File size: 7,481 Bytes
6bf9660
 
8e40549
6bf9660
8e40549
6bf9660
 
 
8e40549
 
 
 
 
6bf9660
 
 
 
 
 
 
 
 
 
8e40549
6bf9660
8e40549
6bf9660
 
8e40549
6bf9660
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
---
library_name: transformers
base_model: data/OpenELM-1_1B-SFT-1
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
- trl
- dpo
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: OpenELM-1_1B-DPO-full-1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# OpenELM-1_1B-DPO-full-1

This model is a fine-tuned version of [data/OpenELM-1_1B-SFT-1](https://huggingface.co/data/OpenELM-1_1B-SFT-1) on the HuggingFaceH4/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8127
- Rewards/chosen: -7.4062
- Rewards/rejected: -9.625
- Rewards/accuracies: 0.7266
- Rewards/margins: 2.2188
- Logps/rejected: -1248.0
- Logps/chosen: -1056.0
- Logits/rejected: -1.5781
- Logits/chosen: -4.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6194        | 0.1047 | 100  | 0.6171          | -0.875         | -1.1797          | 0.6758             | 0.3008          | -406.0         | -406.0       | -10.75          | -11.0         |
| 0.5947        | 0.2093 | 200  | 0.6038          | -1.4531        | -1.8359          | 0.6680             | 0.3848          | -472.0         | -464.0       | -11.3125        | -11.75        |
| 0.6583        | 0.3140 | 300  | 0.6007          | -2.2344        | -2.7344          | 0.6758             | 0.4941          | -560.0         | -544.0       | -13.1875        | -13.5         |
| 0.6003        | 0.4186 | 400  | 0.5892          | -1.8359        | -2.3906          | 0.7012             | 0.5586          | -528.0         | -502.0       | -9.75           | -10.3125      |
| 0.5701        | 0.5233 | 500  | 0.5772          | -1.9688        | -2.5             | 0.6875             | 0.5391          | -540.0         | -516.0       | -10.5           | -11.0         |
| 0.55          | 0.6279 | 600  | 0.5671          | -2.6875        | -3.4219          | 0.7129             | 0.7266          | -632.0         | -588.0       | -9.5625         | -10.4375      |
| 0.554         | 0.7326 | 700  | 0.5667          | -2.625         | -3.375           | 0.7285             | 0.75            | -628.0         | -580.0       | -9.25           | -10.0625      |
| 0.5478        | 0.8373 | 800  | 0.5699          | -2.7188        | -3.3906          | 0.7070             | 0.6602          | -628.0         | -592.0       | -8.9375         | -9.875        |
| 0.5759        | 0.9419 | 900  | 0.5660          | -2.75          | -3.4375          | 0.7090             | 0.6914          | -632.0         | -592.0       | -10.25          | -11.1875      |
| 0.2284        | 1.0466 | 1000 | 0.5897          | -3.375         | -4.5625          | 0.7305             | 1.1797          | -744.0         | -656.0       | -6.8125         | -8.8125       |
| 0.1919        | 1.1512 | 1100 | 0.5994          | -3.7656        | -4.9375          | 0.7266             | 1.1797          | -784.0         | -696.0       | -8.375          | -10.125       |
| 0.1942        | 1.2559 | 1200 | 0.6058          | -4.5           | -5.6562          | 0.7188             | 1.1719          | -856.0         | -768.0       | -3.5469         | -5.5          |
| 0.2071        | 1.3605 | 1300 | 0.5985          | -4.3125        | -5.4688          | 0.7441             | 1.1484          | -836.0         | -752.0       | -6.1875         | -7.7812       |
| 0.1811        | 1.4652 | 1400 | 0.6045          | -5.375         | -6.5625          | 0.7363             | 1.2109          | -948.0         | -856.0       | -6.6562         | -8.0          |
| 0.1715        | 1.5699 | 1500 | 0.6054          | -4.7188        | -6.0312          | 0.7383             | 1.3047          | -892.0         | -792.0       | -7.1875         | -8.6875       |
| 0.186         | 1.6745 | 1600 | 0.6277          | -4.4688        | -5.7188          | 0.7285             | 1.2344          | -860.0         | -768.0       | -8.3125         | -9.6875       |
| 0.1763        | 1.7792 | 1700 | 0.6386          | -5.2188        | -6.625           | 0.7246             | 1.4062          | -952.0         | -840.0       | -5.5312         | -7.4375       |
| 0.1678        | 1.8838 | 1800 | 0.6220          | -4.5625        | -5.8125          | 0.7246             | 1.2266          | -868.0         | -776.0       | -6.8125         | -8.4375       |
| 0.1563        | 1.9885 | 1900 | 0.6274          | -5.5           | -6.8438          | 0.7266             | 1.3672          | -976.0         | -868.0       | -6.3438         | -7.875        |
| 0.0144        | 2.0931 | 2000 | 0.7311          | -6.4375        | -8.1875          | 0.7305             | 1.7656          | -1112.0        | -960.0       | -3.3281         | -5.5          |
| 0.029         | 2.1978 | 2100 | 0.8195          | -7.5312        | -9.6875          | 0.7285             | 2.1719          | -1256.0        | -1072.0      | -2.375          | -4.75         |
| 0.0228        | 2.3025 | 2200 | 0.8282          | -7.6875        | -9.875           | 0.7188             | 2.2031          | -1280.0        | -1088.0      | -1.9297         | -4.375        |
| 0.0159        | 2.4071 | 2300 | 0.8055          | -7.2188        | -9.375           | 0.7266             | 2.1562          | -1224.0        | -1040.0      | -2.0625         | -4.4688       |
| 0.0192        | 2.5118 | 2400 | 0.7881          | -6.9688        | -9.0625          | 0.7207             | 2.0938          | -1200.0        | -1016.0      | -2.3906         | -4.7812       |
| 0.0158        | 2.6164 | 2500 | 0.8027          | -7.3438        | -9.5             | 0.7266             | 2.1562          | -1240.0        | -1056.0      | -1.5312         | -3.9375       |
| 0.0193        | 2.7211 | 2600 | 0.8205          | -7.625         | -9.875           | 0.7383             | 2.25            | -1280.0        | -1080.0      | -1.1797         | -3.5938       |
| 0.0229        | 2.8257 | 2700 | 0.8136          | -7.4375        | -9.625           | 0.7266             | 2.2188          | -1256.0        | -1064.0      | -1.5391         | -3.9531       |
| 0.0213        | 2.9304 | 2800 | 0.8121          | -7.4062        | -9.625           | 0.7285             | 2.2188          | -1248.0        | -1056.0      | -1.5781         | -4.0          |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.3.0
- Datasets 2.21.0
- Tokenizers 0.19.1