--- library_name: transformers license: mit base_model: microsoft/deberta-v3-base tags: - named-entity-recognition - kanuri - african-language - pii-detection - token-classification - generated_from_trainer datasets: - Beijuka/Multilingual_PII_NER_dataset metrics: - precision - recall - f1 - accuracy model-index: - name: multilingual-microsoft/deberta-v3-base-kanuri-ner-v1 results: - task: name: Token Classification type: token-classification dataset: name: Beijuka/Multilingual_PII_NER_dataset type: Beijuka/Multilingual_PII_NER_dataset args: 'split: train+validation+test' metrics: - name: Precision type: precision value: 0.9415322580645161 - name: Recall type: recall value: 0.9415322580645161 - name: F1 type: f1 value: 0.9415322580645161 - name: Accuracy type: accuracy value: 0.9854707843260583 --- # multilingual-microsoft/deberta-v3-base-kanuri-ner-v1 This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the Beijuka/Multilingual_PII_NER_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.0800 - Precision: 0.9415 - Recall: 0.9415 - F1: 0.9415 - Accuracy: 0.9855 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 301 | 0.0974 | 0.8852 | 0.8857 | 0.8854 | 0.9718 | | 0.1637 | 2.0 | 602 | 0.0877 | 0.8894 | 0.9194 | 0.9042 | 0.9756 | | 0.1637 | 3.0 | 903 | 0.0788 | 0.8860 | 0.9276 | 0.9063 | 0.9758 | | 0.0643 | 4.0 | 1204 | 0.1024 | 0.8899 | 0.9238 | 0.9065 | 0.9772 | | 0.0463 | 5.0 | 1505 | 0.0785 | 0.9248 | 0.9130 | 0.9188 | 0.9774 | | 0.0463 | 6.0 | 1806 | 0.0940 | 0.9132 | 0.9289 | 0.9210 | 0.9795 | | 0.0316 | 7.0 | 2107 | 0.1033 | 0.8974 | 0.9276 | 0.9123 | 0.9770 | | 0.0316 | 8.0 | 2408 | 0.1152 | 0.8884 | 0.9302 | 0.9088 | 0.9781 | | 0.0179 | 9.0 | 2709 | 0.1308 | 0.8975 | 0.9289 | 0.9129 | 0.9782 | ### Framework versions - Transformers 4.55.4 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4