Upload Tranformer_LLM.ipynb
Browse files- Tranformer_LLM.ipynb +1762 -0
Tranformer_LLM.ipynb
ADDED
@@ -0,0 +1,1762 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 21,
|
6 |
+
"id": "initial_id",
|
7 |
+
"metadata": {
|
8 |
+
"ExecuteTime": {
|
9 |
+
"end_time": "2025-04-20T10:30:19.511335Z",
|
10 |
+
"start_time": "2025-04-20T10:30:14.130243Z"
|
11 |
+
},
|
12 |
+
"collapsed": true,
|
13 |
+
"id": "initial_id"
|
14 |
+
},
|
15 |
+
"outputs": [],
|
16 |
+
"source": [
|
17 |
+
"import numpy as np\n",
|
18 |
+
"import pandas as pd\n",
|
19 |
+
"import torch\n",
|
20 |
+
"import torch.nn as nn\n",
|
21 |
+
"import math\n",
|
22 |
+
"#import tensorflow as tf"
|
23 |
+
]
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"cell_type": "code",
|
27 |
+
"execution_count": 22,
|
28 |
+
"id": "420a4dfdadcdee66",
|
29 |
+
"metadata": {
|
30 |
+
"ExecuteTime": {
|
31 |
+
"end_time": "2025-04-20T10:30:21.755678Z",
|
32 |
+
"start_time": "2025-04-20T10:30:21.729677Z"
|
33 |
+
},
|
34 |
+
"colab": {
|
35 |
+
"base_uri": "https://localhost:8080/"
|
36 |
+
},
|
37 |
+
"id": "420a4dfdadcdee66",
|
38 |
+
"outputId": "a0132552-6de3-4c64-c3ab-73cdf858dbc0"
|
39 |
+
},
|
40 |
+
"outputs": [
|
41 |
+
{
|
42 |
+
"name": "stdout",
|
43 |
+
"output_type": "stream",
|
44 |
+
"text": [
|
45 |
+
"55955\n",
|
46 |
+
"India, officially the Republic of India,[j][21] is a country in South Asia. It is the seventh-larges\n"
|
47 |
+
]
|
48 |
+
}
|
49 |
+
],
|
50 |
+
"source": [
|
51 |
+
"with open(\"C:/Users/adity/Projects_of_Aditya/Working/India, officially the Republic of I.txt\",'r',encoding='utf-8') as f:\n",
|
52 |
+
" raw_text=f.read()\n",
|
53 |
+
"print(len(raw_text))\n",
|
54 |
+
"print(raw_text[:100])"
|
55 |
+
]
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"cell_type": "code",
|
59 |
+
"execution_count": 23,
|
60 |
+
"id": "YJ4KwDtekrSy",
|
61 |
+
"metadata": {
|
62 |
+
"id": "YJ4KwDtekrSy"
|
63 |
+
},
|
64 |
+
"outputs": [],
|
65 |
+
"source": [
|
66 |
+
"train_ratio = 0.9\n",
|
67 |
+
"train_size = int(train_ratio * len(raw_text))\n",
|
68 |
+
"train_text = raw_text[:train_size]\n",
|
69 |
+
"val_text = raw_text[train_size:]"
|
70 |
+
]
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"cell_type": "code",
|
74 |
+
"execution_count": 24,
|
75 |
+
"id": "ebcdc51c",
|
76 |
+
"metadata": {},
|
77 |
+
"outputs": [],
|
78 |
+
"source": [
|
79 |
+
"class BinarizeFunction(torch.autograd.Function):\n",
|
80 |
+
" @staticmethod\n",
|
81 |
+
" def forward(ctx, input):\n",
|
82 |
+
" ctx.save_for_backward(input)\n",
|
83 |
+
" return torch.sign(input)\n",
|
84 |
+
" @staticmethod\n",
|
85 |
+
" def backward(ctx, grad_output):\n",
|
86 |
+
" input, = ctx.saved_tensors\n",
|
87 |
+
" mask=(input.abs()<=1).float()\n",
|
88 |
+
" grad_input = grad_output * mask\n",
|
89 |
+
" return grad_input"
|
90 |
+
]
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"cell_type": "code",
|
94 |
+
"execution_count": 25,
|
95 |
+
"id": "6dd4cfd0",
|
96 |
+
"metadata": {},
|
97 |
+
"outputs": [],
|
98 |
+
"source": [
|
99 |
+
"class QuantizedLinear(nn.Module):\n",
|
100 |
+
" def __init__(self, in_features, out_features, bias=True):\n",
|
101 |
+
" super(QuantizedLinear, self).__init__()\n",
|
102 |
+
" self.in_features = in_features\n",
|
103 |
+
" self.out_features = out_features\n",
|
104 |
+
" self.weight = nn.Parameter(torch.Tensor(out_features, in_features))\n",
|
105 |
+
" if bias:\n",
|
106 |
+
" self.bias = nn.Parameter(torch.Tensor(out_features))\n",
|
107 |
+
" else:\n",
|
108 |
+
" self.register_parameter('bias', None)\n",
|
109 |
+
" self.reset_parameters()\n",
|
110 |
+
"\n",
|
111 |
+
" def reset_parameters(self):\n",
|
112 |
+
" nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))\n",
|
113 |
+
" if self.bias is not None:\n",
|
114 |
+
" fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight)\n",
|
115 |
+
" bound = 1 / math.sqrt(fan_in)\n",
|
116 |
+
" nn.init.uniform_(self.bias, -bound, bound)\n",
|
117 |
+
" def forward(self, input):\n",
|
118 |
+
" weight = BinarizeFunction.apply(self.weight)\n",
|
119 |
+
" if self.bias is not None:\n",
|
120 |
+
" return torch.nn.functional.linear(input, weight, self.bias)\n",
|
121 |
+
" else:\n",
|
122 |
+
" return torch.nn.functional.linear(input, weight)\n",
|
123 |
+
" def extra_repr(self):\n",
|
124 |
+
" return 'in_features={}, out_features={}, bias={}'.format(\n",
|
125 |
+
" self.in_features, self.out_features, self.bias is not None\n",
|
126 |
+
" )"
|
127 |
+
]
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"cell_type": "code",
|
131 |
+
"execution_count": 26,
|
132 |
+
"id": "dd29070035dafb99",
|
133 |
+
"metadata": {
|
134 |
+
"ExecuteTime": {
|
135 |
+
"end_time": "2025-04-20T10:30:25.020010Z",
|
136 |
+
"start_time": "2025-04-20T10:30:24.959908Z"
|
137 |
+
},
|
138 |
+
"id": "dd29070035dafb99"
|
139 |
+
},
|
140 |
+
"outputs": [],
|
141 |
+
"source": [
|
142 |
+
"from torch.utils.data import Dataset, DataLoader\n",
|
143 |
+
"import tiktoken\n",
|
144 |
+
"\n",
|
145 |
+
"class GPTTokenizerDataset(Dataset):\n",
|
146 |
+
" def __init__(self, txt, tokenizer, max_length, stride):\n",
|
147 |
+
" self.tokenizer = tokenizer\n",
|
148 |
+
" self.input_ids = []\n",
|
149 |
+
" self.target_ids = []\n",
|
150 |
+
" token_ids = self.tokenizer.encode(txt)\n",
|
151 |
+
"\n",
|
152 |
+
" for i in range(0, len(token_ids) - max_length, stride):\n",
|
153 |
+
" input_chunk = token_ids[i:i + max_length]\n",
|
154 |
+
" target_chunk = token_ids[i + 1:i + max_length+1]\n",
|
155 |
+
" self.input_ids.append(torch.tensor(input_chunk))\n",
|
156 |
+
" self.target_ids.append(torch.tensor(target_chunk))\n",
|
157 |
+
" def __len__(self):\n",
|
158 |
+
" return len(self.input_ids)\n",
|
159 |
+
" def __getitem__(self, idx):\n",
|
160 |
+
" return self.input_ids[idx], self.target_ids[idx]\n",
|
161 |
+
"def create_dataloader_v1(txt, batch_size=4, max_length=256, stride=128, shuffle=True, drop_last=True):\n",
|
162 |
+
" tokenizer = tiktoken.get_encoding(\"cl100k_base\")\n",
|
163 |
+
" dataset = GPTTokenizerDataset(txt, tokenizer, max_length, stride)\n",
|
164 |
+
" dataloader = DataLoader(\n",
|
165 |
+
" dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last\n",
|
166 |
+
" )\n",
|
167 |
+
" return dataloader"
|
168 |
+
]
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"cell_type": "code",
|
172 |
+
"execution_count": 27,
|
173 |
+
"id": "40a9c2660445b78c",
|
174 |
+
"metadata": {
|
175 |
+
"ExecuteTime": {
|
176 |
+
"end_time": "2025-04-20T10:30:52.552634Z",
|
177 |
+
"start_time": "2025-04-20T10:30:52.545337Z"
|
178 |
+
},
|
179 |
+
"id": "40a9c2660445b78c"
|
180 |
+
},
|
181 |
+
"outputs": [],
|
182 |
+
"source": [
|
183 |
+
"def generate_text(model,idx,max_new_tokens,context_size,temperature=0.4,top_k=3):\n",
|
184 |
+
" for _ in range(max_new_tokens):\n",
|
185 |
+
" idx_cond=idx[:,-context_size:]\n",
|
186 |
+
" with torch.no_grad():\n",
|
187 |
+
" logits=model(idx_cond)\n",
|
188 |
+
" logits=logits[:,-1,:]\n",
|
189 |
+
" if top_k is not None:\n",
|
190 |
+
" top_logits,_=torch.topk(logits,top_k)\n",
|
191 |
+
" min_val=top_logits[:,-1]\n",
|
192 |
+
" logits=torch.where(logits<min_val,torch.tensor(float('-inf')).to(logits.device),logits)\n",
|
193 |
+
" if temperature>0.0:\n",
|
194 |
+
" logits=logits/temperature\n",
|
195 |
+
" probs=torch.softmax(logits,dim=-1)\n",
|
196 |
+
" idx_next=torch.multinomial(probs,num_samples=1)\n",
|
197 |
+
" else:\n",
|
198 |
+
" idx_next=torch.argmax(logits,dim=-1,keepdim=True)\n",
|
199 |
+
" idx=torch.cat((idx,idx_next),dim=1)\n",
|
200 |
+
" return idx"
|
201 |
+
]
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"cell_type": "code",
|
205 |
+
"execution_count": 28,
|
206 |
+
"id": "22a98021f476cc4d",
|
207 |
+
"metadata": {
|
208 |
+
"ExecuteTime": {
|
209 |
+
"end_time": "2025-04-20T10:30:56.399874Z",
|
210 |
+
"start_time": "2025-04-20T10:30:55.660994Z"
|
211 |
+
},
|
212 |
+
"id": "22a98021f476cc4d"
|
213 |
+
},
|
214 |
+
"outputs": [],
|
215 |
+
"source": [
|
216 |
+
"tokenizer = tiktoken.get_encoding(\"cl100k_base\")\n",
|
217 |
+
"def text_to_token_ids(text,tokenizer):\n",
|
218 |
+
" encoded=tokenizer.encode(text,allowed_special={'<|endoftext|>'})\n",
|
219 |
+
" encoded_tensor=torch.tensor(encoded).unsqueeze(0)\n",
|
220 |
+
" return encoded_tensor\n",
|
221 |
+
"def token_ids_to_text(token_ids,tokenizer):\n",
|
222 |
+
" flat=token_ids.squeeze(0)\n",
|
223 |
+
" return tokenizer.decode(flat.tolist())"
|
224 |
+
]
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"cell_type": "markdown",
|
228 |
+
"id": "c34f6594f2501fd3",
|
229 |
+
"metadata": {
|
230 |
+
"id": "c34f6594f2501fd3"
|
231 |
+
},
|
232 |
+
"source": [
|
233 |
+
"Coding up the Attention model:- Here we would be creating a class of the causal attention and instantiating multiple times for the multihead attention model."
|
234 |
+
]
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"cell_type": "markdown",
|
238 |
+
"id": "779103be54de3305",
|
239 |
+
"metadata": {
|
240 |
+
"id": "779103be54de3305"
|
241 |
+
},
|
242 |
+
"source": [
|
243 |
+
"Now for example if we set the number of heads we want is 10, then what exactly happens:-\n",
|
244 |
+
"--> we obtain a tensor with ten sets of context vector matrices.\n",
|
245 |
+
"--> In each context vector matrix the rows represent the context vectors corresponding to the tokens, and the columns corresponding to the embedding dimension specified via d_out.\n",
|
246 |
+
"--> Final embedding dimension is 10 x 10."
|
247 |
+
]
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"cell_type": "markdown",
|
251 |
+
"id": "55a1ded1a5143e4b",
|
252 |
+
"metadata": {
|
253 |
+
"id": "55a1ded1a5143e4b"
|
254 |
+
},
|
255 |
+
"source": [
|
256 |
+
"IMPLEMENTING THE PARALLEL METHOD OF IMPLEMENTATION."
|
257 |
+
]
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"cell_type": "code",
|
261 |
+
"execution_count": 29,
|
262 |
+
"id": "9ffdb4830dd6536c",
|
263 |
+
"metadata": {
|
264 |
+
"ExecuteTime": {
|
265 |
+
"end_time": "2025-04-20T10:31:00.004231Z",
|
266 |
+
"start_time": "2025-04-20T10:30:59.989116Z"
|
267 |
+
},
|
268 |
+
"id": "9ffdb4830dd6536c"
|
269 |
+
},
|
270 |
+
"outputs": [],
|
271 |
+
"source": [
|
272 |
+
"class MultiHeadAttention(nn.Module):\n",
|
273 |
+
" def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False):\n",
|
274 |
+
" super().__init__()\n",
|
275 |
+
" assert d_out % num_heads == 0, \"d_out must be divisible by num_heads\"\n",
|
276 |
+
" self.d_out = d_out\n",
|
277 |
+
" self.num_heads = num_heads\n",
|
278 |
+
" self.head_dim = d_out // num_heads\n",
|
279 |
+
" self.W_query = QuantizedLinear(d_in, d_out, bias=qkv_bias)\n",
|
280 |
+
" self.W_key = QuantizedLinear(d_in, d_out, bias=qkv_bias)\n",
|
281 |
+
" self.W_value = QuantizedLinear(d_in, d_out, bias=qkv_bias)\n",
|
282 |
+
" self.out_proj = QuantizedLinear(d_out, d_out)\n",
|
283 |
+
" self.dropout = nn.Dropout(dropout)\n",
|
284 |
+
" self.register_buffer(\n",
|
285 |
+
" 'mask',\n",
|
286 |
+
" torch.triu(torch.ones(context_length, context_length), diagonal=1)\n",
|
287 |
+
" )\n",
|
288 |
+
" def forward(self, x):\n",
|
289 |
+
" b, num_tokens, d_in = x.shape\n",
|
290 |
+
" keys = self.W_key(x)\n",
|
291 |
+
" queries = self.W_query(x)\n",
|
292 |
+
" values = self.W_value(x)\n",
|
293 |
+
" keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)\n",
|
294 |
+
" values = values.view(b, num_tokens, self.num_heads, self.head_dim)\n",
|
295 |
+
" queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)\n",
|
296 |
+
" keys = keys.transpose(1, 2)\n",
|
297 |
+
" queries = queries.transpose(1, 2)\n",
|
298 |
+
" values = values.transpose(1, 2)\n",
|
299 |
+
" attn_scores = queries @ keys.transpose(2, 3)\n",
|
300 |
+
" mask_bool = self.mask.bool()[:num_tokens, :num_tokens]\n",
|
301 |
+
" attn_scores.masked_fill_(mask_bool, -torch.inf)\n",
|
302 |
+
" attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)\n",
|
303 |
+
" attn_weights = self.dropout(attn_weights)\n",
|
304 |
+
" context_vec = (attn_weights @ values).transpose(1, 2)\n",
|
305 |
+
" context_vec = context_vec.contiguous().view(b, num_tokens, self.d_out)\n",
|
306 |
+
" context_vec = self.out_proj(context_vec)\n",
|
307 |
+
" return context_vec"
|
308 |
+
]
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"cell_type": "code",
|
312 |
+
"execution_count": 30,
|
313 |
+
"id": "a361c4d3",
|
314 |
+
"metadata": {},
|
315 |
+
"outputs": [
|
316 |
+
{
|
317 |
+
"name": "stdout",
|
318 |
+
"output_type": "stream",
|
319 |
+
"text": [
|
320 |
+
"Vocab size: 100277\n"
|
321 |
+
]
|
322 |
+
}
|
323 |
+
],
|
324 |
+
"source": [
|
325 |
+
"config_tokenizer=tiktoken.get_encoding(\"cl100k_base\")\n",
|
326 |
+
"actual_vocab_size=config_tokenizer.n_vocab\n",
|
327 |
+
"print(\"Vocab size:\", actual_vocab_size)"
|
328 |
+
]
|
329 |
+
},
|
330 |
+
{
|
331 |
+
"cell_type": "code",
|
332 |
+
"execution_count": 31,
|
333 |
+
"id": "4f7ad555c6c06399",
|
334 |
+
"metadata": {
|
335 |
+
"ExecuteTime": {
|
336 |
+
"end_time": "2025-04-20T10:31:03.321536Z",
|
337 |
+
"start_time": "2025-04-20T10:31:03.313914Z"
|
338 |
+
},
|
339 |
+
"id": "4f7ad555c6c06399"
|
340 |
+
},
|
341 |
+
"outputs": [],
|
342 |
+
"source": [
|
343 |
+
"#Defining the parameters\n",
|
344 |
+
"GPT_CONFIG={\n",
|
345 |
+
" 'vocab_size':actual_vocab_size,\n",
|
346 |
+
" 'context_length':256, # Change it to 1024 or greater if you have gpu\n",
|
347 |
+
" 'embedding_dim':512,\n",
|
348 |
+
" 'num_heads':16,\n",
|
349 |
+
" 'n_layers':12,\n",
|
350 |
+
" 'dropout':0.1,\n",
|
351 |
+
" 'qkv_bias':False #Whether to include a bias layer in the linear layers of the multi head attention for query,key and value computations.\n",
|
352 |
+
"}"
|
353 |
+
]
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"cell_type": "markdown",
|
357 |
+
"id": "47e51a02ecec92d5",
|
358 |
+
"metadata": {
|
359 |
+
"id": "47e51a02ecec92d5"
|
360 |
+
},
|
361 |
+
"source": [
|
362 |
+
"Coding up the placeholder architecture, it is like the mothership from where all the robots will branch out"
|
363 |
+
]
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"cell_type": "code",
|
367 |
+
"execution_count": 32,
|
368 |
+
"id": "4bb79e5ab1baf62a",
|
369 |
+
"metadata": {
|
370 |
+
"ExecuteTime": {
|
371 |
+
"end_time": "2025-04-20T10:31:06.415202Z",
|
372 |
+
"start_time": "2025-04-20T10:31:06.403427Z"
|
373 |
+
},
|
374 |
+
"id": "4bb79e5ab1baf62a"
|
375 |
+
},
|
376 |
+
"outputs": [],
|
377 |
+
"source": [
|
378 |
+
"class GPT_Model(nn.Module):\n",
|
379 |
+
" def __init__(self, cfg):\n",
|
380 |
+
" #The __init__ constructor of this GPTModel class initializes the token and positional embedding layers using the configurations passed in via a Python dictionary, cfg.\n",
|
381 |
+
" super().__init__()\n",
|
382 |
+
" self.tok_emb = nn.Embedding(cfg[\"vocab_size\"], cfg[\"embedding_dim\"])\n",
|
383 |
+
" self.pos_emb = nn.Embedding(cfg[\"context_length\"], cfg[\"embedding_dim\"])\n",
|
384 |
+
" self.drop_emb = nn.Dropout(cfg[\"dropout\"])\n",
|
385 |
+
" self.trf_blocks = nn.Sequential(\n",
|
386 |
+
" *[TransformerBlock(cfg) for _ in range(cfg[\"n_layers\"])]\n",
|
387 |
+
" )\n",
|
388 |
+
" self.final_norm = LayerNormalization(cfg[\"embedding_dim\"])\n",
|
389 |
+
" self.out_head = QuantizedLinear(cfg[\"embedding_dim\"], cfg[\"vocab_size\"], bias=False)\n",
|
390 |
+
" def forward(self,in_idx):\n",
|
391 |
+
" batch_size,seq_len=in_idx.shape\n",
|
392 |
+
" in_idx = torch.clamp(in_idx, 0, self.tok_emb.num_embeddings - 1) #This was initially commented out\n",
|
393 |
+
" token_embeddings=self.tok_emb(in_idx)\n",
|
394 |
+
" positions = torch.arange(seq_len, device=in_idx.device).unsqueeze(0) #this is the extra added line\n",
|
395 |
+
" positional_embeddings=self.pos_emb(positions)\n",
|
396 |
+
" x=token_embeddings+positional_embeddings\n",
|
397 |
+
" x=self.drop_emb(x)\n",
|
398 |
+
" x=self.trf_blocks(x)\n",
|
399 |
+
" x=self.final_norm(x)\n",
|
400 |
+
" logits=self.out_head(x)\n",
|
401 |
+
" return logits"
|
402 |
+
]
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"cell_type": "code",
|
406 |
+
"execution_count": 33,
|
407 |
+
"id": "72748550",
|
408 |
+
"metadata": {},
|
409 |
+
"outputs": [],
|
410 |
+
"source": [
|
411 |
+
"class LayerNormalization(nn.Module):\n",
|
412 |
+
" def __init__(self, emb_dim):\n",
|
413 |
+
" super().__init__()\n",
|
414 |
+
" self.eps = 1e-5\n",
|
415 |
+
" self.scale = nn.Parameter(torch.ones(emb_dim))\n",
|
416 |
+
" self.shift = nn.Parameter(torch.zeros(emb_dim))\n",
|
417 |
+
" def forward(self,x):\n",
|
418 |
+
" mean= x.mean(-1, keepdim=True)\n",
|
419 |
+
" variance = x.var(-1, keepdim=True)\n",
|
420 |
+
" norm_x=(x-mean)/(torch.sqrt(variance+self.eps))\n",
|
421 |
+
" return self.scale*norm_x + self.shift"
|
422 |
+
]
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"cell_type": "code",
|
426 |
+
"execution_count": 34,
|
427 |
+
"id": "b81d6de9cdc325eb",
|
428 |
+
"metadata": {
|
429 |
+
"ExecuteTime": {
|
430 |
+
"end_time": "2025-04-20T10:31:09.094024Z",
|
431 |
+
"start_time": "2025-04-20T10:31:09.082533Z"
|
432 |
+
},
|
433 |
+
"id": "b81d6de9cdc325eb"
|
434 |
+
},
|
435 |
+
"outputs": [],
|
436 |
+
"source": [
|
437 |
+
"class TransformerBlock(nn.Module):\n",
|
438 |
+
" def __init__(self,config):\n",
|
439 |
+
" super().__init__()\n",
|
440 |
+
" self.att=MultiHeadAttention(\n",
|
441 |
+
" d_in=config[\"embedding_dim\"],\n",
|
442 |
+
" d_out=config[\"embedding_dim\"],\n",
|
443 |
+
" context_length=config['context_length'],\n",
|
444 |
+
" dropout=config['dropout'],\n",
|
445 |
+
" num_heads=config['num_heads'],\n",
|
446 |
+
" qkv_bias=config['qkv_bias']\n",
|
447 |
+
" )\n",
|
448 |
+
" self.ff=FeedForward(config)\n",
|
449 |
+
" self.norm1=LayerNormalization(config[\"embedding_dim\"])\n",
|
450 |
+
" self.norm2=LayerNormalization(config[\"embedding_dim\"])\n",
|
451 |
+
" self.drop_resid=nn.Dropout(config['dropout'])\n",
|
452 |
+
" def forward(self,x):\n",
|
453 |
+
" shortcut=x\n",
|
454 |
+
" x=self.norm1(x)\n",
|
455 |
+
" x=self.att(x)\n",
|
456 |
+
" x=self.drop_resid(x)\n",
|
457 |
+
" x=x+shortcut\n",
|
458 |
+
" shortcut=x\n",
|
459 |
+
" x=self.norm2(x)\n",
|
460 |
+
" x=self.ff(x)\n",
|
461 |
+
" x=self.drop_resid(x)\n",
|
462 |
+
" x=x+shortcut\n",
|
463 |
+
" return x"
|
464 |
+
]
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"cell_type": "markdown",
|
468 |
+
"id": "ee7086fdb0d258aa",
|
469 |
+
"metadata": {
|
470 |
+
"id": "ee7086fdb0d258aa"
|
471 |
+
},
|
472 |
+
"source": [
|
473 |
+
"We will use swish activation function."
|
474 |
+
]
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"cell_type": "code",
|
478 |
+
"execution_count": 35,
|
479 |
+
"id": "aafae17704f79949",
|
480 |
+
"metadata": {
|
481 |
+
"ExecuteTime": {
|
482 |
+
"end_time": "2025-04-20T10:31:14.198107Z",
|
483 |
+
"start_time": "2025-04-20T10:31:14.183061Z"
|
484 |
+
},
|
485 |
+
"id": "aafae17704f79949"
|
486 |
+
},
|
487 |
+
"outputs": [],
|
488 |
+
"source": [
|
489 |
+
"class Swish(nn.Module):\n",
|
490 |
+
" def __init__(self):\n",
|
491 |
+
" super(Swish, self).__init__()\n",
|
492 |
+
" def forward(self, x):\n",
|
493 |
+
" return x * torch.sigmoid(x)"
|
494 |
+
]
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"cell_type": "code",
|
498 |
+
"execution_count": 36,
|
499 |
+
"id": "4b3a9eeaf0282a32",
|
500 |
+
"metadata": {
|
501 |
+
"ExecuteTime": {
|
502 |
+
"end_time": "2025-04-20T10:31:16.572707Z",
|
503 |
+
"start_time": "2025-04-20T10:31:16.567278Z"
|
504 |
+
},
|
505 |
+
"id": "4b3a9eeaf0282a32"
|
506 |
+
},
|
507 |
+
"outputs": [],
|
508 |
+
"source": [
|
509 |
+
"class FeedForward(nn.Module):\n",
|
510 |
+
" def __init__(self, config):\n",
|
511 |
+
" super().__init__()\n",
|
512 |
+
" self.layers=nn.Sequential(\n",
|
513 |
+
" nn.Linear(config[\"embedding_dim\"], 4*config[\"embedding_dim\"]),\n",
|
514 |
+
" Swish(),\n",
|
515 |
+
" nn.Linear(4*config[\"embedding_dim\"], config[\"embedding_dim\"]),\n",
|
516 |
+
" )\n",
|
517 |
+
" def forward(self, x):\n",
|
518 |
+
" return self.layers(x)"
|
519 |
+
]
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"cell_type": "code",
|
523 |
+
"execution_count": 37,
|
524 |
+
"id": "3888c877e7bb59fa",
|
525 |
+
"metadata": {
|
526 |
+
"ExecuteTime": {
|
527 |
+
"end_time": "2025-04-20T10:31:37.956131Z",
|
528 |
+
"start_time": "2025-04-20T10:31:37.943199Z"
|
529 |
+
},
|
530 |
+
"id": "3888c877e7bb59fa"
|
531 |
+
},
|
532 |
+
"outputs": [],
|
533 |
+
"source": [
|
534 |
+
"class DeepNeuralNetwork(nn.Module):\n",
|
535 |
+
" def __init__(self, layer_sizes,use_shortcut):\n",
|
536 |
+
" super().__init__()\n",
|
537 |
+
" self.layers=nn.ModuleList([\n",
|
538 |
+
" #We would be implementing 10 layers\n",
|
539 |
+
" nn.Sequential(nn.Linear(layer_sizes[0], layer_sizes[1])),\n",
|
540 |
+
" nn.Sequential(nn.Linear(layer_sizes[1], layer_sizes[2])),\n",
|
541 |
+
" nn.Sequential(nn.Linear(layer_sizes[2], layer_sizes[3])),\n",
|
542 |
+
" nn.Sequential(nn.Linear(layer_sizes[3], layer_sizes[4])),\n",
|
543 |
+
" nn.Sequential(nn.Linear(layer_sizes[4], layer_sizes[5])),\n",
|
544 |
+
" nn.Sequential(nn.Linear(layer_sizes[5], layer_sizes[6])),\n",
|
545 |
+
" nn.Sequential(nn.Linear(layer_sizes[6], layer_sizes[7])),\n",
|
546 |
+
" nn.Sequential(nn.Linear(layer_sizes[7], layer_sizes[8])),\n",
|
547 |
+
" nn.Sequential(nn.Linear(layer_sizes[8], layer_sizes[9])),\n",
|
548 |
+
" nn.Sequential(nn.Linear(layer_sizes[9], layer_sizes[10])),\n",
|
549 |
+
" ])\n",
|
550 |
+
" def forward(self,x):\n",
|
551 |
+
" for layer in self.layers:\n",
|
552 |
+
" #Computing the output of the current layer\n",
|
553 |
+
" layer_output=layer(x)\n",
|
554 |
+
" #Check if shortcut can be applied\n",
|
555 |
+
" if self.use_shortcut and x.shape==layer_output.shape:\n",
|
556 |
+
" x=x+layer_output\n",
|
557 |
+
" else:\n",
|
558 |
+
" x=layer_output\n",
|
559 |
+
" return x\n",
|
560 |
+
"def print_gradients(model,x):\n",
|
561 |
+
" #First would be the forward pass\n",
|
562 |
+
" output = model(x)\n",
|
563 |
+
" target=torch.tensor([0,])\n",
|
564 |
+
" #Loss calculation\n",
|
565 |
+
" loss=nn.MSELoss()\n",
|
566 |
+
" loss=loss(output,target)\n",
|
567 |
+
" loss.backward()\n",
|
568 |
+
" for name, param in model.named_parameters():\n",
|
569 |
+
" if 'weight' in name:\n",
|
570 |
+
" print(f\"{name} grad: {param.grad}\")"
|
571 |
+
]
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"cell_type": "markdown",
|
575 |
+
"id": "78ab409a0177825",
|
576 |
+
"metadata": {
|
577 |
+
"id": "78ab409a0177825"
|
578 |
+
},
|
579 |
+
"source": [
|
580 |
+
"Now let us initialise"
|
581 |
+
]
|
582 |
+
},
|
583 |
+
{
|
584 |
+
"cell_type": "code",
|
585 |
+
"execution_count": 38,
|
586 |
+
"id": "6710dda1f52d8b41",
|
587 |
+
"metadata": {
|
588 |
+
"ExecuteTime": {
|
589 |
+
"end_time": "2025-04-20T10:31:41.037621Z",
|
590 |
+
"start_time": "2025-04-20T10:31:40.974254Z"
|
591 |
+
},
|
592 |
+
"colab": {
|
593 |
+
"base_uri": "https://localhost:8080/"
|
594 |
+
},
|
595 |
+
"id": "6710dda1f52d8b41",
|
596 |
+
"outputId": "c2753e89-89dc-4c5b-c086-53132aded738"
|
597 |
+
},
|
598 |
+
"outputs": [
|
599 |
+
{
|
600 |
+
"name": "stdout",
|
601 |
+
"output_type": "stream",
|
602 |
+
"text": [
|
603 |
+
"tensor([[36, 24, 61, 0, 41, 81, 18, 26, 93, 88],\n",
|
604 |
+
" [26, 96, 17, 74, 20, 82, 52, 43, 96, 70]])\n"
|
605 |
+
]
|
606 |
+
}
|
607 |
+
],
|
608 |
+
"source": [
|
609 |
+
"batch_size = 2 # Number of samples in the batch\n",
|
610 |
+
"sequence_length = 10 # Length of each sequence\n",
|
611 |
+
"vocab_size = 100 # Size of the vocabulary\n",
|
612 |
+
"batch = torch.randint(0, vocab_size, (batch_size, sequence_length))\n",
|
613 |
+
"print(batch)"
|
614 |
+
]
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"cell_type": "code",
|
618 |
+
"execution_count": 39,
|
619 |
+
"id": "b376992b9eb9a68c",
|
620 |
+
"metadata": {
|
621 |
+
"ExecuteTime": {
|
622 |
+
"end_time": "2025-04-20T10:31:44.349704Z",
|
623 |
+
"start_time": "2025-04-20T10:31:43.391715Z"
|
624 |
+
},
|
625 |
+
"colab": {
|
626 |
+
"base_uri": "https://localhost:8080/"
|
627 |
+
},
|
628 |
+
"id": "b376992b9eb9a68c",
|
629 |
+
"outputId": "f67dc607-f218-4c20-848d-47212f38b749"
|
630 |
+
},
|
631 |
+
"outputs": [
|
632 |
+
{
|
633 |
+
"name": "stdout",
|
634 |
+
"output_type": "stream",
|
635 |
+
"text": [
|
636 |
+
"Input batch:\n",
|
637 |
+
" tensor([[36, 24, 61, 0, 41, 81, 18, 26, 93, 88],\n",
|
638 |
+
" [26, 96, 17, 74, 20, 82, 52, 43, 96, 70]])\n",
|
639 |
+
"Output batch:\n",
|
640 |
+
" torch.Size([2, 10, 100277])\n",
|
641 |
+
"tensor([[[ 1.6182e+01, -1.6015e+01, -9.4095e+00, ..., 3.0794e-03,\n",
|
642 |
+
" 2.9054e+01, 1.6988e+01],\n",
|
643 |
+
" [ 5.2240e+00, 2.7572e+01, -6.9735e+00, ..., -8.0013e+00,\n",
|
644 |
+
" -4.0101e-01, 2.8758e+01],\n",
|
645 |
+
" [ 6.6475e+00, -1.1150e+01, 7.9781e+00, ..., -2.5136e+01,\n",
|
646 |
+
" 7.3388e+00, 9.9231e+00],\n",
|
647 |
+
" ...,\n",
|
648 |
+
" [-4.3846e+00, -1.7154e+01, 1.0174e+01, ..., -4.6591e+00,\n",
|
649 |
+
" -8.3947e+00, 1.1043e+01],\n",
|
650 |
+
" [ 3.5968e+01, -2.7967e+00, -2.8498e+01, ..., -2.2024e+00,\n",
|
651 |
+
" -1.1003e+01, -2.4883e-02],\n",
|
652 |
+
" [ 1.9451e+01, -3.6966e+01, 7.5978e+00, ..., 9.3602e+00,\n",
|
653 |
+
" 8.6090e+00, -2.6628e+00]],\n",
|
654 |
+
"\n",
|
655 |
+
" [[-2.8687e+01, 1.6627e+01, -1.4998e+01, ..., -1.7184e+01,\n",
|
656 |
+
" 2.0726e+01, 8.0321e+00],\n",
|
657 |
+
" [-4.0979e+01, 6.5536e-01, 4.1383e+00, ..., -1.2853e+01,\n",
|
658 |
+
" -1.7279e+01, -1.3240e+01],\n",
|
659 |
+
" [-1.9607e+01, 2.3471e+00, 7.2976e+00, ..., 4.8977e-01,\n",
|
660 |
+
" -1.7134e+01, 3.4321e+00],\n",
|
661 |
+
" ...,\n",
|
662 |
+
" [-1.1025e+01, -2.4218e+00, 2.6663e+01, ..., 1.4770e+00,\n",
|
663 |
+
" -4.0925e+01, 5.0661e-01],\n",
|
664 |
+
" [-3.4426e+01, -2.2701e+00, 2.6099e+01, ..., -1.2846e+01,\n",
|
665 |
+
" -2.4183e+01, -4.9127e+01],\n",
|
666 |
+
" [ 1.6595e+00, -1.6062e+00, 1.8436e+01, ..., 3.3674e+01,\n",
|
667 |
+
" -3.5222e+01, -2.4692e+01]]], grad_fn=<UnsafeViewBackward0>)\n"
|
668 |
+
]
|
669 |
+
}
|
670 |
+
],
|
671 |
+
"source": [
|
672 |
+
"torch.manual_seed(123)\n",
|
673 |
+
"model=GPT_Model(GPT_CONFIG)\n",
|
674 |
+
"out=model(batch)\n",
|
675 |
+
"print(\"Input batch:\\n\",batch)\n",
|
676 |
+
"print(\"Output batch:\\n\",out.shape)\n",
|
677 |
+
"print(out)"
|
678 |
+
]
|
679 |
+
},
|
680 |
+
{
|
681 |
+
"cell_type": "markdown",
|
682 |
+
"id": "32204ab3e2917ca1",
|
683 |
+
"metadata": {
|
684 |
+
"id": "32204ab3e2917ca1"
|
685 |
+
},
|
686 |
+
"source": [
|
687 |
+
"Displaying the number of parameters for the GPT model"
|
688 |
+
]
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"cell_type": "code",
|
692 |
+
"execution_count": 40,
|
693 |
+
"id": "bfd0d944c222bfbf",
|
694 |
+
"metadata": {
|
695 |
+
"ExecuteTime": {
|
696 |
+
"end_time": "2025-04-20T10:31:49.707504Z",
|
697 |
+
"start_time": "2025-04-20T10:31:49.699751Z"
|
698 |
+
},
|
699 |
+
"colab": {
|
700 |
+
"base_uri": "https://localhost:8080/"
|
701 |
+
},
|
702 |
+
"id": "bfd0d944c222bfbf",
|
703 |
+
"outputId": "bbad64e6-f379-475e-80d5-6d3fe5e79824"
|
704 |
+
},
|
705 |
+
"outputs": [
|
706 |
+
{
|
707 |
+
"name": "stdout",
|
708 |
+
"output_type": "stream",
|
709 |
+
"text": [
|
710 |
+
"Total number of parameters: 140625920\n",
|
711 |
+
"Token embedding layer shape: torch.Size([100277, 512])\n",
|
712 |
+
"Output layer shape: torch.Size([100277, 512])\n"
|
713 |
+
]
|
714 |
+
}
|
715 |
+
],
|
716 |
+
"source": [
|
717 |
+
"total_parameters=sum(p.numel() for p in model.parameters())\n",
|
718 |
+
"print(f\"Total number of parameters: {total_parameters}\")\n",
|
719 |
+
"print(\"Token embedding layer shape:\", model.tok_emb.weight.shape)\n",
|
720 |
+
"print(\"Output layer shape:\", model.out_head.weight.shape)"
|
721 |
+
]
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"cell_type": "markdown",
|
725 |
+
"id": "c2b39710a7897efb",
|
726 |
+
"metadata": {
|
727 |
+
"id": "c2b39710a7897efb"
|
728 |
+
},
|
729 |
+
"source": [
|
730 |
+
"Number of trainable parameters in the model"
|
731 |
+
]
|
732 |
+
},
|
733 |
+
{
|
734 |
+
"cell_type": "code",
|
735 |
+
"execution_count": 41,
|
736 |
+
"id": "e047e3f5d5b4e540",
|
737 |
+
"metadata": {
|
738 |
+
"ExecuteTime": {
|
739 |
+
"end_time": "2025-04-20T10:31:53.034490Z",
|
740 |
+
"start_time": "2025-04-20T10:31:53.027104Z"
|
741 |
+
},
|
742 |
+
"colab": {
|
743 |
+
"base_uri": "https://localhost:8080/"
|
744 |
+
},
|
745 |
+
"id": "e047e3f5d5b4e540",
|
746 |
+
"outputId": "b1793806-df53-4cf2-a09d-52e8485bb35f"
|
747 |
+
},
|
748 |
+
"outputs": [
|
749 |
+
{
|
750 |
+
"name": "stdout",
|
751 |
+
"output_type": "stream",
|
752 |
+
"text": [
|
753 |
+
"Number of trainable parameters considering weight tying: 89284096\n"
|
754 |
+
]
|
755 |
+
}
|
756 |
+
],
|
757 |
+
"source": [
|
758 |
+
"total_params_gpt2 = total_parameters - sum(p.numel() for p in model.out_head.parameters())\n",
|
759 |
+
"print(f\"Number of trainable parameters considering weight tying: {total_params_gpt2}\")"
|
760 |
+
]
|
761 |
+
},
|
762 |
+
{
|
763 |
+
"cell_type": "code",
|
764 |
+
"execution_count": 42,
|
765 |
+
"id": "f611c62fb559142f",
|
766 |
+
"metadata": {
|
767 |
+
"ExecuteTime": {
|
768 |
+
"end_time": "2025-04-20T10:31:57.287950Z",
|
769 |
+
"start_time": "2025-04-20T10:31:57.279346Z"
|
770 |
+
},
|
771 |
+
"colab": {
|
772 |
+
"base_uri": "https://localhost:8080/"
|
773 |
+
},
|
774 |
+
"id": "f611c62fb559142f",
|
775 |
+
"outputId": "24b7ef8b-df10-40a3-b192-46a8d32cf3e3"
|
776 |
+
},
|
777 |
+
"outputs": [
|
778 |
+
{
|
779 |
+
"name": "stdout",
|
780 |
+
"output_type": "stream",
|
781 |
+
"text": [
|
782 |
+
"Total size of the model : 536.45 MB\n"
|
783 |
+
]
|
784 |
+
}
|
785 |
+
],
|
786 |
+
"source": [
|
787 |
+
"total_size_in_bytes=total_parameters*4\n",
|
788 |
+
"\n",
|
789 |
+
"total_size_of_the_model_in_MB=total_size_in_bytes/(1024*1024)\n",
|
790 |
+
"print(f\"Total size of the model : {total_size_of_the_model_in_MB:.2f} MB\")"
|
791 |
+
]
|
792 |
+
},
|
793 |
+
{
|
794 |
+
"cell_type": "markdown",
|
795 |
+
"id": "645fa9c01a21b0e3",
|
796 |
+
"metadata": {
|
797 |
+
"id": "645fa9c01a21b0e3"
|
798 |
+
},
|
799 |
+
"source": [
|
800 |
+
"Total size of the model : 341.55 MB\n",
|
801 |
+
"Number of trainable parameters considering weight tying: 63935488\n"
|
802 |
+
]
|
803 |
+
},
|
804 |
+
{
|
805 |
+
"cell_type": "markdown",
|
806 |
+
"id": "e32325eb6463fa21",
|
807 |
+
"metadata": {
|
808 |
+
"id": "e32325eb6463fa21"
|
809 |
+
},
|
810 |
+
"source": [
|
811 |
+
"The next step is to now decode these tensors to proper text. Which would be coding up in the subsequent steps"
|
812 |
+
]
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"cell_type": "code",
|
816 |
+
"execution_count": 43,
|
817 |
+
"id": "af8f873de4b1ea1f",
|
818 |
+
"metadata": {
|
819 |
+
"ExecuteTime": {
|
820 |
+
"end_time": "2025-04-20T10:36:18.521800Z",
|
821 |
+
"start_time": "2025-04-20T10:36:18.507080Z"
|
822 |
+
},
|
823 |
+
"colab": {
|
824 |
+
"base_uri": "https://localhost:8080/"
|
825 |
+
},
|
826 |
+
"id": "af8f873de4b1ea1f",
|
827 |
+
"outputId": "8761b2e0-af06-4027-fc7b-b09c306d69cf"
|
828 |
+
},
|
829 |
+
"outputs": [
|
830 |
+
{
|
831 |
+
"name": "stdout",
|
832 |
+
"output_type": "stream",
|
833 |
+
"text": [
|
834 |
+
"[9906, 11, 358, 1097, 2467, 488, 64, 13]\n"
|
835 |
+
]
|
836 |
+
}
|
837 |
+
],
|
838 |
+
"source": [
|
839 |
+
"#Let us try out the decoding procedure\n",
|
840 |
+
"start_context=\"Hello, I am Aditya.\"\n",
|
841 |
+
"tokenizer = tiktoken.get_encoding(\"cl100k_base\")\n",
|
842 |
+
"encoded=tokenizer.encode(start_context)\n",
|
843 |
+
"print(encoded)"
|
844 |
+
]
|
845 |
+
},
|
846 |
+
{
|
847 |
+
"cell_type": "code",
|
848 |
+
"execution_count": 44,
|
849 |
+
"id": "baf2d02c627a5911",
|
850 |
+
"metadata": {
|
851 |
+
"ExecuteTime": {
|
852 |
+
"end_time": "2025-04-20T10:32:31.432690Z",
|
853 |
+
"start_time": "2025-04-20T10:32:31.416839Z"
|
854 |
+
},
|
855 |
+
"colab": {
|
856 |
+
"base_uri": "https://localhost:8080/"
|
857 |
+
},
|
858 |
+
"id": "baf2d02c627a5911",
|
859 |
+
"outputId": "b6a59155-048a-49e4-c1b5-683dbbad8f0a"
|
860 |
+
},
|
861 |
+
"outputs": [
|
862 |
+
{
|
863 |
+
"data": {
|
864 |
+
"text/plain": [
|
865 |
+
"GPT_Model(\n",
|
866 |
+
" (tok_emb): Embedding(100277, 512)\n",
|
867 |
+
" (pos_emb): Embedding(256, 512)\n",
|
868 |
+
" (drop_emb): Dropout(p=0.1, inplace=False)\n",
|
869 |
+
" (trf_blocks): Sequential(\n",
|
870 |
+
" (0): TransformerBlock(\n",
|
871 |
+
" (att): MultiHeadAttention(\n",
|
872 |
+
" (W_query): QuantizedLinear(in_features=512, out_features=512, bias=False)\n",
|
873 |
+
" (W_key): QuantizedLinear(in_features=512, out_features=512, bias=False)\n",
|
874 |
+
" (W_value): QuantizedLinear(in_features=512, out_features=512, bias=False)\n",
|
875 |
+
" (out_proj): QuantizedLinear(in_features=512, out_features=512, bias=True)\n",
|
876 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
877 |
+
" )\n",
|
878 |
+
" (ff): FeedForward(\n",
|
879 |
+
" (layers): Sequential(\n",
|
880 |
+
" (0): Linear(in_features=512, out_features=2048, bias=True)\n",
|
881 |
+
" (1): Swish()\n",
|
882 |
+
" (2): Linear(in_features=2048, out_features=512, bias=True)\n",
|
883 |
+
" )\n",
|
884 |
+
" )\n",
|
885 |
+
" (norm1): LayerNormalization()\n",
|
886 |
+
" (norm2): LayerNormalization()\n",
|
887 |
+
" (drop_resid): Dropout(p=0.1, inplace=False)\n",
|
888 |
+
" )\n",
|
889 |
+
" (1): TransformerBlock(\n",
|
890 |
+
" (att): MultiHeadAttention(\n",
|
891 |
+
" (W_query): QuantizedLinear(in_features=512, out_features=512, bias=False)\n",
|
892 |
+
" (W_key): QuantizedLinear(in_features=512, out_features=512, bias=False)\n",
|
893 |
+
" (W_value): QuantizedLinear(in_features=512, out_features=512, bias=False)\n",
|
894 |
+
" (out_proj): QuantizedLinear(in_features=512, out_features=512, bias=True)\n",
|
895 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
896 |
+
" )\n",
|
897 |
+
" (ff): FeedForward(\n",
|
898 |
+
" (layers): Sequential(\n",
|
899 |
+
" (0): Linear(in_features=512, out_features=2048, bias=True)\n",
|
900 |
+
" (1): Swish()\n",
|
901 |
+
" (2): Linear(in_features=2048, out_features=512, bias=True)\n",
|
902 |
+
" )\n",
|
903 |
+
" )\n",
|
904 |
+
" (norm1): LayerNormalization()\n",
|
905 |
+
" (norm2): LayerNormalization()\n",
|
906 |
+
" (drop_resid): Dropout(p=0.1, inplace=False)\n",
|
907 |
+
" )\n",
|
908 |
+
" (2): TransformerBlock(\n",
|
909 |
+
" (att): MultiHeadAttention(\n",
|
910 |
+
" (W_query): QuantizedLinear(in_features=512, out_features=512, bias=False)\n",
|
911 |
+
" (W_key): QuantizedLinear(in_features=512, out_features=512, bias=False)\n",
|
912 |
+
" (W_value): QuantizedLinear(in_features=512, out_features=512, bias=False)\n",
|
913 |
+
" (out_proj): QuantizedLinear(in_features=512, out_features=512, bias=True)\n",
|
914 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
915 |
+
" )\n",
|
916 |
+
" (ff): FeedForward(\n",
|
917 |
+
" (layers): Sequential(\n",
|
918 |
+
" (0): Linear(in_features=512, out_features=2048, bias=True)\n",
|
919 |
+
" (1): Swish()\n",
|
920 |
+
" (2): Linear(in_features=2048, out_features=512, bias=True)\n",
|
921 |
+
" )\n",
|
922 |
+
" )\n",
|
923 |
+
" (norm1): LayerNormalization()\n",
|
924 |
+
" (norm2): LayerNormalization()\n",
|
925 |
+
" (drop_resid): Dropout(p=0.1, inplace=False)\n",
|
926 |
+
" )\n",
|
927 |
+
" (3): TransformerBlock(\n",
|
928 |
+
" (att): MultiHeadAttention(\n",
|
929 |
+
" (W_query): QuantizedLinear(in_features=512, out_features=512, bias=False)\n",
|
930 |
+
" (W_key): QuantizedLinear(in_features=512, out_features=512, bias=False)\n",
|
931 |
+
" (W_value): QuantizedLinear(in_features=512, out_features=512, bias=False)\n",
|
932 |
+
" (out_proj): QuantizedLinear(in_features=512, out_features=512, bias=True)\n",
|
933 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
934 |
+
" )\n",
|
935 |
+
" (ff): FeedForward(\n",
|
936 |
+
" (layers): Sequential(\n",
|
937 |
+
" (0): Linear(in_features=512, out_features=2048, bias=True)\n",
|
938 |
+
" (1): Swish()\n",
|
939 |
+
" (2): Linear(in_features=2048, out_features=512, bias=True)\n",
|
940 |
+
" )\n",
|
941 |
+
" )\n",
|
942 |
+
" (norm1): LayerNormalization()\n",
|
943 |
+
" (norm2): LayerNormalization()\n",
|
944 |
+
" (drop_resid): Dropout(p=0.1, inplace=False)\n",
|
945 |
+
" )\n",
|
946 |
+
" (4): TransformerBlock(\n",
|
947 |
+
" (att): MultiHeadAttention(\n",
|
948 |
+
" (W_query): QuantizedLinear(in_features=512, out_features=512, bias=False)\n",
|
949 |
+
" (W_key): QuantizedLinear(in_features=512, out_features=512, bias=False)\n",
|
950 |
+
" (W_value): QuantizedLinear(in_features=512, out_features=512, bias=False)\n",
|
951 |
+
" (out_proj): QuantizedLinear(in_features=512, out_features=512, bias=True)\n",
|
952 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
953 |
+
" )\n",
|
954 |
+
" (ff): FeedForward(\n",
|
955 |
+
" (layers): Sequential(\n",
|
956 |
+
" (0): Linear(in_features=512, out_features=2048, bias=True)\n",
|
957 |
+
" (1): Swish()\n",
|
958 |
+
" (2): Linear(in_features=2048, out_features=512, bias=True)\n",
|
959 |
+
" )\n",
|
960 |
+
" )\n",
|
961 |
+
" (norm1): LayerNormalization()\n",
|
962 |
+
" (norm2): LayerNormalization()\n",
|
963 |
+
" (drop_resid): Dropout(p=0.1, inplace=False)\n",
|
964 |
+
" )\n",
|
965 |
+
" (5): TransformerBlock(\n",
|
966 |
+
" (att): MultiHeadAttention(\n",
|
967 |
+
" (W_query): QuantizedLinear(in_features=512, out_features=512, bias=False)\n",
|
968 |
+
" (W_key): QuantizedLinear(in_features=512, out_features=512, bias=False)\n",
|
969 |
+
" (W_value): QuantizedLinear(in_features=512, out_features=512, bias=False)\n",
|
970 |
+
" (out_proj): QuantizedLinear(in_features=512, out_features=512, bias=True)\n",
|
971 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
972 |
+
" )\n",
|
973 |
+
" (ff): FeedForward(\n",
|
974 |
+
" (layers): Sequential(\n",
|
975 |
+
" (0): Linear(in_features=512, out_features=2048, bias=True)\n",
|
976 |
+
" (1): Swish()\n",
|
977 |
+
" (2): Linear(in_features=2048, out_features=512, bias=True)\n",
|
978 |
+
" )\n",
|
979 |
+
" )\n",
|
980 |
+
" (norm1): LayerNormalization()\n",
|
981 |
+
" (norm2): LayerNormalization()\n",
|
982 |
+
" (drop_resid): Dropout(p=0.1, inplace=False)\n",
|
983 |
+
" )\n",
|
984 |
+
" (6): TransformerBlock(\n",
|
985 |
+
" (att): MultiHeadAttention(\n",
|
986 |
+
" (W_query): QuantizedLinear(in_features=512, out_features=512, bias=False)\n",
|
987 |
+
" (W_key): QuantizedLinear(in_features=512, out_features=512, bias=False)\n",
|
988 |
+
" (W_value): QuantizedLinear(in_features=512, out_features=512, bias=False)\n",
|
989 |
+
" (out_proj): QuantizedLinear(in_features=512, out_features=512, bias=True)\n",
|
990 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
991 |
+
" )\n",
|
992 |
+
" (ff): FeedForward(\n",
|
993 |
+
" (layers): Sequential(\n",
|
994 |
+
" (0): Linear(in_features=512, out_features=2048, bias=True)\n",
|
995 |
+
" (1): Swish()\n",
|
996 |
+
" (2): Linear(in_features=2048, out_features=512, bias=True)\n",
|
997 |
+
" )\n",
|
998 |
+
" )\n",
|
999 |
+
" (norm1): LayerNormalization()\n",
|
1000 |
+
" (norm2): LayerNormalization()\n",
|
1001 |
+
" (drop_resid): Dropout(p=0.1, inplace=False)\n",
|
1002 |
+
" )\n",
|
1003 |
+
" (7): TransformerBlock(\n",
|
1004 |
+
" (att): MultiHeadAttention(\n",
|
1005 |
+
" (W_query): QuantizedLinear(in_features=512, out_features=512, bias=False)\n",
|
1006 |
+
" (W_key): QuantizedLinear(in_features=512, out_features=512, bias=False)\n",
|
1007 |
+
" (W_value): QuantizedLinear(in_features=512, out_features=512, bias=False)\n",
|
1008 |
+
" (out_proj): QuantizedLinear(in_features=512, out_features=512, bias=True)\n",
|
1009 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
1010 |
+
" )\n",
|
1011 |
+
" (ff): FeedForward(\n",
|
1012 |
+
" (layers): Sequential(\n",
|
1013 |
+
" (0): Linear(in_features=512, out_features=2048, bias=True)\n",
|
1014 |
+
" (1): Swish()\n",
|
1015 |
+
" (2): Linear(in_features=2048, out_features=512, bias=True)\n",
|
1016 |
+
" )\n",
|
1017 |
+
" )\n",
|
1018 |
+
" (norm1): LayerNormalization()\n",
|
1019 |
+
" (norm2): LayerNormalization()\n",
|
1020 |
+
" (drop_resid): Dropout(p=0.1, inplace=False)\n",
|
1021 |
+
" )\n",
|
1022 |
+
" (8): TransformerBlock(\n",
|
1023 |
+
" (att): MultiHeadAttention(\n",
|
1024 |
+
" (W_query): QuantizedLinear(in_features=512, out_features=512, bias=False)\n",
|
1025 |
+
" (W_key): QuantizedLinear(in_features=512, out_features=512, bias=False)\n",
|
1026 |
+
" (W_value): QuantizedLinear(in_features=512, out_features=512, bias=False)\n",
|
1027 |
+
" (out_proj): QuantizedLinear(in_features=512, out_features=512, bias=True)\n",
|
1028 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
1029 |
+
" )\n",
|
1030 |
+
" (ff): FeedForward(\n",
|
1031 |
+
" (layers): Sequential(\n",
|
1032 |
+
" (0): Linear(in_features=512, out_features=2048, bias=True)\n",
|
1033 |
+
" (1): Swish()\n",
|
1034 |
+
" (2): Linear(in_features=2048, out_features=512, bias=True)\n",
|
1035 |
+
" )\n",
|
1036 |
+
" )\n",
|
1037 |
+
" (norm1): LayerNormalization()\n",
|
1038 |
+
" (norm2): LayerNormalization()\n",
|
1039 |
+
" (drop_resid): Dropout(p=0.1, inplace=False)\n",
|
1040 |
+
" )\n",
|
1041 |
+
" (9): TransformerBlock(\n",
|
1042 |
+
" (att): MultiHeadAttention(\n",
|
1043 |
+
" (W_query): QuantizedLinear(in_features=512, out_features=512, bias=False)\n",
|
1044 |
+
" (W_key): QuantizedLinear(in_features=512, out_features=512, bias=False)\n",
|
1045 |
+
" (W_value): QuantizedLinear(in_features=512, out_features=512, bias=False)\n",
|
1046 |
+
" (out_proj): QuantizedLinear(in_features=512, out_features=512, bias=True)\n",
|
1047 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
1048 |
+
" )\n",
|
1049 |
+
" (ff): FeedForward(\n",
|
1050 |
+
" (layers): Sequential(\n",
|
1051 |
+
" (0): Linear(in_features=512, out_features=2048, bias=True)\n",
|
1052 |
+
" (1): Swish()\n",
|
1053 |
+
" (2): Linear(in_features=2048, out_features=512, bias=True)\n",
|
1054 |
+
" )\n",
|
1055 |
+
" )\n",
|
1056 |
+
" (norm1): LayerNormalization()\n",
|
1057 |
+
" (norm2): LayerNormalization()\n",
|
1058 |
+
" (drop_resid): Dropout(p=0.1, inplace=False)\n",
|
1059 |
+
" )\n",
|
1060 |
+
" (10): TransformerBlock(\n",
|
1061 |
+
" (att): MultiHeadAttention(\n",
|
1062 |
+
" (W_query): QuantizedLinear(in_features=512, out_features=512, bias=False)\n",
|
1063 |
+
" (W_key): QuantizedLinear(in_features=512, out_features=512, bias=False)\n",
|
1064 |
+
" (W_value): QuantizedLinear(in_features=512, out_features=512, bias=False)\n",
|
1065 |
+
" (out_proj): QuantizedLinear(in_features=512, out_features=512, bias=True)\n",
|
1066 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
1067 |
+
" )\n",
|
1068 |
+
" (ff): FeedForward(\n",
|
1069 |
+
" (layers): Sequential(\n",
|
1070 |
+
" (0): Linear(in_features=512, out_features=2048, bias=True)\n",
|
1071 |
+
" (1): Swish()\n",
|
1072 |
+
" (2): Linear(in_features=2048, out_features=512, bias=True)\n",
|
1073 |
+
" )\n",
|
1074 |
+
" )\n",
|
1075 |
+
" (norm1): LayerNormalization()\n",
|
1076 |
+
" (norm2): LayerNormalization()\n",
|
1077 |
+
" (drop_resid): Dropout(p=0.1, inplace=False)\n",
|
1078 |
+
" )\n",
|
1079 |
+
" (11): TransformerBlock(\n",
|
1080 |
+
" (att): MultiHeadAttention(\n",
|
1081 |
+
" (W_query): QuantizedLinear(in_features=512, out_features=512, bias=False)\n",
|
1082 |
+
" (W_key): QuantizedLinear(in_features=512, out_features=512, bias=False)\n",
|
1083 |
+
" (W_value): QuantizedLinear(in_features=512, out_features=512, bias=False)\n",
|
1084 |
+
" (out_proj): QuantizedLinear(in_features=512, out_features=512, bias=True)\n",
|
1085 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
1086 |
+
" )\n",
|
1087 |
+
" (ff): FeedForward(\n",
|
1088 |
+
" (layers): Sequential(\n",
|
1089 |
+
" (0): Linear(in_features=512, out_features=2048, bias=True)\n",
|
1090 |
+
" (1): Swish()\n",
|
1091 |
+
" (2): Linear(in_features=2048, out_features=512, bias=True)\n",
|
1092 |
+
" )\n",
|
1093 |
+
" )\n",
|
1094 |
+
" (norm1): LayerNormalization()\n",
|
1095 |
+
" (norm2): LayerNormalization()\n",
|
1096 |
+
" (drop_resid): Dropout(p=0.1, inplace=False)\n",
|
1097 |
+
" )\n",
|
1098 |
+
" )\n",
|
1099 |
+
" (final_norm): LayerNormalization()\n",
|
1100 |
+
" (out_head): QuantizedLinear(in_features=512, out_features=100277, bias=False)\n",
|
1101 |
+
")"
|
1102 |
+
]
|
1103 |
+
},
|
1104 |
+
"execution_count": 44,
|
1105 |
+
"metadata": {},
|
1106 |
+
"output_type": "execute_result"
|
1107 |
+
}
|
1108 |
+
],
|
1109 |
+
"source": [
|
1110 |
+
"model.eval()"
|
1111 |
+
]
|
1112 |
+
},
|
1113 |
+
{
|
1114 |
+
"cell_type": "code",
|
1115 |
+
"execution_count": 45,
|
1116 |
+
"id": "8e6a5e5afc3272d6",
|
1117 |
+
"metadata": {
|
1118 |
+
"ExecuteTime": {
|
1119 |
+
"end_time": "2025-04-20T10:36:21.766425Z",
|
1120 |
+
"start_time": "2025-04-20T10:36:21.340642Z"
|
1121 |
+
},
|
1122 |
+
"colab": {
|
1123 |
+
"base_uri": "https://localhost:8080/"
|
1124 |
+
},
|
1125 |
+
"id": "8e6a5e5afc3272d6",
|
1126 |
+
"outputId": "4b2dcdff-161f-47c8-cca4-e84a9e117e2f"
|
1127 |
+
},
|
1128 |
+
"outputs": [
|
1129 |
+
{
|
1130 |
+
"name": "stdout",
|
1131 |
+
"output_type": "stream",
|
1132 |
+
"text": [
|
1133 |
+
"Output:\n",
|
1134 |
+
" tensor([[ 9906, 11, 358, 1097, 2467, 488, 64, 13, 48400, 85624,\n",
|
1135 |
+
" 1993, 61732, 73414, 87133]])\n"
|
1136 |
+
]
|
1137 |
+
}
|
1138 |
+
],
|
1139 |
+
"source": [
|
1140 |
+
"model.eval()\n",
|
1141 |
+
"out=generate_text(model=model,idx=torch.tensor(encoded).unsqueeze(0),max_new_tokens=6,context_size=GPT_CONFIG[\"context_length\"])\n",
|
1142 |
+
"print(\"Output:\\n\",out)"
|
1143 |
+
]
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"cell_type": "code",
|
1147 |
+
"execution_count": 46,
|
1148 |
+
"id": "1ffca81eb2e208dd",
|
1149 |
+
"metadata": {
|
1150 |
+
"ExecuteTime": {
|
1151 |
+
"end_time": "2025-04-20T10:36:31.970156Z",
|
1152 |
+
"start_time": "2025-04-20T10:36:30.980631Z"
|
1153 |
+
},
|
1154 |
+
"colab": {
|
1155 |
+
"base_uri": "https://localhost:8080/"
|
1156 |
+
},
|
1157 |
+
"id": "1ffca81eb2e208dd",
|
1158 |
+
"outputId": "5d1b6fe6-0368-46c9-ead1-7cc1a3174322"
|
1159 |
+
},
|
1160 |
+
"outputs": [
|
1161 |
+
{
|
1162 |
+
"name": "stdout",
|
1163 |
+
"output_type": "stream",
|
1164 |
+
"text": [
|
1165 |
+
"Output text:\n",
|
1166 |
+
" Hello, I am Aditya I want to become a CEO one day of my own company steadily;/*\tmodel collateral字符 Lois Middletonarios_DECL loophole\n"
|
1167 |
+
]
|
1168 |
+
}
|
1169 |
+
],
|
1170 |
+
"source": [
|
1171 |
+
"start_context=\"Hello, I am Aditya I want to become a CEO one day of my own company\"\n",
|
1172 |
+
"token_ids=generate_text(model=model,idx=text_to_token_ids(start_context,tokenizer),max_new_tokens=10,context_size=GPT_CONFIG[\"context_length\"])\n",
|
1173 |
+
"print(\"Output text:\\n\",token_ids_to_text(token_ids,tokenizer))"
|
1174 |
+
]
|
1175 |
+
},
|
1176 |
+
{
|
1177 |
+
"cell_type": "code",
|
1178 |
+
"execution_count": 47,
|
1179 |
+
"id": "yxZH4QzR-ydZ",
|
1180 |
+
"metadata": {
|
1181 |
+
"colab": {
|
1182 |
+
"base_uri": "https://localhost:8080/"
|
1183 |
+
},
|
1184 |
+
"id": "yxZH4QzR-ydZ",
|
1185 |
+
"outputId": "d46883fa-15f6-44e9-d69f-797a3af7a8c4"
|
1186 |
+
},
|
1187 |
+
"outputs": [
|
1188 |
+
{
|
1189 |
+
"name": "stdout",
|
1190 |
+
"output_type": "stream",
|
1191 |
+
"text": [
|
1192 |
+
"torch.Size([1, 14, 100277])\n"
|
1193 |
+
]
|
1194 |
+
}
|
1195 |
+
],
|
1196 |
+
"source": [
|
1197 |
+
"inputs=torch.tensor([[ 9906, 11, 358, 1097, 2467, 488, 64, 13, 41867, 40540,\n",
|
1198 |
+
" 15145, 30876, 46468, 30001]]) # Remove extra comma and parenthesis to make it a tensor\n",
|
1199 |
+
"with torch.no_grad():\n",
|
1200 |
+
" logits=model(inputs)\n",
|
1201 |
+
"probas=torch.softmax(logits,dim=-1)\n",
|
1202 |
+
"print(probas.shape)"
|
1203 |
+
]
|
1204 |
+
},
|
1205 |
+
{
|
1206 |
+
"cell_type": "code",
|
1207 |
+
"execution_count": 48,
|
1208 |
+
"id": "MTItfymWGhRZ",
|
1209 |
+
"metadata": {
|
1210 |
+
"id": "MTItfymWGhRZ"
|
1211 |
+
},
|
1212 |
+
"outputs": [],
|
1213 |
+
"source": [
|
1214 |
+
"torch.manual_seed(123)\n",
|
1215 |
+
"train_loader=create_dataloader_v1(train_text,batch_size=4,max_length=GPT_CONFIG[\"context_length\"],\n",
|
1216 |
+
" stride=GPT_CONFIG['context_length'],\n",
|
1217 |
+
" drop_last=True,\n",
|
1218 |
+
" shuffle=True\n",
|
1219 |
+
" )\n",
|
1220 |
+
"val_loader=create_dataloader_v1(val_text,batch_size=4,max_length=GPT_CONFIG[\"context_length\"],\n",
|
1221 |
+
" stride=GPT_CONFIG['context_length'],\n",
|
1222 |
+
" drop_last=True,\n",
|
1223 |
+
" shuffle=True\n",
|
1224 |
+
" )"
|
1225 |
+
]
|
1226 |
+
},
|
1227 |
+
{
|
1228 |
+
"cell_type": "code",
|
1229 |
+
"execution_count": 49,
|
1230 |
+
"id": "e853b287",
|
1231 |
+
"metadata": {},
|
1232 |
+
"outputs": [
|
1233 |
+
{
|
1234 |
+
"name": "stdout",
|
1235 |
+
"output_type": "stream",
|
1236 |
+
"text": [
|
1237 |
+
"Train loader:\n",
|
1238 |
+
"torch.Size([4, 256]) torch.Size([4, 256])\n",
|
1239 |
+
"torch.Size([4, 256]) torch.Size([4, 256])\n",
|
1240 |
+
"torch.Size([4, 256]) torch.Size([4, 256])\n",
|
1241 |
+
"torch.Size([4, 256]) torch.Size([4, 256])\n",
|
1242 |
+
"torch.Size([4, 256]) torch.Size([4, 256])\n",
|
1243 |
+
"torch.Size([4, 256]) torch.Size([4, 256])\n",
|
1244 |
+
"torch.Size([4, 256]) torch.Size([4, 256])\n",
|
1245 |
+
"torch.Size([4, 256]) torch.Size([4, 256])\n",
|
1246 |
+
"torch.Size([4, 256]) torch.Size([4, 256])\n",
|
1247 |
+
"torch.Size([4, 256]) torch.Size([4, 256])\n",
|
1248 |
+
"torch.Size([4, 256]) torch.Size([4, 256])\n",
|
1249 |
+
"\n",
|
1250 |
+
" Validation Loader:\n",
|
1251 |
+
"torch.Size([4, 256]) torch.Size([4, 256])\n"
|
1252 |
+
]
|
1253 |
+
}
|
1254 |
+
],
|
1255 |
+
"source": [
|
1256 |
+
"print(\"Train loader:\")\n",
|
1257 |
+
"for x,y in train_loader:\n",
|
1258 |
+
" print(x.shape,y.shape)\n",
|
1259 |
+
"print(\"\\n Validation Loader:\")\n",
|
1260 |
+
"for x,y in val_loader:\n",
|
1261 |
+
" print(x.shape,y.shape)\n",
|
1262 |
+
"# The output implies that the model has 18 training set batches with 2 samples and 256 tokens each"
|
1263 |
+
]
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"cell_type": "code",
|
1267 |
+
"execution_count": 50,
|
1268 |
+
"id": "Df2uwuFnmOp3",
|
1269 |
+
"metadata": {
|
1270 |
+
"id": "Df2uwuFnmOp3"
|
1271 |
+
},
|
1272 |
+
"outputs": [],
|
1273 |
+
"source": [
|
1274 |
+
"def calculation_of_loss(input_batch,target_batch,model,device):\n",
|
1275 |
+
" input_batch,target_batch=input_batch.to(device),target_batch.to(device)\n",
|
1276 |
+
" logits=model(input_batch)\n",
|
1277 |
+
" loss=torch.nn.functional.cross_entropy(logits.flatten(0,1),target_batch.flatten())\n",
|
1278 |
+
" return loss"
|
1279 |
+
]
|
1280 |
+
},
|
1281 |
+
{
|
1282 |
+
"cell_type": "code",
|
1283 |
+
"execution_count": 51,
|
1284 |
+
"id": "hdoiK6MLcrYV",
|
1285 |
+
"metadata": {
|
1286 |
+
"id": "hdoiK6MLcrYV"
|
1287 |
+
},
|
1288 |
+
"outputs": [],
|
1289 |
+
"source": [
|
1290 |
+
"def loss_loader(data_loader, model, device, num_batches=4):\n",
|
1291 |
+
" total_loss = 0 \n",
|
1292 |
+
" for i, (input_batch, target_batch) in enumerate(data_loader):\n",
|
1293 |
+
" if i < num_batches:\n",
|
1294 |
+
" loss = calculation_of_loss(input_batch, target_batch, model, device)\n",
|
1295 |
+
" total_loss += loss.item()\n",
|
1296 |
+
" else:\n",
|
1297 |
+
" break\n",
|
1298 |
+
" return total_loss / num_batches"
|
1299 |
+
]
|
1300 |
+
},
|
1301 |
+
{
|
1302 |
+
"cell_type": "code",
|
1303 |
+
"execution_count": 52,
|
1304 |
+
"id": "x89QUR65ePEs",
|
1305 |
+
"metadata": {
|
1306 |
+
"colab": {
|
1307 |
+
"base_uri": "https://localhost:8080/",
|
1308 |
+
"height": 383
|
1309 |
+
},
|
1310 |
+
"id": "x89QUR65ePEs",
|
1311 |
+
"outputId": "7b4bc307-b3fb-45b7-d067-724481f7bbce"
|
1312 |
+
},
|
1313 |
+
"outputs": [
|
1314 |
+
{
|
1315 |
+
"name": "stdout",
|
1316 |
+
"output_type": "stream",
|
1317 |
+
"text": [
|
1318 |
+
"Train loss: 98.4413\n",
|
1319 |
+
"Validation loss: 24.3542\n"
|
1320 |
+
]
|
1321 |
+
}
|
1322 |
+
],
|
1323 |
+
"source": [
|
1324 |
+
"device='cpu'\n",
|
1325 |
+
"model.to(device)\n",
|
1326 |
+
"train_loss = loss_loader(train_loader, model, device='cpu',num_batches=4)\n",
|
1327 |
+
"val_loss=loss_loader(val_loader,model,device='cpu',num_batches=4)\n",
|
1328 |
+
"print(f\"Train loss: {train_loss:.4f}\")\n",
|
1329 |
+
"print(f\"Validation loss: {val_loss:.4f}\")"
|
1330 |
+
]
|
1331 |
+
},
|
1332 |
+
{
|
1333 |
+
"cell_type": "code",
|
1334 |
+
"execution_count": 53,
|
1335 |
+
"id": "4aa447fc",
|
1336 |
+
"metadata": {},
|
1337 |
+
"outputs": [
|
1338 |
+
{
|
1339 |
+
"name": "stdout",
|
1340 |
+
"output_type": "stream",
|
1341 |
+
"text": [
|
1342 |
+
"11\n",
|
1343 |
+
"1\n"
|
1344 |
+
]
|
1345 |
+
}
|
1346 |
+
],
|
1347 |
+
"source": [
|
1348 |
+
"print(len(train_loader))\n",
|
1349 |
+
"print(len(val_loader))"
|
1350 |
+
]
|
1351 |
+
},
|
1352 |
+
{
|
1353 |
+
"cell_type": "code",
|
1354 |
+
"execution_count": 54,
|
1355 |
+
"id": "a0020a0e",
|
1356 |
+
"metadata": {},
|
1357 |
+
"outputs": [],
|
1358 |
+
"source": [
|
1359 |
+
"def train_the_model(model,train_loader,val_loader,epochs=1,learning_rate=3e-4):\n",
|
1360 |
+
" optimizer=torch.optim.AdamW(model.parameters(),lr=learning_rate)\n",
|
1361 |
+
" for epoch in range(epochs):\n",
|
1362 |
+
" model.train()\n",
|
1363 |
+
" for i,(input_batch,target_batch) in enumerate(train_loader):\n",
|
1364 |
+
" input_batch,target_batch=input_batch.to(device),target_batch.to(device)\n",
|
1365 |
+
" optimizer.zero_grad()\n",
|
1366 |
+
" logits=model(input_batch)\n",
|
1367 |
+
" loss=torch.nn.functional.cross_entropy(logits.flatten(0,1),target_batch.flatten())\n",
|
1368 |
+
" loss.backward()\n",
|
1369 |
+
" optimizer.step()\n",
|
1370 |
+
" if i%100==0:\n",
|
1371 |
+
" print(f\"Epoch {epoch+1}/{epochs}, Batch {i}/{len(train_loader)}, Loss: {loss.item():.4f}\")\n",
|
1372 |
+
" model.eval()\n",
|
1373 |
+
" train_loss = loss_loader(train_loader, model, device='cpu',num_batches=4)\n",
|
1374 |
+
" val_loss = loss_loader(val_loader, model, device='cpu',num_batches=4)\n",
|
1375 |
+
" print(f\"Epoch {epoch+1}/{epochs}, Train Loss: {train_loss:.4f}, Validation Loss: {val_loss:.4f}\")\n",
|
1376 |
+
" return train_loss, val_loss"
|
1377 |
+
]
|
1378 |
+
},
|
1379 |
+
{
|
1380 |
+
"cell_type": "code",
|
1381 |
+
"execution_count": 55,
|
1382 |
+
"id": "b8407429",
|
1383 |
+
"metadata": {},
|
1384 |
+
"outputs": [],
|
1385 |
+
"source": [
|
1386 |
+
"def evaluate_model(model,train_loader, val_loader, device='cpu', num_batches=4):\n",
|
1387 |
+
" model.eval()\n",
|
1388 |
+
" with torch.no_grad():\n",
|
1389 |
+
" train_loss = loss_loader(train_loader, model, device=device, num_batches=num_batches)\n",
|
1390 |
+
" val_loss = loss_loader(val_loader, model, device=device, num_batches=num_batches)\n",
|
1391 |
+
" model.train()\n",
|
1392 |
+
" print(f\"Train Loss: {train_loss:.4f}\")\n",
|
1393 |
+
" print(f\"Validation Loss: {val_loss:.4f}\")\n",
|
1394 |
+
" return train_loss, val_loss"
|
1395 |
+
]
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"cell_type": "code",
|
1399 |
+
"execution_count": 56,
|
1400 |
+
"id": "96d3965f",
|
1401 |
+
"metadata": {},
|
1402 |
+
"outputs": [
|
1403 |
+
{
|
1404 |
+
"name": "stdout",
|
1405 |
+
"output_type": "stream",
|
1406 |
+
"text": [
|
1407 |
+
"Epoch 1/10, Batch 0/11, Loss: 98.6930\n",
|
1408 |
+
"Epoch 1/10, Train Loss: 94.4102, Validation Loss: 23.4683\n"
|
1409 |
+
]
|
1410 |
+
}
|
1411 |
+
],
|
1412 |
+
"source": [
|
1413 |
+
"torch.manual_seed(123)\n",
|
1414 |
+
"model=GPT_Model(GPT_CONFIG)\n",
|
1415 |
+
"model.to(device)\n",
|
1416 |
+
"train_loss, val_loss = train_the_model(model, train_loader, val_loader, epochs=10, learning_rate=3e-4)"
|
1417 |
+
]
|
1418 |
+
},
|
1419 |
+
{
|
1420 |
+
"cell_type": "code",
|
1421 |
+
"execution_count": 57,
|
1422 |
+
"id": "fac91e1d",
|
1423 |
+
"metadata": {},
|
1424 |
+
"outputs": [
|
1425 |
+
{
|
1426 |
+
"name": "stdout",
|
1427 |
+
"output_type": "stream",
|
1428 |
+
"text": [
|
1429 |
+
"Output text:\n",
|
1430 |
+
" Hi\traise pitched že beh Difference_rg Commons licens\tsh taped LSUesco microseconds haberhandleRequest\n",
|
1431 |
+
"Output text:\n",
|
1432 |
+
" Can you talk in english-authored Alert 값을 together Arlington Pert DatePicker CitProductName/mswonerrassouth995 considerably\n",
|
1433 |
+
"Output text:\n",
|
1434 |
+
" Yup little bit less chinese\tll amongst Companies_Details_Details_Details_Details(diistribute sampano PUasingbowerazzo\n"
|
1435 |
+
]
|
1436 |
+
},
|
1437 |
+
{
|
1438 |
+
"ename": "RuntimeError",
|
1439 |
+
"evalue": "Expected tensor for argument #1 'indices' to have one of the following scalar types: Long, Int; but got torch.FloatTensor instead (while checking arguments for embedding)",
|
1440 |
+
"output_type": "error",
|
1441 |
+
"traceback": [
|
1442 |
+
"\u001b[31m---------------------------------------------------------------------------\u001b[39m",
|
1443 |
+
"\u001b[31mRuntimeError\u001b[39m Traceback (most recent call last)",
|
1444 |
+
"\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[57]\u001b[39m\u001b[32m, line 3\u001b[39m\n\u001b[32m 1\u001b[39m \u001b[38;5;28;01mwhile\u001b[39;00m \u001b[38;5;28;01mTrue\u001b[39;00m:\n\u001b[32m 2\u001b[39m start_context=\u001b[38;5;28minput\u001b[39m()\n\u001b[32m----> \u001b[39m\u001b[32m3\u001b[39m token_ids=\u001b[43mgenerate_text\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m=\u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\u001b[43midx\u001b[49m\u001b[43m=\u001b[49m\u001b[43mtext_to_token_ids\u001b[49m\u001b[43m(\u001b[49m\u001b[43mstart_context\u001b[49m\u001b[43m,\u001b[49m\u001b[43mtokenizer\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43mmax_new_tokens\u001b[49m\u001b[43m=\u001b[49m\u001b[32;43m15\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43mcontext_size\u001b[49m\u001b[43m=\u001b[49m\u001b[43mGPT_CONFIG\u001b[49m\u001b[43m[\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mcontext_length\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43mtemperature\u001b[49m\u001b[43m=\u001b[49m\u001b[32;43m0.4\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43mtop_k\u001b[49m\u001b[43m=\u001b[49m\u001b[32;43m3\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[32m 4\u001b[39m \u001b[38;5;28mprint\u001b[39m(\u001b[33m\"\u001b[39m\u001b[33mOutput text:\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[33m\"\u001b[39m,token_ids_to_text(token_ids,tokenizer))\n",
|
1445 |
+
"\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[27]\u001b[39m\u001b[32m, line 5\u001b[39m, in \u001b[36mgenerate_text\u001b[39m\u001b[34m(model, idx, max_new_tokens, context_size, temperature, top_k)\u001b[39m\n\u001b[32m 3\u001b[39m idx_cond=idx[:,-context_size:]\n\u001b[32m 4\u001b[39m \u001b[38;5;28;01mwith\u001b[39;00m torch.no_grad():\n\u001b[32m----> \u001b[39m\u001b[32m5\u001b[39m logits=\u001b[43mmodel\u001b[49m\u001b[43m(\u001b[49m\u001b[43midx_cond\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 6\u001b[39m logits=logits[:,-\u001b[32m1\u001b[39m,:]\n\u001b[32m 7\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m top_k \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n",
|
1446 |
+
"\u001b[36mFile \u001b[39m\u001b[32m~\\AppData\\Roaming\\Python\\Python313\\site-packages\\torch\\nn\\modules\\module.py:1751\u001b[39m, in \u001b[36mModule._wrapped_call_impl\u001b[39m\u001b[34m(self, *args, **kwargs)\u001b[39m\n\u001b[32m 1749\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m._compiled_call_impl(*args, **kwargs) \u001b[38;5;66;03m# type: ignore[misc]\u001b[39;00m\n\u001b[32m 1750\u001b[39m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[32m-> \u001b[39m\u001b[32m1751\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43m_call_impl\u001b[49m\u001b[43m(\u001b[49m\u001b[43m*\u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
|
1447 |
+
"\u001b[36mFile \u001b[39m\u001b[32m~\\AppData\\Roaming\\Python\\Python313\\site-packages\\torch\\nn\\modules\\module.py:1762\u001b[39m, in \u001b[36mModule._call_impl\u001b[39m\u001b[34m(self, *args, **kwargs)\u001b[39m\n\u001b[32m 1757\u001b[39m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[32m 1758\u001b[39m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[32m 1759\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m._backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m._backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m._forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m._forward_pre_hooks\n\u001b[32m 1760\u001b[39m \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[32m 1761\u001b[39m \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[32m-> \u001b[39m\u001b[32m1762\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[43m*\u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 1764\u001b[39m result = \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[32m 1765\u001b[39m called_always_called_hooks = \u001b[38;5;28mset\u001b[39m()\n",
|
1448 |
+
"\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[32]\u001b[39m\u001b[32m, line 16\u001b[39m, in \u001b[36mGPT_Model.forward\u001b[39m\u001b[34m(self, in_idx)\u001b[39m\n\u001b[32m 14\u001b[39m batch_size,seq_len=in_idx.shape\n\u001b[32m 15\u001b[39m in_idx = torch.clamp(in_idx, \u001b[32m0\u001b[39m, \u001b[38;5;28mself\u001b[39m.tok_emb.num_embeddings - \u001b[32m1\u001b[39m) \u001b[38;5;66;03m#This was initially commented out\u001b[39;00m\n\u001b[32m---> \u001b[39m\u001b[32m16\u001b[39m token_embeddings=\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mtok_emb\u001b[49m\u001b[43m(\u001b[49m\u001b[43min_idx\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 17\u001b[39m positions = torch.arange(seq_len, device=in_idx.device).unsqueeze(\u001b[32m0\u001b[39m) \u001b[38;5;66;03m#this is the extra added line\u001b[39;00m\n\u001b[32m 18\u001b[39m positional_embeddings=\u001b[38;5;28mself\u001b[39m.pos_emb(positions)\n",
|
1449 |
+
"\u001b[36mFile \u001b[39m\u001b[32m~\\AppData\\Roaming\\Python\\Python313\\site-packages\\torch\\nn\\modules\\module.py:1751\u001b[39m, in \u001b[36mModule._wrapped_call_impl\u001b[39m\u001b[34m(self, *args, **kwargs)\u001b[39m\n\u001b[32m 1749\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m._compiled_call_impl(*args, **kwargs) \u001b[38;5;66;03m# type: ignore[misc]\u001b[39;00m\n\u001b[32m 1750\u001b[39m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[32m-> \u001b[39m\u001b[32m1751\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43m_call_impl\u001b[49m\u001b[43m(\u001b[49m\u001b[43m*\u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
|
1450 |
+
"\u001b[36mFile \u001b[39m\u001b[32m~\\AppData\\Roaming\\Python\\Python313\\site-packages\\torch\\nn\\modules\\module.py:1762\u001b[39m, in \u001b[36mModule._call_impl\u001b[39m\u001b[34m(self, *args, **kwargs)\u001b[39m\n\u001b[32m 1757\u001b[39m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[32m 1758\u001b[39m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[32m 1759\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m._backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m._backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m._forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m._forward_pre_hooks\n\u001b[32m 1760\u001b[39m \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[32m 1761\u001b[39m \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[32m-> \u001b[39m\u001b[32m1762\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[43m*\u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 1764\u001b[39m result = \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[32m 1765\u001b[39m called_always_called_hooks = \u001b[38;5;28mset\u001b[39m()\n",
|
1451 |
+
"\u001b[36mFile \u001b[39m\u001b[32m~\\AppData\\Roaming\\Python\\Python313\\site-packages\\torch\\nn\\modules\\sparse.py:190\u001b[39m, in \u001b[36mEmbedding.forward\u001b[39m\u001b[34m(self, input)\u001b[39m\n\u001b[32m 189\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34mforward\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;28minput\u001b[39m: Tensor) -> Tensor:\n\u001b[32m--> \u001b[39m\u001b[32m190\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mF\u001b[49m\u001b[43m.\u001b[49m\u001b[43membedding\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 191\u001b[39m \u001b[43m \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 192\u001b[39m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mweight\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 193\u001b[39m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mpadding_idx\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 194\u001b[39m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mmax_norm\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 195\u001b[39m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mnorm_type\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 196\u001b[39m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mscale_grad_by_freq\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 197\u001b[39m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43msparse\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 198\u001b[39m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
|
1452 |
+
"\u001b[36mFile \u001b[39m\u001b[32m~\\AppData\\Roaming\\Python\\Python313\\site-packages\\torch\\nn\\functional.py:2551\u001b[39m, in \u001b[36membedding\u001b[39m\u001b[34m(input, weight, padding_idx, max_norm, norm_type, scale_grad_by_freq, sparse)\u001b[39m\n\u001b[32m 2545\u001b[39m \u001b[38;5;66;03m# Note [embedding_renorm set_grad_enabled]\u001b[39;00m\n\u001b[32m 2546\u001b[39m \u001b[38;5;66;03m# XXX: equivalent to\u001b[39;00m\n\u001b[32m 2547\u001b[39m \u001b[38;5;66;03m# with torch.no_grad():\u001b[39;00m\n\u001b[32m 2548\u001b[39m \u001b[38;5;66;03m# torch.embedding_renorm_\u001b[39;00m\n\u001b[32m 2549\u001b[39m \u001b[38;5;66;03m# remove once script supports set_grad_enabled\u001b[39;00m\n\u001b[32m 2550\u001b[39m _no_grad_embedding_renorm_(weight, \u001b[38;5;28minput\u001b[39m, max_norm, norm_type)\n\u001b[32m-> \u001b[39m\u001b[32m2551\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mtorch\u001b[49m\u001b[43m.\u001b[49m\u001b[43membedding\u001b[49m\u001b[43m(\u001b[49m\u001b[43mweight\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpadding_idx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mscale_grad_by_freq\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msparse\u001b[49m\u001b[43m)\u001b[49m\n",
|
1453 |
+
"\u001b[31mRuntimeError\u001b[39m: Expected tensor for argument #1 'indices' to have one of the following scalar types: Long, Int; but got torch.FloatTensor instead (while checking arguments for embedding)"
|
1454 |
+
]
|
1455 |
+
}
|
1456 |
+
],
|
1457 |
+
"source": [
|
1458 |
+
"while True:\n",
|
1459 |
+
" start_context=input()\n",
|
1460 |
+
" token_ids=generate_text(model=model,idx=text_to_token_ids(start_context,tokenizer),max_new_tokens=15,context_size=GPT_CONFIG[\"context_length\"],temperature=0.4,top_k=3)\n",
|
1461 |
+
" print(\"Output text:\\n\",token_ids_to_text(token_ids,tokenizer))"
|
1462 |
+
]
|
1463 |
+
},
|
1464 |
+
{
|
1465 |
+
"cell_type": "code",
|
1466 |
+
"execution_count": 61,
|
1467 |
+
"id": "19ea61ce",
|
1468 |
+
"metadata": {},
|
1469 |
+
"outputs": [],
|
1470 |
+
"source": [
|
1471 |
+
"optimizer=torch.optim.AdamW(model.parameters(),lr=3e-4)\n",
|
1472 |
+
"torch.save({\"model weights and biases\":model.state_dict(),\n",
|
1473 |
+
" \"optimizer_weights\":optimizer.state_dict(),},\n",
|
1474 |
+
" \"GPT_model.pth\")"
|
1475 |
+
]
|
1476 |
+
},
|
1477 |
+
{
|
1478 |
+
"cell_type": "code",
|
1479 |
+
"execution_count": null,
|
1480 |
+
"id": "d88da3c8",
|
1481 |
+
"metadata": {},
|
1482 |
+
"outputs": [
|
1483 |
+
{
|
1484 |
+
"data": {
|
1485 |
+
"text/plain": [
|
1486 |
+
"GPT_Model(\n",
|
1487 |
+
" (tok_emb): Embedding(100277, 512)\n",
|
1488 |
+
" (pos_emb): Embedding(256, 512)\n",
|
1489 |
+
" (drop_emb): Dropout(p=0.1, inplace=False)\n",
|
1490 |
+
" (trf_blocks): Sequential(\n",
|
1491 |
+
" (0): TransformerBlock(\n",
|
1492 |
+
" (att): MultiHeadAttention(\n",
|
1493 |
+
" (W_query): Linear(in_features=512, out_features=512, bias=False)\n",
|
1494 |
+
" (W_key): Linear(in_features=512, out_features=512, bias=False)\n",
|
1495 |
+
" (W_value): Linear(in_features=512, out_features=512, bias=False)\n",
|
1496 |
+
" (out_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
1497 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
1498 |
+
" )\n",
|
1499 |
+
" (ff): FeedForward(\n",
|
1500 |
+
" (layers): Sequential(\n",
|
1501 |
+
" (0): Linear(in_features=512, out_features=2048, bias=True)\n",
|
1502 |
+
" (1): Swish()\n",
|
1503 |
+
" (2): Linear(in_features=2048, out_features=512, bias=True)\n",
|
1504 |
+
" )\n",
|
1505 |
+
" )\n",
|
1506 |
+
" (norm1): LayerNormalization()\n",
|
1507 |
+
" (norm2): LayerNormalization()\n",
|
1508 |
+
" (drop_resid): Dropout(p=0.1, inplace=False)\n",
|
1509 |
+
" )\n",
|
1510 |
+
" (1): TransformerBlock(\n",
|
1511 |
+
" (att): MultiHeadAttention(\n",
|
1512 |
+
" (W_query): Linear(in_features=512, out_features=512, bias=False)\n",
|
1513 |
+
" (W_key): Linear(in_features=512, out_features=512, bias=False)\n",
|
1514 |
+
" (W_value): Linear(in_features=512, out_features=512, bias=False)\n",
|
1515 |
+
" (out_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
1516 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
1517 |
+
" )\n",
|
1518 |
+
" (ff): FeedForward(\n",
|
1519 |
+
" (layers): Sequential(\n",
|
1520 |
+
" (0): Linear(in_features=512, out_features=2048, bias=True)\n",
|
1521 |
+
" (1): Swish()\n",
|
1522 |
+
" (2): Linear(in_features=2048, out_features=512, bias=True)\n",
|
1523 |
+
" )\n",
|
1524 |
+
" )\n",
|
1525 |
+
" (norm1): LayerNormalization()\n",
|
1526 |
+
" (norm2): LayerNormalization()\n",
|
1527 |
+
" (drop_resid): Dropout(p=0.1, inplace=False)\n",
|
1528 |
+
" )\n",
|
1529 |
+
" (2): TransformerBlock(\n",
|
1530 |
+
" (att): MultiHeadAttention(\n",
|
1531 |
+
" (W_query): Linear(in_features=512, out_features=512, bias=False)\n",
|
1532 |
+
" (W_key): Linear(in_features=512, out_features=512, bias=False)\n",
|
1533 |
+
" (W_value): Linear(in_features=512, out_features=512, bias=False)\n",
|
1534 |
+
" (out_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
1535 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
1536 |
+
" )\n",
|
1537 |
+
" (ff): FeedForward(\n",
|
1538 |
+
" (layers): Sequential(\n",
|
1539 |
+
" (0): Linear(in_features=512, out_features=2048, bias=True)\n",
|
1540 |
+
" (1): Swish()\n",
|
1541 |
+
" (2): Linear(in_features=2048, out_features=512, bias=True)\n",
|
1542 |
+
" )\n",
|
1543 |
+
" )\n",
|
1544 |
+
" (norm1): LayerNormalization()\n",
|
1545 |
+
" (norm2): LayerNormalization()\n",
|
1546 |
+
" (drop_resid): Dropout(p=0.1, inplace=False)\n",
|
1547 |
+
" )\n",
|
1548 |
+
" (3): TransformerBlock(\n",
|
1549 |
+
" (att): MultiHeadAttention(\n",
|
1550 |
+
" (W_query): Linear(in_features=512, out_features=512, bias=False)\n",
|
1551 |
+
" (W_key): Linear(in_features=512, out_features=512, bias=False)\n",
|
1552 |
+
" (W_value): Linear(in_features=512, out_features=512, bias=False)\n",
|
1553 |
+
" (out_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
1554 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
1555 |
+
" )\n",
|
1556 |
+
" (ff): FeedForward(\n",
|
1557 |
+
" (layers): Sequential(\n",
|
1558 |
+
" (0): Linear(in_features=512, out_features=2048, bias=True)\n",
|
1559 |
+
" (1): Swish()\n",
|
1560 |
+
" (2): Linear(in_features=2048, out_features=512, bias=True)\n",
|
1561 |
+
" )\n",
|
1562 |
+
" )\n",
|
1563 |
+
" (norm1): LayerNormalization()\n",
|
1564 |
+
" (norm2): LayerNormalization()\n",
|
1565 |
+
" (drop_resid): Dropout(p=0.1, inplace=False)\n",
|
1566 |
+
" )\n",
|
1567 |
+
" (4): TransformerBlock(\n",
|
1568 |
+
" (att): MultiHeadAttention(\n",
|
1569 |
+
" (W_query): Linear(in_features=512, out_features=512, bias=False)\n",
|
1570 |
+
" (W_key): Linear(in_features=512, out_features=512, bias=False)\n",
|
1571 |
+
" (W_value): Linear(in_features=512, out_features=512, bias=False)\n",
|
1572 |
+
" (out_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
1573 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
1574 |
+
" )\n",
|
1575 |
+
" (ff): FeedForward(\n",
|
1576 |
+
" (layers): Sequential(\n",
|
1577 |
+
" (0): Linear(in_features=512, out_features=2048, bias=True)\n",
|
1578 |
+
" (1): Swish()\n",
|
1579 |
+
" (2): Linear(in_features=2048, out_features=512, bias=True)\n",
|
1580 |
+
" )\n",
|
1581 |
+
" )\n",
|
1582 |
+
" (norm1): LayerNormalization()\n",
|
1583 |
+
" (norm2): LayerNormalization()\n",
|
1584 |
+
" (drop_resid): Dropout(p=0.1, inplace=False)\n",
|
1585 |
+
" )\n",
|
1586 |
+
" (5): TransformerBlock(\n",
|
1587 |
+
" (att): MultiHeadAttention(\n",
|
1588 |
+
" (W_query): Linear(in_features=512, out_features=512, bias=False)\n",
|
1589 |
+
" (W_key): Linear(in_features=512, out_features=512, bias=False)\n",
|
1590 |
+
" (W_value): Linear(in_features=512, out_features=512, bias=False)\n",
|
1591 |
+
" (out_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
1592 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
1593 |
+
" )\n",
|
1594 |
+
" (ff): FeedForward(\n",
|
1595 |
+
" (layers): Sequential(\n",
|
1596 |
+
" (0): Linear(in_features=512, out_features=2048, bias=True)\n",
|
1597 |
+
" (1): Swish()\n",
|
1598 |
+
" (2): Linear(in_features=2048, out_features=512, bias=True)\n",
|
1599 |
+
" )\n",
|
1600 |
+
" )\n",
|
1601 |
+
" (norm1): LayerNormalization()\n",
|
1602 |
+
" (norm2): LayerNormalization()\n",
|
1603 |
+
" (drop_resid): Dropout(p=0.1, inplace=False)\n",
|
1604 |
+
" )\n",
|
1605 |
+
" (6): TransformerBlock(\n",
|
1606 |
+
" (att): MultiHeadAttention(\n",
|
1607 |
+
" (W_query): Linear(in_features=512, out_features=512, bias=False)\n",
|
1608 |
+
" (W_key): Linear(in_features=512, out_features=512, bias=False)\n",
|
1609 |
+
" (W_value): Linear(in_features=512, out_features=512, bias=False)\n",
|
1610 |
+
" (out_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
1611 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
1612 |
+
" )\n",
|
1613 |
+
" (ff): FeedForward(\n",
|
1614 |
+
" (layers): Sequential(\n",
|
1615 |
+
" (0): Linear(in_features=512, out_features=2048, bias=True)\n",
|
1616 |
+
" (1): Swish()\n",
|
1617 |
+
" (2): Linear(in_features=2048, out_features=512, bias=True)\n",
|
1618 |
+
" )\n",
|
1619 |
+
" )\n",
|
1620 |
+
" (norm1): LayerNormalization()\n",
|
1621 |
+
" (norm2): LayerNormalization()\n",
|
1622 |
+
" (drop_resid): Dropout(p=0.1, inplace=False)\n",
|
1623 |
+
" )\n",
|
1624 |
+
" (7): TransformerBlock(\n",
|
1625 |
+
" (att): MultiHeadAttention(\n",
|
1626 |
+
" (W_query): Linear(in_features=512, out_features=512, bias=False)\n",
|
1627 |
+
" (W_key): Linear(in_features=512, out_features=512, bias=False)\n",
|
1628 |
+
" (W_value): Linear(in_features=512, out_features=512, bias=False)\n",
|
1629 |
+
" (out_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
1630 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
1631 |
+
" )\n",
|
1632 |
+
" (ff): FeedForward(\n",
|
1633 |
+
" (layers): Sequential(\n",
|
1634 |
+
" (0): Linear(in_features=512, out_features=2048, bias=True)\n",
|
1635 |
+
" (1): Swish()\n",
|
1636 |
+
" (2): Linear(in_features=2048, out_features=512, bias=True)\n",
|
1637 |
+
" )\n",
|
1638 |
+
" )\n",
|
1639 |
+
" (norm1): LayerNormalization()\n",
|
1640 |
+
" (norm2): LayerNormalization()\n",
|
1641 |
+
" (drop_resid): Dropout(p=0.1, inplace=False)\n",
|
1642 |
+
" )\n",
|
1643 |
+
" (8): TransformerBlock(\n",
|
1644 |
+
" (att): MultiHeadAttention(\n",
|
1645 |
+
" (W_query): Linear(in_features=512, out_features=512, bias=False)\n",
|
1646 |
+
" (W_key): Linear(in_features=512, out_features=512, bias=False)\n",
|
1647 |
+
" (W_value): Linear(in_features=512, out_features=512, bias=False)\n",
|
1648 |
+
" (out_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
1649 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
1650 |
+
" )\n",
|
1651 |
+
" (ff): FeedForward(\n",
|
1652 |
+
" (layers): Sequential(\n",
|
1653 |
+
" (0): Linear(in_features=512, out_features=2048, bias=True)\n",
|
1654 |
+
" (1): Swish()\n",
|
1655 |
+
" (2): Linear(in_features=2048, out_features=512, bias=True)\n",
|
1656 |
+
" )\n",
|
1657 |
+
" )\n",
|
1658 |
+
" (norm1): LayerNormalization()\n",
|
1659 |
+
" (norm2): LayerNormalization()\n",
|
1660 |
+
" (drop_resid): Dropout(p=0.1, inplace=False)\n",
|
1661 |
+
" )\n",
|
1662 |
+
" (9): TransformerBlock(\n",
|
1663 |
+
" (att): MultiHeadAttention(\n",
|
1664 |
+
" (W_query): Linear(in_features=512, out_features=512, bias=False)\n",
|
1665 |
+
" (W_key): Linear(in_features=512, out_features=512, bias=False)\n",
|
1666 |
+
" (W_value): Linear(in_features=512, out_features=512, bias=False)\n",
|
1667 |
+
" (out_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
1668 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
1669 |
+
" )\n",
|
1670 |
+
" (ff): FeedForward(\n",
|
1671 |
+
" (layers): Sequential(\n",
|
1672 |
+
" (0): Linear(in_features=512, out_features=2048, bias=True)\n",
|
1673 |
+
" (1): Swish()\n",
|
1674 |
+
" (2): Linear(in_features=2048, out_features=512, bias=True)\n",
|
1675 |
+
" )\n",
|
1676 |
+
" )\n",
|
1677 |
+
" (norm1): LayerNormalization()\n",
|
1678 |
+
" (norm2): LayerNormalization()\n",
|
1679 |
+
" (drop_resid): Dropout(p=0.1, inplace=False)\n",
|
1680 |
+
" )\n",
|
1681 |
+
" (10): TransformerBlock(\n",
|
1682 |
+
" (att): MultiHeadAttention(\n",
|
1683 |
+
" (W_query): Linear(in_features=512, out_features=512, bias=False)\n",
|
1684 |
+
" (W_key): Linear(in_features=512, out_features=512, bias=False)\n",
|
1685 |
+
" (W_value): Linear(in_features=512, out_features=512, bias=False)\n",
|
1686 |
+
" (out_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
1687 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
1688 |
+
" )\n",
|
1689 |
+
" (ff): FeedForward(\n",
|
1690 |
+
" (layers): Sequential(\n",
|
1691 |
+
" (0): Linear(in_features=512, out_features=2048, bias=True)\n",
|
1692 |
+
" (1): Swish()\n",
|
1693 |
+
" (2): Linear(in_features=2048, out_features=512, bias=True)\n",
|
1694 |
+
" )\n",
|
1695 |
+
" )\n",
|
1696 |
+
" (norm1): LayerNormalization()\n",
|
1697 |
+
" (norm2): LayerNormalization()\n",
|
1698 |
+
" (drop_resid): Dropout(p=0.1, inplace=False)\n",
|
1699 |
+
" )\n",
|
1700 |
+
" (11): TransformerBlock(\n",
|
1701 |
+
" (att): MultiHeadAttention(\n",
|
1702 |
+
" (W_query): Linear(in_features=512, out_features=512, bias=False)\n",
|
1703 |
+
" (W_key): Linear(in_features=512, out_features=512, bias=False)\n",
|
1704 |
+
" (W_value): Linear(in_features=512, out_features=512, bias=False)\n",
|
1705 |
+
" (out_proj): Linear(in_features=512, out_features=512, bias=True)\n",
|
1706 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
1707 |
+
" )\n",
|
1708 |
+
" (ff): FeedForward(\n",
|
1709 |
+
" (layers): Sequential(\n",
|
1710 |
+
" (0): Linear(in_features=512, out_features=2048, bias=True)\n",
|
1711 |
+
" (1): Swish()\n",
|
1712 |
+
" (2): Linear(in_features=2048, out_features=512, bias=True)\n",
|
1713 |
+
" )\n",
|
1714 |
+
" )\n",
|
1715 |
+
" (norm1): LayerNormalization()\n",
|
1716 |
+
" (norm2): LayerNormalization()\n",
|
1717 |
+
" (drop_resid): Dropout(p=0.1, inplace=False)\n",
|
1718 |
+
" )\n",
|
1719 |
+
" )\n",
|
1720 |
+
" (final_norm): LayerNormalization()\n",
|
1721 |
+
" (out_head): Linear(in_features=512, out_features=100277, bias=False)\n",
|
1722 |
+
")"
|
1723 |
+
]
|
1724 |
+
},
|
1725 |
+
"execution_count": 44,
|
1726 |
+
"metadata": {},
|
1727 |
+
"output_type": "execute_result"
|
1728 |
+
}
|
1729 |
+
],
|
1730 |
+
"source": [
|
1731 |
+
"#Load the weights using the following code\n",
|
1732 |
+
"#model = GPT_Model(GPT_CONFIG)\n",
|
1733 |
+
"#model.load_state_dict(torch.load(\"GPT_model.pth\"))\n",
|
1734 |
+
"#model.eval()"
|
1735 |
+
]
|
1736 |
+
}
|
1737 |
+
],
|
1738 |
+
"metadata": {
|
1739 |
+
"colab": {
|
1740 |
+
"provenance": []
|
1741 |
+
},
|
1742 |
+
"kernelspec": {
|
1743 |
+
"display_name": "Python 3",
|
1744 |
+
"language": "python",
|
1745 |
+
"name": "python3"
|
1746 |
+
},
|
1747 |
+
"language_info": {
|
1748 |
+
"codemirror_mode": {
|
1749 |
+
"name": "ipython",
|
1750 |
+
"version": 3
|
1751 |
+
},
|
1752 |
+
"file_extension": ".py",
|
1753 |
+
"mimetype": "text/x-python",
|
1754 |
+
"name": "python",
|
1755 |
+
"nbconvert_exporter": "python",
|
1756 |
+
"pygments_lexer": "ipython3",
|
1757 |
+
"version": "3.13.2"
|
1758 |
+
}
|
1759 |
+
},
|
1760 |
+
"nbformat": 4,
|
1761 |
+
"nbformat_minor": 5
|
1762 |
+
}
|