DRgaddam commited on
Commit
247a0eb
·
verified ·
1 Parent(s): 362a3b9

addinng file

Browse files
transparent_background/InSPyReNet.py ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.nn.functional as F
6
+ import numpy as np
7
+
8
+ filepath = os.path.abspath(__file__)
9
+ repopath = os.path.split(filepath)[0]
10
+ sys.path.append(repopath)
11
+
12
+ from transparent_background.modules.layers import *
13
+ from transparent_background.modules.context_module import *
14
+ from transparent_background.modules.attention_module import *
15
+ from transparent_background.modules.decoder_module import *
16
+
17
+ from transparent_background.backbones.SwinTransformer import SwinB
18
+
19
+ class InSPyReNet(nn.Module):
20
+ def __init__(self, backbone, in_channels, depth=64, base_size=[384, 384], threshold=512, **kwargs):
21
+ super(InSPyReNet, self).__init__()
22
+ self.backbone = backbone
23
+ self.in_channels = in_channels
24
+ self.depth = depth
25
+ self.base_size = base_size
26
+ self.threshold = threshold
27
+
28
+ self.context1 = PAA_e(self.in_channels[0], self.depth, base_size=self.base_size, stage=0)
29
+ self.context2 = PAA_e(self.in_channels[1], self.depth, base_size=self.base_size, stage=1)
30
+ self.context3 = PAA_e(self.in_channels[2], self.depth, base_size=self.base_size, stage=2)
31
+ self.context4 = PAA_e(self.in_channels[3], self.depth, base_size=self.base_size, stage=3)
32
+ self.context5 = PAA_e(self.in_channels[4], self.depth, base_size=self.base_size, stage=4)
33
+
34
+ self.decoder = PAA_d(self.depth * 3, depth=self.depth, base_size=base_size, stage=2)
35
+
36
+ self.attention0 = SICA(self.depth , depth=self.depth, base_size=self.base_size, stage=0, lmap_in=True)
37
+ self.attention1 = SICA(self.depth * 2, depth=self.depth, base_size=self.base_size, stage=1, lmap_in=True)
38
+ self.attention2 = SICA(self.depth * 2, depth=self.depth, base_size=self.base_size, stage=2 )
39
+
40
+ self.ret = lambda x, target: F.interpolate(x, size=target.shape[-2:], mode='bilinear', align_corners=False)
41
+ self.res = lambda x, size: F.interpolate(x, size=size, mode='bilinear', align_corners=False)
42
+ self.des = lambda x, size: F.interpolate(x, size=size, mode='nearest')
43
+
44
+ self.image_pyramid = ImagePyramid(7, 1)
45
+
46
+ self.transition0 = Transition(17)
47
+ self.transition1 = Transition(9)
48
+ self.transition2 = Transition(5)
49
+
50
+ self.forward = self.forward_inference
51
+
52
+ def to(self, device):
53
+ self.image_pyramid.to(device)
54
+ self.transition0.to(device)
55
+ self.transition1.to(device)
56
+ self.transition2.to(device)
57
+ super(InSPyReNet, self).to(device)
58
+ return self
59
+
60
+ def cuda(self, idx=None):
61
+ if idx is None:
62
+ idx = torch.cuda.current_device()
63
+
64
+ self.to(device="cuda:{}".format(idx))
65
+ return self
66
+
67
+ def eval(self):
68
+ super(InSPyReNet, self).train(False)
69
+ self.forward = self.forward_inference
70
+ return self
71
+
72
+ def forward_inspyre(self, x):
73
+ B, _, H, W = x.shape
74
+
75
+ x1, x2, x3, x4, x5 = self.backbone(x)
76
+
77
+ x1 = self.context1(x1) #4
78
+ x2 = self.context2(x2) #4
79
+ x3 = self.context3(x3) #8
80
+ x4 = self.context4(x4) #16
81
+ x5 = self.context5(x5) #32
82
+
83
+ f3, d3 = self.decoder([x3, x4, x5]) #16
84
+
85
+ f3 = self.res(f3, (H // 4, W // 4 ))
86
+ f2, p2 = self.attention2(torch.cat([x2, f3], dim=1), d3.detach())
87
+ d2 = self.image_pyramid.reconstruct(d3.detach(), p2) #4
88
+
89
+ x1 = self.res(x1, (H // 2, W // 2))
90
+ f2 = self.res(f2, (H // 2, W // 2))
91
+ f1, p1 = self.attention1(torch.cat([x1, f2], dim=1), d2.detach(), p2.detach()) #2
92
+ d1 = self.image_pyramid.reconstruct(d2.detach(), p1) #2
93
+
94
+ f1 = self.res(f1, (H, W))
95
+ _, p0 = self.attention0(f1, d1.detach(), p1.detach()) #2
96
+ d0 = self.image_pyramid.reconstruct(d1.detach(), p0) #2
97
+
98
+ out = dict()
99
+ out['saliency'] = [d3, d2, d1, d0]
100
+ out['laplacian'] = [p2, p1, p0]
101
+
102
+ return out
103
+
104
+ def forward_inference(self, img, img_lr=None):
105
+ B, _, H, W = img.shape
106
+
107
+ if self.threshold is None:
108
+ out = self.forward_inspyre(img)
109
+ d3, d2, d1, d0 = out['saliency']
110
+ p2, p1, p0 = out['laplacian']
111
+
112
+ elif (H <= self.threshold or W <= self.threshold):
113
+ if img_lr is not None:
114
+ out = self.forward_inspyre(img_lr)
115
+ else:
116
+ out = self.forward_inspyre(img)
117
+ d3, d2, d1, d0 = out['saliency']
118
+ p2, p1, p0 = out['laplacian']
119
+
120
+ else:
121
+ # LR Saliency Pyramid
122
+ lr_out = self.forward_inspyre(img_lr)
123
+ lr_d3, lr_d2, lr_d1, lr_d0 = lr_out['saliency']
124
+ lr_p2, lr_p1, lr_p0 = lr_out['laplacian']
125
+
126
+ # HR Saliency Pyramid
127
+ hr_out = self.forward_inspyre(img)
128
+ hr_d3, hr_d2, hr_d1, hr_d0 = hr_out['saliency']
129
+ hr_p2, hr_p1, hr_p0 = hr_out['laplacian']
130
+
131
+ # Pyramid Blending
132
+ d3 = self.ret(lr_d0, hr_d3)
133
+
134
+ t2 = self.ret(self.transition2(d3), hr_p2)
135
+ p2 = t2 * hr_p2
136
+ d2 = self.image_pyramid.reconstruct(d3, p2)
137
+
138
+ t1 = self.ret(self.transition1(d2), hr_p1)
139
+ p1 = t1 * hr_p1
140
+ d1 = self.image_pyramid.reconstruct(d2, p1)
141
+
142
+ t0 = self.ret(self.transition0(d1), hr_p0)
143
+ p0 = t0 * hr_p0
144
+ d0 = self.image_pyramid.reconstruct(d1, p0)
145
+
146
+ pred = torch.sigmoid(d0)
147
+ pred = (pred - pred.min()) / (pred.max() - pred.min() + 1e-8)
148
+
149
+ return pred
150
+
151
+ def InSPyReNet_SwinB(depth, pretrained, base_size, **kwargs):
152
+ return InSPyReNet(SwinB(pretrained=pretrained), [128, 128, 256, 512, 1024], depth, base_size, **kwargs)
transparent_background/Remover.py ADDED
@@ -0,0 +1,419 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ import tqdm
4
+ import wget
5
+ import gdown
6
+ import torch
7
+ import shutil
8
+ import base64
9
+ import warnings
10
+ import importlib
11
+
12
+ import numpy as np
13
+ import torch.nn.functional as F
14
+ import torchvision.transforms as transforms
15
+ import albumentations as A
16
+ import albumentations.pytorch as AP
17
+
18
+ from PIL import Image
19
+ from io import BytesIO
20
+ from packaging import version
21
+
22
+ filepath = os.path.abspath(__file__)
23
+ repopath = os.path.split(filepath)[0]
24
+ sys.path.append(repopath)
25
+
26
+ from transparent_background.InSPyReNet import InSPyReNet_SwinB
27
+ from transparent_background.utils import *
28
+
29
+ class Remover:
30
+ def __init__(self, mode="base", jit=False, device=None, ckpt=None, resize='static'):
31
+ """
32
+ Args:
33
+ mode (str): Choose among below options
34
+ base -> slow & large gpu memory required, high quality results
35
+ fast -> resize input into small size for fast computation
36
+ base-nightly -> nightly release for base mode
37
+ jit (bool): use TorchScript for fast computation
38
+ device (str, optional): specifying device for computation. find available GPU resource if not specified.
39
+ ckpt (str, optional): specifying model checkpoint. find downloaded checkpoint or try download if not specified.
40
+ fast (bool, optional, DEPRECATED): replaced by mode argument. use fast mode if True.
41
+ """
42
+ cfg_path = os.environ.get('TRANSPARENT_BACKGROUND_FILE_PATH', os.path.abspath(os.path.expanduser('~')))
43
+ home_dir = os.path.join(cfg_path, ".transparent-background")
44
+ os.makedirs(home_dir, exist_ok=True)
45
+
46
+ if not os.path.isfile(os.path.join(home_dir, "config.yaml")):
47
+ shutil.copy(os.path.join(repopath, "config.yaml"), os.path.join(home_dir, "config.yaml"))
48
+ self.meta = load_config(os.path.join(home_dir, "config.yaml"))[mode]
49
+
50
+ if device is not None:
51
+ self.device = device
52
+ else:
53
+ self.device = "cpu"
54
+ if torch.cuda.is_available():
55
+ self.device = "cuda:0"
56
+ elif (
57
+ version.parse(torch.__version__) >= version.parse("1.13")
58
+ and torch.backends.mps.is_available()
59
+ ):
60
+ self.device = "mps:0"
61
+
62
+ download = False
63
+ if ckpt is None:
64
+ ckpt_dir = home_dir
65
+ ckpt_name = self.meta.ckpt_name
66
+
67
+ if not os.path.isfile(os.path.join(ckpt_dir, ckpt_name)):
68
+ download = True
69
+ elif (
70
+ self.meta.md5
71
+ != hashlib.md5(
72
+ open(os.path.join(ckpt_dir, ckpt_name), "rb").read()
73
+ ).hexdigest()
74
+ ):
75
+ if self.meta.md5 is not None:
76
+ download = True
77
+
78
+ if download:
79
+ if 'drive.google.com' in self.meta.url:
80
+ gdown.download(self.meta.url, os.path.join(ckpt_dir, ckpt_name), fuzzy=True, proxy=self.meta.http_proxy)
81
+ elif 'github.com' in self.meta.url:
82
+ wget.download(self.meta.url, os.path.join(ckpt_dir, ckpt_name))
83
+ else:
84
+ raise NotImplementedError('Please use valid URL')
85
+ else:
86
+ ckpt_dir, ckpt_name = os.path.split(os.path.abspath(ckpt))
87
+
88
+ self.model = InSPyReNet_SwinB(depth=64, pretrained=False, threshold=None, **self.meta)
89
+ self.model.eval()
90
+ self.model.load_state_dict(
91
+ torch.load(os.path.join(ckpt_dir, ckpt_name), map_location="cpu", weights_only=True),
92
+ strict=True,
93
+ )
94
+ self.model = self.model.to(self.device)
95
+
96
+ if jit:
97
+ ckpt_name = self.meta.ckpt_name.replace(
98
+ ".pth", "_{}.pt".format(self.device)
99
+ )
100
+ try:
101
+ traced_model = torch.jit.load(
102
+ os.path.join(ckpt_dir, ckpt_name), map_location=self.device
103
+ )
104
+ del self.model
105
+ self.model = traced_model
106
+ except:
107
+ traced_model = torch.jit.trace(
108
+ self.model,
109
+ torch.rand(1, 3, *self.meta.base_size).to(self.device),
110
+ strict=True,
111
+ )
112
+ del self.model
113
+ self.model = traced_model
114
+ torch.jit.save(self.model, os.path.join(ckpt_dir, ckpt_name))
115
+ if resize != 'static':
116
+ warnings.warn('Resizing method for TorchScript mode only supports static resize. Fallback to static.')
117
+ resize = 'static'
118
+
119
+ resize_tf = None
120
+ resize_fn = None
121
+ if resize == 'static':
122
+ resize_tf = static_resize(self.meta.base_size)
123
+ resize_fn = A.Resize(*self.meta.base_size)
124
+ elif resize == 'dynamic':
125
+ if 'base' not in mode:
126
+ warnings.warn('Dynamic resizing only supports base and base-nightly mode. It will cause severe performance degradation with fast mode.')
127
+ resize_tf = dynamic_resize(L=1280)
128
+ resize_fn = dynamic_resize_a(L=1280)
129
+ else:
130
+ raise AttributeError(f'Unsupported resizing method {resize}')
131
+
132
+ self.transform = transforms.Compose(
133
+ [
134
+ resize_tf,
135
+ tonumpy(),
136
+ normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
137
+ totensor(),
138
+ ]
139
+ )
140
+
141
+ self.cv2_transform = A.Compose(
142
+ [
143
+ resize_fn,
144
+ A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
145
+ AP.ToTensorV2(),
146
+ ]
147
+ )
148
+
149
+ self.background = {'img': None, 'name': None, 'shape': None}
150
+ desc = "Mode={}, Device={}, Torchscript={}".format(
151
+ mode, self.device, "enabled" if jit else "disabled"
152
+ )
153
+ print("Settings -> {}".format(desc))
154
+
155
+ def process(self, img, type="rgba", threshold=None, reverse=False):
156
+ """
157
+ Args:
158
+ img (PIL.Image or np.ndarray): input image as PIL.Image or np.ndarray type
159
+ type (str): output type option as below.
160
+ 'rgba' will generate RGBA output regarding saliency score as an alpha map.
161
+ 'green' will change the background with green screen.
162
+ 'white' will change the background with white color.
163
+ '[255, 0, 0]' will change the background with color code [255, 0, 0].
164
+ 'blur' will blur the background.
165
+ 'overlay' will cover the salient object with translucent green color, and highlight the edges.
166
+ Another image file (e.g., 'samples/backgroud.png') will be used as a background, and the object will be overlapped on it.
167
+ threshold (float or str, optional): produce hard prediction w.r.t specified threshold value (0.0 ~ 1.0)
168
+ Returns:
169
+ PIL.Image: output image
170
+
171
+ """
172
+
173
+ if isinstance(img, np.ndarray):
174
+ is_numpy = True
175
+ shape = img.shape[:2]
176
+ x = self.cv2_transform(image=img)["image"]
177
+ else:
178
+ is_numpy = False
179
+ shape = img.size[::-1]
180
+ x = self.transform(img)
181
+
182
+ x = x.unsqueeze(0)
183
+ x = x.to(self.device)
184
+
185
+ with torch.no_grad():
186
+ pred = self.model(x)
187
+
188
+ pred = F.interpolate(pred, shape, mode="bilinear", align_corners=True)
189
+ pred = pred.data.cpu()
190
+ pred = pred.numpy().squeeze()
191
+
192
+ if threshold is not None:
193
+ pred = (pred > float(threshold)).astype(np.float64)
194
+ if reverse:
195
+ pred = 1 - pred
196
+
197
+ img = np.array(img)
198
+
199
+ if type.startswith("["):
200
+ type = [int(i) for i in type[1:-1].split(",")]
201
+
202
+ if type == "map":
203
+ img = (np.stack([pred] * 3, axis=-1) * 255).astype(np.uint8)
204
+
205
+ elif type == "rgba":
206
+ if threshold is None:
207
+ # pymatting is imported here to avoid the overhead in other cases.
208
+ try:
209
+ from pymatting.foreground.estimate_foreground_ml_cupy import estimate_foreground_ml_cupy as estimate_foreground_ml
210
+ except ImportError:
211
+ try:
212
+ from pymatting.foreground.estimate_foreground_ml_pyopencl import estimate_foreground_ml_pyopencl as estimate_foreground_ml
213
+ except ImportError:
214
+ from pymatting import estimate_foreground_ml
215
+ img = estimate_foreground_ml(img / 255.0, pred)
216
+ img = 255 * np.clip(img, 0., 1.) + 0.5
217
+ img = img.astype(np.uint8)
218
+
219
+ r, g, b = cv2.split(img)
220
+ pred = (pred * 255).astype(np.uint8)
221
+ img = cv2.merge([r, g, b, pred])
222
+
223
+ elif type == "green":
224
+ bg = np.stack([np.ones_like(pred)] * 3, axis=-1) * [120, 255, 155]
225
+ img = img * pred[..., np.newaxis] + bg * (1 - pred[..., np.newaxis])
226
+
227
+ elif type == "white":
228
+ bg = np.stack([np.ones_like(pred)] * 3, axis=-1) * [255, 255, 255]
229
+ img = img * pred[..., np.newaxis] + bg * (1 - pred[..., np.newaxis])
230
+
231
+ elif len(type) == 3:
232
+ print(type)
233
+ bg = np.stack([np.ones_like(pred)] * 3, axis=-1) * type
234
+ img = img * pred[..., np.newaxis] + bg * (1 - pred[..., np.newaxis])
235
+
236
+ elif type == "blur":
237
+ img = img * pred[..., np.newaxis] + cv2.GaussianBlur(img, (0, 0), 15) * (
238
+ 1 - pred[..., np.newaxis]
239
+ )
240
+
241
+ elif type == "overlay":
242
+ bg = (
243
+ np.stack([np.ones_like(pred)] * 3, axis=-1) * [120, 255, 155] + img
244
+ ) // 2
245
+ img = bg * pred[..., np.newaxis] + img * (1 - pred[..., np.newaxis])
246
+ border = cv2.Canny(((pred > 0.5) * 255).astype(np.uint8), 50, 100)
247
+ img[border != 0] = [120, 255, 155]
248
+
249
+ elif type.lower().endswith(IMG_EXTS):
250
+ if self.background['name'] != type:
251
+ background_img = cv2.cvtColor(cv2.imread(type), cv2.COLOR_BGR2RGB)
252
+ background_img = cv2.resize(background_img, img.shape[:2][::-1])
253
+
254
+ self.background['img'] = background_img
255
+ self.background['shape'] = img.shape[:2][::-1]
256
+ self.background['name'] = type
257
+
258
+ elif self.background['shape'] != img.shape[:2][::-1]:
259
+ self.background['img'] = cv2.resize(self.background['img'], img.shape[:2][::-1])
260
+ self.background['shape'] = img.shape[:2][::-1]
261
+
262
+ img = img * pred[..., np.newaxis] + self.background['img'] * (
263
+ 1 - pred[..., np.newaxis]
264
+ )
265
+
266
+ if is_numpy:
267
+ return img.astype(np.uint8)
268
+ else:
269
+ return Image.fromarray(img.astype(np.uint8))
270
+
271
+ def to_base64(image):
272
+ buffered = BytesIO()
273
+ image.save(buffered, format="JPEG")
274
+ base64_img = base64.b64encode(buffered.getvalue()).decode("utf-8")
275
+ return base64_img
276
+
277
+ def entry_point(out_type, mode, device, ckpt, source, dest, jit, threshold, resize, save_format=None, reverse=False, flet_progress=None, flet_page=None, preview=None, preview_out=None, options=None):
278
+ warnings.filterwarnings("ignore")
279
+
280
+ remover = Remover(mode=mode, jit=jit, device=device, ckpt=ckpt, resize=resize)
281
+
282
+ if source.isnumeric() is True:
283
+ save_dir = None
284
+ _format = "Webcam"
285
+ if importlib.util.find_spec('pyvirtualcam') is not None:
286
+ try:
287
+ import pyvirtualcam
288
+ vcam = pyvirtualcam.Camera(width=640, height=480, fps=30)
289
+ except:
290
+ vcam = None
291
+ else:
292
+ raise ImportError("pyvirtualcam not found. Install with \"pip install transparent-background[webcam]\"")
293
+
294
+ elif os.path.isdir(source):
295
+ save_dir = os.path.join(os.getcwd(), source.split(os.sep)[-1])
296
+ _format = get_format(os.listdir(source))
297
+
298
+ elif os.path.isfile(source):
299
+ save_dir = os.getcwd()
300
+ _format = get_format([source])
301
+
302
+ else:
303
+ raise FileNotFoundError("File or directory {} is invalid.".format(source))
304
+
305
+ if out_type == "rgba" and _format == "Video":
306
+ raise AttributeError("type 'rgba' cannot be applied to video input.")
307
+
308
+ if dest is not None:
309
+ save_dir = dest
310
+
311
+ if save_dir is not None:
312
+ os.makedirs(save_dir, exist_ok=True)
313
+
314
+ loader = eval(_format + "Loader")(source)
315
+ frame_progress = tqdm.tqdm(
316
+ total=len(loader),
317
+ position=1 if (_format == "Video" and len(loader) > 1) else 0,
318
+ leave=False,
319
+ bar_format="{desc:<15}{percentage:3.0f}%|{bar:50}{r_bar}",
320
+ )
321
+ sample_progress = (
322
+ tqdm.tqdm(
323
+ total=len(loader),
324
+ desc="Total:",
325
+ position=0,
326
+ bar_format="{desc:<15}{percentage:3.0f}%|{bar:50}{r_bar}",
327
+ )
328
+ if (_format == "Video" and len(loader) > 1)
329
+ else None
330
+ )
331
+ if flet_progress is not None:
332
+ assert flet_page is not None
333
+ flet_progress.value = 0
334
+ flet_step = 1 / frame_progress.total
335
+
336
+ writer = None
337
+
338
+ for img, name in loader:
339
+ filename, ext = os.path.splitext(name)
340
+ ext = ext[1:]
341
+ ext = save_format if save_format is not None else ext
342
+ frame_progress.set_description("{}".format(name))
343
+ if out_type.lower().endswith(IMG_EXTS):
344
+ outname = "{}_{}".format(
345
+ filename,
346
+ os.path.splitext(os.path.split(out_type)[-1])[0],
347
+ )
348
+ else:
349
+ outname = "{}_{}".format(filename, out_type)
350
+
351
+ if reverse:
352
+ outname += '_reverse'
353
+
354
+ if _format == "Video" and writer is None:
355
+ writer = cv2.VideoWriter(
356
+ os.path.join(save_dir, f"{outname}.{ext}"),
357
+ cv2.VideoWriter_fourcc(*"mp4v"),
358
+ loader.fps,
359
+ img.size,
360
+ )
361
+ writer.set(cv2.VIDEOWRITER_PROP_QUALITY, 100)
362
+ frame_progress.refresh()
363
+ frame_progress.reset()
364
+ frame_progress.total = int(loader.cap.get(cv2.CAP_PROP_FRAME_COUNT))
365
+ if sample_progress is not None:
366
+ sample_progress.update()
367
+
368
+ if flet_progress is not None:
369
+ assert flet_page is not None
370
+ flet_progress.value = 0
371
+ flet_step = 1 / frame_progress.total
372
+ flet_progress.update()
373
+
374
+ if _format == "Video" and img is None:
375
+ if writer is not None:
376
+ writer.release()
377
+ writer = None
378
+ continue
379
+
380
+ out = remover.process(img, type=out_type, threshold=threshold, reverse=reverse)
381
+
382
+ if _format == "Image":
383
+ if out_type == "rgba" and ext.lower() != 'png':
384
+ warnings.warn('Output format for rgba mode only supports png format. Fallback to png output.')
385
+ ext = 'png'
386
+ out.save(os.path.join(save_dir, f"{outname}.{ext}"))
387
+ elif _format == "Video" and writer is not None:
388
+ writer.write(cv2.cvtColor(np.array(out), cv2.COLOR_BGR2RGB))
389
+ elif _format == "Webcam":
390
+ if vcam is not None:
391
+ vcam.send(np.array(out))
392
+ vcam.sleep_until_next_frame()
393
+ else:
394
+ cv2.imshow(
395
+ "transparent-background", cv2.cvtColor(np.array(out), cv2.COLOR_BGR2RGB)
396
+ )
397
+ frame_progress.update()
398
+ if flet_progress is not None:
399
+ flet_progress.value += flet_step
400
+ flet_progress.update()
401
+
402
+ if out_type == 'rgba':
403
+ o = np.array(out).astype(np.float64)
404
+ o[:, :, :3] *= (o[:, :, -1:] / 255)
405
+ out = Image.fromarray(o[:, :, :3].astype(np.uint8))
406
+
407
+ preview.src_base64 = to_base64(img.resize((480, 300)).convert('RGB'))
408
+ preview_out.src_base64 = to_base64(out.resize((480, 300)).convert('RGB'))
409
+ preview.update()
410
+ preview_out.update()
411
+
412
+ if options is not None and options['abort']:
413
+ break
414
+
415
+ print("\nDone. Results are saved in {}".format(os.path.abspath(save_dir)))
416
+
417
+ def console():
418
+ args = parse_args()
419
+ entry_point(args.type, args.mode, args.device, args.ckpt, args.source, args.dest, args.jit, args.threshold, args.resize, args.format, args.reverse)
transparent_background/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ from transparent_background.Remover import Remover, console
2
+ from transparent_background.gui import gui
transparent_background/backbones/SwinTransformer.py ADDED
@@ -0,0 +1,652 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # Swin Transformer
3
+ # Copyright (c) 2021 Microsoft
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # Written by Ze Liu, Yutong Lin, Yixuan Wei
6
+ # --------------------------------------------------------
7
+
8
+ import torch
9
+ import torch.nn as nn
10
+ import torch.nn.functional as F
11
+ import torch.utils.checkpoint as checkpoint
12
+ import numpy as np
13
+ from timm.layers import DropPath, to_2tuple, trunc_normal_
14
+
15
+ class Mlp(nn.Module):
16
+ """ Multilayer perceptron."""
17
+
18
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
19
+ super().__init__()
20
+ out_features = out_features or in_features
21
+ hidden_features = hidden_features or in_features
22
+ self.fc1 = nn.Linear(in_features, hidden_features)
23
+ self.act = act_layer()
24
+ self.fc2 = nn.Linear(hidden_features, out_features)
25
+ self.drop = nn.Dropout(drop)
26
+
27
+ def forward(self, x):
28
+ x = self.fc1(x)
29
+ x = self.act(x)
30
+ x = self.drop(x)
31
+ x = self.fc2(x)
32
+ x = self.drop(x)
33
+ return x
34
+
35
+
36
+ def window_partition(x, window_size):
37
+ """
38
+ Args:
39
+ x: (B, H, W, C)
40
+ window_size (int): window size
41
+
42
+ Returns:
43
+ windows: (num_windows*B, window_size, window_size, C)
44
+ """
45
+ B, H, W, C = x.shape
46
+ x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
47
+ windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
48
+ return windows
49
+
50
+
51
+ def window_reverse(windows, window_size, H, W):
52
+ """
53
+ Args:
54
+ windows: (num_windows*B, window_size, window_size, C)
55
+ window_size (int): Window size
56
+ H (int): Height of image
57
+ W (int): Width of image
58
+
59
+ Returns:
60
+ x: (B, H, W, C)
61
+ """
62
+ B = int(windows.shape[0] / (H * W / window_size / window_size))
63
+ x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
64
+ x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
65
+ return x
66
+
67
+
68
+ class WindowAttention(nn.Module):
69
+ """ Window based multi-head self attention (W-MSA) module with relative position bias.
70
+ It supports both of shifted and non-shifted window.
71
+
72
+ Args:
73
+ dim (int): Number of input channels.
74
+ window_size (tuple[int]): The height and width of the window.
75
+ num_heads (int): Number of attention heads.
76
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
77
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
78
+ attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
79
+ proj_drop (float, optional): Dropout ratio of output. Default: 0.0
80
+ """
81
+
82
+ def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
83
+
84
+ super().__init__()
85
+ self.dim = dim
86
+ self.window_size = window_size # Wh, Ww
87
+ self.num_heads = num_heads
88
+ head_dim = dim // num_heads
89
+ self.scale = qk_scale or head_dim ** -0.5
90
+
91
+ # define a parameter table of relative position bias
92
+ self.relative_position_bias_table = nn.Parameter(
93
+ torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
94
+
95
+ # get pair-wise relative position index for each token inside the window
96
+ coords_h = torch.arange(self.window_size[0])
97
+ coords_w = torch.arange(self.window_size[1])
98
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
99
+ coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
100
+ relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
101
+ relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
102
+ relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
103
+ relative_coords[:, :, 1] += self.window_size[1] - 1
104
+ relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
105
+ relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
106
+ self.register_buffer("relative_position_index", relative_position_index)
107
+
108
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
109
+ self.attn_drop = nn.Dropout(attn_drop)
110
+ self.proj = nn.Linear(dim, dim)
111
+ self.proj_drop = nn.Dropout(proj_drop)
112
+
113
+ trunc_normal_(self.relative_position_bias_table, std=.02)
114
+ self.softmax = nn.Softmax(dim=-1)
115
+
116
+ def forward(self, x, mask=None):
117
+ """ Forward function.
118
+
119
+ Args:
120
+ x: input features with shape of (num_windows*B, N, C)
121
+ mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
122
+ """
123
+ B_, N, C = x.shape
124
+ qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
125
+ q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
126
+
127
+ q = q * self.scale
128
+ attn = (q @ k.transpose(-2, -1))
129
+
130
+ relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
131
+ self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
132
+ relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
133
+ attn = attn + relative_position_bias.unsqueeze(0)
134
+
135
+ if mask is not None:
136
+ nW = mask.shape[0]
137
+ attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
138
+ attn = attn.view(-1, self.num_heads, N, N)
139
+ attn = self.softmax(attn)
140
+ else:
141
+ attn = self.softmax(attn)
142
+
143
+ attn = self.attn_drop(attn)
144
+
145
+ x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
146
+ x = self.proj(x)
147
+ x = self.proj_drop(x)
148
+ return x
149
+
150
+
151
+ class SwinTransformerBlock(nn.Module):
152
+ """ Swin Transformer Block.
153
+
154
+ Args:
155
+ dim (int): Number of input channels.
156
+ num_heads (int): Number of attention heads.
157
+ window_size (int): Window size.
158
+ shift_size (int): Shift size for SW-MSA.
159
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
160
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
161
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
162
+ drop (float, optional): Dropout rate. Default: 0.0
163
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
164
+ drop_path (float, optional): Stochastic depth rate. Default: 0.0
165
+ act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
166
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
167
+ """
168
+
169
+ def __init__(self, dim, num_heads, window_size=7, shift_size=0,
170
+ mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
171
+ act_layer=nn.GELU, norm_layer=nn.LayerNorm):
172
+ super().__init__()
173
+ self.dim = dim
174
+ self.num_heads = num_heads
175
+ self.window_size = window_size
176
+ self.shift_size = shift_size
177
+ self.mlp_ratio = mlp_ratio
178
+ assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
179
+
180
+ self.norm1 = norm_layer(dim)
181
+ self.attn = WindowAttention(
182
+ dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
183
+ qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
184
+
185
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
186
+ self.norm2 = norm_layer(dim)
187
+ mlp_hidden_dim = int(dim * mlp_ratio)
188
+ self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
189
+
190
+ self.H = None
191
+ self.W = None
192
+
193
+ def forward(self, x, mask_matrix):
194
+ """ Forward function.
195
+
196
+ Args:
197
+ x: Input feature, tensor size (B, H*W, C).
198
+ H, W: Spatial resolution of the input feature.
199
+ mask_matrix: Attention mask for cyclic shift.
200
+ """
201
+ B, L, C = x.shape
202
+ H, W = self.H, self.W
203
+ assert L == H * W, "input feature has wrong size"
204
+
205
+ shortcut = x
206
+ x = self.norm1(x)
207
+ x = x.view(B, H, W, C)
208
+
209
+ # pad feature maps to multiples of window size
210
+ pad_l = pad_t = 0
211
+ pad_r = (self.window_size - W % self.window_size) % self.window_size
212
+ pad_b = (self.window_size - H % self.window_size) % self.window_size
213
+ x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
214
+ _, Hp, Wp, _ = x.shape
215
+
216
+ # cyclic shift
217
+ if self.shift_size > 0:
218
+ shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
219
+ attn_mask = mask_matrix
220
+ else:
221
+ shifted_x = x
222
+ attn_mask = None
223
+
224
+ # partition windows
225
+ x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
226
+ x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
227
+
228
+ # W-MSA/SW-MSA
229
+ attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
230
+
231
+ # merge windows
232
+ attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
233
+ shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C
234
+
235
+ # reverse cyclic shift
236
+ if self.shift_size > 0:
237
+ x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
238
+ else:
239
+ x = shifted_x
240
+
241
+ if pad_r > 0 or pad_b > 0:
242
+ x = x[:, :H, :W, :].contiguous()
243
+
244
+ x = x.view(B, H * W, C)
245
+
246
+ # FFN
247
+ x = shortcut + self.drop_path(x)
248
+ x = x + self.drop_path(self.mlp(self.norm2(x)))
249
+
250
+ return x
251
+
252
+
253
+ class PatchMerging(nn.Module):
254
+ """ Patch Merging Layer
255
+
256
+ Args:
257
+ dim (int): Number of input channels.
258
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
259
+ """
260
+ def __init__(self, dim, norm_layer=nn.LayerNorm):
261
+ super().__init__()
262
+ self.dim = dim
263
+ self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
264
+ self.norm = norm_layer(4 * dim)
265
+
266
+ def forward(self, x, H, W):
267
+ """ Forward function.
268
+
269
+ Args:
270
+ x: Input feature, tensor size (B, H*W, C).
271
+ H, W: Spatial resolution of the input feature.
272
+ """
273
+ B, L, C = x.shape
274
+ assert L == H * W, "input feature has wrong size"
275
+
276
+ x = x.view(B, H, W, C)
277
+
278
+ # padding
279
+ pad_input = (H % 2 == 1) or (W % 2 == 1)
280
+ if pad_input:
281
+ x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
282
+
283
+ x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
284
+ x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
285
+ x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
286
+ x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
287
+ x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
288
+ x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
289
+
290
+ x = self.norm(x)
291
+ x = self.reduction(x)
292
+
293
+ return x
294
+
295
+
296
+ class BasicLayer(nn.Module):
297
+ """ A basic Swin Transformer layer for one stage.
298
+
299
+ Args:
300
+ dim (int): Number of feature channels
301
+ depth (int): Depths of this stage.
302
+ num_heads (int): Number of attention head.
303
+ window_size (int): Local window size. Default: 7.
304
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
305
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
306
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
307
+ drop (float, optional): Dropout rate. Default: 0.0
308
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
309
+ drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
310
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
311
+ downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
312
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
313
+ """
314
+
315
+ def __init__(self,
316
+ dim,
317
+ depth,
318
+ num_heads,
319
+ window_size=7,
320
+ mlp_ratio=4.,
321
+ qkv_bias=True,
322
+ qk_scale=None,
323
+ drop=0.,
324
+ attn_drop=0.,
325
+ drop_path=0.,
326
+ norm_layer=nn.LayerNorm,
327
+ downsample=None,
328
+ use_checkpoint=False):
329
+ super().__init__()
330
+ self.window_size = window_size
331
+ self.shift_size = window_size // 2
332
+ self.depth = depth
333
+ self.use_checkpoint = use_checkpoint
334
+
335
+ # build blocks
336
+ self.blocks = nn.ModuleList([
337
+ SwinTransformerBlock(
338
+ dim=dim,
339
+ num_heads=num_heads,
340
+ window_size=window_size,
341
+ shift_size=0 if (i % 2 == 0) else window_size // 2,
342
+ mlp_ratio=mlp_ratio,
343
+ qkv_bias=qkv_bias,
344
+ qk_scale=qk_scale,
345
+ drop=drop,
346
+ attn_drop=attn_drop,
347
+ drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
348
+ norm_layer=norm_layer)
349
+ for i in range(depth)])
350
+
351
+ # patch merging layer
352
+ if downsample is not None:
353
+ self.downsample = downsample(dim=dim, norm_layer=norm_layer)
354
+ else:
355
+ self.downsample = None
356
+
357
+ def forward(self, x, H, W):
358
+ """ Forward function.
359
+
360
+ Args:
361
+ x: Input feature, tensor size (B, H*W, C).
362
+ H, W: Spatial resolution of the input feature.
363
+ """
364
+
365
+ # calculate attention mask for SW-MSA
366
+ Hp = int(np.ceil(H / self.window_size)) * self.window_size
367
+ Wp = int(np.ceil(W / self.window_size)) * self.window_size
368
+ img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
369
+ h_slices = (slice(0, -self.window_size),
370
+ slice(-self.window_size, -self.shift_size),
371
+ slice(-self.shift_size, None))
372
+ w_slices = (slice(0, -self.window_size),
373
+ slice(-self.window_size, -self.shift_size),
374
+ slice(-self.shift_size, None))
375
+ cnt = 0
376
+ for h in h_slices:
377
+ for w in w_slices:
378
+ img_mask[:, h, w, :] = cnt
379
+ cnt += 1
380
+
381
+ mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
382
+ mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
383
+ attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
384
+ attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
385
+
386
+ for blk in self.blocks:
387
+ blk.H, blk.W = H, W
388
+ if self.use_checkpoint:
389
+ x = checkpoint.checkpoint(blk, x, attn_mask)
390
+ else:
391
+ x = blk(x, attn_mask)
392
+ if self.downsample is not None:
393
+ x_down = self.downsample(x, H, W)
394
+ Wh, Ww = (H + 1) // 2, (W + 1) // 2
395
+ return x, H, W, x_down, Wh, Ww
396
+ else:
397
+ return x, H, W, x, H, W
398
+
399
+
400
+ class PatchEmbed(nn.Module):
401
+ """ Image to Patch Embedding
402
+
403
+ Args:
404
+ patch_size (int): Patch token size. Default: 4.
405
+ in_chans (int): Number of input image channels. Default: 3.
406
+ embed_dim (int): Number of linear projection output channels. Default: 96.
407
+ norm_layer (nn.Module, optional): Normalization layer. Default: None
408
+ """
409
+
410
+ def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
411
+ super().__init__()
412
+ patch_size = to_2tuple(patch_size)
413
+ self.patch_size = patch_size
414
+
415
+ self.in_chans = in_chans
416
+ self.embed_dim = embed_dim
417
+
418
+ self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
419
+ if norm_layer is not None:
420
+ self.norm = norm_layer(embed_dim)
421
+ else:
422
+ self.norm = None
423
+
424
+ def forward(self, x):
425
+ """Forward function."""
426
+ # padding
427
+ _, _, H, W = x.size()
428
+ if W % self.patch_size[1] != 0:
429
+ x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
430
+ if H % self.patch_size[0] != 0:
431
+ x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
432
+
433
+ x = self.proj(x) # B C Wh Ww
434
+ if self.norm is not None:
435
+ Wh, Ww = x.size(2), x.size(3)
436
+ x = x.flatten(2).transpose(1, 2)
437
+ x = self.norm(x)
438
+ x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
439
+
440
+ return x
441
+
442
+
443
+ class SwinTransformer(nn.Module):
444
+ """ Swin Transformer backbone.
445
+ A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
446
+ https://arxiv.org/pdf/2103.14030
447
+
448
+ Args:
449
+ pretrain_img_size (int): Input image size for training the pretrained model,
450
+ used in absolute postion embedding. Default 224.
451
+ patch_size (int | tuple(int)): Patch size. Default: 4.
452
+ in_chans (int): Number of input image channels. Default: 3.
453
+ embed_dim (int): Number of linear projection output channels. Default: 96.
454
+ depths (tuple[int]): Depths of each Swin Transformer stage.
455
+ num_heads (tuple[int]): Number of attention head of each stage.
456
+ window_size (int): Window size. Default: 7.
457
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
458
+ qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
459
+ qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
460
+ drop_rate (float): Dropout rate.
461
+ attn_drop_rate (float): Attention dropout rate. Default: 0.
462
+ drop_path_rate (float): Stochastic depth rate. Default: 0.2.
463
+ norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
464
+ ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
465
+ patch_norm (bool): If True, add normalization after patch embedding. Default: True.
466
+ out_indices (Sequence[int]): Output from which stages.
467
+ frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
468
+ -1 means not freezing any parameters.
469
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
470
+ """
471
+
472
+ def __init__(self,
473
+ pretrain_img_size=224,
474
+ patch_size=4,
475
+ in_chans=3,
476
+ embed_dim=96,
477
+ depths=[2, 2, 6, 2],
478
+ num_heads=[3, 6, 12, 24],
479
+ window_size=7,
480
+ mlp_ratio=4.,
481
+ qkv_bias=True,
482
+ qk_scale=None,
483
+ drop_rate=0.,
484
+ attn_drop_rate=0.,
485
+ drop_path_rate=0.2,
486
+ norm_layer=nn.LayerNorm,
487
+ ape=False,
488
+ patch_norm=True,
489
+ out_indices=(0, 1, 2, 3),
490
+ frozen_stages=-1,
491
+ use_checkpoint=False):
492
+ super().__init__()
493
+
494
+ self.pretrain_img_size = pretrain_img_size
495
+ self.num_layers = len(depths)
496
+ self.embed_dim = embed_dim
497
+ self.ape = ape
498
+ self.patch_norm = patch_norm
499
+ self.out_indices = out_indices
500
+ self.frozen_stages = frozen_stages
501
+
502
+ # split image into non-overlapping patches
503
+ self.patch_embed = PatchEmbed(
504
+ patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
505
+ norm_layer=norm_layer if self.patch_norm else None)
506
+
507
+ # absolute position embedding
508
+ if self.ape:
509
+ pretrain_img_size = to_2tuple(pretrain_img_size)
510
+ patch_size = to_2tuple(patch_size)
511
+ patches_resolution = [pretrain_img_size[0] // patch_size[0], pretrain_img_size[1] // patch_size[1]]
512
+
513
+ self.absolute_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1]))
514
+ trunc_normal_(self.absolute_pos_embed, std=.02)
515
+
516
+ self.pos_drop = nn.Dropout(p=drop_rate)
517
+
518
+ # stochastic depth
519
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
520
+
521
+ # build layers
522
+ self.layers = nn.ModuleList()
523
+ for i_layer in range(self.num_layers):
524
+ layer = BasicLayer(
525
+ dim=int(embed_dim * 2 ** i_layer),
526
+ depth=depths[i_layer],
527
+ num_heads=num_heads[i_layer],
528
+ window_size=window_size,
529
+ mlp_ratio=mlp_ratio,
530
+ qkv_bias=qkv_bias,
531
+ qk_scale=qk_scale,
532
+ drop=drop_rate,
533
+ attn_drop=attn_drop_rate,
534
+ drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
535
+ norm_layer=norm_layer,
536
+ downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
537
+ use_checkpoint=use_checkpoint)
538
+ self.layers.append(layer)
539
+
540
+ num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
541
+ self.num_features = num_features
542
+
543
+ # add a norm layer for each output
544
+ for i_layer in out_indices:
545
+ layer = norm_layer(num_features[i_layer])
546
+ layer_name = f'norm{i_layer}'
547
+ self.add_module(layer_name, layer)
548
+
549
+ self._freeze_stages()
550
+
551
+ def _freeze_stages(self):
552
+ if self.frozen_stages >= 0:
553
+ self.patch_embed.eval()
554
+ for param in self.patch_embed.parameters():
555
+ param.requires_grad = False
556
+
557
+ if self.frozen_stages >= 1 and self.ape:
558
+ self.absolute_pos_embed.requires_grad = False
559
+
560
+ if self.frozen_stages >= 2:
561
+ self.pos_drop.eval()
562
+ for i in range(0, self.frozen_stages - 1):
563
+ m = self.layers[i]
564
+ m.eval()
565
+ for param in m.parameters():
566
+ param.requires_grad = False
567
+
568
+ def init_weights(self, pretrained=None):
569
+ """Initialize the weights in backbone.
570
+
571
+ Args:
572
+ pretrained (str, optional): Path to pre-trained weights.
573
+ Defaults to None.
574
+ """
575
+
576
+ def _init_weights(m):
577
+ if isinstance(m, nn.Linear):
578
+ trunc_normal_(m.weight, std=.02)
579
+ if isinstance(m, nn.Linear) and m.bias is not None:
580
+ nn.init.constant_(m.bias, 0)
581
+ elif isinstance(m, nn.LayerNorm):
582
+ nn.init.constant_(m.bias, 0)
583
+ nn.init.constant_(m.weight, 1.0)
584
+
585
+ if isinstance(pretrained, str):
586
+ self.apply(_init_weights)
587
+ logger = get_root_logger()
588
+ load_checkpoint(self, pretrained, strict=False, logger=logger)
589
+ elif pretrained is None:
590
+ self.apply(_init_weights)
591
+ else:
592
+ raise TypeError('pretrained must be a str or None')
593
+
594
+ def forward(self, x):
595
+ """Forward function."""
596
+ x = self.patch_embed(x)
597
+
598
+ Wh, Ww = x.size(2), x.size(3)
599
+ if self.ape:
600
+ # interpolate the position embedding to the corresponding size
601
+ absolute_pos_embed = F.interpolate(self.absolute_pos_embed, size=(Wh, Ww), mode='bicubic')
602
+ x = (x + absolute_pos_embed) # B Wh*Ww C
603
+
604
+ outs = [x.contiguous()]
605
+ x = x.flatten(2).transpose(1, 2)
606
+ x = self.pos_drop(x)
607
+ for i in range(self.num_layers):
608
+ layer = self.layers[i]
609
+ x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
610
+
611
+ if i in self.out_indices:
612
+ norm_layer = getattr(self, f'norm{i}')
613
+ x_out = norm_layer(x_out)
614
+
615
+ out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
616
+ outs.append(out)
617
+
618
+ return tuple(outs)
619
+
620
+ def train(self, mode=True):
621
+ """Convert the model into training mode while keep layers freezed."""
622
+ super(SwinTransformer, self).train(mode)
623
+ self._freeze_stages()
624
+
625
+ def SwinT(pretrained=True):
626
+ model = SwinTransformer(embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7)
627
+ if pretrained is True:
628
+ model.load_state_dict(torch.load('data/backbone_ckpt/swin_tiny_patch4_window7_224.pth', map_location='cpu')['model'], strict=False)
629
+
630
+ return model
631
+
632
+ def SwinS(pretrained=True):
633
+ model = SwinTransformer(embed_dim=96, depths=[2, 2, 18, 2], num_heads=[3, 6, 12, 24], window_size=7)
634
+ if pretrained is True:
635
+ model.load_state_dict(torch.load('data/backbone_ckpt/swin_small_patch4_window7_224.pth', map_location='cpu')['model'], strict=False)
636
+
637
+ return model
638
+
639
+ def SwinB(pretrained=True):
640
+ model = SwinTransformer(embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=12)
641
+ if pretrained is True:
642
+ model.load_state_dict(torch.load('data/backbone_ckpt/swin_base_patch4_window12_384_22kto1k.pth', map_location='cpu')['model'], strict=False)
643
+
644
+ return model
645
+
646
+ def SwinL(pretrained=True):
647
+ model = SwinTransformer(embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=12)
648
+ if pretrained is True:
649
+ model.load_state_dict(torch.load('data/backbone_ckpt/swin_large_patch4_window12_384_22kto1k.pth', map_location='cpu')['model'], strict=False)
650
+
651
+ return model
652
+
transparent_background/config.yaml ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ base:
2
+ url: "https://github.com/plemeri/transparent-background/releases/download/1.2.12/ckpt_base.pth"
3
+ md5: "d692e3dd5fa1b9658949d452bebf1cda"
4
+ ckpt_name: "ckpt_base.pth"
5
+ http_proxy: NULL
6
+ base_size: [1024, 1024]
7
+
8
+
9
+ fast:
10
+ url: "https://github.com/plemeri/transparent-background/releases/download/1.2.12/ckpt_fast.pth"
11
+ md5: "9efdbfbcc49b79ef0f7891c83d2fd52f"
12
+ ckpt_name: "ckpt_fast.pth"
13
+ http_proxy: NULL
14
+ base_size: [384, 384]
15
+
16
+ base-nightly:
17
+ url: "https://github.com/plemeri/transparent-background/releases/download/1.2.12/ckpt_base_nightly.pth"
18
+ md5: NULL
19
+ ckpt_name: "ckpt_base_nightly.pth"
20
+ http_proxy: NULL
21
+ base_size: [1024, 1024]
transparent_background/gui.py ADDED
@@ -0,0 +1,344 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import flet as ft
2
+ from flet import (
3
+ ElevatedButton,
4
+ FilePicker,
5
+ FilePickerResultEvent,
6
+ Page,
7
+ Row,
8
+ Text,
9
+ icons,
10
+ )
11
+ import os
12
+ import torch
13
+ import logging
14
+
15
+ from transparent_background.utils import *
16
+ from transparent_background.Remover import *
17
+
18
+ logging.basicConfig(level=logging.WARN)
19
+ logging.getLogger("flet_runtime").setLevel(logging.WARN)
20
+
21
+ options = {
22
+ 'output_type':'rgba',
23
+ 'mode':'base',
24
+ 'device':get_backend(),
25
+ 'r' : 0,
26
+ 'g' : 0,
27
+ 'b' : 0,
28
+ 'color' : "[0, 0, 0]",
29
+ 'ckpt':None,
30
+ 'threshold':None,
31
+ 'reverse': False,
32
+ 'resize': 'static',
33
+ 'format': None,
34
+ 'source':None,
35
+ 'dest':None,
36
+ 'use_custom':False,
37
+ 'jit':False,
38
+ 'abort':False,
39
+ }
40
+
41
+ def is_float(str):
42
+ if str is None:
43
+ return False
44
+ try:
45
+ tmp = float(str)
46
+ return True
47
+ except ValueError:
48
+ return False
49
+
50
+ def main(page):
51
+ def theme_changed(e):
52
+ page.theme_mode = (
53
+ ft.ThemeMode.DARK
54
+ if page.theme_mode == ft.ThemeMode.LIGHT
55
+ else ft.ThemeMode.LIGHT
56
+ )
57
+ page.update()
58
+
59
+ def checkbox_changed(e):
60
+ options['jit'] = jit_check.value
61
+ options['reverse'] = reverse_check.value
62
+ page.update()
63
+
64
+ def dropdown_changed(e):
65
+ options['output_type'] = type_dropdown.value
66
+ options['mode'] = mode_dropdown.value
67
+ options['device'] = device_dropdown.value
68
+ options['resize'] = resize_dropdown.value
69
+ # options['format'] = format_dropdown.value
70
+
71
+ if options['output_type'] == 'custom' and not options['use_custom']:
72
+ page.insert(1, ft.Row([r_field, g_field, b_field]))
73
+ options['use_custom']=True
74
+
75
+ elif options['output_type'] != 'custom' and options['use_custom']:
76
+ options['use_custom']=False
77
+ page.remove_at(1)
78
+
79
+ output_text.value = 'Type: {}, Mode: {}, Device: {}, Threshold: {}, Resize: {}, Format: {}'.format(options['output_type'], options['mode'], options['device'], options['threshold'], options['resize'], options['format'])
80
+ page.update()
81
+
82
+ def color_changed(e):
83
+ options['r'] = int(r_field.value) if len(r_field.value) > 0 and r_field.value.isdigit() else 0
84
+ options['g'] = int(g_field.value) if len(g_field.value) > 0 and g_field.value.isdigit() else 0
85
+ options['b'] = int(b_field.value) if len(b_field.value) > 0 and b_field.value.isdigit() else 0
86
+ options['color'] = str([options['r'], options['g'], options['b']])
87
+ output_text.value = 'Type: {}, Mode: {}, Device: {}, Threshold: {}, Resize: {}, Format: {}'.format(options['output_type'], options['color'], options['device'], options['threshold'], options['resize'], options['format'])
88
+ page.update()
89
+
90
+ def threshold_changed(e):
91
+ options['threshold'] = float(threshold_field.value) if len(threshold_field.value) > 0 and is_float(threshold_field.value) else None
92
+ options['threshold'] = None if is_float(options['threshold']) and (options['threshold'] < 0 or options['threshold'] > 1) else options['threshold']
93
+ output_text.value = 'Type: {}, Mode: {}, Device: {}, Threshold: {}, Resize: {}, Format: {}'.format(options['output_type'], options['mode'], options['device'], options['threshold'], options['resize'], options['format'])
94
+ page.update()
95
+
96
+ def format_changed(e):
97
+ options['format'] = format_field.value if format_field.value.endswith(IMG_EXTS) or format_field.value.endswith(VID_EXTS) else None
98
+ output_text.value = 'Type: {}, Mode: {}, Device: {}, Threshold: {}, Resize: {}, Format: {}'.format(options['output_type'], options['mode'], options['device'], options['threshold'], options['resize'], options['format'])
99
+ page.update()
100
+
101
+ def pick_files_result(e: FilePickerResultEvent):
102
+ file_path.update()
103
+ options['source'] = e.files[0].path if e.files else 'Not Selected'
104
+ file_path.value = options['source']
105
+ file_path.update()
106
+ if options['dest'] is None:
107
+ options['dest'] = os.path.split(options['source'])[0]
108
+ dest_path.value = options['dest']
109
+ dest_path.update()
110
+
111
+ # Open directory dialog
112
+ def get_directory_result(e: FilePickerResultEvent):
113
+ options['source'] = e.path if e.path else 'Not Selected'
114
+ file_path.value = options['source']
115
+ file_path.update()
116
+ if options['dest'] is None:
117
+ options['dest'] = os.path.split(options['source'])[0]
118
+ dest_path.value = options['dest']
119
+ dest_path.update()
120
+
121
+ def get_dest_result(e: FilePickerResultEvent):
122
+ options['dest'] = e.path if e.path else 'Not Selected'
123
+ dest_path.value = options['dest']
124
+ dest_path.update()
125
+
126
+ def process(e):
127
+ output_type = options['output_type']
128
+ output_type = options['color'] if output_type == 'custom' else output_type
129
+ options['abort'] = False
130
+ entry_point(output_type, options['mode'], options['device'], options['ckpt'], options['source'], options['dest'], options['jit'], options['threshold'], options['resize'], options['format'], options['reverse'], progress_ring, page, preview, preview_out, options)
131
+
132
+ def click_abort(e):
133
+ options['abort'] = True
134
+ page.update()
135
+
136
+ page.window_width = 1000
137
+ page.window_height = 650
138
+ page.window_resizable = False
139
+
140
+ page.theme_mode = ft.ThemeMode.LIGHT
141
+ c = ft.Switch(label="Dark mode", on_change=theme_changed)
142
+
143
+ output_text = ft.Text(color=ft.colors.BLACK)
144
+ output_text.value = 'Type: {}, Mode: {}, Device: {}, Threshold: {}, Resize: {}, Format: {}'.format(options['output_type'], options['mode'], options['device'], options['threshold'], options['resize'], options['format'])
145
+ output_text_container = ft.Container(
146
+ content=output_text,
147
+ margin=10,
148
+ padding=10,
149
+ bgcolor=ft.colors.GREEN_100,
150
+ border_radius=10,
151
+ )
152
+
153
+ jit_check = ft.Checkbox(label="use torchscript", value=False, on_change=checkbox_changed)
154
+ reverse_check = ft.Checkbox(label="reverse", value=False, on_change=checkbox_changed)
155
+
156
+ type_dropdown = ft.Dropdown(
157
+ label='type',
158
+ width=200,
159
+ hint_text='output type',
160
+ on_change=dropdown_changed,
161
+ options=[
162
+ ft.dropdown.Option("rgba"),
163
+ ft.dropdown.Option("map"),
164
+ ft.dropdown.Option("green"),
165
+ ft.dropdown.Option("white"),
166
+ ft.dropdown.Option("blur"),
167
+ ft.dropdown.Option("overlay"),
168
+ ft.dropdown.Option("custom"),
169
+ ],
170
+ )
171
+ type_dropdown.value = options['output_type']
172
+
173
+ resize_dropdown = ft.Dropdown(
174
+ label='resize',
175
+ width=200,
176
+ hint_text='resize method',
177
+ on_change=dropdown_changed,
178
+ options=[
179
+ ft.dropdown.Option("static"),
180
+ ft.dropdown.Option("dynamic"),
181
+ ],
182
+ )
183
+ resize_dropdown.value = options['resize']
184
+
185
+ Remover() # init once
186
+
187
+ cfg_path = os.environ.get('TRANSPARENT_BACKGROUND_FILE_PATH', os.path.abspath(os.path.expanduser('~')))
188
+ home_dir = os.path.join(cfg_path, ".transparent-background")
189
+ configs = load_config(os.path.join(home_dir, "config.yaml"))
190
+
191
+ mode_dropdown = ft.Dropdown(
192
+ label='mode',
193
+ width=150,
194
+ hint_text='mode',
195
+ on_change=dropdown_changed,
196
+ options=[ft.dropdown.Option(key) for key in configs.keys()],
197
+ )
198
+ mode_dropdown.value = options['mode']
199
+
200
+ device_options = [ft.dropdown.Option("cpu")]
201
+ device_options += [ft.dropdown.Option("cuda:{}".format(i)) for i in range(torch.cuda.device_count())]
202
+ device_options += ['mps:0'] if torch.backends.mps.is_available() else []
203
+
204
+ device_dropdown = ft.Dropdown(
205
+ label='device',
206
+ width=150,
207
+ hint_text='device',
208
+ on_change=dropdown_changed,
209
+ options=device_options
210
+ )
211
+ device_dropdown.value=options['device']
212
+
213
+ r_field = ft.TextField(width=60, label='R', on_change=color_changed)
214
+ g_field = ft.TextField(width=60, label='G', on_change=color_changed)
215
+ b_field = ft.TextField(width=60, label='B', on_change=color_changed)
216
+
217
+ r_field.value=str(options['r'])
218
+ g_field.value=str(options['g'])
219
+ b_field.value=str(options['b'])
220
+
221
+ threshold_field = ft.TextField(width=150, label='threshold', on_change=threshold_changed)
222
+ threshold_field.value = None
223
+
224
+ format_field = ft.TextField(width=100, label='format', on_change=format_changed)
225
+ format_field.value = None
226
+
227
+ page.add(
228
+ ft.Row(
229
+ [
230
+ ft.Image(src='https://raw.githubusercontent.com/plemeri/transparent-background/main/figures/logo.png', width=100, height=100),
231
+ ft.Column(
232
+ [
233
+ ft.Row([c, jit_check, reverse_check, output_text_container]),
234
+ ft.Row([type_dropdown, mode_dropdown, device_dropdown, resize_dropdown, threshold_field, format_field])
235
+ ]
236
+ )
237
+ ]
238
+ )
239
+ )
240
+
241
+ pick_files_dialog = FilePicker(on_result=pick_files_result)
242
+
243
+ get_directory_dialog = FilePicker(on_result=get_directory_result)
244
+ file_path = Text(color=ft.colors.BLACK)
245
+ file_path.value = 'Input file or directory will be displayed'
246
+ file_path_container = ft.Container(
247
+ content=file_path,
248
+ margin=10,
249
+ padding=10,
250
+ bgcolor=ft.colors.AMBER,
251
+ border_radius=10,
252
+ )
253
+
254
+ get_dest_dialog = FilePicker(on_result=get_dest_result)
255
+ dest_path = Text(color=ft.colors.BLACK)
256
+ dest_path.value = 'Output file or directory will be displayed'
257
+ dest_path_container = ft.Container(
258
+ content=dest_path,
259
+ margin=10,
260
+ padding=10,
261
+ bgcolor=ft.colors.CYAN_200,
262
+ border_radius=10,
263
+ )
264
+
265
+ # hide all dialogs in overlay
266
+ page.overlay.extend([pick_files_dialog, get_directory_dialog, get_dest_dialog])
267
+ #progress_ring = ft.ProgressRing(width=16, height=16, stroke_width = 2)
268
+ progress_ring = ft.ProgressBar(width=200, color='amber', bgcolor='#eeeeee')
269
+ progress_ring.value = 0
270
+
271
+ preview = ft.Image(src=".preview.png", )
272
+ preview_out = ft.Image(src=".preview_out.png")
273
+
274
+ page.add(
275
+ Row(
276
+ [
277
+ ElevatedButton(
278
+ "Open File",
279
+ icon=icons.UPLOAD_FILE,
280
+ on_click=lambda _: pick_files_dialog.pick_files(
281
+ allow_multiple=False
282
+ ),
283
+ ),
284
+ ElevatedButton(
285
+ "Open Directory",
286
+ icon=icons.FOLDER_OPEN,
287
+ on_click=lambda _: get_directory_dialog.get_directory_path(),
288
+ disabled=page.web,
289
+ ),
290
+ file_path_container,
291
+ ]
292
+ ),
293
+ Row(
294
+ [
295
+ ElevatedButton(
296
+ "Open Destination",
297
+ icon=icons.FOLDER_OPEN,
298
+ on_click=lambda _: get_dest_dialog.get_directory_path(),
299
+ disabled=page.web,
300
+ ),
301
+ dest_path_container
302
+ ]
303
+ ),
304
+ Row(
305
+ [
306
+ ElevatedButton(
307
+ "Process",
308
+ icon=icons.SEND,
309
+ on_click=process,
310
+ disabled=page.web,
311
+ ),
312
+ ElevatedButton(
313
+ "Stop",
314
+ icon=icons.STOP,
315
+ on_click=click_abort,
316
+ disabled=page.web,
317
+ ),
318
+ progress_ring
319
+ ]
320
+ ),
321
+ )
322
+
323
+ page.add(
324
+ Row(
325
+ [
326
+ preview,
327
+ preview_out
328
+ ]
329
+ )
330
+ )
331
+
332
+
333
+ def gui():
334
+ ft.app(target=main)
335
+
336
+ if os.path.isfile('.preview.png'):
337
+ os.remove('.preview.png')
338
+
339
+ if os.path.isfile('.preview_out.png'):
340
+ os.remove('.preview_out.png')
341
+
342
+
343
+ if __name__ == "__main__":
344
+ gui()
transparent_background/modules/attention_module.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+ from torch.nn.parameter import Parameter
6
+ from operator import xor
7
+ from typing import Optional
8
+
9
+ from transparent_background.modules.layers import *
10
+
11
+ class SICA(nn.Module):
12
+ def __init__(self, in_channel, out_channel=1, depth=64, base_size=None, stage=None, lmap_in=False):
13
+ super(SICA, self).__init__()
14
+ self.in_channel = in_channel
15
+ self.depth = depth
16
+ self.lmap_in = lmap_in
17
+ if base_size is not None and stage is not None:
18
+ self.stage_size = (base_size[0] // (2 ** stage), base_size[1] // (2 ** stage))
19
+ else:
20
+ self.stage_size = None
21
+
22
+ self.conv_query = nn.Sequential(Conv2d(in_channel, depth, 3, relu=True),
23
+ Conv2d(depth, depth, 3, relu=True))
24
+ self.conv_key = nn.Sequential(Conv2d(in_channel, depth, 1, relu=True),
25
+ Conv2d(depth, depth, 1, relu=True))
26
+ self.conv_value = nn.Sequential(Conv2d(in_channel, depth, 1, relu=True),
27
+ Conv2d(depth, depth, 1, relu=True))
28
+
29
+ if self.lmap_in is True:
30
+ self.ctx = 5
31
+ else:
32
+ self.ctx = 3
33
+
34
+ self.conv_out1 = Conv2d(depth, depth, 3, relu=True)
35
+ self.conv_out2 = Conv2d(in_channel + depth, depth, 3, relu=True)
36
+ self.conv_out3 = Conv2d(depth, depth, 3, relu=True)
37
+ self.conv_out4 = Conv2d(depth, out_channel, 1)
38
+
39
+ self.threshold = Parameter(torch.tensor([0.5]))
40
+
41
+ if self.lmap_in is True:
42
+ self.lthreshold = Parameter(torch.tensor([0.5]))
43
+
44
+ def forward(self, x, smap, lmap: Optional[torch.Tensor]=None):
45
+ assert not xor(self.lmap_in is True, lmap is not None)
46
+ b, c, h, w = x.shape
47
+
48
+ # compute class probability
49
+ smap = F.interpolate(smap, size=x.shape[-2:], mode='bilinear', align_corners=False)
50
+ smap = torch.sigmoid(smap)
51
+ p = smap - self.threshold
52
+
53
+ fg = torch.clip(p, 0, 1) # foreground
54
+ bg = torch.clip(-p, 0, 1) # background
55
+ cg = self.threshold - torch.abs(p) # confusion area
56
+
57
+ if self.lmap_in is True and lmap is not None:
58
+ lmap = F.interpolate(lmap, size=x.shape[-2:], mode='bilinear', align_corners=False)
59
+ lmap = torch.sigmoid(lmap)
60
+ lp = lmap - self.lthreshold
61
+ fp = torch.clip(lp, 0, 1) # foreground
62
+ bp = torch.clip(-lp, 0, 1) # background
63
+
64
+ prob = [fg, bg, cg, fp, bp]
65
+ else:
66
+ prob = [fg, bg, cg]
67
+
68
+ prob = torch.cat(prob, dim=1)
69
+
70
+ # reshape feature & prob
71
+ if self.stage_size is not None:
72
+ shape = self.stage_size
73
+ shape_mul = self.stage_size[0] * self.stage_size[1]
74
+ else:
75
+ shape = (h, w)
76
+ shape_mul = h * w
77
+
78
+ f = F.interpolate(x, size=shape, mode='bilinear', align_corners=False).view(b, shape_mul, -1)
79
+ prob = F.interpolate(prob, size=shape, mode='bilinear', align_corners=False).view(b, self.ctx, shape_mul)
80
+
81
+ # compute context vector
82
+ context = torch.bmm(prob, f).permute(0, 2, 1).unsqueeze(3) # b, 3, c
83
+
84
+ # k q v compute
85
+ query = self.conv_query(x).view(b, self.depth, -1).permute(0, 2, 1)
86
+ key = self.conv_key(context).view(b, self.depth, -1)
87
+ value = self.conv_value(context).view(b, self.depth, -1).permute(0, 2, 1)
88
+
89
+ # compute similarity map
90
+ sim = torch.bmm(query, key) # b, hw, c x b, c, 2
91
+ sim = (self.depth ** -.5) * sim
92
+ sim = F.softmax(sim, dim=-1)
93
+
94
+ # compute refined feature
95
+ context = torch.bmm(sim, value).permute(0, 2, 1).contiguous().view(b, -1, h, w)
96
+ context = self.conv_out1(context)
97
+
98
+ x = torch.cat([x, context], dim=1)
99
+ x = self.conv_out2(x)
100
+ x = self.conv_out3(x)
101
+ out = self.conv_out4(x)
102
+
103
+ return x, out
transparent_background/modules/context_module.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+ from .layers import *
6
+
7
+ class PAA_kernel(nn.Module):
8
+ def __init__(self, in_channel, out_channel, receptive_size, stage_size=None):
9
+ super(PAA_kernel, self).__init__()
10
+ self.conv0 = Conv2d(in_channel, out_channel, 1)
11
+ self.conv1 = Conv2d(out_channel, out_channel, kernel_size=(1, receptive_size))
12
+ self.conv2 = Conv2d(out_channel, out_channel, kernel_size=(receptive_size, 1))
13
+ self.conv3 = Conv2d(out_channel, out_channel, 3, dilation=receptive_size)
14
+ self.Hattn = SelfAttention(out_channel, 'h', stage_size[0] if stage_size is not None else None)
15
+ self.Wattn = SelfAttention(out_channel, 'w', stage_size[1] if stage_size is not None else None)
16
+
17
+ def forward(self, x):
18
+ x = self.conv0(x)
19
+ x = self.conv1(x)
20
+ x = self.conv2(x)
21
+
22
+ Hx = self.Hattn(x)
23
+ Wx = self.Wattn(x)
24
+
25
+ x = self.conv3(Hx + Wx)
26
+ return x
27
+
28
+ class PAA_e(nn.Module):
29
+ def __init__(self, in_channel, out_channel, base_size=None, stage=None):
30
+ super(PAA_e, self).__init__()
31
+ self.relu = nn.ReLU(True)
32
+ if base_size is not None and stage is not None:
33
+ self.stage_size = (base_size[0] // (2 ** stage), base_size[1] // (2 ** stage))
34
+ else:
35
+ self.stage_size = None
36
+
37
+ self.branch0 = Conv2d(in_channel, out_channel, 1)
38
+ self.branch1 = PAA_kernel(in_channel, out_channel, 3, self.stage_size)
39
+ self.branch2 = PAA_kernel(in_channel, out_channel, 5, self.stage_size)
40
+ self.branch3 = PAA_kernel(in_channel, out_channel, 7, self.stage_size)
41
+
42
+ self.conv_cat = Conv2d(4 * out_channel, out_channel, 3)
43
+ self.conv_res = Conv2d(in_channel, out_channel, 1)
44
+
45
+ def forward(self, x):
46
+ x0 = self.branch0(x)
47
+ x1 = self.branch1(x)
48
+ x2 = self.branch2(x)
49
+ x3 = self.branch3(x)
50
+
51
+ x_cat = self.conv_cat(torch.cat((x0, x1, x2, x3), 1))
52
+ x = self.relu(x_cat + self.conv_res(x))
53
+
54
+ return x
transparent_background/modules/decoder_module.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+ from .layers import *
6
+ class PAA_d(nn.Module):
7
+ def __init__(self, in_channel, out_channel=1, depth=64, base_size=None, stage=None):
8
+ super(PAA_d, self).__init__()
9
+ self.conv1 = Conv2d(in_channel ,depth, 3)
10
+ self.conv2 = Conv2d(depth, depth, 3)
11
+ self.conv3 = Conv2d(depth, depth, 3)
12
+ self.conv4 = Conv2d(depth, depth, 3)
13
+ self.conv5 = Conv2d(depth, out_channel, 3, bn=False)
14
+
15
+ self.base_size = base_size
16
+ self.stage = stage
17
+
18
+ if base_size is not None and stage is not None:
19
+ self.stage_size = (base_size[0] // (2 ** stage), base_size[1] // (2 ** stage))
20
+ else:
21
+ self.stage_size = [None, None]
22
+
23
+ self.Hattn = SelfAttention(depth, 'h', self.stage_size[0])
24
+ self.Wattn = SelfAttention(depth, 'w', self.stage_size[1])
25
+
26
+ self.upsample = lambda img, size: F.interpolate(img, size=size, mode='bilinear', align_corners=True)
27
+
28
+ def forward(self, fs): #f3 f4 f5 -> f3 f2 f1
29
+ fx = fs[0]
30
+ for i in range(1, len(fs)):
31
+ fs[i] = self.upsample(fs[i], fx.shape[-2:])
32
+ fx = torch.cat(fs[::-1], dim=1)
33
+
34
+ fx = self.conv1(fx)
35
+
36
+ Hfx = self.Hattn(fx)
37
+ Wfx = self.Wattn(fx)
38
+
39
+ fx = self.conv2(Hfx + Wfx)
40
+ fx = self.conv3(fx)
41
+ fx = self.conv4(fx)
42
+ out = self.conv5(fx)
43
+
44
+ return fx, out
transparent_background/modules/layers.py ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+ import cv2
6
+ import numpy as np
7
+
8
+ from kornia.morphology import dilation, erosion
9
+ from torch.nn.parameter import Parameter
10
+
11
+ class ImagePyramid:
12
+ def __init__(self, ksize=7, sigma=1, channels=1):
13
+ self.ksize = ksize
14
+ self.sigma = sigma
15
+ self.channels = channels
16
+
17
+ k = cv2.getGaussianKernel(ksize, sigma)
18
+ k = np.outer(k, k)
19
+ k = torch.tensor(k).float()
20
+ self.kernel = k.repeat(channels, 1, 1, 1)
21
+
22
+ def to(self, device):
23
+ self.kernel = self.kernel.to(device)
24
+ return self
25
+
26
+ def cuda(self, idx=None):
27
+ if idx is None:
28
+ idx = torch.cuda.current_device()
29
+
30
+ self.to(device="cuda:{}".format(idx))
31
+ return self
32
+
33
+ def expand(self, x):
34
+ z = torch.zeros_like(x)
35
+ x = torch.cat([x, z, z, z], dim=1)
36
+ x = F.pixel_shuffle(x, 2)
37
+ x = F.pad(x, (self.ksize // 2, ) * 4, mode='reflect')
38
+ x = F.conv2d(x, self.kernel * 4, groups=self.channels)
39
+ return x
40
+
41
+ def reduce(self, x):
42
+ x = F.pad(x, (self.ksize // 2, ) * 4, mode='reflect')
43
+ x = F.conv2d(x, self.kernel, groups=self.channels)
44
+ x = x[:, :, ::2, ::2]
45
+ return x
46
+
47
+ def deconstruct(self, x):
48
+ reduced_x = self.reduce(x)
49
+ expanded_reduced_x = self.expand(reduced_x)
50
+
51
+ if x.shape != expanded_reduced_x.shape:
52
+ expanded_reduced_x = F.interpolate(expanded_reduced_x, x.shape[-2:])
53
+
54
+ laplacian_x = x - expanded_reduced_x
55
+ return reduced_x, laplacian_x
56
+
57
+ def reconstruct(self, x, laplacian_x):
58
+ expanded_x = self.expand(x)
59
+ if laplacian_x.shape != expanded_x:
60
+ laplacian_x = F.interpolate(laplacian_x, expanded_x.shape[-2:], mode='bilinear', align_corners=True)
61
+ return expanded_x + laplacian_x
62
+
63
+ class Transition:
64
+ def __init__(self, k=3):
65
+ self.kernel = torch.tensor(cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (k, k))).float()
66
+
67
+ def to(self, device):
68
+ self.kernel = self.kernel.to(device)
69
+ return self
70
+
71
+ def cuda(self, idx=0):
72
+ self.to(device="cuda:{}".format(idx))
73
+ return self
74
+
75
+ def __call__(self, x):
76
+ x = torch.sigmoid(x)
77
+ dx = dilation(x, self.kernel)
78
+ ex = erosion(x, self.kernel)
79
+
80
+ return ((dx - ex) > .5).float()
81
+
82
+ class Conv2d(nn.Module):
83
+ def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, groups=1, padding='same', bias=False, bn=True, relu=False):
84
+ super(Conv2d, self).__init__()
85
+ if '__iter__' not in dir(kernel_size):
86
+ kernel_size = (kernel_size, kernel_size)
87
+ if '__iter__' not in dir(stride):
88
+ stride = (stride, stride)
89
+ if '__iter__' not in dir(dilation):
90
+ dilation = (dilation, dilation)
91
+
92
+ if padding == 'same':
93
+ width_pad_size = kernel_size[0] + (kernel_size[0] - 1) * (dilation[0] - 1)
94
+ height_pad_size = kernel_size[1] + (kernel_size[1] - 1) * (dilation[1] - 1)
95
+ elif padding == 'valid':
96
+ width_pad_size = 0
97
+ height_pad_size = 0
98
+ else:
99
+ if '__iter__' in dir(padding):
100
+ width_pad_size = padding[0] * 2
101
+ height_pad_size = padding[1] * 2
102
+ else:
103
+ width_pad_size = padding * 2
104
+ height_pad_size = padding * 2
105
+
106
+ width_pad_size = width_pad_size // 2 + (width_pad_size % 2 - 1)
107
+ height_pad_size = height_pad_size // 2 + (height_pad_size % 2 - 1)
108
+ pad_size = (width_pad_size, height_pad_size)
109
+ self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, pad_size, dilation, groups, bias=bias)
110
+ self.reset_parameters()
111
+
112
+ if bn is True:
113
+ self.bn = nn.BatchNorm2d(out_channels)
114
+ else:
115
+ self.bn = None
116
+
117
+ if relu is True:
118
+ self.relu = nn.ReLU(inplace=True)
119
+ else:
120
+ self.relu = None
121
+
122
+ def forward(self, x):
123
+ x = self.conv(x)
124
+ if self.bn is not None:
125
+ x = self.bn(x)
126
+ if self.relu is not None:
127
+ x = self.relu(x)
128
+ return x
129
+
130
+ def reset_parameters(self):
131
+ nn.init.kaiming_normal_(self.conv.weight)
132
+
133
+
134
+ class SelfAttention(nn.Module):
135
+ def __init__(self, in_channels, mode='hw', stage_size=None):
136
+ super(SelfAttention, self).__init__()
137
+
138
+ self.mode = mode
139
+
140
+ self.query_conv = Conv2d(in_channels, in_channels // 8, kernel_size=(1, 1))
141
+ self.key_conv = Conv2d(in_channels, in_channels // 8, kernel_size=(1, 1))
142
+ self.value_conv = Conv2d(in_channels, in_channels, kernel_size=(1, 1))
143
+
144
+ self.gamma = Parameter(torch.zeros(1))
145
+ self.softmax = nn.Softmax(dim=-1)
146
+
147
+ self.stage_size = stage_size
148
+
149
+ def forward(self, x):
150
+ batch_size, channel, height, width = x.size()
151
+
152
+ axis = 1
153
+ if 'h' in self.mode:
154
+ axis *= height
155
+ if 'w' in self.mode:
156
+ axis *= width
157
+
158
+ view = (batch_size, -1, axis)
159
+
160
+ projected_query = self.query_conv(x).view(*view).permute(0, 2, 1)
161
+ projected_key = self.key_conv(x).view(*view)
162
+
163
+ attention_map = torch.bmm(projected_query, projected_key)
164
+ attention = self.softmax(attention_map)
165
+ projected_value = self.value_conv(x).view(*view)
166
+
167
+ out = torch.bmm(projected_value, attention.permute(0, 2, 1))
168
+ out = out.view(batch_size, channel, height, width)
169
+
170
+ out = self.gamma * out + x
171
+ return out
transparent_background/utils.py ADDED
@@ -0,0 +1,261 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+ import cv2
4
+ import yaml
5
+ import torch
6
+ import hashlib
7
+ import argparse
8
+
9
+ import albumentations as A
10
+ from albumentations.core.transforms_interface import ImageOnlyTransform
11
+
12
+ import numpy as np
13
+
14
+ from PIL import Image
15
+ from threading import Thread
16
+ from easydict import EasyDict
17
+
18
+ VID_EXTS = ('mp4', 'avi', 'h264', 'mkv', 'mov', 'flv', 'wmv', 'webm', 'ts', 'm4v', 'vob', '3gp', '3g2', 'rm', 'rmvb', 'ogv', 'ogg', 'drc', 'gif', 'gifv', 'mng', 'avi', 'mov', 'qt', 'wmv', 'yuv', 'rm', 'rmvb', 'asf', 'amv', 'mp4', 'm4p', 'm4v', 'mpg', 'mp2', 'mpeg', 'mpe', 'mpv', 'mpg', 'mpeg', 'm2v', 'm4v', 'svi', '3gp', '3g2', 'mxf', 'roq', 'nsv', 'flv', 'f4v', 'f4p', 'f4a', 'f4b')
19
+ IMG_EXTS = ('jpg', 'jpeg', 'bmp', 'png', 'ppm', 'pgm', 'pbm', 'pnm', 'webp', 'sr', 'ras', 'tiff', 'tif', 'exr', 'hdr', 'pic', 'dib', 'jpe', 'jp2', 'j2k', 'jpf', 'jpx', 'jpm', 'mj2', 'jxr', 'hdp', 'wdp', 'cur', 'ico', 'ani', 'icns', 'bpg', 'jp2', 'j2k', 'jpf', 'jpx', 'jpm', 'mj2', 'jxr', 'hdp', 'wdp', 'cur', 'ico', 'ani', 'icns', 'bpg')
20
+
21
+ def parse_args():
22
+ parser = argparse.ArgumentParser()
23
+ parser.add_argument('--source', '-s', type=str, help="Path to the source. Single image, video, directory of images, directory of videos is supported.")
24
+ parser.add_argument('--dest', '-d', type=str, default=None, help="Path to destination. Results will be stored in current directory if not specified.")
25
+ parser.add_argument('--type', '-t', type=str, default='rgba', help="Specify output type. If not specified, output results will make the background transparent. Please refer to the documentation for other types.")
26
+ parser.add_argument('--reverse', '-R', action='store_true', help="Output will be reverse and foreground will be removed instead of background if specified.")
27
+ parser.add_argument('--format', '-f', type=str, default=None, help="Specify output format. If not specified, it will be saved with the format of input.")
28
+ parser.add_argument('--resize', '-r', type=str, default='static', help="Specify resizing method. If not specified, static resize will be used. Choose from (static|dynamic).")
29
+ parser.add_argument('--jit', '-j', action='store_true', help="Speed up inference speed by using torchscript, but decreases output quality.")
30
+ parser.add_argument('--device', '-D', type=str, default=None, help="Designate device. If not specified, it will find available device.")
31
+ parser.add_argument('--mode', '-m', type=str, default='base', help="choose between base and fast mode. Also, use base-nightly for nightly release checkpoint.")
32
+ parser.add_argument('--ckpt', '-c', type=str, default=None, help="Designate checkpoint. If not specified, it will download or load pre-downloaded default checkpoint.")
33
+ parser.add_argument('--threshold', '-th', type=str, default=None, help="Designate threshold. If specified, it will output hard prediction above threshold. If not specified, it will output soft prediction.")
34
+ return parser.parse_args()
35
+
36
+ def get_backend():
37
+ if torch.cuda.is_available():
38
+ return "cuda:0"
39
+ elif torch.backends.mps.is_available():
40
+ return "mps:0"
41
+ else:
42
+ return "cpu"
43
+
44
+ def load_config(config_dir, easy=True):
45
+ cfg = yaml.load(open(config_dir), yaml.FullLoader)
46
+ if easy is True:
47
+ cfg = EasyDict(cfg)
48
+ return cfg
49
+
50
+ def get_format(source):
51
+ img_count = len([i for i in source if i.lower().endswith(IMG_EXTS)])
52
+ vid_count = len([i for i in source if i.lower().endswith(VID_EXTS)])
53
+
54
+ if img_count * vid_count != 0:
55
+ return ''
56
+ elif img_count != 0:
57
+ return 'Image'
58
+ elif vid_count != 0:
59
+ return 'Video'
60
+ else:
61
+ return ''
62
+
63
+ def sort(x):
64
+ convert = lambda text: int(text) if text.isdigit() else text.lower()
65
+ alphanum_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key)]
66
+ return sorted(x, key=alphanum_key)
67
+
68
+ def download_and_unzip(filename, url, dest, unzip=True, **kwargs):
69
+ if not os.path.isdir(dest):
70
+ os.makedirs(dest, exist_ok=True)
71
+
72
+ if os.path.isfile(os.path.join(dest, filename)) is False:
73
+ os.system("wget -O {} {}".format(os.path.join(dest, filename), url))
74
+ elif 'md5' in kwargs.keys() and kwargs['md5'] != hashlib.md5(open(os.path.join(dest, filename), 'rb').read()).hexdigest():
75
+ os.system("wget -O {} {}".format(os.path.join(dest, filename), url))
76
+
77
+ if unzip:
78
+ os.system("unzip -o {} -d {}".format(os.path.join(dest, filename), dest))
79
+ os.system("rm {}".format(os.path.join(dest, filename)))
80
+
81
+ class dynamic_resize:
82
+ def __init__(self, L=1280):
83
+ self.L = L
84
+
85
+ def __call__(self, img):
86
+ size = list(img.size)
87
+ if (size[0] >= size[1]) and size[1] > self.L:
88
+ size[0] = size[0] / (size[1] / self.L)
89
+ size[1] = self.L
90
+ elif (size[1] > size[0]) and size[0] > self.L:
91
+ size[1] = size[1] / (size[0] / self.L)
92
+ size[0] = self.L
93
+ size = (int(round(size[0] / 32)) * 32, int(round(size[1] / 32)) * 32)
94
+
95
+ return img.resize(size, Image.BILINEAR)
96
+
97
+ class dynamic_resize_a(ImageOnlyTransform):
98
+ def __init__(self, L=1280, always_apply=False, p=1.0):
99
+ super(dynamic_resize_a, self).__init__(always_apply, p)
100
+ self.L = L
101
+
102
+ def apply(self, img, **params):
103
+ size = list(img.shape[:2])
104
+ if (size[0] >= size[1]) and size[1] > self.L:
105
+ size[0] = size[0] / (size[1] / self.L)
106
+ size[1] = self.L
107
+ elif (size[1] > size[0]) and size[0] > self.L:
108
+ size[1] = size[1] / (size[0] / self.L)
109
+ size[0] = self.L
110
+ size = (int(round(size[0] / 32)) * 32, int(round(size[1] / 32)) * 32)
111
+
112
+ return A.resize(img, height=size[0], width=size[1])
113
+
114
+ def get_transform_init_args_names(self):
115
+ return ("L",)
116
+
117
+ class static_resize:
118
+ def __init__(self, size=[1024, 1024]):
119
+ self.size = size
120
+
121
+ def __call__(self, img):
122
+ return img.resize(self.size, Image.BILINEAR)
123
+
124
+ class normalize:
125
+ def __init__(self, mean=None, std=None, div=255):
126
+ self.mean = mean if mean is not None else 0.0
127
+ self.std = std if std is not None else 1.0
128
+ self.div = div
129
+
130
+ def __call__(self, img):
131
+ img /= self.div
132
+ img -= self.mean
133
+ img /= self.std
134
+
135
+ return img
136
+
137
+ class tonumpy:
138
+ def __init__(self):
139
+ pass
140
+
141
+ def __call__(self, img):
142
+ img = np.array(img, dtype=np.float32)
143
+ return img
144
+
145
+ class totensor:
146
+ def __init__(self):
147
+ pass
148
+
149
+ def __call__(self, img):
150
+ img = img.transpose((2, 0, 1))
151
+ img = torch.from_numpy(img).float()
152
+
153
+ return img
154
+
155
+ class ImageLoader:
156
+ def __init__(self, root):
157
+ if os.path.isdir(root):
158
+ self.images = [os.path.join(root, f) for f in os.listdir(root) if f.lower().endswith(('.jpg', '.png', '.jpeg'))]
159
+ self.images = sort(self.images)
160
+ elif os.path.isfile(root):
161
+ self.images = [root]
162
+ self.size = len(self.images)
163
+
164
+ def __iter__(self):
165
+ self.index = 0
166
+ return self
167
+
168
+ def __next__(self):
169
+ if self.index == self.size:
170
+ raise StopIteration
171
+
172
+ img = Image.open(self.images[self.index]).convert('RGB')
173
+ name = os.path.split(self.images[self.index])[-1]
174
+ # name = os.path.splitext(name)[0]
175
+
176
+ self.index += 1
177
+ return img, name
178
+
179
+ def __len__(self):
180
+ return self.size
181
+
182
+ class VideoLoader:
183
+ def __init__(self, root):
184
+ if os.path.isdir(root):
185
+ self.videos = [os.path.join(root, f) for f in os.listdir(root) if f.lower().endswith(('.mp4', '.avi', 'mov'))]
186
+ elif os.path.isfile(root):
187
+ self.videos = [root]
188
+ self.size = len(self.videos)
189
+
190
+ def __iter__(self):
191
+ self.index = 0
192
+ self.cap = None
193
+ self.fps = None
194
+ return self
195
+
196
+ def __next__(self):
197
+ if self.index == self.size:
198
+ raise StopIteration
199
+
200
+ if self.cap is None:
201
+ self.cap = cv2.VideoCapture(self.videos[self.index])
202
+ self.fps = self.cap.get(cv2.CAP_PROP_FPS)
203
+ ret, frame = self.cap.read()
204
+ name = os.path.split(self.videos[self.index])[-1]
205
+ # name = os.path.splitext(name)[0]
206
+ if ret is False:
207
+ self.cap.release()
208
+ self.cap = None
209
+ img = None
210
+ self.index += 1
211
+
212
+ else:
213
+ frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
214
+ img = Image.fromarray(frame).convert('RGB')
215
+
216
+ return img, name
217
+
218
+ def __len__(self):
219
+ return self.size
220
+
221
+ class WebcamLoader:
222
+ def __init__(self, ID):
223
+ self.ID = int(ID)
224
+ self.cap = cv2.VideoCapture(self.ID)
225
+ self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
226
+ self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
227
+ self.imgs = []
228
+ self.imgs.append(self.cap.read()[1])
229
+ self.thread = Thread(target=self.update, daemon=True)
230
+ self.thread.start()
231
+
232
+ def update(self):
233
+ while self.cap.isOpened():
234
+ ret, frame = self.cap.read()
235
+ if ret is True:
236
+ self.imgs.append(frame)
237
+ else:
238
+ break
239
+
240
+ def __iter__(self):
241
+ return self
242
+
243
+ def __next__(self):
244
+ if len(self.imgs) > 0:
245
+ frame = self.imgs[-1]
246
+ else:
247
+ frame = Image.fromarray(np.zeros((480, 640, 3)).astype(np.uint8))
248
+
249
+ if self.thread.is_alive() is False or cv2.waitKey(1) == ord('q'):
250
+ cv2.destroyAllWindows()
251
+ raise StopIteration
252
+
253
+ else:
254
+ frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
255
+ frame = Image.fromarray(frame).convert('RGB')
256
+
257
+ del self.imgs[:-1]
258
+ return frame, None
259
+
260
+ def __len__(self):
261
+ return 0