @torch.jit.script def Yl96_m_minus_16(theta, phi): return ( 1.05517200034056e-31 * (1.0 - cos(theta) ** 2) ** 8 * ( 6.31315530917549e58 * cos(theta) ** 80 - 1.04448014539238e60 * cos(theta) ** 78 + 8.29781448839505e60 * cos(theta) ** 76 - 4.21546725346273e61 * cos(theta) ** 74 + 1.5386455475139e62 * cos(theta) ** 72 - 4.29811805403882e62 * cos(theta) ** 70 + 9.55796970580455e62 * cos(theta) ** 68 - 1.73767398162991e63 * cos(theta) ** 66 + 2.63228156115548e63 * cos(theta) ** 64 - 3.36932039827901e63 * cos(theta) ** 62 + 3.68288142956394e63 * cos(theta) ** 60 - 3.46555030852109e63 * cos(theta) ** 58 + 2.82473109466734e63 * cos(theta) ** 56 - 2.00372449829005e63 * cos(theta) ** 54 + 1.24126829309656e63 * cos(theta) ** 52 - 6.73178632575069e62 * cos(theta) ** 50 + 3.20125708425644e62 * cos(theta) ** 48 - 1.33592970441778e62 * cos(theta) ** 46 + 4.89273617860016e61 * cos(theta) ** 44 - 1.57165651102063e61 * cos(theta) ** 42 + 4.42220998689138e60 * cos(theta) ** 40 - 1.08777161456174e60 * cos(theta) ** 38 + 2.33283540279714e59 * cos(theta) ** 36 - 4.34689826608163e58 * cos(theta) ** 34 + 7.0074997910109e57 * cos(theta) ** 32 - 9.72229341633959e56 * cos(theta) ** 30 + 1.1536272875362e56 * cos(theta) ** 28 - 1.16192676442495e55 * cos(theta) ** 26 + 9.84427003227607e53 * cos(theta) ** 24 - 6.94002178520612e52 * cos(theta) ** 22 + 4.01790734932986e51 * cos(theta) ** 20 - 1.87983845450055e50 * cos(theta) ** 18 + 6.96742450432616e48 * cos(theta) ** 16 - 1.99496764619217e47 * cos(theta) ** 14 + 4.27157778361147e45 * cos(theta) ** 12 - 6.54876036511864e43 * cos(theta) ** 10 + 6.76524831107297e41 * cos(theta) ** 8 - 4.30222468112749e39 * cos(theta) ** 6 + 1.45149280739794e37 * cos(theta) ** 4 - 1.94179639785677e34 * cos(theta) ** 2 + 4.29600972977162e30 ) * sin(16 * phi) ) # @torch.jit.script def Yl96_m_minus_15(theta, phi): return ( 1.00502017318788e-29 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 7.79401890021665e56 * cos(theta) ** 81 - 1.32212676631947e58 * cos(theta) ** 79 + 1.07763824524611e59 * cos(theta) ** 77 - 5.62062300461697e59 * cos(theta) ** 75 + 2.10773362673136e60 * cos(theta) ** 73 - 6.05368740005467e60 * cos(theta) ** 71 + 1.38521300084124e61 * cos(theta) ** 69 - 2.59354325616404e61 * cos(theta) ** 67 + 4.0496639402392e61 * cos(theta) ** 65 - 5.34812761631589e61 * cos(theta) ** 63 + 6.03751054026875e61 * cos(theta) ** 61 - 5.87381408223913e61 * cos(theta) ** 59 + 4.95566858713568e61 * cos(theta) ** 57 - 3.64313545143646e61 * cos(theta) ** 55 + 2.34201564735201e61 * cos(theta) ** 53 - 1.31995810308837e61 * cos(theta) ** 51 + 6.53317772297233e60 * cos(theta) ** 49 - 2.84240362642081e60 * cos(theta) ** 47 + 1.08727470635559e60 * cos(theta) ** 45 - 3.65501514190844e59 * cos(theta) ** 43 + 1.07858780168082e59 * cos(theta) ** 41 - 2.78915798605574e58 * cos(theta) ** 39 + 6.30496054810038e57 * cos(theta) ** 37 - 1.24197093316618e57 * cos(theta) ** 35 + 2.12348478515482e56 * cos(theta) ** 33 - 3.13622368269019e55 * cos(theta) ** 31 + 3.97802512943519e54 * cos(theta) ** 29 - 4.30343246083316e53 * cos(theta) ** 27 + 3.93770801291043e52 * cos(theta) ** 25 - 3.01740077617657e51 * cos(theta) ** 23 + 1.9132892139666e50 * cos(theta) ** 21 - 9.89388660263447e48 * cos(theta) ** 19 + 4.0984850025448e47 * cos(theta) ** 17 - 1.32997843079478e46 * cos(theta) ** 15 + 3.28582906431652e44 * cos(theta) ** 13 - 5.95341851374421e42 * cos(theta) ** 11 + 7.51694256785886e40 * cos(theta) ** 9 - 6.14603525875355e38 * cos(theta) ** 7 + 2.90298561479587e36 * cos(theta) ** 5 - 6.47265465952257e33 * cos(theta) ** 3 + 4.29600972977162e30 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl96_m_minus_14(theta, phi): return ( 9.58833490371498e-28 * (1.0 - cos(theta) ** 2) ** 7 * ( 9.50490109782519e54 * cos(theta) ** 82 - 1.65265845789934e56 * cos(theta) ** 80 + 1.38158749390527e57 * cos(theta) ** 78 - 7.39555658502233e57 * cos(theta) ** 76 + 2.84828868477211e58 * cos(theta) ** 74 - 8.4078991667426e58 * cos(theta) ** 72 + 1.97887571548748e59 * cos(theta) ** 70 - 3.81403420024124e59 * cos(theta) ** 68 + 6.13585445490787e59 * cos(theta) ** 66 - 8.35644940049358e59 * cos(theta) ** 64 + 9.73792022623992e59 * cos(theta) ** 62 - 9.78969013706522e59 * cos(theta) ** 60 + 8.54425618471669e59 * cos(theta) ** 58 - 6.50559902042224e59 * cos(theta) ** 56 + 4.33706601361483e59 * cos(theta) ** 54 - 2.53838096747764e59 * cos(theta) ** 52 + 1.30663554459447e59 * cos(theta) ** 50 - 5.92167422171003e58 * cos(theta) ** 48 + 2.36364066599042e58 * cos(theta) ** 46 - 8.30685259524645e57 * cos(theta) ** 44 + 2.56806619447815e57 * cos(theta) ** 42 - 6.97289496513935e56 * cos(theta) ** 40 + 1.65920014423694e56 * cos(theta) ** 38 - 3.44991925879494e55 * cos(theta) ** 36 + 6.24554348574946e54 * cos(theta) ** 34 - 9.80069900840685e53 * cos(theta) ** 32 + 1.3260083764784e53 * cos(theta) ** 30 - 1.53694016458327e52 * cos(theta) ** 28 + 1.51450308188863e51 * cos(theta) ** 26 - 1.25725032340691e50 * cos(theta) ** 24 + 8.69676915439363e48 * cos(theta) ** 22 - 4.94694330131723e47 * cos(theta) ** 20 + 2.27693611252489e46 * cos(theta) ** 18 - 8.31236519246738e44 * cos(theta) ** 16 + 2.34702076022608e43 * cos(theta) ** 14 - 4.96118209478685e41 * cos(theta) ** 12 + 7.51694256785886e39 * cos(theta) ** 10 - 7.68254407344194e37 * cos(theta) ** 8 + 4.83830935799312e35 * cos(theta) ** 6 - 1.61816366488064e33 * cos(theta) ** 4 + 2.14800486488581e30 * cos(theta) ** 2 - 4.71985248271986e26 ) * sin(14 * phi) ) # @torch.jit.script def Yl96_m_minus_13(theta, phi): return ( 9.16175309447676e-26 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.14516880696689e53 * cos(theta) ** 83 - 2.04031908382635e54 * cos(theta) ** 81 + 1.74884492899401e55 * cos(theta) ** 79 - 9.60461894158744e55 * cos(theta) ** 77 + 3.79771824636282e56 * cos(theta) ** 75 - 1.15176700914282e57 * cos(theta) ** 73 + 2.7871488950528e57 * cos(theta) ** 71 - 5.52758579745108e57 * cos(theta) ** 69 + 9.1579917237431e57 * cos(theta) ** 67 - 1.28560760007594e58 * cos(theta) ** 65 + 1.54570162321269e58 * cos(theta) ** 63 - 1.60486723558446e58 * cos(theta) ** 61 + 1.44817901435876e58 * cos(theta) ** 59 - 1.14133316147759e58 * cos(theta) ** 57 + 7.88557457020878e57 * cos(theta) ** 55 - 4.78939805184459e57 * cos(theta) ** 53 + 2.56203047959699e57 * cos(theta) ** 51 - 1.20850494320613e57 * cos(theta) ** 49 + 5.02902269359663e56 * cos(theta) ** 47 - 1.8459672433881e56 * cos(theta) ** 45 + 5.97224696390268e55 * cos(theta) ** 43 - 1.70070608905838e55 * cos(theta) ** 41 + 4.25435934419729e54 * cos(theta) ** 39 - 9.32410610485119e53 * cos(theta) ** 37 + 1.78444099592842e53 * cos(theta) ** 35 - 2.96990879042632e52 * cos(theta) ** 33 + 4.27744637573676e51 * cos(theta) ** 31 - 5.2997936709768e50 * cos(theta) ** 29 + 5.60927067366158e49 * cos(theta) ** 27 - 5.02900129362762e48 * cos(theta) ** 25 + 3.78120398017114e47 * cos(theta) ** 23 - 2.35568728634154e46 * cos(theta) ** 21 + 1.19838742764468e45 * cos(theta) ** 19 - 4.88962658380434e43 * cos(theta) ** 17 + 1.56468050681739e42 * cos(theta) ** 15 - 3.8162939190668e40 * cos(theta) ** 13 + 6.83358415259896e38 * cos(theta) ** 11 - 8.53616008160215e36 * cos(theta) ** 9 + 6.91187051141875e34 * cos(theta) ** 7 - 3.23632732976129e32 * cos(theta) ** 5 + 7.16001621628603e29 * cos(theta) ** 3 - 4.71985248271986e26 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl96_m_minus_12(theta, phi): return ( 8.76660574088169e-24 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.36329619877011e51 * cos(theta) ** 84 - 2.48819400466628e52 * cos(theta) ** 82 + 2.18605616124252e53 * cos(theta) ** 80 - 1.23136140276762e54 * cos(theta) ** 78 + 4.99699769258266e54 * cos(theta) ** 76 - 1.55644190424706e55 * cos(theta) ** 74 + 3.87104013201777e55 * cos(theta) ** 72 - 7.89655113921582e55 * cos(theta) ** 70 + 1.34676348878575e56 * cos(theta) ** 68 - 1.94789030314536e56 * cos(theta) ** 66 + 2.41515878626982e56 * cos(theta) ** 64 - 2.58849554126526e56 * cos(theta) ** 62 + 2.41363169059793e56 * cos(theta) ** 60 - 1.96781579565101e56 * cos(theta) ** 58 + 1.40813831610871e56 * cos(theta) ** 56 - 8.86925565156406e55 * cos(theta) ** 54 + 4.92698169153268e55 * cos(theta) ** 52 - 2.41700988641226e55 * cos(theta) ** 50 + 1.04771306116596e55 * cos(theta) ** 48 - 4.012972268235e54 * cos(theta) ** 46 + 1.35732885543243e54 * cos(theta) ** 44 - 4.04930021204376e53 * cos(theta) ** 42 + 1.06358983604932e53 * cos(theta) ** 40 - 2.45371213285558e52 * cos(theta) ** 38 + 4.95678054424561e51 * cos(theta) ** 36 - 8.73502585419505e50 * cos(theta) ** 34 + 1.33670199241774e50 * cos(theta) ** 32 - 1.7665978903256e49 * cos(theta) ** 30 + 2.00331095487913e48 * cos(theta) ** 28 - 1.93423126677985e47 * cos(theta) ** 26 + 1.57550165840464e46 * cos(theta) ** 24 - 1.07076694833706e45 * cos(theta) ** 22 + 5.99193713822339e43 * cos(theta) ** 20 - 2.71645921322464e42 * cos(theta) ** 18 + 9.77925316760869e40 * cos(theta) ** 16 - 2.72592422790486e39 * cos(theta) ** 14 + 5.69465346049913e37 * cos(theta) ** 12 - 8.53616008160216e35 * cos(theta) ** 10 + 8.63983813927344e33 * cos(theta) ** 8 - 5.39387888293548e31 * cos(theta) ** 6 + 1.79000405407151e29 * cos(theta) ** 4 - 2.35992624135993e26 * cos(theta) ** 2 + 5.15492844333755e22 ) * sin(12 * phi) ) # @torch.jit.script def Yl96_m_minus_11(theta, phi): return ( 8.39948804191916e-22 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.60387788090601e49 * cos(theta) ** 85 - 2.99782410200757e50 * cos(theta) ** 83 + 2.69883476696607e51 * cos(theta) ** 81 - 1.55868531995901e52 * cos(theta) ** 79 + 6.48960739296449e52 * cos(theta) ** 77 - 2.07525587232941e53 * cos(theta) ** 75 + 5.30279470139421e53 * cos(theta) ** 73 - 1.112190301298e54 * cos(theta) ** 71 + 1.95183114316775e54 * cos(theta) ** 69 - 2.90729895991844e54 * cos(theta) ** 67 + 3.71562890195357e54 * cos(theta) ** 65 - 4.10872308137343e54 * cos(theta) ** 63 + 3.9567732632753e54 * cos(theta) ** 61 - 3.33528100957798e54 * cos(theta) ** 59 + 2.47041809843633e54 * cos(theta) ** 57 - 1.61259193664801e54 * cos(theta) ** 55 + 9.29619187081637e53 * cos(theta) ** 53 - 4.73923507139658e53 * cos(theta) ** 51 + 2.13818992074687e53 * cos(theta) ** 49 - 8.53823886858511e52 * cos(theta) ** 47 + 3.01628634540539e52 * cos(theta) ** 45 - 9.41697723731106e51 * cos(theta) ** 43 + 2.59412155133981e51 * cos(theta) ** 41 - 6.29156957142456e50 * cos(theta) ** 39 + 1.33967041736368e50 * cos(theta) ** 37 - 2.49572167262716e49 * cos(theta) ** 35 + 4.05061209823557e48 * cos(theta) ** 33 - 5.69870287201806e47 * cos(theta) ** 31 + 6.90796880992805e46 * cos(theta) ** 29 - 7.16381950659205e45 * cos(theta) ** 27 + 6.30200663361857e44 * cos(theta) ** 25 - 4.65550847103071e43 * cos(theta) ** 23 + 2.853303399154e42 * cos(theta) ** 21 - 1.42971537538139e41 * cos(theta) ** 19 + 5.75250186329923e39 * cos(theta) ** 17 - 1.81728281860324e38 * cos(theta) ** 15 + 4.38050266192241e36 * cos(theta) ** 13 - 7.76014552872923e34 * cos(theta) ** 11 + 9.59982015474826e32 * cos(theta) ** 9 - 7.7055412613364e30 * cos(theta) ** 7 + 3.58000810814302e28 * cos(theta) ** 5 - 7.86642080453311e25 * cos(theta) ** 3 + 5.15492844333755e22 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl96_m_minus_10(theta, phi): return ( 8.05738156580094e-20 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.86497428012327e47 * cos(theta) ** 86 - 3.56883821667567e48 * cos(theta) ** 84 + 3.29126191093423e49 * cos(theta) ** 82 - 1.94835664994877e50 * cos(theta) ** 80 + 8.3200094781596e50 * cos(theta) ** 78 - 2.73059983201238e51 * cos(theta) ** 76 + 7.16593878566785e51 * cos(theta) ** 74 - 1.54470875180278e52 * cos(theta) ** 72 + 2.78833020452536e52 * cos(theta) ** 70 - 4.27543964693889e52 * cos(theta) ** 68 + 5.62974076053571e52 * cos(theta) ** 66 - 6.41987981464599e52 * cos(theta) ** 64 + 6.38189236012146e52 * cos(theta) ** 62 - 5.55880168262997e52 * cos(theta) ** 60 + 4.25934154902816e52 * cos(theta) ** 58 - 2.87962845830002e52 * cos(theta) ** 56 + 1.72151701311414e52 * cos(theta) ** 54 - 9.11391359883958e51 * cos(theta) ** 52 + 4.27637984149373e51 * cos(theta) ** 50 - 1.77879976428856e51 * cos(theta) ** 48 + 6.55714422914216e50 * cos(theta) ** 46 - 2.14022209938888e50 * cos(theta) ** 44 + 6.1764798841424e49 * cos(theta) ** 42 - 1.57289239285614e49 * cos(theta) ** 40 + 3.52544846674652e48 * cos(theta) ** 38 - 6.93256020174211e47 * cos(theta) ** 36 + 1.19135649948105e47 * cos(theta) ** 34 - 1.78084464750565e46 * cos(theta) ** 32 + 2.30265626997602e45 * cos(theta) ** 30 - 2.55850696664002e44 * cos(theta) ** 28 + 2.42384870523791e43 * cos(theta) ** 26 - 1.9397951962628e42 * cos(theta) ** 24 + 1.29695609052454e41 * cos(theta) ** 22 - 7.14857687690693e39 * cos(theta) ** 20 + 3.19583436849957e38 * cos(theta) ** 18 - 1.13580176162703e37 * cos(theta) ** 16 + 3.12893047280172e35 * cos(theta) ** 14 - 6.46678794060769e33 * cos(theta) ** 12 + 9.59982015474826e31 * cos(theta) ** 10 - 9.6319265766705e29 * cos(theta) ** 8 + 5.96668018023836e27 * cos(theta) ** 6 - 1.96660520113328e25 * cos(theta) ** 4 + 2.57746422166878e22 * cos(theta) ** 2 - 5.6019652720469e18 ) * sin(10 * phi) ) # @torch.jit.script def Yl96_m_minus_9(theta, phi): return ( 7.73760382522195e-18 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 2.14364859784283e45 * cos(theta) ** 87 - 4.19863319608903e46 * cos(theta) ** 85 + 3.9653757963063e47 * cos(theta) ** 83 - 2.40537858018366e48 * cos(theta) ** 81 + 1.05316575672906e49 * cos(theta) ** 79 - 3.54623354806803e49 * cos(theta) ** 77 + 9.55458504755713e49 * cos(theta) ** 75 - 2.11603938603121e50 * cos(theta) ** 73 + 3.92722564017656e50 * cos(theta) ** 71 - 6.19628934338969e50 * cos(theta) ** 69 + 8.4025981500533e50 * cos(theta) ** 67 - 9.87673817637844e50 * cos(theta) ** 65 + 1.01299878732087e51 * cos(theta) ** 63 - 9.1127896436557e50 * cos(theta) ** 61 + 7.21922296445451e50 * cos(theta) ** 59 - 5.05197975140355e50 * cos(theta) ** 57 + 3.13003093293481e50 * cos(theta) ** 55 - 1.71960633940369e50 * cos(theta) ** 53 + 8.38505851273281e49 * cos(theta) ** 51 - 3.63020360058891e49 * cos(theta) ** 49 + 1.39513707003025e49 * cos(theta) ** 47 - 4.75604910975306e48 * cos(theta) ** 45 + 1.43639067073079e48 * cos(theta) ** 43 - 3.83632290940522e47 * cos(theta) ** 41 + 9.0396114531962e46 * cos(theta) ** 39 - 1.87366491938976e46 * cos(theta) ** 37 + 3.403875712803e45 * cos(theta) ** 35 - 5.39649893183529e44 * cos(theta) ** 33 + 7.42792345153554e43 * cos(theta) ** 31 - 8.82243781600006e42 * cos(theta) ** 29 + 8.97721742680708e41 * cos(theta) ** 27 - 7.75918078505118e40 * cos(theta) ** 25 + 5.63893952401976e39 * cos(theta) ** 23 - 3.40408422709854e38 * cos(theta) ** 21 + 1.68201808868398e37 * cos(theta) ** 19 - 6.68118683310015e35 * cos(theta) ** 17 + 2.08595364853448e34 * cos(theta) ** 15 - 4.97445226200592e32 * cos(theta) ** 13 + 8.72710923158933e30 * cos(theta) ** 11 - 1.0702140640745e29 * cos(theta) ** 9 + 8.52382882891194e26 * cos(theta) ** 7 - 3.93321040226655e24 * cos(theta) ** 5 + 8.59154740556259e21 * cos(theta) ** 3 - 5.6019652720469e18 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl96_m_minus_8(theta, phi): return ( 7.43776538830222e-16 * (1.0 - cos(theta) ** 2) ** 4 * ( 2.43596431573049e43 * cos(theta) ** 88 - 4.88213162335933e44 * cos(theta) ** 86 + 4.72068547179322e45 * cos(theta) ** 84 - 2.9333885124191e46 * cos(theta) ** 82 + 1.31645719591133e47 * cos(theta) ** 80 - 4.54645326675388e47 * cos(theta) ** 78 + 1.25718224309962e48 * cos(theta) ** 76 - 2.85951268382596e48 * cos(theta) ** 74 + 5.45448005580078e48 * cos(theta) ** 72 - 8.85184191912813e48 * cos(theta) ** 70 + 1.23567619853725e49 * cos(theta) ** 68 - 1.49647548126946e49 * cos(theta) ** 66 + 1.58281060518885e49 * cos(theta) ** 64 - 1.46980478123479e49 * cos(theta) ** 62 + 1.20320382740909e49 * cos(theta) ** 60 - 8.71030991621301e48 * cos(theta) ** 58 + 5.5893409516693e48 * cos(theta) ** 56 - 3.18445618408092e48 * cos(theta) ** 54 + 1.61251125244862e48 * cos(theta) ** 52 - 7.26040720117781e47 * cos(theta) ** 50 + 2.90653556256301e47 * cos(theta) ** 48 - 1.03392371951154e47 * cos(theta) ** 46 + 3.26452425166089e46 * cos(theta) ** 44 - 9.13410216525052e45 * cos(theta) ** 42 + 2.25990286329905e45 * cos(theta) ** 40 - 4.93069715628884e44 * cos(theta) ** 38 + 9.45521031334166e43 * cos(theta) ** 36 - 1.58720556818685e43 * cos(theta) ** 34 + 2.32122607860486e42 * cos(theta) ** 32 - 2.94081260533335e41 * cos(theta) ** 30 + 3.20614908100253e40 * cos(theta) ** 28 - 2.98430030194276e39 * cos(theta) ** 26 + 2.34955813500823e38 * cos(theta) ** 24 - 1.54731101231752e37 * cos(theta) ** 22 + 8.41009044341992e35 * cos(theta) ** 20 - 3.71177046283342e34 * cos(theta) ** 18 + 1.30372103033405e33 * cos(theta) ** 16 - 3.55318018714708e31 * cos(theta) ** 14 + 7.27259102632444e29 * cos(theta) ** 12 - 1.0702140640745e28 * cos(theta) ** 10 + 1.06547860361399e26 * cos(theta) ** 8 - 6.55535067044426e23 * cos(theta) ** 6 + 2.14788685139065e21 * cos(theta) ** 4 - 2.80098263602345e18 * cos(theta) ** 2 + 606273297840573.0 ) * sin(8 * phi) ) # @torch.jit.script def Yl96_m_minus_7(theta, phi): return ( 7.15573334019319e-14 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 2.73703855700055e41 * cos(theta) ** 89 - 5.61164554409119e42 * cos(theta) ** 87 + 5.55374761387437e43 * cos(theta) ** 85 - 3.53420302701097e44 * cos(theta) ** 83 + 1.62525579742139e45 * cos(theta) ** 81 - 5.75500413513149e45 * cos(theta) ** 79 + 1.63270421181769e46 * cos(theta) ** 77 - 3.81268357843461e46 * cos(theta) ** 75 + 7.47189048739833e46 * cos(theta) ** 73 - 1.24673829846875e47 * cos(theta) ** 71 + 1.79083507034384e47 * cos(theta) ** 69 - 2.23354549443203e47 * cos(theta) ** 67 + 2.43509323875208e47 * cos(theta) ** 65 - 2.33302346227744e47 * cos(theta) ** 63 + 1.97246529083457e47 * cos(theta) ** 61 - 1.47632371461237e47 * cos(theta) ** 59 + 9.80586131871806e46 * cos(theta) ** 57 - 5.78992033469257e46 * cos(theta) ** 55 + 3.0424740612238e46 * cos(theta) ** 53 - 1.4236092551329e46 * cos(theta) ** 51 + 5.93170522972043e45 * cos(theta) ** 49 - 2.19983770108837e45 * cos(theta) ** 47 + 7.2544983370242e44 * cos(theta) ** 45 - 2.12420980587221e44 * cos(theta) ** 43 + 5.51195820316842e43 * cos(theta) ** 41 - 1.26428132212534e43 * cos(theta) ** 39 + 2.5554622468491e42 * cos(theta) ** 37 - 4.53487305196243e41 * cos(theta) ** 35 + 7.03401842001471e40 * cos(theta) ** 33 - 9.48649227526889e39 * cos(theta) ** 31 + 1.10556864862156e39 * cos(theta) ** 29 - 1.10529640812695e38 * cos(theta) ** 27 + 9.39823254003293e36 * cos(theta) ** 25 - 6.72743918398921e35 * cos(theta) ** 23 + 4.00480497305711e34 * cos(theta) ** 21 - 1.95356340149127e33 * cos(theta) ** 19 + 7.66894723725912e31 * cos(theta) ** 17 - 2.36878679143139e30 * cos(theta) ** 15 + 5.59430078948034e28 * cos(theta) ** 13 - 9.72921876431363e26 * cos(theta) ** 11 + 1.18386511512666e25 * cos(theta) ** 9 - 9.36478667206322e22 * cos(theta) ** 7 + 4.29577370278129e20 * cos(theta) ** 5 - 9.33660878674483e17 * cos(theta) ** 3 + 606273297840573.0 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl96_m_minus_6(theta, phi): return ( 6.88960011194611e-12 * (1.0 - cos(theta) ** 2) ** 3 * ( 3.04115395222284e39 * cos(theta) ** 90 - 6.37686993646726e40 * cos(theta) ** 88 + 6.45784606264462e41 * cos(theta) ** 86 - 4.20738455596543e42 * cos(theta) ** 84 + 1.98201926514804e43 * cos(theta) ** 82 - 7.19375516891437e43 * cos(theta) ** 80 + 2.0932105279714e44 * cos(theta) ** 78 - 5.01668891899291e44 * cos(theta) ** 76 + 1.0097149307295e45 * cos(theta) ** 74 - 1.73158097009549e45 * cos(theta) ** 72 + 2.55833581477692e45 * cos(theta) ** 70 - 3.28462572710593e45 * cos(theta) ** 68 + 3.68953521023043e45 * cos(theta) ** 66 - 3.64534915980851e45 * cos(theta) ** 64 + 3.18139563037833e45 * cos(theta) ** 62 - 2.46053952435396e45 * cos(theta) ** 60 + 1.69066574460656e45 * cos(theta) ** 58 - 1.03391434548082e45 * cos(theta) ** 56 + 5.63421122448853e44 * cos(theta) ** 54 - 2.73771010602482e44 * cos(theta) ** 52 + 1.18634104594409e44 * cos(theta) ** 50 - 4.58299521060078e43 * cos(theta) ** 48 + 1.57706485587483e43 * cos(theta) ** 46 - 4.82774955880048e42 * cos(theta) ** 44 + 1.31237100075438e42 * cos(theta) ** 42 - 3.16070330531336e41 * cos(theta) ** 40 + 6.72490064960289e40 * cos(theta) ** 38 - 1.25968695887845e40 * cos(theta) ** 36 + 2.06882894706315e39 * cos(theta) ** 34 - 2.96452883602153e38 * cos(theta) ** 32 + 3.68522882873854e37 * cos(theta) ** 30 - 3.94748717188196e36 * cos(theta) ** 28 + 3.61470482308959e35 * cos(theta) ** 26 - 2.8030996599955e34 * cos(theta) ** 24 + 1.82036589684414e33 * cos(theta) ** 22 - 9.76781700745636e31 * cos(theta) ** 20 + 4.26052624292174e30 * cos(theta) ** 18 - 1.48049174464462e29 * cos(theta) ** 16 + 3.9959291353431e27 * cos(theta) ** 14 - 8.10768230359469e25 * cos(theta) ** 12 + 1.18386511512666e24 * cos(theta) ** 10 - 1.1705983340079e22 * cos(theta) ** 8 + 7.15962283796882e19 * cos(theta) ** 6 - 2.33415219668621e17 * cos(theta) ** 4 + 303136648920287.0 * cos(theta) ** 2 - 65401650252.489 ) * sin(6 * phi) ) # @torch.jit.script def Yl96_m_minus_5(theta, phi): return ( 6.63765685779902e-10 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 3.3419274200251e37 * cos(theta) ** 91 - 7.16502240052501e38 * cos(theta) ** 89 + 7.42281156625819e39 * cos(theta) ** 87 - 4.94986418348875e40 * cos(theta) ** 85 + 2.38797501825065e41 * cos(theta) ** 83 - 8.88117922088193e41 * cos(theta) ** 81 + 2.64963357971063e42 * cos(theta) ** 79 - 6.5151804142765e42 * cos(theta) ** 77 + 1.34628657430601e43 * cos(theta) ** 75 - 2.3720287261582e43 * cos(theta) ** 73 + 3.60328987996749e43 * cos(theta) ** 71 - 4.76032714073323e43 * cos(theta) ** 69 + 5.50676897049317e43 * cos(theta) ** 67 - 5.60822947662847e43 * cos(theta) ** 65 + 5.04983433393386e43 * cos(theta) ** 63 - 4.03367135139993e43 * cos(theta) ** 61 + 2.86553516035011e43 * cos(theta) ** 59 - 1.81388481663301e43 * cos(theta) ** 57 + 1.0244020408161e43 * cos(theta) ** 55 - 5.16549076608456e42 * cos(theta) ** 53 + 2.32615891361586e42 * cos(theta) ** 51 - 9.35305145020567e41 * cos(theta) ** 49 + 3.3554571401592e41 * cos(theta) ** 47 - 1.072833235289e41 * cos(theta) ** 45 + 3.05202558314973e40 * cos(theta) ** 43 - 7.7090324519838e39 * cos(theta) ** 41 + 1.72433349989818e39 * cos(theta) ** 39 - 3.40455934832014e38 * cos(theta) ** 37 + 5.91093984875186e37 * cos(theta) ** 35 - 8.98342071521675e36 * cos(theta) ** 33 + 1.18878349314146e36 * cos(theta) ** 31 - 1.36120247306275e35 * cos(theta) ** 29 + 1.33877956410725e34 * cos(theta) ** 27 - 1.1212398639982e33 * cos(theta) ** 25 + 7.91463433410495e31 * cos(theta) ** 23 - 4.65134143212207e30 * cos(theta) ** 21 + 2.2423822331167e29 * cos(theta) ** 19 - 8.70877496849775e27 * cos(theta) ** 17 + 2.6639527568954e26 * cos(theta) ** 15 - 6.23667869507284e24 * cos(theta) ** 13 + 1.07624101375151e23 * cos(theta) ** 11 - 1.30066481556434e21 * cos(theta) ** 9 + 1.02280326256697e19 * cos(theta) ** 7 - 4.66830439337241e16 * cos(theta) ** 5 + 101045549640096.0 * cos(theta) ** 3 - 65401650252.489 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl96_m_minus_4(theta, phi): return ( 6.39837069664651e-8 * (1.0 - cos(theta) ** 2) ** 2 * ( 3.6325298043751e35 * cos(theta) ** 92 - 7.96113600058334e36 * cos(theta) ** 90 + 8.43501314347521e37 * cos(theta) ** 88 - 5.7556560273125e38 * cos(theta) ** 86 + 2.84282740267935e39 * cos(theta) ** 84 - 1.08307063669292e40 * cos(theta) ** 82 + 3.31204197463829e40 * cos(theta) ** 80 - 8.35279540291859e40 * cos(theta) ** 78 + 1.77142970303422e41 * cos(theta) ** 76 - 3.20544422453811e41 * cos(theta) ** 74 + 5.00456927773262e41 * cos(theta) ** 72 - 6.80046734390461e41 * cos(theta) ** 70 + 8.09818966248996e41 * cos(theta) ** 68 - 8.49731738883102e41 * cos(theta) ** 66 + 7.89036614677166e41 * cos(theta) ** 64 - 6.50592153451602e41 * cos(theta) ** 62 + 4.77589193391684e41 * cos(theta) ** 60 - 3.1273876148845e41 * cos(theta) ** 58 + 1.82928935860017e41 * cos(theta) ** 56 - 9.56572364089733e40 * cos(theta) ** 54 + 4.47338252618434e40 * cos(theta) ** 52 - 1.87061029004113e40 * cos(theta) ** 50 + 6.990535708665e39 * cos(theta) ** 48 - 2.33224616367173e39 * cos(theta) ** 46 + 6.93642177988575e38 * cos(theta) ** 44 - 1.835483917139e38 * cos(theta) ** 42 + 4.31083374974544e37 * cos(theta) ** 40 - 8.95936670610563e36 * cos(theta) ** 38 + 1.64192773576441e36 * cos(theta) ** 36 - 2.64218256329904e35 * cos(theta) ** 34 + 3.71494841606708e34 * cos(theta) ** 32 - 4.53734157687582e33 * cos(theta) ** 30 + 4.78135558609734e32 * cos(theta) ** 28 - 4.3124610153777e31 * cos(theta) ** 26 + 3.29776430587706e30 * cos(theta) ** 24 - 2.11424610551003e29 * cos(theta) ** 22 + 1.12119111655835e28 * cos(theta) ** 20 - 4.83820831583209e26 * cos(theta) ** 18 + 1.66497047305962e25 * cos(theta) ** 16 - 4.4547704964806e23 * cos(theta) ** 14 + 8.9686751145959e21 * cos(theta) ** 12 - 1.30066481556434e20 * cos(theta) ** 10 + 1.27850407820872e18 * cos(theta) ** 8 - 7.78050732228736e15 * cos(theta) ** 6 + 25261387410023.9 * cos(theta) ** 4 - 32700825126.2445 * cos(theta) ** 2 + 7038490.12618263 ) * sin(4 * phi) ) # @torch.jit.script def Yl96_m_minus_3(theta, phi): return ( 6.17036524378302e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 3.90594602620979e33 * cos(theta) ** 93 - 8.74850109954214e34 * cos(theta) ** 91 + 9.47754285783732e35 * cos(theta) ** 89 - 6.61569658311781e36 * cos(theta) ** 87 + 3.34450282668159e37 * cos(theta) ** 85 - 1.30490438155773e38 * cos(theta) ** 83 + 4.08894070942999e38 * cos(theta) ** 81 - 1.05731587378716e39 * cos(theta) ** 79 + 2.3005580558886e39 * cos(theta) ** 77 - 4.27392563271748e39 * cos(theta) ** 75 + 6.85557435305839e39 * cos(theta) ** 73 - 9.57812301958396e39 * cos(theta) ** 71 + 1.17365067572318e40 * cos(theta) ** 69 - 1.2682563266912e40 * cos(theta) ** 67 + 1.21390248411872e40 * cos(theta) ** 65 - 1.03268595785969e40 * cos(theta) ** 63 + 7.82933103920794e39 * cos(theta) ** 61 - 5.30065697438051e39 * cos(theta) ** 59 + 3.20927957649153e39 * cos(theta) ** 57 - 1.73922248016315e39 * cos(theta) ** 55 + 8.44034438902706e38 * cos(theta) ** 53 - 3.66786331380614e38 * cos(theta) ** 51 + 1.42663994054388e38 * cos(theta) ** 49 - 4.96222588015262e37 * cos(theta) ** 47 + 1.54142706219683e37 * cos(theta) ** 45 - 4.26856724916046e36 * cos(theta) ** 43 + 1.05142286579157e36 * cos(theta) ** 41 - 2.29727351438606e35 * cos(theta) ** 39 + 4.43764252909299e34 * cos(theta) ** 37 - 7.54909303799727e33 * cos(theta) ** 35 + 1.12574194426275e33 * cos(theta) ** 33 - 1.46365857318575e32 * cos(theta) ** 31 + 1.64874330555081e31 * cos(theta) ** 29 - 1.59720778347322e30 * cos(theta) ** 27 + 1.31910572235083e29 * cos(theta) ** 25 - 9.19237437178276e27 * cos(theta) ** 23 + 5.33900531694453e26 * cos(theta) ** 21 - 2.54642542938531e25 * cos(theta) ** 19 + 9.79394395917426e23 * cos(theta) ** 17 - 2.96984699765373e22 * cos(theta) ** 15 + 6.89898085738146e20 * cos(theta) ** 13 - 1.18242255960394e19 * cos(theta) ** 11 + 1.42056008689858e17 * cos(theta) ** 9 - 1.11150104604105e15 * cos(theta) ** 7 + 5052277482004.78 * cos(theta) ** 5 - 10900275042.0815 * cos(theta) ** 3 + 7038490.12618263 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl96_m_minus_2(theta, phi): return ( 0.00059524039495915 * (1.0 - cos(theta) ** 2) * ( 4.15526173001042e31 * cos(theta) ** 94 - 9.50924032558928e32 * cos(theta) ** 92 + 1.05306031753748e34 * cos(theta) ** 90 - 7.51783702627024e34 * cos(theta) ** 88 + 3.88895677521115e35 * cos(theta) ** 86 - 1.55345759709254e36 * cos(theta) ** 84 + 4.98651306028047e36 * cos(theta) ** 82 - 1.32164484223395e37 * cos(theta) ** 80 + 2.94943340498538e37 * cos(theta) ** 78 - 5.62358635883879e37 * cos(theta) ** 76 + 9.26428966629512e37 * cos(theta) ** 74 - 1.33029486383111e38 * cos(theta) ** 72 + 1.67664382246169e38 * cos(theta) ** 70 - 1.86508283336941e38 * cos(theta) ** 68 + 1.83924618805866e38 * cos(theta) ** 66 - 1.61357180915576e38 * cos(theta) ** 64 + 1.26279532890451e38 * cos(theta) ** 62 - 8.83442829063419e37 * cos(theta) ** 60 + 5.53324064912333e37 * cos(theta) ** 58 - 3.10575442886277e37 * cos(theta) ** 56 + 1.56302673870871e37 * cos(theta) ** 54 - 7.05358329578105e36 * cos(theta) ** 52 + 2.85327988108776e36 * cos(theta) ** 50 - 1.03379705836513e36 * cos(theta) ** 48 + 3.35092839608007e35 * cos(theta) ** 46 - 9.70128920263742e34 * cos(theta) ** 44 + 2.50338777569422e34 * cos(theta) ** 42 - 5.74318378596515e33 * cos(theta) ** 40 + 1.16780066555079e33 * cos(theta) ** 38 - 2.09697028833257e32 * cos(theta) ** 36 + 3.31100571841985e31 * cos(theta) ** 34 - 4.57393304120546e30 * cos(theta) ** 32 + 5.49581101850269e29 * cos(theta) ** 30 - 5.70431351240436e28 * cos(theta) ** 28 + 5.07348354750317e27 * cos(theta) ** 26 - 3.83015598824282e26 * cos(theta) ** 24 + 2.42682059861115e25 * cos(theta) ** 22 - 1.27321271469265e24 * cos(theta) ** 20 + 5.44107997731904e22 * cos(theta) ** 18 - 1.85615437353358e21 * cos(theta) ** 16 + 4.92784346955819e19 * cos(theta) ** 14 - 9.85352133003285e17 * cos(theta) ** 12 + 1.42056008689858e16 * cos(theta) ** 10 - 138937630755131.0 * cos(theta) ** 8 + 842046247000.796 * cos(theta) ** 6 - 2725068760.52038 * cos(theta) ** 4 + 3519245.06309132 * cos(theta) ** 2 - 756.338934685432 ) * sin(2 * phi) ) # @torch.jit.script def Yl96_m_minus_1(theta, phi): return ( 0.0574337583633125 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 4.37395971580044e29 * cos(theta) ** 95 - 1.02249895974078e31 * cos(theta) ** 93 + 1.15720914015108e32 * cos(theta) ** 91 - 8.44700789468566e32 * cos(theta) ** 89 + 4.47006525886339e33 * cos(theta) ** 87 - 1.82759717305005e34 * cos(theta) ** 85 + 6.00784706057888e34 * cos(theta) ** 83 - 1.63166029905427e35 * cos(theta) ** 81 + 3.73346000631061e35 * cos(theta) ** 79 - 7.30335890758284e35 * cos(theta) ** 77 + 1.23523862217268e36 * cos(theta) ** 75 - 1.82232173127549e36 * cos(theta) ** 73 + 2.36147017248125e36 * cos(theta) ** 71 - 2.7030185990861e36 * cos(theta) ** 69 + 2.74514356426666e36 * cos(theta) ** 67 - 2.48241816793194e36 * cos(theta) ** 65 + 2.00443703000715e36 * cos(theta) ** 63 - 1.44826693289085e36 * cos(theta) ** 61 + 9.37837398156496e35 * cos(theta) ** 59 - 5.448691980461e35 * cos(theta) ** 57 + 2.84186679765221e35 * cos(theta) ** 55 - 1.33086477278888e35 * cos(theta) ** 53 + 5.59466643350541e34 * cos(theta) ** 51 - 2.10978991503088e34 * cos(theta) ** 49 + 7.12963488527675e33 * cos(theta) ** 47 - 2.15584204503054e33 * cos(theta) ** 45 + 5.82183203649818e32 * cos(theta) ** 43 - 1.40077653316223e32 * cos(theta) ** 41 + 2.99436068089945e31 * cos(theta) ** 39 - 5.66748726576371e30 * cos(theta) ** 37 + 9.46001633834244e29 * cos(theta) ** 35 - 1.38604031551681e29 * cos(theta) ** 33 + 1.77284226403312e28 * cos(theta) ** 31 - 1.96700465944978e27 * cos(theta) ** 29 + 1.87906798055673e26 * cos(theta) ** 27 - 1.53206239529713e25 * cos(theta) ** 25 + 1.0551393907005e24 * cos(theta) ** 23 - 6.06291768901264e22 * cos(theta) ** 21 + 2.86372630385212e21 * cos(theta) ** 19 - 1.09185551384328e20 * cos(theta) ** 17 + 3.28522897970546e18 * cos(theta) ** 15 - 7.57963179233296e16 * cos(theta) ** 13 + 1.29141826081689e15 * cos(theta) ** 11 - 15437514528347.9 * cos(theta) ** 9 + 120292321000.114 * cos(theta) ** 7 - 545013752.104075 * cos(theta) ** 5 + 1173081.68769711 * cos(theta) ** 3 - 756.338934685432 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl96_m0(theta, phi): return ( 5.60953860263923e28 * cos(theta) ** 96 - 1.33924062974005e30 * cos(theta) ** 94 + 1.54862983931051e31 * cos(theta) ** 92 - 1.15553734533936e32 * cos(theta) ** 90 + 6.253955497411e32 * cos(theta) ** 88 - 2.61640892285129e33 * cos(theta) ** 86 + 8.80568564734942e33 * cos(theta) ** 84 - 2.44984997339665e34 * cos(theta) ** 82 + 5.74572864523325e34 * cos(theta) ** 80 - 1.15279381072616e35 * cos(theta) ** 78 + 2.00106347607553e35 * cos(theta) ** 76 - 3.0319143576902e35 * cos(theta) ** 74 + 4.03806739650948e35 * cos(theta) ** 72 - 4.75416870818896e35 * cos(theta) ** 70 + 4.97026728583391e35 * cos(theta) ** 68 - 4.63078481682195e35 * cos(theta) ** 66 + 3.85599123916268e35 * cos(theta) ** 64 - 2.8759446312068e35 * cos(theta) ** 62 + 1.92442013362068e35 * cos(theta) ** 60 - 1.15661244024061e35 * cos(theta) ** 58 + 6.2479750448292e34 * cos(theta) ** 56 - 3.03433666636297e34 * cos(theta) ** 54 + 1.32462958192965e34 * cos(theta) ** 52 - 5.19508673658303e33 * cos(theta) ** 50 + 1.82873024491788e33 * cos(theta) ** 48 - 5.77009151403459e32 * cos(theta) ** 46 + 1.62903565658096e32 * cos(theta) ** 44 - 4.10622896649504e31 * cos(theta) ** 42 + 9.21653581895784e30 * cos(theta) ** 40 - 1.83624468423681e30 * cos(theta) ** 38 + 3.23528825317914e29 * cos(theta) ** 36 - 5.01903865920428e28 * cos(theta) ** 34 + 6.82093189877327e27 * cos(theta) ** 32 - 8.07249396752932e26 * cos(theta) ** 30 + 8.26243500205943e25 * cos(theta) ** 28 - 7.25482097741803e24 * cos(theta) ** 26 + 5.41280261170996e23 * cos(theta) ** 24 - 3.39299005412662e22 * cos(theta) ** 22 + 1.76288956928306e21 * cos(theta) ** 20 - 7.46820553319468e19 * cos(theta) ** 18 + 2.52795452782917e18 * cos(theta) ** 16 - 6.6656678387058e16 * cos(theta) ** 14 + 1.3249798456143e15 * cos(theta) ** 12 - 19006448556953.7 * cos(theta) ** 10 + 185127745684.614 * cos(theta) ** 8 - 1118355313.73661 * cos(theta) ** 6 + 3610703.76798303 * cos(theta) ** 4 - 4655.96875304066 * cos(theta) ** 2 + 0.999993288883303 ) # @torch.jit.script def Yl96_m1(theta, phi): return ( 0.0574337583633125 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 4.37395971580044e29 * cos(theta) ** 95 - 1.02249895974078e31 * cos(theta) ** 93 + 1.15720914015108e32 * cos(theta) ** 91 - 8.44700789468566e32 * cos(theta) ** 89 + 4.47006525886339e33 * cos(theta) ** 87 - 1.82759717305005e34 * cos(theta) ** 85 + 6.00784706057888e34 * cos(theta) ** 83 - 1.63166029905427e35 * cos(theta) ** 81 + 3.73346000631061e35 * cos(theta) ** 79 - 7.30335890758284e35 * cos(theta) ** 77 + 1.23523862217268e36 * cos(theta) ** 75 - 1.82232173127549e36 * cos(theta) ** 73 + 2.36147017248125e36 * cos(theta) ** 71 - 2.7030185990861e36 * cos(theta) ** 69 + 2.74514356426666e36 * cos(theta) ** 67 - 2.48241816793194e36 * cos(theta) ** 65 + 2.00443703000715e36 * cos(theta) ** 63 - 1.44826693289085e36 * cos(theta) ** 61 + 9.37837398156496e35 * cos(theta) ** 59 - 5.448691980461e35 * cos(theta) ** 57 + 2.84186679765221e35 * cos(theta) ** 55 - 1.33086477278888e35 * cos(theta) ** 53 + 5.59466643350541e34 * cos(theta) ** 51 - 2.10978991503088e34 * cos(theta) ** 49 + 7.12963488527675e33 * cos(theta) ** 47 - 2.15584204503054e33 * cos(theta) ** 45 + 5.82183203649818e32 * cos(theta) ** 43 - 1.40077653316223e32 * cos(theta) ** 41 + 2.99436068089945e31 * cos(theta) ** 39 - 5.66748726576371e30 * cos(theta) ** 37 + 9.46001633834244e29 * cos(theta) ** 35 - 1.38604031551681e29 * cos(theta) ** 33 + 1.77284226403312e28 * cos(theta) ** 31 - 1.96700465944978e27 * cos(theta) ** 29 + 1.87906798055673e26 * cos(theta) ** 27 - 1.53206239529713e25 * cos(theta) ** 25 + 1.0551393907005e24 * cos(theta) ** 23 - 6.06291768901264e22 * cos(theta) ** 21 + 2.86372630385212e21 * cos(theta) ** 19 - 1.09185551384328e20 * cos(theta) ** 17 + 3.28522897970546e18 * cos(theta) ** 15 - 7.57963179233296e16 * cos(theta) ** 13 + 1.29141826081689e15 * cos(theta) ** 11 - 15437514528347.9 * cos(theta) ** 9 + 120292321000.114 * cos(theta) ** 7 - 545013752.104075 * cos(theta) ** 5 + 1173081.68769711 * cos(theta) ** 3 - 756.338934685432 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl96_m2(theta, phi): return ( 0.00059524039495915 * (1.0 - cos(theta) ** 2) * ( 4.15526173001042e31 * cos(theta) ** 94 - 9.50924032558928e32 * cos(theta) ** 92 + 1.05306031753748e34 * cos(theta) ** 90 - 7.51783702627024e34 * cos(theta) ** 88 + 3.88895677521115e35 * cos(theta) ** 86 - 1.55345759709254e36 * cos(theta) ** 84 + 4.98651306028047e36 * cos(theta) ** 82 - 1.32164484223395e37 * cos(theta) ** 80 + 2.94943340498538e37 * cos(theta) ** 78 - 5.62358635883879e37 * cos(theta) ** 76 + 9.26428966629512e37 * cos(theta) ** 74 - 1.33029486383111e38 * cos(theta) ** 72 + 1.67664382246169e38 * cos(theta) ** 70 - 1.86508283336941e38 * cos(theta) ** 68 + 1.83924618805866e38 * cos(theta) ** 66 - 1.61357180915576e38 * cos(theta) ** 64 + 1.26279532890451e38 * cos(theta) ** 62 - 8.83442829063419e37 * cos(theta) ** 60 + 5.53324064912333e37 * cos(theta) ** 58 - 3.10575442886277e37 * cos(theta) ** 56 + 1.56302673870871e37 * cos(theta) ** 54 - 7.05358329578105e36 * cos(theta) ** 52 + 2.85327988108776e36 * cos(theta) ** 50 - 1.03379705836513e36 * cos(theta) ** 48 + 3.35092839608007e35 * cos(theta) ** 46 - 9.70128920263742e34 * cos(theta) ** 44 + 2.50338777569422e34 * cos(theta) ** 42 - 5.74318378596515e33 * cos(theta) ** 40 + 1.16780066555079e33 * cos(theta) ** 38 - 2.09697028833257e32 * cos(theta) ** 36 + 3.31100571841985e31 * cos(theta) ** 34 - 4.57393304120546e30 * cos(theta) ** 32 + 5.49581101850269e29 * cos(theta) ** 30 - 5.70431351240436e28 * cos(theta) ** 28 + 5.07348354750317e27 * cos(theta) ** 26 - 3.83015598824282e26 * cos(theta) ** 24 + 2.42682059861115e25 * cos(theta) ** 22 - 1.27321271469265e24 * cos(theta) ** 20 + 5.44107997731904e22 * cos(theta) ** 18 - 1.85615437353358e21 * cos(theta) ** 16 + 4.92784346955819e19 * cos(theta) ** 14 - 9.85352133003285e17 * cos(theta) ** 12 + 1.42056008689858e16 * cos(theta) ** 10 - 138937630755131.0 * cos(theta) ** 8 + 842046247000.796 * cos(theta) ** 6 - 2725068760.52038 * cos(theta) ** 4 + 3519245.06309132 * cos(theta) ** 2 - 756.338934685432 ) * cos(2 * phi) ) # @torch.jit.script def Yl96_m3(theta, phi): return ( 6.17036524378302e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 3.90594602620979e33 * cos(theta) ** 93 - 8.74850109954214e34 * cos(theta) ** 91 + 9.47754285783732e35 * cos(theta) ** 89 - 6.61569658311781e36 * cos(theta) ** 87 + 3.34450282668159e37 * cos(theta) ** 85 - 1.30490438155773e38 * cos(theta) ** 83 + 4.08894070942999e38 * cos(theta) ** 81 - 1.05731587378716e39 * cos(theta) ** 79 + 2.3005580558886e39 * cos(theta) ** 77 - 4.27392563271748e39 * cos(theta) ** 75 + 6.85557435305839e39 * cos(theta) ** 73 - 9.57812301958396e39 * cos(theta) ** 71 + 1.17365067572318e40 * cos(theta) ** 69 - 1.2682563266912e40 * cos(theta) ** 67 + 1.21390248411872e40 * cos(theta) ** 65 - 1.03268595785969e40 * cos(theta) ** 63 + 7.82933103920794e39 * cos(theta) ** 61 - 5.30065697438051e39 * cos(theta) ** 59 + 3.20927957649153e39 * cos(theta) ** 57 - 1.73922248016315e39 * cos(theta) ** 55 + 8.44034438902706e38 * cos(theta) ** 53 - 3.66786331380614e38 * cos(theta) ** 51 + 1.42663994054388e38 * cos(theta) ** 49 - 4.96222588015262e37 * cos(theta) ** 47 + 1.54142706219683e37 * cos(theta) ** 45 - 4.26856724916046e36 * cos(theta) ** 43 + 1.05142286579157e36 * cos(theta) ** 41 - 2.29727351438606e35 * cos(theta) ** 39 + 4.43764252909299e34 * cos(theta) ** 37 - 7.54909303799727e33 * cos(theta) ** 35 + 1.12574194426275e33 * cos(theta) ** 33 - 1.46365857318575e32 * cos(theta) ** 31 + 1.64874330555081e31 * cos(theta) ** 29 - 1.59720778347322e30 * cos(theta) ** 27 + 1.31910572235083e29 * cos(theta) ** 25 - 9.19237437178276e27 * cos(theta) ** 23 + 5.33900531694453e26 * cos(theta) ** 21 - 2.54642542938531e25 * cos(theta) ** 19 + 9.79394395917426e23 * cos(theta) ** 17 - 2.96984699765373e22 * cos(theta) ** 15 + 6.89898085738146e20 * cos(theta) ** 13 - 1.18242255960394e19 * cos(theta) ** 11 + 1.42056008689858e17 * cos(theta) ** 9 - 1.11150104604105e15 * cos(theta) ** 7 + 5052277482004.78 * cos(theta) ** 5 - 10900275042.0815 * cos(theta) ** 3 + 7038490.12618263 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl96_m4(theta, phi): return ( 6.39837069664651e-8 * (1.0 - cos(theta) ** 2) ** 2 * ( 3.6325298043751e35 * cos(theta) ** 92 - 7.96113600058334e36 * cos(theta) ** 90 + 8.43501314347521e37 * cos(theta) ** 88 - 5.7556560273125e38 * cos(theta) ** 86 + 2.84282740267935e39 * cos(theta) ** 84 - 1.08307063669292e40 * cos(theta) ** 82 + 3.31204197463829e40 * cos(theta) ** 80 - 8.35279540291859e40 * cos(theta) ** 78 + 1.77142970303422e41 * cos(theta) ** 76 - 3.20544422453811e41 * cos(theta) ** 74 + 5.00456927773262e41 * cos(theta) ** 72 - 6.80046734390461e41 * cos(theta) ** 70 + 8.09818966248996e41 * cos(theta) ** 68 - 8.49731738883102e41 * cos(theta) ** 66 + 7.89036614677166e41 * cos(theta) ** 64 - 6.50592153451602e41 * cos(theta) ** 62 + 4.77589193391684e41 * cos(theta) ** 60 - 3.1273876148845e41 * cos(theta) ** 58 + 1.82928935860017e41 * cos(theta) ** 56 - 9.56572364089733e40 * cos(theta) ** 54 + 4.47338252618434e40 * cos(theta) ** 52 - 1.87061029004113e40 * cos(theta) ** 50 + 6.990535708665e39 * cos(theta) ** 48 - 2.33224616367173e39 * cos(theta) ** 46 + 6.93642177988575e38 * cos(theta) ** 44 - 1.835483917139e38 * cos(theta) ** 42 + 4.31083374974544e37 * cos(theta) ** 40 - 8.95936670610563e36 * cos(theta) ** 38 + 1.64192773576441e36 * cos(theta) ** 36 - 2.64218256329904e35 * cos(theta) ** 34 + 3.71494841606708e34 * cos(theta) ** 32 - 4.53734157687582e33 * cos(theta) ** 30 + 4.78135558609734e32 * cos(theta) ** 28 - 4.3124610153777e31 * cos(theta) ** 26 + 3.29776430587706e30 * cos(theta) ** 24 - 2.11424610551003e29 * cos(theta) ** 22 + 1.12119111655835e28 * cos(theta) ** 20 - 4.83820831583209e26 * cos(theta) ** 18 + 1.66497047305962e25 * cos(theta) ** 16 - 4.4547704964806e23 * cos(theta) ** 14 + 8.9686751145959e21 * cos(theta) ** 12 - 1.30066481556434e20 * cos(theta) ** 10 + 1.27850407820872e18 * cos(theta) ** 8 - 7.78050732228736e15 * cos(theta) ** 6 + 25261387410023.9 * cos(theta) ** 4 - 32700825126.2445 * cos(theta) ** 2 + 7038490.12618263 ) * cos(4 * phi) ) # @torch.jit.script def Yl96_m5(theta, phi): return ( 6.63765685779902e-10 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 3.3419274200251e37 * cos(theta) ** 91 - 7.16502240052501e38 * cos(theta) ** 89 + 7.42281156625819e39 * cos(theta) ** 87 - 4.94986418348875e40 * cos(theta) ** 85 + 2.38797501825065e41 * cos(theta) ** 83 - 8.88117922088193e41 * cos(theta) ** 81 + 2.64963357971063e42 * cos(theta) ** 79 - 6.5151804142765e42 * cos(theta) ** 77 + 1.34628657430601e43 * cos(theta) ** 75 - 2.3720287261582e43 * cos(theta) ** 73 + 3.60328987996749e43 * cos(theta) ** 71 - 4.76032714073323e43 * cos(theta) ** 69 + 5.50676897049317e43 * cos(theta) ** 67 - 5.60822947662847e43 * cos(theta) ** 65 + 5.04983433393386e43 * cos(theta) ** 63 - 4.03367135139993e43 * cos(theta) ** 61 + 2.86553516035011e43 * cos(theta) ** 59 - 1.81388481663301e43 * cos(theta) ** 57 + 1.0244020408161e43 * cos(theta) ** 55 - 5.16549076608456e42 * cos(theta) ** 53 + 2.32615891361586e42 * cos(theta) ** 51 - 9.35305145020567e41 * cos(theta) ** 49 + 3.3554571401592e41 * cos(theta) ** 47 - 1.072833235289e41 * cos(theta) ** 45 + 3.05202558314973e40 * cos(theta) ** 43 - 7.7090324519838e39 * cos(theta) ** 41 + 1.72433349989818e39 * cos(theta) ** 39 - 3.40455934832014e38 * cos(theta) ** 37 + 5.91093984875186e37 * cos(theta) ** 35 - 8.98342071521675e36 * cos(theta) ** 33 + 1.18878349314146e36 * cos(theta) ** 31 - 1.36120247306275e35 * cos(theta) ** 29 + 1.33877956410725e34 * cos(theta) ** 27 - 1.1212398639982e33 * cos(theta) ** 25 + 7.91463433410495e31 * cos(theta) ** 23 - 4.65134143212207e30 * cos(theta) ** 21 + 2.2423822331167e29 * cos(theta) ** 19 - 8.70877496849775e27 * cos(theta) ** 17 + 2.6639527568954e26 * cos(theta) ** 15 - 6.23667869507284e24 * cos(theta) ** 13 + 1.07624101375151e23 * cos(theta) ** 11 - 1.30066481556434e21 * cos(theta) ** 9 + 1.02280326256697e19 * cos(theta) ** 7 - 4.66830439337241e16 * cos(theta) ** 5 + 101045549640096.0 * cos(theta) ** 3 - 65401650252.489 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl96_m6(theta, phi): return ( 6.88960011194611e-12 * (1.0 - cos(theta) ** 2) ** 3 * ( 3.04115395222284e39 * cos(theta) ** 90 - 6.37686993646726e40 * cos(theta) ** 88 + 6.45784606264462e41 * cos(theta) ** 86 - 4.20738455596543e42 * cos(theta) ** 84 + 1.98201926514804e43 * cos(theta) ** 82 - 7.19375516891437e43 * cos(theta) ** 80 + 2.0932105279714e44 * cos(theta) ** 78 - 5.01668891899291e44 * cos(theta) ** 76 + 1.0097149307295e45 * cos(theta) ** 74 - 1.73158097009549e45 * cos(theta) ** 72 + 2.55833581477692e45 * cos(theta) ** 70 - 3.28462572710593e45 * cos(theta) ** 68 + 3.68953521023043e45 * cos(theta) ** 66 - 3.64534915980851e45 * cos(theta) ** 64 + 3.18139563037833e45 * cos(theta) ** 62 - 2.46053952435396e45 * cos(theta) ** 60 + 1.69066574460656e45 * cos(theta) ** 58 - 1.03391434548082e45 * cos(theta) ** 56 + 5.63421122448853e44 * cos(theta) ** 54 - 2.73771010602482e44 * cos(theta) ** 52 + 1.18634104594409e44 * cos(theta) ** 50 - 4.58299521060078e43 * cos(theta) ** 48 + 1.57706485587483e43 * cos(theta) ** 46 - 4.82774955880048e42 * cos(theta) ** 44 + 1.31237100075438e42 * cos(theta) ** 42 - 3.16070330531336e41 * cos(theta) ** 40 + 6.72490064960289e40 * cos(theta) ** 38 - 1.25968695887845e40 * cos(theta) ** 36 + 2.06882894706315e39 * cos(theta) ** 34 - 2.96452883602153e38 * cos(theta) ** 32 + 3.68522882873854e37 * cos(theta) ** 30 - 3.94748717188196e36 * cos(theta) ** 28 + 3.61470482308959e35 * cos(theta) ** 26 - 2.8030996599955e34 * cos(theta) ** 24 + 1.82036589684414e33 * cos(theta) ** 22 - 9.76781700745636e31 * cos(theta) ** 20 + 4.26052624292174e30 * cos(theta) ** 18 - 1.48049174464462e29 * cos(theta) ** 16 + 3.9959291353431e27 * cos(theta) ** 14 - 8.10768230359469e25 * cos(theta) ** 12 + 1.18386511512666e24 * cos(theta) ** 10 - 1.1705983340079e22 * cos(theta) ** 8 + 7.15962283796882e19 * cos(theta) ** 6 - 2.33415219668621e17 * cos(theta) ** 4 + 303136648920287.0 * cos(theta) ** 2 - 65401650252.489 ) * cos(6 * phi) ) # @torch.jit.script def Yl96_m7(theta, phi): return ( 7.15573334019319e-14 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 2.73703855700055e41 * cos(theta) ** 89 - 5.61164554409119e42 * cos(theta) ** 87 + 5.55374761387437e43 * cos(theta) ** 85 - 3.53420302701097e44 * cos(theta) ** 83 + 1.62525579742139e45 * cos(theta) ** 81 - 5.75500413513149e45 * cos(theta) ** 79 + 1.63270421181769e46 * cos(theta) ** 77 - 3.81268357843461e46 * cos(theta) ** 75 + 7.47189048739833e46 * cos(theta) ** 73 - 1.24673829846875e47 * cos(theta) ** 71 + 1.79083507034384e47 * cos(theta) ** 69 - 2.23354549443203e47 * cos(theta) ** 67 + 2.43509323875208e47 * cos(theta) ** 65 - 2.33302346227744e47 * cos(theta) ** 63 + 1.97246529083457e47 * cos(theta) ** 61 - 1.47632371461237e47 * cos(theta) ** 59 + 9.80586131871806e46 * cos(theta) ** 57 - 5.78992033469257e46 * cos(theta) ** 55 + 3.0424740612238e46 * cos(theta) ** 53 - 1.4236092551329e46 * cos(theta) ** 51 + 5.93170522972043e45 * cos(theta) ** 49 - 2.19983770108837e45 * cos(theta) ** 47 + 7.2544983370242e44 * cos(theta) ** 45 - 2.12420980587221e44 * cos(theta) ** 43 + 5.51195820316842e43 * cos(theta) ** 41 - 1.26428132212534e43 * cos(theta) ** 39 + 2.5554622468491e42 * cos(theta) ** 37 - 4.53487305196243e41 * cos(theta) ** 35 + 7.03401842001471e40 * cos(theta) ** 33 - 9.48649227526889e39 * cos(theta) ** 31 + 1.10556864862156e39 * cos(theta) ** 29 - 1.10529640812695e38 * cos(theta) ** 27 + 9.39823254003293e36 * cos(theta) ** 25 - 6.72743918398921e35 * cos(theta) ** 23 + 4.00480497305711e34 * cos(theta) ** 21 - 1.95356340149127e33 * cos(theta) ** 19 + 7.66894723725912e31 * cos(theta) ** 17 - 2.36878679143139e30 * cos(theta) ** 15 + 5.59430078948034e28 * cos(theta) ** 13 - 9.72921876431363e26 * cos(theta) ** 11 + 1.18386511512666e25 * cos(theta) ** 9 - 9.36478667206322e22 * cos(theta) ** 7 + 4.29577370278129e20 * cos(theta) ** 5 - 9.33660878674483e17 * cos(theta) ** 3 + 606273297840573.0 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl96_m8(theta, phi): return ( 7.43776538830222e-16 * (1.0 - cos(theta) ** 2) ** 4 * ( 2.43596431573049e43 * cos(theta) ** 88 - 4.88213162335933e44 * cos(theta) ** 86 + 4.72068547179322e45 * cos(theta) ** 84 - 2.9333885124191e46 * cos(theta) ** 82 + 1.31645719591133e47 * cos(theta) ** 80 - 4.54645326675388e47 * cos(theta) ** 78 + 1.25718224309962e48 * cos(theta) ** 76 - 2.85951268382596e48 * cos(theta) ** 74 + 5.45448005580078e48 * cos(theta) ** 72 - 8.85184191912813e48 * cos(theta) ** 70 + 1.23567619853725e49 * cos(theta) ** 68 - 1.49647548126946e49 * cos(theta) ** 66 + 1.58281060518885e49 * cos(theta) ** 64 - 1.46980478123479e49 * cos(theta) ** 62 + 1.20320382740909e49 * cos(theta) ** 60 - 8.71030991621301e48 * cos(theta) ** 58 + 5.5893409516693e48 * cos(theta) ** 56 - 3.18445618408092e48 * cos(theta) ** 54 + 1.61251125244862e48 * cos(theta) ** 52 - 7.26040720117781e47 * cos(theta) ** 50 + 2.90653556256301e47 * cos(theta) ** 48 - 1.03392371951154e47 * cos(theta) ** 46 + 3.26452425166089e46 * cos(theta) ** 44 - 9.13410216525052e45 * cos(theta) ** 42 + 2.25990286329905e45 * cos(theta) ** 40 - 4.93069715628884e44 * cos(theta) ** 38 + 9.45521031334166e43 * cos(theta) ** 36 - 1.58720556818685e43 * cos(theta) ** 34 + 2.32122607860486e42 * cos(theta) ** 32 - 2.94081260533335e41 * cos(theta) ** 30 + 3.20614908100253e40 * cos(theta) ** 28 - 2.98430030194276e39 * cos(theta) ** 26 + 2.34955813500823e38 * cos(theta) ** 24 - 1.54731101231752e37 * cos(theta) ** 22 + 8.41009044341992e35 * cos(theta) ** 20 - 3.71177046283342e34 * cos(theta) ** 18 + 1.30372103033405e33 * cos(theta) ** 16 - 3.55318018714708e31 * cos(theta) ** 14 + 7.27259102632444e29 * cos(theta) ** 12 - 1.0702140640745e28 * cos(theta) ** 10 + 1.06547860361399e26 * cos(theta) ** 8 - 6.55535067044426e23 * cos(theta) ** 6 + 2.14788685139065e21 * cos(theta) ** 4 - 2.80098263602345e18 * cos(theta) ** 2 + 606273297840573.0 ) * cos(8 * phi) ) # @torch.jit.script def Yl96_m9(theta, phi): return ( 7.73760382522195e-18 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 2.14364859784283e45 * cos(theta) ** 87 - 4.19863319608903e46 * cos(theta) ** 85 + 3.9653757963063e47 * cos(theta) ** 83 - 2.40537858018366e48 * cos(theta) ** 81 + 1.05316575672906e49 * cos(theta) ** 79 - 3.54623354806803e49 * cos(theta) ** 77 + 9.55458504755713e49 * cos(theta) ** 75 - 2.11603938603121e50 * cos(theta) ** 73 + 3.92722564017656e50 * cos(theta) ** 71 - 6.19628934338969e50 * cos(theta) ** 69 + 8.4025981500533e50 * cos(theta) ** 67 - 9.87673817637844e50 * cos(theta) ** 65 + 1.01299878732087e51 * cos(theta) ** 63 - 9.1127896436557e50 * cos(theta) ** 61 + 7.21922296445451e50 * cos(theta) ** 59 - 5.05197975140355e50 * cos(theta) ** 57 + 3.13003093293481e50 * cos(theta) ** 55 - 1.71960633940369e50 * cos(theta) ** 53 + 8.38505851273281e49 * cos(theta) ** 51 - 3.63020360058891e49 * cos(theta) ** 49 + 1.39513707003025e49 * cos(theta) ** 47 - 4.75604910975306e48 * cos(theta) ** 45 + 1.43639067073079e48 * cos(theta) ** 43 - 3.83632290940522e47 * cos(theta) ** 41 + 9.0396114531962e46 * cos(theta) ** 39 - 1.87366491938976e46 * cos(theta) ** 37 + 3.403875712803e45 * cos(theta) ** 35 - 5.39649893183529e44 * cos(theta) ** 33 + 7.42792345153554e43 * cos(theta) ** 31 - 8.82243781600006e42 * cos(theta) ** 29 + 8.97721742680708e41 * cos(theta) ** 27 - 7.75918078505118e40 * cos(theta) ** 25 + 5.63893952401976e39 * cos(theta) ** 23 - 3.40408422709854e38 * cos(theta) ** 21 + 1.68201808868398e37 * cos(theta) ** 19 - 6.68118683310015e35 * cos(theta) ** 17 + 2.08595364853448e34 * cos(theta) ** 15 - 4.97445226200592e32 * cos(theta) ** 13 + 8.72710923158933e30 * cos(theta) ** 11 - 1.0702140640745e29 * cos(theta) ** 9 + 8.52382882891194e26 * cos(theta) ** 7 - 3.93321040226655e24 * cos(theta) ** 5 + 8.59154740556259e21 * cos(theta) ** 3 - 5.6019652720469e18 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl96_m10(theta, phi): return ( 8.05738156580094e-20 * (1.0 - cos(theta) ** 2) ** 5 * ( 1.86497428012327e47 * cos(theta) ** 86 - 3.56883821667567e48 * cos(theta) ** 84 + 3.29126191093423e49 * cos(theta) ** 82 - 1.94835664994877e50 * cos(theta) ** 80 + 8.3200094781596e50 * cos(theta) ** 78 - 2.73059983201238e51 * cos(theta) ** 76 + 7.16593878566785e51 * cos(theta) ** 74 - 1.54470875180278e52 * cos(theta) ** 72 + 2.78833020452536e52 * cos(theta) ** 70 - 4.27543964693889e52 * cos(theta) ** 68 + 5.62974076053571e52 * cos(theta) ** 66 - 6.41987981464599e52 * cos(theta) ** 64 + 6.38189236012146e52 * cos(theta) ** 62 - 5.55880168262997e52 * cos(theta) ** 60 + 4.25934154902816e52 * cos(theta) ** 58 - 2.87962845830002e52 * cos(theta) ** 56 + 1.72151701311414e52 * cos(theta) ** 54 - 9.11391359883958e51 * cos(theta) ** 52 + 4.27637984149373e51 * cos(theta) ** 50 - 1.77879976428856e51 * cos(theta) ** 48 + 6.55714422914216e50 * cos(theta) ** 46 - 2.14022209938888e50 * cos(theta) ** 44 + 6.1764798841424e49 * cos(theta) ** 42 - 1.57289239285614e49 * cos(theta) ** 40 + 3.52544846674652e48 * cos(theta) ** 38 - 6.93256020174211e47 * cos(theta) ** 36 + 1.19135649948105e47 * cos(theta) ** 34 - 1.78084464750565e46 * cos(theta) ** 32 + 2.30265626997602e45 * cos(theta) ** 30 - 2.55850696664002e44 * cos(theta) ** 28 + 2.42384870523791e43 * cos(theta) ** 26 - 1.9397951962628e42 * cos(theta) ** 24 + 1.29695609052454e41 * cos(theta) ** 22 - 7.14857687690693e39 * cos(theta) ** 20 + 3.19583436849957e38 * cos(theta) ** 18 - 1.13580176162703e37 * cos(theta) ** 16 + 3.12893047280172e35 * cos(theta) ** 14 - 6.46678794060769e33 * cos(theta) ** 12 + 9.59982015474826e31 * cos(theta) ** 10 - 9.6319265766705e29 * cos(theta) ** 8 + 5.96668018023836e27 * cos(theta) ** 6 - 1.96660520113328e25 * cos(theta) ** 4 + 2.57746422166878e22 * cos(theta) ** 2 - 5.6019652720469e18 ) * cos(10 * phi) ) # @torch.jit.script def Yl96_m11(theta, phi): return ( 8.39948804191916e-22 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.60387788090601e49 * cos(theta) ** 85 - 2.99782410200757e50 * cos(theta) ** 83 + 2.69883476696607e51 * cos(theta) ** 81 - 1.55868531995901e52 * cos(theta) ** 79 + 6.48960739296449e52 * cos(theta) ** 77 - 2.07525587232941e53 * cos(theta) ** 75 + 5.30279470139421e53 * cos(theta) ** 73 - 1.112190301298e54 * cos(theta) ** 71 + 1.95183114316775e54 * cos(theta) ** 69 - 2.90729895991844e54 * cos(theta) ** 67 + 3.71562890195357e54 * cos(theta) ** 65 - 4.10872308137343e54 * cos(theta) ** 63 + 3.9567732632753e54 * cos(theta) ** 61 - 3.33528100957798e54 * cos(theta) ** 59 + 2.47041809843633e54 * cos(theta) ** 57 - 1.61259193664801e54 * cos(theta) ** 55 + 9.29619187081637e53 * cos(theta) ** 53 - 4.73923507139658e53 * cos(theta) ** 51 + 2.13818992074687e53 * cos(theta) ** 49 - 8.53823886858511e52 * cos(theta) ** 47 + 3.01628634540539e52 * cos(theta) ** 45 - 9.41697723731106e51 * cos(theta) ** 43 + 2.59412155133981e51 * cos(theta) ** 41 - 6.29156957142456e50 * cos(theta) ** 39 + 1.33967041736368e50 * cos(theta) ** 37 - 2.49572167262716e49 * cos(theta) ** 35 + 4.05061209823557e48 * cos(theta) ** 33 - 5.69870287201806e47 * cos(theta) ** 31 + 6.90796880992805e46 * cos(theta) ** 29 - 7.16381950659205e45 * cos(theta) ** 27 + 6.30200663361857e44 * cos(theta) ** 25 - 4.65550847103071e43 * cos(theta) ** 23 + 2.853303399154e42 * cos(theta) ** 21 - 1.42971537538139e41 * cos(theta) ** 19 + 5.75250186329923e39 * cos(theta) ** 17 - 1.81728281860324e38 * cos(theta) ** 15 + 4.38050266192241e36 * cos(theta) ** 13 - 7.76014552872923e34 * cos(theta) ** 11 + 9.59982015474826e32 * cos(theta) ** 9 - 7.7055412613364e30 * cos(theta) ** 7 + 3.58000810814302e28 * cos(theta) ** 5 - 7.86642080453311e25 * cos(theta) ** 3 + 5.15492844333755e22 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl96_m12(theta, phi): return ( 8.76660574088169e-24 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.36329619877011e51 * cos(theta) ** 84 - 2.48819400466628e52 * cos(theta) ** 82 + 2.18605616124252e53 * cos(theta) ** 80 - 1.23136140276762e54 * cos(theta) ** 78 + 4.99699769258266e54 * cos(theta) ** 76 - 1.55644190424706e55 * cos(theta) ** 74 + 3.87104013201777e55 * cos(theta) ** 72 - 7.89655113921582e55 * cos(theta) ** 70 + 1.34676348878575e56 * cos(theta) ** 68 - 1.94789030314536e56 * cos(theta) ** 66 + 2.41515878626982e56 * cos(theta) ** 64 - 2.58849554126526e56 * cos(theta) ** 62 + 2.41363169059793e56 * cos(theta) ** 60 - 1.96781579565101e56 * cos(theta) ** 58 + 1.40813831610871e56 * cos(theta) ** 56 - 8.86925565156406e55 * cos(theta) ** 54 + 4.92698169153268e55 * cos(theta) ** 52 - 2.41700988641226e55 * cos(theta) ** 50 + 1.04771306116596e55 * cos(theta) ** 48 - 4.012972268235e54 * cos(theta) ** 46 + 1.35732885543243e54 * cos(theta) ** 44 - 4.04930021204376e53 * cos(theta) ** 42 + 1.06358983604932e53 * cos(theta) ** 40 - 2.45371213285558e52 * cos(theta) ** 38 + 4.95678054424561e51 * cos(theta) ** 36 - 8.73502585419505e50 * cos(theta) ** 34 + 1.33670199241774e50 * cos(theta) ** 32 - 1.7665978903256e49 * cos(theta) ** 30 + 2.00331095487913e48 * cos(theta) ** 28 - 1.93423126677985e47 * cos(theta) ** 26 + 1.57550165840464e46 * cos(theta) ** 24 - 1.07076694833706e45 * cos(theta) ** 22 + 5.99193713822339e43 * cos(theta) ** 20 - 2.71645921322464e42 * cos(theta) ** 18 + 9.77925316760869e40 * cos(theta) ** 16 - 2.72592422790486e39 * cos(theta) ** 14 + 5.69465346049913e37 * cos(theta) ** 12 - 8.53616008160216e35 * cos(theta) ** 10 + 8.63983813927344e33 * cos(theta) ** 8 - 5.39387888293548e31 * cos(theta) ** 6 + 1.79000405407151e29 * cos(theta) ** 4 - 2.35992624135993e26 * cos(theta) ** 2 + 5.15492844333755e22 ) * cos(12 * phi) ) # @torch.jit.script def Yl96_m13(theta, phi): return ( 9.16175309447676e-26 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.14516880696689e53 * cos(theta) ** 83 - 2.04031908382635e54 * cos(theta) ** 81 + 1.74884492899401e55 * cos(theta) ** 79 - 9.60461894158744e55 * cos(theta) ** 77 + 3.79771824636282e56 * cos(theta) ** 75 - 1.15176700914282e57 * cos(theta) ** 73 + 2.7871488950528e57 * cos(theta) ** 71 - 5.52758579745108e57 * cos(theta) ** 69 + 9.1579917237431e57 * cos(theta) ** 67 - 1.28560760007594e58 * cos(theta) ** 65 + 1.54570162321269e58 * cos(theta) ** 63 - 1.60486723558446e58 * cos(theta) ** 61 + 1.44817901435876e58 * cos(theta) ** 59 - 1.14133316147759e58 * cos(theta) ** 57 + 7.88557457020878e57 * cos(theta) ** 55 - 4.78939805184459e57 * cos(theta) ** 53 + 2.56203047959699e57 * cos(theta) ** 51 - 1.20850494320613e57 * cos(theta) ** 49 + 5.02902269359663e56 * cos(theta) ** 47 - 1.8459672433881e56 * cos(theta) ** 45 + 5.97224696390268e55 * cos(theta) ** 43 - 1.70070608905838e55 * cos(theta) ** 41 + 4.25435934419729e54 * cos(theta) ** 39 - 9.32410610485119e53 * cos(theta) ** 37 + 1.78444099592842e53 * cos(theta) ** 35 - 2.96990879042632e52 * cos(theta) ** 33 + 4.27744637573676e51 * cos(theta) ** 31 - 5.2997936709768e50 * cos(theta) ** 29 + 5.60927067366158e49 * cos(theta) ** 27 - 5.02900129362762e48 * cos(theta) ** 25 + 3.78120398017114e47 * cos(theta) ** 23 - 2.35568728634154e46 * cos(theta) ** 21 + 1.19838742764468e45 * cos(theta) ** 19 - 4.88962658380434e43 * cos(theta) ** 17 + 1.56468050681739e42 * cos(theta) ** 15 - 3.8162939190668e40 * cos(theta) ** 13 + 6.83358415259896e38 * cos(theta) ** 11 - 8.53616008160215e36 * cos(theta) ** 9 + 6.91187051141875e34 * cos(theta) ** 7 - 3.23632732976129e32 * cos(theta) ** 5 + 7.16001621628603e29 * cos(theta) ** 3 - 4.71985248271986e26 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl96_m14(theta, phi): return ( 9.58833490371498e-28 * (1.0 - cos(theta) ** 2) ** 7 * ( 9.50490109782519e54 * cos(theta) ** 82 - 1.65265845789934e56 * cos(theta) ** 80 + 1.38158749390527e57 * cos(theta) ** 78 - 7.39555658502233e57 * cos(theta) ** 76 + 2.84828868477211e58 * cos(theta) ** 74 - 8.4078991667426e58 * cos(theta) ** 72 + 1.97887571548748e59 * cos(theta) ** 70 - 3.81403420024124e59 * cos(theta) ** 68 + 6.13585445490787e59 * cos(theta) ** 66 - 8.35644940049358e59 * cos(theta) ** 64 + 9.73792022623992e59 * cos(theta) ** 62 - 9.78969013706522e59 * cos(theta) ** 60 + 8.54425618471669e59 * cos(theta) ** 58 - 6.50559902042224e59 * cos(theta) ** 56 + 4.33706601361483e59 * cos(theta) ** 54 - 2.53838096747764e59 * cos(theta) ** 52 + 1.30663554459447e59 * cos(theta) ** 50 - 5.92167422171003e58 * cos(theta) ** 48 + 2.36364066599042e58 * cos(theta) ** 46 - 8.30685259524645e57 * cos(theta) ** 44 + 2.56806619447815e57 * cos(theta) ** 42 - 6.97289496513935e56 * cos(theta) ** 40 + 1.65920014423694e56 * cos(theta) ** 38 - 3.44991925879494e55 * cos(theta) ** 36 + 6.24554348574946e54 * cos(theta) ** 34 - 9.80069900840685e53 * cos(theta) ** 32 + 1.3260083764784e53 * cos(theta) ** 30 - 1.53694016458327e52 * cos(theta) ** 28 + 1.51450308188863e51 * cos(theta) ** 26 - 1.25725032340691e50 * cos(theta) ** 24 + 8.69676915439363e48 * cos(theta) ** 22 - 4.94694330131723e47 * cos(theta) ** 20 + 2.27693611252489e46 * cos(theta) ** 18 - 8.31236519246738e44 * cos(theta) ** 16 + 2.34702076022608e43 * cos(theta) ** 14 - 4.96118209478685e41 * cos(theta) ** 12 + 7.51694256785886e39 * cos(theta) ** 10 - 7.68254407344194e37 * cos(theta) ** 8 + 4.83830935799312e35 * cos(theta) ** 6 - 1.61816366488064e33 * cos(theta) ** 4 + 2.14800486488581e30 * cos(theta) ** 2 - 4.71985248271986e26 ) * cos(14 * phi) ) # @torch.jit.script def Yl96_m15(theta, phi): return ( 1.00502017318788e-29 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 7.79401890021665e56 * cos(theta) ** 81 - 1.32212676631947e58 * cos(theta) ** 79 + 1.07763824524611e59 * cos(theta) ** 77 - 5.62062300461697e59 * cos(theta) ** 75 + 2.10773362673136e60 * cos(theta) ** 73 - 6.05368740005467e60 * cos(theta) ** 71 + 1.38521300084124e61 * cos(theta) ** 69 - 2.59354325616404e61 * cos(theta) ** 67 + 4.0496639402392e61 * cos(theta) ** 65 - 5.34812761631589e61 * cos(theta) ** 63 + 6.03751054026875e61 * cos(theta) ** 61 - 5.87381408223913e61 * cos(theta) ** 59 + 4.95566858713568e61 * cos(theta) ** 57 - 3.64313545143646e61 * cos(theta) ** 55 + 2.34201564735201e61 * cos(theta) ** 53 - 1.31995810308837e61 * cos(theta) ** 51 + 6.53317772297233e60 * cos(theta) ** 49 - 2.84240362642081e60 * cos(theta) ** 47 + 1.08727470635559e60 * cos(theta) ** 45 - 3.65501514190844e59 * cos(theta) ** 43 + 1.07858780168082e59 * cos(theta) ** 41 - 2.78915798605574e58 * cos(theta) ** 39 + 6.30496054810038e57 * cos(theta) ** 37 - 1.24197093316618e57 * cos(theta) ** 35 + 2.12348478515482e56 * cos(theta) ** 33 - 3.13622368269019e55 * cos(theta) ** 31 + 3.97802512943519e54 * cos(theta) ** 29 - 4.30343246083316e53 * cos(theta) ** 27 + 3.93770801291043e52 * cos(theta) ** 25 - 3.01740077617657e51 * cos(theta) ** 23 + 1.9132892139666e50 * cos(theta) ** 21 - 9.89388660263447e48 * cos(theta) ** 19 + 4.0984850025448e47 * cos(theta) ** 17 - 1.32997843079478e46 * cos(theta) ** 15 + 3.28582906431652e44 * cos(theta) ** 13 - 5.95341851374421e42 * cos(theta) ** 11 + 7.51694256785886e40 * cos(theta) ** 9 - 6.14603525875355e38 * cos(theta) ** 7 + 2.90298561479587e36 * cos(theta) ** 5 - 6.47265465952257e33 * cos(theta) ** 3 + 4.29600972977162e30 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl96_m16(theta, phi): return ( 1.05517200034056e-31 * (1.0 - cos(theta) ** 2) ** 8 * ( 6.31315530917549e58 * cos(theta) ** 80 - 1.04448014539238e60 * cos(theta) ** 78 + 8.29781448839505e60 * cos(theta) ** 76 - 4.21546725346273e61 * cos(theta) ** 74 + 1.5386455475139e62 * cos(theta) ** 72 - 4.29811805403882e62 * cos(theta) ** 70 + 9.55796970580455e62 * cos(theta) ** 68 - 1.73767398162991e63 * cos(theta) ** 66 + 2.63228156115548e63 * cos(theta) ** 64 - 3.36932039827901e63 * cos(theta) ** 62 + 3.68288142956394e63 * cos(theta) ** 60 - 3.46555030852109e63 * cos(theta) ** 58 + 2.82473109466734e63 * cos(theta) ** 56 - 2.00372449829005e63 * cos(theta) ** 54 + 1.24126829309656e63 * cos(theta) ** 52 - 6.73178632575069e62 * cos(theta) ** 50 + 3.20125708425644e62 * cos(theta) ** 48 - 1.33592970441778e62 * cos(theta) ** 46 + 4.89273617860016e61 * cos(theta) ** 44 - 1.57165651102063e61 * cos(theta) ** 42 + 4.42220998689138e60 * cos(theta) ** 40 - 1.08777161456174e60 * cos(theta) ** 38 + 2.33283540279714e59 * cos(theta) ** 36 - 4.34689826608163e58 * cos(theta) ** 34 + 7.0074997910109e57 * cos(theta) ** 32 - 9.72229341633959e56 * cos(theta) ** 30 + 1.1536272875362e56 * cos(theta) ** 28 - 1.16192676442495e55 * cos(theta) ** 26 + 9.84427003227607e53 * cos(theta) ** 24 - 6.94002178520612e52 * cos(theta) ** 22 + 4.01790734932986e51 * cos(theta) ** 20 - 1.87983845450055e50 * cos(theta) ** 18 + 6.96742450432616e48 * cos(theta) ** 16 - 1.99496764619217e47 * cos(theta) ** 14 + 4.27157778361147e45 * cos(theta) ** 12 - 6.54876036511864e43 * cos(theta) ** 10 + 6.76524831107297e41 * cos(theta) ** 8 - 4.30222468112749e39 * cos(theta) ** 6 + 1.45149280739794e37 * cos(theta) ** 4 - 1.94179639785677e34 * cos(theta) ** 2 + 4.29600972977162e30 ) * cos(16 * phi) ) # @torch.jit.script def Yl96_m17(theta, phi): return ( 1.10978549225984e-33 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 5.05052424734039e60 * cos(theta) ** 79 - 8.1469451340606e61 * cos(theta) ** 77 + 6.30633901118024e62 * cos(theta) ** 75 - 3.11944576756242e63 * cos(theta) ** 73 + 1.10782479421001e64 * cos(theta) ** 71 - 3.00868263782717e64 * cos(theta) ** 69 + 6.4994193999471e64 * cos(theta) ** 67 - 1.14686482787574e65 * cos(theta) ** 65 + 1.68466019913951e65 * cos(theta) ** 63 - 2.08897864693299e65 * cos(theta) ** 61 + 2.20972885773836e65 * cos(theta) ** 59 - 2.01001917894223e65 * cos(theta) ** 57 + 1.58184941301371e65 * cos(theta) ** 55 - 1.08201122907663e65 * cos(theta) ** 53 + 6.45459512410213e64 * cos(theta) ** 51 - 3.36589316287534e64 * cos(theta) ** 49 + 1.53660340044309e64 * cos(theta) ** 47 - 6.1452766403218e63 * cos(theta) ** 45 + 2.15280391858407e63 * cos(theta) ** 43 - 6.60095734628664e62 * cos(theta) ** 41 + 1.76888399475655e62 * cos(theta) ** 39 - 4.13353213533461e61 * cos(theta) ** 37 + 8.3982074500697e60 * cos(theta) ** 35 - 1.47794541046775e60 * cos(theta) ** 33 + 2.24239993312349e59 * cos(theta) ** 31 - 2.91668802490188e58 * cos(theta) ** 29 + 3.23015640510137e57 * cos(theta) ** 27 - 3.02100958750488e56 * cos(theta) ** 25 + 2.36262480774626e55 * cos(theta) ** 23 - 1.52680479274535e54 * cos(theta) ** 21 + 8.03581469865971e52 * cos(theta) ** 19 - 3.38370921810099e51 * cos(theta) ** 17 + 1.11478792069219e50 * cos(theta) ** 15 - 2.79295470466904e48 * cos(theta) ** 13 + 5.12589334033377e46 * cos(theta) ** 11 - 6.54876036511864e44 * cos(theta) ** 9 + 5.41219864885838e42 * cos(theta) ** 7 - 2.58133480867649e40 * cos(theta) ** 5 + 5.80597122959175e37 * cos(theta) ** 3 - 3.88359279571354e34 * cos(theta) ) * cos(17 * phi) ) # @torch.jit.script def Yl96_m18(theta, phi): return ( 1.16942687923752e-35 * (1.0 - cos(theta) ** 2) ** 9 * ( 3.98991415539891e62 * cos(theta) ** 78 - 6.27314775322666e63 * cos(theta) ** 76 + 4.72975425838518e64 * cos(theta) ** 74 - 2.27719541032057e65 * cos(theta) ** 72 + 7.86555603889104e65 * cos(theta) ** 70 - 2.07599102010075e66 * cos(theta) ** 68 + 4.35461099796455e66 * cos(theta) ** 66 - 7.45462138119231e66 * cos(theta) ** 64 + 1.06133592545789e67 * cos(theta) ** 62 - 1.27427697462912e67 * cos(theta) ** 60 + 1.30374002606563e67 * cos(theta) ** 58 - 1.14571093199707e67 * cos(theta) ** 56 + 8.7001717715754e66 * cos(theta) ** 54 - 5.73465951410612e66 * cos(theta) ** 52 + 3.29184351329209e66 * cos(theta) ** 50 - 1.64928764980892e66 * cos(theta) ** 48 + 7.22203598208253e65 * cos(theta) ** 46 - 2.76537448814481e65 * cos(theta) ** 44 + 9.2570568499115e64 * cos(theta) ** 42 - 2.70639251197752e64 * cos(theta) ** 40 + 6.89864757955055e63 * cos(theta) ** 38 - 1.5294068900738e63 * cos(theta) ** 36 + 2.9393726075244e62 * cos(theta) ** 34 - 4.87721985454358e61 * cos(theta) ** 32 + 6.95143979268281e60 * cos(theta) ** 30 - 8.45839527221545e59 * cos(theta) ** 28 + 8.7214222937737e58 * cos(theta) ** 26 - 7.5525239687622e57 * cos(theta) ** 24 + 5.43403705781639e56 * cos(theta) ** 22 - 3.20629006476523e55 * cos(theta) ** 20 + 1.52680479274535e54 * cos(theta) ** 18 - 5.75230567077168e52 * cos(theta) ** 16 + 1.67218188103828e51 * cos(theta) ** 14 - 3.63084111606975e49 * cos(theta) ** 12 + 5.63848267436715e47 * cos(theta) ** 10 - 5.89388432860677e45 * cos(theta) ** 8 + 3.78853905420086e43 * cos(theta) ** 6 - 1.29066740433825e41 * cos(theta) ** 4 + 1.74179136887752e38 * cos(theta) ** 2 - 3.88359279571354e34 ) * cos(18 * phi) ) # @torch.jit.script def Yl96_m19(theta, phi): return ( 1.23474378923924e-37 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 3.11213304121115e64 * cos(theta) ** 77 - 4.76759229245226e65 * cos(theta) ** 75 + 3.50001815120503e66 * cos(theta) ** 73 - 1.63958069543081e67 * cos(theta) ** 71 + 5.50588922722372e67 * cos(theta) ** 69 - 1.41167389366851e68 * cos(theta) ** 67 + 2.87404325865661e68 * cos(theta) ** 65 - 4.77095768396308e68 * cos(theta) ** 63 + 6.58028273783891e68 * cos(theta) ** 61 - 7.64566184777473e68 * cos(theta) ** 59 + 7.56169215118068e68 * cos(theta) ** 57 - 6.4159812191836e68 * cos(theta) ** 55 + 4.69809275665072e68 * cos(theta) ** 53 - 2.98202294733518e68 * cos(theta) ** 51 + 1.64592175664604e68 * cos(theta) ** 49 - 7.91658071908281e67 * cos(theta) ** 47 + 3.32213655175797e67 * cos(theta) ** 45 - 1.21676477478372e67 * cos(theta) ** 43 + 3.88796387696283e66 * cos(theta) ** 41 - 1.08255700479101e66 * cos(theta) ** 39 + 2.62148608022921e65 * cos(theta) ** 37 - 5.5058648042657e64 * cos(theta) ** 35 + 9.99386686558295e63 * cos(theta) ** 33 - 1.56071035345395e63 * cos(theta) ** 31 + 2.08543193780484e62 * cos(theta) ** 29 - 2.36835067622033e61 * cos(theta) ** 27 + 2.26756979638116e60 * cos(theta) ** 25 - 1.81260575250293e59 * cos(theta) ** 23 + 1.19548815271961e58 * cos(theta) ** 21 - 6.41258012953045e56 * cos(theta) ** 19 + 2.74824862694162e55 * cos(theta) ** 17 - 9.20368907323469e53 * cos(theta) ** 15 + 2.34105463345359e52 * cos(theta) ** 13 - 4.3570093392837e50 * cos(theta) ** 11 + 5.63848267436715e48 * cos(theta) ** 9 - 4.71510746288542e46 * cos(theta) ** 7 + 2.27312343252052e44 * cos(theta) ** 5 - 5.16266961735298e41 * cos(theta) ** 3 + 3.48358273775505e38 * cos(theta) ) * cos(19 * phi) ) # @torch.jit.script def Yl96_m20(theta, phi): return ( 1.30647917975732e-39 * (1.0 - cos(theta) ** 2) ** 10 * ( 2.39634244173258e66 * cos(theta) ** 76 - 3.5756942193392e67 * cos(theta) ** 74 + 2.55501325037967e68 * cos(theta) ** 72 - 1.16410229375587e69 * cos(theta) ** 70 + 3.79906356678437e69 * cos(theta) ** 68 - 9.45821508757901e69 * cos(theta) ** 66 + 1.86812811812679e70 * cos(theta) ** 64 - 3.00570334089674e70 * cos(theta) ** 62 + 4.01397247008174e70 * cos(theta) ** 60 - 4.51094049018709e70 * cos(theta) ** 58 + 4.31016452617299e70 * cos(theta) ** 56 - 3.52878967055098e70 * cos(theta) ** 54 + 2.48998916102488e70 * cos(theta) ** 52 - 1.52083170314094e70 * cos(theta) ** 50 + 8.06501660756561e69 * cos(theta) ** 48 - 3.72079293796892e69 * cos(theta) ** 46 + 1.49496144829108e69 * cos(theta) ** 44 - 5.23208853156998e68 * cos(theta) ** 42 + 1.59406518955476e68 * cos(theta) ** 40 - 4.22197231868493e67 * cos(theta) ** 38 + 9.69949849684807e66 * cos(theta) ** 36 - 1.92705268149299e66 * cos(theta) ** 34 + 3.29797606564237e65 * cos(theta) ** 32 - 4.83820209570724e64 * cos(theta) ** 30 + 6.04775261963404e63 * cos(theta) ** 28 - 6.39454682579488e62 * cos(theta) ** 26 + 5.66892449095291e61 * cos(theta) ** 24 - 4.16899323075673e60 * cos(theta) ** 22 + 2.51052512071117e59 * cos(theta) ** 20 - 1.21839022461079e58 * cos(theta) ** 18 + 4.67202266580076e56 * cos(theta) ** 16 - 1.3805533609852e55 * cos(theta) ** 14 + 3.04337102348967e53 * cos(theta) ** 12 - 4.79271027321207e51 * cos(theta) ** 10 + 5.07463440693043e49 * cos(theta) ** 8 - 3.30057522401979e47 * cos(theta) ** 6 + 1.13656171626026e45 * cos(theta) ** 4 - 1.54880088520589e42 * cos(theta) ** 2 + 3.48358273775505e38 ) * cos(20 * phi) ) # @torch.jit.script def Yl96_m21(theta, phi): return ( 1.38548799204113e-41 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.82122025571676e68 * cos(theta) ** 75 - 2.64601372231101e69 * cos(theta) ** 73 + 1.83960954027337e70 * cos(theta) ** 71 - 8.14871605629111e70 * cos(theta) ** 69 + 2.58336322541337e71 * cos(theta) ** 67 - 6.24242195780215e71 * cos(theta) ** 65 + 1.19560199560115e72 * cos(theta) ** 63 - 1.86353607135598e72 * cos(theta) ** 61 + 2.40838348204904e72 * cos(theta) ** 59 - 2.61634548430851e72 * cos(theta) ** 57 + 2.41369213465687e72 * cos(theta) ** 55 - 1.90554642209753e72 * cos(theta) ** 53 + 1.29479436373294e72 * cos(theta) ** 51 - 7.60415851570472e71 * cos(theta) ** 49 + 3.87120797163149e71 * cos(theta) ** 47 - 1.7115647514657e71 * cos(theta) ** 45 + 6.57783037248077e70 * cos(theta) ** 43 - 2.19747718325939e70 * cos(theta) ** 41 + 6.37626075821904e69 * cos(theta) ** 39 - 1.60434948110028e69 * cos(theta) ** 37 + 3.4918194588653e68 * cos(theta) ** 35 - 6.55197911707618e67 * cos(theta) ** 33 + 1.05535234100556e67 * cos(theta) ** 31 - 1.45146062871217e66 * cos(theta) ** 29 + 1.69337073349753e65 * cos(theta) ** 27 - 1.66258217470667e64 * cos(theta) ** 25 + 1.3605418778287e63 * cos(theta) ** 23 - 9.17178510766481e61 * cos(theta) ** 21 + 5.02105024142234e60 * cos(theta) ** 19 - 2.19310240429941e59 * cos(theta) ** 17 + 7.47523626528121e57 * cos(theta) ** 15 - 1.93277470537928e56 * cos(theta) ** 13 + 3.6520452281876e54 * cos(theta) ** 11 - 4.79271027321207e52 * cos(theta) ** 9 + 4.05970752554435e50 * cos(theta) ** 7 - 1.98034513441188e48 * cos(theta) ** 5 + 4.54624686504104e45 * cos(theta) ** 3 - 3.09760177041179e42 * cos(theta) ) * cos(21 * phi) ) # @torch.jit.script def Yl96_m22(theta, phi): return ( 1.47275711925126e-43 * (1.0 - cos(theta) ** 2) ** 11 * ( 1.36591519178757e70 * cos(theta) ** 74 - 1.93159001728703e71 * cos(theta) ** 72 + 1.30612277359409e72 * cos(theta) ** 70 - 5.62261407884087e72 * cos(theta) ** 68 + 1.73085336102696e73 * cos(theta) ** 66 - 4.0575742725714e73 * cos(theta) ** 64 + 7.53229257228723e73 * cos(theta) ** 62 - 1.13675700352715e74 * cos(theta) ** 60 + 1.42094625440893e74 * cos(theta) ** 58 - 1.49131692605585e74 * cos(theta) ** 56 + 1.32753067406128e74 * cos(theta) ** 54 - 1.00993960371169e74 * cos(theta) ** 52 + 6.60345125503798e73 * cos(theta) ** 50 - 3.72603767269531e73 * cos(theta) ** 48 + 1.8194677466668e73 * cos(theta) ** 46 - 7.70204138159567e72 * cos(theta) ** 44 + 2.82846706016673e72 * cos(theta) ** 42 - 9.00965645136351e71 * cos(theta) ** 40 + 2.48674169570543e71 * cos(theta) ** 38 - 5.93609308007102e70 * cos(theta) ** 36 + 1.22213681060286e70 * cos(theta) ** 34 - 2.16215310863514e69 * cos(theta) ** 32 + 3.27159225711723e68 * cos(theta) ** 30 - 4.2092358232653e67 * cos(theta) ** 28 + 4.57210098044334e66 * cos(theta) ** 26 - 4.15645543676667e65 * cos(theta) ** 24 + 3.129246319006e64 * cos(theta) ** 22 - 1.92607487260961e63 * cos(theta) ** 20 + 9.53999545870245e61 * cos(theta) ** 18 - 3.728274087309e60 * cos(theta) ** 16 + 1.12128543979218e59 * cos(theta) ** 14 - 2.51260711699307e57 * cos(theta) ** 12 + 4.01724975100636e55 * cos(theta) ** 10 - 4.31343924589087e53 * cos(theta) ** 8 + 2.84179526788104e51 * cos(theta) ** 6 - 9.90172567205938e48 * cos(theta) ** 4 + 1.36387405951231e46 * cos(theta) ** 2 - 3.09760177041179e42 ) * cos(22 * phi) ) # @torch.jit.script def Yl96_m23(theta, phi): return ( 1.56942942262094e-45 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.0107772419228e72 * cos(theta) ** 73 - 1.39074481244666e73 * cos(theta) ** 71 + 9.14285941515863e73 * cos(theta) ** 69 - 3.82337757361179e74 * cos(theta) ** 67 + 1.14236321827779e75 * cos(theta) ** 65 - 2.59684753444569e75 * cos(theta) ** 63 + 4.67002139481808e75 * cos(theta) ** 61 - 6.82054202116288e75 * cos(theta) ** 59 + 8.24148827557182e75 * cos(theta) ** 57 - 8.35137478591278e75 * cos(theta) ** 55 + 7.16866563993091e75 * cos(theta) ** 53 - 5.25168593930079e75 * cos(theta) ** 51 + 3.30172562751899e75 * cos(theta) ** 49 - 1.78849808289375e75 * cos(theta) ** 47 + 8.36955163466729e74 * cos(theta) ** 45 - 3.38889820790209e74 * cos(theta) ** 43 + 1.18795616527003e74 * cos(theta) ** 41 - 3.6038625805454e73 * cos(theta) ** 39 + 9.44961844368062e72 * cos(theta) ** 37 - 2.13699350882557e72 * cos(theta) ** 35 + 4.15526515604971e71 * cos(theta) ** 33 - 6.91888994763245e70 * cos(theta) ** 31 + 9.8147767713517e69 * cos(theta) ** 29 - 1.17858603051428e69 * cos(theta) ** 27 + 1.18874625491527e68 * cos(theta) ** 25 - 9.97549304824001e66 * cos(theta) ** 23 + 6.88434190181321e65 * cos(theta) ** 21 - 3.85214974521922e64 * cos(theta) ** 19 + 1.71719918256644e63 * cos(theta) ** 17 - 5.96523853969441e61 * cos(theta) ** 15 + 1.56979961570905e60 * cos(theta) ** 13 - 3.01512854039168e58 * cos(theta) ** 11 + 4.01724975100636e56 * cos(theta) ** 9 - 3.45075139671269e54 * cos(theta) ** 7 + 1.70507716072863e52 * cos(theta) ** 5 - 3.96069026882375e49 * cos(theta) ** 3 + 2.72774811902462e46 * cos(theta) ) * cos(23 * phi) ) # @torch.jit.script def Yl96_m24(theta, phi): return ( 1.67683270982667e-47 * (1.0 - cos(theta) ** 2) ** 12 * ( 7.37867386603647e73 * cos(theta) ** 72 - 9.87428816837132e74 * cos(theta) ** 70 + 6.30857299645945e75 * cos(theta) ** 68 - 2.5616629743199e76 * cos(theta) ** 66 + 7.42536091880565e76 * cos(theta) ** 64 - 1.63601394670079e77 * cos(theta) ** 62 + 2.84871305083903e77 * cos(theta) ** 60 - 4.0241197924861e77 * cos(theta) ** 58 + 4.69764831707594e77 * cos(theta) ** 56 - 4.59325613225203e77 * cos(theta) ** 54 + 3.79939278916338e77 * cos(theta) ** 52 - 2.6783598290434e77 * cos(theta) ** 50 + 1.61784555748431e77 * cos(theta) ** 48 - 8.40594098960063e76 * cos(theta) ** 46 + 3.76629823560028e76 * cos(theta) ** 44 - 1.4572262293979e76 * cos(theta) ** 42 + 4.87062027760711e75 * cos(theta) ** 40 - 1.40550640641271e75 * cos(theta) ** 38 + 3.49635882416183e74 * cos(theta) ** 36 - 7.47947728088948e73 * cos(theta) ** 34 + 1.37123750149641e73 * cos(theta) ** 32 - 2.14485588376606e72 * cos(theta) ** 30 + 2.84628526369199e71 * cos(theta) ** 28 - 3.18218228238856e70 * cos(theta) ** 26 + 2.97186563728817e69 * cos(theta) ** 24 - 2.2943634010952e68 * cos(theta) ** 22 + 1.44571179938077e67 * cos(theta) ** 20 - 7.31908451591652e65 * cos(theta) ** 18 + 2.91923861036295e64 * cos(theta) ** 16 - 8.94785780954161e62 * cos(theta) ** 14 + 2.04073950042177e61 * cos(theta) ** 12 - 3.31664139443085e59 * cos(theta) ** 10 + 3.61552477590572e57 * cos(theta) ** 8 - 2.41552597769889e55 * cos(theta) ** 6 + 8.52538580364313e52 * cos(theta) ** 4 - 1.18820708064713e50 * cos(theta) ** 2 + 2.72774811902462e46 ) * cos(24 * phi) ) # @torch.jit.script def Yl96_m25(theta, phi): return ( 1.79651481823311e-49 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 5.31264518354626e75 * cos(theta) ** 71 - 6.91200171785992e76 * cos(theta) ** 69 + 4.28982963759243e77 * cos(theta) ** 67 - 1.69069756305113e78 * cos(theta) ** 65 + 4.75223098803562e78 * cos(theta) ** 63 - 1.01432864695449e79 * cos(theta) ** 61 + 1.70922783050342e79 * cos(theta) ** 59 - 2.33398947964194e79 * cos(theta) ** 57 + 2.63068305756252e79 * cos(theta) ** 55 - 2.48035831141609e79 * cos(theta) ** 53 + 1.97568425036496e79 * cos(theta) ** 51 - 1.3391799145217e79 * cos(theta) ** 49 + 7.76565867592466e78 * cos(theta) ** 47 - 3.86673285521629e78 * cos(theta) ** 45 + 1.65717122366412e78 * cos(theta) ** 43 - 6.12035016347118e77 * cos(theta) ** 41 + 1.94824811104284e77 * cos(theta) ** 39 - 5.34092434436829e76 * cos(theta) ** 37 + 1.25868917669826e76 * cos(theta) ** 35 - 2.54302227550242e75 * cos(theta) ** 33 + 4.3879600047885e74 * cos(theta) ** 31 - 6.43456765129817e73 * cos(theta) ** 29 + 7.96959873833758e72 * cos(theta) ** 27 - 8.27367393421026e71 * cos(theta) ** 25 + 7.13247752949161e70 * cos(theta) ** 23 - 5.04759948240944e69 * cos(theta) ** 21 + 2.89142359876155e68 * cos(theta) ** 19 - 1.31743521286497e67 * cos(theta) ** 17 + 4.67078177658072e65 * cos(theta) ** 15 - 1.25270009333583e64 * cos(theta) ** 13 + 2.44888740050613e62 * cos(theta) ** 11 - 3.31664139443085e60 * cos(theta) ** 9 + 2.89241982072458e58 * cos(theta) ** 7 - 1.44931558661933e56 * cos(theta) ** 5 + 3.41015432145725e53 * cos(theta) ** 3 - 2.37641416129425e50 * cos(theta) ) * cos(25 * phi) ) # @torch.jit.script def Yl96_m26(theta, phi): return ( 1.93028623657921e-51 * (1.0 - cos(theta) ** 2) ** 13 * ( 3.77197808031784e77 * cos(theta) ** 70 - 4.76928118532335e78 * cos(theta) ** 68 + 2.87418585718693e79 * cos(theta) ** 66 - 1.09895341598324e80 * cos(theta) ** 64 + 2.99390552246244e80 * cos(theta) ** 62 - 6.18740474642238e80 * cos(theta) ** 60 + 1.00844441999702e81 * cos(theta) ** 58 - 1.33037400339591e81 * cos(theta) ** 56 + 1.44687568165939e81 * cos(theta) ** 54 - 1.31458990505053e81 * cos(theta) ** 52 + 1.00759896768613e81 * cos(theta) ** 50 - 6.56198158115634e80 * cos(theta) ** 48 + 3.64985957768459e80 * cos(theta) ** 46 - 1.74002978484733e80 * cos(theta) ** 44 + 7.12583626175573e79 * cos(theta) ** 42 - 2.50934356702318e79 * cos(theta) ** 40 + 7.59816763306709e78 * cos(theta) ** 38 - 1.97614200741627e78 * cos(theta) ** 36 + 4.40541211844391e77 * cos(theta) ** 34 - 8.391973509158e76 * cos(theta) ** 32 + 1.36026760148443e76 * cos(theta) ** 30 - 1.86602461887647e75 * cos(theta) ** 28 + 2.15179165935115e74 * cos(theta) ** 26 - 2.06841848355257e73 * cos(theta) ** 24 + 1.64046983178307e72 * cos(theta) ** 22 - 1.05999589130598e71 * cos(theta) ** 20 + 5.49370483764694e69 * cos(theta) ** 18 - 2.23963986187046e68 * cos(theta) ** 16 + 7.00617266487108e66 * cos(theta) ** 14 - 1.62851012133657e65 * cos(theta) ** 12 + 2.69377614055674e63 * cos(theta) ** 10 - 2.98497725498777e61 * cos(theta) ** 8 + 2.02469387450721e59 * cos(theta) ** 6 - 7.24657793309666e56 * cos(theta) ** 4 + 1.02304629643718e54 * cos(theta) ** 2 - 2.37641416129425e50 ) * cos(26 * phi) ) # @torch.jit.script def Yl96_m27(theta, phi): return ( 2.08027207054461e-53 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 2.64038465622249e79 * cos(theta) ** 69 - 3.24311120601988e80 * cos(theta) ** 67 + 1.89696266574337e81 * cos(theta) ** 65 - 7.03330186229272e81 * cos(theta) ** 63 + 1.85622142392671e82 * cos(theta) ** 61 - 3.71244284785343e82 * cos(theta) ** 59 + 5.8489776359827e82 * cos(theta) ** 57 - 7.45009441901707e82 * cos(theta) ** 55 + 7.8131286809607e82 * cos(theta) ** 53 - 6.83586750626276e82 * cos(theta) ** 51 + 5.03799483843064e82 * cos(theta) ** 49 - 3.14975115895504e82 * cos(theta) ** 47 + 1.67893540573491e82 * cos(theta) ** 45 - 7.65613105332825e81 * cos(theta) ** 43 + 2.99285122993741e81 * cos(theta) ** 41 - 1.00373742680927e81 * cos(theta) ** 39 + 2.8873037005655e80 * cos(theta) ** 37 - 7.11411122669856e79 * cos(theta) ** 35 + 1.49784012027093e79 * cos(theta) ** 33 - 2.68543152293056e78 * cos(theta) ** 31 + 4.0808028044533e77 * cos(theta) ** 29 - 5.22486893285412e76 * cos(theta) ** 27 + 5.59465831431298e75 * cos(theta) ** 25 - 4.96420436052616e74 * cos(theta) ** 23 + 3.60903362992275e73 * cos(theta) ** 21 - 2.11999178261197e72 * cos(theta) ** 19 + 9.88866870776449e70 * cos(theta) ** 17 - 3.58342377899273e69 * cos(theta) ** 15 + 9.80864173081951e67 * cos(theta) ** 13 - 1.95421214560389e66 * cos(theta) ** 11 + 2.69377614055674e64 * cos(theta) ** 9 - 2.38798180399021e62 * cos(theta) ** 7 + 1.21481632470432e60 * cos(theta) ** 5 - 2.89863117323866e57 * cos(theta) ** 3 + 2.04609259287435e54 * cos(theta) ) * cos(27 * phi) ) # @torch.jit.script def Yl96_m28(theta, phi): return ( 2.24897563495054e-55 * (1.0 - cos(theta) ** 2) ** 14 * ( 1.82186541279352e81 * cos(theta) ** 68 - 2.17288450803332e82 * cos(theta) ** 66 + 1.23302573273319e83 * cos(theta) ** 64 - 4.43098017324441e83 * cos(theta) ** 62 + 1.13229506859529e84 * cos(theta) ** 60 - 2.19034128023352e84 * cos(theta) ** 58 + 3.33391725251014e84 * cos(theta) ** 56 - 4.09755193045939e84 * cos(theta) ** 54 + 4.14095820090917e84 * cos(theta) ** 52 - 3.48629242819401e84 * cos(theta) ** 50 + 2.46861747083102e84 * cos(theta) ** 48 - 1.48038304470887e84 * cos(theta) ** 46 + 7.55520932580711e83 * cos(theta) ** 44 - 3.29213635293115e83 * cos(theta) ** 42 + 1.22706900427434e83 * cos(theta) ** 40 - 3.91457596455617e82 * cos(theta) ** 38 + 1.06830236920923e82 * cos(theta) ** 36 - 2.4899389293445e81 * cos(theta) ** 34 + 4.94287239689406e80 * cos(theta) ** 32 - 8.32483772108474e79 * cos(theta) ** 30 + 1.18343281329146e79 * cos(theta) ** 28 - 1.41071461187061e78 * cos(theta) ** 26 + 1.39866457857825e77 * cos(theta) ** 24 - 1.14176700292102e76 * cos(theta) ** 22 + 7.57897062283778e74 * cos(theta) ** 20 - 4.02798438696274e73 * cos(theta) ** 18 + 1.68107368031996e72 * cos(theta) ** 16 - 5.37513566848909e70 * cos(theta) ** 14 + 1.27512342500654e69 * cos(theta) ** 12 - 2.14963336016428e67 * cos(theta) ** 10 + 2.42439852650106e65 * cos(theta) ** 8 - 1.67158726279315e63 * cos(theta) ** 6 + 6.07408162352162e60 * cos(theta) ** 4 - 8.69589351971599e57 * cos(theta) ** 2 + 2.04609259287435e54 ) * cos(28 * phi) ) # @torch.jit.script def Yl96_m29(theta, phi): return ( 2.43935657056412e-57 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 1.23886848069959e83 * cos(theta) ** 67 - 1.43410377530199e84 * cos(theta) ** 65 + 7.89136468949243e84 * cos(theta) ** 63 - 2.74720770741153e85 * cos(theta) ** 61 + 6.79377041157177e85 * cos(theta) ** 59 - 1.27039794253544e86 * cos(theta) ** 57 + 1.86699366140568e86 * cos(theta) ** 55 - 2.21267804244807e86 * cos(theta) ** 53 + 2.15329826447277e86 * cos(theta) ** 51 - 1.743146214097e86 * cos(theta) ** 49 + 1.18493638599889e86 * cos(theta) ** 47 - 6.8097620056608e85 * cos(theta) ** 45 + 3.32429210335513e85 * cos(theta) ** 43 - 1.38269726823108e85 * cos(theta) ** 41 + 4.90827601709735e84 * cos(theta) ** 39 - 1.48753886653134e84 * cos(theta) ** 37 + 3.84588852915324e83 * cos(theta) ** 35 - 8.46579235977128e82 * cos(theta) ** 33 + 1.5817191670061e82 * cos(theta) ** 31 - 2.49745131632542e81 * cos(theta) ** 29 + 3.31361187721608e80 * cos(theta) ** 27 - 3.66785799086359e79 * cos(theta) ** 25 + 3.35679498858779e78 * cos(theta) ** 23 - 2.51188740642624e77 * cos(theta) ** 21 + 1.51579412456756e76 * cos(theta) ** 19 - 7.25037189653293e74 * cos(theta) ** 17 + 2.68971788851194e73 * cos(theta) ** 15 - 7.52518993588473e71 * cos(theta) ** 13 + 1.53014811000784e70 * cos(theta) ** 11 - 2.14963336016428e68 * cos(theta) ** 9 + 1.93951882120085e66 * cos(theta) ** 7 - 1.00295235767589e64 * cos(theta) ** 5 + 2.42963264940865e61 * cos(theta) ** 3 - 1.7391787039432e58 * cos(theta) ) * cos(29 * phi) ) # @torch.jit.script def Yl96_m30(theta, phi): return ( 2.65492717982987e-59 * (1.0 - cos(theta) ** 2) ** 15 * ( 8.30041882068727e84 * cos(theta) ** 66 - 9.32167453946293e85 * cos(theta) ** 64 + 4.97155975438023e86 * cos(theta) ** 62 - 1.67579670152104e87 * cos(theta) ** 60 + 4.00832454282734e87 * cos(theta) ** 58 - 7.24126827245202e87 * cos(theta) ** 56 + 1.02684651377312e88 * cos(theta) ** 54 - 1.17271936249748e88 * cos(theta) ** 52 + 1.09818211488111e88 * cos(theta) ** 50 - 8.54141644907531e87 * cos(theta) ** 48 + 5.56920101419477e87 * cos(theta) ** 46 - 3.06439290254736e87 * cos(theta) ** 44 + 1.4294456044427e87 * cos(theta) ** 42 - 5.66905879974744e86 * cos(theta) ** 40 + 1.91422764666797e86 * cos(theta) ** 38 - 5.50389380616597e85 * cos(theta) ** 36 + 1.34606098520363e85 * cos(theta) ** 34 - 2.79371147872452e84 * cos(theta) ** 32 + 4.90332941771891e83 * cos(theta) ** 30 - 7.24260881734372e82 * cos(theta) ** 28 + 8.94675206848342e81 * cos(theta) ** 26 - 9.16964497715898e80 * cos(theta) ** 24 + 7.72062847375191e79 * cos(theta) ** 22 - 5.2749635534951e78 * cos(theta) ** 20 + 2.88000883667836e77 * cos(theta) ** 18 - 1.2325632224106e76 * cos(theta) ** 16 + 4.03457683276791e74 * cos(theta) ** 14 - 9.78274691665015e72 * cos(theta) ** 12 + 1.68316292100863e71 * cos(theta) ** 10 - 1.93467002414785e69 * cos(theta) ** 8 + 1.3576631748406e67 * cos(theta) ** 6 - 5.01476178837945e64 * cos(theta) ** 4 + 7.28889794822594e61 * cos(theta) ** 2 - 1.7391787039432e58 ) * cos(30 * phi) ) # @torch.jit.script def Yl96_m31(theta, phi): return ( 2.89987171122115e-61 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 5.4782764216536e86 * cos(theta) ** 65 - 5.96587170525628e87 * cos(theta) ** 63 + 3.08236704771574e88 * cos(theta) ** 61 - 1.00547802091262e89 * cos(theta) ** 59 + 2.32482823483986e89 * cos(theta) ** 57 - 4.05511023257313e89 * cos(theta) ** 55 + 5.54497117437486e89 * cos(theta) ** 53 - 6.09814068498688e89 * cos(theta) ** 51 + 5.49091057440556e89 * cos(theta) ** 49 - 4.09987989555615e89 * cos(theta) ** 47 + 2.5618324665296e89 * cos(theta) ** 45 - 1.34833287712084e89 * cos(theta) ** 43 + 6.00367153865936e88 * cos(theta) ** 41 - 2.26762351989897e88 * cos(theta) ** 39 + 7.27406505733827e87 * cos(theta) ** 37 - 1.98140177021975e87 * cos(theta) ** 35 + 4.57660734969236e86 * cos(theta) ** 33 - 8.93987673191848e85 * cos(theta) ** 31 + 1.47099882531567e85 * cos(theta) ** 29 - 2.02793046885624e84 * cos(theta) ** 27 + 2.32615553780569e83 * cos(theta) ** 25 - 2.20071479451815e82 * cos(theta) ** 23 + 1.69853826422542e81 * cos(theta) ** 21 - 1.05499271069902e80 * cos(theta) ** 19 + 5.18401590602104e78 * cos(theta) ** 17 - 1.97210115585696e77 * cos(theta) ** 15 + 5.64840756587508e75 * cos(theta) ** 13 - 1.17392962999802e74 * cos(theta) ** 11 + 1.68316292100863e72 * cos(theta) ** 9 - 1.54773601931828e70 * cos(theta) ** 7 + 8.14597904904357e67 * cos(theta) ** 5 - 2.00590471535178e65 * cos(theta) ** 3 + 1.45777958964519e62 * cos(theta) ) * cos(31 * phi) ) # @torch.jit.script def Yl96_m32(theta, phi): return ( 3.17919467411013e-63 * (1.0 - cos(theta) ** 2) ** 16 * ( 3.56087967407484e88 * cos(theta) ** 64 - 3.75849917431145e89 * cos(theta) ** 62 + 1.8802438991066e90 * cos(theta) ** 60 - 5.93232032338447e90 * cos(theta) ** 58 + 1.32515209385872e91 * cos(theta) ** 56 - 2.23031062791522e91 * cos(theta) ** 54 + 2.93883472241868e91 * cos(theta) ** 52 - 3.11005174934331e91 * cos(theta) ** 50 + 2.69054618145872e91 * cos(theta) ** 48 - 1.92694355091139e91 * cos(theta) ** 46 + 1.15282460993832e91 * cos(theta) ** 44 - 5.79783137161961e90 * cos(theta) ** 42 + 2.46150533085034e90 * cos(theta) ** 40 - 8.843731727606e89 * cos(theta) ** 38 + 2.69140407121516e89 * cos(theta) ** 36 - 6.93490619576912e88 * cos(theta) ** 34 + 1.51028042539848e88 * cos(theta) ** 32 - 2.77136178689473e87 * cos(theta) ** 30 + 4.26589659341545e86 * cos(theta) ** 28 - 5.47541226591185e85 * cos(theta) ** 26 + 5.81538884451422e84 * cos(theta) ** 24 - 5.06164402739175e83 * cos(theta) ** 22 + 3.56693035487338e82 * cos(theta) ** 20 - 2.00448615032814e81 * cos(theta) ** 18 + 8.81282704023577e79 * cos(theta) ** 16 - 2.95815173378543e78 * cos(theta) ** 14 + 7.3429298356376e76 * cos(theta) ** 12 - 1.29132259299782e75 * cos(theta) ** 10 + 1.51484662890777e73 * cos(theta) ** 8 - 1.0834152135228e71 * cos(theta) ** 6 + 4.07298952452179e68 * cos(theta) ** 4 - 6.01771414605534e65 * cos(theta) ** 2 + 1.45777958964519e62 ) * cos(32 * phi) ) # @torch.jit.script def Yl96_m33(theta, phi): return ( 3.49890604025733e-65 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 2.2789629914079e90 * cos(theta) ** 63 - 2.3302694880731e91 * cos(theta) ** 61 + 1.12814633946396e92 * cos(theta) ** 59 - 3.44074578756299e92 * cos(theta) ** 57 + 7.42085172560883e92 * cos(theta) ** 55 - 1.20436773907422e93 * cos(theta) ** 53 + 1.52819405565771e93 * cos(theta) ** 51 - 1.55502587467165e93 * cos(theta) ** 49 + 1.29146216710019e93 * cos(theta) ** 47 - 8.8639403341924e92 * cos(theta) ** 45 + 5.0724282837286e92 * cos(theta) ** 43 - 2.43508917608024e92 * cos(theta) ** 41 + 9.84602132340135e91 * cos(theta) ** 39 - 3.36061805649028e91 * cos(theta) ** 37 + 9.68905465637458e90 * cos(theta) ** 35 - 2.3578681065615e90 * cos(theta) ** 33 + 4.83289736127513e89 * cos(theta) ** 31 - 8.31408536068418e88 * cos(theta) ** 29 + 1.19445104615633e88 * cos(theta) ** 27 - 1.42360718913708e87 * cos(theta) ** 25 + 1.39569332268341e86 * cos(theta) ** 23 - 1.11356168602619e85 * cos(theta) ** 21 + 7.13386070974677e83 * cos(theta) ** 19 - 3.60807507059065e82 * cos(theta) ** 17 + 1.41005232643772e81 * cos(theta) ** 15 - 4.14141242729961e79 * cos(theta) ** 13 + 8.81151580276512e77 * cos(theta) ** 11 - 1.29132259299782e76 * cos(theta) ** 9 + 1.21187730312621e74 * cos(theta) ** 7 - 6.50049128113677e71 * cos(theta) ** 5 + 1.62919580980871e69 * cos(theta) ** 3 - 1.20354282921107e66 * cos(theta) ) * cos(33 * phi) ) # @torch.jit.script def Yl96_m34(theta, phi): return ( 3.86625352702393e-67 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.43574668458698e92 * cos(theta) ** 62 - 1.42146438772459e93 * cos(theta) ** 60 + 6.65606340283737e93 * cos(theta) ** 58 - 1.96122509891091e94 * cos(theta) ** 56 + 4.08146844908486e94 * cos(theta) ** 54 - 6.38314901709337e94 * cos(theta) ** 52 + 7.79378968385433e94 * cos(theta) ** 50 - 7.61962678589111e94 * cos(theta) ** 48 + 6.06987218537088e94 * cos(theta) ** 46 - 3.98877315038658e94 * cos(theta) ** 44 + 2.1811441620033e94 * cos(theta) ** 42 - 9.98386562192897e93 * cos(theta) ** 40 + 3.83994831612653e93 * cos(theta) ** 38 - 1.2434286809014e93 * cos(theta) ** 36 + 3.3911691297311e92 * cos(theta) ** 34 - 7.78096475165296e91 * cos(theta) ** 32 + 1.49819818199529e91 * cos(theta) ** 30 - 2.41108475459841e90 * cos(theta) ** 28 + 3.22501782462208e89 * cos(theta) ** 26 - 3.5590179728427e88 * cos(theta) ** 24 + 3.21009464217185e87 * cos(theta) ** 22 - 2.33847954065499e86 * cos(theta) ** 20 + 1.35543353485189e85 * cos(theta) ** 18 - 6.1337276200041e83 * cos(theta) ** 16 + 2.11507848965659e82 * cos(theta) ** 14 - 5.38383615548949e80 * cos(theta) ** 12 + 9.69266738304164e78 * cos(theta) ** 10 - 1.16219033369804e77 * cos(theta) ** 8 + 8.48314112188349e74 * cos(theta) ** 6 - 3.25024564056839e72 * cos(theta) ** 4 + 4.88758742942614e69 * cos(theta) ** 2 - 1.20354282921107e66 ) * cos(34 * phi) ) # @torch.jit.script def Yl96_m35(theta, phi): return ( 4.29001525613128e-69 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 8.90162944443925e93 * cos(theta) ** 61 - 8.52878632634755e94 * cos(theta) ** 59 + 3.86051677364568e95 * cos(theta) ** 57 - 1.09828605539011e96 * cos(theta) ** 55 + 2.20399296250582e96 * cos(theta) ** 53 - 3.31923748888855e96 * cos(theta) ** 51 + 3.89689484192717e96 * cos(theta) ** 49 - 3.65742085722773e96 * cos(theta) ** 47 + 2.79214120527061e96 * cos(theta) ** 45 - 1.75506018617009e96 * cos(theta) ** 43 + 9.16080548041385e95 * cos(theta) ** 41 - 3.99354624877159e95 * cos(theta) ** 39 + 1.45918036012808e95 * cos(theta) ** 37 - 4.47634325124505e94 * cos(theta) ** 35 + 1.15299750410857e94 * cos(theta) ** 33 - 2.48990872052895e93 * cos(theta) ** 31 + 4.49459454598587e92 * cos(theta) ** 29 - 6.75103731287556e91 * cos(theta) ** 27 + 8.38504634401741e90 * cos(theta) ** 25 - 8.54164313482249e89 * cos(theta) ** 23 + 7.06220821277807e88 * cos(theta) ** 21 - 4.67695908130998e87 * cos(theta) ** 19 + 2.43978036273339e86 * cos(theta) ** 17 - 9.81396419200656e84 * cos(theta) ** 15 + 2.96110988551922e83 * cos(theta) ** 13 - 6.46060338658739e81 * cos(theta) ** 11 + 9.69266738304164e79 * cos(theta) ** 9 - 9.2975226695843e77 * cos(theta) ** 7 + 5.08988467313009e75 * cos(theta) ** 5 - 1.30009825622735e73 * cos(theta) ** 3 + 9.77517485885229e69 * cos(theta) ) * cos(35 * phi) ) # @torch.jit.script def Yl96_m36(theta, phi): return ( 4.78087020767889e-71 * (1.0 - cos(theta) ** 2) ** 18 * ( 5.42999396110794e95 * cos(theta) ** 60 - 5.03198393254505e96 * cos(theta) ** 58 + 2.20049456097804e97 * cos(theta) ** 56 - 6.04057330464559e97 * cos(theta) ** 54 + 1.16811627012809e98 * cos(theta) ** 52 - 1.69281111933316e98 * cos(theta) ** 50 + 1.90947847254431e98 * cos(theta) ** 48 - 1.71898780289703e98 * cos(theta) ** 46 + 1.25646354237177e98 * cos(theta) ** 44 - 7.54675880053141e97 * cos(theta) ** 42 + 3.75593024696968e97 * cos(theta) ** 40 - 1.55748303702092e97 * cos(theta) ** 38 + 5.39896733247389e96 * cos(theta) ** 36 - 1.56672013793577e96 * cos(theta) ** 34 + 3.8048917635583e95 * cos(theta) ** 32 - 7.71871703363973e94 * cos(theta) ** 30 + 1.3034324183359e94 * cos(theta) ** 28 - 1.8227800744764e93 * cos(theta) ** 26 + 2.09626158600435e92 * cos(theta) ** 24 - 1.96457792100917e91 * cos(theta) ** 22 + 1.48306372468339e90 * cos(theta) ** 20 - 8.88622225448896e88 * cos(theta) ** 18 + 4.14762661664677e87 * cos(theta) ** 16 - 1.47209462880098e86 * cos(theta) ** 14 + 3.84944285117499e84 * cos(theta) ** 12 - 7.10666372524613e82 * cos(theta) ** 10 + 8.72340064473747e80 * cos(theta) ** 8 - 6.50826586870901e78 * cos(theta) ** 6 + 2.54494233656505e76 * cos(theta) ** 4 - 3.90029476868206e73 * cos(theta) ** 2 + 9.77517485885229e69 ) * cos(36 * phi) ) # @torch.jit.script def Yl96_m37(theta, phi): return ( 5.35186941113327e-73 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 3.25799637666476e97 * cos(theta) ** 59 - 2.91855068087613e98 * cos(theta) ** 57 + 1.2322769541477e99 * cos(theta) ** 55 - 3.26190958450862e99 * cos(theta) ** 53 + 6.07420460466605e99 * cos(theta) ** 51 - 8.4640555966658e99 * cos(theta) ** 49 + 9.16549666821269e99 * cos(theta) ** 47 - 7.90734389332635e99 * cos(theta) ** 45 + 5.5284395864358e99 * cos(theta) ** 43 - 3.16963869622319e99 * cos(theta) ** 41 + 1.50237209878787e99 * cos(theta) ** 39 - 5.91843554067949e98 * cos(theta) ** 37 + 1.9436282396906e98 * cos(theta) ** 35 - 5.32684846898161e97 * cos(theta) ** 33 + 1.21756536433865e97 * cos(theta) ** 31 - 2.31561511009192e96 * cos(theta) ** 29 + 3.64961077134053e95 * cos(theta) ** 27 - 4.73922819363864e94 * cos(theta) ** 25 + 5.03102780641045e93 * cos(theta) ** 23 - 4.32207142622018e92 * cos(theta) ** 21 + 2.96612744936679e91 * cos(theta) ** 19 - 1.59952000580801e90 * cos(theta) ** 17 + 6.63620258663483e88 * cos(theta) ** 15 - 2.06093248032138e87 * cos(theta) ** 13 + 4.61933142140998e85 * cos(theta) ** 11 - 7.10666372524613e83 * cos(theta) ** 9 + 6.97872051578998e81 * cos(theta) ** 7 - 3.90495952122541e79 * cos(theta) ** 5 + 1.01797693462602e77 * cos(theta) ** 3 - 7.80058953736413e73 * cos(theta) ) * cos(37 * phi) ) # @torch.jit.script def Yl96_m38(theta, phi): return ( 6.01903824490719e-75 * (1.0 - cos(theta) ** 2) ** 19 * ( 1.92221786223221e99 * cos(theta) ** 58 - 1.66357388809939e100 * cos(theta) ** 56 + 6.77752324781235e100 * cos(theta) ** 54 - 1.72881207978957e101 * cos(theta) ** 52 + 3.09784434837968e101 * cos(theta) ** 50 - 4.14738724236624e101 * cos(theta) ** 48 + 4.30778343405997e101 * cos(theta) ** 46 - 3.55830475199686e101 * cos(theta) ** 44 + 2.37722902216739e101 * cos(theta) ** 42 - 1.29955186545151e101 * cos(theta) ** 40 + 5.8592511852727e100 * cos(theta) ** 38 - 2.18982115005141e100 * cos(theta) ** 36 + 6.80269883891711e99 * cos(theta) ** 34 - 1.75785999476393e99 * cos(theta) ** 32 + 3.77445262944983e98 * cos(theta) ** 30 - 6.71528381926657e97 * cos(theta) ** 28 + 9.85394908261942e96 * cos(theta) ** 26 - 1.18480704840966e96 * cos(theta) ** 24 + 1.1571363954744e95 * cos(theta) ** 22 - 9.07634999506238e93 * cos(theta) ** 20 + 5.6356421537969e92 * cos(theta) ** 18 - 2.71918400987362e91 * cos(theta) ** 16 + 9.95430387995225e89 * cos(theta) ** 14 - 2.67921222441779e88 * cos(theta) ** 12 + 5.08126456355098e86 * cos(theta) ** 10 - 6.39599735272151e84 * cos(theta) ** 8 + 4.88510436105298e82 * cos(theta) ** 6 - 1.9524797606127e80 * cos(theta) ** 4 + 3.05393080387806e77 * cos(theta) ** 2 - 7.80058953736413e73 ) * cos(38 * phi) ) # @torch.jit.script def Yl96_m39(theta, phi): return ( 6.80215026794904e-77 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 1.11488636009468e101 * cos(theta) ** 57 - 9.31601377335661e101 * cos(theta) ** 55 + 3.65986255381867e102 * cos(theta) ** 53 - 8.98982281490575e102 * cos(theta) ** 51 + 1.54892217418984e103 * cos(theta) ** 49 - 1.9907458763358e103 * cos(theta) ** 47 + 1.98158037966758e103 * cos(theta) ** 45 - 1.56565409087862e103 * cos(theta) ** 43 + 9.98436189310305e102 * cos(theta) ** 41 - 5.19820746180603e102 * cos(theta) ** 39 + 2.22651545040362e102 * cos(theta) ** 37 - 7.88335614018508e101 * cos(theta) ** 35 + 2.31291760523182e101 * cos(theta) ** 33 - 5.62515198324458e100 * cos(theta) ** 31 + 1.13233578883495e100 * cos(theta) ** 29 - 1.88027946939464e99 * cos(theta) ** 27 + 2.56202676148105e98 * cos(theta) ** 25 - 2.84353691618318e97 * cos(theta) ** 23 + 2.54570007004369e96 * cos(theta) ** 21 - 1.81526999901248e95 * cos(theta) ** 19 + 1.01441558768344e94 * cos(theta) ** 17 - 4.3506944157978e92 * cos(theta) ** 15 + 1.39360254319332e91 * cos(theta) ** 13 - 3.21505466930135e89 * cos(theta) ** 11 + 5.08126456355098e87 * cos(theta) ** 9 - 5.11679788217721e85 * cos(theta) ** 7 + 2.93106261663179e83 * cos(theta) ** 5 - 7.80991904245081e80 * cos(theta) ** 3 + 6.10786160775611e77 * cos(theta) ) * cos(39 * phi) ) # @torch.jit.script def Yl96_m40(theta, phi): return ( 7.72572668236375e-79 * (1.0 - cos(theta) ** 2) ** 20 * ( 6.35485225253969e102 * cos(theta) ** 56 - 5.12380757534614e103 * cos(theta) ** 54 + 1.93972715352389e104 * cos(theta) ** 52 - 4.58480963560193e104 * cos(theta) ** 50 + 7.58971865353023e104 * cos(theta) ** 48 - 9.35650561877825e104 * cos(theta) ** 46 + 8.91711170850413e104 * cos(theta) ** 44 - 6.73231259077806e104 * cos(theta) ** 42 + 4.09358837617225e104 * cos(theta) ** 40 - 2.02730091010435e104 * cos(theta) ** 38 + 8.23810716649341e103 * cos(theta) ** 36 - 2.75917464906478e103 * cos(theta) ** 34 + 7.63262809726499e102 * cos(theta) ** 32 - 1.74379711480582e102 * cos(theta) ** 30 + 3.28377378762135e101 * cos(theta) ** 28 - 5.07675456736553e100 * cos(theta) ** 26 + 6.40506690370262e99 * cos(theta) ** 24 - 6.54013490722132e98 * cos(theta) ** 22 + 5.34597014709174e97 * cos(theta) ** 20 - 3.4490129981237e96 * cos(theta) ** 18 + 1.72450649906185e95 * cos(theta) ** 16 - 6.52604162369669e93 * cos(theta) ** 14 + 1.81168330615131e92 * cos(theta) ** 12 - 3.53656013623148e90 * cos(theta) ** 10 + 4.57313810719588e88 * cos(theta) ** 8 - 3.58175851752405e86 * cos(theta) ** 6 + 1.4655313083159e84 * cos(theta) ** 4 - 2.34297571273524e81 * cos(theta) ** 2 + 6.10786160775611e77 ) * cos(40 * phi) ) # @torch.jit.script def Yl96_m41(theta, phi): return ( 8.8203342398957e-81 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 3.55871726142223e104 * cos(theta) ** 55 - 2.76685609068691e105 * cos(theta) ** 53 + 1.00865811983243e106 * cos(theta) ** 51 - 2.29240481780097e106 * cos(theta) ** 49 + 3.64306495369451e106 * cos(theta) ** 47 - 4.30399258463799e106 * cos(theta) ** 45 + 3.92352915174182e106 * cos(theta) ** 43 - 2.82757128812678e106 * cos(theta) ** 41 + 1.6374353504689e106 * cos(theta) ** 39 - 7.70374345839654e105 * cos(theta) ** 37 + 2.96571857993763e105 * cos(theta) ** 35 - 9.38119380682025e104 * cos(theta) ** 33 + 2.4424409911248e104 * cos(theta) ** 31 - 5.23139134441746e103 * cos(theta) ** 29 + 9.19456660533978e102 * cos(theta) ** 27 - 1.31995618751504e102 * cos(theta) ** 25 + 1.53721605688863e101 * cos(theta) ** 23 - 1.43882967958869e100 * cos(theta) ** 21 + 1.06919402941835e99 * cos(theta) ** 19 - 6.20822339662267e97 * cos(theta) ** 17 + 2.75921039849896e96 * cos(theta) ** 15 - 9.13645827317537e94 * cos(theta) ** 13 + 2.17401996738157e93 * cos(theta) ** 11 - 3.53656013623148e91 * cos(theta) ** 9 + 3.65851048575671e89 * cos(theta) ** 7 - 2.14905511051443e87 * cos(theta) ** 5 + 5.86212523326358e84 * cos(theta) ** 3 - 4.68595142547049e81 * cos(theta) ) * cos(41 * phi) ) # @torch.jit.script def Yl96_m42(theta, phi): return ( 1.01242801662482e-82 * (1.0 - cos(theta) ** 2) ** 21 * ( 1.95729449378222e106 * cos(theta) ** 54 - 1.46643372806406e107 * cos(theta) ** 52 + 5.14415641114537e107 * cos(theta) ** 50 - 1.12327836072247e108 * cos(theta) ** 48 + 1.71224052823642e108 * cos(theta) ** 46 - 1.9367966630871e108 * cos(theta) ** 44 + 1.68711753524898e108 * cos(theta) ** 42 - 1.15930422813198e108 * cos(theta) ** 40 + 6.38599786682871e107 * cos(theta) ** 38 - 2.85038507960672e107 * cos(theta) ** 36 + 1.03800150297817e107 * cos(theta) ** 34 - 3.09579395625068e106 * cos(theta) ** 32 + 7.57156707248687e105 * cos(theta) ** 30 - 1.51710348988106e105 * cos(theta) ** 28 + 2.48253298344174e104 * cos(theta) ** 26 - 3.29989046878759e103 * cos(theta) ** 24 + 3.53559693084385e102 * cos(theta) ** 22 - 3.02154232713625e101 * cos(theta) ** 20 + 2.03146865589486e100 * cos(theta) ** 18 - 1.05539797742585e99 * cos(theta) ** 16 + 4.13881559774844e97 * cos(theta) ** 14 - 1.1877395755128e96 * cos(theta) ** 12 + 2.39142196411973e94 * cos(theta) ** 10 - 3.18290412260833e92 * cos(theta) ** 8 + 2.56095734002969e90 * cos(theta) ** 6 - 1.07452755525721e88 * cos(theta) ** 4 + 1.75863756997907e85 * cos(theta) ** 2 - 4.68595142547049e81 ) * cos(42 * phi) ) # @torch.jit.script def Yl96_m43(theta, phi): return ( 1.16858383578193e-84 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 1.0569390266424e108 * cos(theta) ** 53 - 7.62545538593313e108 * cos(theta) ** 51 + 2.57207820557268e109 * cos(theta) ** 49 - 5.39173613146787e109 * cos(theta) ** 47 + 7.87630642988753e109 * cos(theta) ** 45 - 8.52190531758323e109 * cos(theta) ** 43 + 7.08589364804572e109 * cos(theta) ** 41 - 4.63721691252793e109 * cos(theta) ** 39 + 2.42667918939491e109 * cos(theta) ** 37 - 1.02613862865842e109 * cos(theta) ** 35 + 3.52920511012578e108 * cos(theta) ** 33 - 9.90654066000218e107 * cos(theta) ** 31 + 2.27147012174606e107 * cos(theta) ** 29 - 4.24788977166698e106 * cos(theta) ** 27 + 6.45458575694853e105 * cos(theta) ** 25 - 7.91973712509022e104 * cos(theta) ** 23 + 7.77831324785646e103 * cos(theta) ** 21 - 6.0430846542725e102 * cos(theta) ** 19 + 3.65664358061075e101 * cos(theta) ** 17 - 1.68863676388137e100 * cos(theta) ** 15 + 5.79434183684782e98 * cos(theta) ** 13 - 1.42528749061536e97 * cos(theta) ** 11 + 2.39142196411973e95 * cos(theta) ** 9 - 2.54632329808667e93 * cos(theta) ** 7 + 1.53657440401782e91 * cos(theta) ** 5 - 4.29811022102886e88 * cos(theta) ** 3 + 3.51727513995815e85 * cos(theta) ) * cos(43 * phi) ) # @torch.jit.script def Yl96_m44(theta, phi): return ( 1.35661908383044e-86 * (1.0 - cos(theta) ** 2) ** 22 * ( 5.60177684120473e109 * cos(theta) ** 52 - 3.8889822468259e110 * cos(theta) ** 50 + 1.26031832073062e111 * cos(theta) ** 48 - 2.5341159817899e111 * cos(theta) ** 46 + 3.54433789344939e111 * cos(theta) ** 44 - 3.66441928656079e111 * cos(theta) ** 42 + 2.90521639569875e111 * cos(theta) ** 40 - 1.80851459588589e111 * cos(theta) ** 38 + 8.97871300076117e110 * cos(theta) ** 36 - 3.59148520030447e110 * cos(theta) ** 34 + 1.16463768634151e110 * cos(theta) ** 32 - 3.07102760460068e109 * cos(theta) ** 30 + 6.58726335306358e108 * cos(theta) ** 28 - 1.14693023835008e108 * cos(theta) ** 26 + 1.61364643923713e107 * cos(theta) ** 24 - 1.82153953877075e106 * cos(theta) ** 22 + 1.63344578204986e105 * cos(theta) ** 20 - 1.14818608431178e104 * cos(theta) ** 18 + 6.21629408703828e102 * cos(theta) ** 16 - 2.53295514582205e101 * cos(theta) ** 14 + 7.53264438790217e99 * cos(theta) ** 12 - 1.56781623967689e98 * cos(theta) ** 10 + 2.15227976770776e96 * cos(theta) ** 8 - 1.78242630866067e94 * cos(theta) ** 6 + 7.68287202008908e91 * cos(theta) ** 4 - 1.28943306630866e89 * cos(theta) ** 2 + 3.51727513995815e85 ) * cos(44 * phi) ) # @torch.jit.script def Yl96_m45(theta, phi): return ( 1.58433382348208e-88 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 2.91292395742646e111 * cos(theta) ** 51 - 1.94449112341295e112 * cos(theta) ** 49 + 6.04952793950695e112 * cos(theta) ** 47 - 1.16569335162335e113 * cos(theta) ** 45 + 1.55950867311773e113 * cos(theta) ** 43 - 1.53905610035553e113 * cos(theta) ** 41 + 1.1620865582795e113 * cos(theta) ** 39 - 6.87235546436639e112 * cos(theta) ** 37 + 3.23233668027402e112 * cos(theta) ** 35 - 1.22110496810352e112 * cos(theta) ** 33 + 3.72684059629282e111 * cos(theta) ** 31 - 9.21308281380203e110 * cos(theta) ** 29 + 1.8444337388578e110 * cos(theta) ** 27 - 2.98201861971022e109 * cos(theta) ** 25 + 3.87275145416912e108 * cos(theta) ** 23 - 4.00738698529565e107 * cos(theta) ** 21 + 3.26689156409972e106 * cos(theta) ** 19 - 2.0667349517612e105 * cos(theta) ** 17 + 9.94607053926124e103 * cos(theta) ** 15 - 3.54613720415087e102 * cos(theta) ** 13 + 9.0391732654826e100 * cos(theta) ** 11 - 1.56781623967689e99 * cos(theta) ** 9 + 1.7218238141662e97 * cos(theta) ** 7 - 1.0694557851964e95 * cos(theta) ** 5 + 3.07314880803563e92 * cos(theta) ** 3 - 2.57886613261731e89 * cos(theta) ) * cos(45 * phi) ) # @torch.jit.script def Yl96_m46(theta, phi): return ( 1.86173315785279e-90 * (1.0 - cos(theta) ** 2) ** 23 * ( 1.48559121828749e113 * cos(theta) ** 50 - 9.52800650472345e113 * cos(theta) ** 48 + 2.84327813156827e114 * cos(theta) ** 46 - 5.24562008230509e114 * cos(theta) ** 44 + 6.70588729440624e114 * cos(theta) ** 42 - 6.31013001145768e114 * cos(theta) ** 40 + 4.53213757729004e114 * cos(theta) ** 38 - 2.54277152181556e114 * cos(theta) ** 36 + 1.13131783809591e114 * cos(theta) ** 34 - 4.02964639474161e113 * cos(theta) ** 32 + 1.15532058485077e113 * cos(theta) ** 30 - 2.67179401600259e112 * cos(theta) ** 28 + 4.97997109491607e111 * cos(theta) ** 26 - 7.45504654927555e110 * cos(theta) ** 24 + 8.90732834458897e109 * cos(theta) ** 22 - 8.41551266912087e108 * cos(theta) ** 20 + 6.20709397178946e107 * cos(theta) ** 18 - 3.51344941799403e106 * cos(theta) ** 16 + 1.49191058088919e105 * cos(theta) ** 14 - 4.60997836539613e103 * cos(theta) ** 12 + 9.94309059203086e101 * cos(theta) ** 10 - 1.4110346157092e100 * cos(theta) ** 8 + 1.20527666991634e98 * cos(theta) ** 6 - 5.347278925982e95 * cos(theta) ** 4 + 9.2194464241069e92 * cos(theta) ** 2 - 2.57886613261731e89 ) * cos(46 * phi) ) # @torch.jit.script def Yl96_m47(theta, phi): return ( 2.20173178852451e-92 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 7.42795609143747e114 * cos(theta) ** 49 - 4.57344312226726e115 * cos(theta) ** 47 + 1.3079079405214e116 * cos(theta) ** 45 - 2.30807283621424e116 * cos(theta) ** 43 + 2.81647266365062e116 * cos(theta) ** 41 - 2.52405200458307e116 * cos(theta) ** 39 + 1.72221227937022e116 * cos(theta) ** 37 - 9.15397747853603e115 * cos(theta) ** 35 + 3.84648064952608e115 * cos(theta) ** 33 - 1.28948684631732e115 * cos(theta) ** 31 + 3.46596175455232e114 * cos(theta) ** 29 - 7.48102324480725e113 * cos(theta) ** 27 + 1.29479248467818e113 * cos(theta) ** 25 - 1.78921117182613e112 * cos(theta) ** 23 + 1.95961223580957e111 * cos(theta) ** 21 - 1.68310253382417e110 * cos(theta) ** 19 + 1.1172769149221e109 * cos(theta) ** 17 - 5.62151906879045e107 * cos(theta) ** 15 + 2.08867481324486e106 * cos(theta) ** 13 - 5.53197403847535e104 * cos(theta) ** 11 + 9.94309059203086e102 * cos(theta) ** 9 - 1.12882769256736e101 * cos(theta) ** 7 + 7.23166001949806e98 * cos(theta) ** 5 - 2.1389115703928e96 * cos(theta) ** 3 + 1.84388928482138e93 * cos(theta) ) * cos(47 * phi) ) # @torch.jit.script def Yl96_m48(theta, phi): return ( 2.62110927205299e-94 * (1.0 - cos(theta) ** 2) ** 24 * ( 3.63969848480436e116 * cos(theta) ** 48 - 2.14951826746561e117 * cos(theta) ** 46 + 5.88558573234631e117 * cos(theta) ** 44 - 9.92471319572124e117 * cos(theta) ** 42 + 1.15475379209675e118 * cos(theta) ** 40 - 9.84380281787397e117 * cos(theta) ** 38 + 6.3721854336698e117 * cos(theta) ** 36 - 3.20389211748761e117 * cos(theta) ** 34 + 1.26933861434361e117 * cos(theta) ** 32 - 3.99740922358368e116 * cos(theta) ** 30 + 1.00512890882017e116 * cos(theta) ** 28 - 2.01987627609796e115 * cos(theta) ** 26 + 3.23698121169544e114 * cos(theta) ** 24 - 4.1151856952001e113 * cos(theta) ** 22 + 4.1151856952001e112 * cos(theta) ** 20 - 3.19789481426593e111 * cos(theta) ** 18 + 1.89937075536757e110 * cos(theta) ** 16 - 8.43227860318568e108 * cos(theta) ** 14 + 2.71527725721832e107 * cos(theta) ** 12 - 6.08517144232289e105 * cos(theta) ** 10 + 8.94878153282778e103 * cos(theta) ** 8 - 7.90179384797155e101 * cos(theta) ** 6 + 3.61583000974903e99 * cos(theta) ** 4 - 6.4167347111784e96 * cos(theta) ** 2 + 1.84388928482138e93 ) * cos(48 * phi) ) # @torch.jit.script def Yl96_m49(theta, phi): return ( 3.14181426283119e-96 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.74705527270609e118 * cos(theta) ** 47 - 9.88778403034181e118 * cos(theta) ** 45 + 2.58965772223238e119 * cos(theta) ** 43 - 4.16837954220292e119 * cos(theta) ** 41 + 4.61901516838702e119 * cos(theta) ** 39 - 3.74064507079211e119 * cos(theta) ** 37 + 2.29398675612113e119 * cos(theta) ** 35 - 1.08932331994579e119 * cos(theta) ** 33 + 4.06188356589955e118 * cos(theta) ** 31 - 1.1992227670751e118 * cos(theta) ** 29 + 2.81436094469649e117 * cos(theta) ** 27 - 5.25167831785469e116 * cos(theta) ** 25 + 7.76875490806907e115 * cos(theta) ** 23 - 9.05340852944023e114 * cos(theta) ** 21 + 8.23037139040021e113 * cos(theta) ** 19 - 5.75621066567867e112 * cos(theta) ** 17 + 3.03899320858812e111 * cos(theta) ** 15 - 1.180519004446e110 * cos(theta) ** 13 + 3.25833270866198e108 * cos(theta) ** 11 - 6.08517144232289e106 * cos(theta) ** 9 + 7.15902522626222e104 * cos(theta) ** 7 - 4.74107630878293e102 * cos(theta) ** 5 + 1.44633200389961e100 * cos(theta) ** 3 - 1.28334694223568e97 * cos(theta) ) * cos(49 * phi) ) # @torch.jit.script def Yl96_m50(theta, phi): return ( 3.79275814837856e-98 * (1.0 - cos(theta) ** 2) ** 25 * ( 8.21115978171863e119 * cos(theta) ** 46 - 4.44950281365381e120 * cos(theta) ** 44 + 1.11355282055992e121 * cos(theta) ** 42 - 1.7090356123032e121 * cos(theta) ** 40 + 1.80141591567094e121 * cos(theta) ** 38 - 1.38403867619308e121 * cos(theta) ** 36 + 8.02895364642395e120 * cos(theta) ** 34 - 3.5947669558211e120 * cos(theta) ** 32 + 1.25918390542886e120 * cos(theta) ** 30 - 3.4777460245178e119 * cos(theta) ** 28 + 7.59877455068051e118 * cos(theta) ** 26 - 1.31291957946367e118 * cos(theta) ** 24 + 1.78681362885589e117 * cos(theta) ** 22 - 1.90121579118245e116 * cos(theta) ** 20 + 1.56377056417604e115 * cos(theta) ** 18 - 9.78555813165374e113 * cos(theta) ** 16 + 4.55848981288218e112 * cos(theta) ** 14 - 1.53467470577979e111 * cos(theta) ** 12 + 3.58416597952818e109 * cos(theta) ** 10 - 5.4766542980906e107 * cos(theta) ** 8 + 5.01131765838355e105 * cos(theta) ** 6 - 2.37053815439146e103 * cos(theta) ** 4 + 4.33899601169884e100 * cos(theta) ** 2 - 1.28334694223568e97 ) * cos(50 * phi) ) # @torch.jit.script def Yl96_m51(theta, phi): return ( 4.61230020485101e-100 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 3.77713349959057e121 * cos(theta) ** 45 - 1.95778123800768e122 * cos(theta) ** 43 + 4.67692184635168e122 * cos(theta) ** 41 - 6.83614244921279e122 * cos(theta) ** 39 + 6.84538047954956e122 * cos(theta) ** 37 - 4.98253923429509e122 * cos(theta) ** 35 + 2.72984423978414e122 * cos(theta) ** 33 - 1.15032542586275e122 * cos(theta) ** 31 + 3.77755171628658e121 * cos(theta) ** 29 - 9.73768886864984e120 * cos(theta) ** 27 + 1.97568138317693e120 * cos(theta) ** 25 - 3.15100699071281e119 * cos(theta) ** 23 + 3.93098998348295e118 * cos(theta) ** 21 - 3.8024315823649e117 * cos(theta) ** 19 + 2.81478701551687e116 * cos(theta) ** 17 - 1.5656893010646e115 * cos(theta) ** 15 + 6.38188573803505e113 * cos(theta) ** 13 - 1.84160964693575e112 * cos(theta) ** 11 + 3.58416597952818e110 * cos(theta) ** 9 - 4.38132343847248e108 * cos(theta) ** 7 + 3.00679059503013e106 * cos(theta) ** 5 - 9.48215261756586e103 * cos(theta) ** 3 + 8.67799202339767e100 * cos(theta) ) * cos(51 * phi) ) # @torch.jit.script def Yl96_m52(theta, phi): return ( 5.65171758682122e-102 * (1.0 - cos(theta) ** 2) ** 26 * ( 1.69971007481576e123 * cos(theta) ** 44 - 8.41845932343302e123 * cos(theta) ** 42 + 1.91753795700419e124 * cos(theta) ** 40 - 2.66609555519299e124 * cos(theta) ** 38 + 2.53279077743334e124 * cos(theta) ** 36 - 1.74388873200328e124 * cos(theta) ** 34 + 9.00848599128767e123 * cos(theta) ** 32 - 3.56600882017453e123 * cos(theta) ** 30 + 1.09548999772311e123 * cos(theta) ** 28 - 2.62917599453546e122 * cos(theta) ** 26 + 4.93920345794233e121 * cos(theta) ** 24 - 7.24731607863947e120 * cos(theta) ** 22 + 8.25507896531419e119 * cos(theta) ** 20 - 7.2246200064933e118 * cos(theta) ** 18 + 4.78513792637868e117 * cos(theta) ** 16 - 2.3485339515969e116 * cos(theta) ** 14 + 8.29645145944557e114 * cos(theta) ** 12 - 2.02577061162933e113 * cos(theta) ** 10 + 3.22574938157536e111 * cos(theta) ** 8 - 3.06692640693074e109 * cos(theta) ** 6 + 1.50339529751507e107 * cos(theta) ** 4 - 2.84464578526976e104 * cos(theta) ** 2 + 8.67799202339767e100 ) * cos(52 * phi) ) # @torch.jit.script def Yl96_m53(theta, phi): return ( 6.98008931602214e-104 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 7.47872432918933e124 * cos(theta) ** 43 - 3.53575291584187e125 * cos(theta) ** 41 + 7.67015182801675e125 * cos(theta) ** 39 - 1.01311631097334e126 * cos(theta) ** 37 + 9.11804679876002e125 * cos(theta) ** 35 - 5.92922168881116e125 * cos(theta) ** 33 + 2.88271551721205e125 * cos(theta) ** 31 - 1.06980264605236e125 * cos(theta) ** 29 + 3.0673719936247e124 * cos(theta) ** 27 - 6.83585758579219e123 * cos(theta) ** 25 + 1.18540882990616e123 * cos(theta) ** 23 - 1.59440953730068e122 * cos(theta) ** 21 + 1.65101579306284e121 * cos(theta) ** 19 - 1.30043160116879e120 * cos(theta) ** 17 + 7.65622068220589e118 * cos(theta) ** 15 - 3.28794753223566e117 * cos(theta) ** 13 + 9.95574175133468e115 * cos(theta) ** 11 - 2.02577061162933e114 * cos(theta) ** 9 + 2.58059950526029e112 * cos(theta) ** 7 - 1.84015584415844e110 * cos(theta) ** 5 + 6.01358119006027e107 * cos(theta) ** 3 - 5.68929157053951e104 * cos(theta) ) * cos(53 * phi) ) # @torch.jit.script def Yl96_m54(theta, phi): return ( 8.69122758830419e-106 * (1.0 - cos(theta) ** 2) ** 27 * ( 3.21585146155141e126 * cos(theta) ** 42 - 1.44965869549517e127 * cos(theta) ** 40 + 2.99135921292653e127 * cos(theta) ** 38 - 3.74853035060134e127 * cos(theta) ** 36 + 3.19131637956601e127 * cos(theta) ** 34 - 1.95664315730768e127 * cos(theta) ** 32 + 8.93641810335737e126 * cos(theta) ** 30 - 3.10242767355184e126 * cos(theta) ** 28 + 8.28190438278669e125 * cos(theta) ** 26 - 1.70896439644805e125 * cos(theta) ** 24 + 2.72644030878417e124 * cos(theta) ** 22 - 3.34826002833143e123 * cos(theta) ** 20 + 3.13693000681939e122 * cos(theta) ** 18 - 2.21073372198695e121 * cos(theta) ** 16 + 1.14843310233088e120 * cos(theta) ** 14 - 4.27433179190635e118 * cos(theta) ** 12 + 1.09513159264681e117 * cos(theta) ** 10 - 1.82319355046639e115 * cos(theta) ** 8 + 1.8064196536822e113 * cos(theta) ** 6 - 9.20077922079221e110 * cos(theta) ** 4 + 1.80407435701808e108 * cos(theta) ** 2 - 5.68929157053951e104 ) * cos(54 * phi) ) # @torch.jit.script def Yl96_m55(theta, phi): return ( 1.0913599282954e-107 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 1.35065761385159e128 * cos(theta) ** 41 - 5.79863478198066e128 * cos(theta) ** 39 + 1.13671650091208e129 * cos(theta) ** 37 - 1.34947092621648e129 * cos(theta) ** 35 + 1.08504756905244e129 * cos(theta) ** 33 - 6.26125810338458e128 * cos(theta) ** 31 + 2.68092543100721e128 * cos(theta) ** 29 - 8.68679748594515e127 * cos(theta) ** 27 + 2.15329513952454e127 * cos(theta) ** 25 - 4.10151455147531e126 * cos(theta) ** 23 + 5.99816867932517e125 * cos(theta) ** 21 - 6.69652005666287e124 * cos(theta) ** 19 + 5.6464740122749e123 * cos(theta) ** 17 - 3.53717395517912e122 * cos(theta) ** 15 + 1.60780634326324e121 * cos(theta) ** 13 - 5.12919815028763e119 * cos(theta) ** 11 + 1.09513159264681e118 * cos(theta) ** 9 - 1.45855484037312e116 * cos(theta) ** 7 + 1.08385179220932e114 * cos(theta) ** 5 - 3.68031168831688e111 * cos(theta) ** 3 + 3.60814871403616e108 * cos(theta) ) * cos(55 * phi) ) # @torch.jit.script def Yl96_m56(theta, phi): return ( 1.38246543381318e-109 * (1.0 - cos(theta) ** 2) ** 28 * ( 5.53769621679153e129 * cos(theta) ** 40 - 2.26146756497246e130 * cos(theta) ** 38 + 4.2058510533747e130 * cos(theta) ** 36 - 4.72314824175769e130 * cos(theta) ** 34 + 3.58065697787306e130 * cos(theta) ** 32 - 1.94099001204922e130 * cos(theta) ** 30 + 7.77468374992091e129 * cos(theta) ** 28 - 2.34543532120519e129 * cos(theta) ** 26 + 5.38323784881135e128 * cos(theta) ** 24 - 9.43348346839322e127 * cos(theta) ** 22 + 1.25961542265829e127 * cos(theta) ** 20 - 1.27233881076595e126 * cos(theta) ** 18 + 9.59900582086734e124 * cos(theta) ** 16 - 5.30576093276868e123 * cos(theta) ** 14 + 2.09014824624221e122 * cos(theta) ** 12 - 5.64211796531639e120 * cos(theta) ** 10 + 9.85618433382133e118 * cos(theta) ** 8 - 1.02098838826118e117 * cos(theta) ** 6 + 5.41925896104661e114 * cos(theta) ** 4 - 1.10409350649506e112 * cos(theta) ** 2 + 3.60814871403616e108 ) * cos(56 * phi) ) # @torch.jit.script def Yl96_m57(theta, phi): return ( 1.76717097671067e-111 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 2.21507848671661e131 * cos(theta) ** 39 - 8.59357674689534e131 * cos(theta) ** 37 + 1.51410637921489e132 * cos(theta) ** 35 - 1.60587040219761e132 * cos(theta) ** 33 + 1.14581023291938e132 * cos(theta) ** 31 - 5.82297003614766e131 * cos(theta) ** 29 + 2.17691144997786e131 * cos(theta) ** 27 - 6.0981318351335e130 * cos(theta) ** 25 + 1.29197708371472e130 * cos(theta) ** 23 - 2.07536636304651e129 * cos(theta) ** 21 + 2.51923084531657e128 * cos(theta) ** 19 - 2.2902098593787e127 * cos(theta) ** 17 + 1.53584093133877e126 * cos(theta) ** 15 - 7.42806530587615e124 * cos(theta) ** 13 + 2.50817789549065e123 * cos(theta) ** 11 - 5.64211796531639e121 * cos(theta) ** 9 + 7.88494746705706e119 * cos(theta) ** 7 - 6.12593032956709e117 * cos(theta) ** 5 + 2.16770358441864e115 * cos(theta) ** 3 - 2.20818701299013e112 * cos(theta) ) * cos(57 * phi) ) # @torch.jit.script def Yl96_m58(theta, phi): return ( 2.28026807175571e-113 * (1.0 - cos(theta) ** 2) ** 29 * ( 8.63880609819479e132 * cos(theta) ** 38 - 3.17962339635128e133 * cos(theta) ** 36 + 5.29937232725213e133 * cos(theta) ** 34 - 5.29937232725213e133 * cos(theta) ** 32 + 3.55201172205007e133 * cos(theta) ** 30 - 1.68866131048282e133 * cos(theta) ** 28 + 5.87766091494021e132 * cos(theta) ** 26 - 1.52453295878337e132 * cos(theta) ** 24 + 2.97154729254387e131 * cos(theta) ** 22 - 4.35826936239767e130 * cos(theta) ** 20 + 4.78653860610149e129 * cos(theta) ** 18 - 3.89335676094379e128 * cos(theta) ** 16 + 2.30376139700816e127 * cos(theta) ** 14 - 9.656484897639e125 * cos(theta) ** 12 + 2.75899568503971e124 * cos(theta) ** 10 - 5.07790616878475e122 * cos(theta) ** 8 + 5.51946322693995e120 * cos(theta) ** 6 - 3.06296516478354e118 * cos(theta) ** 4 + 6.50311075325593e115 * cos(theta) ** 2 - 2.20818701299013e112 ) * cos(58 * phi) ) # @torch.jit.script def Yl96_m59(theta, phi): return ( 2.97117518296351e-115 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 3.28274631731402e134 * cos(theta) ** 37 - 1.14466442268646e135 * cos(theta) ** 35 + 1.80178659126572e135 * cos(theta) ** 33 - 1.69579914472068e135 * cos(theta) ** 31 + 1.06560351661502e135 * cos(theta) ** 29 - 4.7282516693519e134 * cos(theta) ** 27 + 1.52819183788445e134 * cos(theta) ** 25 - 3.6588791010801e133 * cos(theta) ** 23 + 6.5374040435965e132 * cos(theta) ** 21 - 8.71653872479534e131 * cos(theta) ** 19 + 8.61576949098268e130 * cos(theta) ** 17 - 6.22937081751007e129 * cos(theta) ** 15 + 3.22526595581143e128 * cos(theta) ** 13 - 1.15877818771668e127 * cos(theta) ** 11 + 2.75899568503971e125 * cos(theta) ** 9 - 4.0623249350278e123 * cos(theta) ** 7 + 3.31167793616397e121 * cos(theta) ** 5 - 1.22518606591342e119 * cos(theta) ** 3 + 1.30062215065119e116 * cos(theta) ) * cos(59 * phi) ) # @torch.jit.script def Yl96_m60(theta, phi): return ( 3.91079541827941e-117 * (1.0 - cos(theta) ** 2) ** 30 * ( 1.21461613740619e136 * cos(theta) ** 36 - 4.00632547940261e136 * cos(theta) ** 34 + 5.94589575117689e136 * cos(theta) ** 32 - 5.25697734863411e136 * cos(theta) ** 30 + 3.09025019818356e136 * cos(theta) ** 28 - 1.27662795072501e136 * cos(theta) ** 26 + 3.82047959471114e135 * cos(theta) ** 24 - 8.41542193248423e134 * cos(theta) ** 22 + 1.37285484915527e134 * cos(theta) ** 20 - 1.65614235771111e133 * cos(theta) ** 18 + 1.46468081346705e132 * cos(theta) ** 16 - 9.3440562262651e130 * cos(theta) ** 14 + 4.19284574255485e129 * cos(theta) ** 12 - 1.27465600648835e128 * cos(theta) ** 10 + 2.48309611653574e126 * cos(theta) ** 8 - 2.84362745451946e124 * cos(theta) ** 6 + 1.65583896808198e122 * cos(theta) ** 4 - 3.67555819774025e119 * cos(theta) ** 2 + 1.30062215065119e116 ) * cos(60 * phi) ) # @torch.jit.script def Yl96_m61(theta, phi): return ( 5.20192421860811e-119 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 4.37261809466227e137 * cos(theta) ** 35 - 1.36215066299689e138 * cos(theta) ** 33 + 1.9026866403766e138 * cos(theta) ** 31 - 1.57709320459023e138 * cos(theta) ** 29 + 8.65270055491398e137 * cos(theta) ** 27 - 3.31923267188503e137 * cos(theta) ** 25 + 9.16915102730673e136 * cos(theta) ** 23 - 1.85139282514653e136 * cos(theta) ** 21 + 2.74570969831053e135 * cos(theta) ** 19 - 2.98105624388001e134 * cos(theta) ** 17 + 2.34348930154729e133 * cos(theta) ** 15 - 1.30816787167711e132 * cos(theta) ** 13 + 5.03141489106582e130 * cos(theta) ** 11 - 1.27465600648835e129 * cos(theta) ** 9 + 1.98647689322859e127 * cos(theta) ** 7 - 1.70617647271168e125 * cos(theta) ** 5 + 6.62335587232794e122 * cos(theta) ** 3 - 7.3511163954805e119 * cos(theta) ) * cos(61 * phi) ) # @torch.jit.script def Yl96_m62(theta, phi): return ( 6.99522125388846e-121 * (1.0 - cos(theta) ** 2) ** 31 * ( 1.5304163331318e139 * cos(theta) ** 34 - 4.49509718788973e139 * cos(theta) ** 32 + 5.89832858516747e139 * cos(theta) ** 30 - 4.57357029331168e139 * cos(theta) ** 28 + 2.33622914982677e139 * cos(theta) ** 26 - 8.29808167971259e138 * cos(theta) ** 24 + 2.10890473628055e138 * cos(theta) ** 22 - 3.88792493280771e137 * cos(theta) ** 20 + 5.21684842679001e136 * cos(theta) ** 18 - 5.06779561459601e135 * cos(theta) ** 16 + 3.51523395232093e134 * cos(theta) ** 14 - 1.70061823318025e133 * cos(theta) ** 12 + 5.53455638017241e131 * cos(theta) ** 10 - 1.14719040583951e130 * cos(theta) ** 8 + 1.39053382526002e128 * cos(theta) ** 6 - 8.53088236355838e125 * cos(theta) ** 4 + 1.98700676169838e123 * cos(theta) ** 2 - 7.3511163954805e119 ) * cos(62 * phi) ) # @torch.jit.script def Yl96_m63(theta, phi): return ( 9.51400630272681e-123 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 5.20341553264811e140 * cos(theta) ** 33 - 1.43843110012471e141 * cos(theta) ** 31 + 1.76949857555024e141 * cos(theta) ** 29 - 1.28059968212727e141 * cos(theta) ** 27 + 6.07419578954961e140 * cos(theta) ** 25 - 1.99153960313102e140 * cos(theta) ** 23 + 4.6395904198172e139 * cos(theta) ** 21 - 7.77584986561543e138 * cos(theta) ** 19 + 9.39032716822202e137 * cos(theta) ** 17 - 8.10847298335361e136 * cos(theta) ** 15 + 4.9213275332493e135 * cos(theta) ** 13 - 2.0407418798163e134 * cos(theta) ** 11 + 5.53455638017241e132 * cos(theta) ** 9 - 9.17752324671611e130 * cos(theta) ** 7 + 8.3432029515601e128 * cos(theta) ** 5 - 3.41235294542335e126 * cos(theta) ** 3 + 3.97401352339676e123 * cos(theta) ) * cos(63 * phi) ) # @torch.jit.script def Yl96_m64(theta, phi): return ( 1.30932202506075e-124 * (1.0 - cos(theta) ** 2) ** 32 * ( 1.71712712577388e142 * cos(theta) ** 32 - 4.45913641038661e142 * cos(theta) ** 30 + 5.1315458690957e142 * cos(theta) ** 28 - 3.45761914174363e142 * cos(theta) ** 26 + 1.5185489473874e142 * cos(theta) ** 24 - 4.58054108720135e141 * cos(theta) ** 22 + 9.74313988161613e140 * cos(theta) ** 20 - 1.47741147446693e140 * cos(theta) ** 18 + 1.59635561859774e139 * cos(theta) ** 16 - 1.21627094750304e138 * cos(theta) ** 14 + 6.3977257932241e136 * cos(theta) ** 12 - 2.24481606779793e135 * cos(theta) ** 10 + 4.98110074215517e133 * cos(theta) ** 8 - 6.42426627270127e131 * cos(theta) ** 6 + 4.17160147578005e129 * cos(theta) ** 4 - 1.02370588362701e127 * cos(theta) ** 2 + 3.97401352339676e123 ) * cos(64 * phi) ) # @torch.jit.script def Yl96_m65(theta, phi): return ( 1.8241415945285e-126 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 5.4948068024764e143 * cos(theta) ** 31 - 1.33774092311598e144 * cos(theta) ** 29 + 1.4368328433468e144 * cos(theta) ** 27 - 8.98980976853343e143 * cos(theta) ** 25 + 3.64451747372977e143 * cos(theta) ** 23 - 1.0077190391843e143 * cos(theta) ** 21 + 1.94862797632323e142 * cos(theta) ** 19 - 2.65934065404048e141 * cos(theta) ** 17 + 2.55416898975639e140 * cos(theta) ** 15 - 1.70277932650426e139 * cos(theta) ** 13 + 7.67727095186891e137 * cos(theta) ** 11 - 2.24481606779793e136 * cos(theta) ** 9 + 3.98488059372413e134 * cos(theta) ** 7 - 3.85455976362076e132 * cos(theta) ** 5 + 1.66864059031202e130 * cos(theta) ** 3 - 2.04741176725401e127 * cos(theta) ) * cos(65 * phi) ) # @torch.jit.script def Yl96_m66(theta, phi): return ( 2.57406904634943e-128 * (1.0 - cos(theta) ** 2) ** 33 * ( 1.70339010876768e145 * cos(theta) ** 30 - 3.87944867703635e145 * cos(theta) ** 28 + 3.87944867703635e145 * cos(theta) ** 26 - 2.24745244213336e145 * cos(theta) ** 24 + 8.38239018957847e144 * cos(theta) ** 22 - 2.11620998228702e144 * cos(theta) ** 20 + 3.70239315501413e143 * cos(theta) ** 18 - 4.52087911186881e142 * cos(theta) ** 16 + 3.83125348463458e141 * cos(theta) ** 14 - 2.21361312445554e140 * cos(theta) ** 12 + 8.44499804705581e138 * cos(theta) ** 10 - 2.02033446101814e137 * cos(theta) ** 8 + 2.78941641560689e135 * cos(theta) ** 6 - 1.92727988181038e133 * cos(theta) ** 4 + 5.00592177093606e130 * cos(theta) ** 2 - 2.04741176725401e127 ) * cos(66 * phi) ) # @torch.jit.script def Yl96_m67(theta, phi): return ( 3.68099953510626e-130 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 5.11017032630305e146 * cos(theta) ** 29 - 1.08624562957018e147 * cos(theta) ** 27 + 1.00865665602945e147 * cos(theta) ** 25 - 5.39388586112006e146 * cos(theta) ** 23 + 1.84412584170726e146 * cos(theta) ** 21 - 4.23241996457405e145 * cos(theta) ** 19 + 6.66430767902543e144 * cos(theta) ** 17 - 7.23340657899009e143 * cos(theta) ** 15 + 5.36375487848842e142 * cos(theta) ** 13 - 2.65633574934664e141 * cos(theta) ** 11 + 8.44499804705581e139 * cos(theta) ** 9 - 1.61626756881451e138 * cos(theta) ** 7 + 1.67364984936414e136 * cos(theta) ** 5 - 7.70911952724153e133 * cos(theta) ** 3 + 1.00118435418721e131 * cos(theta) ) * cos(67 * phi) ) # @torch.jit.script def Yl96_m68(theta, phi): return ( 5.33758543606813e-132 * (1.0 - cos(theta) ** 2) ** 34 * ( 1.48194939462789e148 * cos(theta) ** 28 - 2.93286319983948e148 * cos(theta) ** 26 + 2.52164164007363e148 * cos(theta) ** 24 - 1.24059374805761e148 * cos(theta) ** 22 + 3.87266426758525e147 * cos(theta) ** 20 - 8.04159793269069e146 * cos(theta) ** 18 + 1.13293230543432e146 * cos(theta) ** 16 - 1.08501098684851e145 * cos(theta) ** 14 + 6.97288134203494e143 * cos(theta) ** 12 - 2.92196932428131e142 * cos(theta) ** 10 + 7.60049824235023e140 * cos(theta) ** 8 - 1.13138729817016e139 * cos(theta) ** 6 + 8.36824924682068e136 * cos(theta) ** 4 - 2.31273585817246e134 * cos(theta) ** 2 + 1.00118435418721e131 ) * cos(68 * phi) ) # @torch.jit.script def Yl96_m69(theta, phi): return ( 7.85278761645772e-134 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 4.14945830495808e149 * cos(theta) ** 27 - 7.62544431958265e149 * cos(theta) ** 25 + 6.0519399361767e149 * cos(theta) ** 23 - 2.72930624572675e149 * cos(theta) ** 21 + 7.7453285351705e148 * cos(theta) ** 19 - 1.44748762788432e148 * cos(theta) ** 17 + 1.81269168869492e147 * cos(theta) ** 15 - 1.51901538158792e146 * cos(theta) ** 13 + 8.36745761044193e144 * cos(theta) ** 11 - 2.92196932428131e143 * cos(theta) ** 9 + 6.08039859388018e141 * cos(theta) ** 7 - 6.78832378902094e139 * cos(theta) ** 5 + 3.34729969872827e137 * cos(theta) ** 3 - 4.62547171634492e134 * cos(theta) ) * cos(69 * phi) ) # @torch.jit.script def Yl96_m70(theta, phi): return ( 1.1729727577158e-135 * (1.0 - cos(theta) ** 2) ** 35 * ( 1.12035374233868e151 * cos(theta) ** 26 - 1.90636107989566e151 * cos(theta) ** 24 + 1.39194618532064e151 * cos(theta) ** 22 - 5.73154311602617e150 * cos(theta) ** 20 + 1.4716124216824e150 * cos(theta) ** 18 - 2.46072896740335e149 * cos(theta) ** 16 + 2.71903753304238e148 * cos(theta) ** 14 - 1.9747199960643e147 * cos(theta) ** 12 + 9.20420337148612e145 * cos(theta) ** 10 - 2.62977239185318e144 * cos(theta) ** 8 + 4.25627901571613e142 * cos(theta) ** 6 - 3.39416189451047e140 * cos(theta) ** 4 + 1.00418990961848e138 * cos(theta) ** 2 - 4.62547171634492e134 ) * cos(70 * phi) ) # @torch.jit.script def Yl96_m71(theta, phi): return ( 1.78009432721424e-137 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 2.91291973008057e152 * cos(theta) ** 25 - 4.57526659174959e152 * cos(theta) ** 23 + 3.06228160770541e152 * cos(theta) ** 21 - 1.14630862320523e152 * cos(theta) ** 19 + 2.64890235902831e151 * cos(theta) ** 17 - 3.93716634784536e150 * cos(theta) ** 15 + 3.80665254625933e149 * cos(theta) ** 13 - 2.36966399527715e148 * cos(theta) ** 11 + 9.20420337148612e146 * cos(theta) ** 9 - 2.10381791348254e145 * cos(theta) ** 7 + 2.55376740942968e143 * cos(theta) ** 5 - 1.35766475780419e141 * cos(theta) ** 3 + 2.00837981923696e138 * cos(theta) ) * cos(71 * phi) ) # @torch.jit.script def Yl96_m72(theta, phi): return ( 2.74674517937673e-139 * (1.0 - cos(theta) ** 2) ** 36 * ( 7.28229932520143e153 * cos(theta) ** 24 - 1.05231131610241e154 * cos(theta) ** 22 + 6.43079137618137e153 * cos(theta) ** 20 - 2.17798638408995e153 * cos(theta) ** 18 + 4.50313401034813e152 * cos(theta) ** 16 - 5.90574952176804e151 * cos(theta) ** 14 + 4.94864831013712e150 * cos(theta) ** 12 - 2.60663039480487e149 * cos(theta) ** 10 + 8.28378303433751e147 * cos(theta) ** 8 - 1.47267253943778e146 * cos(theta) ** 6 + 1.27688370471484e144 * cos(theta) ** 4 - 4.07299427341256e141 * cos(theta) ** 2 + 2.00837981923696e138 ) * cos(72 * phi) ) # @torch.jit.script def Yl96_m73(theta, phi): return ( 4.31290009161695e-141 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 1.74775183804834e155 * cos(theta) ** 23 - 2.31508489542529e155 * cos(theta) ** 21 + 1.28615827523627e155 * cos(theta) ** 19 - 3.9203754913619e154 * cos(theta) ** 17 + 7.20501441655701e153 * cos(theta) ** 15 - 8.26804933047526e152 * cos(theta) ** 13 + 5.93837797216455e151 * cos(theta) ** 11 - 2.60663039480487e150 * cos(theta) ** 9 + 6.62702642747001e148 * cos(theta) ** 7 - 8.83603523662668e146 * cos(theta) ** 5 + 5.10753481885935e144 * cos(theta) ** 3 - 8.14598854682512e141 * cos(theta) ) * cos(73 * phi) ) # @torch.jit.script def Yl96_m74(theta, phi): return ( 6.89733022227171e-143 * (1.0 - cos(theta) ** 2) ** 37 * ( 4.01982922751119e156 * cos(theta) ** 22 - 4.86167828039311e156 * cos(theta) ** 20 + 2.44370072294892e156 * cos(theta) ** 18 - 6.66463833531523e155 * cos(theta) ** 16 + 1.08075216248355e155 * cos(theta) ** 14 - 1.07484641296178e154 * cos(theta) ** 12 + 6.532215769381e152 * cos(theta) ** 10 - 2.34596735532438e151 * cos(theta) ** 8 + 4.63891849922901e149 * cos(theta) ** 6 - 4.41801761831334e147 * cos(theta) ** 4 + 1.53226044565781e145 * cos(theta) ** 2 - 8.14598854682512e141 ) * cos(74 * phi) ) # @torch.jit.script def Yl96_m75(theta, phi): return ( 1.12453149551192e-144 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 8.84362430052461e157 * cos(theta) ** 21 - 9.72335656078623e157 * cos(theta) ** 19 + 4.39866130130805e157 * cos(theta) ** 17 - 1.06634213365044e157 * cos(theta) ** 15 + 1.51305302747697e156 * cos(theta) ** 13 - 1.28981569555414e155 * cos(theta) ** 11 + 6.532215769381e153 * cos(theta) ** 9 - 1.87677388425951e152 * cos(theta) ** 7 + 2.7833510995374e150 * cos(theta) ** 5 - 1.76720704732534e148 * cos(theta) ** 3 + 3.06452089131561e145 * cos(theta) ) * cos(75 * phi) ) # @torch.jit.script def Yl96_m76(theta, phi): return ( 1.87110324820511e-146 * (1.0 - cos(theta) ** 2) ** 38 * ( 1.85716110311017e159 * cos(theta) ** 20 - 1.84743774654938e159 * cos(theta) ** 18 + 7.47772421222369e158 * cos(theta) ** 16 - 1.59951320047566e158 * cos(theta) ** 14 + 1.96696893572006e157 * cos(theta) ** 12 - 1.41879726510955e156 * cos(theta) ** 10 + 5.8789941924429e154 * cos(theta) ** 8 - 1.31374171898165e153 * cos(theta) ** 6 + 1.3916755497687e151 * cos(theta) ** 4 - 5.30162114197601e148 * cos(theta) ** 2 + 3.06452089131561e145 ) * cos(76 * phi) ) # @torch.jit.script def Yl96_m77(theta, phi): return ( 3.18097095250874e-148 * (1.0 - cos(theta) ** 2) ** 38.5 * ( 3.71432220622034e160 * cos(theta) ** 19 - 3.32538794378889e160 * cos(theta) ** 17 + 1.19643587395579e160 * cos(theta) ** 15 - 2.23931848066592e159 * cos(theta) ** 13 + 2.36036272286408e158 * cos(theta) ** 11 - 1.41879726510955e157 * cos(theta) ** 9 + 4.70319535395432e155 * cos(theta) ** 7 - 7.88245031388993e153 * cos(theta) ** 5 + 5.56670219907481e151 * cos(theta) ** 3 - 1.0603242283952e149 * cos(theta) ) * cos(77 * phi) ) # @torch.jit.script def Yl96_m78(theta, phi): return ( 5.53233256153302e-150 * (1.0 - cos(theta) ** 2) ** 39 * ( 7.05721219181864e161 * cos(theta) ** 18 - 5.65315950444111e161 * cos(theta) ** 16 + 1.79465381093369e161 * cos(theta) ** 14 - 2.91111402486569e160 * cos(theta) ** 12 + 2.59639899515048e159 * cos(theta) ** 10 - 1.2769175385986e158 * cos(theta) ** 8 + 3.29223674776803e156 * cos(theta) ** 6 - 3.94122515694496e154 * cos(theta) ** 4 + 1.67001065972244e152 * cos(theta) ** 2 - 1.0603242283952e149 ) * cos(78 * phi) ) # @torch.jit.script def Yl96_m79(theta, phi): return ( 9.85718714045239e-152 * (1.0 - cos(theta) ** 2) ** 39.5 * ( 1.27029819452736e163 * cos(theta) ** 17 - 9.04505520710578e162 * cos(theta) ** 15 + 2.51251533530716e162 * cos(theta) ** 13 - 3.49333682983883e161 * cos(theta) ** 11 + 2.59639899515048e160 * cos(theta) ** 9 - 1.02153403087888e159 * cos(theta) ** 7 + 1.97534204866082e157 * cos(theta) ** 5 - 1.57649006277799e155 * cos(theta) ** 3 + 3.34002131944488e152 * cos(theta) ) * cos(79 * phi) ) # @torch.jit.script def Yl96_m80(theta, phi): return ( 1.80207228381835e-153 * (1.0 - cos(theta) ** 2) ** 40 * ( 2.1595069306965e164 * cos(theta) ** 16 - 1.35675828106587e164 * cos(theta) ** 14 + 3.26626993589931e163 * cos(theta) ** 12 - 3.84267051282272e162 * cos(theta) ** 10 + 2.33675909563544e161 * cos(theta) ** 8 - 7.15073821615215e159 * cos(theta) ** 6 + 9.87671024330408e157 * cos(theta) ** 4 - 4.72947018833396e155 * cos(theta) ** 2 + 3.34002131944488e152 ) * cos(80 * phi) ) # @torch.jit.script def Yl96_m81(theta, phi): return ( 3.38630118576512e-155 * (1.0 - cos(theta) ** 2) ** 40.5 * ( 3.45521108911441e165 * cos(theta) ** 15 - 1.89946159349221e165 * cos(theta) ** 13 + 3.91952392307917e164 * cos(theta) ** 11 - 3.84267051282272e163 * cos(theta) ** 9 + 1.86940727650835e162 * cos(theta) ** 7 - 4.29044292969129e160 * cos(theta) ** 5 + 3.95068409732163e158 * cos(theta) ** 3 - 9.45894037666791e155 * cos(theta) ) * cos(81 * phi) ) # @torch.jit.script def Yl96_m82(theta, phi): return ( 6.55344942213777e-157 * (1.0 - cos(theta) ** 2) ** 41 * ( 5.18281663367161e166 * cos(theta) ** 14 - 2.46930007153988e166 * cos(theta) ** 12 + 4.31147631538709e165 * cos(theta) ** 10 - 3.45840346154044e164 * cos(theta) ** 8 + 1.30858509355584e163 * cos(theta) ** 6 - 2.14522146484565e161 * cos(theta) ** 4 + 1.18520522919649e159 * cos(theta) ** 2 - 9.45894037666791e155 ) * cos(82 * phi) ) # @torch.jit.script def Yl96_m83(theta, phi): return ( 1.30911988200608e-158 * (1.0 - cos(theta) ** 2) ** 41.5 * ( 7.25594328714026e167 * cos(theta) ** 13 - 2.96316008584785e167 * cos(theta) ** 11 + 4.31147631538709e166 * cos(theta) ** 9 - 2.76672276923236e165 * cos(theta) ** 7 + 7.85151056133506e163 * cos(theta) ** 5 - 8.58088585938258e161 * cos(theta) ** 3 + 2.37041045839298e159 * cos(theta) ) * cos(83 * phi) ) # @torch.jit.script def Yl96_m84(theta, phi): return ( 2.70627228516799e-160 * (1.0 - cos(theta) ** 2) ** 42 * ( 9.43272627328233e168 * cos(theta) ** 12 - 3.25947609443264e168 * cos(theta) ** 10 + 3.88032868384838e167 * cos(theta) ** 8 - 1.93670593846265e166 * cos(theta) ** 6 + 3.92575528066753e164 * cos(theta) ** 4 - 2.57426575781477e162 * cos(theta) ** 2 + 2.37041045839298e159 ) * cos(84 * phi) ) # @torch.jit.script def Yl96_m85(theta, phi): return ( 5.80686299422056e-162 * (1.0 - cos(theta) ** 2) ** 42.5 * ( 1.13192715279388e170 * cos(theta) ** 11 - 3.25947609443264e169 * cos(theta) ** 9 + 3.1042629470787e168 * cos(theta) ** 7 - 1.16202356307759e167 * cos(theta) ** 5 + 1.57030211226701e165 * cos(theta) ** 3 - 5.14853151562955e162 * cos(theta) ) * cos(85 * phi) ) # @torch.jit.script def Yl96_m86(theta, phi): return ( 1.29780529860581e-163 * (1.0 - cos(theta) ** 2) ** 43 * ( 1.24511986807327e171 * cos(theta) ** 10 - 2.93352848498937e170 * cos(theta) ** 8 + 2.17298406295509e169 * cos(theta) ** 6 - 5.81011781538795e167 * cos(theta) ** 4 + 4.71090633680104e165 * cos(theta) ** 2 - 5.14853151562955e162 ) * cos(86 * phi) ) # @torch.jit.script def Yl96_m87(theta, phi): return ( 3.03377940011721e-165 * (1.0 - cos(theta) ** 2) ** 43.5 * ( 1.24511986807327e172 * cos(theta) ** 9 - 2.3468227879915e171 * cos(theta) ** 7 + 1.30379043777306e170 * cos(theta) ** 5 - 2.32404712615518e168 * cos(theta) ** 3 + 9.42181267360208e165 * cos(theta) ) * cos(87 * phi) ) # @torch.jit.script def Yl96_m88(theta, phi): return ( 7.45510615492852e-167 * (1.0 - cos(theta) ** 2) ** 44 * ( 1.12060788126594e173 * cos(theta) ** 8 - 1.64277595159405e172 * cos(theta) ** 6 + 6.51895218886528e170 * cos(theta) ** 4 - 6.97214137846554e168 * cos(theta) ** 2 + 9.42181267360208e165 ) * cos(88 * phi) ) # @torch.jit.script def Yl96_m89(theta, phi): return ( 1.93786256906189e-168 * (1.0 - cos(theta) ** 2) ** 44.5 * ( 8.96486305012753e173 * cos(theta) ** 7 - 9.8566557095643e172 * cos(theta) ** 5 + 2.60758087554611e171 * cos(theta) ** 3 - 1.39442827569311e169 * cos(theta) ) * cos(89 * phi) ) # @torch.jit.script def Yl96_m90(theta, phi): return ( 5.37053414416425e-170 * (1.0 - cos(theta) ** 2) ** 45 * ( 6.27540413508927e174 * cos(theta) ** 6 - 4.92832785478215e173 * cos(theta) ** 4 + 7.82274262663833e171 * cos(theta) ** 2 - 1.39442827569311e169 ) * cos(90 * phi) ) # @torch.jit.script def Yl96_m91(theta, phi): return ( 1.60332311414302e-171 * (1.0 - cos(theta) ** 2) ** 45.5 * ( 3.76524248105356e175 * cos(theta) ** 5 - 1.97133114191286e174 * cos(theta) ** 3 + 1.56454852532767e172 * cos(theta) ) * cos(91 * phi) ) # @torch.jit.script def Yl96_m92(theta, phi): return ( 5.22946338765481e-173 * (1.0 - cos(theta) ** 2) ** 46 * ( 1.88262124052678e176 * cos(theta) ** 4 - 5.91399342573858e174 * cos(theta) ** 2 + 1.56454852532767e172 ) * cos(92 * phi) ) # @torch.jit.script def Yl96_m93(theta, phi): return ( 1.90193744586733e-174 * (1.0 - cos(theta) ** 2) ** 46.5 * (7.53048496210712e176 * cos(theta) ** 3 - 1.18279868514772e175 * cos(theta)) * cos(93 * phi) ) # @torch.jit.script def Yl96_m94(theta, phi): return ( 7.96633932527857e-176 * (1.0 - cos(theta) ** 2) ** 47 * (2.25914548863214e177 * cos(theta) ** 2 - 1.18279868514772e175) * cos(94 * phi) ) # @torch.jit.script def Yl96_m95(theta, phi): return ( 18.4162548281816 * (1.0 - cos(theta) ** 2) ** 47.5 * cos(95 * phi) * cos(theta) ) # @torch.jit.script def Yl96_m96(theta, phi): return 1.32907871031442 * (1.0 - cos(theta) ** 2) ** 48 * cos(96 * phi) # @torch.jit.script def Yl97_m_minus_97(theta, phi): return 1.33249976799509 * (1.0 - cos(theta) ** 2) ** 48.5 * sin(97 * phi) # @torch.jit.script def Yl97_m_minus_96(theta, phi): return 18.5595741478934 * (1.0 - cos(theta) ** 2) ** 48 * sin(96 * phi) * cos(theta) # @torch.jit.script def Yl97_m_minus_95(theta, phi): return ( 4.1814812564218e-178 * (1.0 - cos(theta) ** 2) ** 47.5 * (4.36015079306002e179 * cos(theta) ** 2 - 2.25914548863214e177) * sin(95 * phi) ) # @torch.jit.script def Yl97_m_minus_94(theta, phi): return ( 1.00355550154123e-176 * (1.0 - cos(theta) ** 2) ** 47 * (1.45338359768667e179 * cos(theta) ** 3 - 2.25914548863214e177 * cos(theta)) * sin(94 * phi) ) # @torch.jit.script def Yl97_m_minus_93(theta, phi): return ( 2.77388259400193e-175 * (1.0 - cos(theta) ** 2) ** 46.5 * ( 3.63345899421669e178 * cos(theta) ** 4 - 1.12957274431607e177 * cos(theta) ** 2 + 2.95699671286929e174 ) * sin(93 * phi) ) # @torch.jit.script def Yl97_m_minus_92(theta, phi): return ( 8.54968035252871e-174 * (1.0 - cos(theta) ** 2) ** 46 * ( 7.26691798843337e177 * cos(theta) ** 5 - 3.76524248105356e176 * cos(theta) ** 3 + 2.95699671286929e174 * cos(theta) ) * sin(92 * phi) ) # @torch.jit.script def Yl97_m_minus_91(theta, phi): return ( 2.87909771810356e-172 * (1.0 - cos(theta) ** 2) ** 45.5 * ( 1.21115299807223e177 * cos(theta) ** 6 - 9.41310620263391e175 * cos(theta) ** 4 + 1.47849835643464e174 * cos(theta) ** 2 - 2.60758087554611e171 ) * sin(91 * phi) ) # @torch.jit.script def Yl97_m_minus_90(theta, phi): return ( 1.044442053454e-170 * (1.0 - cos(theta) ** 2) ** 45 * ( 1.73021856867461e176 * cos(theta) ** 7 - 1.88262124052678e175 * cos(theta) ** 5 + 4.92832785478215e173 * cos(theta) ** 3 - 2.60758087554611e171 * cos(theta) ) * sin(90 * phi) ) # @torch.jit.script def Yl97_m_minus_89(theta, phi): return ( 4.03970960308129e-169 * (1.0 - cos(theta) ** 2) ** 44.5 * ( 2.16277321084327e175 * cos(theta) ** 8 - 3.13770206754463e174 * cos(theta) ** 6 + 1.23208196369554e173 * cos(theta) ** 4 - 1.30379043777306e171 * cos(theta) ** 2 + 1.74303534461638e168 ) * sin(89 * phi) ) # @torch.jit.script def Yl97_m_minus_88(theta, phi): return ( 1.65282880709644e-167 * (1.0 - cos(theta) ** 2) ** 44 * ( 2.40308134538141e174 * cos(theta) ** 9 - 4.48243152506376e173 * cos(theta) ** 7 + 2.46416392739107e172 * cos(theta) ** 5 - 4.34596812591018e170 * cos(theta) ** 3 + 1.74303534461638e168 * cos(theta) ) * sin(88 * phi) ) # @torch.jit.script def Yl97_m_minus_87(theta, phi): return ( 7.10908550469079e-166 * (1.0 - cos(theta) ** 2) ** 43.5 * ( 2.40308134538141e173 * cos(theta) ** 10 - 5.60303940632971e172 * cos(theta) ** 8 + 4.10693987898512e171 * cos(theta) ** 6 - 1.08649203147755e170 * cos(theta) ** 4 + 8.71517672308192e167 * cos(theta) ** 2 - 9.42181267360208e164 ) * sin(87 * phi) ) # @torch.jit.script def Yl97_m_minus_86(theta, phi): return ( 3.19829848117904e-164 * (1.0 - cos(theta) ** 2) ** 43 * ( 2.18461940489219e172 * cos(theta) ** 11 - 6.22559934036634e171 * cos(theta) ** 9 + 5.86705696997875e170 * cos(theta) ** 7 - 2.17298406295509e169 * cos(theta) ** 5 + 2.90505890769397e167 * cos(theta) ** 3 - 9.42181267360208e164 * cos(theta) ) * sin(86 * phi) ) # @torch.jit.script def Yl97_m_minus_85(theta, phi): return ( 1.49877058056488e-162 * (1.0 - cos(theta) ** 2) ** 42.5 * ( 1.82051617074349e171 * cos(theta) ** 12 - 6.22559934036634e170 * cos(theta) ** 10 + 7.33382121247344e169 * cos(theta) ** 8 - 3.62164010492515e168 * cos(theta) ** 6 + 7.26264726923493e166 * cos(theta) ** 4 - 4.71090633680104e164 * cos(theta) ** 2 + 4.29044292969129e161 ) * sin(85 * phi) ) # @torch.jit.script def Yl97_m_minus_84(theta, phi): return ( 7.29025181800508e-161 * (1.0 - cos(theta) ** 2) ** 42 * ( 1.40039705441807e170 * cos(theta) ** 13 - 5.6596357639694e169 * cos(theta) ** 11 + 8.1486902360816e168 * cos(theta) ** 9 - 5.17377157846451e167 * cos(theta) ** 7 + 1.45252945384699e166 * cos(theta) ** 5 - 1.57030211226701e164 * cos(theta) ** 3 + 4.29044292969129e161 * cos(theta) ) * sin(84 * phi) ) # @torch.jit.script def Yl97_m_minus_83(theta, phi): return ( 3.66982905811965e-159 * (1.0 - cos(theta) ** 2) ** 41.5 * ( 1.00028361029862e169 * cos(theta) ** 14 - 4.71636313664117e168 * cos(theta) ** 12 + 8.1486902360816e167 * cos(theta) ** 10 - 6.46721447308063e166 * cos(theta) ** 8 + 2.42088242307831e165 * cos(theta) ** 6 - 3.92575528066753e163 * cos(theta) ** 4 + 2.14522146484565e161 * cos(theta) ** 2 - 1.69315032742356e158 ) * sin(83 * phi) ) # @torch.jit.script def Yl97_m_minus_82(theta, phi): return ( 1.90689911512676e-157 * (1.0 - cos(theta) ** 2) ** 41 * ( 6.66855740199081e167 * cos(theta) ** 15 - 3.62797164357013e167 * cos(theta) ** 13 + 7.40790021461963e166 * cos(theta) ** 11 - 7.18579385897848e165 * cos(theta) ** 9 + 3.45840346154044e164 * cos(theta) ** 7 - 7.85151056133506e162 * cos(theta) ** 5 + 7.15073821615215e160 * cos(theta) ** 3 - 1.69315032742356e158 * cos(theta) ) * sin(82 * phi) ) # @torch.jit.script def Yl97_m_minus_81(theta, phi): return ( 1.02050285496008e-155 * (1.0 - cos(theta) ** 2) ** 40.5 * ( 4.16784837624425e166 * cos(theta) ** 16 - 2.59140831683581e166 * cos(theta) ** 14 + 6.17325017884969e165 * cos(theta) ** 12 - 7.18579385897848e164 * cos(theta) ** 10 + 4.32300432692556e163 * cos(theta) ** 8 - 1.30858509355584e162 * cos(theta) ** 6 + 1.78768455403804e160 * cos(theta) ** 4 - 8.46575163711778e157 * cos(theta) ** 2 + 5.91183773541744e154 ) * sin(81 * phi) ) # @torch.jit.script def Yl97_m_minus_80(theta, phi): return ( 5.61369335548937e-154 * (1.0 - cos(theta) ** 2) ** 40 * ( 2.4516755154378e165 * cos(theta) ** 17 - 1.7276055445572e165 * cos(theta) ** 15 + 4.74865398373053e164 * cos(theta) ** 13 - 6.53253987179862e163 * cos(theta) ** 11 + 4.8033381410284e162 * cos(theta) ** 9 - 1.86940727650835e161 * cos(theta) ** 7 + 3.57536910807608e159 * cos(theta) ** 5 - 2.82191721237259e157 * cos(theta) ** 3 + 5.91183773541744e154 * cos(theta) ) * sin(80 * phi) ) # @torch.jit.script def Yl97_m_minus_79(theta, phi): return ( 3.16863030571629e-152 * (1.0 - cos(theta) ** 2) ** 39.5 * ( 1.362041953021e164 * cos(theta) ** 18 - 1.07975346534825e164 * cos(theta) ** 16 + 3.39189570266467e163 * cos(theta) ** 14 - 5.44378322649885e162 * cos(theta) ** 12 + 4.8033381410284e161 * cos(theta) ** 10 - 2.33675909563544e160 * cos(theta) ** 8 + 5.95894851346013e158 * cos(theta) ** 6 - 7.05479303093148e156 * cos(theta) ** 4 + 2.95591886770872e154 * cos(theta) ** 2 - 1.8555673996916e151 ) * sin(79 * phi) ) # @torch.jit.script def Yl97_m_minus_78(theta, phi): return ( 1.83233427735857e-150 * (1.0 - cos(theta) ** 2) ** 39 * ( 7.16864185800525e162 * cos(theta) ** 19 - 6.35149097263678e162 * cos(theta) ** 17 + 2.26126380177644e162 * cos(theta) ** 15 - 4.18752555884527e161 * cos(theta) ** 13 + 4.36667103729854e160 * cos(theta) ** 11 - 2.59639899515048e159 * cos(theta) ** 9 + 8.51278359065733e157 * cos(theta) ** 7 - 1.4109586061863e156 * cos(theta) ** 5 + 9.85306289236241e153 * cos(theta) ** 3 - 1.8555673996916e151 * cos(theta) ) * sin(78 * phi) ) # @torch.jit.script def Yl97_m_minus_77(theta, phi): return ( 1.08402357741615e-148 * (1.0 - cos(theta) ** 2) ** 38.5 * ( 3.58432092900263e161 * cos(theta) ** 20 - 3.52860609590932e161 * cos(theta) ** 18 + 1.41328987611028e161 * cos(theta) ** 16 - 2.99108968488948e160 * cos(theta) ** 14 + 3.63889253108212e159 * cos(theta) ** 12 - 2.59639899515048e158 * cos(theta) ** 10 + 1.06409794883217e157 * cos(theta) ** 8 - 2.35159767697716e155 * cos(theta) ** 6 + 2.4632657230906e153 * cos(theta) ** 4 - 9.27783699845801e150 * cos(theta) ** 2 + 5.30162114197601e147 ) * sin(77 * phi) ) # @torch.jit.script def Yl97_m_minus_76(theta, phi): return ( 6.55274095574063e-147 * (1.0 - cos(theta) ** 2) ** 38 * ( 1.70681949000125e160 * cos(theta) ** 21 - 1.85716110311017e160 * cos(theta) ** 19 + 8.31346985947222e159 * cos(theta) ** 17 - 1.99405978992632e159 * cos(theta) ** 15 + 2.7991481008324e158 * cos(theta) ** 13 - 2.36036272286408e157 * cos(theta) ** 11 + 1.18233105425796e156 * cos(theta) ** 9 - 3.35942525282452e154 * cos(theta) ** 7 + 4.9265314461812e152 * cos(theta) ** 5 - 3.09261233281934e150 * cos(theta) ** 3 + 5.30162114197601e147 * cos(theta) ) * sin(76 * phi) ) # @torch.jit.script def Yl97_m_minus_75(theta, phi): return ( 4.04256853757302e-145 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 7.75827040909659e158 * cos(theta) ** 22 - 9.28580551555085e158 * cos(theta) ** 20 + 4.61859436637346e158 * cos(theta) ** 18 - 1.24628736870395e158 * cos(theta) ** 16 + 1.99939150059457e157 * cos(theta) ** 14 - 1.96696893572006e156 * cos(theta) ** 12 + 1.18233105425796e155 * cos(theta) ** 10 - 4.19928156603065e153 * cos(theta) ** 8 + 8.21088574363534e151 * cos(theta) ** 6 - 7.73153083204834e149 * cos(theta) ** 4 + 2.650810570988e147 * cos(theta) ** 2 - 1.3929640415071e144 ) * sin(75 * phi) ) # @torch.jit.script def Yl97_m_minus_74(theta, phi): return ( 2.54264385369124e-143 * (1.0 - cos(theta) ** 2) ** 37 * ( 3.3731610474333e157 * cos(theta) ** 23 - 4.42181215026231e157 * cos(theta) ** 21 + 2.43083914019656e157 * cos(theta) ** 19 - 7.33110216884676e156 * cos(theta) ** 17 + 1.33292766706305e156 * cos(theta) ** 15 - 1.51305302747697e155 * cos(theta) ** 13 + 1.07484641296178e154 * cos(theta) ** 11 - 4.66586840670072e152 * cos(theta) ** 9 + 1.17298367766219e151 * cos(theta) ** 7 - 1.54630616640967e149 * cos(theta) ** 5 + 8.83603523662668e146 * cos(theta) ** 3 - 1.3929640415071e144 * cos(theta) ) * sin(74 * phi) ) # @torch.jit.script def Yl97_m_minus_73(theta, phi): return ( 1.62888044357447e-141 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 1.40548376976388e156 * cos(theta) ** 24 - 2.00991461375559e156 * cos(theta) ** 22 + 1.21541957009828e156 * cos(theta) ** 20 - 4.0728345382482e155 * cos(theta) ** 18 + 8.33079791914404e154 * cos(theta) ** 16 - 1.08075216248355e154 * cos(theta) ** 14 + 8.9570534413482e152 * cos(theta) ** 12 - 4.66586840670072e151 * cos(theta) ** 10 + 1.46622959707774e150 * cos(theta) ** 8 - 2.57717694401611e148 * cos(theta) ** 6 + 2.20900880915667e146 * cos(theta) ** 4 - 6.96482020753548e143 * cos(theta) ** 2 + 3.39416189451047e140 ) * sin(73 * phi) ) # @torch.jit.script def Yl97_m_minus_72(theta, phi): return ( 1.06190013055382e-139 * (1.0 - cos(theta) ** 2) ** 36 * ( 5.6219350790555e154 * cos(theta) ** 25 - 8.73875919024171e154 * cos(theta) ** 23 + 5.78771223856323e154 * cos(theta) ** 21 - 2.14359712539379e154 * cos(theta) ** 19 + 4.90046936420238e153 * cos(theta) ** 17 - 7.20501441655701e152 * cos(theta) ** 15 + 6.89004110872938e151 * cos(theta) ** 13 - 4.24169855154611e150 * cos(theta) ** 11 + 1.62914399675304e149 * cos(theta) ** 9 - 3.68168134859445e147 * cos(theta) ** 7 + 4.41801761831334e145 * cos(theta) ** 5 - 2.32160673584516e143 * cos(theta) ** 3 + 3.39416189451047e140 * cos(theta) ) * sin(72 * phi) ) # @torch.jit.script def Yl97_m_minus_71(theta, phi): return ( 7.03904433333486e-138 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 2.16228272271365e153 * cos(theta) ** 26 - 3.64114966260071e153 * cos(theta) ** 24 + 2.63077829025601e153 * cos(theta) ** 22 - 1.07179856269689e153 * cos(theta) ** 20 + 2.72248298011243e152 * cos(theta) ** 18 - 4.50313401034813e151 * cos(theta) ** 16 + 4.9214579348067e150 * cos(theta) ** 14 - 3.53474879295509e149 * cos(theta) ** 12 + 1.62914399675304e148 * cos(theta) ** 10 - 4.60210168574306e146 * cos(theta) ** 8 + 7.3633626971889e144 * cos(theta) ** 6 - 5.8040168396129e142 * cos(theta) ** 4 + 1.69708094725523e140 * cos(theta) ** 2 - 7.72453776629601e136 ) * sin(71 * phi) ) # @torch.jit.script def Yl97_m_minus_70(theta, phi): return ( 4.7407846006173e-136 * (1.0 - cos(theta) ** 2) ** 35 * ( 8.00845452856909e151 * cos(theta) ** 27 - 1.45645986504029e152 * cos(theta) ** 25 + 1.1438166479374e152 * cos(theta) ** 23 - 5.10380267950902e151 * cos(theta) ** 21 + 1.43288577900654e151 * cos(theta) ** 19 - 2.64890235902831e150 * cos(theta) ** 17 + 3.2809719565378e149 * cos(theta) ** 15 - 2.71903753304238e148 * cos(theta) ** 13 + 1.48103999704822e147 * cos(theta) ** 11 - 5.11344631749229e145 * cos(theta) ** 9 + 1.05190895674127e144 * cos(theta) ** 7 - 1.16080336792258e142 * cos(theta) ** 5 + 5.65693649085078e139 * cos(theta) ** 3 - 7.72453776629601e136 * cos(theta) ) * sin(70 * phi) ) # @torch.jit.script def Yl97_m_minus_69(theta, phi): return ( 3.24180938106035e-134 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 2.86016233163182e150 * cos(theta) ** 28 - 5.60176871169341e150 * cos(theta) ** 26 + 4.76590269973915e150 * cos(theta) ** 24 - 2.31991030886774e150 * cos(theta) ** 22 + 7.16442889503272e149 * cos(theta) ** 20 - 1.4716124216824e149 * cos(theta) ** 18 + 2.05060747283613e148 * cos(theta) ** 16 - 1.94216966645884e147 * cos(theta) ** 14 + 1.23419999754018e146 * cos(theta) ** 12 - 5.11344631749229e144 * cos(theta) ** 10 + 1.31488619592659e143 * cos(theta) ** 8 - 1.93467227987097e141 * cos(theta) ** 6 + 1.41423412271269e139 * cos(theta) ** 4 - 3.86226888314801e136 * cos(theta) ** 2 + 1.6519541844089e133 ) * sin(69 * phi) ) # @torch.jit.script def Yl97_m_minus_68(theta, phi): return ( 2.249264441899e-132 * (1.0 - cos(theta) ** 2) ** 34 * ( 9.86262872976489e148 * cos(theta) ** 29 - 2.07472915247904e149 * cos(theta) ** 27 + 1.90636107989566e149 * cos(theta) ** 25 - 1.00865665602945e149 * cos(theta) ** 23 + 3.41163280715844e148 * cos(theta) ** 21 - 7.7453285351705e147 * cos(theta) ** 19 + 1.2062396899036e147 * cos(theta) ** 17 - 1.29477977763923e146 * cos(theta) ** 15 + 9.4938461349245e144 * cos(theta) ** 13 - 4.64858756135663e143 * cos(theta) ** 11 + 1.46098466214065e142 * cos(theta) ** 9 - 2.76381754267281e140 * cos(theta) ** 7 + 2.82846824542539e138 * cos(theta) ** 5 - 1.28742296104934e136 * cos(theta) ** 3 + 1.6519541844089e133 * cos(theta) ) * sin(68 * phi) ) # @torch.jit.script def Yl97_m_minus_67(theta, phi): return ( 1.58249780794403e-130 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 3.28754290992163e147 * cos(theta) ** 30 - 7.40974697313943e147 * cos(theta) ** 28 + 7.3321579995987e147 * cos(theta) ** 26 - 4.20273606678938e147 * cos(theta) ** 24 + 1.55074218507202e147 * cos(theta) ** 22 - 3.87266426758525e146 * cos(theta) ** 20 + 6.70133161057557e145 * cos(theta) ** 18 - 8.09237361024517e144 * cos(theta) ** 16 + 6.78131866780321e143 * cos(theta) ** 14 - 3.87382296779719e142 * cos(theta) ** 12 + 1.46098466214065e141 * cos(theta) ** 10 - 3.45477192834101e139 * cos(theta) ** 8 + 4.71411374237565e137 * cos(theta) ** 6 - 3.21855740262334e135 * cos(theta) ** 4 + 8.25977092204449e132 * cos(theta) ** 2 - 3.33728118062404e129 ) * sin(67 * phi) ) # @torch.jit.script def Yl97_m_minus_66(theta, phi): return ( 1.12835533866591e-128 * (1.0 - cos(theta) ** 2) ** 33 * ( 1.06049771287795e146 * cos(theta) ** 31 - 2.55508516315153e146 * cos(theta) ** 29 + 2.71561407392544e146 * cos(theta) ** 27 - 1.68109442671575e146 * cos(theta) ** 25 + 6.74235732640007e145 * cos(theta) ** 23 - 1.84412584170726e145 * cos(theta) ** 21 + 3.52701663714504e144 * cos(theta) ** 19 - 4.76021977073245e143 * cos(theta) ** 17 + 4.52087911186881e142 * cos(theta) ** 15 - 2.97986382138245e141 * cos(theta) ** 13 + 1.32816787467332e140 * cos(theta) ** 11 - 3.83863547593446e138 * cos(theta) ** 9 + 6.73444820339378e136 * cos(theta) ** 7 - 6.43711480524668e134 * cos(theta) ** 5 + 2.75325697401483e132 * cos(theta) ** 3 - 3.33728118062404e129 * cos(theta) ) * sin(66 * phi) ) # @torch.jit.script def Yl97_m_minus_65(theta, phi): return ( 8.14919442513382e-127 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 3.31405535274358e144 * cos(theta) ** 32 - 8.51695054383842e144 * cos(theta) ** 30 + 9.69862169259087e144 * cos(theta) ** 28 - 6.46574779506058e144 * cos(theta) ** 26 + 2.8093155526667e144 * cos(theta) ** 24 - 8.38239018957847e143 * cos(theta) ** 22 + 1.76350831857252e143 * cos(theta) ** 20 - 2.64456653929581e142 * cos(theta) ** 18 + 2.82554944491801e141 * cos(theta) ** 16 - 2.12847415813032e140 * cos(theta) ** 14 + 1.10680656222777e139 * cos(theta) ** 12 - 3.83863547593446e137 * cos(theta) ** 10 + 8.41806025424223e135 * cos(theta) ** 8 - 1.07285246754111e134 * cos(theta) ** 6 + 6.88314243503708e131 * cos(theta) ** 4 - 1.66864059031202e129 * cos(theta) ** 2 + 6.39816177266879e125 ) * sin(65 * phi) ) # @torch.jit.script def Yl97_m_minus_64(theta, phi): return ( 5.95839316289692e-125 * (1.0 - cos(theta) ** 2) ** 32 * ( 1.00425919780108e143 * cos(theta) ** 33 - 2.7474034012382e143 * cos(theta) ** 31 + 3.34435230778996e143 * cos(theta) ** 29 - 2.39472140557799e143 * cos(theta) ** 27 + 1.12372622106668e143 * cos(theta) ** 25 - 3.64451747372977e142 * cos(theta) ** 23 + 8.39765865986914e141 * cos(theta) ** 21 - 1.39187712594516e141 * cos(theta) ** 19 + 1.6620879087753e140 * cos(theta) ** 17 - 1.41898277208688e139 * cos(theta) ** 15 + 8.5138966325213e137 * cos(theta) ** 13 - 3.48966861448587e136 * cos(theta) ** 11 + 9.35340028249137e134 * cos(theta) ** 9 - 1.53264638220159e133 * cos(theta) ** 7 + 1.37662848700742e131 * cos(theta) ** 5 - 5.56213530104006e128 * cos(theta) ** 3 + 6.39816177266879e125 * cos(theta) ) * sin(64 * phi) ) # @torch.jit.script def Yl97_m_minus_63(theta, phi): return ( 4.40840567874529e-123 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 2.95370352294437e141 * cos(theta) ** 34 - 8.58563562886938e141 * cos(theta) ** 32 + 1.11478410259665e142 * cos(theta) ** 30 - 8.55257644849283e141 * cos(theta) ** 28 + 4.32202392717953e141 * cos(theta) ** 26 - 1.5185489473874e141 * cos(theta) ** 24 + 3.81711757266779e140 * cos(theta) ** 22 - 6.95938562972581e139 * cos(theta) ** 20 + 9.23382171541832e138 * cos(theta) ** 18 - 8.86864232554302e137 * cos(theta) ** 16 + 6.08135473751521e136 * cos(theta) ** 14 - 2.90805717873823e135 * cos(theta) ** 12 + 9.35340028249137e133 * cos(theta) ** 10 - 1.91580797775199e132 * cos(theta) ** 8 + 2.29438081167903e130 * cos(theta) ** 6 - 1.39053382526002e128 * cos(theta) ** 4 + 3.19908088633439e125 * cos(theta) ** 2 - 1.1688275068814e122 ) * sin(63 * phi) ) # @torch.jit.script def Yl97_m_minus_62(theta, phi): return ( 3.2989487343547e-121 * (1.0 - cos(theta) ** 2) ** 31 * ( 8.43915292269819e139 * cos(theta) ** 35 - 2.60170776632405e140 * cos(theta) ** 33 + 3.59607775031178e140 * cos(theta) ** 31 - 2.94916429258374e140 * cos(theta) ** 29 + 1.60074960265909e140 * cos(theta) ** 27 - 6.07419578954961e139 * cos(theta) ** 25 + 1.65961633594252e139 * cos(theta) ** 23 - 3.31399315701229e138 * cos(theta) ** 21 + 4.85990616600964e137 * cos(theta) ** 19 - 5.21684842679001e136 * cos(theta) ** 17 + 4.05423649167681e135 * cos(theta) ** 15 - 2.23696706056787e134 * cos(theta) ** 13 + 8.50309116590124e132 * cos(theta) ** 11 - 2.12867553083554e131 * cos(theta) ** 9 + 3.27768687382718e129 * cos(theta) ** 7 - 2.78106765052003e127 * cos(theta) ** 5 + 1.0663602954448e125 * cos(theta) ** 3 - 1.1688275068814e122 * cos(theta) ) * sin(62 * phi) ) # @torch.jit.script def Yl97_m_minus_61(theta, phi): return ( 2.49588964483365e-119 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 2.34420914519394e138 * cos(theta) ** 36 - 7.65208166565898e138 * cos(theta) ** 34 + 1.12377429697243e139 * cos(theta) ** 32 - 9.83054764194578e138 * cos(theta) ** 30 + 5.71696286663959e138 * cos(theta) ** 28 - 2.33622914982677e138 * cos(theta) ** 26 + 6.91506806642716e137 * cos(theta) ** 24 - 1.50636052591468e137 * cos(theta) ** 22 + 2.42995308300482e136 * cos(theta) ** 20 - 2.89824912599445e135 * cos(theta) ** 18 + 2.533897807298e134 * cos(theta) ** 16 - 1.59783361469133e133 * cos(theta) ** 14 + 7.0859093049177e131 * cos(theta) ** 12 - 2.12867553083554e130 * cos(theta) ** 10 + 4.09710859228398e128 * cos(theta) ** 8 - 4.63511275086672e126 * cos(theta) ** 6 + 2.66590073861199e124 * cos(theta) ** 4 - 5.844137534407e121 * cos(theta) ** 2 + 2.04197677652236e118 ) * sin(61 * phi) ) # @torch.jit.script def Yl97_m_minus_60(theta, phi): return ( 1.90833574317446e-117 * (1.0 - cos(theta) ** 2) ** 30 * ( 6.33570039241606e136 * cos(theta) ** 37 - 2.18630904733114e137 * cos(theta) ** 35 + 3.40537665749222e137 * cos(theta) ** 33 - 3.17114440062767e137 * cos(theta) ** 31 + 1.97136650573779e137 * cos(theta) ** 29 - 8.65270055491398e136 * cos(theta) ** 27 + 2.76602722657086e136 * cos(theta) ** 25 - 6.54939359093338e135 * cos(theta) ** 23 + 1.15712051571658e135 * cos(theta) ** 21 - 1.52539427683918e134 * cos(theta) ** 19 + 1.49052812194e133 * cos(theta) ** 17 - 1.06522240979422e132 * cos(theta) ** 15 + 5.45069946532131e130 * cos(theta) ** 13 - 1.93515957348686e129 * cos(theta) ** 11 + 4.55234288031553e127 * cos(theta) ** 9 - 6.62158964409531e125 * cos(theta) ** 7 + 5.33180147722399e123 * cos(theta) ** 5 - 1.94804584480233e121 * cos(theta) ** 3 + 2.04197677652236e118 * cos(theta) ) * sin(60 * phi) ) # @torch.jit.script def Yl97_m_minus_59(theta, phi): return ( 1.47399635384787e-115 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 1.66728957695159e135 * cos(theta) ** 38 - 6.07308068703094e135 * cos(theta) ** 36 + 1.00158136985065e136 * cos(theta) ** 34 - 9.90982625196148e135 * cos(theta) ** 32 + 6.57122168579264e135 * cos(theta) ** 30 - 3.09025019818356e135 * cos(theta) ** 28 + 1.06385662560418e135 * cos(theta) ** 26 - 2.72891399622224e134 * cos(theta) ** 24 + 5.25963870780264e133 * cos(theta) ** 22 - 7.62697138419592e132 * cos(theta) ** 20 + 8.28071178855557e131 * cos(theta) ** 18 - 6.65764006121389e130 * cos(theta) ** 16 + 3.89335676094379e129 * cos(theta) ** 14 - 1.61263297790571e128 * cos(theta) ** 12 + 4.55234288031553e126 * cos(theta) ** 10 - 8.27698705511914e124 * cos(theta) ** 8 + 8.88633579537331e122 * cos(theta) ** 6 - 4.87011461200583e120 * cos(theta) ** 4 + 1.02098838826118e118 * cos(theta) ** 2 - 3.4226898701347e114 ) * sin(59 * phi) ) # @torch.jit.script def Yl97_m_minus_58(theta, phi): return ( 1.14971715600134e-113 * (1.0 - cos(theta) ** 2) ** 29 * ( 4.27510147936306e133 * cos(theta) ** 39 - 1.64137315865701e134 * cos(theta) ** 37 + 2.86166105671615e134 * cos(theta) ** 35 - 3.00297765210954e134 * cos(theta) ** 33 + 2.11974893090085e134 * cos(theta) ** 31 - 1.06560351661502e134 * cos(theta) ** 29 + 3.94020972445992e133 * cos(theta) ** 27 - 1.0915655984889e133 * cos(theta) ** 25 + 2.28679943817506e132 * cos(theta) ** 23 - 3.63189113533139e131 * cos(theta) ** 21 + 4.35826936239767e130 * cos(theta) ** 19 - 3.91625885953758e129 * cos(theta) ** 17 + 2.59557117396253e128 * cos(theta) ** 15 - 1.24048690608132e127 * cos(theta) ** 13 + 4.13849352755957e125 * cos(theta) ** 11 - 9.19665228346571e123 * cos(theta) ** 9 + 1.26947654219619e122 * cos(theta) ** 7 - 9.74022922401167e119 * cos(theta) ** 5 + 3.40329462753727e117 * cos(theta) ** 3 - 3.4226898701347e114 * cos(theta) ) * sin(58 * phi) ) # @torch.jit.script def Yl97_m_minus_57(theta, phi): return ( 9.05288193924102e-112 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 1.06877536984077e132 * cos(theta) ** 40 - 4.31940304909739e132 * cos(theta) ** 38 + 7.94905849087819e132 * cos(theta) ** 36 - 8.83228721208688e132 * cos(theta) ** 34 + 6.62421540906516e132 * cos(theta) ** 32 - 3.55201172205007e132 * cos(theta) ** 30 + 1.40721775873569e132 * cos(theta) ** 28 - 4.19832922495729e131 * cos(theta) ** 26 + 9.52833099239609e130 * cos(theta) ** 24 - 1.65085960696881e130 * cos(theta) ** 22 + 2.17913468119883e129 * cos(theta) ** 20 - 2.17569936640977e128 * cos(theta) ** 18 + 1.62223198372658e127 * cos(theta) ** 16 - 8.8606207577237e125 * cos(theta) ** 14 + 3.44874460629964e124 * cos(theta) ** 12 - 9.19665228346571e122 * cos(theta) ** 10 + 1.58684567774523e121 * cos(theta) ** 8 - 1.62337153733528e119 * cos(theta) ** 6 + 8.50823656884318e116 * cos(theta) ** 4 - 1.71134493506735e114 * cos(theta) ** 2 + 5.52046753247532e110 ) * sin(57 * phi) ) # @torch.jit.script def Yl97_m_minus_56(theta, phi): return ( 7.19348173874411e-110 * (1.0 - cos(theta) ** 2) ** 28 * ( 2.60676919473357e130 * cos(theta) ** 41 - 1.10753924335831e131 * cos(theta) ** 39 + 2.14839418672384e131 * cos(theta) ** 37 - 2.52351063202482e131 * cos(theta) ** 35 + 2.00733800274702e131 * cos(theta) ** 33 - 1.14581023291938e131 * cos(theta) ** 31 + 4.85247503012305e130 * cos(theta) ** 29 - 1.55493674998418e130 * cos(theta) ** 27 + 3.81133239695844e129 * cos(theta) ** 25 - 7.1776504650818e128 * cos(theta) ** 23 + 1.03768318152325e128 * cos(theta) ** 21 - 1.14510492968935e127 * cos(theta) ** 19 + 9.54254108074459e125 * cos(theta) ** 17 - 5.90708050514913e124 * cos(theta) ** 15 + 2.65288046638434e123 * cos(theta) ** 13 - 8.36059298496883e121 * cos(theta) ** 11 + 1.76316186416137e120 * cos(theta) ** 9 - 2.31910219619325e118 * cos(theta) ** 7 + 1.70164731376864e116 * cos(theta) ** 5 - 5.70448311689117e113 * cos(theta) ** 3 + 5.52046753247532e110 * cos(theta) ) * sin(56 * phi) ) # @torch.jit.script def Yl97_m_minus_55(theta, phi): return ( 5.76646295081998e-108 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 6.20659332079423e128 * cos(theta) ** 42 - 2.76884810839577e129 * cos(theta) ** 40 + 5.65366891243115e129 * cos(theta) ** 38 - 7.00975175562451e129 * cos(theta) ** 36 + 5.90393530219711e129 * cos(theta) ** 34 - 3.58065697787306e129 * cos(theta) ** 32 + 1.61749167670768e129 * cos(theta) ** 30 - 5.55334553565779e128 * cos(theta) ** 28 + 1.46589707575324e128 * cos(theta) ** 26 - 2.99068769378408e127 * cos(theta) ** 24 + 4.71674173419661e126 * cos(theta) ** 22 - 5.72552464844675e125 * cos(theta) ** 20 + 5.30141171152477e124 * cos(theta) ** 18 - 3.69192531571821e123 * cos(theta) ** 16 + 1.89491461884596e122 * cos(theta) ** 14 - 6.96716082080736e120 * cos(theta) ** 12 + 1.76316186416137e119 * cos(theta) ** 10 - 2.89887774524157e117 * cos(theta) ** 8 + 2.83607885628106e115 * cos(theta) ** 6 - 1.42612077922279e113 * cos(theta) ** 4 + 2.76023376623766e110 * cos(theta) ** 2 - 8.59083027151467e106 ) * sin(55 * phi) ) # @torch.jit.script def Yl97_m_minus_54(theta, phi): return ( 4.66192763435192e-106 * (1.0 - cos(theta) ** 2) ** 27 * ( 1.44339379553354e127 * cos(theta) ** 43 - 6.75328806925797e127 * cos(theta) ** 41 + 1.44965869549517e128 * cos(theta) ** 39 - 1.89452750152014e128 * cos(theta) ** 37 + 1.6868386577706e128 * cos(theta) ** 35 - 1.08504756905244e128 * cos(theta) ** 33 + 5.21771508615382e127 * cos(theta) ** 31 - 1.91494673643372e127 * cos(theta) ** 29 + 5.42924842871572e126 * cos(theta) ** 27 - 1.19627507751363e126 * cos(theta) ** 25 + 2.05075727573766e125 * cos(theta) ** 23 - 2.72644030878417e124 * cos(theta) ** 21 + 2.7902166902762e123 * cos(theta) ** 19 - 2.17172077395189e122 * cos(theta) ** 17 + 1.26327641256397e121 * cos(theta) ** 15 - 5.35935447754412e119 * cos(theta) ** 13 + 1.60287442196488e118 * cos(theta) ** 11 - 3.22097527249063e116 * cos(theta) ** 9 + 4.05154122325866e114 * cos(theta) ** 7 - 2.85224155844558e112 * cos(theta) ** 5 + 9.20077922079221e109 * cos(theta) ** 3 - 8.59083027151467e106 * cos(theta) ) * sin(54 * phi) ) # @torch.jit.script def Yl97_m_minus_53(theta, phi): return ( 3.79997150273728e-104 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 3.28044044439441e125 * cos(theta) ** 44 - 1.60792573077571e126 * cos(theta) ** 42 + 3.62414673873791e126 * cos(theta) ** 40 - 4.98559868821089e126 * cos(theta) ** 38 + 4.68566293825168e126 * cos(theta) ** 36 - 3.19131637956601e126 * cos(theta) ** 34 + 1.63053596442307e126 * cos(theta) ** 32 - 6.38315578811241e125 * cos(theta) ** 30 + 1.9390172959699e125 * cos(theta) ** 28 - 4.60105799043705e124 * cos(theta) ** 26 + 8.54482198224024e123 * cos(theta) ** 24 - 1.23929104944735e123 * cos(theta) ** 22 + 1.3951083451381e122 * cos(theta) ** 20 - 1.20651154108438e121 * cos(theta) ** 18 + 7.89547757852482e119 * cos(theta) ** 16 - 3.82811034110294e118 * cos(theta) ** 14 + 1.33572868497074e117 * cos(theta) ** 12 - 3.22097527249063e115 * cos(theta) ** 10 + 5.06442652907332e113 * cos(theta) ** 8 - 4.75373593074264e111 * cos(theta) ** 6 + 2.30019480519805e109 * cos(theta) ** 4 - 4.29541513575733e106 * cos(theta) ** 2 + 1.29302081148625e103 ) * sin(53 * phi) ) # @torch.jit.script def Yl97_m_minus_52(theta, phi): return ( 3.12199516488902e-102 * (1.0 - cos(theta) ** 2) ** 26 * ( 7.2898676542098e123 * cos(theta) ** 45 - 3.73936216459467e124 * cos(theta) ** 43 + 8.83938228960467e124 * cos(theta) ** 41 - 1.27835863800279e125 * cos(theta) ** 39 + 1.26639538871667e125 * cos(theta) ** 37 - 9.11804679876002e124 * cos(theta) ** 35 + 4.9410180740093e124 * cos(theta) ** 33 - 2.05908251229432e124 * cos(theta) ** 31 + 6.68626653782724e123 * cos(theta) ** 29 - 1.70409555201372e123 * cos(theta) ** 27 + 3.4179287928961e122 * cos(theta) ** 25 - 5.38822195411891e121 * cos(theta) ** 23 + 6.64337307208618e120 * cos(theta) ** 21 - 6.35006074254938e119 * cos(theta) ** 19 + 4.64439857560284e118 * cos(theta) ** 17 - 2.5520735607353e117 * cos(theta) ** 15 + 1.02748360382364e116 * cos(theta) ** 13 - 2.92815933862785e114 * cos(theta) ** 11 + 5.62714058785924e112 * cos(theta) ** 9 - 6.79105132963234e110 * cos(theta) ** 7 + 4.6003896103961e108 * cos(theta) ** 5 - 1.43180504525244e106 * cos(theta) ** 3 + 1.29302081148625e103 * cos(theta) ) * sin(52 * phi) ) # @torch.jit.script def Yl97_m_minus_51(theta, phi): return ( 2.58466508489848e-100 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 1.5847538378717e122 * cos(theta) ** 46 - 8.49855037407878e122 * cos(theta) ** 44 + 2.10461483085825e123 * cos(theta) ** 42 - 3.19589659500698e123 * cos(theta) ** 40 + 3.33261944399123e123 * cos(theta) ** 38 - 2.53279077743334e123 * cos(theta) ** 36 + 1.45324061000273e123 * cos(theta) ** 34 - 6.43463285091977e122 * cos(theta) ** 32 + 2.22875551260908e122 * cos(theta) ** 30 - 6.08605554290615e121 * cos(theta) ** 28 + 1.31458799726773e121 * cos(theta) ** 26 - 2.24509248088288e120 * cos(theta) ** 24 + 3.01971503276645e119 * cos(theta) ** 22 - 3.17503037127469e118 * cos(theta) ** 20 + 2.58022143089047e117 * cos(theta) ** 18 - 1.59504597545956e116 * cos(theta) ** 16 + 7.33916859874031e114 * cos(theta) ** 14 - 2.44013278218987e113 * cos(theta) ** 12 + 5.62714058785924e111 * cos(theta) ** 10 - 8.48881416204043e109 * cos(theta) ** 8 + 7.66731601732684e107 * cos(theta) ** 6 - 3.57951261313111e105 * cos(theta) ** 4 + 6.46510405743126e102 * cos(theta) ** 2 - 1.88652000508645e99 ) * sin(51 * phi) ) # @torch.jit.script def Yl97_m_minus_50(theta, phi): return ( 2.15567886034086e-98 * (1.0 - cos(theta) ** 2) ** 25 * ( 3.37181667632276e120 * cos(theta) ** 47 - 1.88856674979529e121 * cos(theta) ** 45 + 4.8944530950192e121 * cos(theta) ** 43 - 7.79486974391946e121 * cos(theta) ** 41 + 8.54517806151599e121 * cos(theta) ** 39 - 6.84538047954956e121 * cos(theta) ** 37 + 4.15211602857924e121 * cos(theta) ** 35 - 1.94988874270296e121 * cos(theta) ** 33 + 7.1895339116422e120 * cos(theta) ** 31 - 2.09863984238143e120 * cos(theta) ** 29 + 4.86884443432492e119 * cos(theta) ** 27 - 8.98036992353152e118 * cos(theta) ** 25 + 1.31291957946367e118 * cos(theta) ** 23 - 1.51191922441652e117 * cos(theta) ** 21 + 1.35801127941603e116 * cos(theta) ** 19 - 9.38262338505624e114 * cos(theta) ** 17 + 4.89277906582687e113 * cos(theta) ** 15 - 1.87702521706913e112 * cos(theta) ** 13 + 5.11558235259931e110 * cos(theta) ** 11 - 9.43201573560048e108 * cos(theta) ** 9 + 1.09533085961812e107 * cos(theta) ** 7 - 7.15902522626222e104 * cos(theta) ** 5 + 2.15503468581042e102 * cos(theta) ** 3 - 1.88652000508645e99 * cos(theta) ) * sin(50 * phi) ) # @torch.jit.script def Yl97_m_minus_49(theta, phi): return ( 1.81077024268632e-96 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 7.02461807567241e118 * cos(theta) ** 48 - 4.10557989085932e119 * cos(theta) ** 46 + 1.11237570341345e120 * cos(theta) ** 44 - 1.85592136759987e120 * cos(theta) ** 42 + 2.136294515379e120 * cos(theta) ** 40 - 1.80141591567094e120 * cos(theta) ** 38 + 1.15336556349423e120 * cos(theta) ** 36 - 5.73496689030282e119 * cos(theta) ** 34 + 2.24672934738819e119 * cos(theta) ** 32 - 6.99546614127144e118 * cos(theta) ** 30 + 1.7388730122589e118 * cos(theta) ** 28 - 3.45398843212751e117 * cos(theta) ** 26 + 5.4704982477653e116 * cos(theta) ** 24 - 6.87236011098417e115 * cos(theta) ** 22 + 6.79005639708017e114 * cos(theta) ** 20 - 5.21256854725346e113 * cos(theta) ** 18 + 3.0579869161418e112 * cos(theta) ** 16 - 1.34073229790652e111 * cos(theta) ** 14 + 4.26298529383276e109 * cos(theta) ** 12 - 9.43201573560048e107 * cos(theta) ** 10 + 1.36916357452265e106 * cos(theta) ** 8 - 1.1931708710437e104 * cos(theta) ** 6 + 5.38758671452605e101 * cos(theta) ** 4 - 9.43260002543225e98 * cos(theta) ** 2 + 2.673639462991e95 ) * sin(49 * phi) ) # @torch.jit.script def Yl97_m_minus_48(theta, phi): return ( 1.53157340629971e-94 * (1.0 - cos(theta) ** 2) ** 24 * ( 1.43359552564743e117 * cos(theta) ** 49 - 8.73527636353046e117 * cos(theta) ** 47 + 2.47194600758545e118 * cos(theta) ** 45 - 4.31609620372063e118 * cos(theta) ** 43 + 5.21047442775365e118 * cos(theta) ** 41 - 4.61901516838702e118 * cos(theta) ** 39 + 3.11720422566009e118 * cos(theta) ** 37 - 1.63856196865795e118 * cos(theta) ** 35 + 6.80827074966117e117 * cos(theta) ** 33 - 2.2566019810553e117 * cos(theta) ** 31 + 5.99611383537552e116 * cos(theta) ** 29 - 1.27925497486204e116 * cos(theta) ** 27 + 2.18819929910612e115 * cos(theta) ** 25 - 2.98798265694964e114 * cos(theta) ** 23 + 3.2333601890858e113 * cos(theta) ** 21 - 2.7434571301334e112 * cos(theta) ** 19 + 1.79881583302459e111 * cos(theta) ** 17 - 8.93821531937682e109 * cos(theta) ** 15 + 3.27921945679443e108 * cos(theta) ** 13 - 8.5745597596368e106 * cos(theta) ** 11 + 1.52129286058072e105 * cos(theta) ** 9 - 1.70452981577672e103 * cos(theta) ** 7 + 1.07751734290521e101 * cos(theta) ** 5 - 3.14420000847742e98 * cos(theta) ** 3 + 2.673639462991e95 * cos(theta) ) * sin(48 * phi) ) # @torch.jit.script def Yl97_m_minus_47(theta, phi): return ( 1.30408776418279e-92 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 2.86719105129486e115 * cos(theta) ** 50 - 1.81984924240218e116 * cos(theta) ** 48 + 5.37379566866403e116 * cos(theta) ** 46 - 9.80930955391052e116 * cos(theta) ** 44 + 1.24058914946515e117 * cos(theta) ** 42 - 1.15475379209675e117 * cos(theta) ** 40 + 8.20316901489498e116 * cos(theta) ** 38 - 4.55156102404986e116 * cos(theta) ** 36 + 2.00243257342976e116 * cos(theta) ** 34 - 7.05188119079782e115 * cos(theta) ** 32 + 1.99870461179184e115 * cos(theta) ** 30 - 4.56876776736443e114 * cos(theta) ** 28 + 8.41615115040815e113 * cos(theta) ** 26 - 1.24499277372902e113 * cos(theta) ** 24 + 1.46970917685718e112 * cos(theta) ** 22 - 1.3717285650667e111 * cos(theta) ** 20 + 9.99342129458103e109 * cos(theta) ** 18 - 5.58638457461051e108 * cos(theta) ** 16 + 2.34229961199602e107 * cos(theta) ** 14 - 7.145466466364e105 * cos(theta) ** 12 + 1.52129286058072e104 * cos(theta) ** 10 - 2.1306622697209e102 * cos(theta) ** 8 + 1.79586223817535e100 * cos(theta) ** 6 - 7.86050002119354e97 * cos(theta) ** 4 + 1.3368197314955e95 * cos(theta) ** 2 - 3.68777856964276e91 ) * sin(47 * phi) ) # @torch.jit.script def Yl97_m_minus_46(theta, phi): return ( 1.11756593189398e-90 * (1.0 - cos(theta) ** 2) ** 23 * ( 5.62194323783306e113 * cos(theta) ** 51 - 3.71397804571873e114 * cos(theta) ** 49 + 1.14336078056681e115 * cos(theta) ** 47 - 2.17984656753567e115 * cos(theta) ** 45 + 2.8850910452678e115 * cos(theta) ** 43 - 2.81647266365062e115 * cos(theta) ** 41 + 2.10337667048589e115 * cos(theta) ** 39 - 1.23015162812158e115 * cos(theta) ** 37 + 5.72123592408502e114 * cos(theta) ** 35 - 2.13693369418116e114 * cos(theta) ** 33 + 6.44743423158658e113 * cos(theta) ** 31 - 1.57543716116015e113 * cos(theta) ** 29 + 3.11709301866969e112 * cos(theta) ** 27 - 4.97997109491607e111 * cos(theta) ** 25 + 6.39003989937904e110 * cos(theta) ** 23 - 6.53204078603191e109 * cos(theta) ** 21 + 5.25969541820054e108 * cos(theta) ** 19 - 3.2861085733003e107 * cos(theta) ** 17 + 1.56153307466401e106 * cos(theta) ** 15 - 5.49651266643384e104 * cos(theta) ** 13 + 1.38299350961884e103 * cos(theta) ** 11 - 2.36740252191211e101 * cos(theta) ** 9 + 2.56551748310764e99 * cos(theta) ** 7 - 1.57210000423871e97 * cos(theta) ** 5 + 4.45606577165167e94 * cos(theta) ** 3 - 3.68777856964276e91 * cos(theta) ) * sin(46 * phi) ) # @torch.jit.script def Yl97_m_minus_45(theta, phi): return ( 9.63702187389815e-89 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 1.08114293035251e112 * cos(theta) ** 52 - 7.42795609143747e112 * cos(theta) ** 50 + 2.38200162618086e113 * cos(theta) ** 48 - 4.73879688594711e113 * cos(theta) ** 46 + 6.55702510288137e113 * cos(theta) ** 44 - 6.70588729440624e113 * cos(theta) ** 42 + 5.25844167621473e113 * cos(theta) ** 40 - 3.23724112663575e113 * cos(theta) ** 38 + 1.58923220113473e113 * cos(theta) ** 36 - 6.28509910053282e112 * cos(theta) ** 34 + 2.01482319737081e112 * cos(theta) ** 32 - 5.25145720386716e111 * cos(theta) ** 30 + 1.11324750666775e111 * cos(theta) ** 28 - 1.91537349804464e110 * cos(theta) ** 26 + 2.66251662474127e109 * cos(theta) ** 24 - 2.96910944819632e108 * cos(theta) ** 22 + 2.62984770910027e107 * cos(theta) ** 20 - 1.82561587405572e106 * cos(theta) ** 18 + 9.75958171665009e104 * cos(theta) ** 16 - 3.92608047602417e103 * cos(theta) ** 14 + 1.15249459134903e102 * cos(theta) ** 12 - 2.36740252191211e100 * cos(theta) ** 10 + 3.20689685388456e98 * cos(theta) ** 8 - 2.62016667373118e96 * cos(theta) ** 6 + 1.11401644291292e94 * cos(theta) ** 4 - 1.84388928482138e91 * cos(theta) ** 2 + 4.95935794734099e87 ) * sin(45 * phi) ) # @torch.jit.script def Yl97_m_minus_44(theta, phi): return ( 8.36035948055156e-87 * (1.0 - cos(theta) ** 2) ** 22 * ( 2.03989232141983e110 * cos(theta) ** 53 - 1.45646197871323e111 * cos(theta) ** 51 + 4.86122780853237e111 * cos(theta) ** 49 - 1.00825465658449e112 * cos(theta) ** 47 + 1.45711668952919e112 * cos(theta) ** 45 - 1.55950867311773e112 * cos(theta) ** 43 + 1.28254675029628e112 * cos(theta) ** 41 - 8.30061827342499e111 * cos(theta) ** 39 + 4.29522216522899e111 * cos(theta) ** 37 - 1.79574260015223e111 * cos(theta) ** 35 + 6.1055248405176e110 * cos(theta) ** 33 - 1.69401845286037e110 * cos(theta) ** 31 + 3.83878450575085e109 * cos(theta) ** 29 - 7.09397591868386e108 * cos(theta) ** 27 + 1.06500664989651e108 * cos(theta) ** 25 - 1.29091715138971e107 * cos(theta) ** 23 + 1.25230843290489e106 * cos(theta) ** 21 - 9.60850460029328e104 * cos(theta) ** 19 + 5.74093042155888e103 * cos(theta) ** 17 - 2.61738698401612e102 * cos(theta) ** 15 + 8.86534301037717e100 * cos(theta) ** 13 - 2.15218411082919e99 * cos(theta) ** 11 + 3.5632187265384e97 * cos(theta) ** 9 - 3.7430952481874e95 * cos(theta) ** 7 + 2.22803288582583e93 * cos(theta) ** 5 - 6.14629761607127e90 * cos(theta) ** 3 + 4.95935794734099e87 * cos(theta) ) * sin(44 * phi) ) # @torch.jit.script def Yl97_m_minus_43(theta, phi): return ( 7.2951023258333e-85 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 3.77757837299969e108 * cos(theta) ** 54 - 2.80088842060236e109 * cos(theta) ** 52 + 9.72245561706475e109 * cos(theta) ** 50 - 2.10053053455103e110 * cos(theta) ** 48 + 3.16764497723737e110 * cos(theta) ** 46 - 3.54433789344939e110 * cos(theta) ** 44 + 3.05368273880066e110 * cos(theta) ** 42 - 2.07515456835625e110 * cos(theta) ** 40 + 1.13032162242868e110 * cos(theta) ** 38 - 4.98817388931176e109 * cos(theta) ** 36 + 1.79574260015223e109 * cos(theta) ** 34 - 5.29380766518867e108 * cos(theta) ** 32 + 1.27959483525028e108 * cos(theta) ** 30 - 2.53356282810138e107 * cos(theta) ** 28 + 4.09617942267887e106 * cos(theta) ** 26 - 5.37882146412377e105 * cos(theta) ** 24 + 5.69231105865859e104 * cos(theta) ** 22 - 4.80425230014664e103 * cos(theta) ** 20 + 3.18940578975493e102 * cos(theta) ** 18 - 1.63586686501007e101 * cos(theta) ** 16 + 6.33238786455512e99 * cos(theta) ** 14 - 1.79348675902433e98 * cos(theta) ** 12 + 3.5632187265384e96 * cos(theta) ** 10 - 4.67886906023425e94 * cos(theta) ** 8 + 3.71338814304306e92 * cos(theta) ** 6 - 1.53657440401782e90 * cos(theta) ** 4 + 2.47967897367049e87 * cos(theta) ** 2 - 6.51347248140398e83 ) * sin(43 * phi) ) # @torch.jit.script def Yl97_m_minus_42(theta, phi): return ( 6.40142631115686e-83 * (1.0 - cos(theta) ** 2) ** 21 * ( 6.8683243145449e106 * cos(theta) ** 55 - 5.28469513321201e107 * cos(theta) ** 53 + 1.90636384648328e108 * cos(theta) ** 51 - 4.28679700928781e108 * cos(theta) ** 49 + 6.73967016433484e108 * cos(theta) ** 47 - 7.87630642988753e108 * cos(theta) ** 45 + 7.10158776465269e108 * cos(theta) ** 43 - 5.06135260574694e108 * cos(theta) ** 41 + 2.89826057032995e108 * cos(theta) ** 39 - 1.34815510521939e108 * cos(theta) ** 37 + 5.1306931432921e107 * cos(theta) ** 35 - 1.60418414096626e107 * cos(theta) ** 33 + 4.12772527500091e106 * cos(theta) ** 31 - 8.73642354517716e105 * cos(theta) ** 29 + 1.51710348988106e105 * cos(theta) ** 27 - 2.15152858564951e104 * cos(theta) ** 25 + 2.47491785159069e103 * cos(theta) ** 23 - 2.28773919054602e102 * cos(theta) ** 21 + 1.67863462618681e101 * cos(theta) ** 19 - 9.62274626476513e99 * cos(theta) ** 17 + 4.22159190970341e98 * cos(theta) ** 15 - 1.37960519924948e97 * cos(theta) ** 13 + 3.23928975139854e95 * cos(theta) ** 11 - 5.19874340026028e93 * cos(theta) ** 9 + 5.30484020434722e91 * cos(theta) ** 7 - 3.07314880803563e89 * cos(theta) ** 5 + 8.26559657890165e86 * cos(theta) ** 3 - 6.51347248140398e83 * cos(theta) ) * sin(42 * phi) ) # @torch.jit.script def Yl97_m_minus_41(theta, phi): return ( 5.64778511128798e-81 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 1.22648648474016e105 * cos(theta) ** 56 - 9.78647246891112e105 * cos(theta) ** 54 + 3.66608432016016e106 * cos(theta) ** 52 - 8.57359401857561e106 * cos(theta) ** 50 + 1.40409795090309e107 * cos(theta) ** 48 - 1.71224052823642e107 * cos(theta) ** 46 + 1.61399721923925e107 * cos(theta) ** 44 - 1.20508395374927e107 * cos(theta) ** 42 + 7.24565142582488e106 * cos(theta) ** 40 - 3.54777659268262e106 * cos(theta) ** 38 + 1.42519253980336e106 * cos(theta) ** 36 - 4.71818864990077e105 * cos(theta) ** 34 + 1.28991414843778e105 * cos(theta) ** 32 - 2.91214118172572e104 * cos(theta) ** 30 + 5.41822674957523e103 * cos(theta) ** 28 - 8.27510994480581e102 * cos(theta) ** 26 + 1.03121577149612e102 * cos(theta) ** 24 - 1.03988145024819e101 * cos(theta) ** 22 + 8.39317313093403e99 * cos(theta) ** 20 - 5.34597014709174e98 * cos(theta) ** 18 + 2.63849494356463e97 * cos(theta) ** 16 - 9.85432285178201e95 * cos(theta) ** 14 + 2.69940812616545e94 * cos(theta) ** 12 - 5.19874340026028e92 * cos(theta) ** 10 + 6.63105025543403e90 * cos(theta) ** 8 - 5.12191468005939e88 * cos(theta) ** 6 + 2.06639914472541e86 * cos(theta) ** 4 - 3.25673624070199e83 * cos(theta) ** 2 + 8.36777040262587e79 ) * sin(41 * phi) ) # @torch.jit.script def Yl97_m_minus_40(theta, phi): return ( 5.00904732891804e-79 * (1.0 - cos(theta) ** 2) ** 20 * ( 2.15173067498274e103 * cos(theta) ** 57 - 1.77935863071111e104 * cos(theta) ** 55 + 6.91714022671728e104 * cos(theta) ** 53 - 1.68109686638738e105 * cos(theta) ** 51 + 2.86550602225121e105 * cos(theta) ** 49 - 3.64306495369451e105 * cos(theta) ** 47 + 3.58666048719833e105 * cos(theta) ** 45 - 2.80252082267273e105 * cos(theta) ** 43 + 1.76723205507924e105 * cos(theta) ** 41 - 9.09686305816056e104 * cos(theta) ** 39 + 3.85187172919827e104 * cos(theta) ** 37 - 1.34805389997165e104 * cos(theta) ** 35 + 3.90883075284177e103 * cos(theta) ** 33 - 9.39400381201845e102 * cos(theta) ** 31 + 1.86835405157767e102 * cos(theta) ** 29 - 3.06485553511326e101 * cos(theta) ** 27 + 4.12486308598449e100 * cos(theta) ** 25 - 4.52122369673126e99 * cos(theta) ** 23 + 3.99674910996859e98 * cos(theta) ** 21 - 2.81366849846934e97 * cos(theta) ** 19 + 1.55205584915567e96 * cos(theta) ** 17 - 6.56954856785467e94 * cos(theta) ** 15 + 2.07646778935804e93 * cos(theta) ** 13 - 4.72613036387298e91 * cos(theta) ** 11 + 7.36783361714892e89 * cos(theta) ** 9 - 7.31702097151341e87 * cos(theta) ** 7 + 4.13279828945082e85 * cos(theta) ** 5 - 1.08557874690066e83 * cos(theta) ** 3 + 8.36777040262587e79 * cos(theta) ) * sin(40 * phi) ) # @torch.jit.script def Yl97_m_minus_39(theta, phi): return ( 4.4650817592625e-77 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 3.70988047410817e101 * cos(theta) ** 58 - 3.17742612626984e102 * cos(theta) ** 56 + 1.28095189383653e103 * cos(theta) ** 54 - 3.23287858920649e103 * cos(theta) ** 52 + 5.73101204450242e103 * cos(theta) ** 50 - 7.58971865353023e103 * cos(theta) ** 48 + 7.79708801564854e103 * cos(theta) ** 46 - 6.36936550607438e103 * cos(theta) ** 44 + 4.20769536923629e103 * cos(theta) ** 42 - 2.27421576454014e103 * cos(theta) ** 40 + 1.01365045505218e103 * cos(theta) ** 38 - 3.74459416658791e102 * cos(theta) ** 36 + 1.14965610377699e102 * cos(theta) ** 34 - 2.93562619125577e101 * cos(theta) ** 32 + 6.22784683859222e100 * cos(theta) ** 30 - 1.09459126254045e100 * cos(theta) ** 28 + 1.58648580230173e99 * cos(theta) ** 26 - 1.88384320697136e98 * cos(theta) ** 24 + 1.81670414089481e97 * cos(theta) ** 22 - 1.40683424923467e96 * cos(theta) ** 20 + 8.62253249530926e94 * cos(theta) ** 18 - 4.10596785490917e93 * cos(theta) ** 16 + 1.48319127811289e92 * cos(theta) ** 14 - 3.93844196989415e90 * cos(theta) ** 12 + 7.36783361714892e88 * cos(theta) ** 10 - 9.14627621439177e86 * cos(theta) ** 8 + 6.88799714908471e84 * cos(theta) ** 6 - 2.71394686725166e82 * cos(theta) ** 4 + 4.18388520131294e79 * cos(theta) ** 2 - 1.05307958754416e76 ) * sin(39 * phi) ) # @torch.jit.script def Yl97_m_minus_38(theta, phi): return ( 3.99967658515029e-75 * (1.0 - cos(theta) ** 2) ** 19 * ( 6.28793300696299e99 * cos(theta) ** 59 - 5.57443180047341e100 * cos(theta) ** 57 + 2.32900344333915e101 * cos(theta) ** 55 - 6.09977092303112e101 * cos(theta) ** 53 + 1.12372785186322e102 * cos(theta) ** 51 - 1.54892217418984e102 * cos(theta) ** 49 + 1.6589548969465e102 * cos(theta) ** 47 - 1.41541455690542e102 * cos(theta) ** 45 + 9.78533806799136e101 * cos(theta) ** 43 - 5.54686771839058e101 * cos(theta) ** 41 + 2.59910373090302e101 * cos(theta) ** 39 - 1.01205247745619e101 * cos(theta) ** 37 + 3.28473172507712e100 * cos(theta) ** 35 - 8.89583694319929e99 * cos(theta) ** 33 + 2.00898285115878e99 * cos(theta) ** 31 - 3.77445262944983e98 * cos(theta) ** 29 + 5.87587334185825e97 * cos(theta) ** 27 - 7.53537282788544e96 * cos(theta) ** 25 + 7.8987136560644e95 * cos(theta) ** 23 - 6.69921071064128e94 * cos(theta) ** 21 + 4.53817499753119e93 * cos(theta) ** 19 - 2.4152752087701e92 * cos(theta) ** 17 + 9.8879418540859e90 * cos(theta) ** 15 - 3.02957074607242e89 * cos(theta) ** 13 + 6.69803056104448e87 * cos(theta) ** 11 - 1.0162529127102e86 * cos(theta) ** 9 + 9.83999592726387e83 * cos(theta) ** 7 - 5.42789373450332e81 * cos(theta) ** 5 + 1.39462840043765e79 * cos(theta) ** 3 - 1.05307958754416e76 * cos(theta) ) * sin(38 * phi) ) # @torch.jit.script def Yl97_m_minus_37(theta, phi): return ( 3.59970892663526e-73 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 1.04798883449383e98 * cos(theta) ** 60 - 9.61108931116105e98 * cos(theta) ** 58 + 4.15893472024849e99 * cos(theta) ** 56 - 1.12958720796872e100 * cos(theta) ** 54 + 2.16101509973696e100 * cos(theta) ** 52 - 3.09784434837968e100 * cos(theta) ** 50 + 3.4561560353052e100 * cos(theta) ** 48 - 3.07698816718569e100 * cos(theta) ** 46 + 2.22394046999804e100 * cos(theta) ** 44 - 1.320682790093e100 * cos(theta) ** 42 + 6.49775932725754e99 * cos(theta) ** 40 - 2.66329599330577e99 * cos(theta) ** 38 + 9.12425479188088e98 * cos(theta) ** 36 - 2.61642263035273e98 * cos(theta) ** 34 + 6.27807140987119e97 * cos(theta) ** 32 - 1.25815087648328e97 * cos(theta) ** 30 + 2.0985261935208e96 * cos(theta) ** 28 - 2.89822031841748e95 * cos(theta) ** 26 + 3.29113069002683e94 * cos(theta) ** 24 - 3.04509577756422e93 * cos(theta) ** 22 + 2.26908749876559e92 * cos(theta) ** 20 - 1.34181956042783e91 * cos(theta) ** 18 + 6.17996365880369e89 * cos(theta) ** 16 - 2.16397910433745e88 * cos(theta) ** 14 + 5.58169213420373e86 * cos(theta) ** 12 - 1.0162529127102e85 * cos(theta) ** 10 + 1.22999949090798e83 * cos(theta) ** 8 - 9.04648955750553e80 * cos(theta) ** 6 + 3.48657100109411e78 * cos(theta) ** 4 - 5.26539793772079e75 * cos(theta) ** 2 + 1.30009825622735e72 ) * sin(37 * phi) ) # @torch.jit.script def Yl97_m_minus_36(theta, phi): return ( 3.2545031911186e-71 * (1.0 - cos(theta) ** 2) ** 18 * ( 1.71801448277677e96 * cos(theta) ** 61 - 1.62899818833238e97 * cos(theta) ** 59 + 7.29637670219033e97 * cos(theta) ** 57 - 2.0537949235795e98 * cos(theta) ** 55 + 4.07738698063577e98 * cos(theta) ** 53 - 6.07420460466605e98 * cos(theta) ** 51 + 7.05337966388817e98 * cos(theta) ** 49 - 6.54678333443764e98 * cos(theta) ** 47 + 4.94208993332897e98 * cos(theta) ** 45 - 3.07135532579767e98 * cos(theta) ** 43 + 1.5848193481116e98 * cos(theta) ** 41 - 6.82896408539941e97 * cos(theta) ** 39 + 2.46601480861645e97 * cos(theta) ** 37 - 7.47549322957924e96 * cos(theta) ** 35 + 1.90244588177915e96 * cos(theta) ** 33 - 4.05855121446218e95 * cos(theta) ** 31 + 7.23629721903725e94 * cos(theta) ** 29 - 1.07341493274721e94 * cos(theta) ** 27 + 1.31645227601073e93 * cos(theta) ** 25 - 1.32395468589749e92 * cos(theta) ** 23 + 1.08051785655504e91 * cos(theta) ** 21 - 7.06220821277807e89 * cos(theta) ** 19 + 3.63527274047276e88 * cos(theta) ** 17 - 1.44265273622496e87 * cos(theta) ** 15 + 4.29360933400287e85 * cos(theta) ** 13 - 9.23866284281997e83 * cos(theta) ** 11 + 1.36666610100887e82 * cos(theta) ** 9 - 1.29235565107222e80 * cos(theta) ** 7 + 6.97314200218823e77 * cos(theta) ** 5 - 1.75513264590693e75 * cos(theta) ** 3 + 1.30009825622735e72 * cos(theta) ) * sin(36 * phi) ) # @torch.jit.script def Yl97_m_minus_35(theta, phi): return ( 2.95533261679926e-69 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 2.77099110125286e94 * cos(theta) ** 62 - 2.71499698055397e95 * cos(theta) ** 60 + 1.25799598313626e96 * cos(theta) ** 58 - 3.66749093496339e96 * cos(theta) ** 56 + 7.55071663080699e96 * cos(theta) ** 54 - 1.16811627012809e97 * cos(theta) ** 52 + 1.41067593277763e97 * cos(theta) ** 50 - 1.36391319467451e97 * cos(theta) ** 48 + 1.07436737681065e97 * cos(theta) ** 46 - 6.98035301317651e96 * cos(theta) ** 44 + 3.7733794002657e96 * cos(theta) ** 42 - 1.70724102134985e96 * cos(theta) ** 40 + 6.48951265425383e95 * cos(theta) ** 38 - 2.07652589710534e95 * cos(theta) ** 36 + 5.59542906405632e94 * cos(theta) ** 34 - 1.26829725451943e94 * cos(theta) ** 32 + 2.41209907301242e93 * cos(theta) ** 30 - 3.83362475981148e92 * cos(theta) ** 28 + 5.06327798465667e91 * cos(theta) ** 26 - 5.51647785790619e90 * cos(theta) ** 24 + 4.91144480252293e89 * cos(theta) ** 22 - 3.53110410638904e88 * cos(theta) ** 20 + 2.01959596692931e87 * cos(theta) ** 18 - 9.01657960140602e85 * cos(theta) ** 16 + 3.06686381000205e84 * cos(theta) ** 14 - 7.69888570234997e82 * cos(theta) ** 12 + 1.36666610100887e81 * cos(theta) ** 10 - 1.61544456384027e79 * cos(theta) ** 8 + 1.16219033369804e77 * cos(theta) ** 6 - 4.38783161476732e74 * cos(theta) ** 4 + 6.50049128113677e71 * cos(theta) ** 2 - 1.5766411062665e68 ) * sin(35 * phi) ) # @torch.jit.script def Yl97_m_minus_34(theta, phi): return ( 2.69503002068864e-67 * (1.0 - cos(theta) ** 2) ** 17 * ( 4.39839857341724e92 * cos(theta) ** 63 - 4.45081472221962e93 * cos(theta) ** 61 + 2.13219658158689e94 * cos(theta) ** 59 - 6.43419462274279e94 * cos(theta) ** 57 + 1.37285756923763e95 * cos(theta) ** 55 - 2.20399296250582e95 * cos(theta) ** 53 + 2.76603124074046e95 * cos(theta) ** 51 - 2.78349631566226e95 * cos(theta) ** 49 + 2.28588803576733e95 * cos(theta) ** 47 - 1.55118955848367e95 * cos(theta) ** 45 + 8.77530093085047e94 * cos(theta) ** 43 - 4.1640024910972e94 * cos(theta) ** 41 + 1.66397760365483e94 * cos(theta) ** 39 - 5.61223215433877e93 * cos(theta) ** 37 + 1.5986940183018e93 * cos(theta) ** 35 - 3.84332501369525e92 * cos(theta) ** 33 + 7.78096475165296e91 * cos(theta) ** 31 - 1.32193957234879e91 * cos(theta) ** 29 + 1.87528814246543e90 * cos(theta) ** 27 - 2.20659114316248e89 * cos(theta) ** 25 + 2.13541078370562e88 * cos(theta) ** 23 - 1.68147814589954e87 * cos(theta) ** 21 + 1.06294524575227e86 * cos(theta) ** 19 - 5.30387035376825e84 * cos(theta) ** 17 + 2.0445758733347e83 * cos(theta) ** 15 - 5.92221977103844e81 * cos(theta) ** 13 + 1.24242372818988e80 * cos(theta) ** 11 - 1.79493840426697e78 * cos(theta) ** 9 + 1.66027190528291e76 * cos(theta) ** 7 - 8.77566322953464e73 * cos(theta) ** 5 + 2.16683042704559e71 * cos(theta) ** 3 - 1.5766411062665e68 * cos(theta) ) * sin(34 * phi) ) # @torch.jit.script def Yl97_m_minus_33(theta, phi): return ( 2.4676822776701e-65 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 6.87249777096444e90 * cos(theta) ** 64 - 7.17873342293488e91 * cos(theta) ** 62 + 3.55366096931148e92 * cos(theta) ** 60 - 1.1093439004729e93 * cos(theta) ** 58 + 2.45153137363863e93 * cos(theta) ** 56 - 4.08146844908486e93 * cos(theta) ** 54 + 5.31929084757781e93 * cos(theta) ** 52 - 5.56699263132452e93 * cos(theta) ** 50 + 4.76226674118194e93 * cos(theta) ** 48 - 3.37215121409493e93 * cos(theta) ** 46 + 1.99438657519329e93 * cos(theta) ** 44 - 9.91429164546953e92 * cos(theta) ** 42 + 4.15994400913707e92 * cos(theta) ** 40 - 1.4769031985102e92 * cos(theta) ** 38 + 4.44081671750501e91 * cos(theta) ** 36 - 1.13038970991037e91 * cos(theta) ** 34 + 2.43155148489155e90 * cos(theta) ** 32 - 4.40646524116262e89 * cos(theta) ** 30 + 6.69745765166226e88 * cos(theta) ** 28 - 8.48688901216337e87 * cos(theta) ** 26 + 8.89754493210676e86 * cos(theta) ** 24 - 7.64308248136155e85 * cos(theta) ** 22 + 5.31472622876134e84 * cos(theta) ** 20 - 2.94659464098236e83 * cos(theta) ** 18 + 1.27785992083419e82 * cos(theta) ** 16 - 4.23015697931317e80 * cos(theta) ** 14 + 1.0353531068249e79 * cos(theta) ** 12 - 1.79493840426697e77 * cos(theta) ** 10 + 2.07533988160364e75 * cos(theta) ** 8 - 1.46261053825577e73 * cos(theta) ** 6 + 5.41707606761398e70 * cos(theta) ** 4 - 7.88320553133249e67 * cos(theta) ** 2 + 1.88053567064229e64 ) * sin(33 * phi) ) # @torch.jit.script def Yl97_m_minus_32(theta, phi): return ( 2.26838933406071e-63 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.05730734937914e89 * cos(theta) ** 65 - 1.13948149570395e90 * cos(theta) ** 63 + 5.82567372018275e90 * cos(theta) ** 61 - 1.8802438991066e91 * cos(theta) ** 59 + 4.30093223445374e91 * cos(theta) ** 57 - 7.42085172560883e91 * cos(theta) ** 55 + 1.00363978256185e92 * cos(theta) ** 53 - 1.09156718261265e92 * cos(theta) ** 51 + 9.71891171669784e91 * cos(theta) ** 49 - 7.17478981722326e91 * cos(theta) ** 47 + 4.4319701670962e91 * cos(theta) ** 45 - 2.30564921987664e91 * cos(theta) ** 43 + 1.01462049003343e91 * cos(theta) ** 41 - 3.78693127823129e90 * cos(theta) ** 39 + 1.20022073446081e90 * cos(theta) ** 37 - 3.22968488545819e89 * cos(theta) ** 35 + 7.36833783300469e88 * cos(theta) ** 33 - 1.42144040037504e88 * cos(theta) ** 31 + 2.30946815574561e87 * cos(theta) ** 29 - 3.14329222672717e86 * cos(theta) ** 27 + 3.5590179728427e85 * cos(theta) ** 25 - 3.32307933972241e84 * cos(theta) ** 23 + 2.53082201369588e83 * cos(theta) ** 21 - 1.55083928472756e82 * cos(theta) ** 19 + 7.51682306373051e80 * cos(theta) ** 17 - 2.82010465287545e79 * cos(theta) ** 15 + 7.96425466788386e77 * cos(theta) ** 13 - 1.63176218569725e76 * cos(theta) ** 11 + 2.30593320178182e74 * cos(theta) ** 9 - 2.08944362607968e72 * cos(theta) ** 7 + 1.0834152135228e70 * cos(theta) ** 5 - 2.62773517711083e67 * cos(theta) ** 3 + 1.88053567064229e64 * cos(theta) ) * sin(32 * phi) ) # @torch.jit.script def Yl97_m_minus_31(theta, phi): return ( 2.09307321216616e-61 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 1.60198083239264e87 * cos(theta) ** 66 - 1.78043983703742e88 * cos(theta) ** 64 + 9.39624793577863e88 * cos(theta) ** 62 - 3.13373983184434e89 * cos(theta) ** 60 + 7.41540040423059e89 * cos(theta) ** 58 - 1.32515209385872e90 * cos(theta) ** 56 + 1.85859218992935e90 * cos(theta) ** 54 - 2.09916765887048e90 * cos(theta) ** 52 + 1.94378234333957e90 * cos(theta) ** 50 - 1.49474787858818e90 * cos(theta) ** 48 + 9.63471775455695e89 * cos(theta) ** 46 - 5.24011186335599e89 * cos(theta) ** 44 + 2.41576307150817e89 * cos(theta) ** 42 - 9.46732819557822e88 * cos(theta) ** 40 + 3.15847561700214e88 * cos(theta) ** 38 - 8.97134690405053e87 * cos(theta) ** 36 + 2.16715818617785e87 * cos(theta) ** 34 - 4.44200125117199e86 * cos(theta) ** 32 + 7.69822718581869e85 * cos(theta) ** 30 - 1.12260436668828e85 * cos(theta) ** 28 + 1.36885306647796e84 * cos(theta) ** 26 - 1.38461639155101e83 * cos(theta) ** 24 + 1.15037364258904e82 * cos(theta) ** 22 - 7.75419642363779e80 * cos(theta) ** 20 + 4.17601281318362e79 * cos(theta) ** 18 - 1.76256540804715e78 * cos(theta) ** 16 + 5.68875333420276e76 * cos(theta) ** 14 - 1.35980182141437e75 * cos(theta) ** 12 + 2.30593320178182e73 * cos(theta) ** 10 - 2.6118045325996e71 * cos(theta) ** 8 + 1.80569202253799e69 * cos(theta) ** 6 - 6.56933794277708e66 * cos(theta) ** 4 + 9.40267835321146e63 * cos(theta) ** 2 - 2.20875695400786e60 ) * sin(31 * phi) ) # @torch.jit.script def Yl97_m_minus_30(theta, phi): return ( 1.93832593037077e-59 * (1.0 - cos(theta) ** 2) ** 15 * ( 2.39101616775021e85 * cos(theta) ** 67 - 2.7391382108268e86 * cos(theta) ** 65 + 1.49146792631407e87 * cos(theta) ** 63 - 5.13727841285957e87 * cos(theta) ** 61 + 1.25684752614078e88 * cos(theta) ** 59 - 2.32482823483986e88 * cos(theta) ** 57 + 3.37925852714428e88 * cos(theta) ** 55 - 3.96069369598204e88 * cos(theta) ** 53 + 3.8113379281168e88 * cos(theta) ** 51 - 3.05050587466975e88 * cos(theta) ** 49 + 2.04993994777808e88 * cos(theta) ** 47 - 1.164469302968e88 * cos(theta) ** 45 + 5.61805365467016e87 * cos(theta) ** 43 - 2.30910443794591e87 * cos(theta) ** 41 + 8.09865542821062e86 * cos(theta) ** 39 - 2.42468835244609e86 * cos(theta) ** 37 + 6.19188053193672e85 * cos(theta) ** 35 - 1.34606098520363e85 * cos(theta) ** 33 + 2.48329909219958e84 * cos(theta) ** 31 - 3.8710495403044e83 * cos(theta) ** 29 + 5.0698261721406e82 * cos(theta) ** 27 - 5.53846556620402e81 * cos(theta) ** 25 + 5.0016245329958e80 * cos(theta) ** 23 - 3.69247448744657e79 * cos(theta) ** 21 + 2.19790148062296e78 * cos(theta) ** 19 - 1.03680318120421e77 * cos(theta) ** 17 + 3.79250222280184e75 * cos(theta) ** 15 - 1.04600140108798e74 * cos(theta) ** 13 + 2.09630291071075e72 * cos(theta) ** 11 - 2.90200503622177e70 * cos(theta) ** 9 + 2.57956003219713e68 * cos(theta) ** 7 - 1.31386758855542e66 * cos(theta) ** 5 + 3.13422611773715e63 * cos(theta) ** 3 - 2.20875695400786e60 * cos(theta) ) * sin(30 * phi) ) # @torch.jit.script def Yl97_m_minus_29(theta, phi): return ( 1.80128786186537e-57 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 3.51620024669149e83 * cos(theta) ** 68 - 4.15020941034364e84 * cos(theta) ** 66 + 2.33041863486573e85 * cos(theta) ** 64 - 8.28593292396705e85 * cos(theta) ** 62 + 2.0947458769013e86 * cos(theta) ** 60 - 4.00832454282734e86 * cos(theta) ** 58 + 6.03439022704335e86 * cos(theta) ** 56 - 7.3346179555223e86 * cos(theta) ** 54 + 7.32949601560923e86 * cos(theta) ** 52 - 6.10101174933951e86 * cos(theta) ** 50 + 4.27070822453766e86 * cos(theta) ** 48 - 2.53145500645217e86 * cos(theta) ** 46 + 1.2768303760614e86 * cos(theta) ** 44 - 5.49786770939502e85 * cos(theta) ** 42 + 2.02466385705266e85 * cos(theta) ** 40 - 6.38075882222655e84 * cos(theta) ** 38 + 1.71996681442687e84 * cos(theta) ** 36 - 3.95900289765775e83 * cos(theta) ** 34 + 7.76030966312368e82 * cos(theta) ** 32 - 1.29034984676813e82 * cos(theta) ** 30 + 1.81065220433593e81 * cos(theta) ** 28 - 2.13017906392462e80 * cos(theta) ** 26 + 2.08401022208159e79 * cos(theta) ** 24 - 1.67839749429389e78 * cos(theta) ** 22 + 1.09895074031148e77 * cos(theta) ** 20 - 5.76001767335671e75 * cos(theta) ** 18 + 2.37031388925115e74 * cos(theta) ** 16 - 7.47143857919984e72 * cos(theta) ** 14 + 1.74691909225896e71 * cos(theta) ** 12 - 2.90200503622177e69 * cos(theta) ** 10 + 3.22445004024641e67 * cos(theta) ** 8 - 2.18977931425903e65 * cos(theta) ** 6 + 7.83556529434289e62 * cos(theta) ** 4 - 1.10437847700393e60 * cos(theta) ** 2 + 2.55761574109294e56 ) * sin(29 * phi) ) # @torch.jit.script def Yl97_m_minus_28(theta, phi): return ( 1.6795500122227e-55 * (1.0 - cos(theta) ** 2) ** 14 * ( 5.09594238650941e81 * cos(theta) ** 69 - 6.19434240349796e82 * cos(theta) ** 67 + 3.58525943825497e83 * cos(theta) ** 65 - 1.31522744824874e84 * cos(theta) ** 63 + 3.43400963426442e84 * cos(theta) ** 61 - 6.79377041157177e84 * cos(theta) ** 59 + 1.05866495211287e85 * cos(theta) ** 57 - 1.33356690100406e85 * cos(theta) ** 55 + 1.38292377653004e85 * cos(theta) ** 53 - 1.19627681359598e85 * cos(theta) ** 51 + 8.71573107048501e84 * cos(theta) ** 49 - 5.38607448181312e84 * cos(theta) ** 47 + 2.837400835692e84 * cos(theta) ** 45 - 1.27857388590582e84 * cos(theta) ** 43 + 4.93820452939672e83 * cos(theta) ** 41 - 1.63609200569912e83 * cos(theta) ** 39 + 4.64855895791045e82 * cos(theta) ** 37 - 1.13114368504507e82 * cos(theta) ** 35 + 2.35160898882536e81 * cos(theta) ** 33 - 4.16241886054237e80 * cos(theta) ** 31 + 6.24362829081355e79 * cos(theta) ** 29 - 7.88955208860972e78 * cos(theta) ** 27 + 8.33604088832634e77 * cos(theta) ** 25 - 7.29738040997345e76 * cos(theta) ** 23 + 5.23309876338799e75 * cos(theta) ** 21 - 3.03158824913511e74 * cos(theta) ** 19 + 1.39430228779479e73 * cos(theta) ** 17 - 4.98095905279989e71 * cos(theta) ** 15 + 1.34378391712227e70 * cos(theta) ** 13 - 2.63818639656525e68 * cos(theta) ** 11 + 3.58272226694046e66 * cos(theta) ** 9 - 3.12825616322718e64 * cos(theta) ** 7 + 1.56711305886858e62 * cos(theta) ** 5 - 3.6812615900131e59 * cos(theta) ** 3 + 2.55761574109294e56 * cos(theta) ) * sin(28 * phi) ) # @torch.jit.script def Yl97_m_minus_27(theta, phi): return ( 1.57107517742233e-53 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 7.27991769501344e79 * cos(theta) ** 70 - 9.10932706396759e80 * cos(theta) ** 68 + 5.43221127008329e81 * cos(theta) ** 66 - 2.05504288788865e82 * cos(theta) ** 64 + 5.53872521655551e82 * cos(theta) ** 62 - 1.13229506859529e83 * cos(theta) ** 60 + 1.8252844001946e83 * cos(theta) ** 58 - 2.38136946607867e83 * cos(theta) ** 56 + 2.56096995653712e83 * cos(theta) ** 54 - 2.30053233383843e83 * cos(theta) ** 52 + 1.743146214097e83 * cos(theta) ** 50 - 1.12209885037773e83 * cos(theta) ** 48 + 6.16826268628696e82 * cos(theta) ** 46 - 2.90584974069504e82 * cos(theta) ** 44 + 1.1757629831897e82 * cos(theta) ** 42 - 4.09023001424779e81 * cos(theta) ** 40 + 1.2233049889238e81 * cos(theta) ** 38 - 3.14206579179186e80 * cos(theta) ** 36 + 6.91649702595693e79 * cos(theta) ** 34 - 1.30075589391949e79 * cos(theta) ** 32 + 2.08120943027118e78 * cos(theta) ** 30 - 2.81769717450347e77 * cos(theta) ** 28 + 3.20616957243321e76 * cos(theta) ** 26 - 3.04057517082227e75 * cos(theta) ** 24 + 2.37868125608545e74 * cos(theta) ** 22 - 1.51579412456756e73 * cos(theta) ** 20 + 7.74612382108219e71 * cos(theta) ** 18 - 3.11309940799993e70 * cos(theta) ** 16 + 9.59845655087338e68 * cos(theta) ** 14 - 2.19848866380437e67 * cos(theta) ** 12 + 3.58272226694046e65 * cos(theta) ** 10 - 3.91032020403397e63 * cos(theta) ** 8 + 2.6118550981143e61 * cos(theta) ** 6 - 9.20315397503275e58 * cos(theta) ** 4 + 1.27880787054647e56 * cos(theta) ** 2 - 2.92298941839193e52 ) * sin(27 * phi) ) # @torch.jit.script def Yl97_m_minus_26(theta, phi): return ( 1.47413407070875e-51 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.02534052042443e78 * cos(theta) ** 71 - 1.32019232811125e79 * cos(theta) ** 69 + 8.10777801504969e79 * cos(theta) ** 67 - 3.16160444290562e80 * cos(theta) ** 65 + 8.7916273278659e80 * cos(theta) ** 63 - 1.85622142392671e81 * cos(theta) ** 61 + 3.09370237321119e81 * cos(theta) ** 59 - 4.17784116855907e81 * cos(theta) ** 57 + 4.65630901188567e81 * cos(theta) ** 55 - 4.34062704497817e81 * cos(theta) ** 53 + 3.41793375313138e81 * cos(theta) ** 51 - 2.28999765383211e81 * cos(theta) ** 49 + 1.31239631623127e81 * cos(theta) ** 47 - 6.4574438682112e80 * cos(theta) ** 45 + 2.7343325190458e80 * cos(theta) ** 43 - 9.97617076645802e79 * cos(theta) ** 41 + 3.13667945877898e79 * cos(theta) ** 39 - 8.49206970754558e78 * cos(theta) ** 37 + 1.97614200741627e78 * cos(theta) ** 35 - 3.94168452702876e77 * cos(theta) ** 33 + 6.7135788073264e76 * cos(theta) ** 31 - 9.71619715346024e75 * cos(theta) ** 29 + 1.1874702120123e75 * cos(theta) ** 27 - 1.21623006832891e74 * cos(theta) ** 25 + 1.03420924177628e73 * cos(theta) ** 23 - 7.21806725984551e71 * cos(theta) ** 21 + 4.07690727425378e70 * cos(theta) ** 19 - 1.83123494588231e69 * cos(theta) ** 17 + 6.39897103391559e67 * cos(theta) ** 15 - 1.69114512600336e66 * cos(theta) ** 13 + 3.25702024267315e64 * cos(theta) ** 11 - 4.34480022670442e62 * cos(theta) ** 9 + 3.73122156873471e60 * cos(theta) ** 7 - 1.84063079500655e58 * cos(theta) ** 5 + 4.26269290182156e55 * cos(theta) ** 3 - 2.92298941839193e52 * cos(theta) ) * sin(26 * phi) ) # @torch.jit.script def Yl97_m_minus_25(theta, phi): return ( 1.38725336779573e-49 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 1.42408405614504e76 * cos(theta) ** 72 - 1.88598904015892e77 * cos(theta) ** 70 + 1.19232029633084e78 * cos(theta) ** 68 - 4.79030976197821e78 * cos(theta) ** 66 + 1.37369176997905e79 * cos(theta) ** 64 - 2.99390552246244e79 * cos(theta) ** 62 + 5.15617062201865e79 * cos(theta) ** 60 - 7.20317442855012e79 * cos(theta) ** 58 + 8.31483752122441e79 * cos(theta) ** 56 - 8.03819823144105e79 * cos(theta) ** 54 + 6.57294952525265e79 * cos(theta) ** 52 - 4.57999530766422e79 * cos(theta) ** 50 + 2.73415899214848e79 * cos(theta) ** 48 - 1.4037921452633e79 * cos(theta) ** 46 + 6.21439208874046e78 * cos(theta) ** 44 - 2.37527875391858e78 * cos(theta) ** 42 + 7.84169864694745e77 * cos(theta) ** 40 - 2.2347551861962e77 * cos(theta) ** 38 + 5.48928335393407e76 * cos(theta) ** 36 - 1.15931897853787e76 * cos(theta) ** 34 + 2.0979933772895e75 * cos(theta) ** 32 - 3.23873238448675e74 * cos(theta) ** 30 + 4.24096504290107e73 * cos(theta) ** 28 - 4.67780795511119e72 * cos(theta) ** 26 + 4.30920517406785e71 * cos(theta) ** 24 - 3.28093966356614e70 * cos(theta) ** 22 + 2.03845363712689e69 * cos(theta) ** 20 - 1.0173527477124e68 * cos(theta) ** 18 + 3.99935689619724e66 * cos(theta) ** 16 - 1.20796080428812e65 * cos(theta) ** 14 + 2.71418353556096e63 * cos(theta) ** 12 - 4.34480022670442e61 * cos(theta) ** 10 + 4.66402696091838e59 * cos(theta) ** 8 - 3.06771799167758e57 * cos(theta) ** 6 + 1.06567322545539e55 * cos(theta) ** 4 - 1.46149470919596e52 * cos(theta) ** 2 + 3.30057522401979e48 ) * sin(25 * phi) ) # @torch.jit.script def Yl97_m_minus_24(theta, phi): return ( 1.30917328108001e-47 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.95080007691101e74 * cos(theta) ** 73 - 2.65632259177313e75 * cos(theta) ** 71 + 1.72800042946498e76 * cos(theta) ** 69 - 7.14971606265405e76 * cos(theta) ** 67 + 2.11337195381392e77 * cos(theta) ** 65 - 4.75223098803562e77 * cos(theta) ** 63 + 8.45273872462073e77 * cos(theta) ** 61 - 1.22087702178816e78 * cos(theta) ** 59 + 1.45874342477621e78 * cos(theta) ** 57 - 1.46149058753474e78 * cos(theta) ** 55 + 1.24017915570805e78 * cos(theta) ** 53 - 8.98038295620436e77 * cos(theta) ** 51 + 5.57991631050709e77 * cos(theta) ** 49 - 2.98679179843256e77 * cos(theta) ** 47 + 1.3809760197201e77 * cos(theta) ** 45 - 5.52390407888041e76 * cos(theta) ** 43 + 1.91260942608474e76 * cos(theta) ** 41 - 5.73014150306719e75 * cos(theta) ** 39 + 1.48359009565786e75 * cos(theta) ** 37 - 3.31233993867963e74 * cos(theta) ** 35 + 6.35755568875606e73 * cos(theta) ** 33 - 1.0447523820925e73 * cos(theta) ** 31 + 1.4624017389314e72 * cos(theta) ** 29 - 1.732521464856e71 * cos(theta) ** 27 + 1.72368206962714e70 * cos(theta) ** 25 - 1.42649550589832e69 * cos(theta) ** 23 + 9.70692208155663e67 * cos(theta) ** 21 - 5.35448814585472e66 * cos(theta) ** 19 + 2.35256288011602e65 * cos(theta) ** 17 - 8.05307202858745e63 * cos(theta) ** 15 + 2.08783348889304e62 * cos(theta) ** 13 - 3.9498183879131e60 * cos(theta) ** 11 + 5.18225217879821e58 * cos(theta) ** 9 - 4.38245427382512e56 * cos(theta) ** 7 + 2.13134645091078e54 * cos(theta) ** 5 - 4.87164903065321e51 * cos(theta) ** 3 + 3.30057522401979e48 * cos(theta) ) * sin(24 * phi) ) # @torch.jit.script def Yl97_m_minus_23(theta, phi): return ( 1.23881278342489e-45 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 2.63621632015002e72 * cos(theta) ** 74 - 3.68933693301824e73 * cos(theta) ** 72 + 2.46857204209283e74 * cos(theta) ** 70 - 1.05142883274324e75 * cos(theta) ** 68 + 3.20207871789987e75 * cos(theta) ** 66 - 7.42536091880565e75 * cos(theta) ** 64 + 1.36334495558399e76 * cos(theta) ** 62 - 2.03479503631359e76 * cos(theta) ** 60 + 2.51507487030381e76 * cos(theta) ** 58 - 2.60980462059774e76 * cos(theta) ** 56 + 2.29662806612601e76 * cos(theta) ** 54 - 1.72699672234699e76 * cos(theta) ** 52 + 1.11598326210142e76 * cos(theta) ** 50 - 6.22248291340117e75 * cos(theta) ** 48 + 3.00212178200022e75 * cos(theta) ** 46 - 1.25543274520009e75 * cos(theta) ** 44 + 4.55383196686844e74 * cos(theta) ** 42 - 1.4325353757668e74 * cos(theta) ** 40 + 3.90418446225752e73 * cos(theta) ** 38 - 9.20094427411008e72 * cos(theta) ** 36 + 1.86986932022237e72 * cos(theta) ** 34 - 3.26485119403906e71 * cos(theta) ** 32 + 4.87467246310468e70 * cos(theta) ** 30 - 6.18757666019998e69 * cos(theta) ** 28 + 6.62954642164284e68 * cos(theta) ** 26 - 5.94373127457634e67 * cos(theta) ** 24 + 4.41223730979847e66 * cos(theta) ** 22 - 2.67724407292736e65 * cos(theta) ** 20 + 1.30697937784224e64 * cos(theta) ** 18 - 5.03317001786716e62 * cos(theta) ** 16 + 1.4913096349236e61 * cos(theta) ** 14 - 3.29151532326092e59 * cos(theta) ** 12 + 5.18225217879821e57 * cos(theta) ** 10 - 5.4780678422814e55 * cos(theta) ** 8 + 3.5522440848513e53 * cos(theta) ** 6 - 1.2179122576633e51 * cos(theta) ** 4 + 1.6502876120099e48 * cos(theta) ** 2 - 3.68614610679003e44 ) * sin(23 * phi) ) # @torch.jit.script def Yl97_m_minus_22(theta, phi): return ( 1.17524099704666e-43 * (1.0 - cos(theta) ** 2) ** 11 * ( 3.51495509353336e70 * cos(theta) ** 75 - 5.05388620961402e71 * cos(theta) ** 73 + 3.47686203111666e72 * cos(theta) ** 71 - 1.52380990252644e73 * cos(theta) ** 69 + 4.77922196701474e73 * cos(theta) ** 67 - 1.14236321827779e74 * cos(theta) ** 65 + 2.16403961203808e74 * cos(theta) ** 63 - 3.3357295677272e74 * cos(theta) ** 61 + 4.2628387632268e74 * cos(theta) ** 59 - 4.5786045975399e74 * cos(theta) ** 57 + 4.17568739295639e74 * cos(theta) ** 55 - 3.25848438178678e74 * cos(theta) ** 53 + 2.18820247470866e74 * cos(theta) ** 51 - 1.26989447212269e74 * cos(theta) ** 49 + 6.38749315319197e73 * cos(theta) ** 47 - 2.7898505448891e73 * cos(theta) ** 45 + 1.0590306899694e73 * cos(theta) ** 43 - 3.49398872138243e72 * cos(theta) ** 41 + 1.00107293904039e72 * cos(theta) ** 39 - 2.48674169570543e71 * cos(theta) ** 37 + 5.34248377206392e70 * cos(theta) ** 35 - 9.89348846678503e69 * cos(theta) ** 33 + 1.57247498809828e69 * cos(theta) ** 31 - 2.13364712420689e68 * cos(theta) ** 29 + 2.45538756357142e67 * cos(theta) ** 27 - 2.37749250983054e66 * cos(theta) ** 25 + 1.91836404773846e65 * cos(theta) ** 23 - 1.27487812996541e64 * cos(theta) ** 21 + 6.87883883074861e62 * cos(theta) ** 19 - 2.96068824580421e61 * cos(theta) ** 17 + 9.94206423282401e59 * cos(theta) ** 15 - 2.53193486404686e58 * cos(theta) ** 13 + 4.71113834436201e56 * cos(theta) ** 11 - 6.08674204697933e54 * cos(theta) ** 9 + 5.07463440693043e52 * cos(theta) ** 7 - 2.43582451532661e50 * cos(theta) ** 5 + 5.50095870669965e47 * cos(theta) ** 3 - 3.68614610679003e44 * cos(theta) ) * sin(22 * phi) ) # @torch.jit.script def Yl97_m_minus_21(theta, phi): return ( 1.11765357029373e-41 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 4.62494091254389e68 * cos(theta) ** 76 - 6.82957595893787e69 * cos(theta) ** 74 + 4.82897504321759e70 * cos(theta) ** 72 - 2.17687128932348e71 * cos(theta) ** 70 + 7.02826759855109e71 * cos(theta) ** 68 - 1.73085336102696e72 * cos(theta) ** 66 + 3.3813118938095e72 * cos(theta) ** 64 - 5.38020898020517e72 * cos(theta) ** 62 + 7.10473127204467e72 * cos(theta) ** 60 - 7.89414585782741e72 * cos(theta) ** 58 + 7.45658463027926e72 * cos(theta) ** 56 - 6.03423033664218e72 * cos(theta) ** 54 + 4.20808168213205e72 * cos(theta) ** 52 - 2.53978894424538e72 * cos(theta) ** 50 + 1.33072774024833e72 * cos(theta) ** 48 - 6.06489248888934e71 * cos(theta) ** 46 + 2.40688793174865e71 * cos(theta) ** 44 - 8.31902076519627e70 * cos(theta) ** 42 + 2.50268234760097e70 * cos(theta) ** 40 - 6.54405709396165e69 * cos(theta) ** 38 + 1.48402327001775e69 * cos(theta) ** 36 - 2.90984954905442e68 * cos(theta) ** 34 + 4.91398433780713e67 * cos(theta) ** 32 - 7.11215708068964e66 * cos(theta) ** 30 + 8.76924129846936e65 * cos(theta) ** 28 - 9.14420196088668e64 * cos(theta) ** 26 + 7.9931835322436e63 * cos(theta) ** 24 - 5.79490059075186e62 * cos(theta) ** 22 + 3.43941941537431e61 * cos(theta) ** 20 - 1.64482680322456e60 * cos(theta) ** 18 + 6.21379014551501e58 * cos(theta) ** 16 - 1.80852490289062e57 * cos(theta) ** 14 + 3.92594862030167e55 * cos(theta) ** 12 - 6.08674204697933e53 * cos(theta) ** 10 + 6.34329300866304e51 * cos(theta) ** 8 - 4.05970752554435e49 * cos(theta) ** 6 + 1.37523967667491e47 * cos(theta) ** 4 - 1.84307305339501e44 * cos(theta) ** 2 + 4.07579180317341e40 ) * sin(21 * phi) ) # @torch.jit.script def Yl97_m_minus_20(theta, phi): return ( 1.06535310512464e-39 * (1.0 - cos(theta) ** 2) ** 10 * ( 6.00641676953752e66 * cos(theta) ** 77 - 9.10610127858382e67 * cos(theta) ** 75 + 6.61503430577752e68 * cos(theta) ** 73 - 3.06601590045561e69 * cos(theta) ** 71 + 1.01858950703639e70 * cos(theta) ** 69 - 2.58336322541337e70 * cos(theta) ** 67 + 5.20201829816846e70 * cos(theta) ** 65 - 8.54001425429391e70 * cos(theta) ** 63 + 1.16471004459749e71 * cos(theta) ** 61 - 1.33799082336058e71 * cos(theta) ** 59 + 1.30817274215426e71 * cos(theta) ** 57 - 1.0971327884804e71 * cos(theta) ** 55 + 7.93977675873971e70 * cos(theta) ** 53 - 4.97997832204976e70 * cos(theta) ** 51 + 2.71577089846597e70 * cos(theta) ** 49 - 1.2904026572105e70 * cos(theta) ** 47 + 5.34863984833032e69 * cos(theta) ** 45 - 1.93465599190611e69 * cos(theta) ** 43 + 6.10410328683164e68 * cos(theta) ** 41 - 1.67796335742606e68 * cos(theta) ** 39 + 4.01087370275069e67 * cos(theta) ** 37 - 8.3138558544412e66 * cos(theta) ** 35 + 1.48908616297186e66 * cos(theta) ** 33 - 2.2942442195773e65 * cos(theta) ** 31 + 3.02387630981702e64 * cos(theta) ** 29 - 3.38674146699507e63 * cos(theta) ** 27 + 3.19727341289744e62 * cos(theta) ** 25 - 2.51952199597907e61 * cos(theta) ** 23 + 1.63781876922586e60 * cos(theta) ** 21 - 8.65698317486611e58 * cos(theta) ** 19 + 3.65517067383236e57 * cos(theta) ** 17 - 1.20568326859374e56 * cos(theta) ** 15 + 3.01996047715513e54 * cos(theta) ** 13 - 5.5334018608903e52 * cos(theta) ** 11 + 7.04810334295893e50 * cos(theta) ** 9 - 5.79958217934906e48 * cos(theta) ** 7 + 2.75047935334983e46 * cos(theta) ** 5 - 6.14357684465005e43 * cos(theta) ** 3 + 4.07579180317341e40 * cos(theta) ) * sin(20 * phi) ) # @torch.jit.script def Yl97_m_minus_19(theta, phi): return ( 1.01773288634356e-37 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 7.70053431991989e64 * cos(theta) ** 78 - 1.19817122086629e66 * cos(theta) ** 76 + 8.93923554834799e66 * cos(theta) ** 74 - 4.25835541729946e67 * cos(theta) ** 72 + 1.45512786719484e68 * cos(theta) ** 70 - 3.79906356678437e68 * cos(theta) ** 68 + 7.88184590631584e68 * cos(theta) ** 66 - 1.33437722723342e69 * cos(theta) ** 64 + 1.87856458806046e69 * cos(theta) ** 62 - 2.22998470560096e69 * cos(theta) ** 60 + 2.25547024509355e69 * cos(theta) ** 58 - 1.95916569371499e69 * cos(theta) ** 56 + 1.47032902939624e69 * cos(theta) ** 54 - 9.57688138855723e68 * cos(theta) ** 52 + 5.43154179693194e68 * cos(theta) ** 50 - 2.68833886918854e68 * cos(theta) ** 48 + 1.16274779311529e68 * cos(theta) ** 46 - 4.39694543615025e67 * cos(theta) ** 44 + 1.45335792543611e67 * cos(theta) ** 42 - 4.19490839356516e66 * cos(theta) ** 40 + 1.05549307967123e66 * cos(theta) ** 38 - 2.30940440401145e65 * cos(theta) ** 36 + 4.37966518521135e64 * cos(theta) ** 34 - 7.16951318617907e63 * cos(theta) ** 32 + 1.00795876993901e63 * cos(theta) ** 30 - 1.20955052392681e62 * cos(theta) ** 28 + 1.22972054342209e61 * cos(theta) ** 26 - 1.04980083165795e60 * cos(theta) ** 24 + 7.44463076920845e58 * cos(theta) ** 22 - 4.32849158743305e57 * cos(theta) ** 20 + 2.03065037435131e56 * cos(theta) ** 18 - 7.5355204287109e54 * cos(theta) ** 16 + 2.15711462653938e53 * cos(theta) ** 14 - 4.61116821740859e51 * cos(theta) ** 12 + 7.04810334295893e49 * cos(theta) ** 10 - 7.24947772418633e47 * cos(theta) ** 8 + 4.58413225558305e45 * cos(theta) ** 6 - 1.53589421116251e43 * cos(theta) ** 4 + 2.0378959015867e40 * cos(theta) ** 2 - 4.46613171507058e36 ) * sin(19 * phi) ) # @torch.jit.script def Yl97_m_minus_18(theta, phi): return ( 9.74263311886972e-36 * (1.0 - cos(theta) ** 2) ** 9 * ( 9.74751179736695e62 * cos(theta) ** 79 - 1.55606652060557e64 * cos(theta) ** 77 + 1.19189807311307e65 * cos(theta) ** 75 - 5.83336358534172e65 * cos(theta) ** 73 + 2.04947586928851e66 * cos(theta) ** 71 - 5.50588922722372e66 * cos(theta) ** 69 + 1.17639491139042e67 * cos(theta) ** 67 - 2.05288804189758e67 * cos(theta) ** 65 + 2.98184855247693e67 * cos(theta) ** 63 - 3.65571263213273e67 * cos(theta) ** 61 + 3.82283092388737e67 * cos(theta) ** 59 - 3.43713279599122e67 * cos(theta) ** 57 + 2.67332550799317e67 * cos(theta) ** 55 - 1.80695875255797e67 * cos(theta) ** 53 + 1.06500819547685e67 * cos(theta) ** 51 - 5.48640585548681e66 * cos(theta) ** 49 + 2.47393147471338e66 * cos(theta) ** 47 - 9.77098985811166e65 * cos(theta) ** 45 + 3.37990215217699e65 * cos(theta) ** 43 - 1.02314838867443e65 * cos(theta) ** 41 + 2.70639251197752e64 * cos(theta) ** 39 - 6.24163352435526e63 * cos(theta) ** 37 + 1.25133291006039e63 * cos(theta) ** 35 - 2.1725797533876e62 * cos(theta) ** 33 + 3.25147990302906e61 * cos(theta) ** 31 - 4.17086387560969e60 * cos(theta) ** 29 + 4.55452053119293e59 * cos(theta) ** 27 - 4.19920332663178e58 * cos(theta) ** 25 + 3.23679598661237e57 * cos(theta) ** 23 - 2.06118647020622e56 * cos(theta) ** 21 + 1.06876335492174e55 * cos(theta) ** 19 - 4.43265907571229e53 * cos(theta) ** 17 + 1.43807641769292e52 * cos(theta) ** 15 - 3.54705247492968e50 * cos(theta) ** 13 + 6.40736667541721e48 * cos(theta) ** 11 - 8.05497524909592e46 * cos(theta) ** 9 + 6.54876036511864e44 * cos(theta) ** 7 - 3.07178842232503e42 * cos(theta) ** 5 + 6.79298633862235e39 * cos(theta) ** 3 - 4.46613171507058e36 * cos(theta) ) * sin(18 * phi) ) # @torch.jit.script def Yl97_m_minus_17(theta, phi): return ( 9.34480540630919e-34 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.21843897467087e61 * cos(theta) ** 80 - 1.99495707769945e62 * cos(theta) ** 78 + 1.56828693830667e63 * cos(theta) ** 76 - 7.8829237639753e63 * cos(theta) ** 74 + 2.84649426290071e64 * cos(theta) ** 72 - 7.86555603889104e64 * cos(theta) ** 70 + 1.72999251675062e65 * cos(theta) ** 68 - 3.11043642711754e65 * cos(theta) ** 66 + 4.6591383632452e65 * cos(theta) ** 64 - 5.89631069698827e65 * cos(theta) ** 62 + 6.37138487314561e65 * cos(theta) ** 60 - 5.92609102757106e65 * cos(theta) ** 58 + 4.7737955499878e65 * cos(theta) ** 56 - 3.34621991214438e65 * cos(theta) ** 54 + 2.04809268360933e65 * cos(theta) ** 52 - 1.09728117109736e65 * cos(theta) ** 50 + 5.15402390565287e64 * cos(theta) ** 48 - 2.12412823002427e64 * cos(theta) ** 46 + 7.68159580040225e63 * cos(theta) ** 44 - 2.43606759208197e63 * cos(theta) ** 42 + 6.76598127994381e62 * cos(theta) ** 40 - 1.64253513798823e62 * cos(theta) ** 38 + 3.47592475016774e61 * cos(theta) ** 36 - 6.38994045113999e60 * cos(theta) ** 34 + 1.01608746969658e60 * cos(theta) ** 32 - 1.39028795853656e59 * cos(theta) ** 30 + 1.62661447542605e58 * cos(theta) ** 28 - 1.61507820255069e57 * cos(theta) ** 26 + 1.34866499442182e56 * cos(theta) ** 24 - 9.36902941002826e54 * cos(theta) ** 22 + 5.34381677460871e53 * cos(theta) ** 20 - 2.46258837539572e52 * cos(theta) ** 18 + 8.98797761058075e50 * cos(theta) ** 16 - 2.53360891066406e49 * cos(theta) ** 14 + 5.33947222951434e47 * cos(theta) ** 12 - 8.05497524909592e45 * cos(theta) ** 10 + 8.1859504563983e43 * cos(theta) ** 8 - 5.11964737054171e41 * cos(theta) ** 6 + 1.69824658465559e39 * cos(theta) ** 4 - 2.23306585753529e36 * cos(theta) ** 2 + 4.85449099464193e32 ) * sin(17 * phi) ) # @torch.jit.script def Yl97_m_minus_16(theta, phi): return ( 8.97976967158516e-32 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.50424564774181e59 * cos(theta) ** 81 - 2.5252621236702e60 * cos(theta) ** 79 + 2.03673628351515e61 * cos(theta) ** 77 - 1.05105650186337e62 * cos(theta) ** 75 + 3.89930720945302e62 * cos(theta) ** 73 - 1.10782479421001e63 * cos(theta) ** 71 + 2.50723553152264e63 * cos(theta) ** 69 - 4.64244242853364e63 * cos(theta) ** 67 + 7.16790517422338e63 * cos(theta) ** 65 - 9.35922332855281e63 * cos(theta) ** 63 + 1.04448932346649e64 * cos(theta) ** 61 - 1.00442220806289e64 * cos(theta) ** 59 + 8.3750799122593e63 * cos(theta) ** 57 - 6.08403620389888e63 * cos(theta) ** 55 + 3.86432581813081e63 * cos(theta) ** 53 - 2.15153170803404e63 * cos(theta) ** 51 + 1.05184161339855e63 * cos(theta) ** 49 - 4.51942176600909e62 * cos(theta) ** 47 + 1.70702128897828e62 * cos(theta) ** 45 - 5.66527346995808e61 * cos(theta) ** 43 + 1.65023933657166e61 * cos(theta) ** 41 - 4.21162855894417e60 * cos(theta) ** 39 + 9.39439121666956e59 * cos(theta) ** 37 - 1.82569727175428e59 * cos(theta) ** 35 + 3.07905293847449e58 * cos(theta) ** 33 - 4.48479986624697e57 * cos(theta) ** 31 + 5.60901543250361e56 * cos(theta) ** 29 - 5.98177112055809e55 * cos(theta) ** 27 + 5.39465997768728e54 * cos(theta) ** 25 - 4.07349104783837e53 * cos(theta) ** 23 + 2.54467465457558e52 * cos(theta) ** 21 - 1.29609914494512e51 * cos(theta) ** 19 + 5.28704565328279e49 * cos(theta) ** 17 - 1.68907260710937e48 * cos(theta) ** 15 + 4.10728633039565e46 * cos(theta) ** 13 - 7.32270477190539e44 * cos(theta) ** 11 + 9.09550050710922e42 * cos(theta) ** 9 - 7.31378195791673e40 * cos(theta) ** 7 + 3.39649316931117e38 * cos(theta) ** 5 - 7.44355285845096e35 * cos(theta) ** 3 + 4.85449099464193e32 * cos(theta) ) * sin(16 * phi) ) # @torch.jit.script def Yl97_m_minus_15(theta, phi): return ( 8.64393206963614e-30 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.83444591188026e57 * cos(theta) ** 82 - 3.15657765458774e58 * cos(theta) ** 80 + 2.61120036348096e59 * cos(theta) ** 78 - 1.38296908139918e60 * cos(theta) ** 76 + 5.26933406682841e60 * cos(theta) ** 74 - 1.5386455475139e61 * cos(theta) ** 72 + 3.58176504503235e61 * cos(theta) ** 70 - 6.82712121843182e61 * cos(theta) ** 68 + 1.08604623851869e62 * cos(theta) ** 66 - 1.46237864508638e62 * cos(theta) ** 64 + 1.68466019913951e62 * cos(theta) ** 62 - 1.67403701343815e62 * cos(theta) ** 60 + 1.44397929521712e62 * cos(theta) ** 58 - 1.08643503641051e62 * cos(theta) ** 56 + 7.15615892246447e61 * cos(theta) ** 54 - 4.13756097698855e61 * cos(theta) ** 52 + 2.10368322679709e61 * cos(theta) ** 50 - 9.41546201251895e60 * cos(theta) ** 48 + 3.71091584560495e60 * cos(theta) ** 46 - 1.2875621522632e60 * cos(theta) ** 44 + 3.92914127755157e59 * cos(theta) ** 42 - 1.05290713973604e59 * cos(theta) ** 40 + 2.47220821491304e58 * cos(theta) ** 38 - 5.07138131042856e57 * cos(theta) ** 36 + 9.05603805433672e56 * cos(theta) ** 34 - 1.40149995820218e56 * cos(theta) ** 32 + 1.86967181083454e55 * cos(theta) ** 30 - 2.13634682877075e54 * cos(theta) ** 28 + 2.07486922218742e53 * cos(theta) ** 26 - 1.69728793659932e52 * cos(theta) ** 24 + 1.15667029753435e51 * cos(theta) ** 22 - 6.48049572472557e49 * cos(theta) ** 20 + 2.93724758515711e48 * cos(theta) ** 18 - 1.05567037944336e47 * cos(theta) ** 16 + 2.93377595028261e45 * cos(theta) ** 14 - 6.10225397658782e43 * cos(theta) ** 12 + 9.09550050710922e41 * cos(theta) ** 10 - 9.14222744739591e39 * cos(theta) ** 8 + 5.66082194885196e37 * cos(theta) ** 6 - 1.86088821461274e35 * cos(theta) ** 4 + 2.42724549732097e32 * cos(theta) ** 2 - 5.23903625581905e28 ) * sin(15 * phi) ) # @torch.jit.script def Yl97_m_minus_14(theta, phi): return ( 8.33411334732858e-28 * (1.0 - cos(theta) ** 2) ** 7 * ( 2.2101757974461e55 * cos(theta) ** 83 - 3.89700945010833e56 * cos(theta) ** 81 + 3.30531691579869e57 * cos(theta) ** 79 - 1.79606374207685e58 * cos(theta) ** 77 + 7.02577875577121e58 * cos(theta) ** 75 - 2.10773362673136e59 * cos(theta) ** 73 + 5.04473950004556e59 * cos(theta) ** 71 - 9.89437857743743e59 * cos(theta) ** 69 + 1.62096453510253e60 * cos(theta) ** 67 - 2.24981330013289e60 * cos(theta) ** 65 + 2.67406380815795e60 * cos(theta) ** 63 - 2.74432297284943e60 * cos(theta) ** 61 + 2.44742253426631e60 * cos(theta) ** 59 - 1.90602637966757e60 * cos(theta) ** 57 + 1.30111980408445e60 * cos(theta) ** 55 - 7.80671882450669e59 * cos(theta) ** 53 + 4.12486907215116e59 * cos(theta) ** 51 - 1.92152285969774e59 * cos(theta) ** 49 + 7.89556562894671e58 * cos(theta) ** 47 - 2.86124922725155e58 * cos(theta) ** 45 + 9.1375378547711e57 * cos(theta) ** 43 - 2.56806619447815e57 * cos(theta) ** 41 + 6.33899542285395e56 * cos(theta) ** 39 - 1.37064359741313e56 * cos(theta) ** 37 + 2.58743944409621e55 * cos(theta) ** 35 - 4.24696957030963e54 * cos(theta) ** 33 + 6.03119938978883e53 * cos(theta) ** 31 - 7.36671320265775e52 * cos(theta) ** 29 + 7.68470082291636e51 * cos(theta) ** 27 - 6.78915174639729e50 * cos(theta) ** 25 + 5.02900129362762e49 * cos(theta) ** 23 - 3.08595034510742e48 * cos(theta) ** 21 + 1.54591978166164e47 * cos(theta) ** 19 - 6.20982576143152e45 * cos(theta) ** 17 + 1.95585063352174e44 * cos(theta) ** 15 - 4.69404152045217e42 * cos(theta) ** 13 + 8.26863682464474e40 * cos(theta) ** 11 - 1.01580304971066e39 * cos(theta) ** 9 + 8.08688849835994e36 * cos(theta) ** 7 - 3.72177642922548e34 * cos(theta) ** 5 + 8.09081832440322e31 * cos(theta) ** 3 - 5.23903625581905e28 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl97_m_minus_13(theta, phi): return ( 8.04749165795024e-26 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 2.63116166362631e53 * cos(theta) ** 84 - 4.75245054891259e54 * cos(theta) ** 82 + 4.13164614474836e55 * cos(theta) ** 80 - 2.30264582317545e56 * cos(theta) ** 78 + 9.24444573127791e56 * cos(theta) ** 76 - 2.84828868477211e57 * cos(theta) ** 74 + 7.00658263895217e57 * cos(theta) ** 72 - 1.41348265391963e58 * cos(theta) ** 70 + 2.38377137515078e58 * cos(theta) ** 68 - 3.40880803050437e58 * cos(theta) ** 66 + 4.17822470024679e58 * cos(theta) ** 64 - 4.4263273755636e58 * cos(theta) ** 62 + 4.07903755711051e58 * cos(theta) ** 60 - 3.28625237873719e58 * cos(theta) ** 58 + 2.32342822157937e58 * cos(theta) ** 56 - 1.44568867120494e58 * cos(theta) ** 54 + 7.93244052336761e57 * cos(theta) ** 52 - 3.84304571939549e57 * cos(theta) ** 50 + 1.64490950603056e57 * cos(theta) ** 48 - 6.22010701576425e56 * cos(theta) ** 46 + 2.07671314881161e56 * cos(theta) ** 44 - 6.11444332018607e55 * cos(theta) ** 42 + 1.58474885571349e55 * cos(theta) ** 40 - 3.6069568352977e54 * cos(theta) ** 38 + 7.18733178915613e53 * cos(theta) ** 36 - 1.24910869714989e53 * cos(theta) ** 34 + 1.88474980930901e52 * cos(theta) ** 32 - 2.45557106755258e51 * cos(theta) ** 30 + 2.74453600818441e50 * cos(theta) ** 28 - 2.6112122101528e49 * cos(theta) ** 26 + 2.09541720567818e48 * cos(theta) ** 24 - 1.40270470232155e47 * cos(theta) ** 22 + 7.72959890830818e45 * cos(theta) ** 20 - 3.44990320079529e44 * cos(theta) ** 18 + 1.22240664595109e43 * cos(theta) ** 16 - 3.35288680032298e41 * cos(theta) ** 14 + 6.89053068720395e39 * cos(theta) ** 12 - 1.01580304971066e38 * cos(theta) ** 10 + 1.01086106229499e36 * cos(theta) ** 8 - 6.2029607153758e33 * cos(theta) ** 6 + 2.0227045811008e31 * cos(theta) ** 4 - 2.61951812790952e28 * cos(theta) ** 2 + 5.61887200323793e24 ) * sin(13 * phi) ) # @torch.jit.script def Yl97_m_minus_12(theta, phi): return ( 7.78155409001107e-24 * (1.0 - cos(theta) ** 2) ** 6 * ( 3.0954843101486e51 * cos(theta) ** 85 - 5.72584403483445e52 * cos(theta) ** 83 + 5.10079770956587e53 * cos(theta) ** 81 - 2.91474154832336e54 * cos(theta) ** 79 + 1.20057736769843e55 * cos(theta) ** 77 - 3.79771824636282e55 * cos(theta) ** 75 + 9.59805840952352e55 * cos(theta) ** 73 - 1.99082063932343e56 * cos(theta) ** 71 + 3.45474112340692e56 * cos(theta) ** 69 - 5.08777317985728e56 * cos(theta) ** 67 + 6.42803800037968e56 * cos(theta) ** 65 - 7.02591646914857e56 * cos(theta) ** 63 + 6.68694681493526e56 * cos(theta) ** 61 - 5.56991928599523e56 * cos(theta) ** 59 + 4.07618986241995e56 * cos(theta) ** 57 - 2.62852485673626e56 * cos(theta) ** 55 + 1.49668689120144e56 * cos(theta) ** 53 - 7.53538376352057e55 * cos(theta) ** 51 + 3.35695817557258e55 * cos(theta) ** 49 - 1.32342702463069e55 * cos(theta) ** 47 + 4.61491810847025e54 * cos(theta) ** 45 - 1.42196356283397e54 * cos(theta) ** 43 + 3.86524111149631e53 * cos(theta) ** 41 - 9.2486072699941e52 * cos(theta) ** 39 + 1.94252210517733e52 * cos(theta) ** 37 - 3.56888199185684e51 * cos(theta) ** 35 + 5.71136305851215e50 * cos(theta) ** 33 - 7.92119699210511e49 * cos(theta) ** 31 + 9.46391726960143e48 * cos(theta) ** 29 - 9.67115633389927e47 * cos(theta) ** 27 + 8.3816688227127e46 * cos(theta) ** 25 - 6.09871609705023e45 * cos(theta) ** 23 + 3.68076138490866e44 * cos(theta) ** 21 - 1.81573852673436e43 * cos(theta) ** 19 + 7.19062732912404e41 * cos(theta) ** 17 - 2.23525786688199e40 * cos(theta) ** 15 + 5.30040822092612e38 * cos(theta) ** 13 - 9.23457317918779e36 * cos(theta) ** 11 + 1.12317895810555e35 * cos(theta) ** 9 - 8.86137245053686e32 * cos(theta) ** 7 + 4.04540916220161e30 * cos(theta) ** 5 - 8.73172709303175e27 * cos(theta) ** 3 + 5.61887200323793e24 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl97_m_minus_11(theta, phi): return ( 7.53405550111472e-22 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 3.5994003606379e49 * cos(theta) ** 86 - 6.81648099385054e50 * cos(theta) ** 84 + 6.2204850116657e51 * cos(theta) ** 82 - 3.64342693540419e52 * cos(theta) ** 80 + 1.53920175345953e53 * cos(theta) ** 78 - 4.99699769258266e53 * cos(theta) ** 76 + 1.29703492020588e54 * cos(theta) ** 74 - 2.76502866572698e54 * cos(theta) ** 72 + 4.93534446200989e54 * cos(theta) ** 70 - 7.48201938214305e54 * cos(theta) ** 68 + 9.73945151572678e54 * cos(theta) ** 66 - 1.09779944830446e55 * cos(theta) ** 64 + 1.07853980886053e55 * cos(theta) ** 62 - 9.28319880999206e54 * cos(theta) ** 60 + 7.02791355589647e54 * cos(theta) ** 58 - 4.69379438702903e54 * cos(theta) ** 56 + 2.77164239111377e54 * cos(theta) ** 54 - 1.44911226221549e54 * cos(theta) ** 52 + 6.71391635114516e53 * cos(theta) ** 50 - 2.75713963464727e53 * cos(theta) ** 48 + 1.00324306705875e53 * cos(theta) ** 46 - 3.23173537007721e52 * cos(theta) ** 44 + 9.20295502737218e51 * cos(theta) ** 42 - 2.31215181749852e51 * cos(theta) ** 40 + 5.11190027678245e50 * cos(theta) ** 38 - 9.91356108849121e49 * cos(theta) ** 36 + 1.67981266426828e49 * cos(theta) ** 34 - 2.47537406003285e48 * cos(theta) ** 32 + 3.15463908986714e47 * cos(theta) ** 30 - 3.45398440496402e46 * cos(theta) ** 28 + 3.22371877796642e45 * cos(theta) ** 26 - 2.54113170710426e44 * cos(theta) ** 24 + 1.67307335677666e43 * cos(theta) ** 22 - 9.07869263367181e41 * cos(theta) ** 20 + 3.99479296062446e40 * cos(theta) ** 18 - 1.39703616680124e39 * cos(theta) ** 16 + 3.78600587209008e37 * cos(theta) ** 14 - 7.69547764932316e35 * cos(theta) ** 12 + 1.12317895810555e34 * cos(theta) ** 10 - 1.10767155631711e32 * cos(theta) ** 8 + 6.74234860366935e29 * cos(theta) ** 6 - 2.18293177325794e27 * cos(theta) ** 4 + 2.80943600161897e24 * cos(theta) ** 2 - 5.99410284109018e20 ) * sin(11 * phi) ) # @torch.jit.script def Yl97_m_minus_10(theta, phi): return ( 7.3029834971282e-20 * (1.0 - cos(theta) ** 2) ** 5 * ( 4.13724179383667e47 * cos(theta) ** 87 - 8.01938940453004e48 * cos(theta) ** 85 + 7.49456025501891e49 * cos(theta) ** 83 - 4.49805794494345e50 * cos(theta) ** 81 + 1.94835664994877e51 * cos(theta) ** 79 - 6.48960739296449e51 * cos(theta) ** 77 + 1.72937989360784e52 * cos(theta) ** 75 - 3.78771050099586e52 * cos(theta) ** 73 + 6.95118938311252e52 * cos(theta) ** 71 - 1.0843506350932e53 * cos(theta) ** 69 + 1.45364947995922e53 * cos(theta) ** 67 - 1.68892222816071e53 * cos(theta) ** 65 + 1.71196795057226e53 * cos(theta) ** 63 - 1.5218358704905e53 * cos(theta) ** 61 + 1.19117178913499e53 * cos(theta) ** 59 - 8.23472699478778e52 * cos(theta) ** 57 + 5.03934980202504e52 * cos(theta) ** 55 - 2.73417407965187e52 * cos(theta) ** 53 + 1.31645418649905e52 * cos(theta) ** 51 - 5.6268155809128e51 * cos(theta) ** 49 + 2.13455971714628e51 * cos(theta) ** 47 - 7.18163415572712e50 * cos(theta) ** 45 + 2.14022209938888e50 * cos(theta) ** 43 - 5.63939467682567e49 * cos(theta) ** 41 + 1.31074366071345e49 * cos(theta) ** 39 - 2.67934083472735e48 * cos(theta) ** 37 + 4.79946475505223e47 * cos(theta) ** 35 - 7.50113351525105e46 * cos(theta) ** 33 + 1.01762551286037e46 * cos(theta) ** 31 - 1.19102910516001e45 * cos(theta) ** 29 + 1.19396991776534e44 * cos(theta) ** 27 - 1.01645268284171e43 * cos(theta) ** 25 + 7.27423198598549e41 * cos(theta) ** 23 - 4.32318696841515e40 * cos(theta) ** 21 + 2.10252261085498e39 * cos(theta) ** 19 - 8.21785980471318e37 * cos(theta) ** 17 + 2.52400391472672e36 * cos(theta) ** 15 - 5.91959819178704e34 * cos(theta) ** 13 + 1.02107178009595e33 * cos(theta) ** 11 - 1.23074617368567e31 * cos(theta) ** 9 + 9.6319265766705e28 * cos(theta) ** 7 - 4.36586354651587e26 * cos(theta) ** 5 + 9.36478667206322e23 * cos(theta) ** 3 - 5.99410284109018e20 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl97_m_minus_9(theta, phi): return ( 7.08652859942738e-18 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 4.70141112935985e45 * cos(theta) ** 88 - 9.32487140061633e46 * cos(theta) ** 86 + 8.92209554168918e47 * cos(theta) ** 84 - 5.48543651822372e48 * cos(theta) ** 82 + 2.43544581243596e49 * cos(theta) ** 80 - 8.3200094781596e49 * cos(theta) ** 78 + 2.27549986001032e50 * cos(theta) ** 76 - 5.11852770404846e50 * cos(theta) ** 74 + 9.65442969876739e50 * cos(theta) ** 72 - 1.54907233584742e51 * cos(theta) ** 70 + 2.13771982346944e51 * cos(theta) ** 68 - 2.55897307297078e51 * cos(theta) ** 66 + 2.67494992276916e51 * cos(theta) ** 64 - 2.4545739846621e51 * cos(theta) ** 62 + 1.98528631522499e51 * cos(theta) ** 60 - 1.41978051634272e51 * cos(theta) ** 58 + 8.99883893218757e50 * cos(theta) ** 56 - 5.06328533268866e50 * cos(theta) ** 54 + 2.53164266634433e50 * cos(theta) ** 52 - 1.12536311618256e50 * cos(theta) ** 50 + 4.44699941072141e49 * cos(theta) ** 48 - 1.56122481646242e49 * cos(theta) ** 46 + 4.86414113497472e48 * cos(theta) ** 44 - 1.34271301829183e48 * cos(theta) ** 42 + 3.27685915178362e47 * cos(theta) ** 40 - 7.05089693349304e46 * cos(theta) ** 38 + 1.33318465418117e46 * cos(theta) ** 36 - 2.20621573977972e45 * cos(theta) ** 34 + 3.18007972768865e44 * cos(theta) ** 32 - 3.97009701720003e43 * cos(theta) ** 30 + 4.26417827773336e42 * cos(theta) ** 28 - 3.90943339554502e41 * cos(theta) ** 26 + 3.03092999416062e40 * cos(theta) ** 24 - 1.96508498564325e39 * cos(theta) ** 22 + 1.05126130542749e38 * cos(theta) ** 20 - 4.5654776692851e36 * cos(theta) ** 18 + 1.5775024467042e35 * cos(theta) ** 16 - 4.22828442270503e33 * cos(theta) ** 14 + 8.5089315007996e31 * cos(theta) ** 12 - 1.23074617368567e30 * cos(theta) ** 10 + 1.20399082208381e28 * cos(theta) ** 8 - 7.27643924419312e25 * cos(theta) ** 6 + 2.34119666801581e23 * cos(theta) ** 4 - 2.99705142054509e20 * cos(theta) ** 2 + 6.36586962732602e16 ) * sin(9 * phi) ) # @torch.jit.script def Yl97_m_minus_8(theta, phi): return ( 6.88305880789055e-16 * (1.0 - cos(theta) ** 2) ** 4 * ( 5.28248441501107e43 * cos(theta) ** 89 - 1.07182429892142e45 * cos(theta) ** 87 + 1.04965829902226e46 * cos(theta) ** 85 - 6.60895966051051e46 * cos(theta) ** 83 + 3.00672322522958e47 * cos(theta) ** 81 - 1.05316575672906e48 * cos(theta) ** 79 + 2.95519462339002e48 * cos(theta) ** 77 - 6.82470360539795e48 * cos(theta) ** 75 + 1.32252461626951e49 * cos(theta) ** 73 - 2.18179202232031e49 * cos(theta) ** 71 + 3.09814467169485e49 * cos(theta) ** 69 - 3.81936279547877e49 * cos(theta) ** 67 + 4.11530757349102e49 * cos(theta) ** 65 - 3.89614918200333e49 * cos(theta) ** 63 + 3.25456772987703e49 * cos(theta) ** 61 - 2.40640765481817e49 * cos(theta) ** 59 + 1.57874367231361e49 * cos(theta) ** 57 - 9.20597333216119e48 * cos(theta) ** 55 + 4.77668427612137e48 * cos(theta) ** 53 - 2.206594345456e48 * cos(theta) ** 51 + 9.07550900147226e47 * cos(theta) ** 49 - 3.32175492864344e47 * cos(theta) ** 47 + 1.08092025221661e47 * cos(theta) ** 45 - 3.12258841463215e46 * cos(theta) ** 43 + 7.9923393945942e45 * cos(theta) ** 41 - 1.80792229063924e45 * cos(theta) ** 39 + 3.60320176805723e44 * cos(theta) ** 37 - 6.30347354222777e43 * cos(theta) ** 35 + 9.63660523542016e42 * cos(theta) ** 33 - 1.2806764571613e42 * cos(theta) ** 31 + 1.47040630266668e41 * cos(theta) ** 29 - 1.4479382946463e40 * cos(theta) ** 27 + 1.21237199766425e39 * cos(theta) ** 25 - 8.5438477636663e37 * cos(theta) ** 23 + 5.00600621632138e36 * cos(theta) ** 21 - 2.40288298383426e35 * cos(theta) ** 19 + 9.27942615708354e33 * cos(theta) ** 17 - 2.81885628180335e32 * cos(theta) ** 15 + 6.545331923692e30 * cos(theta) ** 13 - 1.11886015789607e29 * cos(theta) ** 11 + 1.33776758009312e27 * cos(theta) ** 9 - 1.03949132059902e25 * cos(theta) ** 7 + 4.68239333603161e22 * cos(theta) ** 5 - 9.99017140181696e19 * cos(theta) ** 3 + 6.36586962732602e16 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl97_m_minus_7(theta, phi): return ( 6.69109790187465e-14 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 5.86942712779008e41 * cos(theta) ** 90 - 1.21798215786525e43 * cos(theta) ** 88 + 1.22053290583983e44 * cos(theta) ** 86 - 7.86780911965536e44 * cos(theta) ** 84 + 3.66673564052388e45 * cos(theta) ** 82 - 1.31645719591133e46 * cos(theta) ** 80 + 3.78871105562823e46 * cos(theta) ** 78 - 8.9798731649973e46 * cos(theta) ** 76 + 1.78719542739122e47 * cos(theta) ** 74 - 3.0302666976671e47 * cos(theta) ** 72 + 4.42592095956406e47 * cos(theta) ** 70 - 5.61670999335114e47 * cos(theta) ** 68 + 6.23531450528942e47 * cos(theta) ** 66 - 6.0877330968802e47 * cos(theta) ** 64 + 5.24930279012425e47 * cos(theta) ** 62 - 4.01067942469695e47 * cos(theta) ** 60 + 2.72197184881657e47 * cos(theta) ** 58 - 1.6439238093145e47 * cos(theta) ** 56 + 8.84571162244699e46 * cos(theta) ** 54 - 4.24345066433846e46 * cos(theta) ** 52 + 1.81510180029445e46 * cos(theta) ** 50 - 6.92032276800717e45 * cos(theta) ** 48 + 2.34982663525349e45 * cos(theta) ** 46 - 7.09679185143671e44 * cos(theta) ** 44 + 1.90293795109386e44 * cos(theta) ** 42 - 4.5198057265981e43 * cos(theta) ** 40 + 9.48210991594007e42 * cos(theta) ** 38 - 1.75096487284105e42 * cos(theta) ** 36 + 2.83429565747652e41 * cos(theta) ** 34 - 4.00211392862906e40 * cos(theta) ** 32 + 4.90135434222226e39 * cos(theta) ** 30 - 5.17120819516537e38 * cos(theta) ** 28 + 4.66296922178557e37 * cos(theta) ** 26 - 3.55993656819429e36 * cos(theta) ** 24 + 2.27545737105517e35 * cos(theta) ** 22 - 1.20144149191713e34 * cos(theta) ** 20 + 5.1552367539353e32 * cos(theta) ** 18 - 1.7617851761271e31 * cos(theta) ** 16 + 4.67523708835143e29 * cos(theta) ** 14 - 9.3238346491339e27 * cos(theta) ** 12 + 1.33776758009312e26 * cos(theta) ** 10 - 1.29936415074877e24 * cos(theta) ** 8 + 7.80398889338602e21 * cos(theta) ** 6 - 2.49754285045424e19 * cos(theta) ** 4 + 3.18293481366301e16 * cos(theta) ** 2 - 6736369976006.37 ) * sin(7 * phi) ) # @torch.jit.script def Yl97_m_minus_6(theta, phi): return ( 6.50930693144599e-12 * (1.0 - cos(theta) ** 2) ** 3 * ( 6.44991992064844e39 * cos(theta) ** 91 - 1.36851927850028e41 * cos(theta) ** 89 + 1.4029113860228e42 * cos(theta) ** 87 - 9.25624602312396e42 * cos(theta) ** 85 + 4.41775378376371e43 * cos(theta) ** 83 - 1.62525579742139e44 * cos(theta) ** 81 + 4.79583677927624e44 * cos(theta) ** 79 - 1.16621729415549e45 * cos(theta) ** 77 + 2.38292723652163e45 * cos(theta) ** 75 - 4.15105027077685e45 * cos(theta) ** 73 + 6.23369149234375e45 * cos(theta) ** 71 - 8.14015941065382e45 * cos(theta) ** 69 + 9.30643956013346e45 * cos(theta) ** 67 - 9.36574322596955e45 * cos(theta) ** 65 + 8.33222665099087e45 * cos(theta) ** 63 - 6.57488430278189e45 * cos(theta) ** 61 + 4.61351160816367e45 * cos(theta) ** 59 - 2.88407685844649e45 * cos(theta) ** 57 + 1.60831120408127e45 * cos(theta) ** 55 - 8.00651068743107e44 * cos(theta) ** 53 + 3.55902313783226e44 * cos(theta) ** 51 - 1.41231076898106e44 * cos(theta) ** 49 + 4.99963113883721e43 * cos(theta) ** 47 - 1.57706485587483e43 * cos(theta) ** 45 + 4.42543709556711e42 * cos(theta) ** 43 - 1.10239164063368e42 * cos(theta) ** 41 + 2.43131023485643e41 * cos(theta) ** 39 - 4.732337494165e40 * cos(theta) ** 37 + 8.09798759279005e39 * cos(theta) ** 35 - 1.21276179655426e39 * cos(theta) ** 33 + 1.58108204587815e38 * cos(theta) ** 31 - 1.7831752397122e37 * cos(theta) ** 29 + 1.72702563769836e36 * cos(theta) ** 27 - 1.42397462727772e35 * cos(theta) ** 25 + 9.89329291763119e33 * cos(theta) ** 23 - 5.72114996151015e32 * cos(theta) ** 21 + 2.71328250207121e31 * cos(theta) ** 19 - 1.03634422125123e30 * cos(theta) ** 17 + 3.11682472556762e28 * cos(theta) ** 15 - 7.17218049933377e26 * cos(theta) ** 13 + 1.2161523455392e25 * cos(theta) ** 11 - 1.44373794527641e23 * cos(theta) ** 9 + 1.114855556198e21 * cos(theta) ** 7 - 4.99508570090848e18 * cos(theta) ** 5 + 1.060978271221e16 * cos(theta) ** 3 - 6736369976006.37 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl97_m_minus_5(theta, phi): return ( 6.33646844127197e-10 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 7.01078252244395e37 * cos(theta) ** 92 - 1.52057697611142e39 * cos(theta) ** 90 + 1.59421748411681e40 * cos(theta) ** 88 - 1.07630767710744e41 * cos(theta) ** 86 + 5.25923069495679e41 * cos(theta) ** 84 - 1.98201926514804e42 * cos(theta) ** 82 + 5.99479597409531e42 * cos(theta) ** 80 - 1.49515037712243e43 * cos(theta) ** 78 + 3.13543057437057e43 * cos(theta) ** 76 - 5.60952739294169e43 * cos(theta) ** 74 + 8.65790485047744e43 * cos(theta) ** 72 - 1.16287991580769e44 * cos(theta) ** 70 + 1.3685940529608e44 * cos(theta) ** 68 - 1.41905200393478e44 * cos(theta) ** 66 + 1.30191041421732e44 * cos(theta) ** 64 - 1.06046521012611e44 * cos(theta) ** 62 + 7.68918601360612e43 * cos(theta) ** 60 - 4.97254630766636e43 * cos(theta) ** 58 + 2.87198429300227e43 * cos(theta) ** 56 - 1.48268716433909e43 * cos(theta) ** 54 + 6.84427526506204e42 * cos(theta) ** 52 - 2.82462153796211e42 * cos(theta) ** 50 + 1.04158982059109e42 * cos(theta) ** 48 - 3.42840186059745e41 * cos(theta) ** 46 + 1.00578115808343e41 * cos(theta) ** 44 - 2.62474200150877e40 * cos(theta) ** 42 + 6.07827558714107e39 * cos(theta) ** 40 - 1.24535197214868e39 * cos(theta) ** 38 + 2.24944099799724e38 * cos(theta) ** 36 - 3.56694646045371e37 * cos(theta) ** 34 + 4.94088139336921e36 * cos(theta) ** 32 - 5.94391746570732e35 * cos(theta) ** 30 + 6.16794870606557e34 * cos(theta) ** 28 - 5.47682548952968e33 * cos(theta) ** 26 + 4.12220538234633e32 * cos(theta) ** 24 - 2.60052270977734e31 * cos(theta) ** 22 + 1.35664125103561e30 * cos(theta) ** 20 - 5.75746789584018e28 * cos(theta) ** 18 + 1.94801545347976e27 * cos(theta) ** 16 - 5.12298607095269e25 * cos(theta) ** 14 + 1.01346028794934e24 * cos(theta) ** 12 - 1.44373794527641e22 * cos(theta) ** 10 + 1.3935694452475e20 * cos(theta) ** 8 - 8.32514283484747e17 * cos(theta) ** 6 + 2.65244567805251e15 * cos(theta) ** 4 - 3368184988003.18 * cos(theta) ** 2 + 710887502.744446 ) * sin(5 * phi) ) # @torch.jit.script def Yl97_m_minus_4(theta, phi): return ( 6.17147304349972e-8 * (1.0 - cos(theta) ** 2) ** 2 * ( 7.5384758305849e35 * cos(theta) ** 93 - 1.67096371001255e37 * cos(theta) ** 91 + 1.79125560013125e38 * cos(theta) ** 89 - 1.23713526104303e39 * cos(theta) ** 87 + 6.18733022936093e39 * cos(theta) ** 85 - 2.38797501825065e40 * cos(theta) ** 83 + 7.40098268406828e40 * cos(theta) ** 81 - 1.89259541407902e41 * cos(theta) ** 79 + 4.07198775892281e41 * cos(theta) ** 77 - 7.47936985725559e41 * cos(theta) ** 75 + 1.1860143630791e42 * cos(theta) ** 73 - 1.63785903634886e42 * cos(theta) ** 71 + 1.98346964197218e42 * cos(theta) ** 69 - 2.1179880655743e42 * cos(theta) ** 67 + 2.00293909879588e42 * cos(theta) ** 65 - 1.68327811131129e42 * cos(theta) ** 63 + 1.26052229731248e42 * cos(theta) ** 61 - 8.42804458926502e41 * cos(theta) ** 59 + 5.0385689350917e41 * cos(theta) ** 57 - 2.69579484425288e41 * cos(theta) ** 55 + 1.29137269152114e41 * cos(theta) ** 53 - 5.53847360384728e40 * cos(theta) ** 51 + 2.12569351141038e40 * cos(theta) ** 49 - 7.29447204382435e39 * cos(theta) ** 47 + 2.23506924018541e39 * cos(theta) ** 45 - 6.10405116629946e38 * cos(theta) ** 43 + 1.48250624076612e38 * cos(theta) ** 41 - 3.19321018499662e37 * cos(theta) ** 39 + 6.07957026485739e36 * cos(theta) ** 37 - 1.01912756012963e36 * cos(theta) ** 35 + 1.49723678586946e35 * cos(theta) ** 33 - 1.91739273087333e34 * cos(theta) ** 31 + 2.12687886416054e33 * cos(theta) ** 29 - 2.02845388501099e32 * cos(theta) ** 27 + 1.64888215293853e31 * cos(theta) ** 25 - 1.13066204772928e30 * cos(theta) ** 23 + 6.46019643350288e28 * cos(theta) ** 21 - 3.03024626096852e27 * cos(theta) ** 19 + 1.14589144322339e26 * cos(theta) ** 17 - 3.41532404730179e24 * cos(theta) ** 15 + 7.79584836884105e22 * cos(theta) ** 13 - 1.31248904116038e21 * cos(theta) ** 11 + 1.54841049471945e19 * cos(theta) ** 9 - 1.18930611926392e17 * cos(theta) ** 7 + 530489135610502.0 * cos(theta) ** 5 - 1122728329334.39 * cos(theta) ** 3 + 710887502.744446 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl97_m_minus_3(theta, phi): return ( 6.01330801660746e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 8.0196551389201e33 * cos(theta) ** 94 - 1.81626490218755e35 * cos(theta) ** 92 + 1.99028400014584e36 * cos(theta) ** 90 - 1.40583552391254e37 * cos(theta) ** 88 + 7.19457003414062e37 * cos(theta) ** 86 - 2.84282740267935e38 * cos(theta) ** 84 + 9.02558863910766e38 * cos(theta) ** 82 - 2.36574426759878e39 * cos(theta) ** 80 + 5.22049712682412e39 * cos(theta) ** 78 - 9.84127612796788e39 * cos(theta) ** 76 + 1.60272211226906e40 * cos(theta) ** 74 - 2.27480421715119e40 * cos(theta) ** 72 + 2.83352805996026e40 * cos(theta) ** 70 - 3.11468833172691e40 * cos(theta) ** 68 + 3.03475621029679e40 * cos(theta) ** 66 - 2.63012204892389e40 * cos(theta) ** 64 + 2.03310047953626e40 * cos(theta) ** 62 - 1.40467409821084e40 * cos(theta) ** 60 + 8.68718781912362e39 * cos(theta) ** 58 - 4.81391936473729e39 * cos(theta) ** 56 + 2.39143091022433e39 * cos(theta) ** 54 - 1.06509107766294e39 * cos(theta) ** 52 + 4.25138702282076e38 * cos(theta) ** 50 - 1.51968167579674e38 * cos(theta) ** 48 + 4.85884617431611e37 * cos(theta) ** 46 - 1.38728435597715e37 * cos(theta) ** 44 + 3.52977676372885e36 * cos(theta) ** 42 - 7.98302546249156e35 * cos(theta) ** 40 + 1.59988691180458e35 * cos(theta) ** 38 - 2.83090988924898e34 * cos(theta) ** 36 + 4.40363760549841e33 * cos(theta) ** 34 - 5.99185228397916e32 * cos(theta) ** 32 + 7.08959621386847e31 * cos(theta) ** 30 - 7.24447816075354e30 * cos(theta) ** 28 + 6.34185443437897e29 * cos(theta) ** 26 - 4.71109186553866e28 * cos(theta) ** 24 + 2.93645292431949e27 * cos(theta) ** 22 - 1.51512313048426e26 * cos(theta) ** 20 + 6.36606357346327e24 * cos(theta) ** 18 - 2.13457752956362e23 * cos(theta) ** 16 + 5.56846312060075e21 * cos(theta) ** 14 - 1.09374086763365e20 * cos(theta) ** 12 + 1.54841049471945e18 * cos(theta) ** 10 - 1.48663264907991e16 * cos(theta) ** 8 + 88414855935083.6 * cos(theta) ** 6 - 280682082333.599 * cos(theta) ** 4 + 355443751.372223 * cos(theta) ** 2 - 74877.5545338578 ) * sin(3 * phi) ) # @torch.jit.script def Yl97_m_minus_2(theta, phi): return ( 0.00058610476569864 * (1.0 - cos(theta) ** 2) * ( 8.44174225149484e31 * cos(theta) ** 95 - 1.9529730131049e33 * cos(theta) ** 93 + 2.18712527488553e34 * cos(theta) ** 91 - 1.57959047630622e35 * cos(theta) ** 89 + 8.26962072889727e35 * cos(theta) ** 87 - 3.34450282668159e36 * cos(theta) ** 85 + 1.08742031796478e37 * cos(theta) ** 83 - 2.92067193530713e37 * cos(theta) ** 81 + 6.60822421116977e37 * cos(theta) ** 79 - 1.278087808827e38 * cos(theta) ** 77 + 2.13696281635874e38 * cos(theta) ** 75 - 3.11617016048108e38 * cos(theta) ** 73 + 3.99088459149332e38 * cos(theta) ** 71 - 4.51404106047378e38 * cos(theta) ** 69 + 4.52948688103999e38 * cos(theta) ** 67 - 4.04634161372906e38 * cos(theta) ** 65 + 3.22714361831152e38 * cos(theta) ** 63 - 2.30274442329645e38 * cos(theta) ** 61 + 1.4724047151057e38 * cos(theta) ** 59 - 8.44547256971455e37 * cos(theta) ** 57 + 4.34805620040788e37 * cos(theta) ** 55 - 2.0096058069112e37 * cos(theta) ** 53 + 8.33605298592306e36 * cos(theta) ** 51 - 3.10139117509539e36 * cos(theta) ** 49 + 1.03379705836513e36 * cos(theta) ** 47 - 3.08285412439367e35 * cos(theta) ** 45 + 8.20878317146243e34 * cos(theta) ** 43 - 1.9470793810955e34 * cos(theta) ** 41 + 4.10227413283225e33 * cos(theta) ** 39 - 7.65110780878101e32 * cos(theta) ** 37 + 1.25818217299954e32 * cos(theta) ** 35 - 1.81571281332702e31 * cos(theta) ** 33 + 2.28696652060273e30 * cos(theta) ** 31 - 2.49809591750122e29 * cos(theta) ** 29 + 2.34883497569591e28 * cos(theta) ** 27 - 1.88443674621547e27 * cos(theta) ** 25 + 1.27671866274761e26 * cos(theta) ** 23 - 7.21487204992504e24 * cos(theta) ** 21 + 3.35055977550699e23 * cos(theta) ** 19 - 1.25563384091978e22 * cos(theta) ** 17 + 3.71230874706717e20 * cos(theta) ** 15 - 8.41339128948959e18 * cos(theta) ** 13 + 1.40764590429041e17 * cos(theta) ** 11 - 1.65181405453323e15 * cos(theta) ** 9 + 12630693705011.9 * cos(theta) ** 7 - 56136416466.7197 * cos(theta) ** 5 + 118481250.457408 * cos(theta) ** 3 - 74877.5545338578 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl97_m_minus_1(theta, phi): return ( 0.057138451508111 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 8.7934815119738e29 * cos(theta) ** 96 - 2.07763086500521e31 * cos(theta) ** 94 + 2.37731008139732e32 * cos(theta) ** 92 - 1.75510052922913e33 * cos(theta) ** 90 + 9.3972962828378e33 * cos(theta) ** 88 - 3.88895677521115e34 * cos(theta) ** 86 + 1.29454799757712e35 * cos(theta) ** 84 - 3.56179504305748e35 * cos(theta) ** 82 + 8.26028026396222e35 * cos(theta) ** 80 - 1.63857411388077e36 * cos(theta) ** 78 + 2.81179317941939e36 * cos(theta) ** 76 - 4.21104075740687e36 * cos(theta) ** 74 + 5.54289526596294e36 * cos(theta) ** 72 - 6.44863008639112e36 * cos(theta) ** 70 + 6.66101011917645e36 * cos(theta) ** 68 - 6.13082062686221e36 * cos(theta) ** 66 + 5.04241190361174e36 * cos(theta) ** 64 - 3.71410390854267e36 * cos(theta) ** 62 + 2.4540078585095e36 * cos(theta) ** 60 - 1.45611596029561e36 * cos(theta) ** 58 + 7.76438607215692e35 * cos(theta) ** 56 - 3.72149223502075e35 * cos(theta) ** 54 + 1.60308711267751e35 * cos(theta) ** 52 - 6.20278235019078e34 * cos(theta) ** 50 + 2.15374387159402e34 * cos(theta) ** 48 - 6.70185679216015e33 * cos(theta) ** 46 + 1.86563253896873e33 * cos(theta) ** 44 - 4.63590328832262e32 * cos(theta) ** 42 + 1.02556853320806e32 * cos(theta) ** 40 - 2.01344942336342e31 * cos(theta) ** 38 + 3.49495048055429e30 * cos(theta) ** 36 - 5.34033180390299e29 * cos(theta) ** 34 + 7.14677037688353e28 * cos(theta) ** 32 - 8.32698639167074e27 * cos(theta) ** 30 + 8.38869634177112e26 * cos(theta) ** 28 - 7.24783363929025e25 * cos(theta) ** 26 + 5.31966109478169e24 * cos(theta) ** 24 - 3.27948729542047e23 * cos(theta) ** 22 + 1.67527988775349e22 * cos(theta) ** 20 - 6.97574356066543e20 * cos(theta) ** 18 + 2.32019296691698e19 * cos(theta) ** 16 - 6.00956520677828e17 * cos(theta) ** 14 + 1.17303825357534e16 * cos(theta) ** 12 - 165181405453323.0 * cos(theta) ** 10 + 1578836713126.49 * cos(theta) ** 8 - 9356069411.11996 * cos(theta) ** 6 + 29620312.6143519 * cos(theta) ** 4 - 37438.7772669289 * cos(theta) ** 2 + 7.87853056963992 ) * sin(phi) ) # @torch.jit.script def Yl97_m0(theta, phi): return ( 1.12189281571367e29 * cos(theta) ** 97 - 2.70649375645742e30 * cos(theta) ** 95 + 3.16348026769173e31 * cos(theta) ** 93 - 2.38683749297799e32 * cos(theta) ** 91 + 1.30669779862899e33 * cos(theta) ** 89 - 5.53192278857421e33 * cos(theta) ** 87 + 1.88478352933116e34 * cos(theta) ** 85 - 5.31071602187232e34 * cos(theta) ** 83 + 1.26203677530946e35 * cos(theta) ** 81 - 2.56685445825653e35 * cos(theta) ** 79 + 4.51913062050765e35 * cos(theta) ** 77 - 6.94848985580945e35 * cos(theta) ** 75 + 9.39671508278324e35 * cos(theta) ** 73 - 1.12401307408076e36 * cos(theta) ** 71 + 1.19468455478644e36 * cos(theta) ** 69 - 1.13241614768848e36 * cos(theta) ** 67 + 9.60035315390809e35 * cos(theta) ** 65 - 7.2958474826923e35 * cos(theta) ** 63 + 4.97861290485606e35 * cos(theta) ** 61 - 3.05426135296232e35 * cos(theta) ** 59 + 1.68575521771565e35 * cos(theta) ** 57 - 8.37368604878364e34 * cos(theta) ** 55 + 3.74320402842977e34 * cos(theta) ** 53 - 1.50514594431755e34 * cos(theta) ** 51 + 5.43951553005916e33 * cos(theta) ** 49 - 1.7646538657516e33 * cos(theta) ** 47 + 5.13069077159087e32 * cos(theta) ** 45 - 1.33422218646571e32 * cos(theta) ** 43 + 3.09558744701577e31 * cos(theta) ** 41 - 6.38908056016343e30 * cos(theta) ** 39 + 1.16896510989657e30 * cos(theta) ** 37 - 1.88826282607595e29 * cos(theta) ** 35 + 2.68014403987402e28 * cos(theta) ** 33 - 3.32420966185925e27 * cos(theta) ** 31 + 3.57979965901934e26 * cos(theta) ** 29 - 3.32205408356995e25 * cos(theta) ** 27 + 2.63333555404935e24 * cos(theta) ** 25 - 1.76457597993032e23 * cos(theta) ** 23 + 9.87257237776142e21 * cos(theta) ** 21 - 4.54359018042932e20 * cos(theta) ** 19 + 1.68903026272481e19 * cos(theta) ** 17 - 4.95808581330832e17 * cos(theta) ** 15 + 1.11668599398836e16 * cos(theta) ** 13 - 185836371946004.0 * cos(theta) ** 11 + 2170985653574.81 * cos(theta) ** 9 - 16540843074.8557 * cos(theta) ** 7 + 73313149.9729781 * cos(theta) ** 5 - 154441.015321209 * cos(theta) ** 3 + 97.500640985612 * cos(theta) ) # @torch.jit.script def Yl97_m1(theta, phi): return ( 0.057138451508111 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 8.7934815119738e29 * cos(theta) ** 96 - 2.07763086500521e31 * cos(theta) ** 94 + 2.37731008139732e32 * cos(theta) ** 92 - 1.75510052922913e33 * cos(theta) ** 90 + 9.3972962828378e33 * cos(theta) ** 88 - 3.88895677521115e34 * cos(theta) ** 86 + 1.29454799757712e35 * cos(theta) ** 84 - 3.56179504305748e35 * cos(theta) ** 82 + 8.26028026396222e35 * cos(theta) ** 80 - 1.63857411388077e36 * cos(theta) ** 78 + 2.81179317941939e36 * cos(theta) ** 76 - 4.21104075740687e36 * cos(theta) ** 74 + 5.54289526596294e36 * cos(theta) ** 72 - 6.44863008639112e36 * cos(theta) ** 70 + 6.66101011917645e36 * cos(theta) ** 68 - 6.13082062686221e36 * cos(theta) ** 66 + 5.04241190361174e36 * cos(theta) ** 64 - 3.71410390854267e36 * cos(theta) ** 62 + 2.4540078585095e36 * cos(theta) ** 60 - 1.45611596029561e36 * cos(theta) ** 58 + 7.76438607215692e35 * cos(theta) ** 56 - 3.72149223502075e35 * cos(theta) ** 54 + 1.60308711267751e35 * cos(theta) ** 52 - 6.20278235019078e34 * cos(theta) ** 50 + 2.15374387159402e34 * cos(theta) ** 48 - 6.70185679216015e33 * cos(theta) ** 46 + 1.86563253896873e33 * cos(theta) ** 44 - 4.63590328832262e32 * cos(theta) ** 42 + 1.02556853320806e32 * cos(theta) ** 40 - 2.01344942336342e31 * cos(theta) ** 38 + 3.49495048055429e30 * cos(theta) ** 36 - 5.34033180390299e29 * cos(theta) ** 34 + 7.14677037688353e28 * cos(theta) ** 32 - 8.32698639167074e27 * cos(theta) ** 30 + 8.38869634177112e26 * cos(theta) ** 28 - 7.24783363929025e25 * cos(theta) ** 26 + 5.31966109478169e24 * cos(theta) ** 24 - 3.27948729542047e23 * cos(theta) ** 22 + 1.67527988775349e22 * cos(theta) ** 20 - 6.97574356066543e20 * cos(theta) ** 18 + 2.32019296691698e19 * cos(theta) ** 16 - 6.00956520677828e17 * cos(theta) ** 14 + 1.17303825357534e16 * cos(theta) ** 12 - 165181405453323.0 * cos(theta) ** 10 + 1578836713126.49 * cos(theta) ** 8 - 9356069411.11996 * cos(theta) ** 6 + 29620312.6143519 * cos(theta) ** 4 - 37438.7772669289 * cos(theta) ** 2 + 7.87853056963992 ) * cos(phi) ) # @torch.jit.script def Yl97_m2(theta, phi): return ( 0.00058610476569864 * (1.0 - cos(theta) ** 2) * ( 8.44174225149484e31 * cos(theta) ** 95 - 1.9529730131049e33 * cos(theta) ** 93 + 2.18712527488553e34 * cos(theta) ** 91 - 1.57959047630622e35 * cos(theta) ** 89 + 8.26962072889727e35 * cos(theta) ** 87 - 3.34450282668159e36 * cos(theta) ** 85 + 1.08742031796478e37 * cos(theta) ** 83 - 2.92067193530713e37 * cos(theta) ** 81 + 6.60822421116977e37 * cos(theta) ** 79 - 1.278087808827e38 * cos(theta) ** 77 + 2.13696281635874e38 * cos(theta) ** 75 - 3.11617016048108e38 * cos(theta) ** 73 + 3.99088459149332e38 * cos(theta) ** 71 - 4.51404106047378e38 * cos(theta) ** 69 + 4.52948688103999e38 * cos(theta) ** 67 - 4.04634161372906e38 * cos(theta) ** 65 + 3.22714361831152e38 * cos(theta) ** 63 - 2.30274442329645e38 * cos(theta) ** 61 + 1.4724047151057e38 * cos(theta) ** 59 - 8.44547256971455e37 * cos(theta) ** 57 + 4.34805620040788e37 * cos(theta) ** 55 - 2.0096058069112e37 * cos(theta) ** 53 + 8.33605298592306e36 * cos(theta) ** 51 - 3.10139117509539e36 * cos(theta) ** 49 + 1.03379705836513e36 * cos(theta) ** 47 - 3.08285412439367e35 * cos(theta) ** 45 + 8.20878317146243e34 * cos(theta) ** 43 - 1.9470793810955e34 * cos(theta) ** 41 + 4.10227413283225e33 * cos(theta) ** 39 - 7.65110780878101e32 * cos(theta) ** 37 + 1.25818217299954e32 * cos(theta) ** 35 - 1.81571281332702e31 * cos(theta) ** 33 + 2.28696652060273e30 * cos(theta) ** 31 - 2.49809591750122e29 * cos(theta) ** 29 + 2.34883497569591e28 * cos(theta) ** 27 - 1.88443674621547e27 * cos(theta) ** 25 + 1.27671866274761e26 * cos(theta) ** 23 - 7.21487204992504e24 * cos(theta) ** 21 + 3.35055977550699e23 * cos(theta) ** 19 - 1.25563384091978e22 * cos(theta) ** 17 + 3.71230874706717e20 * cos(theta) ** 15 - 8.41339128948959e18 * cos(theta) ** 13 + 1.40764590429041e17 * cos(theta) ** 11 - 1.65181405453323e15 * cos(theta) ** 9 + 12630693705011.9 * cos(theta) ** 7 - 56136416466.7197 * cos(theta) ** 5 + 118481250.457408 * cos(theta) ** 3 - 74877.5545338578 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl97_m3(theta, phi): return ( 6.01330801660746e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 8.0196551389201e33 * cos(theta) ** 94 - 1.81626490218755e35 * cos(theta) ** 92 + 1.99028400014584e36 * cos(theta) ** 90 - 1.40583552391254e37 * cos(theta) ** 88 + 7.19457003414062e37 * cos(theta) ** 86 - 2.84282740267935e38 * cos(theta) ** 84 + 9.02558863910766e38 * cos(theta) ** 82 - 2.36574426759878e39 * cos(theta) ** 80 + 5.22049712682412e39 * cos(theta) ** 78 - 9.84127612796788e39 * cos(theta) ** 76 + 1.60272211226906e40 * cos(theta) ** 74 - 2.27480421715119e40 * cos(theta) ** 72 + 2.83352805996026e40 * cos(theta) ** 70 - 3.11468833172691e40 * cos(theta) ** 68 + 3.03475621029679e40 * cos(theta) ** 66 - 2.63012204892389e40 * cos(theta) ** 64 + 2.03310047953626e40 * cos(theta) ** 62 - 1.40467409821084e40 * cos(theta) ** 60 + 8.68718781912362e39 * cos(theta) ** 58 - 4.81391936473729e39 * cos(theta) ** 56 + 2.39143091022433e39 * cos(theta) ** 54 - 1.06509107766294e39 * cos(theta) ** 52 + 4.25138702282076e38 * cos(theta) ** 50 - 1.51968167579674e38 * cos(theta) ** 48 + 4.85884617431611e37 * cos(theta) ** 46 - 1.38728435597715e37 * cos(theta) ** 44 + 3.52977676372885e36 * cos(theta) ** 42 - 7.98302546249156e35 * cos(theta) ** 40 + 1.59988691180458e35 * cos(theta) ** 38 - 2.83090988924898e34 * cos(theta) ** 36 + 4.40363760549841e33 * cos(theta) ** 34 - 5.99185228397916e32 * cos(theta) ** 32 + 7.08959621386847e31 * cos(theta) ** 30 - 7.24447816075354e30 * cos(theta) ** 28 + 6.34185443437897e29 * cos(theta) ** 26 - 4.71109186553866e28 * cos(theta) ** 24 + 2.93645292431949e27 * cos(theta) ** 22 - 1.51512313048426e26 * cos(theta) ** 20 + 6.36606357346327e24 * cos(theta) ** 18 - 2.13457752956362e23 * cos(theta) ** 16 + 5.56846312060075e21 * cos(theta) ** 14 - 1.09374086763365e20 * cos(theta) ** 12 + 1.54841049471945e18 * cos(theta) ** 10 - 1.48663264907991e16 * cos(theta) ** 8 + 88414855935083.6 * cos(theta) ** 6 - 280682082333.599 * cos(theta) ** 4 + 355443751.372223 * cos(theta) ** 2 - 74877.5545338578 ) * cos(3 * phi) ) # @torch.jit.script def Yl97_m4(theta, phi): return ( 6.17147304349972e-8 * (1.0 - cos(theta) ** 2) ** 2 * ( 7.5384758305849e35 * cos(theta) ** 93 - 1.67096371001255e37 * cos(theta) ** 91 + 1.79125560013125e38 * cos(theta) ** 89 - 1.23713526104303e39 * cos(theta) ** 87 + 6.18733022936093e39 * cos(theta) ** 85 - 2.38797501825065e40 * cos(theta) ** 83 + 7.40098268406828e40 * cos(theta) ** 81 - 1.89259541407902e41 * cos(theta) ** 79 + 4.07198775892281e41 * cos(theta) ** 77 - 7.47936985725559e41 * cos(theta) ** 75 + 1.1860143630791e42 * cos(theta) ** 73 - 1.63785903634886e42 * cos(theta) ** 71 + 1.98346964197218e42 * cos(theta) ** 69 - 2.1179880655743e42 * cos(theta) ** 67 + 2.00293909879588e42 * cos(theta) ** 65 - 1.68327811131129e42 * cos(theta) ** 63 + 1.26052229731248e42 * cos(theta) ** 61 - 8.42804458926502e41 * cos(theta) ** 59 + 5.0385689350917e41 * cos(theta) ** 57 - 2.69579484425288e41 * cos(theta) ** 55 + 1.29137269152114e41 * cos(theta) ** 53 - 5.53847360384728e40 * cos(theta) ** 51 + 2.12569351141038e40 * cos(theta) ** 49 - 7.29447204382435e39 * cos(theta) ** 47 + 2.23506924018541e39 * cos(theta) ** 45 - 6.10405116629946e38 * cos(theta) ** 43 + 1.48250624076612e38 * cos(theta) ** 41 - 3.19321018499662e37 * cos(theta) ** 39 + 6.07957026485739e36 * cos(theta) ** 37 - 1.01912756012963e36 * cos(theta) ** 35 + 1.49723678586946e35 * cos(theta) ** 33 - 1.91739273087333e34 * cos(theta) ** 31 + 2.12687886416054e33 * cos(theta) ** 29 - 2.02845388501099e32 * cos(theta) ** 27 + 1.64888215293853e31 * cos(theta) ** 25 - 1.13066204772928e30 * cos(theta) ** 23 + 6.46019643350288e28 * cos(theta) ** 21 - 3.03024626096852e27 * cos(theta) ** 19 + 1.14589144322339e26 * cos(theta) ** 17 - 3.41532404730179e24 * cos(theta) ** 15 + 7.79584836884105e22 * cos(theta) ** 13 - 1.31248904116038e21 * cos(theta) ** 11 + 1.54841049471945e19 * cos(theta) ** 9 - 1.18930611926392e17 * cos(theta) ** 7 + 530489135610502.0 * cos(theta) ** 5 - 1122728329334.39 * cos(theta) ** 3 + 710887502.744446 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl97_m5(theta, phi): return ( 6.33646844127197e-10 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 7.01078252244395e37 * cos(theta) ** 92 - 1.52057697611142e39 * cos(theta) ** 90 + 1.59421748411681e40 * cos(theta) ** 88 - 1.07630767710744e41 * cos(theta) ** 86 + 5.25923069495679e41 * cos(theta) ** 84 - 1.98201926514804e42 * cos(theta) ** 82 + 5.99479597409531e42 * cos(theta) ** 80 - 1.49515037712243e43 * cos(theta) ** 78 + 3.13543057437057e43 * cos(theta) ** 76 - 5.60952739294169e43 * cos(theta) ** 74 + 8.65790485047744e43 * cos(theta) ** 72 - 1.16287991580769e44 * cos(theta) ** 70 + 1.3685940529608e44 * cos(theta) ** 68 - 1.41905200393478e44 * cos(theta) ** 66 + 1.30191041421732e44 * cos(theta) ** 64 - 1.06046521012611e44 * cos(theta) ** 62 + 7.68918601360612e43 * cos(theta) ** 60 - 4.97254630766636e43 * cos(theta) ** 58 + 2.87198429300227e43 * cos(theta) ** 56 - 1.48268716433909e43 * cos(theta) ** 54 + 6.84427526506204e42 * cos(theta) ** 52 - 2.82462153796211e42 * cos(theta) ** 50 + 1.04158982059109e42 * cos(theta) ** 48 - 3.42840186059745e41 * cos(theta) ** 46 + 1.00578115808343e41 * cos(theta) ** 44 - 2.62474200150877e40 * cos(theta) ** 42 + 6.07827558714107e39 * cos(theta) ** 40 - 1.24535197214868e39 * cos(theta) ** 38 + 2.24944099799724e38 * cos(theta) ** 36 - 3.56694646045371e37 * cos(theta) ** 34 + 4.94088139336921e36 * cos(theta) ** 32 - 5.94391746570732e35 * cos(theta) ** 30 + 6.16794870606557e34 * cos(theta) ** 28 - 5.47682548952968e33 * cos(theta) ** 26 + 4.12220538234633e32 * cos(theta) ** 24 - 2.60052270977734e31 * cos(theta) ** 22 + 1.35664125103561e30 * cos(theta) ** 20 - 5.75746789584018e28 * cos(theta) ** 18 + 1.94801545347976e27 * cos(theta) ** 16 - 5.12298607095269e25 * cos(theta) ** 14 + 1.01346028794934e24 * cos(theta) ** 12 - 1.44373794527641e22 * cos(theta) ** 10 + 1.3935694452475e20 * cos(theta) ** 8 - 8.32514283484747e17 * cos(theta) ** 6 + 2.65244567805251e15 * cos(theta) ** 4 - 3368184988003.18 * cos(theta) ** 2 + 710887502.744446 ) * cos(5 * phi) ) # @torch.jit.script def Yl97_m6(theta, phi): return ( 6.50930693144599e-12 * (1.0 - cos(theta) ** 2) ** 3 * ( 6.44991992064844e39 * cos(theta) ** 91 - 1.36851927850028e41 * cos(theta) ** 89 + 1.4029113860228e42 * cos(theta) ** 87 - 9.25624602312396e42 * cos(theta) ** 85 + 4.41775378376371e43 * cos(theta) ** 83 - 1.62525579742139e44 * cos(theta) ** 81 + 4.79583677927624e44 * cos(theta) ** 79 - 1.16621729415549e45 * cos(theta) ** 77 + 2.38292723652163e45 * cos(theta) ** 75 - 4.15105027077685e45 * cos(theta) ** 73 + 6.23369149234375e45 * cos(theta) ** 71 - 8.14015941065382e45 * cos(theta) ** 69 + 9.30643956013346e45 * cos(theta) ** 67 - 9.36574322596955e45 * cos(theta) ** 65 + 8.33222665099087e45 * cos(theta) ** 63 - 6.57488430278189e45 * cos(theta) ** 61 + 4.61351160816367e45 * cos(theta) ** 59 - 2.88407685844649e45 * cos(theta) ** 57 + 1.60831120408127e45 * cos(theta) ** 55 - 8.00651068743107e44 * cos(theta) ** 53 + 3.55902313783226e44 * cos(theta) ** 51 - 1.41231076898106e44 * cos(theta) ** 49 + 4.99963113883721e43 * cos(theta) ** 47 - 1.57706485587483e43 * cos(theta) ** 45 + 4.42543709556711e42 * cos(theta) ** 43 - 1.10239164063368e42 * cos(theta) ** 41 + 2.43131023485643e41 * cos(theta) ** 39 - 4.732337494165e40 * cos(theta) ** 37 + 8.09798759279005e39 * cos(theta) ** 35 - 1.21276179655426e39 * cos(theta) ** 33 + 1.58108204587815e38 * cos(theta) ** 31 - 1.7831752397122e37 * cos(theta) ** 29 + 1.72702563769836e36 * cos(theta) ** 27 - 1.42397462727772e35 * cos(theta) ** 25 + 9.89329291763119e33 * cos(theta) ** 23 - 5.72114996151015e32 * cos(theta) ** 21 + 2.71328250207121e31 * cos(theta) ** 19 - 1.03634422125123e30 * cos(theta) ** 17 + 3.11682472556762e28 * cos(theta) ** 15 - 7.17218049933377e26 * cos(theta) ** 13 + 1.2161523455392e25 * cos(theta) ** 11 - 1.44373794527641e23 * cos(theta) ** 9 + 1.114855556198e21 * cos(theta) ** 7 - 4.99508570090848e18 * cos(theta) ** 5 + 1.060978271221e16 * cos(theta) ** 3 - 6736369976006.37 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl97_m7(theta, phi): return ( 6.69109790187465e-14 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 5.86942712779008e41 * cos(theta) ** 90 - 1.21798215786525e43 * cos(theta) ** 88 + 1.22053290583983e44 * cos(theta) ** 86 - 7.86780911965536e44 * cos(theta) ** 84 + 3.66673564052388e45 * cos(theta) ** 82 - 1.31645719591133e46 * cos(theta) ** 80 + 3.78871105562823e46 * cos(theta) ** 78 - 8.9798731649973e46 * cos(theta) ** 76 + 1.78719542739122e47 * cos(theta) ** 74 - 3.0302666976671e47 * cos(theta) ** 72 + 4.42592095956406e47 * cos(theta) ** 70 - 5.61670999335114e47 * cos(theta) ** 68 + 6.23531450528942e47 * cos(theta) ** 66 - 6.0877330968802e47 * cos(theta) ** 64 + 5.24930279012425e47 * cos(theta) ** 62 - 4.01067942469695e47 * cos(theta) ** 60 + 2.72197184881657e47 * cos(theta) ** 58 - 1.6439238093145e47 * cos(theta) ** 56 + 8.84571162244699e46 * cos(theta) ** 54 - 4.24345066433846e46 * cos(theta) ** 52 + 1.81510180029445e46 * cos(theta) ** 50 - 6.92032276800717e45 * cos(theta) ** 48 + 2.34982663525349e45 * cos(theta) ** 46 - 7.09679185143671e44 * cos(theta) ** 44 + 1.90293795109386e44 * cos(theta) ** 42 - 4.5198057265981e43 * cos(theta) ** 40 + 9.48210991594007e42 * cos(theta) ** 38 - 1.75096487284105e42 * cos(theta) ** 36 + 2.83429565747652e41 * cos(theta) ** 34 - 4.00211392862906e40 * cos(theta) ** 32 + 4.90135434222226e39 * cos(theta) ** 30 - 5.17120819516537e38 * cos(theta) ** 28 + 4.66296922178557e37 * cos(theta) ** 26 - 3.55993656819429e36 * cos(theta) ** 24 + 2.27545737105517e35 * cos(theta) ** 22 - 1.20144149191713e34 * cos(theta) ** 20 + 5.1552367539353e32 * cos(theta) ** 18 - 1.7617851761271e31 * cos(theta) ** 16 + 4.67523708835143e29 * cos(theta) ** 14 - 9.3238346491339e27 * cos(theta) ** 12 + 1.33776758009312e26 * cos(theta) ** 10 - 1.29936415074877e24 * cos(theta) ** 8 + 7.80398889338602e21 * cos(theta) ** 6 - 2.49754285045424e19 * cos(theta) ** 4 + 3.18293481366301e16 * cos(theta) ** 2 - 6736369976006.37 ) * cos(7 * phi) ) # @torch.jit.script def Yl97_m8(theta, phi): return ( 6.88305880789055e-16 * (1.0 - cos(theta) ** 2) ** 4 * ( 5.28248441501107e43 * cos(theta) ** 89 - 1.07182429892142e45 * cos(theta) ** 87 + 1.04965829902226e46 * cos(theta) ** 85 - 6.60895966051051e46 * cos(theta) ** 83 + 3.00672322522958e47 * cos(theta) ** 81 - 1.05316575672906e48 * cos(theta) ** 79 + 2.95519462339002e48 * cos(theta) ** 77 - 6.82470360539795e48 * cos(theta) ** 75 + 1.32252461626951e49 * cos(theta) ** 73 - 2.18179202232031e49 * cos(theta) ** 71 + 3.09814467169485e49 * cos(theta) ** 69 - 3.81936279547877e49 * cos(theta) ** 67 + 4.11530757349102e49 * cos(theta) ** 65 - 3.89614918200333e49 * cos(theta) ** 63 + 3.25456772987703e49 * cos(theta) ** 61 - 2.40640765481817e49 * cos(theta) ** 59 + 1.57874367231361e49 * cos(theta) ** 57 - 9.20597333216119e48 * cos(theta) ** 55 + 4.77668427612137e48 * cos(theta) ** 53 - 2.206594345456e48 * cos(theta) ** 51 + 9.07550900147226e47 * cos(theta) ** 49 - 3.32175492864344e47 * cos(theta) ** 47 + 1.08092025221661e47 * cos(theta) ** 45 - 3.12258841463215e46 * cos(theta) ** 43 + 7.9923393945942e45 * cos(theta) ** 41 - 1.80792229063924e45 * cos(theta) ** 39 + 3.60320176805723e44 * cos(theta) ** 37 - 6.30347354222777e43 * cos(theta) ** 35 + 9.63660523542016e42 * cos(theta) ** 33 - 1.2806764571613e42 * cos(theta) ** 31 + 1.47040630266668e41 * cos(theta) ** 29 - 1.4479382946463e40 * cos(theta) ** 27 + 1.21237199766425e39 * cos(theta) ** 25 - 8.5438477636663e37 * cos(theta) ** 23 + 5.00600621632138e36 * cos(theta) ** 21 - 2.40288298383426e35 * cos(theta) ** 19 + 9.27942615708354e33 * cos(theta) ** 17 - 2.81885628180335e32 * cos(theta) ** 15 + 6.545331923692e30 * cos(theta) ** 13 - 1.11886015789607e29 * cos(theta) ** 11 + 1.33776758009312e27 * cos(theta) ** 9 - 1.03949132059902e25 * cos(theta) ** 7 + 4.68239333603161e22 * cos(theta) ** 5 - 9.99017140181696e19 * cos(theta) ** 3 + 6.36586962732602e16 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl97_m9(theta, phi): return ( 7.08652859942738e-18 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 4.70141112935985e45 * cos(theta) ** 88 - 9.32487140061633e46 * cos(theta) ** 86 + 8.92209554168918e47 * cos(theta) ** 84 - 5.48543651822372e48 * cos(theta) ** 82 + 2.43544581243596e49 * cos(theta) ** 80 - 8.3200094781596e49 * cos(theta) ** 78 + 2.27549986001032e50 * cos(theta) ** 76 - 5.11852770404846e50 * cos(theta) ** 74 + 9.65442969876739e50 * cos(theta) ** 72 - 1.54907233584742e51 * cos(theta) ** 70 + 2.13771982346944e51 * cos(theta) ** 68 - 2.55897307297078e51 * cos(theta) ** 66 + 2.67494992276916e51 * cos(theta) ** 64 - 2.4545739846621e51 * cos(theta) ** 62 + 1.98528631522499e51 * cos(theta) ** 60 - 1.41978051634272e51 * cos(theta) ** 58 + 8.99883893218757e50 * cos(theta) ** 56 - 5.06328533268866e50 * cos(theta) ** 54 + 2.53164266634433e50 * cos(theta) ** 52 - 1.12536311618256e50 * cos(theta) ** 50 + 4.44699941072141e49 * cos(theta) ** 48 - 1.56122481646242e49 * cos(theta) ** 46 + 4.86414113497472e48 * cos(theta) ** 44 - 1.34271301829183e48 * cos(theta) ** 42 + 3.27685915178362e47 * cos(theta) ** 40 - 7.05089693349304e46 * cos(theta) ** 38 + 1.33318465418117e46 * cos(theta) ** 36 - 2.20621573977972e45 * cos(theta) ** 34 + 3.18007972768865e44 * cos(theta) ** 32 - 3.97009701720003e43 * cos(theta) ** 30 + 4.26417827773336e42 * cos(theta) ** 28 - 3.90943339554502e41 * cos(theta) ** 26 + 3.03092999416062e40 * cos(theta) ** 24 - 1.96508498564325e39 * cos(theta) ** 22 + 1.05126130542749e38 * cos(theta) ** 20 - 4.5654776692851e36 * cos(theta) ** 18 + 1.5775024467042e35 * cos(theta) ** 16 - 4.22828442270503e33 * cos(theta) ** 14 + 8.5089315007996e31 * cos(theta) ** 12 - 1.23074617368567e30 * cos(theta) ** 10 + 1.20399082208381e28 * cos(theta) ** 8 - 7.27643924419312e25 * cos(theta) ** 6 + 2.34119666801581e23 * cos(theta) ** 4 - 2.99705142054509e20 * cos(theta) ** 2 + 6.36586962732602e16 ) * cos(9 * phi) ) # @torch.jit.script def Yl97_m10(theta, phi): return ( 7.3029834971282e-20 * (1.0 - cos(theta) ** 2) ** 5 * ( 4.13724179383667e47 * cos(theta) ** 87 - 8.01938940453004e48 * cos(theta) ** 85 + 7.49456025501891e49 * cos(theta) ** 83 - 4.49805794494345e50 * cos(theta) ** 81 + 1.94835664994877e51 * cos(theta) ** 79 - 6.48960739296449e51 * cos(theta) ** 77 + 1.72937989360784e52 * cos(theta) ** 75 - 3.78771050099586e52 * cos(theta) ** 73 + 6.95118938311252e52 * cos(theta) ** 71 - 1.0843506350932e53 * cos(theta) ** 69 + 1.45364947995922e53 * cos(theta) ** 67 - 1.68892222816071e53 * cos(theta) ** 65 + 1.71196795057226e53 * cos(theta) ** 63 - 1.5218358704905e53 * cos(theta) ** 61 + 1.19117178913499e53 * cos(theta) ** 59 - 8.23472699478778e52 * cos(theta) ** 57 + 5.03934980202504e52 * cos(theta) ** 55 - 2.73417407965187e52 * cos(theta) ** 53 + 1.31645418649905e52 * cos(theta) ** 51 - 5.6268155809128e51 * cos(theta) ** 49 + 2.13455971714628e51 * cos(theta) ** 47 - 7.18163415572712e50 * cos(theta) ** 45 + 2.14022209938888e50 * cos(theta) ** 43 - 5.63939467682567e49 * cos(theta) ** 41 + 1.31074366071345e49 * cos(theta) ** 39 - 2.67934083472735e48 * cos(theta) ** 37 + 4.79946475505223e47 * cos(theta) ** 35 - 7.50113351525105e46 * cos(theta) ** 33 + 1.01762551286037e46 * cos(theta) ** 31 - 1.19102910516001e45 * cos(theta) ** 29 + 1.19396991776534e44 * cos(theta) ** 27 - 1.01645268284171e43 * cos(theta) ** 25 + 7.27423198598549e41 * cos(theta) ** 23 - 4.32318696841515e40 * cos(theta) ** 21 + 2.10252261085498e39 * cos(theta) ** 19 - 8.21785980471318e37 * cos(theta) ** 17 + 2.52400391472672e36 * cos(theta) ** 15 - 5.91959819178704e34 * cos(theta) ** 13 + 1.02107178009595e33 * cos(theta) ** 11 - 1.23074617368567e31 * cos(theta) ** 9 + 9.6319265766705e28 * cos(theta) ** 7 - 4.36586354651587e26 * cos(theta) ** 5 + 9.36478667206322e23 * cos(theta) ** 3 - 5.99410284109018e20 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl97_m11(theta, phi): return ( 7.53405550111472e-22 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 3.5994003606379e49 * cos(theta) ** 86 - 6.81648099385054e50 * cos(theta) ** 84 + 6.2204850116657e51 * cos(theta) ** 82 - 3.64342693540419e52 * cos(theta) ** 80 + 1.53920175345953e53 * cos(theta) ** 78 - 4.99699769258266e53 * cos(theta) ** 76 + 1.29703492020588e54 * cos(theta) ** 74 - 2.76502866572698e54 * cos(theta) ** 72 + 4.93534446200989e54 * cos(theta) ** 70 - 7.48201938214305e54 * cos(theta) ** 68 + 9.73945151572678e54 * cos(theta) ** 66 - 1.09779944830446e55 * cos(theta) ** 64 + 1.07853980886053e55 * cos(theta) ** 62 - 9.28319880999206e54 * cos(theta) ** 60 + 7.02791355589647e54 * cos(theta) ** 58 - 4.69379438702903e54 * cos(theta) ** 56 + 2.77164239111377e54 * cos(theta) ** 54 - 1.44911226221549e54 * cos(theta) ** 52 + 6.71391635114516e53 * cos(theta) ** 50 - 2.75713963464727e53 * cos(theta) ** 48 + 1.00324306705875e53 * cos(theta) ** 46 - 3.23173537007721e52 * cos(theta) ** 44 + 9.20295502737218e51 * cos(theta) ** 42 - 2.31215181749852e51 * cos(theta) ** 40 + 5.11190027678245e50 * cos(theta) ** 38 - 9.91356108849121e49 * cos(theta) ** 36 + 1.67981266426828e49 * cos(theta) ** 34 - 2.47537406003285e48 * cos(theta) ** 32 + 3.15463908986714e47 * cos(theta) ** 30 - 3.45398440496402e46 * cos(theta) ** 28 + 3.22371877796642e45 * cos(theta) ** 26 - 2.54113170710426e44 * cos(theta) ** 24 + 1.67307335677666e43 * cos(theta) ** 22 - 9.07869263367181e41 * cos(theta) ** 20 + 3.99479296062446e40 * cos(theta) ** 18 - 1.39703616680124e39 * cos(theta) ** 16 + 3.78600587209008e37 * cos(theta) ** 14 - 7.69547764932316e35 * cos(theta) ** 12 + 1.12317895810555e34 * cos(theta) ** 10 - 1.10767155631711e32 * cos(theta) ** 8 + 6.74234860366935e29 * cos(theta) ** 6 - 2.18293177325794e27 * cos(theta) ** 4 + 2.80943600161897e24 * cos(theta) ** 2 - 5.99410284109018e20 ) * cos(11 * phi) ) # @torch.jit.script def Yl97_m12(theta, phi): return ( 7.78155409001107e-24 * (1.0 - cos(theta) ** 2) ** 6 * ( 3.0954843101486e51 * cos(theta) ** 85 - 5.72584403483445e52 * cos(theta) ** 83 + 5.10079770956587e53 * cos(theta) ** 81 - 2.91474154832336e54 * cos(theta) ** 79 + 1.20057736769843e55 * cos(theta) ** 77 - 3.79771824636282e55 * cos(theta) ** 75 + 9.59805840952352e55 * cos(theta) ** 73 - 1.99082063932343e56 * cos(theta) ** 71 + 3.45474112340692e56 * cos(theta) ** 69 - 5.08777317985728e56 * cos(theta) ** 67 + 6.42803800037968e56 * cos(theta) ** 65 - 7.02591646914857e56 * cos(theta) ** 63 + 6.68694681493526e56 * cos(theta) ** 61 - 5.56991928599523e56 * cos(theta) ** 59 + 4.07618986241995e56 * cos(theta) ** 57 - 2.62852485673626e56 * cos(theta) ** 55 + 1.49668689120144e56 * cos(theta) ** 53 - 7.53538376352057e55 * cos(theta) ** 51 + 3.35695817557258e55 * cos(theta) ** 49 - 1.32342702463069e55 * cos(theta) ** 47 + 4.61491810847025e54 * cos(theta) ** 45 - 1.42196356283397e54 * cos(theta) ** 43 + 3.86524111149631e53 * cos(theta) ** 41 - 9.2486072699941e52 * cos(theta) ** 39 + 1.94252210517733e52 * cos(theta) ** 37 - 3.56888199185684e51 * cos(theta) ** 35 + 5.71136305851215e50 * cos(theta) ** 33 - 7.92119699210511e49 * cos(theta) ** 31 + 9.46391726960143e48 * cos(theta) ** 29 - 9.67115633389927e47 * cos(theta) ** 27 + 8.3816688227127e46 * cos(theta) ** 25 - 6.09871609705023e45 * cos(theta) ** 23 + 3.68076138490866e44 * cos(theta) ** 21 - 1.81573852673436e43 * cos(theta) ** 19 + 7.19062732912404e41 * cos(theta) ** 17 - 2.23525786688199e40 * cos(theta) ** 15 + 5.30040822092612e38 * cos(theta) ** 13 - 9.23457317918779e36 * cos(theta) ** 11 + 1.12317895810555e35 * cos(theta) ** 9 - 8.86137245053686e32 * cos(theta) ** 7 + 4.04540916220161e30 * cos(theta) ** 5 - 8.73172709303175e27 * cos(theta) ** 3 + 5.61887200323793e24 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl97_m13(theta, phi): return ( 8.04749165795024e-26 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 2.63116166362631e53 * cos(theta) ** 84 - 4.75245054891259e54 * cos(theta) ** 82 + 4.13164614474836e55 * cos(theta) ** 80 - 2.30264582317545e56 * cos(theta) ** 78 + 9.24444573127791e56 * cos(theta) ** 76 - 2.84828868477211e57 * cos(theta) ** 74 + 7.00658263895217e57 * cos(theta) ** 72 - 1.41348265391963e58 * cos(theta) ** 70 + 2.38377137515078e58 * cos(theta) ** 68 - 3.40880803050437e58 * cos(theta) ** 66 + 4.17822470024679e58 * cos(theta) ** 64 - 4.4263273755636e58 * cos(theta) ** 62 + 4.07903755711051e58 * cos(theta) ** 60 - 3.28625237873719e58 * cos(theta) ** 58 + 2.32342822157937e58 * cos(theta) ** 56 - 1.44568867120494e58 * cos(theta) ** 54 + 7.93244052336761e57 * cos(theta) ** 52 - 3.84304571939549e57 * cos(theta) ** 50 + 1.64490950603056e57 * cos(theta) ** 48 - 6.22010701576425e56 * cos(theta) ** 46 + 2.07671314881161e56 * cos(theta) ** 44 - 6.11444332018607e55 * cos(theta) ** 42 + 1.58474885571349e55 * cos(theta) ** 40 - 3.6069568352977e54 * cos(theta) ** 38 + 7.18733178915613e53 * cos(theta) ** 36 - 1.24910869714989e53 * cos(theta) ** 34 + 1.88474980930901e52 * cos(theta) ** 32 - 2.45557106755258e51 * cos(theta) ** 30 + 2.74453600818441e50 * cos(theta) ** 28 - 2.6112122101528e49 * cos(theta) ** 26 + 2.09541720567818e48 * cos(theta) ** 24 - 1.40270470232155e47 * cos(theta) ** 22 + 7.72959890830818e45 * cos(theta) ** 20 - 3.44990320079529e44 * cos(theta) ** 18 + 1.22240664595109e43 * cos(theta) ** 16 - 3.35288680032298e41 * cos(theta) ** 14 + 6.89053068720395e39 * cos(theta) ** 12 - 1.01580304971066e38 * cos(theta) ** 10 + 1.01086106229499e36 * cos(theta) ** 8 - 6.2029607153758e33 * cos(theta) ** 6 + 2.0227045811008e31 * cos(theta) ** 4 - 2.61951812790952e28 * cos(theta) ** 2 + 5.61887200323793e24 ) * cos(13 * phi) ) # @torch.jit.script def Yl97_m14(theta, phi): return ( 8.33411334732858e-28 * (1.0 - cos(theta) ** 2) ** 7 * ( 2.2101757974461e55 * cos(theta) ** 83 - 3.89700945010833e56 * cos(theta) ** 81 + 3.30531691579869e57 * cos(theta) ** 79 - 1.79606374207685e58 * cos(theta) ** 77 + 7.02577875577121e58 * cos(theta) ** 75 - 2.10773362673136e59 * cos(theta) ** 73 + 5.04473950004556e59 * cos(theta) ** 71 - 9.89437857743743e59 * cos(theta) ** 69 + 1.62096453510253e60 * cos(theta) ** 67 - 2.24981330013289e60 * cos(theta) ** 65 + 2.67406380815795e60 * cos(theta) ** 63 - 2.74432297284943e60 * cos(theta) ** 61 + 2.44742253426631e60 * cos(theta) ** 59 - 1.90602637966757e60 * cos(theta) ** 57 + 1.30111980408445e60 * cos(theta) ** 55 - 7.80671882450669e59 * cos(theta) ** 53 + 4.12486907215116e59 * cos(theta) ** 51 - 1.92152285969774e59 * cos(theta) ** 49 + 7.89556562894671e58 * cos(theta) ** 47 - 2.86124922725155e58 * cos(theta) ** 45 + 9.1375378547711e57 * cos(theta) ** 43 - 2.56806619447815e57 * cos(theta) ** 41 + 6.33899542285395e56 * cos(theta) ** 39 - 1.37064359741313e56 * cos(theta) ** 37 + 2.58743944409621e55 * cos(theta) ** 35 - 4.24696957030963e54 * cos(theta) ** 33 + 6.03119938978883e53 * cos(theta) ** 31 - 7.36671320265775e52 * cos(theta) ** 29 + 7.68470082291636e51 * cos(theta) ** 27 - 6.78915174639729e50 * cos(theta) ** 25 + 5.02900129362762e49 * cos(theta) ** 23 - 3.08595034510742e48 * cos(theta) ** 21 + 1.54591978166164e47 * cos(theta) ** 19 - 6.20982576143152e45 * cos(theta) ** 17 + 1.95585063352174e44 * cos(theta) ** 15 - 4.69404152045217e42 * cos(theta) ** 13 + 8.26863682464474e40 * cos(theta) ** 11 - 1.01580304971066e39 * cos(theta) ** 9 + 8.08688849835994e36 * cos(theta) ** 7 - 3.72177642922548e34 * cos(theta) ** 5 + 8.09081832440322e31 * cos(theta) ** 3 - 5.23903625581905e28 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl97_m15(theta, phi): return ( 8.64393206963614e-30 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.83444591188026e57 * cos(theta) ** 82 - 3.15657765458774e58 * cos(theta) ** 80 + 2.61120036348096e59 * cos(theta) ** 78 - 1.38296908139918e60 * cos(theta) ** 76 + 5.26933406682841e60 * cos(theta) ** 74 - 1.5386455475139e61 * cos(theta) ** 72 + 3.58176504503235e61 * cos(theta) ** 70 - 6.82712121843182e61 * cos(theta) ** 68 + 1.08604623851869e62 * cos(theta) ** 66 - 1.46237864508638e62 * cos(theta) ** 64 + 1.68466019913951e62 * cos(theta) ** 62 - 1.67403701343815e62 * cos(theta) ** 60 + 1.44397929521712e62 * cos(theta) ** 58 - 1.08643503641051e62 * cos(theta) ** 56 + 7.15615892246447e61 * cos(theta) ** 54 - 4.13756097698855e61 * cos(theta) ** 52 + 2.10368322679709e61 * cos(theta) ** 50 - 9.41546201251895e60 * cos(theta) ** 48 + 3.71091584560495e60 * cos(theta) ** 46 - 1.2875621522632e60 * cos(theta) ** 44 + 3.92914127755157e59 * cos(theta) ** 42 - 1.05290713973604e59 * cos(theta) ** 40 + 2.47220821491304e58 * cos(theta) ** 38 - 5.07138131042856e57 * cos(theta) ** 36 + 9.05603805433672e56 * cos(theta) ** 34 - 1.40149995820218e56 * cos(theta) ** 32 + 1.86967181083454e55 * cos(theta) ** 30 - 2.13634682877075e54 * cos(theta) ** 28 + 2.07486922218742e53 * cos(theta) ** 26 - 1.69728793659932e52 * cos(theta) ** 24 + 1.15667029753435e51 * cos(theta) ** 22 - 6.48049572472557e49 * cos(theta) ** 20 + 2.93724758515711e48 * cos(theta) ** 18 - 1.05567037944336e47 * cos(theta) ** 16 + 2.93377595028261e45 * cos(theta) ** 14 - 6.10225397658782e43 * cos(theta) ** 12 + 9.09550050710922e41 * cos(theta) ** 10 - 9.14222744739591e39 * cos(theta) ** 8 + 5.66082194885196e37 * cos(theta) ** 6 - 1.86088821461274e35 * cos(theta) ** 4 + 2.42724549732097e32 * cos(theta) ** 2 - 5.23903625581905e28 ) * cos(15 * phi) ) # @torch.jit.script def Yl97_m16(theta, phi): return ( 8.97976967158516e-32 * (1.0 - cos(theta) ** 2) ** 8 * ( 1.50424564774181e59 * cos(theta) ** 81 - 2.5252621236702e60 * cos(theta) ** 79 + 2.03673628351515e61 * cos(theta) ** 77 - 1.05105650186337e62 * cos(theta) ** 75 + 3.89930720945302e62 * cos(theta) ** 73 - 1.10782479421001e63 * cos(theta) ** 71 + 2.50723553152264e63 * cos(theta) ** 69 - 4.64244242853364e63 * cos(theta) ** 67 + 7.16790517422338e63 * cos(theta) ** 65 - 9.35922332855281e63 * cos(theta) ** 63 + 1.04448932346649e64 * cos(theta) ** 61 - 1.00442220806289e64 * cos(theta) ** 59 + 8.3750799122593e63 * cos(theta) ** 57 - 6.08403620389888e63 * cos(theta) ** 55 + 3.86432581813081e63 * cos(theta) ** 53 - 2.15153170803404e63 * cos(theta) ** 51 + 1.05184161339855e63 * cos(theta) ** 49 - 4.51942176600909e62 * cos(theta) ** 47 + 1.70702128897828e62 * cos(theta) ** 45 - 5.66527346995808e61 * cos(theta) ** 43 + 1.65023933657166e61 * cos(theta) ** 41 - 4.21162855894417e60 * cos(theta) ** 39 + 9.39439121666956e59 * cos(theta) ** 37 - 1.82569727175428e59 * cos(theta) ** 35 + 3.07905293847449e58 * cos(theta) ** 33 - 4.48479986624697e57 * cos(theta) ** 31 + 5.60901543250361e56 * cos(theta) ** 29 - 5.98177112055809e55 * cos(theta) ** 27 + 5.39465997768728e54 * cos(theta) ** 25 - 4.07349104783837e53 * cos(theta) ** 23 + 2.54467465457558e52 * cos(theta) ** 21 - 1.29609914494512e51 * cos(theta) ** 19 + 5.28704565328279e49 * cos(theta) ** 17 - 1.68907260710937e48 * cos(theta) ** 15 + 4.10728633039565e46 * cos(theta) ** 13 - 7.32270477190539e44 * cos(theta) ** 11 + 9.09550050710922e42 * cos(theta) ** 9 - 7.31378195791673e40 * cos(theta) ** 7 + 3.39649316931117e38 * cos(theta) ** 5 - 7.44355285845096e35 * cos(theta) ** 3 + 4.85449099464193e32 * cos(theta) ) * cos(16 * phi) ) # @torch.jit.script def Yl97_m17(theta, phi): return ( 9.34480540630919e-34 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.21843897467087e61 * cos(theta) ** 80 - 1.99495707769945e62 * cos(theta) ** 78 + 1.56828693830667e63 * cos(theta) ** 76 - 7.8829237639753e63 * cos(theta) ** 74 + 2.84649426290071e64 * cos(theta) ** 72 - 7.86555603889104e64 * cos(theta) ** 70 + 1.72999251675062e65 * cos(theta) ** 68 - 3.11043642711754e65 * cos(theta) ** 66 + 4.6591383632452e65 * cos(theta) ** 64 - 5.89631069698827e65 * cos(theta) ** 62 + 6.37138487314561e65 * cos(theta) ** 60 - 5.92609102757106e65 * cos(theta) ** 58 + 4.7737955499878e65 * cos(theta) ** 56 - 3.34621991214438e65 * cos(theta) ** 54 + 2.04809268360933e65 * cos(theta) ** 52 - 1.09728117109736e65 * cos(theta) ** 50 + 5.15402390565287e64 * cos(theta) ** 48 - 2.12412823002427e64 * cos(theta) ** 46 + 7.68159580040225e63 * cos(theta) ** 44 - 2.43606759208197e63 * cos(theta) ** 42 + 6.76598127994381e62 * cos(theta) ** 40 - 1.64253513798823e62 * cos(theta) ** 38 + 3.47592475016774e61 * cos(theta) ** 36 - 6.38994045113999e60 * cos(theta) ** 34 + 1.01608746969658e60 * cos(theta) ** 32 - 1.39028795853656e59 * cos(theta) ** 30 + 1.62661447542605e58 * cos(theta) ** 28 - 1.61507820255069e57 * cos(theta) ** 26 + 1.34866499442182e56 * cos(theta) ** 24 - 9.36902941002826e54 * cos(theta) ** 22 + 5.34381677460871e53 * cos(theta) ** 20 - 2.46258837539572e52 * cos(theta) ** 18 + 8.98797761058075e50 * cos(theta) ** 16 - 2.53360891066406e49 * cos(theta) ** 14 + 5.33947222951434e47 * cos(theta) ** 12 - 8.05497524909592e45 * cos(theta) ** 10 + 8.1859504563983e43 * cos(theta) ** 8 - 5.11964737054171e41 * cos(theta) ** 6 + 1.69824658465559e39 * cos(theta) ** 4 - 2.23306585753529e36 * cos(theta) ** 2 + 4.85449099464193e32 ) * cos(17 * phi) ) # @torch.jit.script def Yl97_m18(theta, phi): return ( 9.74263311886972e-36 * (1.0 - cos(theta) ** 2) ** 9 * ( 9.74751179736695e62 * cos(theta) ** 79 - 1.55606652060557e64 * cos(theta) ** 77 + 1.19189807311307e65 * cos(theta) ** 75 - 5.83336358534172e65 * cos(theta) ** 73 + 2.04947586928851e66 * cos(theta) ** 71 - 5.50588922722372e66 * cos(theta) ** 69 + 1.17639491139042e67 * cos(theta) ** 67 - 2.05288804189758e67 * cos(theta) ** 65 + 2.98184855247693e67 * cos(theta) ** 63 - 3.65571263213273e67 * cos(theta) ** 61 + 3.82283092388737e67 * cos(theta) ** 59 - 3.43713279599122e67 * cos(theta) ** 57 + 2.67332550799317e67 * cos(theta) ** 55 - 1.80695875255797e67 * cos(theta) ** 53 + 1.06500819547685e67 * cos(theta) ** 51 - 5.48640585548681e66 * cos(theta) ** 49 + 2.47393147471338e66 * cos(theta) ** 47 - 9.77098985811166e65 * cos(theta) ** 45 + 3.37990215217699e65 * cos(theta) ** 43 - 1.02314838867443e65 * cos(theta) ** 41 + 2.70639251197752e64 * cos(theta) ** 39 - 6.24163352435526e63 * cos(theta) ** 37 + 1.25133291006039e63 * cos(theta) ** 35 - 2.1725797533876e62 * cos(theta) ** 33 + 3.25147990302906e61 * cos(theta) ** 31 - 4.17086387560969e60 * cos(theta) ** 29 + 4.55452053119293e59 * cos(theta) ** 27 - 4.19920332663178e58 * cos(theta) ** 25 + 3.23679598661237e57 * cos(theta) ** 23 - 2.06118647020622e56 * cos(theta) ** 21 + 1.06876335492174e55 * cos(theta) ** 19 - 4.43265907571229e53 * cos(theta) ** 17 + 1.43807641769292e52 * cos(theta) ** 15 - 3.54705247492968e50 * cos(theta) ** 13 + 6.40736667541721e48 * cos(theta) ** 11 - 8.05497524909592e46 * cos(theta) ** 9 + 6.54876036511864e44 * cos(theta) ** 7 - 3.07178842232503e42 * cos(theta) ** 5 + 6.79298633862235e39 * cos(theta) ** 3 - 4.46613171507058e36 * cos(theta) ) * cos(18 * phi) ) # @torch.jit.script def Yl97_m19(theta, phi): return ( 1.01773288634356e-37 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 7.70053431991989e64 * cos(theta) ** 78 - 1.19817122086629e66 * cos(theta) ** 76 + 8.93923554834799e66 * cos(theta) ** 74 - 4.25835541729946e67 * cos(theta) ** 72 + 1.45512786719484e68 * cos(theta) ** 70 - 3.79906356678437e68 * cos(theta) ** 68 + 7.88184590631584e68 * cos(theta) ** 66 - 1.33437722723342e69 * cos(theta) ** 64 + 1.87856458806046e69 * cos(theta) ** 62 - 2.22998470560096e69 * cos(theta) ** 60 + 2.25547024509355e69 * cos(theta) ** 58 - 1.95916569371499e69 * cos(theta) ** 56 + 1.47032902939624e69 * cos(theta) ** 54 - 9.57688138855723e68 * cos(theta) ** 52 + 5.43154179693194e68 * cos(theta) ** 50 - 2.68833886918854e68 * cos(theta) ** 48 + 1.16274779311529e68 * cos(theta) ** 46 - 4.39694543615025e67 * cos(theta) ** 44 + 1.45335792543611e67 * cos(theta) ** 42 - 4.19490839356516e66 * cos(theta) ** 40 + 1.05549307967123e66 * cos(theta) ** 38 - 2.30940440401145e65 * cos(theta) ** 36 + 4.37966518521135e64 * cos(theta) ** 34 - 7.16951318617907e63 * cos(theta) ** 32 + 1.00795876993901e63 * cos(theta) ** 30 - 1.20955052392681e62 * cos(theta) ** 28 + 1.22972054342209e61 * cos(theta) ** 26 - 1.04980083165795e60 * cos(theta) ** 24 + 7.44463076920845e58 * cos(theta) ** 22 - 4.32849158743305e57 * cos(theta) ** 20 + 2.03065037435131e56 * cos(theta) ** 18 - 7.5355204287109e54 * cos(theta) ** 16 + 2.15711462653938e53 * cos(theta) ** 14 - 4.61116821740859e51 * cos(theta) ** 12 + 7.04810334295893e49 * cos(theta) ** 10 - 7.24947772418633e47 * cos(theta) ** 8 + 4.58413225558305e45 * cos(theta) ** 6 - 1.53589421116251e43 * cos(theta) ** 4 + 2.0378959015867e40 * cos(theta) ** 2 - 4.46613171507058e36 ) * cos(19 * phi) ) # @torch.jit.script def Yl97_m20(theta, phi): return ( 1.06535310512464e-39 * (1.0 - cos(theta) ** 2) ** 10 * ( 6.00641676953752e66 * cos(theta) ** 77 - 9.10610127858382e67 * cos(theta) ** 75 + 6.61503430577752e68 * cos(theta) ** 73 - 3.06601590045561e69 * cos(theta) ** 71 + 1.01858950703639e70 * cos(theta) ** 69 - 2.58336322541337e70 * cos(theta) ** 67 + 5.20201829816846e70 * cos(theta) ** 65 - 8.54001425429391e70 * cos(theta) ** 63 + 1.16471004459749e71 * cos(theta) ** 61 - 1.33799082336058e71 * cos(theta) ** 59 + 1.30817274215426e71 * cos(theta) ** 57 - 1.0971327884804e71 * cos(theta) ** 55 + 7.93977675873971e70 * cos(theta) ** 53 - 4.97997832204976e70 * cos(theta) ** 51 + 2.71577089846597e70 * cos(theta) ** 49 - 1.2904026572105e70 * cos(theta) ** 47 + 5.34863984833032e69 * cos(theta) ** 45 - 1.93465599190611e69 * cos(theta) ** 43 + 6.10410328683164e68 * cos(theta) ** 41 - 1.67796335742606e68 * cos(theta) ** 39 + 4.01087370275069e67 * cos(theta) ** 37 - 8.3138558544412e66 * cos(theta) ** 35 + 1.48908616297186e66 * cos(theta) ** 33 - 2.2942442195773e65 * cos(theta) ** 31 + 3.02387630981702e64 * cos(theta) ** 29 - 3.38674146699507e63 * cos(theta) ** 27 + 3.19727341289744e62 * cos(theta) ** 25 - 2.51952199597907e61 * cos(theta) ** 23 + 1.63781876922586e60 * cos(theta) ** 21 - 8.65698317486611e58 * cos(theta) ** 19 + 3.65517067383236e57 * cos(theta) ** 17 - 1.20568326859374e56 * cos(theta) ** 15 + 3.01996047715513e54 * cos(theta) ** 13 - 5.5334018608903e52 * cos(theta) ** 11 + 7.04810334295893e50 * cos(theta) ** 9 - 5.79958217934906e48 * cos(theta) ** 7 + 2.75047935334983e46 * cos(theta) ** 5 - 6.14357684465005e43 * cos(theta) ** 3 + 4.07579180317341e40 * cos(theta) ) * cos(20 * phi) ) # @torch.jit.script def Yl97_m21(theta, phi): return ( 1.11765357029373e-41 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 4.62494091254389e68 * cos(theta) ** 76 - 6.82957595893787e69 * cos(theta) ** 74 + 4.82897504321759e70 * cos(theta) ** 72 - 2.17687128932348e71 * cos(theta) ** 70 + 7.02826759855109e71 * cos(theta) ** 68 - 1.73085336102696e72 * cos(theta) ** 66 + 3.3813118938095e72 * cos(theta) ** 64 - 5.38020898020517e72 * cos(theta) ** 62 + 7.10473127204467e72 * cos(theta) ** 60 - 7.89414585782741e72 * cos(theta) ** 58 + 7.45658463027926e72 * cos(theta) ** 56 - 6.03423033664218e72 * cos(theta) ** 54 + 4.20808168213205e72 * cos(theta) ** 52 - 2.53978894424538e72 * cos(theta) ** 50 + 1.33072774024833e72 * cos(theta) ** 48 - 6.06489248888934e71 * cos(theta) ** 46 + 2.40688793174865e71 * cos(theta) ** 44 - 8.31902076519627e70 * cos(theta) ** 42 + 2.50268234760097e70 * cos(theta) ** 40 - 6.54405709396165e69 * cos(theta) ** 38 + 1.48402327001775e69 * cos(theta) ** 36 - 2.90984954905442e68 * cos(theta) ** 34 + 4.91398433780713e67 * cos(theta) ** 32 - 7.11215708068964e66 * cos(theta) ** 30 + 8.76924129846936e65 * cos(theta) ** 28 - 9.14420196088668e64 * cos(theta) ** 26 + 7.9931835322436e63 * cos(theta) ** 24 - 5.79490059075186e62 * cos(theta) ** 22 + 3.43941941537431e61 * cos(theta) ** 20 - 1.64482680322456e60 * cos(theta) ** 18 + 6.21379014551501e58 * cos(theta) ** 16 - 1.80852490289062e57 * cos(theta) ** 14 + 3.92594862030167e55 * cos(theta) ** 12 - 6.08674204697933e53 * cos(theta) ** 10 + 6.34329300866304e51 * cos(theta) ** 8 - 4.05970752554435e49 * cos(theta) ** 6 + 1.37523967667491e47 * cos(theta) ** 4 - 1.84307305339501e44 * cos(theta) ** 2 + 4.07579180317341e40 ) * cos(21 * phi) ) # @torch.jit.script def Yl97_m22(theta, phi): return ( 1.17524099704666e-43 * (1.0 - cos(theta) ** 2) ** 11 * ( 3.51495509353336e70 * cos(theta) ** 75 - 5.05388620961402e71 * cos(theta) ** 73 + 3.47686203111666e72 * cos(theta) ** 71 - 1.52380990252644e73 * cos(theta) ** 69 + 4.77922196701474e73 * cos(theta) ** 67 - 1.14236321827779e74 * cos(theta) ** 65 + 2.16403961203808e74 * cos(theta) ** 63 - 3.3357295677272e74 * cos(theta) ** 61 + 4.2628387632268e74 * cos(theta) ** 59 - 4.5786045975399e74 * cos(theta) ** 57 + 4.17568739295639e74 * cos(theta) ** 55 - 3.25848438178678e74 * cos(theta) ** 53 + 2.18820247470866e74 * cos(theta) ** 51 - 1.26989447212269e74 * cos(theta) ** 49 + 6.38749315319197e73 * cos(theta) ** 47 - 2.7898505448891e73 * cos(theta) ** 45 + 1.0590306899694e73 * cos(theta) ** 43 - 3.49398872138243e72 * cos(theta) ** 41 + 1.00107293904039e72 * cos(theta) ** 39 - 2.48674169570543e71 * cos(theta) ** 37 + 5.34248377206392e70 * cos(theta) ** 35 - 9.89348846678503e69 * cos(theta) ** 33 + 1.57247498809828e69 * cos(theta) ** 31 - 2.13364712420689e68 * cos(theta) ** 29 + 2.45538756357142e67 * cos(theta) ** 27 - 2.37749250983054e66 * cos(theta) ** 25 + 1.91836404773846e65 * cos(theta) ** 23 - 1.27487812996541e64 * cos(theta) ** 21 + 6.87883883074861e62 * cos(theta) ** 19 - 2.96068824580421e61 * cos(theta) ** 17 + 9.94206423282401e59 * cos(theta) ** 15 - 2.53193486404686e58 * cos(theta) ** 13 + 4.71113834436201e56 * cos(theta) ** 11 - 6.08674204697933e54 * cos(theta) ** 9 + 5.07463440693043e52 * cos(theta) ** 7 - 2.43582451532661e50 * cos(theta) ** 5 + 5.50095870669965e47 * cos(theta) ** 3 - 3.68614610679003e44 * cos(theta) ) * cos(22 * phi) ) # @torch.jit.script def Yl97_m23(theta, phi): return ( 1.23881278342489e-45 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 2.63621632015002e72 * cos(theta) ** 74 - 3.68933693301824e73 * cos(theta) ** 72 + 2.46857204209283e74 * cos(theta) ** 70 - 1.05142883274324e75 * cos(theta) ** 68 + 3.20207871789987e75 * cos(theta) ** 66 - 7.42536091880565e75 * cos(theta) ** 64 + 1.36334495558399e76 * cos(theta) ** 62 - 2.03479503631359e76 * cos(theta) ** 60 + 2.51507487030381e76 * cos(theta) ** 58 - 2.60980462059774e76 * cos(theta) ** 56 + 2.29662806612601e76 * cos(theta) ** 54 - 1.72699672234699e76 * cos(theta) ** 52 + 1.11598326210142e76 * cos(theta) ** 50 - 6.22248291340117e75 * cos(theta) ** 48 + 3.00212178200022e75 * cos(theta) ** 46 - 1.25543274520009e75 * cos(theta) ** 44 + 4.55383196686844e74 * cos(theta) ** 42 - 1.4325353757668e74 * cos(theta) ** 40 + 3.90418446225752e73 * cos(theta) ** 38 - 9.20094427411008e72 * cos(theta) ** 36 + 1.86986932022237e72 * cos(theta) ** 34 - 3.26485119403906e71 * cos(theta) ** 32 + 4.87467246310468e70 * cos(theta) ** 30 - 6.18757666019998e69 * cos(theta) ** 28 + 6.62954642164284e68 * cos(theta) ** 26 - 5.94373127457634e67 * cos(theta) ** 24 + 4.41223730979847e66 * cos(theta) ** 22 - 2.67724407292736e65 * cos(theta) ** 20 + 1.30697937784224e64 * cos(theta) ** 18 - 5.03317001786716e62 * cos(theta) ** 16 + 1.4913096349236e61 * cos(theta) ** 14 - 3.29151532326092e59 * cos(theta) ** 12 + 5.18225217879821e57 * cos(theta) ** 10 - 5.4780678422814e55 * cos(theta) ** 8 + 3.5522440848513e53 * cos(theta) ** 6 - 1.2179122576633e51 * cos(theta) ** 4 + 1.6502876120099e48 * cos(theta) ** 2 - 3.68614610679003e44 ) * cos(23 * phi) ) # @torch.jit.script def Yl97_m24(theta, phi): return ( 1.30917328108001e-47 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.95080007691101e74 * cos(theta) ** 73 - 2.65632259177313e75 * cos(theta) ** 71 + 1.72800042946498e76 * cos(theta) ** 69 - 7.14971606265405e76 * cos(theta) ** 67 + 2.11337195381392e77 * cos(theta) ** 65 - 4.75223098803562e77 * cos(theta) ** 63 + 8.45273872462073e77 * cos(theta) ** 61 - 1.22087702178816e78 * cos(theta) ** 59 + 1.45874342477621e78 * cos(theta) ** 57 - 1.46149058753474e78 * cos(theta) ** 55 + 1.24017915570805e78 * cos(theta) ** 53 - 8.98038295620436e77 * cos(theta) ** 51 + 5.57991631050709e77 * cos(theta) ** 49 - 2.98679179843256e77 * cos(theta) ** 47 + 1.3809760197201e77 * cos(theta) ** 45 - 5.52390407888041e76 * cos(theta) ** 43 + 1.91260942608474e76 * cos(theta) ** 41 - 5.73014150306719e75 * cos(theta) ** 39 + 1.48359009565786e75 * cos(theta) ** 37 - 3.31233993867963e74 * cos(theta) ** 35 + 6.35755568875606e73 * cos(theta) ** 33 - 1.0447523820925e73 * cos(theta) ** 31 + 1.4624017389314e72 * cos(theta) ** 29 - 1.732521464856e71 * cos(theta) ** 27 + 1.72368206962714e70 * cos(theta) ** 25 - 1.42649550589832e69 * cos(theta) ** 23 + 9.70692208155663e67 * cos(theta) ** 21 - 5.35448814585472e66 * cos(theta) ** 19 + 2.35256288011602e65 * cos(theta) ** 17 - 8.05307202858745e63 * cos(theta) ** 15 + 2.08783348889304e62 * cos(theta) ** 13 - 3.9498183879131e60 * cos(theta) ** 11 + 5.18225217879821e58 * cos(theta) ** 9 - 4.38245427382512e56 * cos(theta) ** 7 + 2.13134645091078e54 * cos(theta) ** 5 - 4.87164903065321e51 * cos(theta) ** 3 + 3.30057522401979e48 * cos(theta) ) * cos(24 * phi) ) # @torch.jit.script def Yl97_m25(theta, phi): return ( 1.38725336779573e-49 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 1.42408405614504e76 * cos(theta) ** 72 - 1.88598904015892e77 * cos(theta) ** 70 + 1.19232029633084e78 * cos(theta) ** 68 - 4.79030976197821e78 * cos(theta) ** 66 + 1.37369176997905e79 * cos(theta) ** 64 - 2.99390552246244e79 * cos(theta) ** 62 + 5.15617062201865e79 * cos(theta) ** 60 - 7.20317442855012e79 * cos(theta) ** 58 + 8.31483752122441e79 * cos(theta) ** 56 - 8.03819823144105e79 * cos(theta) ** 54 + 6.57294952525265e79 * cos(theta) ** 52 - 4.57999530766422e79 * cos(theta) ** 50 + 2.73415899214848e79 * cos(theta) ** 48 - 1.4037921452633e79 * cos(theta) ** 46 + 6.21439208874046e78 * cos(theta) ** 44 - 2.37527875391858e78 * cos(theta) ** 42 + 7.84169864694745e77 * cos(theta) ** 40 - 2.2347551861962e77 * cos(theta) ** 38 + 5.48928335393407e76 * cos(theta) ** 36 - 1.15931897853787e76 * cos(theta) ** 34 + 2.0979933772895e75 * cos(theta) ** 32 - 3.23873238448675e74 * cos(theta) ** 30 + 4.24096504290107e73 * cos(theta) ** 28 - 4.67780795511119e72 * cos(theta) ** 26 + 4.30920517406785e71 * cos(theta) ** 24 - 3.28093966356614e70 * cos(theta) ** 22 + 2.03845363712689e69 * cos(theta) ** 20 - 1.0173527477124e68 * cos(theta) ** 18 + 3.99935689619724e66 * cos(theta) ** 16 - 1.20796080428812e65 * cos(theta) ** 14 + 2.71418353556096e63 * cos(theta) ** 12 - 4.34480022670442e61 * cos(theta) ** 10 + 4.66402696091838e59 * cos(theta) ** 8 - 3.06771799167758e57 * cos(theta) ** 6 + 1.06567322545539e55 * cos(theta) ** 4 - 1.46149470919596e52 * cos(theta) ** 2 + 3.30057522401979e48 ) * cos(25 * phi) ) # @torch.jit.script def Yl97_m26(theta, phi): return ( 1.47413407070875e-51 * (1.0 - cos(theta) ** 2) ** 13 * ( 1.02534052042443e78 * cos(theta) ** 71 - 1.32019232811125e79 * cos(theta) ** 69 + 8.10777801504969e79 * cos(theta) ** 67 - 3.16160444290562e80 * cos(theta) ** 65 + 8.7916273278659e80 * cos(theta) ** 63 - 1.85622142392671e81 * cos(theta) ** 61 + 3.09370237321119e81 * cos(theta) ** 59 - 4.17784116855907e81 * cos(theta) ** 57 + 4.65630901188567e81 * cos(theta) ** 55 - 4.34062704497817e81 * cos(theta) ** 53 + 3.41793375313138e81 * cos(theta) ** 51 - 2.28999765383211e81 * cos(theta) ** 49 + 1.31239631623127e81 * cos(theta) ** 47 - 6.4574438682112e80 * cos(theta) ** 45 + 2.7343325190458e80 * cos(theta) ** 43 - 9.97617076645802e79 * cos(theta) ** 41 + 3.13667945877898e79 * cos(theta) ** 39 - 8.49206970754558e78 * cos(theta) ** 37 + 1.97614200741627e78 * cos(theta) ** 35 - 3.94168452702876e77 * cos(theta) ** 33 + 6.7135788073264e76 * cos(theta) ** 31 - 9.71619715346024e75 * cos(theta) ** 29 + 1.1874702120123e75 * cos(theta) ** 27 - 1.21623006832891e74 * cos(theta) ** 25 + 1.03420924177628e73 * cos(theta) ** 23 - 7.21806725984551e71 * cos(theta) ** 21 + 4.07690727425378e70 * cos(theta) ** 19 - 1.83123494588231e69 * cos(theta) ** 17 + 6.39897103391559e67 * cos(theta) ** 15 - 1.69114512600336e66 * cos(theta) ** 13 + 3.25702024267315e64 * cos(theta) ** 11 - 4.34480022670442e62 * cos(theta) ** 9 + 3.73122156873471e60 * cos(theta) ** 7 - 1.84063079500655e58 * cos(theta) ** 5 + 4.26269290182156e55 * cos(theta) ** 3 - 2.92298941839193e52 * cos(theta) ) * cos(26 * phi) ) # @torch.jit.script def Yl97_m27(theta, phi): return ( 1.57107517742233e-53 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 7.27991769501344e79 * cos(theta) ** 70 - 9.10932706396759e80 * cos(theta) ** 68 + 5.43221127008329e81 * cos(theta) ** 66 - 2.05504288788865e82 * cos(theta) ** 64 + 5.53872521655551e82 * cos(theta) ** 62 - 1.13229506859529e83 * cos(theta) ** 60 + 1.8252844001946e83 * cos(theta) ** 58 - 2.38136946607867e83 * cos(theta) ** 56 + 2.56096995653712e83 * cos(theta) ** 54 - 2.30053233383843e83 * cos(theta) ** 52 + 1.743146214097e83 * cos(theta) ** 50 - 1.12209885037773e83 * cos(theta) ** 48 + 6.16826268628696e82 * cos(theta) ** 46 - 2.90584974069504e82 * cos(theta) ** 44 + 1.1757629831897e82 * cos(theta) ** 42 - 4.09023001424779e81 * cos(theta) ** 40 + 1.2233049889238e81 * cos(theta) ** 38 - 3.14206579179186e80 * cos(theta) ** 36 + 6.91649702595693e79 * cos(theta) ** 34 - 1.30075589391949e79 * cos(theta) ** 32 + 2.08120943027118e78 * cos(theta) ** 30 - 2.81769717450347e77 * cos(theta) ** 28 + 3.20616957243321e76 * cos(theta) ** 26 - 3.04057517082227e75 * cos(theta) ** 24 + 2.37868125608545e74 * cos(theta) ** 22 - 1.51579412456756e73 * cos(theta) ** 20 + 7.74612382108219e71 * cos(theta) ** 18 - 3.11309940799993e70 * cos(theta) ** 16 + 9.59845655087338e68 * cos(theta) ** 14 - 2.19848866380437e67 * cos(theta) ** 12 + 3.58272226694046e65 * cos(theta) ** 10 - 3.91032020403397e63 * cos(theta) ** 8 + 2.6118550981143e61 * cos(theta) ** 6 - 9.20315397503275e58 * cos(theta) ** 4 + 1.27880787054647e56 * cos(theta) ** 2 - 2.92298941839193e52 ) * cos(27 * phi) ) # @torch.jit.script def Yl97_m28(theta, phi): return ( 1.6795500122227e-55 * (1.0 - cos(theta) ** 2) ** 14 * ( 5.09594238650941e81 * cos(theta) ** 69 - 6.19434240349796e82 * cos(theta) ** 67 + 3.58525943825497e83 * cos(theta) ** 65 - 1.31522744824874e84 * cos(theta) ** 63 + 3.43400963426442e84 * cos(theta) ** 61 - 6.79377041157177e84 * cos(theta) ** 59 + 1.05866495211287e85 * cos(theta) ** 57 - 1.33356690100406e85 * cos(theta) ** 55 + 1.38292377653004e85 * cos(theta) ** 53 - 1.19627681359598e85 * cos(theta) ** 51 + 8.71573107048501e84 * cos(theta) ** 49 - 5.38607448181312e84 * cos(theta) ** 47 + 2.837400835692e84 * cos(theta) ** 45 - 1.27857388590582e84 * cos(theta) ** 43 + 4.93820452939672e83 * cos(theta) ** 41 - 1.63609200569912e83 * cos(theta) ** 39 + 4.64855895791045e82 * cos(theta) ** 37 - 1.13114368504507e82 * cos(theta) ** 35 + 2.35160898882536e81 * cos(theta) ** 33 - 4.16241886054237e80 * cos(theta) ** 31 + 6.24362829081355e79 * cos(theta) ** 29 - 7.88955208860972e78 * cos(theta) ** 27 + 8.33604088832634e77 * cos(theta) ** 25 - 7.29738040997345e76 * cos(theta) ** 23 + 5.23309876338799e75 * cos(theta) ** 21 - 3.03158824913511e74 * cos(theta) ** 19 + 1.39430228779479e73 * cos(theta) ** 17 - 4.98095905279989e71 * cos(theta) ** 15 + 1.34378391712227e70 * cos(theta) ** 13 - 2.63818639656525e68 * cos(theta) ** 11 + 3.58272226694046e66 * cos(theta) ** 9 - 3.12825616322718e64 * cos(theta) ** 7 + 1.56711305886858e62 * cos(theta) ** 5 - 3.6812615900131e59 * cos(theta) ** 3 + 2.55761574109294e56 * cos(theta) ) * cos(28 * phi) ) # @torch.jit.script def Yl97_m29(theta, phi): return ( 1.80128786186537e-57 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 3.51620024669149e83 * cos(theta) ** 68 - 4.15020941034364e84 * cos(theta) ** 66 + 2.33041863486573e85 * cos(theta) ** 64 - 8.28593292396705e85 * cos(theta) ** 62 + 2.0947458769013e86 * cos(theta) ** 60 - 4.00832454282734e86 * cos(theta) ** 58 + 6.03439022704335e86 * cos(theta) ** 56 - 7.3346179555223e86 * cos(theta) ** 54 + 7.32949601560923e86 * cos(theta) ** 52 - 6.10101174933951e86 * cos(theta) ** 50 + 4.27070822453766e86 * cos(theta) ** 48 - 2.53145500645217e86 * cos(theta) ** 46 + 1.2768303760614e86 * cos(theta) ** 44 - 5.49786770939502e85 * cos(theta) ** 42 + 2.02466385705266e85 * cos(theta) ** 40 - 6.38075882222655e84 * cos(theta) ** 38 + 1.71996681442687e84 * cos(theta) ** 36 - 3.95900289765775e83 * cos(theta) ** 34 + 7.76030966312368e82 * cos(theta) ** 32 - 1.29034984676813e82 * cos(theta) ** 30 + 1.81065220433593e81 * cos(theta) ** 28 - 2.13017906392462e80 * cos(theta) ** 26 + 2.08401022208159e79 * cos(theta) ** 24 - 1.67839749429389e78 * cos(theta) ** 22 + 1.09895074031148e77 * cos(theta) ** 20 - 5.76001767335671e75 * cos(theta) ** 18 + 2.37031388925115e74 * cos(theta) ** 16 - 7.47143857919984e72 * cos(theta) ** 14 + 1.74691909225896e71 * cos(theta) ** 12 - 2.90200503622177e69 * cos(theta) ** 10 + 3.22445004024641e67 * cos(theta) ** 8 - 2.18977931425903e65 * cos(theta) ** 6 + 7.83556529434289e62 * cos(theta) ** 4 - 1.10437847700393e60 * cos(theta) ** 2 + 2.55761574109294e56 ) * cos(29 * phi) ) # @torch.jit.script def Yl97_m30(theta, phi): return ( 1.93832593037077e-59 * (1.0 - cos(theta) ** 2) ** 15 * ( 2.39101616775021e85 * cos(theta) ** 67 - 2.7391382108268e86 * cos(theta) ** 65 + 1.49146792631407e87 * cos(theta) ** 63 - 5.13727841285957e87 * cos(theta) ** 61 + 1.25684752614078e88 * cos(theta) ** 59 - 2.32482823483986e88 * cos(theta) ** 57 + 3.37925852714428e88 * cos(theta) ** 55 - 3.96069369598204e88 * cos(theta) ** 53 + 3.8113379281168e88 * cos(theta) ** 51 - 3.05050587466975e88 * cos(theta) ** 49 + 2.04993994777808e88 * cos(theta) ** 47 - 1.164469302968e88 * cos(theta) ** 45 + 5.61805365467016e87 * cos(theta) ** 43 - 2.30910443794591e87 * cos(theta) ** 41 + 8.09865542821062e86 * cos(theta) ** 39 - 2.42468835244609e86 * cos(theta) ** 37 + 6.19188053193672e85 * cos(theta) ** 35 - 1.34606098520363e85 * cos(theta) ** 33 + 2.48329909219958e84 * cos(theta) ** 31 - 3.8710495403044e83 * cos(theta) ** 29 + 5.0698261721406e82 * cos(theta) ** 27 - 5.53846556620402e81 * cos(theta) ** 25 + 5.0016245329958e80 * cos(theta) ** 23 - 3.69247448744657e79 * cos(theta) ** 21 + 2.19790148062296e78 * cos(theta) ** 19 - 1.03680318120421e77 * cos(theta) ** 17 + 3.79250222280184e75 * cos(theta) ** 15 - 1.04600140108798e74 * cos(theta) ** 13 + 2.09630291071075e72 * cos(theta) ** 11 - 2.90200503622177e70 * cos(theta) ** 9 + 2.57956003219713e68 * cos(theta) ** 7 - 1.31386758855542e66 * cos(theta) ** 5 + 3.13422611773715e63 * cos(theta) ** 3 - 2.20875695400786e60 * cos(theta) ) * cos(30 * phi) ) # @torch.jit.script def Yl97_m31(theta, phi): return ( 2.09307321216616e-61 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 1.60198083239264e87 * cos(theta) ** 66 - 1.78043983703742e88 * cos(theta) ** 64 + 9.39624793577863e88 * cos(theta) ** 62 - 3.13373983184434e89 * cos(theta) ** 60 + 7.41540040423059e89 * cos(theta) ** 58 - 1.32515209385872e90 * cos(theta) ** 56 + 1.85859218992935e90 * cos(theta) ** 54 - 2.09916765887048e90 * cos(theta) ** 52 + 1.94378234333957e90 * cos(theta) ** 50 - 1.49474787858818e90 * cos(theta) ** 48 + 9.63471775455695e89 * cos(theta) ** 46 - 5.24011186335599e89 * cos(theta) ** 44 + 2.41576307150817e89 * cos(theta) ** 42 - 9.46732819557822e88 * cos(theta) ** 40 + 3.15847561700214e88 * cos(theta) ** 38 - 8.97134690405053e87 * cos(theta) ** 36 + 2.16715818617785e87 * cos(theta) ** 34 - 4.44200125117199e86 * cos(theta) ** 32 + 7.69822718581869e85 * cos(theta) ** 30 - 1.12260436668828e85 * cos(theta) ** 28 + 1.36885306647796e84 * cos(theta) ** 26 - 1.38461639155101e83 * cos(theta) ** 24 + 1.15037364258904e82 * cos(theta) ** 22 - 7.75419642363779e80 * cos(theta) ** 20 + 4.17601281318362e79 * cos(theta) ** 18 - 1.76256540804715e78 * cos(theta) ** 16 + 5.68875333420276e76 * cos(theta) ** 14 - 1.35980182141437e75 * cos(theta) ** 12 + 2.30593320178182e73 * cos(theta) ** 10 - 2.6118045325996e71 * cos(theta) ** 8 + 1.80569202253799e69 * cos(theta) ** 6 - 6.56933794277708e66 * cos(theta) ** 4 + 9.40267835321146e63 * cos(theta) ** 2 - 2.20875695400786e60 ) * cos(31 * phi) ) # @torch.jit.script def Yl97_m32(theta, phi): return ( 2.26838933406071e-63 * (1.0 - cos(theta) ** 2) ** 16 * ( 1.05730734937914e89 * cos(theta) ** 65 - 1.13948149570395e90 * cos(theta) ** 63 + 5.82567372018275e90 * cos(theta) ** 61 - 1.8802438991066e91 * cos(theta) ** 59 + 4.30093223445374e91 * cos(theta) ** 57 - 7.42085172560883e91 * cos(theta) ** 55 + 1.00363978256185e92 * cos(theta) ** 53 - 1.09156718261265e92 * cos(theta) ** 51 + 9.71891171669784e91 * cos(theta) ** 49 - 7.17478981722326e91 * cos(theta) ** 47 + 4.4319701670962e91 * cos(theta) ** 45 - 2.30564921987664e91 * cos(theta) ** 43 + 1.01462049003343e91 * cos(theta) ** 41 - 3.78693127823129e90 * cos(theta) ** 39 + 1.20022073446081e90 * cos(theta) ** 37 - 3.22968488545819e89 * cos(theta) ** 35 + 7.36833783300469e88 * cos(theta) ** 33 - 1.42144040037504e88 * cos(theta) ** 31 + 2.30946815574561e87 * cos(theta) ** 29 - 3.14329222672717e86 * cos(theta) ** 27 + 3.5590179728427e85 * cos(theta) ** 25 - 3.32307933972241e84 * cos(theta) ** 23 + 2.53082201369588e83 * cos(theta) ** 21 - 1.55083928472756e82 * cos(theta) ** 19 + 7.51682306373051e80 * cos(theta) ** 17 - 2.82010465287545e79 * cos(theta) ** 15 + 7.96425466788386e77 * cos(theta) ** 13 - 1.63176218569725e76 * cos(theta) ** 11 + 2.30593320178182e74 * cos(theta) ** 9 - 2.08944362607968e72 * cos(theta) ** 7 + 1.0834152135228e70 * cos(theta) ** 5 - 2.62773517711083e67 * cos(theta) ** 3 + 1.88053567064229e64 * cos(theta) ) * cos(32 * phi) ) # @torch.jit.script def Yl97_m33(theta, phi): return ( 2.4676822776701e-65 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 6.87249777096444e90 * cos(theta) ** 64 - 7.17873342293488e91 * cos(theta) ** 62 + 3.55366096931148e92 * cos(theta) ** 60 - 1.1093439004729e93 * cos(theta) ** 58 + 2.45153137363863e93 * cos(theta) ** 56 - 4.08146844908486e93 * cos(theta) ** 54 + 5.31929084757781e93 * cos(theta) ** 52 - 5.56699263132452e93 * cos(theta) ** 50 + 4.76226674118194e93 * cos(theta) ** 48 - 3.37215121409493e93 * cos(theta) ** 46 + 1.99438657519329e93 * cos(theta) ** 44 - 9.91429164546953e92 * cos(theta) ** 42 + 4.15994400913707e92 * cos(theta) ** 40 - 1.4769031985102e92 * cos(theta) ** 38 + 4.44081671750501e91 * cos(theta) ** 36 - 1.13038970991037e91 * cos(theta) ** 34 + 2.43155148489155e90 * cos(theta) ** 32 - 4.40646524116262e89 * cos(theta) ** 30 + 6.69745765166226e88 * cos(theta) ** 28 - 8.48688901216337e87 * cos(theta) ** 26 + 8.89754493210676e86 * cos(theta) ** 24 - 7.64308248136155e85 * cos(theta) ** 22 + 5.31472622876134e84 * cos(theta) ** 20 - 2.94659464098236e83 * cos(theta) ** 18 + 1.27785992083419e82 * cos(theta) ** 16 - 4.23015697931317e80 * cos(theta) ** 14 + 1.0353531068249e79 * cos(theta) ** 12 - 1.79493840426697e77 * cos(theta) ** 10 + 2.07533988160364e75 * cos(theta) ** 8 - 1.46261053825577e73 * cos(theta) ** 6 + 5.41707606761398e70 * cos(theta) ** 4 - 7.88320553133249e67 * cos(theta) ** 2 + 1.88053567064229e64 ) * cos(33 * phi) ) # @torch.jit.script def Yl97_m34(theta, phi): return ( 2.69503002068864e-67 * (1.0 - cos(theta) ** 2) ** 17 * ( 4.39839857341724e92 * cos(theta) ** 63 - 4.45081472221962e93 * cos(theta) ** 61 + 2.13219658158689e94 * cos(theta) ** 59 - 6.43419462274279e94 * cos(theta) ** 57 + 1.37285756923763e95 * cos(theta) ** 55 - 2.20399296250582e95 * cos(theta) ** 53 + 2.76603124074046e95 * cos(theta) ** 51 - 2.78349631566226e95 * cos(theta) ** 49 + 2.28588803576733e95 * cos(theta) ** 47 - 1.55118955848367e95 * cos(theta) ** 45 + 8.77530093085047e94 * cos(theta) ** 43 - 4.1640024910972e94 * cos(theta) ** 41 + 1.66397760365483e94 * cos(theta) ** 39 - 5.61223215433877e93 * cos(theta) ** 37 + 1.5986940183018e93 * cos(theta) ** 35 - 3.84332501369525e92 * cos(theta) ** 33 + 7.78096475165296e91 * cos(theta) ** 31 - 1.32193957234879e91 * cos(theta) ** 29 + 1.87528814246543e90 * cos(theta) ** 27 - 2.20659114316248e89 * cos(theta) ** 25 + 2.13541078370562e88 * cos(theta) ** 23 - 1.68147814589954e87 * cos(theta) ** 21 + 1.06294524575227e86 * cos(theta) ** 19 - 5.30387035376825e84 * cos(theta) ** 17 + 2.0445758733347e83 * cos(theta) ** 15 - 5.92221977103844e81 * cos(theta) ** 13 + 1.24242372818988e80 * cos(theta) ** 11 - 1.79493840426697e78 * cos(theta) ** 9 + 1.66027190528291e76 * cos(theta) ** 7 - 8.77566322953464e73 * cos(theta) ** 5 + 2.16683042704559e71 * cos(theta) ** 3 - 1.5766411062665e68 * cos(theta) ) * cos(34 * phi) ) # @torch.jit.script def Yl97_m35(theta, phi): return ( 2.95533261679926e-69 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 2.77099110125286e94 * cos(theta) ** 62 - 2.71499698055397e95 * cos(theta) ** 60 + 1.25799598313626e96 * cos(theta) ** 58 - 3.66749093496339e96 * cos(theta) ** 56 + 7.55071663080699e96 * cos(theta) ** 54 - 1.16811627012809e97 * cos(theta) ** 52 + 1.41067593277763e97 * cos(theta) ** 50 - 1.36391319467451e97 * cos(theta) ** 48 + 1.07436737681065e97 * cos(theta) ** 46 - 6.98035301317651e96 * cos(theta) ** 44 + 3.7733794002657e96 * cos(theta) ** 42 - 1.70724102134985e96 * cos(theta) ** 40 + 6.48951265425383e95 * cos(theta) ** 38 - 2.07652589710534e95 * cos(theta) ** 36 + 5.59542906405632e94 * cos(theta) ** 34 - 1.26829725451943e94 * cos(theta) ** 32 + 2.41209907301242e93 * cos(theta) ** 30 - 3.83362475981148e92 * cos(theta) ** 28 + 5.06327798465667e91 * cos(theta) ** 26 - 5.51647785790619e90 * cos(theta) ** 24 + 4.91144480252293e89 * cos(theta) ** 22 - 3.53110410638904e88 * cos(theta) ** 20 + 2.01959596692931e87 * cos(theta) ** 18 - 9.01657960140602e85 * cos(theta) ** 16 + 3.06686381000205e84 * cos(theta) ** 14 - 7.69888570234997e82 * cos(theta) ** 12 + 1.36666610100887e81 * cos(theta) ** 10 - 1.61544456384027e79 * cos(theta) ** 8 + 1.16219033369804e77 * cos(theta) ** 6 - 4.38783161476732e74 * cos(theta) ** 4 + 6.50049128113677e71 * cos(theta) ** 2 - 1.5766411062665e68 ) * cos(35 * phi) ) # @torch.jit.script def Yl97_m36(theta, phi): return ( 3.2545031911186e-71 * (1.0 - cos(theta) ** 2) ** 18 * ( 1.71801448277677e96 * cos(theta) ** 61 - 1.62899818833238e97 * cos(theta) ** 59 + 7.29637670219033e97 * cos(theta) ** 57 - 2.0537949235795e98 * cos(theta) ** 55 + 4.07738698063577e98 * cos(theta) ** 53 - 6.07420460466605e98 * cos(theta) ** 51 + 7.05337966388817e98 * cos(theta) ** 49 - 6.54678333443764e98 * cos(theta) ** 47 + 4.94208993332897e98 * cos(theta) ** 45 - 3.07135532579767e98 * cos(theta) ** 43 + 1.5848193481116e98 * cos(theta) ** 41 - 6.82896408539941e97 * cos(theta) ** 39 + 2.46601480861645e97 * cos(theta) ** 37 - 7.47549322957924e96 * cos(theta) ** 35 + 1.90244588177915e96 * cos(theta) ** 33 - 4.05855121446218e95 * cos(theta) ** 31 + 7.23629721903725e94 * cos(theta) ** 29 - 1.07341493274721e94 * cos(theta) ** 27 + 1.31645227601073e93 * cos(theta) ** 25 - 1.32395468589749e92 * cos(theta) ** 23 + 1.08051785655504e91 * cos(theta) ** 21 - 7.06220821277807e89 * cos(theta) ** 19 + 3.63527274047276e88 * cos(theta) ** 17 - 1.44265273622496e87 * cos(theta) ** 15 + 4.29360933400287e85 * cos(theta) ** 13 - 9.23866284281997e83 * cos(theta) ** 11 + 1.36666610100887e82 * cos(theta) ** 9 - 1.29235565107222e80 * cos(theta) ** 7 + 6.97314200218823e77 * cos(theta) ** 5 - 1.75513264590693e75 * cos(theta) ** 3 + 1.30009825622735e72 * cos(theta) ) * cos(36 * phi) ) # @torch.jit.script def Yl97_m37(theta, phi): return ( 3.59970892663526e-73 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 1.04798883449383e98 * cos(theta) ** 60 - 9.61108931116105e98 * cos(theta) ** 58 + 4.15893472024849e99 * cos(theta) ** 56 - 1.12958720796872e100 * cos(theta) ** 54 + 2.16101509973696e100 * cos(theta) ** 52 - 3.09784434837968e100 * cos(theta) ** 50 + 3.4561560353052e100 * cos(theta) ** 48 - 3.07698816718569e100 * cos(theta) ** 46 + 2.22394046999804e100 * cos(theta) ** 44 - 1.320682790093e100 * cos(theta) ** 42 + 6.49775932725754e99 * cos(theta) ** 40 - 2.66329599330577e99 * cos(theta) ** 38 + 9.12425479188088e98 * cos(theta) ** 36 - 2.61642263035273e98 * cos(theta) ** 34 + 6.27807140987119e97 * cos(theta) ** 32 - 1.25815087648328e97 * cos(theta) ** 30 + 2.0985261935208e96 * cos(theta) ** 28 - 2.89822031841748e95 * cos(theta) ** 26 + 3.29113069002683e94 * cos(theta) ** 24 - 3.04509577756422e93 * cos(theta) ** 22 + 2.26908749876559e92 * cos(theta) ** 20 - 1.34181956042783e91 * cos(theta) ** 18 + 6.17996365880369e89 * cos(theta) ** 16 - 2.16397910433745e88 * cos(theta) ** 14 + 5.58169213420373e86 * cos(theta) ** 12 - 1.0162529127102e85 * cos(theta) ** 10 + 1.22999949090798e83 * cos(theta) ** 8 - 9.04648955750553e80 * cos(theta) ** 6 + 3.48657100109411e78 * cos(theta) ** 4 - 5.26539793772079e75 * cos(theta) ** 2 + 1.30009825622735e72 ) * cos(37 * phi) ) # @torch.jit.script def Yl97_m38(theta, phi): return ( 3.99967658515029e-75 * (1.0 - cos(theta) ** 2) ** 19 * ( 6.28793300696299e99 * cos(theta) ** 59 - 5.57443180047341e100 * cos(theta) ** 57 + 2.32900344333915e101 * cos(theta) ** 55 - 6.09977092303112e101 * cos(theta) ** 53 + 1.12372785186322e102 * cos(theta) ** 51 - 1.54892217418984e102 * cos(theta) ** 49 + 1.6589548969465e102 * cos(theta) ** 47 - 1.41541455690542e102 * cos(theta) ** 45 + 9.78533806799136e101 * cos(theta) ** 43 - 5.54686771839058e101 * cos(theta) ** 41 + 2.59910373090302e101 * cos(theta) ** 39 - 1.01205247745619e101 * cos(theta) ** 37 + 3.28473172507712e100 * cos(theta) ** 35 - 8.89583694319929e99 * cos(theta) ** 33 + 2.00898285115878e99 * cos(theta) ** 31 - 3.77445262944983e98 * cos(theta) ** 29 + 5.87587334185825e97 * cos(theta) ** 27 - 7.53537282788544e96 * cos(theta) ** 25 + 7.8987136560644e95 * cos(theta) ** 23 - 6.69921071064128e94 * cos(theta) ** 21 + 4.53817499753119e93 * cos(theta) ** 19 - 2.4152752087701e92 * cos(theta) ** 17 + 9.8879418540859e90 * cos(theta) ** 15 - 3.02957074607242e89 * cos(theta) ** 13 + 6.69803056104448e87 * cos(theta) ** 11 - 1.0162529127102e86 * cos(theta) ** 9 + 9.83999592726387e83 * cos(theta) ** 7 - 5.42789373450332e81 * cos(theta) ** 5 + 1.39462840043765e79 * cos(theta) ** 3 - 1.05307958754416e76 * cos(theta) ) * cos(38 * phi) ) # @torch.jit.script def Yl97_m39(theta, phi): return ( 4.4650817592625e-77 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 3.70988047410817e101 * cos(theta) ** 58 - 3.17742612626984e102 * cos(theta) ** 56 + 1.28095189383653e103 * cos(theta) ** 54 - 3.23287858920649e103 * cos(theta) ** 52 + 5.73101204450242e103 * cos(theta) ** 50 - 7.58971865353023e103 * cos(theta) ** 48 + 7.79708801564854e103 * cos(theta) ** 46 - 6.36936550607438e103 * cos(theta) ** 44 + 4.20769536923629e103 * cos(theta) ** 42 - 2.27421576454014e103 * cos(theta) ** 40 + 1.01365045505218e103 * cos(theta) ** 38 - 3.74459416658791e102 * cos(theta) ** 36 + 1.14965610377699e102 * cos(theta) ** 34 - 2.93562619125577e101 * cos(theta) ** 32 + 6.22784683859222e100 * cos(theta) ** 30 - 1.09459126254045e100 * cos(theta) ** 28 + 1.58648580230173e99 * cos(theta) ** 26 - 1.88384320697136e98 * cos(theta) ** 24 + 1.81670414089481e97 * cos(theta) ** 22 - 1.40683424923467e96 * cos(theta) ** 20 + 8.62253249530926e94 * cos(theta) ** 18 - 4.10596785490917e93 * cos(theta) ** 16 + 1.48319127811289e92 * cos(theta) ** 14 - 3.93844196989415e90 * cos(theta) ** 12 + 7.36783361714892e88 * cos(theta) ** 10 - 9.14627621439177e86 * cos(theta) ** 8 + 6.88799714908471e84 * cos(theta) ** 6 - 2.71394686725166e82 * cos(theta) ** 4 + 4.18388520131294e79 * cos(theta) ** 2 - 1.05307958754416e76 ) * cos(39 * phi) ) # @torch.jit.script def Yl97_m40(theta, phi): return ( 5.00904732891804e-79 * (1.0 - cos(theta) ** 2) ** 20 * ( 2.15173067498274e103 * cos(theta) ** 57 - 1.77935863071111e104 * cos(theta) ** 55 + 6.91714022671728e104 * cos(theta) ** 53 - 1.68109686638738e105 * cos(theta) ** 51 + 2.86550602225121e105 * cos(theta) ** 49 - 3.64306495369451e105 * cos(theta) ** 47 + 3.58666048719833e105 * cos(theta) ** 45 - 2.80252082267273e105 * cos(theta) ** 43 + 1.76723205507924e105 * cos(theta) ** 41 - 9.09686305816056e104 * cos(theta) ** 39 + 3.85187172919827e104 * cos(theta) ** 37 - 1.34805389997165e104 * cos(theta) ** 35 + 3.90883075284177e103 * cos(theta) ** 33 - 9.39400381201845e102 * cos(theta) ** 31 + 1.86835405157767e102 * cos(theta) ** 29 - 3.06485553511326e101 * cos(theta) ** 27 + 4.12486308598449e100 * cos(theta) ** 25 - 4.52122369673126e99 * cos(theta) ** 23 + 3.99674910996859e98 * cos(theta) ** 21 - 2.81366849846934e97 * cos(theta) ** 19 + 1.55205584915567e96 * cos(theta) ** 17 - 6.56954856785467e94 * cos(theta) ** 15 + 2.07646778935804e93 * cos(theta) ** 13 - 4.72613036387298e91 * cos(theta) ** 11 + 7.36783361714892e89 * cos(theta) ** 9 - 7.31702097151341e87 * cos(theta) ** 7 + 4.13279828945082e85 * cos(theta) ** 5 - 1.08557874690066e83 * cos(theta) ** 3 + 8.36777040262587e79 * cos(theta) ) * cos(40 * phi) ) # @torch.jit.script def Yl97_m41(theta, phi): return ( 5.64778511128798e-81 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 1.22648648474016e105 * cos(theta) ** 56 - 9.78647246891112e105 * cos(theta) ** 54 + 3.66608432016016e106 * cos(theta) ** 52 - 8.57359401857561e106 * cos(theta) ** 50 + 1.40409795090309e107 * cos(theta) ** 48 - 1.71224052823642e107 * cos(theta) ** 46 + 1.61399721923925e107 * cos(theta) ** 44 - 1.20508395374927e107 * cos(theta) ** 42 + 7.24565142582488e106 * cos(theta) ** 40 - 3.54777659268262e106 * cos(theta) ** 38 + 1.42519253980336e106 * cos(theta) ** 36 - 4.71818864990077e105 * cos(theta) ** 34 + 1.28991414843778e105 * cos(theta) ** 32 - 2.91214118172572e104 * cos(theta) ** 30 + 5.41822674957523e103 * cos(theta) ** 28 - 8.27510994480581e102 * cos(theta) ** 26 + 1.03121577149612e102 * cos(theta) ** 24 - 1.03988145024819e101 * cos(theta) ** 22 + 8.39317313093403e99 * cos(theta) ** 20 - 5.34597014709174e98 * cos(theta) ** 18 + 2.63849494356463e97 * cos(theta) ** 16 - 9.85432285178201e95 * cos(theta) ** 14 + 2.69940812616545e94 * cos(theta) ** 12 - 5.19874340026028e92 * cos(theta) ** 10 + 6.63105025543403e90 * cos(theta) ** 8 - 5.12191468005939e88 * cos(theta) ** 6 + 2.06639914472541e86 * cos(theta) ** 4 - 3.25673624070199e83 * cos(theta) ** 2 + 8.36777040262587e79 ) * cos(41 * phi) ) # @torch.jit.script def Yl97_m42(theta, phi): return ( 6.40142631115686e-83 * (1.0 - cos(theta) ** 2) ** 21 * ( 6.8683243145449e106 * cos(theta) ** 55 - 5.28469513321201e107 * cos(theta) ** 53 + 1.90636384648328e108 * cos(theta) ** 51 - 4.28679700928781e108 * cos(theta) ** 49 + 6.73967016433484e108 * cos(theta) ** 47 - 7.87630642988753e108 * cos(theta) ** 45 + 7.10158776465269e108 * cos(theta) ** 43 - 5.06135260574694e108 * cos(theta) ** 41 + 2.89826057032995e108 * cos(theta) ** 39 - 1.34815510521939e108 * cos(theta) ** 37 + 5.1306931432921e107 * cos(theta) ** 35 - 1.60418414096626e107 * cos(theta) ** 33 + 4.12772527500091e106 * cos(theta) ** 31 - 8.73642354517716e105 * cos(theta) ** 29 + 1.51710348988106e105 * cos(theta) ** 27 - 2.15152858564951e104 * cos(theta) ** 25 + 2.47491785159069e103 * cos(theta) ** 23 - 2.28773919054602e102 * cos(theta) ** 21 + 1.67863462618681e101 * cos(theta) ** 19 - 9.62274626476513e99 * cos(theta) ** 17 + 4.22159190970341e98 * cos(theta) ** 15 - 1.37960519924948e97 * cos(theta) ** 13 + 3.23928975139854e95 * cos(theta) ** 11 - 5.19874340026028e93 * cos(theta) ** 9 + 5.30484020434722e91 * cos(theta) ** 7 - 3.07314880803563e89 * cos(theta) ** 5 + 8.26559657890165e86 * cos(theta) ** 3 - 6.51347248140398e83 * cos(theta) ) * cos(42 * phi) ) # @torch.jit.script def Yl97_m43(theta, phi): return ( 7.2951023258333e-85 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 3.77757837299969e108 * cos(theta) ** 54 - 2.80088842060236e109 * cos(theta) ** 52 + 9.72245561706475e109 * cos(theta) ** 50 - 2.10053053455103e110 * cos(theta) ** 48 + 3.16764497723737e110 * cos(theta) ** 46 - 3.54433789344939e110 * cos(theta) ** 44 + 3.05368273880066e110 * cos(theta) ** 42 - 2.07515456835625e110 * cos(theta) ** 40 + 1.13032162242868e110 * cos(theta) ** 38 - 4.98817388931176e109 * cos(theta) ** 36 + 1.79574260015223e109 * cos(theta) ** 34 - 5.29380766518867e108 * cos(theta) ** 32 + 1.27959483525028e108 * cos(theta) ** 30 - 2.53356282810138e107 * cos(theta) ** 28 + 4.09617942267887e106 * cos(theta) ** 26 - 5.37882146412377e105 * cos(theta) ** 24 + 5.69231105865859e104 * cos(theta) ** 22 - 4.80425230014664e103 * cos(theta) ** 20 + 3.18940578975493e102 * cos(theta) ** 18 - 1.63586686501007e101 * cos(theta) ** 16 + 6.33238786455512e99 * cos(theta) ** 14 - 1.79348675902433e98 * cos(theta) ** 12 + 3.5632187265384e96 * cos(theta) ** 10 - 4.67886906023425e94 * cos(theta) ** 8 + 3.71338814304306e92 * cos(theta) ** 6 - 1.53657440401782e90 * cos(theta) ** 4 + 2.47967897367049e87 * cos(theta) ** 2 - 6.51347248140398e83 ) * cos(43 * phi) ) # @torch.jit.script def Yl97_m44(theta, phi): return ( 8.36035948055156e-87 * (1.0 - cos(theta) ** 2) ** 22 * ( 2.03989232141983e110 * cos(theta) ** 53 - 1.45646197871323e111 * cos(theta) ** 51 + 4.86122780853237e111 * cos(theta) ** 49 - 1.00825465658449e112 * cos(theta) ** 47 + 1.45711668952919e112 * cos(theta) ** 45 - 1.55950867311773e112 * cos(theta) ** 43 + 1.28254675029628e112 * cos(theta) ** 41 - 8.30061827342499e111 * cos(theta) ** 39 + 4.29522216522899e111 * cos(theta) ** 37 - 1.79574260015223e111 * cos(theta) ** 35 + 6.1055248405176e110 * cos(theta) ** 33 - 1.69401845286037e110 * cos(theta) ** 31 + 3.83878450575085e109 * cos(theta) ** 29 - 7.09397591868386e108 * cos(theta) ** 27 + 1.06500664989651e108 * cos(theta) ** 25 - 1.29091715138971e107 * cos(theta) ** 23 + 1.25230843290489e106 * cos(theta) ** 21 - 9.60850460029328e104 * cos(theta) ** 19 + 5.74093042155888e103 * cos(theta) ** 17 - 2.61738698401612e102 * cos(theta) ** 15 + 8.86534301037717e100 * cos(theta) ** 13 - 2.15218411082919e99 * cos(theta) ** 11 + 3.5632187265384e97 * cos(theta) ** 9 - 3.7430952481874e95 * cos(theta) ** 7 + 2.22803288582583e93 * cos(theta) ** 5 - 6.14629761607127e90 * cos(theta) ** 3 + 4.95935794734099e87 * cos(theta) ) * cos(44 * phi) ) # @torch.jit.script def Yl97_m45(theta, phi): return ( 9.63702187389815e-89 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 1.08114293035251e112 * cos(theta) ** 52 - 7.42795609143747e112 * cos(theta) ** 50 + 2.38200162618086e113 * cos(theta) ** 48 - 4.73879688594711e113 * cos(theta) ** 46 + 6.55702510288137e113 * cos(theta) ** 44 - 6.70588729440624e113 * cos(theta) ** 42 + 5.25844167621473e113 * cos(theta) ** 40 - 3.23724112663575e113 * cos(theta) ** 38 + 1.58923220113473e113 * cos(theta) ** 36 - 6.28509910053282e112 * cos(theta) ** 34 + 2.01482319737081e112 * cos(theta) ** 32 - 5.25145720386716e111 * cos(theta) ** 30 + 1.11324750666775e111 * cos(theta) ** 28 - 1.91537349804464e110 * cos(theta) ** 26 + 2.66251662474127e109 * cos(theta) ** 24 - 2.96910944819632e108 * cos(theta) ** 22 + 2.62984770910027e107 * cos(theta) ** 20 - 1.82561587405572e106 * cos(theta) ** 18 + 9.75958171665009e104 * cos(theta) ** 16 - 3.92608047602417e103 * cos(theta) ** 14 + 1.15249459134903e102 * cos(theta) ** 12 - 2.36740252191211e100 * cos(theta) ** 10 + 3.20689685388456e98 * cos(theta) ** 8 - 2.62016667373118e96 * cos(theta) ** 6 + 1.11401644291292e94 * cos(theta) ** 4 - 1.84388928482138e91 * cos(theta) ** 2 + 4.95935794734099e87 ) * cos(45 * phi) ) # @torch.jit.script def Yl97_m46(theta, phi): return ( 1.11756593189398e-90 * (1.0 - cos(theta) ** 2) ** 23 * ( 5.62194323783306e113 * cos(theta) ** 51 - 3.71397804571873e114 * cos(theta) ** 49 + 1.14336078056681e115 * cos(theta) ** 47 - 2.17984656753567e115 * cos(theta) ** 45 + 2.8850910452678e115 * cos(theta) ** 43 - 2.81647266365062e115 * cos(theta) ** 41 + 2.10337667048589e115 * cos(theta) ** 39 - 1.23015162812158e115 * cos(theta) ** 37 + 5.72123592408502e114 * cos(theta) ** 35 - 2.13693369418116e114 * cos(theta) ** 33 + 6.44743423158658e113 * cos(theta) ** 31 - 1.57543716116015e113 * cos(theta) ** 29 + 3.11709301866969e112 * cos(theta) ** 27 - 4.97997109491607e111 * cos(theta) ** 25 + 6.39003989937904e110 * cos(theta) ** 23 - 6.53204078603191e109 * cos(theta) ** 21 + 5.25969541820054e108 * cos(theta) ** 19 - 3.2861085733003e107 * cos(theta) ** 17 + 1.56153307466401e106 * cos(theta) ** 15 - 5.49651266643384e104 * cos(theta) ** 13 + 1.38299350961884e103 * cos(theta) ** 11 - 2.36740252191211e101 * cos(theta) ** 9 + 2.56551748310764e99 * cos(theta) ** 7 - 1.57210000423871e97 * cos(theta) ** 5 + 4.45606577165167e94 * cos(theta) ** 3 - 3.68777856964276e91 * cos(theta) ) * cos(46 * phi) ) # @torch.jit.script def Yl97_m47(theta, phi): return ( 1.30408776418279e-92 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 2.86719105129486e115 * cos(theta) ** 50 - 1.81984924240218e116 * cos(theta) ** 48 + 5.37379566866403e116 * cos(theta) ** 46 - 9.80930955391052e116 * cos(theta) ** 44 + 1.24058914946515e117 * cos(theta) ** 42 - 1.15475379209675e117 * cos(theta) ** 40 + 8.20316901489498e116 * cos(theta) ** 38 - 4.55156102404986e116 * cos(theta) ** 36 + 2.00243257342976e116 * cos(theta) ** 34 - 7.05188119079782e115 * cos(theta) ** 32 + 1.99870461179184e115 * cos(theta) ** 30 - 4.56876776736443e114 * cos(theta) ** 28 + 8.41615115040815e113 * cos(theta) ** 26 - 1.24499277372902e113 * cos(theta) ** 24 + 1.46970917685718e112 * cos(theta) ** 22 - 1.3717285650667e111 * cos(theta) ** 20 + 9.99342129458103e109 * cos(theta) ** 18 - 5.58638457461051e108 * cos(theta) ** 16 + 2.34229961199602e107 * cos(theta) ** 14 - 7.145466466364e105 * cos(theta) ** 12 + 1.52129286058072e104 * cos(theta) ** 10 - 2.1306622697209e102 * cos(theta) ** 8 + 1.79586223817535e100 * cos(theta) ** 6 - 7.86050002119354e97 * cos(theta) ** 4 + 1.3368197314955e95 * cos(theta) ** 2 - 3.68777856964276e91 ) * cos(47 * phi) ) # @torch.jit.script def Yl97_m48(theta, phi): return ( 1.53157340629971e-94 * (1.0 - cos(theta) ** 2) ** 24 * ( 1.43359552564743e117 * cos(theta) ** 49 - 8.73527636353046e117 * cos(theta) ** 47 + 2.47194600758545e118 * cos(theta) ** 45 - 4.31609620372063e118 * cos(theta) ** 43 + 5.21047442775365e118 * cos(theta) ** 41 - 4.61901516838702e118 * cos(theta) ** 39 + 3.11720422566009e118 * cos(theta) ** 37 - 1.63856196865795e118 * cos(theta) ** 35 + 6.80827074966117e117 * cos(theta) ** 33 - 2.2566019810553e117 * cos(theta) ** 31 + 5.99611383537552e116 * cos(theta) ** 29 - 1.27925497486204e116 * cos(theta) ** 27 + 2.18819929910612e115 * cos(theta) ** 25 - 2.98798265694964e114 * cos(theta) ** 23 + 3.2333601890858e113 * cos(theta) ** 21 - 2.7434571301334e112 * cos(theta) ** 19 + 1.79881583302459e111 * cos(theta) ** 17 - 8.93821531937682e109 * cos(theta) ** 15 + 3.27921945679443e108 * cos(theta) ** 13 - 8.5745597596368e106 * cos(theta) ** 11 + 1.52129286058072e105 * cos(theta) ** 9 - 1.70452981577672e103 * cos(theta) ** 7 + 1.07751734290521e101 * cos(theta) ** 5 - 3.14420000847742e98 * cos(theta) ** 3 + 2.673639462991e95 * cos(theta) ) * cos(48 * phi) ) # @torch.jit.script def Yl97_m49(theta, phi): return ( 1.81077024268632e-96 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 7.02461807567241e118 * cos(theta) ** 48 - 4.10557989085932e119 * cos(theta) ** 46 + 1.11237570341345e120 * cos(theta) ** 44 - 1.85592136759987e120 * cos(theta) ** 42 + 2.136294515379e120 * cos(theta) ** 40 - 1.80141591567094e120 * cos(theta) ** 38 + 1.15336556349423e120 * cos(theta) ** 36 - 5.73496689030282e119 * cos(theta) ** 34 + 2.24672934738819e119 * cos(theta) ** 32 - 6.99546614127144e118 * cos(theta) ** 30 + 1.7388730122589e118 * cos(theta) ** 28 - 3.45398843212751e117 * cos(theta) ** 26 + 5.4704982477653e116 * cos(theta) ** 24 - 6.87236011098417e115 * cos(theta) ** 22 + 6.79005639708017e114 * cos(theta) ** 20 - 5.21256854725346e113 * cos(theta) ** 18 + 3.0579869161418e112 * cos(theta) ** 16 - 1.34073229790652e111 * cos(theta) ** 14 + 4.26298529383276e109 * cos(theta) ** 12 - 9.43201573560048e107 * cos(theta) ** 10 + 1.36916357452265e106 * cos(theta) ** 8 - 1.1931708710437e104 * cos(theta) ** 6 + 5.38758671452605e101 * cos(theta) ** 4 - 9.43260002543225e98 * cos(theta) ** 2 + 2.673639462991e95 ) * cos(49 * phi) ) # @torch.jit.script def Yl97_m50(theta, phi): return ( 2.15567886034086e-98 * (1.0 - cos(theta) ** 2) ** 25 * ( 3.37181667632276e120 * cos(theta) ** 47 - 1.88856674979529e121 * cos(theta) ** 45 + 4.8944530950192e121 * cos(theta) ** 43 - 7.79486974391946e121 * cos(theta) ** 41 + 8.54517806151599e121 * cos(theta) ** 39 - 6.84538047954956e121 * cos(theta) ** 37 + 4.15211602857924e121 * cos(theta) ** 35 - 1.94988874270296e121 * cos(theta) ** 33 + 7.1895339116422e120 * cos(theta) ** 31 - 2.09863984238143e120 * cos(theta) ** 29 + 4.86884443432492e119 * cos(theta) ** 27 - 8.98036992353152e118 * cos(theta) ** 25 + 1.31291957946367e118 * cos(theta) ** 23 - 1.51191922441652e117 * cos(theta) ** 21 + 1.35801127941603e116 * cos(theta) ** 19 - 9.38262338505624e114 * cos(theta) ** 17 + 4.89277906582687e113 * cos(theta) ** 15 - 1.87702521706913e112 * cos(theta) ** 13 + 5.11558235259931e110 * cos(theta) ** 11 - 9.43201573560048e108 * cos(theta) ** 9 + 1.09533085961812e107 * cos(theta) ** 7 - 7.15902522626222e104 * cos(theta) ** 5 + 2.15503468581042e102 * cos(theta) ** 3 - 1.88652000508645e99 * cos(theta) ) * cos(50 * phi) ) # @torch.jit.script def Yl97_m51(theta, phi): return ( 2.58466508489848e-100 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 1.5847538378717e122 * cos(theta) ** 46 - 8.49855037407878e122 * cos(theta) ** 44 + 2.10461483085825e123 * cos(theta) ** 42 - 3.19589659500698e123 * cos(theta) ** 40 + 3.33261944399123e123 * cos(theta) ** 38 - 2.53279077743334e123 * cos(theta) ** 36 + 1.45324061000273e123 * cos(theta) ** 34 - 6.43463285091977e122 * cos(theta) ** 32 + 2.22875551260908e122 * cos(theta) ** 30 - 6.08605554290615e121 * cos(theta) ** 28 + 1.31458799726773e121 * cos(theta) ** 26 - 2.24509248088288e120 * cos(theta) ** 24 + 3.01971503276645e119 * cos(theta) ** 22 - 3.17503037127469e118 * cos(theta) ** 20 + 2.58022143089047e117 * cos(theta) ** 18 - 1.59504597545956e116 * cos(theta) ** 16 + 7.33916859874031e114 * cos(theta) ** 14 - 2.44013278218987e113 * cos(theta) ** 12 + 5.62714058785924e111 * cos(theta) ** 10 - 8.48881416204043e109 * cos(theta) ** 8 + 7.66731601732684e107 * cos(theta) ** 6 - 3.57951261313111e105 * cos(theta) ** 4 + 6.46510405743126e102 * cos(theta) ** 2 - 1.88652000508645e99 ) * cos(51 * phi) ) # @torch.jit.script def Yl97_m52(theta, phi): return ( 3.12199516488902e-102 * (1.0 - cos(theta) ** 2) ** 26 * ( 7.2898676542098e123 * cos(theta) ** 45 - 3.73936216459467e124 * cos(theta) ** 43 + 8.83938228960467e124 * cos(theta) ** 41 - 1.27835863800279e125 * cos(theta) ** 39 + 1.26639538871667e125 * cos(theta) ** 37 - 9.11804679876002e124 * cos(theta) ** 35 + 4.9410180740093e124 * cos(theta) ** 33 - 2.05908251229432e124 * cos(theta) ** 31 + 6.68626653782724e123 * cos(theta) ** 29 - 1.70409555201372e123 * cos(theta) ** 27 + 3.4179287928961e122 * cos(theta) ** 25 - 5.38822195411891e121 * cos(theta) ** 23 + 6.64337307208618e120 * cos(theta) ** 21 - 6.35006074254938e119 * cos(theta) ** 19 + 4.64439857560284e118 * cos(theta) ** 17 - 2.5520735607353e117 * cos(theta) ** 15 + 1.02748360382364e116 * cos(theta) ** 13 - 2.92815933862785e114 * cos(theta) ** 11 + 5.62714058785924e112 * cos(theta) ** 9 - 6.79105132963234e110 * cos(theta) ** 7 + 4.6003896103961e108 * cos(theta) ** 5 - 1.43180504525244e106 * cos(theta) ** 3 + 1.29302081148625e103 * cos(theta) ) * cos(52 * phi) ) # @torch.jit.script def Yl97_m53(theta, phi): return ( 3.79997150273728e-104 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 3.28044044439441e125 * cos(theta) ** 44 - 1.60792573077571e126 * cos(theta) ** 42 + 3.62414673873791e126 * cos(theta) ** 40 - 4.98559868821089e126 * cos(theta) ** 38 + 4.68566293825168e126 * cos(theta) ** 36 - 3.19131637956601e126 * cos(theta) ** 34 + 1.63053596442307e126 * cos(theta) ** 32 - 6.38315578811241e125 * cos(theta) ** 30 + 1.9390172959699e125 * cos(theta) ** 28 - 4.60105799043705e124 * cos(theta) ** 26 + 8.54482198224024e123 * cos(theta) ** 24 - 1.23929104944735e123 * cos(theta) ** 22 + 1.3951083451381e122 * cos(theta) ** 20 - 1.20651154108438e121 * cos(theta) ** 18 + 7.89547757852482e119 * cos(theta) ** 16 - 3.82811034110294e118 * cos(theta) ** 14 + 1.33572868497074e117 * cos(theta) ** 12 - 3.22097527249063e115 * cos(theta) ** 10 + 5.06442652907332e113 * cos(theta) ** 8 - 4.75373593074264e111 * cos(theta) ** 6 + 2.30019480519805e109 * cos(theta) ** 4 - 4.29541513575733e106 * cos(theta) ** 2 + 1.29302081148625e103 ) * cos(53 * phi) ) # @torch.jit.script def Yl97_m54(theta, phi): return ( 4.66192763435192e-106 * (1.0 - cos(theta) ** 2) ** 27 * ( 1.44339379553354e127 * cos(theta) ** 43 - 6.75328806925797e127 * cos(theta) ** 41 + 1.44965869549517e128 * cos(theta) ** 39 - 1.89452750152014e128 * cos(theta) ** 37 + 1.6868386577706e128 * cos(theta) ** 35 - 1.08504756905244e128 * cos(theta) ** 33 + 5.21771508615382e127 * cos(theta) ** 31 - 1.91494673643372e127 * cos(theta) ** 29 + 5.42924842871572e126 * cos(theta) ** 27 - 1.19627507751363e126 * cos(theta) ** 25 + 2.05075727573766e125 * cos(theta) ** 23 - 2.72644030878417e124 * cos(theta) ** 21 + 2.7902166902762e123 * cos(theta) ** 19 - 2.17172077395189e122 * cos(theta) ** 17 + 1.26327641256397e121 * cos(theta) ** 15 - 5.35935447754412e119 * cos(theta) ** 13 + 1.60287442196488e118 * cos(theta) ** 11 - 3.22097527249063e116 * cos(theta) ** 9 + 4.05154122325866e114 * cos(theta) ** 7 - 2.85224155844558e112 * cos(theta) ** 5 + 9.20077922079221e109 * cos(theta) ** 3 - 8.59083027151467e106 * cos(theta) ) * cos(54 * phi) ) # @torch.jit.script def Yl97_m55(theta, phi): return ( 5.76646295081998e-108 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 6.20659332079423e128 * cos(theta) ** 42 - 2.76884810839577e129 * cos(theta) ** 40 + 5.65366891243115e129 * cos(theta) ** 38 - 7.00975175562451e129 * cos(theta) ** 36 + 5.90393530219711e129 * cos(theta) ** 34 - 3.58065697787306e129 * cos(theta) ** 32 + 1.61749167670768e129 * cos(theta) ** 30 - 5.55334553565779e128 * cos(theta) ** 28 + 1.46589707575324e128 * cos(theta) ** 26 - 2.99068769378408e127 * cos(theta) ** 24 + 4.71674173419661e126 * cos(theta) ** 22 - 5.72552464844675e125 * cos(theta) ** 20 + 5.30141171152477e124 * cos(theta) ** 18 - 3.69192531571821e123 * cos(theta) ** 16 + 1.89491461884596e122 * cos(theta) ** 14 - 6.96716082080736e120 * cos(theta) ** 12 + 1.76316186416137e119 * cos(theta) ** 10 - 2.89887774524157e117 * cos(theta) ** 8 + 2.83607885628106e115 * cos(theta) ** 6 - 1.42612077922279e113 * cos(theta) ** 4 + 2.76023376623766e110 * cos(theta) ** 2 - 8.59083027151467e106 ) * cos(55 * phi) ) # @torch.jit.script def Yl97_m56(theta, phi): return ( 7.19348173874411e-110 * (1.0 - cos(theta) ** 2) ** 28 * ( 2.60676919473357e130 * cos(theta) ** 41 - 1.10753924335831e131 * cos(theta) ** 39 + 2.14839418672384e131 * cos(theta) ** 37 - 2.52351063202482e131 * cos(theta) ** 35 + 2.00733800274702e131 * cos(theta) ** 33 - 1.14581023291938e131 * cos(theta) ** 31 + 4.85247503012305e130 * cos(theta) ** 29 - 1.55493674998418e130 * cos(theta) ** 27 + 3.81133239695844e129 * cos(theta) ** 25 - 7.1776504650818e128 * cos(theta) ** 23 + 1.03768318152325e128 * cos(theta) ** 21 - 1.14510492968935e127 * cos(theta) ** 19 + 9.54254108074459e125 * cos(theta) ** 17 - 5.90708050514913e124 * cos(theta) ** 15 + 2.65288046638434e123 * cos(theta) ** 13 - 8.36059298496883e121 * cos(theta) ** 11 + 1.76316186416137e120 * cos(theta) ** 9 - 2.31910219619325e118 * cos(theta) ** 7 + 1.70164731376864e116 * cos(theta) ** 5 - 5.70448311689117e113 * cos(theta) ** 3 + 5.52046753247532e110 * cos(theta) ) * cos(56 * phi) ) # @torch.jit.script def Yl97_m57(theta, phi): return ( 9.05288193924102e-112 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 1.06877536984077e132 * cos(theta) ** 40 - 4.31940304909739e132 * cos(theta) ** 38 + 7.94905849087819e132 * cos(theta) ** 36 - 8.83228721208688e132 * cos(theta) ** 34 + 6.62421540906516e132 * cos(theta) ** 32 - 3.55201172205007e132 * cos(theta) ** 30 + 1.40721775873569e132 * cos(theta) ** 28 - 4.19832922495729e131 * cos(theta) ** 26 + 9.52833099239609e130 * cos(theta) ** 24 - 1.65085960696881e130 * cos(theta) ** 22 + 2.17913468119883e129 * cos(theta) ** 20 - 2.17569936640977e128 * cos(theta) ** 18 + 1.62223198372658e127 * cos(theta) ** 16 - 8.8606207577237e125 * cos(theta) ** 14 + 3.44874460629964e124 * cos(theta) ** 12 - 9.19665228346571e122 * cos(theta) ** 10 + 1.58684567774523e121 * cos(theta) ** 8 - 1.62337153733528e119 * cos(theta) ** 6 + 8.50823656884318e116 * cos(theta) ** 4 - 1.71134493506735e114 * cos(theta) ** 2 + 5.52046753247532e110 ) * cos(57 * phi) ) # @torch.jit.script def Yl97_m58(theta, phi): return ( 1.14971715600134e-113 * (1.0 - cos(theta) ** 2) ** 29 * ( 4.27510147936306e133 * cos(theta) ** 39 - 1.64137315865701e134 * cos(theta) ** 37 + 2.86166105671615e134 * cos(theta) ** 35 - 3.00297765210954e134 * cos(theta) ** 33 + 2.11974893090085e134 * cos(theta) ** 31 - 1.06560351661502e134 * cos(theta) ** 29 + 3.94020972445992e133 * cos(theta) ** 27 - 1.0915655984889e133 * cos(theta) ** 25 + 2.28679943817506e132 * cos(theta) ** 23 - 3.63189113533139e131 * cos(theta) ** 21 + 4.35826936239767e130 * cos(theta) ** 19 - 3.91625885953758e129 * cos(theta) ** 17 + 2.59557117396253e128 * cos(theta) ** 15 - 1.24048690608132e127 * cos(theta) ** 13 + 4.13849352755957e125 * cos(theta) ** 11 - 9.19665228346571e123 * cos(theta) ** 9 + 1.26947654219619e122 * cos(theta) ** 7 - 9.74022922401167e119 * cos(theta) ** 5 + 3.40329462753727e117 * cos(theta) ** 3 - 3.4226898701347e114 * cos(theta) ) * cos(58 * phi) ) # @torch.jit.script def Yl97_m59(theta, phi): return ( 1.47399635384787e-115 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 1.66728957695159e135 * cos(theta) ** 38 - 6.07308068703094e135 * cos(theta) ** 36 + 1.00158136985065e136 * cos(theta) ** 34 - 9.90982625196148e135 * cos(theta) ** 32 + 6.57122168579264e135 * cos(theta) ** 30 - 3.09025019818356e135 * cos(theta) ** 28 + 1.06385662560418e135 * cos(theta) ** 26 - 2.72891399622224e134 * cos(theta) ** 24 + 5.25963870780264e133 * cos(theta) ** 22 - 7.62697138419592e132 * cos(theta) ** 20 + 8.28071178855557e131 * cos(theta) ** 18 - 6.65764006121389e130 * cos(theta) ** 16 + 3.89335676094379e129 * cos(theta) ** 14 - 1.61263297790571e128 * cos(theta) ** 12 + 4.55234288031553e126 * cos(theta) ** 10 - 8.27698705511914e124 * cos(theta) ** 8 + 8.88633579537331e122 * cos(theta) ** 6 - 4.87011461200583e120 * cos(theta) ** 4 + 1.02098838826118e118 * cos(theta) ** 2 - 3.4226898701347e114 ) * cos(59 * phi) ) # @torch.jit.script def Yl97_m60(theta, phi): return ( 1.90833574317446e-117 * (1.0 - cos(theta) ** 2) ** 30 * ( 6.33570039241606e136 * cos(theta) ** 37 - 2.18630904733114e137 * cos(theta) ** 35 + 3.40537665749222e137 * cos(theta) ** 33 - 3.17114440062767e137 * cos(theta) ** 31 + 1.97136650573779e137 * cos(theta) ** 29 - 8.65270055491398e136 * cos(theta) ** 27 + 2.76602722657086e136 * cos(theta) ** 25 - 6.54939359093338e135 * cos(theta) ** 23 + 1.15712051571658e135 * cos(theta) ** 21 - 1.52539427683918e134 * cos(theta) ** 19 + 1.49052812194e133 * cos(theta) ** 17 - 1.06522240979422e132 * cos(theta) ** 15 + 5.45069946532131e130 * cos(theta) ** 13 - 1.93515957348686e129 * cos(theta) ** 11 + 4.55234288031553e127 * cos(theta) ** 9 - 6.62158964409531e125 * cos(theta) ** 7 + 5.33180147722399e123 * cos(theta) ** 5 - 1.94804584480233e121 * cos(theta) ** 3 + 2.04197677652236e118 * cos(theta) ) * cos(60 * phi) ) # @torch.jit.script def Yl97_m61(theta, phi): return ( 2.49588964483365e-119 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 2.34420914519394e138 * cos(theta) ** 36 - 7.65208166565898e138 * cos(theta) ** 34 + 1.12377429697243e139 * cos(theta) ** 32 - 9.83054764194578e138 * cos(theta) ** 30 + 5.71696286663959e138 * cos(theta) ** 28 - 2.33622914982677e138 * cos(theta) ** 26 + 6.91506806642716e137 * cos(theta) ** 24 - 1.50636052591468e137 * cos(theta) ** 22 + 2.42995308300482e136 * cos(theta) ** 20 - 2.89824912599445e135 * cos(theta) ** 18 + 2.533897807298e134 * cos(theta) ** 16 - 1.59783361469133e133 * cos(theta) ** 14 + 7.0859093049177e131 * cos(theta) ** 12 - 2.12867553083554e130 * cos(theta) ** 10 + 4.09710859228398e128 * cos(theta) ** 8 - 4.63511275086672e126 * cos(theta) ** 6 + 2.66590073861199e124 * cos(theta) ** 4 - 5.844137534407e121 * cos(theta) ** 2 + 2.04197677652236e118 ) * cos(61 * phi) ) # @torch.jit.script def Yl97_m62(theta, phi): return ( 3.2989487343547e-121 * (1.0 - cos(theta) ** 2) ** 31 * ( 8.43915292269819e139 * cos(theta) ** 35 - 2.60170776632405e140 * cos(theta) ** 33 + 3.59607775031178e140 * cos(theta) ** 31 - 2.94916429258374e140 * cos(theta) ** 29 + 1.60074960265909e140 * cos(theta) ** 27 - 6.07419578954961e139 * cos(theta) ** 25 + 1.65961633594252e139 * cos(theta) ** 23 - 3.31399315701229e138 * cos(theta) ** 21 + 4.85990616600964e137 * cos(theta) ** 19 - 5.21684842679001e136 * cos(theta) ** 17 + 4.05423649167681e135 * cos(theta) ** 15 - 2.23696706056787e134 * cos(theta) ** 13 + 8.50309116590124e132 * cos(theta) ** 11 - 2.12867553083554e131 * cos(theta) ** 9 + 3.27768687382718e129 * cos(theta) ** 7 - 2.78106765052003e127 * cos(theta) ** 5 + 1.0663602954448e125 * cos(theta) ** 3 - 1.1688275068814e122 * cos(theta) ) * cos(62 * phi) ) # @torch.jit.script def Yl97_m63(theta, phi): return ( 4.40840567874529e-123 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 2.95370352294437e141 * cos(theta) ** 34 - 8.58563562886938e141 * cos(theta) ** 32 + 1.11478410259665e142 * cos(theta) ** 30 - 8.55257644849283e141 * cos(theta) ** 28 + 4.32202392717953e141 * cos(theta) ** 26 - 1.5185489473874e141 * cos(theta) ** 24 + 3.81711757266779e140 * cos(theta) ** 22 - 6.95938562972581e139 * cos(theta) ** 20 + 9.23382171541832e138 * cos(theta) ** 18 - 8.86864232554302e137 * cos(theta) ** 16 + 6.08135473751521e136 * cos(theta) ** 14 - 2.90805717873823e135 * cos(theta) ** 12 + 9.35340028249137e133 * cos(theta) ** 10 - 1.91580797775199e132 * cos(theta) ** 8 + 2.29438081167903e130 * cos(theta) ** 6 - 1.39053382526002e128 * cos(theta) ** 4 + 3.19908088633439e125 * cos(theta) ** 2 - 1.1688275068814e122 ) * cos(63 * phi) ) # @torch.jit.script def Yl97_m64(theta, phi): return ( 5.95839316289692e-125 * (1.0 - cos(theta) ** 2) ** 32 * ( 1.00425919780108e143 * cos(theta) ** 33 - 2.7474034012382e143 * cos(theta) ** 31 + 3.34435230778996e143 * cos(theta) ** 29 - 2.39472140557799e143 * cos(theta) ** 27 + 1.12372622106668e143 * cos(theta) ** 25 - 3.64451747372977e142 * cos(theta) ** 23 + 8.39765865986914e141 * cos(theta) ** 21 - 1.39187712594516e141 * cos(theta) ** 19 + 1.6620879087753e140 * cos(theta) ** 17 - 1.41898277208688e139 * cos(theta) ** 15 + 8.5138966325213e137 * cos(theta) ** 13 - 3.48966861448587e136 * cos(theta) ** 11 + 9.35340028249137e134 * cos(theta) ** 9 - 1.53264638220159e133 * cos(theta) ** 7 + 1.37662848700742e131 * cos(theta) ** 5 - 5.56213530104006e128 * cos(theta) ** 3 + 6.39816177266879e125 * cos(theta) ) * cos(64 * phi) ) # @torch.jit.script def Yl97_m65(theta, phi): return ( 8.14919442513382e-127 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 3.31405535274358e144 * cos(theta) ** 32 - 8.51695054383842e144 * cos(theta) ** 30 + 9.69862169259087e144 * cos(theta) ** 28 - 6.46574779506058e144 * cos(theta) ** 26 + 2.8093155526667e144 * cos(theta) ** 24 - 8.38239018957847e143 * cos(theta) ** 22 + 1.76350831857252e143 * cos(theta) ** 20 - 2.64456653929581e142 * cos(theta) ** 18 + 2.82554944491801e141 * cos(theta) ** 16 - 2.12847415813032e140 * cos(theta) ** 14 + 1.10680656222777e139 * cos(theta) ** 12 - 3.83863547593446e137 * cos(theta) ** 10 + 8.41806025424223e135 * cos(theta) ** 8 - 1.07285246754111e134 * cos(theta) ** 6 + 6.88314243503708e131 * cos(theta) ** 4 - 1.66864059031202e129 * cos(theta) ** 2 + 6.39816177266879e125 ) * cos(65 * phi) ) # @torch.jit.script def Yl97_m66(theta, phi): return ( 1.12835533866591e-128 * (1.0 - cos(theta) ** 2) ** 33 * ( 1.06049771287795e146 * cos(theta) ** 31 - 2.55508516315153e146 * cos(theta) ** 29 + 2.71561407392544e146 * cos(theta) ** 27 - 1.68109442671575e146 * cos(theta) ** 25 + 6.74235732640007e145 * cos(theta) ** 23 - 1.84412584170726e145 * cos(theta) ** 21 + 3.52701663714504e144 * cos(theta) ** 19 - 4.76021977073245e143 * cos(theta) ** 17 + 4.52087911186881e142 * cos(theta) ** 15 - 2.97986382138245e141 * cos(theta) ** 13 + 1.32816787467332e140 * cos(theta) ** 11 - 3.83863547593446e138 * cos(theta) ** 9 + 6.73444820339378e136 * cos(theta) ** 7 - 6.43711480524668e134 * cos(theta) ** 5 + 2.75325697401483e132 * cos(theta) ** 3 - 3.33728118062404e129 * cos(theta) ) * cos(66 * phi) ) # @torch.jit.script def Yl97_m67(theta, phi): return ( 1.58249780794403e-130 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 3.28754290992163e147 * cos(theta) ** 30 - 7.40974697313943e147 * cos(theta) ** 28 + 7.3321579995987e147 * cos(theta) ** 26 - 4.20273606678938e147 * cos(theta) ** 24 + 1.55074218507202e147 * cos(theta) ** 22 - 3.87266426758525e146 * cos(theta) ** 20 + 6.70133161057557e145 * cos(theta) ** 18 - 8.09237361024517e144 * cos(theta) ** 16 + 6.78131866780321e143 * cos(theta) ** 14 - 3.87382296779719e142 * cos(theta) ** 12 + 1.46098466214065e141 * cos(theta) ** 10 - 3.45477192834101e139 * cos(theta) ** 8 + 4.71411374237565e137 * cos(theta) ** 6 - 3.21855740262334e135 * cos(theta) ** 4 + 8.25977092204449e132 * cos(theta) ** 2 - 3.33728118062404e129 ) * cos(67 * phi) ) # @torch.jit.script def Yl97_m68(theta, phi): return ( 2.249264441899e-132 * (1.0 - cos(theta) ** 2) ** 34 * ( 9.86262872976489e148 * cos(theta) ** 29 - 2.07472915247904e149 * cos(theta) ** 27 + 1.90636107989566e149 * cos(theta) ** 25 - 1.00865665602945e149 * cos(theta) ** 23 + 3.41163280715844e148 * cos(theta) ** 21 - 7.7453285351705e147 * cos(theta) ** 19 + 1.2062396899036e147 * cos(theta) ** 17 - 1.29477977763923e146 * cos(theta) ** 15 + 9.4938461349245e144 * cos(theta) ** 13 - 4.64858756135663e143 * cos(theta) ** 11 + 1.46098466214065e142 * cos(theta) ** 9 - 2.76381754267281e140 * cos(theta) ** 7 + 2.82846824542539e138 * cos(theta) ** 5 - 1.28742296104934e136 * cos(theta) ** 3 + 1.6519541844089e133 * cos(theta) ) * cos(68 * phi) ) # @torch.jit.script def Yl97_m69(theta, phi): return ( 3.24180938106035e-134 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 2.86016233163182e150 * cos(theta) ** 28 - 5.60176871169341e150 * cos(theta) ** 26 + 4.76590269973915e150 * cos(theta) ** 24 - 2.31991030886774e150 * cos(theta) ** 22 + 7.16442889503272e149 * cos(theta) ** 20 - 1.4716124216824e149 * cos(theta) ** 18 + 2.05060747283613e148 * cos(theta) ** 16 - 1.94216966645884e147 * cos(theta) ** 14 + 1.23419999754018e146 * cos(theta) ** 12 - 5.11344631749229e144 * cos(theta) ** 10 + 1.31488619592659e143 * cos(theta) ** 8 - 1.93467227987097e141 * cos(theta) ** 6 + 1.41423412271269e139 * cos(theta) ** 4 - 3.86226888314801e136 * cos(theta) ** 2 + 1.6519541844089e133 ) * cos(69 * phi) ) # @torch.jit.script def Yl97_m70(theta, phi): return ( 4.7407846006173e-136 * (1.0 - cos(theta) ** 2) ** 35 * ( 8.00845452856909e151 * cos(theta) ** 27 - 1.45645986504029e152 * cos(theta) ** 25 + 1.1438166479374e152 * cos(theta) ** 23 - 5.10380267950902e151 * cos(theta) ** 21 + 1.43288577900654e151 * cos(theta) ** 19 - 2.64890235902831e150 * cos(theta) ** 17 + 3.2809719565378e149 * cos(theta) ** 15 - 2.71903753304238e148 * cos(theta) ** 13 + 1.48103999704822e147 * cos(theta) ** 11 - 5.11344631749229e145 * cos(theta) ** 9 + 1.05190895674127e144 * cos(theta) ** 7 - 1.16080336792258e142 * cos(theta) ** 5 + 5.65693649085078e139 * cos(theta) ** 3 - 7.72453776629601e136 * cos(theta) ) * cos(70 * phi) ) # @torch.jit.script def Yl97_m71(theta, phi): return ( 7.03904433333486e-138 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 2.16228272271365e153 * cos(theta) ** 26 - 3.64114966260071e153 * cos(theta) ** 24 + 2.63077829025601e153 * cos(theta) ** 22 - 1.07179856269689e153 * cos(theta) ** 20 + 2.72248298011243e152 * cos(theta) ** 18 - 4.50313401034813e151 * cos(theta) ** 16 + 4.9214579348067e150 * cos(theta) ** 14 - 3.53474879295509e149 * cos(theta) ** 12 + 1.62914399675304e148 * cos(theta) ** 10 - 4.60210168574306e146 * cos(theta) ** 8 + 7.3633626971889e144 * cos(theta) ** 6 - 5.8040168396129e142 * cos(theta) ** 4 + 1.69708094725523e140 * cos(theta) ** 2 - 7.72453776629601e136 ) * cos(71 * phi) ) # @torch.jit.script def Yl97_m72(theta, phi): return ( 1.06190013055382e-139 * (1.0 - cos(theta) ** 2) ** 36 * ( 5.6219350790555e154 * cos(theta) ** 25 - 8.73875919024171e154 * cos(theta) ** 23 + 5.78771223856323e154 * cos(theta) ** 21 - 2.14359712539379e154 * cos(theta) ** 19 + 4.90046936420238e153 * cos(theta) ** 17 - 7.20501441655701e152 * cos(theta) ** 15 + 6.89004110872938e151 * cos(theta) ** 13 - 4.24169855154611e150 * cos(theta) ** 11 + 1.62914399675304e149 * cos(theta) ** 9 - 3.68168134859445e147 * cos(theta) ** 7 + 4.41801761831334e145 * cos(theta) ** 5 - 2.32160673584516e143 * cos(theta) ** 3 + 3.39416189451047e140 * cos(theta) ) * cos(72 * phi) ) # @torch.jit.script def Yl97_m73(theta, phi): return ( 1.62888044357447e-141 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 1.40548376976388e156 * cos(theta) ** 24 - 2.00991461375559e156 * cos(theta) ** 22 + 1.21541957009828e156 * cos(theta) ** 20 - 4.0728345382482e155 * cos(theta) ** 18 + 8.33079791914404e154 * cos(theta) ** 16 - 1.08075216248355e154 * cos(theta) ** 14 + 8.9570534413482e152 * cos(theta) ** 12 - 4.66586840670072e151 * cos(theta) ** 10 + 1.46622959707774e150 * cos(theta) ** 8 - 2.57717694401611e148 * cos(theta) ** 6 + 2.20900880915667e146 * cos(theta) ** 4 - 6.96482020753548e143 * cos(theta) ** 2 + 3.39416189451047e140 ) * cos(73 * phi) ) # @torch.jit.script def Yl97_m74(theta, phi): return ( 2.54264385369124e-143 * (1.0 - cos(theta) ** 2) ** 37 * ( 3.3731610474333e157 * cos(theta) ** 23 - 4.42181215026231e157 * cos(theta) ** 21 + 2.43083914019656e157 * cos(theta) ** 19 - 7.33110216884676e156 * cos(theta) ** 17 + 1.33292766706305e156 * cos(theta) ** 15 - 1.51305302747697e155 * cos(theta) ** 13 + 1.07484641296178e154 * cos(theta) ** 11 - 4.66586840670072e152 * cos(theta) ** 9 + 1.17298367766219e151 * cos(theta) ** 7 - 1.54630616640967e149 * cos(theta) ** 5 + 8.83603523662668e146 * cos(theta) ** 3 - 1.3929640415071e144 * cos(theta) ) * cos(74 * phi) ) # @torch.jit.script def Yl97_m75(theta, phi): return ( 4.04256853757302e-145 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 7.75827040909659e158 * cos(theta) ** 22 - 9.28580551555085e158 * cos(theta) ** 20 + 4.61859436637346e158 * cos(theta) ** 18 - 1.24628736870395e158 * cos(theta) ** 16 + 1.99939150059457e157 * cos(theta) ** 14 - 1.96696893572006e156 * cos(theta) ** 12 + 1.18233105425796e155 * cos(theta) ** 10 - 4.19928156603065e153 * cos(theta) ** 8 + 8.21088574363534e151 * cos(theta) ** 6 - 7.73153083204834e149 * cos(theta) ** 4 + 2.650810570988e147 * cos(theta) ** 2 - 1.3929640415071e144 ) * cos(75 * phi) ) # @torch.jit.script def Yl97_m76(theta, phi): return ( 6.55274095574063e-147 * (1.0 - cos(theta) ** 2) ** 38 * ( 1.70681949000125e160 * cos(theta) ** 21 - 1.85716110311017e160 * cos(theta) ** 19 + 8.31346985947222e159 * cos(theta) ** 17 - 1.99405978992632e159 * cos(theta) ** 15 + 2.7991481008324e158 * cos(theta) ** 13 - 2.36036272286408e157 * cos(theta) ** 11 + 1.18233105425796e156 * cos(theta) ** 9 - 3.35942525282452e154 * cos(theta) ** 7 + 4.9265314461812e152 * cos(theta) ** 5 - 3.09261233281934e150 * cos(theta) ** 3 + 5.30162114197601e147 * cos(theta) ) * cos(76 * phi) ) # @torch.jit.script def Yl97_m77(theta, phi): return ( 1.08402357741615e-148 * (1.0 - cos(theta) ** 2) ** 38.5 * ( 3.58432092900263e161 * cos(theta) ** 20 - 3.52860609590932e161 * cos(theta) ** 18 + 1.41328987611028e161 * cos(theta) ** 16 - 2.99108968488948e160 * cos(theta) ** 14 + 3.63889253108212e159 * cos(theta) ** 12 - 2.59639899515048e158 * cos(theta) ** 10 + 1.06409794883217e157 * cos(theta) ** 8 - 2.35159767697716e155 * cos(theta) ** 6 + 2.4632657230906e153 * cos(theta) ** 4 - 9.27783699845801e150 * cos(theta) ** 2 + 5.30162114197601e147 ) * cos(77 * phi) ) # @torch.jit.script def Yl97_m78(theta, phi): return ( 1.83233427735857e-150 * (1.0 - cos(theta) ** 2) ** 39 * ( 7.16864185800525e162 * cos(theta) ** 19 - 6.35149097263678e162 * cos(theta) ** 17 + 2.26126380177644e162 * cos(theta) ** 15 - 4.18752555884527e161 * cos(theta) ** 13 + 4.36667103729854e160 * cos(theta) ** 11 - 2.59639899515048e159 * cos(theta) ** 9 + 8.51278359065733e157 * cos(theta) ** 7 - 1.4109586061863e156 * cos(theta) ** 5 + 9.85306289236241e153 * cos(theta) ** 3 - 1.8555673996916e151 * cos(theta) ) * cos(78 * phi) ) # @torch.jit.script def Yl97_m79(theta, phi): return ( 3.16863030571629e-152 * (1.0 - cos(theta) ** 2) ** 39.5 * ( 1.362041953021e164 * cos(theta) ** 18 - 1.07975346534825e164 * cos(theta) ** 16 + 3.39189570266467e163 * cos(theta) ** 14 - 5.44378322649885e162 * cos(theta) ** 12 + 4.8033381410284e161 * cos(theta) ** 10 - 2.33675909563544e160 * cos(theta) ** 8 + 5.95894851346013e158 * cos(theta) ** 6 - 7.05479303093148e156 * cos(theta) ** 4 + 2.95591886770872e154 * cos(theta) ** 2 - 1.8555673996916e151 ) * cos(79 * phi) ) # @torch.jit.script def Yl97_m80(theta, phi): return ( 5.61369335548937e-154 * (1.0 - cos(theta) ** 2) ** 40 * ( 2.4516755154378e165 * cos(theta) ** 17 - 1.7276055445572e165 * cos(theta) ** 15 + 4.74865398373053e164 * cos(theta) ** 13 - 6.53253987179862e163 * cos(theta) ** 11 + 4.8033381410284e162 * cos(theta) ** 9 - 1.86940727650835e161 * cos(theta) ** 7 + 3.57536910807608e159 * cos(theta) ** 5 - 2.82191721237259e157 * cos(theta) ** 3 + 5.91183773541744e154 * cos(theta) ) * cos(80 * phi) ) # @torch.jit.script def Yl97_m81(theta, phi): return ( 1.02050285496008e-155 * (1.0 - cos(theta) ** 2) ** 40.5 * ( 4.16784837624425e166 * cos(theta) ** 16 - 2.59140831683581e166 * cos(theta) ** 14 + 6.17325017884969e165 * cos(theta) ** 12 - 7.18579385897848e164 * cos(theta) ** 10 + 4.32300432692556e163 * cos(theta) ** 8 - 1.30858509355584e162 * cos(theta) ** 6 + 1.78768455403804e160 * cos(theta) ** 4 - 8.46575163711778e157 * cos(theta) ** 2 + 5.91183773541744e154 ) * cos(81 * phi) ) # @torch.jit.script def Yl97_m82(theta, phi): return ( 1.90689911512676e-157 * (1.0 - cos(theta) ** 2) ** 41 * ( 6.66855740199081e167 * cos(theta) ** 15 - 3.62797164357013e167 * cos(theta) ** 13 + 7.40790021461963e166 * cos(theta) ** 11 - 7.18579385897848e165 * cos(theta) ** 9 + 3.45840346154044e164 * cos(theta) ** 7 - 7.85151056133506e162 * cos(theta) ** 5 + 7.15073821615215e160 * cos(theta) ** 3 - 1.69315032742356e158 * cos(theta) ) * cos(82 * phi) ) # @torch.jit.script def Yl97_m83(theta, phi): return ( 3.66982905811965e-159 * (1.0 - cos(theta) ** 2) ** 41.5 * ( 1.00028361029862e169 * cos(theta) ** 14 - 4.71636313664117e168 * cos(theta) ** 12 + 8.1486902360816e167 * cos(theta) ** 10 - 6.46721447308063e166 * cos(theta) ** 8 + 2.42088242307831e165 * cos(theta) ** 6 - 3.92575528066753e163 * cos(theta) ** 4 + 2.14522146484565e161 * cos(theta) ** 2 - 1.69315032742356e158 ) * cos(83 * phi) ) # @torch.jit.script def Yl97_m84(theta, phi): return ( 7.29025181800508e-161 * (1.0 - cos(theta) ** 2) ** 42 * ( 1.40039705441807e170 * cos(theta) ** 13 - 5.6596357639694e169 * cos(theta) ** 11 + 8.1486902360816e168 * cos(theta) ** 9 - 5.17377157846451e167 * cos(theta) ** 7 + 1.45252945384699e166 * cos(theta) ** 5 - 1.57030211226701e164 * cos(theta) ** 3 + 4.29044292969129e161 * cos(theta) ) * cos(84 * phi) ) # @torch.jit.script def Yl97_m85(theta, phi): return ( 1.49877058056488e-162 * (1.0 - cos(theta) ** 2) ** 42.5 * ( 1.82051617074349e171 * cos(theta) ** 12 - 6.22559934036634e170 * cos(theta) ** 10 + 7.33382121247344e169 * cos(theta) ** 8 - 3.62164010492515e168 * cos(theta) ** 6 + 7.26264726923493e166 * cos(theta) ** 4 - 4.71090633680104e164 * cos(theta) ** 2 + 4.29044292969129e161 ) * cos(85 * phi) ) # @torch.jit.script def Yl97_m86(theta, phi): return ( 3.19829848117904e-164 * (1.0 - cos(theta) ** 2) ** 43 * ( 2.18461940489219e172 * cos(theta) ** 11 - 6.22559934036634e171 * cos(theta) ** 9 + 5.86705696997875e170 * cos(theta) ** 7 - 2.17298406295509e169 * cos(theta) ** 5 + 2.90505890769397e167 * cos(theta) ** 3 - 9.42181267360208e164 * cos(theta) ) * cos(86 * phi) ) # @torch.jit.script def Yl97_m87(theta, phi): return ( 7.10908550469079e-166 * (1.0 - cos(theta) ** 2) ** 43.5 * ( 2.40308134538141e173 * cos(theta) ** 10 - 5.60303940632971e172 * cos(theta) ** 8 + 4.10693987898512e171 * cos(theta) ** 6 - 1.08649203147755e170 * cos(theta) ** 4 + 8.71517672308192e167 * cos(theta) ** 2 - 9.42181267360208e164 ) * cos(87 * phi) ) # @torch.jit.script def Yl97_m88(theta, phi): return ( 1.65282880709644e-167 * (1.0 - cos(theta) ** 2) ** 44 * ( 2.40308134538141e174 * cos(theta) ** 9 - 4.48243152506376e173 * cos(theta) ** 7 + 2.46416392739107e172 * cos(theta) ** 5 - 4.34596812591018e170 * cos(theta) ** 3 + 1.74303534461638e168 * cos(theta) ) * cos(88 * phi) ) # @torch.jit.script def Yl97_m89(theta, phi): return ( 4.03970960308129e-169 * (1.0 - cos(theta) ** 2) ** 44.5 * ( 2.16277321084327e175 * cos(theta) ** 8 - 3.13770206754463e174 * cos(theta) ** 6 + 1.23208196369554e173 * cos(theta) ** 4 - 1.30379043777306e171 * cos(theta) ** 2 + 1.74303534461638e168 ) * cos(89 * phi) ) # @torch.jit.script def Yl97_m90(theta, phi): return ( 1.044442053454e-170 * (1.0 - cos(theta) ** 2) ** 45 * ( 1.73021856867461e176 * cos(theta) ** 7 - 1.88262124052678e175 * cos(theta) ** 5 + 4.92832785478215e173 * cos(theta) ** 3 - 2.60758087554611e171 * cos(theta) ) * cos(90 * phi) ) # @torch.jit.script def Yl97_m91(theta, phi): return ( 2.87909771810356e-172 * (1.0 - cos(theta) ** 2) ** 45.5 * ( 1.21115299807223e177 * cos(theta) ** 6 - 9.41310620263391e175 * cos(theta) ** 4 + 1.47849835643464e174 * cos(theta) ** 2 - 2.60758087554611e171 ) * cos(91 * phi) ) # @torch.jit.script def Yl97_m92(theta, phi): return ( 8.54968035252871e-174 * (1.0 - cos(theta) ** 2) ** 46 * ( 7.26691798843337e177 * cos(theta) ** 5 - 3.76524248105356e176 * cos(theta) ** 3 + 2.95699671286929e174 * cos(theta) ) * cos(92 * phi) ) # @torch.jit.script def Yl97_m93(theta, phi): return ( 2.77388259400193e-175 * (1.0 - cos(theta) ** 2) ** 46.5 * ( 3.63345899421669e178 * cos(theta) ** 4 - 1.12957274431607e177 * cos(theta) ** 2 + 2.95699671286929e174 ) * cos(93 * phi) ) # @torch.jit.script def Yl97_m94(theta, phi): return ( 1.00355550154123e-176 * (1.0 - cos(theta) ** 2) ** 47 * (1.45338359768667e179 * cos(theta) ** 3 - 2.25914548863214e177 * cos(theta)) * cos(94 * phi) ) # @torch.jit.script def Yl97_m95(theta, phi): return ( 4.1814812564218e-178 * (1.0 - cos(theta) ** 2) ** 47.5 * (4.36015079306002e179 * cos(theta) ** 2 - 2.25914548863214e177) * cos(95 * phi) ) # @torch.jit.script def Yl97_m96(theta, phi): return 18.5595741478934 * (1.0 - cos(theta) ** 2) ** 48 * cos(96 * phi) * cos(theta) # @torch.jit.script def Yl97_m97(theta, phi): return 1.33249976799509 * (1.0 - cos(theta) ** 2) ** 48.5 * cos(97 * phi) # @torch.jit.script def Yl98_m_minus_98(theta, phi): return 1.3358946773648 * (1.0 - cos(theta) ** 2) ** 49 * sin(98 * phi) # @torch.jit.script def Yl98_m_minus_97(theta, phi): return ( 18.7025254831072 * (1.0 - cos(theta) ** 2) ** 48.5 * sin(97 * phi) * cos(theta) ) # @torch.jit.script def Yl98_m_minus_96(theta, phi): return ( 2.17203311531976e-180 * (1.0 - cos(theta) ** 2) ** 48 * (8.50229404646705e181 * cos(theta) ** 2 - 4.36015079306002e179) * sin(96 * phi) ) # @torch.jit.script def Yl98_m_minus_95(theta, phi): return ( 5.23995955237687e-179 * (1.0 - cos(theta) ** 2) ** 47.5 * (2.83409801548902e181 * cos(theta) ** 3 - 4.36015079306002e179 * cos(theta)) * sin(95 * phi) ) # @torch.jit.script def Yl98_m_minus_94(theta, phi): return ( 1.45591689176756e-177 * (1.0 - cos(theta) ** 2) ** 47 * ( 7.08524503872254e180 * cos(theta) ** 4 - 2.18007539653001e179 * cos(theta) ** 2 + 5.64786372158034e176 ) * sin(94 * phi) ) # @torch.jit.script def Yl98_m_minus_93(theta, phi): return ( 4.51099350022227e-176 * (1.0 - cos(theta) ** 2) ** 46.5 * ( 1.41704900774451e180 * cos(theta) ** 5 - 7.26691798843337e178 * cos(theta) ** 3 + 5.64786372158034e176 * cos(theta) ) * sin(93 * phi) ) # @torch.jit.script def Yl98_m_minus_92(theta, phi): return ( 1.52708956723136e-174 * (1.0 - cos(theta) ** 2) ** 46 * ( 2.36174834624085e179 * cos(theta) ** 6 - 1.81672949710834e178 * cos(theta) ** 4 + 2.82393186079017e176 * cos(theta) ** 2 - 4.92832785478215e173 ) * sin(92 * phi) ) # @torch.jit.script def Yl98_m_minus_91(theta, phi): return ( 5.56916814851313e-173 * (1.0 - cos(theta) ** 2) ** 45.5 * ( 3.3739262089155e178 * cos(theta) ** 7 - 3.63345899421669e177 * cos(theta) ** 5 + 9.41310620263391e175 * cos(theta) ** 3 - 4.92832785478215e173 * cos(theta) ) * sin(91 * phi) ) # @torch.jit.script def Yl98_m_minus_90(theta, phi): return ( 2.16554008058075e-171 * (1.0 - cos(theta) ** 2) ** 45 * ( 4.21740776114437e177 * cos(theta) ** 8 - 6.05576499036115e176 * cos(theta) ** 6 + 2.35327655065848e175 * cos(theta) ** 4 - 2.46416392739107e173 * cos(theta) ** 2 + 3.25947609443264e170 ) * sin(90 * phi) ) # @torch.jit.script def Yl98_m_minus_89(theta, phi): return ( 8.90771688947175e-170 * (1.0 - cos(theta) ** 2) ** 44.5 * ( 4.68600862349374e176 * cos(theta) ** 9 - 8.65109284337306e175 * cos(theta) ** 7 + 4.70655310131695e174 * cos(theta) ** 5 - 8.21387975797025e172 * cos(theta) ** 3 + 3.25947609443264e170 * cos(theta) ) * sin(89 * phi) ) # @torch.jit.script def Yl98_m_minus_88(theta, phi): return ( 3.85200825209621e-168 * (1.0 - cos(theta) ** 2) ** 44 * ( 4.68600862349374e175 * cos(theta) ** 10 - 1.08138660542163e175 * cos(theta) ** 8 + 7.84425516886159e173 * cos(theta) ** 6 - 2.05346993949256e172 * cos(theta) ** 4 + 1.62973804721632e170 * cos(theta) ** 2 - 1.74303534461638e167 ) * sin(88 * phi) ) # @torch.jit.script def Yl98_m_minus_87(theta, phi): return ( 1.74236855047515e-166 * (1.0 - cos(theta) ** 2) ** 43.5 * ( 4.26000783953977e174 * cos(theta) ** 11 - 1.2015406726907e174 * cos(theta) ** 9 + 1.12060788126594e173 * cos(theta) ** 7 - 4.10693987898512e171 * cos(theta) ** 5 + 5.43246015738773e169 * cos(theta) ** 3 - 1.74303534461638e167 * cos(theta) ) * sin(87 * phi) ) # @torch.jit.script def Yl98_m_minus_86(theta, phi): return ( 8.20949628650893e-165 * (1.0 - cos(theta) ** 2) ** 43 * ( 3.55000653294981e173 * cos(theta) ** 12 - 1.2015406726907e173 * cos(theta) ** 10 + 1.40075985158243e172 * cos(theta) ** 8 - 6.84489979830854e170 * cos(theta) ** 6 + 1.35811503934693e169 * cos(theta) ** 4 - 8.71517672308192e166 * cos(theta) ** 2 + 7.85151056133506e163 ) * sin(86 * phi) ) # @torch.jit.script def Yl98_m_minus_85(theta, phi): return ( 4.01510676861106e-163 * (1.0 - cos(theta) ** 2) ** 42.5 * ( 2.73077425611524e172 * cos(theta) ** 13 - 1.09230970244609e172 * cos(theta) ** 11 + 1.55639983509158e171 * cos(theta) ** 9 - 9.77842828329791e169 * cos(theta) ** 7 + 2.71623007869387e168 * cos(theta) ** 5 - 2.90505890769397e166 * cos(theta) ** 3 + 7.85151056133506e163 * cos(theta) ) * sin(85 * phi) ) # @torch.jit.script def Yl98_m_minus_84(theta, phi): return ( 2.03229459023276e-161 * (1.0 - cos(theta) ** 2) ** 42 * ( 1.95055304008231e171 * cos(theta) ** 14 - 9.10258085371745e170 * cos(theta) ** 12 + 1.55639983509158e170 * cos(theta) ** 10 - 1.22230353541224e169 * cos(theta) ** 8 + 4.52705013115644e167 * cos(theta) ** 6 - 7.26264726923493e165 * cos(theta) ** 4 + 3.92575528066753e163 * cos(theta) ** 2 - 3.06460209263664e160 ) * sin(84 * phi) ) # @torch.jit.script def Yl98_m_minus_83(theta, phi): return ( 1.0618617684551e-159 * (1.0 - cos(theta) ** 2) ** 41.5 * ( 1.30036869338821e170 * cos(theta) ** 15 - 7.00198527209035e169 * cos(theta) ** 13 + 1.41490894099235e169 * cos(theta) ** 11 - 1.35811503934693e168 * cos(theta) ** 9 + 6.46721447308063e166 * cos(theta) ** 7 - 1.45252945384699e165 * cos(theta) ** 5 + 1.30858509355584e163 * cos(theta) ** 3 - 3.06460209263664e160 * cos(theta) ) * sin(83 * phi) ) # @torch.jit.script def Yl98_m_minus_82(theta, phi): return ( 5.71435560910229e-158 * (1.0 - cos(theta) ** 2) ** 41 * ( 8.12730433367629e168 * cos(theta) ** 16 - 5.0014180514931e168 * cos(theta) ** 14 + 1.17909078416029e168 * cos(theta) ** 12 - 1.35811503934693e167 * cos(theta) ** 10 + 8.08401809135079e165 * cos(theta) ** 8 - 2.42088242307831e164 * cos(theta) ** 6 + 3.27146273388961e162 * cos(theta) ** 4 - 1.53230104631832e160 * cos(theta) ** 2 + 1.05821895463972e157 ) * sin(82 * phi) ) # @torch.jit.script def Yl98_m_minus_81(theta, phi): return ( 3.16102533497397e-156 * (1.0 - cos(theta) ** 2) ** 40.5 * ( 4.7807672551037e167 * cos(theta) ** 17 - 3.3342787009954e167 * cos(theta) ** 15 + 9.06992910892532e166 * cos(theta) ** 13 - 1.23465003576994e166 * cos(theta) ** 11 + 8.9822423237231e164 * cos(theta) ** 9 - 3.45840346154044e163 * cos(theta) ** 7 + 6.54292546777922e161 * cos(theta) ** 5 - 5.10767015439439e159 * cos(theta) ** 3 + 1.05821895463972e157 * cos(theta) ) * sin(81 * phi) ) # @torch.jit.script def Yl98_m_minus_80(theta, phi): return ( 1.79428218305859e-154 * (1.0 - cos(theta) ** 2) ** 40 * ( 2.65598180839095e166 * cos(theta) ** 18 - 2.08392418812213e166 * cos(theta) ** 16 + 6.47852079208951e165 * cos(theta) ** 14 - 1.02887502980828e165 * cos(theta) ** 12 + 8.9822423237231e163 * cos(theta) ** 10 - 4.32300432692556e162 * cos(theta) ** 8 + 1.0904875779632e161 * cos(theta) ** 6 - 1.2769175385986e159 * cos(theta) ** 4 + 5.29109477319861e156 * cos(theta) ** 2 - 3.28435429745414e153 ) * sin(80 * phi) ) # @torch.jit.script def Yl98_m_minus_79(theta, phi): return ( 1.04346418263193e-152 * (1.0 - cos(theta) ** 2) ** 39.5 * ( 1.39788516231102e165 * cos(theta) ** 19 - 1.2258377577189e165 * cos(theta) ** 17 + 4.31901386139301e164 * cos(theta) ** 15 - 7.91442330621756e163 * cos(theta) ** 13 + 8.16567483974827e162 * cos(theta) ** 11 - 4.8033381410284e161 * cos(theta) ** 9 + 1.55783939709029e160 * cos(theta) ** 7 - 2.5538350771972e158 * cos(theta) ** 5 + 1.76369825773287e156 * cos(theta) ** 3 - 3.28435429745414e153 * cos(theta) ) * sin(79 * phi) ) # @torch.jit.script def Yl98_m_minus_78(theta, phi): return ( 6.20839266762537e-151 * (1.0 - cos(theta) ** 2) ** 39 * ( 6.98942581155512e163 * cos(theta) ** 20 - 6.81020976510499e163 * cos(theta) ** 18 + 2.69938366337063e163 * cos(theta) ** 16 - 5.65315950444111e162 * cos(theta) ** 14 + 6.80472903312356e161 * cos(theta) ** 12 - 4.8033381410284e160 * cos(theta) ** 10 + 1.94729924636286e159 * cos(theta) ** 8 - 4.25639179532866e157 * cos(theta) ** 6 + 4.40924564433218e155 * cos(theta) ** 4 - 1.64217714872707e153 * cos(theta) ** 2 + 9.27783699845801e149 ) * sin(78 * phi) ) # @torch.jit.script def Yl98_m_minus_77(theta, phi): return ( 3.77437597026328e-149 * (1.0 - cos(theta) ** 2) ** 38.5 * ( 3.32829800550244e162 * cos(theta) ** 21 - 3.58432092900263e162 * cos(theta) ** 19 + 1.58787274315919e162 * cos(theta) ** 17 - 3.76877300296074e161 * cos(theta) ** 15 + 5.23440694855658e160 * cos(theta) ** 13 - 4.36667103729854e159 * cos(theta) ** 11 + 2.16366582929207e158 * cos(theta) ** 9 - 6.08055970761237e156 * cos(theta) ** 7 + 8.81849128866436e154 * cos(theta) ** 5 - 5.47392382909023e152 * cos(theta) ** 3 + 9.27783699845801e149 * cos(theta) ) * sin(77 * phi) ) # @torch.jit.script def Yl98_m_minus_76(theta, phi): return ( 2.34193870041187e-147 * (1.0 - cos(theta) ** 2) ** 38 * ( 1.51286272977384e161 * cos(theta) ** 22 - 1.79216046450131e161 * cos(theta) ** 20 + 8.8215152397733e160 * cos(theta) ** 18 - 2.35548312685046e160 * cos(theta) ** 16 + 3.73886210611185e159 * cos(theta) ** 14 - 3.63889253108212e158 * cos(theta) ** 12 + 2.16366582929207e157 * cos(theta) ** 10 - 7.60069963451547e155 * cos(theta) ** 8 + 1.46974854811073e154 * cos(theta) ** 6 - 1.36848095727256e152 * cos(theta) ** 4 + 4.63891849922901e149 * cos(theta) ** 2 - 2.40982779180728e146 ) * sin(76 * phi) ) # @torch.jit.script def Yl98_m_minus_75(theta, phi): return ( 1.48154233350587e-145 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 6.57766404249494e159 * cos(theta) ** 23 - 8.53409745000625e159 * cos(theta) ** 21 + 4.64290275777542e159 * cos(theta) ** 19 - 1.38557830991204e159 * cos(theta) ** 17 + 2.4925747374079e158 * cos(theta) ** 15 - 2.7991481008324e157 * cos(theta) ** 13 + 1.96696893572006e156 * cos(theta) ** 11 - 8.4452218161283e154 * cos(theta) ** 9 + 2.09964078301532e153 * cos(theta) ** 7 - 2.73696191454511e151 * cos(theta) ** 5 + 1.54630616640967e149 * cos(theta) ** 3 - 2.40982779180728e146 * cos(theta) ) * sin(75 * phi) ) # @torch.jit.script def Yl98_m_minus_74(theta, phi): return ( 9.54646836906066e-144 * (1.0 - cos(theta) ** 2) ** 37 * ( 2.74069335103956e158 * cos(theta) ** 24 - 3.8791352045483e158 * cos(theta) ** 22 + 2.32145137888771e158 * cos(theta) ** 20 - 7.69765727728909e157 * cos(theta) ** 18 + 1.55785921087994e157 * cos(theta) ** 16 - 1.99939150059457e156 * cos(theta) ** 14 + 1.63914077976672e155 * cos(theta) ** 12 - 8.4452218161283e153 * cos(theta) ** 10 + 2.62455097876915e152 * cos(theta) ** 8 - 4.56160319090852e150 * cos(theta) ** 6 + 3.86576541602417e148 * cos(theta) ** 4 - 1.20491389590364e146 * cos(theta) ** 2 + 5.8040168396129e142 ) * sin(74 * phi) ) # @torch.jit.script def Yl98_m_minus_73(theta, phi): return ( 6.26003794543089e-142 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 1.09627734041582e157 * cos(theta) ** 25 - 1.68658052371665e157 * cos(theta) ** 23 + 1.10545303756558e157 * cos(theta) ** 21 - 4.05139856699426e156 * cos(theta) ** 19 + 9.16387771105845e155 * cos(theta) ** 17 - 1.33292766706305e155 * cos(theta) ** 15 + 1.26087752289748e154 * cos(theta) ** 13 - 7.67747437829845e152 * cos(theta) ** 11 + 2.91616775418795e151 * cos(theta) ** 9 - 6.51657598701217e149 * cos(theta) ** 7 + 7.73153083204834e147 * cos(theta) ** 5 - 4.01637965301213e145 * cos(theta) ** 3 + 5.8040168396129e142 * cos(theta) ) * sin(73 * phi) ) # @torch.jit.script def Yl98_m_minus_72(theta, phi): return ( 4.17408890415419e-140 * (1.0 - cos(theta) ** 2) ** 36 * ( 4.21645130929163e155 * cos(theta) ** 26 - 7.02741884881938e155 * cos(theta) ** 24 + 5.02478653438899e155 * cos(theta) ** 22 - 2.02569928349713e155 * cos(theta) ** 20 + 5.09104317281025e154 * cos(theta) ** 18 - 8.33079791914404e153 * cos(theta) ** 16 + 9.00626802069626e152 * cos(theta) ** 14 - 6.39789531524871e151 * cos(theta) ** 12 + 2.91616775418795e150 * cos(theta) ** 10 - 8.14571998376522e148 * cos(theta) ** 8 + 1.28858847200806e147 * cos(theta) ** 6 - 1.00409491325303e145 * cos(theta) ** 4 + 2.90200841980645e142 * cos(theta) ** 2 - 1.30544688250403e139 ) * sin(72 * phi) ) # @torch.jit.script def Yl98_m_minus_71(theta, phi): return ( 2.82792597932132e-138 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 1.56164863307097e154 * cos(theta) ** 27 - 2.81096753952775e154 * cos(theta) ** 25 + 2.18468979756043e154 * cos(theta) ** 23 - 9.64618706427205e153 * cos(theta) ** 21 + 2.67949640674224e153 * cos(theta) ** 19 - 4.90046936420238e152 * cos(theta) ** 17 + 6.00417868046417e151 * cos(theta) ** 15 - 4.9214579348067e150 * cos(theta) ** 13 + 2.65106159471632e149 * cos(theta) ** 11 - 9.05079998196135e147 * cos(theta) ** 9 + 1.84084067429722e146 * cos(theta) ** 7 - 2.00818982650606e144 * cos(theta) ** 5 + 9.67336139935483e141 * cos(theta) ** 3 - 1.30544688250403e139 * cos(theta) ) * sin(71 * phi) ) # @torch.jit.script def Yl98_m_minus_70(theta, phi): return ( 1.94531710551958e-136 * (1.0 - cos(theta) ** 2) ** 35 * ( 5.57731654668205e152 * cos(theta) ** 28 - 1.08114136135683e153 * cos(theta) ** 26 + 9.10287415650179e152 * cos(theta) ** 24 - 4.38463048376002e152 * cos(theta) ** 22 + 1.33974820337112e152 * cos(theta) ** 20 - 2.72248298011243e151 * cos(theta) ** 18 + 3.75261167529011e150 * cos(theta) ** 16 - 3.5153270962905e149 * cos(theta) ** 14 + 2.20921799559693e148 * cos(theta) ** 12 - 9.05079998196135e146 * cos(theta) ** 10 + 2.30105084287153e145 * cos(theta) ** 8 - 3.34698304417677e143 * cos(theta) ** 6 + 2.41834034983871e141 * cos(theta) ** 4 - 6.52723441252013e138 * cos(theta) ** 2 + 2.75876348796286e135 ) * sin(70 * phi) ) # @torch.jit.script def Yl98_m_minus_69(theta, phi): return ( 1.35782576566671e-134 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 1.92321260230415e151 * cos(theta) ** 29 - 4.00422726428455e151 * cos(theta) ** 27 + 3.64114966260071e151 * cos(theta) ** 25 - 1.90636107989566e151 * cos(theta) ** 23 + 6.37975334938628e150 * cos(theta) ** 21 - 1.43288577900654e150 * cos(theta) ** 19 + 2.20741863252359e149 * cos(theta) ** 17 - 2.343551397527e148 * cos(theta) ** 15 + 1.69939845815148e147 * cos(theta) ** 13 - 8.22799998360123e145 * cos(theta) ** 11 + 2.55672315874615e144 * cos(theta) ** 9 - 4.78140434882396e142 * cos(theta) ** 7 + 4.83668069967742e140 * cos(theta) ** 5 - 2.17574480417338e138 * cos(theta) ** 3 + 2.75876348796286e135 * cos(theta) ) * sin(69 * phi) ) # @torch.jit.script def Yl98_m_minus_68(theta, phi): return ( 9.61087454794881e-133 * (1.0 - cos(theta) ** 2) ** 34 * ( 6.41070867434718e149 * cos(theta) ** 30 - 1.43008116581591e150 * cos(theta) ** 28 + 1.40044217792335e150 * cos(theta) ** 26 - 7.94317116623192e149 * cos(theta) ** 24 + 2.89988788608467e149 * cos(theta) ** 22 - 7.16442889503272e148 * cos(theta) ** 20 + 1.22634368473533e148 * cos(theta) ** 18 - 1.46471962345438e147 * cos(theta) ** 16 + 1.21385604153678e146 * cos(theta) ** 14 - 6.85666665300103e144 * cos(theta) ** 12 + 2.55672315874615e143 * cos(theta) ** 10 - 5.97675543602995e141 * cos(theta) ** 8 + 8.06113449946236e139 * cos(theta) ** 6 - 5.43936201043344e137 * cos(theta) ** 4 + 1.37938174398143e135 * cos(theta) ** 2 - 5.50651394802966e131 ) * sin(68 * phi) ) # @torch.jit.script def Yl98_m_minus_67(theta, phi): return ( 6.89442099585025e-131 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 2.06797054011199e148 * cos(theta) ** 31 - 4.93131436488245e148 * cos(theta) ** 29 + 5.1868228811976e148 * cos(theta) ** 27 - 3.17726846649277e148 * cos(theta) ** 25 + 1.26082082003681e148 * cos(theta) ** 23 - 3.41163280715844e147 * cos(theta) ** 21 + 6.45444044597542e146 * cos(theta) ** 19 - 8.61599778502574e145 * cos(theta) ** 17 + 8.09237361024517e144 * cos(theta) ** 15 - 5.27435896384694e143 * cos(theta) ** 13 + 2.32429378067831e142 * cos(theta) ** 11 - 6.64083937336661e140 * cos(theta) ** 9 + 1.15159064278034e139 * cos(theta) ** 7 - 1.08787240208669e137 * cos(theta) ** 5 + 4.59793914660477e134 * cos(theta) ** 3 - 5.50651394802966e131 * cos(theta) ) * sin(67 * phi) ) # @torch.jit.script def Yl98_m_minus_66(theta, phi): return ( 5.00973508065196e-129 * (1.0 - cos(theta) ** 2) ** 33 * ( 6.46240793784998e146 * cos(theta) ** 32 - 1.64377145496082e147 * cos(theta) ** 30 + 1.85243674328486e147 * cos(theta) ** 28 - 1.22202633326645e147 * cos(theta) ** 26 + 5.25342008348672e146 * cos(theta) ** 24 - 1.55074218507202e146 * cos(theta) ** 22 + 3.22722022298771e145 * cos(theta) ** 20 - 4.78666543612541e144 * cos(theta) ** 18 + 5.05773350640323e143 * cos(theta) ** 16 - 3.76739925989067e142 * cos(theta) ** 14 + 1.93691148389859e141 * cos(theta) ** 12 - 6.64083937336661e139 * cos(theta) ** 10 + 1.43948830347542e138 * cos(theta) ** 8 - 1.81312067014448e136 * cos(theta) ** 6 + 1.14948478665119e134 * cos(theta) ** 4 - 2.75325697401483e131 * cos(theta) ** 2 + 1.04290036894501e128 ) * sin(66 * phi) ) # @torch.jit.script def Yl98_m_minus_65(theta, phi): return ( 3.6854765698596e-127 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 1.95830543571212e145 * cos(theta) ** 33 - 5.30248856438973e145 * cos(theta) ** 31 + 6.38771290787882e145 * cos(theta) ** 29 - 4.52602345654241e145 * cos(theta) ** 27 + 2.10136803339469e145 * cos(theta) ** 25 - 6.74235732640007e144 * cos(theta) ** 23 + 1.53677153475605e144 * cos(theta) ** 21 - 2.51929759796074e143 * cos(theta) ** 19 + 2.97513735670778e142 * cos(theta) ** 17 - 2.51159950659378e141 * cos(theta) ** 15 + 1.48993191069123e140 * cos(theta) ** 13 - 6.03712670306055e138 * cos(theta) ** 11 + 1.59943144830602e137 * cos(theta) ** 9 - 2.59017238592069e135 * cos(theta) ** 7 + 2.29896957330238e133 * cos(theta) ** 5 - 9.17752324671611e130 * cos(theta) ** 3 + 1.04290036894501e128 * cos(theta) ) * sin(65 * phi) ) # @torch.jit.script def Yl98_m_minus_64(theta, phi): return ( 2.74363866945678e-125 * (1.0 - cos(theta) ** 2) ** 32 * ( 5.75972186974151e143 * cos(theta) ** 34 - 1.65702767637179e144 * cos(theta) ** 32 + 2.12923763595961e144 * cos(theta) ** 30 - 1.61643694876515e144 * cos(theta) ** 28 + 8.08218474382573e143 * cos(theta) ** 26 - 2.8093155526667e143 * cos(theta) ** 24 + 6.98532515798206e142 * cos(theta) ** 22 - 1.25964879898037e142 * cos(theta) ** 20 + 1.65285408705988e141 * cos(theta) ** 18 - 1.56974969162111e140 * cos(theta) ** 16 + 1.06423707906516e139 * cos(theta) ** 14 - 5.03093891921713e137 * cos(theta) ** 12 + 1.59943144830602e136 * cos(theta) ** 10 - 3.23771548240086e134 * cos(theta) ** 8 + 3.83161595550397e132 * cos(theta) ** 6 - 2.29438081167903e130 * cos(theta) ** 4 + 5.21450184472506e127 * cos(theta) ** 2 - 1.88181228607905e124 ) * sin(64 * phi) ) # @torch.jit.script def Yl98_m_minus_63(theta, phi): return ( 2.06594352178886e-123 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 1.64563481992615e142 * cos(theta) ** 35 - 5.02129598900542e142 * cos(theta) ** 33 + 6.8685085030955e142 * cos(theta) ** 31 - 5.57392051298326e142 * cos(theta) ** 29 + 2.99340175697249e142 * cos(theta) ** 27 - 1.12372622106668e142 * cos(theta) ** 25 + 3.03709789477481e141 * cos(theta) ** 23 - 5.99832761419224e140 * cos(theta) ** 21 + 8.69923203715726e139 * cos(theta) ** 19 - 9.23382171541832e138 * cos(theta) ** 17 + 7.09491386043441e137 * cos(theta) ** 15 - 3.86995301478241e136 * cos(theta) ** 13 + 1.45402858936911e135 * cos(theta) ** 11 - 3.59746164711206e133 * cos(theta) ** 9 + 5.47373707929139e131 * cos(theta) ** 7 - 4.58876162335805e129 * cos(theta) ** 5 + 1.73816728157502e127 * cos(theta) ** 3 - 1.88181228607905e124 * cos(theta) ) * sin(63 * phi) ) # @torch.jit.script def Yl98_m_minus_62(theta, phi): return ( 1.57283307422444e-121 * (1.0 - cos(theta) ** 2) ** 31 * ( 4.57120783312819e140 * cos(theta) ** 36 - 1.47685176147218e141 * cos(theta) ** 34 + 2.14640890721734e141 * cos(theta) ** 32 - 1.85797350432775e141 * cos(theta) ** 30 + 1.0690720560616e141 * cos(theta) ** 28 - 4.32202392717953e140 * cos(theta) ** 26 + 1.26545745615617e140 * cos(theta) ** 24 - 2.72651255190556e139 * cos(theta) ** 22 + 4.34961601857863e138 * cos(theta) ** 20 - 5.12990095301018e137 * cos(theta) ** 18 + 4.43432116277151e136 * cos(theta) ** 16 - 2.76425215341601e135 * cos(theta) ** 14 + 1.21169049114093e134 * cos(theta) ** 12 - 3.59746164711206e132 * cos(theta) ** 10 + 6.84217134911424e130 * cos(theta) ** 8 - 7.64793603893009e128 * cos(theta) ** 6 + 4.34541820393755e126 * cos(theta) ** 4 - 9.40906143039527e123 * cos(theta) ** 2 + 3.24674307467056e120 ) * sin(62 * phi) ) # @torch.jit.script def Yl98_m_minus_61(theta, phi): return ( 1.21016192990425e-119 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 1.23546157652113e139 * cos(theta) ** 37 - 4.2195764613491e139 * cos(theta) ** 35 + 6.50426941581013e139 * cos(theta) ** 33 - 5.9934629171863e139 * cos(theta) ** 31 + 3.68645536572967e139 * cos(theta) ** 29 - 1.60074960265909e139 * cos(theta) ** 27 + 5.06182982462468e138 * cos(theta) ** 25 - 1.18544023995894e138 * cos(theta) ** 23 + 2.07124572313268e137 * cos(theta) ** 21 - 2.69994787000536e136 * cos(theta) ** 19 + 2.608424213395e135 * cos(theta) ** 17 - 1.842834768944e134 * cos(theta) ** 15 + 9.32069608569944e132 * cos(theta) ** 13 - 3.27041967919279e131 * cos(theta) ** 11 + 7.60241261012693e129 * cos(theta) ** 9 - 1.09256229127573e128 * cos(theta) ** 7 + 8.6908364078751e125 * cos(theta) ** 5 - 3.13635381013176e123 * cos(theta) ** 3 + 3.24674307467056e120 * cos(theta) ) * sin(61 * phi) ) # @torch.jit.script def Yl98_m_minus_60(theta, phi): return ( 9.40662534557122e-118 * (1.0 - cos(theta) ** 2) ** 30 * ( 3.25121467505561e137 * cos(theta) ** 38 - 1.17210457259697e138 * cos(theta) ** 36 + 1.91302041641475e138 * cos(theta) ** 34 - 1.87295716162072e138 * cos(theta) ** 32 + 1.22881845524322e138 * cos(theta) ** 30 - 5.71696286663959e137 * cos(theta) ** 28 + 1.94685762485565e137 * cos(theta) ** 26 - 4.93933433316225e136 * cos(theta) ** 24 + 9.41475328696673e135 * cos(theta) ** 22 - 1.34997393500268e135 * cos(theta) ** 20 + 1.44912456299722e134 * cos(theta) ** 18 - 1.15177173059e133 * cos(theta) ** 16 + 6.65764006121389e131 * cos(theta) ** 14 - 2.72534973266066e130 * cos(theta) ** 12 + 7.60241261012693e128 * cos(theta) ** 10 - 1.36570286409466e127 * cos(theta) ** 8 + 1.44847273464585e125 * cos(theta) ** 6 - 7.84088452532939e122 * cos(theta) ** 4 + 1.62337153733528e120 * cos(theta) ** 2 - 5.37362309611148e116 ) * sin(60 * phi) ) # @torch.jit.script def Yl98_m_minus_59(theta, phi): return ( 7.38405110772638e-116 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 8.33644788475797e135 * cos(theta) ** 39 - 3.16785019620803e136 * cos(theta) ** 37 + 5.46577261832784e136 * cos(theta) ** 35 - 5.67562776248703e136 * cos(theta) ** 33 + 3.96393050078459e136 * cos(theta) ** 31 - 1.97136650573779e136 * cos(theta) ** 29 + 7.21058379576165e135 * cos(theta) ** 27 - 1.9757337332649e135 * cos(theta) ** 25 + 4.09337099433336e134 * cos(theta) ** 23 - 6.42844730953656e133 * cos(theta) ** 21 + 7.62697138419592e132 * cos(theta) ** 19 - 6.77512782700001e131 * cos(theta) ** 17 + 4.43842670747592e130 * cos(theta) ** 15 - 2.09642287127743e129 * cos(theta) ** 13 + 6.91128419102448e127 * cos(theta) ** 11 - 1.51744762677184e126 * cos(theta) ** 9 + 2.06924676377979e124 * cos(theta) ** 7 - 1.56817690506588e122 * cos(theta) ** 5 + 5.41123845778426e119 * cos(theta) ** 3 - 5.37362309611148e116 * cos(theta) ) * sin(59 * phi) ) # @torch.jit.script def Yl98_m_minus_58(theta, phi): return ( 5.85159844471846e-114 * (1.0 - cos(theta) ** 2) ** 29 * ( 2.08411197118949e134 * cos(theta) ** 40 - 8.33644788475797e134 * cos(theta) ** 38 + 1.51827017175773e135 * cos(theta) ** 36 - 1.66930228308442e135 * cos(theta) ** 34 + 1.23872828149518e135 * cos(theta) ** 32 - 6.57122168579264e134 * cos(theta) ** 30 + 2.5752084984863e134 * cos(theta) ** 28 - 7.5989758971727e133 * cos(theta) ** 26 + 1.7055712476389e133 * cos(theta) ** 24 - 2.9220215043348e132 * cos(theta) ** 22 + 3.81348569209796e131 * cos(theta) ** 20 - 3.7639599038889e130 * cos(theta) ** 18 + 2.77401669217245e129 * cos(theta) ** 16 - 1.4974449080553e128 * cos(theta) ** 14 + 5.7594034925204e126 * cos(theta) ** 12 - 1.51744762677184e125 * cos(theta) ** 10 + 2.58655845472473e123 * cos(theta) ** 8 - 2.6136281751098e121 * cos(theta) ** 6 + 1.35280961444607e119 * cos(theta) ** 4 - 2.68681154805574e116 * cos(theta) ** 2 + 8.55672467533675e112 ) * sin(58 * phi) ) # @torch.jit.script def Yl98_m_minus_57(theta, phi): return ( 4.67981562751407e-112 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 5.08319992973047e132 * cos(theta) ** 41 - 2.13755073968153e133 * cos(theta) ** 39 + 4.10343289664252e133 * cos(theta) ** 37 - 4.76943509452691e133 * cos(theta) ** 35 + 3.75372206513692e133 * cos(theta) ** 33 - 2.11974893090085e133 * cos(theta) ** 31 + 8.88002930512519e132 * cos(theta) ** 29 - 2.81443551747137e132 * cos(theta) ** 27 + 6.8222849905556e131 * cos(theta) ** 25 - 1.27044413231948e131 * cos(theta) ** 23 + 1.8159455676657e130 * cos(theta) ** 21 - 1.98103152836258e129 * cos(theta) ** 19 + 1.63177452480732e128 * cos(theta) ** 17 - 9.98296605370203e126 * cos(theta) ** 15 + 4.43031037886185e125 * cos(theta) ** 13 - 1.37949784251986e124 * cos(theta) ** 11 + 2.87395383858304e122 * cos(theta) ** 9 - 3.73375453587114e120 * cos(theta) ** 7 + 2.70561922889213e118 * cos(theta) ** 5 - 8.95603849351913e115 * cos(theta) ** 3 + 8.55672467533675e112 * cos(theta) ) * sin(57 * phi) ) # @torch.jit.script def Yl98_m_minus_56(theta, phi): return ( 3.77588916338903e-110 * (1.0 - cos(theta) ** 2) ** 28 * ( 1.21028569755487e131 * cos(theta) ** 42 - 5.34387684920383e131 * cos(theta) ** 40 + 1.07985076227435e132 * cos(theta) ** 38 - 1.32484308181303e132 * cos(theta) ** 36 + 1.10403590151086e132 * cos(theta) ** 34 - 6.62421540906516e131 * cos(theta) ** 32 + 2.96000976837506e131 * cos(theta) ** 30 - 1.00515554195406e131 * cos(theta) ** 28 + 2.62395576559831e130 * cos(theta) ** 26 - 5.29351721799783e129 * cos(theta) ** 24 + 8.25429803484407e128 * cos(theta) ** 22 - 9.90515764181288e127 * cos(theta) ** 20 + 9.06541402670736e126 * cos(theta) ** 18 - 6.23935378356377e125 * cos(theta) ** 16 + 3.16450741347275e124 * cos(theta) ** 14 - 1.14958153543321e123 * cos(theta) ** 12 + 2.87395383858304e121 * cos(theta) ** 10 - 4.66719316983892e119 * cos(theta) ** 8 + 4.50936538148688e117 * cos(theta) ** 6 - 2.23900962337978e115 * cos(theta) ** 4 + 4.27836233766838e112 * cos(theta) ** 2 - 1.31439703154174e109 ) * sin(56 * phi) ) # @torch.jit.script def Yl98_m_minus_55(theta, phi): return ( 3.07265518220226e-108 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 2.8146179012904e129 * cos(theta) ** 43 - 1.30338459736679e130 * cos(theta) ** 41 + 2.76884810839577e130 * cos(theta) ** 39 - 3.58065697787306e130 * cos(theta) ** 37 + 3.15438829003103e130 * cos(theta) ** 35 - 2.00733800274702e130 * cos(theta) ** 33 + 9.54841860766149e129 * cos(theta) ** 31 - 3.46605359294504e129 * cos(theta) ** 29 + 9.71835468740114e128 * cos(theta) ** 27 - 2.11740688719913e128 * cos(theta) ** 25 + 3.5888252325409e127 * cos(theta) ** 23 - 4.71674173419661e126 * cos(theta) ** 21 + 4.77127054037229e125 * cos(theta) ** 19 - 3.67020810797869e124 * cos(theta) ** 17 + 2.10967160898183e123 * cos(theta) ** 15 - 8.8429348879478e121 * cos(theta) ** 13 + 2.61268530780276e120 * cos(theta) ** 11 - 5.18577018870992e118 * cos(theta) ** 9 + 6.44195054498126e116 * cos(theta) ** 7 - 4.47801924675957e114 * cos(theta) ** 5 + 1.42612077922279e112 * cos(theta) ** 3 - 1.31439703154174e109 * cos(theta) ) * sin(55 * phi) ) # @torch.jit.script def Yl98_m_minus_54(theta, phi): return ( 2.52107566003453e-106 * (1.0 - cos(theta) ** 2) ** 27 * ( 6.3968588665691e127 * cos(theta) ** 44 - 3.10329666039711e128 * cos(theta) ** 42 + 6.92212027098941e128 * cos(theta) ** 40 - 9.42278152071857e128 * cos(theta) ** 38 + 8.76218969453063e128 * cos(theta) ** 36 - 5.90393530219711e128 * cos(theta) ** 34 + 2.98388081489422e128 * cos(theta) ** 32 - 1.15535119764835e128 * cos(theta) ** 30 + 3.47084095978612e127 * cos(theta) ** 28 - 8.14387264307358e126 * cos(theta) ** 26 + 1.49534384689204e126 * cos(theta) ** 24 - 2.14397351554391e125 * cos(theta) ** 22 + 2.38563527018615e124 * cos(theta) ** 20 - 2.0390045044326e123 * cos(theta) ** 18 + 1.31854475561365e122 * cos(theta) ** 16 - 6.31638206281986e120 * cos(theta) ** 14 + 2.1772377565023e119 * cos(theta) ** 12 - 5.18577018870992e117 * cos(theta) ** 10 + 8.05243818122658e115 * cos(theta) ** 8 - 7.46336541126594e113 * cos(theta) ** 6 + 3.56530194805698e111 * cos(theta) ** 4 - 6.57198515770872e108 * cos(theta) ** 2 + 1.95246142534424e105 ) * sin(54 * phi) ) # @torch.jit.script def Yl98_m_minus_53(theta, phi): return ( 2.08503778833744e-104 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 1.42152419257091e126 * cos(theta) ** 45 - 7.2169689776677e126 * cos(theta) ** 43 + 1.68832201731449e127 * cos(theta) ** 41 - 2.41609782582528e127 * cos(theta) ** 39 + 2.36815937690017e127 * cos(theta) ** 37 - 1.6868386577706e127 * cos(theta) ** 35 + 9.04206307543702e126 * cos(theta) ** 33 - 3.72693934725273e126 * cos(theta) ** 31 + 1.19684171027108e126 * cos(theta) ** 29 - 3.01624912706429e125 * cos(theta) ** 27 + 5.98137538756817e124 * cos(theta) ** 25 - 9.32162398062571e123 * cos(theta) ** 23 + 1.13601679532674e123 * cos(theta) ** 21 - 1.07316026549084e122 * cos(theta) ** 19 + 7.75614562125674e120 * cos(theta) ** 17 - 4.21092137521324e119 * cos(theta) ** 15 + 1.67479827423254e118 * cos(theta) ** 13 - 4.71433653519083e116 * cos(theta) ** 11 + 8.9471535346962e114 * cos(theta) ** 9 - 1.06619505875228e113 * cos(theta) ** 7 + 7.13060389611396e110 * cos(theta) ** 5 - 2.19066171923624e108 * cos(theta) ** 3 + 1.95246142534424e105 * cos(theta) ) * sin(53 * phi) ) # @torch.jit.script def Yl98_m_minus_52(theta, phi): return ( 1.73772608291153e-102 * (1.0 - cos(theta) ** 2) ** 26 * ( 3.09026998384981e124 * cos(theta) ** 46 - 1.64022022219721e125 * cos(theta) ** 44 + 4.01981432693926e125 * cos(theta) ** 42 - 6.04024456456319e125 * cos(theta) ** 40 + 6.23199836026361e125 * cos(theta) ** 38 - 4.68566293825168e125 * cos(theta) ** 36 + 2.659430316305e125 * cos(theta) ** 34 - 1.16466854601648e125 * cos(theta) ** 32 + 3.98947236757025e124 * cos(theta) ** 30 - 1.07723183109439e124 * cos(theta) ** 28 + 2.30052899521853e123 * cos(theta) ** 26 - 3.88400999192738e122 * cos(theta) ** 24 + 5.16371270603062e121 * cos(theta) ** 22 - 5.36580132745422e120 * cos(theta) ** 20 + 4.30896978958708e119 * cos(theta) ** 18 - 2.63182585950827e118 * cos(theta) ** 16 + 1.19628448159467e117 * cos(theta) ** 14 - 3.92861377932569e115 * cos(theta) ** 12 + 8.9471535346962e113 * cos(theta) ** 10 - 1.33274382344035e112 * cos(theta) ** 8 + 1.18843398268566e110 * cos(theta) ** 6 - 5.4766542980906e107 * cos(theta) ** 4 + 9.76230712672121e104 * cos(theta) ** 2 - 2.81091480757881e101 ) * sin(52 * phi) ) # @torch.jit.script def Yl98_m_minus_51(theta, phi): return ( 1.45906916119761e-100 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 6.57504251882938e122 * cos(theta) ** 47 - 3.6449338271049e123 * cos(theta) ** 45 + 9.34840541148666e123 * cos(theta) ** 43 - 1.47323038160078e124 * cos(theta) ** 41 + 1.59794829750349e124 * cos(theta) ** 39 - 1.26639538871667e124 * cos(theta) ** 37 + 7.59837233230001e123 * cos(theta) ** 35 - 3.52929862429236e123 * cos(theta) ** 33 + 1.28692657018395e123 * cos(theta) ** 31 - 3.71459252101513e122 * cos(theta) ** 29 + 8.52047776006861e121 * cos(theta) ** 27 - 1.55360399677095e121 * cos(theta) ** 25 + 2.24509248088288e120 * cos(theta) ** 23 - 2.55514348926392e119 * cos(theta) ** 21 + 2.26787883662478e118 * cos(theta) ** 19 - 1.54813285853428e117 * cos(theta) ** 17 + 7.9752298772978e115 * cos(theta) ** 15 - 3.0220105994813e114 * cos(theta) ** 13 + 8.13377594063291e112 * cos(theta) ** 11 - 1.48082647048927e111 * cos(theta) ** 9 + 1.69776283240809e109 * cos(theta) ** 7 - 1.09533085961812e107 * cos(theta) ** 5 + 3.25410237557374e104 * cos(theta) ** 3 - 2.81091480757881e101 * cos(theta) ) * sin(51 * phi) ) # @torch.jit.script def Yl98_m_minus_50(theta, phi): return ( 1.23392746579016e-98 * (1.0 - cos(theta) ** 2) ** 25 * ( 1.36980052475612e121 * cos(theta) ** 48 - 7.92376918935848e121 * cos(theta) ** 46 + 2.1246375935197e122 * cos(theta) ** 44 - 3.50769138476376e122 * cos(theta) ** 42 + 3.99487074375872e122 * cos(theta) ** 40 - 3.33261944399123e122 * cos(theta) ** 38 + 2.11065898119445e122 * cos(theta) ** 36 - 1.03802900714481e122 * cos(theta) ** 34 + 4.02164553182485e121 * cos(theta) ** 32 - 1.23819750700504e121 * cos(theta) ** 30 + 3.04302777145308e120 * cos(theta) ** 28 - 5.97539998758059e119 * cos(theta) ** 26 + 9.35455200367866e118 * cos(theta) ** 24 - 1.16142885875633e118 * cos(theta) ** 22 + 1.13393941831239e117 * cos(theta) ** 20 - 8.60073810296822e115 * cos(theta) ** 18 + 4.98451867331113e114 * cos(theta) ** 16 - 2.1585789996295e113 * cos(theta) ** 14 + 6.77814661719409e111 * cos(theta) ** 12 - 1.48082647048927e110 * cos(theta) ** 10 + 2.12220354051011e108 * cos(theta) ** 8 - 1.82555143269687e106 * cos(theta) ** 6 + 8.13525593893434e103 * cos(theta) ** 4 - 1.40545740378941e101 * cos(theta) ** 2 + 3.93025001059677e97 ) * sin(50 * phi) ) # @torch.jit.script def Yl98_m_minus_49(theta, phi): return ( 1.05079628556199e-96 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 2.79551127501249e119 * cos(theta) ** 49 - 1.68590833816138e120 * cos(theta) ** 47 + 4.72141687448821e120 * cos(theta) ** 45 - 8.15742182503199e120 * cos(theta) ** 43 + 9.74358717989932e120 * cos(theta) ** 41 - 8.54517806151598e120 * cos(theta) ** 39 + 5.70448373295797e120 * cos(theta) ** 37 - 2.96579716327089e120 * cos(theta) ** 35 + 1.21868046418935e120 * cos(theta) ** 33 - 3.99418550646789e119 * cos(theta) ** 31 + 1.04931992119072e119 * cos(theta) ** 29 - 2.21311110651133e118 * cos(theta) ** 27 + 3.74182080147147e117 * cos(theta) ** 25 - 5.04969069024489e116 * cos(theta) ** 23 + 5.39971151577328e115 * cos(theta) ** 21 - 4.52670426472011e114 * cos(theta) ** 19 + 2.93206980783007e113 * cos(theta) ** 17 - 1.43905266641967e112 * cos(theta) ** 15 + 5.21395893630315e110 * cos(theta) ** 13 - 1.34620588226298e109 * cos(theta) ** 11 + 2.35800393390012e107 * cos(theta) ** 9 - 2.60793061813838e105 * cos(theta) ** 7 + 1.62705118778687e103 * cos(theta) ** 5 - 4.68485801263135e100 * cos(theta) ** 3 + 3.93025001059677e97 * cos(theta) ) * sin(49 * phi) ) # @torch.jit.script def Yl98_m_minus_48(theta, phi): return ( 9.00870153133566e-95 * (1.0 - cos(theta) ** 2) ** 24 * ( 5.59102255002498e117 * cos(theta) ** 50 - 3.51230903783621e118 * cos(theta) ** 48 + 1.02639497271483e119 * cos(theta) ** 46 - 1.85395950568909e119 * cos(theta) ** 44 + 2.31990170949984e119 * cos(theta) ** 42 - 2.136294515379e119 * cos(theta) ** 40 + 1.50117992972578e119 * cos(theta) ** 38 - 8.23832545353024e118 * cos(theta) ** 36 + 3.58435430643926e118 * cos(theta) ** 34 - 1.24818297077121e118 * cos(theta) ** 32 + 3.49773307063572e117 * cos(theta) ** 30 - 7.90396823754046e116 * cos(theta) ** 28 + 1.43916184671979e116 * cos(theta) ** 26 - 2.10403778760204e115 * cos(theta) ** 24 + 2.45441432535149e114 * cos(theta) ** 22 - 2.26335213236006e113 * cos(theta) ** 20 + 1.62892767101671e112 * cos(theta) ** 18 - 8.99407916512293e110 * cos(theta) ** 16 + 3.72425638307368e109 * cos(theta) ** 14 - 1.12183823521915e108 * cos(theta) ** 12 + 2.35800393390012e106 * cos(theta) ** 10 - 3.25991327267298e104 * cos(theta) ** 8 + 2.71175197964478e102 * cos(theta) ** 6 - 1.17121450315784e100 * cos(theta) ** 4 + 1.96512500529839e97 * cos(theta) ** 2 - 5.347278925982e93 ) * sin(48 * phi) ) # @torch.jit.script def Yl98_m_minus_47(theta, phi): return ( 7.77362729122006e-93 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 1.09627893137745e116 * cos(theta) ** 51 - 7.16797762823715e116 * cos(theta) ** 49 + 2.18381909088261e117 * cos(theta) ** 47 - 4.11991001264242e117 * cos(theta) ** 45 + 5.39512025465079e117 * cos(theta) ** 43 - 5.21047442775365e117 * cos(theta) ** 41 + 3.84917930698918e117 * cos(theta) ** 39 - 2.22657444690007e117 * cos(theta) ** 37 + 1.02410123041122e117 * cos(theta) ** 35 - 3.78237263870065e116 * cos(theta) ** 33 + 1.12830099052765e116 * cos(theta) ** 31 - 2.72550628880705e115 * cos(theta) ** 29 + 5.33022906192516e114 * cos(theta) ** 27 - 8.41615115040815e113 * cos(theta) ** 25 + 1.0671366631963e113 * cos(theta) ** 23 - 1.07778672969527e112 * cos(theta) ** 21 + 8.57330353166688e110 * cos(theta) ** 19 - 5.29063480301349e109 * cos(theta) ** 17 + 2.48283758871578e108 * cos(theta) ** 15 - 8.62952488630113e106 * cos(theta) ** 13 + 2.1436399399092e105 * cos(theta) ** 11 - 3.62212585852553e103 * cos(theta) ** 9 + 3.87393139949254e101 * cos(theta) ** 7 - 2.34242900631568e99 * cos(theta) ** 5 + 6.55041668432795e96 * cos(theta) ** 3 - 5.347278925982e93 * cos(theta) ) * sin(47 * phi) ) # @torch.jit.script def Yl98_m_minus_46(theta, phi): return ( 6.75008726403979e-91 * (1.0 - cos(theta) ** 2) ** 23 * ( 2.1082287141874e114 * cos(theta) ** 52 - 1.43359552564743e115 * cos(theta) ** 50 + 4.54962310600545e115 * cos(theta) ** 48 - 8.95632611444004e115 * cos(theta) ** 46 + 1.22616369423882e116 * cos(theta) ** 44 - 1.24058914946515e116 * cos(theta) ** 42 + 9.62294826747296e115 * cos(theta) ** 40 - 5.8594064392107e115 * cos(theta) ** 38 + 2.84472564003116e115 * cos(theta) ** 36 - 1.11246254079431e115 * cos(theta) ** 34 + 3.52594059539891e114 * cos(theta) ** 32 - 9.08502096269018e113 * cos(theta) ** 30 + 1.90365323640184e113 * cos(theta) ** 28 - 3.23698121169544e112 * cos(theta) ** 26 + 4.44640276331792e111 * cos(theta) ** 24 - 4.89903058952393e110 * cos(theta) ** 22 + 4.28665176583344e109 * cos(theta) ** 20 - 2.93924155722971e108 * cos(theta) ** 18 + 1.55177349294736e107 * cos(theta) ** 16 - 6.16394634735795e105 * cos(theta) ** 14 + 1.786366616591e104 * cos(theta) ** 12 - 3.62212585852553e102 * cos(theta) ** 10 + 4.84241424936568e100 * cos(theta) ** 8 - 3.90404834385946e98 * cos(theta) ** 6 + 1.63760417108199e96 * cos(theta) ** 4 - 2.673639462991e93 * cos(theta) ** 2 + 7.09188186469761e89 ) * sin(46 * phi) ) # @torch.jit.script def Yl98_m_minus_45(theta, phi): return ( 5.89696524533311e-89 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 3.97779002676868e112 * cos(theta) ** 53 - 2.81097161891653e113 * cos(theta) ** 51 + 9.28494511429683e113 * cos(theta) ** 49 - 1.90560130094469e114 * cos(theta) ** 47 + 2.72480820941959e114 * cos(theta) ** 45 - 2.8850910452678e114 * cos(theta) ** 43 + 2.34706055304218e114 * cos(theta) ** 41 - 1.50241190748992e114 * cos(theta) ** 39 + 7.6884476757599e113 * cos(theta) ** 37 - 3.17846440226945e113 * cos(theta) ** 35 + 1.06846684709058e113 * cos(theta) ** 33 - 2.93065192344845e112 * cos(theta) ** 31 + 6.56432150483395e111 * cos(theta) ** 29 - 1.19888193025757e111 * cos(theta) ** 27 + 1.77856110532717e110 * cos(theta) ** 25 - 2.13001329979301e109 * cos(theta) ** 23 + 2.04126274563497e108 * cos(theta) ** 21 - 1.54696924064722e107 * cos(theta) ** 19 + 9.12807937027862e105 * cos(theta) ** 17 - 4.1092975649053e104 * cos(theta) ** 15 + 1.37412816660846e103 * cos(theta) ** 13 - 3.29284168956866e101 * cos(theta) ** 11 + 5.38046027707298e99 * cos(theta) ** 9 - 5.57721191979923e97 * cos(theta) ** 7 + 3.27520834216398e95 * cos(theta) ** 5 - 8.91213154330334e92 * cos(theta) ** 3 + 7.09188186469761e89 * cos(theta) ) * sin(45 * phi) ) # @torch.jit.script def Yl98_m_minus_44(theta, phi): return ( 5.1819529666549e-87 * (1.0 - cos(theta) ** 2) ** 22 * ( 7.3662778273494e110 * cos(theta) ** 54 - 5.40571465176256e111 * cos(theta) ** 52 + 1.85698902285937e112 * cos(theta) ** 50 - 3.97000271030144e112 * cos(theta) ** 48 + 5.92349610743389e112 * cos(theta) ** 46 - 6.55702510288137e112 * cos(theta) ** 44 + 5.5882394120052e112 * cos(theta) ** 42 - 3.75602976872481e112 * cos(theta) ** 40 + 2.02327570414734e112 * cos(theta) ** 38 - 8.82906778408182e111 * cos(theta) ** 36 + 3.14254955026641e111 * cos(theta) ** 34 - 9.15828726077639e110 * cos(theta) ** 32 + 2.18810716827798e110 * cos(theta) ** 30 - 4.28172117949133e109 * cos(theta) ** 28 + 6.84061963587372e108 * cos(theta) ** 26 - 8.87505541580423e107 * cos(theta) ** 24 + 9.27846702561351e106 * cos(theta) ** 22 - 7.73484620323609e105 * cos(theta) ** 20 + 5.07115520571034e104 * cos(theta) ** 18 - 2.56831097806581e103 * cos(theta) ** 16 + 9.81520119006043e101 * cos(theta) ** 14 - 2.74403474130722e100 * cos(theta) ** 12 + 5.38046027707298e98 * cos(theta) ** 10 - 6.97151489974903e96 * cos(theta) ** 8 + 5.45868057027329e94 * cos(theta) ** 6 - 2.22803288582583e92 * cos(theta) ** 4 + 3.54594093234881e89 * cos(theta) ** 2 - 9.18399619877961e85 ) * sin(44 * phi) ) # @torch.jit.script def Yl98_m_minus_43(theta, phi): return ( 4.5795097056863e-85 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 1.33932324133625e109 * cos(theta) ** 55 - 1.01994616070992e110 * cos(theta) ** 53 + 3.64115494678307e110 * cos(theta) ** 51 - 8.10204634755396e110 * cos(theta) ** 49 + 1.26031832073062e111 * cos(theta) ** 47 - 1.45711668952919e111 * cos(theta) ** 45 + 1.29959056093144e111 * cos(theta) ** 43 - 9.16104821640197e110 * cos(theta) ** 41 + 5.18788642089062e110 * cos(theta) ** 39 - 2.38623453623833e110 * cos(theta) ** 37 + 8.97871300076117e109 * cos(theta) ** 35 - 2.77523856387163e109 * cos(theta) ** 33 + 7.05841022025156e108 * cos(theta) ** 31 - 1.47645557913494e108 * cos(theta) ** 29 + 2.53356282810138e107 * cos(theta) ** 27 - 3.55002216632169e106 * cos(theta) ** 25 + 4.03411609809283e105 * cos(theta) ** 23 - 3.68326009677909e104 * cos(theta) ** 21 + 2.66902905563702e103 * cos(theta) ** 19 - 1.51077116356813e102 * cos(theta) ** 17 + 6.54346746004029e100 * cos(theta) ** 15 - 2.11079595485171e99 * cos(theta) ** 13 + 4.8913275246118e97 * cos(theta) ** 11 - 7.74612766638782e95 * cos(theta) ** 9 + 7.79811510039042e93 * cos(theta) ** 7 - 4.45606577165167e91 * cos(theta) ** 5 + 1.18198031078294e89 * cos(theta) ** 3 - 9.18399619877961e85 * cos(theta) ) * sin(43 * phi) ) # @torch.jit.script def Yl98_m_minus_42(theta, phi): return ( 4.06932665934764e-83 * (1.0 - cos(theta) ** 2) ** 21 * ( 2.39164864524331e107 * cos(theta) ** 56 - 1.88878918649985e108 * cos(theta) ** 54 + 7.00222105150591e108 * cos(theta) ** 52 - 1.62040926951079e109 * cos(theta) ** 50 + 2.62566316818878e109 * cos(theta) ** 48 - 3.16764497723738e109 * cos(theta) ** 46 + 2.95361491120782e109 * cos(theta) ** 44 - 2.18120195628618e109 * cos(theta) ** 42 + 1.29697160522265e109 * cos(theta) ** 40 - 6.27956456904823e108 * cos(theta) ** 38 + 2.49408694465588e108 * cos(theta) ** 36 - 8.16246636432834e107 * cos(theta) ** 34 + 2.20575319382861e107 * cos(theta) ** 32 - 4.92151859711647e106 * cos(theta) ** 30 + 9.04843867179063e105 * cos(theta) ** 28 - 1.36539314089296e105 * cos(theta) ** 26 + 1.68088170753868e104 * cos(theta) ** 24 - 1.67420913489959e103 * cos(theta) ** 22 + 1.33451452781851e102 * cos(theta) ** 20 - 8.39317313093403e100 * cos(theta) ** 18 + 4.08966716252518e99 * cos(theta) ** 16 - 1.50771139632265e98 * cos(theta) ** 14 + 4.07610627050983e96 * cos(theta) ** 12 - 7.74612766638782e94 * cos(theta) ** 10 + 9.74764387548802e92 * cos(theta) ** 8 - 7.42677628608611e90 * cos(theta) ** 6 + 2.95495077695734e88 * cos(theta) ** 4 - 4.59199809938981e85 * cos(theta) ** 2 + 1.163120085965e82 ) * sin(42 * phi) ) # @torch.jit.script def Yl98_m_minus_41(theta, phi): return ( 3.63516392057649e-81 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 4.19587481621634e105 * cos(theta) ** 57 - 3.43416215727245e106 * cos(theta) ** 55 + 1.321173783303e107 * cos(theta) ** 53 - 3.17727307747214e107 * cos(theta) ** 51 + 5.35849626160976e107 * cos(theta) ** 49 - 6.73967016433484e107 * cos(theta) ** 47 + 6.56358869157294e107 * cos(theta) ** 45 - 5.07256268903764e107 * cos(theta) ** 43 + 3.16334537859184e107 * cos(theta) ** 41 - 1.61014476129442e107 * cos(theta) ** 39 + 6.74077552609697e106 * cos(theta) ** 37 - 2.33213324695095e106 * cos(theta) ** 35 + 6.68410058735943e105 * cos(theta) ** 33 - 1.58758664423112e105 * cos(theta) ** 31 + 3.1201512661347e104 * cos(theta) ** 29 - 5.05701163293688e103 * cos(theta) ** 27 + 6.72352683015472e102 * cos(theta) ** 25 - 7.27917015173733e101 * cos(theta) ** 23 + 6.35483108485005e100 * cos(theta) ** 21 - 4.41745954259686e99 * cos(theta) ** 19 + 2.40568656619128e98 * cos(theta) ** 17 - 1.00514093088176e97 * cos(theta) ** 15 + 3.13546636193064e95 * cos(theta) ** 13 - 7.04193424217074e93 * cos(theta) ** 11 + 1.08307154172089e92 * cos(theta) ** 9 - 1.06096804086944e90 * cos(theta) ** 7 + 5.90990155391468e87 * cos(theta) ** 5 - 1.53066603312994e85 * cos(theta) ** 3 + 1.163120085965e82 * cos(theta) ) * sin(41 * phi) ) # @torch.jit.script def Yl98_m_minus_40(theta, phi): return ( 3.26396427175474e-79 * (1.0 - cos(theta) ** 2) ** 20 * ( 7.23426692451092e103 * cos(theta) ** 58 - 6.1324324237008e104 * cos(theta) ** 56 + 2.44661811722778e105 * cos(theta) ** 54 - 6.11014053360027e105 * cos(theta) ** 52 + 1.07169925232195e106 * cos(theta) ** 50 - 1.40409795090309e106 * cos(theta) ** 48 + 1.42686710686368e106 * cos(theta) ** 46 - 1.15285515659946e106 * cos(theta) ** 44 + 7.53177471093295e105 * cos(theta) ** 42 - 4.02536190323605e105 * cos(theta) ** 40 + 1.77388829634131e105 * cos(theta) ** 38 - 6.47814790819709e104 * cos(theta) ** 36 + 1.96591193745866e104 * cos(theta) ** 34 - 4.96120826322225e103 * cos(theta) ** 32 + 1.0400504220449e103 * cos(theta) ** 30 - 1.80607558319174e102 * cos(theta) ** 28 + 2.58597185775181e101 * cos(theta) ** 26 - 3.03298756322389e100 * cos(theta) ** 24 + 2.88855958402275e99 * cos(theta) ** 22 - 2.20872977129843e98 * cos(theta) ** 20 + 1.33649253677294e97 * cos(theta) ** 18 - 6.28213081801103e95 * cos(theta) ** 16 + 2.23961882995046e94 * cos(theta) ** 14 - 5.86827853514228e92 * cos(theta) ** 12 + 1.08307154172089e91 * cos(theta) ** 10 - 1.32621005108681e89 * cos(theta) ** 8 + 9.84983592319113e86 * cos(theta) ** 6 - 3.82666508282484e84 * cos(theta) ** 4 + 5.81560042982498e81 * cos(theta) ** 2 - 1.4427190349355e78 ) * sin(40 * phi) ) # @torch.jit.script def Yl98_m_minus_39(theta, phi): return ( 2.94517391424152e-77 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 1.22614693635778e102 * cos(theta) ** 59 - 1.07586533749137e103 * cos(theta) ** 57 + 4.44839657677778e103 * cos(theta) ** 55 - 1.15285670445288e104 * cos(theta) ** 53 + 2.10137108298422e104 * cos(theta) ** 51 - 2.86550602225121e104 * cos(theta) ** 49 + 3.03588746141209e104 * cos(theta) ** 47 - 2.56190034799881e104 * cos(theta) ** 45 + 1.75157551417045e104 * cos(theta) ** 43 - 9.81795586155133e103 * cos(theta) ** 41 + 4.54843152908028e103 * cos(theta) ** 39 - 1.75085078599921e103 * cos(theta) ** 37 + 5.61689124988187e102 * cos(theta) ** 35 - 1.50339644340068e102 * cos(theta) ** 33 + 3.35500136143516e101 * cos(theta) ** 31 - 6.22784683859222e100 * cos(theta) ** 29 + 9.57767354722894e99 * cos(theta) ** 27 - 1.21319502528956e99 * cos(theta) ** 25 + 1.25589547131424e98 * cos(theta) ** 23 - 1.05177608157068e97 * cos(theta) ** 21 + 7.03417124617334e95 * cos(theta) ** 19 - 3.69537106941825e94 * cos(theta) ** 17 + 1.49307921996697e93 * cos(theta) ** 15 - 4.51406041164791e91 * cos(theta) ** 13 + 9.84610492473538e89 * cos(theta) ** 11 - 1.47356672342978e88 * cos(theta) ** 9 + 1.40711941759873e86 * cos(theta) ** 7 - 7.65333016564967e83 * cos(theta) ** 5 + 1.93853347660833e81 * cos(theta) ** 3 - 1.4427190349355e78 * cos(theta) ) * sin(39 * phi) ) # @torch.jit.script def Yl98_m_minus_38(theta, phi): return ( 2.6702188289681e-75 * (1.0 - cos(theta) ** 2) ** 19 * ( 2.04357822726297e100 * cos(theta) ** 60 - 1.85494023705408e101 * cos(theta) ** 58 + 7.94356531567461e101 * cos(theta) ** 56 - 2.13491982306089e102 * cos(theta) ** 54 + 4.04109823650811e102 * cos(theta) ** 52 - 5.73101204450242e102 * cos(theta) ** 50 + 6.32476554460852e102 * cos(theta) ** 48 - 5.5693485826061e102 * cos(theta) ** 46 + 3.98085344129649e102 * cos(theta) ** 44 - 2.3376085384646e102 * cos(theta) ** 42 + 1.13710788227007e102 * cos(theta) ** 40 - 4.60750206841898e101 * cos(theta) ** 38 + 1.56024756941163e101 * cos(theta) ** 36 - 4.42175424529612e100 * cos(theta) ** 34 + 1.04843792544849e100 * cos(theta) ** 32 - 2.07594894619741e99 * cos(theta) ** 30 + 3.42059769543891e98 * cos(theta) ** 28 - 4.66613471265214e97 * cos(theta) ** 26 + 5.23289779714267e96 * cos(theta) ** 24 - 4.78080037077582e95 * cos(theta) ** 22 + 3.51708562308667e94 * cos(theta) ** 20 - 2.05298392745459e93 * cos(theta) ** 18 + 9.33174512479357e91 * cos(theta) ** 16 - 3.22432886546279e90 * cos(theta) ** 14 + 8.20508743727948e88 * cos(theta) ** 12 - 1.47356672342978e87 * cos(theta) ** 10 + 1.75889927199842e85 * cos(theta) ** 8 - 1.27555502760828e83 * cos(theta) ** 6 + 4.84633369152082e80 * cos(theta) ** 4 - 7.21359517467748e77 * cos(theta) ** 2 + 1.75513264590693e74 ) * sin(38 * phi) ) # @torch.jit.script def Yl98_m_minus_37(theta, phi): return ( 2.43209886847967e-73 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 3.35012824141471e98 * cos(theta) ** 61 - 3.1439665034815e99 * cos(theta) ** 59 + 1.39360795011835e100 * cos(theta) ** 57 - 3.88167240556525e100 * cos(theta) ** 55 + 7.62471365378889e100 * cos(theta) ** 53 - 1.12372785186322e101 * cos(theta) ** 51 + 1.29076847849154e101 * cos(theta) ** 49 - 1.18496778353321e101 * cos(theta) ** 47 + 8.84634098065886e100 * cos(theta) ** 45 - 5.43629892666187e100 * cos(theta) ** 43 + 2.77343385919529e100 * cos(theta) ** 41 - 1.1814107867741e100 * cos(theta) ** 39 + 4.21688532273414e99 * cos(theta) ** 37 - 1.26335835579889e99 * cos(theta) ** 35 + 3.17708462257118e98 * cos(theta) ** 33 - 6.6966095038626e97 * cos(theta) ** 31 + 1.17951644670307e97 * cos(theta) ** 29 - 1.72819804172301e96 * cos(theta) ** 27 + 2.09315911885707e95 * cos(theta) ** 25 - 2.07860885685905e94 * cos(theta) ** 23 + 1.67480267766032e93 * cos(theta) ** 21 - 1.08051785655504e92 * cos(theta) ** 19 + 5.48926183811386e90 * cos(theta) ** 17 - 2.1495525769752e89 * cos(theta) ** 15 + 6.31160572098422e87 * cos(theta) ** 13 - 1.3396061122089e86 * cos(theta) ** 11 + 1.95433252444268e84 * cos(theta) ** 9 - 1.82222146801183e82 * cos(theta) ** 7 + 9.69266738304164e79 * cos(theta) ** 5 - 2.40453172489249e77 * cos(theta) ** 3 + 1.75513264590693e74 * cos(theta) ) * sin(37 * phi) ) # @torch.jit.script def Yl98_m_minus_36(theta, phi): return ( 2.22507141601619e-71 * (1.0 - cos(theta) ** 2) ** 18 * ( 5.40343264744308e96 * cos(theta) ** 62 - 5.23994417246916e97 * cos(theta) ** 60 + 2.40277232779026e98 * cos(theta) ** 58 - 6.93155786708081e98 * cos(theta) ** 56 + 1.41198400996091e99 * cos(theta) ** 54 - 2.16101509973696e99 * cos(theta) ** 52 + 2.58153695698307e99 * cos(theta) ** 50 - 2.46868288236086e99 * cos(theta) ** 48 + 1.92311760449106e99 * cos(theta) ** 46 - 1.23552248333224e99 * cos(theta) ** 44 + 6.60341395046498e98 * cos(theta) ** 42 - 2.95352696693525e98 * cos(theta) ** 40 + 1.1097066638774e98 * cos(theta) ** 38 - 3.50932876610803e97 * cos(theta) ** 36 + 9.34436653697405e96 * cos(theta) ** 34 - 2.09269046995706e96 * cos(theta) ** 32 + 3.93172148901024e95 * cos(theta) ** 30 - 6.17213586329648e94 * cos(theta) ** 28 + 8.0506119956041e93 * cos(theta) ** 26 - 8.66087023691272e92 * cos(theta) ** 24 + 7.61273944391054e91 * cos(theta) ** 22 - 5.40258928277522e90 * cos(theta) ** 20 + 3.04958991006326e89 * cos(theta) ** 18 - 1.3434703606095e88 * cos(theta) ** 16 + 4.50828980070301e86 * cos(theta) ** 14 - 1.11633842684075e85 * cos(theta) ** 12 + 1.95433252444268e83 * cos(theta) ** 10 - 2.27777683501478e81 * cos(theta) ** 8 + 1.61544456384027e79 * cos(theta) ** 6 - 6.01132931223123e76 * cos(theta) ** 4 + 8.77566322953464e73 * cos(theta) ** 2 - 2.09693267133444e70 ) * sin(36 * phi) ) # @torch.jit.script def Yl98_m_minus_35(theta, phi): return ( 2.04440356024428e-69 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 8.57687721816362e94 * cos(theta) ** 63 - 8.59007241388387e95 * cos(theta) ** 61 + 4.07249547083095e96 * cos(theta) ** 59 - 1.21606278369839e97 * cos(theta) ** 57 + 2.56724365447437e97 * cos(theta) ** 55 - 4.07738698063577e97 * cos(theta) ** 53 + 5.06183717055504e97 * cos(theta) ** 51 - 5.03812833134869e97 * cos(theta) ** 49 + 4.09173958402352e97 * cos(theta) ** 47 - 2.7456055185161e97 * cos(theta) ** 45 + 1.53567766289883e97 * cos(theta) ** 43 - 7.20372430959816e96 * cos(theta) ** 41 + 2.84540170224976e96 * cos(theta) ** 39 - 9.48467234083252e95 * cos(theta) ** 37 + 2.66981901056401e95 * cos(theta) ** 35 - 6.34148627259716e94 * cos(theta) ** 33 + 1.26829725451943e94 * cos(theta) ** 31 - 2.12832271148154e93 * cos(theta) ** 29 + 2.98170814652004e92 * cos(theta) ** 27 - 3.46434809476509e91 * cos(theta) ** 25 + 3.30988671474371e90 * cos(theta) ** 23 - 2.5726615632263e89 * cos(theta) ** 21 + 1.60504732108593e88 * cos(theta) ** 19 - 7.90276682711469e86 * cos(theta) ** 17 + 3.00552653380201e85 * cos(theta) ** 15 - 8.58721866800574e83 * cos(theta) ** 13 + 1.77666593131153e82 * cos(theta) ** 11 - 2.53086315001643e80 * cos(theta) ** 9 + 2.30777794834325e78 * cos(theta) ** 7 - 1.20226586244625e76 * cos(theta) ** 5 + 2.92522107651155e73 * cos(theta) ** 3 - 2.09693267133444e70 * cos(theta) ) * sin(35 * phi) ) # @torch.jit.script def Yl98_m_minus_34(theta, phi): return ( 1.8861769621828e-67 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.34013706533807e93 * cos(theta) ** 64 - 1.38549555062643e94 * cos(theta) ** 62 + 6.78749245138493e94 * cos(theta) ** 60 - 2.09665997189377e95 * cos(theta) ** 58 + 4.58436366870424e95 * cos(theta) ** 56 - 7.55071663080698e95 * cos(theta) ** 54 + 9.73430225106738e95 * cos(theta) ** 52 - 1.00762566626974e96 * cos(theta) ** 50 + 8.52445746671567e95 * cos(theta) ** 48 - 5.96870764894803e95 * cos(theta) ** 46 + 3.49017650658826e95 * cos(theta) ** 44 - 1.71517245466623e95 * cos(theta) ** 42 + 7.11350425562439e94 * cos(theta) ** 40 - 2.49596640548224e94 * cos(theta) ** 38 + 7.41616391823337e93 * cos(theta) ** 36 - 1.86514302135211e93 * cos(theta) ** 34 + 3.96342892037322e92 * cos(theta) ** 32 - 7.09440903827181e91 * cos(theta) ** 30 + 1.0648957666143e91 * cos(theta) ** 28 - 1.33244157490965e90 * cos(theta) ** 26 + 1.37911946447655e89 * cos(theta) ** 24 - 1.16939161964832e88 * cos(theta) ** 22 + 8.02523660542963e86 * cos(theta) ** 20 - 4.39042601506372e85 * cos(theta) ** 18 + 1.87845408362625e84 * cos(theta) ** 16 - 6.1337276200041e82 * cos(theta) ** 14 + 1.48055494275961e81 * cos(theta) ** 12 - 2.53086315001643e79 * cos(theta) ** 10 + 2.88472243542906e77 * cos(theta) ** 8 - 2.00377643741041e75 * cos(theta) ** 6 + 7.31305269127887e72 * cos(theta) ** 4 - 1.04846633566722e70 * cos(theta) ** 2 + 2.4635017285414e66 ) * sin(34 * phi) ) # @torch.jit.script def Yl98_m_minus_33(theta, phi): return ( 1.74713345541493e-65 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 2.06174933128933e91 * cos(theta) ** 65 - 2.19919928670862e92 * cos(theta) ** 63 + 1.11270368055491e93 * cos(theta) ** 61 - 3.55366096931148e93 * cos(theta) ** 59 + 8.04274327842849e93 * cos(theta) ** 57 - 1.37285756923763e94 * cos(theta) ** 55 + 1.83666080208819e94 * cos(theta) ** 53 - 1.9757366005289e94 * cos(theta) ** 51 + 1.73968519728891e94 * cos(theta) ** 49 - 1.26993779764852e94 * cos(theta) ** 47 + 7.75594779241835e93 * cos(theta) ** 45 - 3.98877315038658e93 * cos(theta) ** 43 + 1.73500103795717e93 * cos(theta) ** 41 - 6.39991386021088e92 * cos(theta) ** 39 + 2.00436862654956e92 * cos(theta) ** 37 - 5.32898006100602e91 * cos(theta) ** 35 + 1.20103906677976e91 * cos(theta) ** 33 - 2.28851904460381e90 * cos(theta) ** 31 + 3.67205436763551e89 * cos(theta) ** 29 - 4.93496879596166e88 * cos(theta) ** 27 + 5.51647785790619e87 * cos(theta) ** 25 - 5.08431138977529e86 * cos(theta) ** 23 + 3.82154124068077e85 * cos(theta) ** 21 - 2.31075053424406e84 * cos(theta) ** 19 + 1.10497299036839e83 * cos(theta) ** 17 - 4.0891517466694e81 * cos(theta) ** 15 + 1.13888841750739e80 * cos(theta) ** 13 - 2.30078468183312e78 * cos(theta) ** 11 + 3.20524715047673e76 * cos(theta) ** 9 - 2.86253776772916e74 * cos(theta) ** 7 + 1.46261053825577e72 * cos(theta) ** 5 - 3.4948877855574e69 * cos(theta) ** 3 + 2.4635017285414e66 * cos(theta) ) * sin(33 * phi) ) # @torch.jit.script def Yl98_m_minus_32(theta, phi): return ( 1.62455229337705e-63 * (1.0 - cos(theta) ** 2) ** 16 * ( 3.12386262316565e89 * cos(theta) ** 66 - 3.43624888548222e90 * cos(theta) ** 64 + 1.79468335573372e91 * cos(theta) ** 62 - 5.9227682821858e91 * cos(theta) ** 60 + 1.38667987559112e92 * cos(theta) ** 58 - 2.45153137363863e92 * cos(theta) ** 56 + 3.40122370757071e92 * cos(theta) ** 54 - 3.79949346255558e92 * cos(theta) ** 52 + 3.47937039457783e92 * cos(theta) ** 50 - 2.64570374510108e92 * cos(theta) ** 48 + 1.68607560704747e92 * cos(theta) ** 46 - 9.06539352360586e91 * cos(theta) ** 44 + 4.13095485227897e91 * cos(theta) ** 42 - 1.59997846505272e91 * cos(theta) ** 40 + 5.27465428039358e90 * cos(theta) ** 38 - 1.48027223916834e90 * cos(theta) ** 36 + 3.5324678434699e89 * cos(theta) ** 34 - 7.15162201438691e88 * cos(theta) ** 32 + 1.22401812254517e88 * cos(theta) ** 30 - 1.76248885570059e87 * cos(theta) ** 28 + 2.12172225304084e86 * cos(theta) ** 26 - 2.11846307907304e85 * cos(theta) ** 24 + 1.73706420030944e84 * cos(theta) ** 22 - 1.15537526712203e83 * cos(theta) ** 20 + 6.13873883537992e81 * cos(theta) ** 18 - 2.55571984166837e80 * cos(theta) ** 16 + 8.13491726790994e78 * cos(theta) ** 14 - 1.91732056819426e77 * cos(theta) ** 12 + 3.20524715047673e75 * cos(theta) ** 10 - 3.57817220966145e73 * cos(theta) ** 8 + 2.43768423042629e71 * cos(theta) ** 6 - 8.73721946389351e68 * cos(theta) ** 4 + 1.2317508642707e66 * cos(theta) ** 2 - 2.84929647067014e62 ) * sin(32 * phi) ) # @torch.jit.script def Yl98_m_minus_31(theta, phi): return ( 1.51615210452691e-61 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 4.66248152711292e87 * cos(theta) ** 67 - 5.28653674689572e88 * cos(theta) ** 65 + 2.84870373925987e89 * cos(theta) ** 63 - 9.70945620030459e89 * cos(theta) ** 61 + 2.35030487388325e90 * cos(theta) ** 59 - 4.30093223445374e90 * cos(theta) ** 57 + 6.18404310467403e90 * cos(theta) ** 55 - 7.1688555897275e90 * cos(theta) ** 53 + 6.82229489132907e90 * cos(theta) ** 51 - 5.39939539816547e90 * cos(theta) ** 49 + 3.58739490861163e90 * cos(theta) ** 47 - 2.01453189413464e90 * cos(theta) ** 45 + 9.60687174948598e89 * cos(theta) ** 43 - 3.90238650012858e89 * cos(theta) ** 41 + 1.35247545651117e89 * cos(theta) ** 39 - 4.00073578153605e88 * cos(theta) ** 37 + 1.00927652670568e88 * cos(theta) ** 35 - 2.16715818617785e87 * cos(theta) ** 33 + 3.94844555659733e86 * cos(theta) ** 31 - 6.07754777827791e85 * cos(theta) ** 29 + 7.85823056681794e84 * cos(theta) ** 27 - 8.47385231629215e83 * cos(theta) ** 25 + 7.55245304482366e82 * cos(theta) ** 23 - 5.50178698629538e81 * cos(theta) ** 21 + 3.23091517651575e80 * cos(theta) ** 19 - 1.5033646127461e79 * cos(theta) ** 17 + 5.42327817860663e77 * cos(theta) ** 15 - 1.47486197553405e76 * cos(theta) ** 13 + 2.91386104588794e74 * cos(theta) ** 11 - 3.97574689962383e72 * cos(theta) ** 9 + 3.48240604346613e70 * cos(theta) ** 7 - 1.7474438927787e68 * cos(theta) ** 5 + 4.10583621423567e65 * cos(theta) ** 3 - 2.84929647067014e62 * cos(theta) ) * sin(31 * phi) ) # @torch.jit.script def Yl98_m_minus_30(theta, phi): return ( 1.42001222931447e-59 * (1.0 - cos(theta) ** 2) ** 15 * ( 6.85659048104841e85 * cos(theta) ** 68 - 8.00990416196322e86 * cos(theta) ** 66 + 4.45109959259355e87 * cos(theta) ** 64 - 1.56604132262977e88 * cos(theta) ** 62 + 3.91717478980542e88 * cos(theta) ** 60 - 7.41540040423059e88 * cos(theta) ** 58 + 1.10429341154893e89 * cos(theta) ** 56 - 1.32756584994954e89 * cos(theta) ** 54 + 1.31197978679405e89 * cos(theta) ** 52 - 1.07987907963309e89 * cos(theta) ** 50 + 7.4737393929409e88 * cos(theta) ** 48 - 4.37941716116225e88 * cos(theta) ** 46 + 2.183379943065e88 * cos(theta) ** 44 - 9.29139642887758e87 * cos(theta) ** 42 + 3.38118864127794e87 * cos(theta) ** 40 - 1.05282520566738e87 * cos(theta) ** 38 + 2.80354590751579e86 * cos(theta) ** 36 - 6.37399466522897e85 * cos(theta) ** 34 + 1.23388923643666e85 * cos(theta) ** 32 - 2.02584925942597e84 * cos(theta) ** 30 + 2.80651091672069e83 * cos(theta) ** 28 - 3.25917396780467e82 * cos(theta) ** 26 + 3.14685543534319e81 * cos(theta) ** 24 - 2.5008122664979e80 * cos(theta) ** 22 + 1.61545758825787e79 * cos(theta) ** 20 - 8.35202562636724e77 * cos(theta) ** 18 + 3.38954886162914e76 * cos(theta) ** 16 - 1.05347283966718e75 * cos(theta) ** 14 + 2.42821753823995e73 * cos(theta) ** 12 - 3.97574689962383e71 * cos(theta) ** 10 + 4.35300755433266e69 * cos(theta) ** 8 - 2.9124064879645e67 * cos(theta) ** 6 + 1.02645905355892e65 * cos(theta) ** 4 - 1.42464823533507e62 * cos(theta) ** 2 + 3.24817199118803e58 ) * sin(30 * phi) ) # @torch.jit.script def Yl98_m_minus_29(theta, phi): return ( 1.3345093310932e-57 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 9.93708765369334e83 * cos(theta) ** 69 - 1.19550808387511e85 * cos(theta) ** 67 + 6.847845527067e85 * cos(theta) ** 65 - 2.48577987719011e86 * cos(theta) ** 63 + 6.42159801607446e86 * cos(theta) ** 61 - 1.25684752614078e87 * cos(theta) ** 59 + 1.93735686236655e87 * cos(theta) ** 57 - 2.41375609081734e87 * cos(theta) ** 55 + 2.47543355998878e87 * cos(theta) ** 53 - 2.11740996006489e87 * cos(theta) ** 51 + 1.52525293733488e87 * cos(theta) ** 49 - 9.31790885353671e86 * cos(theta) ** 47 + 4.85195542903332e86 * cos(theta) ** 45 - 2.16078986718083e86 * cos(theta) ** 43 + 8.24680156409252e85 * cos(theta) ** 41 - 2.69955180940354e85 * cos(theta) ** 39 + 7.57715110139403e84 * cos(theta) ** 37 - 1.82114133292256e84 * cos(theta) ** 35 + 3.73905829223232e83 * cos(theta) ** 33 - 6.53499761105152e82 * cos(theta) ** 31 + 9.677623850761e81 * cos(theta) ** 29 - 1.20710146955729e81 * cos(theta) ** 27 + 1.25874217413728e80 * cos(theta) ** 25 - 1.08730968108604e79 * cos(theta) ** 23 + 7.69265518218035e77 * cos(theta) ** 21 - 4.39580296124591e76 * cos(theta) ** 19 + 1.99385227154655e75 * cos(theta) ** 17 - 7.02315226444785e73 * cos(theta) ** 15 + 1.86785964479996e72 * cos(theta) ** 13 - 3.61431536329439e70 * cos(theta) ** 11 + 4.83667506036962e68 * cos(theta) ** 9 - 4.16058069709215e66 * cos(theta) ** 7 + 2.05291810711784e64 * cos(theta) ** 5 - 4.7488274511169e61 * cos(theta) ** 3 + 3.24817199118803e58 * cos(theta) ) * sin(29 * phi) ) # @torch.jit.script def Yl98_m_minus_28(theta, phi): return ( 1.25826609768952e-55 * (1.0 - cos(theta) ** 2) ** 14 * ( 1.41958395052762e82 * cos(theta) ** 70 - 1.75810012334575e83 * cos(theta) ** 68 + 1.03755235258591e84 * cos(theta) ** 66 - 3.88403105810955e84 * cos(theta) ** 64 + 1.03574161549588e85 * cos(theta) ** 62 - 2.0947458769013e85 * cos(theta) ** 60 + 3.34027045235612e85 * cos(theta) ** 58 - 4.31027873360239e85 * cos(theta) ** 56 + 4.58413622220144e85 * cos(theta) ** 54 - 4.07194223089402e85 * cos(theta) ** 52 + 3.05050587466975e85 * cos(theta) ** 50 - 1.94123101115348e85 * cos(theta) ** 48 + 1.05477291935507e85 * cos(theta) ** 46 - 4.91088606177462e84 * cos(theta) ** 44 + 1.96352418192679e84 * cos(theta) ** 42 - 6.74887952350885e83 * cos(theta) ** 40 + 1.9939871319458e83 * cos(theta) ** 38 - 5.0587259247849e82 * cos(theta) ** 36 + 1.09972302712715e82 * cos(theta) ** 34 - 2.0421867534536e81 * cos(theta) ** 32 + 3.22587461692034e80 * cos(theta) ** 30 - 4.31107667699031e79 * cos(theta) ** 28 + 4.84131605437414e78 * cos(theta) ** 26 - 4.53045700452519e77 * cos(theta) ** 24 + 3.49666144644561e76 * cos(theta) ** 22 - 2.19790148062296e75 * cos(theta) ** 20 + 1.10769570641475e74 * cos(theta) ** 18 - 4.38947016527991e72 * cos(theta) ** 16 + 1.3341854605714e71 * cos(theta) ** 14 - 3.01192946941199e69 * cos(theta) ** 12 + 4.83667506036962e67 * cos(theta) ** 10 - 5.20072587136518e65 * cos(theta) ** 8 + 3.42153017852973e63 * cos(theta) ** 6 - 1.18720686277923e61 * cos(theta) ** 4 + 1.62408599559402e58 * cos(theta) ** 2 - 3.65373677298991e54 ) * sin(28 * phi) ) # @torch.jit.script def Yl98_m_minus_27(theta, phi): return ( 1.19010955547938e-53 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.99941401482763e80 * cos(theta) ** 71 - 2.5479711932547e81 * cos(theta) ** 69 + 1.54858560087449e82 * cos(theta) ** 67 - 5.97543239709162e82 * cos(theta) ** 65 + 1.64403431031092e83 * cos(theta) ** 63 - 3.43400963426442e83 * cos(theta) ** 61 + 5.66147534297647e83 * cos(theta) ** 59 - 7.56189251509192e83 * cos(theta) ** 57 + 8.33479313127535e83 * cos(theta) ** 55 - 7.68290986961135e83 * cos(theta) ** 53 + 5.98138406797991e83 * cos(theta) ** 51 - 3.96169594112955e83 * cos(theta) ** 49 + 2.24419770075547e83 * cos(theta) ** 47 - 1.09130801372769e83 * cos(theta) ** 45 + 4.56633530680649e82 * cos(theta) ** 43 - 1.64606817646557e82 * cos(theta) ** 41 + 5.11278751780974e81 * cos(theta) ** 39 - 1.36722322291484e81 * cos(theta) ** 37 + 3.14206579179186e80 * cos(theta) ** 35 - 6.18844470743515e79 * cos(theta) ** 33 + 1.04060471513559e79 * cos(theta) ** 31 - 1.48657816447942e78 * cos(theta) ** 29 + 1.79308002013857e77 * cos(theta) ** 27 - 1.81218280181007e76 * cos(theta) ** 25 + 1.52028758541114e75 * cos(theta) ** 23 - 1.0466197526776e74 * cos(theta) ** 21 + 5.82997740218291e72 * cos(theta) ** 19 - 2.58204127369406e71 * cos(theta) ** 17 + 8.89456973714267e69 * cos(theta) ** 15 - 2.31686882262461e68 * cos(theta) ** 13 + 4.39697732760875e66 * cos(theta) ** 11 - 5.77858430151687e64 * cos(theta) ** 9 + 4.88790025504247e62 * cos(theta) ** 7 - 2.37441372555845e60 * cos(theta) ** 5 + 5.41361998531338e57 * cos(theta) ** 3 - 3.65373677298991e54 * cos(theta) ) * sin(27 * phi) ) # @torch.jit.script def Yl98_m_minus_26(theta, phi): return ( 1.12903705813361e-51 * (1.0 - cos(theta) ** 2) ** 13 * ( 2.77696390948283e78 * cos(theta) ** 72 - 3.63995884750672e79 * cos(theta) ** 70 + 2.2773317659919e80 * cos(theta) ** 68 - 9.05368545013882e80 * cos(theta) ** 66 + 2.56880360986082e81 * cos(theta) ** 64 - 5.53872521655551e81 * cos(theta) ** 62 + 9.43579223829412e81 * cos(theta) ** 60 - 1.30377457156757e82 * cos(theta) ** 58 + 1.48835591629917e82 * cos(theta) ** 56 - 1.42276108696507e82 * cos(theta) ** 54 + 1.15026616691921e82 * cos(theta) ** 52 - 7.9233918822591e81 * cos(theta) ** 50 + 4.67541187657389e81 * cos(theta) ** 48 - 2.37240872549499e81 * cos(theta) ** 46 + 1.03780347881966e81 * cos(theta) ** 44 - 3.91920994396565e80 * cos(theta) ** 42 + 1.27819687945243e80 * cos(theta) ** 40 - 3.59795584977589e79 * cos(theta) ** 38 + 8.72796053275517e78 * cos(theta) ** 36 - 1.82013079630446e78 * cos(theta) ** 34 + 3.25188973479872e77 * cos(theta) ** 32 - 4.95526054826472e76 * cos(theta) ** 30 + 6.40385721478061e75 * cos(theta) ** 28 - 6.96993385311567e74 * cos(theta) ** 26 + 6.33453160587973e73 * cos(theta) ** 24 - 4.7573625121709e72 * cos(theta) ** 22 + 2.91498870109145e71 * cos(theta) ** 20 - 1.43446737427448e70 * cos(theta) ** 18 + 5.55910608571417e68 * cos(theta) ** 16 - 1.65490630187472e67 * cos(theta) ** 14 + 3.66414777300729e65 * cos(theta) ** 12 - 5.77858430151687e63 * cos(theta) ** 10 + 6.10987531880308e61 * cos(theta) ** 8 - 3.95735620926408e59 * cos(theta) ** 6 + 1.35340499632835e57 * cos(theta) ** 4 - 1.82686838649496e54 * cos(theta) ** 2 + 4.05970752554435e50 ) * sin(26 * phi) ) # @torch.jit.script def Yl98_m_minus_25(theta, phi): return ( 1.07418842811865e-49 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 3.80406014997647e76 * cos(theta) ** 73 - 5.12670260212214e77 * cos(theta) ** 71 + 3.30048082027811e78 * cos(theta) ** 69 - 1.35129633584162e79 * cos(theta) ** 67 + 3.95200555363202e79 * cos(theta) ** 65 - 8.7916273278659e79 * cos(theta) ** 63 + 1.54685118660559e80 * cos(theta) ** 61 - 2.20978740943656e80 * cos(theta) ** 59 + 2.61115073034942e80 * cos(theta) ** 57 - 2.58683833993648e80 * cos(theta) ** 55 + 2.17031352248908e80 * cos(theta) ** 53 - 1.55360625142335e80 * cos(theta) ** 51 + 9.54165689096713e79 * cos(theta) ** 49 - 5.04767813935103e79 * cos(theta) ** 47 + 2.30622995293257e79 * cos(theta) ** 45 - 9.11444173015268e78 * cos(theta) ** 43 + 3.11755336451813e78 * cos(theta) ** 41 - 9.22552781993818e77 * cos(theta) ** 39 + 2.35890825209599e77 * cos(theta) ** 37 - 5.20037370372702e76 * cos(theta) ** 35 + 9.85421131757189e75 * cos(theta) ** 33 - 1.59847114460152e75 * cos(theta) ** 31 + 2.20822662578642e74 * cos(theta) ** 29 - 2.58145698263543e73 * cos(theta) ** 27 + 2.53381264235189e72 * cos(theta) ** 25 - 2.06841848355257e71 * cos(theta) ** 23 + 1.3880898576626e70 * cos(theta) ** 21 - 7.54982828565515e68 * cos(theta) ** 19 + 3.27006240336127e67 * cos(theta) ** 17 - 1.10327086791648e66 * cos(theta) ** 15 + 2.81857521000561e64 * cos(theta) ** 13 - 5.25325845592443e62 * cos(theta) ** 11 + 6.78875035422565e60 * cos(theta) ** 9 - 5.65336601323441e58 * cos(theta) ** 7 + 2.70680999265669e56 * cos(theta) ** 5 - 6.08956128831652e53 * cos(theta) ** 3 + 4.05970752554435e50 * cos(theta) ) * sin(25 * phi) ) # @torch.jit.script def Yl98_m_minus_24(theta, phi): return ( 1.02482305064849e-47 * (1.0 - cos(theta) ** 2) ** 12 * ( 5.14062182429253e74 * cos(theta) ** 74 - 7.12042028072519e75 * cos(theta) ** 72 + 4.7149726003973e76 * cos(theta) ** 70 - 1.98720049388473e77 * cos(theta) ** 68 + 5.98788720247277e77 * cos(theta) ** 66 - 1.37369176997905e78 * cos(theta) ** 64 + 2.4949212687187e78 * cos(theta) ** 62 - 3.6829790157276e78 * cos(theta) ** 60 + 4.50198401784383e78 * cos(theta) ** 58 - 4.619354178458e78 * cos(theta) ** 56 + 4.01909911572052e78 * cos(theta) ** 54 - 2.9877043296603e78 * cos(theta) ** 52 + 1.90833137819343e78 * cos(theta) ** 50 - 1.0515996123648e78 * cos(theta) ** 48 + 5.01354337594037e77 * cos(theta) ** 46 - 2.07146402958015e77 * cos(theta) ** 44 + 7.42274610599555e76 * cos(theta) ** 42 - 2.30638195498454e76 * cos(theta) ** 40 + 6.20765329498946e75 * cos(theta) ** 38 - 1.44454825103528e75 * cos(theta) ** 36 + 2.89829744634467e74 * cos(theta) ** 34 - 4.99522232687976e73 * cos(theta) ** 32 + 7.36075541928806e72 * cos(theta) ** 30 - 9.21948922369798e71 * cos(theta) ** 28 + 9.74543323981497e70 * cos(theta) ** 26 - 8.61841034813569e69 * cos(theta) ** 24 + 6.30949935301181e68 * cos(theta) ** 22 - 3.77491414282758e67 * cos(theta) ** 20 + 1.81670133520071e66 * cos(theta) ** 18 - 6.895442924478e64 * cos(theta) ** 16 + 2.01326800714686e63 * cos(theta) ** 14 - 4.37771537993702e61 * cos(theta) ** 12 + 6.78875035422565e59 * cos(theta) ** 10 - 7.06670751654301e57 * cos(theta) ** 8 + 4.51134998776115e55 * cos(theta) ** 6 - 1.52239032207913e53 * cos(theta) ** 4 + 2.02985376277217e50 * cos(theta) ** 2 - 4.46023678921594e46 ) * sin(24 * phi) ) # @torch.jit.script def Yl98_m_minus_23(theta, phi): return ( 9.8030096955146e-46 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 6.85416243239004e72 * cos(theta) ** 75 - 9.75400038455506e73 * cos(theta) ** 73 + 6.64080647943282e74 * cos(theta) ** 71 - 2.88000071577497e75 * cos(theta) ** 69 + 8.93714507831756e75 * cos(theta) ** 67 - 2.11337195381392e76 * cos(theta) ** 65 + 3.96019249002968e76 * cos(theta) ** 63 - 6.03767051758624e76 * cos(theta) ** 61 + 7.63048138617598e76 * cos(theta) ** 59 - 8.10413013764562e76 * cos(theta) ** 57 + 7.30745293767368e76 * cos(theta) ** 55 - 5.63717798049112e76 * cos(theta) ** 53 + 3.74182623175182e76 * cos(theta) ** 51 - 2.14612165788734e76 * cos(theta) ** 49 + 1.06671135658306e76 * cos(theta) ** 47 - 4.60325339906701e75 * cos(theta) ** 45 + 1.72622002465013e75 * cos(theta) ** 43 - 5.62532184142572e74 * cos(theta) ** 41 + 1.59170597307422e74 * cos(theta) ** 39 - 3.90418446225752e73 * cos(theta) ** 37 + 8.28084984669907e72 * cos(theta) ** 35 - 1.51370373541811e72 * cos(theta) ** 33 + 2.37443723202841e71 * cos(theta) ** 31 - 3.17913421506827e70 * cos(theta) ** 29 + 3.60941971844999e69 * cos(theta) ** 27 - 3.44736413925428e68 * cos(theta) ** 25 + 2.743260588266e67 * cos(theta) ** 23 - 1.79757816325123e66 * cos(theta) ** 21 + 9.56158597474057e64 * cos(theta) ** 19 - 4.05614289675177e63 * cos(theta) ** 17 + 1.34217867143124e62 * cos(theta) ** 15 - 3.36747336918233e60 * cos(theta) ** 13 + 6.17159123111423e58 * cos(theta) ** 11 - 7.85189724060334e56 * cos(theta) ** 9 + 6.44478569680165e54 * cos(theta) ** 7 - 3.04478064415826e52 * cos(theta) ** 5 + 6.76617920924057e49 * cos(theta) ** 3 - 4.46023678921594e46 * cos(theta) ) * sin(23 * phi) ) # @torch.jit.script def Yl98_m_minus_22(theta, phi): return ( 9.40067229316547e-44 * (1.0 - cos(theta) ** 2) ** 11 * ( 9.01863477946058e70 * cos(theta) ** 76 - 1.31810816007501e72 * cos(theta) ** 74 + 9.22334233254559e72 * cos(theta) ** 72 - 4.11428673682138e73 * cos(theta) ** 70 + 1.31428604092905e74 * cos(theta) ** 68 - 3.20207871789987e74 * cos(theta) ** 66 + 6.18780076567138e74 * cos(theta) ** 64 - 9.73817825417135e74 * cos(theta) ** 62 + 1.271746897696e75 * cos(theta) ** 60 - 1.39726381683545e75 * cos(theta) ** 58 + 1.30490231029887e75 * cos(theta) ** 56 - 1.0439218482391e75 * cos(theta) ** 54 + 7.1958196764458e74 * cos(theta) ** 52 - 4.29224331577469e74 * cos(theta) ** 50 + 2.2223153262147e74 * cos(theta) ** 48 - 1.00070726066674e74 * cos(theta) ** 46 + 3.92322732875029e73 * cos(theta) ** 44 - 1.3393623431966e73 * cos(theta) ** 42 + 3.97926493268555e72 * cos(theta) ** 40 - 1.02741696375198e72 * cos(theta) ** 38 + 2.30023606852752e71 * cos(theta) ** 36 - 4.45206981005326e70 * cos(theta) ** 34 + 7.42011635008877e69 * cos(theta) ** 32 - 1.05971140502276e69 * cos(theta) ** 30 + 1.289078470875e68 * cos(theta) ** 28 - 1.32590928432857e67 * cos(theta) ** 26 + 1.14302524511083e66 * cos(theta) ** 24 - 8.17080983296012e64 * cos(theta) ** 22 + 4.78079298737028e63 * cos(theta) ** 20 - 2.25341272041765e62 * cos(theta) ** 18 + 8.38861669644526e60 * cos(theta) ** 16 - 2.40533812084452e59 * cos(theta) ** 14 + 5.14299269259519e57 * cos(theta) ** 12 - 7.85189724060334e55 * cos(theta) ** 10 + 8.05598212100206e53 * cos(theta) ** 8 - 5.07463440693043e51 * cos(theta) ** 6 + 1.69154480231014e49 * cos(theta) ** 4 - 2.23011839460797e46 * cos(theta) ** 2 + 4.85019224577636e42 ) * sin(22 * phi) ) # @torch.jit.script def Yl98_m_minus_21(theta, phi): return ( 9.03638860146374e-42 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.17125127005982e69 * cos(theta) ** 77 - 1.75747754676668e70 * cos(theta) ** 75 + 1.26347155240351e71 * cos(theta) ** 73 - 5.7947700518611e71 * cos(theta) ** 71 + 1.90476237815805e72 * cos(theta) ** 69 - 4.77922196701474e72 * cos(theta) ** 67 + 9.51969348564828e72 * cos(theta) ** 65 - 1.5457425800272e73 * cos(theta) ** 63 + 2.0848309798295e73 * cos(theta) ** 61 - 2.36824375734822e73 * cos(theta) ** 59 + 2.28930229876995e73 * cos(theta) ** 57 - 1.89803972407109e73 * cos(theta) ** 55 + 1.35770182574449e73 * cos(theta) ** 53 - 8.41616336426409e72 * cos(theta) ** 51 + 4.53533740043817e72 * cos(theta) ** 49 - 2.12916438439732e72 * cos(theta) ** 47 + 8.71828295277843e71 * cos(theta) ** 45 - 3.11479614696884e71 * cos(theta) ** 43 + 9.70552422606231e70 * cos(theta) ** 41 - 2.63440247115892e70 * cos(theta) ** 39 + 6.21685423926357e69 * cos(theta) ** 37 - 1.2720199457295e69 * cos(theta) ** 35 + 2.24852010608751e68 * cos(theta) ** 33 - 3.41842388717018e67 * cos(theta) ** 31 + 4.44509817543102e66 * cos(theta) ** 29 - 4.91077512714284e65 * cos(theta) ** 27 + 4.57210098044334e64 * cos(theta) ** 25 - 3.55252601433049e63 * cos(theta) ** 23 + 2.27656808922394e62 * cos(theta) ** 21 - 1.18600669495666e61 * cos(theta) ** 19 + 4.93448040967368e59 * cos(theta) ** 17 - 1.60355874722968e58 * cos(theta) ** 15 + 3.95614822507322e56 * cos(theta) ** 13 - 7.13808840054849e54 * cos(theta) ** 11 + 8.95109124555785e52 * cos(theta) ** 9 - 7.24947772418633e50 * cos(theta) ** 7 + 3.38308960462029e48 * cos(theta) ** 5 - 7.43372798202656e45 * cos(theta) ** 3 + 4.85019224577636e42 * cos(theta) ) * sin(21 * phi) ) # @torch.jit.script def Yl98_m_minus_20(theta, phi): return ( 8.70594022811869e-40 * (1.0 - cos(theta) ** 2) ** 10 * ( 1.50160419238438e67 * cos(theta) ** 78 - 2.31247045627194e68 * cos(theta) ** 76 + 1.70739398973447e69 * cos(theta) ** 74 - 8.04829173869598e69 * cos(theta) ** 72 + 2.72108911165435e70 * cos(theta) ** 70 - 7.02826759855109e70 * cos(theta) ** 68 + 1.4423778008558e71 * cos(theta) ** 66 - 2.4152227812925e71 * cos(theta) ** 64 + 3.36263061262823e71 * cos(theta) ** 62 - 3.94707292891371e71 * cos(theta) ** 60 + 3.94707292891371e71 * cos(theta) ** 58 - 3.38935665012694e71 * cos(theta) ** 56 + 2.51426264026757e71 * cos(theta) ** 54 - 1.61849295466617e71 * cos(theta) ** 52 + 9.07067480087635e70 * cos(theta) ** 50 - 4.43575913416109e70 * cos(theta) ** 48 + 1.89527890277792e70 * cos(theta) ** 46 - 7.0790821522019e69 * cos(theta) ** 44 + 2.31083910144341e69 * cos(theta) ** 42 - 6.5860061778973e68 * cos(theta) ** 40 + 1.63601427349041e68 * cos(theta) ** 38 - 3.53338873813751e67 * cos(theta) ** 36 + 6.61329442966914e66 * cos(theta) ** 34 - 1.06825746474068e66 * cos(theta) ** 32 + 1.48169939181034e65 * cos(theta) ** 30 - 1.75384825969387e64 * cos(theta) ** 28 + 1.75850037709359e63 * cos(theta) ** 26 - 1.4802191726377e62 * cos(theta) ** 24 + 1.03480367691997e61 * cos(theta) ** 22 - 5.93003347478329e59 * cos(theta) ** 20 + 2.74137800537427e58 * cos(theta) ** 18 - 1.00222421701855e57 * cos(theta) ** 16 + 2.82582016076659e55 * cos(theta) ** 14 - 5.94840700045708e53 * cos(theta) ** 12 + 8.95109124555784e51 * cos(theta) ** 10 - 9.06184715523291e49 * cos(theta) ** 8 + 5.63848267436715e47 * cos(theta) ** 6 - 1.85843199550664e45 * cos(theta) ** 4 + 2.42509612288818e42 * cos(theta) ** 2 - 5.22537410663257e38 ) * sin(20 * phi) ) # @torch.jit.script def Yl98_m_minus_19(theta, phi): return ( 8.40562924814361e-38 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.90076480048656e65 * cos(theta) ** 79 - 3.00320838476876e66 * cos(theta) ** 77 + 2.27652531964596e67 * cos(theta) ** 75 - 1.10250571762959e68 * cos(theta) ** 73 + 3.83251987556951e68 * cos(theta) ** 71 - 1.01858950703639e69 * cos(theta) ** 69 + 2.15280268784448e69 * cos(theta) ** 67 - 3.71572735583461e69 * cos(theta) ** 65 + 5.3375089089337e69 * cos(theta) ** 63 - 6.47061135887493e69 * cos(theta) ** 61 + 6.68995411680289e69 * cos(theta) ** 59 - 5.9462397370648e69 * cos(theta) ** 57 + 4.57138661866832e69 * cos(theta) ** 55 - 3.05376029182297e69 * cos(theta) ** 53 + 1.77856368644634e69 * cos(theta) ** 51 - 9.05256966155324e68 * cos(theta) ** 49 + 4.03250830378281e68 * cos(theta) ** 47 - 1.57312936715598e68 * cos(theta) ** 45 + 5.37404442196141e67 * cos(theta) ** 43 - 1.60634297021885e67 * cos(theta) ** 41 + 4.19490839356516e66 * cos(theta) ** 39 - 9.54969929226354e65 * cos(theta) ** 37 + 1.88951269419118e65 * cos(theta) ** 35 - 3.23714383254752e64 * cos(theta) ** 33 + 4.77967545745271e63 * cos(theta) ** 31 - 6.04775261963405e62 * cos(theta) ** 29 + 6.51296435960589e61 * cos(theta) ** 27 - 5.92087669055081e60 * cos(theta) ** 25 + 4.4991464213912e59 * cos(theta) ** 23 - 2.82382546418252e58 * cos(theta) ** 21 + 1.44283052914435e57 * cos(theta) ** 19 - 5.89543657069735e55 * cos(theta) ** 17 + 1.88388010717772e54 * cos(theta) ** 15 - 4.57569769265929e52 * cos(theta) ** 13 + 8.13735567777986e50 * cos(theta) ** 11 - 1.00687190613699e49 * cos(theta) ** 9 + 8.05497524909592e46 * cos(theta) ** 7 - 3.71686399101328e44 * cos(theta) ** 5 + 8.08365374296059e41 * cos(theta) ** 3 - 5.22537410663257e38 * cos(theta) ) * sin(19 * phi) ) # @torch.jit.script def Yl98_m_minus_18(theta, phi): return ( 8.13220194422049e-36 * (1.0 - cos(theta) ** 2) ** 9 * ( 2.3759560006082e63 * cos(theta) ** 80 - 3.85026715995995e64 * cos(theta) ** 78 + 2.99542805216573e65 * cos(theta) ** 76 - 1.48987259139133e66 * cos(theta) ** 74 + 5.32294427162432e66 * cos(theta) ** 72 - 1.45512786719484e67 * cos(theta) ** 70 + 3.16588630565364e67 * cos(theta) ** 68 - 5.62988993308274e67 * cos(theta) ** 66 + 8.3398576702089e67 * cos(theta) ** 64 - 1.04364699336692e68 * cos(theta) ** 62 + 1.11499235280048e68 * cos(theta) ** 60 - 1.02521374776979e68 * cos(theta) ** 58 + 8.16319039047914e67 * cos(theta) ** 56 - 5.65511165152401e67 * cos(theta) ** 54 + 3.42031478162758e67 * cos(theta) ** 52 - 1.81051393231065e67 * cos(theta) ** 50 + 8.40105896621418e66 * cos(theta) ** 48 - 3.41984645033908e66 * cos(theta) ** 46 + 1.22137373226396e66 * cos(theta) ** 44 - 3.8246261195687e65 * cos(theta) ** 42 + 1.04872709839129e65 * cos(theta) ** 40 - 2.51307876112198e64 * cos(theta) ** 38 + 5.24864637275328e63 * cos(theta) ** 36 - 9.52101127219859e62 * cos(theta) ** 34 + 1.49364858045397e62 * cos(theta) ** 32 - 2.01591753987802e61 * cos(theta) ** 30 + 2.32605869985925e60 * cos(theta) ** 28 - 2.27726026559647e59 * cos(theta) ** 26 + 1.87464434224633e58 * cos(theta) ** 24 - 1.28355702917387e57 * cos(theta) ** 22 + 7.21415264572176e55 * cos(theta) ** 20 - 3.27524253927631e54 * cos(theta) ** 18 + 1.17742506698608e53 * cos(theta) ** 16 - 3.26835549475664e51 * cos(theta) ** 14 + 6.78112973148322e49 * cos(theta) ** 12 - 1.00687190613699e48 * cos(theta) ** 10 + 1.00687190613699e46 * cos(theta) ** 8 - 6.19477331835547e43 * cos(theta) ** 6 + 2.02091343574015e41 * cos(theta) ** 4 - 2.61268705331629e38 * cos(theta) ** 2 + 5.58266464383822e34 ) * sin(18 * phi) ) # @torch.jit.script def Yl98_m_minus_17(theta, phi): return ( 7.88278458861485e-34 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 2.93327901309654e61 * cos(theta) ** 81 - 4.87375589868348e62 * cos(theta) ** 79 + 3.89016630151394e63 * cos(theta) ** 77 - 1.98649678852178e64 * cos(theta) ** 75 + 7.29170448167715e64 * cos(theta) ** 73 - 2.04947586928851e65 * cos(theta) ** 71 + 4.58824102268644e65 * cos(theta) ** 69 - 8.40282079564589e65 * cos(theta) ** 67 + 1.28305502618598e66 * cos(theta) ** 65 - 1.65658252915385e66 * cos(theta) ** 63 + 1.82785631606636e66 * cos(theta) ** 61 - 1.7376504199488e66 * cos(theta) ** 59 + 1.43213866499634e66 * cos(theta) ** 57 - 1.02820211845891e66 * cos(theta) ** 55 + 6.45342411627846e65 * cos(theta) ** 53 - 3.55002731825617e65 * cos(theta) ** 51 + 1.71450182983963e65 * cos(theta) ** 49 - 7.27626904327464e64 * cos(theta) ** 47 + 2.71416384947546e64 * cos(theta) ** 45 - 8.89447934783418e63 * cos(theta) ** 43 + 2.55787097168607e63 * cos(theta) ** 41 - 6.44379169518458e62 * cos(theta) ** 39 + 1.4185530737171e62 * cos(theta) ** 37 - 2.72028893491388e61 * cos(theta) ** 35 + 4.52620781955749e60 * cos(theta) ** 33 - 6.50295980605811e59 * cos(theta) ** 31 + 8.02089206848017e58 * cos(theta) ** 29 - 8.43429727998691e57 * cos(theta) ** 27 + 7.49857736898533e56 * cos(theta) ** 25 - 5.58068273553857e55 * cos(theta) ** 23 + 3.43531078367703e54 * cos(theta) ** 21 - 1.723811862777e53 * cos(theta) ** 19 + 6.92602980580046e51 * cos(theta) ** 17 - 2.17890366317109e50 * cos(theta) ** 15 + 5.21625363960247e48 * cos(theta) ** 13 - 9.15338096488173e46 * cos(theta) ** 11 + 1.11874656237443e45 * cos(theta) ** 9 - 8.84967616907924e42 * cos(theta) ** 7 + 4.0418268714803e40 * cos(theta) ** 5 - 8.70895684438762e37 * cos(theta) ** 3 + 5.58266464383822e34 * cos(theta) ) * sin(17 * phi) ) # @torch.jit.script def Yl98_m_minus_16(theta, phi): return ( 7.65482920625177e-32 * (1.0 - cos(theta) ** 2) ** 8 * ( 3.57716952816651e59 * cos(theta) ** 82 - 6.09219487335435e60 * cos(theta) ** 80 + 4.98739269424864e61 * cos(theta) ** 78 - 2.61381156384444e62 * cos(theta) ** 76 + 9.85365470496913e62 * cos(theta) ** 74 - 2.84649426290071e63 * cos(theta) ** 72 + 6.5546300324092e63 * cos(theta) ** 70 - 1.23570894053616e64 * cos(theta) ** 68 + 1.94402276694846e64 * cos(theta) ** 66 - 2.58841020180289e64 * cos(theta) ** 64 + 2.94815534849414e64 * cos(theta) ** 62 - 2.896084033248e64 * cos(theta) ** 60 + 2.46920459482128e64 * cos(theta) ** 58 - 1.83607521153377e64 * cos(theta) ** 56 + 1.19507854005157e64 * cos(theta) ** 54 - 6.8269756120311e63 * cos(theta) ** 52 + 3.42900365967926e63 * cos(theta) ** 50 - 1.51588938401555e63 * cos(theta) ** 48 + 5.90035619451187e62 * cos(theta) ** 46 - 2.02147257905322e62 * cos(theta) ** 44 + 6.09016898020494e61 * cos(theta) ** 42 - 1.61094792379614e61 * cos(theta) ** 40 + 3.73303440451869e60 * cos(theta) ** 38 - 7.55635815253856e59 * cos(theta) ** 36 + 1.3312375939875e59 * cos(theta) ** 34 - 2.03217493939316e58 * cos(theta) ** 32 + 2.67363068949339e57 * cos(theta) ** 30 - 3.01224902856675e56 * cos(theta) ** 28 + 2.88406821884051e55 * cos(theta) ** 26 - 2.32528447314107e54 * cos(theta) ** 24 + 1.56150490167138e53 * cos(theta) ** 22 - 8.61905931388501e51 * cos(theta) ** 20 + 3.84779433655581e50 * cos(theta) ** 18 - 1.36181478948193e49 * cos(theta) ** 16 + 3.72589545685891e47 * cos(theta) ** 14 - 7.62781747073478e45 * cos(theta) ** 12 + 1.11874656237443e44 * cos(theta) ** 10 - 1.1062095211349e42 * cos(theta) ** 8 + 6.73637811913383e39 * cos(theta) ** 6 - 2.17723921109691e37 * cos(theta) ** 4 + 2.79133232191911e34 * cos(theta) ** 2 - 5.92011096907553e30 ) * sin(16 * phi) ) # @torch.jit.script def Yl98_m_minus_15(theta, phi): return ( 7.44606764066569e-30 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 4.30984280501989e57 * cos(theta) ** 83 - 7.52122823870907e58 * cos(theta) ** 81 + 6.31315530917549e59 * cos(theta) ** 79 - 3.39456047252525e60 * cos(theta) ** 77 + 1.31382062732922e61 * cos(theta) ** 75 - 3.89930720945302e61 * cos(theta) ** 73 + 9.23187328508338e61 * cos(theta) ** 71 - 1.79088252251617e62 * cos(theta) ** 69 + 2.90152651783352e62 * cos(theta) ** 67 - 3.98216954123521e62 * cos(theta) ** 65 + 4.67961166427641e62 * cos(theta) ** 63 - 4.74767874302952e62 * cos(theta) ** 61 + 4.18509253359538e62 * cos(theta) ** 59 - 3.22118458163819e62 * cos(theta) ** 57 + 2.17287007282103e62 * cos(theta) ** 55 - 1.2881086060436e62 * cos(theta) ** 53 + 6.72353658760639e61 * cos(theta) ** 51 - 3.09365180411337e61 * cos(theta) ** 49 + 1.25539493500253e61 * cos(theta) ** 47 - 4.49216128678494e60 * cos(theta) ** 45 + 1.41631836748952e60 * cos(theta) ** 43 - 3.92914127755157e59 * cos(theta) ** 41 + 9.57188308850947e58 * cos(theta) ** 39 - 2.04225896014556e58 * cos(theta) ** 37 + 3.80353598282142e57 * cos(theta) ** 35 - 6.15810587694897e56 * cos(theta) ** 33 + 8.62461512739803e55 * cos(theta) ** 31 - 1.03870656157474e55 * cos(theta) ** 29 + 1.06817341438537e54 * cos(theta) ** 27 - 9.30113789256428e52 * cos(theta) ** 25 + 6.78915174639729e51 * cos(theta) ** 23 - 4.10431395899286e50 * cos(theta) ** 21 + 2.02515491397674e49 * cos(theta) ** 19 - 8.01067523224666e47 * cos(theta) ** 17 + 2.48393030457261e46 * cos(theta) ** 15 - 5.86755190056521e44 * cos(theta) ** 13 + 1.0170423294313e43 * cos(theta) ** 11 - 1.22912169014989e41 * cos(theta) ** 9 + 9.62339731304832e38 * cos(theta) ** 7 - 4.35447842219381e36 * cos(theta) ** 5 + 9.3044410730637e33 * cos(theta) ** 3 - 5.92011096907553e30 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl98_m_minus_14(theta, phi): return ( 7.25447255182986e-28 * (1.0 - cos(theta) ** 2) ** 7 * ( 5.1307652440713e55 * cos(theta) ** 84 - 9.17222955940131e56 * cos(theta) ** 82 + 7.89144413646936e57 * cos(theta) ** 80 - 4.3520006058016e58 * cos(theta) ** 78 + 1.72871135174897e59 * cos(theta) ** 76 - 5.26933406682841e59 * cos(theta) ** 74 + 1.28220462292825e60 * cos(theta) ** 72 - 2.55840360359453e60 * cos(theta) ** 70 + 4.26695076151989e60 * cos(theta) ** 68 - 6.03359021399274e60 * cos(theta) ** 66 + 7.31189322543188e60 * cos(theta) ** 64 - 7.65754635972503e60 * cos(theta) ** 62 + 6.97515422265897e60 * cos(theta) ** 60 - 5.55376652006585e60 * cos(theta) ** 58 + 3.88012513003755e60 * cos(theta) ** 56 - 2.38538630748816e60 * cos(theta) ** 54 + 1.29298780530892e60 * cos(theta) ** 52 - 6.18730360822674e59 * cos(theta) ** 50 + 2.6154061145886e59 * cos(theta) ** 48 - 9.76556801474987e58 * cos(theta) ** 46 + 3.218905380658e58 * cos(theta) ** 44 - 9.35509827988469e57 * cos(theta) ** 42 + 2.39297077212737e57 * cos(theta) ** 40 - 5.37436568459357e56 * cos(theta) ** 38 + 1.05653777300595e56 * cos(theta) ** 36 - 1.81120761086734e55 * cos(theta) ** 34 + 2.69519222731188e54 * cos(theta) ** 32 - 3.46235520524914e53 * cos(theta) ** 30 + 3.81490505137634e52 * cos(theta) ** 28 - 3.57736072790934e51 * cos(theta) ** 26 + 2.82881322766554e50 * cos(theta) ** 24 - 1.86559725408767e49 * cos(theta) ** 22 + 1.01257745698837e48 * cos(theta) ** 20 - 4.45037512902592e46 * cos(theta) ** 18 + 1.55245644035788e45 * cos(theta) ** 16 - 4.19110850040372e43 * cos(theta) ** 14 + 8.47535274526086e41 * cos(theta) ** 12 - 1.22912169014989e40 * cos(theta) ** 10 + 1.20292466413104e38 * cos(theta) ** 8 - 7.25746403698969e35 * cos(theta) ** 6 + 2.32611026826593e33 * cos(theta) ** 4 - 2.96005548453776e30 * cos(theta) ** 2 + 6.23694792359411e26 ) * sin(14 * phi) ) # @torch.jit.script def Yl98_m_minus_13(theta, phi): return ( 7.07822422285425e-26 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 6.03619440478976e53 * cos(theta) ** 85 - 1.10508789872305e55 * cos(theta) ** 83 + 9.74252362527082e55 * cos(theta) ** 81 - 5.50886152633114e56 * cos(theta) ** 79 + 2.24507967759606e57 * cos(theta) ** 77 - 7.02577875577121e57 * cos(theta) ** 75 + 1.7564446889428e58 * cos(theta) ** 73 - 3.6033853571754e58 * cos(theta) ** 71 + 6.18398661089839e58 * cos(theta) ** 69 - 9.00535852834738e58 * cos(theta) ** 67 + 1.12490665006644e59 * cos(theta) ** 65 - 1.2154835491627e59 * cos(theta) ** 63 + 1.14346790535393e59 * cos(theta) ** 61 - 9.41316359333195e58 * cos(theta) ** 59 + 6.80723707024132e58 * cos(theta) ** 57 - 4.33706601361483e58 * cos(theta) ** 55 + 2.43959963265834e58 * cos(theta) ** 53 - 1.21319678592681e58 * cos(theta) ** 51 + 5.3375634991604e57 * cos(theta) ** 49 - 2.07778042867019e57 * cos(theta) ** 47 + 7.15312306812889e56 * cos(theta) ** 45 - 2.17560425113598e56 * cos(theta) ** 43 + 5.83651407835943e55 * cos(theta) ** 41 - 1.37804248322912e55 * cos(theta) ** 39 + 2.85550749461068e54 * cos(theta) ** 37 - 5.17487888819241e53 * cos(theta) ** 35 + 8.16724917367237e52 * cos(theta) ** 33 - 1.11688877588682e52 * cos(theta) ** 31 + 1.3154845004746e51 * cos(theta) ** 29 - 1.3249484177442e50 * cos(theta) ** 27 + 1.13152529106621e49 * cos(theta) ** 25 - 8.11129240907681e47 * cos(theta) ** 23 + 4.82179741423034e46 * cos(theta) ** 21 - 2.34230269948733e45 * cos(theta) ** 19 + 9.13209670798752e43 * cos(theta) ** 17 - 2.79407233360248e42 * cos(theta) ** 15 + 6.51950211173912e40 * cos(theta) ** 13 - 1.11738335468172e39 * cos(theta) ** 11 + 1.3365829601456e37 * cos(theta) ** 9 - 1.03678057671281e35 * cos(theta) ** 7 + 4.65222053653185e32 * cos(theta) ** 5 - 9.86685161512588e29 * cos(theta) ** 3 + 6.23694792359411e26 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl98_m_minus_12(theta, phi): return ( 6.9156822533309e-24 * (1.0 - cos(theta) ** 2) ** 6 * ( 7.01883070324391e51 * cos(theta) ** 86 - 1.31558083181315e53 * cos(theta) ** 84 + 1.18811263722815e54 * cos(theta) ** 82 - 6.88607690791393e54 * cos(theta) ** 80 + 2.87830727896931e55 * cos(theta) ** 78 - 9.24444573127791e55 * cos(theta) ** 76 + 2.37357390397676e56 * cos(theta) ** 74 - 5.00470188496583e56 * cos(theta) ** 72 + 8.8342665869977e56 * cos(theta) ** 70 - 1.32431743063932e57 * cos(theta) ** 68 + 1.70440401525219e57 * cos(theta) ** 66 - 1.89919304556672e57 * cos(theta) ** 64 + 1.8443030731515e57 * cos(theta) ** 62 - 1.56886059888866e57 * cos(theta) ** 60 + 1.17366156383471e57 * cos(theta) ** 58 - 7.74476073859791e56 * cos(theta) ** 56 + 4.51777709751545e56 * cos(theta) ** 54 - 2.33307074216694e56 * cos(theta) ** 52 + 1.06751269983208e56 * cos(theta) ** 50 - 4.32870922639622e55 * cos(theta) ** 48 + 1.55502675394106e55 * cos(theta) ** 46 - 4.94455511621813e54 * cos(theta) ** 44 + 1.3896462091332e54 * cos(theta) ** 42 - 3.4451062080728e53 * cos(theta) ** 40 + 7.51449340687021e52 * cos(theta) ** 38 - 1.43746635783123e52 * cos(theta) ** 36 + 2.40213210990364e51 * cos(theta) ** 34 - 3.49027742464631e50 * cos(theta) ** 32 + 4.38494833491533e49 * cos(theta) ** 30 - 4.73195863480071e48 * cos(theta) ** 28 + 4.35202035025467e47 * cos(theta) ** 26 - 3.37970517044867e46 * cos(theta) ** 24 + 2.19172609737743e45 * cos(theta) ** 22 - 1.17115134974366e44 * cos(theta) ** 20 + 5.07338705999307e42 * cos(theta) ** 18 - 1.74629520850155e41 * cos(theta) ** 16 + 4.6567872226708e39 * cos(theta) ** 14 - 9.31152795568102e37 * cos(theta) ** 12 + 1.3365829601456e36 * cos(theta) ** 10 - 1.29597572089102e34 * cos(theta) ** 8 + 7.75370089421975e31 * cos(theta) ** 6 - 2.46671290378147e29 * cos(theta) ** 4 + 3.11847396179705e26 * cos(theta) ** 2 - 6.53357209678829e22 ) * sin(12 * phi) ) # @torch.jit.script def Yl98_m_minus_11(theta, phi): return ( 6.76536138020634e-22 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 8.06762149798151e49 * cos(theta) ** 87 - 1.5477421550743e51 * cos(theta) ** 85 + 1.43146100870861e52 * cos(theta) ** 83 - 8.50132951594312e52 * cos(theta) ** 81 + 3.64342693540419e53 * cos(theta) ** 79 - 1.20057736769843e54 * cos(theta) ** 77 + 3.16476520530235e54 * cos(theta) ** 75 - 6.85575600680251e54 * cos(theta) ** 73 + 1.24426289957714e55 * cos(theta) ** 71 - 1.91930062411496e55 * cos(theta) ** 69 + 2.54388658992864e55 * cos(theta) ** 67 - 2.92183545471803e55 * cos(theta) ** 65 + 2.92746519547857e55 * cos(theta) ** 63 - 2.57190262112895e55 * cos(theta) ** 61 + 1.98925688785544e55 * cos(theta) ** 59 - 1.35872995413998e55 * cos(theta) ** 57 + 8.21414017730081e54 * cos(theta) ** 55 - 4.40202026823952e54 * cos(theta) ** 53 + 2.09316215653349e54 * cos(theta) ** 51 - 8.8341004620331e53 * cos(theta) ** 49 + 3.30856756157673e53 * cos(theta) ** 47 - 1.09879002582625e53 * cos(theta) ** 45 + 3.23173537007721e52 * cos(theta) ** 43 - 8.40269806847025e51 * cos(theta) ** 41 + 1.92679318124877e51 * cos(theta) ** 39 - 3.88504421035466e50 * cos(theta) ** 37 + 6.86323459972468e49 * cos(theta) ** 35 - 1.0576598256504e49 * cos(theta) ** 33 + 1.41449946287591e48 * cos(theta) ** 31 - 1.63170987406921e47 * cos(theta) ** 29 + 1.61185938898321e46 * cos(theta) ** 27 - 1.35188206817947e45 * cos(theta) ** 25 + 9.52924390164099e43 * cos(theta) ** 23 - 5.57691118925554e42 * cos(theta) ** 21 + 2.67020371578583e41 * cos(theta) ** 19 - 1.02723247558915e40 * cos(theta) ** 17 + 3.10452481511387e38 * cos(theta) ** 15 - 7.16271381206232e36 * cos(theta) ** 13 + 1.21507541831418e35 * cos(theta) ** 11 - 1.43997302321224e33 * cos(theta) ** 9 + 1.10767155631711e31 * cos(theta) ** 7 - 4.93342580756294e28 * cos(theta) ** 5 + 1.03949132059902e26 * cos(theta) ** 3 - 6.53357209678829e22 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl98_m_minus_10(theta, phi): return ( 6.62591079995136e-20 * (1.0 - cos(theta) ** 2) ** 5 * ( 9.16775170225171e47 * cos(theta) ** 88 - 1.79970018031895e49 * cos(theta) ** 86 + 1.70412024846263e50 * cos(theta) ** 84 - 1.03674750194428e51 * cos(theta) ** 82 + 4.55428366925524e51 * cos(theta) ** 80 - 1.53920175345953e52 * cos(theta) ** 78 + 4.16416474381888e52 * cos(theta) ** 76 - 9.26453514432772e52 * cos(theta) ** 74 + 1.72814291607936e53 * cos(theta) ** 72 - 2.74185803444994e53 * cos(theta) ** 70 + 3.74100969107153e53 * cos(theta) ** 68 - 4.42702341623945e53 * cos(theta) ** 66 + 4.57416436793527e53 * cos(theta) ** 64 - 4.14823003407895e53 * cos(theta) ** 62 + 3.31542814642573e53 * cos(theta) ** 60 - 2.34263785196549e53 * cos(theta) ** 58 + 1.46681074594657e53 * cos(theta) ** 56 - 8.15188938562874e52 * cos(theta) ** 54 + 4.02531183948748e52 * cos(theta) ** 52 - 1.76682009240662e52 * cos(theta) ** 50 + 6.89284908661818e51 * cos(theta) ** 48 - 2.3886739691875e51 * cos(theta) ** 46 + 7.34485311381183e50 * cos(theta) ** 44 - 2.00064239725482e50 * cos(theta) ** 42 + 4.81698295312193e49 * cos(theta) ** 40 - 1.02238005535649e49 * cos(theta) ** 38 + 1.90645405547908e48 * cos(theta) ** 36 - 3.11076419308941e47 * cos(theta) ** 34 + 4.42031082148723e46 * cos(theta) ** 32 - 5.43903291356404e45 * cos(theta) ** 30 + 5.75664067494004e44 * cos(theta) ** 28 - 5.19954641607488e43 * cos(theta) ** 26 + 3.97051829235041e42 * cos(theta) ** 24 - 2.53495963147979e41 * cos(theta) ** 22 + 1.33510185789291e40 * cos(theta) ** 20 - 5.70684708660638e38 * cos(theta) ** 18 + 1.94032800944617e37 * cos(theta) ** 16 - 5.11622415147309e35 * cos(theta) ** 14 + 1.01256284859515e34 * cos(theta) ** 12 - 1.43997302321224e32 * cos(theta) ** 10 + 1.38458944539638e30 * cos(theta) ** 8 - 8.22237634593823e27 * cos(theta) ** 6 + 2.59872830149754e25 * cos(theta) ** 4 - 3.26678604839415e22 * cos(theta) ** 2 + 6.81148050123884e18 ) * sin(10 * phi) ) # @torch.jit.script def Yl98_m_minus_9(theta, phi): return ( 6.49609647438139e-18 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1.03008446092716e46 * cos(theta) ** 89 - 2.06862089691833e47 * cos(theta) ** 87 + 2.00484735113251e48 * cos(theta) ** 85 - 1.24909337583649e49 * cos(theta) ** 83 + 5.62257243117931e49 * cos(theta) ** 81 - 1.94835664994877e50 * cos(theta) ** 79 + 5.40800616080374e50 * cos(theta) ** 77 - 1.23527135257703e51 * cos(theta) ** 75 + 2.36731906312241e51 * cos(theta) ** 73 - 3.86177187950696e51 * cos(theta) ** 71 + 5.42175317546598e51 * cos(theta) ** 69 - 6.60749763617828e51 * cos(theta) ** 67 + 7.03717595066964e51 * cos(theta) ** 65 - 6.58449211758563e51 * cos(theta) ** 63 + 5.43512810889465e51 * cos(theta) ** 61 - 3.97057263044998e51 * cos(theta) ** 59 + 2.57335218587118e51 * cos(theta) ** 57 - 1.48216170647795e51 * cos(theta) ** 55 + 7.59492799903298e50 * cos(theta) ** 53 - 3.46435312236592e50 * cos(theta) ** 51 + 1.4067038952282e50 * cos(theta) ** 49 - 5.08228504082447e49 * cos(theta) ** 47 + 1.63218958084707e49 * cos(theta) ** 45 - 4.65265673780191e48 * cos(theta) ** 43 + 1.17487389100535e48 * cos(theta) ** 41 - 2.6214873214269e47 * cos(theta) ** 39 + 5.15257852832184e46 * cos(theta) ** 37 - 8.88789769454116e45 * cos(theta) ** 35 + 1.3394881277234e45 * cos(theta) ** 33 - 1.75452674631098e44 * cos(theta) ** 31 + 1.98504850860001e43 * cos(theta) ** 29 - 1.92575793187958e42 * cos(theta) ** 27 + 1.58820731694016e41 * cos(theta) ** 25 - 1.10215636151295e40 * cos(theta) ** 23 + 6.35762789472816e38 * cos(theta) ** 21 - 3.00360372979283e37 * cos(theta) ** 19 + 1.14136941732128e36 * cos(theta) ** 17 - 3.41081610098206e34 * cos(theta) ** 15 + 7.78894498919348e32 * cos(theta) ** 13 - 1.3090663847384e31 * cos(theta) ** 11 + 1.53843271710709e29 * cos(theta) ** 9 - 1.17462519227689e27 * cos(theta) ** 7 + 5.19745660299509e24 * cos(theta) ** 5 - 1.08892868279805e22 * cos(theta) ** 3 + 6.81148050123884e18 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl98_m_minus_8(theta, phi): return ( 6.37478599142786e-16 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.14453828991907e44 * cos(theta) ** 90 - 2.35070556467993e45 * cos(theta) ** 88 + 2.33121785015408e46 * cos(theta) ** 86 - 1.48701592361486e47 * cos(theta) ** 84 + 6.85679564777965e47 * cos(theta) ** 82 - 2.43544581243596e48 * cos(theta) ** 80 + 6.93334123179967e48 * cos(theta) ** 78 - 1.62535704286451e49 * cos(theta) ** 76 + 3.19907981503029e49 * cos(theta) ** 74 - 5.36357205487077e49 * cos(theta) ** 72 + 7.74536167923711e49 * cos(theta) ** 70 - 9.71690828849747e49 * cos(theta) ** 68 + 1.06623878040449e50 * cos(theta) ** 66 - 1.02882689337275e50 * cos(theta) ** 64 + 8.76633565950749e49 * cos(theta) ** 62 - 6.61762105074997e49 * cos(theta) ** 60 + 4.436814113571e49 * cos(theta) ** 58 - 2.64671733299634e49 * cos(theta) ** 56 + 1.40646814796907e49 * cos(theta) ** 54 - 6.66221754301139e48 * cos(theta) ** 52 + 2.8134077904564e48 * cos(theta) ** 50 - 1.0588093835051e48 * cos(theta) ** 48 + 3.54823821923277e47 * cos(theta) ** 46 - 1.05742198586407e47 * cos(theta) ** 44 + 2.79731878810797e46 * cos(theta) ** 42 - 6.55371830356725e45 * cos(theta) ** 40 + 1.35594171797943e45 * cos(theta) ** 38 - 2.46886047070588e44 * cos(theta) ** 36 + 3.93967096389236e43 * cos(theta) ** 34 - 5.48289608222181e42 * cos(theta) ** 32 + 6.61682836200005e41 * cos(theta) ** 30 - 6.87770689956994e40 * cos(theta) ** 28 + 6.10848968053909e39 * cos(theta) ** 26 - 4.59231817297063e38 * cos(theta) ** 24 + 2.88983086124007e37 * cos(theta) ** 22 - 1.50180186489641e36 * cos(theta) ** 20 + 6.34094120734042e34 * cos(theta) ** 18 - 2.13176006311379e33 * cos(theta) ** 16 + 5.5635321351382e31 * cos(theta) ** 14 - 1.09088865394867e30 * cos(theta) ** 12 + 1.53843271710709e28 * cos(theta) ** 10 - 1.46828149034611e26 * cos(theta) ** 8 + 8.66242767165848e23 * cos(theta) ** 6 - 2.72232170699512e21 * cos(theta) ** 4 + 3.40574025061942e18 * cos(theta) ** 2 - 707318847480669.0 ) * sin(8 * phi) ) # @torch.jit.script def Yl98_m_minus_7(theta, phi): return ( 6.26093562518037e-14 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.25773438452644e42 * cos(theta) ** 91 - 2.64124220750553e43 * cos(theta) ** 89 + 2.67956074730354e44 * cos(theta) ** 87 - 1.74943049837043e45 * cos(theta) ** 85 + 8.26119957563813e45 * cos(theta) ** 83 - 3.00672322522958e46 * cos(theta) ** 81 + 8.77638130607553e46 * cos(theta) ** 79 - 2.11085330242144e47 * cos(theta) ** 77 + 4.26543975337372e47 * cos(theta) ** 75 - 7.34735897927503e47 * cos(theta) ** 73 + 1.09089601116016e48 * cos(theta) ** 71 - 1.40824757804311e48 * cos(theta) ** 69 + 1.59140116478282e48 * cos(theta) ** 67 - 1.58281060518885e48 * cos(theta) ** 65 + 1.39148185071548e48 * cos(theta) ** 63 - 1.08485590995901e48 * cos(theta) ** 61 + 7.52002392130678e47 * cos(theta) ** 59 - 4.64336374209885e47 * cos(theta) ** 57 + 2.55721481448922e47 * cos(theta) ** 55 - 1.25702217792668e47 * cos(theta) ** 53 + 5.51648586364e46 * cos(theta) ** 51 - 2.16083547654102e46 * cos(theta) ** 49 + 7.54944301964419e45 * cos(theta) ** 47 - 2.34982663525349e45 * cos(theta) ** 45 + 6.50539253048365e44 * cos(theta) ** 43 - 1.59846787891884e44 * cos(theta) ** 41 + 3.47677363584469e43 * cos(theta) ** 39 - 6.67259586677264e42 * cos(theta) ** 37 + 1.12562027539782e42 * cos(theta) ** 35 - 1.66148366127934e41 * cos(theta) ** 33 + 2.1344607619355e40 * cos(theta) ** 31 - 2.37162306881722e39 * cos(theta) ** 29 + 2.26240358538485e38 * cos(theta) ** 27 - 1.83692726918825e37 * cos(theta) ** 25 + 1.25644820053916e36 * cos(theta) ** 23 - 7.15143745188769e34 * cos(theta) ** 21 + 3.33733747754759e33 * cos(theta) ** 19 - 1.25397650771399e32 * cos(theta) ** 17 + 3.70902142342546e30 * cos(theta) ** 15 - 8.39145118422051e28 * cos(theta) ** 13 + 1.39857519737008e27 * cos(theta) ** 11 - 1.63142387816235e25 * cos(theta) ** 9 + 1.23748966737978e23 * cos(theta) ** 7 - 5.44464341399025e20 * cos(theta) ** 5 + 1.13524675020647e18 * cos(theta) ** 3 - 707318847480669.0 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl98_m_minus_6(theta, phi): return ( 6.15357929955912e-12 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.36710259187657e40 * cos(theta) ** 92 - 2.93471356389504e41 * cos(theta) ** 90 + 3.04495539466312e42 * cos(theta) ** 88 - 2.03422150973306e43 * cos(theta) ** 86 + 9.83476139956921e43 * cos(theta) ** 84 - 3.66673564052388e44 * cos(theta) ** 82 + 1.09704766325944e45 * cos(theta) ** 80 - 2.7062221825916e45 * cos(theta) ** 78 + 5.61242072812332e45 * cos(theta) ** 76 - 9.9288634855068e45 * cos(theta) ** 74 + 1.51513334883355e46 * cos(theta) ** 72 - 2.0117822543473e46 * cos(theta) ** 70 + 2.34029583056297e46 * cos(theta) ** 68 - 2.39819788664978e46 * cos(theta) ** 66 + 2.17419039174293e46 * cos(theta) ** 64 - 1.74976759670808e46 * cos(theta) ** 62 + 1.2533373202178e46 * cos(theta) ** 60 - 8.00579955534284e45 * cos(theta) ** 58 + 4.56645502587361e45 * cos(theta) ** 56 - 2.32781884801237e45 * cos(theta) ** 54 + 1.06086266608462e45 * cos(theta) ** 52 - 4.32167095308203e44 * cos(theta) ** 50 + 1.57280062909254e44 * cos(theta) ** 48 - 5.10831877229019e43 * cos(theta) ** 46 + 1.47849830238265e43 * cos(theta) ** 44 - 3.80587590218772e42 * cos(theta) ** 42 + 8.69193408961173e41 * cos(theta) ** 40 - 1.75594628072964e41 * cos(theta) ** 38 + 3.12672298721616e40 * cos(theta) ** 36 - 4.88671665082158e39 * cos(theta) ** 34 + 6.67018988104843e38 * cos(theta) ** 32 - 7.90541022939074e37 * cos(theta) ** 30 + 8.08001280494589e36 * cos(theta) ** 28 - 7.06510488149328e35 * cos(theta) ** 26 + 5.23520083557984e34 * cos(theta) ** 24 - 3.25065338722168e33 * cos(theta) ** 22 + 1.66866873877379e32 * cos(theta) ** 20 - 6.96653615396662e30 * cos(theta) ** 18 + 2.31813838964092e29 * cos(theta) ** 16 - 5.99389370301465e27 * cos(theta) ** 14 + 1.16547933114174e26 * cos(theta) ** 12 - 1.63142387816235e24 * cos(theta) ** 10 + 1.54686208422473e22 * cos(theta) ** 8 - 9.07440568998374e19 * cos(theta) ** 6 + 2.83811687551618e17 * cos(theta) ** 4 - 353659423740334.0 * cos(theta) ** 2 + 73221412782.6779 ) * sin(6 * phi) ) # @torch.jit.script def Yl98_m_minus_5(theta, phi): return ( 6.05181920938943e-10 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.47000278696405e38 * cos(theta) ** 93 - 3.22495996032422e39 * cos(theta) ** 91 + 3.42129819625069e40 * cos(theta) ** 89 - 2.33818564337133e41 * cos(theta) ** 87 + 1.15703075289049e42 * cos(theta) ** 85 - 4.41775378376371e42 * cos(theta) ** 83 + 1.35437983118449e43 * cos(theta) ** 81 - 3.42559769948303e43 * cos(theta) ** 79 + 7.28885808847184e43 * cos(theta) ** 77 - 1.32384846473424e44 * cos(theta) ** 75 + 2.07552513538843e44 * cos(theta) ** 73 - 2.83349613288352e44 * cos(theta) ** 71 + 3.39173308777243e44 * cos(theta) ** 69 - 3.57939983082056e44 * cos(theta) ** 67 + 3.34490829498912e44 * cos(theta) ** 65 - 2.77740888366362e44 * cos(theta) ** 63 + 2.05465134461934e44 * cos(theta) ** 61 - 1.35691517887167e44 * cos(theta) ** 59 + 8.0113246067958e43 * cos(theta) ** 57 - 4.23239790547703e43 * cos(theta) ** 55 + 2.00162767185777e43 * cos(theta) ** 53 - 8.47386461388633e42 * cos(theta) ** 51 + 3.20979720222967e42 * cos(theta) ** 49 - 1.08687633452983e42 * cos(theta) ** 47 + 3.28555178307255e41 * cos(theta) ** 45 - 8.85087419113422e40 * cos(theta) ** 43 + 2.11998392429554e40 * cos(theta) ** 41 - 4.50242636084524e39 * cos(theta) ** 39 + 8.45060266815178e38 * cos(theta) ** 37 - 1.39620475737759e38 * cos(theta) ** 35 + 2.02126966092377e37 * cos(theta) ** 33 - 2.55013233206153e36 * cos(theta) ** 31 + 2.78621131205031e35 * cos(theta) ** 29 - 2.61670551166418e34 * cos(theta) ** 27 + 2.09408033423194e33 * cos(theta) ** 25 - 1.4133275596616e32 * cos(theta) ** 23 + 7.94604161320854e30 * cos(theta) ** 21 - 3.66659797577191e29 * cos(theta) ** 19 + 1.36361081743583e28 * cos(theta) ** 17 - 3.9959291353431e26 * cos(theta) ** 15 + 8.96522562416721e24 * cos(theta) ** 13 - 1.48311261651122e23 * cos(theta) ** 11 + 1.71873564913859e21 * cos(theta) ** 9 - 1.29634366999768e19 * cos(theta) ** 7 + 5.67623375103237e16 * cos(theta) ** 5 - 117886474580111.0 * cos(theta) ** 3 + 73221412782.6779 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl98_m_minus_4(theta, phi): return ( 5.95481789331153e-8 * (1.0 - cos(theta) ** 2) ** 2 * ( 1.56383275208942e36 * cos(theta) ** 94 - 3.50539126122198e37 * cos(theta) ** 92 + 3.80144244027855e38 * cos(theta) ** 90 - 2.65702914019469e39 * cos(theta) ** 88 + 1.3453845963843e40 * cos(theta) ** 86 - 5.25923069495679e40 * cos(theta) ** 84 + 1.6516827209567e41 * cos(theta) ** 82 - 4.28199712435379e41 * cos(theta) ** 80 + 9.34468985701518e41 * cos(theta) ** 78 - 1.74190587465031e42 * cos(theta) ** 76 + 2.80476369647085e42 * cos(theta) ** 74 - 3.93541129567156e42 * cos(theta) ** 72 + 4.84533298253204e42 * cos(theta) ** 70 - 5.26382328061848e42 * cos(theta) ** 68 + 5.06804287119564e42 * cos(theta) ** 66 - 4.33970138072441e42 * cos(theta) ** 64 + 3.3139537816441e42 * cos(theta) ** 62 - 2.26152529811945e42 * cos(theta) ** 60 + 1.38126286324066e42 * cos(theta) ** 58 - 7.55785340263755e41 * cos(theta) ** 56 + 3.70671791084772e41 * cos(theta) ** 54 - 1.6295893488243e41 * cos(theta) ** 52 + 6.41959440445934e40 * cos(theta) ** 50 - 2.26432569693714e40 * cos(theta) ** 48 + 7.14250387624468e39 * cos(theta) ** 46 - 2.01156231616687e39 * cos(theta) ** 44 + 5.04758077213225e38 * cos(theta) ** 42 - 1.12560659021131e38 * cos(theta) ** 40 + 2.22384280740836e37 * cos(theta) ** 38 - 3.8783465482711e36 * cos(theta) ** 36 + 5.94491076742285e35 * cos(theta) ** 34 - 7.96916353769228e34 * cos(theta) ** 32 + 9.28737104016769e33 * cos(theta) ** 30 - 9.34537682737207e32 * cos(theta) ** 28 + 8.05415513166129e31 * cos(theta) ** 26 - 5.88886483192333e30 * cos(theta) ** 24 + 3.61183709691297e29 * cos(theta) ** 22 - 1.83329898788595e28 * cos(theta) ** 20 + 7.57561565242129e26 * cos(theta) ** 18 - 2.49745570958944e25 * cos(theta) ** 16 + 6.40373258869086e23 * cos(theta) ** 14 - 1.23592718042602e22 * cos(theta) ** 12 + 1.71873564913859e20 * cos(theta) ** 10 - 1.6204295874971e18 * cos(theta) ** 8 + 9.46038958505394e15 * cos(theta) ** 6 - 29471618645027.9 * cos(theta) ** 4 + 36610706391.339 * cos(theta) ** 2 - 7562633.00791964 ) * sin(4 * phi) ) # @torch.jit.script def Yl98_m_minus_3(theta, phi): return ( 5.86179158637405e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 1.64613973904149e34 * cos(theta) ** 95 - 3.76923791529245e35 * cos(theta) ** 93 + 4.17740927503137e36 * cos(theta) ** 91 - 2.98542600021875e37 * cos(theta) ** 89 + 1.54641907630379e38 * cos(theta) ** 87 - 6.18733022936093e38 * cos(theta) ** 85 + 1.98997918187554e39 * cos(theta) ** 83 - 5.28641620290591e39 * cos(theta) ** 81 + 1.18287213379939e40 * cos(theta) ** 79 - 2.26221542162379e40 * cos(theta) ** 77 + 3.7396849286278e40 * cos(theta) ** 75 - 5.39097437763228e40 * cos(theta) ** 73 + 6.82441265145358e40 * cos(theta) ** 71 - 7.62872939220069e40 * cos(theta) ** 69 + 7.56424309133678e40 * cos(theta) ** 67 - 6.67646366265294e40 * cos(theta) ** 65 + 5.26024409784777e40 * cos(theta) ** 63 - 3.70741852150729e40 * cos(theta) ** 61 + 2.34112349701806e40 * cos(theta) ** 59 - 1.32593919344518e40 * cos(theta) ** 57 + 6.73948711063221e39 * cos(theta) ** 55 - 3.07469688457414e39 * cos(theta) ** 53 + 1.25874400087438e39 * cos(theta) ** 51 - 4.62107285089213e38 * cos(theta) ** 49 + 1.51968167579674e38 * cos(theta) ** 47 - 4.47013848037082e37 * cos(theta) ** 45 + 1.17385599351913e37 * cos(theta) ** 43 - 2.74538192734466e36 * cos(theta) ** 41 + 5.70216104463683e35 * cos(theta) ** 39 - 1.048201769803e35 * cos(theta) ** 37 + 1.69854593354939e34 * cos(theta) ** 35 - 2.41489804172493e33 * cos(theta) ** 33 + 2.99592614198958e32 * cos(theta) ** 31 - 3.22254373357658e31 * cos(theta) ** 29 + 2.98302041913381e30 * cos(theta) ** 27 - 2.35554593276933e29 * cos(theta) ** 25 + 1.57036395517955e28 * cos(theta) ** 23 - 8.7299951804093e26 * cos(theta) ** 21 + 3.98716613285331e25 * cos(theta) ** 19 - 1.46909159387614e24 * cos(theta) ** 17 + 4.26915505912724e22 * cos(theta) ** 15 - 9.50713215712323e20 * cos(theta) ** 13 + 1.56248695376235e19 * cos(theta) ** 11 - 1.80047731944122e17 * cos(theta) ** 9 + 1.35148422643628e15 * cos(theta) ** 7 - 5894323729005.57 * cos(theta) ** 5 + 12203568797.113 * cos(theta) ** 3 - 7562633.00791964 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl98_m_minus_2(theta, phi): return ( 0.000577200470753292 * (1.0 - cos(theta) ** 2) * ( 1.71472889483489e32 * cos(theta) ** 96 - 4.00982756946005e33 * cos(theta) ** 94 + 4.54066225546888e34 * cos(theta) ** 92 - 3.31714000024306e35 * cos(theta) ** 90 + 1.75729440489067e36 * cos(theta) ** 88 - 7.19457003414062e36 * cos(theta) ** 86 + 2.36902283556612e37 * cos(theta) ** 84 - 6.44684902793404e37 * cos(theta) ** 82 + 1.47859016724924e38 * cos(theta) ** 80 - 2.90027618156896e38 * cos(theta) ** 78 + 4.92063806398394e38 * cos(theta) ** 76 - 7.28510051031389e38 * cos(theta) ** 74 + 9.47835090479663e38 * cos(theta) ** 72 - 1.0898184846001e39 * cos(theta) ** 70 + 1.11238868990247e39 * cos(theta) ** 68 - 1.01158540343226e39 * cos(theta) ** 66 + 8.21913140288714e38 * cos(theta) ** 64 - 5.97970729275369e38 * cos(theta) ** 62 + 3.9018724950301e38 * cos(theta) ** 60 - 2.28610205766411e38 * cos(theta) ** 58 + 1.20347984118432e38 * cos(theta) ** 56 - 5.69388311958174e37 * cos(theta) ** 54 + 2.42066154014304e37 * cos(theta) ** 52 - 9.24214570178426e36 * cos(theta) ** 50 + 3.16600349124321e36 * cos(theta) ** 48 - 9.71769234863222e35 * cos(theta) ** 46 + 2.66785453072529e35 * cos(theta) ** 44 - 6.5366236365349e34 * cos(theta) ** 42 + 1.42554026115921e34 * cos(theta) ** 40 - 2.75842571000789e33 * cos(theta) ** 38 + 4.71818314874829e32 * cos(theta) ** 36 - 7.10264129919098e31 * cos(theta) ** 34 + 9.36226919371743e30 * cos(theta) ** 32 - 1.07418124452553e30 * cos(theta) ** 30 + 1.06536443540493e29 * cos(theta) ** 28 - 9.05979204911281e27 * cos(theta) ** 26 + 6.54318314658148e26 * cos(theta) ** 24 - 3.96817962745877e25 * cos(theta) ** 22 + 1.99358306642666e24 * cos(theta) ** 20 - 8.16161996597855e22 * cos(theta) ** 18 + 2.66822191195453e21 * cos(theta) ** 16 - 6.79080868365945e19 * cos(theta) ** 14 + 1.30207246146863e18 * cos(theta) ** 12 - 1.80047731944122e16 * cos(theta) ** 10 + 168935528304535.0 * cos(theta) ** 8 - 982387288167.595 * cos(theta) ** 6 + 3050892199.27825 * cos(theta) ** 4 - 3781316.50395982 * cos(theta) ** 2 + 779.974526394352 ) * sin(2 * phi) ) # @torch.jit.script def Yl98_m_minus_1(theta, phi): return ( 0.0568476535957895 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 1.76776174725246e30 * cos(theta) ** 97 - 4.22087112574742e31 * cos(theta) ** 95 + 4.88243253276224e32 * cos(theta) ** 93 - 3.64520879147589e33 * cos(theta) ** 91 + 1.97448809538277e34 * cos(theta) ** 89 - 8.26962072889727e34 * cos(theta) ** 87 + 2.78708568890132e35 * cos(theta) ** 85 - 7.7672879854627e35 * cos(theta) ** 83 + 1.82541995956696e36 * cos(theta) ** 81 - 3.6712356728721e36 * cos(theta) ** 79 + 6.39043904413499e36 * cos(theta) ** 77 - 9.71346734708518e36 * cos(theta) ** 75 + 1.29840423353379e37 * cos(theta) ** 73 - 1.53495561211281e37 * cos(theta) ** 71 + 1.61215752159778e37 * cos(theta) ** 69 - 1.50982896034666e37 * cos(theta) ** 67 + 1.26448175429033e37 * cos(theta) ** 65 - 9.49159887738681e36 * cos(theta) ** 63 + 6.39651228693459e36 * cos(theta) ** 61 - 3.87474925027815e36 * cos(theta) ** 59 + 2.11136814242864e36 * cos(theta) ** 57 - 1.03525147628759e36 * cos(theta) ** 55 + 4.56728592479819e35 * cos(theta) ** 53 - 1.8121854317224e35 * cos(theta) ** 51 + 6.46123161478206e34 * cos(theta) ** 49 - 2.06759411673026e34 * cos(theta) ** 47 + 5.92856562383398e33 * cos(theta) ** 45 - 1.5201450317523e33 * cos(theta) ** 43 + 3.47692746624197e32 * cos(theta) ** 41 - 7.07288643591767e31 * cos(theta) ** 39 + 1.27518463479684e31 * cos(theta) ** 37 - 2.02932608548314e30 * cos(theta) ** 35 + 2.83705127082346e29 * cos(theta) ** 33 - 3.46510078879202e28 * cos(theta) ** 31 + 3.67367046691356e27 * cos(theta) ** 29 - 3.35547853670845e26 * cos(theta) ** 27 + 2.61727325863259e25 * cos(theta) ** 25 - 1.72529549019947e24 * cos(theta) ** 23 + 9.49325269726979e22 * cos(theta) ** 21 - 4.29558945577819e21 * cos(theta) ** 19 + 1.56954230114972e20 * cos(theta) ** 17 - 4.5272057891063e18 * cos(theta) ** 15 + 1.00159420112971e17 * cos(theta) ** 13 - 1.63679756312838e15 * cos(theta) ** 11 + 18770614256059.4 * cos(theta) ** 9 - 140341041166.799 * cos(theta) ** 7 + 610178439.855649 * cos(theta) ** 5 - 1260438.83465327 * cos(theta) ** 3 + 779.974526394352 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl98_m0(theta, phi): return ( 2.24375642744678e29 * cos(theta) ** 98 - 5.46901246136131e30 * cos(theta) ** 96 + 6.46080228596052e31 * cos(theta) ** 94 - 4.92847587991857e32 * cos(theta) ** 92 + 2.72891534832528e33 * cos(theta) ** 90 - 1.16890972941634e34 * cos(theta) ** 88 + 4.03115895874391e34 * cos(theta) ** 86 - 1.15018626028173e35 * cos(theta) ** 84 + 2.7690257619766e35 * cos(theta) ** 82 - 5.70821511826461e35 * cos(theta) ** 80 + 1.01909377252634e36 * cos(theta) ** 78 - 1.58978628514109e36 * cos(theta) ** 76 + 2.18251007353184e36 * cos(theta) ** 74 - 2.65180373756613e36 * cos(theta) ** 72 + 2.86475500981362e36 * cos(theta) ** 70 - 2.76182968011971e36 * cos(theta) ** 68 + 2.38312424670936e36 * cos(theta) ** 66 - 1.84474973265665e36 * cos(theta) ** 64 + 1.2833041618481e36 * cos(theta) ** 62 - 8.03286385321008e35 * cos(theta) ** 60 + 4.5280793057904e35 * cos(theta) ** 58 - 2.29951308524471e35 * cos(theta) ** 56 + 1.05206481024268e35 * cos(theta) ** 54 - 4.33488264744391e34 * cos(theta) ** 52 + 1.60739776020991e34 * cos(theta) ** 50 - 5.35799253403302e33 * cos(theta) ** 48 + 1.60313410567354e33 * cos(theta) ** 46 - 4.29744573781952e32 * cos(theta) ** 44 + 1.02973243869738e32 * cos(theta) ** 42 - 2.19945331113482e31 * cos(theta) ** 40 + 4.17414497003688e30 * cos(theta) ** 38 - 7.01176562469756e29 * cos(theta) ** 36 + 1.03792583260326e29 * cos(theta) ** 34 - 1.34692665299659e28 * cos(theta) ** 32 + 1.52320022773897e27 * cos(theta) ** 30 - 1.49064589216299e26 * cos(theta) ** 28 + 1.25214254941691e25 * cos(theta) ** 26 - 8.94191009801136e23 * cos(theta) ** 24 + 5.36747974565275e22 * cos(theta) ** 22 - 2.67159625349232e21 * cos(theta) ** 20 + 1.08462241060586e20 * cos(theta) ** 18 - 3.51955946601688e18 * cos(theta) ** 16 + 8.89901255630059e16 * cos(theta) ** 14 - 1.69664810941411e15 * cos(theta) ** 12 + 23348368478175.8 * cos(theta) ** 10 - 218209051197.905 * cos(theta) ** 8 + 1264980006.94437 * cos(theta) ** 6 - 3919582.75235811 * cos(theta) ** 4 + 4850.96875291845 * cos(theta) ** 2 - 0.999993558630891 ) # @torch.jit.script def Yl98_m1(theta, phi): return ( 0.0568476535957895 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 1.76776174725246e30 * cos(theta) ** 97 - 4.22087112574742e31 * cos(theta) ** 95 + 4.88243253276224e32 * cos(theta) ** 93 - 3.64520879147589e33 * cos(theta) ** 91 + 1.97448809538277e34 * cos(theta) ** 89 - 8.26962072889727e34 * cos(theta) ** 87 + 2.78708568890132e35 * cos(theta) ** 85 - 7.7672879854627e35 * cos(theta) ** 83 + 1.82541995956696e36 * cos(theta) ** 81 - 3.6712356728721e36 * cos(theta) ** 79 + 6.39043904413499e36 * cos(theta) ** 77 - 9.71346734708518e36 * cos(theta) ** 75 + 1.29840423353379e37 * cos(theta) ** 73 - 1.53495561211281e37 * cos(theta) ** 71 + 1.61215752159778e37 * cos(theta) ** 69 - 1.50982896034666e37 * cos(theta) ** 67 + 1.26448175429033e37 * cos(theta) ** 65 - 9.49159887738681e36 * cos(theta) ** 63 + 6.39651228693459e36 * cos(theta) ** 61 - 3.87474925027815e36 * cos(theta) ** 59 + 2.11136814242864e36 * cos(theta) ** 57 - 1.03525147628759e36 * cos(theta) ** 55 + 4.56728592479819e35 * cos(theta) ** 53 - 1.8121854317224e35 * cos(theta) ** 51 + 6.46123161478206e34 * cos(theta) ** 49 - 2.06759411673026e34 * cos(theta) ** 47 + 5.92856562383398e33 * cos(theta) ** 45 - 1.5201450317523e33 * cos(theta) ** 43 + 3.47692746624197e32 * cos(theta) ** 41 - 7.07288643591767e31 * cos(theta) ** 39 + 1.27518463479684e31 * cos(theta) ** 37 - 2.02932608548314e30 * cos(theta) ** 35 + 2.83705127082346e29 * cos(theta) ** 33 - 3.46510078879202e28 * cos(theta) ** 31 + 3.67367046691356e27 * cos(theta) ** 29 - 3.35547853670845e26 * cos(theta) ** 27 + 2.61727325863259e25 * cos(theta) ** 25 - 1.72529549019947e24 * cos(theta) ** 23 + 9.49325269726979e22 * cos(theta) ** 21 - 4.29558945577819e21 * cos(theta) ** 19 + 1.56954230114972e20 * cos(theta) ** 17 - 4.5272057891063e18 * cos(theta) ** 15 + 1.00159420112971e17 * cos(theta) ** 13 - 1.63679756312838e15 * cos(theta) ** 11 + 18770614256059.4 * cos(theta) ** 9 - 140341041166.799 * cos(theta) ** 7 + 610178439.855649 * cos(theta) ** 5 - 1260438.83465327 * cos(theta) ** 3 + 779.974526394352 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl98_m2(theta, phi): return ( 0.000577200470753292 * (1.0 - cos(theta) ** 2) * ( 1.71472889483489e32 * cos(theta) ** 96 - 4.00982756946005e33 * cos(theta) ** 94 + 4.54066225546888e34 * cos(theta) ** 92 - 3.31714000024306e35 * cos(theta) ** 90 + 1.75729440489067e36 * cos(theta) ** 88 - 7.19457003414062e36 * cos(theta) ** 86 + 2.36902283556612e37 * cos(theta) ** 84 - 6.44684902793404e37 * cos(theta) ** 82 + 1.47859016724924e38 * cos(theta) ** 80 - 2.90027618156896e38 * cos(theta) ** 78 + 4.92063806398394e38 * cos(theta) ** 76 - 7.28510051031389e38 * cos(theta) ** 74 + 9.47835090479663e38 * cos(theta) ** 72 - 1.0898184846001e39 * cos(theta) ** 70 + 1.11238868990247e39 * cos(theta) ** 68 - 1.01158540343226e39 * cos(theta) ** 66 + 8.21913140288714e38 * cos(theta) ** 64 - 5.97970729275369e38 * cos(theta) ** 62 + 3.9018724950301e38 * cos(theta) ** 60 - 2.28610205766411e38 * cos(theta) ** 58 + 1.20347984118432e38 * cos(theta) ** 56 - 5.69388311958174e37 * cos(theta) ** 54 + 2.42066154014304e37 * cos(theta) ** 52 - 9.24214570178426e36 * cos(theta) ** 50 + 3.16600349124321e36 * cos(theta) ** 48 - 9.71769234863222e35 * cos(theta) ** 46 + 2.66785453072529e35 * cos(theta) ** 44 - 6.5366236365349e34 * cos(theta) ** 42 + 1.42554026115921e34 * cos(theta) ** 40 - 2.75842571000789e33 * cos(theta) ** 38 + 4.71818314874829e32 * cos(theta) ** 36 - 7.10264129919098e31 * cos(theta) ** 34 + 9.36226919371743e30 * cos(theta) ** 32 - 1.07418124452553e30 * cos(theta) ** 30 + 1.06536443540493e29 * cos(theta) ** 28 - 9.05979204911281e27 * cos(theta) ** 26 + 6.54318314658148e26 * cos(theta) ** 24 - 3.96817962745877e25 * cos(theta) ** 22 + 1.99358306642666e24 * cos(theta) ** 20 - 8.16161996597855e22 * cos(theta) ** 18 + 2.66822191195453e21 * cos(theta) ** 16 - 6.79080868365945e19 * cos(theta) ** 14 + 1.30207246146863e18 * cos(theta) ** 12 - 1.80047731944122e16 * cos(theta) ** 10 + 168935528304535.0 * cos(theta) ** 8 - 982387288167.595 * cos(theta) ** 6 + 3050892199.27825 * cos(theta) ** 4 - 3781316.50395982 * cos(theta) ** 2 + 779.974526394352 ) * cos(2 * phi) ) # @torch.jit.script def Yl98_m3(theta, phi): return ( 5.86179158637405e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 1.64613973904149e34 * cos(theta) ** 95 - 3.76923791529245e35 * cos(theta) ** 93 + 4.17740927503137e36 * cos(theta) ** 91 - 2.98542600021875e37 * cos(theta) ** 89 + 1.54641907630379e38 * cos(theta) ** 87 - 6.18733022936093e38 * cos(theta) ** 85 + 1.98997918187554e39 * cos(theta) ** 83 - 5.28641620290591e39 * cos(theta) ** 81 + 1.18287213379939e40 * cos(theta) ** 79 - 2.26221542162379e40 * cos(theta) ** 77 + 3.7396849286278e40 * cos(theta) ** 75 - 5.39097437763228e40 * cos(theta) ** 73 + 6.82441265145358e40 * cos(theta) ** 71 - 7.62872939220069e40 * cos(theta) ** 69 + 7.56424309133678e40 * cos(theta) ** 67 - 6.67646366265294e40 * cos(theta) ** 65 + 5.26024409784777e40 * cos(theta) ** 63 - 3.70741852150729e40 * cos(theta) ** 61 + 2.34112349701806e40 * cos(theta) ** 59 - 1.32593919344518e40 * cos(theta) ** 57 + 6.73948711063221e39 * cos(theta) ** 55 - 3.07469688457414e39 * cos(theta) ** 53 + 1.25874400087438e39 * cos(theta) ** 51 - 4.62107285089213e38 * cos(theta) ** 49 + 1.51968167579674e38 * cos(theta) ** 47 - 4.47013848037082e37 * cos(theta) ** 45 + 1.17385599351913e37 * cos(theta) ** 43 - 2.74538192734466e36 * cos(theta) ** 41 + 5.70216104463683e35 * cos(theta) ** 39 - 1.048201769803e35 * cos(theta) ** 37 + 1.69854593354939e34 * cos(theta) ** 35 - 2.41489804172493e33 * cos(theta) ** 33 + 2.99592614198958e32 * cos(theta) ** 31 - 3.22254373357658e31 * cos(theta) ** 29 + 2.98302041913381e30 * cos(theta) ** 27 - 2.35554593276933e29 * cos(theta) ** 25 + 1.57036395517955e28 * cos(theta) ** 23 - 8.7299951804093e26 * cos(theta) ** 21 + 3.98716613285331e25 * cos(theta) ** 19 - 1.46909159387614e24 * cos(theta) ** 17 + 4.26915505912724e22 * cos(theta) ** 15 - 9.50713215712323e20 * cos(theta) ** 13 + 1.56248695376235e19 * cos(theta) ** 11 - 1.80047731944122e17 * cos(theta) ** 9 + 1.35148422643628e15 * cos(theta) ** 7 - 5894323729005.57 * cos(theta) ** 5 + 12203568797.113 * cos(theta) ** 3 - 7562633.00791964 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl98_m4(theta, phi): return ( 5.95481789331153e-8 * (1.0 - cos(theta) ** 2) ** 2 * ( 1.56383275208942e36 * cos(theta) ** 94 - 3.50539126122198e37 * cos(theta) ** 92 + 3.80144244027855e38 * cos(theta) ** 90 - 2.65702914019469e39 * cos(theta) ** 88 + 1.3453845963843e40 * cos(theta) ** 86 - 5.25923069495679e40 * cos(theta) ** 84 + 1.6516827209567e41 * cos(theta) ** 82 - 4.28199712435379e41 * cos(theta) ** 80 + 9.34468985701518e41 * cos(theta) ** 78 - 1.74190587465031e42 * cos(theta) ** 76 + 2.80476369647085e42 * cos(theta) ** 74 - 3.93541129567156e42 * cos(theta) ** 72 + 4.84533298253204e42 * cos(theta) ** 70 - 5.26382328061848e42 * cos(theta) ** 68 + 5.06804287119564e42 * cos(theta) ** 66 - 4.33970138072441e42 * cos(theta) ** 64 + 3.3139537816441e42 * cos(theta) ** 62 - 2.26152529811945e42 * cos(theta) ** 60 + 1.38126286324066e42 * cos(theta) ** 58 - 7.55785340263755e41 * cos(theta) ** 56 + 3.70671791084772e41 * cos(theta) ** 54 - 1.6295893488243e41 * cos(theta) ** 52 + 6.41959440445934e40 * cos(theta) ** 50 - 2.26432569693714e40 * cos(theta) ** 48 + 7.14250387624468e39 * cos(theta) ** 46 - 2.01156231616687e39 * cos(theta) ** 44 + 5.04758077213225e38 * cos(theta) ** 42 - 1.12560659021131e38 * cos(theta) ** 40 + 2.22384280740836e37 * cos(theta) ** 38 - 3.8783465482711e36 * cos(theta) ** 36 + 5.94491076742285e35 * cos(theta) ** 34 - 7.96916353769228e34 * cos(theta) ** 32 + 9.28737104016769e33 * cos(theta) ** 30 - 9.34537682737207e32 * cos(theta) ** 28 + 8.05415513166129e31 * cos(theta) ** 26 - 5.88886483192333e30 * cos(theta) ** 24 + 3.61183709691297e29 * cos(theta) ** 22 - 1.83329898788595e28 * cos(theta) ** 20 + 7.57561565242129e26 * cos(theta) ** 18 - 2.49745570958944e25 * cos(theta) ** 16 + 6.40373258869086e23 * cos(theta) ** 14 - 1.23592718042602e22 * cos(theta) ** 12 + 1.71873564913859e20 * cos(theta) ** 10 - 1.6204295874971e18 * cos(theta) ** 8 + 9.46038958505394e15 * cos(theta) ** 6 - 29471618645027.9 * cos(theta) ** 4 + 36610706391.339 * cos(theta) ** 2 - 7562633.00791964 ) * cos(4 * phi) ) # @torch.jit.script def Yl98_m5(theta, phi): return ( 6.05181920938943e-10 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 1.47000278696405e38 * cos(theta) ** 93 - 3.22495996032422e39 * cos(theta) ** 91 + 3.42129819625069e40 * cos(theta) ** 89 - 2.33818564337133e41 * cos(theta) ** 87 + 1.15703075289049e42 * cos(theta) ** 85 - 4.41775378376371e42 * cos(theta) ** 83 + 1.35437983118449e43 * cos(theta) ** 81 - 3.42559769948303e43 * cos(theta) ** 79 + 7.28885808847184e43 * cos(theta) ** 77 - 1.32384846473424e44 * cos(theta) ** 75 + 2.07552513538843e44 * cos(theta) ** 73 - 2.83349613288352e44 * cos(theta) ** 71 + 3.39173308777243e44 * cos(theta) ** 69 - 3.57939983082056e44 * cos(theta) ** 67 + 3.34490829498912e44 * cos(theta) ** 65 - 2.77740888366362e44 * cos(theta) ** 63 + 2.05465134461934e44 * cos(theta) ** 61 - 1.35691517887167e44 * cos(theta) ** 59 + 8.0113246067958e43 * cos(theta) ** 57 - 4.23239790547703e43 * cos(theta) ** 55 + 2.00162767185777e43 * cos(theta) ** 53 - 8.47386461388633e42 * cos(theta) ** 51 + 3.20979720222967e42 * cos(theta) ** 49 - 1.08687633452983e42 * cos(theta) ** 47 + 3.28555178307255e41 * cos(theta) ** 45 - 8.85087419113422e40 * cos(theta) ** 43 + 2.11998392429554e40 * cos(theta) ** 41 - 4.50242636084524e39 * cos(theta) ** 39 + 8.45060266815178e38 * cos(theta) ** 37 - 1.39620475737759e38 * cos(theta) ** 35 + 2.02126966092377e37 * cos(theta) ** 33 - 2.55013233206153e36 * cos(theta) ** 31 + 2.78621131205031e35 * cos(theta) ** 29 - 2.61670551166418e34 * cos(theta) ** 27 + 2.09408033423194e33 * cos(theta) ** 25 - 1.4133275596616e32 * cos(theta) ** 23 + 7.94604161320854e30 * cos(theta) ** 21 - 3.66659797577191e29 * cos(theta) ** 19 + 1.36361081743583e28 * cos(theta) ** 17 - 3.9959291353431e26 * cos(theta) ** 15 + 8.96522562416721e24 * cos(theta) ** 13 - 1.48311261651122e23 * cos(theta) ** 11 + 1.71873564913859e21 * cos(theta) ** 9 - 1.29634366999768e19 * cos(theta) ** 7 + 5.67623375103237e16 * cos(theta) ** 5 - 117886474580111.0 * cos(theta) ** 3 + 73221412782.6779 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl98_m6(theta, phi): return ( 6.15357929955912e-12 * (1.0 - cos(theta) ** 2) ** 3 * ( 1.36710259187657e40 * cos(theta) ** 92 - 2.93471356389504e41 * cos(theta) ** 90 + 3.04495539466312e42 * cos(theta) ** 88 - 2.03422150973306e43 * cos(theta) ** 86 + 9.83476139956921e43 * cos(theta) ** 84 - 3.66673564052388e44 * cos(theta) ** 82 + 1.09704766325944e45 * cos(theta) ** 80 - 2.7062221825916e45 * cos(theta) ** 78 + 5.61242072812332e45 * cos(theta) ** 76 - 9.9288634855068e45 * cos(theta) ** 74 + 1.51513334883355e46 * cos(theta) ** 72 - 2.0117822543473e46 * cos(theta) ** 70 + 2.34029583056297e46 * cos(theta) ** 68 - 2.39819788664978e46 * cos(theta) ** 66 + 2.17419039174293e46 * cos(theta) ** 64 - 1.74976759670808e46 * cos(theta) ** 62 + 1.2533373202178e46 * cos(theta) ** 60 - 8.00579955534284e45 * cos(theta) ** 58 + 4.56645502587361e45 * cos(theta) ** 56 - 2.32781884801237e45 * cos(theta) ** 54 + 1.06086266608462e45 * cos(theta) ** 52 - 4.32167095308203e44 * cos(theta) ** 50 + 1.57280062909254e44 * cos(theta) ** 48 - 5.10831877229019e43 * cos(theta) ** 46 + 1.47849830238265e43 * cos(theta) ** 44 - 3.80587590218772e42 * cos(theta) ** 42 + 8.69193408961173e41 * cos(theta) ** 40 - 1.75594628072964e41 * cos(theta) ** 38 + 3.12672298721616e40 * cos(theta) ** 36 - 4.88671665082158e39 * cos(theta) ** 34 + 6.67018988104843e38 * cos(theta) ** 32 - 7.90541022939074e37 * cos(theta) ** 30 + 8.08001280494589e36 * cos(theta) ** 28 - 7.06510488149328e35 * cos(theta) ** 26 + 5.23520083557984e34 * cos(theta) ** 24 - 3.25065338722168e33 * cos(theta) ** 22 + 1.66866873877379e32 * cos(theta) ** 20 - 6.96653615396662e30 * cos(theta) ** 18 + 2.31813838964092e29 * cos(theta) ** 16 - 5.99389370301465e27 * cos(theta) ** 14 + 1.16547933114174e26 * cos(theta) ** 12 - 1.63142387816235e24 * cos(theta) ** 10 + 1.54686208422473e22 * cos(theta) ** 8 - 9.07440568998374e19 * cos(theta) ** 6 + 2.83811687551618e17 * cos(theta) ** 4 - 353659423740334.0 * cos(theta) ** 2 + 73221412782.6779 ) * cos(6 * phi) ) # @torch.jit.script def Yl98_m7(theta, phi): return ( 6.26093562518037e-14 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 1.25773438452644e42 * cos(theta) ** 91 - 2.64124220750553e43 * cos(theta) ** 89 + 2.67956074730354e44 * cos(theta) ** 87 - 1.74943049837043e45 * cos(theta) ** 85 + 8.26119957563813e45 * cos(theta) ** 83 - 3.00672322522958e46 * cos(theta) ** 81 + 8.77638130607553e46 * cos(theta) ** 79 - 2.11085330242144e47 * cos(theta) ** 77 + 4.26543975337372e47 * cos(theta) ** 75 - 7.34735897927503e47 * cos(theta) ** 73 + 1.09089601116016e48 * cos(theta) ** 71 - 1.40824757804311e48 * cos(theta) ** 69 + 1.59140116478282e48 * cos(theta) ** 67 - 1.58281060518885e48 * cos(theta) ** 65 + 1.39148185071548e48 * cos(theta) ** 63 - 1.08485590995901e48 * cos(theta) ** 61 + 7.52002392130678e47 * cos(theta) ** 59 - 4.64336374209885e47 * cos(theta) ** 57 + 2.55721481448922e47 * cos(theta) ** 55 - 1.25702217792668e47 * cos(theta) ** 53 + 5.51648586364e46 * cos(theta) ** 51 - 2.16083547654102e46 * cos(theta) ** 49 + 7.54944301964419e45 * cos(theta) ** 47 - 2.34982663525349e45 * cos(theta) ** 45 + 6.50539253048365e44 * cos(theta) ** 43 - 1.59846787891884e44 * cos(theta) ** 41 + 3.47677363584469e43 * cos(theta) ** 39 - 6.67259586677264e42 * cos(theta) ** 37 + 1.12562027539782e42 * cos(theta) ** 35 - 1.66148366127934e41 * cos(theta) ** 33 + 2.1344607619355e40 * cos(theta) ** 31 - 2.37162306881722e39 * cos(theta) ** 29 + 2.26240358538485e38 * cos(theta) ** 27 - 1.83692726918825e37 * cos(theta) ** 25 + 1.25644820053916e36 * cos(theta) ** 23 - 7.15143745188769e34 * cos(theta) ** 21 + 3.33733747754759e33 * cos(theta) ** 19 - 1.25397650771399e32 * cos(theta) ** 17 + 3.70902142342546e30 * cos(theta) ** 15 - 8.39145118422051e28 * cos(theta) ** 13 + 1.39857519737008e27 * cos(theta) ** 11 - 1.63142387816235e25 * cos(theta) ** 9 + 1.23748966737978e23 * cos(theta) ** 7 - 5.44464341399025e20 * cos(theta) ** 5 + 1.13524675020647e18 * cos(theta) ** 3 - 707318847480669.0 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl98_m8(theta, phi): return ( 6.37478599142786e-16 * (1.0 - cos(theta) ** 2) ** 4 * ( 1.14453828991907e44 * cos(theta) ** 90 - 2.35070556467993e45 * cos(theta) ** 88 + 2.33121785015408e46 * cos(theta) ** 86 - 1.48701592361486e47 * cos(theta) ** 84 + 6.85679564777965e47 * cos(theta) ** 82 - 2.43544581243596e48 * cos(theta) ** 80 + 6.93334123179967e48 * cos(theta) ** 78 - 1.62535704286451e49 * cos(theta) ** 76 + 3.19907981503029e49 * cos(theta) ** 74 - 5.36357205487077e49 * cos(theta) ** 72 + 7.74536167923711e49 * cos(theta) ** 70 - 9.71690828849747e49 * cos(theta) ** 68 + 1.06623878040449e50 * cos(theta) ** 66 - 1.02882689337275e50 * cos(theta) ** 64 + 8.76633565950749e49 * cos(theta) ** 62 - 6.61762105074997e49 * cos(theta) ** 60 + 4.436814113571e49 * cos(theta) ** 58 - 2.64671733299634e49 * cos(theta) ** 56 + 1.40646814796907e49 * cos(theta) ** 54 - 6.66221754301139e48 * cos(theta) ** 52 + 2.8134077904564e48 * cos(theta) ** 50 - 1.0588093835051e48 * cos(theta) ** 48 + 3.54823821923277e47 * cos(theta) ** 46 - 1.05742198586407e47 * cos(theta) ** 44 + 2.79731878810797e46 * cos(theta) ** 42 - 6.55371830356725e45 * cos(theta) ** 40 + 1.35594171797943e45 * cos(theta) ** 38 - 2.46886047070588e44 * cos(theta) ** 36 + 3.93967096389236e43 * cos(theta) ** 34 - 5.48289608222181e42 * cos(theta) ** 32 + 6.61682836200005e41 * cos(theta) ** 30 - 6.87770689956994e40 * cos(theta) ** 28 + 6.10848968053909e39 * cos(theta) ** 26 - 4.59231817297063e38 * cos(theta) ** 24 + 2.88983086124007e37 * cos(theta) ** 22 - 1.50180186489641e36 * cos(theta) ** 20 + 6.34094120734042e34 * cos(theta) ** 18 - 2.13176006311379e33 * cos(theta) ** 16 + 5.5635321351382e31 * cos(theta) ** 14 - 1.09088865394867e30 * cos(theta) ** 12 + 1.53843271710709e28 * cos(theta) ** 10 - 1.46828149034611e26 * cos(theta) ** 8 + 8.66242767165848e23 * cos(theta) ** 6 - 2.72232170699512e21 * cos(theta) ** 4 + 3.40574025061942e18 * cos(theta) ** 2 - 707318847480669.0 ) * cos(8 * phi) ) # @torch.jit.script def Yl98_m9(theta, phi): return ( 6.49609647438139e-18 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 1.03008446092716e46 * cos(theta) ** 89 - 2.06862089691833e47 * cos(theta) ** 87 + 2.00484735113251e48 * cos(theta) ** 85 - 1.24909337583649e49 * cos(theta) ** 83 + 5.62257243117931e49 * cos(theta) ** 81 - 1.94835664994877e50 * cos(theta) ** 79 + 5.40800616080374e50 * cos(theta) ** 77 - 1.23527135257703e51 * cos(theta) ** 75 + 2.36731906312241e51 * cos(theta) ** 73 - 3.86177187950696e51 * cos(theta) ** 71 + 5.42175317546598e51 * cos(theta) ** 69 - 6.60749763617828e51 * cos(theta) ** 67 + 7.03717595066964e51 * cos(theta) ** 65 - 6.58449211758563e51 * cos(theta) ** 63 + 5.43512810889465e51 * cos(theta) ** 61 - 3.97057263044998e51 * cos(theta) ** 59 + 2.57335218587118e51 * cos(theta) ** 57 - 1.48216170647795e51 * cos(theta) ** 55 + 7.59492799903298e50 * cos(theta) ** 53 - 3.46435312236592e50 * cos(theta) ** 51 + 1.4067038952282e50 * cos(theta) ** 49 - 5.08228504082447e49 * cos(theta) ** 47 + 1.63218958084707e49 * cos(theta) ** 45 - 4.65265673780191e48 * cos(theta) ** 43 + 1.17487389100535e48 * cos(theta) ** 41 - 2.6214873214269e47 * cos(theta) ** 39 + 5.15257852832184e46 * cos(theta) ** 37 - 8.88789769454116e45 * cos(theta) ** 35 + 1.3394881277234e45 * cos(theta) ** 33 - 1.75452674631098e44 * cos(theta) ** 31 + 1.98504850860001e43 * cos(theta) ** 29 - 1.92575793187958e42 * cos(theta) ** 27 + 1.58820731694016e41 * cos(theta) ** 25 - 1.10215636151295e40 * cos(theta) ** 23 + 6.35762789472816e38 * cos(theta) ** 21 - 3.00360372979283e37 * cos(theta) ** 19 + 1.14136941732128e36 * cos(theta) ** 17 - 3.41081610098206e34 * cos(theta) ** 15 + 7.78894498919348e32 * cos(theta) ** 13 - 1.3090663847384e31 * cos(theta) ** 11 + 1.53843271710709e29 * cos(theta) ** 9 - 1.17462519227689e27 * cos(theta) ** 7 + 5.19745660299509e24 * cos(theta) ** 5 - 1.08892868279805e22 * cos(theta) ** 3 + 6.81148050123884e18 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl98_m10(theta, phi): return ( 6.62591079995136e-20 * (1.0 - cos(theta) ** 2) ** 5 * ( 9.16775170225171e47 * cos(theta) ** 88 - 1.79970018031895e49 * cos(theta) ** 86 + 1.70412024846263e50 * cos(theta) ** 84 - 1.03674750194428e51 * cos(theta) ** 82 + 4.55428366925524e51 * cos(theta) ** 80 - 1.53920175345953e52 * cos(theta) ** 78 + 4.16416474381888e52 * cos(theta) ** 76 - 9.26453514432772e52 * cos(theta) ** 74 + 1.72814291607936e53 * cos(theta) ** 72 - 2.74185803444994e53 * cos(theta) ** 70 + 3.74100969107153e53 * cos(theta) ** 68 - 4.42702341623945e53 * cos(theta) ** 66 + 4.57416436793527e53 * cos(theta) ** 64 - 4.14823003407895e53 * cos(theta) ** 62 + 3.31542814642573e53 * cos(theta) ** 60 - 2.34263785196549e53 * cos(theta) ** 58 + 1.46681074594657e53 * cos(theta) ** 56 - 8.15188938562874e52 * cos(theta) ** 54 + 4.02531183948748e52 * cos(theta) ** 52 - 1.76682009240662e52 * cos(theta) ** 50 + 6.89284908661818e51 * cos(theta) ** 48 - 2.3886739691875e51 * cos(theta) ** 46 + 7.34485311381183e50 * cos(theta) ** 44 - 2.00064239725482e50 * cos(theta) ** 42 + 4.81698295312193e49 * cos(theta) ** 40 - 1.02238005535649e49 * cos(theta) ** 38 + 1.90645405547908e48 * cos(theta) ** 36 - 3.11076419308941e47 * cos(theta) ** 34 + 4.42031082148723e46 * cos(theta) ** 32 - 5.43903291356404e45 * cos(theta) ** 30 + 5.75664067494004e44 * cos(theta) ** 28 - 5.19954641607488e43 * cos(theta) ** 26 + 3.97051829235041e42 * cos(theta) ** 24 - 2.53495963147979e41 * cos(theta) ** 22 + 1.33510185789291e40 * cos(theta) ** 20 - 5.70684708660638e38 * cos(theta) ** 18 + 1.94032800944617e37 * cos(theta) ** 16 - 5.11622415147309e35 * cos(theta) ** 14 + 1.01256284859515e34 * cos(theta) ** 12 - 1.43997302321224e32 * cos(theta) ** 10 + 1.38458944539638e30 * cos(theta) ** 8 - 8.22237634593823e27 * cos(theta) ** 6 + 2.59872830149754e25 * cos(theta) ** 4 - 3.26678604839415e22 * cos(theta) ** 2 + 6.81148050123884e18 ) * cos(10 * phi) ) # @torch.jit.script def Yl98_m11(theta, phi): return ( 6.76536138020634e-22 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 8.06762149798151e49 * cos(theta) ** 87 - 1.5477421550743e51 * cos(theta) ** 85 + 1.43146100870861e52 * cos(theta) ** 83 - 8.50132951594312e52 * cos(theta) ** 81 + 3.64342693540419e53 * cos(theta) ** 79 - 1.20057736769843e54 * cos(theta) ** 77 + 3.16476520530235e54 * cos(theta) ** 75 - 6.85575600680251e54 * cos(theta) ** 73 + 1.24426289957714e55 * cos(theta) ** 71 - 1.91930062411496e55 * cos(theta) ** 69 + 2.54388658992864e55 * cos(theta) ** 67 - 2.92183545471803e55 * cos(theta) ** 65 + 2.92746519547857e55 * cos(theta) ** 63 - 2.57190262112895e55 * cos(theta) ** 61 + 1.98925688785544e55 * cos(theta) ** 59 - 1.35872995413998e55 * cos(theta) ** 57 + 8.21414017730081e54 * cos(theta) ** 55 - 4.40202026823952e54 * cos(theta) ** 53 + 2.09316215653349e54 * cos(theta) ** 51 - 8.8341004620331e53 * cos(theta) ** 49 + 3.30856756157673e53 * cos(theta) ** 47 - 1.09879002582625e53 * cos(theta) ** 45 + 3.23173537007721e52 * cos(theta) ** 43 - 8.40269806847025e51 * cos(theta) ** 41 + 1.92679318124877e51 * cos(theta) ** 39 - 3.88504421035466e50 * cos(theta) ** 37 + 6.86323459972468e49 * cos(theta) ** 35 - 1.0576598256504e49 * cos(theta) ** 33 + 1.41449946287591e48 * cos(theta) ** 31 - 1.63170987406921e47 * cos(theta) ** 29 + 1.61185938898321e46 * cos(theta) ** 27 - 1.35188206817947e45 * cos(theta) ** 25 + 9.52924390164099e43 * cos(theta) ** 23 - 5.57691118925554e42 * cos(theta) ** 21 + 2.67020371578583e41 * cos(theta) ** 19 - 1.02723247558915e40 * cos(theta) ** 17 + 3.10452481511387e38 * cos(theta) ** 15 - 7.16271381206232e36 * cos(theta) ** 13 + 1.21507541831418e35 * cos(theta) ** 11 - 1.43997302321224e33 * cos(theta) ** 9 + 1.10767155631711e31 * cos(theta) ** 7 - 4.93342580756294e28 * cos(theta) ** 5 + 1.03949132059902e26 * cos(theta) ** 3 - 6.53357209678829e22 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl98_m12(theta, phi): return ( 6.9156822533309e-24 * (1.0 - cos(theta) ** 2) ** 6 * ( 7.01883070324391e51 * cos(theta) ** 86 - 1.31558083181315e53 * cos(theta) ** 84 + 1.18811263722815e54 * cos(theta) ** 82 - 6.88607690791393e54 * cos(theta) ** 80 + 2.87830727896931e55 * cos(theta) ** 78 - 9.24444573127791e55 * cos(theta) ** 76 + 2.37357390397676e56 * cos(theta) ** 74 - 5.00470188496583e56 * cos(theta) ** 72 + 8.8342665869977e56 * cos(theta) ** 70 - 1.32431743063932e57 * cos(theta) ** 68 + 1.70440401525219e57 * cos(theta) ** 66 - 1.89919304556672e57 * cos(theta) ** 64 + 1.8443030731515e57 * cos(theta) ** 62 - 1.56886059888866e57 * cos(theta) ** 60 + 1.17366156383471e57 * cos(theta) ** 58 - 7.74476073859791e56 * cos(theta) ** 56 + 4.51777709751545e56 * cos(theta) ** 54 - 2.33307074216694e56 * cos(theta) ** 52 + 1.06751269983208e56 * cos(theta) ** 50 - 4.32870922639622e55 * cos(theta) ** 48 + 1.55502675394106e55 * cos(theta) ** 46 - 4.94455511621813e54 * cos(theta) ** 44 + 1.3896462091332e54 * cos(theta) ** 42 - 3.4451062080728e53 * cos(theta) ** 40 + 7.51449340687021e52 * cos(theta) ** 38 - 1.43746635783123e52 * cos(theta) ** 36 + 2.40213210990364e51 * cos(theta) ** 34 - 3.49027742464631e50 * cos(theta) ** 32 + 4.38494833491533e49 * cos(theta) ** 30 - 4.73195863480071e48 * cos(theta) ** 28 + 4.35202035025467e47 * cos(theta) ** 26 - 3.37970517044867e46 * cos(theta) ** 24 + 2.19172609737743e45 * cos(theta) ** 22 - 1.17115134974366e44 * cos(theta) ** 20 + 5.07338705999307e42 * cos(theta) ** 18 - 1.74629520850155e41 * cos(theta) ** 16 + 4.6567872226708e39 * cos(theta) ** 14 - 9.31152795568102e37 * cos(theta) ** 12 + 1.3365829601456e36 * cos(theta) ** 10 - 1.29597572089102e34 * cos(theta) ** 8 + 7.75370089421975e31 * cos(theta) ** 6 - 2.46671290378147e29 * cos(theta) ** 4 + 3.11847396179705e26 * cos(theta) ** 2 - 6.53357209678829e22 ) * cos(12 * phi) ) # @torch.jit.script def Yl98_m13(theta, phi): return ( 7.07822422285425e-26 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 6.03619440478976e53 * cos(theta) ** 85 - 1.10508789872305e55 * cos(theta) ** 83 + 9.74252362527082e55 * cos(theta) ** 81 - 5.50886152633114e56 * cos(theta) ** 79 + 2.24507967759606e57 * cos(theta) ** 77 - 7.02577875577121e57 * cos(theta) ** 75 + 1.7564446889428e58 * cos(theta) ** 73 - 3.6033853571754e58 * cos(theta) ** 71 + 6.18398661089839e58 * cos(theta) ** 69 - 9.00535852834738e58 * cos(theta) ** 67 + 1.12490665006644e59 * cos(theta) ** 65 - 1.2154835491627e59 * cos(theta) ** 63 + 1.14346790535393e59 * cos(theta) ** 61 - 9.41316359333195e58 * cos(theta) ** 59 + 6.80723707024132e58 * cos(theta) ** 57 - 4.33706601361483e58 * cos(theta) ** 55 + 2.43959963265834e58 * cos(theta) ** 53 - 1.21319678592681e58 * cos(theta) ** 51 + 5.3375634991604e57 * cos(theta) ** 49 - 2.07778042867019e57 * cos(theta) ** 47 + 7.15312306812889e56 * cos(theta) ** 45 - 2.17560425113598e56 * cos(theta) ** 43 + 5.83651407835943e55 * cos(theta) ** 41 - 1.37804248322912e55 * cos(theta) ** 39 + 2.85550749461068e54 * cos(theta) ** 37 - 5.17487888819241e53 * cos(theta) ** 35 + 8.16724917367237e52 * cos(theta) ** 33 - 1.11688877588682e52 * cos(theta) ** 31 + 1.3154845004746e51 * cos(theta) ** 29 - 1.3249484177442e50 * cos(theta) ** 27 + 1.13152529106621e49 * cos(theta) ** 25 - 8.11129240907681e47 * cos(theta) ** 23 + 4.82179741423034e46 * cos(theta) ** 21 - 2.34230269948733e45 * cos(theta) ** 19 + 9.13209670798752e43 * cos(theta) ** 17 - 2.79407233360248e42 * cos(theta) ** 15 + 6.51950211173912e40 * cos(theta) ** 13 - 1.11738335468172e39 * cos(theta) ** 11 + 1.3365829601456e37 * cos(theta) ** 9 - 1.03678057671281e35 * cos(theta) ** 7 + 4.65222053653185e32 * cos(theta) ** 5 - 9.86685161512588e29 * cos(theta) ** 3 + 6.23694792359411e26 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl98_m14(theta, phi): return ( 7.25447255182986e-28 * (1.0 - cos(theta) ** 2) ** 7 * ( 5.1307652440713e55 * cos(theta) ** 84 - 9.17222955940131e56 * cos(theta) ** 82 + 7.89144413646936e57 * cos(theta) ** 80 - 4.3520006058016e58 * cos(theta) ** 78 + 1.72871135174897e59 * cos(theta) ** 76 - 5.26933406682841e59 * cos(theta) ** 74 + 1.28220462292825e60 * cos(theta) ** 72 - 2.55840360359453e60 * cos(theta) ** 70 + 4.26695076151989e60 * cos(theta) ** 68 - 6.03359021399274e60 * cos(theta) ** 66 + 7.31189322543188e60 * cos(theta) ** 64 - 7.65754635972503e60 * cos(theta) ** 62 + 6.97515422265897e60 * cos(theta) ** 60 - 5.55376652006585e60 * cos(theta) ** 58 + 3.88012513003755e60 * cos(theta) ** 56 - 2.38538630748816e60 * cos(theta) ** 54 + 1.29298780530892e60 * cos(theta) ** 52 - 6.18730360822674e59 * cos(theta) ** 50 + 2.6154061145886e59 * cos(theta) ** 48 - 9.76556801474987e58 * cos(theta) ** 46 + 3.218905380658e58 * cos(theta) ** 44 - 9.35509827988469e57 * cos(theta) ** 42 + 2.39297077212737e57 * cos(theta) ** 40 - 5.37436568459357e56 * cos(theta) ** 38 + 1.05653777300595e56 * cos(theta) ** 36 - 1.81120761086734e55 * cos(theta) ** 34 + 2.69519222731188e54 * cos(theta) ** 32 - 3.46235520524914e53 * cos(theta) ** 30 + 3.81490505137634e52 * cos(theta) ** 28 - 3.57736072790934e51 * cos(theta) ** 26 + 2.82881322766554e50 * cos(theta) ** 24 - 1.86559725408767e49 * cos(theta) ** 22 + 1.01257745698837e48 * cos(theta) ** 20 - 4.45037512902592e46 * cos(theta) ** 18 + 1.55245644035788e45 * cos(theta) ** 16 - 4.19110850040372e43 * cos(theta) ** 14 + 8.47535274526086e41 * cos(theta) ** 12 - 1.22912169014989e40 * cos(theta) ** 10 + 1.20292466413104e38 * cos(theta) ** 8 - 7.25746403698969e35 * cos(theta) ** 6 + 2.32611026826593e33 * cos(theta) ** 4 - 2.96005548453776e30 * cos(theta) ** 2 + 6.23694792359411e26 ) * cos(14 * phi) ) # @torch.jit.script def Yl98_m15(theta, phi): return ( 7.44606764066569e-30 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 4.30984280501989e57 * cos(theta) ** 83 - 7.52122823870907e58 * cos(theta) ** 81 + 6.31315530917549e59 * cos(theta) ** 79 - 3.39456047252525e60 * cos(theta) ** 77 + 1.31382062732922e61 * cos(theta) ** 75 - 3.89930720945302e61 * cos(theta) ** 73 + 9.23187328508338e61 * cos(theta) ** 71 - 1.79088252251617e62 * cos(theta) ** 69 + 2.90152651783352e62 * cos(theta) ** 67 - 3.98216954123521e62 * cos(theta) ** 65 + 4.67961166427641e62 * cos(theta) ** 63 - 4.74767874302952e62 * cos(theta) ** 61 + 4.18509253359538e62 * cos(theta) ** 59 - 3.22118458163819e62 * cos(theta) ** 57 + 2.17287007282103e62 * cos(theta) ** 55 - 1.2881086060436e62 * cos(theta) ** 53 + 6.72353658760639e61 * cos(theta) ** 51 - 3.09365180411337e61 * cos(theta) ** 49 + 1.25539493500253e61 * cos(theta) ** 47 - 4.49216128678494e60 * cos(theta) ** 45 + 1.41631836748952e60 * cos(theta) ** 43 - 3.92914127755157e59 * cos(theta) ** 41 + 9.57188308850947e58 * cos(theta) ** 39 - 2.04225896014556e58 * cos(theta) ** 37 + 3.80353598282142e57 * cos(theta) ** 35 - 6.15810587694897e56 * cos(theta) ** 33 + 8.62461512739803e55 * cos(theta) ** 31 - 1.03870656157474e55 * cos(theta) ** 29 + 1.06817341438537e54 * cos(theta) ** 27 - 9.30113789256428e52 * cos(theta) ** 25 + 6.78915174639729e51 * cos(theta) ** 23 - 4.10431395899286e50 * cos(theta) ** 21 + 2.02515491397674e49 * cos(theta) ** 19 - 8.01067523224666e47 * cos(theta) ** 17 + 2.48393030457261e46 * cos(theta) ** 15 - 5.86755190056521e44 * cos(theta) ** 13 + 1.0170423294313e43 * cos(theta) ** 11 - 1.22912169014989e41 * cos(theta) ** 9 + 9.62339731304832e38 * cos(theta) ** 7 - 4.35447842219381e36 * cos(theta) ** 5 + 9.3044410730637e33 * cos(theta) ** 3 - 5.92011096907553e30 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl98_m16(theta, phi): return ( 7.65482920625177e-32 * (1.0 - cos(theta) ** 2) ** 8 * ( 3.57716952816651e59 * cos(theta) ** 82 - 6.09219487335435e60 * cos(theta) ** 80 + 4.98739269424864e61 * cos(theta) ** 78 - 2.61381156384444e62 * cos(theta) ** 76 + 9.85365470496913e62 * cos(theta) ** 74 - 2.84649426290071e63 * cos(theta) ** 72 + 6.5546300324092e63 * cos(theta) ** 70 - 1.23570894053616e64 * cos(theta) ** 68 + 1.94402276694846e64 * cos(theta) ** 66 - 2.58841020180289e64 * cos(theta) ** 64 + 2.94815534849414e64 * cos(theta) ** 62 - 2.896084033248e64 * cos(theta) ** 60 + 2.46920459482128e64 * cos(theta) ** 58 - 1.83607521153377e64 * cos(theta) ** 56 + 1.19507854005157e64 * cos(theta) ** 54 - 6.8269756120311e63 * cos(theta) ** 52 + 3.42900365967926e63 * cos(theta) ** 50 - 1.51588938401555e63 * cos(theta) ** 48 + 5.90035619451187e62 * cos(theta) ** 46 - 2.02147257905322e62 * cos(theta) ** 44 + 6.09016898020494e61 * cos(theta) ** 42 - 1.61094792379614e61 * cos(theta) ** 40 + 3.73303440451869e60 * cos(theta) ** 38 - 7.55635815253856e59 * cos(theta) ** 36 + 1.3312375939875e59 * cos(theta) ** 34 - 2.03217493939316e58 * cos(theta) ** 32 + 2.67363068949339e57 * cos(theta) ** 30 - 3.01224902856675e56 * cos(theta) ** 28 + 2.88406821884051e55 * cos(theta) ** 26 - 2.32528447314107e54 * cos(theta) ** 24 + 1.56150490167138e53 * cos(theta) ** 22 - 8.61905931388501e51 * cos(theta) ** 20 + 3.84779433655581e50 * cos(theta) ** 18 - 1.36181478948193e49 * cos(theta) ** 16 + 3.72589545685891e47 * cos(theta) ** 14 - 7.62781747073478e45 * cos(theta) ** 12 + 1.11874656237443e44 * cos(theta) ** 10 - 1.1062095211349e42 * cos(theta) ** 8 + 6.73637811913383e39 * cos(theta) ** 6 - 2.17723921109691e37 * cos(theta) ** 4 + 2.79133232191911e34 * cos(theta) ** 2 - 5.92011096907553e30 ) * cos(16 * phi) ) # @torch.jit.script def Yl98_m17(theta, phi): return ( 7.88278458861485e-34 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 2.93327901309654e61 * cos(theta) ** 81 - 4.87375589868348e62 * cos(theta) ** 79 + 3.89016630151394e63 * cos(theta) ** 77 - 1.98649678852178e64 * cos(theta) ** 75 + 7.29170448167715e64 * cos(theta) ** 73 - 2.04947586928851e65 * cos(theta) ** 71 + 4.58824102268644e65 * cos(theta) ** 69 - 8.40282079564589e65 * cos(theta) ** 67 + 1.28305502618598e66 * cos(theta) ** 65 - 1.65658252915385e66 * cos(theta) ** 63 + 1.82785631606636e66 * cos(theta) ** 61 - 1.7376504199488e66 * cos(theta) ** 59 + 1.43213866499634e66 * cos(theta) ** 57 - 1.02820211845891e66 * cos(theta) ** 55 + 6.45342411627846e65 * cos(theta) ** 53 - 3.55002731825617e65 * cos(theta) ** 51 + 1.71450182983963e65 * cos(theta) ** 49 - 7.27626904327464e64 * cos(theta) ** 47 + 2.71416384947546e64 * cos(theta) ** 45 - 8.89447934783418e63 * cos(theta) ** 43 + 2.55787097168607e63 * cos(theta) ** 41 - 6.44379169518458e62 * cos(theta) ** 39 + 1.4185530737171e62 * cos(theta) ** 37 - 2.72028893491388e61 * cos(theta) ** 35 + 4.52620781955749e60 * cos(theta) ** 33 - 6.50295980605811e59 * cos(theta) ** 31 + 8.02089206848017e58 * cos(theta) ** 29 - 8.43429727998691e57 * cos(theta) ** 27 + 7.49857736898533e56 * cos(theta) ** 25 - 5.58068273553857e55 * cos(theta) ** 23 + 3.43531078367703e54 * cos(theta) ** 21 - 1.723811862777e53 * cos(theta) ** 19 + 6.92602980580046e51 * cos(theta) ** 17 - 2.17890366317109e50 * cos(theta) ** 15 + 5.21625363960247e48 * cos(theta) ** 13 - 9.15338096488173e46 * cos(theta) ** 11 + 1.11874656237443e45 * cos(theta) ** 9 - 8.84967616907924e42 * cos(theta) ** 7 + 4.0418268714803e40 * cos(theta) ** 5 - 8.70895684438762e37 * cos(theta) ** 3 + 5.58266464383822e34 * cos(theta) ) * cos(17 * phi) ) # @torch.jit.script def Yl98_m18(theta, phi): return ( 8.13220194422049e-36 * (1.0 - cos(theta) ** 2) ** 9 * ( 2.3759560006082e63 * cos(theta) ** 80 - 3.85026715995995e64 * cos(theta) ** 78 + 2.99542805216573e65 * cos(theta) ** 76 - 1.48987259139133e66 * cos(theta) ** 74 + 5.32294427162432e66 * cos(theta) ** 72 - 1.45512786719484e67 * cos(theta) ** 70 + 3.16588630565364e67 * cos(theta) ** 68 - 5.62988993308274e67 * cos(theta) ** 66 + 8.3398576702089e67 * cos(theta) ** 64 - 1.04364699336692e68 * cos(theta) ** 62 + 1.11499235280048e68 * cos(theta) ** 60 - 1.02521374776979e68 * cos(theta) ** 58 + 8.16319039047914e67 * cos(theta) ** 56 - 5.65511165152401e67 * cos(theta) ** 54 + 3.42031478162758e67 * cos(theta) ** 52 - 1.81051393231065e67 * cos(theta) ** 50 + 8.40105896621418e66 * cos(theta) ** 48 - 3.41984645033908e66 * cos(theta) ** 46 + 1.22137373226396e66 * cos(theta) ** 44 - 3.8246261195687e65 * cos(theta) ** 42 + 1.04872709839129e65 * cos(theta) ** 40 - 2.51307876112198e64 * cos(theta) ** 38 + 5.24864637275328e63 * cos(theta) ** 36 - 9.52101127219859e62 * cos(theta) ** 34 + 1.49364858045397e62 * cos(theta) ** 32 - 2.01591753987802e61 * cos(theta) ** 30 + 2.32605869985925e60 * cos(theta) ** 28 - 2.27726026559647e59 * cos(theta) ** 26 + 1.87464434224633e58 * cos(theta) ** 24 - 1.28355702917387e57 * cos(theta) ** 22 + 7.21415264572176e55 * cos(theta) ** 20 - 3.27524253927631e54 * cos(theta) ** 18 + 1.17742506698608e53 * cos(theta) ** 16 - 3.26835549475664e51 * cos(theta) ** 14 + 6.78112973148322e49 * cos(theta) ** 12 - 1.00687190613699e48 * cos(theta) ** 10 + 1.00687190613699e46 * cos(theta) ** 8 - 6.19477331835547e43 * cos(theta) ** 6 + 2.02091343574015e41 * cos(theta) ** 4 - 2.61268705331629e38 * cos(theta) ** 2 + 5.58266464383822e34 ) * cos(18 * phi) ) # @torch.jit.script def Yl98_m19(theta, phi): return ( 8.40562924814361e-38 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.90076480048656e65 * cos(theta) ** 79 - 3.00320838476876e66 * cos(theta) ** 77 + 2.27652531964596e67 * cos(theta) ** 75 - 1.10250571762959e68 * cos(theta) ** 73 + 3.83251987556951e68 * cos(theta) ** 71 - 1.01858950703639e69 * cos(theta) ** 69 + 2.15280268784448e69 * cos(theta) ** 67 - 3.71572735583461e69 * cos(theta) ** 65 + 5.3375089089337e69 * cos(theta) ** 63 - 6.47061135887493e69 * cos(theta) ** 61 + 6.68995411680289e69 * cos(theta) ** 59 - 5.9462397370648e69 * cos(theta) ** 57 + 4.57138661866832e69 * cos(theta) ** 55 - 3.05376029182297e69 * cos(theta) ** 53 + 1.77856368644634e69 * cos(theta) ** 51 - 9.05256966155324e68 * cos(theta) ** 49 + 4.03250830378281e68 * cos(theta) ** 47 - 1.57312936715598e68 * cos(theta) ** 45 + 5.37404442196141e67 * cos(theta) ** 43 - 1.60634297021885e67 * cos(theta) ** 41 + 4.19490839356516e66 * cos(theta) ** 39 - 9.54969929226354e65 * cos(theta) ** 37 + 1.88951269419118e65 * cos(theta) ** 35 - 3.23714383254752e64 * cos(theta) ** 33 + 4.77967545745271e63 * cos(theta) ** 31 - 6.04775261963405e62 * cos(theta) ** 29 + 6.51296435960589e61 * cos(theta) ** 27 - 5.92087669055081e60 * cos(theta) ** 25 + 4.4991464213912e59 * cos(theta) ** 23 - 2.82382546418252e58 * cos(theta) ** 21 + 1.44283052914435e57 * cos(theta) ** 19 - 5.89543657069735e55 * cos(theta) ** 17 + 1.88388010717772e54 * cos(theta) ** 15 - 4.57569769265929e52 * cos(theta) ** 13 + 8.13735567777986e50 * cos(theta) ** 11 - 1.00687190613699e49 * cos(theta) ** 9 + 8.05497524909592e46 * cos(theta) ** 7 - 3.71686399101328e44 * cos(theta) ** 5 + 8.08365374296059e41 * cos(theta) ** 3 - 5.22537410663257e38 * cos(theta) ) * cos(19 * phi) ) # @torch.jit.script def Yl98_m20(theta, phi): return ( 8.70594022811869e-40 * (1.0 - cos(theta) ** 2) ** 10 * ( 1.50160419238438e67 * cos(theta) ** 78 - 2.31247045627194e68 * cos(theta) ** 76 + 1.70739398973447e69 * cos(theta) ** 74 - 8.04829173869598e69 * cos(theta) ** 72 + 2.72108911165435e70 * cos(theta) ** 70 - 7.02826759855109e70 * cos(theta) ** 68 + 1.4423778008558e71 * cos(theta) ** 66 - 2.4152227812925e71 * cos(theta) ** 64 + 3.36263061262823e71 * cos(theta) ** 62 - 3.94707292891371e71 * cos(theta) ** 60 + 3.94707292891371e71 * cos(theta) ** 58 - 3.38935665012694e71 * cos(theta) ** 56 + 2.51426264026757e71 * cos(theta) ** 54 - 1.61849295466617e71 * cos(theta) ** 52 + 9.07067480087635e70 * cos(theta) ** 50 - 4.43575913416109e70 * cos(theta) ** 48 + 1.89527890277792e70 * cos(theta) ** 46 - 7.0790821522019e69 * cos(theta) ** 44 + 2.31083910144341e69 * cos(theta) ** 42 - 6.5860061778973e68 * cos(theta) ** 40 + 1.63601427349041e68 * cos(theta) ** 38 - 3.53338873813751e67 * cos(theta) ** 36 + 6.61329442966914e66 * cos(theta) ** 34 - 1.06825746474068e66 * cos(theta) ** 32 + 1.48169939181034e65 * cos(theta) ** 30 - 1.75384825969387e64 * cos(theta) ** 28 + 1.75850037709359e63 * cos(theta) ** 26 - 1.4802191726377e62 * cos(theta) ** 24 + 1.03480367691997e61 * cos(theta) ** 22 - 5.93003347478329e59 * cos(theta) ** 20 + 2.74137800537427e58 * cos(theta) ** 18 - 1.00222421701855e57 * cos(theta) ** 16 + 2.82582016076659e55 * cos(theta) ** 14 - 5.94840700045708e53 * cos(theta) ** 12 + 8.95109124555784e51 * cos(theta) ** 10 - 9.06184715523291e49 * cos(theta) ** 8 + 5.63848267436715e47 * cos(theta) ** 6 - 1.85843199550664e45 * cos(theta) ** 4 + 2.42509612288818e42 * cos(theta) ** 2 - 5.22537410663257e38 ) * cos(20 * phi) ) # @torch.jit.script def Yl98_m21(theta, phi): return ( 9.03638860146374e-42 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 1.17125127005982e69 * cos(theta) ** 77 - 1.75747754676668e70 * cos(theta) ** 75 + 1.26347155240351e71 * cos(theta) ** 73 - 5.7947700518611e71 * cos(theta) ** 71 + 1.90476237815805e72 * cos(theta) ** 69 - 4.77922196701474e72 * cos(theta) ** 67 + 9.51969348564828e72 * cos(theta) ** 65 - 1.5457425800272e73 * cos(theta) ** 63 + 2.0848309798295e73 * cos(theta) ** 61 - 2.36824375734822e73 * cos(theta) ** 59 + 2.28930229876995e73 * cos(theta) ** 57 - 1.89803972407109e73 * cos(theta) ** 55 + 1.35770182574449e73 * cos(theta) ** 53 - 8.41616336426409e72 * cos(theta) ** 51 + 4.53533740043817e72 * cos(theta) ** 49 - 2.12916438439732e72 * cos(theta) ** 47 + 8.71828295277843e71 * cos(theta) ** 45 - 3.11479614696884e71 * cos(theta) ** 43 + 9.70552422606231e70 * cos(theta) ** 41 - 2.63440247115892e70 * cos(theta) ** 39 + 6.21685423926357e69 * cos(theta) ** 37 - 1.2720199457295e69 * cos(theta) ** 35 + 2.24852010608751e68 * cos(theta) ** 33 - 3.41842388717018e67 * cos(theta) ** 31 + 4.44509817543102e66 * cos(theta) ** 29 - 4.91077512714284e65 * cos(theta) ** 27 + 4.57210098044334e64 * cos(theta) ** 25 - 3.55252601433049e63 * cos(theta) ** 23 + 2.27656808922394e62 * cos(theta) ** 21 - 1.18600669495666e61 * cos(theta) ** 19 + 4.93448040967368e59 * cos(theta) ** 17 - 1.60355874722968e58 * cos(theta) ** 15 + 3.95614822507322e56 * cos(theta) ** 13 - 7.13808840054849e54 * cos(theta) ** 11 + 8.95109124555785e52 * cos(theta) ** 9 - 7.24947772418633e50 * cos(theta) ** 7 + 3.38308960462029e48 * cos(theta) ** 5 - 7.43372798202656e45 * cos(theta) ** 3 + 4.85019224577636e42 * cos(theta) ) * cos(21 * phi) ) # @torch.jit.script def Yl98_m22(theta, phi): return ( 9.40067229316547e-44 * (1.0 - cos(theta) ** 2) ** 11 * ( 9.01863477946058e70 * cos(theta) ** 76 - 1.31810816007501e72 * cos(theta) ** 74 + 9.22334233254559e72 * cos(theta) ** 72 - 4.11428673682138e73 * cos(theta) ** 70 + 1.31428604092905e74 * cos(theta) ** 68 - 3.20207871789987e74 * cos(theta) ** 66 + 6.18780076567138e74 * cos(theta) ** 64 - 9.73817825417135e74 * cos(theta) ** 62 + 1.271746897696e75 * cos(theta) ** 60 - 1.39726381683545e75 * cos(theta) ** 58 + 1.30490231029887e75 * cos(theta) ** 56 - 1.0439218482391e75 * cos(theta) ** 54 + 7.1958196764458e74 * cos(theta) ** 52 - 4.29224331577469e74 * cos(theta) ** 50 + 2.2223153262147e74 * cos(theta) ** 48 - 1.00070726066674e74 * cos(theta) ** 46 + 3.92322732875029e73 * cos(theta) ** 44 - 1.3393623431966e73 * cos(theta) ** 42 + 3.97926493268555e72 * cos(theta) ** 40 - 1.02741696375198e72 * cos(theta) ** 38 + 2.30023606852752e71 * cos(theta) ** 36 - 4.45206981005326e70 * cos(theta) ** 34 + 7.42011635008877e69 * cos(theta) ** 32 - 1.05971140502276e69 * cos(theta) ** 30 + 1.289078470875e68 * cos(theta) ** 28 - 1.32590928432857e67 * cos(theta) ** 26 + 1.14302524511083e66 * cos(theta) ** 24 - 8.17080983296012e64 * cos(theta) ** 22 + 4.78079298737028e63 * cos(theta) ** 20 - 2.25341272041765e62 * cos(theta) ** 18 + 8.38861669644526e60 * cos(theta) ** 16 - 2.40533812084452e59 * cos(theta) ** 14 + 5.14299269259519e57 * cos(theta) ** 12 - 7.85189724060334e55 * cos(theta) ** 10 + 8.05598212100206e53 * cos(theta) ** 8 - 5.07463440693043e51 * cos(theta) ** 6 + 1.69154480231014e49 * cos(theta) ** 4 - 2.23011839460797e46 * cos(theta) ** 2 + 4.85019224577636e42 ) * cos(22 * phi) ) # @torch.jit.script def Yl98_m23(theta, phi): return ( 9.8030096955146e-46 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 6.85416243239004e72 * cos(theta) ** 75 - 9.75400038455506e73 * cos(theta) ** 73 + 6.64080647943282e74 * cos(theta) ** 71 - 2.88000071577497e75 * cos(theta) ** 69 + 8.93714507831756e75 * cos(theta) ** 67 - 2.11337195381392e76 * cos(theta) ** 65 + 3.96019249002968e76 * cos(theta) ** 63 - 6.03767051758624e76 * cos(theta) ** 61 + 7.63048138617598e76 * cos(theta) ** 59 - 8.10413013764562e76 * cos(theta) ** 57 + 7.30745293767368e76 * cos(theta) ** 55 - 5.63717798049112e76 * cos(theta) ** 53 + 3.74182623175182e76 * cos(theta) ** 51 - 2.14612165788734e76 * cos(theta) ** 49 + 1.06671135658306e76 * cos(theta) ** 47 - 4.60325339906701e75 * cos(theta) ** 45 + 1.72622002465013e75 * cos(theta) ** 43 - 5.62532184142572e74 * cos(theta) ** 41 + 1.59170597307422e74 * cos(theta) ** 39 - 3.90418446225752e73 * cos(theta) ** 37 + 8.28084984669907e72 * cos(theta) ** 35 - 1.51370373541811e72 * cos(theta) ** 33 + 2.37443723202841e71 * cos(theta) ** 31 - 3.17913421506827e70 * cos(theta) ** 29 + 3.60941971844999e69 * cos(theta) ** 27 - 3.44736413925428e68 * cos(theta) ** 25 + 2.743260588266e67 * cos(theta) ** 23 - 1.79757816325123e66 * cos(theta) ** 21 + 9.56158597474057e64 * cos(theta) ** 19 - 4.05614289675177e63 * cos(theta) ** 17 + 1.34217867143124e62 * cos(theta) ** 15 - 3.36747336918233e60 * cos(theta) ** 13 + 6.17159123111423e58 * cos(theta) ** 11 - 7.85189724060334e56 * cos(theta) ** 9 + 6.44478569680165e54 * cos(theta) ** 7 - 3.04478064415826e52 * cos(theta) ** 5 + 6.76617920924057e49 * cos(theta) ** 3 - 4.46023678921594e46 * cos(theta) ) * cos(23 * phi) ) # @torch.jit.script def Yl98_m24(theta, phi): return ( 1.02482305064849e-47 * (1.0 - cos(theta) ** 2) ** 12 * ( 5.14062182429253e74 * cos(theta) ** 74 - 7.12042028072519e75 * cos(theta) ** 72 + 4.7149726003973e76 * cos(theta) ** 70 - 1.98720049388473e77 * cos(theta) ** 68 + 5.98788720247277e77 * cos(theta) ** 66 - 1.37369176997905e78 * cos(theta) ** 64 + 2.4949212687187e78 * cos(theta) ** 62 - 3.6829790157276e78 * cos(theta) ** 60 + 4.50198401784383e78 * cos(theta) ** 58 - 4.619354178458e78 * cos(theta) ** 56 + 4.01909911572052e78 * cos(theta) ** 54 - 2.9877043296603e78 * cos(theta) ** 52 + 1.90833137819343e78 * cos(theta) ** 50 - 1.0515996123648e78 * cos(theta) ** 48 + 5.01354337594037e77 * cos(theta) ** 46 - 2.07146402958015e77 * cos(theta) ** 44 + 7.42274610599555e76 * cos(theta) ** 42 - 2.30638195498454e76 * cos(theta) ** 40 + 6.20765329498946e75 * cos(theta) ** 38 - 1.44454825103528e75 * cos(theta) ** 36 + 2.89829744634467e74 * cos(theta) ** 34 - 4.99522232687976e73 * cos(theta) ** 32 + 7.36075541928806e72 * cos(theta) ** 30 - 9.21948922369798e71 * cos(theta) ** 28 + 9.74543323981497e70 * cos(theta) ** 26 - 8.61841034813569e69 * cos(theta) ** 24 + 6.30949935301181e68 * cos(theta) ** 22 - 3.77491414282758e67 * cos(theta) ** 20 + 1.81670133520071e66 * cos(theta) ** 18 - 6.895442924478e64 * cos(theta) ** 16 + 2.01326800714686e63 * cos(theta) ** 14 - 4.37771537993702e61 * cos(theta) ** 12 + 6.78875035422565e59 * cos(theta) ** 10 - 7.06670751654301e57 * cos(theta) ** 8 + 4.51134998776115e55 * cos(theta) ** 6 - 1.52239032207913e53 * cos(theta) ** 4 + 2.02985376277217e50 * cos(theta) ** 2 - 4.46023678921594e46 ) * cos(24 * phi) ) # @torch.jit.script def Yl98_m25(theta, phi): return ( 1.07418842811865e-49 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 3.80406014997647e76 * cos(theta) ** 73 - 5.12670260212214e77 * cos(theta) ** 71 + 3.30048082027811e78 * cos(theta) ** 69 - 1.35129633584162e79 * cos(theta) ** 67 + 3.95200555363202e79 * cos(theta) ** 65 - 8.7916273278659e79 * cos(theta) ** 63 + 1.54685118660559e80 * cos(theta) ** 61 - 2.20978740943656e80 * cos(theta) ** 59 + 2.61115073034942e80 * cos(theta) ** 57 - 2.58683833993648e80 * cos(theta) ** 55 + 2.17031352248908e80 * cos(theta) ** 53 - 1.55360625142335e80 * cos(theta) ** 51 + 9.54165689096713e79 * cos(theta) ** 49 - 5.04767813935103e79 * cos(theta) ** 47 + 2.30622995293257e79 * cos(theta) ** 45 - 9.11444173015268e78 * cos(theta) ** 43 + 3.11755336451813e78 * cos(theta) ** 41 - 9.22552781993818e77 * cos(theta) ** 39 + 2.35890825209599e77 * cos(theta) ** 37 - 5.20037370372702e76 * cos(theta) ** 35 + 9.85421131757189e75 * cos(theta) ** 33 - 1.59847114460152e75 * cos(theta) ** 31 + 2.20822662578642e74 * cos(theta) ** 29 - 2.58145698263543e73 * cos(theta) ** 27 + 2.53381264235189e72 * cos(theta) ** 25 - 2.06841848355257e71 * cos(theta) ** 23 + 1.3880898576626e70 * cos(theta) ** 21 - 7.54982828565515e68 * cos(theta) ** 19 + 3.27006240336127e67 * cos(theta) ** 17 - 1.10327086791648e66 * cos(theta) ** 15 + 2.81857521000561e64 * cos(theta) ** 13 - 5.25325845592443e62 * cos(theta) ** 11 + 6.78875035422565e60 * cos(theta) ** 9 - 5.65336601323441e58 * cos(theta) ** 7 + 2.70680999265669e56 * cos(theta) ** 5 - 6.08956128831652e53 * cos(theta) ** 3 + 4.05970752554435e50 * cos(theta) ) * cos(25 * phi) ) # @torch.jit.script def Yl98_m26(theta, phi): return ( 1.12903705813361e-51 * (1.0 - cos(theta) ** 2) ** 13 * ( 2.77696390948283e78 * cos(theta) ** 72 - 3.63995884750672e79 * cos(theta) ** 70 + 2.2773317659919e80 * cos(theta) ** 68 - 9.05368545013882e80 * cos(theta) ** 66 + 2.56880360986082e81 * cos(theta) ** 64 - 5.53872521655551e81 * cos(theta) ** 62 + 9.43579223829412e81 * cos(theta) ** 60 - 1.30377457156757e82 * cos(theta) ** 58 + 1.48835591629917e82 * cos(theta) ** 56 - 1.42276108696507e82 * cos(theta) ** 54 + 1.15026616691921e82 * cos(theta) ** 52 - 7.9233918822591e81 * cos(theta) ** 50 + 4.67541187657389e81 * cos(theta) ** 48 - 2.37240872549499e81 * cos(theta) ** 46 + 1.03780347881966e81 * cos(theta) ** 44 - 3.91920994396565e80 * cos(theta) ** 42 + 1.27819687945243e80 * cos(theta) ** 40 - 3.59795584977589e79 * cos(theta) ** 38 + 8.72796053275517e78 * cos(theta) ** 36 - 1.82013079630446e78 * cos(theta) ** 34 + 3.25188973479872e77 * cos(theta) ** 32 - 4.95526054826472e76 * cos(theta) ** 30 + 6.40385721478061e75 * cos(theta) ** 28 - 6.96993385311567e74 * cos(theta) ** 26 + 6.33453160587973e73 * cos(theta) ** 24 - 4.7573625121709e72 * cos(theta) ** 22 + 2.91498870109145e71 * cos(theta) ** 20 - 1.43446737427448e70 * cos(theta) ** 18 + 5.55910608571417e68 * cos(theta) ** 16 - 1.65490630187472e67 * cos(theta) ** 14 + 3.66414777300729e65 * cos(theta) ** 12 - 5.77858430151687e63 * cos(theta) ** 10 + 6.10987531880308e61 * cos(theta) ** 8 - 3.95735620926408e59 * cos(theta) ** 6 + 1.35340499632835e57 * cos(theta) ** 4 - 1.82686838649496e54 * cos(theta) ** 2 + 4.05970752554435e50 ) * cos(26 * phi) ) # @torch.jit.script def Yl98_m27(theta, phi): return ( 1.19010955547938e-53 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.99941401482763e80 * cos(theta) ** 71 - 2.5479711932547e81 * cos(theta) ** 69 + 1.54858560087449e82 * cos(theta) ** 67 - 5.97543239709162e82 * cos(theta) ** 65 + 1.64403431031092e83 * cos(theta) ** 63 - 3.43400963426442e83 * cos(theta) ** 61 + 5.66147534297647e83 * cos(theta) ** 59 - 7.56189251509192e83 * cos(theta) ** 57 + 8.33479313127535e83 * cos(theta) ** 55 - 7.68290986961135e83 * cos(theta) ** 53 + 5.98138406797991e83 * cos(theta) ** 51 - 3.96169594112955e83 * cos(theta) ** 49 + 2.24419770075547e83 * cos(theta) ** 47 - 1.09130801372769e83 * cos(theta) ** 45 + 4.56633530680649e82 * cos(theta) ** 43 - 1.64606817646557e82 * cos(theta) ** 41 + 5.11278751780974e81 * cos(theta) ** 39 - 1.36722322291484e81 * cos(theta) ** 37 + 3.14206579179186e80 * cos(theta) ** 35 - 6.18844470743515e79 * cos(theta) ** 33 + 1.04060471513559e79 * cos(theta) ** 31 - 1.48657816447942e78 * cos(theta) ** 29 + 1.79308002013857e77 * cos(theta) ** 27 - 1.81218280181007e76 * cos(theta) ** 25 + 1.52028758541114e75 * cos(theta) ** 23 - 1.0466197526776e74 * cos(theta) ** 21 + 5.82997740218291e72 * cos(theta) ** 19 - 2.58204127369406e71 * cos(theta) ** 17 + 8.89456973714267e69 * cos(theta) ** 15 - 2.31686882262461e68 * cos(theta) ** 13 + 4.39697732760875e66 * cos(theta) ** 11 - 5.77858430151687e64 * cos(theta) ** 9 + 4.88790025504247e62 * cos(theta) ** 7 - 2.37441372555845e60 * cos(theta) ** 5 + 5.41361998531338e57 * cos(theta) ** 3 - 3.65373677298991e54 * cos(theta) ) * cos(27 * phi) ) # @torch.jit.script def Yl98_m28(theta, phi): return ( 1.25826609768952e-55 * (1.0 - cos(theta) ** 2) ** 14 * ( 1.41958395052762e82 * cos(theta) ** 70 - 1.75810012334575e83 * cos(theta) ** 68 + 1.03755235258591e84 * cos(theta) ** 66 - 3.88403105810955e84 * cos(theta) ** 64 + 1.03574161549588e85 * cos(theta) ** 62 - 2.0947458769013e85 * cos(theta) ** 60 + 3.34027045235612e85 * cos(theta) ** 58 - 4.31027873360239e85 * cos(theta) ** 56 + 4.58413622220144e85 * cos(theta) ** 54 - 4.07194223089402e85 * cos(theta) ** 52 + 3.05050587466975e85 * cos(theta) ** 50 - 1.94123101115348e85 * cos(theta) ** 48 + 1.05477291935507e85 * cos(theta) ** 46 - 4.91088606177462e84 * cos(theta) ** 44 + 1.96352418192679e84 * cos(theta) ** 42 - 6.74887952350885e83 * cos(theta) ** 40 + 1.9939871319458e83 * cos(theta) ** 38 - 5.0587259247849e82 * cos(theta) ** 36 + 1.09972302712715e82 * cos(theta) ** 34 - 2.0421867534536e81 * cos(theta) ** 32 + 3.22587461692034e80 * cos(theta) ** 30 - 4.31107667699031e79 * cos(theta) ** 28 + 4.84131605437414e78 * cos(theta) ** 26 - 4.53045700452519e77 * cos(theta) ** 24 + 3.49666144644561e76 * cos(theta) ** 22 - 2.19790148062296e75 * cos(theta) ** 20 + 1.10769570641475e74 * cos(theta) ** 18 - 4.38947016527991e72 * cos(theta) ** 16 + 1.3341854605714e71 * cos(theta) ** 14 - 3.01192946941199e69 * cos(theta) ** 12 + 4.83667506036962e67 * cos(theta) ** 10 - 5.20072587136518e65 * cos(theta) ** 8 + 3.42153017852973e63 * cos(theta) ** 6 - 1.18720686277923e61 * cos(theta) ** 4 + 1.62408599559402e58 * cos(theta) ** 2 - 3.65373677298991e54 ) * cos(28 * phi) ) # @torch.jit.script def Yl98_m29(theta, phi): return ( 1.3345093310932e-57 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 9.93708765369334e83 * cos(theta) ** 69 - 1.19550808387511e85 * cos(theta) ** 67 + 6.847845527067e85 * cos(theta) ** 65 - 2.48577987719011e86 * cos(theta) ** 63 + 6.42159801607446e86 * cos(theta) ** 61 - 1.25684752614078e87 * cos(theta) ** 59 + 1.93735686236655e87 * cos(theta) ** 57 - 2.41375609081734e87 * cos(theta) ** 55 + 2.47543355998878e87 * cos(theta) ** 53 - 2.11740996006489e87 * cos(theta) ** 51 + 1.52525293733488e87 * cos(theta) ** 49 - 9.31790885353671e86 * cos(theta) ** 47 + 4.85195542903332e86 * cos(theta) ** 45 - 2.16078986718083e86 * cos(theta) ** 43 + 8.24680156409252e85 * cos(theta) ** 41 - 2.69955180940354e85 * cos(theta) ** 39 + 7.57715110139403e84 * cos(theta) ** 37 - 1.82114133292256e84 * cos(theta) ** 35 + 3.73905829223232e83 * cos(theta) ** 33 - 6.53499761105152e82 * cos(theta) ** 31 + 9.677623850761e81 * cos(theta) ** 29 - 1.20710146955729e81 * cos(theta) ** 27 + 1.25874217413728e80 * cos(theta) ** 25 - 1.08730968108604e79 * cos(theta) ** 23 + 7.69265518218035e77 * cos(theta) ** 21 - 4.39580296124591e76 * cos(theta) ** 19 + 1.99385227154655e75 * cos(theta) ** 17 - 7.02315226444785e73 * cos(theta) ** 15 + 1.86785964479996e72 * cos(theta) ** 13 - 3.61431536329439e70 * cos(theta) ** 11 + 4.83667506036962e68 * cos(theta) ** 9 - 4.16058069709215e66 * cos(theta) ** 7 + 2.05291810711784e64 * cos(theta) ** 5 - 4.7488274511169e61 * cos(theta) ** 3 + 3.24817199118803e58 * cos(theta) ) * cos(29 * phi) ) # @torch.jit.script def Yl98_m30(theta, phi): return ( 1.42001222931447e-59 * (1.0 - cos(theta) ** 2) ** 15 * ( 6.85659048104841e85 * cos(theta) ** 68 - 8.00990416196322e86 * cos(theta) ** 66 + 4.45109959259355e87 * cos(theta) ** 64 - 1.56604132262977e88 * cos(theta) ** 62 + 3.91717478980542e88 * cos(theta) ** 60 - 7.41540040423059e88 * cos(theta) ** 58 + 1.10429341154893e89 * cos(theta) ** 56 - 1.32756584994954e89 * cos(theta) ** 54 + 1.31197978679405e89 * cos(theta) ** 52 - 1.07987907963309e89 * cos(theta) ** 50 + 7.4737393929409e88 * cos(theta) ** 48 - 4.37941716116225e88 * cos(theta) ** 46 + 2.183379943065e88 * cos(theta) ** 44 - 9.29139642887758e87 * cos(theta) ** 42 + 3.38118864127794e87 * cos(theta) ** 40 - 1.05282520566738e87 * cos(theta) ** 38 + 2.80354590751579e86 * cos(theta) ** 36 - 6.37399466522897e85 * cos(theta) ** 34 + 1.23388923643666e85 * cos(theta) ** 32 - 2.02584925942597e84 * cos(theta) ** 30 + 2.80651091672069e83 * cos(theta) ** 28 - 3.25917396780467e82 * cos(theta) ** 26 + 3.14685543534319e81 * cos(theta) ** 24 - 2.5008122664979e80 * cos(theta) ** 22 + 1.61545758825787e79 * cos(theta) ** 20 - 8.35202562636724e77 * cos(theta) ** 18 + 3.38954886162914e76 * cos(theta) ** 16 - 1.05347283966718e75 * cos(theta) ** 14 + 2.42821753823995e73 * cos(theta) ** 12 - 3.97574689962383e71 * cos(theta) ** 10 + 4.35300755433266e69 * cos(theta) ** 8 - 2.9124064879645e67 * cos(theta) ** 6 + 1.02645905355892e65 * cos(theta) ** 4 - 1.42464823533507e62 * cos(theta) ** 2 + 3.24817199118803e58 ) * cos(30 * phi) ) # @torch.jit.script def Yl98_m31(theta, phi): return ( 1.51615210452691e-61 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 4.66248152711292e87 * cos(theta) ** 67 - 5.28653674689572e88 * cos(theta) ** 65 + 2.84870373925987e89 * cos(theta) ** 63 - 9.70945620030459e89 * cos(theta) ** 61 + 2.35030487388325e90 * cos(theta) ** 59 - 4.30093223445374e90 * cos(theta) ** 57 + 6.18404310467403e90 * cos(theta) ** 55 - 7.1688555897275e90 * cos(theta) ** 53 + 6.82229489132907e90 * cos(theta) ** 51 - 5.39939539816547e90 * cos(theta) ** 49 + 3.58739490861163e90 * cos(theta) ** 47 - 2.01453189413464e90 * cos(theta) ** 45 + 9.60687174948598e89 * cos(theta) ** 43 - 3.90238650012858e89 * cos(theta) ** 41 + 1.35247545651117e89 * cos(theta) ** 39 - 4.00073578153605e88 * cos(theta) ** 37 + 1.00927652670568e88 * cos(theta) ** 35 - 2.16715818617785e87 * cos(theta) ** 33 + 3.94844555659733e86 * cos(theta) ** 31 - 6.07754777827791e85 * cos(theta) ** 29 + 7.85823056681794e84 * cos(theta) ** 27 - 8.47385231629215e83 * cos(theta) ** 25 + 7.55245304482366e82 * cos(theta) ** 23 - 5.50178698629538e81 * cos(theta) ** 21 + 3.23091517651575e80 * cos(theta) ** 19 - 1.5033646127461e79 * cos(theta) ** 17 + 5.42327817860663e77 * cos(theta) ** 15 - 1.47486197553405e76 * cos(theta) ** 13 + 2.91386104588794e74 * cos(theta) ** 11 - 3.97574689962383e72 * cos(theta) ** 9 + 3.48240604346613e70 * cos(theta) ** 7 - 1.7474438927787e68 * cos(theta) ** 5 + 4.10583621423567e65 * cos(theta) ** 3 - 2.84929647067014e62 * cos(theta) ) * cos(31 * phi) ) # @torch.jit.script def Yl98_m32(theta, phi): return ( 1.62455229337705e-63 * (1.0 - cos(theta) ** 2) ** 16 * ( 3.12386262316565e89 * cos(theta) ** 66 - 3.43624888548222e90 * cos(theta) ** 64 + 1.79468335573372e91 * cos(theta) ** 62 - 5.9227682821858e91 * cos(theta) ** 60 + 1.38667987559112e92 * cos(theta) ** 58 - 2.45153137363863e92 * cos(theta) ** 56 + 3.40122370757071e92 * cos(theta) ** 54 - 3.79949346255558e92 * cos(theta) ** 52 + 3.47937039457783e92 * cos(theta) ** 50 - 2.64570374510108e92 * cos(theta) ** 48 + 1.68607560704747e92 * cos(theta) ** 46 - 9.06539352360586e91 * cos(theta) ** 44 + 4.13095485227897e91 * cos(theta) ** 42 - 1.59997846505272e91 * cos(theta) ** 40 + 5.27465428039358e90 * cos(theta) ** 38 - 1.48027223916834e90 * cos(theta) ** 36 + 3.5324678434699e89 * cos(theta) ** 34 - 7.15162201438691e88 * cos(theta) ** 32 + 1.22401812254517e88 * cos(theta) ** 30 - 1.76248885570059e87 * cos(theta) ** 28 + 2.12172225304084e86 * cos(theta) ** 26 - 2.11846307907304e85 * cos(theta) ** 24 + 1.73706420030944e84 * cos(theta) ** 22 - 1.15537526712203e83 * cos(theta) ** 20 + 6.13873883537992e81 * cos(theta) ** 18 - 2.55571984166837e80 * cos(theta) ** 16 + 8.13491726790994e78 * cos(theta) ** 14 - 1.91732056819426e77 * cos(theta) ** 12 + 3.20524715047673e75 * cos(theta) ** 10 - 3.57817220966145e73 * cos(theta) ** 8 + 2.43768423042629e71 * cos(theta) ** 6 - 8.73721946389351e68 * cos(theta) ** 4 + 1.2317508642707e66 * cos(theta) ** 2 - 2.84929647067014e62 ) * cos(32 * phi) ) # @torch.jit.script def Yl98_m33(theta, phi): return ( 1.74713345541493e-65 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 2.06174933128933e91 * cos(theta) ** 65 - 2.19919928670862e92 * cos(theta) ** 63 + 1.11270368055491e93 * cos(theta) ** 61 - 3.55366096931148e93 * cos(theta) ** 59 + 8.04274327842849e93 * cos(theta) ** 57 - 1.37285756923763e94 * cos(theta) ** 55 + 1.83666080208819e94 * cos(theta) ** 53 - 1.9757366005289e94 * cos(theta) ** 51 + 1.73968519728891e94 * cos(theta) ** 49 - 1.26993779764852e94 * cos(theta) ** 47 + 7.75594779241835e93 * cos(theta) ** 45 - 3.98877315038658e93 * cos(theta) ** 43 + 1.73500103795717e93 * cos(theta) ** 41 - 6.39991386021088e92 * cos(theta) ** 39 + 2.00436862654956e92 * cos(theta) ** 37 - 5.32898006100602e91 * cos(theta) ** 35 + 1.20103906677976e91 * cos(theta) ** 33 - 2.28851904460381e90 * cos(theta) ** 31 + 3.67205436763551e89 * cos(theta) ** 29 - 4.93496879596166e88 * cos(theta) ** 27 + 5.51647785790619e87 * cos(theta) ** 25 - 5.08431138977529e86 * cos(theta) ** 23 + 3.82154124068077e85 * cos(theta) ** 21 - 2.31075053424406e84 * cos(theta) ** 19 + 1.10497299036839e83 * cos(theta) ** 17 - 4.0891517466694e81 * cos(theta) ** 15 + 1.13888841750739e80 * cos(theta) ** 13 - 2.30078468183312e78 * cos(theta) ** 11 + 3.20524715047673e76 * cos(theta) ** 9 - 2.86253776772916e74 * cos(theta) ** 7 + 1.46261053825577e72 * cos(theta) ** 5 - 3.4948877855574e69 * cos(theta) ** 3 + 2.4635017285414e66 * cos(theta) ) * cos(33 * phi) ) # @torch.jit.script def Yl98_m34(theta, phi): return ( 1.8861769621828e-67 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.34013706533807e93 * cos(theta) ** 64 - 1.38549555062643e94 * cos(theta) ** 62 + 6.78749245138493e94 * cos(theta) ** 60 - 2.09665997189377e95 * cos(theta) ** 58 + 4.58436366870424e95 * cos(theta) ** 56 - 7.55071663080698e95 * cos(theta) ** 54 + 9.73430225106738e95 * cos(theta) ** 52 - 1.00762566626974e96 * cos(theta) ** 50 + 8.52445746671567e95 * cos(theta) ** 48 - 5.96870764894803e95 * cos(theta) ** 46 + 3.49017650658826e95 * cos(theta) ** 44 - 1.71517245466623e95 * cos(theta) ** 42 + 7.11350425562439e94 * cos(theta) ** 40 - 2.49596640548224e94 * cos(theta) ** 38 + 7.41616391823337e93 * cos(theta) ** 36 - 1.86514302135211e93 * cos(theta) ** 34 + 3.96342892037322e92 * cos(theta) ** 32 - 7.09440903827181e91 * cos(theta) ** 30 + 1.0648957666143e91 * cos(theta) ** 28 - 1.33244157490965e90 * cos(theta) ** 26 + 1.37911946447655e89 * cos(theta) ** 24 - 1.16939161964832e88 * cos(theta) ** 22 + 8.02523660542963e86 * cos(theta) ** 20 - 4.39042601506372e85 * cos(theta) ** 18 + 1.87845408362625e84 * cos(theta) ** 16 - 6.1337276200041e82 * cos(theta) ** 14 + 1.48055494275961e81 * cos(theta) ** 12 - 2.53086315001643e79 * cos(theta) ** 10 + 2.88472243542906e77 * cos(theta) ** 8 - 2.00377643741041e75 * cos(theta) ** 6 + 7.31305269127887e72 * cos(theta) ** 4 - 1.04846633566722e70 * cos(theta) ** 2 + 2.4635017285414e66 ) * cos(34 * phi) ) # @torch.jit.script def Yl98_m35(theta, phi): return ( 2.04440356024428e-69 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 8.57687721816362e94 * cos(theta) ** 63 - 8.59007241388387e95 * cos(theta) ** 61 + 4.07249547083095e96 * cos(theta) ** 59 - 1.21606278369839e97 * cos(theta) ** 57 + 2.56724365447437e97 * cos(theta) ** 55 - 4.07738698063577e97 * cos(theta) ** 53 + 5.06183717055504e97 * cos(theta) ** 51 - 5.03812833134869e97 * cos(theta) ** 49 + 4.09173958402352e97 * cos(theta) ** 47 - 2.7456055185161e97 * cos(theta) ** 45 + 1.53567766289883e97 * cos(theta) ** 43 - 7.20372430959816e96 * cos(theta) ** 41 + 2.84540170224976e96 * cos(theta) ** 39 - 9.48467234083252e95 * cos(theta) ** 37 + 2.66981901056401e95 * cos(theta) ** 35 - 6.34148627259716e94 * cos(theta) ** 33 + 1.26829725451943e94 * cos(theta) ** 31 - 2.12832271148154e93 * cos(theta) ** 29 + 2.98170814652004e92 * cos(theta) ** 27 - 3.46434809476509e91 * cos(theta) ** 25 + 3.30988671474371e90 * cos(theta) ** 23 - 2.5726615632263e89 * cos(theta) ** 21 + 1.60504732108593e88 * cos(theta) ** 19 - 7.90276682711469e86 * cos(theta) ** 17 + 3.00552653380201e85 * cos(theta) ** 15 - 8.58721866800574e83 * cos(theta) ** 13 + 1.77666593131153e82 * cos(theta) ** 11 - 2.53086315001643e80 * cos(theta) ** 9 + 2.30777794834325e78 * cos(theta) ** 7 - 1.20226586244625e76 * cos(theta) ** 5 + 2.92522107651155e73 * cos(theta) ** 3 - 2.09693267133444e70 * cos(theta) ) * cos(35 * phi) ) # @torch.jit.script def Yl98_m36(theta, phi): return ( 2.22507141601619e-71 * (1.0 - cos(theta) ** 2) ** 18 * ( 5.40343264744308e96 * cos(theta) ** 62 - 5.23994417246916e97 * cos(theta) ** 60 + 2.40277232779026e98 * cos(theta) ** 58 - 6.93155786708081e98 * cos(theta) ** 56 + 1.41198400996091e99 * cos(theta) ** 54 - 2.16101509973696e99 * cos(theta) ** 52 + 2.58153695698307e99 * cos(theta) ** 50 - 2.46868288236086e99 * cos(theta) ** 48 + 1.92311760449106e99 * cos(theta) ** 46 - 1.23552248333224e99 * cos(theta) ** 44 + 6.60341395046498e98 * cos(theta) ** 42 - 2.95352696693525e98 * cos(theta) ** 40 + 1.1097066638774e98 * cos(theta) ** 38 - 3.50932876610803e97 * cos(theta) ** 36 + 9.34436653697405e96 * cos(theta) ** 34 - 2.09269046995706e96 * cos(theta) ** 32 + 3.93172148901024e95 * cos(theta) ** 30 - 6.17213586329648e94 * cos(theta) ** 28 + 8.0506119956041e93 * cos(theta) ** 26 - 8.66087023691272e92 * cos(theta) ** 24 + 7.61273944391054e91 * cos(theta) ** 22 - 5.40258928277522e90 * cos(theta) ** 20 + 3.04958991006326e89 * cos(theta) ** 18 - 1.3434703606095e88 * cos(theta) ** 16 + 4.50828980070301e86 * cos(theta) ** 14 - 1.11633842684075e85 * cos(theta) ** 12 + 1.95433252444268e83 * cos(theta) ** 10 - 2.27777683501478e81 * cos(theta) ** 8 + 1.61544456384027e79 * cos(theta) ** 6 - 6.01132931223123e76 * cos(theta) ** 4 + 8.77566322953464e73 * cos(theta) ** 2 - 2.09693267133444e70 ) * cos(36 * phi) ) # @torch.jit.script def Yl98_m37(theta, phi): return ( 2.43209886847967e-73 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 3.35012824141471e98 * cos(theta) ** 61 - 3.1439665034815e99 * cos(theta) ** 59 + 1.39360795011835e100 * cos(theta) ** 57 - 3.88167240556525e100 * cos(theta) ** 55 + 7.62471365378889e100 * cos(theta) ** 53 - 1.12372785186322e101 * cos(theta) ** 51 + 1.29076847849154e101 * cos(theta) ** 49 - 1.18496778353321e101 * cos(theta) ** 47 + 8.84634098065886e100 * cos(theta) ** 45 - 5.43629892666187e100 * cos(theta) ** 43 + 2.77343385919529e100 * cos(theta) ** 41 - 1.1814107867741e100 * cos(theta) ** 39 + 4.21688532273414e99 * cos(theta) ** 37 - 1.26335835579889e99 * cos(theta) ** 35 + 3.17708462257118e98 * cos(theta) ** 33 - 6.6966095038626e97 * cos(theta) ** 31 + 1.17951644670307e97 * cos(theta) ** 29 - 1.72819804172301e96 * cos(theta) ** 27 + 2.09315911885707e95 * cos(theta) ** 25 - 2.07860885685905e94 * cos(theta) ** 23 + 1.67480267766032e93 * cos(theta) ** 21 - 1.08051785655504e92 * cos(theta) ** 19 + 5.48926183811386e90 * cos(theta) ** 17 - 2.1495525769752e89 * cos(theta) ** 15 + 6.31160572098422e87 * cos(theta) ** 13 - 1.3396061122089e86 * cos(theta) ** 11 + 1.95433252444268e84 * cos(theta) ** 9 - 1.82222146801183e82 * cos(theta) ** 7 + 9.69266738304164e79 * cos(theta) ** 5 - 2.40453172489249e77 * cos(theta) ** 3 + 1.75513264590693e74 * cos(theta) ) * cos(37 * phi) ) # @torch.jit.script def Yl98_m38(theta, phi): return ( 2.6702188289681e-75 * (1.0 - cos(theta) ** 2) ** 19 * ( 2.04357822726297e100 * cos(theta) ** 60 - 1.85494023705408e101 * cos(theta) ** 58 + 7.94356531567461e101 * cos(theta) ** 56 - 2.13491982306089e102 * cos(theta) ** 54 + 4.04109823650811e102 * cos(theta) ** 52 - 5.73101204450242e102 * cos(theta) ** 50 + 6.32476554460852e102 * cos(theta) ** 48 - 5.5693485826061e102 * cos(theta) ** 46 + 3.98085344129649e102 * cos(theta) ** 44 - 2.3376085384646e102 * cos(theta) ** 42 + 1.13710788227007e102 * cos(theta) ** 40 - 4.60750206841898e101 * cos(theta) ** 38 + 1.56024756941163e101 * cos(theta) ** 36 - 4.42175424529612e100 * cos(theta) ** 34 + 1.04843792544849e100 * cos(theta) ** 32 - 2.07594894619741e99 * cos(theta) ** 30 + 3.42059769543891e98 * cos(theta) ** 28 - 4.66613471265214e97 * cos(theta) ** 26 + 5.23289779714267e96 * cos(theta) ** 24 - 4.78080037077582e95 * cos(theta) ** 22 + 3.51708562308667e94 * cos(theta) ** 20 - 2.05298392745459e93 * cos(theta) ** 18 + 9.33174512479357e91 * cos(theta) ** 16 - 3.22432886546279e90 * cos(theta) ** 14 + 8.20508743727948e88 * cos(theta) ** 12 - 1.47356672342978e87 * cos(theta) ** 10 + 1.75889927199842e85 * cos(theta) ** 8 - 1.27555502760828e83 * cos(theta) ** 6 + 4.84633369152082e80 * cos(theta) ** 4 - 7.21359517467748e77 * cos(theta) ** 2 + 1.75513264590693e74 ) * cos(38 * phi) ) # @torch.jit.script def Yl98_m39(theta, phi): return ( 2.94517391424152e-77 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 1.22614693635778e102 * cos(theta) ** 59 - 1.07586533749137e103 * cos(theta) ** 57 + 4.44839657677778e103 * cos(theta) ** 55 - 1.15285670445288e104 * cos(theta) ** 53 + 2.10137108298422e104 * cos(theta) ** 51 - 2.86550602225121e104 * cos(theta) ** 49 + 3.03588746141209e104 * cos(theta) ** 47 - 2.56190034799881e104 * cos(theta) ** 45 + 1.75157551417045e104 * cos(theta) ** 43 - 9.81795586155133e103 * cos(theta) ** 41 + 4.54843152908028e103 * cos(theta) ** 39 - 1.75085078599921e103 * cos(theta) ** 37 + 5.61689124988187e102 * cos(theta) ** 35 - 1.50339644340068e102 * cos(theta) ** 33 + 3.35500136143516e101 * cos(theta) ** 31 - 6.22784683859222e100 * cos(theta) ** 29 + 9.57767354722894e99 * cos(theta) ** 27 - 1.21319502528956e99 * cos(theta) ** 25 + 1.25589547131424e98 * cos(theta) ** 23 - 1.05177608157068e97 * cos(theta) ** 21 + 7.03417124617334e95 * cos(theta) ** 19 - 3.69537106941825e94 * cos(theta) ** 17 + 1.49307921996697e93 * cos(theta) ** 15 - 4.51406041164791e91 * cos(theta) ** 13 + 9.84610492473538e89 * cos(theta) ** 11 - 1.47356672342978e88 * cos(theta) ** 9 + 1.40711941759873e86 * cos(theta) ** 7 - 7.65333016564967e83 * cos(theta) ** 5 + 1.93853347660833e81 * cos(theta) ** 3 - 1.4427190349355e78 * cos(theta) ) * cos(39 * phi) ) # @torch.jit.script def Yl98_m40(theta, phi): return ( 3.26396427175474e-79 * (1.0 - cos(theta) ** 2) ** 20 * ( 7.23426692451092e103 * cos(theta) ** 58 - 6.1324324237008e104 * cos(theta) ** 56 + 2.44661811722778e105 * cos(theta) ** 54 - 6.11014053360027e105 * cos(theta) ** 52 + 1.07169925232195e106 * cos(theta) ** 50 - 1.40409795090309e106 * cos(theta) ** 48 + 1.42686710686368e106 * cos(theta) ** 46 - 1.15285515659946e106 * cos(theta) ** 44 + 7.53177471093295e105 * cos(theta) ** 42 - 4.02536190323605e105 * cos(theta) ** 40 + 1.77388829634131e105 * cos(theta) ** 38 - 6.47814790819709e104 * cos(theta) ** 36 + 1.96591193745866e104 * cos(theta) ** 34 - 4.96120826322225e103 * cos(theta) ** 32 + 1.0400504220449e103 * cos(theta) ** 30 - 1.80607558319174e102 * cos(theta) ** 28 + 2.58597185775181e101 * cos(theta) ** 26 - 3.03298756322389e100 * cos(theta) ** 24 + 2.88855958402275e99 * cos(theta) ** 22 - 2.20872977129843e98 * cos(theta) ** 20 + 1.33649253677294e97 * cos(theta) ** 18 - 6.28213081801103e95 * cos(theta) ** 16 + 2.23961882995046e94 * cos(theta) ** 14 - 5.86827853514228e92 * cos(theta) ** 12 + 1.08307154172089e91 * cos(theta) ** 10 - 1.32621005108681e89 * cos(theta) ** 8 + 9.84983592319113e86 * cos(theta) ** 6 - 3.82666508282484e84 * cos(theta) ** 4 + 5.81560042982498e81 * cos(theta) ** 2 - 1.4427190349355e78 ) * cos(40 * phi) ) # @torch.jit.script def Yl98_m41(theta, phi): return ( 3.63516392057649e-81 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 4.19587481621634e105 * cos(theta) ** 57 - 3.43416215727245e106 * cos(theta) ** 55 + 1.321173783303e107 * cos(theta) ** 53 - 3.17727307747214e107 * cos(theta) ** 51 + 5.35849626160976e107 * cos(theta) ** 49 - 6.73967016433484e107 * cos(theta) ** 47 + 6.56358869157294e107 * cos(theta) ** 45 - 5.07256268903764e107 * cos(theta) ** 43 + 3.16334537859184e107 * cos(theta) ** 41 - 1.61014476129442e107 * cos(theta) ** 39 + 6.74077552609697e106 * cos(theta) ** 37 - 2.33213324695095e106 * cos(theta) ** 35 + 6.68410058735943e105 * cos(theta) ** 33 - 1.58758664423112e105 * cos(theta) ** 31 + 3.1201512661347e104 * cos(theta) ** 29 - 5.05701163293688e103 * cos(theta) ** 27 + 6.72352683015472e102 * cos(theta) ** 25 - 7.27917015173733e101 * cos(theta) ** 23 + 6.35483108485005e100 * cos(theta) ** 21 - 4.41745954259686e99 * cos(theta) ** 19 + 2.40568656619128e98 * cos(theta) ** 17 - 1.00514093088176e97 * cos(theta) ** 15 + 3.13546636193064e95 * cos(theta) ** 13 - 7.04193424217074e93 * cos(theta) ** 11 + 1.08307154172089e92 * cos(theta) ** 9 - 1.06096804086944e90 * cos(theta) ** 7 + 5.90990155391468e87 * cos(theta) ** 5 - 1.53066603312994e85 * cos(theta) ** 3 + 1.163120085965e82 * cos(theta) ) * cos(41 * phi) ) # @torch.jit.script def Yl98_m42(theta, phi): return ( 4.06932665934764e-83 * (1.0 - cos(theta) ** 2) ** 21 * ( 2.39164864524331e107 * cos(theta) ** 56 - 1.88878918649985e108 * cos(theta) ** 54 + 7.00222105150591e108 * cos(theta) ** 52 - 1.62040926951079e109 * cos(theta) ** 50 + 2.62566316818878e109 * cos(theta) ** 48 - 3.16764497723738e109 * cos(theta) ** 46 + 2.95361491120782e109 * cos(theta) ** 44 - 2.18120195628618e109 * cos(theta) ** 42 + 1.29697160522265e109 * cos(theta) ** 40 - 6.27956456904823e108 * cos(theta) ** 38 + 2.49408694465588e108 * cos(theta) ** 36 - 8.16246636432834e107 * cos(theta) ** 34 + 2.20575319382861e107 * cos(theta) ** 32 - 4.92151859711647e106 * cos(theta) ** 30 + 9.04843867179063e105 * cos(theta) ** 28 - 1.36539314089296e105 * cos(theta) ** 26 + 1.68088170753868e104 * cos(theta) ** 24 - 1.67420913489959e103 * cos(theta) ** 22 + 1.33451452781851e102 * cos(theta) ** 20 - 8.39317313093403e100 * cos(theta) ** 18 + 4.08966716252518e99 * cos(theta) ** 16 - 1.50771139632265e98 * cos(theta) ** 14 + 4.07610627050983e96 * cos(theta) ** 12 - 7.74612766638782e94 * cos(theta) ** 10 + 9.74764387548802e92 * cos(theta) ** 8 - 7.42677628608611e90 * cos(theta) ** 6 + 2.95495077695734e88 * cos(theta) ** 4 - 4.59199809938981e85 * cos(theta) ** 2 + 1.163120085965e82 ) * cos(42 * phi) ) # @torch.jit.script def Yl98_m43(theta, phi): return ( 4.5795097056863e-85 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 1.33932324133625e109 * cos(theta) ** 55 - 1.01994616070992e110 * cos(theta) ** 53 + 3.64115494678307e110 * cos(theta) ** 51 - 8.10204634755396e110 * cos(theta) ** 49 + 1.26031832073062e111 * cos(theta) ** 47 - 1.45711668952919e111 * cos(theta) ** 45 + 1.29959056093144e111 * cos(theta) ** 43 - 9.16104821640197e110 * cos(theta) ** 41 + 5.18788642089062e110 * cos(theta) ** 39 - 2.38623453623833e110 * cos(theta) ** 37 + 8.97871300076117e109 * cos(theta) ** 35 - 2.77523856387163e109 * cos(theta) ** 33 + 7.05841022025156e108 * cos(theta) ** 31 - 1.47645557913494e108 * cos(theta) ** 29 + 2.53356282810138e107 * cos(theta) ** 27 - 3.55002216632169e106 * cos(theta) ** 25 + 4.03411609809283e105 * cos(theta) ** 23 - 3.68326009677909e104 * cos(theta) ** 21 + 2.66902905563702e103 * cos(theta) ** 19 - 1.51077116356813e102 * cos(theta) ** 17 + 6.54346746004029e100 * cos(theta) ** 15 - 2.11079595485171e99 * cos(theta) ** 13 + 4.8913275246118e97 * cos(theta) ** 11 - 7.74612766638782e95 * cos(theta) ** 9 + 7.79811510039042e93 * cos(theta) ** 7 - 4.45606577165167e91 * cos(theta) ** 5 + 1.18198031078294e89 * cos(theta) ** 3 - 9.18399619877961e85 * cos(theta) ) * cos(43 * phi) ) # @torch.jit.script def Yl98_m44(theta, phi): return ( 5.1819529666549e-87 * (1.0 - cos(theta) ** 2) ** 22 * ( 7.3662778273494e110 * cos(theta) ** 54 - 5.40571465176256e111 * cos(theta) ** 52 + 1.85698902285937e112 * cos(theta) ** 50 - 3.97000271030144e112 * cos(theta) ** 48 + 5.92349610743389e112 * cos(theta) ** 46 - 6.55702510288137e112 * cos(theta) ** 44 + 5.5882394120052e112 * cos(theta) ** 42 - 3.75602976872481e112 * cos(theta) ** 40 + 2.02327570414734e112 * cos(theta) ** 38 - 8.82906778408182e111 * cos(theta) ** 36 + 3.14254955026641e111 * cos(theta) ** 34 - 9.15828726077639e110 * cos(theta) ** 32 + 2.18810716827798e110 * cos(theta) ** 30 - 4.28172117949133e109 * cos(theta) ** 28 + 6.84061963587372e108 * cos(theta) ** 26 - 8.87505541580423e107 * cos(theta) ** 24 + 9.27846702561351e106 * cos(theta) ** 22 - 7.73484620323609e105 * cos(theta) ** 20 + 5.07115520571034e104 * cos(theta) ** 18 - 2.56831097806581e103 * cos(theta) ** 16 + 9.81520119006043e101 * cos(theta) ** 14 - 2.74403474130722e100 * cos(theta) ** 12 + 5.38046027707298e98 * cos(theta) ** 10 - 6.97151489974903e96 * cos(theta) ** 8 + 5.45868057027329e94 * cos(theta) ** 6 - 2.22803288582583e92 * cos(theta) ** 4 + 3.54594093234881e89 * cos(theta) ** 2 - 9.18399619877961e85 ) * cos(44 * phi) ) # @torch.jit.script def Yl98_m45(theta, phi): return ( 5.89696524533311e-89 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 3.97779002676868e112 * cos(theta) ** 53 - 2.81097161891653e113 * cos(theta) ** 51 + 9.28494511429683e113 * cos(theta) ** 49 - 1.90560130094469e114 * cos(theta) ** 47 + 2.72480820941959e114 * cos(theta) ** 45 - 2.8850910452678e114 * cos(theta) ** 43 + 2.34706055304218e114 * cos(theta) ** 41 - 1.50241190748992e114 * cos(theta) ** 39 + 7.6884476757599e113 * cos(theta) ** 37 - 3.17846440226945e113 * cos(theta) ** 35 + 1.06846684709058e113 * cos(theta) ** 33 - 2.93065192344845e112 * cos(theta) ** 31 + 6.56432150483395e111 * cos(theta) ** 29 - 1.19888193025757e111 * cos(theta) ** 27 + 1.77856110532717e110 * cos(theta) ** 25 - 2.13001329979301e109 * cos(theta) ** 23 + 2.04126274563497e108 * cos(theta) ** 21 - 1.54696924064722e107 * cos(theta) ** 19 + 9.12807937027862e105 * cos(theta) ** 17 - 4.1092975649053e104 * cos(theta) ** 15 + 1.37412816660846e103 * cos(theta) ** 13 - 3.29284168956866e101 * cos(theta) ** 11 + 5.38046027707298e99 * cos(theta) ** 9 - 5.57721191979923e97 * cos(theta) ** 7 + 3.27520834216398e95 * cos(theta) ** 5 - 8.91213154330334e92 * cos(theta) ** 3 + 7.09188186469761e89 * cos(theta) ) * cos(45 * phi) ) # @torch.jit.script def Yl98_m46(theta, phi): return ( 6.75008726403979e-91 * (1.0 - cos(theta) ** 2) ** 23 * ( 2.1082287141874e114 * cos(theta) ** 52 - 1.43359552564743e115 * cos(theta) ** 50 + 4.54962310600545e115 * cos(theta) ** 48 - 8.95632611444004e115 * cos(theta) ** 46 + 1.22616369423882e116 * cos(theta) ** 44 - 1.24058914946515e116 * cos(theta) ** 42 + 9.62294826747296e115 * cos(theta) ** 40 - 5.8594064392107e115 * cos(theta) ** 38 + 2.84472564003116e115 * cos(theta) ** 36 - 1.11246254079431e115 * cos(theta) ** 34 + 3.52594059539891e114 * cos(theta) ** 32 - 9.08502096269018e113 * cos(theta) ** 30 + 1.90365323640184e113 * cos(theta) ** 28 - 3.23698121169544e112 * cos(theta) ** 26 + 4.44640276331792e111 * cos(theta) ** 24 - 4.89903058952393e110 * cos(theta) ** 22 + 4.28665176583344e109 * cos(theta) ** 20 - 2.93924155722971e108 * cos(theta) ** 18 + 1.55177349294736e107 * cos(theta) ** 16 - 6.16394634735795e105 * cos(theta) ** 14 + 1.786366616591e104 * cos(theta) ** 12 - 3.62212585852553e102 * cos(theta) ** 10 + 4.84241424936568e100 * cos(theta) ** 8 - 3.90404834385946e98 * cos(theta) ** 6 + 1.63760417108199e96 * cos(theta) ** 4 - 2.673639462991e93 * cos(theta) ** 2 + 7.09188186469761e89 ) * cos(46 * phi) ) # @torch.jit.script def Yl98_m47(theta, phi): return ( 7.77362729122006e-93 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 1.09627893137745e116 * cos(theta) ** 51 - 7.16797762823715e116 * cos(theta) ** 49 + 2.18381909088261e117 * cos(theta) ** 47 - 4.11991001264242e117 * cos(theta) ** 45 + 5.39512025465079e117 * cos(theta) ** 43 - 5.21047442775365e117 * cos(theta) ** 41 + 3.84917930698918e117 * cos(theta) ** 39 - 2.22657444690007e117 * cos(theta) ** 37 + 1.02410123041122e117 * cos(theta) ** 35 - 3.78237263870065e116 * cos(theta) ** 33 + 1.12830099052765e116 * cos(theta) ** 31 - 2.72550628880705e115 * cos(theta) ** 29 + 5.33022906192516e114 * cos(theta) ** 27 - 8.41615115040815e113 * cos(theta) ** 25 + 1.0671366631963e113 * cos(theta) ** 23 - 1.07778672969527e112 * cos(theta) ** 21 + 8.57330353166688e110 * cos(theta) ** 19 - 5.29063480301349e109 * cos(theta) ** 17 + 2.48283758871578e108 * cos(theta) ** 15 - 8.62952488630113e106 * cos(theta) ** 13 + 2.1436399399092e105 * cos(theta) ** 11 - 3.62212585852553e103 * cos(theta) ** 9 + 3.87393139949254e101 * cos(theta) ** 7 - 2.34242900631568e99 * cos(theta) ** 5 + 6.55041668432795e96 * cos(theta) ** 3 - 5.347278925982e93 * cos(theta) ) * cos(47 * phi) ) # @torch.jit.script def Yl98_m48(theta, phi): return ( 9.00870153133566e-95 * (1.0 - cos(theta) ** 2) ** 24 * ( 5.59102255002498e117 * cos(theta) ** 50 - 3.51230903783621e118 * cos(theta) ** 48 + 1.02639497271483e119 * cos(theta) ** 46 - 1.85395950568909e119 * cos(theta) ** 44 + 2.31990170949984e119 * cos(theta) ** 42 - 2.136294515379e119 * cos(theta) ** 40 + 1.50117992972578e119 * cos(theta) ** 38 - 8.23832545353024e118 * cos(theta) ** 36 + 3.58435430643926e118 * cos(theta) ** 34 - 1.24818297077121e118 * cos(theta) ** 32 + 3.49773307063572e117 * cos(theta) ** 30 - 7.90396823754046e116 * cos(theta) ** 28 + 1.43916184671979e116 * cos(theta) ** 26 - 2.10403778760204e115 * cos(theta) ** 24 + 2.45441432535149e114 * cos(theta) ** 22 - 2.26335213236006e113 * cos(theta) ** 20 + 1.62892767101671e112 * cos(theta) ** 18 - 8.99407916512293e110 * cos(theta) ** 16 + 3.72425638307368e109 * cos(theta) ** 14 - 1.12183823521915e108 * cos(theta) ** 12 + 2.35800393390012e106 * cos(theta) ** 10 - 3.25991327267298e104 * cos(theta) ** 8 + 2.71175197964478e102 * cos(theta) ** 6 - 1.17121450315784e100 * cos(theta) ** 4 + 1.96512500529839e97 * cos(theta) ** 2 - 5.347278925982e93 ) * cos(48 * phi) ) # @torch.jit.script def Yl98_m49(theta, phi): return ( 1.05079628556199e-96 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 2.79551127501249e119 * cos(theta) ** 49 - 1.68590833816138e120 * cos(theta) ** 47 + 4.72141687448821e120 * cos(theta) ** 45 - 8.15742182503199e120 * cos(theta) ** 43 + 9.74358717989932e120 * cos(theta) ** 41 - 8.54517806151598e120 * cos(theta) ** 39 + 5.70448373295797e120 * cos(theta) ** 37 - 2.96579716327089e120 * cos(theta) ** 35 + 1.21868046418935e120 * cos(theta) ** 33 - 3.99418550646789e119 * cos(theta) ** 31 + 1.04931992119072e119 * cos(theta) ** 29 - 2.21311110651133e118 * cos(theta) ** 27 + 3.74182080147147e117 * cos(theta) ** 25 - 5.04969069024489e116 * cos(theta) ** 23 + 5.39971151577328e115 * cos(theta) ** 21 - 4.52670426472011e114 * cos(theta) ** 19 + 2.93206980783007e113 * cos(theta) ** 17 - 1.43905266641967e112 * cos(theta) ** 15 + 5.21395893630315e110 * cos(theta) ** 13 - 1.34620588226298e109 * cos(theta) ** 11 + 2.35800393390012e107 * cos(theta) ** 9 - 2.60793061813838e105 * cos(theta) ** 7 + 1.62705118778687e103 * cos(theta) ** 5 - 4.68485801263135e100 * cos(theta) ** 3 + 3.93025001059677e97 * cos(theta) ) * cos(49 * phi) ) # @torch.jit.script def Yl98_m50(theta, phi): return ( 1.23392746579016e-98 * (1.0 - cos(theta) ** 2) ** 25 * ( 1.36980052475612e121 * cos(theta) ** 48 - 7.92376918935848e121 * cos(theta) ** 46 + 2.1246375935197e122 * cos(theta) ** 44 - 3.50769138476376e122 * cos(theta) ** 42 + 3.99487074375872e122 * cos(theta) ** 40 - 3.33261944399123e122 * cos(theta) ** 38 + 2.11065898119445e122 * cos(theta) ** 36 - 1.03802900714481e122 * cos(theta) ** 34 + 4.02164553182485e121 * cos(theta) ** 32 - 1.23819750700504e121 * cos(theta) ** 30 + 3.04302777145308e120 * cos(theta) ** 28 - 5.97539998758059e119 * cos(theta) ** 26 + 9.35455200367866e118 * cos(theta) ** 24 - 1.16142885875633e118 * cos(theta) ** 22 + 1.13393941831239e117 * cos(theta) ** 20 - 8.60073810296822e115 * cos(theta) ** 18 + 4.98451867331113e114 * cos(theta) ** 16 - 2.1585789996295e113 * cos(theta) ** 14 + 6.77814661719409e111 * cos(theta) ** 12 - 1.48082647048927e110 * cos(theta) ** 10 + 2.12220354051011e108 * cos(theta) ** 8 - 1.82555143269687e106 * cos(theta) ** 6 + 8.13525593893434e103 * cos(theta) ** 4 - 1.40545740378941e101 * cos(theta) ** 2 + 3.93025001059677e97 ) * cos(50 * phi) ) # @torch.jit.script def Yl98_m51(theta, phi): return ( 1.45906916119761e-100 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 6.57504251882938e122 * cos(theta) ** 47 - 3.6449338271049e123 * cos(theta) ** 45 + 9.34840541148666e123 * cos(theta) ** 43 - 1.47323038160078e124 * cos(theta) ** 41 + 1.59794829750349e124 * cos(theta) ** 39 - 1.26639538871667e124 * cos(theta) ** 37 + 7.59837233230001e123 * cos(theta) ** 35 - 3.52929862429236e123 * cos(theta) ** 33 + 1.28692657018395e123 * cos(theta) ** 31 - 3.71459252101513e122 * cos(theta) ** 29 + 8.52047776006861e121 * cos(theta) ** 27 - 1.55360399677095e121 * cos(theta) ** 25 + 2.24509248088288e120 * cos(theta) ** 23 - 2.55514348926392e119 * cos(theta) ** 21 + 2.26787883662478e118 * cos(theta) ** 19 - 1.54813285853428e117 * cos(theta) ** 17 + 7.9752298772978e115 * cos(theta) ** 15 - 3.0220105994813e114 * cos(theta) ** 13 + 8.13377594063291e112 * cos(theta) ** 11 - 1.48082647048927e111 * cos(theta) ** 9 + 1.69776283240809e109 * cos(theta) ** 7 - 1.09533085961812e107 * cos(theta) ** 5 + 3.25410237557374e104 * cos(theta) ** 3 - 2.81091480757881e101 * cos(theta) ) * cos(51 * phi) ) # @torch.jit.script def Yl98_m52(theta, phi): return ( 1.73772608291153e-102 * (1.0 - cos(theta) ** 2) ** 26 * ( 3.09026998384981e124 * cos(theta) ** 46 - 1.64022022219721e125 * cos(theta) ** 44 + 4.01981432693926e125 * cos(theta) ** 42 - 6.04024456456319e125 * cos(theta) ** 40 + 6.23199836026361e125 * cos(theta) ** 38 - 4.68566293825168e125 * cos(theta) ** 36 + 2.659430316305e125 * cos(theta) ** 34 - 1.16466854601648e125 * cos(theta) ** 32 + 3.98947236757025e124 * cos(theta) ** 30 - 1.07723183109439e124 * cos(theta) ** 28 + 2.30052899521853e123 * cos(theta) ** 26 - 3.88400999192738e122 * cos(theta) ** 24 + 5.16371270603062e121 * cos(theta) ** 22 - 5.36580132745422e120 * cos(theta) ** 20 + 4.30896978958708e119 * cos(theta) ** 18 - 2.63182585950827e118 * cos(theta) ** 16 + 1.19628448159467e117 * cos(theta) ** 14 - 3.92861377932569e115 * cos(theta) ** 12 + 8.9471535346962e113 * cos(theta) ** 10 - 1.33274382344035e112 * cos(theta) ** 8 + 1.18843398268566e110 * cos(theta) ** 6 - 5.4766542980906e107 * cos(theta) ** 4 + 9.76230712672121e104 * cos(theta) ** 2 - 2.81091480757881e101 ) * cos(52 * phi) ) # @torch.jit.script def Yl98_m53(theta, phi): return ( 2.08503778833744e-104 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 1.42152419257091e126 * cos(theta) ** 45 - 7.2169689776677e126 * cos(theta) ** 43 + 1.68832201731449e127 * cos(theta) ** 41 - 2.41609782582528e127 * cos(theta) ** 39 + 2.36815937690017e127 * cos(theta) ** 37 - 1.6868386577706e127 * cos(theta) ** 35 + 9.04206307543702e126 * cos(theta) ** 33 - 3.72693934725273e126 * cos(theta) ** 31 + 1.19684171027108e126 * cos(theta) ** 29 - 3.01624912706429e125 * cos(theta) ** 27 + 5.98137538756817e124 * cos(theta) ** 25 - 9.32162398062571e123 * cos(theta) ** 23 + 1.13601679532674e123 * cos(theta) ** 21 - 1.07316026549084e122 * cos(theta) ** 19 + 7.75614562125674e120 * cos(theta) ** 17 - 4.21092137521324e119 * cos(theta) ** 15 + 1.67479827423254e118 * cos(theta) ** 13 - 4.71433653519083e116 * cos(theta) ** 11 + 8.9471535346962e114 * cos(theta) ** 9 - 1.06619505875228e113 * cos(theta) ** 7 + 7.13060389611396e110 * cos(theta) ** 5 - 2.19066171923624e108 * cos(theta) ** 3 + 1.95246142534424e105 * cos(theta) ) * cos(53 * phi) ) # @torch.jit.script def Yl98_m54(theta, phi): return ( 2.52107566003453e-106 * (1.0 - cos(theta) ** 2) ** 27 * ( 6.3968588665691e127 * cos(theta) ** 44 - 3.10329666039711e128 * cos(theta) ** 42 + 6.92212027098941e128 * cos(theta) ** 40 - 9.42278152071857e128 * cos(theta) ** 38 + 8.76218969453063e128 * cos(theta) ** 36 - 5.90393530219711e128 * cos(theta) ** 34 + 2.98388081489422e128 * cos(theta) ** 32 - 1.15535119764835e128 * cos(theta) ** 30 + 3.47084095978612e127 * cos(theta) ** 28 - 8.14387264307358e126 * cos(theta) ** 26 + 1.49534384689204e126 * cos(theta) ** 24 - 2.14397351554391e125 * cos(theta) ** 22 + 2.38563527018615e124 * cos(theta) ** 20 - 2.0390045044326e123 * cos(theta) ** 18 + 1.31854475561365e122 * cos(theta) ** 16 - 6.31638206281986e120 * cos(theta) ** 14 + 2.1772377565023e119 * cos(theta) ** 12 - 5.18577018870992e117 * cos(theta) ** 10 + 8.05243818122658e115 * cos(theta) ** 8 - 7.46336541126594e113 * cos(theta) ** 6 + 3.56530194805698e111 * cos(theta) ** 4 - 6.57198515770872e108 * cos(theta) ** 2 + 1.95246142534424e105 ) * cos(54 * phi) ) # @torch.jit.script def Yl98_m55(theta, phi): return ( 3.07265518220226e-108 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 2.8146179012904e129 * cos(theta) ** 43 - 1.30338459736679e130 * cos(theta) ** 41 + 2.76884810839577e130 * cos(theta) ** 39 - 3.58065697787306e130 * cos(theta) ** 37 + 3.15438829003103e130 * cos(theta) ** 35 - 2.00733800274702e130 * cos(theta) ** 33 + 9.54841860766149e129 * cos(theta) ** 31 - 3.46605359294504e129 * cos(theta) ** 29 + 9.71835468740114e128 * cos(theta) ** 27 - 2.11740688719913e128 * cos(theta) ** 25 + 3.5888252325409e127 * cos(theta) ** 23 - 4.71674173419661e126 * cos(theta) ** 21 + 4.77127054037229e125 * cos(theta) ** 19 - 3.67020810797869e124 * cos(theta) ** 17 + 2.10967160898183e123 * cos(theta) ** 15 - 8.8429348879478e121 * cos(theta) ** 13 + 2.61268530780276e120 * cos(theta) ** 11 - 5.18577018870992e118 * cos(theta) ** 9 + 6.44195054498126e116 * cos(theta) ** 7 - 4.47801924675957e114 * cos(theta) ** 5 + 1.42612077922279e112 * cos(theta) ** 3 - 1.31439703154174e109 * cos(theta) ) * cos(55 * phi) ) # @torch.jit.script def Yl98_m56(theta, phi): return ( 3.77588916338903e-110 * (1.0 - cos(theta) ** 2) ** 28 * ( 1.21028569755487e131 * cos(theta) ** 42 - 5.34387684920383e131 * cos(theta) ** 40 + 1.07985076227435e132 * cos(theta) ** 38 - 1.32484308181303e132 * cos(theta) ** 36 + 1.10403590151086e132 * cos(theta) ** 34 - 6.62421540906516e131 * cos(theta) ** 32 + 2.96000976837506e131 * cos(theta) ** 30 - 1.00515554195406e131 * cos(theta) ** 28 + 2.62395576559831e130 * cos(theta) ** 26 - 5.29351721799783e129 * cos(theta) ** 24 + 8.25429803484407e128 * cos(theta) ** 22 - 9.90515764181288e127 * cos(theta) ** 20 + 9.06541402670736e126 * cos(theta) ** 18 - 6.23935378356377e125 * cos(theta) ** 16 + 3.16450741347275e124 * cos(theta) ** 14 - 1.14958153543321e123 * cos(theta) ** 12 + 2.87395383858304e121 * cos(theta) ** 10 - 4.66719316983892e119 * cos(theta) ** 8 + 4.50936538148688e117 * cos(theta) ** 6 - 2.23900962337978e115 * cos(theta) ** 4 + 4.27836233766838e112 * cos(theta) ** 2 - 1.31439703154174e109 ) * cos(56 * phi) ) # @torch.jit.script def Yl98_m57(theta, phi): return ( 4.67981562751407e-112 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 5.08319992973047e132 * cos(theta) ** 41 - 2.13755073968153e133 * cos(theta) ** 39 + 4.10343289664252e133 * cos(theta) ** 37 - 4.76943509452691e133 * cos(theta) ** 35 + 3.75372206513692e133 * cos(theta) ** 33 - 2.11974893090085e133 * cos(theta) ** 31 + 8.88002930512519e132 * cos(theta) ** 29 - 2.81443551747137e132 * cos(theta) ** 27 + 6.8222849905556e131 * cos(theta) ** 25 - 1.27044413231948e131 * cos(theta) ** 23 + 1.8159455676657e130 * cos(theta) ** 21 - 1.98103152836258e129 * cos(theta) ** 19 + 1.63177452480732e128 * cos(theta) ** 17 - 9.98296605370203e126 * cos(theta) ** 15 + 4.43031037886185e125 * cos(theta) ** 13 - 1.37949784251986e124 * cos(theta) ** 11 + 2.87395383858304e122 * cos(theta) ** 9 - 3.73375453587114e120 * cos(theta) ** 7 + 2.70561922889213e118 * cos(theta) ** 5 - 8.95603849351913e115 * cos(theta) ** 3 + 8.55672467533675e112 * cos(theta) ) * cos(57 * phi) ) # @torch.jit.script def Yl98_m58(theta, phi): return ( 5.85159844471846e-114 * (1.0 - cos(theta) ** 2) ** 29 * ( 2.08411197118949e134 * cos(theta) ** 40 - 8.33644788475797e134 * cos(theta) ** 38 + 1.51827017175773e135 * cos(theta) ** 36 - 1.66930228308442e135 * cos(theta) ** 34 + 1.23872828149518e135 * cos(theta) ** 32 - 6.57122168579264e134 * cos(theta) ** 30 + 2.5752084984863e134 * cos(theta) ** 28 - 7.5989758971727e133 * cos(theta) ** 26 + 1.7055712476389e133 * cos(theta) ** 24 - 2.9220215043348e132 * cos(theta) ** 22 + 3.81348569209796e131 * cos(theta) ** 20 - 3.7639599038889e130 * cos(theta) ** 18 + 2.77401669217245e129 * cos(theta) ** 16 - 1.4974449080553e128 * cos(theta) ** 14 + 5.7594034925204e126 * cos(theta) ** 12 - 1.51744762677184e125 * cos(theta) ** 10 + 2.58655845472473e123 * cos(theta) ** 8 - 2.6136281751098e121 * cos(theta) ** 6 + 1.35280961444607e119 * cos(theta) ** 4 - 2.68681154805574e116 * cos(theta) ** 2 + 8.55672467533675e112 ) * cos(58 * phi) ) # @torch.jit.script def Yl98_m59(theta, phi): return ( 7.38405110772638e-116 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 8.33644788475797e135 * cos(theta) ** 39 - 3.16785019620803e136 * cos(theta) ** 37 + 5.46577261832784e136 * cos(theta) ** 35 - 5.67562776248703e136 * cos(theta) ** 33 + 3.96393050078459e136 * cos(theta) ** 31 - 1.97136650573779e136 * cos(theta) ** 29 + 7.21058379576165e135 * cos(theta) ** 27 - 1.9757337332649e135 * cos(theta) ** 25 + 4.09337099433336e134 * cos(theta) ** 23 - 6.42844730953656e133 * cos(theta) ** 21 + 7.62697138419592e132 * cos(theta) ** 19 - 6.77512782700001e131 * cos(theta) ** 17 + 4.43842670747592e130 * cos(theta) ** 15 - 2.09642287127743e129 * cos(theta) ** 13 + 6.91128419102448e127 * cos(theta) ** 11 - 1.51744762677184e126 * cos(theta) ** 9 + 2.06924676377979e124 * cos(theta) ** 7 - 1.56817690506588e122 * cos(theta) ** 5 + 5.41123845778426e119 * cos(theta) ** 3 - 5.37362309611148e116 * cos(theta) ) * cos(59 * phi) ) # @torch.jit.script def Yl98_m60(theta, phi): return ( 9.40662534557122e-118 * (1.0 - cos(theta) ** 2) ** 30 * ( 3.25121467505561e137 * cos(theta) ** 38 - 1.17210457259697e138 * cos(theta) ** 36 + 1.91302041641475e138 * cos(theta) ** 34 - 1.87295716162072e138 * cos(theta) ** 32 + 1.22881845524322e138 * cos(theta) ** 30 - 5.71696286663959e137 * cos(theta) ** 28 + 1.94685762485565e137 * cos(theta) ** 26 - 4.93933433316225e136 * cos(theta) ** 24 + 9.41475328696673e135 * cos(theta) ** 22 - 1.34997393500268e135 * cos(theta) ** 20 + 1.44912456299722e134 * cos(theta) ** 18 - 1.15177173059e133 * cos(theta) ** 16 + 6.65764006121389e131 * cos(theta) ** 14 - 2.72534973266066e130 * cos(theta) ** 12 + 7.60241261012693e128 * cos(theta) ** 10 - 1.36570286409466e127 * cos(theta) ** 8 + 1.44847273464585e125 * cos(theta) ** 6 - 7.84088452532939e122 * cos(theta) ** 4 + 1.62337153733528e120 * cos(theta) ** 2 - 5.37362309611148e116 ) * cos(60 * phi) ) # @torch.jit.script def Yl98_m61(theta, phi): return ( 1.21016192990425e-119 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 1.23546157652113e139 * cos(theta) ** 37 - 4.2195764613491e139 * cos(theta) ** 35 + 6.50426941581013e139 * cos(theta) ** 33 - 5.9934629171863e139 * cos(theta) ** 31 + 3.68645536572967e139 * cos(theta) ** 29 - 1.60074960265909e139 * cos(theta) ** 27 + 5.06182982462468e138 * cos(theta) ** 25 - 1.18544023995894e138 * cos(theta) ** 23 + 2.07124572313268e137 * cos(theta) ** 21 - 2.69994787000536e136 * cos(theta) ** 19 + 2.608424213395e135 * cos(theta) ** 17 - 1.842834768944e134 * cos(theta) ** 15 + 9.32069608569944e132 * cos(theta) ** 13 - 3.27041967919279e131 * cos(theta) ** 11 + 7.60241261012693e129 * cos(theta) ** 9 - 1.09256229127573e128 * cos(theta) ** 7 + 8.6908364078751e125 * cos(theta) ** 5 - 3.13635381013176e123 * cos(theta) ** 3 + 3.24674307467056e120 * cos(theta) ) * cos(61 * phi) ) # @torch.jit.script def Yl98_m62(theta, phi): return ( 1.57283307422444e-121 * (1.0 - cos(theta) ** 2) ** 31 * ( 4.57120783312819e140 * cos(theta) ** 36 - 1.47685176147218e141 * cos(theta) ** 34 + 2.14640890721734e141 * cos(theta) ** 32 - 1.85797350432775e141 * cos(theta) ** 30 + 1.0690720560616e141 * cos(theta) ** 28 - 4.32202392717953e140 * cos(theta) ** 26 + 1.26545745615617e140 * cos(theta) ** 24 - 2.72651255190556e139 * cos(theta) ** 22 + 4.34961601857863e138 * cos(theta) ** 20 - 5.12990095301018e137 * cos(theta) ** 18 + 4.43432116277151e136 * cos(theta) ** 16 - 2.76425215341601e135 * cos(theta) ** 14 + 1.21169049114093e134 * cos(theta) ** 12 - 3.59746164711206e132 * cos(theta) ** 10 + 6.84217134911424e130 * cos(theta) ** 8 - 7.64793603893009e128 * cos(theta) ** 6 + 4.34541820393755e126 * cos(theta) ** 4 - 9.40906143039527e123 * cos(theta) ** 2 + 3.24674307467056e120 ) * cos(62 * phi) ) # @torch.jit.script def Yl98_m63(theta, phi): return ( 2.06594352178886e-123 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 1.64563481992615e142 * cos(theta) ** 35 - 5.02129598900542e142 * cos(theta) ** 33 + 6.8685085030955e142 * cos(theta) ** 31 - 5.57392051298326e142 * cos(theta) ** 29 + 2.99340175697249e142 * cos(theta) ** 27 - 1.12372622106668e142 * cos(theta) ** 25 + 3.03709789477481e141 * cos(theta) ** 23 - 5.99832761419224e140 * cos(theta) ** 21 + 8.69923203715726e139 * cos(theta) ** 19 - 9.23382171541832e138 * cos(theta) ** 17 + 7.09491386043441e137 * cos(theta) ** 15 - 3.86995301478241e136 * cos(theta) ** 13 + 1.45402858936911e135 * cos(theta) ** 11 - 3.59746164711206e133 * cos(theta) ** 9 + 5.47373707929139e131 * cos(theta) ** 7 - 4.58876162335805e129 * cos(theta) ** 5 + 1.73816728157502e127 * cos(theta) ** 3 - 1.88181228607905e124 * cos(theta) ) * cos(63 * phi) ) # @torch.jit.script def Yl98_m64(theta, phi): return ( 2.74363866945678e-125 * (1.0 - cos(theta) ** 2) ** 32 * ( 5.75972186974151e143 * cos(theta) ** 34 - 1.65702767637179e144 * cos(theta) ** 32 + 2.12923763595961e144 * cos(theta) ** 30 - 1.61643694876515e144 * cos(theta) ** 28 + 8.08218474382573e143 * cos(theta) ** 26 - 2.8093155526667e143 * cos(theta) ** 24 + 6.98532515798206e142 * cos(theta) ** 22 - 1.25964879898037e142 * cos(theta) ** 20 + 1.65285408705988e141 * cos(theta) ** 18 - 1.56974969162111e140 * cos(theta) ** 16 + 1.06423707906516e139 * cos(theta) ** 14 - 5.03093891921713e137 * cos(theta) ** 12 + 1.59943144830602e136 * cos(theta) ** 10 - 3.23771548240086e134 * cos(theta) ** 8 + 3.83161595550397e132 * cos(theta) ** 6 - 2.29438081167903e130 * cos(theta) ** 4 + 5.21450184472506e127 * cos(theta) ** 2 - 1.88181228607905e124 ) * cos(64 * phi) ) # @torch.jit.script def Yl98_m65(theta, phi): return ( 3.6854765698596e-127 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 1.95830543571212e145 * cos(theta) ** 33 - 5.30248856438973e145 * cos(theta) ** 31 + 6.38771290787882e145 * cos(theta) ** 29 - 4.52602345654241e145 * cos(theta) ** 27 + 2.10136803339469e145 * cos(theta) ** 25 - 6.74235732640007e144 * cos(theta) ** 23 + 1.53677153475605e144 * cos(theta) ** 21 - 2.51929759796074e143 * cos(theta) ** 19 + 2.97513735670778e142 * cos(theta) ** 17 - 2.51159950659378e141 * cos(theta) ** 15 + 1.48993191069123e140 * cos(theta) ** 13 - 6.03712670306055e138 * cos(theta) ** 11 + 1.59943144830602e137 * cos(theta) ** 9 - 2.59017238592069e135 * cos(theta) ** 7 + 2.29896957330238e133 * cos(theta) ** 5 - 9.17752324671611e130 * cos(theta) ** 3 + 1.04290036894501e128 * cos(theta) ) * cos(65 * phi) ) # @torch.jit.script def Yl98_m66(theta, phi): return ( 5.00973508065196e-129 * (1.0 - cos(theta) ** 2) ** 33 * ( 6.46240793784998e146 * cos(theta) ** 32 - 1.64377145496082e147 * cos(theta) ** 30 + 1.85243674328486e147 * cos(theta) ** 28 - 1.22202633326645e147 * cos(theta) ** 26 + 5.25342008348672e146 * cos(theta) ** 24 - 1.55074218507202e146 * cos(theta) ** 22 + 3.22722022298771e145 * cos(theta) ** 20 - 4.78666543612541e144 * cos(theta) ** 18 + 5.05773350640323e143 * cos(theta) ** 16 - 3.76739925989067e142 * cos(theta) ** 14 + 1.93691148389859e141 * cos(theta) ** 12 - 6.64083937336661e139 * cos(theta) ** 10 + 1.43948830347542e138 * cos(theta) ** 8 - 1.81312067014448e136 * cos(theta) ** 6 + 1.14948478665119e134 * cos(theta) ** 4 - 2.75325697401483e131 * cos(theta) ** 2 + 1.04290036894501e128 ) * cos(66 * phi) ) # @torch.jit.script def Yl98_m67(theta, phi): return ( 6.89442099585025e-131 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 2.06797054011199e148 * cos(theta) ** 31 - 4.93131436488245e148 * cos(theta) ** 29 + 5.1868228811976e148 * cos(theta) ** 27 - 3.17726846649277e148 * cos(theta) ** 25 + 1.26082082003681e148 * cos(theta) ** 23 - 3.41163280715844e147 * cos(theta) ** 21 + 6.45444044597542e146 * cos(theta) ** 19 - 8.61599778502574e145 * cos(theta) ** 17 + 8.09237361024517e144 * cos(theta) ** 15 - 5.27435896384694e143 * cos(theta) ** 13 + 2.32429378067831e142 * cos(theta) ** 11 - 6.64083937336661e140 * cos(theta) ** 9 + 1.15159064278034e139 * cos(theta) ** 7 - 1.08787240208669e137 * cos(theta) ** 5 + 4.59793914660477e134 * cos(theta) ** 3 - 5.50651394802966e131 * cos(theta) ) * cos(67 * phi) ) # @torch.jit.script def Yl98_m68(theta, phi): return ( 9.61087454794881e-133 * (1.0 - cos(theta) ** 2) ** 34 * ( 6.41070867434718e149 * cos(theta) ** 30 - 1.43008116581591e150 * cos(theta) ** 28 + 1.40044217792335e150 * cos(theta) ** 26 - 7.94317116623192e149 * cos(theta) ** 24 + 2.89988788608467e149 * cos(theta) ** 22 - 7.16442889503272e148 * cos(theta) ** 20 + 1.22634368473533e148 * cos(theta) ** 18 - 1.46471962345438e147 * cos(theta) ** 16 + 1.21385604153678e146 * cos(theta) ** 14 - 6.85666665300103e144 * cos(theta) ** 12 + 2.55672315874615e143 * cos(theta) ** 10 - 5.97675543602995e141 * cos(theta) ** 8 + 8.06113449946236e139 * cos(theta) ** 6 - 5.43936201043344e137 * cos(theta) ** 4 + 1.37938174398143e135 * cos(theta) ** 2 - 5.50651394802966e131 ) * cos(68 * phi) ) # @torch.jit.script def Yl98_m69(theta, phi): return ( 1.35782576566671e-134 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 1.92321260230415e151 * cos(theta) ** 29 - 4.00422726428455e151 * cos(theta) ** 27 + 3.64114966260071e151 * cos(theta) ** 25 - 1.90636107989566e151 * cos(theta) ** 23 + 6.37975334938628e150 * cos(theta) ** 21 - 1.43288577900654e150 * cos(theta) ** 19 + 2.20741863252359e149 * cos(theta) ** 17 - 2.343551397527e148 * cos(theta) ** 15 + 1.69939845815148e147 * cos(theta) ** 13 - 8.22799998360123e145 * cos(theta) ** 11 + 2.55672315874615e144 * cos(theta) ** 9 - 4.78140434882396e142 * cos(theta) ** 7 + 4.83668069967742e140 * cos(theta) ** 5 - 2.17574480417338e138 * cos(theta) ** 3 + 2.75876348796286e135 * cos(theta) ) * cos(69 * phi) ) # @torch.jit.script def Yl98_m70(theta, phi): return ( 1.94531710551958e-136 * (1.0 - cos(theta) ** 2) ** 35 * ( 5.57731654668205e152 * cos(theta) ** 28 - 1.08114136135683e153 * cos(theta) ** 26 + 9.10287415650179e152 * cos(theta) ** 24 - 4.38463048376002e152 * cos(theta) ** 22 + 1.33974820337112e152 * cos(theta) ** 20 - 2.72248298011243e151 * cos(theta) ** 18 + 3.75261167529011e150 * cos(theta) ** 16 - 3.5153270962905e149 * cos(theta) ** 14 + 2.20921799559693e148 * cos(theta) ** 12 - 9.05079998196135e146 * cos(theta) ** 10 + 2.30105084287153e145 * cos(theta) ** 8 - 3.34698304417677e143 * cos(theta) ** 6 + 2.41834034983871e141 * cos(theta) ** 4 - 6.52723441252013e138 * cos(theta) ** 2 + 2.75876348796286e135 ) * cos(70 * phi) ) # @torch.jit.script def Yl98_m71(theta, phi): return ( 2.82792597932132e-138 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 1.56164863307097e154 * cos(theta) ** 27 - 2.81096753952775e154 * cos(theta) ** 25 + 2.18468979756043e154 * cos(theta) ** 23 - 9.64618706427205e153 * cos(theta) ** 21 + 2.67949640674224e153 * cos(theta) ** 19 - 4.90046936420238e152 * cos(theta) ** 17 + 6.00417868046417e151 * cos(theta) ** 15 - 4.9214579348067e150 * cos(theta) ** 13 + 2.65106159471632e149 * cos(theta) ** 11 - 9.05079998196135e147 * cos(theta) ** 9 + 1.84084067429722e146 * cos(theta) ** 7 - 2.00818982650606e144 * cos(theta) ** 5 + 9.67336139935483e141 * cos(theta) ** 3 - 1.30544688250403e139 * cos(theta) ) * cos(71 * phi) ) # @torch.jit.script def Yl98_m72(theta, phi): return ( 4.17408890415419e-140 * (1.0 - cos(theta) ** 2) ** 36 * ( 4.21645130929163e155 * cos(theta) ** 26 - 7.02741884881938e155 * cos(theta) ** 24 + 5.02478653438899e155 * cos(theta) ** 22 - 2.02569928349713e155 * cos(theta) ** 20 + 5.09104317281025e154 * cos(theta) ** 18 - 8.33079791914404e153 * cos(theta) ** 16 + 9.00626802069626e152 * cos(theta) ** 14 - 6.39789531524871e151 * cos(theta) ** 12 + 2.91616775418795e150 * cos(theta) ** 10 - 8.14571998376522e148 * cos(theta) ** 8 + 1.28858847200806e147 * cos(theta) ** 6 - 1.00409491325303e145 * cos(theta) ** 4 + 2.90200841980645e142 * cos(theta) ** 2 - 1.30544688250403e139 ) * cos(72 * phi) ) # @torch.jit.script def Yl98_m73(theta, phi): return ( 6.26003794543089e-142 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 1.09627734041582e157 * cos(theta) ** 25 - 1.68658052371665e157 * cos(theta) ** 23 + 1.10545303756558e157 * cos(theta) ** 21 - 4.05139856699426e156 * cos(theta) ** 19 + 9.16387771105845e155 * cos(theta) ** 17 - 1.33292766706305e155 * cos(theta) ** 15 + 1.26087752289748e154 * cos(theta) ** 13 - 7.67747437829845e152 * cos(theta) ** 11 + 2.91616775418795e151 * cos(theta) ** 9 - 6.51657598701217e149 * cos(theta) ** 7 + 7.73153083204834e147 * cos(theta) ** 5 - 4.01637965301213e145 * cos(theta) ** 3 + 5.8040168396129e142 * cos(theta) ) * cos(73 * phi) ) # @torch.jit.script def Yl98_m74(theta, phi): return ( 9.54646836906066e-144 * (1.0 - cos(theta) ** 2) ** 37 * ( 2.74069335103956e158 * cos(theta) ** 24 - 3.8791352045483e158 * cos(theta) ** 22 + 2.32145137888771e158 * cos(theta) ** 20 - 7.69765727728909e157 * cos(theta) ** 18 + 1.55785921087994e157 * cos(theta) ** 16 - 1.99939150059457e156 * cos(theta) ** 14 + 1.63914077976672e155 * cos(theta) ** 12 - 8.4452218161283e153 * cos(theta) ** 10 + 2.62455097876915e152 * cos(theta) ** 8 - 4.56160319090852e150 * cos(theta) ** 6 + 3.86576541602417e148 * cos(theta) ** 4 - 1.20491389590364e146 * cos(theta) ** 2 + 5.8040168396129e142 ) * cos(74 * phi) ) # @torch.jit.script def Yl98_m75(theta, phi): return ( 1.48154233350587e-145 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 6.57766404249494e159 * cos(theta) ** 23 - 8.53409745000625e159 * cos(theta) ** 21 + 4.64290275777542e159 * cos(theta) ** 19 - 1.38557830991204e159 * cos(theta) ** 17 + 2.4925747374079e158 * cos(theta) ** 15 - 2.7991481008324e157 * cos(theta) ** 13 + 1.96696893572006e156 * cos(theta) ** 11 - 8.4452218161283e154 * cos(theta) ** 9 + 2.09964078301532e153 * cos(theta) ** 7 - 2.73696191454511e151 * cos(theta) ** 5 + 1.54630616640967e149 * cos(theta) ** 3 - 2.40982779180728e146 * cos(theta) ) * cos(75 * phi) ) # @torch.jit.script def Yl98_m76(theta, phi): return ( 2.34193870041187e-147 * (1.0 - cos(theta) ** 2) ** 38 * ( 1.51286272977384e161 * cos(theta) ** 22 - 1.79216046450131e161 * cos(theta) ** 20 + 8.8215152397733e160 * cos(theta) ** 18 - 2.35548312685046e160 * cos(theta) ** 16 + 3.73886210611185e159 * cos(theta) ** 14 - 3.63889253108212e158 * cos(theta) ** 12 + 2.16366582929207e157 * cos(theta) ** 10 - 7.60069963451547e155 * cos(theta) ** 8 + 1.46974854811073e154 * cos(theta) ** 6 - 1.36848095727256e152 * cos(theta) ** 4 + 4.63891849922901e149 * cos(theta) ** 2 - 2.40982779180728e146 ) * cos(76 * phi) ) # @torch.jit.script def Yl98_m77(theta, phi): return ( 3.77437597026328e-149 * (1.0 - cos(theta) ** 2) ** 38.5 * ( 3.32829800550244e162 * cos(theta) ** 21 - 3.58432092900263e162 * cos(theta) ** 19 + 1.58787274315919e162 * cos(theta) ** 17 - 3.76877300296074e161 * cos(theta) ** 15 + 5.23440694855658e160 * cos(theta) ** 13 - 4.36667103729854e159 * cos(theta) ** 11 + 2.16366582929207e158 * cos(theta) ** 9 - 6.08055970761237e156 * cos(theta) ** 7 + 8.81849128866436e154 * cos(theta) ** 5 - 5.47392382909023e152 * cos(theta) ** 3 + 9.27783699845801e149 * cos(theta) ) * cos(77 * phi) ) # @torch.jit.script def Yl98_m78(theta, phi): return ( 6.20839266762537e-151 * (1.0 - cos(theta) ** 2) ** 39 * ( 6.98942581155512e163 * cos(theta) ** 20 - 6.81020976510499e163 * cos(theta) ** 18 + 2.69938366337063e163 * cos(theta) ** 16 - 5.65315950444111e162 * cos(theta) ** 14 + 6.80472903312356e161 * cos(theta) ** 12 - 4.8033381410284e160 * cos(theta) ** 10 + 1.94729924636286e159 * cos(theta) ** 8 - 4.25639179532866e157 * cos(theta) ** 6 + 4.40924564433218e155 * cos(theta) ** 4 - 1.64217714872707e153 * cos(theta) ** 2 + 9.27783699845801e149 ) * cos(78 * phi) ) # @torch.jit.script def Yl98_m79(theta, phi): return ( 1.04346418263193e-152 * (1.0 - cos(theta) ** 2) ** 39.5 * ( 1.39788516231102e165 * cos(theta) ** 19 - 1.2258377577189e165 * cos(theta) ** 17 + 4.31901386139301e164 * cos(theta) ** 15 - 7.91442330621756e163 * cos(theta) ** 13 + 8.16567483974827e162 * cos(theta) ** 11 - 4.8033381410284e161 * cos(theta) ** 9 + 1.55783939709029e160 * cos(theta) ** 7 - 2.5538350771972e158 * cos(theta) ** 5 + 1.76369825773287e156 * cos(theta) ** 3 - 3.28435429745414e153 * cos(theta) ) * cos(79 * phi) ) # @torch.jit.script def Yl98_m80(theta, phi): return ( 1.79428218305859e-154 * (1.0 - cos(theta) ** 2) ** 40 * ( 2.65598180839095e166 * cos(theta) ** 18 - 2.08392418812213e166 * cos(theta) ** 16 + 6.47852079208951e165 * cos(theta) ** 14 - 1.02887502980828e165 * cos(theta) ** 12 + 8.9822423237231e163 * cos(theta) ** 10 - 4.32300432692556e162 * cos(theta) ** 8 + 1.0904875779632e161 * cos(theta) ** 6 - 1.2769175385986e159 * cos(theta) ** 4 + 5.29109477319861e156 * cos(theta) ** 2 - 3.28435429745414e153 ) * cos(80 * phi) ) # @torch.jit.script def Yl98_m81(theta, phi): return ( 3.16102533497397e-156 * (1.0 - cos(theta) ** 2) ** 40.5 * ( 4.7807672551037e167 * cos(theta) ** 17 - 3.3342787009954e167 * cos(theta) ** 15 + 9.06992910892532e166 * cos(theta) ** 13 - 1.23465003576994e166 * cos(theta) ** 11 + 8.9822423237231e164 * cos(theta) ** 9 - 3.45840346154044e163 * cos(theta) ** 7 + 6.54292546777922e161 * cos(theta) ** 5 - 5.10767015439439e159 * cos(theta) ** 3 + 1.05821895463972e157 * cos(theta) ) * cos(81 * phi) ) # @torch.jit.script def Yl98_m82(theta, phi): return ( 5.71435560910229e-158 * (1.0 - cos(theta) ** 2) ** 41 * ( 8.12730433367629e168 * cos(theta) ** 16 - 5.0014180514931e168 * cos(theta) ** 14 + 1.17909078416029e168 * cos(theta) ** 12 - 1.35811503934693e167 * cos(theta) ** 10 + 8.08401809135079e165 * cos(theta) ** 8 - 2.42088242307831e164 * cos(theta) ** 6 + 3.27146273388961e162 * cos(theta) ** 4 - 1.53230104631832e160 * cos(theta) ** 2 + 1.05821895463972e157 ) * cos(82 * phi) ) # @torch.jit.script def Yl98_m83(theta, phi): return ( 1.0618617684551e-159 * (1.0 - cos(theta) ** 2) ** 41.5 * ( 1.30036869338821e170 * cos(theta) ** 15 - 7.00198527209035e169 * cos(theta) ** 13 + 1.41490894099235e169 * cos(theta) ** 11 - 1.35811503934693e168 * cos(theta) ** 9 + 6.46721447308063e166 * cos(theta) ** 7 - 1.45252945384699e165 * cos(theta) ** 5 + 1.30858509355584e163 * cos(theta) ** 3 - 3.06460209263664e160 * cos(theta) ) * cos(83 * phi) ) # @torch.jit.script def Yl98_m84(theta, phi): return ( 2.03229459023276e-161 * (1.0 - cos(theta) ** 2) ** 42 * ( 1.95055304008231e171 * cos(theta) ** 14 - 9.10258085371745e170 * cos(theta) ** 12 + 1.55639983509158e170 * cos(theta) ** 10 - 1.22230353541224e169 * cos(theta) ** 8 + 4.52705013115644e167 * cos(theta) ** 6 - 7.26264726923493e165 * cos(theta) ** 4 + 3.92575528066753e163 * cos(theta) ** 2 - 3.06460209263664e160 ) * cos(84 * phi) ) # @torch.jit.script def Yl98_m85(theta, phi): return ( 4.01510676861106e-163 * (1.0 - cos(theta) ** 2) ** 42.5 * ( 2.73077425611524e172 * cos(theta) ** 13 - 1.09230970244609e172 * cos(theta) ** 11 + 1.55639983509158e171 * cos(theta) ** 9 - 9.77842828329791e169 * cos(theta) ** 7 + 2.71623007869387e168 * cos(theta) ** 5 - 2.90505890769397e166 * cos(theta) ** 3 + 7.85151056133506e163 * cos(theta) ) * cos(85 * phi) ) # @torch.jit.script def Yl98_m86(theta, phi): return ( 8.20949628650893e-165 * (1.0 - cos(theta) ** 2) ** 43 * ( 3.55000653294981e173 * cos(theta) ** 12 - 1.2015406726907e173 * cos(theta) ** 10 + 1.40075985158243e172 * cos(theta) ** 8 - 6.84489979830854e170 * cos(theta) ** 6 + 1.35811503934693e169 * cos(theta) ** 4 - 8.71517672308192e166 * cos(theta) ** 2 + 7.85151056133506e163 ) * cos(86 * phi) ) # @torch.jit.script def Yl98_m87(theta, phi): return ( 1.74236855047515e-166 * (1.0 - cos(theta) ** 2) ** 43.5 * ( 4.26000783953977e174 * cos(theta) ** 11 - 1.2015406726907e174 * cos(theta) ** 9 + 1.12060788126594e173 * cos(theta) ** 7 - 4.10693987898512e171 * cos(theta) ** 5 + 5.43246015738773e169 * cos(theta) ** 3 - 1.74303534461638e167 * cos(theta) ) * cos(87 * phi) ) # @torch.jit.script def Yl98_m88(theta, phi): return ( 3.85200825209621e-168 * (1.0 - cos(theta) ** 2) ** 44 * ( 4.68600862349374e175 * cos(theta) ** 10 - 1.08138660542163e175 * cos(theta) ** 8 + 7.84425516886159e173 * cos(theta) ** 6 - 2.05346993949256e172 * cos(theta) ** 4 + 1.62973804721632e170 * cos(theta) ** 2 - 1.74303534461638e167 ) * cos(88 * phi) ) # @torch.jit.script def Yl98_m89(theta, phi): return ( 8.90771688947175e-170 * (1.0 - cos(theta) ** 2) ** 44.5 * ( 4.68600862349374e176 * cos(theta) ** 9 - 8.65109284337306e175 * cos(theta) ** 7 + 4.70655310131695e174 * cos(theta) ** 5 - 8.21387975797025e172 * cos(theta) ** 3 + 3.25947609443264e170 * cos(theta) ) * cos(89 * phi) ) # @torch.jit.script def Yl98_m90(theta, phi): return ( 2.16554008058075e-171 * (1.0 - cos(theta) ** 2) ** 45 * ( 4.21740776114437e177 * cos(theta) ** 8 - 6.05576499036115e176 * cos(theta) ** 6 + 2.35327655065848e175 * cos(theta) ** 4 - 2.46416392739107e173 * cos(theta) ** 2 + 3.25947609443264e170 ) * cos(90 * phi) ) # @torch.jit.script def Yl98_m91(theta, phi): return ( 5.56916814851313e-173 * (1.0 - cos(theta) ** 2) ** 45.5 * ( 3.3739262089155e178 * cos(theta) ** 7 - 3.63345899421669e177 * cos(theta) ** 5 + 9.41310620263391e175 * cos(theta) ** 3 - 4.92832785478215e173 * cos(theta) ) * cos(91 * phi) ) # @torch.jit.script def Yl98_m92(theta, phi): return ( 1.52708956723136e-174 * (1.0 - cos(theta) ** 2) ** 46 * ( 2.36174834624085e179 * cos(theta) ** 6 - 1.81672949710834e178 * cos(theta) ** 4 + 2.82393186079017e176 * cos(theta) ** 2 - 4.92832785478215e173 ) * cos(92 * phi) ) # @torch.jit.script def Yl98_m93(theta, phi): return ( 4.51099350022227e-176 * (1.0 - cos(theta) ** 2) ** 46.5 * ( 1.41704900774451e180 * cos(theta) ** 5 - 7.26691798843337e178 * cos(theta) ** 3 + 5.64786372158034e176 * cos(theta) ) * cos(93 * phi) ) # @torch.jit.script def Yl98_m94(theta, phi): return ( 1.45591689176756e-177 * (1.0 - cos(theta) ** 2) ** 47 * ( 7.08524503872254e180 * cos(theta) ** 4 - 2.18007539653001e179 * cos(theta) ** 2 + 5.64786372158034e176 ) * cos(94 * phi) ) # @torch.jit.script def Yl98_m95(theta, phi): return ( 5.23995955237687e-179 * (1.0 - cos(theta) ** 2) ** 47.5 * (2.83409801548902e181 * cos(theta) ** 3 - 4.36015079306002e179 * cos(theta)) * cos(95 * phi) ) # @torch.jit.script def Yl98_m96(theta, phi): return ( 2.17203311531976e-180 * (1.0 - cos(theta) ** 2) ** 48 * (8.50229404646705e181 * cos(theta) ** 2 - 4.36015079306002e179) * cos(96 * phi) ) # @torch.jit.script def Yl98_m97(theta, phi): return ( 18.7025254831072 * (1.0 - cos(theta) ** 2) ** 48.5 * cos(97 * phi) * cos(theta) ) # @torch.jit.script def Yl98_m98(theta, phi): return 1.3358946773648 * (1.0 - cos(theta) ** 2) ** 49 * cos(98 * phi) # @torch.jit.script def Yl99_m_minus_99(theta, phi): return 1.339263900061 * (1.0 - cos(theta) ** 2) ** 49.5 * sin(99 * phi) # @torch.jit.script def Yl99_m_minus_98(theta, phi): return 18.8451135102262 * (1.0 - cos(theta) ** 2) ** 49 * sin(98 * phi) * cos(theta) # @torch.jit.script def Yl99_m_minus_97(theta, phi): return ( 1.11664345848169e-182 * (1.0 - cos(theta) ** 2) ** 48.5 * (1.67495192715401e184 * cos(theta) ** 2 - 8.50229404646705e181) * sin(97 * phi) ) # @torch.jit.script def Yl99_m_minus_96(theta, phi): return ( 2.70771648564159e-181 * (1.0 - cos(theta) ** 2) ** 48 * (5.58317309051336e183 * cos(theta) ** 3 - 8.50229404646705e181 * cos(theta)) * sin(96 * phi) ) # @torch.jit.script def Yl99_m_minus_95(theta, phi): return ( 7.56224059519393e-180 * (1.0 - cos(theta) ** 2) ** 47.5 * ( 1.39579327262834e183 * cos(theta) ** 4 - 4.25114702323352e181 * cos(theta) ** 2 + 1.09003769826501e179 ) * sin(95 * phi) ) # @torch.jit.script def Yl99_m_minus_94(theta, phi): return ( 2.35524644856989e-178 * (1.0 - cos(theta) ** 2) ** 47 * ( 2.79158654525668e182 * cos(theta) ** 5 - 1.41704900774451e181 * cos(theta) ** 3 + 1.09003769826501e179 * cos(theta) ) * sin(94 * phi) ) # @torch.jit.script def Yl99_m_minus_93(theta, phi): return ( 8.01476212697188e-177 * (1.0 - cos(theta) ** 2) ** 46.5 * ( 4.65264424209447e181 * cos(theta) ** 6 - 3.54262251936127e180 * cos(theta) ** 4 + 5.45018849132503e178 * cos(theta) ** 2 - 9.41310620263391e175 ) * sin(93 * phi) ) # @torch.jit.script def Yl99_m_minus_92(theta, phi): return ( 2.93826032991311e-175 * (1.0 - cos(theta) ** 2) ** 46 * ( 6.64663463156353e180 * cos(theta) ** 7 - 7.08524503872254e179 * cos(theta) ** 5 + 1.81672949710834e178 * cos(theta) ** 3 - 9.41310620263391e175 * cos(theta) ) * sin(92 * phi) ) # @torch.jit.script def Yl99_m_minus_91(theta, phi): return ( 1.1485554020146e-173 * (1.0 - cos(theta) ** 2) ** 45.5 * ( 8.30829328945441e179 * cos(theta) ** 8 - 1.18087417312042e179 * cos(theta) ** 6 + 4.54182374277086e177 * cos(theta) ** 4 - 4.70655310131695e175 * cos(theta) ** 2 + 6.16040981847769e172 ) * sin(91 * phi) ) # @torch.jit.script def Yl99_m_minus_90(theta, phi): return ( 4.74952309675375e-172 * (1.0 - cos(theta) ** 2) ** 45 * ( 9.23143698828267e178 * cos(theta) ** 9 - 1.68696310445775e178 * cos(theta) ** 7 + 9.08364748554172e176 * cos(theta) ** 5 - 1.56885103377232e175 * cos(theta) ** 3 + 6.16040981847769e172 * cos(theta) ) * sin(90 * phi) ) # @torch.jit.script def Yl99_m_minus_89(theta, phi): return ( 2.06481385679361e-170 * (1.0 - cos(theta) ** 2) ** 44.5 * ( 9.23143698828267e177 * cos(theta) ** 10 - 2.10870388057218e177 * cos(theta) ** 8 + 1.51394124759029e176 * cos(theta) ** 6 - 3.92212758443079e174 * cos(theta) ** 4 + 3.08020490923884e172 * cos(theta) ** 2 - 3.25947609443264e169 ) * sin(89 * phi) ) # @torch.jit.script def Yl99_m_minus_88(theta, phi): return ( 9.38979635152534e-169 * (1.0 - cos(theta) ** 2) ** 44 * ( 8.39221544389334e176 * cos(theta) ** 11 - 2.34300431174687e176 * cos(theta) ** 9 + 2.16277321084327e175 * cos(theta) ** 7 - 7.84425516886159e173 * cos(theta) ** 5 + 1.02673496974628e172 * cos(theta) ** 3 - 3.25947609443264e169 * cos(theta) ) * sin(88 * phi) ) # @torch.jit.script def Yl99_m_minus_87(theta, phi): return ( 4.44802889237332e-167 * (1.0 - cos(theta) ** 2) ** 43.5 * ( 6.99351286991112e175 * cos(theta) ** 12 - 2.34300431174687e175 * cos(theta) ** 10 + 2.70346651355408e174 * cos(theta) ** 8 - 1.30737586147693e173 * cos(theta) ** 6 + 2.5668374243657e171 * cos(theta) ** 4 - 1.62973804721632e169 * cos(theta) ** 2 + 1.45252945384699e166 ) * sin(87 * phi) ) # @torch.jit.script def Yl99_m_minus_86(theta, phi): return ( 2.18723651588537e-165 * (1.0 - cos(theta) ** 2) ** 43 * ( 5.37962528454701e174 * cos(theta) ** 13 - 2.13000391976988e174 * cos(theta) ** 11 + 3.00385168172676e173 * cos(theta) ** 9 - 1.8676798021099e172 * cos(theta) ** 7 + 5.13367484873141e170 * cos(theta) ** 5 - 5.43246015738773e168 * cos(theta) ** 3 + 1.45252945384699e166 * cos(theta) ) * sin(86 * phi) ) # @torch.jit.script def Yl99_m_minus_85(theta, phi): return ( 1.11312933942709e-163 * (1.0 - cos(theta) ** 2) ** 42.5 * ( 3.84258948896215e173 * cos(theta) ** 14 - 1.7750032664749e173 * cos(theta) ** 12 + 3.00385168172676e172 * cos(theta) ** 10 - 2.33459975263738e171 * cos(theta) ** 8 + 8.55612474788568e169 * cos(theta) ** 6 - 1.35811503934693e168 * cos(theta) ** 4 + 7.26264726923493e165 * cos(theta) ** 2 - 5.60822182952505e162 ) * sin(85 * phi) ) # @torch.jit.script def Yl99_m_minus_84(theta, phi): return ( 5.84790314263991e-162 * (1.0 - cos(theta) ** 2) ** 42 * ( 2.56172632597477e172 * cos(theta) ** 15 - 1.36538712805762e172 * cos(theta) ** 13 + 2.73077425611524e171 * cos(theta) ** 11 - 2.59399972515264e170 * cos(theta) ** 9 + 1.22230353541224e169 * cos(theta) ** 7 - 2.71623007869387e167 * cos(theta) ** 5 + 2.42088242307831e165 * cos(theta) ** 3 - 5.60822182952505e162 * cos(theta) ) * sin(84 * phi) ) # @torch.jit.script def Yl99_m_minus_83(theta, phi): return ( 3.16435869605775e-160 * (1.0 - cos(theta) ** 2) ** 41.5 * ( 1.60107895373423e171 * cos(theta) ** 16 - 9.75276520041155e170 * cos(theta) ** 14 + 2.27564521342936e170 * cos(theta) ** 12 - 2.59399972515264e169 * cos(theta) ** 10 + 1.5278794192653e168 * cos(theta) ** 8 - 4.52705013115644e166 * cos(theta) ** 6 + 6.05220605769578e164 * cos(theta) ** 4 - 2.80411091476252e162 * cos(theta) ** 2 + 1.9153763078979e159 ) * sin(83 * phi) ) # @torch.jit.script def Yl99_m_minus_82(theta, phi): return ( 1.76013452531153e-158 * (1.0 - cos(theta) ** 2) ** 41 * ( 9.41811149255429e169 * cos(theta) ** 17 - 6.50184346694104e169 * cos(theta) ** 15 + 1.75049631802259e169 * cos(theta) ** 13 - 2.35818156832058e168 * cos(theta) ** 11 + 1.69764379918367e167 * cos(theta) ** 9 - 6.46721447308063e165 * cos(theta) ** 7 + 1.21044121153916e164 * cos(theta) ** 5 - 9.34703638254174e161 * cos(theta) ** 3 + 1.9153763078979e159 * cos(theta) ) * sin(82 * phi) ) # @torch.jit.script def Yl99_m_minus_81(theta, phi): return ( 1.00466529833358e-156 * (1.0 - cos(theta) ** 2) ** 40.5 * ( 5.23228416253016e168 * cos(theta) ** 18 - 4.06365216683815e168 * cos(theta) ** 16 + 1.25035451287328e168 * cos(theta) ** 14 - 1.96515130693382e167 * cos(theta) ** 12 + 1.69764379918367e166 * cos(theta) ** 10 - 8.08401809135079e164 * cos(theta) ** 8 + 2.01740201923193e163 * cos(theta) ** 6 - 2.33675909563544e161 * cos(theta) ** 4 + 9.57688153948949e158 * cos(theta) ** 2 - 5.8789941924429e155 ) * sin(81 * phi) ) # @torch.jit.script def Yl99_m_minus_80(theta, phi): return ( 5.87535962893411e-155 * (1.0 - cos(theta) ** 2) ** 40 * ( 2.75383376975272e167 * cos(theta) ** 19 - 2.39038362755185e167 * cos(theta) ** 17 + 8.33569675248851e166 * cos(theta) ** 15 - 1.51165485148755e166 * cos(theta) ** 13 + 1.54331254471242e165 * cos(theta) ** 11 - 8.9822423237231e163 * cos(theta) ** 9 + 2.88200288461704e162 * cos(theta) ** 7 - 4.67351819127087e160 * cos(theta) ** 5 + 3.1922938464965e158 * cos(theta) ** 3 - 5.8789941924429e155 * cos(theta) ) * sin(80 * phi) ) # @torch.jit.script def Yl99_m_minus_79(theta, phi): return ( 3.51540987303224e-153 * (1.0 - cos(theta) ** 2) ** 39.5 * ( 1.37691688487636e166 * cos(theta) ** 20 - 1.32799090419547e166 * cos(theta) ** 18 + 5.20981047030532e165 * cos(theta) ** 16 - 1.07975346534825e165 * cos(theta) ** 14 + 1.28609378726035e164 * cos(theta) ** 12 - 8.9822423237231e162 * cos(theta) ** 10 + 3.6025036057713e161 * cos(theta) ** 8 - 7.78919698545145e159 * cos(theta) ** 6 + 7.98073461624124e157 * cos(theta) ** 4 - 2.93949709622145e155 * cos(theta) ** 2 + 1.64217714872707e152 ) * sin(79 * phi) ) # @torch.jit.script def Yl99_m_minus_78(theta, phi): return ( 2.14929296232254e-151 * (1.0 - cos(theta) ** 2) ** 39 * ( 6.5567470708398e164 * cos(theta) ** 21 - 6.98942581155512e164 * cos(theta) ** 19 + 3.06459439429725e164 * cos(theta) ** 17 - 7.19835643565502e163 * cos(theta) ** 15 + 9.89302913277194e162 * cos(theta) ** 13 - 8.16567483974827e161 * cos(theta) ** 11 + 4.00278178419033e160 * cos(theta) ** 9 - 1.11274242649306e159 * cos(theta) ** 7 + 1.59614692324825e157 * cos(theta) ** 5 - 9.79832365407151e154 * cos(theta) ** 3 + 1.64217714872707e152 * cos(theta) ) * sin(78 * phi) ) # @torch.jit.script def Yl99_m_minus_77(theta, phi): return ( 1.34120014040935e-149 * (1.0 - cos(theta) ** 2) ** 38.5 * ( 2.98033957765446e163 * cos(theta) ** 22 - 3.49471290577756e163 * cos(theta) ** 20 + 1.70255244127625e163 * cos(theta) ** 18 - 4.49897277228438e162 * cos(theta) ** 16 + 7.06644938055139e161 * cos(theta) ** 14 - 6.80472903312356e160 * cos(theta) ** 12 + 4.00278178419033e159 * cos(theta) ** 10 - 1.39092803311633e158 * cos(theta) ** 8 + 2.66024487208041e156 * cos(theta) ** 6 - 2.44958091351788e154 * cos(theta) ** 4 + 8.21088574363534e151 * cos(theta) ** 2 - 4.21719863566273e148 ) * sin(77 * phi) ) # @torch.jit.script def Yl99_m_minus_76(theta, phi): return ( 8.53323767495941e-148 * (1.0 - cos(theta) ** 2) ** 38 * ( 1.2957998163715e162 * cos(theta) ** 23 - 1.66414900275122e162 * cos(theta) ** 21 + 8.96080232250657e161 * cos(theta) ** 19 - 2.64645457193199e161 * cos(theta) ** 17 + 4.71096625370093e160 * cos(theta) ** 15 - 5.23440694855658e159 * cos(theta) ** 13 + 3.63889253108212e158 * cos(theta) ** 11 - 1.54547559235148e157 * cos(theta) ** 9 + 3.80034981725773e155 * cos(theta) ** 7 - 4.89916182703575e153 * cos(theta) ** 5 + 2.73696191454511e151 * cos(theta) ** 3 - 4.21719863566273e148 * cos(theta) ) * sin(76 * phi) ) # @torch.jit.script def Yl99_m_minus_75(theta, phi): return ( 5.53017006892967e-146 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 5.39916590154793e160 * cos(theta) ** 24 - 7.56431364886918e160 * cos(theta) ** 22 + 4.48040116125328e160 * cos(theta) ** 20 - 1.47025253996222e160 * cos(theta) ** 18 + 2.94435390856308e159 * cos(theta) ** 16 - 3.73886210611185e158 * cos(theta) ** 14 + 3.03241044256843e157 * cos(theta) ** 12 - 1.54547559235148e156 * cos(theta) ** 10 + 4.75043727157217e154 * cos(theta) ** 8 - 8.16526971172625e152 * cos(theta) ** 6 + 6.84240478636278e150 * cos(theta) ** 4 - 2.10859931783137e148 * cos(theta) ** 2 + 1.00409491325303e145 ) * sin(75 * phi) ) # @torch.jit.script def Yl99_m_minus_74(theta, phi): return ( 3.64739766562535e-144 * (1.0 - cos(theta) ** 2) ** 37 * ( 2.15966636061917e159 * cos(theta) ** 25 - 3.28883202124747e159 * cos(theta) ** 23 + 2.13352436250156e159 * cos(theta) ** 21 - 7.73817126295904e158 * cos(theta) ** 19 + 1.73197288739005e158 * cos(theta) ** 17 - 2.4925747374079e157 * cos(theta) ** 15 + 2.33262341736033e156 * cos(theta) ** 13 - 1.40497781122862e155 * cos(theta) ** 11 + 5.27826363508019e153 * cos(theta) ** 9 - 1.16646710167518e152 * cos(theta) ** 7 + 1.36848095727256e150 * cos(theta) ** 5 - 7.02866439277122e147 * cos(theta) ** 3 + 1.00409491325303e145 * cos(theta) ) * sin(74 * phi) ) # @torch.jit.script def Yl99_m_minus_73(theta, phi): return ( 2.4462049540253e-142 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 8.30640907930451e157 * cos(theta) ** 26 - 1.37034667551978e158 * cos(theta) ** 24 + 9.69783801137074e157 * cos(theta) ** 22 - 3.86908563147952e157 * cos(theta) ** 20 + 9.62207159661137e156 * cos(theta) ** 18 - 1.55785921087994e156 * cos(theta) ** 16 + 1.66615958382881e155 * cos(theta) ** 14 - 1.17081484269051e154 * cos(theta) ** 12 + 5.27826363508019e152 * cos(theta) ** 10 - 1.45808387709397e151 * cos(theta) ** 8 + 2.28080159545426e149 * cos(theta) ** 6 - 1.75716609819281e147 * cos(theta) ** 4 + 5.02047456626516e144 * cos(theta) ** 2 - 2.23231416908188e141 ) * sin(73 * phi) ) # @torch.jit.script def Yl99_m_minus_72(theta, phi): return ( 1.66701284747427e-140 * (1.0 - cos(theta) ** 2) ** 36 * ( 3.07644780714982e156 * cos(theta) ** 27 - 5.48138670207912e156 * cos(theta) ** 25 + 4.21645130929163e156 * cos(theta) ** 23 - 1.84242172927596e156 * cos(theta) ** 21 + 5.06424820874283e155 * cos(theta) ** 19 - 9.16387771105845e154 * cos(theta) ** 17 + 1.11077305588587e154 * cos(theta) ** 15 - 9.00626802069626e152 * cos(theta) ** 13 + 4.79842148643653e151 * cos(theta) ** 11 - 1.62009319677108e150 * cos(theta) ** 9 + 3.25828799350609e148 * cos(theta) ** 7 - 3.51433219638561e146 * cos(theta) ** 5 + 1.67349152208839e144 * cos(theta) ** 3 - 2.23231416908188e141 * cos(theta) ) * sin(72 * phi) ) # @torch.jit.script def Yl99_m_minus_71(theta, phi): return ( 1.15349580057704e-138 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 1.09873135969636e155 * cos(theta) ** 28 - 2.10822565464581e155 * cos(theta) ** 26 + 1.75685471220484e155 * cos(theta) ** 24 - 8.37464422398164e154 * cos(theta) ** 22 + 2.53212410437141e154 * cos(theta) ** 20 - 5.09104317281025e153 * cos(theta) ** 18 + 6.9423315992867e152 * cos(theta) ** 16 - 6.43304858621162e151 * cos(theta) ** 14 + 3.99868457203044e150 * cos(theta) ** 12 - 1.62009319677108e149 * cos(theta) ** 10 + 4.07285999188261e147 * cos(theta) ** 8 - 5.85722032730935e145 * cos(theta) ** 6 + 4.18372880522096e143 * cos(theta) ** 4 - 1.11615708454094e141 * cos(theta) ** 2 + 4.66231029465724e137 ) * sin(71 * phi) ) # @torch.jit.script def Yl99_m_minus_70(theta, phi): return ( 8.09915065325245e-137 * (1.0 - cos(theta) ** 2) ** 35 * ( 3.78872882653918e153 * cos(theta) ** 29 - 7.80824316535486e153 * cos(theta) ** 27 + 7.02741884881938e153 * cos(theta) ** 25 - 3.64114966260071e153 * cos(theta) ** 23 + 1.20577338303401e153 * cos(theta) ** 21 - 2.67949640674224e152 * cos(theta) ** 19 + 4.08372447016865e151 * cos(theta) ** 17 - 4.28869905747441e150 * cos(theta) ** 15 + 3.07591120925419e149 * cos(theta) ** 13 - 1.47281199706462e148 * cos(theta) ** 11 + 4.52539999098068e146 * cos(theta) ** 9 - 8.36745761044193e144 * cos(theta) ** 7 + 8.36745761044193e142 * cos(theta) ** 5 - 3.72052361513647e140 * cos(theta) ** 3 + 4.66231029465724e137 * cos(theta) ) * sin(70 * phi) ) # @torch.jit.script def Yl99_m_minus_69(theta, phi): return ( 5.76691376224479e-135 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 1.26290960884639e152 * cos(theta) ** 30 - 2.78865827334102e152 * cos(theta) ** 28 + 2.70285340339207e152 * cos(theta) ** 26 - 1.5171456927503e152 * cos(theta) ** 24 + 5.48078810470003e151 * cos(theta) ** 22 - 1.33974820337112e151 * cos(theta) ** 20 + 2.26873581676036e150 * cos(theta) ** 18 - 2.68043691092151e149 * cos(theta) ** 16 + 2.19707943518156e148 * cos(theta) ** 14 - 1.22734333088718e147 * cos(theta) ** 12 + 4.52539999098068e145 * cos(theta) ** 10 - 1.04593220130524e144 * cos(theta) ** 8 + 1.39457626840699e142 * cos(theta) ** 6 - 9.30130903784118e139 * cos(theta) ** 4 + 2.33115514732862e137 * cos(theta) ** 2 - 9.19587829320954e133 ) * sin(69 * phi) ) # @torch.jit.script def Yl99_m_minus_68(theta, phi): return ( 4.16177833298225e-133 * (1.0 - cos(theta) ** 2) ** 34 * ( 4.07390196402063e150 * cos(theta) ** 31 - 9.61606301152077e150 * cos(theta) ** 29 + 1.00105681607114e151 * cos(theta) ** 27 - 6.06858277100119e150 * cos(theta) ** 25 + 2.38295134986958e150 * cos(theta) ** 23 - 6.37975334938628e149 * cos(theta) ** 21 + 1.19407148250545e149 * cos(theta) ** 19 - 1.57672759465971e148 * cos(theta) ** 17 + 1.46471962345438e147 * cos(theta) ** 15 - 9.44110254528603e145 * cos(theta) ** 13 + 4.11399999180062e144 * cos(theta) ** 11 - 1.16214689033916e143 * cos(theta) ** 9 + 1.99225181200998e141 * cos(theta) ** 7 - 1.86026180756824e139 * cos(theta) ** 5 + 7.77051715776206e136 * cos(theta) ** 3 - 9.19587829320954e133 * cos(theta) ) * sin(68 * phi) ) # @torch.jit.script def Yl99_m_minus_67(theta, phi): return ( 3.0423709780951e-131 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 1.27309436375645e149 * cos(theta) ** 32 - 3.20535433717359e149 * cos(theta) ** 30 + 3.57520291453977e149 * cos(theta) ** 28 - 2.33407029653892e149 * cos(theta) ** 26 + 9.92896395778991e148 * cos(theta) ** 24 - 2.89988788608467e148 * cos(theta) ** 22 + 5.97035741252726e147 * cos(theta) ** 20 - 8.7595977481095e146 * cos(theta) ** 18 + 9.15449764658984e145 * cos(theta) ** 16 - 6.74364467520431e144 * cos(theta) ** 14 + 3.42833332650051e143 * cos(theta) ** 12 - 1.16214689033916e142 * cos(theta) ** 10 + 2.49031476501248e140 * cos(theta) ** 8 - 3.10043634594706e138 * cos(theta) ** 6 + 1.94262928944051e136 * cos(theta) ** 4 - 4.59793914660477e133 * cos(theta) ** 2 + 1.72078560875927e130 ) * sin(67 * phi) ) # @torch.jit.script def Yl99_m_minus_66(theta, phi): return ( 2.25176561747111e-129 * (1.0 - cos(theta) ** 2) ** 33 * ( 3.85786170835287e147 * cos(theta) ** 33 - 1.033985270056e148 * cos(theta) ** 31 + 1.23282859122061e148 * cos(theta) ** 29 - 8.644704801996e147 * cos(theta) ** 27 + 3.97158558311596e147 * cos(theta) ** 25 - 1.26082082003681e147 * cos(theta) ** 23 + 2.8430273392987e146 * cos(theta) ** 21 - 4.61031460426816e145 * cos(theta) ** 19 + 5.38499861564109e144 * cos(theta) ** 17 - 4.49576311680287e143 * cos(theta) ** 15 + 2.63717948192347e142 * cos(theta) ** 13 - 1.0564971730356e141 * cos(theta) ** 11 + 2.76701640556942e139 * cos(theta) ** 9 - 4.42919477992437e137 * cos(theta) ** 7 + 3.88525857888103e135 * cos(theta) ** 5 - 1.53264638220159e133 * cos(theta) ** 3 + 1.72078560875927e130 * cos(theta) ) * sin(66 * phi) ) # @torch.jit.script def Yl99_m_minus_65(theta, phi): return ( 1.68657094430387e-127 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 1.13466520833908e146 * cos(theta) ** 34 - 3.23120396892499e146 * cos(theta) ** 32 + 4.10942863740204e146 * cos(theta) ** 30 - 3.08739457214143e146 * cos(theta) ** 28 + 1.52753291658306e146 * cos(theta) ** 26 - 5.25342008348672e145 * cos(theta) ** 24 + 1.29228515422668e145 * cos(theta) ** 22 - 2.30515730213408e144 * cos(theta) ** 20 + 2.99166589757838e143 * cos(theta) ** 18 - 2.80985194800179e142 * cos(theta) ** 16 + 1.88369962994534e141 * cos(theta) ** 14 - 8.80414310862998e139 * cos(theta) ** 12 + 2.76701640556942e138 * cos(theta) ** 10 - 5.53649347490547e136 * cos(theta) ** 8 + 6.47543096480172e134 * cos(theta) ** 6 - 3.83161595550397e132 * cos(theta) ** 4 + 8.60392804379635e129 * cos(theta) ** 2 - 3.06735402630886e126 ) * sin(65 * phi) ) # @torch.jit.script def Yl99_m_minus_64(theta, phi): return ( 1.27779316393445e-125 * (1.0 - cos(theta) ** 2) ** 32 * ( 3.24190059525451e144 * cos(theta) ** 35 - 9.79152717856058e144 * cos(theta) ** 33 + 1.32562214109743e145 * cos(theta) ** 31 - 1.0646188179798e145 * cos(theta) ** 29 + 5.65752932067801e144 * cos(theta) ** 27 - 2.10136803339469e144 * cos(theta) ** 25 + 5.61863110533339e143 * cos(theta) ** 23 - 1.09769395339718e143 * cos(theta) ** 21 + 1.57456099872546e142 * cos(theta) ** 19 - 1.65285408705988e141 * cos(theta) ** 17 + 1.25579975329689e140 * cos(theta) ** 15 - 6.77241777586921e138 * cos(theta) ** 13 + 2.51546945960856e137 * cos(theta) ** 11 - 6.15165941656163e135 * cos(theta) ** 9 + 9.25061566400245e133 * cos(theta) ** 7 - 7.66323191100795e131 * cos(theta) ** 5 + 2.86797601459878e129 * cos(theta) ** 3 - 3.06735402630886e126 * cos(theta) ) * sin(64 * phi) ) # @torch.jit.script def Yl99_m_minus_63(theta, phi): return ( 9.78826261906186e-124 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 9.00527943126253e142 * cos(theta) ** 36 - 2.87986093487076e143 * cos(theta) ** 34 + 4.14256919092947e143 * cos(theta) ** 32 - 3.54872939326601e143 * cos(theta) ** 30 + 2.02054618595643e143 * cos(theta) ** 28 - 8.08218474382573e142 * cos(theta) ** 26 + 2.34109629388891e142 * cos(theta) ** 24 - 4.98951796998718e141 * cos(theta) ** 22 + 7.87280499362732e140 * cos(theta) ** 20 - 9.18252270588822e139 * cos(theta) ** 18 + 7.84874845810557e138 * cos(theta) ** 16 - 4.83744126847801e137 * cos(theta) ** 14 + 2.0962245496738e136 * cos(theta) ** 12 - 6.15165941656163e134 * cos(theta) ** 10 + 1.15632695800031e133 * cos(theta) ** 8 - 1.27720531850132e131 * cos(theta) ** 6 + 7.16994003649696e128 * cos(theta) ** 4 - 1.53367701315443e126 * cos(theta) ** 2 + 5.2272563502196e122 ) * sin(63 * phi) ) # @torch.jit.script def Yl99_m_minus_62(theta, phi): return ( 7.57816369635642e-122 * (1.0 - cos(theta) ** 2) ** 31 * ( 2.43385930574663e141 * cos(theta) ** 37 - 8.22817409963074e141 * cos(theta) ** 35 + 1.25532399725136e142 * cos(theta) ** 33 - 1.14475141718258e142 * cos(theta) ** 31 + 6.96740064122908e141 * cos(theta) ** 29 - 2.99340175697249e141 * cos(theta) ** 27 + 9.36438517555566e140 * cos(theta) ** 25 - 2.16935563912486e140 * cos(theta) ** 23 + 3.74895475887015e139 * cos(theta) ** 21 - 4.83290668730959e138 * cos(theta) ** 19 + 4.61691085770916e137 * cos(theta) ** 17 - 3.22496084565201e136 * cos(theta) ** 15 + 1.612480422826e135 * cos(theta) ** 13 - 5.59241765141966e133 * cos(theta) ** 11 + 1.28480773111145e132 * cos(theta) ** 9 - 1.82457902643046e130 * cos(theta) ** 7 + 1.43398800729939e128 * cos(theta) ** 5 - 5.11225671051476e125 * cos(theta) ** 3 + 5.2272563502196e122 * cos(theta) ) * sin(62 * phi) ) # @torch.jit.script def Yl99_m_minus_61(theta, phi): return ( 5.92746118269603e-120 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 6.40489290985955e139 * cos(theta) ** 38 - 2.28560391656409e140 * cos(theta) ** 36 + 3.69212940368046e140 * cos(theta) ** 34 - 3.57734817869557e140 * cos(theta) ** 32 + 2.32246688040969e140 * cos(theta) ** 30 - 1.0690720560616e140 * cos(theta) ** 28 + 3.60168660598294e139 * cos(theta) ** 26 - 9.03898182968693e138 * cos(theta) ** 24 + 1.70407034494098e138 * cos(theta) ** 22 - 2.41645334365479e137 * cos(theta) ** 20 + 2.56495047650509e136 * cos(theta) ** 18 - 2.0156005285325e135 * cos(theta) ** 16 + 1.15177173059e134 * cos(theta) ** 14 - 4.66034804284972e132 * cos(theta) ** 12 + 1.28480773111145e131 * cos(theta) ** 10 - 2.28072378303808e129 * cos(theta) ** 8 + 2.38998001216565e127 * cos(theta) ** 6 - 1.27806417762869e125 * cos(theta) ** 4 + 2.6136281751098e122 * cos(theta) ** 2 - 8.54406072281725e118 ) * sin(61 * phi) ) # @torch.jit.script def Yl99_m_minus_60(theta, phi): return ( 4.68231916352973e-118 * (1.0 - cos(theta) ** 2) ** 30 * ( 1.64228023329732e138 * cos(theta) ** 39 - 6.17730788260566e138 * cos(theta) ** 37 + 1.05489411533727e139 * cos(theta) ** 35 - 1.08404490263502e139 * cos(theta) ** 33 + 7.49182864648288e138 * cos(theta) ** 31 - 3.68645536572967e138 * cos(theta) ** 29 + 1.33395800221591e138 * cos(theta) ** 27 - 3.61559273187477e137 * cos(theta) ** 25 + 7.40900149974338e136 * cos(theta) ** 23 - 1.15069206840704e136 * cos(theta) ** 21 + 1.34997393500268e135 * cos(theta) ** 19 - 1.185647369725e134 * cos(theta) ** 17 + 7.67847820393335e132 * cos(theta) ** 15 - 3.5848831098844e131 * cos(theta) ** 13 + 1.16800702828314e130 * cos(theta) ** 11 - 2.53413753670898e128 * cos(theta) ** 9 + 3.41425716023665e126 * cos(theta) ** 7 - 2.55612835525738e124 * cos(theta) ** 5 + 8.71209391703266e121 * cos(theta) ** 3 - 8.54406072281725e118 * cos(theta) ) * sin(60 * phi) ) # @torch.jit.script def Yl99_m_minus_59(theta, phi): return ( 3.73413118522426e-116 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 4.1057005832433e136 * cos(theta) ** 40 - 1.6256073375278e137 * cos(theta) ** 38 + 2.93026143149243e137 * cos(theta) ** 36 - 3.18836736069124e137 * cos(theta) ** 34 + 2.3411964520259e137 * cos(theta) ** 32 - 1.22881845524322e137 * cos(theta) ** 30 + 4.76413572219966e136 * cos(theta) ** 28 - 1.3906125891826e136 * cos(theta) ** 26 + 3.08708395822641e135 * cos(theta) ** 24 - 5.23041849275929e134 * cos(theta) ** 22 + 6.74986967501339e133 * cos(theta) ** 20 - 6.58692983180557e132 * cos(theta) ** 18 + 4.79904887745834e131 * cos(theta) ** 16 - 2.56063079277457e130 * cos(theta) ** 14 + 9.73339190235948e128 * cos(theta) ** 12 - 2.53413753670898e127 * cos(theta) ** 10 + 4.26782145029581e125 * cos(theta) ** 8 - 4.26021392542897e123 * cos(theta) ** 6 + 2.17802347925816e121 * cos(theta) ** 4 - 4.27203036140863e118 * cos(theta) ** 2 + 1.34340577402787e115 ) * sin(59 * phi) ) # @torch.jit.script def Yl99_m_minus_58(theta, phi): return ( 3.0054537081684e-114 * (1.0 - cos(theta) ** 2) ** 29 * ( 1.0013903861569e135 * cos(theta) ** 41 - 4.16822394237899e135 * cos(theta) ** 39 + 7.91962549052007e135 * cos(theta) ** 37 - 9.10962103054641e135 * cos(theta) ** 35 + 7.09453470310878e135 * cos(theta) ** 33 - 3.96393050078459e135 * cos(theta) ** 31 + 1.64280542144816e135 * cos(theta) ** 29 - 5.15041699697261e134 * cos(theta) ** 27 + 1.23483358329056e134 * cos(theta) ** 25 - 2.27409499685187e133 * cos(theta) ** 23 + 3.21422365476828e132 * cos(theta) ** 21 - 3.46680517463451e131 * cos(theta) ** 19 + 2.82296992791667e130 * cos(theta) ** 17 - 1.70708719518305e129 * cos(theta) ** 15 + 7.48722454027652e127 * cos(theta) ** 13 - 2.30376139700816e126 * cos(theta) ** 11 + 4.74202383366201e124 * cos(theta) ** 9 - 6.08601989346996e122 * cos(theta) ** 7 + 4.35604695851633e120 * cos(theta) ** 5 - 1.42401012046954e118 * cos(theta) ** 3 + 1.34340577402787e115 * cos(theta) ) * sin(58 * phi) ) # @torch.jit.script def Yl99_m_minus_57(theta, phi): return ( 2.44053204516707e-112 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 2.3842628241831e133 * cos(theta) ** 42 - 1.04205598559475e134 * cos(theta) ** 40 + 2.08411197118949e134 * cos(theta) ** 38 - 2.53045028626289e134 * cos(theta) ** 36 + 2.08662785385552e134 * cos(theta) ** 34 - 1.23872828149518e134 * cos(theta) ** 32 + 5.47601807149386e133 * cos(theta) ** 30 - 1.83943464177593e133 * cos(theta) ** 28 + 4.74935993573294e132 * cos(theta) ** 26 - 9.47539582021611e131 * cos(theta) ** 24 + 1.4610107521674e131 * cos(theta) ** 22 - 1.73340258731725e130 * cos(theta) ** 20 + 1.56831662662037e129 * cos(theta) ** 18 - 1.0669294969894e128 * cos(theta) ** 16 + 5.34801752876895e126 * cos(theta) ** 14 - 1.91980116417347e125 * cos(theta) ** 12 + 4.74202383366201e123 * cos(theta) ** 10 - 7.60752486683745e121 * cos(theta) ** 8 + 7.26007826419388e119 * cos(theta) ** 6 - 3.56002530117386e117 * cos(theta) ** 4 + 6.71702887013935e114 * cos(theta) ** 2 - 2.0373153988897e111 ) * sin(57 * phi) ) # @torch.jit.script def Yl99_m_minus_56(theta, phi): return ( 1.99885385205305e-110 * (1.0 - cos(theta) ** 2) ** 28 * ( 5.5447972655421e131 * cos(theta) ** 43 - 2.54159996486524e132 * cos(theta) ** 41 + 5.34387684920383e132 * cos(theta) ** 39 - 6.83905482773754e132 * cos(theta) ** 37 + 5.96179386815864e132 * cos(theta) ** 35 - 3.75372206513692e132 * cos(theta) ** 33 + 1.76645744241738e132 * cos(theta) ** 31 - 6.34287807508942e131 * cos(theta) ** 29 + 1.75902219841961e131 * cos(theta) ** 27 - 3.79015832808644e130 * cos(theta) ** 25 + 6.35222066159739e129 * cos(theta) ** 23 - 8.25429803484407e128 * cos(theta) ** 21 + 8.25429803484407e127 * cos(theta) ** 19 - 6.27605586464356e126 * cos(theta) ** 17 + 3.5653450191793e125 * cos(theta) ** 15 - 1.47677012628728e124 * cos(theta) ** 13 + 4.31093075787455e122 * cos(theta) ** 11 - 8.45280540759716e120 * cos(theta) ** 9 + 1.03715403774198e119 * cos(theta) ** 7 - 7.12005060234771e116 * cos(theta) ** 5 + 2.23900962337978e114 * cos(theta) ** 3 - 2.0373153988897e111 * cos(theta) ) * sin(56 * phi) ) # @torch.jit.script def Yl99_m_minus_55(theta, phi): return ( 1.65071929906738e-108 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 1.26018119671411e130 * cos(theta) ** 44 - 6.05142848777437e130 * cos(theta) ** 42 + 1.33596921230096e131 * cos(theta) ** 40 - 1.79975127045725e131 * cos(theta) ** 38 + 1.65605385226629e131 * cos(theta) ** 36 - 1.10403590151086e131 * cos(theta) ** 34 + 5.5201795075543e130 * cos(theta) ** 32 - 2.11429269169647e130 * cos(theta) ** 30 + 6.28222213721288e129 * cos(theta) ** 28 - 1.45775320311017e129 * cos(theta) ** 26 + 2.64675860899891e128 * cos(theta) ** 24 - 3.75195365220185e127 * cos(theta) ** 22 + 4.12714901742204e126 * cos(theta) ** 20 - 3.48669770257975e125 * cos(theta) ** 18 + 2.22834063698706e124 * cos(theta) ** 16 - 1.05483580449092e123 * cos(theta) ** 14 + 3.59244229822879e121 * cos(theta) ** 12 - 8.45280540759716e119 * cos(theta) ** 10 + 1.29644254717748e118 * cos(theta) ** 8 - 1.18667510039129e116 * cos(theta) ** 6 + 5.59752405844946e113 * cos(theta) ** 4 - 1.01865769944485e111 * cos(theta) ** 2 + 2.98726598077669e107 ) * sin(55 * phi) ) # @torch.jit.script def Yl99_m_minus_54(theta, phi): return ( 1.37416804779811e-106 * (1.0 - cos(theta) ** 2) ** 27 * ( 2.8004026593647e128 * cos(theta) ** 45 - 1.4073089506452e129 * cos(theta) ** 43 + 3.25846149341697e129 * cos(theta) ** 41 - 4.61474684732628e129 * cos(theta) ** 39 + 4.47582122234132e129 * cos(theta) ** 37 - 3.15438829003103e129 * cos(theta) ** 35 + 1.67278166895585e129 * cos(theta) ** 33 - 6.82029900547249e128 * cos(theta) ** 31 + 2.16628349559065e128 * cos(theta) ** 29 - 5.39908593744508e127 * cos(theta) ** 27 + 1.05870344359957e127 * cos(theta) ** 25 - 1.6312841966095e126 * cos(theta) ** 23 + 1.96530905591525e125 * cos(theta) ** 21 - 1.83510405398934e124 * cos(theta) ** 19 + 1.31078860999239e123 * cos(theta) ** 17 - 7.03223869660611e121 * cos(theta) ** 15 + 2.76341715248369e120 * cos(theta) ** 13 - 7.68436855236106e118 * cos(theta) ** 11 + 1.44049171908609e117 * cos(theta) ** 9 - 1.69525014341612e115 * cos(theta) ** 7 + 1.11950481168989e113 * cos(theta) ** 5 - 3.39552566481617e110 * cos(theta) ** 3 + 2.98726598077669e107 * cos(theta) ) * sin(54 * phi) ) # @torch.jit.script def Yl99_m_minus_53(theta, phi): return ( 1.15282789706101e-104 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 6.08783186818412e126 * cos(theta) ** 46 - 3.19842943328455e127 * cos(theta) ** 44 + 7.75824165099278e127 * cos(theta) ** 42 - 1.15368671183157e128 * cos(theta) ** 40 + 1.17784769008982e128 * cos(theta) ** 38 - 8.76218969453063e127 * cos(theta) ** 36 + 4.91994608516426e127 * cos(theta) ** 34 - 2.13134343921015e127 * cos(theta) ** 32 + 7.22094498530216e126 * cos(theta) ** 30 - 1.92824497765896e126 * cos(theta) ** 28 + 4.07193632153679e125 * cos(theta) ** 26 - 6.79701748587292e124 * cos(theta) ** 24 + 8.93322298143298e123 * cos(theta) ** 22 - 9.17552026994672e122 * cos(theta) ** 20 + 7.28215894440216e121 * cos(theta) ** 18 - 4.39514918537882e120 * cos(theta) ** 16 + 1.97386939463121e119 * cos(theta) ** 14 - 6.40364046030088e117 * cos(theta) ** 12 + 1.44049171908609e116 * cos(theta) ** 10 - 2.11906267927015e114 * cos(theta) ** 8 + 1.86584135281649e112 * cos(theta) ** 6 - 8.48881416204043e109 * cos(theta) ** 4 + 1.49363299038834e107 * cos(theta) ** 2 - 4.244481359444e103 ) * sin(53 * phi) ) # @torch.jit.script def Yl99_m_minus_52(theta, phi): return ( 9.74395344445452e-103 * (1.0 - cos(theta) ** 2) ** 26 * ( 1.29528337620939e125 * cos(theta) ** 47 - 7.10762096285456e125 * cos(theta) ** 45 + 1.80424224441693e126 * cos(theta) ** 43 - 2.81387002885749e126 * cos(theta) ** 41 + 3.02012228228159e126 * cos(theta) ** 39 - 2.36815937690017e126 * cos(theta) ** 37 + 1.4056988814755e126 * cos(theta) ** 35 - 6.45861648245501e125 * cos(theta) ** 33 + 2.32933709203296e125 * cos(theta) ** 31 - 6.64912061261709e124 * cos(theta) ** 29 + 1.50812456353214e124 * cos(theta) ** 27 - 2.71880699434917e123 * cos(theta) ** 25 + 3.88400999192738e122 * cos(theta) ** 23 - 4.3692953666413e121 * cos(theta) ** 21 + 3.83271523389587e120 * cos(theta) ** 19 - 2.58538187375225e119 * cos(theta) ** 17 + 1.31591292975414e118 * cos(theta) ** 15 - 4.92587727715452e116 * cos(theta) ** 13 + 1.3095379264419e115 * cos(theta) ** 11 - 2.35451408807795e113 * cos(theta) ** 9 + 2.66548764688069e111 * cos(theta) ** 7 - 1.69776283240809e109 * cos(theta) ** 5 + 4.97877663462782e106 * cos(theta) ** 3 - 4.244481359444e103 * cos(theta) ) * sin(52 * phi) ) # @torch.jit.script def Yl99_m_minus_51(theta, phi): return ( 8.29553294863174e-101 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 2.69850703376956e123 * cos(theta) ** 48 - 1.5451349919249e124 * cos(theta) ** 46 + 4.10055055549301e124 * cos(theta) ** 44 - 6.69969054489877e124 * cos(theta) ** 42 + 7.55030570570399e124 * cos(theta) ** 40 - 6.23199836026361e124 * cos(theta) ** 38 + 3.90471911520973e124 * cos(theta) ** 36 - 1.899593083075e124 * cos(theta) ** 34 + 7.27917841260298e123 * cos(theta) ** 32 - 2.21637353753903e123 * cos(theta) ** 30 + 5.38615915547195e122 * cos(theta) ** 28 - 1.0456949978266e122 * cos(theta) ** 26 + 1.61833749663641e121 * cos(theta) ** 24 - 1.98604334847332e120 * cos(theta) ** 22 + 1.91635761694794e119 * cos(theta) ** 20 - 1.43632326319569e118 * cos(theta) ** 18 + 8.22445581096336e116 * cos(theta) ** 16 - 3.51848376939609e115 * cos(theta) ** 14 + 1.09128160536825e114 * cos(theta) ** 12 - 2.35451408807795e112 * cos(theta) ** 10 + 3.33185955860087e110 * cos(theta) ** 8 - 2.82960472068014e108 * cos(theta) ** 6 + 1.24469415865695e106 * cos(theta) ** 4 - 2.122240679722e103 * cos(theta) ** 2 + 5.85607251578919e99 ) * sin(51 * phi) ) # @torch.jit.script def Yl99_m_minus_50(theta, phi): return ( 7.11193800400767e-99 * (1.0 - cos(theta) ** 2) ** 25 * ( 5.50715721177461e121 * cos(theta) ** 49 - 3.28752125941469e122 * cos(theta) ** 47 + 9.11233456776225e122 * cos(theta) ** 45 - 1.55806756858111e123 * cos(theta) ** 43 + 1.84153797700097e123 * cos(theta) ** 41 - 1.59794829750349e123 * cos(theta) ** 39 + 1.05532949059722e123 * cos(theta) ** 37 - 5.42740880878572e122 * cos(theta) ** 35 + 2.20581164018272e122 * cos(theta) ** 33 - 7.14959205657752e121 * cos(theta) ** 31 + 1.85729626050757e121 * cos(theta) ** 29 - 3.87294443639482e120 * cos(theta) ** 27 + 6.47334998654564e119 * cos(theta) ** 25 - 8.63497108031877e118 * cos(theta) ** 23 + 9.12551246165684e117 * cos(theta) ** 21 - 7.55959612208259e116 * cos(theta) ** 19 + 4.83791518291962e115 * cos(theta) ** 17 - 2.34565584626406e114 * cos(theta) ** 15 + 8.39447388744806e112 * cos(theta) ** 13 - 2.14046735279813e111 * cos(theta) ** 11 + 3.70206617622319e109 * cos(theta) ** 9 - 4.04229245811449e107 * cos(theta) ** 7 + 2.48938831731391e105 * cos(theta) ** 5 - 7.07413559907334e102 * cos(theta) ** 3 + 5.85607251578919e99 * cos(theta) ) * sin(50 * phi) ) # @torch.jit.script def Yl99_m_minus_49(theta, phi): return ( 6.13855425314236e-97 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.10143144235492e120 * cos(theta) ** 50 - 6.8490026237806e120 * cos(theta) ** 48 + 1.98094229733962e121 * cos(theta) ** 46 - 3.54106265586616e121 * cos(theta) ** 44 + 4.3846142309547e121 * cos(theta) ** 42 - 3.99487074375872e121 * cos(theta) ** 40 + 2.7771828699927e121 * cos(theta) ** 38 - 1.50761355799603e121 * cos(theta) ** 36 + 6.48768129465507e120 * cos(theta) ** 34 - 2.23424751768047e120 * cos(theta) ** 32 + 6.19098753502522e119 * cos(theta) ** 30 - 1.38319444156958e119 * cos(theta) ** 28 + 2.48974999482524e118 * cos(theta) ** 26 - 3.59790461679949e117 * cos(theta) ** 24 + 4.14796020984402e116 * cos(theta) ** 22 - 3.7797980610413e115 * cos(theta) ** 20 + 2.68773065717757e114 * cos(theta) ** 18 - 1.46603490391504e113 * cos(theta) ** 16 + 5.99605277674862e111 * cos(theta) ** 14 - 1.78372279399844e110 * cos(theta) ** 12 + 3.70206617622319e108 * cos(theta) ** 10 - 5.05286557264311e106 * cos(theta) ** 8 + 4.14898052885651e104 * cos(theta) ** 6 - 1.76853389976834e102 * cos(theta) ** 4 + 2.92803625789459e99 * cos(theta) ** 2 - 7.86050002119354e95 ) * sin(49 * phi) ) # @torch.jit.script def Yl99_m_minus_48(theta, phi): return ( 5.33312845438859e-95 * (1.0 - cos(theta) ** 2) ** 24 * ( 2.15966949481357e118 * cos(theta) ** 51 - 1.39775563750625e119 * cos(theta) ** 49 + 4.21477084540345e119 * cos(theta) ** 47 - 7.86902812414702e119 * cos(theta) ** 45 + 1.019677728129e120 * cos(theta) ** 43 - 9.74358717989932e119 * cos(theta) ** 41 + 7.12098171792999e119 * cos(theta) ** 39 - 4.07463123782712e119 * cos(theta) ** 37 + 1.8536232270443e119 * cos(theta) ** 35 - 6.77044702327416e118 * cos(theta) ** 33 + 1.99709275323394e118 * cos(theta) ** 31 - 4.76963600541235e117 * cos(theta) ** 29 + 9.22129627713053e116 * cos(theta) ** 27 - 1.43916184671979e116 * cos(theta) ** 25 + 1.80346096080175e115 * cos(theta) ** 23 - 1.79990383859109e114 * cos(theta) ** 21 + 1.41459508272504e113 * cos(theta) ** 19 - 8.62373472891198e111 * cos(theta) ** 17 + 3.99736851783241e110 * cos(theta) ** 15 - 1.37209445692188e109 * cos(theta) ** 13 + 3.36551470565744e107 * cos(theta) ** 11 - 5.61429508071457e105 * cos(theta) ** 9 + 5.92711504122359e103 * cos(theta) ** 7 - 3.53706779953667e101 * cos(theta) ** 5 + 9.76012085964865e98 * cos(theta) ** 3 - 7.86050002119354e95 * cos(theta) ) * sin(48 * phi) ) # @torch.jit.script def Yl99_m_minus_47(theta, phi): return ( 4.66275271320016e-93 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 4.15321056694918e116 * cos(theta) ** 52 - 2.79551127501249e117 * cos(theta) ** 50 + 8.78077259459052e117 * cos(theta) ** 48 - 1.71065828785805e118 * cos(theta) ** 46 + 2.31744938211136e118 * cos(theta) ** 44 - 2.31990170949984e118 * cos(theta) ** 42 + 1.7802454294825e118 * cos(theta) ** 40 - 1.07227137837556e118 * cos(theta) ** 38 + 5.1489534084564e117 * cos(theta) ** 36 - 1.99130794802181e117 * cos(theta) ** 34 + 6.24091485385607e116 * cos(theta) ** 32 - 1.58987866847078e116 * cos(theta) ** 30 + 3.29332009897519e115 * cos(theta) ** 28 - 5.53523787199921e114 * cos(theta) ** 26 + 7.51442067000728e113 * cos(theta) ** 24 - 8.18138108450497e112 * cos(theta) ** 22 + 7.07297541362518e111 * cos(theta) ** 20 - 4.79096373828443e110 * cos(theta) ** 18 + 2.49835532364526e109 * cos(theta) ** 16 - 9.80067469229915e107 * cos(theta) ** 14 + 2.80459558804787e106 * cos(theta) ** 12 - 5.61429508071457e104 * cos(theta) ** 10 + 7.40889380152949e102 * cos(theta) ** 8 - 5.89511299922778e100 * cos(theta) ** 6 + 2.44003021491216e98 * cos(theta) ** 4 - 3.93025001059677e95 * cos(theta) ** 2 + 1.02832287038115e92 ) * sin(47 * phi) ) # @torch.jit.script def Yl99_m_minus_46(theta, phi): return ( 4.10163250481021e-91 * (1.0 - cos(theta) ** 2) ** 23 * ( 7.83624635273429e114 * cos(theta) ** 53 - 5.48139465688724e115 * cos(theta) ** 51 + 1.79199440705929e116 * cos(theta) ** 49 - 3.63969848480436e116 * cos(theta) ** 47 + 5.14988751580303e116 * cos(theta) ** 45 - 5.39512025465079e116 * cos(theta) ** 43 + 4.34206202312804e116 * cos(theta) ** 41 - 2.74941379070656e116 * cos(theta) ** 39 + 1.39160902931254e116 * cos(theta) ** 37 - 5.68945128006232e115 * cos(theta) ** 35 + 1.89118631935033e115 * cos(theta) ** 33 - 5.12864086603478e114 * cos(theta) ** 31 + 1.13562762033627e114 * cos(theta) ** 29 - 2.05008810074045e113 * cos(theta) ** 27 + 3.00576826800291e112 * cos(theta) ** 25 - 3.55712221065433e111 * cos(theta) ** 23 + 3.3680835302977e110 * cos(theta) ** 21 - 2.52155986225497e109 * cos(theta) ** 19 + 1.46962077861486e108 * cos(theta) ** 17 - 6.53378312819943e106 * cos(theta) ** 15 + 2.15738122157528e105 * cos(theta) ** 13 - 5.10390461883143e103 * cos(theta) ** 11 + 8.23210422392166e101 * cos(theta) ** 9 - 8.42158999889683e99 * cos(theta) ** 7 + 4.88006042982432e97 * cos(theta) ** 5 - 1.31008333686559e95 * cos(theta) ** 3 + 1.02832287038115e92 * cos(theta) ) * sin(46 * phi) ) # @torch.jit.script def Yl99_m_minus_45(theta, phi): return ( 3.62942333534347e-89 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 1.45115673198783e113 * cos(theta) ** 54 - 1.0541143570937e114 * cos(theta) ** 52 + 3.58398881411858e114 * cos(theta) ** 50 - 7.58270517667575e114 * cos(theta) ** 48 + 1.11954076430501e115 * cos(theta) ** 46 - 1.22616369423882e115 * cos(theta) ** 44 + 1.03382429122096e115 * cos(theta) ** 42 - 6.8735344767664e114 * cos(theta) ** 40 + 3.66212902450669e114 * cos(theta) ** 38 - 1.58040313335065e114 * cos(theta) ** 36 + 5.56231270397154e113 * cos(theta) ** 34 - 1.60270027063587e113 * cos(theta) ** 32 + 3.78542540112091e112 * cos(theta) ** 30 - 7.32174321693017e111 * cos(theta) ** 28 + 1.15606471846266e111 * cos(theta) ** 26 - 1.48213425443931e110 * cos(theta) ** 24 + 1.53094705922623e109 * cos(theta) ** 22 - 1.26077993112748e108 * cos(theta) ** 20 + 8.16455988119365e106 * cos(theta) ** 18 - 4.08361445512464e105 * cos(theta) ** 16 + 1.54098658683949e104 * cos(theta) ** 14 - 4.25325384902619e102 * cos(theta) ** 12 + 8.23210422392166e100 * cos(theta) ** 10 - 1.0526987498621e99 * cos(theta) ** 8 + 8.13343404970721e96 * cos(theta) ** 6 - 3.27520834216398e94 * cos(theta) ** 4 + 5.14161435190577e91 * cos(theta) ** 2 - 1.31331145642548e88 ) * sin(45 * phi) ) # @torch.jit.script def Yl99_m_minus_44(theta, phi): return ( 3.22998286183248e-87 * (1.0 - cos(theta) ** 2) ** 22 * ( 2.63846678543242e111 * cos(theta) ** 55 - 1.98889501338434e112 * cos(theta) ** 53 + 7.02742904729133e112 * cos(theta) ** 51 - 1.54749085238281e113 * cos(theta) ** 49 + 2.38200162618086e113 * cos(theta) ** 47 - 2.72480820941959e113 * cos(theta) ** 45 + 2.40424253772317e113 * cos(theta) ** 43 - 1.67647182360156e113 * cos(theta) ** 41 + 9.39007442181202e112 * cos(theta) ** 39 - 4.27135981986661e112 * cos(theta) ** 37 + 1.58923220113473e112 * cos(theta) ** 35 - 4.85666748677536e111 * cos(theta) ** 33 + 1.22110496810352e111 * cos(theta) ** 31 - 2.52473904032075e110 * cos(theta) ** 29 + 4.28172117949133e109 * cos(theta) ** 27 - 5.92853701775722e108 * cos(theta) ** 25 + 6.65629156185317e107 * cos(theta) ** 23 - 6.00371395774992e106 * cos(theta) ** 21 + 4.29713677957561e105 * cos(theta) ** 19 - 2.40212615007332e104 * cos(theta) ** 17 + 1.02732439122633e103 * cos(theta) ** 15 - 3.27173373002015e101 * cos(theta) ** 13 + 7.48373111265605e99 * cos(theta) ** 11 - 1.16966527762456e98 * cos(theta) ** 9 + 1.16191914995817e96 * cos(theta) ** 7 - 6.55041668432795e93 * cos(theta) ** 5 + 1.71387145063526e91 * cos(theta) ** 3 - 1.31331145642548e88 * cos(theta) ) * sin(44 * phi) ) # @torch.jit.script def Yl99_m_minus_43(theta, phi): return ( 2.89042862939312e-85 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 4.71154783112932e109 * cos(theta) ** 56 - 3.6831389136747e110 * cos(theta) ** 54 + 1.35142866294064e111 * cos(theta) ** 52 - 3.09498170476561e111 * cos(theta) ** 50 + 4.9625033878768e111 * cos(theta) ** 48 - 5.92349610743389e111 * cos(theta) ** 46 + 5.46418758573447e111 * cos(theta) ** 44 - 3.99159958000372e111 * cos(theta) ** 42 + 2.347518605453e111 * cos(theta) ** 40 - 1.12404205785963e111 * cos(theta) ** 38 + 4.41453389204091e110 * cos(theta) ** 36 - 1.42843161375746e110 * cos(theta) ** 34 + 3.8159530253235e109 * cos(theta) ** 32 - 8.41579680106916e108 * cos(theta) ** 30 + 1.52918613553262e108 * cos(theta) ** 28 - 2.28020654529124e107 * cos(theta) ** 26 + 2.77345481743882e106 * cos(theta) ** 24 - 2.72896088988633e105 * cos(theta) ** 22 + 2.1485683897878e104 * cos(theta) ** 20 - 1.33451452781851e103 * cos(theta) ** 18 + 6.42077744516454e101 * cos(theta) ** 16 - 2.3369526643001e100 * cos(theta) ** 14 + 6.23644259388004e98 * cos(theta) ** 12 - 1.16966527762456e97 * cos(theta) ** 10 + 1.45239893744772e95 * cos(theta) ** 8 - 1.09173611405466e93 * cos(theta) ** 6 + 4.28467862658814e90 * cos(theta) ** 4 - 6.56655728212742e87 * cos(theta) ** 2 + 1.63999932121064e84 ) * sin(43 * phi) ) # @torch.jit.script def Yl99_m_minus_42(theta, phi): return ( 2.60042211175638e-83 * (1.0 - cos(theta) ** 2) ** 21 * ( 8.26587338794618e107 * cos(theta) ** 57 - 6.69661620668127e108 * cos(theta) ** 55 + 2.54986540177479e109 * cos(theta) ** 53 - 6.06859157797179e109 * cos(theta) ** 51 + 1.01275579344424e110 * cos(theta) ** 49 - 1.26031832073062e110 * cos(theta) ** 47 + 1.21426390794099e110 * cos(theta) ** 45 - 9.28278972093887e109 * cos(theta) ** 43 + 5.72565513525123e109 * cos(theta) ** 41 - 2.88215912271701e109 * cos(theta) ** 39 + 1.19311726811916e109 * cos(theta) ** 37 - 4.08123318216417e108 * cos(theta) ** 35 + 1.15634940161318e108 * cos(theta) ** 33 - 2.71477316163521e107 * cos(theta) ** 31 + 5.27305563976764e106 * cos(theta) ** 29 - 8.44520942700459e105 * cos(theta) ** 27 + 1.10938192697553e105 * cos(theta) ** 25 - 1.18650473473319e104 * cos(theta) ** 23 + 1.02312780466086e103 * cos(theta) ** 21 - 7.02376067272901e101 * cos(theta) ** 19 + 3.77692790892031e100 * cos(theta) ** 17 - 1.55796844286674e99 * cos(theta) ** 15 + 4.79726353375388e97 * cos(theta) ** 13 - 1.06333207056778e96 * cos(theta) ** 11 + 1.61377659716413e94 * cos(theta) ** 9 - 1.55962302007808e92 * cos(theta) ** 7 + 8.56935725317628e89 * cos(theta) ** 5 - 2.18885242737581e87 * cos(theta) ** 3 + 1.63999932121064e84 * cos(theta) ) * sin(42 * phi) ) # @torch.jit.script def Yl99_m_minus_41(theta, phi): return ( 2.35162139837282e-81 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 1.42515058412865e106 * cos(theta) ** 58 - 1.19582432262166e107 * cos(theta) ** 56 + 4.72197296624962e107 * cos(theta) ** 54 - 1.16703684191765e108 * cos(theta) ** 52 + 2.02551158688849e108 * cos(theta) ** 50 - 2.62566316818878e108 * cos(theta) ** 48 + 2.63970414769781e108 * cos(theta) ** 46 - 2.10972493657702e108 * cos(theta) ** 44 + 1.36325122267886e108 * cos(theta) ** 42 - 7.20539780679252e107 * cos(theta) ** 40 + 3.13978228452412e107 * cos(theta) ** 38 - 1.13367588393449e107 * cos(theta) ** 36 + 3.40102765180347e106 * cos(theta) ** 34 - 8.48366613011004e105 * cos(theta) ** 32 + 1.75768521325588e105 * cos(theta) ** 30 - 3.01614622393021e104 * cos(theta) ** 28 + 4.26685356529049e103 * cos(theta) ** 26 - 4.94376972805494e102 * cos(theta) ** 24 + 4.65058093027663e101 * cos(theta) ** 22 - 3.5118803363645e100 * cos(theta) ** 20 + 2.09829328273351e99 * cos(theta) ** 18 - 9.7373027679171e97 * cos(theta) ** 16 + 3.4266168098242e96 * cos(theta) ** 14 - 8.86110058806485e94 * cos(theta) ** 12 + 1.61377659716413e93 * cos(theta) ** 10 - 1.9495287750976e91 * cos(theta) ** 8 + 1.42822620886271e89 * cos(theta) ** 6 - 5.47213106843952e86 * cos(theta) ** 4 + 8.19999660605322e83 * cos(theta) ** 2 - 2.00537945856034e80 ) * sin(41 * phi) ) # @torch.jit.script def Yl99_m_minus_40(theta, phi): return ( 2.13726034077774e-79 * (1.0 - cos(theta) ** 2) ** 20 * ( 2.41550946462483e104 * cos(theta) ** 59 - 2.09793740810817e105 * cos(theta) ** 57 + 8.58540539318112e105 * cos(theta) ** 55 - 2.201956305505e106 * cos(theta) ** 53 + 3.97159134684017e106 * cos(theta) ** 51 - 5.35849626160976e106 * cos(theta) ** 49 + 5.61639180361237e106 * cos(theta) ** 47 - 4.68827763683781e106 * cos(theta) ** 45 + 3.17035168064852e106 * cos(theta) ** 43 - 1.75741409921769e106 * cos(theta) ** 41 + 8.05072380647209e105 * cos(theta) ** 39 - 3.06398887549862e105 * cos(theta) ** 37 + 9.71722186229564e104 * cos(theta) ** 35 - 2.57080791821516e104 * cos(theta) ** 33 + 5.66995230082542e103 * cos(theta) ** 31 - 1.0400504220449e103 * cos(theta) ** 29 + 1.58031613529278e102 * cos(theta) ** 27 - 1.97750789122198e101 * cos(theta) ** 25 + 2.02199170881593e100 * cos(theta) ** 23 - 1.67232396969738e99 * cos(theta) ** 21 + 1.10436488564921e98 * cos(theta) ** 19 - 5.72782515759829e96 * cos(theta) ** 17 + 2.28441120654947e95 * cos(theta) ** 15 - 6.81623122158835e93 * cos(theta) ** 13 + 1.46706963378557e92 * cos(theta) ** 11 - 2.16614308344178e90 * cos(theta) ** 9 + 2.04032315551816e88 * cos(theta) ** 7 - 1.0944262136879e86 * cos(theta) ** 5 + 2.73333220201774e83 * cos(theta) ** 3 - 2.00537945856034e80 * cos(theta) ) * sin(40 * phi) ) # @torch.jit.script def Yl99_m_minus_39(theta, phi): return ( 1.95182309428749e-77 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 4.02584910770806e102 * cos(theta) ** 60 - 3.61713346225546e103 * cos(theta) ** 58 + 1.5331081059252e104 * cos(theta) ** 56 - 4.0776968620463e104 * cos(theta) ** 54 + 7.63767566700034e104 * cos(theta) ** 52 - 1.07169925232195e105 * cos(theta) ** 50 + 1.17008162575258e105 * cos(theta) ** 48 - 1.01919079061692e105 * cos(theta) ** 46 + 7.20534472874664e104 * cos(theta) ** 44 - 4.18431928385164e104 * cos(theta) ** 42 + 2.01268095161802e104 * cos(theta) ** 40 - 8.06312861973322e103 * cos(theta) ** 38 + 2.69922829508212e103 * cos(theta) ** 36 - 7.56119975945637e102 * cos(theta) ** 34 + 1.77186009400795e102 * cos(theta) ** 32 - 3.46683474014967e101 * cos(theta) ** 30 + 5.6439861974742e100 * cos(theta) ** 28 - 7.60579958162298e99 * cos(theta) ** 26 + 8.42496545339969e98 * cos(theta) ** 24 - 7.60147258953356e97 * cos(theta) ** 22 + 5.52182442824607e96 * cos(theta) ** 20 - 3.18212508755461e95 * cos(theta) ** 18 + 1.42775700409342e94 * cos(theta) ** 16 - 4.86873658684882e92 * cos(theta) ** 14 + 1.22255802815464e91 * cos(theta) ** 12 - 2.16614308344178e89 * cos(theta) ** 10 + 2.5504039443977e87 * cos(theta) ** 8 - 1.82404368947984e85 * cos(theta) ** 6 + 6.83333050504435e82 * cos(theta) ** 4 - 1.00268972928017e80 * cos(theta) ** 2 + 2.40453172489249e76 ) * sin(39 * phi) ) # @torch.jit.script def Yl99_m_minus_38(theta, phi): return ( 1.79079104109761e-75 * (1.0 - cos(theta) ** 2) ** 19 * ( 6.59975263558698e100 * cos(theta) ** 61 - 6.13073468178892e101 * cos(theta) ** 59 + 2.68966334372842e102 * cos(theta) ** 57 - 7.41399429462964e102 * cos(theta) ** 55 + 1.4410708805661e103 * cos(theta) ** 53 - 2.10137108298422e103 * cos(theta) ** 51 + 2.38792168520934e103 * cos(theta) ** 49 - 2.16849104386578e103 * cos(theta) ** 47 + 1.60118771749925e103 * cos(theta) ** 45 - 9.73097507872474e102 * cos(theta) ** 43 + 4.90897793077567e102 * cos(theta) ** 41 - 2.06746887685467e102 * cos(theta) ** 39 + 7.29521160833006e101 * cos(theta) ** 37 - 2.1603427884161e101 * cos(theta) ** 35 + 5.36927301214529e100 * cos(theta) ** 33 - 1.11833378714505e100 * cos(theta) ** 31 + 1.94620213706007e99 * cos(theta) ** 29 - 2.81696280800851e98 * cos(theta) ** 27 + 3.36998618135988e97 * cos(theta) ** 25 - 3.30498808240589e96 * cos(theta) ** 23 + 2.6294402039267e95 * cos(theta) ** 21 - 1.67480267766032e94 * cos(theta) ** 19 + 8.39857061231421e92 * cos(theta) ** 17 - 3.24582439123255e91 * cos(theta) ** 15 + 9.40429252426648e89 * cos(theta) ** 13 - 1.96922098494708e88 * cos(theta) ** 11 + 2.83378216044189e86 * cos(theta) ** 9 - 2.60577669925691e84 * cos(theta) ** 7 + 1.36666610100887e82 * cos(theta) ** 5 - 3.34229909760056e79 * cos(theta) ** 3 + 2.40453172489249e76 * cos(theta) ) * sin(38 * phi) ) # @torch.jit.script def Yl99_m_minus_37(theta, phi): return ( 1.65044494316303e-73 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 1.06447623154629e99 * cos(theta) ** 62 - 1.02178911363149e100 * cos(theta) ** 60 + 4.63735059263521e100 * cos(theta) ** 58 - 1.32392755261244e101 * cos(theta) ** 56 + 2.66864977882611e101 * cos(theta) ** 54 - 4.04109823650811e101 * cos(theta) ** 52 + 4.77584337041868e101 * cos(theta) ** 50 - 4.51768967472037e101 * cos(theta) ** 48 + 3.48084286412881e101 * cos(theta) ** 46 - 2.21158524516471e101 * cos(theta) ** 44 + 1.1688042692323e101 * cos(theta) ** 42 - 5.16867219213668e100 * cos(theta) ** 40 + 1.91979252850791e100 * cos(theta) ** 38 - 6.00095219004473e99 * cos(theta) ** 36 + 1.57919794474861e99 * cos(theta) ** 34 - 3.49479308482829e98 * cos(theta) ** 32 + 6.48734045686689e97 * cos(theta) ** 30 - 1.00605814571733e97 * cos(theta) ** 28 + 1.29614853129226e96 * cos(theta) ** 26 - 1.37707836766912e95 * cos(theta) ** 24 + 1.19520009269396e94 * cos(theta) ** 22 - 8.3740133883016e92 * cos(theta) ** 20 + 4.66587256239678e91 * cos(theta) ** 18 - 2.02864024452034e90 * cos(theta) ** 16 + 6.71735180304749e88 * cos(theta) ** 14 - 1.6410174874559e87 * cos(theta) ** 12 + 2.83378216044189e85 * cos(theta) ** 10 - 3.25722087407114e83 * cos(theta) ** 8 + 2.27777683501478e81 * cos(theta) ** 6 - 8.35574774400141e78 * cos(theta) ** 4 + 1.20226586244625e76 * cos(theta) ** 2 - 2.8308591063015e72 ) * sin(37 * phi) ) # @torch.jit.script def Yl99_m_minus_36(theta, phi): return ( 1.52770946836149e-71 * (1.0 - cos(theta) ** 2) ** 18 * ( 1.68964481197823e97 * cos(theta) ** 63 - 1.67506412070736e98 * cos(theta) ** 61 + 7.85991625870374e98 * cos(theta) ** 59 - 2.32267991686392e99 * cos(theta) ** 57 + 4.85209050695657e99 * cos(theta) ** 55 - 7.62471365378889e99 * cos(theta) ** 53 + 9.36439876552682e99 * cos(theta) ** 51 - 9.21977484636811e99 * cos(theta) ** 49 + 7.40604864708258e99 * cos(theta) ** 47 - 4.91463387814381e99 * cos(theta) ** 45 + 2.71814946333093e99 * cos(theta) ** 43 - 1.26065175417968e99 * cos(theta) ** 41 + 4.92254494489208e98 * cos(theta) ** 39 - 1.62187897028236e98 * cos(theta) ** 37 + 4.51199412785318e97 * cos(theta) ** 35 - 1.05902820752373e97 * cos(theta) ** 33 + 2.09269046995706e96 * cos(theta) ** 31 - 3.46916601971492e95 * cos(theta) ** 29 + 4.80055011589726e94 * cos(theta) ** 27 - 5.50831347067649e93 * cos(theta) ** 25 + 5.19652214214763e92 * cos(theta) ** 23 - 3.98762542300076e91 * cos(theta) ** 21 + 2.45572240126147e90 * cos(theta) ** 19 - 1.19331779089432e89 * cos(theta) ** 17 + 4.47823453536499e87 * cos(theta) ** 15 - 1.26232114419684e86 * cos(theta) ** 13 + 2.57616560040172e84 * cos(theta) ** 11 - 3.61913430452349e82 * cos(theta) ** 9 + 3.25396690716398e80 * cos(theta) ** 7 - 1.67114954880028e78 * cos(theta) ** 5 + 4.00755287482082e75 * cos(theta) ** 3 - 2.8308591063015e72 * cos(theta) ) * sin(36 * phi) ) # @torch.jit.script def Yl99_m_minus_35(theta, phi): return ( 1.42003039891379e-69 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 2.64007001871599e95 * cos(theta) ** 64 - 2.70171632372154e96 * cos(theta) ** 62 + 1.30998604311729e97 * cos(theta) ** 60 - 4.00462054631711e97 * cos(theta) ** 58 + 8.66444733385101e97 * cos(theta) ** 56 - 1.41198400996091e98 * cos(theta) ** 54 + 1.80084591644747e98 * cos(theta) ** 52 - 1.84395496927362e98 * cos(theta) ** 50 + 1.54292680147554e98 * cos(theta) ** 48 - 1.0683986691617e98 * cos(theta) ** 46 + 6.17761241666121e97 * cos(theta) ** 44 - 3.0015517956659e97 * cos(theta) ** 42 + 1.23063623622302e97 * cos(theta) ** 40 - 4.26810255337463e96 * cos(theta) ** 38 + 1.25333170218144e96 * cos(theta) ** 36 - 3.11478884565802e95 * cos(theta) ** 34 + 6.53965771861582e94 * cos(theta) ** 32 - 1.15638867323831e94 * cos(theta) ** 30 + 1.71448218424902e93 * cos(theta) ** 28 - 2.11858210410634e92 * cos(theta) ** 26 + 2.16521755922818e91 * cos(theta) ** 24 - 1.81255701045489e90 * cos(theta) ** 22 + 1.22786120063073e89 * cos(theta) ** 20 - 6.62954328274621e87 * cos(theta) ** 18 + 2.79889658460312e86 * cos(theta) ** 16 - 9.01657960140602e84 * cos(theta) ** 14 + 2.14680466700143e83 * cos(theta) ** 12 - 3.61913430452349e81 * cos(theta) ** 10 + 4.06745863395497e79 * cos(theta) ** 8 - 2.78524924800047e77 * cos(theta) ** 6 + 1.00188821870521e75 * cos(theta) ** 4 - 1.41542955315075e72 * cos(theta) ** 2 + 3.27645729896007e68 ) * sin(35 * phi) ) # @torch.jit.script def Yl99_m_minus_34(theta, phi): return ( 1.32527717733838e-67 * (1.0 - cos(theta) ** 2) ** 17 * ( 4.06164618263998e93 * cos(theta) ** 65 - 4.28843860908181e94 * cos(theta) ** 63 + 2.14751810347097e95 * cos(theta) ** 61 - 6.78749245138493e95 * cos(theta) ** 59 + 1.52007847962299e96 * cos(theta) ** 57 - 2.56724365447438e96 * cos(theta) ** 55 + 3.39782248386314e96 * cos(theta) ** 53 - 3.61559797896789e96 * cos(theta) ** 51 + 3.14883020709293e96 * cos(theta) ** 49 - 2.27318865779085e96 * cos(theta) ** 47 + 1.37280275925805e96 * cos(theta) ** 45 - 6.98035301317651e95 * cos(theta) ** 43 + 3.0015517956659e95 * cos(theta) ** 41 - 1.09438527009606e95 * cos(theta) ** 39 + 3.38738297886876e94 * cos(theta) ** 37 - 8.89939670188005e93 * cos(theta) ** 35 + 1.98171446018661e93 * cos(theta) ** 33 - 3.73028604270421e92 * cos(theta) ** 31 + 5.91200753189318e91 * cos(theta) ** 29 - 7.84660038557905e90 * cos(theta) ** 27 + 8.66087023691272e89 * cos(theta) ** 25 - 7.8806826541517e88 * cos(theta) ** 23 + 5.84695809824159e87 * cos(theta) ** 21 - 3.48923330670853e86 * cos(theta) ** 19 + 1.64640975564889e85 * cos(theta) ** 17 - 6.01105306760402e83 * cos(theta) ** 15 + 1.65138820538572e82 * cos(theta) ** 13 - 3.29012209502136e80 * cos(theta) ** 11 + 4.51939848217219e78 * cos(theta) ** 9 - 3.97892749714353e76 * cos(theta) ** 7 + 2.00377643741041e74 * cos(theta) ** 5 - 4.7180985105025e71 * cos(theta) ** 3 + 3.27645729896007e68 * cos(theta) ) * sin(34 * phi) ) # @torch.jit.script def Yl99_m_minus_33(theta, phi): return ( 1.24166519402301e-65 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 6.15400936763634e91 * cos(theta) ** 66 - 6.70068532669033e92 * cos(theta) ** 64 + 3.46373887656608e93 * cos(theta) ** 62 - 1.13124874189749e94 * cos(theta) ** 60 + 2.62082496486722e94 * cos(theta) ** 58 - 4.58436366870424e94 * cos(theta) ** 56 + 6.29226385900582e94 * cos(theta) ** 54 - 6.9530730364767e94 * cos(theta) ** 52 + 6.29766041418587e94 * cos(theta) ** 50 - 4.73580970373093e94 * cos(theta) ** 48 + 2.98435382447402e94 * cos(theta) ** 46 - 1.58644386663103e94 * cos(theta) ** 44 + 7.14655189444262e93 * cos(theta) ** 42 - 2.73596317524015e93 * cos(theta) ** 40 + 8.91416573386515e92 * cos(theta) ** 38 - 2.47205463941112e92 * cos(theta) ** 36 + 5.82857194172533e91 * cos(theta) ** 34 - 1.16571438834507e91 * cos(theta) ** 32 + 1.97066917729773e90 * cos(theta) ** 30 - 2.80235728056394e89 * cos(theta) ** 28 + 3.33110393727412e88 * cos(theta) ** 26 - 3.28361777256321e87 * cos(theta) ** 24 + 2.65770822647345e86 * cos(theta) ** 22 - 1.74461665335427e85 * cos(theta) ** 20 + 9.14672086471608e83 * cos(theta) ** 18 - 3.75690816725251e82 * cos(theta) ** 16 + 1.17956300384694e81 * cos(theta) ** 14 - 2.7417684125178e79 * cos(theta) ** 12 + 4.51939848217219e77 * cos(theta) ** 10 - 4.97365937142941e75 * cos(theta) ** 8 + 3.33962739568402e73 * cos(theta) ** 6 - 1.17952462762562e71 * cos(theta) ** 4 + 1.63822864948003e68 * cos(theta) ** 2 - 3.73257837657788e64 ) * sin(33 * phi) ) # @torch.jit.script def Yl99_m_minus_32(theta, phi): return ( 1.16769353100899e-63 * (1.0 - cos(theta) ** 2) ** 16 * ( 9.18508860841245e89 * cos(theta) ** 67 - 1.03087466564467e91 * cos(theta) ** 65 + 5.49799821677155e91 * cos(theta) ** 63 - 1.85450613425818e92 * cos(theta) ** 61 + 4.44207621163935e92 * cos(theta) ** 59 - 8.04274327842849e92 * cos(theta) ** 57 + 1.14404797436469e93 * cos(theta) ** 55 - 1.31190057292013e93 * cos(theta) ** 53 + 1.23483537533056e93 * cos(theta) ** 51 - 9.66491776271618e92 * cos(theta) ** 49 + 6.34968898824259e92 * cos(theta) ** 47 - 3.52543081473561e92 * cos(theta) ** 45 + 1.66198881266107e92 * cos(theta) ** 43 - 6.67308091521988e91 * cos(theta) ** 41 + 2.28568352150388e91 * cos(theta) ** 39 - 6.6812287551652e90 * cos(theta) ** 37 + 1.66530626906438e90 * cos(theta) ** 35 - 3.5324678434699e89 * cos(theta) ** 33 + 6.3569973461217e88 * cos(theta) ** 31 - 9.66330096746188e87 * cos(theta) ** 29 + 1.23374219899042e87 * cos(theta) ** 27 - 1.31344710902528e86 * cos(theta) ** 25 + 1.15552531585802e85 * cos(theta) ** 23 - 8.30769834930603e83 * cos(theta) ** 21 + 4.81406361300846e82 * cos(theta) ** 19 - 2.20994598073677e81 * cos(theta) ** 17 + 7.86375335897961e79 * cos(theta) ** 15 - 2.10905262501369e78 * cos(theta) ** 13 + 4.10854407470199e76 * cos(theta) ** 11 - 5.52628819047712e74 * cos(theta) ** 9 + 4.77089627954859e72 * cos(theta) ** 7 - 2.35904925525125e70 * cos(theta) ** 5 + 5.46076216493344e67 * cos(theta) ** 3 - 3.73257837657788e64 * cos(theta) ) * sin(32 * phi) ) # @torch.jit.script def Yl99_m_minus_31(theta, phi): return ( 1.10209486381459e-61 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 1.35074832476654e88 * cos(theta) ** 68 - 1.56193131158283e89 * cos(theta) ** 66 + 8.59062221370555e89 * cos(theta) ** 64 - 2.99113892622286e90 * cos(theta) ** 62 + 7.40346035273225e90 * cos(theta) ** 60 - 1.38667987559112e91 * cos(theta) ** 58 + 2.04294281136553e91 * cos(theta) ** 56 - 2.42944550540765e91 * cos(theta) ** 54 + 2.37468341409723e91 * cos(theta) ** 52 - 1.93298355254324e91 * cos(theta) ** 50 + 1.32285187255054e91 * cos(theta) ** 48 - 7.66398003203394e90 * cos(theta) ** 46 + 3.77724730150244e90 * cos(theta) ** 44 - 1.58882878933807e90 * cos(theta) ** 42 + 5.71420880375971e89 * cos(theta) ** 40 - 1.75821809346453e89 * cos(theta) ** 38 + 4.62585074740106e88 * cos(theta) ** 36 - 1.03896113043232e88 * cos(theta) ** 34 + 1.98656167066303e87 * cos(theta) ** 32 - 3.22110032248729e86 * cos(theta) ** 30 + 4.40622213925149e85 * cos(theta) ** 28 - 5.05171965009725e84 * cos(theta) ** 26 + 4.81468881607509e83 * cos(theta) ** 24 - 3.77622652241183e82 * cos(theta) ** 22 + 2.40703180650423e81 * cos(theta) ** 20 - 1.22774776707598e80 * cos(theta) ** 18 + 4.91484584936226e78 * cos(theta) ** 16 - 1.50646616072406e77 * cos(theta) ** 14 + 3.42378672891833e75 * cos(theta) ** 12 - 5.52628819047712e73 * cos(theta) ** 10 + 5.96362034943574e71 * cos(theta) ** 8 - 3.93174875875208e69 * cos(theta) ** 6 + 1.36519054123336e67 * cos(theta) ** 4 - 1.86628918828894e64 * cos(theta) ** 2 + 4.19014186863256e60 ) * sin(31 * phi) ) # @torch.jit.script def Yl99_m_minus_30(theta, phi): return ( 1.04379497062177e-59 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.95760626777759e86 * cos(theta) ** 69 - 2.33124076355646e87 * cos(theta) ** 67 + 1.32163418672393e88 * cos(theta) ** 65 - 4.74783956543312e88 * cos(theta) ** 63 + 1.21368202503807e89 * cos(theta) ** 61 - 2.35030487388325e89 * cos(theta) ** 59 + 3.58411019537812e89 * cos(theta) ** 57 - 4.41717364619573e89 * cos(theta) ** 55 + 4.48053474357969e89 * cos(theta) ** 53 - 3.79016382851615e89 * cos(theta) ** 51 + 2.69969769908273e89 * cos(theta) ** 49 - 1.63063404936892e89 * cos(theta) ** 47 + 8.39388289222765e88 * cos(theta) ** 45 - 3.69495067287922e88 * cos(theta) ** 43 + 1.39370946433164e88 * cos(theta) ** 41 - 4.50825152170391e87 * cos(theta) ** 39 + 1.25022993173002e87 * cos(theta) ** 37 - 2.96846037266378e86 * cos(theta) ** 35 + 6.01988385049403e85 * cos(theta) ** 33 - 1.03906462015719e85 * cos(theta) ** 31 + 1.51938694456948e84 * cos(theta) ** 29 - 1.87100727781379e83 * cos(theta) ** 27 + 1.92587552643003e82 * cos(theta) ** 25 - 1.64183761843993e81 * cos(theta) ** 23 + 1.14620562214487e80 * cos(theta) ** 21 - 6.46183035303149e78 * cos(theta) ** 19 + 2.8910857937425e77 * cos(theta) ** 17 - 1.00431077381604e76 * cos(theta) ** 15 + 2.63368209916794e74 * cos(theta) ** 13 - 5.0238983549792e72 * cos(theta) ** 11 + 6.62624483270638e70 * cos(theta) ** 9 - 5.6167839410744e68 * cos(theta) ** 7 + 2.73038108246672e66 * cos(theta) ** 5 - 6.22096396096314e63 * cos(theta) ** 3 + 4.19014186863256e60 * cos(theta) ) * sin(30 * phi) ) # @torch.jit.script def Yl99_m_minus_29(theta, phi): return ( 9.91879866943503e-58 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 2.79658038253941e84 * cos(theta) ** 70 - 3.4282952405242e85 * cos(theta) ** 68 + 2.0024760404908e86 * cos(theta) ** 66 - 7.41849932098925e86 * cos(theta) ** 64 + 1.95755165328722e87 * cos(theta) ** 62 - 3.91717478980542e87 * cos(theta) ** 60 + 6.17950033685882e87 * cos(theta) ** 58 - 7.88781008249238e87 * cos(theta) ** 56 + 8.29728656218461e87 * cos(theta) ** 54 - 7.28877659330029e87 * cos(theta) ** 52 + 5.39939539816547e87 * cos(theta) ** 50 - 3.39715426951859e87 * cos(theta) ** 48 + 1.82475715048427e87 * cos(theta) ** 46 - 8.3976151656346e86 * cos(theta) ** 44 + 3.31835586745628e86 * cos(theta) ** 42 - 1.12706288042598e86 * cos(theta) ** 40 + 3.29007876771057e85 * cos(theta) ** 38 - 8.24572325739939e84 * cos(theta) ** 36 + 1.77055407367471e84 * cos(theta) ** 34 - 3.24707693799122e83 * cos(theta) ** 32 + 5.06462314856493e82 * cos(theta) ** 30 - 6.68216884933498e81 * cos(theta) ** 28 + 7.40721356319244e80 * cos(theta) ** 26 - 6.84099007683303e79 * cos(theta) ** 24 + 5.21002555520396e78 * cos(theta) ** 22 - 3.23091517651575e77 * cos(theta) ** 20 + 1.60615877430139e76 * cos(theta) ** 18 - 6.27694233635027e74 * cos(theta) ** 16 + 1.88120149940567e73 * cos(theta) ** 14 - 4.18658196248267e71 * cos(theta) ** 12 + 6.62624483270638e69 * cos(theta) ** 10 - 7.020979926343e67 * cos(theta) ** 8 + 4.55063513744454e65 * cos(theta) ** 6 - 1.55524099024079e63 * cos(theta) ** 4 + 2.09507093431628e60 * cos(theta) ** 2 - 4.64024570169719e56 ) * sin(29 * phi) ) # @torch.jit.script def Yl99_m_minus_28(theta, phi): return ( 9.45569018793983e-56 * (1.0 - cos(theta) ** 2) ** 14 * ( 3.93884560921044e82 * cos(theta) ** 71 - 4.96854382684667e83 * cos(theta) ** 69 + 2.98877020968777e84 * cos(theta) ** 67 - 1.1413075878445e85 * cos(theta) ** 65 + 3.10722484648764e85 * cos(theta) ** 63 - 6.42159801607446e85 * cos(theta) ** 61 + 1.04737293845065e86 * cos(theta) ** 59 - 1.38382633026182e86 * cos(theta) ** 57 + 1.50859755676084e86 * cos(theta) ** 55 - 1.37524086666043e86 * cos(theta) ** 53 + 1.05870498003244e86 * cos(theta) ** 51 - 6.93296789697672e85 * cos(theta) ** 49 + 3.88246202230696e85 * cos(theta) ** 47 - 1.86613670347436e85 * cos(theta) ** 45 + 7.71710666850297e84 * cos(theta) ** 43 - 2.74893385469751e84 * cos(theta) ** 41 + 8.43609940438607e83 * cos(theta) ** 39 - 2.22857385335119e83 * cos(theta) ** 37 + 5.0587259247849e82 * cos(theta) ** 35 - 9.83962708482189e81 * cos(theta) ** 33 + 1.63374940276288e81 * cos(theta) ** 31 - 2.3041961549431e80 * cos(theta) ** 29 + 2.74341243081202e79 * cos(theta) ** 27 - 2.73639603073321e78 * cos(theta) ** 25 + 2.26522850226259e77 * cos(theta) ** 23 - 1.53853103643607e76 * cos(theta) ** 21 + 8.45346723316522e74 * cos(theta) ** 19 - 3.69231902138251e73 * cos(theta) ** 17 + 1.25413433293712e72 * cos(theta) ** 15 - 3.22044766344821e70 * cos(theta) ** 13 + 6.02385893882398e68 * cos(theta) ** 11 - 7.80108880704778e66 * cos(theta) ** 9 + 6.50090733920648e64 * cos(theta) ** 7 - 3.11048198048157e62 * cos(theta) ** 5 + 6.98356978105427e59 * cos(theta) ** 3 - 4.64024570169719e56 * cos(theta) ) * sin(28 * phi) ) # @torch.jit.script def Yl99_m_minus_27(theta, phi): return ( 9.04193421481642e-54 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 5.47061890168117e80 * cos(theta) ** 72 - 7.0979197526381e81 * cos(theta) ** 70 + 4.39525030836436e82 * cos(theta) ** 68 - 1.72925392097651e83 * cos(theta) ** 66 + 4.85503882263694e83 * cos(theta) ** 64 - 1.03574161549588e84 * cos(theta) ** 62 + 1.74562156408441e84 * cos(theta) ** 60 - 2.38590746596866e84 * cos(theta) ** 58 + 2.6939242085015e84 * cos(theta) ** 56 - 2.54674234566747e84 * cos(theta) ** 54 + 2.03597111544701e84 * cos(theta) ** 52 - 1.38659357939534e84 * cos(theta) ** 50 + 8.08846254647284e83 * cos(theta) ** 48 - 4.05681892059642e83 * cos(theta) ** 46 + 1.75388787920522e83 * cos(theta) ** 44 - 6.54508060642264e82 * cos(theta) ** 42 + 2.10902485109652e82 * cos(theta) ** 40 - 5.8646680351347e81 * cos(theta) ** 38 + 1.40520164577358e81 * cos(theta) ** 36 - 2.89400796612408e80 * cos(theta) ** 34 + 5.105466883634e79 * cos(theta) ** 32 - 7.68065384981032e78 * cos(theta) ** 30 + 9.79790153861434e77 * cos(theta) ** 28 - 1.05246001182047e77 * cos(theta) ** 26 + 9.4384520927608e75 * cos(theta) ** 24 - 6.99332289289123e74 * cos(theta) ** 22 + 4.22673361658261e73 * cos(theta) ** 20 - 2.0512883452125e72 * cos(theta) ** 18 + 7.83833958085697e70 * cos(theta) ** 16 - 2.30031975960586e69 * cos(theta) ** 14 + 5.01988244901999e67 * cos(theta) ** 12 - 7.80108880704778e65 * cos(theta) ** 10 + 8.1261341740081e63 * cos(theta) ** 8 - 5.18413663413595e61 * cos(theta) ** 6 + 1.74589244526357e59 * cos(theta) ** 4 - 2.32012285084859e56 * cos(theta) ** 2 + 5.07463440693043e52 ) * sin(27 * phi) ) # @torch.jit.script def Yl99_m_minus_26(theta, phi): return ( 8.67177588978136e-52 * (1.0 - cos(theta) ** 2) ** 13 * ( 7.49399849545365e78 * cos(theta) ** 73 - 9.99707007413817e79 * cos(theta) ** 71 + 6.36992798313676e80 * cos(theta) ** 69 - 2.58097600145748e81 * cos(theta) ** 67 + 7.46929049636453e81 * cos(theta) ** 65 - 1.64403431031092e82 * cos(theta) ** 63 + 2.86167469522035e82 * cos(theta) ** 61 - 4.04391095926891e82 * cos(theta) ** 59 + 4.72618282193245e82 * cos(theta) ** 57 - 4.6304406284863e82 * cos(theta) ** 55 + 3.84145493480568e82 * cos(theta) ** 53 - 2.71881093999087e82 * cos(theta) ** 51 + 1.65070664213731e82 * cos(theta) ** 49 - 8.63152961829026e81 * cos(theta) ** 47 + 3.89752862045605e81 * cos(theta) ** 45 - 1.5221117689355e81 * cos(theta) ** 43 + 5.14396305145492e80 * cos(theta) ** 41 - 1.50376103464992e80 * cos(theta) ** 39 + 3.79784228587455e79 * cos(theta) ** 37 - 8.26859418892596e78 * cos(theta) ** 35 + 1.54711117685879e78 * cos(theta) ** 33 - 2.47763027413236e77 * cos(theta) ** 31 + 3.37858673745322e76 * cos(theta) ** 29 - 3.8980000437795e75 * cos(theta) ** 27 + 3.77538083710432e74 * cos(theta) ** 25 - 3.04057517082227e73 * cos(theta) ** 23 + 2.01273029361077e72 * cos(theta) ** 21 - 1.07962544484869e71 * cos(theta) ** 19 + 4.6107879887394e69 * cos(theta) ** 17 - 1.53354650640391e68 * cos(theta) ** 15 + 3.86144803770768e66 * cos(theta) ** 13 - 7.09189891549798e64 * cos(theta) ** 11 + 9.02903797112011e62 * cos(theta) ** 9 - 7.40590947733707e60 * cos(theta) ** 7 + 3.49178489052713e58 * cos(theta) ** 5 - 7.73374283616198e55 * cos(theta) ** 3 + 5.07463440693043e52 * cos(theta) ) * sin(26 * phi) ) # @torch.jit.script def Yl99_m_minus_25(theta, phi): return ( 8.34024698683431e-50 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 1.01270249938563e77 * cos(theta) ** 74 - 1.38848195474141e78 * cos(theta) ** 72 + 9.0998971187668e78 * cos(theta) ** 70 - 3.79555294331983e79 * cos(theta) ** 68 + 1.13171068126735e80 * cos(theta) ** 66 - 2.56880360986082e80 * cos(theta) ** 64 + 4.61560434712959e80 * cos(theta) ** 62 - 6.73985159878152e80 * cos(theta) ** 60 + 8.14859107229733e80 * cos(theta) ** 58 - 8.26864397943983e80 * cos(theta) ** 56 + 7.11380543482533e80 * cos(theta) ** 54 - 5.22848257690552e80 * cos(theta) ** 52 + 3.30141328427463e80 * cos(theta) ** 50 - 1.79823533714381e80 * cos(theta) ** 48 + 8.47288830533923e79 * cos(theta) ** 46 - 3.45934492939886e79 * cos(theta) ** 44 + 1.22475310748927e79 * cos(theta) ** 42 - 3.75940258662481e78 * cos(theta) ** 40 + 9.99432180493302e77 * cos(theta) ** 38 - 2.2968317191461e77 * cos(theta) ** 36 + 4.55032699076114e76 * cos(theta) ** 34 - 7.74259460666363e75 * cos(theta) ** 32 + 1.12619557915107e75 * cos(theta) ** 30 - 1.39214287277839e74 * cos(theta) ** 28 + 1.45206955273243e73 * cos(theta) ** 26 - 1.26690632117595e72 * cos(theta) ** 24 + 9.14877406186712e70 * cos(theta) ** 22 - 5.39812722424343e69 * cos(theta) ** 20 + 2.561548882633e68 * cos(theta) ** 18 - 9.58466566502442e66 * cos(theta) ** 16 + 2.7581771697912e65 * cos(theta) ** 14 - 5.90991576291498e63 * cos(theta) ** 12 + 9.02903797112011e61 * cos(theta) ** 10 - 9.25738684667134e59 * cos(theta) ** 8 + 5.81964148421189e57 * cos(theta) ** 6 - 1.93343570904049e55 * cos(theta) ** 4 + 2.53731720346522e52 * cos(theta) ** 2 - 5.4860912507356e48 ) * sin(25 * phi) ) # @torch.jit.script def Yl99_m_minus_24(theta, phi): return ( 8.04304292014539e-48 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.35026999918084e75 * cos(theta) ** 75 - 1.90203007498824e76 * cos(theta) ** 73 + 1.28167565053054e77 * cos(theta) ** 71 - 5.50080136713019e77 * cos(theta) ** 69 + 1.68912041980202e78 * cos(theta) ** 67 - 3.95200555363202e78 * cos(theta) ** 65 + 7.32635610655491e78 * cos(theta) ** 63 - 1.10489370471828e79 * cos(theta) ** 61 + 1.38111713089785e79 * cos(theta) ** 59 - 1.45063929463857e79 * cos(theta) ** 57 + 1.29341916996824e79 * cos(theta) ** 55 - 9.86506146585947e78 * cos(theta) ** 53 + 6.47335938093064e78 * cos(theta) ** 51 - 3.66986803498736e78 * cos(theta) ** 49 + 1.80274219262537e78 * cos(theta) ** 47 - 7.68743317644191e77 * cos(theta) ** 45 + 2.84826304067271e77 * cos(theta) ** 43 - 9.16927460152392e76 * cos(theta) ** 41 + 2.56264661664949e76 * cos(theta) ** 39 - 6.20765329498946e75 * cos(theta) ** 37 + 1.30009342593175e75 * cos(theta) ** 35 - 2.34624078989807e74 * cos(theta) ** 33 + 3.63288896500346e73 * cos(theta) ** 31 - 4.80049266475308e72 * cos(theta) ** 29 + 5.37803538049049e71 * cos(theta) ** 27 - 5.06762528470379e70 * cos(theta) ** 25 + 3.9777278529857e69 * cos(theta) ** 23 - 2.57053677344925e68 * cos(theta) ** 21 + 1.34818362243842e67 * cos(theta) ** 19 - 5.63803862648496e65 * cos(theta) ** 17 + 1.8387847798608e64 * cos(theta) ** 15 - 4.54608904839614e62 * cos(theta) ** 13 + 8.20821633738192e60 * cos(theta) ** 11 - 1.02859853851904e59 * cos(theta) ** 9 + 8.31377354887413e56 * cos(theta) ** 7 - 3.86687141808099e54 * cos(theta) ** 5 + 8.45772401155072e51 * cos(theta) ** 3 - 5.4860912507356e48 * cos(theta) ) * sin(24 * phi) ) # @torch.jit.script def Yl99_m_minus_23(theta, phi): return ( 7.77642052910099e-46 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.77667105155373e73 * cos(theta) ** 76 - 2.57031091214627e74 * cos(theta) ** 74 + 1.7801050701813e75 * cos(theta) ** 72 - 7.85828766732884e75 * cos(theta) ** 70 + 2.48400061735591e76 * cos(theta) ** 68 - 5.98788720247277e76 * cos(theta) ** 66 + 1.14474314164921e77 * cos(theta) ** 64 - 1.78208662051336e77 * cos(theta) ** 62 + 2.30186188482975e77 * cos(theta) ** 60 - 2.50110223213546e77 * cos(theta) ** 58 + 2.309677089229e77 * cos(theta) ** 56 - 1.82686323441842e77 * cos(theta) ** 54 + 1.24487680402512e77 * cos(theta) ** 52 - 7.33973606997471e76 * cos(theta) ** 50 + 3.75571290130285e76 * cos(theta) ** 48 - 1.67118112531346e76 * cos(theta) ** 46 + 6.47332509243798e75 * cos(theta) ** 44 - 2.18316061941046e75 * cos(theta) ** 42 + 6.40661654162373e74 * cos(theta) ** 40 - 1.63359297236565e74 * cos(theta) ** 38 + 3.61137062758821e73 * cos(theta) ** 36 - 6.90070820558256e72 * cos(theta) ** 34 + 1.13527780156358e72 * cos(theta) ** 32 - 1.60016422158436e71 * cos(theta) ** 30 + 1.92072692160375e70 * cos(theta) ** 28 - 1.94908664796299e69 * cos(theta) ** 26 + 1.65738660541071e68 * cos(theta) ** 24 - 1.1684258061133e67 * cos(theta) ** 22 + 6.7409181121921e65 * cos(theta) ** 20 - 3.13224368138053e64 * cos(theta) ** 18 + 1.149240487413e63 * cos(theta) ** 16 - 3.2472064631401e61 * cos(theta) ** 14 + 6.8401802811516e59 * cos(theta) ** 12 - 1.02859853851904e58 * cos(theta) ** 10 + 1.03922169360927e56 * cos(theta) ** 8 - 6.44478569680165e53 * cos(theta) ** 6 + 2.11443100288768e51 * cos(theta) ** 4 - 2.7430456253678e48 * cos(theta) ** 2 + 5.86873261738939e44 ) * sin(23 * phi) ) # @torch.jit.script def Yl99_m_minus_22(theta, phi): return ( 7.53711281864287e-44 * (1.0 - cos(theta) ** 2) ** 11 * ( 2.30736500201784e71 * cos(theta) ** 77 - 3.42708121619502e72 * cos(theta) ** 75 + 2.43850009613877e73 * cos(theta) ** 73 - 1.10680107990547e74 * cos(theta) ** 71 + 3.60000089471871e74 * cos(theta) ** 69 - 8.93714507831756e74 * cos(theta) ** 67 + 1.76114329484493e75 * cos(theta) ** 65 - 2.82870892144977e75 * cos(theta) ** 63 + 3.7735440734914e75 * cos(theta) ** 61 - 4.23915632565332e75 * cos(theta) ** 59 + 4.05206506882281e75 * cos(theta) ** 57 - 3.3215695171244e75 * cos(theta) ** 55 + 2.34882415853797e75 * cos(theta) ** 53 - 1.43916393528916e75 * cos(theta) ** 51 + 7.66472020674051e74 * cos(theta) ** 49 - 3.55570452194353e74 * cos(theta) ** 47 + 1.43851668720844e74 * cos(theta) ** 45 - 5.0771177195592e73 * cos(theta) ** 43 + 1.56258940039603e73 * cos(theta) ** 41 - 4.18869992914268e72 * cos(theta) ** 39 + 9.7604611556438e71 * cos(theta) ** 37 - 1.97163091588073e71 * cos(theta) ** 35 + 3.44023576231389e70 * cos(theta) ** 33 - 5.16182006962697e69 * cos(theta) ** 31 + 6.62319628139222e68 * cos(theta) ** 29 - 7.21883943689998e67 * cos(theta) ** 27 + 6.62954642164284e66 * cos(theta) ** 25 - 5.0801122004926e65 * cos(theta) ** 23 + 3.20996100580576e64 * cos(theta) ** 21 - 1.64854930598975e63 * cos(theta) ** 19 + 6.76023816125294e61 * cos(theta) ** 17 - 2.16480430876007e60 * cos(theta) ** 15 + 5.26167713934739e58 * cos(theta) ** 13 - 9.35089580471852e56 * cos(theta) ** 11 + 1.15469077067696e55 * cos(theta) ** 9 - 9.20683670971664e52 * cos(theta) ** 7 + 4.22886200577536e50 * cos(theta) ** 5 - 9.14348541789267e47 * cos(theta) ** 3 + 5.86873261738939e44 * cos(theta) ) * sin(22 * phi) ) # @torch.jit.script def Yl99_m_minus_21(theta, phi): return ( 7.32225758404669e-42 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 2.95816025899723e69 * cos(theta) ** 78 - 4.50931738973029e70 * cos(theta) ** 76 + 3.29527040018752e71 * cos(theta) ** 74 - 1.53722372209093e72 * cos(theta) ** 72 + 5.14285842102673e72 * cos(theta) ** 70 - 1.31428604092905e73 * cos(theta) ** 68 + 2.66839893158323e73 * cos(theta) ** 66 - 4.41985768976527e73 * cos(theta) ** 64 + 6.08636140885709e73 * cos(theta) ** 62 - 7.06526054275553e73 * cos(theta) ** 60 + 6.98631908417726e73 * cos(theta) ** 58 - 5.93137413772214e73 * cos(theta) ** 56 + 4.3496743676629e73 * cos(theta) ** 54 - 2.76762295247915e73 * cos(theta) ** 52 + 1.5329440413481e73 * cos(theta) ** 50 - 7.40771775404902e72 * cos(theta) ** 48 + 3.12721018958357e72 * cos(theta) ** 46 - 1.15389039080891e72 * cos(theta) ** 44 + 3.72045095332389e71 * cos(theta) ** 42 - 1.04717498228567e71 * cos(theta) ** 40 + 2.56854240937995e70 * cos(theta) ** 38 - 5.47675254411314e69 * cos(theta) ** 36 + 1.01183404773938e69 * cos(theta) ** 34 - 1.61306877175843e68 * cos(theta) ** 32 + 2.20773209379741e67 * cos(theta) ** 30 - 2.57815694174999e66 * cos(theta) ** 28 + 2.54982554678571e65 * cos(theta) ** 26 - 2.11671341687192e64 * cos(theta) ** 24 + 1.45907318445716e63 * cos(theta) ** 22 - 8.24274652994877e61 * cos(theta) ** 20 + 3.75568786736275e60 * cos(theta) ** 18 - 1.35300269297504e59 * cos(theta) ** 16 + 3.75834081381956e57 * cos(theta) ** 14 - 7.79241317059877e55 * cos(theta) ** 12 + 1.15469077067696e54 * cos(theta) ** 10 - 1.15085458871458e52 * cos(theta) ** 8 + 7.04810334295893e49 * cos(theta) ** 6 - 2.28587135447317e47 * cos(theta) ** 4 + 2.93436630869469e44 * cos(theta) ** 2 - 6.21819518689276e40 ) * sin(21 * phi) ) # @torch.jit.script def Yl99_m_minus_20(theta, phi): return ( 7.12933744526927e-40 * (1.0 - cos(theta) ** 2) ** 10 * ( 3.74450665695852e67 * cos(theta) ** 79 - 5.85625635029908e68 * cos(theta) ** 77 + 4.39369386691669e69 * cos(theta) ** 75 - 2.10578592067251e70 * cos(theta) ** 73 + 7.24346256482638e70 * cos(theta) ** 71 - 1.90476237815805e71 * cos(theta) ** 69 + 3.98268497251228e71 * cos(theta) ** 67 - 6.79978106117734e71 * cos(theta) ** 65 + 9.66089112516999e71 * cos(theta) ** 63 - 1.15823943323861e72 * cos(theta) ** 61 + 1.18412187867411e72 * cos(theta) ** 59 - 1.04059195398634e72 * cos(theta) ** 57 + 7.90849885029619e71 * cos(theta) ** 55 - 5.22193009901727e71 * cos(theta) ** 53 + 3.00577263009432e71 * cos(theta) ** 51 - 1.51177913347939e71 * cos(theta) ** 49 + 6.65363870124163e70 * cos(theta) ** 47 - 2.56420086846424e70 * cos(theta) ** 45 + 8.65221151935788e69 * cos(theta) ** 43 - 2.55408532264798e69 * cos(theta) ** 41 + 6.5860061778973e68 * cos(theta) ** 39 - 1.48020339030085e68 * cos(theta) ** 37 + 2.89095442211251e67 * cos(theta) ** 35 - 4.88808718714675e66 * cos(theta) ** 33 + 7.12171643160454e65 * cos(theta) ** 31 - 8.89019635086205e64 * cos(theta) ** 29 + 9.44379832142855e63 * cos(theta) ** 27 - 8.46685366748766e62 * cos(theta) ** 25 + 6.34379645416159e61 * cos(theta) ** 23 - 3.9251173952137e60 * cos(theta) ** 21 + 1.97667782492776e59 * cos(theta) ** 19 - 7.95883937044142e57 * cos(theta) ** 17 + 2.50556054254637e56 * cos(theta) ** 15 - 5.99416397738367e54 * cos(theta) ** 13 + 1.0497188824336e53 * cos(theta) ** 11 - 1.27872732079398e51 * cos(theta) ** 9 + 1.00687190613699e49 * cos(theta) ** 7 - 4.57174270894633e46 * cos(theta) ** 5 + 9.78122102898232e43 * cos(theta) ** 3 - 6.21819518689276e40 * cos(theta) ) * sin(20 * phi) ) # @torch.jit.script def Yl99_m_minus_19(theta, phi): return ( 6.95612928954815e-38 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 4.68063332119814e65 * cos(theta) ** 80 - 7.5080209619219e66 * cos(theta) ** 78 + 5.78117614067986e67 * cos(theta) ** 76 - 2.84565664955744e68 * cos(theta) ** 74 + 1.006036467337e69 * cos(theta) ** 72 - 2.72108911165435e69 * cos(theta) ** 70 + 5.85688966545924e69 * cos(theta) ** 68 - 1.03026985775414e70 * cos(theta) ** 66 + 1.50951423830781e70 * cos(theta) ** 64 - 1.86812811812679e70 * cos(theta) ** 62 + 1.97353646445685e70 * cos(theta) ** 60 - 1.79412405859714e70 * cos(theta) ** 58 + 1.41223193755289e70 * cos(theta) ** 56 - 9.67024092410606e69 * cos(theta) ** 54 + 5.78033198095061e69 * cos(theta) ** 52 - 3.02355826695878e69 * cos(theta) ** 50 + 1.38617472942534e69 * cos(theta) ** 48 - 5.5743497140527e68 * cos(theta) ** 46 + 1.96641170894497e68 * cos(theta) ** 44 - 6.08115553011423e67 * cos(theta) ** 42 + 1.64650154447433e67 * cos(theta) ** 40 - 3.89527207973908e66 * cos(theta) ** 38 + 8.03042895031252e65 * cos(theta) ** 36 - 1.43767270210199e65 * cos(theta) ** 34 + 2.22553638487642e64 * cos(theta) ** 32 - 2.96339878362068e63 * cos(theta) ** 30 + 3.37278511479591e62 * cos(theta) ** 28 - 3.25648217980295e61 * cos(theta) ** 26 + 2.64324852256733e60 * cos(theta) ** 24 - 1.78414427055168e59 * cos(theta) ** 22 + 9.88338912463881e57 * cos(theta) ** 20 - 4.42157742802301e56 * cos(theta) ** 18 + 1.56597533909148e55 * cos(theta) ** 16 - 4.28154569813119e53 * cos(theta) ** 14 + 8.74765735361335e51 * cos(theta) ** 12 - 1.27872732079398e50 * cos(theta) ** 10 + 1.25858988267124e48 * cos(theta) ** 8 - 7.61957118157722e45 * cos(theta) ** 6 + 2.44530525724558e43 * cos(theta) ** 4 - 3.10909759344638e40 * cos(theta) ** 2 + 6.53171763329072e36 ) * sin(19 * phi) ) # @torch.jit.script def Yl99_m_minus_18(theta, phi): return ( 6.8006614986693e-36 * (1.0 - cos(theta) ** 2) ** 9 * ( 5.77855965580018e63 * cos(theta) ** 81 - 9.50382400243278e64 * cos(theta) ** 79 + 7.5080209619219e65 * cos(theta) ** 77 - 3.79420886607659e66 * cos(theta) ** 75 + 1.37813214703698e67 * cos(theta) ** 73 - 3.83251987556951e67 * cos(theta) ** 71 + 8.48824589196991e67 * cos(theta) ** 69 - 1.5377162056032e68 * cos(theta) ** 67 + 2.32232959739663e68 * cos(theta) ** 65 - 2.96528272718539e68 * cos(theta) ** 63 + 3.23530567943746e68 * cos(theta) ** 61 - 3.04088823491041e68 * cos(theta) ** 59 + 2.47759989044367e68 * cos(theta) ** 57 - 1.75822562256474e68 * cos(theta) ** 55 + 1.09062867565106e68 * cos(theta) ** 53 - 5.92854562148781e67 * cos(theta) ** 51 + 2.82892801923539e67 * cos(theta) ** 49 - 1.18603185405377e67 * cos(theta) ** 47 + 4.36980379765549e66 * cos(theta) ** 45 - 1.41422221630564e66 * cos(theta) ** 43 + 4.01585742554713e65 * cos(theta) ** 41 - 9.98787712753609e64 * cos(theta) ** 39 + 2.17038620278717e64 * cos(theta) ** 37 - 4.10763629171996e63 * cos(theta) ** 35 + 6.74404965114066e62 * cos(theta) ** 33 - 9.55935091490543e61 * cos(theta) ** 31 + 1.16302934992962e61 * cos(theta) ** 29 - 1.20610451103813e60 * cos(theta) ** 27 + 1.05729940902693e59 * cos(theta) ** 25 - 7.75714900239861e57 * cos(theta) ** 23 + 4.70637577363753e56 * cos(theta) ** 21 - 2.32714601474895e55 * cos(theta) ** 19 + 9.21161964171461e53 * cos(theta) ** 17 - 2.85436379875413e52 * cos(theta) ** 15 + 6.72896719508719e50 * cos(theta) ** 13 - 1.16247938253998e49 * cos(theta) ** 11 + 1.39843320296804e47 * cos(theta) ** 9 - 1.08851016879675e45 * cos(theta) ** 7 + 4.89061051449116e42 * cos(theta) ** 5 - 1.03636586448213e40 * cos(theta) ** 3 + 6.53171763329072e36 * cos(theta) ) * sin(18 * phi) ) # @torch.jit.script def Yl99_m_minus_17(theta, phi): return ( 6.66117763977302e-34 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 7.04702397048802e61 * cos(theta) ** 82 - 1.1879780003041e63 * cos(theta) ** 80 + 9.62566789989987e63 * cos(theta) ** 78 - 4.99238008694288e64 * cos(theta) ** 76 + 1.86234073923917e65 * cos(theta) ** 74 - 5.32294427162432e65 * cos(theta) ** 72 + 1.2126065559957e66 * cos(theta) ** 70 - 2.26134736118117e66 * cos(theta) ** 68 + 3.51868120817672e66 * cos(theta) ** 66 - 4.63325426122717e66 * cos(theta) ** 64 + 5.21823496683462e66 * cos(theta) ** 62 - 5.06814705818401e66 * cos(theta) ** 60 + 4.27172394904081e66 * cos(theta) ** 58 - 3.13968861172275e66 * cos(theta) ** 56 + 2.01968273268715e66 * cos(theta) ** 54 - 1.14010492720919e66 * cos(theta) ** 52 + 5.65785603847077e65 * cos(theta) ** 50 - 2.47089969594535e65 * cos(theta) ** 48 + 9.49957347316412e64 * cos(theta) ** 46 - 3.21414140069463e64 * cos(theta) ** 44 + 9.56156529892175e63 * cos(theta) ** 42 - 2.49696928188402e63 * cos(theta) ** 40 + 5.7115426389136e62 * cos(theta) ** 38 - 1.14101008103332e62 * cos(theta) ** 36 + 1.98354401504137e61 * cos(theta) ** 34 - 2.98729716090795e60 * cos(theta) ** 32 + 3.87676449976541e59 * cos(theta) ** 30 - 4.30751611085046e58 * cos(theta) ** 28 + 4.06653618856512e57 * cos(theta) ** 26 - 3.23214541766609e56 * cos(theta) ** 24 + 2.13926171528979e55 * cos(theta) ** 22 - 1.16357300737448e54 * cos(theta) ** 20 + 5.11756646761923e52 * cos(theta) ** 18 - 1.78397737422133e51 * cos(theta) ** 16 + 4.80640513934799e49 * cos(theta) ** 14 - 9.68732818783317e47 * cos(theta) ** 12 + 1.39843320296804e46 * cos(theta) ** 10 - 1.36063771099593e44 * cos(theta) ** 8 + 8.15101752415193e41 * cos(theta) ** 6 - 2.59091466120532e39 * cos(theta) ** 4 + 3.26585881664536e36 * cos(theta) ** 2 - 6.80812761443685e32 ) * sin(17 * phi) ) # @torch.jit.script def Yl99_m_minus_16(theta, phi): return ( 6.53610554166651e-32 * (1.0 - cos(theta) ** 2) ** 8 * ( 8.49039032588918e59 * cos(theta) ** 83 - 1.46663950654827e61 * cos(theta) ** 81 + 1.21843897467087e62 * cos(theta) ** 79 - 6.48361050252323e62 * cos(theta) ** 77 + 2.48312098565222e63 * cos(theta) ** 75 - 7.29170448167715e63 * cos(theta) ** 73 + 1.70789655774042e64 * cos(theta) ** 71 - 3.2773150162046e64 * cos(theta) ** 69 + 5.25176299727868e64 * cos(theta) ** 67 - 7.12808347881103e64 * cos(theta) ** 65 + 8.28291264576924e64 * cos(theta) ** 63 - 8.30843780030165e64 * cos(theta) ** 61 + 7.24021008312001e64 * cos(theta) ** 59 - 5.50822563460131e64 * cos(theta) ** 57 + 3.67215042306754e64 * cos(theta) ** 55 - 2.15114137209282e64 * cos(theta) ** 53 + 1.10938353695505e64 * cos(theta) ** 51 - 5.04265244070479e63 * cos(theta) ** 49 + 2.02118584535407e63 * cos(theta) ** 47 - 7.14253644598806e62 * cos(theta) ** 45 + 2.22361983695855e62 * cos(theta) ** 43 - 6.09016898020494e61 * cos(theta) ** 41 + 1.46449811254195e61 * cos(theta) ** 39 - 3.08381102981979e60 * cos(theta) ** 37 + 5.66726861440392e59 * cos(theta) ** 35 - 9.05241563911499e58 * cos(theta) ** 33 + 1.25056919347271e58 * cos(theta) ** 31 - 1.48535038305188e57 * cos(theta) ** 29 + 1.50612451428338e56 * cos(theta) ** 27 - 1.29285816706644e55 * cos(theta) ** 25 + 9.30113789256428e53 * cos(theta) ** 23 - 5.54082384464037e52 * cos(theta) ** 21 + 2.69345603558907e51 * cos(theta) ** 19 - 1.04939845542431e50 * cos(theta) ** 17 + 3.20427009289866e48 * cos(theta) ** 15 - 7.45179091371782e46 * cos(theta) ** 13 + 1.27130291178913e45 * cos(theta) ** 11 - 1.51181967888437e43 * cos(theta) ** 9 + 1.16443107487885e41 * cos(theta) ** 7 - 5.18182932241064e38 * cos(theta) ** 5 + 1.08861960554845e36 * cos(theta) ** 3 - 6.80812761443685e32 * cos(theta) ) * sin(16 * phi) ) # @torch.jit.script def Yl99_m_minus_15(theta, phi): return ( 6.4240308747423e-30 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.01076075308205e58 * cos(theta) ** 84 - 1.78858476408325e59 * cos(theta) ** 82 + 1.52304871833859e60 * cos(theta) ** 80 - 8.31232115708106e60 * cos(theta) ** 78 + 3.26726445480555e61 * cos(theta) ** 76 - 9.85365470496913e61 * cos(theta) ** 74 + 2.37207855241726e62 * cos(theta) ** 72 - 4.681878594578e62 * cos(theta) ** 70 + 7.723180878351e62 * cos(theta) ** 68 - 1.0800126483047e63 * cos(theta) ** 66 + 1.29420510090144e63 * cos(theta) ** 64 - 1.34007061295188e63 * cos(theta) ** 62 + 1.20670168052e63 * cos(theta) ** 60 - 9.4969407493126e62 * cos(theta) ** 58 + 6.55741146976346e62 * cos(theta) ** 56 - 3.98359513350522e62 * cos(theta) ** 54 + 2.13342987875972e62 * cos(theta) ** 52 - 1.00853048814096e62 * cos(theta) ** 50 + 4.21080384448764e61 * cos(theta) ** 48 - 1.55272531434523e61 * cos(theta) ** 46 + 5.05368144763306e60 * cos(theta) ** 44 - 1.45004023338213e60 * cos(theta) ** 42 + 3.66124528135487e59 * cos(theta) ** 40 - 8.11529218373629e58 * cos(theta) ** 38 + 1.57424128177887e58 * cos(theta) ** 36 - 2.662475187975e57 * cos(theta) ** 34 + 3.90802872960223e56 * cos(theta) ** 32 - 4.95116794350628e55 * cos(theta) ** 30 + 5.37901612244063e54 * cos(theta) ** 28 - 4.97253141179398e53 * cos(theta) ** 26 + 3.87547412190178e52 * cos(theta) ** 24 - 2.51855629301835e51 * cos(theta) ** 22 + 1.34672801779453e50 * cos(theta) ** 20 - 5.82999141902395e48 * cos(theta) ** 18 + 2.00266880806166e47 * cos(theta) ** 16 - 5.32270779551273e45 * cos(theta) ** 14 + 1.05941909315761e44 * cos(theta) ** 12 - 1.51181967888437e42 * cos(theta) ** 10 + 1.45553884359856e40 * cos(theta) ** 8 - 8.63638220401773e37 * cos(theta) ** 6 + 2.72154901387113e35 * cos(theta) ** 4 - 3.40406380721843e32 * cos(theta) ** 2 + 7.04775115366134e28 ) * sin(15 * phi) ) # @torch.jit.script def Yl99_m_minus_14(theta, phi): return ( 6.32367451143506e-28 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.18913029774358e56 * cos(theta) ** 85 - 2.15492140250995e57 * cos(theta) ** 83 + 1.88030705967727e58 * cos(theta) ** 81 - 1.05219255152925e59 * cos(theta) ** 79 + 4.24320059065656e59 * cos(theta) ** 77 - 1.31382062732922e60 * cos(theta) ** 75 + 3.24942267454419e60 * cos(theta) ** 73 - 6.59419520363098e60 * cos(theta) ** 71 + 1.11930157657261e61 * cos(theta) ** 69 - 1.61195917657418e61 * cos(theta) ** 67 + 1.99108477061761e61 * cos(theta) ** 65 - 2.12709621103473e61 * cos(theta) ** 63 + 1.9781994762623e61 * cos(theta) ** 61 - 1.60965097445976e61 * cos(theta) ** 59 + 1.15042306487078e61 * cos(theta) ** 57 - 7.24290024273676e60 * cos(theta) ** 55 + 4.02533939388626e60 * cos(theta) ** 53 - 1.9775107610607e60 * cos(theta) ** 51 + 8.59347723364824e59 * cos(theta) ** 49 - 3.3036708815856e59 * cos(theta) ** 47 + 1.12304032169624e59 * cos(theta) ** 45 - 3.37218658926076e58 * cos(theta) ** 43 + 8.92986653988993e57 * cos(theta) ** 41 - 2.08084414967597e57 * cos(theta) ** 39 + 4.25470616696991e56 * cos(theta) ** 37 - 7.60707196564285e55 * cos(theta) ** 35 + 1.18425113018249e55 * cos(theta) ** 33 - 1.59715094951815e54 * cos(theta) ** 31 + 1.85483314566918e53 * cos(theta) ** 29 - 1.84167830066444e52 * cos(theta) ** 27 + 1.55018964876071e51 * cos(theta) ** 25 - 1.09502447522537e50 * cos(theta) ** 23 + 6.41299056092635e48 * cos(theta) ** 21 - 3.0684165363284e47 * cos(theta) ** 19 + 1.17804047533039e46 * cos(theta) ** 17 - 3.54847186367515e44 * cos(theta) ** 15 + 8.14937763967391e42 * cos(theta) ** 13 - 1.37438152625852e41 * cos(theta) ** 11 + 1.61726538177618e39 * cos(theta) ** 9 - 1.23376888628825e37 * cos(theta) ** 7 + 5.44309802774226e34 * cos(theta) ** 5 - 1.13468793573948e32 * cos(theta) ** 3 + 7.04775115366134e28 * cos(theta) ) * sin(14 * phi) ) # @torch.jit.script def Yl99_m_minus_13(theta, phi): return ( 6.23387307326385e-26 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.38270964853905e54 * cos(theta) ** 86 - 2.56538262203565e55 * cos(theta) ** 84 + 2.29305738985033e56 * cos(theta) ** 82 - 1.31524068941156e57 * cos(theta) ** 80 + 5.440000757252e57 * cos(theta) ** 78 - 1.72871135174897e58 * cos(theta) ** 76 + 4.39111172235701e58 * cos(theta) ** 74 - 9.15860444948748e58 * cos(theta) ** 72 + 1.59900225224658e59 * cos(theta) ** 70 - 2.37052820084438e59 * cos(theta) ** 68 + 3.01679510699637e59 * cos(theta) ** 66 - 3.32358782974177e59 * cos(theta) ** 64 + 3.19064431655209e59 * cos(theta) ** 62 - 2.6827516240996e59 * cos(theta) ** 60 + 1.98348804288066e59 * cos(theta) ** 58 - 1.29337504334585e59 * cos(theta) ** 56 + 7.45433221090049e58 * cos(theta) ** 54 - 3.80290530973212e58 * cos(theta) ** 52 + 1.71869544672965e58 * cos(theta) ** 50 - 6.88264766996999e57 * cos(theta) ** 48 + 2.44139200368747e57 * cos(theta) ** 46 - 7.66406043013809e56 * cos(theta) ** 44 + 2.12615869997379e56 * cos(theta) ** 42 - 5.20211037418993e55 * cos(theta) ** 40 + 1.11965951762366e55 * cos(theta) ** 38 - 2.1130755460119e54 * cos(theta) ** 36 + 3.48309155936028e53 * cos(theta) ** 34 - 4.99109671724423e52 * cos(theta) ** 32 + 6.18277715223061e51 * cos(theta) ** 30 - 6.57742250237299e50 * cos(theta) ** 28 + 5.9622678798489e49 * cos(theta) ** 26 - 4.5626019801057e48 * cos(theta) ** 24 + 2.91499570951198e47 * cos(theta) ** 22 - 1.5342082681642e46 * cos(theta) ** 20 + 6.54466930739106e44 * cos(theta) ** 18 - 2.21779491479697e43 * cos(theta) ** 16 + 5.8209840283385e41 * cos(theta) ** 14 - 1.14531793854877e40 * cos(theta) ** 12 + 1.61726538177618e38 * cos(theta) ** 10 - 1.54221110786031e36 * cos(theta) ** 8 + 9.07183004623711e33 * cos(theta) ** 6 - 2.83671983934869e31 * cos(theta) ** 4 + 3.52387557683067e28 * cos(theta) ** 2 - 7.25226502743501e24 ) * sin(13 * phi) ) # @torch.jit.script def Yl99_m_minus_12(theta, phi): return ( 6.15356217585626e-24 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.58932143510236e52 * cos(theta) ** 87 - 3.01809720239488e53 * cos(theta) ** 85 + 2.76271974680762e54 * cos(theta) ** 83 - 1.62375393754514e55 * cos(theta) ** 81 + 6.88607690791393e55 * cos(theta) ** 79 - 2.24507967759606e56 * cos(theta) ** 77 + 5.85481562980935e56 * cos(theta) ** 75 - 1.25460334924486e57 * cos(theta) ** 73 + 2.25211584823463e57 * cos(theta) ** 71 - 3.43554811716577e57 * cos(theta) ** 69 + 4.50267926417369e57 * cos(theta) ** 67 - 5.11321204575656e57 * cos(theta) ** 65 + 5.06451478817793e57 * cos(theta) ** 63 - 4.3979534821305e57 * cos(theta) ** 61 + 3.36184414047569e57 * cos(theta) ** 59 - 2.26907902341377e57 * cos(theta) ** 57 + 1.35533312925463e57 * cos(theta) ** 55 - 7.17529303723041e56 * cos(theta) ** 53 + 3.36999107201892e56 * cos(theta) ** 51 - 1.40462197346326e56 * cos(theta) ** 49 + 5.19445107167546e55 * cos(theta) ** 47 - 1.70312454003069e55 * cos(theta) ** 45 + 4.94455511621813e54 * cos(theta) ** 43 - 1.26880740833901e54 * cos(theta) ** 41 + 2.87092184006067e53 * cos(theta) ** 39 - 5.71101498922136e52 * cos(theta) ** 37 + 9.95169016960079e51 * cos(theta) ** 35 - 1.51245355068007e51 * cos(theta) ** 33 + 1.99444424265504e50 * cos(theta) ** 31 - 2.2680767249562e49 * cos(theta) ** 29 + 2.208247362907e48 * cos(theta) ** 27 - 1.82504079204228e47 * cos(theta) ** 25 + 1.26738943891825e46 * cos(theta) ** 23 - 7.30575365792476e44 * cos(theta) ** 21 + 3.44456279336371e43 * cos(theta) ** 19 - 1.30458524399822e42 * cos(theta) ** 17 + 3.88065601889234e40 * cos(theta) ** 15 - 8.81013798883666e38 * cos(theta) ** 13 + 1.47024125616016e37 * cos(theta) ** 11 - 1.71356789762256e35 * cos(theta) ** 9 + 1.29597572089102e33 * cos(theta) ** 7 - 5.67343967869738e30 * cos(theta) ** 5 + 1.17462519227689e28 * cos(theta) ** 3 - 7.25226502743501e24 * cos(theta) ) * sin(12 * phi) ) # @torch.jit.script def Yl99_m_minus_11(theta, phi): return ( 6.08176196963013e-22 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.80604708534359e50 * cos(theta) ** 88 - 3.50941535162195e51 * cos(theta) ** 86 + 3.28895207953288e52 * cos(theta) ** 84 - 1.98018772871358e53 * cos(theta) ** 82 + 8.60759613489241e53 * cos(theta) ** 80 - 2.87830727896931e54 * cos(theta) ** 78 + 7.70370477606493e54 * cos(theta) ** 76 - 1.69540993141197e55 * cos(theta) ** 74 + 3.12793867810365e55 * cos(theta) ** 72 - 4.90792588166539e55 * cos(theta) ** 70 + 6.6215871531966e55 * cos(theta) ** 68 - 7.74729097841903e55 * cos(theta) ** 66 + 7.91330435652801e55 * cos(theta) ** 64 - 7.093473358275e55 * cos(theta) ** 62 + 5.60307356745949e55 * cos(theta) ** 60 - 3.91220521278237e55 * cos(theta) ** 58 + 2.42023773081185e55 * cos(theta) ** 56 - 1.32875796985748e55 * cos(theta) ** 54 + 6.48075206157485e54 * cos(theta) ** 52 - 2.80924394692653e54 * cos(theta) ** 50 + 1.08217730659906e54 * cos(theta) ** 48 - 3.70244465224063e53 * cos(theta) ** 46 + 1.12376252641321e53 * cos(theta) ** 44 - 3.02097001985478e52 * cos(theta) ** 42 + 7.17730460015167e51 * cos(theta) ** 40 - 1.50289868137404e51 * cos(theta) ** 38 + 2.76435838044466e50 * cos(theta) ** 36 - 4.44839279611785e49 * cos(theta) ** 34 + 6.23263825829699e48 * cos(theta) ** 32 - 7.56025574985401e47 * cos(theta) ** 30 + 7.88659772466786e46 * cos(theta) ** 28 - 7.01938766170108e45 * cos(theta) ** 26 + 5.28078932882605e44 * cos(theta) ** 24 - 3.32079711723853e43 * cos(theta) ** 22 + 1.72228139668186e42 * cos(theta) ** 20 - 7.2476957999901e40 * cos(theta) ** 18 + 2.42541001180771e39 * cos(theta) ** 16 - 6.2929557063119e37 * cos(theta) ** 14 + 1.22520104680013e36 * cos(theta) ** 12 - 1.71356789762256e34 * cos(theta) ** 10 + 1.61996965111377e32 * cos(theta) ** 8 - 9.45573279782896e29 * cos(theta) ** 6 + 2.93656298069222e27 * cos(theta) ** 4 - 3.6261325137175e24 * cos(theta) ** 2 + 7.42451374635033e20 ) * sin(11 * phi) ) # @torch.jit.script def Yl99_m_minus_10(theta, phi): return ( 6.01756464472791e-20 * (1.0 - cos(theta) ** 2) ** 5 * ( 2.0292663880265e48 * cos(theta) ** 89 - 4.03381074899075e49 * cos(theta) ** 87 + 3.86935538768575e50 * cos(theta) ** 85 - 2.38576834784769e51 * cos(theta) ** 83 + 1.06266618949289e52 * cos(theta) ** 81 - 3.64342693540419e52 * cos(theta) ** 79 + 1.00048113974869e53 * cos(theta) ** 77 - 2.26054657521596e53 * cos(theta) ** 75 + 4.28484750425157e53 * cos(theta) ** 73 - 6.91257166431745e53 * cos(theta) ** 71 + 9.59650312057478e53 * cos(theta) ** 69 - 1.1563120863312e54 * cos(theta) ** 67 + 1.21743143946585e54 * cos(theta) ** 65 - 1.12594815210714e54 * cos(theta) ** 63 + 9.18536650403195e53 * cos(theta) ** 61 - 6.63085629285147e53 * cos(theta) ** 59 + 4.24603110668745e53 * cos(theta) ** 57 - 2.41592358155906e53 * cos(theta) ** 55 + 1.22278340784431e53 * cos(theta) ** 53 - 5.50832146456182e52 * cos(theta) ** 51 + 2.20852511550828e52 * cos(theta) ** 49 - 7.87754181327793e51 * cos(theta) ** 47 + 2.49725005869602e51 * cos(theta) ** 45 - 7.02551167408088e50 * cos(theta) ** 43 + 1.75056209759797e50 * cos(theta) ** 41 - 3.85358636249754e49 * cos(theta) ** 39 + 7.47123886606666e48 * cos(theta) ** 37 - 1.27096937031939e48 * cos(theta) ** 35 + 1.88867826009e47 * cos(theta) ** 33 - 2.43879217737226e46 * cos(theta) ** 31 + 2.71951645678202e45 * cos(theta) ** 29 - 2.59977320803744e44 * cos(theta) ** 27 + 2.11231573153042e43 * cos(theta) ** 25 - 1.44382483358197e42 * cos(theta) ** 23 + 8.20133998419932e40 * cos(theta) ** 21 - 3.81457673683689e39 * cos(theta) ** 19 + 1.42671177165159e38 * cos(theta) ** 17 - 4.19530380420793e36 * cos(theta) ** 15 + 9.42462343692411e34 * cos(theta) ** 13 - 1.5577889978387e33 * cos(theta) ** 11 + 1.7999662790153e31 * cos(theta) ** 9 - 1.35081897111842e29 * cos(theta) ** 7 + 5.87312596138445e26 * cos(theta) ** 5 - 1.20871083790583e24 * cos(theta) ** 3 + 7.42451374635033e20 * cos(theta) ) * sin(10 * phi) ) # @torch.jit.script def Yl99_m_minus_9(theta, phi): return ( 5.96012362729694e-18 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 2.25474043114056e46 * cos(theta) ** 90 - 4.58387585112586e47 * cos(theta) ** 88 + 4.49925045079738e48 * cos(theta) ** 86 - 2.84020041410439e49 * cos(theta) ** 84 + 1.29593437743035e50 * cos(theta) ** 82 - 4.55428366925524e50 * cos(theta) ** 80 + 1.28266812788294e51 * cos(theta) ** 78 - 2.97440338844206e51 * cos(theta) ** 76 + 5.79033446520482e51 * cos(theta) ** 74 - 9.60079397821868e51 * cos(theta) ** 72 + 1.37092901722497e52 * cos(theta) ** 70 - 1.70045895048706e52 * cos(theta) ** 68 + 1.84459309009977e52 * cos(theta) ** 66 - 1.75929398766741e52 * cos(theta) ** 64 + 1.48151072645677e52 * cos(theta) ** 62 - 1.10514271547524e52 * cos(theta) ** 60 + 7.32074328739215e51 * cos(theta) ** 58 - 4.31414925278404e51 * cos(theta) ** 56 + 2.2644137182302e51 * cos(theta) ** 54 - 1.05929258933881e51 * cos(theta) ** 52 + 4.41705023101655e50 * cos(theta) ** 50 - 1.6411545444329e50 * cos(theta) ** 48 + 5.42880447542614e49 * cos(theta) ** 46 - 1.59670719865475e49 * cos(theta) ** 44 + 4.16800499428088e48 * cos(theta) ** 42 - 9.63396590624385e47 * cos(theta) ** 40 + 1.96611549107017e47 * cos(theta) ** 38 - 3.53047047310941e46 * cos(theta) ** 36 + 5.55493605908823e45 * cos(theta) ** 34 - 7.62122555428832e44 * cos(theta) ** 32 + 9.06505485594007e43 * cos(theta) ** 30 - 9.28490431441942e42 * cos(theta) ** 28 + 8.12429127511699e41 * cos(theta) ** 26 - 6.01593680659153e40 * cos(theta) ** 24 + 3.72788181099969e39 * cos(theta) ** 22 - 1.90728836841845e38 * cos(theta) ** 20 + 7.92617650917552e36 * cos(theta) ** 18 - 2.62206487762996e35 * cos(theta) ** 16 + 6.73187388351722e33 * cos(theta) ** 14 - 1.29815749819891e32 * cos(theta) ** 12 + 1.7999662790153e30 * cos(theta) ** 10 - 1.68852371389803e28 * cos(theta) ** 8 + 9.78854326897408e25 * cos(theta) ** 6 - 3.02177709476459e23 * cos(theta) ** 4 + 3.71225687317517e20 * cos(theta) ** 2 - 7.56831166804315e16 ) * sin(9 * phi) ) # @torch.jit.script def Yl99_m_minus_8(theta, phi): return ( 5.90864424261924e-16 * (1.0 - cos(theta) ** 2) ** 4 * ( 2.4777367375171e44 * cos(theta) ** 91 - 5.15042230463579e45 * cos(theta) ** 89 + 5.17155224229584e46 * cos(theta) ** 87 - 3.34141225188752e47 * cos(theta) ** 85 + 1.56136671979561e48 * cos(theta) ** 83 - 5.62257243117931e48 * cos(theta) ** 81 + 1.62363054162397e49 * cos(theta) ** 79 - 3.86286154343124e49 * cos(theta) ** 77 + 7.72044595360643e49 * cos(theta) ** 75 - 1.31517725729023e50 * cos(theta) ** 73 + 1.93088593975348e50 * cos(theta) ** 71 - 2.46443326157545e50 * cos(theta) ** 69 + 2.75312401507428e50 * cos(theta) ** 67 - 2.70660613487294e50 * cos(theta) ** 65 + 2.35160432770915e50 * cos(theta) ** 63 - 1.81170936963155e50 * cos(theta) ** 61 + 1.24080394701562e50 * cos(theta) ** 59 - 7.56868289962112e49 * cos(theta) ** 57 + 4.11711585132764e49 * cos(theta) ** 55 - 1.99866526290342e49 * cos(theta) ** 53 + 8.66088280591481e48 * cos(theta) ** 51 - 3.34929498863857e48 * cos(theta) ** 49 + 1.15506478200556e48 * cos(theta) ** 47 - 3.54823821923277e47 * cos(theta) ** 45 + 9.69303487042064e46 * cos(theta) ** 43 - 2.3497477820107e46 * cos(theta) ** 41 + 5.04132177197481e45 * cos(theta) ** 39 - 9.54181208948488e44 * cos(theta) ** 37 + 1.58712458831092e44 * cos(theta) ** 35 - 2.30946228917828e43 * cos(theta) ** 33 + 2.92421124385163e42 * cos(theta) ** 31 - 3.20169114290325e41 * cos(theta) ** 29 + 3.00899676856185e40 * cos(theta) ** 27 - 2.40637472263661e39 * cos(theta) ** 25 + 1.62081817869552e38 * cos(theta) ** 23 - 9.08232556389737e36 * cos(theta) ** 21 + 4.17167184693449e35 * cos(theta) ** 19 - 1.54239110448821e34 * cos(theta) ** 17 + 4.48791592234481e32 * cos(theta) ** 15 - 9.98582690922241e30 * cos(theta) ** 13 + 1.636332980923e29 * cos(theta) ** 11 - 1.8761374598867e27 * cos(theta) ** 9 + 1.39836332413915e25 * cos(theta) ** 7 - 6.04355418952917e22 * cos(theta) ** 5 + 1.23741895772506e20 * cos(theta) ** 3 - 7.56831166804315e16 * cos(theta) ) * sin(8 * phi) ) # @torch.jit.script def Yl99_m_minus_7(theta, phi): return ( 5.86237566076914e-14 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 2.69319210599684e42 * cos(theta) ** 92 - 5.72269144959533e43 * cos(theta) ** 90 + 5.87676391169981e44 * cos(theta) ** 88 - 3.88536308359014e45 * cos(theta) ** 86 + 1.85876990451858e46 * cos(theta) ** 84 - 6.85679564777965e46 * cos(theta) ** 82 + 2.02953817702997e47 * cos(theta) ** 80 - 4.95238659414262e47 * cos(theta) ** 78 + 1.01584815179032e48 * cos(theta) ** 76 - 1.77726656390572e48 * cos(theta) ** 74 + 2.68178602743539e48 * cos(theta) ** 72 - 3.52061894510778e48 * cos(theta) ** 70 + 4.04871178687395e48 * cos(theta) ** 68 - 4.10091838617112e48 * cos(theta) ** 66 + 3.67438176204555e48 * cos(theta) ** 64 - 2.9221118865025e48 * cos(theta) ** 62 + 2.06800657835937e48 * cos(theta) ** 60 - 1.30494532752088e48 * cos(theta) ** 58 + 7.35199259165651e47 * cos(theta) ** 56 - 3.70123196833966e47 * cos(theta) ** 54 + 1.66555438575285e47 * cos(theta) ** 52 - 6.69858997727715e46 * cos(theta) ** 50 + 2.40638496251159e46 * cos(theta) ** 48 - 7.71356134615819e45 * cos(theta) ** 46 + 2.20296247055015e45 * cos(theta) ** 44 - 5.59463757621594e44 * cos(theta) ** 42 + 1.2603304429937e44 * cos(theta) ** 40 - 2.51100318144339e43 * cos(theta) ** 38 + 4.40867941197478e42 * cos(theta) ** 36 - 6.792536144642e41 * cos(theta) ** 34 + 9.13816013703636e40 * cos(theta) ** 32 - 1.06723038096775e40 * cos(theta) ** 30 + 1.0746417030578e39 * cos(theta) ** 28 - 9.2552873947562e37 * cos(theta) ** 26 + 6.75340907789799e36 * cos(theta) ** 24 - 4.12832980177153e35 * cos(theta) ** 22 + 2.08583592346724e34 * cos(theta) ** 20 - 8.56883946937894e32 * cos(theta) ** 18 + 2.80494745146551e31 * cos(theta) ** 16 - 7.13273350658743e29 * cos(theta) ** 14 + 1.36361081743583e28 * cos(theta) ** 12 - 1.8761374598867e26 * cos(theta) ** 10 + 1.74795415517394e24 * cos(theta) ** 8 - 1.0072590315882e22 * cos(theta) ** 6 + 3.09354739431264e19 * cos(theta) ** 4 - 3.78415583402158e16 * cos(theta) ** 2 + 7688248342181.18 ) * sin(7 * phi) ) # @torch.jit.script def Yl99_m_minus_6(theta, phi): return ( 5.82060397389043e-12 * (1.0 - cos(theta) ** 2) ** 3 * ( 2.89590549031919e40 * cos(theta) ** 93 - 6.28867192263222e41 * cos(theta) ** 91 + 6.60310551876384e42 * cos(theta) ** 89 - 4.46593457883924e43 * cos(theta) ** 87 + 2.18678812296303e44 * cos(theta) ** 85 - 8.26119957563813e44 * cos(theta) ** 83 + 2.50560268769132e45 * cos(theta) ** 81 - 6.26884379005395e45 * cos(theta) ** 79 + 1.3192833140134e46 * cos(theta) ** 77 - 2.36968875187429e46 * cos(theta) ** 75 + 3.67367948963751e46 * cos(theta) ** 73 - 4.95861823254617e46 * cos(theta) ** 71 + 5.8676982418463e46 * cos(theta) ** 69 - 6.12077371070316e46 * cos(theta) ** 67 + 5.65289501853162e46 * cos(theta) ** 65 - 4.63827283571825e46 * cos(theta) ** 63 + 3.39017471862191e46 * cos(theta) ** 61 - 2.21177174156082e46 * cos(theta) ** 59 + 1.28982326169412e46 * cos(theta) ** 57 - 6.72951266970847e45 * cos(theta) ** 55 + 3.14255544481669e45 * cos(theta) ** 53 - 1.31344901515238e45 * cos(theta) ** 51 + 4.9109897194114e44 * cos(theta) ** 49 - 1.64118326514004e44 * cos(theta) ** 47 + 4.8954721567781e43 * cos(theta) ** 45 - 1.30107850609673e43 * cos(theta) ** 43 + 3.07397669022854e42 * cos(theta) ** 41 - 6.43846969600869e41 * cos(theta) ** 39 + 1.1915349762094e41 * cos(theta) ** 37 - 1.94072461275486e40 * cos(theta) ** 35 + 2.76913943546556e39 * cos(theta) ** 33 - 3.44267864828306e38 * cos(theta) ** 31 + 3.70566104502691e37 * cos(theta) ** 29 - 3.42788422028007e36 * cos(theta) ** 27 + 2.7013636311592e35 * cos(theta) ** 25 - 1.79492600077023e34 * cos(theta) ** 23 + 9.93255201651068e32 * cos(theta) ** 21 - 4.50991551019944e31 * cos(theta) ** 19 + 1.64996908909736e30 * cos(theta) ** 17 - 4.75515567105829e28 * cos(theta) ** 15 + 1.04893139802756e27 * cos(theta) ** 13 - 1.70557950898791e25 * cos(theta) ** 11 + 1.9421712835266e23 * cos(theta) ** 9 - 1.43894147369742e21 * cos(theta) ** 7 + 6.18709478862528e18 * cos(theta) ** 5 - 1.26138527800719e16 * cos(theta) ** 3 + 7688248342181.18 * cos(theta) ) * sin(6 * phi) ) # @torch.jit.script def Yl99_m_minus_5(theta, phi): return ( 5.782646282006e-10 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 3.08075052161616e38 * cos(theta) ** 94 - 6.83551295938285e39 * cos(theta) ** 92 + 7.3367839097376e40 * cos(theta) ** 90 - 5.07492565777186e41 * cos(theta) ** 88 + 2.54277688716632e42 * cos(theta) ** 86 - 9.83476139956921e42 * cos(theta) ** 84 + 3.0556130337699e43 * cos(theta) ** 82 - 7.83605473756744e43 * cos(theta) ** 80 + 1.69138886411975e44 * cos(theta) ** 78 - 3.11801151562406e44 * cos(theta) ** 76 + 4.9644317427534e44 * cos(theta) ** 74 - 6.88696976742523e44 * cos(theta) ** 72 + 8.38242605978043e44 * cos(theta) ** 70 - 9.00113780985759e44 * cos(theta) ** 68 + 8.56499245232064e44 * cos(theta) ** 66 - 7.24730130580977e44 * cos(theta) ** 64 + 5.46802373971276e44 * cos(theta) ** 62 - 3.6862862359347e44 * cos(theta) ** 60 + 2.22383320981746e44 * cos(theta) ** 58 - 1.20169869101937e44 * cos(theta) ** 56 + 5.81954712003091e43 * cos(theta) ** 54 - 2.52586349067766e43 * cos(theta) ** 52 + 9.8219794388228e42 * cos(theta) ** 50 - 3.41913180237509e42 * cos(theta) ** 48 + 1.06423307756046e42 * cos(theta) ** 46 - 2.9569966047653e41 * cos(theta) ** 44 + 7.31899211959176e40 * cos(theta) ** 42 - 1.60961742400217e40 * cos(theta) ** 40 + 3.13561835844579e39 * cos(theta) ** 38 - 5.39090170209682e38 * cos(theta) ** 36 + 8.1445277513693e37 * cos(theta) ** 34 - 1.07583707758846e37 * cos(theta) ** 32 + 1.2352203483423e36 * cos(theta) ** 30 - 1.22424436438574e35 * cos(theta) ** 28 + 1.03898601198431e34 * cos(theta) ** 26 - 7.47885833654263e32 * cos(theta) ** 24 + 4.51479637114122e31 * cos(theta) ** 22 - 2.25495775509972e30 * cos(theta) ** 20 + 9.16649493942976e28 * cos(theta) ** 18 - 2.97197229441143e27 * cos(theta) ** 16 + 7.49236712876831e25 * cos(theta) ** 14 - 1.42131625748992e24 * cos(theta) ** 12 + 1.9421712835266e22 * cos(theta) ** 10 - 1.79867684212178e20 * cos(theta) ** 8 + 1.03118246477088e18 * cos(theta) ** 6 - 3.15346319501798e15 * cos(theta) ** 4 + 3844124171090.59 * cos(theta) ** 2 - 778951199.815722 ) * sin(5 * phi) ) # @torch.jit.script def Yl99_m_minus_4(theta, phi): return ( 5.74784568743144e-8 * (1.0 - cos(theta) ** 2) ** 2 * ( 3.24289528591174e36 * cos(theta) ** 95 - 7.35001393482027e37 * cos(theta) ** 93 + 8.06239990081055e38 * cos(theta) ** 91 - 5.70216366041782e39 * cos(theta) ** 89 + 2.92273205421416e40 * cos(theta) ** 87 - 1.15703075289049e41 * cos(theta) ** 85 + 3.68146148646976e41 * cos(theta) ** 83 - 9.67414165131782e41 * cos(theta) ** 81 + 2.14099856217689e42 * cos(theta) ** 79 - 4.04936560470658e42 * cos(theta) ** 77 + 6.6192423236712e42 * cos(theta) ** 75 - 9.43420516085648e42 * cos(theta) ** 73 + 1.18062338870147e43 * cos(theta) ** 71 - 1.30451272606632e43 * cos(theta) ** 69 + 1.27835708243592e43 * cos(theta) ** 67 - 1.11496943166304e43 * cos(theta) ** 65 + 8.67940276144882e42 * cos(theta) ** 63 - 6.04309219005688e42 * cos(theta) ** 61 + 3.76920883019908e42 * cos(theta) ** 59 - 2.10824331757784e42 * cos(theta) ** 57 + 1.05809947636926e42 * cos(theta) ** 55 - 4.76578017108992e41 * cos(theta) ** 53 + 1.9258783213378e41 * cos(theta) ** 51 - 6.97782000484711e40 * cos(theta) ** 49 + 2.26432569693714e40 * cos(theta) ** 47 - 6.5711035661451e39 * cos(theta) ** 45 + 1.70209119060274e39 * cos(theta) ** 43 - 3.92589615610286e38 * cos(theta) ** 41 + 8.04004707293793e37 * cos(theta) ** 39 - 1.45700046002617e37 * cos(theta) ** 37 + 2.32700792896266e36 * cos(theta) ** 35 - 3.26011235632866e35 * cos(theta) ** 33 + 3.98458176884614e34 * cos(theta) ** 31 - 4.22153229098531e33 * cos(theta) ** 29 + 3.84809634068262e32 * cos(theta) ** 27 - 2.99154333461705e31 * cos(theta) ** 25 + 1.96295494397444e30 * cos(theta) ** 23 - 1.07378940719034e29 * cos(theta) ** 21 + 4.82447102075251e27 * cos(theta) ** 19 - 1.74821899671261e26 * cos(theta) ** 17 + 4.99491141917887e24 * cos(theta) ** 15 - 1.09332019806917e23 * cos(theta) ** 13 + 1.76561025775146e21 * cos(theta) ** 11 - 1.99852982457975e19 * cos(theta) ** 9 + 1.47311780681554e17 * cos(theta) ** 7 - 630692639003596.0 * cos(theta) ** 5 + 1281374723696.86 * cos(theta) ** 3 - 778951199.815722 * cos(theta) ) * sin(4 * phi) ) # @torch.jit.script def Yl99_m_minus_3(theta, phi): return ( 5.71556711709373e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 3.37801592282473e34 * cos(theta) ** 96 - 7.8191637604471e35 * cos(theta) ** 94 + 8.76347815305494e36 * cos(theta) ** 92 - 6.33573740046425e37 * cos(theta) ** 90 + 3.32128642524336e38 * cos(theta) ** 88 - 1.3453845963843e39 * cos(theta) ** 86 + 4.38269224579733e39 * cos(theta) ** 84 - 1.17977337211193e40 * cos(theta) ** 82 + 2.67624820272112e40 * cos(theta) ** 80 - 5.19149436500843e40 * cos(theta) ** 78 + 8.70952937325158e40 * cos(theta) ** 76 - 1.27489258930493e41 * cos(theta) ** 74 + 1.63975470652982e41 * cos(theta) ** 72 - 1.86358960866617e41 * cos(theta) ** 70 + 1.87993688593517e41 * cos(theta) ** 68 - 1.68934762373188e41 * cos(theta) ** 66 + 1.35615668147638e41 * cos(theta) ** 64 - 9.74692288718852e40 * cos(theta) ** 62 + 6.28201471699846e40 * cos(theta) ** 60 - 3.63490227168594e40 * cos(theta) ** 58 + 1.88946335065939e40 * cos(theta) ** 56 - 8.8255188353517e39 * cos(theta) ** 54 + 3.70361215641885e39 * cos(theta) ** 52 - 1.39556400096942e39 * cos(theta) ** 50 + 4.71734520195238e38 * cos(theta) ** 48 - 1.42850077524894e38 * cos(theta) ** 46 + 3.86838906955167e37 * cos(theta) ** 44 - 9.34737180024491e36 * cos(theta) ** 42 + 2.01001176823448e36 * cos(theta) ** 40 - 3.83421173691097e35 * cos(theta) ** 38 + 6.46391091378516e34 * cos(theta) ** 36 - 9.58856575390782e33 * cos(theta) ** 34 + 1.24518180276442e33 * cos(theta) ** 32 - 1.40717743032844e32 * cos(theta) ** 30 + 1.37432012167236e31 * cos(theta) ** 28 - 1.15059359023733e30 * cos(theta) ** 26 + 8.17897893322685e28 * cos(theta) ** 24 - 4.88086094177429e27 * cos(theta) ** 22 + 2.41223551037625e26 * cos(theta) ** 20 - 9.71232775951448e24 * cos(theta) ** 18 + 3.1218196369868e23 * cos(theta) ** 16 - 7.80942998620837e21 * cos(theta) ** 14 + 1.47134188145955e20 * cos(theta) ** 12 - 1.99852982457975e18 * cos(theta) ** 10 + 1.84139725851943e16 * cos(theta) ** 8 - 105115439833933.0 * cos(theta) ** 6 + 320343680924.216 * cos(theta) ** 4 - 389475599.907861 * cos(theta) ** 2 + 78777.4271658295 ) * sin(3 * phi) ) # @torch.jit.script def Yl99_m_minus_2(theta, phi): return ( 0.000568519390793499 * (1.0 - cos(theta) ** 2) * ( 3.48249064208735e32 * cos(theta) ** 97 - 8.23069869520747e33 * cos(theta) ** 95 + 9.42309478823112e34 * cos(theta) ** 93 - 6.96234879171895e35 * cos(theta) ** 91 + 3.73178250027344e36 * cos(theta) ** 89 - 1.54641907630379e37 * cos(theta) ** 87 + 5.15610852446744e37 * cos(theta) ** 85 - 1.42141370133967e38 * cos(theta) ** 83 + 3.3040101268162e38 * cos(theta) ** 81 - 6.57151185444105e38 * cos(theta) ** 79 + 1.13110771081189e39 * cos(theta) ** 77 - 1.69985678573991e39 * cos(theta) ** 75 + 2.24623932401345e39 * cos(theta) ** 73 - 2.62477409671291e39 * cos(theta) ** 71 + 2.72454621150025e39 * cos(theta) ** 69 - 2.52141436377893e39 * cos(theta) ** 67 + 2.08639489457904e39 * cos(theta) ** 65 - 1.54713061701405e39 * cos(theta) ** 63 + 1.02983847819647e39 * cos(theta) ** 61 - 6.16085130794226e38 * cos(theta) ** 59 + 3.31484798361296e38 * cos(theta) ** 57 - 1.60463978824576e38 * cos(theta) ** 55 + 6.98794746494123e37 * cos(theta) ** 53 - 2.73640000190083e37 * cos(theta) ** 51 + 9.62723510602527e36 * cos(theta) ** 49 - 3.03936335159348e36 * cos(theta) ** 47 + 8.59642015455927e35 * cos(theta) ** 45 - 2.17380739540579e35 * cos(theta) ** 43 + 4.90246772740117e34 * cos(theta) ** 41 - 9.83131214592556e33 * cos(theta) ** 39 + 1.74700294967166e33 * cos(theta) ** 37 - 2.73959021540223e32 * cos(theta) ** 35 + 3.77327819019521e31 * cos(theta) ** 33 - 4.53928203331754e30 * cos(theta) ** 31 + 4.73903490231849e29 * cos(theta) ** 29 - 4.26145774161973e28 * cos(theta) ** 27 + 3.27159157329074e27 * cos(theta) ** 25 - 2.12211345294534e26 * cos(theta) ** 23 + 1.14868357636964e25 * cos(theta) ** 21 - 5.11175145237604e23 * cos(theta) ** 19 + 1.83636449234517e22 * cos(theta) ** 17 - 5.20628665747225e20 * cos(theta) ** 15 + 1.13180144727658e19 * cos(theta) ** 13 - 1.8168452950725e17 * cos(theta) ** 11 + 2.04599695391048e15 * cos(theta) ** 9 - 15016491404847.5 * cos(theta) ** 7 + 64068736184.8432 * cos(theta) ** 5 - 129825199.969287 * cos(theta) ** 3 + 78777.4271658295 * cos(theta) ) * sin(2 * phi) ) # @torch.jit.script def Yl99_m_minus_1(theta, phi): return ( 0.0565612510356328 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 3.55356187968097e30 * cos(theta) ** 98 - 8.57364447417445e31 * cos(theta) ** 96 + 1.00245689236501e33 * cos(theta) ** 94 - 7.56777042578147e33 * cos(theta) ** 92 + 4.14642500030383e34 * cos(theta) ** 90 - 1.75729440489067e35 * cos(theta) ** 88 + 5.99547502845052e35 * cos(theta) ** 86 - 1.69215916826152e36 * cos(theta) ** 84 + 4.02928064245878e36 * cos(theta) ** 82 - 8.21438981805132e36 * cos(theta) ** 80 + 1.45013809078448e37 * cos(theta) ** 78 - 2.23665366544725e37 * cos(theta) ** 76 + 3.03545854596412e37 * cos(theta) ** 74 - 3.64551957876794e37 * cos(theta) ** 72 + 3.89220887357178e37 * cos(theta) ** 70 - 3.70796229967489e37 * cos(theta) ** 68 + 3.16120438572582e37 * cos(theta) ** 66 - 2.41739158908445e37 * cos(theta) ** 64 + 1.66102980354269e37 * cos(theta) ** 62 - 1.02680855132371e37 * cos(theta) ** 60 + 5.71525514416028e36 * cos(theta) ** 58 - 2.86542819329601e36 * cos(theta) ** 56 + 1.29406434535949e36 * cos(theta) ** 54 - 5.26230769596313e35 * cos(theta) ** 52 + 1.92544702120505e35 * cos(theta) ** 50 - 6.33200698248642e34 * cos(theta) ** 48 + 1.86878699012158e34 * cos(theta) ** 46 - 4.94047135319498e33 * cos(theta) ** 44 + 1.1672542208098e33 * cos(theta) ** 42 - 2.45782803648139e32 * cos(theta) ** 40 + 4.59737618334649e31 * cos(theta) ** 38 - 7.60997282056176e30 * cos(theta) ** 36 + 1.10978770299859e30 * cos(theta) ** 34 - 1.41852563541173e29 * cos(theta) ** 32 + 1.57967830077283e28 * cos(theta) ** 30 - 1.52194919343562e27 * cos(theta) ** 28 + 1.25830445126567e26 * cos(theta) ** 26 - 8.84213938727226e24 * cos(theta) ** 24 + 5.22128898349838e23 * cos(theta) ** 22 - 2.55587572618802e22 * cos(theta) ** 20 + 1.02020249574732e21 * cos(theta) ** 18 - 3.25392916092015e19 * cos(theta) ** 16 + 8.08429605197554e17 * cos(theta) ** 14 - 1.51403774589375e16 * cos(theta) ** 12 + 204599695391048.0 * cos(theta) ** 10 - 1877061425605.94 * cos(theta) ** 8 + 10678122697.4739 * cos(theta) ** 6 - 32456299.9923218 * cos(theta) ** 4 + 39388.7135829148 * cos(theta) ** 2 - 7.95892373871788 ) * sin(phi) ) # @torch.jit.script def Yl99_m0(theta, phi): return ( 4.48745562168431e29 * cos(theta) ** 99 - 1.10500747313658e31 * cos(theta) ** 97 + 1.31920892177536e32 * cos(theta) ** 95 - 1.01731741549689e33 * cos(theta) ** 93 + 5.69644489986347e33 * cos(theta) ** 91 - 2.4684594566075e34 * cos(theta) ** 89 + 8.61540751521834e34 * cos(theta) ** 87 - 2.48882158412601e35 * cos(theta) ** 85 + 6.06905263342203e35 * cos(theta) ** 83 - 1.26783217382045e36 * cos(theta) ** 81 + 2.29484706322808e36 * cos(theta) ** 79 - 3.63144519866755e36 * cos(theta) ** 77 + 5.05981364347678e36 * cos(theta) ** 75 - 6.24321158766033e36 * cos(theta) ** 73 + 6.85345031427374e36 * cos(theta) ** 71 - 6.71827377947544e36 * cos(theta) ** 69 + 5.89860414919513e36 * cos(theta) ** 67 - 4.6494879764244e36 * cos(theta) ** 65 + 3.29616052861716e36 * cos(theta) ** 63 - 2.10441370133681e36 * cos(theta) ** 61 + 1.211030526241e36 * cos(theta) ** 59 - 6.28472317378934e35 * cos(theta) ** 57 + 2.94147160861225e35 * cos(theta) ** 55 - 1.24128597294379e35 * cos(theta) ** 53 + 4.7199008573856e34 * cos(theta) ** 51 - 1.61553653507829e34 * cos(theta) ** 49 + 4.97088164639475e33 * cos(theta) ** 47 - 1.37254739712713e33 * cos(theta) ** 45 + 3.39366114674291e32 * cos(theta) ** 43 - 7.49443877600599e31 * cos(theta) ** 41 + 1.47372656986209e31 * cos(theta) ** 39 - 2.57130065521028e30 * cos(theta) ** 37 + 3.96408851011585e29 * cos(theta) ** 35 - 5.37396368994972e28 * cos(theta) ** 33 + 6.37057213357309e27 * cos(theta) ** 31 - 6.56105435683607e26 * cos(theta) ** 29 + 5.82630811215102e25 * cos(theta) ** 27 - 4.42169545376218e24 * cos(theta) ** 25 + 2.83805869946225e23 * cos(theta) ** 23 - 1.52156993211263e22 * cos(theta) ** 21 + 6.71280852402629e20 * cos(theta) ** 19 - 2.39293362019699e19 * cos(theta) ** 17 + 6.7378669222938e17 * cos(theta) ** 15 - 1.4560115802446e16 * cos(theta) ** 13 + 232532561955525.0 * cos(theta) ** 11 - 2607398757911.09 * cos(theta) ** 9 + 19070775149.2887 * cos(theta) ** 7 - 81152234.6778243 * cos(theta) ** 5 + 164142.869493981 * cos(theta) ** 3 - 99.5006281030398 * cos(theta) ) # @torch.jit.script def Yl99_m1(theta, phi): return ( 0.0565612510356328 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 3.55356187968097e30 * cos(theta) ** 98 - 8.57364447417445e31 * cos(theta) ** 96 + 1.00245689236501e33 * cos(theta) ** 94 - 7.56777042578147e33 * cos(theta) ** 92 + 4.14642500030383e34 * cos(theta) ** 90 - 1.75729440489067e35 * cos(theta) ** 88 + 5.99547502845052e35 * cos(theta) ** 86 - 1.69215916826152e36 * cos(theta) ** 84 + 4.02928064245878e36 * cos(theta) ** 82 - 8.21438981805132e36 * cos(theta) ** 80 + 1.45013809078448e37 * cos(theta) ** 78 - 2.23665366544725e37 * cos(theta) ** 76 + 3.03545854596412e37 * cos(theta) ** 74 - 3.64551957876794e37 * cos(theta) ** 72 + 3.89220887357178e37 * cos(theta) ** 70 - 3.70796229967489e37 * cos(theta) ** 68 + 3.16120438572582e37 * cos(theta) ** 66 - 2.41739158908445e37 * cos(theta) ** 64 + 1.66102980354269e37 * cos(theta) ** 62 - 1.02680855132371e37 * cos(theta) ** 60 + 5.71525514416028e36 * cos(theta) ** 58 - 2.86542819329601e36 * cos(theta) ** 56 + 1.29406434535949e36 * cos(theta) ** 54 - 5.26230769596313e35 * cos(theta) ** 52 + 1.92544702120505e35 * cos(theta) ** 50 - 6.33200698248642e34 * cos(theta) ** 48 + 1.86878699012158e34 * cos(theta) ** 46 - 4.94047135319498e33 * cos(theta) ** 44 + 1.1672542208098e33 * cos(theta) ** 42 - 2.45782803648139e32 * cos(theta) ** 40 + 4.59737618334649e31 * cos(theta) ** 38 - 7.60997282056176e30 * cos(theta) ** 36 + 1.10978770299859e30 * cos(theta) ** 34 - 1.41852563541173e29 * cos(theta) ** 32 + 1.57967830077283e28 * cos(theta) ** 30 - 1.52194919343562e27 * cos(theta) ** 28 + 1.25830445126567e26 * cos(theta) ** 26 - 8.84213938727226e24 * cos(theta) ** 24 + 5.22128898349838e23 * cos(theta) ** 22 - 2.55587572618802e22 * cos(theta) ** 20 + 1.02020249574732e21 * cos(theta) ** 18 - 3.25392916092015e19 * cos(theta) ** 16 + 8.08429605197554e17 * cos(theta) ** 14 - 1.51403774589375e16 * cos(theta) ** 12 + 204599695391048.0 * cos(theta) ** 10 - 1877061425605.94 * cos(theta) ** 8 + 10678122697.4739 * cos(theta) ** 6 - 32456299.9923218 * cos(theta) ** 4 + 39388.7135829148 * cos(theta) ** 2 - 7.95892373871788 ) * cos(phi) ) # @torch.jit.script def Yl99_m2(theta, phi): return ( 0.000568519390793499 * (1.0 - cos(theta) ** 2) * ( 3.48249064208735e32 * cos(theta) ** 97 - 8.23069869520747e33 * cos(theta) ** 95 + 9.42309478823112e34 * cos(theta) ** 93 - 6.96234879171895e35 * cos(theta) ** 91 + 3.73178250027344e36 * cos(theta) ** 89 - 1.54641907630379e37 * cos(theta) ** 87 + 5.15610852446744e37 * cos(theta) ** 85 - 1.42141370133967e38 * cos(theta) ** 83 + 3.3040101268162e38 * cos(theta) ** 81 - 6.57151185444105e38 * cos(theta) ** 79 + 1.13110771081189e39 * cos(theta) ** 77 - 1.69985678573991e39 * cos(theta) ** 75 + 2.24623932401345e39 * cos(theta) ** 73 - 2.62477409671291e39 * cos(theta) ** 71 + 2.72454621150025e39 * cos(theta) ** 69 - 2.52141436377893e39 * cos(theta) ** 67 + 2.08639489457904e39 * cos(theta) ** 65 - 1.54713061701405e39 * cos(theta) ** 63 + 1.02983847819647e39 * cos(theta) ** 61 - 6.16085130794226e38 * cos(theta) ** 59 + 3.31484798361296e38 * cos(theta) ** 57 - 1.60463978824576e38 * cos(theta) ** 55 + 6.98794746494123e37 * cos(theta) ** 53 - 2.73640000190083e37 * cos(theta) ** 51 + 9.62723510602527e36 * cos(theta) ** 49 - 3.03936335159348e36 * cos(theta) ** 47 + 8.59642015455927e35 * cos(theta) ** 45 - 2.17380739540579e35 * cos(theta) ** 43 + 4.90246772740117e34 * cos(theta) ** 41 - 9.83131214592556e33 * cos(theta) ** 39 + 1.74700294967166e33 * cos(theta) ** 37 - 2.73959021540223e32 * cos(theta) ** 35 + 3.77327819019521e31 * cos(theta) ** 33 - 4.53928203331754e30 * cos(theta) ** 31 + 4.73903490231849e29 * cos(theta) ** 29 - 4.26145774161973e28 * cos(theta) ** 27 + 3.27159157329074e27 * cos(theta) ** 25 - 2.12211345294534e26 * cos(theta) ** 23 + 1.14868357636964e25 * cos(theta) ** 21 - 5.11175145237604e23 * cos(theta) ** 19 + 1.83636449234517e22 * cos(theta) ** 17 - 5.20628665747225e20 * cos(theta) ** 15 + 1.13180144727658e19 * cos(theta) ** 13 - 1.8168452950725e17 * cos(theta) ** 11 + 2.04599695391048e15 * cos(theta) ** 9 - 15016491404847.5 * cos(theta) ** 7 + 64068736184.8432 * cos(theta) ** 5 - 129825199.969287 * cos(theta) ** 3 + 78777.4271658295 * cos(theta) ) * cos(2 * phi) ) # @torch.jit.script def Yl99_m3(theta, phi): return ( 5.71556711709373e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 3.37801592282473e34 * cos(theta) ** 96 - 7.8191637604471e35 * cos(theta) ** 94 + 8.76347815305494e36 * cos(theta) ** 92 - 6.33573740046425e37 * cos(theta) ** 90 + 3.32128642524336e38 * cos(theta) ** 88 - 1.3453845963843e39 * cos(theta) ** 86 + 4.38269224579733e39 * cos(theta) ** 84 - 1.17977337211193e40 * cos(theta) ** 82 + 2.67624820272112e40 * cos(theta) ** 80 - 5.19149436500843e40 * cos(theta) ** 78 + 8.70952937325158e40 * cos(theta) ** 76 - 1.27489258930493e41 * cos(theta) ** 74 + 1.63975470652982e41 * cos(theta) ** 72 - 1.86358960866617e41 * cos(theta) ** 70 + 1.87993688593517e41 * cos(theta) ** 68 - 1.68934762373188e41 * cos(theta) ** 66 + 1.35615668147638e41 * cos(theta) ** 64 - 9.74692288718852e40 * cos(theta) ** 62 + 6.28201471699846e40 * cos(theta) ** 60 - 3.63490227168594e40 * cos(theta) ** 58 + 1.88946335065939e40 * cos(theta) ** 56 - 8.8255188353517e39 * cos(theta) ** 54 + 3.70361215641885e39 * cos(theta) ** 52 - 1.39556400096942e39 * cos(theta) ** 50 + 4.71734520195238e38 * cos(theta) ** 48 - 1.42850077524894e38 * cos(theta) ** 46 + 3.86838906955167e37 * cos(theta) ** 44 - 9.34737180024491e36 * cos(theta) ** 42 + 2.01001176823448e36 * cos(theta) ** 40 - 3.83421173691097e35 * cos(theta) ** 38 + 6.46391091378516e34 * cos(theta) ** 36 - 9.58856575390782e33 * cos(theta) ** 34 + 1.24518180276442e33 * cos(theta) ** 32 - 1.40717743032844e32 * cos(theta) ** 30 + 1.37432012167236e31 * cos(theta) ** 28 - 1.15059359023733e30 * cos(theta) ** 26 + 8.17897893322685e28 * cos(theta) ** 24 - 4.88086094177429e27 * cos(theta) ** 22 + 2.41223551037625e26 * cos(theta) ** 20 - 9.71232775951448e24 * cos(theta) ** 18 + 3.1218196369868e23 * cos(theta) ** 16 - 7.80942998620837e21 * cos(theta) ** 14 + 1.47134188145955e20 * cos(theta) ** 12 - 1.99852982457975e18 * cos(theta) ** 10 + 1.84139725851943e16 * cos(theta) ** 8 - 105115439833933.0 * cos(theta) ** 6 + 320343680924.216 * cos(theta) ** 4 - 389475599.907861 * cos(theta) ** 2 + 78777.4271658295 ) * cos(3 * phi) ) # @torch.jit.script def Yl99_m4(theta, phi): return ( 5.74784568743144e-8 * (1.0 - cos(theta) ** 2) ** 2 * ( 3.24289528591174e36 * cos(theta) ** 95 - 7.35001393482027e37 * cos(theta) ** 93 + 8.06239990081055e38 * cos(theta) ** 91 - 5.70216366041782e39 * cos(theta) ** 89 + 2.92273205421416e40 * cos(theta) ** 87 - 1.15703075289049e41 * cos(theta) ** 85 + 3.68146148646976e41 * cos(theta) ** 83 - 9.67414165131782e41 * cos(theta) ** 81 + 2.14099856217689e42 * cos(theta) ** 79 - 4.04936560470658e42 * cos(theta) ** 77 + 6.6192423236712e42 * cos(theta) ** 75 - 9.43420516085648e42 * cos(theta) ** 73 + 1.18062338870147e43 * cos(theta) ** 71 - 1.30451272606632e43 * cos(theta) ** 69 + 1.27835708243592e43 * cos(theta) ** 67 - 1.11496943166304e43 * cos(theta) ** 65 + 8.67940276144882e42 * cos(theta) ** 63 - 6.04309219005688e42 * cos(theta) ** 61 + 3.76920883019908e42 * cos(theta) ** 59 - 2.10824331757784e42 * cos(theta) ** 57 + 1.05809947636926e42 * cos(theta) ** 55 - 4.76578017108992e41 * cos(theta) ** 53 + 1.9258783213378e41 * cos(theta) ** 51 - 6.97782000484711e40 * cos(theta) ** 49 + 2.26432569693714e40 * cos(theta) ** 47 - 6.5711035661451e39 * cos(theta) ** 45 + 1.70209119060274e39 * cos(theta) ** 43 - 3.92589615610286e38 * cos(theta) ** 41 + 8.04004707293793e37 * cos(theta) ** 39 - 1.45700046002617e37 * cos(theta) ** 37 + 2.32700792896266e36 * cos(theta) ** 35 - 3.26011235632866e35 * cos(theta) ** 33 + 3.98458176884614e34 * cos(theta) ** 31 - 4.22153229098531e33 * cos(theta) ** 29 + 3.84809634068262e32 * cos(theta) ** 27 - 2.99154333461705e31 * cos(theta) ** 25 + 1.96295494397444e30 * cos(theta) ** 23 - 1.07378940719034e29 * cos(theta) ** 21 + 4.82447102075251e27 * cos(theta) ** 19 - 1.74821899671261e26 * cos(theta) ** 17 + 4.99491141917887e24 * cos(theta) ** 15 - 1.09332019806917e23 * cos(theta) ** 13 + 1.76561025775146e21 * cos(theta) ** 11 - 1.99852982457975e19 * cos(theta) ** 9 + 1.47311780681554e17 * cos(theta) ** 7 - 630692639003596.0 * cos(theta) ** 5 + 1281374723696.86 * cos(theta) ** 3 - 778951199.815722 * cos(theta) ) * cos(4 * phi) ) # @torch.jit.script def Yl99_m5(theta, phi): return ( 5.782646282006e-10 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 3.08075052161616e38 * cos(theta) ** 94 - 6.83551295938285e39 * cos(theta) ** 92 + 7.3367839097376e40 * cos(theta) ** 90 - 5.07492565777186e41 * cos(theta) ** 88 + 2.54277688716632e42 * cos(theta) ** 86 - 9.83476139956921e42 * cos(theta) ** 84 + 3.0556130337699e43 * cos(theta) ** 82 - 7.83605473756744e43 * cos(theta) ** 80 + 1.69138886411975e44 * cos(theta) ** 78 - 3.11801151562406e44 * cos(theta) ** 76 + 4.9644317427534e44 * cos(theta) ** 74 - 6.88696976742523e44 * cos(theta) ** 72 + 8.38242605978043e44 * cos(theta) ** 70 - 9.00113780985759e44 * cos(theta) ** 68 + 8.56499245232064e44 * cos(theta) ** 66 - 7.24730130580977e44 * cos(theta) ** 64 + 5.46802373971276e44 * cos(theta) ** 62 - 3.6862862359347e44 * cos(theta) ** 60 + 2.22383320981746e44 * cos(theta) ** 58 - 1.20169869101937e44 * cos(theta) ** 56 + 5.81954712003091e43 * cos(theta) ** 54 - 2.52586349067766e43 * cos(theta) ** 52 + 9.8219794388228e42 * cos(theta) ** 50 - 3.41913180237509e42 * cos(theta) ** 48 + 1.06423307756046e42 * cos(theta) ** 46 - 2.9569966047653e41 * cos(theta) ** 44 + 7.31899211959176e40 * cos(theta) ** 42 - 1.60961742400217e40 * cos(theta) ** 40 + 3.13561835844579e39 * cos(theta) ** 38 - 5.39090170209682e38 * cos(theta) ** 36 + 8.1445277513693e37 * cos(theta) ** 34 - 1.07583707758846e37 * cos(theta) ** 32 + 1.2352203483423e36 * cos(theta) ** 30 - 1.22424436438574e35 * cos(theta) ** 28 + 1.03898601198431e34 * cos(theta) ** 26 - 7.47885833654263e32 * cos(theta) ** 24 + 4.51479637114122e31 * cos(theta) ** 22 - 2.25495775509972e30 * cos(theta) ** 20 + 9.16649493942976e28 * cos(theta) ** 18 - 2.97197229441143e27 * cos(theta) ** 16 + 7.49236712876831e25 * cos(theta) ** 14 - 1.42131625748992e24 * cos(theta) ** 12 + 1.9421712835266e22 * cos(theta) ** 10 - 1.79867684212178e20 * cos(theta) ** 8 + 1.03118246477088e18 * cos(theta) ** 6 - 3.15346319501798e15 * cos(theta) ** 4 + 3844124171090.59 * cos(theta) ** 2 - 778951199.815722 ) * cos(5 * phi) ) # @torch.jit.script def Yl99_m6(theta, phi): return ( 5.82060397389043e-12 * (1.0 - cos(theta) ** 2) ** 3 * ( 2.89590549031919e40 * cos(theta) ** 93 - 6.28867192263222e41 * cos(theta) ** 91 + 6.60310551876384e42 * cos(theta) ** 89 - 4.46593457883924e43 * cos(theta) ** 87 + 2.18678812296303e44 * cos(theta) ** 85 - 8.26119957563813e44 * cos(theta) ** 83 + 2.50560268769132e45 * cos(theta) ** 81 - 6.26884379005395e45 * cos(theta) ** 79 + 1.3192833140134e46 * cos(theta) ** 77 - 2.36968875187429e46 * cos(theta) ** 75 + 3.67367948963751e46 * cos(theta) ** 73 - 4.95861823254617e46 * cos(theta) ** 71 + 5.8676982418463e46 * cos(theta) ** 69 - 6.12077371070316e46 * cos(theta) ** 67 + 5.65289501853162e46 * cos(theta) ** 65 - 4.63827283571825e46 * cos(theta) ** 63 + 3.39017471862191e46 * cos(theta) ** 61 - 2.21177174156082e46 * cos(theta) ** 59 + 1.28982326169412e46 * cos(theta) ** 57 - 6.72951266970847e45 * cos(theta) ** 55 + 3.14255544481669e45 * cos(theta) ** 53 - 1.31344901515238e45 * cos(theta) ** 51 + 4.9109897194114e44 * cos(theta) ** 49 - 1.64118326514004e44 * cos(theta) ** 47 + 4.8954721567781e43 * cos(theta) ** 45 - 1.30107850609673e43 * cos(theta) ** 43 + 3.07397669022854e42 * cos(theta) ** 41 - 6.43846969600869e41 * cos(theta) ** 39 + 1.1915349762094e41 * cos(theta) ** 37 - 1.94072461275486e40 * cos(theta) ** 35 + 2.76913943546556e39 * cos(theta) ** 33 - 3.44267864828306e38 * cos(theta) ** 31 + 3.70566104502691e37 * cos(theta) ** 29 - 3.42788422028007e36 * cos(theta) ** 27 + 2.7013636311592e35 * cos(theta) ** 25 - 1.79492600077023e34 * cos(theta) ** 23 + 9.93255201651068e32 * cos(theta) ** 21 - 4.50991551019944e31 * cos(theta) ** 19 + 1.64996908909736e30 * cos(theta) ** 17 - 4.75515567105829e28 * cos(theta) ** 15 + 1.04893139802756e27 * cos(theta) ** 13 - 1.70557950898791e25 * cos(theta) ** 11 + 1.9421712835266e23 * cos(theta) ** 9 - 1.43894147369742e21 * cos(theta) ** 7 + 6.18709478862528e18 * cos(theta) ** 5 - 1.26138527800719e16 * cos(theta) ** 3 + 7688248342181.18 * cos(theta) ) * cos(6 * phi) ) # @torch.jit.script def Yl99_m7(theta, phi): return ( 5.86237566076914e-14 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 2.69319210599684e42 * cos(theta) ** 92 - 5.72269144959533e43 * cos(theta) ** 90 + 5.87676391169981e44 * cos(theta) ** 88 - 3.88536308359014e45 * cos(theta) ** 86 + 1.85876990451858e46 * cos(theta) ** 84 - 6.85679564777965e46 * cos(theta) ** 82 + 2.02953817702997e47 * cos(theta) ** 80 - 4.95238659414262e47 * cos(theta) ** 78 + 1.01584815179032e48 * cos(theta) ** 76 - 1.77726656390572e48 * cos(theta) ** 74 + 2.68178602743539e48 * cos(theta) ** 72 - 3.52061894510778e48 * cos(theta) ** 70 + 4.04871178687395e48 * cos(theta) ** 68 - 4.10091838617112e48 * cos(theta) ** 66 + 3.67438176204555e48 * cos(theta) ** 64 - 2.9221118865025e48 * cos(theta) ** 62 + 2.06800657835937e48 * cos(theta) ** 60 - 1.30494532752088e48 * cos(theta) ** 58 + 7.35199259165651e47 * cos(theta) ** 56 - 3.70123196833966e47 * cos(theta) ** 54 + 1.66555438575285e47 * cos(theta) ** 52 - 6.69858997727715e46 * cos(theta) ** 50 + 2.40638496251159e46 * cos(theta) ** 48 - 7.71356134615819e45 * cos(theta) ** 46 + 2.20296247055015e45 * cos(theta) ** 44 - 5.59463757621594e44 * cos(theta) ** 42 + 1.2603304429937e44 * cos(theta) ** 40 - 2.51100318144339e43 * cos(theta) ** 38 + 4.40867941197478e42 * cos(theta) ** 36 - 6.792536144642e41 * cos(theta) ** 34 + 9.13816013703636e40 * cos(theta) ** 32 - 1.06723038096775e40 * cos(theta) ** 30 + 1.0746417030578e39 * cos(theta) ** 28 - 9.2552873947562e37 * cos(theta) ** 26 + 6.75340907789799e36 * cos(theta) ** 24 - 4.12832980177153e35 * cos(theta) ** 22 + 2.08583592346724e34 * cos(theta) ** 20 - 8.56883946937894e32 * cos(theta) ** 18 + 2.80494745146551e31 * cos(theta) ** 16 - 7.13273350658743e29 * cos(theta) ** 14 + 1.36361081743583e28 * cos(theta) ** 12 - 1.8761374598867e26 * cos(theta) ** 10 + 1.74795415517394e24 * cos(theta) ** 8 - 1.0072590315882e22 * cos(theta) ** 6 + 3.09354739431264e19 * cos(theta) ** 4 - 3.78415583402158e16 * cos(theta) ** 2 + 7688248342181.18 ) * cos(7 * phi) ) # @torch.jit.script def Yl99_m8(theta, phi): return ( 5.90864424261924e-16 * (1.0 - cos(theta) ** 2) ** 4 * ( 2.4777367375171e44 * cos(theta) ** 91 - 5.15042230463579e45 * cos(theta) ** 89 + 5.17155224229584e46 * cos(theta) ** 87 - 3.34141225188752e47 * cos(theta) ** 85 + 1.56136671979561e48 * cos(theta) ** 83 - 5.62257243117931e48 * cos(theta) ** 81 + 1.62363054162397e49 * cos(theta) ** 79 - 3.86286154343124e49 * cos(theta) ** 77 + 7.72044595360643e49 * cos(theta) ** 75 - 1.31517725729023e50 * cos(theta) ** 73 + 1.93088593975348e50 * cos(theta) ** 71 - 2.46443326157545e50 * cos(theta) ** 69 + 2.75312401507428e50 * cos(theta) ** 67 - 2.70660613487294e50 * cos(theta) ** 65 + 2.35160432770915e50 * cos(theta) ** 63 - 1.81170936963155e50 * cos(theta) ** 61 + 1.24080394701562e50 * cos(theta) ** 59 - 7.56868289962112e49 * cos(theta) ** 57 + 4.11711585132764e49 * cos(theta) ** 55 - 1.99866526290342e49 * cos(theta) ** 53 + 8.66088280591481e48 * cos(theta) ** 51 - 3.34929498863857e48 * cos(theta) ** 49 + 1.15506478200556e48 * cos(theta) ** 47 - 3.54823821923277e47 * cos(theta) ** 45 + 9.69303487042064e46 * cos(theta) ** 43 - 2.3497477820107e46 * cos(theta) ** 41 + 5.04132177197481e45 * cos(theta) ** 39 - 9.54181208948488e44 * cos(theta) ** 37 + 1.58712458831092e44 * cos(theta) ** 35 - 2.30946228917828e43 * cos(theta) ** 33 + 2.92421124385163e42 * cos(theta) ** 31 - 3.20169114290325e41 * cos(theta) ** 29 + 3.00899676856185e40 * cos(theta) ** 27 - 2.40637472263661e39 * cos(theta) ** 25 + 1.62081817869552e38 * cos(theta) ** 23 - 9.08232556389737e36 * cos(theta) ** 21 + 4.17167184693449e35 * cos(theta) ** 19 - 1.54239110448821e34 * cos(theta) ** 17 + 4.48791592234481e32 * cos(theta) ** 15 - 9.98582690922241e30 * cos(theta) ** 13 + 1.636332980923e29 * cos(theta) ** 11 - 1.8761374598867e27 * cos(theta) ** 9 + 1.39836332413915e25 * cos(theta) ** 7 - 6.04355418952917e22 * cos(theta) ** 5 + 1.23741895772506e20 * cos(theta) ** 3 - 7.56831166804315e16 * cos(theta) ) * cos(8 * phi) ) # @torch.jit.script def Yl99_m9(theta, phi): return ( 5.96012362729694e-18 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 2.25474043114056e46 * cos(theta) ** 90 - 4.58387585112586e47 * cos(theta) ** 88 + 4.49925045079738e48 * cos(theta) ** 86 - 2.84020041410439e49 * cos(theta) ** 84 + 1.29593437743035e50 * cos(theta) ** 82 - 4.55428366925524e50 * cos(theta) ** 80 + 1.28266812788294e51 * cos(theta) ** 78 - 2.97440338844206e51 * cos(theta) ** 76 + 5.79033446520482e51 * cos(theta) ** 74 - 9.60079397821868e51 * cos(theta) ** 72 + 1.37092901722497e52 * cos(theta) ** 70 - 1.70045895048706e52 * cos(theta) ** 68 + 1.84459309009977e52 * cos(theta) ** 66 - 1.75929398766741e52 * cos(theta) ** 64 + 1.48151072645677e52 * cos(theta) ** 62 - 1.10514271547524e52 * cos(theta) ** 60 + 7.32074328739215e51 * cos(theta) ** 58 - 4.31414925278404e51 * cos(theta) ** 56 + 2.2644137182302e51 * cos(theta) ** 54 - 1.05929258933881e51 * cos(theta) ** 52 + 4.41705023101655e50 * cos(theta) ** 50 - 1.6411545444329e50 * cos(theta) ** 48 + 5.42880447542614e49 * cos(theta) ** 46 - 1.59670719865475e49 * cos(theta) ** 44 + 4.16800499428088e48 * cos(theta) ** 42 - 9.63396590624385e47 * cos(theta) ** 40 + 1.96611549107017e47 * cos(theta) ** 38 - 3.53047047310941e46 * cos(theta) ** 36 + 5.55493605908823e45 * cos(theta) ** 34 - 7.62122555428832e44 * cos(theta) ** 32 + 9.06505485594007e43 * cos(theta) ** 30 - 9.28490431441942e42 * cos(theta) ** 28 + 8.12429127511699e41 * cos(theta) ** 26 - 6.01593680659153e40 * cos(theta) ** 24 + 3.72788181099969e39 * cos(theta) ** 22 - 1.90728836841845e38 * cos(theta) ** 20 + 7.92617650917552e36 * cos(theta) ** 18 - 2.62206487762996e35 * cos(theta) ** 16 + 6.73187388351722e33 * cos(theta) ** 14 - 1.29815749819891e32 * cos(theta) ** 12 + 1.7999662790153e30 * cos(theta) ** 10 - 1.68852371389803e28 * cos(theta) ** 8 + 9.78854326897408e25 * cos(theta) ** 6 - 3.02177709476459e23 * cos(theta) ** 4 + 3.71225687317517e20 * cos(theta) ** 2 - 7.56831166804315e16 ) * cos(9 * phi) ) # @torch.jit.script def Yl99_m10(theta, phi): return ( 6.01756464472791e-20 * (1.0 - cos(theta) ** 2) ** 5 * ( 2.0292663880265e48 * cos(theta) ** 89 - 4.03381074899075e49 * cos(theta) ** 87 + 3.86935538768575e50 * cos(theta) ** 85 - 2.38576834784769e51 * cos(theta) ** 83 + 1.06266618949289e52 * cos(theta) ** 81 - 3.64342693540419e52 * cos(theta) ** 79 + 1.00048113974869e53 * cos(theta) ** 77 - 2.26054657521596e53 * cos(theta) ** 75 + 4.28484750425157e53 * cos(theta) ** 73 - 6.91257166431745e53 * cos(theta) ** 71 + 9.59650312057478e53 * cos(theta) ** 69 - 1.1563120863312e54 * cos(theta) ** 67 + 1.21743143946585e54 * cos(theta) ** 65 - 1.12594815210714e54 * cos(theta) ** 63 + 9.18536650403195e53 * cos(theta) ** 61 - 6.63085629285147e53 * cos(theta) ** 59 + 4.24603110668745e53 * cos(theta) ** 57 - 2.41592358155906e53 * cos(theta) ** 55 + 1.22278340784431e53 * cos(theta) ** 53 - 5.50832146456182e52 * cos(theta) ** 51 + 2.20852511550828e52 * cos(theta) ** 49 - 7.87754181327793e51 * cos(theta) ** 47 + 2.49725005869602e51 * cos(theta) ** 45 - 7.02551167408088e50 * cos(theta) ** 43 + 1.75056209759797e50 * cos(theta) ** 41 - 3.85358636249754e49 * cos(theta) ** 39 + 7.47123886606666e48 * cos(theta) ** 37 - 1.27096937031939e48 * cos(theta) ** 35 + 1.88867826009e47 * cos(theta) ** 33 - 2.43879217737226e46 * cos(theta) ** 31 + 2.71951645678202e45 * cos(theta) ** 29 - 2.59977320803744e44 * cos(theta) ** 27 + 2.11231573153042e43 * cos(theta) ** 25 - 1.44382483358197e42 * cos(theta) ** 23 + 8.20133998419932e40 * cos(theta) ** 21 - 3.81457673683689e39 * cos(theta) ** 19 + 1.42671177165159e38 * cos(theta) ** 17 - 4.19530380420793e36 * cos(theta) ** 15 + 9.42462343692411e34 * cos(theta) ** 13 - 1.5577889978387e33 * cos(theta) ** 11 + 1.7999662790153e31 * cos(theta) ** 9 - 1.35081897111842e29 * cos(theta) ** 7 + 5.87312596138445e26 * cos(theta) ** 5 - 1.20871083790583e24 * cos(theta) ** 3 + 7.42451374635033e20 * cos(theta) ) * cos(10 * phi) ) # @torch.jit.script def Yl99_m11(theta, phi): return ( 6.08176196963013e-22 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 1.80604708534359e50 * cos(theta) ** 88 - 3.50941535162195e51 * cos(theta) ** 86 + 3.28895207953288e52 * cos(theta) ** 84 - 1.98018772871358e53 * cos(theta) ** 82 + 8.60759613489241e53 * cos(theta) ** 80 - 2.87830727896931e54 * cos(theta) ** 78 + 7.70370477606493e54 * cos(theta) ** 76 - 1.69540993141197e55 * cos(theta) ** 74 + 3.12793867810365e55 * cos(theta) ** 72 - 4.90792588166539e55 * cos(theta) ** 70 + 6.6215871531966e55 * cos(theta) ** 68 - 7.74729097841903e55 * cos(theta) ** 66 + 7.91330435652801e55 * cos(theta) ** 64 - 7.093473358275e55 * cos(theta) ** 62 + 5.60307356745949e55 * cos(theta) ** 60 - 3.91220521278237e55 * cos(theta) ** 58 + 2.42023773081185e55 * cos(theta) ** 56 - 1.32875796985748e55 * cos(theta) ** 54 + 6.48075206157485e54 * cos(theta) ** 52 - 2.80924394692653e54 * cos(theta) ** 50 + 1.08217730659906e54 * cos(theta) ** 48 - 3.70244465224063e53 * cos(theta) ** 46 + 1.12376252641321e53 * cos(theta) ** 44 - 3.02097001985478e52 * cos(theta) ** 42 + 7.17730460015167e51 * cos(theta) ** 40 - 1.50289868137404e51 * cos(theta) ** 38 + 2.76435838044466e50 * cos(theta) ** 36 - 4.44839279611785e49 * cos(theta) ** 34 + 6.23263825829699e48 * cos(theta) ** 32 - 7.56025574985401e47 * cos(theta) ** 30 + 7.88659772466786e46 * cos(theta) ** 28 - 7.01938766170108e45 * cos(theta) ** 26 + 5.28078932882605e44 * cos(theta) ** 24 - 3.32079711723853e43 * cos(theta) ** 22 + 1.72228139668186e42 * cos(theta) ** 20 - 7.2476957999901e40 * cos(theta) ** 18 + 2.42541001180771e39 * cos(theta) ** 16 - 6.2929557063119e37 * cos(theta) ** 14 + 1.22520104680013e36 * cos(theta) ** 12 - 1.71356789762256e34 * cos(theta) ** 10 + 1.61996965111377e32 * cos(theta) ** 8 - 9.45573279782896e29 * cos(theta) ** 6 + 2.93656298069222e27 * cos(theta) ** 4 - 3.6261325137175e24 * cos(theta) ** 2 + 7.42451374635033e20 ) * cos(11 * phi) ) # @torch.jit.script def Yl99_m12(theta, phi): return ( 6.15356217585626e-24 * (1.0 - cos(theta) ** 2) ** 6 * ( 1.58932143510236e52 * cos(theta) ** 87 - 3.01809720239488e53 * cos(theta) ** 85 + 2.76271974680762e54 * cos(theta) ** 83 - 1.62375393754514e55 * cos(theta) ** 81 + 6.88607690791393e55 * cos(theta) ** 79 - 2.24507967759606e56 * cos(theta) ** 77 + 5.85481562980935e56 * cos(theta) ** 75 - 1.25460334924486e57 * cos(theta) ** 73 + 2.25211584823463e57 * cos(theta) ** 71 - 3.43554811716577e57 * cos(theta) ** 69 + 4.50267926417369e57 * cos(theta) ** 67 - 5.11321204575656e57 * cos(theta) ** 65 + 5.06451478817793e57 * cos(theta) ** 63 - 4.3979534821305e57 * cos(theta) ** 61 + 3.36184414047569e57 * cos(theta) ** 59 - 2.26907902341377e57 * cos(theta) ** 57 + 1.35533312925463e57 * cos(theta) ** 55 - 7.17529303723041e56 * cos(theta) ** 53 + 3.36999107201892e56 * cos(theta) ** 51 - 1.40462197346326e56 * cos(theta) ** 49 + 5.19445107167546e55 * cos(theta) ** 47 - 1.70312454003069e55 * cos(theta) ** 45 + 4.94455511621813e54 * cos(theta) ** 43 - 1.26880740833901e54 * cos(theta) ** 41 + 2.87092184006067e53 * cos(theta) ** 39 - 5.71101498922136e52 * cos(theta) ** 37 + 9.95169016960079e51 * cos(theta) ** 35 - 1.51245355068007e51 * cos(theta) ** 33 + 1.99444424265504e50 * cos(theta) ** 31 - 2.2680767249562e49 * cos(theta) ** 29 + 2.208247362907e48 * cos(theta) ** 27 - 1.82504079204228e47 * cos(theta) ** 25 + 1.26738943891825e46 * cos(theta) ** 23 - 7.30575365792476e44 * cos(theta) ** 21 + 3.44456279336371e43 * cos(theta) ** 19 - 1.30458524399822e42 * cos(theta) ** 17 + 3.88065601889234e40 * cos(theta) ** 15 - 8.81013798883666e38 * cos(theta) ** 13 + 1.47024125616016e37 * cos(theta) ** 11 - 1.71356789762256e35 * cos(theta) ** 9 + 1.29597572089102e33 * cos(theta) ** 7 - 5.67343967869738e30 * cos(theta) ** 5 + 1.17462519227689e28 * cos(theta) ** 3 - 7.25226502743501e24 * cos(theta) ) * cos(12 * phi) ) # @torch.jit.script def Yl99_m13(theta, phi): return ( 6.23387307326385e-26 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 1.38270964853905e54 * cos(theta) ** 86 - 2.56538262203565e55 * cos(theta) ** 84 + 2.29305738985033e56 * cos(theta) ** 82 - 1.31524068941156e57 * cos(theta) ** 80 + 5.440000757252e57 * cos(theta) ** 78 - 1.72871135174897e58 * cos(theta) ** 76 + 4.39111172235701e58 * cos(theta) ** 74 - 9.15860444948748e58 * cos(theta) ** 72 + 1.59900225224658e59 * cos(theta) ** 70 - 2.37052820084438e59 * cos(theta) ** 68 + 3.01679510699637e59 * cos(theta) ** 66 - 3.32358782974177e59 * cos(theta) ** 64 + 3.19064431655209e59 * cos(theta) ** 62 - 2.6827516240996e59 * cos(theta) ** 60 + 1.98348804288066e59 * cos(theta) ** 58 - 1.29337504334585e59 * cos(theta) ** 56 + 7.45433221090049e58 * cos(theta) ** 54 - 3.80290530973212e58 * cos(theta) ** 52 + 1.71869544672965e58 * cos(theta) ** 50 - 6.88264766996999e57 * cos(theta) ** 48 + 2.44139200368747e57 * cos(theta) ** 46 - 7.66406043013809e56 * cos(theta) ** 44 + 2.12615869997379e56 * cos(theta) ** 42 - 5.20211037418993e55 * cos(theta) ** 40 + 1.11965951762366e55 * cos(theta) ** 38 - 2.1130755460119e54 * cos(theta) ** 36 + 3.48309155936028e53 * cos(theta) ** 34 - 4.99109671724423e52 * cos(theta) ** 32 + 6.18277715223061e51 * cos(theta) ** 30 - 6.57742250237299e50 * cos(theta) ** 28 + 5.9622678798489e49 * cos(theta) ** 26 - 4.5626019801057e48 * cos(theta) ** 24 + 2.91499570951198e47 * cos(theta) ** 22 - 1.5342082681642e46 * cos(theta) ** 20 + 6.54466930739106e44 * cos(theta) ** 18 - 2.21779491479697e43 * cos(theta) ** 16 + 5.8209840283385e41 * cos(theta) ** 14 - 1.14531793854877e40 * cos(theta) ** 12 + 1.61726538177618e38 * cos(theta) ** 10 - 1.54221110786031e36 * cos(theta) ** 8 + 9.07183004623711e33 * cos(theta) ** 6 - 2.83671983934869e31 * cos(theta) ** 4 + 3.52387557683067e28 * cos(theta) ** 2 - 7.25226502743501e24 ) * cos(13 * phi) ) # @torch.jit.script def Yl99_m14(theta, phi): return ( 6.32367451143506e-28 * (1.0 - cos(theta) ** 2) ** 7 * ( 1.18913029774358e56 * cos(theta) ** 85 - 2.15492140250995e57 * cos(theta) ** 83 + 1.88030705967727e58 * cos(theta) ** 81 - 1.05219255152925e59 * cos(theta) ** 79 + 4.24320059065656e59 * cos(theta) ** 77 - 1.31382062732922e60 * cos(theta) ** 75 + 3.24942267454419e60 * cos(theta) ** 73 - 6.59419520363098e60 * cos(theta) ** 71 + 1.11930157657261e61 * cos(theta) ** 69 - 1.61195917657418e61 * cos(theta) ** 67 + 1.99108477061761e61 * cos(theta) ** 65 - 2.12709621103473e61 * cos(theta) ** 63 + 1.9781994762623e61 * cos(theta) ** 61 - 1.60965097445976e61 * cos(theta) ** 59 + 1.15042306487078e61 * cos(theta) ** 57 - 7.24290024273676e60 * cos(theta) ** 55 + 4.02533939388626e60 * cos(theta) ** 53 - 1.9775107610607e60 * cos(theta) ** 51 + 8.59347723364824e59 * cos(theta) ** 49 - 3.3036708815856e59 * cos(theta) ** 47 + 1.12304032169624e59 * cos(theta) ** 45 - 3.37218658926076e58 * cos(theta) ** 43 + 8.92986653988993e57 * cos(theta) ** 41 - 2.08084414967597e57 * cos(theta) ** 39 + 4.25470616696991e56 * cos(theta) ** 37 - 7.60707196564285e55 * cos(theta) ** 35 + 1.18425113018249e55 * cos(theta) ** 33 - 1.59715094951815e54 * cos(theta) ** 31 + 1.85483314566918e53 * cos(theta) ** 29 - 1.84167830066444e52 * cos(theta) ** 27 + 1.55018964876071e51 * cos(theta) ** 25 - 1.09502447522537e50 * cos(theta) ** 23 + 6.41299056092635e48 * cos(theta) ** 21 - 3.0684165363284e47 * cos(theta) ** 19 + 1.17804047533039e46 * cos(theta) ** 17 - 3.54847186367515e44 * cos(theta) ** 15 + 8.14937763967391e42 * cos(theta) ** 13 - 1.37438152625852e41 * cos(theta) ** 11 + 1.61726538177618e39 * cos(theta) ** 9 - 1.23376888628825e37 * cos(theta) ** 7 + 5.44309802774226e34 * cos(theta) ** 5 - 1.13468793573948e32 * cos(theta) ** 3 + 7.04775115366134e28 * cos(theta) ) * cos(14 * phi) ) # @torch.jit.script def Yl99_m15(theta, phi): return ( 6.4240308747423e-30 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 1.01076075308205e58 * cos(theta) ** 84 - 1.78858476408325e59 * cos(theta) ** 82 + 1.52304871833859e60 * cos(theta) ** 80 - 8.31232115708106e60 * cos(theta) ** 78 + 3.26726445480555e61 * cos(theta) ** 76 - 9.85365470496913e61 * cos(theta) ** 74 + 2.37207855241726e62 * cos(theta) ** 72 - 4.681878594578e62 * cos(theta) ** 70 + 7.723180878351e62 * cos(theta) ** 68 - 1.0800126483047e63 * cos(theta) ** 66 + 1.29420510090144e63 * cos(theta) ** 64 - 1.34007061295188e63 * cos(theta) ** 62 + 1.20670168052e63 * cos(theta) ** 60 - 9.4969407493126e62 * cos(theta) ** 58 + 6.55741146976346e62 * cos(theta) ** 56 - 3.98359513350522e62 * cos(theta) ** 54 + 2.13342987875972e62 * cos(theta) ** 52 - 1.00853048814096e62 * cos(theta) ** 50 + 4.21080384448764e61 * cos(theta) ** 48 - 1.55272531434523e61 * cos(theta) ** 46 + 5.05368144763306e60 * cos(theta) ** 44 - 1.45004023338213e60 * cos(theta) ** 42 + 3.66124528135487e59 * cos(theta) ** 40 - 8.11529218373629e58 * cos(theta) ** 38 + 1.57424128177887e58 * cos(theta) ** 36 - 2.662475187975e57 * cos(theta) ** 34 + 3.90802872960223e56 * cos(theta) ** 32 - 4.95116794350628e55 * cos(theta) ** 30 + 5.37901612244063e54 * cos(theta) ** 28 - 4.97253141179398e53 * cos(theta) ** 26 + 3.87547412190178e52 * cos(theta) ** 24 - 2.51855629301835e51 * cos(theta) ** 22 + 1.34672801779453e50 * cos(theta) ** 20 - 5.82999141902395e48 * cos(theta) ** 18 + 2.00266880806166e47 * cos(theta) ** 16 - 5.32270779551273e45 * cos(theta) ** 14 + 1.05941909315761e44 * cos(theta) ** 12 - 1.51181967888437e42 * cos(theta) ** 10 + 1.45553884359856e40 * cos(theta) ** 8 - 8.63638220401773e37 * cos(theta) ** 6 + 2.72154901387113e35 * cos(theta) ** 4 - 3.40406380721843e32 * cos(theta) ** 2 + 7.04775115366134e28 ) * cos(15 * phi) ) # @torch.jit.script def Yl99_m16(theta, phi): return ( 6.53610554166651e-32 * (1.0 - cos(theta) ** 2) ** 8 * ( 8.49039032588918e59 * cos(theta) ** 83 - 1.46663950654827e61 * cos(theta) ** 81 + 1.21843897467087e62 * cos(theta) ** 79 - 6.48361050252323e62 * cos(theta) ** 77 + 2.48312098565222e63 * cos(theta) ** 75 - 7.29170448167715e63 * cos(theta) ** 73 + 1.70789655774042e64 * cos(theta) ** 71 - 3.2773150162046e64 * cos(theta) ** 69 + 5.25176299727868e64 * cos(theta) ** 67 - 7.12808347881103e64 * cos(theta) ** 65 + 8.28291264576924e64 * cos(theta) ** 63 - 8.30843780030165e64 * cos(theta) ** 61 + 7.24021008312001e64 * cos(theta) ** 59 - 5.50822563460131e64 * cos(theta) ** 57 + 3.67215042306754e64 * cos(theta) ** 55 - 2.15114137209282e64 * cos(theta) ** 53 + 1.10938353695505e64 * cos(theta) ** 51 - 5.04265244070479e63 * cos(theta) ** 49 + 2.02118584535407e63 * cos(theta) ** 47 - 7.14253644598806e62 * cos(theta) ** 45 + 2.22361983695855e62 * cos(theta) ** 43 - 6.09016898020494e61 * cos(theta) ** 41 + 1.46449811254195e61 * cos(theta) ** 39 - 3.08381102981979e60 * cos(theta) ** 37 + 5.66726861440392e59 * cos(theta) ** 35 - 9.05241563911499e58 * cos(theta) ** 33 + 1.25056919347271e58 * cos(theta) ** 31 - 1.48535038305188e57 * cos(theta) ** 29 + 1.50612451428338e56 * cos(theta) ** 27 - 1.29285816706644e55 * cos(theta) ** 25 + 9.30113789256428e53 * cos(theta) ** 23 - 5.54082384464037e52 * cos(theta) ** 21 + 2.69345603558907e51 * cos(theta) ** 19 - 1.04939845542431e50 * cos(theta) ** 17 + 3.20427009289866e48 * cos(theta) ** 15 - 7.45179091371782e46 * cos(theta) ** 13 + 1.27130291178913e45 * cos(theta) ** 11 - 1.51181967888437e43 * cos(theta) ** 9 + 1.16443107487885e41 * cos(theta) ** 7 - 5.18182932241064e38 * cos(theta) ** 5 + 1.08861960554845e36 * cos(theta) ** 3 - 6.80812761443685e32 * cos(theta) ) * cos(16 * phi) ) # @torch.jit.script def Yl99_m17(theta, phi): return ( 6.66117763977302e-34 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 7.04702397048802e61 * cos(theta) ** 82 - 1.1879780003041e63 * cos(theta) ** 80 + 9.62566789989987e63 * cos(theta) ** 78 - 4.99238008694288e64 * cos(theta) ** 76 + 1.86234073923917e65 * cos(theta) ** 74 - 5.32294427162432e65 * cos(theta) ** 72 + 1.2126065559957e66 * cos(theta) ** 70 - 2.26134736118117e66 * cos(theta) ** 68 + 3.51868120817672e66 * cos(theta) ** 66 - 4.63325426122717e66 * cos(theta) ** 64 + 5.21823496683462e66 * cos(theta) ** 62 - 5.06814705818401e66 * cos(theta) ** 60 + 4.27172394904081e66 * cos(theta) ** 58 - 3.13968861172275e66 * cos(theta) ** 56 + 2.01968273268715e66 * cos(theta) ** 54 - 1.14010492720919e66 * cos(theta) ** 52 + 5.65785603847077e65 * cos(theta) ** 50 - 2.47089969594535e65 * cos(theta) ** 48 + 9.49957347316412e64 * cos(theta) ** 46 - 3.21414140069463e64 * cos(theta) ** 44 + 9.56156529892175e63 * cos(theta) ** 42 - 2.49696928188402e63 * cos(theta) ** 40 + 5.7115426389136e62 * cos(theta) ** 38 - 1.14101008103332e62 * cos(theta) ** 36 + 1.98354401504137e61 * cos(theta) ** 34 - 2.98729716090795e60 * cos(theta) ** 32 + 3.87676449976541e59 * cos(theta) ** 30 - 4.30751611085046e58 * cos(theta) ** 28 + 4.06653618856512e57 * cos(theta) ** 26 - 3.23214541766609e56 * cos(theta) ** 24 + 2.13926171528979e55 * cos(theta) ** 22 - 1.16357300737448e54 * cos(theta) ** 20 + 5.11756646761923e52 * cos(theta) ** 18 - 1.78397737422133e51 * cos(theta) ** 16 + 4.80640513934799e49 * cos(theta) ** 14 - 9.68732818783317e47 * cos(theta) ** 12 + 1.39843320296804e46 * cos(theta) ** 10 - 1.36063771099593e44 * cos(theta) ** 8 + 8.15101752415193e41 * cos(theta) ** 6 - 2.59091466120532e39 * cos(theta) ** 4 + 3.26585881664536e36 * cos(theta) ** 2 - 6.80812761443685e32 ) * cos(17 * phi) ) # @torch.jit.script def Yl99_m18(theta, phi): return ( 6.8006614986693e-36 * (1.0 - cos(theta) ** 2) ** 9 * ( 5.77855965580018e63 * cos(theta) ** 81 - 9.50382400243278e64 * cos(theta) ** 79 + 7.5080209619219e65 * cos(theta) ** 77 - 3.79420886607659e66 * cos(theta) ** 75 + 1.37813214703698e67 * cos(theta) ** 73 - 3.83251987556951e67 * cos(theta) ** 71 + 8.48824589196991e67 * cos(theta) ** 69 - 1.5377162056032e68 * cos(theta) ** 67 + 2.32232959739663e68 * cos(theta) ** 65 - 2.96528272718539e68 * cos(theta) ** 63 + 3.23530567943746e68 * cos(theta) ** 61 - 3.04088823491041e68 * cos(theta) ** 59 + 2.47759989044367e68 * cos(theta) ** 57 - 1.75822562256474e68 * cos(theta) ** 55 + 1.09062867565106e68 * cos(theta) ** 53 - 5.92854562148781e67 * cos(theta) ** 51 + 2.82892801923539e67 * cos(theta) ** 49 - 1.18603185405377e67 * cos(theta) ** 47 + 4.36980379765549e66 * cos(theta) ** 45 - 1.41422221630564e66 * cos(theta) ** 43 + 4.01585742554713e65 * cos(theta) ** 41 - 9.98787712753609e64 * cos(theta) ** 39 + 2.17038620278717e64 * cos(theta) ** 37 - 4.10763629171996e63 * cos(theta) ** 35 + 6.74404965114066e62 * cos(theta) ** 33 - 9.55935091490543e61 * cos(theta) ** 31 + 1.16302934992962e61 * cos(theta) ** 29 - 1.20610451103813e60 * cos(theta) ** 27 + 1.05729940902693e59 * cos(theta) ** 25 - 7.75714900239861e57 * cos(theta) ** 23 + 4.70637577363753e56 * cos(theta) ** 21 - 2.32714601474895e55 * cos(theta) ** 19 + 9.21161964171461e53 * cos(theta) ** 17 - 2.85436379875413e52 * cos(theta) ** 15 + 6.72896719508719e50 * cos(theta) ** 13 - 1.16247938253998e49 * cos(theta) ** 11 + 1.39843320296804e47 * cos(theta) ** 9 - 1.08851016879675e45 * cos(theta) ** 7 + 4.89061051449116e42 * cos(theta) ** 5 - 1.03636586448213e40 * cos(theta) ** 3 + 6.53171763329072e36 * cos(theta) ) * cos(18 * phi) ) # @torch.jit.script def Yl99_m19(theta, phi): return ( 6.95612928954815e-38 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 4.68063332119814e65 * cos(theta) ** 80 - 7.5080209619219e66 * cos(theta) ** 78 + 5.78117614067986e67 * cos(theta) ** 76 - 2.84565664955744e68 * cos(theta) ** 74 + 1.006036467337e69 * cos(theta) ** 72 - 2.72108911165435e69 * cos(theta) ** 70 + 5.85688966545924e69 * cos(theta) ** 68 - 1.03026985775414e70 * cos(theta) ** 66 + 1.50951423830781e70 * cos(theta) ** 64 - 1.86812811812679e70 * cos(theta) ** 62 + 1.97353646445685e70 * cos(theta) ** 60 - 1.79412405859714e70 * cos(theta) ** 58 + 1.41223193755289e70 * cos(theta) ** 56 - 9.67024092410606e69 * cos(theta) ** 54 + 5.78033198095061e69 * cos(theta) ** 52 - 3.02355826695878e69 * cos(theta) ** 50 + 1.38617472942534e69 * cos(theta) ** 48 - 5.5743497140527e68 * cos(theta) ** 46 + 1.96641170894497e68 * cos(theta) ** 44 - 6.08115553011423e67 * cos(theta) ** 42 + 1.64650154447433e67 * cos(theta) ** 40 - 3.89527207973908e66 * cos(theta) ** 38 + 8.03042895031252e65 * cos(theta) ** 36 - 1.43767270210199e65 * cos(theta) ** 34 + 2.22553638487642e64 * cos(theta) ** 32 - 2.96339878362068e63 * cos(theta) ** 30 + 3.37278511479591e62 * cos(theta) ** 28 - 3.25648217980295e61 * cos(theta) ** 26 + 2.64324852256733e60 * cos(theta) ** 24 - 1.78414427055168e59 * cos(theta) ** 22 + 9.88338912463881e57 * cos(theta) ** 20 - 4.42157742802301e56 * cos(theta) ** 18 + 1.56597533909148e55 * cos(theta) ** 16 - 4.28154569813119e53 * cos(theta) ** 14 + 8.74765735361335e51 * cos(theta) ** 12 - 1.27872732079398e50 * cos(theta) ** 10 + 1.25858988267124e48 * cos(theta) ** 8 - 7.61957118157722e45 * cos(theta) ** 6 + 2.44530525724558e43 * cos(theta) ** 4 - 3.10909759344638e40 * cos(theta) ** 2 + 6.53171763329072e36 ) * cos(19 * phi) ) # @torch.jit.script def Yl99_m20(theta, phi): return ( 7.12933744526927e-40 * (1.0 - cos(theta) ** 2) ** 10 * ( 3.74450665695852e67 * cos(theta) ** 79 - 5.85625635029908e68 * cos(theta) ** 77 + 4.39369386691669e69 * cos(theta) ** 75 - 2.10578592067251e70 * cos(theta) ** 73 + 7.24346256482638e70 * cos(theta) ** 71 - 1.90476237815805e71 * cos(theta) ** 69 + 3.98268497251228e71 * cos(theta) ** 67 - 6.79978106117734e71 * cos(theta) ** 65 + 9.66089112516999e71 * cos(theta) ** 63 - 1.15823943323861e72 * cos(theta) ** 61 + 1.18412187867411e72 * cos(theta) ** 59 - 1.04059195398634e72 * cos(theta) ** 57 + 7.90849885029619e71 * cos(theta) ** 55 - 5.22193009901727e71 * cos(theta) ** 53 + 3.00577263009432e71 * cos(theta) ** 51 - 1.51177913347939e71 * cos(theta) ** 49 + 6.65363870124163e70 * cos(theta) ** 47 - 2.56420086846424e70 * cos(theta) ** 45 + 8.65221151935788e69 * cos(theta) ** 43 - 2.55408532264798e69 * cos(theta) ** 41 + 6.5860061778973e68 * cos(theta) ** 39 - 1.48020339030085e68 * cos(theta) ** 37 + 2.89095442211251e67 * cos(theta) ** 35 - 4.88808718714675e66 * cos(theta) ** 33 + 7.12171643160454e65 * cos(theta) ** 31 - 8.89019635086205e64 * cos(theta) ** 29 + 9.44379832142855e63 * cos(theta) ** 27 - 8.46685366748766e62 * cos(theta) ** 25 + 6.34379645416159e61 * cos(theta) ** 23 - 3.9251173952137e60 * cos(theta) ** 21 + 1.97667782492776e59 * cos(theta) ** 19 - 7.95883937044142e57 * cos(theta) ** 17 + 2.50556054254637e56 * cos(theta) ** 15 - 5.99416397738367e54 * cos(theta) ** 13 + 1.0497188824336e53 * cos(theta) ** 11 - 1.27872732079398e51 * cos(theta) ** 9 + 1.00687190613699e49 * cos(theta) ** 7 - 4.57174270894633e46 * cos(theta) ** 5 + 9.78122102898232e43 * cos(theta) ** 3 - 6.21819518689276e40 * cos(theta) ) * cos(20 * phi) ) # @torch.jit.script def Yl99_m21(theta, phi): return ( 7.32225758404669e-42 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 2.95816025899723e69 * cos(theta) ** 78 - 4.50931738973029e70 * cos(theta) ** 76 + 3.29527040018752e71 * cos(theta) ** 74 - 1.53722372209093e72 * cos(theta) ** 72 + 5.14285842102673e72 * cos(theta) ** 70 - 1.31428604092905e73 * cos(theta) ** 68 + 2.66839893158323e73 * cos(theta) ** 66 - 4.41985768976527e73 * cos(theta) ** 64 + 6.08636140885709e73 * cos(theta) ** 62 - 7.06526054275553e73 * cos(theta) ** 60 + 6.98631908417726e73 * cos(theta) ** 58 - 5.93137413772214e73 * cos(theta) ** 56 + 4.3496743676629e73 * cos(theta) ** 54 - 2.76762295247915e73 * cos(theta) ** 52 + 1.5329440413481e73 * cos(theta) ** 50 - 7.40771775404902e72 * cos(theta) ** 48 + 3.12721018958357e72 * cos(theta) ** 46 - 1.15389039080891e72 * cos(theta) ** 44 + 3.72045095332389e71 * cos(theta) ** 42 - 1.04717498228567e71 * cos(theta) ** 40 + 2.56854240937995e70 * cos(theta) ** 38 - 5.47675254411314e69 * cos(theta) ** 36 + 1.01183404773938e69 * cos(theta) ** 34 - 1.61306877175843e68 * cos(theta) ** 32 + 2.20773209379741e67 * cos(theta) ** 30 - 2.57815694174999e66 * cos(theta) ** 28 + 2.54982554678571e65 * cos(theta) ** 26 - 2.11671341687192e64 * cos(theta) ** 24 + 1.45907318445716e63 * cos(theta) ** 22 - 8.24274652994877e61 * cos(theta) ** 20 + 3.75568786736275e60 * cos(theta) ** 18 - 1.35300269297504e59 * cos(theta) ** 16 + 3.75834081381956e57 * cos(theta) ** 14 - 7.79241317059877e55 * cos(theta) ** 12 + 1.15469077067696e54 * cos(theta) ** 10 - 1.15085458871458e52 * cos(theta) ** 8 + 7.04810334295893e49 * cos(theta) ** 6 - 2.28587135447317e47 * cos(theta) ** 4 + 2.93436630869469e44 * cos(theta) ** 2 - 6.21819518689276e40 ) * cos(21 * phi) ) # @torch.jit.script def Yl99_m22(theta, phi): return ( 7.53711281864287e-44 * (1.0 - cos(theta) ** 2) ** 11 * ( 2.30736500201784e71 * cos(theta) ** 77 - 3.42708121619502e72 * cos(theta) ** 75 + 2.43850009613877e73 * cos(theta) ** 73 - 1.10680107990547e74 * cos(theta) ** 71 + 3.60000089471871e74 * cos(theta) ** 69 - 8.93714507831756e74 * cos(theta) ** 67 + 1.76114329484493e75 * cos(theta) ** 65 - 2.82870892144977e75 * cos(theta) ** 63 + 3.7735440734914e75 * cos(theta) ** 61 - 4.23915632565332e75 * cos(theta) ** 59 + 4.05206506882281e75 * cos(theta) ** 57 - 3.3215695171244e75 * cos(theta) ** 55 + 2.34882415853797e75 * cos(theta) ** 53 - 1.43916393528916e75 * cos(theta) ** 51 + 7.66472020674051e74 * cos(theta) ** 49 - 3.55570452194353e74 * cos(theta) ** 47 + 1.43851668720844e74 * cos(theta) ** 45 - 5.0771177195592e73 * cos(theta) ** 43 + 1.56258940039603e73 * cos(theta) ** 41 - 4.18869992914268e72 * cos(theta) ** 39 + 9.7604611556438e71 * cos(theta) ** 37 - 1.97163091588073e71 * cos(theta) ** 35 + 3.44023576231389e70 * cos(theta) ** 33 - 5.16182006962697e69 * cos(theta) ** 31 + 6.62319628139222e68 * cos(theta) ** 29 - 7.21883943689998e67 * cos(theta) ** 27 + 6.62954642164284e66 * cos(theta) ** 25 - 5.0801122004926e65 * cos(theta) ** 23 + 3.20996100580576e64 * cos(theta) ** 21 - 1.64854930598975e63 * cos(theta) ** 19 + 6.76023816125294e61 * cos(theta) ** 17 - 2.16480430876007e60 * cos(theta) ** 15 + 5.26167713934739e58 * cos(theta) ** 13 - 9.35089580471852e56 * cos(theta) ** 11 + 1.15469077067696e55 * cos(theta) ** 9 - 9.20683670971664e52 * cos(theta) ** 7 + 4.22886200577536e50 * cos(theta) ** 5 - 9.14348541789267e47 * cos(theta) ** 3 + 5.86873261738939e44 * cos(theta) ) * cos(22 * phi) ) # @torch.jit.script def Yl99_m23(theta, phi): return ( 7.77642052910099e-46 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 1.77667105155373e73 * cos(theta) ** 76 - 2.57031091214627e74 * cos(theta) ** 74 + 1.7801050701813e75 * cos(theta) ** 72 - 7.85828766732884e75 * cos(theta) ** 70 + 2.48400061735591e76 * cos(theta) ** 68 - 5.98788720247277e76 * cos(theta) ** 66 + 1.14474314164921e77 * cos(theta) ** 64 - 1.78208662051336e77 * cos(theta) ** 62 + 2.30186188482975e77 * cos(theta) ** 60 - 2.50110223213546e77 * cos(theta) ** 58 + 2.309677089229e77 * cos(theta) ** 56 - 1.82686323441842e77 * cos(theta) ** 54 + 1.24487680402512e77 * cos(theta) ** 52 - 7.33973606997471e76 * cos(theta) ** 50 + 3.75571290130285e76 * cos(theta) ** 48 - 1.67118112531346e76 * cos(theta) ** 46 + 6.47332509243798e75 * cos(theta) ** 44 - 2.18316061941046e75 * cos(theta) ** 42 + 6.40661654162373e74 * cos(theta) ** 40 - 1.63359297236565e74 * cos(theta) ** 38 + 3.61137062758821e73 * cos(theta) ** 36 - 6.90070820558256e72 * cos(theta) ** 34 + 1.13527780156358e72 * cos(theta) ** 32 - 1.60016422158436e71 * cos(theta) ** 30 + 1.92072692160375e70 * cos(theta) ** 28 - 1.94908664796299e69 * cos(theta) ** 26 + 1.65738660541071e68 * cos(theta) ** 24 - 1.1684258061133e67 * cos(theta) ** 22 + 6.7409181121921e65 * cos(theta) ** 20 - 3.13224368138053e64 * cos(theta) ** 18 + 1.149240487413e63 * cos(theta) ** 16 - 3.2472064631401e61 * cos(theta) ** 14 + 6.8401802811516e59 * cos(theta) ** 12 - 1.02859853851904e58 * cos(theta) ** 10 + 1.03922169360927e56 * cos(theta) ** 8 - 6.44478569680165e53 * cos(theta) ** 6 + 2.11443100288768e51 * cos(theta) ** 4 - 2.7430456253678e48 * cos(theta) ** 2 + 5.86873261738939e44 ) * cos(23 * phi) ) # @torch.jit.script def Yl99_m24(theta, phi): return ( 8.04304292014539e-48 * (1.0 - cos(theta) ** 2) ** 12 * ( 1.35026999918084e75 * cos(theta) ** 75 - 1.90203007498824e76 * cos(theta) ** 73 + 1.28167565053054e77 * cos(theta) ** 71 - 5.50080136713019e77 * cos(theta) ** 69 + 1.68912041980202e78 * cos(theta) ** 67 - 3.95200555363202e78 * cos(theta) ** 65 + 7.32635610655491e78 * cos(theta) ** 63 - 1.10489370471828e79 * cos(theta) ** 61 + 1.38111713089785e79 * cos(theta) ** 59 - 1.45063929463857e79 * cos(theta) ** 57 + 1.29341916996824e79 * cos(theta) ** 55 - 9.86506146585947e78 * cos(theta) ** 53 + 6.47335938093064e78 * cos(theta) ** 51 - 3.66986803498736e78 * cos(theta) ** 49 + 1.80274219262537e78 * cos(theta) ** 47 - 7.68743317644191e77 * cos(theta) ** 45 + 2.84826304067271e77 * cos(theta) ** 43 - 9.16927460152392e76 * cos(theta) ** 41 + 2.56264661664949e76 * cos(theta) ** 39 - 6.20765329498946e75 * cos(theta) ** 37 + 1.30009342593175e75 * cos(theta) ** 35 - 2.34624078989807e74 * cos(theta) ** 33 + 3.63288896500346e73 * cos(theta) ** 31 - 4.80049266475308e72 * cos(theta) ** 29 + 5.37803538049049e71 * cos(theta) ** 27 - 5.06762528470379e70 * cos(theta) ** 25 + 3.9777278529857e69 * cos(theta) ** 23 - 2.57053677344925e68 * cos(theta) ** 21 + 1.34818362243842e67 * cos(theta) ** 19 - 5.63803862648496e65 * cos(theta) ** 17 + 1.8387847798608e64 * cos(theta) ** 15 - 4.54608904839614e62 * cos(theta) ** 13 + 8.20821633738192e60 * cos(theta) ** 11 - 1.02859853851904e59 * cos(theta) ** 9 + 8.31377354887413e56 * cos(theta) ** 7 - 3.86687141808099e54 * cos(theta) ** 5 + 8.45772401155072e51 * cos(theta) ** 3 - 5.4860912507356e48 * cos(theta) ) * cos(24 * phi) ) # @torch.jit.script def Yl99_m25(theta, phi): return ( 8.34024698683431e-50 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 1.01270249938563e77 * cos(theta) ** 74 - 1.38848195474141e78 * cos(theta) ** 72 + 9.0998971187668e78 * cos(theta) ** 70 - 3.79555294331983e79 * cos(theta) ** 68 + 1.13171068126735e80 * cos(theta) ** 66 - 2.56880360986082e80 * cos(theta) ** 64 + 4.61560434712959e80 * cos(theta) ** 62 - 6.73985159878152e80 * cos(theta) ** 60 + 8.14859107229733e80 * cos(theta) ** 58 - 8.26864397943983e80 * cos(theta) ** 56 + 7.11380543482533e80 * cos(theta) ** 54 - 5.22848257690552e80 * cos(theta) ** 52 + 3.30141328427463e80 * cos(theta) ** 50 - 1.79823533714381e80 * cos(theta) ** 48 + 8.47288830533923e79 * cos(theta) ** 46 - 3.45934492939886e79 * cos(theta) ** 44 + 1.22475310748927e79 * cos(theta) ** 42 - 3.75940258662481e78 * cos(theta) ** 40 + 9.99432180493302e77 * cos(theta) ** 38 - 2.2968317191461e77 * cos(theta) ** 36 + 4.55032699076114e76 * cos(theta) ** 34 - 7.74259460666363e75 * cos(theta) ** 32 + 1.12619557915107e75 * cos(theta) ** 30 - 1.39214287277839e74 * cos(theta) ** 28 + 1.45206955273243e73 * cos(theta) ** 26 - 1.26690632117595e72 * cos(theta) ** 24 + 9.14877406186712e70 * cos(theta) ** 22 - 5.39812722424343e69 * cos(theta) ** 20 + 2.561548882633e68 * cos(theta) ** 18 - 9.58466566502442e66 * cos(theta) ** 16 + 2.7581771697912e65 * cos(theta) ** 14 - 5.90991576291498e63 * cos(theta) ** 12 + 9.02903797112011e61 * cos(theta) ** 10 - 9.25738684667134e59 * cos(theta) ** 8 + 5.81964148421189e57 * cos(theta) ** 6 - 1.93343570904049e55 * cos(theta) ** 4 + 2.53731720346522e52 * cos(theta) ** 2 - 5.4860912507356e48 ) * cos(25 * phi) ) # @torch.jit.script def Yl99_m26(theta, phi): return ( 8.67177588978136e-52 * (1.0 - cos(theta) ** 2) ** 13 * ( 7.49399849545365e78 * cos(theta) ** 73 - 9.99707007413817e79 * cos(theta) ** 71 + 6.36992798313676e80 * cos(theta) ** 69 - 2.58097600145748e81 * cos(theta) ** 67 + 7.46929049636453e81 * cos(theta) ** 65 - 1.64403431031092e82 * cos(theta) ** 63 + 2.86167469522035e82 * cos(theta) ** 61 - 4.04391095926891e82 * cos(theta) ** 59 + 4.72618282193245e82 * cos(theta) ** 57 - 4.6304406284863e82 * cos(theta) ** 55 + 3.84145493480568e82 * cos(theta) ** 53 - 2.71881093999087e82 * cos(theta) ** 51 + 1.65070664213731e82 * cos(theta) ** 49 - 8.63152961829026e81 * cos(theta) ** 47 + 3.89752862045605e81 * cos(theta) ** 45 - 1.5221117689355e81 * cos(theta) ** 43 + 5.14396305145492e80 * cos(theta) ** 41 - 1.50376103464992e80 * cos(theta) ** 39 + 3.79784228587455e79 * cos(theta) ** 37 - 8.26859418892596e78 * cos(theta) ** 35 + 1.54711117685879e78 * cos(theta) ** 33 - 2.47763027413236e77 * cos(theta) ** 31 + 3.37858673745322e76 * cos(theta) ** 29 - 3.8980000437795e75 * cos(theta) ** 27 + 3.77538083710432e74 * cos(theta) ** 25 - 3.04057517082227e73 * cos(theta) ** 23 + 2.01273029361077e72 * cos(theta) ** 21 - 1.07962544484869e71 * cos(theta) ** 19 + 4.6107879887394e69 * cos(theta) ** 17 - 1.53354650640391e68 * cos(theta) ** 15 + 3.86144803770768e66 * cos(theta) ** 13 - 7.09189891549798e64 * cos(theta) ** 11 + 9.02903797112011e62 * cos(theta) ** 9 - 7.40590947733707e60 * cos(theta) ** 7 + 3.49178489052713e58 * cos(theta) ** 5 - 7.73374283616198e55 * cos(theta) ** 3 + 5.07463440693043e52 * cos(theta) ) * cos(26 * phi) ) # @torch.jit.script def Yl99_m27(theta, phi): return ( 9.04193421481642e-54 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 5.47061890168117e80 * cos(theta) ** 72 - 7.0979197526381e81 * cos(theta) ** 70 + 4.39525030836436e82 * cos(theta) ** 68 - 1.72925392097651e83 * cos(theta) ** 66 + 4.85503882263694e83 * cos(theta) ** 64 - 1.03574161549588e84 * cos(theta) ** 62 + 1.74562156408441e84 * cos(theta) ** 60 - 2.38590746596866e84 * cos(theta) ** 58 + 2.6939242085015e84 * cos(theta) ** 56 - 2.54674234566747e84 * cos(theta) ** 54 + 2.03597111544701e84 * cos(theta) ** 52 - 1.38659357939534e84 * cos(theta) ** 50 + 8.08846254647284e83 * cos(theta) ** 48 - 4.05681892059642e83 * cos(theta) ** 46 + 1.75388787920522e83 * cos(theta) ** 44 - 6.54508060642264e82 * cos(theta) ** 42 + 2.10902485109652e82 * cos(theta) ** 40 - 5.8646680351347e81 * cos(theta) ** 38 + 1.40520164577358e81 * cos(theta) ** 36 - 2.89400796612408e80 * cos(theta) ** 34 + 5.105466883634e79 * cos(theta) ** 32 - 7.68065384981032e78 * cos(theta) ** 30 + 9.79790153861434e77 * cos(theta) ** 28 - 1.05246001182047e77 * cos(theta) ** 26 + 9.4384520927608e75 * cos(theta) ** 24 - 6.99332289289123e74 * cos(theta) ** 22 + 4.22673361658261e73 * cos(theta) ** 20 - 2.0512883452125e72 * cos(theta) ** 18 + 7.83833958085697e70 * cos(theta) ** 16 - 2.30031975960586e69 * cos(theta) ** 14 + 5.01988244901999e67 * cos(theta) ** 12 - 7.80108880704778e65 * cos(theta) ** 10 + 8.1261341740081e63 * cos(theta) ** 8 - 5.18413663413595e61 * cos(theta) ** 6 + 1.74589244526357e59 * cos(theta) ** 4 - 2.32012285084859e56 * cos(theta) ** 2 + 5.07463440693043e52 ) * cos(27 * phi) ) # @torch.jit.script def Yl99_m28(theta, phi): return ( 9.45569018793983e-56 * (1.0 - cos(theta) ** 2) ** 14 * ( 3.93884560921044e82 * cos(theta) ** 71 - 4.96854382684667e83 * cos(theta) ** 69 + 2.98877020968777e84 * cos(theta) ** 67 - 1.1413075878445e85 * cos(theta) ** 65 + 3.10722484648764e85 * cos(theta) ** 63 - 6.42159801607446e85 * cos(theta) ** 61 + 1.04737293845065e86 * cos(theta) ** 59 - 1.38382633026182e86 * cos(theta) ** 57 + 1.50859755676084e86 * cos(theta) ** 55 - 1.37524086666043e86 * cos(theta) ** 53 + 1.05870498003244e86 * cos(theta) ** 51 - 6.93296789697672e85 * cos(theta) ** 49 + 3.88246202230696e85 * cos(theta) ** 47 - 1.86613670347436e85 * cos(theta) ** 45 + 7.71710666850297e84 * cos(theta) ** 43 - 2.74893385469751e84 * cos(theta) ** 41 + 8.43609940438607e83 * cos(theta) ** 39 - 2.22857385335119e83 * cos(theta) ** 37 + 5.0587259247849e82 * cos(theta) ** 35 - 9.83962708482189e81 * cos(theta) ** 33 + 1.63374940276288e81 * cos(theta) ** 31 - 2.3041961549431e80 * cos(theta) ** 29 + 2.74341243081202e79 * cos(theta) ** 27 - 2.73639603073321e78 * cos(theta) ** 25 + 2.26522850226259e77 * cos(theta) ** 23 - 1.53853103643607e76 * cos(theta) ** 21 + 8.45346723316522e74 * cos(theta) ** 19 - 3.69231902138251e73 * cos(theta) ** 17 + 1.25413433293712e72 * cos(theta) ** 15 - 3.22044766344821e70 * cos(theta) ** 13 + 6.02385893882398e68 * cos(theta) ** 11 - 7.80108880704778e66 * cos(theta) ** 9 + 6.50090733920648e64 * cos(theta) ** 7 - 3.11048198048157e62 * cos(theta) ** 5 + 6.98356978105427e59 * cos(theta) ** 3 - 4.64024570169719e56 * cos(theta) ) * cos(28 * phi) ) # @torch.jit.script def Yl99_m29(theta, phi): return ( 9.91879866943503e-58 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 2.79658038253941e84 * cos(theta) ** 70 - 3.4282952405242e85 * cos(theta) ** 68 + 2.0024760404908e86 * cos(theta) ** 66 - 7.41849932098925e86 * cos(theta) ** 64 + 1.95755165328722e87 * cos(theta) ** 62 - 3.91717478980542e87 * cos(theta) ** 60 + 6.17950033685882e87 * cos(theta) ** 58 - 7.88781008249238e87 * cos(theta) ** 56 + 8.29728656218461e87 * cos(theta) ** 54 - 7.28877659330029e87 * cos(theta) ** 52 + 5.39939539816547e87 * cos(theta) ** 50 - 3.39715426951859e87 * cos(theta) ** 48 + 1.82475715048427e87 * cos(theta) ** 46 - 8.3976151656346e86 * cos(theta) ** 44 + 3.31835586745628e86 * cos(theta) ** 42 - 1.12706288042598e86 * cos(theta) ** 40 + 3.29007876771057e85 * cos(theta) ** 38 - 8.24572325739939e84 * cos(theta) ** 36 + 1.77055407367471e84 * cos(theta) ** 34 - 3.24707693799122e83 * cos(theta) ** 32 + 5.06462314856493e82 * cos(theta) ** 30 - 6.68216884933498e81 * cos(theta) ** 28 + 7.40721356319244e80 * cos(theta) ** 26 - 6.84099007683303e79 * cos(theta) ** 24 + 5.21002555520396e78 * cos(theta) ** 22 - 3.23091517651575e77 * cos(theta) ** 20 + 1.60615877430139e76 * cos(theta) ** 18 - 6.27694233635027e74 * cos(theta) ** 16 + 1.88120149940567e73 * cos(theta) ** 14 - 4.18658196248267e71 * cos(theta) ** 12 + 6.62624483270638e69 * cos(theta) ** 10 - 7.020979926343e67 * cos(theta) ** 8 + 4.55063513744454e65 * cos(theta) ** 6 - 1.55524099024079e63 * cos(theta) ** 4 + 2.09507093431628e60 * cos(theta) ** 2 - 4.64024570169719e56 ) * cos(29 * phi) ) # @torch.jit.script def Yl99_m30(theta, phi): return ( 1.04379497062177e-59 * (1.0 - cos(theta) ** 2) ** 15 * ( 1.95760626777759e86 * cos(theta) ** 69 - 2.33124076355646e87 * cos(theta) ** 67 + 1.32163418672393e88 * cos(theta) ** 65 - 4.74783956543312e88 * cos(theta) ** 63 + 1.21368202503807e89 * cos(theta) ** 61 - 2.35030487388325e89 * cos(theta) ** 59 + 3.58411019537812e89 * cos(theta) ** 57 - 4.41717364619573e89 * cos(theta) ** 55 + 4.48053474357969e89 * cos(theta) ** 53 - 3.79016382851615e89 * cos(theta) ** 51 + 2.69969769908273e89 * cos(theta) ** 49 - 1.63063404936892e89 * cos(theta) ** 47 + 8.39388289222765e88 * cos(theta) ** 45 - 3.69495067287922e88 * cos(theta) ** 43 + 1.39370946433164e88 * cos(theta) ** 41 - 4.50825152170391e87 * cos(theta) ** 39 + 1.25022993173002e87 * cos(theta) ** 37 - 2.96846037266378e86 * cos(theta) ** 35 + 6.01988385049403e85 * cos(theta) ** 33 - 1.03906462015719e85 * cos(theta) ** 31 + 1.51938694456948e84 * cos(theta) ** 29 - 1.87100727781379e83 * cos(theta) ** 27 + 1.92587552643003e82 * cos(theta) ** 25 - 1.64183761843993e81 * cos(theta) ** 23 + 1.14620562214487e80 * cos(theta) ** 21 - 6.46183035303149e78 * cos(theta) ** 19 + 2.8910857937425e77 * cos(theta) ** 17 - 1.00431077381604e76 * cos(theta) ** 15 + 2.63368209916794e74 * cos(theta) ** 13 - 5.0238983549792e72 * cos(theta) ** 11 + 6.62624483270638e70 * cos(theta) ** 9 - 5.6167839410744e68 * cos(theta) ** 7 + 2.73038108246672e66 * cos(theta) ** 5 - 6.22096396096314e63 * cos(theta) ** 3 + 4.19014186863256e60 * cos(theta) ) * cos(30 * phi) ) # @torch.jit.script def Yl99_m31(theta, phi): return ( 1.10209486381459e-61 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 1.35074832476654e88 * cos(theta) ** 68 - 1.56193131158283e89 * cos(theta) ** 66 + 8.59062221370555e89 * cos(theta) ** 64 - 2.99113892622286e90 * cos(theta) ** 62 + 7.40346035273225e90 * cos(theta) ** 60 - 1.38667987559112e91 * cos(theta) ** 58 + 2.04294281136553e91 * cos(theta) ** 56 - 2.42944550540765e91 * cos(theta) ** 54 + 2.37468341409723e91 * cos(theta) ** 52 - 1.93298355254324e91 * cos(theta) ** 50 + 1.32285187255054e91 * cos(theta) ** 48 - 7.66398003203394e90 * cos(theta) ** 46 + 3.77724730150244e90 * cos(theta) ** 44 - 1.58882878933807e90 * cos(theta) ** 42 + 5.71420880375971e89 * cos(theta) ** 40 - 1.75821809346453e89 * cos(theta) ** 38 + 4.62585074740106e88 * cos(theta) ** 36 - 1.03896113043232e88 * cos(theta) ** 34 + 1.98656167066303e87 * cos(theta) ** 32 - 3.22110032248729e86 * cos(theta) ** 30 + 4.40622213925149e85 * cos(theta) ** 28 - 5.05171965009725e84 * cos(theta) ** 26 + 4.81468881607509e83 * cos(theta) ** 24 - 3.77622652241183e82 * cos(theta) ** 22 + 2.40703180650423e81 * cos(theta) ** 20 - 1.22774776707598e80 * cos(theta) ** 18 + 4.91484584936226e78 * cos(theta) ** 16 - 1.50646616072406e77 * cos(theta) ** 14 + 3.42378672891833e75 * cos(theta) ** 12 - 5.52628819047712e73 * cos(theta) ** 10 + 5.96362034943574e71 * cos(theta) ** 8 - 3.93174875875208e69 * cos(theta) ** 6 + 1.36519054123336e67 * cos(theta) ** 4 - 1.86628918828894e64 * cos(theta) ** 2 + 4.19014186863256e60 ) * cos(31 * phi) ) # @torch.jit.script def Yl99_m32(theta, phi): return ( 1.16769353100899e-63 * (1.0 - cos(theta) ** 2) ** 16 * ( 9.18508860841245e89 * cos(theta) ** 67 - 1.03087466564467e91 * cos(theta) ** 65 + 5.49799821677155e91 * cos(theta) ** 63 - 1.85450613425818e92 * cos(theta) ** 61 + 4.44207621163935e92 * cos(theta) ** 59 - 8.04274327842849e92 * cos(theta) ** 57 + 1.14404797436469e93 * cos(theta) ** 55 - 1.31190057292013e93 * cos(theta) ** 53 + 1.23483537533056e93 * cos(theta) ** 51 - 9.66491776271618e92 * cos(theta) ** 49 + 6.34968898824259e92 * cos(theta) ** 47 - 3.52543081473561e92 * cos(theta) ** 45 + 1.66198881266107e92 * cos(theta) ** 43 - 6.67308091521988e91 * cos(theta) ** 41 + 2.28568352150388e91 * cos(theta) ** 39 - 6.6812287551652e90 * cos(theta) ** 37 + 1.66530626906438e90 * cos(theta) ** 35 - 3.5324678434699e89 * cos(theta) ** 33 + 6.3569973461217e88 * cos(theta) ** 31 - 9.66330096746188e87 * cos(theta) ** 29 + 1.23374219899042e87 * cos(theta) ** 27 - 1.31344710902528e86 * cos(theta) ** 25 + 1.15552531585802e85 * cos(theta) ** 23 - 8.30769834930603e83 * cos(theta) ** 21 + 4.81406361300846e82 * cos(theta) ** 19 - 2.20994598073677e81 * cos(theta) ** 17 + 7.86375335897961e79 * cos(theta) ** 15 - 2.10905262501369e78 * cos(theta) ** 13 + 4.10854407470199e76 * cos(theta) ** 11 - 5.52628819047712e74 * cos(theta) ** 9 + 4.77089627954859e72 * cos(theta) ** 7 - 2.35904925525125e70 * cos(theta) ** 5 + 5.46076216493344e67 * cos(theta) ** 3 - 3.73257837657788e64 * cos(theta) ) * cos(32 * phi) ) # @torch.jit.script def Yl99_m33(theta, phi): return ( 1.24166519402301e-65 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 6.15400936763634e91 * cos(theta) ** 66 - 6.70068532669033e92 * cos(theta) ** 64 + 3.46373887656608e93 * cos(theta) ** 62 - 1.13124874189749e94 * cos(theta) ** 60 + 2.62082496486722e94 * cos(theta) ** 58 - 4.58436366870424e94 * cos(theta) ** 56 + 6.29226385900582e94 * cos(theta) ** 54 - 6.9530730364767e94 * cos(theta) ** 52 + 6.29766041418587e94 * cos(theta) ** 50 - 4.73580970373093e94 * cos(theta) ** 48 + 2.98435382447402e94 * cos(theta) ** 46 - 1.58644386663103e94 * cos(theta) ** 44 + 7.14655189444262e93 * cos(theta) ** 42 - 2.73596317524015e93 * cos(theta) ** 40 + 8.91416573386515e92 * cos(theta) ** 38 - 2.47205463941112e92 * cos(theta) ** 36 + 5.82857194172533e91 * cos(theta) ** 34 - 1.16571438834507e91 * cos(theta) ** 32 + 1.97066917729773e90 * cos(theta) ** 30 - 2.80235728056394e89 * cos(theta) ** 28 + 3.33110393727412e88 * cos(theta) ** 26 - 3.28361777256321e87 * cos(theta) ** 24 + 2.65770822647345e86 * cos(theta) ** 22 - 1.74461665335427e85 * cos(theta) ** 20 + 9.14672086471608e83 * cos(theta) ** 18 - 3.75690816725251e82 * cos(theta) ** 16 + 1.17956300384694e81 * cos(theta) ** 14 - 2.7417684125178e79 * cos(theta) ** 12 + 4.51939848217219e77 * cos(theta) ** 10 - 4.97365937142941e75 * cos(theta) ** 8 + 3.33962739568402e73 * cos(theta) ** 6 - 1.17952462762562e71 * cos(theta) ** 4 + 1.63822864948003e68 * cos(theta) ** 2 - 3.73257837657788e64 ) * cos(33 * phi) ) # @torch.jit.script def Yl99_m34(theta, phi): return ( 1.32527717733838e-67 * (1.0 - cos(theta) ** 2) ** 17 * ( 4.06164618263998e93 * cos(theta) ** 65 - 4.28843860908181e94 * cos(theta) ** 63 + 2.14751810347097e95 * cos(theta) ** 61 - 6.78749245138493e95 * cos(theta) ** 59 + 1.52007847962299e96 * cos(theta) ** 57 - 2.56724365447438e96 * cos(theta) ** 55 + 3.39782248386314e96 * cos(theta) ** 53 - 3.61559797896789e96 * cos(theta) ** 51 + 3.14883020709293e96 * cos(theta) ** 49 - 2.27318865779085e96 * cos(theta) ** 47 + 1.37280275925805e96 * cos(theta) ** 45 - 6.98035301317651e95 * cos(theta) ** 43 + 3.0015517956659e95 * cos(theta) ** 41 - 1.09438527009606e95 * cos(theta) ** 39 + 3.38738297886876e94 * cos(theta) ** 37 - 8.89939670188005e93 * cos(theta) ** 35 + 1.98171446018661e93 * cos(theta) ** 33 - 3.73028604270421e92 * cos(theta) ** 31 + 5.91200753189318e91 * cos(theta) ** 29 - 7.84660038557905e90 * cos(theta) ** 27 + 8.66087023691272e89 * cos(theta) ** 25 - 7.8806826541517e88 * cos(theta) ** 23 + 5.84695809824159e87 * cos(theta) ** 21 - 3.48923330670853e86 * cos(theta) ** 19 + 1.64640975564889e85 * cos(theta) ** 17 - 6.01105306760402e83 * cos(theta) ** 15 + 1.65138820538572e82 * cos(theta) ** 13 - 3.29012209502136e80 * cos(theta) ** 11 + 4.51939848217219e78 * cos(theta) ** 9 - 3.97892749714353e76 * cos(theta) ** 7 + 2.00377643741041e74 * cos(theta) ** 5 - 4.7180985105025e71 * cos(theta) ** 3 + 3.27645729896007e68 * cos(theta) ) * cos(34 * phi) ) # @torch.jit.script def Yl99_m35(theta, phi): return ( 1.42003039891379e-69 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 2.64007001871599e95 * cos(theta) ** 64 - 2.70171632372154e96 * cos(theta) ** 62 + 1.30998604311729e97 * cos(theta) ** 60 - 4.00462054631711e97 * cos(theta) ** 58 + 8.66444733385101e97 * cos(theta) ** 56 - 1.41198400996091e98 * cos(theta) ** 54 + 1.80084591644747e98 * cos(theta) ** 52 - 1.84395496927362e98 * cos(theta) ** 50 + 1.54292680147554e98 * cos(theta) ** 48 - 1.0683986691617e98 * cos(theta) ** 46 + 6.17761241666121e97 * cos(theta) ** 44 - 3.0015517956659e97 * cos(theta) ** 42 + 1.23063623622302e97 * cos(theta) ** 40 - 4.26810255337463e96 * cos(theta) ** 38 + 1.25333170218144e96 * cos(theta) ** 36 - 3.11478884565802e95 * cos(theta) ** 34 + 6.53965771861582e94 * cos(theta) ** 32 - 1.15638867323831e94 * cos(theta) ** 30 + 1.71448218424902e93 * cos(theta) ** 28 - 2.11858210410634e92 * cos(theta) ** 26 + 2.16521755922818e91 * cos(theta) ** 24 - 1.81255701045489e90 * cos(theta) ** 22 + 1.22786120063073e89 * cos(theta) ** 20 - 6.62954328274621e87 * cos(theta) ** 18 + 2.79889658460312e86 * cos(theta) ** 16 - 9.01657960140602e84 * cos(theta) ** 14 + 2.14680466700143e83 * cos(theta) ** 12 - 3.61913430452349e81 * cos(theta) ** 10 + 4.06745863395497e79 * cos(theta) ** 8 - 2.78524924800047e77 * cos(theta) ** 6 + 1.00188821870521e75 * cos(theta) ** 4 - 1.41542955315075e72 * cos(theta) ** 2 + 3.27645729896007e68 ) * cos(35 * phi) ) # @torch.jit.script def Yl99_m36(theta, phi): return ( 1.52770946836149e-71 * (1.0 - cos(theta) ** 2) ** 18 * ( 1.68964481197823e97 * cos(theta) ** 63 - 1.67506412070736e98 * cos(theta) ** 61 + 7.85991625870374e98 * cos(theta) ** 59 - 2.32267991686392e99 * cos(theta) ** 57 + 4.85209050695657e99 * cos(theta) ** 55 - 7.62471365378889e99 * cos(theta) ** 53 + 9.36439876552682e99 * cos(theta) ** 51 - 9.21977484636811e99 * cos(theta) ** 49 + 7.40604864708258e99 * cos(theta) ** 47 - 4.91463387814381e99 * cos(theta) ** 45 + 2.71814946333093e99 * cos(theta) ** 43 - 1.26065175417968e99 * cos(theta) ** 41 + 4.92254494489208e98 * cos(theta) ** 39 - 1.62187897028236e98 * cos(theta) ** 37 + 4.51199412785318e97 * cos(theta) ** 35 - 1.05902820752373e97 * cos(theta) ** 33 + 2.09269046995706e96 * cos(theta) ** 31 - 3.46916601971492e95 * cos(theta) ** 29 + 4.80055011589726e94 * cos(theta) ** 27 - 5.50831347067649e93 * cos(theta) ** 25 + 5.19652214214763e92 * cos(theta) ** 23 - 3.98762542300076e91 * cos(theta) ** 21 + 2.45572240126147e90 * cos(theta) ** 19 - 1.19331779089432e89 * cos(theta) ** 17 + 4.47823453536499e87 * cos(theta) ** 15 - 1.26232114419684e86 * cos(theta) ** 13 + 2.57616560040172e84 * cos(theta) ** 11 - 3.61913430452349e82 * cos(theta) ** 9 + 3.25396690716398e80 * cos(theta) ** 7 - 1.67114954880028e78 * cos(theta) ** 5 + 4.00755287482082e75 * cos(theta) ** 3 - 2.8308591063015e72 * cos(theta) ) * cos(36 * phi) ) # @torch.jit.script def Yl99_m37(theta, phi): return ( 1.65044494316303e-73 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 1.06447623154629e99 * cos(theta) ** 62 - 1.02178911363149e100 * cos(theta) ** 60 + 4.63735059263521e100 * cos(theta) ** 58 - 1.32392755261244e101 * cos(theta) ** 56 + 2.66864977882611e101 * cos(theta) ** 54 - 4.04109823650811e101 * cos(theta) ** 52 + 4.77584337041868e101 * cos(theta) ** 50 - 4.51768967472037e101 * cos(theta) ** 48 + 3.48084286412881e101 * cos(theta) ** 46 - 2.21158524516471e101 * cos(theta) ** 44 + 1.1688042692323e101 * cos(theta) ** 42 - 5.16867219213668e100 * cos(theta) ** 40 + 1.91979252850791e100 * cos(theta) ** 38 - 6.00095219004473e99 * cos(theta) ** 36 + 1.57919794474861e99 * cos(theta) ** 34 - 3.49479308482829e98 * cos(theta) ** 32 + 6.48734045686689e97 * cos(theta) ** 30 - 1.00605814571733e97 * cos(theta) ** 28 + 1.29614853129226e96 * cos(theta) ** 26 - 1.37707836766912e95 * cos(theta) ** 24 + 1.19520009269396e94 * cos(theta) ** 22 - 8.3740133883016e92 * cos(theta) ** 20 + 4.66587256239678e91 * cos(theta) ** 18 - 2.02864024452034e90 * cos(theta) ** 16 + 6.71735180304749e88 * cos(theta) ** 14 - 1.6410174874559e87 * cos(theta) ** 12 + 2.83378216044189e85 * cos(theta) ** 10 - 3.25722087407114e83 * cos(theta) ** 8 + 2.27777683501478e81 * cos(theta) ** 6 - 8.35574774400141e78 * cos(theta) ** 4 + 1.20226586244625e76 * cos(theta) ** 2 - 2.8308591063015e72 ) * cos(37 * phi) ) # @torch.jit.script def Yl99_m38(theta, phi): return ( 1.79079104109761e-75 * (1.0 - cos(theta) ** 2) ** 19 * ( 6.59975263558698e100 * cos(theta) ** 61 - 6.13073468178892e101 * cos(theta) ** 59 + 2.68966334372842e102 * cos(theta) ** 57 - 7.41399429462964e102 * cos(theta) ** 55 + 1.4410708805661e103 * cos(theta) ** 53 - 2.10137108298422e103 * cos(theta) ** 51 + 2.38792168520934e103 * cos(theta) ** 49 - 2.16849104386578e103 * cos(theta) ** 47 + 1.60118771749925e103 * cos(theta) ** 45 - 9.73097507872474e102 * cos(theta) ** 43 + 4.90897793077567e102 * cos(theta) ** 41 - 2.06746887685467e102 * cos(theta) ** 39 + 7.29521160833006e101 * cos(theta) ** 37 - 2.1603427884161e101 * cos(theta) ** 35 + 5.36927301214529e100 * cos(theta) ** 33 - 1.11833378714505e100 * cos(theta) ** 31 + 1.94620213706007e99 * cos(theta) ** 29 - 2.81696280800851e98 * cos(theta) ** 27 + 3.36998618135988e97 * cos(theta) ** 25 - 3.30498808240589e96 * cos(theta) ** 23 + 2.6294402039267e95 * cos(theta) ** 21 - 1.67480267766032e94 * cos(theta) ** 19 + 8.39857061231421e92 * cos(theta) ** 17 - 3.24582439123255e91 * cos(theta) ** 15 + 9.40429252426648e89 * cos(theta) ** 13 - 1.96922098494708e88 * cos(theta) ** 11 + 2.83378216044189e86 * cos(theta) ** 9 - 2.60577669925691e84 * cos(theta) ** 7 + 1.36666610100887e82 * cos(theta) ** 5 - 3.34229909760056e79 * cos(theta) ** 3 + 2.40453172489249e76 * cos(theta) ) * cos(38 * phi) ) # @torch.jit.script def Yl99_m39(theta, phi): return ( 1.95182309428749e-77 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 4.02584910770806e102 * cos(theta) ** 60 - 3.61713346225546e103 * cos(theta) ** 58 + 1.5331081059252e104 * cos(theta) ** 56 - 4.0776968620463e104 * cos(theta) ** 54 + 7.63767566700034e104 * cos(theta) ** 52 - 1.07169925232195e105 * cos(theta) ** 50 + 1.17008162575258e105 * cos(theta) ** 48 - 1.01919079061692e105 * cos(theta) ** 46 + 7.20534472874664e104 * cos(theta) ** 44 - 4.18431928385164e104 * cos(theta) ** 42 + 2.01268095161802e104 * cos(theta) ** 40 - 8.06312861973322e103 * cos(theta) ** 38 + 2.69922829508212e103 * cos(theta) ** 36 - 7.56119975945637e102 * cos(theta) ** 34 + 1.77186009400795e102 * cos(theta) ** 32 - 3.46683474014967e101 * cos(theta) ** 30 + 5.6439861974742e100 * cos(theta) ** 28 - 7.60579958162298e99 * cos(theta) ** 26 + 8.42496545339969e98 * cos(theta) ** 24 - 7.60147258953356e97 * cos(theta) ** 22 + 5.52182442824607e96 * cos(theta) ** 20 - 3.18212508755461e95 * cos(theta) ** 18 + 1.42775700409342e94 * cos(theta) ** 16 - 4.86873658684882e92 * cos(theta) ** 14 + 1.22255802815464e91 * cos(theta) ** 12 - 2.16614308344178e89 * cos(theta) ** 10 + 2.5504039443977e87 * cos(theta) ** 8 - 1.82404368947984e85 * cos(theta) ** 6 + 6.83333050504435e82 * cos(theta) ** 4 - 1.00268972928017e80 * cos(theta) ** 2 + 2.40453172489249e76 ) * cos(39 * phi) ) # @torch.jit.script def Yl99_m40(theta, phi): return ( 2.13726034077774e-79 * (1.0 - cos(theta) ** 2) ** 20 * ( 2.41550946462483e104 * cos(theta) ** 59 - 2.09793740810817e105 * cos(theta) ** 57 + 8.58540539318112e105 * cos(theta) ** 55 - 2.201956305505e106 * cos(theta) ** 53 + 3.97159134684017e106 * cos(theta) ** 51 - 5.35849626160976e106 * cos(theta) ** 49 + 5.61639180361237e106 * cos(theta) ** 47 - 4.68827763683781e106 * cos(theta) ** 45 + 3.17035168064852e106 * cos(theta) ** 43 - 1.75741409921769e106 * cos(theta) ** 41 + 8.05072380647209e105 * cos(theta) ** 39 - 3.06398887549862e105 * cos(theta) ** 37 + 9.71722186229564e104 * cos(theta) ** 35 - 2.57080791821516e104 * cos(theta) ** 33 + 5.66995230082542e103 * cos(theta) ** 31 - 1.0400504220449e103 * cos(theta) ** 29 + 1.58031613529278e102 * cos(theta) ** 27 - 1.97750789122198e101 * cos(theta) ** 25 + 2.02199170881593e100 * cos(theta) ** 23 - 1.67232396969738e99 * cos(theta) ** 21 + 1.10436488564921e98 * cos(theta) ** 19 - 5.72782515759829e96 * cos(theta) ** 17 + 2.28441120654947e95 * cos(theta) ** 15 - 6.81623122158835e93 * cos(theta) ** 13 + 1.46706963378557e92 * cos(theta) ** 11 - 2.16614308344178e90 * cos(theta) ** 9 + 2.04032315551816e88 * cos(theta) ** 7 - 1.0944262136879e86 * cos(theta) ** 5 + 2.73333220201774e83 * cos(theta) ** 3 - 2.00537945856034e80 * cos(theta) ) * cos(40 * phi) ) # @torch.jit.script def Yl99_m41(theta, phi): return ( 2.35162139837282e-81 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 1.42515058412865e106 * cos(theta) ** 58 - 1.19582432262166e107 * cos(theta) ** 56 + 4.72197296624962e107 * cos(theta) ** 54 - 1.16703684191765e108 * cos(theta) ** 52 + 2.02551158688849e108 * cos(theta) ** 50 - 2.62566316818878e108 * cos(theta) ** 48 + 2.63970414769781e108 * cos(theta) ** 46 - 2.10972493657702e108 * cos(theta) ** 44 + 1.36325122267886e108 * cos(theta) ** 42 - 7.20539780679252e107 * cos(theta) ** 40 + 3.13978228452412e107 * cos(theta) ** 38 - 1.13367588393449e107 * cos(theta) ** 36 + 3.40102765180347e106 * cos(theta) ** 34 - 8.48366613011004e105 * cos(theta) ** 32 + 1.75768521325588e105 * cos(theta) ** 30 - 3.01614622393021e104 * cos(theta) ** 28 + 4.26685356529049e103 * cos(theta) ** 26 - 4.94376972805494e102 * cos(theta) ** 24 + 4.65058093027663e101 * cos(theta) ** 22 - 3.5118803363645e100 * cos(theta) ** 20 + 2.09829328273351e99 * cos(theta) ** 18 - 9.7373027679171e97 * cos(theta) ** 16 + 3.4266168098242e96 * cos(theta) ** 14 - 8.86110058806485e94 * cos(theta) ** 12 + 1.61377659716413e93 * cos(theta) ** 10 - 1.9495287750976e91 * cos(theta) ** 8 + 1.42822620886271e89 * cos(theta) ** 6 - 5.47213106843952e86 * cos(theta) ** 4 + 8.19999660605322e83 * cos(theta) ** 2 - 2.00537945856034e80 ) * cos(41 * phi) ) # @torch.jit.script def Yl99_m42(theta, phi): return ( 2.60042211175638e-83 * (1.0 - cos(theta) ** 2) ** 21 * ( 8.26587338794618e107 * cos(theta) ** 57 - 6.69661620668127e108 * cos(theta) ** 55 + 2.54986540177479e109 * cos(theta) ** 53 - 6.06859157797179e109 * cos(theta) ** 51 + 1.01275579344424e110 * cos(theta) ** 49 - 1.26031832073062e110 * cos(theta) ** 47 + 1.21426390794099e110 * cos(theta) ** 45 - 9.28278972093887e109 * cos(theta) ** 43 + 5.72565513525123e109 * cos(theta) ** 41 - 2.88215912271701e109 * cos(theta) ** 39 + 1.19311726811916e109 * cos(theta) ** 37 - 4.08123318216417e108 * cos(theta) ** 35 + 1.15634940161318e108 * cos(theta) ** 33 - 2.71477316163521e107 * cos(theta) ** 31 + 5.27305563976764e106 * cos(theta) ** 29 - 8.44520942700459e105 * cos(theta) ** 27 + 1.10938192697553e105 * cos(theta) ** 25 - 1.18650473473319e104 * cos(theta) ** 23 + 1.02312780466086e103 * cos(theta) ** 21 - 7.02376067272901e101 * cos(theta) ** 19 + 3.77692790892031e100 * cos(theta) ** 17 - 1.55796844286674e99 * cos(theta) ** 15 + 4.79726353375388e97 * cos(theta) ** 13 - 1.06333207056778e96 * cos(theta) ** 11 + 1.61377659716413e94 * cos(theta) ** 9 - 1.55962302007808e92 * cos(theta) ** 7 + 8.56935725317628e89 * cos(theta) ** 5 - 2.18885242737581e87 * cos(theta) ** 3 + 1.63999932121064e84 * cos(theta) ) * cos(42 * phi) ) # @torch.jit.script def Yl99_m43(theta, phi): return ( 2.89042862939312e-85 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 4.71154783112932e109 * cos(theta) ** 56 - 3.6831389136747e110 * cos(theta) ** 54 + 1.35142866294064e111 * cos(theta) ** 52 - 3.09498170476561e111 * cos(theta) ** 50 + 4.9625033878768e111 * cos(theta) ** 48 - 5.92349610743389e111 * cos(theta) ** 46 + 5.46418758573447e111 * cos(theta) ** 44 - 3.99159958000372e111 * cos(theta) ** 42 + 2.347518605453e111 * cos(theta) ** 40 - 1.12404205785963e111 * cos(theta) ** 38 + 4.41453389204091e110 * cos(theta) ** 36 - 1.42843161375746e110 * cos(theta) ** 34 + 3.8159530253235e109 * cos(theta) ** 32 - 8.41579680106916e108 * cos(theta) ** 30 + 1.52918613553262e108 * cos(theta) ** 28 - 2.28020654529124e107 * cos(theta) ** 26 + 2.77345481743882e106 * cos(theta) ** 24 - 2.72896088988633e105 * cos(theta) ** 22 + 2.1485683897878e104 * cos(theta) ** 20 - 1.33451452781851e103 * cos(theta) ** 18 + 6.42077744516454e101 * cos(theta) ** 16 - 2.3369526643001e100 * cos(theta) ** 14 + 6.23644259388004e98 * cos(theta) ** 12 - 1.16966527762456e97 * cos(theta) ** 10 + 1.45239893744772e95 * cos(theta) ** 8 - 1.09173611405466e93 * cos(theta) ** 6 + 4.28467862658814e90 * cos(theta) ** 4 - 6.56655728212742e87 * cos(theta) ** 2 + 1.63999932121064e84 ) * cos(43 * phi) ) # @torch.jit.script def Yl99_m44(theta, phi): return ( 3.22998286183248e-87 * (1.0 - cos(theta) ** 2) ** 22 * ( 2.63846678543242e111 * cos(theta) ** 55 - 1.98889501338434e112 * cos(theta) ** 53 + 7.02742904729133e112 * cos(theta) ** 51 - 1.54749085238281e113 * cos(theta) ** 49 + 2.38200162618086e113 * cos(theta) ** 47 - 2.72480820941959e113 * cos(theta) ** 45 + 2.40424253772317e113 * cos(theta) ** 43 - 1.67647182360156e113 * cos(theta) ** 41 + 9.39007442181202e112 * cos(theta) ** 39 - 4.27135981986661e112 * cos(theta) ** 37 + 1.58923220113473e112 * cos(theta) ** 35 - 4.85666748677536e111 * cos(theta) ** 33 + 1.22110496810352e111 * cos(theta) ** 31 - 2.52473904032075e110 * cos(theta) ** 29 + 4.28172117949133e109 * cos(theta) ** 27 - 5.92853701775722e108 * cos(theta) ** 25 + 6.65629156185317e107 * cos(theta) ** 23 - 6.00371395774992e106 * cos(theta) ** 21 + 4.29713677957561e105 * cos(theta) ** 19 - 2.40212615007332e104 * cos(theta) ** 17 + 1.02732439122633e103 * cos(theta) ** 15 - 3.27173373002015e101 * cos(theta) ** 13 + 7.48373111265605e99 * cos(theta) ** 11 - 1.16966527762456e98 * cos(theta) ** 9 + 1.16191914995817e96 * cos(theta) ** 7 - 6.55041668432795e93 * cos(theta) ** 5 + 1.71387145063526e91 * cos(theta) ** 3 - 1.31331145642548e88 * cos(theta) ) * cos(44 * phi) ) # @torch.jit.script def Yl99_m45(theta, phi): return ( 3.62942333534347e-89 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 1.45115673198783e113 * cos(theta) ** 54 - 1.0541143570937e114 * cos(theta) ** 52 + 3.58398881411858e114 * cos(theta) ** 50 - 7.58270517667575e114 * cos(theta) ** 48 + 1.11954076430501e115 * cos(theta) ** 46 - 1.22616369423882e115 * cos(theta) ** 44 + 1.03382429122096e115 * cos(theta) ** 42 - 6.8735344767664e114 * cos(theta) ** 40 + 3.66212902450669e114 * cos(theta) ** 38 - 1.58040313335065e114 * cos(theta) ** 36 + 5.56231270397154e113 * cos(theta) ** 34 - 1.60270027063587e113 * cos(theta) ** 32 + 3.78542540112091e112 * cos(theta) ** 30 - 7.32174321693017e111 * cos(theta) ** 28 + 1.15606471846266e111 * cos(theta) ** 26 - 1.48213425443931e110 * cos(theta) ** 24 + 1.53094705922623e109 * cos(theta) ** 22 - 1.26077993112748e108 * cos(theta) ** 20 + 8.16455988119365e106 * cos(theta) ** 18 - 4.08361445512464e105 * cos(theta) ** 16 + 1.54098658683949e104 * cos(theta) ** 14 - 4.25325384902619e102 * cos(theta) ** 12 + 8.23210422392166e100 * cos(theta) ** 10 - 1.0526987498621e99 * cos(theta) ** 8 + 8.13343404970721e96 * cos(theta) ** 6 - 3.27520834216398e94 * cos(theta) ** 4 + 5.14161435190577e91 * cos(theta) ** 2 - 1.31331145642548e88 ) * cos(45 * phi) ) # @torch.jit.script def Yl99_m46(theta, phi): return ( 4.10163250481021e-91 * (1.0 - cos(theta) ** 2) ** 23 * ( 7.83624635273429e114 * cos(theta) ** 53 - 5.48139465688724e115 * cos(theta) ** 51 + 1.79199440705929e116 * cos(theta) ** 49 - 3.63969848480436e116 * cos(theta) ** 47 + 5.14988751580303e116 * cos(theta) ** 45 - 5.39512025465079e116 * cos(theta) ** 43 + 4.34206202312804e116 * cos(theta) ** 41 - 2.74941379070656e116 * cos(theta) ** 39 + 1.39160902931254e116 * cos(theta) ** 37 - 5.68945128006232e115 * cos(theta) ** 35 + 1.89118631935033e115 * cos(theta) ** 33 - 5.12864086603478e114 * cos(theta) ** 31 + 1.13562762033627e114 * cos(theta) ** 29 - 2.05008810074045e113 * cos(theta) ** 27 + 3.00576826800291e112 * cos(theta) ** 25 - 3.55712221065433e111 * cos(theta) ** 23 + 3.3680835302977e110 * cos(theta) ** 21 - 2.52155986225497e109 * cos(theta) ** 19 + 1.46962077861486e108 * cos(theta) ** 17 - 6.53378312819943e106 * cos(theta) ** 15 + 2.15738122157528e105 * cos(theta) ** 13 - 5.10390461883143e103 * cos(theta) ** 11 + 8.23210422392166e101 * cos(theta) ** 9 - 8.42158999889683e99 * cos(theta) ** 7 + 4.88006042982432e97 * cos(theta) ** 5 - 1.31008333686559e95 * cos(theta) ** 3 + 1.02832287038115e92 * cos(theta) ) * cos(46 * phi) ) # @torch.jit.script def Yl99_m47(theta, phi): return ( 4.66275271320016e-93 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 4.15321056694918e116 * cos(theta) ** 52 - 2.79551127501249e117 * cos(theta) ** 50 + 8.78077259459052e117 * cos(theta) ** 48 - 1.71065828785805e118 * cos(theta) ** 46 + 2.31744938211136e118 * cos(theta) ** 44 - 2.31990170949984e118 * cos(theta) ** 42 + 1.7802454294825e118 * cos(theta) ** 40 - 1.07227137837556e118 * cos(theta) ** 38 + 5.1489534084564e117 * cos(theta) ** 36 - 1.99130794802181e117 * cos(theta) ** 34 + 6.24091485385607e116 * cos(theta) ** 32 - 1.58987866847078e116 * cos(theta) ** 30 + 3.29332009897519e115 * cos(theta) ** 28 - 5.53523787199921e114 * cos(theta) ** 26 + 7.51442067000728e113 * cos(theta) ** 24 - 8.18138108450497e112 * cos(theta) ** 22 + 7.07297541362518e111 * cos(theta) ** 20 - 4.79096373828443e110 * cos(theta) ** 18 + 2.49835532364526e109 * cos(theta) ** 16 - 9.80067469229915e107 * cos(theta) ** 14 + 2.80459558804787e106 * cos(theta) ** 12 - 5.61429508071457e104 * cos(theta) ** 10 + 7.40889380152949e102 * cos(theta) ** 8 - 5.89511299922778e100 * cos(theta) ** 6 + 2.44003021491216e98 * cos(theta) ** 4 - 3.93025001059677e95 * cos(theta) ** 2 + 1.02832287038115e92 ) * cos(47 * phi) ) # @torch.jit.script def Yl99_m48(theta, phi): return ( 5.33312845438859e-95 * (1.0 - cos(theta) ** 2) ** 24 * ( 2.15966949481357e118 * cos(theta) ** 51 - 1.39775563750625e119 * cos(theta) ** 49 + 4.21477084540345e119 * cos(theta) ** 47 - 7.86902812414702e119 * cos(theta) ** 45 + 1.019677728129e120 * cos(theta) ** 43 - 9.74358717989932e119 * cos(theta) ** 41 + 7.12098171792999e119 * cos(theta) ** 39 - 4.07463123782712e119 * cos(theta) ** 37 + 1.8536232270443e119 * cos(theta) ** 35 - 6.77044702327416e118 * cos(theta) ** 33 + 1.99709275323394e118 * cos(theta) ** 31 - 4.76963600541235e117 * cos(theta) ** 29 + 9.22129627713053e116 * cos(theta) ** 27 - 1.43916184671979e116 * cos(theta) ** 25 + 1.80346096080175e115 * cos(theta) ** 23 - 1.79990383859109e114 * cos(theta) ** 21 + 1.41459508272504e113 * cos(theta) ** 19 - 8.62373472891198e111 * cos(theta) ** 17 + 3.99736851783241e110 * cos(theta) ** 15 - 1.37209445692188e109 * cos(theta) ** 13 + 3.36551470565744e107 * cos(theta) ** 11 - 5.61429508071457e105 * cos(theta) ** 9 + 5.92711504122359e103 * cos(theta) ** 7 - 3.53706779953667e101 * cos(theta) ** 5 + 9.76012085964865e98 * cos(theta) ** 3 - 7.86050002119354e95 * cos(theta) ) * cos(48 * phi) ) # @torch.jit.script def Yl99_m49(theta, phi): return ( 6.13855425314236e-97 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 1.10143144235492e120 * cos(theta) ** 50 - 6.8490026237806e120 * cos(theta) ** 48 + 1.98094229733962e121 * cos(theta) ** 46 - 3.54106265586616e121 * cos(theta) ** 44 + 4.3846142309547e121 * cos(theta) ** 42 - 3.99487074375872e121 * cos(theta) ** 40 + 2.7771828699927e121 * cos(theta) ** 38 - 1.50761355799603e121 * cos(theta) ** 36 + 6.48768129465507e120 * cos(theta) ** 34 - 2.23424751768047e120 * cos(theta) ** 32 + 6.19098753502522e119 * cos(theta) ** 30 - 1.38319444156958e119 * cos(theta) ** 28 + 2.48974999482524e118 * cos(theta) ** 26 - 3.59790461679949e117 * cos(theta) ** 24 + 4.14796020984402e116 * cos(theta) ** 22 - 3.7797980610413e115 * cos(theta) ** 20 + 2.68773065717757e114 * cos(theta) ** 18 - 1.46603490391504e113 * cos(theta) ** 16 + 5.99605277674862e111 * cos(theta) ** 14 - 1.78372279399844e110 * cos(theta) ** 12 + 3.70206617622319e108 * cos(theta) ** 10 - 5.05286557264311e106 * cos(theta) ** 8 + 4.14898052885651e104 * cos(theta) ** 6 - 1.76853389976834e102 * cos(theta) ** 4 + 2.92803625789459e99 * cos(theta) ** 2 - 7.86050002119354e95 ) * cos(49 * phi) ) # @torch.jit.script def Yl99_m50(theta, phi): return ( 7.11193800400767e-99 * (1.0 - cos(theta) ** 2) ** 25 * ( 5.50715721177461e121 * cos(theta) ** 49 - 3.28752125941469e122 * cos(theta) ** 47 + 9.11233456776225e122 * cos(theta) ** 45 - 1.55806756858111e123 * cos(theta) ** 43 + 1.84153797700097e123 * cos(theta) ** 41 - 1.59794829750349e123 * cos(theta) ** 39 + 1.05532949059722e123 * cos(theta) ** 37 - 5.42740880878572e122 * cos(theta) ** 35 + 2.20581164018272e122 * cos(theta) ** 33 - 7.14959205657752e121 * cos(theta) ** 31 + 1.85729626050757e121 * cos(theta) ** 29 - 3.87294443639482e120 * cos(theta) ** 27 + 6.47334998654564e119 * cos(theta) ** 25 - 8.63497108031877e118 * cos(theta) ** 23 + 9.12551246165684e117 * cos(theta) ** 21 - 7.55959612208259e116 * cos(theta) ** 19 + 4.83791518291962e115 * cos(theta) ** 17 - 2.34565584626406e114 * cos(theta) ** 15 + 8.39447388744806e112 * cos(theta) ** 13 - 2.14046735279813e111 * cos(theta) ** 11 + 3.70206617622319e109 * cos(theta) ** 9 - 4.04229245811449e107 * cos(theta) ** 7 + 2.48938831731391e105 * cos(theta) ** 5 - 7.07413559907334e102 * cos(theta) ** 3 + 5.85607251578919e99 * cos(theta) ) * cos(50 * phi) ) # @torch.jit.script def Yl99_m51(theta, phi): return ( 8.29553294863174e-101 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 2.69850703376956e123 * cos(theta) ** 48 - 1.5451349919249e124 * cos(theta) ** 46 + 4.10055055549301e124 * cos(theta) ** 44 - 6.69969054489877e124 * cos(theta) ** 42 + 7.55030570570399e124 * cos(theta) ** 40 - 6.23199836026361e124 * cos(theta) ** 38 + 3.90471911520973e124 * cos(theta) ** 36 - 1.899593083075e124 * cos(theta) ** 34 + 7.27917841260298e123 * cos(theta) ** 32 - 2.21637353753903e123 * cos(theta) ** 30 + 5.38615915547195e122 * cos(theta) ** 28 - 1.0456949978266e122 * cos(theta) ** 26 + 1.61833749663641e121 * cos(theta) ** 24 - 1.98604334847332e120 * cos(theta) ** 22 + 1.91635761694794e119 * cos(theta) ** 20 - 1.43632326319569e118 * cos(theta) ** 18 + 8.22445581096336e116 * cos(theta) ** 16 - 3.51848376939609e115 * cos(theta) ** 14 + 1.09128160536825e114 * cos(theta) ** 12 - 2.35451408807795e112 * cos(theta) ** 10 + 3.33185955860087e110 * cos(theta) ** 8 - 2.82960472068014e108 * cos(theta) ** 6 + 1.24469415865695e106 * cos(theta) ** 4 - 2.122240679722e103 * cos(theta) ** 2 + 5.85607251578919e99 ) * cos(51 * phi) ) # @torch.jit.script def Yl99_m52(theta, phi): return ( 9.74395344445452e-103 * (1.0 - cos(theta) ** 2) ** 26 * ( 1.29528337620939e125 * cos(theta) ** 47 - 7.10762096285456e125 * cos(theta) ** 45 + 1.80424224441693e126 * cos(theta) ** 43 - 2.81387002885749e126 * cos(theta) ** 41 + 3.02012228228159e126 * cos(theta) ** 39 - 2.36815937690017e126 * cos(theta) ** 37 + 1.4056988814755e126 * cos(theta) ** 35 - 6.45861648245501e125 * cos(theta) ** 33 + 2.32933709203296e125 * cos(theta) ** 31 - 6.64912061261709e124 * cos(theta) ** 29 + 1.50812456353214e124 * cos(theta) ** 27 - 2.71880699434917e123 * cos(theta) ** 25 + 3.88400999192738e122 * cos(theta) ** 23 - 4.3692953666413e121 * cos(theta) ** 21 + 3.83271523389587e120 * cos(theta) ** 19 - 2.58538187375225e119 * cos(theta) ** 17 + 1.31591292975414e118 * cos(theta) ** 15 - 4.92587727715452e116 * cos(theta) ** 13 + 1.3095379264419e115 * cos(theta) ** 11 - 2.35451408807795e113 * cos(theta) ** 9 + 2.66548764688069e111 * cos(theta) ** 7 - 1.69776283240809e109 * cos(theta) ** 5 + 4.97877663462782e106 * cos(theta) ** 3 - 4.244481359444e103 * cos(theta) ) * cos(52 * phi) ) # @torch.jit.script def Yl99_m53(theta, phi): return ( 1.15282789706101e-104 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 6.08783186818412e126 * cos(theta) ** 46 - 3.19842943328455e127 * cos(theta) ** 44 + 7.75824165099278e127 * cos(theta) ** 42 - 1.15368671183157e128 * cos(theta) ** 40 + 1.17784769008982e128 * cos(theta) ** 38 - 8.76218969453063e127 * cos(theta) ** 36 + 4.91994608516426e127 * cos(theta) ** 34 - 2.13134343921015e127 * cos(theta) ** 32 + 7.22094498530216e126 * cos(theta) ** 30 - 1.92824497765896e126 * cos(theta) ** 28 + 4.07193632153679e125 * cos(theta) ** 26 - 6.79701748587292e124 * cos(theta) ** 24 + 8.93322298143298e123 * cos(theta) ** 22 - 9.17552026994672e122 * cos(theta) ** 20 + 7.28215894440216e121 * cos(theta) ** 18 - 4.39514918537882e120 * cos(theta) ** 16 + 1.97386939463121e119 * cos(theta) ** 14 - 6.40364046030088e117 * cos(theta) ** 12 + 1.44049171908609e116 * cos(theta) ** 10 - 2.11906267927015e114 * cos(theta) ** 8 + 1.86584135281649e112 * cos(theta) ** 6 - 8.48881416204043e109 * cos(theta) ** 4 + 1.49363299038834e107 * cos(theta) ** 2 - 4.244481359444e103 ) * cos(53 * phi) ) # @torch.jit.script def Yl99_m54(theta, phi): return ( 1.37416804779811e-106 * (1.0 - cos(theta) ** 2) ** 27 * ( 2.8004026593647e128 * cos(theta) ** 45 - 1.4073089506452e129 * cos(theta) ** 43 + 3.25846149341697e129 * cos(theta) ** 41 - 4.61474684732628e129 * cos(theta) ** 39 + 4.47582122234132e129 * cos(theta) ** 37 - 3.15438829003103e129 * cos(theta) ** 35 + 1.67278166895585e129 * cos(theta) ** 33 - 6.82029900547249e128 * cos(theta) ** 31 + 2.16628349559065e128 * cos(theta) ** 29 - 5.39908593744508e127 * cos(theta) ** 27 + 1.05870344359957e127 * cos(theta) ** 25 - 1.6312841966095e126 * cos(theta) ** 23 + 1.96530905591525e125 * cos(theta) ** 21 - 1.83510405398934e124 * cos(theta) ** 19 + 1.31078860999239e123 * cos(theta) ** 17 - 7.03223869660611e121 * cos(theta) ** 15 + 2.76341715248369e120 * cos(theta) ** 13 - 7.68436855236106e118 * cos(theta) ** 11 + 1.44049171908609e117 * cos(theta) ** 9 - 1.69525014341612e115 * cos(theta) ** 7 + 1.11950481168989e113 * cos(theta) ** 5 - 3.39552566481617e110 * cos(theta) ** 3 + 2.98726598077669e107 * cos(theta) ) * cos(54 * phi) ) # @torch.jit.script def Yl99_m55(theta, phi): return ( 1.65071929906738e-108 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 1.26018119671411e130 * cos(theta) ** 44 - 6.05142848777437e130 * cos(theta) ** 42 + 1.33596921230096e131 * cos(theta) ** 40 - 1.79975127045725e131 * cos(theta) ** 38 + 1.65605385226629e131 * cos(theta) ** 36 - 1.10403590151086e131 * cos(theta) ** 34 + 5.5201795075543e130 * cos(theta) ** 32 - 2.11429269169647e130 * cos(theta) ** 30 + 6.28222213721288e129 * cos(theta) ** 28 - 1.45775320311017e129 * cos(theta) ** 26 + 2.64675860899891e128 * cos(theta) ** 24 - 3.75195365220185e127 * cos(theta) ** 22 + 4.12714901742204e126 * cos(theta) ** 20 - 3.48669770257975e125 * cos(theta) ** 18 + 2.22834063698706e124 * cos(theta) ** 16 - 1.05483580449092e123 * cos(theta) ** 14 + 3.59244229822879e121 * cos(theta) ** 12 - 8.45280540759716e119 * cos(theta) ** 10 + 1.29644254717748e118 * cos(theta) ** 8 - 1.18667510039129e116 * cos(theta) ** 6 + 5.59752405844946e113 * cos(theta) ** 4 - 1.01865769944485e111 * cos(theta) ** 2 + 2.98726598077669e107 ) * cos(55 * phi) ) # @torch.jit.script def Yl99_m56(theta, phi): return ( 1.99885385205305e-110 * (1.0 - cos(theta) ** 2) ** 28 * ( 5.5447972655421e131 * cos(theta) ** 43 - 2.54159996486524e132 * cos(theta) ** 41 + 5.34387684920383e132 * cos(theta) ** 39 - 6.83905482773754e132 * cos(theta) ** 37 + 5.96179386815864e132 * cos(theta) ** 35 - 3.75372206513692e132 * cos(theta) ** 33 + 1.76645744241738e132 * cos(theta) ** 31 - 6.34287807508942e131 * cos(theta) ** 29 + 1.75902219841961e131 * cos(theta) ** 27 - 3.79015832808644e130 * cos(theta) ** 25 + 6.35222066159739e129 * cos(theta) ** 23 - 8.25429803484407e128 * cos(theta) ** 21 + 8.25429803484407e127 * cos(theta) ** 19 - 6.27605586464356e126 * cos(theta) ** 17 + 3.5653450191793e125 * cos(theta) ** 15 - 1.47677012628728e124 * cos(theta) ** 13 + 4.31093075787455e122 * cos(theta) ** 11 - 8.45280540759716e120 * cos(theta) ** 9 + 1.03715403774198e119 * cos(theta) ** 7 - 7.12005060234771e116 * cos(theta) ** 5 + 2.23900962337978e114 * cos(theta) ** 3 - 2.0373153988897e111 * cos(theta) ) * cos(56 * phi) ) # @torch.jit.script def Yl99_m57(theta, phi): return ( 2.44053204516707e-112 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 2.3842628241831e133 * cos(theta) ** 42 - 1.04205598559475e134 * cos(theta) ** 40 + 2.08411197118949e134 * cos(theta) ** 38 - 2.53045028626289e134 * cos(theta) ** 36 + 2.08662785385552e134 * cos(theta) ** 34 - 1.23872828149518e134 * cos(theta) ** 32 + 5.47601807149386e133 * cos(theta) ** 30 - 1.83943464177593e133 * cos(theta) ** 28 + 4.74935993573294e132 * cos(theta) ** 26 - 9.47539582021611e131 * cos(theta) ** 24 + 1.4610107521674e131 * cos(theta) ** 22 - 1.73340258731725e130 * cos(theta) ** 20 + 1.56831662662037e129 * cos(theta) ** 18 - 1.0669294969894e128 * cos(theta) ** 16 + 5.34801752876895e126 * cos(theta) ** 14 - 1.91980116417347e125 * cos(theta) ** 12 + 4.74202383366201e123 * cos(theta) ** 10 - 7.60752486683745e121 * cos(theta) ** 8 + 7.26007826419388e119 * cos(theta) ** 6 - 3.56002530117386e117 * cos(theta) ** 4 + 6.71702887013935e114 * cos(theta) ** 2 - 2.0373153988897e111 ) * cos(57 * phi) ) # @torch.jit.script def Yl99_m58(theta, phi): return ( 3.0054537081684e-114 * (1.0 - cos(theta) ** 2) ** 29 * ( 1.0013903861569e135 * cos(theta) ** 41 - 4.16822394237899e135 * cos(theta) ** 39 + 7.91962549052007e135 * cos(theta) ** 37 - 9.10962103054641e135 * cos(theta) ** 35 + 7.09453470310878e135 * cos(theta) ** 33 - 3.96393050078459e135 * cos(theta) ** 31 + 1.64280542144816e135 * cos(theta) ** 29 - 5.15041699697261e134 * cos(theta) ** 27 + 1.23483358329056e134 * cos(theta) ** 25 - 2.27409499685187e133 * cos(theta) ** 23 + 3.21422365476828e132 * cos(theta) ** 21 - 3.46680517463451e131 * cos(theta) ** 19 + 2.82296992791667e130 * cos(theta) ** 17 - 1.70708719518305e129 * cos(theta) ** 15 + 7.48722454027652e127 * cos(theta) ** 13 - 2.30376139700816e126 * cos(theta) ** 11 + 4.74202383366201e124 * cos(theta) ** 9 - 6.08601989346996e122 * cos(theta) ** 7 + 4.35604695851633e120 * cos(theta) ** 5 - 1.42401012046954e118 * cos(theta) ** 3 + 1.34340577402787e115 * cos(theta) ) * cos(58 * phi) ) # @torch.jit.script def Yl99_m59(theta, phi): return ( 3.73413118522426e-116 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 4.1057005832433e136 * cos(theta) ** 40 - 1.6256073375278e137 * cos(theta) ** 38 + 2.93026143149243e137 * cos(theta) ** 36 - 3.18836736069124e137 * cos(theta) ** 34 + 2.3411964520259e137 * cos(theta) ** 32 - 1.22881845524322e137 * cos(theta) ** 30 + 4.76413572219966e136 * cos(theta) ** 28 - 1.3906125891826e136 * cos(theta) ** 26 + 3.08708395822641e135 * cos(theta) ** 24 - 5.23041849275929e134 * cos(theta) ** 22 + 6.74986967501339e133 * cos(theta) ** 20 - 6.58692983180557e132 * cos(theta) ** 18 + 4.79904887745834e131 * cos(theta) ** 16 - 2.56063079277457e130 * cos(theta) ** 14 + 9.73339190235948e128 * cos(theta) ** 12 - 2.53413753670898e127 * cos(theta) ** 10 + 4.26782145029581e125 * cos(theta) ** 8 - 4.26021392542897e123 * cos(theta) ** 6 + 2.17802347925816e121 * cos(theta) ** 4 - 4.27203036140863e118 * cos(theta) ** 2 + 1.34340577402787e115 ) * cos(59 * phi) ) # @torch.jit.script def Yl99_m60(theta, phi): return ( 4.68231916352973e-118 * (1.0 - cos(theta) ** 2) ** 30 * ( 1.64228023329732e138 * cos(theta) ** 39 - 6.17730788260566e138 * cos(theta) ** 37 + 1.05489411533727e139 * cos(theta) ** 35 - 1.08404490263502e139 * cos(theta) ** 33 + 7.49182864648288e138 * cos(theta) ** 31 - 3.68645536572967e138 * cos(theta) ** 29 + 1.33395800221591e138 * cos(theta) ** 27 - 3.61559273187477e137 * cos(theta) ** 25 + 7.40900149974338e136 * cos(theta) ** 23 - 1.15069206840704e136 * cos(theta) ** 21 + 1.34997393500268e135 * cos(theta) ** 19 - 1.185647369725e134 * cos(theta) ** 17 + 7.67847820393335e132 * cos(theta) ** 15 - 3.5848831098844e131 * cos(theta) ** 13 + 1.16800702828314e130 * cos(theta) ** 11 - 2.53413753670898e128 * cos(theta) ** 9 + 3.41425716023665e126 * cos(theta) ** 7 - 2.55612835525738e124 * cos(theta) ** 5 + 8.71209391703266e121 * cos(theta) ** 3 - 8.54406072281725e118 * cos(theta) ) * cos(60 * phi) ) # @torch.jit.script def Yl99_m61(theta, phi): return ( 5.92746118269603e-120 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 6.40489290985955e139 * cos(theta) ** 38 - 2.28560391656409e140 * cos(theta) ** 36 + 3.69212940368046e140 * cos(theta) ** 34 - 3.57734817869557e140 * cos(theta) ** 32 + 2.32246688040969e140 * cos(theta) ** 30 - 1.0690720560616e140 * cos(theta) ** 28 + 3.60168660598294e139 * cos(theta) ** 26 - 9.03898182968693e138 * cos(theta) ** 24 + 1.70407034494098e138 * cos(theta) ** 22 - 2.41645334365479e137 * cos(theta) ** 20 + 2.56495047650509e136 * cos(theta) ** 18 - 2.0156005285325e135 * cos(theta) ** 16 + 1.15177173059e134 * cos(theta) ** 14 - 4.66034804284972e132 * cos(theta) ** 12 + 1.28480773111145e131 * cos(theta) ** 10 - 2.28072378303808e129 * cos(theta) ** 8 + 2.38998001216565e127 * cos(theta) ** 6 - 1.27806417762869e125 * cos(theta) ** 4 + 2.6136281751098e122 * cos(theta) ** 2 - 8.54406072281725e118 ) * cos(61 * phi) ) # @torch.jit.script def Yl99_m62(theta, phi): return ( 7.57816369635642e-122 * (1.0 - cos(theta) ** 2) ** 31 * ( 2.43385930574663e141 * cos(theta) ** 37 - 8.22817409963074e141 * cos(theta) ** 35 + 1.25532399725136e142 * cos(theta) ** 33 - 1.14475141718258e142 * cos(theta) ** 31 + 6.96740064122908e141 * cos(theta) ** 29 - 2.99340175697249e141 * cos(theta) ** 27 + 9.36438517555566e140 * cos(theta) ** 25 - 2.16935563912486e140 * cos(theta) ** 23 + 3.74895475887015e139 * cos(theta) ** 21 - 4.83290668730959e138 * cos(theta) ** 19 + 4.61691085770916e137 * cos(theta) ** 17 - 3.22496084565201e136 * cos(theta) ** 15 + 1.612480422826e135 * cos(theta) ** 13 - 5.59241765141966e133 * cos(theta) ** 11 + 1.28480773111145e132 * cos(theta) ** 9 - 1.82457902643046e130 * cos(theta) ** 7 + 1.43398800729939e128 * cos(theta) ** 5 - 5.11225671051476e125 * cos(theta) ** 3 + 5.2272563502196e122 * cos(theta) ) * cos(62 * phi) ) # @torch.jit.script def Yl99_m63(theta, phi): return ( 9.78826261906186e-124 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 9.00527943126253e142 * cos(theta) ** 36 - 2.87986093487076e143 * cos(theta) ** 34 + 4.14256919092947e143 * cos(theta) ** 32 - 3.54872939326601e143 * cos(theta) ** 30 + 2.02054618595643e143 * cos(theta) ** 28 - 8.08218474382573e142 * cos(theta) ** 26 + 2.34109629388891e142 * cos(theta) ** 24 - 4.98951796998718e141 * cos(theta) ** 22 + 7.87280499362732e140 * cos(theta) ** 20 - 9.18252270588822e139 * cos(theta) ** 18 + 7.84874845810557e138 * cos(theta) ** 16 - 4.83744126847801e137 * cos(theta) ** 14 + 2.0962245496738e136 * cos(theta) ** 12 - 6.15165941656163e134 * cos(theta) ** 10 + 1.15632695800031e133 * cos(theta) ** 8 - 1.27720531850132e131 * cos(theta) ** 6 + 7.16994003649696e128 * cos(theta) ** 4 - 1.53367701315443e126 * cos(theta) ** 2 + 5.2272563502196e122 ) * cos(63 * phi) ) # @torch.jit.script def Yl99_m64(theta, phi): return ( 1.27779316393445e-125 * (1.0 - cos(theta) ** 2) ** 32 * ( 3.24190059525451e144 * cos(theta) ** 35 - 9.79152717856058e144 * cos(theta) ** 33 + 1.32562214109743e145 * cos(theta) ** 31 - 1.0646188179798e145 * cos(theta) ** 29 + 5.65752932067801e144 * cos(theta) ** 27 - 2.10136803339469e144 * cos(theta) ** 25 + 5.61863110533339e143 * cos(theta) ** 23 - 1.09769395339718e143 * cos(theta) ** 21 + 1.57456099872546e142 * cos(theta) ** 19 - 1.65285408705988e141 * cos(theta) ** 17 + 1.25579975329689e140 * cos(theta) ** 15 - 6.77241777586921e138 * cos(theta) ** 13 + 2.51546945960856e137 * cos(theta) ** 11 - 6.15165941656163e135 * cos(theta) ** 9 + 9.25061566400245e133 * cos(theta) ** 7 - 7.66323191100795e131 * cos(theta) ** 5 + 2.86797601459878e129 * cos(theta) ** 3 - 3.06735402630886e126 * cos(theta) ) * cos(64 * phi) ) # @torch.jit.script def Yl99_m65(theta, phi): return ( 1.68657094430387e-127 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 1.13466520833908e146 * cos(theta) ** 34 - 3.23120396892499e146 * cos(theta) ** 32 + 4.10942863740204e146 * cos(theta) ** 30 - 3.08739457214143e146 * cos(theta) ** 28 + 1.52753291658306e146 * cos(theta) ** 26 - 5.25342008348672e145 * cos(theta) ** 24 + 1.29228515422668e145 * cos(theta) ** 22 - 2.30515730213408e144 * cos(theta) ** 20 + 2.99166589757838e143 * cos(theta) ** 18 - 2.80985194800179e142 * cos(theta) ** 16 + 1.88369962994534e141 * cos(theta) ** 14 - 8.80414310862998e139 * cos(theta) ** 12 + 2.76701640556942e138 * cos(theta) ** 10 - 5.53649347490547e136 * cos(theta) ** 8 + 6.47543096480172e134 * cos(theta) ** 6 - 3.83161595550397e132 * cos(theta) ** 4 + 8.60392804379635e129 * cos(theta) ** 2 - 3.06735402630886e126 ) * cos(65 * phi) ) # @torch.jit.script def Yl99_m66(theta, phi): return ( 2.25176561747111e-129 * (1.0 - cos(theta) ** 2) ** 33 * ( 3.85786170835287e147 * cos(theta) ** 33 - 1.033985270056e148 * cos(theta) ** 31 + 1.23282859122061e148 * cos(theta) ** 29 - 8.644704801996e147 * cos(theta) ** 27 + 3.97158558311596e147 * cos(theta) ** 25 - 1.26082082003681e147 * cos(theta) ** 23 + 2.8430273392987e146 * cos(theta) ** 21 - 4.61031460426816e145 * cos(theta) ** 19 + 5.38499861564109e144 * cos(theta) ** 17 - 4.49576311680287e143 * cos(theta) ** 15 + 2.63717948192347e142 * cos(theta) ** 13 - 1.0564971730356e141 * cos(theta) ** 11 + 2.76701640556942e139 * cos(theta) ** 9 - 4.42919477992437e137 * cos(theta) ** 7 + 3.88525857888103e135 * cos(theta) ** 5 - 1.53264638220159e133 * cos(theta) ** 3 + 1.72078560875927e130 * cos(theta) ) * cos(66 * phi) ) # @torch.jit.script def Yl99_m67(theta, phi): return ( 3.0423709780951e-131 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 1.27309436375645e149 * cos(theta) ** 32 - 3.20535433717359e149 * cos(theta) ** 30 + 3.57520291453977e149 * cos(theta) ** 28 - 2.33407029653892e149 * cos(theta) ** 26 + 9.92896395778991e148 * cos(theta) ** 24 - 2.89988788608467e148 * cos(theta) ** 22 + 5.97035741252726e147 * cos(theta) ** 20 - 8.7595977481095e146 * cos(theta) ** 18 + 9.15449764658984e145 * cos(theta) ** 16 - 6.74364467520431e144 * cos(theta) ** 14 + 3.42833332650051e143 * cos(theta) ** 12 - 1.16214689033916e142 * cos(theta) ** 10 + 2.49031476501248e140 * cos(theta) ** 8 - 3.10043634594706e138 * cos(theta) ** 6 + 1.94262928944051e136 * cos(theta) ** 4 - 4.59793914660477e133 * cos(theta) ** 2 + 1.72078560875927e130 ) * cos(67 * phi) ) # @torch.jit.script def Yl99_m68(theta, phi): return ( 4.16177833298225e-133 * (1.0 - cos(theta) ** 2) ** 34 * ( 4.07390196402063e150 * cos(theta) ** 31 - 9.61606301152077e150 * cos(theta) ** 29 + 1.00105681607114e151 * cos(theta) ** 27 - 6.06858277100119e150 * cos(theta) ** 25 + 2.38295134986958e150 * cos(theta) ** 23 - 6.37975334938628e149 * cos(theta) ** 21 + 1.19407148250545e149 * cos(theta) ** 19 - 1.57672759465971e148 * cos(theta) ** 17 + 1.46471962345438e147 * cos(theta) ** 15 - 9.44110254528603e145 * cos(theta) ** 13 + 4.11399999180062e144 * cos(theta) ** 11 - 1.16214689033916e143 * cos(theta) ** 9 + 1.99225181200998e141 * cos(theta) ** 7 - 1.86026180756824e139 * cos(theta) ** 5 + 7.77051715776206e136 * cos(theta) ** 3 - 9.19587829320954e133 * cos(theta) ) * cos(68 * phi) ) # @torch.jit.script def Yl99_m69(theta, phi): return ( 5.76691376224479e-135 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 1.26290960884639e152 * cos(theta) ** 30 - 2.78865827334102e152 * cos(theta) ** 28 + 2.70285340339207e152 * cos(theta) ** 26 - 1.5171456927503e152 * cos(theta) ** 24 + 5.48078810470003e151 * cos(theta) ** 22 - 1.33974820337112e151 * cos(theta) ** 20 + 2.26873581676036e150 * cos(theta) ** 18 - 2.68043691092151e149 * cos(theta) ** 16 + 2.19707943518156e148 * cos(theta) ** 14 - 1.22734333088718e147 * cos(theta) ** 12 + 4.52539999098068e145 * cos(theta) ** 10 - 1.04593220130524e144 * cos(theta) ** 8 + 1.39457626840699e142 * cos(theta) ** 6 - 9.30130903784118e139 * cos(theta) ** 4 + 2.33115514732862e137 * cos(theta) ** 2 - 9.19587829320954e133 ) * cos(69 * phi) ) # @torch.jit.script def Yl99_m70(theta, phi): return ( 8.09915065325245e-137 * (1.0 - cos(theta) ** 2) ** 35 * ( 3.78872882653918e153 * cos(theta) ** 29 - 7.80824316535486e153 * cos(theta) ** 27 + 7.02741884881938e153 * cos(theta) ** 25 - 3.64114966260071e153 * cos(theta) ** 23 + 1.20577338303401e153 * cos(theta) ** 21 - 2.67949640674224e152 * cos(theta) ** 19 + 4.08372447016865e151 * cos(theta) ** 17 - 4.28869905747441e150 * cos(theta) ** 15 + 3.07591120925419e149 * cos(theta) ** 13 - 1.47281199706462e148 * cos(theta) ** 11 + 4.52539999098068e146 * cos(theta) ** 9 - 8.36745761044193e144 * cos(theta) ** 7 + 8.36745761044193e142 * cos(theta) ** 5 - 3.72052361513647e140 * cos(theta) ** 3 + 4.66231029465724e137 * cos(theta) ) * cos(70 * phi) ) # @torch.jit.script def Yl99_m71(theta, phi): return ( 1.15349580057704e-138 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 1.09873135969636e155 * cos(theta) ** 28 - 2.10822565464581e155 * cos(theta) ** 26 + 1.75685471220484e155 * cos(theta) ** 24 - 8.37464422398164e154 * cos(theta) ** 22 + 2.53212410437141e154 * cos(theta) ** 20 - 5.09104317281025e153 * cos(theta) ** 18 + 6.9423315992867e152 * cos(theta) ** 16 - 6.43304858621162e151 * cos(theta) ** 14 + 3.99868457203044e150 * cos(theta) ** 12 - 1.62009319677108e149 * cos(theta) ** 10 + 4.07285999188261e147 * cos(theta) ** 8 - 5.85722032730935e145 * cos(theta) ** 6 + 4.18372880522096e143 * cos(theta) ** 4 - 1.11615708454094e141 * cos(theta) ** 2 + 4.66231029465724e137 ) * cos(71 * phi) ) # @torch.jit.script def Yl99_m72(theta, phi): return ( 1.66701284747427e-140 * (1.0 - cos(theta) ** 2) ** 36 * ( 3.07644780714982e156 * cos(theta) ** 27 - 5.48138670207912e156 * cos(theta) ** 25 + 4.21645130929163e156 * cos(theta) ** 23 - 1.84242172927596e156 * cos(theta) ** 21 + 5.06424820874283e155 * cos(theta) ** 19 - 9.16387771105845e154 * cos(theta) ** 17 + 1.11077305588587e154 * cos(theta) ** 15 - 9.00626802069626e152 * cos(theta) ** 13 + 4.79842148643653e151 * cos(theta) ** 11 - 1.62009319677108e150 * cos(theta) ** 9 + 3.25828799350609e148 * cos(theta) ** 7 - 3.51433219638561e146 * cos(theta) ** 5 + 1.67349152208839e144 * cos(theta) ** 3 - 2.23231416908188e141 * cos(theta) ) * cos(72 * phi) ) # @torch.jit.script def Yl99_m73(theta, phi): return ( 2.4462049540253e-142 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 8.30640907930451e157 * cos(theta) ** 26 - 1.37034667551978e158 * cos(theta) ** 24 + 9.69783801137074e157 * cos(theta) ** 22 - 3.86908563147952e157 * cos(theta) ** 20 + 9.62207159661137e156 * cos(theta) ** 18 - 1.55785921087994e156 * cos(theta) ** 16 + 1.66615958382881e155 * cos(theta) ** 14 - 1.17081484269051e154 * cos(theta) ** 12 + 5.27826363508019e152 * cos(theta) ** 10 - 1.45808387709397e151 * cos(theta) ** 8 + 2.28080159545426e149 * cos(theta) ** 6 - 1.75716609819281e147 * cos(theta) ** 4 + 5.02047456626516e144 * cos(theta) ** 2 - 2.23231416908188e141 ) * cos(73 * phi) ) # @torch.jit.script def Yl99_m74(theta, phi): return ( 3.64739766562535e-144 * (1.0 - cos(theta) ** 2) ** 37 * ( 2.15966636061917e159 * cos(theta) ** 25 - 3.28883202124747e159 * cos(theta) ** 23 + 2.13352436250156e159 * cos(theta) ** 21 - 7.73817126295904e158 * cos(theta) ** 19 + 1.73197288739005e158 * cos(theta) ** 17 - 2.4925747374079e157 * cos(theta) ** 15 + 2.33262341736033e156 * cos(theta) ** 13 - 1.40497781122862e155 * cos(theta) ** 11 + 5.27826363508019e153 * cos(theta) ** 9 - 1.16646710167518e152 * cos(theta) ** 7 + 1.36848095727256e150 * cos(theta) ** 5 - 7.02866439277122e147 * cos(theta) ** 3 + 1.00409491325303e145 * cos(theta) ) * cos(74 * phi) ) # @torch.jit.script def Yl99_m75(theta, phi): return ( 5.53017006892967e-146 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 5.39916590154793e160 * cos(theta) ** 24 - 7.56431364886918e160 * cos(theta) ** 22 + 4.48040116125328e160 * cos(theta) ** 20 - 1.47025253996222e160 * cos(theta) ** 18 + 2.94435390856308e159 * cos(theta) ** 16 - 3.73886210611185e158 * cos(theta) ** 14 + 3.03241044256843e157 * cos(theta) ** 12 - 1.54547559235148e156 * cos(theta) ** 10 + 4.75043727157217e154 * cos(theta) ** 8 - 8.16526971172625e152 * cos(theta) ** 6 + 6.84240478636278e150 * cos(theta) ** 4 - 2.10859931783137e148 * cos(theta) ** 2 + 1.00409491325303e145 ) * cos(75 * phi) ) # @torch.jit.script def Yl99_m76(theta, phi): return ( 8.53323767495941e-148 * (1.0 - cos(theta) ** 2) ** 38 * ( 1.2957998163715e162 * cos(theta) ** 23 - 1.66414900275122e162 * cos(theta) ** 21 + 8.96080232250657e161 * cos(theta) ** 19 - 2.64645457193199e161 * cos(theta) ** 17 + 4.71096625370093e160 * cos(theta) ** 15 - 5.23440694855658e159 * cos(theta) ** 13 + 3.63889253108212e158 * cos(theta) ** 11 - 1.54547559235148e157 * cos(theta) ** 9 + 3.80034981725773e155 * cos(theta) ** 7 - 4.89916182703575e153 * cos(theta) ** 5 + 2.73696191454511e151 * cos(theta) ** 3 - 4.21719863566273e148 * cos(theta) ) * cos(76 * phi) ) # @torch.jit.script def Yl99_m77(theta, phi): return ( 1.34120014040935e-149 * (1.0 - cos(theta) ** 2) ** 38.5 * ( 2.98033957765446e163 * cos(theta) ** 22 - 3.49471290577756e163 * cos(theta) ** 20 + 1.70255244127625e163 * cos(theta) ** 18 - 4.49897277228438e162 * cos(theta) ** 16 + 7.06644938055139e161 * cos(theta) ** 14 - 6.80472903312356e160 * cos(theta) ** 12 + 4.00278178419033e159 * cos(theta) ** 10 - 1.39092803311633e158 * cos(theta) ** 8 + 2.66024487208041e156 * cos(theta) ** 6 - 2.44958091351788e154 * cos(theta) ** 4 + 8.21088574363534e151 * cos(theta) ** 2 - 4.21719863566273e148 ) * cos(77 * phi) ) # @torch.jit.script def Yl99_m78(theta, phi): return ( 2.14929296232254e-151 * (1.0 - cos(theta) ** 2) ** 39 * ( 6.5567470708398e164 * cos(theta) ** 21 - 6.98942581155512e164 * cos(theta) ** 19 + 3.06459439429725e164 * cos(theta) ** 17 - 7.19835643565502e163 * cos(theta) ** 15 + 9.89302913277194e162 * cos(theta) ** 13 - 8.16567483974827e161 * cos(theta) ** 11 + 4.00278178419033e160 * cos(theta) ** 9 - 1.11274242649306e159 * cos(theta) ** 7 + 1.59614692324825e157 * cos(theta) ** 5 - 9.79832365407151e154 * cos(theta) ** 3 + 1.64217714872707e152 * cos(theta) ) * cos(78 * phi) ) # @torch.jit.script def Yl99_m79(theta, phi): return ( 3.51540987303224e-153 * (1.0 - cos(theta) ** 2) ** 39.5 * ( 1.37691688487636e166 * cos(theta) ** 20 - 1.32799090419547e166 * cos(theta) ** 18 + 5.20981047030532e165 * cos(theta) ** 16 - 1.07975346534825e165 * cos(theta) ** 14 + 1.28609378726035e164 * cos(theta) ** 12 - 8.9822423237231e162 * cos(theta) ** 10 + 3.6025036057713e161 * cos(theta) ** 8 - 7.78919698545145e159 * cos(theta) ** 6 + 7.98073461624124e157 * cos(theta) ** 4 - 2.93949709622145e155 * cos(theta) ** 2 + 1.64217714872707e152 ) * cos(79 * phi) ) # @torch.jit.script def Yl99_m80(theta, phi): return ( 5.87535962893411e-155 * (1.0 - cos(theta) ** 2) ** 40 * ( 2.75383376975272e167 * cos(theta) ** 19 - 2.39038362755185e167 * cos(theta) ** 17 + 8.33569675248851e166 * cos(theta) ** 15 - 1.51165485148755e166 * cos(theta) ** 13 + 1.54331254471242e165 * cos(theta) ** 11 - 8.9822423237231e163 * cos(theta) ** 9 + 2.88200288461704e162 * cos(theta) ** 7 - 4.67351819127087e160 * cos(theta) ** 5 + 3.1922938464965e158 * cos(theta) ** 3 - 5.8789941924429e155 * cos(theta) ) * cos(80 * phi) ) # @torch.jit.script def Yl99_m81(theta, phi): return ( 1.00466529833358e-156 * (1.0 - cos(theta) ** 2) ** 40.5 * ( 5.23228416253016e168 * cos(theta) ** 18 - 4.06365216683815e168 * cos(theta) ** 16 + 1.25035451287328e168 * cos(theta) ** 14 - 1.96515130693382e167 * cos(theta) ** 12 + 1.69764379918367e166 * cos(theta) ** 10 - 8.08401809135079e164 * cos(theta) ** 8 + 2.01740201923193e163 * cos(theta) ** 6 - 2.33675909563544e161 * cos(theta) ** 4 + 9.57688153948949e158 * cos(theta) ** 2 - 5.8789941924429e155 ) * cos(81 * phi) ) # @torch.jit.script def Yl99_m82(theta, phi): return ( 1.76013452531153e-158 * (1.0 - cos(theta) ** 2) ** 41 * ( 9.41811149255429e169 * cos(theta) ** 17 - 6.50184346694104e169 * cos(theta) ** 15 + 1.75049631802259e169 * cos(theta) ** 13 - 2.35818156832058e168 * cos(theta) ** 11 + 1.69764379918367e167 * cos(theta) ** 9 - 6.46721447308063e165 * cos(theta) ** 7 + 1.21044121153916e164 * cos(theta) ** 5 - 9.34703638254174e161 * cos(theta) ** 3 + 1.9153763078979e159 * cos(theta) ) * cos(82 * phi) ) # @torch.jit.script def Yl99_m83(theta, phi): return ( 3.16435869605775e-160 * (1.0 - cos(theta) ** 2) ** 41.5 * ( 1.60107895373423e171 * cos(theta) ** 16 - 9.75276520041155e170 * cos(theta) ** 14 + 2.27564521342936e170 * cos(theta) ** 12 - 2.59399972515264e169 * cos(theta) ** 10 + 1.5278794192653e168 * cos(theta) ** 8 - 4.52705013115644e166 * cos(theta) ** 6 + 6.05220605769578e164 * cos(theta) ** 4 - 2.80411091476252e162 * cos(theta) ** 2 + 1.9153763078979e159 ) * cos(83 * phi) ) # @torch.jit.script def Yl99_m84(theta, phi): return ( 5.84790314263991e-162 * (1.0 - cos(theta) ** 2) ** 42 * ( 2.56172632597477e172 * cos(theta) ** 15 - 1.36538712805762e172 * cos(theta) ** 13 + 2.73077425611524e171 * cos(theta) ** 11 - 2.59399972515264e170 * cos(theta) ** 9 + 1.22230353541224e169 * cos(theta) ** 7 - 2.71623007869387e167 * cos(theta) ** 5 + 2.42088242307831e165 * cos(theta) ** 3 - 5.60822182952505e162 * cos(theta) ) * cos(84 * phi) ) # @torch.jit.script def Yl99_m85(theta, phi): return ( 1.11312933942709e-163 * (1.0 - cos(theta) ** 2) ** 42.5 * ( 3.84258948896215e173 * cos(theta) ** 14 - 1.7750032664749e173 * cos(theta) ** 12 + 3.00385168172676e172 * cos(theta) ** 10 - 2.33459975263738e171 * cos(theta) ** 8 + 8.55612474788568e169 * cos(theta) ** 6 - 1.35811503934693e168 * cos(theta) ** 4 + 7.26264726923493e165 * cos(theta) ** 2 - 5.60822182952505e162 ) * cos(85 * phi) ) # @torch.jit.script def Yl99_m86(theta, phi): return ( 2.18723651588537e-165 * (1.0 - cos(theta) ** 2) ** 43 * ( 5.37962528454701e174 * cos(theta) ** 13 - 2.13000391976988e174 * cos(theta) ** 11 + 3.00385168172676e173 * cos(theta) ** 9 - 1.8676798021099e172 * cos(theta) ** 7 + 5.13367484873141e170 * cos(theta) ** 5 - 5.43246015738773e168 * cos(theta) ** 3 + 1.45252945384699e166 * cos(theta) ) * cos(86 * phi) ) # @torch.jit.script def Yl99_m87(theta, phi): return ( 4.44802889237332e-167 * (1.0 - cos(theta) ** 2) ** 43.5 * ( 6.99351286991112e175 * cos(theta) ** 12 - 2.34300431174687e175 * cos(theta) ** 10 + 2.70346651355408e174 * cos(theta) ** 8 - 1.30737586147693e173 * cos(theta) ** 6 + 2.5668374243657e171 * cos(theta) ** 4 - 1.62973804721632e169 * cos(theta) ** 2 + 1.45252945384699e166 ) * cos(87 * phi) ) # @torch.jit.script def Yl99_m88(theta, phi): return ( 9.38979635152534e-169 * (1.0 - cos(theta) ** 2) ** 44 * ( 8.39221544389334e176 * cos(theta) ** 11 - 2.34300431174687e176 * cos(theta) ** 9 + 2.16277321084327e175 * cos(theta) ** 7 - 7.84425516886159e173 * cos(theta) ** 5 + 1.02673496974628e172 * cos(theta) ** 3 - 3.25947609443264e169 * cos(theta) ) * cos(88 * phi) ) # @torch.jit.script def Yl99_m89(theta, phi): return ( 2.06481385679361e-170 * (1.0 - cos(theta) ** 2) ** 44.5 * ( 9.23143698828267e177 * cos(theta) ** 10 - 2.10870388057218e177 * cos(theta) ** 8 + 1.51394124759029e176 * cos(theta) ** 6 - 3.92212758443079e174 * cos(theta) ** 4 + 3.08020490923884e172 * cos(theta) ** 2 - 3.25947609443264e169 ) * cos(89 * phi) ) # @torch.jit.script def Yl99_m90(theta, phi): return ( 4.74952309675375e-172 * (1.0 - cos(theta) ** 2) ** 45 * ( 9.23143698828267e178 * cos(theta) ** 9 - 1.68696310445775e178 * cos(theta) ** 7 + 9.08364748554172e176 * cos(theta) ** 5 - 1.56885103377232e175 * cos(theta) ** 3 + 6.16040981847769e172 * cos(theta) ) * cos(90 * phi) ) # @torch.jit.script def Yl99_m91(theta, phi): return ( 1.1485554020146e-173 * (1.0 - cos(theta) ** 2) ** 45.5 * ( 8.30829328945441e179 * cos(theta) ** 8 - 1.18087417312042e179 * cos(theta) ** 6 + 4.54182374277086e177 * cos(theta) ** 4 - 4.70655310131695e175 * cos(theta) ** 2 + 6.16040981847769e172 ) * cos(91 * phi) ) # @torch.jit.script def Yl99_m92(theta, phi): return ( 2.93826032991311e-175 * (1.0 - cos(theta) ** 2) ** 46 * ( 6.64663463156353e180 * cos(theta) ** 7 - 7.08524503872254e179 * cos(theta) ** 5 + 1.81672949710834e178 * cos(theta) ** 3 - 9.41310620263391e175 * cos(theta) ) * cos(92 * phi) ) # @torch.jit.script def Yl99_m93(theta, phi): return ( 8.01476212697188e-177 * (1.0 - cos(theta) ** 2) ** 46.5 * ( 4.65264424209447e181 * cos(theta) ** 6 - 3.54262251936127e180 * cos(theta) ** 4 + 5.45018849132503e178 * cos(theta) ** 2 - 9.41310620263391e175 ) * cos(93 * phi) ) # @torch.jit.script def Yl99_m94(theta, phi): return ( 2.35524644856989e-178 * (1.0 - cos(theta) ** 2) ** 47 * ( 2.79158654525668e182 * cos(theta) ** 5 - 1.41704900774451e181 * cos(theta) ** 3 + 1.09003769826501e179 * cos(theta) ) * cos(94 * phi) ) # @torch.jit.script def Yl99_m95(theta, phi): return ( 7.56224059519393e-180 * (1.0 - cos(theta) ** 2) ** 47.5 * ( 1.39579327262834e183 * cos(theta) ** 4 - 4.25114702323352e181 * cos(theta) ** 2 + 1.09003769826501e179 ) * cos(95 * phi) ) # @torch.jit.script def Yl99_m96(theta, phi): return ( 2.70771648564159e-181 * (1.0 - cos(theta) ** 2) ** 48 * (5.58317309051336e183 * cos(theta) ** 3 - 8.50229404646705e181 * cos(theta)) * cos(96 * phi) ) # @torch.jit.script def Yl99_m97(theta, phi): return ( 1.11664345848169e-182 * (1.0 - cos(theta) ** 2) ** 48.5 * (1.67495192715401e184 * cos(theta) ** 2 - 8.50229404646705e181) * cos(97 * phi) ) # @torch.jit.script def Yl99_m98(theta, phi): return 18.8451135102262 * (1.0 - cos(theta) ** 2) ** 49 * cos(98 * phi) * cos(theta) # @torch.jit.script def Yl99_m99(theta, phi): return 1.339263900061 * (1.0 - cos(theta) ** 2) ** 49.5 * cos(99 * phi) # @torch.jit.script def Yl100_m_minus_100(theta, phi): return 1.34260788504189 * (1.0 - cos(theta) ** 2) ** 50 * sin(100 * phi) # @torch.jit.script def Yl100_m_minus_99(theta, phi): return ( 18.9873427997529 * (1.0 - cos(theta) ** 2) ** 49.5 * sin(99 * phi) * cos(theta) ) # @torch.jit.script def Yl100_m_minus_98(theta, phi): return ( 5.68224962145241e-185 * (1.0 - cos(theta) ** 2) ** 49 * (3.33315433503648e186 * cos(theta) ** 2 - 1.67495192715401e184) * sin(98 * phi) ) # @torch.jit.script def Yl100_m_minus_97(theta, phi): return ( 1.38488442448223e-183 * (1.0 - cos(theta) ** 2) ** 48.5 * (1.11105144501216e186 * cos(theta) ** 3 - 1.67495192715401e184 * cos(theta)) * sin(97 * phi) ) # @torch.jit.script def Yl100_m_minus_96(theta, phi): return ( 3.88755583485137e-182 * (1.0 - cos(theta) ** 2) ** 48 * ( 2.7776286125304e185 * cos(theta) ** 4 - 8.37475963577004e183 * cos(theta) ** 2 + 2.12557351161676e181 ) * sin(96 * phi) ) # @torch.jit.script def Yl100_m_minus_95(theta, phi): return ( 1.21699747582751e-180 * (1.0 - cos(theta) ** 2) ** 47.5 * ( 5.55525722506079e184 * cos(theta) ** 5 - 2.79158654525668e183 * cos(theta) ** 3 + 2.12557351161676e181 * cos(theta) ) * sin(95 * phi) ) # @torch.jit.script def Yl100_m_minus_94(theta, phi): return ( 4.16277184303861e-179 * (1.0 - cos(theta) ** 2) ** 47 * ( 9.25876204176799e183 * cos(theta) ** 6 - 6.9789663631417e182 * cos(theta) ** 4 + 1.06278675580838e181 * cos(theta) ** 2 - 1.81672949710834e178 ) * sin(94 * phi) ) # @torch.jit.script def Yl100_m_minus_93(theta, phi): return ( 1.53402519759458e-177 * (1.0 - cos(theta) ** 2) ** 46.5 * ( 1.32268029168114e183 * cos(theta) ** 7 - 1.39579327262834e182 * cos(theta) ** 5 + 3.54262251936127e180 * cos(theta) ** 3 - 1.81672949710834e178 * cos(theta) ) * sin(93 * phi) ) # @torch.jit.script def Yl100_m_minus_92(theta, phi): return ( 6.02776262454342e-176 * (1.0 - cos(theta) ** 2) ** 46 * ( 1.65335036460143e182 * cos(theta) ** 8 - 2.32632212104723e181 * cos(theta) ** 6 + 8.85655629840317e179 * cos(theta) ** 4 - 9.08364748554172e177 * cos(theta) ** 2 + 1.17663827532924e175 ) * sin(92 * phi) ) # @torch.jit.script def Yl100_m_minus_91(theta, phi): return ( 2.50569386920174e-174 * (1.0 - cos(theta) ** 2) ** 45.5 * ( 1.83705596066825e181 * cos(theta) ** 9 - 3.32331731578176e180 * cos(theta) ** 7 + 1.77131125968064e179 * cos(theta) ** 5 - 3.02788249518057e177 * cos(theta) ** 3 + 1.17663827532924e175 * cos(theta) ) * sin(91 * phi) ) # @torch.jit.script def Yl100_m_minus_90(theta, phi): return ( 1.09507709196003e-172 * (1.0 - cos(theta) ** 2) ** 45 * ( 1.83705596066825e180 * cos(theta) ** 10 - 4.1541466447272e179 * cos(theta) ** 8 + 2.95218543280106e178 * cos(theta) ** 6 - 7.56970623795143e176 * cos(theta) ** 4 + 5.88319137664619e174 * cos(theta) ** 2 - 6.16040981847769e171 ) * sin(90 * phi) ) # @torch.jit.script def Yl100_m_minus_89(theta, phi): return ( 5.00631113698649e-171 * (1.0 - cos(theta) ** 2) ** 44.5 * ( 1.67005087333477e179 * cos(theta) ** 11 - 4.61571849414134e178 * cos(theta) ** 9 + 4.21740776114437e177 * cos(theta) ** 7 - 1.51394124759029e176 * cos(theta) ** 5 + 1.9610637922154e174 * cos(theta) ** 3 - 6.16040981847769e171 * cos(theta) ) * sin(89 * phi) ) # @torch.jit.script def Yl100_m_minus_88(theta, phi): return ( 2.38418176577027e-169 * (1.0 - cos(theta) ** 2) ** 44 * ( 1.39170906111231e178 * cos(theta) ** 12 - 4.61571849414134e177 * cos(theta) ** 10 + 5.27175970143046e176 * cos(theta) ** 8 - 2.52323541265048e175 * cos(theta) ** 6 + 4.90265948053849e173 * cos(theta) ** 4 - 3.08020490923884e171 * cos(theta) ** 2 + 2.71623007869387e168 ) * sin(88 * phi) ) # @torch.jit.script def Yl100_m_minus_87(theta, phi): return ( 1.17866384774513e-167 * (1.0 - cos(theta) ** 2) ** 43.5 * ( 1.07054543162486e177 * cos(theta) ** 13 - 4.19610772194667e176 * cos(theta) ** 11 + 5.85751077936718e175 * cos(theta) ** 9 - 3.60462201807211e174 * cos(theta) ** 7 + 9.80531896107698e172 * cos(theta) ** 5 - 1.02673496974628e171 * cos(theta) ** 3 + 2.71623007869387e168 * cos(theta) ) * sin(87 * phi) ) # @torch.jit.script def Yl100_m_minus_86(theta, phi): return ( 6.03079802674505e-166 * (1.0 - cos(theta) ** 2) ** 43 * ( 7.64675308303468e175 * cos(theta) ** 14 - 3.49675643495556e175 * cos(theta) ** 12 + 5.85751077936718e174 * cos(theta) ** 10 - 4.50577752259014e173 * cos(theta) ** 8 + 1.63421982684616e172 * cos(theta) ** 6 - 2.5668374243657e170 * cos(theta) ** 4 + 1.35811503934693e168 * cos(theta) ** 2 - 1.03752103846213e165 ) * sin(86 * phi) ) # @torch.jit.script def Yl100_m_minus_85(theta, phi): return ( 3.18549469159664e-164 * (1.0 - cos(theta) ** 2) ** 42.5 * ( 5.09783538868979e174 * cos(theta) ** 15 - 2.68981264227351e174 * cos(theta) ** 13 + 5.32500979942471e173 * cos(theta) ** 11 - 5.0064194695446e172 * cos(theta) ** 9 + 2.33459975263738e171 * cos(theta) ** 7 - 5.13367484873141e169 * cos(theta) ** 5 + 4.52705013115644e167 * cos(theta) ** 3 - 1.03752103846213e165 * cos(theta) ) * sin(85 * phi) ) # @torch.jit.script def Yl100_m_minus_84(theta, phi): return ( 1.7330964841394e-162 * (1.0 - cos(theta) ** 2) ** 42 * ( 3.18614711793112e173 * cos(theta) ** 16 - 1.92129474448108e173 * cos(theta) ** 14 + 4.43750816618726e172 * cos(theta) ** 12 - 5.0064194695446e171 * cos(theta) ** 10 + 2.91824969079672e170 * cos(theta) ** 8 - 8.55612474788568e168 * cos(theta) ** 6 + 1.13176253278911e167 * cos(theta) ** 4 - 5.18760519231067e164 * cos(theta) ** 2 + 3.50513864345315e161 ) * sin(84 * phi) ) # @torch.jit.script def Yl100_m_minus_83(theta, phi): return ( 9.69295314555688e-161 * (1.0 - cos(theta) ** 2) ** 41.5 * ( 1.8742041870183e172 * cos(theta) ** 17 - 1.28086316298738e172 * cos(theta) ** 15 + 3.41346782014404e171 * cos(theta) ** 13 - 4.55129042685872e170 * cos(theta) ** 11 + 3.2424996564408e169 * cos(theta) ** 9 - 1.22230353541224e168 * cos(theta) ** 7 + 2.26352506557822e166 * cos(theta) ** 5 - 1.72920173077022e164 * cos(theta) ** 3 + 3.50513864345315e161 * cos(theta) ) * sin(83 * phi) ) # @torch.jit.script def Yl100_m_minus_82(theta, phi): return ( 5.56311337477837e-159 * (1.0 - cos(theta) ** 2) ** 41 * ( 1.0412245483435e171 * cos(theta) ** 18 - 8.00539476867115e170 * cos(theta) ** 16 + 2.43819130010289e170 * cos(theta) ** 14 - 3.79274202238227e169 * cos(theta) ** 12 + 3.2424996564408e168 * cos(theta) ** 10 - 1.5278794192653e167 * cos(theta) ** 8 + 3.7725417759637e165 * cos(theta) ** 6 - 4.32300432692556e163 * cos(theta) ** 4 + 1.75256932172658e161 * cos(theta) ** 2 - 1.06409794883217e158 ) * sin(82 * phi) ) # @torch.jit.script def Yl100_m_minus_81(theta, phi): return ( 3.27137556380441e-157 * (1.0 - cos(theta) ** 2) ** 40.5 * ( 5.48012920180791e169 * cos(theta) ** 19 - 4.70905574627715e169 * cos(theta) ** 17 + 1.62546086673526e169 * cos(theta) ** 15 - 2.91749386337098e168 * cos(theta) ** 13 + 2.94772696040073e167 * cos(theta) ** 11 - 1.69764379918367e166 * cos(theta) ** 9 + 5.38934539423386e164 * cos(theta) ** 7 - 8.64600865385111e162 * cos(theta) ** 5 + 5.84189773908859e160 * cos(theta) ** 3 - 1.06409794883217e158 * cos(theta) ) * sin(81 * phi) ) # @torch.jit.script def Yl100_m_minus_80(theta, phi): return ( 1.96827007922269e-155 * (1.0 - cos(theta) ** 2) ** 40 * ( 2.74006460090395e168 * cos(theta) ** 20 - 2.61614208126508e168 * cos(theta) ** 18 + 1.01591304170954e168 * cos(theta) ** 16 - 2.08392418812213e167 * cos(theta) ** 14 + 2.45643913366727e166 * cos(theta) ** 12 - 1.69764379918367e165 * cos(theta) ** 10 + 6.73668174279232e163 * cos(theta) ** 8 - 1.44100144230852e162 * cos(theta) ** 6 + 1.46047443477215e160 * cos(theta) ** 4 - 5.32048974416083e157 * cos(theta) ** 2 + 2.93949709622145e154 ) * sin(80 * phi) ) # @torch.jit.script def Yl100_m_minus_79(theta, phi): return ( 1.21012599575438e-153 * (1.0 - cos(theta) ** 2) ** 39.5 * ( 1.30479266709712e167 * cos(theta) ** 21 - 1.37691688487636e167 * cos(theta) ** 19 + 5.97595906887963e166 * cos(theta) ** 17 - 1.38928279208142e166 * cos(theta) ** 15 + 1.88956856435944e165 * cos(theta) ** 13 - 1.54331254471242e164 * cos(theta) ** 11 + 7.48520193643592e162 * cos(theta) ** 9 - 2.05857348901217e161 * cos(theta) ** 7 + 2.92094886954429e159 * cos(theta) ** 5 - 1.77349658138694e157 * cos(theta) ** 3 + 2.93949709622145e154 * cos(theta) ) * sin(79 * phi) ) # @torch.jit.script def Yl100_m_minus_78(theta, phi): return ( 7.59396246831315e-152 * (1.0 - cos(theta) ** 2) ** 39 * ( 5.93087575953237e165 * cos(theta) ** 22 - 6.88458442438179e165 * cos(theta) ** 20 + 3.31997726048868e165 * cos(theta) ** 18 - 8.68301745050886e164 * cos(theta) ** 16 + 1.34969183168532e164 * cos(theta) ** 14 - 1.28609378726035e163 * cos(theta) ** 12 + 7.48520193643592e161 * cos(theta) ** 10 - 2.57321686126521e160 * cos(theta) ** 8 + 4.86824811590716e158 * cos(theta) ** 6 - 4.43374145346736e156 * cos(theta) ** 4 + 1.46974854811073e154 * cos(theta) ** 2 - 7.46444158512304e150 ) * sin(78 * phi) ) # @torch.jit.script def Yl100_m_minus_77(theta, phi): return ( 4.85894927820603e-150 * (1.0 - cos(theta) ** 2) ** 38.5 * ( 2.57864163457929e164 * cos(theta) ** 23 - 3.2783735354199e164 * cos(theta) ** 21 + 1.74735645288878e164 * cos(theta) ** 19 - 5.10765732382874e163 * cos(theta) ** 17 + 8.99794554456877e162 * cos(theta) ** 15 - 9.89302913277194e161 * cos(theta) ** 13 + 6.80472903312356e160 * cos(theta) ** 11 - 2.85912984585024e159 * cos(theta) ** 9 + 6.95464016558165e157 * cos(theta) ** 7 - 8.86748290693471e155 * cos(theta) ** 5 + 4.89916182703575e153 * cos(theta) ** 3 - 7.46444158512304e150 * cos(theta) ) * sin(77 * phi) ) # @torch.jit.script def Yl100_m_minus_76(theta, phi): return ( 3.16690196562167e-148 * (1.0 - cos(theta) ** 2) ** 38 * ( 1.07443401440804e163 * cos(theta) ** 24 - 1.49016978882723e163 * cos(theta) ** 22 + 8.7367822644439e162 * cos(theta) ** 20 - 2.83758740212708e162 * cos(theta) ** 18 + 5.62371596535548e161 * cos(theta) ** 16 - 7.06644938055139e160 * cos(theta) ** 14 + 5.67060752760297e159 * cos(theta) ** 12 - 2.85912984585024e158 * cos(theta) ** 10 + 8.69330020697707e156 * cos(theta) ** 8 - 1.47791381782245e155 * cos(theta) ** 6 + 1.22479045675894e153 * cos(theta) ** 4 - 3.73222079256152e150 * cos(theta) ** 2 + 1.75716609819281e147 ) * sin(76 * phi) ) # @torch.jit.script def Yl100_m_minus_75(theta, phi): return ( 2.10068511356121e-146 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 4.29773605763215e161 * cos(theta) ** 25 - 6.47899908185751e161 * cos(theta) ** 23 + 4.16037250687805e161 * cos(theta) ** 21 - 1.49346705375109e161 * cos(theta) ** 19 + 3.30806821491499e160 * cos(theta) ** 17 - 4.71096625370093e159 * cos(theta) ** 15 + 4.36200579046382e158 * cos(theta) ** 13 - 2.59920895077294e157 * cos(theta) ** 11 + 9.65922245219674e155 * cos(theta) ** 9 - 2.11130545403207e154 * cos(theta) ** 7 + 2.44958091351788e152 * cos(theta) ** 5 - 1.24407359752051e150 * cos(theta) ** 3 + 1.75716609819281e147 * cos(theta) ) * sin(75 * phi) ) # @torch.jit.script def Yl100_m_minus_74(theta, phi): return ( 1.41698957850213e-144 * (1.0 - cos(theta) ** 2) ** 37 * ( 1.6529754067816e160 * cos(theta) ** 26 - 2.69958295077396e160 * cos(theta) ** 24 + 1.89107841221729e160 * cos(theta) ** 22 - 7.46733526875547e159 * cos(theta) ** 20 + 1.83781567495277e159 * cos(theta) ** 18 - 2.94435390856308e158 * cos(theta) ** 16 + 3.11571842175987e157 * cos(theta) ** 14 - 2.16600745897745e156 * cos(theta) ** 12 + 9.65922245219674e154 * cos(theta) ** 10 - 2.63913181754009e153 * cos(theta) ** 8 + 4.08263485586313e151 * cos(theta) ** 6 - 3.11018399380127e149 * cos(theta) ** 4 + 8.78583049096403e146 * cos(theta) ** 2 - 3.86190351251166e143 ) * sin(74 * phi) ) # @torch.jit.script def Yl100_m_minus_73(theta, phi): return ( 9.71232401092137e-143 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 6.12213113622813e158 * cos(theta) ** 27 - 1.07983318030959e159 * cos(theta) ** 25 + 8.22208005311867e158 * cos(theta) ** 23 - 3.55587393750261e158 * cos(theta) ** 21 + 9.6727140786988e157 * cos(theta) ** 19 - 1.73197288739005e157 * cos(theta) ** 17 + 2.07714561450658e156 * cos(theta) ** 15 - 1.66615958382881e155 * cos(theta) ** 13 + 8.78111132017886e153 * cos(theta) ** 11 - 2.93236868615566e152 * cos(theta) ** 9 + 5.8323355083759e150 * cos(theta) ** 7 - 6.22036798760253e148 * cos(theta) ** 5 + 2.92861016365468e146 * cos(theta) ** 3 - 3.86190351251166e143 * cos(theta) ) * sin(73 * phi) ) # @torch.jit.script def Yl100_m_minus_72(theta, phi): return ( 6.75966587477127e-141 * (1.0 - cos(theta) ** 2) ** 36 * ( 2.18647540579576e157 * cos(theta) ** 28 - 4.15320453965225e157 * cos(theta) ** 26 + 3.42586668879945e157 * cos(theta) ** 24 - 1.61630633522846e157 * cos(theta) ** 22 + 4.8363570393494e156 * cos(theta) ** 20 - 9.62207159661137e155 * cos(theta) ** 18 + 1.29821600906661e155 * cos(theta) ** 16 - 1.19011398844915e154 * cos(theta) ** 14 + 7.31759276681571e152 * cos(theta) ** 12 - 2.93236868615566e151 * cos(theta) ** 10 + 7.29041938546987e149 * cos(theta) ** 8 - 1.03672799793376e148 * cos(theta) ** 6 + 7.32152540913669e145 * cos(theta) ** 4 - 1.93095175625583e143 * cos(theta) ** 2 + 7.97255060386387e139 ) * sin(72 * phi) ) # @torch.jit.script def Yl100_m_minus_71(theta, phi): return ( 4.77406636631576e-139 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 7.53957036481297e155 * cos(theta) ** 29 - 1.53822390357491e156 * cos(theta) ** 27 + 1.37034667551978e156 * cos(theta) ** 25 - 7.02741884881938e155 * cos(theta) ** 23 + 2.30302716159495e155 * cos(theta) ** 21 - 5.06424820874283e154 * cos(theta) ** 19 + 7.63656475921537e153 * cos(theta) ** 17 - 7.93409325632766e152 * cos(theta) ** 15 + 5.62891751293516e151 * cos(theta) ** 13 - 2.66578971468696e150 * cos(theta) ** 11 + 8.10046598385541e148 * cos(theta) ** 9 - 1.48103999704822e147 * cos(theta) ** 7 + 1.46430508182734e145 * cos(theta) ** 5 - 6.4365058541861e142 * cos(theta) ** 3 + 7.97255060386387e139 * cos(theta) ) * sin(71 * phi) ) # @torch.jit.script def Yl100_m_minus_70(theta, phi): return ( 3.41937816871774e-137 * (1.0 - cos(theta) ** 2) ** 35 * ( 2.51319012160432e154 * cos(theta) ** 30 - 5.49365679848182e154 * cos(theta) ** 28 + 5.27056413661453e154 * cos(theta) ** 26 - 2.92809118700807e154 * cos(theta) ** 24 + 1.04683052799771e154 * cos(theta) ** 22 - 2.53212410437141e153 * cos(theta) ** 20 + 4.24253597734187e152 * cos(theta) ** 18 - 4.95880828520479e151 * cos(theta) ** 16 + 4.02065536638226e150 * cos(theta) ** 14 - 2.2214914289058e149 * cos(theta) ** 12 + 8.10046598385541e147 * cos(theta) ** 10 - 1.85129999631028e146 * cos(theta) ** 8 + 2.44050846971223e144 * cos(theta) ** 6 - 1.60912646354652e142 * cos(theta) ** 4 + 3.98627530193194e139 * cos(theta) ** 2 - 1.55410343155241e136 ) * sin(70 * phi) ) # @torch.jit.script def Yl100_m_minus_69(theta, phi): return ( 2.48228956832009e-135 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 8.10706490840105e152 * cos(theta) ** 31 - 1.89436441326959e153 * cos(theta) ** 29 + 1.95206079133872e153 * cos(theta) ** 27 - 1.17123647480323e153 * cos(theta) ** 25 + 4.55143707825089e152 * cos(theta) ** 23 - 1.20577338303401e152 * cos(theta) ** 21 + 2.2329136722852e151 * cos(theta) ** 19 - 2.91694605012046e150 * cos(theta) ** 17 + 2.68043691092151e149 * cos(theta) ** 15 - 1.70883956069677e148 * cos(theta) ** 13 + 7.3640599853231e146 * cos(theta) ** 11 - 2.05699999590031e145 * cos(theta) ** 9 + 3.48644067101747e143 * cos(theta) ** 7 - 3.21825292709305e141 * cos(theta) ** 5 + 1.32875843397731e139 * cos(theta) ** 3 - 1.55410343155241e136 * cos(theta) ) * sin(69 * phi) ) # @torch.jit.script def Yl100_m_minus_68(theta, phi): return ( 1.82545353809288e-133 * (1.0 - cos(theta) ** 2) ** 34 * ( 2.53345778387533e151 * cos(theta) ** 32 - 6.31454804423197e151 * cos(theta) ** 30 + 6.97164568335256e151 * cos(theta) ** 28 - 4.50475567232011e151 * cos(theta) ** 26 + 1.89643211593787e151 * cos(theta) ** 24 - 5.48078810470003e150 * cos(theta) ** 22 + 1.1164568361426e150 * cos(theta) ** 20 - 1.62052558340026e149 * cos(theta) ** 18 + 1.67527306932594e148 * cos(theta) ** 16 - 1.22059968621198e147 * cos(theta) ** 14 + 6.13671665443592e145 * cos(theta) ** 12 - 2.05699999590031e144 * cos(theta) ** 10 + 4.35805083877184e142 * cos(theta) ** 8 - 5.36375487848842e140 * cos(theta) ** 6 + 3.32189608494328e138 * cos(theta) ** 4 - 7.77051715776206e135 * cos(theta) ** 2 + 2.87371196662798e132 ) * sin(68 * phi) ) # @torch.jit.script def Yl100_m_minus_67(theta, phi): return ( 1.35919695981912e-131 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 7.6771447996222e149 * cos(theta) ** 33 - 2.03695098201031e150 * cos(theta) ** 31 + 2.40401575288019e150 * cos(theta) ** 29 - 1.66842802678523e150 * cos(theta) ** 27 + 7.58572846375149e149 * cos(theta) ** 25 - 2.38295134986958e149 * cos(theta) ** 23 + 5.31646112448856e148 * cos(theta) ** 21 - 8.52908201789609e147 * cos(theta) ** 19 + 9.85454746662319e146 * cos(theta) ** 17 - 8.1373312414132e145 * cos(theta) ** 15 + 4.72055127264301e144 * cos(theta) ** 13 - 1.86999999627301e143 * cos(theta) ** 11 + 4.84227870974649e141 * cos(theta) ** 9 - 7.66250696926917e139 * cos(theta) ** 7 + 6.64379216988656e137 * cos(theta) ** 5 - 2.59017238592069e135 * cos(theta) ** 3 + 2.87371196662798e132 * cos(theta) ) * sin(67 * phi) ) # @torch.jit.script def Yl100_m_minus_66(theta, phi): return ( 1.02418895622595e-129 * (1.0 - cos(theta) ** 2) ** 33 * ( 2.25798376459477e148 * cos(theta) ** 34 - 6.36547181878223e148 * cos(theta) ** 32 + 8.01338584293397e148 * cos(theta) ** 30 - 5.95867152423296e148 * cos(theta) ** 28 + 2.91758787067365e148 * cos(theta) ** 26 - 9.92896395778991e147 * cos(theta) ** 24 + 2.41657323840389e147 * cos(theta) ** 22 - 4.26454100894805e146 * cos(theta) ** 20 + 5.47474859256844e145 * cos(theta) ** 18 - 5.08583202588325e144 * cos(theta) ** 16 + 3.37182233760215e143 * cos(theta) ** 14 - 1.55833333022751e142 * cos(theta) ** 12 + 4.84227870974649e140 * cos(theta) ** 10 - 9.57813371158646e138 * cos(theta) ** 8 + 1.10729869498109e137 * cos(theta) ** 6 - 6.47543096480172e134 * cos(theta) ** 4 + 1.43685598331399e132 * cos(theta) ** 2 - 5.06113414340962e128 ) * sin(66 * phi) ) # @torch.jit.script def Yl100_m_minus_65(theta, phi): return ( 7.80671194223321e-128 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 6.45138218455647e146 * cos(theta) ** 35 - 1.92893085417643e147 * cos(theta) ** 33 + 2.58496317513999e147 * cos(theta) ** 31 - 2.05471431870102e147 * cos(theta) ** 29 + 1.0805881002495e147 * cos(theta) ** 27 - 3.97158558311596e146 * cos(theta) ** 25 + 1.05068401669734e146 * cos(theta) ** 23 - 2.03073381378478e145 * cos(theta) ** 21 + 2.8814466276676e144 * cos(theta) ** 19 - 2.99166589757838e143 * cos(theta) ** 17 + 2.24788155840144e142 * cos(theta) ** 15 - 1.19871794632885e141 * cos(theta) ** 13 + 4.40207155431499e139 * cos(theta) ** 11 - 1.06423707906516e138 * cos(theta) ** 9 + 1.58185527854442e136 * cos(theta) ** 7 - 1.29508619296034e134 * cos(theta) ** 5 + 4.78951994437997e131 * cos(theta) ** 3 - 5.06113414340962e128 * cos(theta) ) * sin(65 * phi) ) # @torch.jit.script def Yl100_m_minus_64(theta, phi): return ( 6.01674183435769e-126 * (1.0 - cos(theta) ** 2) ** 32 * ( 1.79205060682124e145 * cos(theta) ** 36 - 5.67332604169539e145 * cos(theta) ** 34 + 8.07800992231247e145 * cos(theta) ** 32 - 6.8490477290034e145 * cos(theta) ** 30 + 3.85924321517678e145 * cos(theta) ** 28 - 1.52753291658306e145 * cos(theta) ** 26 + 4.37785006957227e144 * cos(theta) ** 24 - 9.23060824447629e143 * cos(theta) ** 22 + 1.4407233138338e143 * cos(theta) ** 20 - 1.66203660976577e142 * cos(theta) ** 18 + 1.4049259740009e141 * cos(theta) ** 16 - 8.56227104520608e139 * cos(theta) ** 14 + 3.66839296192916e138 * cos(theta) ** 12 - 1.06423707906516e137 * cos(theta) ** 10 + 1.97731909818052e135 * cos(theta) ** 8 - 2.15847698826724e133 * cos(theta) ** 6 + 1.19737998609499e131 * cos(theta) ** 4 - 2.53056707170481e128 * cos(theta) ** 2 + 8.52042785085794e124 ) * sin(64 * phi) ) # @torch.jit.script def Yl100_m_minus_63(theta, phi): return ( 4.68688355097872e-124 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 4.84338001843579e143 * cos(theta) ** 37 - 1.62095029762725e144 * cos(theta) ** 35 + 2.44788179464014e144 * cos(theta) ** 33 - 2.20937023516239e144 * cos(theta) ** 31 + 1.33077352247475e144 * cos(theta) ** 29 - 5.65752932067801e143 * cos(theta) ** 27 + 1.75114002782891e143 * cos(theta) ** 25 - 4.013307932381e142 * cos(theta) ** 23 + 6.86058720873238e141 * cos(theta) ** 21 - 8.74756110403035e140 * cos(theta) ** 19 + 8.26427043529939e139 * cos(theta) ** 17 - 5.70818069680405e138 * cos(theta) ** 15 + 2.82184073994551e137 * cos(theta) ** 13 - 9.67488253695602e135 * cos(theta) ** 11 + 2.19702122020058e134 * cos(theta) ** 9 - 3.08353855466748e132 * cos(theta) ** 7 + 2.39475997218998e130 * cos(theta) ** 5 - 8.43522357234936e127 * cos(theta) ** 3 + 8.52042785085794e124 * cos(theta) ) * sin(63 * phi) ) # @torch.jit.script def Yl100_m_minus_62(theta, phi): return ( 3.68866966184522e-122 * (1.0 - cos(theta) ** 2) ** 31 * ( 1.27457368906205e142 * cos(theta) ** 38 - 4.50263971563126e142 * cos(theta) ** 36 + 7.19965233717689e142 * cos(theta) ** 34 - 6.90428198488246e142 * cos(theta) ** 32 + 4.43591174158251e142 * cos(theta) ** 30 - 2.02054618595643e142 * cos(theta) ** 28 + 6.73515395318811e141 * cos(theta) ** 26 - 1.67221163849208e141 * cos(theta) ** 24 + 3.11844873124199e140 * cos(theta) ** 22 - 4.37378055201518e139 * cos(theta) ** 20 + 4.59126135294411e138 * cos(theta) ** 18 - 3.56761293550253e137 * cos(theta) ** 16 + 2.0156005285325e136 * cos(theta) ** 14 - 8.06240211413002e134 * cos(theta) ** 12 + 2.19702122020058e133 * cos(theta) ** 10 - 3.85442319333435e131 * cos(theta) ** 8 + 3.99126662031664e129 * cos(theta) ** 6 - 2.10880589308734e127 * cos(theta) ** 4 + 4.26021392542897e124 * cos(theta) ** 2 - 1.37559377637358e121 ) * sin(62 * phi) ) # @torch.jit.script def Yl100_m_minus_61(theta, phi): return ( 2.93197035314659e-120 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 3.26813766426167e140 * cos(theta) ** 39 - 1.21692965287331e141 * cos(theta) ** 37 + 2.05704352490768e141 * cos(theta) ** 35 - 2.09220666208559e141 * cos(theta) ** 33 + 1.43093927147823e141 * cos(theta) ** 31 - 6.96740064122907e140 * cos(theta) ** 29 + 2.49450146414374e140 * cos(theta) ** 27 - 6.68884655396832e139 * cos(theta) ** 25 + 1.35584727445304e139 * cos(theta) ** 23 - 2.08275264381675e138 * cos(theta) ** 21 + 2.41645334365479e137 * cos(theta) ** 19 - 2.09859584441325e136 * cos(theta) ** 17 + 1.34373368568834e135 * cos(theta) ** 15 - 6.20184778010001e133 * cos(theta) ** 13 + 1.99729201836417e132 * cos(theta) ** 11 - 4.28269243703817e130 * cos(theta) ** 9 + 5.7018094575952e128 * cos(theta) ** 7 - 4.21761178617468e126 * cos(theta) ** 5 + 1.42007130847632e124 * cos(theta) ** 3 - 1.37559377637358e121 * cos(theta) ) * sin(61 * phi) ) # @torch.jit.script def Yl100_m_minus_60(theta, phi): return ( 2.3528947910424e-118 * (1.0 - cos(theta) ** 2) ** 30 * ( 8.17034416065417e138 * cos(theta) ** 40 - 3.20244645492977e139 * cos(theta) ** 38 + 5.71400979141023e139 * cos(theta) ** 36 - 6.1535490061341e139 * cos(theta) ** 34 + 4.47168522336947e139 * cos(theta) ** 32 - 2.32246688040969e139 * cos(theta) ** 30 + 8.90893380051337e138 * cos(theta) ** 28 - 2.57263328998782e138 * cos(theta) ** 26 + 5.64936364355433e137 * cos(theta) ** 24 - 9.46705747189432e136 * cos(theta) ** 22 + 1.2082266718274e136 * cos(theta) ** 20 - 1.16588658022959e135 * cos(theta) ** 18 + 8.3983355355521e133 * cos(theta) ** 16 - 4.42989127150001e132 * cos(theta) ** 14 + 1.66441001530347e131 * cos(theta) ** 12 - 4.28269243703817e129 * cos(theta) ** 10 + 7.127261821994e127 * cos(theta) ** 8 - 7.0293529769578e125 * cos(theta) ** 6 + 3.55017827119081e123 * cos(theta) ** 4 - 6.87796888186789e120 * cos(theta) ** 2 + 2.13601518070431e117 ) * sin(60 * phi) ) # @torch.jit.script def Yl100_m_minus_59(theta, phi): return ( 1.90569953479049e-116 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 1.99276686845224e137 * cos(theta) ** 41 - 8.2114011664866e137 * cos(theta) ** 39 + 1.54432697065141e138 * cos(theta) ** 37 - 1.75815685889546e138 * cos(theta) ** 35 + 1.35505612829378e138 * cos(theta) ** 33 - 7.49182864648288e137 * cos(theta) ** 31 + 3.07204613810806e137 * cos(theta) ** 29 - 9.52827144439932e136 * cos(theta) ** 27 + 2.25974545742173e136 * cos(theta) ** 25 - 4.11611194430188e135 * cos(theta) ** 23 + 5.75346034203522e134 * cos(theta) ** 21 - 6.13624515910308e133 * cos(theta) ** 19 + 4.94019737385418e132 * cos(theta) ** 17 - 2.95326084766667e131 * cos(theta) ** 15 + 1.28031539638729e130 * cos(theta) ** 13 - 3.89335676094379e128 * cos(theta) ** 11 + 7.91917980221555e126 * cos(theta) ** 9 - 1.00419328242254e125 * cos(theta) ** 7 + 7.10035654238162e122 * cos(theta) ** 5 - 2.29265629395596e120 * cos(theta) ** 3 + 2.13601518070431e117 * cos(theta) ) * sin(59 * phi) ) # @torch.jit.script def Yl100_m_minus_58(theta, phi): return ( 1.55731919038657e-114 * (1.0 - cos(theta) ** 2) ** 29 * ( 4.74468302012437e135 * cos(theta) ** 42 - 2.05285029162165e136 * cos(theta) ** 40 + 4.06401834381951e136 * cos(theta) ** 38 - 4.88376905248738e136 * cos(theta) ** 36 + 3.98545920086405e136 * cos(theta) ** 34 - 2.3411964520259e136 * cos(theta) ** 32 + 1.02401537936935e136 * cos(theta) ** 30 - 3.40295408728547e135 * cos(theta) ** 28 + 8.69132868239128e134 * cos(theta) ** 26 - 1.71504664345912e134 * cos(theta) ** 24 + 2.61520924637965e133 * cos(theta) ** 22 - 3.06812257955154e132 * cos(theta) ** 20 + 2.74455409658565e131 * cos(theta) ** 18 - 1.84578802979167e130 * cos(theta) ** 16 + 9.1451099741949e128 * cos(theta) ** 14 - 3.24446396745316e127 * cos(theta) ** 12 + 7.91917980221555e125 * cos(theta) ** 10 - 1.25524160302818e124 * cos(theta) ** 8 + 1.1833927570636e122 * cos(theta) ** 6 - 5.73164073488991e119 * cos(theta) ** 4 + 1.06800759035216e117 * cos(theta) ** 2 - 3.19858517625683e113 ) * sin(58 * phi) ) # @torch.jit.script def Yl100_m_minus_57(theta, phi): return ( 1.283631619847e-112 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 1.10341465584288e134 * cos(theta) ** 43 - 5.00695193078451e134 * cos(theta) ** 41 + 1.04205598559475e135 * cos(theta) ** 39 - 1.31993758175335e135 * cos(theta) ** 37 + 1.1387026288183e135 * cos(theta) ** 35 - 7.09453470310878e134 * cos(theta) ** 33 + 3.30327541732049e134 * cos(theta) ** 31 - 1.17343244389154e134 * cos(theta) ** 29 + 3.21901062310788e133 * cos(theta) ** 27 - 6.86018657383646e132 * cos(theta) ** 25 + 1.13704749842593e132 * cos(theta) ** 23 - 1.4610107521674e131 * cos(theta) ** 21 + 1.44450215609771e130 * cos(theta) ** 19 - 1.08575766458334e129 * cos(theta) ** 17 + 6.0967399827966e127 * cos(theta) ** 15 - 2.49574151342551e126 * cos(theta) ** 13 + 7.1992543656505e124 * cos(theta) ** 11 - 1.39471289225353e123 * cos(theta) ** 9 + 1.69056108151943e121 * cos(theta) ** 7 - 1.14632814697798e119 * cos(theta) ** 5 + 3.56002530117386e116 * cos(theta) ** 3 - 3.19858517625683e113 * cos(theta) ) * sin(57 * phi) ) # @torch.jit.script def Yl100_m_minus_56(theta, phi): return ( 1.06688244974945e-110 * (1.0 - cos(theta) ** 2) ** 28 * ( 2.50776058146108e132 * cos(theta) ** 44 - 1.19213141209155e133 * cos(theta) ** 42 + 2.60513996398687e133 * cos(theta) ** 40 - 3.47351995198249e133 * cos(theta) ** 38 + 3.16306285782861e133 * cos(theta) ** 36 - 2.08662785385552e133 * cos(theta) ** 34 + 1.03227356791265e133 * cos(theta) ** 32 - 3.91144147963847e132 * cos(theta) ** 30 + 1.14964665110996e132 * cos(theta) ** 28 - 2.63853329762941e131 * cos(theta) ** 26 + 4.73769791010806e130 * cos(theta) ** 24 - 6.64095796439727e129 * cos(theta) ** 22 + 7.22251078048856e128 * cos(theta) ** 20 - 6.03198702546297e127 * cos(theta) ** 18 + 3.81046248924787e126 * cos(theta) ** 16 - 1.78267250958965e125 * cos(theta) ** 14 + 5.99937863804209e123 * cos(theta) ** 12 - 1.39471289225353e122 * cos(theta) ** 10 + 2.11320135189929e120 * cos(theta) ** 8 - 1.91054691162997e118 * cos(theta) ** 6 + 8.90006325293464e115 * cos(theta) ** 4 - 1.59929258812842e113 * cos(theta) ** 2 + 4.63026227020387e109 ) * sin(56 * phi) ) # @torch.jit.script def Yl100_m_minus_55(theta, phi): return ( 8.93892157607132e-109 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 5.57280129213574e130 * cos(theta) ** 45 - 2.77239863277105e131 * cos(theta) ** 43 + 6.35399991216309e131 * cos(theta) ** 41 - 8.90646141533971e131 * cos(theta) ** 39 + 8.54881853467193e131 * cos(theta) ** 37 - 5.96179386815864e131 * cos(theta) ** 35 + 3.12810172094744e131 * cos(theta) ** 33 - 1.26175531601241e131 * cos(theta) ** 31 + 3.96429879693089e130 * cos(theta) ** 29 - 9.77234554677559e129 * cos(theta) ** 27 + 1.89507916404322e129 * cos(theta) ** 25 - 2.88737302799881e128 * cos(theta) ** 23 + 3.4392908478517e127 * cos(theta) ** 21 - 3.17473001340157e126 * cos(theta) ** 19 + 2.24144852308698e125 * cos(theta) ** 17 - 1.18844833972643e124 * cos(theta) ** 15 + 4.61490664464776e122 * cos(theta) ** 13 - 1.26792081113957e121 * cos(theta) ** 11 + 2.34800150211032e119 * cos(theta) ** 9 - 2.72935273089996e117 * cos(theta) ** 7 + 1.78001265058693e115 * cos(theta) ** 5 - 5.33097529376139e112 * cos(theta) ** 3 + 4.63026227020387e109 * cos(theta) ) * sin(55 * phi) ) # @torch.jit.script def Yl100_m_minus_54(theta, phi): return ( 7.54796524942109e-107 * (1.0 - cos(theta) ** 2) ** 27 * ( 1.21147854176864e129 * cos(theta) ** 46 - 6.30090598357056e129 * cos(theta) ** 44 + 1.51285712194359e130 * cos(theta) ** 42 - 2.22661535383493e130 * cos(theta) ** 40 + 2.24968908807156e130 * cos(theta) ** 38 - 1.65605385226629e130 * cos(theta) ** 36 + 9.20029917925716e129 * cos(theta) ** 34 - 3.94298536253878e129 * cos(theta) ** 32 + 1.3214329323103e129 * cos(theta) ** 30 - 3.49012340956271e128 * cos(theta) ** 28 + 7.28876601555086e127 * cos(theta) ** 26 - 1.20307209499951e127 * cos(theta) ** 24 + 1.56331402175077e126 * cos(theta) ** 22 - 1.58736500670078e125 * cos(theta) ** 20 + 1.24524917949277e124 * cos(theta) ** 18 - 7.4278021232902e122 * cos(theta) ** 16 + 3.29636188903411e121 * cos(theta) ** 14 - 1.05660067594965e120 * cos(theta) ** 12 + 2.34800150211032e118 * cos(theta) ** 10 - 3.41169091362494e116 * cos(theta) ** 8 + 2.96668775097821e114 * cos(theta) ** 6 - 1.33274382344035e112 * cos(theta) ** 4 + 2.31513113510193e109 * cos(theta) ** 2 - 6.49405647994933e105 ) * sin(54 * phi) ) # @torch.jit.script def Yl100_m_minus_53(theta, phi): return ( 6.42153984137775e-105 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 2.57761391865668e127 * cos(theta) ** 47 - 1.40020132968235e128 * cos(theta) ** 45 + 3.51827237661301e128 * cos(theta) ** 43 - 5.43076915569495e128 * cos(theta) ** 41 + 5.76843355915785e128 * cos(theta) ** 39 - 4.47582122234132e128 * cos(theta) ** 37 + 2.62865690835919e128 * cos(theta) ** 35 - 1.19484404925418e128 * cos(theta) ** 33 + 4.26268687842031e127 * cos(theta) ** 31 - 1.20349083088369e127 * cos(theta) ** 29 + 2.69954296872254e126 * cos(theta) ** 27 - 4.81228837999802e125 * cos(theta) ** 25 + 6.79701748587292e124 * cos(theta) ** 23 - 7.55888098428944e123 * cos(theta) ** 21 + 6.55394304996194e122 * cos(theta) ** 19 - 4.3692953666413e121 * cos(theta) ** 17 + 2.19757459268941e120 * cos(theta) ** 15 - 8.12769750730496e118 * cos(theta) ** 13 + 2.13454682010029e117 * cos(theta) ** 11 - 3.79076768180549e115 * cos(theta) ** 9 + 4.2381253585403e113 * cos(theta) ** 7 - 2.66548764688069e111 * cos(theta) ** 5 + 7.71710378367312e108 * cos(theta) ** 3 - 6.49405647994933e105 * cos(theta) ) * sin(53 * phi) ) # @torch.jit.script def Yl100_m_minus_52(theta, phi): return ( 5.50307606138827e-103 * (1.0 - cos(theta) ** 2) ** 26 * ( 5.37002899720142e125 * cos(theta) ** 48 - 3.04391593409206e126 * cos(theta) ** 46 + 7.99607358321138e126 * cos(theta) ** 44 - 1.29304027516546e127 * cos(theta) ** 42 + 1.44210838978946e127 * cos(theta) ** 40 - 1.17784769008982e127 * cos(theta) ** 38 + 7.30182474544219e126 * cos(theta) ** 36 - 3.51424720368876e126 * cos(theta) ** 34 + 1.33208964950635e126 * cos(theta) ** 32 - 4.01163610294565e125 * cos(theta) ** 30 + 9.64122488829478e124 * cos(theta) ** 28 - 1.85088014615309e124 * cos(theta) ** 26 + 2.83209061911372e123 * cos(theta) ** 24 - 3.43585499285884e122 * cos(theta) ** 22 + 3.27697152498097e121 * cos(theta) ** 20 - 2.42738631480072e120 * cos(theta) ** 18 + 1.37348412043088e119 * cos(theta) ** 16 - 5.80549821950355e117 * cos(theta) ** 14 + 1.77878901675024e116 * cos(theta) ** 12 - 3.79076768180549e114 * cos(theta) ** 10 + 5.29765669817538e112 * cos(theta) ** 8 - 4.44247941146782e110 * cos(theta) ** 6 + 1.92927594591828e108 * cos(theta) ** 4 - 3.24702823997466e105 * cos(theta) ** 2 + 8.84266949884168e101 ) * sin(52 * phi) ) # @torch.jit.script def Yl100_m_minus_51(theta, phi): return ( 4.74925347851153e-101 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 1.09592428514315e124 * cos(theta) ** 49 - 6.47641688104694e124 * cos(theta) ** 47 + 1.77690524071364e125 * cos(theta) ** 45 - 3.00707040736154e125 * cos(theta) ** 43 + 3.51733753607186e125 * cos(theta) ** 41 - 3.02012228228159e125 * cos(theta) ** 39 + 1.97346614741681e125 * cos(theta) ** 37 - 1.00407062962536e125 * cos(theta) ** 35 + 4.03663530153438e124 * cos(theta) ** 33 - 1.29407616224053e124 * cos(theta) ** 31 + 3.32456030630855e123 * cos(theta) ** 29 - 6.85511165241884e122 * cos(theta) ** 27 + 1.13283624764549e122 * cos(theta) ** 25 - 1.49384999689515e121 * cos(theta) ** 23 + 1.56046263094332e120 * cos(theta) ** 21 - 1.27757174463196e119 * cos(theta) ** 19 + 8.07931835547577e117 * cos(theta) ** 17 - 3.8703321463357e116 * cos(theta) ** 15 + 1.36829924365403e115 * cos(theta) ** 13 - 3.446152438005e113 * cos(theta) ** 11 + 5.88628522019487e111 * cos(theta) ** 9 - 6.34639915923975e109 * cos(theta) ** 7 + 3.85855189183656e107 * cos(theta) ** 5 - 1.08234274665822e105 * cos(theta) ** 3 + 8.84266949884168e101 * cos(theta) ) * sin(51 * phi) ) # @torch.jit.script def Yl100_m_minus_50(theta, phi): return ( 4.12666130126779e-99 * (1.0 - cos(theta) ** 2) ** 25 * ( 2.19184857028629e122 * cos(theta) ** 50 - 1.34925351688478e123 * cos(theta) ** 48 + 3.86283747981226e123 * cos(theta) ** 46 - 6.83425092582169e123 * cos(theta) ** 44 + 8.37461318112347e123 * cos(theta) ** 42 - 7.55030570570399e123 * cos(theta) ** 40 + 5.19333196688634e123 * cos(theta) ** 38 - 2.78908508229266e123 * cos(theta) ** 36 + 1.18724567692188e123 * cos(theta) ** 34 - 4.04398800700166e122 * cos(theta) ** 32 + 1.10818676876952e122 * cos(theta) ** 30 - 2.44825416157816e121 * cos(theta) ** 28 + 4.35706249094418e120 * cos(theta) ** 26 - 6.22437498706311e119 * cos(theta) ** 24 + 7.09301195883327e118 * cos(theta) ** 22 - 6.38785872315979e117 * cos(theta) ** 20 + 4.48851019748654e116 * cos(theta) ** 18 - 2.41895759145981e115 * cos(theta) ** 16 + 9.77356602610025e113 * cos(theta) ** 14 - 2.8717936983375e112 * cos(theta) ** 12 + 5.88628522019487e110 * cos(theta) ** 10 - 7.93299894904969e108 * cos(theta) ** 8 + 6.4309198197276e106 * cos(theta) ** 6 - 2.70585686664555e104 * cos(theta) ** 4 + 4.42133474942084e101 * cos(theta) ** 2 - 1.17121450315784e98 ) * sin(50 * phi) ) # @torch.jit.script def Yl100_m_minus_49(theta, phi): return ( 3.60935453010183e-97 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 4.29774229467901e120 * cos(theta) ** 51 - 2.7535786058873e121 * cos(theta) ** 49 + 8.21880314853672e121 * cos(theta) ** 47 - 1.51872242796038e122 * cos(theta) ** 45 + 1.94758446072639e122 * cos(theta) ** 43 - 1.84153797700097e122 * cos(theta) ** 41 + 1.33162358125291e122 * cos(theta) ** 39 - 7.53806778998017e121 * cos(theta) ** 37 + 3.39213050549108e121 * cos(theta) ** 35 - 1.22545091121262e121 * cos(theta) ** 33 + 3.57479602828876e120 * cos(theta) ** 31 - 8.44225572957985e119 * cos(theta) ** 29 + 1.61372684849784e119 * cos(theta) ** 27 - 2.48974999482524e118 * cos(theta) ** 25 + 3.08391824297099e117 * cos(theta) ** 23 - 3.04183748721895e116 * cos(theta) ** 21 + 2.36237378815081e115 * cos(theta) ** 19 - 1.42291623027048e114 * cos(theta) ** 17 + 6.51571068406683e112 * cos(theta) ** 15 - 2.20907207564423e111 * cos(theta) ** 13 + 5.35116838199533e109 * cos(theta) ** 11 - 8.81444327672187e107 * cos(theta) ** 9 + 9.18702831389657e105 * cos(theta) ** 7 - 5.41171373329111e103 * cos(theta) ** 5 + 1.47377824980695e101 * cos(theta) ** 3 - 1.17121450315784e98 * cos(theta) ) * sin(49 * phi) ) # @torch.jit.script def Yl100_m_minus_48(theta, phi): return ( 3.17705218843653e-95 * (1.0 - cos(theta) ** 2) ** 24 * ( 8.26488902822886e118 * cos(theta) ** 52 - 5.50715721177461e119 * cos(theta) ** 50 + 1.71225065594515e120 * cos(theta) ** 48 - 3.30157049556603e120 * cos(theta) ** 46 + 4.4263283198327e120 * cos(theta) ** 44 - 4.3846142309547e120 * cos(theta) ** 42 + 3.32905895313227e120 * cos(theta) ** 40 - 1.98370204999478e120 * cos(theta) ** 38 + 9.42258473747522e119 * cos(theta) ** 36 - 3.60426738591948e119 * cos(theta) ** 34 + 1.11712375884024e119 * cos(theta) ** 32 - 2.81408524319328e118 * cos(theta) ** 30 + 5.76331017320658e117 * cos(theta) ** 28 - 9.57596151855863e116 * cos(theta) ** 26 + 1.28496593457125e116 * cos(theta) ** 24 - 1.38265340328134e115 * cos(theta) ** 22 + 1.1811868940754e114 * cos(theta) ** 20 - 7.90509016816932e112 * cos(theta) ** 18 + 4.07231917754177e111 * cos(theta) ** 16 - 1.57790862546016e110 * cos(theta) ** 14 + 4.45930698499611e108 * cos(theta) ** 12 - 8.81444327672187e106 * cos(theta) ** 10 + 1.14837853923707e105 * cos(theta) ** 8 - 9.01952288881851e102 * cos(theta) ** 6 + 3.68444562451736e100 * cos(theta) ** 4 - 5.85607251578919e97 * cos(theta) ** 2 + 1.5116346194603e94 ) * sin(48 * phi) ) # @torch.jit.script def Yl100_m_minus_47(theta, phi): return ( 2.81379945642078e-93 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 1.55941302419412e117 * cos(theta) ** 53 - 1.07983474740679e118 * cos(theta) ** 51 + 3.49438909376561e118 * cos(theta) ** 49 - 7.02461807567241e118 * cos(theta) ** 47 + 9.83628515518378e118 * cos(theta) ** 45 - 1.019677728129e119 * cos(theta) ** 43 + 8.11965598324944e118 * cos(theta) ** 41 - 5.08641551280713e118 * cos(theta) ** 39 + 2.54664452364195e118 * cos(theta) ** 37 - 1.02979068169128e118 * cos(theta) ** 35 + 3.38522351163708e117 * cos(theta) ** 33 - 9.07769433288156e116 * cos(theta) ** 31 + 1.98734833558848e116 * cos(theta) ** 29 - 3.54665241428097e115 * cos(theta) ** 27 + 5.13986373828498e114 * cos(theta) ** 25 - 6.01153653600582e113 * cos(theta) ** 23 + 5.62469949559717e112 * cos(theta) ** 21 - 4.16057377272069e111 * cos(theta) ** 19 + 2.39548186914222e110 * cos(theta) ** 17 - 1.05193908364011e109 * cos(theta) ** 15 + 3.4302361423047e107 * cos(theta) ** 13 - 8.01313025156534e105 * cos(theta) ** 11 + 1.27597615470786e104 * cos(theta) ** 9 - 1.28850326983122e102 * cos(theta) ** 7 + 7.36889124903473e99 * cos(theta) ** 5 - 1.95202417192973e97 * cos(theta) ** 3 + 1.5116346194603e94 * cos(theta) ) * sin(47 * phi) ) # @torch.jit.script def Yl100_m_minus_46(theta, phi): return ( 2.50696741243304e-91 * (1.0 - cos(theta) ** 2) ** 23 * ( 2.88780189665579e115 * cos(theta) ** 54 - 2.07660528347459e116 * cos(theta) ** 52 + 6.98877818753123e116 * cos(theta) ** 50 - 1.46346209909842e117 * cos(theta) ** 48 + 2.13832285982256e117 * cos(theta) ** 46 - 2.31744938211136e117 * cos(theta) ** 44 + 1.9332514245832e117 * cos(theta) ** 42 - 1.27160387820178e117 * cos(theta) ** 40 + 6.70169611484724e116 * cos(theta) ** 38 - 2.86052967136467e116 * cos(theta) ** 36 + 9.95653974010906e115 * cos(theta) ** 34 - 2.83677947902549e115 * cos(theta) ** 32 + 6.62449445196159e114 * cos(theta) ** 30 - 1.26666157652892e114 * cos(theta) ** 28 + 1.97687066857115e113 * cos(theta) ** 26 - 2.50480689000243e112 * cos(theta) ** 24 + 2.5566815889078e111 * cos(theta) ** 22 - 2.08028688636035e110 * cos(theta) ** 20 + 1.33082326063457e109 * cos(theta) ** 18 - 6.57461927275068e107 * cos(theta) ** 16 + 2.45016867307479e106 * cos(theta) ** 14 - 6.67760854297112e104 * cos(theta) ** 12 + 1.27597615470786e103 * cos(theta) ** 10 - 1.61062908728902e101 * cos(theta) ** 8 + 1.22814854150579e99 * cos(theta) ** 6 - 4.88006042982432e96 * cos(theta) ** 4 + 7.55817309730148e93 * cos(theta) ** 2 - 1.90430161181695e90 ) * sin(46 * phi) ) # @torch.jit.script def Yl100_m_minus_45(theta, phi): return ( 2.24650019862496e-89 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 5.25054890301052e113 * cos(theta) ** 55 - 3.91812317636715e114 * cos(theta) ** 53 + 1.37034866422181e115 * cos(theta) ** 51 - 2.98665734509881e115 * cos(theta) ** 49 + 4.54962310600545e115 * cos(theta) ** 47 - 5.14988751580303e115 * cos(theta) ** 45 + 4.49593354554232e115 * cos(theta) ** 43 - 3.10147287366289e115 * cos(theta) ** 41 + 1.7183836191916e115 * cos(theta) ** 39 - 7.73116127395856e114 * cos(theta) ** 37 + 2.84472564003116e114 * cos(theta) ** 35 - 8.59630145159239e113 * cos(theta) ** 33 + 2.13693369418116e113 * cos(theta) ** 31 - 4.3677985397549e112 * cos(theta) ** 29 + 7.32174321693017e111 * cos(theta) ** 27 - 1.00192275600097e111 * cos(theta) ** 25 + 1.11160069082948e110 * cos(theta) ** 23 - 9.90612803028736e108 * cos(theta) ** 21 + 7.00433295070824e107 * cos(theta) ** 19 - 3.86742310161805e106 * cos(theta) ** 17 + 1.63344578204986e105 * cos(theta) ** 15 - 5.13662195613163e103 * cos(theta) ** 13 + 1.15997832246169e102 * cos(theta) ** 11 - 1.78958787476558e100 * cos(theta) ** 9 + 1.75449791643684e98 * cos(theta) ** 7 - 9.76012085964865e95 * cos(theta) ** 5 + 2.51939103243383e93 * cos(theta) ** 3 - 1.90430161181695e90 * cos(theta) ) * sin(45 * phi) ) # @torch.jit.script def Yl100_m_minus_44(theta, phi): return ( 2.0243447511841e-87 * (1.0 - cos(theta) ** 2) ** 22 * ( 9.37598018394736e111 * cos(theta) ** 56 - 7.25578365993916e112 * cos(theta) ** 54 + 2.63528589273425e113 * cos(theta) ** 52 - 5.97331469019763e113 * cos(theta) ** 50 + 9.47838147084468e113 * cos(theta) ** 48 - 1.11954076430501e114 * cos(theta) ** 46 + 1.02180307853235e114 * cos(theta) ** 44 - 7.38445922300687e113 * cos(theta) ** 42 + 4.295959047979e113 * cos(theta) ** 40 - 2.03451612472594e113 * cos(theta) ** 38 + 7.90201566675323e112 * cos(theta) ** 36 - 2.5283239563507e112 * cos(theta) ** 34 + 6.67791779431612e111 * cos(theta) ** 32 - 1.45593284658497e111 * cos(theta) ** 30 + 2.61490829176078e110 * cos(theta) ** 28 - 3.8535490615422e109 * cos(theta) ** 26 + 4.63166954512283e108 * cos(theta) ** 24 - 4.50278546831244e107 * cos(theta) ** 22 + 3.50216647535412e106 * cos(theta) ** 20 - 2.1485683897878e105 * cos(theta) ** 18 + 1.02090361378116e104 * cos(theta) ** 16 - 3.66901568295116e102 * cos(theta) ** 14 + 9.66648602051406e100 * cos(theta) ** 12 - 1.78958787476558e99 * cos(theta) ** 10 + 2.19312239554605e97 * cos(theta) ** 8 - 1.62668680994144e95 * cos(theta) ** 6 + 6.29847758108457e92 * cos(theta) ** 4 - 9.52150805908476e89 * cos(theta) ** 2 + 2.34519902933122e86 ) * sin(44 * phi) ) # @torch.jit.script def Yl100_m_minus_43(theta, phi): return ( 1.83401612536192e-85 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 1.64490880420129e110 * cos(theta) ** 57 - 1.31923339271621e111 * cos(theta) ** 55 + 4.97223753346085e111 * cos(theta) ** 53 - 1.17123817454855e112 * cos(theta) ** 51 + 1.93436356547851e112 * cos(theta) ** 49 - 2.38200162618086e112 * cos(theta) ** 47 + 2.27067350784966e112 * cos(theta) ** 45 - 1.71731609837369e112 * cos(theta) ** 43 + 1.04779488975098e112 * cos(theta) ** 41 - 5.21670801211779e111 * cos(theta) ** 39 + 2.1356799099333e111 * cos(theta) ** 37 - 7.22378273243058e110 * cos(theta) ** 35 + 2.02361145282307e110 * cos(theta) ** 33 - 4.69655756962892e109 * cos(theta) ** 31 + 9.01692514400267e108 * cos(theta) ** 29 - 1.42724039316378e108 * cos(theta) ** 27 + 1.85266781804913e107 * cos(theta) ** 25 - 1.95773281230976e106 * cos(theta) ** 23 + 1.6676983215972e105 * cos(theta) ** 21 - 1.13082546830937e104 * cos(theta) ** 19 + 6.0053153751833e102 * cos(theta) ** 17 - 2.44601045530078e101 * cos(theta) ** 15 + 7.43575847731851e99 * cos(theta) ** 13 - 1.62689806796871e98 * cos(theta) ** 11 + 2.43680266171783e96 * cos(theta) ** 9 - 2.32383829991634e94 * cos(theta) ** 7 + 1.25969551621691e92 * cos(theta) ** 5 - 3.17383601969492e89 * cos(theta) ** 3 + 2.34519902933122e86 * cos(theta) ) * sin(43 * phi) ) # @torch.jit.script def Yl100_m_minus_42(theta, phi): return ( 1.67026417186738e-83 * (1.0 - cos(theta) ** 2) ** 21 * ( 2.83604966241602e108 * cos(theta) ** 58 - 2.35577391556466e109 * cos(theta) ** 56 + 9.20784728418675e109 * cos(theta) ** 54 - 2.25238110490107e110 * cos(theta) ** 52 + 3.86872713095701e110 * cos(theta) ** 50 - 4.9625033878768e110 * cos(theta) ** 48 + 4.93624675619491e110 * cos(theta) ** 46 - 3.90299113266748e110 * cos(theta) ** 44 + 2.49474973750232e110 * cos(theta) ** 42 - 1.30417700302945e110 * cos(theta) ** 40 + 5.62021028929817e109 * cos(theta) ** 38 - 2.00660631456405e109 * cos(theta) ** 36 + 5.95179839065608e108 * cos(theta) ** 34 - 1.46767424050904e108 * cos(theta) ** 32 + 3.00564171466756e107 * cos(theta) ** 30 - 5.09728711844206e106 * cos(theta) ** 28 + 7.12564545403512e105 * cos(theta) ** 26 - 8.15722005129065e104 * cos(theta) ** 24 + 7.58044691635091e103 * cos(theta) ** 22 - 5.65412734154685e102 * cos(theta) ** 20 + 3.33628631954628e101 * cos(theta) ** 18 - 1.52875653456298e100 * cos(theta) ** 16 + 5.31125605522751e98 * cos(theta) ** 14 - 1.35574838997392e97 * cos(theta) ** 12 + 2.43680266171783e95 * cos(theta) ** 10 - 2.90479787489543e93 * cos(theta) ** 8 + 2.09949252702819e91 * cos(theta) ** 6 - 7.9345900492373e88 * cos(theta) ** 4 + 1.17259951466561e86 * cos(theta) ** 2 - 2.82758503657008e82 ) * sin(42 * phi) ) # @torch.jit.script def Yl100_m_minus_41(theta, phi): return ( 1.52881643696148e-81 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 4.80686383460342e106 * cos(theta) ** 59 - 4.13293669397309e107 * cos(theta) ** 57 + 1.67415405167032e108 * cos(theta) ** 55 - 4.24977566962465e108 * cos(theta) ** 53 + 7.58573947246473e108 * cos(theta) ** 51 - 1.01275579344424e109 * cos(theta) ** 49 + 1.05026526727551e109 * cos(theta) ** 47 - 8.67331362814996e108 * cos(theta) ** 45 + 5.80174357558679e108 * cos(theta) ** 43 - 3.18091951958402e108 * cos(theta) ** 41 + 1.4410795613585e108 * cos(theta) ** 39 - 5.42326030963257e107 * cos(theta) ** 37 + 1.70051382590174e107 * cos(theta) ** 35 - 4.44749769851223e106 * cos(theta) ** 33 + 9.69561843441148e105 * cos(theta) ** 31 - 1.75768521325588e105 * cos(theta) ** 29 + 2.63912794593893e104 * cos(theta) ** 27 - 3.26288802051626e103 * cos(theta) ** 25 + 3.29584648536996e102 * cos(theta) ** 23 - 2.69244159121279e101 * cos(theta) ** 21 + 1.75594016818225e100 * cos(theta) ** 19 - 8.99268549742932e98 * cos(theta) ** 17 + 3.54083737015167e97 * cos(theta) ** 15 - 1.04288337690302e96 * cos(theta) ** 13 + 2.21527514701621e94 * cos(theta) ** 11 - 3.22755319432826e92 * cos(theta) ** 9 + 2.9992750386117e90 * cos(theta) ** 7 - 1.58691800984746e88 * cos(theta) ** 5 + 3.90866504888537e85 * cos(theta) ** 3 - 2.82758503657008e82 * cos(theta) ) * sin(41 * phi) ) # @torch.jit.script def Yl100_m_minus_40(theta, phi): return ( 1.40617873132947e-79 * (1.0 - cos(theta) ** 2) ** 20 * ( 8.01143972433903e104 * cos(theta) ** 60 - 7.12575292064326e105 * cos(theta) ** 58 + 2.98956080655414e106 * cos(theta) ** 56 - 7.86995494374936e106 * cos(theta) ** 54 + 1.45879605239706e107 * cos(theta) ** 52 - 2.02551158688849e107 * cos(theta) ** 50 + 2.18805264015732e107 * cos(theta) ** 48 - 1.88550296264129e107 * cos(theta) ** 46 + 1.31857808536064e107 * cos(theta) ** 44 - 7.57361790377147e106 * cos(theta) ** 42 + 3.60269890339626e106 * cos(theta) ** 40 - 1.42717376569278e106 * cos(theta) ** 38 + 4.72364951639371e105 * cos(theta) ** 36 - 1.30808755838595e105 * cos(theta) ** 34 + 3.02988076075359e104 * cos(theta) ** 32 - 5.85895071085294e103 * cos(theta) ** 30 + 9.42545694978191e102 * cos(theta) ** 28 - 1.25495693096779e102 * cos(theta) ** 26 + 1.37326936890415e101 * cos(theta) ** 24 - 1.2238370869149e100 * cos(theta) ** 22 + 8.77970084091126e98 * cos(theta) ** 20 - 4.99593638746073e97 * cos(theta) ** 18 + 2.2130233563448e96 * cos(theta) ** 16 - 7.44916697787869e94 * cos(theta) ** 14 + 1.84606262251351e93 * cos(theta) ** 12 - 3.22755319432826e91 * cos(theta) ** 10 + 3.74909379826462e89 * cos(theta) ** 8 - 2.64486334974577e87 * cos(theta) ** 6 + 9.77166262221342e84 * cos(theta) ** 4 - 1.41379251828504e82 * cos(theta) ** 2 + 3.34229909760056e78 ) * sin(40 * phi) ) # @torch.jit.script def Yl100_m_minus_39(theta, phi): return ( 1.29947958247701e-77 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 1.31335077448181e103 * cos(theta) ** 61 - 1.20775473231242e104 * cos(theta) ** 59 + 5.24484352027042e104 * cos(theta) ** 57 - 1.43090089886352e105 * cos(theta) ** 55 + 2.75244538188125e105 * cos(theta) ** 53 - 3.97159134684017e105 * cos(theta) ** 51 + 4.46541355134147e105 * cos(theta) ** 49 - 4.01170843115169e105 * cos(theta) ** 47 + 2.93017352302363e105 * cos(theta) ** 45 - 1.76130648924918e105 * cos(theta) ** 43 + 8.78707049608844e104 * cos(theta) ** 41 - 3.65941991203277e104 * cos(theta) ** 39 + 1.27666203145776e104 * cos(theta) ** 37 - 3.73739302395986e103 * cos(theta) ** 35 + 9.18145685076844e102 * cos(theta) ** 33 - 1.88998410027514e102 * cos(theta) ** 31 + 3.25015756889031e101 * cos(theta) ** 29 - 4.64798863321405e100 * cos(theta) ** 27 + 5.4930774756166e99 * cos(theta) ** 25 - 5.32103081267349e98 * cos(theta) ** 23 + 4.18080992424346e97 * cos(theta) ** 21 - 2.6294402039267e96 * cos(theta) ** 19 + 1.3017784449087e95 * cos(theta) ** 17 - 4.9661113185858e93 * cos(theta) ** 15 + 1.42004817116424e92 * cos(theta) ** 13 - 2.93413926757114e90 * cos(theta) ** 11 + 4.16565977584958e88 * cos(theta) ** 9 - 3.77837621392252e86 * cos(theta) ** 7 + 1.95433252444268e84 * cos(theta) ** 5 - 4.7126417276168e81 * cos(theta) ** 3 + 3.34229909760056e78 * cos(theta) ) * sin(39 * phi) ) # @torch.jit.script def Yl100_m_minus_38(theta, phi): return ( 1.20634826823338e-75 * (1.0 - cos(theta) ** 2) ** 19 * ( 2.11830770077711e101 * cos(theta) ** 62 - 2.01292455385403e102 * cos(theta) ** 60 + 9.04283365563866e102 * cos(theta) ** 58 - 2.555180176542e103 * cos(theta) ** 56 + 5.09712107755788e103 * cos(theta) ** 54 - 7.63767566700033e103 * cos(theta) ** 52 + 8.93082710268293e103 * cos(theta) ** 50 - 8.35772589823269e103 * cos(theta) ** 48 + 6.36994244135573e103 * cos(theta) ** 46 - 4.00296929374813e103 * cos(theta) ** 44 + 2.09215964192582e103 * cos(theta) ** 42 - 9.14854978008193e102 * cos(theta) ** 40 + 3.35963692488884e102 * cos(theta) ** 38 - 1.03816472887774e102 * cos(theta) ** 36 + 2.70042848552013e101 * cos(theta) ** 34 - 5.90620031335982e100 * cos(theta) ** 32 + 1.08338585629677e100 * cos(theta) ** 30 - 1.65999594043359e99 * cos(theta) ** 28 + 2.11272210600638e98 * cos(theta) ** 26 - 2.21709617194729e97 * cos(theta) ** 24 + 1.90036814738339e96 * cos(theta) ** 22 - 1.31472010196335e95 * cos(theta) ** 20 + 7.23210247171502e93 * cos(theta) ** 18 - 3.10381957411612e92 * cos(theta) ** 16 + 1.01432012226017e91 * cos(theta) ** 14 - 2.44511605630929e89 * cos(theta) ** 12 + 4.16565977584958e87 * cos(theta) ** 10 - 4.72297026740316e85 * cos(theta) ** 8 + 3.25722087407114e83 * cos(theta) ** 6 - 1.1781604319042e81 * cos(theta) ** 4 + 1.67114954880028e78 * cos(theta) ** 2 - 3.87827697563305e74 ) * sin(38 * phi) ) # @torch.jit.script def Yl100_m_minus_37(theta, phi): return ( 1.12481868753504e-73 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 3.36239317583668e99 * cos(theta) ** 63 - 3.29987631779349e100 * cos(theta) ** 61 + 1.53268367044723e101 * cos(theta) ** 59 - 4.48277223954737e101 * cos(theta) ** 57 + 9.26749286828705e101 * cos(theta) ** 55 - 1.4410708805661e102 * cos(theta) ** 53 + 1.75114256915352e102 * cos(theta) ** 51 - 1.7056583465781e102 * cos(theta) ** 49 + 1.35530690241611e102 * cos(theta) ** 47 - 8.8954873194403e101 * cos(theta) ** 45 + 4.86548753936237e101 * cos(theta) ** 43 - 2.23135360489803e101 * cos(theta) ** 41 + 8.61445365356113e100 * cos(theta) ** 39 - 2.80585061858848e100 * cos(theta) ** 37 + 7.71550995862894e99 * cos(theta) ** 35 - 1.7897576707151e99 * cos(theta) ** 33 + 3.49479308482829e98 * cos(theta) ** 31 - 5.72412393252961e97 * cos(theta) ** 29 + 7.82489668891253e96 * cos(theta) ** 27 - 8.86838468778915e95 * cos(theta) ** 25 + 8.26247020601473e94 * cos(theta) ** 23 - 6.26057191411119e93 * cos(theta) ** 21 + 3.80636972195527e92 * cos(theta) ** 19 - 1.82577622006831e91 * cos(theta) ** 17 + 6.76213414840114e89 * cos(theta) ** 15 - 1.8808585048533e88 * cos(theta) ** 13 + 3.78696343259053e86 * cos(theta) ** 11 - 5.24774474155906e84 * cos(theta) ** 9 + 4.65317267724449e82 * cos(theta) ** 7 - 2.3563208638084e80 * cos(theta) ** 5 + 5.57049849600094e77 * cos(theta) ** 3 - 3.87827697563305e74 * cos(theta) ) * sin(37 * phi) ) # @torch.jit.script def Yl100_m_minus_36(theta, phi): return ( 1.05325321532538e-71 * (1.0 - cos(theta) ** 2) ** 18 * ( 5.25373933724482e97 * cos(theta) ** 64 - 5.32238115773143e98 * cos(theta) ** 62 + 2.55447278407872e99 * cos(theta) ** 60 - 7.72891765439201e99 * cos(theta) ** 58 + 1.65490944076554e100 * cos(theta) ** 56 - 2.66864977882611e100 * cos(theta) ** 54 + 3.36758186375676e100 * cos(theta) ** 52 - 3.4113166931562e100 * cos(theta) ** 50 + 2.82355604670023e100 * cos(theta) ** 48 - 1.93380159118267e100 * cos(theta) ** 46 + 1.10579262258236e100 * cos(theta) ** 44 - 5.31274667832864e99 * cos(theta) ** 42 + 2.15361341339028e99 * cos(theta) ** 40 - 7.38381741733812e98 * cos(theta) ** 38 + 2.14319721073026e98 * cos(theta) ** 36 - 5.26399314916205e97 * cos(theta) ** 34 + 1.09212283900884e97 * cos(theta) ** 32 - 1.9080413108432e96 * cos(theta) ** 30 + 2.79460596032591e95 * cos(theta) ** 28 - 3.41091718761121e94 * cos(theta) ** 26 + 3.44269591917281e93 * cos(theta) ** 24 - 2.84571450641418e92 * cos(theta) ** 22 + 1.90318486097764e91 * cos(theta) ** 20 - 1.01432012226017e90 * cos(theta) ** 18 + 4.22633384275071e88 * cos(theta) ** 16 - 1.3434703606095e87 * cos(theta) ** 14 + 3.15580286049211e85 * cos(theta) ** 12 - 5.24774474155906e83 * cos(theta) ** 10 + 5.81646584655561e81 * cos(theta) ** 8 - 3.92720143968066e79 * cos(theta) ** 6 + 1.39262462400023e77 * cos(theta) ** 4 - 1.93913848781653e74 * cos(theta) ** 2 + 4.42321735359609e70 ) * sin(36 * phi) ) # @torch.jit.script def Yl100_m_minus_35(theta, phi): return ( 9.90282093478634e-70 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 8.08267590345357e95 * cos(theta) ** 65 - 8.44822405989117e96 * cos(theta) ** 63 + 4.18766030176839e97 * cos(theta) ** 61 - 1.30998604311729e98 * cos(theta) ** 59 + 2.9033498960799e98 * cos(theta) ** 57 - 4.85209050695657e98 * cos(theta) ** 55 + 6.35392804482408e98 * cos(theta) ** 53 - 6.68885626109059e98 * cos(theta) ** 51 + 5.76235927898007e98 * cos(theta) ** 49 - 4.11447147060143e98 * cos(theta) ** 47 + 2.45731693907191e98 * cos(theta) ** 45 - 1.23552248333224e98 * cos(theta) ** 43 + 5.25271564241533e97 * cos(theta) ** 41 - 1.89328651726618e97 * cos(theta) ** 39 + 5.79242489386557e96 * cos(theta) ** 37 - 1.50399804261773e96 * cos(theta) ** 35 + 3.30946314851164e95 * cos(theta) ** 33 - 6.15497197046195e94 * cos(theta) ** 31 + 9.63657227698588e93 * cos(theta) ** 29 - 1.26330266207823e93 * cos(theta) ** 27 + 1.37707836766912e92 * cos(theta) ** 25 - 1.23726717670182e91 * cos(theta) ** 23 + 9.06278505227446e89 * cos(theta) ** 21 - 5.33852695926406e88 * cos(theta) ** 19 + 2.48607873102983e87 * cos(theta) ** 17 - 8.95646907072998e85 * cos(theta) ** 15 + 2.42754066191701e84 * cos(theta) ** 13 - 4.77067703778096e82 * cos(theta) ** 11 + 6.46273982950623e80 * cos(theta) ** 9 - 5.61028777097238e78 * cos(theta) ** 7 + 2.78524924800047e76 * cos(theta) ** 5 - 6.46379495938842e73 * cos(theta) ** 3 + 4.42321735359609e70 * cos(theta) ) * sin(35 * phi) ) # @torch.jit.script def Yl100_m_minus_34(theta, phi): return ( 9.34754959642367e-68 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.22464786415963e94 * cos(theta) ** 66 - 1.32003500935799e95 * cos(theta) ** 64 + 6.75429080930385e95 * cos(theta) ** 62 - 2.18331007186215e96 * cos(theta) ** 60 + 5.00577568289638e96 * cos(theta) ** 58 - 8.66444733385101e96 * cos(theta) ** 56 + 1.17665334163409e97 * cos(theta) ** 54 - 1.28631851174819e97 * cos(theta) ** 52 + 1.15247185579601e97 * cos(theta) ** 50 - 8.57181556375298e96 * cos(theta) ** 48 + 5.34199334580849e96 * cos(theta) ** 46 - 2.80800564393692e96 * cos(theta) ** 44 + 1.25064658152746e96 * cos(theta) ** 42 - 4.73321629316546e95 * cos(theta) ** 40 + 1.52432234049094e95 * cos(theta) ** 38 - 4.1777723406048e94 * cos(theta) ** 36 + 9.7337151426813e93 * cos(theta) ** 34 - 1.92342874076936e93 * cos(theta) ** 32 + 3.21219075899529e92 * cos(theta) ** 30 - 4.51179522170795e91 * cos(theta) ** 28 + 5.29645526026586e90 * cos(theta) ** 26 - 5.15527990292424e89 * cos(theta) ** 24 + 4.11944775103384e88 * cos(theta) ** 22 - 2.66926347963203e87 * cos(theta) ** 20 + 1.38115485057213e86 * cos(theta) ** 18 - 5.59779316920624e84 * cos(theta) ** 16 + 1.733957615655e83 * cos(theta) ** 14 - 3.9755641981508e81 * cos(theta) ** 12 + 6.46273982950623e79 * cos(theta) ** 10 - 7.01285971371547e77 * cos(theta) ** 8 + 4.64208208000078e75 * cos(theta) ** 6 - 1.6159487398471e73 * cos(theta) ** 4 + 2.21160867679805e70 * cos(theta) ** 2 - 4.96432924084859e66 ) * sin(34 * phi) ) # @torch.jit.script def Yl100_m_minus_33(theta, phi): return ( 8.85701904752573e-66 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 1.82783263307408e92 * cos(theta) ** 67 - 2.03082309131999e93 * cos(theta) ** 65 + 1.07210965227045e94 * cos(theta) ** 63 - 3.57919683911828e94 * cos(theta) ** 61 + 8.48436556423116e94 * cos(theta) ** 59 - 1.52007847962299e95 * cos(theta) ** 57 + 2.13936971206198e95 * cos(theta) ** 55 - 2.42701605990225e95 * cos(theta) ** 53 + 2.25974873685493e95 * cos(theta) ** 51 - 1.74935011505163e95 * cos(theta) ** 49 + 1.13659432889542e95 * cos(theta) ** 47 - 6.24001254208203e94 * cos(theta) ** 45 + 2.90848042215688e94 * cos(theta) ** 43 - 1.15444299833304e94 * cos(theta) ** 41 + 3.90851882177164e93 * cos(theta) ** 39 - 1.12912765962292e93 * cos(theta) ** 37 + 2.78106146933751e92 * cos(theta) ** 35 - 5.82857194172533e91 * cos(theta) ** 33 + 1.03619056741784e91 * cos(theta) ** 31 - 1.55579145576136e90 * cos(theta) ** 29 + 1.96165009639476e89 * cos(theta) ** 27 - 2.0621119611697e88 * cos(theta) ** 25 + 1.79106423957993e87 * cos(theta) ** 23 - 1.27107784744382e86 * cos(theta) ** 21 + 7.26923605564278e84 * cos(theta) ** 19 - 3.29281951129779e83 * cos(theta) ** 17 + 1.15597174377e82 * cos(theta) ** 15 - 3.05812630626985e80 * cos(theta) ** 13 + 5.87521802682385e78 * cos(theta) ** 11 - 7.79206634857274e76 * cos(theta) ** 9 + 6.63154582857255e74 * cos(theta) ** 7 - 3.23189747969421e72 * cos(theta) ** 5 + 7.37202892266015e69 * cos(theta) ** 3 - 4.96432924084859e66 * cos(theta) ) * sin(33 * phi) ) # @torch.jit.script def Yl100_m_minus_32(theta, phi): return ( 8.42302045750848e-64 * (1.0 - cos(theta) ** 2) ** 16 * ( 2.68798916628541e90 * cos(theta) ** 68 - 3.07700468381817e91 * cos(theta) ** 66 + 1.67517133167258e92 * cos(theta) ** 64 - 5.77289812761013e92 * cos(theta) ** 62 + 1.41406092737186e93 * cos(theta) ** 60 - 2.62082496486722e93 * cos(theta) ** 58 + 3.82030305725353e93 * cos(theta) ** 56 - 4.49447418500416e93 * cos(theta) ** 54 + 4.34567064779794e93 * cos(theta) ** 52 - 3.49870023010326e93 * cos(theta) ** 50 + 2.36790485186547e93 * cos(theta) ** 48 - 1.35652446567001e93 * cos(theta) ** 46 + 6.61018277762927e92 * cos(theta) ** 44 - 2.74867380555485e92 * cos(theta) ** 42 + 9.77129705442911e91 * cos(theta) ** 40 - 2.97138857795505e91 * cos(theta) ** 38 + 7.72517074815976e90 * cos(theta) ** 36 - 1.71428586521333e90 * cos(theta) ** 34 + 3.23809552318074e89 * cos(theta) ** 32 - 5.18597151920454e88 * cos(theta) ** 30 + 7.00589320140986e87 * cos(theta) ** 28 - 7.93119985065267e86 * cos(theta) ** 26 + 7.46276766491638e85 * cos(theta) ** 24 - 5.7776265792901e84 * cos(theta) ** 22 + 3.63461802782139e83 * cos(theta) ** 20 - 1.82934417294322e82 * cos(theta) ** 18 + 7.22482339856252e80 * cos(theta) ** 16 - 2.18437593304989e79 * cos(theta) ** 14 + 4.89601502235321e77 * cos(theta) ** 12 - 7.79206634857274e75 * cos(theta) ** 10 + 8.28943228571568e73 * cos(theta) ** 8 - 5.38649579949035e71 * cos(theta) ** 6 + 1.84300723066504e69 * cos(theta) ** 4 - 2.48216462042429e66 * cos(theta) ** 2 + 5.48908584790865e62 ) * sin(32 * phi) ) # @torch.jit.script def Yl100_m_minus_31(theta, phi): return ( 8.03858052270573e-62 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 3.8956364728774e88 * cos(theta) ** 69 - 4.59254430420622e89 * cos(theta) ** 67 + 2.57718666411167e90 * cos(theta) ** 65 - 9.16333036128592e90 * cos(theta) ** 63 + 2.31813266782272e91 * cos(theta) ** 61 - 4.44207621163935e91 * cos(theta) ** 59 + 6.70228606535708e91 * cos(theta) ** 57 - 8.17177124546211e91 * cos(theta) ** 55 + 8.19937858075083e91 * cos(theta) ** 53 - 6.86019652961423e91 * cos(theta) ** 51 + 4.83245888135809e91 * cos(theta) ** 49 - 2.88622226738299e91 * cos(theta) ** 47 + 1.46892950613984e91 * cos(theta) ** 45 - 6.39226466408106e90 * cos(theta) ** 43 + 2.3832431840071e90 * cos(theta) ** 41 - 7.61894507167961e89 * cos(theta) ** 39 + 2.08788398598913e89 * cos(theta) ** 37 - 4.89795961489524e88 * cos(theta) ** 35 + 9.81241067630527e87 * cos(theta) ** 33 - 1.67289403845308e87 * cos(theta) ** 31 + 2.41582524186547e86 * cos(theta) ** 29 - 2.93748142616766e85 * cos(theta) ** 27 + 2.98510706596655e84 * cos(theta) ** 25 - 2.51201155621309e83 * cos(theta) ** 23 + 1.73077048943876e82 * cos(theta) ** 21 - 9.62812722601692e80 * cos(theta) ** 19 + 4.24989611680148e79 * cos(theta) ** 17 - 1.45625062203326e78 * cos(theta) ** 15 + 3.76616540181016e76 * cos(theta) ** 13 - 7.08369668052068e74 * cos(theta) ** 11 + 9.21048031746187e72 * cos(theta) ** 9 - 7.69499399927193e70 * cos(theta) ** 7 + 3.68601446133007e68 * cos(theta) ** 5 - 8.27388206808098e65 * cos(theta) ** 3 + 5.48908584790865e62 * cos(theta) ) * sin(31 * phi) ) # @torch.jit.script def Yl100_m_minus_30(theta, phi): return ( 7.69775411038583e-60 * (1.0 - cos(theta) ** 2) ** 15 * ( 5.56519496125343e86 * cos(theta) ** 70 - 6.75374162383268e87 * cos(theta) ** 68 + 3.90482827895707e88 * cos(theta) ** 66 - 1.43177036895092e89 * cos(theta) ** 64 + 3.73892365777858e89 * cos(theta) ** 62 - 7.40346035273225e89 * cos(theta) ** 60 + 1.1555665629926e90 * cos(theta) ** 58 - 1.45924486526109e90 * cos(theta) ** 56 + 1.51840344087978e90 * cos(theta) ** 54 - 1.31926856338735e90 * cos(theta) ** 52 + 9.66491776271618e89 * cos(theta) ** 50 - 6.01296305704791e89 * cos(theta) ** 48 + 3.19332501334748e89 * cos(theta) ** 46 - 1.45278742365479e89 * cos(theta) ** 44 + 5.67438853335024e88 * cos(theta) ** 42 - 1.9047362679199e88 * cos(theta) ** 40 + 5.49443154207664e87 * cos(theta) ** 38 - 1.3605443374709e87 * cos(theta) ** 36 + 2.88600314008979e86 * cos(theta) ** 34 - 5.22779387016587e85 * cos(theta) ** 32 + 8.05275080621823e84 * cos(theta) ** 30 - 1.04910050934559e84 * cos(theta) ** 28 + 1.14811810229483e83 * cos(theta) ** 26 - 1.04667148175545e82 * cos(theta) ** 24 + 7.86713858835798e80 * cos(theta) ** 22 - 4.81406361300846e79 * cos(theta) ** 20 + 2.36105339822305e78 * cos(theta) ** 18 - 9.10156638770788e76 * cos(theta) ** 16 + 2.69011814415011e75 * cos(theta) ** 14 - 5.90308056710056e73 * cos(theta) ** 12 + 9.21048031746187e71 * cos(theta) ** 10 - 9.61874249908991e69 * cos(theta) ** 8 + 6.14335743555012e67 * cos(theta) ** 6 - 2.06847051702024e65 * cos(theta) ** 4 + 2.74454292395433e62 * cos(theta) ** 2 - 5.98591695518937e58 ) * sin(30 * phi) ) # @torch.jit.script def Yl100_m_minus_29(theta, phi): return ( 7.39545476164089e-58 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 7.83830276232878e84 * cos(theta) ** 71 - 9.78803133888794e85 * cos(theta) ** 69 + 5.82810190889115e86 * cos(theta) ** 67 - 2.20272364453988e87 * cos(theta) ** 65 + 5.9347994567914e87 * cos(theta) ** 63 - 1.21368202503807e88 * cos(theta) ** 61 + 1.95858739490271e88 * cos(theta) ** 59 - 2.56007871098437e88 * cos(theta) ** 57 + 2.76073352887233e88 * cos(theta) ** 55 - 2.48918596865538e88 * cos(theta) ** 53 + 1.89508191425808e88 * cos(theta) ** 51 - 1.22713531776488e88 * cos(theta) ** 49 + 6.79430853903718e87 * cos(theta) ** 47 - 3.22841649701063e87 * cos(theta) ** 45 + 1.31962524031401e87 * cos(theta) ** 43 - 4.64569821443879e86 * cos(theta) ** 41 + 1.40882860053247e86 * cos(theta) ** 39 - 3.67714685802946e85 * cos(theta) ** 37 + 8.24572325739939e84 * cos(theta) ** 35 - 1.58417996065632e84 * cos(theta) ** 33 + 2.59766155039298e83 * cos(theta) ** 31 - 3.61758796326066e82 * cos(theta) ** 29 + 4.25228926775862e81 * cos(theta) ** 27 - 4.18668592702181e80 * cos(theta) ** 25 + 3.42049503841651e79 * cos(theta) ** 23 - 2.29241124428974e78 * cos(theta) ** 21 + 1.24265968327529e77 * cos(theta) ** 19 - 5.35386258100464e75 * cos(theta) ** 17 + 1.79341209610008e74 * cos(theta) ** 15 - 4.54083120546197e72 * cos(theta) ** 13 + 8.37316392496534e70 * cos(theta) ** 11 - 1.06874916656555e69 * cos(theta) ** 9 + 8.77622490792875e66 * cos(theta) ** 7 - 4.13694103404049e64 * cos(theta) ** 5 + 9.14847641318109e61 * cos(theta) ** 3 - 5.98591695518937e58 * cos(theta) ) * sin(29 * phi) ) # @torch.jit.script def Yl100_m_minus_28(theta, phi): return ( 7.12731557116112e-56 * (1.0 - cos(theta) ** 2) ** 14 * ( 1.08865316143455e83 * cos(theta) ** 72 - 1.39829019126971e84 * cos(theta) ** 70 + 8.57073810131051e84 * cos(theta) ** 68 - 3.33746006748467e85 * cos(theta) ** 66 + 9.27312415123656e85 * cos(theta) ** 64 - 1.95755165328722e86 * cos(theta) ** 62 + 3.26431232483785e86 * cos(theta) ** 60 - 4.41392881204202e86 * cos(theta) ** 58 + 4.92988130155774e86 * cos(theta) ** 56 - 4.60960364565812e86 * cos(theta) ** 54 + 3.64438829665014e86 * cos(theta) ** 52 - 2.45427063552976e86 * cos(theta) ** 50 + 1.41548094563275e86 * cos(theta) ** 48 - 7.01829673263181e85 * cos(theta) ** 46 + 2.99914827344093e85 * cos(theta) ** 44 - 1.10611862248543e85 * cos(theta) ** 42 + 3.52207150133118e84 * cos(theta) ** 40 - 9.67670225797225e83 * cos(theta) ** 38 + 2.29047868261094e83 * cos(theta) ** 36 - 4.65935282545978e82 * cos(theta) ** 34 + 8.11769234497806e81 * cos(theta) ** 32 - 1.20586265442022e81 * cos(theta) ** 30 + 1.51867473848522e80 * cos(theta) ** 28 - 1.61026381808531e79 * cos(theta) ** 26 + 1.42520626600688e78 * cos(theta) ** 24 - 1.04200511104079e77 * cos(theta) ** 22 + 6.21329841637644e75 * cos(theta) ** 20 - 2.97436810055813e74 * cos(theta) ** 18 + 1.12088256006255e73 * cos(theta) ** 16 - 3.24345086104427e71 * cos(theta) ** 14 + 6.97763660413778e69 * cos(theta) ** 12 - 1.06874916656555e68 * cos(theta) ** 10 + 1.09702811349109e66 * cos(theta) ** 8 - 6.89490172340081e63 * cos(theta) ** 6 + 2.28711910329527e61 * cos(theta) ** 4 - 2.99295847759469e58 * cos(theta) ** 2 + 6.44478569680165e54 ) * sin(28 * phi) ) # @torch.jit.script def Yl100_m_minus_27(theta, phi): return ( 6.8895745371725e-54 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.49130570059528e81 * cos(theta) ** 73 - 1.96942280460522e82 * cos(theta) ** 71 + 1.24213595671167e83 * cos(theta) ** 69 - 4.98128368281295e83 * cos(theta) ** 67 + 1.42663448480562e84 * cos(theta) ** 65 - 3.10722484648764e84 * cos(theta) ** 63 + 5.35133168006205e84 * cos(theta) ** 61 - 7.48123527464748e84 * cos(theta) ** 59 + 8.64891456413638e84 * cos(theta) ** 57 - 8.38109753756021e84 * cos(theta) ** 55 + 6.87620433330216e84 * cos(theta) ** 53 - 4.81229536378384e84 * cos(theta) ** 51 + 2.8887366237403e84 * cos(theta) ** 49 - 1.49325462396422e84 * cos(theta) ** 47 + 6.66477394097984e83 * cos(theta) ** 45 - 2.57236888950099e83 * cos(theta) ** 43 + 8.59041829592971e82 * cos(theta) ** 41 - 2.48120570717237e82 * cos(theta) ** 39 + 6.19048292597552e81 * cos(theta) ** 37 - 1.33124366441708e81 * cos(theta) ** 35 + 2.45990677120547e80 * cos(theta) ** 33 - 3.88987953038781e79 * cos(theta) ** 31 + 5.23680944305249e78 * cos(theta) ** 29 - 5.96394006698264e77 * cos(theta) ** 27 + 5.70082506402752e76 * cos(theta) ** 25 - 4.53045700452519e75 * cos(theta) ** 23 + 2.95871353160783e74 * cos(theta) ** 21 - 1.5654568950306e73 * cos(theta) ** 19 + 6.59342682389734e71 * cos(theta) ** 17 - 2.16230057402951e70 * cos(theta) ** 15 + 5.36741277241368e68 * cos(theta) ** 13 - 9.71590151423223e66 * cos(theta) ** 11 + 1.21892012610122e65 * cos(theta) ** 9 - 9.8498596048583e62 * cos(theta) ** 7 + 4.57423820659054e60 * cos(theta) ** 5 - 9.97652825864895e57 * cos(theta) ** 3 + 6.44478569680165e54 * cos(theta) ) * sin(27 * phi) ) # @torch.jit.script def Yl100_m_minus_26(theta, phi): return ( 6.6789796988462e-52 * (1.0 - cos(theta) ** 2) ** 13 * ( 2.0152779737774e79 * cos(theta) ** 74 - 2.73530945084058e80 * cos(theta) ** 72 + 1.77447993815953e81 * cos(theta) ** 70 - 7.32541718060727e81 * cos(theta) ** 68 + 2.16156740122064e82 * cos(theta) ** 66 - 4.85503882263694e82 * cos(theta) ** 64 + 8.63118012913234e82 * cos(theta) ** 62 - 1.24687254577458e83 * cos(theta) ** 60 + 1.49119216623041e83 * cos(theta) ** 58 - 1.49662456027861e83 * cos(theta) ** 56 + 1.27337117283373e83 * cos(theta) ** 54 - 9.25441416112277e82 * cos(theta) ** 52 + 5.7774732474806e82 * cos(theta) ** 50 - 3.11094713325878e82 * cos(theta) ** 48 + 1.44886390021301e82 * cos(theta) ** 46 - 5.84629293068407e81 * cos(theta) ** 44 + 2.04533768950707e81 * cos(theta) ** 42 - 6.20301426793093e80 * cos(theta) ** 40 + 1.62907445420408e80 * cos(theta) ** 38 - 3.69789906782522e79 * cos(theta) ** 36 + 7.23501991531021e78 * cos(theta) ** 34 - 1.21558735324619e78 * cos(theta) ** 32 + 1.74560314768416e77 * cos(theta) ** 30 - 2.12997859535094e76 * cos(theta) ** 28 + 2.19262502462597e75 * cos(theta) ** 26 - 1.88769041855216e74 * cos(theta) ** 24 + 1.34486978709447e73 * cos(theta) ** 22 - 7.82728447515298e71 * cos(theta) ** 20 + 3.66301490216519e70 * cos(theta) ** 18 - 1.35143785876844e69 * cos(theta) ** 16 + 3.83386626600977e67 * cos(theta) ** 14 - 8.09658459519353e65 * cos(theta) ** 12 + 1.21892012610122e64 * cos(theta) ** 10 - 1.23123245060729e62 * cos(theta) ** 8 + 7.62373034431757e59 * cos(theta) ** 6 - 2.49413206466224e57 * cos(theta) ** 4 + 3.22239284840082e54 * cos(theta) ** 2 - 6.8576140634195e50 ) * sin(26 * phi) ) # @torch.jit.script def Yl100_m_minus_25(theta, phi): return ( 6.49271033372286e-50 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 2.68703729836987e77 * cos(theta) ** 75 - 3.74699924772683e78 * cos(theta) ** 73 + 2.49926751853454e79 * cos(theta) ** 71 - 1.06165466385613e80 * cos(theta) ** 69 + 3.22622000182186e80 * cos(theta) ** 67 - 7.46929049636453e80 * cos(theta) ** 65 + 1.37002859192577e81 * cos(theta) ** 63 - 2.04405335372882e81 * cos(theta) ** 61 + 2.52744434954307e81 * cos(theta) ** 59 - 2.6256571232958e81 * cos(theta) ** 57 + 2.31522031424315e81 * cos(theta) ** 55 - 1.74611587945713e81 * cos(theta) ** 53 + 1.13283789166286e81 * cos(theta) ** 51 - 6.34887170052813e80 * cos(theta) ** 49 + 3.08268914938938e80 * cos(theta) ** 47 - 1.29917620681868e80 * cos(theta) ** 45 + 4.75659927792343e79 * cos(theta) ** 43 - 1.51293030925145e79 * cos(theta) ** 41 + 4.17711398513867e78 * cos(theta) ** 39 - 9.99432180493302e77 * cos(theta) ** 37 + 2.06714854723149e77 * cos(theta) ** 35 - 3.68359804013997e76 * cos(theta) ** 33 + 5.63097789575537e75 * cos(theta) ** 31 - 7.34475377707222e74 * cos(theta) ** 29 + 8.12083342454063e73 * cos(theta) ** 27 - 7.55076167420864e72 * cos(theta) ** 25 + 5.84725994388899e71 * cos(theta) ** 23 - 3.72727832150142e70 * cos(theta) ** 21 + 1.92790258008694e69 * cos(theta) ** 19 - 7.94963446334379e67 * cos(theta) ** 17 + 2.55591084400651e66 * cos(theta) ** 15 - 6.22814199630271e64 * cos(theta) ** 13 + 1.10810920554656e63 * cos(theta) ** 11 - 1.36803605623032e61 * cos(theta) ** 9 + 1.08910433490251e59 * cos(theta) ** 7 - 4.98826412932448e56 * cos(theta) ** 5 + 1.07413094946694e54 * cos(theta) ** 3 - 6.8576140634195e50 * cos(theta) ) * sin(25 * phi) ) # @torch.jit.script def Yl100_m_minus_24(theta, phi): return ( 6.32831123632127e-48 * (1.0 - cos(theta) ** 2) ** 12 * ( 3.53557539259193e75 * cos(theta) ** 76 - 5.06351249692814e76 * cos(theta) ** 74 + 3.47120488685353e77 * cos(theta) ** 72 - 1.51664951979447e78 * cos(theta) ** 70 + 4.74444117914979e78 * cos(theta) ** 68 - 1.13171068126735e79 * cos(theta) ** 66 + 2.14066967488401e79 * cos(theta) ** 64 - 3.29686024794971e79 * cos(theta) ** 62 + 4.21240724923845e79 * cos(theta) ** 60 - 4.52699504016518e79 * cos(theta) ** 58 + 4.13432198971991e79 * cos(theta) ** 56 - 3.2335479249206e79 * cos(theta) ** 54 + 2.17853440704397e79 * cos(theta) ** 52 - 1.26977434010563e79 * cos(theta) ** 50 + 6.42226906122788e78 * cos(theta) ** 48 - 2.82429610177974e78 * cos(theta) ** 46 + 1.08104529043714e78 * cos(theta) ** 44 - 3.60221502202725e77 * cos(theta) ** 42 + 1.04427849628467e77 * cos(theta) ** 40 - 2.63008468550869e76 * cos(theta) ** 38 + 5.74207929786525e75 * cos(theta) ** 36 - 1.08341118827646e75 * cos(theta) ** 34 + 1.75968059242355e74 * cos(theta) ** 32 - 2.44825125902407e73 * cos(theta) ** 30 + 2.90029765162165e72 * cos(theta) ** 28 - 2.90413910546486e71 * cos(theta) ** 26 + 2.43635830995374e70 * cos(theta) ** 24 - 1.69421741886428e69 * cos(theta) ** 22 + 9.6395129004347e67 * cos(theta) ** 20 - 4.41646359074655e66 * cos(theta) ** 18 + 1.59744427750407e65 * cos(theta) ** 16 - 4.44867285450194e63 * cos(theta) ** 14 + 9.23424337955466e61 * cos(theta) ** 12 - 1.36803605623032e60 * cos(theta) ** 10 + 1.36138041862814e58 * cos(theta) ** 8 - 8.31377354887413e55 * cos(theta) ** 6 + 2.68532737366735e53 * cos(theta) ** 4 - 3.42880703170975e50 * cos(theta) ** 2 + 7.21854111938895e46 ) * sin(24 * phi) ) # @torch.jit.script def Yl100_m_minus_23(theta, phi): return ( 6.18363768824311e-46 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 4.5916563540155e73 * cos(theta) ** 77 - 6.75134999590419e74 * cos(theta) ** 75 + 4.75507518747059e75 * cos(theta) ** 73 - 2.13612608421756e76 * cos(theta) ** 71 + 6.87600170891274e76 * cos(theta) ** 69 - 1.68912041980202e77 * cos(theta) ** 67 + 3.29333796136002e77 * cos(theta) ** 65 - 5.23311150468208e77 * cos(theta) ** 63 + 6.90558565448926e77 * cos(theta) ** 61 - 7.67287294943251e77 * cos(theta) ** 59 + 7.25319647319283e77 * cos(theta) ** 57 - 5.87917804531019e77 * cos(theta) ** 55 + 4.11044227744144e77 * cos(theta) ** 53 - 2.48975360805025e77 * cos(theta) ** 51 + 1.31066715535263e77 * cos(theta) ** 49 - 6.00914064208456e76 * cos(theta) ** 47 + 2.4023228676381e76 * cos(theta) ** 45 - 8.37724423727268e75 * cos(theta) ** 43 + 2.54702072264553e75 * cos(theta) ** 41 - 6.74380688591972e74 * cos(theta) ** 39 + 1.55191332374736e74 * cos(theta) ** 37 - 3.09546053793275e73 * cos(theta) ** 35 + 5.33236543158652e72 * cos(theta) ** 33 - 7.89758470652927e71 * cos(theta) ** 31 + 1.00010263849023e71 * cos(theta) ** 29 - 1.0756070760981e70 * cos(theta) ** 27 + 9.74543323981497e68 * cos(theta) ** 25 - 7.36616269071427e67 * cos(theta) ** 23 + 4.59024423830224e66 * cos(theta) ** 21 - 2.32445452144555e65 * cos(theta) ** 19 + 9.39673104414159e63 * cos(theta) ** 17 - 2.96578190300129e62 * cos(theta) ** 15 + 7.10326413811897e60 * cos(theta) ** 13 - 1.24366914202756e59 * cos(theta) ** 11 + 1.51264490958682e57 * cos(theta) ** 9 - 1.18768193555345e55 * cos(theta) ** 7 + 5.37065474733471e52 * cos(theta) ** 5 - 1.14293567723658e50 * cos(theta) ** 3 + 7.21854111938895e46 * cos(theta) ) * sin(23 * phi) ) # @torch.jit.script def Yl100_m_minus_22(theta, phi): return ( 6.0568091956117e-44 * (1.0 - cos(theta) ** 2) ** 11 * ( 5.88673891540448e71 * cos(theta) ** 78 - 8.88335525776867e72 * cos(theta) ** 76 + 6.42577728036567e73 * cos(theta) ** 74 - 2.9668417836355e74 * cos(theta) ** 72 + 9.82285958416105e74 * cos(theta) ** 70 - 2.48400061735591e75 * cos(theta) ** 68 + 4.98990600206064e75 * cos(theta) ** 66 - 8.17673672606575e75 * cos(theta) ** 64 + 1.11380413782085e76 * cos(theta) ** 62 - 1.27881215823875e76 * cos(theta) ** 60 + 1.25055111606773e76 * cos(theta) ** 58 - 1.04985322237682e76 * cos(theta) ** 56 + 7.61193014341008e75 * cos(theta) ** 54 - 4.78798770778893e75 * cos(theta) ** 52 + 2.62133431070526e75 * cos(theta) ** 50 - 1.25190430043428e75 * cos(theta) ** 48 + 5.22244101660456e74 * cos(theta) ** 46 - 1.9039191448347e74 * cos(theta) ** 44 + 6.06433505391794e73 * cos(theta) ** 42 - 1.68595172147993e73 * cos(theta) ** 40 + 4.08398243091412e72 * cos(theta) ** 38 - 8.59850149425763e71 * cos(theta) ** 36 + 1.56834277399604e71 * cos(theta) ** 34 - 2.4679952207904e70 * cos(theta) ** 32 + 3.33367546163409e69 * cos(theta) ** 30 - 3.84145384320749e68 * cos(theta) ** 28 + 3.74824355377499e67 * cos(theta) ** 26 - 3.06923445446428e66 * cos(theta) ** 24 + 2.08647465377375e65 * cos(theta) ** 22 - 1.16222726072278e64 * cos(theta) ** 20 + 5.22040613563422e62 * cos(theta) ** 18 - 1.85361368937581e61 * cos(theta) ** 16 + 5.07376009865641e59 * cos(theta) ** 14 - 1.03639095168964e58 * cos(theta) ** 12 + 1.51264490958682e56 * cos(theta) ** 10 - 1.48460241944181e54 * cos(theta) ** 8 + 8.95109124555784e51 * cos(theta) ** 6 - 2.85733919309146e49 * cos(theta) ** 4 + 3.60927055969447e46 * cos(theta) ** 2 - 7.52401617614024e42 ) * sin(22 * phi) ) # @torch.jit.script def Yl100_m_minus_21(theta, phi): return ( 5.94617043901084e-42 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 7.45156824734745e69 * cos(theta) ** 79 - 1.15368250100892e71 * cos(theta) ** 77 + 8.56770304048755e71 * cos(theta) ** 75 - 4.06416682689794e72 * cos(theta) ** 73 + 1.38350134988184e73 * cos(theta) ** 71 - 3.60000089471871e73 * cos(theta) ** 69 + 7.44762089859797e73 * cos(theta) ** 67 - 1.25795949631781e74 * cos(theta) ** 65 + 1.76794307590611e74 * cos(theta) ** 63 - 2.09641337416189e74 * cos(theta) ** 61 + 2.11957816282666e74 * cos(theta) ** 59 - 1.84184775855582e74 * cos(theta) ** 57 + 1.38398729880183e74 * cos(theta) ** 55 - 9.03393907129988e73 * cos(theta) ** 53 + 5.13987119746128e73 * cos(theta) ** 51 - 2.55490673558017e73 * cos(theta) ** 49 + 1.11115766310735e73 * cos(theta) ** 47 - 4.230931432966e72 * cos(theta) ** 45 + 1.41031047765533e72 * cos(theta) ** 43 - 4.11207736946324e71 * cos(theta) ** 41 + 1.04717498228567e71 * cos(theta) ** 39 - 2.32391932277233e70 * cos(theta) ** 37 + 4.48097935427439e69 * cos(theta) ** 35 - 7.47877339633453e68 * cos(theta) ** 33 + 1.07537918117229e68 * cos(theta) ** 31 - 1.32463925627844e67 * cos(theta) ** 29 + 1.38823835325e66 * cos(theta) ** 27 - 1.22769378178571e65 * cos(theta) ** 25 + 9.07162892945107e63 * cos(theta) ** 23 - 5.53441552725131e62 * cos(theta) ** 21 + 2.74758217664959e61 * cos(theta) ** 19 - 1.09036099375047e60 * cos(theta) ** 17 + 3.3825067324376e58 * cos(theta) ** 15 - 7.97223808992028e56 * cos(theta) ** 13 + 1.37513173598802e55 * cos(theta) ** 11 - 1.64955824382423e53 * cos(theta) ** 9 + 1.27872732079398e51 * cos(theta) ** 7 - 5.71467838618292e48 * cos(theta) ** 5 + 1.20309018656482e46 * cos(theta) ** 3 - 7.52401617614024e42 * cos(theta) ) * sin(21 * phi) ) # @torch.jit.script def Yl100_m_minus_20(theta, phi): return ( 5.85025817526833e-40 * (1.0 - cos(theta) ** 2) ** 10 * ( 9.31446030918431e67 * cos(theta) ** 80 - 1.47908012949861e69 * cos(theta) ** 78 + 1.12732934743257e70 * cos(theta) ** 76 - 5.49211733364587e70 * cos(theta) ** 74 + 1.92152965261366e71 * cos(theta) ** 72 - 5.14285842102673e71 * cos(theta) ** 70 + 1.09523836744088e72 * cos(theta) ** 68 - 1.90599923684516e72 * cos(theta) ** 66 + 2.76241105610329e72 * cos(theta) ** 64 - 3.3813118938095e72 * cos(theta) ** 62 + 3.53263027137777e72 * cos(theta) ** 60 - 3.17559958371694e72 * cos(theta) ** 58 + 2.47140589071756e72 * cos(theta) ** 56 - 1.67295167987035e72 * cos(theta) ** 54 + 9.88436768742555e71 * cos(theta) ** 52 - 5.10981347116034e71 * cos(theta) ** 50 + 2.31491179814032e71 * cos(theta) ** 48 - 9.19767702818696e70 * cos(theta) ** 46 + 3.2052510855803e70 * cos(theta) ** 44 - 9.79066040348391e69 * cos(theta) ** 42 + 2.61793745571418e69 * cos(theta) ** 40 - 6.11557716519035e68 * cos(theta) ** 38 + 1.24471648729844e68 * cos(theta) ** 36 - 2.19963923421604e67 * cos(theta) ** 34 + 3.36055994116339e66 * cos(theta) ** 32 - 4.41546418759482e65 * cos(theta) ** 30 + 4.95799411874999e64 * cos(theta) ** 28 - 4.72189916071427e63 * cos(theta) ** 26 + 3.77984538727128e62 * cos(theta) ** 24 - 2.51564342147787e61 * cos(theta) ** 22 + 1.37379108832479e60 * cos(theta) ** 20 - 6.05756107639153e58 * cos(theta) ** 18 + 2.1140667077735e57 * cos(theta) ** 16 - 5.69445577851449e55 * cos(theta) ** 14 + 1.14594311332335e54 * cos(theta) ** 12 - 1.64955824382423e52 * cos(theta) ** 10 + 1.59840915099247e50 * cos(theta) ** 8 - 9.52446397697153e47 * cos(theta) ** 6 + 3.00772546641206e45 * cos(theta) ** 4 - 3.76200808807012e42 * cos(theta) ** 2 + 7.77274398361595e38 ) * sin(20 * phi) ) # @torch.jit.script def Yl100_m_minus_19(theta, phi): return ( 5.76777306568225e-38 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.14993337150424e66 * cos(theta) ** 81 - 1.87225332847926e67 * cos(theta) ** 79 + 1.46406408757477e68 * cos(theta) ** 77 - 7.32282311152782e68 * cos(theta) ** 75 + 2.63223240084064e69 * cos(theta) ** 73 - 7.24346256482638e69 * cos(theta) ** 71 + 1.58730198179837e70 * cos(theta) ** 69 - 2.84477498036592e70 * cos(theta) ** 67 + 4.24986316323584e70 * cos(theta) ** 65 - 5.36716173620555e70 * cos(theta) ** 63 + 5.79119716619306e70 * cos(theta) ** 61 - 5.38237217579142e70 * cos(theta) ** 59 + 4.33579980827642e70 * cos(theta) ** 57 - 3.041730327037e70 * cos(theta) ** 55 + 1.86497503536331e70 * cos(theta) ** 53 - 1.00192421003144e70 * cos(theta) ** 51 + 4.7243097921231e69 * cos(theta) ** 49 - 1.95695255918872e69 * cos(theta) ** 47 + 7.12278019017845e68 * cos(theta) ** 45 - 2.27689776825207e68 * cos(theta) ** 43 + 6.38521330661994e67 * cos(theta) ** 41 - 1.56809670902317e67 * cos(theta) ** 39 + 3.36409861432011e66 * cos(theta) ** 37 - 6.28468352633154e65 * cos(theta) ** 35 + 1.01835149732224e65 * cos(theta) ** 33 - 1.42434328632091e64 * cos(theta) ** 31 + 1.70965314439655e63 * cos(theta) ** 29 - 1.74885154100529e62 * cos(theta) ** 27 + 1.51193815490851e61 * cos(theta) ** 25 - 1.0937580093382e60 * cos(theta) ** 23 + 6.54186232535616e58 * cos(theta) ** 21 - 3.18819004020607e57 * cos(theta) ** 19 + 1.24356865163147e56 * cos(theta) ** 17 - 3.79630385234299e54 * cos(theta) ** 15 + 8.81494702556422e52 * cos(theta) ** 13 - 1.49959840347657e51 * cos(theta) ** 11 + 1.77601016776941e49 * cos(theta) ** 9 - 1.36063771099593e47 * cos(theta) ** 7 + 6.01545093282412e44 * cos(theta) ** 5 - 1.25400269602337e42 * cos(theta) ** 3 + 7.77274398361595e38 * cos(theta) ) * sin(19 * phi) ) # @torch.jit.script def Yl100_m_minus_18(theta, phi): return ( 5.69755559417275e-36 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.40235777012712e64 * cos(theta) ** 82 - 2.34031666059907e65 * cos(theta) ** 80 + 1.87700524048047e66 * cos(theta) ** 78 - 9.63529356779977e66 * cos(theta) ** 76 + 3.55707081194681e67 * cos(theta) ** 74 - 1.006036467337e68 * cos(theta) ** 72 + 2.26757425971196e68 * cos(theta) ** 70 - 4.18349261818517e68 * cos(theta) ** 68 + 6.43918661096339e68 * cos(theta) ** 66 - 8.38619021282117e68 * cos(theta) ** 64 + 9.34064059063397e68 * cos(theta) ** 62 - 8.97062029298569e68 * cos(theta) ** 60 + 7.47551691082141e68 * cos(theta) ** 58 - 5.43166129828035e68 * cos(theta) ** 56 + 3.45365747289502e68 * cos(theta) ** 54 - 1.92677732698354e68 * cos(theta) ** 52 + 9.44861958424619e67 * cos(theta) ** 50 - 4.07698449830982e67 * cos(theta) ** 48 + 1.54843047612575e67 * cos(theta) ** 46 - 5.17476765511835e66 * cos(theta) ** 44 + 1.52028888252856e66 * cos(theta) ** 42 - 3.92024177255792e65 * cos(theta) ** 40 + 8.85289109031608e64 * cos(theta) ** 38 - 1.74574542398098e64 * cos(theta) ** 36 + 2.99515146271247e63 * cos(theta) ** 34 - 4.45107276975284e62 * cos(theta) ** 32 + 5.69884381465516e61 * cos(theta) ** 30 - 6.24589836073317e60 * cos(theta) ** 28 + 5.81514674964812e59 * cos(theta) ** 26 - 4.55732503890918e58 * cos(theta) ** 24 + 2.9735737842528e57 * cos(theta) ** 22 - 1.59409502010303e56 * cos(theta) ** 20 + 6.90871473128596e54 * cos(theta) ** 18 - 2.37268990771437e53 * cos(theta) ** 16 + 6.29639073254587e51 * cos(theta) ** 14 - 1.24966533623048e50 * cos(theta) ** 12 + 1.77601016776941e48 * cos(theta) ** 10 - 1.70079713874492e46 * cos(theta) ** 8 + 1.00257515547069e44 * cos(theta) ** 6 - 3.13500674005843e41 * cos(theta) ** 4 + 3.88637199180798e38 * cos(theta) ** 2 - 7.96550930889112e34 ) * sin(18 * phi) ) # @torch.jit.script def Yl100_m_minus_17(theta, phi): return ( 5.63856539111379e-34 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.68958767485195e62 * cos(theta) ** 83 - 2.88927982790009e63 * cos(theta) ** 81 + 2.3759560006082e64 * cos(theta) ** 79 - 1.25133682698698e65 * cos(theta) ** 77 + 4.74276108259574e65 * cos(theta) ** 75 - 1.37813214703698e66 * cos(theta) ** 73 + 3.19376656297459e66 * cos(theta) ** 71 - 6.06303277997851e66 * cos(theta) ** 69 + 9.61072628501998e66 * cos(theta) ** 67 - 1.2901831096648e67 * cos(theta) ** 65 + 1.48264136359269e67 * cos(theta) ** 63 - 1.47059349065339e67 * cos(theta) ** 61 + 1.267036764546e67 * cos(theta) ** 59 - 9.52923034786026e66 * cos(theta) ** 57 + 6.27937722344549e66 * cos(theta) ** 55 - 3.63542891883686e66 * cos(theta) ** 53 + 1.85267050671494e66 * cos(theta) ** 51 - 8.3203765271629e65 * cos(theta) ** 49 + 3.29453292792713e65 * cos(theta) ** 47 - 1.14994836780408e65 * cos(theta) ** 45 + 3.53555554076409e64 * cos(theta) ** 43 - 9.56156529892175e63 * cos(theta) ** 41 + 2.26997207444002e63 * cos(theta) ** 39 - 4.71823087562428e62 * cos(theta) ** 37 + 8.55757560774992e61 * cos(theta) ** 35 - 1.34880993022813e61 * cos(theta) ** 33 + 1.83833671440489e60 * cos(theta) ** 31 - 2.15375805542523e59 * cos(theta) ** 29 + 2.15375805542523e58 * cos(theta) ** 27 - 1.82293001556367e57 * cos(theta) ** 25 + 1.29285816706644e56 * cos(theta) ** 23 - 7.5909286671573e54 * cos(theta) ** 21 + 3.63616564804524e53 * cos(theta) ** 19 - 1.39569994571433e52 * cos(theta) ** 17 + 4.19759382169725e50 * cos(theta) ** 15 - 9.61281027869599e48 * cos(theta) ** 13 + 1.61455469797219e47 * cos(theta) ** 11 - 1.88977459860546e45 * cos(theta) ** 9 + 1.43225022210098e43 * cos(theta) ** 7 - 6.27001348011687e40 * cos(theta) ** 5 + 1.29545733060266e38 * cos(theta) ** 3 - 7.96550930889112e34 * cos(theta) ) * sin(17 * phi) ) # @torch.jit.script def Yl100_m_minus_16(theta, phi): return ( 5.58986340186811e-32 * (1.0 - cos(theta) ** 2) ** 8 * ( 2.01141389863327e60 * cos(theta) ** 84 - 3.52351198524401e61 * cos(theta) ** 82 + 2.96994500076024e62 * cos(theta) ** 80 - 1.60427798331664e63 * cos(theta) ** 78 + 6.24047510867861e63 * cos(theta) ** 76 - 1.86234073923917e64 * cos(theta) ** 74 + 4.43578689302027e64 * cos(theta) ** 72 - 8.6614753999693e64 * cos(theta) ** 70 + 1.41334210073823e65 * cos(theta) ** 68 - 1.95482289343151e65 * cos(theta) ** 66 + 2.31662713061358e65 * cos(theta) ** 64 - 2.37192498492483e65 * cos(theta) ** 62 + 2.11172794091e65 * cos(theta) ** 60 - 1.64297074963108e65 * cos(theta) ** 58 + 1.12131736132955e65 * cos(theta) ** 56 - 6.73227577562382e64 * cos(theta) ** 54 + 3.56282789752873e64 * cos(theta) ** 52 - 1.66407530543258e64 * cos(theta) ** 50 + 6.86361026651485e63 * cos(theta) ** 48 - 2.49988775609582e63 * cos(theta) ** 46 + 8.03535350173656e62 * cos(theta) ** 44 - 2.27656316640994e62 * cos(theta) ** 42 + 5.67493018610005e61 * cos(theta) ** 40 - 1.24163970411165e61 * cos(theta) ** 38 + 2.37710433548609e60 * cos(theta) ** 36 - 3.96708803008274e59 * cos(theta) ** 34 + 5.74480223251528e58 * cos(theta) ** 32 - 7.1791935180841e57 * cos(theta) ** 30 + 7.69199305509011e56 * cos(theta) ** 28 - 7.01126929062952e55 * cos(theta) ** 26 + 5.38690902944348e54 * cos(theta) ** 24 - 3.45042212143514e53 * cos(theta) ** 22 + 1.81808282402262e52 * cos(theta) ** 20 - 7.75388858730186e50 * cos(theta) ** 18 + 2.62349613856078e49 * cos(theta) ** 16 - 6.86629305621142e47 * cos(theta) ** 14 + 1.34546224831016e46 * cos(theta) ** 12 - 1.88977459860546e44 * cos(theta) ** 10 + 1.79031277762623e42 * cos(theta) ** 8 - 1.04500224668614e40 * cos(theta) ** 6 + 3.23864332650665e37 * cos(theta) ** 4 - 3.98275465444556e34 * cos(theta) ** 2 + 8.10491382671054e30 ) * sin(16 * phi) ) # @torch.jit.script def Yl100_m_minus_15(theta, phi): return ( 5.55059643926874e-30 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 2.36636929250973e58 * cos(theta) ** 85 - 4.24519516294459e59 * cos(theta) ** 83 + 3.66659876637067e60 * cos(theta) ** 81 - 2.03073162445145e61 * cos(theta) ** 79 + 8.10451312815403e61 * cos(theta) ** 77 - 2.48312098565222e62 * cos(theta) ** 75 + 6.07642040139763e62 * cos(theta) ** 73 - 1.21992611267173e63 * cos(theta) ** 71 + 2.04832188512787e63 * cos(theta) ** 69 - 2.91764610959927e63 * cos(theta) ** 67 + 3.56404173940551e63 * cos(theta) ** 65 - 3.76496029353147e63 * cos(theta) ** 63 + 3.46184908345902e63 * cos(theta) ** 61 - 2.78469618581539e63 * cos(theta) ** 59 + 1.96722344092904e63 * cos(theta) ** 57 - 1.22405014102251e63 * cos(theta) ** 55 + 6.72231678779006e62 * cos(theta) ** 53 - 3.26289275575016e62 * cos(theta) ** 51 + 1.40073678908466e62 * cos(theta) ** 49 - 5.31891011935281e61 * cos(theta) ** 47 + 1.78563411149701e61 * cos(theta) ** 45 - 5.2943329451394e60 * cos(theta) ** 43 + 1.38412931368294e60 * cos(theta) ** 41 - 3.18369154900424e59 * cos(theta) ** 39 + 6.42460631212456e58 * cos(theta) ** 37 - 1.13345372288078e58 * cos(theta) ** 35 + 1.74084916136827e57 * cos(theta) ** 33 - 2.31586887680132e56 * cos(theta) ** 31 + 2.65241139830693e55 * cos(theta) ** 29 - 2.59676640393686e54 * cos(theta) ** 27 + 2.15476361177739e53 * cos(theta) ** 25 - 1.50018353105876e52 * cos(theta) ** 23 + 8.65753725725057e50 * cos(theta) ** 21 - 4.08099399331677e49 * cos(theta) ** 19 + 1.54323302268281e48 * cos(theta) ** 17 - 4.57752870414095e46 * cos(theta) ** 15 + 1.03497096023859e45 * cos(theta) ** 13 - 1.71797690782315e43 * cos(theta) ** 11 + 1.9892364195847e41 * cos(theta) ** 9 - 1.49286035240878e39 * cos(theta) ** 7 + 6.4772866530133e36 * cos(theta) ** 5 - 1.32758488481519e34 * cos(theta) ** 3 + 8.10491382671054e30 * cos(theta) ) * sin(15 * phi) ) # @torch.jit.script def Yl100_m_minus_14(theta, phi): return ( 5.51998374114227e-28 * (1.0 - cos(theta) ** 2) ** 7 * ( 2.75159220059271e56 * cos(theta) ** 86 - 5.05380376541023e57 * cos(theta) ** 84 + 4.47146191020814e58 * cos(theta) ** 82 - 2.53841453056431e59 * cos(theta) ** 80 + 1.03904014463513e60 * cos(theta) ** 78 - 3.26726445480555e60 * cos(theta) ** 76 + 8.21137892080761e60 * cos(theta) ** 74 - 1.69434182315518e61 * cos(theta) ** 72 + 2.92617412161125e61 * cos(theta) ** 70 - 4.29065604352833e61 * cos(theta) ** 68 + 5.4000632415235e61 * cos(theta) ** 66 - 5.88275045864292e61 * cos(theta) ** 64 + 5.58362755396616e61 * cos(theta) ** 62 - 4.64116030969232e61 * cos(theta) ** 60 + 3.39176455332593e61 * cos(theta) ** 58 - 2.18580382325449e61 * cos(theta) ** 56 + 1.24487347922038e61 * cos(theta) ** 54 - 6.274793761058e60 * cos(theta) ** 52 + 2.80147357816933e60 * cos(theta) ** 50 - 1.10810627486517e60 * cos(theta) ** 48 + 3.88181328586307e59 * cos(theta) ** 46 - 1.20325748753168e59 * cos(theta) ** 44 + 3.29554598495938e58 * cos(theta) ** 42 - 7.95922887251059e57 * cos(theta) ** 40 + 1.69068587161173e57 * cos(theta) ** 38 - 3.14848256355773e56 * cos(theta) ** 36 + 5.12014459225961e55 * cos(theta) ** 34 - 7.23709024000413e54 * cos(theta) ** 32 + 8.84137132768978e53 * cos(theta) ** 30 - 9.27416572834592e52 * cos(theta) ** 28 + 8.28755235298997e51 * cos(theta) ** 26 - 6.25076471274481e50 * cos(theta) ** 24 + 3.93524420784117e49 * cos(theta) ** 22 - 2.04049699665838e48 * cos(theta) ** 20 + 8.57351679268229e46 * cos(theta) ** 18 - 2.86095544008809e45 * cos(theta) ** 16 + 7.3926497159899e43 * cos(theta) ** 14 - 1.43164742318596e42 * cos(theta) ** 12 + 1.9892364195847e40 * cos(theta) ** 10 - 1.86607544051097e38 * cos(theta) ** 8 + 1.07954777550222e36 * cos(theta) ** 6 - 3.31896221203797e33 * cos(theta) ** 4 + 4.05245691335527e30 * cos(theta) ** 2 - 8.19505948100156e26 ) * sin(14 * phi) ) # @torch.jit.script def Yl100_m_minus_13(theta, phi): return ( 5.49730522113833e-26 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 3.16274965585369e54 * cos(theta) ** 87 - 5.94565148871792e55 * cos(theta) ** 85 + 5.38730350627486e56 * cos(theta) ** 83 - 3.13384509946211e57 * cos(theta) ** 81 + 1.31524068941156e58 * cos(theta) ** 79 - 4.24320059065656e58 * cos(theta) ** 77 + 1.09485052277435e59 * cos(theta) ** 75 - 2.32101619610299e59 * cos(theta) ** 73 + 4.12137200226936e59 * cos(theta) ** 71 - 6.21834209207005e59 * cos(theta) ** 69 + 8.0597958828709e59 * cos(theta) ** 67 - 9.05038532098911e59 * cos(theta) ** 65 + 8.86290087931137e59 * cos(theta) ** 63 - 7.60845952408576e59 * cos(theta) ** 61 + 5.74875348021344e59 * cos(theta) ** 59 - 3.83474354956928e59 * cos(theta) ** 57 + 2.26340632585524e59 * cos(theta) ** 55 - 1.18392335114302e59 * cos(theta) ** 53 + 5.49308544739084e58 * cos(theta) ** 51 - 2.26144137727585e58 * cos(theta) ** 49 + 8.25917720396399e57 * cos(theta) ** 47 - 2.67390552784818e57 * cos(theta) ** 45 + 7.66406043013809e56 * cos(theta) ** 43 - 1.94127533475868e56 * cos(theta) ** 41 + 4.33509197849161e55 * cos(theta) ** 39 - 8.50941233393982e54 * cos(theta) ** 37 + 1.46289845493132e54 * cos(theta) ** 35 - 2.1930576484861e53 * cos(theta) ** 33 + 2.8520552669967e52 * cos(theta) ** 31 - 3.19798818218825e51 * cos(theta) ** 29 + 3.06946383444073e50 * cos(theta) ** 27 - 2.50030588509793e49 * cos(theta) ** 25 + 1.71097574253964e48 * cos(theta) ** 23 - 9.71665236503992e46 * cos(theta) ** 21 + 4.51237725930647e45 * cos(theta) ** 19 - 1.6829149647577e44 * cos(theta) ** 17 + 4.92843314399327e42 * cos(theta) ** 15 - 1.10126724860458e41 * cos(theta) ** 13 + 1.808396745077e39 * cos(theta) ** 11 - 2.0734171561233e37 * cos(theta) ** 9 + 1.54221110786031e35 * cos(theta) ** 7 - 6.63792442407593e32 * cos(theta) ** 5 + 1.35081897111842e30 * cos(theta) ** 3 - 8.19505948100156e26 * cos(theta) ) * sin(13 * phi) ) # @torch.jit.script def Yl100_m_minus_12(theta, phi): return ( 5.48189115653224e-24 * (1.0 - cos(theta) ** 2) ** 6 * ( 3.59403369983374e52 * cos(theta) ** 88 - 6.91354824269525e53 * cos(theta) ** 86 + 6.41345655508912e54 * cos(theta) ** 84 - 3.82176231641721e55 * cos(theta) ** 82 + 1.64405086176445e56 * cos(theta) ** 80 - 5.440000757252e56 * cos(theta) ** 78 + 1.44059279312414e57 * cos(theta) ** 76 - 3.13650837311215e57 * cos(theta) ** 74 + 5.72412778092967e57 * cos(theta) ** 72 - 8.88334584581435e57 * cos(theta) ** 70 + 1.18526410042219e58 * cos(theta) ** 68 - 1.37127050318017e58 * cos(theta) ** 66 + 1.3848282623924e58 * cos(theta) ** 64 - 1.22717089098157e58 * cos(theta) ** 62 + 9.58125580035573e57 * cos(theta) ** 60 - 6.6116268096022e57 * cos(theta) ** 58 + 4.04179701045578e57 * cos(theta) ** 56 - 2.19245065026485e57 * cos(theta) ** 54 + 1.0563625860367e57 * cos(theta) ** 52 - 4.52288275455171e56 * cos(theta) ** 50 + 1.7206619174925e56 * cos(theta) ** 48 - 5.81283810401778e55 * cos(theta) ** 46 + 1.74183191594048e55 * cos(theta) ** 44 - 4.62208413037781e54 * cos(theta) ** 42 + 1.0837729946229e54 * cos(theta) ** 40 - 2.23931903524732e53 * cos(theta) ** 38 + 4.06360681925366e52 * cos(theta) ** 36 - 6.45016955437088e51 * cos(theta) ** 34 + 8.91267270936469e50 * cos(theta) ** 32 - 1.06599606072942e50 * cos(theta) ** 30 + 1.09623708372883e49 * cos(theta) ** 28 - 9.61656109653048e47 * cos(theta) ** 26 + 7.12906559391516e46 * cos(theta) ** 24 - 4.41666016592724e45 * cos(theta) ** 22 + 2.25618862965323e44 * cos(theta) ** 20 - 9.34952758198723e42 * cos(theta) ** 18 + 3.08027071499579e41 * cos(theta) ** 16 - 7.86619463288987e39 * cos(theta) ** 14 + 1.50699728756416e38 * cos(theta) ** 12 - 2.0734171561233e36 * cos(theta) ** 10 + 1.92776388482539e34 * cos(theta) ** 8 - 1.10632073734599e32 * cos(theta) ** 6 + 3.37704742779606e29 * cos(theta) ** 4 - 4.09752974050078e26 * cos(theta) ** 2 + 8.24121025844887e22 ) * sin(12 * phi) ) # @torch.jit.script def Yl100_m_minus_11(theta, phi): return ( 5.47311310261169e-22 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 4.03824011217274e50 * cos(theta) ** 89 - 7.94660717551178e51 * cos(theta) ** 87 + 7.5452430059872e52 * cos(theta) ** 85 - 4.60453291134604e53 * cos(theta) ** 83 + 2.02969242193142e54 * cos(theta) ** 81 - 6.88607690791393e54 * cos(theta) ** 79 + 1.87089973133005e55 * cos(theta) ** 77 - 4.18201116414953e55 * cos(theta) ** 75 + 7.84127093278037e55 * cos(theta) ** 73 - 1.25117547124146e56 * cos(theta) ** 71 + 1.71777405858289e56 * cos(theta) ** 69 - 2.04667239280622e56 * cos(theta) ** 67 + 2.13050501906523e56 * cos(theta) ** 65 - 1.94789030314536e56 * cos(theta) ** 63 + 1.57069767218946e56 * cos(theta) ** 61 - 1.1206147134919e56 * cos(theta) ** 59 + 7.09087194816804e55 * cos(theta) ** 57 - 3.98627390957245e55 * cos(theta) ** 55 + 1.99313695478623e55 * cos(theta) ** 53 - 8.86839755794453e54 * cos(theta) ** 51 + 3.51155493365816e54 * cos(theta) ** 49 - 1.23677406468463e54 * cos(theta) ** 47 + 3.87073759097884e53 * cos(theta) ** 45 - 1.07490328613438e53 * cos(theta) ** 43 + 2.64334876737293e52 * cos(theta) ** 41 - 5.74184368012134e51 * cos(theta) ** 39 + 1.0982721133118e51 * cos(theta) ** 37 - 1.84290558696311e50 * cos(theta) ** 35 + 2.7008099119287e49 * cos(theta) ** 33 - 3.43869697009489e48 * cos(theta) ** 31 + 3.78012787492701e47 * cos(theta) ** 29 - 3.56168929501129e46 * cos(theta) ** 27 + 2.85162623756606e45 * cos(theta) ** 25 - 1.92028702866402e44 * cos(theta) ** 23 + 1.07437553793011e43 * cos(theta) ** 21 - 4.92080399051959e41 * cos(theta) ** 19 + 1.81192394999752e40 * cos(theta) ** 17 - 5.24412975525991e38 * cos(theta) ** 15 + 1.15922868274167e37 * cos(theta) ** 13 - 1.88492468738482e35 * cos(theta) ** 11 + 2.14195987202821e33 * cos(theta) ** 9 - 1.58045819620856e31 * cos(theta) ** 7 + 6.75409485559212e28 * cos(theta) ** 5 - 1.36584324683359e26 * cos(theta) ** 3 + 8.24121025844887e22 * cos(theta) ) * sin(11 * phi) ) # @torch.jit.script def Yl100_m_minus_10(theta, phi): return ( 5.47037586157896e-20 * (1.0 - cos(theta) ** 2) ** 5 * ( 4.48693345796971e48 * cos(theta) ** 90 - 9.03023542671794e49 * cos(theta) ** 88 + 8.77353837905489e50 * cos(theta) ** 86 - 5.48158679922147e51 * cos(theta) ** 84 + 2.47523466089198e52 * cos(theta) ** 82 - 8.60759613489241e52 * cos(theta) ** 80 + 2.39858939914109e53 * cos(theta) ** 78 - 5.50264626861781e53 * cos(theta) ** 76 + 1.05963120713248e54 * cos(theta) ** 74 - 1.73774371005758e54 * cos(theta) ** 72 + 2.45396294083269e54 * cos(theta) ** 70 - 3.00981234236209e54 * cos(theta) ** 68 + 3.2280379076746e54 * cos(theta) ** 66 - 3.04357859866462e54 * cos(theta) ** 64 + 2.53338334224107e54 * cos(theta) ** 62 - 1.86769118915316e54 * cos(theta) ** 60 + 1.22256412899449e54 * cos(theta) ** 58 - 7.11834626709366e53 * cos(theta) ** 56 + 3.69099436071523e53 * cos(theta) ** 54 - 1.70546106883549e53 * cos(theta) ** 52 + 7.02310986731632e52 * cos(theta) ** 50 - 2.57661263475965e52 * cos(theta) ** 48 + 8.41464693691051e51 * cos(theta) ** 46 - 2.44296201394176e51 * cos(theta) ** 44 + 6.29368754136412e50 * cos(theta) ** 42 - 1.43546092003033e50 * cos(theta) ** 40 + 2.89018977187316e49 * cos(theta) ** 38 - 5.11918218600864e48 * cos(theta) ** 36 + 7.94355856449616e47 * cos(theta) ** 34 - 1.07459280315465e47 * cos(theta) ** 32 + 1.26004262497567e46 * cos(theta) ** 30 - 1.27203189107546e45 * cos(theta) ** 28 + 1.09677932214079e44 * cos(theta) ** 26 - 8.00119595276674e42 * cos(theta) ** 24 + 4.8835251724096e41 * cos(theta) ** 22 - 2.4604019952598e40 * cos(theta) ** 20 + 1.00662441666529e39 * cos(theta) ** 18 - 3.27758109703745e37 * cos(theta) ** 16 + 8.28020487672618e35 * cos(theta) ** 14 - 1.57077057282068e34 * cos(theta) ** 12 + 2.14195987202821e32 * cos(theta) ** 10 - 1.97557274526069e30 * cos(theta) ** 8 + 1.12568247593202e28 * cos(theta) ** 6 - 3.41460811708398e25 * cos(theta) ** 4 + 4.12060512922444e22 * cos(theta) ** 2 - 8.24945971816704e18 ) * sin(10 * phi) ) # @torch.jit.script def Yl100_m_minus_9(theta, phi): return ( 5.47311036605445e-18 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 4.93069610765902e46 * cos(theta) ** 91 - 1.01463319401325e48 * cos(theta) ** 89 + 1.00845268724769e49 * cos(theta) ** 87 - 6.44892564614291e49 * cos(theta) ** 85 + 2.98221043480961e50 * cos(theta) ** 83 - 1.06266618949289e51 * cos(theta) ** 81 + 3.03618911283683e51 * cos(theta) ** 79 - 7.1462938553478e51 * cos(theta) ** 77 + 1.41284160950998e52 * cos(theta) ** 75 - 2.38047083569532e52 * cos(theta) ** 73 + 3.45628583215872e52 * cos(theta) ** 71 - 4.36204687298854e52 * cos(theta) ** 69 + 4.81796702638e52 * cos(theta) ** 67 - 4.68242861333018e52 * cos(theta) ** 65 + 4.02124340038265e52 * cos(theta) ** 63 - 3.06178883467732e52 * cos(theta) ** 61 + 2.07214259151608e52 * cos(theta) ** 59 - 1.24883267843749e52 * cos(theta) ** 57 + 6.71089883766406e51 * cos(theta) ** 55 - 3.2178510732745e51 * cos(theta) ** 53 + 1.37708036614045e51 * cos(theta) ** 51 - 5.25839313216256e50 * cos(theta) ** 49 + 1.79035041210862e50 * cos(theta) ** 47 - 5.42880447542614e49 * cos(theta) ** 45 + 1.46364826543352e49 * cos(theta) ** 43 - 3.50112419519594e48 * cos(theta) ** 41 + 7.41074300480296e47 * cos(theta) ** 39 - 1.38356275297531e47 * cos(theta) ** 37 + 2.26958816128462e46 * cos(theta) ** 35 - 3.25634182774137e45 * cos(theta) ** 33 + 4.06465362895377e44 * cos(theta) ** 31 - 4.38631686577745e43 * cos(theta) ** 29 + 4.0621456375585e42 * cos(theta) ** 27 - 3.20047838110669e41 * cos(theta) ** 25 + 2.12327181409113e40 * cos(theta) ** 23 - 1.17161999774276e39 * cos(theta) ** 21 + 5.2980232456068e37 * cos(theta) ** 19 - 1.92798888061026e36 * cos(theta) ** 17 + 5.52013658448412e34 * cos(theta) ** 15 - 1.20828505601591e33 * cos(theta) ** 13 + 1.94723624729837e31 * cos(theta) ** 11 - 2.19508082806744e29 * cos(theta) ** 9 + 1.60811782276003e27 * cos(theta) ** 7 - 6.82921623416796e24 * cos(theta) ** 5 + 1.37353504307481e22 * cos(theta) ** 3 - 8.24945971816704e18 * cos(theta) ) * sin(9 * phi) ) # @torch.jit.script def Yl100_m_minus_8(theta, phi): return ( 5.48076736441476e-16 * (1.0 - cos(theta) ** 2) ** 4 * ( 5.35945229093372e44 * cos(theta) ** 92 - 1.12737021557028e46 * cos(theta) ** 90 + 1.14596896278146e47 * cos(theta) ** 88 - 7.49875075132896e47 * cos(theta) ** 86 + 3.55025051763049e48 * cos(theta) ** 84 - 1.29593437743035e49 * cos(theta) ** 82 + 3.79523639104604e49 * cos(theta) ** 80 - 9.16191519916385e49 * cos(theta) ** 78 + 1.85900211777629e50 * cos(theta) ** 76 - 3.21685248066935e50 * cos(theta) ** 74 + 4.80039698910934e50 * cos(theta) ** 72 - 6.23149553284077e50 * cos(theta) ** 70 + 7.08524562702941e50 * cos(theta) ** 68 - 7.09458880807604e50 * cos(theta) ** 66 + 6.28319281309789e50 * cos(theta) ** 64 - 4.93836908818922e50 * cos(theta) ** 62 + 3.45357098586014e50 * cos(theta) ** 60 - 2.15315979040946e50 * cos(theta) ** 58 + 1.19837479244001e50 * cos(theta) ** 56 - 5.95898346902685e49 * cos(theta) ** 54 + 2.64823147334703e49 * cos(theta) ** 52 - 1.05167862643251e49 * cos(theta) ** 50 + 3.72989669189296e48 * cos(theta) ** 48 - 1.1801748859622e48 * cos(theta) ** 46 + 3.32647333053072e47 * cos(theta) ** 44 - 8.33600998856175e46 * cos(theta) ** 42 + 1.85268575120074e46 * cos(theta) ** 40 - 3.64095461309291e45 * cos(theta) ** 38 + 6.30441155912394e44 * cos(theta) ** 36 - 9.57747596394522e43 * cos(theta) ** 34 + 1.27020425904805e43 * cos(theta) ** 32 - 1.46210562192582e42 * cos(theta) ** 30 + 1.45076629912803e41 * cos(theta) ** 28 - 1.23095322350257e40 * cos(theta) ** 26 + 8.84696589204637e38 * cos(theta) ** 24 - 5.32554544428527e37 * cos(theta) ** 22 + 2.6490116228034e36 * cos(theta) ** 20 - 1.07110493367237e35 * cos(theta) ** 18 + 3.45008536530257e33 * cos(theta) ** 16 - 8.63060754297079e31 * cos(theta) ** 14 + 1.62269687274864e30 * cos(theta) ** 12 - 2.19508082806744e28 * cos(theta) ** 10 + 2.01014727845003e26 * cos(theta) ** 8 - 1.13820270569466e24 * cos(theta) ** 6 + 3.43383760768703e21 * cos(theta) ** 4 - 4.12472985908352e18 * cos(theta) ** 2 + 822642572613386.0 ) * sin(8 * phi) ) # @torch.jit.script def Yl100_m_minus_7(theta, phi): return ( 5.49281181825906e-14 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 5.76285192573518e42 * cos(theta) ** 93 - 1.23886836875855e44 * cos(theta) ** 91 + 1.28760557615895e45 * cos(theta) ** 89 - 8.61925373715973e45 * cos(theta) ** 87 + 4.1767653148594e46 * cos(theta) ** 85 - 1.56136671979561e47 * cos(theta) ** 83 + 4.68547702598276e47 * cos(theta) ** 81 - 1.15973610115998e48 * cos(theta) ** 79 + 2.41428846464453e48 * cos(theta) ** 77 - 4.28913664089246e48 * cos(theta) ** 75 + 6.57588628645115e48 * cos(theta) ** 73 - 8.77675427160672e48 * cos(theta) ** 71 + 1.0268471923231e49 * cos(theta) ** 69 - 1.05889385195165e49 * cos(theta) ** 67 + 9.66645048168907e48 * cos(theta) ** 65 - 7.83868109236385e48 * cos(theta) ** 63 + 5.66159178009859e48 * cos(theta) ** 61 - 3.64942337357535e48 * cos(theta) ** 59 + 2.10241191656142e48 * cos(theta) ** 57 - 1.08345153982306e48 * cos(theta) ** 55 + 4.99666315725854e47 * cos(theta) ** 53 - 2.06211495378924e47 * cos(theta) ** 51 + 7.61203406508767e46 * cos(theta) ** 49 - 2.51101039566426e46 * cos(theta) ** 47 + 7.39216295673494e45 * cos(theta) ** 45 - 1.93860697408413e45 * cos(theta) ** 43 + 4.51874573463595e44 * cos(theta) ** 41 - 9.3357810592126e43 * cos(theta) ** 39 + 1.70389501597944e43 * cos(theta) ** 37 - 2.73642170398435e42 * cos(theta) ** 35 + 3.84910381529713e41 * cos(theta) ** 33 - 4.7164697481478e40 * cos(theta) ** 31 + 5.00264241078633e39 * cos(theta) ** 29 - 4.5590860129725e38 * cos(theta) ** 27 + 3.53878635681855e37 * cos(theta) ** 25 - 2.3154545409936e36 * cos(theta) ** 23 + 1.26143410609686e35 * cos(theta) ** 21 - 5.6373943877493e33 * cos(theta) ** 19 + 2.02946197958975e32 * cos(theta) ** 17 - 5.75373836198053e30 * cos(theta) ** 15 + 1.2482283636528e29 * cos(theta) ** 13 - 1.99552802551585e27 * cos(theta) ** 11 + 2.23349697605559e25 * cos(theta) ** 9 - 1.62600386527809e23 * cos(theta) ** 7 + 6.86767521537406e20 * cos(theta) ** 5 - 1.37490995302784e18 * cos(theta) ** 3 + 822642572613386.0 * cos(theta) ) * sin(7 * phi) ) # @torch.jit.script def Yl100_m_minus_6(theta, phi): return ( 5.50871794199858e-12 * (1.0 - cos(theta) ** 2) ** 3 * ( 6.13069353801615e40 * cos(theta) ** 94 - 1.34659605299842e42 * cos(theta) ** 92 + 1.43067286239883e43 * cos(theta) ** 90 - 9.79460651949969e43 * cos(theta) ** 88 + 4.85670385448767e44 * cos(theta) ** 86 - 1.85876990451858e45 * cos(theta) ** 84 + 5.71399637314971e45 * cos(theta) ** 82 - 1.44967012644998e46 * cos(theta) ** 80 + 3.09524162133914e46 * cos(theta) ** 78 - 5.64360084327956e46 * cos(theta) ** 76 + 8.88633281952858e46 * cos(theta) ** 74 - 1.21899364883427e47 * cos(theta) ** 72 + 1.46692456046157e47 * cos(theta) ** 70 - 1.55719684110536e47 * cos(theta) ** 68 + 1.46461370934683e47 * cos(theta) ** 66 - 1.22479392068185e47 * cos(theta) ** 64 + 9.13159964532031e46 * cos(theta) ** 62 - 6.08237228929225e46 * cos(theta) ** 60 + 3.62484813200245e46 * cos(theta) ** 58 - 1.93473489254119e46 * cos(theta) ** 56 + 9.25307992084915e45 * cos(theta) ** 54 - 3.96560568036392e45 * cos(theta) ** 52 + 1.52240681301753e45 * cos(theta) ** 50 - 5.23127165763388e44 * cos(theta) ** 48 + 1.60699194711629e44 * cos(theta) ** 46 - 4.40592494110029e43 * cos(theta) ** 44 + 1.07589184157999e43 * cos(theta) ** 42 - 2.33394526480315e42 * cos(theta) ** 40 + 4.48393425257748e41 * cos(theta) ** 38 - 7.60117139995652e40 * cos(theta) ** 36 + 1.13208935744033e40 * cos(theta) ** 34 - 1.47389679629619e39 * cos(theta) ** 32 + 1.66754747026211e38 * cos(theta) ** 30 - 1.62824500463304e37 * cos(theta) ** 28 + 1.36107167569944e36 * cos(theta) ** 26 - 9.64772725413999e34 * cos(theta) ** 24 + 5.73379139134935e33 * cos(theta) ** 22 - 2.81869719387465e32 * cos(theta) ** 20 + 1.12747887754986e31 * cos(theta) ** 18 - 3.59608647623783e29 * cos(theta) ** 16 + 8.91591688323429e27 * cos(theta) ** 14 - 1.66294002126321e26 * cos(theta) ** 12 + 2.23349697605559e24 * cos(theta) ** 10 - 2.03250483159761e22 * cos(theta) ** 8 + 1.14461253589568e20 * cos(theta) ** 6 - 3.4372748825696e17 * cos(theta) ** 4 + 411321286306693.0 * cos(theta) ** 2 - 81789875980.6509 ) * sin(6 * phi) ) # @torch.jit.script def Yl100_m_minus_5(theta, phi): return ( 5.52796483147718e-10 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 6.45336161896437e38 * cos(theta) ** 95 - 1.44795274515959e40 * cos(theta) ** 93 + 1.57216798065806e41 * cos(theta) ** 91 - 1.10051758646064e42 * cos(theta) ** 89 + 5.58241822354905e42 * cos(theta) ** 87 - 2.18678812296303e43 * cos(theta) ** 85 + 6.88433297969844e43 * cos(theta) ** 83 - 1.7897162054938e44 * cos(theta) ** 81 + 3.91802736878372e44 * cos(theta) ** 79 - 7.3293517445189e44 * cos(theta) ** 77 + 1.18484437593714e45 * cos(theta) ** 75 - 1.6698543134716e45 * cos(theta) ** 73 + 2.06609093022757e45 * cos(theta) ** 71 - 2.25680701609473e45 * cos(theta) ** 69 + 2.18599061096542e45 * cos(theta) ** 67 - 1.88429833951054e45 * cos(theta) ** 65 + 1.44946026116195e45 * cos(theta) ** 63 - 9.97110211359385e44 * cos(theta) ** 61 + 6.1438103932245e44 * cos(theta) ** 59 - 3.39427174130033e44 * cos(theta) ** 57 + 1.68237816742712e44 * cos(theta) ** 55 - 7.48227486861117e43 * cos(theta) ** 53 + 2.9851113980736e43 * cos(theta) ** 51 - 1.06760646074161e43 * cos(theta) ** 49 + 3.41913180237509e42 * cos(theta) ** 47 - 9.79094431355621e41 * cos(theta) ** 45 + 2.50207405018602e41 * cos(theta) ** 43 - 5.69254942634915e40 * cos(theta) ** 41 + 1.14972673143012e40 * cos(theta) ** 39 - 2.0543706486369e39 * cos(theta) ** 37 + 3.23454102125809e38 * cos(theta) ** 35 - 4.46635392817026e37 * cos(theta) ** 33 + 5.37918538794229e36 * cos(theta) ** 31 - 5.61463794701047e35 * cos(theta) ** 29 + 5.04100620629423e34 * cos(theta) ** 27 - 3.859090901656e33 * cos(theta) ** 25 + 2.49295277884754e32 * cos(theta) ** 23 - 1.34223675898793e31 * cos(theta) ** 21 + 5.93409935552558e29 * cos(theta) ** 19 - 2.11534498602225e28 * cos(theta) ** 17 + 5.94394458882286e26 * cos(theta) ** 15 - 1.27918463174093e25 * cos(theta) ** 13 + 2.03045179641418e23 * cos(theta) ** 11 - 2.25833870177512e21 * cos(theta) ** 9 + 1.63516076556525e19 * cos(theta) ** 7 - 6.8745497651392e16 * cos(theta) ** 5 + 137107095435564.0 * cos(theta) ** 3 - 81789875980.6509 * cos(theta) ) * sin(5 * phi) ) # @torch.jit.script def Yl100_m_minus_4(theta, phi): return ( 5.55003264309976e-8 * (1.0 - cos(theta) ** 2) ** 2 * ( 6.72225168642122e36 * cos(theta) ** 96 - 1.54037526080808e38 * cos(theta) ** 94 + 1.70887823984571e39 * cos(theta) ** 92 - 1.2227973182896e40 * cos(theta) ** 90 + 6.34365707221483e40 * cos(theta) ** 88 - 2.54277688716632e41 * cos(theta) ** 86 + 8.195634499641e41 * cos(theta) ** 84 - 2.18258073840707e42 * cos(theta) ** 82 + 4.89753421097965e42 * cos(theta) ** 80 - 9.39660480066526e42 * cos(theta) ** 78 + 1.55900575781203e43 * cos(theta) ** 76 - 2.25655988306973e43 * cos(theta) ** 74 + 2.86957073642718e43 * cos(theta) ** 72 - 3.22401002299247e43 * cos(theta) ** 70 + 3.21469207494914e43 * cos(theta) ** 68 - 2.85499748410688e43 * cos(theta) ** 66 + 2.26478165806555e43 * cos(theta) ** 64 - 1.60824227638611e43 * cos(theta) ** 62 + 1.02396839887075e43 * cos(theta) ** 60 - 5.85219265741436e42 * cos(theta) ** 58 + 3.00424672754843e42 * cos(theta) ** 56 - 1.38560645715022e42 * cos(theta) ** 54 + 5.74059884244922e41 * cos(theta) ** 52 - 2.13521292148322e41 * cos(theta) ** 50 + 7.1231912549481e40 * cos(theta) ** 48 - 2.12846615512091e40 * cos(theta) ** 46 + 5.68653193224096e39 * cos(theta) ** 44 - 1.35536891103551e39 * cos(theta) ** 42 + 2.87431682857531e38 * cos(theta) ** 40 - 5.40623854904447e37 * cos(theta) ** 38 + 8.98483617016137e36 * cos(theta) ** 36 - 1.31363350828537e36 * cos(theta) ** 34 + 1.68099543373196e35 * cos(theta) ** 32 - 1.87154598233682e34 * cos(theta) ** 30 + 1.8003593593908e33 * cos(theta) ** 28 - 1.48426573140615e32 * cos(theta) ** 26 + 1.03873032451981e31 * cos(theta) ** 24 - 6.10107617721786e29 * cos(theta) ** 22 + 2.96704967776279e28 * cos(theta) ** 20 - 1.17519165890125e27 * cos(theta) ** 18 + 3.71496536801429e25 * cos(theta) ** 16 - 9.1370330838638e23 * cos(theta) ** 14 + 1.69204316367848e22 * cos(theta) ** 12 - 2.25833870177512e20 * cos(theta) ** 10 + 2.04395095695657e18 * cos(theta) ** 8 - 1.14575829418987e16 * cos(theta) ** 6 + 34276773858891.1 * cos(theta) ** 4 - 40894937990.3254 * cos(theta) ** 2 + 8114074.99808044 ) * sin(4 * phi) ) # @torch.jit.script def Yl100_m_minus_3(theta, phi): return ( 5.57439929750823e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 6.93015637775383e34 * cos(theta) ** 97 - 1.62144764295587e36 * cos(theta) ** 95 + 1.83750348370507e37 * cos(theta) ** 93 - 1.34373331680176e38 * cos(theta) ** 91 + 7.12770457552228e38 * cos(theta) ** 89 - 2.92273205421416e39 * cos(theta) ** 87 + 9.64192294075412e39 * cos(theta) ** 85 - 2.6296153474784e40 * cos(theta) ** 83 + 6.04633853207364e40 * cos(theta) ** 81 - 1.18944364565383e41 * cos(theta) ** 79 + 2.02468280235329e41 * cos(theta) ** 77 - 3.00874651075963e41 * cos(theta) ** 75 + 3.93091881702353e41 * cos(theta) ** 73 - 4.54085918731334e41 * cos(theta) ** 71 + 4.65897402166542e41 * cos(theta) ** 69 - 4.26119027478639e41 * cos(theta) ** 67 + 3.484279473947e41 * cos(theta) ** 65 - 2.55276551807318e41 * cos(theta) ** 63 + 1.67863671946024e41 * cos(theta) ** 61 - 9.91897060578705e40 * cos(theta) ** 59 + 5.27060829394461e40 * cos(theta) ** 57 - 2.51928446754585e40 * cos(theta) ** 55 + 1.08313185706589e40 * cos(theta) ** 53 - 4.18669200290827e39 * cos(theta) ** 51 + 1.45371250100982e39 * cos(theta) ** 49 - 4.52865139387429e38 * cos(theta) ** 47 + 1.26367376272021e38 * cos(theta) ** 45 - 3.1520207233384e37 * cos(theta) ** 43 + 7.01052885018368e36 * cos(theta) ** 41 - 1.3862150125755e36 * cos(theta) ** 39 + 2.42833410004361e35 * cos(theta) ** 37 - 3.75323859510106e34 * cos(theta) ** 35 + 5.09392555676353e33 * cos(theta) ** 33 - 6.03724510431233e32 * cos(theta) ** 31 + 6.20813572203723e31 * cos(theta) ** 29 - 5.49728048668945e30 * cos(theta) ** 27 + 4.15492129807924e29 * cos(theta) ** 25 - 2.65264181618168e28 * cos(theta) ** 23 + 1.41288079893466e27 * cos(theta) ** 21 - 6.18521925737501e25 * cos(theta) ** 19 + 2.18527374589076e24 * cos(theta) ** 17 - 6.09135538924253e22 * cos(theta) ** 15 + 1.30157166436806e21 * cos(theta) ** 13 - 2.05303518343193e19 * cos(theta) ** 11 + 2.27105661884063e17 * cos(theta) ** 9 - 1.63679756312838e15 * cos(theta) ** 7 + 6855354771778.22 * cos(theta) ** 5 - 13631645996.7751 * cos(theta) ** 3 + 8114074.99808044 * cos(theta) ) * sin(3 * phi) ) # @torch.jit.script def Yl100_m_minus_2(theta, phi): return ( 0.000560053769265274 * (1.0 - cos(theta) ** 2) * ( 7.07158814056514e32 * cos(theta) ** 98 - 1.68900796141237e34 * cos(theta) ** 96 + 1.95479094011177e35 * cos(theta) ** 94 - 1.46057969217582e36 * cos(theta) ** 92 + 7.91967175058031e36 * cos(theta) ** 90 - 3.32128642524336e37 * cos(theta) ** 88 + 1.12115383032025e38 * cos(theta) ** 86 - 3.13049446128381e38 * cos(theta) ** 84 + 7.37358357569956e38 * cos(theta) ** 82 - 1.48680455706729e39 * cos(theta) ** 80 + 2.59574718250422e39 * cos(theta) ** 78 - 3.95887698784163e39 * cos(theta) ** 76 + 5.31205245543721e39 * cos(theta) ** 74 - 6.30674887126853e39 * cos(theta) ** 72 + 6.65567717380774e39 * cos(theta) ** 70 - 6.26645628645057e39 * cos(theta) ** 68 + 5.27921132416213e39 * cos(theta) ** 66 - 3.98869612198935e39 * cos(theta) ** 64 + 2.70747857977459e39 * cos(theta) ** 62 - 1.65316176763117e39 * cos(theta) ** 60 + 9.08725567921484e38 * cos(theta) ** 58 - 4.49872226347473e38 * cos(theta) ** 56 + 2.00579973530721e38 * cos(theta) ** 54 - 8.05133077482359e37 * cos(theta) ** 52 + 2.90742500201963e37 * cos(theta) ** 50 - 9.43469040390476e36 * cos(theta) ** 48 + 2.74711687547872e36 * cos(theta) ** 46 - 7.16368346213272e35 * cos(theta) ** 44 + 1.66917353575802e35 * cos(theta) ** 42 - 3.46553753143876e34 * cos(theta) ** 40 + 6.39035289485162e33 * cos(theta) ** 38 - 1.04256627641696e33 * cos(theta) ** 36 + 1.4982133990481e32 * cos(theta) ** 34 - 1.8866390950976e31 * cos(theta) ** 32 + 2.06937857401241e30 * cos(theta) ** 30 - 1.96331445953195e29 * cos(theta) ** 28 + 1.5980466531074e28 * cos(theta) ** 26 - 1.10526742340903e27 * cos(theta) ** 24 + 6.42218544970301e25 * cos(theta) ** 22 - 3.0926096286875e24 * cos(theta) ** 20 + 1.21404096993931e23 * cos(theta) ** 18 - 3.80709711827658e21 * cos(theta) ** 16 + 9.29694045977187e19 * cos(theta) ** 14 - 1.71086265285994e18 * cos(theta) ** 12 + 2.27105661884063e16 * cos(theta) ** 10 - 204599695391048.0 * cos(theta) ** 8 + 1142559128629.7 * cos(theta) ** 6 - 3407911499.19379 * cos(theta) ** 4 + 4057037.49904022 * cos(theta) ** 2 - 803.851297610506 ) * sin(2 * phi) ) # @torch.jit.script def Yl100_m_minus_1(theta, phi): return ( 0.0562791342033643 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 7.14301832380317e30 * cos(theta) ** 99 - 1.74124532104368e32 * cos(theta) ** 97 + 2.05767467380187e33 * cos(theta) ** 95 - 1.57051579803852e34 * cos(theta) ** 93 + 8.70293598964869e34 * cos(theta) ** 91 - 3.73178250027344e35 * cos(theta) ** 89 + 1.28868256358649e36 * cos(theta) ** 87 - 3.68293466033389e36 * cos(theta) ** 85 + 8.88383563337296e36 * cos(theta) ** 83 - 1.83556118156455e37 * cos(theta) ** 81 + 3.28575592722053e37 * cos(theta) ** 79 - 5.1413986855086e37 * cos(theta) ** 77 + 7.08273660724961e37 * cos(theta) ** 75 - 8.63938201543634e37 * cos(theta) ** 73 + 9.37419320254612e37 * cos(theta) ** 71 - 9.08182070500082e37 * cos(theta) ** 69 + 7.87941988680914e37 * cos(theta) ** 67 - 6.13645557229131e37 * cos(theta) ** 65 + 4.29758504726125e37 * cos(theta) ** 63 - 2.71010125841176e37 * cos(theta) ** 61 + 1.54021282698557e37 * cos(theta) ** 59 - 7.89249519907848e36 * cos(theta) ** 57 + 3.64690860964946e36 * cos(theta) ** 55 - 1.51911901411766e36 * cos(theta) ** 53 + 5.70083333729339e35 * cos(theta) ** 51 - 1.92544702120505e35 * cos(theta) ** 49 + 5.84492952229515e34 * cos(theta) ** 47 - 1.59192965825172e34 * cos(theta) ** 45 + 3.88179892036749e33 * cos(theta) ** 43 - 8.45253056448478e32 * cos(theta) ** 41 + 1.63855202432093e32 * cos(theta) ** 39 - 2.81774669301881e31 * cos(theta) ** 37 + 4.28060971156599e30 * cos(theta) ** 35 - 5.71708816696243e29 * cos(theta) ** 33 + 6.67541475487874e28 * cos(theta) ** 31 - 6.77004986045499e27 * cos(theta) ** 29 + 5.91869130780518e26 * cos(theta) ** 27 - 4.42106969363613e25 * cos(theta) ** 25 + 2.79225454334914e24 * cos(theta) ** 23 - 1.47267125175595e23 * cos(theta) ** 21 + 6.38968931547005e21 * cos(theta) ** 19 - 2.23946889310387e20 * cos(theta) ** 17 + 6.19796030651458e18 * cos(theta) ** 15 - 1.31604819450765e17 * cos(theta) ** 13 + 2.06459692621875e15 * cos(theta) ** 11 - 22733299487894.2 * cos(theta) ** 9 + 163222732661.386 * cos(theta) ** 7 - 681582299.838757 * cos(theta) ** 5 + 1352345.83301341 * cos(theta) ** 3 - 803.851297610506 * cos(theta) ) * sin(phi) ) # @torch.jit.script def Yl100_m0(theta, phi): return ( 8.9747990562769e29 * cos(theta) ** 100 - 2.23242489088295e31 * cos(theta) ** 98 + 2.6930750016159e32 * cos(theta) ** 96 - 2.09921743715701e33 * cos(theta) ** 94 + 1.18855951007944e34 * cos(theta) ** 92 - 5.20974880543722e34 * cos(theta) ** 90 + 1.83995096699965e35 * cos(theta) ** 88 - 5.38069694551159e35 * cos(theta) ** 86 + 1.32881400917871e36 * cos(theta) ** 84 - 2.81253529811595e36 * cos(theta) ** 82 + 5.16045841162601e36 * cos(theta) ** 80 - 8.28189364181726e36 * cos(theta) ** 78 + 1.1709287479462e37 * cos(theta) ** 76 - 1.46687777215238e37 * cos(theta) ** 74 + 1.63585337018314e37 * cos(theta) ** 72 - 1.63011353379654e37 * cos(theta) ** 70 + 1.45588912134565e37 * cos(theta) ** 68 - 1.1681984566486e37 * cos(theta) ** 66 + 8.43698885357326e36 * cos(theta) ** 64 - 5.49207927956206e36 * cos(theta) ** 62 + 3.22531736573039e36 * cos(theta) ** 60 - 1.70973696835663e36 * cos(theta) ** 58 + 8.18238334885208e35 * cos(theta) ** 56 - 3.53460599080847e35 * cos(theta) ** 54 + 1.37745674641801e35 * cos(theta) ** 52 - 4.83843084966961e34 * cos(theta) ** 50 + 1.52996329139011e34 * cos(theta) ** 48 - 4.34819499291519e33 * cos(theta) ** 46 + 1.10846842799685e33 * cos(theta) ** 44 - 2.52860171903791e32 * cos(theta) ** 42 + 5.14687016570129e31 * cos(theta) ** 40 - 9.31668305696682e30 * cos(theta) ** 38 + 1.49398453217328e30 * cos(theta) ** 36 - 2.11270539903293e29 * cos(theta) ** 34 + 2.62102549504085e28 * cos(theta) ** 32 - 2.83539508296676e27 * cos(theta) ** 30 + 2.65589332706835e26 * cos(theta) ** 28 - 2.13647090366426e25 * cos(theta) ** 26 + 1.46179588145449e24 * cos(theta) ** 24 - 8.41058293269628e22 * cos(theta) ** 22 + 4.01414185424141e21 * cos(theta) ** 20 - 1.56320342755865e20 * cos(theta) ** 18 + 4.86711689899215e18 * cos(theta) ** 16 - 1.18110015749051e17 * cos(theta) ** 14 + 2.16170785059607e15 * cos(theta) ** 12 - 28563106734602.7 * cos(theta) ** 10 + 256350180107.124 * cos(theta) ** 8 - 1427282768.54235 * cos(theta) ** 6 + 4247865.38256652 * cos(theta) ** 4 - 5049.96875280347 * cos(theta) ** 2 + 0.999993812436331 ) # @torch.jit.script def Yl100_m1(theta, phi): return ( 0.0562791342033643 * (1.0 - cos(theta) ** 2) ** 0.5 * ( 7.14301832380317e30 * cos(theta) ** 99 - 1.74124532104368e32 * cos(theta) ** 97 + 2.05767467380187e33 * cos(theta) ** 95 - 1.57051579803852e34 * cos(theta) ** 93 + 8.70293598964869e34 * cos(theta) ** 91 - 3.73178250027344e35 * cos(theta) ** 89 + 1.28868256358649e36 * cos(theta) ** 87 - 3.68293466033389e36 * cos(theta) ** 85 + 8.88383563337296e36 * cos(theta) ** 83 - 1.83556118156455e37 * cos(theta) ** 81 + 3.28575592722053e37 * cos(theta) ** 79 - 5.1413986855086e37 * cos(theta) ** 77 + 7.08273660724961e37 * cos(theta) ** 75 - 8.63938201543634e37 * cos(theta) ** 73 + 9.37419320254612e37 * cos(theta) ** 71 - 9.08182070500082e37 * cos(theta) ** 69 + 7.87941988680914e37 * cos(theta) ** 67 - 6.13645557229131e37 * cos(theta) ** 65 + 4.29758504726125e37 * cos(theta) ** 63 - 2.71010125841176e37 * cos(theta) ** 61 + 1.54021282698557e37 * cos(theta) ** 59 - 7.89249519907848e36 * cos(theta) ** 57 + 3.64690860964946e36 * cos(theta) ** 55 - 1.51911901411766e36 * cos(theta) ** 53 + 5.70083333729339e35 * cos(theta) ** 51 - 1.92544702120505e35 * cos(theta) ** 49 + 5.84492952229515e34 * cos(theta) ** 47 - 1.59192965825172e34 * cos(theta) ** 45 + 3.88179892036749e33 * cos(theta) ** 43 - 8.45253056448478e32 * cos(theta) ** 41 + 1.63855202432093e32 * cos(theta) ** 39 - 2.81774669301881e31 * cos(theta) ** 37 + 4.28060971156599e30 * cos(theta) ** 35 - 5.71708816696243e29 * cos(theta) ** 33 + 6.67541475487874e28 * cos(theta) ** 31 - 6.77004986045499e27 * cos(theta) ** 29 + 5.91869130780518e26 * cos(theta) ** 27 - 4.42106969363613e25 * cos(theta) ** 25 + 2.79225454334914e24 * cos(theta) ** 23 - 1.47267125175595e23 * cos(theta) ** 21 + 6.38968931547005e21 * cos(theta) ** 19 - 2.23946889310387e20 * cos(theta) ** 17 + 6.19796030651458e18 * cos(theta) ** 15 - 1.31604819450765e17 * cos(theta) ** 13 + 2.06459692621875e15 * cos(theta) ** 11 - 22733299487894.2 * cos(theta) ** 9 + 163222732661.386 * cos(theta) ** 7 - 681582299.838757 * cos(theta) ** 5 + 1352345.83301341 * cos(theta) ** 3 - 803.851297610506 * cos(theta) ) * cos(phi) ) # @torch.jit.script def Yl100_m2(theta, phi): return ( 0.000560053769265274 * (1.0 - cos(theta) ** 2) * ( 7.07158814056514e32 * cos(theta) ** 98 - 1.68900796141237e34 * cos(theta) ** 96 + 1.95479094011177e35 * cos(theta) ** 94 - 1.46057969217582e36 * cos(theta) ** 92 + 7.91967175058031e36 * cos(theta) ** 90 - 3.32128642524336e37 * cos(theta) ** 88 + 1.12115383032025e38 * cos(theta) ** 86 - 3.13049446128381e38 * cos(theta) ** 84 + 7.37358357569956e38 * cos(theta) ** 82 - 1.48680455706729e39 * cos(theta) ** 80 + 2.59574718250422e39 * cos(theta) ** 78 - 3.95887698784163e39 * cos(theta) ** 76 + 5.31205245543721e39 * cos(theta) ** 74 - 6.30674887126853e39 * cos(theta) ** 72 + 6.65567717380774e39 * cos(theta) ** 70 - 6.26645628645057e39 * cos(theta) ** 68 + 5.27921132416213e39 * cos(theta) ** 66 - 3.98869612198935e39 * cos(theta) ** 64 + 2.70747857977459e39 * cos(theta) ** 62 - 1.65316176763117e39 * cos(theta) ** 60 + 9.08725567921484e38 * cos(theta) ** 58 - 4.49872226347473e38 * cos(theta) ** 56 + 2.00579973530721e38 * cos(theta) ** 54 - 8.05133077482359e37 * cos(theta) ** 52 + 2.90742500201963e37 * cos(theta) ** 50 - 9.43469040390476e36 * cos(theta) ** 48 + 2.74711687547872e36 * cos(theta) ** 46 - 7.16368346213272e35 * cos(theta) ** 44 + 1.66917353575802e35 * cos(theta) ** 42 - 3.46553753143876e34 * cos(theta) ** 40 + 6.39035289485162e33 * cos(theta) ** 38 - 1.04256627641696e33 * cos(theta) ** 36 + 1.4982133990481e32 * cos(theta) ** 34 - 1.8866390950976e31 * cos(theta) ** 32 + 2.06937857401241e30 * cos(theta) ** 30 - 1.96331445953195e29 * cos(theta) ** 28 + 1.5980466531074e28 * cos(theta) ** 26 - 1.10526742340903e27 * cos(theta) ** 24 + 6.42218544970301e25 * cos(theta) ** 22 - 3.0926096286875e24 * cos(theta) ** 20 + 1.21404096993931e23 * cos(theta) ** 18 - 3.80709711827658e21 * cos(theta) ** 16 + 9.29694045977187e19 * cos(theta) ** 14 - 1.71086265285994e18 * cos(theta) ** 12 + 2.27105661884063e16 * cos(theta) ** 10 - 204599695391048.0 * cos(theta) ** 8 + 1142559128629.7 * cos(theta) ** 6 - 3407911499.19379 * cos(theta) ** 4 + 4057037.49904022 * cos(theta) ** 2 - 803.851297610506 ) * cos(2 * phi) ) # @torch.jit.script def Yl100_m3(theta, phi): return ( 5.57439929750823e-6 * (1.0 - cos(theta) ** 2) ** 1.5 * ( 6.93015637775383e34 * cos(theta) ** 97 - 1.62144764295587e36 * cos(theta) ** 95 + 1.83750348370507e37 * cos(theta) ** 93 - 1.34373331680176e38 * cos(theta) ** 91 + 7.12770457552228e38 * cos(theta) ** 89 - 2.92273205421416e39 * cos(theta) ** 87 + 9.64192294075412e39 * cos(theta) ** 85 - 2.6296153474784e40 * cos(theta) ** 83 + 6.04633853207364e40 * cos(theta) ** 81 - 1.18944364565383e41 * cos(theta) ** 79 + 2.02468280235329e41 * cos(theta) ** 77 - 3.00874651075963e41 * cos(theta) ** 75 + 3.93091881702353e41 * cos(theta) ** 73 - 4.54085918731334e41 * cos(theta) ** 71 + 4.65897402166542e41 * cos(theta) ** 69 - 4.26119027478639e41 * cos(theta) ** 67 + 3.484279473947e41 * cos(theta) ** 65 - 2.55276551807318e41 * cos(theta) ** 63 + 1.67863671946024e41 * cos(theta) ** 61 - 9.91897060578705e40 * cos(theta) ** 59 + 5.27060829394461e40 * cos(theta) ** 57 - 2.51928446754585e40 * cos(theta) ** 55 + 1.08313185706589e40 * cos(theta) ** 53 - 4.18669200290827e39 * cos(theta) ** 51 + 1.45371250100982e39 * cos(theta) ** 49 - 4.52865139387429e38 * cos(theta) ** 47 + 1.26367376272021e38 * cos(theta) ** 45 - 3.1520207233384e37 * cos(theta) ** 43 + 7.01052885018368e36 * cos(theta) ** 41 - 1.3862150125755e36 * cos(theta) ** 39 + 2.42833410004361e35 * cos(theta) ** 37 - 3.75323859510106e34 * cos(theta) ** 35 + 5.09392555676353e33 * cos(theta) ** 33 - 6.03724510431233e32 * cos(theta) ** 31 + 6.20813572203723e31 * cos(theta) ** 29 - 5.49728048668945e30 * cos(theta) ** 27 + 4.15492129807924e29 * cos(theta) ** 25 - 2.65264181618168e28 * cos(theta) ** 23 + 1.41288079893466e27 * cos(theta) ** 21 - 6.18521925737501e25 * cos(theta) ** 19 + 2.18527374589076e24 * cos(theta) ** 17 - 6.09135538924253e22 * cos(theta) ** 15 + 1.30157166436806e21 * cos(theta) ** 13 - 2.05303518343193e19 * cos(theta) ** 11 + 2.27105661884063e17 * cos(theta) ** 9 - 1.63679756312838e15 * cos(theta) ** 7 + 6855354771778.22 * cos(theta) ** 5 - 13631645996.7751 * cos(theta) ** 3 + 8114074.99808044 * cos(theta) ) * cos(3 * phi) ) # @torch.jit.script def Yl100_m4(theta, phi): return ( 5.55003264309976e-8 * (1.0 - cos(theta) ** 2) ** 2 * ( 6.72225168642122e36 * cos(theta) ** 96 - 1.54037526080808e38 * cos(theta) ** 94 + 1.70887823984571e39 * cos(theta) ** 92 - 1.2227973182896e40 * cos(theta) ** 90 + 6.34365707221483e40 * cos(theta) ** 88 - 2.54277688716632e41 * cos(theta) ** 86 + 8.195634499641e41 * cos(theta) ** 84 - 2.18258073840707e42 * cos(theta) ** 82 + 4.89753421097965e42 * cos(theta) ** 80 - 9.39660480066526e42 * cos(theta) ** 78 + 1.55900575781203e43 * cos(theta) ** 76 - 2.25655988306973e43 * cos(theta) ** 74 + 2.86957073642718e43 * cos(theta) ** 72 - 3.22401002299247e43 * cos(theta) ** 70 + 3.21469207494914e43 * cos(theta) ** 68 - 2.85499748410688e43 * cos(theta) ** 66 + 2.26478165806555e43 * cos(theta) ** 64 - 1.60824227638611e43 * cos(theta) ** 62 + 1.02396839887075e43 * cos(theta) ** 60 - 5.85219265741436e42 * cos(theta) ** 58 + 3.00424672754843e42 * cos(theta) ** 56 - 1.38560645715022e42 * cos(theta) ** 54 + 5.74059884244922e41 * cos(theta) ** 52 - 2.13521292148322e41 * cos(theta) ** 50 + 7.1231912549481e40 * cos(theta) ** 48 - 2.12846615512091e40 * cos(theta) ** 46 + 5.68653193224096e39 * cos(theta) ** 44 - 1.35536891103551e39 * cos(theta) ** 42 + 2.87431682857531e38 * cos(theta) ** 40 - 5.40623854904447e37 * cos(theta) ** 38 + 8.98483617016137e36 * cos(theta) ** 36 - 1.31363350828537e36 * cos(theta) ** 34 + 1.68099543373196e35 * cos(theta) ** 32 - 1.87154598233682e34 * cos(theta) ** 30 + 1.8003593593908e33 * cos(theta) ** 28 - 1.48426573140615e32 * cos(theta) ** 26 + 1.03873032451981e31 * cos(theta) ** 24 - 6.10107617721786e29 * cos(theta) ** 22 + 2.96704967776279e28 * cos(theta) ** 20 - 1.17519165890125e27 * cos(theta) ** 18 + 3.71496536801429e25 * cos(theta) ** 16 - 9.1370330838638e23 * cos(theta) ** 14 + 1.69204316367848e22 * cos(theta) ** 12 - 2.25833870177512e20 * cos(theta) ** 10 + 2.04395095695657e18 * cos(theta) ** 8 - 1.14575829418987e16 * cos(theta) ** 6 + 34276773858891.1 * cos(theta) ** 4 - 40894937990.3254 * cos(theta) ** 2 + 8114074.99808044 ) * cos(4 * phi) ) # @torch.jit.script def Yl100_m5(theta, phi): return ( 5.52796483147718e-10 * (1.0 - cos(theta) ** 2) ** 2.5 * ( 6.45336161896437e38 * cos(theta) ** 95 - 1.44795274515959e40 * cos(theta) ** 93 + 1.57216798065806e41 * cos(theta) ** 91 - 1.10051758646064e42 * cos(theta) ** 89 + 5.58241822354905e42 * cos(theta) ** 87 - 2.18678812296303e43 * cos(theta) ** 85 + 6.88433297969844e43 * cos(theta) ** 83 - 1.7897162054938e44 * cos(theta) ** 81 + 3.91802736878372e44 * cos(theta) ** 79 - 7.3293517445189e44 * cos(theta) ** 77 + 1.18484437593714e45 * cos(theta) ** 75 - 1.6698543134716e45 * cos(theta) ** 73 + 2.06609093022757e45 * cos(theta) ** 71 - 2.25680701609473e45 * cos(theta) ** 69 + 2.18599061096542e45 * cos(theta) ** 67 - 1.88429833951054e45 * cos(theta) ** 65 + 1.44946026116195e45 * cos(theta) ** 63 - 9.97110211359385e44 * cos(theta) ** 61 + 6.1438103932245e44 * cos(theta) ** 59 - 3.39427174130033e44 * cos(theta) ** 57 + 1.68237816742712e44 * cos(theta) ** 55 - 7.48227486861117e43 * cos(theta) ** 53 + 2.9851113980736e43 * cos(theta) ** 51 - 1.06760646074161e43 * cos(theta) ** 49 + 3.41913180237509e42 * cos(theta) ** 47 - 9.79094431355621e41 * cos(theta) ** 45 + 2.50207405018602e41 * cos(theta) ** 43 - 5.69254942634915e40 * cos(theta) ** 41 + 1.14972673143012e40 * cos(theta) ** 39 - 2.0543706486369e39 * cos(theta) ** 37 + 3.23454102125809e38 * cos(theta) ** 35 - 4.46635392817026e37 * cos(theta) ** 33 + 5.37918538794229e36 * cos(theta) ** 31 - 5.61463794701047e35 * cos(theta) ** 29 + 5.04100620629423e34 * cos(theta) ** 27 - 3.859090901656e33 * cos(theta) ** 25 + 2.49295277884754e32 * cos(theta) ** 23 - 1.34223675898793e31 * cos(theta) ** 21 + 5.93409935552558e29 * cos(theta) ** 19 - 2.11534498602225e28 * cos(theta) ** 17 + 5.94394458882286e26 * cos(theta) ** 15 - 1.27918463174093e25 * cos(theta) ** 13 + 2.03045179641418e23 * cos(theta) ** 11 - 2.25833870177512e21 * cos(theta) ** 9 + 1.63516076556525e19 * cos(theta) ** 7 - 6.8745497651392e16 * cos(theta) ** 5 + 137107095435564.0 * cos(theta) ** 3 - 81789875980.6509 * cos(theta) ) * cos(5 * phi) ) # @torch.jit.script def Yl100_m6(theta, phi): return ( 5.50871794199858e-12 * (1.0 - cos(theta) ** 2) ** 3 * ( 6.13069353801615e40 * cos(theta) ** 94 - 1.34659605299842e42 * cos(theta) ** 92 + 1.43067286239883e43 * cos(theta) ** 90 - 9.79460651949969e43 * cos(theta) ** 88 + 4.85670385448767e44 * cos(theta) ** 86 - 1.85876990451858e45 * cos(theta) ** 84 + 5.71399637314971e45 * cos(theta) ** 82 - 1.44967012644998e46 * cos(theta) ** 80 + 3.09524162133914e46 * cos(theta) ** 78 - 5.64360084327956e46 * cos(theta) ** 76 + 8.88633281952858e46 * cos(theta) ** 74 - 1.21899364883427e47 * cos(theta) ** 72 + 1.46692456046157e47 * cos(theta) ** 70 - 1.55719684110536e47 * cos(theta) ** 68 + 1.46461370934683e47 * cos(theta) ** 66 - 1.22479392068185e47 * cos(theta) ** 64 + 9.13159964532031e46 * cos(theta) ** 62 - 6.08237228929225e46 * cos(theta) ** 60 + 3.62484813200245e46 * cos(theta) ** 58 - 1.93473489254119e46 * cos(theta) ** 56 + 9.25307992084915e45 * cos(theta) ** 54 - 3.96560568036392e45 * cos(theta) ** 52 + 1.52240681301753e45 * cos(theta) ** 50 - 5.23127165763388e44 * cos(theta) ** 48 + 1.60699194711629e44 * cos(theta) ** 46 - 4.40592494110029e43 * cos(theta) ** 44 + 1.07589184157999e43 * cos(theta) ** 42 - 2.33394526480315e42 * cos(theta) ** 40 + 4.48393425257748e41 * cos(theta) ** 38 - 7.60117139995652e40 * cos(theta) ** 36 + 1.13208935744033e40 * cos(theta) ** 34 - 1.47389679629619e39 * cos(theta) ** 32 + 1.66754747026211e38 * cos(theta) ** 30 - 1.62824500463304e37 * cos(theta) ** 28 + 1.36107167569944e36 * cos(theta) ** 26 - 9.64772725413999e34 * cos(theta) ** 24 + 5.73379139134935e33 * cos(theta) ** 22 - 2.81869719387465e32 * cos(theta) ** 20 + 1.12747887754986e31 * cos(theta) ** 18 - 3.59608647623783e29 * cos(theta) ** 16 + 8.91591688323429e27 * cos(theta) ** 14 - 1.66294002126321e26 * cos(theta) ** 12 + 2.23349697605559e24 * cos(theta) ** 10 - 2.03250483159761e22 * cos(theta) ** 8 + 1.14461253589568e20 * cos(theta) ** 6 - 3.4372748825696e17 * cos(theta) ** 4 + 411321286306693.0 * cos(theta) ** 2 - 81789875980.6509 ) * cos(6 * phi) ) # @torch.jit.script def Yl100_m7(theta, phi): return ( 5.49281181825906e-14 * (1.0 - cos(theta) ** 2) ** 3.5 * ( 5.76285192573518e42 * cos(theta) ** 93 - 1.23886836875855e44 * cos(theta) ** 91 + 1.28760557615895e45 * cos(theta) ** 89 - 8.61925373715973e45 * cos(theta) ** 87 + 4.1767653148594e46 * cos(theta) ** 85 - 1.56136671979561e47 * cos(theta) ** 83 + 4.68547702598276e47 * cos(theta) ** 81 - 1.15973610115998e48 * cos(theta) ** 79 + 2.41428846464453e48 * cos(theta) ** 77 - 4.28913664089246e48 * cos(theta) ** 75 + 6.57588628645115e48 * cos(theta) ** 73 - 8.77675427160672e48 * cos(theta) ** 71 + 1.0268471923231e49 * cos(theta) ** 69 - 1.05889385195165e49 * cos(theta) ** 67 + 9.66645048168907e48 * cos(theta) ** 65 - 7.83868109236385e48 * cos(theta) ** 63 + 5.66159178009859e48 * cos(theta) ** 61 - 3.64942337357535e48 * cos(theta) ** 59 + 2.10241191656142e48 * cos(theta) ** 57 - 1.08345153982306e48 * cos(theta) ** 55 + 4.99666315725854e47 * cos(theta) ** 53 - 2.06211495378924e47 * cos(theta) ** 51 + 7.61203406508767e46 * cos(theta) ** 49 - 2.51101039566426e46 * cos(theta) ** 47 + 7.39216295673494e45 * cos(theta) ** 45 - 1.93860697408413e45 * cos(theta) ** 43 + 4.51874573463595e44 * cos(theta) ** 41 - 9.3357810592126e43 * cos(theta) ** 39 + 1.70389501597944e43 * cos(theta) ** 37 - 2.73642170398435e42 * cos(theta) ** 35 + 3.84910381529713e41 * cos(theta) ** 33 - 4.7164697481478e40 * cos(theta) ** 31 + 5.00264241078633e39 * cos(theta) ** 29 - 4.5590860129725e38 * cos(theta) ** 27 + 3.53878635681855e37 * cos(theta) ** 25 - 2.3154545409936e36 * cos(theta) ** 23 + 1.26143410609686e35 * cos(theta) ** 21 - 5.6373943877493e33 * cos(theta) ** 19 + 2.02946197958975e32 * cos(theta) ** 17 - 5.75373836198053e30 * cos(theta) ** 15 + 1.2482283636528e29 * cos(theta) ** 13 - 1.99552802551585e27 * cos(theta) ** 11 + 2.23349697605559e25 * cos(theta) ** 9 - 1.62600386527809e23 * cos(theta) ** 7 + 6.86767521537406e20 * cos(theta) ** 5 - 1.37490995302784e18 * cos(theta) ** 3 + 822642572613386.0 * cos(theta) ) * cos(7 * phi) ) # @torch.jit.script def Yl100_m8(theta, phi): return ( 5.48076736441476e-16 * (1.0 - cos(theta) ** 2) ** 4 * ( 5.35945229093372e44 * cos(theta) ** 92 - 1.12737021557028e46 * cos(theta) ** 90 + 1.14596896278146e47 * cos(theta) ** 88 - 7.49875075132896e47 * cos(theta) ** 86 + 3.55025051763049e48 * cos(theta) ** 84 - 1.29593437743035e49 * cos(theta) ** 82 + 3.79523639104604e49 * cos(theta) ** 80 - 9.16191519916385e49 * cos(theta) ** 78 + 1.85900211777629e50 * cos(theta) ** 76 - 3.21685248066935e50 * cos(theta) ** 74 + 4.80039698910934e50 * cos(theta) ** 72 - 6.23149553284077e50 * cos(theta) ** 70 + 7.08524562702941e50 * cos(theta) ** 68 - 7.09458880807604e50 * cos(theta) ** 66 + 6.28319281309789e50 * cos(theta) ** 64 - 4.93836908818922e50 * cos(theta) ** 62 + 3.45357098586014e50 * cos(theta) ** 60 - 2.15315979040946e50 * cos(theta) ** 58 + 1.19837479244001e50 * cos(theta) ** 56 - 5.95898346902685e49 * cos(theta) ** 54 + 2.64823147334703e49 * cos(theta) ** 52 - 1.05167862643251e49 * cos(theta) ** 50 + 3.72989669189296e48 * cos(theta) ** 48 - 1.1801748859622e48 * cos(theta) ** 46 + 3.32647333053072e47 * cos(theta) ** 44 - 8.33600998856175e46 * cos(theta) ** 42 + 1.85268575120074e46 * cos(theta) ** 40 - 3.64095461309291e45 * cos(theta) ** 38 + 6.30441155912394e44 * cos(theta) ** 36 - 9.57747596394522e43 * cos(theta) ** 34 + 1.27020425904805e43 * cos(theta) ** 32 - 1.46210562192582e42 * cos(theta) ** 30 + 1.45076629912803e41 * cos(theta) ** 28 - 1.23095322350257e40 * cos(theta) ** 26 + 8.84696589204637e38 * cos(theta) ** 24 - 5.32554544428527e37 * cos(theta) ** 22 + 2.6490116228034e36 * cos(theta) ** 20 - 1.07110493367237e35 * cos(theta) ** 18 + 3.45008536530257e33 * cos(theta) ** 16 - 8.63060754297079e31 * cos(theta) ** 14 + 1.62269687274864e30 * cos(theta) ** 12 - 2.19508082806744e28 * cos(theta) ** 10 + 2.01014727845003e26 * cos(theta) ** 8 - 1.13820270569466e24 * cos(theta) ** 6 + 3.43383760768703e21 * cos(theta) ** 4 - 4.12472985908352e18 * cos(theta) ** 2 + 822642572613386.0 ) * cos(8 * phi) ) # @torch.jit.script def Yl100_m9(theta, phi): return ( 5.47311036605445e-18 * (1.0 - cos(theta) ** 2) ** 4.5 * ( 4.93069610765902e46 * cos(theta) ** 91 - 1.01463319401325e48 * cos(theta) ** 89 + 1.00845268724769e49 * cos(theta) ** 87 - 6.44892564614291e49 * cos(theta) ** 85 + 2.98221043480961e50 * cos(theta) ** 83 - 1.06266618949289e51 * cos(theta) ** 81 + 3.03618911283683e51 * cos(theta) ** 79 - 7.1462938553478e51 * cos(theta) ** 77 + 1.41284160950998e52 * cos(theta) ** 75 - 2.38047083569532e52 * cos(theta) ** 73 + 3.45628583215872e52 * cos(theta) ** 71 - 4.36204687298854e52 * cos(theta) ** 69 + 4.81796702638e52 * cos(theta) ** 67 - 4.68242861333018e52 * cos(theta) ** 65 + 4.02124340038265e52 * cos(theta) ** 63 - 3.06178883467732e52 * cos(theta) ** 61 + 2.07214259151608e52 * cos(theta) ** 59 - 1.24883267843749e52 * cos(theta) ** 57 + 6.71089883766406e51 * cos(theta) ** 55 - 3.2178510732745e51 * cos(theta) ** 53 + 1.37708036614045e51 * cos(theta) ** 51 - 5.25839313216256e50 * cos(theta) ** 49 + 1.79035041210862e50 * cos(theta) ** 47 - 5.42880447542614e49 * cos(theta) ** 45 + 1.46364826543352e49 * cos(theta) ** 43 - 3.50112419519594e48 * cos(theta) ** 41 + 7.41074300480296e47 * cos(theta) ** 39 - 1.38356275297531e47 * cos(theta) ** 37 + 2.26958816128462e46 * cos(theta) ** 35 - 3.25634182774137e45 * cos(theta) ** 33 + 4.06465362895377e44 * cos(theta) ** 31 - 4.38631686577745e43 * cos(theta) ** 29 + 4.0621456375585e42 * cos(theta) ** 27 - 3.20047838110669e41 * cos(theta) ** 25 + 2.12327181409113e40 * cos(theta) ** 23 - 1.17161999774276e39 * cos(theta) ** 21 + 5.2980232456068e37 * cos(theta) ** 19 - 1.92798888061026e36 * cos(theta) ** 17 + 5.52013658448412e34 * cos(theta) ** 15 - 1.20828505601591e33 * cos(theta) ** 13 + 1.94723624729837e31 * cos(theta) ** 11 - 2.19508082806744e29 * cos(theta) ** 9 + 1.60811782276003e27 * cos(theta) ** 7 - 6.82921623416796e24 * cos(theta) ** 5 + 1.37353504307481e22 * cos(theta) ** 3 - 8.24945971816704e18 * cos(theta) ) * cos(9 * phi) ) # @torch.jit.script def Yl100_m10(theta, phi): return ( 5.47037586157896e-20 * (1.0 - cos(theta) ** 2) ** 5 * ( 4.48693345796971e48 * cos(theta) ** 90 - 9.03023542671794e49 * cos(theta) ** 88 + 8.77353837905489e50 * cos(theta) ** 86 - 5.48158679922147e51 * cos(theta) ** 84 + 2.47523466089198e52 * cos(theta) ** 82 - 8.60759613489241e52 * cos(theta) ** 80 + 2.39858939914109e53 * cos(theta) ** 78 - 5.50264626861781e53 * cos(theta) ** 76 + 1.05963120713248e54 * cos(theta) ** 74 - 1.73774371005758e54 * cos(theta) ** 72 + 2.45396294083269e54 * cos(theta) ** 70 - 3.00981234236209e54 * cos(theta) ** 68 + 3.2280379076746e54 * cos(theta) ** 66 - 3.04357859866462e54 * cos(theta) ** 64 + 2.53338334224107e54 * cos(theta) ** 62 - 1.86769118915316e54 * cos(theta) ** 60 + 1.22256412899449e54 * cos(theta) ** 58 - 7.11834626709366e53 * cos(theta) ** 56 + 3.69099436071523e53 * cos(theta) ** 54 - 1.70546106883549e53 * cos(theta) ** 52 + 7.02310986731632e52 * cos(theta) ** 50 - 2.57661263475965e52 * cos(theta) ** 48 + 8.41464693691051e51 * cos(theta) ** 46 - 2.44296201394176e51 * cos(theta) ** 44 + 6.29368754136412e50 * cos(theta) ** 42 - 1.43546092003033e50 * cos(theta) ** 40 + 2.89018977187316e49 * cos(theta) ** 38 - 5.11918218600864e48 * cos(theta) ** 36 + 7.94355856449616e47 * cos(theta) ** 34 - 1.07459280315465e47 * cos(theta) ** 32 + 1.26004262497567e46 * cos(theta) ** 30 - 1.27203189107546e45 * cos(theta) ** 28 + 1.09677932214079e44 * cos(theta) ** 26 - 8.00119595276674e42 * cos(theta) ** 24 + 4.8835251724096e41 * cos(theta) ** 22 - 2.4604019952598e40 * cos(theta) ** 20 + 1.00662441666529e39 * cos(theta) ** 18 - 3.27758109703745e37 * cos(theta) ** 16 + 8.28020487672618e35 * cos(theta) ** 14 - 1.57077057282068e34 * cos(theta) ** 12 + 2.14195987202821e32 * cos(theta) ** 10 - 1.97557274526069e30 * cos(theta) ** 8 + 1.12568247593202e28 * cos(theta) ** 6 - 3.41460811708398e25 * cos(theta) ** 4 + 4.12060512922444e22 * cos(theta) ** 2 - 8.24945971816704e18 ) * cos(10 * phi) ) # @torch.jit.script def Yl100_m11(theta, phi): return ( 5.47311310261169e-22 * (1.0 - cos(theta) ** 2) ** 5.5 * ( 4.03824011217274e50 * cos(theta) ** 89 - 7.94660717551178e51 * cos(theta) ** 87 + 7.5452430059872e52 * cos(theta) ** 85 - 4.60453291134604e53 * cos(theta) ** 83 + 2.02969242193142e54 * cos(theta) ** 81 - 6.88607690791393e54 * cos(theta) ** 79 + 1.87089973133005e55 * cos(theta) ** 77 - 4.18201116414953e55 * cos(theta) ** 75 + 7.84127093278037e55 * cos(theta) ** 73 - 1.25117547124146e56 * cos(theta) ** 71 + 1.71777405858289e56 * cos(theta) ** 69 - 2.04667239280622e56 * cos(theta) ** 67 + 2.13050501906523e56 * cos(theta) ** 65 - 1.94789030314536e56 * cos(theta) ** 63 + 1.57069767218946e56 * cos(theta) ** 61 - 1.1206147134919e56 * cos(theta) ** 59 + 7.09087194816804e55 * cos(theta) ** 57 - 3.98627390957245e55 * cos(theta) ** 55 + 1.99313695478623e55 * cos(theta) ** 53 - 8.86839755794453e54 * cos(theta) ** 51 + 3.51155493365816e54 * cos(theta) ** 49 - 1.23677406468463e54 * cos(theta) ** 47 + 3.87073759097884e53 * cos(theta) ** 45 - 1.07490328613438e53 * cos(theta) ** 43 + 2.64334876737293e52 * cos(theta) ** 41 - 5.74184368012134e51 * cos(theta) ** 39 + 1.0982721133118e51 * cos(theta) ** 37 - 1.84290558696311e50 * cos(theta) ** 35 + 2.7008099119287e49 * cos(theta) ** 33 - 3.43869697009489e48 * cos(theta) ** 31 + 3.78012787492701e47 * cos(theta) ** 29 - 3.56168929501129e46 * cos(theta) ** 27 + 2.85162623756606e45 * cos(theta) ** 25 - 1.92028702866402e44 * cos(theta) ** 23 + 1.07437553793011e43 * cos(theta) ** 21 - 4.92080399051959e41 * cos(theta) ** 19 + 1.81192394999752e40 * cos(theta) ** 17 - 5.24412975525991e38 * cos(theta) ** 15 + 1.15922868274167e37 * cos(theta) ** 13 - 1.88492468738482e35 * cos(theta) ** 11 + 2.14195987202821e33 * cos(theta) ** 9 - 1.58045819620856e31 * cos(theta) ** 7 + 6.75409485559212e28 * cos(theta) ** 5 - 1.36584324683359e26 * cos(theta) ** 3 + 8.24121025844887e22 * cos(theta) ) * cos(11 * phi) ) # @torch.jit.script def Yl100_m12(theta, phi): return ( 5.48189115653224e-24 * (1.0 - cos(theta) ** 2) ** 6 * ( 3.59403369983374e52 * cos(theta) ** 88 - 6.91354824269525e53 * cos(theta) ** 86 + 6.41345655508912e54 * cos(theta) ** 84 - 3.82176231641721e55 * cos(theta) ** 82 + 1.64405086176445e56 * cos(theta) ** 80 - 5.440000757252e56 * cos(theta) ** 78 + 1.44059279312414e57 * cos(theta) ** 76 - 3.13650837311215e57 * cos(theta) ** 74 + 5.72412778092967e57 * cos(theta) ** 72 - 8.88334584581435e57 * cos(theta) ** 70 + 1.18526410042219e58 * cos(theta) ** 68 - 1.37127050318017e58 * cos(theta) ** 66 + 1.3848282623924e58 * cos(theta) ** 64 - 1.22717089098157e58 * cos(theta) ** 62 + 9.58125580035573e57 * cos(theta) ** 60 - 6.6116268096022e57 * cos(theta) ** 58 + 4.04179701045578e57 * cos(theta) ** 56 - 2.19245065026485e57 * cos(theta) ** 54 + 1.0563625860367e57 * cos(theta) ** 52 - 4.52288275455171e56 * cos(theta) ** 50 + 1.7206619174925e56 * cos(theta) ** 48 - 5.81283810401778e55 * cos(theta) ** 46 + 1.74183191594048e55 * cos(theta) ** 44 - 4.62208413037781e54 * cos(theta) ** 42 + 1.0837729946229e54 * cos(theta) ** 40 - 2.23931903524732e53 * cos(theta) ** 38 + 4.06360681925366e52 * cos(theta) ** 36 - 6.45016955437088e51 * cos(theta) ** 34 + 8.91267270936469e50 * cos(theta) ** 32 - 1.06599606072942e50 * cos(theta) ** 30 + 1.09623708372883e49 * cos(theta) ** 28 - 9.61656109653048e47 * cos(theta) ** 26 + 7.12906559391516e46 * cos(theta) ** 24 - 4.41666016592724e45 * cos(theta) ** 22 + 2.25618862965323e44 * cos(theta) ** 20 - 9.34952758198723e42 * cos(theta) ** 18 + 3.08027071499579e41 * cos(theta) ** 16 - 7.86619463288987e39 * cos(theta) ** 14 + 1.50699728756416e38 * cos(theta) ** 12 - 2.0734171561233e36 * cos(theta) ** 10 + 1.92776388482539e34 * cos(theta) ** 8 - 1.10632073734599e32 * cos(theta) ** 6 + 3.37704742779606e29 * cos(theta) ** 4 - 4.09752974050078e26 * cos(theta) ** 2 + 8.24121025844887e22 ) * cos(12 * phi) ) # @torch.jit.script def Yl100_m13(theta, phi): return ( 5.49730522113833e-26 * (1.0 - cos(theta) ** 2) ** 6.5 * ( 3.16274965585369e54 * cos(theta) ** 87 - 5.94565148871792e55 * cos(theta) ** 85 + 5.38730350627486e56 * cos(theta) ** 83 - 3.13384509946211e57 * cos(theta) ** 81 + 1.31524068941156e58 * cos(theta) ** 79 - 4.24320059065656e58 * cos(theta) ** 77 + 1.09485052277435e59 * cos(theta) ** 75 - 2.32101619610299e59 * cos(theta) ** 73 + 4.12137200226936e59 * cos(theta) ** 71 - 6.21834209207005e59 * cos(theta) ** 69 + 8.0597958828709e59 * cos(theta) ** 67 - 9.05038532098911e59 * cos(theta) ** 65 + 8.86290087931137e59 * cos(theta) ** 63 - 7.60845952408576e59 * cos(theta) ** 61 + 5.74875348021344e59 * cos(theta) ** 59 - 3.83474354956928e59 * cos(theta) ** 57 + 2.26340632585524e59 * cos(theta) ** 55 - 1.18392335114302e59 * cos(theta) ** 53 + 5.49308544739084e58 * cos(theta) ** 51 - 2.26144137727585e58 * cos(theta) ** 49 + 8.25917720396399e57 * cos(theta) ** 47 - 2.67390552784818e57 * cos(theta) ** 45 + 7.66406043013809e56 * cos(theta) ** 43 - 1.94127533475868e56 * cos(theta) ** 41 + 4.33509197849161e55 * cos(theta) ** 39 - 8.50941233393982e54 * cos(theta) ** 37 + 1.46289845493132e54 * cos(theta) ** 35 - 2.1930576484861e53 * cos(theta) ** 33 + 2.8520552669967e52 * cos(theta) ** 31 - 3.19798818218825e51 * cos(theta) ** 29 + 3.06946383444073e50 * cos(theta) ** 27 - 2.50030588509793e49 * cos(theta) ** 25 + 1.71097574253964e48 * cos(theta) ** 23 - 9.71665236503992e46 * cos(theta) ** 21 + 4.51237725930647e45 * cos(theta) ** 19 - 1.6829149647577e44 * cos(theta) ** 17 + 4.92843314399327e42 * cos(theta) ** 15 - 1.10126724860458e41 * cos(theta) ** 13 + 1.808396745077e39 * cos(theta) ** 11 - 2.0734171561233e37 * cos(theta) ** 9 + 1.54221110786031e35 * cos(theta) ** 7 - 6.63792442407593e32 * cos(theta) ** 5 + 1.35081897111842e30 * cos(theta) ** 3 - 8.19505948100156e26 * cos(theta) ) * cos(13 * phi) ) # @torch.jit.script def Yl100_m14(theta, phi): return ( 5.51998374114227e-28 * (1.0 - cos(theta) ** 2) ** 7 * ( 2.75159220059271e56 * cos(theta) ** 86 - 5.05380376541023e57 * cos(theta) ** 84 + 4.47146191020814e58 * cos(theta) ** 82 - 2.53841453056431e59 * cos(theta) ** 80 + 1.03904014463513e60 * cos(theta) ** 78 - 3.26726445480555e60 * cos(theta) ** 76 + 8.21137892080761e60 * cos(theta) ** 74 - 1.69434182315518e61 * cos(theta) ** 72 + 2.92617412161125e61 * cos(theta) ** 70 - 4.29065604352833e61 * cos(theta) ** 68 + 5.4000632415235e61 * cos(theta) ** 66 - 5.88275045864292e61 * cos(theta) ** 64 + 5.58362755396616e61 * cos(theta) ** 62 - 4.64116030969232e61 * cos(theta) ** 60 + 3.39176455332593e61 * cos(theta) ** 58 - 2.18580382325449e61 * cos(theta) ** 56 + 1.24487347922038e61 * cos(theta) ** 54 - 6.274793761058e60 * cos(theta) ** 52 + 2.80147357816933e60 * cos(theta) ** 50 - 1.10810627486517e60 * cos(theta) ** 48 + 3.88181328586307e59 * cos(theta) ** 46 - 1.20325748753168e59 * cos(theta) ** 44 + 3.29554598495938e58 * cos(theta) ** 42 - 7.95922887251059e57 * cos(theta) ** 40 + 1.69068587161173e57 * cos(theta) ** 38 - 3.14848256355773e56 * cos(theta) ** 36 + 5.12014459225961e55 * cos(theta) ** 34 - 7.23709024000413e54 * cos(theta) ** 32 + 8.84137132768978e53 * cos(theta) ** 30 - 9.27416572834592e52 * cos(theta) ** 28 + 8.28755235298997e51 * cos(theta) ** 26 - 6.25076471274481e50 * cos(theta) ** 24 + 3.93524420784117e49 * cos(theta) ** 22 - 2.04049699665838e48 * cos(theta) ** 20 + 8.57351679268229e46 * cos(theta) ** 18 - 2.86095544008809e45 * cos(theta) ** 16 + 7.3926497159899e43 * cos(theta) ** 14 - 1.43164742318596e42 * cos(theta) ** 12 + 1.9892364195847e40 * cos(theta) ** 10 - 1.86607544051097e38 * cos(theta) ** 8 + 1.07954777550222e36 * cos(theta) ** 6 - 3.31896221203797e33 * cos(theta) ** 4 + 4.05245691335527e30 * cos(theta) ** 2 - 8.19505948100156e26 ) * cos(14 * phi) ) # @torch.jit.script def Yl100_m15(theta, phi): return ( 5.55059643926874e-30 * (1.0 - cos(theta) ** 2) ** 7.5 * ( 2.36636929250973e58 * cos(theta) ** 85 - 4.24519516294459e59 * cos(theta) ** 83 + 3.66659876637067e60 * cos(theta) ** 81 - 2.03073162445145e61 * cos(theta) ** 79 + 8.10451312815403e61 * cos(theta) ** 77 - 2.48312098565222e62 * cos(theta) ** 75 + 6.07642040139763e62 * cos(theta) ** 73 - 1.21992611267173e63 * cos(theta) ** 71 + 2.04832188512787e63 * cos(theta) ** 69 - 2.91764610959927e63 * cos(theta) ** 67 + 3.56404173940551e63 * cos(theta) ** 65 - 3.76496029353147e63 * cos(theta) ** 63 + 3.46184908345902e63 * cos(theta) ** 61 - 2.78469618581539e63 * cos(theta) ** 59 + 1.96722344092904e63 * cos(theta) ** 57 - 1.22405014102251e63 * cos(theta) ** 55 + 6.72231678779006e62 * cos(theta) ** 53 - 3.26289275575016e62 * cos(theta) ** 51 + 1.40073678908466e62 * cos(theta) ** 49 - 5.31891011935281e61 * cos(theta) ** 47 + 1.78563411149701e61 * cos(theta) ** 45 - 5.2943329451394e60 * cos(theta) ** 43 + 1.38412931368294e60 * cos(theta) ** 41 - 3.18369154900424e59 * cos(theta) ** 39 + 6.42460631212456e58 * cos(theta) ** 37 - 1.13345372288078e58 * cos(theta) ** 35 + 1.74084916136827e57 * cos(theta) ** 33 - 2.31586887680132e56 * cos(theta) ** 31 + 2.65241139830693e55 * cos(theta) ** 29 - 2.59676640393686e54 * cos(theta) ** 27 + 2.15476361177739e53 * cos(theta) ** 25 - 1.50018353105876e52 * cos(theta) ** 23 + 8.65753725725057e50 * cos(theta) ** 21 - 4.08099399331677e49 * cos(theta) ** 19 + 1.54323302268281e48 * cos(theta) ** 17 - 4.57752870414095e46 * cos(theta) ** 15 + 1.03497096023859e45 * cos(theta) ** 13 - 1.71797690782315e43 * cos(theta) ** 11 + 1.9892364195847e41 * cos(theta) ** 9 - 1.49286035240878e39 * cos(theta) ** 7 + 6.4772866530133e36 * cos(theta) ** 5 - 1.32758488481519e34 * cos(theta) ** 3 + 8.10491382671054e30 * cos(theta) ) * cos(15 * phi) ) # @torch.jit.script def Yl100_m16(theta, phi): return ( 5.58986340186811e-32 * (1.0 - cos(theta) ** 2) ** 8 * ( 2.01141389863327e60 * cos(theta) ** 84 - 3.52351198524401e61 * cos(theta) ** 82 + 2.96994500076024e62 * cos(theta) ** 80 - 1.60427798331664e63 * cos(theta) ** 78 + 6.24047510867861e63 * cos(theta) ** 76 - 1.86234073923917e64 * cos(theta) ** 74 + 4.43578689302027e64 * cos(theta) ** 72 - 8.6614753999693e64 * cos(theta) ** 70 + 1.41334210073823e65 * cos(theta) ** 68 - 1.95482289343151e65 * cos(theta) ** 66 + 2.31662713061358e65 * cos(theta) ** 64 - 2.37192498492483e65 * cos(theta) ** 62 + 2.11172794091e65 * cos(theta) ** 60 - 1.64297074963108e65 * cos(theta) ** 58 + 1.12131736132955e65 * cos(theta) ** 56 - 6.73227577562382e64 * cos(theta) ** 54 + 3.56282789752873e64 * cos(theta) ** 52 - 1.66407530543258e64 * cos(theta) ** 50 + 6.86361026651485e63 * cos(theta) ** 48 - 2.49988775609582e63 * cos(theta) ** 46 + 8.03535350173656e62 * cos(theta) ** 44 - 2.27656316640994e62 * cos(theta) ** 42 + 5.67493018610005e61 * cos(theta) ** 40 - 1.24163970411165e61 * cos(theta) ** 38 + 2.37710433548609e60 * cos(theta) ** 36 - 3.96708803008274e59 * cos(theta) ** 34 + 5.74480223251528e58 * cos(theta) ** 32 - 7.1791935180841e57 * cos(theta) ** 30 + 7.69199305509011e56 * cos(theta) ** 28 - 7.01126929062952e55 * cos(theta) ** 26 + 5.38690902944348e54 * cos(theta) ** 24 - 3.45042212143514e53 * cos(theta) ** 22 + 1.81808282402262e52 * cos(theta) ** 20 - 7.75388858730186e50 * cos(theta) ** 18 + 2.62349613856078e49 * cos(theta) ** 16 - 6.86629305621142e47 * cos(theta) ** 14 + 1.34546224831016e46 * cos(theta) ** 12 - 1.88977459860546e44 * cos(theta) ** 10 + 1.79031277762623e42 * cos(theta) ** 8 - 1.04500224668614e40 * cos(theta) ** 6 + 3.23864332650665e37 * cos(theta) ** 4 - 3.98275465444556e34 * cos(theta) ** 2 + 8.10491382671054e30 ) * cos(16 * phi) ) # @torch.jit.script def Yl100_m17(theta, phi): return ( 5.63856539111379e-34 * (1.0 - cos(theta) ** 2) ** 8.5 * ( 1.68958767485195e62 * cos(theta) ** 83 - 2.88927982790009e63 * cos(theta) ** 81 + 2.3759560006082e64 * cos(theta) ** 79 - 1.25133682698698e65 * cos(theta) ** 77 + 4.74276108259574e65 * cos(theta) ** 75 - 1.37813214703698e66 * cos(theta) ** 73 + 3.19376656297459e66 * cos(theta) ** 71 - 6.06303277997851e66 * cos(theta) ** 69 + 9.61072628501998e66 * cos(theta) ** 67 - 1.2901831096648e67 * cos(theta) ** 65 + 1.48264136359269e67 * cos(theta) ** 63 - 1.47059349065339e67 * cos(theta) ** 61 + 1.267036764546e67 * cos(theta) ** 59 - 9.52923034786026e66 * cos(theta) ** 57 + 6.27937722344549e66 * cos(theta) ** 55 - 3.63542891883686e66 * cos(theta) ** 53 + 1.85267050671494e66 * cos(theta) ** 51 - 8.3203765271629e65 * cos(theta) ** 49 + 3.29453292792713e65 * cos(theta) ** 47 - 1.14994836780408e65 * cos(theta) ** 45 + 3.53555554076409e64 * cos(theta) ** 43 - 9.56156529892175e63 * cos(theta) ** 41 + 2.26997207444002e63 * cos(theta) ** 39 - 4.71823087562428e62 * cos(theta) ** 37 + 8.55757560774992e61 * cos(theta) ** 35 - 1.34880993022813e61 * cos(theta) ** 33 + 1.83833671440489e60 * cos(theta) ** 31 - 2.15375805542523e59 * cos(theta) ** 29 + 2.15375805542523e58 * cos(theta) ** 27 - 1.82293001556367e57 * cos(theta) ** 25 + 1.29285816706644e56 * cos(theta) ** 23 - 7.5909286671573e54 * cos(theta) ** 21 + 3.63616564804524e53 * cos(theta) ** 19 - 1.39569994571433e52 * cos(theta) ** 17 + 4.19759382169725e50 * cos(theta) ** 15 - 9.61281027869599e48 * cos(theta) ** 13 + 1.61455469797219e47 * cos(theta) ** 11 - 1.88977459860546e45 * cos(theta) ** 9 + 1.43225022210098e43 * cos(theta) ** 7 - 6.27001348011687e40 * cos(theta) ** 5 + 1.29545733060266e38 * cos(theta) ** 3 - 7.96550930889112e34 * cos(theta) ) * cos(17 * phi) ) # @torch.jit.script def Yl100_m18(theta, phi): return ( 5.69755559417275e-36 * (1.0 - cos(theta) ** 2) ** 9 * ( 1.40235777012712e64 * cos(theta) ** 82 - 2.34031666059907e65 * cos(theta) ** 80 + 1.87700524048047e66 * cos(theta) ** 78 - 9.63529356779977e66 * cos(theta) ** 76 + 3.55707081194681e67 * cos(theta) ** 74 - 1.006036467337e68 * cos(theta) ** 72 + 2.26757425971196e68 * cos(theta) ** 70 - 4.18349261818517e68 * cos(theta) ** 68 + 6.43918661096339e68 * cos(theta) ** 66 - 8.38619021282117e68 * cos(theta) ** 64 + 9.34064059063397e68 * cos(theta) ** 62 - 8.97062029298569e68 * cos(theta) ** 60 + 7.47551691082141e68 * cos(theta) ** 58 - 5.43166129828035e68 * cos(theta) ** 56 + 3.45365747289502e68 * cos(theta) ** 54 - 1.92677732698354e68 * cos(theta) ** 52 + 9.44861958424619e67 * cos(theta) ** 50 - 4.07698449830982e67 * cos(theta) ** 48 + 1.54843047612575e67 * cos(theta) ** 46 - 5.17476765511835e66 * cos(theta) ** 44 + 1.52028888252856e66 * cos(theta) ** 42 - 3.92024177255792e65 * cos(theta) ** 40 + 8.85289109031608e64 * cos(theta) ** 38 - 1.74574542398098e64 * cos(theta) ** 36 + 2.99515146271247e63 * cos(theta) ** 34 - 4.45107276975284e62 * cos(theta) ** 32 + 5.69884381465516e61 * cos(theta) ** 30 - 6.24589836073317e60 * cos(theta) ** 28 + 5.81514674964812e59 * cos(theta) ** 26 - 4.55732503890918e58 * cos(theta) ** 24 + 2.9735737842528e57 * cos(theta) ** 22 - 1.59409502010303e56 * cos(theta) ** 20 + 6.90871473128596e54 * cos(theta) ** 18 - 2.37268990771437e53 * cos(theta) ** 16 + 6.29639073254587e51 * cos(theta) ** 14 - 1.24966533623048e50 * cos(theta) ** 12 + 1.77601016776941e48 * cos(theta) ** 10 - 1.70079713874492e46 * cos(theta) ** 8 + 1.00257515547069e44 * cos(theta) ** 6 - 3.13500674005843e41 * cos(theta) ** 4 + 3.88637199180798e38 * cos(theta) ** 2 - 7.96550930889112e34 ) * cos(18 * phi) ) # @torch.jit.script def Yl100_m19(theta, phi): return ( 5.76777306568225e-38 * (1.0 - cos(theta) ** 2) ** 9.5 * ( 1.14993337150424e66 * cos(theta) ** 81 - 1.87225332847926e67 * cos(theta) ** 79 + 1.46406408757477e68 * cos(theta) ** 77 - 7.32282311152782e68 * cos(theta) ** 75 + 2.63223240084064e69 * cos(theta) ** 73 - 7.24346256482638e69 * cos(theta) ** 71 + 1.58730198179837e70 * cos(theta) ** 69 - 2.84477498036592e70 * cos(theta) ** 67 + 4.24986316323584e70 * cos(theta) ** 65 - 5.36716173620555e70 * cos(theta) ** 63 + 5.79119716619306e70 * cos(theta) ** 61 - 5.38237217579142e70 * cos(theta) ** 59 + 4.33579980827642e70 * cos(theta) ** 57 - 3.041730327037e70 * cos(theta) ** 55 + 1.86497503536331e70 * cos(theta) ** 53 - 1.00192421003144e70 * cos(theta) ** 51 + 4.7243097921231e69 * cos(theta) ** 49 - 1.95695255918872e69 * cos(theta) ** 47 + 7.12278019017845e68 * cos(theta) ** 45 - 2.27689776825207e68 * cos(theta) ** 43 + 6.38521330661994e67 * cos(theta) ** 41 - 1.56809670902317e67 * cos(theta) ** 39 + 3.36409861432011e66 * cos(theta) ** 37 - 6.28468352633154e65 * cos(theta) ** 35 + 1.01835149732224e65 * cos(theta) ** 33 - 1.42434328632091e64 * cos(theta) ** 31 + 1.70965314439655e63 * cos(theta) ** 29 - 1.74885154100529e62 * cos(theta) ** 27 + 1.51193815490851e61 * cos(theta) ** 25 - 1.0937580093382e60 * cos(theta) ** 23 + 6.54186232535616e58 * cos(theta) ** 21 - 3.18819004020607e57 * cos(theta) ** 19 + 1.24356865163147e56 * cos(theta) ** 17 - 3.79630385234299e54 * cos(theta) ** 15 + 8.81494702556422e52 * cos(theta) ** 13 - 1.49959840347657e51 * cos(theta) ** 11 + 1.77601016776941e49 * cos(theta) ** 9 - 1.36063771099593e47 * cos(theta) ** 7 + 6.01545093282412e44 * cos(theta) ** 5 - 1.25400269602337e42 * cos(theta) ** 3 + 7.77274398361595e38 * cos(theta) ) * cos(19 * phi) ) # @torch.jit.script def Yl100_m20(theta, phi): return ( 5.85025817526833e-40 * (1.0 - cos(theta) ** 2) ** 10 * ( 9.31446030918431e67 * cos(theta) ** 80 - 1.47908012949861e69 * cos(theta) ** 78 + 1.12732934743257e70 * cos(theta) ** 76 - 5.49211733364587e70 * cos(theta) ** 74 + 1.92152965261366e71 * cos(theta) ** 72 - 5.14285842102673e71 * cos(theta) ** 70 + 1.09523836744088e72 * cos(theta) ** 68 - 1.90599923684516e72 * cos(theta) ** 66 + 2.76241105610329e72 * cos(theta) ** 64 - 3.3813118938095e72 * cos(theta) ** 62 + 3.53263027137777e72 * cos(theta) ** 60 - 3.17559958371694e72 * cos(theta) ** 58 + 2.47140589071756e72 * cos(theta) ** 56 - 1.67295167987035e72 * cos(theta) ** 54 + 9.88436768742555e71 * cos(theta) ** 52 - 5.10981347116034e71 * cos(theta) ** 50 + 2.31491179814032e71 * cos(theta) ** 48 - 9.19767702818696e70 * cos(theta) ** 46 + 3.2052510855803e70 * cos(theta) ** 44 - 9.79066040348391e69 * cos(theta) ** 42 + 2.61793745571418e69 * cos(theta) ** 40 - 6.11557716519035e68 * cos(theta) ** 38 + 1.24471648729844e68 * cos(theta) ** 36 - 2.19963923421604e67 * cos(theta) ** 34 + 3.36055994116339e66 * cos(theta) ** 32 - 4.41546418759482e65 * cos(theta) ** 30 + 4.95799411874999e64 * cos(theta) ** 28 - 4.72189916071427e63 * cos(theta) ** 26 + 3.77984538727128e62 * cos(theta) ** 24 - 2.51564342147787e61 * cos(theta) ** 22 + 1.37379108832479e60 * cos(theta) ** 20 - 6.05756107639153e58 * cos(theta) ** 18 + 2.1140667077735e57 * cos(theta) ** 16 - 5.69445577851449e55 * cos(theta) ** 14 + 1.14594311332335e54 * cos(theta) ** 12 - 1.64955824382423e52 * cos(theta) ** 10 + 1.59840915099247e50 * cos(theta) ** 8 - 9.52446397697153e47 * cos(theta) ** 6 + 3.00772546641206e45 * cos(theta) ** 4 - 3.76200808807012e42 * cos(theta) ** 2 + 7.77274398361595e38 ) * cos(20 * phi) ) # @torch.jit.script def Yl100_m21(theta, phi): return ( 5.94617043901084e-42 * (1.0 - cos(theta) ** 2) ** 10.5 * ( 7.45156824734745e69 * cos(theta) ** 79 - 1.15368250100892e71 * cos(theta) ** 77 + 8.56770304048755e71 * cos(theta) ** 75 - 4.06416682689794e72 * cos(theta) ** 73 + 1.38350134988184e73 * cos(theta) ** 71 - 3.60000089471871e73 * cos(theta) ** 69 + 7.44762089859797e73 * cos(theta) ** 67 - 1.25795949631781e74 * cos(theta) ** 65 + 1.76794307590611e74 * cos(theta) ** 63 - 2.09641337416189e74 * cos(theta) ** 61 + 2.11957816282666e74 * cos(theta) ** 59 - 1.84184775855582e74 * cos(theta) ** 57 + 1.38398729880183e74 * cos(theta) ** 55 - 9.03393907129988e73 * cos(theta) ** 53 + 5.13987119746128e73 * cos(theta) ** 51 - 2.55490673558017e73 * cos(theta) ** 49 + 1.11115766310735e73 * cos(theta) ** 47 - 4.230931432966e72 * cos(theta) ** 45 + 1.41031047765533e72 * cos(theta) ** 43 - 4.11207736946324e71 * cos(theta) ** 41 + 1.04717498228567e71 * cos(theta) ** 39 - 2.32391932277233e70 * cos(theta) ** 37 + 4.48097935427439e69 * cos(theta) ** 35 - 7.47877339633453e68 * cos(theta) ** 33 + 1.07537918117229e68 * cos(theta) ** 31 - 1.32463925627844e67 * cos(theta) ** 29 + 1.38823835325e66 * cos(theta) ** 27 - 1.22769378178571e65 * cos(theta) ** 25 + 9.07162892945107e63 * cos(theta) ** 23 - 5.53441552725131e62 * cos(theta) ** 21 + 2.74758217664959e61 * cos(theta) ** 19 - 1.09036099375047e60 * cos(theta) ** 17 + 3.3825067324376e58 * cos(theta) ** 15 - 7.97223808992028e56 * cos(theta) ** 13 + 1.37513173598802e55 * cos(theta) ** 11 - 1.64955824382423e53 * cos(theta) ** 9 + 1.27872732079398e51 * cos(theta) ** 7 - 5.71467838618292e48 * cos(theta) ** 5 + 1.20309018656482e46 * cos(theta) ** 3 - 7.52401617614024e42 * cos(theta) ) * cos(21 * phi) ) # @torch.jit.script def Yl100_m22(theta, phi): return ( 6.0568091956117e-44 * (1.0 - cos(theta) ** 2) ** 11 * ( 5.88673891540448e71 * cos(theta) ** 78 - 8.88335525776867e72 * cos(theta) ** 76 + 6.42577728036567e73 * cos(theta) ** 74 - 2.9668417836355e74 * cos(theta) ** 72 + 9.82285958416105e74 * cos(theta) ** 70 - 2.48400061735591e75 * cos(theta) ** 68 + 4.98990600206064e75 * cos(theta) ** 66 - 8.17673672606575e75 * cos(theta) ** 64 + 1.11380413782085e76 * cos(theta) ** 62 - 1.27881215823875e76 * cos(theta) ** 60 + 1.25055111606773e76 * cos(theta) ** 58 - 1.04985322237682e76 * cos(theta) ** 56 + 7.61193014341008e75 * cos(theta) ** 54 - 4.78798770778893e75 * cos(theta) ** 52 + 2.62133431070526e75 * cos(theta) ** 50 - 1.25190430043428e75 * cos(theta) ** 48 + 5.22244101660456e74 * cos(theta) ** 46 - 1.9039191448347e74 * cos(theta) ** 44 + 6.06433505391794e73 * cos(theta) ** 42 - 1.68595172147993e73 * cos(theta) ** 40 + 4.08398243091412e72 * cos(theta) ** 38 - 8.59850149425763e71 * cos(theta) ** 36 + 1.56834277399604e71 * cos(theta) ** 34 - 2.4679952207904e70 * cos(theta) ** 32 + 3.33367546163409e69 * cos(theta) ** 30 - 3.84145384320749e68 * cos(theta) ** 28 + 3.74824355377499e67 * cos(theta) ** 26 - 3.06923445446428e66 * cos(theta) ** 24 + 2.08647465377375e65 * cos(theta) ** 22 - 1.16222726072278e64 * cos(theta) ** 20 + 5.22040613563422e62 * cos(theta) ** 18 - 1.85361368937581e61 * cos(theta) ** 16 + 5.07376009865641e59 * cos(theta) ** 14 - 1.03639095168964e58 * cos(theta) ** 12 + 1.51264490958682e56 * cos(theta) ** 10 - 1.48460241944181e54 * cos(theta) ** 8 + 8.95109124555784e51 * cos(theta) ** 6 - 2.85733919309146e49 * cos(theta) ** 4 + 3.60927055969447e46 * cos(theta) ** 2 - 7.52401617614024e42 ) * cos(22 * phi) ) # @torch.jit.script def Yl100_m23(theta, phi): return ( 6.18363768824311e-46 * (1.0 - cos(theta) ** 2) ** 11.5 * ( 4.5916563540155e73 * cos(theta) ** 77 - 6.75134999590419e74 * cos(theta) ** 75 + 4.75507518747059e75 * cos(theta) ** 73 - 2.13612608421756e76 * cos(theta) ** 71 + 6.87600170891274e76 * cos(theta) ** 69 - 1.68912041980202e77 * cos(theta) ** 67 + 3.29333796136002e77 * cos(theta) ** 65 - 5.23311150468208e77 * cos(theta) ** 63 + 6.90558565448926e77 * cos(theta) ** 61 - 7.67287294943251e77 * cos(theta) ** 59 + 7.25319647319283e77 * cos(theta) ** 57 - 5.87917804531019e77 * cos(theta) ** 55 + 4.11044227744144e77 * cos(theta) ** 53 - 2.48975360805025e77 * cos(theta) ** 51 + 1.31066715535263e77 * cos(theta) ** 49 - 6.00914064208456e76 * cos(theta) ** 47 + 2.4023228676381e76 * cos(theta) ** 45 - 8.37724423727268e75 * cos(theta) ** 43 + 2.54702072264553e75 * cos(theta) ** 41 - 6.74380688591972e74 * cos(theta) ** 39 + 1.55191332374736e74 * cos(theta) ** 37 - 3.09546053793275e73 * cos(theta) ** 35 + 5.33236543158652e72 * cos(theta) ** 33 - 7.89758470652927e71 * cos(theta) ** 31 + 1.00010263849023e71 * cos(theta) ** 29 - 1.0756070760981e70 * cos(theta) ** 27 + 9.74543323981497e68 * cos(theta) ** 25 - 7.36616269071427e67 * cos(theta) ** 23 + 4.59024423830224e66 * cos(theta) ** 21 - 2.32445452144555e65 * cos(theta) ** 19 + 9.39673104414159e63 * cos(theta) ** 17 - 2.96578190300129e62 * cos(theta) ** 15 + 7.10326413811897e60 * cos(theta) ** 13 - 1.24366914202756e59 * cos(theta) ** 11 + 1.51264490958682e57 * cos(theta) ** 9 - 1.18768193555345e55 * cos(theta) ** 7 + 5.37065474733471e52 * cos(theta) ** 5 - 1.14293567723658e50 * cos(theta) ** 3 + 7.21854111938895e46 * cos(theta) ) * cos(23 * phi) ) # @torch.jit.script def Yl100_m24(theta, phi): return ( 6.32831123632127e-48 * (1.0 - cos(theta) ** 2) ** 12 * ( 3.53557539259193e75 * cos(theta) ** 76 - 5.06351249692814e76 * cos(theta) ** 74 + 3.47120488685353e77 * cos(theta) ** 72 - 1.51664951979447e78 * cos(theta) ** 70 + 4.74444117914979e78 * cos(theta) ** 68 - 1.13171068126735e79 * cos(theta) ** 66 + 2.14066967488401e79 * cos(theta) ** 64 - 3.29686024794971e79 * cos(theta) ** 62 + 4.21240724923845e79 * cos(theta) ** 60 - 4.52699504016518e79 * cos(theta) ** 58 + 4.13432198971991e79 * cos(theta) ** 56 - 3.2335479249206e79 * cos(theta) ** 54 + 2.17853440704397e79 * cos(theta) ** 52 - 1.26977434010563e79 * cos(theta) ** 50 + 6.42226906122788e78 * cos(theta) ** 48 - 2.82429610177974e78 * cos(theta) ** 46 + 1.08104529043714e78 * cos(theta) ** 44 - 3.60221502202725e77 * cos(theta) ** 42 + 1.04427849628467e77 * cos(theta) ** 40 - 2.63008468550869e76 * cos(theta) ** 38 + 5.74207929786525e75 * cos(theta) ** 36 - 1.08341118827646e75 * cos(theta) ** 34 + 1.75968059242355e74 * cos(theta) ** 32 - 2.44825125902407e73 * cos(theta) ** 30 + 2.90029765162165e72 * cos(theta) ** 28 - 2.90413910546486e71 * cos(theta) ** 26 + 2.43635830995374e70 * cos(theta) ** 24 - 1.69421741886428e69 * cos(theta) ** 22 + 9.6395129004347e67 * cos(theta) ** 20 - 4.41646359074655e66 * cos(theta) ** 18 + 1.59744427750407e65 * cos(theta) ** 16 - 4.44867285450194e63 * cos(theta) ** 14 + 9.23424337955466e61 * cos(theta) ** 12 - 1.36803605623032e60 * cos(theta) ** 10 + 1.36138041862814e58 * cos(theta) ** 8 - 8.31377354887413e55 * cos(theta) ** 6 + 2.68532737366735e53 * cos(theta) ** 4 - 3.42880703170975e50 * cos(theta) ** 2 + 7.21854111938895e46 ) * cos(24 * phi) ) # @torch.jit.script def Yl100_m25(theta, phi): return ( 6.49271033372286e-50 * (1.0 - cos(theta) ** 2) ** 12.5 * ( 2.68703729836987e77 * cos(theta) ** 75 - 3.74699924772683e78 * cos(theta) ** 73 + 2.49926751853454e79 * cos(theta) ** 71 - 1.06165466385613e80 * cos(theta) ** 69 + 3.22622000182186e80 * cos(theta) ** 67 - 7.46929049636453e80 * cos(theta) ** 65 + 1.37002859192577e81 * cos(theta) ** 63 - 2.04405335372882e81 * cos(theta) ** 61 + 2.52744434954307e81 * cos(theta) ** 59 - 2.6256571232958e81 * cos(theta) ** 57 + 2.31522031424315e81 * cos(theta) ** 55 - 1.74611587945713e81 * cos(theta) ** 53 + 1.13283789166286e81 * cos(theta) ** 51 - 6.34887170052813e80 * cos(theta) ** 49 + 3.08268914938938e80 * cos(theta) ** 47 - 1.29917620681868e80 * cos(theta) ** 45 + 4.75659927792343e79 * cos(theta) ** 43 - 1.51293030925145e79 * cos(theta) ** 41 + 4.17711398513867e78 * cos(theta) ** 39 - 9.99432180493302e77 * cos(theta) ** 37 + 2.06714854723149e77 * cos(theta) ** 35 - 3.68359804013997e76 * cos(theta) ** 33 + 5.63097789575537e75 * cos(theta) ** 31 - 7.34475377707222e74 * cos(theta) ** 29 + 8.12083342454063e73 * cos(theta) ** 27 - 7.55076167420864e72 * cos(theta) ** 25 + 5.84725994388899e71 * cos(theta) ** 23 - 3.72727832150142e70 * cos(theta) ** 21 + 1.92790258008694e69 * cos(theta) ** 19 - 7.94963446334379e67 * cos(theta) ** 17 + 2.55591084400651e66 * cos(theta) ** 15 - 6.22814199630271e64 * cos(theta) ** 13 + 1.10810920554656e63 * cos(theta) ** 11 - 1.36803605623032e61 * cos(theta) ** 9 + 1.08910433490251e59 * cos(theta) ** 7 - 4.98826412932448e56 * cos(theta) ** 5 + 1.07413094946694e54 * cos(theta) ** 3 - 6.8576140634195e50 * cos(theta) ) * cos(25 * phi) ) # @torch.jit.script def Yl100_m26(theta, phi): return ( 6.6789796988462e-52 * (1.0 - cos(theta) ** 2) ** 13 * ( 2.0152779737774e79 * cos(theta) ** 74 - 2.73530945084058e80 * cos(theta) ** 72 + 1.77447993815953e81 * cos(theta) ** 70 - 7.32541718060727e81 * cos(theta) ** 68 + 2.16156740122064e82 * cos(theta) ** 66 - 4.85503882263694e82 * cos(theta) ** 64 + 8.63118012913234e82 * cos(theta) ** 62 - 1.24687254577458e83 * cos(theta) ** 60 + 1.49119216623041e83 * cos(theta) ** 58 - 1.49662456027861e83 * cos(theta) ** 56 + 1.27337117283373e83 * cos(theta) ** 54 - 9.25441416112277e82 * cos(theta) ** 52 + 5.7774732474806e82 * cos(theta) ** 50 - 3.11094713325878e82 * cos(theta) ** 48 + 1.44886390021301e82 * cos(theta) ** 46 - 5.84629293068407e81 * cos(theta) ** 44 + 2.04533768950707e81 * cos(theta) ** 42 - 6.20301426793093e80 * cos(theta) ** 40 + 1.62907445420408e80 * cos(theta) ** 38 - 3.69789906782522e79 * cos(theta) ** 36 + 7.23501991531021e78 * cos(theta) ** 34 - 1.21558735324619e78 * cos(theta) ** 32 + 1.74560314768416e77 * cos(theta) ** 30 - 2.12997859535094e76 * cos(theta) ** 28 + 2.19262502462597e75 * cos(theta) ** 26 - 1.88769041855216e74 * cos(theta) ** 24 + 1.34486978709447e73 * cos(theta) ** 22 - 7.82728447515298e71 * cos(theta) ** 20 + 3.66301490216519e70 * cos(theta) ** 18 - 1.35143785876844e69 * cos(theta) ** 16 + 3.83386626600977e67 * cos(theta) ** 14 - 8.09658459519353e65 * cos(theta) ** 12 + 1.21892012610122e64 * cos(theta) ** 10 - 1.23123245060729e62 * cos(theta) ** 8 + 7.62373034431757e59 * cos(theta) ** 6 - 2.49413206466224e57 * cos(theta) ** 4 + 3.22239284840082e54 * cos(theta) ** 2 - 6.8576140634195e50 ) * cos(26 * phi) ) # @torch.jit.script def Yl100_m27(theta, phi): return ( 6.8895745371725e-54 * (1.0 - cos(theta) ** 2) ** 13.5 * ( 1.49130570059528e81 * cos(theta) ** 73 - 1.96942280460522e82 * cos(theta) ** 71 + 1.24213595671167e83 * cos(theta) ** 69 - 4.98128368281295e83 * cos(theta) ** 67 + 1.42663448480562e84 * cos(theta) ** 65 - 3.10722484648764e84 * cos(theta) ** 63 + 5.35133168006205e84 * cos(theta) ** 61 - 7.48123527464748e84 * cos(theta) ** 59 + 8.64891456413638e84 * cos(theta) ** 57 - 8.38109753756021e84 * cos(theta) ** 55 + 6.87620433330216e84 * cos(theta) ** 53 - 4.81229536378384e84 * cos(theta) ** 51 + 2.8887366237403e84 * cos(theta) ** 49 - 1.49325462396422e84 * cos(theta) ** 47 + 6.66477394097984e83 * cos(theta) ** 45 - 2.57236888950099e83 * cos(theta) ** 43 + 8.59041829592971e82 * cos(theta) ** 41 - 2.48120570717237e82 * cos(theta) ** 39 + 6.19048292597552e81 * cos(theta) ** 37 - 1.33124366441708e81 * cos(theta) ** 35 + 2.45990677120547e80 * cos(theta) ** 33 - 3.88987953038781e79 * cos(theta) ** 31 + 5.23680944305249e78 * cos(theta) ** 29 - 5.96394006698264e77 * cos(theta) ** 27 + 5.70082506402752e76 * cos(theta) ** 25 - 4.53045700452519e75 * cos(theta) ** 23 + 2.95871353160783e74 * cos(theta) ** 21 - 1.5654568950306e73 * cos(theta) ** 19 + 6.59342682389734e71 * cos(theta) ** 17 - 2.16230057402951e70 * cos(theta) ** 15 + 5.36741277241368e68 * cos(theta) ** 13 - 9.71590151423223e66 * cos(theta) ** 11 + 1.21892012610122e65 * cos(theta) ** 9 - 9.8498596048583e62 * cos(theta) ** 7 + 4.57423820659054e60 * cos(theta) ** 5 - 9.97652825864895e57 * cos(theta) ** 3 + 6.44478569680165e54 * cos(theta) ) * cos(27 * phi) ) # @torch.jit.script def Yl100_m28(theta, phi): return ( 7.12731557116112e-56 * (1.0 - cos(theta) ** 2) ** 14 * ( 1.08865316143455e83 * cos(theta) ** 72 - 1.39829019126971e84 * cos(theta) ** 70 + 8.57073810131051e84 * cos(theta) ** 68 - 3.33746006748467e85 * cos(theta) ** 66 + 9.27312415123656e85 * cos(theta) ** 64 - 1.95755165328722e86 * cos(theta) ** 62 + 3.26431232483785e86 * cos(theta) ** 60 - 4.41392881204202e86 * cos(theta) ** 58 + 4.92988130155774e86 * cos(theta) ** 56 - 4.60960364565812e86 * cos(theta) ** 54 + 3.64438829665014e86 * cos(theta) ** 52 - 2.45427063552976e86 * cos(theta) ** 50 + 1.41548094563275e86 * cos(theta) ** 48 - 7.01829673263181e85 * cos(theta) ** 46 + 2.99914827344093e85 * cos(theta) ** 44 - 1.10611862248543e85 * cos(theta) ** 42 + 3.52207150133118e84 * cos(theta) ** 40 - 9.67670225797225e83 * cos(theta) ** 38 + 2.29047868261094e83 * cos(theta) ** 36 - 4.65935282545978e82 * cos(theta) ** 34 + 8.11769234497806e81 * cos(theta) ** 32 - 1.20586265442022e81 * cos(theta) ** 30 + 1.51867473848522e80 * cos(theta) ** 28 - 1.61026381808531e79 * cos(theta) ** 26 + 1.42520626600688e78 * cos(theta) ** 24 - 1.04200511104079e77 * cos(theta) ** 22 + 6.21329841637644e75 * cos(theta) ** 20 - 2.97436810055813e74 * cos(theta) ** 18 + 1.12088256006255e73 * cos(theta) ** 16 - 3.24345086104427e71 * cos(theta) ** 14 + 6.97763660413778e69 * cos(theta) ** 12 - 1.06874916656555e68 * cos(theta) ** 10 + 1.09702811349109e66 * cos(theta) ** 8 - 6.89490172340081e63 * cos(theta) ** 6 + 2.28711910329527e61 * cos(theta) ** 4 - 2.99295847759469e58 * cos(theta) ** 2 + 6.44478569680165e54 ) * cos(28 * phi) ) # @torch.jit.script def Yl100_m29(theta, phi): return ( 7.39545476164089e-58 * (1.0 - cos(theta) ** 2) ** 14.5 * ( 7.83830276232878e84 * cos(theta) ** 71 - 9.78803133888794e85 * cos(theta) ** 69 + 5.82810190889115e86 * cos(theta) ** 67 - 2.20272364453988e87 * cos(theta) ** 65 + 5.9347994567914e87 * cos(theta) ** 63 - 1.21368202503807e88 * cos(theta) ** 61 + 1.95858739490271e88 * cos(theta) ** 59 - 2.56007871098437e88 * cos(theta) ** 57 + 2.76073352887233e88 * cos(theta) ** 55 - 2.48918596865538e88 * cos(theta) ** 53 + 1.89508191425808e88 * cos(theta) ** 51 - 1.22713531776488e88 * cos(theta) ** 49 + 6.79430853903718e87 * cos(theta) ** 47 - 3.22841649701063e87 * cos(theta) ** 45 + 1.31962524031401e87 * cos(theta) ** 43 - 4.64569821443879e86 * cos(theta) ** 41 + 1.40882860053247e86 * cos(theta) ** 39 - 3.67714685802946e85 * cos(theta) ** 37 + 8.24572325739939e84 * cos(theta) ** 35 - 1.58417996065632e84 * cos(theta) ** 33 + 2.59766155039298e83 * cos(theta) ** 31 - 3.61758796326066e82 * cos(theta) ** 29 + 4.25228926775862e81 * cos(theta) ** 27 - 4.18668592702181e80 * cos(theta) ** 25 + 3.42049503841651e79 * cos(theta) ** 23 - 2.29241124428974e78 * cos(theta) ** 21 + 1.24265968327529e77 * cos(theta) ** 19 - 5.35386258100464e75 * cos(theta) ** 17 + 1.79341209610008e74 * cos(theta) ** 15 - 4.54083120546197e72 * cos(theta) ** 13 + 8.37316392496534e70 * cos(theta) ** 11 - 1.06874916656555e69 * cos(theta) ** 9 + 8.77622490792875e66 * cos(theta) ** 7 - 4.13694103404049e64 * cos(theta) ** 5 + 9.14847641318109e61 * cos(theta) ** 3 - 5.98591695518937e58 * cos(theta) ) * cos(29 * phi) ) # @torch.jit.script def Yl100_m30(theta, phi): return ( 7.69775411038583e-60 * (1.0 - cos(theta) ** 2) ** 15 * ( 5.56519496125343e86 * cos(theta) ** 70 - 6.75374162383268e87 * cos(theta) ** 68 + 3.90482827895707e88 * cos(theta) ** 66 - 1.43177036895092e89 * cos(theta) ** 64 + 3.73892365777858e89 * cos(theta) ** 62 - 7.40346035273225e89 * cos(theta) ** 60 + 1.1555665629926e90 * cos(theta) ** 58 - 1.45924486526109e90 * cos(theta) ** 56 + 1.51840344087978e90 * cos(theta) ** 54 - 1.31926856338735e90 * cos(theta) ** 52 + 9.66491776271618e89 * cos(theta) ** 50 - 6.01296305704791e89 * cos(theta) ** 48 + 3.19332501334748e89 * cos(theta) ** 46 - 1.45278742365479e89 * cos(theta) ** 44 + 5.67438853335024e88 * cos(theta) ** 42 - 1.9047362679199e88 * cos(theta) ** 40 + 5.49443154207664e87 * cos(theta) ** 38 - 1.3605443374709e87 * cos(theta) ** 36 + 2.88600314008979e86 * cos(theta) ** 34 - 5.22779387016587e85 * cos(theta) ** 32 + 8.05275080621823e84 * cos(theta) ** 30 - 1.04910050934559e84 * cos(theta) ** 28 + 1.14811810229483e83 * cos(theta) ** 26 - 1.04667148175545e82 * cos(theta) ** 24 + 7.86713858835798e80 * cos(theta) ** 22 - 4.81406361300846e79 * cos(theta) ** 20 + 2.36105339822305e78 * cos(theta) ** 18 - 9.10156638770788e76 * cos(theta) ** 16 + 2.69011814415011e75 * cos(theta) ** 14 - 5.90308056710056e73 * cos(theta) ** 12 + 9.21048031746187e71 * cos(theta) ** 10 - 9.61874249908991e69 * cos(theta) ** 8 + 6.14335743555012e67 * cos(theta) ** 6 - 2.06847051702024e65 * cos(theta) ** 4 + 2.74454292395433e62 * cos(theta) ** 2 - 5.98591695518937e58 ) * cos(30 * phi) ) # @torch.jit.script def Yl100_m31(theta, phi): return ( 8.03858052270573e-62 * (1.0 - cos(theta) ** 2) ** 15.5 * ( 3.8956364728774e88 * cos(theta) ** 69 - 4.59254430420622e89 * cos(theta) ** 67 + 2.57718666411167e90 * cos(theta) ** 65 - 9.16333036128592e90 * cos(theta) ** 63 + 2.31813266782272e91 * cos(theta) ** 61 - 4.44207621163935e91 * cos(theta) ** 59 + 6.70228606535708e91 * cos(theta) ** 57 - 8.17177124546211e91 * cos(theta) ** 55 + 8.19937858075083e91 * cos(theta) ** 53 - 6.86019652961423e91 * cos(theta) ** 51 + 4.83245888135809e91 * cos(theta) ** 49 - 2.88622226738299e91 * cos(theta) ** 47 + 1.46892950613984e91 * cos(theta) ** 45 - 6.39226466408106e90 * cos(theta) ** 43 + 2.3832431840071e90 * cos(theta) ** 41 - 7.61894507167961e89 * cos(theta) ** 39 + 2.08788398598913e89 * cos(theta) ** 37 - 4.89795961489524e88 * cos(theta) ** 35 + 9.81241067630527e87 * cos(theta) ** 33 - 1.67289403845308e87 * cos(theta) ** 31 + 2.41582524186547e86 * cos(theta) ** 29 - 2.93748142616766e85 * cos(theta) ** 27 + 2.98510706596655e84 * cos(theta) ** 25 - 2.51201155621309e83 * cos(theta) ** 23 + 1.73077048943876e82 * cos(theta) ** 21 - 9.62812722601692e80 * cos(theta) ** 19 + 4.24989611680148e79 * cos(theta) ** 17 - 1.45625062203326e78 * cos(theta) ** 15 + 3.76616540181016e76 * cos(theta) ** 13 - 7.08369668052068e74 * cos(theta) ** 11 + 9.21048031746187e72 * cos(theta) ** 9 - 7.69499399927193e70 * cos(theta) ** 7 + 3.68601446133007e68 * cos(theta) ** 5 - 8.27388206808098e65 * cos(theta) ** 3 + 5.48908584790865e62 * cos(theta) ) * cos(31 * phi) ) # @torch.jit.script def Yl100_m32(theta, phi): return ( 8.42302045750848e-64 * (1.0 - cos(theta) ** 2) ** 16 * ( 2.68798916628541e90 * cos(theta) ** 68 - 3.07700468381817e91 * cos(theta) ** 66 + 1.67517133167258e92 * cos(theta) ** 64 - 5.77289812761013e92 * cos(theta) ** 62 + 1.41406092737186e93 * cos(theta) ** 60 - 2.62082496486722e93 * cos(theta) ** 58 + 3.82030305725353e93 * cos(theta) ** 56 - 4.49447418500416e93 * cos(theta) ** 54 + 4.34567064779794e93 * cos(theta) ** 52 - 3.49870023010326e93 * cos(theta) ** 50 + 2.36790485186547e93 * cos(theta) ** 48 - 1.35652446567001e93 * cos(theta) ** 46 + 6.61018277762927e92 * cos(theta) ** 44 - 2.74867380555485e92 * cos(theta) ** 42 + 9.77129705442911e91 * cos(theta) ** 40 - 2.97138857795505e91 * cos(theta) ** 38 + 7.72517074815976e90 * cos(theta) ** 36 - 1.71428586521333e90 * cos(theta) ** 34 + 3.23809552318074e89 * cos(theta) ** 32 - 5.18597151920454e88 * cos(theta) ** 30 + 7.00589320140986e87 * cos(theta) ** 28 - 7.93119985065267e86 * cos(theta) ** 26 + 7.46276766491638e85 * cos(theta) ** 24 - 5.7776265792901e84 * cos(theta) ** 22 + 3.63461802782139e83 * cos(theta) ** 20 - 1.82934417294322e82 * cos(theta) ** 18 + 7.22482339856252e80 * cos(theta) ** 16 - 2.18437593304989e79 * cos(theta) ** 14 + 4.89601502235321e77 * cos(theta) ** 12 - 7.79206634857274e75 * cos(theta) ** 10 + 8.28943228571568e73 * cos(theta) ** 8 - 5.38649579949035e71 * cos(theta) ** 6 + 1.84300723066504e69 * cos(theta) ** 4 - 2.48216462042429e66 * cos(theta) ** 2 + 5.48908584790865e62 ) * cos(32 * phi) ) # @torch.jit.script def Yl100_m33(theta, phi): return ( 8.85701904752573e-66 * (1.0 - cos(theta) ** 2) ** 16.5 * ( 1.82783263307408e92 * cos(theta) ** 67 - 2.03082309131999e93 * cos(theta) ** 65 + 1.07210965227045e94 * cos(theta) ** 63 - 3.57919683911828e94 * cos(theta) ** 61 + 8.48436556423116e94 * cos(theta) ** 59 - 1.52007847962299e95 * cos(theta) ** 57 + 2.13936971206198e95 * cos(theta) ** 55 - 2.42701605990225e95 * cos(theta) ** 53 + 2.25974873685493e95 * cos(theta) ** 51 - 1.74935011505163e95 * cos(theta) ** 49 + 1.13659432889542e95 * cos(theta) ** 47 - 6.24001254208203e94 * cos(theta) ** 45 + 2.90848042215688e94 * cos(theta) ** 43 - 1.15444299833304e94 * cos(theta) ** 41 + 3.90851882177164e93 * cos(theta) ** 39 - 1.12912765962292e93 * cos(theta) ** 37 + 2.78106146933751e92 * cos(theta) ** 35 - 5.82857194172533e91 * cos(theta) ** 33 + 1.03619056741784e91 * cos(theta) ** 31 - 1.55579145576136e90 * cos(theta) ** 29 + 1.96165009639476e89 * cos(theta) ** 27 - 2.0621119611697e88 * cos(theta) ** 25 + 1.79106423957993e87 * cos(theta) ** 23 - 1.27107784744382e86 * cos(theta) ** 21 + 7.26923605564278e84 * cos(theta) ** 19 - 3.29281951129779e83 * cos(theta) ** 17 + 1.15597174377e82 * cos(theta) ** 15 - 3.05812630626985e80 * cos(theta) ** 13 + 5.87521802682385e78 * cos(theta) ** 11 - 7.79206634857274e76 * cos(theta) ** 9 + 6.63154582857255e74 * cos(theta) ** 7 - 3.23189747969421e72 * cos(theta) ** 5 + 7.37202892266015e69 * cos(theta) ** 3 - 4.96432924084859e66 * cos(theta) ) * cos(33 * phi) ) # @torch.jit.script def Yl100_m34(theta, phi): return ( 9.34754959642367e-68 * (1.0 - cos(theta) ** 2) ** 17 * ( 1.22464786415963e94 * cos(theta) ** 66 - 1.32003500935799e95 * cos(theta) ** 64 + 6.75429080930385e95 * cos(theta) ** 62 - 2.18331007186215e96 * cos(theta) ** 60 + 5.00577568289638e96 * cos(theta) ** 58 - 8.66444733385101e96 * cos(theta) ** 56 + 1.17665334163409e97 * cos(theta) ** 54 - 1.28631851174819e97 * cos(theta) ** 52 + 1.15247185579601e97 * cos(theta) ** 50 - 8.57181556375298e96 * cos(theta) ** 48 + 5.34199334580849e96 * cos(theta) ** 46 - 2.80800564393692e96 * cos(theta) ** 44 + 1.25064658152746e96 * cos(theta) ** 42 - 4.73321629316546e95 * cos(theta) ** 40 + 1.52432234049094e95 * cos(theta) ** 38 - 4.1777723406048e94 * cos(theta) ** 36 + 9.7337151426813e93 * cos(theta) ** 34 - 1.92342874076936e93 * cos(theta) ** 32 + 3.21219075899529e92 * cos(theta) ** 30 - 4.51179522170795e91 * cos(theta) ** 28 + 5.29645526026586e90 * cos(theta) ** 26 - 5.15527990292424e89 * cos(theta) ** 24 + 4.11944775103384e88 * cos(theta) ** 22 - 2.66926347963203e87 * cos(theta) ** 20 + 1.38115485057213e86 * cos(theta) ** 18 - 5.59779316920624e84 * cos(theta) ** 16 + 1.733957615655e83 * cos(theta) ** 14 - 3.9755641981508e81 * cos(theta) ** 12 + 6.46273982950623e79 * cos(theta) ** 10 - 7.01285971371547e77 * cos(theta) ** 8 + 4.64208208000078e75 * cos(theta) ** 6 - 1.6159487398471e73 * cos(theta) ** 4 + 2.21160867679805e70 * cos(theta) ** 2 - 4.96432924084859e66 ) * cos(34 * phi) ) # @torch.jit.script def Yl100_m35(theta, phi): return ( 9.90282093478634e-70 * (1.0 - cos(theta) ** 2) ** 17.5 * ( 8.08267590345357e95 * cos(theta) ** 65 - 8.44822405989117e96 * cos(theta) ** 63 + 4.18766030176839e97 * cos(theta) ** 61 - 1.30998604311729e98 * cos(theta) ** 59 + 2.9033498960799e98 * cos(theta) ** 57 - 4.85209050695657e98 * cos(theta) ** 55 + 6.35392804482408e98 * cos(theta) ** 53 - 6.68885626109059e98 * cos(theta) ** 51 + 5.76235927898007e98 * cos(theta) ** 49 - 4.11447147060143e98 * cos(theta) ** 47 + 2.45731693907191e98 * cos(theta) ** 45 - 1.23552248333224e98 * cos(theta) ** 43 + 5.25271564241533e97 * cos(theta) ** 41 - 1.89328651726618e97 * cos(theta) ** 39 + 5.79242489386557e96 * cos(theta) ** 37 - 1.50399804261773e96 * cos(theta) ** 35 + 3.30946314851164e95 * cos(theta) ** 33 - 6.15497197046195e94 * cos(theta) ** 31 + 9.63657227698588e93 * cos(theta) ** 29 - 1.26330266207823e93 * cos(theta) ** 27 + 1.37707836766912e92 * cos(theta) ** 25 - 1.23726717670182e91 * cos(theta) ** 23 + 9.06278505227446e89 * cos(theta) ** 21 - 5.33852695926406e88 * cos(theta) ** 19 + 2.48607873102983e87 * cos(theta) ** 17 - 8.95646907072998e85 * cos(theta) ** 15 + 2.42754066191701e84 * cos(theta) ** 13 - 4.77067703778096e82 * cos(theta) ** 11 + 6.46273982950623e80 * cos(theta) ** 9 - 5.61028777097238e78 * cos(theta) ** 7 + 2.78524924800047e76 * cos(theta) ** 5 - 6.46379495938842e73 * cos(theta) ** 3 + 4.42321735359609e70 * cos(theta) ) * cos(35 * phi) ) # @torch.jit.script def Yl100_m36(theta, phi): return ( 1.05325321532538e-71 * (1.0 - cos(theta) ** 2) ** 18 * ( 5.25373933724482e97 * cos(theta) ** 64 - 5.32238115773143e98 * cos(theta) ** 62 + 2.55447278407872e99 * cos(theta) ** 60 - 7.72891765439201e99 * cos(theta) ** 58 + 1.65490944076554e100 * cos(theta) ** 56 - 2.66864977882611e100 * cos(theta) ** 54 + 3.36758186375676e100 * cos(theta) ** 52 - 3.4113166931562e100 * cos(theta) ** 50 + 2.82355604670023e100 * cos(theta) ** 48 - 1.93380159118267e100 * cos(theta) ** 46 + 1.10579262258236e100 * cos(theta) ** 44 - 5.31274667832864e99 * cos(theta) ** 42 + 2.15361341339028e99 * cos(theta) ** 40 - 7.38381741733812e98 * cos(theta) ** 38 + 2.14319721073026e98 * cos(theta) ** 36 - 5.26399314916205e97 * cos(theta) ** 34 + 1.09212283900884e97 * cos(theta) ** 32 - 1.9080413108432e96 * cos(theta) ** 30 + 2.79460596032591e95 * cos(theta) ** 28 - 3.41091718761121e94 * cos(theta) ** 26 + 3.44269591917281e93 * cos(theta) ** 24 - 2.84571450641418e92 * cos(theta) ** 22 + 1.90318486097764e91 * cos(theta) ** 20 - 1.01432012226017e90 * cos(theta) ** 18 + 4.22633384275071e88 * cos(theta) ** 16 - 1.3434703606095e87 * cos(theta) ** 14 + 3.15580286049211e85 * cos(theta) ** 12 - 5.24774474155906e83 * cos(theta) ** 10 + 5.81646584655561e81 * cos(theta) ** 8 - 3.92720143968066e79 * cos(theta) ** 6 + 1.39262462400023e77 * cos(theta) ** 4 - 1.93913848781653e74 * cos(theta) ** 2 + 4.42321735359609e70 ) * cos(36 * phi) ) # @torch.jit.script def Yl100_m37(theta, phi): return ( 1.12481868753504e-73 * (1.0 - cos(theta) ** 2) ** 18.5 * ( 3.36239317583668e99 * cos(theta) ** 63 - 3.29987631779349e100 * cos(theta) ** 61 + 1.53268367044723e101 * cos(theta) ** 59 - 4.48277223954737e101 * cos(theta) ** 57 + 9.26749286828705e101 * cos(theta) ** 55 - 1.4410708805661e102 * cos(theta) ** 53 + 1.75114256915352e102 * cos(theta) ** 51 - 1.7056583465781e102 * cos(theta) ** 49 + 1.35530690241611e102 * cos(theta) ** 47 - 8.8954873194403e101 * cos(theta) ** 45 + 4.86548753936237e101 * cos(theta) ** 43 - 2.23135360489803e101 * cos(theta) ** 41 + 8.61445365356113e100 * cos(theta) ** 39 - 2.80585061858848e100 * cos(theta) ** 37 + 7.71550995862894e99 * cos(theta) ** 35 - 1.7897576707151e99 * cos(theta) ** 33 + 3.49479308482829e98 * cos(theta) ** 31 - 5.72412393252961e97 * cos(theta) ** 29 + 7.82489668891253e96 * cos(theta) ** 27 - 8.86838468778915e95 * cos(theta) ** 25 + 8.26247020601473e94 * cos(theta) ** 23 - 6.26057191411119e93 * cos(theta) ** 21 + 3.80636972195527e92 * cos(theta) ** 19 - 1.82577622006831e91 * cos(theta) ** 17 + 6.76213414840114e89 * cos(theta) ** 15 - 1.8808585048533e88 * cos(theta) ** 13 + 3.78696343259053e86 * cos(theta) ** 11 - 5.24774474155906e84 * cos(theta) ** 9 + 4.65317267724449e82 * cos(theta) ** 7 - 2.3563208638084e80 * cos(theta) ** 5 + 5.57049849600094e77 * cos(theta) ** 3 - 3.87827697563305e74 * cos(theta) ) * cos(37 * phi) ) # @torch.jit.script def Yl100_m38(theta, phi): return ( 1.20634826823338e-75 * (1.0 - cos(theta) ** 2) ** 19 * ( 2.11830770077711e101 * cos(theta) ** 62 - 2.01292455385403e102 * cos(theta) ** 60 + 9.04283365563866e102 * cos(theta) ** 58 - 2.555180176542e103 * cos(theta) ** 56 + 5.09712107755788e103 * cos(theta) ** 54 - 7.63767566700033e103 * cos(theta) ** 52 + 8.93082710268293e103 * cos(theta) ** 50 - 8.35772589823269e103 * cos(theta) ** 48 + 6.36994244135573e103 * cos(theta) ** 46 - 4.00296929374813e103 * cos(theta) ** 44 + 2.09215964192582e103 * cos(theta) ** 42 - 9.14854978008193e102 * cos(theta) ** 40 + 3.35963692488884e102 * cos(theta) ** 38 - 1.03816472887774e102 * cos(theta) ** 36 + 2.70042848552013e101 * cos(theta) ** 34 - 5.90620031335982e100 * cos(theta) ** 32 + 1.08338585629677e100 * cos(theta) ** 30 - 1.65999594043359e99 * cos(theta) ** 28 + 2.11272210600638e98 * cos(theta) ** 26 - 2.21709617194729e97 * cos(theta) ** 24 + 1.90036814738339e96 * cos(theta) ** 22 - 1.31472010196335e95 * cos(theta) ** 20 + 7.23210247171502e93 * cos(theta) ** 18 - 3.10381957411612e92 * cos(theta) ** 16 + 1.01432012226017e91 * cos(theta) ** 14 - 2.44511605630929e89 * cos(theta) ** 12 + 4.16565977584958e87 * cos(theta) ** 10 - 4.72297026740316e85 * cos(theta) ** 8 + 3.25722087407114e83 * cos(theta) ** 6 - 1.1781604319042e81 * cos(theta) ** 4 + 1.67114954880028e78 * cos(theta) ** 2 - 3.87827697563305e74 ) * cos(38 * phi) ) # @torch.jit.script def Yl100_m39(theta, phi): return ( 1.29947958247701e-77 * (1.0 - cos(theta) ** 2) ** 19.5 * ( 1.31335077448181e103 * cos(theta) ** 61 - 1.20775473231242e104 * cos(theta) ** 59 + 5.24484352027042e104 * cos(theta) ** 57 - 1.43090089886352e105 * cos(theta) ** 55 + 2.75244538188125e105 * cos(theta) ** 53 - 3.97159134684017e105 * cos(theta) ** 51 + 4.46541355134147e105 * cos(theta) ** 49 - 4.01170843115169e105 * cos(theta) ** 47 + 2.93017352302363e105 * cos(theta) ** 45 - 1.76130648924918e105 * cos(theta) ** 43 + 8.78707049608844e104 * cos(theta) ** 41 - 3.65941991203277e104 * cos(theta) ** 39 + 1.27666203145776e104 * cos(theta) ** 37 - 3.73739302395986e103 * cos(theta) ** 35 + 9.18145685076844e102 * cos(theta) ** 33 - 1.88998410027514e102 * cos(theta) ** 31 + 3.25015756889031e101 * cos(theta) ** 29 - 4.64798863321405e100 * cos(theta) ** 27 + 5.4930774756166e99 * cos(theta) ** 25 - 5.32103081267349e98 * cos(theta) ** 23 + 4.18080992424346e97 * cos(theta) ** 21 - 2.6294402039267e96 * cos(theta) ** 19 + 1.3017784449087e95 * cos(theta) ** 17 - 4.9661113185858e93 * cos(theta) ** 15 + 1.42004817116424e92 * cos(theta) ** 13 - 2.93413926757114e90 * cos(theta) ** 11 + 4.16565977584958e88 * cos(theta) ** 9 - 3.77837621392252e86 * cos(theta) ** 7 + 1.95433252444268e84 * cos(theta) ** 5 - 4.7126417276168e81 * cos(theta) ** 3 + 3.34229909760056e78 * cos(theta) ) * cos(39 * phi) ) # @torch.jit.script def Yl100_m40(theta, phi): return ( 1.40617873132947e-79 * (1.0 - cos(theta) ** 2) ** 20 * ( 8.01143972433903e104 * cos(theta) ** 60 - 7.12575292064326e105 * cos(theta) ** 58 + 2.98956080655414e106 * cos(theta) ** 56 - 7.86995494374936e106 * cos(theta) ** 54 + 1.45879605239706e107 * cos(theta) ** 52 - 2.02551158688849e107 * cos(theta) ** 50 + 2.18805264015732e107 * cos(theta) ** 48 - 1.88550296264129e107 * cos(theta) ** 46 + 1.31857808536064e107 * cos(theta) ** 44 - 7.57361790377147e106 * cos(theta) ** 42 + 3.60269890339626e106 * cos(theta) ** 40 - 1.42717376569278e106 * cos(theta) ** 38 + 4.72364951639371e105 * cos(theta) ** 36 - 1.30808755838595e105 * cos(theta) ** 34 + 3.02988076075359e104 * cos(theta) ** 32 - 5.85895071085294e103 * cos(theta) ** 30 + 9.42545694978191e102 * cos(theta) ** 28 - 1.25495693096779e102 * cos(theta) ** 26 + 1.37326936890415e101 * cos(theta) ** 24 - 1.2238370869149e100 * cos(theta) ** 22 + 8.77970084091126e98 * cos(theta) ** 20 - 4.99593638746073e97 * cos(theta) ** 18 + 2.2130233563448e96 * cos(theta) ** 16 - 7.44916697787869e94 * cos(theta) ** 14 + 1.84606262251351e93 * cos(theta) ** 12 - 3.22755319432826e91 * cos(theta) ** 10 + 3.74909379826462e89 * cos(theta) ** 8 - 2.64486334974577e87 * cos(theta) ** 6 + 9.77166262221342e84 * cos(theta) ** 4 - 1.41379251828504e82 * cos(theta) ** 2 + 3.34229909760056e78 ) * cos(40 * phi) ) # @torch.jit.script def Yl100_m41(theta, phi): return ( 1.52881643696148e-81 * (1.0 - cos(theta) ** 2) ** 20.5 * ( 4.80686383460342e106 * cos(theta) ** 59 - 4.13293669397309e107 * cos(theta) ** 57 + 1.67415405167032e108 * cos(theta) ** 55 - 4.24977566962465e108 * cos(theta) ** 53 + 7.58573947246473e108 * cos(theta) ** 51 - 1.01275579344424e109 * cos(theta) ** 49 + 1.05026526727551e109 * cos(theta) ** 47 - 8.67331362814996e108 * cos(theta) ** 45 + 5.80174357558679e108 * cos(theta) ** 43 - 3.18091951958402e108 * cos(theta) ** 41 + 1.4410795613585e108 * cos(theta) ** 39 - 5.42326030963257e107 * cos(theta) ** 37 + 1.70051382590174e107 * cos(theta) ** 35 - 4.44749769851223e106 * cos(theta) ** 33 + 9.69561843441148e105 * cos(theta) ** 31 - 1.75768521325588e105 * cos(theta) ** 29 + 2.63912794593893e104 * cos(theta) ** 27 - 3.26288802051626e103 * cos(theta) ** 25 + 3.29584648536996e102 * cos(theta) ** 23 - 2.69244159121279e101 * cos(theta) ** 21 + 1.75594016818225e100 * cos(theta) ** 19 - 8.99268549742932e98 * cos(theta) ** 17 + 3.54083737015167e97 * cos(theta) ** 15 - 1.04288337690302e96 * cos(theta) ** 13 + 2.21527514701621e94 * cos(theta) ** 11 - 3.22755319432826e92 * cos(theta) ** 9 + 2.9992750386117e90 * cos(theta) ** 7 - 1.58691800984746e88 * cos(theta) ** 5 + 3.90866504888537e85 * cos(theta) ** 3 - 2.82758503657008e82 * cos(theta) ) * cos(41 * phi) ) # @torch.jit.script def Yl100_m42(theta, phi): return ( 1.67026417186738e-83 * (1.0 - cos(theta) ** 2) ** 21 * ( 2.83604966241602e108 * cos(theta) ** 58 - 2.35577391556466e109 * cos(theta) ** 56 + 9.20784728418675e109 * cos(theta) ** 54 - 2.25238110490107e110 * cos(theta) ** 52 + 3.86872713095701e110 * cos(theta) ** 50 - 4.9625033878768e110 * cos(theta) ** 48 + 4.93624675619491e110 * cos(theta) ** 46 - 3.90299113266748e110 * cos(theta) ** 44 + 2.49474973750232e110 * cos(theta) ** 42 - 1.30417700302945e110 * cos(theta) ** 40 + 5.62021028929817e109 * cos(theta) ** 38 - 2.00660631456405e109 * cos(theta) ** 36 + 5.95179839065608e108 * cos(theta) ** 34 - 1.46767424050904e108 * cos(theta) ** 32 + 3.00564171466756e107 * cos(theta) ** 30 - 5.09728711844206e106 * cos(theta) ** 28 + 7.12564545403512e105 * cos(theta) ** 26 - 8.15722005129065e104 * cos(theta) ** 24 + 7.58044691635091e103 * cos(theta) ** 22 - 5.65412734154685e102 * cos(theta) ** 20 + 3.33628631954628e101 * cos(theta) ** 18 - 1.52875653456298e100 * cos(theta) ** 16 + 5.31125605522751e98 * cos(theta) ** 14 - 1.35574838997392e97 * cos(theta) ** 12 + 2.43680266171783e95 * cos(theta) ** 10 - 2.90479787489543e93 * cos(theta) ** 8 + 2.09949252702819e91 * cos(theta) ** 6 - 7.9345900492373e88 * cos(theta) ** 4 + 1.17259951466561e86 * cos(theta) ** 2 - 2.82758503657008e82 ) * cos(42 * phi) ) # @torch.jit.script def Yl100_m43(theta, phi): return ( 1.83401612536192e-85 * (1.0 - cos(theta) ** 2) ** 21.5 * ( 1.64490880420129e110 * cos(theta) ** 57 - 1.31923339271621e111 * cos(theta) ** 55 + 4.97223753346085e111 * cos(theta) ** 53 - 1.17123817454855e112 * cos(theta) ** 51 + 1.93436356547851e112 * cos(theta) ** 49 - 2.38200162618086e112 * cos(theta) ** 47 + 2.27067350784966e112 * cos(theta) ** 45 - 1.71731609837369e112 * cos(theta) ** 43 + 1.04779488975098e112 * cos(theta) ** 41 - 5.21670801211779e111 * cos(theta) ** 39 + 2.1356799099333e111 * cos(theta) ** 37 - 7.22378273243058e110 * cos(theta) ** 35 + 2.02361145282307e110 * cos(theta) ** 33 - 4.69655756962892e109 * cos(theta) ** 31 + 9.01692514400267e108 * cos(theta) ** 29 - 1.42724039316378e108 * cos(theta) ** 27 + 1.85266781804913e107 * cos(theta) ** 25 - 1.95773281230976e106 * cos(theta) ** 23 + 1.6676983215972e105 * cos(theta) ** 21 - 1.13082546830937e104 * cos(theta) ** 19 + 6.0053153751833e102 * cos(theta) ** 17 - 2.44601045530078e101 * cos(theta) ** 15 + 7.43575847731851e99 * cos(theta) ** 13 - 1.62689806796871e98 * cos(theta) ** 11 + 2.43680266171783e96 * cos(theta) ** 9 - 2.32383829991634e94 * cos(theta) ** 7 + 1.25969551621691e92 * cos(theta) ** 5 - 3.17383601969492e89 * cos(theta) ** 3 + 2.34519902933122e86 * cos(theta) ) * cos(43 * phi) ) # @torch.jit.script def Yl100_m44(theta, phi): return ( 2.0243447511841e-87 * (1.0 - cos(theta) ** 2) ** 22 * ( 9.37598018394736e111 * cos(theta) ** 56 - 7.25578365993916e112 * cos(theta) ** 54 + 2.63528589273425e113 * cos(theta) ** 52 - 5.97331469019763e113 * cos(theta) ** 50 + 9.47838147084468e113 * cos(theta) ** 48 - 1.11954076430501e114 * cos(theta) ** 46 + 1.02180307853235e114 * cos(theta) ** 44 - 7.38445922300687e113 * cos(theta) ** 42 + 4.295959047979e113 * cos(theta) ** 40 - 2.03451612472594e113 * cos(theta) ** 38 + 7.90201566675323e112 * cos(theta) ** 36 - 2.5283239563507e112 * cos(theta) ** 34 + 6.67791779431612e111 * cos(theta) ** 32 - 1.45593284658497e111 * cos(theta) ** 30 + 2.61490829176078e110 * cos(theta) ** 28 - 3.8535490615422e109 * cos(theta) ** 26 + 4.63166954512283e108 * cos(theta) ** 24 - 4.50278546831244e107 * cos(theta) ** 22 + 3.50216647535412e106 * cos(theta) ** 20 - 2.1485683897878e105 * cos(theta) ** 18 + 1.02090361378116e104 * cos(theta) ** 16 - 3.66901568295116e102 * cos(theta) ** 14 + 9.66648602051406e100 * cos(theta) ** 12 - 1.78958787476558e99 * cos(theta) ** 10 + 2.19312239554605e97 * cos(theta) ** 8 - 1.62668680994144e95 * cos(theta) ** 6 + 6.29847758108457e92 * cos(theta) ** 4 - 9.52150805908476e89 * cos(theta) ** 2 + 2.34519902933122e86 ) * cos(44 * phi) ) # @torch.jit.script def Yl100_m45(theta, phi): return ( 2.24650019862496e-89 * (1.0 - cos(theta) ** 2) ** 22.5 * ( 5.25054890301052e113 * cos(theta) ** 55 - 3.91812317636715e114 * cos(theta) ** 53 + 1.37034866422181e115 * cos(theta) ** 51 - 2.98665734509881e115 * cos(theta) ** 49 + 4.54962310600545e115 * cos(theta) ** 47 - 5.14988751580303e115 * cos(theta) ** 45 + 4.49593354554232e115 * cos(theta) ** 43 - 3.10147287366289e115 * cos(theta) ** 41 + 1.7183836191916e115 * cos(theta) ** 39 - 7.73116127395856e114 * cos(theta) ** 37 + 2.84472564003116e114 * cos(theta) ** 35 - 8.59630145159239e113 * cos(theta) ** 33 + 2.13693369418116e113 * cos(theta) ** 31 - 4.3677985397549e112 * cos(theta) ** 29 + 7.32174321693017e111 * cos(theta) ** 27 - 1.00192275600097e111 * cos(theta) ** 25 + 1.11160069082948e110 * cos(theta) ** 23 - 9.90612803028736e108 * cos(theta) ** 21 + 7.00433295070824e107 * cos(theta) ** 19 - 3.86742310161805e106 * cos(theta) ** 17 + 1.63344578204986e105 * cos(theta) ** 15 - 5.13662195613163e103 * cos(theta) ** 13 + 1.15997832246169e102 * cos(theta) ** 11 - 1.78958787476558e100 * cos(theta) ** 9 + 1.75449791643684e98 * cos(theta) ** 7 - 9.76012085964865e95 * cos(theta) ** 5 + 2.51939103243383e93 * cos(theta) ** 3 - 1.90430161181695e90 * cos(theta) ) * cos(45 * phi) ) # @torch.jit.script def Yl100_m46(theta, phi): return ( 2.50696741243304e-91 * (1.0 - cos(theta) ** 2) ** 23 * ( 2.88780189665579e115 * cos(theta) ** 54 - 2.07660528347459e116 * cos(theta) ** 52 + 6.98877818753123e116 * cos(theta) ** 50 - 1.46346209909842e117 * cos(theta) ** 48 + 2.13832285982256e117 * cos(theta) ** 46 - 2.31744938211136e117 * cos(theta) ** 44 + 1.9332514245832e117 * cos(theta) ** 42 - 1.27160387820178e117 * cos(theta) ** 40 + 6.70169611484724e116 * cos(theta) ** 38 - 2.86052967136467e116 * cos(theta) ** 36 + 9.95653974010906e115 * cos(theta) ** 34 - 2.83677947902549e115 * cos(theta) ** 32 + 6.62449445196159e114 * cos(theta) ** 30 - 1.26666157652892e114 * cos(theta) ** 28 + 1.97687066857115e113 * cos(theta) ** 26 - 2.50480689000243e112 * cos(theta) ** 24 + 2.5566815889078e111 * cos(theta) ** 22 - 2.08028688636035e110 * cos(theta) ** 20 + 1.33082326063457e109 * cos(theta) ** 18 - 6.57461927275068e107 * cos(theta) ** 16 + 2.45016867307479e106 * cos(theta) ** 14 - 6.67760854297112e104 * cos(theta) ** 12 + 1.27597615470786e103 * cos(theta) ** 10 - 1.61062908728902e101 * cos(theta) ** 8 + 1.22814854150579e99 * cos(theta) ** 6 - 4.88006042982432e96 * cos(theta) ** 4 + 7.55817309730148e93 * cos(theta) ** 2 - 1.90430161181695e90 ) * cos(46 * phi) ) # @torch.jit.script def Yl100_m47(theta, phi): return ( 2.81379945642078e-93 * (1.0 - cos(theta) ** 2) ** 23.5 * ( 1.55941302419412e117 * cos(theta) ** 53 - 1.07983474740679e118 * cos(theta) ** 51 + 3.49438909376561e118 * cos(theta) ** 49 - 7.02461807567241e118 * cos(theta) ** 47 + 9.83628515518378e118 * cos(theta) ** 45 - 1.019677728129e119 * cos(theta) ** 43 + 8.11965598324944e118 * cos(theta) ** 41 - 5.08641551280713e118 * cos(theta) ** 39 + 2.54664452364195e118 * cos(theta) ** 37 - 1.02979068169128e118 * cos(theta) ** 35 + 3.38522351163708e117 * cos(theta) ** 33 - 9.07769433288156e116 * cos(theta) ** 31 + 1.98734833558848e116 * cos(theta) ** 29 - 3.54665241428097e115 * cos(theta) ** 27 + 5.13986373828498e114 * cos(theta) ** 25 - 6.01153653600582e113 * cos(theta) ** 23 + 5.62469949559717e112 * cos(theta) ** 21 - 4.16057377272069e111 * cos(theta) ** 19 + 2.39548186914222e110 * cos(theta) ** 17 - 1.05193908364011e109 * cos(theta) ** 15 + 3.4302361423047e107 * cos(theta) ** 13 - 8.01313025156534e105 * cos(theta) ** 11 + 1.27597615470786e104 * cos(theta) ** 9 - 1.28850326983122e102 * cos(theta) ** 7 + 7.36889124903473e99 * cos(theta) ** 5 - 1.95202417192973e97 * cos(theta) ** 3 + 1.5116346194603e94 * cos(theta) ) * cos(47 * phi) ) # @torch.jit.script def Yl100_m48(theta, phi): return ( 3.17705218843653e-95 * (1.0 - cos(theta) ** 2) ** 24 * ( 8.26488902822886e118 * cos(theta) ** 52 - 5.50715721177461e119 * cos(theta) ** 50 + 1.71225065594515e120 * cos(theta) ** 48 - 3.30157049556603e120 * cos(theta) ** 46 + 4.4263283198327e120 * cos(theta) ** 44 - 4.3846142309547e120 * cos(theta) ** 42 + 3.32905895313227e120 * cos(theta) ** 40 - 1.98370204999478e120 * cos(theta) ** 38 + 9.42258473747522e119 * cos(theta) ** 36 - 3.60426738591948e119 * cos(theta) ** 34 + 1.11712375884024e119 * cos(theta) ** 32 - 2.81408524319328e118 * cos(theta) ** 30 + 5.76331017320658e117 * cos(theta) ** 28 - 9.57596151855863e116 * cos(theta) ** 26 + 1.28496593457125e116 * cos(theta) ** 24 - 1.38265340328134e115 * cos(theta) ** 22 + 1.1811868940754e114 * cos(theta) ** 20 - 7.90509016816932e112 * cos(theta) ** 18 + 4.07231917754177e111 * cos(theta) ** 16 - 1.57790862546016e110 * cos(theta) ** 14 + 4.45930698499611e108 * cos(theta) ** 12 - 8.81444327672187e106 * cos(theta) ** 10 + 1.14837853923707e105 * cos(theta) ** 8 - 9.01952288881851e102 * cos(theta) ** 6 + 3.68444562451736e100 * cos(theta) ** 4 - 5.85607251578919e97 * cos(theta) ** 2 + 1.5116346194603e94 ) * cos(48 * phi) ) # @torch.jit.script def Yl100_m49(theta, phi): return ( 3.60935453010183e-97 * (1.0 - cos(theta) ** 2) ** 24.5 * ( 4.29774229467901e120 * cos(theta) ** 51 - 2.7535786058873e121 * cos(theta) ** 49 + 8.21880314853672e121 * cos(theta) ** 47 - 1.51872242796038e122 * cos(theta) ** 45 + 1.94758446072639e122 * cos(theta) ** 43 - 1.84153797700097e122 * cos(theta) ** 41 + 1.33162358125291e122 * cos(theta) ** 39 - 7.53806778998017e121 * cos(theta) ** 37 + 3.39213050549108e121 * cos(theta) ** 35 - 1.22545091121262e121 * cos(theta) ** 33 + 3.57479602828876e120 * cos(theta) ** 31 - 8.44225572957985e119 * cos(theta) ** 29 + 1.61372684849784e119 * cos(theta) ** 27 - 2.48974999482524e118 * cos(theta) ** 25 + 3.08391824297099e117 * cos(theta) ** 23 - 3.04183748721895e116 * cos(theta) ** 21 + 2.36237378815081e115 * cos(theta) ** 19 - 1.42291623027048e114 * cos(theta) ** 17 + 6.51571068406683e112 * cos(theta) ** 15 - 2.20907207564423e111 * cos(theta) ** 13 + 5.35116838199533e109 * cos(theta) ** 11 - 8.81444327672187e107 * cos(theta) ** 9 + 9.18702831389657e105 * cos(theta) ** 7 - 5.41171373329111e103 * cos(theta) ** 5 + 1.47377824980695e101 * cos(theta) ** 3 - 1.17121450315784e98 * cos(theta) ) * cos(49 * phi) ) # @torch.jit.script def Yl100_m50(theta, phi): return ( 4.12666130126779e-99 * (1.0 - cos(theta) ** 2) ** 25 * ( 2.19184857028629e122 * cos(theta) ** 50 - 1.34925351688478e123 * cos(theta) ** 48 + 3.86283747981226e123 * cos(theta) ** 46 - 6.83425092582169e123 * cos(theta) ** 44 + 8.37461318112347e123 * cos(theta) ** 42 - 7.55030570570399e123 * cos(theta) ** 40 + 5.19333196688634e123 * cos(theta) ** 38 - 2.78908508229266e123 * cos(theta) ** 36 + 1.18724567692188e123 * cos(theta) ** 34 - 4.04398800700166e122 * cos(theta) ** 32 + 1.10818676876952e122 * cos(theta) ** 30 - 2.44825416157816e121 * cos(theta) ** 28 + 4.35706249094418e120 * cos(theta) ** 26 - 6.22437498706311e119 * cos(theta) ** 24 + 7.09301195883327e118 * cos(theta) ** 22 - 6.38785872315979e117 * cos(theta) ** 20 + 4.48851019748654e116 * cos(theta) ** 18 - 2.41895759145981e115 * cos(theta) ** 16 + 9.77356602610025e113 * cos(theta) ** 14 - 2.8717936983375e112 * cos(theta) ** 12 + 5.88628522019487e110 * cos(theta) ** 10 - 7.93299894904969e108 * cos(theta) ** 8 + 6.4309198197276e106 * cos(theta) ** 6 - 2.70585686664555e104 * cos(theta) ** 4 + 4.42133474942084e101 * cos(theta) ** 2 - 1.17121450315784e98 ) * cos(50 * phi) ) # @torch.jit.script def Yl100_m51(theta, phi): return ( 4.74925347851153e-101 * (1.0 - cos(theta) ** 2) ** 25.5 * ( 1.09592428514315e124 * cos(theta) ** 49 - 6.47641688104694e124 * cos(theta) ** 47 + 1.77690524071364e125 * cos(theta) ** 45 - 3.00707040736154e125 * cos(theta) ** 43 + 3.51733753607186e125 * cos(theta) ** 41 - 3.02012228228159e125 * cos(theta) ** 39 + 1.97346614741681e125 * cos(theta) ** 37 - 1.00407062962536e125 * cos(theta) ** 35 + 4.03663530153438e124 * cos(theta) ** 33 - 1.29407616224053e124 * cos(theta) ** 31 + 3.32456030630855e123 * cos(theta) ** 29 - 6.85511165241884e122 * cos(theta) ** 27 + 1.13283624764549e122 * cos(theta) ** 25 - 1.49384999689515e121 * cos(theta) ** 23 + 1.56046263094332e120 * cos(theta) ** 21 - 1.27757174463196e119 * cos(theta) ** 19 + 8.07931835547577e117 * cos(theta) ** 17 - 3.8703321463357e116 * cos(theta) ** 15 + 1.36829924365403e115 * cos(theta) ** 13 - 3.446152438005e113 * cos(theta) ** 11 + 5.88628522019487e111 * cos(theta) ** 9 - 6.34639915923975e109 * cos(theta) ** 7 + 3.85855189183656e107 * cos(theta) ** 5 - 1.08234274665822e105 * cos(theta) ** 3 + 8.84266949884168e101 * cos(theta) ) * cos(51 * phi) ) # @torch.jit.script def Yl100_m52(theta, phi): return ( 5.50307606138827e-103 * (1.0 - cos(theta) ** 2) ** 26 * ( 5.37002899720142e125 * cos(theta) ** 48 - 3.04391593409206e126 * cos(theta) ** 46 + 7.99607358321138e126 * cos(theta) ** 44 - 1.29304027516546e127 * cos(theta) ** 42 + 1.44210838978946e127 * cos(theta) ** 40 - 1.17784769008982e127 * cos(theta) ** 38 + 7.30182474544219e126 * cos(theta) ** 36 - 3.51424720368876e126 * cos(theta) ** 34 + 1.33208964950635e126 * cos(theta) ** 32 - 4.01163610294565e125 * cos(theta) ** 30 + 9.64122488829478e124 * cos(theta) ** 28 - 1.85088014615309e124 * cos(theta) ** 26 + 2.83209061911372e123 * cos(theta) ** 24 - 3.43585499285884e122 * cos(theta) ** 22 + 3.27697152498097e121 * cos(theta) ** 20 - 2.42738631480072e120 * cos(theta) ** 18 + 1.37348412043088e119 * cos(theta) ** 16 - 5.80549821950355e117 * cos(theta) ** 14 + 1.77878901675024e116 * cos(theta) ** 12 - 3.79076768180549e114 * cos(theta) ** 10 + 5.29765669817538e112 * cos(theta) ** 8 - 4.44247941146782e110 * cos(theta) ** 6 + 1.92927594591828e108 * cos(theta) ** 4 - 3.24702823997466e105 * cos(theta) ** 2 + 8.84266949884168e101 ) * cos(52 * phi) ) # @torch.jit.script def Yl100_m53(theta, phi): return ( 6.42153984137775e-105 * (1.0 - cos(theta) ** 2) ** 26.5 * ( 2.57761391865668e127 * cos(theta) ** 47 - 1.40020132968235e128 * cos(theta) ** 45 + 3.51827237661301e128 * cos(theta) ** 43 - 5.43076915569495e128 * cos(theta) ** 41 + 5.76843355915785e128 * cos(theta) ** 39 - 4.47582122234132e128 * cos(theta) ** 37 + 2.62865690835919e128 * cos(theta) ** 35 - 1.19484404925418e128 * cos(theta) ** 33 + 4.26268687842031e127 * cos(theta) ** 31 - 1.20349083088369e127 * cos(theta) ** 29 + 2.69954296872254e126 * cos(theta) ** 27 - 4.81228837999802e125 * cos(theta) ** 25 + 6.79701748587292e124 * cos(theta) ** 23 - 7.55888098428944e123 * cos(theta) ** 21 + 6.55394304996194e122 * cos(theta) ** 19 - 4.3692953666413e121 * cos(theta) ** 17 + 2.19757459268941e120 * cos(theta) ** 15 - 8.12769750730496e118 * cos(theta) ** 13 + 2.13454682010029e117 * cos(theta) ** 11 - 3.79076768180549e115 * cos(theta) ** 9 + 4.2381253585403e113 * cos(theta) ** 7 - 2.66548764688069e111 * cos(theta) ** 5 + 7.71710378367312e108 * cos(theta) ** 3 - 6.49405647994933e105 * cos(theta) ) * cos(53 * phi) ) # @torch.jit.script def Yl100_m54(theta, phi): return ( 7.54796524942109e-107 * (1.0 - cos(theta) ** 2) ** 27 * ( 1.21147854176864e129 * cos(theta) ** 46 - 6.30090598357056e129 * cos(theta) ** 44 + 1.51285712194359e130 * cos(theta) ** 42 - 2.22661535383493e130 * cos(theta) ** 40 + 2.24968908807156e130 * cos(theta) ** 38 - 1.65605385226629e130 * cos(theta) ** 36 + 9.20029917925716e129 * cos(theta) ** 34 - 3.94298536253878e129 * cos(theta) ** 32 + 1.3214329323103e129 * cos(theta) ** 30 - 3.49012340956271e128 * cos(theta) ** 28 + 7.28876601555086e127 * cos(theta) ** 26 - 1.20307209499951e127 * cos(theta) ** 24 + 1.56331402175077e126 * cos(theta) ** 22 - 1.58736500670078e125 * cos(theta) ** 20 + 1.24524917949277e124 * cos(theta) ** 18 - 7.4278021232902e122 * cos(theta) ** 16 + 3.29636188903411e121 * cos(theta) ** 14 - 1.05660067594965e120 * cos(theta) ** 12 + 2.34800150211032e118 * cos(theta) ** 10 - 3.41169091362494e116 * cos(theta) ** 8 + 2.96668775097821e114 * cos(theta) ** 6 - 1.33274382344035e112 * cos(theta) ** 4 + 2.31513113510193e109 * cos(theta) ** 2 - 6.49405647994933e105 ) * cos(54 * phi) ) # @torch.jit.script def Yl100_m55(theta, phi): return ( 8.93892157607132e-109 * (1.0 - cos(theta) ** 2) ** 27.5 * ( 5.57280129213574e130 * cos(theta) ** 45 - 2.77239863277105e131 * cos(theta) ** 43 + 6.35399991216309e131 * cos(theta) ** 41 - 8.90646141533971e131 * cos(theta) ** 39 + 8.54881853467193e131 * cos(theta) ** 37 - 5.96179386815864e131 * cos(theta) ** 35 + 3.12810172094744e131 * cos(theta) ** 33 - 1.26175531601241e131 * cos(theta) ** 31 + 3.96429879693089e130 * cos(theta) ** 29 - 9.77234554677559e129 * cos(theta) ** 27 + 1.89507916404322e129 * cos(theta) ** 25 - 2.88737302799881e128 * cos(theta) ** 23 + 3.4392908478517e127 * cos(theta) ** 21 - 3.17473001340157e126 * cos(theta) ** 19 + 2.24144852308698e125 * cos(theta) ** 17 - 1.18844833972643e124 * cos(theta) ** 15 + 4.61490664464776e122 * cos(theta) ** 13 - 1.26792081113957e121 * cos(theta) ** 11 + 2.34800150211032e119 * cos(theta) ** 9 - 2.72935273089996e117 * cos(theta) ** 7 + 1.78001265058693e115 * cos(theta) ** 5 - 5.33097529376139e112 * cos(theta) ** 3 + 4.63026227020387e109 * cos(theta) ) * cos(55 * phi) ) # @torch.jit.script def Yl100_m56(theta, phi): return ( 1.06688244974945e-110 * (1.0 - cos(theta) ** 2) ** 28 * ( 2.50776058146108e132 * cos(theta) ** 44 - 1.19213141209155e133 * cos(theta) ** 42 + 2.60513996398687e133 * cos(theta) ** 40 - 3.47351995198249e133 * cos(theta) ** 38 + 3.16306285782861e133 * cos(theta) ** 36 - 2.08662785385552e133 * cos(theta) ** 34 + 1.03227356791265e133 * cos(theta) ** 32 - 3.91144147963847e132 * cos(theta) ** 30 + 1.14964665110996e132 * cos(theta) ** 28 - 2.63853329762941e131 * cos(theta) ** 26 + 4.73769791010806e130 * cos(theta) ** 24 - 6.64095796439727e129 * cos(theta) ** 22 + 7.22251078048856e128 * cos(theta) ** 20 - 6.03198702546297e127 * cos(theta) ** 18 + 3.81046248924787e126 * cos(theta) ** 16 - 1.78267250958965e125 * cos(theta) ** 14 + 5.99937863804209e123 * cos(theta) ** 12 - 1.39471289225353e122 * cos(theta) ** 10 + 2.11320135189929e120 * cos(theta) ** 8 - 1.91054691162997e118 * cos(theta) ** 6 + 8.90006325293464e115 * cos(theta) ** 4 - 1.59929258812842e113 * cos(theta) ** 2 + 4.63026227020387e109 ) * cos(56 * phi) ) # @torch.jit.script def Yl100_m57(theta, phi): return ( 1.283631619847e-112 * (1.0 - cos(theta) ** 2) ** 28.5 * ( 1.10341465584288e134 * cos(theta) ** 43 - 5.00695193078451e134 * cos(theta) ** 41 + 1.04205598559475e135 * cos(theta) ** 39 - 1.31993758175335e135 * cos(theta) ** 37 + 1.1387026288183e135 * cos(theta) ** 35 - 7.09453470310878e134 * cos(theta) ** 33 + 3.30327541732049e134 * cos(theta) ** 31 - 1.17343244389154e134 * cos(theta) ** 29 + 3.21901062310788e133 * cos(theta) ** 27 - 6.86018657383646e132 * cos(theta) ** 25 + 1.13704749842593e132 * cos(theta) ** 23 - 1.4610107521674e131 * cos(theta) ** 21 + 1.44450215609771e130 * cos(theta) ** 19 - 1.08575766458334e129 * cos(theta) ** 17 + 6.0967399827966e127 * cos(theta) ** 15 - 2.49574151342551e126 * cos(theta) ** 13 + 7.1992543656505e124 * cos(theta) ** 11 - 1.39471289225353e123 * cos(theta) ** 9 + 1.69056108151943e121 * cos(theta) ** 7 - 1.14632814697798e119 * cos(theta) ** 5 + 3.56002530117386e116 * cos(theta) ** 3 - 3.19858517625683e113 * cos(theta) ) * cos(57 * phi) ) # @torch.jit.script def Yl100_m58(theta, phi): return ( 1.55731919038657e-114 * (1.0 - cos(theta) ** 2) ** 29 * ( 4.74468302012437e135 * cos(theta) ** 42 - 2.05285029162165e136 * cos(theta) ** 40 + 4.06401834381951e136 * cos(theta) ** 38 - 4.88376905248738e136 * cos(theta) ** 36 + 3.98545920086405e136 * cos(theta) ** 34 - 2.3411964520259e136 * cos(theta) ** 32 + 1.02401537936935e136 * cos(theta) ** 30 - 3.40295408728547e135 * cos(theta) ** 28 + 8.69132868239128e134 * cos(theta) ** 26 - 1.71504664345912e134 * cos(theta) ** 24 + 2.61520924637965e133 * cos(theta) ** 22 - 3.06812257955154e132 * cos(theta) ** 20 + 2.74455409658565e131 * cos(theta) ** 18 - 1.84578802979167e130 * cos(theta) ** 16 + 9.1451099741949e128 * cos(theta) ** 14 - 3.24446396745316e127 * cos(theta) ** 12 + 7.91917980221555e125 * cos(theta) ** 10 - 1.25524160302818e124 * cos(theta) ** 8 + 1.1833927570636e122 * cos(theta) ** 6 - 5.73164073488991e119 * cos(theta) ** 4 + 1.06800759035216e117 * cos(theta) ** 2 - 3.19858517625683e113 ) * cos(58 * phi) ) # @torch.jit.script def Yl100_m59(theta, phi): return ( 1.90569953479049e-116 * (1.0 - cos(theta) ** 2) ** 29.5 * ( 1.99276686845224e137 * cos(theta) ** 41 - 8.2114011664866e137 * cos(theta) ** 39 + 1.54432697065141e138 * cos(theta) ** 37 - 1.75815685889546e138 * cos(theta) ** 35 + 1.35505612829378e138 * cos(theta) ** 33 - 7.49182864648288e137 * cos(theta) ** 31 + 3.07204613810806e137 * cos(theta) ** 29 - 9.52827144439932e136 * cos(theta) ** 27 + 2.25974545742173e136 * cos(theta) ** 25 - 4.11611194430188e135 * cos(theta) ** 23 + 5.75346034203522e134 * cos(theta) ** 21 - 6.13624515910308e133 * cos(theta) ** 19 + 4.94019737385418e132 * cos(theta) ** 17 - 2.95326084766667e131 * cos(theta) ** 15 + 1.28031539638729e130 * cos(theta) ** 13 - 3.89335676094379e128 * cos(theta) ** 11 + 7.91917980221555e126 * cos(theta) ** 9 - 1.00419328242254e125 * cos(theta) ** 7 + 7.10035654238162e122 * cos(theta) ** 5 - 2.29265629395596e120 * cos(theta) ** 3 + 2.13601518070431e117 * cos(theta) ) * cos(59 * phi) ) # @torch.jit.script def Yl100_m60(theta, phi): return ( 2.3528947910424e-118 * (1.0 - cos(theta) ** 2) ** 30 * ( 8.17034416065417e138 * cos(theta) ** 40 - 3.20244645492977e139 * cos(theta) ** 38 + 5.71400979141023e139 * cos(theta) ** 36 - 6.1535490061341e139 * cos(theta) ** 34 + 4.47168522336947e139 * cos(theta) ** 32 - 2.32246688040969e139 * cos(theta) ** 30 + 8.90893380051337e138 * cos(theta) ** 28 - 2.57263328998782e138 * cos(theta) ** 26 + 5.64936364355433e137 * cos(theta) ** 24 - 9.46705747189432e136 * cos(theta) ** 22 + 1.2082266718274e136 * cos(theta) ** 20 - 1.16588658022959e135 * cos(theta) ** 18 + 8.3983355355521e133 * cos(theta) ** 16 - 4.42989127150001e132 * cos(theta) ** 14 + 1.66441001530347e131 * cos(theta) ** 12 - 4.28269243703817e129 * cos(theta) ** 10 + 7.127261821994e127 * cos(theta) ** 8 - 7.0293529769578e125 * cos(theta) ** 6 + 3.55017827119081e123 * cos(theta) ** 4 - 6.87796888186789e120 * cos(theta) ** 2 + 2.13601518070431e117 ) * cos(60 * phi) ) # @torch.jit.script def Yl100_m61(theta, phi): return ( 2.93197035314659e-120 * (1.0 - cos(theta) ** 2) ** 30.5 * ( 3.26813766426167e140 * cos(theta) ** 39 - 1.21692965287331e141 * cos(theta) ** 37 + 2.05704352490768e141 * cos(theta) ** 35 - 2.09220666208559e141 * cos(theta) ** 33 + 1.43093927147823e141 * cos(theta) ** 31 - 6.96740064122907e140 * cos(theta) ** 29 + 2.49450146414374e140 * cos(theta) ** 27 - 6.68884655396832e139 * cos(theta) ** 25 + 1.35584727445304e139 * cos(theta) ** 23 - 2.08275264381675e138 * cos(theta) ** 21 + 2.41645334365479e137 * cos(theta) ** 19 - 2.09859584441325e136 * cos(theta) ** 17 + 1.34373368568834e135 * cos(theta) ** 15 - 6.20184778010001e133 * cos(theta) ** 13 + 1.99729201836417e132 * cos(theta) ** 11 - 4.28269243703817e130 * cos(theta) ** 9 + 5.7018094575952e128 * cos(theta) ** 7 - 4.21761178617468e126 * cos(theta) ** 5 + 1.42007130847632e124 * cos(theta) ** 3 - 1.37559377637358e121 * cos(theta) ) * cos(61 * phi) ) # @torch.jit.script def Yl100_m62(theta, phi): return ( 3.68866966184522e-122 * (1.0 - cos(theta) ** 2) ** 31 * ( 1.27457368906205e142 * cos(theta) ** 38 - 4.50263971563126e142 * cos(theta) ** 36 + 7.19965233717689e142 * cos(theta) ** 34 - 6.90428198488246e142 * cos(theta) ** 32 + 4.43591174158251e142 * cos(theta) ** 30 - 2.02054618595643e142 * cos(theta) ** 28 + 6.73515395318811e141 * cos(theta) ** 26 - 1.67221163849208e141 * cos(theta) ** 24 + 3.11844873124199e140 * cos(theta) ** 22 - 4.37378055201518e139 * cos(theta) ** 20 + 4.59126135294411e138 * cos(theta) ** 18 - 3.56761293550253e137 * cos(theta) ** 16 + 2.0156005285325e136 * cos(theta) ** 14 - 8.06240211413002e134 * cos(theta) ** 12 + 2.19702122020058e133 * cos(theta) ** 10 - 3.85442319333435e131 * cos(theta) ** 8 + 3.99126662031664e129 * cos(theta) ** 6 - 2.10880589308734e127 * cos(theta) ** 4 + 4.26021392542897e124 * cos(theta) ** 2 - 1.37559377637358e121 ) * cos(62 * phi) ) # @torch.jit.script def Yl100_m63(theta, phi): return ( 4.68688355097872e-124 * (1.0 - cos(theta) ** 2) ** 31.5 * ( 4.84338001843579e143 * cos(theta) ** 37 - 1.62095029762725e144 * cos(theta) ** 35 + 2.44788179464014e144 * cos(theta) ** 33 - 2.20937023516239e144 * cos(theta) ** 31 + 1.33077352247475e144 * cos(theta) ** 29 - 5.65752932067801e143 * cos(theta) ** 27 + 1.75114002782891e143 * cos(theta) ** 25 - 4.013307932381e142 * cos(theta) ** 23 + 6.86058720873238e141 * cos(theta) ** 21 - 8.74756110403035e140 * cos(theta) ** 19 + 8.26427043529939e139 * cos(theta) ** 17 - 5.70818069680405e138 * cos(theta) ** 15 + 2.82184073994551e137 * cos(theta) ** 13 - 9.67488253695602e135 * cos(theta) ** 11 + 2.19702122020058e134 * cos(theta) ** 9 - 3.08353855466748e132 * cos(theta) ** 7 + 2.39475997218998e130 * cos(theta) ** 5 - 8.43522357234936e127 * cos(theta) ** 3 + 8.52042785085794e124 * cos(theta) ) * cos(63 * phi) ) # @torch.jit.script def Yl100_m64(theta, phi): return ( 6.01674183435769e-126 * (1.0 - cos(theta) ** 2) ** 32 * ( 1.79205060682124e145 * cos(theta) ** 36 - 5.67332604169539e145 * cos(theta) ** 34 + 8.07800992231247e145 * cos(theta) ** 32 - 6.8490477290034e145 * cos(theta) ** 30 + 3.85924321517678e145 * cos(theta) ** 28 - 1.52753291658306e145 * cos(theta) ** 26 + 4.37785006957227e144 * cos(theta) ** 24 - 9.23060824447629e143 * cos(theta) ** 22 + 1.4407233138338e143 * cos(theta) ** 20 - 1.66203660976577e142 * cos(theta) ** 18 + 1.4049259740009e141 * cos(theta) ** 16 - 8.56227104520608e139 * cos(theta) ** 14 + 3.66839296192916e138 * cos(theta) ** 12 - 1.06423707906516e137 * cos(theta) ** 10 + 1.97731909818052e135 * cos(theta) ** 8 - 2.15847698826724e133 * cos(theta) ** 6 + 1.19737998609499e131 * cos(theta) ** 4 - 2.53056707170481e128 * cos(theta) ** 2 + 8.52042785085794e124 ) * cos(64 * phi) ) # @torch.jit.script def Yl100_m65(theta, phi): return ( 7.80671194223321e-128 * (1.0 - cos(theta) ** 2) ** 32.5 * ( 6.45138218455647e146 * cos(theta) ** 35 - 1.92893085417643e147 * cos(theta) ** 33 + 2.58496317513999e147 * cos(theta) ** 31 - 2.05471431870102e147 * cos(theta) ** 29 + 1.0805881002495e147 * cos(theta) ** 27 - 3.97158558311596e146 * cos(theta) ** 25 + 1.05068401669734e146 * cos(theta) ** 23 - 2.03073381378478e145 * cos(theta) ** 21 + 2.8814466276676e144 * cos(theta) ** 19 - 2.99166589757838e143 * cos(theta) ** 17 + 2.24788155840144e142 * cos(theta) ** 15 - 1.19871794632885e141 * cos(theta) ** 13 + 4.40207155431499e139 * cos(theta) ** 11 - 1.06423707906516e138 * cos(theta) ** 9 + 1.58185527854442e136 * cos(theta) ** 7 - 1.29508619296034e134 * cos(theta) ** 5 + 4.78951994437997e131 * cos(theta) ** 3 - 5.06113414340962e128 * cos(theta) ) * cos(65 * phi) ) # @torch.jit.script def Yl100_m66(theta, phi): return ( 1.02418895622595e-129 * (1.0 - cos(theta) ** 2) ** 33 * ( 2.25798376459477e148 * cos(theta) ** 34 - 6.36547181878223e148 * cos(theta) ** 32 + 8.01338584293397e148 * cos(theta) ** 30 - 5.95867152423296e148 * cos(theta) ** 28 + 2.91758787067365e148 * cos(theta) ** 26 - 9.92896395778991e147 * cos(theta) ** 24 + 2.41657323840389e147 * cos(theta) ** 22 - 4.26454100894805e146 * cos(theta) ** 20 + 5.47474859256844e145 * cos(theta) ** 18 - 5.08583202588325e144 * cos(theta) ** 16 + 3.37182233760215e143 * cos(theta) ** 14 - 1.55833333022751e142 * cos(theta) ** 12 + 4.84227870974649e140 * cos(theta) ** 10 - 9.57813371158646e138 * cos(theta) ** 8 + 1.10729869498109e137 * cos(theta) ** 6 - 6.47543096480172e134 * cos(theta) ** 4 + 1.43685598331399e132 * cos(theta) ** 2 - 5.06113414340962e128 ) * cos(66 * phi) ) # @torch.jit.script def Yl100_m67(theta, phi): return ( 1.35919695981912e-131 * (1.0 - cos(theta) ** 2) ** 33.5 * ( 7.6771447996222e149 * cos(theta) ** 33 - 2.03695098201031e150 * cos(theta) ** 31 + 2.40401575288019e150 * cos(theta) ** 29 - 1.66842802678523e150 * cos(theta) ** 27 + 7.58572846375149e149 * cos(theta) ** 25 - 2.38295134986958e149 * cos(theta) ** 23 + 5.31646112448856e148 * cos(theta) ** 21 - 8.52908201789609e147 * cos(theta) ** 19 + 9.85454746662319e146 * cos(theta) ** 17 - 8.1373312414132e145 * cos(theta) ** 15 + 4.72055127264301e144 * cos(theta) ** 13 - 1.86999999627301e143 * cos(theta) ** 11 + 4.84227870974649e141 * cos(theta) ** 9 - 7.66250696926917e139 * cos(theta) ** 7 + 6.64379216988656e137 * cos(theta) ** 5 - 2.59017238592069e135 * cos(theta) ** 3 + 2.87371196662798e132 * cos(theta) ) * cos(67 * phi) ) # @torch.jit.script def Yl100_m68(theta, phi): return ( 1.82545353809288e-133 * (1.0 - cos(theta) ** 2) ** 34 * ( 2.53345778387533e151 * cos(theta) ** 32 - 6.31454804423197e151 * cos(theta) ** 30 + 6.97164568335256e151 * cos(theta) ** 28 - 4.50475567232011e151 * cos(theta) ** 26 + 1.89643211593787e151 * cos(theta) ** 24 - 5.48078810470003e150 * cos(theta) ** 22 + 1.1164568361426e150 * cos(theta) ** 20 - 1.62052558340026e149 * cos(theta) ** 18 + 1.67527306932594e148 * cos(theta) ** 16 - 1.22059968621198e147 * cos(theta) ** 14 + 6.13671665443592e145 * cos(theta) ** 12 - 2.05699999590031e144 * cos(theta) ** 10 + 4.35805083877184e142 * cos(theta) ** 8 - 5.36375487848842e140 * cos(theta) ** 6 + 3.32189608494328e138 * cos(theta) ** 4 - 7.77051715776206e135 * cos(theta) ** 2 + 2.87371196662798e132 ) * cos(68 * phi) ) # @torch.jit.script def Yl100_m69(theta, phi): return ( 2.48228956832009e-135 * (1.0 - cos(theta) ** 2) ** 34.5 * ( 8.10706490840105e152 * cos(theta) ** 31 - 1.89436441326959e153 * cos(theta) ** 29 + 1.95206079133872e153 * cos(theta) ** 27 - 1.17123647480323e153 * cos(theta) ** 25 + 4.55143707825089e152 * cos(theta) ** 23 - 1.20577338303401e152 * cos(theta) ** 21 + 2.2329136722852e151 * cos(theta) ** 19 - 2.91694605012046e150 * cos(theta) ** 17 + 2.68043691092151e149 * cos(theta) ** 15 - 1.70883956069677e148 * cos(theta) ** 13 + 7.3640599853231e146 * cos(theta) ** 11 - 2.05699999590031e145 * cos(theta) ** 9 + 3.48644067101747e143 * cos(theta) ** 7 - 3.21825292709305e141 * cos(theta) ** 5 + 1.32875843397731e139 * cos(theta) ** 3 - 1.55410343155241e136 * cos(theta) ) * cos(69 * phi) ) # @torch.jit.script def Yl100_m70(theta, phi): return ( 3.41937816871774e-137 * (1.0 - cos(theta) ** 2) ** 35 * ( 2.51319012160432e154 * cos(theta) ** 30 - 5.49365679848182e154 * cos(theta) ** 28 + 5.27056413661453e154 * cos(theta) ** 26 - 2.92809118700807e154 * cos(theta) ** 24 + 1.04683052799771e154 * cos(theta) ** 22 - 2.53212410437141e153 * cos(theta) ** 20 + 4.24253597734187e152 * cos(theta) ** 18 - 4.95880828520479e151 * cos(theta) ** 16 + 4.02065536638226e150 * cos(theta) ** 14 - 2.2214914289058e149 * cos(theta) ** 12 + 8.10046598385541e147 * cos(theta) ** 10 - 1.85129999631028e146 * cos(theta) ** 8 + 2.44050846971223e144 * cos(theta) ** 6 - 1.60912646354652e142 * cos(theta) ** 4 + 3.98627530193194e139 * cos(theta) ** 2 - 1.55410343155241e136 ) * cos(70 * phi) ) # @torch.jit.script def Yl100_m71(theta, phi): return ( 4.77406636631576e-139 * (1.0 - cos(theta) ** 2) ** 35.5 * ( 7.53957036481297e155 * cos(theta) ** 29 - 1.53822390357491e156 * cos(theta) ** 27 + 1.37034667551978e156 * cos(theta) ** 25 - 7.02741884881938e155 * cos(theta) ** 23 + 2.30302716159495e155 * cos(theta) ** 21 - 5.06424820874283e154 * cos(theta) ** 19 + 7.63656475921537e153 * cos(theta) ** 17 - 7.93409325632766e152 * cos(theta) ** 15 + 5.62891751293516e151 * cos(theta) ** 13 - 2.66578971468696e150 * cos(theta) ** 11 + 8.10046598385541e148 * cos(theta) ** 9 - 1.48103999704822e147 * cos(theta) ** 7 + 1.46430508182734e145 * cos(theta) ** 5 - 6.4365058541861e142 * cos(theta) ** 3 + 7.97255060386387e139 * cos(theta) ) * cos(71 * phi) ) # @torch.jit.script def Yl100_m72(theta, phi): return ( 6.75966587477127e-141 * (1.0 - cos(theta) ** 2) ** 36 * ( 2.18647540579576e157 * cos(theta) ** 28 - 4.15320453965225e157 * cos(theta) ** 26 + 3.42586668879945e157 * cos(theta) ** 24 - 1.61630633522846e157 * cos(theta) ** 22 + 4.8363570393494e156 * cos(theta) ** 20 - 9.62207159661137e155 * cos(theta) ** 18 + 1.29821600906661e155 * cos(theta) ** 16 - 1.19011398844915e154 * cos(theta) ** 14 + 7.31759276681571e152 * cos(theta) ** 12 - 2.93236868615566e151 * cos(theta) ** 10 + 7.29041938546987e149 * cos(theta) ** 8 - 1.03672799793376e148 * cos(theta) ** 6 + 7.32152540913669e145 * cos(theta) ** 4 - 1.93095175625583e143 * cos(theta) ** 2 + 7.97255060386387e139 ) * cos(72 * phi) ) # @torch.jit.script def Yl100_m73(theta, phi): return ( 9.71232401092137e-143 * (1.0 - cos(theta) ** 2) ** 36.5 * ( 6.12213113622813e158 * cos(theta) ** 27 - 1.07983318030959e159 * cos(theta) ** 25 + 8.22208005311867e158 * cos(theta) ** 23 - 3.55587393750261e158 * cos(theta) ** 21 + 9.6727140786988e157 * cos(theta) ** 19 - 1.73197288739005e157 * cos(theta) ** 17 + 2.07714561450658e156 * cos(theta) ** 15 - 1.66615958382881e155 * cos(theta) ** 13 + 8.78111132017886e153 * cos(theta) ** 11 - 2.93236868615566e152 * cos(theta) ** 9 + 5.8323355083759e150 * cos(theta) ** 7 - 6.22036798760253e148 * cos(theta) ** 5 + 2.92861016365468e146 * cos(theta) ** 3 - 3.86190351251166e143 * cos(theta) ) * cos(73 * phi) ) # @torch.jit.script def Yl100_m74(theta, phi): return ( 1.41698957850213e-144 * (1.0 - cos(theta) ** 2) ** 37 * ( 1.6529754067816e160 * cos(theta) ** 26 - 2.69958295077396e160 * cos(theta) ** 24 + 1.89107841221729e160 * cos(theta) ** 22 - 7.46733526875547e159 * cos(theta) ** 20 + 1.83781567495277e159 * cos(theta) ** 18 - 2.94435390856308e158 * cos(theta) ** 16 + 3.11571842175987e157 * cos(theta) ** 14 - 2.16600745897745e156 * cos(theta) ** 12 + 9.65922245219674e154 * cos(theta) ** 10 - 2.63913181754009e153 * cos(theta) ** 8 + 4.08263485586313e151 * cos(theta) ** 6 - 3.11018399380127e149 * cos(theta) ** 4 + 8.78583049096403e146 * cos(theta) ** 2 - 3.86190351251166e143 ) * cos(74 * phi) ) # @torch.jit.script def Yl100_m75(theta, phi): return ( 2.10068511356121e-146 * (1.0 - cos(theta) ** 2) ** 37.5 * ( 4.29773605763215e161 * cos(theta) ** 25 - 6.47899908185751e161 * cos(theta) ** 23 + 4.16037250687805e161 * cos(theta) ** 21 - 1.49346705375109e161 * cos(theta) ** 19 + 3.30806821491499e160 * cos(theta) ** 17 - 4.71096625370093e159 * cos(theta) ** 15 + 4.36200579046382e158 * cos(theta) ** 13 - 2.59920895077294e157 * cos(theta) ** 11 + 9.65922245219674e155 * cos(theta) ** 9 - 2.11130545403207e154 * cos(theta) ** 7 + 2.44958091351788e152 * cos(theta) ** 5 - 1.24407359752051e150 * cos(theta) ** 3 + 1.75716609819281e147 * cos(theta) ) * cos(75 * phi) ) # @torch.jit.script def Yl100_m76(theta, phi): return ( 3.16690196562167e-148 * (1.0 - cos(theta) ** 2) ** 38 * ( 1.07443401440804e163 * cos(theta) ** 24 - 1.49016978882723e163 * cos(theta) ** 22 + 8.7367822644439e162 * cos(theta) ** 20 - 2.83758740212708e162 * cos(theta) ** 18 + 5.62371596535548e161 * cos(theta) ** 16 - 7.06644938055139e160 * cos(theta) ** 14 + 5.67060752760297e159 * cos(theta) ** 12 - 2.85912984585024e158 * cos(theta) ** 10 + 8.69330020697707e156 * cos(theta) ** 8 - 1.47791381782245e155 * cos(theta) ** 6 + 1.22479045675894e153 * cos(theta) ** 4 - 3.73222079256152e150 * cos(theta) ** 2 + 1.75716609819281e147 ) * cos(76 * phi) ) # @torch.jit.script def Yl100_m77(theta, phi): return ( 4.85894927820603e-150 * (1.0 - cos(theta) ** 2) ** 38.5 * ( 2.57864163457929e164 * cos(theta) ** 23 - 3.2783735354199e164 * cos(theta) ** 21 + 1.74735645288878e164 * cos(theta) ** 19 - 5.10765732382874e163 * cos(theta) ** 17 + 8.99794554456877e162 * cos(theta) ** 15 - 9.89302913277194e161 * cos(theta) ** 13 + 6.80472903312356e160 * cos(theta) ** 11 - 2.85912984585024e159 * cos(theta) ** 9 + 6.95464016558165e157 * cos(theta) ** 7 - 8.86748290693471e155 * cos(theta) ** 5 + 4.89916182703575e153 * cos(theta) ** 3 - 7.46444158512304e150 * cos(theta) ) * cos(77 * phi) ) # @torch.jit.script def Yl100_m78(theta, phi): return ( 7.59396246831315e-152 * (1.0 - cos(theta) ** 2) ** 39 * ( 5.93087575953237e165 * cos(theta) ** 22 - 6.88458442438179e165 * cos(theta) ** 20 + 3.31997726048868e165 * cos(theta) ** 18 - 8.68301745050886e164 * cos(theta) ** 16 + 1.34969183168532e164 * cos(theta) ** 14 - 1.28609378726035e163 * cos(theta) ** 12 + 7.48520193643592e161 * cos(theta) ** 10 - 2.57321686126521e160 * cos(theta) ** 8 + 4.86824811590716e158 * cos(theta) ** 6 - 4.43374145346736e156 * cos(theta) ** 4 + 1.46974854811073e154 * cos(theta) ** 2 - 7.46444158512304e150 ) * cos(78 * phi) ) # @torch.jit.script def Yl100_m79(theta, phi): return ( 1.21012599575438e-153 * (1.0 - cos(theta) ** 2) ** 39.5 * ( 1.30479266709712e167 * cos(theta) ** 21 - 1.37691688487636e167 * cos(theta) ** 19 + 5.97595906887963e166 * cos(theta) ** 17 - 1.38928279208142e166 * cos(theta) ** 15 + 1.88956856435944e165 * cos(theta) ** 13 - 1.54331254471242e164 * cos(theta) ** 11 + 7.48520193643592e162 * cos(theta) ** 9 - 2.05857348901217e161 * cos(theta) ** 7 + 2.92094886954429e159 * cos(theta) ** 5 - 1.77349658138694e157 * cos(theta) ** 3 + 2.93949709622145e154 * cos(theta) ) * cos(79 * phi) ) # @torch.jit.script def Yl100_m80(theta, phi): return ( 1.96827007922269e-155 * (1.0 - cos(theta) ** 2) ** 40 * ( 2.74006460090395e168 * cos(theta) ** 20 - 2.61614208126508e168 * cos(theta) ** 18 + 1.01591304170954e168 * cos(theta) ** 16 - 2.08392418812213e167 * cos(theta) ** 14 + 2.45643913366727e166 * cos(theta) ** 12 - 1.69764379918367e165 * cos(theta) ** 10 + 6.73668174279232e163 * cos(theta) ** 8 - 1.44100144230852e162 * cos(theta) ** 6 + 1.46047443477215e160 * cos(theta) ** 4 - 5.32048974416083e157 * cos(theta) ** 2 + 2.93949709622145e154 ) * cos(80 * phi) ) # @torch.jit.script def Yl100_m81(theta, phi): return ( 3.27137556380441e-157 * (1.0 - cos(theta) ** 2) ** 40.5 * ( 5.48012920180791e169 * cos(theta) ** 19 - 4.70905574627715e169 * cos(theta) ** 17 + 1.62546086673526e169 * cos(theta) ** 15 - 2.91749386337098e168 * cos(theta) ** 13 + 2.94772696040073e167 * cos(theta) ** 11 - 1.69764379918367e166 * cos(theta) ** 9 + 5.38934539423386e164 * cos(theta) ** 7 - 8.64600865385111e162 * cos(theta) ** 5 + 5.84189773908859e160 * cos(theta) ** 3 - 1.06409794883217e158 * cos(theta) ) * cos(81 * phi) ) # @torch.jit.script def Yl100_m82(theta, phi): return ( 5.56311337477837e-159 * (1.0 - cos(theta) ** 2) ** 41 * ( 1.0412245483435e171 * cos(theta) ** 18 - 8.00539476867115e170 * cos(theta) ** 16 + 2.43819130010289e170 * cos(theta) ** 14 - 3.79274202238227e169 * cos(theta) ** 12 + 3.2424996564408e168 * cos(theta) ** 10 - 1.5278794192653e167 * cos(theta) ** 8 + 3.7725417759637e165 * cos(theta) ** 6 - 4.32300432692556e163 * cos(theta) ** 4 + 1.75256932172658e161 * cos(theta) ** 2 - 1.06409794883217e158 ) * cos(82 * phi) ) # @torch.jit.script def Yl100_m83(theta, phi): return ( 9.69295314555688e-161 * (1.0 - cos(theta) ** 2) ** 41.5 * ( 1.8742041870183e172 * cos(theta) ** 17 - 1.28086316298738e172 * cos(theta) ** 15 + 3.41346782014404e171 * cos(theta) ** 13 - 4.55129042685872e170 * cos(theta) ** 11 + 3.2424996564408e169 * cos(theta) ** 9 - 1.22230353541224e168 * cos(theta) ** 7 + 2.26352506557822e166 * cos(theta) ** 5 - 1.72920173077022e164 * cos(theta) ** 3 + 3.50513864345315e161 * cos(theta) ) * cos(83 * phi) ) # @torch.jit.script def Yl100_m84(theta, phi): return ( 1.7330964841394e-162 * (1.0 - cos(theta) ** 2) ** 42 * ( 3.18614711793112e173 * cos(theta) ** 16 - 1.92129474448108e173 * cos(theta) ** 14 + 4.43750816618726e172 * cos(theta) ** 12 - 5.0064194695446e171 * cos(theta) ** 10 + 2.91824969079672e170 * cos(theta) ** 8 - 8.55612474788568e168 * cos(theta) ** 6 + 1.13176253278911e167 * cos(theta) ** 4 - 5.18760519231067e164 * cos(theta) ** 2 + 3.50513864345315e161 ) * cos(84 * phi) ) # @torch.jit.script def Yl100_m85(theta, phi): return ( 3.18549469159664e-164 * (1.0 - cos(theta) ** 2) ** 42.5 * ( 5.09783538868979e174 * cos(theta) ** 15 - 2.68981264227351e174 * cos(theta) ** 13 + 5.32500979942471e173 * cos(theta) ** 11 - 5.0064194695446e172 * cos(theta) ** 9 + 2.33459975263738e171 * cos(theta) ** 7 - 5.13367484873141e169 * cos(theta) ** 5 + 4.52705013115644e167 * cos(theta) ** 3 - 1.03752103846213e165 * cos(theta) ) * cos(85 * phi) ) # @torch.jit.script def Yl100_m86(theta, phi): return ( 6.03079802674505e-166 * (1.0 - cos(theta) ** 2) ** 43 * ( 7.64675308303468e175 * cos(theta) ** 14 - 3.49675643495556e175 * cos(theta) ** 12 + 5.85751077936718e174 * cos(theta) ** 10 - 4.50577752259014e173 * cos(theta) ** 8 + 1.63421982684616e172 * cos(theta) ** 6 - 2.5668374243657e170 * cos(theta) ** 4 + 1.35811503934693e168 * cos(theta) ** 2 - 1.03752103846213e165 ) * cos(86 * phi) ) # @torch.jit.script def Yl100_m87(theta, phi): return ( 1.17866384774513e-167 * (1.0 - cos(theta) ** 2) ** 43.5 * ( 1.07054543162486e177 * cos(theta) ** 13 - 4.19610772194667e176 * cos(theta) ** 11 + 5.85751077936718e175 * cos(theta) ** 9 - 3.60462201807211e174 * cos(theta) ** 7 + 9.80531896107698e172 * cos(theta) ** 5 - 1.02673496974628e171 * cos(theta) ** 3 + 2.71623007869387e168 * cos(theta) ) * cos(87 * phi) ) # @torch.jit.script def Yl100_m88(theta, phi): return ( 2.38418176577027e-169 * (1.0 - cos(theta) ** 2) ** 44 * ( 1.39170906111231e178 * cos(theta) ** 12 - 4.61571849414134e177 * cos(theta) ** 10 + 5.27175970143046e176 * cos(theta) ** 8 - 2.52323541265048e175 * cos(theta) ** 6 + 4.90265948053849e173 * cos(theta) ** 4 - 3.08020490923884e171 * cos(theta) ** 2 + 2.71623007869387e168 ) * cos(88 * phi) ) # @torch.jit.script def Yl100_m89(theta, phi): return ( 5.00631113698649e-171 * (1.0 - cos(theta) ** 2) ** 44.5 * ( 1.67005087333477e179 * cos(theta) ** 11 - 4.61571849414134e178 * cos(theta) ** 9 + 4.21740776114437e177 * cos(theta) ** 7 - 1.51394124759029e176 * cos(theta) ** 5 + 1.9610637922154e174 * cos(theta) ** 3 - 6.16040981847769e171 * cos(theta) ) * cos(89 * phi) ) # @torch.jit.script def Yl100_m90(theta, phi): return ( 1.09507709196003e-172 * (1.0 - cos(theta) ** 2) ** 45 * ( 1.83705596066825e180 * cos(theta) ** 10 - 4.1541466447272e179 * cos(theta) ** 8 + 2.95218543280106e178 * cos(theta) ** 6 - 7.56970623795143e176 * cos(theta) ** 4 + 5.88319137664619e174 * cos(theta) ** 2 - 6.16040981847769e171 ) * cos(90 * phi) ) # @torch.jit.script def Yl100_m91(theta, phi): return ( 2.50569386920174e-174 * (1.0 - cos(theta) ** 2) ** 45.5 * ( 1.83705596066825e181 * cos(theta) ** 9 - 3.32331731578176e180 * cos(theta) ** 7 + 1.77131125968064e179 * cos(theta) ** 5 - 3.02788249518057e177 * cos(theta) ** 3 + 1.17663827532924e175 * cos(theta) ) * cos(91 * phi) ) # @torch.jit.script def Yl100_m92(theta, phi): return ( 6.02776262454342e-176 * (1.0 - cos(theta) ** 2) ** 46 * ( 1.65335036460143e182 * cos(theta) ** 8 - 2.32632212104723e181 * cos(theta) ** 6 + 8.85655629840317e179 * cos(theta) ** 4 - 9.08364748554172e177 * cos(theta) ** 2 + 1.17663827532924e175 ) * cos(92 * phi) ) # @torch.jit.script def Yl100_m93(theta, phi): return ( 1.53402519759458e-177 * (1.0 - cos(theta) ** 2) ** 46.5 * ( 1.32268029168114e183 * cos(theta) ** 7 - 1.39579327262834e182 * cos(theta) ** 5 + 3.54262251936127e180 * cos(theta) ** 3 - 1.81672949710834e178 * cos(theta) ) * cos(93 * phi) ) # @torch.jit.script def Yl100_m94(theta, phi): return ( 4.16277184303861e-179 * (1.0 - cos(theta) ** 2) ** 47 * ( 9.25876204176799e183 * cos(theta) ** 6 - 6.9789663631417e182 * cos(theta) ** 4 + 1.06278675580838e181 * cos(theta) ** 2 - 1.81672949710834e178 ) * cos(94 * phi) ) # @torch.jit.script def Yl100_m95(theta, phi): return ( 1.21699747582751e-180 * (1.0 - cos(theta) ** 2) ** 47.5 * ( 5.55525722506079e184 * cos(theta) ** 5 - 2.79158654525668e183 * cos(theta) ** 3 + 2.12557351161676e181 * cos(theta) ) * cos(95 * phi) ) # @torch.jit.script def Yl100_m96(theta, phi): return ( 3.88755583485137e-182 * (1.0 - cos(theta) ** 2) ** 48 * ( 2.7776286125304e185 * cos(theta) ** 4 - 8.37475963577004e183 * cos(theta) ** 2 + 2.12557351161676e181 ) * cos(96 * phi) ) # @torch.jit.script def Yl100_m97(theta, phi): return ( 1.38488442448223e-183 * (1.0 - cos(theta) ** 2) ** 48.5 * (1.11105144501216e186 * cos(theta) ** 3 - 1.67495192715401e184 * cos(theta)) * cos(97 * phi) ) # @torch.jit.script def Yl100_m98(theta, phi): return ( 5.68224962145241e-185 * (1.0 - cos(theta) ** 2) ** 49 * (3.33315433503648e186 * cos(theta) ** 2 - 1.67495192715401e184) * cos(98 * phi) ) # @torch.jit.script def Yl100_m99(theta, phi): return ( 18.9873427997529 * (1.0 - cos(theta) ** 2) ** 49.5 * cos(99 * phi) * cos(theta) ) # @torch.jit.script def Yl100_m100(theta, phi): return 1.34260788504189 * (1.0 - cos(theta) ** 2) ** 50 * cos(100 * phi)