Beijuka commited on
Commit
a2891b3
·
verified ·
1 Parent(s): 7180cdb

End of training

Browse files
Files changed (2) hide show
  1. README.md +102 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: microsoft/deberta-v3-base
5
+ tags:
6
+ - named-entity-recognition
7
+ - kanuri
8
+ - african-language
9
+ - pii-detection
10
+ - token-classification
11
+ - generated_from_trainer
12
+ datasets:
13
+ - Beijuka/Multilingual_PII_NER_dataset
14
+ metrics:
15
+ - precision
16
+ - recall
17
+ - f1
18
+ - accuracy
19
+ model-index:
20
+ - name: multilingual-microsoft/deberta-v3-base-kanuri-ner-v1
21
+ results:
22
+ - task:
23
+ name: Token Classification
24
+ type: token-classification
25
+ dataset:
26
+ name: Beijuka/Multilingual_PII_NER_dataset
27
+ type: Beijuka/Multilingual_PII_NER_dataset
28
+ args: 'split: train+validation+test'
29
+ metrics:
30
+ - name: Precision
31
+ type: precision
32
+ value: 0.9415322580645161
33
+ - name: Recall
34
+ type: recall
35
+ value: 0.9415322580645161
36
+ - name: F1
37
+ type: f1
38
+ value: 0.9415322580645161
39
+ - name: Accuracy
40
+ type: accuracy
41
+ value: 0.9854707843260583
42
+ ---
43
+
44
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
45
+ should probably proofread and complete it, then remove this comment. -->
46
+
47
+ # multilingual-microsoft/deberta-v3-base-kanuri-ner-v1
48
+
49
+ This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the Beijuka/Multilingual_PII_NER_dataset dataset.
50
+ It achieves the following results on the evaluation set:
51
+ - Loss: 0.0800
52
+ - Precision: 0.9415
53
+ - Recall: 0.9415
54
+ - F1: 0.9415
55
+ - Accuracy: 0.9855
56
+
57
+ ## Model description
58
+
59
+ More information needed
60
+
61
+ ## Intended uses & limitations
62
+
63
+ More information needed
64
+
65
+ ## Training and evaluation data
66
+
67
+ More information needed
68
+
69
+ ## Training procedure
70
+
71
+ ### Training hyperparameters
72
+
73
+ The following hyperparameters were used during training:
74
+ - learning_rate: 5e-05
75
+ - train_batch_size: 8
76
+ - eval_batch_size: 8
77
+ - seed: 42
78
+ - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
79
+ - lr_scheduler_type: linear
80
+ - num_epochs: 20
81
+
82
+ ### Training results
83
+
84
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
85
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
86
+ | No log | 1.0 | 301 | 0.0974 | 0.8852 | 0.8857 | 0.8854 | 0.9718 |
87
+ | 0.1637 | 2.0 | 602 | 0.0877 | 0.8894 | 0.9194 | 0.9042 | 0.9756 |
88
+ | 0.1637 | 3.0 | 903 | 0.0788 | 0.8860 | 0.9276 | 0.9063 | 0.9758 |
89
+ | 0.0643 | 4.0 | 1204 | 0.1024 | 0.8899 | 0.9238 | 0.9065 | 0.9772 |
90
+ | 0.0463 | 5.0 | 1505 | 0.0785 | 0.9248 | 0.9130 | 0.9188 | 0.9774 |
91
+ | 0.0463 | 6.0 | 1806 | 0.0940 | 0.9132 | 0.9289 | 0.9210 | 0.9795 |
92
+ | 0.0316 | 7.0 | 2107 | 0.1033 | 0.8974 | 0.9276 | 0.9123 | 0.9770 |
93
+ | 0.0316 | 8.0 | 2408 | 0.1152 | 0.8884 | 0.9302 | 0.9088 | 0.9781 |
94
+ | 0.0179 | 9.0 | 2709 | 0.1308 | 0.8975 | 0.9289 | 0.9129 | 0.9782 |
95
+
96
+
97
+ ### Framework versions
98
+
99
+ - Transformers 4.55.4
100
+ - Pytorch 2.8.0+cu126
101
+ - Datasets 4.0.0
102
+ - Tokenizers 0.21.4
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3b518cfc37e328077e58b64ae2281130b94819a7eba63434184a22cd098b1d63
3
  size 735439788
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:590a0951f040496c4d6d4dcd7bc98d372a4867dde73ed3525e4c974f5eb115ec
3
  size 735439788